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ABSTRACT

Segmentation is a fundamental and core problem in computer vision research which
has applications in many tasks, such as object recognition, content-based image
retrieval, and semantic labelling. To partition the data into groups coherent in
one or more characteristics such as semantic classes, is often a first step towards
understanding the content of data. As information in the real world is generally
perceived in multiple modalities, segmentation performed on multi-modal data
for extracting the latent structure usually encounters a challenge: how to combine
features from multiple modalities and resolve accidental ambiguities. This thesis
tackles three main axes of multi-modal segmentation problems: video segmentation
and object discovery, activity segmentation and discovery, and segmentation in 3D
data.

For the first two axes, we introduce non-parametric Bayesian approaches for
segmenting multi-modal data collections, including groups of videos and context
sensor streams. The proposed method shows benefits on: integrating multiple
features and data dependencies in a probabilistic formulation, inferring the number
of clusters from data and hierarchical semantic partitions, as well as resolving
ambiguities by joint segmentation across videos or streams.

The third axis focuses on the robust use of 3D information for various applications,
as 3D perception provides richer geometric structure and holistic observation of
the visual scene. The studies covered in this thesis for utilizing various types of
3D data include: 3D object segmentation based on Kinect depth sensing improved
by cross-modal stereo, matching 3D CAD models to objects on 2D image plane
by exploiting the differentiability of the HOG descriptor, segmenting stereo videos
based on adaptive ensemble models, and fusing 2D object detectors with 3D context
information for an augmented reality application scenario.
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ZUSAMMENFASSUNG

Segmentierung ist ein zentrales problem in der Computer Vision Forschung mit
Anwendungen in vielen Bereichen wie der Objekterkennung, der inhaltsbasierten
Bildsuche und dem semantischen Labelling. Daten in Gruppen zu partitionieren,
die in einer oder mehreren Eigenschaften wie zum Beispiel der semantischen Klasse
übereinstimmen, ist oft ein erster Schritt in Richtung Inhaltsanalyse. Da Infor-
mationen in der realen Welt im Allgemeinen multi-modal wahrgenommen wer-
den, wird die Segmentierung auf multi-modale Daten angewendet und die latente
Struktur dahinter extrahiert. Dies stellt in der Regel eine Herausforderung dar:
Wie kombiniert man Merkmale aus mehreren Modalitäten und beseitigt zufällige
Mehrdeutigkeiten? Diese Doktorarbeit befasst sich mit drei Hauptachsen multi-
modaler Segmentierungsprobleme: Videosegmentierung und Objektentdeckung,
Aktivitätssegmentierung und –entdeckung, sowie Segmentierung von 3D Daten.

Für die ersten beiden Achsen führen wir nichtparametrische Bayessche Ansätze
ein um multi-modale Datensätze wie Videos und Kontextsensor-Ströme zu seg-
mentieren. Die vorgeschlagene Methode zeigt Vorteile in folgenden Bereichen:
Integration multipler Merkmale und Datenabhängigkeiten in probabilistischen For-
mulierungen, Bestimmung der Anzahl der Cluster und hierarchische, semantischen
Partitionen, sowie die Beseitigung von Mehrdeutigkeiten in gemeinsamen Segmen-
tierungen in Videos und Sensor-Strömen.

Die dritte Achse konzentiert sich auf die robuste Nutzung von 3D Informatio-
nen für verschiedene Anwendungen. So bietet die 3D-Wahrnehmung zum Beispiel
reichere geometrische Strukturen und eine holistische Betrachtung der sichtbaren
Szene. Die Untersuchungen, die in dieser Arbeit zur Nutzung verschiedener Arten
von 3D-Daten vorgestellt werden, umfassen: die 3D-Objektsegmentierung auf Basis
der Kinect Tiefenmessung, verbessert durch cross-modale Stereoverfahren, die An-
passung von 3D-CAD-Modellen auf Objekte in der 2D-Bildebene durch Ausnutzung
der Differenzierbarkeit des HOG-Descriptors, die Segmentierung von Stereo-Videos,
basierend auf adaptiven Ensemble-Modellen, sowie der Verschmelzung von 2D-
Objektdetektoren mit 3D-Kontextinformationen für ein Augmented-Reality Anwen-
dungsszenario.
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1I N T R O D U C T I O N

Contents
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Multi-modal data, which contains the observation from multiple modali-
ties such as image, motion, depth, and wearable sensors, is ubiquitous
nowadays. Typically, the environment around us is too complex to be well

described by a single modality. Therefore the multi-modal data with distinct charac-
teristics from different sources provides an opportunity for holistic understanding of
real-word scenarios. In computer vision research, the basic modality is the image,
that captures appearance of the visual world into a 2D plane. When moving from
static images to a sequence of images or videos, the temporal association between
frames and the motion information exhibit another modality to outline the objects
and understand how they move spatio-temporally. Furthermore, with extension from
monocular system to stereo-vision or depth-perception sensors, the depth estimate
provides again an additional informative modality capturing the 3D structure of the
scene.

Learning feature presentations or proposing methods to incorporate the informa-
tion from multiple modalities that are descriptive enough for discovering semantic
knowledge is still one of the most important and challenging problems in computer
vision. This thesis focuses especially on the segmentation task for multi-modal
data, in order to partition the data into semantic groups as the latent structure. In
general, the data distributions of different modalities represent diverse and distinct
configurations. Accordingly, the data from multiple sources may not only contain
additional observations, but also potentially lend to complementary information
cross modalities. For instance, the motion information can be helpful to outline an
animal with camouflage from grassland, whereas the appearance information is
more discriminative to separate animals of different specifies under similar motion.
Therefore the segmentation approaches should be able to combine and make the
best use of the information from multiple modalities, while at the same time resolve
ambiguities caused by the partial observation based on a specific modality.

This thesis tackles several segmentation problems upon multi-modal data along
three main axes: video segmentation and object discovery, activity segmentation and
discovery, and segmentation in 3D data. In the following the corresponding main
contributions of this thesis with respect to the three axes are summarized.

1



2 chapter 1. introduction

1.1 contributions

Multi-Modal Video Segmentation and Object Discovery (Chiu and Fritz, 2013) Due
to the popularity of smart phones with cameras and on-line platforms that
share videos worldwide, video data is growing fast these years. Based on the
rich information in appearance, motion, and spatio-temporal cues, segmenting
video sequences into semantic regions representing the potential foreground,
background, or objects of interest, provides an initial but important step for
computers to understand video data. Furthermore, given a set of videos with
shared object classes, the hierarchical structure of object classes across videos
and local object instances within each video would lead to a much richer
representation to benefit the segmentation. Therefore, we propose to address
the video co-segmentation tasks jointly segmenting multiple videos where the
discovered regions should correspond to objects and the regions belonging to
the same object class are linked across videos.

• We propose non-parametric Bayesian approaches that incorporate appear-
ance, motion and spatial-temporal features of visual data, define genera-
tive procedure of multiple video sequences, and infer the latent clusters
which represent the local object instances and global object classes. Beyond
the investigation of explicitly modelling motion and spatio-temporal dis-
tributions of local object instances, we further formulate the dependencies
of motion and spatio-temporal distance between data points into a video
segmentation prior in order to propose spatially contiguous segments of
similar motion.

• We propose the first multi-object video co-segmentation dataset, which
exposes challenges encountered in consumer or online video collections.

• The experimental results demonstrate superior performance of the pro-
posed approach with respect to the state-of-the-art video segmentation and
image co-segmentation methods. In addition, we improve co-segmentation
results in comparison to independent video segmentation. This shows
that the enriched feature representation across videos helps to resolve the
ambiguities of incidental similarities in appearance or motion patterns
within single videos.

Multi-Modal Activity Segmentation and Discovery (Seiter et al., 2015) We analyze
context word patterns of multi-modal sensor streams produced by multiple
body worn and ambient sensors, which detect the mode of locomotion (e.g.
walk, stand) as well as usages of objects (e.g. cup, spoon, and lazychair), in
order to discover daily activities and routines for getting insights into human
behaviour.

• We introduce a novel hierarchical topic model approach for joint segmen-
tation and activity discovery that does not depend on manually selecting
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parameters for segment size and number of topics. The method overcomes
the limitation of time-invariant sliding windows by using a data-driven
segmentation method based on state changes in context words to obtain
supersamples, which are basic data units used in the topic model ap-
proach. We propose a segmentation prior to model the temporal distances
and the semantic distances between supersamples based on word2vec
representations of context words, and use the non-parametric distance de-
pendent Chinese Restaurant Process to cluster supersamples into groups
as potential activities.

• We present results on a multi-modal activity dataset and improve over
both parametric LDA and non-parametric CRF approaches. Also, we
provide an analysis of discovery performance based on context word
labels, context word detections from sensor data, and synthetic context
word noise.

Multi-Modal Segmentation in 3D Data We investigate multi-modal segmentation
and recognition based on 3D data sensed in different manners, including
consumer stereo cameras, Kinect depth sensors, monocular SLAM system,
and 3D CAD models. In comparison to static images that represent a partial
observation of the world, the 3D data provides richer geometric information
for understanding the visual content.

• 3D Model Fitting (Chiu and Fritz, 2015)

– We revisit the feature computation of the Histogram of Oriented
Gradient (HOG) descriptor and exploit its piecewise differentiability.
The experiments on pre-image visualization given HOG features
present a proof-of-concept for the differentiable HOG.

– We propose a CAD model-to-image alignment approach that re-
implements the examplar LDA pipeline by integrating differentiable
HOG with an approximate renderer. By parameterizing the vertice
locations of CAD model with pose parameters, our approach enables
end-to-end optimization for continuous 3D pose estimation. The
matching between the CAD model and target image not only can lift
the 2D appearance information into 3D space but also has potential
to help segment the object based on the 2D projection of 3D model.

– We experimentally show that our proposed method improves over
the state-of-the-art which relies on pre-rendering views exhaustively.

• Adaptive Stereo Segmentation (Chiu et al., 2016)

– We address the stereo video segmentation task by proposing an ensem-
ble method which combines a pool of image and video segmentations.
The model is represented by a graph and parameterized by the impor-
tances of pooled segmentations as well as multiple feature distances.
At training time, the optimal parameters for training videos with
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respect to the stereo segmentation performance are found directly
via a differentiable proxy. At test time, we regress the combination
parameters based on color, depth and motion statistics of the target
stereo video, and therefore achieve an adaptive stereo segmentation.

– We propose a consumer stereo video segmentation challenge which
contains videos, annotations, and metrics to measure the segmentation
performance.

– Experimentally, we show that the adaptive scheme further improves
over the static combination, the initial segmentations, video co-segmentation,
as well as a most recent RGB-D segmentation technique.

• Cross-Modal Stereo for 3D Object Segmentation (Chiu et al., 2011b,a)

– The Kinect depth sensor fails to estimate the depth on some common
materials in daily life, such as glasses and polishing metal. We tackle
this problem by utilizing different modalities provided by computer
vision techniques in order to reduce these artifacts. In particular,
we propose a cross-modal stereo composed of Kinect’s RGB and IR
cameras and further learn optimal spatial filters to improve the stereo
matching performance.

– We evaluate an object segmentation task on the 3D data estimated by
the improved Kinect. The experimental results show better segmenta-
tion performance, due to improved depth sensing on reflective and
transparent objects.

• Multi-Part Object Detector and Disambiguation (Chiu et al., 2014)

– We consider an application scenario of recognizing a factory machine
that consists of potentially repetitive machine parts. We propose a
multi-part object detection system that utilizes the depth information
extracted by SLAM approach to lift the 2D object-part detector outputs
into 3D space. Our approach uses the spatial context in order to
identify different machine parts and resolve the ambiguities between
parts of the same category.

– We propose the first benchmark for this task, that is composed of
an annotated dataset as well as a metric that approximates human
judgement. The experiments show the ability of the propose system
to predict the identities of individual parts and localize them in the
factory scene.

1.2 thesis outline

The following overview states the relations of the chapters to corresponding publica-
tions.

Chapter 2: Related Work. In this chapter we show a systematic overview for the
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prior works of segmentation on multi-modal data, with particular focus on several
data types: video sequences, video sets, and visual data with 3D information.

Chapter 3: Video Co-Segmentation. We tackle the task of multi-class video co-
segmentation. The proposed framework models the instance-class hierarchy
of multiple videos as well as joint probability distribution over appearance,
motion, and spatio-temporal observations, in order to discover global object
classes shared across videos and outline object instances in the video. In addi-
tion to segmenting out objects, we also show an application of sketch-based
video retrieval based on the latent structure discovered from videos.

The content of this chapter corresponds to the CVPR 2013 publication Multi-
Class Video Co-Segmentation with a Generative Multi-Video Model (Chiu and Fritz,
2013) in Section 3.5 and a few unpublished materials in Section 3.4. Wei-Chen
Chiu is the lead author of this paper.

Chapter 4: Joint Segmentation and Activity Discovery. While the previous chap-
ter applies a non-parametric Bayesian framework in video co-segmentation
task, its generative, probabilistic formulation for data clustering makes it a
perfect fit to be generalized for different applications. In particular, in this chap-
ter we show the application on the joint segmentation and activity discovery
from context sensor data streams, with modelling the temporal and semantic
distances between context words by distance-dependent Chinese Restaurant
Process as prior.

The content of this chapter corresponds to the Percom 2015 publication Joint
Segmentation and Activity Discovery using Semantic and Temporal Priors (Seiter
et al., 2015). The paper is based on a collaboration with the Wearable Comput-
ing Lab, ETH Zurich, Switzerland. Wei-Chen Chiu contributes to adapt the
core non-parametric Bayesian approach from video co-segmentation scenario
for the framework of inferring activity routines from context sensor signals.

Chapter 5: 3D Model Fitting by Differentiating HOG. In this chapter we show the
differentiability of HOG feature representation and use it in the exemplar LDA
pipeline combined with a differentiable renderer OpenDR, which enables the
end-to-end optimization for continuous 3D pose estimation. In addition to
using ∇HOG for 3D model fitting, we also show its application on pre-image
reconstruction given HOG features, as a proof-of-concept and another example
of exploiting the differentiable HOG-based pipelines.

The content of this chapter corresponds to the ICCV 2015 publication See the
Difference: Direct Pre-Image Reconstruction and Pose Estimation by Differentiating
HOG (Chiu and Fritz, 2015). Wei-Chen Chiu is the lead author of this paper.
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Chapter 6: Adaptive Stereo Segmentation. We tackle the task of segmenting con-
sumer stereo video data in which there are many feature cues (e.g. motion,
depth, color) as well as diverse set of segmentation approaches in image and
video scenarios proposing different partitions of the visual data. We learn
to predict the importance of the features cues and segmentation proposals
depending on statistical properties of the data, and aggregate those information
in a parametrized similarity graph which can be utilized by spectral clustering
technique to produce the final stereo video segmentation.

The content of this chapter corresponds to an ACCV 2016 publication Towards
Segmenting Consumer Stereo Videos: Benchmark, Baselines and Ensembles (Chiu
et al., 2016). Wei-Chen Chiu is the lead author of this paper.

Chapter 7: Multi-Modal Stereo for 3D Object Segmentation. We study the prob-
lem of object segmentation in multi-modal 3D data sensed by Kinect. As
Kinect’s active depth estimate has difficulties on specular or transparent sur-
faces, we propose cross-modal stereo built upon RGB and IR cameras of Kinect
to reduce missing regions on Kinect’s depth map. The improved depth estimate
improves the 3D object segmentation performance.

The content of this chapter corresponds to the BMVC 2011 publication Improv-
ing the kinect by cross-modal stereo (Chiu et al., 2011b) and its extension at the
Consumer Depth Cameras for Computer Vision workshop held at ICCV 2011: I
spy with my little eye: Learning optimal filters for cross-modal stereo under projected
patterns (Chiu et al., 2011a). Wei-Chen Chiu is the lead authors of both papers.

Chapter 8: Multi-Modal Multi-Part Object Detector. We present a system that rec-
ognizes objects composed of repetitive parts by utilizing 2D object detections,
depth information from SLAM, and the 3D context of object layout. In partic-
ular, we focus on an application scenario of assisting a maintenance worker
by providing an augmented reality overlay that identifies and disambiguates
machine parts.

The content of this chapter corresponds to the BMVC 2014 publication Object
Disambiguation for Augmented Reality Applications (Chiu et al., 2014). The paper
is based on a collaboration with Intel Visual Computing Institute, Saarbrücken,
Germany. Wei-Chen Chiu is the lead author of this paper.
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In computer vision, image segmentation means to partition the image into spatially
contiguous regions that are similar regarding appearance features (e.g. bandpass
filter responses, color, texture), respect image boundaries, or represent potential

objects. Large body of works has been proposed to address this problem and it
is still one of the major research areas to date. While generalizing the target data
of segmentation task from images to multi-modal visual data such as videos and
stereo sequences, it brings another big challenge of analysing the information from
multiple sources simultaneously to extract the semantic groups and infer the latent
structure, as different features can be extracted from different modalities. In this
chapter we provide an overview over the related approaches on segmentation over
different multi-modal data types, ranging from video sequences, video sets, to 3D
data such as stereo videos.

2.1 image segmentation

Without loss of generality, image segmentation methods attempt to divide an image
into groups of pixels such that the pixels of a group are similar, and pixels from
different groups are dissimilar. These criterions correspond to two main categories
of image segmentation approaches: clustering-based and graph-based methods.
Clustering-based methods cluster the pixels with high similarity into a group based
on certain feature representations, typical examples include K-means and Mean-shift
algorithms (Comaniciu and Meer, 2002). And graph-based methods, e.g. (Felzen-
szwalb and Huttenlocher, 2004; Shi and Malik, 2000), normally define an affinity
graph where the pixels are treated as vertices and the edges measure the distances
between nodes regarding various feature cues, such that the edges between pixels in
a segment are expected to have relatively low weights while edges between pixels in
different segments are with higher weights. While generalizing image segmentation
approaches to video data, the additional modality from motion information leads to
a need of having algorithms that are able to segment multi-modal data.

7
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2.2 video segmentation

Learning a better representation and inferring the latent structure of video sequences
has been a concern of the computer vision community and has recently received
much attention. By segmentation of videos into group of objects or regions which
are coherent in appearance and motion, it delivers the first step to interpret the
video content and thus become the base of many higher-level computer vision
tasks, such as object tracking, scene labelling, and activity recognition. As image
segmentation, many widely-used video segmentation approaches can be categorized
into clustering or graph-cut based methods, under various choices for basic data
units: pixels/voxels, superpixels/supervoxels, and tracking trajectories of previous
ones. For instances, in (Ochs and Brox, 2011) long term point trajectories based on
dense optical flow are used to cluster the feature points into temporally consistent
segmentations of moving objects in the video. Similarly, in (Galasso et al., 2011) with
introduction of probabilistic region trajectories, they proposed to use spatial-temporal
clustering on trajectories based on motion. The graph-based approaches (Grundmann
et al., 2010) and (Xu and Corso, 2012) define affinities between supervoxels and the
edges are weighted by different cues such as color, motion or texture. The final
segmentation is derived by grouping the supervoxels. Although their methods
provide plausible solutions on video segmentation tasks, a single video only contain
the partial observation of the objects thus can suffer from ambiguities due to the
indistinguishable motion or appearance between nearby objects. In addition, some
video segmentation works (Fragkiadaki et al., 2012; Di et al., 2013) face the problem
of making an explicit choice on the number of clusters, which is undesirable in
unsupervised settings.

2.3 video co-segmentation

To ease the difficulties met by viewing a single video, the video co-segmentation task
is studied where the objects belonging to common classes across videos can provide
additional information and benefit the segmentation. The co-segmentation idea was
originated from the works on image co-segmentation (Rother et al., 2006), which
denotes segmenting the common parts of an image pair. And with introducing an
explicit object notion, it was extended to object co-segmentation and object discovery.
This idea has seen several refinements (Vicente et al., 2010; Kim et al., 2012; Collins
et al., 2012; Mukherjee et al., 2011; Kim et al., 2011; Chang et al., 2011) and today’s
state-of-the-art in co-segmentation can handle multiple objects (Joulin et al., 2012;
Kim and Xing, 2012). While image co-segmentation only looks at single frames, the
video co-segmentation task starts to consider spatio-temporal structure and motion
information within the video collection.

Initial attempts (Rubio et al., 2012; Chen et al., 2012) have been made to approach
video co-segmentation task with a binary foreground/background segmentation
formulation. But this setting makes quite strong assumptions and eliminates the
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problem of associating segments of multiple classes across frames and videos. The
segmentation is performed foreground vs. background and has only been evaluate
on a set of visually very similar videos. Furthermore, (Chen et al., 2012) utilize a
set of videos with exact the same object instance and (Rubio et al., 2012) restricts
the condition for common objects to be of similar motion across videos. These
simplifying assumptions limit the applicability of these methods.

In contrast, our method in this thesis is the first to address less structured videos
containing multiple objects, denoted as multi-class video co-segmentation task. Our
approach is based on a non-parametric Bayesian framework where the basic data
units within each video are grouped into object instances subject to the appearance,
motion, and spatio-temporal features. The appearance models of object instances
are further clustered across videos again into global object classes. The proposed
framework relates to the application of topic models in the image domain (Sivic et al.,
2005) in terms of discovering objects and appearances. While the work (Sivic et al.,
2005) has been extended to handle also spatial information (Wang and Grimson,
2007) as well as part notions in infinite mixture models (Sudderth et al., 2008) and
motion Kuettel et al. (2010), our model represents an extension of these idea to video
sets where their hierarchical structures of object classes and instances are inferred.
The details of how we build up the model from the basic Dirichlet Process Mixture
to handle the video collection are described in the chapter 3. There are several
benefits of the proposed non-parametric Bayesian approach: The employment of
non-parametric prior overcomes the issue of choosing a particular number of classes
or instances. In addition, the global appearance models in the proposed method
relax the assumption of (Joulin et al., 2012; Rubio et al., 2012; Chen et al., 2012) that
object reappears to a weaker one which assumes that the objects are shared between
videos, therefore co-segmentation can be encouraged but not enforced. Although
this makes the co-segmentation assumption weaker, we believe that it is a more
realistic one.

Moreover, it is worthwhile to mention that upon the publication of our method
on multi-class video co-segmentation task (Chiu and Fritz, 2013), several research
works have been following up by proposing different approaches (Wang et al., 2014a;
Fu et al., 2014; Zhang et al., 2014a; Wang et al., 2014b; Guo et al., 2013, 2014; Lou and
Gevers, 2014; Barhoumi, 2015; Joulin et al., 2014). For instance, the recent works such
as (Fu et al., 2014; Zhang et al., 2014a) utilize object proposals (Endres and Hoiem,
2010) to first extract the potential object of interests, then construct a graph to model
the inter-frame consistency and across-video similarity of candidate proposals, and
finally optimize to discover the common object classes for co-segmentation. However,
along with the studying of the video co-segmentation task, its problem definition
is still under discussion with various assumptions across different works. For
instance, as originated from the image co-segmentation task, some works impose
hard constraints that all the object classes of interest must be contained in all images
in the image set, in order to provide a weak supervision for the co-segmentation
algorithms to identify the primary objects. And other works such as (Guo et al., 2014;
Fu et al., 2014; Zhang et al., 2014a) propose to handle the general cases of multiple
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objects, temporary occlusions, and possible moving in/out for objects. While in our
work, we follow a stricter unsupervised setting which covers almost all the general
difficulties indicated in the related works to have no prior knowledge of the number
of object classes, nor the assumption of that the common object classes should appear
in each video sequence in the video set, as well as support the varying number of
object instances and potential appearance changes of object classes in each video.

2.4 segmentation on 3d data

In addition to the video sequences which exploit the appearance and motion charac-
teristics, the use of depth is now becoming ubiquitous in many cases, e.g. gaming
interface and robotics platform, to provide the additional information for the struc-
tural and semantic properties of the visual scenes. For instance, in a simple tabletop
scheme shown as Figure 7.1 which is commonly seen in daily life, the depth in-
formation can represent the scene as point clouds in 3D space, then the naive
clustering-based segmentation is able to group the 3D points into potential objects.

The utilization of depth in segmentation framework naturally relates to the
research works on depth/stereo segmentation. There is a long tradition of work
on 3D reconstruction which estimates 3D coordinates, thus depth, from pair or
multiple views (Kanade and Okutomi, 1994; Scharstein and Szeliski, 2002). These
efforts have been recently combined with reasoning on the object appearance and
the physical constraints of the 3D scene in the work of (Bleyer et al., 2012), whereby
segmentation proposals are produced for semantic objects. These methods generally
require high quality images. In other words, most of the stereo algorithms are
based on the well-defined stereo-rigs which have fixed calibration parameters and
controlled environments. However, in consumer stereo content or real-world cases,
it is very easy to see the difficulties for current stereo algorithms from the problems
such as wide variety of capture devices, zooming in/out effects, camera moving
and synchronization. Therefore, making the segmentation algorithms capable of
handling noisy 3D data is one of the challenging issues. In addition, the underlying
assumption of a static scene for these methods does not allow direct applicability on
video data with 3D information, such as stereo videos.

To move from segmentation on static 3D data to video types, the techniques used
in video segmentation to model the spatio-temporal continuity provide a rich source
of references, as mentioned above in the section 2.2. Although these video-based
methods produce temporally consistent segmentation, we note that none of those
techniques may seamlessly generalize to videos with 3D data. Another line of
related works come from recent developments in scene flow estimation for stereo
videos, which tackle the problem of jointly estimating optical flow and the depth,
assuming calibrated (Huguet and Devernay, 2007; Basha et al., 2013) or uncalibrated
cameras (Vogel et al., 2011). Although the scene flow provides the information
of 3D motion fields which is able to give more insights into the geometric layout
of the visual scene, these works do not address segmentation. Elsewhere, video
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segmentation is addressed by considering RGB-D information (den Bergh and Gool,
2012; Weikersdorfer et al., 2013; Hickson et al., 2014), Kinect colour images with
depth. Nevertheless, the same problem of potentially noisy or uninformative depth
estimation is still unanswered, in particular for consumer stereo videos which are
not assumed calibrated nor from the same camera.

Recent research on image and video co-segmentation tasks provide a way to
jointly extract common objects across multiple images or videos (Kim and Xing,
2012; Joulin et al., 2012; Fu et al., 2014; Chiu and Fritz, 2013). The general assumption
of co-segmentation problem on commonality of objects in a video set makes it a
plausible fit to stereo video segmentation task when we consider left and right
videos of stereo pairs as two separate sequences in the same set. However, from this
perspective the depth cue in the stereo videos is not explicitly explored which can
provide rich information to outline objects when other features are with ambiguities.

Another issue generally observed in segmenting multi-modal data is: the discrim-
inative power of feature cues shown in different modalities changes along various
conditions, due to the diverse properties and wide variations in the real-world
environment. In addition, since the heterogeneity of the segmentation algorithms
designed for various domains and application targets, almost no single method
with fixed integration over multiple features can guarantee to perform best in all
situations. Accordingly, there is a desire to dynamically select or combine suitable
algorithms according to the characteristics of the data. There has been previous work
which attempted to select the best algorithm from a candidate pool depending on the
specific task. (Mac Aodha et al., 2010) presented a supervised learning approach to
predict the most suitable optical flow algorithm, based on the confidence measures
of the optical flow estimates. By contrast, as going to be shown in chapter 6, for the
segmentation problem on consumer stereo videos, we extend the work of (Li et al.,
2012) to combine the available image and video segmentation algorithms, adaptively
weighting their contributions based on the statistical properties of the target stereo
video.

Overall, one task covered in our research is aiming at developing segmentation
methods on 3D data which are able to cope with noisy 3D input as well as combine
the information from multiple modalities, e.g. appearance, motion, depth, to resolve
the ambiguities happened occasionally in any single modality.
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In this chapter we present the video co-segmentation task for discovering the
latent structure and object instance-class hierarchies from a set of videos. Based
on feature points or superpixels as basic observations, the proposed approaches

infer the semantic information of videos in an unsupervised manner based on non-
parametric Bayesian models which provide the generative, probabilistic formulation
for cluster analysis and have the property of allowing the data to determine the
complexity of the model. We investigate different modelling aspects to utilize
the appearance, spatial-temporal and motion features of the video content. The
clusters of the data result in segmentations that not only outline object instances
within each video but also establish their class correspondences across different
video sequences. The experiments demonstrate the flexibility and capabilities of
the proposed methods in various applications, including video segmentation, video
indexing and multi-class video co-segmentation.

12
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3.1 introduction

Video data is one of the fastest growing resource of publicly available data on the
web. Leveraging such resources for learning and making it accessible and searchable
in a easy way is a big opportunity – but equally a big challenge. It is desirable to
provide an initial analysis of the video sequence in order to support object extraction,
recognition or indexing. In order to achieve this goal, algorithm must be able to
deal with the unstructured nature of such videos which is still an open challenge
nowadays.

Processing video data also plays an important role in applications such as surveil-
lance, digital asset management and robotics. Key tasks are indexing and retrieval of
video content, summarization and recognition of activities. All these tasks refer to an
underlying semantic structure in the video. We might see this as an underlying plot
which the observed sequence seems to obey. For humans, this underlying structure
is a natural and also compact way to communicate about videos.

Video segmentation and tracking-based approaches have been proposed in order
to approach this problem (Darrell and Pentland, 1991; Wang and Adelson, 1993,
1994). As motion and spatio-temporal structures in videos provide rich cues about
potential object boundaries and independently moving objects, good progress has
been made by first forming low level feature tracks which are later aggregated to
potential object segments in a clustering scheme (Brox and Malik, 2010; Ochs and
Brox, 2011; Galasso et al., 2011; Lezama et al., 2011).

However, this approach has multiple inherent limitations. The main reoccurring
problem in these approaches is the difficulty of choosing the right number of
segments or objects in a sequence which requires different heuristics. Also, as a
single video might only expose a partial view, accidental similarities in appearance
and motion patterns might lead to an ambiguous or even wrong segmentation. In
addition, performing video segmentation independently on each video of a video
collection does not reveal any object class structure between the segments that would
lead to a much richer representation.

We draw two conclusions. First, segmentations should be treated in a probabilistic
framework in order to account for uncertainty. Second, a richer problem set should
be investigated where the approach is enabled to reason across multiple video
sequences in order to collect additional evidence that is able to link segments across
videos, which corresponds to the so-called co-segmentation task.

Our approach is based on a non-parametric Bayesian model which addresses the
first problem in a principled way by forming prior over different object groupings
over time, and also builds global appearance models shared across videos to refer
object class notions in the process of inferring the latent structure of the video.
Therefore the obtained representation can indeed be seen as a summary of how
different entities move in a video sequence as it relates segments across video
sequences by global appearance classes. In addition to learning of global appearance
classes, to better utilize the important information from motion and spatio-temporal
cues in a video for discovering object instances, in this chapter we sequentially study
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two variants of our non-parametric Bayesian model.
For the first variant (Section 3.4), we explicitly model the motion and spatio-

temporal distributions of object instances within each video sequence which shows
how objects move in the video volume over time. In experiments, We show that the
algorithm – despite it’s minimal set of modelling assumption performs competitively
with state of the art video segmentation algorithms. Beyond video segmentation,
we also show the flexibility of our approach be exemplifying its use case on the
application scenarios of video indexing, where we make use of the low dimensional
structure of the video in order to compare video sequences and find the most relevant
one. We illustrate how a sketch of a simple action taken place in a video can be
related to the latent structure and therefore be used to retrieve relevant videos.

For the second variant (Section 3.5), we base on distance-dependent Chinese
Restaurant Processes to formulate a video segmentation prior in order to propose
contiguous segments of coherent motion for video data. For the purpose of quan-
titatively evaluate the performance of outlining local object instances as well as
discovering global object classes across videos, we establishes a multi-class video
co-segmentation challenge which is performed on realistic video sequences. We give
further insights by analysing the different model components of video segmentation
prior in isolation and providing an analysis of runtime.

The main contribution of this chapter is to propose a non-parametric Bayesian
based model that is able to describe the generative procedure of video sequences
including the object instances built upon basic feature points or superpixels, and also
the property of global appearance sharing across object instances belonging to the
same global class. The proposed method does not rely on any low level tracks and
rather solve feature association as well as global appearance classes jointly, while
neither the global number of appearance classes nor the number of instances in each
video is known.
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Figure 3.1: Our proposed multi-class video co-segmentation model addresses seg-
mentation of multiple object classes across multiple videos. The segments are linked
within and across videos via the global object classes.

3.2 overview of approach

The goal of this chapter is to perform segmentation across multiple videos where
the segments should correspond to the objects and segments of the same object class
are linked together within and across videos.

In order to provide a clear problem statement of the multi-class video co-
segmentation task, we extend the definition of image co-segmentation from the
work of (Vicente et al., 2010): given a set of video sequences, the task of multi-class
video co-segmentation is to segment the common foreground objects from the poten-
tially arbitrary backgrounds given that the distribution of appearance features of the
common foreground objects are shared in subsets of videos. The property of shared
distribution of appearance for common foreground objects supports the hierarchy of
object instances and classes. The common object classes can appear in some videos
with similar appearance but are able to have different motions, deformations for its
instances across different sequences.

As motivated above, video segmentation on each video independently can lead
to ambiguities that only can be resolved by reasoning across sequences. In order to
deal with this problem, we approach video cosegmentation by a generative model
where videos are linked by a global appearance model. In order to be able to deal
with an unknown number of object classes and object instances in each video, we
make use of non-parametric Bayesian modelling based on Dirichlet Processes.

In the following sections, we first give an overview of Chinese Restaurant Pro-
cesses (CRP) (Pitman, 2006) which gives an effective way to represent a Dirichlet
Process (Section 3.3). Then two different formulations of the our proposed probabilis-
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tic model and their corresponding experimental results are described step by step.
First, in Section 3.4 we present a CRP-based video cosegmentation approach which
treats all appearance, spatial-temporal and motion features as observations, and uses
typical CRP as the prior over data partition. The hierarchical structure with local
mixture models for spatial-temporal and motion features in each video as well as an
infinite mixture model for the global appearance classes across videos addresses the
object instances with different position preferences and moving patterns together
with their belonging object classes. We demonstrate the applications on video seg-
mentation and also the video retrieval which benefits from the explicit modelling of
motion distributions. However, a significant challenge is that single Gaussian models
for local motion and spatial-temporal features, although good in some instances
(e.g. cars), does not work well on articulated or irregular-shaped objects. Thus we
present another formulation in Section 3.5 (Chiu and Fritz, 2013) which instead bases
on distance dependent Chinese Restaurant Process (ddCRP) to encode the local
dependencies coming from spatial-temporal and motion distances between data
points, noted as video segmentation prior, in order to propose contiguous segments
of coherent motion. Similar to the previous approach, this formulation of video
co-segmentation also contains a global appearance model for representing object
classes shared across multiple videos.

3.3 chinese restaurant processes (crp) and dirichlet pro-
cess mixture (dpm)

We briefly introduce the basic idea of Chinese Restaurant Processes (CRP). CRP is an
alternative representation of Dirichlet process model and it can be understood as the
following procedure. Imagine a Chinese restaurant with an infinite number of tables.
A sequence of customers come enter the restaurant and sit at randomly to any of
the occupied tables or to the first available empty tables. The i-th customer sits
down at a table with a probability that is proportional to how many customers are
already sitting at that table or opens up a new table with a probability proportional
to a hyperparameter, which is usually named concentration parameter. Their seating
configuration represents a random partition also called table assignments. Thus CRP
provides a flexible prior distribution over table assignments where the number
of tables is potentially infinite. Since the table assignment of each customer just
depends on the number of people sitting at each table and is independent of the
other ones, the ordering of customers does not affect the distribution over partitions
and therefore exchangeability holds.

Dirichlet Process Mixture Model (DPM) (Escobar and West, 1995; Neal, 2000; Teh
et al., 2006) constructs a single mixture model in order to perform data clustering in
which the number of mixture components can be infinite therefore we do not need
to manually assign the number of clusters. The generative procedure of DPM can be
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written as:
G|Ha ∼ DP(γ, H)

θi|G ∼ G
xi|θi ∼ F(θi)

(3.1)

where G is the set of cluster parameters and and it is distributed according to
a Dirichlet Process DP(γ, H). For the observation xi belongs to the class i it is
generated conditionally depending on the generative distribution F(θi) where the
cluster parameter θi is sampled from G. In practice, the base distribution H of
Dirichlet Process is usually chosen to be conjugate prior to the generative distribution
F in order to have more efficient computation for the posterior inference to get the
clustering results. In the inference procedure, it is required to estimate the cluster
assignment for each observation xi, as shown in the generative procedure above.
The most popular tool used for inference on the DPM models is the Gibbs sampling
scheme to iteratively update the assignments of observations, which utilizes the
Chinese Restaurant Process to consider the conditional distribution of one cluster
assignment given all others.

3.4 crp-based video co-segmentation

3.4.1 Generative Procedure

For the representation of video sequences, we consider a generative procedure:
Videos consist of different global object classes with different appearances, and for
every video there are arbitrary number of instances which are located at different
locations and possibly move over time. Those object instances emit appearance,
spatial-temporal and motion features as observed variables here in our model. Our
probabilistic, generative model aims to infer the latent structure and object instance-
class hierarchies of a video set. Our model is based on non-parametric Bayesian
approach and its graphical model is shown in Fig. 3.2, we describe the details of our
proposed method in following section.

First the Dirichlet Process Mixture Model is utilized to model the appearance
classes as multinomial distributions over the codewords, where only appearance
information is considered. Suppose G is the global set of appearance classes which
is drawn from a Dirichlet Process DP(γ, Ha). The multinomial distribution F(θi) is
configured by object-specific parameter θi and is used to generate ai observations.
The visualization of this model is illustrated in Fig 3.2(a).

In order to also take spatial–temporal and motion information into consideration,
the position of each image patch located in the video volume and the motion vector
of central pixel in the patch are used as features. Given the observation that for the
object instances belonging to the same category will be with the similar appearance,
but they can have different local spatial–temporal distributions and different motions,
we would like to extend our graphical model to capture this characteristic, hence
Hierarchical Dirichlet Process (HDP) is used (Teh et al., 2006). Instead of DPM
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which models observations as a single set of object classes, the HDP can share
multiple parameters among several object instances. Therefore, we extend the HDP
to put a Dirichlet prior Ha on feature appearance distribution in higher layer of the
hierarchical structure to flexibly model its globally sharing property, then put the
normal–inverse–Wishart priors Hs and Hm on 3–dimensional Gaussian of spatial–
temporal distribution and on 2–dimensional Gaussian of motion distribution in
lower layer to locally model different position preferences and motion patterns of
object instances as shown in Fig 3.2(b). In addition, because now the spatial-temporal
and motion distributions are located on different layer from the appearance model,
the position and motion of the object instance is independent of its belonging object
class. We use absolute image position.

To interpret the generative procedure more clearly, for video sequences, we first
sample object classes with distinctive appearance distributions G0 from Dirichlet
Process prior DP(γ, Ha), then for every object instance vj in the video v, we will
combine the class-specific appearance distribution with its spatial–temporal and
motion distribution sampled according to the prior Hs and Hm. Finally we can get
generate feature points (avji, svji, mvji) using the distribution of parameter θvji:

G0|Ha ∼ DP(γ, Ha)

Gvj|G0, Hs ∼ DP(α, G0 × Hs × Hm)

θvji|Gvj ∼ Gvj

avji, svji, mvji|θvji ∼ F(θvji)

(3.2)

Note here if the number of videos is more than one, then the proposed model
can learn the global classes across videos which provides potential for further
applications, for instance, the similar object retrieval on a group of videos.

3.4.2 Inference

To do the inference for our proposed model, we need to infer the correspondences
between extracted image patches and object instances, similar to the one between
object instances and classes. Here we introduce two indicator variables to present
those correspondences: tvji for the ith image patch belonging to jth object instance
in video v; and klvj for mapping from object instance vj to object class l. For the ith

image patch in object instance vj is described by (avji, svji, mvji) where avji, svji and
mvji denote the appearance, spatial–temporal position and motion features. With
each object instance vj associated with parameters θvj = (ηvj, {µs

vj, Λs
vj}, {µm

vj, Λm
vj})

where ηvj is the parameter of multinomial function for appearance information and
{µs

vj, Λs
vj}, {µm

vj, Λm
vj} are Gaussian parameters for spatial–temporal distribution and

the motion distribution, respectively. In addition, for every object class l it only
contains parameter ηl related to appearance information.

Given the assignment tvji appearance, spatial–temporal and motion features
become independent and we get the likelihood of image patches given the object
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Figure 3.2: (a)The graphical model for “video–objects–feature points” generative
procedure, only observed appearance information is taken into account. (b)Graphical
model of our extended hierarchical Dirichlet Process. The prior of appearance
distribution is on the highest layer to handle the appearance sharing among object
instances belonging to the same object category. Meanwhile, the priors of spatial–
temporal and motion distributions are located on the lower layer to flexibly model
the local position preference and motion pattern of every object instance. Jv denotes
the number of object instances in video v.

instance:

p(avji, svji, mvji|tvji) = p(avji, svji, mvji|ηvj, µs
vj, Λs

vj, µm
vj, Λm

vj)

= p(avji|ηvj)p(svji|µs
vj, Λs

vj)p(mvji|µm
vj, Λm

vj)
(3.3)

For the likelihood of object instance vj given the object class l with assignment klvj,
we can simply accumulate all the appearance likelihood of image patches belonging
to the object instance given the parameter of the object class.

Combining with conjugate Dirichlet Process prior Ha to multinomial function
of appearance information and also the conjugate inverse–Wishart prior Hs, Hm to
the Gaussian distribution of spatial–temporal and motion features, we can utilize
the posterior sampling scheme where Gibbs sampling is used in our method to
iteratively sample the assignment of tvji and klvj.

3.4.3 Illustration on Synthetic Sequence

We give an example of a toy video sequence in Fig 3.3 in order to illustrate the
properties of our approach. There are four moving objects in the video and two of
them have the similar appearance (rectangle) but with different spatial–temporal and
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Figure 3.3: First Row: Toy video sequence with four moving objects. Second
Row, from left to right: Illustration for (a)the video cube with inferred (b)spatial–
temporal and (c)motion distributions of four moving objects inside. Third Row:
Video sequence with labelled feature points. Note here different colors stand for
different global classes.

motion distributions. Our method clusters the feature points into multiple groups of
distinct motion and spatio-temporal distributions shown in the middle of the figure,
as well as assigns these groups into different global appearance classes, which are
shown in the figure with different color codes.

3.4.4 Implementation Details

Our implementation are based on modification from the non-parametric Bayesian
toolbox published in (Teh, 2004). For the concentration parameters we simply follow
the default setting in the toolbox with weakly informative priors α ∼ Gamma(1, 1)
and γ ∼ Gamma(1, 1). The hyperparameter of multinomial distribution for appear-
ance information is assigned symmetric Dirichlet prior Ha = Dir(W/10), where
W = 1000 is the dictionary size; for the hyper-parameters for spatial–temporal and
motion distribution we chose Hs and Hm to have 7 and 6 degrees of freedom for
covariances while the means have non–informative priors. In our experiments the
approach turns out to be not very sensitive to different settings of these parameters
wherefore we kept them fixed.

3.4.5 Experimental Results of CRP-Based Video Co-Segmentation

We apply the proposed algorithm for inferring latent structure in videos to the
task of video segmentation and video indexing. In particular, we demonstrate the
benefits of our model that infers a global appearance model and local segment



3.4 crp-based video co-segmentation 21

Figure 3.4: First column: Original frames. Second column: Object segmentation
results from (Brox and Malik, 2010). Third column: Results from the proposed
method. We label the feature points in different colors according their global
appearance model assignment.

instantiations with different spatial-temporal and motion distributions jointly with
the video segmentation task. Finally, we show a new task of video retrieval via
sketches that is made possible by the exploiting the inferred latent structure of our
model.

3.4.5.1 Video Segmentation

In our model we present the video sequence as a collection of image patches
distributed over the whole video volume which every image patch contains the
appearance feature, spatial–temporal position and also its motion vector. The
image patches are sampled according to SIFT feature detector and their appearance
information is encoded by SIFT descriptors (Lowe, 2004; Vedaldi and Fulkerson,
2008). These descriptors are then quantized into a codebook so that we can assign a
codeword to every image patch. The spatial–temporal location is associated with the
image coordinate of the patch center and the index of the video frame it belongs to.
For the motion vector, we compute the optical flow vectors in each pair of adjacent
frames based on the SIFT-Flow method (Sun et al., 2008).

In order to evaluate the proposed algorithm on a video segmentation task, we use
the benchmark of moseg dataset introduced in (Brox and Malik, 2010). The dataset
provides 26 real world video sequence with 204 frames of annotated ground truth
together with the evaluation tool. Here we use the measurements of the density for
labelled feature points, the pixel–wise overall error and the region-wise average error
in the ground truth.

Applying our algorithm on the video sequences, the feature points are grouped



22 chapter 3. video co-segmentation

Density overall error average error
All available frames - 10 car sequences

our method 0.29% 6.55% 17.83%
no motion 0.29% 35.03% 56.25%

Brox et al (Brox and Malik, 2010) 0.78% 4.08% 24.46%
All available frames - all 26 sequences

our method 0.55% 11.71% 28.67%
no motion 0.55% 33.13% 54.51%

Brox et al (Brox and Malik, 2010) 3.31% 6.68% 27.7%

Table 3.1: Comparison of performances on different settings. Because of sparse
feature extraction, only a small fraction of pixels are labelled therefore having small
number in density. Note here the overall error is the number of bad labels over the
total number of labels on pixel-wise basis, while the average error is on region-wise
basis which depends on the annotation from ground truth.

into clusters which represent local segment instantiation moving within the sequence.
Examples can be seen in third column in Fig 3.4. Although the feature points
are sparsely distributed, we still can clearly tell that the objects of interest (cars)
are labelled differently from the background. Table 3.1 provides a quantitative
comparison between our model with two different settings and the results obtained
from (Brox and Malik, 2010). The first configuration of the proposed method is to
use all the appearance, spatial-temporal and motion information. And the second
one is similar but without motion features. We use these two settings to address
the importance of motion which helps to cluster the feature points across frames
and also resolve the ambiguity coming from the appearance and spatial domain.
A significant example can be seen from the second row of Fig 3.4. The white car
parking aside and the car moving from right to left are with similar appearance and
very close to each other. But the different motion pattern helps to distinguish both
of them.

For more precise comparison, we first present the evaluation results only on the
car sequences which have higher resolution and more significant moving patterns.
Here our method shows improved average error by over 6% at slightly less density.
The overall error is slightly worse – but still comparable. For the full dataset our
average error is still comparable at 28.67% but with about 5% of degradation in
accuracy for overall error. This is mainly because that in the ground truth some
small objects are detailedly annotated, for example, phones, skinny chairs and
people far away from camera. In those cases, our sparse sampling scheme of the
SIFT representation can not get sufficient evidence. Overall, our method achieves
competitive results with minimalistic modeling assumption and without any learning
of parameters and/or post-processing stages. In particular, we don’t use any separate
tracking procedure in order to generate feature tracks.

In addition, since the property of globally appearance sharing in the proposed
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Figure 3.5: Example of learnt global classes across videos in moseg dataset.

method, we learn global appearance classes across all the videos. The inference of
global classes for all videos is very beneficial, for the reason that we can collect more
evidence to have more stable appearance models which are able to go back to help
the segmentation. Examples of the global classes learned from moseg dataset are
shown in Fig 3.5. We observe clusters with cars, people and the background.

Moreover, since our model will link the objects with similar appearance to the
same global class, we are able to handle occlusion case which our competitors cannot
recover from as they rely on feature tracks. For instance in Fig 3.6, the lady in
white is occlude but our inference procedure can still assign them to the same global
appearance class as can be seen from the color coded feature points.

3.4.5.2 Sketch-Based Video Retrieval

After performing inference across all video sequences, the proposed method has
extracted a compact representation which can be use to summarize the latent
structure of videos. Examples as shown in Fig 3.7 present the object instances with
different motion and spatial distributions. Also, since we learn the global appearance
classes across video sequences, the segments are linked by the global appearance
model. An illustration of the largest clusters found across all the video sequences
is shown in Figure 3.5. Each thumbnail corresponds to a whole spatio-temporal
segment in the video.

For further retrieval, we manually label the clusters according to the object class -
which is easy to perform based on this condensed view on all videos. In contrast to
previous work on video segmentation, we have now obtained a video summary that
also carries semantic information which is propagated by means of the appearance
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Figure 3.6: Illustration of the capability of our model to handle occlusion. Even the
lady behind is occluded, our method can link its feature points over frames to the
same global appearance model.

clusters.
We showcase our novel representation by performing a sketch based video

retrieval. We provide manually generated sketches as shown in the leftmost column
of Figure 3.8. They encode simple behaviour in a video sequence like “car moving
from left to right”, “person moving from right to left” or “two cars moving in opposite
directions”. Given such a query we can match the spatio-temporal distribution of
the object classes involved to the video database. For every pair of segments we
can compute their Kullback–Leibler–divergence according to spatial–temporal and
motion distributions. For example, given two object instance j and k with parameters
θj and θk, their corresponding distributions P and Q can be written as:

P = p(sji, mjt|θj) = p(sji|µs
j , Λs

j)p(mji|µm
j , Λm

j ) = Ps · Pm

Q = p(ski, mki|θk) = p(ski|µs
k, Λs

k)p(mki|µm
k , Λm

k ) = Qs ·Qm (3.4)

As both are given as gaussian, KL measure can be efficiently computed in closed
form. The results are presented next to the query in Figure 3.8. We observe that
we have indeed found relevant videos based on the sketched action of a object. By
means of our latent representation, we have proposed a novel way of performing
video retrieval via human sketches.
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Figure 3.7: Summarization of 10 car sequences from moseg dataset. The spatial
and motion distributions of every extracted object instance are drawn. Note here
we marginalize out the temporal–axis of spatial–temporal distribution for better
visualization.

query candidates

Figure 3.8: Example of sketch-based video retrieval in moseg dataset.

3.5 ddcrp-based video co-segmentation

3.5.1 Video Representation

In comparison to using sift feature points as the basic data component in the previous
sections, here we use superpixels as our data observations, since it can provide dense
segmentations while have still less computational demand than pure image pixels.
Therefore we describe our video representation as below: Given a set of videos V , we
start by a superpixel segmentation for each frame within the sequence and represent
the video as a collection of superpixels. For every video v ∈ V , we denote its total
number of superpixels by Nv, and describe each superpixel i by its appearance
feature xi, spatio-temporal location si and motion vector mi.



26 chapter 3. video co-segmentation

3.5.2 Distance Dependent Chinese Restaurant Processes (ddCRP)

For the formulation presented in the previous section, the DPM and CRP based
posterior sampling is used to model the appearance, spatial-temporal and motion
features of object instances as well as perform the inference. However, we often see
in the realistic data that a single Gaussian distribution is not sufficient enough to
model the overall motion or spatial-temporal features of a objects, especially for the
irregular-shaped or articulated objects in which different parts of a object might have
different motions. Therefore, we would like explore the dependencies inside of the
structure of the data, for instance, the superpixels close in spatial-temporal positions
and with similar motion directions should have a higher chance to come from the
same object instance.

Based on same restaurant imagination of Chinese Restaurant Process as we
describe in the Section 3.3, while there are dependencies between customers, the
table assignment of a customer does not only depend on the number of people sitting
on certain table, but also takes the distances/dependencies between customers
into consideration. In results, the exchangeability property of CRP is not held
any more, and a generalized process allowing non-exchangeable distribution over
partitions is needed. The Distance Dependent Chinese Restaurant Processes (ddCRP)
was proposed to offer an intuitive way for modelling non-exchangeability and
dependency. The main difference between the CRP and ddCRP is that rather than
directly linking customers to tables with table assignments, in ddCRP the customers
sit down with other customers according to the dependencies between them, which
leads to customer assignments. Groups of customers sit together at a table only
implicitly if they can be connected by traversing the customer assignments. Therefore
the i-th customer sits with customer j with a probability inversely proportional to
the distance dij between them or sits alone with a probability proportional to the
hyperparameter α:

p(ci = j|D, f , α) ∝

{
f (dij) j 6= i
α j = i

(3.5)

where ci is the customer assignment for customer i and f (d) is the decay function
and D denotes the set of all distances between customers. The decay function f
should be non-increasing, takes non-negative finite values, and satisfies f (∞) = 0. It
describes how distances between customers affect the probability of linking them
together.

3.5.3 ddCRP Video Segmentation Prior

We use the ddCRP in order to define a video segmentation prior. Customers
correspond now to superpixels and tables correspond to object instances. The
distance measure D and decay function f is now composed of two parts: {Ds, f s}
and {Dm, f m} where the former one comes from the spatio-temporal distance and
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spatiotemporal dependencies motion dependencies

video segmentation prior

contiguous segments in spatiotemporal & motion domains

Figure 3.9: The visualization of the idea for the video segmentation prior proposed
in our model. The dependencies from spatio-temporal and motion distances between
superpixels are incorporated into the ddCRP prior which can control the probability
of the customer links as described in Equation 3.6. To compute the connected
components of the customer assignments of superpixels, they can produce the
clusters which present the contiguous segments in spatio-temporal and motion
domains.

the latter one from motion similarities between superpixels.

p(ci = j|D, f , α) ∝

{
f s(ds

ij) f m(dm
ij ) j 6= i

α j = i
(3.6)

Before measuring the spatio-temporal distance, we first use the optical flow
vectors gained from TV-L1 model (Chambolle and Pock, 2011) in each pair of
adjacent frames to find the neighbouring superpixels along temporal axis. Then
the spatio-temporal distance Ds between superpixels is defined as the number of
hops (Ghosh et al., 2011) required to travel from one superpixel to another. For the
motion distance Dm between superpixels, we use the euclidean distances between
mean motion vectors of superpixels for the motion similarities. For f s, we use the
window decay f (d) = [d < A] which determines the probabilities to link only with
customers that are at most distance A away. For f m, we use the exponential decay
f (d) = e

−d
B which decays the probability of linking to customers exponentially with

the distance to the current one, where B is the parameter of decay width. With the
decay functions f s and f m for both spatio-temporal and motion domains, we have
defined a distribution over customer (superpixel) assignments which encourages to
cluster nearby superpixels with similar motions together, and thus to have contiguous
segments in spatio-temporal and motion domains. In Figure 3.10 we show samples
from this ddCRP video segmentation prior for different hyperparameters and in
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Figure 3.10: The rightmost column: (from top to bottom): original image, motion
map from optical flow, superpixel segmentation. Rest columns: samples from
ddCRP video cosegmentation prior under different settings between concentration
hyperparameter α and width parameter B for exponential decay function of motion
f m.

Figure 3.9 we visualize the concept of the video segmentation prior and how the
customer assignments can produce the clusters. The prior proposes segments having
contiguous superpixels with similar motion.

3.5.4 Generative Multi-Video Model

In this section we formulate a probabilistic, generative model that links the videos
by a global appearance model that is also non-parametric. We consider the following
hierarchical generative procedure of multiple video sequences:

Videos consist of multiple global object classes with different appearances, and
for every video there are arbitrary number of instances which are located at different
locations and possibly move over time. As our model has a hierarchical structure
of layers for global classes and local instances which is very similar to the idea
of Hierarchical Dirichlet Process (Teh et al., 2006), we use the same metaphor of
its Chinese restaurant franchise representation in our case: There is a restaurant
franchise (set of videos) with a shared menu of dishes (object classes) across all
restaurants (videos). At each table (object instance) of each restaurant one dish
(object class) is ordered from the menu by the first customer (superpixel) who sits
there, and it is shared among all customers (superpixels) who sit at that table (object
instance). Multiple tables (object instances) in multiple restaurants (videos) can serve
the same dish (object class). So the analogy is the following: restaurants correspond
to videos, dishes correspond to object classes, tables correspond to instances, and
customers correspond to superpixels. The visualization of the Chinese restaurant
franchise representation and its corresponding metaphors to the proposed multi-
video modal can be seen in the Figure 3.11 for better understanding. Here is a
summary of the generative process:

1. For each superpixel iv in video v, draw assignment civ ∼ ddCRP(D, f , α) to the



3.5 ddcrp-based video co-segmentation 29

global object classes

video #1 video #2
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menu of dishes
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Figure 3.11: The metaphors between our proposed multi-video model with respect
to the Hierarchical Dirichlet Process (HDP) (Teh et al., 2006). First block: the visual-
ization of the structure for the proposed model; Second block: the Chinese restaurant
franchise representation of the HDP; Third block shows the correspondence between
the metaphors of previous two blocks.

object instance

2. For each object instance tv in video v, draw assignment ktv ∼ CRP(γ) to the
object class

3. For each object class k, draw cluster parameters for appearance model φk ∼ G0

4. For each superpixel iv in video v, draw observed feature xiv ∼ P(·|φziv
), where

ziv = ktiv
the class assignment for iv.

where G0 is drawn from the DirichletProcess(γ, Ha) in order to define an infinite
set of appearance models. Ha denote a Dirichlet prior on feature appearance distri-
bution which is used as the base distribution for the process. γ is the concentration
parameter for the Dirichlet process. For each global object class k discovered across
video sequences, the parameter φk for its appearance model is sampled from G0.
We use a multinomial distribution η to describe the appearance model. Therefore
given the observed appearance feature xi for superpixel i, the likelihood of observed
appearance feature for global object class k can be denoted as p(xi|φk) = ηk(xi).

3.5.5 Posterior Inference via Gibbs Sampling

In order to incorporate the ddCRP video segmentation prior with the likelihood
of superpixels to object instances whose appearance models are inherited from
corresponding global object classes, we can now define a posterior distribution over
customer assignments and use it to perform inference.

The goal of posterior inference is to compute posterior distribution for latent
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variables given observed data. The posterior for customer assignments c1:Nv is:

p(c1:Nv |x1:Nv , D, f , α, γ) =(
∏Nv

iv=1 p(civ |D, f , α)
)

p(x1:Nv |z(c1:Nv), γ)

∑c1:Nv

(
∏Nv

iv=1 p(civ |D, f , α)
)

p(x1:Nv |z(c1:Nv), γ)

(3.7)

where z are the class assignments for all the tables introduced by the customer
assignments.

Here we use ddCRP p(x1:Nv |z(c1:Nv)) as prior for all the possible customer con-
figurations such that its combinatorial property makes the posterior intractable
wherefore we use sampling techniques. As proposed in original ddCRP paper (Blei
and Frazier, 2010), Gibbs sampling is used where samples are iteratively drawn from
the conditional distribution of each latent variable given the other latent variables
and observations:

p(civ |c−iv , x1:Nv , D, f , α, γ) ∝p(civ |α, D, f )·
p(x1:Nv |z(c1:Nv), γ)

(3.8)

The prior term is given in equation 3.6 and the likelihood term for multinomial
appearance distribution is

p(x1:Nv |z(c1:Nv), γ) =
|z(c1:Nv )|

∏
l=1

p(xz(c1:Nv )=l|z(c1:Nv), γ)

=
|z(c1:Nv )|

∏
l=1

ηl(xz(c1:Nv )=l)

(3.9)

Resampling the global class (dish) assignment k follows typical Gibbs sampling
method for Chinese Restaurant Process but consider all the features xV and assign-
ments kV in the video set V . The class assignment posterior of each table tv in video
v is:

p(ktv = l|kV−tv , xV , γ) ∝

{
m

kV−tv
l η

kV−tv
l (xtv) if l is used

γηl(xtv) if l is new
(3.10)

Here kV−tv
denotes the class assignments for all the tables in the video set V excluding

table tv, xV is the appearance features of all superpixels within V . Given the

class assignment setting kV−tv
, m

kV−tv
l counts the number of tables linked to global

class l whose appearance model is η
kV−tv
l . xtv stands for the appearance features of

superpixels assigned to the table tv.

3.5.6 Implementation Details

For computing the appearance feature representation for superpixels, we use the
following pipeline: We use the same procedure of dense patch extraction and patch
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description as in (Joulin et al., 2012) in order to stay comparable to the image co-
segmentation baseline which we will use in the experimental section. These patches
are further quantized into a codebook of length 64 so that we can assign a color
codeword to every image patch, which is based on a typical Bag-of-Words (BoW)
image representation. Now we describe the appearance feature for each superpixel i
by using the color codeword histogram xi computed from the image patches whose
centres are located inside that superpixel.

For all our experiments we set the concentration parameter γ = 1 which is
weakly informative. The hyperparameter on multinomial distribution for appearance
information is assigned symmetric Dirichlet prior Ha = Dir(2e + 2) which supports
the global classes to contain various codewords. The concentration parameter
α = 1e− 100 for the proposed video segmentation prior and the width parameter
B = 1e− 1 for motion decay function f m are determined by inspecting samples from
the prior obtained from equation 3.6. We show examples in Figure 3.10 that displays
the effect of the parameters. We set width parameter A for spatial decay function f s

to be 3 for all our experiments.

3.5.7 Experimental Results of ddCRP-Based Video Co-Segmentation

For evaluating our generative video co-segmentation approach, we compare it with
various baselines including image co-segmentation, video segmentation and also
variants of the proposed model. In addition, we test the proposed method with
different settings including different granularities of the superpixels as well as
different priors for the object instance layer.

We first present our new dataset and the proposed evaluation criterion. Then
we present the results of our method with comparisons to various baselines and a
discussion.

3.5.7.1 Dataset

We present the first Multi-Object Video Co-Segmentation (MOViCS) challenge
that can be used to provide quantitative comparisons for the multi-class video
co-segmentation task. It is based on realistic videos collected from the web (youtube)
and exposes several challenges encountered in online or consumer videos.

The first approach to a video co-segmentation benchmark is from the work of
(Rubio et al., 2012). The associated dataset is limited as it only consists of one set
of 4 videos that are synthetically generated. The same foreground video is pasted
into 4 different backgrounds. Accordingly, their task is defined as binary fore-
ground/background segmentation that does not address segmentation of multiple
classes and how the segments are linked across videos by the classes.

In contrast to this video co-segmentation approaches which phrases the task as
binary foreground/background segmentation problem, we rather propose to tackle
the more general problem of multi-class labelling. This change in task is crucial in
order to make progress towards more unconstrained video settings as we encounter
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Figure 3.12: Summary of our proposed MOViCS dataset. Different color blocks stand
for different video sets and the images within the same block come from the same
video sequences.

them in online resources and consumer media collections. Therefore, we propose a
new multi-class video co-segmentation task of realistic videos with multiple objects
in the scene. This makes a significantly more difficult problem, as not only object
have to be correctly segmented but also assigned the same global class across video.

We propose the first benchmark for this task based on realistic video sequences
download from Youtube. The dataset has 4 different video sets including 11 videos
with 514 frames in total, and we equidistantly sample 5 frames from each video for
which we provide ground truth for the object classes of interest. Note that for each
video set there are different numbers of common object classes appearing in each
video sequence, and all the objects belonging to the same object class will be noted
by the same label.

Unlike the image co-segmentation dataset iCoseg (Batra et al., 2010) which has
similar lighting, image conditions and background or video segmentation dataset
moseg (Brox and Malik, 2010) with significant motion patterns, our dataset exposes
many of the difficulties encountered when processing less constraint sources. In
Figure 3.12 we show examples of video frames for the four video sets together
with the provided groundtruth annotations. Our sequences show different lighting
conditions (e.g. tiger seq.), motion blur (e.g. chicken seq.), varying number of objects
moving in and out (e.g. giraffe, elephant seq.), similar appearance between objects
and background (e.g. tiger), etc. The MOViCS dataset and our code can be found at
http://www.d2.mpi-inf.mpg.de/datasets.

3.5.7.2 Follow-Up Datasets

Based on our initial publication (Chiu and Fritz, 2013), there are several following-up
research works on this new video object co-segmentation problem to push forward
the performance based on our MOViCS challenge and more datasets collections

http://www.d2.mpi-inf.mpg.de/datasets


3.5 ddcrp-based video co-segmentation 33

with different properties. For instance, Zhang et al (Zhang et al., 2014a) reuse some
videos from MOViCS and add new ones to build up a new dataset name Safari
where for each object class there will be one video only contains this class inside,
and other videos are with two classes. In (Fu et al., 2014) the authors propose new
datasets aiming for multiple foreground video co-segmentation setting. Also in
(Wang et al., 2014b) a video object co-segmentation benchmark is collected which
emphasizes there will be irrelevant frames in some videos. All these datasets serve
different purposes for evaluating the various flexibilities of the video co-segmentation
approaches, such as the handling multiple object classes in a video set, discovering
the number of object instances, and relaxing the assumption that target objects
appear in all frames from all videos. We expect that in the future there will be a
new dataset at larger scale which can provide an unified benchmark with different
difficulties for this growing research area of video co-segmentation problem.

3.5.7.3 Evaluation Metric

In order to quantify our results, we adopt the intersection-over-union metric that is
also used in image co-segmentation tasks (e.g. (Kim and Xing, 2012)) as well as the
PASCAL challenge.

M(S, G) =
S ∩ G
S ∪ G

(3.11)

where S is a set of segments and G are the groundtruth annotations.
For the problem of video co-segmentation, we aim to not only simultaneously

achieve video segmentation for multiple sequences, but also to learn the common
object classes across videos. Therefore we define our co-segmentation task as finding
for each object class a set of segments that coincide with the object instances in
the video frames such that the algorithm has to group the segments by object
class. We denote all segments grouped to an object class i by Si. Accordingly our
evaluation assigns the object class to the best matching set of segments predicted by
an algorithm:

Scorej = max
i

M(Si, Gj) (3.12)

Please note that this measure is not prone to over-segmentation, as only a single
label is associated with each object class for the whole set of videos. We can further
condense this performance measure into a single number by averaging over the
classes.

Score =
1
C ∑

j
Scorej (3.13)

where C is the number of object classes in the groundtruth.
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Figure 3.13: Comparison of co-segmentation accuracies between the our method
(VCS), image co-segmentation (ICS), video segmentation (VS) and our method
with applying on each video independently (VCS-indept) in the proposed MOViCS
dataset. (a) Only a single label is assigned per object class in the groundtruth for the
whole set of videos. (b) Allow over-segmentation which can assign multiple labels
to the same object class in the groundtruth

3.5.7.4 Comparison to Video Segmentation

A comparison to video segmentation methods is not straightforward. As each video
is processed independently, there is no linking of segments across the videos. We
therefore give the advantage to the video segmentation method that our evaluation
links the segments across videos by the groundtruth. All baselines using video
segmentation are therefore over optimistic results as they are using a ground truth
oracle in order to perform the linking across videos.

3.5.7.5 Results

We evaluate our approach on the MOViCS dataset and compare it to two state-of-
the-art baselines from video segmentation and image co-segmentation. The video
segmentation baseline (Brox and Malik, 2010; Ochs and Brox, 2011) is denoted by
(VS) and the image co-segmentation baseline (Joulin et al., 2012) is denoted by (ICS).
(VCS) stands for our proposed multi-class video co-segmentation method. For both
baselines we run their publicly available codes on our data.

The performance numbers of the proposed method in comparison to the baselines
are shown in Figure 3.13(a). With an overall performance of 48.74% of our method,
we outperform VS by 22.07% and ICS by 31.49%.

Figure 3.14 shows a visualization of the results. For each video set the rows
sequentially show the video frames, optical flow maps, groundtruth annotations,
results of image co-segmentation baseline (ICS), results of video segmentation
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approach (VS) and the last row shows the results of the proposed method (VCS).
Here the evaluation is performed per set of video sequences since the algorithm

not only have to correctly segment the object instances but also link them to a
consistent object class. In theory, for the ideal case there should be exact one-to-
one correspondence between object classes from the algorithm and ground truth.
Therefore in this experimental setting we restrict to only use one discovered object
class for describing each class in ground truth, as described in our evaluation metric.
In another word, we do not allow for over-segmentation of the object classes in this
experiment.

Also recall that VS does not link objects across videos. Therefore it has no notion
of objects linked across videos. As described in section 3.5.7.4 we give an advantage
to the VS method by linking the segments across video via the groundtruth. Despite
this advantage our method outperforms VS by a large margin for the first 3 video
sets. Only on the (tiger) sequences VS performs better. It turns out that in this set the
appearance is particularly hard to match across videos due to lighting and shadow
effects, such that in one sequence of the (tiger) video set our VCS method uses
another object class to label the tiger objects, see Figure 3.14. The VS gets boosted
by the additional information from the groundtruth, in comparison, VCS is purely
unsupervised and does not use the groundtruth in any way.

3.5.7.6 Discussion

The video segmentation baseline strongly depends on motion information in order
to produce a good segmentation. When the motion map is noisy or there are objects
moving together or with similar motion, segmentation errors occur. This issues are
particular pronounced in the first video set where the chicken moves together with
the turtle and the motion map is noisy due to fast motion in the second video. Our
method handles such situations better and maintains a good segmentation despite
the noisy motion information.

The image co-segmentation baseline has an assumption which expects a certain
number of common object classes for all input images. This often cause problems
for the less constraint settings that we are of interest in our study. For example in
the second and third video sets in Figure 3.14, there are a varying number of objects
moving in and out. The performance of image co-segmentation reduces in these
settings. In addition, problems occur with wrongly merged object classes (lion with
zebra, and giraffe with elephant). Our non-parametric approach seems to be better
suited to deal with this variation on object instances and object classes and shows
overall a more consistent segmentation.

Another interesting aspect of our model is how segmentation is supported
by jointly considering all the videos of a set and learning a global object class
model. Without this global appearance model, the performance decreases by 5.88% -
still outperforming the baselines, please see the method noted as (VCS-indept) in
Figure 3.13(a). Note here for evaluating VCS-indept, the same story of using the
groundtruth to link the object classes across videos as for VS is applied. We give
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Figure 3.14: Examples of results from the proposed method (VCS), image co-
segmentation (ICS) and video segmentation baselines (VS) in MOViCS dataset.
For each video set the rows sequentially show the video frames, optical flow maps,
groundtruth annotations, results of ICS, results of VS and the last row shows the
results of our VCS approach.
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Figure 3.15: Example of improved results by segmenting across videos with a global
object class model. First row: frames from video sequences. Second row: results
obtained from running the proposed method independently for each sequence. Third
row: results from joint segmentation on all videos of the video set.

an example in Figure 3.15 where the first row is the images from video sequences,
the second row is the results by applying our proposed method only on each single
sequence independently, and the last row is our VCS result while taking all videos
in the video set into account. We observe the improved segmentation from the joint
segmentation since the global appearance models get richer from various sequences
in the set. This observation supports again the importance and potential of the
co-segmentation approach since it not only helps to identify the shared object classes
across videos but also improves the segmentation on the single video.

3.5.7.7 Analysis with Over-Segmentation

In this analysis we relax the assumption that the sets of segments proposed by the
method have to correspond to exactly one groundtruth object class each. Therefore,
we now assign multiple set of segments to the same object class in the groundtruth.
In Figure 3.13(b) we present the performance comparison under this relaxed setting.
Please note that this relaxed measure does not penalize for non-existing links between
the videos as well as over segmentation in the spatial domain.

Overall, the performance improves, as over segmentation is not penalized. In
average our method achieves a performance of 62.99% which still outperforms VS
by 21.71% and ICS by 29.08%. The improvements under this measure are particular
prominent on the video sets where appearance is hard to match across sequences.
We take the fourth video set (tiger) as an example. In Figure 3.14 we observe that
VCS over-segments the tiger. This set of videos is challenging due to varying lighting
conditions, shadows and appearance similarities with the background. Both ICS and
VS do not match the object correctly across videos, as we can tell be the different
coloring across videos. Our method does not show strong over-segmentation artifacts
and also matches the object class across the first two videos.
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Figure 3.16: Comparison of co-segmentation accuracies between different granulari-
ties of the superpixel segmentations obtained by (Arbelaez et al., 2011).

3.5.7.8 Analysis on Different Granularities of Superpixels

As discussed in Section 3.5.5, the posterior probability of customer assignments
will depend on both the ddCRP video segmentation prior and also the appearance
likelihood. In the ddCRP video segmentation prior the distance function will be af-
fected by the granularity of superpixels, for instance the same threshold value for the
window decay function of the spatiotemporal distance will represent different scales
in pixel distance between the coarse and fine superpixel segmentations. Also in the
appearance likelihood different granularities of the superpixels will contain different
levels of statistics in the multinomial distributions for the BoW representations.

To do the analysis on the influences caused by the size of the superpixel seg-
mentation, we use the image segmentation approach from (Arbelaez et al., 2011)
to produce the hierarchical superpixel segmentations of 3 coarse-to-fine layers by
using the same parameter settings as in the video segmentation baseline (Ochs and
Brox, 2011). Each layer of superpixels is utilized as the basic data points in our video
co-segmentation model and we perform the inference with the same parameters.
From the experiments shown in Figure 3.16 for each of 3 layers we observe that the
higher layer with coarser superpixels gives better performance than finer ones under
the evaluation scheme which does not allow over-segmentation, whereas different
layers perform similarly when over-segmentation is feasible in evaluation. This trend
can also be visualized in Figure 3.17.

The experiments here do not conclude that we should always use extremely big
superpixels in our scheme because they might also cause the problem of under-
segmentation to mix the foreground objects with the background that the algorithm
has no way to recover. Instead, this analysis can be associated to the motivation
of using higher-order terms in the recent works on graph-based video segmenta-
tion (Galasso et al., 2014; Khoreva et al., 2014). In graph-based video segmentation
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Figure 3.17: Examples of results for running the proposed method on different
granularites of superpixel segmentations. The first column are the video frames,
the rest ones sequentially shows the superpixels from fine to coarse layers of hier-
archical image segmentation (Arbelaez et al., 2011) and their corresponding video
co-segmentation results.

approaches the affinity matrix between the nodes (finer superpixels) is built by
measuring the distances/similarities from the local neighbors and the coarser super-
pixels in the hierarchical segmentation can provide more global and higher-order
information with linking the nodes in wider spatiotemporal range. Since in our
ddCRP video segmentation prior it also depends on the distance functions to bias the
customer assignments between superpixels, the way of incorporating higher-order
information in graph-based video segmentation methods can provide an feasible
extension for our ddCRP prior to leverage. Additionally, in recent works of video
co-segmentation such as (Zhang et al., 2014a; Lou and Gevers, 2014; Fu et al., 2014)
the object proposals (Endres and Hoiem, 2010) are extracted as candidates of object
segments in the pre-processing step. This step can also straightforwardly provide a
higher-order information for us to utilize as a distance function in the ddCRP prior
where the superpixels located within the same object proposals will have higher
probabilities to be clustered together.

3.5.7.9 Variants for Video Segmentation Prior

One of the main contribution of this chapter is the video segmentation prior which
incorporate the distance-dependent Chinese Restaurant process idea with the dis-
tance functions from both spatiotemporal and motion distances. We analyze several
design choices, including: i) combination of both spatiotemporal f s and motion f m

information as our proposed model, to use ii) only spatiotemporal f s or iii) motion
f m distances, and iiii) to base on pure hierarchical Dirichlet process (HDP, layers
of CRP) (Teh et al., 2006) model which utilizes the Chinese Restaurant process as a
prior without taking dependencies between data points into consideration.

We evaluate these design choices of the prior for the local object instance layer in
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Figure 3.18: Comparison of proposed models under different design choices of
the ddCRP prior for the local object-instance layer. There are 4 different choices
are evaluated: i) to use both distances in spatiotemporal and motion domains
(Spatial+Motion), to use only ii) spatiotemporal (Spatial Only) or iii) motion
(Motion Only) informations, and iiii) to use pure CRP instead of ddCRP as prior
(HDP).

our model to have the quantitative comparison between them. We use the coarse
superpixels obtained from the hierarchical image segmentation as in section 3.5.7.8
to be the basic data points in this experiment. For fair comparison, all the parameters
will be kept the same across different designs of priors. Note that for implementation
of HDP model we simply set the probabilities of customer assignments from a
superpixel to all the others are with the same value, which will make the ddCRP
degenerate to CRP.

The experimental results and the visualizations are shown in Figure 3.18 and 3.19.
It is clear to see that the choice of ddCRP prior in the local object-instance layer
to include both spatiotemporal and motion distance functions in large margins
outperforms ii) spatiotemporal-only by 11.07%, iii) motion-only by 17.25% and iiii)
HDP by 24.62% (under the evaluation criterion of not allowing over-segmentation),
and it maintains segments to be contiguous in spatial and motion aspect. And
with the help from the global appearance models shared across videos, the overall
hierarchical model can have better tolerance towards the ambiguities caused by
accidental similarities in motion patterns or appearance within a single sequence.

3.5.7.10 Runtime Comparison

We provide the running time for our VCS algorithm and the baselines (ICS and VS)
in Table 3.2. In order to have detailed comparison, we further divide the runtime of
each method into different parts.
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image Spatial+Motion Spatial Only Motion Only HDPflow

Figure 3.19: Examples of results from using various design choices of the video
segmentation ddCRP prior. For the columns from left to right they sequentially
show the video frames, optical flow maps, and the co-segmentation results obtained
by using i) spatiotemporal+motion distances, ii) spatiotemporal information only,
iii) motion distances only and iiii) CRP as the prior in local layer of the proposed
method.

Video Co-Segmentation (VCS, ours)
video

set
optical flow

(Chambolle and Pock, 2011)
superpixels
& features inference total

1st 1 h 32 m 8 m 1 h 12 m 2 h 52 m
2nd 2 h 59 m 20 m 3 h 13 m 6 h 32 m
3rd 1 h 27 m 6 m 1 h 22 m 2 h 55 m
4th 1 h 7 m 4 m 59 m 2 h 10 m

Image Co-Segmentation (ICS (Joulin et al., 2012))
video

set total

1st 4 h 41 m
2nd 8 h 38 m
3rd 3 h 18 m
4th 6 h 58 m

Video Segmentation (VS (Brox and Malik, 2010; Ochs and Brox, 2011))
video

set
sparse

(Brox and Malik, 2010)
dense

(Ochs and Brox, 2011) total

1st 30 m 10 h 1 m 10 h 31 m
2nd 49 m 18 h 17 m 19 h 6 m
3rd 15 m 6 h 35 m 6 h 50 m
4th 16 m 7 h 53 m 8 h 9 m

Table 3.2: Runtime comparison for the proposed method and baselines.
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Video Co-Segmentation
Optical Flow: We use TV-L1 (Chambolle and Pock, 2011) Matlab package1 for comput-
ing dense duality based optical flow between every pair of adjacent frames within
the video sequences.
Superpixels and Features: This stage includes the dense image patch extraction, code-
book learning, superpixel segmentation by QuickShift (Vedaldi and Soatto, 2008)
implementation from VLFEAT toolbox (Vedaldi and Fulkerson, 2008), and the dis-
tance computation between superpixels.
Actual Segmentation by Gibbs Sampling: In this part the posterior inference is per-
formed, we run the Gibbs sampling to resample the local object instance assignments
of superpixels and the global object class assignments of instances.
Image Co-Segmentation The Matlab package2 provided in (Joulin et al., 2012) is
used here for evaluating the image cosegmentation baseline.
Video Segmentation
Sparse: We use the executable3 of (Brox and Malik, 2010) to create sparse set of labels.
Dense: Similarly, the program of (Ochs and Brox, 2011) is used to turn the sparse
segmentation into dense regions. Table 3.2 shows that our proposed method is faster
than both of the considered baselines.

3.6 conclusion

In this chapter we have introduced a non-parametric Bayesian framework of discov-
ering the latent representation of video sequences and also the task of multi-class
video co-segmentation. The hierarchical structure of our proposed method utilizes
the global appearance model in the global layer to allow shared appearance of object
instances as well as discover their object classes across videos, and in the local layer
we experiment two variants to add the spatial-temporal and motion information.
With explicitly modelling the motion and spatio-temporal distributions in the first
variant and defining a probabilistic video segmentation prior based on ddCRP frame-
work for the second one, our approach allows the discovered objects to have distinct
motion patterns in the video volume and proposes spatially contiguous segments
of similar motion. Therefore, video segments are found and related across to each
other across videos.

The value of our algorithm is first demonstrated in applications to video segmen-
tation and video indexing. In particular, we show how our models discover and
group objects despite occlusions and highlight the compact, latent representation
which is derived from the video sequences that can be interpreted as summarization.
We demonstrate a new way to retrieve videos by providing a sketch of the video
that can be related to our latent representation. Furthermore, we propose the Multi-
Object Video Co-Segmentation (MOViCS) dataset specialized to the multi-class video

1http://www.gpu4vision.org/
2http://www.di.ens.fr/~joulin/
3http://lmb.informatik.uni-freiburg.de/

http://www.gpu4vision.org/
http://www.di.ens.fr/~joulin/
http://lmb.informatik.uni-freiburg.de/
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co-segmentation problem, which is based on realistic videos and exposes challenges
encountered in consumer or online video collections. The proposed approach is
demonstrated to resolve the ambiguities of appearance and motion patterns, improve
the segmentation results via joint segmentation, and outperform state-of-the-art im-
age co-segmentation and video segmentation baselines. Our method is also shown to
be faster in computation which enhances its applicability in real-world applications.
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In the chapter 3 we have addressed the hierarchical non-parametric Bayesian
approach for the video co-segmentation task. We now generalize our distance-
dependent Chinese Restaurant Process (ddCRP) based formulation to the ap-

plication of inferring activity routines from sensor streams, which are composed
of context words produced by multiple body worn and ambient sensors detecting
object usages and mode of locomotion. Our approach does not require labelled data
at any stage. Neither does our approach depend on time-invariant sliding windows
to sample context word statistics. Context word streams are first segmented into
supersamples, which are basic data units for the topic model, and then semantic
and temporal features are obtained to construct a segmentation prior that relates
supersamples via its context words. Our hierarchical model uses the segmentation
prior and ddCRP to group supersamples and the Chinese Restaurant Process (CRP)
to discover activities. We evaluate our approach on the dataset that contains activities
of daily living, and demonstrate the outperformance of our proposed ddCRP based
model with respect to both, classic parametric Latent Dirichlet Allocation (LDA) and

44
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the non-parametric Chinese Restaurant Franchise (CRF).

4.1 introduction

Discovery of daily activities and routines from ubiquitous sensor data provides
insights into individual behaviour without prior model learning, which is relevant for
assisted living, home patient care, and related applications (Seiter et al., 2014b; Aztiria
et al., 2012). A commonly considered concept for assessing human behaviour is to
partition activity routines into abstraction levels, where regular routine structures,
such as office work and lunch are composed of context symbols with shorter temporal
extend, including activity primitives as sit, walk, locations, such as home, or object
use, e.g. computer. Context symbols could be detected from the continuous acquired
data of on-body and ambient sensors, where frequently supervised classification
or data clustering were used (Huynh et al., 2008). Discovering activity routines
requires methods for analysing context symbol patterns, where often parametric
topic models were applied, such as latent Dirichlet allocation (LDA) (Huynh et al.,
2008; Farrahi and Gatica-Perez, 2011). Topic models originate from text mining and
aim at discovering hidden themes from word statistics in documents. For parametric
topic models it is assumed that one document contains a mixture of a finite number
of topics and that each topic is described as probabilistic distribution over words
from a predefined vocabulary.

In activity discovery, words correspond to context symbols and topics correspond
to activities, which we call context words and activity topics respectively. Typically,
documents are obtained using a temporal segmentation of the continuous context
word stream with a predefined segment size that is large enough to capture context
word statistics. Subsequently, discovery results per segment are retrieved. With
frequently used segment sizes of 30 min (Huynh et al., 2008; Sun et al., 2014), activity
transitions, variations in activity duration, as well as activities that are shorter than
the set segment size may not be accurately identified. Moreover, parametric topic
models, such as LDA, require to set the expected number of topics. Selecting
topic model parameters, including segment size and number of topics, impacts
activity discovery performance and highly depends on dataset properties that may
be unknown (Seiter et al., 2014a). In addition, dataset properties, i.e., number
of daily activity routines and their duration, may vary by individual and due to
changing behaviour patterns. Recently, non-parametric Bayesian topic models were
proposed for activity discovery to overcome the dependency on predefined topic
count (Nguyen, 2014; Sun et al., 2014) (see Section 4.2 for details). Non-parametric
models are based on a Dirichlet process and cover an infinite number of activity
topics and their distributions over context words. However, existing non-parametric
models for activity discovery also depend on fixed observation segment size.

In this chapter, we introduce a novel hierarchical topic model approach that does
not depend on manually selecting parameters segment size and number of topics.
Instead, segmentation and topic count estimation is performed based on the data
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and jointly with the activity topic discovery. We propose a framework that includes
context word extraction and activity discovery. Context words are obtained from
sensor data without statistical classifier training and thus do not require activity
annotations.

We introduce a segmentation prior considering semantic and temporal infor-
mation and use the non-parametric distance dependent Chinese Restaurant Pro-
cess (ddCRP) to group context words that belong to one activity. For example,
segmentation of activity lunch would contain context words such as spoon and plate,
whereas activity office work may contain computer. Thus, our semantic relationship
representation of spoon is “closer” to plate than to computer.

The main contributions are threefold: (1) We introduce a joint segmentation and
activity discovery approach that is independent of the number of topics and the seg-
ment size. Here we introduce a hierarchical method combining the nonp-arametric
ddCRP and Chinese Restaurant Process (CRP). We formulate a segmentation prior
that considers semantic and temporal features of context words, where semantic rep-
resentations were extracted from a corpus of Wikipedia articles. (2) We evaluate our
approach against the parametric LDA and the non-parametric Chinese Restaurant
Franchise (CRF) using the Opportunity dataset that contains multi-modal sensor
data of daily living activities (Roggen et al., 2010). (3) We compare discovery per-
formances using context word annotations, actual context word detection from raw
data, and synthetic noise to demonstrate capabilities of our ddCRP+CRP approach.

4.2 previous works on activity discovery

Several attempts towards activity discovery from sensor data were made. Gu et al.
extracted characteristic object use fingerprints applying web-mining and discovered
contrast patterns for each activity using emerging patterns (Gu et al., 2010). Begole
et al. applied data clustering to extract and visualize human’s daily rhythms from
computer activity (Begole et al., 2003). As clustering-based methods cannot capture
uncertainty in the structure of human activities, frequently probabilistic models
have been applied. Barger et al. used probabilistic mixture models to infer daily
life behavior patterns from clusters of sensor events in a smart home (Barger et al.,
2005). Probabilistic topic models have been applied to extract user routines from
mobile phone data (Farrahi and Gatica-Perez, 2011; Zheng and Ni, 2012). Huynh
et al. discovered daily routine patterns from activity primitives by applying a
topic model (Huynh et al., 2008). However, all of these topic model approaches are
parametric and assume a fixed model complexity. Thus, discovery performance
critically depends on the number of topics specified and on the segment size used to
derive word statistics. In contrast, our approach is non-parametric, thus estimates
optimal topic count from the data structure.

Non-parametric models were recently applied for activity discovery. The hierar-
chical Dirichlet process HDP-HMM was used for abnormal activity detection (Hu
et al., 2009) and activity discovery from smartphone sensor (Zhu et al., 2011). Simi-



4.3 joint segmentation and discovery approach 47

larly, Nguyen et al. used HDP to discover latent activity topics from acceleration and
proximity data (Nguyen, 2014). Sun et al. used HDP to discover patterns of high-level
activities (Sun et al., 2014) from data clusters. While non-parametric topic models
estimate an optimal number of topics based on the data, their discovery performance
remains sensitive to selecting proper segment sizes. The topic model-based discovery
frequently used time-invariant segmentation, such as sliding windows (Sun et al.,
2014; Huynh et al., 2008). Yet, time-invariant segmentation fails to handle transitions,
variations in activity duration, and short activities accurately. Our approach no
longer requires selecting a segment size, but performs segmentation dynamically
based on the multi-modal sensor data by introducing a segmentation prior which is
composed of semantic and temporal features to group context words of the same
activity.

4.3 joint segmentation and discovery approach

Time-invariant sliding windows cannot adequately handle variations in activity
duration. Figure 4.1 illustrates a segmentation problem of variable durations in
activity discovery with examples: Large time-invariant windows, e.g. a segment
size of DS=7, capture context word statistics of activity 1 exactly (see Fig. 4.1(a)).
However, context word statistics for activity 3 would be incomplete, as the context
word windows of activity 2 and 1 overlap. Contrary, a small segment size (e.g. DS=3)
does not provide distinct context word statistics for activity 1:lunch, as illustrated in
Fig. 4.1(b).

We introduce a joint segmentation and discovery approach as depicted in Fig. 4.2
to solve the segmentation problem. The first stage extracts data from multi-modal
sensor sources into context words e.g., sit, spoon moved. The context word extraction
relies on basic logic functions, thus avoiding supervised statistical learning and
classification. Subsequently, we introduce a data-driven segmentation based on state
changes in context words to obtain supersamples (see Fig. 4.1(c)). Supersamples
represent short temporal segments of context words with variable size. As state
changes in context words may occur within activities, supersamples may not com-
prehensively capture context word statistics that represent a particular activity, e.g.,
activity 1:lunch in Fig. 4.1(c). Therefore, supersamples will be grouped according to
semantic and temporal context word relations.

We assumed that an activity includes semantically similar context words, whereas
the semantic relation of context words between different activities is lower. For ex-
ample, context words x and y in Fig. 4.1 may correspond to plate and spoon. Then,
x:plate and y:spoon are semantically more similar than x:plate and z:computer. To
group supersamples that belong to the same activity (Fig. 4.1(d)), we introduce a seg-
mentation prior that considers semantic and temporal relationships of supersamples
based on the context words in each supersample. We deduced semantic distances
between context words based on word2vec representations that were extracted from
a corpus of Wikipedia articles (Mikolov et al., 2013). For example, activity 1:lunch
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Figure 4.1: Illustration of segmentation methods for activity discovery. Exemplary,
3 activities are shown and segmentations for 2 context word channels {i, ii} with
the context word vocabulary {e, f , g, h, v, x, y, z, o}. (a) Time-invariant windowing
with segment size DS=7. (b) Time-invariant windowing with segment size DS=3.
(c) Data-driven supersamples segmentation. A new supersample is formed each time
a context change occurs in channel (i). (d) supersample groups are segmented by
ddCRP with segmentation prior. Whereas in (a) and (b) windows intersect activities,
(c,d) perform segmentation according to data.
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Figure 4.2: Activity discovery framework: Sensor data is processed and encoded in
context words using a predefined context vocabulary. Our approach jointly segments
context words and performs activity discovery. Initially, a data-driven segmentation
transforms context word streams into supersamples as input for a hierarchical, non-
parametric topic model. We use semantic and temporal priors to group supersamples
of the same activity with ddCRP. The CRP process is then used to infer activity
topics from context word statistics of supersample groups. To evaluate performance,
activity topics are mapped to a set of activities.

contains a supersample i=1 with context words {x,x,x,e,g,e} and a supersample i=2
with {y,y,y,y,e,g,e,e} (Fig. 4.1(c)). The third supersample i=3 belongs to the activity
office work and includes context words {z,z,h,f}. We expect higher prior probability to
group supersamples 1 and 2 than supersamples 1 and 3 as the semantic and temporal
distance of x:plate (supersample 1) and y:spoon (supersample 2) should be smaller
than between x:plate (supersample 1) and z:computer (supersample 3). Contrary to
the example here, distances for all pairs of context words were considered in the
prior (see Sec. 4.4.3 for details).

We then apply a hierarchical, non-parametric topic model for activity topic dis-
covery as depicted in Fig. 4.3: In the local layer, for each data recording supersamples
are combined into groups as illustrated in Fig. 4.1(d) and Fig. 4.3 using ddCRP.
Grouping by ddCRP depends on the segmentation prior: In our example, supersam-
ples i=1 and i=2 belong to activity 1:lunch and have high prior probability to be
grouped contrary to supersamples i=1 and i=3 that belong to different activities
(see Fig. 4.1(c)). We expect supersample groups to provide comprehensive context
word statistics describing activities (see Fig. 4.1(d)). Individual data recordings of
a dataset likely contain the same activities. Thus, the global layer combines super-
sample groups that belong to the same activity by CRP to an activity topic group
e.g. q=1:lunch (Fig. 4.3). For each activity topic group, the context word distribution
is sampled from context word statistics of all assigned supersample groups such
that the likelihood of the data is maximized. Retrieved activity topics were finally
mapped to activities and discovery performance was analyzed (see Fig. 4.2).
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4.4 discovery framework

The complete discovery framework is illustrated in Fig. 4.2. and detailed below.

4.4.1 Context Word Extraction

The context vocabulary covers X context words {e, f , g...} that are extracted from
body worn and ambient sensor data. First, features are extracted from raw sensor
data (see Fig. 4.2). Each statistical feature from sensor data is transformed to a
binary feature using thresholds and subsequently included in logic functions to
obtain context words (see Sec. 4.5.2). Parallel operating context word detectors (e.g.
mode of locomotion, object usage) result in several context word channels. Each context
word channel provides either an active context word or a null class symbol, when no
context word is active.

4.4.2 Segmenting Context Words into Supersamples

We use a data-driven segmentation for context word streams that result in variable
sized segments, referred as supersamples similar to superpixels in vision (Chiu
and Fritz, 2013). New supersamples are formed each time a context state change
occurs (see Fig. 4.1(c) for illustration). As there may be several parallel context
channels from different sensors sources, we use the channel that includes the least
sparse context word sequence. We consider that supersamples will typically have
shorter temporal duration than activities and subsequently need to be grouped. We
use a joint segmentation and activity discovery approach, as described below.

4.4.3 Segmentation Priors for Activity Discovery

As the basic units for observations in our framework are supersamples which
contain context words inside, we would like to explore the structure of dependencies
between observations to infer more semantic-meaningful activities. While the context
words have corresponding labels such as spoon and plate, in this work we explicitly
measure the semantic distances between context words based on their word2vec
vector representations. Word2vec (Mikolov et al., 2013) is based on a continuous Skip-
gram model that infers word vector representations unsupervised from a corpus
of articles, where the word vectors capture semantic relationships between words.
Initially, the algorithm constructs a word2vec vocabulary of size W from the text
corpus and then deduces vector representations based on neural networks. Finally,
each word in the word2vec vocabulary is represented by the semantic relationship to
W other words leading to a 1×W word vector for each word. We used a word2vec
vocabulary of dimension W = 1000 to extract word vector representations from a
corpus of Wikipedia articles (available at https://code.google.com/p/word2vec/). Context
words represented a subset of the word2vec vocabulary (X � W) and were manually
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Figure 4.3: Illustration of the hierarchical discovery framework ddCRP+CRP. In the
local layer, supersamples from recordings l are combined to supersample groups by
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global layer, local supersample groups from all L recordings are assigned to global
activity topic groups q using CRP and share global activity topic Ψq. Local activity
topics φkl inherit the global activity topic Ψq.

mapped to relevant word vectors vx for X context words by searching the labels of
X context words in the word2vec vocabulary.

We used the word2vec-based semantic as well as temporal distances between
supersamples to form a segmentation prior over supersamples for ddCRP that likely
groups supersamples belonging to the same activity (see Fig. 4.2). To semantically
represent a context word x, we used word vector vx. To semantically represent
supersample i, we calculated the mean word vector vi across all Xi unique context
words x in supersample i: vi =

1
Xi

∑Xi
x∈Xi

vx. The semantic distance ds
ij of supersam-

ples i and j is the Euclidean distance ds
ij = d(vi, vj) of their mean word vectors. The

temporal distance dt
ij counts the number of supersamples between supersample i

and j. Considering our segmentation prior over supersamples, the supersample
assignment ci can be written as:

p(ci = j|D, f , α) ∝

{
f t(dt

ij) f s(ds
ij) j 6= i

α j = i
. (4.1)

The distance measure D and decay function f for ddCRP are composed of
a temporal distance measure and decay function (Dt, f t) and a semantic distance
measure and decay function (Ds, f s). The window decay function f t(dt) = [dt < A]
assigns direct linkage probabilities for supersamples that are at most distance A apart.
For the semantic distance ds, we use an exponential decay function f s(ds) = exp(− ds

B )
that decreases linkage probability with increasing semantic distance. B is the width
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parameter.

4.4.4 Joint Segmentation and Activity Discovery (ddCRP+CRP)

Our activity discovery approach uses ddCRP in the local layer and CRP in the global
layer as illustrated in Fig. 4.3. The ddCRP+CRP approach can be interpreted as
follows: There is a set of L data recordings (restaurants) with a shared set of global
activity topics Ψ (global dishes) across all recordings (restaurants). For each record-
ing l, supersamples il and jl with small semantic and temporal distances dijl are
likely grouped to the same supersample group kl (local table). For example, linked
supersamples in Fig. 4.3 (bottom) are assigned to the same supersample group. Each
supersample group kl of all data recordings l is assigned to one global activity topic
Ψq (global dish) by CRP with the activity topic group q (global table) (see Fig. 4.3,
top). The local activity topic φkl (local dish) in recording l inherits the global activity
topic Ψq (global dish) from the activity topic group q where kl is assigned to, e.g.
Fig. 4.3(c) Ψ1 = φ11 = φ3L = φ32. Thus, multiple supersample groups kl in multiple
data recordings l can belong to the same activity topic Ψq.

The generative process ddCRP+CRP is described by:
(1) Each supersample il in recording l draws supersample assignment cil with super-
sample group kli from ddCRP(D,f,α).
(2) Each supersample group kl in recording l draws a global activity topic group
assignment qkl from CRP(γ).
(3) Each global activity topic group q draws activity topic Ψq from G0.
(4) For each supersample il in recording l, context word statistics uil are drawn from
ηq, where ηq is a multinomial distribution and qkli

= q.

Given the observed context word statistics ui for supersample i, the likelihood
that ui is sampled from the global activity topic q is p(ui|Ψq) = ηq(ui). We used
Gibbs sampling to infer the probabilities p(ui|Ψq) and thus the most likely activity
topic assignment q for each supersample i as detailed in chapter 3.5 (Chiu and Fritz,
2013).

4.5 evaluation methodology

The evaluation strategy is illustrated in Figure 4.4. We compared performance of our
non-parametric ddCRP+CRP approach with data-driven supersamples segmentation
and joint segmentation and activity discovery to the parametric LDA-based topic
model with time-invariant segmentation (segment size DS) and predefined activity
topic count T. We further compared ddCRP+CRP to LDA with supersamples
segmentation and predefined T and to the no-nparametric model Chinese Restaurant
Franchise (CRF) with data-derived T, but time-invariant segmentation DS. CRF (Teh
et al., 2006) is a hierarchical method as well. However, CRF uses CRP in the local
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T, LDA with supersamples segmentation and predefined T, and CRF with time-
invariant segmentation.

layer instead of ddCRP and thus does not consider segmentation priors to segment
supersample groups. All evaluations were performed per study participant and
present average results across all participants and 10 topic model runs. For LDA,
we varied DS within [1, 5]min with empirically optimal T = 10 as well as varied
T within [5, 20] at DS = 2.5, as suggested in (Seiter et al., 2014a). We evaluated
discovery performance using context word annotations that can be seen as perfect
context word detectors, as well as from encoded sensor data using the context
vocabulary. We further investigated sensitivity to context word detector noise by
adding equally distributed noise to context word annotations.

4.5.1 Dataset

To evaluate our approach, we used the Opportunity dataset that consists of ∼ 30
hours of activities of daily living (ADL) recorded at 30 Hz, including annotations
for 5 recordings from 4 participants (Roggen et al., 2010). ADLs included relaxing,
coffee time, early morning, cleanup, sandwich time plus a high-level null class, in total
120 instances. The dataset further provides annotations for mode of locomotion (4
labels) and object usage (20 labels), plus a low-level null class. We considered ADLs
as activities, mode of locomotion and object usage corresponded to context words
resulting in 25 individual words. To infer context words from sensor data, we
used the 3-axis acceleration signals accx,y,z of the right upper leg sensor SL and the
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back-worn sensor SB. We included 3-axis acceleration sensor data of sensors SOi
(i = 1...15) attached to 15 objects: salami, bread, sugar, bottle, milk, spoon, knife cheese, glass,
cheese, door1, door2, plate, cup, knife salami, lazychair. We used binary signals b of reed
switches SOi attached to 5 objects (i = 16...20) including fridge, top drawer, middle drawer,
lower drawer, dishwasher.

4.5.2 Framework Implementation

We extracted a context vocabulary with X = 25 context words from the sensor data
as mentioned above. Context words included mode of locomotion and object use (Oi)
resulting in 21 parallel context word channels (20 object channels, 1 channel for
mode of locomotion). Supersamples segmentation from the context word stream
was performed using mode of locomotion as context state information, which is
the least sparse context word channel of the Opportunity dataset. We used all 20
context word channels with object information to calculate the semantic distance ds

ij
between supersamples i and j. For ddCRP+CRP, we used the implementation
of (Chiu and Fritz, 2013) with width parameters B = 0.1 for f s and A = 3 for f t, and
hyperparameters α = 50, γ = 1 and η = 1. For CRF, we used hyperparameters α = 1,
γ = 1 and η = 1. For LDA we used the implementation of (Blei et al., 2003) with
α = 1 and T topics. For time-invariant segmentation, we used sliding windows of
size DS and segment step 0.1 ∗ DS and applied Borda Count ranking to overlapping
segments (Ho et al., 1994).

4.5.3 Performance Estimation

To assess activity discovery performance we mapped discovered activity topics to
activities by assigning the most frequent activity per predicted activity topic using
the groundtruth. Null class data was included for topic discovery, but removed in the
performance analysis. As performance measure we used class-normalized accuracy
across all 5 activities and the Rand index RI.
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Figure 4.5: Illustration of semantic distances Ds between activity instances of 5
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4.6 results

4.6.1 Semantic Relationships within and between Activities

Figure 4.5 shows that semantic distances Ds of context word vectors were small
among instances of the same activity, e.g. early morning. Confirming our approach to
use semantic priors, independent activities showed high distances, e.g. early morning
and coffee time. Detector errors may have decreased within-activity similarity of
detected context words compared to context labels, e.g. coffee time. Nevertheless,
we also observed a reverse trend, where context word annotations appeared to be
imperfect and incomplete compared to detections, e.g. for relaxing, clean up and
sandwich time.

4.6.2 Activity Discovery from Context Word Labels

4.6.2.1 ddCRP+CRP versus LDA

Our ddCRP+CRP approach yielded 83% accuracy and Rand index RI = 0.83, clearly
outperforming LDA as depicted in Fig. 4.6. LDA using time-invariant segmentation
showed a peak in accuracy and Rand index for DS = 2.5 min and T = 10 topics.
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Figure 4.6: Averaged normalized accuracy and Rand index for discovering activities
from context word labels. Results are shown for ddCRP+CRP with temporal (Dt)
and semantic (Ds) segmentation priors, CRF, and LDA. ddCRP+CRP outperformed
non-parametric CRF and parametric LDA. (*) We varied segmentation window and
number of topics for CRF and LDA-based methods when parameter dependency
was present.

4.6.2.2 ddCRP+CRP versus CRF

ddCRP+CRP outperformed non-parametric CRF with optimal segment size by
10% in accuracy and by RI = 0.02. With decreasing segment sizes accuracy of
CRF increased up to 73%. The Rand index showed a peak at DS = 2.5 min with
RI = 0.81.

4.6.2.3 Temporal and Semantic Priors

We assessed the benefit of temporal and semantic priors. ddCRP+CRP with semantic
prior increased accuracy by 6% compared to ddCRP+CRP with only temporal prior.
The performance of ddCRP+CRP with temporal prior was close to the performance
of LDA and CRF with optimal parameters.
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Figure 4.7: Influence of evenly distributed noise over context word detectors on
discovery performance. ddCRP+CRP was robust against context word deletions
up to 60%, but showed sensitivity to insertions. Our approach outperformed LDA
between 60% deletion and 20% insertion noise.

4.6.3 Sensitivity to Context Word Noise

Figure 4.7 shows that ddCRP+CRP was robust against deletion noise with up to 60%
deletions and 20% insertion noise, outperforming LDA at optimal parameter settings.
In practice, uniformly distributed noise across context word detectors is unlikely
to occur. Besides deletions and insertions also timing and substitution errors may
hamper discovery. The noise analysis may thus rather illustrate boundaries of our
ddCRP+CRP approach: ddCRP+CRP performance depends on the segmentation
prior. For uniformly distributed insertion noise, ddCRP likely grouped supersamples
of different activities in the local layer leading to less distinct context word statistics
of supersample groups at the global CRP layer. Contrary, ddCRP+CRP was less
affected by deletions, as they only reduced priors grouping supersamples of the same
activity. In contrast, LDA estimates activity topics exclusively from context word
statistics in time-invariant segments. Evenly distributed noise offsets all context word
statistics and therefore barely changes the context word structure in a segment. The
sensitivity of ddCRP+CRP for insertions and robustness against deletions suggests
tuning context detectors for high precision.

4.6.4 Activity Discovery from Sensor Data

For activity discovery from detected context words using our context word extraction
approach, all methods showed decreased performance compared to discovery from
annotations. Figure 4.8 shows that our ddCRP+CRP model outperformed LDA
with time-invariant segmentation and optimal parameters (T = 7, DS = 2.5) by
4.5% accuracy and ∆RI = 0.1. For LDA, optimal activity topic count decreased
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Figure 4.8: Performance of activity discovery from context word detections for
ddCRP+CRP including temporal Dt and semantic Ds segmentation priors, CRF
and LDA. Our non-parametric ddCRP+CRP approach outperformed parametric
LDA and non-parametric CRF at their optimal parameter settings. (*) We varied
segmentation window and number of topics for CRF and LDA-based methods when
parameter dependency was present.

for detected context words, compared to the discovery from annotations (T =
7 vs. T = 10). Moreover, optimal segment size changed (DS = 3.5 vs. DS =
2.5). Our ddCRP+CRP model automatically selected a smaller number of activity
topics for activity discovery from detected context words compared to context word
labels (T = 7 vs. T = 15). ddCRP+CRP with just temporal segmentation prior
performed with 60% accuracy worse than ddCRP(Dt, Ds)+CRP (78%). CRF with
optimal segment size DS = 2 min yielded the same accuracy and slightly smaller
Rand index ∆RI = −0.1 as ddCRP+CRP, but more activity topics ∆T = 5.

4.7 discussion

By introducing a framework for joint segmentation and activity discovery in this
work, the time-invariant segmentation and parameters used in previous works
towards unsupervised activity discovery were removed. Our ddCRP+CRP approach
performed supersamples segmentation and activity discovery simultaneously and
outperformed the parametric LDA as well as non-parametric CRF, both using time-
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invariant segmentation. Our results indicate that the LDA-based approach could
not deal with variations in activity duration even for optimal LDA topic model
parameters. As topic models are bag-of-word approaches the context word sequences
within supersamples was discarded in our approach. Previous work using n-gram
topic modeling showed that sequence information could rarely improve performance
over an LDA-based approach (Seiter et al., 2014a).

We used basic logic functions to extract context words, thus avoiding statistical
classifier learning. Our data-driven context word segmentation generated supersam-
ples that were typically shorter than activities. Hence, individual supersamples did
not capture distinct context word statistics to describe activities and may explain
the poor performance of LDA using supersamples segmentation. Using a temporal
segmentation prior for ddCRP+CRP increased accuracy over the LDA-based ap-
proach, but performed less accurate compared to ddCRP+CRP using a temporal
and semantic segmentation prior. For discovery from context labels, ddCRP+CRP
outperformed CRF by 10% in accuracy. For discovery from detected context words,
both methods showed similar peak accuracy. However, CRF yielded 5 additional
activity topics compared to ddCRP+CRP (CRF: T = 12 at DS = 2, ddCRP: T = 7).

While the non-parametric model ddCRP+CRP and CRF infer optimal activity
topic count T, hyperparameters α, γ determine the expectation over T. There are
no established strategies to select α, γ and often their setting was not reported.
However, if a range for T̂ ≈ T ± 5 is estimated, we found that ddCRP+CRP and
CRF can automatically choose an optimal T. In our work, we used the same
hyperparameter setting for discovery using labels and detected context words.
In our tests, ddCRP(Dt, Ds)+CRP showed similar discovery performance even
when hyperparameters were varied, indicating robustness of the method. Omitting
semantic priors, i.e. ddCRP(Dt)+CRP showed lower robustness to hyperparameter
variation that may explain the performance drop from our evaluation based on labels
compared to detected context words.

Evaluating activity discovery results often requires interpreting discovered topics
and thus mapping of T activity topics to M actual activities. With high T, mapping
becomes less intuitive and in practice requires more supervision effort to reliably
interpret the topic result. In contrast, T = M may not optimally represent actual
activities, as activities could be composed of several activity topics. Our mapping
approach favoured higher accuracies for increasing activity topics. At the extreme, if
T would equal the number of data segments accuracy would approach 100%. We
used the Rand index as second evaluation metric to control for arbitrary large T .
Rand index decreases for large T , as many false positives occur. For an intuitive
mapping, T in the range of M was desirable. Thus, in this work results were shown
for T < 20 activity topics to describe the M = 5 activities. With CRF, a topic count
T > 20 was obtained for DS < 2 min.

We segmented context words into supersamples and used context state changes
to determine supersample bounds. In this work, we only considered context changes
in one selected context word channel. State changes could similarly be estimated by
combining several context word channels to create a virtual context state. Selecting
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and constructing a segmentation source still requires expert knowledge about the tar-
geted discovery objective and context word processing. Similarly, constructing logic
functions to derive context words requires knowledge about the sensor modalities
and discovery goals. Nevertheless, we consider that such logic functions could be
catalogued according to sensor type and scenario, thus become reusable for similar
discovery applications without parametric adjustments.

Our approach required context words with semantic meaning, as we used
word2vec to formulate a segmentation prior. Nevertheless, word2vec is flexible and
could be applied to a different corpus, e.g. containing data clusters or other symbols
extracted from sensor data. In our approach context words corresponded to a small
subset of the word2vec word vocabulary and we manually extracted context word
vectors from the word vocabulary. Instead, string matching could be applied in
future to automate the mapping. In our evaluation, all context words could be
mapped to a word vocabulary of W = 1000. It is nevertheless simple to increase the
vocabulary, if corresponding words could not be found or to search synonyms using
language processing algorithms. We used a generic text corpus from Wikipedia to
extract the word2vec vocabulary. Domain specific text corpora might yield even more
relevant word coverage and context word vectors.

4.8 conclusion

We introduced a novel non-parametric topic model approach for joint segmentation
and activity discovery from sensor data that is independent from topic model
parameters, such as segment size and number of topics. We segmented context
words into supersamples using context state and formulated a segmentation prior
with semantic and temporal information to group supersamples that belong to
individual activities using ddCRP and CRP. With this method, segmentation is
adjusted to the underlying data. Evaluation results show that our approach can
outperform classical parametric LDA and non-parametric CRF even at optimal
parameter settings. We concluded that combining segmentation and non-parametric
activity discovery by using a segmentation prior and ddCRP+CRP is an adequate
technique for activity discovery, and we believe the segmentation prior can be
adapted to other datasets with different sensor modalities and discovery objectives.
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In this chapter we study the task of 3D model fitting by differentiating the
Histogram of Oriented Gradient (HOG) feature representation. Aligning 3D
CAD models to 2D images of objects has received research attention and is

closely related to many topics: the 3D shape of CAD models together with the
appearance features from images provide a informative representation for object
detection; the 3D pose estimation of 2D objects enables the 3D volumetric and
support reasoning in the 3D scene understanding; the silhouettes and boundaries
from the 2D projection of aligned 3D models also helps for getting better image
segmentation. Based on the Exemplar LDA models which are popularly used for 2D-
3D matching (Lim et al., 2013; Aubry et al., 2014a), we realize that the HOG descriptor
utilized for feature representation of exemplar templates is piecewise differentiable
hence lends to opportunities of end-to-end optimization for pose parameters. We
present our implementation of ∇HOG based on the auto-differentiation toolbox
Chumpy (Loper, 2014) and first test on the application of pre-image visualization as
a proof of concept. Then the Exemplar LDA pipeline for pose estimation including
∇HOG and the existing differentiable renderer OpenDR (Loper and Black, 2014)
is presented. The experimental results demonstrate that our proposed pipelines
improve on the respective state-of-the-art HOG approaches on both applications.

5.1 introduction

Since the original presentation of the Histogram of Oriented Gradients (HOG)
descriptor (Dalal and Triggs, 2005) it has seen many use cases beyond its initial target

61
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Figure 5.1: We exploit the piecewise differentiability of the popular HOG descriptor
for end-to-end optimization. The figure shows applications on the pre-image recon-
struction given HOG features as well as the pose estimation task based on the same
idea.

application to pedestrain detection. Most prominently it is a core building block of
the widely used Deformable Part Model (DPM) object class detector (Felzenszwalb
et al., 2010) and exemplar models (Malisiewicz et al., 2011) which both on their own
have seen many follow-up approaches. Most recently, HOG-based approaches have
repeatedly shown good generalization performance to rendered (Aubry et al., 2014a)
and artistic images (Aubry et al., 2014b), while such type of generalizations are
non-trivial to achieve in recently very successful deep learning models in vision
(Peng et al., 2015).

As all feature representations also HOG seek a reduction of information in order
to arrive at a more compact representation of the visual input that is more robust to
nuisances such as noise and illumination. It is specified as a mapping of an image
into the HOG space. The resulting representation is then typically further used in
classification or matching approaches to solve computer vision tasks.

While HOG is only defined as a feed-forward computation and introduces an
information bottleneck, sometimes we desire to invert this pipeline for further
analysis. E.g. previous work has tried visualize HOG features by solving an
pre-image problem (Vondrick et al., 2013; Kato and Harada, 2014). Given a HOG
representation of an unobserved input image, the approaches try to estimate an
image that produces the same HOG representation and is close to the original
image. This has been addressed by sampling approach and approximation of the
HOG computation in order to circumvent the problem of the non-invertible HOG
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computation. Another example, is pose estimation based on 3D models (Xiang et al.,
2014; Aubry et al., 2014a; Pepik et al., 2015; Stark et al., 2010) that exploits renderings
of 3D models in order to learn a pose prediction model. Here the HOG computation
is followed up by a Deformable Part Model (Felzenszwalb et al., 2010) or simplified
versions that related to the Exemplar Model (Malisiewicz et al., 2011). Typically, these
methods employ sampling based approaches in order to render discrete view-points
that are then used in a learning-based scheme to match to images.

In our work, we investigate directly computing the gradient of the HOG rep-
resentation which then can be used for end-to-end optimization of the input w.r.t.
the desired output. For the visualization via pre-image estimation, we observe the
HOG representation and compute the gradient w.r.t. the raw pixels of the input
image. For pose estimation we consider the whole pose scoring pipeline of (Aubry
et al., 2014a) that constitutes a model with multiple parts and a classifier on top of
the HOG representation. Here we show how to directly maximize the pose scoring
function by computing the gradient w.r.t. the pose parameters. In contrast to the
previous approach, we do not reply on pre-rendering views exhaustively and our
pose estimation error is therefore not limited by the initial sampling.

We compare to previous works on HOG visualizations and HOG-based pose
estimation using rendered images. By using our approach of end-to-end optimization
via differentiation of the HOG computation, we improve over the state of the art on
both tasks.

5.2 related work

The HOG feature representation is widely used in many computer vision based
applications. Despite its popularity, its appearance in the objective functions usually
makes the optimization problem hard to operate where it is treated as a non-
differentiable function (Huang et al., 2011; Xiong and De la Torre, 2013). How to
invert the the feature descriptor to inspect its original observation invokes a line of
works of feature inversion and feature visualization (pre-image) problem. There are
plenty of works on this interesting topic. Given the HOG features of a test image,
Vondrick et al. (Vondrick et al., 2013) tried in their baseline to optimize the objective
with HOG involved by the numerical derivatives but failed to get reasonable results,
thus in their proposed method the inversion is done by learning a paired dictionary
of features and the corresponding images. Weinzaepfel et al. (Weinzaepfel et al.,
2011) attempted to reconstruct the pre-image of the given SIFT descriptors (Lowe,
1999) based on nearest neighbor search in a huge database of images for patches with
the closet descriptors. Kato et al. (Kato and Harada, 2014) study the problem of pre-
image estimation of the bag-of-words features and they rely on a large-scale database
to optimize the spatial arrangement of visual words. Although these and other
related works provide different ways to approximately illustrate the characteristic
of the image features, we nearly have not seen the work directly addressing the
differentiable form of the feature extraction procedure. In contrast, our approach
contributes to make the differentiation of HOG descriptor practical such that it can
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be easily plugged into the computer vision pipeline to enable direct end-to-end
optimization and extension to hybrid MCMC schemes (Kulkarni et al., 2015a,b). One
most relevant work to ours is from Mahendran et al. (Mahendran and Vedaldi,
2015), which inverts feature descriptors (HOG (Felzenszwalb et al., 2010), SIFT
(Lowe, 1999), and CNNs (Krizhevsky et al., 2012)) for a direct analysis of the visual
information contained in representations, where HOG and SIFT are implemented
by Convolutional Neural Networks (CNNs). However, their approach contains
an approximation to the orientation binning stage of HOG/SIFT and includes two
strong natural image priors in the objective function with some parameters need to be
estimated from training set. Instead in our work, we do not have any approximation
in the HOG pipeline and no training is needed.

Despite deep-learning based features are in fashion these years, there are plenty
of applications using HOG, in particular the Exemplar LDA (Hariharan et al., 2012)
for the pose estimation task with rendered/CAD data (Aubry et al., 2014a; Lim
et al., 2013; Choy et al., 2015). In (Dong and Soatto, 2015), slightly-modified SIFT
(gradient-histogram-based as HOG) can beat CNNs in feature matching task. In
this chapter, we specifically demonstrate the application of our ∇HOG on the pose
estimation problem for aligning 3D CAD models to the objects on 2D real images, we
briefly review some recent research works here. Lim et al. (Lim et al., 2013) assume
the accurate 3D CAD model of the target object is given, based on the discretized
space of poses for initialization they estimate the poses from the correspondences
of LDA patches between the real image and the rendered image of CAD model.
Aubry et al. (Aubry et al., 2014a) create a large dataset of CAD models of chair
objects, with rendering each CAD model from a large set of viewpoints they train the
classifiers of discriminative exemplar patches in order to find the alignment between
the chair object on the 2D image and the most similar CAD model of the certain
rendering pose. In additional to the discrete pose estimation scheme as (Aubry et al.,
2014a), there has been works on continuous pose estimation (Song et al., 2011; Choy
et al., 2015; Pepik et al., 2015). For instance, Pepik et al. (Pepik et al., 2015) train
a continuous viewpoint regressor and also the RCNN-based (Girshick et al., 2014)
key-point detectors which are used to localize the key-points on 2D images in an
object class specific fashion, with the correspondences between the key-points on the
2D image and 3D CAD model, they estimate the pose of the target object. However,
for these current state-of-the-art approaches most of them need to collect plenty
of data to train the discriminative visual element detectors or key-point detectors
for the matching, or to render many images of CAD models of various viewpoints
in advance. Instead, our proposed method manages to combine the ∇HOG based
exemplar LDA model with the approximate differentiable renderer from (Loper
and Black, 2014) which enable us to have directly end-to-end optimization for the
pose parameters of the CAD model in alignment with the target object on the real
images.
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Figure 5.2: Visualization of the implementation procedure for our ∇HOG method.

5.3 ∇hog

Here we describe how we achieve the derivative of the HOG descriptor. In the
original HOG computation, there are few sequential key-components, including
1) computing gradients, 2) weighted vote into spatial and orientation cells, and 3)
contrast normalization over overlapping spatial blocks. In our implementation we
follow the same procedure. For each part we argue for piecewise differentiability. The
differentiability of the whole pipeline follows from the chain rule of differentiation.
Figure 5.2 shows an overview of the computations involved in the HOG feature
computation pipeline which we describe in details in the following.

5.3.1 Gradients Computation

If a color image I ∈ Rw×h×3 is given, we first compute its gray-level image:

Igray = I(:, :, 0) ∗ 0.299 + I(:, :, 1) ∗ 0.587 + I(:, :, 2) ∗ 0.114 (5.1)

Then we follow the best setting for gradient computation as in Dalal’s approach
(Dalal and Triggs, 2005), to apply the discrete derivative 1–D [−1, 0, 1] masks on
both horizontal and vertical directions without Gaussian smoothing. We denote
the gradient maps on horizontal and vertical directions as Gx and Gy, while the
magnitude ‖∇‖ and direction Θ of gradients can be computed by:

‖∇‖ =
√

G2
x + G2

y

Θ = arctan(Gy, Gx)
(5.2)

Note that here we use unsigned orientations such that the numerical range of the
elements in ‖∇‖ ∈ [0, 180]. The L2 norm is denoted by ‖·‖ through this chapter for
consistency.

Differentiability: The conversion to gray as well as the derivative computation
via linear filtering are linear operations and therefore differentiable. arctan is differ-
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entiable in R and the gradient magnitude ‖∇‖ is differentiable due to the chaining
of the differentiable squaring function and the square root over values in R+.

5.3.2 Weighted Vote into Spatial and Orientation Cells

After we have the magnitude and direction of the gradients, we proceed to do the
weighted vote of gradients into spatial and orientation cells which provides the
fundamental nonlinearity of the HOG representation. The cells are the local spatial
regions where we accumulated the local statistics of gradients by the histogram
binning of their orientations. Assume we divide the image region into Nc

w × Nc
h cells

of size cw × ch, for each pixel located within the cell we compute the weighted vote
of its gradient orientation to an orientation histogram (In our setting we use the
same setting as Dalal’s to have the histogram of 9 bins spaced over 0◦ − 180◦ which
ignores the sign of the gradients).

Normally for each cell its orientation histogram is represented in a 1–D vector of
length B (number of bins), but this operation will miss the positions of the pixels
which contribute to the histogram. This does not lead to a formulation that allows
for derivation of the HOG representation with respect to different pixel positions.
Our main observation here is to view each orientation binning as a filter f o

b applied
to each location in the gradient map. We store the filtered results in Fo ∈ Rw×h×B.
Analogously, the pixel-wise orientational filters

{
f o
b
}

b=1···B are chosen to follow the
bi-linear interpolation scheme of the gradients in neighboring orientational bins:

f o
b (Θ) = clipmax=1

min=0 (1− |Θ− µb| ×
B

180
) (5.3)

Fo
b = ‖∇‖ � f o

b (Θ), ∀b ∈ 1 · · · B (5.4)

where µb is the central value of orientation degree for filter f o
b , clipmax=1

min=0 function
clamps the numerical range between 1 and 0, and� is an element-wise multiplication.
(Note that for the first filter f o

1 we also take care of the numerical range. See the
visualization shown in Figure 5.2.)

We have the Fo for orientational binning, we then apply spatial binning for each
cell. Here as in the Dalal’s method, to reduce the aliasing, for each pixel location it
will contribute to its 4 neighboring cells proportional to the distances to the centers
of those cells, in another word, the votes are interpolated bilinearly. Following the
similar trick as in orientational binning, by creating a 2cw × 2ch bilinear filter f s

where its maximum value 1 is in the center with decreasing values toward four
corners to minimum value 0, as shown in Figure 5.2, we convolve it with all Fo

b to
get the spatial filtered results Fs

b :

Fs
b = Fo

b ∗ f s, ∀b ∈ 1 · · · B (5.5)

then the spatial binning for cells can be easily fetched from:

Fs
b(x, y|x ∈ X , y ∈ Y), ∀b ∈ 1 · · · B (5.6)
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where (X ,Y) are the (x, y) coordinates of the centers for all cells.
Note that till here when you concatenate v =

{
Fs

b(x, y|x ∈ X , y ∈ Y)
}

b=1···B then
actually we get exactly the same representation as from original HOG approach.

Differentiability By re-representing the data, we have shown that the histogram-
ing and voting procedure of the HOG approach can be viewed as linear filtering
operations followed up by a summation. Both steps are differentiable.

5.3.3 Contrast Normalization

In the original procedure of Dalal’s HOG descriptor, contrast normalization is
performed on every local region of size 3 × 3 cells, which they call blocks. As
many recent applications that we are interested in (Aubry et al., 2014a,b; Kato and
Harada, 2014; Vondrick et al., 2013; Felzenszwalb et al., 2010) do not use blocks, we
do not consider them either in our implementation. While this step is possible to
incorporate, it would also lead to increased computational costs due to multiple
representation of the same cell. We instead only use the global normalization by
using the robust L2-norm. Given the HOG representation v from previous steps, the
global contrast normalization can be written as:

vnormalized =
v√
‖v‖+ ε

(5.7)

where ε is a small positive constant.

Differentiability: This is a chain of differentiable functions and therefore the
whole expression is differentiable.

Difference to Original HOG While there is a large diversity of HOG implemen-
tations available by now, we summarize the two main difference to the standard
one as proposed in (Dalal and Triggs, 2005): First, the original HOG compute the
the gradients on different color channels and apply the maximum operator on the
magnitudes over all channels to get the gradient map. In our implementation we
simply first transform the color image into gray scale and compute the gradient
map directly. Second, we do not include the local contrast normalization for every
overlapping spatial blocks. But we do include the global, robust L2 normalization.

5.3.4 Implementation

In the above equations (Eq. 5.1, 5.2, 5.3, 5.5, 5.7) all the operations are (piecewise-)
differentiable (summation, multiplication, division, square, square root, arc-tangent,
clip), with the use of the chain rule, our overall HOG implementation is differentiable
on each pixel position. Overall, this is not surprising as visual feature representations
are designed to vary smoothly w.r.t. to small changes in the image. We have
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implemented this version of the HOG descriptor by using the Python-based auto-
differentiation package Chumpy (Loper, 2014), which evaluates an expression and its
derivatives with respect to its inputs. The package and our extension integrate with
the recently proposed Approximate Differentiable Renderer OpenDR (Loper and
Black, 2014).

5.4 experimental results

5.4.1 Reconstruction from HOG Descriptors

We evaluate our proposed ∇HOG method on the image reconstruction task based
on the feature descriptors. We are interested in this task since it provides a way to
visualize the information carried by the feature descriptors and open the opportu-
nity to examine the feature descriptor itself instead of based on the performance
measures of certain tasks as proxies. There is already prior work on this prob-
lem. (Kato and Harada, 2014; Vondrick et al., 2013; d’Angelo et al., 2012) focus on
different feature representations such as Bag-of-Visual-Words (BoVW), Histogram
of Orientated Gradients (HOG), and Local Binary Descriptors (LBDs). However,
state-of-the-art approaches typically need to use large-scale image bases for learning
the reconstruction.

Objective As we have derived the gradient of the HOG feature w.r.t. the input,
we can – given a feature vector – directly optimize for the reconstruction of original
image without any additional data needed. To define the problem more formally,
let I ∈ RX×Y be an image and its HOG representation as φ(I), we optimize to find
the reconstructed image Î whose HOG features φ( Î) have the minimum euclidean
distance E to φ(I):

Î = argmin
Î∈RX×Y

E

= argmin
Î∈RX×Y

∥∥φ(I)− φ( Î)
∥∥ (5.8)

The option to approach the problem in this way was mentioned in (Vondrick et al.,
2013), however there was no result achieved as numerical differentiation is very
computational expensive in this setting. Direct optimization is facilitated for the first
time using our ∇HOG approach.

An overview of our approach is shown in Figure 5.1. We compute derivatives
∂E

∂ix,y
with respect to the intensity values ix,y of all the pixel positions (x, y) on Î

via auto-differentiation. By gradient-based optimization we are able to find a local
minimum of E and corresponding reconstructed image Î. In order to regularize our
estimation, we introduce a smoothness prior that penalizes gray value changes of
adjacent pixels. Intuitively, this encourages propagation of information into areas
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without strong edges for which no signal from the HOG features is available.

Î = argmin
Î∈RX×Y

∥∥φ(I)− φ( Î)
∥∥+ ξ ∑

p,q∈N

∥∥ip − iq
∥∥ (5.9)

where p, q ∈ N means that pixel p and q are neighbors, and ξ is the weight for the
smoothness term which we usually set to a big number as 102 in our experiments.
Although we give a high weight for the smoothness term, it will only play a key role
in the first few iterations of the optimization procedure then the euclidean distance
E will dominate to find the local minimum.

The evaluation is based on the image reconstruction dataset proposed in (Kato
and Harada, 2014) which contains 101 images for all the categories from Caltech
101 dataset (Fei-Fei et al., 2007) and all have a resolution of 128× 128. We compare
our method with few state-of-the-art baselines on image reconstruction from feature
descriptions: the BoVW method from (Kato and Harada, 2014), the HOGgles
method from (Vondrick et al., 2013), also CNN-HOG and CNN-HOGb(CNN-HOG
with bilinear orientation assignments) from (Mahendran and Vedaldi, 2015).

Note that our∇HOG described in Section 5.3 is based on Dalal’s-type HOG(Dalal
and Triggs, 2005), while for HOGgles/CNN-HOG/CNN-HOGb baselines they are
using UoCTTI-type HOG(Felzenszwalb et al., 2010) which additionally considers
directed gradients. To have a fair comparison, we also implement UoCTTI HOG
under our proposed framework.

We propose two additional variants for reconstruction that exploit multi-scale
information as shown in Figure 5.3.

∇HOG multi-scale We use the single scale HOG descriptor as input, but we first
reconstruct Î 1

s
with s times smaller resolution than I (the cell size for φ( Î1

s
) is 1√

s of
the original one used for φ(I), s ∈ {4, 16, 64} in our experimental setting.). After few
iterations of updates in optimization process, we up-sample Î1

s
to higher resolution

and continue the reconstruction procedure. These steps are repeated until we reach
the initial resolution of I.

∇HOG multi-scale-more We use the multi scale HOG vectors of the original
image I as the input. For the reconstruction on different scale s, the corresponding
HOG descriptor φ(I1

s
) extracted on the same scale is used in the euclidean distance

E, as shown in Figure 5.3(b). As additional HOG descriptors are computed from
the original image at different scales, we use more information than in the original
setup and therefore the results of the “multi-scale-more” approach cannot be directly
compared to prior works.

The optimization is done based on the nonlinear optimization using Powell’s
dogleg method (Lourakis and Argyros, 2005) which is implemented in Chumpy
(Loper, 2014). Example results of the multi scale approaches can be seen in Table 5.1.

Results In order to quantify the performance of image reconstruction, different
metrics have been proposed in prior works. For instance, in (Kato and Harada, 2014)
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�(Î)

up-sam
ple

�(Î 1
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16
)
���

HOG

I

HOG

HOG

@E

@Î
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@Î 1
4

@E 1
16

@Î 1
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Figure 5.3: Visualizations of variants of the proposed method for the task of image
reconstruction from feature descriptors.

the mean squared error of raw pixels is utilized, while in (Vondrick et al., 2013) the
cross-correlation is chosen to compare the similarity between the reconstructed image
and the original one. In addition to using cross-correlation as the metric for qualita-
tive evaluation, we also investigate different choices used by the research works on
the problem of image quality assessment (IQA), including mutual information and
Structural Similarity (SSIM) (Wang et al., 2004). In particular, mutual information
measures the mutual dependencies between images hence gives another metric for
similarities, while SSIM measures the degradation of structural information for the
distorted/reconstructed image from the original one, under the assumption that
human visual perception is adapted to discriminate the structural information from
the image.

We report the performance numbers from all the metrics in Table 5.2. The
proposed method using UoCTTI-type HOG outperforms the state-of-the-art baselines
by a large margins for all metrics. Visually inspected, our proposed method can
reconstruct many details in the images and also give accurate estimate on gray-scale
values if using UoCTTI HOG. Please note again, our method does not need any
additional data for training while in baselines training is necessary.

5.4.2 Pose Estimation

We also evaluate our ∇HOG approach on a pose estimation task where 3D CAD
models have to be aligned to objects in 2D images. We build on openDR (Loper and



5.4 experimental results 71

test 1/64 1/16 1/4 1/1

(a)

(b)

test iter-0 iter-1 iter-2 iter-final

(c)

Table 5.1: Example results for (a)(b) ∇HOG multi-scale and ∇HOG multi-scale-
more in which both are based on Dalal-HOG(Dalal and Triggs, 2005); and (c) for
∇HOG on UoCTTI-HOG(Felzenszwalb et al., 2010).

Black, 2014) which is an approximate differentiable renderer. It parameterizes the
forward graphics model f based on vertices locations V, per-vertex brightness A
and camera parameters C, which is shown on the left part of Figure 5.5, where U is
for the 2D projected vertex coordinate position. Based on the auto-differentiation
techniques, openDR provides a way to derive the derivatives of the rendered image
observation with respect to the parameters in the rendering pipeline.

Approach We extend openDR in the following ways as illustrated in Figure 5.5:
1) We parameterize the vertices locations V of CAD models by three parameters:
azimuth θ, elevation ψ, and distance to the camera γ; 2) During the pose estimation
procedure, as in (Aubry et al., 2014a), the matching between the objects on real
images and the rendered images from the CAD models are addressed by the similar-
ities between the HOG descriptors of the visual discriminative elements extracted
from them. The detailed procedure of extracting visual discriminative elements is
discussed in (Aubry et al., 2014a). In our method, we use our ∇HOG method φ(Pf )
for the image patches Pf which have the same regions as the visual elements PI
extracted from the test image I, and the similarity between the Pf and PI is the dot
product between HOG descriptors φ(PI) of PI and φ(Pf ). As shown in the right part
of Figure 5.5 this similarity can be traversed back to the pose parameters {θ, ψ, γ}
and the derivatives of the similarity with respect to the pose parameters can be again
computed by the auto-differentiation, our method can directly optimize to maximize
the similarity to estimate the poses.
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Method cross
correlation

mutual
information

structural similarity
(Wang et al., 2004)

BoVW
(Kato and Harada, 2014) 0.287 1.182 0.252

U
oC

TT
I

H
O

G HOGgles
(Vondrick et al., 2013) 0.409 1.497 0.271

CNN-HOG
(Mahendran and Vedaldi, 2015) 0.632 1.211 0.381

CNN-HOGb
(Mahendran and Vedaldi, 2015) 0.657 1.597 0.387

our ∇HOG (single scale) 0.760 1.908 0.433

D
al

al
’s

H
O

G

our ∇HOG (single scale) 0.170 1.464 0.301

our ∇HOG (multi-scale: 1
64 ) 0.058 1.444 0.121

our ∇HOG (multi-scale: 1
16 ) 0.076 1.470 0.147

our ∇HOG (multi-scale: 1
4 ) 0.108 1.458 0.221

our ∇HOG (multi-scale: 1
1 ) 0.147 1.478 0.293

our ∇HOG (multi-scale-more: 1
64 ) 0.147 1.458 0.251

our ∇HOG (multi-scale-more: 1
16 ) 0.191 1.502 0.291

our ∇HOG (multi-scale-more: 1
4 ) 0.220 1.565 0.320

our ∇HOG (multi-scale-more: 1
1 ) 0.236 1.582 0.338

Table 5.2: Comparison on the performance of reconstruction from feature descriptors.

Setup We follow the same experimental setting as (Aubry et al., 2014a), where we
test on the images annotated with no-occlusion, no-truncation and not-difficult of
the chairs validation set on PASCAL VOC 2012 dataset (Everingham et al., 2015),
therefore in total 247 chairs from 179 images are used for the evaluation. To purely
focus on evaluation of the pose estimation, we extract the object images based on
their bounding boxes annotation, and resize them to have at least length of 100 pixels
on the shortest side of image size.

The baseline (Aubry et al., 2014a) is applied on the chair images to search over a
chair CAD database of 1393 models which includes the rendered images from 62
different poses relative to camera for each of them, then to detect the chairs, match
the styles of the chairs, and simultaneously recover their poses based on rendered
images. We select the most confident detection for each chair together with the
estimated pose.

We apply our proposed method on pose estimation by using the elevation and
azimuth estimates of (Aubry et al., 2014a) as a initialization of pose, and add few more
initializations for azimuth (8 equidistantly distribute over 360◦). We use gradient
descent method with momentum term for optimization in order to optimize for
the azimuth parameter and interleave iterations in which we additionally optimize
for the distance to camera. In Figure 5.4 we visualize an example of the similarity
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Figure 5.4: Visualization of the similarity and its gradients w.r.t azimuth. The red
boxes on the HOG representations are the visual discriminative patches.

between the chair object on the real image and the CAD model on the rendered
image, as well as its gradients w.r.t azimuth θ (full 360◦). We can see how gradients
change related to different local maximums and the corresponding poses of the CAD
model.

Results In order to quantify our performance on pose estimation task, we use
the continuous 3D pose annotations from PASCAL3D+ dataset (Xiang et al., 2014).
Following the same evaluation scheme, the view-point estimation is considered to
be correct if its estimated viewpoint label is within the same interval of the discrete
viewpoint space as the ground-truth annotation, or its difference with ground-
truth in continuous viewpoint space is lower than a threshold. We evaluate the
performance based on various settings of the intervals and thresholds in viewpoint
space: {4 views/90◦, 8 views/45◦, 16 views/22.5◦, 24 views/15◦}. In Table 5.3 we
report the performance numbers for Aubry’s baseline and our proposed approach.
We are outperforming the previous best performance up to 10% points on the coarse
and fine measures. Some example results which show improvements of the baseline
method are shown in Table 5.4.

Discussion One advantage of our proposed method is that we are able to parame-
terize the vertexes coordinates of the CAD models by the same pose parameters as
used in (Aubry et al., 2014a), then the differentiable rendering procedure provided
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Figure 5.5: (left) The differentiable rendering procedure from openDR (Loper and
Black, 2014). (right) The visualization of our model for pose estimation.

4 views 8 views 16 views 24 views
Aubry et al. (Aubry et al., 2014a) 47.33 35.39 20.16 15.23

our method 58.85 40.74 22.22 16.87

Table 5.3: Pose estimation results based on the groundtruth annotation from PAS-
CAL3D+ (Xiang et al., 2014).

by openDR (Loper and Black, 2014) and our ∇HOG representations enable us to
directly compute the derivatives of the similarity with respect to the pose parameters,
and optimize for continuous pose parameters. In another word, for the proposed
approach we do not need to discretize the parameters as (Aubry et al., 2014a) and do
not need to render images from many poses in advance for the alignment procedure
either.



5.5 conclusions 75

te
st

im
ag

es
A

ub
ry

et
al

.
ou

r
m

et
ho

d

Table 5.4: Example results for pose estimation.

5.5 conclusions

We investigate the feature extraction pipeline of HOG descriptor and exploit its
piecewise differentiability. Based on the implementation using auto-differentiation
techniques, the derivatives of the HOG representation can be directly computed. We
study two problems of image reconstruction from HOG features and HOG-based
pose estimation while the direct end-to-end optimization becomes practical with
our ∇HOG. We demonstrate that our ∇HOG-based approaches outperforms the
state-of-the-art baselines for both problems. We have demonstrated that the approach
can lead to improved introspection via visualizations and improved performance
via direct optimization through a whole vision pipeline. Our implementation
is integrated into an existing auto-differentiation package as well as the recently
proposed Approximately Differentiable Renderer OpenDR (Loper and Black, 2014)
which are both publicly available. It is easy to adopt to new tasks and is applicable
to a range of end-to-end optimization problems.
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Example

HOG

BOVW

HOGgles
UoCTTI-HOG

CNN-HOG
UoCTTI-HOG

CNN-HOGb
UoCTTI-HOG

Our ∇HOG
(single-scale)

UoCTTI-HOG

Our ∇HOG
(single-scale)
Dalal-HOG

Our ∇HOG
(multi-scale)
Dalal-HOG

Our ∇HOG
(multi-scale-more)

Dalal-HOG

Table 5.5: Example results for image reconstruction from feature descriptors.
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In this chapter we study a segmentation task on the consumer stereo video
data, which is a rapidly increasing data type, still largely unexplored, and
encompasses rich information of appearance, motion and depth cues. As recent

progress in segmentation methods have yield a diverse set of approaches from
image to video scenarios, different methods have their own heuristics to combine
available cues though no clear winning method method can perform best in all
test conditions. Therefore we propose an ensemble method that learns a data-
dependent combination scheme to dynamically weight different cues as well as
candidate segmentation algorithms in order to maximize the performance metric of
segmentation.

In brief, we first propose a new benchmark: videos, annotations and metrics
to measure progress on the emerging challenge of segmenting consumer stereo
videos. Second, several state of the art segmentation methods as well as a static
segmentation combination scheme are evaluated to show the need of adaptive
combination scheme in a data-dependent manner. We propose a parametrized
similarity graph based on the overlapped superpixels to aggregate the various feature
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cues and segmentation information from various segmentation algorithms which can
be utilized by spectral clustering technique to produce the final segmentation. Finally,
we propose and integrate into this model a novel regressor, learnt to optimize the
stereo segmentation performance directly via a differentiable proxy. The regressor
makes our segmentation ensemble adaptive to each stereo video and outperforms
the segmentations of the ensemble as well as a state-of-the-art RGB-D segmentation
technique.

6.1 introduction

…pool of
segmentations

adaptive segmentation ensemble

sequence of
stereo pairs

depthcolor motion

prediction of
latent parameters

differentiable  
performance proxy

⌅

⌅⇤ = arg max
⌅

P̂

training

P̂

↵,�

Figure 6.1: Overview of the proposed efficient adaptive stereo segmentation tech-
nique. Our proposed segmentation ensemble model leverages the best available
image and video segmentation results efficiently. A regressor makes the ensemble
model adaptive to each stereo video, based on color, depth and motion features. In
our novel learning framework, the segmentation performance is optimized via a
differentiable proxy.

We witness a fast growing number of stereo streams on the web, due to the
advent of consumer stereo video cameras. Are we ready to exploit the rich cues
which stereo videos deliver? Our work focuses on segmentation of such data sources,
as it is a common pre-processing step for further analysis such as action (Le et al.,
2011; Oneata et al., 2014; Taralova et al., 2014) or scene classification (Raza et al., 2013).

We propose a new consumer stereo video challenge, to understand the oppor-
tunities and foster the research in this new area. The new type of data combines
the availability of appearance and motion with the possibility of extracting depth
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dance marine1 driveby

left-view right-view annotation left-view right-view annotation left-view right-view annotation

Figure 6.2: Sample frames from the Consumer Stereo Video Segmentation Challenge
(CSVSC) dataset (left-right views) with the corresponding annotations. The stereo
videos differ in content (appearance, motion, number and type of subjects) and in
camera characteristics (intrinsic parameters, zoom, noise).

information. Considering consumer videos means addressing a most abundant
web data, which is however also very heterogeneous, due to a variety of consumer
cameras.

The new consumer stereo video challenge explicitly concerns the semantics of
the video. A number of existing benchmarks have offered ground truth depth
and motion, recurring to controlled recordings (Scharstein et al., 2014) or computer
graphics simulations (Butler et al., 2012). By contrast, here we address stereo videos
in the wild and specifically consider the semantics of the data. While this might
partly harm analysis (no true depth available), it addresses directly what we are
most interested in, the actors and objects in the videos.

We warm-start the challenge with a number of baselines, extending best available
image and video segmentations to the consumer stereo videos and their available
features, e.g. color, motion and depth. Most baselines perform well on some videos,
however none performs well on all. As an example, motion segmentation tech-
niques (Ochs and Brox, 2011) perform well while the object moves, but encounter
difficulty with static video shots. On the other hand, camouflaged (but moving)
objects impinge appearance-based image (Li et al., 2012) and video (Grundmann
et al., 2010) segmentation techniques.

Thus motivated, we introduce in Section 6.4 a new efficient segmentation ensem-
ble model, which leverages existing results where they perform best. Furthermore,
we introduce in Section 6.5 the framework to learn a regressor which adapts the en-
semble model to each particular stereo video. The proposed technique is overviewed
in Section 6.3 and demonstrated in Section 6.6. Although only combining optimally
existing results, our new algorithm outperforms a most recent RGB-D segmentation
technique (Hickson et al., 2014).

The topic of consumer stereo video segmentation is related to several research
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areas, such as video segmentation, scene flow estimation, and image/video co-
segmentation. The corresponding discussion of these related fields can be found in
Section 2.

6.2 consumer stereo video segmentation challenge (csvsc)

We launch a Consumer Stereo Video Segmentation Challenge (CSVSC). The new
dataset consists of 30 video sequences which we have selected from Youtube based
on their heterogeneity. In fact, the footage differs in the number of objects (2-15), the
kind of portrayed actors (animals or people), the type of motion (a few challenging
stop-and-move scenes and objects entering or exiting the scene), the appearance
visual complexity (also in relation to the background, a few objects may be harder
to discern) and the distance of the objects from the camera (varying disparity and
thus depth). Not less importantly, we have selected videos acquired by different
consumer stereo cameras, which implies diverse camera intrinsic parameters, zooms
and (as a further challenge) noise degradations such as motion blurs and camera
shake. We illustrate a few sample sequences in Figure 6.2.

Benchmark Annotation and Metrics.

We have gathered human annotations and defined metrics to quantify progress
on the new benchmark. In particular, we equidistantly sample 5 frames from
the left view of the videos to be labelled (for a total of 1738 frames). As for the
metrics, we have considered state-of-the-art image (Arbelaez et al., 2011) and video
segmentation (Galasso et al., 2013) metrics:
Boundary precision-recall (BPR). This reflects the per-frame boundary alignment
between a video segmentation solution and the human annotations. In particular,
BPR indicates the F-measure between recall and precision (Arbelaez et al., 2011).
Volume precision-recall (VPR). This measures the video segmentation property of
temporal consistency. As for BPR, VPR also indicates the F-measure between recall
and precision (Galasso et al., 2013).

It is of research interest to determine which of the metrics is best for learning.
We answer this question in Section 6.6, where we consider BPR and VPR alone or
combined by their: arithmetic mean (AM-BVPR) or harmonic mean (HM-BVPR).

Preparation of Stereo Videos

Not having a ground truth depth may impinge comparison among techniques
applied to the dataset. We define therefore an initial set of comparisons among
depth-estimation algorithms and make the results available.

We have considered the per-frame rectification of (Fusiello and Irsara, 2008)
and the stereo matching algorithm of (Geiger et al., 2010), filling-in the missing
correspondences with (Janoch et al., 2011). Furthermore, we have estimated depth
by the optical flow algorithm of (Zach et al., 2007) between the right and left views.
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Figure 6.3: Sample disparity estimation. The first two columns are the original
stereo pair and their rectified images. The top-right picture is the disparity map
computed by (Geiger et al., 2010), the bottom-right is the depth map obtained by
optical flow (Zach et al., 2007) between the left and right view.

We illustrate samples in Figure 6.3. Our initial findings are that estimating depth by
optical flow leads to best downstream stereo segmentation outputs, which we use
therefore in the rest of the chapter.

6.3 efficient adaptive segmentation of stereo videos

We warm start the CSVSC challenge with a basic segmentation ensemble model. To
this purpose we first pre-process the stereo videos with a pool of state-of-the-art
image and video segmentation algorithms. Then we combine the segmentation
outputs with a new efficient segmentation ensemble model (cf. Section 6.4). Finally,
we propose the learning framework to adapt the combination parameters of each
stereo video (cf. Section 6.5).

Figure 6.1 gives an overview of our ensemble model:
Pool of Image and Video Segmentations. We select most recent algorithms which
are available online. These are used to segment the single frames (image segmenta-
tions) and the left views of the stereo videos (video segmentations). This results in a
pool of segments which are respectively superpixels and supervoxels.
Efficient Segmentation Ensemble Model. We bring together the pool of segments
and connect them to the stereo video voxels. The segmentation ensemble model
is represented by a graph and parameterized by α and β’s, which weight the
contribution of each segmentation method. The model is accurate (voxel-based)
but costly. We propose therefore an efficient graph reduction which is exact, i.e. it
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provides the same solutions as the voxel-based at a lower computational complexity.
Performance-Driven Adaptive Combination. We compute stereo video features
from the stereo videos based on color, flow and depth. From these features, we
regress the combination parameters α and β’s, i.e. we combine optimally the pooled
segmentation outputs. To this purpose, we propose a novel regressor Ξ and an
inference procedure, to learn from data the optimal regression parameters ξ. For the
first time in literature, the regressor parameters ξ are directly optimized according
to the final performance measure P (resulting from the graph partitioning and the
metric evaluation, cf. Section 6.5.2). We achieve this with a novel differentiable
performance proxy P̂.

None of the state-of-the-art segmentation algorithms performs well with all of
the challenging consumer stereo videos (cf. experiments in Section 6.6). Both the
contributions on the ensemble model (Section 6.4) and the performance-driven
adaptive combination (Section 6.5) turn out important for better results.

6.4 efficient segmentation ensemble model

We propose a graph for bringing together the available video segmentation outputs.
Additionally, we propose the use of recent spectral techniques to reduce the voxel
graph to one based on tailored superpixels/supervoxels, to improve efficiency
without any (proven) compromise on performance. The graph partitioning with
spectral clustering provides the segmentation output.

6.4.1 Unifying Graph

Given a number of video segmentation outputs, we propose to bring all of them
together by defining an unifying graph.

Let us consider Figure 6.4 left. Each video segmentation algorithm provides
groupings of the video sequence voxels. In the unifying graph, each pixel is therefore
linked to the groupings to which it belongs. For example, one algorithm may
compute spatio-temporal tubes (supervoxels) (Grundmann et al., 2010), another one
may compute image-based superpixels (Arbelaez et al., 2011). The video sequence
voxels would then be linked to the tube to which they belong (temporally) and
to their superpixels (spatially). Altogether, the outputs from the pool of video
segmentation algorithms provide hypotheses of grouping for the video voxels.

More formally, we define a graph G = (V , E) to jointly represent the video and
the segmentation outputs. Nodes from the vertex set V are of two kinds:
Voxels are the video sequence elements which we aim to segment;
Pooled Segmentation Outputs are the computed spatial- and/or temporal-groupings,
providing voxel grouping hypotheses.

Further to being connected to the voxels, the pooled groupings from the same
output are also connected to their neighbors, which defines the video volume
structure. Edges are therefore of two types:
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Figure 6.4: Proposed video segmentation model. A number of K pooled image and
video segmentation outputs are brought together as hypotheses of grouping for the
considered video sequence (cf. Section 6.4 for details). We propose to replace the
model of (Li et al., 2012) (left) with a new one (right) based on minimally overlapping
superpixels, which is provably equivalent but yields better efficiency (cf. Section 6.4.1)

β-Edges are between the groupings of each pooled segmentation k; we assume C
features (appearance, motion, etc. cf. Section 6.4) and distances based on βc-weighted

features: wk
I,J = e−(β1d

k1
I,J+···+βCd

kC
I,J ), where dkc

I,J is the distance between superpixels I
and J from the k-th pooled output based on c-th feature.
α-Edges are between the voxels and the grouping that it belongs to. The αk’s encode
the trust towards the respective K segmentation algorithm, ideally proportional to
its accuracy.

Partitioning graph G with spectral clustering is computationally demanding as
the number of nodes (and edges) depends linearly on the video voxels. The theory
of (Li et al., 2012) reduces the complexity of a first stage of spectral clustering (the
eigendecomposition) but not of the second one (k-means), still of linear complexity
in the number of voxels (and thus bottleneck of (Li et al., 2012)). We address both
with graph reduction in the following Section.

6.4.2 Improved Efficiency with Graph Reduction

Let us consider again Figure 6.4. A huge number of voxels are similar both in
appearance and in motion and are therefore grouped in all segmentation outputs.
When partitioning the original graph G, these voxels are always segmented together.
(The trivial proof leverages their equal edges and therefore eigenvectors).

Rather than considering all voxels, we propose to reduce the original graph G
to one of smaller size GQ which is equivalent (provides exactly the same clustering
solutions). In GQ, we basically group all those voxels with equal connections into
super-nodes (reweighting their edges equivalently). This reduces the algorithmic
complexity, as the spectral clustering (both the eigendecomposition and the k-means)
now depends only on the number of super-nodes (which is determined for most
pooled segmentation algorithms by the number of objects, rather than voxels).
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We identify the voxels with equal connections by intersecting the available
segmentation outputs. The result of the intersection is an oversegmentation into
superpixels, which can generate all pooled segmentation outputs by merging. We
name these minimally overlapping superpixels.

More formally, the reduced graph GQ = (VQ, EQ) takes the minimally overlap-
ping superpixels as nodes and the following edge weights

wQ
I J =





∑
i∈I

∑
j∈J

wij if I 6= J

1
|I|∑i∈I

∑
j∈J

wij −
(|I| − 1)
|I| ∑

i∈I
∑

j∈V\I
wij if I = J

(6.1)

where |·| indicates the number of voxels within the superpixel and I, J are two
minimally overlapping superpixels. According to (6.1), two pixels i and j are
reduced if belonging to the same superpixel, i.e. if I = J. (Since the superpixel
connections are equal for the pixels within the same superpixel by construction, the
reduction is exact, cf. (Galasso et al., 2014).)

6.4.3 Details to Derive the Reduced Graph GQ

In order to express the pairwise affinities between minimally overlapping superpixels
in terms of the parameters α and beta, we show the details of deriving the reduced
graph GQ step by step in the following paragraphs.

Review of Transfer-Cut Li et al. (2012) By the use of transfer-cut, Li et al. (2012)
connects the pool of segmentations to the pixels of the image (the work is originally
defined for image segmentation). In the original procedure, given K pooled segmen-
tation results composed of Nk superpixels, the pairwise distance matrix between
superpixels from the k-th pooled result is given by:

Ak =




wk
1,1 wk

1,2 · · · wk
1,Nk

wk
2,1 wk

2,2 · · · wk
2,Nk

...
... wk

I,J
...

wk
Nk,1 wk

Nk,2 · · · wk
Nk,Nk




(6.2)

Let us define then a block matrix SY to stack all pairwise distance matrices from all
K algorithms:

SY =




A1

A2

. . .
AK


 (6.3)

which will have size Nsp × Nsp, where Nsp = ∑K Nk.



6.4 efficient segmentation ensemble model 85

Let us then define the distance matrix SXY between the superpixel i and the pixel
j for all algorithms as:

SXY(i, j) = αk ,if pixel j ∈ superpixel i from algorithm k (6.4)

where its size is in size of Nsp × Np, and Np is the total number of pixels.
Then the total distance matrix H with size (Np + Nsp)× Nsp can be written in

H =
[

SXY SY
]> (6.5)

Let us define
DX = diag(H1) (6.6)

and the graph between all the superpixels from pooled segmentations by transfer-cut:

WY = H> · D−1
X · H (size: Nsp × Nsp) (6.7)

To look into details, the parametric forms of elements in WY can be written into:

diagonal⇒
M

∑
(αk)2

∑K αk
+

Nk

∑
J=1

(wk
I,J)

2

∑Nk
Z=1 wk

J,Z

where M is the number of pixels ∈ superpixel I,
and superpixel I ∈ k-th pool.

(6.8)

off-diagonal⇒





M

∑
(αk)2

∑K αk
+

Nk

∑
Z=1

wk
I,Z · wk

Z,J

∑Nk
L=1 wk

Z,L
if both superpixels I and J ∈ k-th pool.

M

∑
αk · αk′

∑K αk

if superpixel I ∈ k-th pool
and J ∈ k′ 6= k-th pool.

(6.9)

where M is the number of pixels ∈ I ∩ J

Extend Transfer-Cut to Stereo Videos Let us extend the theory in the previous
paragraph to stereo videos (modeled on the left view frames) and voxels, which
implies changing the elements of matrices SXY and SY from pixels and pooled
superpixels to minimally overlapping superpixels.

First, the β edges used to denote the similarities between the pooled superpixels
I, J is expanded into the similarities between minimally overlapping superpixels i, j
by the graph expansion approach Agarwal et al. (2006):

wk
ij =





wk
I,J if I 6= J, i ∈ I, j ∈ J

∑Z 6=I wk
I,Z if i, j ∈ I, i 6= j

0 if I = J
(6.10)
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Then we have the parametric forms of the elements for H′ as:

diagonal⇒ (αk)2

∑K αk
+

Nm

∑
j=1

(wk
ij)

2

∑Nm
z=1 wk

j,z

off-diagonal⇒ (αk)2

∑K αk
+

Nm

∑
z=1

wk
iz · wk

zj

∑Nm

l=1 wk
zl

(6.11)

where Nm is number of minimally overlapping superpixels. The reduced graph GQ

is then easily to derived from H′ by the graph reduction Galasso et al. (2014) to group
the edges of identical minimally overlapping superpixels in H′. And we denote the
elements in GQ by wQ

ij . (Please note that we can also build up the graph H′ based on
the voxels as nodes then reduced to GQ, which will follow the story of Equation 6.1.
Here we directly use minimally overlapping superpixels in H′ for clarity.)

6.4.4 Implementation Details

The output segmentation is obtained by graph partitioning GQ with spectral clus-
tering (Ng et al., 2002; Shi and Malik, 2000; von Luxburg, 2007). In particular, the
labels of the minimally overlapping superpixels provide the voxel labels and thus
the video segmentation solution.

In this work, we use K = 6 image and video segmentation algorithms: (1.) The
hierarchical image segmentation of (Arbelaez et al., 2011). We choose one layer from
hierarchy based on best performance on a validation set. We take three segmentation
outputs by applying the Simple Linear Iterative Clustering (SLIC) (Achanta et al.,
2010) respectively on (2.) depth, (3.) optical-flow (Zach et al., 2007) and the (4.) LAB-
color coded cues, bilaterally filtered for noise removal and edge preservation (Zhang
et al., 2014b). (5.) Hierarchical graph-based video segmentation (GBH) (Grundmann
et al., 2010). We choose one layer from the hierarchy on the validation set. (6.) The
motion segmentation technique (moseg) of (Ochs and Brox, 2011).

While the features are computed on the stereo video. The graph is constructed
on one of the two views (the left one) of the stereo videos, which is then evaluated
for the segmentation quality. The contribution of segmentation outputs is weighted
by α. β defines the affinities between superpixels/supervoxels from the same pooled
segmentation output, weighting C = 3 feature cues based on mean Lab-color, depth
and motion.

Note the importance of α’s and β’s in the graph G and therefore GQ. These
parameters define how much each pooled segmentation output is trusted and how
to compute the similarity among superpixels/supervoxels in these outputs. Such
parameters can be defined statically (cf. (Li et al., 2012)) or adjusted dynamically in a
data-dependent fashion, as we propose in the next Section.
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6.5 performance-driven adaptive combination

We propose a regressor Ξ to estimate the optimal segmentation ensemble parameters
α and β from the appearance-, motion- and depth-based features of the stereo videos.
(Cf. Figure 6.1 where the regressor is given by the red arrows.) Furthermore, we
propose a novel inference framework to learn the regressor parameters ξ from the
training stereo videos. (Cf. Figure 6.1 where the training is represented with blue
arrows.) A new differentiable performance proxy P̂ enables optimization driven by
the stereo video segmentation performance measure P.

6.5.1 Adaptive Combination by Regression

Let us define a regressor Ξ, with parameters ξ. Ξ takes as input a set of features F
computed from the stereo video and outputs the parameters α and β for the ensemble
segmentation model (i.e. the coefficients to optimally combine K segmentation
outputs from the pool based on C features, cf. 6.4.1). Intuitively, the regressor
should select the best segmentation outputs from the pool, based on the stereo video
content. This would imply, for example, a larger trust towards image- rather than
motion-segmentation outputs, for those stereo videos where no motion is present.

We employ a second order regressor Ξ which we parameterize by a matrix B.
Overall, α and β are computed as:

(α1, . . . , αK, β1, . . . , βC) = Ξ(F ; ξ) = FTBF (6.12)

We consider in F features based on appearance, motion and depth. A large feature
set is important to allow the regressor to understand the type of stereo video
(dynamic, static, textured etc.) For each feature, we compute therefore histograms,
means, medians, variances and entropies. We would leave the learning framework to
choose from the right feature, i.e. training the best regressor Ξ. This should ideally
consider the system performance P for optimization or the tractable differentiable
proxy which we discuss next.

6.5.2 Performance-Driven Regressor Learning by Differentiable Proxies

Let us consider Figure 6.1. The α and β, regressed by Ξ according to features F ,
correspond to a stereo video segmentation performance P. During training, we seek
to optimize Ξ for the maximum segmentation performance P:

Ξ̂ = max
Ξ

P(Ξ(F )) (6.13)

There are two main obstacles to our goal. First, typical video segmentation
performance metrics are not differentiable and therefore do not lend themselves
to directly optimizing an overall performance. To address this, we propose a
differentiable performance proxy P̂ in Section 6.5.2.1.
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Second, α and β are not part of the objective (6.13) and have to be considered
latent. In Section 6.5.2.2, we define therefore an EM-based strategy to jointly learn the
regressor Ξ, α and β. An overview of our training procedure is given in Algorithm 1.

Algorithm 1 Joint learning of the regressor Ξ and the latent combination weights
α, β

Require: ∀ training videos with initial set of parameter combinations (α, β) and
stereo video features F

1: repeat
2: Given the current estimates of (α, β),
3: train the Ξ which regresses them from F
4: for all training video do
5: predict (α′′, β′′) = Ξ(F );
6: use (α′′, β′′) as initialization for

(α̂, β̂) = arg maxα,β P̂(α, β) ;
7: update (α, β) for the training video by (α̂, β̂);
8: end for
9: until Convergence or max. iterations exceeded

6.5.2.1 Metric Specific Performance Proxy

In image segmentation, performance is generally measured by boundary precision
recall (BPR) and its associated best F-measure (Arbelaez et al., 2011). In video
segmentation, benchmarks additionally include volume precision recall (VPR) met-
rics (Galasso et al., 2013). Both these performance measures are plausible P, but
neither of them is differentiable, which complicates optimization. (We experiment
on various performance measures in Section 6.6.)

We propose to estimate a differentiable performance proxy P̂ which approximates
the true performance P. We do so by a second order approximation parameterized
by the matrix Y. Taking χ a vector of features which are sufficient to represent the
stereo video (at least as far as the estimation of (α, β) is concerned) we have:

(α̂, β̂) = arg max
α,β

P̂(α, β) = arg max
α,β

χ>Yχ (6.14)

We perform training by sampling α and β, computing then vector χ and finally
fitting the parameter matrix Y.

Stereo Video Representation by Spectral Properties. We are motivated by prior
work on supervised learning in spectral clustering (Meilǎ et al., 2005; Jordan and
Bach, 2004; Ionescu et al., 2015) to represent the stereo videos by their spectral
properties. In particular, we draw on (Meilǎ et al., 2005) and consider the normalized-
cut cost NCut (of the similarity graph W which is the reduced graph GQ as shown
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in Section 6.4.3, based on the training set groundtruth labelling) and its lower bound
TraceR. Our representation vector is therefore χ = [α, β, NCut, TraceR]

>.
In more details, given the indicator matrix E = {er}r=1···R where er ∈ RNm

,
er(i) = 1 if superpixel i belongs to r-th cluster otherwise = 0, and Nm is the number
of superpixels, we have:

NCut(α, β, E) =
R

∑
r=1

e>r (D−W)er

e>r Der

TraceR(α, β) = R−
R

∑
r=1

λr(L)

(6.15)

where D = diag(W1) is the degree matrix of W and λr(L) is the r-th eigenvalues of
the generalized Laplacian matrix L = D−1 ·W of the similarity matrix W.

Derivatives of Performance Proxy. Our performance proxy P̂ is now differentiable.
For gradient descent optimization, we use its derivatives w.r.t. parameters θ ∈{

αk, βc}:
∂χ>Yχ

∂θ
=

∂χ>

∂θ
(Y + Y>)χ ∀θ ∈

{
αk, βc

}
(6.16)

The derivatives of NCut and TraceR ∈ χ are:

∂(NCut)
∂θ

=
R

∑
r=1

−e>r
∂W
∂θ ere>r Der + e>r Were>r

∂D
∂θ er

(e>r Der)2

∂(TraceR)

∂θ
= trace(V>

∂L(θ)
∂θ

V)

(6.17)

where V denotes the subspace spanned by the first R eigenvectors of L.

According to the formulations shown in Section 6.4.3, the derivatives
∂wQ

i,j

∂αk and
∂wQ

i,j
∂βc for entries of W (= GQ) can be derived by a sequence of chain rules. The degree

matrix D is diagonal matrix, where we can represent its elements on the diagonal
by:

DI I =
Nm

∑
J=1

wQ
I,J (6.18)

Then the derivatives of D’s elements are:

∂DI I

∂αk =
Nm

∑
J=1

∂wQ
I,J

∂αk

∂Dii

∂βc =
Nm

∑
J=1

∂wQ
I,J

∂βc

(6.19)
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Finally the derivative of generalized Laplacian matrix L = D−1 ·W in equation 6.17

is given by the chain rule:

∂L
∂θ

= D−1 · ∂W
∂θ

+
∂D−1

∂θ
·W (6.20)

6.5.2.2 Joint Learning of Regressor and Latent Parameter Combinations

As stated in Equation 6.13, we are interested in optimizing the performance P w.r.t.
the regressor Ξ and therefore the ensemble combination parameters α and β have
to be treated as latent variables. As described in Algorithm 1, we solve this by an
EM-type optimization scheme in which we iterate finding optimal parameters α and
β and predicting new α and β parameters based on the re-fitted regressor Ξ.

Intuitively, this scheme strikes a balance between the generalization capabilities
of the regressor and optimal parameters α and β. We found this to be particular
important, as in many cases a wide range of parameters leads to good results. Fixing
the best parameters as a learning target, leads to a more difficult regression and
overall worse performance. The metric specific performance proxy is continuously
updated by using the samples in a small neighborhood in order to improve the local
approximation of the desired metric P.

6.5.3 Implementation Details

As already noted, the computation of NCut at training involves the ground truth
annotations. In particular, the NCut for the entire video requires all frames labeled,
while ours and most segmentation datasets (Galasso et al., 2013; Ochs et al., 2014) only
offer sparse labeling. Aggregating dense optical flow over time allows to connect the
sparsely annotated frames. The spatial and temporal connections of these labeled
frames are then used for the NCut computation.

Our representation vector χ in (6.14) consists of [α, β, NCut, TraceR]. We have
empirically found that this combination improves of the individual parts and subsets
by 5% and therefore we use the full vector in the following experiments. In order to
increase the number of examples for our training procedure, we divide each video
into subsequences so that each of them contains two frames with groundtruth.

6.6 experimental results

We evaluate our proposed efficient and adaptive stereo video segmentation algo-
rithm (EASVS) on the CSVSC benchmark. In particular, first we test the pooled
segmentation outputs, then we compare EASVS against relevant state-of-the-art on
stereo video sequences, finally we present an in-depth analysis of EASVS.
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Figure 6.5: Results of the considered video segmentation algorithms (GBH (Grund-
mann et al., 2010), moseg (Ochs and Brox, 2011), SAS (Li et al., 2012)) and our
proposed EASVS on the CSVSC stereo video sequences using BPR and VPR. Both
in terms of boundaries and videos, no considered method performs consistently
well on all videos. moseg may achieve high performance of stereo videos with
large and distinctive motion such as "elephants3" and "hens" but underperforms
when motion is not strong, e.g. "marine1". Complementary features are given by
GBH. SAS combines statically (cf. segmentation ensemble model of Section 6.4.1) the
two video segmentation techniques as well as the pooled image segments but also
underperforms, because a static combination cannot address the variety of the stereo
videos.

6.6.1 Video Segmentations and Their (Static) Ensemble

Among the pooled segmentations (details in Section 6.4.4), we have included two
state-of-the-art video segmentation techniques: the motion segmentation algorithm of
(Ochs and Brox, 2011) (moseg) and the graph-based hierarchical video segmentation
method of (Grundmann et al., 2010) (GBH).

In Figure 6.5, we illustrate performance of each of moseg and GBH on all stereo
video sequences. (Cf. detailed comments in the figure caption.) As expected,
none of the two performs satisfactorily on all sequences. Rather, they have in
most cases complementary performance, moseg taking the lead on sequences with
evident motion and GBH overtaking when spatio-temporal appearance cues are
more peculiar in the visual objects.

A third technique illustrated in Figure 6.5 is the segmentation by aggregating
superpixel method of (Li et al., 2012) (SAS). This is an interesting baseline for our
proposed algorithm. SAS is based on a static combination of pooled segmentation
outputs. We extend its original image-based formulation to stereo videos by includ-
ing into its pool the GBH and moseg video segmentation methods, as we illustrate
in Section 6.4.1.

Figure 6.5 clearly states that a static combination does not suffice to address the
segmentation of stereo videos. By contrast, quite surprisingly, trying to always pool
all video and image segmentation output with the same contributing weights turns out
to harm performance.

6.6.2 EASVS and the State-of-the-art

Our adaptive combination of pooled segmentation outputs poses the question as to
which measure to use for learning. As mentioned in Section 6.2, the BPR and VPR
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stereo video
segmentation BPR VPR AM-BVPR HM-BVPR

GBH (Grundmann et al., 2010) 0.187 0.208 0.198 0.198

moseg (Ochs and Brox, 2011) 0.247 0.285 0.266 0.264

SAS (Li et al., 2012) 0.184 0.087 0.135 0.118

4D-seg (Hickson et al., 2014) 0.128 0.146 0.137 0.120

VideoCoSeg (Chiu and Fritz, 2013) 0.238 0.140 0.189 0.169

Proposed
EASVS 0.301 0.296 0.295 0.288

Table 6.1: Results on the CSVSC benchmark. See the discussion in Section 6.6.2.

no
depth

fixed
depth

fixed
α

fixed
β

proposed
EASVS

HM-BVPR 0.254 0.276 0.270 0.276 0.288

Table 6.2: Analysis of the proposed EASVS. See the Section 6.6.3 for the discussion.

measures may push for adaptive algorithms with better boundaries or temporally-
consistent volumes. Averaging BPR and VPR may balance the two aspects, which
we may achieve by arithmetic (AM-BVPR) or harmonic mean (HM-BVPR).

In Table 6.1, we illustrate performance of EASVS against moseg, GBH and SAS,
measured according to the four available metrics (BPR, VPR, AM-BVPR, HM-BVPR).
For EASVS, the measured performance statistic has also been respectively used for
learning the adaptive ensemble segmentation model. (Since our approach involves
learning, our results are averaged on three folds.) The results in the table match
the intuition that only an adaptive combination can successfully address all videos.
Furthermore, our proposed EASVS outperforms a recent depth video segmentation
method (Hickson et al., 2014) (4D-seg) by more than 50% on all measures, as well as
a recent video co-segmentation algorithm (Chiu and Fritz, 2013) that we run on each
video stereo pair by 65%. This is confirmed by the qualitative examples shown in
Table 6.3 and 6.4.

We delve further into the understanding of the potential result improvements
within the EASVS framework with an oracle. In more details, we allow our algorithm
to estimate the optimal segmentation-pool combination-parameters (α and β) by
accessing the ground truth performance measure P for each stereo video sequence.
The higher oracle performance by up to 70% (with the current representation and
quadratic regressors) anticipate future improvements with richer models and more
data.

6.6.3 Deeper Analysis of EASVS

In Table 6.2, we provide additional insights into EASVS. First, we experiment with 1)
no depth and 2) fixed depth contribution. The performance drops by 11.5% for 1)
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video
frames

ground
truth

GBH moseg SAS 4D-seg
proposed EASVS

(BPR) (VPR) (AM-BVPR) (HM-BVPR)

Table 6.3: Examples of the proposed EASVS optimized for different evaluation
metrics compared to the state-of-the-art algorithms. Note how GBH (Grundmann
et al., 2010) outlines the object boundaries but tends to over-segment, while moseg
(Ochs and Brox, 2011) produces under-segmentations and fails to extract objects
without significant motion. The static combination scheme SAS (Li et al., 2012) cannot
strike good compromised parameters across all videos, which results in degraded
results. 4D-seg (Hickson et al., 2014) is a clear leap forward but suffers from some of
the drawbacks of GBH. Our proposed EASVS benefits the learning framework and
the adaptive nature for a better output.

and 4.2% for 2) in HM-BVPR. This shows the importance of the depth cue within
the full system. Additionally, this speaks in favor a the adaptive strategy. (Cf. 4D-seg
(Hickson et al., 2014) also leverages depth but cannot reach the same performance as
the adaptive depth combination.)

Second, we fix the combination parameters 3) α and 4) β to the single best
values determined on the training set, therefore limiting the system adaptivity.
The performance drops by 6.3% and 4.2% respectively. Once again, we find that
adaptivity is therefore crucial for the performance of our system and that both
adaptive aspects are strictly needed: weighting the pooled segmentation (α) and
measuring similarity of the resulting superpixels (β).



94 chapter 6. adaptive stereo segmentation

video
frames GBH moseg 4D-seg proposed

EASVS

Table 6.4: Additional examples of the proposed EASVS compared to baselines.
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6.7 conclusions

We have considered the emerging topic of consumer stereo cameras and proposed a
benchmark to evaluate progress for the task of segmentation with this interesting
type of data. The dataset is challenging and it includes diverse visual cues and
camera setups. None of the existing segmentation algorithms can perform well in all
conditions.

Furthermore, we have introduced a novel efficient and adaptive stereo video
segmentation algorithm. Our method is capable of combining optimally a pool of
segmentation outputs from a number of "expert" algorithms. The quality of results
highlights that combining single algorithms is promising and that research on such
a framework is perfectly orthogonal to pushing performance in the single niches, e.g.
motion segmentation, image segmentation, supervoxelization etc.
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Acquiring depth estimate of a vision scenario provides richer geometric in-
formation than 2D observations which is helpful for many cases such as
occlusion reasoning, 3D reconstruction, and resolving appearance ambi-

guities for object segmentation. In this chapter we study the problem of object
segmentation in the multi-modal 3D data perceived by Kinect, one of most com-
monly used 3D sensors nowadays. In particular, we focus on improving the depth
estimate for better 3D data acquisition in order to boost segmentation performance.
We present a cross-modal stereo method which is inspired by the complementary
properties between two depth sensing modalities: Kinect performs well on normal
surfaces such as skin or cloth yet has failure on transparent and specular surfaces,
while stereo vision is capable of estimating the disparities at edges of transparent
or reflective objects but has difficulties on homogeneous areas. The depth estimate
within the Kinect is compensated by the proposed cross-modal stereo path that
we obtain from disparity matching between off-the-shelf IR and RGB sensors of
the Kinect. In results, our proposed method produces depth maps that include
sufficient evidence for reflective and transparent objects, preserve textureless objects
(e.g. tables or walls), and show the improved performance on a point-cloud-based
3D object segmentation task.
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7.1 introduction

Future mobile robotics rely heavily on robust sensing schemes in order to bring
the success of industrial robotic applications in controlled environments to the
unstructured and everyday changing scenario in our homes. 3D Perception has
been one of the key technologies to provide a rich capture of indoor scenes that
facilitates data driven segmentation, grasp planning, and much more. While the
steadily improving sensing technology has provided us with more accurate and
reliable data, we haven’t — and probably will not — see a single sensor performing
well across every conceivable condition. This calls for robust integration of multiple
sensing schemes to complement for each others’ short comings.

With the introduction of the Microsoft Kinect sensor, a highly performant yet low
cost 3D sensor was made available that rivals much more costly solutions available
to robotics, and it has been widely distributed up to date. Despite being originally
designed as a gaming interface, soon after its release there was strong interest from
hobbyists over enthusiasts to robotics researchers trying to stretch the envelope of
possible application scenarios beyond its original intended use case.

In this chapter we are particularly interested in the robotics scenario and resulting
shortcomings when using the Kinect in those settings. In home environments object
properties differ beyond the well behaved properties of cloth and skin where the
Kinect depth estimation performs admirably well. We realize that in particular
specular, transparent and reflective objects cause serious problems — and not rarely
lead to a complete failure (See Fig. 7.1). Yet objects like glasses, bottles, tea kettles,
pans are objects of daily living and therefore they are in the core set of objects home
robotics and assisted living want to address (Choi et al., 2009). We study how the
knowledge from different modality helps to eliminate the difficulties met by Kinect.
We complement the built-in active depth sensing scheme of Kinect with a passive
and cross-modal stereo path which is established by performing stereo matching
between RGB and IR sensors. The proposed framework provides a reliable depth
estimation scheme using an off-the-shelf Kinect sensor without modifying hardware
nor requiring any additional sensors.

We start from investigating several fusion schemes to provide more reliable sensor
data and improve particularly on transparent and specular objects (Section 7.3). In
order to preserve similarities between modalities, different combination schemes
of RGB channels to mimic the image response of the IR sensor are studied. In
the experiments we not only provide the qualitative improvements but also the
empirical evidence for strong improvement on a data-driven object detection task in
a table top scenario. However, as the Kinect’s projected patterns for depth sensing
introduce the interference observed in the IR images, the performance of the stereo
matching across RGB and IR modalities has a significant drop-off from covering the
IR projector to making it operated.

Therefore in the subsequent Section 7.4 a more detailed study is conducted. We
identify three issues and consequently improves over the previous fusion scheme:
First, we take a closer look at the sensor characteristics of the Kinect and realize that
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the overlap in the spectral response between the sensors is very small. This argues
for a learning based approach that exploits smoothness and correlations in the BRDF
function of the materials, as no satisfactory linear reconstruction of the IR channel is
possible.

Second, as argued in related literatures, we know from practical considerations
that patch based stereo matching is often improved by pre-filter operations. This is
a richer class than the pixel based weighting previously investigated. We propose
a method for learning optimal filters for improving cross–modal stereo that is rich
enough to capture channel-based weighting and filtering like sharpening, smoothing
and edge detection.

Third, we realize that for the best results previously obtained, the IR projector
had to be covered for capturing the IR-RGB pair. However, this is impracticable as
it eliminates the active depth sensing scheme. We show that the proposed method
of learning filters can achieve robustness of the stereo algorithm to these nuisances
introduced by the projector – and in fact we are able to recover the performance
previously only achieved with the covered projector.

7.2 related work

Transparent and specular phenomena have been proven notoriously hard to capture
(Ihrke et al., 2008), in particular in unconstrained scenarios where prior information
about lighting and geometry of the scene can rarely be assumed. Only in recent past
some initial success towards practical systems for detecting transparent objects has
been reported on visual object detection tasks (Fritz et al., 2009) and multi-view lidar
based object detection (Klank et al., 2011).

(Fritz et al., 2009) learns object models for glasses and Klank et al. (2011) improves
transparent object detection by integrating two sensors of the same type. In contrast,
our work uses a single off-the-shelf unit combining an active and a passive approach
and we show improved results on wide range of effects like transparency, specularity
and highly absorbent surfaces as they occur on many household objects such as tea
kettles, mirrors, displays, bottles.

But also stereo algorithms are effected by more complex surface properties. E.g.
(Tsin et al., 2006) provides an analysis of such effects and presents a sophisticated
model for recovering multi-layered scene structure. In practice, we see stereo corre-
spondences still being preserved at least on borders of objects with complex surface
properties. Therefore in order to complete Kinect’s depth estimate on specular,
transparent or reflective surfaces, we first attempt to use a simple, computationally
efficient block matching algorithm as implemented in OpenCV (Bradski, 2000) for
seeking the correspondences between a RGB and IR sensor. However, with regard to
the cross–modal stereo, we face a problem of different data domains.

Most recently, related problems have been successfully addressed in a metric
learning formulation for visual category recognition from different data sources like
images from the web, DSLRs and webcams (Saenko et al., 2010). While this approach
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is based on Information Theoretic Metric Learning (ITML) (Davis et al., 2007) much
simpler formulations based on large-margin classifiers (Daumé et al., 2010) have
been proposed from which we drew some inspiration. However, the latter approach
is only applicable for classification while we learn a transformation that is directly
applicable to the image without any change to the stereo algorithm.

Previous work investigated fusion techniques for depth measurements originating
from time of flight cameras and stereo cameras (J.J. Zhu and Davis., 2008; Kim et al.,
2009). In contrast, our main focus in this chapter is to explore cross-modal stereo so
that we can have an active and passive depth sensing path in a single sensor unit.
Therefore the previous investigations are orthogonal to ours.

Beyond the problem of different data domains, our proposed cross-modal stereo
vision encounters the interference on the IR images from Kinect’s projected patterns,
which complicates the stereo matching more in addition to lighting conditions
or specific material property such as transparency and specularity. In practice
such variations are typically reduced by filtering techniques (e.g., laplacian of
gaussians (Konolige, 1998)), non-parametric matching costs (e.g., census (Zabih and
Woodfill, 1994)) or by hand tuning parameters for optimal matching. (Hirschmüller
and Scharstein, 2009) provide a thorough comparison of several stereo matching
techniques with respect to complex radiometric variations. They compare a large set
of filters, and rank them according to performance and computational efficiency.

More recently the path of machine learning is taken to find automatically optimal
models for stereo matching (Li and Huttenlocher, 2008). Also (Hirschmüller and
Scharstein, 2009) propose to learn pixelwise cost based on mutual information from
ground truth data. However, both approaches are global-based matching scheme and
prohibit real time applications. Also the sensitivity to local changes (Hirschmüller
and Scharstein, 2009) limits its applicability for matching across modalities that
exhibit global as well as local variation. In the following sections of our proposed
method, we will walk through a succession of stages to study the stereo path of
IR and RGB sensors, including: investigate various fusion schemes, experiment a
pixel-based optimization based on ground truth, and further focus on learning patch
based filters.

In our evaluation we use a object segmentation task based on a support plane
assumption, which is not only common to many recent systems using 3D informa-
tion (e.g. (Gould et al., 2008; Marton et al., 2009; Fritz et al., 2010)) but also with
an emphasis on problematic cases containing specular and reflective surfaces to
demonstrate the benefits of our proposed cross–modal stereo.

7.3 cross-modal stereo

As mentioned previously the Kinect depth estimate fails on specular, transparent or
reflective surfaces. Depth is calculated from an IR-pattern that is projected from by
the Kinect sensor unit (Fig. 7.2(b)). On reflective objects however the pattern is not
visible or being reflected, causing holes in the depth maps or potential interferences



100 chapter 7. multi-modal stereo for 3d object segmentation

Friday, March 25, 2011

Figure 7.1: (top) Failure cases of Kinect 3D sensor: (red) transparency, (green)
specularity, (cyan) dark objects under flat viewing angle, (yellow) reflections of the
projected dot patterns, (violet) interference of dot patterns by reflections. (bottom)
We evaluate on a object segmentation task, left: result on Kinect point cloud only,
right: strongly improved result on our fused estimate proposed in this chapter. (blue
points: kinect; green points: cross-modal stereo)

(Fig. 7.2(d)). In contrast, stereo vision enables to detect disparities at edges of
transparent or reflective objects, but has difficulties finding correspondences on
textureless areas, such as the wall or the desk (Fig. 7.2(e)). Since the Kinect features
two cameras (IR and RGB) we propose a cross-modal stereo approach that we
combine with the built-in 3D estimate of the Kinect in order to compensate for the
problems of the individual sensors. In the following we describe our method that
can be run on an off-the-shelf Kinect sensor without any hardware modifications.

7.3.1 Stereo and Alignment to Kinect Depth

We first briefly describe our stereo calibration algorithm for the IR and RGB camera
and the fusion step with Kinect depth information. Then, we describe the alignment
procedure that enables the combination of stereo and Kinect depth information
by simple union operator on the two point clouds. Since we have to deal with
two different data domains, we introduce an optimization step in order to obtain
improved stereo correspondences.

Stereo Calibration Given the images from IR and RGB sensors, the extrinsic and
intrinsic parameters can be computed with standard stereo calibration technique.
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(a) RGB image. (b) IR image with Kinect’s
IR-projector pattern.

(c) IR image with covered
IR-projector.

(d) Rectified depth map
from Kinect.

(e) Disparity map from
cross–modal stereo.

(f) Fused depth maps.

Figure 7.2: (a) RGB image. (b) IR image with Kinect’s IR-projector pattern. 1. pattern
not visible on reflective surfaces, 2. reflected pattern on display, 3. Shadow from
projector spot differs to RGB lighting condition (c) IR image with covered IR-projector.
Red texture invisible to IR-sensor (d) Rectified depth map from Kinect. (e) Disparity map
from stereo and (f) Fused depth maps.

Once the calibration parameters of IR and RGB cameras are obtained, we apply
Bougeuet’s algorithm to do the rectification toward the stereo image pairs and make
them row-aligned. Then we utilize the SAD (Sum of Absolute Difference) block
matching to find corresponding pixels between IR and RGB images. The offset
between such pixels marks the disparity in image coordinates. As a result, we obtain
the disparity maps for every pair of IR and RGB images, for which depth can be
calculated as shown in Fig. 7.2(e).

Fusing Stereo Depth with Kinect Depth In order to combine the disparity map
from our stereo setting and the depth map from the Kinect, we need to align the
image planes. Since the disparity map from the stereo is rectified, we apply the same
rectification to the depth map from the Kinect as shown in Figure 7.2(d).

After converting the disparity from stereo into depth measurements, we can
directly compare depth values obtained from stereo and the Kinect. From a set
of calibration scenes we obtain scaling and offset parameters that align the depth
values. We use least squares to estimate these parameters. Figure 7.2(f) shows an
example of the aligned depth measurements.

In order to evaluate our depth estimate on an object detection task, we generate
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a point cloud by means of the reprojection matrix obtained from stereo calibration.
The fusion of stereo and Kinect depth is carried out in 3D by simply taking the union
of the point clouds as displayed in Figure 7.3.

7.3.2 Cross-Modal Adaptation for IR-RGB-Stereo

Early Integration As described in the previous section we search for stereo corre-
spondences in the IR-RGB-image pairs. The channels of those images correspond to
different sensor characteristics that are only receptive over a range of wavelengths.
Due to correlations in the sensor and material characteristics running stereo across
the modalities is expected to produce at least some correspondences. Yet, it seems
more appropriate to find a better combination of the channels that would make the
two signals more similar. We do so by employing a global optimization approach.

Given a IR image Iir and a RGB image (Irgb
r , Irgb

g , xrgb
b ), we would like to ob-

tain a weighting w = (wr, wg, wb) of the channels such that the converted RGB
image is more similar IR image and has more corresponding points during the
stereo matching. We evaluate the performance of stereo matching by simply cal-
culating the number of corresponding points we can find, which we denote by:
num_of_stereo_match(Irgb, Iir). The resulting optimization problem reads:

max
wr,wg,wb

num_of_stereo_match(wr ∗ Irgb
r + wg ∗ Irgb

g + wb ∗ Irgb
b , Iir)

subject to wr + wg + wb = 1.
(7.1)

We use the IR image with covered IR-projector to avoid the effect from the
projected pattern. This optimization problem is solved by grid search with uniformly
sampling of the plane wr + wg + wb = 1. Figure 7.3 shows the disparity map from
the RGB image converted with learnt channel weights and compared to the disparity
from original RGB image in gray level. We observe that more details are preserved
after applying the learnt weighting.

Late Integration We also investigate a late integration scheme where we delay the
combination of the different color channels and compute stereo correspondences
w.r.t. the IR image independently. We proceed as with the 3D data from the Kinect
and fuse the results in 3D space by forming the union over the point clouds.

7.3.3 Point Cloud Based Object Segmentation

In order to quantify the improved depth information for potential detection tasks, we
implemented a simple object detection system based on point clouds from Sec. 7.3.1.
Since objects of interest are often located on tables or fixed at walls, we first segment
space into a support surface and a background surface. We then cluster the residual
point cloud, which is neither part of the table’s nor the wall’s surface, into potential
objects.
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(a) RGB image converted by the
optimized weights.

(b) IR image with covered
IR-projector.

(c) RGB image in gray scale.

(d) Disparity map from (a, b) (e) Disparity map from (c, b)

Figure 7.3: (a) RGB image converted according to the optimized color channel weights,
(wr, wg, wb) = (0.368421, 0.473684, 0.157895). (b) IR image with covered IR-projector. (c)
RGB image in gray scale (averaged channels with equal weight). (d) Disparity map from (a)
and (b). (e) Disparity map from (c) and (b).

Support Surface Extraction We apply an iterative RANSAC-algorithm to extract
the support surface and the background wall from the point cloud. We assume that
the scene contains two surfaces: the background wall and the table, where objects
of interest can be spread out. The residual points, which are neither inliers of the
background wall and nor the table surface, are then clustered into potential objects.

Point Cloud Clustering We first partition the residual pointcloud from the step
above using kmeans-clustering. We set the number of centers to K = 850. This
effectively reduces the complexity for further calculation. The kmeans-centers are
then further grouped by agglomerative clustering. Based on grouped kmeans-
centers we calculate a 3D-bounding box as in Fig. 7.1. For the evaluation in the
following section, we backproject 3D-coordinates of each group member into the
image coordinates using the transformation from Sec. 7.3.1. Upon image pixels of
each group a rectangular bounding box is fitted and compare to the ground truth
annotations of objects. In order to score each bounding box for precision-recall
analysis we use the number of points associated with each box, respectively group,
as a score.
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7.3.4 Experiments

We evaluate the success of our approach on a new database that we have collected
in order to test the kinect sensor on more challenging scenarios. The dataset consists
of 106 objects in 19 images. All objects are annotated with 2D bounding boxes.
We follow the evaluation criterion of the Pascal challenge (Everingham et al., 2015)

and compute precision-recall curves based on the overlap criterion a0 =
area(Bp∩Bgt)

area(Bp∪Bgt)
,

where Bp is the predicted bounding box and Bgt the ground truth bounding box and
where a0 must exceed 50%.

We evaluate several fusion schemes under different conditions, and settings
for the cross-modal stereo matching. Following standard stereo matching, we
average RGB into a grayscale image (stereo only: stereorgb and fused with kinect
depth: f usedrgb early). We also combine each channel individually (stereo only:
stereo{r,g,b} and fused with kinect depth: f used{r,g,b}). Given a disparity map for
each channel individually, we also combine these into a late fusion scheme with
the kinect depthmap ( f usedrgb late). For a weighted combination of the R, G and
B-channel as presented in Sec 7.3.2 we denote the index c.

7.3.4.1 Results

Table 7.4 shows average precision for different fusion schemes. We expect a strong
influence of the IR projector on the correspondence matching of the stereo vision.
Therefore, we captured stereo pairs under two conditions, first by covering the
emitting IR projector and second under normal operating condition with the IR
projector switched on. Note, that since the Kinect depth estimate does not operate
without the IR projector, we captured the images consecutively in the first setting.

The built-in Kinect depth estimate achieves 48.8% of average precision. Com-
bining stereo with the Kinect depth results in significant improvement of nearly
30%. Overall the maximum average precision of 76.6% is achieved by fusing all
channel-specific depth maps (fusion_rgb_late). When turning the Kinect into normal
operation mode that is with emitting IR projector, overall performance of different
combination schemes decreases, but still improves the Kinect depth about 10-20%.
Interestingly, the best result (68.8%) is achieved by fusing Kinect depth and stereo
depth from the green channel, which is closely followed by fusion with channel-
specific depth estimates (fusion_rgb_late: 66.5%). As expected in this scenario, stereo
only with projected IR pattern, performs worse in all different combination schemes
than Kinect only.

Fig. 7.5 shows example depth maps and detections using the pointcloud seg-
mentation from Sec. 7.3.3. Fig. 7.5 (a) shows a comparison between the Kinect-only
depthmaps and fusion_all_late scheme. Based on kinect depth estimation, we observe
that nearly all transparent or reflective objects are either missed or over-segmented
by their opaque parts (e.g. the bottle labels). Also interferences occur, e.g., the
reflected IR-pattern from the wall results in false depth on tablet’s display.

Fig. 7.5 (b) shows a comparison of fused depth maps with operating IR projector
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Figure 7.4: Precision Recall and average precision for the table-dataset

(middle) and with covered IR projector (bottom). It can be seen that the object
segmentation merges individual objects into one object only with operating IR
projector. Besides the interfering IR pattern on the object’s edges, lighting conditions
differ. While the IR projector behaves similar to a spotlight and causes hard shadows
around objects in a scene, the RGB images are effected by environmental illumination
only. As a results shadows differ between IR and RGB images (see Fig. 7.2(a) and
7.2(b), box 3). This leads to increased smearing effects and which leads to point
cloud connections between nearby objects. Here a more sophisticated segmentation
approach or statistical outlier removal techniques can remedy this effect. The left-
most depth maps show a rather pathologic case, where the Kinect is directed to a
mirror. The emitted IR pattern is reflected back to the camera causing a glare. Only
when switching off the IR-pattern depth is revealed by stereo vision.

7.3.4.2 Discussion

We can see that stereo vision across modalities is feasible and improves object de-
tection based on the Kinect’s depth estimation up to 30% without any modification
of the hardware. Overall, stereo matching between the ir channel and each color
channel individually combined with 3D from the Kinect performs best in all consid-
ered settings. Using depth maps based on the green channel performs surprisingly
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(a) (b)

Figure 7.5: Example images from dataset. (a) Top: RGB image, Middle: Kinect only,
Bottom fusion_all_late, (b) Top: RGB images, Middle: fusion_all_late with covered IR
projector, Bottom: fusion_all_late

well. Since the red and infrared are close in wavelength, the infrared camera has a
similar sensitivity. We intuitively expected a good correspondence matching for this
channel. In fact however, red textures on white background do not contrast, and
red becomes invisible. This effect can be seen on the bottle label in Fig. 7.2(a) and
7.2(c). Green texture however is preserved and represented by low intensities in the
IR channel. Then, stronger gradients facilitate the correspondence matching.

Learning a weighted RGB-channel-combination scheme to obtain an “IR-like”
image, turns out to be highly sensitive to environmental change. Colors of objects
or varying environmental IR exposure influences the choice of weights significantly.
Fig. 7.6(c) shows a series of captures during varying daylight conditions and cor-
responding optimized weights. Although we could find more correspondences
using a weighted scheme Fig. 7.6(b) compared to grayscale RGB only Fig. 7.6(a),
overall segmentation results did not reflect the improvement. Since, we estimated
the parameters on a training set, they did not generalize well to our detection dataset.
Dynamic weight adaption based on image statistics, such as illumination and white
balance, might lead to improvement, which is subject to further investigation.

Practical Issues Kinect does not allow simultaneous grabbing of the RGB and IR
stream. The OpenNI framework, as well as libfreenect offer functionality of switching
the streams programmatically (and asynchronously). The speed depends on the
buffer writing speed. When switching too fast the buffer is not entirely written. We
did initial stress tests to tune the framerate. We observe that libfreenect shows faster
performance and yields about 1.5-2fps for taking an IR and RGB pair, which leaves
space for estimating stereo disparity maps and provides reasonable update rates for
many robotics applications. The OpenNI framework achieves far less than 1fps.
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(a) Disparity b/w
grayscale RGB & IR

(b) Disparity b/w
weighted RGB & IR
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(c) Learned weights for RGB under various
lighting conditions.

Figure 7.6: (a) Disparity from grayscale RGB and IR, (b) Disparity from weighted
RGB and IR, and (c) Learned weights for obtaining IR like image from RGB under
different lighting conditions (Date of capture 31. March, sunset 7:56pm).

7.4 learning optimal filters to improve cross-modal stereo

7.4.1 Capturing and Analyzing Sensor Characteristics of the Kinect

In the previous section a mapping between IR and RGB was learned from patterns
that were illuminated by environmental light. However, there was no justification
given if there is any hope to actually recover the sensor response characteristic by a
linear combination of the RGB channels. Therefore we provide here a first analysis
of the sensor characteristics of the images in the Kinect.

To this end we capture diffracted light which is projected on a “white” surface.
This allows us to determine the characteristics of the Kinect cameras by measuring
their response to different wavelength (see Fig 7.11).

The setup is depicted in Fig. 7.7. Environmental light is shielded so that we are
only capturing the relevant wavelength. A special target that is almost perfectly
lambertian ensures that the results are not corrupted by any specular effects. A light
source is directed toward two small slits that serve as an aperture for selecting close
to parallel light rays. This minimizes overlap between nearby wavelength on our
target. Behind the slits a optical grating pattern causes diffraction which separates
out the different wavelength. The light source is a 500 Watts Halogen light which
– as a black-body-like radiator – emits light across the visual spectrum well into
the infrared part, following roughly Planck’s law (Planck, 1901). We do not use a
calibrated light source in this study and consider it of lesser importance as we are
mostly interested in relative sensitivities under naturally occurring light.

After acquiring reference images in ambient light, we calibrate the images and
calculate the response profile across wavelength. We do this for each RGB channel
separately, as well for the IR-image. (See Fig 7.8 bottom). This gives us the sensitivity
for each channel independently.

Having an estimate for the sensor response characteristics, we can now estimate a
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Figure 7.7: Schematic for experimental setup for reading sensor characteristics.

reconstruction of the IR sensor by a linear weighting of the RGB responses. Therefore
we find the following least squares solution:

min
w
||Rir − [RrRgRb]w||2 (7.2)

where Rir is the spectral response of the IR sensor and Rr, Rg, Rb are the responses
of the red, blue and green channel respectively.

Results Fig 7.9 depicts the sensor readings we have obtained. The raw sensor
data is plotted in pale colors, while the saturated colors show a Gaussian fit. For
each channel we subtract the minimum response in order to compensate for sensor
noise and residual ambient light and then fit a Gaussian mixture model with 3

modes as we observe 3 maxima of the diffraction pattern. The dominant mode is
plotted per channel. There are 4 IR channels as we read the raw IR image from
the Kinect that comes in a bayer pattern. We expected slightly different response
characteristics for each channel, but they turn out to be almost identical. Furthermore
we observe that the overlap between IR and RGB-channels is relatively small. The
linear reconstruction of the IR channel from Equation 7.2 results in the cyan line
shown in Fig 7.9. As the profile is very flat, we also show an amplified version. The
low magnitude indicates that the reconstruction is not working well. The weights
for the individual channels are as follows: wred = 0.0111, wgreen = −0.0066, wblue =
0.0022. Obviously, the red channel has the highest weight, as it is closest to the
infrared part. Interestingly, we get a negative weight for green which “pushes”
the red channel further to the infrared part. The positive weight for blue again
compensates partially for the introduced dip in the green to blue wavelength. This
is also an interesting parallel to the method presented in the previous section where
similar weights were obtained by training pixel correspondences without explicit
knowledge of the spectral sensitivities.

In summary, we have to conclude that the overlap of the IR and RGB sensitivity
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rgb ir

blue green red ir

Figure 7.8: Spectrum from Experiment as in Fig 7.7.

of the sensor is indeed smaller than expected, which seems very bad news for
any cross–modal matching attempt. However, in practice we do often have light
sources that cover a reasonable part of the spectrum – like the above used halogen
lamp – and in addition typical materials also reflect in a relative broad and smooth
spectrum. This gives a justification to learning-based approaches like the one in
previous section that can exploit correlations and smoothness of BRDFs.

Our aim is to increase robustness as well as computational efficiency of cross–
modal stereo under projected patterns by learned filters. A simplistic scheme that is
exclusively based on pixel-wise re-weighting of IR and RGB seems to be too limited.
A learning-based version of this linear scheme was attempted in the previous section
(shown as Fig 7.10)and we also derived a weighting based on spectral measurements
in the spectrum experiment above.

As we want to stay in the roam of efficient patch–based stereo algorithm, we
propose to extend the class of learned transformation to linear filters that leverage a
pixel neighborhood in all channels to optimally preserve matches across modalities.
These linear filters encompass smoothing, sharpening and edge detection methods
that have been shown useful as prefilter in stereo algorithm and can potentially
alleviate problems with the projected pattern.

The core idea is to collect corresponding pairs of patches between IR and RGB
images into a set S for the training step. Then we use them to determine the
weightings of each elements in the IR and RGB patches so that the corresponding
patches have a smaller distance after the transformation. We employ an optimization
framework to describe this problem.

We denote the s–th corresponding pair of patches by {IRs, Cs} ∈ S where C =
{r, g, b} contains three color channels from the RGB image. With the assumption
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Figure 7.9: Spectrum from Experiment as in Fig 7.7. Light colored plots correspond
to the response along blue lines through raw image data (Fig 7.8). Strong colored
plots correspond to Gaussian fitted curves.

that the patch is in the size of n× n, we would like to obtain the different weightings
{wIR

i,j , wC
i,j} for every pixels {IRs

i,j, Cs
i,j} of different positions (i, j) within IR and RGB

patches {IRs, Cs}. The resulting optimization problem reads:

min
wIR,wC

∑
s∈S

∥∥∥∥∥
n

∑
i=1

n

∑
j=1

wIR
i,j IRs

i,j − ∑
C=r,g,b

n

∑
i=1

n

∑
j=1

wC
i,jC

s
i,j + b

∥∥∥∥∥
1

subject to ∑
C=r,g,b

n

∑
i=1

n

∑
j=1

wC
i,j = 1.

(7.3)

where b is an offset. By applying these weightings for each color channels of RGB

w_ir
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PointcloudCross-modal adaptation
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Figure 7.10: Diagrams for weighted fusion scheme.
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(a) Response of
RGB & IR cameras.

(b) RGB image. (c) IR image under
projected pattern.

(d) Disparity on
unfiltered stereo.

(e) Disparity on
patch-filtered stereo

Figure 7.11: (a)Response of RGB camera (left) and IR camera (right). (b) and (c)
Image pair obtained by Kinect with projected IR pattern. (d) Disparity map on
unfiltered pairs. (e) Disparity map on patch-filtered image pairs.

images and for IR images, we can transform the RGB images into “IR-like” images
then use the same stereo matching algorithm to compute the disparity maps as usual.
Note that this weighting procedure is the same as utilizing filters for images. We
display an instance of our proposed filtering procedure in Figure 7.14.

7.4.2 Experiments

In order to evaluate the effectiveness of our approach we compare to the results from
the previous section in the same experimental setting. A clustering approach is used
to segment objects in a table-top scenario.

7.4.2.1 Learning Filters

Given image pairs of IR and RGB images, our goal is to learn optimal adaptation
between IR and RGB images using the Kinect hardware without any modifications.
We manually collect thousands of corresponding pairs of 3× 3 patches between
low–resolution IR and RGB images under the influence of the IR–projector. The
patches are distributed over normal and difficult regions including transparent,
specular and reflective surfaces. To solve the optimization problem in Equation 7.3,
we use cvx (Grant and Boyd, 2011), a matlab–based toolbox for convex optimization.

The resulting filters wr, wg, wb, and wIR are as follows with the offset b =
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−56.6978:

wr =




0.1451 0.1900 0.1228
−0.0354 0.0089 0.1244
0.1788 0.0985 0.1809




wg =




0.1844 −0.0806 0.1249
0.1866 −0.1393 0.1129
0.1981 −0.0841 0.0841




wb =



−0.0702 −0.0260 −0.0098
−0.1430 −0.0915 −0.0600
−0.0984 −0.0654 −0.0365




wIR =




0.0049 0.0961 −0.0006
0.1532 −1.0000 0.1084
−0.0018 0.0741 −0.0062




(7.4)

Visualizations are provided in Figure 7.14.

7.4.2.2 Evaluation

Our evaluation uses the same data as shown in previous section and is consistent
with the setting in order to ensure comparability. The stereo image pairs from the
Kinect were obtained under two conditions. The first one is to cover the IR projector
and the second one is under the normal situation with the IR projector.
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Figure 7.12: Precision–Recall curves of late fusion scheme under IR–projector–off
setting, our proposed method and Kinect–only.
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(a) Disparity from original
stereo.

(b) Disparity with projector off. (c) Disparity with patch-filtered
stereo.

Figure 7.13: Disparity maps computed from (a) original image and (b) IR–RGB–image
pair without IR–projector, and from (c) images filtered by our trained filters.

From the evaluation of different fusion schemes under these two settings, the best
results previously obtained are an average precision of 69% with IR–projector–on
and 72.5% with IR–projector–off by using a late fusion strategy.

Comparing to the average precision 46% of the built-in Kinect depth estimate,
the method can improve the Kinect depth over 20% but meet the practical issues as
we mentioned in Section 7.4.1. In contrast, our method simply uses the early fusion
scheme with applying the filters on IR–RGB images captured under IR–projector–on
but still achieves an average precision of 71.5%.

The Precision–Recall curves of the late fusion scheme under IR–projector–off
setting, our proposed method, and Kinect–only are plotted in Figure 7.12.

Our approach outperforms all the settings using IR–projector–on and is on par
with the previously best result with modified hardware. Also note that our method
shows strong improvements in precision and produces the first false positives
not until almost 40% recall which is 10% more than the competing methods. In
Figure 7.13 we show examplary disparity maps computed from images in the
IR–projector off case, and filtered images by our proposed method.

7.4.2.3 Discussion

In the middle column of Figure 7.14, we present the visualization of the filters
obtained from optimization process, and their characteristics can be observed. The
filters of red channel and blue channel resemble smoothing operators and the filter
of green channel, the smoothing seems to be applied along the y–axis while the
x–axis direction resembles a Laplacian operator. The filter of IR channel basically
computes a filter similar to a 2–dimensional Laplacian operator. Although at the first
glance, people might claim that applying these filters which include the smoothing
operations could worsen the images details and make the stereo more difficult. But
actually these weighted summations just gather the data around the pixels into
themselves then the information required for stereo is still maintained. With the
fact that in stereo matching procedure we compare the statistical values (SAD is
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Figure 7.14: (Left) Incoming RGB and IR image with IR–projector–on from
Kinect. (Top) color channels from RGB image: red, green, blue and learned fil-
ters wR, wG, wB, wIR from optimization. Note here we do the zero–padding and
up–sample the filter for a better visualization. The resulting images filtered for each
color channels. (Right) transformed RGB (summed filtered images for three color
channels) and IR images.

used here) between local patches instead of judging each pixels separately, the filters
will not affect the working of stereo. Besides, the Laplacian of Gaussian operations
contained in the filters of green and IR channels will enhance the high frequency
signals to make the stereo matching more efficient. Therefore, our learned filters
can transform the RGB and IR images into more similar ones to improve the stereo
across the modalities.

7.5 conclusions

We presented a simple and effective cross-modal stereo vision approach for com-
bination with Kinect depth estimates, which can be applied without any further
hardware requirements. We provide empirical evidence for drastic improvement to
the Kinect 3D sensing capabilities.

We first proposed a cross-modal adaptation scheme that allows for improved
correspondence matching between RGB and IR cameras and show general feasibility
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of their combination. Our combination method produces depthmaps that include
sufficient evidence for reflective and transparent objects, and preserves at the same
time textureless objects, such as tables or a walls.

We then presented a method to optimize filters for improved stereo correspon-
dence IR and RGB images that is robust to projected IR patterns. We have ex-
perimentally analyzed the spectral characteristics of the Kinect cameras in order
to justify such an approach. Adapting RGB in frequency domain to mimic an IR
image did not yield improved performance. The small overlap between RGB and IR
seems prohibiting this approach. In contrast, learning several filters based on image
patches allowed improved stereo vision across modalities. We conclude therefore,
that our pre-filtered, cross-modal, SAD-based stereo vision algorithm profits most
from combination in the spatial domain, rather than in the frequency domain.

The value of our improved 3D sensing scheme is validated by a generic, data-
driven object detection task. Our patch-based approach shows not only the increased
performance with respect to Kinect’s depth estimate but also the improved robustness
against IR-specific interference from the projector.

We expect this work to have a high impact in the robotics community due to
the wide spread use of Kinect sensors and the ubiquitous problem of capturing
transparent objects for detection, recognition and manipulation.
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In this chapter we propose a multi-part object detection system with a focus on
a factory scenario, where a single machine is composed of potentially repetitive
machine parts. Given a monocular video, the system not only detects machine

parts but also disambiguates them using the 3D context, and leveraging the prior
knowledge on the structure of the machine. Specifically, the proposed system
combines noisy object detections of 2D machine parts with the 3D depth information
obtained from SLAM approach, and produces an accumulated 3D pointcloud of
detections over video frames. The matching between 3D detection pointcloud and
3D context disambiguates object detections and enables an augmented reality overlay
to assist a maintenance worker in locating machine parts as well as distinguishing
their identities within the machine layout. For quantitative evaluation, we proposed
an annotated dataset as well as several performance metrics that can be used to
quantify the success rate of a variety of 2D and 3D systems for object detection and
disambiguation. We verify in the experiments that the 3D context which encodes
rich information on various cues such as deformation and scale factors, clearly
contributes to the proposed method for the multi-part object detection task.

8.1 introduction

The advent of affordable, highly miniaturized wearable camera technology in com-
bination with the latest improvement of head-up display has intensified interest in
augmented reality applications. The availability of such devices in the foreseeable
future as well as the large scope of use cases in the consumer market (e.g. games)
as well as industrial applications (e.g. maintenance) begs the question if current
computer vision techniques can shoulder the expectations.

116
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We investigate this question on a task of assisting a maintenance worker in a
factory setting. The system has to provide an overlay to the worker so that machines
parts are correctly identified. Depending on the application this simply supports
successful completion of a task, averts dangers from the worker or prevents damage
to the machine. In our study we will focus on sensing by a monocular camera as
this is still the most commonly deployed modality in those devices to date.

Object recognition and detection has significantly matured over the last decade.
We have seen great progress in instance (Hinterstoisser et al., 2011) as well as
category recognition (Felzenszwalb et al., 2008; Jia, 2013). However in many of the
aforementioned tasks we are faced with compositionality of objects from potentially
repetitive parts. Robust matching of parts with their relational structure is required
to detect the object as a whole and give semantics to the individual parts. We denote
the task of predicting the identities of parts as object disambiguation.

Although such an object disambiguation task is really at the core of many aug-
mented reality systems and systems for assistance in work environments in particular,
there has been little progress in quantifying performance in these settings. In general,
computer vision research has a strong tradition in building benchmarks that allow
for measuring and comparing performance of object recognition and detection ap-
proaches. Most prominently the PASCAL challenge has greatly supported progress
in object detection and the ImageNet challenge has played a similar role for object
recognition. Therefore we advocate the need of a benchmark for augmented reality
settings. We realize that it is very challenging to build such a benchmark in a
completely task agnostic manner. In our study, we are focusing on a maintenance
work task.

In order to establish a well defined benchmark, a performance metric is needed
that allows for automatic evaluation. While there are widely adopted metrics for
object recognition and detection, those are not directly applicable to our settings.
First, object disambiguation has to deal with potentially repetitive objects whose
identities are only resolved in context and therefore it is not captured by previous
object detection metrics. Second, we are interest in the actual success of the user
of the augmented reality system. Hence we seek a metric that measures the user’s
success in disambiguating the objects given the observation of the system’s output.

We propose the first benchmark for augmented reality systems in maintenance
work. Different metrics are evaluated to judge the systems performance in the context
of the application. We propose a metric that closely follows the actual performance
achieved by the human observer of the system’s output. We propose the first system
for object disambiguation that leverage 3d context from a SLAM system as well as
flexible constraints on the matching procedure in order to robustly interpret the
output of state-of-the-art object detectors for the task of object disambiguation.
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8.2 related work

2D Detection Our approach uses object detectors in order to evidence of machine
parts from the image. We evaluate a range of commonly used object detectors(Viola
and Jones, 2001; Dalal and Triggs, 2005; Hinterstoisser et al., 2011; Felzenszwalb
et al., 2008; Shahbaz Khan et al., 2012). All of them meet real-time constraints. While
some of the were already built with efficiency in mind (Viola and Jones, 2001; Dalal
and Triggs, 2005; Hinterstoisser et al., 2011), other have seen recent extension by
algorithms speed up as well as GPU computation (Song et al., 2012; Dean et al., 2013;
Kokkinos, 2013). As we are facing the challenge of reoccurring parts, object detection
on it’s own is insufficient to resolve ambiguities.

3D Context Previous approach have explored improving object detection based
on normal, size, height information extracted from dense 3D data (Gould et al., 2008;
Fritz et al., 2010). The most related approach to our work is using 3D layouts of
object detectors in order for indoor scene understanding (Choi et al., 2013). Most
notably, our approach differs as it uses the layout information for the purpose of
disambiguation, we add an expectation over the matched viewpoints as well as
address a different task (augmented reality).

Augmented Reality Application and Maintenance Work Augmented reality ap-
plication have been studied for over two decades (Azuma, 1997). A recent overview
of approaches, techniques and datasets can be found in (Uchiyama and Marchand,
2012) and is beyond the scope of exposition. The predominant body of work deals
with registration and matching based on markers, low-level features or single objects.
We argue for object centric evidence for ease of deployment. In particular, our use
case of maintenance work calls for compositional models of multiple objects that
allow for object disambiguation within the 3D context. We are not aware of previous
efforts of establishing a public dataset for this purpose.

8.3 object disambiguation

As outlined before we seek a monocular system that operates markerless and
exploits state-of-the-art object detectors in order to disambiguates objects as parts
of a machine. For disambiguating multiple visual identical parts we fuse the object
detector output with a SLAM system that allows us resolve ambiguities by reasoning
over the spatial context. Figure 8.1 shows an overview of our system.

2D Object Detection At the core of our model are objects of which a machine is
composed off. In order to localize them at test time we investigate a set of recent
detectors: LINE-MOD2D(Hinterstoisser et al., 2011), cascade with haar features
(Viola and Jones, 2001) as well as HOG features (Dalal and Triggs, 2005), color-
DPM(Shahbaz Khan et al., 2012). As such models are all learning-based we can easily
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Figure 8.1: Overview of our system for object disambiguation.

adopt our model to new machines and scenarios by training new detectors from
examples and plugging them into our model. While the instance based detectors as
well as the cascades are fast by design also the more complex detectors have seen
recent extension so that they can be computed at interactive rates (Song et al., 2012;
Dean et al., 2013; Kokkinos, 2013).

Sparse 3D from SLAM A sparse 3D point cloud is extracted from video using
a monocular simultaneous localization and mapping (SLAM) system (Klein and
Murray, 2007). An extrinsic camera matrix is estimated based on the set of map
points visible in the current frame, and the map is expanded as the camera is moved.
The use of monocular image-based SLAM avoids the need for specialized sensors but
also introduces challenges. In particular, tracking can fail if insufficient map points
are visible (e.g. due to severe motion blur, absence of image features) to reliably
triangulate the camera position as well as 3D estimate can be noisy due to complex
scene geometry, occlusions and reflective surfaces. Tracking can be reinitialized
at the cost of resetting the SLAM coordinate system. Direct use of the sparse 3D
information has shown to yield unreliable matches wherefore we opt for integrating
2D and 3D information in the following step.

Temporal Accumulation and Reprojection to 3D We use the sparse 3D informa-
tion generated by the SLAM system in order to reproject the 2D object detections to
3D. The depth for a particular detection is computed as the average over the covered
SLAM features. As all preceding frames are connected by the SLAM track, we
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accumulate the reprojected 2D object detections over time. The benefits are threefold.
First, object evidence is accumulated over time and can therefore compensate for
missing or weak 2D detections in individual frames. Second, potential lag of the
detection system can be compensated for as detections from previous frames are
already available. Third, partial and ambiguous views of the machine that occur
due to zooming in or shifting the viewpoint can be compensated due to previous
viewpoints.

3D Machine Layout of Parts We require a 3D machine layout that specifies the
relative locations of each object. Such description are often provided by the machine
specifications. Please note that the model does not have to be metric – nor do we
require a complete 3D model or 3D scan of the machine. This is desirable for easy
deployment and adaptation to new scenarios as a complete model can be specified
by providing object detectors and a 3D layout.

Model Matching In order to match the 3D layout with N objects gn to the ob-
served detections d, we define an energy function that is taking into account the
object appearance (Eappearance), deformation of the layout (Edeformation), scale (Escale),
viewpoint (Eviewpoint) as well as amount of matched objects (optional part in the
deformation energy). The energy on scale and viewpoint capture an expectation
of typical viewpoints the machine is viewed in. We seek the best match by finding
an assignment of detections d1, . . . , dN as well as a projection matrix M so that the
following objective:

argmin
d1,d2,...,dN ,M

Edeformation + Eappearance + Escale + Eviewpoint (8.1)

where

Edeformation =
∑N

n=1 δn

N

N

∑
n=1

δn · log(
∥∥M̄(Pgn)− Pdn

∥∥)

Eappearance = −
N

∑
n=1

δn · Adn

Escale =

{
0, s̄ ∈ [µs − 2 · σs, µs + 2 · σs]

∞, otherwise

Eviewpoint =

{
0, x̄ ∈ [µx − 2 · σx, µx + 2 · σx] , ∀x = {α, β, γ}
∞, otherwise

(8.2)

Pgn and Pdn denotes the 3D coordinate of gn and dn, while Adn is the detection
score of the match dn. The indicator variable δn is for handling the non-matched
machine parts, where δn = 1 if

∥∥M̄(Pgn)− Pdn

∥∥ smaller than a threshold ε, and
δn = 0 otherwise. The 3D transformation M(·) includes the scale factor s, rotation
matrix composed of three rotation angles {α, β, γ} and also a translation vector t.
From the training videos of each machine, we compute the distribution of the scale
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Figure 8.2: Visualization of the distribution for viewpoints in each machine. The red
cameras are from the testing videos while the blue ones are from the training sets.
The coordinate system is based on the 3D machine layout.

factors and the rotation angles to get their mean µ and standard deviations σ. In the
energy terms for both scale Escale and the viewpoint Eviewpoint, we hard-constraint
the scale factor s̄ and rotation angles x̄, ∀x = {α, β, γ} extracted from estimate 3D
transformation M̄ to be within 2 times of standard deviation from the mean. Figure
8.2 shows the viewpoints of training (blue) and testing (red) in the coordinate system
of the machine layout.

In order to minimize the objective, we follow a RANSAC (Fischler and Bolles,
1981) pipeline by randomly selecting candidate alignments between the detections
and the machine layout which results in an initial geometric transformation. Accord-
ing to this initial fitting, we iteratively refine the estimate (Besl and McKay, 1992)
and re-associate the transformed groundtruth points to the closest detection points.

8.4 experiments

We propose the first benchmark for an object disambiguation task in maintenance
work that is composed of an annotated dataset as well as a metric that approximates
human judgement. Furthermore, we evaluate our proposed model as well as its
components.
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8.4.1 Object Disambigutation DataSet (ObDiDaS)

We present the first annotated dataset that allows to quantify performance on a
object disambiguation task as it frequently occurs in augmented reality settings and
assistance for maintenance work. The dataset captures 4 machines composed of
13 components. Each machine is built of a subset of these potentially repeating
components that occur in different spatial arrangements. We provide 14 videos
with different viewing scenarios. For each videos we provide human annotation
on every 60 frames (at 30fps), with in total 249 frames annotated and 6244 object
annotations that specify the type as well as a unique identity. We take one video per
machine as testing set and the rest is used for training. Examples are shown in the
Figure 8.3. There are various types of difficulties in this dataset, including the wide
changes in viewing angles of different object classes, occlusions and motion blur in
the videos, reflective surfaces. The dataset allows studies of machine part detection
and disambiguation, combination of 2D and and 3D cues based on monocular input,
generalization between machines and adaptation to new scenarios.

8.4.2 Object Disambiguation Metrics

While object detection metrics assess the performance of object localization in isola-
tion, we are interested in a metric that captures the object disambiguation perfor-
mance of a human if provided with the produced overlay. Therefore we propose
a set of candidate metrics and then evaluate which one is closest to actual human
judgement on the task.

Given a video frame with the SLAM extrinsic matrix H and the ground-truth
annotation of N visible machine parts by bounding boxes Bgt. By using H to project
the matches in RANSAC to this frame as bounding boxes, we denote the M visible
ones with Best. For each bounding box in ground-truth annotation or RANSAC
estimation, they have the labels of their object classes and instance ids. (Note that
we define C(·) and I(·) as functions to get the object class label and instance id of
the bounding box)

Pascal Object Detection Criterion [Pascal] Inspired by the Pascal Challenge (Ev-
eringham et al., 2015), for each bn

gt, n = 1 · · ·N, we find the corresponding bounding
box bm

est with the same class label C(bn
gt) and instance id I(bn

gt) as bn
gt from Best, and

measure the intersect-over-union metric between bn
gt and bm

est:

O(bn
gt, bm

est) =
bn

gt ∩ bm
est

bn
gt ∪ bm

est
(8.3)

Then we define the Pascal metric as:

Spascal =
1
N

N

∑
n=1

ρn , where ρn =

{
1, O(bn

gt, bm
est) > th

0, otherwise
(8.4)
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Figure 8.3: Example images for the dataset. In each image we use different color
codes for different classes of machine parts. And each instance of the machine parts
are labelled with unique identities of the machine.
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The variable th is the overlapping threshold, which we set it to be 0.001 in our
experiments.

Nearest Neighbor (within/across) We define the pairwise distance between bn
gt

and bm
est as the euclidean distance between their box centers in the image coordinate.

For each bn
gt, n = 1 · · ·N, we find its nearest neighbor bNNwithin

est from Best with the

same object class label: BC
est =

{
bm

est|C(bm
est) = C(bn

gt)
}

. Then we define the NNwithin

metric as:

SNNwithin =
1
N

N

∑
n=1

ρn , where ρn =

{
1, I(bn

gt) = I(bNNwithin
est )

0, otherwise
(8.5)

Instead of finding the nearest neighbor with the same object class label, in metric
NNacross we extend to search from all the bounding boxes in Best, we denote the
found nearest neighbor as bNNacross

est . Then the metric NNacross is represented as:

SNNacross =
1
N

N

∑
n=1

ρn , where ρn =

{
1, C(bn

gt) = C(bNNacross
est ) and I(bn

gt) = I(bNNacross
est )

0, otherwise
(8.6)

One-to-One (within/across) In comparison to computing the nearest neighbor, we
further restrict to have one-to-one matching between bn

gt and bm
est and turn it to be a

weighted bipartite matching scenario, where the weights are the dist(bn
gt, bm

est). We
use Hungarian method (Kuhn, 2010) to solve this problem. Assume there are in total
L object classes shown in this video frame, for each class l we build up the distance
matrix by Bl

gt =
{

bnl
gt|C(bnl

gt) = l
}

and Bl
est =

{
bml

est|C(bml
est) = l

}
. Then for each bnl

gt we

have the match bonel
within

est after applying Hungarian method. We define the onewithin
metric as:

Sonewithin =
1
N

L

∑
l=1

Nl

∑
nl=1

ρnl , where ρnl =

{
1, I(bnl

gt) = I(bonel
within

est )

0, otherwise
(8.7)

Similar in nearest-neighbor metrics, we can also extend to do the one-to-one matching
across classes. Hence we build up the distance matrix between Bgt and Best. For each
bn

gt we have the match boneacross
est . and the metric oneacross is written as:

Soneacross =
1
N

N

∑
n=1

ρn , where ρn =

{
1, C(bn

gt) = C(boneacross
est ) and I(bn

gt) = I(boneacross
est )

0, otherwise
(8.8)

Evaluation of Metrics In Table 8.1 we compare the proposed metrics to actual
human judgement. We use the output of our full model. For the human judgement,
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machine 1 machine 2 machine 3 machine 4 average
Human Judge. 74.12% 100.00% 99.68% 70.57% 86.09%

Pascal 60.92% 98.68% 95.60% 25.10% 70.08%
NN (within) 57.05% 94.76% 88.06% 72.88% 78.19 %
NN (across) 56.07% 91.97% 65.20% 56.84% 67.52 %

1-to-1 (within) 77.55% 99.18% 99.68% 79.25% 88.92%
1-to-1 (across) 74.63% 96.92% 93.10% 72.45% 84.28 %

Table 8.1: Evaluation of different metrics.

LINE-MOD Haar cascade HoG cascade LBP cascade color-DPM
avg. precision 10.81% 8.37% 13.38 % 8.90 % 36.73 %

Table 8.2: Evaluation of 2D object detectors.

we present the produced overlay to a human observer and assess in how many
cases the correct object was identified. We observe that pascal metric significantly
underestimates the system performance. We attribute this to an implicit matching
that the human observer performs between the overlay and the observed machine
parts. The nearest neighbor metric narrows the gap – at least for the case of matching
within the object types (NNwithin). The closest match to the true performance is
obtained by the one-to-one metric. It takes further into account that the human
observer also makes use of the context in order to align the overlay with the observed
objects. As the “within” variant overestimates the performance we suggest and use
the one-to-one (across) metric in the following experiments. A more detailed analysis
of correlation scores on the individual object level has yielded the same ranking of
metrics.

8.4.3 Evaluation

2D Detectors in Isolation We compare a range of 2D object recognition/detection
algorithms on our new dataset: LINE-MOD2D (Hinterstoisser et al., 2011), cascades
with haar features (Viola and Jones, 2001) or histogram of gradient features (Dalal
and Triggs, 2005) and color-DPM(Shahbaz Khan et al., 2012). Table 8.2 shows average
precision scores for the individual methods averaged across all objects and machines.
This evaluation uses the pascal criterion as it evaluates object detection in isolation.
We conclude that the color-DPM model outperforms the competitors by a large
margin on this task. Therefore we will use it as a object detector throughout our
experiments.

Full and Partial Models on Object Disambiguation Task We evaluate our full
model as well as switching energy terms off one at a time in order to provide
further insights. Table 8.3 shows the individual performance numbers of the object
disambiguation task (under the one-to-one-across metric), Figure 8.4 shows example
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Figure 8.4: Example results. First row are examples for the groundtruh of each
machine. Second row are the corresponding results from our proposed method.

machine 1 machine 2 machine 3 machine 4 average
full model 74.63% 96.92% 93.10% 72.45% 84.28 %

no appearance 67.29% 93.32% 64.05% 51.06% 68.93%
no deformation 83.89% 95.05% 61.44% 40.30% 70.17%

no scale constraint 67.29% 98.53% 53.94% 43.57% 65.84%
no viewpoint constraint 38.01% 88.89% 43.04% 10.21% 45.04%
no scale and viewpoint 38.01% 88.89% 43.04% 10.21% 45.04%
no non-matched objects 74.61% 74.16% 64.10% 55.65% 67.13%

Table 8.3: Evaluation of different model components.

results of our system in comparison to the groundtruth annotations and Figure 8.5
illustrates the effect on the output if parts of the matching energy are not used. We
observe the most dramatic drop in performance if the viewpoint and scale constraints
are not used, which results in a performance drop of almost 40%. The corresponding
visualizations show that disabling this part of our model leads to estimates that
exhibit a strong camera roll or suggest a fit beyond working distance. Appearance
and the model deformation seem roughly equally important and both boost the
performance by over 10%. Also our explicit treatment of non-matched objects is
similarly important. Effects can again be observed in Figure 8.5 where a mismatch
caused by a partial visible machine is remedied by the full model.

While our full model shows strong performance on machine 2 and 3, there is still
a need for improvement on the other two. We attribute the missing performance
to reflective surfaces (mirror in the back) that cause problems to the SLAM and
detection system, complex 3D structure of machine layout, weak evidence from
detector for certain objects and background clutter.
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8.5 conclusion

We have investigated a object disambiguation task in a markerless augmented reality
scenario, where object identities are inferred from monocular input by exploiting
contextual information. To the best of our knowledge, we present the first dataset
that allows to quantify the performance of such a system. We propose different
metrics and compare them to human judgement. Our proposed metric gives a more
realistic estimate of the system performance than a traditional object detection metric
that consistently underestimates the system performance. Finally, we present an
automatic system for object disambiguation that shows strong performance due to a
matching formulation that is based on a composite energy function. We analyse the
contribution of each component which underlines in particular the importance of
modelling expectations over viewpoints and scales in the matching process.
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(a) with/without appearance
term

(b) with/without deformation
term

(c) with/without non-matched
handling

(d) with/without scale term (e) with/without viewpoint
term

(f) with/without scale &
viewpoint term

Figure 8.5: Top figure shows output of full model; while in bottom has a particular
energy switched off (a)with/without appearance term (b)with/without deformation
term (c)with/without non-matched objects handling (d)with/without scale term
(a)with/without viewpoint term (a)with/without scale and viewpoint term
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C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

Contents
9.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

We have explored different approaches to multi-modal segmentation. The
investigations are organized along 3 axes: video segmentation and object
discovery (Chapter 3), activity segmentation and discovery (Chapter 4),

and segmentation in 3D data (Chapter 5, 6, 7, 8). Several application scenarios
related to these axes are presented, such as: multi-class video co-segmentation,
sketch-based video retrieval, 3D pose estimation, stereo video segmentation, and
object disambiguation for augmented reality scenario. In the following we summarize
them all.

Multi-Modal Video Segmentation and Object Discovery We address multi-
class video co-segmentation problem by employing non-parametric Bayesian ap-
proaches to model the generative procedure of multiple video sequences, where
the complexity of the model, i.e. number of segments, is determined by data. The
hierarchical structure manages to unsupervisedly discover the object classes of en-
riched appearance models across videos, as well as outline object instances with
considering spatio-temporal and motion dependencies between basic data units.
The experimental results show that the proposed model is managed to resolve the
ambiguities of appearance and motion patterns as well as improve the segmentation
results via joint segmentation across videos.

Multi-Modal Activity Segmentation and Discovery The non-parametric Bayesian
formulation as in video co-segmentation task is generalized to discover activities
from context sensor data, by using supersamples composed of context words as
the basic data units and modelling their dependencies based on temporal distance
together with word2vec semantic information. The data-driven segmentation over-
comes the problem of time-invariant sliding windows, the non-parametric framework
avoids the manual assignment of cluster numbers which is necessary for the previous
state-of-the-art LDA approach, and the semantic distance between context word
labels provides a more informative prior for activity discovery in comparison to the
non-parametric CRF framework.

Multi-Modal Segmentation in 3D Data We introduce several works for segmen-
tation and manipulation on different sources of 3D information, including 1. 3D
CAD models, 2. depth sensors, 3. consumer stereo cameras, and 4. SLAM system, as
listed by level of detail. Particularly: First, in Chapter 5 we realize the piecewise dif-
ferentiability of HOG feature representation, and present an end-to-end optimization

129
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scheme for CAD-to-image alignment task based on the differentiable HOG descriptor
and an approximate renderer. Second, in Chapter 6 we present an efficient ensemble
model to combine a pool of heterogeneous segmentation algorithms for the stere
video segmentation task. The importances of different pooled segmentations and
the weights of feature cues which measure the distances between voxels are learnt
discriminatively to be adaptively adjusted in accordance to the data statistics of target
stereo video. Third, in Chapter 7 we propose a simple and effective cross-modal
stereo path obtained from disparity matching between the IR and RGB sensors on
Kinect in order to complement Kinect’s difficulties on specular and transparent
surfaces. The performance of 3D object segmentation based on the the improved 3D
sensing is boosted in a large margin. And finally, in Chapter 8 we develop a novel
multi-part object detection system that fuses the 3D context with detection outputs
of machine parts, which are lifted from 2D to 3D by sparse 3D information SLAM,
in order to tackle the object disambiguation problem. The application scenario is to
provide a maintenance worker an augmented reality overlay where the potentially
repetitive machine components are disambiguated and labelled by unique IDs.

In addition to the performance improvements demonstrating the benefits of our
methods on various applications related to 3D data, another main contribution in this
axis of works is to resolve the ambiguities shown in multi-modal data. For instance:
while there are certain modalities having less informative observations, the adaptive
segmentation scheme learns to decrease the importances of those feature cues. In
the work of improving Kinect, the cross-modal stereo enables to detect disparities
at edges of transparent or reflective objects which are difficult for Kinect, while
on textureless area (e.g. the wall or desk) we trust more on the depth information
perceived by Kinect instead of stereo vision. In multi-part object detection system the
3D context information is used to disambiguate machine parts of the same category
but with different functions.

Overall, this thesis contributes to develop multi-modal segmentation approaches
that manage to combine and make better use of information from multiple modalities,
resolve ambiguities, and cope with noisy 3D observations. As the segmentation
provides an intuitive way to understand the latent structure of the data, where it
divides the data into multiple semantic groups based on some characteristics, the
works in this thesis can become the building blocks for further applications, such as
semantic labelling, scene understanding, and content-based video retrieval. Surely,
not all challenges that can be met in segmenting multi-modal data could be fully
addressed. There are still many research venues to be explored. The following
section discusses several possible directions for future works.

9.1 future directions

Although in the thesis we divide our works into three axes and tackle different
applications, there are opportunities to combine algorithms across the axes into more
robust frameworks, and apply them on different scenarios. Additionally, the recent
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advances in deep learning and related discriminative models show success in many
research areas, such as speech recognition, object recognition, and visual question
answering. We propose future research directions that integrate our presented
algorithms as well as the research efforts on discriminative learning.

Learning Representations for Non-Parametric Bayesian Models Recent progresses
on convolutional neural network and deep learning have shown their power
on learning highly discriminative representations (Bengio et al., 2013), espe-
cially in comparison to the simple appearance features such as color or SIFT.
Although it might seem to be a natural selection of using convnet-based fea-
tures for the appearance likelihood in the non-parametric Bayesian models, the
high dimensionality of convnet-based representations can cause difficulties for
some popular non-parametric Bayesian tools (Shah and Ghahramani, 2013),
for instance, Dirichlet Process Gaussian Mixture Model (DPGMM). The work
from (Socher et al., 2011) proposes a non-parametric clustering model which
combines the ddCRP prior based on similarity matrix between the data points
on original high-dimensional space, and the likelihood is computed based on
the layout of the data points in the low-dimensional space by using spectral
methods for dimensionality reduction. This approach denoted as similarity-
dependent CRP (sd-CRP) manages to provide a plausible solution for using
high-dimensional convnet features in the non-parametric Bayesian framework.
An interesting direction for future research would be as follows: Assume we
have the a collection of training data with their groundtruth partitions, we
would like to learn the specific convnet-based feature representation which is
most likely to generate the groundtruth clustering result by applying sd-CRP
technique. Recent work (Song et al., 2016) proposes a deep feature embedding
and metric learning algorithm with defining a structured loss function based
on the lifted dense pairwise similarity matrix, which contains the local and global
structures of data as required by the prior and likelihood in sd-CRP frame-
work. In which it consequently seems to be a good reference to start with and
continue the exploration.

Combining Different Modelling Perspectives While unsupervised clustering is able
to discover the structure of large data collection, the algorithms from semantic
labelling (Arbeláez et al., 2012; Long et al., 2015) are able to classify each object
in the scene, which present more detailed descriptions but are not easily gener-
alized to all the possible classes in the highly complex world. The combination
of these two directions would provide a possible scenario: for the common
object classes we can utilize the discriminative object detectors to locate them
in the videos and even give more fine-grained or 3D representations on the
object classes with CAD models available (Chapter 5); while for other classes
that are unexplored, rare to see, or hard to collect training data for learning
classifiers, the unsupervised clustering as shown in Chapter 3 is capable to
partition the visual data into semantic groups for further analysis.
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Adaptive Dependencies for ddCRP Learning affinity functions used in the distance-
dependent Chinese Restaurant Processes can boost the capacity of our proposed
method in Chapter 3 and 4 to model the underlying distribution of data par-
titions. Recent work from (Ghosh and Sudderth, 2015) explores methods for
learning the dependencies in the ddCRP model from human annotated data
based on the recent advances in approximate Bayesian computation (ABC).
However, their approach does not consider the case that the feature cues are
not equally informative over all possible data collections as we have motivated
in the Chapter 6, wherefore the dependencies between data units can also have
wide variances accordingly. Therefore the adaptive strategy to weight different
feature distances in the ddCRP prior depending on the statistical properties
of the data becomes an opportunity, which is yet unexplored and expected to
improve the segmentation performance.
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