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Abstract

Computers are increasingly expected to make smart decisions based on what

humans consider commonsense. This would require computers to understand

their environment, including properties of objects in the environment (e.g., a

wheel is round), relations between objects (e.g., two wheels are part of a bike,

or a bike is slower than a car) and interactions of objects (e.g., a driver drives a

car on the road).

The goal of this dissertation is to investigate automated methods for acqui-

sition of large-scale, semantically organized commonsense knowledge. This goal

poses challenges because commonsense knowledge is: (i) implicit and sparse as

humans do not explicitly express the obvious, (ii) multimodal as it is spread across

textual and visual contents, (iii) affected by reporting bias as uncommon facts are

reported disproportionally, (iv) context dependent and thus holds merely with a

certain confidence. Prior state-of-the-art methods to acquire commonsense are

either not automated or based on shallow representations. Thus, they cannot

produce large-scale, semantically organized commonsense knowledge.

To achieve the goal, we divide the problem space into three research directions,

making up the core contributions of this dissertation:

• Properties of objects: acquisition of properties like hasSize, hasShape, etc.

We develop WebChild, a semi-supervised method to compile semantically

organized properties.

• Relationships between objects: acquisition of relations like largerThan, partOf,

memberOf, etc. We develop CMPKB, a linear-programming based method to

compile comparative relations, and, we develop PWKB, a method based on

statistical and logical inference to compile part-whole relations.

• Interactions between objects: acquisition of activities like drive a car, park a

car, etc., with attributes such as temporal or spatial attributes. We develop

Knowlywood, a method based on semantic parsing and probabilistic graphical

models to compile activity knowledge.

Together, these methods result in the construction of a large, clean and se-

mantically organized Commonsense Knowledge Base that we call WebChild KB.
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Kurzfassung

Von Computern wird immer mehr erwartet, dass sie kluge Entscheidungen treffen

können, basierend auf Allgemeinwissen. Dies setzt voraus, dass Computer ihre

Umgebung, einschließlich der Eigenschaften von Objekten (z. B. das Rad ist

rund), Beziehungen zwischen Objekten (z. B. ein Fahrrad hat zwei Räder, ein

Fahrrad ist langsamer als ein Auto) und Interaktionen von Objekten (z. B. ein

Fahrer fährt ein Auto auf der Straße), verstehen können.

Das Ziel dieser Dissertation ist es, automatische Methoden für die Erfassung

von großmaßstäblichem, semantisch organisiertem Allgemeinwissen zu schaffen.

Dies ist schwierig aufgrund folgender Eigenschaften des Allgemeinwissens. Es

ist: (i) implizit und spärlich, da Menschen nicht explizit das Offensichtliche

ausdrücken, (ii) multimodal, da es über textuelle und visuelle Inhalte verteilt

ist, (iii) beeinträchtigt vom Einfluss des Berichtenden, da ungewöhnliche Fak-

ten disproportional häufig berichtet werden, (iv) Kontextabhängig, und hat aus

diesem Grund eine eingeschränkte statistische Konfidenz.

Vorherige Methoden, auf diesem Gebiet sind entweder nicht automatisiert oder

basieren auf flachen Repräsentationen. Daher können sie kein großmaßstäbliches,

semantisch organisiertes Allgemeinwissen erzeugen.

Um unser Ziel zu erreichen, teilen wir den Problemraum in drei Forschungsrich-

tungen, welche den Hauptbeitrag dieser Dissertation formen:

• Eigenschaften von Objekten: Erfassung von Eigenschaften wie hasSize, hasShape,

usw. Wir entwickeln WebChild, eine halbüberwachte Methode zum Erfassen

semantisch organisierter Eigenschaften.

• Beziehungen zwischen Objekten: Erfassung von Beziehungen wie largerThan,

partOf, memberOf, usw. Wir entwickeln CMPKB, eine Methode basierend auf

linearer Programmierung um vergleichbare Beziehungen zu erfassen. Weiter-

hin entwickeln wir PWKB, eine Methode basierend auf statistischer und logis-

cher Inferenz welche zugehörigkeits Beziehungen erfasst.

• Interaktionen zwischen Objekten: Erfassung von Aktivitäten, wie drive a

car, park a car, usw. mit temporalen und räumlichen Attributen. Wir en-

twickeln Knowlywood, eine Methode basierend auf semantischem Parsen und

probabilistischen grafischen Modellen um Aktivitätswissen zu erfassen.

vii



viii

Als Resultat dieser Methoden erstellen wir eine große, saubere und semantisch

organisierte Allgemeinwissensbasis, welche wir WebChild KB nennen.
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1 Introduction

Figure 1.1: Humans possess a superior understanding of scene semantics, includ-

ing the objects in the scene, their relationships and interactions, e.g.,

the rock and its color, the human and his body parts, and the rock

climbing activity.

1.1 Motivation

Machines need human-like commonsense knowledge for natural interactions. With

the advancements in science, autonomous robots are no longer a fantasy. A robot

will be expected to understand the world around it and interpret novel scenes.

For instance, the robot is expected to interpret a scene of a person doing rock

climbing, as humans would; see Figure 1.1. The robot would need to know a

variety of semantics in the scene; that the climber is a human and the human

has hands, the rock is usually brown and the mountain is larger than the human.

To go rock climbing, you must read the route. You might need a rope and water.

You are probably adventure loving if you go rock climbing.

Such commonsense knowledge is different from encyclopedic knowledge. Over

the last decade, we have seen the rise of large knowledge collections driven by Big

1



2 CHAPTER 1. INTRODUCTION

Data on the Web, most notably Wikipedia and online databases. Prominent ex-

amples include Freebase (Bollacker et al., 2008), YAGO (Suchanek et al., 2007),

and DBpedia (Auer et al., 2007). The strength of these knowledge bases (KBs)

is in taxonomic and factual knowledge: named entities grouped into semantic

classes and relationships between entities. However, they are ignorant regard-

ing commonsense knowledge because while encyclopedic knowledge concerns in-

stances of classes (e.g., Alain Robert, a professional rock climber), commonsense

knowledge concerns classes and general concepts (e.g., rock climber in general).

Commonsense knowledge concerns general concepts but English words are typ-

ically polysemous and thus have more than one meaning or sense. For example,

the concept plant can have multiple senses describing an industrial plant or a liv-

ing organism. We will denote words in italics and senses in typewriter font.

WordNet (Fellbaum and Miller, 1998) is a lexical database of English words

(nouns, adjectives, verbs, adverbs) that distinguishes and enumerates the differ-

ent senses of a word. These sense enumerations reflect the frequency of usage of

a sense in text (McCarthy et al., 2007). We denote a WordNet sense of a word w

as wsn where the part of speech tag prefix (n for noun, a for adjective, v for verb,

r for adverb) appears as subscript, and WordNet sense number s (1 ≤ s ≤ 59)

as superscript. WordNet groups these senses into a unique set of synonyms,

called a synset such that all word senses in a synset express the same meaning.

For example, in the following synset: (plant1
n, works8

n, industrial plant1
n), all

the senses have the same definition or gloss (buildings for carrying on industrial

labor) [e.g.] they built a large plant to manufacture automobiles.

Commonsense concepts are not limited to WordNet concepts because WordNet

is updated infrequently and new concepts or word phrases emerge continuously,

e.g., nuclear power plant, while WordNet only contains power plant. We will call

such emerging concepts as extended phrases (see Definition 1.1.1).
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Definition 1.1.1 - Extended phrase.

A phrase (noun phrase, adjectival phrase, verb phrase) that is not

present in WordNet, but whose head-word is present in WordNet as

a sense hspos, is called an extended phrase. Extended phrases are a

specialization or sub-class (called, hyponym in WordNet) of hspos. An

extended phrase is either:


pos = n extended noun phrase, or extended adjectival phrase

, e.g., nuclear power plant, thermal power plant

pos = v extended verb phrase

, e.g., operate a power plant

In the example of the extended phrase nuclear power plant, its head-noun

power plant is present in WordNet (power plant1
n) and thus, nuclear

power plant is a specialization of power plant1
n.

It is crucial to distinguish word senses from words or phrases in order to remove

ambiguity. For example, if we observe the following text: “plant is green”, and

encode this information in the form of a triple 〈plant is green〉, where a triple

holds the left argument (subject), right argument (object) and a relationship

connecting them (relation). This triple has two very different interpretations

depending on the context: 〈plant1
n hasQuality green3

a〉, and, 〈plant2
n hasColor

green1
a〉1. These different interpretations can only become clear if the left and

right arguments and the relation, connecting them is disambiguated, i.e. words

are mapped to senses.

Commonsense knowledge relations can be divided into (at least) three kinds

of knowledge about the world/ environment:

1. Properties of objects in the environment including, for instance, the shape,

size, color of an object and the emotion it evokes;

1The glosses of these senses are:

plant1n: industrial plant . . . ,

plant2n: a living organism . . . ,

green1a: of the color between blue and yellow . . . ,

green3a: not harmful to the environment. . . . .
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2. Relationships between objects in the environment including, for instance,

class hierarchy, part-whole and comparisons;

3. Interactions between objects in the environment including, for instance,

an activity in which an object participates.

Let us consider the running example about rock climbing to elicit these three

kinds of commonsense. The fact that rock is usually brown 〈rock hasColor

brown〉 and a rock climber is adventure-loving 〈rock climber evokesEmotion ad-

venture〉 is commonsense on properties. The fact that the climber is a human

〈climber subClassOf human〉 and a human has hands 〈hand physicalPartOf hu-

man〉, and the mountain is larger than a human 〈human isSmallerThan moun-

tain〉 is commonsense on relationships. The fact that you must read the route

before you go rock climbing 〈rock climbing hasPrev read the route〉 and that you

might need a rope 〈rock climbing hasParticipant rope〉 and water 〈rock climbing

hasParticipant water〉 is commonsense on interactions.

We can organize this knowledge in a Knowledge Base (KB); a KB stores a

collection of facts, typically in a triple format 〈subject relation object〉. Con-

sider two triples from the KB: 〈rock climbing hasPrev read the route〉 and 〈rock

climbing hasPrev study the path〉. Ideally we should organize the knowledge in

such a way that we can tell that these two triples are similar. This entails dis-

ambiguating the arguments and the relation. Such a KB that organizes triples

semantically is called a semantically organized KB.

Goal: Our goal is to automatically construct a large-scale, semantically orga-

nized KB possessing these three kinds of commonsense. As an input source of

information, we have large volumes of multimodal data including text, images

and videos. We want to extract the three kinds of commonsense relations from

the input sources, filter the noise, and organize this knowledge in a semantically

organized KB containing disambiguated relations and arguments (concepts). .

The objective of this dissertation is to investigate automated methods for

robust acquisition of semantically organized commonsense of the form 〈w1 r w2〉,
where w1 and w2 are either a WordNet sense or an extended phrase; and are

connected by a refined relation r. The types of commonsense we investigate

are:

• Properties of objects: Here, w1 is a noun sense/ extended noun phrase, w2 is

an adjective sense, and r is a refined hasProperty relation such as hasShape,

hasSize, hasColor, evokesEmotion, e.g., 〈rock hasColor brown〉, 〈mountain
hasSize huge〉.
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• Relationships between objects: Here, w1 is a noun sense/ extended noun

phrase, w2 is a noun sense/ extended noun phrase and r is a refined rela-

tion including comparative and part-whole relations, e.g., 〈rock climber

isSmallerThan mountain〉, 〈rock physicalPartOf mountain〉.
• Interactions between objects: Here, w1 is a verb sense/ extended verb phrase,

w2 is a verb sense/ extended verb phrase, or a noun sense/ extended noun

phrase and r is a refined relation that characterizes a human activity such as

its temporal sequencing, or the involved participants and location, e.g., 〈rock
climbing hasAgent rock climber〉, 〈rock climbing hasLocation mountain〉,
〈rock climbing hasPrev read the route〉.

Challenges: Mining commonsense from data is a difficult task. Challenges

like input noise arise in mining any kind of knowledge, including encyclopedic

knowledge. However, commonsense knowledge extraction has its unique set of

challenges:

• Implicit and sparse: Humans do not explicitly express the obvious, e.g., the

information that a rock is hard, is possibly only implicitly available.

• Multimodal: Commonsense is spread across textual and visual contents. For

example, the information that a rock is brown can be mined directly from

images using image-processing techniques.

• Affected by reporting bias: Uncommon facts are often reported dispropor-

tionally more than common facts; therefore, frequencies are not an indicator

of validity.

• Context dependent: Commonsense knowledge is culture and location specific

and thus holds true merely with a certain confidence, e.g., green apples are

uncommon in India or that Indians wear white dress in a death funeral as

opposed to a wedding.

• Evolving with new concepts: The environment is dynamic and new objects

and new ways of interactions continuously coming into existence.

Prior work and its limitations: Commonsense knowledge acquisition has been

a long-standing goal in AI and the problem has received a lot of attention. Prior

work includes the seminal projects Cyc (Lenat, 1995) and WordNet (Fellbaum

and Miller, 1998) that rely on ontologists, linguists and domain experts. As the

knowledge is manually compiled, it is high quality but costly (Cyc is an effort

of 15 years), small in size (Cyc contains less than a million triples), and not

updated (the last version of Cyc is more than a decade old).
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There are several automated or semi-automated systems for commonsense ac-

quisition including ConceptNet (Speer and Havasi, 2012), and the work by Tan-

don et al. (2011) and Lebani and Pianta (2012). ConceptNet is a huge collection

of commonsense triples, but the vast majorities are instances of generic relations

like isA, conceptuallyRelatedTo, partOf, or derivedFrom. The more spe-

cific relations like adjectivePertainsTo or usedFor have only few instances.

Tandon et al. (2011) (referred as SR for their Specificity Ranking method) auto-

matically compiled millions of triples of the form 〈noun relation adjective〉 by

mining N-gram corpora, but the relations are still fairly generic such as hasA,

hasProperty, or capableOf. Lebani and Pianta (2012) proposed encoding ad-

ditional lexical relations for commonsense knowledge into WordNet, but their

approach is inherently limited by relying on human input and also focuses on

simple relations like usedFor and partOf.

The very recent work on commonsense acquisition from visual data has been

limited in scale due to the processing time and limited in accuracy due to the

challenges in automated image processing. NEIL (Chen et al., 2013) analyzes

images on the Web to acquire commonsense knowledge relations like partOf and

visual attributes of concepts like isVisuallySimilarTo. However, extracting

commonsense from visual content requires automatic and accurate detection of

objects, their attributes, poses, and interactions, which cannot be solved robustly.

These visual analysis systems do not fully leverage the power of text jointly with

the image. A recent system, LEVAN (Divvala et al., 2014), mines commonsense

knowledge from images and text jointly. Given a concept (e.g., hill), LEVAN

trains detectors for a wide variety of actions, interactions and attributes involving

the concept (e.g., hill walking). LEVAN mines relevant n-grams in text that

are associated with the given concept. This enables it to capture intra-concept

variance. To avoid training detectors for arbitrary abstract bigrams, LEVAN

assumes that only visually salient bigrams will provide any meaningful object

detection accuracy.

None of these knowledge resources has refined relations like hasShape, hasSize,

hasTaste, evokesEmotion, or physicalPartOf, memberOf, comparatives, or

large-scale knowledge about human activities. None has produced large amounts

of semantically organized knowledge. Thus, state-of-the-art commonsense KBs

still have severe limitations:

• The prominent approaches are not automated and hence costly and limited

in scale.

• Semantically different kinds of commonsense relations are conflated into a

single generic relation, e.g., hasProperty, instead of refined relations like
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hasShape, hasSize, hasTaste, evokesEmotion, or part-whole relation, in-

stead of refined relationships like physicalPartOf, memberOf, substanceOf.

• The arguments of the triples are merely words with ambiguous meaning.

There is no distinction between words and their different senses, e.g., am-

biguous properties such as hot can refer to temperature, taste, or emotion

but state-of-the-art approaches would conflate this.

To summarize, prior work cannot address our research objectives because prior

work has largely followed small-scale manual approaches. The resulting Com-

monsense KBs (CKBs) are coarse-grained with ambiguous arguments. Further,

prior work has largely been limited to textual data. Acquisition of commonsense

knowledge from visual data leveraging both text and visuals is very recent and

small-scale only. Table 1.1 positions this dissertation (our resulting CKB is called

WebChild KB) against related work.

Table 1.1: Positioning the dissertation against related work

CKB Triples Arguments Relations Method Source

Cyc < 1M Unambiguous >100, fine Curated -

WordNet < 10K Unambiguous <10, coarse Curated -

Verbosity < 100K Ambiguous <100, coarse Crowdsrc Images

ConceptNet < 1M Ambiguous <100, coarse Semi-auto Text

SR > 20M Ambiguous <100, coarse Automated Text

NELL < 10K Ambiguous <10, coarse Automated Text

ReVerb < 10K Ambiguous Open, coarse Automated Text

NEIL < 10K Ambiguous <10, coarse Automated Images

Levan < 100K Ambiguous <10, coarse Automated Text, Img

WebChild KB > 18M Unambiguous >1000, fine Automated Text, Img

1.2 Contributions

We overcome the limitations of the state-of-the-art and provide new research di-

rections for the construction of commonsense KBs. Our approaches are scalable

and automated, and rely on text by building robust methods that can capture

implicit signals in text. Our approach can leverage visual data due to the recent

advances in image processing, and handle the noise coming from these computer
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vision systems. We provide robust triple disambiguation methods that simulta-

neously disambiguate the arguments and classify the triple to a refined relation.

Our overriding approach is to automatically extract triples from Web-scale

data using Information Extraction techniques. Starting with these noisy, am-

biguous and unorganized triples, our task is to clean, disambiguate and organize

them. We propose methods for joint disambiguation of the arguments of the

triple and classification of the triple to a refined relation. Finally, we organize

these disambiguated triples, resulting in a large-scale commonsense KB. Our

methods can make use of data of multiple modalities.

The contributions of this dissertation are:

• Bigger commonsense KB: we propose scalable methods that lead to a large-

scale, high accuracy (more than 80%) Commonsense KB (WebChild KB)

containing hundreds of thousands of concepts and thousands of refined rela-

tions between these concepts. There are ca. 18 million triples in WebChild

KB.

• Cleaner commonsense KB: we propose disambiguation methods capable of

disambiguating both arguments of a triple.

• Richer commonsense KB: our methods classify the triples to a refined relation,

thereby not conflating semantically different relations.

• From multimodal sources: our methods leverage both textual and visual

contents. We mine knowledge from textual data like Web pages, as well

as from visual contents like Flickr images, and movies.

• Using automated techniques: all of our methods are automated with no hu-

man intervention. Our methods are scalable, allowing scalability of up to a

billion Web pages.

These contributions are reflected in various publications during the course of

this doctoral work:

1. AAAI 2016 (Tandon et al., 2016): Introduces semantic part-whole com-

monsense

2. WI 2015 (Chen et al., 2015): Introduces guided training of word2vec CBOW

model with commonsense

3. CIKM 2015 (Tandon et al., 2015a): Introduces semantically organized ac-

tivity commonsense

4. CMU LTI-SRS Symposium 2015 (Rajagopal and Tandon, 2015): Proposes

the integration of encyclopedic and commonsense knowledge.
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5. ACL 2015 (Shutova et al., 2015): Introduces visual tags for selectional

preferences

6. CVPR 2015 (Rohrbach et al., 2015): Introduces audio descriptions as a

source of rich visual semantics

7. WWW 2015 (Tandon et al., 2015b): Introduces activity commonsense as

semantic frames from movie scripts

8. AAAI 2014 (Tandon et al., 2014b): Performs Open Information Extraction

and semantic organization over 850 million web pages

9. WSDM 2014 (Tandon et al., 2014a): Semi-supervised modeling for seman-

tically organized commonsense acquisition

10. COLING 2012 (Tandon et al., 2012): Better scoring model of commonsense

facts using random walks

1.3 Outline

This dissertation is organized based on the exploration of the three research

questions, as follows:

• Chapter 2 gives background and reviews general related work on common-

sense knowledge and its acquisition.

• Chapter 3 discusses the first question about property commonsense.

• Chapters 4, 5 refer to the second question about commonsense on relation-

ships.

• Chapter 6 refers to the third question about activity commonsense.

• Chapter 7 discusses the resulting commonsense KB, called WebChild KB and

its various use-cases.

• Chapter 8 presents conclusions and suggests new research directions.





2 Background and Related Work

This chapter provides a definition of commonsense knowledge, contrasting it with

other types of knowledge most notably encyclopedic knowledge. We discuss an

overview of commonsense knowledge bases (KBs). We then discuss the state-of-

the-art commonsense KB acquisition methods.

2.1 Commonsense Knowledge

Commonsense knowledge has been vaguely defined as a collection of facts that

even a child possesses. The original definition of commonsense knowledge by

John McCarthy is that “a program has common sense if it automatically deduces

for itself a sufficiently wide class of immediate consequences of anything it is told

and what it already knows”. While these definitions are informative, they do

not highlight the kinds of concepts that make up commonsense knowledge.

More concretely, commonsense knowledge is the knowledge about the generic

class of objects in the world rather than the instances of a class. The world is

made up of physical objects and abstract concepts. These objects interact in the

environment, physically (e.g., hydrogen and oxygen make up water) or abstractly

(e.g., some objects and interactions evoke emotions).

Commonsense knowledge is location and culture dependent (Anacleto et al.,

2006) and can be opinionated with varying modalities of frequency (Trummer

et al., 2015). Thus, commonsense facts can be associated with a context metadata

and a confidence score. Definition 2.1.1 provides a broad yet concrete definition

of commonsense knowledge. The specific definitions of domain and range depend

on the nature of the relation and will be introduced in the appropriate chapters,

e.g., Definition 3.1.2 for hasProperty relations.

11
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Definition 2.1.1 - Commonsense knowledge.

Commonsense knowledge is a collection of relations r such as

hasProperty, hasPart, usedFor, evokesEmotion. r is a subset

of the cartesian product of the domain dom(r) and rng(r).

The domain dom(r), of r, is the set of concepts comprising of either

noun phrases or verbal phrases (depending on the specific nature of r)

but excludes instances, e.g., for the relation r=evokesEmotion, singer

is a valid domain element whereas the instance Beyonce Knowles is

invalid.

The rng(r), of r, is the set of concepts comprising of either noun phrases,

adjectival phrases or verbal phrases (depending on the specific nature of

r) but excludes instances.

Often, commonsense does not hold universally; thus, every commonsense

fact is accompanied by a confidence score 0 ≤ Θ ≤ 1 and optional

metadata.

2.1.1 Commonsense knowledge vs. encyclopedic knowledge

Another way to understand commonsense knowledge is by contrasting it against

encyclopedic knowledge. These two distinct types of knowledge are often con-

flated incorrectly.

Encyclopedic knowledge embodies facts about instances of classes, e.g., specific

person, specific location. These facts span across various dimensions like ency-

clopedic knowledge of instances: 〈Albert Einstein isA physicist〉, relationships

across instances: 〈Albert Einstein wasMarriedTo Elsa Einstein〉 and interactions

or events involving these instances: 〈Albert Einstein marriedIn January 1903 〉.
Thus, the domain of encyclopedic knowledge relations is an instance (or Named

Entity), while the range can be a Named Entity, concept or a literal.

Commonsense knowledge embodies facts about classes and concepts (not in-

stances of classes). These facts span across various dimensions like properties of

concepts 〈book hasProperty solid〉, relationships across concepts 〈hand partOf

a researcher〉 and interactions or activities involving these concepts 〈researcher

publishes research papers〉. Thus, the domain of commonsense knowledge rela-

tions is a subset of all concepts and extended phrases, while the range is a subset

of all concepts and extended phrases.
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Encyclopedic relations are functional i.e. ∀a, b, c : f(a, b) ∧ f(a, c) =⇒ b = c

as well as non-functional (the right argument admits a set of values for the

same left argument). On the contrary, commonsense relations are nearly al-

ways non-functional because they generalize the properties of the instances,

e.g., while the encyclopedic fact might be 〈Nicolas Sarkozy hasHeight short〉
or 〈Abraham Lincoln hasHeight tall〉; the commonsense counterpart would be

〈president canHaveHeight short,tall〉 thus making it set-valued. In general, as

one moves towards the root of the concept hierarchy, the concepts become more

generic and their attributes can admit many possible values while the nodes

towards the leaf are more specific, with specific attributes.

Typically, encyclopedic knowledge can be obtained explicitly from Web text

like Wikipedia and news corpora. However, commonsense knowledge is present

across multimodal documents, including text, images, and video. Table 2.1 sum-

marizes the key differences between commonsense and encyclopedic knowledge.

Table 2.1: Contrasting commonsense and encyclopedic knowledge

domain relation type source

Encyclopedic instances majority functional text

Commonsense concepts majority non-functional multimodal

2.2 Commonsense Knowledge Bases (KBs)

In order to build intelligent applications, knowledge must be represented and

stored in a formal machine-readable representation. Such a representation of

knowledge enables the intelligent applications to reason, i.e. find implicit conse-

quences of its explicitly represented knowledge. We discuss the different types of

representations of knowledge followed by a discussion on storing this knowledge

and pre-requisites for reasoning upon it.

2.2.1 Commonsense knowledge representation

Knowledge representation is concerned with how knowledge can be represented

symbolically in a formalized machine-readable format and reasoned. The primary

challenge in commonsense knowledge representation is the tradeoff between ex-

pressive power, compactness and efficiency. Due to this trade off, commonsense
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knowledge representation has received a lot of attention in the AI community

even prior to the 90s, see Dahlgren et al. (1989).

Knowledge representation approaches are broadly classified into two categories.

The first category is based on the hypothesis that predicate calculus can unam-

biguously capture commonsense facts. Reasoning over these predicates amounts

to verifying logical consequences. The second category is derived from human

memory and human execution of tasks like puzzle solving. Semantic networks

and frames are two popular representations. Semantic networks are based on

network shaped cognitive structures while a Frame is an abstract description of

a category (e.g., an event), organized in a hierarchy with the slots containing

data values for the semantics. Reasoning over these is performed using methods

that process hierarchical structures.

Both representations have pros and cons but it is possible to arrive at the best

of both worlds. The first category leads to precise reasoning but can be very

complex to design. The second category lacks precise semantic characterization

but given their human-centered origins, they are more appealing and effective

from a practical viewpoint. Hayes (1979) showed that frames could be given

semantics by relying on first-order logic. Consequently, this research led to the

development of Description Logic (DL) based representation. A characteristic

feature of DL is their ability to represent relationships beyond isA, these relations

are called roles (Baader et al., 2008). DL models concepts, roles and individuals,

and their relationships. The fundamental modeling concept of a DL is the axiom

- a logical statement relating roles and concepts.

2.2.2 Storing commonsense knowledge

Knowledge base: A knowledge base (KB) is defined as a collection of facts,

typically in a triple format 〈subject predicate object〉, representable as a graph.

Commonsense knowledge can be stored and indexed in a commonsense KB in

this format. A triple in such a commonsense KB holds the left argument (sub-

ject), right argument (object) and a relationship connecting them (predicate).

Optionally, metadata like triple confidence and context can be stored using reifi-

cation techniques that assign a unique ID to a triple and use the triple as the

left argument and hasConfidence as the relation and the confidence value as

the right argument.

There are two different classifications of KBs, schema-based and schema-free,

based on whether the KB has a restricted and canonicalized, or, unrestricted and

not canonicalized relations. In schema-based KBs, relations (and typically the

arguments) are canonicalized and restricted, and hence uniquely identifiable. In
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schema-free KBs, relations (and typically arguments) are not canonicalized and

not restricted. There has been recent work on canonicalizing schema-free KBs

(Galárraga et al., 2014). Schema-based KBs allow reasoning over the relations (as

they are canonicalized) while reasoning is typically not well-defined in schema-

free KBs.

Schema-free KBs: Schema-free approaches are well suited for large coverage

but lack semantics. It is very difficult to reason over schema-free KBs due to the

ambiguity in the meaning of the concepts and relations. There are well-defined

reasoning algorithms and architectures for commonsense knowledge. To leverage

these reasoners, it is essential to have a schema-based commonsense KB.

Schema-based KBs: The ideal representation for a (schema-based) common-

sense KB is an object model (often called an ontology in the AI community)

with concepts and relations. The predicates or relations are canonicalized, and

the left and right arguments of the triples are mapped to an ontology. Such an

ontology enables reasoning over the commonsense KB (Davis and Marcus, 2015).

Commonsense KBs can be connected to ontologies containing generic concepts

that describe very general concepts that are same across all domains. Such

an ontology is also called an upper level ontology. There are several upper

level ontologies (refer Mascardi et al. (2007)), most notably Cyc ontology (300K

concepts) with 12K concepts mapped to WordNet, and, SUMO (20K terms and

60K axioms) with all the terms mapped to WordNet.

Reasoning over schema-based commonsense KBs: For logical reasoning, isA

relation, organizing concepts in a hierarchy, is very valuable. WordNet is a can-

didate as a commonsense ontology. WordNet is an unparalleled lexical database,

the most used lexical resource in computational linguistics. WordNet is con-

nected to all prominent upper level ontologies, making it a preferred choice as

an ontology.

Is WordNet truly an ontology? Although WordNet was not intended to be

an ontology initially, it was eventually transformed as the organization of nouns

in WordNet bore many similarities to an ontology (Miller and Hristea, 2006).

Every noun begins with a single unique beginner: entity. In a reasonable

ontology, all terms are expected to conform to the membership relation of set

theory and would not contain instances. The confounding of classes and instances

in WordNet was resolved manually in WordNet version 2.1. This made WordNet

a suitable ontology that can be used for commonsense reasoning.
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WordNet is a closed vocabulary lexical database with infrequent updates and

thus limited concepts. Nevertheless, a large majority of upper level ontology

concepts are already present in WordNet. Although WordNet is rich in isA

relations, it contains a very small number of sparsely populated commonsense

relations so it cannot be a substitute of a commonsense KB but could function

as a reasonable ontology for the commonsense KB.

2.3 Commonsense KB Construction

The larger task of commonsense KB construction involves commonsense KB ac-

quisition, completion and reasoning. Commonsense KB acquisition task involves

populating a schema-free or schema-based commonsense KB with commonsense

knowledge triples using curated, semi-automated or automated techniques over

unimodal or multimodal data. A usual follow-up task after commonsense KB

acquisition is commonsense KB completion. The populated commonsense KB

can then be used to mine commonsense rules using inductive logic programming

(Blanco et al., 2011).

We can classify commonsense KB acquisition methods into four classes, irre-

spective of the modality of the input data or whether the commonsense KB is

schema-free or schema-based:

(i) In curated approaches, commonsense knowledge triples are created manually

by experts or even non-experts using knowledge authoring tools.

(ii) In collaborative approaches, triples are created manually by an open group

of volunteers. Typically, these are game-based acquisition methods.

(iii) In semi-automated approaches, either the method for extraction is semi-

automated or an automated extraction method is used over a fixed-schema

dataset.

(iv) In automated approaches, triples are extracted automatically from unstruc-

tured text via machine learning and natural language processing techniques.

2.3.1 Curated

The goal of curated commonsense KB is to codify millions of pieces of common-

sense knowledge in machine-readable form. Typically, the assertions in a curated

commonsense KB do not have a confidence score.
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Cyc: The pioneering work in this direction is Cyc. The Cyc project started in

early 1980s up until 2000s. Cyc contains a KB (Cyc KB), and a collection of Cyc

inference engines. Cyc KB is coded in a formal predicate calculus like syntax

language (CycL). Cyc assumes that each assertion should be considered true in

only certain contexts. Thus, all assertions are organized into more than 20,000

micro-theories whose assertions share the same set of assumptions.

The acquisition process of Cyc is that hundreds of thousands of facts and rules

have been formally codified by ontologists skilled in CycL. Additionally, Cyc

contains domain specific knowledge, e.g., defense domain, for which Cyc relies

on subject matter experts. According to Cyc’s documentation, the number of

facts entered by a subject matter expert is about 25 facts per hour. To overcome

the size limitations, we will later see an extension of Cyc that uses a game-based

interface and Wikipedia to automatically acquire more knowledge.

While Cyc has been ahead of its times, it is not clear whether the 15 years of

curated knowledge acquisition process was successful. It is not clear what fraction

of commonsense knowledge (concepts and not instances) does Cyc contain, and

what fraction deals with specialized applications such as defense, terrorism or

medical records. There have been conflicting reports about the usability of Cyc

from practitioners. Reports suggest that a large collection of Cyc has usability

problems including problems in understandability and portability to other sys-

tems. Conesa et al. (2008) further report that the Microtheory Taxonomy (MT)

in ResearchCyc is very difficult to use due to its organization. Some reasons

provided by them are:

• “There are over 20,000 MTs in Cyc with the taxonomical structure of MTs

being as deep as 50 levels in some domains.

• Many redundant sub-type relationships make it difficult to determine its tax-

onomical structure.

• Some MTs are very sparse but it is very difficult to discard them.

• Some MTs do not follow a standard representation of knowledge.”

WordNet: A much smaller and less formally represented commonsense KB is

WordNet. WordNet is aligned to several external knowledge sources due to its

popularity. Cyc is partially aligned to WordNet while other ontologies like SUMO

are mapped to WordNet. WordNet is carefully handcrafted, containing more

than 155,000 words organized in over 117,000 synsets, e.g., biologist, scientist,

animal, dog.

The WordNet synsets are connected by different relations, primarily either



18 CHAPTER 2. BACKGROUND AND RELATED WORK

linguistic or commonsense relationships. These relations include isA i.e. (hy-

per/hypo)nyms that connect generic nouns and verbs (hyper to more specific

respective nouns and verbs (hypo), part-whole relations substance meronym,

member meronym, and part meronym. Nouns and adjective synsets are sparsely

connected by attribute relation.

WordNet is limited in the coverage of concepts, number of relations and num-

ber of assertions. Concepts are ever emerging, e.g., hybrid cars, but WordNet

would not keep up with such emergence. The number of relations in WordNet

is limited, and the small set of relations present, are very sparse. For instance,

there are only 1200 part-whole relation triples.

VerbNet: VerbNet (Kipper et al., 2006) is a manually curated linguistic re-

source for English verbs. It provides complimentary linguistic and potentially

commonsense semantics to WordNet verbs. For each verb class, VerbNet lists

relevant thematic roles, semantic restrictions on the arguments, and syntactic

frames. For example, for the verb shoot, VerbNet lists multiple candidate senses,

and for the first of these, shoot1
vn, it provides, among others, the following syn-

tactic frame:

Agent.animate V Patient.animate PP Instrument.solid

This would match “He shot the man with a gun”. Here, several roles are accom-

panied by a semantic constraint, known as a selectional restriction. A selectional

restriction such as animate for the patient requires that this patient be a living

being when used in the given syntactic frame.

ImageNet (visual contents based): ImageNet (Deng et al., 2009) is a man-

ually curated image database organized according to the WordNet noun synset

hierarchy, in which each node of the hierarchy is depicted by hundreds and thou-

sands of images. ImageNet has an average of over five hundred images per

WordNet noun synset. ImageNet is manually curated.

ImageNet can be directly used to populate the commonsense relation appearsLike.

This is a useful relation in multimodal analysis for applications like robotic en-

gines (Saxena et al., 2014).

Manually curated approaches produce a very high quality KB. However, they

can be very costly especially if the task requires experts. These approaches tend

to have a low coverage because humans are known to be bad to recalling facts,

especially when they are as obvious as commonsense. These approaches take a

very long time to develop, e.g., Cyc could gather only hundreds of thousands of

facts over more than 15 years.
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2.3.2 Collaborative

In collaborative approaches, users individually or collectively play games and

produce useful computation as a side effect (Von Ahn, 2006), including mining

generic or domain-specific commonsense knowledge. In this sub-section, we re-

view a non-game based interface (OMCS ) and two popular games: a two player

game Verbosity and a single player game Virtual Pet, all aiming to collect com-

monsense.

Collaborative approaches offer several advantages. Collaborative approaches

have a faster acquisition rate and higher coverage than curated approaches. A

specialized audience is not required for commonsense elicitation. The quality of

aggregated assertions is very high because the assertions from different players

have the ensemble effect.

Verbosity: Verbosity considers two players: a narrator and a guesser. Given

a word (concept), the narrator can offer some clues (short assertion phrases) to

help the guesser guess the secret word. For example, if the secret word is laptop,

the narrator might prompt the guesser: “it has a keyboard”. Such an acquisition

typically brings out the most salient aspects of a concept. Verbosity also allows

a single player to play the game with a “bot” partner. The bot uses the collected

data when it is in the role of an automated narrator.

Virtual pet game: In the Virtual Pet Game (Kuo et al., 2009), players teach

their pets simple facts in order to raise the intelligence of their virtual pets. Vir-

tual Pets Game outperforms non-game based acquisition in collection speed and

quantity. That is, fewer contributors used lesser time to collect more common-

sense knowledge.

OMCS: The Open Mind Common Sense (OMCS) project is designed to col-

lect commonsense knowledge statements in English with supplementary projects

providing extensions to several other languages. OMCS contains nearly a million

statements from more than 15000 volunteers that led to more than 100K asser-

tions. The strength of the project lies in the ensemble effect of the statements,

and the challenge is user engagement.

OMCS uses a carefully designed interface to collect statements from the users.

In the first version, there were 25 different commonsense settings, each setting

with its own user interface, where the volunteer is presented a short story, e.g.,

“Bob had cold and Bob went to the doctor”, encouraging a volunteer to enter com-

monsense knowledge like “Bob was sick”, “the doctor prescribed him medicine”.
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In another version, volunteers can select a concept and fill predefined templates

associated with the concept. For example, given the template “can be used to”,

the volunteer could fill the left and right slots with “a pen” and “write” respec-

tively.

Visual contents based: Visual Genome (Krishna et al., 2016) is a recent,

crowdsourced KB that connects structured image concepts to text. A scene

graph models the commonsense assertions from an image in a graph connecting

concepts to attributes, their spatial relations and their interactions. The graph

representation has an advantage over natural language because it abstracts ob-

ject interactions of arbitrary complexity.

Collaborative approaches have greater efficiency of collecting commonsense

statements than manually curated approaches. Like the curated approaches, the

relations are pre-defined, leading to a schema-based KB. However, collaborative

approaches face the challenges of user engagement and maintaining a large user

base for redundancy, especially when the task (collecting commonsense) is so

simple and underwhelming. Further, the statements tend to be noisy and are

not canonicalized.

2.3.3 Semi-automated

In semi-automated approaches, we review ConceptNet, a semantic network repre-

sentation of the commonsense knowledge collected primarily from OMCS projects

and some other external resources like Wikipedia.

Semi-automated approaches have the advantage that they achieve high preci-

sion due to manual intervention at the beginning. Semi-automated approaches

have a faster acquisition rate and higher coverage than curated approaches but

with substantially lower precision.

ConceptNet: The pioneering semi-automated commonsense acquisition project

is ConceptNet (Liu and Singh, 2004; Lieberman et al., 2004; Havasi et al., 2007;

Speer and Havasi, 2012). It is one of the largest repositories of commonsense

assertions, covering commonsense relations including properties of objects, e.g.,

hasProperty; their relationships, e.g., madeOf; as well as their interactions, e.g.,

motivatedByGoal. ConceptNet contains 1.6 million assertions over 30,000 con-

cepts. In the ConceptNet graph, the nodes denote concepts and the edges (multi

graph) denote commonsense relations between concepts. Syntactically, the con-

cepts are either noun phrases, verbs, prepositional phrases, or adjectival phrases.
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ConceptNet is constructed in three stages. (i) Triple extraction using semi-

structured OMCS via lexico-syntactic patterns and argument type-constraints.

(ii) Normalization of arguments by stripping determiners and modals, e.g., falling

off a bike to fall off bike. (iii) Handcrafted relaxation rules to increase coverage,

e.g., IsA (apple, red fruit) imply propertyOf (apple, red).

ConceptNet supports several contextual commonsense reasoning functionali-

ties. This includes three node-level functionalities, including contextual neigh-

bors, analogy, and projection. In addition, there are four document-level func-

tionalities: topic-summary, disambiguation and classification, concept identifica-

tion, and emotion sensing.

ConceptNet includes a rare functionality: explicit negative assertions. Every

assertion has a confidence/ reliability score (multiple agreements) and a param-

eter of polarity. The polarity parameter has a value of either 1 or -1, where

negative values indicates a negative statement, e.g., from the OMCS statement

“people do not want to be hurt” to people desires be hurt, polarity -1.

The distinction between commonsense and encyclopedic knowledge is unclear

in ConceptNet-5 (latest version of ConceptNet). The partOf relation is addi-

tionally populated with Wikipedia and DBpedia’s geo-knowledge, e.g., 〈Berlin

partOf Deutschland〉. ConceptNet-5 is expanded to several languages, in addi-

tion to English.

Other approaches include Lebani and Pianta (2012), who studied relations like

hasSize, hasShape, etc., assigning their instances to word senses. However, it

solely relied on human elicitation for 50 nouns, and is not suited for automation

at large scale.

Compared to WordNet and Cyc, ConceptNet has the advantage of having a

simpler, less formal and more pragmatic contextual reasoning because Concept-

Net deals with knowledge that may not hold universally. On the other hand,

WordNet is optimized for lexical categorization and taxonomic word similarity,

Cyc is designed for formalized logical inference.

2.3.4 Semi-automated pattern-based

Another line of semi-automated approaches leverages handcrafted patterns over

an open corpus, providing more automation and higher coverage. We review the

work by Pasca (2014b) that employs semi-automated pattern-based approach to

extract commonsense. Other related methods include DART (Clark and Harri-

son, 2009). These methods differ in the input corpora, manually specified extrac-

tion patterns and ranking, typically based on an information theoretic measure

like mutual information.
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Pasca (2014b) extract commonsense knowledge from Google query log us-

ing manually specified targeted patterns. For example, their pattern: why

[is|was|were] [a|an|the|nothing] subj rel+obj matches the query why are (cars)subj

(made of steel)rel+obj.

As the patterns are fairly generic and the extractions are noisy, their scor-

ing function is an inverted document frequency like measure: score(F,C) =

LowBound(Wilson(N+, N )), where the fact is F , and C is a class (subject).

The score measures specificity as the lower bound of the Wilson score interval

(Brown et al., 2001) where N+ is the number of supporting queries, and N− is

the number of queries where the fact is extracted for a different class (subject).

While most of these methods acquire coarse-grained relationships, there is

little prior work on acquiring fine-grained commonsense relations. Almuhareb

and Poesio (2004) proposed patterns like “<object> is a/the <attribute> of

<subject>”, e.g., “brown is a color of dogs” to find more specific properties, but

even on the Web this method yields very low recall (Baroni and Zamparelli, 2010)

as commonsense relations are not as explicit in text.

Pattern-based methods provide higher coverage but lower precision than cu-

rated methods as the input corpus is orders of magnitude larger and automated

methods inevitably attract noise. Commonsense relations are not as explicit in

text, and it is difficult to enumerate all the potential subtle patterns by hand.

To overcome these limitations, typically automated methods are employed, that

we discuss next.

2.3.5 Automated

In automated techniques, the resulting commonsense KBs are either schema-free

or schema-based. Schema-free techniques focus on recall, while schema-based re-

strict on a smaller set with higher precision. Schema-free commonsense KBs have

ambiguous interpretations of triple arguments and the relations are not canoni-

calized while Schema-based commonsense KBs have canonicalized relations and

may have disambiguated arguments.

2.3.5.1 Schema-free

The most popular schema-free methods to extract knowledge are Open Infor-

mation Extraction (OpenIE) based, including shallow syntactic parsing based

(e.g., TextRunner (Yates et al., 2007), ReVerb (Fader et al., 2011a), R2A2 (Et-

zioni et al., 2011)) or deep syntactic parsing based systems (e.g., ClausIE (Corro

and Gemulla, 2013), Weltmodell (Akbik and Michael, 2014), KNext (Schubert,
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2002)). These systems do not discriminate between encyclopedic and common-

sense knowledge. They do not have a notion of entities and concepts primarily

because the arguments are ambiguous. The relations in the extracted triples are

phrases and hence the relations are open. We discuss these methods assuming

that it is possible to tell apart encyclopedic and commonsense triples.

Shallow syntactic parsing methods: TextRunner extracts all possible 〈noun

phrase verb phrase noun phrase〉 triples from text using a three-stage archi-

tecture. TextRunner uses a chunker to identify noun phrases and subsequently

identifies normalized verb phrase relations between noun phrases, heuristically

discarding non-essential modifiers. A Naive Bayes classifier, trained over a small

subset of extractions that satisfy handcrafted heuristic constraints, is used to

retain meaningful extractions. Finally, a redundancy-based assessor evaluates

each retained extraction using a probabilistic model of redundancy.

ReVerb is a follow-up architecture to TextRunner, providing robustness over

the relational phrase expression errors. A syntactic constraint on relational

phrases avoids meaningless relational phrases by enforcing that the relational

phrase is contiguous, begins with a verb, and ends with a preposition. A lexical

constraint on relational phrases is then introduced to avoid rare and meaningless

relational phrases by thresholding on the number of distinct argument support.

ReVerb searches for the longest sequence of words around a verb that satisfies

the syntactic and lexical constraint. It then finds the nearest noun phrases to the

left or right of each such relational phrase. Finally, a logistic regression classifier,

trained on five features based on aforementioned heuristic constraints, estimates

confidence score for the extraction.

R2A2 uses multiple supervised classifiers to identify the arguments that go

beyond just noun phrases. The supervised classifiers detect the left bound and

the right bound of each argument. The classifiers use several heuristic features,

e.g., whether the second argument was followed by an independent clause or verb

phrase. R2A2 is the best-performing shallow syntactic parsing based OpenIE

extractor.

Deep syntactic parsing methods: Among the deep syntactic parsing based

OpenIE systems, we discuss ClausIE, Weltmodell and KNext. ClausIE post-

processes the dependency parse output to find all possible clauses in a sentence

that respect the seven rules to construct clauses in an English sentence. The

quality of ClausIE is bounded by the accuracy of the parser. It is significantly

slower than the shallow parsing systems due to dependence on the parser but
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has higher quality and higher coverage including indirect triples, e.g., “the ball

and the wheel are round” to 〈the ball is round〉 and 〈the wheel is round〉.
Weltmodell applies the dependency output based OpenIE system by Akbik

and Löser (2012) over Google syntactic books n-grams. Using heuristic rules

over typed dependencies, Weltmodell collect subjects, passive subjects, particles,

direct and prepositional objects of the verb. The confidence on the extracted

facts is computed using PMI. Weltmodell does not discriminate between classes

and named entities as arguments (an important distinction for commonsense

knowledge), and is limited to single word arguments.

While ClausIE and Weltmodell can elicit explicit assertions, KNext has focused

on implicit general possibilistic propositions from parse trees. General implies

the open relations and possibilistic implies that the assertions are possible. For

example, given the sentence “the dog got into the car through the open window”,

they can infer that “it is possible for a dog to enter a car”, “cars probably have

windows”, and “windows can be open”. KNext starts with general phrase struc-

ture patterns to match the parse tree in bottom-up fashion. For each successfully

matched sub-tree, the system first abstracts the interpretations of each essential

constituent of it, e.g., “an open window at the rare end of the car” would be

abstracted to “a window”. Subsequently, compositional interpretive rules help

combine all abstracted interpretations and finally derive a general possibilistic

proposition.

The OpenIE systems do not discriminate between encyclopedic and common-

sense knowledge. This is partially because the arguments and relations are not

canonicalized. These systems are typically not designed to construct and orga-

nize a commonsense KB (or even a KB), rather their goal is to acquire triples

for a use-case like question answering. The shallow syntactic parsing methods

typically have low precision while deep syntactic parsing methods do not scale.

2.3.5.2 Schema-based

Schema-based methods populate a predefined relation. The schema-based meth-

ods to extract commonsense knowledge are either pattern-based or reasoning/learning-

based. Pattern-based methods start with a small set of seeds to induce patterns

that are used to extract more facts. While pattern-based methods provide a

high recall, their precision is rather low due to the semantic drift and unreliabil-

ity of patterns and facts. Learning and reasoning-based methods perform joint

reasoning over the pattern-based methods style extraction.
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Pattern-based methods: Pattern-based methods are based on the pattern-fact

duality paradigm (Brin, 1998) that good seed facts lead to good patterns for a

relation, and good patterns help to extract good facts. Pattern ranking and fact

ranking are the two important ingredients in these methods. Typically, corpus

based statistics is used to model these scoring functions. The choice of seeds

also plays a role in the quality of the extracted facts (see Tandon (2011) for an

overview).

While pattern-based methods have been very popular in encyclopedic knowl-

edge harvesting, Tandon et al. (2011) extend ConceptNet using a pattern-based

method. They automatically compile millions of triples of the form 〈 noun re-

lation adjective 〉 by mining n-gram corpora. Large n-gram corpora are a good

source for Information Extraction (Tandon and De Melo, 2010) despite a small

context of usually maximum five words.

Their system requires a small number of high-quality seed assertions from

ConceptNet to induce the extraction patterns, with a scoring model that rewards

patterns with high seed support and high specificity. They limit the iterations

to only one cycle from seed assertions to patterns and from patterns to new

assertions because pattern-based methods are known to be prone to semantic

drift. While they gathered millions of commonsense knowledge assertions, the

relation arguments were surface forms and the relations were fairly generic such

as hasA, hasProperty, or capableOf, and the precision was rather low.

Pattern-based methods suffer from low precision and several extensions are

proposed, e.g., Tandon et al. (2012). The sources of these errors are either the

input source (e.g., noisy Web collections) or the patterns that can be too generic

for commonsense relations like hasProperty, e.g., “X is Y ”.

Reasoning-based methods: While Pattern-based methods elicit the explicit

or subtly implicit knowledge in text; reasoning-based methods can bring out the

implicit assertions. In these methods, inductive learning helps to generalize and

eventually enlarge the KB by generating rules from some existing facts to gener-

alize to more knowledge. These methods also use rules to prune out potentially

false assertions that violate the constraints. For example, if we add a constraint

that “a fruit can have only one color”, and so far we accumulate several colors

of a fruit, then, we may be able to eliminate the false hypotheses by means of

constraint violation.

NELL (Carlson et al., 2010) is a learning agent whose task is to acquire

knowledge (mostly encyclopedic but also some commonsense knowledge like part

whole relations) from the Web in a continuous manner. NELL takes an initial
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ontology as input that defines categories and their binary relations, with some

seed categories and relations. NELL learns extraction/inference models and uses

the models to extract/infer new knowledge by expanding the domain and range

of these relations automatically from the Web and inferring new relations among

them to update the initial ontology. Then, a coupled morphological classifier

learns a set of binary L2-regularized logistic regression models per category or

relation. Beliefs from the KB are used as training instances, and mutual exclu-

sion relationships are used to identify negative instances. Finally, a rule learner

learns a set of probabilistic Horn clauses, which are used to infer new relation

instances from other already-known relation instances.

While NELL has acquired large amounts of knowledge (and some commonsense

knowledge), the coverage of the system is rather low. Moreover, these systems

are computationally very expensive and thus do not scale to the Web.

Learning-based methods: Parallel to pattern-based and reasoning-based meth-

ods, learning-based methods are used to acquire more knowledge, starting from a

smaller set of known positive and negative examples. Statistical relation learning

is a family of algorithms used to acquire more knowledge and validate existing

knowledge. These methods associate assertions based on their similarity (either

in the latent space or in a graph) and propagate similar labels to similar asser-

tions. While these methods consider that the correctness of all triples is condi-

tionally independent given the graph or the latent space, another member of this

family of algorithms, namely Markov Logic Network (Richardson and Domin-

gos, 2006) drops the independence assumption. Given a set of constraints, the

Markov Logic framework optimizes for a set of assignments such that the joint

assignment satisfies the constraints.

AnalogySpace (Speer et al., 2008) can generate the analogical closure of a

KB through dimensionality reduction. Each concept subject S in a triple 〈S P

O〉 is viewed as a vector over P + O. The vector is full of noise as the triples

are extracted using a semi-automated method. Thus, AnalogySpace reduces

the dimension of the vectors and then compares these vectors to infer more

knowledge. Consider an example, suppose AnalogySpace knows that a newspaper

has information while it does not know that anything about a magazine, then,

given the proximity of newspaper and a magazine in the dimensionality reduced

space, it can infer that a magazine also contains information.

The learning-based methods are a powerful tool, but can be computationally

expensive for very large graphs. Efficient optimization algorithms are an active

area of research to increase scalability.
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KB verification: Directly extracting commonsense knowledge from vision poses

challenging problems in vision like object and attribute detection. Instead of

extracting commonsense from images, visual verification of the knowledge in the

KB might be more robust. That is, commonsense may be gathered from a high-

level semantic understanding of a visual scene, and a low-level pixel information

can be avoided.

The task of verifying relation phrases (Vedantam et al., 2015) is to validate

an existing acquired assertion by analyzing the frequency of its occurrence in

text. For factual knowledge, redundancy is a very reasonable assumption. Since

commonsense knowledge is oftentimes implicit in text, it is not clear whether

frequency based textual verification is robust. Many high frequency relations

occur in text but are not true in the real world, e.g., 〈pelican pierce breast〉.
Conversely, many relations occur in text with low frequency but are true in the

real world, e.g., 〈chimpanzee eats ice-cream〉. However, such facts are evident

in images and visuals.

Given the recent advancement in analyzing images, new methods extract com-

monsense knowledge from images (Sadeghi et al., 2015) directly. However, these

methods suffer from coverage issues as images only contain visual attributes and

are less robust due to the noise that comes along the vision analysis systems.

Vedantam et al. (2015) study the plausibility of a commonsense assertion using

visual cues and verifying a commonsense triple from image. They predict the

plausibility of interactions or relations between a pair of concepts by grounding

commonsense assertions in the visual space and evaluating the similarity between

assertions using the visual features. This is an active ongoing research area.

2.3.5.3 Visual contents based methods

Commonsense knowledge finds applications in the vision community thereby in-

stilling interest to acquire it. Image recognition benefits by modeling common-

sense context in images. Commonsense knowledge also benefits action classifi-

cation systems for tasks like zero-shot affordance for human-object interactions,

i.e. whether a given activity/ action can be performed by an object. Typically,

external knowledge or handcrafted commonsense KBs are used for this purpose

(Zhu et al., 2014). However, commonsense is also implicitly present in images

prompting recent progress to mine commonsense from images.

Recent systems mine commonsense knowledge either directly from images or

jointly with text. Given a concept (e.g., hill), LEVAN (Divvala et al., 2014)

trains detectors for a wide variety of actions, interactions and attributes involv-

ing the concept (e.g., hill walking). LEVAN mines relevant n-grams in text
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that are associated with the given concept, thereby capturing intra-concept vari-

ance. To avoid training detectors for visually non-salient activity concepts like

abstract bigrams, LEVAN assumes that only visually salient bigrams will pro-

vide any meaningful object detection accuracy. In another line of work, Johnson

et al. (2015) build a scene graph representation for image retrieval which mod-

els attribute and object relations. Their system is trained on mechanical turk

annotated scene graphs grounded to images. In an image, the system can elicit

commonsense about the concepts, their attributes and interactions.

NEIL (Chen et al., 2013) analyzes images of the web to acquire common-

sense knowledge relations like partOf and visual attributes of concepts using

object and scene detectors to infer an object’s visual attributes (color, shape)

and partOf relationships. To start, NEIL queries Google image search with some

seeds (surface forms of concepts, e.g., jaguar or scenes like parking lot). The re-

sults can be noisy, and thus NEIL first clusters the image results based on their

visual appearance and then trains object/scene detectors. After training these

detectors, at test time NEIL detects the objects in an image and records the

visual attributes, e.g., 〈object hascolor yellow〉. Thus, it infers object-attribute

relations and scene-attribute relations. Further, NEIL infers 〈tail partOf jaguar〉
and 〈jaguar found near tree〉 using bounding box techniques.

Lin and Parikh (2015) acquire visual commonsense from images and use it to

answer textual fill-in-the-blank and visual paraphrasing questions. They imagine

a scene as the underlying context and model visual commonsense in the context

of a scene.

Extracting commonsense from visual content requires automatic and accurate

detection of objects, their attributes, poses, and interactions. However, these

are challenging, not completely solved problems in computer vision. Oftentimes,

the visual analysis systems do not fully leverage the power of text jointly with

the image, e.g., NEIL does not leverage the surrounding text that could prove

useful.

In summary, we reviewed several commonsense KB construction methods and

while each has its own novelty, none of them is complete, semantically orga-

nized, multimodal and automated. While curated KBs are costly and small,

crowdsourced KBs are small and difficult to drive. Semi-automated approaches

can scale well but there is not enough structured data and manually specified ex-

traction patterns attract extraction noise. Automated approaches are typically

not semantically organized, noisy and derived from either text or images but not

multimodal.
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2.4 Applications of Commonsense KBs

Commonsense knowledge finds applications across a variety of domains (Lieber-

man et al., 2004). We provide a brief overview of applications in NLP, computer

vision and robotics that leverage commonsense knowledge.

NLP: There has been phenomenal progress across various disciplines of NLP.

Natural Language Understanding (NLU) is a growing field within this landscape

(Winograd, 1972). Bar-Hillel (1960), in as early as 1960, outlined the importance

of commonsense knowledge for NLP, especially disambiguation.

While distributional similarity provides a sparse, noisy neighborhood that has

been useful for query expansion, commonsense knowledge provides low dimen-

sional, high quality dense vectors. Expansion of concepts using relations like

isA, part-whole, hasProperty etc. has been shown to outperform other query

expansion methods (Hsu et al., 2006).

Another line of commonsense knowledge application has been in event predic-

tion by gathering commonsense from manually written procedural scripts (Reg-

neri et al., 2010).

Great advancements in NLP have been made through word vector statistics

and linguistic analysis. However, more intelligent NLP systems would require

commonsense knowledge for more informed decision-making capabilities, e.g.,

statistical translation engines make silly mistakes such as the English translation

of “Das Bier bestellte der Vater” (“The father ordered the beer”) to “The beer

ordered the father”. If such systems are equipped with commonsense knowledge

about selectional preferences that a person can order beer and not vice-versa,

such mistakes are avoidable.

Recently, there have been prominent proposals for alternatives to the Turing

Test, such as Winograd Schema Challenges (Levesque et al., 2011) and multi-

modal comprehension tests (Venugopalan et al., 2014). These require large-scale

commonsense knowledge and commonsense rules.

Computer vision: Recent breakthroughs in computer vision and NLP have now

led to systems that are able to interpret images and automatically generate image

captions. We show how commonsense knowledge can contribute to solving the

building blocks in such tasks.

An object detector can detect, demarcate and classify objects in an image.

These detectors require a concept taxonomy of object classes to enable more

informed hierarchical decision making (Deng et al., 2009). Such an information

can be derived from a commonsense KB. Even the limited partOf knowledge
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from WordNet has helped improve object detection (Rohrbach et al., 2011).

For example, having the knowledge that 〈wheel partOf bike〉, provides better

estimates for bounding boxes of a bike.

There has been a lot of interest in scene understanding (Xiao et al., 2010) and

activity understanding (Kim et al., 2010). Commonsense knowledge has been

used to train the activity detectors with richer commonsense context vectors.

Current Vision systems can incorporate a limited amount of commonsense

while trying to learn more automatically from images. However, these systems

require large amounts of commonsense background knowledge for bootstrapping,

e.g., for activity detection, we need a taxonomy of visual activities with their se-

mantic contexts. Emotion analysis in abstract scenes remains an elusive problem

that requires large-scale commonsense knowledge.

Robotics: Autonomous robots working in an uncontrolled environment require

commonsense knowledge and acceptable norms about the environment. Robotic

tasks typically include perception, planning and control.

Consider an example where a home robot is asked to perform a common task

like “Bring me cold coffee”. Solving such problems has been a long-standing goal

in robotics involving a multitude of information. A robot would require spatial

knowledge to prune the search space (e.g., avoiding a washroom for this task),

along with other capabilities like navigation.

We only focus on the commonsense knowledge to enable this task. A modern

robotic engine like in Stanford’s Robo Brain project (Saxena et al., 2014) con-

tains handcrafted commonsense knowledge about the environment including the

properties of the object in the environment, their relationship with respect to

each other, and their interaction semantics. When the robot is asked to “bring

cold coffee”, its engine must translate the instruction into the perceived state of

the environment: (i) models for object detectors for cold coffee, and a refrigerator

(ii) knowing that cold coffee can be kept on a table or inside a refrigerator, and

a refrigerator or table can be found inside a kitchen, (iii) knowledge that coffee

can be poured in a cup. Other types of knowledge required is that a cup can

be grasped in certain ways, and needs to be kept upright, and that the pouring

trajectory should obey user preferences of moving slowly to pour.

Current robotic engines handcraft the knowledge while automatically learning

the visual orientations. A large-scale commonsense KB would further propel

more intelligent robotic engines.



3 Commonsense on Object

Properties

In this chapter, we investigate the first category of commonsense relations, i.e.

commonsense on object properties. We present the methods for one instance

of such class of relations: refined hasProperty relations, with disambiguated

arguments. Such knowledge has never been automatically compiled at large-

scale before.

3.1 Introduction

Motivation. We all know that apples are round in shape and carrots are or-

ange in color and have a longish shape. Computers completely lack this kind of

commonsense knowledge, yet they would enormously benefit from such an asset

for various use-cases of growing relevance: language understanding for transla-

tion or summarization, human-computer dialog, faceted search and search query

suggestions, sentiment analytics on social media, and more.

State-of-the-art and its limitations. There has been considerable research

across several disciplines to automatically acquire knowledge about attributes of

objects.

Linguistics. Selectional preference approaches (McCarthy, 2001) exploit a large

corpus and model the preferences of predicates (e.g., the adjective brown has a

strong preference towards rock). These methods combine observed frequencies

with knowledge about the semantic classes of their arguments (obtainable from

corpora or dictionaries).

Approaches based on dependency parsing over text (Akbik and Michael, 2014)

have been used to extract a noun and its property i.e. amod edge over text like

“brown rock” or nsubj edge over text like “the rock is brown”. These methods

require the computationally expensive dependency parse and their accuracy is

limited by the parser’s accuracy.

31
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In the context of property commonsense, the output of these linguistic methods

can be interpreted as 〈brown relatedToAttribute color〉 or 〈rock hasProperty

brown〉. These methods typically do not disambiguate the adjective or the noun,

although some work does exist to disambiguate the arguments in selectional

preference (McCarthy and Carroll, 2003). More importantly, they do not deal

with assertion classification.

Lexical semantics based approaches like that of Almuhareb and Poesio (2004),

who propose patterns such as “<adjective> is a <attribute> of <noun>”, e.g.,

“brown is a color of rocks” to find more specific properties. Even on the Web

this method yields very low recall (Baroni and Zamparelli, 2010) as commonsense

relations are not explicit in text, the frequency of “brown rocks” in text is much

higher than “brown is a color of rocks”.

Hartung and Frank (2010, 2011) develop distributional semantic models for

mapping surface form assertion candidates into a set of refined (fine-grained)

relations. They relax the low-recall patterns of Almuhareb and Poesio (2004) by

specifying two sets of patterns, the first set gathers the attribute and the noun,

while the second gathers the attribute and the adjective. For example, “<adjec-

tive> in <attribute>” to acquire 〈brown relatedToAttribute color〉 and “<at-

tribute> of <noun>” to acquire 〈rock relatedToAttribute color〉. By aggrega-

tion, adjectives and nouns have a distribution vector over the attributes. They

use vector-space as well as LDA-based topic models to then select an attribute

for a pair of noun and adjective.

These methods assume that the given assertions are already correct instances

of at least the generic hasProperty relation and require explicit commonsense

relations in text. Further, these works tackle the assertion classification problem,

not the problem of computing assertions from raw data and do not produce

disambiguated arguments.

Sentiment analysis. In product reviews, attribute classification allows for deeper

sentiment understanding. For example, consider a review “the car is too expen-

sive”; in this sentence, the attribute (referred to as implicit aspect in the sen-

timent analysis community) is cost and bears a negative sentiment. Fei et al.

(2012) identify the attribute of adjectives by extracting all nouns in a dictio-

nary’s gloss assuming that attributes are very likely to be present in glosses

(e.g., the gloss of expensive mentions “marked by high prices”). Subsequently

they iteratively expand over the neighborhood using synonyms and other related

adjectives. Their method classifies based on a dominant attribute for an adjec-

tive and thus cannot handle the different senses of an adjective (e.g., hot might
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always be classified as temperature but never taste).

Computer vision. Attribute-centric image representation (Farhadi et al., 2009)

treats objects as a distribution over visual attributes. For example, something

brown, furry, spotty is likely to be a dog. Several approaches (Lazaridou et al.,

2015) have extracted visual attributes from images directly by training classifiers

for visual attributes.

Attribute classification from images is a recent and attractive complement to

text based linguistic approaches. Not all commonsense is expressed in text, and

for such attributes, computer vision based techniques provide complementary

knowledge (Shutova et al., 2015). However these approaches are limited to a small

set (annotating training images per visual attribute, e.g., furry, is expensive) of

visual-only attributes (so for example, they cannot capture evokesEmotion or

hasTaste). Secondly, these approaches do not classify the attributes and thirdly,

there is no explicit disambiguation of the adjectives.

Knowledge acquisition. Among the manually curated commonsense KBs, Cyc

has compiled complex assertions such as every human has exactly one father and

exactly one mother, but did not aim to gather properties of objects at large-

scale. WordNet has manually organized nouns and adjectives into lexical classes,

with careful distinction between words and word senses; however, nouns and

adjectives are not connected by any semantic relation, except the extremely

sparse attribute relation (with around 1,200 links). Note that it is in fact

a non-trivial task even for a human to recall a long list of possible shapes or

possible weight attributes (other than the most basic ones like heavy, light).

Among the (semi-) automated approaches, ConceptNet contains the generic

relation hasProperty but not fine-grained properties. Lebani and Pianta (2012)

proposed encoding additional lexical relations for commonsense knowledge into

WordNet, but their approach is inherently limited by relying on human input

and also focuses on simple relations such as usedFor, partOf, etc. Clark and

Harrison (2009) create commonsense propositions like 〈birds can fly〉 or 〈hotel

can be small〉 using manually defined proposition templates, but their method

does not produce fine-grained properties. Tandon et al. (2011) automatically

extend ConceptNet with millions of triples of the form 〈noun relation adjective〉
by mining the N-gram corpora; their hasProperty relation is by definition as

coarse-grained as ConceptNet.

None of these knowledge resources has refined properties like shape, size, taste,

emotion, etc., and none have produced large amounts of semantically organized
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knowledge that distinguishes the different meanings of ambiguous properties such

as hot, which can refer to temperature, taste, or emotion. For example, the KB

by Tandon et al. (2011) would merely have simple triples like 〈milk hasProperty

hot〉, 〈chiliPepper hasProperty hot〉, 〈dress hasProperty hot〉. Thus, state-of-

the-art commonsense KBs still have severe limitations: i) sparseness on aspects

that go beyond generic relations, ii) focus on crude relations, without distin-

guishing different semantic properties, and iii) no distinction between words and

their different senses.

Problem statement. We aim to compile a large and clean set of fine-grained

commonsense properties, connecting noun senses with adjective senses by a va-

riety of relations. In contrast to prior work that only dealt with a generic

hasProperty relation, we use 19 different (sub-) relations like hasShape, hasSize,

hasTaste, hasAbility, evokesEmotion, etc. This list is systematically derived

from WordNet covering the hyponyms of the WordNet noun sense attribute.

It is important to consider semantic refinement on the components of the

property relations. A KB without this distinction, would not know how to treat

ambiguous assertions. For example, 〈plant hasProperty green〉, there are two

different interpretations with very different meanings as discussed in Chapter 1:

〈industrial-plant hasQuality green-environmental〉
〈botanical-plant hasColor green-color〉

Definition 3.1.1 - Property assertion.

A property assertion Ap is a triple 〈w1sn r w2sa〉 where w1sn is a

noun sense in WordNet, and w2sa is an adjective sense in WordNet, and

r is a property relation. Every property assertion is accompanied by a

confidence score 0 ≤ Θ(Ap) ≤ 1.

In order to draw these distinctions, WebChild maps the arguments of the prop-

erty assertion to WordNet and classifies the relations to a finer-grained taxonomy

of properties.
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Definition 3.1.2 - Domain and range.

A property commonsense relation r has a domain dom(r) com-

prising of the set of noun senses that appear in r as left-hand arguments.

The range rng(r), of r, is the set of adjective senses that appear in r as

right-hand arguments.

Thus, our goal is to populate these relations with assertions (see Definition

3.1.1) in the form of triples 〈w1sn r w2sa〉 where w1sn is a noun sense in WordNet,

and w2sa is an adjective sense in WordNet, and r is one of the considered relations.

Each relation r has a domain dom(r) and range rng(r), see Definition 3.1.2.

Our approach. We present WebChild, a large commonsense KB automatically

built from Web sources by a novel method relying on semi-supervised learning.

WebChild contains more than 4 million assertions for fine-grained relations such

as hasTaste, hasShape, evokesEmotion, etc. We use a judiciously designed

form of label propagation (LP) (see Talukdar and Crammer (2009) for an intro)

for learning the domain set, the range set, and the extension of such relations, at

large scale. To this end, we first construct graphs that connect nouns, adjectives,

and WordNet senses as nodes, by weighted edges. The edge-weights are derived

from sense relatedness, pattern statistics, and co-occurrence statistics.

We harness WordNet and Web data to obtain seeds to initialize the LP graphs,

and then use LP algorithms to derive high-quality assertions for fine-grained

relations between noun senses and adjective senses.

Contributions. Our system has a number of salient characteristics and results

in a large commonsense KB with unique qualities:

1 Fine-grained assertions: WebChild is the first commonsense KB that pro-

vides refined hasProperty relationships between nouns and adjectives into

specific and thus more informative relations. We support 19 different relations

like hasShape, hasSize, hasTaste, evokesEmotion, at more than 80% accu-

racy. These are systematically derived from and cover the hyponyms of the

WordNet noun sense attribute (an abstraction belonging to or characteristic

of an entity).

2 Disambiguated arguments: The arguments of all assertions in WebChild

are disambiguated by mappings to WordNet senses: noun senses for the left-

hand arguments of a relation, and adjective senses for the right-hand argu-

ments.
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3 Minimal supervision: Our method does not require any labeled assertions

for training. Instead, we use bootstrapping based on Web patterns and Word-

Net. Our method copes with noisy input from the Web, including noisy seeds

in the bootstrapping.

3.2 Methodology

We decompose the problem of finding assertions for fine-grained commonsense

relations into three sub-tasks.

1. Range population: First, we compute adjective senses that occur in

the range of each of the WebChild relations (see Table 3.1 for a list of

relations). For example, for the hasColor relation, we obtain a list of color

attributes including, e.g., green1
a, the color sense of green from WordNet,

but not the environmental sense of green. For the hasShape relation, we

obtain a list of possible shapes, e.g., circular2
a.

2. Domain population: Our second task is to compute noun senses for

the domain of each relation. For example, war1
n for the evokesEmotion

relation, and pizza2
n for the hasTaste relation.

3. Computing assertions: Finally, we aim to map generic word-level as-

sertion candidates 〈noun hasProperty adjective〉, gathered from Web cor-

pora, into fine-grained assertions about word senses. For example, 〈car

hasProperty sweet〉 is mapped into 〈car1
n hasAppearance sweet2

a〉.

Table 3.1: List of WebChild relations:

Relation r dom(r) rng(r)

hasAbility hasAppearance hasBeauty

hasColor evokesEmotion evokesFeeling

hasLength hasMotion hasSmell

hasQuality hasTaste hasShape

hasSize hasSound hasState

hasStrength hasSensitivity hasTemperature

hasWeight
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3.2.1 Candidate gathering

For all three sub-tasks we can start with a small number of seeds obtained from

WordNet, for example, by using the attribute information that connects relational

noun senses (e.g., shape1
n) with adjective senses (e.g., straight1

a and crooked1
a).

This is very sparse data (e.g., there are only 2 adjective senses for the attribute

shape). Our specific choice of seeds depends on which of the three sub-tasks we

are dealing with. This will be discussed later in the respective sections.

To build a knowledge base of high coverage, we gather candidates for assertions

from the Web. For this purpose, we harness a huge N-gram corpus: the Google

Web 1T N-Gram Dataset Version 1 (Brants and Franz, 2006), which consists

of 1.2 billion 5-grams (i.e., 5 consecutive words or other tokens) derived from

the index of the Google search engine. Each of these 5-grams comes with its

frequency of occurrences on the Web. Thus, we can use these frequencies to

simulate a full Web corpus. However, we also face the restriction that N-grams

are limited in length to 5.

To gather assertion candidates from this data, we employ surface patterns

whose matches return N-grams that contain a noun and an adjective that are

likely to be related, in a generic hasProperty sense. Note that the resulting

candidates are still at the word level; there is no way of mapping them to senses

at this stage. We define generic templates for lexical patterns of the form

“<noun> linking verb [adverb] <adj>” or

“<adj> <noun>”.

Linking verbs are different forms of “to be”, “to become”, “to smell”, “to taste”,

etc.1 Our templates capture many variations of assertions. Examples are

apple was really <adj>,

apple was <adj>,

<adj> apple.

Applying this family of patterns to the Google N-gram corpus results in 3.6

million noun-adjective pairs. Many of these are noise (i.e., incorrect), and none

of them is disambiguated onto senses yet.

3.2.2 Semi-supervised inference on graphs

The candidates obtained by the outlined procedure are usually very noisy, not

yet disambiguated, and not yet assigned to our fine-grained relations – they are

just word pairs for the generic hasProperty relation and are still ambiguous. To

distill the good pairs from the noisy pool and to map words onto proper senses

1see http://en.wikipedia.org/wiki/List_of_English_copulae for a full list

http://en.wikipedia.org/wiki/List_of_English_copulae
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and noun-adjective sense pairs into specific relations, we use a semi-supervised

classification method over judiciously constructed graphs. To this end, we employ

the method of label propagation (LP) (Talukdar and Crammer, 2009).

For each of the three sub-tasks towards building WebChild, we construct a

graph with words (or word pairs) and possible word senses (or sense pairs) as

nodes. A small number of nodes encode seeds, with known relation labels. Edges

reflect the relatedness of nodes; with weights derived from Web statistics and

WordNet information (see Figure 3.1). The specifics of the graph depend on the

sub-task that we are dealing with, and will be discussed in the following sections.

Figure 3.1: The generic graph for label propagation. The nodes represent surface

forms and senses. The weighted edges are: (i) in blue: surface form-

surface form similarity edges, (ii) in green: surface form - sense simi-

larity edges, (iii) in red: sense - sense similarity edges. Computations

of these edge weights appears in the respective sub-sections of Range,

Domain and Assertion computations.

LP computes scores for nodes having certain labels. In our setting, these

labels are used to distinguish different relation types. For inference, we use the
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MAD (modified adsorption) algorithm (Talukdar and Crammer, 2009), which

has shown good performance for graphs with high numbers of incident edges

per node. Our graphs have this property because adjectives usually have many

possible senses.

MAD propagates labels to neighboring nodes along the graph’s edges; a high

edge weight implies that the incident nodes are likely to have the same label. Seed

nodes are expected to retain their original labels. Additionally, regularization is

employed to minimize label changes within a neighborhood, which is essential

to avoid overfitting. To encode this intuition, the MAD algorithm minimizes a

loss function. Assume that the graph is represented as a weighted adjacency

matrix W and that the label vectors of the nodes are encoded into matrices Y

for the initial labeling and Ŷ for the final predicted labeling. (Y∗l) and (Ŷ∗l)

denote the lth column vector of the initial matrix Y and the final label matrix

Ŷ , respectively. Then the loss function is:

L(Ŷ ) =
∑
l

[
µ1 (Y∗l − Ŷ∗l)TSl(Y∗l − Ŷ∗l)

+ µ2 Ŷ
T
∗l LŶ∗l

+ µ3

∥∥∥Ŷ∗l −R∗l∥∥∥
2

]
, (3.1)

The first term encodes that initial and final labels for seed nodes should mostly be

the same. This is enforced by the diagonal matrix S having Svv = 0 for non-seed

nodes, while for seed nodes Svv is set to monotonically increase with the entropy

of a node’s transition probabilities (such that high degree nodes are discounted).

The second term encodes that neighbor nodes obtain similar labels. This effect

is realized by the unnormalized graph Laplacian L of the weighted adjacency

matrix W . The third term contributes to the regularization of the estimated

labels, in order to avoid over-fitting to their seed labels. This is enforced with

an abandonment matrix R having a zero-valued column vector corresponding to

every label, except the dummy label (the dummy label is an additional label that

has a large value if the node cannot be properly labeled). A pre-defined weight

is computed for the dummy label, in proportion to the nodes’ degrees.

The MAD algorithm is a variant of the Jacobi method (also used for PageR-

ank, for example), an iterative process that uses the current labels of nodes to

update the label scores for neighboring nodes. When this process converges or

a specified number of iterations are reached, each vertex is associated with a

vector indicating the estimated labels (including the dummy label). The dummy

label has a large value if the node cannot be properly labeled. In our setting, we

apply this procedure for each relation separately, comparing the relation labels
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vs. the dummy label in the resulting output. We accept the relation label only

if its final score is larger than that of the dummy label.

3.3 Relation Ranges

We now discuss how we are able to apply this same methodology to each of the

three sub-tasks introduced in Section 3.2. Our first sub-task addresses the prob-

lem of identifying possible adjective senses for the range of each of the relations

supported by WebChild. For example, for hasTaste, we expect adjectives like

delicious, spicy, hot, sweet, etc., whereas these adjectives do not make much sense

for the hasShape relation. The main difficulty that we face with this task is to

move from the word level to word senses. So actually, we aim to populate the

range of hasTaste with senses delicious2
a, spicy

1
a, hot

9
a, sweet

1
a, etc. Some of

these surface words also appear with other relations; for example, hot may also

denote a property for the hasAppearance relation, however with different senses:

hot10
a and sweet4

a. The task is to carefully discriminate the senses for the ranges

of different relations (although some overlap between relations may be possible).

We solve this problem in three steps:

1. Gathering candidates from N-grams and other sources.

2. Constructing a graph that encodes association strengths between adjec-

tives and adjective senses by weighted edges.

3. Inferring adjective senses for a relation’s range by semi-supervised

Label Propagation.

Candidate gathering. We start with the raw candidates derived by extraction

patterns from the Google N-gram corpus, as described in Section 3.2. For relation

r, we filter the candidates by checking for the presence of the word r, any of its

synonyms (e.g., shape, form, etc., or appearance, look, etc.), or any linking verb

that is derivationally related to r (e.g., “tastes” for hasTaste). We apply these

patterns also to WordNet glosses (i.e., short descriptions of word senses), to

collect further candidates.

In addition, we apply the Hearst pattern “<r> such as <x>” to the N-gram

data, and collect the matches for x as possible adjectives for relation r. Finally,

we adopt the WebSets method (Dalvi et al., 2012) to HTML tables in specific

articles of the English Wikipedia. The articles of choice are those whose article

name corresponds to relation r (or its synonyms). These were manually identified

for each relation r.
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In total, we collected around 40,000 adjectives for all relations together.

Graph construction. So far, we have merely compiled a large set of – mostly

ambiguous – words that may populate the range of a relation. We use these words

as nodes in a graph and extend this node set by all possible adjective senses of

these words. This is a simple lookup in WordNet, without any disambiguation

yet. The resulting graph is called an RPG, see Definition 3.3.1.

Definition 3.3.1 - Range Population Graph (RPG).

The RPG of a relation r is a weighted undirected graph with

nodes VRPG and edges ERPG as follows:

• VRPG consists of all candidate adjectives for relation r, and all their

corresponding adjective senses.

• ERPG consists of three kinds of edges (see Table 3.2):

• edges between two words w1 and w2 if they have at least one

co-occurring pattern;

• edges between two senses w1ia and w2ja if they are related in the

WordNet structure or have WordNet glosses that suggest related-

ness;

• edges between a word w and all its senses wia.

Figure 3.2 presents an example of an RPG2.

Edge weighting. To define meaningful edge weights, we utilize statistics from

the candidate gathering (see Section 3.2) and from WordNet.

• ERPG (a1, a2 ): For weighting the edges among words, we harness the co-

occurrences of adjectives with nouns. We derive from the large N-gram corpus

two matrices O : noun × adjective and P : noun × adjective where Oij is

2Footnote 3.3: The WordNet senses for hot and sweet are:

• hot1
a: used of physical heat . . . sweet1

a: having taste of sugar . . .

• hot2
a: violent activity . . . sweet2

a: angelic nature . . .

• . . . . . .

• hot8
a: wanted by police . . . . . .

• hot9
a: spicy . . . sweet9

a: unfermented . . .
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Figure 3.2: Label propagation over RPG, for hasTaste relation. The nodes rep-

resent surface forms of adjectives and adjective senses, see footnote

3.3 for the senses. Yellow nodes denote seeds provided to the label

propagation algorithm, which is able to estimate the double-edged

boxes as positive instances for hasTaste. The weighted edges are:

(i) in blue: surface form- surface form similarity edges, (ii) in green:

surface form- sense similarity edge, (iii) in red: sense - sense similar-

ity edge, refer Table 3.2 for the edge weights. Darker edges denote

high edge weight.

the number of occurrences of the noun-adjective pair and Pij is the number

of distinct extraction patterns that the noun-adjective pair occurs with. We

normalize both matrices to have values in [0, 1]. For O, we divide all values

by the maximum value. For P , we transform all values using the sigmoid

function f(x) = 1− 1

ex−1
. The rationale here is to reward multiple patterns,

but consider also the diminishing returns of observing many patterns. Finally,

we combine O and P by the linear combination αOT×O+(1−α)P T×P with

hyper-parameter α (see Equation 3.2). The values of the resulting matrix are
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the weights for edges between two adjectives of the RPG.

• ERPG (wia, wja): For edges between two senses wia and wja, we consider their

taxonomic relatedness within WordNet. If there is a path between uia and wja

using hypernym/hyponym, derivationally related, similar to, also see,

or antonym links in WordNet, then we use the Hirst measure of semantic relat-

edness (Hirst and St-Onge, 1998), which measures the length of the shortest

path connecting two senses in the WordNet taxonomy. Unlike other path

based similarity measures that limit to hypernym or hyponym, Hirst measure

extends the path to all relations in WordNet by clustering them to horizontal,

up, or down and penalizing changes in direction. This makes Hirst measure

our only choice as the similarity measure because only Hirst measure is appli-

cable to both adjective and noun senses, in contrast to other measures that

only apply to noun and verb senses.

We, additionally, resort to the glosses of wia and wja, expanded by glosses

of their respective hyponyms and hypernyms. We compute the number of

overlapping words shared by these contexts. This is essentially the concept

similarity measure by Lesk (1986). All these measures are normalized to fall

between 0 and 1, and we use a down-weighting coefficient for the gloss-based

values, to ensure that path-related sense pairs have higher edge weights (see

Equation 3.2).

• ERPG (a, wia): For edges between words and senses, we would ideally like to

use the WordNet sense frequencies as a basis for edge weights. However, such

information is hardly available. WordNet provides senses frequencies only

for a small set of words, mostly nouns, and not nearly for all of their senses.

Moreover, this information corresponds to the WordNet sense annotated doc-

uments that reflect usage within a domain. For example, for the word tiger,

the most frequent sense according to frequency is tiger1
n, which stands for

an audacious person, while the more general usage of animal is tiger2
n.

We thus resort to the following statistics-based score (adopted from Lesk

(1986); McCarthy et al. (2007)). For each word w, we take the correspond-

ing column from matrix O (i.e., the frequencies of co-occurring nouns) as a

distributional-semantics vector. For each possible sense wia, we compute a

context vector from its gloss and the glosses of neighboring senses, giving us

another noun distribution. The normalized scalar product between the vector

of w and the vector of wia is the weight of the edge between w and wia (see

Equation 3.2).

Label propagation. The final step is to run the MAD algorithm for label
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Table 3.2: Edge weight formulae for RPG, for a relation r

Edge between a sense ai and its observation a

φ[a , ai ] = ~anouns · ~aiglosses (3.2)

Edge between two adjective observations a1 and a2

τAA[a1 , a2 ] = α OTO + (1− α)P TP (3.3)

OT ×O : ~a1nouns · ~a2nouns (3.4)

P T × P : ~a1patternsfreq · ~a2patternsfreq (3.5)

Edge between two senses ai and aj

τAA[ai , aj] = β hirst[ai, aj] + (1− β)lesk[ai, aj] (3.6)

hirst[ai , aj] : WordNet graph Hirst similarity (3.7)

lesk[ai , aj] : ~aiglosses · ~ajglosses (3.8)

propagation on the constructed graph – one graph for each relation. We con-

sider only two labels for each graph: the relation of interest and the dummy

label (encoding no relation or other relation). We obtain seeds automatically

by observing that the intersection of adjectives found in WordNet and on the

Web, i.e. in more than one source, are more likely to be accurate. The sense of

the WordNet adjective is considered for this. 30% of the remaining seeds were

used as held-out test data to tune the parameters µ1, µ2 and µ3 of the MAD

algorithm (see Section 3.2.2). The MAD algorithm then infers which adjective

senses belong to the range of the relation.

3.4 Relation Domains

After populating the ranges of WebChild’s relations, we turn to the relation

domains. For each relation, such as hasTaste, we aim to compute the noun senses

that can appear as left-hand arguments of the relation, for example, apple1
n,

pizza1
n, plant2

n, beef2
n, but not car1

n, cow2
n, or a different sense of plant : plant1

n

(the industrial plant). Analogously to the previous section, we solve this task in a
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three-step process: gathering candidates, constructing a graph, and LP inference

for cleaning and disambiguation. We will see that we can harness the knowledge

that we already acquired about adjective senses that appear in relation ranges.

Candidate gathering. We use the coarse-grained generic hasProperty noun-

adjective pairs (n, a) gathered by the method of Section 3.2.1. Given a pair

(n, a), if the adjective a has at least one sense that appears in the relation’s

range computed in Section 3.3, then the noun n becomes a domain candidate.

For example, given word pair (beef, salty) and having the knowledge that salty

occurs in the range of hasTaste, we infer that beef is a noun candidate for

hasTaste.

Few n have only one sense in WordNet and we can directly use this noun

sense because it is not ambiguous. A more typical candidate would be java,

with co-occurrence pairs such as (java,tasty), (java,easy), (java,hilly), etc. In

such situations, to move from words to senses at least in some of the cases,

we harness the glosses of adjectives in WordNet to derive semi-disambiguated

assertions where either the noun or the adjective is mapped to a WordNet sense.

Gathering semi-disambiguated assertions: For each adjective word in our can-

didate set, we find all noun-sense glosses where the adjective occurs (as a surface

word). Whenever a matching noun sense gloss is found, the specific noun sense

is used to replace the ambiguous surface noun in the candidate pair. We per-

form this analogously for nouns in adjective-sense glosses. For instance, the gloss

for sour2
a reads “the taste experience when vinegar or lemon juice is taken . . . ”.

We generate two assertions from this: (vinegar, sour2
a) and (lemon juice, sour2

a).

Note that although this technique goes further than the method for relation

ranges, we still face a large amount of noisy candidates. An adjective such as

large has seven word senses in WordNet, and we can obtain numerous noun-sense

candidates whose glosses contain “large”.

Graph construction. Next, we construct a graph for subsequent Label Prop-

agation similarly as in the method for range population (Section 3.3). The re-

sulting graph is called a DPG, see Definition 3.4.1.
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Definition 3.4.1 - Domain Population Graph (DPG).

The DPG for a relation r is a weighted undirected graph with

nodes VDPG and edges EDPG as follows:

• VDPG consists of all candidate nouns for r and their possible noun

senses from WordNet.

• EDPG edges and their weights are computed exactly as described for

RPGs (see Table 3.3), with nouns taking the place of adjectives.

Table 3.3: Edge weight formulae for DPG, for a relation r

Edge between a sense ni and its observation n

φ[n , ni ] = ~nadjectives · ~aiglosses (3.9)

Edge between two noun observations n1 and n2

τNN[n1 , n2 ] = α OOT + (1− α)PP T (3.10)

O ×OT : ~n1adjectives · ~n2adjectives (3.11)

P T × P : ~n1patternsfreq · ~n2patternsfreq (3.12)

Edge between two senses ni and nj

τNN[ni , nj] = β hirst[ni, nj] + (1− β)lesk[ni, nj] (3.13)

hirst[ni , nj] : WordNet graph Hirst similarity (3.14)

lesk[ni , nj] : ~niadjectives · ~njglosses (3.15)
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Figure 3.3: Label propagation over DPG, for hasTaste relation. The nodes rep-

resent surface forms of nouns and noun senses, see footnote 3.4 for

the senses. Yellow nodes denote seeds provided to the label propa-

gation algorithm, which is able to estimate the double-edged boxes

as positive instances for hasTaste. The weighted edges are: (i) in

blue: surface form- surface form similarity edges, (ii) in green: sur-

face form- sense similarity edge, (iii) in red: sense - sense similarity

edge, refer Table 3.3 for the edge weights.

Figure 3.3 shows an example over label propagation over a DPG3.

Label propagation. Again, we run the MAD algorithm for Label Propagation

on the DPG for each relation. To generate seeds, we use hasProperty triples

3Footnote 3.4: The WordNet senses for java and chili are:

• java1
n: Indonesian island . . . chili1

n: ground beef . . .

• java2
n: coffee beverage . . . chili2

n: hot tapering pepper . . .

• java3
n: programming language . . .
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that have unambiguous nouns and adjectives that have been assigned to only

a single relation r by the Range Population method. Some of these nouns are

genuinely unambiguous while others are unambiguous for us because we have

previously identified the correct sense using the WordNet gloss heuristics men-

tioned previously in semi-disambiguated assertion gathering. In either case, the

single noun senses of such unambiguous nouns serve as seeds. The parameters

of the MAD algorithm were tuned as described previously using held-out data.

The MAD output provides us with scores for the noun senses of the ambiguous

nouns. For the domain of relation r, we accept the noun senses whose score

exceeds the dummy label score.

3.5 Computing Assertions

Finally, we leverage the domain and range knowledge for distilling the raw and

ambiguous assertion candidates for the generic hasProperty relation, gathered

as explained in Section 3.2, into word-sense pairs for fine-grained relations. Thus,

we need to disambiguate the left and right arguments of the candidate assertions

and determine the respective relations. Again, we build a graph representation

for each relation r, and apply Label Propagation on these graphs.

For a candidate assertion with an ambiguous noun and adjective, we would

often generate a large set of nodes when each of the two words has many different

senses. To prevent the graph size from becoming intractable, we harness the

already acquired knowledge about the domain and range of each r and consider

only those sense pairs that fall into the previously computed domain and range

population, respectively. This yields an enormous pruning effect, and makes

the difference between a hopelessly intractable graph and a practically viable

method.

Graph construction. We construct a graph for subsequent Label Propagation

analogously to the method for range population (Section 3.3). The resulting

graph is called an APG, see Definition 3.5.1. There are two differences from the

previous graphs. First, every node is a word pair instead of a word. Second,

there is an additional candidate node pruning step based on domain and range

as described earlier. We capture these by constructing graphs of the following

form for each relation.
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Definition 3.5.1 - Assertion Graph (AG).

The AG of a relation r is a weighted undirected graph with nodes VAG

and edges EAG as follows:

• VAG consists of all word-level assertion candidates and all sense-level

pairs that are not pruned by testing against the domain and range of

r (see above).

• EAG consists of three kinds of edges (see Table 3.4):

• edges between two word-level assertions,

• edges between a word-level assertion and a sense-level assertion,

• edges between two sense-level assertions.

Figure 3.4 shows an example of an AG.

Edge weighting. For all three types of edges, we compute edge weights between

two assertions 〈n1 r a1〉 and 〈n2 r a2〉 by considering the similarity between n1 and

n2 and the similarity between a1 and a2. Here, n1 and n2 may be either nouns or

noun senses, and similarly a1 and a2 may be either adjectives or adjective senses.

In all cases, we use the multiplicative score

sim(n1, n2) · sim(a1, a2)

as the edge weight. This similarity yields, for instance, that 〈car1
n red1

a〉 is similar

to 〈car1
n pink1

a〉, 〈vehicle1
n red1

a〉, 〈bus1
n colorful1

a〉.
The individual noun-noun, noun-noun sense, and noun sense-noun sense sim-

ilarities (all denoted by sim(n1, n2) here) are computed just as for the different

types of edge weights earlier in Section 3.4. Similarly, the adjective-adjective,

adjective-adjective sense, and adjective sense-adjective sense similarities (all de-

noted by sim(a1, a2)) are computed just as for the Range Population Graph’s

edge weights, described earlier in Section 3.3. See Table 3.4 for formulae to

compute the edge weights of AG.

Since there are O(|EAG|2) possible assertion edges, we use top-k retrieval meth-

ods to efficiently aggregate scores from multiple ranked lists and avoid computing

similarities below a threshold.

Label propagation. For seeds, we consider all assertions where both the noun

and the adjective are unambiguous, either because they have only one sense each
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Figure 3.4: Label propagation over AG, for hasTaste relation. The nodes repre-

sent surface forms of triples and their possible senses, see footnotes 3.3

and 3.4 for the senses. Yellow nodes denote seeds provided to the la-

bel propagation algorithm, which is able to estimate the double-edged

boxes as positive instances for hasTaste. Some nodes are struck be-

cause their arguments are not in the domain dom(hasTaste) or range

rng(hasTaste). The weighted edges are: (i) in blue: surface form-

surface form similarity edges, (ii) in green: surface form- sense simi-

larity edge, (iii) in red: sense - sense similarity edge, refer Table 3.4

for the edge weights.

in WordNet or because our domain- and range-based pruning left us with only

one sense pair for the two words. Again, 30 % of the remaining seeds are used

for tuning the parameters of the MAD algorithm. Based on these seeds, MAD

computes scores for candidate assertions. We accept all assertions for r whose

score exceed the dummy label score.

3.6 Results

Table 3.5 summarizes the size of the WebChild knowledge base: the number

of distinct senses and assertions, the number of instances of noun and adjective
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Table 3.4: Edge weight formulae for APG, for a relation r

Edge between a triple A and its observation A ∗

φ[〈n a〉 , 〈ni aj〉 ] = φ[n , ni] × φ[a , aj] (3.16)

Edge between two observations A ∗ and A ∗

τ[〈n1 a1 〉 , 〈n2 a2 〉] = τNN[n1 , n2 ] × τAA[a1 , a2 ] (3.17)

Edge between two triples A and A

τ [〈ni aj〉 , 〈nk al〉] = τNN[ni , nk] × τAA[aj , al] (3.18)

senses (where a noun or adjective sense that occurs in k different relations counts

k times), and the precision is estimated by extensive sampling (see below). Table

3.6 illustrates WebChild by anecdotal examples for range, domain, and assertions.

These are top-ranked results, based on a simple scoring function that rewards

many occurrences as well as occurrences with multiple distinct patterns.

Table 3.5: WebChild statistics

#distinct #instances Precision

Noun senses 78,077 221,450 0.80

Adj. senses 5,588 7,783 0.90

Assertions 4,649,471 4,649,471 0.82

We conducted extensive experiments to assess the viability of our approach

and the quality of the resulting commonsense relations. Our experiments cover

the three tasks addressed in this chapter: Subsection 3.6.1 reports on the quality

of relation ranges, Subsection 3.6.2 presents results on relation domains, and

Subsection 3.6.3 discusses the quality of sense-disambiguated assertions. For

each task, we compare against various baseline competitors.
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Table 3.6: Anecdotal example results for hasTaste, and hasShape

Relation Range Domain Assertions

hasTaste sweet1
a strawberry1

n (chocolate1
n,creamy2

a)

hot9
a chili1

n (pizza1
n,delectable1

a)

sour2
a salsa1

n (salsa1
n,spicy2

a)

salty3
a sushi1

n (burger1
n,tasty1

a)

lemony1
a java2

n (biscuit2
n,sweet1

a)

hasShape triangular1
a leaf1

n (palace1
n,domed1

a)

meandering1
a circle1

n (table2
n,flat1

a)

crescent1
a ring8

n (jeans2
n,tapered1

a)

obtuse2
a egg1

n (tv2
n,flat1

a)

tapered1
a face1

n (lens1
n,spherical2

a)

3.6.1 Relation ranges

Baselines. Since there is no direct competitor, we designed several baselines as

follows.

WordNet attributes: For some relations, WordNet provides the range directly

by its attribute relation (e.g., size contains the adjective senses small1
a and

big1
a).

WordNet attributes expanded: We expanded the above data by including re-

lated word senses using synonyms, antonyms, similarTo, and derivationally

Related links. We then iterated this step once more to enlarge the set, but

stopped at this point to curb the inevitable topic drift.

WordNet glosses: WordNet provides a short gloss for each adjective. If the

gloss mentions a relation, we include the adjective sense in the relation’s range.

For example, the gloss of red1
a mentions the word color.

Controlled LDA MFS: Hartung and Frank (2011) developed a method for

creating pseudo-documents per relation r (e.g., color) using nouns and adjectives

that appear in the relation. An LDA model estimates the probability P [a|d]

for an adjective a given a pseudo-document d, thereby approximating P [a|r] to

P [a|d]. All adjectives above a threshold for this probability form the range of the

relation. We map these adjectives to their most frequent sense (MFS) according

to WordNet.
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Google Sets MFS: This service, now part of the spreadsheet processor of docs.

google.com, expands sets of similar words given a few seeds to start with. We use

it to find, for each relation, large candidate sets, using five WordNet adjectives as

seeds. The resulting adjectives are mapped to the most frequent sense according

to WordNet.

Results. We constructed a random sample of 30 adjectives for each relation

from the output of WebChild (a total of 570 samples). These were manually

evaluated by three people. The Kappa value for inter-annotator agreement was

0.869. We likewise drew samples from the outputs of the baseline competitors (or

used the entire output when less than 30), and manually assessed them, too. For

statistical significance, we computed Wilson score intervals for α = 95% (Brown

et al., 2001).

The results of this evaluation are shown in Table 3.7, reporting the macro-

averaged precision and the total number of results (coverage). WebChild stands

out in this comparison: It discovers far more (sense-mapped) adjectives than any

other method, and achieves a very good precision of 90%. WebChild’s coverage

is three times larger than that of the best prior method (Hartung and Frank,

2011).

Table 3.7: Results for range population

Method Precision Coverage

WordNet attributes 1.00 40

WordNet attributes expanded 0.61 ± 0.03 5,145

WordNet glosses 0.70 ± 0.06 3,698

Controlled LDA MFS 0.30 ± 0.06 2,775

Google Sets MFS 0.27 ± 0.04 426

WebChild 0.90 ± 0.03 7,783

3.6.2 Relation domains

Baselines. We compare WebChild against the following competitors.

Extraction unambiguous: Almuhareb and Poesio (2004) and Hartung and

Frank (2010) manually defined eight patterns (e.g., “the <adj> of <noun> was”)

to populate the domain of a relation. We applied these patterns to the N-gram

docs.google.com
docs.google.com
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corpus and to WordNet glosses. As this technique yields nouns rather than noun

senses, we consider only unambiguous nouns with a single sense in WordNet.

Extraction MFS: For higher coverage, we considered all nouns obtained by the

previous method and mapped them to their most frequent sense according to

WordNet.

Controlled LDA MFS: Using the method of (Hartung and Frank, 2011) (see

baselines on range population) we collect nouns n with a probability P [n|d] above

a threshold. We map the nouns to their most frequent senses in WordNet.

WordNet glosses: If a relation name (e.g., “color”) appears in the WordNet

gloss of a noun sense, we capture the noun sense as an instance of the relation’s

domain.

WebChild adj. projections: Our candidate gathering step extracted a large

set of noun-adjective pairs from the Web. Since WebChild already has mapped

adjectives to specific relations’ ranges, a heuristic technique is to assign the co-

occurring nouns to the domains of the same relations. Since these nouns are not

yet disambiguated, we map them to the most frequent sense in WordNet.

Google sets: For domain population, this technique performed very poorly due

to heterogeneity of seeds; so we do not show any results below.

Results. Table 3.8 shows the results of this comparison. Again, WebChild

stands out, especially by its high coverage. At the same time, its precision of

83% is still fairly high. The method based on WordNet glosses performed slightly

better in terms of precision, but yields an order of magnitude lower coverage.

Table 3.8: Results for domain population

Method Precision Coverage

Extraction Unambiguous 0.76 ± 0.06 6,190

Extraction MFS 0.75 ± 0.05 30,445

Controlled LDA (Hartung and Frank, 2011) MFS 0.71 ± 0.06 9,632

WordNet glosses 0.86 ± 0.03 14,328

WebChild adj. projections 0.71 ± 0.03 175,480

WebChild 0.83 ± 0.03 221,450
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Table 3.9: Results for assertions on data of Hartung and Frank (2011)

Precision Recall

Controlled LDA 0.33 0.23

(Hartung and Frank, 2011)

WebChild 0.93 0.50

3.6.3 Assertions

As for the main task on commonsense knowledge acquisition, computing fine-

grained assertions between noun senses and adjective senses, we can compare

WebChild’s performance directly with the prior method Controlled LDA (C-

LDA) of (Hartung and Frank, 2011). C-LDA treats the task as a classification

problem, with relations as the classifier’s labels. We use the same data that the

experiments of Hartung and Frank (2011) were based on. As C-LDA works at

the word rather than word-sense level, for the results of their system, a noun-

adjective pair is counted as correct if there is at least one sense pair for which

the relation label is meaningful. In contrast, we give WebChild the significant

disadvantage of considering an assertion as correct only if the senses are correctly

chosen, too. Table 3.9 shows the results of this experiment, demonstrating the

clear superiority of WebChild over the prior state-of-the-art.

Baselines. For more comprehensive studies, on our Web-scale candidates, we

again designed a variety of baseline competitors.

Controlled LDA MFS: We use C-LDA (Hartung and Frank, 2011) to map a

hasProperty candidate pair onto fine-grained relations. Nouns and adjectives

are mapped to their most frequent senses in WordNet.

Vector space MFS: This is analogous to the previous baseline, except that we

use the vector space model of Hartung and Frank (2010) rather than LDA.

Web unambiguous adjective: We consider only those noun-adjective pairs

where the adjective has a single sense. We use WebChild’s range knowledge

to map the adjective to one or more relations. The noun is mapped to its most

frequent sense in WordNet.

WebChild independence: For a given relation, we consider all combinations of

noun senses from the domain and adjective senses from the range as assertions
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for the relation.

Results. Table 3.10 shows the results of the comparison. WebChild yields

more than 4 million assertions at a good precision of 82%. It outperforms all

competitors by a large margin, with ten times higher coverage and twice better

precision than the best of the prior method. Interestingly, even the relatively

crude WebChild Independence technique performs better than the other base-

lines. However, its precision is far behind that of the full WebChild method.

Table 3.11 shows the results of WebChild, per relation.

Table 3.10: Results for assertions

Method Precision Coverage

Controlled LDA MFS 0.35 ± 0.06 254,576

Vector Space MFS 0.40 ± 0.09 355,018

Web Unambiguous Adjective 0.54 ± 0.09 709,337

WebChild Independence 0.62 ± 0.06 3,399,312

WebChild 0.82 ± 0.03 4,709,149

3.7 Discussion

We presented WebChild, a comprehensive commonsense knowledge base with

fine-grained relations about sense-disambiguated nouns and adjectives. Our

methodology combines pattern-based candidate gathering from Web corpora

with semi-supervised Label Propagation over judiciously constructed weighted

graphs. Our method performs collective classification, and is robust to noise.

Experiments demonstrate that this methodology can achieve high precision with

good coverage. WebChild is publicly available at (http://people.mpi-inf.

mpg.de/~ntandon/resources/readme-property.html).

Strengths:

• Our method requires a very small amount of training data, between 20-50

training examples for the different relations. It is robust to incoming noise.

• Our method can readily deal with any other relations whose inherited hyper-

nym is the WordNet noun sense attribute. We show the effectiveness of our

http://people.mpi-inf.mpg.de/~ntandon/resources/readme-property.html
http://people.mpi-inf.mpg.de/~ntandon/resources/readme-property.html
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Table 3.11: Quality of WebChild relations

Relation Precision Coverage

ability 0.80 ± 0.10 90,288

appearance 0.95 ± 0.05 365,201

beauty 0.70 ± 0.15 95,838

color 0.70 ± 0.15 494,380

emotion 0.90 ± 0.09 79,630

feeling 0.91 ± 0.08 141,453

length 0.70 ± 0.15 90,021

motion 0.80 ± 0.10 146,148

smell 0.82 ± 0.10 25,347

quality 0.82 ± 0.10 793,484

sensitivity 0.70 ± 0.15 5,727

shape 0.80 ± 0.10 359,789

size 0.82 ± 0.10 910,901

sound 0.71 ± 0.15 130,952

state 0.88 ± 0.09 563,022

strength 0.82 ± 0.10 165,412

taste 0.70 ± 0.15 19,892

temperature 0.80 ± 0.13 27,399

weight 0.70 ± 0.15 144,587

overall 0.82 ± 0.03 4,709,149

method on a set of 19 common relations but our method can deal with a set

of more than 250 relations.

• Our method is not strongly coupled with WordNet. We can deal with any

alternative like Wiktionary that distinguishes and provides a gloss for different

senses of a word. This is because the edge weights in all our graphs are

either distributional (based on glosses and text corpora) or taxonomic (based

on the hypernymy structure that is also provided by alternatives such as

Wiktionary). This is an important reason for not relying on external resources

constructed over WordNet like GlossTag4, which could replace the ambiguous

WordNet glosses in Section 3.6.1.

4 http://wordnet.princeton.edu/glosstag.shtml

http://wordnet.princeton.edu/glosstag.shtml 
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Weaknesses:

• Our method cannot deal with multilingual data. We define a generic pattern

for mining hasProperty assertions, however, it is limited to English language

grammar. The distributional weights can still be applied to other languages.

We need a multilingual taxonomic resource for the taxonomic weights.

As a solution to this problem, we can use multilingual WordNets or re-

sources like Universal WordNet (de Melo and Weikum, 2009) which are linked

to WordNet. The WebChild KB is currently linked to WordNet, hence this

provides a direct mapping of the arguments of an assertions in different lan-

guages.

• Our method does not deal with reporting bias (infrequent assertions are

observed disproportionally more). For example, consider the correct asser-

tion 〈elephant hasColor grey〉 and an incorrect assertion 〈elephant hasColor

pink〉 (arising from usage like “pink elephant” as a toy or “seeing pink ele-

phants” as a euphemism for drunken hallucination). We are also limited

by WordNet sense entries because there is no WordNet sense corresponding

to the elephant in abstract or toy sense. This is actually a mistake of the

graph-based disambiguation because the method is expected to increase the

dummy score for elephant. However, our method encourages global coherence

across the assertions. Note that pink and grey are sibling senses and hence

related so the edge weights between them is high. Our method thus increases

the confidence on both of these assertions, with no knowledge that this is

reporting bias.

As a solution to this problem, we can verify these assertions in images. The

main challenge would be dealing with the noisy object detections and limited

training data for properties like pink or large. To overcome this challenge, it

is possible to use Flickr tags and look for the co-occurring noun and adjective

in images. Using our noun adjective collocation data (Shutova et al., 2015)

computed over 100 Million Flickr images, we confirm that the co-occurrence

frequency of elephant with dusty, brown, grey is three times more than pink.

Another solution would be to consider linguistic cues like the expressive

power of the adverb, e.g., “always” in the input. Additionally, we can assign

more weight to plurals as they are more reliable cues, e.g., “some elephant

was pink” vs “elephants are pink”.

One could imagine taking into account the domain authority of the input

page, e.g., a page that knows about animal related topics can more reliably tell

the color of an elephant rather than a shopping page. Our input sources also
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include Google N-grams where such provenance information is unavailable,

rendering this method inapplicable.

• WebChild cannot deal with negations. Such data is sometimes useful for

reasoning, e.g., 〈elephant1 neverHasColor pink〉. ConceptNet is the only

prominent KB that possesses negative assertions. Suppose we assign a class

label for negation, our method will not be able to handle this limitation

because there could be a strong similarity edge between the positive nodes

and negative nodes (pink and grey are similar to each other leading to a

strong edge). This problem is related to reporting bias, except that negative

assertions can never hold while assertions with biased frequency can still hold

but need to be discounted.

As a solution, if we propose usage of multimodal data, one could argue that

we have never seen enough images to be able to negate the occurrence in

any unseen images. In principle, KB completion techniques should be able

to estimate this but such a completion requires very discriminating negative

training data that is hard to obtain automatically. Therefore, like Concept-

Net, we could involve a human in the loop to address this problem.

An alternate solution would be to consider negating adverbs (never) and

minimizers (hardly) (Benamara et al., 2007) in order to obtain negations.

Lessons learned:

• By intersecting noisy WordNet candidates with noisy Web candidates, we get

a very good ensemble effect

• Collective classification can robustly deal with disambiguation in the absence

of context. Our input text can sometimes be very short (N-grams), but our

method yield good disambiguation.

Assumptions: We implicitly make the following two assumptions:

• The graph-based method that we employ (MAD) makes an assumption that

high degree nodes are noisy. High degree nodes can very likely drift the

random walk to nodes belonging to different classes.

• There is no ordering of assertions within a relation r. The confidence Θ(Ap)

reflects correctness but not salience.

Extensions:

• If we break the first assumption, we must develop a graph-based semi-supervised

method that discounts only noisy hubs. The hypothesis is that a high degree



60 CHAPTER 3. COMMONSENSE ON OBJECT PROPERTIES

node is not necessarily noisy. It is noisy only if the label variance of the

first-degree neighbors have a high variance in their estimated labels in a ran-

dom walk iteration. The graphs (RPG, DPG, AG) have many high degree

nodes. Consider the case of an RPG; WordNet arranges adjectives as spokes

therefore there are several popular adjectives with high degree. MAD would

discount these heavily and they will all have a high dummy label probability,

even if the discounting parameter is adjusted because the algorithm makes

this assumption.

There is a recent method (TACO (Orbach and Crammer, 2012)) that per-

forms graph-based transduction with confidence that could be useful in this

direction. It is unclear whether TACO comprehensively beats MAD. More

investigation is required.

• We can perform KB completion to estimate properties of previously unseen

concepts or extended concepts. This entails investigating methods to obtain

negative training data, further highlighting the importance of negations.

• If we break the second assumption, it leads to mining salient commonsense,

an aspect that we did not consider currently. Salience not only refers to a

distinguishing property but also the most important property that comes to

a human mind if we think about the concept. For instance, a cheetah reminds

us of a spotted large cat that is very fast. Negations are also a form of salience.

This assumption is also reflected in our evaluations, where the judges mark

as true anything that can be true. For salient commonsense, a more rigorous

evaluation would need to be performed.

We touched upon negations in this discussion. As for a discriminating

feature, one could employ existing dimensionality reduction techniques like

principal component analysis. These techniques rely on co-occurrence and

frequencies but we have a reporting bias problem. Therefore, multimodal

evidence could provide additional signal but that is only limited to visual

properties.

Besides using a human in the loop, we can make use of a different type of

knowledge, comparative commonsense, e.g., the phrase “x is faster than a

cheetah” elicits that hasSpeed is an important relation for a cheetah. We will

present comparative commonsense in the next chapter.



4 Commonsense on Relationships:

Comparisons

4.1 Introduction

In this chapter, we investigate the second category of commonsense relations:

commonsense on relationships. This chapter investigates methods for one in-

stance of such relations, fine-grained taxonomy of comparative relations.

Methods for large-scale extraction and organization of fine-grained compara-

tive relations have never been explored before. In this chapter, we will present

methods and results on acquisition of comparative relations.

Motivation. If your smart phone suggests a burger joint for lunch, and the user

wants something healthier, the computer should know that a seafood restau-

rant is probably a better suggestion than a burger joint. Rather than hard

coding various types of information into each relevant reasoning engine, genuine

machine intelligence will require automatically drawing commonsense inferences

from large amounts of data. A novel aspect of this greater endeavor of mak-

ing computer systems more intelligent is comparative knowledge, e.g., that 〈juice

is sweeter than water〉, or that 〈gold is more expensive than silver〉, is an

important part of human commonsense knowledge.

State-of-the-art and its limitations. Prior work on comparative commonsense

knowledge has been sparsely spread across several disciplines.

Linguistics. There has been only little prior work on comparative knowledge

mining and comparative commonsense knowledge mining in particular. Jain and

Pantel (2011) used query logs to identify entities that are comparable in some

respect, e.g., “Nikon D80 vs. Canon Rebel XT”. (Jindal and Liu, 2006) focused

on the problem of identifying potential comparative sentences and their elements

using sequence mining techniques.

61
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Jang et al. (2012) proposed graph-based methods to predict new comparable

entity pairs that have not been observed in the input data. These approaches only

produce sets of related entities (and sometimes commonsense concept classes)

and do not aim at gathering assertions about how they compare.

Numerical attribute based: Davidov and Rappoport (2010) perform extraction

using patterns bootstrapped with three types of patterns relating to value ex-

traction (“noun is * [width unit] wide”), bounds (“the widest [noun] is * [width

unit]”), and comparison (“[noun1] is broader than [noun2]”). Takamura and

Tsujii (2015) propose a regression model for object size to combine different types

of features including both value extraction (“X is 10cm long”) and comparisons

(“X is larger than Y ”). As these methods can deal with unit normalization, if a

dictionary of comparative adjectives and units is available, then these methods

can be used be extract large-scale comparative commonsense.

These methods collect the comparative values by issuing queries to a search

engine and parsing the returned search snippets. However, search engines limit

the number of queries to a few hundred queries a day, thus severely limiting

large-scale extraction and secondly these results are not geared for coverage.

The attributes have been limited to size and length only and it is not clear how

these methods would scale to more attributes. Finally, the arguments or the

comparative adjective are ambiguous.

Visual contents based. Comparative adjectives have been used to reduce am-

biguities in object detection by exploiting these relationships between objects in

an image (Gupta and Davis, 2008). Previous approaches to gather comparative

knowledge have typically extracted over text using comparative patterns or nu-

merical value comparisons or both. Very recently, Bagherinezhad et al. (2016)

propose a multimodal model that maximizes the joint likelihood of textual and

visual observations. Thus, their method learns reliable relative size estimates,

with no explicit human supervision. Like in non-comparative assertions, these

approaches are complimentary to text-based approaches because some compara-

tive commonsense may not be expressed in text. However, these approaches are

limited to a small set of comparable visual attributes like comparative size.

The arguments are still ambiguous, for example 〈plant bigger than plant〉 where

plant refers to the industrial plant and a tree respectively.

Knowledge acquisition. Entity linking deals with the disambiguation of men-

tions to entities in KBs. Usually the entity is a named entity, not a concept

and thus we do not explore entity-linking methods. However, Lin et al. (2012)
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propose a scalable entity linking method to disambiguate the arguments x and y

of a triple 〈x r y〉 where x and y are mostly named entities but can also be noun

phrases. The relation r is a verb phrase that they do not disambiguate. They use

features from encyclopedic KBs like Freebase. Their problem is different from

ours because in our case x and y are noun phrases while r is an adjective, and

their method does not provide adjective sense disambiguation.

In the realm of comparative commonsense knowledge, Cao et al. (2010) per-

formed a small study on extracting commonsense comparative observations using

manually defined patterns. Their comparable fact scoring function relies on se-

mantic frequency based on support and oppose set of a triple, e.g., 〈car fast

bike〉 is in oppose set of 〈bike fast car〉. However, they assume that such a

similarity function would exist. Additionally, any higher order logic such as this

can only be performed accurately if the triples are disambiguated. The focus of

our work, in contrast, is to go beyond just a simple and small-scale extraction of

natural language comparisons.

Problem statement. The goal of this work is to automatically extract and in-

fer large amounts of comparative commonsense knowledge (see Definition 4.1.2).

Given very large-scale unstructured data, our goal is to produce a large seman-

tically disambiguated and consolidated knowledge base that recognizes semanti-

cally equivalent triples.

An example of the knowledge that we aim to compile is 〈steel2
n more sharp2

a

than wood1
n〉 that distinguishes between 〈steel2

n sharp2
a than wood1

n〉 or 〈photo1
n

sharp1
a sketch1

n〉. Finally, we want to estimate semantically equivalent triples to

our example triple like 〈wood1
n more blunt1

a than steel2
n〉.

In particular, we consider relationships that can be expressed using the com-

parative forms of adjectives, e.g., is bigger than, is more reliable than. As we are

aiming at commonsense, most knowledge we would expect to capture will not

hold as absolute universal truths; rather, be a reflection of overall tendencies.

For example, although cheetahs are generally known to be faster than lions, an

individual cheetah might be too young or unhealthy to be faster than a given

lion.

In an effort to cover a wider range of commonsense phenomena, we do not limit

ourselves to arguments x and y that directly correspond to nominal concepts in

WordNet. Additionally, we also aim at obtaining large amounts of information

about extended concepts (see Definition 4.1.1, which is a special case of Definition

1.1.1) as given by disambiguated adjective-noun or noun-noun combinations, e.g.,

cold water (as a hyponym of water1
n) or vegetable dumpling (as a hyponym of
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dumpling1
n).

Definition 4.1.1 - Extended concept.

A noun phrase that is not present in WordNet, but whose head

noun surface form is present as a WordNet noun-sense hsn, is called

an extended concept. Extended concepts are disambiguated as a

hyponym of hsn. An extended concept is either an adjective-noun

phrase, represented as (asa hsn) or noun-noun phrase, represented as (nsn
hsn). Examples of an extended concept include the noun-noun phrase

vegetable dumpling, whose head noun dumpling1
n is present in WordNet,

or, the adjective-noun phrase green energy, with the head noun energy1
n.

Our input will be a large collection of text. Our output will be a set of Ac

(see Definition 4.1.2). The arguments we expect to obtain at the end are not

ambiguous words but sense-specific identifiers for noun and adjective concepts.

For this, we assume the existence of a repository of noun and adjective concept

identifiers. Specifically, we rely on WordNet, a well-known lexical knowledge

base that distinguishes the different senses of ambiguous words like bass (mu-

sic instrument or fish) or green(er) (color or environmental friendliness), while

also grouping together near-synonyms like fast(er) and “quick(er)”. For example,

• 〈car1
n fast1

a bike1
n〉 =⇒ car1

n is faster (fast1
a) than bike1

n

• 〈melon1
n big1

a apple1
n〉 =⇒ melon1

n is bigger (big1
a) than apple1

n

• 〈lemon1
n sour1

a apple1
n〉 =⇒ lemon1

n is more sour (sour1
a) than apple1

n

Definition 4.1.2 - Comparative assertion.

A comparative assertion Ac is a triple 〈xsn adjsa ysn〉 where xsn and

ysn are WordNet noun senses or extended concepts, and adjsa is an

adjective sense in WordNet. xsn and ysn are compared over a comparative

adjective that is denoted by adjsa. The position of the arguments define

that xsn is usually comparably more adjsa than ysn. Every comparative

assertion is accompanied by a support score 1 ≤ Θ(Ac). Ac is irreflexive

and transitive but not necessarily asymmetric because Ac is not an

absolute universal truth.
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Our approach. Our approach involves first using Open Information Extraction

(OpenIE) techniques to capture arbitrary comparative relationships expressed

in text, in an open-ended manner. For example, the fact that seafood, on aver-

age, is perceived as healthier than a hamburger. While several OpenIE systems

have been presented in recent years (Etzioni et al., 2011; Carlson et al., 2010),

existing systems simply deliver textual extractions rather than semantically dis-

ambiguated arguments.

OpenIE leads to triples of surface phrases, e.g., 〈steel sharper than wood〉.
Our method goes much further by computing triples of disambiguated word

senses, e.g., 〈steel2
n sharp2

a than wood1
n〉 or 〈photo1

n sharp1
a sketch1

n〉, where the

numbers are the WordNet sense numbers for the ambiguous words.

In order to move from the original text strings to more semantically coherent

relationships, our approach relies on word sense disambiguation and classifica-

tion techniques to consolidate equivalent extractions as well as disambiguate the

arguments of each relation predicate.

Our method uses clustering and linear optimization methods to clean and

consolidate this knowledge, while also inferring new information. In the end, we

obtain sense-disambiguated knowledge that properly distinguishes, for example,

the temperature sense of cool from the hipness sense of cool. We recognize

semantically equivalent triples using joint inference techniques.

Contributions. We make the following contributions.

1. We present the first OpenIE system for harvesting large amounts of com-

parative knowledge from Web contents.

2. We introduce a novel algorithm to organize such comparative knowledge

with proper semantic rigor such that arguments are sense-disambiguated,

by linking them to the lexical knowledge base, WordNet.

3. We publish a large, semantically refined knowledge base of comparative

commonsense knowledge, which we call CMPKB.

4.2 KB Construction

In order to arrive at such a knowledge base given just a large text collection, we:

(1) use information extraction to obtain observed textual facts, and subsequently,

(2) develop a model to disambiguate and semantically organize the extractions.
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4.2.1 Open information extraction

In the extraction phase, we run through the input corpus and collect all triples

matching the template (noun phrase) + (comparative predicate) + (noun phrase).

As noun phrases, we consider nouns listed in WordNet (water, dark chocolate),

adjective-noun pairs (cold water) and noun-noun expressions (football manager)

that are not in WordNet. The nouns phrases are stemmed after dropping any

leading stop words (the, a, our, etc.). We heuristically identify the head noun of

a noun phrase as the right-most stemmed noun (water in cold water) or the left-

most stemmed noun when a preposition is present (bucket in bucket of water).

As comparative phrases, we allow inflections of the word to be followed by

comparative forms of adjectives (e.g., bigger than, more educated than, etc.). We

also allow them to contain modifying adverbs/negations, as e.g., in are typically

bigger than, are never bigger than, or is not only faster than. We manually

encode a list of negation phrases like not, never and some exceptions (not only).

As a heuristic, we capture negations by assuming negations imply the opposite,

in common-sense terms. Thus, bikes are not faster than cars is stored as a triple

〈car faster bike〉. Comparative forms of adjectives are detected using WordNet.

An exhaustive list of potential comparative forms of adjectives is generated by

adding the suffix “er” and prefixes “more ”, “less ” to each WordNet adjective

(colder, more cold (than)). WordNet additionally provides a list of irregular

forms that cannot be generated in this way (e.g., better).

Using all of this information, we developed a fast pattern matcher to detect

instances of this template. Our implementation is based on Hadoop MapReduce

in order to quickly process large Web corpora in a distributed hardware cluster.

The output of the extraction phase consists of i) left noun phrase (and its head

noun), ii) relation (and its embedded adjective), iii) right noun phrase (and its

head noun), iv) frequency, v) direction.

4.2.2 Disambiguation and semantic organization

The next step is to disambiguate and organize the knowledge. The original

extractions are often ambiguous. For example, hotter than can refer to heat or

to attractiveness, and richer than can refer to money or to calories. The left and

right arguments are also often ambiguous. At the same time, our extractions do

not group together equivalent forms. Given an original observed triple 〈n1
∗ a∗

n2
∗〉 from the information extraction step, our principal goal will be to choose

relevant grounded triples 〈n1 a n2〉, where n1, a, and n2 are no longer simple

strings from the text, but disambiguated word sense IDs with respect to a lexical
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knowledge base like WordNet.

We first present a simple local baseline model, which assumes independence

across the triples. Then we describe a more advanced model, which makes use of

integer linear programming problems (ILPs) and does not assume independence

across triples.

Local model. Similar to state-of-the-art methods for word sense disambigua-

tion on text (Navigli, 2009), the local model assumes that the most likely disam-

biguation is the one that has the highest internal coherence, while simultaneously

also preferring more frequent senses. A grounded triple exhibits high internal co-

herence when the word senses within it are similar to each other. Thus, for every

grounding 〈n1 a n2〉 of an observation 〈n1
∗ a∗ n2

∗〉, a score is computed as follows:

score(n1, a, n2) = τNN(n1, n2)

+ τNA(n1, a) + τNA(n2, a)

+ φ(n∗1, n1) + φ(n∗2, n2)

+ φ(a∗, a) (4.1)

This score combines three different kinds of components:

• τNN(n1,n2): A taxonomic relatedness score between two noun senses n1 and

n2, computed using a WordNet path similarity measure (Pedersen et al.,

2004), identical to Table 3.3 in Chapter 3. In addition, if one of the two

arguments is an extended concept like ripe fruit, we have separate senses

for the first word and for the second word, so we compute two scores and

take the average. If both n1 and n2 are extended concepts, we compute all

four pairwise scores between involved senses for n1 and senses for n2, again

taking the average. While doing this, any scores between two noun senses

are computed as above using the WordNet path similarity measure, while

any scores involving an adjective sense are computed as for τNA(n,a) below.

• τNA(n, a): A taxonomic relatedness score between a noun sense and an ad-

jective sense, computed by determining the overlap between their extended

WordNet glosses. The extended glosses are constructed by concatenating

the original sense’s gloss with the glosses of related senses in the taxonomic

neighborhood. The taxonomic neighborhood of a sense includes its directly

related senses (e.g., similar-to, antonym senses in WordNet). For nouns,

the hypernyms and hyponyms of a given sense are also considered. We

then create bag-of-words feature vectors and compute the cosine similarity.
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When n is an extended concept, the relatedness is the average over the two

scores between its respective component senses and the adjective a.

• φ(w, s): A prior for the sense s of a word w, computed as
1

1 + r
, given the

WordNet sense rank r. Thus, the first sense obtains
1

2
, the second sense

1

3
, and so on. For extended concepts, the sense score is the average sense

score of its components.

Table 4.1 lists the formulas for the different scores used in the local model.

Table 4.1: Score computations: Local model

Prior sense score (extended concepts)

φ(n h, nsn hsn) =
φ(n, nsn) + φ(h, hsn)

2
(4.2)

φ(a h, asa hsn) =
φ(a, asa) + φ(h, hsn)

2
(4.3)

Two nouns phrases (extended concepts)

τNN(k1s h1sn, k2s h2sn) =

∑
k∈{n1,a1}

∑
h∈{h1,h2} τ(k, h)

4
(4.4)

Noun phrase and adjective (sense level)

τNA(n1sn, a2sa) = lesk(n1sn, a2sa) (4.5)

τNA(n1sn h1sn, a2sa) =
lesk(n1sn, a2sa) + lesk(h1sn, a2sa)

2
(4.6)

τNA(a1sa h1sn, a2sa) =
τAA(a1sa, a2

s
a) + lesk(h1sn, a2sa)

2
(4.7)

lesk(n1sn, a2sa) = ~n1sglosses · ~a2sglosses (4.8)

Joint model. Although all of its components are well motivated, the local

model ultimately still only has a limited amount of information at its dispo-

sition. Two or more groundings can easily end up obtaining very similar scores,
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without a clear winner. In particular, the local model does not consider any form

of dependency across grounded triples. For example, it fails in disambiguating

〈tiger faster auto〉 by incorrectly disambiguating tiger to the audacious-person

sense tiger1
n ignoring other related triples like 〈car slower cheetah〉. In reality,

however, the disambiguation of a triple like 〈car faster bike〉 is highly correlated

with the disambiguation of related triples, e.g., 〈bicycle slower automobile〉. We

thus design a more sophisticated joint model based on the following desiderata.

a) Encourage high coherence within a triple and prefer frequent senses.

b) Encourage high coherence across chosen grounded triples.

c) Prefer same senses of a word across observations.

d) Properly handle extended concepts.

We define our Joint Model using integer-linear programs (ILPs) to encode the

intuition that similar grounded triples collectively aid in disambiguation. The

desired properties are soft constraints and become part of the objective. We

assume we are given a series of observed triples, denoted by index i. For each

observed triple (ni∗1 , a
i∗, ni∗2 ), we have a number of candidate groundings, denoted

by index j. We refer to such a grounded triple as (nij1 , a
ij, nij2 ). The ILP requires

pre-computing the following coherence scores for such grounded triples.

• cohij: The coherence of an individual grounded triple, computed as
1

3
of

τNN(n1, n2) + τNA(n1, a) + τNA(n2, a) just like the local model.

• φij: The average sense score of a grounded triple, computed as
1

3
of

φ(n∗1, n1) + φ(n∗2, n2) + φ(a∗, a) from the local model.

• simij,kl: The taxonomic relatedness between a grounded triple with index

ij and another grounded triple with index kl. This is computed as∑
i1∈{1,2}

∑
i2∈{1,2}

τNN(niji1 , n
kl
i2

)

+
∑

i1∈{1,2}

τNA(niji1 , a
kl) + τNA(nkli1 , a

ij)

+ τAA(aij, akl)

where, τAA(aij, akl) is a semantic relatedness score between two adjectives,

computed as an extended gloss overlap just as for the τNA scores.
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• µij,kl: Semantically equivalent triples are detected using synonymy and

antonymy information, as explained later on in more detail. We set µij,kl =

1 if the two triples are semantically equivalent, and 0 otherwise.

Table 4.2 lists the formulas for the different scores used in the local model.

Table 4.2: Score computations: Global model

Prior sense score and coherence

φij =
φ(n∗1, n1) + φ(n∗2, n2) + φ(a∗, a)

3
(4.9)

cohij =
τNN(n1, n2) + τNA(n1, a) + τNA(n2, a)

3
(4.10)

Two grounded triples

simij,kl =
∑

i1∈{1,2}

∑
i2∈{1,2}

τNN(niji1 , n
kl
i2

)

+
∑

i1∈{1,2}
τNA(niji1 , a

kl) + τNA(nkli1 , a
ij)

+ τAA(aij, akl) (4.11)

Given these scores, our joint model relies on the objective and constraints pro-

vided in Table 4.3. In the objective function, the xij variables capture whether

a given grounding is chosen and thus the first component encourages accepting

groundings with high coherence and frequent senses, just like in the local model.

The second component, in contrast, allows this model to go beyond the local

model by encouraging that groundings are chosen that are similar to other cho-

sen groundings. This is a major part of what allows our joint model to make joint

decisions. We use Bij,kl variables to reflect whether two groundings were both

simultaneously chosen. In practice, we prune the linear program significantly by

only instantiating such variables when they are necessary. Finally, the third and

fourth components encourage us to prefer fewer of the senses s of an adjective

m or noun m, respectively, across the entire graph.

In order to ensure that all variables reflect their intended semantics, we need to

enforce linear constraints. Constraint (1) specifies that a grounding can be either

accepted or rejected. Constraint (2) ensures that at most one grounding of an
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Table 4.3: Joint Model: Integer Linear Program

maximize∑
i

∑
j

(cohij + φij)xij +
∑
i

∑
j

∑
k

∑
l

simij,klBij,kl −
∑

m∈adj

∑
s

ams −
∑

m∈nouns

∑
s

nms

subject to

xij ∈ {0, 1} ∀i, j (1)∑
j xij ≤ 1 ∀i, j (2)

Bij,kl ∈ {0, 1} ∀i, j, k, l (3)

Bij,kl ≤ xij ∀i, j, k, l (4)

Bij,kl ≤ xkl ∀i, j, k, l (5)

ams ∈ {0, 1} ∀m, s (6)

nms ∈ {0, 1} ∀m, s (7)∑
s ams ≥ 1 ∀ adjectives m (8)∑
s nms ≥ 1 ∀ nouns m (9)

xij ≤ ams ∀m, s of all adjective senses for i,j (10)

xij ≤ nms ∀m, s of all n1 senses for i,j (11)

xij ≤ nms ∀m, s of all n2 senses for i,j (12)

xij = xkl ∀i, j, k, l : µij,kl = 1 (13)

observed triple is accepted. Note that the model does not require a grounding to

be chosen for every observed triple. Constraints (3) to (5) ensure that the Bij,kl

variables are 1 if and only if both xij and xkl are 1.

Constraints (6) to (9) enforce that at least one word sense per word (adjective

or noun, respectively) is accepted. Constraints (10) to (12) ensure that if a

grounding is accepted, its word senses are marked as accepted.

Finally, constraint (13) ensures that semantically equivalent triples are tied

together. Thus, if one grounding is chosen, then all equivalents must be accepted

as well. The model must choose either all or none of them. The details of how

we determine µij,kl are explained below in the next section.

Maximizing the objective subject to the constraints and taking those ground-

ings for which xij = 1, we obtain a set of disambiguated triples that are not

only highly ranked on their own but also coherent with the groundings chosen

for related observations.
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4.2.3 Triple organization

In an effort to obtain a more well-defined and structured knowledge base, all

semantically equivalent groundings are grouped together. For example, for ap-

propriate chosen senses, the grounded triples 〈car faster bike〉, 〈bicycle slower

automobile〉, 〈car speedier cycle〉 all express the fact that cars are generally

faster than bicycles.

Equivalent comparative triples To determine equivalent triples, we make use

of the following heuristics:

• Synonymy: Since groundings are disambiguated to WordNet synsets, ground-

ings with synonymous word senses become identified, e.g., 〈car faster

bike〉 and 〈automobile speedier bicycle〉.

• Antonymy: WordNet marks pairs of word senses like fast vs. slow as

antonymous, i.e. as expressing semantically opposite meanings. If two ad-

jective senses have opposite meanings, we can assume that their triples are

equivalent if the arguments are in reverse order but otherwise equivalent.

Thus 〈car faster bike〉 is equivalent to 〈bike slower car〉. Since Word-

Net’s coverage of antonyms is limited, we also include indirect antonyms,

considering antonymy for up to two levels of indirection (e.g., the synonym

of an antonym of a synonym is also considered an antonym).

• Negation: While negation does not necessarily explicitly express the op-

posite, we have found that we obtain good results by treating negated

adjectives (e.g., not faster than) just like antonyms (slower than). We use

a small manually compiled list of negation markers for this.

More specifically, Ac 〈x1sn a1sa y1sn〉 and A ′
c 〈x2sn a2sa y2sn〉 are synonyms if:

- the arguments are swapped and the relation is antonymous i.e.

x1sn isSynonymOf y2sn ; x1sn isSynonymOf y2sn ; a1sa isAntonymOf a2sa;

e.g., 〈car1
n fast1

a bike1
n〉 isSynonymOf 〈bicycle1

n slow1
a car1

n〉
- the arguments are not swapped and the relation is synonymous i.e.

x1sn isSynonymOf x2sn ; y1sn isSynonymOf y2sn ; a1sa isSynonymOf a2sa;

e.g., 〈car1
n fast1

a bike1
n〉 isSynonymOf 〈car1

n speedy1
a bicycle1

n〉

Grouping equivalent triples We refer to a set of equivalent groundings as a

Csynset (see Definition 4.2.2), similar to the notion of a WordNet synset (syn-

onym set). We use this notion of semantic equivalence for the µij,kl scores in the
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ILP, to ensure consistency and joint assignments, as well as to provide the final

output of our system in a more semantically organized form.

Definition 4.2.1 - Csynset.

A Csynset is a set of semantically equivalent comparative triples

Ac. A Csynset is accompanied by a support score aggregated over the

comparative triples in the Csynset and is defined as
∑

Ac
Θ(Ac).

Thus, our overall output is a large number of Csynsets expressing comparative

knowledge. Every Csynset is itself a small set of equivalent grounded triples

chosen by our joint model.

To make our knowledge base more consistent, we check for any Csynsets whose

inverses are also present. Every triple in an antonym of a Csynset is the antonym

of every triple contained in the Csynset (see Definition 4.2.2). We define antonym

of a comparative triple as:

Ac 〈x1sn a1sa y1sn〉 and A ′
c 〈x2sn a2sa y2sn〉 are antonyms if:

- the arguments are swapped and the relation is synonymous i.e.

x1sn isSynonymOf y2sn ; x1sn isSynonymOf y2sn ; a1sa isSynonymOf a2sa;

e.g., 〈car1
n fast1

a bike1
n〉 isAntonymOf 〈bicycle1

n fast1
a car1

n〉
- the arguments are not swapped and the relation is antonymous i.e.

x1sn isSynonymOf x2sn ; y1sn isSynonymOf y2sn ; a1sa isAntonymOf a2sa;

e.g., 〈car1
n fast1

a bike1
n〉 isAntonymOf 〈car1

n slow1
a bicycle1

n〉

Definition 4.2.2 - Antonym of a Csynset.

An antonym of a Csynset is a Csynset such that every triple Ac

in the antonym Csynset is an antonym of a triple in the Csynset.

We insert an isAntonymOf relation between the Csynsets and its antonym.

This gives us, CMPKB, our final output knowledge base, disambiguated and

connected to WordNet.
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4.3 Results

Corpora. We ran our extraction system on the following two very large Web

corpora.

• ClueWeb09: The ClueWeb09 data set1 is a large multilingual set of Web

pages crawled from the Web in 2009. We used the 504 million Web pages

in the English portion.

• ClueWeb12: The ClueWeb12 data set2 consists of 27 TB of data from

733 million English Web pages crawled from the Web in 2012.

Evaluation dataset. To evaluate our system, we created three test sets sam-

pling three different kinds of triples from this raw, ambiguous data:

i) WN: both the left and right argument of the triple are surface forms that

appear as words in WordNet, e.g., steel, wood, photo, sketch.

ii) Extended: both the arguments are extended concepts, e.g., math profes-

sor, novice student, digital image, brush sketch.

iii) WN/extended: one of the two arguments is in WordNet, the other is an

extended concept.

Each of these three sample sets contained 100 randomly chosen observations.

For each observation triple, human annotators were asked to choose the best

possible word senses, not just surface forms. When an annotator found that

none of the possible senses yields a true statement, i.e. the extracted triple is

noise, and none of the senses were selected. In case of an extended concept, the

annotators annotated only the head word, e.g., professor1
n in math professor,

sharp3
a in sharper than, student1

n in novice student.

For development and tuning, we additionally relied on a separate set of around

40 annotated observations in order to avoid experimenting with different variants

of our model on the test set.

Baselines. We consider the following two baselines.

1. Most-frequent-sense heuristic (MFS): The standard baseline for dis-

ambiguation tasks is MFS that maps an observation triple 〈x∗ a∗ y∗〉 to

〈x1 a1 y1〉 using the WordNet sense rankings. In WordNet and many other

1http://lemurproject.org/clueweb09/
2http://lemurproject.org/clueweb12/

http://lemurproject.org/clueweb09/
http://lemurproject.org/clueweb12/


4.3. RESULTS 75

lexical resources, sense entries are ranked such that the most frequent or

important senses are listed first. For example, MFS disambiguates 〈car

fast bike〉 as 〈car1
n fast1

a bike1
n〉. In word sense disambiguation studies,

the MFS heuristic has often been mentioned as hard to beat.

2. Local model: Our second baseline is the local model described earlier. For

every observed triple, the top-ranked grounding with respect to the score

from Equation 4.1 is selected. The local model not only uses the sense

rankings but also additionally incorporates the intra-grounding coherence.

Unlike our joint model, however, this baseline disregards any coherence

across triples.

Results. Having run our extraction code over the ClueWeb corpora, we obtained

488,055 extractions from ClueWeb09, and, 781,216 from ClueWeb12. Together,

these amount to 1,064,066 distinct extractions. This is mainly because the crawl-

ing strategies for the two ClueWeb corpora differed significantly. ClueWeb12 was

created as a companion for ClueWeb09 with very different content (highly pop-

ular sites and Twitter links) and better spam detection. Thus, there is little

overlap between the two corpora.

In order to evaluate our joint model, we added additional related triples from

the extractions to create a graph for every observed triple to be assessed. We

greedily chose the most similar observed triples up to a maximal size of 10 ob-

served triples, and then for every observed triple, possible candidate groundings

were considered. We used these to instantiate the ILP, but smartly pruned out

unnecessary variables (removing Bij,kl variables when simij,kl is zero or near-

zero). For optimization, we use the Gurobi optimizer version 5.6 (www.gurobi.

com).

The evaluation is done separately for the three kinds of triples. Table 4.4

provides accuracy scores (95% Wilson confidence intervals) for the three different

categories in the test set, and for the overall test set aggregated over all the

categories.

We see that the local model outperforms the MFS baseline by a small mar-

gin. Although the local model makes use of valuable sense ranking and coher-

ence information, it does not deliver satisfactory results. For example, the local

model failed on 〈tiger fast auto〉 by incorrectly disambiguating it onto 〈tiger1
n

(wrong sense: strong person) fast1
a auto1

n〉.
Instead, our joint ILP model is the clear winner here, as it is able to take

into account additional information about other related triples (e.g., 〈car slow

cheetah〉) when making decisions. As another example, given the observed triple

www.gurobi.com
www.gurobi.com
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Table 4.4: Test Set Results (Precision)

Approach WN WN/extended extended all

MFS 0.42 ± 0.09 0.43 ± 0.09 0.46 ± 0.08 0.43 ± 0.05

Local Model 0.47 ± 0.09 0.49 ± 0.09 0.44 ± 0.08 0.47 ± 0.09

Joint Model 0.83 ± 0.06 0.85 ± 0.06 0.80 ± 0.06 0.83 ± 0.04

〈pork more tender beef 〉, our model correctly infers that the highly ambiguous

adjective tender, with eight senses in WordNet, is not used in its initial senses

(sentiment-related) but in its fifth sense (easy to cut or chew). Our model si-

multaneously also correctly infers that pork is used in its first out of two listed

senses, but that beef is not used in its first sense (cattle reared for their meat),

but in its second out of three senses (meat from an adult domestic bovine).

Overall, our knowledge base provides around a million disambiguated com-

parative assertions. Table 4.5 lists some examples of the type of semantically

organized knowledge one can find among these assertions.

Table 4.5: Example Disambiguated Assertions

Type Argument 1 Relation/Adjective Argument 2

WN snow2
n less dense3

a rain2
n

marijuana2
n more dangerous1

a alcohol1
n

diamond1
n sharper (sharp3

a) steel2
n

WN/extended little child1
n happier (happy1

a) adult1
n

private school1
n more expensive1

a public institute1
n

pot soil3
n heavier (heavy1

a) peat1
n

extended peaceful resistance1
n more effective1

a violent resistance1
n

hot food2
n more delicious2

a cold dish2
n

wet wood1
n softer (soft1

a) dry wood1
n

Use-case. As an example use-case, we consider computational advertisement,

following (Xiao and Blat, 2013). Advertising frequently relies on metaphors

to convey attributes of products and services. The salience of an attribute is
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typically manifested very well in comparative statements. For example, with

smartness as the target attribute, we can query our knowledge base for triples

with smarter as the relationship and obtain dog1
n, dolphin1

n, pundit1
n as the most

frequent left or right arguments. Similarly, with heavier as the relationship, the

top three arguments are iron1
n, air1

n, steel1
n.

To score potential representatives for a given query attribute, we computed

the frequency of objects listed as left or as right arguments. Top-ranked results

for three example queries that are often relevant in advertising are given in Table

4.6.

Table 4.6: Advertising Suggestions

smarter more expensive heavier

dog gold iron

dolphin oil air

pundit organic food steel

4.4 Discussion

We have presented the first approach for mining and consolidating large amounts

of comparative commonsense knowledge from Big Data on the Web. Our algo-

rithm successfully exploits dependencies between triples to connect and disam-

biguate the data, outperforming strong baselines by a large margin. The resulting

knowledge base, CMPKB, is freely available at (http://people.mpi-inf.mpg.

de/~ntandon/resources/readme-comparative.html).

Strengths:

• In this work, r in a triple 〈x r y〉 is an adjectival phrase. Our methods are

generic i.e. r can also be a verbal phrase. We only need to compute the

verb-noun and verb-verb sense similarity analogously to adjective similarity

to enable our method for verbal phrases. Our method can operate in a lim-

ited context enabling us to add semantic refinement over any existing triples

extracted via OpenIE.

• Our method is scalable and does not require any labeled data. It is not tightly

coupled with WordNet. We can compute the taxonomic similarities from any

http://people.mpi-inf.mpg.de/~ntandon/resources/readme-comparative.html
http://people.mpi-inf.mpg.de/~ntandon/resources/readme-comparative.html
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lexical resource like Wiktionary that contains senses along with their glosses.

Weaknesses:

• Our global model can be computationally expensive when the graph is very

large as the number of variables in the ILP will be of the order O(N2) where

N is the number of triples in the graph.

We overcome this weakness partially, by pruning out the input graph can-

didates (smaller graph = fewer variables). We consider only those triples

that might potentially help in disambiguation of the candidate triple, e.g.,

to disambiguate 〈car fast bike〉, only triples like 〈auto speedy bike〉 might

help but not 〈juice sweet water〉. We maintain top-k similarity lists for each

word sense.

• In our setup, the extraction phase is not a major focus and thus we currently

rely on simple heuristics that can easily be applied to terabyte-scale Web

corpora.

Existing techniques such as (Jindal and Liu, 2006), could potentially be

used to improve our extraction phase by identifying potential comparative

sentences and their elements using sequence mining techniques.

• Currently it is difficult to perform reasoning such as consistency rules and

transitivity rules over Csynsets. The antonym of the Csynsets conveys exactly

the opposite information and thus consistency rules like anti-symmetricity

fail.

As a solution, we could define a function that takes a Csynset and its

antonym Csynset as input and selects exactly one of these. This function

could return the Csynset with the larger support score.

Lessons learned:

• Global coherence is simple, robust to noise and can perform joint disambigua-

tion.

• Comparative commonsense is not affected by reporting bias. Comparatives

can be seen as an alternative view of non-comparative relations i.e. property

relations and thus help in estimating salience and overcoming reporting bias

to some level.

Assumptions:

• There is a strong coherence within all pair of components of a triple.
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Extensions:

• Methods that mine comparable commonsense from numerical data are a com-

plementary source; see related work in Section 4.1. This would require a KB

of units (for conversion , e.g., from ft to m)

• The triple 〈car faster bike〉 increases the likelihood that 〈bike hasSpeed

slow〉 and 〈car hasSpeed fast〉. Two different views can help to overcome

reporting bias to a certain extent. Secondly, salience can be estimated because

fast (speed) is a typical attribute associated with a car.

In the next chapter, we will see that such interplay or multiple views of the

same knowledge is also possible via multimodal data (i.e. text and images).





5 Commonsense on Relationships:

Part-Whole

5.1 Introduction

In this chapter, we investigate the second category of commonsense relations, i.e.

commonsense of relationships. This chapter investigates methods for an instance

of such relations, fine-grained taxonomy of part-whole relations.

Part-whole relations are well explored but fine-grained semantic distinction

between the sub-relations of part-whole has never been explored. In this chapter,

we will present methods and results on acquisition of part-whole relations.

Motivation. We all know that a thumb is part of a hand, and that a goalkeeper

is part of a soccer or hockey team. For machines this kind of commonsense is

not obvious at all, yet many modern computer tasks – like computer vision, Web

search, question answering, or ads placement – require this kind of background

knowledge to simulate human-like behavior and quality. For example, suppose a

visual object detection algorithm has recognized two wheels, pedals and a chain

in an image or video; a smart interpretation could then harness knowledge to infer

that there is a bike in this scene. This would be a novel element and potential

performance booster in computer vision (Rohrbach et al., 2011). However, there

is no comprehensive part-whole knowledge base available today.

State-of-the-art and its limitations. There has been considerable research to

automatically acquire part-whole knowledge across several disciplines.

Philosophy. In mereology, there is wide consensus that the part-whole relation

should be modeled as a weak partial ordering, i.e., a property that is reflexive,

transitive, and anti-symmetric (Varzi, 2010). Winston et al. (1987) and Keet

and Artale (2008) discuss semantic variants of part-whole relations in natural

languages. Smith et al. (2005) discusses the specific setting of biomedical ontolo-

81
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gies. Our work, just like WordNet, follows the conceptual framework of Winston

et al. (1987).

Computational linguistics. In contrast to the ample work on lexico-syntactic

patterns for hyponymy/hypernymy and taxonomy induction, there is relatively

little work on extracting meronymy/holonymy concept pairs. Berland and Char-

niak (1999) used two Hearst patterns, on genitive forms, to extract candidate

pairs and used statistical measures for ranking. However, the high ambiguity of

genitive forms (’s, of) led to very limited results.

Girju et al. (2003, 2006) extended and generalized this approach by using

additional, still handcrafted, patterns and adding constraints about the lexical

hypernyms (in WordNet) that concept pairs need to be in a meaningful part-

whole relation. For example, two concepts that belong to the WordNet senses

location and people, respectively, would be disallowed for part-whole. These

constraints were automatically learned by a decision-tree classifier, but required

a substantial amount of training samples. For mapping words to concepts, stan-

dard word sense disambiguation techniques were used. The method achieved a

precision of ca. 80% on a few 10,000 sampled sentences from news corpora.

Pantel and Pennacchiotti (2006) developed the Espresso algorithm that ex-

tended prior work on seed-based pattern induction (such as Ravichandran and

Hovy (2002)) by introducing PMI-based pattern rankings. Here, seeds were con-

cept pairs, and patterns were automatically learned. This resulted in a precision

of 80% for part-whole extractions from benchmark corpora. The output pairs

were not sense-disambiguated and the output size was small. Ruiz-Casado et al.

(2007) harnessed Wikipedia and patterns near hyperlinks, and achieved a preci-

sion for meronymy/holonymy ≤ 70% in small-scale experiments.

Recent works on acquisition of lexical relations include Tandon et al. (2011)

and Ling et al. (2013). The former addressed a wide variety of commonsense

relations without specific concern for part-whole, whereas the latter was geared

for meronyms among biological concepts.

Ittoo and Bouma (2010, 2013) studied refined classes of part-whole relations,

based on the taxonomy of Keet and Artale (2008). They extended prior work

by using different seed sets for different part-whole relations extracted from

Wikipedia texts, and achieved an overall precision of ca. 80% for an output

of ca. 10,000 concept pairs.

None of these prior works was designed for constructing a large, fine-grained

and disambiguated part-whole KB.
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Knowledge acquisition. Commonsense acquisition projects like Cyc (Lenat,

1995; Matuszek et al., 2005), ConceptNet (Havasi et al., 2007; Speer and Havasi,

2012), NELL (Carlson et al., 2010; Mitchell et al., 2015), and WebChild (Tandon

et al., 2014a) have compiled large amounts of commonsense knowledge.

Among these, only Cyc and ConceptNet contain a sizable number of high-

quality instances of part-whole relations. Cyc has relied on manual expert input,

which is expensive and does not scale. ConceptNet is based on crowdsourcing,

but lacks argument disambiguation and semantic refinement. Their coverage is

far from anywhere near being complete.

Automated efforts like Tandon et al. (2011) or NEIL (Chen et al., 2013) had

to cope with fairly noisy inputs, like n-gram corpora or images; so their outputs

for part-whole relations are quite inferior in quality compared to WordNet or

ConceptNet. The NEIL project (Chen et al., 2013) has embarked on discovering

part-whole and other commonsense relations about scenes by analyzing a large

number of images. So far the project has acquired around a hundred instances

of a generic part-whole relation.

Thus, prior part-whole KBs have major limitations:

i) The automated efforts to compile part-whole knowledge, such as NEIL or

Tandon et al. (2011) conflate different kinds of part-whole relations into a

single generic relation partOf and miss out on the semantic differences be-

tween physicalPartOf (e.g., 〈wheel physicalPartOf bike〉), memberOf (e.g.,

〈cyclist memberOf team〉), or substanceOf (e.g., 〈rubber substanceOf wheel〉).
ii) In all part-whole KBs except WordNet, the arguments of the relations (e.g.,

screen, notebook) are merely words with ambiguous meaning, whereas they

should ideally be unique word senses, for example, by disambiguating them

onto WordNet synsets.

iii) In all part-whole KBs, the assertions are merely qualitative; there is no infor-

mation about either visibility or cardinality. Existing KBs lack the distinction

between visible and invisible physicalPartOf (e.g., for an ordinary human,

〈nose physicalPartOf human〉 is visible, while 〈kidney physicalPartOf human〉
is invisible). Further, it could be important to know that a bike has two

wheels rather than three, and that a car has one steering wheel rather than

two. These distinctions are crucial for visual applications.

iv) The coverage of part-whole knowledge is very limited. For example, Concept-

Net contains only 1,086 instances of various part-whole relations in total. It

has the notion of a memberOf relation and knows the concepts of a cyclist and

sport team, yet does not have any memberOf information for these concepts.
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Problem statement. Our goal is to automatically mine assertions for fine-

grained part-whole relations. These fine-grained relations include: physicalPartOf,

e.g., 〈wheel physicalPartOf bike〉; memberOf, e.g., 〈cyclist memberOf team〉; and,

substanceOf, e.g., 〈rubber substanceOf wheel〉. Further, we aim to enrich these

assertions with two new attributes: visibility and cardinality. The first indicates

whether the part can be visually perceived. The second attribute defines the

number of parts in the whole.

Definition 5.1.1 - Part-whole assertion.

A part-whole assertion Apw is a triple 〈xsn r ysn〉 where xsn and ysn

are WordNet noun senses or extended concepts, and r ∈≺P ,≺M ,≺S
where, ≺P denotes physicalPartOf, ≺M denotes memberOf and ≺S
denotes substanceOf. Every part-whole assertion is accompanied by a

confidence score 0 ≤ Θ(Apw) ≤ 1.

Examples of the kind of assertions we aim to mine are: 〈atleast three sheep1
n

memberOf herd1
n〉 or that 〈two license plate2

n physicalPartOf car1
n〉 or that

〈salt1
n substanceOf sea1

n〉.
We use WordNet to disambiguate concepts extracted from Web and image

tags. WordNet connects synsets by various relations. Relevant for us are hyper-

nymy/hyponymy (type, subclass), which relate broader concepts to more specific

ones, and three kinds of part-whole relationships: (physical) partOf, memberOf,

and substanceOf.

Due to the nature of the part-whole relations, not every synset can be accepted

as left argument (i.e., part – domain of the relation) or right argument (i.e., whole

– range of the relation). For instance, physicalPartOf restricts both domain

and range to be physical, memberOf restricts the range to be abstract, while

substanceOf restricts the domain to be substance. Therefore, we first consider

the synsets that are hyponyms of Abstract Entity (Va) or Physical Entity (Vp).

We assume Va ∩ Vp = ∅. WordNet has exceptions to this disjointness: around

1,000 synsets have hypernyms in both Va and Vp (McCarthy, 2001), e.g., roller

coaster. For these we only use hypernyms in Vp.

Abstract entities include, for example, teams, organizations, music, poems,

etc. Physical entities include everything that one can possibly touch, such as

bikes, cars, fingers, bones, etc. Furthermore we distinguish the synsets under

Substance, denoted as Vs, which is a hyponym of the physical entity, so that

Vs ⊂ Vp. Substance synsets include for examples iron, oxygen, clay, oil, etc.
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Table 5.1 summarizes the part-whole relations with our type restrictions.

Table 5.1: Part-whole relations with type restriction

r domain(r) range(r) example

≺P Vp Vp wheel ≺P bike

≺M Vp ∪ Va Va cyclist ≺M team

≺S Vs Vp rubber ≺S wheel

Approach. Our method includes an extension of pattern-based extraction that

substantially improves the extraction quality on large and noisy text corpora

like the Wikipedia full text and the Google n-gram collection. Subsequently, we

further eliminate false positives by devising rules for constraint checking, and we

also infer additional assertions by logical deduction rules.

For high coverage, these rules need to consider candidate assertions over multi-

word noun phrases. To properly handle these, we have devised a new technique

to integrate such phrases into WordNet. Finally, we developed novel techniques

to enhance the assertions with visibility attribute values by tapping into image

tags obtained from 100 Million Flickr images, and cardinality attribute values

by tapping into Google-books n-grams from multiple languages.

Our method proceeds in three phases:

• Phase 1 – KB Construction: We extend statistical techniques for pattern-

based extraction by introducing weighted seeds in candidate scoring to im-

prove the output quality on large and noisy text corpora. This phase gives

us candidate assertions for part-whole relations, and we map the arguments

of the candidate assertions to WordNet senses.

• Phase 2 – KB Enrichment: The candidate assertions from Phase 1 still con-

tain many false positives. We devise logical inference rules to enforce consis-

tency and obtain cleaner assertions. Additionally, we propose deduction rules

for deriving additional assertions, enlarging the PWKB. A key novelty here is

that these rules apply to assertions over multi-word noun phrases. We have

developed techniques to handle these by carefully extending the WordNet

taxonomy.

• Phase 3 – KB Enhancement: We enhance the part-whole relations by two

new attributes visibility and cardinality. We develop a novel technique that
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exploits image tags to detect the visibility of the part in the whole. For

cardinality, we exploit the grammatical structure of German and Italian to

handle cases which cannot be easily dealt with in English.

Contributions. The contribution of this work is to overcome the limitations

of the state-of-the-art and build a comprehensive, semantically organized, high-

quality part-whole KB, PWKB for short.

We overcome all four aforementioned limitations of the state-of-the-art:

i) Distinguishing physicalPartOf, memberOf, and substanceOf,

ii) Mapping all arguments of our assertions to WordNet senses, thus eliminating

ambiguity and redundancy,

iii) Inferring visibility and cardinality information for many instances of the var-

ious part-whole relations, and

iv) Building a large PWKB with about 6.75 million assertions – orders of mag-

nitude larger than WordNet or ConceptNet while having similar of better

quality.

5.2 KB Construction

We construct our PWKB (Part-Whole Knowledge Base) by introducing novel

extensions of the state-of-the-art pattern-based extraction techniques (with a

new scoring model) and disambiguation techniques (extending from words to

phrases).

Extraction of ≺P ,≺M ,≺S. We use a pattern-based information extraction ap-

proach, following (Tandon et al., 2011), to obtain candidate patterns from text.

This method requires a small number of high-quality seed assertions to boot-

strap the identification of extraction patterns. As the text source, we use the

full text of Wikipedia and the Google-Web n-grams. As seeds, we pick 1,200

instances of the physicalPartOf, memberOf, and substanceOf relations of Word-

Net. Patterns are automatically obtained by matching the seed pairs in our

input corpora, and extracting the essential words between the two concepts (i.e.,

considering only words with certain part-of-speech tags). For example, the seed

goalkeeper ≺M team leads to the extraction pattern <Noun> of the <Noun>.

Scoring model for candidate ranking. The quality of patterns varies widely.

We identify good patterns regarding two aspects: i) patterns should co-occur
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with many distinct seeds (not just very frequently with some seeds), and ii) pat-

terns should discriminate between the three part-whole relations that we aim to

populate. The Specificity Ranker (SR) of (Tandon et al., 2011) already considers

the first aspect. However, we improve this prior model by introducing a notion

of weighted support and by considering the second aspect.

Let σSR(pi) denote the score that SR assigns to pattern pi, using all seeds

for all relations, and let σSR(pi|Rj) be the score if only seeds for relation Rj

(e.g., ≺M) are used. We leverage these SR scores as weights for scoring the

candidate assertions that result from the obtained patterns. The weighted support

of candidate assertion ak is

supp(ak) =
∑
pi

σSR(pi)δ(pi, ak)

where, δ(pi, ak) is 1 if pi co-occurs with ak and 0 otherwise. Analogously, we

define the Rj-specific weighted support for ak as

supp(ak|Rj) =
∑
pi

σSR(pi|Rj)δ(pi, ak)

This is the basis for defining the discriminative strength of ak for Rj:

str(ak|Rj) =
∑
ν 6=j

(
supp(ak|Rj)

supp(Rj)
− supp(ak|Rν)

supp(Rν)

)
where, supp(Rj) =

∑
ak
supp(ak|Rj).

Finally, we normalize both support and strength, to yield values between 0

and 1, and combine them into the overall score of assertion candidate ak:

σ(ak) =
esupp(ak)

1 + esupp(ak)

estr(ak)

1 + estr(ak)

Thus, we can rank candidates and apply thresholding to reduce false positives.

Mapping words and phrases to senses. The selected assertions are word pairs

and hence ambiguous. We extend the IMS (ItMakesSense) tool (Zhong and Ng,

2010) to disambiguate words onto WordNet senses. IMS operates at a word level

and can thus not handle multi-word noun phrases. Our novel contribution is to

add a new layer on top of IMS to additionally disambiguate multi-word noun

phrases including extended concepts, e.g., mountain bike, lightweight racing bike

(see Definition 4.1.1 of extended concepts introduced in Chapter 4). First, we

perform noun phrase chunking on the input sentence where the assertion occurs.
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We use the widely used OpenNLP Chunker (opennlp.apache.org). Next, for

every noun phrase, we identify and disambiguate its lexical head using IMS

(e.g., the out of WordNet phrase the electrical plant to plant1). This yields

canonicalized assertions for our part-whole relations, with unique senses and free

of redundancy. This also enables us to apply type-restrictions based on the

domain and range of the relations (see Table 5.1) to further filter the assertions.

5.2.1 KB Enrichment

We enrich the PWKB by proposing logical inference rules for deduction and

consistency.

5.2.1.1 Increasing coverage

We improve the PWKB coverage by applying the following two deduction rules

(see Table 5.2).

Table 5.2: Deduction rules for increasing coverage

C1. Transitivity: (a ≺ b ∧ b ≺ c)⇒ a ≺ c

C2. Inheritance: (a ≺ b ∧ c hyponymOf b)⇒ a ≺ c

We exploit the fact that physicalPartOf and substanceOf are transitive (Keet

and Artale, 2008) and perform a 2-step transitive closure. We do not consider

the full transitive closure as it tends to produce too many trivial assertions (e.g.,

atom ≺P matter). We propose C2 to propagate part-whole relations to hyponyms

of the whole. For example, having the knowledge: wheel ≺P bike and mountain

bike hyponymOf bike, we infer: wheel ≺P mountain bike. Here, mountain bike

is an extended concept, thus, C2 also applies to extended concepts.

While C2 is useful in many cases (e.g., deducing that mountain bikes have

wheels, too), it also comes with the risk of generating false assertions, e.g., that

mountain bikes have headlights. Here we rely on the pragmatic assumption that

WordNet’s hyponymy links induce subsumptions between the sets of instances

for the respective synsets/classes. Our experimental evaluation reports on the

benefits and risks of the deduction rules.
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Table 5.3: Consistency check rules for increasing quality

Q1. Irreflexivity: ¬ (a ≺ a)

Q2. Acyclicity: ¬ (a ≺ b ∧ b ≺ a)

5.2.1.2 Improving quality

We improve the PWKB quality by checking for inconsistencies and eliminating

false assertions, using the constraints listed in Table 5.3.

We drop assertions that violate the first type of inconsistency. For the second

type, we detect all cycles of length ≤ 3 and break each cycle by dropping the

assertion with the lowest score computed in Phase 1.

5.2.2 KB enhancement

We enhance the PWKB assertions by introducing two new attributes: visibility

and cardinality.

5.2.2.1 Visibility attribute

Our goal is to determine which physical parts of a whole are visible (for an

ordinary human, e.g., not a mechanic or surgeon). If a and b co-occur in an

image and we have the knowledge that a ≺P b, then a is visible. The superscript

V is used for ≺P to denote visibility (e.g., license plate ≺VP car) while NV

denotes non-visibility (e.g., automatic brake system ≺NVP car).

We could consider obtaining visibility information directly from images, or

alternatively, from annotations of images like captions and tags. To compare

these two approaches, we computed co-occurrence statistics from i) running a

visual object detector (LSDA (Hoffman et al., 2014)) versus ii) user-provided tags

that annotate Yahoo! Flickr images (Shamma, 2014). We compared both results

against the already compiled ≺P assertions for a sample of 100K Flickr images.

About 20% of the images show overlap between object class names and tags, on

average 1.5 words. This suggests that the two approaches are complementary.

Consider an image depicting a man playing golf. The Flickr tags are golfer,

club, field, while the detections are button, cap. We obtained ca. 12,000

positive matches with LSDA object detections versus ca. 26,000 with tags. Thus,

image annotations give better coverage.
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We thus used Flickr tags to compute ≺VP at large scale. We set the visibility of

a ≺P b to true, if a and b co-occur as tags of at least a certain number of Flickr

images. In the experiments, we set this co-occurrence threshold to two.

5.2.2.2 Cardinality attribute

Consider the computer vision task of recognizing different types of cycles (uni-

cycle, bicycle, tricyle). Knowing that a unicycle has one wheel, bicycle has two,

whereas tricycle has three wheels, will help the object detector. This motivates

us to further extend the PWKB by cardinality information, where we distinguish

the cases 1,2,3+ and uncountable denoted as ω. The uncountable case applies,

for example, to the fur of a dog or pebbles of a beach.

Definition 5.2.1 - Cardinality.

We represent the cardinality as an attribute that we add to the ≺P and

≺M relations, and denote it by a superscript c; e.g., wheels≺{2,V }P bike

denoting that a bike has two visible wheels.

The method to infer c in a ≺cr∈{P,M} b has three steps:

1) Determine whether a and b are countable. We use wiktionary.org to look

up if a word is countable.

2) If the dictionary does not have that information for a, then we compute the

frequencies fsin(a) and fplu(a) of the occurrences of a in singular and plural

form within a text corpus, using standard grammar rules. If fsin(a)� fplu(a)

or fplu(a)� fsin(a), then we consider a to be uncountable. The threshold for

these comparisons is determined from a set of known uncountable concepts.

3) We compare the grammatical forms of a and b. If the majority of a and b

occurrences in the same sentence is in the form {singular, singular} (e.g.,

{handle, bike}), then we set c = 1. If the majority of occurrences has the

form {plural, singular} (e.g., {wheels, bike}), and the supporting patterns in-

clude a numeric token (e.g., 2, 3, . . . ), numbers in text forms (”two”, ”three”,

. . . ), or cues such as “both” or “couple of”, then we set c = 2 for patterns

indicating 2, and c = 3+ for all others. For the remaining cases where

a, b co-occur in the forms {singular, plural} or {plural,plural}, we use default

settings: c = 1 for ≺P and c = 3+ for ≺M .

As English articles and determiners (“the”, “some”, “any”, etc.) do not easily

discriminate singular and plural, Step 3 is error-prone. We thus tapped German
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and Italian corpora (Google-books n-grams) where plural forms are more easily

detectable by variants of articles and inflections of nouns. For the resulting

assertions, we use Wiktionary to map the German or Italian words back to

English.

5.3 Results

Input data. We construct PWKB from the following:

i) Google Web 1T N-gram Dataset Version 1 (Brants and Franz, 2006) which

contains frequencies of n-grams (n=1,..,5) for English web pages;

ii) Wikipedia (2010 snapshot) (Shaoul, 2010) which contains all English Wikipedia

articles as of April 2010;

iii) Google books n-grams in English, Italian and German (2010 snapshot) which

contains POS-tagged 4-grams and 5-grams from millions of books;

iv) Yahoo! Flickr images (Shamma, 2014), which contains 100 million images

from www.flickr.com with title, description, and tags.

Baselines. We consider two types of baselines: KB baselines and methodology

baselines.

As KB baselines, we consider the manually constructed WordNet (WN), the

recall-oriented text-based Specificity Ranker (SR) of (Tandon et al., 2011), the

image-based NEIL (Chen et al., 2013), and the crowdsourcing-based ConceptNet

(CN) of (Havasi et al., 2007). The part-whole relations of SR and CN are not

refined into the more specific relations that PWKB has. To make a fair compar-

ison with SR and CN, we partitioned its assertions into the relations ≺P , ≺M ,

≺S by domain-range type restriction (see Table 5.1), and set the visual attribute

in case the arguments of ≺P map to Flickr tags (identically to our method). SR

and CN contain many part-whole assertions that are encyclopedic rather than

commonsense (e.g., Castro-district partOf California), in addition to noise (e.g.,

misspellings). Such concepts cannot be mapped to WordNet, so we drop them.

Further, for SR and CN, we optimized the score thresholds for coverage. This

explains the difference in numbers from original papers on CN and SR versus

our setting.

As methodology baselines for scoring assertions, we include the widely used

Espresso (Pantel and Pennacchiotti, 2006) and SR, both run on our input data.

For word disambiguation, we compare against the widely used and strong Most

Frequent WordNet Sense (MFS) heuristic. For the quality of noun phrases, NPMI
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Table 5.4: Precision (first line) and coverage (second line)

≺P ≺M ≺S vis. card. overall

WN 1.00 1.00 1.00 1.00 - 1.00

12892 3714 609 1304 - 17215

SR 0.19 0.20 0.23 0.16 - 0.20

0.49M 0.49M 0.15M 0.15M - 1.13M

CN 0.82 0.45 0.43 0.85 - 0.68

921 516 56 665 - 1493

NEIL 0.15 - - 0.15 - 0.15

68 0 0 68 - 68

PWKB 0.89 0.96 0.71 0.98 0.80 0.89

6.65M 0.04M 0.06M 0.74M 6.69M 6.75M

alone is used as a baseline.

PWKB statistics and evaluation. In total, PWKB contains 6.75 Million as-

sertions for the three fine-grained part-whole relations, with disambiguated ar-

guments, and, to some extent, with the two additional attributes. To evaluate

the quality of PWKB, we compiled a random sample of 1000 assertions from

≺P ,≺M ,≺S, with at least 200 assertions from each relation. We relied on hu-

man annotators to judge each assertion. An assertion was marked as correct if

the judge stated that the disambiguation of the arguments was correct and the

part-whole relation was correct.

For the baselines, we generously evaluated the assertions based on their surface

forms as the baselines do not have disambiguated arguments. We compute the

precision as
c

c+ i
, where c and i are the counts of correct and incorrect assertions,

respectively. For statistical significance, we computed Wilson score intervals for

α = 95% (Brown et al., 2001). The inter-annotator agreement for three judges

in terms of Fleiss’ κ was 0.78. We used majority voting to decide on the gold-

standard labels.

The per-relation results are reported in Table 5.4. PWKB clearly outperforms

all baselines in terms of coverage. In terms of quality, PWKB has an overall

average precision of 89%, which seems good enough for many downstream ap-

plications (e.g., in computer vision) where commonsense can be used for distant
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Table 5.5: PWKB anecdotal examples

mouth#1 ≺{1,V }P man#1 electron#1 ≺{3+,NV }
P atom#1

sheep#1 ≺3+
M herd#1 musician#2 ≺2

M duet#2

fibre#1 ≺S cloth#1 steel#1 ≺S boiler#1

supervision or as a prior in probabilistic computations. Such applications need

to cope with uncertain inputs anyway, so ∼90% precision is useful.

PWKB is much larger than all prior KBs while having higher precision than

all except the manually curated WordNet. This holds also for the visibility

assertions, where we outperform NEIL, constructed from 2M images, by an order

of magnitude.

Table 5.5 presents some anecdotal results from PWKB.

Evaluating the PWKB construction pipeline. We evaluated the performance

of the components of the three-phase PWKB pipeline. For each phase, we had

three judges assess the output. For statistical significance, we again computed

Wilson score intervals for α = 95%.

For the first phase – the initial construction of ≺P ,≺M ,≺S, assertion ranking

is the most important component which in turn relies on the ranking of patterns.

Our assertion ranking model (0.85±0.05) outperforms the baseline Espresso rank-

ing (0.34±0.07) and also the Specificity Ranker (0.55 ±0.06) by a large mar-

gin. For the disambiguation of arguments, our IMS-based method (0.80±0.07)

achieves substantially better precision than the MFS baseline (0.70±0.07). Ta-

ble 5.7 lists some prominent patterns for the three part-whole relations. Note

that some of them are of mixed quality: good for recall, but poor in precision

– for example, “y’s x” for x ≺P y, which would be matched by Alice’s husband.

Note, however, that the patterns are further restricted by the domain and range

of the relations (refer Table 5.1). Candidates such as (x=Alice, y=husband) are

rejected because Alice is an instance rather than a concept of WordNet type

“physical entity”.

For the second phase – enrichment, our noun phrase ranker (0.60±0.04) sig-

nificantly outperforms the baseline NPMI (0.25 ± 0.05), yielding 36,498 high

quality noun phrases that we attach to WordNet. We performed an ablation

study on the influence of the logical rules; Table 5.6 shows the results. The C
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rules for deduction increased the coverage from ca. 382K assertions to 6.75M.

The Q rules for constraint checking, on the other hand, were able to remove

nearly 150K false assertions that exhibited inconsistencies. For coverage, each of

the two rules individually yields a major increase in the size of the PWKB; their

combined effect boosts the size even more. Note, though, that even without any

logical rules at all, PWKB with 382K assertions is already an order of magnitude

larger than WordNet or any other prior KB of similarly high quality.

Table 5.6: Ablation study on the logical rules of Phase 2

No Rule +Rule 1 +Rule 2 +Rule 1,2

C rules 382K +55K +700K +6.4M

Q rules +6.4M -476 -146K -146K

In the third phase – cardinality inference, our method achieved a precision of

0.80±0.07, significantly improving upon relying solely on English (0.61±0.09).

As for the cardinality values, we found that we achieve a high precision for

cardinalities 1 and 2. However, we did not compute many assertions with 3+.

This was because our heuristic method preferred a cardinality of ω (uncountable)

in many cases.

5.4 Discussion

We presented the methodology for automatically constructing a large, high-

quality KB of part-whole relations. We improve the state-of-the-art in several

ways:

Table 5.7: Prominent patterns for PWKB relations

≺P ≺M ≺S

y have x x (be) member of y y (be) made of/from x

y ’s x x be in y x found in y

x be part of y x be of y y (be) composed of x
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i) We capture many instances for the refined relations physicalPartOf, memberOf,

and substanceOf,

ii) We disambiguate the arguments of assertions onto WordNet senses,

iii) We additionally infer visibility and cardinality information for part-whole

instances, and

iv) We do all this at a very large scale using a novel combination of statistical

pattern-based extraction and logical reasoning.

The resulting knowledge base, PWKB, is freely available at (http://people.

mpi-inf.mpg.de/~ntandon/resources/readme-partwhole.html). PWKB con-

tains more than 6.75 million assertions; sample-based manual assessment shows

that this output is of high quality.

Strengths:

• The building blocks in this work require only little variations in order to

be used for other types of commonsense relations (e.g., topological or spa-

tial relations). For example, spatial knowledge like the location of an object

including near/above/under is also visually verifiable relations and have mul-

tiple sub-relations.

Our extensions of a weighted version of pattern/assertion ranking can be

easily applied to any pattern-based IE setting where a seed can potentially

belong to multiple relations as observed in several commonsense relations

(including hasProperty).

• Our dataset does not contain trivial assertions like atom ≺ man. To achieve

this, we limit the transitive closure to paths up to length two. To keep the

error rate under control, we apply the transitivity rule only to physical objects

and we limit the transitive closure to paths up to length two.

Weaknesses:

• Inheritance based deduction rule C2 in Table 5.2 may lead to incorrect as-

sertions. For instance, if we know that lace ≺P shoe and laceless shoe

hyponymOf shoe, then lace ≺P laceless shoe. This is incorrect because a

laceless shoe obviously has no lace. In the evaluation (see Table 5.6), we

found that there are very few exceptions of this kind and this rule gives an

impressive increase in coverage.

• Our cardinality estimation method does not take into account the confidence

(or support frequency) of the cardinality estimates from multiple languages.

http://people.mpi-inf.mpg.de/~ntandon/resources/readme-partwhole.html
http://people.mpi-inf.mpg.de/~ntandon/resources/readme-partwhole.html
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One solution would be to re-scale/normalize the frequencies as the dataset

sizes across different languages have a large variance. Currently, frequency

estimates from English are the largest.

Lessons learned:

• Multimodal data has an ensemble effect and provides visually salient part-

whole relationships. This helps overcome any reporting bias in text.

• Image tags are a good substitute for prominent object detections in the im-

age. With an overlap of more than 20% between the image tags and detected

objects, we found that these 20% overlap prunes non-salient objects, e.g.,

button of a shirt in an image depicting a golfer. We call such a visual ver-

ification as quasi-visual verification because we use the tags instead of the

low-level features of an image overcoming the low accuracy and scalability

challenges associated with object detection.

Assumptions:

• We follow the approach of existing works (Smith, 1995) which considers com-

monsense assertions to be true even if there are a few counter-examples (e.g.,

birds can (usually) fly although penguins cannot).

• We assume that if a part and whole is visible or appear as tags in an image,

then the part-whole relationship is visible. Similar to the previous assump-

tion, we assume this to be true even if there are few counter-examples (e.g.,

some parts are visible to a mechanic or a surgeon but invisible to the major-

ity).

Extensions:

• We estimate the cardinality using majority voting over multiple languages.

We can scale this to more languages and estimate a weighted aggregation

over these languages.

• We can perform reasoning over cardinality using rules to infer for instance,

hands ≺{2} woman given hands ≺{2} human.

• We can mine spatial commonsense with a visibility attribute using the ap-

proach described in this chapter. Visible spatial commonsense could provide

knowledge about what concepts are likely to co-occur, leading to priors for

object detection.



6 Commonsense on Interactions

6.1 Introduction

In this chapter, we investigate the third category of commonsense relations: in-

teractions. This chapter investigates methods for acquisition and organization

of knowledge about activities.

Methods for acquisition of a holistic, multimodal activity commonsense knowl-

edge base have never been explored before. In this chapter, we present methods

and results on acquisition of activity commonsense.

Motivation. With groundbreaking new products like Amazon Echo as well as

assistants like Google Now, Microsoft’s Cortana, and Apple’s Siri, there is a

strong need for commonsense knowledge enabling smart interpretation of queries

relating to everyday human activities.

Intelligent systems need background knowledge about human activities. For

example, consider an activity: climbing a mountain. An intelligent system should

know that this involves a participant — a human, especially a climber, and the

typical location is a mountain, it is a daytime activity. Additionally, climbing

a mountain and hiking a hill are semantically equivalent and one needs to go

out of the house to go for hiking. A visual representation of the activity further

helps the system to identify the activity and the scene. Beyond the kind of

knowledge discussed in the previous chapters, activity commonsense will take

the intelligence of machines to the next level.

State-of-the-art and its limitations. Interest in human activities goes back to

Schank and Abelson’s early work on scripts (Schank and Abelson, 1977), where

procedural knowledge was gathered manually. More recently, such knowledge

has been crowdsourced via Amazon Mechanical Turk (Regneri et al., 2010), but

this data only covers 22 stereotypical scenarios. Other research has developed

ways to mine activity knowledge from the Web using text analysis (Chambers

and Jurafsky, 2009) and deep neural networks (Modi and Titov, 2014). These

methods aim at solving small temporal ordering tasks. Shibata and Kurohashi

97
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(2011) analyze a collection of event similarity data, but do not construct any

new activities.

To gather activity knowledge from multimodal data, Chen et al. (2013) at-

tempt to mine a large-scale collection of simple conceptual knowledge from im-

ages, e.g., that wheels are parts of cars. However, this work does not recog-

nize activities. Regneri et al. (2013) relate crowdsourced activity descriptions

to videos. However, this is a very small collection of only 26 activity types.

Varadarajan and Vincze (2012) present a KB of object affordances for robotics,

but cover only 250 objects. In the vision community, activities have been much

less explored than analyzing objects in images. The root problem is that there is

no comprehensive list of activity classes with corresponding images for training.

Taxonomy induction has a rich body of prior work in NLP and AI. However,

this is primarily for type hierarchy (isA, subclassOf) between general concepts

(classes, noun senses) (see, e.g., Ponzetto and Strube (2011); Pasca (2014a) and

references given there). There is little research on taxonomy induction for verbal

phrases (Lin and Pantel, 2001; Chklovski and Pantel, 2004; Nakashole et al.,

2012). However, this line of work does not consider rich attributes for actions,

and is about general verbs rather than focused on human activities.

Formal upper-level ontologies such as Cyc (Matuszek et al., 2005) and SUMO

(Niles and Pease, 2001) contain some activity knowledge like agents involved in

concepts expressed by verbs. For example, SUMO knows that kissing involves

two humans as agents and their lips. However, this is manually modeled and

the amount of activity knowledge in these ontologies is tiny. These ontologies

focus on knowledge that is expressible in first-order logic, and lack commonsense

knowledge such as participants, typical locations, times, temporal alignment be-

tween activities. Thus, manual and curated approaches are very limited in size.

ConceptNet comes closest to this task because it possesses some activity com-

monsense including temporal relations like hasSubevent, hasFirstSubevent,

hasLastSubevent. It does not provide direct interpretation of activity attributes

because it does not distinguish between an activity and a concept explicitly. Fur-

ther, the activities in ConceptNet are not disambiguated. It does not contain

information about some attributes like participating agents. There is no visual

data attached to concepts or activities in ConceptNet. The knowledge about

activities in general is not organized explicitly as expected in an activity com-

monsense KB.

Thus there is an important void of a semantically organized activity common-

sense KB that needs to be addressed.
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Figure 6.1: Activity Frame Example

Problem statement. The goal of this work is to fill this void by automatically

compiling large amounts of knowledge about human activities from narrative

text. For example, climbing a mountain should be a known activity, along with

attributes like participating agents — a human, especially a climber, typical

location, and time of day. This knowledge should be organized in a frame-

style representation, as illustrated in Figure 6.1. Further, the activities must

be semantically grouped (here with hiking up a hill), and these semantic groups

must be hierarchically arranged. These activity groups should also be temporally

linked to typical previous and next activities. Having this sort of data can

greatly improve computer behavior in tasks like natural language dialog, scene

understanding, or video search.

Recent work in computer vision (Rohrbach et al., 2012) has manually compiled

a small collection of activity scripts, based on short videos about cooking. This

contains about 65 different activities such as melting butter or cooking pasta, with

attributes tool=pan or tool=sieve.

Our goal is to broaden and automate the construction of these kinds of se-

mantic frames, in order to populate a comprehensive activity knowledge base, in

which, similarly to previous chapters, all concepts are sense-disambiguated and

thus canonicalized with regard to high-quality linguistic resources like WordNet

or VerbNet (Schuler et al., 2009; Kipper et al., 2006).

The input to our methods is primarily scripts about movies or episodes of

TV series. Figure 6.2 shows an example from the movie Sex and the City (ob-

tained from the website imsdb.com). Such script data is suitable to our problem

as opposed to other resources. Resources such as news articles and Wikipedia

articles mostly contain encyclopedic activities. Blogs and personal diaries might
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contain some activity knowledge but they may not contain temporal granularity

of activities that we need (previous and next activities). These resources would

usually not contain the aligned visual data that we need.

Although scripts are in a free format, we can exploit some structure. Specif-

ically, there are cues for detecting scene boundaries, we can identify speakers,

and we can extract short descriptions about the setting of a scene that typically

precede the actual dialog. In addition, there are short narrative texts in between

dialogs. Our methods are primarily geared for narrative snippets such as Big

proposes to Carrie or Big and Carrie kiss. The next section discusses how to

further process these snippets and extract semantically cleaner information.

235 INT. PENTHOUSE APARTMENT – LATER – SPRING

Carrie and Big are on the carpeted floor.

Big proposes to Carrie.

BIG (CONT’D)

Carrie Bradshaw

love of my life -

will you marry me?

She nods. Speechless. Overcome. He smiles.

BIG (CONT’D)

See, this is why

there’s a diamond.

236 INT. COURTHOUSE/ROOM – DAY – SPRING

Carrie stands with Big in front of a JUDGE.

JUDGE

By the power vested in me, by

the state of New York, I now

pronounce you husband and wife.

You may now kiss the bride

Big and Carrie kiss.

Figure 6.2: Excerpt from a movie script

Obviously, individual scripts may be too noisy for automated methods to ex-

tract any meaningful information. Our method leverages that certain cues for

activities appear in several scenes of different movies. Further, our scope is be-

yond movie scripts, including sitcoms, TV series, and novels, providing us with

a broad spectrum of activities and higher redundancy.

We treat verbal phrases in narrative snippets as surface expressions for activity

candidates. Using NLP techniques, this gives us cues such as propose to a woman

and kiss someone. Generally, we extract verb-object pairs, where the verb can
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Figure 6.3: Excerpt from a movie script and its corresponding mapping to visuals

via the subtitles, using techniques from Laptev et al. (2008)

.

have a preposition (e.g., propose to) and the object is a noun phrase, potentially

a multi-word phrase (Definition 6.1.1 defines an activity). Such a definition of an

activity provides a balance between redundancy (e.g., having subject verb object

as an activity leads to drop in redundancy) and specificity (e.g., having only a

verb as an activity loses semantics quickly). Initially, these are still ambiguous

words that may have many different meanings. Our methods map both verb

and object to unambiguous senses in WordNet. This is crucial for semantic

interpretation, and also key to being able to combine cues from different scenes

and to organize activities in a clean taxonomy. In the example, we would obtain

propose5 woman1 where 5 and 1 are the WordNet sense numbers of the ambiguous

words propose and woman, respectively. The result of this sense disambiguation

forms the core of an activity frame.

Definition 6.1.1 - Activity.

An activity consists of (v,prep,o) where v is a WordNet sense for

a verb or verb phrase and o is a WordNet sense for a noun or noun

phrase and prep is a surface form preposition linked with v.
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Activities are then enriched by attributes (or frame slots1) about location, time,

and involved participants. The latter includes both the humans in an activity

(e.g., man, woman, judge) and objects or props that play role in the activity (e.g.,

diamond or ring). We obtain cues for the location and time attribute values using

NLP techniques as well as from the scene description (before the dialog starts:

see Figure 6.2), e.g., apartment, courthouse, spring, day. For the participants

attributes, we extract cues from both the characters in a scene and noun phrases

in narrative snippets or dialogs. All these will also be sense-disambiguated in

the output for the KB.

Definition 6.1.2 - Activity frame.

An activity frame is an activity enhanced with attribute values

for location, time, and participants.

• For location, the allowed values are WordNet senses that are hy-

ponyms (specialization) of the WordNet sense location1.

• For time, the allowed values are hyponyms of the sense time period1

or event1.

• For participants, the allowed values are hyponyms of living thing1

or physical object1.

Each attribute can have zero, one or multiple values.

Finally, as we may extract activity candidates from each scene, we can relate

activities from successive scenes (if there is a typical pattern found in several

movies). To this end, we introduce frame attributes prev for a previous activity

and next for a following activity. This way we link different activity frames to

form entire chains. In the example, propose5 woman1 would be next-linked to

kiss1 someone1.

Definition 6.1.3 - Activity chain.

An activity chain is a sequence of temporally related activities

connected by prev and next links. A.next = B and B.prev = A denote

that activity A is often followed by activity B.

1not to be confused with frames in the field of Logic.
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Approach. We have developed an advanced pipeline for semantic parsing and

knowledge distillation. This allows us to systematically compile semantically

organized activity frames from scripts and novels (see the example illustrated

in Figure 6.1). Figure 6.4 illustrates the Knowlywood pipeline of methods and

tools. For automatically building the Knowlywood KB, we take the following

main steps:

Figure 6.4: Knowlywood System Overview

• Semantic parsing: We first apply information extraction techniques on our

input sources and then feed the output into a novel technique for semantic

parsing, based on identifying clauses, mapping words and phrases to Word-

Net and VerbNet, and using integer linear programming (ILP) for the final

disambiguation and construction of candidate activity frames.

Semantic parsing has received much attention in computational linguistics

recently; see Artzi et al. (2013) and references there. So far, it has been

applied only to specific use-cases like natural-language question answering

(Berant et al., 2013; Fader et al., 2014) or understanding temporal expressions

(Lee et al., 2014). We believe that our work is the first to apply semantic

parsing to large amounts of narrative text for KB construction.

Semantic role labeling (SRL) (Gildea and Jurafsky, 2002; Palmer et al., 2010)

is highly related to semantic parsing, the goal being to fill the slots of a pre-

defined frame with arguments from a sentence. However, state-of-the-art

methods are slow and do not work well for our task of activity knowledge

acquisition. Moreover, SRL methods typically consider Propbank (Palmer

et al., 2005) as a backbone, and Propbank lacks the semantic organization of

verbs that VerbNet provides.

Word sense disambiguation (WSD) (Navigli, 2009) is another component in

semantic parsing and semantic role labeling. We use the state-of-the-art tool

IMS (It-Makes-Sense) (Zhong and Ng, 2010) as a WSD prior for our joint

disambiguation ILP. Note, though, that WSD alone focuses on the lexical

semantics of individual words – this is still far from full-fledged semantic

parsing for populating an activity KB.
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• Graph inference: We use the output data of the first stage to construct

a preliminary activity knowledge graph, with noise and false positives. We

then use Probabilistic Soft Logic (PSL) (Kimmig et al., 2013) for efficient

inference to construct a cleaner graph as consistent, high-quality output.

• Taxonomy construction: We merge activities into equivalence classes, so-

called synsets in the terminology of lexical resources (e.g., WordNet). An

example is merging activity propose to girlfriend with propose to fiancee.

Finally, we construct a subsumption hierarchy of activity synsets, which con-

nects activities by the hasType relation. An example is: propose to girlfriend

hasType propose to someone.

We additionally attach video frames to activities by aligning scenes in movie

scripts with their respective video frames. We leverage the timestamp informa-

tion in subtitle data to perform this alignment (see Figure 6.3). We maintain a

record of the position in the scene where an activity is spotted. If there is visual

data corresponding to this position in text, then we assume that this visual data

represents the activity. To align scenes in movie scripts with the video frames,

we follow the procedure described in Laptev et al. (2008): for movies, subtitle

data includes timestamps that can point us to the movie frames at that time-

stamp. Scripts contain nearly the same dialogues as the subtitles, thus making

an alignment easy. The TV series and sitcoms data that we use sometimes con-

tains video frames as part of an episode description. We use the image caption

and its position in the surrounding HTML page to heuristically align the image

with the text of its corresponding scene.

We have processed nearly 2 million scenes from 560 movies, 460 TV series,

and 100 books, and constructed a high-quality activity knowledge base with

almost one million frames. Specifically, we represent activities as JSON objects

which gives us typed attributes (also known as slots in knowledge representation

terminology) and set-valued entries for attributes (also known as values or fillers).

JSON is a popular format for data export/import. Our frames can also be easily

cast into RDF triples.

While parts of our approach could be applied to other genres, we focus on

narrative text because it possesses some attractive yet under-utilized properties.

Rather than being limited to newsworthy events, narrative text may include

descriptions of common, rather mundane everyday activities. These are often

described in a very detailed way and in chronological order with marked bound-

aries. For instance, we may find that one often unlocks a door before entering a

building. Finally, movie narratives allow us to connect our knowledge to visual

content in movies.
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Contributions. Overall, our contributions are:

• The first system, called Knowlywood that automatically acquires detailed

knowledge about activities, by tapping into movie/TV scripts and narrative

texts and combining semantic parsing techniques for candidate generation

with probabilistic inference for candidate cleaning.

• New techniques for sense disambiguation of multi-word phrases (mapping

them to WordNet) and taxonomy induction for activities, as building blocks

of our construction pipeline.

• A large knowledge collection with nearly one million activities in the form of

semantic frames, and with linkage to visual contents where activities occur.

This Knowlywood collection is publicly accessible. Its high quality has been

confirmed by manual assessment with extensive sampling.

Our activity frames are valuable for use-cases such as video search (such as

movie scene search, discussed in Section 7.4), provide background knowledge for

human-computer dialog, and can aid tasks like video scene understanding and

the generation of textual descriptions for visual contents. Note also that the

developed methodology is general and can be applied to other input sources if

available, for example, personal diaries or travel logs.

6.2 Semantic Parsing

We have devised a customized pipeline for semantic parsing that starts with

the input scripts and extracts and disambiguates constituents, all the way to

constructing a frame structure for candidate activities.

Consider the input sentence He shot a video in the moving bus. The output

frame for this input is shown in the last column of Table 6.1. The activity name

is given by the verb followed by an object (i.e., shoot4 video2)2. If a phrase is

not present in WordNet, e.g., moving bus, then we merely map its head word

(bus). The other columns in Table 6.1 show the input phrases (after chunking)

and their mappings to WordNet senses and entries in VerbNet (Kipper et al.,

2Footnote 6.2: The WordNet senses for shoot and video are:

• shoot1
v: hit with missile . . . video1

n: picture in TV transmission . . .

• shoot2
v: kill by firing missile . . . video2

n: a recording of . . .

• . . . . . .

• shoot4
v: make a film . . . video4

n: broadcasting . . .
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2006), as discussed below.

Table 6.1: Semantic parsing example

Phrase WordNet VerbNet Output Frame

Mapping Mapping

the man man1 Agent . animate Agent: man1

began to shoot shoot4 shoot3
vn Action: shoot4

a video video2 Patient . solid Patient:video2

in in PP . in

the moving bus bus1 NP . Location . solid Location: moving bus1

Sentence analysis. We first use ClausIE (Corro and Gemulla, 2013) to decom-

pose sentences into shorter clauses, whenever possible. These are then further

decomposed by applying the OpenNLP (opennlp.sourceforge.net) maximum

entropy model for chunking the text of each individual clause. In the example in

Table 6.1, this results in the sentence being split as shown in the first column.

Sense and argument analysis. Understanding the verb is the most critical

task for semantic interpretation. We address this by mapping the verb or verb

phrase to its proper sense in WordNet, which in turn is linked with VerbNet

(Kipper et al., 2006), a manually curated linguistic resource for English verbs.

For each verb class, VerbNet lists relevant thematic roles, semantic restrictions

on the arguments, and syntactic frames. For example, for the main predicate

verb shoot in our example sentence, VerbNet lists multiple candidate senses, and

for the first of these, shoot1
vn, it provides, among others, the following syntactic

frame:

Agent.animate V Patient.animate PP Instrument.solid

This would match “he shot the man with a gun”. Here, several roles (e.g., Patient

in this example) are accompanied by a semantic constraint (e.g., animate in

this example), known as a selectional restriction. A selectional restriction such

as animate for the patient requires that this patient be a living being when

used in the given syntactic frame. This can guide the choice of the proper

WordNet mappings for the objects and for other words. For instance, the man

in our example sentence could be disambiguated as man1
n, which in turn is in

a hasInheritedHypernym relationship with living thing1
n, which leads us to

the animate label from VerbNet, and helps us find the right VerbNet sense for

opennlp.sourceforge.net
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the verb. As the alignments of VerbNet roles to WordNet are not available, we

manually map these roles to the WordNet senses.

These dependencies are captured as constraints in our joint disambiguation

method, based on Integer Linear Programming (ILP) — discussed below. The

ILP method uses prior weights obtained from simpler heuristics for word sense

disambiguation (WSD) — discussed next.

WSD priors. For an initial disambiguation of individual words and phrases,

we use the state-of-the-art WSD system It-Makes-Sense (IMS) (Zhong and Ng,

2010), which relies on supervised learning. We obtain the following scores for

mapping a word i to sense j:

ξij =

score from IMS for j ∈ SW∑
j′
ξij′ for j ∈ SV linked to j′ ∈ SW

Here, SW denotes the set of candidate WordNet senses for the verbs and SV

denotes the set of candidate VerbNet senses. Note that VerbNet is much smaller

and thus coarser-grained than WordNet, hence the summation over all WordNet

senses linked with the same VerbNet verb.

An additional feature used in the ILP later is the most-frequent-sense ranks

that WordNet provides, based on manual annotation of a large news corpus:

φij =

1/ 1+ rank(j for i) for j ∈ SW∑
j′
φij′ for j ∈ SV linked to j′ ∈ SW

Finally, we compute syntactic and semantic priors based on how well the input

verb matches a VerbNet entry:

synij frame match score for word i and VerbNet sense j

semij selectional restriction score of the roles

in a VerbNet frame j for word i

ILP model. For the joint disambiguation of all words in the input sentence,

we have devised an ILP with binary decision variables xij set to 1 if word i is

mapped to sense j (in WordNet and/or VerbNet). V denotes the set of all input
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words or phrases i that are verb chunks. Our ILP is defined as follows:

maximize∑
i,j

xij(β1ξij + β2φij + β3synij + β4semij)

subject to∑
j∈SV

xij ≤ 1 ∀i ∈ V

xij ≤ xij′ ∀i ∈ V, j ∈ SW,

j mapped to j′ ∈ SV

xi0j0 ≤ xij ∀i0 ∈ V, j ∈ SV,

xij ∈ role-restr(xi0j0)∑
j

xij ≤ 1 ∀i 6∈ V

xij ∈ {0, 1}

The objective function combines the various prior scores, with coefficients

tuned on withheld training sentences that are manually labeled. The first con-

straint ensures that at most one VerbNet sense is chosen for each verb. The

second one ensures consistency between choices of WordNet senses and corre-

sponding VerbNet ones. The third constraint covers the selectional restrictions

described earlier. The fourth constraint ensures that at most one sense is chosen

for each non-verb word.

We instantiate a separate ILP for every sentence, and thus the ILP size and

complexity remain tractable.

6.3 Graph Inference

Based on the output frames of the semantic parsing phase, we derive connections

between different activity frames: parent types (hypernyms), semantic similarity

edges, and temporal order (previous/next). We cast this as a graph inference

problem, denoting the three types of connections as T , S, and P (previous) edges.

We tackle this task using the Probabilistic Soft Logic (PSL) framework (Kimmig

et al., 2013) for relational learning and inference.

The verb or noun in an activity is either a single word that is directly mapped

to a WordNet/VerbNet sense, or it is a multi-word phrase. In the latter case, we

only map the head word of the phrase to WordNet or VerbNet.

Edge priors. As we define an activity as a verb prep, noun pair, we can leverage

WordNet’s taxonomic hierarchy to estimate parent types and similarities between

activities.
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Our model starts off with prior probabilities for each of the three kinds of

edges. The prior for T (parent type) edges between two pairs (v1,n1), (v2,n2) is

calculated as a multiplicative score t(v1, v2) · t(n1, n2). For the noun senses, we

use the WordNet hypernymy: The score is 1 if parent and child are connected

by hypernymy, and 0 otherwise. For the verb senses, we check both WordNet

hypernymy and VerbNet verb hierarchy.

Finally, we derive edges from the subsumption of activity participants, re-

trieved from WordNet, e.g., between drinking tea and drinking beverage.

We create S (similarTo) edges based on the similarity between (v1, n1), (v2, n2)

using the multiplicative score: τVV(v1, v2) · τNN(n1, n2). The taxonomic relat-

edness score between two noun senses τNN(n1, n2) is computed using WordNet

path similarity measure (Pedersen et al., 2004). Scores between two verb senses

τVV(v1, v2) are computed using WordNet verb groups and VerbNet class mem-

bership (Schuler et al., 2009).

P (previous) edges: Scripts come with scene boundaries. We assume that the

activity sequences that occur in a scene are temporally alignable. While an exact

sequence of activity does not bring much redundancy, a gap-enabled sequence of

activities can have rich statistics. Secondly, generalizing activities to potential

parent nodes brings more redundancy, and hence richer statistics. We use the

Generalized Sequence Pattern mining (GSP) algorithm (Srikant and Agrawal,

1996) that efficiently estimates sequences taking into account gaps. GSP uses

a-priori based observation that every sub-sequence of an infrequent sequence can

be pruned. While an exact sequence of activity does not bring much redundancy,

a gap-enabled sequence of activities can have rich statistics and GSP can also

take this into account. We assign the following values to the two parameters:

minimum support = 3 and maximum gap = 4. By using GSP, we efficiently

estimate the P edges and provide the following scores to the P edges: an activity

a1 precedes a2 with probability proportional to the support
freq(a1 prev a2)

freq(a1) freq(a2)
.

Inference. Based on the initial prior scores for T , S, P , our task is to compute a

cleaner graph of T , S, and P edges with scores reflecting their joint dependencies.

These dependencies are captured in our PSL model with the following soft first-

order logic rules. Since these are soft rules, they do not need to hold universally.

The model automatically determines to what extent they should contribute to

the final solution.

1. Parents often inherit prev. (P ) edges from their children:

P (a, b) ∧ T (a, a′) ∧ T (b, b′)⇒ P (a′, b′).
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2. Similar activities are likely to share parent types

S(a, b) ∧ T (b, b0)⇒ T (a, b0).

3. Likely mutual exclusion between edge types:

T (a, b) ∧ S(a, b)⇒ ¬P (a, b).

4. Siblings are likely to be similar:

T (a, c) ∧ T (b, c)⇒ S(a, b).

5. Similarity is often transitive:

S(a, b) ∧ S(b, c)⇒ S(a, c).

6. Similarity is normally symmetric:

S(a, b)⇒ S(b, a).

The inference weights wi are tuned based on withheld data, using the PSL sys-

tem’s weight learning module.

6.4 Taxonomy Construction

Activity merging. The previous steps of our pipeline yield fairly clean activ-

ity frames, but may produce overly specific activities such as embrace spouse,

hug wife, hug partner, caress someone, etc. These are sufficiently similar to be

grouped together into a single frame (with slightly generalized semantics). Thus,

the relation S from the previous step provides a pruned starting point for activity

merging.

Definition 6.4.1 - Activity synset.

An activity synset is a group of activities with highly related se-

mantics. For a synset {(v1, o1), (v2, o2), . . . } of verb-sense/object-sense

pairs, we require that ai = (vi, oi) and aj = (vj, oj) have a semantic

distance in WordNet below a certain threshold.

Specifically, we consider WordNet path similarity (Pedersen et al., 2004) as a

measure of semantic distance. To this end, we construct a graph between activity

frames based on the synset (i.e., equivalence) and hypernym/hyponym relations

in WordNet. The edges in this graph could be weighted by relatedness strength,

such as gloss overlap (Banerjee and Pedersen, 2003), but we simply used uniform
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weights, i.e. simple path lengths dist(vi, vj). For two activities ai, aj, we compute

1

2

(
1

1 + dist(vi, vj)
+

1

1 + dist(oi, oj)

)
.

what are the Pi participants In addition, we consider the participants sets Pi,

Pj in the frames of ai,aj, respectively. Recall that each Pi is a set of WordNet

noun-phrase senses. We compute the WordNet path similarity for each element

in Pi × Pj, and aggregate them into an overall measure by taking the maximum

(or alternatively the average). The final distance between ai and aj is the average

of the verb-sense/object-sense distance and the participants distance.

The threshold for merging two activities into a synset is determined by man-

ually grouping a small sample of activities and computing the threshold that

achieves the synsets in the sample. We transitively merge activities whenever

their distance is below that tuned threshold. We perform a transitive closure on

this pruned neighborhood to allow grouping of activities.

Hierarchy induction. The above techniques provide us with a suitably grained

but still flat collection of activity synsets. However, some of these may seman-

tically subsume others. For example, divorce husband is subsumed by break up

with a partner. Again, the relation T from the previous step provides a pruned

starting point for hierarchy induction.

Definition 6.4.2 - Activity taxonomy.

An activity taxonomy is a DAG (directed acyclic graph) of activ-

ity synsets such that ai @ aj is an edge in the DAG if ai is semantically

subsumed by aj. That is, the verb or object of aj is more general than

that of ai.

To construct the hierarchy, we again use WordNet path similarity but consider

only hypernym relations now (i.e., disregard hyponyms). For this asymmetric

measure, we again tune a threshold by manually assessing a small sample. The

resulting taxonomy graph initially contains all subsumption pairs with semantic

distance below the threshold. As this may create cycles, we finally break cycles

by greedily removing low-weight edges. In building the Knowlywood KB, we had

to eliminate only few cycles.
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6.5 Results

To evaluate our approach, we conducted a series of experiments to thoroughly

examine our pipeline for semantic parsing and knowledge distillation, as well as

the resultant Knowlywood activity frames.

Data processing. Knowlywood is constructed by processing 1.89 million scenes

from several sources:

• 560 movie scripts, scripts of 290 TV series, and scripts of 179 sitcoms. We

crawled this data from Web sites like wikia.com and dailyscript.com.

• The Novels dataset comprises 103 novels from Project Gutenberg Faruqui

and Pado (2012).

• Crowdsourcing: We use the data from Rohrbach et al. (2012), which consists

of textual descriptions of videos portraying humans engaging in cooking re-

lated activities.

6.5.1 System components

Semantic parsing. In order to gain deep insights about our system, we had

human judges annotate at least 250 random samples of the outputs of the

different stages in our semantic parsing method, i.e., sentence extraction by

pre-processing datasets, clause level splitting, the basic NLP pipeline (tagging,

chunking, etc.), and finally disambiguation and VerbNet-based role assignment.

Table 6.2 presents the resulting precision scores with statistical significance given

as Wilson score intervals for α = 95% Brown et al. (2001).

We observe that most of the errors stem from the NLP pipeline, especially

chunking. This could be addressed by using more advanced NLP tools, which,

however, tend to be slower. Processing the sitcom and TV series data is the most

challenging and error-prone due to the nature of these texts: the sentences are

long and often filled with slang (e.g., hold’em). Some errors are also introduced

at the early stage of pre-processing movie scripts, where we rely on regular ex-

pressions to parse the semi-structured text files (e.g., the introductory text for

each scene that introduces the location, time, etc.).

Graph inference. Next, we evaluate the PSL-based graph inference. Our find-

ings indicate that it was instrumental in cleaning the candidate relations between

activities and also in acquiring new edges between them. Table 6.3 shows the

precision and size of the graph before and after the inference step. For example,

wikia.com
dailyscript.com
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Table 6.2: Evaluation of the semantic parsing

sentence clause senses participant overall

roles

Movie scripts 0.79 ±0.11 0.84 ±0.07 0.96 ±0.04 0.96 ±0.03 0.91 ±0.03

TV series 0.90 ±0.06 0.96 ±0.04 0.65 ±0.10 0.79 ±0.08 0.74 ±0.04

Sitcoms 0.91 ±0.07 0.93 ±0.06 0.67 ±0.12 0.72 ±0.11 0.73 ±0.05

Novels 0.94 ±0.05 0.91 ±0.07 0.85 ±0.09 0.93 ±0.06 0.90 ±0.04

Crowdsourcing 0.96 ±0.04 0.96 ±0.04 0.75 ±0.11 0.91 ±0.07 0.91 ±0.03

from the P edge between acquire1
v cutting knife1

n and use1
v cutting knife1

n, a

new P edge is derived from acquire1
v knife1

n to use1
v knife1

n. The transitive clo-

sure on the S relationships adds new edges. Thus, our graph inference increases

Knowlywood’s coverage and accuracy by inferring missing edges and removing

inconsistent ones.

Table 6.3: Effect of PSL inference

Before inference After inference

Precision #Edges Precision #Edges

T 0.77±0.04 1,906,520 0.87±0.03 4,511,203

S 0.84±0.02 1,022,700 0.85±0.04 3,421,210

P 0.78±0.04 116,186 0.84±0.09 205,678

Synset and hierarchy construction. We performed a static analysis of the

hierarchy as well as an empirical evaluation. There were 543 cycles in the graph.

These were of a very small length (average length 3). After breaking the cycles,

the DAG consists of 505,788 synset nodes without any cycles. The maximum

depth of the graph is 5.

Over a random sample of 119 activity synsets, human judges were asked if

the edge between random synset members was indeed a synonymy relation, i.e.

semantically equivalent activities. To evaluate the hierarchy, in a similar way,

human judges were asked if the edge between two activity synsets was one of

hypernymy, i.e. subsuming activity synsets.
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The synset grouping achieved a very high accuracy of 0.976±0.02 (Wilson score

intervals for α = 95% Brown et al. (2001)). One of the reasons for this high

accuracy was the tight threshold for taxonomic similarities. We had empirically

chosen a high threshold of 0.40 for the synset similarity.

The hierarchy grouping achieved a high accuracy of 0.911±0.04 (Wilson score

intervals for α = 95%). An example error case was walk with a fly having a

hypernymy link to travel with a beast. This is because animal and beast are

synonymous. Such mildly incorrect cases led to a slightly lower precision.

6.5.2 Knowlywood KB evaluation

In total, the Knowlywood pipeline produced 964,758 unique activity instances,

grouped into 505,788 activity synsets. In addition to the edges mentioned above,

we also obtain 581,438 location, 71,346 time, and 5,196,156 participant at-

tribute entries over all activities.

Quality. To evaluate the quality of these activity frames, we compiled a random

sample of 119 activities from the KB, each as a full frame with values for all

attributes (participants, location, time, previous and next activity, etc.). We

relied on expert human annotators to judge each attribute for each of these

activities. An entry was marked as correct if it made sense to the annotator as

typical knowledge for the activity. The judgement were aggregated separately

for each attribute, and we computed the precision as
c

c+ i
, where c and i are

the counts of correct and incorrect attribute values, respectively. For statistical

significance, we again computed Wilson score intervals for α = 95%. The per-

attribute results are reported in Table 6.4. The inter-annotator agreement for

three judges in terms of Fleiss’ κ is 0.77.

Table 6.4: Knowlywood coverage and precision

Source #Scenes #Unique Parent Parti. Prev Next Loc. Time Avg.

Activities

Movie scripts 148,296 244,789 0.87 0.86 0.78 0.85 0.79 0.79 0.84

TV series 886,724 565,394 0.89 0.85 0.81 0.84 0.82 0.84 0.86

Sitcoms 286,266 200,550 0.88 0.85 0.81 0.87 0.81 0.83 0.87

Novels 383,795 137,365 0.84 0.84 0.78 0.88 0.85 0.72 0.84

Crowdsrc. 3,701 9,575 0.82 0.91 0.91 0.87 0.74 0.40 0.86

Knowlywood 1,708,782 964,758 0.87 0.86 0.84 0.85 0.78 0.84 0.85±0.01

ConceptNet 5 - 4,757 0.15 0.81 0.92 0.91 0.33 N/A 0.46±0.02
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Figure 6.5: Anecdotal Examples

We can observe from these assessments that Knowlywood achieves good pre-

cision on most of the attributes. In some datasets like the Crowdsourcing collec-

tion, no information on time or location is available. This accounts for the low

scores.

Examples. Figure 6.5 presents anecdotal examples of Knowlywood’s activity

frames, with specific sense numbers from WordNet.
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Comparison with ConceptNet. There is no direct competitor that provides

frames of semantically organized activities. We thus compared Knowlywood with

ConceptNet 5 (CN), the closest available resource, assuming that any concept

name matching the pattern verb [article] object is an activity. We mapped CN’s

relations to our notion of activity attributes as listed in Table 6.5.

Table 6.5: Organizing ConceptNet relations by aligning them with Knowlywood

attributes

ConceptNet relation Knowlywood attribute

IsA, InheritsFrom type

Causes, ReceivesAction, RelatedTo, agent

CapableOf, UsedFor

HasPrerequisite, HasFirstSubevent, HasSubevent, prev/next

HasLastSubevent, MotivatedByGoal

SimilarTo, Synonym similarTo

AtLocation, LocationOfAction, LocatedNear location

The activities derived this way from CN were manually assessed by the same

pool of annotators that assessed the Knowlywood frames. We randomly sample

100 activities from CN and take all their relations but adding further relationships

if we encountered too few of any one relationship type. The last row of Table 6.4

shows the results — both coverage and precision. We see that CN works well for

eliciting previous/next activities. Here its quality exceeds that of Knowlywood.

CN’s crowdsourcing-based knowledge acquisition leads to fine-grained temporal

knowledge that is rather difficult to mine from narrative texts (e.g., that riding a

horse is preceded by keeping your heel down, and followed by your bottom getting

sore).

However, these high precision values also result from the specific nature of

CN’s knowledge representation. Since CN’s concepts are essentially strings (not

word senses), we instructed our annotators to evaluate an attribute value as

correct even if it holds true for just one possible interpretation of the concept

names, ignoring ambiguity. The data also contains duplicates (e.g., you open

your wallet, open your wallet, open wallet, . . . ) that were all judged as correct

as predecessors of taking out money. CN’s less formalized nature is particularly

apparent from the fact that the parent type attribute obtains a precision of only
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15%. Generally, except for the temporal ordering of activities, the precision of

CN is substantially below that of Knowlywood.

Most importantly, Knowlywood’s coverage of activities dwarfs that of CN. CN

merely provides 4,757 activities, most of which are also included in Knowlywood,

while the latter additionally contains nearly a million activity frames.

Comparison with ReVerb. We also compare Knowlywood with ReVerb

(Fader et al., 2011b), the most widely used system for broad-coverage open in-

formation extraction. Open information extraction aims at mining all possible

subject-predicate-object triples from text. We mine activity knowledge from

these triples such that the subject is an agent, and the predicate and object

together form an activity, e.g., drink + coffee.

For role assignment, we mine MovieClips.com to obtain mappings from words

to labels. MovieClips contains high-quality human-annotated and categorized

tags for nearly 30,000 movie scenes (e.g., action:singing, prop:violin, setting:theater).

These tags have a direct correspondence to our attributes (see Table 6.7). The

tag co-occurrence statistics can be used to create a Bayesian classifier as P (c|w) =
P (c,w)∑
ci
P (ci, w)

, relying on the joint probabilities for classes (c) and words (w) from

movieClips.com. One may also consider using semantic role labeling systems

as an alternative. However, they cannot solve our semantic parsing task because

they require large amounts of domain-specific labeled training data. Moreover,

they suffer from poor scalability.

We consider two different datasets as input to ReVerb. First, all the input

Script data that we used for our system (setup called ReVerbMCS). Second,

all of ClueWeb09 dataset (setup called ReVerbClue). ReVerb extractions over

ClueWeb09 are already available in the form of a publicly available dataset Fader

et al. (2011b), consisting of 15 million unique SVO (Subject Verb Object) triples.

The ReVerbClue data does not contain enough context to use the MovieClips-

based role classifier because it consists of only SVO triples.

Since both ReVerbMCS and ReVerbClue extractions are strings (not word

senses), we leniently evaluated an attribute value as correct if it holds true for any

possible sense of the concept. This is thus a much easier task than Knowlywood’s,

for which we required the correct sense disambiguation.

In Table 6.6, we list the number of activities as well as numbers and preci-

sion of several roles. The precision values are obtained by evaluating the frames

corresponding to the activities overlapping with the Knowlywood test set of 119

activities resulting in more than 400 attribute triples. Knowlywood outperforms

both the ReVerb based baselines (compare to Table 6.4), in terms of both pre-

MovieClips.com
movieClips.com
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Table 6.6: ReVerb baselines (counts and precision scores)

Activities Participant Location Time

ReVerbMCS 0.37M 0.37M, 0.77 0.17M, 0.83 0.05M, 0.66

ReVerbClue 0.86M 1.47M, 0.41 0.055M , - 0.008M, -

Table 6.7: Mappings between MovieClips.com and Knowlywood

MovieClips tag Knowlywood attributes Example

action activity.v cut

prop activity.o knife

setting location bar

occasion time thanksgiving

charactertype participant policeman

cision and counts. The role labels score in ReVerbMCS reflect the rich statistics

(though limited in size) obtained from the manually curated MovieClips. We

also see that extractions from ClueWeb09 data, which is an order of magnitude

larger than our scripts data, did not entail better quality.

Multimodal content. By automatically aligning the movie scripts with subti-

tled videos, we were also able to associate 27,473 video frames with Knowlywood’s

activities. We believe that this will be an important asset for computer vision,

because existing systems for activity detection in videos suffer from a lack of

training data and background knowledge, and hence have been quite limited in

their coverage.

6.5.3 Use-case: movie scene tagging

In order to evaluate the usefulness of the Knowlywood KB extrinsically, we in-

troduce the task of predicting the activity portrayed in a movie clip, without

task-specific training data, given only the location and participants in the corre-

sponding scene.

As ground truth, we consider Movieclips.com, which contains high quality,

manually curated categorized tags for nearly 30,000 movie clips/ scenes. Exam-

Movieclips.com
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ples of these include: location/setting: cemetery, participating object/prop: rose,

action: obituary speech. By analyzing the co-occurrence statistics over the tags

of these clips, we obtain a scored list of activities for a given [participant(s),

location(s), time(s)]. We randomly select 1,000 clips from this gold data.

The evaluation task is to assess Knowlywood’s (or any baseline activity KB’s)

top-k activity recommendations given only [participant(s), location(s), time(s)].

This task is more complex than a simple tag recommendation that would ig-

nore any tag categories. As KBs, we use the Knowlywood KB, and the various

baselines: ConceptNet, ReverbMCS, and ReverbClue.

Table 6.8: Movie Scene Tagging evaluation

MRR Hit rate

ReVerbClue 0.070 0.180

ConceptNet 0.143 0.345

ReVerbMCS 0.254 0.415

Knowlywood 0.327 0.610

The evaluation is based on a comparison of the predicted top-k activity list

with the ranked gold list of activities. We report the standard IR-metric Man-

ning et al. (2008) Mean Reciprocal Rank (MRR) that rewards early hits in the

predictions. We also report Hit-Rate metric which is one whenever the top-10

results contain at least one good tag.

Mean reciprocal rank (MRR). Given a query q, we define rq as the topmost rank

of the relevant outcomes in the ranked list. If no relevant result is present in the

list, assume rq →∞. Averaging over queries, we obtain MRR =
1

|Q|
∑

q

1

rq
.

We then evaluated the various KBs on the movie scene tagging task. This is

an automated evaluation, as the ground truth gold data is already available. For

both the KBs and the gold-set, we uniformly set k=10, i.e. we compare the top-

10 predictions against the top-10 ground truth rankings. The results in Table

6.8 demonstrates that although Knowlywood has not been trained or mined

from Movieclips.com tags at all, the system is able to outperform the baselines

by a large margin both on MRR and Hit rate. ReverbMCS outperforms other

baselines because the role label classifier in ReverbMCS uses Movieclips.com

statistics already. Knowlywood also yields a much better coverage in terms of

the hit rate.

Movieclips.com
Movieclips.com
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6.6 Discussion

We have presented Knowlywood, the first comprehensive KB of human activities.

It provides a semantically organized hierarchy of activity types, participating

agents, spatio-temporal information, information about activity sequences, as

well as links to visual contents. Our algorithms ensure that the entries are fully

disambiguated and that inconsistent attributes are removed. Our experiments

show that Knowlywood compares favorably to several baselines, including in

use-cases such as tag recommendations.

We believe that the resulting collection of approximately one million activity

frames is an important asset for a variety of applications such as image and video

understanding. The resulting algorithms in the Knowlywood pipeline could also

serve as a building block for other applications, e.g., Rohrbach et al. (2015)

employ a trimmed version of our semantic parsing and show improvements in

image captioning task. Knowlywood KB is freely available at http://people.

mpi-inf.mpg.de/~ntandon/resources/readme-activity.html

Strengths:

• In addition to scripts, our methods also work on less descriptive, more literary

texts such as novels.

• Our method does not require training data for SRL because we jointly lever-

age the semantics from WordNet and VerbNet for semantic and syntactic

constraints.

• Our framework combines and builds upon existing techniques to build a

pipeline that can be used to build other domain-specific knowledge bases

such as a sports activity KB through commentary scripts.

Weaknesses:

• We do not compile longer chains of activities, but only provide the previous

and next activities.

One solution would be to probabilistically construct longer chains of activi-

ties using a decoding algorithm like Viterbi.

• Our method relies on VerbNet, a handcrafted resource which is not updated

frequently.

Whenever there is no matching entry of a verb in VerbNet, we fallback to

use a simple S V preposition O style extraction that gives us the activity

V preposition O and the participating agent as S. It is non-trivial to tell

http://people.mpi-inf.mpg.de/~ntandon/resources/readme-activity.html
http://people.mpi-inf.mpg.de/~ntandon/resources/readme-activity.html
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apart most prepositions of time/location (e.g., at), however, we can infer the

time by maintaining a dictionary of time (from hyponyms of time). If it is

not time, then we label it as a location.

• The current set of images for activities is small due to a small set of movies.

We propose a solution to this problem while discussing the extensions that

uses Flickr images.

• We cannot incrementally update the knowledge base when new data comes.

Though it is possible to perform semantic parsing on the incremental input,

graph inference is not incremental.

A workaround to this problem could be to perform graph inference periodi-

cally and not for every update.

• We do not generalize the values in a frame slot which could improve the

frequency estimates due to redundancy. For example, consider sample values

for participant: man, boy, male. We could generalize all of these to male,

thereby increasing the frequency estimate for male and helping in ranking the

values within a frame slot.

One solution would be to leverage the WordNet hierarchy as our frame slot

values are already mapped to WordNet.

Lessons learned:

• Unlike the kinds of commonsense relations addressed in the previous chapters,

activity commonsense is much more implicit or not mentioned in text. In this

situation, specialized sources like scripts or very structured Web contents like

WikiHow.com are the suitable sources of knowledge, apart from getting this

knowledge from humans as in ConceptNet.

Assumptions:

• We assume that the activity sequences that occur in a scene are temporally

alignable.

Extensions:

• Flickr image recommendation for activities in Knowlywood. Given a Flickr

post, we can infer the activity in the post using the scene tagging system

from Section 6.5.3. This would lead to a very high coverage of visuals for

activities.

• We can estimate a visibility attribute for the activities, similar to the previous

WikiHow.com
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chapter. For this, we could use Flickr as a signal (see previous bullet point)

and other linguistic cues like the abstractness of the verb in the activity.

• Modeling human activities from the Web is another interesting direction.

As our approach is applicable to diverse data including scripts and novels,

we believe that for textual sources on the Web with clear boundaries, e.g.,

WikiHow, our approach can be applied with minor changes.



7 Resulting KB: WebChild KB &

Applications

In this dissertation, we presented methods for acquisition of commonsense knowl-

edge. The resulting Commonsense KB, WebChild KB, is a very large KB con-

taining these relations. WebChild is available for browsing at https://gate.

d5.mpi-inf.mpg.de/webchild/, and the project page with datasets is hosted

at http://www.mpi-inf.mpg.de/yago-naga/webchild/ .

7.1 WebChild KB statistics

WebChild KB contains 2.3 million disambiguated concepts and activities, and

more than 18 million assertions about these concepts connected by more than

6000 relations.

Table 7.1: WebChild statistics

Relation #Sub-relations #Assertions

Properties 19 4.3M

Comparatives 6331 1.1M

Part whole 3 6.7M

Activities 7 6.1M

In this chapter, we will present new applications where we applied the knowl-

edge present in WebChild KB. This can be seen as a holistic evaluation of We-

bChild KB because eventually KBs act as structured background knowledge

for applications. This chapter presents one application for each of the three

paradigms of commonsense relations that we have discussed.
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7.2 Commonsense on Object Properties: Set

Expansion

As a use-case that demonstrates the application benefits of WebChild, we studied

the problem of populating semantic classes, such as river, car, or singer. This

problem is often addressed as a set-expansion task (Wang and Cohen, 2007):

Given a small number of seeds, which are instances (or hyponyms) of the same

class, find as many additional instances as possible and rank them into a high-

precision list. For example, for seeds like Mississippi, Nile, and Ganges, we

would like to collect other rivers such as Danube, Rhine, Seine, Mekong, etc.

A good baseline to compare with is the Google Sets tool, which is part of the

docs.google.com service. Other methods like (Dalvi et al., 2012) may be better,

but they are also much more complex and need extensive Web data not available

to us.

Our method for class population is fairly simple; its main point is the way it

harnesses the WebChild knowledge. For a given noun sense n corresponding to

an instantiable semantic class, we perform the following steps:

1. We select the m highest ranked adjective senses a1, . . . , am that are con-

nected with n by one or more of WebChild’s fine-grained assertions. As these

are senses, we can further expand them by their WordNet synonyms, thus

constructing a ranked list of adjectives a1, . . . , al (where usually l ≥ m), now

cast into simple words.

2. To avoid extensively used adjectives of unspecific or ambiguous nature (e.g.,

great), we compute PMI scores between the starting noun n and each of the

adjectives ai (i = 1 . . . l):

PMI(n, ai) = log2

P [n ∧ ai]
P [n] P [ai]

We prune all adjectives from the ranked list whose PMI score is below a

specified threshold. From the remaining adjectives, we take the top k words

a1, . . . , ak (e.g., with k = 10).

3. Now we apply the linking-verb patterns that we introduced in Section 2 to

the Google N-gram corpus and extract noun phrases from the matching N-

grams. This yields frequencies for (n,ai) co-occurrences. The noun phrases

are the candidates for populating the class denoted by n.

4. We rank the collected noun phrases p by aggregating over the co-occurrence

docs.google.com
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frequencies:

score(p) =
k∑
i=1

freq(p, ai)× weight(ai)

where weight(ai) is the score of the original ai for noun sense n in WebChild

(based on pattern-matching statistics, see Section 3.3).

As a demonstration of the high quality that our method achieves, we evaluate its

precision@5, in comparison to the top-5 results from Google Sets. We did this

for the following 10 test cases (5 common nouns and 5 proper nouns): river,

ice cream, mountain, chocolate, keyboard, nile river, bangalore, tiger lily,

parsley, florine. We evaluate Google Sets with 1 seed (G-1) and 2 seeds (G-

2) against WebChild, which only takes the class noun as input (W-1). G-1

runs into limitations, but G-2 performs reasonably well even in this extreme

situation. For example, with seed river as input, G-1 gives as output boca,

estudiantes, independiente, racing, san lorenzo; with the seed tiger lily as input,

G-1 produces no output. G-2, with the seeds river, river valley, gives as output

canyon, arizona, valley, colorado; with the seeds tiger lily, panther lily as input,

G-2 gives as output peacock iris, meadow saffron, pancratium, peruvian lily, flag.

Table 7.2 shows the results. WebChild outperforms G-1 and G-2 on common

nouns. On proper nouns, G-2 outperforms WebChild, but WebChild performs

as well as G-1. Tables 7.3 and 7.4 show the top-10 WebChild adjectives, and the

top-5 set expansions for the input chocolate and keyboard respectively.

Table 7.2: Results for set expansion

Approach Genre P@5

G-1 common noun 0.52

G-2 common noun 0.72

W-1 common noun 0.92

G-1 proper noun 0.52

G-2 proper noun 0.68

W-1 proper noun 0.52
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Table 7.3: chocolate: top-10 adj, top-5 expansions

top-10 smooth, assorted, dark, fine,

adjectives delectable, black, decadent,

white, yummy, creamy

top-5 chocolate bar, chocolate cake,

expansions milk chocolate, chocolate chip,

chocolate fudge

Table 7.4: keyboard: top-10 adj, top-5 expansions

top-10 ergonomic, foldable, sensitive,

adjectives black, comfortable, compact,

lightweight, comfy, pro, waterproof

top-5 keyboard, usb keyboard,

expansions computer keyboard, qwerty keyboard,

optical mouse, touch screen

7.3 Commonsense on Relationships: Image

Classification.

As a use-case that demonstrates the application benefits of PWKB, we use

PWKB for image classification. The task is to recognize unseen image cate-

gories by transferring knowledge from known categories. For example, being

able to recognize wheels of cars and seats of chairs might allow us to recognize

a wheelchair even if we have no training image for wheelchair. This “zero-shot

recognition” is crucial as many categories have no (or very sparse) training data.

For this task, we repeated the experiment of (Rohrbach et al., 2011), who

trained classifiers for 811 part categories to recognize unseen categories. To

associate the unseen categories with the parts, part-whole patterns (Berland and

Charniak, 1999) were retrieved with Yahoo search. For comparability, we used

the same visual features and the same image classification architecture as in

the original study. We solely replaced the original part-whole relation with the
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relations from PWKB.

On the zero-shot task of recognizing 200 unseen categories, the top-5 accu-

racy increases from 23.8% (best single part-whole variant Yahoo Snippets) to

25.5% by using PWKB. We note that Rohrbach et al. (2011) achieved better

performance, up to 35% accuracy, with a hierarchy-based transfer or combining

multiple measures, which is orthogonal to the use of our part-whole knowledge.

We could combine the PWKB asset with this technique. Note that this task

is inherently difficult; we are not aware of any methods that achieve more than

40% accuracy.

7.4 Commonsense on Interactions: Scene Search

As a use-case that demonstrates the application benefits of Knowlywood, we

use Knowlywood to build a search platform. The corpus comprises of movie

scripts, the Crowdsourcing dataset, TV series, sitcoms, and novels (introduced

in Section 6.5). This search system takes a text query q as input, which is

expected to correspond to some activity. Examples of such queries are animal

attacks man, kissing during a romantic dinner. As output, we expect a ranked

list of scenes over the indexed corpus.

Approach. We use the textual (not visual) content of the scenes to obtain the

score of a scene s for a given query.

Given an activity a ∈ K, where K denotes the Knowlywood knowledge base,

let ap be the set of

participants according to K and Ap =
⋃
a∈K ap be the set of all participants

associated

with activities in K. We derived a query-likelihood statistical language model

as follows.

The probability that the scene s generates a query q is given by

P (q|st) =
∑
a∈K

∑
p∈Ap

P (q|a) · P (a|p) · P (p|st)

• st is the textual representation of the scene,

• P (p|st) is the probability that the scene generates participant p of an activity

(e.g., girl, ring, etc.), estimated from noun-phrase occurrences in t with corpus

smoothing,

• P (a|p) is the probability that participant p generates activity a, again with

smoothing, and
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Table 7.5: Query Frames.

Frame Semantic restriction

S WN physical entity

V WN verb (compulsory)

O1 WN physical entity

O2 WN physical entity

L WN location or WN physical entity

T WN time-period

Table 7.6: Performance of the two search methods.

Algorithm NDCG MAP Precision@5 MRR

Knowlywood 0.8972 0.9512 0.8809 0.9840

Text based 0.0772 0.0696 0.0404 0.0730

• P (q|a) is the query likelihood of activity a, estimated by the occurrences of

the verb-object words of a in the query, once more with smoothing.

Experimental setup. As there is no similar activity search system or evalu-

ation dataset, we construct a benchmark dataset by gathering 100 queries of a

predefined frame (S V O1 O2 Location Time), such as, man kissed the girl on the

cheek at the movie theater in the evening. For this, we relied on a user interface

as in Table 7.5, asking two people (one outsider and one of the authors) to enter

arbitrary queries of their choice, as long as it fit the template. Further examples

of these gathered queries include frying onion and killing a bird.

For this set of 100 queries, we generate search results using our generative

model over the Movie script, Crowdsourcing, Sitcom, TV series, and Novels

datasets.

For comparison, we also obtain the search results using a text-retrieval base-

line, in particular, a statistical language model with Dirichlet smoothing, as

implemented in the well-known INDRI system (Strohman et al., 2005).

Two annotators evaluated the top-10 results for each of these queries for both

the baseline and the Knowlywood search system. Each result was scored between

1 (irrelevant) to 5 (perfectly relevant). The final rating for each result is given
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Table 7.7: Anecdotal examples for Scene Search results

Query KB based Text based

man

climbs

mountain

.. following Jack , and helps

him climb a mountain

and find a crystal that will

transport Jack home both...

TV series: Samurai Jack

.. from deep in the mountains

... had entered the Mountain

...carried deeper into the

mountain . .... climbs

out of the river... looking for

the Mountain of Skulls

as well...turns his attention

to Lysinka and the others

down the mountain ..

Novel: Conan

man

shoots

video

.. While

shooting Dixons music

video , Silver gets a call

from the fertility clinic

informing her that the

IVF procedure has been

moved up to the next day ..

TV series: Beverly Hills

.. the woman

shoots Alex with a video game

gun as the woman traps

her in the game that the..

TV series: Totally Spies

kill a bird ..mark go hunting with So-

phie ’s dad. Jeremy go hunt-

ing with Sophie ’s dad. mark

tries to kill a bird . the

man injures it simply. the

man tries to break its neck..

Sitcom: Peep Show

.. Carlos and Susan are still

painting over the graffiti on the

wall as those people discuss

To Kill a Mocking Bird

, however , while talking , ..

TV series: Desperate Housewives
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by the average of the ratings by the two annotators.

The annotation ratings were then used to compute four widely-used IR eval-

uation metrics, namely NDCG, Precision@k, MAP, and MRR (Manning et al.,

2008).

Scene search results. Table 7.6 gives a comparative analysis of the NDCG,

MAP, Precision@5, and MRR scores for both search methods. Since MAP,

Precision@5, and MRR involve binary notions of relevance, we assume that those

scenes that are rated with a score of at least 3 are the only relevant scenes.

We observe that for all four metrics, the Knowlywood search method performs

best. We observed that the text retrieval engine often returns scenes with script

text that closely matches the words in the query, while Knowlywood achieves a

higher level of abstraction. For example, given the query man climbs mountain,

the text engine favors scenes with many occurrences of the keywords mountain

and climb, but not used in the specific sense of climbing mountains. The Know-

lywood search method, on the other hand, uncovers those scenes that portray

the activity, even if they do not contain the word mountain explicitly, but just

semantically related expressions such as hiking up a hill etc. The Knowlywood

search also correctly identifies the true meaning of an activity even if it contains

verbs with ambiguous meaning. For example, the query shoot a video is often in-

terpreted wrongly by the text retrieval engine and therefore it returns irrelevant

snippets referring to shooting with a gun, etc. Table 7.7 provides some anecdotal

examples of queries and scene search results by the two competitors.

7.5 Discussion

We have presented the statistics and some applications of the WebChild KB, the

first comprehensive KB of fine-grained and disambiguated commonsense knowl-

edge. WebChild KB’s statistics show that it is by far by the largest automatically

constructed commonsense KB. We presented one application for each of the three

genres of commonsense knowledge, including set expansion using property knowl-

edge, image recognition with part-whole knowledge, and, movie scene search with

activity knowledge.

Commonsense knowledge would serve as background knowledge for more in-

telligent activity recognition in images and videos. The activity taxonomy could

serve as a backbone of classes used in the recognition task. Deep learning meth-

ods for text typically rely on word embeddings using co-occurrences. Chen et al.

(2015) construct more meaningful word embeddings driven by commonsense

knowledge bootstrapped from WebChild KB.



8 Conclusions and Outlook

8.1 Summary

This dissertation has revived the theme of commonsense knowledge bases, which

had previously been handcrafted or crowdsourced, unimodal and ambiguous.

We introduce new methods for automatic acquisition of commonsense knowledge,

with semantic rigor. These methods are generalizable and go beyond the relations

covered in this dissertation.

The first contribution of this dissertation is a new method to extract and or-

ganize large-scale property commonsense. We automatically construct the range

and domain of the property relations, starting out with a small set of seed ex-

amples. These seeds are typically manually gathered but we observe that an

ensemble of two very different, automated, and noisy sources can also produce

good seeds. We construct a graph where the nodes are words and word senses

and the edge weights are computed based on taxonomic and distributional simi-

larities. Our graph-based semi-supervised method is generic to extract any type

of fine-grained sub-property or attribute where we need only a few seeds to be-

gin. Our methods are flexible enough to consider any lexical database that has

a distinction across different senses of a word and provides short glosses of these

senses (e.g., Wiktionary).

The second contribution of this dissertation is a new method to extract and

organize large-scale comparative commonsense. Before our work, semantically

organized comparative commonsense had never been studied or compiled before.

The constituents of a comparative assertion are strongly related; our method

builds upon this observation to jointly disambiguate and classify the assertions.

We consider adjectival phrases as relations, however, the machinery allows for

any type of phrase, e.g., verbal phrases common in openIE approaches. Thus,

our method can generalize to semantic organization of openIE triples.

The third contribution of this dissertation is a new method to extract and

organize large-scale part-whole commonsense. We acquire the assertions from

text, distilling them with our statistical and logical components. Our pattern

and assertion ranking methods generalize to any relation with finer-grained sub-
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relations. Further, we mine novel attributes like cardinality (using multiple lan-

guages) and visibility (using images). To estimate visibility, we verify the asser-

tions in images (we call this quasi-visual verification). Quasi-visual verification

leverages the best of both text only verification (which is inaccurate due to re-

porting bias), and visual only verification (which is inaccurate due to the object

detectors inaccuracies). Our method generalizes to any commonsense relation

that has multiple sub-relations and is observable in images, e.g., hasLocation re-

lation (with sub-relations such as hasLocationAbove, hasLocationBelow, etc.).

The fourth contribution of this dissertation is a new method to extract and

organize semantic frames of human activities, together with their visual content.

We acquire knowledge about human activities from a novel, multimodal source of

rich activities: movie scripts. Our method considers joint semantic role labeling

and word sense disambiguation for parsing these scripts to generate candidate

activity frames. We then perform inference using probabilistic graphical models

that can encode joint dependencies among the candidate activity frames. Un-

like the previous contribution, this method goes beyond disambiguation of the

arguments of an assertion; and, additionally assign roles to these arguments.

Together, these methods have been used to create the WebChild KB, which

is one of the largest commonsense knowledge bases available, describing over

2 million disambiguated concepts and activities, connected by over 18 million

assertions. The WebChild KB is bigger, richer and cleaner than any other au-

tomatically constructed commonsense KB. WebChild KB can also be viewed as

an extended WordNet (comprising not just words, but also activities and ex-

tended concepts), with orders of magnitude denser relation graph (connecting

the concepts with novel relations such as comparatives), and additionally with

some visuals.

From a resource perspective, people looking for commonsense knowledge bases

had few options available before our construction of the WebChild knowledge

base. The available alternatives do not offer the same level of size, richness

and semantic rigor over multiple modalities. The WebChild KB has already

been effective in providing background knowledge to various applications ranging

from text to vision. WebChild KB is freely available for download from http:

//www.mpi-inf.mpg.de/yago-naga/webchild/.

8.2 Outlook

The WebChild knowledge base can serve as a catalyst for new research in text

mining, computer vision, as well as multimedia search, as shown in Chapter 7.

http://www.mpi-inf.mpg.de/yago-naga/webchild/
http://www.mpi-inf.mpg.de/yago-naga/webchild/
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As the WebChild KB is semantically organized and mapped to WordNet, it also

allows for semantic reasoning.

With the computer vision systems, such as object detectors and activity de-

tectors, getting more sophisticated and robust, multimodality will play a bigger

role. Our approach to exploit multimodal data is simple, scalable, and allows

for better computer vision (e.g., improving object detection by exploiting visible

part-whole knowledge) as well as richer knowledge bases (e.g., inferring visibility

of part-whole knowledge).

WebChild KB opens up new research avenues. To list a few: first, Knowly-

wood’s activity taxonomy can be used to generate activity classes for a computer

vision based activity recognizer. Some activities are not visual in nature, e.g.,

chair a seat while others are visual, e.g., sit on a chair. Thus, a research avenue

is to automatically estimate the visual nature of activities in order to train the

activity recognizers exclusively over visual activities. Second, even though some

activities are visual in nature, their temporal duration is very long. An activ-

ity recognizer cannot be trained to robustly identify such activity classes. The

research avenue is to automatically estimate the temporal scoping of activities,

e.g., (|dinner |duration < |holiday |duration).

We believe that our research has set the stage for the next level of reasoning in

applications that can use commonsense knowledge for natural human-computer

interactions.
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