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Abstract

Nowadays, large amounts of experimental data have been produced by high-through-
put techniques, in order to provide more insight into complex phenotypes and cel-
lular processes. The development of a variety of computational and, in particular,
network-based approaches to analyze these data have already shed light on previ-
ously unknown mechanisms. However, we are still far from a comprehensive un-
derstanding of human diseases and their causes as well as appropriate preventive
measures and successful therapies.

This thesis describes the development of methods and user-friendly software tools
for the integrative analysis and interactive visualization of biological networks as
well as their application to biomedical data for understanding diseases. We design
an integrative phenotype-specific framework for prioritizing candidate disease genes
and functionally characterizing similar phenotypes. It is applied to the identification
of several disease-relevant genes and processes for inflammatory bowel diseases and
primary sclerosing cholangitis as well as for Parkinson’s disease.

Since finding the causative disease genes does often not suffice to understand dis-
eases, we also concentrate on the molecular characterization of sequence mutations
and their effect on protein structure and function. We develop a software suite
to support the interactive, multi-layered visual analysis of molecular interaction
mechanisms such as protein binding, allostery and drug resistance. To capture the
dynamic nature of proteins, we also devise an approach to visualizing and analyzing
ensembles of protein structures as, for example, generated by molecular dynamics
simulations.





Kurzfassung

In den letzten Jahren wurde mittels Hochdurchsatzverfahren eine große Menge ex-
perimenteller Daten generiert, um einen Einblick in komplexe Phänotypen und zel-
luläre Prozesse zu ermöglichen. Die Entwicklung von verschiedenen bioinformatis-
chen und insbesondere netzwerkbasierten Ansätzen zur Analyse dieser Daten konnte
bereits Aufschluss über bisher unbekannte Mechanismen geben. Dennoch sind wir
weit entfernt von einem umfassenden Verständnis menschlicher Krankheiten und
ihrer Ursachen sowie geeigneter präventiver Maßnahmen und erfolgreicher Thera-
pien.

Diese Dissertation beschreibt die Entwicklung von Methoden und benutzerfreund-
lichen Softwarewerkzeugen für die integrative Analyse und interaktive Visualisierung
biologischer Netzwerke sowie ihre Anwendung auf biomedizinische Daten zum Ver-
ständnis von Krankheiten. Wir entwerfen ein integratives, phänotypspezifisches
Framework für die Priorisierung potentiell krankheitserregender Gene und die funk-
tionelle Charakterisierung ähnlicher Phänotypen. Es wird angewandt, um mehrere
krankheitsspezifische Gene und Prozesse von chronisch-entzündlichen Darmerkran-
kungen und primär sklerosierender Cholangitis sowie von Parkinson zu bestimmen.

Da es für das Verständnis von Krankheiten oft nicht genügt, die krankheitserre-
genden Gene zu entdecken, konzentrieren wir uns auch auf die molekulare Charak-
terisierung von Sequenzmutationen und ihren Effekt auf die Proteinstruktur und
-funktion. Wir entwickeln eine Software, um die interaktive, vielschichtige vi-
suelle Analyse von molekularen Mechanismen wie Proteinfaltung, Allosterie und
Arzneimittelresistenz zu unterstützen. Um den dynamischen Charakter von Pro-
teinen zu erfassen, ersinnen wir auch eine Methode für die Visualisierung und Anal-
yse von Proteinstrukturen, welche sich zum Beispiel während Molekulardynamik-
simulationen ergeben.
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CHAPTER 1

Introduction

This chapter addresses the importance of studying human diseases, the challenges
involved in the era of high-throughput data, and the arising need of novel methods
and tools for the functional characterization and integrative prioritization of disease
genes and proteins. Then, the research contributions and the structure of the thesis
are outlined.

1.1 Motivation

Human diseases are still one of the biggest global burdens of our population. The
term disease is broadly used and may refer to any abnormal condition (disorder)
that affects an organism and, in particular for humans, causes pain, dysfunction,
distress or death. A number of external and internal factors such as the environ-
ment or our own genetic code may play a crucial role in the manifestation and
development of a disease. For example, diseases that result from a single mutation
in a single gene are referred to as monogenic, while complex diseases are caused by
the intricate interplay of several genes and external factors. Often enough, how-
ever, such factors might also be the key to preventing or curing a disease. This has
motivated physicians and scientists to dedicate their time to the study and under-
standing of diseases throughout the centuries until today. Currently, a major goal
of biomedical research is to identify and characterize the genes that predispose to,
are causative of, or modify the respective diseases.

The sequencing of the human genome in 2001 was a big step toward partially ac-
complishing this goal (International Human Genome Sequencing Consortium et al.,
2001). Since then, sequencing technologies have advanced tremendously and, nowa-
days, the sequences of more than thousand human genomes are available to the
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medical research community (Sudmant et al., 2015). Although these vast amounts
of data have already enabled a better understanding of monogenic diseases, there is
still a long way to go in the case of complex and infectious diseases. Experimental
techniques such as genome-wide association studies (Franke et al., 2008; Mano-
lio, 2010; Hirschhorn and Gajdos, 2011) and large-scale RNA interference screens
(Boutros and Ahringer, 2008; Hawkins et al., 2010a; Reiss et al., 2011) have been
specifically developed for the discovery of genes associated with complex diseases
such as inflammatory bowel diseases. The downside of these approaches is that they
yield long lists of candidate genes that need to be experimentally validated in time-
consuming and costly follow-up studies. In other areas, such as transcriptomics,
proteomics, and metabolomics, great volumes of experimental data have also been
produced in an effort to increase our knowledge of cellular and disease mechanisms
(The ENCODE Project Consortium, 2012; Rolland et al., 2014; Moignard et al.,
2015; Huttlin et al., 2015; Sahni et al., 2015).

Making sense out of this wealth of generated data is a big challenge nowadays.
Therefore, new bioinformatics approaches and software tools are needed to inte-
grate, analyze, prioritize, and visualize such large-scale datasets. For instance, the
field of disease gene prioritization has grown substantially over the last years. Many
prioritization approaches make use of functional annotations, protein interaction
networks, or integrate multiple data sources using network-based representations or
statistical learning techniques (Doncheva et al., 2012b). Network-based methods are
very effective for representing complex relationships between interacting molecules
and rely on well-known methods from the graph theory field to gain more insight
into complex disease mechanisms. However, there is still room for methodological
improvements, in particular, with regard to the sources of biomedical knowledge
and how they are exploited, integrated and evaluated. For example, prioritiza-
tion approaches should be tailored to specific phenotypes or groups of phenotypes,
especially for less studied diseases.

Recent studies have revealed that combining systems and structural biology could
be very beneficial for both fields, but there is still a gap between them in terms of
available methods and software tools (Fraser et al., 2013). For example, understand-
ing how disease-associated genes alter a given phenotype usually involves analyzing
the effect of mutations on the structure and function of the respective gene products.
So far, most computational methods focus on identifying whether a mutation will
affect a protein or not, but there are few tools that can aid the interpretation of the
resulting changes. Structural biologists have started using network representations
to study the interactions of residues in protein structures for understanding com-
plex protein structure-function relationships (Csermely, 2008; Vishveshwara et al.,
2009; Doncheva et al., 2011). Furthermore, the field of visual analytics has gained
more attention in the biological community addressing the importance of interactive
visualization of big data sets (Ray et al., 2014). Thus, combining network biology,
structural biology and visual analytics presents a promising way of tackling some
of the challenges involved in studying complex diseases.
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1.2 Overview

In this thesis, we explore two avenues of research. On the one hand, we focus on
the development and application of network-based approaches for understanding the
molecular mechanisms of human diseases. In close collaboration with biological and
medical experts, we design an integrative phenotype-specific framework for prioritiz-
ing candidate disease genes and functionally characterizing similar phenotypes, such
as immune-related diseases. In particular, we combine known protein interactions
and strong functional similarities between proteins into integrative networks and
apply appropriate network analysis and visualization techniques. Our framework
is an indispensable part of three independent functional studies of inflammatory
bowel diseases, primary sclerosing cholangitis, and Parkinson’s disease.

On the other hand, we develop novel methods and user-friendly tools to bridge the
gap between network and structural biology with a special focus on visual analytics.
By enhancing molecular networks with structural information and further providing
a network representation of residue interactions, we provide an interactive software
suite that supports the multi-layered visual analysis of molecular interaction mecha-
nisms such as protein binding, allostery, and drug resistance. To specifically analyze
the impact of sequence mutations on protein structure and function, we devise an
integrative visual approach that combines different structure and network visual-
izations and enriches them with external biophysical knowledge. To account for the
dynamic nature of proteins, we extend our methodology to the analysis and visu-
alization of ensembles of protein structures as generated from molecular dynamics
simulations. We use dynamic, weighted residue interaction networks to capture the
different protein conformations within the ensemble. We apply our approach to
identify important residues and interactions on the interface of bound molecules
and to better characterize the effect of protein mutations.

To a large extent, the research described in this thesis is based on 10 co-authored
publications that appeared in peer-reviewed journals in the last few years (see Ap-
pendix C for a full list). The publications in the field of disease gene prioritization
result from the collaboration with experimental partners at the Christian-Albrechts-
University of Kiel, the Oslo University Hospital, the Wellcome Trust Sanger Insti-
tute, and the European Academy of Bozen/Bolzano. The structural bioinformatics
projects were conducted together with experts from the Max Planck Institute for
Informatics, the University of California, San Francisco, the Monash University, the
European Academy of Bozen/Bolzano, and the University Hospital Frankfurt. Al-
together, this work was performed in the context of several bioinformatics research
projects and was financially supported by the Max Planck Society, the German Na-
tional Genome Research Network, the DFG-funded Cluster of Excellence on Multi-
modal Computing and Interaction, and a Boehringer Ingelheim Fonds travel grant
for a three-month stay at the University of California, San Francisco.



4 Introduction

1.3 Outline

The remainder of this thesis is divided into five chapters followed by a bibliography
and three appendices. The contents of each chapter are briefly described below.

Chapter 2 introduces the field of network biology and bioinformatics. First, we
define the term biological network and describe several representative types of bio-
logical networks. Then, we give an overview of state-of-the-art analytical network
approaches and visualization techniques. Finally, we highlight some of the successful
applications of network biology and the accompanying software tools.

Chapter 3 describes our methodological contributions to the field of candidate dis-
ease gene prioritization and their application to three distinct phenotypes. After
introducing the state-of-the-art of the field, our network-based prioritization frame-
work is presented in detail. We then report our findings from the computational
analysis of data associated with inflammatory bowel diseases. The application of
our framework to prioritize candidate genes for the less studied disease primary
sclerosing cholangitis and to characterize its functional overlap with inflammatory
bowel diseases is presented thereafter. At last, we describe our contribution to the
prioritization of candidate proteins for Parkinson’s disease.

Chapter 4 addresses the problem of characterizing the effect of amino acid muta-
tions on protein structure and function. We introduce our visual analytics approach
that integrates different biological views of protein sequence, structure, and residue
interaction networks with external biophysical data and detail the major implemen-
tation tasks involved in the development and realization. The effectiveness of the
approach is demonstrated in a proof-of-concept study of the functionally defective
protein provided by the BioVis 2013 Data Analysis contest. Another more system-
atic analysis investigates the physico-chemical, structural and topological properties
of drug resistance mutations in the HCV NS3 protease.

Chapter 5 presents a novel approach for the analysis and visualization of ensem-
bles of protein structures. After discussing the application of network biology to
study protein dynamics, we give details of our dynamic residue interaction net-
works, the used methodology and provided software tools. The first application of
our approach is the visual exploratory analysis of data from molecular dynamics
simulations with focus on characterizing the effect of sequence mutations. The sec-
ond is the identification of frequent interface residues and interactions in ensembles
of docking structures.

Chapter 6 summarizes and evaluates the main contributions of this thesis and closes
with a discussion of prospective work.

Appendix A is a Nature protocol giving detailed instructions for performing three
exemplary network analysis and visualization workflows. Appendix B contains ad-
ditional figures omitted from the main text of the thesis for brevity and clarity.
Appendix C lists own publications.



CHAPTER 2

Biological networks

The field of network biology has already become an indispensable part of bioin-
formatics despite its rather recent origin. In this chapter, we introduce the most
common types of biological networks and outline the most important analysis and
visualization techniques. Then we discuss prominent examples of the successful
application of network biology in cell biology, network medicine, and structural
biology.

2.1 The origins of network biology

Network science is a broad interdisciplinary research field on the interface between
mathematics, physics, computer science, sociology, and, only recently, the life sci-
ences. It originates from the foundation of graph theory in the early 18th century
by Leonhard Euler. The principles of graph theory have played a particularly cen-
tral role in the development of network science. Nevertheless, it has also made
use of statistical mechanics, data mining and information visualization, statistical
inference and social structures, just to name a few. The main paradigm of network
science is the representation of complex systems as networks of interacting elements
with the ultimate goal of understanding and modeling these systems using network
analysis and visualization techniques.

For a long time, network analysis was mostly employed in the social sciences for
studying the structure of relationships between social entities, for example, the
spread of news, rumors, or diseases among a group of people. However, in the
late 1990s, two groundbreaking papers gained considerable publicity by revealing
some fundamental properties shared among many large real-world networks. On
the one hand, Watts and Strogatz (1998) discovered that the neural network of the
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worm Caenorhabditis elegans, the power grid of the western United States, and the
collaboration graph of film actors are highly clustered networks with surprisingly
small characteristic path length. They called these networks small-world networks.
On the other hand, Barabási and Albert (1999) introduced the term scale-free net-
works for networks with scale-free power-law node degree distribution, i.e., having
a few highly connected nodes and many nodes with just a few edges. The repre-
sentatives include well-known networks such as the Internet, the World Wide Web,
power grids, transportation networks, citation networks, some social networks, and
lately some biological networks. The discovery that many real-world networks share
similar architecture boosted the network science research field. It expanded into an
even more interdisciplinary direction, namely, to biology and medicine.

Generally, a biological network is any network that represents a biological process or
system. A well-known representative that dates a while back are pathway diagrams
like the tricarboxylic acid (TCA) cycle. However, with the constantly growing
amount of new experimental data and the need to understand biology at a systems
level, research has shifted from the traditional reductionist approach, which focuses
on one element at a time and studies it in detail, to a holistic approach, where the
biological system is considered as a whole and its properties, structure and dynamics
are further investigated (Kitano, 2002). The latter has emerged as part of the new
interdisciplinary field called systems biology. With that, from being used for purely
illustrative and didactic goals, biological networks have become a central player in
the study of cellular systems. Nowadays, networks are commonly used to represent
the relationships between biological entities, such as genes, proteins, residues, and
network analysis is crucial for understanding these relationships and formulating
new hypotheses about the biological function of the involved molecules.

Furthermore, biological networks are well suited for integrating large-scale datasets
generated from high-throughput experimental techniques such as next generation
sequencing or mass spectrometry. Such data can either be interpreted as additional
relationships between the involved entities and represented as edges in an integrative
network or superimposed upon the network using different visualization cues and
layouts. An appropriate network visualization can often reduce the complexity of
the data and reveal interesting patterns and characteristics that cannot be detected
otherwise. Finally, many analytical techniques from graph theory can be transferred
to biological networks and used to detect key elements or whole subnetworks to
explain complex cellular mechanisms and interactions. In the following sections, we
will introduce some typical representatives of biological networks, present common
analysis and visualization techniques, and discuss how these are combined to gain
new insights into cell biology.

2.2 Types of biological networks

The term biological network is quite general and can refer to many different types
of networks. We can distinguish between many levels of detail starting at the



2.2 Types of biological networks 7

molecular level where DNA, RNA, proteins and metabolites interact with each
other, going through cells, tissues and organs, and ending at an ecosystem, which is
formed by the relationships between organisms (Junker and Schreiber, 2008). On
the other hand, we can divide networks into three types based on their structure and
properties: pathways, interaction networks and similarity networks (Morris et al.,
2015a). Typically, each of these groups is visualized and analyzed using different
techniques.

Pathways are probably the most familiar as they are usually visualized by hand-
curated diagrams and used to represent signaling, metabolic or regulatory pathways
for educational purposes, even at school. Another common characteristic of biolog-
ical pathways is that they usually describe a sequence of directional events such as
signaling cascades, metabolic reactions, and gene activation or deactivation. Path-
ways can be found in textbooks as well as in several online databases, for instance,
KEGG (Kanehisa and Goto, 2000), Reactome (Croft et al., 2011), WikiPathways
(Pico et al., 2008), SignaLink 2 (Fazekas et al., 2013), and ConsensusPathDB (Kam-
burov et al., 2009). Phylogenetic trees represent the evolutionary relationships be-
tween organisms and can also be considered part of network science (Felsenstein,
1985). Although pathways are static illustrations, they can be combined with other
information related to the involved entities such as gene expression data.

In contrast, interaction networks are the most common type of biological networks
and illustrate the interactions between biological entities such as genes, proteins,
metabolites, nucleic or amino-acid residues, small molecules, diseases, etc. Typical
biological representatives in this category are protein interaction networks, gene
regulation networks, signal transduction networks, and metabolic networks. Gene
or transcriptional regulation networks are usually directed graphs, in which the
edges indicate events of gene expression control between genes and their products.
By extending these networks with protein-protein interactions and phosphorylation
events, we can create signal transduction networks. In contrast, metabolic networks
represent biochemical reactions, for instance, the conversion of metabolites into each
other in reactions catalyzed by enzymes. Social networks are also an example for
interaction networks and they have laid the ground for most techniques used for the
topological analysis of biological networks (see Section 2.3.1 for details). Interaction
networks are especially useful for bringing together the multivariate omics datasets
available nowadays.

Protein interaction networks (PINs) represent physical interactions between pro-
teins in a complex or a cell, which are usually detected by experimental techniques
such as yeast two-hybrid (Y2H) (Fields and Song, 1989), co-immunoprecipitation
(Co-IP) (Auerbach et al., 2002), and tandem affinity purification (TAP) (Roque
and Lowe, 2008), recently also coupled to mass spectrometry (Dunham et al., 2012;
Altelaar et al., 2013; Morris et al., 2014), or computational prediction approaches
(Skrabanek et al., 2008; Frishman et al., 2008; Papanikolaou et al., 2015). In the
last years, several large-scale experiments were performed with the ultimate goal
to create systematic proteome-wide maps for different organisms (Rual et al., 2005;
Yu et al., 2008, 2011a; Rolland et al., 2014; Kim et al., 2014; Wilhelm et al., 2014).
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(a) (b)

(c) (d)

Figure 2.1: Examples for biological networks: (a) pathway representation of the TCA
cycle from WikiPathways (Stobbe et al., 2013); (b) residue interaction network of HIV-
1 protease (Doncheva et al., 2012a); (c) interaction network of proteins associated with
galactose metabolism in yeast (Ideker et al., 2001); (d) network of strong functional sim-
ilarities between selected human genes based on their Gene Ontology annotations (Liu
et al., 2013).

For example, Rolland et al. (2014) presented the so far largest high-quality human
dataset consisting of 14 000 protein interactions and demonstrated its usefulness for
studying genotype-phenotype relationships. Overall, PINs have played a key role
for understanding complex biological systems, both their natural and disrupted
states in human diseases (Kann, 2007; Bader et al., 2008; Ideker and Sharan, 2008;
Barabási et al., 2011; Vidal et al., 2011; Ideker and Krogan, 2012; Meyniel-Schicklin
et al., 2012; De Las Rivas and Fontanillo, 2012; Jia and Zhao, 2014; Gustafsson et al.,
2014). Some of the widely used online resources that integrate protein interaction
data from different primary sources are iRefIndex (Razick et al., 2008), STRING
(Franceschini et al., 2013), PSICQUIC (Aranda et al., 2011).

Of particular interest in this work are residue interaction networks (RINs), which
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represent the non-covalent interactions between amino-acid residues in a 3D protein
structure as network edges. The first approaches for generation of RINs considered
the spatial proximity of atoms with a distance cutoff between 5 and 8 Å (Vishvesh-
wara et al., 2009; Yan et al., 2014). Recently, we released several software tools that
support the interactive generation, visualization and analysis of RINs, where edges
are defined as different types of non-covalent residue interactions such as hydrogen
bonds and van der Waals interactions (Doncheva et al., 2011). In the last years,
RINs have been successfully applied for the analysis of protein structure-function
relationships (Csermely, 2008; Greene, 2012; Di Paola et al., 2013; Hu et al., 2013;
Doncheva et al., 2014) and protein dynamics (Vishveshwara et al., 2009; Sethi et al.,
2013; Xue et al., 2012; Bromley et al., 2013; Tiberti et al., 2014; Seeber et al., 2014).

The third network type are similarity networks where the nodes represent biological
entities, which are connected by edges based on some similarity measure. One com-
mon example are gene or transcript correlation networks generated from expression
data (Bergmann et al., 2004) or metabolic correlation networks from profiling data
(Weckwerth et al., 2004). We also encounter other gene or protein networks based on
sequence or structural similarity such as BLAST values or RMSD (Atkinson et al.,
2009; Holm and Sander, 1996). Another interesting representative are networks of
small molecules, such as drugs, which are created according to the similarity of their
chemical fingerprints to find small molecules with similar structural characteristics
(Maggiora et al., 2014). In Section 3.2.1, we will focus on functional similarity net-
works (FSNs), in which an edge corresponds to strong functional similarity of two
genes based on their annotated Gene Ontology (GO) terms. In particular, FSNs
have advanced the prioritization of candidate genes and the functional characteri-
zation of diseases (Liu et al., 2013; Jiang et al., 2011).

2.3 Analysis and visualization techniques

A key to the usefulness of networks in biology and other fields is the availability
of appropriate analysis and visualization techniques that allow us to characterize
these networks. In the following sections, we will give an overview of graph theory
concepts and how they are applied to analyze networks. We will also present com-
mon visualization techniques and explain how they enhance our ability to interpret
biological networks.

2.3.1 Analytical approaches

The origin of standard analytical approaches in network biology is the wide and
well-known field of graph theory as well as the more interdisciplinary social network
analysis field (Bondy, 1976; Brandes and Erlebach, 2005; Diestel, 2012). Mathemat-
ically, networks are defined as graphs and analyzed using various graph algorithms.
Social sciences researchers have already discovered an appropriate set of graph al-
gorithms to describe the structure and characteristics of social networks (Freeman,
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2006; Abraham et al., 2010; Borgatti et al., 2013). Complex networks have different
levels of organization, as shown in Figure 2.2, that can be used to breakdown the
hairball that arises when we usually visualize a large network. First, we can look
at single nodes and their local properties, such as the node degree. These nodes
are then linked to form motifs, small subnetworks of three or more nodes. Motifs
are combined to form communities or modules and finally, communities are joined
into the entire network. The hierarchy of the network describes how the various
structural elements are combined. Building upon this, the network biology field has
adopted some of these analysis tasks and also developed new ones as reviewed by
Junker and Schreiber (2008); Yamada and Bork (2009); Pavlopoulos et al. (2011);
Przulj (2011).

Figure 2.2: The levels of organization in complex networks (inspired by Gulbahce and
Lehmann (2008)).

To characterize the structure of a biological network, we can compute a set of net-
work topology statistics such as degree distribution of nodes, clustering coefficient,
node centrality, shortest path between nodes, and robustness of the network to the
random removal of single nodes (Jeong et al., 2001; Ravasz et al., 2002; Barabási
and Oltvai, 2004). Another important characteristic of a network is its modular-
ity, i.e., the presence or absence of subnetworks of interconnected nodes that might
represent molecules, which are physically or functionally linked and work coordi-
nately to achieve a specific function (Ravasz et al., 2002; Barabási and Oltvai, 2004).
Furthermore, motif analysis is used to identify small network patterns that are over-
represented compared with a randomized version of the same network (Ciriello and
Guerra, 2008; Masoudi-Nejad et al., 2012). Discrete biological processes such as



2.3 Analysis and visualization techniques 11

regulatory elements are often composed of such motifs (Milo et al., 2002; Shen-Orr
et al., 2002). Finally, network alignment and comparison tools can be applied to
determine similarities between networks and have been used to study evolutionary
relationships between protein networks of organisms (Kuchaiev et al., 2010; Atias
and Sharan, 2012; Clark and Kalita, 2014; Panni and Rombo, 2015).

2.3.2 Network topology

Next, we will describe a number of topological parameters that are commonly used
in network biology and are also addressed throughout this work, in particular, in
the analysis workflows in Appendix A. This text in this section has been adapted
and extended from Doncheva et al. (2012a).

Graph definition In mathematical terms, a biological network is represented as
a graph. Formally defined, a graph G is a pair of two sets G = (V,E), where V is
the set of nodes, E the set of edges. Each edge e ∈ E connects the nodes u ∈ V and
v ∈ V and is denoted as an unordered pair e = {u, v} in undirected networks and
an ordered pair e = (u, v) in directed networks. Additionally, different attributes
such as text, numerical values, types, colors, etc are associated with the nodes and
edges of a network. For example, edge weights that represent the stoichiometry of
reactions in metabolic networks can be expressed as a function ω : E → <, which
assigns each edge e ∈ E a weight ω(e). There are also other graph models, such as
mixed (undirected and directed edges), multi-graphs (multiple edges between two
nodes), hyper-graphs (an edge connects more than two elements), bipartite graphs
(two distinct sets of nodes such that each edge connects them), and trees (undirected
connected acyclic graphs). Depending on the specific biological network at hand,
any of these models might be used.

Connected components. In undirected networks, two nodes are connected if
there is a path of edges between them. All nodes that are pairwise connected form
a connected component. The number of connected components in a network is an
indicator of the global connectivity of a network. A low number of connected com-
ponents relates to strong network connectivity because many nodes are connected
to form few connected components of large node size.

Degree distributions. In undirected networks, the node degree of a node n is
the number of edges linked to n (Barabási and Oltvai, 2004). A self-loop of a node
is counted like two edges for the node degree (Diestel, 2012). A node with a high
degree is referred to as hub. The node degree distribution gives the number of nodes
with degree k for k = 0, 1, . . . .

Scale-free property. A network is called scale-free if its degree distribution ap-
proximates a power law k−α with the degree exponent α (Barabási and Oltvai,
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2004). The topological role of network hubs depends on the α value. For α > 3 the
hubs are not relevant, for 3 > α > 2 the hubs are organized in a hierarchy, and for
α = 2 a hub-and-spoke model emerges, in which the largest hub is in contact with a
large fraction of all nodes. For most biological networks, it has been observed that
2 < α < 3. Barabási and Albert (1999) used this network property to distinguish
between random (as defined by Erdös and Rényi (1959, 1960)) and scale-free net-
work topologies (Barabási and Oltvai, 2004). There are also continued discussions
about the observed power law and scale-freeness (Barabási, 2009; Lima-Mendez and
van Helden, 2009). Since it is usually difficult to accurately fit a power law to a
distribution, for biological problems it is often enough to note that the distribution
is inhomogeneous and long-tailed (Junker and Schreiber, 2008).

Neighborhood-related parameters. The neighborhood of a node n is the set
of its neighbors. The connectivity kn is the size of the neighborhood of n and should
not be confused with the degree k since cases exist for which k 6= kn (Dong and
Horvath, 2007). The average number of neighbors is an indicator for the average
connectivity of the nodes in the network. The neighborhood connectivity of a node
n is the average connectivity of all neighbors of n (Maslov and Sneppen, 2002).
The neighborhood connectivity distribution gives the average of the neighborhood
connectivities of all nodes n with k neighbors for k = 0, 1, . . . . If the neighborhood
connectivity distribution is a decreasing function in k, edges between low connected
and highly connected nodes prevail in the network (Maslov and Sneppen, 2002).
P (n,m) is the number of shared neighbors between the nodes n and m, that is, the
interaction partners that are neighbors of both n and m (Assenov et al., 2008).

Clustering coefficients. The clustering coefficient Cn of a node n is defined as
Cn = 2en/(kn(kn−1)), where kn is the number of neighbors of n and en the number
of edges between all neighbors of n (Barabási and Oltvai, 2004; Watts and Strogatz,
1998). The clustering coefficient constitutes a ratio N/M , where N is the number of
edges between the neighbors of n, and M the maximum number of edges that could
possibly exist between the neighbors of n. The clustering coefficient of a node is
always a number between 0 and 1. The network clustering coefficient is the average
of the clustering coefficients of all nodes in the network and relates to the local
cohesiveness and the tendency of the nodes to form clusters. The average clustering
coefficient distribution gives the average of the clustering coefficients for all nodes
n with k neighbors for k = 2, . . . and was used to suggest a modular organization
of metabolic networks (Ravasz et al., 2002).

Shortest paths. The length of a path is the number of edges forming it. The
length of the shortest path, the distance, between two nodes n and m is denoted
by L(n,m). The shortest path length distribution gives the number of node pairs
(n,m) with L(n,m) = k for k = 1, 2, . . . and may indicate small-world properties
of a network (Watts and Strogatz, 1998). The eccentricity of a node n is the
maximum non-infinite length of a shortest path between n and another node in the
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network. The network diameter is the maximum node eccentricity. In contrast,
the network radius is the minimum of the non-zero eccentricities of the nodes in
the network. The average shortest path length L, also known as the characteristic
path length, indicates the expected distance between two connected nodes. If the
average shortest path length is much smaller than the number of nodes N in the
network (L ∝ logN for N →∞), it is referred to as a small-world network (Watts
and Strogatz, 1998). Barabási and Oltvai (2004) showed that this is the case in
interaction networks.

Shortest path centralities. The degree centrality of a node n is defined as its
degree kn and is sometimes also normalized by the number of nodes in the network.
Several studies have shown that the degree centrality correlates well with the im-
portance of a node for the network (Albert et al., 2000) and that the removal of
proteins with high degree from protein interaction networks is related to lethality
(Jeong et al., 2001).

The betweenness centrality Cb(n) of a node n is defined as Cb(n) =
∑

s 6=n6=t σst(n)/σst
(Brandes, 2001). Here, σst denotes the number of shortest paths from s to t, σst(n)
is the number of shortest paths from s to t that n lies on, and s and t are nodes in the
network different from n. The betweenness centrality for each node n is normalized
to a value between 0 and 1 by dividing with the number of node pairs excluding
n: (N − 1)(N − 2)/2, where N is the total number of nodes in the connected
component that n belongs to. The betweenness centrality of a node reflects the
amount of control that this node exerts over the interactions of other nodes in the
network (Yoon et al., 2006). The stress centrality of a node n is the number of
shortest paths passing through n (Brandes, 2001; Shimbel, 1953).

The closeness centrality Cc(n) of a node n is the reciprocal of the average shortest
path length from n to any other node in the network (Freeman, 1979). It measures
how quickly information spreads from a given node to other reachable nodes in the
network (Freeman, 1979).

Current flow centralities. In contrast to shortest path centralities, where dis-
tance is measured by the length of the shortest path between two nodes, here the
distance between two nodes is computed as the effective electric resistance between
them. This is defined as the difference of the potentials of two nodes required for
generating one unit of electrical current between them (Newman, 2005). Current
flow closeness is the inverted sum of the effective resistances between a node n
and all other nodes. Current flow betweenness is the amount of current that passes
through a node n, when a current unit flows from a source to a target node, over
all source-target node pairs in the network.

Random walk centralities. Here, the distance between two nodes is measured
by the hitting time, i.e., the expected number of steps needed by a random walk
from one node to the other. Random walk closeness is the mean hitting time over
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all random walks starting at any node in the network and ending at the node n.
Random walk betweenness is the expected number of visits to a node by a random
walk between each pair of root set nodes relative to the hitting time of the random
walk. The computation of hitting time and the expected number of visits is based
on the relationship between random walks and the distribution of electrical current
through the network (Tetali, 1991).

Clustering and modularity. Network clustering can be described as the process
of finding subsets of nodes that satisfy some pre-defined property, for instance, the
nodes within the cluster are densely connected with each other and sparsely con-
nected to nodes outside their cluster (Girvan and Newman, 2002). Unfortunately,
there is no generally accepted definition of a network cluster. It can also be referred
to as a module or a community. Similarly, modularity is a general term that is used
to describe whether a network tends to have modules or not, i.e., networks with
high modularity have many distinct modules. In a biological context, it might refer
to a functional module or a group of nodes that work together to perform a partic-
ular cellular function (Hartwell et al., 1999; Barabási and Oltvai, 2004). Similar to
other clustering techniques, network clustering methods can be either bottom-up or
top-down and use any type of similarity measure between the nodes, such as edge
weight or shortest path (Junker and Schreiber, 2008). In biological networks, net-
work clustering is guided by the assumption of a modular organization of biological
functions (Hartwell et al., 1999) and is used to classify and reduce the underlying
complex data. It aids the identification of natural clusters of evolutionary or func-
tionally related entities (e.g. protein complexes in protein interaction networks) as
well the understanding of the functional organization of networks (e.g. different
metabolic functions in metabolic networks) (Ravasz et al., 2002; Barabási and Olt-
vai, 2004; Costanzo et al., 2010; Mitra et al., 2013). However, real networks rarely
present a unique clustering, but rather several alternative solutions that need to be
evaluated and interpreted. In addition, many different models and methods exist,
which makes it difficult to select the right one and usually results in the necessity
to try out several different ones.

Motifs. A network motif is small subgraph of linked nodes (a connectivity pat-
tern) that occurs more frequently than might be expected for randomly connected
nodes. Typical representatives are feed-forward loops (Mangan and Alon, 2003)
and feedback loops (Glossop et al., 1999), but the definition is not restricted to
subgraphs with a fixed number of nodes and can account for more complex topolog-
ical structures, such as multi-input motifs (Lee et al., 2002; Shen-Orr et al., 2002).
Network motifs are often referred to as the building blocks of complex networks
since, in particular, transcriptional and signaling networks are often composed of
highly overrepresented motifs (Milo et al., 2002; Shen-Orr et al., 2002; Lee et al.,
2002; Milo et al., 2004).



2.3 Analysis and visualization techniques 15

Robustness. Robustness describes the behavior of a system in response to ran-
dom or intentional attacks. In the context of complex networks, this can be un-
derstood as the persistence of topological network properties, such as characteristic
path length or number of connected components, upon removal of nodes or edges
(Albert and Barabási, 2002; Albert et al., 2000; Callaway et al., 2000). For ex-
ample, while random networks with homogeneous degree distribution are equally
vulnerable to both types of attacks, scale-free networks are very robust to random
attacks, which are expected to affect nodes with low degree, and fragile against
selective intentional removal of nodes, in particular, with high degree (Albert et al.,
2000; Albert and Barabási, 2002). In general, networks can also be optimized to be
robust against targeted attacks, but then they are often vulnerable to unanticipated
perturbations (Junker and Schreiber, 2008). Robustness is also a common feature
of most biological networks and reflects the ability of biological systems to accom-
modate fluctuations and perturbations without losing their functionality (Barabási
and Oltvai, 2004; Kitano, 2004; Stelling et al., 2004).

Random network models. The topological structure and characteristics of a
network can be determined using a combination of the parameters described so far.
However, some of these properties are informative of the network only if they are
compared to a similar null model. Since it is difficult to develop an appropriate
probability model for a complex network, several random network models have
been suggested and each of them focuses on distinct features. The Erdös-Rényi
network model is a graph, where each pair of nodes is connected by an edge with an
equal probability (Erdös and Rényi, 1959, 1960). This network is often called flat
because its degree distribution approximates a binomial distribution, most nodes
have a similar degree, and there is no local structure or cohesiveness. In order
to model a random network that exhibits small-world properties, i.e., has both
short average path lengths and high clustering, Watts and Strogatz (1998) proposed
another approach. First, a regular ring lattice network is generated such that each
node is connected to its 〈k〉 /2 nearest neighbors, where 〈k〉 is the average node
degree. In the next step, each edge is rewired with a probability between 0 and 1 in
order to connect distant nodes and decrease the average shortest path length. The
Watts-Strogatz network model has high clustering coefficients and low average path
lengths. Since none of these models captures the properties of scale-free networks,
Barabási and Albert (1999) introduced another approach that generates a scale-
free random network. In contrast to the other methods, the Barabási-Albert model
starts with a small network of unconnected nodes, which is then grown larger by
a preferential attachment rule. This means that, at each step, a new node n is
added to the network and it is connected to an existing node m with a probability
proportional to the degree of m. In this way, hubs continue to get new edges, while
nodes with fewer edges remain less connected.
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2.3.3 Visualization techniques

In addition to the topological analysis of complex networks, their visualization is
also an important tool for exploratory analysis and visual interpretation of large
datasets (Kelder et al., 2010; Merico et al., 2009). A good network visualization
can facilitate the study of complex relationships between the elements of a system,
the identification of dense clusters of interacting entities, and ultimately the gener-
ation of new hypotheses and insights (Barabási and Oltvai, 2004; Barabási et al.,
2011; Chuang et al., 2011). There are different design principles and techniques em-
ployed for the visualization of pathways, interaction and similarity networks, and
their implementation differs in the various software tools available nowadays (Su-
derman and Hallett, 2007; Pavlopoulos et al., 2008; Gehlenborg et al., 2010; Fung
et al., 2012; Agapito et al., 2013; Villaveces et al., 2015). The most straight-forward
depiction of networks is as dots (circles) for the nodes and lines for the edges. The
positions of the nodes and edges are usually not fixed or pre-defined but rather
suggested by an automatic layout algorithms that helps to convey the relationships
between the nodes. The exception are pathway diagrams, which are manually cu-
rated and arranged in the best possible way for educational purposes. Other visual
features, such as shape, size, color, labels, etc., are flexible and are used to enrich
the visualization with additional data.

Figure 2.3: Examples for network visualization.

Layouts. Many layout algorithms have been developed for different purposes and
they are usually made available as part of the respective tools for network visual-
ization. Force-directed layout and spring-embedded layout are two very common
layouts that simulate the edges as springs such that nodes repel each other and
the edges pull them together. These layouts result in clusters of highly connected
nodes, and nodes with low degree are placed in the periphery. An example for a
force-directed layout applied on a protein interaction network is shown in the mid-
dle of Figure 2.3. Tree-like networks are best visualized using a hierarchical layout,
which defines ordered layers of nodes in a tree structure. The circular (radial) lay-
out places nodes on an imaginary circumference of a circle and can arrange them
either in arbitrary order or use some attribute like the name or degree to govern the
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order. Especially for large networks, one layout is often not enough to achieve the
right visualization. In such cases, suitable solution might be to tune the settings
of the layout algorithm to the specific network or to apply different algorithms to
different parts of the network.

Data mapping and visual features. The nodes and edges in a network can
be associated with any data value, annotation or attribute. These might be sim-
ple text annotations such as gene symbols, protein identifiers, Gene Ontology or
pathway annotations as well as numerical values such as gene expression data, de-
gree, closeness centrality or any other topological value. To gain more insight about
the whole system and the interacting entities, the additional information is usually
mapped onto the network using different visual properties. The set of visual prop-
erties available to the users strongly depends on the software tool used for network
visualization. For example, Cytoscape provides a huge amount of editable visual
properties including fill color, shape, width and height, border color and width,
opacity, and label for nodes as well as line type, color, width, arrow type, size and
color for edges (Shannon et al., 2003). An example is shown in the right part of
Figure 2.3, where two different interaction types (protein-protein and protein-DNA)
are distinguished by solid blue lines and dashed black lines, the node size is based
on the node degree and the node color on expression values (red for down-regulated
and green for up-regulated).

2.4 Network biology applications

Network-based approaches can aid in the structural and functional characterization
of complex biological mechanisms. Thus, network biology is very interdisciplinary
and its applications stretch across several disciplines. Here, we will first give an
overview on the general usage of networks in cell biology and the resulting findings.
Then we will discuss in more detail applications in network medicine and structural
biology. More examples can be found in Barabási and Oltvai (2004); Zhang et al.
(2007); Junker and Schreiber (2008); Yamada and Bork (2009); Ideker and Krogan
(2012).

2.4.1 Cell biology

The first applications of network theory to biological data were focused on un-
covering the generic organizational principles of cellular networks such as protein
interaction, gene regulatory and metabolic networks (Barabási and Oltvai, 2004).
In particular, some metabolic and interaction networks are small-world and approx-
imate scale-free topology (Jeong et al., 2000; Wagner, 2001; Jeong et al., 2001; Yook
et al., 2004). One of the hypotheses for the evolutionary origin of these properties
in cellular networks is gene duplication, i.e., duplicated genes encode for proteins
interacting with the same partners (Barabási and Oltvai, 2004). An interesting
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implication of the scale-free property is that such networks are robust against ran-
dom attacks and vulnerable against attacks targeting hub nodes (Albert et al.,
2000; Albert and Barabási, 2002). Robustness is also an important characteristic
of biological systems, which need to accommodate fluctuations and perturbations
without losing their functionality, but at the same time contain essential molecules
(hubs) that play a crucial role in cell growth and survival (Barabási and Oltvai,
2004; Kitano, 2004; Stelling et al., 2004).

Furthermore, there has been strong evidence for the modularity and hierarchical or-
ganization of biological networks (Hartwell et al., 1999; Ravasz et al., 2002; Barabási
and Oltvai, 2004). Therefore, the next important step was the usage of network
theory to identify groups of nodes such as motifs and modules. Several groups re-
vealed that clusters of nodes in molecular interaction networks represent protein
complexes (Bader and Hogue, 2003; Girvan and Newman, 2002; Rives and Galitski,
2003; Spirin and Mirny, 2003; Krogan et al., 2006; Bandyopadhyay et al., 2008). On
the other hand, transcriptional and signaling networks were found to contain highly
overrepresented motifs, such as feedback loops (Milo et al., 2002; Shen-Orr et al.,
2002; Lee et al., 2002; Milo et al., 2004). The finding that interacting proteins are
often involved in the same biological process and thus are likely to have the same
function, lead to a new group of methods for gene function prediction based on the
interaction network neighborhood (Ideker et al., 2002; Letovsky and Kasif, 2003;
Deng et al., 2003; Vazquez et al., 2003; Nabieva et al., 2005; Sharan et al., 2007).

Another area of research involved the comparison of interaction networks from differ-
ent species and the identification of common network structures such as pathways
and clusters (Sharan et al., 2005; Pinter et al., 2005; Sharan and Ideker, 2006).
As a result, a number of methods and tools for network alignment and subgraph
matching in biological networks were developed (Sharan et al., 2005; Pinter et al.,
2005; Flannick et al., 2006; Shlomi et al., 2006; Kuchaiev and Przulj, 2011). A
recent trend in the network biology field is the construction and analysis of dy-
namic networks, i.e., networks that represent biological systems at different times
or conditions (Przytycka et al., 2010; Ideker and Krogan, 2012).

2.4.2 Network medicine

Network medicine is a recent interdisciplinary field that employs the tools of network
science to study diseases and to discover new drugs or drug targets. The term
’network medicine’ was introduced by Barabási (2007) in his review paper, where
he points out the need of a map of all cellular processes involved in diseases instead
of just lists of disease genes. In the last 10 years, several studies have shown that
network models and analysis techniques are very suitable for identifying new disease
genes, drug targets and biomarkers for complex diseases, as described in more detail
in Section 3.1. In particular, molecular networks of protein-protein and regulatory
interactions as well as metabolic pathways and reactions play a very important
role. In addition, the construction of networks of all diseases and their known
associations (Goh et al., 2007), or of the available drugs and their known targets
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(Yildirim et al., 2007) has provided key insights into human diseases and therapy.
Finally, epidemiology has been advanced by the application of network models and
the integration of knowledge about social and transportation networks to study the
spreading of diseases in populations (Pastor-Satorras and Vespignani, 2001; Keeling
and Eames, 2005).

A number of approaches for candidate disease gene prioritization make use of net-
works to represent and integrate the available biomedical knowledge and of network
analysis techniques to identify promising disease genes and modules (Kann, 2007;
Ideker and Sharan, 2008; Baudot et al., 2009; Vidal et al., 2011; Wang et al., 2011;
Aranda et al., 2011). In particular, shortest path centrality measures and random
walks in protein interaction networks were successfully applied to find novel rela-
tionships between genes and diseases (Lage et al., 2007; Köhler et al., 2008; Dezso
et al., 2009; Chen et al., 2009; Navlakha and Kingsford, 2010; Guney et al., 2014).
Comprehensive network topology analysis also revealed a number of characteristic
properties for disease genes that distinguish them from other genes (Jonsson and
Bates, 2006; Goh et al., 2007; Yu et al., 2007; Collins, 2015). In this context, we de-
veloped the versatile software tool NetworkPrioritizer that supports the integrative
network-based prioritization of candidate disease genes using a number of centrality
measures and rank aggregation algorithms (Kacprowski et al., 2013).

The integration of protein interaction networks with gene expression data enabled
the discovery of disease subnetworks with differential transcriptional profile that
suggest key pathways involved in disease progression (Ideker et al., 2002; Chuang
et al., 2007; Dittrich et al., 2008; Dobrin et al., 2009; Alcaraz et al., 2012). Other
recent approaches have also focused on the discovery of disease modules (Rossin
et al., 2011; Jia et al., 2011; Hwang et al., 2012; Guala et al., 2014; Menche et al.,
2015; Tasan et al., 2015). In particular, we developed a framework for the func-
tional characterization and integrative prioritization of candidate disease genes and
identified a number of promising disease subnetworks for inflammatory bowel dis-
eases (Ellinghaus et al., 2013b), primary sclerosing cholangitis (Liu et al., 2013),
and Parkinson’s disease (Zanon et al., 2013) (see Chapter 3 for more details).

Furthermore, the application of network biology in drug discovery and development
has become more popular in the last years (Hopkins, 2008; Arrell and Terzic, 2010;
Barabási et al., 2011; Csermely et al., 2013). Molecular networks are used to iden-
tify novel targets for already known drugs (aka drug repositioning) as well as to
predict unwanted side effects through network neighborhoods (Yildirim et al., 2007;
Keiser et al., 2009; Iorio et al., 2010; Lounkine et al., 2012). In addition, several
proteins and even whole modules were detected through network topology analysis
as promising biomarkers for disease classification and therapy prediction (Chuang
et al., 2007).

2.4.3 Structural biology

Structural biologists have also used network representations to study the interac-
tions of residues in protein structures towards the understanding of complex protein
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structure-function relationships (Csermely, 2008; Vishveshwara et al., 2009; Krish-
nan et al., 2008; Csermely et al., 2013; Greene, 2012; Yan et al., 2014). In particular,
we presented a novel approach to investigating protein structure-function relation-
ships based on the interactive visual analysis of residue interaction networks (RINs)
(Doncheva et al., 2011). These networks are derived from the 3D protein structure
and can be analyzed by graph-theoretic methods to identify residues crucial for
structure and function and their long-range interactions as also shown by Vendrus-
colo et al. (2001); Amitai et al. (2004); Swint-Kruse (2004); del Sol et al. (2006);
Welsch et al. (2008); Susser et al. (2009). To support the automatic generation,
visualization and analysis of RINs, we developed the software tools RINalyzer and
RINerator, which are described in more detail in Chapter 4 and Appendix A.

Recently, several groups have focused on the application of networks for analyzing
dynamic protein processes such as (un)folding, allosteric interactions, protein and
ligand binding as well as drug resistance in viral proteins (Vishveshwara et al.,
2009; Bhattacharyya et al., 2013; Xue et al., 2012; Seeber et al., 2011; Pasi et al.,
2012; Sethi et al., 2009; Eargle and Luthey-Schulten, 2012). Thereby, molecular
dynamics simulations are represented as networks of interacting residues and are
further characterized using topological analysis. More examples as well as our new
method for visualizing and analyzing ensembles of protein structures are described
in Chapter 5.

To understand complex molecular mechanisms, it is crucial to bridge the gap be-
tween systems biology and structural biology (Fraser et al., 2013). Two initiatives
aimed at this common goal were linking the visualization of biological networks to
the visualization and analysis of protein structures (Morris et al., 2007; Nepom-
nyachiy et al., 2015) and annotating protein interaction networks with structural
information (Mosca et al., 2013). To enhance molecular networks with sequence
and structure information and, at the same time, provide a complementary net-
work representation of residue interactions, we recently released a software suite
that facilitates a novel interactive, multi-layered analysis of protein interactions
and their molecular function in protein binding, allosteric effects, drug resistance
and other mechanisms (see Figure 2.4).

2.4.4 Software tools

A number of software tools are available for the visual exploration and computa-
tional analysis of networks (Gehlenborg et al., 2010; Chuang et al., 2011; Agapito
et al., 2013; Suderman and Hallett, 2007; Pavlopoulos et al., 2008; Villaveces et al.,
2015). General software libraries for network analysis are the Java framework JUNG
(O’Madadhain et al., 2003), the C++ library LEDA (Mehlhorn and Näher, 1999),
the dot-based software Graphviz (Gansner and North, 2000), the Python pack-
age NetworkX (Hagberg et al., 2008), and R packages such as igraph (Csárdi and
Nepusz, 2006), statnet (Handcock et al., 2008), sna (Butts, 2008), tnet (Opsahl
et al., 2010), WGCNA (Langfelder and Horvath, 2008), and QuACN (Mueller et al.,
2011). However, they cannot be applied by users without programming expertise.
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Figure 2.4: Bridging the gap between network and structural biology by linking the
network analysis and visualization capabilities of Cytoscape and the molecular structure
visualizer UCSF Chimera with the help of the Cytoscape apps structureViz and RINa-
lyzer.

In contrast, sophisticated free software platforms such as Pajek (Batagelj and Mr-
var, 1998), Osprey (Breitkreutz et al., 2003), VisANT (Hu et al., 2005), ONDEX
(Köhler et al., 2006), Gephi (Bastian et al., 2009), NAViGaTOR (Brown et al.,
2009), BioLayout Express(3D) (Theocharidis et al., 2009), BIANA (Garcia-Garcia
et al., 2010), and BiNA (Gerasch et al., 2014) provide graphical user interfaces and
versatile functionality for the analysis and visualization of, in particular, biological
networks.

In the last years, the free and stand-alone Cytoscape platform has gained consider-
able interest because of its open-source code development and its rapidly growing
community of users and developers (Shannon et al., 2003). In particular, its func-
tionality is easily extendable by additional apps (previously called plugins) that
offer complementary features for the analysis of biological networks (Saito et al.,
2012; Pico et al., 2014). Recently, the Cytoscape app store was launched to provide
an overview of all available apps and their important features (Lotia et al., 2013).
For instance, NetworkAnalyzer (Assenov et al., 2008) performs a comprehensive
analysis of network topologies without requiring advanced knowledge in graph the-
ory or programming expertise and has become part of the Cytoscape core due to
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its wide application by users. While our app RINalyzer (Doncheva et al., 2011)
complements NetworkAnalyzer on the particular task of analyzing and visualizing
residue interaction networks (RINs) interactively, our other tool NetworkPrioritizer
(Kacprowski et al., 2013) supports the network-based prioritization of candidate
disease genes.

Some of the most frequently downloaded and used plugins are ClusterMaker (Morris
et al., 2010), MCODE (Bader and Hogue, 2003) and jActiveModules (Cline et al.,
2007), which can be used to identify and visualize clusters in networks, as well as
BiNGO (Maere et al., 2005), ClueGO (Bindea et al., 2009) and CluePedia (Bindea
et al., 2013), which provide functional enrichment analysis and facilitate the bio-
logical interpretation of sets of genes or proteins. More specialized plugins are, for
example, DomainGraph, which has a special focus on the visual analysis of the effect
of alternative splicing on gene and protein networks (Emig et al., 2011), and struc-
tureViz (Morris et al., 2007), which links biological networks with protein structures
visualization and analysis features provided by UCSF Chimera. Another Cytoscape
plugin with functionality related to NetworkAnalyzer and RINalyzer is CentiScaPe,
which also computes network centrality measures (Scardoni et al., 2009). However,
among other differences, it does not provide global measures of network topology
as NetworkAnalyzer does, and it does not support weighted networks as RINalyzer
does.

In addition to the online tutorials and extensive Cytoscape documentation, several
software protocols are already available for network exploration with Cytoscape
2.8.3 (Millán, 2013) and Cytoscape 3 (Su et al., 2014), for the integration of inter-
action networks with gene expression data (Cline et al., 2007), for cluster analysis
with the TransClust and ClusterExplorer plugins (Wittkop et al., 2011), and for the
integration of physical and genetic interactions into module maps with the PanGIA
plugin (Srivas et al., 2011).

We have recently demonstrated how to apply two of our Cytoscape plugins, Net-
workAnalyzer (Assenov et al., 2008) and RINalyzer (Doncheva et al., 2011), for the
standard and advanced analysis of network topologies (Doncheva et al., 2012a) as
outlined in Appendix A. The first workflow uses NetworkAnalyzer and shows how
to conduct a typical topology analysis of biological networks such as protein interac-
tion networks or RINs (Appendix A Step 2A). The second workflow covers various
aspects related to the use of RINalyzer for the visual exploration of RINs, the study
of protein binding interfaces and the network centrality analysis (Appendix A Step
2B). The third workflow details how to combine NetworkAnalyzer and RINalyzer
for the comparison of multiple RINs (Appendix A Step 2C).



CHAPTER 3

Network-based prioritization and functional characterization of

candidate disease genes

The field of disease gene prioritization has grown substantially over the last years,
and a common feature of all approaches is that they rely on the currently avail-
able biomedical knowledge. Besides network-based prioritization approaches, many
others have been presented that, for instance, make use of functional annotations
or integrate multiple data sources using statistical learning techniques. A distinct
advantage of network-based methods is their effectiveness for representing complex
relationships between interacting molecules using only a single data source such
as molecular interactions or by integrating different data sources in an-easy-to-
interpret manner. Many graph theory methods can be applied to integrative gene
or protein networks to gain more insight into complex disease mechanisms by char-
acterizing the topological network structure as well as global and local interaction
properties.

In this chapter, we first give an overview of recent computational approaches to the
identification of the most promising candidates for experimental follow-up validation
in line with our recent review (Doncheva et al., 2012b). Furthermore, we describe
our efforts towards improving existing methods and tools for candidate disease gene
prioritization with focus on network-based approaches and integration of biomedical
data. In addition to our methodological contributions to bioinformatics research,
an important part of our work is dedicated to the direct application of newly devel-
oped or established methods to answer biomedical research questions. We designed
a phenotype-specific framework for prioritization and functional characterization of
candidate genes that makes use of existing databases and tools developed by col-
leagues in our group or by collaborators, in particular FunSimMat (Schlicker and
Albrecht, 2008), Cytoscape (Shannon et al., 2003), and the Cytoscape plugins Net-
workPrioritizer (Kacprowski et al., 2013) and ClusterOne (Nepusz et al., 2012). In
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Figure 3.1: Schematic representation of the process of disease gene prioritization

close collaboration with biologists and physicians, we applied it to three different
phenotypes: inflammatory bowel diseases (Ellinghaus et al., 2013b), primary scle-
rosing cholangitis (Liu et al., 2013), and Parkinson’s disease (Zanon et al., 2013).

3.1 Introduction

Many common diseases are complex and polygenic, involving dozens of human genes
that might predispose to, be causative of, or modify the respective disease pheno-
type (Schreiber et al., 2005; Hirschhorn and Gajdos, 2011; Raychaudhuri, 2011).
This intricate interplay of disease genotypes and phenotypes still complicates the
identification of all relevant disease genes (Frazer et al., 2009; Mackay et al., 2009;
Hawkins et al., 2010a). Therefore, a number of techniques exist to discover dis-
ease genes. In particular, high-throughput methods such as genome-wide associ-
ation studies (Franke et al., 2008; Manolio, 2010; Hirschhorn and Gajdos, 2011)
and large-scale RNA interference screens (Boutros and Ahringer, 2008; Hawkins
et al., 2010a; Reiss et al., 2011) yield lists of up to hundreds of candidate disease
genes. As validating the actual disease relevance of candidate genes in experimental
follow-up studies is a time-consuming and expensive task, many methods and web
services for the computational prioritization of candidate disease genes have already
been developed and recently reviewed in Vidal et al. (2011); Barabási et al. (2011);
Tranchevent et al. (2011); Wang et al. (2011); Piro and Di Cunto (2012); Doncheva
et al. (2012b); Moreau and Tranchevent (2012); Lehner (2013); Bromberg (2013);
Gustafsson et al. (2014); Collins (2015).

The concrete problem of candidate gene prioritization can be formulated as follows:
Given a disease (or a specific phenotype) of interest and some list of candidate
genes, identify potential gene-disease associations by ranking the candidate genes
in decreasing order of their relevance to the disease phenotype (Figure 3.1). When
abstracting from the methodological details, the vast majority of computational
approaches to this prioritization problem work in a similar manner. Most of them
rely on the biological information already available for the disease of interest, the
known, already verified, disease genes, and the newly suggested candidate genes.

These data then serve as input for statistical learning methods or are integrated
into network representations, which are further analyzed by network scoring algo-
rithms. Although individual data sources such as functional annotations or protein
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interactions provide quite powerful information for prioritizing candidate genes, the
integration of multiple data sources has been reported to increase the performance
even more. However, a generally accepted and consistent benchmarking strategy
for all the diverse prioritization methods has not emerged yet, which complicates
performance evaluation and comparison.

3.1.1 Our methodological contributions

One of the main goals of current methodological development is the investigation
of less frequently studied phenotypes with unknown causative genes. A suitable
platform for such studies is the recently developed Immunochip, a custom Illumina
array that allows the dense genotyping of poorly understood immune-mediated dis-
eases (Cortes and Brown, 2011). Using this array, our cooperation partners Liu
et al. (2013) performed a study on primary sclerosing cholangitis (PSC), a severe
liver disease of unknown etiology, and suggested several previously unknown dis-
ease associated loci. In order to prioritize and functionally characterize the PSC
loci, we generated networks of strong functional similarities between the candi-
date genes based on their Gene Ontology annotations. We also devised a novel
method for assessing the connectivity of the candidate genes without knowledge
of known causative genes. Through network topology analysis, we selected one
disease-relevant gene per locus and built a disease-specific network. Furthermore,
we extended our method to the analysis and comparison of the functional similar-
ities between genes associated with both diseases and revealed a large functional
overlap of PSC with inflammatory bowel disease (IBD). Our computational frame-
work is described in more detail in Section 3.2 and the analysis of PSC and IBD
loci as included in the publication by Liu et al. (2013) is presented in Section 3.4.

We also applied our computational framework on recently published GWAS data
for IBD, a chronic inflammatory disorder of the gastrointestinal tract (Franke et al.,
2010; Anderson et al., 2011). In particular, we assessed the functional overlap be-
tween the two main IBD subtypes, Crohn’s disease (CD) and ulcerative colitis (UC).
We also generated an integrative network of publicly available physical protein in-
teractions and strong functional similarities between candidate and known IBD
genes. Based on node connectivity and relevance in this network, we prioritized the
IBD candidates and generated a disease-specific network with the top-ranked gene
per locus. In addition to our already established framework, we made use of the
NetworkPrioritizer plugin developed by Tim Kacprowski for performing rank ag-
gregation of the different measures (Kacprowski et al., 2013). In a second study, we
combined exome sequencing data of CD patients and healthy individuals, provided
to us by our collaboration partners, with a network of genes associated with CD to
suggest candidate genes with rare sequence variants. In addition, we explored the
relationships between a gene identified in the exome analysis and genes known to
be associated with CD or to be involved in autophagy. The latter network analysis
was included in the publication by Ellinghaus et al. (2013b). For more details, refer
to Section 3.3.
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For our cooperation project with Francisco S. Domingues, we adapted our compu-
tational analysis framework to the prioritization of proteins associated with Parkin-
son’s disease (PD), a progressive neurodegenerative disorder of the central nervous
system (Zanon et al., 2013). Our contribution to this project was to rank the PD
candidate proteins based on their shortest path to known PD proteins in a network
of human protein-protein interactions and to identify groups of functionally similar
PD candidate and known proteins in a network of strong functional similarities (see
Section 3.5 for more details). These and other selection criteria were finally com-
bined by our collaboration partners to suggest a list of best-ranking predictions for
further experimental validation (Zanon et al., 2013).

3.1.2 Related work

This section is an adapted and modified version of text contained in Doncheva et al.
(2012b). In our review (Doncheva et al., 2012b), we categorize the various priori-
tization methods according to the biological data and their representation that are
primarily considered when scoring and ranking candidate disease genes: gene and
protein characteristics, network information on molecular interactions, and inte-
grated biomedical knowledge. In the following, we summarize and update each of
these categories with focus on network-based approaches. We also discuss different
benchmarking strategies and the need of standardized procedures for performance
measurement.

Many of the earlier disease gene prioritization methods exploited discriminative
gene and protein properties, assuming that candidate genes, which satisfy properties
derived from known disease genes and proteins, are more likely to be relevant to the
disease. López-Bigas and Ouzounis (2004) and Adie et al. (2005) identified several
sequence features that discriminate disease genes from non-disease genes. After
Jimenez-Sanchez et al. (2001) demonstrated that gene and protein function strongly
correlates with disease features, such as age of onset, many prioritization approaches
exploited the functional annotations of known disease genes and successfully ranked
candidate genes based on their functional similarity to the disease of interest or
its associated genes (Perez-Iratxeta et al., 2002; Freudenberg and Propping, 2002;
Turner et al., 2003; Schlicker et al., 2010; Ramı́rez et al., 2012). These studies
also confirmed the assumption that phenotypically similar diseases often involve
common molecular mechanisms and thus functionally related genes.

In the last decade, molecular interaction networks have become an indispensable
tool and a valuable information source in the study of human diseases. Thus, many
prioritization methods use protein interaction data as a powerful source for finding
relationships between gene products of candidate genes and disease genes (Kann,
2007; Ideker and Sharan, 2008; Baudot et al., 2009; Vidal et al., 2011; Wang et al.,
2011; Aranda et al., 2011). Disease genes and their products have discriminatory
interaction network properties that allow their distinction from non-disease genes.
Furthermore, the application of the guilt-by-association principle is straightforward
in protein interaction networks.
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Since disease proteins tend to cluster and interact with each other (Jonsson and
Bates, 2006; Lim et al., 2006; Goh et al., 2007; Feldman et al., 2008; Yao et al.,
2011; Menche et al., 2015), early prioritization methods focused on local network
information such as the topological neighborhood of a node representing a candidate
gene or protein (Krauthammer et al., 2004; Karni et al., 2009; Oti et al., 2006; Xu
and Li, 2006; Lage et al., 2007). Examples for local topology measures are node de-
gree (number of edges linked to node n) and shortest path length (minimum number
of edges between two nodes). Oti et al. (2006) proposed a very simple method for a
genome-wide prediction of disease genes based on their disease-associated chromo-
somal location and direct protein interaction with a disease protein. In contrast, Xu
and Li (2006) trained a k-nearest-neighbor classifier on multiple topological prop-
erties and three different molecular networks. The approach by Lage et al. (2007)
assigns a high score to those candidates that have protein interactions neighbors
associated with phenotypes similar to the disease of interest.

However, local measures are less sensitive to the overall network topology and ig-
nore potential network-mediated effects from distant nodes. Thus, global network
measures were introduced in the methods for candidate disease gene prioritization
and considerably improved their performance (Köhler et al., 2008; Suthram et al.,
2008; Dezso et al., 2009; Chen et al., 2009; Navlakha and Kingsford, 2010; Bot-
tomly et al., 2013; Guney et al., 2014). Global network information relates to the
overall network topology and is retrieved by measures that characterize the role of
a node with respect to the whole network. Commonly used centrality measures are
shortest path closeness and betweenness as well as random-walk related properties
such as hitting time and visit frequency (see Section 2.3.1 for details). The most
famous and frequently re-used approach based on global network information was
introduced by Köhler et al. (2008). They used a random walk with restart (from
known disease genes) on a protein interaction network to rank the candidate gene
products.

Especially for the study of complex diseases, network topology analysis is more
useful than approaches based on individual gene or protein properties as it can pro-
vide more insight into the functionality and interplay of disease genes by revealing
the alternative paths of interactions of their gene products. The performance of
network-based prioritization approaches depends heavily on the quality of the data.
Protein interaction networks are well known to be biased towards extensively stud-
ied proteins and subject to inherent noise (Xu and Li, 2006; Ramı́rez et al., 2007;
Cusick et al., 2009).

Further performance gain can be achieved by comprehensive knowledge integra-
tion from multiple data sources. This procedure is able to reduce the noise in the
integrated data and to provide additional information that is not captured (yet)
by other approaches (Moreau and Tranchevent, 2012). Two distinct approaches
to disease gene prioritization that exploit multiple data sources are exemplarily
highlighted in Figure 3.2. The first approach combines heterogeneous datasets in a
network representation, and subsequently applies specific analysis techniques, such
as network topology measures, to score and rank candidates with regard to their
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Figure 3.2: Integrative approaches to disease gene prioritization. The typical workflow of
integrative prioritization approaches based on multiple data sources consists of three major
steps. The first step involves preparing the input data consisting of two different sets of
genes, the known disease genes and the candidate genes. For each gene, further biomedical
knowledge is retrieved from various data sources such as functional annotations from the
Gene Ontology and molecular pathways from the KEGG database. In the second step,
the collected information is integrated using a network representation (top) or evaluated
individually for each data source, resulting in different ranking lists (bottom). The third
step computes a final ranking list of candidate genes based on network measures or rank
aggregation. The candidate genes are thus prioritized by their relevance to the disease of
interest. Figure first published in Doncheva et al. (2012b).
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network proximity to nodes representing known disease genes (Franke et al., 2006;
Lage et al., 2007; Linghu et al., 2009; Huttenhower et al., 2009; Li and Patra, 2010a;
Lee et al., 2011; Liekens et al., 2011; Hoehndorf et al., 2011; Wu et al., 2008; Yao
et al., 2011; Chen et al., 2011a; Guo et al., 2011; Vanunu et al., 2010; Yang et al.,
2011; Hwang et al., 2011). However, the usefulness and biological relevance of the
individual data sources are usually not evaluated by such approaches. It is also ben-
eficial to first analyze each data source separately using the most suitable techniques
and then combine the resulting ranking lists using sophisticated rank aggregation
algorithms (Aerts et al., 2006; Li and Patra, 2010b; Pers et al., 2011; De Bie et al.,
2007; Radivojac et al., 2008; Costa et al., 2010; Yu et al., 2011b; Chen et al., 2011b;
Mordelet and Vert, 2011). This procedure also facilitates backtracking the origin of
the most relevant information.

One of the earliest and still well-recognized integrative approaches is Endeavour
(Aerts et al., 2006; Tranchevent et al., 2008; Schuierer et al., 2010). It utilizes more
than twenty data sources, such as ontologies and functional annotations, protein-
protein interactions, cis-regulatory information, gene expression data, sequence in-
formation, and text-mining results. For each data source, candidate genes are first
ranked separately based on their similarity to a profile derived from known disease
genes. Afterwards, all individual candidate rankings are merged into a final overall
ranking using rank order statistics. MetaRanker is a similar approach that combines
many heterogeneous data sources and is particularly suited to uncover associations
in complex polygenic diseases (Pers et al., 2011).

An alternative way of integrating information from multiple data sources is the
application of machine learning techniques. Each data source can be represented
as one or more individual features and used as input for the training of supervised
learning methods. In particular, support vector machines (De Bie et al., 2007;
Radivojac et al., 2008; Yu et al., 2011b), decision tree based classifiers (Costa et al.,
2010), and PU learning (machine learning from positive and unlabeled examples)
(Mordelet and Vert, 2011) have been applied to prioritize candidate disease genes
using multiple data sources.

Prioritizer was one of the first approaches to integrate information from multiple
data sources into a network representation and rank the candidate genes according
to the length of the shortest paths between them (Franke et al., 2006). Building
upon Prioritizer, several research groups have assembled different types of integrated
networks as biological evidence for candidate disease gene prioritization and applied
local or, preferably, global network topology measures (Li and Patra, 2010a; Linghu
et al., 2009; Huttenhower et al., 2009; Lee et al., 2011). A more general view
of the relationships between phenotypes and genes is introduced by BioGraph, a
heterogeneous network containing diverse biomedical entities and relations between
them (Liekens et al., 2011).

After several studies indicated that similar phenotypes often share underlying genes
or even pathways (Limviphuvadh et al., 2007; Oti and Brunner, 2007; Van Driel
et al., 2006), phenotypic similarity has become another major data source exploited
by computational methods for prioritization of candidate disease genes. Such pheno-
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typic knowledge can be very useful to discover new potential disease genes by trans-
ferring known gene-phenotype associations to similar diseases and phenotypes (Lage
et al., 2007; Hoehndorf et al., 2011). Several methods are based on a two-layered
heterogeneous data network such that the phenome layer consists of connections be-
tween similar phenotypes, the interactome layer of protein-protein interactions, and
known gene-phenotype associations link both layers (Wu et al., 2008; Li and Patra,
2010a; Yao et al., 2011; Chen et al., 2011a; Guo et al., 2011; Vanunu et al., 2010;
Yang et al., 2011; Hwang et al., 2011). These approaches usually apply measures
based on random walks to find causal genes among the candidates.

Another useful source of information is gene expression data, which is usually
mapped onto protein interaction networks to identify groups of differentially ex-
pressed candidate genes (Nitsch et al., 2009, 2010; Zhao et al., 2011; Nitsch et al.,
2011; Wu et al., 2012; Poirel et al., 2013; Wang et al., 2014). Furthermore, gene ex-
pression data was used to construct tissue-specific protein interaction networks that
aid in prioritizing disease causing genes (Magger et al., 2012) and in understanding
the local manifestation of hereditary diseases (Barshir et al., 2014).

Recently, the application of local network topology, in particular, the identification
of network modules or clusters, has also gained more attention (Menche et al., 2015;
Tasan et al., 2015; Rossin et al., 2011; Jia et al., 2011; Guala et al., 2014; Hwang
et al., 2012). In particular, Menche et al. (2015) uncovered disease modules in pro-
tein interaction networks that consist of proteins associated with the same disease
as well as overlapping modules that confirm disease similarity, while Rossin et al.
(2011) showed that genes associated with GWA loci are more densely connected by
protein interactions than expected by chance. Overall, the integration of GWAS re-
sults into prioritization approaches has been very popular recently (Azencott et al.,
2013; Hou et al., 2014; Wang et al., 2015). Tasan et al. (2015) presented an inter-
esting approach that identifies subnetworks of mutually functionally related genes
that span multiple GWA loci. On top of GWAS, several recent studies successfully
combined biological networks with exome sequencing data to identify novel disease
genes (Dand et al., 2013; Smedley et al., 2014).

3.1.3 Evaluation and benchmarking

This section has been adapted from Doncheva et al. (2012b). To show the biolog-
ical applicability and scientific value of disease gene prioritization methods, their
authors are normally expected to conduct an extensive performance evaluation and,
if possible, a thorough comparison with other methods. To this end, many authors
usually benchmark disease phenotypes from OMIM. Depending on the requirements
of their method, only phenotypes with at least 2 or 3 known disease genes may be
suitable. Hence, the number of evaluated diseases can vary from tens to hundreds
with hundreds to thousands corresponding genes. The range of disease phenotypes
and genes, for which a given method is applicable, depends on the data used by
the method. For instance, only about 20 % of all possible human protein-protein
interactions have been described so far and only about 10 % of all human genes
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have at least one known disease association (Menche et al., 2015; Barabási et al.,
2011; Amberger et al., 2009). In addition, only about every second gene or protein
is functionally annotated (Huntley et al., 2015).

Here, we briefly describe frequently used measures for evaluating the performance
of disease gene prioritization methods. Leave-one-out cross-validation is a widely
used and generally accepted test for how a method might perform on previously
unseen data. In each run, one of the known disease genes, the so-called target
disease gene, is removed from the training data. The remaining disease genes are
used to identify the omitted gene from a test set of genes that are not known to
be associated with the disease of interest. In the best case, the top rank should be
assigned to the target disease gene and lower ranks to the other test genes. Since
cross-validation is a standard performance test, a number of suitable measures of
predictive power exist, for example, sensitivity and specificity, receiver-operating
characteristic (ROC) curve, precision and recall, enrichment and mean rank ratio.
They are calculated using the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) at a specific rank or score cut-off that
discriminates predicted from not predicted ones.

In this specific scenario, positives are disease genes, while negatives are candidate
genes without a disease association. For instance, sensitivity (TP/(TP + FN)) is
the percentage of correctly identified disease genes among all genes above the cut-off,
while specificity (TN/(TN + FP)) is the percentage of correctly dismissed candidate
genes among all genes below the cut-off. Plotting sensitivity versus specificity while
varying the cut-off yields a ROC curve. The area-under-the-ROC curve (AUC) is a
standard measure for the overall performance of binary classification methods (here,
disease genes vs. others). The AUC is 100 % in case of perfect prioritization and
50 % if the disease genes were ranked randomly.

In some cases, the authors of prioritization methods give the percentage of disease
genes ranked in the top 1 % and 5 % of all genes, which corresponds to reporting
the sensitivity at 99 % or 95 % specificity, respectively. The percentage of correctly
prioritized disease genes among all disease genes is defined as precision (TP/(TP +
FP)), while recall is equal to sensitivity. Thus, the plot of a precision-recall curve
can also be used to evaluate method performance (Navlakha and Kingsford, 2010).
An additional, rather simple measure is the mean rank ratio defined as the average
of rank ratios for all tested disease genes (Zhang et al., 2011). Finally, authors refer
to the n/m-fold enrichment on average if disease genes are ranked in the top m %
of all genes in n % of the linkage intervals (Wu et al., 2008).

Since all of these measures evaluate the performance of a method in a slightly differ-
ent way, none of them is considered as default and authors rarely report all of them.
This complicates the comparison between different methods of disease gene priori-
tization. In this particular case, it would be useful to also report the performance
for the top-ranked candidate genes, e.g., the first ten or twenty genes because only
a few candidates can usually be considered for further validation experiments.

Another important aspect of the benchmarking strategy is the choice of genes in the
test set, that is, the candidate genes that are prioritized together with the target
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disease gene. One usual input for prioritization methods is a set of susceptibility
loci as determined by GWA studies. These loci typically contain up to several
hundreds of possible disease genes. Therefore, different strategies have been followed
to derive useful test sets, that is, the definition of artificial gene loci, the random
selection of genes, the use of the whole genome, and the small-scale choice of genes.
Endeavour (Aerts et al., 2006) and several other methods, which were either related
or compared with it, were evaluated with a test set containing 99 candidate genes
chosen at random from the whole genome in addition to the target disease gene.

However, since similar genes tend to cluster in chromosomal neighborhoods (Lee
and Sonnhammer, 2003), another, presumably, more difficult setting for perfor-
mance benchmarking and especially more relevant for GWAS is the definition of
artificial linkage intervals with genes that surround the disease gene on the chro-
mosome. The size of such intervals, as found in the relevant literature, ranges from
the 100 nearest genes to 300 genes on average if a 10 Mb genomic neighborhood
is considered (Schlicker et al., 2010). The average gene number of linkage intervals
associated with diseases according to OMIM is estimated to be 108 (Lage et al.,
2007). The third option for assembling a test set is the use of all genes in the
genome except for the known disease genes in the training set and can be chosen
only by the few methods that are capable of performing genome-wide disease gene
prioritization. Finally, prioritization methods that consider, for instance, gene ex-
pression data are evaluated only on a smaller scale because there is not enough data
for a comprehensive benchmarking over many disease phenotypes. Therefore, the
authors commonly choose only few diseases that have, for example, the required
experimental data available.

Nevertheless, experimental validation remains the most important and valued eval-
uation of the outcome of prioritization methods. This is, however, very difficult
to accomplish as most computational biology labs do not have an in-house wet
lab or even a direct cooperation with biologists or physicians, who are currently
studying the disease in question. Therefore, we made an effort to work closely
with researchers, who are also either physicians themselves or work with physi-
cians. During this work, we successfully cooperated with Andre Franke from the
Christian-Albrechts-University of Kiel (Ellinghaus et al., 2013b), Tom H. Karlsen
from Oslo University Hospital (Liu et al., 2013), and Francisco S. Domingues from
EURAC research (Zanon et al., 2013).

3.2 Network-based prioritization framework

Based on our review (Doncheva et al., 2012a) and more recently published papers,
we concluded that there is still room for methodological improvements, in particu-
lar, with regard to the sources of biomedical knowledge and how they are exploited,
integrated and evaluated. Since phenotypes can strongly differ in their genetic
characteristics as well as in the amount of research dedicated to them, prioritiza-
tion approaches should be tailored to specific phenotypes or groups of phenotypes.
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The available sources of biological information can be used not only to prioritize
candidate genes, but also to generate disease-specific networks that provide more
insight into the functional characteristics of the underlying phenotypes. Last but
not least, there is a demand for more user-friendly and interactive web interfaces
for disease gene prioritization as well as for stand-alone tools that support the input
of user-specific data and provide further visualization and analysis functionality. In
this section, we will describe our efforts towards the aforementioned challenges.

3.2.1 Functional similarity networks

The Gene Ontology (GO) is a comprehensive resource for functional gene and pro-
tein annotations represented as three structured controlled vocabularies: biological
process (BP), molecular function (MF) and cellular component (CC) (Ashburner
et al., 2000; Gene Ontology Consortium, 2015). Two of the widely used applications
of GO are gene set enrichment analysis (Subramanian et al., 2005; Huang et al.,
2009a; Hung et al., 2012) and semantic similarity analyses (Pesquita et al., 2009;
Du Plessis et al., 2011; Guzzi et al., 2012). In this section, we will discuss how GO
annotations have advanced candidate disease gene prioritization and suggest a new
way of representing functional relationships between genes and proteins based on
GO annotations.

Motivation

After Jimenez-Sanchez et al. (2001) demonstrated a strong correlation between dis-
ease features, such as age of onset, and the function of genes and proteins, the first
prioritization approaches that exploit functional annotations of known disease genes
for ranking candidates were presented (Perez-Iratxeta et al., 2002; Freudenberg and
Propping, 2002; Turner et al., 2003; Schlicker et al., 2010; Ramı́rez et al., 2012; Li
et al., 2013). Perez-Iratxeta et al. (2002) mined the biomedical literature using GO
and Medical Subject Headings (MeSH) terms (Lowe and Barnett, 1994) to relate
disease phenotypes with functional annotations. In a similar fashion, Freudenberg
and Propping (2002) identified candidate genes based on their annotated GO terms
that are shared with groups of known disease genes associated with similar pheno-
types. In contrast, the approach POCUS assesses the shared over-representation
of functional annotation terms between genes in different loci for the same disease
(Turner et al., 2003).

In order to facilitate the usage of phenotypic data in a similar way as the GO
functional annotations, Robinson et al. (2008) developed the Human Phenotype
Ontology (HPO). Currently, it consists of 10,088 terms describing 7,278 human
hereditary syndromes and 13,326 relations between the terms (Köhler et al., 2014).
One of the first applications of the HPO was a method developed by Köhler et al.
(2009) and called Phenomizer. They made use of the structured data in HPO and
applied a set of similarity measures to rank candidate genes and refine differential
clinical diagnosis by suggesting clinical features that differentiate among several
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candidate diagnoses. Several other computational approaches successfully employed
the semantic phenotype similarities from HPO to prioritize candidate disease genes
(Robinson et al., 2014; Singleton et al., 2014; Javed et al., 2014; Yang et al., 2015).

Recently, Schlicker et al. (2010) developed a prioritization method based on the
similarity between the functional annotations of disease genes and candidates. In
contrast to the approaches that consider solely identical functional annotations or
GO term enrichments, MedSim automatically derives functional profiles for each
disease phenotype from the GO term annotation of known disease genes. Can-
didate genes are then scored and ranked according to the functional similarity of
their annotation profiles to a disease profile. In addition, Ramı́rez et al. (2012) in-
troduced the BioSim method for discovering biological relationships between genes
or proteins. While MedSim is based only on GO term annotations, BioSim quan-
tifies functional gene and protein similarity according to multiple data sources of
functional annotations and can also be applied to rank candidate genes based on
their functional similarity to known disease genes.

In a case study of Hepatitis C virus siRNA screen, Reiss et al. (2011) successfully
applied a network-based method for the analysis of host factor candidates by an-
notating them with molecular interaction data and functional protein and gene an-
notations. The method was originally developed by Nora Speicher under the joint
supervision of Hagen Blankenburg and Mario Albrecht. Among others, Speicher
(2010) showed that pairs of human host factors identified for different viral infec-
tions in the literature are significantly more similar to each other than randomly
selected protein pairs.

The success of the presented studies also indicates that diseases with similar phe-
notype often involve common molecular mechanisms and thus functionally related
genes. This also explains the frequent use of functional annotations as important
biological evidence in integrative prioritization approaches. Notably, the informa-
tion value of functional annotations can be further increased by improved scoring
of functional similarity, reaching the performance of complex integrative methods
based on multiple data sources (Schlicker et al., 2010).

Definition

Motivated by the wide and successful application of GO annotations and, in par-
ticular, functional similarity values, we constructed functional similarity networks
(FSNs) as a complement to protein interaction networks and designed an integra-
tive prioritization framework based on them. In a functional similarity network, a
node corresponds to a gene or gene product and two nodes are connected by an
edge if their pair-wise functional similarity as derived from their GO annotations is
above a user-defined cut-off (Figure 3.3). Some of the advantages of FSNs are their
higher coverage compared to PINs as well as their ability to relate genes or proteins
with respect to their cellular function even if they are not physically interacting
(Hawkins et al., 2010b; Jiang et al., 2011).

To construct an FSN, we retrieve functional similarities from the FunSimMat web
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Figure 3.3: Example for a functional similarity network. Nodes represent genes and
edges indicate strong functional similarity (between 0.8 and 1.0) based on the GO anno-
tations of the genes. The edge lines thickness reflects the functional similarity.

service (Schlicker and Albrecht, 2008, 2010) for a given set of genes or gene products
using the Python package developed by Speicher (2010). For most of our analy-
ses, we decided on the rfunSim measure (Schlicker et al., 2006) as it accounts for
both the Biological Process and Molecular Function domains of GO and the estab-
lished cut-off of 0.8 for strong functional similarity (Liu et al., 2013). Alternatively,
any other functional similarity measure or a different cut-off might be chosen. We
explain the most common semantic and functional similarity measures in the fol-
lowing section. We visualize and analyze the resulting networks using Cytoscape
(Shannon et al., 2003) and the Cytoscape apps NetworkAnalyzer (Doncheva et al.,
2012a), NetworkPrioritizer (Kacprowski et al., 2013), SubnetworkGenerator, set-
sApp (Morris et al., 2015b), and ClusterONE (Nepusz et al., 2012).

Previous analysis of genome-wide FSNs for Escherichia coli, Saccharomyces cere-
visiae, and Plasmodium falciparum (malaria) revealed that they have different net-
work topology than protein interaction networks, in particular, higher modularity
(Hawkins et al., 2010b). Furthermore, FSNs constructed with the funSim measure
exhibited a tendency to be hierarchical compared to FSNs accounting only for one
of the GO domains (BPscore, MFscore or CCscore) (Hawkins et al., 2010b). By
constructing an FSN for all human genes, Jiang et al. (2011) demonstrated that
it covers 50 % more genes than a widely used PIN, the Human Protein Reference
Database network (Keshava Prasad et al., 2009), and that the functional similarity
between two genes correlates with the proximity of their gene products in the PIN.
Moreover, the authors showed that genes associated with similar diseases are func-
tionally more similar than randomly selected genes and that FSNs are at least as
good or even better data source for network-based candidate disease gene prioriti-
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zation using a random walk with restart algorithm (Jiang et al., 2011).

Semantic and functional similarity

There are different ways to assess the functional similarity between two biological
entities and here we focus on the application of the Gene Ontology. In the last years,
many methods were developed for comparing sets of GO terms with respect to their
information content and the GO graph structure (Pesquita et al., 2009; Du Plessis
et al., 2011; Guzzi et al., 2012). They are called semantic similarity measures. In
order to compare two genes or proteins annotated with a set of GO terms, functional
similarity measures were introduced. They are based on the pair-wise semantic
similarity of the annotated terms. Two of the most well-known semantic similarity
measures are Lin’s and Resnik’s measure.

Resnik’s measure is based on the concept of information content (IC) (Resnik, 1995,
1998). It is defined as

simResnik(c1, c2) = max
c∈S(c1,c2)

(− log p(c))

where S(c1, c2) is the set of common ancestors of terms c1 and c2. The information
content (IC) of term c can be expressed as IC(c) = − log10 p(c), where the proba-
bility of a term is its relative frequency of occurrence in the whole ontology. The
more information two terms share, the higher is their similarity. Thus, the lowest
common ancestor (LCA) is maxc∈S(c1,c2) IC(c), i.e., the most informative term.

Lin’s measure is represented as the ratio of the commonality of two GO terms (their
common ancestors) and the information needed to fully describe them (the sum of
their information) (Lin, 1998). It is formally defined as

simLin(c1, c2) = max
c∈S(c1,c2)

(
2 log p(c)

log p(c1) + log p(c2)

)
In contrast to Resnik’s measure, which ranges from zero to infinity, Lin’s measure
is bounded by 0 and 1.

In 2006, Schlicker et al. (2006) presented a new semantic and functional similarity
measure called simRel and funSim, respectively. As a combination of Lin’s and
Resnik’s semantic similarity measures, the relevance similarity (simRel) captures
how close two terms are to their LCA as well as how informative the LCA is. It is
defined as

simRel(c1, c2) = max
c∈S(c1,c2)

(
2 log p(c)

log p(c1) + log p(c2)
(1− p(c))

)
and the values range between 0 and 1.

As already mentioned before, a functional similarity measure needs to account for
the comparison of two sets of GO terms. The funSim measure proposed by Schlicker
et al. (2006) is defined in several steps. Given two sets of GO terms GOA and
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GOB of size N and M annotated to proteins A and protein B, respectively, a
matrix of the pairwise semantic similarity is computed such that each entry sij =
sim(GOA

i , GO
B
j ),∀i ∈ 1, . . . , N,∀j ∈ 1, . . . ,M is the semantic similarity between

GO term i annotated to protein A and GO term j annotated to protein B. At this
point, any semantic similarity measure can be chosen to construct the matrix.

Since the sets of GO terms are different, the resulting matrix is not necessarily square
or symmetric. More importantly, the rows and columns represent the comparison of
A to B and B to A, respectively, and the maxima of each row/column are the best
matching pairs of GO terms. To get a final score for the comparison of proteins A
and B, a GOscore is defined as

GOscore = max {rowScore, columnScore}

where the rowScore and columnScore are the averages over the row maxima and the
column maxima:

rowScore =
1

N

N∑
i=1

max
1≤j≤M

sij and columnScore =
1

M

M∑
j=1

max
1≤i≤M

sij.

Alternatively, the GOscore can also be calculated as the average of the row and
column scores. Since there are three different GO domains (BP, MF, CC), a GOscore
can be computed for each of them and called accordingly, i.e., BPscore, MFscore
and CCscore.

Schlicker et al. (2006) suggested a functional similarity score funSim as a combina-
tion of the BP similarity and the MF similarity between two proteins. Formally, it
is defined as

funSim =
1

2

[(
BPscore

max(BPscore)

)
+

(
MFscore

max(MFscore)

)]
where max(BPscore) and max(MFscore) are the maximum possible scores for the
whole biological process and molecular function domains, respectively. In particular,
this score favors proteins that are very similar based on one GO domain to proteins
that are less similar according to both GO domains. However, the funSim score is
lower than the average of BPscore and MFscore. Thus, the more intuitive rfunSim
score can be calculated as the square root of the funSim score. It ranges from 0
for no functional similarity to 1 for maximal functional similarity. Compared to
the funSim score, rfunSim was better suited for classifying protein pairs without
sequence similarity and orthologous protein pairs (Schlicker et al., 2007b).

In contrast to methods that only consider the overlap of identical GO terms, the
funSim measure can be used to compare proteins with partial functional annota-
tions or multi-functional proteins. Several studies have shown that this functional
similarity is very useful for the prediction and validation of protein-protein and
domain-domain interactions (Suthram et al., 2006; Ramı́rez et al., 2007; Schlicker
et al., 2007a) as well as for the prioritization of putative disease genes (Schlicker
et al., 2010). A generally accepted cut-off of 0.8 has been established as an indicator
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for strong functional similarity between two proteins (Schlicker et al., 2007a, 2010).
Furthermore, an evaluation of different measures for semantic similarity indicated
that the simRel measure is best suited for computing functional gene and protein
similarities between host factors based on the available GO annotations (Speicher,
2010).

Since the computation of semantic and functional similarity for a large set of pro-
teins could be computationally intensive and time-consuming, the comprehensive
web resource FunSimMat was provided (Schlicker and Albrecht, 2008, 2010). It
contains pre-computed values for four different semantic similarity measures and
over 10 functional similarity measures for all UniProt proteins (The UniProt Con-
sortium, 2014) as well as all Pfam (Finn et al., 2014) and SMART families (Letunic
et al., 2015). FunSimMat also allows ranking disease candidate proteins for OMIM
diseases using the MedSim method (Schlicker et al., 2010).

3.2.2 Network-based analyses

We designed an analytical framework that uses FSNs for a phenotype-specific prior-
itization of candidate disease genes and the functional characterization of diseases.
In the following subsection, we will present the individual analysis steps that we
proposed. Their application to biomedical data is described in the next sections.

Functional phenotype overlap

Understanding the interplay between different diseases, how much they do and do
not have in common with respect to their genetic and phenotypic profiles is still a
challenge (Lehner, 2013; Parkes et al., 2013). Motivated by the findings that similar
diseases share functional annotations (Goh et al., 2007; Van Driel et al., 2006; Oti
and Brunner, 2007; Suthram et al., 2010), we proposed to assess the functional
phenotype overlap based on the number of functional similarity edges in a FSN of
the respective phenotypes.

For this purpose, we constructed an overview network that provides a quantitative
visual representation of the phenotype overlap as determined by the number of
functional similarity edges between the associated genes. In this network, each
node represents a phenotype and is labeled by the number of genes associated with
this phenotype, while each edge indicates a strong functional similarity between at
least one pair of genes from the connected phenotypes and is labeled by the number
of such pairs. The functional similarity edges connecting genes in the same group
are represented as self-loops. Based on these counts, we can compute a ratio of
functional overlap as a quotient of the number of edges within the phenotype and
to the other phenotype. Examples are shown in Figure 3.6 for the two IBD subtypes
and in Figure 3.14 for PSC and IBD.
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Functional cluster identification

Several studies have indicated that biological systems have a modular organization
(Hartwell et al., 1999), which is reflected by the topological structure of biological
networks (Hartwell et al., 1999). They contain groups (clusters) of densely con-
nected entities that usually represent functionally or evolutionary related genes,
proteins or metabolites (Ravasz et al., 2002; Barabási and Oltvai, 2004; Costanzo
et al., 2010; Mitra et al., 2013). For example, Ulitsky and Shamir (2007) developed
an approach for the accurate identification of functional modules in similarity net-
works. Since the edges in a FSN represent strong functional similarity between the
connected genes, we expect to find biologically meaningful clusters of genes that
are, for instance, enriched for particular GO terms. Thus, we decided to apply
the ClusterONE algorithm (Nepusz et al., 2012) to identify overlapping clusters of
highly connected nodes.

To detect possibly overlapping protein complexes from weighted protein interac-
tion networks, Nepusz et al. (2012) introduced a measure called cohesiveness that
accounts for two important structural properties expected for a densely connected
subgraph, namely, the nodes within the subgraph are connected by many reliable
interactions with each other and at the same time they are well-separated from other
nodes in the network. The clustering algorithm uses the cohesiveness to guide a
greedy procedure that searches for groups of densely connected nodes and is re-
peated for several different seed nodes. In the next step of the algorithm, highly
overlapping groups are merged and finally, the clusters are filtered based on user-
defined thresholds, such as minimal cluster size or density.

We applied this algorithm to find clusters of functionally related disease gene and
protein candidates in the IBD FSN (Section 3.3.2) as well as in a Parkinson’s disease
FSN (Section 3.5). These clusters and their members are likely participating in
processes that are disturbed in the respective diseases and should be considered for
further experimental validation.

Network-based prioritization

Many network-based prioritization approaches rely on network topology measures,
such as degree, shortest path centralities or random walk, to assess the impor-
tance of candidate genes or proteins in a protein interaction network (Navlakha
and Kingsford, 2010; Wang et al., 2011; Ideker and Sharan, 2008) or in different
types of integrative networks (Franke et al., 2006; Linghu et al., 2009; Lee et al.,
2011; Hoehndorf et al., 2011). In the special case of PINs, it has been demonstrated
several times and, thus, it is generally accepted that global topology measures per-
form better than local ones (Köhler et al., 2008; Chen et al., 2009; Navlakha and
Kingsford, 2010). Thus, Jiang et al. (2011) applied a random walk with restart
(Köhler et al., 2008) on a FSN to prioritize candidate genes and achieved similar
performance as in a protein interaction network. Apart from their work, no com-
prehensive study has been published that compares the performance of different
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topology measures for prioritization of candidate genes in other types of networks,
such as the integrative networks or FSNs. Another limitation of these widely used
network-based approaches is that they rely on known disease genes as seed nodes
for the computation of centrality measures in the network. We address some of
these issues as follows.

First, we suggested the combination of centrality measures for a consensus score.
Thus, in his master’s thesis, Kacprowski (2011) explored the performance of different
centrality measures and rank aggregation algorithms to prioritize candidate genes
in FSNs and PINs. A comprehensive evaluation procedure on the benchmark set
used by Schlicker et al. (2010) demonstrated good performance of the individual
centrality measures (area under the ROC curve between 80 % and 90 %) with an
expected increase for global and random-walk based measures compared to local
shortest path based, respectively. An aggregation of the centrality-based rankings
pushed the performance over 90 % AUC with best AUC for the MaxRank Fuse
algorithm. This approach was implemented as a user-friendly Cytoscape plugin
NetworkPrioritizer (Kacprowski et al., 2013). It enables the user to choose which
data sources to integrate and how to combine them into a network as well as which
centrality measures to compute and how to aggregate the resulting rankings into a
final score for the candidates.

Second, we developed a method for the prioritization of candidate genes in the
absence of known disease genes (Section 3.3.2 and Liu et al. (2013)). Thereby, we
assumed that the candidate genes originate from a genome-wide association study of
a complex disease and thus, are associated with different loci found to be significant
for this disease. The method is composed of three steps. First, a FSN (or an
integrative FSN and PIN) is constructed for the candidate genes and each gene is
assigned to a group based on its association with a particular locus. Second, selected
global centrality measures are computed for all nodes in the network and the genes
are ranked according to the centrality values. Third, the individual rankings are
aggregated into a final ranking using the MaxRank Fuse algorithm, i.e., each gene is
assigned the highest rank it achieved. Finally, for each locus, the best-ranked gene
is selected (in an iterative fashion). Naturally, this approach can also be applied to
networks that contain already known disease genes by integrating this information
into the computation of the centrality measures (Section 3.3).

Third, we constructed phenotype-specific networks and subnetworks using different
strategies. Since we perform our analyses on a FSN, we expect that functionally
more related genes are located in densely connected regions, such as clusters, or at
least in the same connected component, i.e., every node can be reached by any other
node. Thus, we constructed a FSN for subsets of genes like the top candidates per
locus or the top-N ranked genes. The number of nodes and edges in these networks
are an indication for the functional coherence of the given set of genes. An example
for IBD is shown in Section 3.3.2 and for PSC in Section 3.4.3.

An alternative strategy for extracting a subnetwork from large human protein in-
teraction networks is to find the nodes that, for example, connect two proteins of
interest either by a direct connection or through a shortest path. Therefore, we
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have also created shortest path (SPNs) and common neighbors networks (CNNs)
for two sets of proteins. Both networks are defined for two sets of nodes, whereas
the first set are the source nodes and the second are the target nodes. Given these
two sets, we find all nodes that lie on all shortest paths between each source and
each target node and include them in the resulting SPN. For CNN, we identify all
nodes that are shared between the source and target nodes, e.g. have a direct edge
to a source and a target node at the same time. An example for the application of
SPN is presented in Section 3.5.

3.2.3 Accompanying software

After reviewing several methods for candidate disease gene prioritization, we re-
alized that there is still room for improvement with regard to their realization as
software tools or web services. For example, while it might be convenient to in-
directly provide the user with the biological knowledge used by the approach, the
user usually does not have access to the data itself and cannot judge its quality and
up-to-dateness. Because of the complexity related to data integration, especially
when different identifiers are involved, many approaches do not update their un-
derlying biological data sources frequently enough. In addition, it is also difficult
to prevent circularity, i.e., ranking a candidate gene on top because it is annotated
as a true gene by one of the data sources. Finally, many approaches still provide
very static and unhandy web interfaces. In the course of this thesis, we have initi-
ated the development of a few Cytoscape plugins and apps that support the input
of user-specific data and provide further visualization and analysis functionality as
well as of a user-friendly and interactive web interface for disease gene prioritization
using functional similarities.

MedSimX

The method MedSim developed by Schlicker et al. (2010) was implemented as part
of the FunSimMat web service, which is a resource for pre-computed semantic and
functional similarity values. However, this means that the MedSim implementa-
tion was not tailored to the specifications and requirements of an advanced web
service for candidate disease gene prioritization. Thus, we developed the MedSimX
interface with David Buezas.

MedSimX is designed to be interactive and user-friendly as well as to provide more
options for a fast and comfortable analysis. Among others, its functionality includes
an auto-complete option for disease search by name or OMIM identifier, real-time
color spell check-like validation of the candidate proteins, remaining time dialog, and
easy access to documentation (Figure 3.4(a)). The results page is easy to bookmark,
share and export due to an URL that reflects the state of the page (Figure 3.4(b)).
It also provides in-place data analysis functionality such as HTML5 histograms
and scatter plots, a paginated color-coded results table with a hierarchical folder-
like filter for visible columns (e.g. different similarity scores), and row filtering by
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(a)

(b)

Figure 3.4: MedSimX web interface: (a) data input page and (b) results page.

protein/gene name. One very important new feature of MedSimX is that it allows
users to export the top-ranked candidates to BioMyn (Ramı́rez et al., 2012), a data
warehouse integrating 22 publicly available annotation sources for human genes and
proteins. Once having the list loaded in BioMyn, the user can look for enrichment of
KEGG pathways, GO terms, etc. The implementation followed good programming
practices by separating code in libraries and modules as well separating HTML,
PHP, Java script and CSS code. The use of JQuery UI libraries made it possible
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to create an interface that is appealing to the eye, easy to modify and compatible
with all main browsers (Chrome / Firefox / IE 8+ / Opera).

The further development of MedSimX will focus on the integration of FSNs into the
results of a prioritization run, such that the user can visually explore the FSN of
the top-ranked genes. The network interface will be rather simple and only provide
basic functionality using Cytoscape Web (Lopes et al., 2010), but it will also support
the export of network data into the stand-alone Cytoscape application, where more
complex analysis can be performed.

Cytoscape plugins

As part of his master’s thesis, Tim Kacprowski implemented the Cytoscape plu-
gin NetworkPrioritizer for the integrative network-based prioritization of candidate
genes and proteins (Kacprowski et al., 2013). Given a network selected by the user
and a set of known disease genes, the plugin estimates the importance of the candi-
date genes for the network connectivity using a number of centrality measures such
as shortest path betweenness, shortest path closeness, random walk betweenness,
random walk receiver closeness and random walk transmitter closeness (Borgatti,
2005). NetworkPrioritizer works on both unweighted and weighted networks and
allows users to adjust the effect of the edge weights on the computed centrality
measures (Opsahl et al., 2010).

The plugin also facilitates the user-guided aggregation and comparison of multiple
node rankings derived from the different centrality measures. The rank aggregation
methods include Weighted Borda fuse (WBF), Weighted AddScore fuse (WASF),
and MaxRank Fuse (MRF). While WBF ranks a node based on the sum of its
sores computed as the number of nodes ranked lower in the respective rankings
(Saari, 1999), WASF assigns the highest rank to the node with the largest weighted
sum of scores in its rankings and MRF ranks a node according to the highest rank
it achieved in any singal ranking. Furthermore, NetworkPrioritizer provides two
common measures of ranking distance. The Spearman footrule distance computes
the sum of the difference between the ranks of a node, while the Kendall tau distance
is the number of nodes with different ranks (Dwork et al., 2001).

We also implemented a simple plugin for subnetwork generation from an initial
network for our project Parkinson’s disease (Zanon et al., 2013). SubnetworkGen-
erator can create a shortest path network (SPN) and a common neighbors network
(CNN). The user interface of SubnetworkGenerator is very simple and allows the
user to set the source and target nodes sets as well as to choose which network
should be created. In addition, the user might also include the direct neighbors
of the source or target nodes in the final subnetwork. A year later, Lemetre et al.
(2013) also released a Java application that supports the generation of subnetworks
using shortest paths and other graph-based algorithms.
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3.3 Inflammatory bowel diseases

In addition to the development of methods and tools for network-based prioriti-
zation, we are also dedicated to the application of newly developed or established
methods to open biomedical research questions. Over the last years, we have coop-
erated with several research groups on the disease-specific application of integrative
network-based methods for candidate gene prioritization.

In cooperation with the group of Andre Franke at the Christian-Albrechts-University
of Kiel, we have performed extensive data analysis for IBD. Among others, we con-
structed a phenotype-specific network of all known GWAS candidates for IBD and
suggested putative disease genes for follow-up analysis by an integrative network
approach. Furthermore, we combined next generation sequencing data from IBD
patients and healthy individuals with publicly available interaction data to derive
subnetworks of genes associated with the disease.

3.3.1 Medical background

IBD is a chronic relapsing-remitting inflammatory disorder that affects the gastroin-
testinal tract (Ellinghaus et al., 2015). The two major IBD subtypes are ulcerative
colitis (UC) and Crohn’s disease (CD), and they affect over 2.5 million people of
European ancestry (Molodecky et al., 2012). In North America and Europe, IBD
has the highest prevalence ranging from 21 to 246 per 100 000 for UC and 8 to 214
per 100 000 for CD, and the rates are increasing in other populations (Ellinghaus
et al., 2015). While ulcerative colitis is characterized by inflammation that spreads
in continuous fashion and is limited to the mucosal layer of the colon, Crohn’s dis-
ease can involve any part of the gastrointestinal tract and is often associated with
complications such as strictures, abscesses and fistulas (Khor et al., 2011). Since
there is no known cure yet, the therapy of IBD symptoms involves a combination
of immune-suppressing medications and dietary changes, in more than half of the
patients surgery (Liu and Anderson, 2014; Conrad et al., 2014). The differences
in the localization, endoscopic appearance, histology and behavior of CD and UC
suggest differences in the underlying pathophysiology despite some shared clinical
and pathological features (Ellinghaus et al., 2015).

The etiology of IBD is so far understood as a complex interplay between individ-
ual genetic predisposition and environmental factors, such as the gut microbiome
(Jostins et al., 2012; Ellinghaus et al., 2015). Family history is a risk factor for de-
veloping IBD with a 26-fold and 9-fold increased risk when another sibling already
has CD or UC, respectively (Bengtson et al., 2009). Meta-analyses of genome-wide
association studies (GWAS) have established a total of 163 IBD susceptibility loci
(Barrett et al., 2008; Franke et al., 2010; Anderson et al., 2011; Jostins et al., 2012),
which explain only 13.6 % of the disease variance for CD and 7.5 % for UC (Jostins
et al., 2012). CD and UC share 110 of these loci, which might explain the clinical
similarities between both diseases and, at the same time, it points to a complex,
heterogeneous and difficult to diagnose disease spectrum (Ellinghaus et al., 2015).
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Although the majority of the genetic contribution to disease risk is still unknown,
the identified loci and the candidate genes associated with them have deepened
our understanding of the pathogenesis of IBD. Most loci appear to exert their
effect by influencing the regulation of gene transcription rather than disrupting
the coding sequence (Ellinghaus et al., 2013b). Enrichment analysis has revealed
relevant disease pathways, such as autophagy, ER stress response, innate immunity,
and epithelial barrier dysfunction among others (Khor et al., 2011). Recent evidence
points to an essential role for host defense against infection in IBD, in particular,
the interaction between the host mucosal immune system and microbes, both at the
epithelial cell surface and within the gut lumen (Jostins et al., 2012). However, the
biological mechanisms that underlie IBD risk loci are yet to be identified by fine-
mapping studies, direct experimental work, and functional interrogation (Liu and
Anderson, 2014; Ellinghaus et al., 2015). In particular, next-generation sequencing
is expected to reveal rare and low-frequency variants that contribute to disease risk.

3.3.2 Phenotype-specific network analysis

Although the two IBD subtypes, CD and UC, have similar phenotypes, their geno-
types are distinct from each other (Ellinghaus et al., 2015). Nevertheless, genome-
wide association studies have identified many significant loci associated with either
CD, UC, or both. We have combined data from two recent GWAS on CD and UC
performed by our cooperation partners from Kiel. Overall, 625 genes were identi-
fied for the 71 CD risk loci (Franke et al., 2010) and 377 for the 47 UC risk loci
(Anderson et al., 2011), resulting in 276 overlapping genes and 726 genes in total.

We constructed an integrative IBD candidate network (Figure 3.5) by combin-
ing protein interactions from the iRefIndex database (Razick et al., 2008) and
strong functional similarity links based on the Gene Ontology from the FunSim-
Mat database (Schlicker and Albrecht, 2008). In the resulting network, 480 out of
the 726 genes were connected by 2875 edges, including 183 protein interactions and
2692 functional similarity edges. Since we were interested in the functional rela-
tionships between genes in different loci, we distinguished between edges connecting
genes located in different loci or within the same locus. From the 2875 edges, only
7.3 % are within the same loci and were not considered in the following network
analysis.

First, we applied the graph clustering algorithm provided by the Cytoscape plugin
ClusterONE (Nepusz et al., 2012) on the IBD network to identify groups of func-
tionally related genes. From the 9 significant clusters (P ≤ 0.05), the top 5 are
highlighted in Figure 3.5. The genes corresponding to each cluster were uploaded
to BioMyn (Ramı́rez et al., 2012) for functional annotation, and the top-enriched
biological process terms (adjusted p-value < 0.05) are listed:

• Cluster 1 (56 genes, P-value = 0.00): cell differentiation, reproduction

• Cluster 2 (37 genes, P-value = 5.77E-9): signal transduction, immune system
process, response to stress
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Figure 3.5: Network representation for genes associated with IBD. In this network,
blue nodes correspond to genes in CD loci, green nodes to genes in UC loci, and pink
nodes to genes in both CD and UC loci. Gray and blue edge lines represent strong
functional similarity based on Gene Ontology annotations and direct protein interactions,
respectively.

• Cluster 3 (20 genes, P-value = 1.32E-7): transmembrane transport, homeo-
static process
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• Cluster 4 (21 genes, P-value = 2.73E-7): catabolic process, immune system
process

• Cluster 5 (23 genes, P-value = 1.66E-4): protein modification process

Overall, we did not identify a subtype-specific cluster, e.g. one that only contains
CD or UC candidates. Cluster 2 stands out as it is enriched with UC associated
genes compared to the other clusters and is the only cluster that contains a known
IBD gene (IL23R). This observation considered together with the functional anno-
tations renders the cluster an interesting target for further investigation of UC. In
addition, cluster 1 contains 4 out of the 10 top-ranked IBD candidates, including
two genes associated with CD, one with UC, and one with both subtypes (see details
on the ranking below).

(a) (b)

Figure 3.6: Functional phenotype overlap between Crohn’s disease (CD) and ulcerative
colitis (UC). The network in (a) is the same network shown in Figure 3.5 grouped by
phenotype, e.g., CD genes are represented by blue nodes, UC genes by green nodes, and
CD & UC genes by pink nodes, while the gray and blue edges correspond to strong
functional similarity and protein interactions, respectively. Figure (b) shows an overview
of the same network, where each node represents one of the phenotypes and is labeled
with the number of associated genes. An edge indicates that the phenotypes are connected
and is labeled by the numbed of connections between the corresponding genes. The edges
connecting genes in the same group are represented as self-loops.

Since we could not identify any UC or CD specific clusters, we analyzed the phe-
notypic overlap between the two IBD subtypes by creating an overview network
(Figure 3.6). Here, the nodes represent the phenotypes (CD only, UC only, CD &
UC) and are labeled by the number of genes associated with the respective pheno-
type. The edge labels correspond to the number of functional similarity; protein
interaction edges connecting the genes and edges within the same phenotype are
represented as self-loops. This simplified view of the network of IBD-associated
genes confirmed our observation that the CD-associated genes are more function-
ally similar within their phenotype than are the UC candidates (edge-to-node ratio
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Table 3.1: Top-ranked IBD candidate genes using MaxRank Fuse aggregation.

Symbol Band Status GDC GRWB GRWRC GRWTC GSPB GSPC BF rank

ERBB2 17q12 IBD 49 0.312 7.25E-04 1.27E-03 0.261 0.667 1
MTMR3 22q12 CD 5 0.094 2.07E-03 1.96E-04 0.002 0.364 164
FNIP1 5q31 CD 80 0.475 6.55E-04 1.70E-03 0.173 0.571 4
STAT3 17q21 CD 53 0.188 5.70E-04 2.30E-03 0.050 0.571 7
TPD52L2 20q13 UC 51 0.336 7.60E-04 1.13E-03 0.072 0.571 2
NDUFAF3 3p21 IBD 20 0.369 7.64E-04 7.77E-04 0.065 0.571 17
GPBAR1 2q35 UC 37 0.075 5.49E-04 2.01E-03 0.005 0.444 43
SMAD3 15q22 CD 75 0.241 8.01E-04 1.11E-03 0.032 0.444 5
PPM1G 2p23 CD 2 0.010 1.38E-03 1.12E-04 0.000 0.308 315
RAMP2 17q21 CD 13 0.164 7.78E-04 6.41E-04 0.037 0.571 35

of 2.9 and 1.4, respectively). The CD & UC group is located in-between with a
ratio of 2.6 and is more functionally similar to UC (ratio of 5.2) than to CD (ratio
of 4.4). Furthermore, most of the UC-associated genes are connected to CD genes
(edge-to-node ratio of 6.3), while this is not the case for the CD group (ratio of 1.9).
Although there might be a bias toward CD because there are more loci identified for
it, we expect the edge-to-node ratios to be less affected by this and thus to reveal
relevant subtype relationships that indicate some functional overlap between CD
and UC.

Furthermore, we ranked the candidate genes based on their importance for the con-
nectivity of known IBD genes included in this network. There are four such genes
(NOD2, IL23R, ATG16L1, PTPN22) and we refer to them as seed nodes. We com-
puted seven centrality measures to rank the candidate genes with respect to the seed
genes using the RINalyzer plugin for Cytoscape (Doncheva et al., 2012a) and merged
the rankings using the MaxRank Fuse (MRF) and Weighted Borda Fuse (WBF)
rank aggregation algorithms using the NetworkPrioritizer plugin (Kacprowski et al.,
2013). The 10 top-ranked genes and their respective values are listed in Table 3.1
and 3.2. The 10 top-ranked genes according to WBF are also represented as rect-
angles in the network shown in Figure 3.5.

Since the WBF algorithm computes the weighted mean rank of a node in all pri-
mary rankings without considering its actual scores, a node is ranked high in the
aggregated ranking if it is ranked high in many of the primary rankings. The MRF
assigns each node the highest rank, which it has achieved in any primary ranking.
In this case, a node has a high rank in the aggregated ranking if it is important
according to one centrality measure and not to all of them. As can be expected,
these two aggregation strategies deliver different results (see Tables 3.1 and 3.2).
However, there is still an overlap of 5 genes on the top 10 positions. While the
remaining top genes according to WBF are also ranked rather high by MRF (up to
rank 23), this is not the case for the remaining MRF top genes, e.g., two of them
have WBF ranks of 164 and 315.

Although most of the top candidates are spread throughout the network (Fig-
ure 3.5), they are also physically interacting or functionally similar to each other.
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Table 3.2: Top-ranked IBD candidate genes using Weighted Borda Fuse rank aggrega-
tion.

Symbol Band Status GDC GRWB GRWRC GRWTC GSPB GSPC MRF rank

ERBB2 17q12 IBD 49 0.312 7.25E-04 1.27E-03 0.261 0.667 1
TPD52L2 20q13 UC 51 0.336 7.60E-04 1.13E-03 0.072 0.571 5
JAK2 9p24 IBD 45 0.217 7.61E-04 1.07E-03 0.051 0.571 15
FNIP1 5q31 CD 80 0.475 6.55E-04 1.70E-03 0.173 0.571 3
SMAD3 15q22 CD 75 0.241 8.01E-04 1.11E-03 0.032 0.444 8
HNF4A 20q13 UC 49 0.099 7.30E-04 1.15E-03 0.024 0.500 23
STAT3 17q21 CD 53 0.188 5.70E-04 2.30E-03 0.050 0.571 4
NOTCH1 9q34 IBD 52 0.135 7.84E-04 1.07E-03 0.018 0.444 20
HSPA1A 6p21 IBD 31 0.281 7.04E-04 1.08E-03 0.032 0.571 18
HSPA1B 6p21 IBD 31 0.281 6.97E-04 1.09E-03 0.030 0.571 13

This can be observed in the two subnetworks shown in Figure 3.7(a) and 3.7(b).
They include the 4 known IBD genes and the 10 top-ranked candidates using MRF
and WBF aggregation, respectively. We also checked for enriched functional annota-
tions using DAVID (Huang et al., 2009b). For the WBF top genes, we obtained the
following representative BP terms (Benjamin corrected p-value ≤ 0.05): response
to wounding, regulation of cell proliferation, regulation of apoptosis. In contrast,
while five of the top 10 MRF genes were annotated with signal transduction, neither
this BP term nor other GO terms were significantly enriched for the top 10 MRF
genes.

We performed a second round of prioritization by selecting the top-ranked gene
for each locus. From 65 loci represented in the IBD network, we constructed a
subnetwork of 51 genes connected by 218 functional similarity or protein interaction
edges (Figure 3.7(c)). In particular, this network contains the 5 overlapping top-
ranked genes as well as 4 additional genes ranked in the top 10 positions by MRF.
GO enrichment analysis using DAVID (Huang et al., 2009b) resulted in several
enriched BP terms, including regulation of transcription, metabolic process and cell
proliferation as well as T cell activation and immune response. In addition, we
observed that 20 of the locus candidates are physically or functionally connected to
the four already known IBD genes.

3.3.3 Exome sequencing in Crohn’s disease

Increasingly, GWAS studies have been criticized because their findings account only
for a low proportion of overall heritability across common complex diseases so far
(Manolio et al., 2009). Possible explanations include overestimation of disease heri-
tability, epigenetic effects, and a major contribution of low-frequency and rare vari-
ants. After the successes of whole-exome sequencing to detect rare coding variants
in Mendelian disorders (Bamshad et al., 2011), its application for identifying the
contribution of rare and low-frequency coding variants in complex phenotypes is a
logical step. Therefore, our collaboration partner Andre Franke and his colleagues



50 Prioritization of candidate disease genes

(a) (b)

(c)

Figure 3.7: Network of top-ranked IBD candidates: (a) using MaxRank Fuse aggrega-
tion; (b) using Weighted Borda Fuse aggregation; (c) selecting top-ranked gene per locus.
In all networks, blue nodes correspond to genes in CD loci, green nodes to genes in UC
loci, and pink nodes to genes in both CD and UC loci. Gray and blue edge lines repre-
sent strong functional similarity based on Gene Ontology annotations and direct protein
interactions, respectively.

initiated a study to identify novel CD variants by combining functional studies with
exome sequence data from patents (Ellinghaus et al., 2013b).

After sequencing the whole exomes of 42 unrelated subjects with CD and 5 healthy
subjects (controls), 117 957 SNVs were identified, including 59 076 coding and splice
site SNVs. In order to identify functionally relevant variants, the large set of SNVs
was annotated and filtered using a two-fold strategy. First, based on the results
of tools such as SNAP (Bromberg and Rost, 2007), SIFT (Sim et al., 2012), and
Polyphen2 (Adzhubei et al., 2010), non-synonymous and splice site SNVs with at
least one in silico prediction of a protein-altering effect or a known disease mutation
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annotation in the HGMD database (Stenson et al., 2008) were considered. Then,
the Targeted approach filtered SNVs from the established 71 CD associated regions
(Franke et al., 2010), while in the more hypothesis-free Whole-exome approach, the
whole exome data set was scanned for IBD candidate susceptibility SNVs (asso-
ciation signal of P < 10−4 within a region of ±250 kb around the variant from
the large GWAS meta-analysis on CD (Franke et al., 2010)). After a conventional
Sanger re-sequencing to correct for sequence errors, 93 and 159 SNVs were verified
for approaches one and two, respectively.

Figure 3.8: Network representation of genes associated with CD or implicated by exome
sequencing. In this network, blue and green nodes represent genes with SNVs selected by
the Targeted or Whole-exome strategy, respectively, while red nodes refer to genes with
SNVs selected by both strategies. Pink nodes or nodes with a squared shape indicate genes
located in the previously associated CD loci. Blue network edges represent direct protein-
protein interactions of the gene products, while gray edges indicate strong functional
similarity based on the Gene Ontology annotations. If both a protein-protein interaction
and a strong functional similarity are evident for a pair of genes, the corresponding edge
is colored in black. Genes and their nodes that are not connected to any other node in
the network are omitted.

In order to investigate the functional relationships between genes associated with
CD (663 genes) and the selected SNVs, we extracted all genes located close to
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these SNVs. This resulted in 77 genes for the Targeted approach and 151 for the
Whole-exome approach with an overlap of 8 genes (RSPH3, LAMC1, LAMB2,
LMNB2, NOD2, LRRK2, FBXW12, and TYK2). As expected from the design
of the studies, all 77 Targeted genes coincided with genes previously associated
with CD. Interestingly, beside the 8 genes with SNVs from both strategies, four
additional genes (LNPEP, MST1R, CCDC71, and LRRK2) with whole-exome SNVs
were located in the CD loci. In particular, NOD2 and LRRK2 are known IBD-
associated autophagy genes (Franke et al., 2010; Anderson et al., 2011).

Figure 3.9: Network of selected genes implicated by exome sequencing. In this network,
blue and green nodes represent genes with SNVs selected by the Targeted or Whole-exome
strategy, respectively, while red nodes refer to genes with SNVs selected by both strate-
gies. Pink nodes or nodes with a squared shape indicate genes located in the previously
associated CD loci. Blue network edges represent direct protein-protein interactions of the
gene products, gray edges correspond to strong functional similarity based on the Gene
Ontology annotations, and black edges indicate that both interaction types are evident.

Then, we constructed an integrative network of all genes with SNVs selected by the
Targeted or Whole-exome strategy as well as genes located in the 71 CD associ-
ated loci (Franke et al., 2010) by combining known protein interactions and strong
functional similarities based on Gene Ontology annotations (Figure 3.8). Overall,
358 genes are connected by 1293 edges, including 30 representatives from the Tar-
geted and 40 from the Whole-exome approach as well as the 5 genes selected by
both strategies (RSPH3, LAMC1, NOD2, LRRK2, and TYK2). Of the network
edges, 134 represent physical protein interactions, 1138 indicate strong functional
similarity, and 13 gene pairs are connected by both types. Visual inspection of
the network revealed that the genes with SNVs do not cluster together and they
are spread throughout the network of CD associated genes. In particular, GRB7
is located very central in the network (high degree, closeness and betweenness cen-
trality values) and connects several genes associated with CD or closely located to
an SNV. Furthermore, three of the genes implicated by both strategies and their
direct neighbors form a small subnetwork (Figure 3.9) enriched in regulation of
programmed cell death, phosphorylation, and intracellular signaling according to
DAVID (Huang et al., 2009b).
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The 93 Targeted and 159 Whole-exome SNVs were further genotyped in an inde-
pendent case-control cohort and 147 SNVs were found to be polymorphic in the
German population. From the 40 SNVs selected for follow-up genotyping, 6 SNVs
were found to be associated with CD at the 0.05 level in a small German panel. They
were subjected to further genotyping in 8 independent case-control sets compris-
ing 9348 subjects with CD, 2868 subjects with ulcerative colitis (UC), and 14 567
healthy control subjects of European ancestry. Using this approach, two missense
SNPs, chr6:106659789 (Ser354Asn) and chr6:106660076 (Leu450Phe) at PRDM1
on chromosome 6q21, were significantly associated with CD and UC, respectively.
The missense SNP rs2303015 (Val248Ala) in the novel CD candidate gene NDP52
(also known as CALCOCO2) was associated with CD.

PRDM1 encodes PR domain containing 1, a zinc finger-containing transcriptional
repressor that regulates terminal B- and T-cell differentiation (Crotty et al., 2010).
Functional studies performed by Ellinghaus and colleagues demonstrated that the
Ser354Asn mutation led to increased peripheral blood lymphocyte (PBL) expression
of the adhesion molecule L-selectin, which is critical for PBL migration to the sites
of intestinal inflammation, and increased CD4+ and CD8+ T-cell proliferation,
IFN-g secretion, and up-regulation of activation markers on stimulation (Ellinghaus
et al., 2013b). Furthermore, eQTL analysis revealed that an adjacent CD risk allele
(Franke et al., 2010) correlated with reduced expression of PRDM1 in ileal biopsy
specimens and peripheral blood mononuclear cells. These are all factors that may
contribute to its pathogenic role in CD.

NDP52 was initially described as a 52 kilodaltons subunit of nuclear domain 10
bodies (Korioth et al., 1995). Nowadays, NDP52 is rather known as CALCOCO2
(calcium binding and coiled-coil domain 2), a cytosolic protein with a crucial role
in immunity and as an adaptor for selective autophagy (Morriswood et al., 2007;
Thurston et al., 2009; Ivanov and Roy, 2009; von Muhlinen et al., 2010). A combina-
tion of functional characterization and structural analysis of the identified missense
variant Val248Ala indicated that it affects the inhibitory role of NDP52 for nuclear
factor κB activation of genes involved in inflammation as well as the stability of
proteins in Toll-like receptor pathways (Ellinghaus et al., 2013b; Till et al., 2013).

The autophagy adaptor gene NDP52 can be considered as a new member to the
group of IBD risk factors contributing to autophagy regulation (ATG16L1, BAD,
BECN1, CUL2, IRGM, KEAP1, LRRK2, NOD2, PARK7, PRKAA1, PTPN2,
SMURF1, ULK1, VAMP3). To investigate the interactions between NDP52 (la-
beled as CALCOCO2) and other IBD genes, we created a phenotype-specific sub-
network by extracting all direct protein interactions for the IBD risk genes from
the iRefIndex database (release 9.0) (Razick et al., 2008) and manually including
regulatory interactions for FOXO3 and IRGM (Jegga et al., 2011). We reduced
the obtained dataset from 2328 to 381 interactions to emphasize the role of the au-
tophagy pathway for pathogenesis of CD. The resulting interaction network shown
in Figure 3.10 contains the 14 IBD-associated autophagy genes (Franke et al., 2010;
Anderson et al., 2011), their direct interactors involved in autophagy (Xie and
Klionsky, 2007; Yang and Klionsky, 2010; Wong et al., 2011), the interactors shared
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Figure 3.10: Interaction network of CD-associated autophagy loci. In this network,
direct protein interactions are shown as solid gray edges, while manually included reg-
ulatory interactions are represented by dashed gray edges. The network contains the
14 IBD-associated autophagy genes (red diamonds), their direct interactors involved in
autophagy (blue circles), the interactors shared between at least two IBD risk factors
(small gray circles), and the direct interactors associated with IBD but not contributing
to autophagy (gray diamonds). The interactions of the newly identified gene CALCOCO2
(also known as NDP52) are highlighted by thicker edge lines. Figure first published in
Ellinghaus et al. (2013b).

between at least two IBD risk factors, and the direct interactors associated with
IBD but not contributing to autophagy (Franke et al., 2010; Anderson et al., 2011).
The newly identified gene CALCOCO2 interacts directly with three IBD interac-
tors involved in autophagy and is connected to the remaining IBD autophagy genes
through eight interactions with other nodes in the network.

3.3.4 Summary and discussion

Currently, 163 susceptibility loci have been associated with IBD through GWA
studies and they explain 13.6 % and 7.5 % of the disease variance for CD and
UC, respectively (Jostins et al., 2012). These findings have been instrumental for
advancing our knowledge of IBD pathogenesis and relevant disease pathways. How-
ever, many questions still remain unanswered (Ellinghaus et al., 2015). For instance,
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can the overlapping loci between CD and UC explain their clinical similarities and
which associations are really subtype-specific or shared? Which of these candidate
genes and risk variants are really relevant for the disease? How do genetic and
environmental factors combine together to lead to the development of IBD?

In order to address these questions, we performed a network-based phenotype-
specific analysis of known IBD susceptibility loci. We constructed a network of
strong functional similarities and known physical protein interactions for the gene
products of genes associated with IBD loci. Based on topological analysis of this
network, we concluded that there are no subtype specific groups (clusters) of genes,
although the CD genes are more functionally similar among each other than the UC
genes. We also identified meaningful groups of functionally related genes associated
with both CD and UC that point to relevant disease pathways.

Furthermore, we developed and applied two different strategies for network-based
prioritization of the IBD candidate genes. Although the resulting predictions do not
overlap completely, in all cases, we were able to construct a subnetwork of function-
ally similar or physically interacting candidate genes originating from different loci.
Such disease-specific subnetworks might be the first step towards understanding the
interdependence between the genetic factors of complex diseases such as IBD. In
addition, we identified five candidate genes (ERBB2, TPD52L2, FNIP1, SMAD3,
STAT3) as common for our prioritization strategies.

Finally, we showed that exome sequencing data can be combined with network data
to suggest candidate genes for IBD that would not be identified otherwise. We
were also able to put the newly identified CALCOCO2 gene in a functional context
with known IBD genes and autophagy-related genes. In this way, we supported the
findings of our collaboration partners, who performed a whole-exome sequencing
followed by rare variant analysis and detailed expression and functional studies to
extend the genetic insights beyond those derived from GWAS alone.

With the foreseeable improvements of network data quality and quantity as well
as disease association mapping we will be able to perform a more complete and
insightful network analysis. Still, while the network of candidate genes advances
our understanding, functional studies will be needed to prove the disease relevance
of particular candidate genes or risk variants and how it affects the molecular mech-
anisms of the involved pathways. The next challenge in IBD research will be the
profiling of large cohorts of patients in terms of longitudinal data retrieval, whole-
genome sequencing, gene expression data generation and the study of epigenetic
factors (Ellinghaus et al., 2015).

3.4 Primary sclerosing cholangitis

The field of disease gene prioritization has made substantial progress over the last
years. However, many approaches still neglect the fact that phenotypes can strongly
differ in their genetic characteristics as well as in the amount of research dedicated
to them. Therefore, the investigation of less well studied phenotypes or groups of
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phenotypes with unknown causative genes needs to be approached in an alternative
way and stands in the focus of current methodological developments. Thus, we have
developed and applied a method for the generation of a disease-specific network of
primary sclerosing cholangitis (PSC) to provide more insight into the functional
characteristics of the underlying phenotype and to identify candidate disease genes
from multiple loci without previous knowledge of known disease genes.

3.4.1 Medical background

PSC is a progressive chronic inflammatory condition caused by inflammation and
subsequent obstruction of the intrahepatic and extrahepatic bile ducts that, in most
cases, progresses to cirrhosis of the liver and end-stage liver disease (Hirschfield
et al., 2013). Clinically, it is characterized by abdominal pain, chills, diarrhea,
fatigue, fever, itchiness, weight loss, yellowing of eyes and skin. Most PSC patients
are diagnosed relatively young, at a median age of 30-40 years, and approximately
2/3 of them are male (Karlsen et al., 2010b). Although PSC has a relatively low
prevalence (1 in 10,000), it remains a leading indicator for liver transplantation in
northern Europe and the United States due to the lack of effective medical therapy
(Karlsen et al., 2010b; Williamson and Chapman, 2015).

A characteristic feature of PSC is the presence of comorbidity with autoimmune
diseases. Most PSC patients suffer from an increased frequency of IBD (60-80 %),
mostly ulcerative colitis (Karlsen et al., 2010b; Karlsen and Kaser, 2011). In con-
trast, only around 5 % of patients with IBD develop PSC (Karlsen et al., 2010b;
Karlsen and Kaser, 2011). A variety of other autoimmune diseases were reported at
an increased frequency (25 %) in PSC (Saarinen et al., 2000). The strong HLA asso-
ciations and the clinical occurrence of PSC with immune-mediated diseases suggest
that autoimmunity has a role in pathogenesis (Karlsen et al., 2010b).

The main challenges in PSC research remain in learning more about the etiology
and pathogenesis of the disease. Several theories have been proposed to explain the
development of PSC (Karlsen and Boberg, 2013; Hirschfield et al., 2013; Folseraas
et al., 2014). For instance, there are ongoing discussions whether the bile duct injury
in PSC might be caused by immune mediated mechanisms or biochemical aspects
related to bile physiology or potentially a combination of these two aspects (Karlsen
and Boberg, 2013). Sibling relative risk of 9- to 39-fold indicates a strong genetic
component to PSC risk (Bergquist et al., 2008). In addition to multiple strong
associations within the HLA complex, association studies before 2012 have identi-
fied genome-wide significant loci at 1p36 (MMEL1-TNFRSF14), 2q13 (BCL2L11),
2q37 (GPR35), 3p21 (MST1), 10p15 (IL2RA) and 18q21 (TCF4) (Karlsen et al.,
2010a; Melum et al., 2011; Srivastava et al., 2012; Folseraas et al., 2012; Ellinghaus
et al., 2013a). In the following, we will present a recent study by our collaboration
partners (Liu et al., 2013) that revealed nine novel loci associated with PSC using
the Immunochip (Cortes and Brown, 2011) and the accompanying network analysis
that we performed to prioritize the candidate genes.
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3.4.2 Experimental candidate genes identification

Recently, the Wellcome Trust Case-Control Consortium designed the Immunochip,
a custom-made Illumina Infinium genotyping chip that includes approx. 200 000
SNPs relevant to major immune-mediated diseases (Cortes and Brown, 2011). It
has a dense marker coverage across 186 known disease loci from 12 autoimmune and
seronegative diseases (rheumatoid arthritis, ankylosing spondylitis, systemic lupus
erythematosus, type 1 diabetes, autoimmune thyroid disease, celiac disease, multiple
sclerosis, ulcerative colitis, Crohn’s disease, and psoriasis) as well as thousands of
SNPs of intermediate significance from multiple meta-analyses of immune-mediated
diseases. The chip represents a cost-effective way of fine-mapping known disease
loci and more thoroughly surveying those that have been associated with related
autoimmune diseases. Some of the SNPs were included for deep replication of
statistically weaker signals from GWAS studies and large meta-analyses. Since
immune-mediated diseases are genetically related, the Immunochip can also provide
many insights into the shared genetic susceptibility between them. For instance,
Parkes et al. (2013) analyzed Immunochip data for several major immune-mediated
diseases and revealed that, although multiple loci are shared, the most associated
variants from the same locus or those with the largest effect sizes usually differ.

To further characterize the genetic etiology of PSC, our collaborators, Tom H.
Karlsen (Oslo University Hospital, Norway) and Carl A. Andersson (Wellcome Trust
Sanger Institute, UK), designed a study (Liu et al., 2013), in which 3 789 PSC cases
of European ancestry were compared to 25,079 population controls across 130,422
SNPs genotyped using the Immunochip. 12 genome-wide significant (P < 5×10−8)
associations were identified, 9 of which were novel. Three out of the four known non-
HLA PSC risk loci present on the Immunochip were also confirmed. For the further
functional network analysis and prioritization, we considered all genes within 0.1cM
of the 12 non-HLA genome-wide significant PSC loci.

Besides the loci that reach a stringent significance threshold of 5× 10−8, it is likely
that there are additional true associations among the SNPs with weaker associa-
tions. Therefore, Liu et al. (2013) applied an alternative approach to exploit the
known pleiotropy between seven related immune-mediated traits (Crohn’s disease,
celiac disease, psoriasis, rheumatoid arthritis, sarcoidosis; type 1 diabetes and ulcer-
ative colitis) (Zhernakova et al., 2009). Additional 33 non-HLA loci were discovered
and all of them showed suggestive levels of significance (5× 10−8 < P < 5× 10−5)
in the standard association analysis (Figure 3.11). We also integrated the genes
within 0.1cM of these loci into the functional network analysis to highlight PSC
susceptibility genes.

3.4.3 Phenotype-specific network analysis

In order to identify putative disease genes, we performed several network-based
analyses with the genes in the PSC associated loci. We created functional similarity
networks for the genes within 0.1cM of the 12 non-HLA genome-wide significant
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Figure 3.11: Manhattan plot of conditional associations in PSC calculated on the basis
of the results of the present PSC analysis and genetic associations previously reported in
seven immune-mediated diseases. SNPs in red represent genome-wide significant findings
from the main association analysis, and SNPs in black are significantly associated with
PSC conditional on their pleiotropic effects across the related immune-mediated diseases.
The horizontal red and blue line represent a significance threshold of 0.001 and 0.01,
respectively. Figure first published in Liu et al. (2013).

PSC loci and the 33 pleiotropic loci. In these networks, each edge represents strong
functional similarity of two genes based on annotated Gene Ontology (GO) terms
(Ashburner et al., 2000) as determined by the functional similarity measure rfunSim
(Schlicker et al., 2006). rfunSim similarity values above the recommended cutoff of
0.8 were retrieved using the FunSimMat web service (Schlicker and Albrecht, 2008,
2010). We did not construct a protein interaction network since we could not retrieve
enough information on physical protein interactions for the PSC gene products from
the iRefIndex database (Razick et al., 2008).

Figure 3.12(a) shows the functional similarity network of the genes in the genome-
wide significant PSC loci, where the nodes are colored by their SNP association.
The network contains 56 out of the 148 genes (representative for 10 out of the 12
loci) and these are connected by 76 functional similarity edges. Due to linkage
disequilibrium the number of genes in one locus can vary from one to several dozens
and this difference is emphasized in the network visualization. For example, there
are 83 genes in the genomic region of SNP rs3197999 and at most 2 genes for 5
of the other loci. However, we expect only a few (at most one or two) genes from
each locus to be actually causative. Thus, we are interested in associations between
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Figure 3.12: Figure 3.12(a) shows the functional similarity network of the genes within
0.1cM of the 12 non-HLA genome-wide significant PSC loci and the corresponding nodes
are colored by SNP association. The network contains 56 out of the 148 genes in PSC loci
and these are connected by 76 edges (34 within the same locus and 42 between different
loci). The network in Figure 3.12(b) consists of seven PSC candidate genes as suggested
by topological analysis on the network of high functional similarities between individual
genes in the associated loci (Figure 3.12(a)), one gene in each of the seven out of 12
non-HLA loci. In both networks, gray edges indicate strong functional similarity based
on Gene Ontology annotations and connect genes either from different loci (solid edge
lines) or within the same locus (dashed edge lines). Genes and their nodes that are not
connected to any other node in the network are omitted. Figure first published in Liu
et al. (2013).

genes from different loci, and we distinguish between edges within the same locus
(34 edges) and between different loci (42 edges). Although there is a representative
pair of genes connected by functional similarity edges for each pair of loci, we can
observe that many genes within the same locus are also functionally similar.

To prioritize the PSC candidate genes in the absence of known disease genes such
that only one gene per locus remains, we assessed the importance of each gene for
the network structure and the connection between different loci. First, we computed
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three different topology measures to assess the connectivity of the candidate genes:
degree (number of direct edges to other nodes), shortest path closeness (inverted
average shortest path distance to other nodes), and shortest path betweenness (frac-
tion of shortest paths passing through the node). Similarity edges between genes
in the same locus and gene nodes that were not contained in the resulting largest
connected subnetworks were ignored. The genes were ranked according to each
measure and were then assigned the best of the three ranks. Third, we iteratively
constructed a PSC-specific network from the top ranked genes in their respective
loci such that each gene is connected to a gene in another locus. This resulted
in a network that contains 7 genes that represent 7 out of the 10 loci considered
in the analysis (Figure 3.12(b)). We performed the analysis and visualization in
Cytoscape (Shannon et al., 2003) with the help of the NetworkAnalyzer plugin for
the computation of the topology measures (Doncheva et al., 2012a).

Figure 3.13: Functional similarity network of candidate genes as suggested by topolog-
ical analysis on the network of functional similarities between individual genes in all loci
associated with PSC (Figure B.1), one gene in each of the loci. Grey edge lines indi-
cate strong functional similarity based on Gene Ontology annotations. Genes and their
nodes that are not connected to any other node in the network are omitted. Figure first
published in Liu et al. (2013).

Furthermore, we constructed a larger PSC candidate network (FSN-all) for the
genes within 0.1cM of the 12 non-HLA identified PSC susceptibility regions, the
33 pleiotropic PSC loci, the 3 previously identified loci and a representative of the
HLA locus (Figure B.1). It contains 177 out of the 341 considered genes and these
are connected by 511 edges (51 within the same locus and 460 between different
loci). We applied the same prioritization approach on this network and constructed
the PSC-specific network shown in Figure 3.13. This network contains 35 genes
connected by 109 strong functional similarity edges and they represent 35 out of
the 42 considered loci.

Besides our prioritization approach based on FSNs, our collaboration partners ap-
plied several other methods on the significant PSC association data to prioritize
candidate genes within these loci. The functional consequences of the most as-
sociated SNPs or the SNPs in high LD with these were evaluated by identifying
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Table 3.3: Candidate genes among the genome-wide significant loci implicated by eQTL,
missense mutation, GRAIL, DAPPLE, or FSN. eQTL and Missense are SNPs in high LD
with the most significantly associated SNP in the locus that are either known eQTLs or
missense mutations. Genes are implicated by GRAIL or DAPPLE if they show nominal
significant number of connections. FSN genes are suggested by topological analysis on
the functional similarity network of the genes in the 12 identified loci only (FSN ) or in all
PSC associated loci, including the pleiotropic and previously known (FSN-all). Adapted
from (Liu et al., 2013).

Locus SNP Candidate genes consensus
eQTL Missense GRAIL DAPPLE FSN FSN-all gene

1p36 rs3748816 MMEL1 MMEL1 PANK4 MMEL1 MMEL1
2q33 rs7426056 CD28 CD28 CD28 CD28
3p21 rs3197999 USP4 BSN GPX1 IP6K2 CELSR3 MST1

MST1 MST1
4q27 rs13140464 IL2 KIAA1109 KIAA1109 (KIAA1109)
6q15 rs56258221 BACH2 BACH2 BACH2
10p15 rs4147359 IL2RA
11q23 rs7937682 CRYAB SIK2 SIK2 DIXDC1 SIK2

HSPB2
12q13 rs11168249 VDR – –
12q24 rs3184504 SH2B3 SH2B3 C12orf51 MAPKAPK5 SH2B3 SH2B3

TRAFD1
18q22 rs1788097 CD226 CD226 CD226 CD226
19q13 rs60652743 PRKD2 PRKD2 (PRKD2)
21q22 rs2836883 ETS2 – –

missense SNPs using PolyPhen (Adzhubei et al., 2010) and SIFT (Sim et al., 2012)
and by retrieving data on expression quantitative trait loci (eQTLs) from the Uni-
versity of Chicago eQTL browser (Gilad and Pritchard, 2010). Five SNPs that are
in high linkage disequilibrium (r2 > 0.8) with PSC associated loci were predicted as
benign, damaging or not tolerated with respect to their effect on the respective pro-
tein structure and function. An eQTL represents a SNP where different genotypes
are associated with variation in the expression levels of nearby genes. 10 eQTLs
that are in high linkage disequilibrium with the most strongly associated SNP at
two out of the 12 significant PSC loci were retrieved.

Furthermore, a GRAIL pathway analysis was performed in order to assess the func-
tional relationship among the PSC risk regions. The GRAIL software is a statistical
tool that uses text mining of published abstracts in the PubMed database to iden-
tify and quantify functional similarity among genes within disease-associated regions
(Raychaudhuri et al., 2009). In total, 13 genes in high linkage disequilibrium with
PSC associated SNPs received a significant score (Ptext < 0.05). Finally, the DAP-
PLE tool (Rossin et al., 2011) was used for the construction of a network of known
protein-protein interactions between the products of the genes in the 12 genome-
wide significant PSC loci, the 33 pleiotropic loci, and the 3 previously known loci.
Then, the gene connectivity was assessed based on the number of direct and indi-
rect (via other proteins) connections between them. The 2 genes with a permuted
p-value above 0.05 were listed as causal candidates.
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Table 3.3 summarizes the results of the aforementioned prioritization approaches.
For 7 of the 12 genome-wide significant loci, the same gene was annotated by more
than 1 method (here both FSN-based methods are considered as one), suggesting
these genes (MMEL1, CD28, MST1, BACH2, SH2B3, CD226, and SIK2) as good
candidates for further investigation at the given loci. For two additional loci, our two
FSN-based approaches (with and without the pleiotropic loci) suggested the same
genes (KIAA1109 and PRKD2) and they agreed on another one (CD28). Apart
from this, the FSN-all approach selected 5 out of the 7 consensus genes, while the
other FSN approach suggested only 2 of them, which might be interpreted as an
indication that more biological knowledge improves the prioritization procedure.

3.4.4 Overlap with inflammatory bowel diseases

Although 72 % of the PSC patients in the Immunochip study have a diagnosis of
concomitant IBD, only half of the genome-wide significant loci were associated with
IBD in the recent International IBD Genetics Consortium (IIBDGC) Immunochip
analysis (Jostins et al., 2012), despite the greater sample size of that study (25,683
cases and 15.977 controls). Further analysis revealed that PSC is genetically more
similar to ulcerative colitis than to Crohn’s disease. This is consistent with clinical
observations of greater comorbidity of PSC with ulcerative colitis than with Crohn’s
disease (Broomé and Bergquist, 2006).

To further compare the genetic profiles of PSC and IBD, we combined the genome-
wide significant PSC-associated loci with the 163 confirmed IBD-associated loci
(Jostins et al., 2012) in a functional similarity network. Figure 3.14(a) shows the
network of the protein-coding genes closest to the most associated SNP (compact
PSC&IBD-FSN), while the FSN in Figure B.2 contains all genes within 0.1cM of the
associated loci (PSC&IBD-FSN). The PSC&IBD-FSN contains 34 % of all PSC and
42 % of all IBD genes. In both cases, no PSC specific clusters could be determined
within the FSNs, indicating that genes within PSC associated loci are distributed
across the entire IBD network rather than localized to a particular cluster.

Furthermore, we investigated how the network structure changes when adding PSC
genes to the IBD network and vice versa. We identified 41 PSC nodes that are new
in the PSC&IBD-FSN compared to the PSC only FSN. Apparently, the number
of connected genes increases because several PSC genes are connected through in-
termediate IBD nodes and vice versa. In contrast, only 3 IBD nodes are new in
the PSC&IBD-FSN compared to the IBD only FSN. In addition, we determined
that all PSC loci genes are functionally similar to (60 % of the) IBD loci genes in
the PSC&IBD-FSN (Figure B.3(a)). Although rather small, the number of edges is
considerable for the compact PSC&IBD-FSN (Figure 3.14(b)) and quite impressive
for the network that additionally includes the genes within 0.1cM of the pleiotropic
PSC loci (Figure B.3(b)). The increase of the number of connected genes after
combining PSC and IBD loci in one network as well as the very high number of
PSC nodes connected to IBD nodes indicate that there is high functional overlap
of PSC with IBD. However, this statement is based only on the set of annotated
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Figure 3.14: Functional similarity network of PSC and IBD associated loci. The protein-
coding genes closest to the most associated SNP in the 12 non-HLA genome-wide signifi-
cant PSC loci and the 163 confirmed IBD loci were used to construct a functional similarity
network (Figure 3.14(a)). The network contains 90 gene nodes that are connected by 292
similarity edges. Genes associated with only PSC are represented by large red nodes,
with only IBD by small green nodes, and with both PSC and IBD by large violet nodes.
Grey edge lines indicate strong functional similarity between the connected genes based
on their Gene Ontology annotations. Genes and their nodes that are not connected to
any other node in the network are omitted from the Figure. Figure 3.14(b) shows an
overview of the network from Figure 3.14(a). The genes are grouped based on their as-
sociation with PSC (red), IBD (green), and both PSC and IBD (violet) and each node is
labeled with the number of associated genes. An edge indicates that the corresponding
genes are connected by similarity edges and is labeled by the numbed of such connections.
The functional similarity edges connecting genes in the same group are represented as
self-loops. Figure first published in Liu et al. (2013).

genes and further analyses have to be performed to investigate if the remaining
genes are not part of the PSC&IBD networks because of actual differences between
the phenotypes or due to missing annotations.

3.4.5 Summary and discussion

Although PSC is the leading indicator for liver transplantation in Northern Europe
and the United States (Karlsen et al., 2010a), its etiology and pathogenesis are still
not well understood. So far, 16 risk genes were identified by GWAS and they account
for 7.3 % of the overall PSC susceptibility (Folseraas et al., 2014). However, it is
firmly established that genetics have an important role in the development of PSC.
Another important feature of PSC is its comorbidity with autoimmune diseases, in
particular IBD (60-80 %).
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More than half of the known 16 PSC risk genes were identified in a GWA study with
the custom-made Immunochip performed by our collaboration partners (Liu et al.,
2013). In addition to the 9 novel and 3 confirmed PSC loci, they also identified
33 pleiotropic loci based on data for seven related diseases. We constructed a
functional similarity network of all genes located within 0.1cM of the 12 non-HLA
genome-wide significant PSC loci as well as one additionally including the genes
in the pleiotropic loci and the three previously identified PSC loci. Applying a
network-based algorithm specifically designed for this scenario, we suggested 7 and
35 candidate genes for further experimental validation, respectively. Six of these
genes were annotated as causative by at least one additional prioritization approach.

In order to characterize the genetic and phenotypic overlap of PSC and IBD, we
constructed a functional similarity network of genes in close genetic proximity to
the identified PSC and IBD risk loci. We observed that the PSC loci are distributed
throughout the IBD loci, suggesting that there is no particular functional cluster
of IBD susceptibility genes associated with PSC and vice versa. However, we esti-
mated a considerable functional overlap between the two phenotypes based on the
high number of similarity edges between the respective genes. This approach could
also be applied to investigate the functional similarity of PSC with other related
diseases, such as the 12 autoimmune diseases on the Immunochip, as well as their
relationships among each other.

The described Immunochip study of PSC (Liu et al., 2013) is the first of its kind
for this disease and its findings make it possible to perform the first analyses on
purely PSC associated data as compared to previously, when only similar diseases
were used. These are the first promising steps in the study of the mechanisms
underlying PSC and its comorbidity with other autoimmune diseases. Future efforts
are expected to identify further PSC risk factors as well as the exact genes and
pathways involved in the disease development. As with other complex diseases,
it is very likely that several environmental factors interplay with specific genetic
predisposition.

3.5 Parkinson’s disease

3.5.1 Medical background

Parkinson’s disease (PD) is the most common neurodegenerative disorder after
Alzheimer’s disease and has a prevalence of approximately 12 % in persons over 60
years of age (Nussbaum and Ellis, 2003). Clinically, it is characterized by motor ab-
normalities (tremor, rigidity, slowness, balance problems), autonomic disturbances,
psychiatric sequelae (usually depression), and cognitive impairment (Hoehn and
Yahr, 1967; Greenamyre and Hastings, 2004). The neuropathological characteris-
tics include loss of neurons in the substantia nigra and the presence of α-synuclein
positive inclusions in the cytoplasm of neurons, referred to as Lewy bodies or Lewy
neurites depending on their structure (Forno, 1996; Spillantini et al., 1998).
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So far the underlying pathogenetic mechanisms of PD are still largely unknown.
The first important insights were provided from the study of early-onset parkinson-
ism (< 10 % of all cases) and the discovery of several monogenic mutations that
could cause mitochondrial impairment, oxidative stress, and protein mishandling
(Greenamyre and Hastings, 2004). These common mechanisms are believed to play
a central role in the pathogenesis of PD and may be induced by non-genetic factors
in sporadic PD cases (De Lau and Breteler, 2006). The most common mutations
known so far affect Parkin (Hedrich et al., 2004), a ubiquitin E3 ligase that is respon-
sible for the transfer of activated ubiquitin molecules to a protein substrate (Shimura
et al., 2000) and thus directly affects several cellular processes such as protein degra-
dation, regulation of receptor trafficking, cell cycle progression, gene transcription,
DNA repair, and immune responses (Ikeda and Dikic, 2008). The identification the
cytoplasmic and mitochondrial interaction partners of Parkin could provide further
biological insights into its complex role for the PD pathogenesis and elucidate novel
therapeutic targets.

Therefore, Francisco S. Domingues and his colleagues at the EURAC research in-
stitute performed several Tandem Affinity Purification(TAP)/mass spectrometry
(MS) interaction screens and identified 203 unique candidate Parkin-binding pro-
teins (Zanon et al., 2013). Approximately 50 % of them were detected in the mi-
tochondrial fractions and 50 % in the cytosolic fractions of two different cell lines,
with an overlap of 49 proteins between the fractions. Then the set of Parkin-binding
candidates was further computationally analyzed for involvement in PD.

In addition, a set of proteins known to be related to genetic parkinsonism was
assembled. It includes 9 proteins encoded by genes implicated in monogenic forms
of parkinsonism (MonogenicPD) (Marras et al., 2012) and 77 proteins known to
interact with Parkin as retrieved from the iRefIndex database (Razick et al., 2008).

3.5.2 Phenotype-specific network analysis

We contributed to this project with the design of a network-based prioritization
pipeline involving topological analysis of protein-protein interaction networks (PINs)
and functional similarity networks (FSNs). We implemented the accompanying
software and performed the initial network analysis. The final biological analysis of
the resulting high-ranked candidates was performed by Hagen Blankenburg; figures
presented in this section were created by our collaboration partners (Zanon et al.,
2013).

To build a human PIN, we used the iRefIndex database (version 9.0), which com-
bines protein interaction data from multiple primary resources (Razick et al., 2008).
Both binary and complex interactions were considered, whereas protein complexes
were expanded using the matrix expansion model so that pairwise interactions are
assumed between all interactors within a complex. The interaction data were fil-
tered to exclude predicted interactions such as interactions for which the detection
method contained ’predicted’, ’interologs mapping’ or ’confirmational text mining’.
The resulting network contained 12,013 proteins connected by 350,917 interactions.
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Out of the 203 ParkinTAP candidates, 194 are in the same large connected com-
ponent of the human PIN. Furthermore, six of the nine MonogenicPD proteins are
direct Parkin interactors, two more (UCHL1 and FBXO7) interact with Parkin
interactors, and only one (ATP13A2) is not connected to any of them.

In order to create a PD-specific PIN, we constructed a shortest path network by
selecting all proteins and interactions from the human PIN that are on the shortest
paths between the ParkinTAP candidates and the PD-related proteins. We also
included all direct interactors of the MonogenicPD proteins. The resulting net-
work contains 4,009 proteins and 290,496 interactions, most of which are expanded
complexes (268,484).

Figure 3.15: Direct protein interactions of the ParkinTAP candidate LRPPRC. Proteins
are represented as nodes, binary interactions as solid lines and complex interactions as
dashed lines. Binary interactions to the selected candidates are represented by thicker
edges. ParkinTAP ND 1 or 2 are ParkinTAP candidates at network distance 1 or 2 of
MonogenicPD, i.e., ParkinTAP ND 1 are direct MonogenicPD interactors. There are
many interactors (461 nodes) of LRPPRC in iRefIndex, resulting in a dense network of
complex interactions (34,732 edges). LRPPRC interacts with MonogenicPD PARK7, as
well as with 48 other ParkinTAP candidates, and the network includes 14 Parkin and 77
MonogenicPD protein interactors. Figure first published in Zanon et al. (2013).

In this network, we computed the shortest path network distance to Parkin and
the minimum network distance to MonogenicPD proteins for all ParkinTAP candi-
dates as well as the number of MonogenicPD proteins at a given network distance.
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The results for these two topological measures were later included in the candidate
selection procedure designed by our collaborators. Out of the 203 ParkinTAP can-
didates, three have a network distance of 1, e.g., they are known Parkin-binding
proteins (DNAJA1, HSPA1A, HSPA8) (Imai et al., 2002), and 164 interact with
Parkin through one intermediate protein (network distance of 2). In total, 40 can-
didates are direct interactors of MonogenicPD proteins and six of them interact
with two different MonogenicPD proteins. An example network for the ParkinTAP
candidate LRPPRC is shown in Figure 3.15.

Figure 3.16: Functional similarity network of Parkin (orange), ParkinTAP candidates
(red and pink nodes) and MonogenicPD proteins (blue nodes). The network contains
157 protein nodes that are connected by 1183 similarity edges. Edges indicate functional
similarity between the connected proteins based on their Gene Ontology annotations above
the cutoff of 0.7 (gray dotted lines) and 0.8 (solid black lines). Cluster membership is
represented by node border colors as in this order: 1) violet, 2) orange, 3) yellow-green,
4) green-blue, 5) blue, 6) pink. Proteins that are not connected to any other node in the
network are omitted. Figure adapted and extended from Zanon et al. (2013).

Furthermore, we constructed an FSN for the proteins from ParkinTAP, the Mono-
genicPD proteins and their interactors. Each edge represents strong functional
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similarity of two proteins based on annotated GO terms from the Biological Pro-
cess Ontology as determined by the functional similarity measure rfunSim (Schlicker
et al., 2006). Significant rfunSim similarity values above the cutoff of 0.7 were re-
trieved using the FunSimMat web service (Schlicker and Albrecht, 2008, 2010). The
network contains 157 proteins connected by 1183 similarity edges (886 with rfunSim
≥ 0.8) and is shown in Figure 3.16. The single connected component includes 149
ParkinTAP candidates and 8 MonogenicPD proteins.

We identified groups of functionally related proteins by using the Cytoscape plugin
ClusterONE because it can find densely connected overlapping regions within a
network and considers edges weighted by the functional similarity scores (Nepusz
et al., 2012). We identified six significant clusters in the FSN of ParkinTAP and
MonogenicPD, whereas significance is defined by ClusterONE as P ≤ 0.05. The
clusters are highlighted in Figure 3.16. GO enrichment analysis with topGO (Alexa
et al., 2006) resulted in the following functional annotations for the proteins included
in each cluster:

• Cluster 1 (34 proteins, P-value = 0.00): RNA processing and translation

• Cluster 2 (28 proteins, P-value = 0.00): transcription, RNA processing and
splicing

• Cluster 3 (27 proteins, P-value = 5.62E-9): complex assembly, protein folding,
mitochondrion organization, and cytoskeleton-dependent intracellular trans-
port

• Cluster 4 (12 proteins, P-value = 9.34E-5): mitochondrial processes, like mi-
tochondrial transport, mitochondrial ATP synthesis, and respiratory electron
transport chain

• Cluster 5 (16 proteins, P-value = 0.012): protein folding

• Cluster 6 (15 proteins, P-value = 0.047): programmed cell death and mito-
chondrion organization

Furthermore, we observed that the ParkinTAP candidates are mostly similar to
each other and that most of the MonogenicPD proteins (6 out of 8 in the FSN)
are contained in only one cluster. Thus, we generated a subnetwork (Figure 3.17)
consisting of only MonogenicPD proteins and the ParkinTAP candidates that are
functionally similar to them. This network includes 38 proteins connected by 136
edges. ClusterONE identified four significant clusters (P ≤ 0.05) in this network.

• Cluster 1 (18 proteins, P-value = 4.57E-7): programmed cell death and mito-
chondrion organization

• Cluster 2 (10 proteins, P-value = 1.34E-4): translation and protein folding

• Cluster 3 (15 proteins, P-value = 0.002): programmed cell death, mitochon-
drion organization, protein folding, and proteolysis
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Figure 3.17: Functional similarity network of MonogenicPD proteins (blue) and their
neighbors, ParkinTAP candidates (red and pink nodes) and Parkin (orange). The network
contains 38 protein nodes connected by 136 similarity edges. Edges indicate functional
similarity between the connected proteins based on their Gene Ontology annotations above
the cutoff of 0.7 (gray dotted lines) and 0.8 (solid black lines). Cluster membership is
represented by node border colors as in this order: 1) violet, 1&3) pink, 3) red, 2&3)
orange, 2) yellow, 4) blue. Figure adapted and extended from Zanon et al. (2013).

• Cluster 4 (6 proteins, P-value = 0.002): mitochondrial ATP synthesis

Again, most MonogenicPD proteins cluster tightly together and are contained in
clusters 1 and 3 (Figure 3.17). As can be seen both in the network and from the
annotations, cluster 3 strongly overlaps with cluster 1 (7 nodes) and 2 (5 nodes).

Our collaborators from EURAC research made use of these network-based and other
analyses to define a prioritization score for each ParkinTAP candidate (Zanon et al.,
2013). In particular, the scoring criteria included annotation of the candidates with
GO processes enriched in the proteins causing monogenic forms of parkinsonism as
well as the presence and number of direct protein interactions or strong functional
similarity to PD-related proteins (MonogenicPD) or Parkin. In addition, the au-
thors considered complementary experimental data from genetic interaction screens
in Drosophila melanogaster and GWAS in humans. The promising candidates were
involved in cell death processes, protein folding, the fission/fusion machinery, and
the mitophagy pathway. Finally, Francisco S. Domingues and colleagues performed
a co-immunoprecipitation experiment to verify two of the top ranking candidates,
LRPPRC and TOMM70A. They were only able to confirm a physical interaction
between Parkin and TOMM70A.
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3.5.3 Summary and discussion

Since the identification of the Parkin gene several years ago (Kitada et al., 1998)
many research efforts have been devoted to the investigation of its gene product and
its role within cellular pathways and processes. An important step in this direc-
tion is the identification of the complex network of interactions between Parkin and
Parkin-binding proteins. Our collaboration partners at EURAC research performed
a TAP/MS proteomic screen to determine 203 such candidate proteins (Parkin-
TAP). We assisted them with the bioinformatics and, in particular, network-based
analysis of the identified candidates.

First, we constructed a network of publicly available protein interactions for the
ParkinTap proteins and the proteins known to be involved in monogenic parkin-
sonism (MonogenicPD). Most of the candidates interacted with Parkin through
one intermediate protein, three of them were direct Parkin interactors and 40 were
connected to MonogenicPD proteins. This finding suggested that these candidates
might be part of a PD-specific pathways as proteins linked to the same disease tend
to interact with each other and be involved in the same disease-related processes
(Barabási et al., 2011). Second, we analyzed the functional similarity network of
ParkinTAP candidates and MonogenicPD proteins. Cluster analysis revealed that
most of the candidate proteins are functionally similar amongst themselves and are
members of 6 distinct functional groups associated with RNA processing, complex
assembly, protein folding, intracellular transport, mitochondrial transport and ATP
synthesis, and programmed cell death, respectively. One of the functional clusters
was particularly interesting as it contained most of the MonogenicPD proteins. Can-
didates from this cluster were enriched with the same GO processes as the proteins
already known to interact with Parkin, such as cell death, mitochondrion organiza-
tion and protein folding. Our collaboration partners successfully verified one of the
top candidates (TOMM70A) by a co-immunoprecipitation experiment.

Although this work has already given some new insights into the complex network
of Parkin and its binding proteins, more high quality and comprehensive datasets
will be needed to identify the shared disease pathways, their components and the
perturbations that lead to the given phenotype. Again, network analysis has proven
to be a valuable tool for prioritizing candidates and identifying groups of functionally
related proteins that might represent disrupted pathways and processes. A network
perspective on PD and other diseases might be the right means to providing new
targets for the development of therapeutic interventions.

3.6 Conclusions

Many efforts are still devoted to the discovery of genes involved with specific phe-
notypes, in particular, diseases. High-throughput techniques are thus applied fre-
quently to detect dozens or even hundreds of candidate genes. However, the exper-
imental validation of many candidates is often an expensive and time-consuming
task. Therefore, a great variety of computational approaches has been developed
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to support the identification of the most promising candidates for follow-up studies
(Doncheva et al., 2012b). The biomedical knowledge already available about the
disease of interest and related genes is commonly exploited to find new gene-disease
associations and to prioritize candidates for follow-up experimental studies.

In particular, many disease gene prioritization methods consider discriminative gene
and protein properties and rank candidate genes according to their functional and
phenotypic similarity or network proximity to known disease genes. In this context,
functional information, manually curated or automatically derived annotations, of-
ten provides strong evidence for establishing links between diseases and relevant
genes and proteins (Perez-Iratxeta et al., 2002; Schlicker et al., 2010). Many priori-
tization methods use protein interaction data as rich information source for finding
relationships between gene products of candidate genes and disease genes (Kann,
2007; Ideker and Sharan, 2008; Baudot et al., 2009; Vidal et al., 2011; Wang et al.,
2011). In addition, the phenotypic similarity of diseases can help to increase the
total number of known disease genes for less studied disease phenotypes (Lage et al.,
2007; Wu et al., 2008; Li and Patra, 2010b; Vanunu et al., 2010). Other sources
of biological information frequently used by prioritization approaches are sequence
properties, gene expression data, molecular pathways, functional orthology between
organisms, and relevant biomedical literature (Kann, 2009; Tranchevent et al., 2011;
Piro and Di Cunto, 2012; Bromberg, 2013).

Building upon these methods, we designed an integrative network-based prioritiza-
tion framework that combines different types of data and analysis techniques. So
far, we focused on two data sources that have already proven to be very informative,
protein interactions and functional annotations. First, we constructed phenotype-
specific protein interaction (PINs) and functional similarity networks (FSNs) for a
give list of candidate and known genes associated with a disease. The PINs contain
known physical protein-protein interactions and protein complex memberships re-
trieved from the public database iRefIndex (Razick et al., 2008), while the FSNs are
based on pairwise similarity of genes based on their GO annotations as computed by
the functional similarity measure rfunSim (Schlicker et al., 2006) and retrieved from
the FunSimMat web service (Schlicker and Albrecht, 2008). We analyzed these net-
works using clustering algorithms, centrality measures, subnetwork identification,
and combinations of these techniques. We also proposed a method for assessing
the overlap between similar phenotypes based on their joint FSN. We applied our
framework to the prioritization of candidate genes and functional characterization
of inflammatory bowel disease (Ellinghaus et al., 2013b), primary sclerosing cholan-
gitis (Liu et al., 2013), and Parkinson’s disease (Zanon et al., 2013).

Inflammatory bowel disease is a chronic inflammatory disorder of the gastroin-
testinal tract that has been extensively studied in the last few years (Ellinghaus
et al., 2015). Although meta-analyses of genome-wide associations studies have
established 163 IBD susceptibility loci (Barrett et al., 2008; Franke et al., 2010; An-
derson et al., 2011; Jostins et al., 2012), there are still many unanswered questions
about the etiology of IBD. In particular, the two IBD subtypes, Crohn’s disease
and ulcerative colitis, share many genetic associations although they are phenotyp-
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ically very different. In order to assess their similarity, we constructed a joint FSN
and performed several network-based analyses with the conclusion that there is a
substantial functional overlap and no distinct functional groups between the two
IBD subtypes. Furthermore, based on network connectivity, we selected a set of
IBD candidate genes from different loci that are very likely to be involved in the
same disrupted processes and pathways (such as cell proliferation, T cell activation,
immune response) and thus, have a crucial role in the development of IBD.

Since the already known IBD risk factors explain only 13.6 % of the disease variance
for CD and 7.5 % for UC (Jostins et al., 2012), it is very likely that low-frequency
and rare variants have a major contribution to heritability. Therefore, more and
more studies make use of next-generation sequencing to study complex diseases
such as IBD. Our collaboration partners performed exome sequencing of 42 CD
patients and 5 healthy subjects and after several filtering, annotation, and follow-
up genotyping stages, they identified two CD candidate genes, PRDM1 and NDP52
(Ellinghaus et al., 2013b). Using network analysis, we were able to support the
functional relationships of NDP52 with known IBD genes and autophagy-related
genes. Furthermore, we performed a large-scale analysis of the candidates from the
exome sequencing and suggested further IBD risk genes involved in programmed
cell death, phosphorylation, and intracellular signaling.

In contrast to IBD, PSC is a severe liver disease with unknown etiology and no
associated genes so far. Therefore, our collaboration partners performed a large
genotyping study of PSC using the custom-made Immunochip array (Cortes and
Brown, 2011) and identified 9 novel loci in addition to the 7 already known (Liu
et al., 2013). To prioritize the resulting list of PSC candidates, we put more ef-
fort into the development of a network-based method that does not need a priori
knowledge about the involved genes. In an FSN of PSC candidates, we performed
topology analysis to select one disease-relevant gene per locus and build a disease-
specific network. Six out of seven candidate genes suggested by our method were
also implied as causative by at least one additional prioritization method. Fur-
thermore, we assessed the genetic and phenotypic overlap between PSC and IBD,
which is diagnosed in 72 % of the PSC patients considered for this GWAS. By con-
structing and analyzing the joint FSN of PSC and IBD, we suggested a considerable
functional overlap and interplay between the two diseases.

For the particular case of Parkinson’s disease, a progressive neurodegenerative disor-
der of the central nervous system, the focus was on identifying interaction partners
of the already known Parkin gene product (Kitada et al., 1998; Hedrich et al.,
2004). Starting with 203 candidate proteins from a TAP/MS proteomic screen and
a list of proteins involved in monogenic PD, we constructed a network based on
known physical protein interactions and complex memberships and found evidence
supporting the (almost) direct involvement of most candidates with Parkin (Zanon
et al., 2013). Furthermore, cluster analysis on the PD candidates FSN revealed
that most candidates are functionally similar to each other with an exception of few
proteins that are particularly similar to MonogenicPD proteins and are enriched
with GO terms associated with Parkin (cell death, mitochondrion organization and
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protein folding). Further integrative analyses by our collaboration partners resulted
in a ranking of the ParkinTAP candidates according to several functional and in-
teraction properties and the experimental validation of one of the top candidates,
TOMM70A.

Characterizing complex diseases by networks of interacting causal and candidate
genes is a new trend in the field of disease gene prioritization and has been also
considered in several recent studies. For instance, Menche et al. (2015) developed
a computational framework to identify disease-specific modules within the human
interactome and to explain some of the pathological relationships between diseases
by the overlap of their disease modules. In a follow-up study, (Ghiassian et al.,
2015) proposed a new algorithm for disease module detection based on network
properties derived after investigating the interaction network profile of 70 complex
diseases. Furthermore, Tasan et al. (2015) presented a method for the identification
of disease subnetworks consisting of functionally related genes spanning multiple
GWA loci.

These approaches are very similar to our phenotypes-specific framework and thus
confirm the significance to our approach. Different properties such as the number
of already known disease genes or associated candidates as well as the availability
of biological knowledge for the phenotype of interest still strongly influence the
choice of approach. However, with the huge amounts and diversity of experimental
and computationally derived data becoming available every day, we can expect
a considerable improvement in the design and performance of candidate disease
gene prioritization approaches in the near future. With regard to understanding
the genetic and phenotypic similarities and differences between diseases, network-
based methods already show great potential and should be considered for further
development.
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CHAPTER 4

Integrative visual analysis of protein sequence mutations

A natural and complementary step to identifying disease-related genes is under-
standing how these genes alter a given phenotype. One such mechanism are single
nucleotide variants that have an effect on the structure and function of the respec-
tive gene product. So far, most computational methods focus on identifying whether
a mutation will affect a protein or not, but there are not so many tools that can
aid the interpretation of the resulting changes. Thus, in this chapter, we present a
novel visual approach for analyzing residue mutations by showing various aspects of
the biological information on different scales. We combine different biological visu-
alizations and integrate them with molecular data derived from external resources.
Thereby, we make use of the well-known software tools Cytoscape (Shannon et al.,
2003) and UCSF Chimera (Pettersen et al., 2004), extend the Cytoscape plugin
structureViz developed by our collaborator (Morris et al., 2007), and combine them
with our tools RINerator and RINalyzer (Doncheva et al., 2011). In particular, we
assess the impact of individual amino acid changes by the detailed analysis of the
involved residue interactions. Our work won the overall favorite prize at the BioVis
2013 Data Analysis contest and was later published it in a peer-reviewed journal
(Doncheva et al., 2014). In particular, Section 4.1, 4.2, and 4.4 contain text that
has been adapted and extended from Doncheva et al. (2014).

4.1 Introduction

Understanding and predicting the effect of amino acid mutations on the structure
and function of a protein is still a challenging problem despite recent advances
(Hecht et al., 2013; Castellana and Mazza, 2013). In the case of multiple sequence
changes, it is even more difficult to distinguish the mutations with a significant effect



76 Integrative visual analysis of protein sequence mutations

from the ones without. There are also several contradictory theories about the role
of epistatic interaction between amino acid changes in molecular evolution (Breen
et al., 2012; McCandlish et al., 2013; Weinreich et al., 2013). A recent comparative
genomics study by Jordan et al. (2015) identified several human disease mutations
that occur in other species, where their benign effect is compensated by another
amino acid change. Resistance-associated mutations in viral and bacterial proteins
are also of particular interest for developing new therapies (Hughes and Andersson,
2015).

Many approaches that tackle this problem have been presented in the last couple
of years as reviewed in (Thusberg et al., 2011; Cooper and Shendure, 2011; Mah
et al., 2011; Capriotti et al., 2012; Gnad et al., 2013; Stefl et al., 2013). Computa-
tional methods such as the well-known SIFT tool (Sim et al., 2012) use evolutionary
conservation derived from a multiple sequence alignment to predict that mutations
of highly conserved residues have a considerable impact on function. Other meth-
ods such as the well-established PolyPhen2 tool (Adzhubei et al., 2010) combine
sequence features with structural and physico-chemical protein properties to assess
the effect of a mutation. A notable disadvantage of most tools is that that they
do not provide the user with a fine-grained control over the set of features used for
the prediction, and the results are often difficult to interpret. In addition, those
tools cannot easily cope with the speed at which new information on sequences,
structures, and functions is made publicly available. Last but not least, mutations
and their effects are considered as independent from each other, which is not the
case in reality.

Thus, the BioVis community selected this area of research for the 2013 Data Anal-
ysis challenge (Ray et al., 2014). The organizers posed the question how protein
function depends on the underlying protein sequence and whether it is possible to
predict the effect of sequence changes. They also encouraged the use of visualiza-
tion and data integration as the key to solving the problem. In particular, given
the sequence of a functionally defective triosephosphate isomerase (dTIM) with
circa 100 mutations and its parent, the yeast triosephosphate isomerase (scTIM),
the task was to identify a minimal set of mutations that abolish its function and
to suggest rescue mutations that might restore its function. The dTIM sequence
was the result of a lab experiment performed by Sullivan and Magliery, who also
produced and validated some successful point rescue mutants (Sullivan et al., 2011,
2012). An additional intriguing characteristic of the mutations was derived from the
family consensus sequence of TIM proteins. This particular case demonstrates that
amino-acid residues contribute to the function of the protein as a group and not
as individual entities. Thus, the BioVis organizers aimed to encourage the devel-
opment of tools that analyze mutational networks, e.g., the connections of multiple
mutated residues (Ray et al., 2014).

Recent studies have revealed that combining systems and structural biology could
be very beneficial for both fields (Fraser et al., 2013). Our previous efforts involved
the development of a novel approach to investigating protein structure-function rela-
tionships based on interactive visual analysis of residue interaction networks (RINs)
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derived from the 3D protein structure (Doncheva et al., 2011, 2012a). RINs provide
additional insights into the structural and functional roles of interacting residues
as evidenced by their successful application for investigating protein dynamics and
engineering, structure-function relationships, protein and ligand binding (Csermely,
2008; Vishveshwara et al., 2009; Greene, 2012; Di Paola et al., 2013; Hu et al., 2013;
Yan et al., 2014). An important aspect of studying the relationship between protein
sequence, structure and function is the molecular characterization of the effect of
protein mutations. To understand the functional impact of amino acid changes,
the multiple biological properties of protein residues have to be considered together
with their topological characteristics.

Therefore, for our entry to the BioVis 2013 data contest challenge, we focused on
improving the integrative visualization of a wide variety of available information
on sequences, structures and functions. Our objective was to provide the biologi-
cal data for a manual visual analysis and interactive exploration by the user in an
integrated fashion by making it accessible through a small number of carefully de-
signed, linked views. In this way, the user is able to generate hypotheses based on a
specific view (e.g. of the protein structure) in the context of the other linked views
and the provided data. As there are many biological aspects of protein sequence
mutations that might affect protein structure and function, we developed visualiza-
tions that provide different levels of detail and enriched them by mapping additional
data onto the graphical representations. Our approach includes one-dimensional se-
quence views, three-dimensional protein structure views and two-dimensional views
of residue interaction networks as well as aggregated views. The views are linked
tightly and synchronized to reduce the cognitive load of the user when switching
between them. In particular, the protein mutations are mapped onto the views
together with further functional and structural information.

We aimed at a generic solution that is suitable for a wide range of proteins and
will support a comprehensive analysis of the impact of mutations for a large class
of sequence changes. This was accomplished by a visual analytics approach inte-
grating several tools into a software suite freely available at the RINalyzer website
(Doncheva et al., 2015). We developed both the old and the new version of RIN-
alyzer, except for the RINlayout and the abstract network generation, which were
provided by Karsten Klein. We also implemented the new version of structure-
Viz after extensive discussions with the previous developer John H. Morris. The
integration with Pro-origami was provided by Michael Wybrow.

As detailed below, we applied our approach to the data provided for the BioVis
2013 Data Analysis contest. For this proof-of-concept study, we assessed the se-
quence changes between scTIM and dTIM by different visualizations of the protein
structure together with further functional and structural information and by an ex-
ploratory analysis based on the complementary network views for both sequences.
Although we did not use the term mutational networks and did not specifically
study subnetworks of mutations, the use of our approach for this task is straight-
forward. After we performed the described analysis, we discussed and interpreted
the final results with our collaborators Karsten Klein and Francisco S. Domingues.
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Furthermore, we combined our visual analytics framework with some additional
statistics on the structural and topological properties of residues to analyze a large
set of known resistance-associated mutations in the HCV NS3 protease as provided
by Christoph Welsch. The application of protease inhibitors for treating patients in-
fected with HCV is often unsuccessful because of the appearance of such mutations.
Therefore, it is crucial for future patient care to understand how and why resistance
mutations arise. To this end, we analyzed 21 resistance-associated residues of the
HCV NS3 protease and identified some interesting trends of their physico-chemical
and topological properties with respect to important functional sites in the protease.
We designed the project together with our collaboration partners Christoph Welsch
and Francisco S. Domingues. Then we performed the implementation and analysis
of the resulting findings.

4.2 Visual analytics approach

This section is an adapted and extended version of the content from Doncheva et al.
(2014) and describes in detail our visual analytics approach presented at the BioVis
data contest 2013.

4.2.1 General concept

Our visual analytics approach assists the user’s reasoning about the biological im-
pact of mutations by interactive visualizations of sequence and structure information
enriched with additional biological knowledge such as evolutionary sequence con-
servation and functional annotations. To show the different aspects of the data,
we combine the well-known 3D structure view and the one-dimensional sequence
view with the 2D RIN view. In addition, we create simplified network representa-
tions to enable the user to focus on certain biological aspects, e.g. protein domains,
secondary structure elements, and functional annotations.

Besides the sequence that is given as input, a variety of information is available that
can be used to interpret the functional effects of sequence changes. This includes
sequence conservation, which might point to highly conserved regions responsible
for some function, protein domain information, functional annotations (e.g. on
molecular binding), structural properties such as hydrophobicity and solvent acces-
sible surface area, and already known mutations and their impact. We incorporated
a number of sources for such information in our approach. The available data is
then mapped as visual cues on top of the graphical representations of the protein
structure and the RINs. In addition, we made use of the network representation
provided by RINalyzer as well as the Cytoscape analysis capabilities to facilitate
data exploration by filtering and combining the available information on individual
residues.

Furthermore, to present sequence changes on the structure and residue interaction
level simultaneously, we provide both a single cumulative network view and two
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Figure 4.1: General analysis workflow. The workflow consists of three parts: input, soft-
ware and output. The input consists of biological data, which might be protein sequences,
structures, RINs as well as additional annotations and biological knowledge retrieved from
external sources and databases (shown as gray background for each view). The middle
part of the workflow shows the interactions between the different tools and which tool
is responsible for the presentation of which data. The output consists of the different
views with data mapped onto them and sets of important residues that can be identified
through visual exploratory analysis of the available data. The yellow and green boundaries
indicate the default selection color used by the different tools.

separate views of the parent and the defective mutant RINs side-by-side. While
a single view facilitates the identification of changed sites, the dual view solution
allows the user to identify the structural impact of the changes, for example, lost
residue interactions might alter the protein structure.

A general analysis workflow is presented in Figure 4.1. Normally, the user starts
with one or more experimentally determined protein structures and retrieves or
generates RINs for them. In case only sequences are available, external tools for
predicting the 3D structure could be used instead. External data such as evolu-
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tionary conservation and functional annotations need to be prepared in a format
compatible with Cytoscape and the RIN specifications. Then the data is loaded by
the user into Cytoscape and UCSF Chimera. Further views such as the secondary
structure cartoon, the aggregated secondary structure network or the comparison
network can be created from within Cytoscape. The sequences of the structures can
be displayed and manipulated from within UCSF Chimera. Functional annotations
and evolutionary conservation have to be imported manually into Cytoscape as node
attributes of the RINs, while structural properties can be retrieved automatically
from the protein structures currently opened in UCSF Chimera. These data can
then be applied to create the visual cues and semi-automatically propagate them
to the different views. Finally, by browsing and filtering the data in Cytoscape and
UCSF Chimera, the user can identify relevant amino acids, in particular, mutated
residues with a potentially strong effect on the protein function. Even if the visual
analysis does not immediately reveal the functional consequences of mutations, our
software will provide the user at least with very useful biological indications for the
molecular analysis and further experiments.

4.2.2 Provided views

To offer the available information to the user on different levels of abstraction and to
support interactive synchronized exploration (Figure 4.2), we selected the following
suitable visualizations.

Structure and sequence

We used the standard representations of the three-dimensional (3D) structure and
sequence of proteins as provided by UCSF Chimera (Pettersen et al., 2004; Meng
et al., 2006) because sequence changes and their impact on the structure might give
valuable insight. UCSF Chimera offers a variety of tools that support the interac-
tive crosstalk between sequences and structures, affording advanced exploration of
multiple sequence alignments, comparison of structures and incorporation of user-
specific data. In particular, the user can study the amino acid changes between
two sequences and their locations on the corresponding protein structures. It is
also possible to construct a structure-based sequence alignment from the superposi-
tion of two structures. This deep integration of sequences and structures is further
complemented by a multitude of molecular graphics features.

Residue interaction network

A two-dimensional (2D) residue interaction network (RIN) can be created for any
given 3D protein structure by the RINerator package and then visualized with the
help of RINalyzer (Doncheva et al., 2011) within the Cytoscape platform (Shannon
et al., 2003). In the resulting visualization, network nodes represent amino-acid
residues and edges depict non-covalent residue interactions. Such a network rep-
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Figure 4.2: Simultaneous visualization of biological information using different comple-
mentary views of scTIM. In particular, the three-dimensional structure and its sequence
(top left and bottom, respectively) are shown with UCSF Chimera, the resulting two-
dimensional view of the residue interaction network and the aggregated secondary struc-
ture network generated with RINalyzer are visualized in Cytoscape (top middle), and the
cartoon image of the secondary structure elements is provided by Pro-origami (top right).
Residue and network nodes are colored according to their secondary structure (strands
in blue and helices in red). Strands that have been selected within UCSF Chimera are
indicated by green boundary color in the structure view, by green background in the se-
quence view, by yellow node color in Cytoscape, and by green boundary color and blue
background in Pro-origami. Figure first published in Doncheva et al. (2014).

resentation is very useful to demonstrate the impact of mutations at the detailed
residue interaction level by highlighting the changes of local interactions as well as
long-range interaction paths, e.g. indirect interactions between residues. To trans-
fer the spatial localization information of the mutations from the structure view
to the network view, we replaced the previous force-directed layout algorithm by a
more appropriate stress minimization variant (Figure 4.2).

Aggregated views

We offer less complex, aggregated overviews that focus on functional or structural
subunits like secondary structure elements and illustrate the location and distribu-
tion of the mutations on the protein structure. In particular, we utilized the cartoon
view as provided by the Pro-origami web service (Stivala et al., 2011). The main ad-
vantage of this view is that it gives a clear depiction of the chain and the secondary
structure elements, while it leaves out the exact spatial location and the interrela-
tions between those elements, which are provided by the other more detailed views.
As the visual mapping from a RIN to the corresponding cartoon might be difficult
for the user, a network representation that shows the RIN together with aggregated
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secondary structure elements can be created as an intermediate visualization.

The aggregated views are intended to give the user a quick overview on the muta-
tion locations with respect to specific known structural or functional regions. While
it would be possible to map additional information directly onto the network repre-
sentation, the RIN might become quite complex for the user. Thus, we utilize views
that aggregate regions based on secondary structures, protein domain information,
or functional annotations. These views serve as an intermediate visualization when
switching between the 3D structure view and the 2D RIN view.

The simple cartoon view provided by the Pro-origami web service reduces the com-
plex 3D protein structure to the essential secondary and super-secondary structure
information and presents it with an easily readable layout (Figure 4.2). Pro-origami
provides SVG images, which are enriched with further information in the form of
highlighted regions of interest such as the localization of mutated residues. As
Pro-origami can decompose proteins into domains, we can also obtain a combined
representation of secondary structure and protein domains within the cartoon view.

Comparison view

The representation of protein structures as RINs enables network comparison and
alignment to explore the differences between parent and mutant structures further.
Besides the comparison of two networks or structures side-by-side, we provide a
comparison network view based on the alignment of the underlying sequences (Fig-
ure 4.3). In this view, each node represents a pair of aligned residues and two nodes
are connected if the corresponding residues have a non-covalent interaction in ei-
ther of the two compared RINs. In addition, visual cues are created to highlight
interactions that were gained or lost upon amino acid change and the fraction of
such interactions for each residue is estimated in order to quantify the mutational
effect on protein structure and function.

Furthermore, to distinguish more or less likely mutations, we integrated the amino
acid substitution scores from the Blosum62 matrix (Henikoff and Henikoff, 1992) in
RINalyzer and assign a score to each mutated residue in the comparison network.
Each score can be used to highlight sequence changes with a stronger impact on the
protein.

4.2.3 Data enrichment and visual cues

Mapping of available knowledge onto the visualized sequences and structures is an
important component of our visual analytics approach. The availability of this in-
formation in an easily accessible way for the user should facilitate the biological
knowledge discovery considerably. To enrich the provided views, we extract addi-
tional structural and functional information from external databases and import
the relevant data as node attributes in Cytoscape, which automatically associates
them with the RIN and the protein structure. An additional benefit of this integra-
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Figure 4.3: Side-by-side views versus comparison network view. The location of a set of
residues is highlighted at the same time in all views, from left to right, the RIN of the 3D
structure of scTIM, the comparison RIN, the RIN of the model of dTIM as generated by
the SQWRL web server, the sequence alignment of the scTIM and dTIM sequences, and
the corresponding 3D structures. The network nodes and residues are colored according
to secondary structure (strands in blue and helices in red), except for the comparison
RIN, where the node borders are colored according to conservation scores from ConSurf-
DB (turquoise-to-pink coloring indicates variable-to-conserved sites). Selected nodes are
shown in yellow color in the network views and with green boundary or green background
in the structure and sequence view, respectively. Such a combination of views allows the
user to study the structures and networks side-by-side or all at once in the comparison
network.

tion is that it enables the use of the built-in Cytoscape functionality to create filters
based on the imported data and to highlight the residue nodes with attribute values
within a given range, e.g. with high or low conservation scores (see Figure 4.8).

The following information is regarded as potentially useful for analyzing the effect
of mutations:

• Family conservation. ConSurf-DB (Goldenberg et al., 2009) provides pre-
computed profiles of evolutionary sequence conservation.

• Residue interactions. The RINerator package creates a network of non-covalent
residue interactions such as contacts and hydrogen bonds for any 3D protein
structure.

• Residue interaction counts and scores. RINerator also provides edge scores for
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the strength of non-covalent interactions as well as a count of the interactions
of a given type between two residues.

• Functional sites. Active and binding site information is retrieved manually
from UniProtKB (The UniProt Consortium, 2014).

• Domain annotation. Protein domain information is obtained from the SCOP
(Murzin et al., 1995) online resource.

• Structural properties. Data for the solvent accessible surface area, secondary
structure, hydrophobicity, and other residue properties is retrieved automati-
cally from UCSF Chimera.

• Physico-chemical properties. A selected set of amino acid properties cover-
ing five major categories (polarity, secondary structure, molecular volume,
codon diversity, electrostatic charge) as defined by Atchley et al. (2005) is
automatically retrieved by RINerator from AAindex (Kawashima et al., 1999;
Kawashima and Kanehisa, 2000).

Functional residue annotations such as protein domain localization as well as bind-
ing and catalytic sites are important for identifying mutations that could have a
direct impact on the function of the protein because they are in or near such sites.
Structural properties of residues such as hydrophobicity, solvent accessible surface
area, and polarity are used to characterize their potential effect on protein structure
and function. Last but not least, evolutionary conservation information is crucial
for distinguishing between residue changes in conserved (less tolerable of sequence
changes) or variable regions.

The data used to enrich our visualizations is mapped as visual cues like color, shape,
or line stroke in the network view and transferred to the other views where possi-
ble. We decided to control most visual properties via user-adjustable options with
reasonable defaults. For example, different node shapes are used to distinguish the
mutated residues in both the parent and the defective protein (Figure 4.7). Addi-
tionally, several visual styles are offered that map different functional and structural
information on the views so that the user sees the distribution of corresponding val-
ues for the whole protein. Dark colors usually correspond to significant values such
as strong hydrophobicity, large solvent accessible surface area or high number of
changed residue interactions (Figure 4.3). For evolutionary conservation, the pink-
to-turquoise coloring as applied by ConSurf-DB is used (Figure 4.8).

The visual cues are particularly useful for illustrating the changes in residue inter-
actions due to the mutations in the comparison network view generated from the
alignment of the respective sequences in UCSF Chimera. Residue interactions that
are either lost or gained upon mutation are highlighted by differently colored and
shaped lines (Figure 4.3). Residues that cannot be aligned are depicted by nodes
with different node borders.
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Figure 4.4: Overview of the involved tools and the corresponding visualizations. Figure
first published in Doncheva et al. (2014).

4.2.4 Coordination of views

The linkage between the different views and the transfer of visual cues is maintained
by several mechanisms. Regarding the interactive exploration, we propagate the
selection of elements in one view to the others. We synchronize orientation and
location between RINs and structures using a special layout algorithm that we
developed for this purpose. In particular, we want to ensure a consistent use of
information mapping and similar cues over all views.

To ease the user’s cognitive load when switching between different views and tools,
we link them in multiple important ways. For an interactive exploration, we im-
plemented a global selection concept, that is, the selection of elements in one view
leads to the immediate selection of their corresponding representatives in all other
views. Our linkage concept also ensures the consistent use of information mapping
and similar cues over all views, particularly, regarding the usage of colors.

Further coordination is achieved due to the synchronized orientation and location
of the graphical representations in the different views. For instance, the user can
freely explore the 3D structure within the UCSF Chimera window, e.g. by rotating
the protein structure. The network view can then be adjusted according to the
new orientation of the rotated structure by applying a 3D-structure based layout
developed specifically for RINs (see Section 4.3.3 for more details).

4.3 Implementation details

All of the above is accomplished by a software suite (Figure 4.4) that integrates the
freely available software tools Cytoscape (Shannon et al., 2003), UCSF Chimera
(Meng et al., 2006), and Pro-origami (Stivala et al., 2011) using our plugins RIN-
alyzer (Doncheva et al., 2011) and structureViz (Morris et al., 2007). Cytoscape
is an open-source software platform for data integration, analysis and visualiza-
tion of complex (biological) networks (Shannon et al., 2003). Its functionality can
be further extended and tailored by users through the implementation of plug-
ins or apps, from which over 200 are available nowadays. On the other hand,
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UCSF Chimera is a well-known program for interactive visualization and analy-
sis of molecular structures (Meng et al., 2006). Although linking Cytoscape and
UCSF Chimera is programmatically not straightforward, the benefits of enriching
biological networks with structural information as well as studying proteins from a
network perspective are obvious. These two objectives have been accomplished by
the plugins structureViz and RINalyzer, respectively.

Released in 2007, the structureViz plugin links the visualization of biological in-
teraction networks, in particular, protein interaction networks, with the analysis
and visualization of macromolecular structures provided by UCSF Chimera (Morris
et al., 2007). It supports the association between network nodes in Cytoscape and
corresponding structures open in UCSF Chimera. For example, the user can explore
the 3D structures of two physically interacting proteins in a network or, if resolved,
the structure of their complex. The plugin structureViz also provides the Cytoscape
Molecular Structure Navigator, a simplified tree-like interface for viewing the loaded
structures and their residues and for accessing important UCSF Chimera function-
ality such as changing the display of models, chains, residues, selecting chemistry,
and performing structure alignment.

In 2011, we released RINalyzer, a Cytoscape plugin that provides versatile and
interactive structure analysis tools for RINs and enables dynamically linked 2D
network and 3D structure views (Doncheva et al., 2011). In particular, it allows
for simultaneous, interactive 2D visualization and exploration of the RINs in Cy-
toscape and the corresponding molecular 3D structures in UCSF Chimera. Further-
more, RINalyzer offers the computation and illustration of a comprehensive set of
weighted centrality measures for relating spatially distant residue nodes and discov-
ering critical residues and their long-range interaction paths in protein structures.
Another software feature is the network comparison of aligned protein structures
by constructing a combined RIN, which enables the detailed comparative analysis
of residue interactions in different proteins. In addition, RINalyzer facilitates the
visual mapping of additional data, such as secondary structure, surface accessibility,
evolutionary conservation, and structural reliability and flexibility onto RIN nodes
and edges.

In order to implement the full linkage between Cytoscape and UCSF Chimera for
our novel visual analytics approach, we made use of their new software versions. We
also ported the plugins RINalyzer and structureViz to work with Cytoscape 3 and
thereby linked them together. We kept the focus of the new structureViz2 on the
interface between Cytoscape and UCSF Chimera, while the new RINalyzer2 version
has extended visual analytics functionality for RINs. In particular, structureViz2
can communicate with UCSF Chimera not only by associating protein nodes with
their structures, but on an additional level, that of residues. In this way, a RIN
can be created from a loaded protein structure and the RIN nodes are linked with
the protein residues. However, structureViz2 itself does not have any RIN-specific
functionality besides retrieving the residue interactions from UCSF Chimera or
enabling bidirectional selection and color transfer. Therefore, RINalyzer provides
the structure-based layout, several visual styles, as well as the advanced network
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comparison and analysis functionality. Download links and further documentation
can be found at the RINalyzer website (Doncheva et al., 2015). More details on the
implementation are given for each tool separately in the next sections.

4.3.1 Cytoscape 3.x series

In 2013, the Cytoscape consortium finally released the new 3.x series. This was
a major step of redesign and reimplementation of the older 2.x series with focus
on modular architecture and long-term maintainability. As before, the Cytoscape
core distribution provides basic functionality for data integration, visualization and
analysis, while additional features specific to particular biological questions are
available as apps (called plugins for 2.x). Due to the major reorganization in the
3.x series, all 2.x plugins needed to be ported to apps by their developers.

The modular architecture of Cytoscape 3.x is based on a Open Service Gateway
Initiative (OSGi) model, where each subset of functionality is represented by a
separate API and implementation JAR files. In this way, the implementation may
be switched without the need to change the interface to the service defined in
the API. New apps can be implemented as bundle apps that can access the core
Cytoscape functionality by utilizing the OSGi interfaces provided in the API.

Furthermore, Cytoscape 3.x provides a built-in and easy-to-use command line func-
tionality. In this way, many features, both from the Cytoscape core and released
apps, can be exposed to the user as commands or can be invoked by other apps.
For each command, this is accomplished by creating a Cytoscape TaskFactory

with two properties, the name of the command and a command namespace for a
group of related commands such as network or rinalyzer. Each task factory has a
createTaskIterator() method that is executed by one of the TaskManagers and
invokes a Task to perform the needed operations. In addition, each task can have
several Tunables, which are the command arguments that define the input needed
by the user. An example for a command that creates a new network from a set of
selected nodes in the current network is:

network create networkName="New network" source="current"

nodeList="selected"

This command can also be executed by an app as demonstrated in Listing 4.1. For
some arguments, such as the source network and the nodeList, there are special
keywords, e.g. current and selected, respectively.

The new versions of structureViz and RINalyzer are implemented as bundle apps
and utilize the Cytoscape 3.1.0 API. Most key features of the two apps are exposed
as commands and can be called by other apps. This design also ensures the smooth
interplay between the two apps as well as their communication with Cytoscape and
UCSF Chimera. More details are given in the next sections.
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1 // get the service registrar in the CyActivator class

2 CyServiceRegistrar registrar = getService(

3 bundleContext , CyServiceRegistrar.class);

4

5 // get one of the task managers

6 SynchronousTaskManager tm = registrar.getService(

7 SynchronousTaskManager.class );

8 // get the factory that creates a CommandExecutorTask

9 CommandExecutorTaskFactory cetf = registrar.getService(

10 CommandExecutorTaskFactory.class );

11

12 // create a map of the arguments and their values

13 Map <String , Object > argMap = new HashMap <String , Object >();

14 argMap.put("networkName", "New network");

15 argMap.put("source","current");

16 argMap.put("nodeList","selected");

17

18 // assumes that this does not implements TaskObserver

19 if (cetf != null)

20 tm.execute(cetf.createTaskIterator("network",

21 "create", argMap , null), null);

Listing 4.1: Execute command task

4.3.2 The app structureViz

The app structureViz was initially released in 2007 as a Cytoscape 2.x plugin that
links the visualization of biological networks in Cytoscape with visualization and
analysis of protein structures in UCSF Chimera (Morris et al., 2007). Together with
the app developer John H. Morris, we released structureViz2 for Cytoscape 3.x in
2014. It was redesigned and extended with new functionality at the same time.
Keeping the focus of structureViz on visualization, we improved the interactive
interface with UCSF Chimera and additionally enabled the linking between residues
in the 3D protein structure and nodes in a RIN. Among others, the synchronization
of selection on all levels as well as the automatic association of networks, nodes or
edges with structures in UCSF Chimera were newly implemented. Furthermore, we
extended structureViz to the interactive generation and annotation of RINs from a
residue selection in UCSF Chimera as described in more detail below.

Structure annotations

Annotating a network with structures entails the creation of new node attributes
and the population of those attributes with structure identifiers. Once a structure is
opened in UCSF Chimera, structureViz2 automatically associates it with all nodes
that are annotated with that structure. The type of each attribute can be String
(if multiple identifiers, a comma-separated list) or List (with each identifier given
as a single string). Here, we will only mention the general type of identifiers.

A whole protein structure or a subset of it, such as one or more chains or residues,
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can be associated with a node as an attribute named Structure, structure, pdb,

pdbFileName, PDB ID, or biopax.xref.PDB. The specification is of the form

modelName[.modelNumber]#[residueID][.chainID]

The modelName is either the 4-character PDB ID of the structure, or a path to a
local file enclosed by quotation marks, or an URL enclosed by quotation marks.
The modelNumber is the model number and only needs to be specified for PDB
structures or files containing several different models, such as NMR structures. The
chainID is a character used in the structure file to group residues by chain and
should be included in the identifier for structures with more than one chain. The
residueID may be a single-letter code and residue number such as H263, a three-
letter code and number such as His263, or simply a residue number, such as 263.
The specifications can be given individually or as a comma-separated list. If no
PDB identifier is given, the specification is assumed to apply to all currently open
structures. Such annotations are usually created automatically for RINs, but can
also be added manually. Here are some examples for residue nodes:

• 1hiv#25.A⇒ residue 25 in chain A of the structure with PDB identifier 1HIV.

• "pdb1hiv h.ent"#25.A ⇒ residue 25 in chain A of the structure contained
in file pdb1hiv h.ent.

• 1abc.0#1.A ⇒ residue 1 in chain A in model 0 of the structure with PDB
identifier 1ABC.

A node can also be associated with a smiles structure if it has a node attribute called
Smiles, smiles, or SMILES containing the corresponding smiles string. SMILES is a
specification for representing chemical structures in a computer-readable form, e.g.,
only using ASCII characters (Anderson et al., 1987; Weininger, 1988; Weininger
et al., 1989). This feature mainly provides a convenient way to load small molecule
structures into UCSF Chimera, but can also be used to display the structure of
individual amino-acid residues on their respective nodes.

For the RINalyzer tasks, a node attribute in the following format is needed:

modelName:chainID:residueIndex:insertionCode:residueType

whereas missing values are substituted by an underscore according to the RIN spec-
ifications (http://rinalyzer.de/docu/rins_spec.php). This attribute should be
named either name or RINalyzerResidue. These attributes are automatically cre-
ated when generating a RIN from UCSF Chimera or importing a RIN using one of
the available RINalyzer menus.

RIN generation

The generation of a RIN by structureViz can be initiated for any selection of
residues in UCSF Chimera. The selection may include amino-acid residues, solvent

http://rinalyzer.de/docu/rins_spec.php
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Figure 4.5: Generation of residue interaction networks with UCSF Chimera. In this
image, the structure with PDB identifier 1PTA has been loaded into UCSF Chimera and
used to create a RIN of all selected protein residues and user-specified interactions (Apps
→ structureViz → Create Residue Network). The residues are represented as nodes
colored according to their secondary structure, and the colors were synchronized with
the 3D structure (Apps → structureViz → Synchronize Residue Colors). The con-
tacts between residues are shown as blue edges in the network view, while the hydrogen
bonds are in red. A subset of nodes was selected in the structure (as well as in the other
views automatically) and a new RIN is about to be generated based on the options set in
the Residue Interaction Network Generation Dialog.

molecules, ligands, etc., and each entity is represented as a node in the resulting RIN
in Cytoscape. The network edges correspond to non-covalent interactions between
these entities such as van-der-Waals contacts or hydrogen bonds. Since in some
cases the user may be interested in seeing the covalent peptide backbone interac-
tions as edges in the RIN, we also retrieve these from the currently loaded structure
in UCSF Chimera. As can be seen from the dialog in Figure 4.5, five types of edges
are supported: contacts, clashes, hydrogen bonds, connectivity (backbone), and Cα
distances. The parameters for each interaction type are initially set to the default
values provided by UCSF Chimera (see the arguments of the createRIN command
described in the next section). There are different interaction subtypes depending
on whether an interaction occurs between the atoms in the main chain (mc), side
chain (sc), water, etc., and the number of such interactions is stored in the edge
attribute NumberInteractions. For each interaction, the interacting atoms iden-
tifiers as well as the distance/overlap are also included as attributes. For contact
edges, the distance/overlap attribute equals to the minimum distance between the
closest atoms; for hydrogen bonds, it is the distance between the H donor and ac-
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1 // get the registrar in the CyActivator class

2 CyServiceRegistrar registrar = getService(

3 bundleContext , CyServiceRegistrar.class);

4

5 // get all needed managers

6 SynchronousTaskManager tm = registrar.getService(

7 SynchronousTaskManager.class );

8 CyLayoutAlgorithmManager lm = registrar.getService(

9 CyLayoutAlgorithmManager.class);

10

11 // get the RIN layout

12 CyLayoutAlgorithm rinlayout = lm.

13 getLayout("rin -layout");

14 // execute the layout on all node views in

15 // the current network view netView

16 if (rinlayout != null)

17 tm.execute(rinlayout.createTaskIterator(

18 netView , rinlayout.getDefaultLayoutContext (),

19 CyLayoutAlgorithm.ALL_NODE_VIEWS , null ));

Listing 4.2: Apply RIN layout task

ceptor; for distance edges, it means the distance between the atoms; and for clashes,
it corresponds to the maximum overlap between the atoms.

After a RIN is generated, all residue attributes available in UCSF Chimera are
automatically transferred as node attributes in Cytoscape. Usually, they include
secondary structure, hydrophobicity, residue coordinates, backbone and side chain
angles, average B-factor, average occupancy and others. In addition, if the RINa-
lyzer app is also installed, the RIN Layout considering the 3D coordinates of the
residues as well as the default RINalyzer visual style are applied to the network
view (see Figure 4.5). Listing 4.2 shows how the RIN layout can be invoked by
structureViz.

The annotation of residue nodes with structural data from UCSF Chimera can also
be performed on RINs that were generated by RINerator or another tool using the
menu Annotate Residue Network as long as they have the correct node attributes
for association with the structures in UCSF Chimera (see details above). Further-
more, the colors of the network nodes and structure residues can be synchronized
using the menu Synchronize Residue Colors. The user decides on the direction
of color transfer, whether from the current Cytoscape network to the associated
models in UCSF Chimera or the other way around.

Commands

Finally, structureViz2 exports a number of commands. In general, each command
includes several arguments, which are described in more detail on the structureViz
website (Morris, 2015). The arguments and their values are specified as name-value
pairs separated by an equals sign (=). For example, to send a command to UCSF



92 Integrative visual analysis of protein sequence mutations

Chimera, the user might enter:

structureViz send command="select #0"

Note that the text arguments are placed within quotes. To annotate the current
RIN with coordinates and secondary structure information from UCSF Chimera,
the following command should be used:

structureViz annotateRIN network=current residueAttributes=

[SecondaryStructure, Coordinates]

Here, we will only list the commands related to RINs.

• structureViz annotateRIN: Annotate a residue interaction network (RIN)
with the attributes of the corresponding residues in UCSF Chimera.

• structureViz createRIN: Create a residue interaction network from the cur-
rent selection in UCSF Chimera. The different arguments are shown in the
dialog for creating RINs (Figure 4.5).

• structureViz syncColors: Synchronize colors between residues and net-
work nodes.

• structureViz send: Send command to UCSF Chimera.

4.3.3 The app RINalyzer

With the release of Cytoscape 3.x and the need to port the RINalyzer plugin to
an app, we saw a great opportunity to extend it with new functionality. For this
purpose, we surveyed the users of RINalyzer as well as our close collaborators in
order to collect feedback on frequently used or still required features as well as
suggestions for new functionality. In the process of porting the RINalyzer plugin to
a Cytoscape 3.x app, we closely collaborated with John H. Morris, the developer of
structureViz. Together, we redesigned both plugins to divide the functionality into
meaningful units. We kept the focus of structureViz on the interface with UCSF
Chimera and of RINalyzer on the visual analytics functionality for RINs. Besides
considering well-known software design principles such as modularity, compatibility
and exchangeability, we also cared much about the usability of our tools. One of
our main goals was to provide as much as possible to the user in one single click,
e.g. an appropriate and understandable visualization, but, at the same time, to
make things customizable.

The new architecture of Cytoscape 3.x made it possible to easily use the function-
ality of structureViz from within RINalyzer. Thus, some of the RINalyzer menus,
in particular, related to the interface with UCSF Chimera, actually call methods
implemented by structureViz. Listing 4.3 shows two such examples.
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1 // get the registrar in the CyActivator class

2 CyServiceRegistrar registrar = getService(

3 bundleContext , CyServiceRegistrar.class);

4

5 // get the task factory for the createRIN task

6 TaskFactory crtf = registrar.getService(

7 TaskFactory.class ,

8 "(&( commandNamespace=structureViz )( command=createRIN ))");

9 // execute the task for creating a RIN

10 // this call will invoke the create RIN dialog

11 if (crtf != null)

12 insertTasksAfterCurrentTask(

13 crtf.createTaskIterator ());

14

15 // get the task factory for the annotateRIN task

16 NetworkTaskFactory atf = registrar.getService(

17 NetworkTaskFactory.class ,

18 "(&( commandNamespace=structureViz )( command=annotateRIN ))");

19 // execute the task for annotating a RIN

20 if (atf != null)

21 insertTasksAfterCurrentTask(

22 atf.createTaskIterator(network ));

Listing 4.3: Invoke a structureViz task

New features and improvements

Interface to UCSF Chimera. One of the key features of RINalyzer is its ability
to start UCSF Chimera and match the RIN shown in Cytoscape with its molecular
structure viewed in UCSF Chimera. Thereupon, the selection of residues in UCSF
Chimera leads to the selection of the corresponding nodes in the RIN view and vice
versa. The menus in the new RINalyzer version are organized slightly differently
than the previous versions. Furthermore, the new interface to UCSF Chimera is
implemented in the structureViz2 app and basically runs in the background. struc-
tureViz keeps track of open structures and automatically associates them with the
corresponding networks, nodes and edges in Cytoscape only if the nodes are cor-
rectly annotated (see details in Section 4.3.2). The required attributes are generated
automatically for each RIN when importing a RIN from the RINdata web service
or from a file as well as when creating a new RIN from UCSF Chimera.

Import and generation of RINs. There are several new ways for importing and
generating RINs in Cytoscape. The Import RIN from Web Service feature allows
the direct retrieval of RINs from our web service RINdata. It automatically imports
the RIN with its associated attributes and opens the corresponding PDB structure
in UCSF Chimera. The Import RIN from File option can be used to import any
RIN, which is supported so far by RINalyzer or follows the RIN specifications. In
this way, the attribute data required for associating the RIN with a protein structure
in UCSF Chimera is generated automatically.
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Last but not least, the completely new functionality to generate RINs from a selec-
tion of residues in UCSF Chimera is implemented in the structureViz app and can
be invoked from RINalyzer as well. The selection can include amino-acid residues,
solvent molecules, ligands, etc. Currently, five types of edges can be created: con-
tacts, clashes, hydrogen bonds, connectivity (backbone), and Cα distances. As men-
tioned previously, the RINalyzer and structureViz apps can also transfer residue
attributes from UCSF Chimera as node attributes to the corresponding RIN in
Cytoscape. In particular, these attributes include secondary structure, residue co-
ordinates, hydrophobicity, solvent accessible surface area (if already computed in
UCSF Chimera), occupancy, etc.

RIN Layout. The RIN layout is specifically implemented for RINs and synchro-
nizes orientation and location between a RIN and the corresponding structure. Our
collaborator Karsten Klein developed a new stress-based layout method that min-
imizes the weighted mean square error between predefined distances for pairs of
residues and the geometric distance in the layout. The layout is initialized using
a projection of the 3D residue coordinates on a 2D plane. The stress is computed
as a balanced combination of two factors, the flexible representation of the residue
network and the user’s spatial orientation using the fixed projection coordinates.
The priority for the latter is increased over the course of the optimization. In or-
der to emphasize the secondary structure, the distance error weights are larger for
distances between residues within the same secondary structure element. Alterna-
tively, the layout method can prioritize certain distances based on user-defined edge
weights that represent additional structural or functional information.

Exploration of RINs. A few new features for exploring RINs have been imple-
mented. In addition to creating a new network for a single or multiple chains in a
RIN, RINalyzer can extract a new subnetwork consisting of the interface residues
and their interactions between two or more chains. Interface residues are defined
as residues with at least one non-covalent interaction to a residue in another chain.
This functionality allows a more detailed analysis of protein binding and the effects
of mutations on the function of the protein as shown in our case study on the BioVis
2013 Data Analysis contest. The Edge Distance Filter option is included in the RIN
Visual Properties dialog and allows hiding edges between residues closer in sequence
than a user-specified threshold.

Aggregated RINs. RINalyzer supports the generation of aggregated RINs based
on a node attribute selected by the user. In the resulting network, each node
represents a group of consecutive residues with the same characteristic (attribute
value), for example, the same protein chain, domain or secondary structure element.
The node width is proportional to the number of residues in this group and the node
tooltip shows the group characteristic (attribute value) and the included residues.
The non-covalent interactions between residues in one group and residues in another
group are represented by one solid edge line. The interactions between residues
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in two consecutive groups are shown as a dashed edge line. The edge width is
proportional to the number of interactions.

Comparison of RINs. The comparison functionality of RINalyzer has been
greatly improved and linked to the structure alignment tool of UCSF Chimera.
Thus, users can compare two RINs using the sequence-based structural alignment
of the corresponding proteins in UCSF Chimera. The resulting comparison net-
work highlights residue interactions present in either of the structures and allows
backtracking these to the original structures. Such a network representation is in-
strumental for identifying changes in interaction patterns upon mutation as well as
between different states of the same protein.

Alternatively to the structure alignment, the mapping of residue nodes can be pro-
vided as a FASTA alignment file or a simple node-to-node text mapping file. In
the comparison RIN, the three different types of edges are shown as different visual
cues: non-covalent residue interactions preserved in both structures are indicated
by solid lines, and interactions present only in one of the structures are presented
by dashed or dotted lines. In this combined network, there are also three types
of nodes: nodes belonging to both networks and representing successfully aligned
residues (black node border), as well as nodes that cannot be aligned, i.e., are con-
tained only in one of the two networks/structures (green or red). The type of each
node and edge is stored as an attribute called BelongsTo, and can have one of the
three values: net1, net2, and net1,net2 (previously known as both). net1 al-
ways refers to the first (reference) network selected in the comparison, i.e., the first
structure used in the alignment. Several additional node attributes are created for
the comparison network. Among others, they include the fraction of adjacent edges
belonging to either net1 (EdgeFracNet1) or net2 (EdgeFracNet2) and the fraction
of adjacent edges belonging to net1,net2 (EdgeFracBoth). If the amino acid type
of the two aligned residues is not the same, a short identifier for the amino acid
substitution (Substitution) as well as the amino acid substitution score from the
BLOSUM62 matrix (Blosum62SubstScore) are also created.

Commands

Most of the RINalyzer functionality is not exposed as commands that can be used
without the Cytoscape graphical user interface. This is mostly due to the design of
RINalyzer as an app that interacts a lot with the user. However, RINalyzer uses
most of the commands previously described for structureViz. Here, we list the two
currently available commands that do not require a GUI mode and additional input
from the user:

• rinalyzer importRIN: Import a RIN from a file, such as those generated by
RINerator.

• rinalyzer createAggregatedRIN: Create an aggregated RIN.
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setsApp

setsApp is a simple app for maintaining and manipulating sets of nodes and edges
(Morris et al., 2015b). It was inspired by the RINalyzer’s node sets functionality.
setsApp was implemented by Allan Wu under my joint supervision with John H.
Morris during my stay at UCSF. The most recent version was greatly improved by
Samad Lotia from the Gladstone Institutes.

Basically, setsApp allows the user to create a set of nodes or edges from the current
selections in the Cytoscape network view as well as to import a set from a file. In
addition, nodes or edges with the same discrete attribute values can be grouped
into separate sets, e.g., based on residue chain, secondary structure annotation, or
interaction type. The user can perform standard set operations on the existing sets,
such as union, intersection, and difference. In order to facilitate usage of the app’s
functionality, setsApp exports a number of commands with the namespace setsApp
including createSet, remove, import, export, addTo, removeFrom, rename, union,
difference, intersect. The commands and their arguments are described in more
detail in Morris et al. (2015b).

4.3.4 UCSF Chimera

UCSF Chimera is a state-of-the art software tool for interactive visualization and
analysis of molecular structures and related data. It is constantly updated and fur-
ther developed by the RBVI team at UCSF. For the initial version of structureViz,
the ReadStdin interface was implemented such that UCSF Chimera commands can
be entered through standard input (stdin) and messages in response are sent to
standard output (stdout). Beside the standard UCSF Chimera commands avail-
able to the users, a set of special commands was added. They include the commands
listen start models | selection, which act as active listeners for changes in
the current models or the residue selection, and several commands for listing models,
chains, residues, atoms, or selected entities and their attributes. The first version of
RINalyzer also made use of the ReadStdin interface to interact with UCSF Chimera.

For the new versions of structureViz and RINalyzer, a few additional commands
were added upon our request. These are available since release 1.8 of UCSF
Chimera. In particular, one of the new commands, list distmat, retrieves all
distances between a set of atoms or residues and is used for the construction of
a distance RIN, in which an edge exists between two residues if the distance be-
tween their Cα atoms is less than a user-specified cut-off. For adding backbone
edges to RINs, the command physicalchains was included to report the starting
and ending sequence numbers for physically connected chains. The command list

resattr lists all available residue attributes for the current models and is employed
for annotating RINs with structural data from UCSF Chimera.

Finally, the UCSF Chimera team also provided us with a RESTServer that allows
the execution of UCSF Chimera commands through a REST (REpresentational
State Transfer) interface. In this way, the communication between UCSF Chimera
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Figure 4.6: Network view in Cytoscape of a RIN (left) generated for a selection of
residues from the 3D structure of yeast TIM (PDB identifier 2YPI) in UCSF Chimera
(right). The node table at the bottom displays the additional information retrieved by
RINerator and structureViz. The network visualization is created using the RINalyzer
app and synchronized with the structure using the structureViz app. The network nodes
and the corresponding residues are colored according to the sequence conservation score
of the TIM family (turquoise-to-pink coloring indicates variable-to-conserved sites). The
network edges represent non-covalent residue interactions (blue for contacts and red for
hydrogen bonds).

and other tools, such as Cytoscape can be drastically improved. The RESTServer
is also designed as a replacement of the ReasStdin interface. The main issue with
the latter is that it generates output to stdout together with the listen command.
Thus, in order to parse the UCSF Chimera responses, structureViz needs to demul-
tiplex the output into separate sources. In contrast, the RESTServer uses separate
communication channels for notification and command execution. Since version 2
of structureViz still does not make use of the RESTServer, this will be the next
main development step.

4.3.5 RINerator

Together with the first version of RINalyzer, we released RINerator, a package for
the generation of user-defined RINs from a 3D protein structure. In contrast to pre-
vious simplistic interaction definition approaches based on spatial atomic distance
between residues, RINerator enables a more realistic representation by considering
different biochemical interaction types, such as hydrogen bonds and interatomic
contacts, and even quantifying the strength of individual interactions. This is ac-
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complished by performing the following steps:

1. All hydrogens are added to the protein structure by the Reduce program Word
et al. (1999b).

2. The non-covalent interactions are identified using the Probe program Word
et al. (1999a).

3. A residue interaction network is generated and saved in a Cytoscape-compatible
file format.

More precisely, Probe identifies the interactions between amino-acid residues in a
protein by evaluating their atomic packing. For this purpose, a small virtual probe
(typically 0.25 Å) is rolled around the van-der-Waals surface of each atom and where
the probe touches another non-covalently bonded atom, a contact dot is detected.
The overlaps of van-der-Waals shells between non-polar atoms and hydrogen bonds
are indicated by spikes with length lsp. Dots without spikes have a length of 0.
Then, the molecular goodness-of-fit of the interactions is measured using the dots
and spikes. The hydrogen bonds and van-der-Waals overlaps are quantified by the
volume of the overlap:

V (Overlap) =
∑

Overlap dot

lsp

V (HBond) =
∑

Hbond dot

lsp

The score of the contacts is measured for each atom pair by summing up over the
contact dots. The non-overlapping van-der-Waals contacts are quantified by an
error-function weighting:

w(gap) = exp

(
−
[gap

err

]2)
where the gap is the distance from the dot to the surface of the other atom and the
error is equal to the probe radius (0.25 Å). This function assigns a higher score to
close contacts than to distant or significantly overlapping ones, but small overlaps
are still favorable.

The combined score is calculated using the formula:

combined score =
∑
dots

[w(gap) + 4× V (Hbond)− 10× V (Overlap)]

Probe summarizes the scores for all atoms or residues in the structure in an output
file. In the last step of the network generation method, an undirected weighted
network with multiple edges that represent the non-covalent interactions identified
by Probe is created.
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Recently, we extended RINerator to retrieve biochemical amino acid properties from
external resources, such as AAindex and ConSurfDB, and to calculate conservation
scores from a user-specified multiple sequence alignment file. The latter was imple-
mented by Olga Voitenko based on a reliable metric for quantifying the conservation
of all amino acid positions in a multiple sequence alignment of a given protein as
proposed by Valdar (2002). The conservation score is calculated considering the
symbol diversity, the stereo-chemical diversity, and the fraction of gaps at each po-
sition in the multiple sequence alignment. The resulting conservation values are
between 0 for position that is not conserved and 1 for a strictly conserved position.
In case the user does not have a multiple sequence alignment at hand, the conser-
vation scores calculated by ConSurfDB can be retrieved. A RIN colored according
to conservation is shown in Figure 4.6.

AAindex is a database of numerical indices that represent various physico-chemical
and biochemical amino acid properties derived from published literature (Kawashima
et al., 2008). The last version (9.1) contains 544 different amino acid indices. In
order to summarize this huge amount of related data, Atchley et al. (2005) used
multivariate statistical analysis to produce a small set of five patterns of amino acid
variability that reflect polarity, secondary structure, molecular volume, codon di-
versity, and electrostatic charge. We selected representative indices to be retrieved
automatically by RINerator for each of these five categories as follows:

• Factor I reflects several properties at the same time: the covariation in portion
of exposed residues versus buried residues, non-bonded energy versus free
energy, number of hydrogen bond donors, polarity versus non-polarity, and
hydrophobicity versus hydrophilicity.

– JANJ780101: Average accessible surface area (Janin and Wodak, 1978)

– GRAR740102: Polarity (Grantham, 1974)

– JURD980101: Modified Kyte-Doolittle hydrophobicity scale (Juretic et al.,
1998)

• Factor II relates to secondary structure.

– ISOY800101: Normalized relative frequency of alpha-helix (Isogai et al.,
1980)

• Factor III represents molecular size or volume with focus on bulkiness, residue
volume, average volume of a buried residue, side chain volume, and molecular
weight.

– GRAR740103: Volume (Grantham, 1974)

• Factor IV refers to relative amino acid composition in different proteins.

– JOND920101: Relative frequency of occurrence (Jones et al., 1992)

• Factor V reflects electrostatic charge, in particular, the isoelectric point and
net charge.
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– FAUJ880111: Positive charge (Fauchere et al., 1988)

– FAUJ880112: Negative charge (Fauchere et al., 1988)

– KLEP840101: Net charge (Klein et al., 1984)

– ZIMJ680104: Isoelectric point (Zimmerman et al., 1968)

• Other physico-chemical properties

– JOND920102: Relative mutability (Jones et al., 1992)

This list can be extended by further indices at any time. For each index, the values
are assigned to the residues based on their amino acid type.

Finally, RINerator also computes the number and interaction strength for each
interaction type individually. The retrieved and computed data is saved in a tab-
delimited format with the RINalyzer node identifiers in the first column and each
data entry in a consecutive column.

4.4 Contest use case

This section contains an adapted and extended version of the text from Doncheva
et al. (2014). In particular, the effectiveness of our integrative visual analytics ap-
proach is illustrated with the help of a typical use case based on the data provided
for the BioVis 2013 Data Analysis contest (Ray et al., 2014). For the specific case in
which a functionally defective protein sequence is given together with its parent se-
quence and structure, we perform a comprehensive assessment of the structural and
functional impact of the sequence mutations and highlight the differences between
the sequences in complementary views.

The BioVis contest data consisted of the 248-residue long sequence of the func-
tionally defective triosephosphate isomerase mutant (dTIM), the 248-residue long
sequence of its yeast parent (scTIM), the 3D structure of scTIM that is most similar
to dTIM, full sequences of all known TIMs, and the hand-curated multiple sequence
alignment used to create dTIM (Sullivan et al., 2011). TIM is a moderately well
conserved homodimer involved in glycolysis and efficient energy production in nearly
every organism. Each of the subunits folds into an αβ barrel, also called TIM barrel,
a structural motif characterized by 8 outer α helices and 8 parallel inner β strands.
TIM functions as en enzyme catalyzing the reversible interconversion of the dihy-
droxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (DAP). The
active site is located within the barrel and comprises of residues K12, H95, and
E165 (Alber et al., 1981).

4.4.1 Materials

For scTIM, we retrieved the 3D structure with PDB identifier 2YPI (Lolis and Pet-
sko, 1990) from the RCSB Protein Data Bank (Rose et al., 2013) and downloaded
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Figure 4.7: Visualization of the sequence mutations in different views. The alignment of
the scTIM and dTIM sequences (in this order) is shown in the UCSF Chimera sequence
view tool (top) and is used to identify and highlight the differences, e.g. the mutations, by
green boundaries in the protein structure of scTIM (bottom left) and by yellow diamonds
in the corresponding RIN view (bottom right). Figure first published in Doncheva et al.
(2014).

the precomputed RIN from the RINdata web service (Doncheva et al., 2011). Since
there is no experimentally resolved protein structure of dTIM, we used the SCWRL
Server (Canutescu et al., 2003) at BIC-JCSG with default settings and the parent
structure as template to generate a three-dimensional model. A RIN for the defec-
tive mutant was created from the modeled structure by our RINerator package. In
our analysis, we did not consider the sequence alignments. However, the recently
released version of RINerator can be used to integrate the conservation information
from the alignments into the network representation and the analysis workflow.

External data such as functional annotations, conservation information and struc-
tural properties was parsed and imported as attributes in Cytoscape to allow for
mapping the data as visual cues on the network and structure views. The UCSF
Chimera sequence tool was used to view, align and explore the parent and defective
TIM sequences. Based on the sequence alignment, the nodes representing mutated
residues were depicted as diamonds instead of circles (Figure 4.7). Especially muta-
tions of residues buried in the structure or close to the functional sites might have
a relatively strong impact on protein stability and function. Different node coloring
schemes were prepared to map the different types of structural and functional in-
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Figure 4.8: Mapping of conservation information onto the sequence, structure, and
network representations. The nodes and residues in the RIN (top left) and chain A of
scTIM (top right) are colored according to the conservation scores retrieved from ConSurf-
DB (turquoise-to-pink coloring indicates variable-to-conserved sites). The network nodes
that represent mutated residues with a high conservation score (F11, L13, Q82, I83,
I109, K134, K135, L174, A175, D180, A212, N213, V226) are selected using two filters
in Cytoscape (left) and highlighted in the network view by yellow color (top left) and in
the other two views by green boundary around the structure (top right) or the amino
acid letter (bottom right). Nodes that correspond to mutated residues are depicted as
diamonds. Additional data annotated to the residue nodes is shown in the Cytoscape
attribute browser as table (bottom left). Figure first published in Doncheva et al. (2014).

formation. This allowed us to identify relevant mutations with possible functional
effects.

4.4.2 Results

Secondary structure and conservation. In the default secondary structure-
colored view (Figure 4.7), we observe that most mutations are located on the surface
of the protein, i.e., in helices (51 out of 100) and loops (45 out of 100), rather
than in the interior consisting of strands (only 4). The conservation-colored view
(Figure 4.8) indicates that residues in the protein exterior tend to be more variable
in contrast to the ones in the interior, where the active site of the enzyme is located.
Combining these two observations led us to the conclusion that most mutations are
located in the variable regions on the surface of the protein. The mutated residues
with highest conservation values (below −0.5) are F11, L13, Q82, I83, I109, K134,
K135, L174, A175, D180, A212, N213, and V226, and they are good candidates for
the functional deficit of the mutant structure.
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Figure 4.9: Visualization of the dimer interface with focus on the mutated residues.
The combined visualization of the conservation-colored RIN of chain A of scTIM (left),
the residue nodes in the interface between chain A (red) and chain B (blue) of scTIM
(middle), and the ribbon representation of scTIM are in the same colors as provided by
UCSF Chimera (right). Mutations located in the dimer interface (V86, T45, S71, S16,
Q82, N78, L13, H103, F108) are highlighted by yellow colored nodes in the network views
and by green boundaries and ball-and-stick representations in the structure view. Nodes
that correspond to mutated residues are depicted as diamonds. Figure first published in
Doncheva et al. (2014).

Functional sites. Since scTIM functions as a dimer, another important aspect
is the binding interface between the two monomers. We used RINalyzer to extract
the residue interactions of the interface and visualize them in a separate network
view. As can be seen in Figure 4.9, 9 out of the 69 residues are mutated (L13,
S16, T45, S71, N78, Q82, V86, H103, F108). These changes might impair the
dimer formation and thus affect the function of scTIM. Residues L13 and Q82 are
particularly interesting as they are both conserved and in the dimer interface. A
similar analysis can be performed with other functional sites. For instance, we found
that none of the residues in the active or substrate binding site (N10, K12, H95,
E165) are mutated. However, 24 residues possess direct non-covalent interactions
with functionally important residues and thus could have a severe impact on their
function if mutated. This is the case for the residues F11, L13, and C41, and
this hypothesis is further strengthened by the fact that the first two of them are
conserved.

Comparison network. The comparison network view provided further informa-
tion about the location and nature of the mutations (Figure 4.10). From the overall
distribution of red and green edges that indicate changes of non-covalent inter-
actions, it is apparent that many mutations lead to a large number of differences
primarily on the protein surface. Additionally, the active site residues form different
interactions with their neighbors in the parent compared with the mutant structure.
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Figure 4.10: Highlighted mutations with important impact on residue interactions. A
comparison network is shown in Cytoscape (left) and a visualization of the aligned struc-
tures (scTIM in gray, dTIM in red) in UCSF Chimera (right). In the network view, green
dashed edges depict gained, and red dotted edges lost interactions. The network nodes
are colored according to the fraction of adjacent interaction edges that do not change
upon mutation (from white for all to gray for none), the node border colors represent
the conservation score of the respective residue in the parent with turquoise-to-pink col-
oring for variable-to-conserved sites. Nodes with an amino acid mutation are shown as
diamonds. The mutated residues with the largest impact on the residue interactions are
highlighted by yellow colored nodes in the network views and by green boundaries and
the ball-and-stick representations in the structure view. The mutations correspond to the
following residue pairs based on the alignment of scTIM (chain A) and dTIM sequences:
(A30, -), (S31, K30), (E34, D33), (N35, D34), (K56, GLY55), (G62, A61), (L68, K67),
(S71, K70), (N78, I77), (K89, D88), (V154, L153), (-, E156). Figure first published in
Doncheva et al. (2014).

Furthermore, there is an insertion (E156 in dTIM) and a deletion (A30 in scTIM)
in the dTIM sequence in contrast to the parent sequence according to the sequence
alignment in UCSF Chimera. However, they are not close to the active site or the
dimer binding interface and thus the functional effect is difficult to judge. Finally,
the residue nodes in Figure 4.10 are colored according to the fraction of interac-
tions they gained or lost upon mutation. When combining this information with
the conservation scores mapped to the node border colors, particularly interesting
mutations can be found. Mutations with the largest change of local residue interac-
tions are highlighted in Figure 4.10 (A30, S31, E34, N35, K56, G62, L68, S71, N78,
K89, and V154 in scTIM and E156 in dTIM). Especially the mutated residues S71
and N78 are conspicuous because they are also located in the dimer interface.
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Summary. By combining the different views and data in an interactive fashion,
it was possible to pinpoint sets of residue mutations as candidates for having a
pronounced effect on the enzymatic activity of dTIM. They were selected based on
their conservation, distance to the active site, location on the dimer interface, or
causing the largest change of local residue interactions. In particular, five residues
(F11, F13, S71, N78, Q82) were contained in more than one of these sets. Further
experimental validation will be needed to determine which mutations have to be
replaced in the mutant by amino acids from the parent to rescue functionality.
Other structural properties such as hydrophobicity, solvent accessible surface area
or polarity can also be mapped onto the RIN view to characterize mutations with
particular properties. Another strategy described in our previous work (Doncheva
et al., 2012a) would be the application of network topology analysis of the RIN for
the detection of important residues.

4.4.3 Evaluation and related methods

All in all, six entries were submitted to the BioVis 2013 Data Analysis contest (Ray
et al., 2014). They were evaluated by six judges divided into two teams based on
their domain of expertise. The Team Bio included experts in biology with knowledge
of the specific TIM variant, while Team Vis were visual analytics experts. Each team
selected one best entry and both teams together voted for the overall best. Our
approach was selected as the overall favorite, while the contributions by Silveira
et al. (2014) and Luciani et al. (2014) were the Team Bio and Team Vis favorites,
respectively.

Silveira et al. developed the web-based tool VERMONT that visualizes the ef-
fect of mutations in a family of sequences using multiple-sequence-like views. Each
panel focuses on different aspects such as the sequence conservation, the presence
of residue contacts, the physicochemical properties of the individual amino-acid
residues, or the topological properties of the residues in their contact network. Fi-
nally, the authors proposed an automatic method for identifying the damaging mu-
tations using genetic algorithms and suggested one manually and one automatically
inferred set of mutations as solution (Silveira et al., 2014).

The best Vis contribution was an open-source tool called FixingTIM that integrates
3D structure and sequence data from distributed sources in one common interface of
linked views. The main components are a side-by-side view of the scTIM/dTIM 3D
structures and reference information from sources like PDB and a multiple-sequence-
like view (trend image) of the TIM family with customized options for coloring
and sorting that proof to be very helpful for exploratory analysis. After visual
exploration, the authors, who included experienced structural biologists, suggested
several residues around the active site as the most promising candidates (Luciani
et al., 2014).

The other three entries included two additional software tools and a more theoretical
graph-based approach. The web-based tool Mu-8 focuses on visualizing the diver-
sity of physico-chemical residue properties within a protein family and identifies
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the region between residues 150 and 156 as most notable for affecting the function
of dTIM (Mercer et al., 2014). ProfileGrid provides a simplified representation of
sequence alignments as heat maps of residue frequencies and therefore, facilitates
the visual comparison of a mutated sequence with the protein family (Roca, 2014).
Knisley and Knisley (2014) developed an approach that represents 3D structures
as hierarchical graphs with three layers (atoms, residues, and substructures) and
assesses the effect of mutations based on the change in topological parameters com-
puted for these graphs.

All these approaches have certain variations as well as common components com-
pared to ours. In particular, we combined different views on the sequence and
structure level such as FixingTIM and overlaid different physico-chemical proper-
ties on top of our visualizations in a qualitative and quantitative manner such as
VERMONT, Mu-8, and ProfileGrid. We also provided a graph representation of the
3D structures on two of the three levels presented by Knisley and Knisley. However,
in contrast to the other more simple tools, we integrated well-known and sophisti-
cated visualization and analysis tools such as UCSF Chimera and Cytoscape and
therefore, facilitated more complex visual exploratory analyses. Furthermore, our
approach was closest to the idea of the organizers and data providers to consider
multiple mutations together as mutational networks.

The contest organizers concluded in their overview paper (Ray et al., 2014) that
all entries presented valuable contributions to the presentation of differences and
the assessment of mutations at protein family level. Several entries successfully
identified some of the known rescue mutations and pointed to additional regions of
interest for the biological domain experts. However, none of the approaches was
able to identify the residue dependency networks violated by the dTIM sequence and
the different ways to rescue the functionality of dTIM as suggested by Sullivan and
colleagues after laborious manual bioinformatics and experimental work (Sullivan
et al., 2012). Thus, the submitted tools are just the beginning of future efforts in
this field.

4.5 Drug resistance mutations

The hepatitis C virus (HCV) is blood-borne virus that can cause both acute and
chronic asymptomatic hepatitis infection. About 130-150 million people worldwide
are chronically infected with HCV and approximately 500,000 of them die each
year from disease complications (World Health Organization (WHO), 2015; Lozano
et al., 2012). Until 2011, the standard combination therapy with peg-interferon
plus ribavirin showed sustained virologic response in only 50 % of the genotype 1
infected patients (Manns et al., 2001; Morgan et al., 2010). Thus, several direct-
acting antiviral agents (DAA) against HCV have been approved in the last few years
and have significantly improved sustained virologic response rates of patients with
chronic HCV infection (Ghany et al., 2011; Schneider and Sarrazin, 2014). However,
resistance-associated amino acid variants (RAV) to these DAAs have emerged and
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were shown to play an important role in treatment failure (Welsch, 2014). RAVs
against protease inhibitors (PI) often impair the virus replication capacity and ad-
versely affect infectious virus production. Since viral fitness of RAVs is essential for
their selection from the virus population under drug pressure, it is very important
to understand the molecular mechanisms that cause fitness deficits in NS3 protease
RAVs.

Here, we investigated different structural and topological properties of RAVs, in
particular, arising in the presence of DAAs against the HCV NS3/4A protease. For
this purpose, we explored several topology measures on RINs together with other
physico-chemical protein properties to find out what type of information they con-
tain with respect to resistance development. Furthermore, we compared the profiles
of resistance mutations to other relevant sets of residues, such as the catalytic site
residues. In addition to our visual analytics approach, we also conducted a more
quantitative evaluation of the dependencies between RAVs and different structural
and topological properties.

4.5.1 Materials and methods

Structure and functional sites

The HCV NS3 protease cleaves the non-structural proteins from the viral polypro-
tein together with its cofactor NS4A. In addition, it comprises a helicase domain,
which is involved in intracellular infectious virus particle assembly independently of
the enzymatic activities. Thus, we selected two 3D structures for our analysis. The
first structure consists of a protease and a helicase domain (PDB identifier 1CU1)
(Yao et al., 1999) and the second contains only the protease domain (PDB identifier
3KF2) (Cummings et al., 2010). Then, we created RINs for protein chain A from
the PDB structures 1CU1 and 3KF2 with the RINerator package.

Furthermore, we defined the following functional sites:

• Protease catalytic residues and oxyanion hole (cat): residues 57, 81, 137, 139
(Love et al., 1996)

• Three putative domain-domain interaction sites in the protease domain (ddip):
residues 56, 60, 61 (ddip1 ), 78, 79 (ddip2 ), 160, 161 (ddip3 )

The ddip sites were previously identified by our cooperation partner Christoph
Welsch based on the non-covalent interactions of residues in the protease domain
with residues in the helicase domain of PDB structure 1CU1. Figure 4.11 shows
the interaction interface between the protease and helicase domains with focus on
the functional residues, which are highlighted in the structure and network repre-
sentations. We integrated the functional sites into the computation of topological
measures, e.g., we computed the shortest paths from mutated residues to these
functional sites. Furthermore, we referred to them as a reference set of function-
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(a)

(b)

Figure 4.11: Visualization of (a) the HCV NS3/4A protease structure (protease in
cyan, helicase in blue, NS4A in orange) with PDB identifier 1CU1 as ribbon in UCSF
Chimera and (b) the corresponding RIN in Cytoscape with focus on the functional and
resistance-associated residues. The catalytic residues are represented as red sticks in the
3D structure and as red bordered triangles in the network, while the ddip residues are
shown as green sticks and green bordered circles. The resistance-associated residues and
nodes are colored in gray.

ally interesting residues and compared them to the residues exhibiting resistance
mutations.
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Resistance mutations

Table 4.1: Resistance mutations in HCV NS3/4A protease and the maximal fold change
for all, only the linear or only the cyclic protease inhibitors. (RAV = resistance-associated
amino acid variant, FC = EC50 fold change in replicon or infectious cell culture from wild
type).

All Linear Cyclic All Linear Cyclic
Residue RAV Max FC Max FC Max FC Residue RAV Max FC Max FC Max FC

V36 A 21.58 21.58 3 V151 A 0.9 0.9 -
G 28.08 28.08 2.3 F154 Y - - -
L 3 3 2 R155 K 538 150 538
M 7 7 2.1 T 460 5.2 460
C 7.8 7.8 1.4 Q 267 4.1 267
I 0.3 0.3 - G 580 7.4 580

T40 A 1 - 1 M 30 5.6 30
Q41 R 6.2 1.5 6.2 S 418 4.1 418

H 3.5 3.5 - I 26 24 26
F43 S 44 18.78 44 N 39.8 - 39.8

C - - - A156 S 18 9.6 18
L 4 - 4 T 706 62 706

T54 A 12.28 12.28 1.1 V 2041 62 2041
S 8.22 8.22 1 F 62 62 -

V55 A 1.6 1.6 - N 93 93 -
I 3 1.24 3 D168 A 900 1.1 900

R62 K 1 - 1 E 82 82 58
D79 E 1 - 1 H 160 - 160
Q80 R 9.3 1.09 9.3 I - - -

K 3 - 3 V 1700 1000 1700
L 1 - 1 G 85 85 55.2

R109 K 3.86 3.86 0.9 N 20 - 20
S122 G 1 - 1 Y 622 - 622

N 1 - 1 T 205 - 205
R 3 - 3 I170 A 2.2 2.2 1.4

I132 V 2.4 2.4 - T 5 4.61 5
K136 R 0.9 0.9 - V 1 - 1
S138 T - - - N174 Y 1 - 1

# wt RAVs 12 8 13
# intrm RAVs 2 2 3
# notwt RAVs 38 26 28
# undef RAVs 4 20 12

By courtesy of Christoph Welsch (University Hospital Frankfurt), we used a com-
prehensive set of resistance variants associated with two classes of HCV protease
inhibitors (PI): linear PIs (telaprevir, boceprevir, unk), and (macro)cyclic PIs (va-
niprevir, ciluprevir, danoprevir, simeprevir, asunaprevir). For each variant listed
in Table 4.1 and each PI, the 50 % effective concentration (EC50) has been deter-
mined as the concentration of the PI required to cause a 50 % reduction in RNA
replication of the virus in replicon or infectious cell culture. The fold change (FC)
is determined as the ratio of EC50 values for the PI in the wild-type and mutant cell
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culture, whereas the latter always contains the wild-type HCV replicon RNA with
a single point mutation corresponding to the resistance-associated variant. This
extensive data collection originates from the publications by Welsch et al. (2008);
Shimakami et al. (2011); Welsch et al. (2012a,b); Dvory-Sobol et al. (2012); Jiang
et al. (2013); Lawitz et al. (2013); McPhee et al. (2012, 2013). Table B.1 contains
a complete list of the resistance mutations with their respective FC values for each
PI as well as the source of the data.

For example, Welsch et al. (2008) determined the EC50 value for the linear PI
telaprevir and the resistance variant V36G in vitro using a wild-type HCV replicon
assay and an assay with the respective point mutation. The point mutation was
introduced into the wild-type HCV replicon RNA by a specialized site-directed mu-
tagenesis kit. Then, Huh-7.5 cells were transfected with the wild-type and mutant
HCV replicon RNA. After growing for 24 h, the cells were incubated with the PI for
48 h. Finally, the level of HCV RNA in the replicon cells was determined and the
EC50 value was defined as the concentration of PI, at which the HCV RNA level
was reduced by 50 % compared to the wild-type concentration.

For simplicity, we considered the largest FC (max FC) among all PIs (All) and
within each class (Linear and Cyclic) for each resistant variant. Overall, there are
56 resistance variants with an FC above 0 for at least one of the drugs and they
occur in 21 residues (see Table 4.1). From here on, we refer to these residues as
resistance-associated residues.

Furthermore, we divided the 56 substitutions into three groups based on the max-
imal FC for each class of PIs. Residues with low FC (< 2.0) are considered as
wild-type (wt), with FC between 2.0 and 3.0 as intermediate (intrm), and residues
with FC > 3.0 as not wild-type (notwt). The resulting groups contain different
number of residues and resistance variants, whereas the notwt group is the largest
and the intrm group contains only very few RAVs. The exact numbers are given at
the bottom of Table 4.1.

Physico-chemical properties

In order to evaluate a comprehensive set of physico-chemical amino acid properties,
we considered the 11 previously described indices from AAindex, which are related
to polarity, secondary structure, molecular volume, codon diversity, and electro-
static charge (see Section 4.3.5). Evolutionary conservation scores were downloaded
from ConSurfDB (Goldenberg et al., 2009). We also added 4 properties using the
information computed by UCSF Chimera for each structure, e.g., hydrophobicity,
secondary structure, relative solvent-accessible surface area, and solvent-excluded
surface area.

Furthermore, we retrieved data from several publicly accessible web servers. The
PoPMuSiC web server predicts changes in protein stability as ∆∆G in kcal/mol (per
mutation) and also provides information on solvent accessibility (Dehouck et al.,
2011, 2009). We included 3 properties based on the PoPMuSiC data: the minimal
and maximal predicted change in ∆G for each residue as well as the fractional
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solvent accessibility. In addition, we retrieved data from the VADAR (Volume,
Area, Dihedral Angle Reporter) web server, which provides multiple methods for
quantitative assessment of protein structure quality (Willard et al., 2003). This
resulted in 3 additional properties: total residue accessible surface area, fractional
residue accessible surface area, and excluded residue volume.

Topological parameters

We selected a set of well-known topological measures related to the importance
of nodes for the local and global structure of the network. All measures were
computed with the NetworkX package (Hagberg et al., 2008). Here is a list with a
short description.

• Degree centrality (fraction of nodes connected to a node)

• Average neighbor degree (average degree of all direct neighbors of a node)

• Clustering coefficient (fraction of possible triangles that exist between a node
and its neighbors)

• Closeness centrality (inverse average distance to all other nodes)

• Betweenness centrality (sum of the fraction of all-pairs shortest paths

• Average shortest path distance to the 4 functional sites (cat, 3 ddip sites)

• Shortest path distance to 11 functional residues

• Number of direct interactions (4 interaction types (cnt, hbond, ovl, and combi))

• Strength of direct interactions (4 interaction types)

4.5.2 Results

We performed the analysis for both structures of the NS3/4A protease, e.g., with
and without the helicase domain. Since the findings in both cases are very similar,
here we will present only the results based on the structure without the helicase
domain (see Figure B.4).

Dependencies among all properties

Altogether 56 properties were considered for the analysis of the 11 functional and
21 resistance-associated residues. First, we plotted the pair-wise correlation of
all properties (Figure 4.12), in order to investigate their relationships and inter-
dependencies as well as to check for expected and unexpected correlation between
them. For example, the same properties from different resources, such as solvent
accessibility and volume, should be very similar and we observe that they correlate
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very strongly. Furthermore, there are several groups of correlated properties that
are not so obvious, but can be explained by their derivation. For example, the topo-
logical properties degree, betweenness and closeness centrality correlate with each
other quite well. This means that nodes, which are more central according to close-
ness and betweenness and usually represent residues in the protein core, also have
more direct neighbors than less central nodes, which correspond to surface residues.
For this reason, we also find centrality measures to be strongly anti-correlated with
solvent accessibility. We also observe high correlation between AA properties from
the same category (factor) described by Atchley et al. (2005), e.g., net charge, pos-
itive charge, negative charge, and isoelectric point, which can be explained by the
way these categories were constructed. There is a strong anti-correlation between
the centrality measures and the shortest path distances since the latter are not nor-
malized, but altogether they show the same trend, e.g. residues that are central to
the RIN are also close to the catalytic site. Obviously, the shortest path distances to
single residues correlate strongly with the average distance to the sites they belong
to. Finally, the lack of strong correlation trends between the topological properties
and AA properties indicates that these two groups complement each other well and
should be considered together for characterizing residues and their effect on protein
structure and function.

More interesting correlations are those between volume, degree and number of cer-
tain edges. The maximal predicted change in ∆G also correlates with most cen-
trality measures and anti-correlates with the solvent accessible surface area proper-
ties. Finally, the lack of unexpectedly strong dependencies between topological and
physico-chemical properties in the correlation plot suggests that combining these
two different types of independent properties would be more beneficial than just
focusing on one of the groups.

Residue properties

For each property, we plotted a histogram and a box-and-whisker plot of the values
for all residues in the protein and highlighted the functional or resistance-associated
residues, respectively. We aimed at visually identifying properties, for which the
functional and/or resistance-associated residues group together and are also located
in the histogram apart from the remaining residues, e.g., have extreme values. To
quantify this, we also computed a z-score for each property and each functional or
resistance-associated residue. The z-score of a raw value x is defined as z = x−µ

σ
,

where µ is the mean and σ is the standard deviation. Overall, the histograms showed
some emerging trends, but there were no clear groups of residues with property
profiles that distinguish them from the remaining non-functional or non-resistant
protein residues.

Both our visual inspection and the z-scores computation revealed that the four
groups of functional sites have similar properties to the remaining protease residues.
The distribution of values for two properties, conservation and closeness centrality,
are shown in Figure 4.13. On average, the functional residues have values close to the
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Figure 4.12: Pair-wise correlation of all properties for the structure that contains only
the protease domain (PDB identifier 3KF2).

mean value. There are a few exceptions, such as the less conserved ddip1 residues
and the ddip3 residues, which have low closeness values. However, what makes these
two plots more unique in contrast to most other properties is that we can observe a
grouping of the residues based on their site. In particular, the catalytic residues are
highly conserved and have slightly larger closeness values than the average, while
the ddip sites have different (lower than the average) closeness values and different
levels of low conservation. Furthermore, most functional residues had low z-scores
for most properties, e.g., their values were not significantly different from the overall
distribution. This was not the case only for the properties related to distance to the
functional sites since the catalytic, the ddip1 and ddip2 residues are located close
to each other in the 3D structure and the RIN.

For the resistance-associated residues, we identified several properties that slightly
distinguish them from the remaining protease residues (Figures 4.14, B.5 and B.6).
In particular, the resistance-associated residues tend to be located close to the cat-
alytic and ddip1 and ddip2 sites as well as to individual functional residues. They
also have high betweenness centrality and usually at least 2 hbond edges. In addi-
tion, they are often uncharged and have either very high or very low hydrophobicity.
However, we could not find a particular property that really distinguishes resistance-
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(a)

(b)

Figure 4.13: Distribution of residue values for selected properties: (a) conservation and
(b) closeness centrality. The values of the functional residues are highlighted by vertical
dotted lines in red for catalytic site, and blue, green and cyan for ddip1, ddip2, and ddip3,
respectively. The vertical solid lines indicate the average value for each site. All vertical
lines have the same size (proportional to the plot height).

associated residues from the remaining protease residues. We also did not observe
distinct groups of resistance-associated residues in the histogram plots.

Overall, the computed z-scores for each property and each analyzed residue were low.
Only three residues had z-scores above 3.0 (residue 54 for betweenness centrality,
residues 79 and 168 for negative charge) and there were several residues with a z-
score above 2.0, but at most six residues for one property. We selected all properties
for which at least a few resistance-associated residues have a z-score > 2.0 and/or
> 1.5. This resulted in 10 to 17 properties for the different structures and groups
with considerable overlap between them. We also performed a multidimensional
scaling (MDS) of these relevant properties (Borg and Groenen, 2005), but did not see
a clear trend for group separation. The MDS was also not very stable as indicated
by the high stress values, a measure of reliability.

In order to combine the topological and physico-chemical properties, we divided
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(a)

(b)

(c)

Figure 4.14: Distribution of residue values for selected properties: (a) distance to cat-
alytic site, (b) number of hydrogen bonds, and (c) betweenness centrality. The values
of the resistance-associated residues are highlighted by vertical dotted lines in red and
the vertical solid line indicates the average value. All vertical lines have the same size
(proportional to the plot height).

all residues into two groups based on their solvent accessible surface area (SASA):
exposed with SASA > 0.1 and buried with SASA < 0.1. Thus, we generated two
histograms for each property. We observed more or less the same trends for the
resistance-associated residues as described above. We were also able to confirm
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the general assumptions about the dependencies between properties for exposed
and buried residues. For example, buried residues have a higher degree central-
ity than exposed residues because they have more neighbors and, therefore, make
more contacts with them (Figure B.7(a)) In addition, residues with smaller SASA
are more hydrophobic as they are not exposed to the mostly hydrophilic solvent
(Figure B.7(b)).

Resistance variants

(a)

(b)

Figure 4.15: Selected properties for resistance variants: (a) change of polarity and (b)
change of volume. Wild-type (wt) variants are green, intermediate (intrm) variants yellow,
and not wild-type (notwt) variants red. Exposed residues are indicated by dashed bars.
All vertical lines have the same size (proportional to the plot height).
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We performed a different type of analysis for the resistance variants. Since each
residue might be associated with one or more wild-type or resistant variants, our
goal was to find properties that would distinguish between these two groups of
variants. Unfortunately, the topological properties can so far only be computed
for residues and not for variants. The latter would require modeling of the residue
mutation in the structure followed by optimization of side chains and the whole
structure, and a new RIN generation.

Thus, we only considered the properties that are based on the amino acid type (all
AA indices and the predicted stability change from PoPMuSiC) and for each prop-
erty, we computed its change upon AA change. Then, we plotted these values for
each resistance variant and highlighted the groups of wt, intrm, and notwt variants.
Figure 4.15 provides two examples for the change of AA polarity and volume for
each resistant variant considering the fold changes against all protease inhibitors.
We observe that substitutions from all three groups (wt, intrm, and notwt) can cause
a drastic change of the volume or polarity of the respective residue. If we only focus
on individual residues, we can see more clear trends that might be related to the
strength of their resistance in further analysis. For instance, all known resistant
variants at residue 168 lead to a significant decrease in polarity, which might have
an effect on the local interaction pattern of this residue, which is also close to the
active site. However, at residue 80, we observe a decrease in polarity for the wild
type variants and an increase for the resistant variant.

Summary and discussion

Using a combination of our visual analytics framework for the analysis of sequence
mutations and some additional statistics, we performed a systematic investigation
of a large set of known resistance mutations in the HCV NS3 protease. Such mu-
tations arise after treatment of HCV infected patients with protease inhibitors and
the characterization of these variants is crucial for future patient care (Welsch,
2014; Schneider and Sarrazin, 2014). Therefore, we analyzed the topological and
physico-chemical properties of 56 resistant variants occurring in 21 residues of the
NS3 protease and compared them to important functional sites as well as all other
residues that have not been associated with resistance yet.

Overall, we identified some topological and physico-chemical properties that might
be more specific to resistance-associated residues and variants, but at this stage
they are not informative enough for an accurate prediction. There are different
methodological limitations to our analysis. For instance, it would be very useful to
be able to group the residues based on resistance and therefore look for properties
that distinguish the group of resistance associated and wild-type residues. Unfor-
tunately, this is not possible because most of these residue have both high and low
resistance variants. On the other hand, if we only consider the RAVs, we have to
deal with the fact that different resistance variants of the same residue have the
same topological properties. Thus, it is difficult to perform the analysis on the
residue and variant level at the same time and to combine all types of properties.
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Another known issue is that there is not enough data on resistance variants for a
comprehensive analysis and, in particular, on neutral variants that certainly do not
affect PI treatment.

Our exploratory analysis revealed some interesting trends, but more data will be
needed for a comprehensive characterization of RAVs in the HCV NS3 protease.
Thus, the future development of this project strongly depends on the identification
of further RAVs as well as neutral variants. Once, such data is available, a super-
vised statistical learning method can be trained on the data and used for prediction
of resistance. In addition, it would be useful to perform feature selection on the set
of properties as many of them correlate well with each other. A similar analysis
can also be performed for other HCV proteins as well as for the proteins of the hu-
man immunodeficiency virus, where resistance is also a well-known challenge. We
also recommend the exploratory analysis and functional characterization of single
resistance mutations using RINs enriched with additional physico-chemical data as
shown in our previous analysis of the dysfunctional TIM protein for the BioVis 2013
data contest.

4.6 Conclusions

In this chapter, we presented an integrative visual approach for analyzing the impact
of sequence mutations on protein structure and function Doncheva et al. (2014). To
understand the functional impact of amino acid changes, we combined biological
visualizations providing different level of detail and enriched these graphical rep-
resentations with molecular data derived from external resources. Our framework
includes one-dimensional sequence views, three-dimensional protein structure views
and two-dimensional views of residue interaction networks as well as aggregated
secondary structure views, which are synchronized to reduce the cognitive load of
the user when switching between them.

We accomplished this by improving our existing tools structureViz and RINalyzer
and integrating them even better with the new versions of Cytoscape and UCSF
Chimera. We combined the different visualizations in such a way that biological
information can be exchanged between them and additional external data can be
easily included. By enhancing molecular networks with structural information and
further providing a network representation of residue interactions, our tools also
facilitate an interactive multi-layered analysis of protein interactions and binding,
allostery and drug resistance mechanisms, just to name a few. Since their release
on June 30, 2014, structureViz and RINalyzer have been downloaded just over 650
times, and the two RINalyzer publications were cited 102 times (as of March 8,
2015). Overall, our computational framework is a big step towards bridging the
gap between systems and structural biology (Fraser et al., 2013).

We demonstrated the effectiveness of our approach on the data provided for the
BioVis 2013 data contest, the sequence of a functionally defective triosephosphate
isomerase mutant and its functional yeast parent. In particular, we mapped the



4.6 Conclusions 119

protein mutations onto the views together with further functional and structural
information and performed an exploratory analysis based on the complementary
network views for the parent and mutant sequences. We also assessed the impact
of individual amino acid changes by the detailed analysis and visualization of the
involved residue interactions. Our contribution was voted the overall favorite by
the contest committee, which included both biological and visual analytics experts
(Ray et al., 2014).

We also performed a systematic analysis of the physico-chemical, structural and
topological properties of resistance mutations in the HCV NS3 protease. For in-
stance, we explored the correlation of several different properties and the distribu-
tion of their values in the whole protein. Thereby, we compared the properties of
residues known to have a functional role such as active site residues or to be asso-
ciated with drug resistance with all other residues. In addition, we identified some
physico-chemical properties that change significantly upon mutation and might be
useful in distinguishing between resistant and neutral variants. Although our over-
all analysis revealed some interesting trends, we concluded that we need more data
on resistance-associated variants as well as more sophisticated approaches to accu-
rately predict them. Nevertheless, our visual analytics framework can be used to
characterize the effect of already known or predicted resistance mutations on the
function of viral proteins such as the HCV NS3 protease.

Recently, several new tools have been presented that implement a strategy similar
to ours. Mosca et al. (2015) explored the role of disease mutations on binary hu-
man interactions using a structurally annotated interactome (Mosca et al., 2013)
and demonstrated the importance of combining different visualizations and levels
of detail to gain further understanding of disease mechanisms. They also moti-
vated the release of Structure-PPi (Vazquez et al., 2015), which is a system for the
annotation and interpretation of cancer-associated mutations at protein-protein in-
terfaces. Furthermore, resources such as Aquaria (O’Donoghue et al., 2015) further
allow users to take full advantage of the wealth of structural information available
today by annotating sequence queries with biologically relevant structural and func-
tional data. Nevertheless, these tools still do not provide the same level of detail
that is possible with our visual analytics approach centered on residue interaction
networks.

Important future steps are the assessment of the usefulness and effectiveness of our
approach and the improvement of the current implementation. For this purpose, we
intend to collect more user feedback in a comprehensive evaluation. Important ques-
tions would be which visual cues are best suited for gaining insight into the impact
of mutations, how they should be best mapped onto the sequence, structure, and
network representations, and how they should be integrated into the visual layout.
We can also make use of the new resources such as Aquaria and dSysMap to retrieve
additional functional and structural annotations for our proteins of interest as well
as to inquire about other important features. Another issue is the aggregation of
network regions to reduce the visual complexity as only some of them might be of
actual interest to assess the potential impact of mutations. In this way, patterns
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of mutations with specific functional consequences might become more apparent,
in particular, when multiple proteins are analyzed. The software integration of the
different tools can be further improved such that our approach can be realized in
a more automated fashion. This includes better synchronization over linked views
and automated retrieval of external data.



CHAPTER 5

Protein structure dynamics using RINs

Representing protein structures as networks of interacting residues can facilitate the
study of structure-function relationships and give more insight into complex molec-
ular mechanisms such as protein-protein and protein-ligand interactions (Greene,
2012; Di Paola et al., 2013; Hu et al., 2013; Yan et al., 2014). In the previous chap-
ter, we introduced a software suite that supports interactive, multi-layered visual
analysis of protein structures and their interactions involved in protein binding,
allostery, drug resistance and other molecular phenomena (Doncheva et al., 2014).
This approach is, however, still limited to single static snapshots of proteins and
their interactions.

Therefore, this chapter presents a method to capture the dynamic nature of protein
structures and their interactions by visualizing and analyzing ensembles of protein
structures. The first section gives an introduction to protein dynamics and an
overview of related work in the field. The next section describes the methodologi-
cal work involving the definition of dynamic, weighted residue interaction networks
(dRINs), their comparison and the ranking of interactions and residues. As a proof
of concept, this approach was used for the visual exploratory analysis of data from
molecular dynamics (MD) simulations to characterize the effect of sequence muta-
tions. Additionally, an ensemble of docking structures (decoys) was analyzed using
dRINs for the identification of the most frequent interface residues and interaction.
We designed, implemented, and performed the described analysis. The docking
project was inspired by discussions with John H. Morris and Dina Schneidman-
Duhovny at UCSF.
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5.1 Introduction

5.1.1 Biological Background

Proteins have a dynamic nature that can be described by the energy landscape of
all possible conformations they populate (Frauenfelder et al., 1991). Protein dy-
namics refers to the transition of a protein from one state to another by stochastic
fluctuations of chemical bonds, collective residue motions, or global conformational
changes (Henzler-Wildman and Kern, 2007; Orozco, 2014). These transition can
happen at various spatial and temporal scales. Many molecular phenomena includ-
ing (un)folding, allosteric signaling, enzyme catalysis, and protein complex assembly
are strongly related to protein dynamics (Daggett, 2006; Gunasekaran et al., 2004;
Henzler-Wildman et al., 2007; McGeagh et al., 2011). Therefore, to further under-
stand structure-function relationships, we also need to study the dynamic character
of proteins.

The two common techniques for structure determination, X-ray crystallography and
nuclear magnetic resonance (NMR) spectroscopy, already provide some insight into
protein dynamics. X-ray diffraction data contains indirect information on flexibility
and atomic displacement, while NMR methods directly deliver multiple transitions
on different time scales at atomic resolution (Henzler-Wildman and Kern, 2007;
Orozco, 2014). A recent Perspective paper by van den Bedem and Fraser (2015)
argues that integrative structure biology, which combines evidence from multiple
sources including NMR and crystallography, will bridge the gap between accurate
high-resolution structures and dynamics. However, the richest source of information
is still data generated from theoretical methods such as molecular dynamics.

Molecular dynamics is a computational technique for simulating the motions of par-
ticles such as atoms and molecules as a function of time (Adcock and McCammon,
2006). MD simulation of proteins were first performed in the seventies by McCam-
mon et al. (1977) and have become a trusted and widely used tool for investigating
protein dynamics. An MD simulation generates a trajectory of the system at atomic
resolution under simulated experimental conditions. Thereby, the individual par-
ticles move as a result of their interactions with each other, and these movements
are calculated by numerically solving Newton’s equations of motion for this system.
The forces between the particles as well as the potential energy of the system are
described by a set of mathematical expressions and parameters, usually referred to
as molecular mechanics force field. The choice of an appropriate energy function
is crucial for the validity and stability of an MD simulation (Adcock and McCam-
mon, 2006). Designing and running an MD simulation for a protein of interest is
a complex task due to the large number of available force fields and software tools
as well as the heavy demands on the underlying hardware. Recent theoretical and
computational advances in the field are reviewed in more detail by Adcock and Mc-
Cammon (2006); Klepeis et al. (2009); Zwier and Chong (2010); Dror et al. (2012);
Benson and Daggett (2012); Orozco (2014).

Other computational techniques are applied to study particular molecular phenom-
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ena involving dynamics. For instance, the prediction of protein complexes for known
protein interactions still represents one of the big challenges in the field of molecu-
lar docking (Ritchie, 2008; Vajda and Kozakov, 2009; Lensink and Wodak, 2010).
Docking approaches predict the interactions between two molecules such as two
proteins or a protein and a ligand. They usually operate in two main steps: (1)
searching the conformational space and (2) scoring the selected models based on
various criteria such as geometrical or physico-chemical compatibility. The output
is a ranked list of predicted complexes, also referred to as decoys or models. Some
of the widely used search algorithms and scoring functions as well as their combina-
tions were reviewed by Halperin et al. (2002); Schneidman-Duhovny et al. (2004);
Hildebrandt et al. (2008); Vajda et al. (2013).

Nowadays, there are numerous docking approaches and accompanying software
available (Schneidman-Duhovny et al., 2004; Moreira et al., 2010; Rodrigues and
Bonvin, 2014). A notable community-wide initiative for evaluating the performance
of methods by blind prediction is the CAPRI contest (Critical Assessment of Predic-
tion of Interactions), which originated in 2001 (Mendez et al., 2003, 2005; Lensink
et al., 2007; Lensink and Wodak, 2010, 2013). Unfortunately, state-of-the-art meth-
ods include a near-native model, i.e., a good prediction, in the top 10 only in 30-40 %
of the cases and even the recently introduced integrative docking approach by the
Sali lab succeeds only in 42-82 % of the cases (Schneidman-Duhovny et al., 2012).
However, these approaches are more successful at predicting the correct interface
even if the overall quality of the predicted complex is quite low. Lensink and Wodak
(2010) evaluated the predictions of interface residues derived from the protein dock-
ing models submitted for 20 different CAPRI targets. They found that 70 % of the
correctly predicted interface residues, i.e. with a precision and recall ≥ 50 %, are
in models assessed as incorrect by the CAPRI guidelines and only 30 % in cor-
rect models. Furthermore, 24 % of the interfaces in incorrect models are actually
correctly predicted.

As described above, both MD simulations and docking approaches generate ensem-
bles of structures. We are particularly interested in finding the residue interaction
similarities and differences between individual structures in such ensembles as well
as between the ensembles. In this chapter, we present an approach for visualizing
and analyzing ensembles of protein structures using dynamic residue interaction
networks. Before we introduce the methodology and present the results, we give an
overview on related approaches.

5.1.2 Related work

In the last few years, several studies and accompanying tools have been presented
that combine the analysis of structural ensembles with graph theory towards un-
derstanding protein structure-function relationships. In particular, the group of
Vishveshwara has extensively studied dynamic protein processes such as allostery
in tRNA syntherases (Vishveshwara et al., 2009), while the group of Xiaojun Yao
has investigated inhibitor binding and drug resistance in Hepatitis C virus (HCV)
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(Xue et al., 2012, 2014a,b,c) and human immunodeficiency virus (HIV) (Xue et al.,
2013). In contrast to these two groups, which have considered different simulation
time points individually in their analyses, the approaches by Sethi et al. (2009)
and Tiberti et al. (2014) focused on the frequent interactions present in the whole
ensemble to study binding and allostery. Furthermore, networks of residue inter-
actions have helped in evaluating the prediction of protein structures (Chatterjee
et al., 2013) and protein complexes (Vangone et al., 2012; Oliva et al., 2013).

Intra and inter-molecular communications. Ghosh et al. (2007) first com-
bined residue interaction networks and MD simulations by creating a network
for each single snapshot. They used the definition of protein structure networks
(PSNs) introduced by Vishveshwara and colleagues (Kannan and Vishveshwara,
1999; Brinda and Vishveshwara, 2005), where nodes represent residues and edges
correspond to non-covalent interactions between them. In addition, the edges in
PSNs are weighted by the strength of residue interaction, which depends on the
number of interacting residue atoms and their type. Ghosh et al. (2007) computed
different topological properties, such as degree distribution, shortest paths or con-
nected component composition, for each time step and compared them to charac-
terize the change of interactions between important residues during an equilibrium
or unfolding simulation. Vishveshwara et al. (2009) described their approach and
the various topological parameters of interest in a review article. So far, Vishvesh-
wara and colleagues applied their methodology to study the process of unfolding
of T4 lysozyme (Ghosh et al., 2007) as well as the allosteric (shortest) pathways in
methionyl tRNA synthetase (Ghosh and Vishveshwara, 2007), tryptophanyl tRNA
synthetase (Hansia et al., 2009; Bhattacharyya et al., 2010), cysteinyl tRNA syn-
thetase (Ghosh et al., 2011), and pyrrolysyl tRNA synthetase (Bhattacharyya and
Vishveshwara, 2011). This method was also applied by Blacklock and Verkhivker
(2014a,b) to analyze allosteric regulation in the Hsp90 chaperones.

Recently, the standalone program PSN-Ensemble was released by the group of
Vishveshwara (Bhattacharyya et al., 2013). It can generate PSNs from structural
ensembles and compute parameters related to the topological organization and long-
range allosteric communication of the protein. In addition, the authors implemented
a flexible weighing scheme derived from residue pair-wise cross-correlation and inter-
action energy to bring in dynamical and chemical knowledge into the network rep-
resentation. The resulting networks are visualized on the protein structure opened
in PyMOL (Schrödinger, LLC, 2010). The same group also previously developed
the GraProStr web service (Vijayabaskar et al., 2011) for the generation of PSNs
from single structures and the computation of selected network parameters.

Wordom (Seeber et al., 2011), a tool for molecular structure visualization and simu-
lation, was extended to generate protein structure networks and to compute shortest
communication paths as defined by Vishveshwara’s group (Brinda and Vishvesh-
wara, 2005; Vishveshwara et al., 2009). Using Wordom, Mariani et al. (2013)
investigated the communication pathways in transducin to understand the effect
of missense mutation on its activity and, more globally, on the signaling network
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Figure 5.1: Shortest and highest frequency pathways between V16 (A), L19 (A), I20
(B) and the catalytic residues H556 and D524 are shown as sticks in the 3D structure
visualization of the the hyperthermophilic acylaminoacyl peptidase. The stick width
is proportional to the intensity of the correlation between the residues during the MD
simulation. Reproduced with permission from Papaleo et al. (2012b).

involved in monogenic retinal diseases. Papaleo et al. (2012b) performed MD simu-
lations and network analysis of the hyperthermophilic acylaminoacyl peptidase with
a special focus on long-range communication paths (see Figure 5.1 for an example).
Recently, the authors of Wordom published an improved method for investigating
allosteric communication based on a mixed Protein Structure Network and Elas-
tic Network Model-Normal Mode Analysis approach (Raimondi et al., 2013) and
implemented it in WebPSN, a user-friendly web server (Seeber et al., 2014).

Two other tools were developed by Papaleo and colleagues for the purpose of bridg-
ing the gap between structural and network biology. xPyder is a plugin for Py-
MOL (Schrödinger, LLC, 2010) that analyzes interdependencies between residues, in
particular, dynamical cross-correlation and non-covalent residue interactions (Pasi
et al., 2012). The plugin makes use of graph theory to analyze the data, usu-
ally represented as matrices, and visualizes the residue interactions on the protein
structure in PyMOL. PyInteraph has been released recently as a stand-alone tool
for creating PSNs for a specific type of residue interactions (only hydrophobic or
side-chain, hydrogen or salt bridges) from MD simulations and structural ensembles
and preforming network analysis on them (Tiberti et al., 2014).

Combining dynamical cross-correlation and non-covalent residue interactions, Pa-
paleo et al. identified a pattern of asymmetric flexibility in a cold-adapted homod-
imeric enzyme, the Vibrio alkaline phosphatase (Papaleo et al., 2013) and estab-
lished the crucial role for Loop 7 of E2 enzymes in E2-mediated steps of the ubiq-
uitination cascade (Papaleo et al., 2012a). Invernizzi et al. (2013) from the same
group provided the first structural description of an intrinsically disordered domain
of ataxin-3 and investigated its effect on ataxin-3 aggregation, while Lambrughi
et al. (2012) used the xPyder plugin to identify intramolecular interactions that
stabilize the compact conformations of the intrinsically disordered kinase-inhibitor
domain of Sic1. Invernizzi et al. (2014) investigated the communication routes in
ARID domains with the help of Wordom for creating PSNs from the MD simulation
data and computing the shortest paths as well as xPyder for the visualization.
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Allosteric regulation. Sethi et al. (2009) investigated the differences in binding
modes of tRNA:protein complexes using MD simulations and dynamical networks.
In the latter, an interaction between two residues is represented by an edge if it
is present in the majority of the simulation and is weighted by the correlation
between the monomers. Furthermore, they analyzed these networks by applying
several graph theoretical algorithms such as shortest and suboptimal path identi-
fication and community search. This workflow was later implemented as an ex-
tension to the molecular visualization software VMD (Humphrey et al., 1996) and
called NetworkView (Eargle and Luthey-Schulten, 2012). Among other features,
the JGROMACS Java library also aids the generation and analysis of dynamical
networks from GROMACS data (Munz and Biggin, 2012).

The dynamical network approach was further applied to understand the allosteric
immune escape pathways in the HIV-1 envelope glycoprotein by Sethi et al. (2013).
Furthermore, Miao et al. (2013) analyzed the allosteric activation of the M2 mus-
carinic receptor by identifying significant differences in the network of residue in-
teractions between the different forms. The dynamical networks of the enzyme
imidazole glycerol phosphate synthase and the blood coagulation protease throm-
bin during allosteric regulation were also investigated by Manley et al. (2013) and
Fuglestad et al. (2013), respectively. Vanwart et al. (2012) studied the effect of
different network node definitions on the prediction of allosteric regulation in the
imidazole glycerol phosphate synthase and concluded that the entire residue center
of mass needs to be included in the detection of residue interactions. Scarabelli
and Grant (2013, 2014) also compared the network of dynamic communication of
several kinesin motor domains.

Resistance mechanisms in viral proteins. Recently, Xue et al. (2012, 2014a,c)
assembled an analysis framework consisting of MD simulation, binding free energy
calculation, free energy decomposition, substrate envelope analysis, and RIN anal-
ysis using RINalyzer (Doncheva et al., 2011). They applied this framework to
understand the structural and energetic basis of inhibitor and substrate binding
with focus on drug resistance mechanisms. Thereby, a RIN was generated from the
representative structure of each simulation (using the RING web service (Martin
et al., 2011)) and then visualized and analyzed in Cytoscape with the help of RI-
Nalyzer and NetworkAnalyzer (Doncheva et al., 2012a). The main target of their
studies was the HCV NS3/4A protein bound with the protease inhibitors ITMN-
191 (Xue et al., 2012), Vaniprevir and MK-5172 (Xue et al., 2014a), as well as the
allosteric inhibitor 4VA (Xue et al., 2014c). An example for the RINs of the apo
and inhibitor bound HCV NS3/4A protease is shown in Figure 5.2. In addition,
Xue and colleagues analyzed the HCV NS5B polymerase complexed with the non-
nucleoside inhibitors VX-222 and ANA598 (Xue et al., 2014b) as well as the HIV-1
integrase and its integrase strand transfer inhibitors Raltegravir, Elvitegravir, and
Dolutegravir (Xue et al., 2013). Bhakat and colleagues performed the same type
of analysis to understand the impact of resistance mutations on the HIV-1 reverse
transcriptase (Bhakat et al., 2014; Karubiu et al., 2014), while Guariniello et al.
(2014) studied to effect of mutations on the human selenoprotein M.
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Figure 5.2: RIN of the representative protein structure derived from molecular dynamics
simulation of the (A) apo and (B) inhibitor bound HCV NS3/4A protease. Residue nodes
are colored according to their closeness values, while the node size corresponds to their
betweenness values. Edges represent different types of non-covalent residue interactions.
Reproduced with permission from Xue et al. (2014c).

Networks of disrupted residues. Furthermore, the group of V. Daggett devel-
oped a new tool called ContactWalker (Bromley et al., 2013) to analyze differences
in residue interactions between mutant and wild-type protein structures generated
from MD simulations and to highlight networks of disrupted residues. For this pur-
pose, residue contacts were identified for each snapshot and the change of contacts
was computed to identify residues with significant ’residue occupancy difference’.
Bromley et al. (2013) demonstrated the usefulness of their tool by analyzing the
structural consequences of mutations to the α-tocopherol transfer protein. Con-
tactWalker was released as part of the DIVE framework (Bromley et al., 2014)
for analysis of complex data on the example of the Dynameomics data warehouse
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(van der Kamp et al., 2010).

Finally, a related method using slightly different data was recently presented by
van den Bedem et al. (2013). CONTACT generates functional dynamic contact
networks from raw high-resolution X-ray crystallography data. Thereby, confor-
mationally heterogeneous residues and their contacts are summarized into sepa-
rate networks and topological analysis of these networks reveals differences between
room-temperature and cryogenic or wild-type and mutant data sets.

Protein structure prediction. The field of protein structure prediction has also
benefited from the representation of protein structures as networks of residue in-
teractions. Chatterjee et al. compared the network properties of native structures
with predicted models (Chatterjee et al., 2012) and used them to train an SVM for
classifying (Chatterjee et al., 2013) and ranking decoys (Ghosh and Vishveshwara,
2014). The method is called PSN-QA and is available as part of the GraProStr web
service (Vijayabaskar et al., 2011). Zhou and colleagues presented the integrated
score function SVR CAF, which consists of three scores combined by a support vec-
tor regression (Zhou et al., 2014b). One of the scores is based on the average degree
and shortest path length of the RINs generated from the contact energy calculations
on the predicted models. In their next publication, Zhou et al. (2014a) provide a
review on the application of amino acid network properties for the discrimination
of native protein structures from decoys.

Protein complex prediction. At the same time, there have been some attempts
at employing information derived from RINs to rank docking solutions. In 2008,
Chang and colleagues performed a comparative study of different topological pa-
rameters (degree, clustering coefficient and characteristic path length) computed for
RINs constructed from protein complexes (Chang et al., 2008). Interestingly, for
each complex, they created a hydrophobic and hydrophilic RIN that only consists of
interactions between hydrophobic or hydrophilic residues, respectively. The authors
concluded that protein complexes exhibit small-world network properties with large
clustering coefficients and small characteristic path lengths. They demonstrated a
successful combination of average degree and clustering coefficient into a simple
scoring function as well as the further integration with energy-based terms for a
more sophisticated scoring function. This work was further developed by Jiao and
Chang (2011), who proposed the incorporation of contact energies as edge weights
in the RINs and the computation of weighted degree and average nearest neighbors
degree.

Recently, Khashan et al. (2012) developed the SPIDER scoring function by taking
into account the geometry and frequency residue patterns identified by subgraph
mining of native protein interfaces. Notably, to construct the residue interaction
networks, they applied Almost-Delaunay Tessellation, a computational geometry
technique previously used to discriminate native from non-native protein conforma-
tions by Krishnamoorthy and Tropsha (2003).
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Furthermore, the group of Luigi Cavallo released the web-based tools CONSRANK
and CONS-COCOMAPS for measuring the conservation of residue interactions on
the interface of protein complexes (Vangone et al., 2012) and ranking docking decoys
based on their ability to match the most conserved interactions (Oliva et al., 2013;
Vangone et al., 2013; Chermak et al., 2014), respectively. In particular, the authors
represented interface residue interactions as 2D contact maps and used these to
visualize the consensus of multiple docking solutions. Their work is described in
more detail in Section 5.4.

5.2 Methods and Implementation

Here, we introduce the term dynamic residue interaction network (dRIN), which
describes a RIN generated not from a single protein structure but from a set of
structures or a conformational ensemble. We are interested in the variation re-
flected by the individual structures and, at the same time, we greatly benefit from
an overview representation that highlights the similarities and differences in non-
covalent interactions between the amino-acid residues within the whole ensemble.
Such an ensemble might be the result of an experimental technique like nuclear
magnetic resonance spectroscopy (NMR) of a protein, a computational model of
a protein structure or complex, or a molecular dynamics (MD) simulation. For
NMR structures and MD simulations, an average representative structure can be
computed, which, however, is only a static average view of the different conforma-
tions and does not show the individual variation. Thus, we propose the usage of
dRINs as an alternative representation that is enriched with more information. In
the following sections, we will formally define dRINs and give more details on how
they can be generated from ensembles of protein structures.

5.2.1 Definition of dynamic RINs

Given a set of s structures of the same protein, we represent each structure by
a RIN, in which the nodes correspond to the residues and the edges to the non-
covalent residue interactions. Thus, each RIN consists of the same set of residue
nodes R and an individual set of interaction edges E1, . . . , Es that is usually slightly
different for each RIN. For simplicity, we will refer to the set of all edges contained
in any of the s structures as ER =

⋃s
i=1Ei.

For each edge e ∈ ER, we denote the number of networks (structures) that contain
this non-covalent interaction edge as se. Then we define the frequency of occurrence
of the interaction edge e as

f(e) =
se
s

with f(e) ∈ [1/s, 1]. f(e) = 1 when some non-covalent interaction occurs in all
structures, and f(e) = 1/s when the interaction is observed in only one of them.
This score is also referred to as interaction conservation in the CONS-COCOMAPS
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Figure 5.3: Example for a dynamic RIN. A region of the structure from three snapshots
of an MD simulation is visualized in UCSF Chimera (left) and the dynamic RIN for
the whole simulation is displayed in Cytoscape using RINalyzer (right). Residues are
represented as nodes, and both are colored according to secondary structure (helices in
red, sheets in blue, loops in gray). Non-covalent residue interactions are shown as edges
labeled by their frequency of occurrence. The edge line thickness is also proportional
to the edge weight. We observe that the non-covalent interactions between neighboring
residues in sequence are very conserved, while the interactions between spatially close
residues vary depending on the orientation of the side chains and the flexibility of the
backbone. For instance, an interaction between residues 12 and 18 with a frequency of
0.57 is present only in half of the snapshots.

approach (Vangone et al., 2012) and as persistence in the PyInteraph tool (Tiberti
et al., 2014).

Since the edges in a RIN can be weighted, e.g., by interaction strength, we define
the weight of an edge e ∈ Ei in the i-th RINs as wi(e) and can generalize the above
definition for a weighted interaction frequency to

fw(e) =

∑s
i=1wi(e)

s×maxiwi(e)

with fw(e) ∈ [1/s, 1]. The dRIN is built from the set of all residue nodes R and the
union of the edge sets ER, whereas each edge e ∈ ER is weighted by its frequency
of occurrence f(e). An example network is shown in Figure 5.3.
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5.2.2 Ranking residues and interactions

Dynamic RINs provide a quantitative overview of the diversity of structures in
the whole ensemble and, therefore, are a useful tool for studying the individual
structures, their residues and interactions. First of all, we can rank the residue
interactions according to their frequency of occurrence. On top of the list, we
will have the most frequent interactions in the ensemble, while the least frequent
ones will be at the bottom. We can then divide the interactions into two (or
more) groups by setting appropriate thresholds. One group will represent the most
similar interactions among the different conformations and the other group the
most different ones. Depending on the chosen threshold and type of ensemble,
these groups might also be interpreted as conserved, stable, or reliable and variable,
unstable, or unreliable, respectively.

Furthermore, we can convert the edge frequencies into node scores and rank the
residues according to these scores. In this way, we can identify residues with the
most conserved interactions (top of the list) and at the same time, residues with the
most variable interactions. For each node v, let N(v) be the set of its neighboring
nodes. We define the node score

g(v) =

∑
w∈N(v) f(evw)

|N(v)|

where f(evw) is the interaction frequency of the edge between nodes v and w. As
for the interactions, we can rank the nodes using this score and/or set a threshold
and partition them into two (or more) groups. The group of nodes with high score
will correspond to nodes that have on average the most frequent interactions, while
the other group will contain residues with infrequent interactions.

Finally, we can rank the individual RINs generated from structures in the ensemble
based on how many of the most frequent interactions they contain as defined by
Oliva et al. (Oliva et al., 2013). For each network Gi = (R,Ei), we calculate the
sum of interaction frequencies for its edges Ei and normalize it by the total number
of edges:

h(Gi) =

∑
e∈Ei

f(e)

|Ei|
This network score can be used as an alternative to finding a representative structure
for the whole ensemble by choosing the one with the highest score.

5.2.3 Comparison of dynamic RINs

Apart from ranking residues and their interaction according to their abundance in
the ensemble, we would also like to compare two different ensembles of structures/-
conformations using their dRINs. For this purpose, we extend the comparison of
RINs described in the previous chapter to weighted dynamic RINs. For two dRINs
G1 and G2, we create a comparison network Gc, in which the nodes represent aligned
residues and the set of edges is the union of edges E1 ∪E2. It is important to note



132 Protein structure dynamics using RINs

Figure 5.4: Example for a dynamic comparison RIN. The dynamic comparison RIN
is displayed in Cytoscape using RINalyzer. Nodes represent aligned residues and are
labeled by the respective residue number, while edges correspond to non-covalent residue
interactions. The comparison frequency is the difference of interaction frequencies of the
corresponding edges in the networks considered for the comparison. It is used to label
the edges and color them in a red-white-blue gradient. In the cases, in which an edge
was present in only one of the compared networks, the weight corresponds to the original
frequency of occurrence and the edge is shown as a dashed (first network) or dotted
(second network) line.

that, for each edge, we can have three different cases: (1) it belongs to both net-
works, (2) it belongs to the first network only, (3) it belongs to the second network
only; and we keep track of this status. In the special case of weighted dynamic
RINs, we need to transform the weights in such a way that we keep as much infor-
mation about the frequencies as possible. Thus, we introduce the term comparison
frequency, which can be computed using one of the suggested transformations of
the original frequencies.

First, we denote the weight of a comparison network edge as c(e). If this edge
belongs to both networks, we have two weights for it f1(e) and f2(e). If it belongs
to only one of the networks, we set the other weight to be equal to 0. An obvious
transformation is to calculate the difference

c(e) = f1(e)− f2(e)

which results in weight values between −1 and 1. In this way, positive values are
assigned to interaction edges that are more frequently seen in the first dRIN, while
negative values point to interaction edges that are more frequent in the second
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dRIN. An example is shown in Figure 5.4. If do not consider the order of networks,
but we are only interested in the absolute values, we can also generate the weights
between 0 and 1 using the absolute difference:

c(e) = |f1(e)− f2(e)|

However, in both cases, the resulting weights are relative and do not provide infor-
mation about the absolute frequency of the interaction. For example, if the weight
of the comparison edge is 0.5, it might be the case that f1(e) = 0.5 and f2(e) = 0
or that f1(e) = 1 and f2(e) = 0.5.

To overcome this problem, we can compute the ratio of the weights defined as

c(e) =
f1(e)

f2(e)

Now, we have values above 1 for interactions more frequent in G1 and values below
1 for interactions more frequent in G2. Since this transformation can only be used
for f1(e) 6= 0 and f2(e) 6= 0, the weights for edges present only in one network
remain unchanged and are not on the same scale as the transformed weights. In
addition, we obtain weights in a very wide value range (from very small to very
large numbers), depending on the difference in the interaction frequencies.

We can easily handle the second issue and render the values easier to compare using
the logarithm, e.g.:

c(e) = log
f1(e)

f2(e)

Now, as in the first case, positive and negative edge weights are assigned to interac-
tion edges more frequent in either the first or the second network, respectively, while
edge weights of 0 indicate interactions with the same frequency in both networks.
A possible solution to the first issue, e.g. distinguishing transformed from untrans-
formed weights, is to increase or decrease these weights by 1 or −1, respectively.

5.2.4 Implementation details

To our knowledge, none of the previously published tools is capable of generating a
comprehensive set of RINs for all structures in an ensemble as well as an overview
network containing different types of non-covalent residue interactions. Thus, we
have extended the RINerator package (Doncheva et al., 2011) to create the dRINs
presented in the previous section.

RINerator is a package that generates user-defined RINs from a 3D protein structure
and enriches them with additional biochemical information. In contrast to previ-
ous simplistic interaction definition approaches based on spatial atomic distance
between residues, RINerator enables a more realistic representation by considering
different biochemical interaction types, such as hydrogen bonds and interactomic
contacts as described in Section 4.3.5. Recently, we have extended RINerator to
calculate conservation scores from a user-specified multiple sequence alignment file
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and to retrieve biochemical amino acid properties from external resources, such as
AAindex and ConSurfDB. The resulting networks and accompanying data can be
visualized in Cytoscape using the RINalyzer and structureViz apps.

For the purpose of generating dRINs, we have modified RINerator to be capable
of handling multiple PDB structure files as input. This is accomplished in several
steps:

1. The input is a directory of PDB structures and a list of chains/ligands to be
included in the RIN.

2. For each structure the following steps are computed:

• The program Reduce is used to add hydrogen atoms to the structure
(Word et al., 1999b);

• The tool Probe is applied to identify contact dot surfaces (Word et al.,
1999a);

• The contact dots are classified into pre-defined groups of non-covalent
residue interactions (cnt, hbond, ovl, combi and mc, sc, all) 1 based on
the atom type and the specific distance between the contact surfaces;

• Residue interaction networks are saved in SIF format and respective at-
tribute files in TSV format as defined by Cytoscape.

3. RINerator creates a network of all occurring interactions and calculates their
frequencies, which are saved as edge attribute files.

4. The output consists of a dRIN and RINs for all structures with respective
attribute files in TSV format.

Furthermore, we extended the RINalyzer app to support the comparison of weighted
RINs, such as the dynamic RINs described above. The user can specify the numeric
edge attribute to be used for the comparison as well as how the weight difference
should be computed. For the letter, we provide the following four options:

• difference: the weight of the second network edge is subtracted from the
weight of the first network edge

• abs difference: the absolute value of the difference

• ratio: the quotient of the weight of the first network edge and the second
network edge

• log ratio: the logarithm of the ratio

1cnt = contact, hbond = hydrogen bond, ovl = overlap of van der Waals radii, combi =
combined interaction; mc = main chain atoms, sc = side chain atoms, all = all (any) residue
atoms
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The resulting weight values are saved as a new edge attribute called CompWeight
in the resulting network and can be highlighted in the network using an edge color
gradient and different edge line types (see Figure 5.4).

To facilitate the analysis of interface residues and interactions, we defined a simple
procedure for the generation of an interface RIN, which is implemented by both
RINerator and RINalyzer. Given a list of protein chains, we retain each interaction
between residues that belong to different chains. RINerator generates a text file
containing the pair-wise interactions, while RINalyzer directly creates a new net-
work with the appropriate visualization and takes into account the former network
layout and visual style.

5.3 Analysis of MD simulation data

As described in Section 5.1.2, there have been a number of attempts to analyze MD
simulation data with the help of residue interaction networks. However, most of
them are very specific to the problem at hand and even if they provide analytical
tools that might be applied to answer other biological questions, they usually still
lack proper visualizations and the ability to integrate additional data. Here, we show
how to address some of these issues by creating dRINs and visualizing and analyzing
them within Cytoscape. Our approach provides both user-friendly visualizations
that facilitate exploratory analysis as well as sophisticated analysis tools.

5.3.1 Data and experimental setup

The Dynameomics database is a comprehensive resource for molecular dynamics
simulations of over 2000 protein systems (Beck et al., 2008; Jonsson et al., 2009;
van der Kamp et al., 2010). Its main goal is the characterization of the native state
dynamics and the (un)folding pathways of representatives from all known protein
folds. As of 2014, the database contains approximately 20 000 simulations of nearly
800 microseconds combined simulation time.

A further aim of the Dynameomics project is to facilitate the analysis of SNPs and
their effect on the structure, stability, function, and dynamics of proteins. Espe-
cially interesting are mutations that cause structural disruptions at important, but
distant locations in the protein, such as the active site. The database contains
approximately 200 simulations of 31 proteins with single-point mutations and the
corresponding wild-type simulations. In particular, Daggett and colleagues analyzed
the catechol O-methyltransferase (Rutherford et al., 2006, 2008a; Rutherford and
Daggett, 2009), histamine N-methyltransferase (Rutherford et al., 2008b), thiop-
urine S-methyltransferase (Rutherford and Daggett, 2008), DJ-1 (Anderson and
Daggett, 2008), and the DNA glycosylase/β-lyase hOgg1 (Anderson and Daggett,
2009).

After acquiring access to the SQL database Dynameomics, we were able to retrieve
simulation data for 6 different proteins. Each simulation was performed at 310K for
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approximately 31 ns in the micro canonical ensemble using the in lucem molecular
mechanics (ilmm) program (Beck et al., 2010) and underwent an extensive set
of standard analyses and quality control procedures. Multiple (on average three)
simulations were performed for each wild-type and mutated structure.

For each simulation run, we created snapshots at every 0.5 ns. Simulation runs
shorter than 31 ns were filtered out. We combined the data from the different runs
into one dRIN per simulation using the RINerator package. The resulting dRINs
were loaded into Cytoscape using the RINalyzer app. The comparison dRINs were
generated by taking into account the difference in frequencies of occurrence between
wild-type and mutant. All visualizations were generated with UCSF Chimera or
Cytoscape.

5.3.2 Results for L166P mutation in DJ-1

DJ-1, also known as PARK7, is an evolutionary conserved homodimer. The dimer
interface is mainly formed by the α1, α7, α8 helices and the β4 strand of both
subunits (Figure 5.5(a)) (Tao and Tong, 2003). Among others, DJ-1 functions as a
positive regulator of androgen receptor-dependent transcription (Takahashi et al.,
2001; Niki et al., 2003; Xu et al., 2005) and may act as a redox-sensitive chaperone
or a sensor for oxidative stress (Shendelman et al., 2004; Zhou et al., 2006), thereby
protecting neurons against oxidative stress and cell death (Xu et al., 2005).

A mutation in the DJ-1 gene, which leads to a substitution of leucine to proline at
position 166 in the protein structure, has been associated with early onset Parkin-
son’s disease (Bonifati et al., 2003). Different studies have concluded that this
mutation leads to destabilization of the protein structure that prevents the forma-
tion of a dimer (Olzmann et al., 2004; Görner et al., 2004; Shendelman et al., 2004;
Malgieri and Eliezer, 2008) but may lead to the formation of higher-order protein
complexes (Macedo et al., 2003; Baulac et al., 2004). Here, we studied the effect of
mutation L166P on DJ-1 by comparing the dRINs created from MD simulations of
the wild-type and mutant structures.

Anderson and Daggett (2008) performed 7 MD simulations of 31 ns length (3 wild-
type runs and 4 runs with the L166P mutation) starting with the wild-type structure
with PDB identifier 1PDV (Tao and Tong, 2003). They concluded that L166P has
a destabilizing effect on several structural elements important for protein stability
and dimerization, including the region around Cys-106, a residue important for the
proposed chaperone function of DJ-1.

We combined the data from the 7 runs to generate one dRIN for the wild-type
and one for the mutant simulations. Since Anderson and Daggett (2008) observed
that the L166P simulations have a broader distribution of conformations and Cα-
RMSD values than the wild-type (in the last 10 ns), we also generated dRINs for the
last 10 ns and compared them regarding different aspects. Both networks contain
the same number of nodes (187) and similar number of edges (985 vs. 964). The
distributions of edge frequencies for the last 10 ns of the simulations are very similar
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(a) (b)

Figure 5.5: Ribbon representation of the DJ-1 structure (PDB identifier 1PDV) as
shown in UCSF Chimera (a) and comparison dRIN visualized in Cytoscape (b). Rainbow
coloring of the secondary structure elements was used for both ribbons and residue nodes.
Residue 166 is highlighted by a stick representation in the structure and a diamond shape
in the network view. Network edges correspond to non-covalent residue interactions that
are more frequent in either the wild-type (blue line) or the mutant simulation (red line).

(Figures B.8 and B.9). So far these values do not support the expectations for a
broader conformation distribution.

Furthermore, we performed a topological analysis on the networks with NetworkAn-
alyzer (Assenov et al., 2008). We identified small differences between the wild-type
and L166P dRINs for the following simple topological parameters: network radius
(4 vs. 5), network diameter (7 vs. 8), characteristic path length (3.616 vs. 3.644),
and average clustering coefficient (0.5 vs. 0.496). These results rather support the
observations of Anderson and Daggett (2008) that the wild-type structures are more
compact than the mutant ones.

In the next step of our analysis, we compared the wild-type and mutant dRINs for
the whole simulations by computing the difference of edge frequencies. The resulting
comparison network is shown in Figure 5.5(b). We color-coded the residues and
network nodes based on secondary structure elements and highlighted L166P by a
diamond shape to facilitate the visual exploratory analysis. At first sight, we can
clearly notice a significant change in local residue interactions around the L166P
mutation as indicated by the thick red and blue edges. Furthermore, there are a few
edges throughout the whole structure that stand out and seem to be mostly located
between nodes with different colors, e.g. belonging to different secondary structure
elements. We focus on these two groups of edges for our further investigations.

A close-up on the region of residue 166 in the 3D structure and the comparison
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(a) (b)

Figure 5.6: Close-up on the mutation L166P (a) in the DJ-1 wild-type structure (PDB
identifier 1PDV) and (b) in the comparison dRIN. Rainbow coloring of the secondary
structure elements was used for both ribbons and residue nodes. Residue 166 is shown as
a stick representation in the structure and a diamond shape in the network view. Network
edges correspond to non-covalent residue interactions that are more frequent in either the
wild-type (blue line) or the mutant simulation (red line). Large difference in the frequency,
e.g., above 0.1 or below -0.1, are shown by edge labels.

dRIN is shown in Figure 5.6. The high number of blue edges incident to residue
166 indicates that many of the interactions of this residue with its neighbors are
primarily present in the wild-type simulations compared to the mutant simulations.
In particular, these are interactions with residues in helices α8 or α1. At the same
time, there is an increase of interactions of residue 166 with its neighbors in helix
α7 upon mutation (red edges). Table 5.1 shows details for the nine edges with the
largest difference in edge frequency, i.e., below −0.4 and above 0.4. Three of these
edges involve residue 166 and two others are between its direct neighbors. The
remaining four edges are located in two different regions of the network as can be
seen in Figure 5.7 and are discussed in more detail below. Overall, these results
support the hypothesis that the L166P mutation has a significant effect on the
interactions between the secondary structure elements important for dimerization
(helices α1, α7, α8).

Furthermore, we selected all edges with a comparison weight between −1.0 and −0.2
or between 0.2 and 1.0, i.e., corresponding to the interactions most frequent either
in the mutant dRIN or in the wild-type dRIN, respectively, and highlighted them
in the comparison network (Figure 5.7). In particular, residue 67, which is located
in one of the central β-strands, switches its interaction partners from residues 70
and 91 in the wild-type simulation to residues 6 and 34 in the mutant simulation,
respectively. These changes might lead to a disruption of the β-sheet structure and
to a shift of helix α1. Such a shift is also likely to happen since the remaining
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Table 5.1: Largest interaction differences between wild-type and mutant simulation

Interaction Edge CompWeight Edge Freq WT Edge Freq Mut

A:162: :PHE A:165: :ALA 0.85 0.98 0.13
A:166: :LEU A:182: :LYS 0.67 0.86 0.19
A:166: :LEU A:181: :VAL 0.44 0.44 0.00
A:162: :PHE A:185: :LEU 0.44 0.44 0.00
A:89: :LYS A:114: :ALA -0.45 0.01 0.45
A:67: :TYR A:6: :ALA -0.47 0.35 0.82
A:34: :THR A:67: :TYR -0.59 0.32 0.91
A:166: :LEU A:164: :PHE -0.60 0.13 0.72
A:89: :LYS A:116: :GLU -1.00 0.00 1.00

residues from helix α1 shown in this network (dark blue nodes) have interactions
with other helices only in the wild-type simulations (blue edges to orange and green
nodes). Another region with a large change in interaction frequency is located
around residue 89. It makes more contacts with residues from the neighboring helix
in the mutant simulation than in the wild-type. One possible explanation is that the
whole structure widens slightly across an axis parallel to helices α1 and α7 as can
be expected by a substitution to a proline in one of these helices (see Figure 5.5(a)).

Anderson and Daggett (2008) investigated the effects of the L166P substitution
solely based on the data from the MD simulations. Thus, they focused on prop-
erties such as the distribution of Cα-RMSD deviations and fluctuations, stability
of secondary structure elements (mostly helices), atomic contacts between selected
residues as well as interactions on the dimer interface. They observed that the
L166P mutation causes increased backbone mobility and a loss of helical content,
which in turn most probably affects the formation of the dimer. Our topological
analysis and comparison of the wild-type and mutant dRINs agrees with these find-
ings, although we did not consider any physico-chemical properties of the residues
and how they change after the mutation. Enriching the comparison dRIN with
information of the change of residue properties would be a good direction for future
investigations.

In addition, Anderson and Daggett (2008) discussed the role of residue 106 for
the function of DJ-1 and the disruption of its interactions as having a significant
effect. In this case, we could not draw any conclusions about the effect of the
interaction changes on residue 106 from the dRIN comparison as its interactions
do not change significantly between the two simulations. This might be a result
of our data preprocessing step, where we combined the three simulation runs for
the wild-type and mutant structure into one dRIN, respectively. It is likely that
investigating the simulations runs one by one will reveal more detailed information
about the changes in interactions.

Overall, we demonstrated that our RIN-based approach for comparison of MD sim-
ulations can be successfully applied to investigate the effect of mutations on protein
structure. Not all of our conclusions overlap with those drawn from a typical MD
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Figure 5.7: Interaction differences between wild-type and mutant simulation shown as
edges with large difference in frequencies (above 0.2 and below -0.2). Network edges
correspond to non-covalent residue interactions that are more frequent in either the wild-
type (blue line) or the mutant simulation (red line). Network nodes are colored according
to the secondary structure elements they belong to and residue 166 is highlighted by a
diamond shape.

simulation analysis (Anderson and Daggett, 2008), but we are able to provide ad-
ditional insights on the molecular mechanisms upon mutation in DJ-1 as well as
easily explorable and interpretable visualizations.

5.4 Analysis of docking structures

Despite the large number of docking approaches and tools available nowadays, state-
of-the-art methods include a near-native docking model, i.e., a good prediction, in
the top 10 only in 30-40 % of the cases (Schneidman-Duhovny et al., 2012). It
has been observed that even if the overall predicted complex quality is not accept-
able, many methods generate models with a native interface (up to 24 % based
on an evaluation of the predictions for 20 CAPRI targets) (Lensink and Wodak,
2010). This suggests that predictions at the top ranks are more enriched in correct
interfaces than in correct complexes.

Therefore, we propose to regard the set of docking solutions as an ensemble of dif-
ferent conformations of the same protein complex. In this way, we can apply the
same dynamic RIN methodology as for MD simulations to find similarities and dif-
ferences among the top-ranked docking models. In particular, we focused on the
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identification of the most frequent interactions and residues in the interface of the
docked structures and the comparison with the true (native) interface. To evaluate
our approach, we performed a large-scale analysis of three benchmark sets of dif-
ferent sizes and generated by different docking algorithms. We also reimplemented
the recently released CONSRANK score for ranking docking solutions based on
the contact (interaction) frequencies (Oliva et al., 2013; Vangone et al., 2013) and
compared our results to it, where applicable.

5.4.1 Experimental setup

Essentially, each benchmark set comprises a number of decoys (docking solutions)
for a set of targets (protein complexes). For each target, we have the structure of the
native (true/correct) complex and among the decoys, there are a number of near-
native models. The correctness of a solution is usually evaluated by computing the
root-mean-square deviation (RMSD) of the target and decoy. Thereby, we distin-
guish between RMSD of the backbone atoms of the ligand (LRMSD) and RMSD of
the backbone atoms of the interface residues (IRMSD). Many other properties, such
as the fraction of native (fnat) and non-native residue-residue contacts (fnon−nat) in
the predicted and native complex, can also be considered in the evaluation (Mendez
et al., 2005).

In order to focus on the docking interfaces, for each decoy structure, we create an
interface RIN (iRIN), which contains only non-covalent residue interactions between
residues that belong to either of the two docked structures. For each target, we
also create a dynamic interface RIN (diRIN), in which the residue interactions are
weighted by their frequency of occurrence in all the decoy interfaces. Then we
compare the diRIN to the correct (target) interface RIN. For the sake of simplicity,
we only considered combi edges, which indicate a non-covalent interaction of any
type between two residues. In order to directly compare our results to CONSRANK,
we also created RINs with dist edges, where two nodes are connected by an edge if
any of their atoms are closer than 5 Å.

Assuming we have enough near-native interfaces among our solutions, we expect
that the most frequent residue interactions in the diRIN will correspond to the
interactions in the interface of the target. To assess the prediction performance of
our methods, we generate the receiver operating characteristic (ROC) curve with
the frequency of occurrence as ranking criteria (labeled as Ranked Int). Thereby, at
each rank, we plot the fraction of true predicted interactions out of the interactions
above the current rank (TPR = true positive rate) vs. the fraction of false predicted
interactions out of the interactions below the current rank (FPR = false positive
rate). Here, we consider as true only the interactions that were successfully mapped
between the target and decoy interfaces.

In addition, we perform the same analysis for the residues in the interface ranked by
their involvement in the most frequent interactions (labeled as Ranked Res). This
is less discriminative than looking at the individual residue interactions because
the true interface residues might actually be in the top solutions, but their correct
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Table 5.2: Summary of docking benchmark sets. (avg = average)

Benchmark set Targets Decoys (total) Decoys (avg) Near-native (avg)

DOCKGROUND 61 6605 108.3 9.7
CAPRI 6 1833 305.5 20.7
PatchDock 176 35200 200 2.0

interaction partners are not identified due to a small shift in the position.

Finally, we re-rank the docking solutions based on their ability to match the most
frequent interactions (labeled as Ranked Mod) as suggested by CONSRANK (Oliva
et al., 2013) and as explained above. Here, we do not compare the decoy interface
to the target interface based on residue interactions, but use the RMSD criteria to
denote predicted near-native solutions as true positives.

Since docking solutions are usually ranked according to method-specific criteria,
we make use of this ordering to analyze the top 10, 25, 100 or 200/All available
solutions. Thereby, we aim at finding the smallest group of top solutions that
contains enough information to reconstruct the near-native docking interface.

5.4.2 Benchmark datasets

We chose three different benchmark sets: DOCKGROUND (Liu et al., 2008),
CAPRI (Janin, 2007, 2010), and PatchDock (Schneidman-Duhovny et al., 2005;
Hwang et al., 2010). Table 5.2 lists the basic characteristics of the three sets. The
CAPRI dataset is very small with only 6 targets, but contains the highest number
of near-native models. The DOCKGROUND dataset is more diverse and consists of
62 targets. We chose these two datasets because they were used for the evaluation
of the CONSRANK (Oliva et al., 2013) approach. In addition, we analyzed a larger
dataset comprising docking predictions generated by the PatchDock server for 176
targets of varying difficulty. For this dataset, we focused on the identification of
interface residues and interactions given different sets of top solutions.

DOCKGROUND benchmark

The DOCKGROUND benchmark set comprises 61 complexes from the Dockground
unbound benchmark set (Liu et al., 2008). For each complex, the top 100 non-native
decoys with the highest surface complementarity scores as well as at least one near-
native solution were included. As for the other datasets, we considered all models
with LRMSD ≤ 10 Å as near-native. The docking decoys were built by the GRAMM-
X docking web server (Tovchigrechko and Vakser, 2006). The underlying method
first employs an FFT-based global search algorithm on a fine grid with a projec-
tion of a smoothed Lennard-Jones potential function to account for conformational
changes. Then a rigid body minimization with the same potential is performed to
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select one representative prediction for each local minimum. Finally, the remaining
models are re-scored based on a combination of empirical and standard force-field
energy terms (Tovchigrechko and Vakser, 2005). The benchmark set is available for
download from http://dockground.bioinformatics.ku.edu/.

CAPRI models

The CAPRI set consists of 6 targets (T24, T25, T26, T29, T32, and T36) with
at least one prediction of acceptable quality (Janin, 2007, 2010). For each target,
individual groups that develop docking procedures or automatic web servers can
submit up to 10 predictions of the three-dimensional structure of the interacting
proteins. Between 30 and 40 predictor groups usually participate in each round and,
for the selected targets, there were 37, 37, 37, 39, 36, and 32 groups, respectively.

T24 and T25 were the complex between Arf1, a small G-protein, and the Arf1
binding domain (ArfBD) of ARHGap21 (Menetrey et al., 2007). In T24, ArfBD
was built by homology, while in T25, the bound version from the complex was
used. As expected, the prediction results were quite poor for T24 and improved
significantly improved for T25 (Lensink et al., 2007). T26 was the TolB-Pal complex
associated with the maintenance of the E. coli outer membrane (Bonsor et al., 2007).
Although the interface area is large and well buried, quite a few predictor groups
submitted acceptable solutions, but, on average, the quality was not as good as for
the previous target (Lensink et al., 2007).

T29 was the Trm8/Trm82 complex that carries out guanine methylation in the
tRNAs of the yeast S. cerevisiae (Leulliot et al., 2008). T32 was a complex between
the subtilisin Savinase, a microbial serine protease, and the α-amylase subtilisin
inhibitor BASI (Micheelsen et al., 2008). T36 was the association between the
GH10 and CBM22 domains of the Xyn10B xylanase, an enzyme involved in plant
cell wall degrading (Najmudin et al., 2010). As can be seen from the number of
near-native models in Table 5.2, the results for T29 and T32 were quite good and
for T36 very poor, since the predictors failed to reproduce the association mode of
the covalently linked domains (Lensink and Wodak, 2010).

The submitted predictions are classified by the CAPRI assessment (Mendez et al.,
2003; Lensink et al., 2007) into the following quality categories: high, medium,
acceptable, incorrect, and clashes, whereas the last group is excluded from the
method evaluation. We considered solutions in one of the three categories high,
medium, acceptable as near-native. This means that they have fnat ≥ 0.1 and
LRMSD ≤ 10 Å or IRMSD ≤ 4 Å. The data is available for download from ftp:

//ftp.ebi.ac.uk/pub/databases/msd/capri/. In addition, we excluded models
for which the residue identifiers cannot be mapped well to the target.

PatchDock models

This dataset contains the 176 targets from the Benchmark set 4 (Hwang et al.,
2010) and the top 200 decoys generated for each target by the PatchDock web

http://dockground.bioinformatics.ku.edu/
ftp://ftp.ebi.ac.uk/pub/databases/msd/capri/
ftp://ftp.ebi.ac.uk/pub/databases/msd/capri/
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server (Schneidman-Duhovny et al., 2005). PatchDock employs a local shape feature
matching technique for searching the conformational space (Schneidman-Duhovny
et al., 2003). Then the predictions are scored based on geometric fit and atomic
desolvation energy. Finally, redundant solutions are excluded using RMSD-based
(default threshold 4 Å) clustering. Since PatchDock is a geometry-based approach,
it might rank wrong solutions higher than the correct one if they have significantly
larger geometrical compatibility.

In contrast to the other benchmark sets considered in this work, this dataset contains
on average only 2 near-native models within the best 200 predictions per target.
This benchmark set was originally generated by Dina Schneidman-Duhovny who
shared it with us in the course of our cooperation. For each target, we used up to
several thousands of automatically generated decoys. However, because of the large
number of targets, we considered only the top 200 decoys. We defined a solution as
near-native if LRMSD ≤ 10.0 Å or IRMSD ≤ 4.0 Å.

5.4.3 Related method

The first approach to study the consensus of docking solutions, CONS-COCOMAPS,
was introduced by Vangone et al. (2012). It relies on the idea of contact conservation
defined as the count of residue contacts that are shared by more than one predicted
complex. A contact is defined for a residue pair if any pair of their atoms is closer
than a distance cut-off of 5 Å. The authors introduce the residue conservation rate
CR as

CRkl =
nckl
N

where nckl is the number of models, where residues k and l are in contact, and
N the total number of docking models. This score corresponds to our definition of
interaction frequency. In the paper, the authors focused on the contact conservation
score between two or more docking models as well as on the amount of inter-residue
contacts that are conserved in a given fraction of models.

As a benchmark set, Vangone et al. used the CAPRI dataset introduced in the pre-
vious section. As expected, they observed that the pair-wise conservation score be-
tween individual models decreases with decreasing LRMSD and that the inter-residue
conservation rate for the models submitted by the same predictor is very variable
(Vangone et al., 2012). Furthermore, the success of the predictor might correlate
with high conservation rate, but not necessarily. Most importantly, the authors
noticed that several of the most conserved contacts correspond to native contacts.
In contrast to our work, they did not comprehensively investigate whether the con-
servation rate can be used for the prediction of interface contacts and residues.

Building upon CONS-COCOMAPS, Vangone et al. (2013) and Oliva et al. (2013)
conceived the CONSRANK algorithm for scoring docking solutions based on the
conservation rate. The authors defined a score of average conservation of inter-
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residue contacts for each docking model i:

Si =

∑Mi

1 CRkl

Mi

where Mi is the total number of inter-residue contacts in model i. Then the docking
solutions are re-ranked based on this score. Vangone et al. evaluated their approach
on three different datasets, two of which, CAPRI and DOCKGROUND, are also
included in our evaluation. Oliva et al. demonstrated the performance of the
approach on an extended set of CAPRI targets.

Both publications show that the method performs well on average according to the
AUC (0.758, 0.654, 0.870, 0.819) and number of NL solutions in the top 10 rank
positions (4.8, 1.7, 6.7, 5.0) for the RosettaDock, DOCKGROUND, CAPRI, and
extended CAPRI dataset, respectively. Based on the results, Vangone et al. con-
cluded that the approach performs better on diverse sets of docking solutions such
as the CAPRI one (Vangone et al., 2013). They also observed that the number of
near-native models strongly influences the performance of the method, but does not
clearly relate to the average conservation score Si of the top solution. Furthermore,
the authors showed that the cut-off distance used to define residue contacts did not
have an effect on the performance. In addition, Oliva et al. demonstrated that, on
the extended CAPRI dataset, CONSRANK significantly outperforms an RMSD-
based consensus approach that ranks the models based on their average pair-wise
similarity (measured as LRMSD) to all other models (Oliva et al., 2013).

5.4.4 Results for DOCKGROUND set

In the following, we will describe and discuss the results we obtain by analyzing
the DOCKGROUND benchmark sets using dynamic RINs. We generated diRINs
(dynamic interface RINs) from the top 10, 25, 100 and all decoys of each target. It
is important to note that the difference between top 100 and all is that all contains
near-native models that did not rank within the top 100 solutions according to the
docking criteria. We considered two types of edges: combi, any non-covalent residue
interaction, and dist, distance between the residues below 5 Å. Then we ranked the
interactions and residues in the diRINs based on their frequency of occurrence and
assessed how good the ranking performs in terms of identifying the true interface
interactions and residues. Finally, we ranked the individual iRINs, e.g., the interface
RIN for each decoy, based on the fraction of most frequent interactions they contain.
We evaluated the performance of our dRIN-based method to rank near-native decoys
on top of the list and compared the results to CONSRANK.

The results of our analyses on the DOCKGROUND set are summarized in Table 5.3
and Figure 5.8. We observe good performance of our method for ranking interac-
tions, residues or models with best AUC values of 0.801± 0.162, 0.747± 0.125, and
0.658± 0.282, respectively. Notably, the standard deviation, in particular for lower
N is very high. This might be explained by the fact that, for some targets, the
docking approach performs well and ranks solutions with near-native interface on
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Table 5.3: Average ranking performance on the DOCKGROUND set for the 61 targets
and top 10, 25, 100, and all decoys available for each target as well as the number
of all models and near-native models considered for each group. The performance for
ranking models using combi and dist edges is given separately. The AUC values for
ranking interactions, residues, or models for each target are plotted in Figures B.10, B.11,
and B.12.

average (stdev)
All models top 100 top 25 top 10

# Models 108.279 (3.282)
# Near-native 9.656 (7.305) 2.770 (7.263) 0.705 (2.929) 0.377 (1.380)

AUC Ranked Mod combi 0.658 (0.282) 0.288 (0.262) 0.325 (0.291) 0.379 (0.284)
AUC Ranked Mod dist 0.656 (0.281) 0.297 (0.259) 0.331 (0.302) 0.386 (0.300)
AUC CONSRANK 0.654 (0.281)

AUC Ranked Int combi 0.779 (0.169) 0.472 (0.260) 0.342 (0.309) 0.262 (0.315)
AUC Ranked Int dist 0.801 (0.161) 0.491 (0.233) 0.367 (0.288) 0.321 (0.337)

AUC Ranked Res combi 0.732 (0.126) 0.622 (0.126) 0.576 (0.155) 0.560 (0.154)
AUC Ranked Res dist 0.747 (0.125) 0.639 (0.135) 0.604 (0.164) 0.576 (0.155)

high ranks, while for others it fails. Since our method is based on the frequency of
interactions in the given set of docking decoys, it is likely that we find the wrong
interface if it is more frequently contained in the incorrect solutions on top of the
ranking list.

As can be expected, the number of near-native models increases with the threshold
(top N), but it is noticeable that there are almost no near-native models in the
top 10 / 25 solutions (Table 5.3). From an average of 9.7 near-native models in
all decoys, there are only 2.8 in the top 100 decoys, and less than 1 (0.4 and 0.7)
in the top 10 and 25, respectively. Such low numbers of near-native models are
one of the reasons why the performance of our method for the top 10, 25 and 100
models is significantly lower than for all solutions as also shown in the CONSRANK
publication (Vangone et al., 2013).

We observe that our method performs as well as CONSRANK (AUC 0.654) for
both dist (AUC 0.656) and combi edges (AUC 0.658). Although the performance
of our dRIN-based method for ranking decoys is slightly better with combi edges,
it appears to be significantly better with dist edges for ranking interactions (AUC
increases from 0.784 to 0.801) and it remains the same for residues (AUC 0.747).
One possible interpretation is that distance edges are less specific than non-covalent
interactions and thus better for matching the true interface interactions, but not for
ranking the decoys. In contrast, the residue score, which is the average interaction
frequency, is not affected by the type of edges. In the following, we focus on the
results with combi edges as they are in general more informative and are an integral
part of our method.

We compared the performance of our ranking method on the different sets of docking
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(c) (d)

(e) (f)

Figure 5.8: Box-and-whisker plot and distribution of AUC values for ranking interface
interactions ((a) and (b)); interface residues ((c) and (d)); and models using interaction
frequency ((e) and (f)) in the DOCKGROUND set. In each case, the AUC values are
computed for all 61 targets and the top 10, 25, 100 and All decoys available for each
target.

models (top 10, 25, 100 and all). In contrast to our expectations, even the top 100
decoys do not seem to be enough to accurately identify the true interface interactions
or rank the models based on the interaction frequency. This is not the case for
ranking residues, but the performance is still not very convincing with AUC values
of 0.560, 0.576 and 0.622 for top 10, 25, and 100 decoys, respectively. Here, we
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also observe high variance in the AUC values, which indicates that there are a few
outliers for which the ranking succeeds exceptionally well. For ranking residues
or interactions, the results improve with increasing number of decoys considered
for the analysis (See Figures 5.8(a) and 5.8(c)). As expected, the more models
are available, the easier it becomes to gather enough information about the true
interface and identify it correctly.

Interestingly, this is not the case for ranking models, where the performance of our
method slightly drops when more decoys are included in the analysis and drastically
increases when all models are considered (Figure 5.8(e) and 5.8(f)). The main
difference between the top 100 and the All set is that the former contains less
near-native models than the latter as can be easily recognized in Figure 5.8(b),
Figure 5.8(d), and Figure 5.8(f). For both ranking interactions and residues, we see
an increase in AUC values when the near-native models are included, but the change
is more significant for the former. Thus, the ranking of models and interactions is
effected by the ratio of near-native models, while the residues method is more robust
in this regard. We should also keep in mind that this behavior is partially caused
by the uneven number of near-native models compared to the incorrect models.

Furthermore, we studied the effect of near-native models, interface size and fre-
quencies on the performance of our dRIN-based method (Figure 5.9). The plots of
number of near-native models versus AUC values (see Figures 5.9(a) and 5.9(b))
indicate that the performance for identifying interface interactions and residues im-
proves for targets with more near-native models, but there is no clear correlation
between them, especially for residues. As expected, we also observe that even if
the number of near-native models is very low, some models still contain enough
information about the true interface, and AUC values can be as large as 0.9.

In addition, we plotted the number of true interface interactions and residues in the
diRINs (see Figures 5.9(c) and 5.9(d)) versus AUC. For ranking interactions, we can
see a clear trend of improvement when increasing the number of true interactions.
However, this is not the case for ranking residues since the number of true residues
does not seem to influence the performance of our method. We also investigated
the dependency between the interaction and residue frequency scores at 0.05 FPR
(top 5 % of the data) and the AUC values (see Figures 5.9(e) and 5.9(f)). Here,
we can distinguish quite well between the different groups (top 10, 25, 100, All),
since the scores decrease with the increase of the number of models considered for
the analysis. However, no clear trend for the success of the approach emerges.
Finally, we checked for a relationship between the number of residues / interactions
in the diRIN and the performance of our ranking method, but did not observe any
particular effect (data not shown).

More details for individual targets when considering all models are shown in Ta-
ble 5.4. Here, we can clearly identify the targets, for which the performance of our
method for ranking decoys using interaction frequency is worse as the ones that
have the lowest number of near-native models. Of course, this is partly caused by
the evaluation procedure and the unbalance between correct and incorrect cases,
which are needed for the computation of TPR and FPR. If we exclude the entries



5.4 Analysis of docking structures 149

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Dependencies between performance for ranking interactions or residues
and the number of near-native models per target (a) and (b), the number of true (target)
interface interactions (c) and residues (d) in the diRIN, and the interaction (e) and residue
(f) frequency scores at 0.05 FPR (top 5 %) in the DOCKGROUND set.



150 Protein structure dynamics using RINs

Table 5.4: Ranking performance on the DOCKGROUND set per structure including
the number of models considered for the analysis as well the average number of residues
(Res) and interactions (Int) in the target interface. Average values in parentheses were
obtained for targets with > 2 near-native models (NM).

AUC Ranked AUC Ranked
PDB Chains # Models # NM Res Int Int Mod Mod CONSRANK Int Res

combi combi dist combi dist dist combi combi

1a2k AB:C 102 2 33 38 48 0.350 0.295 0.295 0.585 0.556
1a2y AB:C 110 10 32 31 44 0.557 0.541 0.536 0.701 0.462
1akj AB:DE 110 10 38 35 60 0.898 0.893 0.894 0.739 0.842
1avw A:B 110 10 40 49 71 0.681 0.660 0.656 0.848 0.846
1bth LH:P 101 1 49 58 92 0.180 0.180 0.190 0.436 0.555
1bui1 B:C 110 10 26 28 57 0.865 0.860 0.854 0.879 0.714
1bui2 A:C 110 10 32 23 42 0.843 0.818 0.822 0.871 0.801
1bvn P:T 110 12 44 43 73 0.748 0.766 0.770 0.879 0.682
1cho E:I 110 15 14 11 18 0.731 0.673 0.688 0.930 0.868
1dfj E:I 109 10 45 37 68 0.812 0.775 0.774 0.874 0.842
1e96 A:B 110 10 26 27 40 0.836 0.839 0.839 0.896 0.858
1ewy A:C 110 10 29 22 45 0.603 0.638 0.624 0.700 0.716
1ezu AB:C 110 10 56 68 102 0.190 0.190 0.190 0.711 0.745
1f51 AB:E 110 10 44 38 62 0.720 0.717 0.735 0.768 0.690
1f6m A:C 110 10 39 39 56 0.324 0.367 0.360 0.525 0.628
1fm9 A:D 110 13 41 40 66 1.000 1.000 1.000 0.993 0.945
1g20 AB:EF 110 10 78 83 137 0.737 0.756 0.746 0.833 0.624
1g6v A:K 108 8 26 27 45 0.361 0.313 0.286 0.428 0.603
1gpq A:D 110 10 33 37 54 0.924 0.917 0.911 0.956 0.899
1gpw A:B 110 18 37 37 68 0.990 1.000 1.000 0.952 0.883
1he1 A:C 110 13 37 39 56 0.967 0.981 0.979 0.829 0.743
1he8 A:B 101 1 17 16 30 0.000 0.000 0.000 0.323 0.373
1hxy AB:D 102 2 20 17 35 0.235 0.145 0.145 0.652 0.637
1jps LH:T 110 10 30 35 53 0.830 0.826 0.829 0.959 0.858
1ku6 A:B 110 10 45 50 74 0.738 0.708 0.706 0.797 0.769
1l9b LMH:C 110 10 23 16 38 0.567 0.563 0.557 0.899 0.731
1ma9 A:B 110 10 71 65 112 0.850 0.857 0.849 0.798 0.763
1nbf A:D 110 10 49 47 86 0.683 0.714 0.713 0.785 0.807
1ook AB:G 104 4 25 22 31 0.538 0.570 0.552 0.667 0.580
1oph A:B 110 10 35 43 62 0.911 0.896 0.888 0.904 0.857
1p7q AB:D 104 4 38 34 54 0.418 0.440 0.440 0.628 0.683
1ppf E:I 110 10 32 39 51 0.988 0.992 0.992 0.871 0.767
1r0r E:I 110 12 34 44 70 0.706 0.720 0.722 0.903 0.813
1r4m AB:I 101 1 55 63 95 0.070 0.070 0.070 0.414 0.654
1s6v A:B 104 4 12 8 15 0.405 0.390 0.390 0.797 0.486
1t6g A:C 110 57 41 43 69 0.955 0.951 0.951 0.929 0.938
1tmq A:B 110 10 43 43 75 0.558 0.574 0.586 0.820 0.599
1tx6 A:I 110 10 45 50 76 0.506 0.483 0.482 0.871 0.663
1u7f A:B 110 10 33 32 51 0.839 0.849 0.847 0.841 0.761
1uex AB:C 101 1 32 27 40 0.090 0.210 0.210 0.461 0.646
1ugh E:I 110 12 47 50 82 1.000 1.000 1.000 0.849 0.783
1w1i A:F 104 4 32 34 56 0.775 0.743 0.742 0.911 0.787
1wej LH:F 110 10 16 17 21 0.735 0.727 0.729 0.894 0.846
1wq1 R:G 110 12 44 44 91 0.716 0.693 0.697 0.861 0.796
1xd3 A:B 110 10 25 26 40 0.757 0.720 0.722 0.817 0.730
1xx9 A:CD 102 2 69 82 133 0.295 0.265 0.255 0.638 0.563
1yvb A:I 110 10 29 30 50 0.650 0.650 0.650 0.878 0.819
1zy81 AB:K1 110 10 31 32 52 0.904 0.956 0.999 0.881 0.813
1zy82 AB:K2 110 10 31 32 47 0.988 0.996 0.955 0.976 0.858
2a5t A:B 101 1 40 40 54 0.020 0.090 0.090 0.408 0.550
2bkr A:B 110 11 54 62 90 0.782 0.787 0.788 0.828 0.697
2bnq AB:DE 101 1 31 28 44 0.000 0.000 0.000 0.299 0.441
2btf A:P 110 10 43 46 78 0.989 0.998 0.998 0.900 0.743
2ckh A:B 110 10 26 25 37 0.726 0.719 0.722 0.827 0.756
2fi4 E:I 110 10 32 41 59 0.860 0.837 0.837 0.828 0.806
2goo A:C 110 10 28 29 40 0.816 0.738 0.734 0.842 0.796
2kai AB:I 110 11 34 42 64 0.713 0.708 0.700 0.798 0.724
2sni E:I 110 10 35 46 71 0.729 0.700 0.692 0.863 0.834
3fap A:B 110 10 18 15 26 0.738 0.737 0.734 0.839 0.761
3pro A:C 110 17 44 44 83 0.926 0.966 0.967 0.866 0.795
3sic E:I 110 10 40 50 74 0.816 0.820 0.817 0.884 0.880

average 108.279 9.656 36.525 38.016 60.869 0.658 (0.748) 0.656 (0.745) 0.654 (0.743) 0.779 (0.833) 0.732 (0.763)
stdev 3.282 7.305 36.192 15.447 24.790 0.282 (0.187) 0.281 (0.189) 0.281 (0.191) 0.169 (0.105) 0.126 (0.103)



5.4 Analysis of docking structures 151

with only 1 or 2 near-native models (1a2k, 1bth, 1he8, 1hxy, 1r4m, 1uex, 1xx9,
2a5t, 2bnq), we observe an increase of AUC from 0.658 to 0.748 for our approach
and from 0.654 to 0.743 for CONSRANK. Still there are three outliers (1ezu, 1f6m,
1g6v), for which both approaches for ranking the docking models perform poor
(AUC values below 0.5) even though the number of near-native models is as high
as for most other targets (between 8 and 10). In contrast, for three targets (1fm9,
1gpw, 1ugh), the near-native models are ranked on top, resulting in an AUC of
1.0. We show the distribution of decoy IRMSD for these six targets in Figure B.13.
The main difference is that, for the unsuccessful targets, there are almost no other
models with low IRMSD apart from the near-native models, while there are many
with high IRMSD, e.g., the decoys are biased towards a wrong solution.

For ranking interactions and residues, AUC increases only by 0.05 and 0.03, re-
spectively, when excluding models with low number of near-native models. This is
expected given the conclusions from Figure 5.8 and 5.9 that the performance of our
method for ranking interactions and residues increases with the number of models
considered for the analysis and is not influenced by the fraction of near-native mod-
els to such an extent as for re-ranking the models. We also see that our approach
performs better than a random predictor on most targets except those with only 1
near-native model.

Furthermore, Table 5.4 contains the number of interactions in the target interface
defined by our approach using non-covalent interactions (Int combi) and by CON-
SRANK using only distance cutoff (Int dist), whereas the latter are significantly
larger. In their paper, the authors of CONSRANK demonstrate that the distance
cutoff does not have an effect on the performance of their method. Here, we observe
the same trend when comparing our results to theirs. However, the clear difference
in the number of interface interactions means that our approach focuses on closer,
more reliable contacts between the residues.

5.4.5 Results for CAPRI models

As a proof of concept, we also analyzed the small CAPRI dataset. The results
are shown in Table 5.5. The first striking difference to the DOCKGROUND set is
the increased performance of our method for ranking models using the interaction
frequency, with an AUC of 0.872, which also exceeds the CONSRANK AUC value
of 0.870. The performance of our method is slightly better for ranking interactions
(AUC 0.880) and significantly better for ranking residues (AUC 0.914). In addition,
the average number of near-native models is 20.667 and of all models 305.5.

In Table 5.6, we have listed the AUC values for the single targets. As expected from
the previous results, we observe a clear difference in the performance of our method
for targets with low (T24, T36) and high number (T25, T26, T29, T32) of near-
native models. However, these results are also in good agreement with the notes of
the CAPRI team, who observed poor prediction performance of the participating
groups for T24 and T36 and thus, declared them as difficult targets (Lensink et al.,
2007). In the case of T24, the ligand was a model built by homology. T36 was
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Table 5.5: Average ranking performance on the CAPRI set for the 6 selected targets
including average number of models considered for the analysis as well as the average
number of near-native models.

# Models # Near-native AUC Ranked Mod AUC CONSRANK AUC Ranked Int AUC Ranked Res

average 305.500 20.667 0.872 0.870 0.880 0.914
stdev 35.365 15.565 0.188 0.210 0.126 0.090

Table 5.6: Ranking performance on the CAPRI set per structure including number
of models considered for the analysis as well as the average number of residues (Res)
and interactions (Int) in the target interface. Values in parentheses were obtained after
excluding near-native models from the analysis.

AUC AUC Ranked
Target # Models # Near-native Res Int Ranked Mod CONSRANK Int Res

T24 302 4 33 28 0.753 0.811 0.801 (0.779) 0.874 (0.871)
T25 313 34 33 28 0.988 0.990 0.984 (0.825) 0.984 (0.961)
T26 313 34 53 55 0.984 0.986 0.942 (0.795) 0.973 (0.962)
T29 335 17 37 33 0.995 0.997 0.944 (0.682) 0.944 (0.847)
T32 332 34 46 50 0.974 0.969 0.951 (0.822) 0.963 (0.913)
T36 238 1 37 35 0.540 0.467 0.659 (0.596) 0.748 (0.737)

average 305.500 20.667 39.833 38.167 0.872 0.870 0.880 (0.750) 0.914 (0.882)
stdev 35.365 15.565 8.010 11.548 0.188 0.210 0.126 (0.092) 0.090 (0.085)

a complex of two covalently bound domains with a possibly unstable interface.
Plotting the distribution of IRMSD values for each target individually (Figure 5.10)
also reveals that the fraction of submitted models with low interface RMSD is
smaller for T24 and T36 than for the other targets.

Although the overall performance of our approach and CONSRANK is very similar,
there are also some differences. The latter performs slightly better on three targets,
significantly better on one, and worse on two. There are at least two factors that
play a role. On the one hand, CONSRANK uses a distance cut-off of 5 Å to define
edges, while we use non-covalent interactions, which is more stringent and results in
fewer interactions as shown for the DOCKGROUND set (Table 5.4). On the other
hand, due to the preprocessing criteria, the number of models considered for the
analysis is slightly different between our dataset and the CONSRANK one.

Surprisingly, the results for the CAPRI set are strikingly better than for the DOCK-
GROUND set. This might be explained by the higher number of near-native models,
although the near-native model versus all models rate is even slightly smaller for
the CAPRI set than for the DOCKGROUND set (6.76 % vs. 8.92 %). In order to
check this, we performed an additional analysis for each CAPRI target without in-
cluding near-native models. Since this makes it impossible to compute an AUC for
ranking decoys (no true positives), we only obtained values for ranking interactions
and residues (see values in parentheses in Table 5.6). The results indicate that the
overall quality of submitted models and not just the number of near-native models
are important for our approach.
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(a) T24 (b) T25

(c) T26 (d) T29

(e) T32 (f) T36

Figure 5.10: IRMSD distribution for CAPRI targets.

The performance of our dRIN-based method for ranking interactions without near-
native models decreases from an AUC of 0.88 to 0.75 on average for all targets. The
results are most different for T29 (decrease of 0.26), which is not surprising since
its RMSD distribution (Figure 5.10(d)) is very similar to those for T24 and T36
after removing the near-native model, e.g. low number of models with small IRMSD.
In contrast, the performance of our method for ranking residues decreases only by
0.03 on average. This might be explained by the robustness of the approach, i.e.,
residue frequency is computed as the sum of interaction frequencies with its direct
neighbors.

Another reason for the better performance of our method compared to the DOCK-
GROUND set might be the diversity of the CAPRI set. It contains the 10 best
models selected and submitted by each predictor or server. Thus, the diRIN gener-
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ated for each target can be seen as a consensus of the different docking approaches
and not only as a consensus of the best solutions from one approach. This is in
agreement with the conclusions in the CONSRANK paper that merging decoys from
different docking programs improves the results (Vangone et al., 2013). In addition,
the excellent performance of our frequency-based method for identifying interface
residues supports the observation of Lensink et al. that even incorrect models often
contain the true interface residues (Lensink and Wodak, 2010).

5.4.6 Results for PatchDock models

Table 5.7: Average ranking performance on the PatchDock set for the top 10, 25, 100,
and 200 decoys for each target as well as number of all models and near-native models
considered for each group. The AUC values for ranking interactions, residues, or models
for each target are plotted in Figures B.15, B.16, and B.17.

average (stdev)
top 200 top 100 top 25 top 10

All 176 targets

# Near-native 2.006 (5.379) 1.182 (3.823) 0.398 (1.607) 0.182 (0.786)
AUC Ranked Mod 0.142 (0.248) 0.145 (0.254) 0.178 (0.281) 0.182 (0.284)
AUC Ranked Int 0.477 (0.229) 0.422 (0.239) 0.326 (0.303) 0.237 (0.293)
AUC Ranked Res 0.637 (0.138) 0.607 (0.139) 0.576 (0.134) 0.532 (0.144)

64 targets with more than 0 near-native models

# Near-native 5.516 (7.791) 3.250 (5.812) 1.094 (2.531) 0.500 (1.247)
AUC Ranked Mod 0.384 (0.276) 0.396 (0.281) 0.478 (0.267) 0.483 (0.257)
AUC Ranked Int 0.609 (0.177) 0.543 (0.202) 0.467 (0.280) 0.351 (0.307)
AUC Ranked Res 0.709 (0.130) 0.676 (0.140) 0.647 (0.130) 0.591 (0.127)

30 targets with more than 2 near-native models

# Near-native 10.233 (9.394) 6.400 (7.328) 2.233 (3.360) 1.033 (1.671)
AUC Ranked Mod 0.542 (0.271) 0.480 (0.312) 0.529 (0.281) 0.535 (0.268)
AUC Ranked Int 0.710 (0.157) 0.636 (0.186) 0.581 (0.260) 0.442 (0.279)
AUC Ranked Res 0.750 (0.115) 0.713 (0.149) 0.670 (0.140) 0.617 (0.143)

Finally, we performed a large-scale analysis for models generated by the PatchDock
web server for the Benchmark set 4 (Hwang et al., 2010). For each of the 176 targets,
we considered the top 10, 25, 100, and 200 decoys. In contrast to the other two
datasets, this one is larger, has the lowest number of near-native models on average
(from 0.182 in the top 10 to 2.0 in the top 200 ), but is also more diverse with regard
to the distribution of near-native models. In the top 200, there are 9 targets with
10 to 31 near-native models, 21 with more than 2, 34 with 1 or 2, and another 112
without any. In contrast, there are also 12 targets with 1 to 6 near-native models
in the top 10.



5.4 Analysis of docking structures 155

(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Box-and-whisker plot and distribution of AUC values for ranking interface
interactions ((a) and (b)); interface residues ((c) and (d)); and models using interaction
frequency ((e) and (f)) in the PatchDock set. In each case, the AUC values are computed
for all 176 targets and the top 10, 25, 100, 200 decoys available for each target.

The low number of near-native models is already an indicator for the overall perfor-
mance of PatchDock. The web server performs well on some targets, but on average
it fails to rank a near-native model in the top 10/25 and sometimes even 200 solu-
tions. Nevertheless, the very low performance of our method (AUC value of 0.477,
e.g., worse than a random method) for ranking interactions and the mediocre per-
formance (AUC value of 0.637) for ranking residues are unexpected (see Table 5.7
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and Figure 5.11). The results improve (average AUC values around 0.7) when con-
sidering only targets with at least 1 or 3 near-native models. As already seen for the
other datasets, the performance of our ranking method increases with the increasing
number of decoys considered for the analysis (Figure 5.11(a) and Figure 5.11(c)).
In addition, the distribution of AUC values for the different groups (top 10, 25, 100,
200 ) indicates that there are more targets with an AUC above 0.8 using the top
10 or 25 decoys than the top 100 or 200 (Figure 5.11(b)). This is the other way
around for residues (Figure 5.11(d)). The AUC values for each target and group of
top models are shown in Figure B.15 and Figure B.16

In the particular case of ranking decoys, the AUC values can only be computed if
there is at least one near-native model, which explains the extremely low average
AUC values on the whole dataset (between 0.142 and 0.182). Therefore, we also
included average performance of our method for the 64 targets with at least 1 near-
native model and the 30 targets with at least 3 near-native models in Table 5.7.
Although these results are closer to the values obtained for the other two datasets,
they are still not better than a random method for ranking decoys (AUC values
around 0.5). The box-and-whisker plot in Figure 5.11(e) is also in agreement with
the previous results, i.e., the ranking performance of our method decreases with
the inclusion of more decoys. Here, we also observe the same trend as for interac-
tions, i.e., for a few targets the top 10 or 25 decoys are already enough for good
performance of our method (Figure 5.11(f) and Figure B.17).

We also plotted the AUC values for ranking interactions and residues versus the
number of near-native models, interface size, and frequency score in the top 5 %
(see Figure B.14). Again, we observe that the performance of our dRIN-based
method tends to be better for targets with more near-native models, but there
are also quite a few exceptions. Furthermore, neither the number of true interface
interactions or residues nor the frequency score at 0.05 FPR have an effect on the
ranking results.

5.4.7 Summary and discussion

Motivated by the observation that top-ranked non-native docking models often con-
tain the native interface (Lensink and Wodak, 2010), we applied our RIN method-
ology to identify the native residues and interactions among a set of solutions. We
constructed dynamic RINs for the top N ranked models and evaluated how well the
most frequent interactions and their residues overlap with the true interface residues
and interactions. If the native interface is well represented by the top-ranked models,
we will detect this by the frequency of the corresponding interactions. Furthermore,
given the most frequent interactions, we can re-rank the docking models based on
the proportion of such interactions they contain. Altogether, we devised three differ-
ent methods for analyzing an ensemble of ranked docking structures using dRINs.
We evaluated the performance of our methods to identify interface residues and
interactions as well as to rank docking solutions on three different benchmark sets.

The DOCKGROUND dataset comprised of 61 protein complexes and for each com-
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plex, the top 100 non-native docking models as well as 1 to 10 near-native solutions
were available. We observed good performance of the dRIN methods for ranking in-
teractions, residues and docking models (AUC values of 0.801±0.162, 0.747±0.125,
and 0.658± 0.282, respectively), when all solutions were considered. Although the
average AUC values dropped significantly (between 0.25 and 0.65) when smaller sets
with less to no near-native models were included in the analysis, the general trends
remained. On the one hand, the identification of interface residues performed best,
followed by identifying interface interactions and ranking the models, and on the
other hand, the more models were considered for the analysis, the better the AUC
values were.

The second benchmark set contained 6 target complexes and, for each of them,
around 300 predicted models submitted by different groups during the CAPRI ini-
tiative. Our three different dRIN-based methods performed very well in ranking the
interface residues, interactions and docking solutions (AUC values of 0.872, 0.880,
and 0.914, respectively). Even when all near-native models were excluded from the
dataset, the average AUC values for identifying interface residues and interactions
remained above 0.75. Most probably this is caused by the diversity and overall
better quality of the CAPRI set compared to the DOCKGROUND set, since the
former contains the top 10 models submitted by each group.

We also compared our results to the recently published CONSRANK algorithm
(Vangone et al., 2013; Oliva et al., 2013), which ranks docking models based on
the conservation of residue contacts (distance of at most 5 Å). For this purpose,
also created dRINs based on the distance between the residues in addition to our
dRINs, which contain non-covalent interaction edges. On both the DOCKGROUND
and CAPRI dataset, we achieved similar to slightly better performance with our
approach for ranking the models. We also confirmed that the type of RIN repre-
sentation has only a marginal effect on the overall performance of our method for
ranking models based on residue interaction frequency. Thus, it remains in the hand
of the user to choose whether an atomic distance of 5 Å is a sufficient evidence for
a residue interaction or to rely on a more sophisticated method that distinguishes
between non-covalent interaction types such as ours.

Finally, we analyzed a larger dataset consisting of 176 docking targets with up to 200
models predicted by PatchDock. In contrast to the other two benchmark sets, this
one contained on average the lowest number of near-native models, which also means
that the docking method did not perform very well. Accordingly, the performance
of our method for ranking residues, interactions and models was rather low, but
significantly improved when only targets with more than 1 near-native models were
included in the analysis (AUC values of 0.750, 0.710, and 0.542).

One of our goals was to find out whether the top 10, 25, . . . , N decoys are sufficient
to predict the true interface. We observed that the performance of our ranking
method based on the frequency of interactions in the set of models improves by
increasing the number of models. Indeed, the top 10 decoys might be enough if the
docking performed very well, but usually more are needed for a successful prediction
of the interface. Therefore, a possible solution is the integration of the top 10/25
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solutions from different docking algorithms as in the CAPRI dataset. In this way,
the risk of bias towards a wrong solution from one of the methods might be avoided.

Unfortunately, we were not able to derive general criteria such as a threshold for
interaction or residue frequency that would be indicative for the extent of the success
of our dRIN-based method without any knowledge about the quality of the solutions.
Our evaluation indicated that the performance of such ranking approaches strongly
depends on the overall quality of the docking solutions and not so much on the
exact number of near-native models as suggested by Oliva et al. (2013). However,
the latter is usually a good indicator for the success of the docking algorithm.

Overall, we confirmed that docking models, which are assessed as incorrect by com-
mon criteria based on ligand or interface RMSD, actually contain enough infor-
mation about the true interface residues and interactions. Therefore, an approach
based on the identification of the most common interactions and residues in the set
of decoys can be quite promising for predicting interface residues and interactions.
We could also show that the most frequent interactions identified in a set of docking
models can be used as a scoring function for the docking performance.

5.5 Conclusions

For a long time, proteins, their structures and interactions have been analyzed from
a very static point of view, although they are actually very dynamic and usually pop-
ulate several possible conformations. This is mostly caused by the difficulties arising
from the attempts to study protein dynamics with known experimental structure
determination techniques such as X-ray crystallography and NMR, but is slowly
changing with the introduction and development of new integrative experimental
approaches. Thus, theoretical and computational methods for simulating protein
dynamics have been the richest source of information so far. MD simulations has
become a trusted and widely used tool in the last 30 years. Recently, several groups
combined the analysis of data from MD simulations with network theory in order
to investigate protein dynamics from a new point of view. In particular, allosteric
communication and drug resistance mechanisms have been studied extensively (see
Section 5.1.2).

To capture the dynamic nature of protein structures and interactions, we devel-
oped a new method for visualizing and analyzing ensembles of protein structures
by representing them as dynamic, weighted residue interaction networks (dRINs).
Ensembles could result from an experimental technique such as NMR or a compu-
tational method like MD simulation or protein docking. Using residue interaction
networks, we can analyze the variation reflected by the individual protein struc-
tures and, at the same time, identify non-covalent residue interactions shared by
the different structures. Possible applications of our approach include the identifica-
tion of structurally and functionally important residue interactions, the comparison
of ligand-binding modes in protein interactions, as well as the characterization of
protein mutations and their effect on structure and function.
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We applied our approach in two different scenarios to address current challenges
in structural bioinformatics. First, we analyzed MD simulation data to charac-
terize the effect of residue mutations on protein structure and function. Thereby,
we compared wild-type and mutant (L166P) simulations of DJ-1, a protein asso-
ciated with Parkinson’s disease. We pinpointed significant changes of the residue
interaction pattern upon mutation of residue 166. Our topological analysis and
visual exploration confirmed the findings of Anderson and Daggett (2008) that the
L166P substitution most probably affects the dimerization of DJ-1 by disturbing
the secondary structure of its neighboring helices.

Combining the dynamic RIN representation of the wild-type and mutant simulations
with physico-chemical properties of the protein residues as described in Chapter 4
should provide additional hypotheses on the molecular mechanisms upon mutation.
Our dRIN-based approach can also be applied to the remaining data deposited
in the Dynameomics database as well as to MD simulation data of other proteins
associated with diseases. The effects of protein mutations, in particular, located
far from the active site, are also of special interest for studying drug resistance
mutations, which occur often in viral proteins but are still not well understood. For
this purpose, we have started a cooperation with Tomas Bastys and Olga V Kalinina
(Max Planck Institute for Informatics) on the analysis of resistance mutations in
HIV-1 protease using our methodology.

Furthermore, we analyzed sets of docking structures to determine the native inter-
face residues and their interactions based on their frequency of occurrence. This
analysis was based on the assumption that top-ranked docking solutions are more
enriched in correct binding interfaces than in correct complexes. We also used
the most frequent interactions as a scoring function for ranking the docking solu-
tions as suggested by Vangone et al. (2013). We evaluated the performance of our
dRIN-based methods for ranking residues, interactions and docking models on three
different benchmark sets (DOCKGROUND, CAPRI and PatchDock). Overall, our
analysis revealed that the top 100 solutions of a good docking method can con-
tain enough information to correctly identify most of the native interactions and
residues. However, the success of our method strongly depends on the quality of
the docking models and thus, including the top 10 solutions from different meth-
ods, as it is the case for the CAPRI dataset, might be a good strategy to boost the
performance of such methods.

In the docking field, there is a strong interest in new scoring methods and, more
generally, new ways of analyzing and visualizing of docking models (Lensink and
Wodak, 2014). Our approach of creating dynamic RINs from an ensemble of top-
ranked solutions provides a completely new perspective on the available data. We
already showed that, for docking methods with reliable predictions, we can apply it
to successfully identify the native interface residues and interactions as well as to re-
score the docking models. The network representation of such structure ensembles
makes it possible to use further, more sophisticated graph analysis techniques such
as clustering and community search. For example, we can estimate the heterogeneity
of an ensemble of docking models solely using the dRIN interaction frequencies.
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Here, we described a novel method for analysis and visualization of protein struc-
tures that explicitly takes into account their dynamic natures. Among others, the
applications of our approach include the identification of structurally and func-
tionally important residue interactions, the comparison of ligand-binding modes in
protein interactions, as well as the characterization of protein mutations and their
effect on structure and function.



CHAPTER 6

Conclusions

This chapter concludes the thesis by outlining the main methodological contribu-
tions and their application to biomedical data for understanding complex diseases.
In addition, it provides future perspectives on the importance of network-based
approaches in the field of disease gene prioritization and structural biology.

6.1 Summarizing remarks

Nowadays, we are still far from a complete understanding of human diseases, their
origin, prevention, and cure. High-throughput techniques such as next-generation
sequencing and mass spectrometry produce large and fast growing amounts of ex-
perimental data that cannot be handled without extensive computational power.
Representing the complex relationships between biological entities such as genes,
proteins, or residues, as networks has proven to be very useful for integrating, an-
alyzing, prioritizing, and visualizing large-scale datasets, with the ultimate goal to
gain more insight into complex cellular mechanisms (see Chapter 2).

The work performed in this thesis has two complementary viewpoints. On one
hand, we focused on the development of novel methods and software tools on the
interface between network biology, structural biology and medicine with focus on
visual analytics. On the other hand, we collaborated with biological and medical
experts to apply and adapt our methods to their data and gain new insights, in
particular, for understanding complex diseases.

The investigation of less studied phenotypes with unknown causative genes is of
great importance for current methodological development in the field of disease gene
prioritization. Therefore, we designed a phenotype-specific framework for functional
characterization and especially prioritization of candidate genes (see Chapter 3).
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We generated networks of strong functional similarities between candidate genes
based on their Gene Ontology annotations and integrated them with protein inter-
action data. We assessed the connectivity of the candidates using network topology
analysis methods and selected promising disease genes to build phenotype-specific
networks. We also characterized the functional overlap of similar phenotypes by an-
alyzing and comparing their functional similarity networks. Using our framework,
we identified several disease-relevant genes and processes for inflammatory bowel
diseases, primary sclerosing cholangitis, and Parkinson’s disease.

Since finding the causative disease genes does often not suffice, we also concentrated
on the molecular characterization of sequence mutations and their effect on protein
structure and function. To this end, we designed a software suite (including our tools
RINalyzer and RINerator) that supports the interactive, multi-layered visual anal-
ysis of protein structures and their molecular function in protein binding, allostery,
drug resistance and other interaction mechanisms (see Chapter 4). By representing
protein structures as networks of interacting residues, integrating them with molec-
ular data derived from external resources and applying network visualization and
analysis techniques, we could facilitate the analysis of protein sequence mutations.
In addition, we analyzed a large set of known resistance-associated mutations in the
NS3 protease of the hepatitis C virus by combining our visual analytics framework
with statistics on the structural and topological properties of the residues.

To capture the dynamic nature of protein structures and interactions, we also de-
veloped an approach to visualizing and analyzing ensembles of protein structures
as generated by molecular dynamics (MD) simulations (see Chapter 5). We cre-
ated dynamic, weighted residue interaction networks that account for the different
protein conformations within the ensemble. We also facilitate the comparison of
two ensembles within one network by highlighting the most similar and dissimilar
residue interactions as well as the rate at which they are present in the ensem-
bles. As a proof of concept, we applied our approach to characterize the effect of
sequence mutations on protein structure and function using MD simulation data.
Furthermore, we performed a thorough analysis of ensembles of docking structures
(decoys) to evaluate their quality and aid in identifying the most probable docking
interfaces.

In conclusion, we developed novel methods and software tools for the prioritization
and functional characterization of genes and proteins associated with complex dis-
eases. We also demonstrated how combining different types of data using biological
networks and visual analytics can be instrumental in gaining more biological insight
in the fields of medical and structural bioinformatics.

6.2 Perspectives

Large-scale interaction data are commonly represented as networks and analyzed
by graph-theoretic methods that can characterize the topological network structure
and its global and local interaction properties (Vidal et al., 2011; Pavlopoulos et al.,
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2011; Ideker and Krogan, 2012; Csermely et al., 2013). In the last years, topological
analysis of interaction networks has been an indispensable part of network-based
approaches for disease gene prioritization (Vidal et al., 2011; Barabási et al., 2011;
Jia and Zhao, 2014). Furthermore, structural biologists have recently used a network
representation to study the interactions of residues in protein structures towards the
understanding of complex protein structure-function relationships (Csermely, 2008;
Vishveshwara et al., 2009; Doncheva et al., 2011). However, these are just examples
for the power of biological networks as a tool for formulating new hypotheses and
answering open questions in biomedical research.

With the increasing amounts of new data generated by high-throughput techniques
(The ENCODE Project Consortium, 2012; Rolland et al., 2014; Moignard et al.,
2015; Huttlin et al., 2015; Sahni et al., 2015), the field of network biology will
need to advance further. Novel visualization, analysis and integration techniques
will need to be developed in order to complement the existing ones. For example,
the Cytoscape consortium has already made a step in this direction by releasing a
new series of versions that support the analysis of large-scale datasets with novel
features as well as by creating the Cytoscape App Store, which hosts a collection of
236 external apps developed to enhance Cytoscape with rich biological functionality
(Saito et al., 2012; Lotia et al., 2013).

With respect to disease gene prioritization, network-based methods have already
proven to be very useful and will continue to be exploited. The current trend
as shown in recent work (Ellinghaus et al., 2013b; Ghiassian et al., 2015; Tasan
et al., 2015) is the identification of smaller disease-specific networks of interacting
causal and candidate genes. However, these approaches can still be improved by
the generation of more integrative networks using different data types as well as
by the application of more appropriate graph algorithms for subnetwork detection.
Our framework could be applied to the disease gene prioritization and functional
phenotype comparison of other phenotypes as new data is generated (Parkes et al.,
2013; Andreassen et al., 2015; Li et al., 2015). Overall, we can expect a considerable
improvement in candidate disease gene prioritization approaches in the near future
due to the increasing amounts of data produced by high-throughput techniques
every day.

Recent studies have revealed that combining network and structural biology could
be very beneficial for both fields (Fraser et al., 2013). In particular, residue in-
teraction networks derived from the 3D protein structure have been successfully
incorporated in the study of protein dynamics and engineering, protein and ligand
binding, disease and drug resistance mutations (Csermely, 2008; Vishveshwara et al.,
2009; Di Paola et al., 2013; Hu et al., 2013; Yan et al., 2014). As a recent study by
Viswanathan et al. (2015) suggests, RINs can complement existing structure-based
methods for therapeutic antibody discovery and anti-viral drug optimization. For
this purpose, RIN-based approaches need to be adapted from assessing the general
effect of residue mutations (Doncheva et al., 2014) to characterizing more subtle
resistance mechanisms (Hughes and Andersson, 2015). Furthermore, good gold-
standard datasets need to be assembled through experimental and computational
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efforts to assure the proper validation of new (prediction) methods using RINs.

Another distinct advantage of RINs is that they could provide a novel way of in-
vestigating the epistatic interactions between residues (Harms and Thornton, 2013)
and in particular, residue mutations (Ray et al., 2014). By combining graph the-
ory methods with physico-chemical properties of the amino-acid residues, a new
approach can be developed to identify epistatic pairs, or even networks, of mutated
residues and assess their putative effect on the protein. A good starting point would
be to analyze the dataset recently presented by Jordan et al. (2015), who identified
several hundreds of human disease mutations that are compensated by amino acid
mutations in other species.

The further development, extension and adaptation of our software tools to the
needs of structural biologists could enable novel biomedical applications. For exam-
ple, we could gain more insight by supporting contact networks of conformationally
heterogeneous residues as derived from high-resolution X-ray crystallography data
by van den Bedem et al. (2013). Furthermore, the network representation of residue
interactions utilizes a completely new way of comparing protein structures of differ-
ent species and might reveal new insights into the evolutionary relationship between
organisms. Such a comparison could also facilitate the analysis of different geno-
types of the same viral species with respect to their differential resistance mutation
patterns toward the same therapeutics (Sullivan et al., 2013; Romano et al., 2010;
Hughes and Andersson, 2015). A promising study in this direction was recently pre-
sented by Flock et al. (2015), who combined residue contact networks with other
computational techniques to reveal that different G protein-coupled receptors share
a highly conserved mechanism of allosteric interaction.

Besides our work on dynamic RINs, several studies have provided evidence for the
usefulness of RINs generated from a set of similar protein structures for represent-
ing the dynamic nature and diversity of proteins (Vishveshwara et al., 2009; Sethi
et al., 2009; Xue et al., 2012; Tiberti et al., 2014; Seeber et al., 2014). Future
methodological improvements of this approach include a better and more realistic
representation of the residue interactions in the MD simulation, for example, by
taking into account the correlation or mutual information of residue interaction
energies. Furthermore, more sophisticated graph analysis techniques such as clus-
tering and community detection would need to be applied on the resulting RINs
to investigate complex structure-function relationships. In the field of molecular
docking, the application of dynamic RINs could answer the need to new scoring
methods and, more generally, new ways of analyzing and visualizing the docking
models (Lensink and Wodak, 2014).

Overall, integrative network-based approaches will continue to have a crucial role
in the prioritization and functional characterization of genes, proteins and residues.
The field of visual analytics has also gained more attention in the biological commu-
nity addressing the importance of interactive visualization of big data sets. With
the constantly evolving experimental techniques, new datasets and data types will
appear that might just be best understood and characterized by combining the com-
monly known network representations with the novel techniques of visual analytics.
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Csermely, P., Korcsmáros, T., Kiss, H. J. M., London, G., and Nussinov, R. (2013). Structure and
dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review.
Pharmacol Ther, 138(3):333–408.

Cummings, M. D., Lindberg, J., Lin, T.-I., de Kock, H., Lenz, O., Lilja, E., et al. (2010). Induced-
fit binding of the macrocyclic noncovalent inhibitor TMC435 to its HCV NS3/NS4A protease
target. Angewandte Chemie (International ed. in English), 49(9):1652–1655.

Cusick, M. E., Yu, H., Smolyar, A., Venkatesan, K., Carvunis, A. R., Simonis, N., et al. (2009).
Literature-curated protein interaction datasets. Nat Methods, 6(1):39–46.

Daggett, V. (2006). Protein folding-simulation. Chem Rev, 106(5):1898–1916. PMID: 16683760.

Dand, N., Sprengel, F., Ahlers, V., and Schlitt, T. (2013). BioGranat-IG: a network analysis tool
to suggest mechanisms of genetic heterogeneity from exome-sequencing data. Bioinformatics,
29(6):733–741.

De Bie, T., Tranchevent, L. C., Van Oeffelen, L. M., and Moreau, Y. (2007). Kernel-based data
fusion for gene prioritization. Bioinformatics, 23(13):i125–32.

De Las Rivas, J. and Fontanillo, C. (2012). Protein-protein interaction networks: unraveling the
wiring of molecular machines within the cell. Brief Funct Genomics, 11(6):489–496.

De Lau, L. M. L. and Breteler, M. M. B. (2006). Epidemiology of Parkinson’s disease. Lancet
Neurol, 5(6):525–535.

Dehouck, Y., Grosfils, A., Folch, B., Gilis, D., Bogaerts, P., and Rooman, M. (2009). Fast and
accurate predictions of protein stability changes upon mutations using statistical potentials and
neural networks: PoPMuSiC-2.0. Bioinformatics, 25(19):2537–2543.

Dehouck, Y., Kwasigroch, J. M., Gilis, D., and Rooman, M. (2011). PoPMuSiC 2.1: a web server
for the estimation of protein stability changes upon mutation and sequence optimality. BMC
Bioinformatics, 12:151.

del Sol, A., Fujihashi, H., Amoros, D., and Nussinov, R. (2006). Residues crucial for maintaining
short paths in network communication mediate signaling in proteins. Mol Syst Biol, 2:2006.0019.

Deng, M., Zhang, K., Mehta, S., Chen, T., and Sun, F. (2003). Prediction of protein function
using protein-protein interaction data. J Comput Biol, 10(6):947–960.

Dezso, Z., Nikolsky, Y., Nikolskaya, T., Miller, J., Cherba, D., Webb, C., and Bugrim, A. (2009).
Identifying disease-specific genes based on their topological significance in protein networks.
BMC Syst Biol, 3:36.



172 BIBLIOGRAPHY

Di Paola, L., De Ruvo, M., Paci, P., Santoni, D., and Giuliani, A. (2013). Protein contact networks:
an emerging paradigm in chemistry. Chem Rev, 113(3):1598–1613.

Diestel, R. (2012). Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer.

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T., and Müller, T. (2008). Identify-
ing functional modules in protein-protein interaction networks: an integrated exact approach.
Bioinformatics, 24(13):i223–231.

Dobrin, R., Zhu, J., Molony, C., Argman, C., Parrish, M. L., Carlson, S., et al. (2009). Multi-tissue
coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol,
10(5):R55.

Doncheva, N., Klein, K., Domingues, F., and Albrecht, M. (2015). RINalyzer website. http:

//www.rinalyzer.de/.

Doncheva, N. T., Assenov, Y., Domingues, F. S., and Albrecht, M. (2012a). Topological analysis
and interactive visualization of biological networks and protein structures. Nat Protoc, 7(4):670–
685.

Doncheva, N. T., Kacprowski, T., and Albrecht, M. (2012b). Recent approaches to the prioritiza-
tion of candidate disease genes. WIREs Systems Biology and Medicine, 4(5):429–442.

Doncheva, N. T., Klein, K., Domingues, F. S., and Albrecht, M. (2011). Analyzing and visualizing
residue networks of protein structures. Trends Biochem Sci, 36(4):179–182.

Doncheva, N. T., Klein, K., Morris, J. H., Wybrow, M., Domingues, F. S., and Albrecht, M.
(2014). Integrative visual analysis of protein sequence mutations. BMC Proceedings, 8(Suppl 2
Proceedings of the 3rd Annual Symposium on Biol):S2.

Dong, J. and Horvath, S. (2007). Understanding network concepts in modules. BMC Syst Biol,
1:24.

Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H., and Shaw, D. E. (2012). Biomolecular
simulation: a computational microscope for molecular biology. Annu Rev Biophys, 41:429–52.

Du Plessis, L., Skunca, N., and Dessimoz, C. (2011). The what, where, how and why of gene
ontology – a primer for bioinformaticians. Brief Bioinform, 12(6):723–735.

Dunham, W. H., Mullin, M., and Gingras, A.-C. (2012). Affinity-purification coupled to mass
spectrometry: Basic principles and strategies. Proteomics, 12(10):1576–1590.

Dvory-Sobol, H., Wong, K. A., Ku, K. S., Bae, A., Lawitz, E. J., Pang, P. S., Harris, J., Miller,
M. D., and Mo, H. (2012). Characterization of resistance to the protease inhibitor gs-9451 in
hepatitis c virus-infected patients. Antimicrobial agents and chemotherapy, 56(10):52895295.

Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. (2001). Rank aggregation methods for the
web. In Proceedings of the 10th International Conference on World Wide Web, WWW ’01,
pages 613–622, New York, NY, USA. ACM.

Eargle, J. and Luthey-Schulten, Z. (2012). NetworkView: 3D display and analysis of protein.RNA
interaction networks. Bioinformatics, 28(22):3000–1.

Ellinghaus, D., Bethune, J., Petersen, B.-S., and Franke, A. (2015). The genetics of Crohn’s
disease and ulcerative colitis – status quo and beyond. Scand J Gastroenterol, 50(1):13–23.

http://www.rinalyzer.de/
http://www.rinalyzer.de/


BIBLIOGRAPHY 173

Ellinghaus, D., Folseraas, T., Holm, K., Ellinghaus, E., Melum, E., Balschun, T., et al. (2013a).
Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis iden-
tifies risk loci at GPR35 and TCF4. Hepatology, 58(3):1074–1083.

Ellinghaus, D., Zhang, H., Zeissig, S., Lipinski, S., Till, A., Jiang, T., et al. (2013b). Association
between variants of PRDM1 and NDP52 and Crohn’s disease, based on exome sequencing and
functional studies. Gastroenterology, 145(2):339–347.

Emig, D., Salomonis, N., Baumbach, J., Lengauer, T., Conklin, B. R., and Albrecht, M. (2011).
AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids
Res, 38(Web Server issue):W755–W762.
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Köhler, S., Schulz, M. H., Krawitz, P., Bauer, S., Dölken, S., Ott, C. E., et al. (2009). Clinical
diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet,
85(4):457–464.

Korioth, F., Gieffers, C., Maul, G., and Frey, J. (1995). Molecular characterization of NDP52, a
novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon
treatment. J Cell Biol, 130(1):1–13.

Krauthammer, M., Kaufmann, C. A., Gilliam, T. C., and Rzhetsky, A. (2004). Molecular trian-
gulation: bridging linkage and molecular-network information for identifying candidate genes
in Alzheimer’s disease. Proc Natl Acad Sci U S A., 101(42):15148–53.

Krishnamoorthy, B. and Tropsha, A. (2003). Development of a four-body statistical pseudo-
potential to discriminate native from non-native protein conformations. Bioinformatics,
19(12):1540–1548.

Krishnan, A., Zbilut, J. P., Tomita, M., and Giuliani, A. (2008). Proteins as networks: usefulness
of graph theory in protein science. Curr Protein Pept Sci, 9(1):28–38.

Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., et al. (2006). Global land-
scape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084):637643.

Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., and Przulj, N. (2010). Topological
network alignment uncovers biological function and phylogeny. Journal of the Royal Society,
Interface / the Royal Society, 7(50):1341–1354.

Kuchaiev, O. and Przulj, N. (2011). Integrative network alignment reveals large regions of global
network similarity in yeast and human. Bioinformatics, 27(10):1390–1396.

Lage, K., Karlberg, E. O., Størling, Z. M., Olason, P. I., Pedersen, A. G., Rigina, O., et al. (2007).
A human phenome-interactome network of protein complexes implicated in genetic disorders.
Nat Biotechnol, 25(3):309–16.

Lambrughi, M., Papaleo, E., Testa, L., Brocca, S., De Gioia, L., and Grandori, R. (2012).
Intramolecular interactions stabilizing compact conformations of the intrinsically disordered
kinase-inhibitor domain of Sic1: a molecular dynamics investigation. Frontiers in Physiology,
3(435).

Langfelder, P. and Horvath, S. (2008). WGCNA: an r package for weighted correlation network
analysis. BMC Bioinformatics, 9(1):559.

Lawitz, E., Sulkowski, M., Jacobson, I., Kraft, W. K., Maliakkal, B., Al-Ibrahim, M., Gordon,
S. C., Kwo, P., Rockstroh, J. K., Panorchan, P., Miller, M., Caro, L., Barnard, R., Hwang,
P. M., Gress, J., Quirk, E., and Mobashery, N. (2013). Characterization of vaniprevir, a hepatitis
c virus ns3/4a protease inhibitor, in patients with hcv genotype 1 infection: safety, antiviral
activity, resistance, and pharmacokinetics. Antiviral research, 99(3):214220.

Lee, I., Blom, U. M., Wang, P. I., Shim, J. E., and Marcotte, E. M. (2011). Prioritizing candi-
date disease genes by network-based boosting of genome-wide association data. Genome Res,
21(7):1109–21.

Lee, J. M. and Sonnhammer, E. L. (2003). Genomic gene clustering analysis of pathways in
eukaryotes. Genome Res, 13(5):875–82.

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., et al. (2002).
Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298(5594):799–804.



BIBLIOGRAPHY 183

Lehner, B. (2013). Genotype to phenotype: lessons from model organisms for human genetics.
Nat Rev Genet, 14(3):168–178.

Lemetre, C., Zhang, Q., and Zhang, Z. D. (2013). SubNet: a Java application for subnetwork
extraction. Bioinformatics, 29(22):2958–2958.

Lensink, M. F., Mendez, R., and Wodak, S. J. (2007). Docking and scoring protein complexes:
CAPRI 3rd Edition. Proteins, 69(4):704–18.

Lensink, M. F. and Wodak, S. J. (2010). Blind predictions of protein interfaces by docking
calculations in CAPRI. Proteins, 78(15):3085–3095.

Lensink, M. F. and Wodak, S. J. (2013). Docking, scoring, and affinity prediction in CAPRI.
Proteins, 81(12):2082–2095.

Lensink, M. F. and Wodak, S. J. (2014). Score set: A CAPRI benchmark for scoring protein
complexes. Proteins: Struct, Funct, Bioinf, 82(11):3163–3169.

Letovsky, S. and Kasif, S. (2003). Predicting protein function from protein/protein interaction
data: a probabilistic approach. Bioinformatics, 19 Suppl 1:i197–204.

Letunic, I., Doerks, T., and Bork, P. (2015). SMART: recent updates, new developments and
status in 2015. Nucleic Acids Res, 43(Database issue):D257–60.

Leulliot, N., Chaillet, M., Durand, D., Ulryck, N., Blondeau, K., and van Tilbeurgh, H. (2008).
Structure of the yeast tRNA m7G methylation complex. Structure, 16(1):52–61.

Li, Y., Huang, T., Xiao, Y., Ning, S., Wang, P., Wang, Q., et al. (2013). Prioritising risk pathways
of complex human diseases based on functional profiling. Eur J Hum Genet, 21(6):666–672.

Li, Y. and Patra, J. C. (2010a). Genome-wide inferring gene-phenotype relationship by walking
on the heterogeneous network. Bioinformatics, 26(9):1219–24.

Li, Y. and Patra, J. C. (2010b). Integration of multiple data sources to prioritize candidate genes
using discounted rating system. BMC Bioinformatics, 11 Suppl 1:S20.

Li, Y. R., Li, J., Zhao, S. D., Bradfield, J. P., Mentch, F. D., Maggadottir, S. M., et al. (2015).
Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat
Med, 21(9):1018–1027.

Liekens, A. M., De Knijf, J., Daelemans, W., Goethals, B., De Rijk, P., and Del-Favero, J. (2011).
BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation.
Genome Biol, 12(6):R57.
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APPENDIX A

Protocol for network analysis and visualization

This chapter is an adapted version of text contained in Doncheva et al. (2012a)
and describes three workflows based on the NetworkAnalyzer and RINalyzer plu-
gins for Cytoscape, a popular software platform for networks. NetworkAnalyzer
was initially developed by Yassen Assenov and has become a standard Cytoscape
tool for comprehensive network topology analysis. In addition, RINalyzer provides
methods for exploring residue interaction networks derived from protein structures.
We developed RINalyzer and extended NetworkAnalyzer as well as designed and
implemented the presented workflows. As outlined in Figure A.1, the first work-
flow uses NetworkAnalyzer to perform a topological analysis of biological networks.
The second workflow applies RINalyzer to study protein structure and function and
to compute network centrality measures. The third workflow combines Network-
Analyzer and RINalyzer to compare residue networks. The full protocol can be
completed in ∼ 2 h.

Experimental design

Topological network analysis

In particular, NetworkAnalyzer supports the characterization of molecular networks
in terms of scale-free and small-world properties, modularity and hierarchical struc-
ture (Yamada and Bork, 2009; Albert, 2005; Almaas, 2007; Barabási and Oltvai,
2004), the identification of important network nodes and edges based on topological
parameters (Welsch et al., 2008; Astsaturov et al., 2010; Ragusa et al., 2010; Lorenz
et al., 2011), and the comparison of networks with regard to their topology (Radrich
et al., 2010; Choura and Rebäı, 2010; Gu et al., 2011; Yu et al., 2011a). Since its ini-
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Figure A.1: Outline of the protocol for network analysis and visualization. This protocol
starts with launching Cytoscape (Step 1) and consists of three major workflows: (Step
2A) topological analysis of biological networks; (Step 2B) interactive visual analysis of
residue networks; (Step 2C) comparison of residue networks. Steps colored in blue are
performed with NetworkAnalyzer and those in pink with RINalyzer. The dotted line
represents an optional step that connects the two workflows, which is not described in
detail in this protocol. Figure first published in Doncheva et al. (2012a).

tial release in 2007, NetworkAnalyzer has been extended by additional features and
topological parameters and is widely used in academia and industry as indicated by
thousands of software downloads. Recently, this plugin became an integral part of
each standard installation of Cytoscape, and its source code was published under
the GNU Lesser General Public License. The workflow in Appendix A Step 2A
describes how to use the NetworkAnalyzer plugin to perform a topological analysis
on an unweighted network loaded into Cytoscape, as well as how to process and
visualize the results.

Basically, NetworkAnalyzer calculates many simple topological parameters, such as
clustering coefficient, number of connected components, diameter and radius, cen-
tralization, number of shortest paths, average shortest path length, average num-
ber of neighbors, density, heterogeneity (only for undirected networks), number
of isolated nodes, number of self-loops and number of multi-edge node pairs. In
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addition, the following complex topological parameters are computed by Network-
Analyzer: average clustering coefficient distribution, shortest path length distribu-
tion, betweenness centrality versus number of neighbors, closeness centrality versus
number of neighbors and stress centrality distribution. The degree distribution,
topological coefficients, shared neighbors distribution and neighborhood connectiv-
ity distribution are computed for undirected networks only, whereas the in-degree,
out-degree and three different types of neighborhood connectivity are used for di-
rected networks. The complete set of simple and complex parameters is referred to
as network statistics in NetworkAnalyzer. As described in the next section, RINa-
lyzer also computes several centrality measures for weighted networks and provides
further options for the visual exploration of the results.

The computed topological parameters are represented as single values, histograms or
scatter plots and can be visualized in the Cytoscape network view by corresponding
node and edge size as well as color choice. For example, the degree might correspond
to the node size and the clustering coefficient might determine the node color (Step
2A(x)). Complex topological parameters are depicted as histograms or scatter plots.
The user can easily customize various visual settings as well as switch between
histograms or scatter plots of the computed distributions and between linear or
logarithmic scales of the x and y axes. In addition, a power law can be fitted to
the degree distribution to illustrate whether the analyzed network has scale-free
properties (Step 2A(vi)). Finally, both displayed charts and network statistics can
be saved to files (Steps 2A(ix) and (xi)).

Interactive visual analysis of residue networks

A residue interaction network (RIN) consists of nodes that represent protein residues
and edges that correspond to non-covalent interactions between residues. In par-
ticular, RINalyzer is currently the only tool that supports the simultaneous view
of a RIN in 2D and the corresponding protein structure in 3D by connecting Cy-
toscape to the UCSF Chimera molecular structure viewer (Pettersen et al., 2004).
RINalyzer also provides versatile user options, such as the computation of weighted
network centrality measures to highlight biologically important residues and the
network comparison of superimposed protein structures to study differing residue
interactions. This new structure analysis approach can be very useful in a number
of biological and medical application scenarios.

The workflow in Appendix A Step 2B explains the use of the Cytoscape plugin
RINalyzer and its features for analyzing and visualizing RINs. It is divided into the
following major steps (Figure A.1): retrieving and loading RIN data into Cytoscape
(Step 2B(i-v)); customizing RIN and 3D structure views (Step 2B(vi-xi)); creating,
managing and saving sets of residue nodes (Step 2B(xii-xviii)); performing centrality
analysis, exploring and saving the results (Step 2B(xix-xxix)).

The workflow starts with the retrieval of residue interaction data for a protein of
interest from the web interface to our RINdata database (Step 2B(i)). It contains
RINs generated by means of the RINerator software (Doncheva et al., 2011) for over
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50,000 protein structures from the Protein Data Bank (PDB) (Rose et al., 2013).
In contrast to previous approaches that define residue interactions on the basis of
spatial atomic distance between residues, RINerator distinguishes different residue
interaction types and quantifies the strength of individual interactions, which results
in an undirected weighted network with multiple interaction edges. To this end,
RINerator first adds hydrogens to the 3D protein structure by using the Reduce
tool (Word et al., 1999b) and then samples contacts on the van der Waals surface
of each atom by using Probe (Word et al., 1999a).

In a RIN, the nodes represent the protein residues and the edges between them
represent the non-covalent interactions identified by Probe. The edges are labeled
with an interaction type and subtype. Possible types are interatomic contact (cnt),
hydrogen bond (hbond), overlapping van der Waals radii (ovl) and generic residue
interaction (combi), whereas the subtypes indicate interactions between main chains
(mc) and side chains (sc) of the amino-acid residues. Each edge is weighted with the
respective score for the interacting residues as computed by Probe and the weight
is proportional to the strength of the interaction. The resulting RIN and additional
information (such as edge weights) are stored in the Cytoscape default formats, the
simple interaction format (SIF) for the network, and the edge attribute (EA) files
for the edge weights. Thus, each RIN is accompanied by the original PDB file with
hydrogens added, and two edge attribute files.

Once both the RIN and the corresponding protein structure are imported (after Step
2B(iv)), RINalyzer establishes a bidirectional connection between Cytoscape and
the 3D structure viewer UCSF Chimera. In particular, when the user selects nodes
of a RIN in the Cytoscape network view, the corresponding residues in the protein
structure are automatically highlighted in UCSF Chimera, and vice versa. RIN
nodes can be colored according to secondary structure based on the data retrieved
from UCSF Chimera, and the node colors can be synchronized with the residue
colors in UCSF Chimera. In addition, the user is able to show or hide different
types of interaction edges such as backbone and hydrogen bonds. The visual RIN
settings that can be customized by the user are listed in Box 2. Notably, a RIN-
specific 2D layout can be applied to the network view that takes the current 3D
structure coordinates into account.

The subsequent visual exploration of RINs often includes the study of the molecular
interactions of active site residues and binding residues. For this purpose, RINalyzer
offers a user interface for creating and modifying sets of residue nodes. In particular,
the user can apply it to identify the interacting residues in the binding interface of
two distinct protein domains (Step 2B(xv)) or to highlight different sets of residues
such as active site residues (Step 2B(xvii)) in both the network and the 3D structure
view.

We also show how to use RINalyzer for the computation of weighted centrality
measures and the identification of central nodes in a RIN (Step 2B(xxi-xxvii)). To
this end, RINalyzer calculates the following centrality measures: weighted degree;
shortest path closeness and betweenness; current flow closeness and betweenness;
random walk closeness and betweenness. Here, a crucial point is the choice of
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the appropriate user settings for the centrality analysis. As the edge weights in
a RIN are proportional to the strength of the represented residue interaction, the
weights need to be converted to distance scores such that smaller values are assigned
to edges that represent stronger interactions for the shortest path computation.
For each computed centrality measure, RINalyzer offers three different ways to
examine the results: (i) inspecting the raw values in a sortable table, (ii) highlighting
selected nodes in the network view or (iii) saving the values in a tab-delimited
format for further processing. The presented workflow particularly focuses on the
second option (ii), which involves a filter to select nodes with centrality values in a
given numerical range (Step 2B(xxvi)). This functionality allows the user to create
sets of best-scoring residue nodes for further investigations of their functional and
structural characteristics in both the network view and the 3D protein structure.

Comparison of residue networks

The workflow in Appendix A Step 2C introduces one possible application scenario
that combines NetworkAnalyzer and RINalyzer. We compiled a small data set
consisting of four RINs that are generated from the four subunits of the deoxyhe-
moglobin structure (Fermi et al., 1984). First, the batch analysis option of Network-
Analyzer is used to compute the network statistics of these RINs and to compare
their topologies (Step 2C(ii-v)). Second, two RINs that represent the two different
subunits of deoxyhemoglobin are compared with each other using RINalyzer (Step
2C(vi-xiv)).

This comparison requires an additional structure alignment of the two 3D protein
structures from the user and eventually results in a combined RIN. The comparison
network contains different types of edges and nodes according to the preserved
residue interactions and the aligned residues. The type of each node and edge
is stored as an attribute, which can be used to visually adjust the network view.
Thus, the user can easily highlight and investigate the identified similarities and
differences between the two RINs and the corresponding protein structures.

Materials

Hardware requirements

• Personal computer with Internet access and web browser (e.g., Mozilla Firefox,
Microsoft Internet Explorer or Google Chrome); we also recommend a screen
with resolution of at least 1024 x 768 pixels and a three-button mouse.

Software requirements

• Java Standard Edition, version 6 (download from http://www.java.com/)

http://www.java.com/
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• Cytoscape, version 2.8 (Cytoscape can be installed following the steps pro-
vided in the Cytoscape protocol (Cline et al., 2007)

• NetworkAnalyzer (included in the Cytoscape 2.8 installation as a core plug-in)

• RINalyzer (download and installation instructions for RINalyzer are available
at http://rinalyzer.de/docu/install.php)

• UCSF Chimera, version 1.5 (instructions for its installation are available at
http://www.cgl.ucsf.edu/chimera/download.html)

Data

• Sample data sets required for this protocol are provided as supplementary files
at this url. The human protein interaction network (Supplementary Data 1)
was published in the recent interactome screening study by Yu et al. (Yu
et al., 2011a). The set of four RINs (Supplementary Data 2) was generated
using the RINerator package (http://rinalyzer.de/rinerator.php) and
represents the four subunits of the deoxyhemoglobin structure with the PDB
identifier 4HHB (Fermi et al., 1984).

Step 2A: Topological analysis of biological networks

(i) Download data. Here we perform the topological analysis of the protein-protein interaction
network from Yu et al. (2011a) (Supplementary Data 1). First, download the file Supple-
mentary Data 1 to a local directory.

(ii) Import network data (for details, see the Cytoscape protocol (Cline et al., 2007)). In the Cy-
toscape main window, go to the menu option File → Import Network (multiple file

types). Select the option Local for Data Source Type and click the Select button. Nav-
igate to the directory that contains Supplementary Data 1 and select the file. Confirm the
selection by clicking the Open button. Then click the Import button to import this network
into the current Cytoscape session. When the network is successfully loaded, a summary
window will appear. Click the Close button of this window and return to the Cytoscape
main window.

(iii) Apply network layout. To apply a specific layout to the network, go to the menu op-
tion Layouts → yFiles → Organic. The network view can be enlarged by clicking the
Maximize button in the upper right corner of the network view window.

(iv) Run NetworkAnalyzer. To initiate the analysis, go to the menu option Plugins → Network

Analysis → Analyze Network. NetworkAnalyzer can perform topological analysis on di-
rected networks as well as on undirected networks. Therefore, the user can choose how the
edges should be interpreted. As this network is undirected, select the option Treat the

network as undirected and click the OK button to start the analysis. A Progress dialog
will appear. The analysis time depends on the size of the network and the amount of memory
assigned to the Cytoscape application. The Cancel button can be used at any time to stop
the analysis. ?TROUBLESHOOTING

(v) View results. The results window appears after the analysis is completed. The first tab shows
the computed simple parameters, e.g., the clustering coefficient and the average shortest path
length. The remaining tabs display complex network parameters such as degree and shortest

http://rinalyzer.de/docu/install.php
http://www.cgl.ucsf.edu/chimera/download.html
http://www.nature.com/nprot/journal/v7/n4/full/nprot.2012.004.html#supplementary-information
http://rinalyzer.de/rinerator.php
http://www.nature.com/nprot/journal/v7/n4/extref/nprot.2012.004-S2.txt
http://www.nature.com/nprot/journal/v7/n4/extref/nprot.2012.004-S2.txt
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Figure A.2: Screenshot of network statistics computed by NetworkAnalyzer. The depicted
node degree distribution is derived from the undirected protein-protein interaction network from
Yu et al (Yu et al., 2011a). The red line represents a fitted power law, which indicates that the
analyzed network is scale-free. The tabs below the dialog title lead to the display of histograms or
scatter plots of the complex topological parameters computed by NetworkAnalyzer. The buttons
on the right side provide the user with a variety of options for customizing the view as well as for
exporting the displayed charts and the underlying data. Figure first published in Doncheva et al.
(2012a).

path distributions. All topological parameters are described in more detail in Box 1. Select
the tab Node Degree Distribution. The node degree distribution is depicted in a log-log
plot. The x axis enumerates the degrees of nodes in the network and the y axis shows the
frequency of nodes with a given degree.

(vi) Fit a power law. The degree distribution of many biological networks is known to approxi-
mate a power law. Click on the button Fit Power Law to fit a power law to the distribution.
A warning message will inform you that only points with positive coordinate values are con-
sidered for the fit. Confirm this message by clicking the OK button. After a short delay,
the dialog NetworkAnalyzer - Fitted Function appears. It reports the fitted power law
constants, the correlation between the given data points and the corresponding points on
the fitted curve, and the R-squared value as a measure of fit quality between 0 and 1 (the
higher the value, the better the fit). Click the OK button to close the dialog and see the fitted
power law in the chart (A.2).

(vii) Explore charts. Click the button Enlarge Chart to open the distribution plot in a separate,
enlarged window. Almost all nodes in the network have a degree of < 30. The dot near the
lower right corner of the plot indicates that there is only one node with degree 151, which
hereafter we call hub node because of this exceptional number of protein interactions. Close
the window.
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(viii) Customize charts. Click on the button Chart Settings to rename the axes in the tab Axes,
show or hide the grid lines in the tab Gridlines, change the shape and color of chart points
in the tab Histogram. Click the OK button to apply changes of the settings or the Cancel

button to close the dialog without saving the changes.

(ix) Export charts. Every chart in the results window can be saved to a file. To save the current
chart as an image, click the Export Chart button. Adjust the image size by entering your
preferred values in the two displayed text fields and confirm it by the Save button. Navigate
to the directory where you want to save the image and select the file type from the drop-down
menu. Finally, click the Save button. In addition, it is possible to export the visualized data
for further processing in a different application. For example, select the tab Betweenness

centrality. This scatter plot displays the correlation between node degree and betweenness
centrality in the studied network. Every node in the network is represented by a point. The
x axis gives the node degree and the y axis the betweenness. Click the button Export data

and enter a file name (including extension) to store the values of these topological parameters.
After clicking the Save button, the newly created tab-separated text file will contain a table
of the degree and betweenness centrality values for every node in the network. This file can
be easily imported in external software applications such as a spreadsheet tool for further
analysis or processed by other programs.

(x) Visualize topological parameters. In Step 2A(vii), we identified a hub node in the network;
now we are interested in locating it in the network view. Thus, we will visually map the
node degree to node size in the network view. Click the button Visualize Parameters in
the results dialog of NetworkAnalyzer. In the Map node size to drop-down menu, select
Degree. Nodes with a low degree should be displayed as small circles in contrast to nodes
with a high degree. To this end, select the option Low values to small sizes. In addition,
it is possible to map the degree or any other computed topological parameter to the node
color. Choose ClusteringCoefficient in the drop-down menu on the right side and select
the option Low values to bright colors. Nodes with low clustering coefficient will now
be green and nodes with high clustering coefficient will be red. Finally, confirm the mapping
choice by clicking the Apply button. This results in changed network visualization (A.3).
If necessary, move the network statistics dialog to the right corner of your screen or close
it in order to see the updated network view. The hub node is now clearly visible as the
largest circle in the network view. The large number of green-colored nodes indicates that
most nodes have low clustering coefficient, i.e., the neighbors of most nodes do not tend
to interact with each other. To obtain an even better view of the nodes, zoom into it by
applying the button Zoom in on the toolbar or using the mouse scroll wheel.

(xi) Save network statistics. Close the analysis results window. A warning message appears that
the computed network statistics have not been saved. Click the Yes button to close the
statistics window without saving the results. To recompute the network statistics at a later
time point, just run NetworkAnalyzer again. Alternatively, the results can be saved to and
reloaded from a text file to avoid re-computation. For this purpose, click on the button Save

Statistics. Enter a file name to store the network statistics in a file with the extension
.netstats and click the Save button to confirm it.

(xii) (Optional) Perform centrality analysis. In addition to NetworkAnalyzer, RINalyzer can be
applied to perform centrality analysis on the loaded network. RINalyzer supports weighted
networks and computes several weighted centrality measures additionally (Box 3). To use
RINalyzer now, continue with Step 2B(xx).
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Figure A.3: Mapping topological parameters to the network view. In the PPI network from
Yu et al. (Yu et al., 2011a), the node degree and clustering coefficient are mapped to node size
and node color, respectively. Nodes of low degree appear as small circles, whereas nodes of high
degree are enlarged. Additionally, nodes with low clustering coefficient are depicted in green, and
nodes with high clustering coefficient in red. Figure first published in Doncheva et al. (2012a).

Step 2B: Interactive visual analysis of residue net-

works

(i) Retrieve RIN data. Identify a protein of interest with an experimentally determined 3D
structure deposited in the PDB. For example, we have chosen the HIV-1 protease (Thanki
et al., 1992) with the PDB identifier 1HIV. Start a web browser and go to the RINdata
website (http://rinalyzer.de/rindata.php) to download the corresponding RIN data.
Enter the PDB identifier 1HIV in the search form and click the button Retrieve RIN data.
If RIN data are available for this PDB identifier, a download link is provided. Click on this
link and download the file to a local directory. The downloaded RIN data are a zipped archive
that contains multiple files: a PDB file with the 3D protein structure of the original PDB file
(as retrieved from the PDB) with added hydrogens (pdb1hiv h.ent); a SIF file containing the
RIN for all chains in the PDB file (pdb1hiv h.sif ); an edge attribute file with edge weights
reflecting the strength of the interactions between residues (pdb1hiv h intsc.ea); and an edge
attribute file with edge weights representing the number of interactions between residues
(pdb1hiv h nrint.ea). Unzip all files from the archive.

(ii) Import network into Cytoscape. In the Cytoscape main window, go to the menu option
File → Import → Network (multiple file types). Select the option Local for Data

Source Type and click the Select button. Navigate to the directory that contains the ex-
tracted RIN files and select the network SIF file, e.g., pdb1hiv h.sif. Confirm the selection by
clicking the Open button and then click the Import button. When the network is successfully
loaded, a summary window will appear. Click the Close button of this window and return
to the Cytoscape main window. The network view can be enlarged by clicking the Maximize

button in the upper right corner of the network view window.

(iii) Import edge attributes into Cytoscape. Import the edge weights representing the number of
interactions between residues, as they are needed in Step 2B(xxii) for the network centrality

http://rinalyzer.de/rindata.php
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analysis. Go to the menu option File → Import → Edge Attributes. Navigate to the
directory that contains the RIN files. Select the edge attribute file pdb1hiv h nrint.ea and
click the Open button. When the attributes are successfully loaded, a summary window will
appear. Click the Close button of this window and return to the Cytoscape main window.

(iv) Open protein structure in UCSF Chimera. Go to the menu option Plugins → RINalyzer

→ Protein Structure → Open structure from file in the Cytoscape main window and
navigate to the directory that contains the RIN files. Select the PDB file (pdb1hiv h.ent)
and click the Open button. It may take a while until UCSF Chimera is launched and the 3D
structure is loaded. Afterwards, a summary window about the internally performed mapping
between network nodes and structure entities will appear. Click the Close button of this
window. ?TROUBLESHOOTING

(v) Explore protein structure. Use the mouse to move and scale the protein structure in the
main UCSF Chimera window. By default, the left mouse button controls rotation, the
middle mouse button controls XY translation and the right mouse button controls scaling.
While holding down the Ctrl key, use the left mouse button to select residues of interest by
clicking on them or to drag out a selection area (sweep out an area before releasing the left
mouse button).

(vi) Show protein backbone. To see the protein backbone in the 3D structure and to add back-
bone edges to the RIN, select Plugins → RINalyzer → Protein Structure → Show

backbone in the Cytoscape main window. This option automatically adds protein backbone
edges to the RIN in Cytoscape and also invokes the display of the ribbon representation for
the corresponding 3D protein structure in UCSF Chimera.

(vii) Apply RIN layout. Layout the RIN in Cytoscape according to the 3D structure view in UCSF
Chimera by selecting the menu option Plugins → RINalyzer → Layout → RIN Layout.
Click on the icon 1:1 in the Cytoscape toolbar to see the whole network. As the graphics
details of the network view are normally not displayed when the network is zoomed-out,
select the menu option View → Show Graphics Details. ?TROUBLESHOOTING

(viii) Customize RIN view. Go to the menu Plugins → RINalyzer → Visual Properties to
choose in the tab General & Nodes how the node label should be displayed. For example, if
only residue index and type are selected, the node labels are updated accordingly. In the tab
Edges, the visible edge types can be selected. The network view is updated automatically
each time an edge type box is checked or unchecked. In the same tab, the option Straighten

edge lines controls whether multiple edges are drawn as straight parallel lines or not. When
satisfied with the customized settings, confirm them by clicking the Apply button and click
the Close button of the dialog RIN Visual Properties. In the resulting network view, the
nodes are colored according to secondary structure and the edges according to interaction
type. More details about the different visual properties can be found in Box 2.

(ix) Synchronize colors between views. After customizing the visual properties of a RIN, nodes
are usually colored according to secondary structure. To transfer the node colors to the
corresponding residues in UCSF Chimera, go to the menu option Plugins → RINalyzer →
Protein Structure → Sync 3D view colors. The resulting network and 3D structure
views should be the same as in A.4.

(x) (Optional) Show only protein backbone. Now we want to look at only the protein backbone in
both the network view and the 3D structure view. If the protein backbone is not yet visible
in the 3D structure and the RIN, select Plugins → RINalyzer → Protein Structure →
Show backbone in the Cytoscape main window. Then go to the menu option Actions →
Atoms/Bonds → hide in the UCSF Chimera window to hide all atoms in the 3D structure
view. In the Cytoscape main window, go to the menu option Plugins → RINalyzer →
Visual Properties → Edges. Uncheck the boxes next to all edge types except of the
backbone edges. Show the edges again by checking the boxes next to the edge types in
the dialog RIN Visual Properties. When the edges are added to the network, they are
visualized as curved lines. Click the Apply button to straighten them. The atoms in the
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Figure A.4: Simultaneous view of RIN and 3D protein structure by RINalyzer. The RIN
of the HIV-1 protease (PDB identifier 1HIV (Thanki et al., 1992)) is displayed in Cytoscape
(top), whereas the molecular graphics visualization of the 3D protease structure is shown in
UCSF Chimera (bottom). All RIN nodes and the corresponding residues are colored according
to secondary structure: blue for helices and red for strands. The various types of non-covalent
residue interactions correspond to different edge colors: interatomic contacts are in blue; hydrogen
bonds in red; overlapping van der Waals radii in gray; and the backbone in black. Figure first
published in Doncheva et al. (2012a).

3D structure can be depicted again by executing Actions → Atoms/Bonds → show in the
UCSF Chimera window.

(xi) (Optional) Hide protein backbone. The backbone can be hidden in both views by clicking
the menu item Plugins → RINalyzer → Protein Structure → Hide backbone in the
Cytoscape main window.

(xii) Create sets of residue nodes. RINalyzer provides an interface to manage node sets. To
open it, click on the menu option Plugins → RINalyzer → Manage Node Sets. The
RINalyzer Node Sets panel appears as the last tab in the Cytoscape Control Panel.
New node sets can be created in different ways. For instance, to create a set that contains
the currently selected residues in UCSF Chimera, switch to the UCSF Chimera window
and click Select → Chain → A to select all residues in chain A. Selected residues are col-
ored in green, and the corresponding nodes in Cytoscape are also selected automatically
(yellow). In the panel RINalyzer Node Sets, go to the menu option File → New → Set

from selected nodes to create a set that contains the nodes corresponding to currently
selected residues in UCSF Chimera. Insert a name for the set to be created, e.g., Chain A,
and click OK to confirm it. The same actions can be repeated to create a second set named
Chain B that contains all nodes corresponding to residues in chain B.
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(xiii) Select set nodes in the network view. To see all set nodes selected in the network view, use
the option Select nodes in the context menu of the set (right-click the set name). To clear
the current node selection, click on the background in the network view window.

(xiv) Add active site nodes to a set. It is known that the active site residues of the HIV-1 protease
are ASP 25, THR 26 and GLY 27 in chains A and B (Thanki et al., 1992). To create a
set with the active site residues of the HIV-1 protease for use in the centrality analysis in
Step 2B(xxvii), go to the menu option File → New → Empty set in the Cytoscape panel
RINalyzer Node Sets. Enter the name Active site and click the OK button to confirm.
Go to the Search field in the Cytoscape toolbar and start inserting the node identifier
a:25: :asp. As a result of this insertion, a single hit should appear in the drop-down menu
of the search field. Press Enter to select the node. In the panel RINalyzer Node Sets,
go to the menu option Edit → Add nodes, and the selected node will be added to the
currently selected node set, which should be Active site. Repeat the same actions for the
remaining five active site residues: a:26: :thr; a:27: :gly; b:25: :asp; b:26: :thr;

and b:27: :gly. The set Active site should eventually contain six nodes. It is possible
to color the active site nodes and the corresponding residues in the 3D structure as will be
shown in Step 2B(xvii).

(xv) Identify residue nodes on the interface of chain A. We can use the interface RINalyzer Node

Sets to identify which residues from chain B interact with chain A. Right-click the node set
Chain A and execute the menu option Select Nodes. Afterwards, in the Cytoscape menu,
go to the menu option Select → Nodes → First Neighbors of Selected Nodes. This
operation may take several seconds and it is finished when the neighboring residues are high-
lighted in yellow. Back in the panel RINalyzer Node Sets, go to the menu option File →
New → Set from selected nodes to create a set that contains all nodes corresponding to
chain A and their neighbors. Enter the set name, e.g., Chain A and neighbors, and click
the OK button to confirm it. Now, all nodes in this new set that do not belong to chain A are
the nodes from chain B that interact with nodes from chain A. To extract these nodes, we
need to build the intersection of the sets Chain B and Chain A and neighbors. The inter-
face RINalyzer Node Sets supports typical set operations such as the union and intersection
of sets. To create the intersection of two sets, select both by left-clicking while pressing the
Ctrl key (or the Command key for Mac users) and go to the menu option Operations →
Intersection. This action will create a new set that is the intersection of the two selected
sets. Enter a name for the new set, e.g., Chain B Interface, and click the OK button to
confirm it.

(xvi) Identify residue nodes on the interface of chain B. To create a node set Chain A Interface,
select the nodes in the set Chain B; then select their first neighbors using the Cytoscape
option Select → Nodes → First Neighbors of Selected Nodes and create a node set
Chain B and neighbors, and finally, build the intersection of the set Chain A and the set
Chain B and neighbors to create the node set Chain A Interface as described in Step
2B(xv).

(xvii) Color set nodes and corresponding residues. We can highlight different sets in the network
view by changing the visual properties of the corresponding set nodes, e.g., by coloring them
in a different color. Right-click the node set Chain A to access its context menu and select
the menu option Visual Mapping Bypass → Node Color. Choose a color and click OK to
color all set nodes in the network view. In addition, select the option Sync 3D view colors

from the context menu to color the corresponding residues in UCSF Chimera with the same
color. It is possible to repeat the same actions for the node sets Chain A Interface, Chain
B and Chain B Interface. In the end, the network and 3D structure could look like the
image shown in A.5.

(xviii) Save node sets for further analysis. Select all sets by left-clicking them while pressing the
Ctrl key or by clicking the first set and then clicking the last set while holding the Shift

key pressed. In the panel RINalyzer Node Sets, go to the menu option File → Save
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Figure A.5: Node Sets interface of RINalyzer. This user interface offers four menus to create,
load, save, and modify sets of residue nodes (left). It also supports typical set operations such
as union and intersection. RINalyzer keeps track of all operations performed with each node set
(left bottom). The nodes in the network view of the RIN for the HIV-1 protease (top right) and
the residues in the corresponding 3D protein structure (bottom right) are colored according to
the node set they belong to: light blue for Chain A; dark blue for Chain A Interface; orange for
Chain B; red for Chain B Interface; and pink for Chain I. The node set Chain A Interface

is a subset of Chain A. This screenshot is taken after finishing Step 2B(ix) of the protocol. Figure
first published in Doncheva et al. (2012a).

selected set(s). Enter a file name and click Save. Close the resulting dialog that informs
you about the successfully performed action.

(xix) Prepare network for centrality analysis. Make sure that the backbone edges in the net-
work are hidden, as they are only meant to aid with the visual analysis of the RIN. To
hide them, go to the menu option Plugins → RINalyzer → Protein Structure → Hide

backbone. Hiding the backbone edges in the RIN will concomitantly hide the ribbons in
the 3D structure view. Therefore, if you do not see the 3D structure any more, switch to
UCSF Chimera and go to the menu option Actions → Atoms/Bonds → show to display
the atoms. In addition, the 1HIV structure contains a third chain I that represents an in-
hibitor bound to the protease. One might want to remove or hide the corresponding RIN
nodes before performing the centrality analysis. In order to select this chain I, go to the
menu option Select → Chain → I in UCSF Chimera. Then switch to the Cytoscape main
window and go to the menu option Edit → Delete Selected Nodes and Edges to delete
the selected nodes.

(xx) Handle disconnected network nodes. Make sure the network is connected. The HIV-1 pro-
tease RIN contains two nodes, A:40: :GLY and B:37: :SER, which are not connected to
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any other node in the network. Thus, when the centrality analysis is started, a warning
message will appear that the network has more than one connected components. In such
cases, shortest path centrality measures are computed for each connected component inde-
pendently, but current flow and random walk centralities are not computed at all. There
are two possible solutions to deal with this issue: proceed with the analysis by clicking the
Yes button, keeping in mind that these nodes are disconnected from all other nodes in the
network; alternatively, cancel the analysis by clicking the No button, select the two discon-
nected nodes in the network view and delete them by clicking Edit → Delete Selected

Nodes and Edges.

(xxi) Select root nodes for analysis. The centrality analysis can be started only if a set of nodes
(root set) is selected in the network view. RINalyzer computes each centrality measure with
respect to the root set (Box 3). For example, the weighted degree of a node is computed
by counting its neighbors that are contained in the root set and that are within a given
distance cutoff from the node of interest. The first-time user might just select all nodes
by clicking Select → Nodes → Select all nodes in the Cytoscape main window. This
action can take a few seconds because both the nodes in the network and the residues in the
3D structure are selected.

(xxii) Perform centrality analysis. Start the analysis from the menu option Plugins → RINalyzer

→ Analyze Network. A dialog that contains different analysis settings will appear. The
settings are described in detail in Box 3. In this dialog, choose which centrality measures
will be computed by checking the corresponding boxes. If the network is not connected,
only shortest path centralities will be computed. Here we choose the edge-weight attribute
NrInteractions (a value representing the number of interactions between two residues).
Furthermore, we select the option Average weight to consider the average weight of multiple
edges between node pairs as well as the max-value method for converting the averaged weight
scores into distances. If we set the cutoff to 10, the nodes that are connected by high-weighted
paths with other nodes will get high weighted degrees. After customizing the settings, click
the Analyze button. The dialog Progress will appear and show the progress of the analysis.
The time for computing the centrality measures depends on the size of the network and the
number of selected nodes. The analysis can be canceled at any time by clicking the Cancel

button in the dialog. ?TROUBLESHOOTING

(xxiii) View RINalyzer results panel. After successful computation, the results are shown in the
RINalyzer Centralities tab of the Cytoscape Results Panel (A.6). It consists of at
least three different sections; the first one entitled General Information contains general
analysis information, and each consequent section provides access to the values of a centrality
measure. Go to the menu option View → Hide Data Panel to free more display space for
the centrality analysis results.

(xxiv) Explore analysis settings. The panel General Information keeps track of the analyzed
network, the set of selected nodes and the analysis settings chosen for the current analysis
run. Click the button Selected Nodes to select the root set nodes in the network view.
Click the button Analysis Settings to see the settings for this run.

(xxv) View centrality values. Navigate to the panel Shortest Path Closeness Filtering to
become familiar with the three possible ways of examining the results. To view the raw
centrality values, click the Show button. A table with two columns will be displayed. The
first column contains the names of all nodes in the network and the second one the corre-
sponding closeness centrality values. Clicking on the name of the second column sorts the
rows according to the values in the cells. An up-arrow indicates descending order and a
down-arrow ascending order.

(xxvi) Select best-scoring residue nodes. Use the selection filter to see those nodes in the network
view that have centrality values in a specified range. The numbers above the slider show
the lowest and the highest bounds for the selection filter, 0.012 and 0.022, respectively. The
numbers below the slider are the current bounds. Move the left end of the slider to the



217

Figure A.6: Centrality analysis results by RINalyzer. The panel RINalyzer Centralities

consists of different sections. The first section contains general analysis information and allows
the user to show all computed centrality values in a table or to save them to a file. The other
sections provide access to the values of each centrality measure. In particular, the user can apply
a selection filter to select nodes with centrality values in a given range, view the values in a table,
or save them to a file. This figure shows the results of the centrality analysis performed in Step
2B(xii) and explored in Steps 2B(xiii) and (xiv). Figure first published in Doncheva et al. (2012a).

right. The left number should change and move to the right as you move the slider. At the
same time, you should see that the node selection in the network changes. Stop when you
reach 0.02 to see the nodes in the network view that have a closeness centrality above 0.02.
Double-click the slider and a window will appear in which the lower and upper bound for
the selection range can be inserted manually. Set the lower bound to 0.021 and click the OK

button to set the new selection bounds.

(xxvii) (Optional) Create set of best-scoring active site nodes. If the panel RINalyzer Node Sets

is open, go to the menu item File → New → Set from selected nodes to create a new
set from the selected nodes. Insert a name for the new set, e.g., Best SPC, and click the OK

button to confirm it. Now, we can determine which active site residues have best centrality
scores, and vice versa. Select both the set Active site created in Step 2B(xiv) and the set
Best SPC. Then go to Operations → Intersection. Insert a name for the new set, e.g.,
Best-scoring active site residues, and click the OK button to confirm it. The resulting
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set should contain four out of the six active site residues.

(xxviii) Save centrality values. Save the centrality values by clicking on the Save button in the panel
Shortest Path Closeness Filtering. Navigate to the directory where you want to save
the file. Insert the name of the file, e.g., pdb1hiv spc, and click the Save button to confirm
it. RINalyzer will automatically add the extension .centstats to the file name.

(xxix) Show and save all results. The values of all computed centrality measures can be visualized
in a table or saved to a file by using the button Show All or Save All, respectively.

(xxx) Save RIN data and view. The current network, the loaded attributes, the current network
view and the node sets can be stored as a Cytoscape session file, which can be opened again
later on. Go to the menu option File → Save and select a directory. Enter a session file
name and confirm it by clicking the Save button.

Step 2C: Comparison of residue networks

(i) Download data. Here we analyze four RINs that represent the four subunits of human
deoxyhemoglobin (chains A, B, C and D in the PDB structure with identifier 4HHB). For
this purpose, download Supplementary Data 2 and unzip the files from the archive into a
new directory, e.g., rins.

(ii) Specify batch analysis settings. To start the batch analysis dialog, go to the menu option
Plugins → Network Analysis → Batch Analysis. Select the input directory by clicking
on the first Select Directory button in the dialog Batch Analysis. Navigate to the input
directory, rins in our case and click the Open button to confirm it. The input directory should
contain network files that can be loaded into Cytoscape. The output directory will contain all
analysis results after the batch analysis. In order to avoid file overwriting, NetworkAnalyzer
requires that the output directory is empty before the batch analysis starts. Therefore,
create a new directory for the output, e.g., output, using an external file browser. In the
dialog Batch Analysis, click the second Select Directory button. Navigate to the output
directory, and click the Open button to confirm it. As RINs are undirected, we do not need to
consider all network interpretations. Select the option Consider networks as undirected.

(iii) Perform batch analysis. Click the button Start Analysis. A dialog appears that displays
the progress of the batch analysis. Depending on the number of networks and their size, this
might be a very time-consuming step. The batch analysis can be canceled at any time by
clicking the Cancel button in the progress dialog.

(iv) View batch analysis results. After the analysis is complete, the button Show Results is
enabled. Click on it to see the dialog Batch Analysis - Results. The dialog contains a
table of all topological analyses performed. Every row in the results table lists the loaded
network, its interpretation and the resulting network statistics file, which was saved to the
output directory.

(v) Load network statistics in Cytoscape. Clicking on a network name and a statistics file name
will load the network and the topological analysis results in Cytoscape, respectively. Load
all four statistics files and compare the simple parameters computed for each network (A.7).
We can notice that the two α subunits, networks A and C, are very similar to each other.
This is also the case for the two β subunits, networks B and D. However, there are apparent
differences between the network parameters for the RINs of the α and β subunits. Close the
network statistics dialogs to finish the results inspection.

(vi) Load networks into Cytoscape. Click on the networks pdb4hhb h A.sif and pdb4hhb h B.sif

to load them into Cytoscape for the next steps. You can now close the dialog Batch

Analysis - Results.

http://www.nature.com/nprot/journal/v7/n4/extref/nprot.2012.004-S3.zip
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Figure A.7: Network statistics of the four subunits of human deoxyhemoglobin. The batch
analysis results dialog allows users to open the network statistics of the analyzed networks. The
computed simple topological parameters for the networks representing all subunits of the human
deoxyhemoglobin are displayed as follows: chain A (top left), chain B (top right), chain C (bottom
left), and chain D (bottom right). Figure first published in Doncheva et al. (2012a).

(vii) Retrieve structure alignment file. RINalyzer offers the functionality to compare two RINs
based on a superposition alignment of the corresponding 3D protein structures. Here we
compare two of the networks loaded in the previous step, i.e., one α subunit and one β
subunit of the human protein deoxyhemoglobin (PDB identifier 4HHB). Start a web browser
and navigate to the RCSB PDB Protein Comparison Tool website (http://www.rcsb.org/
pdb/workbench/workbench.do). Insert the PDB identifier 4HHB in the text field for ID 1 and
choose chain A by selecting 4HHB.A in the drop-down menu. Insert the same identifier in the
text field for ID 2 and select 4HHB.B in the drop-down menu. Then, in the drop-down menu
Select Comparison Method, choose the jCE algorithm and click the Compare button.
In the Structure Alignment View page, scroll down to the panel Download Alignment.
Right-click the link Download XML and select the option Save Link As. Navigate to the
directory where the file should be saved, enter a name for it (e.g., 4hhba vs 4hhbb.xml), and
click the Save button to confirm it. Close the Protein Comparison Tool.

(viii) Perform RIN comparison. To compare RINs using RINalyzer, go to Plugins → RINalyzer

→ Compare RINs. Select pdb4hhb h A as the first network and pdb4hhb h B as the second
network. Then, enter a name for the resulting comparison network (e.g., comparison). Click
the ... button and navigate to the alignment file downloaded in Step 2C(vii). Confirm
its selection by clicking the Open button. Next, click the Compare button to perform the
actual comparison. A new network with 148 nodes and 2405 edges is created. This combined
RIN consists of three types of nodes: nodes that represent aligned residues according to the
structure superposition, and two types of nodes that correspond to residues that were not

http://www.rcsb.org/pdb/workbench/workbench.do
http://www.rcsb.org/pdb/workbench/workbench.do
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Figure A.8: Comparison network generated by RINalyzer. The combined network resulted
from the comparison of the two RINs that represent one of the α and one of the β subunits of
human deoxyhemoglobin (PDB identifier 4HHB (Fermi et al., 1984), chains A and B). Edge colors
refer to the interaction type, i.e., interatomic contacts in blue; hydrogen bonds in red; and overlaps
in gray. Edge line styles correspond to noncovalent residue interactions that are preserved in both
subunits (solid lines), present only in the α subunit (dashed lines) or only in the β subunit (dotted
lines). Figure first published in Doncheva et al. (2012a).

aligned by the superposition and belong to the first or second network. The network also
contains three different edge line styles: solid lines for interactions present in both networks,
dashed lines for interactions from the first network and dotted lines for interactions from the
second network. The type of each node and edge is stored as an attribute named BelongsTo

and represented by one of the following three values: net1, net2 or both. The value net1

refers to the first RIN selected in the comparison, and the value net2 to the second RIN.

(ix) Adjust network view. Maximize the network view window and show the graphics details from
the Cytoscape menu (View → Show Graphics Details).

(x) Apply network layout. Apply the yFiles organic layout (Layout → yFiles → Organic)
and the RIN visual properties(Plugins → RINalyzer → Visual Properties). The re-
sulting network should look as in A.8.

(xi) Hide interaction edges. First, we want to reduce the visual complexity by showing fewer
edges. Go to the menu option Plugins → RINalyzer → Visual Properties and select
the Edges tab. Hide all edges except combi:all all by unchecking the boxes next to each
edge type and close the dialog RIN Visual Properties by clicking the Close button.

(xii) Color nodes and edges. Now, we color the nodes and edges according to the network they
belong to. In the Cytoscape Control Panel, go to the tab VizMapper and double-click the
field Edge Color. Select the edge attribute BelongsTo from the drop-down menu for edge
color values and the mapping type Discrete Mapping from the mapping type drop-down
menu. A list that contains the three BelongsTo attribute values net1, net2 and both will
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appear. For each attribute value, do the following: click the field next to the attribute value
and the button ... will appear; click this button, select a color and click the OK button to
confirm it. Repeat the same actions for mapping the node color using the BelongsTo node
attribute.

(xiii) Customize node labels. It is also possible to change the node labels by clicking the field
next to the visual property Node Label. Then select the attribute CombinedLabel and the
mapping type Passthrough Mapping. The node attribute CombinedLabel contains node
labels composed of the labels of the aligned nodes from the compared networks.

(xiv) Explore comparison network. After the mapping is applied to the network view, it should
look as in Supplementary Figure 10. Zoom in using the + button in the Cytoscape toolbar
to observe the residue interaction differences between the superimposed α and β subunits of
deoxyhemoglobin.

Troubleshooting

Troubleshooting advice for basic problems that may occur during the procedure is given in Ta-
ble A.1.

Further information about using Cytoscape can be found in the documentation at http://www.

cytoscape.org/documentation_users.html and via the helpdesk mailing list. Tutorials and
documentation about UCSF Chimera are available at
http://plato.cgl.ucsf.edu/chimera/docindex.html and questions can be addressed to the
users’ mailing list (chimera-users@cgl.ucsf.edu). RINalyzer and NetworkAnalyzer documentations
can be found at http://www.rinalyzer.de/documentation.php and at http://med.bioinf.

mpi-inf.mpg.de/netanalyzer/help/2.7/index.html, respectively.

Table A.1: Troubleshooting table.

Step Problem Possible reason Solution

1 Cytoscape
does not
start.

Java is not
installed properly.

Make sure that Java version 6 is installed.
Java can be downloaded from
http://www.java.com/

2A(iv),
2B(xxii)

The
analysis
takes very
long or
seems to be
frozen.

Cytoscape has run
out of memory.

Increase the memory for the Cytoscape
program. One way to do this is to start
Cytoscape from the command line and use
the -Xmx option to set the memory size. To
this end, open a command line window,
navigate to the Cytoscape directory and
type java -Xms10m Xmx1500M -jar

cytoscape.jar -p plugins to start
Cytoscape with 1,500 MB of memory. For
alternative ways to increase the memory,
see the Cytoscape Wiki.

2B(i) There is no
RIN data
for a
protein.

The RINdata
database does not
contain
precomputed RINs
for all PDB
identifiers.

Download and apply the package
RINerator to generate the RIN data.
Alternatively, the RING web server
(Martin et al., 2011) can be used to create
different types of RINs.

Continued on next page

http://www.cytoscape.org/documentation_users.html
http://www.cytoscape.org/documentation_users.html
http://plato.cgl.ucsf.edu/chimera/docindex.html
http://www.rinalyzer.de/documentation.php
http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/index.html
http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/index.html
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Step Problem Possible reason Solution

2B(iv) UCSF
Chimera
does not
start.

The path to UCSF
Chimera is not
configured
properly.

Open the dialog Cytoscape Preferences

Editor (Edit → Preferences →
Properties). Click the Add button and
enter Chimera.chimeraPath as the name of
the property. Click OK and enter the path
to the UCSF Chimera application. Save
the new preferences by clicking the option
Make Current Cytoscape Properties

Default at the bottom of the dialog.
2B(vii) RINLayout

is not
applied to
the
network.

The 3D structure
corresponding to
the current
network is not
loaded in UCSF
Chimera.

Load the protein structure corresponding
to the current network using the menu
option Plugins → RINalyzer →
Protein Structure → Open structure

from file.

More than one
protein structure is
loaded in UCSF
Chimera.

Close all protein structures opened in
UCSF Chimera except for the structure
that corresponds to the current network,
using the menu option Plugins →
RINalyzer → Protein Structure →
Close.

Anticipated results

Here we discuss the results obtained by following each of the three workflows de-
scribed in this protocol.

Step 2A: Topological analysis of biological networks

The application of NetworkAnalyzer on the protein-protein interaction network from
Yu et al. (Yu et al., 2011a) (Supplementary Data 1) produces a comprehensive set of
topological network parameters. The network exhibits scale-free behavior because
a power law k−α with α = 1.62 can be fitted to the node degree distribution.
Furthermore, such an α value is indicative for a hub-and-spoke network with one
hub being connected to a large fraction of nodes. Indeed, the network contains
one hub protein with an exceptionally high node degree (151 interactions). The
visual exploration of the network view after mapping the clustering coefficient to
node color suggests that only a few nodes have clustering coefficients larger than 0.
This means that the proteins in the network do not tend to form clusters with their
interaction partners.
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Step 2B: Interactive visual analysis of residue networks

The RIN generated from the protein structure of the HIV-1 protease (PDB identifier
1HIV) contains 200 nodes and 2199 edges. The nodes can be divided into three
groups according to the protein chain: 99 nodes for residues in chain A; 99 nodes
for residues in chain B; and two nodes for chain I. By using the interface RINalyzer
Node Sets, we could identify the residues in the interface between chains A and B
of the protein structure. In all, 35 residues from chain A interact with 35 residues
from chain B (dark blue and red nodes in Supplementary Fig. 5, respectively).

Furthermore, we performed a centrality analysis of the RIN of the HIV-1 protease
to highlight central nodes. The best-scoring nodes according to weighted shortest
path closeness (i.e., centrality values > 0.21) were saved in a node set. The overlap
between this node set (seven nodes) and the node set representing the protease
active site (six nodes) is four nodes. When studying the single centrality values in a
table sorted from highest to lowest closeness, we observed that the four active site
residues have the best ranks.

Step 2C: Comparison of residue networks

The RINs (Supplementary Data 2) generated from the four subunits of human de-
oxyhemoglobin (chains A, B, C and D in the PDB structure with identifier 4HHB)
are of similar size: 141 nodes and 1,885 edges for chain A; 146 nodes and 1,935
edges for chain B; 141 nodes and 1887 edges for chain C; and 146 nodes and 1971
edges for chain D. As one might expect, the analysis performed with NetworkAna-
lyzer (Supplementary Fig. 9) indicates that the RINs of chains A and C, the two α
subunits, have almost identical simple network parameters such as clustering coef-
ficient, network centralization, number of shortest paths, characteristic path length
and network density. The same holds for the RINs of chains B and D, the two β
subunits. However, the difference between the simple parameter values for chains A
and B is, for most parameters, larger than the difference between the same subunits.
The complete set of both simple and complex network parameters can be compared
further using the network statistics files generated by NetworkAnalyzer.

To compare the individual residue interactions in the two RINs of chains A and B,
we used RINalyzer, which generates a combined comparison network based on the
superposition alignment of the corresponding 3D structures. The comparison net-
work contains 148 nodes and 2405 edges. Of the 148 nodes, two represent residues
in chain A and 7 nodes residues in chain B; the remaining 139 nodes correspond to
the aligned residues. The number of edges that correspond to non-covalent interac-
tions that are identical in both subunits (1415 edges) is considerably higher than the
number of nonidentical edges (470 and 520 for chains A and B, respectively). These
numbers reflect structural similarities and differences of the two subunits. When
visually exploring the simplified comparison network (Supplementary Fig. 10), we
can recognize the large number of edges that represent non-covalent interactions
identical in both subunits (523 solid edge lines) and the rather small number of
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interactions present either in the α subunit (68 dashed edge lines) or in the β sub-
unit (89 dotted edge lines) of deoxyhemoglobin. The nonidentical edges can be seen
mainly in the network part that contains nodes of unaligned residues. Dashed or
dotted edges between aligned residue nodes indicate that the corresponding residues
form functionally distinct interactions in the two homologous, structurally very sim-
ilar subunits.
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Supplementary figures and tables

Figure B.1: Functional similarity network of genes within 0.1cM of identified PSC sus-
ceptibility regions (red circles), pleiotropic PSC loci (blue rectangles), previously identified
loci (orange diamonds) and a representative of the HLA locus (green triangle). The net-
work contains 177 out of the 341 considered genes and these are connected by 511 edges
(51 within the same locus and 460 between different loci). Grey edges indicate strong
functional similarity based on Gene Ontology annotations and connect genes either from
different loci (solid edge lines) or within the same locus (dashed edge lines). Figure first
published in (Liu et al., 2013).
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Figure B.2: Functional similarity network of the genes within 0.1cM of identified PSC
susceptibility regions and the 163 confirmed IBD loci. The network contains 20 PSC only
(red circles), 559 IBD only (green circles), and 60 PSC&IBD loci genes (violet circles)
and these are connected by 5786 edges. Grey edges indicate strong functional similarity
based on Gene Ontology annotations.

(a) (b)

Figure B.3: Summary of functional similarities between PSC and IBD associated loci for
(a) the network from Figure B.2 and (b) the network that additionally contains all genes
within 0.1cM of the pleiotropic and previously known PSC loci. The genes are grouped
based on their association with PSC (red), IBD (green), and both PSC and IBD (violet),
and each node is labeled with the number of associated genes. An edge indicates that the
corresponding genes are connected by similarity edges and is labeled by the numbed of
such connections. The functional similarity edges connecting genes in the same group are
represented as self-loops.
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Table B.1: Fold change (FC) for resistance mutations in HCV NS3/4A protease against
linear and macrocyclic protease inhibitors. The FC values have been collected from the
following publications: 1) Shimakami et al. (2011); 2) Welsch et al. (2012b); 3) Welsch
et al. (2012a); 4) Welsch et al. (2008); 5) Jiang et al. (2013); 6) Lawitz et al. (2013);
7) McPhee et al. (2013); 8) Dvory-Sobol et al. (2012); 9) McPhee et al. (2012); 10)
unpublished data from Christoph Welsch (University Hospital Frankfurt).

Drug class Linear Linear unk Macrocyclic Macrocyclic Macrocyclic Macrocyclic Macrocyclic
Compound Telaprevir Boceprevir GS-9451 Vaniprevir Ciluprevir Danoprevir Simeprevir Asunaprevir

(VX-950) (SCH 503034) (MK7009) (BILN2061) (ITMN191) (TMC435) (BMS-650032)

Residue RAV FC Publication

V36 A 21.58 3.6 1.2 1.8 3 1,5,9,10
G 28.08 7.9 1 2.3 1,5,10
L 2.2 3 1.2 1.3 2 1,5,9
M 7 3 1.8 1 1.8 2.1 2 1,5,9
C 7.8 1.8 1.4 5
I 0.3 5

T40 A 1 9
Q41 R 1.5 2.4 6.2 3 1

H 3.5 1.2 3
F43 S 18.78 6.9 44 1,10

C
L 4 9

T54 A 12.28 5.5 1.1 0.7 1.1 1 0.4 1,4,5,9,10
S 8.22 1 4,9,10

V55 A 1.6 2
I 1.24 0.8 3 2,9,10

R62 K 1 9
D79 E 1 9
Q80 R 1.09 9.3 1,10

K 3 9
L 1 9

R109 K 3.86 1.2 0.9 0.8 1,5,10
S122 G 1 9

N 1 9
R 3 9

I132 V 2.4 1.1 3
K136 R 0.9 0.5 3
S138 T
V151 A 0.9 5
F154 Y 3
R155 K 16.59 3.7 150 538 510 316 18 21 1,5,8,9,10

T 5.2 312 460 45 1
Q 4.1 0.4 267 1,10
G 7.4 3.3 181.8 580 19 5,6
M 5.6 2.9 30 1.9 5
S 4.1 2.1 72.8 418 7.9 5,6
I 24 7.7 26 1.3 5
N 39.8 6

A156 S 9.6 7 17.5 18 0.4 1,5
T 62 13.7 250 706 18 33 1,5
V 62 40 2041 6.1 5
F 62 5
N 93 5

D168 A 1.1 900 453 330 23 1
E 4.1 82 56 58 1,8,10
H 160 1
I
V 1.52 1 1000 1700 733 166 373 1,8,10
G 2.2 0.6 85 55.2 31 14 3,6,8,9
N 20 1
Y 622 9
T 205 7

I170 A 2.2 1.4 5
T 4.61 2.1 5 9,10
V 1 9

N174 Y 1 9
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(a)

(b)

Figure B.4: Visualization of (a) the HCV NS3/4A protease structure as ribbon in UCSF
Chimera (PDB identifier 3KF2) and (b) the corresponding RIN in Cytoscape with focus
on the functional and phenotypic residues. The catalytic residues are represented as red
sticks in the 3D structure and as red bordered triangles in the network, while the ddip
residues are shown as green sticks and green bordered circles. The phenotypic residues
and nodes are colored in gray.
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(a)

(b)

(c)

Figure B.5: Distribution of residue values for selected topological properties: (a) dis-
tance to ddip2 site, (b) distance to catalytic residue 81, and (c) distance to catalytic
residue 139. The values of the phenotypic residues are highlighted by vertical dotted lines
in red and the vertical solid line indicates the average value. All vertical lines have the
same size (proportional to the plot height).
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(a)

(b)

(c)

Figure B.6: Distribution of residue values for selected physico-chemical properties: (a)
hydrophobicity (from UCSF Chimera), (b) net charge (AA index KLEP840101), and (c)
conservation (from ConSurfDB). The values of the phenotypic residues are highlighted
by vertical dotted lines in red and the vertical solid line indicates the average value. All
vertical lines have the same size (proportional to the plot height).
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(a)

(b)

Figure B.7: Histogram and box-and-whisker plot of selected properties for exposed (top)
and buried (middle) residues: (a) degree centrality, (b) hydrophobicity. The values of the
phenotypic residues are highlighted by vertical dotted lines in red and the vertical solid
line indicates the average value. All vertical lines have the same size (proportional to the
plot height).
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Figure B.8: Histogram of edge frequencies in the wild-type dRIN of DJ-1 (last 10 ns
only).

Figure B.9: Histogram of edge frequencies in the L166P mutant dRIN of DJ-1 (last 10
ns only).
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Figure B.10: Performance per structure for ranking interactions in the DOCKGROUND
set using the top 10, 25, 100 and All decoys.

Figure B.11: Performance per structure for ranking residues in the DOCKGROUND
set using the top 10, 25, 100 and All decoys.
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Figure B.12: Performance per structure for ranking models in the DOCKGROUND set
using the top 10, 25, 100 and All decoys.
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(a) 1fm9 (b) 1ezu

(c) 1gpw (d) 1f6m

(e) 1ugh (f) 1g6v

Figure B.13: IRMSD distribution for selected DOCKGROUND targets.
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(a) (b)

(c) (d)

(e) (f)

Figure B.14: Dependencies between performance for ranking interactions or residues and
the number of NN models per target (a) and (b), the number of true (target) interface
interactions (c) and residues (d) in the diRIN, and the interaction (e) and residue (f)
frequency scores at 0.05 FPR (top 5 %) in the PatchDock set.
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Figure B.15: Performance per structure for ranking interactions in the PatchDock set
using the top 10, 25, 100, 200 decoys.
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Figure B.16: Performance per structure for ranking residues in the PatchDock set using
the top 10, 25, 100, 200 decoys.
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Figure B.17: Performance per structure for ranking models in the PatchDock set using
the top 10, 25, 100, 200 decoys.
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