
Building Fast and Consistent
(Geo-)Replicated Systems: from

Principles to Practice

Thesis for obtaining the title of Doctor of
Engineering of the Faculty of Natural Science and

Technology I of Saarland University

By

Cheng Li

Saarbrücken

2016

Date of Colloquium: May 30, 2016

Dean of Faculty: Prof. Dr. Frank-Olaf Schreyer

Chair of the Committee: Prof. Dr. Holger Hermanns

Reporters

First Reviewer: Prof. Dr. Rodrigo Rodrigues

Second Reviewer: Prof. Dr. Peter Druschel

Third Reviewer: Prof. Dr. Robbert van Renesse

Academic Assistant: Dr. Rijurekha Sen

ii

iii

Abstract

Distributing data across replicas within a data center or across multiple data centers

plays an important role in building Internet-scale services that provide a good user ex-

perience, namely low latency access and high throughput. This approach often compro-

mises on strong consistency semantics, which helps maintain application-specific desired

properties, namely, state convergence and invariant preservation. To relieve such inherent

tension, in the past few years, many proposals have been designed to allow programmers

to selectively weaken consistency levels of certain operations to avoid costly immediate

coordination for concurrent user requests. However, these fail to provide principles to

guide programmers to make a correct decision of assigning consistency levels to various

operations so that good performance is extracted while the system behavior still complies

with its specification.

The primary goal of this thesis work is to provide programmers with principles and

tools for building fast and consistent (geo-)replicated systems by allowing programmers

to think about various consistency levels in the same framework. The first step we took

was to propose RedBlue consistency, which presents sufficient conditions that allow pro-

grammers to safely separate weakly consistent operations from strongly consistent ones

in a coarse-grained manner. Second, to improve the practicality of RedBlue consis-

tency, we built SIEVE - a tool that explores both Commutative Replicated Data Types

and program analysis techniques to assign proper consistency levels to different opera-

tions and to maximize the weakly consistent operation space. Finally, we generalized the

tradeoff between consistency and performance and proposed Partial Order-Restrictions

consistency (or short, PoR consistency) - a generic consistency definition that captures

various consistency levels in terms of visibility restrictions among pairs of operations

and allows programmers to tune the restrictions to obtain a fine-grained control of their

targeted consistency semantics.

iv

Kurzdarstellung

Daten auf mehrere Repliken in einem Datenzentrum oder über mehrere Datenzentren

zu verteilen, nimmt einen hohen Stellenwert ein, um Internet-weite Services mit guter

Nutzererfahrung, insbesondere mit niedrigen Zugriffszeiten und hohem Datendurchsatz,

zu implementieren. Diese Methode beeinträchtigt in der Regel die starke Konsitenzse-

mantik, die hilft gewünschte anwendungsspezifische Eigenschaften, die Zustandskon-

vergenz und Erhaltung von Invarianten, aufrechtzuerhalten. Um diesen Kompromiss

zu mildern, wurde in den letzten Jahren mehrere Vorschläge entworfen, die es dem

Programmierer ermöglichen für einzelne Operationen ein schwächeres Konsitenzlevel

auszuwählen, um der aufwendigen Koordination paralleler Benutzeranfragen zu entge-

hen. Allerdings liefern diese Leitsätze für die Programmierer keine Lösungsansätze, wann

welches Konsistenzlevel für eine Operation anzuwenden ist, so dass die höchstmögliche

Leistung erreicht wird und gleichzeitig die Handlung des Systems die Spezifikation

erfüllen.

Das Hauptziel dieser Doktorarbeit ist es Leitsätzen und Werkzeuge für Program-

mierer bereitzustellen, die die Entwicklung von leistungsstarken, konsistenten und

(weltweit) replizierten Sytemen ermöglichen, in dem dem Programmierer mit Hilfe eines

Frameworks gleichzeitig zwischen verschiedenen Konsistenzlevel wählen kann. Als er-

sten Schritt entwickelten wir RedBlue Konsistenz, welches die hinreichende Bedingun-

gen erläutert, die es einem Programmierer erlauben zwischen schwacher Konsistenz und

starker Konsistenz zu wählen. Um die Praktikabilität von RedBlue Konsistenz im zweiten

Schritt weiter zu erhöhen, entwickelten wir SIEVE - ein Werkzeug, das sowohl kommuta-

tive, replizierte Datentypen und Programmanalyseverfahren verwendet, um den richti-

gen Konsistenzlevel zu verschiedenen Operationen zuzuordnen und dabei die schwach

konsistenten Operationen zu maximieren. Abschliessend verallgemeinern wir den Kom-

promiss zwischen Konsistenz und Leistungsstärke und stellen die partiell, eingeschränkt

geordnete Konsistenz vor (PoR Konsistenz) - eine generische Konsistenzdefinition, die

v

verschiedene Konsistenz level, hinsichtlich der Einschränkung der Sichtbarkeit zwischen

paaren von Operationen, umfasst und dem Programmierer erlaubt, die Einschränkungen

zu justieren, um die gewünschte Konsistenzsemantik zu erzielen.

vi

Parts of the thesis have appeared in the following publications.

• Geo-Replication: Fast If Possible, Consistent If Necessary.

Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen Clement, Sergio

Duarte, Carla Ferreira, Johannes Gehrke, João Leitão, Nuno Preguiça, Rodrigo

Rodrigues Marc Shapiro and Viktor Vafeiadis.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,

2016

• Minimizing Coordination in Replicated Systems.

Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, and Rodrigo Rodrigues.

PaPoC’15, Apr. 2015, Bordeaux, France

• Automating the Choice of Consistency Levels in Replicated Systems.

Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues and

Viktor Vafeiadis.

USENIX ATC’14, Jun. 2014, Philadelphia, PA, USA

• Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and

Rodrigo Rodrigues.

OSDI’12, Oct. 2012, Hollywood, CA, USA

• Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and

Rodrigo Rodrigues.

Technical Report, MPI-SWS, 2012

vii

https://www.mpi-sws.org/~chengli/papers/p81.pdf
http://dl.acm.org/citation.cfm?id=2745955
https://www.usenix.org/node/183990
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-162.pdf
http://www.mpi-sws.org/~chengli/trs/rbTR.pdf

Additional publications published while at MPI-SWS.

• Visigoth Fault tolerance.

Daniel Porto, João Leitão, Cheng Li, Allen Clement, Aniket Kate, Flavio Jun-

queira, and Rodrigo Rodrigues.

EuroSys’15, Apr. 2015, Bordeaux, France

• Lower Bound and Correctness Proofs for Consensus in the Visigoth Model.

Daniel Porto, João Leitão, Cheng Li, Allen Clement, Aniket Kate, Flavio Jun-

queira, and Rodrigo Rodrigues.

Technical Report, Nova University of Lisbon, 2015

• Finding Complex Concurrency Bugs in Large Multi-Threaded Applications.

Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues.

EuroSys’11, Apr. 2011, Salzburg, Austria

• A study of the Internal and External Effects of Concurrency Bugs.

Pedro Fonseca, Cheng Li, Vishal Singhal and Rodrigo Rodrigues.

DSN’10, Jun. 2010, Chicago, USA

viii

http://dl.acm.org/citation.cfm?id=2741979
http://www.mpi-sws.org/~dcfp/files/vftTR.pdf
http://dl.acm.org/citation.cfm?id=1966465
http://www.mpi-sws.org/~chengli/papers/bug_study_dsn2010.pdf

Dedicated to my mummy and papa.

ix

Contents

1 Introduction 1

1.1 The unprecedented popularity of Internet services 1

1.2 The case for (geo-)replication . 2

1.3 Fundamental tradeoff: consistency v. performance 3

1.4 Challenges for being fast . 4

1.5 Thesis contributions . 5

1.6 Thesis organization . 7

2 System model 9

3 Coexistence of strong and weak consistency 11

3.1 Motivation and contributions . 11

3.2 Related work . 15

3.3 RedBlue consistency . 17

3.3.1 Defining RedBlue consistency . 18

3.3.2 State convergence and a RedBlue bank 20

3.4 Replicating side effects . 27

3.4.1 Defining shadow operations . 27

3.4.2 Revisiting RedBlue consistency . 28

3.4.3 Shadow banking and invariants . 30

3.4.4 What can be blue? What must be red? 34

xi

Contents

3.4.5 Discussion . 35

3.5 Gemini design & implementation . 37

3.5.1 Design rationale . 37

3.5.2 System overview . 38

3.5.3 Ordering and replicating transactions 39

3.5.4 Failure handling . 41

3.5.5 Implementation . 42

3.6 Case studies . 43

3.6.1 TPC-W . 44

3.6.2 RUBiS . 47

3.6.3 Quoddy . 48

3.6.4 Experience and discussion . 49

3.7 Evaluation . 49

3.7.1 Experimental setup . 50

3.7.2 Microbenchmark . 50

3.7.3 Case studies: TPC-W and RUBiS 54

3.7.4 Case study: Quoddy . 60

3.7.5 Gemini overheads . 61

3.8 Limitations and future work . 61

3.9 Summary . 62

4 Automatic consistency level assignment 65

4.1 Motivation and contributions . 65

4.2 Related work . 68

4.3 Overview . 71

4.3.1 Design rationale . 71

4.3.2 SIEVE architecture . 73

xii

Contents

4.4 Generating shadow operations . 74

4.4.1 Leveraging CRDTs . 74

4.4.2 Runtime creation of shadow operations 77

4.4.3 Miscellaneous . 77

4.5 Classification of shadow operations . 78

4.5.1 Overview . 78

4.5.2 Generating templates and weakest preconditions 82

4.5.3 Runtime evaluation . 84

4.6 Evaluation . 85

4.6.1 Implementation . 85

4.6.2 Case studies . 85

4.6.3 Experimental setup . 87

4.6.4 Experimental results . 87

4.7 Limitations and future work . 97

4.8 Summary . 97

5 Minimizing coordination in replicated systems 99

5.1 Motivation and contributions . 99

5.2 Related work . 103

5.3 Partial Order-Restriction Consistency . 106

5.3.1 Defining PoR consistency . 106

5.3.2 Expressiveness . 109

5.4 Restriction inference . 109

5.4.1 State convergence . 110

5.4.2 Invariant preservation . 113

5.4.3 Identifying restrictions . 117

5.4.4 Minimality . 120

xiii

Contents

5.5 Design and Implementation of Olisipo . 122

5.5.1 Design rationale . 122

5.5.2 Coordination protocols . 123

5.5.3 Architecture . 125

5.5.4 Implementation . 126

5.6 Evaluation . 127

5.6.1 Case study . 128

5.6.2 Experimental setup . 129

5.6.3 Experimental results . 131

5.7 Limitations and future work . 139

5.8 Summary . 140

6 Conclusion 143

xiv

List of Figures

3.1 RedBlue order and causal serializations for a system spanning two sites.

Operations marked with ? are red; operations marked with 4 are blue.

Dotted arrows in (a) indicate dependencies between operations. 19

3.2 Pseudocode for the bank example. 21

3.3 A RedBlue consistent account with initial balance of $100 and final di-

verged state. 22

3.4 Pseudocode for shadow bank operations. 29

3.5 A RedBlue consistent bank with only blue operations reaches an invalid

state. The starting balance of $125 is the result of applying shadow op-

erations above the solid line to an initial balance of $100. Loops indicate

generator operations. 30

3.6 Two legal serializations L and L′. L′ is constructed by swapping every

shadow operation v in P ′ and u if u and v are not partially ordered. . . . 32

3.7 Labeling methodology diagram. 34

3.8 A RedBlue consistent bank with correctly labeled shadow operations and

initial balance of $100. 36

3.9 Gemini system architecture. Blue arrows represent communication be-

tween sites, black arrows indicate communication between system com-

ponents within a site, and green arrows correspond to communication

between users and the replicated service. 38

xv

List of Figures

3.10 Pseudocode for the product purchase transaction doBuyConfirm in TPC-

W. For simplicity the pseudocode assumes that the corresponding shop-

ping cart only contains a single item. 44

3.11 Pseudocode for the generator and shadow operations of the original TPC-

W transaction doBuyConfirm shown in Figure 3.10. 45

3.12 (a) and (b) show the average latency and standard deviation for blue and

red requests issued by users in different locales as the number of sites is

increased, respectively. 51

3.13 (a) and (b) show the CDF of latencies for blue and red requests issued by

users in Singapore as the number of sites is increased, respectively. 52

3.14 Throughput versus latency graph for a 2 site configuration with varying

red-blue workload mixes. 53

3.15 Average latency for selected TPC-W and RUBiS user interactions.

Shadow operations for doCart and StoreBid are always blue. 56

3.16 Average latency for selected TPC-W and RUBiS user interactions.

Shadow operations for doBuyConfirm and StoreBuyNow are red 98% and

99% of the time respectively. 57

3.17 Throughput versus latency for the TPC-W shopping mix and RUBiS bid-

ding mix. The 1-site line corresponds to the original code; the 2/3/4/5-site

lines correspond to the RedBlue consistent system variants. 58

3.18 TPC-W: Throughput vs. latency graph for TPC-W with Gemini spanning

two sites when running the three workload mixes. 59

3.19 User latencies CDF for the addFriend request in single site Quoddy and

5-site Gemini deployments. 60

4.1 Overview of SIEVE. Shaded boxes are system components comprising

SIEVE. (WP stands for weakest precondition.) 73

4.2 Annotated table definition schema. 76

xvi

List of Figures

4.3 Code snippet of a transaction and a possible template for the correspond-

ing shadow operation. 81

4.4 Static analysis time vs. code base size. 91

4.5 Throughput-latency graph without replication 93

4.6 Breakdown of latency. 94

4.7 Throughput-latency graph of systems with no replication or with two

replicas. 96

5.1 Pseudocode for the original and shadow operations of the placeBid and

closeAuction transactions in an extended version of RUBiS. 100

5.2 Pseudocode for the switch example where opA, opB and opC control

switches A, B and C, respectively and the invariant is that A, B and

C cannot be switched on at the same time. Initially, all three switches are

off. 120

5.3 Olisipo architecture . 125

5.4 Olisipo connected with SIEVE and Gemini 126

5.5 Throughput versus latency curves for the RUBiS bidding mix. 131

5.6 Overall average latency bar graph for users located in three sites. 132

5.7 Average latency bar graph of a RUBiS request storeComment for users

located at three sites. In the context of PoR consistency, this request is

non-conflicting and hence does not require coordination. 133

5.8 Average latency bar graph of a RUBiS request storeBuyNow for users lo-

cated at three sites. In the context of PoR consistency, storeBuyNow con-

flicts w.r.t itself and is regulated by the Sym protocol when being replicated.134

5.9 Average latency bar graph of a placeBid request for users locating in

three sites, which is conflicting with closeAuction. This request is regu-

lated by the Asym protocol but is not a barrier. 135

xvii

List of Figures

5.10 Average latency bar graph of a closeAuction request, which is conflicting

with placeBid. This request is handled by the Asym protocol and acts as

the barrier. 136

5.11 Peak throughput and overall average latency bar graphs of systems using

different protocols. 137

5.12 Peak throughput and overall average latency bar graphs of RedBlue con-

sistency and PoR consistency. 139

xviii

List of Tables

3.1 Tradeoffs in geo-replicated systems and various consistency levels. 14

3.2 Original applications and the changes needed to make them RedBlue con-

sistent. LOC stands for “Lines of code”. 43

3.3 Average round trip latency and bandwidth between Amazon datacenters

(obtained in 2012). 50

3.4 Proportion of blue and red shadow operations and read-only and update

requests in TPC-W and RUBiS workloads at runtime. 55

3.5 Performance comparison between the original code and the Gemini version

for both TPC-W and RUBiS within a single site. 61

4.1 Commutative replicated data types (CRDTs) supported by our type sys-

tem. * FIELD covers primitive types such as integer, float, double, date-

time and string. 75

4.2 Distinct sequential paths obtained for the transaction in Figure 4.3(a). . . 82

4.3 Application-specific invariants . 86

4.4 Number of reduced paths and templates generated for each transaction

in TPC-W and RUBiS. 88

4.5 Overview of the output produced by the static analysis. “db code” refers to

the Java classes representing database structures required for computing

weakest preconditions. 89

4.6 Weakest preconditions (WP) . 89

xix

List of Tables

4.7 Average and standard deviation of latency in seconds for static analysis

tasks (5 runs). 90

4.8 Percentage of red shadow operations classified manually and by SIEVE

(5 runs). 92

5.1 Restrictions over pairs of shadow operations that are required when repli-

cating the extended RUBiS under RedBlue or PoR consistency 129

5.2 Average round trip latency and bandwidth between Amazon datacenters

(obtained in Dec 2015). 130

xx

1 Introduction

1.1 The unprecedented popularity of Internet services

In the last decade, Internet services, such as web search, email, collaborative editing, e-

commerce and social networking, have become increasingly popular at an unprecedented

speed. Nowadays, at any point of time, a massive number of subscribers are interact-

ing with these services. For instance, an annual report [FB213] shows that Facebook

had on average 757 million daily active users worldwide in December 2013, which is

22% larger than the number measured a year ago. In December 2012, Google [Gooa]

received 114.7 billion monthly searches, while Bing [bin] got 4.5 billion [Sul13]. Likewise,

Amazon [Amab], a leading worldwide e-commerce retailer company, reported that their

number of active customers per year has been remarkably increasing since 1997 and

reached 270 million in 2014 [sta].

The direct implication of this trend is that the scalability of these services must with-

stand the tremendous scale of requests issued by users all over the world. In 2010, over one

million images per second are served by Facebook when the peak load arrives [BKL+10].

In May 2013, Google reported that the High Replication Datastore integrated with

Google App Engine was able to process over 4.5 trillion transactions per month [Goob].

Another important property in addition to high throughput that these services must

offer is low latency access, since the amount of time a user spent waiting for responses

has a strong negative impact on their subsequent behavior [Web, Lin06, SB09]. In a

recent study [SB09] conducted at Microsoft, engineers measured the impact of delaying

1

1 Introduction

the reply to user requests, and discovered an inverse correlation between response times

and user satisfaction. For instance, 4.4% fewer users performed clicks and the revenue

per user decreased by 4.3% when the delay reaches 2 seconds. Incidentally, Google made

a very similar experiment and obtained consistent results [SB09]. For example, the av-

erage number of daily searches per user dropped with an increasing delay, namely by

0.59% when a 400-ms delay was artificially added.

1.2 The case for (geo-)replication

In order to achieve high service throughput and to offer fast responses to users, the

providers of Internet services, such as Google [Gooa], Microsoft [Mic], Amazon [Amab]

and Facebook [Fac], replicate their user state across replicas within a single data center

or across multiple data centers that are either at the same location or geographically

scattered over continents. User requests then are forwarded to a nearby or the least

loaded replica. A few representative systems that provide geo-replication are as follows:

(1) Engineers at Facebook designed TAO, a geographically distributed system, to store

user data across data centers and geographic regions [BAC+13]. They claimed that read

latency in TAO is independent of inter-region latency, which is often a few orders of mag-

nitude higher than the intra-region or intra-data center latency. (2) Most Google appli-

cations satisfy their interactivity demand through adopting geo-distributed data stores

like Spanner [CDE+12], Megastore [BBC+11] and Mesa [GYG+14]. (3) Pileus [TPK+13]

at Microsoft is a replicated key-value store that allows applications to express different

latency requirements by specifying which set of servers to contact for executing opera-

tions.

2

1.3 Fundamental tradeoff: consistency v. performance

1.3 Fundamental tradeoff: consistency v. performance

While replicating user data, some form of synchronization is required to bring all copies

up-to-date. The timing of this synchronization reflects the inherent tension between per-

formance and the desired consistency semantics. On the one hand, to avoid paying the

performance cost of coordinating concurrent user requests across replicas, some systems,

such as Amazon’s Dynamo [DHJ+07], resort to weaker consistency semantics like even-

tual consistency [BGY13, SS05, Vog09], under which only a small number of replicas

will be contacted to produce a user response event, and later, in the background, the

corresponding side effects are lazily replicated across all other replicas. This technique

is favored by latency-sensitive services, such as instant messenger, social networking

and online shopping, since it offers low latency access by eliminating immediate co-

ordination. The downside, however, is that it introduces difficulties for programming

applications, as it offers semantics differing from the natural semantics specified by Lin-

earizability [HW90], where a replicated service involving multiple machines behaves as a

single centralized server. In particular, weak consistency semantics require programmers

to make an effort to reason about the correctness of their implementation and to handle

unexpected behaviors, such as invariant violations or state divergence.

On the other hand, to avoid the above difficulties, some systems like Spanner [CDE+12]

choose strong consistency [HW90], where coordination among replicas is required for

them to agree on the order in which user requests are executed. This coordination, how-

ever, incurs in high latency, and the penalty will be amplified in geo-replication scenarios

as the communication cost across world regions is two or three orders of magnitude larger

than the one measured within a data center [LPC+12, TPK+13].

3

1 Introduction

1.4 Challenges for being fast

To scale out the Internet services to meet their ever-growing user base, many recent

storage systems have been proposed to replicate operations following a hybrid (or, multi-

level) consistency model, where some operations can be executed optimistically at a

replica without being coordinated with concurrent actions at other replicas, while others

require a stronger consistency level and thus require cross-replica coordination [LLSG92,

SFK+09, LPC+12, TPK+13]. Although these proposals have validated that associating

operations with different consistency levels is a promising solution for building highly

scalable Internet services, there are still a few challenges impeding their adoption in

practice. The target of my thesis is to explore reasonable solutions to mitigate these

fundamental issues.

First, how to find conditions that guide the use of weak consistency in

multi-level consistency schemes? Weakly consistent operations are (dramatically)

faster than strongly consistent ones, since fewer (geo-distributed) replicas need to be

contacted. However, we cannot arbitrarily label operations weakly consistent, since an

over-optimistic labeling plan might break the desired application-specific properties, e.g.,

two concurrent withdrawals without coordination potentially drive a shared bank balance

below zero. Therefore, to safely use weak consistency, we must extract a set of sufficient

conditions to guide the classification. In addition, the degree of performance improvement

highly relies on the ratio of weakly consistent operations to the strongly consistent ones

in a replicated service. In some applications, we observed that not many operations

could accept weak consistency. To address this limitation, we need to explore a way for

transforming operations so that the space of weakly consistent operations significantly

increases.

Second, can we provide tools that automate the above decision process? The

problem with multi-level consistency solutions [LLSG92, SFK+09, LPC+12, TPK+13] is

two-fold: a) they impose on the application programmer the non-trivial burden of un-

4

1.5 Thesis contributions

derstanding the semantics of operations and the influence between operations associated

with different consistency levels even if guided by sufficient conditions from addressing

the previous point [LPC+12]; and b) in order to handle conflicts, they require program-

mers manually to adopt a new programming model to write their services from scratch,

or to patch their services with newly implemented merge procedures. In summary, au-

tomation is required to make multi-level consistency models easy-of-use.

Third, can we maximize performance by having a generic way to express

various consistency requirements and leveraging this to minimize the amount

of required coordination? We observe that in some systems, in order to avoid an un-

desirable system behavior (e.g., state divergence or invariant violation), the adoption of

multi-level consistency models (e.g., RedBlue consistency) introduces unnecessary coor-

dination. This is because an operation not accepting weak consistency semantics only

has to be coordinated w.r.t a particular group of operations, instead of all operations re-

quiring stronger consistency semantics. Unfortunately, however, multi-level consistency

models often do not allow us to have such a fine-grained tuning in consistency require-

ments, and hence they do not always guarantee that the amount of coordination imposed

for a replicated service atop of them is minimal. To address this limitation, we need to

find a generic consistency definition, which provides programmers with flexibility to

express various fine-grained consistency semantics in a single framework.

1.5 Thesis contributions

In this thesis, we aimed to provide right answers to the above three questions. At a high

level, we made the following contributions:

• We proposed a novel consistency definition called RedBlue consistency [LPC+12],

which allows operations to run under either weak or strong consistency. We also

extracted a set of principles to guide programmers to make the decision of associat-

5

1 Introduction

ing operations with different consistency levels. In essence, we only label operations

as strongly consistent if they are not commuting with all other operations or they

might potentially break invariants, and the remaining operations are weakly consis-

tent. In addition to the classification methodology, we realize that the performance

benefits only become visible if weakly consistent operations dominate the operation

space. However, given the fact that the vast majority operations in the examples

we studied do not commute, we will end up labeling more operations strongly con-

sistent. To address this limitation, we further proposed a concept called shadow

operation, which helps replicate operations in a commutative manner regardless of

when and where the replication takes place.

• We designed an automatic tool, SIEVE [LLaC+14], to free programmers from the

time-consuming and possibly error-prone tasks of manually choosing appropriate

consistency levels for various operations, while requiring a minimal amount of pro-

grammer input. To achieve this, SIEVE first leverages Commutative Replicated

Data Types (CRDTs) [LPS09] to automatically create commutative shadow op-

erations, by only requiring a small amount of annotations from programmers to

specify which CRDT to be used. Using CRDTs, the remaining challenge to assign

consistency levels is how to efficiently check whether a generated shadow opera-

tion will potentially break programmer-specified invariants under weakly consistent

replication. To overcome this, SIEVE uses both static analysis and runtime ver-

ification, and accomplishes most of work the offline, to offer a low-cost dynamic

consistency level assignment.

• To enable a flexible way to express fine-grained consistency requirements, we pro-

posed a generic consistency definition, Partial Order-Restrictions consistency (or

short, PoR consistency), which is not only able to express several existing consis-

tency levels in a uniform fashion, but is also able to express more levels [LLaC+15]

6

1.6 Thesis organization

not covered in multi-level consistency models. Basically, PoR consistency captures

consistency levels in terms of visibility restrictions over pairs of operations in a

partial order. Weakening or strengthening consistency semantics in the context of

PoR consistency is to remove or add restrictions over pairs of relevant operations.

To demonstrate the benefits of adopting PoR consistency, we designed and imple-

mented an efficient coordination service, which executes operations complying with

pre-defined restrictions among operations of a replicated service and is able to fur-

ther reduce the cost of coordination by taking into account the runtime operation

frequencies.

1.6 Thesis organization

In summary, the primary goal of my thesis is to help programmers make their replicated

services as fast as possible and pay the coordination cost only when needed. The rest of

the thesis is organized as follows:

• Chapter 2 presents the system model and properties.

• Chapter 3 presents the formalization of RedBlue consistency, and the design, im-

plementation, and evaluation of Gemini, a geo-distributed data store supporting

RedBlue consistency.

• Chapter 4 presents the design, implementation and evaluation of SIEVE, a tool

for adapting applications to RedBlue consistency, i.e., automatically assigning ap-

propriate consistency levels to various operations.

• Chapter 5 presents the formalization of PoR consistency, and the design, imple-

mentation and evaluation of Olisipo, an efficient coordination service replicating

operations by following rules defined in PoR consistency.

• Finally, Chapter 6 concludes my thesis.

7

2 System model

In this chapter, we present the system model our work is built atop and a set of desirable

end-to-end system properties (marked in bold) we intend to provide.

We align our notations with those defined in the well-known state machine replication

literature [Sch90]. We assume a distributed system with state fully replicated across

k sites denoted by site0 . . . sitek−1. Each site hosts a replica, and each replica behaves

following a deterministic state machine model. It is worth mentioning that a site is a

logical unit that hosts a full copy of system state, and hence, it is possible to have

multiple sites across geographically dispersed data centers or even within a single data

center. In the rest of the document, the terms “site” and “replica” are interchangeable.

The system defines a set of operations U manipulating a set of reachable states S.

We do not restrict the type of operations that can be executed within that system, a

property we call general operations. If operation u is applied against a system state

S, it produces another system state S′; we will also denote this by S′ = S + u. Given a

total order T (U,<) over a set of operations U , where U ⊂ U , if we sequentially apply

all operations U against a system state S according to <, then we denote the final state

by S(T). S(T) = S + u0 + u1 + ... + ui + ... + u|U |−1, where 0 ≤ i < |U |. We say that a

pair of operations u and v commute if ∀S ∈ S, S + u + v = S + v + u. An operation u is

globally commutative, if it commutes with all operations in U (including itself).

Each operation u is initially submitted by a client at one site which we call u’s primary

site and denote site(u); the system then later replicates u to all remaining sites. Upon

9

2 System model

receiving an operation, replicas at the recipient sites apply it against their local state.

It is important that all replicas that have executed the same set of operations are in

the same state, i.e., that the underlying system offers a state convergence property;

otherwise, a quiescent system would return different views of the state depending on

which replicas the users connected to.

As clients are always expecting fast responses to their requests, we aim to provide

low latency access to the service [SB09]. Another important property that consists of

ensuring a good user experience is to preserve causality, both in terms of the mono-

tonicity of user requests within a session and preserving causality across clients, which is

key to enabling natural semantics [PST+97]. Additionally, operations invoked by client

requests should return a single value, precluding solutions that return a set of values

corresponding to the outcome of multiple concurrent updates.

The system also maintains a set of application-specific invariants. For instance, in a

banking application, bank balance values are never negative; stock values must be non-

negative as well in a shopping cart application; and, in a bidding website, the winner of

an auction must issue the highest accepted bid. To capture this, we define the primitive

valid(S) to be true if state S satisfies all these invariants and false otherwise. We denote

a valid initial state of every service by S0. We say an operation u is correct if for all

valid states S, S+u is also valid. In the previous banking example, a deposit operation,

adding a positive delta to a user’s account balance, is correct, as its application against

any valid state always ensures that the corresponding balance value is above zero. Unlike

deposit, a withdraw operation can be correct if it includes an if statement to check

whether there is enough balance, but would be incorrect if the programmer did not

include this check.

10

3 Coexistence of strong and weak

consistency

In this chapter, we present RedBlue consistency, a novel consistency definition, which

allows us to strike a balance between performance and targeted consistency semantics

when building (geo-)replicated services, and the design, implementation, and evaluation

of Gemini, a geo-distributed storage system enabling RedBlue consistent replication.

This chapter is organized as follows. We first motivate the need for defining RedBlue

consistency and briefly describe the major contributions of this work in Section 3.1.

Then, we position our work in comparison to existing proposals in Section 3.2. We

define RedBlue consistency and sketch the proofs of ensuring end-to-end properties in

Section 3.3. In Section 3.4, we introduce the concept of shadow operations along with a

set of principles for how to use this concept under RedBlue consistency. We describe our

prototype system Gemini in Section 3.5, and report on the experience transitioning three

application benchmarks to be RedBlue consistent in Section 3.6. We analyze experimen-

tal results in Section 3.7. Limitations are discussed in Section 3.8 and we conclude the

work in Section 3.9.

3.1 Motivation and contributions

As we mentioned in Chapter 1, scaling services over the Internet to meet the needs of an

ever-growing user base is challenging. In particular, in order to improve user-perceived

11

3 Coexistence of strong and weak consistency

latency, which directly affects the quality of the user experience [Lin06, SB09], services

replicate system state across geographically diverse sites and direct users to the closest

or least loaded site.

To avoid paying the performance penalty of synchronizing concurrent actions across

data centers, some systems, such as Amazon’s Dynamo [DHJ+07], resort to weaker

consistency semantics like eventual consistency where the state can temporarily diverge.

Others, such as Yahoo!’s PNUTS [CRS+08], avoid state divergence due to the undesirable

sets of behaviors it allows, by requiring all operations that update the service state to

be funneled through a primary site and thus incurring increased latency.

In order to address the inherent tension between improving performance and maintain-

ing meaningful consistency semantics, several approaches have been recently proposed

for allowing multiple levels of consistency to coexist [LLSG92, SPAL11, SFK+09]: some

operations can be executed optimistically, without synchronizing with concurrent actions

at other sites, while others require a stronger consistency level and thus require cross-

site synchronization. However, this places a high burden on the developer of the service,

who must decide which operations to assign which consistency levels. It is challenging to

make such decisions since it requires reasoning about the consistency semantics of the

overall system to ensure that the behaviors that are allowed by the different consistency

levels satisfy the specification of the system.

In this chapter we present a comprehensive and principled approach to this problem,

aiming at enabling geo-replicated systems to be as fast as possible while ensuring that

they are consistent when necessary. We make the following three contributions:

1. We propose a novel consistency definition called RedBlue consistency. The intu-

ition behind RedBlue consistency is that blue operations execute locally and are

lazily replicated in an eventually consistent manner [DHJ+07, LFKA11, TTP+95,

MSL+11, FZFF10, SPBZ11b, SFK+09]. Red operations, in contrast, are serial-

ized with respect to each other and require immediate cross-site coordination. In

12

3.1 Motivation and contributions

addition, RedBlue consistency preserves causality by ensuring that dependencies

established when an operation is invoked at its primary site are preserved as the

operation is incorporated at other sites.

2. We identify the sufficient conditions under which operations must be colored red

and may be colored blue in order to ensure that application invariants are never

violated and that all replicas converge on the same final state. Intuitively, opera-

tions that commute with all other operations and do not impact invariants may be

blue; the remaining ones must be red.

3. We observe that the commutativity requirement limits the space of potentially

blue operations, provided that many operations in real world applications do not

commute w.r.t each other. To address this limitation, we decompose operations

into two components: (1) a generator operation that identifies the changes the

original operation should make, but has no side effects itself, and (2) a shadow

operation that performs the identified changes and is replicated to all sites. With

this decomposition, only shadow operations are colored red or blue. This allows

for a dynamic runtime classification of operations and hence broadens the space of

potentially blue operations.

We built a system called Gemini that coordinates RedBlue consistent replication, and

use it to extend three applications to be RedBlue consistent: the TPC-W and RUBiS

benchmarks and the Quoddy social network. Our evaluation using microbenchmarks

and the three applications shows that RedBlue consistency provides substantial latency

and throughput benefits. Furthermore, our experience with modifying these applications

indicates that shadow operations can be created with modest effort.

13

3 Coexistence of strong and weak consistency

C
o
n
si

st
en

cy
le

v
el

E
x
a
m

p
le

sy
st

em
s

Im
m

ed
ia

te
re

sp
o
n
se

S
ta

te
co

n
v
er

g
en

ce
S
in

g
le

va
lu

e
G

en
er

a
l

o
p

er
a
ti

o
n
s

S
ta

b
le

h
is

to
ri

es
C

la
ss

ifi
ca

ti
o
n

st
ra

te
g
y

S
tr

o
n
g

R
S
M

[L
a
m

7
8
,

S
ch

9
0
]

n
o

y
es

y
es

y
es

y
es

N
/
A

T
im

el
in

e/
sn

a
p
sh

o
t

P
N

U
T

S
[C

R
S
+

0
8
],

M
eg

a
st

o
re

[B
B

C
+

1
1
]

re
a
d
s

o
n
ly

y
es

y
es

y
es

y
es

N
/
A

F
o
rk

S
U

N
D

R
[L

K
M

S
0
4
]

a
ll

o
p
s

n
o

y
es

y
es

y
es

N
/
A

E
v
en

tu
a
l

B
ay

o
u

[T
T

P
+

9
5
],

D
ep

o
t

[M
S
L
+

1
1
]

a
ll

o
p
s

y
es

n
o

y
es

y
es

N
/
A

S
p

o
rc

[F
Z

F
F

1
0
],

C
R

D
T

[S
P

B
Z

1
1
b
]

a
ll

o
p
s

y
es

y
es

n
o

y
es

N
/
A

Z
en

o
[S

F
K

+
0
9
],

C
O

P
S

[L
F

K
A

1
1
]

w
ea

k
/
a
ll

o
p
s

y
es

y
es

y
es

n
o

n
o

/
N

/
A

M
u
lt

i
P

S
I

[S
P

A
L

1
1
]

cs
et

y
es

y
es

p
a
rt

ia
l

y
es

n
o

la
zy

re
p
l.

[L
L

S
G

9
2
],

H
o
ru

s
[v

R
B

M
9
6
]

im
m

ed
ia

te
/
ca

u
sa

l
o
p
s

y
es

y
es

y
es

y
es

n
o

R
ed

B
lu

e
G

em
in

i
R

ed
o
p
s

y
es

y
es

y
es

y
es

y
es

T
a
b

le
3
.1

:
T

ra
d

eo
ff

s
in

ge
o-

re
p

li
ca

te
d

sy
st

em
s

an
d

va
ri

ou
s

co
n

si
st

en
cy

le
ve

ls
.

14

3.2 Related work

3.2 Related work

In this section, we compare several proposals of consistency definitions against our work

by analyzing which set of end-to-end properties described in Chapter 2 they offer. Ta-

ble 3.1 shows that different proposals strike different balances between these target prop-

erties. While other consistency definitions exist, we focus on the ones most closely related

to the problem of offering fast and consistent responses in geo-replicated systems.

Strong vs. weak consistency. On the strong consistency side of the spectrum, there

are definitions like linearizability [HW90], where the replicated system behaves like a sin-

gle server that serializes all operations. This, however, requires coordination among repli-

cas to agree on the order in which operations are executed, with the corresponding over-

heads that are amplified in geo-replication scenarios. Somewhat more efficient are time-

line consistency in PNUTS [CRS+08] and snapshot consistency in Megastore [BBC+11].

These systems ensure that there is a total order for updates to the service state, but

give the option of reading a consistent but dated view of the service. Similarly, Facebook

has a primary site that handles updates and a secondary site that acts as a read-only

copy [Li, Sob08]. This allows for fast reads executed at the closest site but writes still pay

a penalty for serialization. Fork consistency [LKMS04, MS02] addresses the performance

limitations of strong consistency by allowing users to observe distinct causal histories.

The primary drawback of fork consistency is that once replicas have forked, they can

never be reconciled. Such approach is useful when building secure systems but is not

appropriate in the context of geo-replication.

Eventual consistency [TTP+95] is on the other end of the spectrum. Eventual con-

sistency is a catch-all phrase that covers any system where replicas may diverge in the

short term as long as the divergence is eventually repaired and may or may not include

causality. (See Saito and Shapiro [SS05] for a survey.) In practice, as shown in Table 3.1,

systems that embrace weak consistency (e.g., eventual or causal consistency) have limi-

15

3 Coexistence of strong and weak consistency

tations. Some systems waive the stable history property, either by rolling back operations

and re-executing them in a different order at some of the replicas [SFK+09], or by re-

sorting to a last-writer-wins strategy, which often results in loss of one of the concurrent

updates [LFKA11]. Other systems expose multiple values from divergent branches in

operations replies either directly to the client [MSL+11, DHJ+07] or to an application-

specific conflict resolution procedure [TTP+95]. Finally, some systems restrict operations

by assuming that all operations in the system commute [FZFF10, SPBZ11b], which might

require the programmer to rewrite or avoid using some operations.

Coexistence of multiple consistency levels. The solution we propose for addressing

the tension between low latency and strongly consistent responses is to allow different

operations to run with different consistency levels. Existing systems that used a simi-

lar approach include Horus [vRBM96], lazy replication [LLSG92], Zeno [SFK+09], and

PSI [SPAL11]. However, none of these proposals guide the service developer in choosing

between the available consistency levels. In particular, developers must reason about

whether their choice leads to the desired service behavior, namely by ensuring that in-

variants are preserved and that replica state does not diverge. This can be challenging

due to difficulties in identifying behaviors allowed by a specific consistency level and

understanding the interplay between operations running at different levels. Our research

addresses this challenge, namely by defining a set of conditions that precisely determine

the appropriate consistency level for each operation.

Other related work. Consistency rationing [KHAK09] allows consistency guarantees

to be associated with data instead of operations, and the consistency level to be au-

tomatically switched at runtime between weak consistency and serializability based on

specified policies. TACT [YV00] consistency bounds the amount of inconsistency of data

items in an application-specific manner, using the following metrics: numerical error,

order error and staleness. In contrast to these models, the focus of RedBlue consistency

16

3.3 RedBlue consistency

is not on adapting the consistency levels of particular data items at runtime, but instead

on systematically partitioning the space of operations according to their actions and the

desired system semantics.

One of the central aspects of our work is the notion of shadow operations, which

increase operation commutativity by decoupling the decision of the side effects from

their application to the state. Some prior work also aims at increasing operation com-

mutativity: Weihl exploited commutativity-based concurrency control for abstract data

types [Wei88]; operational transformation [EG89, FZFF10] extends non-commutative

operations with a transformation that makes them commute; Conflict-free Replicated

Data Types (CRDTs) [SPBZ11b] design operations that commute by construction;

Gray [Gra81] proposed an open nested transaction model that uses commutative com-

pensating transactions to revert the effects of aborted transactions without rolling back

the transactions that have seen their results and already committed; delta transac-

tions [Sto10] divide a transaction into smaller pieces that commute with each other to

reduce the serializability requirements. Our proposal of shadow operations can be seen

as an extension to these concepts, providing a different way of broadening the scope

of potentially commutative operations. There exist other proposals that also decouple

the execution into two parts, namely two-tier replication [GHOS96] and CRDT down-

streams [SPBZ11b]. In contrast to these proposals, for each operation, we may generate

different shadow operations based on the specifics of the execution, which can run under

different consistency levels. As a result, the decomposition enables a dynamic runtime

classification of consistency levels, and allows applications to make more use of fast

operations.

3.3 RedBlue consistency

In this section we introduce RedBlue consistency, a novel consistency model that allows

replicated systems to be fast as possible and consistent when necessary. “Fast” is an easy

17

3 Coexistence of strong and weak consistency

concept to understand—it equates to providing low latency responses to user requests.

“Consistent” is more nuanced—consistency models technically restrict the state that op-

erations can observe, which can be translated to an order that operations can be applied

to a system. As we saw, causal consistency [LFKA11, TTP+95, MSL+11, FZFF10], for

example, permits operations to be partially ordered and enables fast systems—sites can

process requests locally without coordinating with each other—but sacrifices the intu-

itive semantics of serializing updates. In contrast, linearizability [HW90] or serializabil-

ity [BHG87] provide strong consistency and allow for systems with intuitive semantics—

in effect, all sites process operations in the same order —but require significant coordi-

nation between sites, precluding fast operation.

RedBlue consistency is designed to allow systems to support fast causally consistent

execution when possible and (slower) strongly consistent execution when necessary. It is

based on an explicit division of operations into blue operations whose order of execution

can vary from site to site, and red operations that must be executed in the same order

at all sites.

3.3.1 Defining RedBlue consistency

The definition of RedBlue consistency has two components: (1) A RedBlue order, which

defines a (global) partial order of operations, and (2) a set of local causal serializations,

which define site-specific total orders in which the operations are locally applied.

Definition 1 (RedBlue order) Given a set of operations U = R ∪ B, where R and

B denote the red and blue operation set, respectively, and R ∩ B = ∅, a RedBlue order

is a partial order O = (U,≺) with the restriction that ∀u, v ∈ R such that u 6= v, u ≺ v

or v ≺ u (i.e., red operations are totally ordered).

Recall that each site is modeled as a deterministic state machine capable of processing

a totally ordered sequence of operations. We define which serializations are allowed for

a given RedBlue order as follows:

18

3.3 RedBlue consistency

Alice in EU Bob in US

b3

b1

b2

a3

a1

b4

a2

(a) RedBlue order O of operations

b1

b2

a2

a3

b3

b4

a1

S0

S1

S2

S3

S4

S5

S6

S7

a1

b2

b3

a2

a3

b4

b1

S0

S1'

S2'

S3'

S4'

S5'

S6'

S7'

Alice in EU Bob in US

(b) Causal serializations of O

Figure 3.1: RedBlue order and causal serializations for a system spanning two sites.
Operations marked with ? are red; operations marked with 4 are blue.
Dotted arrows in (a) indicate dependencies between operations.

Definition 2 (Legal serialization) O′ = (U,<) is a legal serialization of RedBlue

order O = (U,≺) if

• O′ is a linear extension of O; i.e., < is a total order compatible with the partial

order defined by ≺.

This definition forces the serial order by which replicas execute operations to be com-

patible with the RedBlue order. However, it fails to enforce causality, meaning that if

19

3 Coexistence of strong and weak consistency

an operation v sees the effects of operation u at its primary site, then any operation w

that sees the effects of v must also see the effect of u at all sites in the system. In order

to preserve causality, we extend the above definition by saying that if operation v sees

the effects of u at its primary site, site(v), then u must be serialized before v at all sites.

Definition 3 (Causal legal serialization) Given a site i, Oi = (U,<) is an i-causal

legal serialization (or short, a causal serialization) of RedBlue order O = (U,≺) if

• Oi is a legal serialization of O, and

• for any two operations u, v ∈ U , if site(v) = i and u < v in Oi, then u ≺ v.

A replicated system with k sites is then RedBlue consistent if every site applies a

causal serialization of the same global RedBlue order O.

Definition 4 (RedBlue consistency) A replicated system is O-RedBlue consistent

(or short, RedBlue consistent) if each site i applies operations according to an i-causal

serialization of RedBlue order O.

Figure 3.1 shows a RedBlue order and a pair of causal serializations of that RedBlue

order. In systems where every operation is labeled red, RedBlue consistency is equivalent

to serializability [BHG87]; in systems where every operation is labeled blue, RedBlue

consistency allows the same set of behaviors as causal consistency [TTP+95, LFKA11,

MSL+11]. It is important to note that while RedBlue consistency constrains possible

orderings of operations at each site and thus the states the system can reach, it does

not ensure a priori that the system achieves all the end-to-end properties identified in

Chapter 2, namely, state convergence and invariant preservation, as discussed next.

3.3.2 State convergence and a RedBlue bank

In order to understand RedBlue consistency it is instructive to look at a concrete ex-

ample. For this example, consider a simple bank with two users: Alice in the EU and

20

3.3 RedBlue consistency

1 Variables:

2 float balance, interest = 0.05;

4 Operations:

5 func deposit(float money){

6 balance = balance + money;

7 }

9 func withdraw(float money){

10 if (balance - money >= 0){

11 balance = balance - money;

12 }else{
13 print "failure";

14 }

15 }

17 func accrueinterest(){

18 float delta = balance × interest;

19 balance = balance + delta;

20 }

Figure 3.2: Pseudocode for the bank example.

Bob in the US. Alice and Bob share a single bank account where they can deposit or

withdraw funds and where a local bank branch can accrue interest on the account (pseu-

docode for the operations can be found in Figure 3.2). To make the bank example fast,

let the deposit and accrueinterest operations be blue. Figure 3.3 shows a RedBlue

order of deposits and interest accruals made by Alice and Bob and two possible causal

serializations applied at both branches of the bank.

State convergence is important for replicated systems. Intuitively a pair of replicas

is state convergent if, after processing the same set of operations, they are in the same

state. In the context of RedBlue consistency we formalize state convergence as follows:

Definition 5 (State convergence) A RedBlue consistent system is state convergent

if all causal serializations of the underlying RedBlue order O reach the same state S

w.r.t any initial state S0.

21

3 Coexistence of strong and weak consistency

Alice in EU Bob in US

 accrueinterest() deposit(20)

(a) RedBlue order O of operations issued by Alice and Bob

deposit(20)accrueinterest()

¹

deposit(20)

balance:100

accrueinterest()

Alice in EU Bob in US

balance:100

balance:120 balance:105

balance:126 balance:125

(b) Causal serializations of O leading to diverged state

Figure 3.3: A RedBlue consistent account with initial balance of $100 and final diverged
state.

The bank example as described is not state convergent. The root cause is not surpris-

ing: RedBlue consistency allows sites to execute blue operations in different orders but

two blue operations in the example correspond to non-commutative operations—addition

(deposit) and multiplication (accrueinterest). A sufficient condition to guarantee

state convergence in a RedBlue consistent system is that every blue operation is globally

commutative, i.e., it commutes with all other operations, blue or red. We formally define

this condition in the following theorem.

Theorem 1 Given a RedBlue order O, if all blue operations are globally commutative,

then any O-RedBlue consistent system is state convergent.

In order to prove the above theorem, we introduce the following three lemmas along

with their proofs.

The first lemma asserts that, given a legal serialization, swapping two adjacent oper-

ations in the legal serialization that are not ordered by the underlying RedBlue order

results in another legal serialization.

Lemma 1 Given a legal serialization Oi = (U,<i) of RedBlue order O = (U,≺) with op-

erations u, v ∈ U such that u <i v and u 6≺ v and there exists no s such that u <i s <i v,

22

3.3 RedBlue consistency

and let P = {p|p ∈ U ∧ p <i u} and Q = {q|q ∈ U ∧ v <i q}. The serialization

Ok = (U,<k) where

• ∀p, q ∈ P ∪Q : p <k q ⇐⇒ p <i q,

• ∀p ∈ P : p <k v,

• v <k u,

• ∀q ∈ Q : u <k q

is a legal serialization.

Proof: It suffices to show that ∀r, s ∈ U : r <k s is compatible with ≺. To do so, we

consider the following six cases:

• Case 1: r, s ∈ P ∪ Q. Since Oi is a legal serialization, each r <i s is compatible

with ≺ by definition. By construction ∀p, q ∈ P ∪ Q : r <k s ⇐⇒ r <i s, so each

r <k s is also compatible with ≺.

• Case 2: r ∈ P , s = v. r <k s is compatible with ≺ by similar logic as above.

• Case 3: r = u, s ∈ Q. r <k s is compatible with ≺ by similar logic as above.

• Case 4: v <k u. Since u 6≺ v, v <k u is compatible with ≺.

• Case 5: r ∈ P , s = u. Since v <k u ∧ ∀p ∈ P : p <k v =⇒ p <k u. By the

construction of P , ∀p ∈ P : p <k u ⇐⇒ p <i u. So each r <k s is also compatible

with ≺.

• Case 6: r = v, s ∈ Q. Since v <k u ∧ ∀q ∈ Q : v <k q =⇒ v <k q. r <k s is

compatible with ≺ by similar logic as above.

As U = P ∪Q ∪ {u, v}, by all above cases, ∀r, s ∈ U : r <k s is compatible with ≺.

23

3 Coexistence of strong and weak consistency

The following lemma asserts that given a RedBlue order and its legal serialization, if

there exists a pair of elements u and v that are not ordered by the RedBlue order, then

there exists an adjacent pair of elements between u and v in the legal serialization that

are not ordered by the RedBlue order.

Lemma 2 Given a legal serialization Oi = (U,<i) of RedBlue order O = (U,≺), if

∃u, v ∈ U such that u <i v and u 6≺ v, let U ′ = {u, v} ∪ {q|u <i q ∧ q <i v}, then

∃r, s ∈ U ′ such that r <i s∧ r 6≺ s ∧ 6 ∃p ∈ U ′ : r <i p ∧ p <i s.

Proof: We prove this by performing the following exhaustive analysis. The analysis

terminates when the required pair of elements is found.

Let’s start with u, v. Consider Q to be the sequence of elements strictly between u

and v, i.e., Q = {q ∈ U |u <i q ∧ q <i v}. There are two cases we have to analyze:

• Case 1: Q is empty. This implies that u and v are adjacent, so the analysis

terminates.

• Case 2: Q is not empty. This implies that u and v are not adjacent. Consider

p to be the first element in Q according to <i, i.e., p ∈ Q : ∀q ∈ Q \ {p}, p <i q.

There are two cases to consider:

– Case 2a: u 6≺ p. It follows that p is the successor of u in Oi, then u, p is the

adjacent pair that is not ordered by O. The analysis terminates.

– Case 2b: u ≺ p. It follows from the assertion that u 6≺ v and the transitivity

of ≺ that p 6≺ v. Then we run the analysis from the beginning with p, v. Since

we are removing the first element of the sequence Q, the analysis will either

eventually terminate with an empty sequence, or before that.

The third lemma asserts that two legal serializations that differ in the order of exactly

one pair of adjacent operations (one of which is blue) are state convergent, if all their

blue operations are globally commutative.

24

3.3 RedBlue consistency

Lemma 3 Assume Oi = (U,<i) and Oj = (U,<j) are both legal serializations of Red-

Blue order O = (U,≺) that are identical except for two adjacent operations u and v such

that u <i v and v <j u and that all blue operations r ∈ U are globally commutative.

Then S0(Oi) = S0(Oj).

Proof: Let P and Q be the greatest common prefix and suffix respectively of Oi and

Oj . Further, let SP = S0(P), Suv = SP + u + v, and Svu = SP + v + u.

It follows from the definition of legal serialization (Definition 2) that u and v are not

partially ordered in ≺. It then follows from the definition of a RedBlue order (Defini-

tion 1) that either u or v is blue, i.e., u ∈ B or v ∈ B. Without loss of generality, assume

u ∈ B. By assumption u commutes with all operations in U , therefore Suv = Svu. It then

follows from the definition of a deterministic state machine that Suv(Q) = Svu(Q). By

a similar argument, the final state reached by sequentially executing operations in Oi

against S0 according to <i is equal to the final state obtained by sequentially applying

operations in Q against Suv according to <i, namely S0(Oi) = Suv(Q). By a similar

argument, we know S0(Oj) = Svu(Q). Finally, we have S0(Oi) = S0(Oj).

With the above lemmas, we could prove the state convergence theorem (Theorem 1)

as follows:

Proof: To prove a RedBlue consistent system is state convergent, it is sufficient to show

that for a RedBlue order O of that system, any pair of its causal legal serializations

reaches the same final state w.r.t any initial state S0. To achieve this, we take a slightly

more conservative approach, which is to prove that any pair of legal serializations of their

underlying RedBlue order O is state convergent. Let Oi and Oj be two legal serializations

of O. There are two cases to consider:

• Case 1: Oi = Oj . The underlying deterministic state machine ensures that

S0(Oi) = S0(Oj).

25

3 Coexistence of strong and weak consistency

• Case 2: Oi 6= Oj , in which case ∃u, v ∈ U such that u <i v and v <j u. Since

both Oi and Oj are legal serializations of O, it follows that u 6≺ v and v 6≺ u. It

then follows from Lemma 2 that we can find an adjacent pair of operations r, s

such that r <i s∧ s <j r∧ r 6≺ s∧ s 6≺ r. We construct a new serialization Oi+1 by

first duplicating Oi and then swapping the order of r and s in Oi+1, i.e., Qi and

Qi+1 are identical, except that r <i s∧ s <i+1 r. By Lemma 1, Oi+1 is also a legal

serialization of O.

If Oi+1 6= Oj , we continue the construction by finding an adjacent pair of elements

whose order is different in Oi+1, Oj . By swapping the two operations, we obtain

another legal serialization Oi+2. We can then continue to swap all such adjacent

pairs until the last constructed serialization is equal to Oj . This is achievable

since for any two legal serializations generated from two consecutive steps, O′ and

O′′, the number of pairs in O′′ whose orders are different in Oj becomes smaller

than the number observed in O′. At the end, the construction process results in

a chain of legal serializations where the first one is Oi and the last is Oj , and

any consecutive pair of legal serializations is identical except for the order of an

adjacent pair of operations. It then follows from Lemma 3 and the assumption

that all blue operations are globally commutative that every consecutive pair of

serializations in the chain is state convergent. Thus, S0(Oi) = S0(Oj).

Theorem 1 highlights an important tension inherent to RedBlue consistency. On the

one hand, low latency requires an abundance of blue operations that can be locally

executed and lazily replicated. On the other hand, state convergence requires that blue

operations commute with all other operations, blue or red. In order to make the banking

example shown in Figure 3.2 and 3.3 converge, one has to label all three operations

red, namely deposit, withdraw and accrueinterest. Obviously, this labeling will lead

to a significant performance penalty, due all operations must be serialized w.r.t each

other. The poor result implies that there exists an obstacle to making systems fast

26

3.4 Replicating side effects

under RedBlue consistency, which is that the number of commuting operations in the

real world is quite limited. As a result, in the following section we introduce a method

for addressing this tension by significantly increasing the amount of commutativity in

application operations.

3.4 Replicating side effects

In this section, we observe that while operations themselves may not be commutative, we

can often make the changes they induce on the system state commute. Let us illustrate

this issue within the context of the RedBlue bank from Section 3.3.2. We can make the

deposit and accrueinterest operations commute by first computing the amount of

interested accrued and then treating that value as a deposit.

3.4.1 Defining shadow operations

The key idea is to split each original application operation u into two components: a

generator operation gu with no side-effects, which is executed only at the primary site

against some system state S and produces a shadow operation hu(S), which is executed

at every site (including the primary site). The generator operation decides which state

transitions should be made while the shadow operation applies the transitions in a state-

independent manner.

The simplest way of making such a decomposition is generating a no-op shadow oper-

ation for every original operation. Although this strategy makes every shadow operation

globally commutative and potentially blue, it delivers a completely unmeaningful service.

In order to follow the intended application semantics, one cannot split original operations

in an arbitrary manner: the implementation of generator and shadow operations must

obey some basic correctness requirements. First, generator operations, as mentioned,

must not have any side effects. Furthermore, shadow operations must produce the same

27

3 Coexistence of strong and weak consistency

effects as the corresponding original operation when executed against the original state

S used as an argument in the creation of the shadow operation. More formally:

Definition 6 (Correct generator / shadow operations) The decomposition of op-

eration u into generator and shadow operations is correct if for all states S, the generator

operation gu has no effect and the generated shadow operation hu(S) has the same effect

as u w.r.t S, i.e., for any state S: S + gu = S and S + hu(S) = S + u.

Note that a trivial decomposition of an original operation u into generator and shadow

operations is to let gu be a no-op and let hu(S) = u for all S. This is correct but it does

not increase the space of commutativity. Later in this chapter, we will present a few

examples, in which we made an effort to produce commutative shadow operations.

In practice, as exemplified in Section 3.6, separating the decision of which transition to

make from the act of applying the transition allows many objects and their associated

usage in shadow operations to form an abelian group and thus dramatically increase

the number of commutative (i.e., blue) operations in the system. Furthermore, unlike

previous approaches [GHOS96, SPBZ11b], for a given original operation, our solution

allows its generator operation to generate state-specific shadow operations with different

properties, which can then be assigned different colors in the RedBlue consistency model.

3.4.2 Revisiting RedBlue consistency

The key insight that underlies shadow operations is breaking the execution of an opera-

tion down into the decide (generator) and apply (shadow) phases. This decomposition,

however, requires us to revisit the foundations of RedBlue consistency. In particular, only

shadow operations are included in a RedBlue order while the causal serialization for site

i additionally includes the generator operations initially executed at site i. The causal

serialization must ensure that generator operations see the same state that is associated

with the generated shadow operation and that shadow operations appropriately inherit

all dependencies from their generator operation.

28

3.4 Replicating side effects

1 func deposit’(float money){

2 balance = balance + money;

3 }

5 func withdrawAck’(float money){

6 balance = balance - money;

7 }

9 func withdrawFail’(){

10 /* no-op */

11 }

13 func accrueinterest’(float delta){

14 balance = balance + delta;

15 }

Figure 3.4: Pseudocode for shadow bank operations.

We capture these subtleties in the following revised definition of causal serializations.

Let U be the set of shadow operations executed by the system and Vi be the generator

operations executed at site i.

Definition 7 (Causal serialization–revised) Given a site i, Oi = (U ∪ Vi, <) is an

i-causal serialization of RedBlue order O = (U,≺) if

• Oi is a total order;

• (U,<) is a linear extension of O;

• For any hv(S) ∈ U generated by gv ∈ Vi, S is the state obtained after applying the

sequence of shadow operations preceding gv in Oi;

• For any gv ∈ Vi and hu(S), hv(S′) ∈ U , hu(S) < gv in Oi iff hu(S) ≺ hv(S′) in O.

Note that shadow operations appear in every causal serialization, while generator op-

erations appear only in the causal serialization of the initially executing site. Unlike the

causal serialization definition, the definitions of legal serialization and RedBlue order re-

29

3 Coexistence of strong and weak consistency

Alice in EU Bob in US

 accrueinterest’(5)

withdrawAck’(60)

 deposit’(20)

 withdrawAck’(70)

(a) RedBlue order O of banking shadow operations

withdrawAck’(60)

withdrawAck’(60)

withdrawAck’(70)

withdrawAck’(70)

balance:125

Alice in EU Bob in US

balance:125

balance:55 balance:65

balance:-5 balance:-5

withdraw(70) withdraw(60)

(b) Invalid but convergent causal serializations of O

Figure 3.5: A RedBlue consistent bank with only blue operations reaches an invalid
state. The starting balance of $125 is the result of applying shadow op-
erations above the solid line to an initial balance of $100. Loops indicate
generator operations.

main fundamentally unchanged, with the only exception on that “operation” is replaced

with “shadow operation”.

3.4.3 Shadow banking and invariants

Figure 3.4 shows the shadow operations for the banking example. In this example, the

withdraw operation maps to two distinct shadow operations that may be labeled as

blue or red independently—withdrawAck’ and withdrawFail’. withdrawAck’ refers to

successful withdrawal, while withdrawFail’ corresponds to failure due the balance value

is not enough.

Figure 3.5 illustrates that shadow operations make it possible for all operations to

commute, provided that we can identify the underlying abelian group. This does not

mean, however, that it is safe to label all commutative shadow operations blue. In this

example (Figure 3.5(b)), such a labeling would allow Alice and Bob to successfully

30

3.4 Replicating side effects

withdraw $70 and $60 at their local branches, thus ending up with a final balance of $-5.

This violates the fundamental invariant that a bank balance should never be negative.

To determine which shadow operations can be safely labeled blue, we begin by defining

that a shadow operation is invariant safe if, when applied to a valid state, it always

transitions the system into another valid state.

Definition 8 (Invariant safe) Shadow operation hu(S) is invariant safe if for all valid

states S and S′, the state S′ + hu(S) is also valid.

We also assume that the original applications without being RedBlue consistent repli-

cated are correct, i.e., all their original operations always transition from a valid system

state to another valid state. This is captured by the following trivial definition:

Definition 9 (Correct original operation) Original operation t is correct if for all

valid states S, S + t is also valid.

The following theorem states that in a RedBlue consistent system with appropriate

labeling, each replica transitions only through valid states.

Theorem 2 Given a RedBlue consistent system, if every original operation and any

pair of generator and shadow operations is correct and all its blue shadow operations

are invariant safe and globally commutative, then for any execution of that system that

starts from a valid state, no site is ever in an invalid state.

It is worth noting that this theorem highlights a non-obvious result: even red shadow

operations that may break invariants are allowed to be applied against completely dif-

ferent state, provided that those operations are serialized w.r.t each other in the same

order at all sites (but not w.r.t the remaining ones).

Proof by contradiction. Let O = (U,≺) be a RedBlue order. For every shadow

operation u in U , u’s original operation is correct and the corresponding decomposition

31

3 Coexistence of strong and weak consistency

Figure 3.6: Two legal serializations L and L′. L′ is constructed by swapping every
shadow operation v in P ′ and u if u and v are not partially ordered.

is correct. Every blue shadow operation v, i.e., v ∈ B, is invariant safe and globally

commutative. The initial state S0 is valid.

Let L be a causal serialization of O, which is shown in Figure 3.6. Assume that L is in

an invalid state. We prove this theorem by performing the following exhaustive analysis

and showing the contradictions found.

Analysis: Let P (UP , <P) be the shortest prefix of L that produces an invalid state.

If P is empty, then S0(P) = S0, and L is in a valid state. This violates the assumption

that L is in an invalid state. The theorem is proved.

If P is non-empty, then consider u to be the last shadow operation in P such that

P = P ′ + u, where P ′ is a prefix of P . Let t be the original operation of u. By the

definition of shadow operation, we know u = ht(S), where S is the state in which u was

generated. There are two cases we need to consider:

• Case 1: u is blue. As every blue shadow operation is invariant safe, the state

reached before applying u, S0(P
′), must be invalid. This contradicts the assumption

that P is the shortest prefix that introduces an invalid state. The theorem is

proved.

• Case 2: u is red. S has two possible values.

32

3.4 Replicating side effects

– Case 2a: S = S0(P
′), i.e., the state that u was applied against is the same

as the state that u was created from. It follows from the correct genera-

tor/shadow operation definition (Definition 6) that S +u = S + t and S + t is

invalid. It then follows the correct original operation definition (Definition 9)

that S must be invalid as well. By the same logic in Case 1, we found a shorter

prefix P ′ other than P that produces an invalid state. By contradiction, the

theorem is proved.

– Case 2b: S 6= S0(P
′). It follows the definition of RedBlue order (Definition 1)

and causal serialization (Definition 7) that there exists some blue shadow op-

erations v that precede u in L but are not partially ordered with u in O,

i.e., v <L u and u 6≺O v ∧ v 6≺O u. It then follows from Lemmas 1 and 2

that we can construct a new causal serialization L′ of O by duplicating L and

swapping the order between u and every v in L′, so that u is bubbled up over

every such v. The result is shown in Figure 3.6. The only difference between

L and L′ is as follows: ∀i ∈ Up : i <L u ∧ i 6≺O u =⇒ u <L′ i. T1 represents

a sequence of shadow operations that precede u in O, while T2 represents a

sequence of blue shadow operations that are not partially ordered with u. By

the state convergence theorem (Theorem 1) and the assumption that every

blue shadow operation is globally commutative, so the prefix T and P must

be state convergent, i.e., S0(P) = S0(T). As S0(P) is invalid, S0(T) is also

invalid.

By the deterministic state machine model, we know S0(T) = S0(T1) +u+T2,

where as shown in Figure 3.6 T1 and T2 are the aforementioned prefix and

suffix of T , respectively. As all blue shadow operations are invariant safe,

S0(T1)+u must be invalid. By the causal serialization definition (Definition 7)

and the construction of L′, the state S0(T1) is the state in which u was

generated. It then follows the correct generator/shadow operation definition

33

3 Coexistence of strong and weak consistency

a	shadow	

operaBon	u

commutes	

with	all	

others?	

breaks	

invariants?	
Red	 Blue	

No	

Yes	

Yes	

No	

Ensuring	state	

convergence	

Ensuring	invariant	

preservaJon	

Figure 3.7: Labeling methodology diagram.

(Definition 6) that S0(T1) + u = S0(T1) + t. It then follows from the correct

original operation definition (Definition 9) that S0(T1) must be invalid as well.

We proceed by starting again the analysis using as the input a new causal

serialization of O and a new shortest prefix that produces an invalid state,

i.e., P = T1 ∧ L = L′. This analysis is guaranteed to terminate since the size

of P at every subsequent analysis step decreases.

3.4.4 What can be blue? What must be red?

As illustrated by Theorem 1, the sufficient condition of ensuring the state convergence

property is that a shadow operation must be labeled as red if it is not globally com-

mutative. The second theorem (Theorem 2) states that invariants are maintained if all

non-invariant safe shadow operations are serialized. In summary, the combination of

these two theorems leads to the following procedure (shown in Figure 3.7) for deciding

which shadow operations can be blue or must be red if a RedBlue consistent system is

to provide both state convergence and invariant preservation:

34

3.4 Replicating side effects

1. For any pair of non-commutative shadow operations u and v, label both u and v

red.

2. For any shadow operation u that may result in an invariant being violated, label

u red.

3. Label all non-red shadow operations blue.

Applying this decision process to the bank example leads to a labeling where

withdrawAck’ is red and the remaining shadow operations are blue. The only restriction

we placed is to make any pair of successful withdraw shadow operations be partially or-

dered, i.e., one must see the effect introduced by another. Figure 3.8 shows a RedBlue

order with appropriately labeled shadow operations and causal serializations for the two

sites that converge to the same valid final state. In this example, the first withdraw

operation issued by Alice in the EU site cannot proceed even provided that her local

balance is enough to complete this withdrawal. Instead, the execution must wait until the

changes carried by the shadow operation withdrawAck’(60) from US have been made

visible at the EU replica. Upon this, the generator of Alice’s withdraw(70) reads the

current balance value and produces a failure withdrawal (blue). In the end, the balance

value remains non-negative.

3.4.5 Discussion

Shadow operations and RedBlue consistency introduce some surprising anomalies to a

user experience. Notably, while the effect of every user action is applied at every site, the

final system state is not guaranteed to match the state resulting from a serial ordering

of the original operations. The important thing to keep in mind is that the decisions

made always make sense in the context of the local view of the system: when Alice

accrues interest in the EU, the amount of interest accrued is based on the balance

that Alice observes at that moment. If Bob concurrently makes a deposit in the US

35

3 Coexistence of strong and weak consistency

Alice in EU Bob in US

despoit’(10)

 accrueinterest’(5)

withdrawAck’(60)

 withdrawAck’(40)

 deposit’(20)

withdrawAck’(30)

withdrawFail’()

(a) RedBlue order O of banking shadow operations

withdrawAck’(30)

withdrawAck’(40)

deposit’(10)

withdrawFail’()

withdrawAck’(60)

accrueinterest’(5)

deposit’(20)

balance:100

Alice in EU

balance:125

withdrawAck’(30)

withdrawAck’(40)

withdrawFail’()

deposit’(10)

withdrawAck’(60)

deposit’(20)

accrueinterest’(5)

Bob in US

balance:100

balance:125

balance:120 balance:105

balance:65 balance:65

balance:65 balance:75

balance:75 balance:75

balance:35 balance:35

balance:5 balance:5

deposit(20)

withdraw(70)

withdraw(30)

deposit(10)

accrueinterest()

withdraw(40)

withdraw(60)

(b) Convergent and invariant preserving causal serializations of O

Figure 3.8: A RedBlue consistent bank with correctly labeled shadow operations and
initial balance of $100.

and subsequently observes that interest has been accrued, the amount of interest will

not match the amount that Bob would accrue based on the balance as he currently

observes it. As such, shadow operations always provide for a coherent sequence of state

transitions that reflects the effects demanded by user activity; while this sequence of

state transitions is coherent (and convergent), the state transitions are chosen based on

36

3.5 Gemini design & implementation

the locally observable state when/where the user activity initiated and not the system

state when they are applied.

3.5 Gemini design & implementation

In this section we describe the design and implementation of Gemini, a prototype archi-

tecture that enables applications to run under RedBlue consistency.

3.5.1 Design rationale

As we saw in Section 3.4, some original operations like withdraw may produce either

blue or red shadow operations depending on the current system state and the user input

they are observing. A näıve solution would be to coordinate all generator operations that

may produce a red shadow. This solution imposes more restrictions than what RedBlue

consistency exactly needs, i.e., all relevant shadow operations even including those blue

ones would be serialized w.r.t each other. As a result, it offsets the goal of RedBlue

consistency of only paying a performance penalty when strong consistency is needed. To

avoid this, we instead optimistically run the generator operation at its primary site in the

first place, and then speculatively generate a tentative shadow operation based on the

local state and user input. If the corresponding shadow operation is blue, then a reply

will be produced locally without contacting remote replicas; Otherwise, replicas have

to speak to each other for establishing a total order among all red shadow operations

that are received, and making sure that this shadow operation is generated from a state

reflecting all side effects introduced by all its preceding shadow operations. Therefore, a

red tentative shadow operation might rollback, when the local state is different from the

global state due to conflicts, and we need to restart the process of generating another

shadow operation.

In addition, there are two requirements for executing generator operations: (1) they

should not interfere with other concurrent operations; and (2) there is no need for them

37

3 Coexistence of strong and weak consistency

Storage

engine

Coordinator

Data writer

Storage

engine

Gemini lib
Sequencer

Data writer

Storage

engine

Gemini lib
Sequencer

Data writer

Storage

engine

Proxy

Server
Coordinator

Data writer

Site 1

Site n

Site i

Site 2

Users

Users

Proxy

Server

Figure 3.9: Gemini system architecture. Blue arrows represent communication between
sites, black arrows indicate communication between system components
within a site, and green arrows correspond to communication between
users and the replicated service.

to make their identified side effects persistent. Given these observations, using a lock-

based concurrency control solution would be very conservative, since granting locks to

an operation may prevent other operations from making progress. In summary, we resort

to a form of optimistic concurrency control (OCC) [BHG87] in Gemini, as we describe

next. It is worth mentioning that the Gemini OCC slightly deviates from the traditional

textbook algorithm, since our algorithm recognizes the fact that concurrent blue shadow

operations are never conflicting with all other shadow operations.

3.5.2 System overview

We implemented the Gemini storage system to provide RedBlue consistency. As shown in

Figure 3.9, each Gemini site consists of four components: a storage engine, a proxy server,

a concurrency coordinator, and a data writer. A multi-site deployment is constructed by

replicating the single data center components across multiple sites.

38

3.5 Gemini design & implementation

The basic flow of user requests through the system is straightforward. A user issues

requests to a proxy server located at the closest site. The proxy server processes a request

by executing the generator operation of an appropriate application transaction, which is

implemented as a single Gemini original operation, comprising multiple data accesses;

individual data accesses within a generator operation execute in a temporary private

scratchpad, providing a virtual private copy of the service state. The original data lies in

a storage engine, which provides a standard storage interface. In our implementation, the

storage engine is a relational database, and scratchpad operations are executed against

a set of non-shared in-memory tables. Upon completion of the generator operation, the

proxy server sends the produced shadow operation on to the concurrency coordinator

to admit or reject this operation according to RedBlue consistency. The concurrency

coordinator notifies the proxy server if the shadow operation is accepted or rejected.

Additionally, accepted shadow operations are appended to the end of the local legal

causal serialization and propagated to remote sites and to the local data writer for

execution against the storage engine. When a shadow operation is rejected, the proxy

server re-executes the generator operation and restarts the process.

3.5.3 Ordering and replicating transactions

The most sophisticated part of Gemini is how to establish a RedBlue order of shadow

operations generated by different replicas and to replicate all these shadow operations in

site-dependent causal legal serializations at every replica. First, Gemini uses timestamps

to determine if shadow operations can complete successfully, i.e., shadow operations

can be admitted to appear in the corresponding global RedBlue order. Timestamps are

logical clocks [Lam78] of the form 〈〈b0, b1, . . . , bk−1〉, r〉, where bi is the local count of

shadow operations initially executed by site i and r is the global count of red shadow

operations. To ensure that different sites do not choose the same red sequence number

(i.e., all red operations are totally-ordered) we use a simple token passing scheme: only

39

3 Coexistence of strong and weak consistency

the coordinator in possession of a unique red token is allowed to increase the counter r

and approve red operations. In the current prototype, a coordinator holds onto the red

token for up to 1 second before passing it along.

When a generator operation completes, the corresponding shadow operation is pro-

duced and colored according to the classification results obtained by applying the labeling

methodology in Section 3.4 against the target application. Then, the colored shadow op-

eration is passed to the coordinator for determining if this operation can be accepted

to the global RedBlue order. If it is blue, the coordinator only performs a read coher-

ence check, i.e., the logical timestamps of the data items in its read set are less than or

equal to the begin timestamp assigned when the corresponding transaction started. If

the pending shadow operation is red, then the coordinator has to verify if the state where

the operation was generated from reflects the effects of the set of accepted red shadow

operations that precede it according to some total order established by the token assign-

ment scheme. To do this, the coordinator has to wait until the red token has reached its

site, i.e., red shadow operations initially executed at the previous red token holder site

have been applied locally. Then, the coordinator performs a read-write conflict check

consisting of two steps: (a) acquiring locks for data items in the pending shadow opera-

tion’s write set, in order to prevent local concurrent pending red shadow operations from

proceeding; and (b) checking if the data items in the pending shadow operation’s read

set are not locked and have not been modified by any other accepted shadow operations

between the time when the transaction generating the pending shadow operation started

and the check was triggered.

Upon successful completion of the above checks, the coordinator assigns the corre-

sponding shadow operation a timestamp that is component-wise equal to the latest

operation that was incorporated at its site, and increments its blue and, if this shadow

operation is red, the red component of the logical timestamp. This timestamp determines

the position of the shadow operation in the RedBlue order, with the normal rules that

40

3.5 Gemini design & implementation

determine that two operations are partially ordered if one is equal to or dominates the

other in all components. It also allows sites to know when it is safe to incorporate remote

shadow operations: they must wait until all shadow operations with smaller timestamps

have already been incorporated in the local state of the site. When a remote shadow

operation is applied at a site, the most recent local logical clock maintained by this site

will be replaced with the entry-wise max of its current value and the timestamp shipped

with that shadow operation. This captures dependencies that span local and remote

operations.

Read-only shadow operations. As a performance optimization, blue shadow operations

can be marked as read-only. Read-only shadow operations receive special treatment from

the coordinator: once the generator operation passes the coherence check, the proxy is

notified that the shadow operation has been accepted but the shadow operation is not

incorporated into the local serialization or global RedBlue order. Thus, read-only oper-

ations are never sent across sites.

3.5.4 Failure handling

The current Gemini prototype is designed to demonstrate the performance potential

of RedBlue consistency in geo-replicated environments and as such is not implemented

to tolerate faults of either a local (i.e., within a site) or catastrophic (i.e., of an entire

site) nature. Addressing these concerns is orthogonal to the primary contributions of

this work, nonetheless we briefly sketch mechanisms that could be employed to handle

faults.

Isolated component failure. The Gemini architecture consists of four main compo-

nents at each site, each representing a single point of failure. Standard state machine

replication techniques [Lam78, Sch90] can be employed to make each component robust

to failures.

41

3 Coexistence of strong and weak consistency

Site failure. Our Gemini prototype relies on a simple ring-exchange for serializing all

red shadow operations. Thus, the failure of a single site is enough to stop the token

exchange and prevent future red transactions from completing. To avoid halting the

system upon a site failure, a fault tolerant consensus protocol like Paxos [Lam98] can

regulate red tokens.

Operation propagation. Gemini relies on each site to propagate its own local op-

erations to all remote sites. A pair-wise network outage or failure of a site following

the replication of a operation to some but not all of the sites could prevent sites from

exchanging operations that depend on the partially replicated operation. This can be

addressed using standard techniques for exchanging causal logs [MSL+11, ANB+94,

TTP+95, PST+97] or reliable multicast [FJL+97].

Cross-session monotonicity. The proxy that each user connects to enforces the mono-

tonicity of user requests within a session [TDP+94]. However, a failure of that proxy, or

the user connecting to a different site may result in a subset of that user’s operations not

carrying over. This can be addressed by allowing the user to specify a “last-read” version

when starting a new session or requiring the user to cache all relevant requests [MSL+11]

in order to replay them when connecting to a new site.

3.5.5 Implementation

The Gemini system consists of 10k lines of Java code1, and uses MySQL [MyS] as its

storage backend, and the Netty asynchronous i/o library[Net] for communication. We

extended a JDBC driver [Jdb] so that it is able to facilitate the integration of Gemini

into the MySQL based applications that will be discussed in Section 3.6. The source

code of Gemini is available at [Gem].

1The lines of code is measured by cloc [cod].

42

3.6 Case studies

App

Original RedBlue consistent extension

user
requests

transactions
LOC

shadow operations
LOC

changedtotal
read
-only

update
blue

red LOC
no-op update

TPC-W 14 20 13 7 9k 13 14 2 2.8k 429
RUBiS 26 16 11 5 9.4k 11 7 2 1k 180
Quoddy 13 15 11 4 15.5k 11 4 0 495 251

Table 3.2: Original applications and the changes needed to make them RedBlue con-
sistent. LOC stands for “Lines of code”.

3.6 Case studies

In this section we report on our experience in modifying three existing applications—

the TPC-W shopping cart benchmark [con02, TPC11], the RUBiS auction bench-

mark [EJ09], and the Quoddy social networking application [Fog12]—to work with

RedBlue consistency. The two main tasks to fulfill this goal are (1) decomposing the

application original operations into generator and shadow operations and (2) labeling

the shadow operations blue or red appropriately.

Writing generator and shadow operations. Each of the three case study applications

executes MySQL database transactions as part of processing user requests, generally one

transaction per request. We map these application level transactions to the original op-

erations and they also serve as a starting point for the generator operations. For shadow

operations, we turn each execution path in the original operation into a distinct shadow

operation; an execution path that does not modify system state is explicitly encoded

as a no-op shadow operation. When the shadow operations are in place, the generator

operation is augmented to invoke the appropriate shadow operation at each path.

Labeling shadow operations. Table 3.2 reports the number of transactions in the TPC-

W, RUBiS, and Quoddy, the number of blue and red shadow operations we identified

using the labeling rules in Section 3.4.3, and the application changes measured in lines

43

3 Coexistence of strong and weak consistency

1 doBuyConfirm(cartId){
2 beginTxn();

3 cart = exec(SELECT * FROM cartTb WHERE cId=cartId);
4 cost = computeCost(cart);
5 orderId = getUniqueId();

6 exec(INSERT INTO orderTb VALUES(orderId,cart.item.id,
cart.item.qty,cost));

7 item =exec(SELECT * FROM itemTb WHERE id=cart.item.id);
8 if item.stock − cart.item.qty < 10 then:
9 delta = item.stock − cart.item.qty + 21;

10 if delta > 0 then:
11 exec(UPDATE itemTb SET item.stock+ = delta);
12 else rollback();

13 else exec(UPDATE itemTb SET item.stock− = cart.item.qty);
14 exec(DELETE FROM cartContentTb WHERE cId=cartId AND id=

cart.item.id);
15 commit();

16 }

Figure 3.10: Pseudocode for the product purchase transaction doBuyConfirm in TPC-
W. For simplicity the pseudocode assumes that the corresponding
shopping cart only contains a single item.

of code. Note that read-only transactions always map to blue no-op shadow operations.

In the rest of this section we expand on the lessons learned from making applications

RedBlue consistent.

3.6.1 TPC-W

TPC-W [con02] models an online bookstore. The application server handles 14 different

user requests such as browsing, searching, adding products to a shopping cart, or placing

an order. Each user request generates between one and four transactions that access

state stored across eight different tables. We extend an open source implementation of

the benchmark [Rit12] to allow a shopping cart to be shared by multiple users across

multiple sessions.

Writing TPC-W generator and shadow operations. Of the twenty TPC-W transac-

tions, thirteen are read-only and admit no-op shadow operations. The remaining seven

44

3.6 Case studies

1 doBuyConfirmGenerator(cartId){
2 sp = getScratchpad();

3 sp.beginTxn();
4 cart = sp.exec(SELECT * FROM cartTb

WHERE cId=cartId);
5 cost = computeCost(cart);
6 orderId = getUniqueId();

7 sp.exec(INSERT INTO orderTb VALUES (

orderId,cart.item.id,cart.item.qty,
cost));

8 item = sp.exec(SELECT * FROM itemTb

WHERE id=cart.item.id);
9 if item.stock − cart.item.qty < 10 then:

10 delta = item.stock − cart.item.qty + 21;
11 if delta > 0 then:
12 sp.exec(UPDATE itemTb SET

item.stock+ = delta);
13 else sp.discard(); return;
14 else sp.exec(UPDATE itemTb SET

item.stock− = cart.item.qty);
15 sp.exec(DELETE FROM cartTb WHERE cId=

cartId AND id=cart.item.id);
16 L TS = getCommitOrder();

17 sp.discard();
18 if replenished return (

doBuyConfirmIncre’(orderId,cartId,
cart.item.id,cart.item.qty,cost,delta,
L TS));

19 else return (doBuyConfirmDecre’(

orderId,cartId,cart.item.Id,
cart.item.qty,cost,L TS));}

(a) Generator operation that manipulates data via a pri-
vate scratchpad.

1 doBuyConfirmIncre’(orderId,cartId,
itId,qty,cost,delta,L TS){

2 exec(INSERT INTO orderTb VALUES(

orderId,itId,qty,cost,L TS));
3 exec(UPDATE itemTb SET

item.stock+ = delta);
4 exec(UPDATE itemTb SET

item.l ts = L TS WHERE

item.l ts < L TS);
5 exec(UPDATE cartContentTb SET

flag = TRUE WHERE id = itId AND

cid = cartId AND l ts <= L TS);}

(b) Shadow doBuyConfirmIncre (Blue) that replen-
ishes the stock value.

1 doBuyConfirmDecre’(orderId,cartId,
itId,qty,cost,L TS){

2 exec(INSERT INTO orderTb VALUES(

orderId,itId,qty,cost,L TS));
3 exec(UPDATE itemTb SET

item.stock− = qty);
4 exec(UPDATE itemTb SET

item.l ts = L TS WHERE

item.l ts < L TS);
5 exec(UPDATE cartContentTb SET

flag = TRUE WHERE id = itId AND

cid = cartId AND l ts <= L TS);}

(c) Shadow doBuyConfirmDecre (Red) that decre-
ments the stock value.

Figure 3.11: Pseudocode for the generator and shadow operations of the original TPC-
W transaction doBuyConfirm shown in Figure 3.10.

update transactions translate to one or more shadow operations according to the number

of distinct execution paths in the original operation.

We now give an example transaction, doBuyConfirm, which completes a user purchase.

The pseudocode for the original transaction is shown in Figure 3.10. The doBuyConfirm

transaction removes all items from a shopping cart, computes the total cost of the pur-

chase, and updates the stock value for the purchased items. If the stock would drop below

45

3 Coexistence of strong and weak consistency

a minimum threshold, then the transaction also replenishes the stock. The key challenge

in implementing shadow operations for doBuyConfirm is that the original transaction

does not commute with itself or any transaction that modifies the contents of a shopping

cart. Naively treating the original transaction as a shadow operation would force every

shadow operation to be red.

Figure 3.11(a) shows the generator operation of doBuyConfirm, and Fig-

ures 3.11(b) and Figures 3.11(c) depict the corresponding pair of shadow operations:

doBuyConfirmIncre’ and doBuyConfirmDecre’. The former shadow operation is gen-

erated when the stock falls below the minimum threshold and must be replenished;

the latter is generated when the purchase does not drive the stock below the minimum

threshold and consequently does not trigger the replenishment path. In both cases, the

generator operation is used to determine the quantity of the item purchased and total

cost as well the shadow operation that corresponds to the initial execution. At the end

of the execution of the generator operation these parameters and the chosen shadow

operation are then propagated to other replicas.

Labeling TPC-W shadow operations. For the 29 shadow operations in TPC-W, we

found that 27 can be blue and only two must be red. To label shadow operations, we

identified two key invariants that the system must maintain. First, the number of in-

stock items can never fall below zero. Second, the identifiers generated by the system

(e.g., for items or shopping carts) must be unique.

The first invariant is easy to maintain by labeling doBuyConfirmDecre’ (Fig-

ure 3.11(c)) and its close variant doBuyConfirmAddrDecre’ red. We observe that they

are the only shadow operations in the system that decrease the stock value, and as such

are the only shadow operations that can possibly invalidate the first invariant. Note that

the companion shadow operation doBuyConfirmIncre’ (Figure 3.11(b)) increases the

stock level, and can never drive the stock count below zero, so it can be blue.

46

3.6 Case studies

The second invariant is more subtle. TPC-W generates IDs for objects (e.g., shopping

carts, items, etc.) as they are created by the system. These IDs are used as keys for item

lookups and consequently must themselves be unique. To preserve this invariant, we have

to label many shadow operations red. This problem is well-known in database replica-

tion [CCA08] and was circumvented by modifying the ID generation code, so that IDs

become a pair
〈
appproxy id , seqnumber

〉
, where appproxy id denotes a globally unique

proxy id across sites and seqnumber denotes a counter managed by each proxy. This

change makes these operations trivially blue, while not modifying application-specific

semantics.

3.6.2 RUBiS

RUBiS [EJ09] emulates an online auction website modeled after eBay [eba12]. RUBiS

defines a set of 26 requests that users can issue ranging from selling, browsing for, bid-

ding on, or buying items directly, to consulting a personal profile that lists outstanding

auctions and bids. These 26 user requests are backed by a set of 16 transactions that

access the storage backend.

Of these 16 transactions, 11 are read-only, and therefore trivially commutative. For the

remaining 5 update transactions, we construct shadow operations to make them com-

mute, similarly to TPC-W. Each of these transactions leads to between 1 and 3 shadow

operations. The effort to write the shadow operations was nominal and mechanically

very similar to our efforts with TPC-W.

Through an analysis of the application logic, we determined three invariants. First,

that identifiers assigned by the system are unique. Second, that nicknames chosen by

users are unique. Third, that item stock cannot fall below zero. Again, we preserve the

first invariant using the global id generation strategy described in Section 3.6.1. The

second and third invariants require both RegisterUser’, checking if a name submitted

47

3 Coexistence of strong and weak consistency

by a user was already chosen, and storeBuyNow’, which decreases stock, to be labeled

as red.

We also found that the available version of RUBiS is not complete since it lacks a

real close auction operation, which declares the winner of each auction when its trading

period ends. If such an operation existed, then there would be another invariant: the

selected winners must be the users issuing highest accepted bids. It is very challenging

to maintain this invariant while improving performance under the context of RedBlue

consistency. This is because the shadow operation storeBid’— putting a bid on an

open auction and updating the total number of bids and the max bid value for the

corresponding item — would be labeled red and is considered to be a common request

in all RUBiS-like bidding systems. We will illustrate this challenge and the approach to

overcome it in Chapter 5.

3.6.3 Quoddy

Quoddy [Fog12] is an open source Facebook-like social networking site. Despite being

under development, Quoddy already implements the most important features of a social

networking site, such as searching for a user, browsing user profiles, adding friends,

posting a message, etc. These main features define 13 user requests corresponding to

15 different transactions. Of these 15 transactions, 11 are read-only transactions, thus

requiring trivial no-op shadow operations.

Writing and labeling shadow operations for the 4 remaining transactions in Quoddy

was straightforward. Besides reusing the recipe for unique identifiers, we only had to

handle an automatic conversion of dates to the local timezone (performed by default

by the database) by storing dates in UTC in all sites. In the social network we did not

find system invariants to speak of; we found that all shadow operations could be labeled

blue.

48

3.7 Evaluation

3.6.4 Experience and discussion

Our experience showed that writing shadow operations is easy; it took us about one

week to understand the code, and implement and label shadow operations for all appli-

cations. We also found that the strategy of generating a different shadow operation for

each distinct execution path is beneficial for two reasons. First, it leads to a simple logic

for shadow operations that can be based on operations that are intrinsically commu-

tative, e.g., increment/decrement, insertion/removal. Second, it leads to a fine-grained

classification of operations, with more execution paths leading to blue shadow opera-

tions. Finally, we found that it was useful in more than one application to make use of

a standard last-writer-wins strategy to make operations that overwrite part of the state

commute.

3.7 Evaluation

We evaluate Gemini and RedBlue consistency using microbenchmarks and our three case

study applications. The primary goal of our evaluation is to determine if RedBlue con-

sistency can improve latency and throughput in geo-replicated systems. More precisely,

we focus on the following main questions:

• What is the impact of colors of shadow operations on user observed latency?

• How does throughput change when varying the ratio of red (strongly consistent)

shadow operations?

• What is the prevalence of blue or red shadow operations in the three applications

introduced in the previous section?

• How does throughput change when increasing the replication factor (i.e., the num-

ber of sites)?

• What is the overhead of Gemini?

49

3 Coexistence of strong and weak consistency

UE UW IE BR SG

UE
0.4 ms 85 ms 92 ms 150 ms 252 ms
994 Mbps 164 Mbps 242 Mbps 53 Mbps 86 Mbps

UW
0.3 ms 155 ms 207 ms 181 ms
975 Mbps 84 Mbps 35 Mbps 126 Mbps

IE
0.4 ms 235 ms 350 ms
996 Mbps 54 Mbps 52 Mbps

BR
0.3 ms 380 ms
993 Mbps 65 Mbps

SG
0.3 ms
993 Mbps

Table 3.3: Average round trip latency and bandwidth between Amazon datacenters
(obtained in 2012).

3.7.1 Experimental setup

We run experiments on Amazon EC2 [Amaa] using extra large virtual machine instances

located in five sites: US east (UE), US west (UW), Ireland (IE), Brazil (BR), and

Singapore (SG). Table 3.3 shows the average round trip latency and observed bandwidth

between every pair of sites. For experiments with fewer than 5 sites, new sites are added

in the following order: UE, UW, IE, BR, SG. Unless otherwise noted, users are evenly

distributed across all sites. Each VM has 8 virtual cores and 15GB of RAM. VMs run

Debian 6 (Squeeze) 64 bit, MySQL 5.5.18, Tomcat 6.0.35, and Sun Java SDK 1.6. Each

experimental run lasts for 10 minutes.

3.7.2 Microbenchmark

We begin the evaluation with a simple microbenchmark designed to stress the costs

and benefits of partitioning operations into red and blue sets. Each user issues requests

accessing a random record from a MySQL database. Each request maps to a single

shadow operation; we say a request is blue if it maps to a blue shadow operation and

red otherwise. The offered workload is varied by adjusting the number of outstanding

requests per user and the ratio of red and blue requests.

50

3.7 Evaluation

 0

 100

 200

 300

2-site 3-site 4-site 5-site

L
at

en
cy

 (
m

s)
US-East
US-West

Ireland
Brazil

Singapore

(a) Blue request latency for all users as number of sites increases

 0

 1000

 2000

2-site 3-site 4-site 5-site

L
at

en
cy

 (
m

s)

US-East
US-West

Ireland
Brazil

Singapore

(b) Red request latency for all users as number of sites increases

Figure 3.12: (a) and (b) show the average latency and standard deviation for blue and
red requests issued by users in different locales as the number of sites
is increased, respectively.

We run the microbenchmark experiments with a dataset consisting of 10 tables each

initialized with 1,000,000 records; each record has 1 text and 4 integer attributes. The

total size of the dataset is 1.0 GB.

User observed latency

The primary benefit of using Gemini to replicate a service across multiple sites is the

decrease in latency from avoiding the intercontinental round-trips as much as possible.

As a result, we first explore the impact of RedBlue consistency on user experienced

51

3 Coexistence of strong and weak consistency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
ro

b
ab

ili
ty

Latency (ms)

2-site
3-site
4-site
5-site

(a) Blue latency CDF for Singapore users as number of sites increases

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

P
ro

b
ab

ili
ty

Latency (ms)

2-site
3-site
4-site
5-site

(b) Red latency CDF for Singapore users as number of sites increases

Figure 3.13: (a) and (b) show the CDF of latencies for blue and red requests issued by
users in Singapore as the number of sites is increased, respectively.

latency. In the following experiments each user issues a single outstanding request at

one time.

Figure 3.12(a) shows that the average latency for blue requests is dominated by the

latency between the user and the closest site; as expected, average latency decreases

as additional sites appear close to the user. For example, with replicas in two sites

in US, users at US-East get responses in less than 10 ms, whereas users at Ireland

get responses of 100 ms on average, slightly above the round-trip latency of 92 ms

presented in Table 3.3. Figure 3.12(b) shows that this trend also holds for red requests.

The average latency and standard deviation, however, are higher for red requests than

52

3.7 Evaluation

 0

 20

 40

 60

 0 1000 2000 3000 4000 5000

L
at

en
cy

 (
m

s)

Throughput (request/s)

100Blue/0Red
70Blue/30Red
0Blue/100Red

Figure 3.14: Throughput versus latency graph for a 2 site configuration with varying
red-blue workload mixes.

for blue requests. This is because red shadow operations can be as fast as blue ones if

their primary site holds the unique red token, but will be much slower if the site does

not have that privilege.

To understand this effect, we plot in Figures 3.13(a) and 3.13(b) the CDFs of observed

latencies for blue and red requests, respectively, from the perspective of users located

in Singapore. The observed latency for blue requests tracks closely with the round-trip

latency to the closest site. In the k = 2 through k = 4 site configurations, four red

requests from a user in Singapore are processed at the closest site during the one second

in which the closest site holds the red token; every fifth request must wait k− 1 seconds

for the token to return. In the 5 site configuration, the local site also becomes a replica

of the service and, therefore, a much larger number of requests (more than 300) can be

processed while the local site holds the red token. This changes the format of the curve,

even though the request issued immediately after the red token is released also needs to

wait four seconds for the token to return.

Peak throughput

We now shift our attention to the throughput implications of RedBlue consistency. Fig-

ure 3.14 shows a throughput-latency graph for a 2 site configuration and three workloads:

53

3 Coexistence of strong and weak consistency

100% blue, 100% red, and a 70% blue/30% red mix. The different points in each curve

are obtained by increasing the offered workload, which is achieved by increasing the

number of outstanding requests per user. For the mixed workload, users are partitioned

into blue and red sets responsible for issuing requests of the specified color and the ratio

is a result of this configuration.

The results in Figure 3.14 show that increasing the ratio of red requests degrades

both latency and throughput. In particular, the two-fold increase in throughput for the

all blue workload in comparison to the all red workload is a direct consequence of the

coordination (not) required to process red (blue) requests: while red requests can only

be executed by the site holding the red token to process, every site may independently

process blue requests. The peak throughput of the mixed workload is proportionally

situated between the two pure workloads.

3.7.3 Case studies: TPC-W and RUBiS

Our microbenchmark experiments indicate that RedBlue consistency instantiated with

Gemini offers latency and throughput benefits in geo-replicated systems with sufficient

blue shadow operations. Next, we evaluate Gemini using TPC-W and RUBiS.

Configuration and workloads

In all case study experiments a single site configuration corresponds to the original

unmodified code with users distributed amongst all five sites. Two through five site

configurations correspond to the modified RedBlue consistent systems running on top

of Gemini. When necessary, we modified the provided user emulators so that each user

maintains k outstanding requests and issues the next request as soon as a response is

received.

54

3.7 Evaluation

Blue Red read-only update

TPC-W shop 99.2 0.8 85 15

TPC-W browse 99.5 0.5 96 4

TPC-W order 93.6 6.4 63 37

RUBiS bid 97.4 2.6 85 15

Table 3.4: Proportion of blue and red shadow operations and read-only and update
requests in TPC-W and RUBiS workloads at runtime.

TPC-W. TPC-W [con02] defines three workload mixes differentiated by the percentage

of client requests related to making purchases: browsing (5%), shopping (20%), ordering

(50%). The dataset is generated with the following TPC-W parameters: 50 EBS and

10, 000 items.

RUBiS. RUBiS defines two workload mixes: browsing, exclusively comprised of read-

only interactions, and bidding, where 15% of user interactions are updates. We evaluate

only the bidding mix. The RUBiS database contains 33, 000 items for sale, 1 million

users, 500, 000 old items and is 2.1 GB in total.

Prevalence of blue and red shadow operations

Table 3.4 shows the distribution of blue and red shadow operations during the execution

of the TPC-W and RUBiS workloads. The results show that TPC-W and RUBiS exhibit

sufficient blue shadow operations for it to be likely that we can exploit the potential of

RedBlue consistency.

User observed latency

We first explore the per request latency for a set of exemplar blue and red requests from

TPC-W and RUBiS. For this round of experiments, each site hosts a single user issuing

one outstanding request to the closest site.

55

3 Coexistence of strong and weak consistency

 0

 2000

 4000

1-site 2-site 3-site 4-site 5-site

L
at

en
cy

 (
m

s)
US-East
US-West

Ireland
Brazil

Singapore

(a) TPC-W doCart

 0

 500

 1000

1-site 2-site 3-site 4-site 5-site

L
at

en
cy

 (
m

s)

US-East
US-West

Ireland
Brazil

Singapore

(b) RUBiS StoreBid

Figure 3.15: Average latency for selected TPC-W and RUBiS user interactions.
Shadow operations for doCart and StoreBid are always blue.

From TPC-W we select doBuyConfirm (discussed in detail in Section 3.6.1) as an

exemplar for red requests and doCart (responsible for adding/removing items to/from a

shopping cart) as an exemplar for blue requests; from RUBiS we identify StoreBuyNow

(responsible for purchasing an item at the buyout price) as an exemplar for red requests

and StoreBid (responsible for placing a bid on an item) as an exemplar for blue requests.

Note that doBuyConfirm and StoreBid can produce either red or blue shadow opera-

tions; in our experience they produce red shadow operations 98% and 99% of the time

respectively.

Figures 3.15(a) and 3.15(b) show that the latency trends for blue shadow operations

are consistent with the results from the microbenchmark—observed latency is directly

56

3.7 Evaluation

 0

 2000

 4000

1-site 2-site 3-site 4-site 5-site

L
at

en
cy

 (
m

s)

US-East
US-West

Ireland
Brazil

Singapore

(a) TPC-W doBuyConfirm

 0

 2000

 4000

1-site 2-site 3-site 4-site 5-site

L
at

en
cy

 (
m

s)

US-East
US-West

Ireland
Brazil

Singapore

(b) RUBiS StoreBuyNow

Figure 3.16: Average latency for selected TPC-W and RUBiS user interactions.
Shadow operations for doBuyConfirm and StoreBuyNow are red 98%
and 99% of the time respectively.

proportional to the latency to the closest site. The raw latency values are higher than

the round-trip time from the user to the nearest site because processing each request

involves sending one or more images to the user.

For red requests, Figures 3.16(a) and 3.16(b) show that latency and standard deviation

both increase with the number of sites. The increase in standard deviation is an expected

side effect of the simple scheme that Gemini uses to exchange the red token and is

consistent with the microbenchmark results. Similarly, the increase in average latency is

due to the fact that the time for a token rotation increases, together with the fact that

red requests are not frequent enough that several cannot be slipped in during the same

57

3 Coexistence of strong and weak consistency

 0

 40

 80

 120

 160

 0 400 800 1200 1600

L
at

en
cy

 (
m

s)

Throughput (interaction/s)

1-site 2-site 3-site 4-site 5-site

(a) TPC-W shopping mix

 0

 40

 80

 120

 160

 0 400 800 1200 1600

L
at

en
cy

 (
m

s)

Throughput (interaction/s)

1-site 2-site 3-site 4-site 5-site

(b) RUBiS bidding mix

Figure 3.17: Throughput versus latency for the TPC-W shopping mix and RUBiS bid-
ding mix. The 1-site line corresponds to the original code; the 2/3/4/5-
site lines correspond to the RedBlue consistent system variants.

token holding interval. We reiterate that the token passing scheme used by Gemini is

simple and we leave as future work the implementation of a more sophisticated scheme

like Paxos [Lam98] for regulating red shadow operations.

58

3.7 Evaluation

 0

 40

 80

 120

 160

 200

 0 400 800 1200 1600

L
at

en
cy

 (
m

s)

Throughput (interaction/s)

Browsing mix
Shopping mix
Ordering mix

Figure 3.18: TPC-W: Throughput vs. latency graph for TPC-W with Gemini spanning
two sites when running the three workload mixes.

Peak throughput

We now shift our attention to the throughput afforded by our RedBlue consistent versions

of TPC-W and RUBiS, and how it scales with the number of sites. For these experiments

we vary the workload by increasing the number of outstanding requests maintained by

each user. Throughput is measured according to interactions per second, a metric defined

by TPC-W to correspond to user requests per second.

Figure 3.17 shows throughput and latency for the TPC-W shopping mix and RUBiS

bidding mix as we vary the number of sites. In both systems, increasing the number of

sites increases peak throughput and decreases average latency. The decreased latency

results from situating users closer to the site processing their requests. The increase in

throughput is due to processing blue and read-only operations at multiple sites, given

that processing their side effects is relatively inexpensive. The speedup for a 5 site Gemini

deployment of TPC-W is 3.7x against the original code for the shopping mix; the 5 site

Gemini deployment of RUBiS shows a speedup of 2.3x.

Figure 3.18 shows the throughput and latency graph for a two site configuration

running the TPC-W browsing, shopping, and ordering mixes. As expected, the browsing

mix, which has the highest percentage of blue and read-only requests, exhibits the highest

59

3 Coexistence of strong and weak consistency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

P
ro

b
ab

ili
ty

 (
%

)

Latency (ms)

UE (1-site)
UW (1-site)

IE (1-site)
BR (1-site)
SG (1-site)

Gemini (5-site)

Figure 3.19: User latencies CDF for the addFriend request in single site Quoddy and
5-site Gemini deployments.

peak throughput, and the ordering mix, with the lowest percentage of blue and read-only

requests, exhibits the lowest peak throughput.

3.7.4 Case study: Quoddy

Quoddy differs from TPC-W and RUBiS in one crucial way: it has no red shadow

operations. We use Quoddy to show the full power of RedBlue geo-replication.

Quoddy does not define a benchmark workload for testing purposes. Thus we design

a social networking workload generator based on the measurement study of Benevenuto

et al. [BRCA09]. In this workload, 85% of the interactions are read-only page loads and

15% of the interactions include updates, e.g., request friendship, confirm friendship, or

update status. Our test database contains 200,000 users and is 2.6 GB in total size.

In a departure from previous experiments, we run only two configurations. The first

is the original Quoddy code in a single site. The second is our Gemini based RedBlue

consistent version replicated across 5 sites. In both configurations, users are distributed

in all 5 regions.

Figure 3.19 shows the CDF of user experienced latencies for the addFriend opera-

tion. All Gemini users experience latency comparable to the local users in the original

Quoddy deployment; a dramatic improvement for users not based in the US East region.

60

3.8 Limitations and future work

TPC-W shopping mix RUBiS biding mix
Original Gemini Original Gemini

Throughput (interaction/s) 409 386 450 370

Average latency (ms) 14 15 6 7

Table 3.5: Performance comparison between the original code and the Gemini version
for both TPC-W and RUBiS within a single site.

The significantly higher latencies for remote regions are associated with the images and

Javascript files that Quoddy distributes as part of processing the addFriend request.

3.7.5 Gemini overheads

Gemini is a middleware layer that interposes between the applications that leverage

RedBlue consistency and a set of database systems where data is stored. We evaluate

the performance overhead imposed by our prototype by comparing the performance of a

single site Gemini deployment with the unmodified TPC-W and RUBiS systems directly

accessing a database. For this experiment we locate all users in the same site as the

service.

Table 3.5 presents the peak throughput and average latency for the TPC-W shopping

and RUBiS bidding mixes. The peak throughput of a single site Gemini deployment is

between 82% and 94% of the original and Gemini increases latency by 1ms per request.

3.8 Limitations and future work

Although RedBlue consistency significantly succeeded in making our example applica-

tions fast, i.e., uniformly low user observed latency and high system throughput, without

sacrificing their targeted behavior, there are still several points, which we either address

in subsequent chapters or leave as future work.

First, RedBlue consistency offers a coarse-grained classification scheme, which can

lead to a conservative labeling result for applications that require more consistency

61

3 Coexistence of strong and weak consistency

levels other than weak and strong consistency. We address this limitation by introducing

a generic consistency model providing us with more flexibility to express consistency

requirements in Chapter 5.

Second, the adoption of RedBlue consistency requires programmers to make effort to

write shadow operations, to apply changes to the original code, and to reason about

operation commutativity and invariant violation in the presence of parallelism. Without

the support of automatic tools, the manual work can be error-prone and does not scale,

as the code base increases. We address this limitation by building SIEVE in Chapter 4,

which combines operational transformation and programming language techniques to

provide an automatic and provably correct solution.

Third, the simple token passing scheme for offering strong consistency is not efficient

and fault tolerant. At each point of time, only one site can admit its red shadow op-

erations to the global RedBlue order when this site is possessing the red token, while

the remaining sites are waiting. This leads to a high latency for user requests, and

would cause the whole system to stop executing this type of operations if the site where

the red token stays crashes. To address this limitation, we leave as future work the

implementation of Paxos for serializing all red shadow operations across sites.

Fourth, using logical clocks might introduce false causal dependencies among opera-

tions. As every site increases its own entry when assigning monotonic timestamps to all

its receiving operations, these operations become totally ordered, which, provided that

some of them are blue, is not necessary. This might limit the amount of concurrency

within a site, so we leave to future work an analysis of the impact of the usage of logical

clock on scalability.

3.9 Summary

In this chapter, we presented a principled approach to building geo-replicated systems

that are fast as possible and consistent when necessary. Our approach to addressing the

62

3.9 Summary

tension between running operations locally as often as possible but without sacrificing

important application properties, namely state convergence and invariant preservation,

hinges on three major technical contributions: (1) a novel notion of RedBlue consis-

tency allowing both strongly consistent (red) operations and causally consistent (blue)

operations to coexist, (2) a concept of shadow operation increasing the coverage of blue

operations, and (3) a labeling methodology for precisely determining which operations to

be assigned which consistency level. We implemented a distributed storage system called

Gemini that executes and replicates red and blue operations, and used it along with our

labeling conditions to run three existing web applications, namely TPC-W, RUBiS and

Quoddy, under RedBlue consistency. Experimental results show that RedBlue consis-

tency significantly improves the performance of geo-replicated systems.

63

4 Automatic consistency level assignment

In this chapter, we describe the design, implementation, and evaluation of SIEVE, the

first tool to automate the choice of consistency levels in a replicated system. SIEVE

performs a combination of static and dynamic analysis, offline and at runtime, to de-

termine when it is necessary to use strong consistency to preserve application-specific

invariants and when it is safe to use causally consistent commutative replicated data

types (CRDTs).

This chapter is organized as follows. We first outline the motivation and contribu-

tions of SIEVE in Section 4.1. Then we discuss the most relevant related work in Sec-

tion 4.2. We present the design rationale of SIEVE, and detail its implementation in

Sections 4.3, 4.4, 4.5. Section 4.6 describes the case study applications, the experience

on applying SIEVE to these applications, and the corresponding experimental results.

Finally, we discuss SIEVE’s limitations in Section 4.7 and conclude this chapter in Sec-

tion 4.8.

4.1 Motivation and contributions

As mentioned in Chapter 1, the providers of planetary-scale services—such as

Google [Gooa], Amazon [Amab], or Facebook [Fac] face an inherent tension between

improving performance and maintaining targeted consistency semantics. In order to re-

solve this tension, in Chapter 3, we presented the RedBlue consistency framework, which

offers the choice between executing an operation under a strong or a weak consistency

65

4 Automatic consistency level assignment

model, and the methodology for increasing the safe usage of weak consistency. As shown

in Section 3.6 in Chapter 3, adapting existing applications to RedBlue consistency con-

sists of the following two manual tasks. First, one must transform every application

operation into a generator and a set of commutative shadow operations, each of which

corresponds to a distinct side effect. Second, one must correctly identify which shadow

operations may break application invariants, and label them appropriately so that they

execute under strong consistency. Although our experience shows that modifying bench-

mark applications to be RedBlue consistent is not difficult, in practice, as the code base

increases, this manual work can become very challenging and error-prone. This is be-

cause it imposes on the application programmer the non-trivial burden of (a) figuring

out side effects of every code path in the original operations; (b) implementing shadow

operations and verifying whether any pair of them commutes; and (c) understanding

the semantics of each shadow operation to determine if it meets the properties for safe

execution under weak consistency.

In this chapter, to ease this burden on the programmer, we present SIEVE, the first

tool (to the best of our knowledge) that automates this adaptation to multi-level con-

sistency such as RedBlue consistency. This tool focuses on an important and widely

deployed class of applications, namely Java-based applications with a database backend.

Overall, we make the following contributions:

1. Commutativity transformation. One of the obstacles for labeling a large num-

ber of operations as blue is the fact that not many operations are naturally com-

muting with all others, as shown in Section 3.3 and 3.6 in Chapter 3. To ensure

good performance, SIEVE automatically transforms the side effects of every appli-

cation operation into their commutative form. To this end, we build on previous

work on commutative replicated data types (CRDTs) [SPBZ11b, PMSL09], i.e.,

data types whose concurrent operations commute, and apply this concept to rela-

tional databases. This allows programmers to only specify which particular CRDT

66

4.1 Motivation and contributions

semantics they intend to use by adding a small annotation in the database schema,

and SIEVE automatically generates the shadow operation code implementing the

chosen semantics.

2. Efficient labeling. SIEVE uses program analysis to identify commutative shadow

operations that might violate application-specific invariants when executed under

weak consistency semantics, and runs them under strong consistency. To make the

analysis accurate and lightweight, we divide it into a potentially expensive static

part and an efficient check at runtime. The static analysis generates a set of ab-

stract forms (templates) that represent the space of possible shadow operations

produced at runtime, and identifies for each template a logical condition (weakest

precondition) under which invariants are guaranteed to be preserved. This infor-

mation is then stored in a dictionary, which is looked up and evaluated at runtime,

to determine whether each shadow operation can run under weak consistency.

3. Minimal manual intervention. Unlike previous work, in which either the adop-

tion of new programming models or a significant number of changes to the original

source code is needed, using SIEVE, the programmer has to only specify the ap-

plication invariants that must be preserved and to annotate a small amount of

semantic information about how to merge concurrent updates, while keeping the

application code base unchanged.

We evaluate SIEVE using TPC-W and RUBiS. Our results show that it is possible

to achieve the performance benefits of weakly consistent replication when it does not

lead to breaking application invariants without imposing the burden of choosing the

appropriate consistency level on the programmer, and with a low runtime overhead.

67

4 Automatic consistency level assignment

4.2 Related work

We summarize and compare previous work with SIEVE according to the following cat-

egories:

Weak consistency and commutativity. As we saw in Chapter 3, in order to provide

users with low latency access to web services, a wide range of their underlying replicated

systems have relied on weak consistency levels such as causal consistency[LFKA11].

They produce a reply to the user as soon as the corresponding operation executes in

a single replica with respect to physical proximity. The usage of these systems requires

a special care, i.e., they must be equipped with procedures for handling conflicts that

may arise from concurrent operations. In some systems, such as Bayou [TTP+95],

Depot [MSL+11], and Dynamo [DHJ+07], the programmer has to provide application-

specific code for merging concurrent versions. Other systems, such as Cassandra [LM10],

COPS [LFKA11], Eiger [LFKA13] and ChainReaction [ALaR13], use a simple last-

writer-wins strategy for merging concurrent versions. This simple strategy may, however,

lead to lost updates.

Some systems have explored using operation commutativity to guarantee that all repli-

cas converge to the same state, regardless of operation execution order. For example,

Preguiça et al. and Shapiro et al. propose CRDTs (commutative or conflict-free repli-

cated data types), a set of abstract data types whose operations commute in presence

of concurrency[PMSL09, SPBZ11b]. More recently, Walter [SPAL11] includes a single

pre-defined commutative data type, cset, which could be seen as an appreciation of

the previous CRDT work. Commutative operations that implement variants of CRDTs

can also be used in different frameworks such as Lazy replication [LLSG92], RedBlue

consistency [LPC+12], Generalized-Paxos [Lam05], and Generic-Broadcast [PS99], for

supporting unordered execution of these operations and hence making the correspond-

ing systems or protocols more scalable.

68

4.2 Related work

The major drawback of these above systems is that operation commutativity is

achieved at a cost, i.e., by either modifying existing application code or adopting a

new programming model. Unlike these systems, SIEVE instead offers the programmer a

CRDT library and automatically generates commutative shadow operations that encode

side effects of every application operation at runtime, requiring only a small amount of

CRDT annotations specifying the merging semantics. This automation eases the burden

on the programmer and eliminates errors of implementing this semantics, from applica-

tion to application.

Classification for multi-level consistency. SIEVE is built on top of the RedBlue con-

sistency model, in which operations execute under either strong or weak consistency. The

primary goal of SIEVE is to automatically assign appropriate consistency levels to vari-

ous operations so that state convergence and invariant preservation are ensured despite

having weakly consistent replication. The consistency level assignment problem has been

studied in many recent multi-level consistency proposals. For example, relying on a prob-

abilistic model, consistency rationing [KHAK09] associates different consistency levels

with different states, instead of operations, and allows states to switch from one level to

another at runtime. Unlike this approach, we partition operations into strong and causal

consistency groups. Pileus is a replicated key-value store, which trades off between con-

sistency and latency requirements of read-only operations via consistency-based service

level agreements (SLAs) defined by the user [TPK+13]. Different than Pileus, SIEVE

does not restrict operation types. In addition, both RedBlue consistency [LPC+12] and

I-confluence [BFF+14] define conditions that operations must meet in order to run under

weak consistency, i.e., without coordination. We build on this line of work and extend

it so that an automatic tool, and not the programmer, is responsible for determining

whether the operations meet these conditions.

69

4 Automatic consistency level assignment

Automation. To free programmers from manually making choices of consistency levels,

some researchers have attempted to apply program analysis techniques to reason about

the consistency requirements of real applications. Alvaro et al. [ACHM11, ACHM14]

identify code locations that need to inject coordination to ensure target consistency

semantics, while Zhang et al. [ZPZ+13] inspect read/write conflicts across all operations.

However, they merely focus on commutativity and ignore application invariants, which

are very important and taken into account by our solution. Instead of a fully static

solution, we offer a dynamic and optimistic classification by combining a static analysis

of computing weakest preconditions for shadow operations and a runtime evaluation to

determine operations to be strongly consistent if the corresponding conditions evaluate

to FALSE.

Very recently, the concept of warranties imposes a set of time-limited invariant-related

assertions over shared objects in a replicated system, and allows transactions to com-

mit without coordination if the relevant assertions are still valid [LMA+14]. Compared

with warranties, preconditions in SIEVE are logical formulas defined over parameters

of shadow operations rather than system state. As a result, SIEVE is able to always

perform condition checks locally, while warranties have to invalidate assertions when

updates are replicated or the expiration time reaches, and to delay updates for making

read-only transactions fast. The work from Roy et al. [RKF+14] resembles the concept

of warranties and presents an algorithm to analyze transaction code for producing war-

ranties. That work is complementary to the goal of SIEVE since we rely on a verification

tool, Jahob [Kun07], to determine certain properties (encoded in weakest preconditions)

of shadow operations.

Other related work. Commutativity has been explored in other settings to improve

performance and scalability – e.g., in databases [Wei88] and in OS design for multi-

core systems [CKZ+13]. Program analysis techniques have also been used to identify

70

4.3 Overview

commuting code blocks. Aleen et al. [AC09] propose a new approach to find commu-

tative functions automatically at compile time for allowing legacy software to extract

performance from many-core architectures. Kim et al. [KR11] used the Jahob verification

system to determine commuting conditions under which two operations can execute in

different orders. Unlike these two prior solutions that only focus on identifying commuta-

tive code blocks, our tool automatically transforms operations by decoupling side effect

generation and application, which makes more operations commute [LPC+12], and we

also focus on determining invariant safety.

4.3 Overview

This section presents the two main challenges that SIEVE aims to address and its design

rationale and architecture.

4.3.1 Design rationale

As described in Chapter 3, adapting applications to RedBlue consistency requires the

programmer to generate commutative shadow operations and identify which shadow

operations can be blue (weakly consistent) and which must be red (strongly consistent).

Thus, to make this model easy-of-use, the goal of SIEVE is to automate these two tasks,

to the extent possible.

With regard to the first task, we leverage the rich commutative replicated data type

(CRDT) literature [SPBZ11b, PMSL09], which defines a list of data types whose oper-

ations commute. CRDTs can be employed to produce commutative shadow operations

that converge to identical final states, independent of the order in which they are ap-

plied. Shadow operations are thus constructed as a sequence of updates to CRDT data

types that commute by construction.

The challenge in developing shadow operations based on CRDTs is that the pro-

grammer must explicitly transform the applications to replace all the application state

71

4 Automatic consistency level assignment

mutations by calls to the appropriate CRDT object. This involves not only identify-

ing the parts of the programs that encode these actions, but also understanding the

catalogue of CRDT structures and choosing the appropriate one. To minimize this pro-

grammer intervention, we focus on two-tier architectures that store all of the state that

must persist across operations in a database. This gives us two main advantages: (1) We

can automatically identify the actions that mutate the state, namely the operations that

access the database. (2) We can reduce the user intervention to small annotations in the

database data organization regarding how to reconcile concurrent updates to different

data items.

The second challenge SIEVE addresses is automatically labeling commutative shadow

operations. To this end, for each shadow operation that is generated, we only need to

decide whether it is invariant safe, according to the definition in Section 3.4. (Com-

mutativity does not need to be checked since the previous step ensures that shadow

operations commute by design.) To automate the classification process, there are two

design alternatives that represent two ends of a spectrum: (1) a dynamic solution, which

determines at runtime, when the shadow operation is produced, whether that shadow

operation meets the invariant safety property, and (2) a fully static solution that deter-

mines which combinations of initial operation types, parameters, and initial states they

are applied against lead to generating a shadow operation that is invariant safe. The

problem with the former solution is that it introduces runtime overheads, and the prob-

lem with the latter solution, as we will detail in Section 4.5, is that the static analysis

could be expensive and end up conservatively flagging too many operations as strongly

consistent.

To strike a balance between the two approaches, we split the labeling into a potentially

expensive static part and a lightweight dynamic part. Statically, we generate a set of

templates corresponding to different possible combinations of CRDT operations that

comprise shadow operations, along with weakest preconditions for each template to be

72

4.3 Overview

User inputs

Runtime
Checker

Static
analyzer

App
invariants

App code CRDT
annotations

Shadow
template Creator

WP Creator

App Runtime

Shadow operation
Creator

WP Checker

CRDTs Lib

Figure 4.1: Overview of SIEVE. Shaded boxes are system components comprising
SIEVE. (WP stands for weakest precondition.)

invariant safe. Then, at runtime, we perform a simple dictionary lookup to determine

which template the shadow operation falls into, so that we can retrieve the corresponding

weakest precondition and determine whether it is met.

4.3.2 SIEVE architecture

These two main solutions above lead to the high level system architecture depicted

in Figure 4.1. The application programmer writes the application code as a series of

transactions written in Java, which access a database for storing persistent state. Beyond

the application code, the only additional inputs that the programmer needs to provide

are CRDT annotations specifying the semantics for merging concurrent updates and a

set of application-specific invariants. The static analyzer then creates shadow operation

templates from the code of each transaction, where these templates represent different

sequences of invocations of functions in a CRDT library. The analyzer also computes

the weakest preconditions required for each template to be invariant safe.

At runtime, application servers run both the Java logic and the runtime checker, and

interact with a database server (not shown in the figure) and the replication tier (not

73

4 Automatic consistency level assignment

shown in the figure). While executing a transaction, the application server runs the gen-

erator operation and accumulates its side effects in a shadow operation creator. When

commit is called by the generator, instead of directly committing side effects to the

database, the creator generates a shadow operation consisting of a sequence of invoca-

tions from the CRDT library. This shadow operation is then fed to the weakest precon-

dition checker to decide which static template it falls into, and what is the precondition

required for the operation to be invariant safe, which allows the runtime to determine

how to label the operation. The labeled shadow operation is then fed to the replication

system implementing multi-level consistency. In the following sections we further detail

the design and implementation of the main components of this architecture.

4.4 Generating shadow operations

This section covers how we automate the conversion of application code into commutative

shadow operations.

4.4.1 Leveraging CRDTs

We leverage several observations and technologies to achieve a sweet spot between the

need to capture the semantics of the original operation when encoding its side effects

and the desire to minimize the amount of programmer intervention. First, we observe

that many applications are built under a two-tier model, where all the persistent state of

the service is stored in a relational database accessed through SQL commands. Second,

we leverage CRDTs [PMSL09], which construct operations that commute by design by

encapsulating all side effects into a library of commutative operations.

These two concepts allow us to achieve commutativity while overcoming the disad-

vantage of CRDTs, namely the need to adapt applications. This is because the state of

two-tier applications is accessed through the narrow SQL interface, and therefore we can

focus exclusively on adapting the implementation of SQL commands to access a CRDT.

74

4.4 Generating shadow operations

SQL type CRDT Description

FIELD*
LWW

Use last-writer-wins to solve
concurrent updates

NUMDELTA
Add a delta to the numeric

value

TABLE

AOSET,
UOSET,
AUSET,
ARSET

Sets with restricted
operations (add, update,

and/or remove). Conflicting
operations are logically

executed by timestamp order.

Table 4.1: Commutative replicated data types (CRDTs) supported by our type system.
* FIELD covers primitive types such as integer, float, double, datetime
and string.

In particular, database tables can be seen as a set of tuples, and therefore all the calls in

the original operation to add or remove tuples in a table can be replaced in the shadow

operation with a CRDT set add or remove, which, in turn, is implemented on top of the

database.

However, it is impossible to completely remove the programmer from the loop, due

to the choice of which CRDT to use for encoding appropriate merging semantics. For

instance, when an integer field of a tuple is written to in a SQL update command, the

programmer could have two different intentions in terms of what the update means and

how concurrent updates should be handled: (1) the update can represent a delta to be

added or subtracted from the current value (e.g., when updating the stock of a certain

item), in which case all concurrent updates should be applied possibly in a different

order at all replicas to ensure that no stock changes are lost, or (2) it can be overwriting

an old value with a new value (e.g., when updating the year of birth in a user profile),

in which case an order for these updates should be arbitrated, and the last written value

should prevail. Even though both strategies ensure state convergence, their semantics

differ significantly. For example, the second strategy leads to a final state that does not

reflect the effects of all update operations.

75

4 Automatic consistency level assignment

@AUSET CREATE TABLE exampleTable (
objId INT(11) NOT NULL,
@NUMDELTA objCount INT(11) default 0,
@LWW objName char(60) default NULL,
PRIMARY KEY (id)

) ENGINE=InnoDB

Figure 4.2: Annotated table definition schema.

Since the appropriate merging strategy is application-specific, the programmer has

to convey this decision. To minimize this input, we only require the programmer to

select the appropriate merging strategy (i.e., the adequate CRDT type) to encode these

operations rather than programming these CRDT transformations or changing the code

of each operation. In more detail, we provide programmers a number of CRDT types

(shown in Table 4.1), and they should declare which types to use on a per-table and per-

attribute basis. These types form two categories: field, which is the smallest component of

a record and defines its commuting update operation in the presence of concurrency, and

set, which is a collection of such records plus the support for commutative appending or

removing. Programmers only need to annotate the data schema with the desired CRDT

type using the following annotation syntax:

@[CRDTName][TableName|DataFieldName] (4.1)

Figure 4.2 presents a sample annotated SQL table creation statement. We assign

exampleTable the type AUSET (Append-Update Set), a CRDT set that only allows

append and update operations, thus precluding the concurrent insertion and deletion of

the same item (less restrictive CRDT sets also exist). The field objCount associated with

NUMDELTA always expects a delta value to be added or subtracted to its current value.

By default, if no annotations are provided, we conservatively mark the corresponding

table or field to be read-only.

76

4.4 Generating shadow operations

4.4.2 Runtime creation of shadow operations

With these schema annotations in place, it is easy to generate commutative shadow op-

erations at runtime. The idea is to invoke the original operation upon the arrival of a new

user request (as would happen in a system that does not make use of shadow operations)

but with the difference that all the calls to execute commands in the database are inter-

cepted by a modified JDBC driver that builds the sequence of CRDT operations that

comprise the shadow operation as the original operation progresses. Furthermore, using

the schema annotations, SIEVE maps each database update to an appropriate merge

semantics and replaces the operations on a certain table or field with the appropriate

operations over the corresponding CRDT type.

For instance, to create a shadow operation for a transaction that updates objCount

in Figure 4.2, when an update is invoked, we first query the old value s, and then, given

the new value s′, we compute a delta by subtracting s from s′. Finally, we use delta

and the primary key pk of the corresponding object to parameterize a CRDT operation

that reads the tuple identified by pk and then adds delta to it.

Finally, when the original operation issues a commit to the database, the tool outputs

a shadow operation containing the accumulated sequence of CRDT operations.

4.4.3 Miscellaneous

In this part, we discuss a few interesting aspects related to the commutativity conversion.

Treatment of non-deterministic SQL statements. In addition to the previously de-

scribed logic to construct commutative shadow operations, we also eliminate all sources

of non-determinism that might exist in the operation code, which could lead to state

divergence when executing the shadow operations. This is achieved by transparently en-

coding deterministic values into CRDTs whenever sources of non-determinism are used.

For example, if some transaction relies on the current time, we simply replace the call

77

4 Automatic consistency level assignment

that provides this value, with a static value obtained at the creation of the shadow

operation. Some queries update or delete records when these records match a certain

condition rather than specifying the primary keys. With regard to this case, we first

perform a select to fetch a list of primary keys from the set of records matching the

condition, and then encode the primary keys along the updating semantics.

Annotation suggestion. We found that it would be possible to effectively recommend a

few commutative types to programmers, by statically analyzing the application code, or

the SQL queries, or both. For example, if a data field is always modified by an assignment

statement, then a LWW solution may be suitable for it. If a data field is manipulated

via either addition or subtraction, then the NUMDELTA is a good CRDT candidate.

Furthermore, if a table is never modified by a delete query, then we would suggest it to

be tagged as an AUSET (Append-Update set). We leave this optimization to our future

work.

4.5 Classification of shadow operations

In this section, we first discuss the main challenges and design choices of making SIEVE

correctly label commutative shadow operations either strongly or weakly consistent in

Section 4.5.1. Then, we expand in Section 4.5.2 on how to leverage a static analysis to

enable an efficient and less pessimistic runtime labeling. Finally, we explain how the

runtime component takes advantage of the information generated in the static phase in

Section 4.5.3.

4.5.1 Overview

As mentioned in Section 4.3, a possible solution would be to statically compute the

combinations of operation types, parameters, and initial states that generate invari-

ant safe shadow operations. This can be done by performing a weakest precondition

78

4.5 Classification of shadow operations

computation—a common technique from Programming Languages and Verification re-

search for which some tool support already exists—which enables us to statically com-

pute, given the code of each operation and the application-specific invariants (which

are inserted as postconditions), a precondition over the initial state and operation pa-

rameters that ensures the invariant safety property. The advantage of using the weakest

precondition concept is to allow us to have a dynamic and optimistic labeling result at

runtime, i.e., shadow operations need to execute with coordination only if the respective

precondition evaluates to FALSE.

Despite the above benefit, however, the weakest precondition computation raises the

following two important problems. First, there is a scalability problem, which is exempli-

fied by the following hypothetical code for the generator operation, assuming an invariant

that the state variable x should be non-negative. (For simplicity, we write conventional

Java code accessing variable x instead of SQL.)

void generator(string s) {

if (SHA-1(s)==SOME_CONSTANT) {

if (x>=10){

x -= 10;

}

} else

x +=10;

}

The problem with this code is that a weakest precondition analysis to determine

which values of s lead to a negative (non-invariant safe) delta over x is computationally

infeasible, since it amounts to inverting a hash function. As such, we would end up

conservatively labeling the shadow operations generated by this code as red (i.e., the

weakest precondition would be FALSE). Even though this is an extreme example, it

79

4 Automatic consistency level assignment

highlights the difficulty in handling complex conditions over the input, even when the

side effects are simple. In particular, there are only three patterns of side effects produced

by this generator, regardless of the inputs provided to the generator operation. Based on

this observation, to simplify the weakest precondition computation and to minimize the

space of strongly consistent shadow operations, our static analysis is conducted over the

set of possible sequences of CRDT operations that can be generated, which is the same

as saying that we analyze all possible shadow operations. We call each possible sequence

of shadow operations that can be generated by a given generator operation a template.

In the above example, there are only three sequences of shadow operations that can be

generated: the empty sequence, adding a delta of 10, and adding a delta of −10. From

these three possible sequences, only a delta of −10 leads to a weakest precondition of

FALSE, i.e., is always non-invariant safe. The remaining ones have a weakest precondition

of TRUE. (Note that in the general case, the precondition can be parameterized over the

parameters of shadow operations.)

The second challenge that needs to be overcome is related to handling loops. The

generator code in Figure 4.3(a) illustrates that the number of iterations in the loop can

be unbounded, which in turn leads to an unbounded number of sequences of CRDT

operations in the shadow operation. To abstract this, we could produce a template that

preserves the loop structure, such as the one in Figure 4.3(b). However, when comput-

ing a weakest precondition over this piece of code, verification tools face a scalability

problem, which is overcome by requiring the programmer to specify loop invariants that

guide the computation of this weakest precondition [Kun07]. Again, this would represent

an undesirable programmer intervention.

To address this challenge, we note that in many cases (including all applications

that we analyzed), loop iterations are independent, in the sense that the parts of the

state modified in each iteration are disjoint. Again, this is illustrated by the example in

80

4.5 Classification of shadow operations

1 Begin transaction;

2 for(int i = 0; i < x.length; i++){

3 if(x[i] < 100)

4 x[i]++;

5 else
6 x[i] = -100

7 }

8 End transaction;

(a) Original code

1 func txnShadow(int[] obsX, int[] deltaA){

2 for (i = 0; i < obsX.length; i++){

3 if(obsX[i] < 100)

4 CRDT_x[i].applyDelta(deltaA[i]);

5 else:
6 CRDT_x[i].applyDelta(deltaA[i]);

7 }

8 }

(b) Possible corresponding shadow template

Figure 4.3: Code snippet of a transaction and a possible template for the corresponding
shadow operation.

Figure 4.3, where the loop is used to iterate over a set of items, and each iteration only

modifies the state of the item being iterated.

This iteration independence property enables us to significantly simplify the handling

of loops. In particular, when generating the weakest precondition associated with a loop,

we only have to consider the CRDT operations invoked in two sets of control flow paths,

one where the code within the loop is never executed, and another with all possible

control flow paths when the loop is executed and iteration repetitions are eliminated. (We

will explain in detail how to handle loops using an example in the following subsection.)

This condition can then be validated against each individual iteration of the loop at

runtime and, given the independence property, this validation will be valid for the entire

loop execution.

81

4 Automatic consistency level assignment

Sequential path Description

2 · 3 · 4 · 2 only if
2 · 3 · 6 · 2 only else

2 · 3 · 4 · 2 · 3 · 6 · 2 else follows if
2 · 3 · 6 · 2 · 3 · 4 · 2 if follows else

Table 4.2: Distinct sequential paths obtained for the transaction in Figure 4.3(a).

In our current framework, the iteration independence property is validated manually.

In all our case study applications, it was straightforward to see that this property was

met at all times. We leave the automation of this step as future work.

4.5.2 Generating templates and weakest preconditions

Instead of reasoning about the generator code, our analysis is simplified by reasoning

about the side effects of each code path taken by the generator operation. Furthermore,

we can cut the number of possible code paths by eliminating code sections that are

repeated due to loops.

To perform this analysis, we require an algorithm for extracting the set of sequen-

tial paths of a transaction and eliminating loop repetition. The high level idea of this

algorithm is to split branch statements and replace loops with all non-repeating com-

binations of branches that can be taken within a loop. The algorithm works as follows.

First, for every transaction, we create its path abstraction, which is a regular expression

encoding all control flow information within that transaction. In the example shown in

Figure 4.3(a), its path abstraction is 2 · (3 · (4|6) · 2)∗, where numbers represent the

statement identifiers shown in the figure, · concatenates two sequential statements, | is

a binary operator that indicates that the statements at its two sides are in alternative

branches, and ∗ represents repetition within a loop. Second, we recursively apply the

following two steps to simplify a path abstraction until it is sequential (i.e., no ∗ and

|). For a path abstraction containing ∗, we create two duplicated abstractions, where

one excludes the entire loop, and the other simplifies the loop into its body. For a path

82

4.5 Classification of shadow operations

abstraction containing the operator |, we create two duplicated path abstractions, where

one excludes the right operand and the other excludes the left operand. Additionally,

if such | is affected by a ∗, then we have to create another path abstraction combining

both alternatives, i.e., where the if and the else sides are executed sequentially.

In the previous example, the set of sequential paths that is produced is shown in

Table 4.2. By ignoring the read-only path where the loop is not executed, we only

consider four cases, namely only the if or the else path, and the two sequences including

both if and else. Because of the loop independence property, these cases are able to

capture all relevant sequences of shadow operations. Note that we would only require

considering one of the two orderings for the if and the else code within the loop, since

their side effects commute, but taking both orderings into account simplifies the runtime

matching of an execution to its corresponding path.

Given a set of sequential paths for a transaction, creating shadow operation templates

become straightforward. For each path, we collect a sequence of statements specified by

the identifiers in the abstraction from the corresponding control flow graph. Then, we

translate every database function call into either a CRDT operation by following the in-

structions stated in Section 4.4, or a no-op operation (for read-only queries). Finally, all

these CRDT operations are packed into a function, which denotes the shadow operation

template. These CRDT operations are parameterized by their respective arguments,

and the static analysis computes a weakest precondition over these arguments for the

template to be invariant safe. We did not devise an algorithm to compute weakest pre-

conditions, instead, we rely on a verification tool called Jahob [Kun07] to do this job. The

input fed into Jahob is comprised by a set of templates along with their preconditions

and postconditions, which are automatically extracted by the static analysis code.

The final output from the static analysis is a dictionary consisting of a set of

〈key, value〉 pairs, one for each previously generated shadow operation template, where

key is the unique identifier of the template, and value is the weakest precondition for

83

4 Automatic consistency level assignment

the template. The unique identifier of the template encodes the set of possible paths

using signatures of CRDT operations in a restricted form of regular expression.

4.5.3 Runtime evaluation

Determining if a generated shadow operation is red (strongly consistent) or blue (causally

consistent) consists of two steps: (a) fetching its weakest precondition by matching this

operation to its corresponding template; and (b) evaluating the condition by substituting

variables in the condition with values carried by this operation.

Template/shadow operation matching. At runtime, we must lookup in the dictionary

created during the static analysis the template corresponding to each shadow operation

as it is produced.

The challenge with performing this lookup is that it requires determining the identifier

of the shadow operation corresponding to the path taken, and this must be done by taking

into account only the operations that are controlled by the runtime, i.e., the CRDT

operations. This explains why the dictionary keys consist only of CRDT operations.

With the shadow operation identifier, matching the path taken at runtime with the keys

present in the dictionary is done efficiently by using a search tree.

Weakest precondition check. Finally, once the weakest precondition for the template

that corresponds to a particular shadow operation is retrieved, we evaluate that precon-

dition against the CRDT parameters of the shadow operation. This is achieved by simply

replacing the variables in the precondition with their instantiated values and evaluating

the final expression to either true or false. If the weakest precondition is evaluated to

true the shadow operation is labeled blue, otherwise the shadow operation in labeled

red.

After this step, the shadow operation is delivered to the replication layer, which repli-

cates it using different strategies according to its classification, namely red (blue) shadow

84

4.6 Evaluation

operations need (no) coordination. The replication layer we use is the Gemini system

(seen in Section 3.5) we built in the RedBlue consistency framework with two follow-

ing minor changes: (a) make the proxy library use SIEVE instead of manually created

shadow operations; and (b) make the data writer code be able to decode and automati-

cally execute generated shadow operations.

4.6 Evaluation

In this section, we report our experience with implementing SIEVE, adapting existing

web applications to run with SIEVE, and evaluating these systems.

4.6.1 Implementation

We implemented most of our tool using Java (15k lines of code), and changed parts of the

Jahob code to obtain weakest preconditions in OCaml (553 lines of code) 1. The backend

storage system we used was a MySQL database. We used an existing Java parser [jav13]

to parse Java files for generating an abstract syntax tree (AST). Finally, we connected

our tool to the Gemini replication and coordination system, as presented in Section 3.5,

to enable both consistency classification and operation replication. The source code of

SIEVE is available at [SIE].

4.6.2 Case studies

To adapt an application to use SIEVE, one has to annotate the corresponding SQL

schema with the proper CRDT semantics, specify all invariants, and finally the original

JDBC driver must be replaced by the driver provided by SIEVE, to enable SIEVE to

intercept interactions between the application and the database.

We applied SIEVE to two web application benchmarks, namely TPC-W [con02] and

RUBiS [EJ09]. Both of them simulate an online store and the interactions between users

1The lines of code is measured by cloc [cod].

85

4 Automatic consistency level assignment

App Invariants

TPC-W ∀item ∈ item table. item. stock ≥ 0

RUBiS
∀item ∈ item table. item. quantity ≥ 0
∀u, v ∈ user table.
u. uname = v. uname =⇒ u = v

Table 4.3: Application-specific invariants

and the web application. There are two main motivations for selecting these use cases: (1)

both have been widely used by the community to evaluate system performance; and (2)

both have application-specific invariants that can be violated under causal consistency.

We recall the invariants of these two applications in Table 4.3. (In Chapter 3, a social

application is evaluated, but it made no sense to include this application because it did

not contain any invariants that could be violated under weak consistency.)

For TPC-W, we use AOSET, AUSET, UOSET and ARSET, as specified in Table 4.1, to anno-

tate the database tables, no annotations for unmodified attributes, NUMDELTA for stock,

and LWW for the remaining attributes. For RUBiS, we annotate its tables with AUSET and

AOSET. We use NUMDELTA as annotations for both quantity (stock) and numOfBids, and

no annotations or LWW for the remaining attributes. For additional details, we refer the

interested reader to the examples available in [Li214].

In terms of the time required to do this adaptation, we do not report results for TPC-

W as we relied on this use case during the design and development phase of SIEVE.

However for the RUBiS use case, the entire process was concluded in only a few hours.

An interesting point to highlight is that SIEVE was able to detect inconsistencies be-

tween these annotations, namely tagging a table as update-only (UOSET) but where the

original code contained insert SQL commands against that table. Thus, SIEVE enables

programmers to correct mistakes such as type omissions in the SQL schema that are

inconsistent with the CRDT annotations.

In both the RedBlue consistency framework (Chapter 3) and SIEVE, the effort we

made analyzing application code to determine invariants and merge semantics is unavoid-

86

4.6 Evaluation

able. In the former case, however, we additionally spent a significantly larger amount

of time manually implementing merge semantics, and classifying shadow operations by

taking into account their properties, for every application. SIEVE eliminates all this

manual work and limits human error.

4.6.3 Experimental setup

All reported experiments were obtained by deploying applications on a local cluster,

where each machine has 2*6 i7 cores and 48GB RAM, and runs Linux 3.2.48.1 (64bit),

MySQL 5.5.18, Tomcat 6.0.35, and Java 1.7.0. The reason we did not include geo-

distributed experiments is that we wanted to extensively focus on evaluating various

aspects of SIEVE, instead of performance benefits enhanced by RedBlue consistency,

which are already shown in Section 3.7.

4.6.4 Experimental results

Our experimental work aims at evaluating both the static analysis component of SIEVE

and also the runtime component, which includes a performance comparison between

each application using our tool, its unmodified version, and its version under RedBlue

consistency where the entire classification is done manually and offline.

Concerning the static analysis component we focus on the following main questions:

1. How long does the static analysis process take to complete?

2. What is the scalability of the static analysis component in relation to the size of

the code base?

For the runtime component of SIEVE we focus on the following main questions:

1. Is the runtime classification of shadow operations accurate?

2. What is the (runtime) overhead for adapted applications compared to their stand-

alone unmodified counterparts?

87

4 Automatic consistency level assignment

Transaction name #paths #templates Transaction name #paths #templates
createEmptyCart 1 1 getRelated 1 0
doCart 36 36 getNewProducts 1 0
GetMostRecentOrder 1 0 createNewCustomer 2 2
adminUpdate 4 4 getBestSellers 1 0
getName 1 0 doAuthorSearch 1 0
doSubjectSearch 1 0 GetPassword 1 0
doTitleSearch 1 0 refreshSession 1 1
GetUserName 1 0 getCustomer 1 0
getCart 1 0 doBuyConfirm-A 32 32
doBuyConfirm-B 16 16 getBook 1 0

(a) TPC-W

Transaction name #paths #templates Transaction name #paths #templates
ViewUserInfo 6 0 PutComment 10 0
PutBid 14 0 BrowseRegions 5 0
StoreComment 11 3 StoreBid 17 5
BuyNow 7 0 ViewBidHistory 11 0
AboutMe 37 0 ViewItem 10 0
StoreBuyNow 13 6 RegisterItem 59 24
SearchItemsByCategory 20 0 BrowseCategories 13 0
SearchItemsByRegion 20 0 RegisterUser 14 3

(b) RUBiS

Table 4.4: Number of reduced paths and templates generated for each transaction in
TPC-W and RUBiS.

3. What are the performance gains obtained through weakly consistent replication

using SIEVE?

Static analysis

As mentioned before, taking the application source code and CRDT annotations as

input, SIEVE first maps each transaction into a set of distinct paths, and automatically

transforms each path into a shadow operation template.

Table 4.4 summarizes the number of paths (excluding loops) and the corresponding

number of shadow operation templates that were produced by SIEVE for both TPC-W

and RUBiS. For TPC-W, 15 out of the total 20 transactions only exhibit a single path,

as the code of these transactions is sequential. The two most complex transactions in this

88

4.6 Evaluation

App #code
templates

#db code #specs
num #code

TPC-W 8.3k 92 1554 879 730
RUBiS 9.8k 41 251 477 371

Table 4.5: Overview of the output produced by the static analysis. “db code” refers to
the Java classes representing database structures required for computing
weakest preconditions.

WP Comments

TPC-W
TRUE Not influencing invariants

delta ≥ 0 Non-negative stock

RUBiS

TRUE Not influencing invariants
FALSE Nickname must be unique

delta ≥ 0 Non-negative quantity
quantity ≥ 0 Non-negative quantity (new item)

Table 4.6: Weakest preconditions (WP)

use case are doBuyConfirm and doCart, which are associated with the user actions of

shopping and purchasing. In contrast, most transactions in RUBiS have a more complex

control flow, which generated a larger number of possible execution paths.

Note that the majority of transactions in both use cases do not lead SIEVE to produce

any template. This happens when the transactions are read-only, and therefore do not

have side effects. Additionally, in TPC-W every path in an update transaction generates

a shadow operation template, since system state is always modified. However, this is

not true in RUBiS, because its code verifies several conditions, some of which lead to a

read-only transaction.

As shown in Table 4.5, the execution of SIEVE generated a total of 92 and 41 shadow

operation templates for TPC-W and RUBiS, respectively. In addition to these templates,

our tool also generates automatically a set of Java classes that represent database data

structures, which are necessary for computing weakest preconditions.

Table 4.6 shows a full list of the different weakest preconditions generated by SIEVE

for both use cases. These weakest preconditions alongside their respective shadow op-

89

4 Automatic consistency level assignment

App JahobSpec Template WP Total

TPC-W 9.1 ± 0.1 3.8 ± 0.1 3.3 ± 0.1 16.2 ± 0.3
RUBiS 8.9 ± 0.0 3.3 ± 0.3 0.9 ± 0.1 13.2 ± 0.3

Table 4.7: Average and standard deviation of latency in seconds for static analysis
tasks (5 runs).

eration template identifiers are used by the runtime logic to classify shadow operations

as either blue or red. A weakest precondition denoted by TRUE implies that any shadow

operation associated with that template is always invariant safe and therefore labeled

blue. In contrast, a weakest precondition denoted by FALSE implies that shadow oper-

ations associated with that template must always be classified as red. The remaining

non-trivial conditions must be evaluated at runtime by replacing their arguments with

concrete values. For instance, when a doBuyConfirm transaction produces a negative

delta, then the condition will be evaluated to FALSE and the corresponding shadow op-

eration will be classified as red, otherwise the condition will be evaluated to TRUE and

the shadow operation will be classified as blue.

Cost of static analysis. A relevant aspect of the static analysis component in SIEVE

is the time required to execute it. To study this we have measured the time taken by

the static analysis and present the obtained results in Table 4.7. We not only measured

the end-to-end completion time, but also the time spent at each step, namely creating

database data structures required by Jahob (JahobSpec), template creation (Template),

and weakest precondition computation (WP). Overall, we can see that the execution

time of the static component of SIEVE is acceptable, as less than 20 seconds are re-

quired to analyze both TPC-W and RUBiS. The code generation phase including both

JahobSpec and Template dominates the overall static analysis. Compared to TPC-W,

the time spent computing weakest preconditions is shorter in RUBiS, due to the smaller

number of templates in Table 4.5.

90

4.6 Evaluation

 0

 10

 20

 30

 40

Original Double-Size Triple-Size

L
at

en
cy

 (
se

co
n

d
s)

JahobSpec
Template

WP

(a) TPC-W

 0

 10

 20

 30

 40

Original Double-Size Triple-Size

L
at

en
cy

 (
se

co
n

d
s)

JahobSpec
Template

WP

(b) RUBiS

Figure 4.4: Static analysis time vs. code base size.

Scalability. The code base size of TPC-W and RUBiS is somewhat small when com-

pared to deployed applications. This raises a question concerning the scalability of the

static analysis component of SIEVE with respect to the size of the code base. In order

to analyze this aspect of SIEVE we have artificially doubled and tripled the size of each

application code base and measured the time spent analyzing these larger code bases

when compared with the original. The results are shown in Figure 4.4. The time spent

generating the data structures required by Jahob is constant, since we did not change

the database schema. However, the time spent computing the weakest preconditions for

templates in TPC-W grows exponentially, and the time taken for the remaining steps

91

4 Automatic consistency level assignment

App Workload Manual SIEVE

TPC-W
Browsing mix 0.49 (± 0.03) 0.48 (± 0.02)
Shopping mix 0.79 (± 0.02) 0.81 (± 0.02)
Ordering mix 6.31 (± 0.04) 6.30 (± 0.07)

RUBiS Bidding mix 2.65 (± 0.09) 2.62 (± 0.07)

Table 4.8: Percentage of red shadow operations classified manually and by SIEVE (5
runs).

presents a sub-linear increase. These results lead us to conclude that the static analysis

of SIEVE may scale to reasonable (though not very large code) sizes, especially taking

into account that this process is executed a single time when adapting an application

through the use of SIEVE.

Runtime logic

We evaluated the runtime performance of our example applications using SIEVE on top

of Gemini.

Configurations. We populated the dataset for TPC-W using the following parameters:

50 EBS and 10,000 items. For RUBiS we populated the dataset with 33,000 items for

sale, 1 million users, and 500,000 old items. We exercised all TPC-W workloads, namely

browsing mix, shopping mix, and ordering mix, where the purchase activity varies from

5% to 50%. For RUBiS, we ran the bidding mix workload, in which 15% of all user

activities generate updates to the application state.

Correctness validation. To verify that SIEVE labels operations correctly for both

case studies, we compared the classification results obtained by running SIEVE with

TPC-W and RUBiS against the results achieved manually in Chapter 3. Our finding in

Table 4.8 shows that the percentage of shadow operations classified as red by SIEVE

matches the results obtained through the manual classification. In addition, a careful

inspection of the logs shows that the expected pairs of functions and parameters were

92

4.6 Evaluation

 0

 20

 40

 0 400 800 1200

L
at

en
cy

 (
m

s)

Interaction (req/s)

Original
Manual
SIEVE

(a) TPC-W shopping mix

 0

 20

 40

 0 200 400 600 800

L
at

en
cy

 (
m

s)

Interation (req/s)

Original
Manual
SIEVE

(b) RUBiS bidding mix

Figure 4.5: Throughput-latency graph without replication

in fact labeled as red. This implies that SIEVE is able to achieve the same labeling

as a manual process while saving a significant amount of effort from programmers and

avoiding human mistakes.

SIEVE runtime overhead. Next we compared the performance (throughput vs. la-

tency) of the two applications across three single-site deployments: (1) SIEVE, (2)

93

4 Automatic consistency level assignment

 0

 5

 10

 15

 20

TPCW
Manual

TPCW
SIEVE

RUBiS
Manual

RUBiS
SIEVE

L
at

en
cy

 (
m

s)

Generator execution
Classification

Shadow execution

Figure 4.6: Breakdown of latency.

Original—the original unreplicated service without any overheads from creating and

applying shadow operations, and (3) Manual—the RedBlue scheme with all labeling

performed offline by the programmer. The expected sources of overhead for SIEVE are:

(i) the dynamic creation of shadow operations; and (ii) the runtime classification of

each shadow operation. The results in Figure 4.5 show that the performance achieved by

SIEVE is similar to the one obtained with a manual classification scheme, and therefore

the overheads of runtime classification are low. The comparison with the original scheme

in a single site shows some runtime overhead due to creating and applying shadow op-

erations (which is required for a replicated deployment so that all operations commute).

To better understand the sources of overhead imposed by SIEVE we measured the

latency contribution of each runtime step executed by SIEVE and compared it with the

latency contribution of these steps when relying on a manual adaptation. In particular,

we focused on the following tasks: generator execution (producing a shadow operation),

classification (determining shadow operation colors), and shadow execution (applying

shadow operations).

94

4.6 Evaluation

Figure 4.6 shows the average contribution to request latency of each of these steps

(Only update requests are considered since read-only queries do not generate side ef-

fects.) For the manual adaptation, there is no latency associated with classifying shadow

operations, since the classification of all shadow operations is pre-defined. In contrast,

SIEVE performs a runtime classification, but the results show that the time consumed

in this task is negligible. In particular, SIEVE takes 0.064 ± 0.002 ms and 0.072 ± 0.001

ms for looking up the dictionary and evaluating the condition for TPC-W and RUBiS,

respectively. Regarding the generator execution and shadow execution, both the manual

adaptation and SIEVE present the same latency overheads.

Replication benefits. The results previously discussed in this section have shown that

the use of SIEVE imposes a small overhead when compared to a standalone execution of

the unmodified use cases, mostly due to the runtime shadow operation generation and

classification. However, SIEVE was designed to allow replication to bring performance

gains through the use of weak consistency in replicated deployments. To evaluate these

benefits, we conducted an experiment where we deployed the two applications (1) without

replication, (2) using manual classification in Gemini, and (3) using SIEVE, with two

replicas in the same site for the last two options. (The use of single site replication

instead of geo-replication makes our results conservative, since the overheads of runtime

classification become diluted when factoring in cross-site latency.)

The results in Figure 4.7 show that weakly consistent replication for a large fraction

of the operations brings performance gains. In particular, one observes that the peak

throughput with 2 replicated Gemini instances running TPC-W is improved by 59.0%,

and the peak throughput for RUBiS in this setting is improved by 37.4%. The additional

latency introduced in this case is originated by the necessity of coordination among repli-

cas to totally order red shadow operations. The results also confirm that the overhead of

runtime classification when compared to the manual, offline classification are low. Note

95

4 Automatic consistency level assignment

 0

 20

 40

 60

 0 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Interaction (req/s)

Original-noreplication
Manual-replication-2
SIEVE-replication-2

(a) TPC-W shopping mix

 0

 20

 40

 60

 0 400 800 1200

L
at

en
cy

 (
m

s)

Interation (req/s)

Original-noreplication
Manual-replication-2
SIEVE-replication-2

(b) RUBiS bidding mix

Figure 4.7: Throughput-latency graph of systems with no replication or with two repli-
cas.

that there is a point where the throughput goes down while there is still an increase in

latency in Figure 4.7(b). This happens because the database becomes saturated at this

point.

96

4.7 Limitations and future work

4.7 Limitations and future work

Although SIEVE reduces human intervention that might be involved in making the

choice of CRDTs and consistency levels for scaling out web services, there are still

several points for optimization, which we leave as future work to address.

First, while the CRDT library covers a set of most representative CRDT types that

suffice for all use cases exhibited in our case study applications, it does not include some

more recent proposals like maps [ria], and does not have a full coverage of SQL features

defined in [SQL99]. This incompleteness may limit the selection of merging semantics,

which the programmer may intend to use not only for ensuring state convergence, but

also for providing meaningful merged outcomes.

Second, we observed performance degradation when running unreplicated applications

with SIEVE. This is because we implemented the CRDT transformation in a JDBC

driver and it requires us to parse every SQL statement to figure out the side effects. One

possibility is augmenting the database code with this logic so that we can take advantage

of rich information from query execution plans generated by the database.

Third, our approach is based on a fundamental assumption that iterations in loops are

independent w.r.t each other, so that weakest preconditions can be efficiently computed.

This assumption is also a limitation of our approach, as SIEVE will conservatively gen-

erate a FALSE condition for operations if their precondition computation fails, in case

such a loop independence property does not hold. Additionally, we would like to explore

algorithms to automatically verify loop independence, instead of relying on manual pro-

cessing.

4.8 Summary

In this chapter, we presented SIEVE, which is, to the best of our knowledge, the first

tool to automate the choice of consistency levels in a replicated system. Our system re-

97

4 Automatic consistency level assignment

lieves the programmer from having to reason about the behaviors that weak consistency

introduces. SIEVE minimizes human intervention by only requiring the programmer to

write the system invariants that must be preserved and to provide annotations regarding

merge semantics. Our evaluation shows that SIEVE labels operations accurately, incur-

ring a modest runtime overhead when compared to labeling operations manually and

offline.

98

5 Minimizing coordination in replicated

systems

In this chapter, we present a novel consistency definition, Partial Order-Restrictions

consistency (or short, PoR consistency), generalizing the tradeoff between performance

and the amount of coordination paid to restrict the ordering of certain operations behind

RedBlue consistency. We also describe the design, implementation, and evaluation of

Olisipo, which is an efficient coordination service for offering PoR consistent replication.

This chapter is organized as follows. We describe the motivation and contributions

of this chapter in Section 5.1. Then we discuss the most relevant work in Section 5.2.

We introduce the definition of PoR consistency in Section 5.3, and a set of principles

to infer restrictions in Section 5.4. We describe an efficient coordination service called

Olisipo in Section 5.5. In section 5.6, we analyze the experimental results from replicating

an extended version of RUBiS under PoR consistency through Olisipo. Finally, some

limitations of our work are discussed in Section 5.7 and we conclude the chapter in

Section 5.8.

5.1 Motivation and contributions

As presented in Chapter 3, our first attempt to relieve the tension between consistency

and performance in geo-distributed scenarios is to introduce RedBlue consistency, in

which some operations can be executed under strong consistency (and therefore incur

99

5 Minimizing coordination in replicated systems

1 boolean placeBid(int itemId, int

clientId, int bid){
2 boolean result = false;
3 beginTxn();

4 if(open(itemId)){
5 exec(INSERT INTO bidTable VALUES

(bid, clientId, itemId));
6 result = true;
7 }

8 commitTxn();

9 return result;
10 }

(a) Original placeBid operation.

1 placeBid’(int itemId, int clientId,
int bid){

2 exec(INSERT INTO bidTable VALUES

(bid, clientId, itemId));
3 }

(b) Shadow placeBid’ operation.

1 int closeAuction(int itemId){
2 int winner = -1;

3 beginTxn();

4 close(itemId);
5 winner = exec(SELECT userId FROM

bidTable WHERE iId = itemId ORDER

BY bid DESC limit 1);

6 exec(INSERT INTO winnerTable VALUES (

itemId, winner));
7 commitTxn();

8 return winner;
9 }

(c) Original closeAuction operation.

1 closeAuction’(int itemId, int winner){
2 close(itemId);
3 exec(INSERT INTO winnerTable VALUES (

itemId, winner));
4 }

(d) Shadow closeAuction’ operation.

Figure 5.1: Pseudocode for the original and shadow operations of the placeBid and
closeAuction transactions in an extended version of RUBiS.

in a high performance penalty) while other operations can be executed under weaker

consistency (namely causal consistency [LFKA11]). The core of this solution is a labeling

methodology for guiding the programmer to classify shadow operations (side effects of

original application operations) into the strong and weak consistency categories. The

labeling process works as follows: shadow operations that either do not commute w.r.t all

others or potentially violate invariants must be strongly consistent, while the remaining

can be weakly consistent. To make the adoption of RedBlue consistency easy, in addition,

we built SIEVE (seen in Chapter 4) to automate this binary decision by requiring a small

amount of programmer input.

This binary classification methodology works well for many web applications, but

it can also lead to unnecessary coordination in some cases. We illustrate this with an

100

5.1 Motivation and contributions

extended version of RUBiS1, as shown in Figure 5.1, where an operation placeBid (Fig-

ure 5.1(a)) creates a new bid for an item if the corresponding auction is still open, and an

operation closeAuction (Figure 5.1(c)) closes an auction for an item, declaring a single

winner. In this example, the application-specific invariant is that the winner must be

associated with the highest bid across all accepted bids. The other two subfigures (Fig-

ure 5.1(b) and Figure 5.1(d)) depict the shadow operations of the two prior operations,

respectively, guaranteeing that these shadow operations apply changes in a commutative

fashion regardless of execution order. We omit in the Figure the commutative shadow

operation generation, since it has been covered in Sections 3.6 and 4.4.

When applying RedBlue consistency to replicate such an auction service, we note

that the concurrent execution under weak consistency of a placeBid operation with

a bid that is higher than all accepted bids and a closeAuction operation can lead

to the violation of the application invariant. This happens because the generator of

closeAuction will ignore the highest bid created by the concurrent shadow placeBid’.

Unfortunately, the only way to address this issue in RedBlue consistency is to label

both shadow operations as strongly consistent (red), i.e., all shadow operations of either

type will be totally ordered w.r.t each other, which will incur in a high coordination

overhead, while not taking advantage of the flexibility provided by RedBlue consistency.

Intuitively, however, there is no need to order pairs of placeBid’, since a bid coming

before or after another does not affect the winner selection. This highlights that our

previous coarse-grained operation classification into two levels of consistency can be

conservative, and some services could benefit from additional flexibility in terms of the

level of coordination.

1The original RUBiS is not complete since it does not include a closeAuction operation that declares
the winners for auctions. As a result, in this chapter, we extended the original RUBiS by adding it
a closing auction functionality.

101

5 Minimizing coordination in replicated systems

In this chapter, to address the above issue, we present a principled methodology for

allowing developers to tune tradeoffs between performance and consistency requirements.

In summary, we make the following three main contributions:

1. We generalize the principles behind the binary classification by breaking down the

coarse-grained constraint that totally orders all strongly consistent operations into

a set of fine-grained restrictions, each of which only imposes an order between a

pair of operations. Following this path, we propose a novel generic consistency def-

inition, Partial Order-Restrictions consistency (or short, PoR consistency), which

takes a set of restrictions as input and forces these restrictions to be met in all par-

tial orders. This creates the opportunity for defining many consistency guarantees

within a single replication framework by expressing consistency levels in terms of

visibility restrictions on pairs of operations. Weakening or strengthening the con-

sistency semantics in the context of PoR consistency is achieved by imposing fewer

or more restrictions on pairs of operations.

2. We design an analysis to identify, for every application, a set of restrictions over

pairs of its operations so that state convergence and invariant preservation are

ensured if these restrictions are enforced throughout all executions of the system.

The fundamental challenge of doing this is that missing required restrictions will

lead applications to diverge state or violate invariants, while placing unnecessary

restrictions will lead to a performance penalty due to the additional coordination.

To overcome this, this analysis aims to find a minimal set of restrictions. (By

minimal we mean that removing a single restriction no longer ensures the desired

properties.)

3. We further observe that, given a set of restrictions across the visibility of op-

erations, a key aspect to ensure good performance in a replicated service is to

enforce these restrictions in an efficient way. In fact, there exist several coordina-

102

5.2 Related work

tion techniques/protocols that can be used for enforcing a given restriction, such

as Paxos, distributed locking, or global barriers. However, depending on the fre-

quency over time in which the system receives operations confined by a restriction,

different coordination approaches lead to different performance tradeoffs. There-

fore, to minimize the runtime coordination overhead, we also propose an efficient

coordination service that helps replicated services use the most efficient protocol

by taking into account the deployment characteristics measured at runtime.

We extended RUBiS to incorporate a closing auction functionality, determined how

to best run it under PoR consistency, replicated this web application with Olisipo, and

compared against the results we obtained from the RedBlue consistent version. The

experiment results show that PoR consistency requires fewer restrictions than RedBlue

consistency, and the usage of PoR consistency and Olisipo offers a significantly better

performance than the combination of RedBlue consistency and Gemini.

5.2 Related work

We summarize most relevant related work and compare it against our PoR consistency

framework in the following categories.

Consistency models. In the past decades, many consistency proposals have been fo-

cusing on the reduction in coordination among concurrent operations to improve scalabil-

ity in replicated systems [LLSG92, SPAL11, LPC+12, LLaC+14, ACHM14, ACHM11,

ZSS+15]. However, they only allow the programmer to choose from a limited num-

ber of consistency levels that they support, such as strong, causal or eventual consis-

tency. Unlike these approaches, PoR consistency offers a fine-grained tunable trade-

off between performance and consistency using the visibility restrictions between pairs

of operations to express consistency semantics. In addition, most previous propos-

als [ACHM14, LLSG92, SPAL11, ACHM11] only take into account operation commuta-

103

5 Minimizing coordination in replicated systems

tivity to determine the need for coordination, instead of invariant preservation, which is

analyzed in our solution.

In the family of consistency proposals concerning application-specific invariants, Bailis

et al. [BFF+14] proposed I-confluence to avoid coordination by determining if a set of

transactions are I-confluent w.r.t database integrities, i.e., integrity constraints might be

violated if they were executing without coordination. Indigo [BDF+15] defines consis-

tency as a set of invariants that must hold at any time, and presents a set of mechanisms

to enforce these invariants efficiently on the top of eventual consistency. Similar to In-

digo, warranties [LMA+14] map consistency requirements to a set of assertions that must

hold in a given period of time, but it needs to periodically invalidate assertions when up-

dates arrive. The work from Roy et al. additionally proposes a program analysis against

transaction code for producing warranties [RKB+15]. In contrast to these approaches,

PoR consistency takes an alternative approach by modeling consistency as restrictions

over operations.

There also exist a few proposals which map consistency semantics to the ordering con-

straints defined over pairs of operations. For example, Generic Broadcast defines conflict

relations between messages for fast message delivery, which are analogous to visibility

restrictions used in our solution [PS99]. Most recently, a concurrent work proposed by

Gotsman et al. encoded the conflict relation concept into a proof system, which

enables to analyze if consistency choices expressed into conflict relations meet the target

properties [GYF+15]. Our approach differs from all these consistency proposals in the

following aspects. First, we have a different formalism that captures new situations that

lead to invariant violations, such as the possibility of three different types of requests

being necessary to trigger such cases. Second, we provide programmers with the abil-

ity to infer a minimal set of (fine-grained) restrictions to achieve state convergence and

invariant preservation. Third, we explore the possibility of using different coordination

protocols to enforcing restrictions efficiently.

104

5.2 Related work

Paxos and its variants. State machine replication [Sch90] is a standard technique to

make a set of servers behave like a single machine. Paxos [Lam98], one of the classic

algorithms that implement state machines, forces every replica to process a set of re-

quests in the same sequential order. In order to reduce the number of message exchanges

for achieving distributed consensus, several variants of Paxos have been proposed. Fast

Paxos [Lam06] aims at improving latency by allowing every replica to propose values

but suffers from high latency when concurrent proposals occur. To avoid the penalty

introduced by collisions, some other variants of Paxos explore operation semantics to

take into account a weaker guarantee that not all operations are needed to be totally

ordered [Lam05, KPF+13, MAK13]. Generalized Paxos (GPaxos) allows replicas to ex-

ecute a set of operations in different orders as long as operations commute w.r.t each

other; however, it still has to resort to the classic Paxos algorithm [Lam98] when the

leader notices two concurrent non-commuting requests [Lam05]. Kraska et al. design

an optimistic commit protocol called MDCC, which embodies GPaxos and explores op-

eration commutativity for making geo-replicated transactions fast. Egalitarian Paxos

(EPaxos) takes as input a set of pre-defined constraints, each of which defines a depen-

dency between a pair of operations, and enables each replica to order two concurrent

conflicting requests according to their apriori dependency relation [MAK13].

A major difference between our work and these Paxos variants is that we develop an

analysis to extract pairs of conflicting operations by considering the impact of concurrent

executions on achieving state convergence and invariant preservation. Furthermore, all

these protocols only reduce the number of communication steps, but still require to talk

to a large quorum of replicas. In contrast, in our work, operations that are not confined

by conflicting relations can be first accepted in a single replica and later asynchronously

replicated to other replicas.

105

5 Minimizing coordination in replicated systems

Efficient transaction processing. Some other work focuses on how to reduce coor-

dination in transaction processing. For example, transaction chopping [SLSV95] and

Lynx [ZPZ+13] suggest that breaking large transactions into smaller pieces can improve

performance, and they design analysis algorithms for chopping transactions without

sacrificing serializability. While this work has been done merely by checking conflicts

in read/write sets between pairs of transaction pieces, we design a comprehensive and

fine-grained analysis concerning commutativity and invariant preservation for avoiding

coordination when possible. These techniques are also orthogonal to our proposal so

that we can apply them to prune out the non-critical code sections prior to running our

analysis.

5.3 Partial Order-Restriction Consistency

In this section we introduce Partial Order-Restrictions consistency (or short, PoR con-

sistency), a novel consistency model that allows the developer to reason about various

consistency requirements in a single system. The key intuition behind our proposal is

that this model is generic and can be perceived as a set of restrictions imposed over

admissible partial orders across the operations of a replicated system.

5.3.1 Defining PoR consistency

We formulate PoR consistency by following the same methodology we used for RedBlue

consistency (Chapter 3). The definition of PoR consistency includes three important

components: (1) a set of restrictions, which specifies the visibility relations between

pair-wise operations; (2) a restricted partial order (or short, R-order), which establishes

a (global) partial order of operations respecting operation visibility relations; and (3) a

set of site-specific causal serializations, which corresponds to total orders in which the

operations are locally applied. We define these components formally as follows:

106

5.3 Partial Order-Restriction Consistency

Definition 10 (Restriction) Given a set of operations U , a restriction is a symmetric

binary relation on U × U .

For any two operations u and v in U , if there exists a restriction relation r(u, v), then

they must be ordered in any partial order ≺, i.e., u ≺ v ∨ v ≺ u. We capture this point

in the following definition.

Definition 11 (Restricted partial order) Given a set of operations U , and a set of

restrictions R over U , a restricted partial order (or short, R-order) is a partial order

O = (U,≺) with the following constraint: ∀u, v ∈ U, r(u, v) ∈ R =⇒ u ≺ v ∨ v ≺ u.

We also say that the restrictions in R are met in the corresponding R-order if this

order satisfies the above definition. The restriction definition is analogous to the conflict

relation in generic broadcast [PS99]. Therefore, the coordination plan required by repli-

cating the previously described banking service with generic broadcast is the same as

the one associated with PoR consistency, i.e., any pair of withdraw(x) operations must

be ordered with each other, since a withdraw(x) operation can only modify the relevant

account balance if the current balance is not below x. However, the PoR consistency

framework improves on generic broadcast by offering a precise method for identifying a

set of restrictions (or, conflict relations), which comprise a minimal amount of coordi-

nation.

Under the context of PoR consistency, every site (replica) executes operations following

a linear extension of the global R-order. The following definition defines what linear

extensions are allowed with respect to a given R-order.

Definition 12 (Legal serialization) O′ = (U,<) is a legal serialization of R-order

O = (U,≺) if O′ is a linear extension of O; i.e., < is a total order compatible with the

partial order defined by ≺.

As introduced in Chapter 3, our proposal of splitting original application operations

into pairs of generator and shadow operations changes the traditional state machine

107

5 Minimizing coordination in replicated systems

replication definitions. In this work, we also embrace the shadow operation concept so

that we can reduce the number of required restrictions for ensuring state convergence.

With this change, when user requests are accepted by any site, that site executes their

generator operations and creates corresponding shadow operations. In addition, every

site also incorporates remote shadow operations that are shipped from all other sites into

its local serialization. We denote U a set of shadow operations. For a site i, its generator

operation set is denoted by Vi. The following definition captures the application of both

local and remote shadow operations at a site i.

Definition 13 (Causal legal serialization) Given a site i, an R-order O = (U,≺)

and the set of generator operations Vi received at site i, we say that Oi = (U ∪ Vi, <i) is

an i-causal legal serialization (or short, a causal serialization) of O if

• Oi is a total order;

• (U,<i) is a legal serialization of O;

• For any hv(S) ∈ U generated by gv ∈ Vi, S is the state obtained after applying the

sequence of shadow operations preceding gv in Oi;

• For any gv ∈ Vi and hu(S) ∈ U , hu(S) <i gv in Oi iff hu(S) ≺ hv(S′) in O.

A replicated system with k sites is then PoR consistent if every site applies a causal

serialization of the same global R-order O.

Definition 14 (Partial Order-Restrictions consistency) A replicated system S

with a set of restrictions R is Partial Order-Restrictions consistent (or short, PoR con-

sistent) if each site i applies shadow operations according to an i-causal serialization of

R-order O.

108

5.4 Restriction inference

5.3.2 Expressiveness

The intuition behind the PoR consistency model is that the model can be viewed as a

parametrized function, which takes restrictions as input, and outputs a particular consis-

tency model where the restrictions must be met in any partial order. To demonstrate the

power of PoR consistency, we use it to express many different consistency requirements.

For causal consistency [LFKA11] (excluding any restrictions to provide session guaran-

tees), the restriction set is empty, since causality is already preserved in the definition of

PoR consistency by having u ≺ v ∧ v ≺ w =⇒ u < w. Regarding RedBlue consistency,

to capture the notion of strongly consistent (red) operations, we define the following

restriction set: for any pair of operations u, v, if u and v are strongly consistent, we

have r(u, v). Serializability [BHG87] totally orders all operations, so its restriction set is

as follows: for any pair of operations u, v, we have r(u, v).

5.4 Restriction inference

When replicating a service under PoR consistency, the first step is to infer restrictions

to ensure two important system properties, namely state convergence and invariant

preservation. The major challenge we face is to identify a small set of restrictions for

making the replicated service eventually converge and never violate invariants so that

the amount of required coordination is minimal. With regard to state convergence, we

take a similar methodology adopted in prior research [SPBZ11a, LPC+12, LLaC+14],

which is to check operation commutativity. However, unlike RedBlue consistency, under

which all operations that are not globally commutative must be totally ordered, PoR

consistency only requires that an operation must be ordered w.r.t another one if they

do not commute.

To always preserve application-specific invariants, instead of totally ordering all non-

invariant safe shadow operations, i.e., those that potentially transition from a valid

109

5 Minimizing coordination in replicated systems

state to an invalid one, we try to isolate the operations that exclusively contribute to

an invariant violation from the rest. To do so, we introduce a new concept, called an

I-conflict set, which defines a minimal set of shadow operations that lead to an

invariant violation when they are running concurrently in a coordination-free manner.

By minimal, we mean that by removing any shadow operation from such a set, the

violation will no longer persist. To identify a minimal set of restrictions, we first perform

an analysis over any subsets of the shadow operation set to discover all I-conflict

sets. Then, for any such set, adding a restriction between any pair of its operations is

sufficient to eliminate the problematic executions.

Next, we present the definitions, theorems, proofs and algorithms regarding the re-

striction set identification and refinement.

5.4.1 State convergence

The state convergence definition under the context of PoR consistency looks similar to

Definition 5 of RedBlue consistency in Section 3.3. A PoR consistent replicated system

is state convergent if all its replicas reach the same final state when the system becomes

quiescent, i.e., for any pair of causal legal serializations of any R-order, L1 and L2, we

have S0(L1) = S0(L2), where S0 is a valid initial state. We state the necessary and

sufficient conditions to achieve this in the following theorem.

Theorem 3 A PoR consistent system S with a set of restrictions R is convergent, if

and only if, for any pair of its shadow operations u and v, r(u, v) ∈ R if u and v don’t

commute.

In order to prove this theorem, we need the assistance from three lemmas introduced

in Chapter 3, namely, Lemmas 1, 2 and 3. The first two lemmas remain valid under

PoR consistency with a minor change that RedBlue order is replaced with R-order, since

their proofs remain unchanged. Lemmas 1 asserts that, given a legal serialization, swap-

ping two adjacent shadow operations in this serialization that are not ordered by the

110

5.4 Restriction inference

underlying R-order results in another legal serialization. Lemmas 2 asserts that given an

R-order and one of its legal serializations, if there exists a pair of shadow operations u

and v that is not ordered by the R-order, then there exists an adjacent pair of shadow

operations between u and v in that serialization that are not ordered by the R-order.

In contrast to the first two lemmas, we have to change the third lemma since RedBlue

consistency achieves state convergence by requiring all blue shadow operations to be

globally commutative, but PoR consistency only needs any pair of unordered shadow

operations to commute. As such, we change Lemma 3 into a new lemma (Lemma 4),

which asserts that two legal serializations of an R-order that differ in the order of ex-

actly one pair of adjacent shadow operations are state convergent, if the two operations

commute.

Lemma 4 Assume Oi = (U,<i) and Oj = (U,<j) are both legal serializations of R-

Order O = (U,≺) that are identical except for two adjacent operations u and v such that

u <i v and v <j u and that u and v commute. Then S0(Oi) = S0(Oj).

Proof: Let P and Q be the greatest common prefix and suffix of Oi and Oj , respectively.

Further, let SP = S0(P), Suv = SP + u + v, and Svu = SP + v + u. By the definition of

operation commutativity, Suv = Svu. It then follows from the definition of a deterministic

state machine that Suv(Q) = Svu(Q). By a similar argument, the final state reached by

sequentially executing operations in Oi against S0 according to <i is equal to the final

state obtained by sequentially applying operations in Q against Suv according to <i,

namely S0(Oi) = Suv(Q). By a similar argument, we know S0(Oj) = Svu(Q). Finally,

we have S0(Oi) = S0(Oj).

After adapting these lemmas from Chapter 3 to PoR consistency, we use them to

construct the proof of the state convergence theorem (Theorem 3) as follows:

Proof: (⇐:) We first show that if for any pair of non-commuting operations of S , a

restriction between this pair of operations is in R, then the PoR consistent system S is

111

5 Minimizing coordination in replicated systems

convergent. To prove this, it is sufficient to show that any pair of legal serializations of

their underlying R-order O, Oi and Oj , is state convergent, i.e., S0(Oi) = S0(Oj). There

are two cases to consider:

Case 1: Oi = Oj . The underlying deterministic state machine ensures that S0(Oi) =

S0(Oj).

Case 2: Oi 6= Oj , in which case ∃u, v ∈ U such that u <i v and v <j u. Since both

Oi and Oj are legal serializations of O, it follows that u 6≺ v and v 6≺ u. It then follows

from Lemma 2 that we can find an adjacent pair of operations r, s in both Oi and Oj

such that r <i s ∧ s <j r ∧ r 6≺ s ∧ s 6≺ r. We construct a new serialization Oi+1 by

duplicating Oi but swapping the order of r and s in Oi+1, i.e., Qi and Qi+1 are identical,

except that r <i s ∧ s <i+1 r. By Lemma 1, Oi+1 is also a legal serialization of O. It

then follows from the hypothesis that r and s commute and from Lemma 4 that Oi and

Oi+1 are convergent.

If Oi+1 6= Oj , we continue the construction by finding an adjacent pair of operations

whose order is different in Oi+1, Oj . By swapping the two operations, we obtain another

legal serialization Oi+2. We can then continue to swap all such adjacent pairs until the

last constructed serialization is equal to Oj . This is achievable since at every step the

number of operation pairs in the corresponding newly constructed legal serialization

whose orders are different in Oj decreases. At the end, the construction process results

in a chain of legal serializations where the first one is Oi and the last is Oj , and any

consecutive pair of legal serializations is identical except for the order of an adjacent pair

of elements. It then follows Lemma 4 that every consecutive pair of serializations in the

chain is state convergent, thus S0(Oi) = S0(Oj).

(⇒:) (Proof by Contradiction.) We show that if a PoR consistent system S with a

restriction set R is convergent, then for any pair of non-commuting shadow operations,

there must exist a restriction confining the two operations in R. Since S is convergent,

we know that for any R-order of S , any pair of causal legal serializations of that R-order

112

5.4 Restriction inference

are convergent. We assume by contradiction that there exist two shadow operations u, v

such that they don’t commute and r(u, v) 6∈ R. By the definition of commutativity, there

exists a state S such that S + u+ v 6= S + v + u. We can find a state S0 and a sequence

of shadow operations of S , O′(P,<), such that S0(O
′) = S. Then, we can construct a

R-order O(U,≺), where

• U = P ∪ {u, v};

• for any pair of operations in P , m and n, m < n⇐⇒ m ≺ n;

• for any operation m in P , m ≺ u and m ≺ v.

It follows from the above construction that u, v are the maximal elements of O. It

follows from the definition of causal legal serialization (Definition 13) that we can con-

struct two causal legal serializations L1 and L2 of O such that L1 = O′ + u + v and

L2 = O′ + v + u. As S0(L1) = S0(O
′ + u + v), S0(L1) = S0(O

′) + u + v. It follows from

S0(O
′) = S that S0(L1) = S + u + v. By a similar argument, S0(L2) = S + v + u. It

then follows from S + u + v 6= S + v + u that S0(L1) 6= S0(L2). As L1 and L2 are not

convergent, S is not convergent. Contradiction is found.

5.4.2 Invariant preservation

As presented when we proposed RedBlue consistency (Chapter 3), the methodology for

identifying restrictions imposed on RedBlue orders for maintaining invariants is to check

if a shadow operation is invariant safe or not. If not, to avoid invariant violations, the

generation and replication of all non-invariant safe shadow operations must be coor-

dinated. However, we observed that for some non-invariant safe shadow operations u,

the corresponding violation only happens when a particular subset of non-invariant safe

shadow operations (including u) are not partially ordered. To eliminate all invariant

violating executions with a minimal amount of coordination, therefore, we need to pre-

cisely define, for each violation, the minimal set of non-invariant safe shadow operations

113

5 Minimizing coordination in replicated systems

that are involved. We call this set an invariant-conflict operation set, or short,

I-conflict set. We formally define this as follows.

Definition 15 (Invariant-conflict operation set) A set of shadow operations G is

an invariant-conflict operation set (or short, I-conflict set), if the following conditions

are met:

• ∀u ∈ G, u is non-invariant safe;

• |G| > 1;

• ∀u ∈ G, ∀ sequence P consisting of all shadow operations in G except u, i.e.,

P = (G \ {u}, <), and ∃ a reachable and valid state S, s.t. S(P) is valid, and

S(P + u) is invalid.

In the above definition, the last point asserts that G is minimal, i.e., removing one

shadow operation from it will no longer lead to invariant violations. We will use the fol-

lowing example to illustrate the importance of minimality. Imagine that we have an auc-

tion on an item i being replicated across three sites such as US, UK and DE, and having

initially a 5 dollar bid from Charlie. Suppose also that three shadow operations, namely,

placeBid′(i, Bob, 10), placeBid′(i, Alice, 15), and closeAuction′(i) are accepted concur-

rently at the three locations, respectively. After applying all of them against the same

initial state at every site, we end up with an invalid state, where Charlie rather than Bob

and Alice won the auction. This invariant violating execution involves three concurrent

shadow operations, but one of the two bid placing shadow operations is not necessar-

ily to be included in G, as even after excluding the request from either Bob or Alice,

the violation still remains. According to Definition 15, {placeBid′, closeAuction′} is an

I-conflict set, while {placeBid′, placeBid′, closeAuction′} is not. Intuitively, avoid-

ing invariant violations is to prevent all operations from the corresponding I-conflict

114

5.4 Restriction inference

set from running in a coordination-free manner. The minimality property enforced in

the I-conflict set definition allows us to avoid adding unnecessary restrictions.

Based on the above definition, we then can formulate the invariant preservation prop-

erty into the following theorem.

Theorem 4 Given a PoR consistent system S with a set of restrictions RS , for any

execution of S that starts from a valid state, no site is ever in an invalid state, if the

following conditions are met:

• for any its I-conflict set G, there exists a restriction r(u, v) in RS , for at least

one pair of shadow operations u, v ∈ G; and

• for any pair of shadow operations u and v, r(u, v) in RS if u and v don’t commute.

We prove the invariant preservation theorem by contradiction as follows:

Proof: We assume by contradiction that invariant violations are possible with a suf-

ficient set of restrictions RS in place. Let E be an invariant violating execution of S

and O(U,≺) be a smallest R-order of E that triggers the violation. Let Oi(U,<) be a

causal legal serialization of R-order O at site i. As Oi violates the corresponding invari-

ant, S0(Oi) is invalid. If U is empty, then S0(Oi) = S0, and Oi is in a valid state. This

violates the assumption that Oi is in an invalid state. The theorem is proved.

Then we consider that U is non-empty. Let G be the set of shadow operations that

are maximal according to O(U,≺), i.e., G ⊂ U , and u ∈ G ⇔6 ∃v ∈ U s.t. u ≺ v. The

fact that U is not empty implies that G is not empty as well.

As follows, we will prove that G is an I-conflict set.

We first consider the case that G contains invariant-safe shadow operations. Let v be

such an invariant safe shadow operation in G. If v is not the last operation in Oi, then

it follows from Lemma 1 and 2 that we can swap v and any shadow operation u, s.t.

u ∈ G, u 6= v and v < u. This swapping process terminates when it produces a new legal

115

5 Minimizing coordination in replicated systems

serialization Oj of the R-order O, where v appears as the last operation, i.e., Oj = O′j+v.

It also follows from the assertion that any pair of shadow operations that are not ordered

in ≺ commute w.r.t each other and Lemma 4 that S0(Oj) = S0(Oi). As S0(Oi) is invalid

and S0(O
′
j) + v = S0(Oj), S0(O

′
j) + v is invalid. It then follows from the fact that v is

invariant safe and the invariant safe shadow operation definition (Definition 8) that the

state before applying v must be invalid, i.e., S0(O
′
j) is not valid. This implies that there

exists a smaller R-order O′(U \ {v},≺) than O(U,≺) that triggers the corresponding

invariant. It contradicts with our assumption that O is a smallest R-order observing

invalid state. Therefore, we only need to analyze the case when all shadow operations in

G are non-invariant safe. The first condition of the I-conflict set definition is met.

We continue by checking if |G| = 1, i.e., G contains only a single non-invariant safe

shadow operation. Let v be that operation. Oi = O′i + v. As Oi is in an invalid state,

S0(O
′
i+v) is invalid. It follows from the assumption that Oi is the causal legal serialization

of O at site i (where the generator of v was executed) and the correct shadow operation

definition (Definition 6) that the state S0(O
′
i), which v was created from, is also invalid.

By similar logic as above, there exists a smaller invariant violating R-order than O, and

contradiction is found. As a result, |G| > 1. The second condition of the I-conflict

set definition is met.

Finally, we check if G also meets the third condition of the I-conflict set definition.

Let O′i(U \G,<) be a prefix of Oi excluding all operations of G from Oi. Let S = S0(O
′
i).

∀u ∈ G, we can construct a legal serialization Oj of O such that Oj = O′i+T +u, where T

is a sequence consisting of all shadow operations in G\{u}. It also follows from Lemma 1,

2, Lemma 4 and the assertion that any pair of unordered shadow operations commute

that S0(Oi) = S0(Oj). Since the underlying R-order O is a smallest R-Order violating

the corresponding invariant, S and S(T) are valid, and S(T + u) is invalid.

As G meets all three conditions presented in the I-conflict set definition (Defi-

nition 15), G is an I-conflict set. It then follows from the assertion in the invariant

116

5.4 Restriction inference

Algorithm 1 State convergence restrictions discovery

1: function scrdiscover(T) . T : the set of shadow operations of the target system
2: R← {} . R: the restriction set
3: for i← 0 to |T | − 1 do
4: for j ← i to |T | − 1 do
5: if Ti do not commute with Tj then
6: R← R ∪ {r(Ti, Tj)}
7: end if
8: end for
9: end for

return R
10: end function

preserving theorem that for any I-conflict set, there exists a restriction defined over

one pair of shadow operations in the set so that it is impossible to have all shadow op-

erations in G to not be ordered w.r.t each other in the R-order O. Therefore, G cannot

be a maximal element set of the R-order O. Contradiction is found.

5.4.3 Identifying restrictions

As discussed in the previous subsection, the key to making a replicated system adopt

PoR consistency and strike an appropriate balance between performance and consis-

tency semantics is to identify a finest set of restrictions, which ensure both state conver-

gence and invariant preservation. With regard to the former property, we design a state

convergence restrictions discovery method (Algorithm 1), which performs an operation

commutativity analysis between pairs of operations. If two operations do not commute,

then a restriction between them is added to the returning result restriction set.

For discovering the required restrictions for invariant preservation, we have to exhaus-

tively explore all I-conflict sets that trigger violations. However, it is very challenging

to achieve this since there might exist infinite number of violating executions containing

at least one I-conflict set. Therefore, the exploration may not guarantee to terminate.

To solve this problem, we decide to take a more efficient approach, in which we collapse

many similar executions of a replicated system into a single execution class. To do so, we

117

5 Minimizing coordination in replicated systems

Algorithm 2 I-conflict set discovery

1: function icsetdiscover(T , ℘(T)) . T : the set of operations of the target system,
℘(T) is the power set of T

2: if T.processed == true or |T | == 0 then
return

3: end if
4: result← false . true indicates that a subset of T is I-conflict set.
5: for j ← 2 to |T | − 1 do
6: let ℘(T)j be a subset of ℘(T) s.t. each element in ℘(T)j has j operations.
7: for all T ′ ∈ ℘(T)j do icsetdiscover(T ′, ℘(T ′))
8: result← result|T ′.isIConflict
9: end for

10: end for
11: if result == false then . No subsets of T are I-conflict set, so we need to

check T .
12: if |T | == 1 then . Check self-conflicting
13: if ¬(T0.post =⇒ T0.wpre) then . T0 is the 0-th element in T .
14: T.isIConflict← true

15: end if
16: else if |T | > 1 then
17: for i← 0 to |T | − 1 do . Ti is the i-th element in T .
18: post← ∧x∈T\{Ti}x.post
19: if ¬(post =⇒ Ti.wpre) then
20: T.isIConflict← true

21: break
22: end if
23: end for
24: end if
25: end if
26: T.processed← true

27: end function

use programming language techniques such as weakest precondition and postcondition

analysis. For every operation u, we denote u.wpre as its weakest precondition, which is

a condition on the initial state and the parameter values ensuring that u always pre-

serves invariants. We also denote u.post as the postcondition summarizing the final state

after the execution of u against all possible valid state. We flag a set of operations T

as I-conflict if either of the following two conditions is met: (a) T contains a single

operation t and t is self-conflicting, i.e., t.wpre is invalidated by t.post; and (b) |T | > 1,

118

5.4 Restriction inference

Algorithm 3 Invariant preservation restrictions discovery

1: function iprdiscover(T , R) . T : the set of shadow operations of the target
system, R: the restriction set

2: icsetdiscover(T , ℘(T)) . Compute all I-conflict sets

3: for all T ′ ∈ ℘(T) do
4: if T ′.isIConflict ==true then
5: if |T ′| == 1 then
6: R← R ∪ {r(T ′0, T

′
0)} . Restrict self-conflicting operations

7: else if ∀u, v ∈ T ′, r(u, v) 6∈ R then . This set has not been restricted yet.
8: R← R ∪ {r(T ′i , T

′
j)}, where i 6= j and T ′i , T

′
j ∈ T ′ . Restrict any pair

of operations in T ′

9: end if
10: end if
11: end for

return R
12: end function

Algorithm 4 Restriction set discovery

1: function discover(T) . T : the set of shadow operations of the target system
2: R← {} . the set of restrictions we identify
3: R← R ∪ scrdiscover(T) . Identify restrictions ensuring state convergence
4: R← R ∪ iprdiscover(T,R) . Identify restrictions ensuring invariant

preservation
return R

5: end function

any subset of T is not I-conflict (but can be self-conflicting) and there exists an op-

eration u from T such that u.wpre can be invalidated by the compound postcondition

of operations in T \ {u}. (This procedure is implemented by Algorithm 2.)

To find a restriction set, for each identified I-conflict set T , we add a restriction

between any pair of operations from T if no pairs of operations from that set is ever

restricted. Otherwise, T will be skipped. This is because the relevant violating executions,

where all shadow operations from T are not restricted, have been already eliminated, and

hence there is no need to analyze T . (This procedure is implemented by Algorithm 3.)

To summarize, we devise four algorithms to discover a set of restrictions for ensuring

state convergence and invariant preservation. The entrance algorithm DISCOVER (Algo-

119

5 Minimizing coordination in replicated systems

1 opA (){

2 if (!B && !C){

3 A = true;
4 }

5 }

(a) opA

1 opB (){

2 if (!A && !C){

3 B = true;
4 }

5 }

(b) opB

1 opC (){

2 if (!A && !B){

3 C = true;
4 }

5 }

(c) opC

Figure 5.2: Pseudocode for the switch example where opA, opB and opC control switches
A, B and C, respectively and the invariant is that A, B and C cannot
be switched on at the same time. Initially, all three switches are off.

rithm 4) takes a set of shadow operation T as input. It first calls SCDISCOVER (Algo-

rithm 1) to compute a set of restrictions R for ensuring state convergence. Then, it

feeds IPRDISCOVER (Algorithm 3) the shadow operation set T and the state convergence

restriction set R. The algorithm IPRDISCOVER (Algorithm 3) first calls ICSETDISCOVER

(Algorithm 2) to discover all I-conflict sets and then adds a restriction between any

pair of shadow operations from an I-conflict set accordingly. At the end, the algorithm

DISCOVER outputs a set of restrictions to ensure both state convergence and invariant

preservation.

5.4.4 Minimality

The invariant preservation theorem (Theorem 4) helps us verify whether a set of restric-

tions is sufficient to make a replicated system preserve invariants, but it doesn’t preclude

conservative cases, where unnecessary restrictions are present. The most promising solu-

tion is to prove that a set of restrictions is not only sufficient but also necessary. However,

while playing with a few examples, we found that there might exist more than one effec-

tive restriction sets, where each of these sets is sufficient and any pair of them are not

comparable, i.e., one is not included in the other, and vice versa. Therefore, to prove

necessity becomes infeasible. As shown in Figure 5.2, to maintain the corresponding

invariant, there are three incomparable coordination plans, namely r(A,B), r(B,C) or

r(A,C).

120

5.4 Restriction inference

To overcome this challenge, we compromise our goal by proving the minimality of the

restriction set we identify. There are a couple of criterions to define minimality, e.g.,

set inclusion, probability, cardinality and etc. In the context of PoR consistency, we

define the minimality using set inclusion, since the cardinality solution is required to

exhaustively search all effective restriction sets and this is not always possible.

Definition 16 (Minimality) Given a PoR consistent system S with a set of restric-

tions RS that preserves invariants, RS is minimal if the following condition is met: for

any restriction sets R′ such that R′ (RS , there exists an execution of S against a valid

state S0 does not preserve invariants.

The analysis algorithm we presented in the previous section would always output a

minimal set of restrictions. We capture this in the following theorem:

Theorem 5 Minimality theorem: Applying the restriction set discovery algorithm

(Algorithm 4) to a system S generates a minimal set of restrictions for ensuring state

convergence and invariant preservation under PoR consistency.

Proof: We assume by contradiction that it is possible for the restriction set discovery

algorithm (Algorithm 4) to generate a restriction RS , which is not minimal. Let r(Ti, Tj)

be one of the unnecessary restriction from RS . We know that any execution of S will

not experience state divergence and invariant violation while removing r(Ti, Tj) from

RS . Let’s consider the following two cases:

• r(Ti, Tj) is produced by Algorithm 1, which finds restrictions for ensuring state

convergence. It follows from the step pointed by the lines 5-6 in that algorithm

that Ti and Tj do not commute w.r.t each other. It then follows from the opera-

tion commutativity concept and the state convergence definition that there exists

an execution where Ti and Tj are not partially ordered and two causal legal seri-

alizations reach different states. Contradiction is found.

121

5 Minimizing coordination in replicated systems

• r(Ti, Tj) is produced by Algorithm 3, which finds restrictions for preserving invari-

ants. It follows from the lines 5-8 in that algorithm that Ti and Tj belong to an

I-conflict set T . If there exists a pair of operations from T other than 〈Ti, Tj〉 is

restricted, then r(Ti, Tj) should not be in RS . Contradiction is found. If no pairs

of operations are restricted for T , then it follows from the I-conflict set definition

(Definition 15) that removing r(Ti, Tj) from RS will make some executions of S

observe invariant violations. Contradiction is found.

5.5 Design and Implementation of Olisipo

In this section we provide a detailed explanation of the design and implementation of

Olisipo, which adapts applications to run with SIEVE and Gemini under PoR consis-

tency.

5.5.1 Design rationale

To minimize coordination overhead, in addition to applying the analysis presented in

Section 5.4.3 for statically extracting a minimal set of restrictions, we aim to build an

efficient coordination service for enforcing restrictions at runtime. This is challenging

due for the following reason. We observed that there exist several coordination tech-

niques/protocols that can be used for enforcing a given restriction, such as Paxos, dis-

tributed locking, or escrow techniques. However, depending on the frequency at runtime

in which the system receives operations confined by a restriction, different coordination

approaches lead to different performance tradeoffs. Therefore, the question we need to

answer is: how to choose the cheapest protocol for enforcing a given restriction?

Consider the previously mentioned RUBiS example. In this example, maintaining the

invariant that winners always match highest successful bidders requires a restriction be-

tween any pair of placeBid’ and closeAuction’ operations. The simplest coordination

scheme would be forcing the two types of shadow operations to pay the same coordina-

122

5.5 Design and Implementation of Olisipo

tion cost for figuring out the existence of concurrent counterparts. However, this solution

yields a very poor performance due to the imbalanced workload between the two types

of shadow operations, i.e., placeBid’ is more prevalent than closeAuction’. As a re-

sult, reducing the latency for placeBid’ while maintaining the corresponding ordering

constraint will comprise a better user experience.

In summary, we propose to build a specialized coordination service called Olisipo

offering coordination policies, each of which presents a tradeoff between the cost of each

operation and the overall cost. This service allows us to use runtime information about

the relative frequency of operations to select an efficient coordination mechanism for a

given restriction that has the lowest cost.

5.5.2 Coordination protocols

In this subsection, we present the two coordination techniques that we currently support

in Olisipo and concrete scenarios where these mechanisms are more adequate. The two

protocols we implemented are symmetry (Sym) and asymmetry (Asym). Given a restric-

tion r(u, v) between two operations u and v, the symmetry protocol requires both u and

v to coordinate with each other for establishing an order between them. In contrast, the

asymmetry protocol provides different treatment for u and v by only requiring u (or v)

to inform the counterpart operation in the restriction v (or u) about its existence, while

allowing v (or u) to be executed fast without coordination if no u (or v) operations are

running simultaneously. We further detail the two protocols as follows:

Sym. This protocol requires us to set up a logically centralized counter service, which

maintains a counter for every shadow operation type present in a restriction r(u, v),

which we will refer to as cu and cv, and serializes reads and writes to these counters.

Every such counter represents the total number of the corresponding operations that

have been accepted by the underlying system. Additionally, every replica at different

123

5 Minimizing coordination in replicated systems

data centers maintains a local copy of these counters, each of which represents the

number of corresponding operations that have been observed by that replica. Initially,

all local copies, as well as the global counters, have all values set to zero. Whenever an

operation of type u is received by a replica, that replica contacts the counter service to

increase the corresponding counter cu and get a fresh copy of the counter maintained for

v. Upon receiving the reply from the counter service, that replica can then compare the

value of cv with its local copy. If they are the same, then the replica can execute u without

waiting. If the value is greater than the local copy, the local execution can only take place

when all missing operations of type v have been locally replicated. Conversely, the same

procedure is also applied to v. After replicating operations, the local copy of the counters

will be brought to be up-to-date. In order to make the counter service fault tolerant,

we leverage a Paxos-like state machine replication library (BFT-SMART [BSA14]) to

replicate counters across geo-locations.

Asym. Unlike the above centralized solution, the asymmetry protocol implements

distributed barrier in a decentralized manner as follows. Assume, for simplicity that u

is the barrier. In this case whenever a replica r receives an operation u it would have to

enter the barrier, and contact all other replicas to request participation. This requires all

replicas in the system to stop processing operations of type v and enter the barrier. After

receiving an acknowledgment of the barrier entrance from all replicas, r can execute the

operation, and then notify all replicas that it has left the barrier (while at the same time

propagating the effects of the operation u it has just executed). Such a coordination

strategy might incur in a high overhead; however, it might be interesting when one of

the two operations in the restriction is rarely submitted to the system. For instance,

in the auction example, closeAuction’ is a candidate for being used as barrier, since

placeBid’ dominates the operation space.

124

5.5 Design and Implementation of Olisipo

Centralized counter service

Olisipo local agent at DC1

Policy
Executor

Olisipo local agent at DC2

Counter table

operation conflicting peers

a [“conflict” : “b”,
 “counter” : 1]

b [“conflict” : “a”,
 “counter” : 5]

Policy
Executor

Sym:
Local counters

Counter table

operation conflicting peers

a [“conflict” : “b”,
 “counter” : 1]

b [“conflict” : “a”,
 “counter” : 5]

Counter table

operation conflicting peers

a [“conflict” : “b”,
 “counter” : 1]

b [“conflict” : “a”,
 “counter” : 5]

Restriction table

[“restriction” : <a, b>,
 “policy” : Sym]

[“restriction” : <e, f>,
 “policy” : Asym,
 “barrier” : “e”]

Asym:
Active barriers

Restriction table

[“restriction” : <a, b>,
 “policy” : Sym]

[“restriction” : <e, f>,
 “policy” : Asym,
 “barrier” : “e”]

Sym:
Local counters

Asym:
Active barriers

Figure 5.3: Olisipo architecture

5.5.3 Architecture

All design choices and details presented above lead to the high level system architecture

depicted in Figure 5.3. The Olisipo architecture consists of a counter service replicated

across data centers and a local agent deployed in every data center. While the counter

service is required by executing the Sym protocol for keeping track of the number of dif-

ferent operations that have been accepted by the system, the local agent is responsible

for placing coordination only when the corresponding operation is confined by restric-

tions. Every local agent keeps a restriction table, which defines all identified restrictions

125

5 Minimizing coordination in replicated systems

Gemini
Causal Replication Tier

SIEVE
Commutativity
Transformer

Olisipo
Coordination

Service

Figure 5.4: Olisipo connected with SIEVE and Gemini

between pairs of operations and the corresponding coordination policy. In addition, ev-

ery agent also stores some meta data required for different protocols: With regard to

the Sym protocol, it maintains a local copy of the replicated counter service, which is

used for learning if the local counters lag behind the global counters, which means the

corresponding data centers have to wait until all missing operations have been locally

incorporated. For the Asym protocol, every agent maintains a list of active barriers, which

are used for locally deciding if relevant operations blocked on such barriers can proceed.

5.5.4 Implementation

We implemented Olisipo using Java (2.8k lines of code)2, and BFT-SMART [SAB] for

replicating the state of the centralized counter service, MySQL as the backend storage,

and Netty as the communication library [Net]. As shown in Figure 5.4, we integrated

Olisipo with Gemini and SIEVE so that Gemini serves as the underlying causally con-

2The number of lines of code is measured by cloc [cod].

126

5.6 Evaluation

sistent replication tier while SIEVE is used to produce commutative shadow operations

at runtime. The source code of Olisipo is available at [oli].

Workflow. A user issues her request to an application server located at the closest

data center, which runs an instance of SIEVE (introduced in Chapter 4) and a local

agent shown in Figure 5.3. SIEVE intercepts the communication between the app server

and the backend MySQL database and executes the corresponding generator operation.

When the execution ends, SIEVE produces a commutative shadow operation that ac-

cumulates side effects of that request, and then asks the local Olisipo agent for placing

coordination if needed before committing and replicating that shadow operation. To do

so, the Olisipo agent looks up the restriction table to determine if that operation is

confined by any restriction. If so, then the policy executor of Olisipo orders that

operation with respect to all its conflicting operations that are running concurrently at

other data centers. This is achieved by executing different protocols according to the

lookup result. When conflicting operations are serialized, SIEVE sends these operations

to Gemini for replicating them across all data centers while respecting the established

order.

5.6 Evaluation

Concerning the evaluation of Olisipo, we focus on two main aspects. First, we want to

understand if the methodology for inferring restrictions presented in Section 5.4 is effec-

tive when applied to real world applications, i.e., it finds a minimal set of restrictions.

Second, we explore the impacts on user observed latency and system throughput intro-

duced by three factors: adopting PoR consistent replication, using different protocols,

and adding more restrictions.

127

5 Minimizing coordination in replicated systems

5.6.1 Case study

We apply the analysis (Algorithm 4) to an extended version of RUBiS (which implements

a closeAuction operation for declaring auction winners) to identify a set of restrictions

comprising a minimal amount of coordination without sacrificing either state convergence

or invariant preservation. This subsection reports our experience on conducting such

analysis and the final static result we obtained.

State convergence. As we deploy RUBiS alongside SIEVE, all shadow operations

generated at runtime commute w.r.t each other and there is no need to restrict any pair

of shadow operations. The final output of the state convergence restriction discovery

method (Algorithm 1) is an empty restriction set.

Invariant preservation. We determined four invariants of the extended version of RU-

BiS, namely (a) identifiers assigned by the system are unique; (b) nicknames chosen by

users are unique; (c) item stock must be non-negative; and (d) the auction winner must

be associated with the highest bid across all accepted bids. We continued by performing

the I-conflict set analysis (Algorithm 2) against all RUBiS shadow operations. With

regard to the first invariant, since we take advantage of the coordination-free unique

identifier generation method offered by SIEVE, no I-conflict sets were found for

violating it. In contrast, for the remaining three invariants, we identified the following

I-conflict sets:

• {registerUser′, registerUser′}. Invariant (b) would be violated if the two opera-

tions proposed the same nickname and were submitted to different sites simulta-

neously;

• {storeBuyNow′, storeBuyNow′}. Invariant (c) would be violated if both opera-

tions simultaneously deducted a positive number from stock while stock was not

enough;

128

5.6 Evaluation

App RedBlue consistency PoR consistency

RUBiS r(registerUser′, registerUser′) r(registerUser′, registerUser′)
r(storeBuyNow′, storeBuyNow′) r(storeBuyNow′, storeBuyNow′)
r(placeBid′, placeBid′) r(placeBid′, closeAuction′)
r(closeAuction′, closeAuction′)
r(placeBid′, closeAuction′)
r(registerUser′, storeBuyNow′)
r(registerUser′, placeBid′)
r(registerUser′, closeAuction′)
r(storeBuyNow′, placeBid′)
r(storeBuyNow′, closeAuction′)

Table 5.1: Restrictions over pairs of shadow operations that are required when repli-
cating the extended RUBiS under RedBlue or PoR consistency

• {placeBid′, closeAuction′}. Invariant (d) would be violated if both operations were

submitted at the same time to different sites, and placeBid′ carried a higher bid

than all accepted bids.

Each of the three above I-conflict sets covers a class of violating executions of

the respective invariant. To eliminate the corresponding violations, we added three

restrictions, namely r(registerUser′, registerUser′), r(storeBuyNow′, storeBuyNow′)

and r(placeBid′, closeAuction′), which are summarized in Table 5.1. This set is a mini-

mal restriction set since it is sufficient to ensure the two important properties and none

of these restrictions can be removed. In contrast, compared to the PoR consistency solu-

tion, replicating RUBiS via RedBlue consistency would require more restrictions, since

the definition states that all non-invariant safe shadow operations must be red (strongly

consistent), i.e., the four shadow operations presented in the above list must be restricted

in a pair-wise fashion, as shown in Table 5.1.

5.6.2 Experimental setup

Deployment parameters. We run experiments on Amazon EC2 [Amaa] using

m4.2xlarge virtual machine instances located in three sites: US Virginia (US-East),

129

5 Minimizing coordination in replicated systems

US-East US-West EU-FRA

US-East
0.299± 0.042 ms 71.200± 0.021 ms 88.742± 1.856 ms
1052.0± 0.0 Mbps 47.4± 1.6 Mbps 29.6± 5.6 Mbps

US-West
66.365± 0.006 ms 0.238± 0.003 ms 162.156± 0.179 ms
47.4± 1.6 Mbps 1050.7± 4.1 Mbps 17.4± 1.7 Mbps

EU-FRA
88.168± 0.035 ms 162.163± 0.157 ms 0.226± 0.003 ms
36.2± 0.1 Mbps 20.1± 0.1 Mbps 1052.0± 0.0 Mbps

Table 5.2: Average round trip latency and bandwidth between Amazon datacenters
(obtained in Dec 2015).

US California (US-West) and EU Frankfurt (EU-FRA), which are the latest generation

of General Purpose Instances. Table 5.2 shows the average round trip latency and ob-

served bandwidth between every pair of sites. Each VM has 8 virtual cores and 32GB of

RAM. VMs run Debian 8 (Jessie) 64 bit, MySQL 5.5.18, Tomcat 6.0.35, and OpenJDK

8 software.

Configuration and workloads. Unless stated otherwise, in all experiments, we deploy

the BFT-SMART library under the crash-fault-tolerance model (CFT) with 3 replicas

across three sites, and assign the replica at EU-FRA to act as the leader of the consensus

protocol. We replicate RUBiS under PoR consistency across three sites using Olisipo,

SIEVE, and Gemini, while running an unreplicated strongly consistent RUBiS in the

EU-FRA site as a baseline. We refer to the first setup as “Olisipo-3-datacenter”, and to

the second setup as “Unreplicated”. For all experiments, emulated clients are equally dis-

tributed across three sites and connect to their closest data center according to physical

proximity.

We choose to run the bidding mix workload of RUBiS, where 15% of user interactions

are updates. To allow the client emulator to issue the newly introduced closeAuction

requests, we have to slightly change the transition table equipped with the original

RUBiS code by assigning a positive probability value for this request. The new transition

table can be found here [Oli15]. For all experiments we vary the workload by increasing

130

5.6 Evaluation

 0

 20

 40

 60

 0 400 800 1200 1600 2000 2400

L
at

en
cy

 (
m

s)

Interation (req/s)

Unreplicated
Olisipo-3-datacenter

Figure 5.5: Throughput versus latency curves for the RUBiS bidding mix.

the number of concurrent client threads in every client emulator. We also disable the

thinking time option for issuing requests so that there is no waiting time between

two contiguous requests from the same client thread. With regard to the data set, we

populate it via the following parameters: the RUBiS database contains 33,000 items for

sale, 1 million users, and 500,000 old items.

5.6.3 Experimental results

In this part, we analyze the results obtained from running the experiments stated above

concerning the following aspects.

Overall performance

We start by looking into the overall performance comparison between a 3 site Olisipo

deployment of RUBiS, which offers fine-grained tradeoffs between consistency and per-

formance, and a single site original code deployment, which provides strong consistency.

Figure 5.5 shows the overall average latency and throughput curves of the two experi-

131

5 Minimizing coordination in replicated systems

 0

 300

 600

 900

EU-FRA US-East US-West

L
at

en
cy

 (
m

s)

5.0 9.0

595.0

10.0

983.0

10.0

Unreplicated
Olisipo-3-datacenter

Figure 5.6: Overall average latency bar graph for users located in three sites.

ments. Olisipo significantly outperforms the unreplicated RUBiS deployment in two di-

mensions, namely, Olisipo reduces average latency (44.3% lower for the first data point

from left to right) and improves peak throughput (142.8% higher). The performance

gains come from the fact that Olisipo is able to execute non-conflicting requests in a

coordination-free manner and to employ an efficient coordination policy when needed

for processing conflicting requests.

User perceived latency

The major concern of designing Olisipo is to reduce the user perceived latency. In order

to understand the effectiveness of Olisipo on this front, we break down the overall latency

shown in Figure 5.5 into the following categories.

Intra-data center. First, we analyze the average latency for users at each data cen-

ter. As shown in Figure 5.6, all users except those in EU-FRA observe notably lower

latency in the Olisipo experiment, compared to the users from the same locations in the

unreplicated experiment. This improvement is because, in Olisipo, most of the requests

132

5.6 Evaluation

 0

 100

 200

 300

 400

EU-FRA US-East US-West

L
at

en
cy

 (
m

s)

2.3 3.1

263.2

3.1

341.6

3.2

Unreplicated
Olisipo-3-datacenter

Figure 5.7: Average latency bar graph of a RUBiS request storeComment for users
located at three sites. In the context of PoR consistency, this request is
non-conflicting and hence does not require coordination.

are handled locally, while in the unreplicated RUBiS, requests from users at the two US

data centers have to be redirected to EU-FRA, which incurs expensive inter-datacenter

communication. Unlike users at these two data centers, we observed that users at EU-

FRA in the Olisipo experiment experience a slightly higher latency than users from the

same region accessing an unreplicated RUBiS. This can be explained by the additional

work required for incorporating remote shadow operations into the local causal serial-

ization and placing coordination when needed for serializing conflicting requests. Note

that although the user observed latency for Olisipo at EU-FRA is almost twice as large

as the latency of the unreplicated experiment, the absolute number (9 ms) is reasonably

low.

Latency of non-conflicting requests. Among all non-conflicting requests in RUBiS,

we chose one representative request called storeComment as the illustrating example,

which places a comment on a user profile. As depicted in Figure 5.7, the conclusion

we can draw from this graph is consistent with the one regarding Figure 5.6. However,

133

5 Minimizing coordination in replicated systems

 0

 100

 200

 300

 400

EU-FRA US-East US-West

L
at

en
cy

 (
m

s)

2.2

124.2

259.1

195.6

348.8

195.1

Unreplicated
Olisipo-3-datacenter

Figure 5.8: Average latency bar graph of a RUBiS request storeBuyNow for users lo-
cated at three sites. In the context of PoR consistency, storeBuyNow

conflicts w.r.t itself and is regulated by the Sym protocol when being
replicated.

the major difference between these two figures is that users from EU-FRA in both

experiments have almost identical latency. This is because the storeComment request

requires no coordination and the cost of generating and applying the corresponding

shadow operation is modest.

Latency of conflicting requests. Third, we shift our attention from non-conflicting re-

quests to conflicting ones. As introduced before, Olisipo uses two different protocols (Sym

and Asym) to coordinate conflicting requests. We start by analyzing the latency of re-

quests handled by the Sym protocol. The illustrative example we selected is storeBuyNow,

which is conflicting with respect to itself. As shown in Figure 5.8, the user observed la-

tency of the storeBuyNow request at all three sites is significantly higher than the latency

of storeComment (shown in Figure 5.7), which is a non-conflicting request. This is be-

cause most of the lifecycle of these requests was spent asking the centralized counter

service for granting permissions, which consists of 3 replicas spanning three sites and

executing a Paxos-like consensus protocol. Additionally, user observed latency at EU-

134

5.6 Evaluation

 0

 100

 200

 300

 400

EU-FRA US-East US-West

L
at

en
cy

 (
m

s)

2.2 3.6

268.2

3.6

343.4

3.8

Unreplicated
Olisipo-3-datacenter

Figure 5.9: Average latency bar graph of a placeBid request for users locating in three
sites, which is conflicting with closeAuction. This request is regulated
by the Asym protocol but is not a barrier.

FRA is lower than the remaining two sites, since the leader of the consensus protocol is

co-located with EU-FRA users.

We continue by analyzing the average latency of requests that are coordinated by the

Asym protocol. Unlike the Sym protocol, any pair of operations confined in a restriction

will be treated differently by the Asym protocol, namely one acts as a distributed bar-

rier and the other proceeds if no active barriers are running. In the case study section

(Section 5.6.1), we assign the Asym protocol to regulate the r(placeBid′, closeAuction′)

restriction, while selecting the less frequent shadow operation closeAuction′ to work as a

barrier. As shown in Figure 5.9, the average latency measured for the placeBid request,

which produces placeBid′, looks very similar to the results obtained for non-conflicting

requests shown in Figure 5.7. This is because the ratio of closeAuction to placeBid is

very low (2.7%) and most of the time the placeBid request commits immediately without

waiting for joining or leaving barriers.

135

5 Minimizing coordination in replicated systems

 0

 100

 200

 300

 400

EU-FRA US-East US-West

L
at

en
cy

 (
m

s)

2.2

173.0

266.9

96.1

326.5

173.2

Unreplicated
Olisipo-3-datacenter

Figure 5.10: Average latency bar graph of a closeAuction request, which is conflicting
with placeBid. This request is handled by the Asym protocol and acts
as the barrier.

Next, we consider the barrier request closeAuction handled by the Asym protocol.

As expected, compared to placeBid, the average latency of closeAuction is remarkably

higher due to the coordination across sites, through which this request forces all sites

not to process incoming placeBid requests and collects results of all relevant completed

placeBid requests. As shown in Figure 5.10, users issuing closeAuction observed a la-

tency slightly higher than the maximal RTT between their primary data center and

the remaining data centers. For example, as shown in Table 5.2, the maximal RTT on

average for US-East users is 88.7 ms, while the average latency of closeAuction observed

by the same group of users is 96.1 ms.

Impact of different protocols

As motivated in the design of Olisipo, the purpose of offering different coordination proto-

cols is to improve runtime performance by taking into account the workload characteris-

tics. To validate this, we first deploy an experiment denoted by Olisipo-Correct-Usage,

136

5.6 Evaluation

 0

 500

 1000

 1500

 2000

Unreplicated Olisipo-All-Syms Olisipo-Correct-Usage

P
ea

k
th

ro
u

g
h

p
u

t
(r

eq
/s

)

827.9

1703.2

2009.9

(a) Peak throughput

 0

 5

 10

 15

 20

Overall EU-FRA US-East US-West

L
at

en
cy

 (
m

s)

14.7

8.9

12.0

8.0

16.0

10.0

17.0

9.0

All-Syms
Correct-Usage

(b) Overall average latency

Figure 5.11: Peak throughput and overall average latency bar graphs of systems using
different protocols.

in which we take into account the runtime information that closeAuction′ occurs sparsely

and assign the Asym protocol to regulate the restriction r(placeBid′, closeAuction′).

We then deploy another experiment denoted by Olisipo-All-Syms, in which the re-

striction r(placeBid′, closeAuction′) is handled by the Sym protocol. Figure 5.11 sum-

137

5 Minimizing coordination in replicated systems

marizes the comparison of peak throughput and average latency among three experi-

ments, namely Unreplicated, Olisipo-All-Syms and Olisipo-Correct-Usage. The

Olisipo-All-Syms setup improves the peak throughput of the unreplicated RUBiS sys-

tem by 105.7%, because of the coordination-free execution of non-conflicting requests.

However, compared to Olisipo-Correct-Usage, the performance of Olisipo-All-Syms

degrades in two dimensions, namely a 15.3% decrease in peak throughput and a 65.2%,

50.0%, 60.0%, 88.9% increase in request latency for all, EU-FRA, US-East, US-West

users, respectively. The reason for this performance loss is as follows: every placeBid’

shadow operation in Olisipo-All-Syms requires a communication step between its pri-

mary site and the centralized counter service for being coordinated, while most of time

placeBid’ shadow operations in Olisipo-Correct-Usage work as non-conflicting re-

quests provided that closeAuction requests sparsely arrive in the system.

Impact of the number of restrictions

The last aspect of our evaluation is to explore the impact on latency and throughput

introduced by varying the number of restrictions. To this end, we deploy a baseline ex-

periment denoted by RedBlue, in which we replicate RUBiS via the PoR consistency

framework but with the set of restrictions (shown in Table 5.1) we identified in the con-

text of RedBlue consistency. The comparison between the unreplicated RUBiS, RedBlue

consistent RUBiS and PoR consistent RUBiS is summarized in Figure 5.12. The improve-

ment on scalability by RedBlue consistency looks similar to the result we obtained in

Chapter 3. For example, as shown in Figure 5.12(a), a 3 site RedBlue replication improves

peak throughput offered by the unreplicated strongly consistent solution by 99.7%. How-

ever, compared to PoR consistent RUBiS, due to the unnecessary restrictions enforced by

RedBlue consistency, RedBlue consistent RUBiS achieves worse performance, namely a

19.2% decrease in peak throughput and a 67.8%, 62.5%, 60.0%, 88.9% increase in request

latency for all, EU-FRA, US-East, US-West users, respectively.

138

5.7 Limitations and future work

 0

 500

 1000

 1500

 2000

Unreplicated Olisipo-RedBlue Olisipo-PoR

P
ea

k
th

ro
u

g
h

p
u

t
(r

eq
/s

)

827.9

1653.7

2009.9

(a) Peak throughput

 0

 5

 10

 15

 20

Overall EU-FRA US-East US-West

L
at

en
cy

 (
m

s)

15.1

8.9

13.0

8.0

16.0

10.0

17.0

9.0

RedBlue
PoR

(b) Overall average latency

Figure 5.12: Peak throughput and overall average latency bar graphs of RedBlue con-
sistency and PoR consistency.

5.7 Limitations and future work

While adapting applications to use PoR consistency and Olisipo significantly outperforms

the usage of RedBlue consistency and SIEVE, there are several interesting unexplored

avenues for future work:

139

5 Minimizing coordination in replicated systems

First, there might exist some restrictions that do not need to be symmetric, e.g., given

two operations u, v, the order restriction where u always follows v is both sufficient and

necessary to maintain all target system properties. We have not explored the existence

of asymmetric restrictions, nor assessed the impact of having asymmetric restrictions on

the coordination cost. We leave this exploration to our future work.

Second, the adoption of PoR consistency requires the programmer to manually apply

the previously described static analysis (seen in Algorithm 4) for determining the pos-

sibility of diverging state or violating invariants, in order to obtain the minimal set of

restrictions. To free this programming burden, we plan to develop a tool to automate

this analysis.

Third, the current implementation of Olisipo only embraces two different coordination

protocols, each of which is suitable for a certain workload. In the future, we plan to

incorporate other coordination protocols into Olisipo, so that the programmer can make

a better choice.

Fourth, we plan to add an agent to Olisipo, which dynamically measures the frequen-

cies of different operations and makes runtime decisions for switching from a protocol to

another more efficient one.

5.8 Summary

In this chapter, we proposed a research direction for building fast and consistent geo-

replicated systems that employ a minimal amount of coordination in order to achieve

both invariant preservation and state convergence. To this end, we first defined a new

generic consistency model called PoR consistency, which maps consistency requirements

to fine-grained restrictions over pairs of operations. Second, we developed a static anal-

ysis to infer, for a given application, a minimal set of restrictions for ensuring the two

previously mentioned properties, in which no restrictions can be removed and no new

restrictions need to be added. Third, we built an efficient coordination service called

140

5.8 Summary

Olisipo for coordinating conflicting operations. Our evaluation of running RUBiS with

different setups shows that the joint work of PoR consistency and Olisipo significantly

improves the system performance of geo-replicated systems.

141

6 Conclusion

In the recent few years, (geo-)replication has been widely adopted to build scalable ser-

vices that offer low latency access and high throughput, in order to meet their unprece-

dented user demands. However, this goal is often negatively affected by the coordination

required to ensure application-specific properties such as state convergence and invariant

preservation. This dissertation shows that differentiating the consistency requirements

for various operations and executing operations with different amounts of coordination

can make replicated services fast as possible while ensuring their targeted consistency

semantics.

In short, our approach consists of the following three major components: (a) RedBlue

consistency, a novel consistency definition, which offers a coarse-grained choice between

executing an operation under either strong consistency or weak (causal) consistency; (b)

SIEVE, a tool that automatically makes a decision on which consistency level to be as-

signed to an operation in the context of RedBlue consistency; and (c) PoR consistency,

another novel consistency definition generalizes the tradeoffs behind RedBlue consis-

tency, offers a fine-grained choice in consistency requirements for various operations and

reduces the amount of required coordination when possible.

RedBlue consistency allows strongly and weakly consistent operations to coexist in a

single system and defines a set of sufficient conditions to determine the appropriate con-

sistency levels for various operations by analyzing whether running operations in parallel

can make state diverge or become invalid. In short, an operation must be red (strongly

143

6 Conclusion

consistent) if either it does not commute with any other operation or it potentially breaks

invariants in the presence of concurrency; otherwise, it can be blue (causally consistent).

To address the problem that many original operations do not naturally commute, we

propose to decouple the execution of an operation into a generator operation to decide

the changes, which has no side effects, and a shadow operation to apply the identified

changes in a commutative fashion across all replicas. Finally, we built Gemini, which

is a distributed coordination and replication tier for making web applications RedBlue

consistent.

To the best of our knowledge, SIEVE is the first system to automate the choice of

consistency levels offered by multi-level consistency in a replicated system. It relieves

the programmer from having to (a) construct commutative shadow operations; and

(b) reason about the behaviors that weak consistency introduces, only requiring the

programmer to write the system invariants that must be preserved and provide a small

number of annotations regarding merge semantics. To automate step (a), we leverage

CRDTs to translate every SQL statement into commutative forms. To automate step (b),

we rely on weakest precondition analysis techniques to determine sufficient conditions,

under which the corresponding shadow operations can be invariant safe. At runtime,

an efficient evaluation of such conditions will tell whether strong consistency or weak

consistency should be used.

PoR consistency has a broader view of the tradeoffs between maintaining targeted con-

sistency semantics and improving performance, by expressing this semantics as visibility

restrictions between pairs of operations. Weakening or strengthening the consistency se-

mantics in the context of PoR consistency is achieved by imposing fewer or more restric-

tions over relevant operations. In order to minimize the amount of required coordination,

we developed a concept called I-conflict set, which captures the finest composition

of shadow operations corresponding to an invariant violation, and a sequence of algo-

rithms to explore I-conflict sets and add the relevant restrictions. Finally, to help

144

programmers make use of PoR consistency, we built an efficient coordination service

called Olisipo, which allows the programmer to choose the most lightweight protocol for

replicating operations while serializing any pair of operations that need to be restricted.

145

Bibliography

[AC09] Farhana Aleen and Nathan Clark. Commutativity Analysis for Software

Parallelization: Letting Program Transformations See the Big Picture. In

Proceedings of the 14th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XIV, pages

241–252, New York, NY, USA, 2009. ACM.

[ACHM11] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Mar-

czak. Consistency Analysis in Bloom: a CALM and Collected Approach.

In Proceedings of the Fifth Biennial Conference on Innovative Data Systems

Research, CIDR’11, 2011.

[ACHM14] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. Blazes:

Coordination Analysis for Distributed Programs. In Proceedings of the IEEE

30th International Conference on Data Engineering, ICDE’14, 2014.

[ALaR13] Sérgio Almeida, João Leitão, and Lúıs Rodrigues. ChainReaction: A

Causal+ Consistent Datastore Based on Chain Replication. In Proceedings

of the 8th ACM European Conference on Computer Systems, EuroSys ’13,

pages 85–98, New York, NY, USA, 2013. ACM.

[Amaa] Amazon Elastic Compute Cloud (EC2). https://aws.amazon.com/ec2/.

[Online; accessed Feb-2016].

147

https://aws.amazon.com/ec2/

Bibliography

[Amab] Amazon Web Services (AWS) - Cloud Computing Services. http://

aws.amazon.com/. [Online; accessed Feb-2016].

[ANB+94] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and P.W.

Hutto. Causal Memory: Definitions, Implementation and Programming.

Technical report, Georgia Institute of Technology, 1994.

[BAC+13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Di-

mov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li,

Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat

Venkataramani. TAO: Facebook’s Distributed Data Store for the Social

Graph. In Proceedings of the 2013 USENIX Conference on Annual Techni-

cal Conference, USENIX ATC’13, pages 49–60, Berkeley, CA, USA, 2013.

USENIX Association.

[BBC+11] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin,

James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim

Yushprakh. Megastore: Providing scalable, highly available storage for inter-

active services. In Proceedings of the Conference on Innovative Data system

Research, CIDR’11, pages 223–234, 2011.

[BDF+15] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno

Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting Consistency Back

into Eventual Consistency. In Proceedings of the Tenth European Conference

on Computer Systems, EuroSys ’15, pages 6:1–6:16, New York, NY, USA,

2015. ACM.

[BFF+14] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-

stein, and Ion Stoica. Coordination Avoidance in Database Systems. Proc.

VLDB Endow., 8(3):185–196, November 2014.

148

http://aws.amazon.com/
http://aws.amazon.com/

Bibliography

[BGY13] Sebastian Burckhardt, Alexey Gotsman, and Hongseok Yang. Understanding

Eventual Consistency. Technical Report MSR-TR-2013-39, March 2013.

[BHG87] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency

Control and Recovery in Database Systems. 1987.

[bin] Microsoft Bing Web Page. http://www.bing.com/. [Online; accessed Feb-

2016].

[BKL+10] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel.

Finding a Needle in Haystack: Facebook’s Photo Storage. In Proceedings of

the 9th USENIX Conference on Operating Systems Design and Implementa-

tion, OSDI’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[BRCA09] Fabŕıcio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virǵılio

Almeida. Characterizing User Behavior in Online Social Networks. In Pro-

ceedings of the 9th ACM SIGCOMM Conference on Internet Measurement

Conference, IMC ’09, pages 49–62, New York, NY, USA, 2009. ACM.

[BSA14] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State Machine

Replication for the Masses with BFT-SMART. In Proceedings of the 2014

44th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks, DSN ’14, pages 355–362, Washington, DC, USA, 2014. IEEE

Computer Society.

[CCA08] Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. Middleware-

based Database Replication: The Gaps Between Theory and Practice. In

Proceedings of the 2008 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’08, pages 739–752, New York, NY, USA, 2008.

ACM.

149

http://www.bing.com/

Bibliography

[CDE+12] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher

Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan,

Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle,

Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s

Globally-distributed Database. In Proceedings of the 10th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI’12, pages

251–264, Berkeley, CA, USA, 2012. USENIX Association.

[CKZ+13] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Mor-

ris, and Eddie Kohler. The Scalable Commutativity Rule: Designing Scal-

able Software for Multicore Processors. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, pages 1–17,

New York, NY, USA, 2013. ACM.

[cod] Count Lines of Code. http://cloc.sourceforge.net/. [Online; accessed

Dec-2015].

[con02] TPCW consortium. TPC Benchmark-W Specification v. 1.8. http://

www.tpc.org/tpcw/spec/tpcw v1.8.pdf, 2002. [Online; accessed Feb-2016].

[CRS+08] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-

stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and

Ramana Yerneni. PNUTS: Yahoo!’s Hosted Data Serving Platform. Proc.

VLDB Endow., 1(2):1277–1288, August 2008.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-

lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available

150

http://cloc.sourceforge.net/
http://www.tpc.org/tpcw/spec/tpcw_v1.8.pdf
http://www.tpc.org/tpcw/spec/tpcw_v1.8.pdf

Bibliography

Key-value Store. In Proceedings of Twenty-first ACM SIGOPS Symposium

on Operating Systems Principles, SOSP ’07, pages 205–220, New York, NY,

USA, 2007. ACM.

[eba12] Ebay website. http://www.ebay.com/, 2012. [Online; accessed Feb-2016].

[EG89] C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems. In

Proceedings of the 1989 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’89, pages 399–407, New York, NY, USA, 1989.

ACM.

[EJ09] Cecchet Emmanuel and Marguerite Julie. RUBiS: Rice University Bidding

System. http://rubis.ow2.org/, 2009. [Online; accessed Feb-2016].

[Fac] Welcome to Facebook - Log In, Sign Up or Learn More. https://

www.facebook.com/. [Online; accessed Feb-2016].

[FB213] Facebook Annual Report 2013. http://investor.fb.com/annuals.cfm,

2013. [Online; accessed Aug-2014].

[FJL+97] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia

Zhang. A Reliable Multicast Framework for Light-weight Sessions and Ap-

plication Level Framing. IEEE/ACM Trans. Netw., 5(6):784–803, December

1997.

[Fog12] Fogbeam Labs. Quoddy Code Repository. http://fogbeam.github.io/

Quoddy/, 2012. [Online; accessed Feb-2016].

[FZFF10] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W.

Felten. SPORC: Group Collaboration Using Untrusted Cloud Resources.

In Proceedings of the 9th USENIX Conference on Operating Systems Design

and Implementation, OSDI’10, pages 1–, Berkeley, CA, USA, 2010. USENIX

Association.

151

http://www.ebay.com/
http://rubis.ow2.org/
https://www.facebook.com/
https://www.facebook.com/
http://investor.fb.com/annuals.cfm
http://fogbeam.github.io/Quoddy/
http://fogbeam.github.io/Quoddy/

Bibliography

[Gem] Gemini Code Repository. https://github.com/pandaworrior/

RedBlue consistency. [Online; accessed Feb-2016].

[GHOS96] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The Dangers

of Replication and a Solution. In Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’96, pages 173–

182, New York, NY, USA, 1996. ACM.

[Gooa] Google Webpage. www.google.com. [Online; accessed Feb-2016].

[Goob] Google. Balancing Strong and Eventual Consistency with Google

Cloud Datastore. https://cloud.google.com/developers/articles/

balancing-strong-and-eventual-consistency-with-google-cloud-

datastore. [Online; accessed Jan-2014].

[Gra81] Jim Gray. The Transaction Concept: Virtues and Limitations (Invited Pa-

per). In Proceedings of the Seventh International Conference on Very Large

Data Bases - Volume 7, VLDB ’81, pages 144–154. VLDB Endowment, 1981.

[GYF+15] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and

Marc Shapiro. ’Cause I’m strong enough: reasoning about consistency

choices in distributed systems. In Proceedings of the 42nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL’15,

New York, NY, USA, 2015. ACM.

[GYG+14] Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan, Kevin

Lai, Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur

Agiwal, Sanjay Bhansali, Mingsheng Hong, Jamie Cameron, Masood Siddiqi,

David Jones, Jeff Shute, Andrey Gubarev, Shivakumar Venkataraman, and

Divyakant Agrawal. Mesa: Geo-replicated, Near Real-time, Scalable Data

Warehousing. Proc. VLDB Endow., 7(12):1259–1270, August 2014.

152

https://github.com/pandaworrior/RedBlue_consistency
https://github.com/pandaworrior/RedBlue_consistency
www.google.com
https://cloud.google.com/developers/articles/balancing-strong-and-eventual-consistency-with-google-cloud-datastore
https://cloud.google.com/developers/articles/balancing-strong-and-eventual-consistency-with-google-cloud-datastore
https://cloud.google.com/developers/articles/balancing-strong-and-eventual-consistency-with-google-cloud-datastore

Bibliography

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correct-

ness Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst.,

12(3):463–492, July 1990.

[jav13] The Web Page of JavaParser. http://javaparser.github.io/javaparser/,

November 2013. [Online; accessed Feb-2016].

[Jdb] JDBC Driver for MySQL. http://dev.mysql.com/downloads/connector/

j/. [Online; accessed Feb-2016].

[KHAK09] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann.

Consistency Rationing in the Cloud: Pay Only when It Matters. Proc.

VLDB Endow., 2(1):253–264, August 2009.

[KPF+13] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan

Fekete. MDCC: Multi-data Center Consistency. In Proceedings of the 8th

ACM European Conference on Computer Systems, EuroSys ’13, pages 113–

126, New York, NY, USA, 2013. ACM.

[KR11] Deokhwan Kim and Martin C. Rinard. Verification of Semantic Commu-

tativity Conditions and Inverse Operations on Linked Data Structures. In

Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’11, pages 528–541, New York, NY,

USA, 2011. ACM.

[Kun07] Viktor Kuncak. Modular Data Structure Verification. PhD thesis, MIT,

2007.

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM, 21(7):558–565, July 1978.

[Lam98] Leslie Lamport. The Part-time Parliament. ACM Trans. Comput. Syst.,

16(2):133–169, May 1998.

153

http://javaparser.github.io/javaparser/
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

Bibliography

[Lam05] Leslie Lamport. Generalized Consensus and Paxos. Technical Report MSR-

TR-2005-33, Microsoft Research, 2005.

[Lam06] Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, October

2006.

[LFKA11] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-

sen. Don’T Settle for Eventual: Scalable Causal Consistency for Wide-area

Storage with COPS. In Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, SOSP ’11, pages 401–416, New York, NY,

USA, 2011. ACM.

[LFKA13] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-

sen. Stronger Semantics for Low-latency Geo-replicated Storage. In Proceed-

ings of the 10th USENIX Conference on Networked Systems Design and Im-

plementation, NSDI’13, pages 313–328, Berkeley, CA, USA, 2013. USENIX

Association.

[Li] Harry C. Li. Practical Consistency Tradeoffs. [Invited talk at the 31st Annual

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing

(PODC’12), 2012].

[Li214] SIEVE Example Files. http://www.mpi-sws.org/~chengli/

atc2014files/, 2014. [Online; accessed Feb-2016].

[Lin06] Greg Linden. Marissa Mayer at Web 2.0. http://glinden.blogspot.pt/

2006/11/marissa-mayer-at-web-20.html, 2006. [Online; accessed Feb-

2016].

[LKMS04] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure

Untrusted Data Repository (SUNDR). In Proceedings of the 6th Conference

154

http://www.mpi-sws.org/~chengli/atc2014files/
http://www.mpi-sws.org/~chengli/atc2014files/
http://glinden.blogspot.pt/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.pt/2006/11/marissa-mayer-at-web-20.html

Bibliography

on Symposium on Opearting Systems Design & Implementation - Volume 6,

OSDI’04, pages 9–9, Berkeley, CA, USA, 2004. USENIX Association.

[LLaC+14] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues,

and Viktor Vafeiadis. Automating the Choice of Consistency Levels in Repli-

cated Systems. In Proceedings of the 2014 USENIX Conference on USENIX

Annual Technical Conference, USENIX ATC’14, pages 281–292, Berkeley,

CA, USA, 2014. USENIX Association.

[LLaC+15] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, and Rodrigo Ro-

drigues. Minimizing Coordination in Replicated Systems. In Proceedings of

the First Workshop on Principles and Practice of Consistency for Distributed

Data, PaPoC ’15, pages 8:1–8:4, New York, NY, USA, 2015. ACM.

[LLSG92] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Provid-

ing High Availability Using Lazy Replication. ACM Trans. Comput. Syst.,

10(4):360–391, November 1992.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Struc-

tured Storage System. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[LMA+14] Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C.

Myers. Warranties for Faster Strong Consistency. In Proceedings of the

11th USENIX Conference on Networked Systems Design and Implementa-

tion, NSDI’14, pages 503–517, Berkeley, CA, USA, 2014. USENIX Associa-

tion.

[LPC+12] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça,

and Rodrigo Rodrigues. Making Geo-replicated Systems Fast As Possible,

Consistent when Necessary. In Proceedings of the 10th USENIX Conference

155

Bibliography

on Operating Systems Design and Implementation, OSDI’12, pages 265–278,

Berkeley, CA, USA, 2012. USENIX Association.

[LPS09] Mihai Letia, Nuno M. Preguiça, and Marc Shapiro. CRDTs: Consis-

tency without Concurrency Control. CoRR, abs/0907.0929, 2009. http:

//arxiv.org/abs/0907.0929.

[MAK13] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is More

Consensus in Egalitarian Parliaments. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, pages 358–

372, New York, NY, USA, 2013. ACM.

[Mic] Microsoft US — Devices and Services. www.microsoft.com/. [Online; ac-

cessed Feb-2016].

[MS02] David Mazières and Dennis Shasha. Building Secure File Systems out of

Byzantine Storage. In Proceedings of the Twenty-first Annual Symposium

on Principles of Distributed Computing, PODC ’02, pages 108–117, New

York, NY, USA, 2002. ACM.

[MSL+11] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,

Mike Dahlin, and Michael Walfish. Depot: Cloud Storage with Minimal

Trust. ACM Trans. Comput. Syst., 29(4):12:1–12:38, December 2011.

[MyS] MySQL, The World’s Most Popular Open Source Database. https://

www.mysql.com/. [Online; accessed Feb-2016].

[Net] Netty IO. http://netty.io/. [Online; accessed Feb-2016].

[oli] Olisipo code repository. https://github.com/pandaworrior/VascoRepo.

[Online; accessed Dec-2015].

156

http://arxiv.org/abs/0907.0929
http://arxiv.org/abs/0907.0929
www.microsoft.com/
https://www.mysql.com/
https://www.mysql.com/
http://netty.io/
https://github.com/pandaworrior/VascoRepo

Bibliography

[Oli15] Modified RUBiS Transition Table. http://www.mpi-sws.org/~chengli/

olisipofiles/workload/vasco transitions 3.xls, 2015. [Online; ac-

cessed Dec-2015].

[PMSL09] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A

Commutative Replicated Data Type for Cooperative Editing. In Proceedings

of the 2009 29th IEEE International Conference on Distributed Computing

Systems, ICDCS ’09, pages 395–403, Washington, DC, USA, 2009. IEEE

Computer Society.

[PS99] Fernando Pedone and André Schiper. Generic Broadcast. In Proceedings

of the 13th International Symposium on Distributed Computing, DISC ’99,

1999.

[PST+97] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer,

and Alan J. Demers. Flexible Update Propagation for Weakly Consistent

Replication. In Proceedings of the Sixteenth ACM Symposium on Operating

Systems Principles, SOSP ’97, pages 288–301, New York, NY, USA, 1997.

ACM.

[ria] Using Data Types – Riak Documentation. http://docs.basho.com/riak/

latest/dev/using/data-types/. [Online; accessed Feb-2016].

[Rit12] Antonio Rito da Silva et al. Project Fenix applications and Information Sys-

tems of Instituto Superior Técnico. https://fenix-cvs.ist.utl.pt, 2012.

[Online; accessed Feb-2016].

[RKB+15] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat,

Christoph Koch, Nate Foster, and Johannes Gehrke. The Homeostasis Pro-

tocol: Avoiding Transaction Coordination Through Program Analysis. In

Proceedings of the 2015 ACM SIGMOD International Conference on Man-

157

http://www.mpi-sws.org/~chengli/olisipofiles/workload/vasco_transitions_3.xls
http://www.mpi-sws.org/~chengli/olisipofiles/workload/vasco_transitions_3.xls
http://docs.basho.com/riak/latest/dev/using/data-types/
http://docs.basho.com/riak/latest/dev/using/data-types/
 https://fenix-cvs.ist.utl.pt

Bibliography

agement of Data, SIGMOD ’15, pages 1311–1326, New York, NY, USA,

2015. ACM.

[RKF+14] Sudip Roy, Lucja Kot, Nate Foster, Johannes Gehrke, Hossein Hojjat,

and Christoph Koch. Writes that Fall in the Forest and Make no Sound:

Semantics-Based Adaptive Data Consistency. CoRR, abs/1403.2307, 2014.

[SAB] João Sousa, Eduardo Alchieri, and Alysson Bessani. BFT-SMART Code

Repository. https://github.com/bft-smart/library. [Online; accessed

Dec-2015].

[SB09] Eric Schurman and Jake Brutlag. Performance Related Changes and their

User Impact. http://slideplayer.com/slide/1402419/, 2009. Presented

at Velocity Web Performance and Operations Conference. [Online; accessed

Feb-2016].

[Sch90] Fred B. Schneider. Implementing Fault-tolerant Services Using the State Ma-

chine Approach: A Tutorial. ACM Comput. Surv., 22(4):299–319, December

1990.

[SFK+09] Atul Singh, Pedro Fonseca, Petr Kuznetsov, Rodrigo Rodrigues, and Pet-

ros Maniatis. Zeno: Eventually Consistent Byzantine-fault Tolerance. In

Proceedings of the 6th USENIX Symposium on Networked Systems Design

and Implementation, NSDI’09, pages 169–184, Berkeley, CA, USA, 2009.

USENIX Association.

[SIE] SIEVE Code Repository. https://github.com/pandaworrior/SIEVE. [On-

line; accessed Feb-2016].

[SLSV95] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. Trans-

action Chopping: Algorithms and Performance Studies. ACM Trans.

Database Syst., 20(3):325–363, September 1995.

158

https://github.com/bft-smart/library
http://slideplayer.com/slide/1402419/
https://github.com/pandaworrior/SIEVE

Bibliography

[Sob08] Jason Sobel. Scaling Out. https://www.facebook.com/note.php?note id=

23844338919, 2008. [Online; accessed Feb-2016].

[SPAL11] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Trans-

actional Storage for Geo-replicated Systems. In Proceedings of the Twenty-

Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages

385–400, New York, NY, USA, 2011. ACM.

[SPBZ11a] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A Com-

prehensive Study of Convergent and Commutative Replicated Data Types.

Technical Report 7506, INRIA, January 2011.

[SPBZ11b] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.

Conflict-free Replicated Data Types. In SSS, 2011.

[SQL99] SQL-99 Complete, Really. CMP Books, 1999.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM Comput.

Surv., 37(1):42–81, March 2005.

[sta] statista. Number of worldwide active Amazon customer accounts from

1997 to 2014 (in millions). http://www.statista.com/statistics/237810/

number-of-active-amazon-customer-accounts-worldwide/. [Online;

accessed Feb-2016].

[Sto10] Dan Stocker. Delta Transactions. http://collectiveweb.wordpress.com/

2010/03/01/delta-transactions/, 2010. [Online; accessed Feb-2016].

[Sul13] Danny Sullivan. Google Still World’s Most Popular Search En-

gine By Far, But Share Of Unique Searchers Dips Slightly.

http://searchengineland.com/google-worlds-most-popular-search-

engine-148089, 2013. [Online; accessed Aug-2014].

159

https://www.facebook.com/note.php?note_id=23844338919
https://www.facebook.com/note.php?note_id=23844338919
http://www.statista.com/statistics/237810/number-of-active-amazon-customer-accounts-worldwide/
http://www.statista.com/statistics/237810/number-of-active-amazon-customer-accounts-worldwide/
http://collectiveweb.wordpress.com/2010/03/01/delta-transactions/
http://collectiveweb.wordpress.com/2010/03/01/delta-transactions/
http://searchengineland.com/google-worlds-most-popular-search-engine-148089
http://searchengineland.com/google-worlds-most-popular-search-engine-148089

Bibliography

[TDP+94] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Mar-

vin Theimer, and Brent W. Welch. Session Guarantees for Weakly Consis-

tent Replicated Data. In Proceedings of the Third International Conference

on Parallel and Distributed Information Systems, PDIS ’94, pages 140–149,

Washington, DC, USA, 1994. IEEE Computer Society.

[TPC11] TPC-W Code Repository. https://github.com/davidmartinho/fenix-

framework/tree/master/examples/tpcw, 2011. [Online; accessed Feb-

2016].

[TPK+13] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Bal-

akrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based

Service Level Agreements for Cloud Storage. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pages

309–324, New York, NY, USA, 2013. ACM.

[TTP+95] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer,

and C. H. Hauser. Managing Update Conflicts in Bayou, a Weakly Connected

Replicated Storage System. In Proceedings of the Fifteenth ACM Symposium

on Operating Systems Principles, SOSP ’95, pages 172–182, New York, NY,

USA, 1995. ACM.

[Vog09] Werner Vogels. Eventually Consistent. Commun. ACM, 52(1):40–44, Jan-

uary 2009.

[vRBM96] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus: A

Flexible Group Communication System. Commun. ACM, 39(4):76–83, April

1996.

160

https://github.com/davidmartinho/fenix-framework/tree/master/examples/tpcw
https://github.com/davidmartinho/fenix-framework/tree/master/examples/tpcw

Bibliography

[Web] Why Web Performance Matters : Is Your Site Driving Cus-

tomers Away? http://www.mcrinc.com/Documents/Newsletters/

201110 why web performance matters.pdf. [Online; accessed Feb-2016].

[Wei88] W. E. Weihl. Commutativity-Based Concurrency Control for Abstract Data

Types. IEEE Trans. Comput., 1988.

[YV00] Haifeng Yu and Amin Vahdat. Design and Evaluation of a Continuous Con-

sistency Model for Replicated Services. In Proceedings of the 4th Conference

on Symposium on Operating System Design & Implementation - Volume 4,

OSDI’00, pages 21–21, Berkeley, CA, USA, 2000. USENIX Association.

[ZPZ+13] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera,

and Jinyang Li. Transaction Chains: Achieving Serializability with Low

Latency in Geo-distributed Storage Systems. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pages

276–291, New York, NY, USA, 2013. ACM.

[ZSS+15] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,

and Dan R. K. Ports. Building Consistent Transactions with Inconsistent

Replication. In Proceedings of the 25th Symposium on Operating Systems

Principles, SOSP ’15, pages 263–278, New York, NY, USA, 2015. ACM.

161

http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf
http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf

	Introduction
	The unprecedented popularity of Internet services
	The case for (geo-)replication
	Fundamental tradeoff: consistency v. performance
	Challenges for being fast
	Thesis contributions
	Thesis organization

	System model
	Coexistence of strong and weak consistency
	Motivation and contributions
	Related work
	RedBlue consistency
	Defining RedBlue consistency
	State convergence and a RedBlue bank

	Replicating side effects
	Defining shadow operations
	Revisiting RedBlue consistency
	Shadow banking and invariants
	What can be blue? What must be red?
	Discussion

	Gemini design & implementation
	Design rationale
	System overview
	Ordering and replicating transactions
	Failure handling
	Implementation

	Case studies
	TPC-W
	RUBiS
	Quoddy
	Experience and discussion

	Evaluation
	Experimental setup
	Microbenchmark
	Case studies: TPC-W and RUBiS
	Case study: Quoddy
	Gemini overheads

	Limitations and future work
	Summary

	Automatic consistency level assignment
	Motivation and contributions
	Related work
	Overview
	Design rationale
	SIEVE architecture

	Generating shadow operations
	Leveraging CRDTs
	Runtime creation of shadow operations
	Miscellaneous

	Classification of shadow operations
	Overview
	Generating templates and weakest preconditions
	Runtime evaluation

	Evaluation
	Implementation
	Case studies
	Experimental setup
	Experimental results

	Limitations and future work
	Summary

	Minimizing coordination in replicated systems
	Motivation and contributions
	Related work
	Partial Order-Restriction Consistency
	Defining PoR consistency
	Expressiveness

	Restriction inference
	State convergence
	Invariant preservation
	Identifying restrictions
	Minimality

	Design and Implementation of Olisipo
	Design rationale
	Coordination protocols
	Architecture
	Implementation

	Evaluation
	Case study
	Experimental setup
	Experimental results

	Limitations and future work
	Summary

	Conclusion

