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Abstract

In recent years, the database community has witnessed the advent and breakthrough
of many new system designs like the famous Hadoop MapReduce or main memory
databases like MonetDB, Hekaton, SAP Hana, and HyPer to solve the problems of “Big
Data”. The system architectures in this generation of emerging systems often radically
differ from traditional relational databases. For database research, this trend creates new
challenges to design and optimize data structures for those novel architectures. Premier
candidates for innovations are index structures, which are traditionally among the most
crucial performance factors in databases. In this thesis, we focus on efficient indexing
methods for Hadoop MapReduce and main memory databases. Our work consists of
three independent parts that resulted from different research projects.

In the first part, we introduce HAIL, a novel approach for efficient static and adaptive
indexing in Hadoop MapReduce. We believe that efficient indexing becomes increas-
ingly important in the context of very large data sets. HAIL combines very low index
build times that are often even invisible for users, with significant runtime improvements
for selective MapReduce jobs. We provide extensive experiments, and show that HAIL
can improve job runtimes by up to 68x over Hadoop.

In the second part of this thesis, we present an in-depth evaluation of the adaptive
radix tree ART, a recent and very promising competitor in the domain of tree-indexes
for main memory databases. ART was reported by its inventors to be significantly faster
than previous tree indexes and even competitive to hash tables. However, the original
evaluation of ART did not consider Judy Arrays, which is, to the best of our knowledge,
the first data structure introducing adaptivity to radix trees. Furthermore, the hash ta-
ble used in the comparison with ART was just a textbook implementation of chained
hashing and not a more sophisticated state-of-the-art hash tables. We provide an ex-
tended analysis and experimental evaluation of ART, including a detailed comparison
to Judy Arrays, hashing via quadratic probing, and three variants of Cuckoo hashing.
Our results give a more differentiated look on ART. In particular, we present striking
conceptual similarities between ART and Judy Arrays and show that well-engineered
hash tables can beat the lookup throughput of adaptive radix trees by up 6x.

In the third part, motivated by our previous results, we take a closer look at hash-
ing methods in main memory databases. We identify seven key factors that influence
hashing performance, evaluate their impact, and discuss the implications on hashing in
modern databases. Our study indicates that choosing the right hashing method and con-
figuration can make an order of magnitude difference in insert and lookup performance.
We also provide a guideline for practitioners on when to use which hashing method.
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Zusammenfassung

In den letzten Jahren hat die Datenbank-Community das Aufkommen und den Durch-
bruch von vielen neuartigen Systementwürfen erlebt, deren übergeordnetes Ziel es ist,
die Probleme im Bereich “Big Data” zu lösen. Wichtige Beispiele hierfür sind das
berühmte Hadoop MapReduce oder Hauptspeicher-Datenbanken wie MonetDB, He-
katon, SAP Hana und Hyper. Die Architekturen in dieser Generation von Systemen un-
terscheiden sich oft grundlegend von den Ansätzen traditioneller relationaler Datenban-
ken. Für die Datenbankforschung schafft diese Entwicklung neue Herausforderungen
im Zusammenhang mit dem Entwurf passender Datenstrukturen und deren Optimierung
in diesem neuen Kontext. Zu den herausragenden Kandidaten für Innovationen zählen
hierbei Indexstrukturen, die traditionell zu den wichtigsten Leistungsfaktoren in Daten-
banken gehören. In dieser Arbeit konzentrieren wir uns auf effiziente Indizierungsme-
thoden für Hadoop MapReduce und Hauptspeicher-Datenbanken. Unser Beitrag besteht
dabei aus drei unabhängigen Teilen, die jeweils aus verschiedenen Forschungsprojekten
in diesem Bereich entstanden sind.

Im ersten Teil präsentieren wir HAIL als neue Methode für effizientes statisches und
adaptives Indizieren in Hadoop MapReduce, einem Framework für verteilte Datenver-
arbeitung auf großen Rechnernetzwerken. Wir glauben, dass effiziente Indizierung im
Hinblick auf die sehr großen Datenmengen in typischen Hadoop Systemen besonders
wichtig ist. HAIL kombiniert eine sehr niedrige Indizierungszeit, die für die Nutzer
zumeist sogar unsichtbar bleibt, mit erheblichen Laufzeitverbesserungen für selektive
MapReduce Jobs. Wir präsentieren umfangreiche Experimente hierzu und zeigen, dass
HAIL Job-Laufzeiten gegenüber Hadoop um bis zu 68x verbessert.

Im zweiten Teil dieser Arbeit präsentieren wir eine umfassende Analyse von ART,
einem adaptiven Radix-Baum, der einen sehr vielversprechenden Wettbewerber auf dem
Gebiet der Indexbäume für Hauptspeicher-Datenbanken darstellt. Die Erfinder von ART
erklären in ihrer Arbeit, dass ART deutlich schneller als vorherige Indexbäume ist und
sogar an die Leistung von Hash Tabellen heranreicht. Allerdings fehlt in dieser ur-
sprünglichen Studie ein Vergleich von ART mit Judy Arrays, welches nach unserem
Wissen der erste adaptive Radix-Baum ist. Des Weiteren basieren die gezeigten Ergeb-
nisse im Zusammenhang mit Hash Tabellen lediglich auf einem Vergleich von ART mit
einer einfachen Implementierung von Chained Hashing, anstelle von optimierten Hash
Tabellen auf dem neusten Stand der Technik. Wir liefern eine erweiterte Studie zu ART,
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einschließlich detaillierter Vergleiche mit Judy Arrays, mit Quadratic Probing sowie mit
drei Varianten von Cuckoo Hashing. Unsere Ergebnisse erlauben eine differenziertere
Bewertung von ART. Insbesondere erläutern wir auch die auffälligen konzeptionellen
Ähnlichkeiten zwischen ART und Judy Arrays. Weiterhin zeigen unsere experimentel-
len Ergebnisse, dass der Durchsatz für Suchanfragen bei Hash Tabellen um bis zu einem
Faktor von 6 höher ist als bei adaptiven Radix-Bäumen.

Im dritten Teil, zu dem uns unsere vorangehenden Ergebnisse motiviert haben, wer-
fen wir einen genaueren Blick auf Hashing-Verfahren für Hauptspeicher-Datenbanken.
Wir identifizieren sieben Schlüsselfaktoren, welche die Leistung von Hash Tabellen be-
einflussen. Darüber hinaus diskutieren wir die Auswirkungen dieser Faktoren und die
Konsequenzen für Hashing in modernen Datenbanken. Unsere Studie zeigt deutlich,
dass die Wahl der richtigen Hash-Verfahren und deren korrekte Konfiguration einen
Unterschied von einer Größenordnung bei der Leistung für Einfüge- und Suchopera-
tionen machen kann. Abschließend bieten wir auch einen praktischen Leitfaden an, der
dabei hilft, das beste Hashing-Verfahren für eine konkrete Problemstellung zu finden.
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Chapter 1

Introduction

1.1 Motivation

In our modern society, the amount of data that is stored and processed grows rapidly
year by year. This data is generated everywhere around us, for example on social media
websites, by cell phones, financial transactions, logistics, images, videos, and by various
other sensors. If we consider this huge increase in data sources in our daily life, it should
not come at a surprise that by far the largest share of all digital data in the world was
created in very recent years1. However, not only the sheer volume of data is increasing,
but also its variety, veracity, and the velocity in which data must be handled. These
changes imposed huge challenges on database research and demonstrated the limits of
traditional approaches to data management.

Apparently, these new problems could not simply be solved by adapting the om-
nipresent disk-based relational database systems of the past, that have been in the focus
of database research for decades. Instead, we have seen the advent of new system de-
signs, which benefit from recent advancements in computer hardware, such as high
performance multicore CPUs, huge main memory, or simply the increased hardware
cost-efficiency. Maybe the most prominent example from this generation of emerg-
ing systems is Hadoop MapReduce, a massively parallel distributed system for large-
scale batch processing on unstructured data. The availability of cheap but powerful
commodity hardware, low upfront investments, and relative easy-of-use made Hadoop
MapReduce a disruptive technology that changed the world by making data processing
at petabyte scale widely available. Another important branch of new system designs
are main memory (also called in-memory) relational databases. Nowadays, the memory
sizes for mainstream servers reaches the scale of terabytes and most users (excluding the
largest technology companies) can already store their entire data in the main memory of

1According to SINTEF [16], already in 2013 90% of the digital data in the world was created within
the last two years.

1



Chapter 1. Introduction 2

a single machine. Main memory databases benefit from this development by removing
the bottleneck of disk or network I/O from their data processing pipelines. Thus, they
provide orders of magnitude improvements in latency and throughput compared to their
disk-based ancestors.

We strongly believe that in the context of these changes, we should discuss the con-
sequences for optimal data structures and algorithms that should be employed in those
new systems. One premier example in this area are database index structures, which are
traditionally among the most crucial factors for the performance of data management
systems. Indexes can accelerate data retrieval dramatically, because they allow us to
quickly identify and locate records that qualify with respect to a filter condition. Thus,
indexes can reduce the amount of data that has to be processed to answer a query by
orders of magnitude. However, this benefit is only available if a suitable index for a
filter condition is available, and the availability of indexes, in turn, is limited by the fact
that indexes do not come for free. Each index consumes resources, such as memory
or disc space, and the footprint for most indexes typically grows linearly with the size
of the indexed data. Furthermore, indexes must first be created and even maintained
in the presence of updates, which is costly. As a result, designing index structures and
methods that offer good tradeoffs between search features (e.g. range predicates, prefix
searches, multiple dimensions), index performance, and indexing costs is a complex and
important research topic. In the context of disk-based relational database systems, in-
dexing has been researched for decades and is still not considered a solved problem. For
those observations, several questions arise: How much of those previous results carry
over to the new systems? What modifications to index structures should we make, and
where are new potentials for innovation?

This thesis is a contribution to the discussion about indexing in a new age of data
processing. In particular, we focus on exploring indexing methods in Hadoop MapRe-
duce and main memory databases.

1.2 Overview
This work consist of three independent parts that correspond to the different projects of
my doctoral research.

First, we present HAIL (Hadoop Adaptive Indexing Library), a novel approach
for efficient static and adaptive indexing in the distributed data processing framework
Hadoop together with an in-depth evaluation (Chapter 3) and an associated system
demonstration (Appendix A).

Then, we shift our focus away from distributed systems towards index structures for
main memory databases. In particular, we focus on the adaptive radix tree ARTful [76],
a recent and promising competitor in the domain of main memory indexes, that was re-
ported to be significantly faster than previous tree indexes and even competitive to hash
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tables. In this work we provide an in-depth analysis and experimental comparison of
ARTful and relevant prior work, i.e. Judy Array [12] and competitive hashing schemes,
which were not considered in the original paper (Chapter 4).

Motivated by our results we finally take a closer look at hashing methods for main
memory databases. We identify seven key factors that influence hashing performance,
evaluate their impact, and discuss the implications for hashing as an essential building
block for algorithms in modern database systems (Chapter 5).

As each chapter covers a full research project, we decided to keep all chapters self-
contained. This means that there is no consolidation across chapters, for example on
introductions and foundational parts. In the following Chapter 2 we provide the back-
grounds, as well as details about contributions and previous publications for each of the
aforementioned chapters. We also point out the connections of all parts in the context
of this work as a whole.





Chapter 2

Background, Contributions, and
Publications

2.1 Chapter 3 : HAIL — Hadoop Adaptive Indexing
Library

2.1.1 Background

In Chapter 3 we introduce HAIL (Hadoop Adaptive Indexing Library), a novel ap-
proach for static and adaptive indexing in Hadoop MapReduce [111]. Recently, Hadoop
MapReduce has evolved into an important industry standard for massive parallel data
processing and has become widely adopted for a variety of use-cases. However, when
we started our work on the HAIL project in 2011, Hadoop MapReduce was still a rather
young, emerging open source project inspired by Google’s famous MapReduce pa-
per [26] that had yet to reach its adolescence. Nevertheless, Hadoop’s promise of ease-
of-use and scalability on commodity hardware entailed a rapidly growing user base,
including important companies like Facebook, IBM, eBay, Twitter, AOL, Adobe and
Yahoo!. Hadoop was considered a key technology that could make large scale data pro-
cessing widely available and affordable for the first time. With this technology at their
fingertips, researchers as well as practitioners started to explore the potential of Hadoop
as a foundation for various data intensive applications, such as graph algorithms [9]
and RDF [57], machine learning [89, 80], data warehousing [108] and a distributed
database [47, 1] — to name a few. However, Hadoop MapReduce was originally de-
signed as a framework for parallel and distributed batch computations, scanning over
large amounts of unstructured data that is stored on a cluster of commodity machines. It
is obvious that this initial design of Hadoop is not well suited or “lacks” certain features
for many of the aforementioned applications and, in turn, such applications often have
to stretch or extend the boundaries of the system. This also contributes to the unsurpris-

5



Chapter 2. Background, Contributions, and Publications 6

ing observations that Hadoop, despite being very scalable, is rather resource-inefficient
compared to more specialized systems.

In 2009, an experimental study by Pavlo et. al. [92] compared Hadoop MapRe-
duce against two parallel DBMSs and found that Hadoop was slower by a large factor
for most analytical queries. They concluded that MapReduce is “a major step back-
wards” from parallel DBMSs. In a follow-up article [27], the authors of the initial
MapReduce paper disagreed with this assessment, mentioning that those conclusions
were “(...) based on implementation1 and evaluation shortcomings not fundamental
to the MapReduce model”. Both works, however, agree that the lack of indexes and
the commitment to “schema-later”, which results in parsing overhead at runtime and
suboptimal data layout, significantly contributed to the low performance of Hadoop
MapReduce. As a result, several papers tried to solve those problems and have shown
that indexes [1, 35, 79, 64, 78] and storing data in binary format using optimized lay-
outs [24, 66, 81, 55, 45] can improve the performance of several classes of MapReduce
jobs dramatically. However, one major weakness of all previous approaches to index-
ing and data layouts are high parsing and index creation costs. This shortcoming has
inspired our work on HAIL, an approach for indexing in Hadoop that focuses on mini-
mizing and hiding the parsing and index creation costs. HAIL creates different clustered
indexes over terabytes of data with only minimal, often invisible overhead and can dra-
matically improve runtimes of selective MapReduce jobs. This is a huge improvement
over previous work where index creation costs are significant and can become almost
prohibitive for large datasets. This way we also reduce the performance gap to parallel
relational databases.

Research on indexing in Hadoop is still ongoing, and after the publication of HAIL
there have been several related works in this area which we will briefly summarize in
the following. While HAIL offers record-level indexes per HDFS block, the authors of
E3 (Eagle Eyed Elephant) [42] propose split-oriented indexing, i.e. building one index
for each file that allows for excluding complete blocks of the file from processing. Spa-
tialHadoop [40] and ScalaGIST [83] extend Hadoop to support multi-dimensional and
spatial indexing. However, none of these works focuses on minimizing index creation
costs. In this respect, Instant Loading [87] is related to HAIL as it transfers two core
ideas, invisible parsing and index creation at insert time to the main memory database
HyPer [70]. AIR (Adaptive Index Replacement) [104] is an enhancement for automatic
index selection and replacement in HAIL’s adaptive indexing pipeline.

2.1.2 Contributions

In the following, we present a detailed lists of contributions for HAIL:

1The term “implementation” here refers to Hadoop MapReduce, in contrast to, e.g., Google’s undis-
closed implementation.
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1. Zero-Overhead Indexing. We show how to effectively piggyback sorting and
index creation on the existing HDFS upload pipeline. This way it is not needed to
run a MapReduce job to create those indexes, nor to read the data a second time
in any other way for the purpose of indexing. In fact, the HAIL upload pipeline is
so effective when compared to HDFS that the additional overhead of sorting and
index creation is hardly noticeable in the overall process. Therefore, we offer a
win-win situation over Hadoop MapReduce and even over Hadoop++ [35]. We
give an overview of HAIL and its benefits in Section 3.2.

2. Per-Replica Indexing. We show how to exploit the default replication of Hadoop
to support different sort orders and indexes for each block replica (Section 3.3).
For a default replication factor of three, up to three different sort orders and clus-
tered indexes are available for processing MapReduce jobs. Thus, the likelihood
to find a suitable index increases and the runtime for a workload improves. Our
approach benefits from the fact that Hadoop is only used for appends: there are
no updates. Thus, once a block is full, it will never be changed again.

3. Job Execution. We show how to effectively change the Hadoop MapReduce
pipeline to exploit existing indexes (Section 3.4). Our goal is to do this with-
out changing the code of the MapReduce framework. Therefore, we introduce
optional annotations for MapReduce jobs that allow users to enrich their queries
by explicitly specifying their selections and projections. HAIL takes care of per-
forming MapReduce jobs using normal data block replicas or pseudo data block
replicas (or even both).

4. HAIL Scheduling. We propose a new task scheduling, called HAIL Schedul-
ing, to fully exploit statically and adaptively indexed data blocks (Section 3.7).
The goal of HAIL Scheduling is twofold: (i) to reduce the scheduling overhead
when executing a MapReduce job, and (ii) to balance the indexing effort across
computing nodes to limit the impact of adaptive indexing.

5. Zero-Overhead Adaptive Indexing. We show how to effectively piggyback
adaptive index creation on the existing MapReduce job execution pipeline (Sec-
tion 3.5). The idea is to combine adaptive indexing and zero-overhead indexing
to solve the problem of missing indexes for evolving or unpredictable workloads.
In other words, when HAIL executes a map reduce job with a filter condition on
an unindexed attribute, HAIL creates that missing index for a certain fraction of
the HDFS blocks in parallel.

6. Adaptive Indexing Strategies. We propose a set of adaptive indexing strategies
that makes HAIL aware of the performance and the selectivity of MapReduce jobs
(Section 3.6). We present:
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(a) lazy adaptive indexing, a technique that allows HAIL to adapt to changes in
the users’ workloads at a constant indexing overhead.

(b) eager adaptive indexing, a technique that allows HAIL to quickly adapt to
changes in the users’ workloads with a robust performance.

(c) We then show how HAIL can decide which data blocks to index based on
the selectivities of MapReduce jobs.

7. Exhaustive Validation. We present an extensive experimental comparison of
HAIL with Hadoop and Hadoop++ [35] (Section 3.9 and Section 3.10). We use
seven different clusters including physical and virtual EC2 clusters of up to 100
nodes. A series of experiments shows the superiority of HAIL over both Hadoop
and Hadoop++. Another series of scalability experiments with different datasets
also demonstrates the superiority of using adaptive indexing in HAIL. In particu-
lar, our experimental results demonstrate that HAIL: (i) creates clustered indexes
at upload time almost for free; (ii) quickly adapts to query workloads with a neg-
ligible indexing overhead; and (iii) only for the very first job does HAIL have a
small overhead over Hadoop when creating indexes adaptively: all the following
jobs are faster in HAIL.

2.1.3 Personal Contributions
Our work on HAIL initially started as my Master thesis and eventually became a larger
team project that involved several members of our research group. As a member of this
team developing HAIL I was involved in almost all aspects of the system from the start
to the end of the project. I declare my personal contributions in Table 2.1.

2.1.4 Publications
• [96] Stefan Richter. HAIL: Hadoop Aggressive Indexing Library. Master’s thesis,

Saarland University, Germany, 2012

• [36] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh,
Alekh Jindal, and Jörg Schad. Only Aggressive Elephants are Fast Elephants.
PVLDB, 5(11):1591–1602, 2012.

• [99] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens Dittrich.
Towards Zero-Overhead Adaptive Indexing in Hadoop. CoRR, abs/1212.3480,
2012.

• [100] Stefan Richter, Jorge-Arnulfo Quiané-Ruiz, Stefan Schuh, and Jens Dit-
trich. Towards Zero-Overhead Static and Adaptive Indexing in Hadoop. VLDB
Journal, 23(3):469–494, 2013.
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• [37] Jens Dittrich, Stefan Richter, and Stefan Schuh. Efficient OR Hadoop: Why
Not Both? Datenbank-Spektrum, 13(1):17–22, 2013.

• [98] Stefan Richter, Jens Dittrich, Stefan Schuh, and Tobias Frey. Mosquito:
Another one bites the Data Upload STream. PVLDB, 6(12):1274–1277, 2013,
demo paper, see Section A.

• Patent: Replicated data storage system and methods WO 2013139379 A1.

Contribution Involvement Details
Zero-Overhead Static Index-
ing.

major I developed and implemented most of
this contribution. SS and JQ were in-
volved in discussions and supported me
in coding and debugging.

Per-Replica Indexing. major see above.
Job Execution. major see above.
HAIL Scheduling no SS developed this together with JQ.
Zero-Overhead Adaptive In-
dexing.

major I developed and implemented most of
this contribution. SS and JQ were in-
volved in discussions and supported me
in coding and debugging.

Lazy Adaptive Indexing
Strategy.

full I developed this on my own as default
strategy of the Adaptive Indexer.

Eager Adaptive Indexing
Strategy.

minor I was involved in the discussion of this
idea with SS, but the implementation
was done by him.

Selectivity-based Adaptive
Indexing Strategy.

major I developed this on my own and SS was
involved in the discussion.

Exhaustive validation. minor I was involved in designing, writing,
and running jobs for the experiments
and particularly in the evaluation and
interpretation of results. Most work for
writing and running the jobs was done
by SS, JQ, and JS.

Table 2.1: Personal contributions to Chapter 3. Contributions by Stefan Schuh (SS), Jorge-
Arnulfo Quiané-Ruiz (JQ), and Jörg Schad (JS) are mentioned in the “Details” column.

Initial results of the HAIL project were published as my Master Thesis [96]. An ex-
tended version containing the HAIL Splitting strategy was published in PVLDB [36].
Afterwards, we introduced adaptive indexing in Hadoop and published the results in
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a technical report [99]. A combined article including the description of the original
HAIL system and the adaptive indexing of LIAH was then published in the VLDB Jour-
nal [100]. Chapter 3 of this thesis is an extended version of that journal article. I decided
to include the full article, as it is very hard to understand my personal contributions for
this thesis in isolation.

2.2 Chapter 4 : A Comparison of Adaptive Radix Trees
and Hash Tables

2.2.1 Background
MapReduce started the wide and general adoption of data analytics on unstructured data
at large scale in both research and industry. With this use-case in mind, Hadoop was
clearly designed for long running queries in batch fashion and to address the problem of
ever growing dataset sizes. Hadoop offered a solution that could handle many problems
related to this dimension of dataset size. With this focus on the dimension of dataset
size, Hadoop does not really offer a solution for applications that are difficult in other
dimensions like query latency or throughput, and it became quickly clear that Hadoop
MapReduce was not a solution that fits all problems [92, 105]. For example, OLTP (On-
line Transaction Processing) applications for businesses are typically not problematic in
terms of pure dataset size as the amount of customers, products and orders per year ob-
viously do not follow Moore’s law. However, real-time transactions and analytics over
data in the size of up to a few terabytes can bring huge benefits and enable new ways
in which companies run their businesses. With prices for main memory constantly de-
creasing, it became possible to run database applications for most companies completely
in main memory, and leave high I/O-costs that come along with traditional, disk-based
approaches out of the equation. This combination of technical progress and customer
demands triggered the development of a new generation of main memory databases,
like MonetDB, H-Store/VoltDB [68], SAP HANA [43], Microsoft Hekaton [28], and
HyPer [70]. A common design trait of this generation is heavy optimization for modern
hardware features that mitigate the impact of the ever growing performance gap be-
tween the storage medium main memory and CPU, thus aiming for getting as close to
becoming CPU-bound as possible.

With the paradigm shift from disk-based to memory-based systems there is also a
shift in the relevant optimizations and their impact. For example, arguably the most
important optimization in disk-based system is to avoid disk I/O (and random I/O in
particular) by keeping hot data in main memory wherever possible. Interestingly, the
essence of this idea can be transferred to main memory systems as well and is again the
foundation to one of the most important optimizations. In this analogy, main memory
databases try to keep hot data in the cache hierarchy, as close to the CPU as possible
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and try to avoid accesses to the slower memory (again in particular random accesses)
at all costs. While the basic idea of cache optimization already finds application in
older disk based systems, it is now playing a more fundamental role in main memory
where the latencies are orders of magnitude smaller. As a result, optimizations for main
memory databases present new challenges to the way data should be stored and accessed
in order to be processed efficiently. For example, such challenges occur when designing
new tree index structures, which are crucial for the performance of database systems,
on disk as well as in main memory. Tree-shaped index structures have already come a
long way from binary search trees and their variants (e.g., AVL-tree, Red-Black-Tree,
Splay-Tree). While binary search trees are interesting from a theoretical perspective,
they have become less and less popular in practice over years. The main reason for this
development is the ever-growing gap in performance between CPU and memory, which
entailed increasing cache sizes and the addition of more and more layers to the memory
hierarchy over time. As a result, the assumption of uniform memory access costs is
invalid in practice for modern hardware architectures.

This observation triggered the development of index structures like the venerable
B-tree and its variants, which were developed to improve cache and memory efficiency
over binary search trees and are still widely used in many current database systems.
However, B-trees were originally designed to accelerate disk-based systems, but they
are no longer the way to go in main memory systems because, at least in their original
form, their cache utilization is suboptimal. In addition to that, the algorithms on B-trees
rely heavily on key comparisons, which are hard do predict for the hardware and there-
fore introduce significant amounts of branch mispredictions. Branch mispredictions, in
turn, entail pipeline stalls which are expensive on modern CPUs that often feature long
execution pipelines.

Because of the aforementioned shortcomings, the last decade has seen a consider-
able amount of research on tree-structured indexes for main memory systems [72, 102,
8, 15, 69, 85, 71, 76]. Among the most recent and most interesting data structures for
main memory systems there is the recently-proposed adaptive radix tree ARTful [76]
(ART for short). ART was integrated into the state-of-the-art main memory database
HyPer [70] and, for example, reported to boost the performance of OLTP by a factor
of two over previous approaches. Furthermore, the authors of ART presented experi-
ments that indicate that ART was clearly a better choice over other recent tree-based
data structures like FAST [71] and CSB+-trees [95]. However, ART was not the first
adaptive radix tree. To the best of our knowledge, the first was Judy Array (Judy for
short), and a comparison between ART and Judy was not shown. This raised the ques-
tion for us, whether a performance that is comparable to ART was already available for
years through Judy, a data structure that is more than a decade old. Moreover, the same
set of experiments indicated that only a hash table was competitive to ART. The hash
table used by the authors of ART in their study was a chained hash table, but this kind of
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hash tables can be suboptimal in terms of space and performance due to their potentially
high use of pointers.

2.2.2 Contributions
In Chapter 4 we extend the discussion of related work and the experimental comparison
offered by the authors of ART in the original paper. This includes the following major
contributions:

1. Conceptual comparison of ART and Judy Array. We provide an in-depth com-
parison for both, concepts and implementation of ART and Judy Array, which is
missing in the original paper [76] on ART. We show striking similarities between
both structures, although the design of Judy Array is more than a decade older
than ART. As Judy Array is a patented technology, this information is valuable
to (re-)assess the novelty of ART and the possible risks of integrating ART into
commercial databases.

2. Experimental comparison of ART and Judy Array. Similar to the conceptional
comparison, the authors of ART also did not include Judy Array in their exper-
imental comparison of ART with other index structures. We close this gap and
provide a detailed comparison between ART and Judy Array w.r.t. performance
and memory consumption.

3. Experimental comparison of ART and well-engineered hashing schemes. In
the original paper, the authors found that the performance of ART is competitive
to hash tables. However, they only compared against a textbook implementa-
tion of chained hashing with Murmur [7] as hash function. This combination is
arguably a suboptimal representative for hash tables in their benchmark. We in-
vestigate how the picture changes when we use more elaborate, well-engineered
hashing tables, such as Google’s sparse and dense hash tables [48] and our own
implementations of Cuckoo hashing, as well as different hash functions. We sim-
ulate two different types of workloads in our experiments, OLAP (bulk inserts
and bulk lookup) and OLTP (a mix of inserts, deletes and lookups) and provide a
micro-architectural analysis of our results using CPU performance counters.

4. Evaluation of range query performance. In the original work on ART, the
authors explain that efficient support for range queries is one big advantage of tree
structured indexes over hash tables. However, they do not provide an experimental
evaluation of the range query performance of ART. In fact, range query support
was not implemented in the published ART code. We implemented this missing
feature and compared the range query performance of ART, e.g. against Judy
Array and a B+-tree.
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5. Evaluation for covering and non-covering indexing scenarios. In our experi-
ment, we differentiate two relevant use-cases for our indexes. The first use-case
is covering index, where both keys and values are completely stored inside the
index structure. Here, the index is used as a stand-alone data structure. The sec-
ond use-case is non-covering index, where the index itself does not contain keys
and values. Instead a non-covering index operates on top of a primary store that
contains the keys and values, e.g. a database table.

2.2.3 Publications
[6] Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. A Comparison of
Adaptive Radix Trees and Hash Tables. In 31st IEEE ICDE, April 2015

2.3 Chapter 5 : A Seven-Dimensional Analysis of Hash-
ing Methods and its Implications on Query Process-
ing

2.3.1 Background
Our work in Chapter 5 addresses a problem that we encountered during our previous
studies from Chapter 4. Many researchers and practitioners are tempted to consider
hashing a solved problem and there is noticeably less work published on hash based
indexing compared to, e.g. tree indexes in recent database research. In the database
community, hashing is often considered as a simple way to achieve lookups in constant
time, where it is safe to use an arbitrary method as a black box and expect good per-
formance. Moreover, it seems like we expect that optimizations to hashing can only
improve it by a negligible delta. For example, textbook chained hashing is still used as
the default implementation in the code bases of many research prototypes, database im-
plementations, and the standard libraries of popular programming languages. Chained
hashing became popular already in the 50s as, perhaps, the very first iteration of hash-
ing — robust and easy to implement. However, nowadays, plain chained hashing is
often a suboptimal choice in practice w.r.t. performance and memory efficiency for
many use-cases on modern hardware due to its use of pointers. We found it remark-
able, that relatively little attention is given to a technique like hashing, that is ubiquitous
in databases, e.g. as hash index structure and as the backbone of many algorithms like
hash-joins, deduplication, and hash-based aggregation. Rather recently, there has been
a considerable amount of interesting theoretical research on new hashing algorithms,
e.g. on Cuckoo hashing [90], as well as interesting reconsiderations about the proper-
ties of well-established methods like linear probing in combination with certain hash
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functions [93]. Those lines of research with promising theoretical results made us cu-
rious, whether or not the proposed techniques could also make an impact in practice
on real hardware where constant factors are sometimes more important for performance
than asymptotic behavior, and if there is application for those ideas in databases. In
the end, we were interested how different hash table implementations would compare to
each other in this context, what tradeoffs different approaches could provide, how much
this choice would affect performance, and how the theoretical results will match practi-
cal observations. On top of that, between the lines in recent work, we found evidence
that hashing performance in databases is severely impacted by more factors than just
the hash table. For example, a recent work on hash joins [75] reported that just using
a different hash function with lower computational complexity already improved the
end-to-end runtime of their hash join by 36%. This observation made us wonder, what
dimensions impact the performance of hashing in databases and what the relationship
and impact of those dimensions are in a modern system. In addition to hash table orga-
nization and hash function, we identified that five further dimensions have an important
influence on hashing performance. To put things in perspective, we carefully study this,
in total, seven-dimensional parameter space and we also offer a glimpse about the ef-
fect of different memory layouts and the use of SIMD instructions. Our main goal is to
produce enough results that can guide practitioners, and potentially the query optimizer,
towards choosing the most appropriate hash table for their use-case at hand.

In this study, we decided to focus on hash tables in a single-threaded context to
isolate the impact of the aforementioned dimensions. We believe that a thorough evalu-
ation of concurrency in hash tables is a research topic that deserves a complete study on
its own. However, our observations still play an important role for hash maps in multi-
threaded algorithms. For partitioning-based parallelism — which has recently been
considered in the context of (partition-based hash) joins [10, 11, 75] — single-threaded
performance is still a key parameter: each partition can be considered an isolated unit
of work that is only accessed by exactly one thread at a time, and therefore concurrency
control inside the hash tables is not needed. Furthermore, all hash tables we present
in the paper can be extended for thread safety through well-known techniques such as
striped locking or compare-and-swap. Here, the dimensions we discuss still impact the
performance of the underlying hash table.

We focus on 64-bit integer keys and values, which is arguably the most important
mapping in modern and future main memory databases for large datasets. In partic-
ular, main memory databases typically make heavy use of dictionary compression to
substitute complex or variable-length datatypes (e.g. strings) with integer values.

2.3.2 Contributions

In Chapter 5 we make the following contributions:
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1. Overview on hashing schemes and hash functions. We give an overview on
five of the most important hashing schemes (including linear probing, quadratic
probing, Robin Hood hashing [21], Cuckoo hashing [90], and chained hashing)
and four hash functions (Multiply-shift [30], Multiply-add-shift [29], Tabulation
hashing [114, 110, 93], and Murmur hashing [7]) that we considered for our study.

2. Identification of five additional dimensions and evaluation of their impact on
hashing performance. Given a hashing scheme and a hash function, we identify
five additional dimensions that can significantly impact the performance of hash
tables (key distribution, load factor, hash table size, read/write ratio, un/successful
lookup ratio). Together with hashing schemes and hash functions, we consider in
total a seven dimensional space w.r.t. the question which hash table performs best
in which situation and why?

3. Experiments for static workload. We present the essential results of our exper-
iments that explore the seven dimensional parameter space with respect to static
workload (think of OLAP). In this scenario, hash tables are loaded once with a
fixed and previously known amount of data and after that lookups are performed.
In particular, in this setting, hash tables never have to resize.

4. Experiments for dynamic workload. Similar to the static workload, we also in-
vestigate dynamic workload (think of OLTP). Here, the hash tables are preloaded
with a certain amount of data. Afterwards, a mixed workload of inserts, deletes,
lookups, and updates is executed. In this setting we also observe how the hash
tables handle resizing (rehash operation).

5. Experiments on hash table memory layout and vectorization. We also present
experiments that explore the impact of different memory layouts (Array-of-Structs
vs Struct-of-Arrays) by the example of a linear probing hash table. Furthermore,
we also investigate the effects of vectorization (SIMD), e.g. comparing multiple
keys in one instruction.

6. Lessons learned and decision diagram for practitioners. We report our lessons
learned and condense the results of all experiments in a flow diagram that can
guide practitioners towards the right hash table configuration for their use-case at
hand.

2.3.3 Publications
[97] Stefan Richter, Victor Alvarez, and Jens Dittrich. A Seven-Dimensional Analysis
of Hashing Methods and its Implications on Query Processing. PVLDB, 9(3):96–107,
2015





Chapter 3

Towards Zero-Overhead Static and
Adaptive Indexing in Hadoop

3.1 Introduction
MapReduce has become the de facto standard for large scale data processing in many
enterprises. It is used for developing novel solutions on massive datasets such as web
analytics, relational data analytics, machine learning, data mining, and real-time ana-
lytics [52]. In particular, log processing emerges as an important type of data analysis
commonly done with MapReduce [14, 82, 41].

In fact, Facebook and Twitter use Hadoop MapReduce (the most popular MapRe-
duce open source implementation) to analyze the huge amounts of web logs generated
every day by their users [107, 51, 79]. Over the last years, a lot of research works
have focused on improving the performance of Hadoop MapReduce [24, 56, 63, 66].
When improving the performance of MapReduce, it is important to consider that it was
initially developed for large aggregation tasks that scan through huge amounts of data.
However, nowadays Hadoop is often also used for selective queries that aim to find
only a few relevant records for further consideration1. For selective queries, Hadoop
still scans through the complete dataset. This resembles the search for a needle in a
haystack.

For this reason, several researchers have particularly focused on supporting efficient
index access in Hadoop [112, 35, 79, 64]. Some of these works have improved the
performance of selective MapReduce jobs by orders of magnitude. However, all these
indexing approaches have three main weaknesses. First, they require a high upfront
cost for index creation. This translates to long waiting times for users until they can
actually start to run queries. Second, they can only support one physical sort order (and
hence one clustered index) per dataset. This becomes a serious problem if the work-

1A simple example of such a use-case would be a distributed grep.
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load demands indexes for several attributes. Third, they require users to have a good
knowledge of the workload in order to choose the indexes to create. This is not always
possible, e.g., if the data is analyzed in an exploratory way, or queries are submitted by
customers.

3.1.1 Motivation

Let us see through the eyes of a data analyst, say Bob, who wants to analyze a large
web log. The web log contains different fields that may serve as filter conditions for
Bob like visitDate, adRevenue, sourceIP, and so on. Assume Bob is interested in all
sourceIPs with a visitDate from 2011. Thus, Bob writes a MapReduce program to
filter out exactly those records and discard all others. Bob is using Hadoop, which will
scan the entire input dataset from disk to filter out the qualifying records. This takes
a while. After inspecting the result set, Bob detects a series of strange requests from
sourceIP 134.96.223.160. Therefore, he decides to modify his MapReduce job to show
all requests from the entire input dataset having that sourceIP. Bob is using Hadoop.
This takes a while. Eventually, Bob decides to modify his MapReduce job again to only
return log records having a particular adRevenue. Yes, this again takes a while.

In summary, Bob uses a sequence of different filter conditions, each one triggering
a new MapReduce job. He is not exactly sure what he is looking for. The whole en-
deavor feels like going shopping without a shopping list. This example illustrates an
exploratory usage (and a major use-case) of Hadoop MapReduce [14, 41, 88]. But, this
use-case has one major problem: slow query runtimes. The time to execute a MapRe-
duce job based on a scan may be very high: it is dominated by the I/O for reading all
input data [91, 64]. While waiting for his MapReduce job to complete, Bob has enough
time to pick a coffee (or two) and this happens every time Bob modifies the MapReduce
job. This will likely kill his productivity and make his boss unhappy.

Now, assume the fortunate case that Bob remembers a sentence from one of his
professors saying “full-table-scans are bad; indexes are good”2. Thus, he reads all the
recent VLDB papers (including [64, 24, 56, 63]) and finds a paper that shows how to
create a so-called trojan index [35]. A trojan index is an index that may be used with
Hadoop MapReduce and yet does not modify the underlying Hadoop MapReduce and
HDFS engines.

Zero-Overhead indexing

Bob finds the trojan index idea interesting and hence decides to create a trojan index on
sourceIP before running his MapReduce jobs. However, using trojan indexes raises two
other problems:

2Nowadays, Bob is already aware that for some situations, the opposite is true.
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1. Expensive index creation. The time to create the trojan index on sourceIP (or any
other attribute) is even much longer than running a scan-based MapReduce job.
Thus, if Bob’s MapReduce jobs use that index only a few times, the index creation
costs will never be amortized. So, why would Bob create such an expensive index
in the first place?

2. Which attribute to index? Even if Bob amortizes index creation costs, the trojan
index on sourceIP will only help for that particular attribute. So, which attribute
should Bob use to create the index?

Bob is wondering how to create several indexes at very low cost to solve those problems.

Per-Replica indexing

One day in autumn 2011, Bob reads about another idea [66] where some researchers
looked at ways to improve vertical partitioning in Hadoop. The researchers in that
work realized that HDFS keeps three (or more) physical copies of all data for fault-
tolerance. Therefore, they decided to change HDFS to store each physical copy in a
different data layout (row, column, PAX, or any other column grouping layout). As all
data layout transformation is done per HDFS data block, the failover properties of HDFS
and Hadoop MapReduce were not affected. At the same time, I/O-times improved. Bob
thinks that this looks very promising, because he could possibly exploit this concept to
create different clustered indexes almost invisible to the user. This is because he could
create one clustered index per data block replica when uploading data to HDFS. This
would already help him a lot in several query workloads.

However, Bob quickly figures out that there are cases where this idea still has some
annoying limitations. Even if Bob could create one clustered index per data replica at
low cost, he would still have to determine which attributes to index when uploading
his data to HDFS. Afterward, he could not easily revise his decision or introduce addi-
tional indexes without uploading the dataset again. Unfortunately, it sometimes happens
that Bob and his colleagues navigate through datasets according to the properties and
correlations of the data. In such cases, Bob and his colleagues typically: (1.) do not
know the data access patterns in advance; (2.) have different interests and hence can-
not agree upon common selection criteria at data upload time; (3.) even if they agree
which attributes to index at data upload time, they might end up filtering records ac-
cording to values on different attributes. Therefore, using any traditional indexing tech-
nique [44, 22, 3, 19, 23, 112, 79, 35, 64] would be problematic, because they cannot
adapt well to unknown or changing query workloads.
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Adaptive indexing

When searching for a solution to his problem with static indexing, Bob stumbles across
a new approach called adaptive indexing [58], where the general idea is to create indexes
as a side effect of query processing. This is similar to the idea of soft indexes [84], where
the system piggybacks the index creation for a given attribute on a single incoming
query. However, in contrast to soft indexes, adaptive indexing aims at creating indexes
incrementally (i.e., piggybacking on several incoming queries) in order to avoid high
upfront index creation times. Thus, Bob is excited about the adaptive indexing idea
since this could be the missing piece to solve his remaining concern. However, Bob
quickly notices that he cannot simply apply existing adaptive indexing works [38, 58,
59, 50, 61, 53] in MapReduce systems for several reasons:

1. Global index convergence. These techniques aim at converging to a global index
for an entire attribute, which requires sorting the attribute globally. Therefore,
these techniques perform many data movements across the entire dataset. Do-
ing this in MapReduce would hurt fault-tolerance as well as the performance of
MapReduce jobs. This is because the system would have to move data across
data blocks in sync with all their three physical data block replicas. We do not
plan to create global indexes, but focus on creating partial indexes that in total
cover the whole dataset. A small back of the envelope calculation shows that the
possible gains of a global index are negligible in comparison with the overhead
of the MapReduce framework. For instance, if a dataset is uniformly distributed
over a cluster and occupies 160 HDFS blocks on each datanode (like the dataset in
our experiments in Section 3.9) and we do not have a global index, then we need
to perform 160 index accesses on each datanode. Since all datanodes can access
their blocks in parallel to each other, we assume that the overhead is determined
by the highest overhead per datanode. Overall, our approach requires at most 318
additional random reads in HDFS per datanode in this scenario, which in turn cost
roughly 15ms each. In total, this amounts to 4.77s overhead compared to a global
index stored in HDFS. However, even empty MapReduce jobs, which do not read
any data nor compute a single map function, run for more than 10s.

2. High I/O-costs. Even if Bob applied existing adaptive indexing techniques inside
data blocks, these techniques would end up in many costly I/O operations to move
data on disk. This is because these techniques consider main memory systems
and thus do not factor in the I/O-cost for reading/writing data from/to disk. Only
one of these works [50] proposes an adaptive merging technique for disk-based
systems. However, applying this technique inside a HDFS block would not make
sense in MapReduce since HDFS blocks are typically loaded entirely into main
memory anyways when processing map tasks. One may think about applying
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adaptive merging across HDFS blocks, but this would again hurt fault-tolerance
and the performance of MapReduce jobs as described above.

3. Unclustered index. These works focus on creating unclustered indexes in the first
place, and hence, it is only beneficial for highly selective queries. One of these
works [59] introduced lazy tuple reorganization in order to converge to clustered
indexes. However, this technique needs several thousand queries to converge, and
its application in a disk-based system would again introduce a huge number of
expensive I/O operations.

4. Centralized approach. Existing adaptive indexing approaches were mainly de-
signed for single-node DBMSs. Therefore, applying these works in a distributed
parallel systems, like Hadoop MapReduce, would not fully exploit the existing
parallelism to distribute the indexing effort across several computing nodes.

Despite all these open problems, Bob is very enthusiastic to combine the above
interesting ideas on indexing into a new system to revolutionize the way his company
can use Hadoop. And this is where the story begins.

3.1.2 Research Questions and Challenges
This article addresses the following research questions:

1. Zero-overhead indexing. Current indexing approaches in Hadoop involve a sig-
nificant upfront cost for index creation. How can we make indexing in Hadoop so
effective that it is basically invisible for the user? How can we minimize the I/O
costs for indexing or eventually reduce them to zero? How can we fully utilize
the available CPU resources and parallelism of large clusters for indexing?

2. Per-replica indexing. Hadoop uses data replication for failover. How can we ex-
ploit this replication to support different sort orders and indexes? Which changes
to the HDFS upload pipeline need to be done to make this efficient? What happens
to the involved checksum mechanism of HDFS? How can we teach the HDFS
namenode to distinguish the different replicas and keep track of the different in-
dexes?

3. Job execution. How can we change Hadoop MapReduce to utilize different sort
orders and indexes at query time? How can we change Hadoop MapReduce to
schedule tasks to replicas having the appropriate index? How can we schedule
map tasks to efficiently process indexed and nonindexed data blocks without af-
fecting failover? How much do we need to change existing MapReduce jobs?
How will Hadoop MapReduce change from the user’s perspective?
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4. Zero-overhead adaptive indexing. How can we adaptively and automatically cre-
ate additional useful indexes online at minimal costs per job? How to index big
data incrementally in a distributed, disk-based system like Hadoop as byproduct
of job execution? How to minimize the impact of indexing on individual job ex-
ecution times? How to efficiently interleave data processing with indexing? How
to distribute the indexing effort efficiently by considering data locality and index
placement across computing nodes? How to create several clustered indexes at
query time? How to support a different number of replicas per data block?

3.1.3 Contributions

We propose HAIL (Hadoop Adaptive Indexing Library), a static and adaptive indexing
approach for MapReduce systems. The main goal of HAIL is to minimize both (i) the
index creation time when uploading data and (ii) the impact of concurrent index creation
on job execution times. In summary, we make the following main contributions to tackle
the questions and challenges mentioned above:

1. Zero-overhead indexing. We show how to effectively piggyback sorting and index
creation on the existing HDFS upload pipeline. This way it is not needed to run
a MapReduce job to create those indexes, nor to read the data a second time in
any other way for the purpose of indexing. In fact, the HAIL upload pipeline is
so effective when compared to HDFS that the additional overhead of sorting and
index creation is hardly noticeable in the overall process. Therefore, we offer a
win-win situation over Hadoop MapReduce and even over Hadoop++ [35]. We
give an overview of HAIL and its benefits in Section 3.2.

2. Per-replica indexing. We show how to exploit the default replication of Hadoop to
support different sort orders and indexes for each block replica (Section 3.3). For
a default replication factor of three, up to three different sort orders and clustered
indexes are available for processing MapReduce jobs. Thus, the likelihood to find
a suitable index increases and the runtime for a workload improves. Our approach
benefits from the fact that Hadoop is only used for appends: there are no updates.
Thus, once a block is full, it will never be changed again.

3. Job execution. We show how to effectively change the Hadoop MapReduce
pipeline to exploit existing indexes (Section 3.4). Our goal is to do this with-
out changing the code of the MapReduce framework. Therefore, we introduce
optional annotations for MapReduce jobs that allow users to enrich their queries
by explicitly specifying their selections and projections. HAIL takes care of per-
forming MapReduce jobs using normal data block replicas or pseudo data block
replicas (or even both).
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4. HAIL scheduling. We propose a new task scheduling, called HAIL Scheduling, to
fully exploit statically and adaptively indexed data blocks (Section 3.7). The goal
of HAIL Scheduling is twofold: (i) to reduce the scheduling overhead when exe-
cuting a MapReduce job, and (ii) to balance the indexing effort across computing
nodes to limit the impact of adaptive indexing.

5. Zero-Overhead adaptive indexing. We show how to effectively piggyback adap-
tive index creation on the existing MapReduce job execution pipeline (Sec-
tion 3.5). The idea is to combine adaptive indexing and zero-overhead indexing
to solve the problem of missing indexes for evolving or unpredictable workloads.
In other words, when HAIL executes a map reduce job with a filter condition on
an unindexed attribute, HAIL creates that missing index for a certain fraction of
the HDFS blocks in parallel.

6. Adaptive indexing strategies. We propose a set of adaptive indexing strategies
that makes HAIL aware of the performance and the selectivity of MapReduce
jobs (Section 3.6). We present:

(a) lazy adaptive indexing, a technique that allows HAIL to adapt to changes in
the users’ workloads at a constant indexing overhead.

(b) eager adaptive indexing, a technique that allows HAIL to quickly adapt to
changes in the users’ workloads with a robust performance.

(c) We then show how HAIL can decide which data blocks to index based on
the selectivities of MapReduce jobs.

7. Exhaustive validation. We present an extensive experimental comparison of
HAIL with Hadoop and Hadoop++ [35] (Section 3.9 and Section 3.10). We use
seven different clusters including physical and virtual EC2 clusters of up to 100
nodes. A series of experiments shows the superiority of HAIL over both Hadoop
and Hadoop++. Another series of scalability experiments with different datasets
also demonstrates the superiority of using adaptive indexing in HAIL. In particu-
lar, our experimental results demonstrate that HAIL: (i) creates clustered indexes
at upload time almost for free; (ii) quickly adapts to query workloads with a neg-
ligible indexing overhead; and (iii) only for the very first job does HAIL have a
small overhead over Hadoop when creating indexes adaptively: all the following
jobs are faster in HAIL.

3.2 Overview
In the following, we give an overview of HAIL by contrasting it with normal HDFS
and Hadoop MapReduce. Thereby, we introduce the two indexing pipelines of HAIL.
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First, static indexing allows us to create several clustered indexes at upload time. Sec-
ond, HAIL adaptive indexing creates additional indexes as a byproduct of actual job
execution, which enables HAIL to adapt to unexpected workloads. For a more detailed
contrast to related work, see Section 3.8.

For now, let’s consider again our motivating example: How can Bob analyze his log
file with Hadoop and HAIL?

3.2.1 HDFS and Hadoop MapReduce
In HDFS and Hadoop MapReduce, Bob starts by uploading his log file to HDFS using
the HDFS client. HDFS then partitions the file into logical HDFS blocks using a con-
stant block size (the HDFS default is 64MB). Each HDFS block is then physically stored
three times (assuming the default replication factor). Each physical copy of a block is
called a replica. Each replica will sit on a different datanode. Therefore, at least two
datanode failures may be survived by HDFS. Note that HDFS keeps information on the
different replicas for an HDFS block in a central namenode directory.

After uploading his log file to HDFS, Bob may run an actual MapReduce job. Bob
invokes Hadoop MapReduce through a Hadoop MapReduce JobClient, which sends his
MapReduce job to a central node termed JobTracker. The MapReduce job consists of
several tasks. A task is executed on a subset of the input file, typically an HDFS block3.
The JobTracker assigns each task to a different TaskTracker, which typically runs on
the same machine as an HDFS datanode. Each datanode will then read its subset of the
input file, i.e., a set of HDFS blocks, and feed that data into the MapReduce processing
pipeline which usually consists of a Map, Shuffle, and a Reduce Phase (see [27, 35,
34] for a detailed description). As soon as all results have been written to HDFS, the
JobClient informs Bob that the results are available. Notice that, the execution time
of the MapReduce job is heavily influenced by the size of the input dataset, because
Hadoop MapReduce reads the input dataset entirely in order to perform any incoming
MapReduce job.

3.2.2 HAIL
In HAIL, Bob analyzes his log file as follows. He starts by uploading his log file to
HAIL using the HAIL client. In contrast to the HDFS client, the HAIL client analyzes
the input data for each HDFS block, converts each HDFS block directly to a binary
columnar layout, which resembles PAX [4] and sends it to three datanodes. Then, all
datanodes sort the data contained in that HDFS block in parallel using a different sort
order. The required sort orders can be manually specified by Bob in a configuration
file or computed by a physical design algorithm. For each HDFS block, all sorting

3Actually it is a split. The difference does not matter here. We will get back to this in Section 3.4.2.
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and index creation happens in main memory. This is feasible as the HDFS block size
is typically between 64MB (default) and 1GB. This easily fits in the main memory of
most machines. In addition, in HAIL, each datanode creates a different clustered index
for each HDFS block replica and stores it with the sorted data. This process is called
the HAIL static indexing pipeline.

After uploading his log file to HAIL, Bob runs his MapReduce jobs that can now
immediately exploit the indexes that were created by HAIL statically (i.e., at upload
time). As before, Bob invokes Hadoop MapReduce through a JobClient, which sends
his MapReduce jobs to the JobTracker. However, his MapReduce jobs are slightly mod-
ified so that the system can decide to eventually use available indexes on the data block
replicas. For example, assume that a data block has three replicas with clustered indexes
on visitDate, adRevenue, and sourceIP. In case that Bob has a MapReduce job filtering
on visitDate, HAIL uses the replicas having the clustered index on visitDate. If Bob is
filtering on sourceIP, HAIL uses the replicas having the clustered index on sourceIP and
so on. To provide failover and load balancing, HAIL may fall back to standard Hadoop
scanning for some of the blocks. However, even factoring this in, Bob’s queries run
much faster on average, if indexes on the right attributes exist.

In case that Bob submits jobs that filter on unindexed attributes (e.g., on duration),
HAIL again falls back to a standard full scan by choosing any arbitrary replica, just like
Hadoop. However, in contrast to Hadoop, HAIL can index HDFS blocks in parallel to
job execution. If another job filters again on the duration field, the new job can already
benefit from the previously indexed blocks. So, HAIL takes incoming jobs, which have
a selection predicate on currently unindexed attributes, as hints for valuable additional
clustered indexes. Consequently, the set of available indexes in HAIL evolves with
changing workloads. We call this process the HAIL adaptive indexing pipeline.

3.2.3 HAIL Benefits

1. HAIL often improves both upload and query times. The upload is dramatically
faster than Hadoop++ and often faster (or only slightly slower) than with the stan-
dard Hadoop even though we (i) convert the input file into binary PAX, (ii) create
a series of different sort orders, and (iii) create multiple clustered indexes. From
the user-side, this provides a win-win situation: there is no noticeable punishment
for upload. For querying, users can only win: if our indexes cannot help, we will
fall back to standard Hadoop scanning; if the indexes can help, query runtimes
will improve.

Why do we not have high costs at upload time? We basically exploit the unused
CPU ticks that are not used by standard HDFS. As the standard HDFS upload
pipeline is I/O-bound, the effort for our sorting and index creation in the HAIL
upload pipeline is hardly noticeable. In addition, since we parse data to binary
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while uploading, we often benefit from smaller datasets triggering less network
and disk I/O.

2. Even if we did not create the right indexes at upload time, HAIL can create in-
dexes adaptively at job execution time without incurring high overhead.

Why don’t we see a high overhead? We do not need to additionally load the block
data to main memory, since we piggyback on the reading of the map tasks. Fur-
thermore, HAIL creates indexes incrementally over several job executions using
different adaptive indexing strategies.

3. We do not change the failover properties of Hadoop.

Why is failover not affected? All data stays on the same logical HDFS block.
We just change the physical representation of each replica of an HDFS block.
Therefore, from each physical replica, we may recover the logical HDFS block.

4. HAIL works with existing MapReduce jobs incurring only minimal changes to
those jobs.

Why does this work? We allow Bob to annotate his existing jobs with selections
and projections. Those annotations are then considered by HAIL to pick the right
index. Like that, for Bob, the changes to his MapReduce jobs are minimal.

3.3 HAIL Zero-Overhead Static Indexing
We create static indexes in HAIL while uploading data. One of the main challenges
is to support different sort orders and clustered indexes per-replica as well as to build
those indexes efficiently without much impact on upload times. Figure 3.1 shows the
data flow when Bob uploads a file to HAIL. Let’s first explore the details of the static
indexing pipeline.

3.3.1 Data Layout

In HDFS, for each block, the client contacts the namenode to obtain the list of datanodes
that should store the block replicas. Then, the client sends the original block to the first
datanode, which forwards this to the second datanode and so on. In the end, each
datanode stores a byte-identical copy of the original block data.
In HAIL, the HAIL client preprocesses the file based on its content to consider end
of lines 1 in Figure 3.1. We parse the contents into rows by searching for end of
line symbols and never split a row between two blocks. This is in contrast to standard
HDFS which splits a file into HDFS blocks after a constant number of bytes. For each
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Figure 3.1: The HAIL static indexing pipeline as part of uploading data to HDFS

block, the HAIL client parses each row according to the schema specified by the user4.
If HAIL encounters a row that does not match the given schema (i.e., a bad record),
it separates this record into a special part of the data block. HAIL then converts all
HDFS blocks to a binary columnar layout that resembles PAX 2 . This allows us to
index and access individual attributes more efficiently. The HAIL client also collects
metadata information from each HDFS block (such as the data schema) and creates a
block header (Block Metadata) for each HDFS block 2 .

We could naively piggyback on this existing HDFS upload pipeline by first storing
the original block data as done in Hadoop and then converting it to binary PAX layout
in a second step. However, we would have to re-read and then re-write each block,
which would trigger one extra write and read for each replica, e.g., for an input file of
a 100GB we would have to pay 600GB extra I/O on the cluster. This would lead to
very long upload times. In contrast, HAIL does not have to pay any of that extra I/O.
However, to achieve this dramatic improvement, we have to make nontrivial changes in
the standard Hadoop upload pipeline.

3.3.2 Static Indexing in the Upload Pipeline
To understand the implementation of static indexing in the HAIL upload pipeline, we
first have to analyze the normal HDFS upload pipeline in more detail.
In HDFS, while uploading a block, the data is further partitioned into chunks of constant
size 512B. Chunks are collected into packets. A packet is a sequence of chunks plus a
checksum for each of the chunks. In addition, some metadata is kept. In total, a packet
has a size of up to 64KB. Immediately before sending the data over the network, each

4Alternatively, HAIL can also suggest an appropriate schema to users through schema analysis.
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HDFS block is converted to a sequence of packets. On disk, HDFS keeps, for each
replica, a separate file containing checksums for all of its chunks. Hence, for each
replica, two files are created on local disk: one file with the actual data and one file with
its checksums. These checksums are reused by HDFS whenever data is send over the
network. The HDFS client (CL) sends the first packet of the block to the first datanode
(DN1) in the upload pipeline. DN1 splits the packet into two parts: the first contains the
actual chunk data and the second contains the checksums for those chunks. Then, DN1

flushes the chunk data to a file on local disk. The checksums are flushed to an extra file.
In parallel, DN1 forwards the packet to DN2 which splits and flushes the data like DN1

and in turn forwards the packet to DN3 which splits and flushes the data as well. Yet,
only DN3 verifies the checksum for each chunk. If the recomputed checksums for each
chunk of a packet match the received checksums, DN3 acknowledges the packet back to
DN2, which acknowledges back to DN1. Finally, DN1 acknowledges back to CL. Each
datanode also appends its ID to the ACK. Like that only one of the datanodes (the last
in the chain, here DN3 as the replication factor is three) has to verify the checksums.
DN2 believes DN3, DN1 believes DN2, and CL believes DN1. If any CL or DNi receives
ACKs in the wrong order, the upload is considered failed. The idea of sending multiple
packets from CL is to hide the roundtrip latencies of the individual packets. Creating
this chain of ACKs also has the benefit that CL only receives a single ACK for each
packet and not three. Notice that, HDFS provides this checksum mechanism on top of
the existing TCP/IP checksum mechanism (which has weaker correctness guarantees
than HDFS).

In HAIL, in order to reuse as much of the existing HDFS pipeline and yet to make this
efficient, we need to perform the following changes. As before, the HAIL client (CL)
gets the list of datanodes to use for this block from the HDFS namenode 3 . But rather
than sending the original input, CL creates the PAX block, cuts it into packets 4 , and
sends it to DN1 5 . Whenever a datanode DN1–DN3 receives a packet, it does neither
flush its data nor its checksums to disk. Still, DN1 and DN2 immediately forward the
packet to the next datanode as before 8 . DN3 will verify the checksum of the chunks for
the received PAX block 9 and acknowledge the packet back to DN2 10 . This means
the semantics of an ACK for a packet of a block are changed from “packet received,
validated, and flushed” to “packet received and validated”. We do neither flush the
chunks nor its checksums to disk as we first have to sort the entire block according to
the desired sort key. On each datanode, we assemble the block from all packets in main
memory 6 . This is realistic in practice, since main memories tend to be >10GB for
any modern server. Typically, the size of a block is between 64MB (default) and 1GB.
This means that for the default size, we could keep about 150 blocks in main memory
at the same time.

In parallel to forwarding and reassembling packets, each datanode sorts the data,
creates indexes, and forms a HAIL Block 7 , (see Section 3.3.4). As part of this process,
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each datanode also adds Index Metadata information to each HAIL block in order to
specify the index it created for this block. Each datanode (e.g., DN1) typically sorts the
data inside a block in a different sort order. It is worth noting that having different sort
orders across replicas does not impact fault-tolerance as all data is reorganized inside
the same block only, i.e., data is not reorganized across blocks. Hence, all replicas of
the same HDFS block logically contain the same records with just a different order and
therefore can still act as logical replacements for each other. Additionally, this property
helps HAIL to preserve the load balancing capabilities of Hadoop. For example, when a
datanode containing the replica with matching sort order for a certain job is overloaded,
HAIL might choose to read from a different replica on another datanode, just like normal
Hadoop. To avoid overloading datanodes in the first place, HAIL employs a round robin
strategy for assigning sort orders to physical replicas on top of the replica placement
of HDFS. This means that while HDFS already cares about distributing HDFS block
replicas across the cluster, HAIL cares about distributing the sort orders (and hence the
indexes) across those replicas.

As soon as a datanode has completed sorting and creating its index, it will recom-
pute checksums for each chunk of a block. Notice that, checksums will differ on each
replica, as different sort orders and indexes are used. Hence, each datanode has to com-
pute its own checksums. Then, each datanode flushes the chunks and newly computed
checksums to two separate files on local disk as before. For DN3, once all chunks and
checksums have been flushed to disk, DN3 will acknowledge the last packet of the block
back to DN2 10 . After that, DN3 will inform the HDFS namenode about its new replica
including its HAIL block size, the created indexes, and the sort order 11 (see Sec-
tion 3.3.3). Datanodes DN2 and DN1 append their ID to each ACK 12 . Then, they
forward each ACK back in the chain 13 . DN2 and DN1 will forward the last ACK
of the block only if all chunks and checksums have been flushed to their disks. After
that DN2 and DN1 individually inform the HDFS namenode 14 . The HAIL client also
verifies that all ACKs arrive in order 15 .

Notice that, it is important to change the HDFS namenode in order to keep track of
the different sort orders. We discuss these changes in Section 3.3.3.

3.3.3 HDFS Namenode Extensions
In HDFS, the central namenode keeps a directory Dir block of blocks, i.e., a mapping
blockID 7→ Set Of DataNodes. This directory is required by any operation retrieving
blocks from HDFS. Hadoop MapReduce exploits Dir block for scheduling. In Hadoop
MapReduce whenever a split needs to be assigned to a worker in the map phase, the
scheduler looks up Dir block in the HDFS namenode to retrieve the list of datanodes
having a replica of the contained HDFS block. Then, the Hadoop MapReduce scheduler
will try to schedule map tasks on those datanodes if possible. Unfortunately, the HDFS
namenode does not differentiate the replicas w.r.t. their physical layouts. HDFS was
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simply not designed for this. Thus, from the point of view of the namenode, all replicas
are byte-equivalent and have the same size.

In HAIL, we need to allow Hadoop MapReduce to change the scheduling process
to schedule map tasks close to replicas having a suitable index — otherwise Hadoop
MapReduce would pick indexes randomly. Hence, we have to enrich the HDFS namen-
ode to keep additional information about the available indexes. We do this by keeping an
additional directory Dir rep mapping (blockID, datanode) 7→ HAILBlockReplicaInfo.
An instance of HAILBlockReplicaInfo contains detailed information about the types of
available indexes for a replica, i.e., indexing key, index type, size, start offsets, etc. As
before, Hadoop MapReduce looks up Dir block to retrieve the list of datanodes having
a replica for a given block. However, in addition, HAIL looks up the main memory
Dir rep to obtain the detailed HAILBlockReplicaInfo for each replica, i.e., one main
memory lookup for each replica. HAILBlockReplicaInfo is then exploited by HAIL to
change the scheduling strategy of Hadoop (we will discuss this in detail in Section 3.4).

3.3.4 An Index Structure for Zero-Overhead Indexing

In this section, we briefly discuss our choice of an appropriate index structure for index-
ing at minimal costs in HAIL and give some details on our concrete implementation.

Why Clustered Indexes? An interesting question is why we focus on clustered indexes.
For indexing with minimal overhead, we require an index structure that is cheap to cre-
ate in main memory, cheap to write to disk, and cheap to query from disk. We tried
a number of indexes in the beginning of the project — including coarse-granular in-
dexes and unclustered indexes. After some experimentation we, quickly discovered
that sorting and index creation in main memory is so fast that techniques like partial or
coarse-granular sorting do not pay off for HAIL. Whether you pay three or two seconds
for sorting and indexing per block during upload is hardly noticeable in the overall up-
load process of HDFS. In addition, a major problem with unclustered indexes is that
they are only competitive for very selective queries as they may trigger considerable
random I/O for nonselective index traversals. In contrast, clustered indexes do not have
that problem. Whatever the selectivity, we will read the clustered index and scan the
qualifying blocks. Hence, even for very low selectivities, the only overhead over a scan
is the initial index node traversal, which is negligible. Moreover, as unclustered indexes
are dense by definition, they require considerably more additional space on disk and
require more write I/O than a sparse clustered index. Thus, using unclustered indexes
would severely affect upload times. Yet, an interesting direction for future work would
be to extend HAIL to support additional indexes that might boost performance, such as
bitmap indexes and inverted lists.
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3.4 HAIL Job Execution

We now focus on general job execution in HAIL. First, we present from Bob’s perspec-
tive how he can enhance MapReduce jobs to benefit from HAIL static indexing (Sec-
tion 3.4.1). We will explain how Bob can write his MapReduce jobs (almost) as before
and run them exactly as when using Hadoop MapReduce. After that, we analyze from
the system’s perspective the standard Hadoop MapReduce pipeline and then compare
how HAIL executes jobs (Section 3.4.2). We will see that HAIL requires only small
changes in the Hadoop MapReduce framework, which makes HAIL easy to integrate
into newer Hadoop versions (Section 3.4.3). Figure 3.2 shows the query pipeline when
Bob runs a MapReduce job on HAIL. Finally, we briefly discuss the case of selections
on unindexed attributes, i.e., when a job requests a static index that was not created, as
motivation for HAIL adaptive indexing (Section 3.4.4).
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3.4.1 Bob’s Perspective

In Hadoop MapReduce, Bob writes a MapReduce job, which includes a job configu-
ration class, a map function, and a reduce function.
In HAIL, the MapReduce job remains the same (see 1 and 2 in Figure 3.2), but with
three tiny changes:

1. Bob specifies the HailInputFormat (which uses a HailRecordReader internally) in
the main class of the MapReduce job. By doing this, Bob enables his MapReduce
job to read HAIL Blocks (see Section 3.3.2).
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2. Bob annotates his map function to specify the selection predicate and the pro-
jected attributes required by his MapReduce job5. For example, assume that Bob
wants to write a MapReduce job that performs the following SQL query (example
from Introduction):

SELECT sourceIP

FROM UserVisits

WHERE visitDate BETWEEN ’1999-01-01’ AND ’2000-01-01’

To execute this query in HAIL, Bob adds to his map function a HailQuery anno-
tation as follows:

@HailQuery(filter="@3 between(1999-01-01,

2000-01-01)", projection={"@1"})

void map(Text key, Text v) { ... }

Where the literal @3 in the filter value and the literal @1 in the projection value
denote the attribute position in the UserVisits records. In this example, the third
attribute (i.e., @3) is visitDate and the first attribute (i.e., @1) is sourceIP. By
annotating his map function as mentioned above, Bob indicates that he wants to
receive in the map function only the projected attribute values of those tuples
qualifying the specified selection predicate. In case Bob does not specify filter
predicates, HAIL will perform a full scan as the standard Hadoop. At query time,
if the HailQuery annotation is set, HAIL checks (using the Index Metadata of a
data block) whether an index exists on the filter attribute. Using such an index
allows us to speed up the job execution. HAIL also uses the Block Metadata to
determine the schema of a data block. This allows HAIL to read the attributes
specified in the filter and projection parameters only.

3. Bob uses a HailRecord object as input value in the map function. This allows Bob
to directly read the projected attributes without splitting the record into attributes
as he would do it in the standard Hadoop MapReduce. In Hadoop, Bob would
write the following map function to perform the above SQL query:

Map Function for Hadoop MapReduce (pseudo-code):

void map(Text key, Text v) {

String[] attr = v.toString().split(",");

if (DateUtils.isBetween(attr[2],

"1999-01-01", "2000-01-01"))

output(attr[0], null);

}

5Alternatively, HAIL allows Bob to specify the selection predicate and the projected attributes in the
job configuration class.
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Using HAIL Bob writes the following map function:

Map Function for HAIL:

void map(Text key, HailRecord v) {

output(v.getInt(1), null);

}

Notice that, Bob now does not have to filter out the incoming records, because this
is automatically handled by HAIL via the HailQuery annotation (as mentioned
earlier). This annotation is illustrated in Figure 3.2.

3.4.2 System Perspective
In Hadoop MapReduce, when Bob submits a MapReduce job a JobClient instance is
created. The main goal of the JobClient is to copy all the resources needed to run the
MapReduce job (e.g., metadata and job class files). But also, the JobClient fetches all
the block metadata (BlockLocation[]) of the input dataset. Then, the JobClient logically
breaks the input into smaller pieces called input splits (split phase in Figure 3.2) as
defined in the InputFormat. By default, the JobClient computes input splits such that
each input split maps to a distinct HDFS block. An input split defines the input of a
map task while an HDFS block is a horizontal partition of a dataset stored in HDFS
(see Section 3.3.1 for details on how HDFS stores datasets). For scheduling purposes,
the JobClient retrieves for each input split all datanode locations having a replica of that
HDFS block. This is done by calling getHosts() of each BlockLocation. For instance,
in Figure 3.2, datanodes DN3, DN5, and DN7 are the split locations for split42 since
block42 is stored on such datanodes.

After this split phase, the JobClient submits the job to the JobTracker with the set
of input splits to process 3 . Among other operations, the JobTracker creates a map
task for each input split. Then, for each map task, the JobTracker decides on which
computing node to schedule the map task, using the split locations 4 . This decision
is based on data locality and availability [27]. After this, the JobTracker allocates the
map task to the TaskTracker (which performs map and reduce tasks) running on that
computing node 5 .

Only then, the map task can start processing its input split. The map task uses a
RecordReader UDF in order to read its input data blocki from the closest datanode 6

. Interestingly, it is the local HDFS client running on the node where the map task is
running that decides from which datanode a map task will read its input — and not the
Hadoop MapReduce scheduler. This is done when the RecordReader asks for the input
stream pointing to blocki. It is worth noticing that the HDFS client chooses a datanode
from the set of all datanodes storing a replica of block42 (via the getHosts() method)
rather than from the locations given by the input split. This means that a map task might
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eventually end up reading its input data from a remote node even though it is available
locally. Once the input stream is opened, the RecordReader breaks block42 into records
and makes a call to the map function for each record. Assuming that the MapReduce
job consists of a map phase only, the map task then writes its output back to HDFS 7 .
See [35, 111, 34] for more details on the MapReduce execution pipeline.
In HAIL, it is crucial to be nonintrusive to the standard Hadoop execution pipeline
so that users run MapReduce jobs exactly as before. However, supporting per-replica
indexes in an efficient way and without significant changes to the standard execution
pipeline is challenging for several reasons. First, the JobClient cannot simply create
input splits based only on the default block size as each HDFS block replica has a
different size (because of indexes). Second, the JobTracker can no longer schedule map
tasks based on data locality and nodes availability only. The JobTracker now has to
consider the existing indexes for each HDFS block. Third, the RecordReader has to
perform either index access or full scan of HDFS blocks without any interaction with
users, e.g., depending on the availability of suitable indexes. Fourth, the HDFS client
cannot anymore open an input stream to a given HDFS block based on data locality and
nodes availability only: it has to consider index locality and availability as well. HAIL
overcomes these issues by mainly providing two UDFs: the HailInputFormat and the
HailRecordReader. By using UDFs, we allow HAIL to be easy to integrate into newer
versions of Hadoop MapReduce. We discuss these two UDFs in the following.

3.4.3 HailInputFormat and HailRecordReader
HAILInputFormat implements a different splitting strategy than standard InputFor-
mats. This strategy allows HAIL to reduce the number of map waves per job, i.e., the
maximum number of map tasks per map slot required to complete this job. Thereby,
the total scheduling overhead of MapReduce jobs is drastically reduced. We discuss the
details of the HAIL splitting strategy in Section 3.7.
HAILRecordReader is responsible for retrieving the records that satisfy the selection
predicate of MapReduce jobs (as illustrated in the MapReduce Pipeline of Figure 3.2).
Those records are then passed to the map function. For example in Bob’s query of
Section 3.4.1, we need to find all records having a visitDate between 1999-01-01 and
2000-01-01. To do so, for each data block required by the job, we first try to open an
input stream to a block replica having the required index. For this, HAIL instructs the
local HDFS Client to use the newly introduced getHostsWithIndex() method of each
BlockLocation so as to choose the closest datanode with the desired index. Let us first
focus on the case where a suitable, statically created index is available so that HAIL can
open an input stream to an indexed replica. Once that input stream has been opened, we
use the information about selection predicates and attribute projections from the Hail-
Query annotation or from the job configuration file. When performing an index scan,
we read the index entirely into main memory (typically a few KB) to perform an index
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lookup. This also implies reading the qualifying block parts from disk into main mem-
ory and post-filtering records (see Section 3.3.4). Then, we reconstruct the projected
attributes of qualifying tuples from PAX to row layout. In case that no projection was
specified by users, we then reconstruct all attributes. Finally, we make a call to the map
function for each qualifying tuple. For bad records (see Section 3.3.1), HAIL passes
them directly to the map function, which in turn has to deal with them (just like in stan-
dard Hadoop MapReduce). For this, HAIL passes a record to the map function with a
flag to indicate a bad record or not.

3.4.4 Missing Static Indexes
Finally, let us now discuss the second case when Bob submits a job which filters on an
unindexed attribute (e.g., on duration). Here, the HailRecordReader must completely
scan the required attributes of unindexed blocks, apply the selection predicate, and per-
form tuple reconstruction. Notice that, with static indexing, there is no way for HAIL
to overcome the problem of missing indexes efficiently. This means that when the at-
tributes used in the selection predicates of the workload change over time, the only way
to adapt the set of available indexes is to upload the data again. However, this has the
significant overhead of an additional upload, which goes against the principle of zero-
overhead indexing. Thus, HAIL introduces an adaptive indexing technique that offers a
much more elegant and efficient solution to this problem. We discuss this technique in
the following section.

3.5 HAIL Zero-Overhead Adaptive Indexing
We now discuss the adaptive indexing pipeline of HAIL. The core idea is to create miss-
ing but promising indexes as byproducts of full scans in the map phase of MapReduce
jobs. Similar to the static indexing pipeline, our goal is to come closer towards zero
overhead indexing. Therefore, we adopt two important principles from our static in-
dexing pipeline. First, we piggyback again on a procedure that is naturally reading data
from disk to main memory. This allows HAIL to completely save the read cost for adap-
tive index creation. Second, as map tasks are usually I/O-bound, HAIL again exploits
unused CPU time when computing clustered indexes in parallel to job execution.

In Section 3.5.1, we start with a general overview of the HAIL adaptive indexing
pipeline. In Section 3.5.2, we focus on the internal components for building and storing
clustered indexes incrementally. In Section 3.5.3, we present how HAIL accesses the
indexes created at job runtime in a way that is transparent to the MapReduce job exe-
cution pipeline. Finally, in Section 3.6, we introduce three additional adaptive indexing
techniques that make the indexing overhead over MapReduce jobs almost invisible to
users.
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Figure 3.3: HAIL adaptive indexing pipeline.

3.5.1 HAIL Adaptive Indexing in the Execution Pipeline

For our motivating example, let’s assume Bob continues to analyze his logs and notices
some suspicious activities, e.g., many user visits with very short duration, indicating
spam bot activities. Therefore, Bob suddenly needs different jobs for his analysis that
selects user visits with short durations. However, recall that unfortunately he did not
create a static index on attribute duration at upload time which would help for these new
jobs. In general, as soon as Bob (or one of his colleagues) sends a new job (say jobd)
with a selection predicate on an unindexed attribute (e.g., on attribute duration, which
we will denote as d in the following.), HAIL cannot benefit from index scans anymore.
However, HAIL takes these jobs as hints on how to adaptively improve the repertoire of
indexes for future jobs. HAIL piggybacks the creation of a clustered index over attribute
duration on the execution of jobd. Without any loss of generality, we assume that jobd

projects all attributes from its input dataset.
Figure 3.3 illustrates the general workflow of the HAIL adaptive indexing pipeline.

The figure shows how HAIL processes map tasks of jobd when no suitable index is
available (i.e., when performing a full scan) in more detail. As soon as HAIL schedules
a map task to a specific TaskTracker6, e.g. TaskTracker 5, the HAILRecordReader of the

6A Hadoop instance responsible to execute map and reduce tasks.
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map task first reads the metadata from the HAILInputSplit 1 7. With this metadata, the
HAILRecordReader checks whether a suitable index is available for its input data block
(say block42). As no index on attribute d is available, the HAILRecordReader simply
opens an input stream to the local replica of block42 stored on DataNode 5. Then, the
HAILRecordReader: (i) loads all values of the attributes required by jobd from disk to
main memory 2 ; (ii) reconstructs records (as our HDFS blocks are in columnar layout);
and (iii) feeds the map function with each record 3 . Here lies the beauty of HAIL:
an HDFS block that is a potential candidate for indexing was completely transferred
to main memory as part of the job execution process. In addition to feeding the entire
block42 to the map function, HAIL can create a clustered index on attribute d to speed up
future jobs. For this, the HAILRecordReader passes block42 to the AdaptiveIndexer as
soon as the map function finished processing this data block 4 .8 The AdaptiveIndexer,
in turn, sorts the data in block42 according to attribute d, aligns other attributes through
reordering, and creates a sparse clustered index 5 . Finally, the AdaptiveIndexer stores
this index together with a copy of block42 (sorted on attribute d) as a pseudo data block
replica 6 . Additionally, the AdaptiveIndexer registers the new created index for block42

with the HDFS NameNode 7 . In fact, the implementation of the adaptive indexing
pipeline solves some interesting technical challenges. We discuss the pipeline in more
detail in the remainder of this section.

3.5.2 AdaptiveIndexer Architecture
Adaptive indexing is an automatic process that is not explicitly requested by users and
therefore should not unexpectedly impose significant performance penalties on users’
jobs. Piggybacking adaptive indexing on map tasks allows us to completely save the
read I/O-cost. However, the indexing effort is shifted to query time. As a result, any
additional time involved in indexing will potentially add to the total runtime of MapRe-
duce jobs. Therefore, the first concern of HAIL is how to make adaptive index creation
efficient?

To overcome this issue, the idea of HAIL is to run the mapping and indexing pro-
cesses in parallel. However, interleaving map task execution with indexing bears the
risk of race conditions between map tasks and the AdaptiveIndexer on the data block.
In other words, the AdaptiveIndexer might potentially reorder data inside a data block,
while the map task is still concurrently reading the data block. One might think about
copying data blocks before indexing to deal with this issue. Nevertheless, this would
entail the additional runtime and memory overhead of copying such memory chunks.
For this reason, HAIL does not interleave the mapping and indexing processes on

7That was obtained from the HAILInputFormat via getSplits().
8Notice that, all map tasks (even from different MapReduce jobs) running on the same node interact

with the same AdaptiveIndexer instance. Hence, the AdaptiveIndexer can end up by indexing data blocks
from different MapReduce jobs at the same time.
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Figure 3.4: AdaptiveIndexer internals.

the same data block. Instead, HAIL interleaves the indexing of a given data block
(e.g., block42) with the mapping phase of the succeeding data block (e.g. block43), i.e. ,
HAIL keeps two HDFS blocks in memory at the same time. For this, HAIL uses a
producer-consumer pattern: a map task acts as producer by offering a data block to the
AdaptiveIndexer, via a bounded blocking queue, as soon as it finishes processing the
data block; in turn, the AdaptiveIndexer is constantly consuming data blocks from this
queue. As a result, HAIL can perfectly interleave map tasks with indexing, except for
the first and last data block to process in each node. It is worth noting that the queue
exposed by the AdaptiveIndexer is allowed to reject data blocks in case a certain limit
of enqueued data blocks is exceeded. This prevents the AdaptiveIndexer to run out of
memory because of overload. Still, future MapReduce jobs with a selection predicate on
the same attribute (i.e., on attribute d) can at their turn take care of indexing the rejected
data blocks. Once the AdaptiveIndexer pulls a data block from its queue, it processes
the data block using two internal components: the IndexBuilder and the IndexWriter.
Figure 3.4 illustrates the pipeline of these two internal components, which we discuss
in the following.
The IndexBuilder is a daemon thread that is responsible for creating sparse clustered
indexes on data blocks in the data queue. With this aim, the IndexBuilder is constantly
pulling one data block after another from the data block queue 1 . Then, for each data
block, the IndexBuilder starts with sorting the attribute column to index (attribute d in
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our example) 2 . Additionally, the IndexBuilder builds a mapping {old position 7→
new position} for all values as a permutation vector. After that, the IndexBuilder uses
the permutation vector to reorder all other attributes in the offered data block 3 . Once
the IndexBuilder finishes sorting the entire data block on attribute d, it builds a sparse
clustered index on attribute d 4 . Then, the IndexBuilder passes the newly indexed data
block to the IndexWriter 5 . The IndexBuilder also communicates with the IndexWriter
via a blocking queue. This allows HAIL to parallelize indexing with the I/O process for
storing newly indexed data blocks.
The IndexWriter is another daemon thread and responsible for persisting indexes cre-
ated by the IndexBuilder to disk. The IndexWriter continuously pulls newly indexed
data blocks from its queue in order to persist them on HDFS 6 . Once the IndexWriter
pulls a newly indexed data block (say block42), it creates the block metadata and index
metadata for block42 7 . Notice that, a newly indexed data block is just another replica
of the logical data block, but with a different sort order. For instance, in our example of
Section 3.5.1, creating an index on attribute d for block42 leads to having four data block
replicas for block42: one replica for each of the first four attributes. The IndexWriter cre-
ates a pseudo data block replica 8 and registers the new index with the NameNode 9 .
This allows HAIL to consider the newly created indexes in future jobs. In the following,
we discuss pseudo data block replicas in more detail.

3.5.3 Pseudo Data Block Replicas

The IndexWriter could simply write a new indexed data block as another replica. How-
ever, HDFS supports data block replication only at the file level, i.e., HDFS replicates
all the data blocks of a given dataset the same number of times. This goes against the
incremental nature of HAIL. A pseudo data block replica is basically a logical copy of a
data block and allows HAIL to keep a different replication factor on a block basis rather
than on a file basis. Therefore, we store each pseudo data block replica in a new HDFS
file with replication factor one. Hence, the NameNode does not recognize it as a nor-
mal data block replica and instead simply sees the pseudo data block replica as another
index available for the HDFS block. To avoid shipping across nodes, each IndexWriter
aims at storing the pseudo data block replicas locally. The created HDFS files follow
a naming convention, which includes the block id and the index attribute, to uniquely
identify a pseudo data block replica.

As pseudo data block replicas are stored in different HDFS files than normal data
block replicas, three important questions arise:
How to access pseudo data block replicas in an invisible way for users? HAIL achieves
this transparency via the HAILRecordReader. Users continue annotating their map
functions (with selection predicates and projections). Then, the HAILRecordReader
takes care of automatically switching from normal to pseudo data block replicas. For
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this, the HAILRecordReader uses the HAILInputStream, a wrapper of the Hadoop FS-
InputStream.
How to manage and limit the storage space consumed by the pseudo data block replicas?
This question is related to optimization problems from physical database design, i.e.,
index selection. Given a certain storage budget, the question is which indexes for an
HDFS block to drop, to achieve the highest workload benefit without exceeding the
storage constraint? Solving this problem is beyond the scope of this article and is subject
to ongoing work. A simple implementation could borrow ideas from buffer replacement
strategies to attack the problem, e.g., LRU or replacing the least beneficial indexes.
How does the amount of relatively small files created for pseudo data block replicas
impact HDFS performance? The metadata storage overhead for each file entry with
one associated block in the NameNode is about 150 bytes. This means that given 6GB
of free heap space on the NameNode and an HDFS block size of 256MB, HAIL can
support more than 10PB of data in pseudo block replicas. Additionally, future Hadoop
versions will support a federation of NameNodes to increase capacity, availability, and
load balancing. This would alleviate the mentioned problem even further. Furthermore,
sequential read performance of a file that is stored in pseudo data block replicas matches
the performance of normal HDFS files. This is because the involved amount of seeks
and DataNode hops for switching between pseudo data block replicas is comparable to
reading over block boundaries when scanning normal HDFS files.

3.5.4 HAIL RecordReader Internals
Figure 3.5 illustrates the internal pipeline of the HAILRecordReader when processing
a given HAILInputSplit. When a map task starts, the HAILRecordReader first reads
the metadata of its HAILInputSplit in order to check if there exists a suitable index to
process the input data block (block42) 1 . If a suitable index is available, the HAIL-
RecordReader initializes the HAILInputStream with the selection predicate of jobd as a
parameter 2 . Internally, the HAILInputStream checks if the index resides in a normal or
pseudo data block replica 3 . This allows the HAILInputStream to open an input stream
to the right HDFS file. This is because normal and pseudo data block replicas are stored
in different HDFS files. While all normal data block replicas belong to the same HDFS
file, each pseudo data block replica belongs to a different HDFS file 4 . In our example,
the index on attribute d for block42 resides in a pseudo data block replica. Therefore, the
HAILInputStream opens an input stream to the HDFS file /pseudo/blk 42/d 5 . As a
result, the HAILRecordReader does not care from which file it is reading, since normal
and pseudo data block replicas have the same format. Therefore, switching between
a normal and a pseudo data block replica is not only invisible to users, but also to the
HAILRecordReader. The HAILRecordReader just reads the block and index metadata
using the HAILInputStream 6 . After performing an index lookup for the selection
predicate of jobd, the HAILRecordReader loads only the projected attributes (a, b, c,
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and d) from the qualifying tuples (e.g., tuples with rowIDs in 1024 – 2048) 7 . Finally,
the HAILRecordReader forms key/value-pairs and passes only qualifying pairs to the
map function 8 .

In case that no suitable index exists, the HAILRecordReader takes the Hadoop In-
putStream, which opens an input stream to any normal data block replica, and falls back
to full scan (like standard Hadoop MapReduce).

3.6 Adaptive Indexing Strategies
In the previous section, we discussed the core principles of the HAIL adaptive indexing
pipeline. Now, we introduce three strategies that allow HAIL to improve the perfor-
mance of MapReduce jobs. We first present lazy adaptive indexing and eager adaptive
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indexing, two techniques that allow HAIL to control its incremental indexing mech-
anism with respect to runtime overhead and convergence rate. We then discuss how
HAIL can prioritize data blocks for indexing based on their selectivity. Finally, we in-
troduce selectivity-based indexing, a technique to decide which blocks to offer to the
adaptive indexer based on job selectivity.

3.6.1 Lazy Adaptive Indexing
The blocking queues used by the AdaptiveIndexer allow us to easily protect HAIL
against CPU overloading. However, writing pseudo data block replicas can also slow
down the parallel read and write processes of MapReduce jobs. In fact, the negative
impact of extra I/O operations can be high, as MapReduce jobs are typically I/O-bound.
As a result, HAIL as a whole might become slower even if the AdaptiveIndexer can
computationally keep up with the job execution. So, the question that arises is how to
write pseudo data block replicas efficiently?

HAIL solves this problem by making indexing incremental, i.e., HAIL spreads index
creation over multiple MapReduce jobs. The goal is to balance index creation cost over
multiple MapReduce jobs so that users perceive small (or no) overhead in their jobs.
To do so, HAIL uses an offer rate, which is a ratio that limits the maximum number of
pseudo data block replicas (i.e., number of data blocks to index) to create during a sin-
gle MapReduce job. For example, using an offer rate of 10%, HAIL indexes in a single
MapReduce job at maximum one data block out of ten processed data blocks (i.e., HAIL
only indexes 10% of the total data blocks). Notice that, consecutive adaptive indexing
jobs with selections on the same attribute already benefit from pseudo data block repli-
cas created during previous jobs. This strategy has two major advantages. First, HAIL
can reduce the additional I/O introduced by indexing to a level that is acceptable for the
user. Second, the indexing effort done by HAIL for a certain attribute is proportional
to the number of times a selection is performed on that attribute. Another advantage of
using an offer rate is that users can decide how fast they want to converge to a complete
index, i.e., all data blocks are indexed. For instance, using an offer rate of 10%, HAIL
would require 10 MapReduce jobs with a selection predicate on the same attribute to
converge to a complete index (i.e., until all HDFS blocks are fully indexed). Like that,
on the one hand, the investment in terms of time and space for MapReduce jobs with se-
lection predicates on unfrequent attributes is minimized. On the other hand, MapReduce
jobs with selection predicates on frequent attributes quickly converge to a completely
indexed copy.

3.6.2 Eager Adaptive Indexing
Lazy adaptive indexing allows HAIL to easily throttle down adaptive indexing efforts
to an acceptable (or even invisible) degree for users (see Section 3.6.1). However, let us
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make two important observations that could make a constant offer rate not desirable for
certain users:

1. Using a constant offer rate, the job runtime of consecutive MapReduce jobs hav-
ing a filter condition on the same attribute is not constant. Instead, they have an
almost linearly decreasing runtime up to the point where all blocks are indexed.
This is because the first MapReduce job is the only to perform a full scan over
all the data blocks of a given dataset. Consecutive jobs, even when indexing and
storing the same amount of blocks, are likely to run faster as they benefit from all
indexing work of their predecessors.

2. HAIL actually delays indexing by using an offer rate. The tradeoff here is that
using a lower offer rate leads to a lower indexing overhead, but it requires more
MapReduce jobs to index all the data blocks in a given dataset. However, some
users might want to limit the experienced indexing overhead and still desire to
benefit from complete indexing as soon as possible.

Therefore, we propose an eager adaptive indexing strategy to deal with this problem.
The basic idea of eager adaptive indexing is to dynamically adapt the offer rate for
MapReduce jobs according to the indexing work achieved by previous jobs. In other
words, eager adaptive indexing tries to exploit the saved runtime and reinvest it as much
as possible into further indexing. To do so, HAIL first needs to estimate the runtime
gain (in a given MapReduce job) from performing an index scan on the already created
pseudo data block replicas. For this, HAIL uses a cost model to estimate the total
runtime, T job, of a given MapReduce job (Equation 3.1). Table 3.1 lists the parameters
we use in the cost model.

T job = Tis + t f sw · n f sw + TidxOverhead. (3.1)

We define the number of map waves performing a full scan, n f sw, as d nblocks−nidxBlocks
nslots

e. In-
tuitively, the total runtime T job of a job consists of three parts. First, the time required
by HAIL to process the existing pseudo data block replicas, i.e., all data blocks having
a relevant index, Tis. Second, the time required by HAIL to process the data blocks
without a relevant index, t f sw · n f sw. Third, the time overhead caused by adaptive index-
ing, TidxOverhead.9 This overhead depends on the number of data blocks that are offered
to the AdaptiveIndexer and the average time overhead observed for indexing a block.
Formally, we define TidxOverhead as follows:

TidxOverhead = tidxOverhead ·min
(
ρ ·

⌈
nblocks
nslots

⌉
, n f sw

)
. (3.2)

9It is worth noting that TidxOverhead denotes only the additional runtime that a MapReduce job has due
to adaptive indexing.
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Table 3.1: Cost model parameters.

Notation Description
nslots The number of map tasks that can

run in parallel in a given Hadoop
cluster

nblocks The number of data blocks of a
given dataset

nidxBlocks The number of blocks with a rele-
vant index

n f sw The number of map waves perform-
ing a full scan

t f sw The average runtime of a map
wave performing a full scan (with-
out adaptive indexing overhead)

tidxOverhead The average time overhead of adap-
tive indexing in a map wave

TidxOverhead The total time overhead of adaptive
indexing

Tis The total runtime of the map waves
performing an index scan

T job The total runtime of a given job
Ttarget The targeted total job runtime
ρ The ratio of data blocks

(w.r.t. nblocks) offered to the
AdaptiveIndexer

We can use this model to automatically calculate the offer rate ρ in order to keep the
adaptive indexing overhead acceptable for users. Formally, from Equations 3.1 and 3.2,
we deduct ρ as follows:

ρ =
Ttarget − Tis − t f sw · n f sw

tidxOverhead · d
nblocks
nslots
e

.

Therefore, given a target job runtime Ttarget, HAIL can automatically set ρ in order
to fully spent its time budget for creating indexes and use the gained runtime in the next
jobs either to speed up the jobs or to create even more indexes. Usually, we choose
Ttarget to be equal to the runtime of the very first job so that users can observe a stable
runtime till almost everything is indexed. However, users can set Ttarget to any time
budget in order to adapt the indexing effort to their needs. Notice that, since already
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indexed pseudo data block replicas are not offered again to the AdaptiveIndexer, HAIL
first processes pseudo data block replicas and measures Tis, before deciding what offer
rate to use for the unindexed blocks. The times t f sw (from Equation 3.1) and tidxOverhead

(from Equation 3.2) can be measured in a calibration job or given by users.
On the one hand, HAIL can now adapt the offer rates to the performance gains

obtained from performing index scans over the already indexed data blocks. On the
other hand, by gradually increasing the offer rate, eager adaptive indexing prioritizes
complete index convergence over early runtime improvements for users. Thus, users no
longer experience an incremental and linear speed up in job performance until the index
is eventually complete, but instead they experience a sharp improvement when HAIL
approaches to a complete index. In summary, besides limiting the overhead of adaptive
indexing, the offer rate can also be considered as a tuning knob to trade early runtime
improvements with faster indexing.

3.6.3 Selectivity-based Adaptive Indexing
Earlier, we saw that HAIL uses an offer rate to limit the number of data blocks to index
in a single MapReduce job. For this, HAIL uses a round robin policy to select the data
blocks to pass to the AdaptiveIndexer. This sounds reasonable under the assumption
that data is uniformly distributed. However, datasets are typically skewed in practice,
and hence, some data blocks might contain more qualifying tuples than others under a
given query workload. Consequently, indexing highly selective data blocks before other
data blocks promises higher performance benefits.

Therefore, HAIL can also use a selectivity-based data block selection approach for
deciding which data blocks to use. The overall goal is to optimize the use of available
computing resources. In order to maximize the expected performance improvement
for future MapReduce jobs running on partially indexed datasets, we prioritize HDFS
blocks with a higher selectivity. The big advantage of this approach is that users can
perceive higher improvements in performance for their MapReduce jobs from the very
first runs. Additionally, as a side effect of using this approach, HAIL can adapt faster to
the selection predicates of MapReduce jobs.

However, how can HAIL efficiently obtain the selectivities of data blocks? For this,
HAIL exploits the natural process of map tasks to propose data blocks to the Adap-
tiveIndexer. Recall that a map task passes a data block to the AdaptiveIndexer once the
map task finished processing the block. Thus, HAIL can obtain the accurate selectiv-
ity of a data block by piggybacking on the map phase, when the data block is filtered
according to the provided selection predicate. This allows HAIL to have perfect knowl-
edge about selectivities for free. Given the selectivity of a data block, HAIL can decide
if it is worth to index the data block or not. In our current HAIL prototype, a map task
proposes a data block to the AdaptiveIndexer if the percentage of qualifying tuples in
the data block is at most 80%. However, users can adapt this threshold to their applica-
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tions. Notice that, with the statistics on data block selectivities, HAIL can also decide
which indexes to drop in case of storage limitations. However, a discussion on an index
eviction strategy is out of the scope of this article.

3.7 HAIL Splitting and Scheduling
We now discuss how HAIL creates and schedules map tasks for any incoming MapRe-
duce job.

In contrast to the Hadoop MapReduce InputFormat, the HailInputFormat uses a
more elaborate splitting policy, called HailSplitting. The overall idea of HailSplitting is
to map one input split to several data blocks whenever a MapReduce job performs an
index scan over its input. In the beginning, HailSplitting divides all input data blocks
into two groups Bi and Bn. Where Bi contains blocks that have at least one replica with
a matching index (i.e., having a relevant replica) and Bn contains blocks with no rele-
vant replica. Then, the main goal of the HailSplitting is to combine several data blocks
from Bi into one input split. For this, HailSplitting first partitions data blocks from Bi

according to the locations of their relevant replica in order to improve data locality. As
a result of this process, HailSplitting produces as many partitions of blocks as there are
datanodes storing at least one indexed block of the given input. Then, for each parti-
tion of data blocks, HailSplitting creates as many input splits as there exists map slots
per TaskTracker. Thus, HAIL reduces the number of map tasks and hence reduces the
aggregated costs of initializing and finalizing map tasks.

The reader might think that using several blocks per input split may significantly
impact failover. However, this is not true since tasks performing an index scan are
relatively short running. Therefore, the probability that one node fails in this period
of time is very low [94]. Still, in case a node fails in this period of time, HAIL simply
reschedules the failed map tasks, which results only in a few seconds overhead anyways.
Optionally, HAIL could apply the checkpointing techniques proposed in [94] in order
to improve failover. We will study these interesting aspects in a future work. The reader
might also think that performance could be negatively impacted in case that data locality
is not achieved for several map tasks. However, fetching small parts of blocks through
the network (which is the case when using index scan) is negligible [66]. Moreover, one
can significantly improve data locality by simply using an adequate scheduling policy
(e.g., the Delay Scheduler [113]). If no relevant index exists, HAIL scheduling falls
back to standard Hadoop scheduling by optimizing data locality only.

For all data blocks in Bn, HAIL creates one map task per unindexed data block just
like standard Hadoop. Then, for each map task, HAIL considers r different computing
nodes as possible locations to schedule a map task, where r is the replication factor of
the input dataset. However, in contrast to original Hadoop, HAIL prefers to assign map
tasks to those nodes that currently store less indexes than the average. Since HAIL stores
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pseudo data block replicas local to the map tasks that created them, this scheduling
strategy results in a balanced index placement and allows HAIL to better parallelize
index access for future MapReduce jobs.

3.8 Related Work

HAIL uses PAX [4] as data layout for HDFS block, i.e., a columnar layout inside the
HDFS block. PAX was originally invented for cache-conscious processing, but it has
been adapted in the context of MapReduce [24]. In our previous work [66], we showed
how to improve over PAX by computing different layouts on the different replicas, but
we did not consider indexing. This article fills this gap.

Static Indexing

Indexing is a crucial step in all major DBMSs [44, 22, 3, 19, 23]. The overall idea
behind all these approaches is to analyze a query workload and to statically decide which
attributes to index based on these observations. Several research works have focused
on supporting index access in MapReduce workflows [112, 79, 35, 64]. However, all
these offline approaches have three big disadvantages. First, they incur a high upfront
indexing cost that several applications cannot afford (such as scientific applications).
Second, they only create a single clustered index per dataset, which is not suitable for
query workloads having selection predicates on different attributes. Third, they cannot
adapt to changes in workloads without the intervention of a DBA.

Online Indexing

Tuning a database at upload time has become harder as query workloads become more
dynamic and complex. Thus, different DBMSs started to use online tuning tools to at-
tack the problem of dynamic workloads [103, 17, 18, 84]. The idea is to continuously
monitor the performance of the system and create (or drop) indexes as soon as it is
considered beneficial. Manimal [20, 63] can be used as an online indexing approach
for automatically optimizing MapReduce jobs. The idea of Manimal is to generate a
MapReduce job for index creation as soon as an incoming MapReduce job has a se-
lection predicate on an unindexed attribute. Online indexing can then adapt to query
workloads. However, online indexing techniques require us to index a dataset com-
pletely in one pass. Therefore, online indexing techniques simply transfer the high cost
of index creation from upload time to query processing time.
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Adaptive Indexing

HAIL is inspired by database cracking [58] which aims at removing the high upfront
cost barrier of index creation. The main idea of database cracking is to start organizing
a given attribute (i.e., to create an adaptive index on an attribute) when it receives for
the first time a query with a selection predicate on that attribute. Thus, future incoming
queries having predicates on the same attribute continue refining the adaptive index as
long as finer granularity of key ranges is advantageous. Key ranges in an adaptive index
are disjoint, where keys in each key range are unsorted. Basically, adaptive indexing
performs for each query one step of quicksort using the selection predicates as pivot for
partitioning attributes. HAIL differs from adaptive indexing in four aspects. First, HAIL
creates a clustered index for each data block and hence avoids any data shuffling across
data blocks. This allows HAIL to preserve Hadoop fault-tolerance. Second, HAIL con-
siders disk-based systems, and thus, it factors in the cost of reorganizing data inside data
blocks. Third, HAIL parallelizes the indexing effort across several computing nodes to
minimize the indexing overhead. Fourth, HAIL focuses on creating clustered indexes
instead of unclustered indexes. A follow-up work [59] focuses on lazily aligning at-
tributes to converge into a clustered index after a certain number of queries. However, it
considers a main memory system and hence does not factor in the I/O-cost for moving
data many times on disk. Other works on adaptive indexing in main memory databases
have focused on updates [62], concurrency control [49], and robustness [54], but these
works are orthogonal to the problem we address in this chapter.

Adaptive Merging

Another related work to HAIL is the adaptive merging [50]. This approach uses stan-
dard B-trees to persist intermediate results during an external sort. Then, it only merges
those key ranges that are relevant to queries. In other words, adaptive merging incre-
mentally performs external sort steps as a side effect of query processing. However,
this approach cannot be applied directly for MapReduce workflows for three reasons.
First, like adaptive indexing, this approach creates unclustered indexes. Second, merg-
ing data in MapReduce destroys Hadoop fault-tolerance and hurts the performance of
MapReduce jobs. This is because adaptive merging would require us to merge data
from several data blocks into one. Notice that, merging data inside a data block would
not make sense as a data block is typically loaded entirely into main memory by map
tasks anyways. Third, it has an expensive initial step to create the first sorted runs. A
follow-up work uses adaptive indexing to reduce the cost of the initial step of adaptive
merging in main memory [61]. However, it considers main memory systems, and hence,
it has the first two problems.
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Adaptive Loading

Some other works focus on loading data into a database in an incremental [2] or in a
lazy [60] manner with the goal of reducing the upfront cost for parsing and storing data
inside a database. These approaches allow for reducing the delay until users can execute
their first queries dramatically. In the context of Hadoop, [2] proposes to load those parts
of a dataset that were parsed as input to MapReduce Jobs into a database at job runtime.
Hence, consecutive MapReduce Jobs that require the same data can benefit, e.g., from
the binary representation or indexes inside the database store. However, this scenario
already involves an additional roundtrip of first writing the data to HDFS, reading it
from HDFS to then again store the data inside a database plus some overhead for index
creation. In contrast to these works, HAIL aims at reducing the upfront cost of data
parsing and index creation already when loading data into HDFS. In other words, while
these approaches aim at adaptively uploading raw datasets from HDFS into a database
to improve performance, HAIL aims at indexing raw datasets directly in HDFS to im-
prove performance, without additional read/write cycles. NoDB, another recent work,
proposes to run queries directly on raw datasets [5]. Additionally, this approach (i) re-
members the offsets of individual attribute values, and (ii) caches binary values from the
dataset which are both extracted as byproducts of query execution. Those optimizations
allow for reducing the tokenizing and parsing costs for consecutive queries that touch
previously processed parts of the dataset. However, NoDB considers a single-node sce-
nario using a local file system, while HAIL considers a distributed environment and a
distributed file system. As shown in our experiments, writing to HDFS is I/O-bound
and parsing the attributes of a dataset entirely can be performed in parallel to storing
the data in HDFS. Since data parsing does not cause noticeable runtime overhead in our
scenario, incremental loading techniques as presented in [5] are not required for HAIL.
Furthermore, NoDB does not consider different sort orders or indexes to improve data
access.

To the best of our knowledge, this work is the first work that aims at pushing in-
dexing to the extreme at low index creation cost and to propose an adaptive indexing
solution suitable for MapReduce systems.

3.9 Experiments on Static Indexing
Let’s get back to Bob again and his initial question: will HAIL solve his indexing prob-
lem efficiently? To answer this question, we need to run a wave of experiments for
static indexing in order to answer the following questions as well:

1. What is the performance of HAIL at upload time?

2. What is the impact of static indexing in the upload pipeline?
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3. How many indexes can we create in the time the standard HDFS uploads the data?

4. How does hardware performance affect HAIL upload?

5. How well does HAIL scale-out on large clusters?

We answer these questions in Section 3.9.3.

6. What is the performance of HAIL at query time?

7. How much does HAIL benefit from statically created indexes?

8. How does query selectivity affect HAIL?

9. How do failing nodes affect performance?

We answer these questions in Section 3.9.4.

10. How does HailSplitting improve end-to-end job runtimes?

We answer this question in Section 3.9.5.

3.9.1 Hardware and Systems
Hardware

For our experiments on static indexing, we use six different clusters in total. One is
a physical 10-node cluster (Cluster-A). Each node has one 2.66GHz Quad Core Xeon
processor running 64-bit platform Linux openSuse 11.1 OS, 4x4GB of main memory,
6x750GB SATA HD, and three Gigabit network cards. Our physical cluster has the
advantage that the amount of runtime variance is limited [101]. Yet, to fully understand
the scale-up properties of HAIL, we use three different EC2 clusters, each having 10
nodes. For each of these three clusters, we use different node types (see Section 3.9.3).
Finally, to understand how well HAIL scales-out, we consider two more EC2 clusters:
one with 50 nodes and one with 100 nodes (see Section 3.9.3).

Systems

We compared the following systems: (1) Hadoop, (2) Hadoop++ as described in [35],
and (3) HAIL as described previously. For HAIL, we disable the HAIL splitting in
Section 3.9.4 in order to measure the benefits of using this policy in Section 3.9.5. All
three systems are based on Hadoop 0.20.203 and are compiled and run using Java 7. All
systems were configured to use the default HDFS block size of 64MB if not mentioned
otherwise.
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3.9.2 Datasets and Queries
Datasets

For our benchmarks, we use two different datasets. First, we use the UserVisits table
as described in [91]. This dataset nicely matches Bob’s Use-Case. We generated 20GB
of UserVisits data per node using the data generator proposed by [91]. Second, we
additionally use a Synthetic dataset consisting of 19 integer attributes in order to under-
stand the effects of selectivity. Notice that, this Synthetic dataset is similar to scientific
datasets, where all or most of the attributes are integer or float attributes (e.g., the SDSS
dataset). For this dataset, we generated 13GB per node.

Queries

For the UserVisits dataset, we consider the following queries as Bob’s workload:

• Bob-Q1 (selectivity: 3.1 x 10−2)

SELECT sourceIP FROM UserVisits WHERE visitDate

BETWEEN ’1999-01-01’ AND ’2000-01-01’

• Bob-Q2 (selectivity: 3.2 x 10−8)

SELECT searchWord , duration, adRevenue

FROM UserVisits WHERE sourceIP=’172.101.11.46’

• Bob-Q3 (selectivity: 6 x 10−9)

SELECT searchWord , duration, adRevenue

FROM UserVisits WHERE sourceIP=’172.101.11.46’

AND visitDate=’1992-12-22’

• Bob-Q4 (selectivity: 1.7 x 10−2)

SELECT searchWord , duration, adRevenue

FROM UserVisits WHERE adRevenue >=1 AND adRevenue <=10

Additionally, we use a variation of query Bob-Q4 to see how well HAIL performs on
queries with low selectivities:

• Bob-Q5 (selectivity: 2.04 x 10−1)

SELECT searchWord , duration, adRevenue

FROM UserVisits WHERE adRevenue >=1 AND adRevenue <=100
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For the Synthetic dataset, we use the queries in Table 3.2. Notice that, for Synthetic all
queries use the same attribute for filtering. Hence, for this dataset HAIL cannot benefit
from its different indexes: it creates three different indexes, yet only one of them will be
used by these queries.

Table 3.2: Synthetic queries.

Query #Projected Attributes Selectivity
Syn-Q1a 19 0.10
Syn-Q1b 9 0.10
Syn-Q1c 1 0.10
Syn-Q2a 19 0.01
Syn-Q2b 9 0.01
Syn-Q2c 1 0.01

For all queries and experiments, we report the average runtime of three trials.

3.9.3 Data Loading with Static Indexing
We strongly believe that upload time is a crucial aspect for to adopt a parallel data-
intensive system. This is because most users (such as Bob or scientists) want to start
analyzing their data early. In fact, low startup costs are one of the big advantages of
standard Hadoop over RDBMSs. Thus, we exhaustively study the upload performance
of HAIL.

Varying the Number of Indexes

We first measure the impact in performance when creating indexes statically. For this,
we scale the number of indexes to create when uploading the UserVisits and the Syn-
thetic datasets. For HAIL, we vary the number of indexes from 0 to 3 and for Hadoop++

from 0 to 1 (this is because Hadoop++ cannot create more than one index). For Hadoop,
we only report numbers with 0 indexes as it cannot create any index.

Figure 3.6a shows the results for the UserVisits dataset. We observe that HAIL has
a negligible upload overhead of ∼2% over standard Hadoop. Then, when HAIL creates
one index per replica the overhead still remains very low (at most ∼14%). On the other
hand, we observe that HAIL improves over Hadoop++ by a factor of 5.1 when creating
no index and by a factor of 7.3 when creating one index. This is because Hadoop++ has
to run two expensive MapReduce jobs for creating one index. For HAIL, we observe
that for two and three indexes, the upload costs increase only slightly.

Figure 3.6b illustrates the results for the Synthetic dataset. We observe that HAIL
significantly outperforms Hadoop++ again by a factor of 5.2 when creating no index



3.9. Experiments on Static Indexing 53

and by a factor of 8.2 when creating one index. On the other hand, we now observe that
HAIL outperforms Hadoop by a factor of 1.6 even when creating three indexes. This
is because the Synthetic dataset is well suited for binary representation, i.e., in contrast
to the UserVisits dataset, HAIL can significantly reduce the initial dataset size. This
allows HAIL to outperform Hadoop even when creating one, two, or three indexes.

For the remaining upload experiments, we discard Hadoop++ as we clearly saw in
this section that it does not upload datasets efficiently. Therefore, we focus on HAIL
using Hadoop as baseline.

Varying the Replication Factor

We now analyze how well HAIL performs when increasing the number of replicas. In
particular, we aim at finding out how many indexes HAIL can create for a given dataset
in the same time standard Hadoop needs to upload the same dataset with the default
replication factor of three and creating no indexes. To do this, we upload the Synthetic
dataset with different replication factors. In this experiment, HAIL creates as many
clustered indexes as block replicas. In other words, when HAIL uploads the Synthetic
dataset with a replication factor of five, it creates five different clustered index for each
block.

Figure 3.6c shows the results for this experiment. The dotted line marks the time
Hadoop takes to upload with the default replication factor of three. We see that HAIL
significantly outperforms Hadoop for any replication factor and up to a factor of 2.5.
More interestingly, we observe that HAIL stores six replicas (and hence it creates six
different clustered indexes) in a little less than the same time Hadoop uploads the same
dataset with only three replicas without creating any index. Still, when increasing the
replication factor even further for HAIL, we see that HAIL has only a minor overhead
over Hadoop with three replicas only. These results also show that choosing the repli-
cation factor mainly depends on the available disk space. Even in this respect, HAIL
improves over Hadoop. For example, while Hadoop needs 390GB to upload the Syn-
thetic dataset with 3 block replicas, HAIL needs only 420GB to upload the same dataset
with 6 block replicas! HAIL enables users to stress indexing to the extreme to speed up
their query workloads.

Cluster Scale-Up for Static Indexing

In this section, we study how different hardware affects HAIL upload times. For this, we
create three 10-nodes EC2 clusters: the first uses large (m1.large) nodes10, the second
extra large (m1.xlarge) nodes, and the third cluster quadruple (cc1.4xlarge) nodes. We
upload the UserVisits and the Synthetic datasets on each of these clusters.

10For this cluster type, we allocate an additional large node to run the namenode and jobtracker.
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Figure 3.6: Upload times when varying the number of created indexes (a)&(b) and the number
of data block replicas (c)
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Table 3.3: Scale-up results

(a) Upload times for UserVisits when scaling-up [sec]

Cluster Node Type Hadoop HAIL System Speedup
Large 1844 3418 0.54
Extra Large 1296 2039 0.64
Cluster Quadruple 1284 1742 0.74
Scale-Up Speedup 1.4 2.0
Physical 1398 1600 0.87

(b) Upload times for Synthetic when scaling-up [sec]

Cluster Node Type Hadoop HAIL System Speedup
Large 1176 1023 1.15
Extra Large 788 640 1.23
Cluster Quadruple 827 600 1.38
Scale-Up Speedup 1.4 1.7
Physical 1132 717 1.58

We report the results of these experiments in Table 3.3a (for UserVisits) and in Ta-
ble 3.3b (for Synthetic), where we display the System Speedup of HAIL over Hadoop as
well as the Scale-Up Speedup for Hadoop and HAIL. Additionally, we show again the
results for our local cluster as baseline. As expected, we observe that both Hadoop
and HAIL benefit from using better hardware. In addition, we also observe that
HAIL always benefits from scaling-up computing nodes, especially, using a better CPU
makes parsing to binary faster. As a result, HAIL decreases (in the 3.3a) or increases
(Table 3.3b) the performance gap with respect to Hadoop when scaling-up (System
Speedup).

We see that Hadoop significantly improves its performance when scaling from Large
(1844 s) to Extra Large (1296 s) instances. This is thanks to the better I/O subsystem
of the Extra Large instance types. When scaling from Extra Large to Cluster Quadruple
instances, we see no real improvement, since the I/O subsystem stays the same and only
the CPU power increases. In contrast, HAIL benefits from additional and/or better CPU
cores when scaling-up. Finally, we observe that the speedup of HAIL over Hadoop is
even better when using physical nodes.

Cluster Scale-Out for Static Indexing

At this point, the reader might have already started wondering how well HAIL performs
for larger clusters. To answer this question, we allocate one 50-nodes EC2 cluster and
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one 100-nodes EC2 cluster. We use cluster quadruple (cc1.4xlarge) nodes for both
clusters, because with this node type we experienced the lowest performance variability.
In both clusters, we allocated two additional nodes: one to serve as Namenode and the
other to serve as JobTracker. While varying the number of nodes per cluster, we keep
the amount of data per node constant.

Figure 3.7 shows these results. We observe that HAIL achieves roughly the same
upload times for the Synthetic dataset. For the UserVisits dataset, we see that HAIL im-
proves its upload times for larger clusters. In particular, for 100 nodes, we see that HAIL
matches the Hadoop upload times for the UserVisits dataset and outperforms Hadoop
by a factor up to ∼ 1.4 for the Synthetic dataset. More interesting, we observe that,
in contrast to Hadoop, HAIL does not suffer from high performance variability [101].
Overall, these results show the efficiency of HAIL when scaling-out.
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Figure 3.7: Scale-out results

3.9.4 Job Execution using Static Indexes
We now analyze the performance of HAIL when running MapReduce jobs. Our main
goal for all these experiments is to understand how well HAIL can perform compared
to the standard Hadoop MapReduce and Hadoop++ systems. With this in mind, we
measure two different execution times. First, we measure the end-to-end job runtimes,
which is the time a given job takes to run completely. Second, we measure the record
reader runtimes, which is dominated by the time a given map task spends reading its
input data. Recall that for these experiments, we disable the HailSplitting policy (pre-
sented in Section 3.7) in order to better evaluate the benefits of having several clustered
indexes per dataset. We study the benefits of HailSplitting in Section 3.9.5.

Bob’s Query Workload

For these experiments, Hadoop does not create any index; since Hadoop++ can only
create a single clustered index, it creates one clustered index on sourceIP for all three
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replicas, as two very selective queries will benefit from this; HAIL creates one clustered
index for each replica: one on visitDate, one on sourceIP, and one on adRevenue.

Figure 3.8a shows the average end-to-end runtimes for Bob’s queries. We observe
that HAIL outperforms both Hadoop and Hadoop++ in all queries. For Bob-Q2 and
Bob-Q3, Hadoop++ has similar results as HAIL since both systems have an index on
sourceIP. However, HAIL still outperforms Hadoop++. This is because HAIL does not
have to read any block header to compute input splits while Hadoop++ does. Conse-
quently, HAIL starts processing the input dataset earlier, and hence, it finishes before.

Figure 3.8b shows the RecordReader times11. Once more again, we observe that
HAIL outperforms both Hadoop and Hadoop++. HAIL is up to a factor 46 faster than
Hadoop and up to a factor 38 faster than Hadoop++. This is because Hadoop++ is only
competitive if it happens to hit the right index. As HAIL has additional clustered indexes
(one for each replica), the likelihood to hit an index increases. Then, query runtimes for
Bob-Q1, Bob-Q4, and Bob-Q5 are sharply improved over Hadoop and Hadoop++.

Yet, if HAIL allows map tasks to read their input data by more than one order of
magnitude faster than Hadoop and Hadoop++, why do MapReduce jobs not benefit from
this? To understand this, we estimate the overhead of the Hadoop MapReduce frame-
work. We do this by considering an ideal execution time, i.e., the time needed to read
all the required input data and execute the map functions over such data. We estimate
the ideal execution time Tideal = #MapTasks/#ParallelMapTasks × Avg(TRecordReader).
Here, #ParallelMapTasks is the maximum number of map tasks that can be per-
formed at the same time by all computing nodes. We define the overhead as Toverhead =

Tend-to-end−Tideal. We show the results in Figure 3.8c. We see that the Hadoop framework
overhead is in fact dominating the total job runtime. This has many reasons. A major
reason is that Hadoop was not built to execute very short tasks. To schedule a single
task, Hadoop spends several seconds even though the actual task just runs in a few ms
(as it is the case for HAIL). Therefore, reducing the number of map tasks of a job could
greatly decrease the end-to-end job runtime. We tackle this problem in Section 3.9.5.

Synthetic Query Workload

Our goal in this section is to study how query selectivities affect HAIL’s performance.
Recall that, for this experiment, HAIL cannot benefit from its different indexes: all
queries filter on the same attribute. We use this setup to isolate the effects of selectivity.

We present the end-to-end job runtimes in Figure 3.9a and the record reader times
in Figure 3.9b. We observe in Figure 3.9a that HAIL outperforms both Hadoop and
Hadoop++. We see again that even if Hadoop++ has an index on the selected attribute,
Hadoop++ runs slower than HAIL. This is because HAIL has a slightly different split-
ting phase than Hadoop++. Looking at the results in Figure 3.9b, the reader might think

11This is the time a map task takes to read and process its input.
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Figure 3.8: Job runtimes, record reader times, and Hadoop MapReduce framework overhead
for Bob’s query workload filtering on multiple attributes



3.9. Experiments on Static Indexing 59

0

175

350

525

700

a b c a b c

450446460473
517

572
Jo

b 
R

un
tim

e 
[s

ec
]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1         Syn-Q2

460
463

433 404 403 403 409
466 433 433 430 433

(a) End-to-end job runtimes

0

750

1500

2250

3000

a b c a b c

6078131139274
495

586074
282331

572

1610161516521708
1885

2116

R
R

 R
un

tim
e 

[m
s]

MapReduce Jobs

Hadoop Hadoop++ HAIL

Syn-Q1    Syn-Q2

(b) Average record reader runtimes

0

150

300

450

600

a b c a b c

Jo
b 

R
un

tim
e 

[s
ec

]

MapReduce Jobs

Hadoop Hadoop++ HAIL Overhead

Syn-Q1     Syn-Q2

(c) Hadoop scheduling overhead
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Synthetic query workload filtering on a single attribute
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that HAIL is better than Hadoop++ because of the PAX layout used by HAIL. How-
ever, we clearly see in the results for query Syn-Q1a that this is not true12. We observe
that even in this case, HAIL is better than Hadoop++. The reason is that the index size
in HAIL (2KB) is much smaller than the index size in Hadoop++ (304KB), which al-
lows HAIL to read the index slightly faster. On the other hand, we see that Hadoop++

slightly outperforms HAIL for all three Syn-Q2 queries. This is because these queries
are more selective and then, the random I/O-cost due to tuple reconstruction starts to
dominate the record reader times.

Surprisingly, we observe that query selectivity does not affect end-to-end job run-
times (see Figure 3.9a) even if query selectivity has a clear impact on the RecordReader
times (see Figure 3.9b). As explained in Section 3.9.4, this is due to the overhead of
the Hadoop MapReduce framework. We clearly see this overhead in Figure 3.9c. In
Section 3.9.5, we will investigate this in more detail.

Fault-Tolerance

In very large-scale clusters (especially on the Cloud), node failures are no more an ex-
ception but rather the rule. A big advantage of Hadoop MapReduce is that it can grace-
fully recover from these failures. Therefore, it is crucial to preserve this key property
to reliably run MapReduce jobs with minimal performance impact under failures. In
this section, we study the effects of node failures in HAIL and compare it with standard
Hadoop MapReduce.

We perform these experiments as follows: (i) we set the expiry interval to detect that
a TaskTracker or a datanode failed to 30 seconds, (ii) we chose a node randomly and
kill all Java processes on that node after 50% of work progress, and (iii) we measure the
slowdown as in [35], slowdown =

(T f−Tb)
Tb
·100, where Tb is the job runtime without node

failures and T f is the job runtime with a node failure. We use two configurations for
HAIL. First, we configure HAIL to create indexes on three different attributes, one for
each replica. Second, we use a variant of HAIL, coined HAIL-1Idx, where we create an
index on the same attribute for all three replicas. We do so to measure the performance
impact of HAIL falling back to full scan for some blocks after the node failure. This
happens for any map task reading its input from the killed node. In the case of HAIL-
1Idx, all map tasks will still perform an index scan as all blocks have the same index.

Figure 3.10 shows the fault-tolerance results for Hadoop and HAIL. Overall, we
observe that HAIL preserves the failover property of Hadoop by having almost the same
slowdown. However, it is worth noting that HAIL can even improve over Hadoop. This
is because HAIL can still perform an index scan when having the same index on all
replicas (HAIL-1Idx). We clearly see this when HAIL creates the same index on all

12Recall that this query projects all attributes, which is indeed more beneficial for Hadoop++ as it uses
a row layout.
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replicas (HAIL-1Idx). In this case, HAIL has a lower slowdown since failed map tasks
can still perform an index scan even after failure. As a result, HAIL runs almost as fast
as when no failure occurs.
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Figure 3.10: Fault-tolerance results

3.9.5 Impact of the HAIL Splitting Policy
We observed in Figures 3.8c and 3.9c that the Hadoop MapReduce framework incurs a
high overhead in the end-to-end job runtimes. To evaluate the efficiency of HAIL to deal
with this problem, we now enable the HailSplitting policy (described in Section 3.7) and
run again the Bob and Synthetic queries on HAIL.

Figure 3.11 illustrates these results. We clearly observe that HAIL significantly out-
performs both Hadoop and Hadoop++. We see in Figure 3.11a that HAIL outperforms
Hadoop up to a factor of 68 and Hadoop++ up to a factor of 73 for Bob’s workload.
This is mainly because the HailSplitting policy significantly reduces the number of map
tasks from 3, 200 (which is the number of map tasks for Hadoop and Hadoop++) to only
20. As a result of HAIL Splitting policy, the scheduling overhead does not impact the
end-to-end workload runtimes in HAIL (see Section 3.9.4). For the Synthetic workload
(Figure 3.11b), we observe that HAIL outperforms Hadoop up to a factor of 26 and
Hadoop++ up to a factor of 25. Overall, we observe in Figure 3.11c that using HAIL
Bob can run all his five queries 39x faster than Hadoop and 36x faster than Hadoop++.
We also observe that HAIL runs all six Synthetic queries 9x faster than Hadoop and 8x
faster than Hadoop++.

3.10 Experiments on Adaptive Indexing
In the experiments of Section 3.9, we focused on the performance of HAIL with static
indexing only, i.e., we deactivated HAIL adaptive indexing. For the following experi-
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ments, we now focus on the evaluation of the HAIL adaptive indexing pipeline. There-
fore, we examine the following scenario: what happens if Bob did not create the right
indexes upfront? Can Bob adapt his indexes to a new workload that he did not predict
at upload time? For this, we need to evaluate the efficiency of HAIL to adapt to query
workloads and compare it with Hadoop and a version of HAIL, that only uses static
indexing. We present a second wave of experiments for adaptive indexing to answer the
following main questions:

1. What is the overhead of running the adaptive indexing techniques in HAIL?

2. How fast can HAIL adapt to changes in the query workload?

3. How well does each of the adaptive indexing strategies of HAIL allow MapRe-
duce jobs to improve their runtime?

3.10.1 Hardware and Systems
Hardware

For our experiments on adaptive indexing, we use Cluster-A as described in Sec-
tion 3.9.1 and an additional 4-node cluster (Cluster-B) in order to measure the influence
of more efficient processors. In Cluster-B, each node has one 3.46 GHz Hexa Core
Xeon X5690 processors; 20GB of main memory; one 278GB SATA hard disk (for the
OS) and one 837GB SATA hard disk (for HDFS); two one Gigabit network cards.

Systems

Since the results from Section 3.9 clearly showed the high superiority of HAIL over
Hadoop++, we decide to discard Hadoop++ and keep only Hadoop and HAIL with
no adaptive indexing activated as baselines. For HAIL using the adaptive indexing
techniques, we consider four different variants according to the offer rate ρ: HAIL (ρ =

0.1), HAIL (ρ = 0.25), HAIL (ρ = 0.5), and HAIL (ρ = 1). Notice that, HAIL with no
adaptive indexing is the same as HAIL (ρ = 0). Still, as in previous sections, we assume
that HAIL creates one index on sourceIP, one on visitDate, and one on adRevenue, for
the UserVisits dataset. For the Synthetic dataset, we assume that HAIL does not create
any index at upload time. Notice that, given the high Hadoop scheduling overhead, we
observed in previous experiments, we increase the data block size to 256MB to decrease
such overhead for Hadoop.

3.10.2 Datasets and Queries
Making use of the lessons learned from the first wave of experiments on static indexing,
we slightly change our datasets and queries in order to stress and better evaluate HAIL
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under bigger datasets and different query selectivities. We describe these changes in the
following.

Datasets

We again use the web log dataset (UserVisits) but scaled it to 40GB per node,
i.e., 400GB for Cluster-A and 160GB for Cluster-B. Additionally, the Synthetic dataset
has now six attributes and a total size of 50GB per node, i.e., 500GB for Cluster-A and
200GB for Cluster-B. We generate the values for the first attribute in the range [1..10]
and with an exponential repetition for each value, i.e., 10i−1 where i ∈ [1..10]. We gen-
erate the other five attributes at random. Then, we shuffle all tuples across the entire
dataset to have the same distribution across data blocks.

Queries

For the UserVisits dataset we consider eleven queries, formulated as MapReduce jobs
(JobUV1 – JobUV11), with a selection predicate on attribute searchWord and with a full
projection (i.e., projecting all 9 attributes). The first four jobs JobUV1 – JobUV4 have a
selectivity of 0.4% (1.24 million output records), and the remaining seven jobs (JobUV5
– JobUV11) have a selectivity of 0.2% (0.62 million output records). For the Synthetic
dataset, we consider other eleven jobs (JobSyn1 – JobSyn11) with a full projection, but
with a selection predicate on the first attribute. These jobs have a selectively of 0.2%
(2.2 million output records). All jobs for both datasets select disjoint ranges to avoid
caching effects. We report the average performance over three runs.

3.10.3 Adaptive Indexing Overhead for a Single Job

Adaptive indexing in HAIl always happens in the context of job execution since HAIL
piggybacks adaptive indexing on MapReduce jobs. Therefore, the very first question
that the reader might ask is what is the additional runtime incurred by HAIL on MapRe-
duce jobs? We answer this question in this section. In particular, we want to measure
the maximum overhead of adaptive indexing on job execution for a single job. The max-
imum overhead can be observed with the first job that starts indexing on a completely
unindexed attribute. For this, we run job JobUV1 for UserVisits and job JobSyn1 for
Synthetic and we assume that there is no block with a applicable index for jobs JobUV1
and JobSyn1. Figure 3.12 shows the job runtime for five variants of HAIL for the
UserVisits dataset. In Cluster-A, we observe that HAIL has almost no overhead (only
1%) over HAIL (ρ = 0) when using an offer rate of 10% (i.e., ρ = 0.1). Notice that,
HAIL (ρ = 0) has no matching index available and hence behaves like normal Hadoop
with just the binary PAX layout to speed up the job execution. We can also see that the
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new layout gives us an improvement of at most a factor of two in our experiments. In-
terestingly, we observe that HAIL is still faster than Hadoop with ρ = 0.1 and ρ = 0.25.
Indeed, the overhead incurred by HAIL increases along with the offer rate used by
HAIL. However, we observe that HAIL increases the execution time of JobUV1 by less
than factor of two w.r.t. both Hadoop and HAIL without any indexing, even though all
data blocks are indexed in a single MapReduce job. We especially observe that the over-
head incurred by HAIL scales linearly with the ratio of indexed data blocks (i.e., with
ρ), except when scaling from ρ = 0.1 to ρ = 0.25. This is because HAIL starts to be
CPU bound only when offering more than 20% of the data blocks (i.e., from ρ = 0.25).
This changes when running JobUV1 in Cluster-B. In these results, we clearly observe
that the overhead incurred by HAIL scales linearly with ρ. We especially observe that
HAIL benefits from using newer CPUs and have better performance than Hadoop for
most offer rates. HAIL has only 4% overhead over Hadoop when having ρ = 1. Addi-
tionally, we can see that the adaptive indexing in HAIL incurs low overhead: from 10%
(with ρ = 0.1) to 43% (with ρ = 1).

Figure 3.13 shows the job runtimes for Synthetic. Overall, we observe that the
overhead incurred by HAIL continues to scale linearly with the offer rate. In particular,
we observe that HAIL has no overhead over Hadoop in both clusters, except for HAIL
(ρ = 1) in Cluster-A (where HAIL incurs a negligible overhead of ∼3%). It is worth
noting that when using newer CPUs (Cluster-B) adaptive indexing in HAIL has very
low overhead as well: from 9% to only 23%.

From these results, we can conclude that HAIL can efficiently create indexes at job
runtime while limiting the overhead of writing pseudo data blocks. We observe the effi-
ciency of the lazy adaptive indexing mechanism of HAIL to adapt to users’ requirements
via different offer rates.
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Figure 3.13: HAIL Performance when running the first MapReduce job over Synthetic.

3.10.4 Adaptive Indexing Performance for a Sequence of Jobs

We saw in the previous section that HAIL adaptive indexing techniques can scale lin-
early for a single job with the help of the offer rate. But, which are the implications for
a sequence of MapReduce jobs? To answer this question, we run the sequence of eleven
MapReduce jobs for each dataset.

Figures 3.14 and 3.15 show the job runtimes for the UserVisit and Synthetic datasets,
respectively. Overall, we clearly see in both computing clusters that HAIL improves the
performance of MapReduce jobs linearly with the number of indexed data blocks. In
particular, we observe that the higher the offer rate, the faster HAIL converges to a
complete index. However, the higher the offer rate, the higher the adaptive indexing
overhead for the initial job (JobUV1 and JobSyn1). Thus, users are faced with a natural
tradeoff between indexing overhead and the required number of jobs to index all blocks.
But, it is worth noting that users can use low offer rates (e.g. ρ = 0.1) and still quickly
converge to a complete index (e.g., after 10 job executions for ρ = 0.1). In particular,
we observe that after executing only a few jobs, HAIL already outperforms Hadoop
significantly. For example, let us consider the sequence of jobs on Synthetic using
ρ = 0.25 on Cluster-B. Remember that for this offer rate, the overhead for the first
job compared to HAIL without any indexing is relatively small (11%) while HAIL is
still able to outperform Hadoop. With the second job, HAIL is slightly faster than the
full scan, and the fourth job improves over full scan in HAIL by more than a factor of
two and over Hadoop by more than a factor of five13. As soon as HAIL converges to
a complete index, HAIL significantly outperforms full scan job execution in HAIL by
up to a factor of 23 and Hadoop by up to a factor of 52. For the UserVisits dataset,
HAIL outperforms unindexed HAIL by up to a factor of 24 and Hadoop by up to a
factor of 32. Notice that, performing a full scan over Synthetic in HAIL is faster than
in Hadoop, because HAIL reduces the size of this dataset when converting it to binary
representation.

13Although HAIL is still indexing further blocks.
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In summary, the results show that HAIL can efficiently adapt to query workloads
with a very low overhead only for the very first job: the following jobs always benefit
from the indexes created in previous jobs. Interestingly, an important result is that HAIL
can converge to a complete index after running only a few jobs.
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Figure 3.14: HAIL performance when running a sequence of MapReduce jobs over UserVisits.
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Figure 3.15: HAIL performance when running a sequence of MapReduce jobs over Synthetic.

3.10.5 Eager Adaptive Indexing for a Sequence of Jobs
We saw in the previous section that HAIL improves the performance of MapReduce jobs
linearly with the number of indexed data blocks. Now, the question that might arise in
the reader’s mind is can HAIL efficiently exploit the saved runtimes for further adaptive
indexing? To answer this question, we enable the eager adaptive indexing strategy in
HAIL and run again all UserVisits jobs using an initial offer rate of 10%. In these
experiments, we use Cluster-A and consider HAIL (without eager adaptive indexing
enabled) with offer rates of 10% and 100% as baselines.
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Figure 3.16 shows the result of this experiment. As expected, we observe that HAIL
(eager) has the same performance as HAIL (ρ = 0.1) for JobUV1. However, in contrast
to HAIL (ρ = 0.1), HAIL (eager) keeps its performance constant for JobUV2. This
is because HAIL (eager) automatically increases ρ from 0.1 to 0.17 in order to exploit
saved runtimes. For JobUV3, HAIL (eager) still keeps its performance constant by
increasing ρ from 0.17 to 0.33. Now, even though HAIL (eager) increases ρ from 0.33
to 1 for JobUV4, HAIL (eager) now improves the job runtime as only 40% of the data
blocks remain unindexed. As a result of adapting its offer rate, HAIL (eager) converges
to a complete index only after 4 jobs while incurring almost no overhead over HAIL.
From JobUV5, HAIL (eager) ensures the same performance as HAIL (ρ = 1) since all
data blocks are already indexed, while HAIL (ρ = 0.1) takes 6 more jobs to converge to
a complete index, i.e., to index all data blocks.

These results show that HAIL can converge even faster to a complete index, while
still keeping a negligible indexing overhead for MapReduce jobs. Overall, these results
demonstrate the high efficiency of HAIL (eager) to adapt its offer rate according to the
number of already indexed data blocks.
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Figure 3.16: Eager adaptive indexing vs. ρ = 0.1 and ρ = 1

3.11 Conclusion
We presented HAIL (Hadoop Adaptive Indexing Library), a twofold approach to-
wards zero-overhead indexing in Hadoop MapReduce. HAIL introduced two index-
ing pipelines that address two major problems of traditional indexing techniques. First,
HAIL static indexing solves the problem of long indexing times, which had to be in-
vested on previous indexing approaches in Hadoop. This was a severe drawback of
Hadoop++ [35], which required expensive MapReduce jobs in the first place to create
indexes. Second, HAIL adaptive indexing allows us to automatically adapt the set of
available indexes to previously unknown or changing workloads at runtime with only
minimal costs.
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In more detail, HAIL static indexing allows users to efficiently build clustered in-
dexes while uploading data to HDFS. Thereby, our novel concept of logical replication
enables the system to create different sort orders (and hence clustered indexes) for each
physical replica of a data set without additional storage overhead. This means that in
a standard system setup, HAIL can create three different indexes (almost) for free as
byproduct of uploading the data to HDFS. We have shown that HAIL static indexing
also works well for a larger number of replicas. For example, in our experiments HAIL
created six different clustered indexes in the same time HDFS took to just upload three
byte-identical copies without any index.

With HAIL static indexing, we can already provide several matching indexes for a
variety of queries. Still, our static indexing approach has similar limitations as other
traditional techniques when it comes to unknown or changing workloads. The problem
is that users have to decide upfront on which attributes to index and it is usually costly
to revisit this choice in case of missing indexes. We solve this problem with HAIL
adaptive indexing. Using this approach, our system can create missing but valuable
indexes automatically and incrementally at job execution time. In contrast to previous
work, our adaptive indexing technique again focuses on indexing at minimal expense.

We have experimentally compared HAIL with Hadoop as well as Hadoop++ using
different datasets and different clusters. The results demonstrated the high superiority
of HAIL. For HAIL static indexing, our experiments showed that we typically create a
win-win situation: e.g., users can upload datasets up to 1.6x faster than Hadoop (despite
the additional indexing effort!) and run jobs up to 68x faster than Hadoop.

Our second set of experiments demonstrated the high efficiency of HAIL adaptive
indexing to create clustered indexes at job runtime and adapt to users’ workloads. In
terms of indexing effort, HAIL adaptive indexing has a very low overhead compared to
HAIL full scan (which is already 2x faster than Hadoop full scan). For example, we ob-
served 1% runtime overhead for the UserVisits dataset when using an offer rate of 10%
and only for the very first job. The following jobs already run faster than the full scan
in HAIL, e.g. ∼2 times faster from the fourth job, with an offer rate of 25%. The results
also show that, even for low offer rates, our approach quickly converges to a complete
index after running only a few number of MapReduce jobs (e.g., after 10 jobs with an
offer rate of 10%). In terms of job runtimes, HAIL adaptive indexing improves perfor-
mance dramatically. For a sequence of previously unseen jobs on unindexed attributes,
runtime improved by up to a factor of 24 over HAIL without adaptive indexing and a
factor of 52 over Hadoop.





Chapter 4

A Comparison of Adaptive Radix Trees
and Hash Tables

4.1 Introduction
In the last decade the amount of main memory in commodity servers has constantly
increased — nowadays, servers with terabytes of main memory are widely available
at affordable prices. This memory capacity makes it possible to store most databases
completely in main memory, and has triggered a considerable amount of research and
development in the area. As a result, new high performance index structures for main
memory databases are emerging to challenge hash tables — which have been widely
used for decades due to their good performance. A recent and promising structure in
this domain is the adaptive radix tree ARTful [76], which we call just ART from now
on. This recent data structure was reported to be significantly faster than existing data
structures like FAST [71] and the cache-conscious B+-tree CSB+ [95]. Moreover, it
was also reported that only a hash table is competitive to ART. Thus, ART was reported
to be as good as a hash table while also supporting range queries. Nonetheless, three
important details were not considered during the experimental comparison of ART with
other data structures that we would like to point out:

1. To the best of our knowledge, the first adaptive radix tree in the literature was
the Judy Array [12], which we simply call Judy from now on. A comparison
between ART and Judy was not offered by the original study [76], but given the
strong similarities between the two structures, we think that there ought to be a
comparison between the two.

2. The hash table used by the authors of ART for the experimental comparison was
a chained hash table. This kind of hashing became popular for being, perhaps, the
very first iteration of hashing, appearing back in the 50s. Nevertheless, it is still
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popular for being the default method in standard libraries of popular program-
ming languages like C++ and Java. However, nowadays chained hashing could
be considered suboptimal in performance and space because of the (potentially)
high overhead due to pointers, and other hashing schemes are preferred where
performance is sought — like quadratic probing [25, 74]. Moreover, rather re-
cently, Cuckoo hashing [90] has seen a considerable amount of research [86], and
it has been reported to be competitive [90] in practice to, for example, quadratic
probing. Thus, we believe that the experimental comparison between ART and
hashing was not complete. This brings us to our last point, hash functions.

3. Choosing a hash function should be considered as important as choosing a hashing
scheme (table), since it highly determines the performance of the data structure.
Over decades there has been a considerable amount of research focusing only on
hash functions — sometimes on their theoretical guarantees, some other times on
their performance in practice. The authors of ART chose Murmur [7] as a hash
function — presumably due to the robustness (ability of shuffling data) shown in
practice, although nothing is known about its theoretical guarantees, to the best
of our knowledge. In our own experiments we noticed that Murmur hashing is
indeed rather robust, but for many applications, or at least the ones considered by
the authors of ART, that much robustness could be seen as an overkill. Thus, it is
interesting to see how much an easier (but still good) hash function changes the
picture.

4.1.1 Contributions
The main goal of this chapter is to extend the experimental comparison offered by the
authors of ART by providing a thorough experimental evaluation of ART against Judy,
two variants of quadratic probing, and three variants of Cuckoo hashing. We provide
different variants of the same hashing scheme because some variants are tuned for per-
formance, while other are tuned for space efficiency. However, it is not our intention
to compare ART against structures already considered (covered) in the original ART
paper [76] again. Consequently, just as in the micro-benchmarks presented in [76], we
only focus on keys from an integer domain. In this regard, we would like to point out
that the story could change if keys were arbitrary strings of variable size. However, a
thorough study on indexing strings in main memory deserves a study on its own, and is
thus out of scope of this work.

For each considered hash table we test two different hash functions, Murmur hash-
ing [7], for reference, completeness, and compatibility with the original study [76], and
the well-known multiplicative hashing [25, 74, 30] — which is perhaps the easiest-
to-compute hash function with still good theoretical guarantees. Our experiments
strongly indicate that neither ART nor Judy are competitive in terms of performance
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to well-engineered hash tables, and in the case of ART, sometimes not even in terms of
space. For example, for one billion indexed keys, one non-covering variant of Cuckoo
hashing is at least 4.8× faster for insertions than ART, at least 2.8× faster for lookups,
and it sometimes requires just half the space of ART, see Figures 4.2, 4.3, and 4.4. We
also hope to convey more awareness as of how important it is to consider newer hashing
approaches (hashing schemes and hash functions) when throughput performance and/or
memory efficiency are crucial.

The remainder of the chapter is organized as follows. In Section 4.2 we give a gen-
eral description of adaptive radix trees — highlighting key similarities and differences
between ART and Judy. In Section 4.3 we give a detailed description of the hashing
schemes and hash functions used in our study. In 4.4 we present our experiments. Fi-
nally, in Section 4.5 we close the chapter with our conclusions. Our presentation is
given in a self-contained manner.

4.2 Radix Trees
In this section we give a general description of the (adaptive) radix trees included in our
study. In general, a radix tree [74] (also called prefix tree, or trie) is a data structure to
represent ordered associative arrays. In contrast to many other commonly used tree data
structures such as binary search trees or standard B-Trees, nodes in radix trees do not
cover complete keys. Instead, nodes in a radix tree represent partial keys, and only the
full path from the root to a leaf describes the complete key corresponding to a value.
Furthermore, operations on radix trees do not perform comparisons on the keys in the
nodes but rather, operations like looking up for a key work as follows: (1) Starting from
the root, and for each inner node, a partial key is extracted on each level. (2) This partial
key determines the branch that leads to the next child node. (3) The process repeats until
a leaf or an empty branch is reached. In the first case, the key is found in the tree, in the
second case, it is not.

In a radix tree, the length of the partial keys determines the fan-out of the nodes
because for each node there is exactly one branch for each possible partial key. For
example, let us assume a radix tree that maps 32-bit integer keys to values of the same
type. If we chose each level to represent a partial key of one byte, this results in a 4-
level radix tree having a fan-out of 256 branches per node. Notice that, for all levels,
all keys under a certain branch have a common prefix and unpopulated branches can
be omitted. For efficiency, nodes in a radix tree are traditionally implemented as arrays
of pointers to child nodes. When interpreting the partial key as an index to the array
of child pointers, finding the right branch on a node is as efficient as one array access.
However, this representation can easily lead to excessive memory consumption and bad
cache utilization for data distributions that lead to many sparsely populated branches,
such as uniform random distribution. In the context of our example, each node would
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contain an array of 256 pointers, even if only a single child node exists. This easily
leads to a high memory overhead. This is the reason why radix trees have usually been
considered as a data structure that is only suitable for certain use cases, e.g., textual data,
and not for general purposes. For example, radix trees are often used for prefix search
on skewed data, e.g. in dictionaries. Still, radix trees have many interesting and useful
properties: (1) Shape depends only on the key space and length of partial keys, but not
on the contained keys or their insertion order. (2) Do not require rebalancing operations.
(3) Establish an order on the keys and allow for efficient prefix lookups. (4) Allow for
prefix compression on keys.

The aforementioned memory overheads that traditional radix trees potentially suffer
from leads to the natural question of whether the situation can be somehow alleviated.
To the best of our knowledge, the Judy Array [12] is the first variant of a radix tree
that adaptively varies its node representation depending on the key distribution and/or
cardinality of the contained data. Judy realizes adaptivity by introducing several com-
pression techniques. These techniques prevent excessive memory footprints on sparsely
populated trees, and improve cache utilization. According to the inventors, Judy offers
performance similar to hash maps, supports efficient range queries like a (comparison-
based) tree structures, and prefix queries like traditional radix trees. All this while also
providing better memory efficiency than all aforementioned data structures.

Very recently, in 2013, the ARTful index [76] was introduced as a new index struc-
ture for main memory database systems. ART is also an adaptive radix tree, and has
similar purposes as Judy — high performance at low memory cost. However, unlike
Judy, ART was not designed as an associative array, but rather ART is tailored towards
the use case of an index structure for a database system — on top of a main memory
storage. In the following we will discuss both, Judy arrays and ART, highlighting their
similarities and differences.

4.2.1 Judy Array
Judy array can be characterized as a variant of a 256-way radix tree. There are three dif-
ferent types of Judy arrays: (1) Judy1: A bit array that maps integer keys to true or false
and hence can be used as a set. (2) JudyL: An array that maps integer keys to integer
values (or pointers) and hence can be used as an integer to integer map. (3) JudySL: An
array that maps string keys of arbitrary length to integer values (or pointers) and hence
can be used as a map from byte sequences to integers.

For a meaningful comparison with the other data structures considered by us, we
will only focus on JudyL for the remainder of this work, and thus consider Judy and
JudyL as synonyms from now on. In the following, we give a brief overview of the most
important design decisions that affect the performance and memory footprint of JudyL.

The authors of Judy observed that cache misses have a tremendous impact on the
performance of any data structure, up to the point where cache miss costs dominate the
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runtime. Hence, to offer high performance across different data distributions, one major
design concern of Judy was to avoid cache-line fills (which can result in cache misses)
at almost any cost. Observe that the maximum number of cache-line fills in a radix tree
is determined by the number of tree levels. Moreover, the maximum number of tree
levels is determined by the maximum key length divided by the partial key size. For
every tree level in a standard radix tree, we need to access exactly one cache line that
contains the pointer to the child node under the index of that partial key.

Judy addresses memory overheads of traditional radix trees under sparse data dis-
tributions and simultaneously avoids cache-line fills through a combination of more
than 20 different compression techniques. We can roughly divide these techniques into
two categories: horizontal compression and vertical compression. We only give a brief
overview of the most important ideas in Judy. A full description of the ideas can be
found in [12].

Horizontal compression

Here the problem of many large, but sparsely populated nodes, is addressed. The so-
lution offered by Judy is to adapt node sizes dynamically and individually with respect
to the actual population of the subtree underneath each node. Hence, Judy can com-
press unused branches out of nodes. For example, Judy may use smaller node types
that have e.g., only seven children. However, in contrast to uncompressed (traditional)
radix nodes with 256 branches, the slots in compressed nodes are not directly address-
able through the index represented by the current partial key. Consequently, compressed
nodes need different access methods, such as comparisons, which can potentially lead to
multiple additional cache-line fills. Judy minimizes such effects through clever design
of the compressed nodes. There are two basic types of horizontally compressed nodes
in Judy: linear nodes and bitmap nodes, which we briefly explain: (1) A linear node is
a space efficient implementation for nodes with very small number of children. In Judy,
the size of linear nodes is limited to one cache line.1 Linear nodes start with a sorted list
that contains only the partial keys for branches to existing child nodes. This list is then
followed by a list of the corresponding pointers to child nodes in the same order, see
Figure 4.1a. To find the child node under a partial key, we search the partial key in the
list of partial keys and follow the corresponding child pointer if the partial key is con-
tained in the list. Hence, linear nodes are similar to the nodes in a B-tree w.r.t. structure
and function. (2) A bitmap node is a compressed node that uses a bitmap of 256 bits to
mark the present child nodes. This bitmap is divided into eight 32-bit segments, inter-
leaved with pointers to the corresponding lists of child pointers, see Figure 4.1b. Hence,
bitmap nodes are the only structure in Judy that involve up to two cache-line fills. To

1Judy’s 10-year-old design assumes cache-line size of 16 machine words, which is not the case for
modern main-stream architectures.
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Figure 4.1: Comparison of node types (64-bit).
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lookup the child under a partial key, we first detect if the bit for the partial key is set. In
that case, we count the leading set bits in the partial bitmap to determine the index of
the child pointer in the pointer list. Bitmap nodes are converted to uncompressed nodes
(256 pointers) as soon as the population reaches a point where the additional memory
usage amortizes.2

To differentiate between node types, Judy must keep some meta information about
every node. In contrast to most other data structures, Judy does not put meta information
in the header of each node, because this can potentially lead to one additional cache-
line fill per access. Instead, Judy use what the authors of Judy call Judy pointers. These
pointers are fat pointers of two machine words size (i.e., 128bit on 64bit architectures)
that combine the address of a node with the corresponding meta data, such as: node
type, population count, and key prefix. Judy pointers avoid additional cache-line fills by
densely packing pointers with the meta information about the object they point to.

Vertical compression

In Judy arrays vertical compression is mainly achieved by skipping levels in the tree
when an inner node has only one child. In such cases, the key prefix corresponding to the
missing nodes is stored as decoding information in the Judy pointer. This kind of vertical
compression is commonly known in the literature as path compression. Yet another
technique for vertical compression is immediate indexing. With immediate indexing,
Judy can store values immediately inside of Judy pointers instead of introducing a whole
path to a leaf when there is no need to further distinguish between keys.

4.2.2 ART

This newer data structure shares many ideas and design principles with Judy. In fact,
ART is also a 256-radix tree that uses (1) different node types for horizontal compres-
sion, and (2) vertical compression also via path compression and immediate indexing
— called lazy expansion in the ART paper. However, there are two major differences
between ART and Judy: (1) There exist four different node types in ART in contrast to
three types in Judy. These node types in ART are labeled with respect to the maximum
amount of children they can have: Node4, Node16, Node48, and the uncompressed
Node256. Those nodes are also organized slightly different than the nodes in Judy.
For example, the meta information of each node is stored in a header instead of a fat
pointer (Judy pointer). Furthermore, ART nodes take into account the latest changes
and features in hardware design, such as SIMD instructions to speedup searching in
the linearly-organized Node16. It is worth pointing out that we cannot find any con-
sideration of that kind of instructions in the decade-old design of Judy. (2) ART was

2The concrete conversion policies between nodes types are out of the scope of this work.
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designed as an index structure for a database, whereas Judy was designed as a general
purpose associative array. As a consequence, Judy owns its keys and values and covers
them both inside the structure. In contrast to that, ART does not necessarily cover full
keys or values (e.g., when applying vertical compression) but rather stores a pointer (as
value) to the primary storage structure provided by the database — thus ART is primar-
ily used as a non-covering index. At lookup time, we use a given key to lookup for the
corresponding pointer to the database store containing the complete 〈key, value〉 pair.

Finally, and for completeness, let us give a more detailed comparison of the dif-
ferent node types between Judy and ART. Node4 and Node16 of ART are very much
comparable to a linear node in Judy except for their sizes, see Figures 4.1a and 4.1c.
Node16 is just like a Node4 but with 16 entries. Uncompressed Node256 of ART is the
same as the uncompressed node in Judy, and thus also as in plain radix trees. Node48
of ART consists of a 256-byte array (which allows direct addressing by a partial key)
follow by an array of 48 child pointers Up to 48 locations of the 256-byte array can be
occupied, and each occupied entry stores the index in the child pointer array holding
the corresponding pointer for the partial key, see Figure 4.1d. Node48 of ART and the
bitmap node of Judy fill in the gap between small and large nodes.

4.3 Hash Tables
In this section we elaborate on the hashing schemes and the hash functions we use in
our study. In short, the hashing schemes are (1) the well-known quadratic probing [74,
25], and (2) Cuckoo hashing [90]. As for hash functions we use 64-bit versions of (1)
Murmur hashing [7], which is the hash function used for the original study [76], and (2)
the well-known, and somewhat part of the hashing folklore, multiplicative hashing [25,
74, 30]. In the rest of this section we consider each of these parts in turn.

4.3.1 Quadratic probing
Quadratic probing is one of the best-known open-addressing schemes for hashing. In
open-addressing, every hashed element is contained in the hash table itself, i.e. every
table entry contains either an element or a special key denoting that the corresponding
location is unoccupied. The hash function in quadratic probing has the following form:

h(x, i) = (h′(x) + c1 · i + c2 · i2)

where i represents the i-th probed location, h′ is an auxiliary hash function, and c1 ≥ 0,
c2 > 0 are auxiliary constants.

What makes quadratic probing attractive and popular is: (1) It is easy to implement.
In its simplest iteration, the hash table consists of a single array only. (2) In the particular
case that the size of the hash table is a power of two, it can be proven that quadratic
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probing will examine every single location of the table in the worst case [25]. That is,
as long as there are available slots in the hash table, this particular version of quadratic
probing will always find them, at the expense of an increasing number of probes.

Quadratic probing is, however, not bulletproof. It is known that it could suffer from
secondary clustering. This means that if two different keys collide in the very first probe,
they will also collide in all sub-sequent probes. Thus, choosing a good hash function is
of primary concern.

The implementations of quadratic probing used in this study are the ones pro-
vided by Google dense and sparse hashes [48]. These C++ implementations are well-
engineered for general purposes3, and are readily available. Furthermore, they are de-
signed to be used as direct replacements of std::unordered map4. This reduces in-
tegration in existing code to the minimal effort. These Google hashes come in two
variants, dense and sparse. The former is optimized for (raw) performance, potentially
sacrificing space, while the latter is optimized for space while potentially sacrificing
performance. In this study we consider both variants, and, for simplicity, we will refer
to Google dense and sparse hashes simply as GHFast (for performance) and GHMem
(for memory efficiency) respectively.

4.3.2 Cuckoo hashing
Cuckoo hashing is a relatively new open-addressing scheme [90], and somewhat still not
well-known. The original (and simplest) version of Cuckoo hashing works as follows:
There are two hash tables T0,T1, each one having its own hash function h0, h1. Every
inserted element x is stored at either T0[h0(x)] or T1[h1(x)] but never in both. When
inserting an element x, location T0[h0(x)] is first probed, if the location is empty, x is
store there, otherwise, x kicks out the element y already found at that location, x is stored
there, but now y is out of the table and has to be inserted, so location T1[h1(y)] is probed.
If this location is free, y is stored there, otherwise y kicks out the element therein, and we
repeat: in iteration i ≥ 0, location T j[h j(·)] is probed, where j = i mod 2. In the end we
hope that every element finds its own “nest” in the hash table. However, it may happen
that this process enters a loop, and thus a place for each element is never found. This is
dealt with by performing only a fixed amount of iterations. Once this limit is achieved,
a complete rehash is performed by choosing two new hash functions. How this rehash
is done is a design decision: it is not necessary to allocate new tables, one can reuse
the already allocated space by deleting and reinserting every element already found in
the table. However, if the set of elements to be contained in the table increases over
time, then perhaps increasing the size of the table when the rehash happens is a better

3This does not necessarily imply optimal performance in certain domains. That is, it is plausible that
specialized implementations could be faster.

4Whose implementation happens to be hashing with chaining just as the ones used in the original ART
paper.
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policy for future operations. It has been empirically observed [90, 46] that in order
to work, and obtain good performance, the load factor of Cuckoo hashing should stay
slightly below 50%. That is, it requires at least twice as much space as the cardinality
of the set to be indexed. Nevertheless, it has also been observed [46] that this situation
can be alleviated by generalizing Cuckoo hashing to use more tables T0,T1,T2 . . . Tk,
each having its own hash function hk, k > 1. For example, for k = 4 the load factor
(empirically) increases to 96%, at the expense of performance. Thus, as for the Google
hashes mentioned before, we can consider two versions of Cuckoo hashing, one tuned
for performance, when k = 2, and the other tuned for space-efficiency, when k = 4.

Finally, we include in this study yet another variant of Cuckoo hashing. This variant
allows more than one element per location in the hash table [33], as opposed to the orig-
inal Cuckoo hashing where every location of the hash table holds exactly one element.
In this other variant, we use only two tables T0,T1, just as the original Cuckoo hashing,
but every location of the hash table is a bucket of size equal to the cache-line size, 64
bytes for our machines. This variant works essentially as the original Cuckoo hashing,
when inserting an element x, it checks whether there is a free slot in the corresponding
bucket, if yes, then x is inserted, otherwise a random element y of that bucket is kicked
out, x is left in its place, and we start the Cuckoo cycles. We decided to include this
variant of Cuckoo hashing because when a location of the hash table is accessed, this
location is accessed through a cache line, so by aligning these buckets to cache lines
boundaries we hope to have better data locality for lookups, at the expense of making
more comparisons to find the given element in the bucket. This comparisons happen,
nevertheless, only among elements that are already on cache (close to the processor).

For simplicity, we will refer to standard Cuckoo hashing using two and four tables
as CHFast (for performance) and CHMem (for memory efficiency) — highlighting
similarities of each of these hashes with Google’s GHFast and GHMem, respectively,
mentioned before. The last variant of Cuckoo hashing described above, using 64-byte
buckets, will be simply referred to as CHBucket.

Let us now explain the reasons behind our decision to include Cuckoo hashing in
our study. (1) For lookups, traditional Cuckoo hashing requires at most two tables
accesses, which is in general optimal among hashing schemes using linear space. In
particular, it is independent of the current load factor of the hash table — unlike other
open-addressing schemes, like quadratic probing. (2) It has been reported to be compet-
itive with other good hashing schemes, like quadratic probing or double hashing [90],
and (3) It is easy to implement.

Like quadratic probing, Cuckoo hashing is not bulletproof either. It has been ob-
served [90] that Cuckoo hashing is sensitive to what hash functions are used [32]. With
good (and robust) hash functions, the performance of Cuckoo hashing is good, but with
hash functions that are not as robust, performance deteriorates. We will see this effect
in our experiments.
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4.3.3 Hash functions
Having explained the hashing schemes used in our study, we now turn our attention
to the hash functions used. We pointed out before that both used hashing schemes are
highly dependent on the hash functions used. For our study we have decided to include
two different hash functions: (1) MurmurHash64A [7] and the well-known multiplica-
tive hashing [74]. The first one has been reported to be efficient and robust5 [7], but
more importantly, it is included here because it is the hash function that was used in the
original ART paper [76], and we wanted to make our study equivalent.

The second hash function, multiplicative hashing, is very well known [25, 74, 30],
and it is given here:

hz(x) = (x · z mod 2w) div 2w−d

where x is a w-bit integer in {0, . . . , 2w − 1}, z is an odd w-bit integer in {1, . . . , 2w − 1},
the hash table is of size 2d, and the div operator is defined as: a div b = ba/bc. What
makes this hash function highly interesting is: (1) It can be implemented extremely
efficiently by observing that the multiplication x · z is per se already done modulo 2w,
and the operator div is equivalent to a right bit shift by w − d positions. (2) It has also
theoretical guarantees. It has been proven [30] that if x, y ∈ {0, . . . , 2w − 1}, with x , y,
and if z ∈ {1, . . . , 2w − 1} chosen uniformly at random, then the collision probability is:

Pr[hz(x) = hz(y)] ≤
2
2d =

1
2d−1

This probability is twice as large as the ideal probability that, for a hash function,
every location of the hash table is equally likely. This also means that the family of hash
functions Hw,d = {hz | 0 < z < 2w and z odd} is the perfect candidate for simple and
somewhat robust hash functions.

As we will see in our experiments, MurmurHash64A is indeed more robust than
multiplicative hashing, but this robustness comes at a very high performance degra-
dation. In our opinion multiplicative hashing showed to be robust enough in all our
scenarios. From now on, and for simplicity, we will refer to MurmurHash64A simply
as Murmur and to multiplicative hashing just as Simple.

4.4 Main Experiments
In this section we experimentally confront the adaptive radix tree ART [76] with all
other structures previously mentioned: (1) Judy [12], which is another kind of adaptive
radix tree highly space-efficient — discussed in Section 4.2 and (2) Quadratic prob-
ing [48] and Cuckoo hashing [90] — discussed in Section 4.3. The experiments are
mainly divided into three parts.

5Although, to the best of our knowledge, no theoretical guarantee of this has been shown.
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In 4.4.3 we first show experiments comparing ART only against Cuckoo hashing un-
der the following metrics: insertion throughput, point query throughput, and mem-
ory footprint. The reason why we only compare ART against Cuckoo hashing is the
following: ART, as presented and implemented in [76] was designed as a non-covering
indexing data structure for databases. That is, as mentioned in Section 4.2.2, ART will
index a set of 〈key, value〉 pairs already stored and provided by a database. Thus, ART
will, in general, neither cover the key nor the value6, but it will rather use the key to
place a pointer to the location in the database where the corresponding pair is stored.
Thus, when looking up for a given key, ART will find the corresponding pointer (if
previously inserted) and then follow it to the database store to retrieve the correspond-
ing 〈key, value〉 pair. The semantics of the freely available implementations of Judy
arrays [12] and Google hashes [48] are that of a map container (associative array), i.e.,
self-contained general-purpose indexing data structures (covering both the key and the
value). We could have compared ART against these implementations as well but we
think the comparison is slightly unfair, since inserting a pointer in those implementa-
tions will still cover the key, and thus the data structure will per se require more space.
This is where our own implementation of Cuckoo hashing enters the picture. For the
experiments presented in 4.4.3, Cuckoo hashing uses the key to insert a pointer to the
database store, exactly just as ART — making an apple-to-apple comparison. For these
experiments we assume that we only know upfront the number n of elements to be in-
dexed. This is a valid assumption since we are interested in indexing a set of elements
already found in a database. With this in mind, the hash tables are prepared to be able to
contain at least n elements. Observe that the ability of pre-allocate towards certain size
is (trivially) inherent to hash tables. In contrast, trees require knowledge not only about
their potential sizes, but also the actual values and dedicated (bulk-loading) algorithms.
This kind of workload (4.4.3) can be considered static, like in an OLAP scenario.

In 4.4.4 we test the structures considered in 4.4.3 under TPC-C-like dynamic work-
loads by mixing insertions, deletions, and point queries. This way we simulate an OLTP
scenario. The metric here is only operation throughput. In this experiment the data
structures assume nothing about the amount of elements to be inserted or deleted, and
thus we will be able to observe how the structures perform under dynamic workloads.
In particular, we will observe how the hash tables handle growth (rehashing) over time.

In 4.4.5 we consider ART as a standalone data structure, i.e., a data structure used to
store (cover) 〈key, value〉 pairs, and we compare it this time against Judy array, Google
hashes, and Cuckoo hashing under the same metrics as before. As ART was not origi-
nally designed for this purpose, we can go about two different ways: (1) We endow ART
with its own store and we use the original implementation of ART, or (2) We endow
ART with explicit leaf nodes to store the 〈key, value〉 pairs. We actually implemented

6The only exception to this happens when the key equals the value, effectively making ART a set
container.
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both solutions but we decided to keep for this study only the first one. The reason for
this is that for the second option we observed mild slowdowns for insertions and mild
speedups for lookups, but space consumption increases significantly as the size of the
set to be contained also increases. The reason for this is that a leaf node requires more
information (the header) than simply storing only 〈key, value〉 pairs in a pre-allocated
array. For these experiments, the hash tables and the store of ART are prepared to be
able to store at least n elements, where n is the number of elements to be indexed.

4.4.1 Experimental setup
All experiments are single-threaded. The implementations of ART, Judy arrays, and
Google hashes are the ones freely available [77, 12, 48]. No algorithmic detail of those
data structures was touched except that we implemented the missing range-query sup-
port in ART. All implementations of Cuckoo hashing are our own. All experiments are
in main memory using a single core (one NUMA region) of a dual-socket machine
having two hexacore Intel Xeon Processors X5690 running at 3.47 GHz. The L1 and
L2 cache sizes are 64 and 256KB respectively per core. The L3 cache is shared and
has a size of 12MB. The machine has a total of 192GB of RAM running at 1066 MHz.
The OS is Linux (3.4.63, 64-bit) with a default page size of 4KB. All programs are
implemented in C/C++ and compiled with the Intel icc-14 with optimization -O3.

4.4.2 Specifics of our workloads
In our experiments we include two variants of ART, let us call them unoptimized and
optimized. The difference between the two of them is that the latter applies path com-
pression (one of the techniques for vertical compression mentioned in Section 4.2.2) to
the nodes. By making (some) paths in the tree shorter, there is hope that this will de-
crease space and also speedup lookups. However, path compression clearly incurs into
more overheads at insertion time, since at that time it has to be checked whether there
is opportunity for compression and then it must be performed. In our experiments we
denote the version of ART with path compression by ART-PC, and the one without it
simply by ART. From now on, when we make remarks about ART, those remarks apply
to both variants of ART, unless we say otherwise and point out the variant of ART we
are referring to.

In the original ART paper [76] all micro-benchmarks are performed on 32-bit inte-
ger keys because some of the structures therein tested are 32-bit only. The authors also
pointed out that for such short keys, path compression increases space instead of reduc-
ing it, and thus they left path compression out of their study. In our study we have no
architectural restrictions since all herein tested structures support 32- and 64-bit integer
keys. Due to the lack of space, and in order to see the effect of path compression, we
have decided to (only) present 64-bit integer keys.
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We perform the experiments of 4.4.3 and 4.4.5 on two different key distributions
on three different dataset sizes — for a total of six datasets. The two key distributions
considered are the ones also considered in the original paper [76] and these are: (1)
Sparse distribution, where each indexed key is unique and chosen uniformly at random
from [1, 264), and (2) Dense distribution, where every key in 1, . . . , n is indexed7 (n is
the total number of elements to be indexed by the data structures). As for datasets, for
each of the aforementioned distributions we considered three different sizes: 16, 256,
and 1000 million. Two out of these three datasets (16M, 256M) were also considered in
the original ART paper, along with a size of 65K. We would like to point out that 65K
pairs of 16 bytes each is rather small and fits comfortably in the L3 cache of a modern
machine. For such a small size whether an index structure is needed is debatable. Thus,
we decided to move towards “big” datasets, and include the one billion size instead.
Finally, the shown performance is the average of three independent measurements. For
the sparse distribution of keys each measurement has a different input set.

4.4.3 Non-covering evaluation

In this very first set of experiments we test ART against Cuckoo hashing under the
workload explained in 4.4.2. Lookups are point queries and each one of them looks up
for an existing key. After having inserted all keys, the set of keys used for insertions is
permuted uniformly at random, and then the keys are looked up in this random order.
This guarantees that insertions and lookups are independent from each other. Insertion
and lookup performance can be seen in Figures 4.2 and 4.3 respectively, where each is
presented in millions of operations per second. In Figure 4.4 we present the effective
memory footprint of each structure in megabytes. This size accounts only for the size
of the data structure, i.e. everything except the store.

Before analyzing the results of our experiments, let us state beforehand our con-
clusion. The adaptive radix tree ART was originally reported [76] to have better per-
formance than other well-engineered tree structures (of both kinds, comparison-based
and radix trees). It was also reported that only hashes were competitive to ART. Our
own experience indicates that well-engineered performance-based hash tables are not
only competitive to ART, but actually significantly better. For example, CHFast-Simple
is at least 2× faster for insertions and lookups than ART throughout the experiments.
Moreover, this difference gets only worse for ART as the size of the set to be indexed
increases. For one billion CHFast-Simple is at least 4.8× faster than ART for insertions
and at least 2.8× faster for lookups, and CHBucket-Simple is at least 4× faster than
ART for insertions, and at least 2× faster for lookups.

Having stated our conclusion, let us now dig more into the data obtained by the
experiments. First of all (1) we can observe that using a simple, but still good hash

7Dense keys are randomly shuffled before insertion.
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Figure 4.2: Insertion throughput (non-covering). Higher is better.
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Figure 4.3: Lookup throughput (non-covering). Higher is better.
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Figure 4.4: Memory footprint in MB (non-covering). Lower is better.



Chapter 4. A Comparison of Adaptive Radix Trees and Hash Tables 88

function, has in practice an enormous advantage over robust but complicated hash func-
tions. CHFast-Simple is throughout the experiments roughly 1.7× faster for insertions
than CHFast-Murmur, and also roughly 1.93× faster for lookups. This difference in per-
formance is intuitively clear, but quantifying and seeing the effect makes an impression
stronger than initially expected. (2) With respect to memory consumption, see Fig-
ure 4.4, multiplicative hashing seems to be robust enough for the two used distributions
of keys (dense and sparse). In all but one tested case, see Figure 4.4a, multiplicative
hashing uses as much space as Murmur hashing — which has been used in the past for
its robustness. The discrepancy in the robustness of both hash functions suggests that a
dense distribution pushes multiplicative hashing to its limits, and this has been pointed
out before [32]. In our opinion, however, multiplicative hashing remains as a strong
candidate to be used in practice. Also, and perhaps more important, it is interesting to
see that the memory consumption of either version of ART is competitive only under
the dense distribution of keys, although not better than that of CHMem. This is where
the adaptivity of ART plays a significant role, in contrast to the sparse distribution,
where ART seems very wasteful w.r.t. memory consumption. (3) 64-bit integer keys are
(again) still too short to notice the positive effect of path compression in ART — both
versions of ART have essentially the same performance, but the version without path
compression is in general more space-efficient. The same effect was also reported in the
original ART paper [76]. (4) With respect to performance (insertions and lookups) we
can see that the performance of all structures degrades as the size of the index increases.
This is due to caching effects (data and TLB misses) and it is expected, as it was also
observed in the original ART paper [76]. When analyzing lookup performance, we go
into more detail on these caching effects. We can also observe that as the size of the
index increases, the space-efficient variant of Cuckoo hashing, CHMem-Simple, gains
territory to ART. Thus, a strong argument in favor of CHMem-Simple is that it has
similar performance to ART but it is in general more space-efficient.

Let us now try to understand the performance of the data structures better. Due
to the lack of space we will only analyze lookups on two out of three datasets, and
comparing the variant of ART without path compression against the two fastest hash
tables (CHFast-Simple and CHBucket-Simple).

Lookup performance

Tables 4.1 and 4.2 show a basic cost breakdown per lookup for 16M and 256M re-
spectively. From these tables we can deduce that the limiting factor in the (lookup)
performance of ART is a combination of long latency instructions plus the complexity
of the lookup procedure. For the first term (long latency instructions) we can observe
that the sum of L3 Hits + L3 Misses is considerably larger than the corresponding sum
of CHFast-Simple and CHBucket-Simple. The L3-cache-hit term is essentially nonex-
istent for the hashes, which is clear, and the L3-cache-miss term of ART rapidly exceeds
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Table 4.1: Cost breakdown per lookup for 16M.

ART CHFast-Simple CHBucket-Simple
Distribution Dense Sparse Dense Sparse Dense Sparse
Cycles 405.3 590.3 200.8 277.6 339.1 373.4
Instructions 149.3 151.1 34.60 40.13 91.94 97.78
Misp. Branches 0.027 0.972 0.126 0.662 1.645 1.857
L3 Hits 2.539 3.104 0.083 0.118 0.145 0.156
L3 Misses 2.414 3.831 2.397 3.716 3.189 3.460

Table 4.2: Cost breakdown per lookup for 256M.

ART CHFast-Simple CHBucket-Simple
Distribution Dense Sparse Dense Sparse Dense Sparse
Cycles 785.0 1119 248.4 297.5 353.9 399.9
Instructions 164.9 162.9 36.02 39.68 90.75 97.00
Misp. Branches 0.045 0.686 0.303 0.638 1.608 1.825
L3 Hits 2.435 3.235 0.081 0.075 0.090 0.107
L3 Misses 4.297 6.671 2.863 3.747 3.170 3.472

that of the hashes as the index size increases. This makes perfect sense since ART de-
composes a key into bytes and then uses each byte to traverse the tree. In the extreme
(worst) case, this traversal incurs into at least as many cache misses as the length of the
key (8 for full 64-bit integers). On the other hand, CHFast and CHBucket incur into
at most two (hash) table accesses, and each access loads records from the store. Thus,
CHFast incurs into at most four cache misses, but CHBucket could still potentially in-
cur into more. We will go into more detail on this when analyzing CHBucket. Still, for
ART we can also observe that the instruction count per lookup is the highest among the
three structures. This lookup procedure works as follows: at every step, ART obtains
the next byte to search for. Afterwards, by the adaptivity of ART, every lookup has to
test whether the node we are currently at is one of four kinds. Depending on this there
are four possible outcomes, in which the lightest to handle is Node256 and the most
expensive in terms of instructions is Node16, where search is implemented using SIMD
instructions. Node4 and Node48 are lighter in terms of instructions than Node16 but
more expensive than Node256. This lookup procedure is clearly more complicated than
the computation of at most two Simple hash functions (multiplicative hashing).

Let us now discuss the limiting factors in the (lookup) performance of CHFast and
CHBucket. Since the amount of L3 cache hits is negligible, and the computation of
Simple hash functions is also rather efficient, we can conclude that the (lookup) perfor-
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mance is essentially governed by the L3 cache misses, and actually, for CHFast that is
the only factor, since the lookup procedure does nothing else than hash computations
(two at most) and data access. The lookup procedure of CHBucket is slightly more
complicated since each location in the hash table is a bucket that contains up to eight
pointers (8 · 8 bytes = 64 bytes) to the database store. The lookup procedure first per-
forms a hash computation for the given key k (using the first hash function). Once the
corresponding bucket has been fetched, it computes a small fingerprint of k (relying
only on the least significant byte) and every slot of the bucket is then tested against this
fingerprint. A record from the store is then loaded only when there is a match with the
fingerprint, so there could be false-positives. The fingerprint is used to avoid loading
from the store all elements in a bucket. If the fingerprint matches, the corresponding
record is fetched from the store and then the keys are compared to see whether the
record should be returned or not. In the former case, the lookup procedure finishes,
and in the later we keep looking for the right record in the same bucket. If the bucket
has been exhausted, then a similar round of computation is performed using the sec-
ond hash function. This procedure clearly incurs into more computations than that of
CHFast, and it also seems to increase branch misprediction — there is at least one more
mispredicted branch per lookup (on average) than in ART and CHFast. We tested an
(almost) branchless version of this lookup procedure but the performance was slightly
slower, so we decided to keep and present the branching version. This concludes our
analysis of the lookup performance.

There is one more detail that we would like to point out: We can see from Fig-
ures 4.2 and 4.3 that CHBucket has a performance that lies between the performance-
oriented CHFast and the space-efficient CHMem, but its space requirement is equivalent
to that of CHFast. Thus, a natural question at this point is: does CHBucket make sense
at all? We would like to argue in favor of CHBucket. Let us perform the following
experiment: we insert 1 billion dense keys on CHFast-Simple, CHFast-Murmur, and
CHBucket-Simple without preparing the hash tables to hold that many keys, i.e., we
allow the hash tables to grow from the rather small capacity of 2 · 26 = 128 locations
all the way to 2 · 230 = 2, 147, 483, 648 — growth is set to happen in powers of two.
We observed that CHFast-Simple grows (rehashes) at an average load factor of 39%,
CHFast-Murmur grows at an average load factor of 51%, and CHBucket-Simple is al-
ways explicitly kept at a load factor of 75%, and it always rehashes exactly at that load
factor8. The load factor of 75% was set for performance purposes — as the load factor
of CHBucket approaches 100%, its performance drops rapidly. Also, by rehashing at
a load factor of 75%, we save roughly 25% of hash function computations when re-
hashing in comparison of rehashing at a load factor near 100%. Thus, rehashing also
becomes computationally cheaper for CHBucket, and follow up insertions and lookups
will benefit from the new available space (less collisions). But now, what is the real

8Without the manual 75% load factor, CHBucket-Simple rehashes on average at a load factor of 97%.
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Figure 4.5: Skewed (Zipf-distributed) lookups. Higher is better.

argument in favor of CHBucket? The answer is in the robustness of CHFast-Simple.
If CHFast-Simple was as robust as CHFast-Murmur, the former would always rehash
around a 50% load factor, just as the latter, but that is not the case. This negative effect
has been already studied [32], and engineering can alleviate it, but the effect will not
disappear. Practitioners should be aware of this. On the other hand, CHBucket-Simple
seems as robust as CHBucket-Murmur, and it could actually be considered as its re-
placement. Thus, by tuning the rehashing policy we can keep CHBucket-Simple at an
excellent performance. In particular, it is considerably better than ART for somewhat
large datasets.

We would like to close this section by presenting one more small experiment. In
Figure 4.5 the effect of looking up for keys that are skewed can be observed. The
lookup keys follow a Zipf distribution [74]. This experiment tries to simulate the fact
that, in practice, some elements tend to be more important than others, and thus they are
queried more often. Now, if certain elements are queried more often others, then they
also tend to reside more often in cache, speeding up lookups. In this experiment each
structure contains 16M dense keys.

We can see that all structures profit from skewed queries, although the relative per-
formance of the structures stays essentially the same — CHFast-Simple and CHBucket-
Simple set themselves strongly apart from ART.

4.4.4 Mixed workloads

The experiment to test mixed workloads is composed as follows: We perform one billion
operations in which we vary the amount of lookups (point queries) and updates (inser-
tions and deletions). Insertions and deletions are performed in a ratio 4:1 respectively.
The distribution used for the keys is the dense distribution. Lookups, insertions and
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deletions are all independent from one another. In the beginning, every data structure
contains 16M dense keys and thus, as we perform more updates, the effect of grow-
ing the hash tables will become more apparent as they have to grow multiple times.
This growth comes of course with a serious performance penalty. The results of this
experiments can be seen in Figure 4.6.

We can see how the performance of all structures decreases rapidly as more and
more updates are performed. In the particular case of the hash tables, more updates
mean more growing, and thus more rehashing, which are very expensive operations.
Yet, we can see that CHFast-Simple remains in terms of performance indisputably above
all other structures. We would also like to point out that, although the gap between
ART (ART-PC) and CHBucket-Simple narrows towards the right end (only updates), the
latter still performs around one million of operations per second more than the former,
which is around 20% speedup. This can hardly be ignored.
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4.4.5 Covering evaluation
In this section we confront experimentally all data structures considered in this study:
Judy, ART, Google hashes, and Cuckoo hashing. Additionally, as B+-trees are om-
nipresent in databases, we include measurements for a B+-tree [13] from now on. As
B+-trees have been already broadly studied in the literature, we will not discuss them
here any further — we just provide them as a baseline reference and to put the other
structures in perspective. Unlike the experiments presented in 4.4.3, in this section we
consider each data structure as a standalone data structure, i.e., covering 〈key, value〉
pairs. As we mentioned before, ART was designed to be a non-covering index, unable
to cover keys and values. We also mentioned that, in order to compare ART against
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Table 4.3: Cost breakdown per lookup for 16M.

JudyL GHFast-Simple CHBucket-Simple
Distribution Dense Sparse Dense Sparse Dense Sparse
Cycles 623.6 931.9 94.32 140.2 116.9 141.2
Instructions 216.6 215.8 46.98 53.84 32.69 36.55
Misp. Branches 0.041 1.466 0.006 0.572 1.135 1.382
L3 Hits 3.527 4.016 0.016 0.043 0.077 0.083
L3 Misses 1.460 3.737 1.104 1.793 2.006 2.466

Table 4.4: Cost breakdown per lookup for 256M.

JudyL GHFast-Simple CHBucket-Simple
Distribution Dense Sparse Dense Sparse Dense Sparse
Cycles 1212 1339. 94.72 143.2 126.9 146.4
Instructions 244.0 271.7 45.69 52.61 32.86 35.74
Misp. Branches 0.011 0.412 0.006 0.553 1.121 1.282
L3 Hits 4.103 3.116 0.025 0.058 0.084 0.085
L3 Misses 2.838 6.151 1.086 1.814 2.114 2.451

other data structures in this section, we endowed ART with its own store, which we now
consider as a fundamental part of the data structure. For this store we chose the sim-
plest and most efficient implementation, an array where each entry holds a 〈key, value〉
pair. This array, just as the hash tables, is pre-allocated and has enough space to hold at
least n 〈key, value〉 pairs, for n = 16M, 256M, 1000M. We do all this to minimize the
performance overhead contributed by the store of ART to the measurements. This way,
we simulate an ideal table storage. Therefore, we want to point out that, when it comes
to ART, there is essentially no difference in the experiments presented in Section 4.4.3
and this section. The only actual difference is that in Section 4.4.3 the store of ART is
left out of the computation of space requirements since it is provided by the database.
Here, nevertheless, this is not the case anymore.

As before, lookups are point queries and we query only existing keys. The insertion
order is random, and once all pairs have been inserted, they are looked up for in a
different random order — making insertions and lookups independent from each other.
Insertion and lookup performance can be seen in Figures 4.7 and 4.8 respectively, and it
is presented in millions of operations per seconds. The space requirement, in megabytes,
of each data structure can be seen in Figure 4.9. Also, Tables 4.3 and 4.4 present a
basic cost breakdown per lookup for 16M and 256M respectively. Due to the lack
of space, and the similitude of the performance counters between GHFast-Simple and
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CHFast-Simple, we present this cost breakdown only for JudyL, GHFast-Simple, and
CHBucket-Simple. A comparison against ART can be done using the corresponding
entries of Tables 4.1 and 4.2 on page 89.

Lookup performance

By just looking at the plots, Figures 4.7 and 4.8, we can see that there is clearly no
comparison between JudyL and ART with GFastHash-Simple and CFastHash-Simple.
The latter seem to be in their own league. Moreover, we can see that this comparison
gets only worse for JudyL and ART as the size of the dataset increases. For one billion
entries the space-efficient CHMem-Simple is now at least 2.3× as fast as ART, and Judy,
while requiring significantly less space than ART. In this regard, space consumption,
JudyL is extremely competitive. For the dense distribution of keys no other structure
requires less space than JudyL, and under the sparse distribution JudyL is comparable
with the space-efficient hashes. However, all optimizations (compression techniques)
performed by JudyL, in order to save space, come at very expensive price. JudyL is by
far the structure with the highest number of instructions per lookup.

We can observe that the amount of long latency operations (L3 Hits + L3 Misses) of
ART and JudyL are very similar. Thus, we can conclude that the other limiting factor
of JudyL is algorithmic, which, in the particular case of JudyL, it is also translated into
code complexity — JudyL’s source code is extremely complex and obfuscated.

With respect to the factors limiting the (lookup) performance of the hash tables, we
can again observe that the amount of L3 cache hits is negligible, the instruction counts
is very small, and thus, what is limiting the hash tables is essentially the amount of
L3 cache misses. We can additionally observe that CHBucket-Simple incurs into more
than one branch misprediction per lookup — these mispredictions are happening when
looking for the right element inside a bucket. However, these mispredictions cannot
affect the performance of CHBucket-Simple as they potentially do in its non-covering
version (Tables 4.1 and 4.2), since this time these mispredictions cannot trigger long
latency operations due to speculative loads (usually resulting into L3 cache misses).

Range queries

So far, all experiments have considered only point queries. We now take a brief look
at range queries. Clearly, range queries are the weak spot of hash tables since elements
in a hash table are in general not stored in a particular order. However, in the very
particular case that keys come from a small discrete universe, as in the case of the dense
distribution, we could answer a range query [a, b] by looking up in a hash table for every
possible value between a and b, the whole range. Depending on the selectivity of the
query, this method avoids looking up the whole hash table. For our experiment we fire
up three sets of 1000 range queries, every set with a different selectivity: 10%, 1%, 0.1%
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Figure 4.7: Insertion throughput (covering). Higher is better.
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Figure 4.8: Lookup throughput (covering). Higher is better.
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Figure 4.9: Memory footprint in MB (covering). Lower is better.
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respectively, on structures containing exactly 16M keys. For the sparse distribution we
refrain ourselves from answering the queries using hash tables because it hardly makes
sense. The results can be seen in Figure 4.10 below. All structures are covering versions,
as the ones used in Section 4.4.5. As we mentioned before, we implemented range-query
support in ART, and our implementation is based on tree-traversal.

It is hard to see in the plot, but the difference in throughput between adjacent selec-
tivities is a factor of 10. It is also very surprising to see that the hashes still perform
quite good under the dense distribution. Again, the use cases for which hash tables can
be used in this manner are very limited, but not impossible to find.
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Figure 4.10: Range queries over 16M dense and sparse keys. Covering versions of hash tables
are only shown for dense keys. Higher is better.

4.5 Conclusions
In the original ART paper [76], the authors thoroughly tested ART, and their experi-
ments supported the claim that only a hash table was competitive (performance-wise) to
ART. In our experiments we extended the original experiments by considering hashing
schemes other than chained hashing. Our experiments clearly indicate that the picture
changes when we carefully choose both, the hashing scheme and the hash function. Our
conclusion is that a carefully chosen hash table is not only competitive with ART, but
actually significantly better. For example, for an OLAP scenario, and for one billion
indexed keys, one non-covering variant of Cuckoo hashing is at least 4.8× faster for
insertions, at least 2.8× faster for lookups, and it sometimes requires just half the space
of ART, see Figures 4.2, 4.3, and 4.4. For an OLTP scenario, the same variant is up
to 3.8× faster than ART, see Figure 4.6. We also tested ART against another (older)
adaptive radix tree (Judy). In our experiments, ART ended up having almost 2× better
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performance over Judy, but at the same time, it tends to also use twice as much space.
This is an important trade-off to keep in mind.

Towards the very end we presented a small experiment to test performance under
range queries. Here, ART was clearly outperforming Judy and all hash tables. How-
ever, ART is still slower than a B+-tree by up to a factor of 3. Furthermore, we also
observe that in the very limited case of a dense distribution coming from a small dis-
crete universe, hash tables perform surprisingly good (comparable to Judy), and decid-
ing whether hash tables could be use for range queries this way takes no time to the
query optimizer.





Chapter 5

A Seven-Dimensional Analysis of
Hashing Methods and its Implications
on Query Processing

5.1 Introduction

In recent years there has been a considerable amount of research on tree-structured main
memory indexes, e.g. [72, 102, 8, 15, 69, 85, 71, 76]. However, it is hard to find recent
database literature thoroughly examining the effects of different hash tables in query
processing. This is unfortunate for at least two reasons: First, hashing has plenty of
applications in modern database systems, including join processing, grouping, and ac-
celerating point queries. In those applications, hash tables serve as a building block.
Second, there is strong evidence that hash tables are much faster than even the most
recent and best tree-structured indexes. For instance, in our recent experimental anal-
ysis [6] we carefully compared the performance of modern tree-structured indexes for
main memory databases like ARTful [76] with a selection of different hash tables1. A
central lesson learned from our work [6] was that a carefully and well-chosen hash table
is still considerably faster (up to factor 4-5x) for point queries than any of the afore-
mentioned tree-structured indexes. However, our previous work also triggered some
nagging research questions: (1) When exactly should we choose which hash table?
(2) What are the most efficient hashing methods that should be considered for query
processing? (3) What other dimensions affect the choice of “the right” hash table? and
finally (4) What is the performance impact of those factors. While investigating an-
swers to these questions we stumbled over interesting results that greatly enriched our

1We use the term hash table throughout the paper to indicate that both the hashing scheme (say linear
probing) and the hash function (say Murmur) are chosen.
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knowledge, and that could greatly help practitioners, and potentially also the optimizer,
to take well-informed decisions as of when to use what hash table.

5.1.1 Our Contributions
We carefully study single-threaded hashing for 64-bit integer keys and values in a five-
dimensional requirements space:

1. Data distribution. Three different data distributions: dense, sparse, and a grid-
like distribution (think of IP addresses).

2. Load factor. Six different load factors between 25- and 90%.
3. Hash table size. We consider a variety of sizes for the hash tables to observe

performance when they are rather small (they fit in cache), and when they are of
medium and large sizes (outside cache but still addressable by TLB using huge
pages or not respectively).

4. Read/write-ratio. We consider whether the hash tables are to be used under a
static workload (OLAP-like) or a dynamic workload (OLTP-like). For both we
simulate an indexing workload — which in turn captures the essence of other
important operations such as joins or aggregates.

5. Un/successful lookup ratio. We study the performance of the hash tables when
the amount of lookups (probes) varies from all successful to all unsuccessful.

Each point in that design space may potentially suggest a different hash table. We
show that a right/wrong decision in picking the right combination 〈hashing scheme, hash
function〉 may lead to an order of magnitude difference in performance. To substantiate
this claim, we carefully analyze two additional dimensions:

6. Hashing scheme. We consider linear probing, quadratic probing, Robin Hood
hashing as described in [21] but carefully engineered, Cuckoo hashing [90], and
two different variants of chained hashing.

7. Hash function. We integrate each hashing scheme with four different hash func-
tions: Multiply-shift [30], Multiply-add-shift [29], Tabulation hashing [114, 110,
93], and Murmur hashing [7], which is widely used in practice. This gives 24
different combinations (hash tables).

Therefore, we study in total a set of seven different dimensions that are key param-
eters to the overall performance of a hash table. We shed light on these seven dimensions
focusing on one of the most important use-cases in query processing: indexing. This
in turn resembles very closely other important operations such as joins and aggregates
— like SUM, MIN, etc. Additionally, we also offer a glimpse about the effect of different
table layout and the use of SIMD instructions. Our main goal is to produce enough
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results that can guide practitioners, and potentially the optimizer, towards choosing the
most appropriate hash table for their use case at hand. To the best of our knowledge,
no work in the literature has considered such a thorough set of experiments on
hash tables.

Our study clearly indicates that picking the right configuration may have consider-
able impact on standard query processing tasks such as main memory indexing as well
as join processing, which heavily rely on hashing. Hence, hashing should be considered
as a white box method in query processing and query optimization.

We decided to focus on studying hash tables in a single-threaded context to isolate
the impact of the aforementioned dimensions. We believe that a thorough evaluation of
concurrency in hash tables is a research topic in its own and beyond the scope of this
study. However, our observations still play an important role for hash maps in multi-
threaded algorithms. For partitioning-based parallelism — which has recently been
considered in the context of (partition-based hash) joins [10, 11, 75] — single-threaded
performance is still a key parameter: each partition can be considered an isolated unit
of work that is only accessed by exactly one thread at a time, and therefore concurrency
control inside the hash tables is not needed. Furthermore, all hash tables we present in
the chapter can be extended for thread safety through well-known techniques such as
striped locking or compare-and-swap. Here, the dimensions we discuss still impact the
performance of the underlying hash table.

This chapter is organized as follows: In Sections 5.2 and 5.3 we briefly describe
each of the five considered hashing schemes and the four considered hash functions
respectively. In Section 5.4 we describe our methodology, setup, measurements, and
the three data distributions used. We also discuss why we have narrowed down our
result set — we present in this chapter what we consider the most relevant results. In
Sections 5.5, 5.6, and 5.7 we present all our experiments along with their corresponding
discussion.

5.2 Hashing Schemes
In this chapter, we study the performance of five different hashing schemes: (1) chained
hashing, (2) linear probing, (3) quadratic probing, (4) Robin Hood hashing on linear
probing, and (5) Cuckoo hashing — the last four belong to the so-called open-addressing
schemes, in which every slot of the hash table stores exactly one element, or stores
special values denoting whether the corresponding slot is free. For open-addressing
schemes we assume that the tables have l slots (l is called capacity of the table). Let
0 ≤ n ≤ l be the number of occupied slots (we call n the size of the table) and consider
the ratio α = n

l as the load factor of the table. For chained hashing, the concept of
load factor makes in general little sense since it can store more than one element in the
same slot using a linked list, and thus we could obtain α > 1. Hence, whenever we
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discuss chained hashing for a load factor α, we mean that the presented chained hash
tables are memory-wise comparable to open-addressing hash tables at load factor α —
in particular, the hash tables contain the same number n of elements, but their directory
size can differ. We elaborate on this in Section 5.4.5.

Finally, one fundamental question in open-addressing is whether to organize the
table as array-of-structs (AoS) or as a struct-of-arrays (SoA). In AoS, the table is stored
in one (or more in case of Cuckoo hashing) arrays of key-value pairs, similar to a row
layout. In contrast to that, SoA representation keeps keys and corresponding values
separated in two corresponding, aligned arrays - similar to column layout. We found in
a micro-benchmark that AoS is superior to SoA in most relevant cases for our setup and
hence apply this organization in all open-addressing schemes in this chapter. For more
details on this micro-benchmark see Section 5.7. We now proceed to briefly describe
each considered hashing scheme in turn.

5.2.1 Chained Hashing
Standard chained hashing is a very simple approach for collision handling, where each
slot of table T (the directory) is a pointer to a linked list of entries. On inserts, en-
tries are appended to the list that corresponds to their key k under hash function h,
i.e., T [h(k)]. In case of lookups, the linked list under T [h(k)] is searched for the en-
try with key k. Chained hashing is a simple and robust method that is widely used
in practice, e.g., in the current implementations of std::unordered map in C++ STL
or java.util.HashMap in Java. However, compared to open-addressing methods,
chained hashing has typically sub-optimal performance for integer keys w.r.t. runtime
and memory footprint. Two main reasons for this are: (1) the pointers used by the
linked lists lead to a high memory overhead and (2) using linked lists leads to addi-
tional cache misses (even for slots with one element and no collisions). This situation
brings different opportunities for optimizing a traditional chained hash table. For ex-
ample, we can reduce cache misses by making the directory wide enough (say 24-byte
entries for key-value-pointer triplets) so that we can always store one element directly in
the directory and avoid following the corresponding pointer. Collisions are then stored
in the corresponding linked list. In this version we potentially achieved the latency of
open-addressing schemes (if collisions are rare) at the cost of space. Throughout this
chapter we denote the two versions of chained hashing we mentioned by ChainedH8,
and ChainedH24 respectively.

In the very first set of experiments we studied the performance of ChainedH8, and
ChainedH24 under a variety of factors, as to better understand the trade-offs they offer.
One key observation that we would like to point out at this point is: We observed that en-
try allocation in the linked lists is a key factor for insert performance in all our variants
of chained hashing. For example, a naive approach with dynamic allocation, i.e., us-
ing one malloc call per insertion, and one free call per delete, lead to a significant
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overhead. For most use cases, an alternative allocation strategy provides a considerable
performance benefit. That is, for both chained hashing methods in our indexing experi-
ments, Sections 5.5 and 5.6, we use a slab allocator. The idea is to bulk-allocate many
(or up to all) entries in one large array and store all map entries consecutively in this
arrays. This strategy is very efficient in all scenarios where the size of the hash table
is either known in advance or only growing. We observed an improvement over tradi-
tional allocation in both: memory footprint (due to less fragmentation and less malloc
metadata) as well as raw performance (by up to one order of magnitude!).

5.2.2 Linear Probing

Linear probing (LP) is the simplest scheme for collision handling in open-addressing.
The hash function is of the following form: h(k, i) = (h′(k)+i) mod l, where i represents
the i-th probed location and h′(k) is an auxiliary hash function. It works as follows: First,
try to insert each key-value pair p = 〈k, v〉 with key k at the optimal slot T [h(k, 0)] in
an open-addressing hash table T . In case h(k, 0) is already occupied by another entry
with different key, we (circularly) probe the consecutive slots h(k, 1) to h(k, l − 1). We
store p in the first free slot T [h(k, i)], for some 0 < i < l, we encounter2. We define
the displacement d of p as i, and the sum of displacements over all entries as the total
displacement of T . Observe that the total displacement is a measure of performance in
linear probing since a high value implies long probe sequences entries during lookups.

The rather simple strategy of LP has two advantages: (1) Low code complexity
which allows for fast execution and (2) Excellent cache efficiency due to the sequential
linear scan. However, on high load factors > 60%, LP noticeably suffers from primary
clustering, i.e., a tendency to create long sequences of filled slots and hence high total
displacement. We will address those areas of occupied slots that are adjacent w.r.t. probe
sequences as clusters. Further, we can also observe that unsuccessful lookups worsen
the performance of LP since they require a complete scan of all slots up to the first
empty slot. Linear probing also requires dedicated handling of deletes, i.e., we cannot
simply remove entries from the hash table because this could disconnect a cluster and
produce incorrect results under lookups. One option to handle deletes in LP are the so
called tombstones, i.e., a special value (different from the empty slot) that marks deleted
entries so that lookups continue scanning after seeing one tombstone — yielding correct
results. Using tombstones makes deletes very fast. However, tombstones can have
a negative impact on performance, as they potentially connect otherwise unconnected
clusters, thus building larger clusters. Inserts can replace a tombstone that is found
during a probe after confirming that the key to insert is not already contained. Another
strategy to handle deletes is partial cluster rehash: we delete the entry from the slot
and rehash all following entries in the same cluster. For our experiments we decided to

2Observe that as long as the table is not full, an empty slot is found.
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implement an optimized version of tombstones which will only place tombstones when
required to keep a cluster connected (i.e. only if the next slot from the deleted entry is
occupied). Placing tombstones is very fast (faster in general than rehashing after every
deletion), and the only negative point about tombstones are lookups after a considerable
amount of deletions — in such a case we could shrink the hash table and perform a
rehash anyway.

One of our main motivations to study linear hashing in this chapter is not only that it
belongs to the classical hashing schemes, which dates to the 50’s [74], but also the recent
developments regarding its analysis. Knuth was the first [73] to give a formal analysis
of the operations of linear probing (insertion, deletions, lookups) and he showed that
all these operation can be performed in O(1) using truly random hash functions3. How-
ever, very recently [93] it was shown that linear probing with tabulation hashing (see
Section 5.3.3) as a function matches asymptotically the bounds of Knuth in expected
running time O( 1

ε2 ), where the hash table has capacity l = (1 + ε)n. That is, from a
theoretical point of view, there is no reason to use any other hashing table. We will see
in our experiments, however, that the story is slightly different in practice.

5.2.3 Quadratic Probing

Quadratic probing (QP) is another popular approach for collision handling in open-
addressing. The hash function in QP is of the following form: h(k, i) = (h′(k)+c1·i+c2·i2)
mod l, where i represents the i-th probed location, h′ is an auxiliary hash function, and
c1 ≥ 0, c2 > 0 are auxiliary constants.

In case that the capacity of the table l is a power of two and c1 = c2 = 1/2, it can
be proven that quadratic probing will consider every single slot of the table one time
in the worst case [25]. That is, as long as there are empty slots in the hash table, this
particular version of quadratic probing will always find them eventually. Compared to
linear probing, quadratic probing has a reduced tendency for primary clustering and
comparably low code complexity. However, QP still suffers from so-called secondary
clustering: if two different keys collide in the very first probe, they will also collide in
all sub-sequent probes. For deletions, we can apply the same strategies as in LP. Our
definition of displacement for LP carries over to QP as the number of probes 0 < i < l
until an empty slot is found.

5.2.4 Robin Hood Hashing on LP

Robin Hood hashing [21] is an interesting extension that can be applied to many colli-
sion handling schemes, e.g., linear probing [109]. For the remainder of this chapter, we

3Which map every key in a given universe of keys independently and uniformly onto the hash table.
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will only talk about Robin Hood hashing on top of LP and simply refer to this combi-
nation as Robin Hood hashing (RH). Furthermore, we introduce a new tuned approach
to Robin Hood hashing that improves on the worst-case scenario of LP (unsuccessful
lookups on high load factors) at a small cost on inserts, and very high rates of successful
lookups (close to 100%, best-case scenario).

According to Viola [109], RH is based on the observation that hash collisions can be
resolved in favor of any of the keys involved. Viola proposes to exploit this additional
degree of freedom to modify the insertion algorithm of LP as follows: On a probe
sequence to insert a new entry enew, whenever we encounter an existing entry eold with
displacement d(enew) > d(eold)4, we exchange eold by enew and continue the search for
an empty slot with eold. As a result, the variance in displacement between all entries is
minimized. While this approach does not change the total displacement compared to
LP, we can exploit the established ordering in other ways. In this sense, the name Robin
Hood was motivated by the observation that the algorithm takes from the“rich” elements
(with smaller displacement) and gives to the “poor” (with higher displacement). Thus
distributing the “wealth” (proximity to optimal slot) more fairly across all elements
without changing the average “wealth” per element.

It is known that RH can reduce the variance in displacement significantly over LP.
Viola [109] suggests to exploit this property to improve on unsuccessful lookups in
several ways. For example, we could already start searching for elements at the slot
with expected (average) displacement from their perfect slot and probe bidirectional
from there. In practice, this is not very efficient due to high branch misprediction rates
and/or unfriendly access pattern. Another approach introduces an early abort criterium
for unsuccessful lookups. If we keep track of the maximum displacement dmax among
all entries in the hash table, a probe sequence can already stop after dmax iterations.
However, in practice we observed that dmax is often still too high5 to obtain significant
improvements over LP. We can improve on this method by introducing a different abort
criterion, which compares the probe iteration i with the displacement of currently probed
entry d(ei) in every step and stops as soon as d(ei) < i. However, comparing against d(ei)
on each iteration requires us to either store displacement information or re-calculate the
hash value. We found all those approaches to be prohibitively expensive w.r.t. runtime
and inferior to the plain LP in most scenarios. Instead, our approach applies early
abortion by hash computation only on every m-th probe, where a good choice of m is
slightly bigger than the average displacement in the table. As computing the average
displacement under updates can be expensive, a good sweet spot for most load factors
is to check once at the end of each cache-line. We found this to give a good tradeoff

between an overhead for successful probes and the ability to stop unsuccessful probes
early. Hence, this is the configuration we use for RH in our experiments. Furthermore,

4If d(enew) = d(eold) we can compare the actual keys as tie breaker to establish a full ordering.
5For high load factor α, dmax can often be an order of magnitude higher than the average displacement.
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our approach to RH applies partial rehash for deletions which turned out to be superior
to tombstones for this table. Notice that, tombstones in RH would, for correctness,
require to store information that allow us to reconstruct the displacement of the deleted
entry.

5.2.5 Cuckoo Hashing

Cuckoo hashing [90] (CuckooH) is a another open-addressing scheme that, in its origi-
nal (and simplest) version, works as follows: There are two hash tables T0,T1, each one
having its own hash function h0 and h1 respectively. Every inserted element p is stored
at either T0[h0(p)] or T1[h1(p)] but never in both. When inserting an element p, location
T0[h0(p)] is first probed, if the location is empty, p is stored there, otherwise, p kicks out
the element q already found at that location, p is stored there, and q is tried to be inserted
at location T1[h1(q)]. If this location is free, q is stored there, otherwise q kicks out the
element therein, and we repeat: in iteration i ≥ 0, location T j[h j(·)] is probed, where
j = i mod 2. In the end we hope that every element finds its own “nest” in the hash
table. However, it may happen that this process enters a loop, and thus a place for each
element is never found. This is dealt with by performing only a fixed amount of itera-
tions, once this limit is achieved, a rehash of the complete set is performed by choosing
two new hash functions. The advantages of CuckooH are (1) For lookups, traditional
CuckooH requires at most two tables accesses, which is in general optimal among hash-
ing schemes using linear space. In particular, the load factor has only a small impact
on the lookup performance of the hash table. (2) CuckooH has been reported [90] to
be competitive with other good hashing schemes, like linear and quadratic probing, and
(3) CuckooH is easy to implement. However, it has been empirically observed [90, 46]
that the load factor of traditional CuckooH with 2 tables should stay slightly below 50%
in order to work. More precisely, below 50% load factor creation succeeds with high
probability, but it starts failing from 50% on [39, 86]. This problem can be alleviated
by generalizing CuckooH to use more tables T0,T1,T2 . . . Tk, each having its own hash
function hk, k > 1. For example, for k = 4 the load factor (empirically) increases to
96% [46]. All this at the expense of performance, since now lookups require at most
four table lookups. Furthermore, Cuckoo hashing is very sensitive to what hash func-
tions are used [90, 32, 93] and requires robust hash functions. In our experiments we
only consider Cuckoo hashing on four tables (called CuckooH4) since we want to study
the performance of hash tables under many different load factors, that go up to 90%, and
CuckooH4 is the only version of traditional Cuckoo hashing that offers this flexibility.
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5.3 Hash Functions
In our study we want to investigate the impact of different hash functions in combination
with various hashing schemes (Section 5.2) under different key distributions. Our set of
hash functions covers a spectrum of different theoretical guarantees that also admit very
efficient implementations (low code complexity) and thus are also used in practice. We
also consider one hash function that is, in our opinion, the most representative member
of a class of engineered hash functions6 that do not necessarily have theoretical guaran-
tees, but that show good empirical performance, and thus are widely used in practice.
We believe that our chosen set of hash functions is very representative and offers practi-
tioners a good set of hash functions for integers (64-bit in this study) to choose from.
The set of hash functions we considered is: (1) Multiply-shift [30], (2) Multiply-add-
shift [29], (3) Tabulation hashing [93], and (4) Murmur hashing [7]. Formally, (1) is the
weakest and (3) is the strongest w.r.t. randomization. The definition and properties of
these hash functions are as follows:

5.3.1 Multiply-shift
Multiply-shift (Mult) is very well known [30], and it is given here:

hz(x) = (x · z mod 2w) div 2w−d

where x is a w-bit integer in {0, . . . , 2w − 1}, z is an odd w-bit integer in {1, . . . , 2w − 1},
the hash table is of size 2d, and the div operator is defined as: a div b = ba/bc. What
makes this hash function highly interesting is: (1) It can be implemented extremely
efficiently by observing that the multiplication x · z is natively done modulo 2w in cur-
rent architectures for native types like 32- and 64-bit integers, and the operator div is
equivalent to a right bit shift by w − d positions. (2) It has been proven [30] that if
x, y ∈ {0, . . . , 2w − 1}, with x , y, and if z ∈ {1, . . . , 2w − 1} chosen uniformly at random,
then the collision probability is 1

2d−1 .
This also means that the family of hash functions Hw,d = {hz |

0 < z < 2w and z odd} is the ideal candidate for simple and rather robust hash functions.
Multiply-shift is a universal hash function.

5.3.2 Multiply-add-shift
Multiply-add-shift (MultAdd) is also a very well known hash function [29]. It’s defini-
tion is very similar to the previous one:

ha,b(x) = ((x · a + b) mod 22w) div 22w−d

6Like FNV, CRC, DJB, CityHash for example.
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where again x is a w-bit integer, a, b are two 2w-bit integers, and 2d is the size of the
hash table. For w = 32 this hash function can be implemented natively under 64-bit
architectures, but w = 64 requires 128-bit arithmetic which is still not widely supported
natively. It can nevertheless still be implemented (keeping its formal properties) using
only 64-bit arithmetic [106]. When a, b are randomly chosen from {0, . . . , 22w

}, it can
be proven that collision probability is 1

2d , and thus is stronger than Multiply-shift —
although it also incurs into heavier computations. Multiply-add-shift is a 2-independent
hash function.

5.3.3 Tabulation hashing

Tabulation hashing (Tab) is the strongest hash function among all the ones that we con-
sider and also probably the least known. It became more popular in recent years since it
can be proven [93] that tabulation and linear probing achieve O(1) for insertions, dele-
tions, and lookups. This produces a hash table that is, in asymptotic terms, unbeatable.
Its definition is as follows (we assume 64-bit keys for simplicity): Split the 64-bit keys
into c characters, say eight chars c1, . . . , c8. For every position 1 ≤ i ≤ 8 initialize a
table Ti with 256 entries (for chars) with truly 64-bit random codes. The hash function
for key x = c1 · · · c8 is then:

h(x) =

8⊕
i=1

Ti[ci]

where
⊕

denotes the bitwise XOR. So a hash code is composed by the XOR of the
corresponding entries in tables Ti of the characters of x. If all tables are filled with truly
random data, then it is known that tabulation is 3-independent (but not stronger), which
means that for any three distinct keys x1, x2, x3 from our universe of keys, and three (not
necessarily distinct) hash codes y1, y2, y3 ∈ {0, . . . , l} then

Pr[h(x1) = y1 ∧ h(x2) = y2 ∧ h(x3) = y3] ≤
1
l3

which means that under tabulation hashing, the hash code h(xi) is uniformly distributed
onto the hash table for every key in our universe, and that for any three distinct keys
x1, x2, x3, the corresponding hash codes are three independent random variables.

Now, the interesting part of tabulation hashing is that it requires only bitwise oper-
ations, which are very fast, and lookups in tables T1, . . . ,T8. These tables are as heavy
as 256 · 8 · 8B = 16KB. Which mean that they all fit comfortably in the L1 cache of
processors, which is 32 or 64KB in modern computing servers. That is, lookups in those
tables incur in potentially low latency operations, and thus the evaluation of single hash
codes is potentially very fast.
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5.3.4 Murmur hashing
Murmur hashing (Murmur) is one of the most common hash functions used in practice
due to its good behavior. It is relatively fast to compute and it seems to produce quite
good hash codes. We are not aware of any formal analysis on this, so we use Murmur
hashing essentially as is. As we limit ourselves in this study to 64-bit keys, we use
Murmur3’s 64-bit finalizer [7] as shown in the code below.

uint64_t murmur3_64_finalizer(uint64_t key) {

key ˆ= key >> 33;

key *= 0xff51afd7ed558ccd;

key ˆ= key >> 33;

key *= 0xc4ceb9fe1a85ec53;

key ˆ= key >> 33;

return key;

}

5.4 Methodology
Throughout the chapter we want to understand how well a hash table can work as a plain
index for a set of n 〈key, value〉 pairs of 64-bit integers. The keys obey three different
data distributions, described later on in Section 5.4.3. This scenario, albeit generic,
resembles very closely other interesting uses of hash tables such as in join processing or
in aggregate operations like AVERAGE, SUM, MIN, MAX, and COUNT. In fact, we performed
experiments simulating these operations, and the results were comparable those from
the WORM workload.

We study the relation between (raw) performance and load factors by performing
insertions and lookups (successful and unsuccessful) on hash tables at different load
factors. For this we consider a write-once-read-many (WORM) workload, and a mixed
read-write (RW) workload. These two kinds of workload simulate elementary opera-
tional requirements of OLAP and OLTP scenarios, respectively, for index structures.

5.4.1 Setup
All experiments are single-threaded and all implementations are our own. All hash
tables have map semantics, i.e., they cover both key and value. All experiments are in
main memory. For the experiments in Sections 5.5 and 5.6 we use a single core (one
NUMA region) of a dual-socket machine having two hexacore Intel Xeon Processors
X5690 running at 3.47 GHz. The machine has a total of 192GB of RAM running at
1066 MHz. The OS is a 64-bit Linux (3.2.0) with page size of 2MB (using transparent
huge pages). All algorithms are implemented in C++ and compiled with gcc-4.7.2
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with optimization -O3. Prefetching, hyper-threading and turbo-boost are disabled via
BIOS to isolate the real characteristics of the considered hash tables.

Since our server does not support AVX-2 instructions, we ran the layout and SIMD
evaluation, Section 5.7, on a MacbookPro with Intel Core i7-4980HQ running at
2.80GHz (Haswell) with 16GB DDR3 RAM at 1600 MHz running Mac OS X 10.10.2
in single-user mode. Here, the page size is 4KB and pre-fetching is activated since we
could not deactivate it as cleanly as for our linux server. All binaries are compiled with
clang-600.0.56 with optimization -O3.

5.4.2 Measurement and Analysis

For all indexing experiments of Sections 5.5 and 5.6 we report the average of three
independent runs (three different random seeds for the generation and shuffling of data).
In each run, we measure performance through for-loops that invokes the insert or lookup
methods of the hash tables, using one method invocation per key.

We performed an analysis of variance on all results and we found that, in general,
the results are overall very stable and uniform. Whenever variance was noticeable, we
reran the corresponding experiment with the same setting to rule out machine problems.
As variance was very insignificant, we decided that there is no added benefit in showing
it in the plots.

5.4.3 Data distributions

Every indexed key is 64 bits. We consider three different kinds of data distributions:
Dense, Sparse, and Grid. In the dense distribution we index every key in [1 : n] :=
{1, 2, . . . , n}. In the sparse distribution, n � 264 keys are generated uniformly at random
from [1 : 264 − 1]. In the grid distribution every byte of every key is in the range [1 :
14]. That is, the universe under the grid distribution consists of 148 = 1, 475, 789, 056
different keys, and we use only the first n keys (in the sorted order). Thus, the grid
distribution is also a different kind of dense distribution. Elements are randomly shuffled
before insertion, and the set of lookup keys is also randomly shuffled.

5.4.4 Narrowing down our result set

Our overall set of experiments contained the combinations of many different dimen-
sions, and thus the amount of raw information obtained exceeds legibility easily and
makes the presentation of the study very difficult. For example, there are in total 24 dif-
ferent hash tables (hashing scheme + hash function). Thus, if we wanted to present all
of them, every plot would contain 24 different curves, which is too much information for
a single plot. Thus, we decided to present in this chapter only the most representative
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set of results. Therefore, although we originally considered four different hash func-
tions Mult, MultAdd, Tab, and Murmur, see Section 5.3, the following observations
were uniform across all experiments: (1) Mult is the fastest hash function when inte-
grated with all hashing schemes, i.e., producing the highest throughputs and also
of good quality (robustness), and thus it definitely deserves to be presented. (2)
MultAdd, when integrated with hashing schemes, has a robustness that falls between
Mult and Murmur — more robust than Mult but less than Murmur. In terms of speed it
was slower (in throughput) than Murmur. Thus we decided not to present MultAdd here
and present Murmur instead. (3) Tabulation was indeed the strongest, most robust hash
function of all when integrated with all hashing schemes. However, it is also the slow-
est, i.e., producing the lowest throughput. By studying the results provided by Mult and
Murmur, we think that the trade-off offered by tabulation (robustness instead of speed)
is less attractive in practice. Hence we do not present results for tabulation here.

In the end, we observed the importance of reducing operations during hash code
computations as much as possible. The main reason for this observation is that hash
computations contribute to the critical path of data dependencies for insert and lookup
algorithms, as the accessed memory addresses depend on the results of hash function.
Long dependency chains can heavily reduce the efficiency of pipelining in modern
CPUs. Among the hash functions we consider, Mult is by far the lightest to compute
— it requires only one multiplication and one right bit shift. MultAdd for 64-bit keys
without 128-bit arithmetic [106] (natively unsupported on our server) requires two mul-
tiplications, six additions, plus a number of logical ANDs and right bit shifts, which is
more expensive than Murmur’s 64-bit finalizer which requires only two multiplications
and a number of XORs and right bit shifts. As for tabulation, the eight table lookups per
key ended up dominating its execution time. Assuming all tables remain in L1 cache,
the latency of each table lookup is around 5-10 clock cycles. One addition requires
one clock cycle and one multiplication at most five clock cycles (on Intel architectures).
Thus, it is very interesting to observe and understand that, when hash code computation
is part of hot loops during a workload (as in our experiments), we should really be con-
cerned about how many clock cycles each computation costs — we could observe the
effect of even one more instruction per hash code computation. We want to point out as
well that the situation of MultAdd changes if we use native 128-bit arithmetic, or if
we use 32-bits keys with native 64-bit arithmetic (one multiplication, one addition,
and one right bit shift). In that case we could use MultAdd instead of Murmur for
the benefit of proven theoretical properties.

5.4.5 On load factors for chained hashing
As we mentioned before, the load factor makes almost no sense for chained hashing
since it can exceed one. Thus, throughout this chapter we refrain ourselves from using
the formal definition of load factor together with chained hashing. We will instead study
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chained hashing under memory budgets. That is, whenever we compare chained hashing
against open-addressing schemes at a given load factor α = n

l , what we do is that we
modify the size of the directory of the chained hash table so that its overall memory
consumption does not exceeds 110% of what open-addressing schemes require. In such
a comparison, all hash tables will contain the exact same number n of elements. Thus,
all hash tables compute the exact same number of hashes. In this regard, whether or
not a chained hash table stays within memory constraints depends on the number of
chained entries. Both variants of chained hashing considered by us cannot place more
than a fraction of 16/24 < 0.67 of the total of elements that an open-addressing scheme
could place under the same memory constraint. If we take the extra 10% we grant
to chained hash tables into account, this fraction grows to roughly 0.73. However, in
practice this threshold is smaller (< 0.7) due to how collisions distribute over the table.
This already strongly limits the usability of chained hashing under memory constraints
and also brings up the following interesting situation. If chained hashing has to work
under memory constraints, we can also try an open-addressing scheme for the exact
same task under the same amount of memory. This potentially means lower load factors
(< 0.5) for the latter. Depending on the hash function used, collisions might thus be rare,
and the performance might become similar to a direct-addressing scheme — which is
ideal. This might render chained hashing irrelevant.

5.5 Write-once-read-many (WORM)
In WORM we are interested in build and probe times (read-only structure) under six dif-
ferent load factors 25%, 35%, 45%, 50%, 70%, 90%. These load factors are w.r.t. open
addressing schemes on three different pre-allocated capacities7: 216 (small — 1MB),
227 (medium — 2GB) and 230 (large — 16GB). This gives a total of up to 54 different
configurations (three data distributions, six load factors, and three capacities) for each
of the 24 hash tables. Due to the lack of space, and by our discussion offered on the
load factors of chained hashing, we present here only the subsets of the large capacity
presented in Figure 5.1.

The main reason for presenting only the large capacity is that “big” datasets are
nowadays of primary concern and most observations can be transferred to smaller
datasets. Also, we divided the hash tables this way because, by our explanation before,
at low load factors collisions will be rare and performance of open-addressing schemes
will be dominated by the simplicity of the used hash table — i.e., low code complexity.
Thus we decided to compare the two variants of chained hashing against the simplest
open-addressing scheme (linear probing)8. At a load factor of 50%, collision resolu-
tion of different open-addressing schemes start becoming apparent and thus from that

7WORM is a static workload. This means that the hash tables never rehash during the workload.
8For insignificant amounts of collisions, the performance of LP, RH, and QP is essentially equivalent.
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Large capacity

Load factors

25%, 35%, 45%

70%, 90%

Hash tables

ChainedH8, ChainedH24,
LP
ChainedH24, LP, QP, RH,
CuckooH4

50%

LP, QP, RH, CuckooH4

Figure 5.1: Subset of results for WORM presented in this chapter.

point on we include all open-addressing schemes considered by us. For chained hashing
we consider only the best performing variant. For higher load factors (≥ 70%), how-
ever, both variants of chained hashing could not place enough elements in the allocated
memory. Thus we removed them altogether and study only open-addressing schemes.

5.5.1 Low load factors: 25%, 35%, 45%
In our very first set of experiments we are interested in understanding (1) the fundamen-
tal difference between chained hashing and open-addressing and (2) the trade-offs offer
by the two different variants of chained hashing, see Section 5.2.1. The results can be
seen in Figure 5.2.

Discussion

We start by discussing the memory footprints of all structures, see Figure 5.3. For linear
probing, the footprint is constant (16GB), independent of the load factor, and easily
determined only be the size of the directory, i.e., 230 slots of 16B each. In ChainedH8,
the footprint is calculated as size of directory, i.e. 230 or 229 slots, times the pointer
size — 8B. In addition to that come 24B for each entry in the table. The footprint of
ChainedH24 is computed as directory size, 229, times 24B, plus 24B for each collision.
From this data we can obtain the amount of collisions for ChainedH24. For example, at
load factor 35%, ChainedH24 requires 12GB for the directory, and all that goes beyond
that is due to collisions. Thus, for the sparse distribution for example, ChainedH24 deals
with ≈ 28% rate of collisions. But under the dense distribution, it deals only with ≈ 3%
collision rate using Mult as hash function.

For performance results, let us focus on multiplicative hashing (Mult). Here, we can
see a clear and stable ranking among the methods. For inserts, ChainedH24 performs
better than ChainedH8. This is expected as the inlining of ChainedH24 helps to avoid
caches misses for all occupied slots. Linear probing is, however, the top performer. This
is because low load factors allow for many in-place insertions to the perfect slot.

In terms of lookup performance, we can also find a clear ranking among the chained
hashing variants. Here, ChainedH24 performs best again. The superior performance of
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Figure 5.2: Insertion and lookup throughputs, comparing two different variants of chained hash-
ing with linear probing, under three different distributions at load factors 25%, 35%, 45% from
230 for linear probing. Higher is better.
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ChainedH24 is again easily explainable by the lower amount of pointer-chasing in the
structure. We can also observe that between LP and ChainedH24, in all cases, one of
the two structures performs best — but each in a different case and the order is typi-
cally determined by the ratio of unsuccessful queries. For all successful lookups, LP
outperforms, in all but one case, all variants of chained hashing. The only exception
is under the dense distribution at 25% load factor, Figure 5.2(b). There, both methods
are essentially equivalent because the amount of collisions is essentially zero. The dif-
ference we observe is due to variance in code complexity, different penalties for branch
misprediction, and different directory sizes — smaller directories lead to better cache
behavior. Otherwise, in general, LP improves significantly over ChainedH24 if most
queries are successful. In turn, ChainedH24 improves over LP, also by a significant
amount in general, if most lookups are unsuccessful. We typically find the crossover
point at around 50% unsuccessful lookups. We have found that this is also the point
where the branch misprediction rate reaches for the lookup algorithms its maximum for
all methods. We observed, that branch misprediction has negative effects on the in-
struction pipeline and this penalty becomes clearly visible in our plots, as we vary
the rate of unsuccessful lookups. Interestingly, in some cases we can even observe
ChainedH8 performing slightly better than LP for 100% unsuccessful lookups, when
branch prediction improves again. This is explainable by a second effect, because even
when collisions are rare, primary clusters can build up in linear probing (think of a
continuous sequence of perfectly placed elements). For every unsuccessful query, LP
has to scan until it finds an empty slot, which can entail long probe sequences. Long
probe sequences obviously impact performance through additional cache misses, and
furthermore, high variance among probe sequence lengths is also a secondary source of
costly branch mispredictions. Thus, as the amount of unsuccessful queries increases, LP
becomes considerably slower. In comparison to that, chained hashing answers unsuc-
cessful queries right away if it detects an empty slot, or it will follow the linked list until
the end. However, linked lists are very short on average. The highest observed collision
rate is ≈ 34% (sparse distribution at 45% load factor). This means that, at most, roughly
one-third of the elements are outside the directory. Under the probabilistic properties of
Mult, it can be argued that the linked list in chained hashing are in expectation of length
at most 2, and thus chained hashing follows on average at most two pointers. We can
conclude that, at low load factors (< 50%), LPMult is the way to go if most queries
are successful (≥ 50%), and ChainedH24 must be considered otherwise.
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5.5.2 High load factors: 50%, 70%, 90%
In our second set of experiments we study the performance of hash tables when space
efficiency is required, and thus we are not able to use hash tables at low load factors.
That is, we stress the hash tables to occupy up to 90% of the space assigned to them
(chained hashing is allowed up to 10% more). We decided to use Cuckoo hashing on
four tables, rather than on two or three tables, because this version of Cuckoo hashing
is known to achieve load factors as high as 96.7% [31, 46] with high probability. In
contrast, Cuckoo hashing on two and three tables have stable load factors of < 50 and
up to ≈ 88% respectively [86]. This means that if in practice we want to consider very
high load factors (≥ 90%), then Cuckoo hashing on four tables is the best candidate.
An overview of the absolute best performers w.r.t. the other two capacities (small and
medium) is given later as a table in Figure 5.5.

Discussion

Let us first start with a general discussion about the impact of distributions and hash
functions on both, insert and lookup performance across all tables. Our first important
observation is that Multiply-shift (Mult) performs essentially always better than Mur-
mur hashing in this experiment. We can conclude from this that, overall, the improved
quality of Murmur over Mult does not justify the higher computational effort. Mult
seems already good enough to drive our five considered hash tables: ChainedH24, LP,
QP, RP, and CuckooH4 up to the significantly high load factor of 90% — observe that
no hash table is the absolute best using Murmur, see all plots of Figure 5.4. Another
interesting observation is that, while we can see a significant variance in throughput
under Mult across different data distributions — compare for example the throughputs
of dense and sparse distributions under Mult — this variance is minimal under Murmur.
This indicates that Murmur provides a very good randomization of the input data, basi-
cally transforming all input distribution into a distribution that is very close to uniform,
and hence the distribution seems not to have much effect under Murmur 9. However,
sensitivity of a hash function to certain data distributions is not necessarily bad. For
example, under the dense distribution10 Mult is known [74] to produce an approximate
arithmetic progression as hash codes, which reduces collisions. For a comparison, just
observe that the dense distribution achieves higher throughputs than the sparse distri-
bution that is usually considered as an unbiased reference of speed. We have observed
that the picture does not easily change, even in the presence of a certain degree of gaps
in the sequence of dense keys. Overall this makes Mult a strong candidate for dense
keys, which appear very often in practice, e.g., for generated primary keys. In contrast
to that, Mult is slightly slower on the grid distribution compared to the sparse distribu-

9We observed the same for Tab.
10Actually for generalized dense distributions following an arithmetic progression k, k + d, k + 2d, . . .
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tion. We could observe that Mult produces indeed more collisions than the expected
amount on uniformly distributed keys. However, this larger amount of collisions does
not get highly reflected in the observed performance. Thus, we consider Mult as the
best candidate to be used in practice when quality results on high throughputs is
desired, but at the cost of a high variance across data distributions.

Let us now focus on the difference between the hash tables. We can see immediately
that all open-addressing schemes, except CuckooH4, are better than ChainedH24 in
almost all cases for up to 50% unsuccessful lookups, see Figure 5.4 (a, b, e, f, i, j).
Only for the degenerated case of 100% unsuccessful lookups, ChainedH24 is the overall
winner — for the same reasons as for low load factors. ChainedH24 is removed from
the comparison for load factors > 50% because it exceeds the memory limit.

Between open-addressing schemes, things are more interesting. On insertions (left-
most column of Figure 5.4), we can observe a rather clear ranking among methods that
holds across all distributions and load factors. CuckooH4 is showing a very stable insert
performance that is only slightly affected by increasing load factors. However, this per-
formance is rather low. We can explain this result by the expensive reorganization that
happens during Cuckoo cycles, and can often incur into several cache misses (whenever
an element is moved between the tables) for a single insert. Unsurprisingly, LP, QP,
and RH show rather similar insert performance characteristics because their insertion
algorithm is very similar. Starting with high performance at 50% load factors, this per-
formance drops significantly as the load factor increases. However, even under a high
load factor, linearly and quadratically probing a hash table seems to be very effective.
Among the three methods, we observe that RH is in general slightly slower than LP and
QP. This is because RH performs small reorganizations on already inserted elements.
However, these reorganizations often stay within one cache line, and thus the decrease
in performance stays typically within less than 10%. With respect to QP and LP, the
following are the most relevant observations. QP and LP have very similar insertion
throughput for low load factors (up to 50). For higher load factors, when the difference
in collision handling plays a role: (1) LPMult is considerable faster than QPMult under
the dense distribution of keys (45M insertions/second versus 35M insertions/second —
Figure 5.4(a)), and (2) QP (Mult/Murmur) is faster than LP (Mult/Murmur) otherwise.
This is explainable: for (1) it suffices to observe that a dense distribution is the best case
for LPMult – since Mult produces an approximate arithmetic progression (very few col-
lisions). The best way to lay out an (approximate) arithmetic progression, in order to
have better data locality, is to do so linearly, just as LP does. We could also observe that
when primary clusters start appearing, they appear well distributed across the whole ta-
ble, and they have similar sizes. Thus no cluster is arbitrarily long, which is good for LP.
On the other hand, QP touches a new cache line in every probe subsequent to the third,
and touching a new cache line results usually in a cache miss. Data locality is thus not
optimal. For (2) the argument complements (1). Data is distributed more randomly, by
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the hash function, across the table. This causes an increment in collisions w.r.t. the com-
bination 〈dense distribution + Mult〉. For high load factors this increment in collisions
means considerable long primary clusters that LP has to deal with. In this case, QP is
a better strategy to handle collisions since it scatters collisions more sparsely across the
table, and chances to find empty slots fast, over the whole sequence of insertions, are
better than in LP with considerable long primary clusters.

For lookups we can find a similar situation as for inserts. LP, QP, and RH perform
better than CuckooH4 in many situations, i.e., up to relatively high load factors. How-
ever, the performance of the former three significantly decreases with (1) higher load
factors and (2) more unsuccessful lookups. We could observe that from a load factor
of 80% on, CuckooH4 clearly surpasses the other methods. In general, LP, QP, and RH
are better in dealing with higher collision rates than Cuckoo hashing, which is known
to be negatively affected by “weak” hash functions [90] such as Mult. However, these
“weak” hash functions affect only during the construction of the hash table, since once
the hash table is constructed, then lookups in Cuckoo hashing are performed in constant
time (four cache misses at most for CuckooH4). As such, Cuckoo hashing is also less
affected by unsuccessful lookups than LP, QP, and RH. However, it seems that we can
benefit from CuckooH4 only on very high load factors ≥ 80%.

As expected, the more complex re-organization that RH performs on the keys during
insertions, see Section 5.2.4, can be seen to pay off under unsuccessful lookups — RH
is much less affected by them than LP and QP. In RH, unsuccessful lookups can stop
as soon as the displacement of the search key is exceeded by another key we encounter
during the probe. Hence, RH does not necessarily require a complete scan of all adjacent
keys in the same cluster, and can stop probing after less iterations than LP or QP. Clearly,
this advantage of RH over LP and QP increases with higher load factors and higher rates
of unsuccessful lookups — significantly improving on the worst-case of the methods.
However, in the best of cases, i.e., when all lookups are successful, RH is slightly slower
than the competitors. This is also expected as RH does not improve on the average
displacement or amount of loaded cache lines w.r.t. LP (clusters contain only different
permutations of the elements therein contained under RH and LP). When all lookups are
successful, the (small) performance penalty of RH is due to its slightly more complex
code. We can conclude that RH provides a very interesting trade-off: for a small
penalty (often within 1-5%) in peak performance on the best of cases (all lookups
successful), RH significantly improves on the worst-case over LP in general, up to
more than a factor 4. Under the dense distribution — Figure 5.4 (a – c) — RH and
LP have similar performance up to 70% load factor, but for 90% load factor, RH is
significantly faster than LP (up to 40%) from 25% unsuccessful lookups on.

Across the whole set of experiments, RH is always among the top performers,
and even the best method for most cases. This observation holds for all data set
sizes we tested. In this regard, Figure 5.5 gives an overview and summarizes the abso-
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Figure 5.4: Insertion and lookup throughputs, open-addressing variants and chained hashing,
under three different distributions at load factors 50%, 70%, 90% from 230. Higher is better.
Memory consumption for all open-addressing schemes is 16GB, and 16.4GB for ChainedH24.

lute best methods we tested in this experiment under all capacities (small, medium, and
large). Methods are color-coded as in the curves in the plots. Observe that patterns are
nicely recognizable. For lookups in general, RH seems to be an excellent all-rounder
unless the hash table is expected to be very full, or the amount of unsuccessful queries
is rather large. In such cases, CuckooH4 and ChainedH24 would be better options, re-
spectively, if their slow insertion times are acceptable. With respect to insertions, it is
natural not to see RH appearing more often, and certainly CuckooH4 and ChainedH24
not at all, due to their complicated insertion procedures. For insertions, QP seems to be
the best option in general. Even when LP or RH are sometimes better, the difference is
rather small, less than 10%.
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Figure 5.5: Absolute best performers for the WORM workload (Section 5.5.2) across distri-
butions, different load factors, and different capacities: Small (S), Medium (M) and Large (L).
Throughput of the corresponding hash table is shown inside its cell in millions of operations per
second.

5.6 Read-write workload (RW)

In RW we are interested in analyzing how growing (rehashing) over a long sequence
of operations affects overall throughput and memory consumption. The set of opera-
tions we consider is the following: insertions, deletions (all successful), and lookups
(successful and unsuccessful). In RW we let the hash tables grow over a set of 1000
million operations that appear in random order. Each hash table initially contains 16
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millions keys11. We set the insertion-to-deletion ratio (updates) to 4:1 (20% deletions),
and the successful-to-unsuccessful-lookup ratio to 3:1 (25% unsuccessful queries). For
this kind of workload we present here only the results concerning the sparse distribution
of keys. We consider three different thresholds for rehashing: at 50%, 70%, and 90%.
Rehashing at 50% allows us to always have enough empty slots, and thus also less col-
lisions. However, this also means a potential loss in space since the workload might
stop short after growing, and thus up to 75% of the hash table could be empty. On the
other hand, rehashing at 90% deals with a large amount of collisions as the table gets
full, but then we potentially waste less space. In addition to that, high load factors will
incur into slow lookup times before a rehash. Observe again that by the natural load
factors of Cuckoo hashing on two and three tables, Cuckoo hashing on four tables is the
best candidate again for controlling at what load factor the hash table must rehash. For
chained hashing, similar to the situation in WORM, we present here only the case where
rehashing is performed at 50% load factor. This is the only case in which we can keep
memory consumption of ChainedH24 comparable to what the open-addressing schemes
require. The results of these experiments are shown in Figure 5.6.

Discussion

With respect to the performance in the WORM scenario on high load factors — Sec-
tion 5.5.2 — the outcome of the RW comparison offers few surprises. One of these
surprises is to see that ChainedH24 offers better performance than CuckooH4 (50%
load factor only), and sometimes even by a large margin. However, both lag clearly
behind the other (open-addressing) schemes. As RW workload is write-heavy, what we
see in the plots is mostly the cost of table rehashing — except for data points at 0%
updates. In that case, what we see are only lookups with 25% of unsuccessful queries,
see Figure 5.4(j) for a comparison. For CuckooH4 the gap narrows as the load factor in-
creases, see Figure 5.6(c), but is not enough to become really competitive with the best
performers — which are at least twice as fast as the updates become more frequent. As
a conclusion, although memory requirements of ChainedH24 and CuckooH4 are
competitive with that of the other schemes in a dynamic setting, both — chained
and Cuckoo hashing — should be avoided for write-heavy workloads.

We can also see that Mult wins again over Murmur on all hash tables — Figure 5.6
(a – c). Which is to be expected since the hash tables rehash many times and thus hash
function computations are fundamental. Also, we always find LP, QP, and RH as the
fastest methods, and often with very similar performance. Growing at 50% load factor
— Figure 5.6(a) — the difference in throughput of all three methods is mostly within
the boundary of variance. In case of high update percentage (> 50%), we can observe
a small performance penalty for RH in comparison to LP and QP, which is due to the

11In the beginning (no updates), the hash tables have a load factor of roughly 47%.
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Figure 5.6: 1000M operations of RW workload under different load factors and update-to-
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slightly slower insert performance that we already observed in the WORM benchmark,
see Figure 5.4(i). This is expected because at 50% load factor, there are few collisions,
and more sophisticated strategies for handling collisions cannot benefit as much. At
70% and 90% load factors — Figures 5.6(b) and 5.6(c) — all three methods are getting
slower, and we can also observe a clearer difference between them because different
strategies have an impact now. Interestingly, with increasing load factor and update
ratios, QP is showing the best performance, with LP being second and RH in third
place. This is consistent with our observation in the WORM experiment that QP is best
for inserts on high load factors and RH is typically the slowest. As a conclusion, in a
write-heavy workload, quadratic probing looks as the best option in general.
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5.7 On table layout: AoS or SoA

One fundamental question in open-addressing is whether to organize the table as an
array-of-structs (AoS) or as a struct-of-arrays (SoA). In AoS, the table is internally
represented as array of key-value pairs whereas SoA keeps keys and values separated
in two corresponding, aligned arrays. Both variants offer different performance charac-
teristics and tradeoffs. These tradeoffs are somewhat similar to the difference between
row and column layout for storing database tables. In general, we can expect to touch
less cache-lines for AoS when the total displacement of the table is rather low, ideally
just one cache line. In contrast to that, SoA already needs to touch at least two cache
lines for each successful probe (one for the key and one for the value) in the best case.
However, for high displacement (and hence longer probe sequences) SoA layout offers
the benefit that we can just search through keys only, thus scanning up to only half the
amount of data compared to AoS, where keys and values are interleaved. Another ad-
vantage of SoA over AoS is that a separation of keys from values makes vectorization
with SIMD easy, essentially allowing us to load and compare four densely packed keys
at a time on 256-bit SIMD registers as offered on current AVX-2 platforms. In contrast
to that, comparing four keys in AoS with SIMD requires to first extract only the keys
from the key-value pairs into the SIMD register, e.g., by using gather-scatter vector ad-
dressing which we found to be not very efficient on current processors. Independent of
this, AoS also needs to touch up to two times more cache lines for long probe sequences
compared to SoA when many keys are scanned.

In the following, we present a micro-benchmark to illustrate the effect of differ-
ent layout and SIMD for inserts and lookups in linear probing. Since our computing
server does not support AVX-2 instructions, we ran this micro-benchmark on a new
MacBook Pro as described in Section 5.4. We implemented key comparisons with
SIMD instructions for lookup and inserts on top of our existing linear probing hash
tables by manually introducing intrinsics to our code. For example, in AoS, we load
four keys at a time to a SIMD register from an cache-line-aligned index, using the
_mm256_load_si256 command. Then we perform a vectorized comparison on the
four keys using _mm256_cmpeq_epi64 and, in case of one successful comparison, ob-
tain the first matching index with _mm256_movemask_pd.

We compare LPMult in AoS layout against LPMult in SoA layout with and without
SIMD on a sparse data set. Similar to the indexing experiment of Section 5.5.2, we
measure the throughput for insertions and lookups for load factors 50, 70, 90%. Due to
the limited memory available on the laptop, we use the medium table capacity of 227

slots — 2GB. This still allows us to study the performance outside of caches, where
we expect layout effects to matter most, because touching different cache lines typically
triggers expensive cache misses. Figure 5.7 shows the results of the experiment.
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Discussion

Let us start by discussing the impact of layout without using SIMD instructions, meth-
ods LPAoSMult and LPSoAMult in Figure 5.7. For inserts (Figure 5.7(a)), AoS per-
forms up to 50% better than SoA, on the lowest load factor (50%). This gap is slowly
closing with higher load factors, leaving AoS only 10% faster than SoA on load factor
90%. This result can be explained as follows. When collisions are rare (as on load
factor 50), SoA touches two times more cache lines than AoS — it has to place key and
value in different locations. In contrast to that, SoA can fit up to two times more keys
in one cache line than AoS, which improves throughput for longer probes sequences
when searching empty slots under high load factors. However, when beginning insert-
ing into an empty hash table, we can often place the entry into its hash bucket without
any further probing. Only over time we will require more and more probes. Thus, in the
beginning, there is a high number of insertions where the advantage of AoS has higher
impact. This is also the reason why the gap in insertion throughput between AoS and
SoA significantly narrows as the load factor increases.

For lookups (Figures 5.7(b — d)) we noticed overall that AoS is faster than SoA
on short probe sequences, i.e., especially for low load factors and low rates of unsuc-
cessful queries. On the lowest load factor (50%, Figure 5.7(b)), we can see that in the
best case (all queries successful) AoS typically encounters half the number of cache
misses compared to SoA, because keys and values are adjacent. This is reflected in a
63% higher throughput. With increasing unsuccessful lookup rate, the performance of
SoA approaches AoS and the crossover point lies around 75% unsuccessful lookups.
For 100% unsuccessful lookups, AoS improves over SoA by 15%. For load factor 70%
(Figure 5.7(c)), AoS is again superior to SoA for low rates of unsuccessful queries, but
the crossover point at which SoA starts being beneficial shifted to 25% unsuccessful
queries instead of 75% of the 50% load factor. Interestingly, we can observe that for
load factor 90% (Figure 5.7(d)), the advantage of SoA over AoS layout is unexpectedly
low — with the highest difference observed being around 30% instead of close to a fac-
tor 2 as we could expect. Our analysis obtained a combination of three different factors
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that explain this result. First, even in the extreme case of 100% unsuccessful lookups,
the difference in touched caches lines is not a factor 2. The combination 〈sparse distri-
bution, Mult〉 simulates the ideal case that every key is uniformly distributed over the
hash table. Thus, we know [74] that the average number of probes in an unsuccess-
ful search in linear probing is roughly 1

2

(
1 +

(
1

(1−α)2

))
, where α is the load factor of the

table. Thus, for 90% load factor the average probe length is roughly 50.5 (we could
verify this experimentally as well). Now, in AoS we can pack four key-value pairs into
a cache line, and twice as much (eight) for SoA. This means that the average number
of loaded cache lines in AoS and SoA is roughly 50.5

4 and 50.5
8 respectively. However, in

practice this behaves like d 50.5
4 e = 13 and d50.5

8 e = 7 respectively — since whole cache
lines are loaded. Which means that AoS loads only roughly 1.85× more caches lines as
SoA — which we were also able to verify experimentally. In addition to that, a second
factor are nonuniform costs of visiting cache lines. We observed that the first probe
in a sequence is typically more expensive than the subsequent linear probes because
the first probe is likely to trigger a TLB miss and a page walk, which amortizes over
visiting a larger amount of adjacent slots. The third factor is that, independent from
the number of visited cache lines, the number of hash computations, loop iterations,
and key comparisons are identical for SoA and AoS. Those parts of the probing algo-
rithm involve data dependencies that build up a long critical path in the pipeline. Long
chains of data dependencies prevent modern processors from hiding memory latencies
and make out-of-order execution less effective. In addition to that, the concrete length
of probe sequences also suffers from high variance for both layouts, which negatively
affects branch prediction so that the misprediction penalty overshadows parts of the lay-
out effects. In conclusion, the ideal advantages of SoA over AoS are less strong in
practice due to the way hardware works.

We now proceed to discuss the impact of SIMD instructions in both layouts. In gen-
eral, SIMD allows us to compare up to four 8-byte keys (or half a cache line) in parallel,
with one instruction. However, this parallelism typically comes at a small price because
loading keys into SIMD registers and generating a memory address from the result of
SIMD comparison (e.g., by performing count-trailing-zeros on a bit mask) potentially
introduce a small overhead in terms of instructions. In case of writes that depend on
address calculation based on the result of SIMD operations, we could even observe
expensive pipeline stalls. Hence, in certain cases, SIMD can actually make execution
slower, e.g., see Figure 5.7(a). For lower load factors, using SIMD for insertions can
decrease performance significantly for both AoS and SoA layout, by up to 64% in the
extreme case. However, there is a crossover point between SIMD and non-SIMD inser-
tions around 75% load factor. We found that in such cases, SIMD is up to 12% faster
than non-SIMD.

For lookups, we can observe that SIMD improves performance in almost all cases.
We notice, that in general, the improvement of SIMD is higher for SoA than for AoS.
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As mentioned before, SoA layout simplifies loading keys to a SIMD register, whereas
AoS requires us to gather the interleaved keys in a register. We observed that on the
Haswell architecture, gathering is still a rather expensive operation and this difference
gives SoA an edge over AoS for SIMD. As a result, we find SoA-SIMD superior to plain
SoA in all cases for lookups, with improvement of up to up to 81% (Figure 5.7(b)). We
observed that AoS-SIMD can be up to 17% harmful for low load factors, but beneficial
for high load factors.

In general, we could observe in this experiment that AoS is significantly superior
to SoA for insertions — even up to very high load factors. Our overall conclusion is
that AoS outperforms SoA by a larger margin than the other way around. Inside
caches (not shown), both methods are comparable in terms of lookup performance,
with AoS performing slightly better. When using SIMD, SoA has an edge over AoS
— at least on current hardware — because keys are already densely packed.

5.8 Conclusions and future work
All the knowledge we gathered leads us to propose a decision graph, Figure 5.8, that
we hope can help practitioners to decide more easily what hash table to use in practice
under different circumstances. Obviously, no experiment can be complete enough to
fully capture the true nature of all hash tables in every situation. Our suggestions are,
nevertheless, educated as a result of our large set of experiments, and we are confident
that they represent very well the behavior of the hash tables. We also hope that our
study makes practitioners more aware about trade-offs and consequences of not care-
fully choosing a hash table.

We stated our conclusions in an inline fashion throughout the chapter, but we would
still like to summarize some important points here in a very condensed manner:

1. Consider chained hashing only when memory is not strongly constraint and the
amount of unsuccessful queries is known to be significantly larger (> 50% of all
queries). Otherwise consider using an open-addressing scheme (potentially at a
high load factor).

2. Linear probing and variants are surprisingly good in conjunction with relatively
cheap but decent hash functions like Mult, and this combination should strongly
be considered in practice. We have shown the most relevant trade-offs.

3. Every single instruction can matter in long data dependency chains because of
their effects on pipelining in modern processors. This becomes clearly visible
when considering the performance differences between hash functions, because
their computation contributes to the critcal path length of hash table algorithms.
From this perspective, we suggest to use the most lightweight hash function that
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fulfills the particular quality needs of the use case at hand. Furthermore, we plan
to to investigate the exact circumstances and implications of the observed effects
on pipelining in a future work.

4. Mult, see Section 5.3.1, as a hash function is extremely efficient and seems to be
robust enough for typical database use-cases. In particular Mult on a dense dis-
tribution (often found in databases) is an excellent choice since Mult produces an
approximate arithmetic progression, thus severely reducing collisions (w.r.t. ran-
dom distribution for example).

Finally, let us conclude that memory layout has a significant impact on table perfor-
mance and it is interesting to study the middle ground between SoA and AoS — taking
into account hardware granularities such as cache lines or pages. For example, for AoS,
it might be beneficial to separate corresponding keys and value but keep them separated
in the two halves of the same cache line. This could yield the benefits of AoS in terms
of minimal cache misses and the benefits of SoA w.r.t. the use of SIMD instructions.
Furthermore, for SoA, we could store keys and their respective values separated in the
two halves of the same memory page — thus avoiding additional TLB misses for large
table sizes.
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Appendix A

Mosquito: Another One Bites the Data
Upload STream

A.1 Abstract
Mosquito is a lightweight and adaptive physical design framework for Hadoop.
Mosquito connects to existing data pipelines in Hadoop MapReduce and/or HDFS, ob-
serves the data, and creates better physical designs, i.e. indexes, as a byproduct. Our
approach is minimally invasive, yet it allows users and developers to easily improve the
runtime of Hadoop. We present three important use cases: first, how to create indexes
as a byproduct of data uploads into HDFS; second, how to create indexes as a byproduct
of map tasks; and third, how to execute map tasks as a byproduct of HDFS data uploads.
These use cases may even be combined.

A.2 Introduction
Hadoop is a popular data processing engine in the context of cloud computing, NoSQL,
and Big Data. In the past years, the DB community has taught efficiency to Hadoop
MapReduce and its distributed file systems HDFS in several ways. An important fam-
ily of techniques has investigated on how to use better physical layouts [66], clustered
indexes [35, 36], and adaptive indexes [99]. Though these technique can always be
implemented in a traditional way by using Hadoop MapReduce jobs to create indexes
on top of its file system HDFS — similar to a traditional DBMS using a physical de-
sign engine on top of a file system, this approach has a severe drawback: data is read
and written several times across the two layers. As HDFS is agnostic about Hadoop
MapReduce, considerable time is wasted doing things twice in the two layers that could
be combined effectively if the two layers were a single layer. This is prohibitevly expen-
sive in an environment handling Petabytes of data. It makes physical design expensive.
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And it dramatically increases MapReduce job latencies, be it at data upload or be it at
MapReduce job execution. In the context of a distributed system the separation of data
storage and data processing into two layers is a pain.

The reader might recognize this line of thought: it is a vanilla software engineering
argument from our DB courses: for highest efficiency it is a great decision to get rid of
all interfaces and layers and pack all code into a single monolithic block. However, such
a system becomes unmaintainable quickly. Especially if the system is developed as an
open source project by a large community — like Hadoop. What happens if fundamental
things change in Hadoop’s code base? Who makes sure that the techniques we taught
to Hadoop will still work with the next release?

An obvious idea to fix this problem is the other extreme of a system design: use
many interfaces and layers. Whatever technique you want to teach to Hadoop, imple-
ment them in another layer: make sure you implement them against system- or UDF-
interfaces [35, 67], i.e. whatever you do, stick to the existing interfaces. However, such
systems quickly become inefficient. In addition, the impact of your optimizations is
limited by the interfaces that were provided by those systems in the first place, even
when using UDFs [35, 67]. Moreover, even though these approaches do not need to
touch the source code of the software layer underneath, the limitedness of the system
interfaces often forces you to reimplement considerable parts of its functionality. For
instance, the recently proposed [65] does not need to change HDFS. However, it needs
to reimplement failover, data placement, as well as load balancing. This reduces the
role of HDFS to a simple local file system with network access.

To fix this, in this demo we introduce a novel approach coined Mosquito. Our system
sits in-between the two extremes in the system design space. We allow Mosquito to
connect to data pipelines and streams available on lower layers, be it HDFS or Hadoop
MapReduce. Yes, like this we break the layering of these systems at small, yet clearly
defined points. Yet, with this approach we are able to reduce the maintenance effort
of Mosquito to a minimum, but at the same time we are able to perform crosslayer
optimizations. These optimizations lead to order of magnitude runtime improvements.

A.3 Mosquito Overview

Mosquito is a software framework allowing developers to easily connect to data streams
in Hadoop. Currently Mosquito supports three major scenarios: (1) Aggressive Index-
ing, i.e. HDFS blocks may be indexed as a side-effect of uploading data into HDFS.
All physical replicas of a logical HDFS block may be kept in different sort orders;
(2) Adaptive Indexing, i.e. HDFS blocks get indexed at query time as a side-effect of
query processing. For every incoming MapReduce job a fraction of the HDFS blocks
pertaining to a file are indexed; and (3) Aggressive Map Execution, i.e. the map phase of
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a MapReduce job may be executed as a side-effect of uploading data into HDFS already.
The three scenarios may even be combined.

A.3.1 Aggressive Indexing

Client HDFS
Data Upload

+ Clustered Index

Figure A.1: Mosquito aggressive indexing as a side-effect of HDFS data upload.

Mosquito Aggressive Indexing allows users to efficiently create different clustered
indexes over terabytes of data as a side-effect of uploading their dataset to HDFS.
Mosquito can support different sort orders (and layouts), one for each physical replica
of the data without affecting Hadoop’s data placement and failover properties. Like this
Mosquito can fully emulate HAIL Static Indexing [36].

Overall, we will demonstrate that Mosquito indexes can dramatically improve the
runtimes of several classes of MapReduce jobs while index creation is basically invisible
to the user in terms of upload time overhead. Figure A.1 sketches the idea of a Mosquito
biting into the data upload pipeline: whenever a user uploads a new dataset through the
HDFS client, the data is partitioned into HDFS blocks and those blocks are shipped and
replicated to HDFS data nodes for storage. Mosquito intercepts block storage. While
HDFS data blocks are loaded into main memory Mosquito creates user defined indexes,
typically one for each block replica, before actually storing the reordered HDFS blocks
on the data nodes.

A.3.2 Adaptive Indexing
Mosquito Adaptive Indexing allows users to efficiently create different clustered indexes
over terabytes of data as a side-effect of query processing. In contrast to adaptive index-
ing in main memory [61], for every MapTask we collect a subset of the HDFS blocks
and create full indexes on those blocks. In addition, again, this also allows us to keep
all replicas in sync and keep HDFS’ failover properties. Like this Mosquito can fully
emulate HAIL Adaptive Indexing [99].

Our motivation for Mosquito adaptive indexing is a scenario where users want to
apply selections (using Mosquito annotations) on attributes that where not indexed at
data upload time. For example, this can easily happen when the selection criteria are
hard to predict in advance or whenever workloads change over time. Mosquito adaptive
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HDFS MapTask
Map Input

+ Adaptive Index 

Figure A.2: Mosquito adaptive indexing as a side-effect of a MapTask execution.

indexing sits on top of Hadoop’s MapReduce job execution. The core idea is to create
missing but promising indexes as byproducts of full scans in the map phase of MapRe-
duce jobs. Similar to aggressive indexing, our goal is again to create additional indexes
without significant overhead on individual job runtimes. Mosquito piggybacks on an-
other procedure that is naturally reading data from disk to main memory. This allows
Mosquito to completely save the data read cost for adaptive index creation. Second,
as map tasks are usually I/O-bound, Mosquito can again exploit unused CPU time for
computing clustered indexes in parallel to job execution. Figure A.2 illustrates the core
concept of the Mosquito adaptive indexing pipeline.

A.3.3 Aggressive Map Execution
Mosquito Aggressive Map Execution allows users to efficiently run one or several map
phases as a side-effect of uploading data into HDFS. This means each data node receiv-
ing data to store already executes a MapTask on that data before writing it to disk.This is
interesting for cases where the map-functions to execute are already known at data up-
load time. Like this Mosquito can be run in ‘NoHadoop’-mode: Mosquito Aggressive
Map Execution allows users to execute MapReduce jobs while uploading their dataset
to HDFS. This means that users can immediately start analyzing their data instead of
waiting for their initial upload to finish. Our Aggressive Map Execution is illustrated in
Figure A.3 and works on top of the HDFS upload pipeline as follows: (1) The user up-
loads her data with the HDFS upload command and additionally provides one (or a set
of) MapReduce job(s) to execute on that data. (2) The client splits the data into blocks
and these blocks into packets. For each block, the client sends those packets to the first
data node for storage. (3) On each data node, those packets are persisted on local disk
and forwarded to the next data node if applicable, just like in normal HDFS. However,
in parallel, one data node that stores a block replica is chosen by the job scheduler to
reassemble this data block from the packets in main memory and spawn a new map
tasks for the provided job. Since data block replicas are distributed over the cluster, the
scheduler can parallelize the tasks on the cluster similar to normal Hadoop. Whenever a
map tasks fails, it is rescheduled after the upload phase was completed. As a result, our
system can save the complete read costs of the map tasks while preserving full failover
properties. (4) After the upload (and hence the map phase) is completed, Mosquito runs
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a reduce phase as in normal Hadoop. Notice that, Mosquito could also be used to chain
multiple MapReduce jobs, e.g. for iterative computations: in the end of a reduce task,
when the output of a job is written back to HDFS, the consecutive map task may already
be executed using the technique of Aggressive Map Execution.

Client HDFS

MapTask

Data Upload

+ Map Input

Figure A.3: Aggressive Map Execution as a side-effect of HDFS data upload.

A.4 Demonstration and Use Cases
Mosquito offers interfaces to plug user defined operations on top of ongoing data move-
ment in Hadoop clusters. As a result, the Mosquito framework acts as a flexible platform
that greatly simplifies the realization of many optimization techniques for Hadoop’s data
storage and job execution pipeline, such as indexing, layout transformation or ad-hoc
job execution. In the following, we will describe our demo setup (Section A.4.1) and
three use cases that demonstrate possible Mosquito applications (Section A.4.2).

A.4.1 Demo Setup
In our demo, we compare the performance of our Mosquito applications to standard
Hadoop in order to better understand the benefits of using Mosquito. We use our local
10-node cluster at Saarland University. Each cluster node has two Intel Xeon E5-2407
2.20 GHz processor, 48GB of main memory and 2TB HDD. For different demo scenar-
ios we visualize the performance with respect to job runtimes and data upload times.

A.4.2 Use Cases
Mosquito emulating HAIL Static Indexing

In our first use case, we leverage Mosquito to emulate HAIL [36]. The goal of this demo
scenario is to (i) illustrate how Mosquito can easily create several clustered indexes in
parallel to uploading a dataset to HDFS and (ii) to show how such indexes can dramat-
ically decrease the runtimes of selective MapReduce jobs. This scenario represents a
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typical analytical use case, where the user wants to create one or more indexes on a
large dataset, e.g. a weblog, and afterwards exploits the indexes to speed up queries. We
invite the audience to specify the clustered indexes to create and to compare the upload
times for the weblog dataset of Mosquito with the ones of standard HDFS. Then, the
audience can edit and enhance MapReduce jobs with Mosquito annotations and run the
jobs on the previously uploaded dataset. Finally, we report the runtime improvements
of Mosquito in comparison to normal Hadoop MapReduce.

Mosquito emulating HAIL Adaptive Indexing

In our second use case, we configure Mosquito to emulate adaptive indexing as pre-
sented in LIAH [99]. In this scenario, we show how Mosquito can be used to realize
pluggable adaptive indexing capabilities on top of Hadoop MapReduce. In more de-
tail, we show how Mosquito exploits running map tasks to incrementally build missing
indexes with minimal or no runtime overhead per job. This approach proved useful in
applications where the query workload is unknown at data upload or changes over time.
Our Mosquito GUI, as shown in Figure A.4, allows the audience to edit and sched-
ule sequences of annotated MapReduce jobs. Additionally, the audience can configure
runtime parameters, such as the offer rate1. We plot the runtimes for the job sequence
executed on Mosquito and standard Hadoop. Thereby, the audience can observe the
gradual runtime improvement of adaptive indexing. Furthermore, an index map visual-
izes the progress of index creation while executing the job sequence.

Mosquito running NoHadoop

Our third use case for the Mosquito framework is ‘NoHadoop’-mode, an approach for
ad-hoc job execution on top of data uploads to HDFS. With NoHadoop, users no longer
have to wait for their data being uploaded to HDFS before running their MapReduce
jobs. Instead, they can immediately start running MapReduce jobs while their data is s
being uploaded to HDFS. Consequently, NoHadoop eliminates the upload-to-job time,
which is the fundamental measure for the delay before Hadoop can actually start to ex-
ecute jobs on new data. We encourage the audience to benchmark Mosquito NoHadoop
against normal Hadoop for one or more jobs. Overall, we show the abilities of Mosquito
NoHadoop to reduce upload-to-job time as well as total runtimes of typical MapReduce
workflows dramatically.

1The offer rate defines the maximum percentage of data blocks from the input dataset that can be
indexing in parallel to a single MapReduce job.



A.4. Demonstration and Use Cases 137

(a) Dataset upload (b) Job execution

(c) Indexing status (d) Browse cluster information

Figure A.4: Graphical User Interface of Mosquito
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[35] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty, and Jörg Schad. Hadoop++: Making a Yellow Elephant Run Like a Chee-
tah (Without It Even Noticing). PVLDB, 3(1):518–529, 2010.
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