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Short Abstract

This thesis is dedicated to image compression with partial differential equations (PDEs). PDE-
based codecs store only a small amount of image points and propagate their information into
the unknown image areas during the decompression step. For certain classes of images, PDE-
based compression can already outperform the current quasi-standard, JPEG2000. However,
the reasons for this success are not yet fully understood, and PDE-based compression is still
in a proof-of-concept stage. With a probabilistic justification for anisotropic diffusion, we
contribute to a deeper insight into design principles for PDE-based codecs. Moreover, by
analysing the interaction between efficient storage methods and image reconstruction with
diffusion, we can rank PDEs according to their practical value in compression. Based on these
observations, we advance PDE-based compression towards practical viability: First, we present
a new hybrid codec that combines PDE- and patch-based interpolation to deal with highly
textured images. Furthermore, a new video player demonstrates the real-time capacities of PDE-
based image interpolation and a new region of interest coding algorithm represents important
image areas with high accuracy. Finally, we propose a new framework for diffusion-based
image colourisation that we use to build an efficient codec for colour images. Experiments on
real world image databases show that our new method is qualitatively competitive to current
state-of-the-art codecs.
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Kurzzusammenfassung

Diese Dissertation ist der Bildkompression mit partiellen Differentialgleichungen (PDEs, par-
tial differential equations) gewidmet. PDE-Codecs speichern nur einen geringen Anteil aller
Bildpunkte und transportieren deren Information in fehlende Bildregionen. In einigen Fällen
kann PDE-basierte Kompression den aktuellen Quasi-Standard, JPEG2000, bereits schlagen.
Allerdings sind die Gründe für diesen Erfolg noch nicht vollständig erforscht, und PDE-basierte
Kompression befindet sich derzeit noch im Anfangsstadium. Wir tragen durch eine proba-
bilistische Rechtfertigung anisotroper Diffusion zu einem tieferen Verständnis PDE-basierten
Codec-Designs bei. Eine Analyse der Interaktion zwischen effizienten Speicherverfahren und
Bildrekonstruktion erlaubt es uns, PDEs nach ihrem Nutzen für die Kompression zu beurteilen.
Anhand dieser Einsichten entwickeln wir PDE-basierte Kompression hinsichtlich ihrer prakti-
schen Nutzbarkeit weiter: Wir stellen einen Hybrid-Codec für hochtexturierte Bilder vor, der
umgebungsbasierte Interpolation mit PDEs kombiniert. Ein neuer Video-Dekodierer demon-
striert die Echtzeitfähigkeit PDE-basierter Interpolation und eine Region-of-Interest-Methode
erlaubt es, wichtige Bildbereiche mit hoher Genauigkeit zu speichern. Schlussendlich stellen
wir ein neues diffusionsbasiertes Kolorierungsverfahren vor, welches uns effiziente Kompression
von Farbbildern ermöglicht. Experimente auf Realwelt-Bilddatenbanken zeigen die Konkurrenz-
fähigkeit dieses Verfahrens auf.
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Abstract

The omnipresence of digital images and movies on computers and entertainment devices,
particularly on the internet, implies a necessity for efficient storage of this kind of data.
Today, image and video coding is dominated by transform-based methods like JPEG [215],
JPEG2000 [277] and the MPEG family [143]. These methods rely on sparse representations by
means of a discrete cosine or wavelet transform. Recently, a completely different approach has
challenged these established encoders: Compression with PDEs (partial differential equations)
creates sparsity directly in the spatial domain by storing only a few selected pixels. For
decompression, the codec reconstructs the missing image parts by propagating information by
a physics-inspired diffusion process. On specific classes of images, PDE-based compression can
already surpass the quality of JPEG and JPEG2000 [250]. This thesis aims to provide a deeper
understanding of this success, assess which tasks remain to be solved, and pave the way for
practical viability of PDE-based compression.

Currently, the state of the art in PDE-based compression relies on edge-enhancing anisotropic
diffusion (EED) [295] which has exceptional interpolation capabilities. In order to get a better
understanding of this codec’s success, we justify the need for PDEs that allow directionally-
dependent propagation from the statistics of natural images. By relating diffusion to Bayesian
approaches for image processing, we construct a unifying framework for eight existing diffusion
models. We show that the historical evolution of diffusion models reflects an increasingly accu-
rate approximation of image statistics by the corresponding Bayesian priors. Our experiments
for denoising and inpainting on a large database of natural images underline these results.

Apart from PDE-based reconstruction, many other compression steps are vital for a successful
codec: The selection of known data, entropy coding, and quantisation have a large effect on the
overall coding performance. To foster understanding for proper design of PDE-based codecs,
we carefully analyse the interplay between different compression components and PDEs. To
this end, we propose two new codecs that each rely on a different core strategy. Our first codec
selects pixel-accurate known data that allows accurate reconstructions, but is expensive to store.
The second approach restricts the choice to a regular adaptive grid which can be efficiently
stored as a binary tree at the expense of suboptimal known data. Our evaluations with the most
popular PDEs in compression (harmonic, biharmonic, and edge-enhancing diffusion) yield
a surprising result: The inpainting capabilities of these PDEs do not always determine their
success in a given codec, if other compression steps like quantisation are involved. In particular,
harmonic diffusion is sensitive to the location of known data, while the quality of biharmonic
inpainting suffers under coarse quantisation. In contrast, EED is robust with respect to both.

Our investigations of key components for PDE-based compression allow us to address several
missing features and limitations of the current generation of diffusion coders. First, we
focus on the fact that interpolation with PDEs inherently relies on a smoothness assumption
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on the missing image parts. Since fine-scale texture violates this assumption, it is difficult
to compress. As a remedy, we propose a block-decomposition method that combines PDE-
based reconstruction with patch-based approach for texture synthesis. This hybrid method
can improve performance on highly textured images significantly and helps to close the gap
between PDE-based codecs and JPEG2000 on this class of images.

Another current limitation of PDE-based compression is their runtime. In order to show that
this class of codecs can also be used for time critical applications, we present a PDE-based video
codec that allows real-time playback. We achieve this performance on consumer hardware by
parallelisation, caching, and the reuse of already decompressed frames as an initialisation for
upcoming frames. We show that the video quality does not deteriorate visibly in comparison to
decoding without time constraints on the entire movie Nosferatu [87].

Finally, we address perceptive coding. We introduce a region of interest mode to PDE-based
compression. A user or an automated algorithm can specify a pixel-accurate, continuous
weighting of different regions in the compressed image. According to this weighting the error is
distributed throughout the image. We demonstrate the applications with examples from medical
imaging, photography and video encoding. An even more important aspect of perceptive coding
is the higher sensitivity of the human visual system w.r.t. structural information in images
than w.r.t. colour. This fact is already exploited by JPEG and JPEG2000, but colour images
have not been addressed with a dedicated codec in the proof-of-concept stage of PDE-based
compression. As a remedy, we introduce a new framework for diffusion-based colourisation:
A user manually specifies a few colour strokes in a grey value image, and diffusion fills in
the missing colours. To this end, we use a YCbCr colour space to decompose the image into
luma (brightness) and chroma (colour) channels. In order to exploit the correlation of these
components, we guide the diffusion in the chroma channels by the structural information of
the brightness component. Experiments with four different diffusion models show that our new
anisotropic schemes outperform existing colourisation methods significantly. We combine this
colourisation with our efficient coding techniques from the previous contributions into a luma
preference codec. We dedicate a large amount of our bit budget to an accurate representation
of the luma channel, which allows to reconstruct the chroma information with a small amount
of known data. Due to performance increases inspired by our real-time video decoding, we are
able to show for the first time that PDE-based compression is competitive to transform based
coders on real world image databases.

In summary, we have fostered the understanding of PDE-based compression by a new proba-
bilistic justification of anisotropic diffusion and a thorough analysis of the interaction between
relevant codec components. This enables us to introduce new features and codecs that address
textured images, real-time performance and perceptive coding.
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Zusammenfassung

Die Allgegenwärtigkeit digitaler Bilder und Filme auf Computern und Unterhaltungselek-
tronik legt die Notwendigkeit effizienter Speichermethoden nahe. Heutzutage wird Bild- und
Videokompression von transformationsbasierten Methoden wie JPEG [215], JPEG2000 [277]
und der MPEG-Familie [143] dominiert. In jüngerer Zeit forderte ein vollständig andersartiger
Ansatz diese etablierten Methoden heraus: Kompression mit partiellen Differentialgleichungen
(PDEs, partial differential equations) erzeugt durch die Speicherung einiger weniger, aus-
gewählter Bildpunkte eine kompakte Darstellung ohne Anwendung einer Transformation. Zur
Dekompression werden die bekannten Informationen mittels eines physikalisch motivierten
Diffusionsprozesses in die fehlenden Bildteile transportiert. PDE-basierte Kompression ist
bereits nachweislich in der Lage, JPEG und JPEG2000 auf bestimmten Arten von Bildern zu
übertreffen [250]. Diese Dissertation hat zum Ziel, diesen Erfolg besser zu verstehen, zu
analysieren, welche Aufgaben noch zu bewältigen bleiben und den Weg für praxistaugliche
Kompression mit PDEs zu ebnen.

Zur Zeit beruht der Stand der Kunst im Bereich der PDE-basierten Kompression auf kantenver-
stärkender anisotroper Diffusion (EED, edge-enhancing diffusion) [295], welche hervorragende
Interpolationsfähigkeiten aufweist. Um ihren Erfolg besser zu verstehen, motivieren wir die
Notwendigkeit richtungsabhängiger PDEs über die Statistik natürlicher Bilder. Indem wir eine
Verbindung zwischen Bayes’schen Ansätzen der Bildverarbeitung und Diffusion herstellen, kön-
nen wir acht existierenden Diffusionsmodelle in einen gemeinsamen theoretischen Rahmen ein-
betten. Wir zeigen, dass die historische Evolution von Diffusionsmodellen als eine zunehmend
exaktere Annäherung an die Statistik der zugehörigen Bayes’schen A-Priori-Annahmen inter-
pretiert werden kann. Unsere Experimente mit Bildentrauschung und Bildrekonstruktion auf
einer umfangreichen Datenbank natürlicher Bilder unterstreichen diese Resultate.

Neben PDE-basierter Bilredkonstruktion ist eine Vielzahl anderer Kompressionsschritte von
Bedeutung für den Erfolg eines Codecs. Sowohl die Wahl der bekannten Daten, als auch
Entropie-Kodierung und Quantisierung beeinflussen die Leistung des Kodierers. Um PDE-
basierte Codecs effizient gestalten zu können, analysieren wir das Zusammenspiel zwischen
diesen Komponenten und verschiedenen PDEs. Wir führen zwei neue Codecs ein, die jeweils auf
verschiedenen Strategien beruhen. Unser erstes Verfahren wählt bekannte Daten pixelgenau
aus und erlaubt exakte Rekonstruktionen auf Kosten des Speicherplatzes. Der zweite Ansatz
schränkt die Wahl auf ein reguläres adaptives Gitter ein. Diese suboptimalen Positionen können
in Form eines Binärbaumes effizient gespeichert werden. Ein Vergleich häufig zur Kompression
genutzten PDEs (harmonische, biharmonische und kantenverstärkende Diffusion) führt zu
einem überraschenden Ergebnis: Die Interpolationsfähigkeiten dieser PDEs sind noch keine
Garantie für effiziente Kompression. Harmonische Diffusion ist empfindlich gegenüber der
Position bekannter Daten, wohingegen die Resultate biharmonischer Rekonstruktion unter
grober Quantisierung leidet. Im Gegensatz dazu verhält sich EED in beiden Fällen robust.
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Unsere Untersuchung der Kernkomponenten PDE-basierter Codecs erlaubt uns, mehrere Gren-
zen und fehlende Funktionen der aktuellen Generation von Diffusions-Kodierern in Angriff
zu nehmen. Zunächst wenden wir uns dem Grundproblem texturierter Bilder zu. Da die
Interpolation mit PDEs auf einer Glattheitsannahme beruht, können feinskalige Texturen
nur schwer rekonstruiert werden. Um Abhilfe zu schaffen, stellen wir eine Blockdekomposi-
tionsmethode vor, die PDE-basierte Rekonstruktion mit umgebungsbasierter Textursynthese
kombiniert. Dieser Hybrid-Ansatz erlaubt uns, auf hochtexturierten Bildern zu JPEG2000
aufzuschließen.

Ein weiterer begrenzender Faktor für PDE-basierte Kompression ist ihre Laufzeit. Um zu zeigen,
dass diese Klasse von Kodierern auch für zeitkritische Anwendungen eingesetzt werden kann,
führen wir einen neuen PDE-basierten Video-Codec mit Echtzeitwiedergabe ein. Wir erreichen
die hierzu nötige Geschwindigkeit auf handelsüblicher Hardware mittels Parallelisierung,
Pufferung und Initialisierung mit bereits dekomprimierten Einzelbildern. Anhand des Filmes
Nosferatu [87] zeigen wir, dass die Qualität nicht sichtbar unter der Zeitrestriktion leidet.

Schlussendlich widmen wir uns wahrnehmungsbasierter Kompression. Zunächst führen wir
einen „Region-of-Interest“-Modus für PDE-basierte Kodierer ein. Er ermöglicht Nutzern
oder automatisierten Algorithmen, den Rekonstruktionsfehler verschiedener Bildareale zu
gewichten. Wir demonstrieren verschiedene Anwendungsfälle der medizinischen Bildgebung,
Fotografie und Video-Kompression. Zudem nutzen wir aus, das Struktur für die menschliche
Wahrnehmung wichtiger ist als Farbe. JPEG und JPEG2000 nutzen dieses Phänomen bereits,
doch PDE-basierte Kompression verfügt bisher noch nicht über einen dedizierten Farbmodus.
Um Abhilfe zu schaffen, widmen wir uns zunächst der Bildkolorierung: Ein Nutzer gibt einige
wenige Farbstriche in einem Grauwertbild vor, und Diffusion füllt den Rest des Bildes mit Farbe.
Mittels eines YCbCr-Farbraumes unterteilen wir das Bild zunächst in Luma-(Helligkeits-) und
Chroma-(Farb-)Kanäle. Um Korrelationen zwischen diesen Komponenten auszunutzen, steuern
wir die Diffusion in den Chromakanälen anhand der Struktur der Helligkeitskomponente.
Experimente mit vier verschiedenen Diffusionsmodellen zeigen, dass unsere neuen anisotropen
Verfahren existierende Kolorierungsmodelle erheblich übertreffen. Wir kombinieren diese
Kolorierung mit effizienten Speichermethoden zu einem Luma-Vorzugs-Codec. Die Luma-
Information wird mit einem umfangreichen Speicherbudget exakt repräsentiert, wodurch die
Chroma-Informationen aus einer geringen Menge von Farbinformationen wiederhergestellt
werden kann. Zum ersten Mal stellen wir die Konkurrenzfähigkeit PDE-basierte Kompression
auf einer Realwelt-Bilddatenbank unter Beweis.

Zusammengefasst haben wir durch eine probabilistische Motivation anisotroper Diffusion und
eine detaillierte Analyse der Interaktion verschiedener relevanter Kernkomponenten erfolgrei-
cher Kodierer ein tieferes Verständnis für PDE-basierte Kompression erreicht. Dies ermöglicht
es uns, neue Funktionen und Kompressionsverfahren zu entwickeln, die für texturierte Bilder,
Echtzeitanwendungen und wahrnehmungsbasierte Kompression geeignet sind.
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1Introduction

„Everything starts somewhere,
although many physicists disagree.

— Sir Terry Pratchett
(Writer)

Today, visual content is everywhere: Photographs and videos are shared over the internet,
the entertainment industry produces movies with ever increasing resolution, and professional
applications like medical imaging generate large amounts of 3-D volumetric data. Digitalisation
is a common trend for all of these different sectors that produce visual content. Even the image
acquisition process, which has remained an analogue procedure for many years after digital
images became popular, is changing rapidly. The availability of analogue cameras in German
households declined from 60% to 34,5% in the timespan from 2009 to 2014. In contrast,
digital cameras are available in 75,6% of households in 2014. Moreover, most of the current
mobile phones contain digital cameras. More than 90% of households are thereby equipped
with the means to produce digital images [264].

Traditionally, the aforementioned transition from analogue to digital was a justification for
research activities in compression (see e.g. [268]). Expensive storage media implied a need for
efficient representations of digital images. Furthermore, moving data around on small portable
media or over low bandwidth connections was cumbersome. Consider e.g. the capacity of a
1.44 MB floppy disk from 1987: Assuming that three byte are dedicated to the colour of every
point in the image, an uncompressed 1024×768 colour image would have to be stored on
two separate disks. However, with the rapid growth of hard disk space, the advent of cheap
portable storage, and steadily increasing market penetration of broadband connections, this
argument seems to have lost its relevance.

Nevertheless, there is still vivid research activity regarding compression. While storage and
telecommunication technologies have been evolving quickly, there has also been a rapid
development of image acquisition, home entertainment, and broadcasting technologies. Even
compact smart phones can already produce images with 41 · 106 image points, which is roughly
equivalent to 123 megabyte of uncompressed image data. In combination with the common
use case of uploading image data directly from the smart phone to online services, it is clear
that compression is still important. Other emerging technologies in image acquisition increase
the amount of recorded data even further: Early lightfield cameras already have a resolution of
109 image points.
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In video recording, this development is particularly extreme, since several factors increase
simultaneously: The 4k standard increases the resolution of each video frame by a factor of
four, and high frame rate video (HFR) almost triples the number of images per second. This
combination of increasing fidelity of visual data and limited broadcast channels makes com-
pression important. In traditional one-way broadcast with electromagnetic waves, frequency
bands for digital television signals are reduced to free up other bands for mobile internet [160,
p. 25]. Freeing up bandwidth while simultaneously maintaining the same perceived quality of
digital TV is only one of the practical impacts of research in compression. Moreover, on-demand
internet TV starts to replace traditional broadcasting. In 2013, video streaming was already
responsible for 66% of the overall internet traffic and is projected to reach 79% by 2018 [61].
Counting traditional downloads and file sharing in addition, video data alone might even be
responsible for 80-90% of the transmitted data.

Since the development and standardisation of the JPEG (Joint Photographic Experts Group)
codec [215] in the 1980s, the compression community’s predominant answer to the growing
demand for efficient image encoding has been transform-based compression. This type of
compression methods changes the representation of images. In its traditional representation, a
digital image is a mapping of a finite number of spatial coordinates to colour or grey values.
Instead, transform-based compression considers an image as a collection of coefficients that
characterise image information on different scales. These coefficients have global or semi-local
influence on the image and range from coarse image structures to highly variant detail. This
allows for a flexible implementation of lossy compression, since details that are not important
for the human visual system can be stored with reduced accuracy.

While JPEG is still widely used in the consumer market, successors like JPEG2000 (Joint
Photographic Experts Group 2000) [277] and recently BPG (Better Portable Graphics) [88] are
currently considered to be the state of the art in image compression. Since a large and active
community of researchers was developing transform-based compression over many years and
still continues to improve these quasi-standards, it is no easy task to challenge them.

However, during the last decade a fundamentally different approach for image compression
that relies on partial differential equations (PDEs) has emerged. These PDE-based methods
work directly with sparse representations in the spatial domain: They only store brightness or
colour data at a few selected pixel locations. Carefully designed PDEs model the transport of
this known information to the missing areas of the image, thus providing a way to reconstruct
the full picture.

In 2005, Galić et al. [100] have proposed a proof of concept codec that could already surpass the
quality of JPEG for specific imagery. Four years later, JPEG2000 was beaten by the rectangular
subdivision with edge-enhancing diffusion (R-EED) codec of Schmaltz et al. [250]. Figure 1.1
illustrates that in particular for high compression ratios, PDE-based compression can achieve
much more convincing results than its transform-based competitors. Both of these general-
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original JPEG2000 R-EED

Figure 1.1.: Comparison of R-EED and JPEG2000 on the grey value image peppers.
R-EED beats the quality of JPEG2000 by a considerable margin at a compression ratio of 80:1.

purpose encoders use edge-enhancing anisotropic diffusion (EED) of Weickert [295]. This
PDE adapts the propagation of grey values to the local image structure. Other PDEs, such
as the simple linear homogeneous diffusion model [140, 141], are particularly successful in
niche-applications such as cartoon compression [184] or the compression of depth maps [127,
166]. However, such specialised codecs outperform the general purpose codec JPEG2000 even
more significantly in their particular field as demonstrated by Figure 1.2.

While the aforementioned codecs are not the only relevant PDE-based compression methods,
they provide a good impression of the quality that this class of methods can currently achieve.
An in-depth review of the state of the art can be found in Section 3.3. The examples for
qualitative comparisons between PDE-based and transform-based compression can convey the
impression that codecs like R-EED have already reached a mature stage of development that
puts them on equal footing with JPEG and JPEG2000 from a practical point of view. However,
pure compression quality is not the only criterion that a successful codec has to fulfil.

A new competitor to JPEG and JPEG2000 might offer more accurate reconstructions, but
does not necessarily provide all of the features that a user expects nowadays. For example,
compression of colour data is a fundamental requirement for a successful compression method.
However, the example in Figure 1.3 shows, that R-EED loses its advantage over JPEG2000 on
colour data. If one considers images that contain a large amount of texture, R-EED can even
fall behind JPEG (see Figure 1.4) on greyscale images. These examples show that for a fair
comparison more categories than just reconstruction quality on a particular type of image must
be considered.

In their detailed monograph on JPEG, Pennebaker and Mitchell [215, pp. 303–306] present a
list of requirements that were the basis of the JPEG development and standardisation process.
They also consider these goals as a good guideline for realistic comparisons of new codecs to
JPEG:

3



original JPEG2000 PDE-based

Figure 1.2.: Cartoon and Depth Map Compression with PDEs. The upper row shows a
comparison of transform based coders and the cartoon compression codec by Mainberger et al.
[184] at a compression ratio of 50:1. The bottom row contains a depth-map comparison at
a ratio of 177:1 with the method of Hoffmann et al. [127]. In both cases, the specialised
PDE-based methods outperform JPEG2000. Images were published in consent with the
corresponding authors.

"The following list of functionality and goals can be useful in separating data
compression techniques that have niche opportunity from general-purpose meth-
ods. Although some of the DCT-specific requirements may not apply, any data
compression method that might be considered competitive to JPEG needs to be
evaluated on the basis of all of the general requirements, not merely on its own
strongest features." [215, p. 304]

The quote above shows that Pennebaker and Mitchell were already aware that new compression
concepts require evaluation categories that are independent of the specific challenges of
transform-based compression. In the spirit of the original JPEG design goals, we propose the
following five properties to assess the viability of a codec.

Quality. For a given file size, the codec should yield a reconstruction that is as close to the
original as possible. Preferably, this should be evaluated quantitatively with an adequate
error measure.
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Figure 1.3.: Comparison of R-EED and JPEG2000 on the colour image lena. R-EED is
not able to surpass JPEG2000 quality-wise at a compression ratio of 20:1. This is particularly
obvious in the zoom-ins of the second row.

Consistency. For a general-purpose method, reconstruction quality should vary as little as
possible with image content. Codecs that only perform well for limited content type
might still have merit as specialised methods.

Perceptive Coding. Compression codecs designed for humans should exploit the human
visual system and remove data that is perceived as redundant. Especially, dedicated
processing of colour images should be included. Pennebaker and Mitchell [215] formulate
this goal specifically with respect to chroma subsampling, a technique for storing colour
information less accurately than brightness information. In contrast, our definition is
more general: We consider all methods that exploit human perception.

Progressiveness. A codec should be able to provide the option to reconstruct lower quality
versions of an image from only partially given compressed files. This is an important
property for the use of codecs in digital communication (e.g. transmission over the
internet).

Immediacy. The codec should have a runtime that is adequate on consumer hardware for the
given task. Broadcasting codecs (e.g. for TV broadcast or Blu-Ray distribution) can have
a long compression time, since this is usually done only once. For decoding, real-time
performance is a requirement, especially for video decoding. General purpose codecs
for everyday use are also expected to be synchronous, i.e. there should not be a big
discrepancy between encoding and decoding time.
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Figure 1.4.: Comparison of R-EED and JPEG on the test image barbara. As the zoom-ins
in the bottom row show, R-EED does not suffer from block artefacts as JPEG does. However,
JPEG still outperforms R-EED at a compression ratio of 18:1, since it can reconstruct fine scale
textures.

Currently, R-EED is the most successful PDE-based codec for general image content. In the
following, we assess in how far it is competitive to transform-based compression according to
the aforementioned criteria. As Figure 1.1 shows, the quality requirement is currently fulfilled
on grey value images. The codec is, however, not consistent due to its weaknesses in regard to
texture images as shown in Figure 1.4. Perceptive coding is not implemented in R-EED, which
explains the unfavourable comparison to JPEG2000 on colour images in Figure 1.3. R-EED
is already progressive due to an extension of R-EED by Schmaltz et al. [251]. However, it
does not fulfil immediacy requirements, since optimal results require hours of encoding on
consumer hardware and decompression does not reach real-time, yet. There is a modification of
R-EED for fast en- and decoding [182] in the context of steganography and two broadly related
real-time video approaches [22, 156]. However, all of these sacrifice quality for speed.

In summary, the observations above indicate that R-EED can currently compete with JPEG
and JPEG2000 in two of five categories. This alone is an impressive feat considering the large
research and engineering community behind transform-based compression. However, the
missing three categories also imply that there are still a lot of unsolved problems in PDE-based
compression. This thesis aims at exploring the hitherto unknown potential of general purpose
encoding with PDEs under practical constraints.
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1.1 Goals and Contribution„The first step towards getting somewhere is to decide
that you are not going to stay where you are.

— John P. Morgan
(Entrepreneur)

This thesis is dedicated to two overarching goals: On the one hand, it aims to foster understand-
ing of the strengths and weaknesses of PDE-based compression. On the other hand, we want to
use these insights to introduce new features to PDE-based compression. These features should
contribute to a competitive PDE-based codec in the sense of the five requirements from the
previous section: quality, consistency, perceptive coding, progressiveness, and immediacy.

Understanding PDE-based Coding

As mentioned in the previous section, the most successful encoders rely on EED for the recon-
struction of missing image parts, the so-called inpainting. In order to understand this success,
we have to consider the interaction of several main ingredients for PDE-based compression.
First, finding a suitable diffusion operator for the reconstruction is vital. Next, one must decide
which known data is kept. Finally, this data must be stored efficiently. In order to get a better
understanding of PDE-based coding, we investigate three different questions:

1. How can we explain the success of anisotropic diffusion in image compression?

2. What different possibilities are there to select and store known data, and which of them
is the most promising?

3. How do the inpainting capabilities of different PDEs interact with other compression
steps and what does this imply for selecting the right inpainting PDE?

To find answers to these questions, we start by analysing diffusion models for denoising and
inpainting. Instead of interpreting diffusion from the point of view of physical propagation
models, which is common in PDE-based compression, we consider a probabilistic approach. To
this end, we investigate relations between Bayesian and variational methods for denoising. Our
systematic analysis of connections between prior information from natural image databases and
diffusion models leads to a unifying framework for tensor-driven diffusion. From the structure
of the prior information and experiments on large databases we can explain the success of
anisotropic diffusion models. In addition, we also explore learning techniques for PDE-based
compression.
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Our next step is the investigation of different techniques to store data in image compression.
The overwhelming majority of diffusion-based codecs stores a fraction of image points as
known data. Therefore, these methods have to store both the position and value of these
pixels. For the grey or colour values, we consider coarse quantisation, i.e. sampling in the
co-domain, and different entropy encoders that remove redundancy. We also explore different
ways to represent and store positions. In particular, we compare the cost of free, pixel-accurate
positions to known data that is restricted to a locally adaptive grid (as in R-EED).

Finally, we combine our findings from the two last contributions and deal with the interdepen-
dency of inpainting operators and compression steps. We determine how restrictions of point
selection and coarse quantisation influence the quality of the three most popular inpainting
techniques in PDE-based compression: homogeneous, biharmonic, and edge-enhancing diffu-
sion. For the selection of known data, we compare an optimal control approach by Hoeltgen
et al. [124] to a new probabilistic method for restricted point sets. In addition, we also evaluate
both methods against the heuristic strategies on restricted point sets that are employed by
R-EED. Together with the insights on efficient storage of known data with entropy encoders, we
show the importance of evaluating inpainting operators in combination with a full compression
codec. Their performance on sparse known data does not necessarily reflect the trade-off
between file size and quality accurately, since the compression aspect is neglected in such
comparisons.

New Features for PDE-based Coding

Out of the five different requirements from the previous section, we consider the three unsolved
ones: consistency, perceptive coding, and immediacy.

In regard to consistency, we focus on heavily textured images. We first establish that EED
is particularly well-suited for the reconstruction of coarse image structures, but struggles
with fine scale texture. This implies the need to combine PDE-based inpainting with other
techniques that can deal with the reconstruction of high-frequent patterns. To this end, we
consider an exemplar-based inpainting approach for sparse known data by Facciolo et al. [90].
Reconstruction methods of this type rely on the similarities between regions surrounding the
unknown pixels, so-called patches, to known image areas. Such patch-based approaches can
reconstruct especially regular patterns accurately. We propose a block-based approach that
efficiently combines both inpainting methods into one codec with minimal overhead. This codec
is designed in such a way that other texture inpainting methods can be easily incorporated.

As a new feature for immediacy, we propose a real-time video decoding framework based on
R-EED. For demonstration purposes, we design an extendible video codec that does not use
redundancy between subsequent frames to improve the compression ratio, yet. Instead, we aim
at making decompression possible at 25 frames per second while preserving the quality of R-EED
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on every single frame. This is achieved by a combination of efficient solvers, parallelisation
on both CPU and GPU, as well as specifically designed initialisation techniques that reuse
information from previous frames. In our experiments we show that the reconstructed frames
in real-time playback are very close to reference reconstructions without time constraints.

Moreover, we introduce two new features for perceptive coding to PDE-based compression. First,
we propose a straightforward, efficient model for region of interest coding (ROI) which can
be applied to all of our previous codecs. Our ROI framework enables the user to assign a
quality weight to each pixel before compression. During compression, the codec adapts the
reconstruction quality locally. Such features are for instance required by medical applications.
Furthermore, we introduce a colour compression mode that exploits the fact, that the human
visual system has a higher tolerance for reconstruction errors in colour information than in
structure information. First, we perform a decomposition of the image into brightness and
colour data with a YCbCr colour space. Then, we propose new colourisation techniques that
use the structure information of the brightness channel to guide the diffusion in the colour
channels. By storing more known data for the brightness channel than for the colour channels,
we can guarantee an accurate reconstruction of the brightness channel by regular diffusion
inpainting. We can reuse this structure information to decompress the whole image with our
colourisation techniques. In our experiments we show that this colour coding approach not
only improves the image visually, it also allows us to surpass JPEG and JPEG2000 regarding
quantitative error measures.

1.2 Organisation of the Thesis„Style and structure are the essence of a book;
great ideas are hogwash.

— Vladimir Nabokov
(Writer)

After the first chapter, which motivates this thesis and establishes the goals and contributions,
we address notations and related work in Chapters 2 and 3. We discuss both the history
of transform-based compression and PDE-based compression, and also briefly address other
approaches. Since all chapters of this thesis rely on diffusion inpainting, we dedicate one
section to the analytical and numerical background of these processes. Many important ideas
from R-EED influence the codecs in this thesis, which is why we also discuss this compression
method in detail.

The core contributions of this thesis are heavily interconnected, but can also stand on their
own since they treat different aspects of PDE-based compression. We have organised them
in chapters that can each be attributed to one of the goals from Section 1.1. These core
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contributions can be read in arbitrary order and contain notes on their connections to other
chapters.

Chapters 4 and 5 both contribute to deeper insights into the core ideas of PDE-based com-
pression. In Chapter 4, we motivate a unifying framework for tensor-driven diffusion from
the statistics of natural images and analyse its implications for compression. We assess the
representation and storage of known data in Chapter 5 and investigate the influence of both
factors on the choice of diffusion operators. This chapter can also be associated with the quality
aspect from the requirements of Section 1.1.

New features are introduced in the Chapters 6, 7, and 8. We cover a hybrid approach that
combines PDE-based interpolation with patch-based inpainting in Chapter 6. This block-based
method is designed to foster consistency on textured images. A framework for real-time
video playback is introduced in Chapter 7, thus advancing PDE-based compression in regard
to immediacy. Finally, we address perceptive coding by proposing novel ROI and colour
compression features in Chapter 8.

The main part of this thesis closes with conclusions and an outlook on future work in Chapter 9.
In addition to the description above, Figure 1.5 visualises the structure of this thesis.

At the end of this document, several useful additional sources of information can be found: the
bibliography, an index, and lists of own publications, acronyms, and mathematical operators.
Furthermore, there are appendices that offer additional detailed information that was omitted
in the main chapters in order to increase readability. Appendix G contains detailed proofs for
the probabilistic models of Chapter 4. Details about external code used for this thesis can be
found in Appendix H. Finally, in Appendix I, we propose a sketch for a common framework for
PDE-based compression codecs as discussed in Chapter 9.
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Figure 1.5.: Visual Thesis Outline. Arrows visualise connections between different chapters.
The main contributions can be grouped into two categories. Chapters from the category
understanding provide fundamental insights that influence the design of new features.
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2Definitions, Notations, and
Conventions

„There should be no such thing as boring mathematics.

— Edsger W. Dijkstra
(Computer Scientist)

This chapter introduces the most important mathematical notations and definitions, as well
as some non-mathematical formatting decisions that are relevant for this thesis. Since such
formal conventions are inherently dry, but necessary nonetheless, we keep this chapter as brief
as possible.

Section 2.1 deals with didactically motivated visual cues that guide the reader throughout
the whole thesis. The basic mathematical definitions and conventions in Sections 2.2 and
2.3 follow fairly common standards in image compression literature and can be skipped by
experienced readers. The chapter closes with a definition and discussion of different error
measures, namely the mean squared error (MSE) and structural similarity measure (SSIM).

2.1 Formatting and Visual Cues„I believe in a visual language that
should be as strong as the written word.

— David LaChapelle
(Photographer)

This thesis contains different kinds of visual cues that help to structure the content and ease
navigation through the document. In the following, you find self-explanatory examples for
such formatting tools.

Example: Key Idea

Key idea boxes summarise a concept in one or two short sentences to capture the
essence of a given paragraph or chapter.

�
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Example: Publication Box

Publication boxes make transparent where certain parts of the thesis are published
and if co-authors have contributed to a certain topic. A publication box can be
found at the end of each self-contained section. Note that Appendix H contains
a separate list of implementations by other researchers that were used in this
thesis.

�

Example: Reference Box

In reference boxes such as this one, important connections to other parts of the
thesis are presented. This includes e.g. in which chapter newly introduced
theoretical concepts are applied or references to more detailed information in
an appendix.

R

2.2 Basic Notations and Definitions„It is worth noting that the notation facilitates
discovery. This, in a most wonderful way,
reduces the mind’s labour.

— Gottfried Wilhelm von Leibniz
(Mathematician and Philosopher)

The first important convention that we apply to ease the readability of formulas is the use of
capitalisation and bold face to indicate different mathematical entities. This makes it easy to
distinguish scalar values, functions, vectors, matrices, and sets from each other.

Scalars and vectors both use lower-case letters. However, vectors are additionally marked by
bold face, e.g. v = (v1, . . . , vn) ∈ Rn is a real-valued vector with n ∈ N scalar components
vi. We also denote functions by lower-case letters and apply bold face depending on their
co-domain. Therefore, vector-valued functions can be distinguished from scalar-valued ones
by their boldface typesetting. Functionals that map for example infinitely often differentiable
functions u from the class C∞ to a real value are denoted by capital letters without bold face,
i.e. F : C∞ → R. Note that in some rare cases we deviate from the capitalisation conventions
for functions if they contradict commonly used naming conventions.

Matrices and sets are represented by capitalised letters. Matrices are marked additionally in
bold face. For example, M ∈ Rm×n denotes a real-valued m× n matrix. Tab. 2.1 also provides
a quick overview over these conventions.
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Table 2.1.: Notational Conventions for Different Mathematical Entities.

entity capitalisation bold face examples

scalar value no no a, σ ∈ R
vector no yes u,v ∈ Rn

matrix yes yes A,B ∈ Rn×m

set yes no Ω ⊂ R
function no depends f : R2 → R, g : R2 → R3

functional yes no F : C∞ → R

Basic Operators
Many important definitions later on require the notion of dot products and norms, e.g. di-
rectional derivatives. If not stated otherwise, dot products always refer to the Euclidean dot
product and vector norms to the induced Euclidean norm:

∀x,y ∈ Rn : 〈x,y〉 := x>y =
n∑
i=1

xiyi, (2.1)

|x| :=
√
x>x =

√√√√ n∑
i=1

x2
i . (2.2)

Moreover, the operator | · | is used for the absolute value of scalars. Finally, we also define it for
sets: If a set K is finite, |K| denotes number of its elements, i.e. the cardinality. For sets with
an infinite number of elements, e.g. Ω ⊂ R, we integrate over the corresponding area instead:

|Ω| :=
∫

Ω
1 dx. (2.3)

This is often used for averaging a quantity over the whole set, e.g. for computing the average
grey value of an image.

The dot product defined in Eq. 2.1 also allows us to introduce our notation for orthogonality:

x ⊥ y ⇔ x>y = 0, (2.4)

x⊥ ⊥ x. (2.5)

Orthogonal vectors play a large role in defining anisotropic diffusion processes in Section 3.1.

Another important operator that is closely related to diffusion is convolution. For two functions
f, g : Rn → R it can be interpreted as blending the function f with the mirrored function g:

(f ∗ g)(x) :=
∫
Rn
f(y)g(x− y) dy. (2.6)
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Linear system theory tells us that every linear shift-invariant filter can be expressed as a
convolution [49], and this holds also true for linear diffusion discussed later on. In order to
establish this connection we will need Gaussian kernels. For x ∈ Rn, an n-D Gaussian with
standard deviation σ and mean 0 is defined by

Kσ(x) := 1
(
√

2πσ2)n
exp

(
−|x|

2

2σ2

)
. (2.7)

Gaussian convolution is also an invaluable tool for presmoothing, i.e. removing unwanted
high-frequent perturbations from an image with low computational cost.

Finally, for compression algorithms such as arithmetic coding or in the context of image
discretisation, we require the floor function

bxc := max
k∈Z, k≤x

k. (2.8)

Differentiation
All contributions in this thesis deal with partial differential equations. Consequently, partial
derivatives occur regularly. First of all, we assume all of the functions that we consider in
the following to be sufficiently often differentiable. We choose several equivalent notations
depending on the context in which they appear. For a function f : Rn → R, we denote the
corresponding partial derivative at a point x ∈ Rn in respect to the i-th argument of f by

∂

∂xi
f(x) = ∂xif(x) = fxi(x) := lim

h→0

f(x1, . . . , xi + h, . . . , xn)− f(x)
h

. (2.9)

In addition to partial derivatives, the gradient ∇f , the divergence divf , and the Laplace operator
∆f are the most important differential operators. They are defined as

∇f(x) :=
(
∂

∂x1
f(x), . . . , ∂

∂xn
f(x)

)T
, f : Rn → R, (2.10)

divf(x) :=
n∑
i=1

∂

∂xi
fi(x), f : Rn → Rn, (2.11)

∆f(x) := div(∇f) =
n∑
i=1

∂xixif(x), f : Rn → R. (2.12)

It is important to note at this point that, by convention, these operators are purely spatial if not
mentioned otherwise. This means that for a function f(x, t) : Rn × R→ R that does depend
on a spatial coordinate x and a time coordinate t, the operators defined above only consider
the partial derivative in space, not in time.
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For certain anisotropic models that we discuss in this thesis, directional derivatives are required
in addition to partial derivatives. Formally, for a function f : Rn → R the derivative in the
direction of a vector v ∈ Rn is defined by

∂vf(x) := lim
h→0

f(x+ hv)− f(x)
h

. (2.13)

If the limit above exists, it is also possible to express the directional derivative by the dot
product

∂vf(x) = v>∇f(x). (2.14)

The derivation of diffusion processes from continuous energy functionals which map functions
to a real valued energy requires yet another class of derivatives. Gâteaux derivatives are a
generalisation of differential calculus to functional derivatives. That is, let F be a functional
that maps functions u : R 7→ R to real values. Then, the Gâteaux derivative is defined by

duF (u) := lim
ε→0

F (u+ εh)− F (u)
ε

(2.15)

with a test function h : R2 7→ R and ε ∈ R. For our purposes it is often more convenient to
interpret the Gâteaux derivative as a derivative in respect to ε that is evaluated at ε = 0:

duF (u) = d

dε
F (u+ hε)

∣∣∣∣
ε=0

. (2.16)

In some cases, the basic definitions for the different kinds of derivatives above need to be
extended to e.g. vectorial functions. In this case, definitions are provided in the respective
chapters.

Note that Appendix D contains a list of symbols that occur frequently in this thesis.
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Figure 2.1.: Sampling of 2-D Image. The sketch above depicts the sampling of a continuous
image f : Ω→ R to a discrete f ∈ R3×5 image. The red dots mark the sampling points on the
regular grid represented by blue dashed lines.

2.3 Images „The essential fact is that all the pictures which science
now draws of nature, and which alone seem capable of
according with observational facts, are mathematical
pictures.

— Sir James Jeans
(Physicist and Mathematician)

In our work we deal with two-dimensional grey scale or colour images. For each point in
a spatial 2-D coordinate system, the image provides a grey or colour value. Therefore, we
consider images to be continuous functions

f : Ω→ Rnc . (2.17)

They map coordinates from the rectangular image domain Ω = [a, b]× [c, d] to the co-domain
Rnc with nc ∈ N. In particular, grey scale images (nc = 1) map to real numbers that represent a
certain grey value and colour images (nc > 1) map to vectors from a given colour space. In most
cases, the input data relies on an RGB colour space where f(x, y) = (fR(x, y), fG(x, y), fB(x, y))
specifies a red, green, and blue component for each image point. In Chapter 8 we also employ a
YCbCr colour space that separates brightness and colour information into different channels.

This continuous formulation is important for our physically motivated diffusion PDEs. Through-
out the whole thesis we always assume that our image functions are sufficiently often differen-
tiable.

In practice, the images that one obtains from digital image acquisition methods are discrete. A
digital camera for example possesses a finite array of sensors that record light photons. These
measurements are therefore only available on a subset of the continuous image domain Ω.

Thus, a digital image with resolution nx × ny is actually a mapping from a discrete grid
Γ := {0, . . . , nx − 1} × {0, . . . , ny − 1} to a grey or colour value range. Such a discretisation of
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Figure 2.2.: Vectorisation of a 2-D Image. The sketch above depicts the mapping of a 2-D
image f ∈ R3×5 to a vector f ∈ R15 according to Eq. 2.20. The rows of the image are simply
appended from top to bottom and form a single vector.

the spatial domain is known as sampling. Here we assume that samples are taken on Ω with
constant grid sizes hx, hy:

∀ i, j ∈ Γ : fi,j := f

(
a+

(1
2 + i

)
hx, c+

(1
2 + j

)
hy

)
(2.18)

nx · hx = b− a, ny · hy = d− c. (2.19)

This sampling can be interpreted as subdividing the rectangular domain Ω into nx × ny pixels
of size hx × hy and assigning each pixels the value of the continuous image f at its centre. This
process is visualised by Figure 2.1.

Note that we deviate slightly from our notational conventions here, since formally, f ∈ Rny×nx

could be seen as a matrix and thus should be denoted by a capital letter. However, we consider
images as vectors f ∈ Rnxny instead. Each 2-D image can be transformed into a vector by
appending all rows successively one after another as demonstrated in Figure 2.2. Formally, this
comes down to the index transformation

vα = vi,j with j := bα/nyc+ 1, i := α− jny, (2.20)

i.e. α := (j − 1)ny + i. (2.21)

We exploit notation here and allow to use both the vectorial or matrix interpretation of f
wherever it is convenient. For example, it can be intuitive to describe 2-D neighbourhoods
with the 2-D index. However, the vector notation can be very convenient if for example a filter
application is written as a matrix vector product.

After sampling, the image is only semi-discrete, i.e. the co-domain is still continuous. However,
digital images that are stored e.g. on a hard disk are usually fully discrete. We assume that
the co-domain of our input images contains grey or colour values from the set {0, 1, . . . , 255}
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which corresponds to an 8bit representation. The discretisation of the co-domain is called
quantisation and is not necessarily limited to the range {0, . . . , 255}.

Quantisation in Compression

For compression, quantisation plays an important role since it reduces file size
at the cost of accuracy. In Chapter 5, we discuss the effects of quantisation on
human perception. Furthermore, we investigate how coarse quantisation affects
the reconstruction from sparse known data with different diffusion-PDEs.

R

2.4 Error Measures„In science, one man’s noise is another man’s signal.

— Edward Ng
(Mathematician and Engineer)

Since the task of image compression is to reduce the file size of an image while staying visually
close to the original, a way to judge the quality of a compressed image is necessary. In image
coding, the original, uncompressed image is considered to be the ground truth. Since such
a ground truth is available, it makes sense to use full reference metrics [273] that compare
a processed image to the reference. In classic compression, quantitative measures like the
mean squared error (MSE) or peak signal-to-noise ratio (PSNR) are the standard. However, a
perceptually motivated error metric, the structural similarity measure (SSIM), has received a
lot of attention in the image processing community with the original paper [289] being cited
more than 10000 times at the time of writing and several practical applications dedicated to
SSIM [175, 243, 291]. Therefore, a discussion and comparison of error measures is inevitable
in this thesis.

One of the most popular quality measures in image compression is still the MSE. It represents
the deviation of the coded image from the original in terms of the average squared per-pixel
distance. One big advantage is its simplicity:

MSE(f , g) := 1
|Γ|

∑
(i,j)∈Γ

(
fi,j − gi,j

)2
. (2.22)

Obviously, the MSE is 0 if the images are equal and increases the more the images deviate from
each other. It is not bounded from above if the co-domain of the images is unlimited. The
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MSE is also a metric in the mathematical sense, i.e. it fulfils the following four properties for
arbitrary images f , g, and h with the same resolution:

MSE(f , g) ≥ 0 (2.23)

MSE(f , g) = 0⇔ f = g (2.24)

MSE(f , g) = MSE(g,f) (2.25)

MSE(f ,h) ≤ MSE(f , g) + MSE(g,h) (2.26)

In image denoising, a modified version of the MSE, the PSNR is very popular, but also appears
in literature on compression. Essentially, it defines a logarithmic rescaling of the MSE by

PSNR(f , g) := 10 log10

(
2552

MSE(f , g)

)
. (2.27)

Here we assume that the image’s co-domain is bounded from above by 255. In contrast to the
MSE, large PSNR values are better since it approaches infinity the closer the coded image gets
to the ground truth. Since MSE and PSNR are equivalent, we can choose freely which of them
to use. Usually, we prefer the MSE in this thesis except for the few occurrences of denoising in
Chapter 4, where we use the PSNR instead.

Unfortunately, the MSE does not always accurately model human perception. Wang et al. [289]
came forward with examples that show different distortions of the same image that lead to a
similar MSE but different perceived quality. For such collections of images that produce equal
results in a full reference metric, Dosselmann and Yang [78] use the term hypersphere.

Figure 2.3 shows an MSE hypersphere with the following distortions: Gaussian blur (convo-
lution with a Gaussian), salt-and-pepper noise (a given percentage of error pixels is set to
black or white), Gaussian noise (noise that follows a Gaussian distribution), grey value (each
grey value is increased by the same constant), and JPEG compression. For each distortion, the
respective parameters were tuned to yield an MSE of approximately 200. It is obvious that
some of these degradations are much more prominent than others. For example, a human
might perceive almost no deterioration for the grey value shift, but a severe drop in quality for
the blocking artefacts of JPEG.

As a remedy for this problem, Wang et al. [289] proposed a new quality metric, the so-called
SSIM. Its definition is significantly more sophisticated than the simple MSE. The SSIM relies
on the assumption that the human visual system perceives an image as high-quality, if the
structural information in natural images, i.e. the dependencies of neighbouring pixels, are
accurately represented.

In the following, we discuss the three components that, together with an appropriate weighting,
form the SSIM. All of these measurements are conducted locally on small image patches and
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original Gaussian blur

salt-and-pepper noise Gaussian noise

grey value shift JPEG compression

Figure 2.3.: MSE Hypersphere. Collection of images with various degradations and an MSE
of approximately 200.
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apply Gaussian weights w according to the distance from the patch centre. First, let the
weighted mean value on a patch P ⊂ Γ of the image f be defined as

µP,f := 1
|P |

∑
(i,j)∈P

wi,jfi,j . (2.28)

Based on this mean, the authors propose a luminance component that should represent the local
relative luminance changes of objects in the scene. Please note that for the sake of consistency
to the original SSIM notations we use the term “luminance” in this chapter even though we
do not deal with absolute photometric quantities in this thesis. We consider abstract gray or
brightness values without any consideration of physical implications from image acquisition or
display.

In practice, the investigation of luminance changes comes down to a comparison of the local
means of two images f and g according to

`(P,f , g) = 2µP,fµP,g + α

µ2
P,f + µ2

P,g + α
(2.29)

where α is a free parameter. For the next component, the authors propose to remove the local
mean luminance from the image in order to compare contrast. To this end, they employ the
weighted standard deviation of a patch P on an image f which is given by

σP,f :=
√√√√ 1
|P | − 1

∑
(i,j)∈P

wi,j(fi,j − µP,f )2. (2.30)

In a similar way as in Eq. 2.29, the authors define the contrast component with a free parameter
β as

c(P,f , g) = 2σP,fσP,g + β

σ2
P,f + σ2

P,g + β
. (2.31)

Finally, the structural similarity is measured via the correlation coefficient between two images
f and g on a patch P :

σP,f ,g := 1
|P | − 1

∑
(i,j)∈P

wi,j(fi,j − µP,f )(gi,j − µP,g). (2.32)

Again, the structure comparison term can then be defined in a similar fashion as the previous
two components by

s(P,f , g) = 2σP,f ,g + γ

σ2
P,f + σ2

P,g + γ
. (2.33)

Combining the three components multiplicatively, the pointwise SSIM yields an error value for
each patch P , namely

SSIM(P,f , g) := `(P,f , g)p1c(P,f , g)p2s(Pf , g)p3 . (2.34)
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Again, p1, p2, and p3 are free parameters that allow exponential weighting of the three
components. Assigning the local error values to the centres of each patch yields an error map
and averaging over the error map gives the SSIM for the whole image. By construction, the
SSIM for any two images is contained in the interval [−1, 1] where a comparison of an image
to itself yields the best possible value 1. In contrast to the MSE, lower scores are worse for this
quality measure.

Obviously, the SSIM is significantly more complicated than the MSE and has six free parameters
α, β, γ, and p1, p2, p3. This does not count the potential choice for the weights w or the
patch sizes. As suggested by Wang et al. [289], we use the standard choices for 8bit images:
p1 = p2 = p3 = 1, normalised discrete Gaussian weights on an 11 × 11 window, α = 6.5025,
β = 58.5225, and γ = β/2. The parameters α and β depend on the rescaled dynamic range of
the image, where the scale is an ad-hoc choice by the authors.

In spite of its relative complexity in comparison to the established quality metrics, the SSIM is
becoming increasingly popular in the image processing community. In the wake of its success,
a lot of modifications arose: Wang et al. [290] proposed a multi-scale adoption, Sampat et al.
[242] defined a wavelet-based structural similarity measure. Both Okarma [210] as well as
Kolaman and Yadid-Pecht [153] extend SSIM to colour images, and Zujovic et al. [329] use
the ideas of SSIM to compare textures. In addition, Brunet et al. [41] showed that several
important properties of the MSE translate to SSIM and its modifications. This is just a small
selection from the field, since it is well beyond the scope of this thesis to cover all publications
in this direction.

Of course, the SSIM is not the only quality measure that claims to model human perception.
There is for example the visual information fidelity (VIF) by Sheikh and Bovik [261] which
combines information theory and natural image statistics to establish a connection between
perceived image quality and information shared between the reference and the processed
image. Overall, the plethora of different metrics creates the problem which metric to use for
optimising and evaluating image compression methods. Interestingly, Galić et al. [98] show
that in the case of compression, a lot of different metrics like the MSE, SSIM, multi-scale SSIM
and VIF lead to similar rankings.

An explanation for this observation is given by Dosselmann and Yang [78]. Not only do they
provide additional empirical evidence that MSE and SSIM are correlated, they even propose a
conversion algorithm between MSE and SSIM for specific image alterations. While the authors
attack the SSIM rather fiercely, their arguments seem to have substance. In particular, we follow
their idea to create SSIM hyperspheres and compare them to the behaviour of the MSE.

Figure 2.4 shows the same type of image degradations as in the MSE hypersphere from
Figure 2.3, this time with a common SSIM of approximately 0.7, a value which was chosen to
give approximately the same amount of Gaussian blur in both hyperspheres. As for the MSE,
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original Gaussian blur

salt-and-pepper noise Gaussian noise

grey value shift JPEG compression

Figure 2.4.: SSIM Hypersphere. Collection of images with various degradations and an SSIM
of approximately 0.7.
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the SSIM does not provide the same perceived quality over all images. In fact, the assessment
of the grey value shift seems to be even worse in this case.

While the MSE is certainly not a perfect metric, currently no clear standard exists for perceptual
metrics. Since the currently most popular perceptual metric, the SSIM, seems to have similar
shortcomings as the MSE and the quasi-standards in compression have been optimised in
regards to MSE/PSNR, we will also mainly use this simple, quantitative measure for our
evaluations.

SSIM Assessment of Colour Images

Our observations in Chapter 8.2 support the results from Wang et al. [289]
that the SSIM provides a better assessment of the quality of compressed colour
images than the MSE over all colour channels, although the SSIM only works
on the brightness information and ignores the colour. This comes from the fact
that the human visual system values structure higher than colour [198] and
therefore, a pure brightness analysis is more convincing as long as there are
no unreasonable colour artefacts. An obvious drawback is that colour does not
influence the error at all. Therefore, we always consider a colour-aware error
measure in addition.

R
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3Related Work

„If I have seen further, it is
by standing on the shoulders of giants.

— Sir Isaac Newton
(Physicist and Mathematician)

This chapter deals with prior work that forms the foundation of this thesis. Since diffusion
is the one main concept that connects all chapters, Section 3.1 offers an in-depth discussion
of its physical background and its use in image processing. Of course, diffusion-based image
reconstruction is the most important application in the context of compression, but denoising
is also discussed due to its connections to Chapter 4 which provides a statistical justification for
a large variety of diffusion models. In addition, this chapter also provides a short discussion of
numerical implementations.

Section 3.2 recapitulates the history of image compression from the dawn of information theory
to the current situation. Thereby, it gives an overview of the field and provides context for
the novel contributions of this work. In particular, it focusses on related work in PDE-based
compression and the quasi standards in transform-based compression.

Finally, we address the currently most powerful PDE-based general purpose compression
method, R-EED by Schmaltz et al. [252]. It forms the basis for some of the compression
methods in this thesis and is an important reference for comparisons.

Note that while this chapter covers most of the prior work that is related to this thesis, is not
all-encompassing. Since some areas like statistics of natural images in image processing or
exemplar-based inpainting are only relevant for individual contributions, a separate discussion
of related work is provided in the respective chapters.
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Figure 3.1.: Diffusion of Iodine. The figure displays two states of a closed system containing
water and iodine. Initially, on the left, the iodine is highly concentrated at the top of the
container. Diffusion leads to an equilibration of the concentration: On the right hand side,
iodine and water are both uniformly distributed over the whole container.

3.1 Diffusion „The differential equations of the propagation of heat
express the most general conditions, and reduce the
physical questions to problems of pure analysis, and
this is the proper object of theory.

— Joseph Fourier
(Mathematician)

Nowadays diffusion is a popular tool for a wide variety of applications in image processing.
However, it originated from a physical model for propagation processes that was thoroughly
investigated since the 19th century. Although effects of diffusion were already exploited for
practical purposes like metal processing before (see Mehrer and Stolwijk [192]), Graham [109]
is considered to be the first to perform a systematic analysis of concentration equilibration in
gases and liquids.

A diffusion system considers the concentration of particles at different locations in space. If
the distribution is not uniform across the whole system, a transport process that leads to
equilibration of the concentration differences takes place. In a classic example by Crank [66],
a vessel contains iodine solution and clear water. While there is a distinct separation of the
coloured iodine solution and the transparent water in the beginning, over time the whole
content of the container assumes a uniform colour (see Figure 3.1).

On the level of individual particles, movement is random according to Brownian motion. Let us
consider a so-called isotropic medium, in which movement in all directions is equally probable.
At locations where many particles of a given kind are clustered, the probability is higher that
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at least some of them move in a certain direction. Therefore, the probability that a particle
moves from an area of high concentration to an area of low concentration is higher than the
other way around. Diffusion in image processing deals with this macroscopic aspect, the flux of
particles due to concentration differences.

Following Weickert [293], out of the multitude of different diffusion models we consider those
that are described by Fick’s Law [92] and correspond to the theories of Fourier [96] on heat
transfer. Let u : Ω ⊂ Rn × [0,∞)→ R be a sufficiently often differentiable function that maps
a set of spatial coordinates (x1, . . . , xn)> ∈ Ω at time t ∈ [0,∞) to concentrations in a diffusion
system. Then, the concentration gradient ∇u locally describes the direction of the largest
concentration difference. According to previous observations on isotropic media, the flux j
takes place exactly in the inverse direction, i.e. j = −∇u. Fick’s law also incorporates the
properties of different media and defines the flux j as

j = −D∇u. (3.1)

Here, the diffusion tensor D is a symmetric and positive definite matrix that describes the
propagation properties of a specific system. For example, it accounts for the fact that in crystals,
there is a movement bias into specific directions. We discuss the details of its influence on the
transport in the next section.

A diffusion model describes only the transport of particles. Thus, mass should be preserved, i.e.
no particles are destroyed or created. For any given volume V ⊂ Ω with a closed surface ∂V ,
the change of its concentration over time can be expressed as

∂t

∫
V
u dx = −

∫
∂V
n>j dx. (3.2)

This means that the concentration in the volume V can only change over time due to the flux
through its surface. Here, n denotes the outwards normal in the corresponding surface point.
By exploiting the divergence theorem, one can rewrite Eq. 3.2 as the continuity equation

∂tu = −div j. (3.3)

If one considers a closed system such as the container of the iodine example, no flux should
occur across the boundaries of the vessel. On ∂Ω this implies the homogeneous Neumann
boundary conditions

n>j = 0 ⇔ n>D∇u = 0 (3.4)

where n is again the outward normal in the corresponding boundary point. We can now
combine Fick’s law from Eq. 3.1 and the continuity equation (3.2) and obtain the diffusion
equation

∂tu = div(D∇u). (3.5)
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This is the fundamental PDE that forms the basis for our compression codecs. In the following,
we explain how it can be interpreted as a tool for image processing and what modifications are
needed in order to use it for the reconstruction of missing image parts.

3.1.1 From Physics to Image Processing
In image processing, diffusion models consider grey values instead of concentrations. For
a given 2-D grey value image f : Ω → R, we describe its evolution over time according to
diffusion by u : Ω × [0, t) → R. At time t = 0, u is initialised with f and grey values are
propagated according to the diffusion equation (3.5). We consider a closed system, which
means that together with the homogeneous Neumann boundary conditions from Eq. 3.4, the
evolution of the image is described by the initial boundary value problem

∂tu = div(D∇u) on Ω× [0,∞), (3.6)

u(x, y, 0) = f(x, y) on Ω, (3.7)

n>D∇u = 0 on ∂Ω× [0,∞). (3.8)

The physical properties from the previous section reveal a lot about the favourable behaviour
of diffusion for image processing tasks such as denoising. If one considers a closed system,
Fick’s law dictates that mass is neither created, nor destroyed. Interpreting this in terms of
images, it means that the average grey value is preserved:

µ := 1
|Ω|

∫
Ω
f(x, y) dx dy, (3.9)

∀ t ∈ [0,∞) : 1
|Ω|

∫
Ω
u(x, y, t) dx dy = µ. (3.10)

Moreover, we know that the physical diffusion process results in equal concentration at each
location. Together with mass preservation, this implies that in the equilibrium, each point
contains the average of the original concentrations. This in turn means for image processing,
that a diffusion process converges to a flat steady state that contains the average grey value in
every pixel.

It is even possible to show that during this evolution, the minimum and maximum grey value
are never exceeded, i.e. there is a maximum-minimum-principle. For practical purposes that
implies that neither overshoots nor undershoots occur in image processing with diffusion
filters.

∀(x, y, t) ∈ Ω× [0,∞) : inf
(x̃,ỹ)∈Ω

f(x̃, ỹ) ≤ u(x, y, t) ≤ sup
(x̃,ỹ)∈Ω

f(x̃, ỹ) (3.11)

For a formal deduction and proofs of these properties in the continuous setting of image
processing see Weickert [293]. This book also discusses another important aspect of diffusion-
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PDEs: The diffusion time t can be seen as a continuous scale parameter that embeds an original
image f in a family of simplified versions {Ttf |t ≥ 0}, fulfilling the semi-group property

T0f = f, (3.12)

∀s, t ≥ 0 : Tt+sf = Tt(Tsf). (3.13)

Weickert [293] provides a detailed overview over different requirements and definitions for
scale-spaces, as well as a unifying theory for continuous and discrete diffusion scale-spaces.

Due to the equilibration performed by diffusion one of the most natural applications for
diffusion is denoising. In the next section, we define different taxonomies for diffusion models
and illustrate their properties with denoising examples. The main application for this thesis is
however the reconstruction of missing image parts with diffusion which we treat in Section
3.1.3.

Key Idea: Diffusion in Image Processing

Instead of transporting particles and equilibrating concentration, diffusion equili-
brates greyvalue differences. The physical properties of diffusion guarantee that
image degradations can be removed while the average grey value is preserved
and the original range of the image is not exceeded.

�

3.1.2 Taxonomies and Properties of Diffusion Models

The properties of any diffusion model are determined by its diffusion tensor. Let D ∈ Rn×n

be a diffusion tensor with eigenvalues λ1, . . . , λn and corresponding eigenvectors v1, . . . ,vn.
Then each eigenvalue indicates the amount of diffusion in the direction of the corresponding
eigenvector. We follow the taxonomies of Weickert [293] and distinguish diffusion models by
linearity, homogeneity, and isotropy.

Linearity: A diffusion tensor D is called linear, if it does not depend on the image structure.
If it is adapted to the local image structure, i.e. D(u) depends on the value of u(x, t), it
is nonlinear.

Homogeneity: A homogeneous diffusion tensor field has the same value for all spatial coor-
dinates x ∈ Ω. If it varies with x, it is inhomogeneous. Meaningful nonlinear diffusion
tensors are therefore inhomogeneous. Note that linear diffusion processes can also be
inhomogeneous. While this combination of properties is not very frequent in classic
image processing, linear inhomogeneous diffusion is a key component of our colour
compression codec in Chapter 8.2.

3.1 Diffusion 31



Isotropy: In accordance with the physical definition from the previous section, a diffusion
tensor is isotropic, if it treats all directions equally. In this case, its eigenvalues are
pairwise identical. If it has a directional bias, i.e. at least two eigenvalues differ from
each other, it is anisotropic.

Justifying Diffusion

This chapter motivates diffusion in the classic way: Increasingly complex models
evolve from simple ones to improve the quality in concrete applications. An
alternative, semantic justification and a unifying probabilistic framework for all
filters from this section is given in Chapter 4.

R

Linear homogeneous diffusion is the simplest possible PDE-model captured by the taxonomies
above. Although the linear scale-space concept of Witkin [308] is often cited as the origin for
linear diffusion, Weickert et al. [300] have shown that it was first discovered in Japan by Iijima
[140, 141]. In the case of linear homogeneous diffusion, the diffusion tensor degenerates to
the unit matrix, i.e. D = I and the divergence term of the diffusion equation is nothing else
but the Laplace operator:

∂tu = ∆u . (3.14)

Since this model does not adapt to the local image structure and treats all directions equally, it
is able to remove noise from an image, but also blurs and dislocates edges (see Figure 3.2).
Linear diffusion is equivalent to Gaussian convolution with a kernel Kσ (see Eq. 2.7), where
the variance σ =

√
2t is proportional to the diffusion time t.

A natural remedy for the shortcomings of linear homogeneous diffusion in respect to edges is
to identify image discontinuities and stop the diffusion at these locations. Perona and Malik
[217] proposed a nonlinear isotropic diffusion model that reduces propagation in image regions
with large gradient magnitude:

∂tu = div(g(|∇u|2)∇u) . (3.15)

Here, the gradient acts as an edge detector. An additional Gaussian presmoothing uσ := Kσ ∗ u
applied before the gradient computation makes the Perona-Malik filter well-posed and less
sensitive to noise (see Catté et al. [50]):

∂tu = div(g(|∇uσ|2)∇u) . (3.16)
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original

hom t=4 hom t=20 zoom, hom t=20

NLI t=4 NLI t=20 zoom, NLI t=20

EED t=4 EED t=20 zoom, EED t=20

Figure 3.2.: Denoising with Diffusion. The images above show diffusion results for homo-
geneous diffusion (hom), nonlinear isotropic (NLI) and edge-enhancing anisotropic diffusion
(EED) at two different diffusion times. NLI and EED both use a Perona Malik diffusivity with
the same parameters λ = 5 and Gaussian presmoothing with σ = 1.
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Since a large gradient magnitude implies a large contrast difference in the image and thereby
an edge location, the so-called diffusivity function g must be decreasing. Classic diffusivities are
continuous, differentiable functions that fulfil the requirements

∀x ∈ [0,∞) : g(x) > 0, (3.17)

g(0) = 1, (3.18)

∀x, y ∈ [0,∞) : x ≥ y ⇒ g(x) ≤ g(y). (3.19)

Popular representatives for diffusivities that are relevant for this thesis are the Perona/Malik
diffusivity gPM [217] and the Charbonnier diffusivity gC [54]:

gPM(s2) :=
(

1 + s2

λ2

)−1

, gC(s2) :=
(

1 + s2

λ2

)−1/2

. (3.20)

In both cases, the contrast parameter λ allows to adjust which contrast differences are considered
to be edges and should thereby be preserved, and which differences may be removed by the
smoothing applied by the diffusion process. This is necessary, since noise itself also constitutes
discontinuities.

Note that sometimes, the literature on diffusion in image processing employs other definitions
of anisotropy. In particular, nonlinear isotropic diffusion models of the Perona-Malik type are
often called anisotropic, even though they treat all directions equally. Figure 3.2 demonstrates
that nonlinear isotropic diffusion is indeed able to preserve edges better than linear diffusion.
However, it does not solve the problem completely: Either diffusion is inhibited very strongly
at discontinuities and thus the noise at such locations remains, or it blurs the edge, leading to
the same issues as with linear diffusion.

A representative of truly anisotropic diffusion models according to the taxonomy above is
the edge-enhancing anisotropic diffusion (EED) model by Weickert [295]. Not only does it
solve the problems of Perona-Malik diffusion, it is also the most important diffusion model
for the compression approaches in this thesis. Again, the diffusion is adaptive to the gradient
magnitude, but now it uses a diffusion tensor D instead of a scalar diffusivitiy g:

∂tu = div(D(|∇uσ|2)∇u) . (3.21)

In order to allow different treatment of individual directions, the diffusion tensor D is chosen
in such a way that it adapts to the local structure. This can be achieved by defining the tensor
in terms of its eigenvalues and eigenvectors. The first eigenvector v1 is chosen to be parallel to
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the gradient and thus points across edges. The second eigenvector v2 is perpendicular to v1

and thereby gives the direction along the edge, i.e.

v1 ‖ ∇uσ, (3.22)

v2⊥∇uσ. (3.23)

By inhibiting the diffusion in the direction of v1 (across the edge) with a diffusivity g as in
Eq. 3.20 and allowing full diffusion along the edge, one obtains

D(|∇uσ|2)) := g(|∇uσ|2) · v1v
>
1 + 1 · v2v

>
2 . (3.24)

Considering again the comparison in Figure 3.2: EED preserves the sharp edges of the text and
also removes noise at these locations. The difference to isotropic diffusion becomes visible by
zooming in.

More Diffusion Models

The three models discussed here are by far not the only diffusion models. In
Chapter 4, we introduce and discuss a larger variety of diffusion PDEs and their
relation to variational methods and statistical image priors.

R

3.1.3 Diffusion Inpainting
Inpainting is an application in image processing that has originated from image restoration
[26]. If parts of images are missing or damaged (e.g. scratches on old photographs as in
Figure 3.3), inpainting has the goal to reconstruct these regions. One could also speak of the
interpolation of missing data from the known image. Of course, interpolation is a vast field
that spans a lot of different approaches like spline interpolation. We only cover closely related
methods in this thesis. For a comprehensive overview over the large variety of alternatives we
refer the reader to Meijering [193]. Besides the application of inpainting in restoration and
compression, inpainting can also be used for image upsampling [9, 21, 24, 185].

Hoeltgen et al. [125] have pointed out in their review on PDE-based compression that the idea
of filling in missing areas with diffusion has been implicitly used for a long time in optic flow
[130] before PDE-based inpainting became popular. During the computation of a displacement
vector field on image sequences, a variational approach related to the diffusion PDEs from the
previous sections complements the missing parts of the field.

The early works of Masnou and Morel [190] considered a variational model for inpainting
based on level-lines as a disocclusion problem. The goal was here to reconstruct the missing or
occluded parts according to human perception that is described by Kanizsa [148] and Werner
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degraded image restored image colourised image

Figure 3.3.: Image Restoration with PDE-based Inpainting. By specifying the scratches on
an old photograph as missing image regions, inpainting can be used for image restoration.
Left: Authentic photograph of the author’s grandfather with heavy degradations. Middle:
Restoration by EED inpainting. The locations of the scratches were manually selected. Right:
Colourisation with EED inpainting according to the novel technique presented in Chapter 8.2.

[307]. Indeed, this theory describes the strengths of PDE-based inpainting well and motivates
the experiments in Figure 3.4.

After Bertalmío et al. [26] used PDEs to mimic the procedures conducted by human conservators,
many other approaches in image inpainting followed [16, 48, 51, 115, 281, 302]. Some of
them go beyond the original goals of 2-D image inpainting and work instead on vector [17] or
tensor fields [297].

A very general formulation of the PDE-based inpainting problem is given by Weickert and
Welk [297]. Let L denote a suitable differential operator, e.g. one of the diffusion operators
from Section 3.1. The goal is now to compute a reconstruction u of a given image f . This
reconstruction can be obtained as the solution of the general inpainting equation

(1− c(x))Lu− c(x)(u− f) = 0. (3.25)

Here, the difference u − f models the deviation of the reconstruction u from the original
f and thereby defines a criterion for approximation. The actual filling-in is performed by
an application Lu of the differential operator to the reconstructed image u. It specifies a
smoothness constraint on the solution u. Both terms are weighted by the confidence function
c(x) : Ω → [0, 1]. For c(x) = 0, data is purely interpolated due to the constraints imposed
by the differential operator, for c(x) = 1 the reconstruction is forced to perfectly match the
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original. All values in-between give a continuous confidence rating of the given data: The
higher the amount of suspected degradation at the point f(x), the smaller c(x) should be.

For our purposes in image compression, we only consider binary functions c. In this case,
we perform pure interpolation, since the known data is preserved exactly. We assume that
the image domain Ω is partitioned into a known image part, the inpainting mask K and an
unknown image part, the inpainting domain Ω \K. For the inpainting mask, we require that
the known data is perfectly reconstructed, i.e.

∀x ∈ K : u(x) = f(x). (3.26)

On the other hand, the confidence in the missing data is assumed to be zero. Therefore, c(x)
can be expressed by the indicator function χK of the inpainting mask K:

c(x) = χK(x) =

1 if x ∈ K,

0 else.
(3.27)

This allows to simplify Eq. 3.25 significantly, since the partition into inpainting mask and
domain allows to split it into the two equations

∀x ∈ K : u(x)− f(x) = 0, (3.28)

∀x ∈ Ω \K : Lu(x) = 0 (3.29)

If one considers the inpainting operator L to be the divergence term of the general diffusion
model from Eq. 3.5, Eq. 3.29 requires that u is a steady state of a diffusion process. The
difference to denoising is the specification of fixed known data from Eq. 3.28. As for denoising,
we can specify the evolution of the solution u as an initial boundary value problem, where
Eq. 3.28 imposes Dirichlet boundary conditions to Eq. 3.6:

∂tu = div(D∇u) on Ω \K × [0,∞), (3.30)

u(x, y, t) = f(x, y) on K × [0,∞), (3.31)

n>D∇u = 0 on ∂Ω× [0,∞). (3.32)

It has been either shown or empirically verified for all diffusion models previously discussed
that the initialisation at t = 0 on Ω \ K does not influence the steady state. However, the
initialisation still has an impact on practical applications: In Chapter 7, we discuss its effect on
convergence speed and show how to exploit this connection to obtain real-time performance in
video decoding.

A comparison of the three most important representatives of inpainting PDEs in Figure 3.4
shows that EED yields by far the best results. Linear diffusion propagates information in all
directions equally and fails to reconstruct any sharp image edges. While nonlinear isotropic
diffusion is indeed able to inhibit the propagation very strongly, it suffers from similar problems
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as in the case of denoising. In order to propagate an edge into the inpainting domain, diffusion
needs to be limited to the direction along the edge, which is not possible if the process is
isotropic. However, EED can also reconstruct sharp edges in the missing data.

The suitability of different inpainting operators for compression has already been investigated
on several occasions. Multiple publications that deal with inpainting from random or optimally
chosen scattered data [34, 59, 99, 125] have confirmed that EED produces superior results
in comparison to linear homogeneous diffusion and other operators such as biharmonic and
triharmonic inpainting [81] or total variation (TV) [240] interpolation.

In the context of compression, Galić et al. [100] have shown that EED outperforms linear
homogeneous diffusion at the same compression ratio, if known data is selected and stored
with a triangular subdivision scheme. A more extensive comparative study with rectangular
subdivision by Schmaltz et al. [252] includes also the absolute minimal Lipschitz extension
(AMLE) [11] and the method of Bornemann and März [30]. The latter is an extension of the
single-pass algorithm of Telea [278]. Moreover biharmonic, triharmonic, and TV inpainting
are also considered in this comparison. Again, EED produced the best compression results.
However, it should be noted that both methods use similar selection and storage strategies for
the known data. In Chapter 5.3.1 we investigate how far this influences the performance of
PDE-based inpainting.

3.1.4 Discretisations and Solvers
The previous sections on diffusion cover purely continuous models. For the purpose of practical
compression codecs with diffusion-based inpainting, it is necessary to discretise the afore-
mentioned models and to solve the resulting discrete inpainting equation. While we do not
deal with the development or in-depth analysis of discretisations or solvers in this thesis, it is
nevertheless important to discuss them.

Finite Difference Approximations

All discrete implementations of diffusion models in this thesis rely on the approximation of
their derivatives by finite differences. The general concept can be explained with the example
of a 1-D function u(x) : Ω ⊂ R→ R. For example, the derivative at a point u(x) on the discrete
grid with grid size h can be approximated by the difference between the neighbouring pixels
ui−1 := u(x− h) and ui+1 := u(x+ h), the so-called central difference

u′i ≈
ui+1 − ui−1

2h . (3.33)
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initialisation inpainting mask

linear homogeneous biharmonic

nonlinear isotropic nonlinear anisotropic (EED)

Figure 3.4.: Inpainting with Diffusion. A triangle should be reconstructed from the known
data marked in black in the inpainting mask. EED is able to reproduce sharp image edges, while
linear operators lead to blurry structures. Nonlinear isotropic diffusion either produces similar
results to the homogeneous methods or inhibits the propagation very strongly, depending on
the choice of the contrast parameter.
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Assuming that u is sufficiently often differentiable, it can be approximated by a Taylor series at
each point in Ω. This comes down to

u(x+ h) =
n∑
k=0

hk

k! f
(k)(x) +O(hn+1), (3.34)

f ∈ O(g) :⇔ 0 ≤ lim sup
x→a

|f(x)|
|g(x)| <∞, a ∈ R ∪ {−∞,∞}, (3.35)

where O is the Bachmann-Landau notation. It describes the asymptotic behaviour of f . If
the absolute value of f does not grow faster than the function g, we have f ∈ O(g). If one
computes Taylor approximations of the two points used to compute the central difference

u(x− h) = ui−1 = ui − hu′i + h2

2 u
′′
i −

h3

6 u
′′′
i + h4

24u
′′′′
i +O(h5), (3.36)

u(x+ h) = ui+1 = ui + hu′i + h2

2 u
′′
i + h3

6 u
′′′
i + h4

24u
′′′′
i +O(h5) (3.37)

and plugs them into the finite difference Eq. 3.33, one obtains the error term

ui+1 − ui−1
2h = 1

2h(1− 1)︸ ︷︷ ︸
=0

u+ 1
2(1 + 1)︸ ︷︷ ︸

=1

u′i + h

4 (1− 1)︸ ︷︷ ︸
=0

u′′i + h2

12(1 + 1)︸ ︷︷ ︸
6=0

u′′′i +O(h3) (3.38)

= u′i +O(h2). (3.39)

The error term with the smallest power of h, the so-called order of consistency, determines
the quality of the approximation for h→ 0. In a similar way, higher order derivatives can also
be expressed by finite differences. Applying this principle to the spatial derivatives contained
in the divergence term of the diffusion equation (3.6) is a straightforward way to obtain the
standard discretisation [293].

Although it is easy to discretise a diffusion PDE with a reasonable order of consistency, the
filter results are still influenced significantly by the choice of discretisation. Weickert et al.
[299] have proposed a unifying framework for a large number of non-standard finite difference
discretisations for anisotropic diffusion [65, 293, 294, 304, 305]. They use the following
finite differences as building blocks for the discretisation on a (2 × 2)-pixel neighbourhood
{i, i+1} × {j, j+1} around a pixel (i+ 1

2 , j + 1
2) on a staggered grid:

p p := D−x ui+ 1
2 , j+

1
2

:= ui+1,j − ui,j
hx

, (3.40)

p p := D+
x ui+ 1

2 , j+
1
2

:= ui+1,j+1 − ui,j+1
hx

, (3.41)
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pp := D−y ui+ 1
2 , j+

1
2

:= ui,j+1 − ui,j
hy

, (3.42)

pp := D+
y ui+ 1

2 , j+
1
2

:= ui+1,j+1 − ui+1,j
hy

. (3.43)

Here, hx and hy denote the respective grid sizes in the x- and y-direction. Weickert et al.
[299] propose the following discretisations for the derivative terms occurring in the diffusion
equation in pixel (i+ 1

2 , j + 1
2):

J1,1 = (∂xuk)2 ≈ (1− α)1
2
( p p 2 + p p 2

)
+ α · ( p p · p p ), (3.44)

J2,2 = (∂yuk)2 ≈ (1− α)1
2
( pp 2 + pp 2

)
+ α · ( pp · pp ), (3.45)

J1,2 = ∂xuk ∂yuk ≈ (1− β)1
4
( p p pp + p p pp )+ (1 + β)1

4
( p p pp + p p pp )

(3.46)

with free parameters α ∈ [0, 1
2 ] and β with |β| ≤ 1− 2α. These derivative terms coincide with

components of the structure tensor J discussed later in Chapter 4. The restrictions on these
parameters stem from stability considerations. Note that in the most general version of the
framework, the parameters are actually spatially variant, i.e. the discretisation in each grid
point can have different α and β. In particular, for a given diffusion tensor of the form

D =
(
a b

b c

)
, (3.47)

the sign of β is locally adapted to the sign of the component b in order to reduce potential
over- or undershoots. For convenience of notation, β is in practice often substituted by a global
parameter γ ∈ [−1, 1] with β := γ(1− 2α)sign(b). For more details on these issues we refer to
Weickert et al. [299].

The experiments of Weickert et al. [299] show that in concrete applications like demosaicking,
the standard discretisation produces a significantly higher error (≈ 10dB in PSNR) than the
best selection of parameters for the aforementioned discretisation. We also provide some
additional evidence for the potential of this discretisation in Chapter 8 in the context of image
colourisation. Also, in the case of directional image statistics, were rotational invariance is
important, we resort to a suitable special case of the framework above, namely the LSAS
scheme [305] with α ∈ [0, 1

2 ] and β = 0.

However, we should note that choosing optimal discretisations is application dependent and
still an unsolved problem. We illustrate this problem with some experiments in Chapter 8.2.2.
Furthermore, we want to eliminate the discretisation as a confounding factor in our evaluation.
If we compare one of our new compression schemes to e.g. the R-EED method, which uses a
standard discretisation, we want to have equal conditions for both methods.
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No matter which discretisation we choose, the approximation of spatial derivatives by finite
differences yields a semi-implicit discretisation of the form

d

dt
u = A(u)u, (3.48)

where u ∈ Rnxny is a discrete image with resolution nx × ny that still depends on a continuous
diffusion time t and A ∈ Rnxny×nxny is the finite difference approximation of the divergence
term. With the discretisation by Weickert et al. [299] discussed above and the notation from
Eq. 3.47 for the entries a, b, and c of the diffusion tensor, each line of the matrix A(u)
corresponds to the following stencil:

1
2h2 ·

[
(β−1)b+α(a+ c)

]
i− 1

2 ,j+ 1
2

[
(1− α)c+ αa− βb

]
i+ 1

2 ,j+ 1
2

+
[

(1− α)c+ αa− βb
]
i− 1

2 ,j+ 1
2

[
(β−1)b+α(a+ c)

]
i+ 1

2 ,j+ 1
2

[
(1−α)c+αa−βb

]
i− 1

2 ,j+ 1
2

+
[

(1−α)c+αa−βb
]
i− 1

2 ,j−
1
2

−
[

(1−α)(a+c)−(β−1)b
]
i+ 1

2 ,j−
1
2

−
[

(1−α)(a+c)−(β−1)b
]
i+ 1

2 ,j−
1
2

−
[

(1−α)(a+c)−(β−1)b
]
i+ 1

2 ,j−
1
2

−
[

(1−α)(a+c)−(β−1)b
]
i+ 1

2 ,j−
1
2

[
(1−α)c+αa−βb

]
i+ 1

2 ,j+ 1
2

+
[

(1−α)c+αa−βb
]
i+ 1

2 ,j−
1
2

[
(β−1)b+α(a+ c)

]
i− 1

2 ,j−
1
2

[
(1− α)c+ αa− βb

]
i+ 1

2 ,j−
1
2

+
[

(1− α)c+ αa− βb
]
i− 1

2 ,j−
1
2

[
(β−1)b+α(a+ c)

]
i+ 1

2 ,j−
1
2

(3.49)

The stencils contains the weights corresponding to the pixel i, j (the centre of the stencil) and
its 3× 3 neighbours. We have assumed here an equal grid size h := hx = hy for both directions.
Throughout the whole thesis, we use this general stencil, only the choice of α and β varies
between the different applications.

In the following we discuss two different ways to obtain a numerical solution of the diffusion
equation by discretising the time derivative in different ways.
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Explicit Scheme

First, we consider a discretisation of the time derivative in Eq. 3.48 with the forward differ-
ence

d

dt
u ≈ u

k+1 − uk

τ
, (3.50)

uk := u(kτ). (3.51)

Here, τ is the temporal grid size or time step size. This discretisation leads to the explicit
scheme

uk+1 − uk

τ
= A(uk)uk . (3.52)

Computing the evolving image u for diffusion times that are a multiple of the time step size is
very straightforward here, since after a small rearrangement of Eq. 3.52, the next iterate uk+1

can be computed from uk with the simple matrix-vector multiplication

uk+1 = (I + τA(uk))uk. (3.53)

Unfortunately, explicit schemes suffer from limitations of the time step size τ due to stability
reasons [293, 299]. In particular for inpainting, where large diffusion times can be necessary
to reach the steady state of the diffusion process, this is a significant drawback.

The fast explicit diffusion (FED) scheme by Weickert et al. [114, 298] provides a remedy for this
issue. It replaces the fixed time step size τ with cycles of varying step size. Individual iterations
in each cycle can exceed the stability limit significantly, but each cycle itself is stable. Since
FED is fast, well-suited for GPU (graphics processing unit) implementations, and a reference
implementation is freely available online [113], this is the primary solver that we use for our
implementations in this thesis.

Semi-Implicit Scheme

Another possibility to circumvent the time step limitations of explicit schemes is a different
discretisation of the time derivative that leads to the semi-implicit discretisation of Eq. 3.48.
These schemes were popular in PDE-based compression with anisotropic diffusion before the
advent of FED. A backward difference in time leads to

uk+1 − uk

τ
= A(uk)uk+1, (3.54)

⇔ (I − τA(uk))uk+1 = uk. (3.55)
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Although the resulting scheme seems to be similar to the explicit method, there are some key
differences. It can be shown that τ can be chosen arbitrarily large [293], but this advantage
comes at a cost. Instead of iterating a simple matrix-vector multiplication, semi-implicit
schemes require solving a linear system of equations with the system matrix (I − τA(uk)).

Two solvers that are relevant for this thesis both rely on the family of Jacobi methods. In
the following we briefly discuss these solvers, loosely following Barrett et al. [18, Chapter 2].
Jacobi methods solve a system of equations Ax = b with A ∈ Rn×n, x, b ∈ Rn iteratively.
Starting from a value x0, they compute a recursively defined series (xk)k∈N that converges to
the solution x.

The original Jacobi method considers each equation of the system Ax = b individually. For
every equation of the form (Ax)i = bi, xj with j 6= i are kept constant. This allows to solve the
equation for xi:

n∑
j=1

ai,jxj = bi, (3.56)

⇔ xi =
bi −

∑
j 6=i ai,jxj

ai,i
. (3.57)

This leads to the iterative scheme

xki = bi
ai,i
−
∑
j 6=i

ai,j
ai,i

xk−1
j . (3.58)

For such an iterative scheme, it is unclear how close the iterate xk is to the actual solution x,
since the error x− xk cannot be computed. However, it is possible to determine the residual
[194], which describes the effect of the error on the right hand side of the system of equations:

rk := A(x− xk) = Ax−Axk = b−Axk. (3.59)

In many cases during this thesis, we use the relative residual |r0|/|rk| to determine when to
terminate the iteration. This criterion can also be used for explicit FED schemes, since the
residual of the semi-implicit scheme can also be computed for any FED iterate. Considering
again the Jacobi method in Eq. 3.58, one can also describe it in terms of the residual:

xki = bi
ai,i
−
∑
j 6=i

ai,j
ai,i

xk−1
j = bi

ai,i
+ ai,ix

k
i − (Axk)i
ai,i

(3.60)

= xki + (b−Axk)i
ai,i

= xki −
rki
ai,i︸︷︷︸

correction

(3.61)

Thus, the Jacobi method can be interpreted as a series of correction steps according to the
rescaled residual.
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Gauß-Seidel solvers extend the Jacobi method by exploiting the fact that for a sequential
computation of xk1, . . . ,x

k
n, the results for xkj with j < i are already available when xki is

computed. Supplementing these results into Eq. 3.58 yields

xki = bi
ai,i
−

∑
j<i

ai,j
ai,i

xkj +
∑
j>i

ai,j
ai,i

xk−1
j

 . (3.62)

Incorporating the already computed results into the following computation speeds up conver-
gence in general.

With the Gauß-Seidel solver, we can finally explain the method that the reference implemen-
tation of R-EED [252] uses (see Section 3.3). Successive overrelaxation (SOR) computes a
weighted average of the Gauß-Seidel iterates xki and xk−1

i :

xki = ω

 bi
ai,i
−

∑
j<i

ai,j
ai,i

xkj +
∑
j>i

ai,j
ai,i

xk−1
j

+ (1− ω)xk−1
i (3.63)

In fact, for ω = 1 SOR and Gauß-Seidel are equivalent. However, if one chooses ω < 1, the
Gauß-Seidel correction is attenuated and for ω > 1, it is increased. Such an overrelaxation can
improve the speed of convergence. For symmetric, positive definite matrices, SOR converges
for ω ∈ (0, 2). Outside of this interval, no convergence can be obtained in general [287].

Although SOR is considerably faster than the original Jacobi method and was therefore popular
in PDE-based compression, it also has some drawbacks. On one hand, the SOR steps depend on
the order in which the image pixels are considered. On the other hand, it is strictly sequential
and thereby not suitable for CPU or GPU parallelisation.

However, there is an alternative to SOR that relies on the same ideas as the FED scheme. It has
been shown by Grewenig et al. [298] that Fast-Jacobi (FJ), a cyclic extension of the Jacobi
overrelaxation scheme [287], is particularly useful for diffusion problems with strongly varying
coefficients. It also preserves the positive properties of FED, namely that it can be parallelised
in a straightforward way.

Fast Inpainting with PDEs

The discretisations discussed in this section do not consider inpainting yet, but
only model a diffusion process for image evolution as it is applied e.g. in denois-
ing. However, the discretisation itself remains the same, it is just embedded into
the diffusion model in Eq. 3.30 – Eq. 3.32. Chapter 7 compares different solvers
for inpainting in a video compression context and introduces additional means
for speed ups such as parallelisation and coarse-to-fine strategies.

R
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3.2 A Short History of Image Compression„Those who cannot remember the past
are condemned to repeat it.

— George Santayana
(Philosopher)

A revolutionary seminal paper by Claude E. Shannon [258, 259] laid the foundation for image
compression in 1948. It single-handedly established a whole new area of research: information
theory. At its core, it deals with communication in a very broad sense: A transmitter encodes a
message and transports it to a receiver via a channel. Such a model includes the case where
the sender is a compression program that has the goal to transfer an efficient representation of
an image to a storage device. In his foreword to the book version of Shannon’s original paper,
Warren Weaver even mentions explicitly, that Shannon’s definition of communication includes
“the pictorial arts” [260, p. 3]. The original idea of transmitting pictures electronically dates
back even further. Alexander Bain registered a patent for a fax machine already in 1843 [15].
However, it took a long time until a corresponding mathematical theory was developed.

Beyond the general concept of encoding and transmitting data efficiently, the most direct effect
of Shannon’s work on image compression is the concept of entropy and its implications for
coding. In the following, we first discuss these general purpose compression algorithms that
only remove redundancies in the representation of data and allow to recover the original input
again exactly. These lossless encoders are also an important building block for lossy image
compression codecs which discard visually unimportant information (irrelevancies) to achieve
smaller file sizes (see e.g. [268]).

3.2.1 Entropy Coding
The general goal of lossless compression is to represent a given message or source word with
the smallest possible amount of symbols such that the original message can still be perfectly
reconstructed. The message is composed from symbols from a source alphabet S = {s1, . . . , sm}
and should be encoded by a sequence of symbols from the code alphabet A = {a1, . . . , an}. For
the purpose of image compression, S = {0, . . . , 255} could for example denote the grey values
of an image that should be represented by a binary code from A = {0, 1}.

In information theory, the source is modelled statistically. Each symbol si occurs with a
probability pi ∈ [0, 1] in the source word. These probabilities are usually estimated from
the source file or follow an underlying model for the message content (e.g. the occurrence
frequencies of letters in the English language or the statistics of a certain class of images). First,
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we consider a simple model that assumes that each symbol in the source word is randomly
selected from the alphabet and independent of the other symbols.

In such a compression model, the probability of a symbol defines how much information it
carries. If one only considers symbols that actually occur, i.e. have a probability greater than
zero, their information content should be specified by a non-negative number. Intuitively, if
the probability of a symbol is 1, it contains no information, since all messages composed from
this symbol are trivial. Thus, self-information should be zero exactly for this case. These three
requirements lead to an axiomatic definition of the self-information I(si) according to

∀pi ∈ (0, 1] : I(si) ≥ 0, (3.64)

∀pi ∈ (0, 1) : I(si) > 0, (3.65)

∀pi, pj ∈ (0, 1) : I(sisj) = I(si) + I(sj). (3.66)

Aczél and Daróczy [5] have shown that these axioms enforce a logarithmic relation between
self-information and probability of occurrence. Thereby, we define I(si) as

I(si) = log2
1
pi

= − log2 pi. (3.67)

The higher the amount of self-information, the more expensive a symbol is to encode. In
particular, the I(si) specifies the amount of bits that is needed to encode this particular symbol.
For a whole code-word, the expected value of the average self-information of the whole source
alphabet is called the entropy

H(S) := E(I(S)) =
m∑
i=1

piI(si) = −
m∑
i=1

pi log2 pi. (3.68)

It can be shown that this entropy provides a lower bound for the average length of the code
words produced by any compression scheme where the output can be deterministically decoded
again. Going into more detail here is beyond the scope of this thesis. Therefore we refer to the
mathematically compelling discussion of the topic provided by Hankerson et al. [119].

Algorithms that have the goal to come as close to the aforementioned theoretical limit as
possible are called entropy coders. Probably the first binary entropy encoder was Morse code
[285] which was developed for practical purposes before an overarching theory for message
coding existed. However, it is far from optimal.

Other algorithms like Shannon coding [258] or Shannon-Fano coding [91, 258] provide better
results, but are not used in practice since Huffman [136] proposed a simple algorithm in 1952
that offers a good combination of high compression ratios and fast performance. It orders
symbols according to their probabilities and regards them as leaf nodes in a tree. By iteratively
merging the two nodes with the smallest probabilities, it creates a binary probability tree with
edge labels 0 for left children and 1 for right children. Following a path from the root to a
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leaf provides the codeword of the corresponding symbol. By construction, infrequent symbols
appear at deeper tree levels and are thus assigned longer codes than more frequent symbols.
Huffman-coding can be shown to be optimal in regards to the entropy and is still present in
many image compression codecs. However, it requires at least one bit per symbol.

The limitations of Huffman coding can be circumvented by arithmetic coding [234, 235, 309].
Here, the whole data is compressed at once and represented by a single number instead.
This number is chosen by iteratively partitioning an interval. Each symbol of the code word
corresponds to one subinterval with a length that is proportional to its probability. Thereby,
each additional symbol restricts the interval further and an arbitrary number from the final
interval can be selected to represent the code word. For the purpose of compression codecs, it
is important to mention that there is an implementation of arithmetic coding that is believed to
be patent free [189]. For example, JPEG also supports arithmetic coding in theory, but it was
never implemented in commercial applications due to patents held by IBM [179].

Note that in general, not only the optimality of entropy coders plays a role for the final
compression results. Also, the overhead for storing necessary information for decoding is
important. For example, one needs to consider the cost for storing a Huffman tree, not only the
storage needed for the actual code word.

Moreover, the entropy encoders so far have assumed that symbols can occur with the same
probability at any point in a file. This is not a reasonable assumption: In an image for example,
there is a high chance that a pixel has similar colours like its neighbours. So-called higher order
entropy coding schemes incorporate such dependencies by assigning different probabilities to a
symbol according to the context in which it appears.

There are also adaptive higher order versions of Huffman and arithmetic coding, but combining
them with prediction by partial matching (PPM) [62, 195] is even more efficient. This approach
just provides the probabilities for traditional entropy encoding. The encoder determines the
probability of the next symbol by counting the number of occurrences of already encoded
symbols in each possible context. If a symbol has not been seen by the encoder, yet, it falls back
to smaller contexts. This allows to create a highly efficient encoding scheme that produces no
overhead, since no additional information besides the code word needs to be stored.

The currently most successful general purpose compression method is the context-mixing
algorithm PAQ [178, 180] that drives the ideas of PPM to the extreme. It consists of a large
family of codecs that rely on the same principle: Many different context models for different
types of data are weighted according to neural networks. These networks allow to learn and
adapt the weighting throughout a file that contains many different types of data. Multiple
versions of PAQ are leading coding competitions such as the Hutter prize [139] at the time
of writing. Although PAQ needs a lot of memory and computation time, also a family of
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lightweight versions of the codec named LPAQ [180] exists. PAQ is particularly popular in
PDE-based compression [183, 252].

As an alternative or additional measure to higher order methods that directly model the local
dependencies of symbols by conditional probabilities of contexts, one can also decorrelate the
data with precoding. A simple possibility is run-length encoding (RLE) [45], where the number
of equal symbols that occur in an uninterrupted sequence, a so-called run, are encoded. There
are many variants of this basic idea, some of which only support limited run lengths or apply
entropy coders that can support infinite source alphabets (i.e. N) like Golomb-Coding [106].

In addition to the classical entropy encoders and their extensions discussed before, there is
also another important family of coders that is relevant for image compression. They take
the middle ground between a one-to-one mapping of the source and code alphabet and the
expression of the whole code word by a single symbol in arithmetic coding. To this end, they
encode phrases that consist of multiple source symbols. Encoders such as LZ77 [328] and
Lempel-Ziv-Welch coding (LZW) [303] create a list of already seen combinations of symbols
and express the source word as a sequence of list indices. We refer to Sayood [245] for a more
detailed overview of these methods.

In many practical applications such as gzip, the output of a dictionary encoder is additionally
compressed by classical entropy encoders such as Huffman coding. In bzip2 [257], even more
preprocessing steps are used: An invertible block sorting algorithm [42] creates repeating
symbol sequences that increase the efficiency of RLE and Huffman coding.

Entropy Coding in PDE-based Compression

Chapter 5.2.1 provides a more detailed discussion and comparison of specific
entropy coders that are relevant for PDE-based compression. Many of the
encoders are also supported by R-EED (see Chapter 3.3).

R

Many lossless image compression algorithms directly use the entropy coders from the previous
paragraphs as steps in their compression pipeline. Since there are dozens of different file
formats for images [200], we only discuss a few milestones. Early formats from the DOS era
such as Picture Exchange (PCX) [12] just compressed the sequence of grey or colour values
with RLE. With the advent of Windows, BMP (Bitmap Image File) [55] also added Huffman
coding as an additional option for entropy coding. In 1987, the graphics interchange format
(GIF) [63] replaced PCX and BMP since it offered the more efficient LZW encoding. However,
patent claims on LZW lead to the development of Portable Network Graphics (PNG) [35, 68],
which was explicitly designed to be a patent-free alternative to GIF. It predicts the value of a
pixel from three already encoded neighbouring pixels and stores the error with DEFLATE [74],
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a combination of dictionary and Huffman coding. Nowadays, since the patents on LZW have
expired, both GIF and PNG are popular.

Finally, the JPEG family also offers a dedicated lossless codec, JPEG-LS [301], which is techni-
cally completely unrelated to the transform-based coders discussed in Section 3.2.2. Instead, it
combines prediction with context-based encoding of the prediction errors. Although JPEG-LS
offers the best performance of the entropy coders discussed in this chapter as demonstrated by
Fig. 3.8, it was never widely adopted. Nevertheless, it has some applications in areas where a
lot of data has to be stored losslessly, such as medical imaging [202].

In addition to the lossless encoding of images with arbitrary content, there are also compression
techniques that are tailored specifically to binary, i.e. monochrome images. These codecs were
originally designed for fax machines and copiers and contain many features that are specific
for this use. However, codecs like JBIG [146], JBIG2 [131] and DjVU [31] are also important
in PDE-based compression for the storage of so-called inpainting masks (see Chapter 5).

3.2.2 Transformation-based Compression
During the 1980s, many researchers realised that the increasing popularity of personal com-
puters and other consumer electronics would lead to a need for fast and efficient transmission
and storage of digital images [215, Chapter 19]. Therefore, three international organisations
for standardisation, namely the International Organisation for Standardisation (ISO), the
International Telegraph and Telephone Consultative Committee (CCITT), and the International
Electrotechnical Commission (IEC) cooperated in a long process of research, evaluation and
consolidation that lead to the JPEG standard [215].

JPEG is a lossy codec that removes information from the image to achieve a higher compression
ratio than lossless methods. It aims to remove small-scale details that are not relevant for
human perception, so-called irrelevancies, first. Codecs from the class of transform coders
achieve this goal by applying a transformation to the image that allows to easily distinguish
between large-scale structure and small-scale detail. In the case of JPEG, a discrete cosine
transform (DCT) fills this role.

For a given image f ∈ Rn×n with resolution n× n, the DCT is simply a basis transform that
does not represent f as a collection of pixels, but as a weighted sum of cosine waves. It is given
by

cu,v = α(u)α(v)
n−1∑
i=0

n−1∑
j=0

fi,j cos
((2i+ 1)uπ

2n

)
cos

((2j + 1)vπ
2n

)
, (3.69)

α(k) =


√

1
n , if k = 0√
2
n , otherwise

. (3.70)

50 Chapter 3 Related Work



The definition above clearly illustrates that each DCT coefficient cu,v contains a contribution
from all pixels fi,j , thus explaining the global influence of each coefficient. Since the coefficients
that correspond to high frequencies of the cosine basis functions contain small-scale structures,
they are well-localised in the frequency domain. Compression codecs can thereby remove
irrelevancies by quantising high-frequent transform coefficients more coarsely than low-frequent
coefficients.

In the concrete case of JPEG, the encoder first partitions the image into 8 × 8 blocks before
applying the DCT. This simultaneously decreases the runtime of the algorithm and allows
to respect the fact that content can vary tremendously in different areas of an image. The
choice of non-zero basis coefficients can be locally adapted to the image (e.g. using primarily
horizontal waves in one image part and mostly vertical ones in another.) Figure 3.5 shows the
approximation of one image block by a small amount of 8 × 8 DCT basis-images. The same
figure also illustrates a severe drawback of the block decomposition: At the borders between
blocks distracting discontinuities can arise, so-called block artefacts.

Key Idea: transform-based compression

In transform-based compression, images are represented in a suitable domain
that decomposes the image into coarse and fine scale structures. This results in
a sparse representation that can be gradually reduced by leaving away visually
unimportant data.

�

JPEG2000 is the direct successor of JPEG and relies on the same core idea. Still, a transfor-
mation is applied, but this time with a discrete wavelet transform (DWT) instead of a DCT.
As the name indicates, wavelets also exhibit wavelike properties like the cosine basis in the
DCT, but also offer some distinct advantages. Unlike the cosine waves, they are designed
with a limited support and do not have a global influence. In fact, the size of the support is
inversely proportional to the frequency. Therefore, small-scale detail is better localised than
large-scale structures. While this removes the need for block decompositions, JPEG2000 also
allows so-called tiling. Here the image is partitioned not primarily for localisation, but for
increased performance.

The core functionality however remains the same: JPEG2000 quantises the wavelet coefficients
depending on their corresponding frequency and stores them with an entropy encoder, usually
Huffman or arithmetic coding. While block artefacts can still occur since the wavelet coefficients
are localised to rectangular supports, they are less pronounced than in JPEG since there is no
fixed partitioning into 8× 8 blocks.

Although the performance of JPEG2000 is in most cases superior to JPEG (see Figure 3.8), it is
not widely accepted. There are several reasons for this: JPEG2000 is slower than JPEG, parts

3.2 A Short History of Image Compression 51



or
ig

in
al

im
ag

e

u
n

co
m

p
re

ss
ed

b
lo

ck

≈
∑

q
u

an
ti

se
d

co
effi

ci
en

ts

·

D
C

T
b

as
is

b
lo

ck
s

=

co
m

p
re

ss
ed

b
lo

ck

co
m

p
re

ss
ed

im
a
g
e

d
is

cr
et

e
co

si
n
e

tr
an

sf
or

m
w

it
h

q
u

an
ti

sa
ti

on
of

co
effi

ci
en

ts

Fi
gu

re
3.
5.
:

Tr
an

sf
or

m
-b

as
ed

C
om

pr
es

si
on

.
Th

e
di

ag
ra

m
ab

ov
e

sh
ow

s
ho

w
JP

EG
co

m
pr

es
se

s
an

im
ag

e
w

it
h

a
co

m
bi

na
ti

on
of

a
di

sc
re

te
co

si
ne

tr
an

sf
or

m
an

d
qu

an
ti

sa
ti

on
.

O
ne

8
×

8
bl

oc
k

is
sh

ow
n

en
la

rg
ed

be
lo

w
th

e
or

ig
in

al
im

ag
e.

Th
is

bl
oc

k
is

ap
pr

ox
im

at
ed

by
th

e
w

ei
gh

te
d

su
m

of
9

D
C

T
ba

si
s

bl
oc

ks
w

it
h

no
n-

ze
ro

co
ef

fic
ie

nt
s

(m
ar

ke
d

in
bl

ue
).

52 Chapter 3 Related Work



of JPEG2000 need to be licensed, and the quality depends significantly on the implementation
of the encoder. The fact that JPEG2000 has not replaced its predecessor contains a valuable
lesson. Already in 1992, Pennebaker and Mitchell [215] noted that the breakthrough in JPEG
was not that it was necessarily the best image compression method, but the standardisation
and independence from licensing allowed interoperability of many devices - and still does so
today.

Colour Images and JPEG

Both JPEG and JPEG2000 exploit the fact that the human visual system is more
sensitive to structural information than to accurate representation of colour.
Thereby, both codecs decorrelate the image channels by using a YCbCr colour
space. While the codecs compress all three channels by quantisation of transform
coefficients, the brightness information is allowed to occupy larger amounts of
disk space. This concept is discussed in more detail in Chapter 8.2, where a
colour mode for PDE-based compression is introduced.

R

Current video compression standards like MPEG4 [143] or HEVC [271] still rely on the same
basic ideas like JPEG. They are, however, a lot more sophisticated and have a lot of features
that are specific to video sequences, such as removing redundancies in the temporal dimension.
Interestingly, the still-image part of HEVC is competitive to JPEG2000 and Fabrice Bellard
[88] proposed to use a dedicated version of this codec in BPG (Better Portable Graphics)
as yet another potential successor for JPEG. Since this thesis focusses primarily on image
compression, we refer the reader to Abomhara et al. [3] and Sullivan and Wiegand [270] for
more information on video compression.

In general, there is a very large amount of papers that are dedicated to advancing transform-
based compression. Some of this work also uses diffusion-PDEs or related variational methods in
pre- or post-processing steps to improve the quality of transform coders. Note that in this thesis,
we consider such techniques as PDE-supported compression, while the PDE-based compression
methods in Section 3.2.3 rely on diffusion-based interpolation as the core component.

Ford [94], Yang and Hu [314], and Yao et al. [315] apply 2-D diffusion in postprocessing
to remove block artefacts of transform-based coders. Alter et al. [8], as well as Bredies and
Holler [38] apply a custom variational approach for removing block artefacts in JPEG that is
inspired by total variation regularisation. Kopilovic and Szirányi [155] evaluate preprocessing
with anisotropic diffusion [275] in the context of JPEG: Block and ringing artefacts can be
reduced while the actual quantitative error only decreases moderately. Durand and Nikolova
[82] propose a denoising method on Daubechies wavelet decompositions of images. This can
be applied as a postprocessing step to JPEG2000 to remove Gibbs artefacts that result from
setting critical coefficients to zero. In MPEG4, Bourdon et al. [33] also apply nonlinear 3-D
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diffusion for the same purpose. There are also approaches that rely on prefiltering instead.
To this end Szirányi et al. [275] use anisotropic diffusion as a preprocessing step for image
compression while Tsuji et al. [283, 284] propose preprocessing steps for video compression.

3.2.3 PDE-based Compression
Lossy PDE-based compression codecs follow the same goal as transform-based algorithms: to
provide a good approximation to the original image while removing irrelevancies. Even the
general idea of sparse image representations is the same. The key difference is, however, that
PDE-based methods directly enforce sparsity in the spatial domain. Only small amounts of grey
or colour values are known and the image is reconstructed with one of the inpainting methods
discussed in Section 3.1.

The codecs presented in this section differ in how they approach the four pillars of PDE-based
compression: inpainting, selection of known data, representation of spatial locations, and efficient
storage. These areas are interdependent and a method can only be successful, if it combines
suitable concepts for all of them. In Tab. 3.1, we give a detailed overview over the combinations
of different strategies used in various codecs. The largest conceptual difference here can be
found in the selection of known data. On the one hand, there are optimisation-driven methods
that carefully optimise the locations of scattered data points to minimise the difference to the
original. On the other hand, feature-driven codecs store semantic structural components of the
image such as edges and try to get the maximum quality out of this given data.

Key Idea: PDE-based compression

Only a small amount of carefully selected image features is stored. Parital differ-
ential equations model an image evolution that propagates known information
to missing image areas, thereby reconstructing the image.

�

Optimisation-Driven Codecs

Optimisation-driven algorithms have initiated the recent research activity in PDE-based com-
pression, starting with the pioneering work of Galić et al. [100]. Their edge-enhancing diffusion
codec (EEDC) combines inpainting with EED [295] and a triangular partitioning of the image
that specifies the location of known data and allows to store them with a binary tree. The
triangular subdivision is inspired by B-tree triangular coding (BTTC) [76], an earlier com-
pression method that used liner interpolation instead of EED. Not only does the binary tree
representation help to store data efficiently, it also constitutes the optimisation strategy. The
image is successively subdivided into triangles where the local inpainting error is too large,
thus increasing the amount of known data in regions where the reconstruction is not adequate.
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Qualitywise, after some improvements of the original method by Galić et al. [99], EEDC can
surpass JPEG, but is not able to consistently reach the quality of JPEG2000.

Schmaltz et al. [250] advanced the original concept of EEDC by introducing a number of
novel concepts. Their R-EED codec uses rectangular subdivisions instead of triangular ones,
more sophisticated parameter optimisation strategies, and postprocessing steps. In images
that are not dominated by texture, this codec can surpass JPEG2000 for most compression
ratios. Schmaltz et al. [252] provide additional improvements to the algorithm as well as some
early examples for colour images and explanations for the superior performance of EED. At the
time of writing, R-EED is still the most successful PDE-based codec for general image content.
Section 3.3 explains this algorithm in more detail.

It should be noted that both EEDC and R-EED use heuristic strategies to select the known
data. However, the success of PDE-based compression has sparked interest in choosing truly
optimal data for PDE-based inpainting. A probabilistic approach by Mainberger et al. [184]
successively reduces the amount of known pixels from the full image to a given percentage.
After the inpainting mask has reached the desired number of sparsity, a non-local pixel exchange
randomly swaps the position of candidate pixels and checks if the error decreases. While this
stochastic approach is very costly, it cannot be caught in local minima.

For linear diffusion methods, several other optimisation strategies have been proposed. Bel-
hachmi et al. [25] provide an analytical theory for this spatial optimisation problem in the case
of homogeneous diffusion. Their results indicate that known data should be placed at locations
of high Laplacian magnitude. This also motivates the success of some feature-driven codecs
from the next section that rely on image edges as locations for known data. Hoeltgen et al.
[124] use an optimal control approach that minimises the reconstruction error while imposing
a sparsity assumption on the known data and an inpainting constraint for the reconstruction
of the missing image parts. A similar model was also considered by Ochs et al. [209] as an
application of their iPiano algorithm, an approach for solving partially non-convex optimisation
problems. Finally, Chen et al. [59] build on the work of Hoeltgen et al. [124] and extend
the model to contain not only linear homogeneous diffusion, but also a linear higher order
reconstruction model, namely biharmonic interpolation. In addition, they consider efficient
solvers for this problem.

Spatial Optimisation in PDE-based Compression

It is important to note here, that all of the publications from the previous
paragraph deal purely with the spatial optimisation problem. They do not
propose actual compression codecs. Only the ideas of Belhachmi et al. [25] have
been used in some specialised codecs that are discussed in the following sections
[181–183]. We address this gap in Chapter 5.

R
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Feature-Driven Codecs

There is a long history of representing image content purely by edges. Both Werner [307] and
Elder [86] have argued that edges are rich features. They are not only important for human
perception and offer an intuitive representation of structure, they can also provide a lot of
higher-order image information such as gradient directions or contrast changes, if pixel values
in their vicinity are also stored. Since a large amount of research is dedicated to edge-based
interpolation [57, 69, 79, 110, 137, 174, 186, 236, 241, 319], it is not surprising that many
PDE-based compression codecs also rely on this feature. One obvious advantage over the
optimisation-driven encoders is runtime: Edges can be cheaply detected, e.g. with a Canny
edge detector [43] or more sophisticated methods.

For instance, Acar and Gökmen [4] use the same variational membrane model to detect edges
and reconstruct the image from a sparse edge set. Similarly, a more sophisticated centipede
model is the core ingredient for the compression technique by Kurt et al. [163]. It performs edge
detection and segments the image. These segments are then ranked according to a confidence
measure that incorporates boundary lengths and statistical moments. The codec only stores
the most significant segments and reconstructs them with a variational method. Many codecs
follow a standard pipeline: pre-processing to remove noise, followed by edge detection and
some sort of entropy coding for compression. For decompression, linear homogeneous diffusion
is employed by all of the following methods. Carlsson [47] proposed an early sketch-based
approach with linear homogeneous diffusion which was later modified and extended by Desai
et al. [73]. The codec for general images by Wu et al. [310] performs edge detection and edge
extension. It then stores the grey values at thickened edges with JPEG2000 and reconstructs
with homogeneous diffusion. In contrast, Bastani et al. [20] store edges, but restrict grey
values to so-called source points. Before edge detection, their algorithm uses Perona-Malik
filtering for denoising. Similarly, Zhao and Du [322] employ a modified Perona-Malik filter for
presmoothing and extract edges as zero-crossings of the Laplacian afterwards. Edges are stored
with a so-called chain code that interprets an edge as a path that is traversed from beginning
to end. Thereby, the edge is uniquely determined by the sequence of directions taken from one
edge pixel to the next on the path.

Apart from these linear, feature-based approaches, there are some attempts to use nonlinear
PDEs for image compression. Chan and Zhou [53] propose a variational approach with total
variation regularisation to minimise oscillations in wavelet decompositions. Furthermore,
Gomathi and Kumar [107] use a p-Laplacian for interpolation in the wavelet domain combined
with neural networks. This work can be considered a hybrid approach somewhere between
PDE-based and transform-based compression.

In general, feature-based general purpose algorithms have a hard time competing with JPEG
and JPEG2000 qualitywise. The optimisiation-driven approaches from the previous section
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cartoon whale edges reconstruction

Figure 3.6.: Cartoon Reconstruction with PDE-based Inpainting. From its edges, the
cartoon whale on the right can be reconstructed with simple homogeneous diffusion. However,
the reconstruction works only well for truly homogeneous areas. Details, e.g. the painting
strokes in the sprouting water or the logo on the cape are lost. Images courtesy of J. Contelly
and M. Puhl [229].

have a clear advantage in this regard, since they actively incorporate the error measure into
the compression process. However, feature-based approaches can still produce a very high
quality for special classes of image content. In these cases, they are highly competitive to
transform-based coders, because they excel not only in reconstruction quality, but also in
speed.

Mainberger et al. [181, 183] have shown that simple homogeneous diffusion can beat JPEG
2000 on cartoon-like images. They extract image edges, store their locations with JBIG and
take grey or colour values left and right of these edges as known data. Since these pixel values
are highly redundant, they can be sampled coarsely along the contours and are efficiently
encoded by an entropy encoder like LPAQ. The availability of exact edge data circumvents the
main drawback of homogeneous diffusion, its inability to reconstruct sharp contrast changes
(see Figure 3.6).

This also makes homogeneous diffusion well-suited for depth map compression, because this
data is naturally composed of piecewise smooth image regions. Gautier et al. [103] and Li et al.
[166] use edge features and homogeneous diffusion similarly as the approach of Mainberger
et al. [183] with specific adaptations to depth maps. Hoffmann et al. [127] go beyond pure
storage of edge data and partition the depth map into non-overlapping regions. By enforcing
Neumann boundary conditions on the segment borders, the reconstruction can contain sharp
edges without the need to store all pixel values left and right of the edges as in cartoon
compression [183]. Instead, known data is given on a regular, hexagonal grid which requires
to store no positional data except for the grid size. Since carefully chosen known pixels can
significantly increase the reconstruction quality of linear diffusion, Hoffmann et al. also choose
and store additional free points with a stochastic approach [184]. Thereby, this is a hybrid
approach that is both optimisation- and feature-driven.
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In addition to the contour-based methods, there are also point features that can be used for
compression. Johansen et al. [145] and Kanters et al. [149] reconstruct images from so-called
top points, for which first and second order derivatives vanish. These points are classically used
as descriptors of the deep structure in scale-space theory. Kanters et al. [149] use a minimum
variance scheme to reconstruct images based on a natural image prior, the so-called Brownian
reconstruction. Other approaches use local jets [167], SIFT features [302] or binary descriptors
[70]. However, as Hoeltgen et al. [125] remark in their review on PDE-based compression,
sparse point-based features usually do not provide adequate known data for compression. Early
experiments with PDE-based reconstructions from corners [326] yielded promising results that
however stayed behind the quality of JPEG.

Feature-based coding can also be used for geometric shapes. Huth [138] and Schmaltz et al.
[252] specify quadrupoles along the contour of shapes. A quadrupole is a 2× 2 block of pixels.
Its grey values encode the information that EED needs to reconstruct the shape boundary. The
codec chooses the number of quadrupoles proportional to the average curvature of the contour.
Extensions of these ideas to nonapoles were explored by Steil [265].

Extensions and Applications

One general drawback of PDE-based methods is that they are not well-suited for textured
content. Small scale texture is not well represented by the underlying smoothness assumption
of PDE-based inpainting. Therefore, combining PDE-based with other interpolation techniques
seems viable. Liu et al. [169] integrate inpainting into existing codecs and supplement it with
texture synthesis. Zimmer [327] and Schwinn [255] have also experimented with texture
inpainting techniques that could supplement PDE-based compression. In this thesis, we present
a hybrid approach that reconstructs structure with PDE-based inpainting and texture with
patch-based interpolation (see Chapter 6).

Video coding with PDEs is still in a very early development stage. The only full-fledged codec
so far is a model-based approach for video compression by Schmaltz and Weickert [249]. It
is designed for predominantly static scenes in which well designed objects move, e.g. video
conferencing. Here, the objects are first tracked and then replaced by a 3-D model, while
the static background is encoded with R-EED-like image compression. Furthermore, Köstler
et al. [156] have shown that video decompression with a resolution of 320 × 240 is possible
on the parallel architecture of a Playstation3. Baum [22] has also presented a real-time video
decompression technique with a demonstration codec that uses sparsification to determine
image points and a DEFLATE container for compression. However, the codec sacrifices quality
in order to achieve realtime performance. In addition, there are also hybrid approaches that
do not purely use PDEs for regularisation, but still rely primarily on transform coding: Gao
[101] compute the so-called optic flow, a displacement vector field, between subsequent frames
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brain CRT interpolation points reconstruction

Max Planck surface model interpolation points reconstruction

Figure 3.7.: 3-D Reconstructions with PDE-based Inpainting. The first row shows 3-D voxel
reconstructions with EED in medical imaging by Peter [218], while the second row displays an
example of surface reconstruction by Bae and Weickert [14].

for motion compensation in transform-based coding. This method stores the smooth flow
fields by sparse masks and diffusion-based inpainting. Similarly, Doshkov et al. [77] use linear
homogeneous inpainting for prediction in transform-based video compression.

There is also some work on specialised PDE-codecs for different kinds of data. For 3-D voxel data
which occurs e.g. in medical data, Lund [177] has investigated compression with homogeneous
diffusion. Peter [218] introduced a cuboidal subdivision scheme with edge-enhancing diffusion
that extends R-EED by using redundancies in all three dimensions. Concerning a different
kind of 3-D data, Bae and Weickert [14] compress geometric mesh surfaces by storing only a
few vertices and reconstruct the full surface with a geometric PDE. Figure 3.7 contains two
examples for 3-D reconstruction with diffusion. Finally, elevation maps that contain level lines
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can also be compressed with PDE-based inpainting [89, 311]. For instance, Solé et al. [262]
use the Laplacian, the biharmonic operator, and AMLE [11].

In regards to transmission over limited channels, Schmaltz et al. [251] have introduced progres-
sive modes for R-EED. By splitting up the tree structure and ordering the stored pixel values in
a suitable way, a hierarchical image structure is created. The progressive codec can already
reconstruct a preview version of the image after a small amount of data has been transmitted.
This representation can then be refined multiple times as soon as more data is available.

In addition, there are also applications in cryptography that are broadly related to PDE-based
compression. Steganography deals with the task to conceal a secret image inside of a cover
image. Mainberger et al. [182] use a fast PDE-based codec that relies on dithering of a Laplacian
magnitude map to find known data (a heuristic inspired by [25]) and reconstructs the hidden
image with EED. The known data are stored as small perturbations of the cover image’s pixel
values. This approach has also been extended by Niu [205]. Similarly, Ou et al. [212] use PDEs
for prediction in lossless hiding of information.

So far, there have been almost no considerations of specialised entropy coding for PDE-based
compression. Most codecs use already existing algorithms. Scheer [247] has shown that even
tailor-made prediction methods have a hard time competing with learning approaches like
PAQ.

Finally, there are a few publications that are broadly related to the aforementioned PDE-based
methods, but consider different kinds of data or employ other PDEs. Both Brinkmann et al.
[39] and Schneider [254] store gradient data instead of only saving grey values. Schneider
[253] has considered diffusion on level-lines.

3.2.4 Other Compression Approaches
In addition to the transform coders and PDE-based methods for image compression, there is
still a wide variety of other approaches. Kunt et al. [162] and Reid et al. [233] both provide
surveys on the field of second-generation coding. This research area covers all compression
techniques that do not purely rely on redundancy removal by entropy coding. In the following,
we briefly mention a small selection of methods that are broadly related to the PDE-based
approaches discussed before.

Besides the BTTC approach by Distasi et al. [76] that inspired EEDC and R-EED, there are
a lot of other techniques that use tree representations [13, 152, 266, 267, 269, 286]. The
very general concept of subdividing the image domain and using this subdivision to represent
locations as a tree can be combined with many different compression ideas. For example
Distasi et al. [76] apply simple linear interpolation, while Aurich and Daub [13] use a custom
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edge-preserving technique. Other techniques combine transform-based ideas with trees [152].
There are also depth map compression algorithms that use either triangular [244] or quad
trees [197].

These methods are also related to triangulation ideas. Demaret and Iske [72] as well as Demaret
et al. [71] use thinning approaches to reduce the image to a small amount of significant pixels.
Decompression is performed by linear interpolation over the Delauney-triangulation of the
significant pixel set. Similarly, Bougleux et al. [32] use an anisotropic triangulation technique
to obtain a mesh that acts as an inpainting mask. From the vertices, each triangle in the mesh
is reconstructed with spline interpolation.

Furthermore, there are also edge-based inpainting approaches for depth maps that do not use
diffusion, but other interpolation techniques. This holds also true for edge-based compression
of depth maps by Chen et al. [56] and Jäger [144]. Moreover, there is also the depth map
compression approach by Förster et al. [95] that incorporates information of the corresponding
colour image into the compression codec. This idea can be seen as broadly related to the luma
guided diffusion we propose in Chapter 8.2.

In video compression, there are codecs that are related to the model-based approach by
Schmaltz and Weickert [249]: For instance, Toelg and Poggio [279] have proposed a video
conferencing codec that uses example images of faces for more efficient compression.

Finally, fractal image compression [111] is a completely different approach to the previously
discussed ones. The underlying assumption here is that images are highly self-similar. The
image is represented by a collection of regions that do not cover the whole image. Missing
regions are approximated as simple transformations such as rotations, mirroring and rescaling
of the known regions. Here, the challenge is to find these self-similarities in a very large search
space. Fractal image compression is related to exemplar-based inpainting that is discussed in
Chapter 6. Such patch-based methods fill in missing values according to known data that has a
similar pixel neighbourhood.
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3.3 PDE-based Compression with R-EED„Today is yesterday’s pupil.

— Benjamin Franklin
(politician, author, and scientist)

Since the R-EED algorithm by Schmaltz et al. [250] is currently the most successful general
purpose encoder based on diffusion PDEs, it is a good starting point for advances in the field.
Therefore, we describe the codec in more detail in the following paragraphs.

R-EED belongs to the optimisation-driven compression codecs from Section 3.2.3: It chooses the
locations of known data in such a way that the corresponding reconstruction approximates the
original image. However, it does not only take the reconstruction quality into account, but also
the cost of encoding the locations of each point. Its name stems from the two main ingredients
that enable it to beat JPEG2000: the rectangular subdivision strategy for mask selection and
the edge-enhancing anisotropic diffusion (EED) inpainting that it uses to reconstruct the image
from the known data.

Key Idea: R-EED

R-EED selects and stores known data efficiently by subdividing the image into
smaller subpictures. This subdivision can be represented by a binary tree and is
guided by the quality of local reconstructions with EED.

�

Adaptive Rectangular Subdivision

As discussed in our review of PDE-based compression, it is not only important to choose a good
operator such as edge-enhancing anisotropic diffusion for inpainting. In addition, adequate
known data has to be selected in order to obtain good image quality [25, 59, 124, 184, 209].
However, choosing such optimal data is non-trivial. There is a limited number of possibilities to
choose pixels from an image with resolution nx×ny. Already for a 512×512 image, 9.5 ·1037006

different masks with a density of 10% exist. In addition, scattered data is expensive to store.
The positional data is essentially equivalent to a binary image with the full resolution of the
original.

Instead of using free points for the inpainting mask, Schmaltz et al. [252] restrict the choice of
mask locations to an adaptive rectangular grid. This restriction solves both aforementioned
problems: On one hand, the locations become easier to store since they are well-structured.
On the other hand, the size of the search space for known data is significantly reduced. Overall,
such a constrained mask that might be suboptimal from the view of pure inpainting can be
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Pattern A Pattern B Pattern C Pattern D Pattern E

Pattern F Pattern G Pattern H Pattern I Pattern J Pattern K

Figure 3.9.: Point patterns in R-EED. For every partial image in rectangular subdivision,
R-EED adds known data according to the patterns above. Pattern F has been proven to perform
particularly well. Image courtesy of Schmaltz et al. [252].

better than an optimal mask, if one considers the trade-off between file size and reconstruction
quality.

An adaptive grid can be achieved by specifying a fixed point pattern for rectangular images.
The position of known points is defined relative to the image boundary. Schmaltz et al. [250]
have determined empirically that the four corners and the midpoint lead to a good distribution
of data for subdivision schemes by testing a lot of different point patterns (see Figure 3.9). In
order to obtain an adaptive grid, we add the known data of the selected point pattern to the
image to compute a preliminary inpainting result.

If the error is too high, the algorithm splits the image in half in its longest dimension, yielding
two rectangular subimages. For each of these subimages, we then repeat the whole procedure:
adding the data, performing a localised inpainting, and investigating the error. Doing this
successively refines the grid in regions where the local error is high. Each of the splits can be
interpreted as one node in a binary subdivision tree (see Figure 3.10).

Since the subimages become smaller after each split, but the MSE is normalised in regards to
the number of pixels, Schmaltz et al. [250] use an adaptive error threshold T := a`d. Here,
the global threshold a specifies the maximum error on the full image. The additional factor `
adapts the error threshold exponentially to the tree depth d.

Note that for a reconstruction of the original image, the decoder needs to know the positional
data represented by the binary tree and the pixel values that were selected by the point pattern.
The tree can be represented by a bit sequence that indicates if a node is split or not. Schmaltz
et al. [250] store this sequence verbatim in the file header without additional compression.
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Figure 3.10.: Subdivision in R-EED. The known data for the image peppers on the left hand
side lives on a regular adaptive grid. An example on a smaller image is given on the right
hand side: Known data points on the grid are signified by red dots. This subdivision can be
equally characterised by the binary tree below. Each leaf node in the tree corresponds to one
subimage. A more detailed discussion of the subdivision that leads to this example can be
found in Figure 5.2 of Chapter 5.

Tree Representations in PDE-based Compression

In Chapter 5 we give some more details on tree representations of spatial
locations. Furthermore, we investigate how binary trees can be stored more
efficiently than in plain bit sequences and investigate a probabilistic strategy for
tree-based rectangular subdivisions.

R

Entropy Coding

The grey values are first uniformly quantised by R-EED. Since PDE-based inpainting can
reconstruct also grey values that lie in-between the quantised pixel data, coarse quantisations
around 30 to 40 individual values are possible.

After quantisation, an entropy coder removes redundancies in the sequence of pixel values that
need to be stored. Schmaltz et al. [250] have compared many of the different entropy encoders
discussed in Section 3.2.1, namely Huffman coding, LZW, gzip, bzip2, arithmetic coding, and
PAQ. In their experiments, PAQ and arithmetic coding yielded the best compression results.
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Postprocessing

R-EED allows two optional postprocessing steps after rectangular subdivision: grey value
optimisation that modifies the stored pixel values and mask inversion that determines, if an
additional inpainting step during decoding can improve the overall quality.

Multiple publications [59, 125, 126, 184] have shown that selecting not only optimal positions,
but also optimal grey values can increase the inpainting quality of PDE-based compression.
This implicates that one introduces an error to the known data. However, since the known data
only covers a small percentage of the whole image domain, the gain in reconstruction quality
for the missing areas can outweigh the loss in accuracy at mask positions. As a positive side
effect, grey value optimisation can also correct for noisy known data.

In R-EED, grey value optimisation is performed sequentially for each point of the inpainting
mask in random order. The algorithm tests, whether the global inpainting error decreases, if
it replaces the pixel value by either the next higher or next lower value from the quantised
co-domain. If the error becomes worse, the original grey value is preserved. R-EED iterates this
process until convergence.

For the second optional postprocessing step, the algorithm switches the roles of the inpainting
mask K and the inpainting domain Ω \ K. The new inpainting domain Ω \ K ′ consists of
circles with radius r around all points of the former inpainting mask K. These areas are now
considered to be missing while all other image regions from the original inpainting domain are
treated as known data. The encoder checks now, if the inpainting error can be reduced with
this new configuration. Such a postprocessing step can reduce errors in the known data that
stem from lossy steps such as quantisation or grey value optimisation.

Compression and Decompression Pipeline

In summary, the core of the R-EED encoder is the subdivision algorithm. It interleaves splitting
and inpainting steps until the error is smaller than the threshold T in all subimages or the
maximal depth of the tree has been reached. Next, the tree is encoded as a binary string and
the known pixel values are selected according to the point pattern p.

After the grey value domain has been reduced to q different values by quantisation, the list
of pixel values can be stored losslessly with entropy coding. Grey value optimisation can be
performed either before or after grey value encoding. Note however that the size of the file
might change slightly after the grey values have been modified and entropy coded again.
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For decoding, the algorithm first reconstructs the locations of the inpainting mask according to
the binary tree and the point pattern p. Afterwards, the pixel values are recovered by reversing
the entropy coding. Finally, the image can be reconstructed with EED inpainting. As a last step,
R-EED performs the optional mask inversion and an additional inpainting if necessary.

Parameter Optimisation

The previous paragraphs have introduced several different free parameters for R-EED. In order
to obtain a good quality for high compression ratios, all of these parameters have to be adjusted
to each individual image. Since all of the following parameters are co-dependent, i.e. tuning
one parameter influences the choice for all other parameters, many combinations must be
considered. The reference implementation of Schmaltz et al. [250] optimises the following
parameters with a multi layered binary search. This comes down to building a full binary tree
for each parameter combination. To a certain degree, the computational load can be reduced
by caching the error values of subimages.

Rectangular subdivision: The point pattern p is fixed, but nevertheless, two parameters
from the formula T := a`d need to be optimised.

Inpainting: For EED inpainting, the algorithm optimises the contrast parameter λ. According
to Schmaltz et al. [250], the influence of the presmoothing scale σ is small, if σ has a
reasonable value and λ is chosen optimally. In practice, they use a fixed value σ = 0.8.

Quantisation: Here, only the number q ≤ 256 of grey values is a free parameter. Schmaltz
et al. [250] choose it in such a way, that a given tree obtains the compression ratio
specified by the user. If the ratio cannot be reached for a given combination of the
parameters a, `, and λ, the corresponding tree is simply discarded.

In addition to these four parameters, a manual limitation of the minimal and maximal tree
depth can improve the compression performance. The user also preselects the entropy coder
(the default is arithmetic coding). During grey value optimisation, R-EED interleaves each pass
on all grey values with a new optimisation of the contrast parameter λ. Finally, the global
radius r of the circle for mask inversion can be determined by a simple brute force search, since
only very small, integer-valued radii are feasible.
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4Justifying Tensor-Driven
Diffusion from the Statistics
of Natural Images

„If you torture the data enough,
nature will always confess.

— Ronald Coase
(Economist and Nobel Prize Winner)

Chapter 3.1 has already introduced anisotropic diffusion models that involve a positive definite
2× 2 matrix called diffusion tensor. Its eigenvalues steer the amount of data propagation in
the direction of the corresponding eigenvector. We have discussed its relevance for inpainting
(e.g. [281]) and compression both in relation to prior work (e.g. [99, 252]) and to this thesis.
In addition, throughout more than two decades of research, such anisotropic methods have
been successfully used for a large number of image processing and computer vision problems
beyond compression. These tasks include denoising [64], optical flow computation [201],
stereo reconstruction [325], and shape from shading [6]. Application domains cover e.g.
computer aided quality control [292], medical image processing [187], and seismic image
analysis [123].

To this date, modelling nonlinear diffusion filters is a heuristic, task-driven procedure, where
images are processed towards a certain goal. We have illustrated this problem-centric strategy in
our discussion of denoising and inpainting with prototypic diffusion filters in Chapter 3.1. Our
experiments in the aforementioned chapter demonstrate the well-known fact that anisotropic
models can be much more powerful in certain applications than isotropic diffusion approaches
with a scalar-valued diffusivity function. Clearly, one reason for the success of anisotropic
concepts are their additional degrees of freedom, which can be adapted to the task at hand.
However, another potential explanation for this success is still unexplored: Could it be that
smoothness assumptions of anisotropic models reflect statistical properties of natural images
more accurately than isotropic ones?

For specific isotropic diffusion models, there exists a well-known connection to probabilistic
filter models based on the statistics of natural images [323]: There is a negative logarithmic
correspondence between natural image priors and regularisation terms in variational models.
However, in particular for anisotropic diffusion, previous investigations have focused on isolated,
specific models in practical contexts such as parameter learning. In particular, there is a lack of
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a cohesive theory that systematically analyses the correspondence between probabilistic filters
and diffusion filters that can be expressed by energy minimisation.

Our Contributions. In this chapter, we have the goal to provide a justification of tensor-driven
diffusion models via the statistics of natural images. We aim at systematically assessing the
differences between isotropic and anisotropic approaches from a probabilistic perspective.

To this end, we use natural image priors to derive a unifying framework incorporating eight
existing diffusion filters that have a corresponding variational formulation. In order to cover
the full range of nonlinear models, these statistics have to reflect the local image structure and
allow to involve directional information. The eigenvalue statistics of the structure tensor in
databases of natural images provide not only such information, but also offer a lot of flexibility
to generate a wide range of derivative-based priors. This allows us to construct probabilistic
filters that represent existing isotropic and anisotropic filter classes and analyse the differences
in the underlying priors. We discuss the implications of these differences on filter performance
in the context of image denoising.

Moreover, we investigate if the Bayesian priors can be used for parameter learning in image
inpainting or compression applications. We also consider perspectives for future additions to
our probabilistic framework, such as edge-enhancing anisotropic diffusion.

Organisation of the Chapter. We start with a brief overview of related work and mathematical
foundations that are relevant only for this chapter. Section 4.1 provides a short review of
important tensor-driven models. With Section 4.2, we establish the probabilistic background
for our new framework and discuss prior work about the relations of diffusion and Bayesian
models.

In Section 4.3, we investigate the properties of the structure tensor as an image feature and use
it to derive a probabilistic denoising filter in Section 4.4. We show that this model is related
to a unifying framework for diffusion filtering in Section 4.5. In Section 4.6 we investigate
diffusion models that are learned from a database, evaluate their performance for denoising,
and interpret the results.

While the previous sections all deal with general results on the connections between statistics
and filter design, Section 4.7 and Section 4.8 focus on the implications of this chapter on the
practical compression applications in the rest of the thesis. Finally, we present our overall
conclusions for this chapter in Section 4.9.
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4.1 Tensor-Driven Diffusion Processes„I can’t change the direction of the wind, but I can
adjust my sails to always reach my destination.

— Jimmy Dean
(Actor and Musician)

Let us start by reviewing a number of isotropic and anisotropic diffusion filters which can be
derived from a general energy functional that we have presented in Chapter 3.1. In addition
to the three prototypic models discussed there, we also deal with diffusion processes that
incorporate Gaussian derivatives or modifications for colour images. Note that we consider
edge-enhancing anisotropic diffusion (EED) separately in Section 4.8.

General Structure. Let f = (f1, ..., fnc)> represent a vector-valued image with nc channels.
Each of these channels is a function fk : Ω → R that maps the rectangular image domain
Ω ⊂ R2 to the colour value range R. A tensor-driven, vector-valued diffusion process computes
filtered versions {u(x, y, t) | (x, y) ∈ Ω, t ≥ 0} of f(x, y) as solutions of the diffusion equation

∂tuk = div(D∇uk) on Ω× (0,∞), k = 1, . . . , nc (4.1)

with u(x, y, 0) = f(x, y) as initial condition on Ω, and reflecting boundary conditions:

〈D∇uk,n〉 = 0 on ∂Ω× (0,∞), k = 1, . . . , nc. (4.2)

The diffusion time t serves as a scale parameter: Larger times yield simpler image representa-
tions. The nabla operator ∇ and the divergence operator div involve spatial derivatives only,
and n denotes the outer normal vector to the image boundary ∂Ω. The diffusion tensor D is a
positive definite 2× 2 matrix that steers the diffusion. Its eigenvalues specify the amount of
diffusion in the direction of the corresponding eigenvectors.

Isotropic Models. The simplest diffusion process, homogeneous diffusion [141], is obtained for
D := I with a unit matrix I. In this case, the diffusion does not depend on the image structure.
For more sophisticated nonlinear isotropic diffusion models the diffusion tensor is of the form
D := g(|∇u|2)I. Thus, the tensor degenerates to a scalar diffusivity g(|∇u|2) and one obtains
the isotropic diffusion equation

∂tu = div(g(|∇u|2) ∇u) on Ω× (0,∞). (4.3)

If one wants to permit strong smoothing within homogeneous regions and inhibit smoothing
across edges, one chooses the diffusivity as a decreasing positive function of its argument.
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Many diffusivity functions have been proposed, e.g. the Perona/Malik diffusivity gPM [217] or
the Charbonnier diffusivity gC [54]:

gPM(s2) :=
(

1 + s2

λ2

)−1

, gC(s2) :=
(

1 + s2

λ2

)−1/2

. (4.4)

Note that locations where |∇u| � λ are regarded as edges where the diffusivity is close to
0, while we have full diffusion in regions with |∇u| � λ. Therefore, λ > 0 acts as a contrast
parameter. Isotropic models allow space-variant smoothing, but due to their scalar-valued
diffusivity, the diffusion process acts in the same way in all directions.

So far, we have only considered greyscale images (nc = 1) for isotropic diffusion. This covers
for instance the first isotropic nonlinear model that goes back to Perona and Malik [217] and
was already introduced in Chapter 3.1. Gerig et al. [104] have extended this approach to colour
image processing by coupling the evolution of the individual channels through a diffusivity
of the form g(

∑nc
k=1 |∇uk|2). Moreover, Scherzer and Weickert [248] have investigated an

isotropic nonlinear diffusion model where all spatial gradients ∇ are replaced by Gaussian-
smoothed gradients ∇σ := Kσ ∗∇. Here, Kσ is a Gaussian with standard deviation σ.

Anisotropic Models. In order to model direction-dependent diffusion processes, we need an
anisotropic diffusion tensor D whose eigenvalues can differ significantly. These eigenvalues
and their corresponding eigenvectors are adapted to the local image structure. A popular
descriptor of the local image geometry is the structure tensor of Di Zenso [75]. In its most
sophisticated form, it is given by the symmetric positive semidefinite matrix

Jnc,ρ,σ := Kρ ∗
(

nc∑
k=1

∇σ uk∇σu>k

)
(4.5)

with eigenvalues µ1,ρ,σ ≥ µ2,ρ,σ ≥ 0. The corresponding diffusion tensor D := g(Jnc,ρ,σ) uses
the same set of eigenvectors and obtains its eigenvalues as functions of µ1,ρ,σ and µ2,ρ,σ. The
anisotropic models of Weickert/Brox [296] and Tschumperlé/Deriche [281] do not incorporate
any smoothing in the structure tensor (i.e. σ = ρ = 0). However, such models degenerate to
isotropic diffusion on greyscale images (nc = 1). The methods of Roussos/Maragos [239] and
Scharr et al. [246] involve a smoothing scale ρ > 0 and remain also anisotropic for nc = 1.
While Roussos/Maragos use σ = 0, Scharr et al. consider the case σ > 0 and replace all
gradients ∇ by their Gaussian-smoothed counterparts ∇σ. Tab. 4.1 in Section 4.5 provides a
full description of the associated diffusion equations for each of these models.
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Figure 4.1.: Natural Images. Two examples of natural images from the Berkeley database
[188]. The database contains a large variety of different motives, e.g. animal photography,
portraits, but also man made structures and machines.

4.2 Probabilistic Foundations and Related Work„The probable is what usually happens.

— Aristotle
(Philosopher)

Since we investigate the connections between probabilistic frameworks for image processing
and diffusion-based image processing models, we briefly introduce some of the foundations
needed to establish connections between both classes of methods. First, we give an overview
over related work and continue to discuss the most important prior contributions in more detail
in the rest of this section.

Overview of Related Work

At its core, our work relies on the non-Gaussian nature of the histograms that result from
applying filters to so-called natural images. There is no universal definition for such images,
but most works use databases containing photographs with a large variety of different motives
such as the Berkeley database [188] (see Figure 4.1 for examples). The specific attributes of
wavelet coefficients on image databases were first reported by Field [93]. These observations
were systematically investigated for both derivative filters and wavelet coefficients by Huang
and Mumford [134]. Invariances of these statistics are vital for their practical relevance. Zhu
and Mumford [323] proposed that these statistical priors are invariant to scale and verified
this empirically. In Figure 4.2 (a) we have reproduced these experiments on the Berkeley
database [188]: Subsampling by averaging the pixels in 2× 2 windows changes the histogram
of derivatives in x-direction only marginally.
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Figure 4.2.: Invariances of Derivative Statistics. (a): Logarithmic frequency of occurrence
for x-derivatives on the Berkeley database [188] over different scales. The i-th scale corresponds
to i subsamplings of the images. (b): Comparison of logarithmic frequency of x-derivatives
for the Berkeley database, a rescaled Berkeley database where each image has been randomly
subsampled, the McGill [211] database and the Portilla test set [226].

Evaluations on databases containing different motives were conducted by Huang and Mumford
[133]. While statistics can differ for databases with different homogeneous content (comparing
e.g. a medical database with one containing purely animal photography), they are very
consistent between natural image databases with a large variety of image quantity, sizes and
content. Our experiments in Figure 4.2 (b) show the particularly remarkable similarity between
the derivative priors of the large Berkeley database containing hundreds of images and the
statistics of the Portilla test set [226], a collection of five well-known test images (e.g. barbara
and boats).

The investigation of the non-Gaussian nature of natural image statistics is still an ongoing
research topic, for example Pedersen et al. [214] considered probabilistic modelling with Lévy
processes more recently. For more detailed discussions of the statistics of natural images than
we can provide in this chapter, we refer to the survey paper of Srivastava et al. [263] and the
recent monograph of Pouli et al. [227].

General connections between diffusion processes and statistical image processing models have
been pioneered by Zhu and Mumford [323] within a Gibbs diffusion–reaction framework. Later
on, Roth and Black [237, 238] have found additional relations in the context of Field-of-Experts
(FoE). We discuss this particular kind of probabilistic model in more detail in the next section.

Works considering anisotropic diffusion models are, however, very rare. In the context of pa-
rameter learning, Scharr et al. [246] introduced an anisotropic model with Gaussian derivatives.
A more recent parameter-free model goes back to Krajsek and Scharr [158]. They consider a
two step procedure. In the first step, an isotropic diffusion process is derived. Afterwards, this
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is used to construct a linear anisotropic regularisation model. In a more systematic manner,
Krajsek [157] deals with the connection between statistics and diffusion in his doctoral thesis,
which is the closest work to our own. While he observes the relation from a primarily statistical
point of view, we do the same with a focus on the diffusion perspective. It should also be
mentioned that our probabilistic investigations lead to a framework that, on the pure diffusion
side, has similarities to the one of Tschumperlé [282].

Beyond the context of direct relations between diffusion models and statistics, modelling and
parameter choices for diffusion models have a long tradition in the literature. For isotropic
diffusion, Perona and Malik [217] proposed to adapt the contrast parameter to quantiles of
the image histogram. In medical imaging, Yoo and Coggins [317] learned diffusivities of
regularised vector-valued isotropic diffusion according to a user-defined tissue classification
prior. In a similar context, Beekman et al. [23] have investigated optimal parameter choices
for 3-D nonlinear isotropic diffusion. They also compared to linear diffusion. More recently,
Kunisch and Pock [159] proposed a bilevel optimisation scheme for parameter learning in the
context of regularisation methods. Finally, Chen et al. [58] built nonlinear diffusion-reaction
systems from learned linear filters and diffusivities. They apply them to image denoising and
an image deblocking algorithm inspired by the FoE approach.

Statistical priors are also relevant for other areas of image processing. For example, Brox and
Cremers [40] used Bayesian models for segmentation, namely by establishing the connection
between image statistics and the Mumford-Shah functional [199]. Probabilistic Learning can
also contribute to opening up new fields of application for PDEs: Saliency detection is a higher
order vision task that deals with classifying image regions according to human attention. By
learning systems of PDEs and their boundary conditions, Liu et al. [172] were able to build
competitive saliency detectors.

Markov Random Field Models and Gibbs Distributions

In current literature on image processing with statistics, the object of interest, e.g. texture
[324] or whole images of a certain class [238], are interpreted from the perspective of Markov
random fields (MRFs). Such MRF approaches model each pixel as a distinct random variable.
Consequently, the whole image is given by a random field which provides a probability measure
of all possible configurations of grey values. In the following we provide definitions and
conventions for MRFs that are convenient for our use in image processing. Note that there
are also more ways to define different kinds of MRFs that rely on less or more restrictive
assumptions.

In contrast to the diffusion models introduced in the previous section on a continuous image
u : Ω → R, we define MRFs on discrete images. For this purpose, we consider a vector
u ∈ Rnxny where Ω is discretised by a rectangular grid with nx pixels in x- and ny pixels
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in ny-direction using grid sizes hx and hy respectively. The vector notation is obtained by
concatenating the image rows to a vector of size nxny, thereby reducing the 2-D pixel index to
a 1-D index. For more details on these index mappings see Chapter 2.3.

The corresponding MRF is a graph (V,E) where the set of vertices V represents the random
variables associated to each component of u. The undirected edges E describe conditional
dependencies between the random variables. In our image processing case, the choice of these
edges reflects the underlying neighbourhood dependencies of image processing filters. For
example, a simple x-derivative that is approximated by a forward difference ux ≈ (ui+1−ui)/hx
implies edges between all pixels in x-direction, but not in y-direction.

MRFs have to fulfil the Markov property: The conditional probability of any individual pixel
given the remainder of the image can be reduced to the probability given the graph neighbours
of the pixel. MRFs with strictly positive distributions are also referred to as Gibbs random
fields (GRFs) and are of particular importance for our work due to a factorisation property that
was originally proposed by Hammersley and Clifford [118] in an unpublished paper and later
popularised by Besag [28].

Let N ⊂ P({1, . . . , nxny}) define a neighbourhood system. As a selection from all possible index
sets contained in the power set P({1, . . . , nxny}), it describes the neighbourhoods of pixels
from u. A set C ∈ N defines a neighbourhood clique uC = {ui|i ∈ C} if all vertices in C are
pairwise connected by edges from E. In our case, the admissible clique configurations are
determined by discrete filters that we want to apply to the image.

The Hammersley-Clifford theorem states that the probability density described by a GRF on a
given neighbourhood system N can be factorised over the cliques in N in the form

p(u) =
∏
C∈N

GC(uC). (4.6)

Thereby the probability density is expressed as a product of the so-called potential functions
GC evaluated at different vectors uC ∈ R|C| which contain the components of u that belong to
the respective clique C. In this thesis, we are only interested in homogeneous GRFs, where the
potential GC is identical for all cliques C, i.e. it is not dependent on the spatial location of the
neighbourhood, just on the pixel values contained in the neighbourhood.

State of the art MRF methods like the FoE approach by Roth and Black [238] use this factorisa-
tion property to construct the spatially independent potential function G from a product of
so-called expert distributions φk of filters gk ∈ R|C|, k = 1, . . . , nf :

G(uC) :=
nf∏
k=1

φk(g>k uC). (4.7)
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The filters gk constitute a feature set that can be used to model the distribution of a given
class of images. The FoE does not use predetermined filters, but tries to find a feature set that
characterises the training data well. Interestingly, many of the filters learned by Roth and Black
[238] resemble derivative filters. Student-t experts φk of the form given in Equation 4.8 reflect
the non-Gaussian nature of the statistics of the filtering results. Each expert adapts to the
individual distribution of a filter gk with an appropriate choice of the free parameter αk > 0 in

φk(g>k uC) :=
(

1 + 1
2(g>k uC)2

)−αk
. (4.8)

Note that we have formulated the application of a linear filter to a clique by a dot product
between a vector gk ∈ R|C| containing the filter weights and the clique vector uC so far. For our
purposes in the rest of the chapter, it is more convenient to rewrite the clique-based notation of
Roth and Black [238] into an equivalent pixel-based notation. We define the linear filter as a
matrix Gk ∈ R|N |×nxny instead. This allows us to write the application of the filter to the clique
from N as an interaction with the whole image u ∈ Rnxny : Each component of the vector Gku

represents the result of the filtering of one clique. This is achieved by constructing the rows of
the matrix from appropriately shifted entries of gk and additional zero entries. Applying this
notation to the Equations 4.6, 4.7 and 4.8, one obtains the FoE model

p(u) =
nxny∏
i=1

nf∏
k=1

φk((Gku)i). (4.9)

Just as the previous section about diffusion, this brief summary just scratches the surface of
MRF-based methods and only introduces the most important concepts that are relevant for
the following sections. For further reading, we recommend the introduction to MRFs in image
processing by Pérez [216].

Relating Isotropic Diffusion to Derivative Statistics

The connection between isotropic diffusion and MRF models is known, since Zhu and Mumford
[323] have shown a correspondence between a prior learning model and a modification of the
diffusion model defined by Equation 4.3. In the following, we reformulate this well-known
connection as a direct correspondence between an MRF model and an isotropic diffusion
equation. This formulation acts as a motivation and starting point for our further investigations
on anisotropic models in the following sections.

First, consider a simplification of the Fields of Experts model [238] from the previous section.
Instead of multiple different linear filters, we only use a single derivative filter G that approxi-
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mates the squared gradient magnitude |∇u|2. This construction yields a simplified version of
the distribution from Equation 4.9:

p(u) =
nxny∏
i=1

φ((Gu)i). (4.10)

To illustrate the connection between the MRF model given above and diffusion models, we
consider a Bayesian model for image denoising. The goal is to compute an approximation u to
the original image v under two assumptions: v belongs to the class of natural images and is
degraded by Gaussian noise. For any image u, let p(u) be the natural image prior. It describes
the probability that u is a natural image and is derived from the statistics of image features on
a suitable database. Furthermore, an assumption on the distribution of the noise yields the
noise prior p(f |u). According to Bayes’ rule, the posterior probability for a candidate image u
to be the ground truth to an observed noisy image f obeys

p(u|f) ∼ p(f |u) · p(u). (4.11)

Thus, the denoised image û can be obtained by maximising the posterior probability p(u|f)
over all candidates u:

û = argmax
u

p(u|f). (4.12)

In addition to the natural image prior from Eq. 4.10 we also need to define the noise prior
p(u|f). A denoised image u should come close to the original v and thus the difference
between u and the noisy image f should contain mostly the removed noise. Therefore, we can
assume that this difference obeys the distribution of the noise. We assume Gaussian noise with
standard deviation σ and mean zero in the following, which yields the noise prior

p(f |u) ∼
nxny∏
i=1

exp
(
− 1

2σ2 (ui − fi)2
)
. (4.13)

We can now combine both priors into a function EP (u) that we have to maximise according to
Eq. 4.12:

EP (u) =
nxny∏
i=1

(
exp

(
− 1

2σ2 (ui − fi)2
)
· φ((Gu)i)

)
. (4.14)

In order to establish a connection to diffusion, we use the fact that this formulation of Bayesian
denoising is remarkably similar to so-called variational methods for denoising. Instead of a
discrete process, let us consider continuous counter parts û, u, and f to the discrete denoising
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result, denoising candidate, and noisy image from Eq. 4.12. Variational methods aim to remove
the noise by minimising the continuous energy functional

E(u) =
∫

Ω

(
1
τ

(u− f)2︸ ︷︷ ︸
:=D(u,f)

+ψ(|∇u|2)︸ ︷︷ ︸
:=S(u)

)
dx dy. (4.15)

This formulation requires minimisation instead of the maximisation in the Bayesian approach,
since it relies on penalisation: The data term D(u, f) penalises deviations from the noisy image
while the smoothness term S(u) penalises deviations from the smoothness assumption given
as a penaliser function ψ of the squared gradient magnitude. The parameter τ weights both
assumptions.

In order to further investigate the connections between both denoising approaches, we can
also reformulate the probabilistic method as a minimisation process. By employing a negative
logarithm to Eq. 4.12, one obtains an equivalent energy minimisation process of the form

û = argmin
u

Elog(u), (4.16)

Elog(u) := − log(p(f |u)p(u)). (4.17)

The logarithmically rescaled energy Elog offers an even closer resemblance to the continuous
model:

Elog(u) =
nxny∑
i=1

(
(ui − fi)2

2σ2 − log φ((Gu)i)
)
. (4.18)

If we choose ψ := − log φ and τ ∼ 2σ2, Elog can be interpreted as a discretisation of the
continuous energy functional E from Eq. 4.15. This connection acts as an intermediate step
that allows us to reach our initial goal: connecting the Bayesian priors to diffusion. It is well
known from variational calculus, that minimisers of the functional E necessarily fulfil the
Euler-Lagrange equation

u− f
τ

= −div
(
ψ′(|∇u|2)∇u

)
. (4.19)

According to Scherzer and Weickert [248], the left-hand side of Equation 4.19 can be interpreted
as a discretisation of ∂tu with one discrete time step of size τ . Thus, Eq. 4.19 is a time-discrete
version of the nonlinear isotropic diffusion Equation 4.3.

So far, we have only reformulated the results of Zhu and Mumford [323] for a specific isotropic
diffusion model. However, a closer investigation of this correspondence yields some insights
that we can exploit in the following sections. The data term D(u, f) assumes the role of the
noise prior p(u|f) from the Bayesian model, while the smoothness term S(u) is the counterpart
of the natural image prior p(u). Moreover, the diffusivity g from the PDE-formulation of
the isotropic diffusion can be identified as the derivative ψ′ of the negative logarithm of the
potential φ.
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In the following, we want to generalise these concepts: For a given diffusion model, we want
to establish a connection to the histogram of a suitable discrete derivative filter. Note that the
squared gradient magnitude which we have used as a natural image prior in this section is a
purely isotropic image feature. Since we are interested in anisotropic diffusion models, we also
need a direction-dependent statistical prior. To this end, we investigate the statistics of the
structure tensor from Section 4.1.

4.3 Structure-adaptive Analysis
of the Berkeley Database„By a small sample we may judge of the whole piece.

— Miguel de Cervantes Saavedra
(Novelist and Poet)

Interpretation of the Structure Tensor. The local image structure of a vector-valued image u
with nc channels can be characterised by the joint structure tensor from Eq. 4.5. Its eigenvalues
µ1 ≥ µ2 represent the local contrast in the direction of the corresponding eigenvectors v1 and
v2. For µ1 � µ2, the eigenvector v2 describes the direction of coherent structures while v1

points across these structures. Locally isotropic image content is characterised by µ1 ≈ µ2.
Thus, the eigenvalues of the structure tensor are image features that describe local geometry.

The Gaussian smoothing scales σ and ρ play distinct roles for the analysis of local image
structure: Smoothing with Kσ removes noise and small-scale details. Thus, it should be chosen
as small as possible. The smoothing scale ρ is usually chosen to be larger since its task is to
accumulate neighbourhood information in the structure tensor.

In order to analyse the local geometry of a database, we need to discretise the structure tensor
Jnc,ρ,σ from Eq. 4.5. Since we are interested in anisotropy, rotation invariance is an important
criterion for discretisations. To this end, we employ the LSAS scheme [305] for rotationally
invariant tensor-driven diffusion processes. Let us consider a discrete multi-channel image
u with nx × ny pixels and nc channels. Each element uk,i,j describes the pixel value at the
grid point (i, j) in channel k. The following finite differences form the building blocks for the
discretisation on a 2×2-pixel neighbourhood {i, i+1}×{j, j+1} around a pixel (i+ 1

2 , j+ 1
2):

p p := D−x uk, i+ 1
2 , j+

1
2

:= uk,i+1,j − uk,i,j
hx

, (4.20)

p p := D+
x uk, i+ 1

2 , j+
1
2

:= uk,i+1,j+1 − uk,i,j+1
hx

, (4.21)
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pp := D−y uk, i+ 1
2 , j+

1
2

:= uk,i,j+1 − uk,i,j
hy

, (4.22)

pp := D+
y uk, i+ 1

2 , j+
1
2

:= uk,i+1,j+1 − uk,i+1,j
hy

, (4.23)

where hx and hy denote the grid sizes in the x- and y-direction. Welk et al. [305] propose the
following discretisations for the components of the structure tensor Jk for channel k in pixel
(i+ 1

2 , j + 1
2):

Jk,1,1 = (∂xuk)2 ≈ 1
4

(( p p + p p )2
+ α ·

( p p − p p )2)
, (4.24)

Jk,2,2 = (∂yuk)2 ≈ 1
4

(( pp + pp )2
+ α ·

( pp − pp )2)
, (4.25)

Jk,1,2 = ∂xuk ∂yuk ≈
1
4
( p p pp + p p pp + p p pp + p p pp )

(4.26)

with a free parameter α ∈ [0, 1
2 ]. Note that this discretisation is a special case (β = 0) of

the general framework by Weickert et al. [299] which we have discussed in Chapter 3.1. For
α = 0, one obtains the standard discretisation. For our purposes, we use α = 1/6, a value that
has been experimentally found to provide a good approximation of a rotationally invariant
behaviour.

Anisotropic Statistics of Colour Images. Let us now use the aforementioned structure tensor
for a statistical analysis of the Berkeley database [188]. The histogram of the eigenvalue pairs
(µ1, µ2) with σ = ρ = 0 is displayed in Figure 4.3 (a). The fact that the eigenvalue µ1 clearly
dominates and that there are many structure tensors where µ2 is significantly smaller confirms
two things: Firstly, colour images contain many strongly oriented structures which legitimates
the use of anisotropic filters. Secondly, these structures have some correlations over the colour
channels. Figure 4.5 (a) reveals that both eigenvalues have the heavy-tailed distributions that
are characteristic for filter results on natural images. Such kurtotic distributions are captured
well by the function

ψ(x2) = λ2

1− γ

(
1 + x2

λ2

)1−γ

. (4.27)

The free parameters λ and γ can be adapted to fit ψ to the discrete histograms. A related
model with one more degree of freedom was proposed by Krajsek and Scharr [158]. Similar
statistics have been shown to be nearly identical on many databases of natural images such as
the Berkeley [188] or McGill [211] test sets. In particular, they are also invariant for image
content on different scales. Therefore, they form a good prior for natural images. This scale
invariance implies that the statistics do hardly change under subsampling.

Invariances of the Structure Tensor. Of course, scale invariance remains an important
property for our prior. Therefore, we investigate the behaviour of the histograms under
subsampling in Figure 4.4. As for the x-derivatives in Figure 4.2 (a), the histograms change
only marginally. Thus, the eigenvalues of the structure tensor fulfil the important scale

4.3 Structure-adaptive Analysis of the Berkeley Database 81



0

1000

2000

0 1000 2000

µ
2

µ
1

0

1000

2000

0 1000 2000

µ
2

µ
1

0

1000

2000

0 1000 2000

µ
2

µ
1

(a) ρ = 0, σ = 0 (b) ρ = 10, σ = 0 (c) ρ = 100, σ = 0

0

1000

2000

0 1000 2000

µ
2

µ
1

0

1000

2000

0 1000 2000

µ
2

µ
1

0

1000

2000

0 1000 2000

µ
2

µ
1

(d) ρ = 105, σ = 0 (e) ρ = 0, σ = 0.5 (f) ρ = 0, σ = 1

Figure 4.3.: Eigenvalue histogram of the structure tensor on the Berkeley image
database. The graph shows the evolution of the negative logarithmic histogram of the eigen-
value pairs (µ1,ρ,σ, µ2,ρ,σ) of the structure tensor Jnc,ρ,σ over different scales ρ and σ. Dark
values indicate high occurrences and bright values low occurrences. Values on the diagonal
indicate isotropic tensors, the amount of deviation from the diagonal stands for increasing
anisotropy.

invariance property. Note that subsampling is a form of averaging: Neighbourhoods of several
pixels are replaced by their weighted average in each image and the statistics are computed
afterwards. The structure tensor itself also inherently contains averaging in the form of the
Gaussian convolutions with smoothing scales σ and ρ. However, in contrast to subsampling,
the Gaussian smoothing kernels overlap. In the following we investigate how this different
kind of averaging affects the eigenvalue histograms.

Behaviour under Smoothing. If one averages with overlapping neighbourhoods, the statistics
depend significantly on the neighbourhood size. This happens for the Gaussian-smoothed
structure tensor Jnc,ρ,σ, where the tensor entries are embedded in a Gaussian scale-space. Let
us first fix σ and consider the scale-space behaviour with respect to ρ. Figure 4.3 (a)–(d) shows
the evolution of the histogram for the eigenvalue pairs (µ1,ρ,σ, µ2,ρ,σ). We observe that for
increasing ρ, the joint histogram clusters towards the diagonal. This shows that µ1,ρ,σ and
µ2,ρ,σ approach each other, i.e. the structure tensor becomes more isotropic. This is plausible,
since one smoothes over structures with different orientations. For ρ→∞, all tensors Jnc,ρ,σ
converge to the average structure tensor of the whole image. If all directions were equally
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Figure 4.4.: Scale-Invariance of the Structure Tensor. The histograms of the structure
tensor’s eigenvalues µ1 and µ2 change only marginally, if subsampling is applied to the Berkeley
database. Also note that the second eigenvalue µ2 has a much more limited range than µ1.

prominent over the database, this average tensor would be purely isotropic . However, the
steady state of the statistics (ρ = 105 in Figure 4.3 (d) and Figure 4.5 (d)) reveals some
anisotropy. Thus, the average eigenvalue histograms show the inherent directional bias of the
image database.

Now we fix ρ and investigate the evolution under σ. For σ → ∞, the local contrast given
by µ1,ρ,σ and µ2,ρ,σ approaches 0 and the corresponding diffusion tensor D converges to the
unit matrix I. Interestingly, Figures 4.3 (e)–(f) and 4.5 (e)–(f) show that for small σ, the
presmoothing increases the difference between the histograms of µ1,ρ,σ and µ2,ρ,σ. This fosters
anisotropy of the image prior. We conjecture that Gaussian convolution effectively removes
high-frequent isotropic perturbations, such that anisotropic image structures become more
dominant. For larger σ their dominance decreases again.

In conclusion, we observe that natural images contain pronounced anisotropies and their
statistics strongly depend on the smoothing scales ρ and σ. This suggests to design filters that
take into account such anisotropic phenomena as priors.
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Figure 4.5.: Evolution of the negative logarithmic histograms h(µ1), h(µ2) of the eigenvalues
µ1,ρ,σ, µ2,ρ,σ of the structure tensor Jnc,ρ,σ over different scales ρ and σ.

4.4 Probabilistic Denoising with
a Structure Tensor Prior„Noise is a parasite. Anything noisy is poorly designed.

— Raymond Loewy
(Designer)

After establishing and analysing the structure tensor as an anisotropic image prior, we now use
the statistics from Section 4.3 as a prior for Bayesian denoising. As in Section 4.2, we obtain
the denoised image û by maximising the posterior probability p(u|f) over the candidates u
given the image prior p(u) and the noise prior p(f |u):

û = argmax
u

p(u|f), (4.28)

p(u|f) ∼ p(f |u) · p(u). (4.29)
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Note however that this time, we consider multi-channel images of size nx×ny with nc channels.
Therefore, we also have to adapt the noise prior. We assume independent identically distributed
Gaussian noise for each channel k with k ∈ {1, ..., nc}, which yields

p(f |u) ∼
nc∏
k=1

nx∏
i=1

ny∏
j=1

exp
(
− 1

2σ2 (uk,i,j − fk,i,j)2
)
. (4.30)

In order to formulate a natural image prior, we again follow the minimax entropy model that
has been used to model texture [324] and whole images [323]. For a set of given linear or
nonlinear filters {F1, . . . ,Fnf } the distribution of natural images is modelled as

p(u) =
nf∏
`=1

nx∏
i=1

ny∏
j=1

φ`(F`(u)i,j). (4.31)

Here the potential functions φ` model the distribution of the corresponding filter F`. We need a
more general formulation here than in Section 4.2 in order to capture multiple fundamentally
different diffusion models.

Let φ(µ1, µ2) define the distribution of an arbitrary image feature that is derived from the
eigenvalues µ1 and µ2 of Jnc,ρ,σ. In particular, this formulation also includes separate statistics
for both eigenvalues, i.e. φ(µ1, µ2) := φ1(µ1) · φ2(µ2). Such image features can be interpreted
as second-level priors in the terminology of Zhu and Mumford [323], since they model the local
geometry of image structures. In particular, these priors adapt to dominant directions in the
image in contrast to linear filters that approximate derivatives in a fixed, global direction. By
specifying the natural image prior (4.31) with a feature based on µ1 and µ2 and including the
noise prior (4.30) we obtain the following energy:

EP (u) =
nx∏
i=1

ny∏
j=1

(
nc∏
k=1

exp
(
− (uk,i,j − fk,i,j)2

2σ2

))
· φ(µ1,i,j , µ2,i,j). (4.32)

Maximising EP gives the denoised image û.
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4.5 The Unifying Prior-Based Diffusion Framework„In the particular is contained the universal.

— James Joyce
(Novelist)

Let us now show that the probabilistic denoising model (4.32) is the discrete counterpart to a
unifying diffusion framework that incorporates a large family of existing diffusion approaches.
Instead of maximising the energy EP , we consider the minimisation of its negative logarithm

Elog(u) := 1
2

nx∑
i=1

ny∑
j=1

(
nc∑
k=1

1
τ

(uk,i,j − fk,i,j)2 + ψ(µ1,i,j , µ2,i,j)
)
. (4.33)

Here, we define the penaliser ψ as ψ(µ1, µ2) = − log φ(µ1, µ2), and we choose τ ∼ σ2. A varia-
tional regularisation approach is obtained by the minimisation of the continuous counterpart
to Elog:

E(u) = 1
2

∫
Ω

(1
τ
|u− f |2 + ψ(µ1, µ2)

)
dx dy (4.34)

where | · | denotes the Euclidean norm. For scalar-valued images, this energy is identical to the
one proposed by Scharr et al. [246]. Interestingly, this energy provides a unifying framework for
the eight diffusion models from Section 4.1. The key result for understanding this connection
is given by the following proposition.

Proposition 4.5.1. [Euler-Lagrange Equations of the General Energy Functional]

The energy functional E(u) from Eq. (4.34) gives rise to the Euler–Lagrange equations

uk − fk
τ

= ∇>σ
(
(Kρ∗D) ∇σuk

)
, k = 1, ..., nc, (4.35)

with natural boundary conditions n>(Kσ∗Kρ∗D∇σuk) = 0 on ∂Ω. Here, n is the outer image
normal and D is given in terms of the eigenvectors v1, v2 and eigenvalues µ1, µ2 of the structure
tensor Jnc,σ,ρ:

D := ∂ψ(µ1, µ2)
∂µ1

v1v
>
1 + ∂ψ(µ1, µ2)

∂µ2
v2v

>
2 . (4.36)

Note that the findings of Proposition 4.5.1. differ from the results of Scharr et al. [246].

Proof. The Euler-Lagrange equations are obtained from the Gâteaux derivatives of E(u). We
focus on the derivative of the penaliser ψ. With dεk(f) := ∂

∂εk
f |εk=0, k ∈ {1, ..., nc}, a test
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function h : R2 7→ Rnc , the diagonal matrix H := diag(h) (see Eq. G.3), and ε ∈ Rnc we
calculate:

dεk
(
ψ(µ1(u+Hε), µ2(u+Hε))

)
= ∂ψ

∂µ1
dεk(µ1) + ∂ψ

∂µ2
dεk(µ2). (4.37)

Therefore, the derivatives of the eigenvalues µ1 and µ2 of Jnc,ρ,σ must be computed. In terms
of the matrix elements J1,1, J1,2, J2,2, the eigenvalue µ1 is given by

µ1 = 1
2

(
J1,1 + J2,2 +

√
(J1,1 − J2,2)2 + 4J2

1,2

)
. (4.38)

By writing the derivatives dεk(J1,2), dεk(J1,1 + J2,2), and dεk(J1,1 − J2,2) as dot products with
∇σhk, we can simplify dεk(µ1) to

dεk(µ1) = Kρ ∗
(
(M∇σuk)>∇σhk

)
, (4.39)

M := 2
µ1 − µ2

µ1 − µ2 + J1,1 − J2,2 2J1,2

2J1,2 µ1 − µ2 − J1,1 + J2,2

 . (4.40)

Algebraic computations similar to [239] lead to M = 2v1v
>
1 . With analogous results for

dεk(µ2), we obtain dεk(ψ(µ1, µ2)) = (Kρ ∗ D∇σuk)>∇σhk. Plugging these results into the
Gâteaux derivative dεkE of the energy and applying partial integration yields

dεkE =
2∑
`=1

[(
Kσ ∗Kρ ∗D∇σuk

)
`
hk
]b`
a`
−
∫

Ω
divσ

(
(Kρ ∗D)∇σuk

)
hk dx dy (4.41)

with Ω = [a1, b1] × [a2, b2]. Variational calculus yields Eq. (4.35) and the natural boundary
conditions n>(Kσ∗Kρ∗D∇σuk) = 0 on ∂Ω. In this proof sketch we have skipped many of the
technicalities. Appendix G contains more details and intermediate steps.

According to Scherzer and Weickert [248], Eq. (4.35) can be interpreted as an implicit time
discretisation with one time step of size τ of the general diffusion equation

∂tuk = ∇>σ
(
(Kρ∗D) ∇σuk

)
, k = 1, ..., nc (4.42)

with initial condition u(t = 0) = f . In Table 4.1 we demonstrate that a large number of
existing diffusion models can be considered as special cases of this unifying partial differential
equation. To see this, note that the isotropic models use ρ = 0 and the prior

φ(µ1 + µ2) = φ (trJnc,0,σ) = φ

(
nc∑
`=1
|∇σu`|2

)
. (4.43)
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Moreover, for greyscale images (nc = 1) and smoothing scale ρ = 0, the structure tensor
J1,0,σ = ∇σu∇σu> has the normalised eigenvectors v1 = ∇σu

|∇σu| and v2 = v⊥1 . As a consequence,
the diffusion process from Eq. (4.42) degenerates to isotropic diffusion with a scalar diffusivity:
Using Eq. 4.36 we get

D∇σu =
(
∂ψ

∂µ1

∇σu∇σu>

|∇σu|2
+ ∂ψ

∂µ2

∇σu⊥∇σu⊥>

|∇σu|2

)
∇σu

= ∂ψ

∂µ1
∇σu = ψ′

(
|∇σu|2

)
∇σu. (4.44)

Homogeneous diffusion is also captured by the model (4.42), if one chooses φ(|∇u|2) :=
exp(−|∇u|2) as prior distribution. The four anisotropic models are covered as follows: We-
ickert/Brox [296] and Scharr et al. [246] use the factorised prior φ1(µ1) · φ2(µ2), in the case
of Weickert/Brox with identical functions φ1 and φ2 and σ = ρ = 0. The models of Tschum-
perlé/Deriche [281] and Roussos/Maragos [239] allow general priors φ(µ1, µ2), but specify
σ := 0. Moreover, Tschumperlé/Deriche also set ρ := 0.

The whole framework was derived from a common natural image prior, the directional statistics
of the structure tensor. This shows that the ad hoc choices that were made for diffusion
models during decades of research in fact reflect inherent properties of natural images. This
observation can be even extended to the choice of diffusivities: If we consider the special case
φ(µ1, µ2) = φ1(µ1) · φ2(µ2), we are able to decompose ψ(µ1, µ2) := ψ1(µ1) + ψ2(µ2) into two
separate penalisers ψ` = − lnφ` with ` ∈ {1, 2}. The kurtotic distribution model (4.27) gives
rise to the following family of diffusivities:

ψ′(x2) =
(

1 + x2

λ2

)−γ
. (4.45)

Comparing this to Eq. 4.4 shows that the Perona/Malik diffusivity [217] is covered for γ = 1
and the Charbonnier diffusivity [54] results for γ = 0.5. To the best of our knowledge, our
framework covers all relevant diffusion models that offer a variational interpretation. Since
it is a variational framework, it is natural that it cannot be applied to models for which no
variational formulation is known, e.g. edge- and coherence-enhancing diffusion filters [293].
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4.6 Denoising Experiments„All life is an experiment.
The more experiments you make, the better.

— Ralph W. Emerson
(Poet)

In the following, we compare the performance of different diffusion models in the context of
image denoising. We focus on those models from Table 4.1 that are designed for colour images
and apply small modifications where necessary: In analogy to Gerig et al. [104], we extend the
Scherzer/Weickert model to colour images by coupling the gradient within a joint diffusivity.
Furthermore, we use the separate penalisers ψ1(µ1) and ψ2(µ2) from the model of Scharr
et al. [246] for all anisotropic models. This extends the Weickert/Brox model with individual
diffusivities for both eigenvalues, which is a special case of the Tschumperlé/Deriche model.
In the accompanying figures we use the abbreviations H for homogeneous diffusion [141],
GKKJ for Gerig et al. [104], SW for Scherzer/Weickert [248], WBTD for the hybrid model of
Weickert/Brox [296] and Tschumperlé/Deriche [281], RM for Roussos/Maragos [239], and
SBH for a vector-valued extension of Scharr et al. [246].

For our experiments, we first determine the parameters λ and γ of the prior distribution (4.27)
and the corresponding diffusivity (4.45). To this end, we compute the discrete histograms of µ1

and µ2 on the 200 training images of the Berkeley database [188]. For a nonlinear least squares
fit to these histograms, we have chosen the Matlab implementation of the Levenberg–Marquardt
algorithm (version 3.2.1 of the Matlab curve fitting toolbox). In Figure 4.6 we see that the
resulting diffusivities decrease more rapidly for µ1 than for µ2. Thus, they inhibit diffusion
across coherent structures more than along them. For increasing smoothing scales σ and ρ this
anisotropic behaviour is reduced, since the difference between the diffusivities ψ′1 and ψ′2 is
less pronounced. In the following, we use ρ = 0.5 and σ = 0.2.

For our denoising experiments, we consider the partial differential formulation of the statisti-
cally-derived diffusion filters and apply them to the 100 images of the Berkeley test set [188]
with added Gaussian noise. The average peak signal to noise (PSNR) values for different
standard deviations of the noise are given in Tab. 4.2. We observe that for all noise levels,
homogeneous diffusion H yields the worst results, and the isotropic methods GKKJ and SW
perform consistently below the anisotropic models WBTD, RM and SBH. With increasing noise
levels, the Gaussian smoothing scales σ and ρ within the models SW, RM and SBH offer a
slight PSNR advantage over their counterparts GKKJ and WBTD that have to cope without
Gaussian smoothing. Visually, the most distinct difference is the severe blurring of edges in
homogeneous diffusion that sets it apart from the other models.
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Figure 4.6.: Estimated Diffusivities for the Berkeley Database. The graph shows how the
diffusivities corresponding to the eigenvalues µ1 and µ2 change with the smoothing scale ρ.
For larger ρ, the diffusivities become increasingly similar and steeper on the Berkeley database
for different smoothing scales.

Table 4.2.: Denoising Results on the Berkeley Database. Diffusivity parameters and de-
noising results for different diffusion models on the Berkeley test set. See Section 4.6 for the
abbreviations. In the last three columns, the average PSNR for Gaussian noise with standard
deviation n is given.

Model γ1 λ1 γ2 λ2 n = 20 n = 40 n = 60

H - - - - 27.26 24.40 22.67

GKKJ 0.756 0.340 - - 29.08 25.59 23.45

SW 0.754 0.336 - - 29.09 25.64 23.52

WBTD 0.752 0.334 0.694 0.326 29.58 25.88 23.63

RM 0.733 0.304 0.644 0.231 29.56 25.99 23.76

SBH 0.739 0.315 0.646 0.234 29.66 26.05 23.80

Let us now interpret these findings from a probabilistic modelling perspective. The performance
ranking according to the PSNR mirrors the accuracy of the underlying natural image priors. In
particular, the large gap between homogeneous diffusion and the rest of the models is caused by
the wrongly assumed Gaussian-like distribution of the underlying image prior µ1 + µ2 = |∇u|2

in model H (see Tab. 4.1). Since all of the remaining filters accurately reproduce the kurtotic
shape of the prior distributions, they perform much better. Finally, the inherent directional
bias in natural image models is only respected by the anisotropic models WBTD, RM and SBH,
which gives them a consistent advantage over the isotropic models GKKJ and SW.
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original noisy, PSNR=22.16 H, PSNR=29.47 GKKJ, PSNR=31.74

SW, PSNR=31.80 WBTD, PSNR=32.13 RM, PSNR=33.00 SBH, PSNR=32.90

original noisy, PSNR=17.10 H, PSNR=24.78 GKKJ, PSNR=25.89

SW, PSNR=26.00 WBTD, PSNR=26.21 RM, PSNR=26.48 SBH, PSNR=26.50

Figure 4.7.: Denoising Results on the Berkeley Database. Here we show two examples
from the experiments from Tab. 4.2 with the algorithms L, GKKJ, SW, WBTD, RM and SBH.
Visually, only the linear diffusion provides significantly worse results, the other algorithms
perform on a similar level. The difference becomes more prominent for increasing standard
deviation of the Gaussian noise. The PSNR is given for the whole image, but only a zoom is
shown. (a) The first and second row show image 210088 with standard deviation n = 20. (b)
The third and fourth row show image 108082 with standard deviation n = 40.
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4.7 Natural Image Priors for Image Inpainting„I suppose it is tempting, if the only tool you have is a
hammer, to treat everything as if it were a nail.

— Abraham Harold Maslow
(Psychologist)

In the previous sections, we have only dealt with denoising. Intuitively, a natural image
prior can be used for inpainting by keeping the known data constant and imposing the prior
constraint on the unknown data. In this way, we could apply the Bayesian learning, where we
fit a function to the prior distribution, directly in the compression context.

This intuitive idea can be also justified formally: For the special case of TV-inpainting, Chan and
Shen [52] have proposed a variant of the Bayesian framework. Moreover, Roth and Black [237]
have modified their FoE framework for inpainting. While they differ in detail, both approaches
rely on the general principle of replacing the noise prior p(f |u) by a known data prior. Let
Γ = {1, . . . , nx} × {1, . . . , ny} denote the discrete image domain. In a general formulation,
such a prior models the confidence in each known point from the discrete inpainting mask
K̃ ⊂ Γ in terms of a function γ:

p(f |u) =
∏

(i,j)∈K̃

nc∏
k=1

γ(uk,i,j − fk,i,j). (4.46)

Here we assume that the known data uk,i,j is noisy and γ represents the distribution of the
noise uk,i,j − fk,i,j , where fk,i,j is the underlying ground truth. However, if we assume that the
known data is perfect (uk,i,j = fk,i,j), we can set γ ≡ 1 and reduce our Bayesian maximisation
problem to a maximisation of the image prior p(u) on the missing image parts Γ \ K̃:

EP (u) = p(u)
∣∣∣
Γ\K̃

=
∏

(i,j)∈Γ\K̃

φ(µ1,i,j , µ2,i,j). (4.47)

As in Section 4.5, we can now derive a continuous energy

E(u) = 1
2

∫
Ω

(1
τ
|u− f |2 + ψ(µ1, µ2)

)
dx dy (4.48)

and the corresponding inpainting PDE

∂tuk = ∇>σ
(
(Kρ∗D) ∇σuk

)
on Ω \K, k ∈ {1, . . . , nc} (4.49)

with Dirichlet boundary conditions on K. Here, the diffusion tensor depends on the learned
prior distribution ψ as in the previous sections. This means that all models with their learned
diffusivities are applicable. However, there are also alternatives for learning parameter-free
diffusion models. Scharr et al. [246] use a discriminative approach: They perform denoising on
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Table 4.3.: Learning parameters for inpainting. The table shows the MSE for different
parameter selections in inpainting experiments with the model of Roussos and Maragos [239].
For images from the Berkeley database, 5% uniformly random distributed pixels are known for
each image. We compare Bayesian and discriminative learning to ideal reference parameters
for the test set of the Berkeley database. The latter were obtained with a grid search on the
respective data sets.

parameter selection γ1 λ1 γ2 λ2 train test

Bayesian 0.7 0.3 0.6 0.2 480.92 500.7951

discriminative 0.4 0.5 0.2 0.4 431.28 450.01

reference 0.5 0.6 0.2 0.4 431.37 449.96

training data with artificial noise. Then they choose the parameters for a family of diffusion
functions similar to the one from Eq. 4.45 that minimise the error w.r.t. the ground truth. Such
discriminative learning is a general approach that does not rely on a general prior, but includes
task-specific information.

There are also other task-specific publications that use image statistics for inpainting, but they
are rare and highly specific. Levin et al. [165] fill in small missing image parts by learning
the distribution of the known image content. While this approach has its merits for image
restoration, it requires large amounts of image content to be known and is therefore ill-suited
for our sparse compression context. Exemplar-based methods that restore missing image
content according to similarities of their neighbourhood to the neighbourhood of known data
can also be augmented with statistics. He and Sun [121] propose a statistical assessment of
the self-similarity in images in terms of the offsets of similar patches. However, both of these
methods go more in the direction of texture synthesis than the general inpainting case that we
discuss in this section.

In the following, we want to compare Bayesian and discriminative learning approaches for
image inpainting. In particular, we want to find out if these learning approaches could be useful
for compression. To this end, we generate uniformly random distributed inpainting masks with
5% of known data for each image of the Berkeley database. Then, we consider inpainting with
the anisotropic model of Roussos and Maragos [239] for image reconstruction.

As for the inpainting experiments, we use the partitioning of the Berkeley database into 100
training and 100 test images. In Section 4.6, we have already used the Bayesian approach
to acquire the parameters γ1, λ1, γ2, and λ2 of our diffusivities from the training data. Now
we perform simple discriminative learning in addition: We obtain our parameters by a grid
search on the Berkeley training set that minimises the mean squared error (MSE) w.r.t. the
reconstruction. We apply the Bayesian and discriminative parameter sets to both parts of the
Berkeley database (training and test) separately. In order to evaluate how close both learned
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original Bayesian discriminative optimal

MSE=57.49 MSE=51.61 MSE=49.80

original Bayesian

MSE=104.11

discriminative optimal

MSE=96.65 MSE=82.94

Figure 4.8.: Inpainting with Image Specific Parameters. Choosing optimal parameters for
the images 100080 and 135037 of the Berkeley database can decrease the error by up 20%
compared to learned global parameters.

models are to the optimum, we also perform a grid search for all parameters on the Berkeley
test set to obtain a reference set of parameters.
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Our results in Tab. 4.3 reveal that discriminative learning comes very close to the reference,
while the Bayesian approach lags behind. We can identify multiple reasons for this discrep-
ancy:

1. Metric Awareness: The discriminative approach minimises our error metric of choice, in
this case the MSE. The natural image prior from the previous section does not incorporate
this information.

2. Mask Awareness: Our Bayesian approach treats masks of different densities and distri-
butions completely equally. However, it has been shown that the choice of known data
influences inpainting results significantly [25, 59, 124, 184]. The discriminative model
however incorporates this dependency since it relies on the distribution of known data
on the training set.

3. Global Influence: On sparse, scattered data, the interactions of anisotropic inpainting can
span large distances in the inpainting domain. Two points that are far away from each
other might induce an edge somewhere inbetween. The statistics that we analyse in
the Bayesian approach, however, consider mostly localised image structure. Only the
smoothing scale of the gradient incorporates some neighbour information by averaging.
The discriminative model however captures also these interactions.

Overall, discriminative learning produces better results than its Bayesian counterpart since
it is task-specific. This comes at the cost of an increased run-time: Our simple grid-search
approach is considerably slower than Bayesian learning (several days on a cluster compared to
minutes on a single machine). This drawback is however not significant: On one hand, more
sophisticated optimisation algorithms might speed up the discriminative approach significantly
in the future. On the other hand, speed is not that relevant for offline learning, since it only
has to be performed once.

If we want to apply learning for compression, we have to consider one important difference to
the inpainting situation that we have ignored so far: In compression, we have direct access
to the ground truth. This allows us to choose both the known data and the diffusion model
freely. By definition, parameters adapted to the ground truth can never be worse for the
reconstruction of the original than parameters optimised for a training data set. In Figure 4.8
we consider inpainting on individual images of the Berkeley database with the model of Roussos
and Maragos [239]. This time, we perform a grid search to optimise the parameters for two
individual images of the database and compare the results to the globally optimised parameters
from above. In the case of image 100080 of the Berkeley database (bear), optimal parameters
are γ1 = γ2 = 0.4, λ1 = 0.1, λ2 = 0.9. For image 135037, we get γ1 = 0.6, γ2 = 0.4, λ1 = 0.1,
λ2 = 0.3 instead.
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As expected, the individual parameter choices outperform both the Bayesian and the dis-
criminative training by up to 20%. Overall, our experiments lead to the following conclusion:
Discriminative learning can speed up compression methods by removing the need for parameter
optimisation at the cost of reduced reconstruction quality. However, if the goal is optimal
accuracy, an optimisation that considers the original image is still necessary.

4.8 Towards a Statistical Interpretation of EED„It is better to have an approximate answer to the right
question than an exact answer to the wrong one.

— John Wilder Tukey
(Mathematician)

In the previous sections, we have shown that anisotropic diffusion models capture the distribu-
tion of natural priors better than isotropic ones. Therefore, they should also be more suitable
for compression applications. Experiments by Schmaltz et al. [252], where multiple inpainting
operators are evaluated, confirm this assumption. However, successful image compression
methods like the R-EED codec from Chapter 3.3 use EED, a diffusion model that is not covered
by our unifying statistical prior framework. For compression, EED seems particularly attrac-
tive since it is powerful and, at the same time, has a simple structure: The eigenvalue that
corresponds to diffusion along the edge is fixed to one. For the direction across the edge, a
Charbonnier diffusivity with a single contrast parameter λ is used in compression. In contrast,
our anisotropic models from the previous section have four free parameters.

It is difficult to include EED in a common statistical framework, since so far no corresponding
energy functional has been found. Tschumperlé [282] has even argued that no EED-functional
that is based on the eigenvalues of the structure tensor exists. However, this does not disprove
the existence of another variational formulation of EED. Krajsek and Scharr [158] have tried to
connect EED to priors by employing an intermediate step that computes the diffusion tensor on
the result of an independent process. In the following we provide an incentive for future work
by showing a relationship between the EED model and the statistics of directional derivatives.

To this end, we do not use the structure tensor to derive natural image priors as in the previous
sections. Instead, we consider the directional derivatives across edges (in the direction of the
smoothed gradient ∇uσ), and along image edges (orthogonal to ∇uσ):

∂∇uσu := ∇u>σ
|∇uσ|

∇u, ∂∇u⊥σ
u := ∇u⊥σ

>

|∇uσ|
∇u. (4.50)
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original known data

EED, MSE=31.67 DDD, MSE=31.45

Figure 4.9.: Denoising with Directional Derivative Diffusion. Both EED and DDD use a
small smoothing scale σ = 0.1, a Charbonnier diffusivity and a contrast parameter λ = 0.5. Note
that EED sets the diffusivity along edges to 1, while DDD also uses a Charbonnier diffusivity.

In the following, we propose a new directional derivative diffusion (DDD) model. As before,
we construct a continuous energy of the form

E(u) =
∫

Ω

(
ψ1
(
(∂∇uσu)2)+ ψ2

(
(∂∇u⊥σ

u)2
))

dxdy. (4.51)

In Appendix G.2 we show that the Euler-Lagrange equations of this functional lead to the
diffusion process

∂tu = div (D∇u) + div
(
Kσ ∗

(
D̂∇u

))
(4.52)

with the EED-like diffusion tensor

D := ψ′1

(
(∂∇uσu)2

) ∇uσ∇u>σ
|∇uσ|2

+ ψ′2

(
(∂∇u⊥σ

u)2
) ∇u⊥σ ∇u⊥σ

>

|∇uσ|2
. (4.53)

and another anisotropic tensor D̂ that potentially can have negative eigenvalues. The second
term can therefore lead to backward diffusion that creates difficult numerical challenges.
Nevertheless, the model features some striking similarities with the original EED model that
we have discussed in Chapter 3.1.
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original known data

isotropic, MSE=1162.07 EED, MSE=586.74 DDD, MSE=594.73

Figure 4.10.: Inpainting with Directional Derivative Diffusion. Both EED and DDD use a
small smoothing scale σ = 0.1, a Charbonnier diffusivity and a contrast parameter λ = 0.1.

For σ = 0, we show in Appendix G.2 that the equation can be significantly simplified and one
obtains the isotropic case

0 = −div
(
ψ′1(|∇u|2)∇u

)
, (4.54)

which is consistent with EED and the other anisotropic models from the previous sections.

While a thorough analysis of this model is beyond the scope of this thesis and its focus on
compression, we provide some experimental results that indicate potential for future work.
For denoising in Figure 4.9 and inpainting in Figure 4.10 with small values of σ, DDD and
EED produce virtually the same results. In particular, the inpainting experiment in Figure 4.10
shows that this similar behaviour does not merely stem from the fact that DDD and EED both
approach the same isotropic model for small smoothing scales. In contrast to isotropic diffusion,
both models are still able to produce sharp edges in the inpainting domain.
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4.9 Conclusion„I have had my results for a long time,
but I do not yet know how to arrive at them.

— Carl Friedrich Gauß
(Mathematician and Physicist)

This chapter contributes to this thesis in two different regards: On one hand, we have presented
a new unifying statistical framework for diffusion models that allows general theoretical insights
regarding the systematic relation of probabilistic priors, variational methods, and PDEs. On the
other hand, we have justified the use of anisotropic diffusion in compression.

Our unifying framework contains eight diffusion filters that have a corresponding variational
formulation. It enabled us to derive these models from probabilistic filters with a structure
tensor prior. We have verified experimentally that those filters which model the structure
adaptive statistics of natural images more accurately also offer a better performance in practice.
This justifies their use in digital image processing and computer vision, and it establishes a
hitherto unknown reason for the success of anisotropic filters. In particular, we can now inter-
pret the evolution of diffusion filters according to a problem-driven design as an increasingly
accurate representation of the structure tensor’s statistics. From a statistical point of view, we
have emphasised the importance of directional statistics that take into account the local image
structure and its scale dependency. Interestingly, our statistical foundation of tensor-driven
diffusion gives also additional insights that go beyond a pure statistical foundation of existing
models: For instance, it sheds light on how the decay function of each eigenvalue should be
adapted to the smoothing scales of the structure tensor.

In regards to the specific task of image compression, the statistical analysis provides another
justification of anisotropic diffusion in image compression. While we have not found an exact
relationship between the EED model from the R-EED codec and a Bayesian prior, it is closely
related to locally adaptive features such as the structure tensor and directional derivatives. Our
Bayesian approach yields valuable theoretical insights, but our experiments have shown that
its use for parameter learning is limited in compression applications. Since we have access to
the ground truth images in compression, we still optimise the diffusion parameters w.r.t. an
optimal reconstruction in the following chapters.

Publication Info

The unifying diffusion framework was presented by Peter, Weickert, Munk,
Krivobokova, and Li [224] at the Energy Minimisation Methods in Computer
Vision and Pattern Recognition Conference 2015.
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5Quality: Understanding
PDE-based Compression

„The purpose of computing is insight, not numbers.

— Richard W. Hamming
(Mathematician)

For a given image, the core task of lossy image compression is to store a small amount of
data from which the original can be reconstructed with high accuracy. In Chapter 4, we have
concluded that inpainting with nonlinear anisotropic PDEs such as edge-enhancing anisotropic
diffusion (EED) [295] is particularly well-suited for this task due to its accurate approximation
of the statistics of natural images. The R-EED codec by Schmaltz et al. [252] marks the current
state of the art in PDE-based compression. Its reliance on EED is in accordance with our
previous assessment of inpainting operators.

The drawbacks of nonlinear anisotropic inpainting in comparison to linear isotropic models
such as homogeneous or biharmonic PDEs are a higher computational cost and the requirement
for parameter optimisation. Simple homogeneous and biharmonic inpainting can also restore
images with a high quality from a small fraction of prescribed image points, if position and
value of these known data are carefully optimised [25, 59, 124, 184]. This suggests the
viability of linear, parameter-free PDEs for image compression. Unfortunately, all these data
optimisation efforts are in vain, as long as one cannot store the data efficiently. The optimised
known data is expensive to store. Therefore, homogeneous diffusion has only been successful
in specialised applications which do not employ the sophisticated data optimisation methods
mentioned above (e.g. cartoon compression by Mainberger and Weickert [181]). So far, there
is no full compression codec based on biharmonic inpainting at all. This raises the following
question: Are competitive codecs with linear inpainting PDEs possible for general image content
or is anisotropic diffusion the only viable option?

Our review of prior diffusion-based compression methods in Chapter 3.2 has already revealed
that the success of a codec does not rely purely on a good inpainting technique. We have
identified four key elements of PDE-based compression that every codec has to address:
inpainting, selection of known data, representation of spatial locations, and efficient storage. In
the following, we investigate the interplay between these components and assess linear isotropic
and nonlinear anisotropic inpainting techniques in the specific context of compression.
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Our contributions. In order to evaluate harmonic, biharmonic and EED inpainting, we propose
two new codecs:

1. A compression codec that combines free choice of known image points with tailor-made
entropy coding. For linear diffusion, we use an optimal control scheme [59, 124] to find
the position of known data. For EED, we rely on the stochastic method of Mainberger
et al. [184]. For the first time, we embed these powerful data optimisation strategies into
a complete compression codec.

2. A new stochastic method that restricts pixel selection to a locally adaptive grid. This
allows to store these positions efficiently as a binary tree at the expense of reconstruction
quality.

We evaluate how individual restrictions and lossy compression steps of both frameworks affect
the performance of harmonic, biharmonic, and EED inpainting. In addition, we compare our
best methods against the state of the art in PDE-based compression and the quasi-standards in
transform-based compression.

Related work. In Chapter 3.2.3, we have already provided a detailed overview over diffusion-
based compression algorithms and related inpainting techniques. Thus, in the following, we
only discuss the contributions that are specifically relevant for this chapter.

Homogeneous diffusion has been applied for the compression of specific classes of images. In
particular, Mainberger et al. [183] have proposed a highly efficient codec for cartoon images,
and there are several successful coders for depth maps [103, 127, 166]. However, unlike our
approach, these methods rely primarily on semantic image features such as edges. This choice
is motivated by the theoretical results of Belhachmi et al. [25], which suggest to choose known
data at locations with large Laplacian magnitude. Köstler et al. [156] apply homogeneous
diffusion for real-time video playback on a Playstation 3.

Well-performing codecs with PDEs for general image content are mainly based on EED [295]
and efficient representations of data locations by binary trees. Initially, this class of methods
was proposed by Galić et al. [100], while the current state of the art is the R-EED codec by
Schmaltz et al. [252]. Modifications and extensions of R-EED include colour codecs [219], 3-D
data compression [252], and progressive modes [251].

In addition, there are several works that are closely related to compression, but do not consider
actual encoding [25, 59, 124, 125, 184]. Instead, they deal with optimal reconstruction from
small fractions of given data. We directly use results from the optimal control scheme for
harmonic PDEs by Hoeltgen et al. [124] and its biharmonic extension. Our densification
approach on restricted point sets is inspired by the approach of Mainberger et al. [125, 184].
They consider a stochastic sparsification on unrestricted point sets which has the advantage
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that it can be applied for any inpainting method without the need for modifications. For a more
detailed discussion of PDE-based methods we refer to Chapter 3.2.

Organisation of the chapter. We begin with a review of different optimisation techniques for
image inpainting in Section 5.1. This covers both the selection and representation of locations
for known pixels, as well as the optimisation of pixel values. In Section 5.2 we review different
approaches for efficient storage of known data that act as the foundation for our new codecs.
These approaches include entropy coding as well as additional preprocessing steps such as
prediction.

We introduce our two new compression codecs in Section 5.3. They are specifically designed to
allow a practically relevant evaluation of different inpainting PDEs in the compression context.
Based on these codecs, we perform a detailed experimental analysis in Section 5.4. This allows
us to evaluate both the overall performance of PDEs in compression, as well as the influence
and interaction of individual compression steps. Section 5.5 concludes this chapter with a
summary and outlook on future work.

5.1 Optimising and Representing Known Data„Location, location, location.

— Lord Harold Samuel
(according to etymologists)

(Real Estate Tycoon)

Many research results have confirmed that the choice of known data influences the reconstruc-
tion significantly [25, 59, 124, 184]. At the same mask density, choosing optimal positions and
pixel values is vital for a good reconstruction. In this thesis, we consider a separate optimisation
process for both types of data. First we optimise the locations of data and then choose the
corresponding pixel values in a so-called tonal optimisation step. In this section we provide a
review of optimisation methods that are relevant for our new codecs in Section 5.3.

Image Reconstruction. First we briefly recapitulate the PDE-based reconstruction setting in
its general formulation from Chapter 3.1: The greyscale image f : Ω → R is known on the
inpainting mask K ⊂ Ω, and we want to reconstruct the missing data in the inpainting domain
Ω \K. For a suitable differential operator L, we obtain the missing image parts u as the steady
state for t→∞ of the evolution that is described by the PDE

∂tu = Lu on Ω \K. (5.1)

Here, we impose reflecting boundary conditions at the image boundary ∂Ω. In addition, the
known data is fixed on K, thus creating Dirichlet boundary conditions u = f . In the following,
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we consider two different parameter-free choices for the differential operator L. In the simplest
case, we apply homogeneous diffusion [141]:

Lu = ∆u = div(∇u). (5.2)

Since experiments suggest that the biharmonic operator

Lu = −∆2u (5.3)

may give better reconstructions [59, 100, 252], it is also considered. Both operators propagate
known information equally in all directions throughout the whole image evolution. Finally, we
also use EED with

Lu = div(D∇u) (5.4)

and an anisotropic tensorD that adapts to the local image structure as described in Chapter 3.1.
In principle, this allows EED to obtain more accurate reconstructions from the same amount
of known data [100, 252]. However, the price for this increase in quality are algorithms
with higher computational complexity and the need for parameter optimisation. Therefore,
successful compression codecs like R-EED [252] rely on heuristics to optimise known data (see
Chapter 3.3).

For the purpose of the optimal control approaches that we will discuss in the following, it is
also helpful to recall the alternative, more general formulation of the inpainting problem that
we have discussed in Chapter 3.1. The general inpainting equation (3.25)

(1− c(x))Lu− c(x)(u− f) = 0 (5.5)

uses a confidence function c(x) : Ω→ [0, 1] to balance closeness to the original data and the
smoothness constraint imposed by the operator L. For a binary confidence function, this model
is equivalent to the formulation in Eq. 5.1, as elaborated in more detail in Chapter 3.1.

5.1.1 Spatial Optimisation
Finding optimal positions for a fixed amount of mask points is nontrivial. Let us consider a
simple example: we have a discrete image with a resolution of 256× 256 and want a sparse
representation that contains only 5% of the total number of pixels. Combinatorics tells us that
there are  2562

0.05 · 2562

 =

65536

3276.8

 ≈ 9.5 · 105647 (5.6)
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possibilities to select this amount of known data. This large search space increases both with
the resolution of the original image and the percentage of selected pixels. In the following, we
review the three most successful approaches to solve this problem in image compression.

Optimal Control. Hoeltgen et al. [124] and Chen et al. [59] optimise the locations of the
inpainting mask by solving a constrained optimisation problem of the form

argmin
u, c

E(u, c) = 1
2

∫
Ω

(
(u(x)− f(x))2 + δ|c(x)|+ εc(x)2

)
dx, (5.7)

such that c(x)(u(x)− f(x))− (1− c(x))Lu(x) = 0. (5.8)

Note that at the image boundaries, reflecting boundary conditions still apply. Here the goal
is to find simultaneously the reconstruction u and the real-valued confidence function c(x) by
minimising the energy E(u, c). The general inpainting equation (3.25) acts as a side-constraint.
The term (u(x)− f(x))2 penalises deviations of the reconstruction u from the original f , while
term |c(x)| imposes sparsity of the confidence function. Thereby, the parameter δ > 0 can be
used to determine the amount of known data that influences the reconstruction. The other
parameter, ε > 0, is fixed to a small positive value, since the existence of a solution for efficient
solvers is not guaranteed for ε = 0 (see Hoeltgen et al. [124]).

In fact, minimising the energy E(u, c) is challenging due to two facts: the sparsity term is
nondifferentiable and the problem is nonconvex. Nevertheless, efficient algorithms are possible
by considering a series of related linear problems from optimal control theory. It has been
shown that fast primal-dual schemes can be employed for finding a solution [59, 124]. While
Hoeltgen et al. [124] focus on homogeneous diffusion, biharmonic inpainting is considered in
addition by Chen et al. [59].

Note that for compression, a continuous confidence function is disadvantageous, since the
coding cost of real numbers is much higher than for the integer case. However, Hoeltgen and
Weickert [126] have shown that there is no drawback, if the continuous confidence function is
reduced to a binary mask by thresholding. The same reconstruction quality as with a continuous
confidence function can be achieved, if one optimises not only the location, but also the value
of the known pixels. We discuss such tonal optimisation strategies at the end of this section.

Stochastic Sparsification. While optimal control approaches are mathematically well-founded
and can be implemented efficiently, they also have two drawbacks: On the one hand, there is
no straightforward extension to nonlinear anisotropic diffusion, so far. On the other hand, the
parameter δ controls the amount of known data only indirectly. It has to be tuned to achieve a
specific density of the inpainting mask.

Instead, one can employ the stochastic sparsification approach of Mainberger et al. [184]. It
starts with a full mask that contains all image points. From this mask, we remove a fixed
percentage α of known data. After inpainting with the smaller mask, we add a fraction β of
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Random Locations Spatial Optimisation Random + Tonal Spatial + Tonal

MSE 273.10 MSE 41.92 MSE 151.25 MSE 27.24

Figure 5.1.: Spatial and tonal optimisation example with homogeneous diffusion on the test
image trui. In all cases, 4% of the image pixels are known. Optimising the locations of known
data improves the quality of homogeneous diffusion more than keeping random locations and
applying tonal optimisation. For the best results, a tonal optimisation is applied after selecting
optimal locations with a nonlocal pixel exchange. Images courtesy of Hoeltgen et al. [125].

the removed pixels with the highest reconstruction error back to the mask. This sparsification
algorithm iterates the aforementioned steps until the target mask density is reached.

However, there is a substantial risk that this algorithm is caught in a local minimum. To avoid
this problem, Mainberger et al. [184] propose a nonlocal pixel exchange for postprocessing: First,
they remove n randomly selected points from the mask and reconstruct the image. Afterwards,
a candidate set of m > n non-mask pixels is selected randomly. From this candidate set, the
algorithm adds the n points that have the largest reconstruction error back to the mask. If the
new mask yields a better reconstruction it is kept, otherwise the change is reverted.

Optimal control and stochastic sparsification yield results of comparable quality, but stochastic
sparsification is usually significantly slower. An introductory example for the effect of spatial
optimisation can be found in Figure 5.1.

Tree-based Subdivision. In the context of the R-EED codec by Schmaltz et al. [252], we have
described another approach to spatial optimisation in Chapter 3.3: A subdivision algorithm
partitions the original image into rectangular subimages. For each subimage, it selects the
corner points and its midpoint as known data. If the local reconstruction error in a subimage
exceeds a user-defined error threshold, the image is subdivided, thus adding more known data
in regions that are not reconstructed well. The advantages of this method are twofold: On
one hand, it reduces the coding cost of the locations since the subdivision can be efficiently
represented by a binary tree. On the other hand, it also reduces the size of the search space.

The obvious drawback of tree-based approaches is that the restriction to a locally adaptive grid
might also reduce the reconstruction quality. In this chapter, we also want to investigate how
such restrictions affect different inpainting PDEs. We cannot rely on a heuristic subdivision
strategy, since this might skew the comparison to exact masks that arise from optimal control
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Figure 5.2.: Rectangular Subdivision Scheme. Each square-shaped leaf node in a tree
corresponds to a subimage with the same number. Red circles represent the locations stored by
each subimage. Nodes with orange colour exceed the local error threshold and must be split in
the next step. The final tree has minimum depth 2 and maximum depth 4. Therefore, only the
levels 3 and 4 (marked by dashed box) need to be stored: each leaf node as a 0, each inner
node as a 1. This yields the overall binary representation 0111001011 with 4 bits for level 3
and 6 bits for level 4.

5.1 Optimising and Representing Known Data 107



or stochastic sparsification. Therefore, we propose a new tree-based stochastic approach in
Section 5.3. We discuss the tree representation that we need for this purpose in more detail in
the following paragraphs.

For a tree T consisting of nodes t0, . . . , tn, the root node t0 stands for cutting the original
image in half in its largest dimension. By adding nodes to the tree, one of the two subimages
corresponding to the parent node is split further. In order to encode the tree efficiently in a
binary sequence, we exploit that leaf nodes are indicators for termination, i.e. the subimage
corresponding to a leaf node is not split any further. Thereby, we can represent the tree as a
bit sequence (0 for leaf nodes, 1 for other nodes) that results from traversing the tree level by
level. We can reduce the coding cost even further by storing the minimum and maximum tree
depth. All nodes on tree levels up to the minimum depth are split, and all nodes on levels above
the maximum tree depth are leaf nodes. Thus, only the tree structure for the levels in-between
these depths needs to be encoded. Figure 5.2 provides a visualisation of the subdivision scheme
and tree representation. In particular, it also gives a concrete example for a conversion of a
tree to a binary sequence.

5.1.2 Tonal Optimisation
Tonal optimisation is the task of choosing optimal pixel values (i.e. grey or colour values) for
an inpainting mask with fixed locations. This optimisation in the co-domain complements
the spatial optimisation in the image domain from the previous section. Intuitively, tonal
optimisation can be understood as introducing a small error to the sparse known data to
achieve a more significant improvement in the inpainting domain.

In the linear case, tonal optimisation can be formulated as a least squares problem [125].
Let f ∈ Rnxny denote the original image in vector notation, c ∈ {0, 1}nxny the corresponding
binary mask, and r(c, g) the reconstruction that one obtains with linear diffusion inpainting
from the mask c and the known data g. Then, optimal known data can be found by the
minimisation

argmin
g
|f − r(c, g)|2. (5.9)

Hoeltgen et al. [125] have shown that this problem has a unique solution, if the mask is not
empty and a linear PDE is used for reconstruction. There are many ways to find this solution.
Originally, Mainberger et al. [184] have proposed a randomised Gauß-Seidel scheme that
relies on so-called inpainting echoes. Setting a single point of the inpainting mask to 1 and
all other mask points to 0 yields the influence of this mask point on the reconstruction, its
echo. Mainberger et al. [184] have shown that the full inpainting can then be represented as a
weighted sum of these echoes, which makes inpainting extremely fast, once these echoes have
been computed. However, computing the individual echoes takes time and they are only valid
for a specific mask configuration.
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More recently, other methods have been proposed that circumvent the costly computation
of the echoes. For example, Chen et al. [59] and Hoeltgen and Weickert [126] apply primal-
dual methods to solve the problem directly. Hoeltgen et al. [125] propose a gradient descent
algorithm that is accelerated with fast explicit diffusion (FED) [114]. In Section 5.3 we
argue that for our specific use in compression, the original echo-based approach is still viable
compared to these newer, more efficient methods. Moreover, note that the least squares
formulation yields continuous optimal grey values that are just as costly to store as the
continuous confidence function from the previous section. We address this problem also in
Section 5.3.

Unfortunately, the aforementioned solvers are not directly applicable to nonlinear anisotropic
diffusion. Instead we apply a straightforward iterative algorithm that is also used in R-EED
[252]: We visit all mask pixels in random order and check if increasing or decreasing the pixel
value by fixed steps yields an improvement. If it does, we keep the new pixel value, otherwise
we revert to the original. We iterate these random walks over the whole mask. Similar to the
probabilistic sparsification algorithm, this method is rather slow, but universally applicable to a
wide range of inpainting operators.

5.2 Storing Data Efficiently„Chaos is merely order waiting to be deciphered.

— José de Sousa Saramago
(Journalist, Author, Winner of the Nobel Prize)

In this section we discuss general requirements and restrictions that the compression setting
imposes on optimisation algorithms. This enables us to design codecs that offer a good trade-off
between file size and inpainting quality.

The most important ingredient for efficient storage of known data in PDE-based compression is
entropy coding. In Chapter 3.2.1, we have discussed the information theoretical background
of entropy coders and given a general historical overview. Here, we present specific entropy
coders in more detail and also provide an overview over preprocessing steps that can enhance
the efficiency of entropy coders.

5.2.1 Entropy Coding
All entropy coders share the common goal of removing redundancy from data. Thereby, they
store information losslessly, but with a reduced file size. Huffman coding [136], adaptive arith-
metic coding [234], and PAQ [178] have all been successfully used in PDE-based compression
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[252]. So far, the primary task of these encoders has been to encode the known pixel values.
Pixel locations that are represented by a binary tree have only very little potential for further
lossless compression. Scheer [247] has shown that even with considerable effort, reductions of
the file size are small.

Huffman Coding assigns binary codes of variable length to each grey value with the help of a
binary tree. Each grey value corresponds to the leaf node of the tree and their frequency
of occurrence in the image is proportional to their tree level. Following the path from
the root to a leaf and adding a 1 or a 0 to a binary string depending on whether the left
or the right edge is taken yields the code for the grey value associated with the leaf node.
Huffman coding yields an optimal average code word length from the perspective of
information theory. However, it requires at least one bit per grey value and the tree has
to be transmitted as overhead. Otherwise, decoding is not possible.

Arithmetic Coding. The limitation of 1 bit per grey value can be circumvented by arithmetic
coding. It assigns a single codeword to the whole sequence of grey values instead of
generating a codeword for each individual grey value. It starts with an arbitrary interval
[a, b] with a, b ∈ R. Then, we partition this interval into subintervals, one for every
possible grey value. The length of these subintervals is proportional to the frequency of
occurrence of the corresponding pixel value. Now, the subinterval of the first grey value
that needs to be encoded is subdivided in the same way. This procedure is now repeated:
Each additional grey value restricts the interval further. The final codeword is then a
binary representation of an arbitrary dyadic fraction from this interval.

PAQ. Compression performance can be improved further by considering not only the frequency
of occurrence of grey values, but also to exploit patterns in the sequence. PAQ is a highly
evolved version of prediction by partial matching: It compresses a binary stream by
predicting with a very high accuracy if the next bit is a 0 or a 1. To this end, it relies on a
large number of complex context models that track how often certain patterns occur in
the file. All of these context models are then mixed in a neural network that adapts to
the local content of a file during encoding. Such context mixing allows to compress files
with varying content very efficiently. The adaptation of context weights is performed by
a gradient descent on the coding cost that is computed after a bit is encoded: At this
point it becomes clear if the prediction was right or wrong.

Schmaltz et al. [252] have already conducted an evaluation of the aforementioned entropy
coders. They have concluded that arithmetic coding and PAQ offer the best compression results.
In our setting, PAQ appears to be particularly interesting due to its ability to adapt to the local
content of a file. If we want to store pixel-accurate locations, this comes down to storing a
binary image in addition to the sequence of grey values. In contrast to the tree representation
in R-EED, such a binary image contains much more redundancy. Therefore, PAQ can be directly
applied as an efficient container format for both positional and brightness data.
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5.2.2 Storing Binary Images
We have tried many different methods that are specialised on the encoding of sparse, binary
patterns. In the following we give a short overview of these methods. First, there are off-the-
shelf codecs that specialise in binary images.

JBIG uses lossless compression by prediction and arithmetic coding [146]. It considers a fixed
configuration of image points that optionally also includes a single pixel with variable
position as a context. Depending on the frequency of occurrence of black or white pixels
in this context, it predicts the colour of the next pixel. Arithmetic coding is the most
efficient entropy coder supported by JBIG.

JBIG2 extends the ideas of JBIG by introducing pattern matching and dictionary approaches
[131]. It is specifically tailored to text and half-toned images. To this end, it creates a
dictionary of repetitive patterns that occur frequently in the image. This dictionary is
then used for efficient lossless or lossy compression. For the storage of patterns that do
not fit the dictionary, JBIG2 falls back to JBIG encoding.

DjVu is a collection of different compression algorithms that work in tandem [31]: For
encoding of mixed content (e.g. images and text), it decomposes images in a binary
image foreground and a grey- or colour-valued background part. It compresses the
background with wavelet-based compression (IW44 codec) and the foreground with
an encoder called JB2. JB2 is a modified version of JBIG2 that relies on the same core
concepts.

In PDE-based compression, the aforementioned codecs have been already compared in the
context of cartoon compression [183]. Nevertheless, we perform a new evaluation for our
compression framework in Section 5.3, since the nature of our binary images is different.
Mainberger et al. [183] compress edge images that feature a lot of connected lines while our
optimised masks consist mainly of scattered individual pixels (see e.g. Figure 5.3). For the
same reason, we also consider different approaches for storing binary images, namely block
coding techniques.

ZA Block Coding by Zeng and Ahmed [321] is specifically designed for sparse binary patterns.
It transforms the image into a sequence of binary values by traversing the image row by
row. This sequence is then divided into blocks of length b. During encoding, it separates
each block by a 0-bit and encodes the relative position of each 1 in the block. The number
of bits necessary to encode these positions is given by the block length. Furthermore,
each stored coordinate has a leading 1-bit such that the end of block can be detected.

MF Coordinate Coding decomposes the image into non-overlapping rectangles that contain
only 1’s (black pixels). These rectangles can be stored in terms of the coordinates of
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Stored Edges Stored Exact Mask

Figure 5.3.: Examples of edges stored in semantic approaches (left, courtesy of Mainberger
et al. [183]) and exact masks (right) for the test image trui. Since the edge-image contains a
lot more connected components and is well-structured, efficient encoding with JBIG is possible.
In contrast, the scattered data in the exact mask is more challenging to compress.

two opposing corner points [196]. The algorithm proceeds row by row: if a row does
not contain black pixels, a single 0 indicates that the row is empty and nothing must be
stored in addition. A 1 initiates a non-empty row that consists of a sequence of zeroes
and special symbols for the top left corner (11) and the bottom right corner (10) of a
rectangle. Isolated points are encoded with the sequence 100.

ZN Pattern Coding by Zahir and Naqvi [320] combines ideas from block coding [321] and
coordinate coding [196]. It reduces code-word lengths by decomposing an image into
rectangles and isolated pixels. Furthermore, it employs image flipping to reduce the
length of stored relative coordinates for images with a directional bias. Finally, it employs
block coding in the style of [321] to store the isolated pixel part of the image.

Hierarchical Block Coding divides the image into blocks of a prescribed size [97]. It then
indicates empty blocks (containing only zeroes) by a single 0. Otherwise, it stores a 1
and divides this blocks into 4 non-overlapping blocks of approximately equal size. In a
similar fashion as the tree-based subdivision scheme, this procedure is repeated until
each subblock is either empty or consists of only a single pixel. An extension of this
algorithm only splits down to 2× 2 blocks and encodes their bit-patterns with Huffman
coding [161].

Block-Coding with Prediction. Fränti and Nevalainen [97] extend hierarchical block coding
by a prediction step that takes into account 2-D neighbourhoods of already encoded
pixels. Based on static or adaptive probabilities of encountering a 1 for an observed
neighbourhood configuration, newly encoded pixels are detected and the prediction
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error is stored instead. This reduces the entropy of the original. Furthermore, they apply
reordering strategies that reduce the entropy further after the prediction and store the
result with hierarchical block coding.

5.2.3 Quantisation
In addition to the positions of the inpainting mask, we also need to store the pixel values. An
important tool for lossy compression of images is the reduction of brightness or colour values
from a real-valued domain to a small number of integer values, the so-called quantisation.
Since we deal with discrete, digital input images, the grey values of the ground truth are
usually already quantised. In this thesis we assume input images with 8bit grey value depth.
Thus, there are initially 28 = 256 grey values (0, ..., 255).

Reducing the number of grey values to some q ∈ N, q < 256 is one of the easiest ways to reduce
the file size. It has the added benefit that the human visual system can only distinguish a
limited amount of grey values. Therefore, quantisation can be used for perceptive coding [280].
The examples in Figure 5.4 show that only for very coarse quantisations, the perceived quality
deteriorates visibly.

In this thesis we perform only uniform quantisation. In order to reduce the initial number of
p ∈ N grey values to a coarser quantisation with only q < n values, we partition the grey value
domain in q subintervals of length p/q. This defines a quantisation mapping of the original
range Gp = {0, . . . , p− 1} to the new grey value range Gq = {0, . . . , q− 1}: Every value from a
given subinterval is mapped to the same grey value from Gq. Obviously, this mapping is lossy.
A transformation of a value x ∈ Gq back to the original dynamic range yields a reconstruction
value y [268] from the original range Gp according to

y :=
⌊
xp

q
+ 1

2

⌋
. (5.10)

Nevertheless, this backtransformation only yields q different values from Gp. Since this
introduces an error to the known data, it is a lossy preprocessing step to the lossless entropy
coding. In a PDE-based setting, the benefits of tonal optimisation can be diminished, if such a
quantisation is applied afterwards. Therefore, in Section 5.3, we perform tonal optimisation
under the constraint of the coarse quantisation.

Note that quantisation has a long tradition in signal processing and many more sophisticated
quantisation techniques exist. Non-uniform quantisation allows to distribute quantised values
over the full range of original values in such a way that a given error criterion is minimised.
These ideas have already been pursued since the dawn of information theory (see e.g. Lloyd
[173] and Max [191]). For image compression, virtually all lossy methods apply some kind
of quantisation. For example, JPEG and JPEG2000 quantise transform coefficients in a non-
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q = 64 q = 16 q = 4

Figure 5.4.: Quantisation of the test image lena. The number q of different grey values is
reduced from initially 64 (6 bit per pixel) to 16 (4 bit per pixel) and 4 (2 bit per pixel). Only at
a very low quantisation level, humans perceive degradations, in particular in regions of soft
transitions between different levels of brightness.

uniform way. In the case of colour images, one can even consider to quantise vectorial values
directly. The drawback of these more complex methods is the need for additional optimisation
and potential overhead, since the details of the non-uniform quantisation are needed for
decompression. Gersho and Gray [105] provide a detailed overview of both scalar and vector
quantisation.

5.3 Evaluating Inpainting Operators
for Compression„Jealousy is the fear of comparison.

— Max Frisch
(Writer)

Our goal is to evaluate three different diffusion-based inpainting operators with respect to their
viability in compression: homogeneous, biharmonic, and edge-enhancing anisotropic inpainting.
In particular, we are also interested in how the optimisation methods from Section 5.1 and the
compression steps from Section 5.2 affect each operator.

Therefore, to assess the true potential of these operators, we have to design codecs that allow
them to show their potential in a comparable setting. Note that the compression frameworks
which we propose below work in a discrete setting. In the linear case, we consider the finite
difference approximations of the inpainting equation in the same way as Mainberger et al.
[184]. For EED, we use the standard discretisation (see Chapter 3.1) as in R-EED.
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Figure 5.5.: Coding of exact masks. Comparison of different compression methods for exact
masks obtained with an optimal control scheme for homogeneous inpainting of the image
peppers.

We propose two different codecs depending on their selection and representation of known
data: First we select exact (pixel-accurate) masks with optimal control schemes and stochastic
sparsification in Section 5.3.1. Then we restrict ourselves to locally adaptive grids with an
efficient tree representation in Section 5.3.2.

5.3.1 Exact Masks with Optimal Control
In the previous sections we have established all building blocks that are necessary to build a
codec based on high quality, pixel-accurate masks. In particular, we discuss in the following,
how we can store these masks efficiently.

We want our codec to have the following general structure: First, we find an optimal mask that
contains a certain percentage of image points. This mask density acts as a quality parameter in
the range 1 to 100, as in JPEG. We find this optimal mask by the algorithms from Section 5.1.1:
for linear diffusion we use optimal control [59, 124] and for EED we employ stochastic
sparsification with non-local pixel exchange [184]. This yields a binary image that needs to be
stored. Furthermore, we have to decide how to integrate tonal optimisation and quantisation
into our codec.

Storing Mask Locations. In order to store the binary image containing the locations of optimal
known data efficiently, we have conducted an evaluation of the compression techniques from
Section 5.2.2. We found that block coding schemes [97, 196, 320, 321] and coordinate coding
[196] are outperformed significantly by encoders for binary images such as JBIG [146], JBIG2
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[131] and DjVu [31]. However, they are viable as preprocessing steps for entropy coders such
as PAQ [178].

Figure 5.5 shows compression experiments conducted on exact masks of different density. They
were obtained with an optimal control scheme for homogeneous diffusion on the test image
peppers. On first glance, the results are surprising: JBIG2 performs consistently worse than its
predecessor JBIG, even though it features a more sophisticated pattern matching approach.
However, one has to keep in mind that JBIG2 is designed for repeating patterns that occur for
example in text from a scanned document. In contrast, our masks contain a lot of scattered
points that make the creation of a dictionary with repeating patterns difficult.

Similarly, JBIG and DjVu are primarily designed for text documents and natural binary images
that contain a lot of connectivity and regular patterns. This explains why the simple block
coding scheme by Zeng and Ahmed [321] in combination with PAQ is the best choice. It
reduces the file size by up to 10% in comparison to JBIG and DjVu depending on the mask
density.

Storing and Optimising Grey Values. In order to store the grey value data associated with
the mask efficiently, we have to choose the number q of quantised grey values. As mentioned
in Section 5.2.3, performing such a coarse quantisation after tonal optimisation can affect the
results negatively. The grey value optimisation algorithm from R-EED already considers the
restriction to a set of coarse grey values. However, the least squares approaches for linear
diffusion do not respect this constraint.

As a remedy, we propose quantisation-aware grey value optimisation in Algorithm 1. We can
express the inpainting solution of the harmonic and biharmonic operator by a superposition
of the inpainting echoes [184] from Section 5.1.2. For a given mask c and corresponding
grey values f , we denote the associated inpainting result from Section 5.1 as r(c,f). During
optimisation, a Gauss-Seidel scheme successively updates the grey values at mask positions one
by one. The crucial difference to the tonal optimisation algorithm of Mainberger et al. [184] is
that we directly quantise the grey values after every update. Note that the most time-consuming
part is the computation of the inpainting echoes. However, since the inpainting mask remains
constant, the echoes can be reused for arbitrary quantisation parameters q. Therefore, we are
able to optimise q thoroughly and efficiently for the linear operators. For EED, this is more
costly.

The choice of q influences the overall file size, since the entropy coding of the grey values
becomes more efficient for smaller numbers of different grey values. Therefore, decreasing the
parameter q also reduces the file size in general. Simultaneously, the error increases, since the
optimised grey values are misrepresented. This negative effect can be somewhat attenuated by
the quantisation aware grey value optimisation, but is still present.
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Input: Original image f , admissible set of quantised grey values Q := {q1, ..., qn}, inpainting
mask c.

Initialisation: u := r (c,f) and g := f .

Compute:
For all i ∈ K:

Compute the inpainting echo bi.

Do

For all i ∈ K:

1. Compute the correction term α := b>i (f−u)
|bi|2 .

2. Set uold := u.

3. Update the grey value gi := gi + α.

4. Apply coarse quantisation: g′i := argminq∈Q |gi − q|
5. Update reconstruction u := u+ α′ · bi with α′ = g′i − ui.

while |MSE(u,f)−MSE(uold,f)| > ε.

Output: Optimised quantised grey values g.

Algorithm 1: Quantisation-aware grey value optimisation.

Consequently, for a given mask, a suitable parameter q must be found that offers the best
trade-off between file size and reconstruction quality. This means that both the inpainting
error and the file size have to be minimised simultaneously. For a given quantisation parameter
q ∈ {0, ..., 255}, let s : {0, ..., 255} → N be the file size in byte and e : {0, ..., 255} → R
the corresponding mean square error. By normalising both quantities to the range [0, 1] and
combining them additively, we define the trade-off coefficient µ as

µ := s(q)
s(255) + e(q)

e(255) . (5.11)

The smaller this coefficient, the better the trade-off for a given q. Our goal is to find the
best q for a given mask. To this end, we minimise µ with respect to q in combination with
quantisation-aware grey value optimisation. This implies a three-step codec for exact masks:

1. Select a fraction d of total pixels with the optimal control approach [124] (harmonic/bi-
harmonic) or stochastic sparsification [184] (EED).

2. Perform quantisation-aware grey value optimisation and select the quantisation parame-
ter q with optimal trade-off between file-size and reconstruction quality.

3. Optimise block size for optimal compression with PAQ. Concatenate header, positional,
and grey value data and apply PAQ to the total file.
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Input: Original image f , fraction m of tree nodes used as candidates for densification, fraction
n of candidate nodes that are added in each iteration, desired final mask density d.

Initialisation: Splitting tree T containing only the root node t0. Initial leaf node set L :=
{t1, t2} containing child nodes of t0.

Compute:
Do

1. Compute reconstruction u from mask C(T ) and image data f .

2. Choose randomly a candidate set A ⊂ L containing m · |L| nodes.

3. For all ti ∈ A compute the subimage error e(ti).
4. Add a subset of n · |A| candidate nodes ti with the largest errors e(ti) to the tree T .

5. Update L to contain all children of leaf nodes from T .

while |C(T )| < d · |Ω|.

Output: Tree T with corresponding mask C(T ) of density d.

Algorithm 2: Stochastic tree densification.

The reconstruction is straightforward. All the entropy-coded data is recovered and a single
inpainting reconstructs the image.

5.3.2 Stochastic Tree-Building
In this section, we pursue an approach that restricts known data to a regular adaptive grid. In
order to lower the coding cost of these locations, we use the binary subdivision tree representa-
tion from Section 5.1.1. Unfortunately, there is no straightforward extension of the optimal
control approaches for exact masks from the previous section. Moreover, only the heuristic
subdivision scheme from R-EED [252] has been used so far to obtain tree-based masks. For
a fair comparison, we want to stay as close to the exact codec as possible with respect to the
optimisation strategies. Therefore, we extend the stochastic approach of Mainberger et al.
[184] to subdivision trees in the following.

If we want to transfer the basic concepts of stochastic sparsification from Section 5.1.1 to a
binary tree representation, there are some key differences: We have experimentally determined
that densification is more efficient for tree structures than sparsification. Therefore, we start
with a small amount of data and iteratively add more points at locations with large error until
the target density is reached.

In addition, we consider to add nodes to the tree instead of dealing with mask points directly.
Since we want to perform a single additional subdivision, the tree structure dictates that only
subimages corresponding to leaf nodes may be split. Such a split is equivalent to adding two
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Input: Original image f , binary tree T , parameters n < m.

Compute: Repeat

1. Create a backup copy Told of the splitting tree T .

2. Compute reconstruction uold from mask C(Told) and image data f .

3. Remove the children of n randomly chosen terminal nodes from T .

4. Randomly select a set A containing m leaf nodes from T .

5. For all ti ∈ A compute the subimage error e(ti).
6. Add the children of the n nodes with the largest error e(ti) to T .

7. Compute reconstruction u from mask C(T ) and image data f .

8. If MSE(u,f) > MSE(uold,f)
Reset changes, i.e. T = Told.

until number of maximum iterations is reached.

Output: Optimised tree T .

Algorithm 3: Nonlocal node exchange.

child nodes to the leaf node (see Figure 5.2). Note that several mask points might be added
by a single subdivision (the corners and the midpoint of the corresponding subimage). These
mask points might also be contained in several of the neighbouring subimages.

Furthermore, the error computation must be adapted. In order to avoid a distortion of the
influence of each node, we do not consider the mean squared error in each subimage, but the
sum e(tk) of squared differences

e(tk) =
∑

(i,j)∈Ωk

(fi,j − ui,j)2 (5.12)

where Ωk denotes the image domain of the subimage corresponding to the tree node tk. This
avoids that the same per-pixel-error in small subimages is weighted higher than in large
subimages. Taking all these differences into account, we define stochastic tree densification in
Algorithm 2. For a target density d, it produces an optimised tree T with a corresponding pixel
mask C(T ) ⊂ Ω.

Just as for the original sparsification approach, there is a risk that Algorithm 2 is trapped
in a local minimum. To avoid this problem, we propose Algorithm 3, an adapted version
of the nonlocal pixel exchange (NLPE) of Mainberger et al. [184] that we have described in
Section 5.1: They first remove random points from the inpainting mask. Then they replace
them with potentially better non-mask pixels.

5.3 Evaluating Inpainting Operators for Compression 119



BA AB

exchange terminal node A with leaf node B

Figure 5.6.: Nonlocal Node Exchange. This Figure visualises the concept of exchanging
terminal and leaf nodes. Terminal nodes are not split any further, which means that both of
their children are leaf nodes. Leaf nodes are marked as blue rectangles, terminal nodes as
orange triangles. A single exchange corresponds to reversing the split of a terminal node and
splitting a leaf node instead. In our example, we exchange the position of the leaf node A and
the terminal node B.

In the following we transfer this concept to our subdivision trees. Most importantly, we have to
respect the tree structure in order to define a nonlocal node exchange (NLNE). In the first step,
we want to remove n randomly selected nodes from the tree. However, this set underlies some
restrictions: It can only consist of nodes that are split exactly once. This is the case if and only
if both children of a node are leaf nodes. We call these nodes terminal nodes. The reversion of
their associated image split comes down to removing their leaf nodes. Thereby, we convert the
terminal node to a leaf node.

In the second step of the NLNE, we want to add back nodes to the tree. First, we select a
candidate set of m leaf nodes. From these candidates, we select the n nodes that correspond
to the subimages with the highest reconstruction error w.r.t. the initial mask. We split these
subimages by adding both children to the tree, thus converting leaf nodes into terminal
nodes.

These modifications lead to Algorithm 3. The example in Figure 5.6 illustrates that the
modifications applied to the tree by our algorithm can be interpreted as swapping the positions
of pairs consisting of a leaf node and a terminal node.

Finally, the binary trees obtained from the densification and nonlocal node exchange can be
stored as a sequence of bits. As in the example from Figure 5.2, we store a maximum and
minimum tree depth and only save the node-structure explicitly inbetween. The only additional
required header data are the image size and the number q of quantised grey values. We combine
the tree densification with the same strategies for grey-value optimisation and quantisation as
in the previous section and obtain the following four-step compression pipeline:
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1. Select a fraction d of total pixels with tree densification (Algorithm 2).

2. Optimise the splitting tree with nonlocal node exchange (Algorithm 3).

3. Perform grey value optimisation and optimise the quantisation parameter w.r.t. the
trade-off between file size and reconstruction quality.

4. Concatenate header, positional, and grey value data and apply PAQ.

For reconstruction, we decode the PAQ container, extract positional data from the tree, combine
it with the grey values and perform a single inpainting.

5.4 Experiments„It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.

— Richard P. Feynman
(Physicist)

In the following we evaluate the capabilities of harmonic, biharmonic, and EED inpainting for
the two compression methods from the previous sections. Our experiments rely on a set of
widely used test images. First, we evaluate the sensitivity of the individual operators under
different optimisation and compression steps. Then we compare their overall performance
to R-EED, which marks the current state of the art in PDE-based compression, and to the
transform-based coders JPEG and JPEG2000.

Influence of Data Selection Strategies. In Figure 5.8 we compare inpainting results with
three different masks that contain 5% known data of the 256× 256 image peppers: A random
mask containing the same uniformly distributed locations for all three algorithms, an exact
mask obtained with optimal control or stochastic sparsification, and a restricted mask from
tree densification with non-local node exchange (see Figure 5.7). The optimised masks are
different for each inpainting operator and we do not apply coarse quantisation. For all three
methods we have performed tonal optimisation.

EED shows to be far less sensitive to the restriction to an adaptive grid and provides the
overall best reconstruction quality for all cases. Biharmonic inpainting performs better than
harmonic inpainting in general and also less sensitive to tree-based known data. Also, the
results for biharmonic inpainting are more visually pleasing in general: The smoothness
constraints of the biharmonic operator avoid the typical singularities that occur at known data
for harmonic inpainting. Hoffmann et al. [128] have explained this phenomenon in terms of
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Green’s functions. These singularities are particularly obvious in Figure 5.8 (a), the harmonic
inpainting with random known data. EED also avoids these singularities and is able to produce
the best result consistently. Especially its robust performance on the suboptimal tree-based grid
is remarkable. However, it should also be noted that for exact masks, the difference between
the three diffusion models is small and would not justify to use the complex nonlinear model
instead of the efficient linear ones.

Influence of Mask Density. In order to asses the influence of the mask density on the inpainting
results, we optimise exact and restricted masks with different densities, perform grey-value
optimisation and compare the mean square error (MSE) at the same mask density. The results
in Fig. 5.9 (a) show that, in general, biharmonic performs better than harmonic inpainting
given the same amount of known data. This is consistent with previous results [59]. EED
can outperform both methods, but the difference is only significant for low densities. Note,
however, that sparse masks are exactly the requirement for efficient compression. The graph
also shows again that the restriction of the mask to an adaptive grid has a significant negative
impact on the quality. This affects harmonic inpainting more than its biharmonic counterpart
and EED.

Influence of Quantisation. Some interesting and surprising results come from a comparison
w.r.t. the influence of quantisation. In Figure 5.10 we compare results with exact masks
and grey value optimisation. This time, we apply a coarse quantisation to 64, 32, and 16
individual grey values. Interestingly, the grey value optimisation is able to compensate for this
negative effect very well in the case of harmonic diffusion and EED: The increase of the error
is almost negligible compared to the results without quantisation from Figure 5.8. However,
the higher-order biharmonic inpainting suffers a lot more. As we will see in the following, this
affects compression performance significantly.

Compression Performance. An evaluation of the actual compression performance with the
codecs from Sections 5.3.1 and 5.3.2 in Fig. 5.9(b) shows a significantly different ranking
than in the density comparison. For exact masks, harmonic inpainting can even surpass its
biharmonic counterpart. The coding cost for the known data is similar in both cases, but since
harmonic inpainting is less sensitive to a coarse quantisation of the grey values, it performs
overall better than biharmonic inpainting. The drawbacks of the restrictions in the tree-based
approach are attenuated by the reduced positional coding cost. After a break-even point
around ratio 20:1, the biharmonic tree-based method outperforms both exact approaches.
Since EED does not have distinct advantages at high mask densities, it does not outperform the
linear methods at low compression ratios. At high compression ratios however, its robustness
under both restricted locations and coarsely quantised grey values allow it to outperform its
competitors.

Comparison to Other Encoders. In relation to transform-based coders, the tree-based method
performs consistently better than JPEG and in many cases also outperforms JPEG2000 for
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harmonic bi-harmonic EED

random

exact

tree

Figure 5.7.: Optimal Inpainting Masks for Different PDEs. All masks contain 5% of the
total image points of the test image peppers. The locations of known data are marked in black.
(a) Top row: The same uniformly distributed random mask is used for all three diffusion types.
(b) Middle row: For the harmonic mask, points are stored left and right of edges. In the
biharmonic case, the structure remains similar, but points either spread out more or cluster
closer together to store a whole region verbatim. The EED mask is spread out much more.
(c) Bottom row: The masks from tree densification with nonlocal node exchange follow a
similar pattern like the exact ones. However, the differences between the choice of locations is
less pronounced than in the exact case due to the reduced number of possible choices.
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harmonic bi-harmonic EED

random

MSE 124.03 MSE 76.84 MSE 67.24

exact

MSE 17.72 MSE 16.85 MSE 15.65

tree

MSE 45.49 MSE 34.07 MSE 28.87

Figure 5.8.: Influence of Data Selection Strategies on Inpainting. Reconstruction from the
5% masks from Figure 5.7 with different inpainting operators. (a) Top row: Both biharmonic
and EED perform much better than harmonic on random data. This already indicates their
higher robustness to suboptimal known locations. Moreover, harmonic suffers from severe
singularities. (b) Middle row: The difference between the three inpainting operators is much
less pronounced for optimal spatial and tonal data. The singularities are still there for harmonic
inpainting, but they are hardly visible in print. (c) Bottom row: Harmonic inpainting suffers
the most from the restriction to a locally adaptive grid. Biharmonic and EED lose less quality
compared to optimal locations.
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Figure 5.9.: Comparisons for the 256×256 Image peppers. The top row compares harmonic
and biharmonic versions of our codecs, and the bottom row compares our best methods to
transform coders and R-EED. (a) Top Left: Comparison at same mask density. (b) Top Right:
Comparison at same compression ratio. (c) Bottom Left: Low to medium compression ratios.
(d) Bottom Right: High compression ratios.

compression ratios larger than 35:1. Surprisingly, for very high compression ratios, the heuristic
approach of R-EED outperforms the more sophisticated stochastic tree densification with EED.
While this seems counter-intuitive at first glance, there is a simple explanation: R-EED treats
entropy coding and quantisation in a different fashion. Our method first selects a single tree
and then optimises q for the best trade-off between file size and reconstruction quality. In
contrast, R-EED defines a target compression ratio first and then builds a lot of different trees
that fit to this ratio. Thus, it already incorporates coding costs into the selection of known data,
not afterwards. At low compression ratios, this does not have a high impact, but it makes a
difference for very small files.

In comparison to other PDE-based methods, linear diffusion performs best in the area of
low to medium compression ratios (up to 15:1). Fig. 5.9 shows that it can beat both R-EED
and JPEG2000. On smooth images like peppers, harmonic diffusion with exact masks even
outperforms JPEG2000. This demonstrates how powerful simple PDEs can be.
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harmonic bi-harmonic EED

exact, q = 64

MSE 18.00 MSE 18.30 MSE 15.91

exact, q = 32

MSE 18.70 MSE 21.06 MSE 16.96

exact, q = 16

MSE 21.44 MSE 32.00 MSE 21.02

Figure 5.10.: Influence of Quantisation on Inpainting. Reconstruction from the exact 5%
masks from Figure 5.7 with different inpainting operators. For all results, we have performed
quantisation-aware grey value optimisation with 64, 32, and 16 different grey values. Reducing
the number of grey values from 256 to 64 does not change the quality dramatically for all
diffusion methods. However, the ranking of harmonic and biharmonic inpainting has already
changed compared to Figure 5.8. Reducing the parameter q even further reveals that harmonic
and EED inpainting are much less sensitive to quantisation than biharmonic interpolation.
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JPEG JPEG2000 R-EED Exact Homogeneous

MSE 13.64 MSE 10.42 MSE 11.74 MSE 9.74

MSE 37.72 MSE 33.83 MSE 34.41 MSE 33.58

Figure 5.11.: Compression Results for peppers and elaine. (a) Top: Results for peppers
(256 × 256 pixels) with compression ratio ≈ 8:1. (b) Bottom: Results for elaine (512 × 512
pixels) with compression ratio ≈ 18 : 1.

In Tab. 5.1, we allow both edge-enhancing anisotropic diffusion with probabilistic tree den-
sification and exact harmonic masks obtained with optimal control. On low compression
ratios, all of our results outperform or match R-EED and are highly competitive to the quality
of JPEG2000. Regarding high compression ratios, the performance is comparable to R-EED.
However, the more efficient integration of the entropy coder into the choice of mask points
gives R-EED still a slight edge on some images.

Table 5.1.: MSE comparison on several test images. For the compression ratio of 15:1 we use
exact masks with homogeneous inpainting for elaine and lena. The rest of the error values for
our method are obtained with tree-based EED.

Ratio ≈ 15 : 1 ≈ 60 : 1

Image elaine lena trui walter elaine lena trui walter

JPEG 34.69 20.06 16.24 6.73 77.39 97.37 116.98 69.40
JPEG2000 31.23 14.73 12.27 5.70 54.18 60.48 88.96 47.09
R-EED 35.48 16.56 11.27 5.48 49.87 56.96 44.38 24.05
Our Method 31.38 17.00 10.48 4.53 54.83 53.56 47.42 21.74
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5.5 Conclusion„People forget how fast you did a job,
but they remember how well you did it.

— Howard W. Newton
(Advertising Executive)

The investigation of the interplay between diffusion-based inpainting and different compression
steps in this chapter has both practical implications and provides general insights into codec
design. On the practical side, we have shown that codecs with parameter-free linear inpainting
PDEs can beat both the quasi standard JPEG2000 of transform-based compression and the
state of the art in PDE-based compression. This is an indication that simple and fast PDEs
have a lot of potential that has not been fully used to this point. In particular, they might be
integral for the design of synchronous compression codecs that are fast in both compression and
decompression. However, the selection of known data still hinders this goal: Optimal control
and stochastic sparsification have not yet reached real-time performance, but linear diffusion
needs thorough optimisation to produce competitive quality. Therefore, future research should
focus on faster mask selection algorithms.

A valuable general insight from this chapter concerns the comparison of inpainting operators:
The performance of PDEs for compression can only be evaluated in the context of actual codecs.
Comparisons that do not consider all compression steps can lead to false rankings of inpainting
operators that do not reflect their real compression capabilities. In particular, the sensitivity
of the biharmonic operator to coarsely quantised known data makes the simpler harmonic
diffusion the preferable choice for compression. Finally, there are some concrete implications
for the codec design in the remaining chapters of this thesis. Together with the statistical
justification in Chapter 4, our comparison of diffusion operators in a compression context has
shown that EED is the best choice, if mask positions are used that are suboptimal, but cheap to
store. Therefore, we pursue a combination of subdivision trees and EED for our investigations
on textured images, real-time decompression, and perceptive coding.

Publication Info

The exact and tree-based framework for linear diffusion was first presented by
Peter, Hoffmann, Hoeltgen, and Weickert [223] at the Pacific Rim Symposium
2015. This chapter corresponds to a technical report by the same authors that
also includes EED [222]. Preliminary versions of the stochastic tree densification
were developed by Frank Nedwed [204] in his Bachelor’s thesis under the
supervision of Pascal Peter.
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6Consistency:
Combining Diffusion- and
Exemplar-based Inpainting

„ Opposites are not contradictory but complementary.

— Niels Bohr
(Physicist, Winner of the Nobel Prize)

As we have already discussed in the previous chapters, the current generation of PDE-based
encoders is competitive to the state of the art in transform-based compression. In particular, the
R-EED codec of Schmaltz et al. [250] can surpass JPEG2000 quality-wise. However, we have
only considered images with low or moderate amounts of texture such as peppers or elaine, so
far.

In such cases, the key element to the success of diffusion-based codecs is the ability of edge-
enhancing anisotropic diffusion (EED) [295] to reconstruct images from sparse pixel data. It is
important to note here that EED inherently imposes a smoothness assumption on the missing
image parts. Due to its ability to preserve sharp edges, coarse structure can be accurately
reconstructed. However, for fine-scale textures, the smoothness assumption is violated at many
locations. This means that either large amounts of known data are necessary to store them
or they simply cannot be reconstructed. Consequently, the performance of diffusion-based
algorithms degrades with increasing amount of texture content in the original images. In such
cases, transform-based coders still provide superior results.

However, there are other reconstruction methods that are better suited for the interpolation of
texture from partially known data. In 1999, Efros and Leung [84] pioneered exemplar-based
inpainting for the purpose of extending images and filling in missing or corrupted image parts.
More recently, Facciolo et al. [90] have proposed exemplar-based inpainting methods that
are suited for sparse known data. In the following, we explore the potential of this sparse
exemplar-based inpainting for image compression.

Our Contribution. We assess the suitability of exemplar-based inpainting for image compres-
sion and compare it to diffusion-based inpainting. Following the results of this analysis, we
construct a novel compression codec that combines the strengths of both approaches while
minimising the effect of their drawbacks. In our experiments on well-known test images we
demonstrate that this hybrid inpainting approach can beat established diffusion-based methods
and is competitive to transform codecs also for images with rich texture.
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Related Work. In Chapter 5 we have concluded that the currently most promising strategy
for compression uses subdivision to locate and store the positions of known data efficiently
in terms of a binary tree. Therefore, we rely on the anisotropic R-EED approach by Schmaltz
et al. [250, 252] as the foundation of our method. Chapter 3.3 contains a more detailed
description of the R-EED codec. While our novel codec is the only diffusion-based method that
deals specifically with textured images, there are PDE-based coders dedicated to other classes
of data such as cartoon images [183], 3-D data [218], or depth maps [103, 127, 166]. For a
more detailed general overview of these codecs we refer to Chapter 3.2.3.

The patch-based inpainting on sparse images by Facciolo et al. [90] that we use in our new
method is related to a long line of classic exemplar-based approaches. The underlying idea
of synthesising patterns dates back to the dawn of computer science. For example, Shannon
and Weaver [260] tried to approximate the English language in terms of recurring patterns of
letters. In image processing, similar ideas are pursued to reconstruct textures. Exemplar-based
texture synthesis was made popular by the influential work of Efros and Leung [84]. Since a
full review of the field is beyond the scope of this thesis, we focus on selected publications that
are related to our own work and refer to Arias et al. [10] as well as Guillemot and Le Meur
[116] for in-depth reviews.

During the last decade, the concept of combining structure adaptive inpainting with exemplar-
based ideas has been explored in several different directions. The approach of Bertalmío et al.
[27] comes closest to our method since it also employs an explicit decomposition into a cartoon
and a texture image. The cartoon reconstruction relies on an inpainting process that propagates
information along isophotes. Patch-based inpainting restores missing parts of the texture image.
In contrast to our codec, they use an additive decomposition. This doubles the amount of
original data, which is disadvantageous for compression.

Many patch-based approaches incorporate the image structure as additional guidance informa-
tion. For instance, Drori et al. [80] propose a multi-scale approach that guides texture inpainting
by smooth image structures. Sun et al. [272] perform patch-based texture reconstruction along
manually specified curves, while Criminisi et al. [67] prioritise the reconstruction of missing
image points in such a way that existing image structures are continued. In the work of Cao
et al. [44], level lines extracted from a simplified version of the image are the guidance feature
for exemplar-based inpainting. A different approach is pursued by Arias et al. [10] who include
gradient information in a variational model for exemplar-based inpainting.

Some texture synthesis approaches also rely on learning. For instance, Hees et al. [122] modify
the Field-of-Experts (FoE) approach of Roth and Black [238] (see Chapter 4) with new potential
functions that allow to learn synthesis filters from a given database of textures. Similarly, Yu
et al. [318] have shown that learning methods for multi-stage diffusion models [58] can be
used on the known data of a partially given image to reconstruct missing texture.
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All aforementioned publications focus on image inpainting. In regards to actual compression,
there are related approaches that modify existing transform-based coders with exemplar-
based inpainting. Rane et al. [232] propose a scheme that removes selected JPEG blocks and
reconstructs them either with the method of Efros and Leung [84] or structure inpainting. The
method of Liu et al. [170] focuses on removing visual redundancy in transform coders like
H.264 or JPEG. They aim at human perception and do not necessarily minimise the quantitative
error. To this end, the image is decomposed into edge-regions that are reconstructed with
a combination of structure propagation and exemplar-based inpainting and texture regions
that are synthesised with purely patch-based methods. Xiong et al. [312] consider a similar
decomposition, but they focus on inpainting of homogeneous areas with a custom PDE-based
approach. They do not address texture synthesis and use JPEG in the remaining regions.

Moreover, there are distantly related methods from the area of compressed sensing. In this area
of signal processing, researchers aim to reconstruct signals from small amounts of known data
and prior knowledge. These methods can be interpreted as dictionary approaches (e.g. [7, 85,
120]) and use databases of image prototypes or patches for reconstruction instead of relying on
partially known data like the exemplar-based methods. Aharon et al. [7] also explicitly propose
compression as one application of their approach.

Organisation of the Chapter. First we explain the concept of the exemplar-based inpainting
technique of Facciolo et al. [90] in Section 6.1. In Section 6.2 we review diffusion inpainting
very briefly and assess the strengths and weaknesses of both approaches with respect to image
compression. From these conclusions we motivate a novel hybrid compression scheme in
Section 6.3 and analyse its performance in Section 6.4. We conclude the chapter with a
summary and outlook on future work in Section 6.5.

Texture in Colour Images

In this chapter we only deal with grey scale images. However, our colour
codec from Chapter 8.2 also helps to compress texture, even though it is not
specifically designed for this purpose. It decomposes the image into brightness
and colour information and allows to store structure in the brightness channel
very accurately by assigning it a larger file size budget. Note that this channel
could also be compressed with our hybrid algorithm.

R
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(a) diffusion propagation (b) patch-based propagation

Figure 6.1.: Propagation with Diffusion-and Exemplar-based Inpainting. Consider a
missing textured area in the image barbara. Diffusion based inpainting (a) propagates structural
information continuously from the boundary of the patch inwards. This propagation allows to
produce edges, but not jumps, which makes it impossible to reconstruct chequered patterns.
In contrast, patch-based propagation (b) averages the centre pixels of all other image pixels
with weights w(·, ·) that are larger for similar patches. They can thereby also recreate regular
patterns. For concrete inpainting results see Figure 6.3.

6.1 Exemplar-based Inpainting„ Example is the best precept.

— Aesop
(Poet)

The so-called nonlocal inpainting (NLI) approach of Facciolo et al. [90] follows the core idea of
all patch-based methods: Missing information is filled in by exchanging information between
image patches. However, in contrast to other algorithms from the field, it allows inpainting
from sparse data. Therefore, we can compare it to the inpainting capabilities of EED from
Chapter 3.1. For the sake of comprehensibility, we only discuss a special case of the flexible
NLI framework: We have chosen algorithm AB with patch-wise non-local means from [90],
since the experiments by Facciolo et al. [90] suggest that it is best-suited for the specific task at
hand.

Let us consider the same inpainting problem as in the previous chapters. For a grey scale image
f : Ω 7→ R with a rectangular image domain Ω, we want to find a reconstruction u of the
missing data on the inpainting domain Ω \K from the sparse known data on the inpainting
mask K ⊂ Ω. In essence, NLI reconstructs u by minimising a patch similarity function V

between pairs of image patches. It forces unknown pixel values in one patch to be similar
to known values in the other patch. To this end, consider two disk-shaped patches centred
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in image points x and x′, respectively. The similarity function V is defined as the weighted
squared difference

V (x,x′) =
∫
D
g(x,x′,y)

(
u(x+ y)− u(x′ + y)

)2
dy. (6.1)

Here, D is a disk around the origin, and y a coordinate relative to the respective patch
centre. A common practice in patch-based methods is to rescale the individual pixel differences
u(x+y)−u(x′+y) with Gaussian weights that reflect descending importance with the distance
to the patch centres. However, in NLI, the weights g additionally account for the fact that,
given a sparse inpainting mask, both patches can contain similar amounts of known data. Thus,
a mutual exchange of information can be beneficial. The weights are defined as

g(x,x′,y) = Kσ(y)
ρ(x,x′)(χK(x+ y) + χK(x′ + y)), (6.2)

where ρ(x,x′) is a normalisation term that ensures
∫
D g(x,x′,y)dy = 1 and Kσ is a Gaussian

with standard deviation σ. The characteristic function χK of the set of known data indicates
where similarities between patches should be enforced. Let x1 := x+ y denote an image point
from the first patch and x2 := x′ + y the corresponding point in the second patch. If both
points are unknown, i.e. not contained in K, g becomes 0 and thus, no information exchange
takes place. If at least one of the two points x1 and x2 is known, we have g > 0 and thus V
enforces similarity between those two pixels.

The second important ingredient of NLI is the decision, for which pairs of patches the similarity
function V should be minimised. To this end, Facciolo et al. introduce a patch similarity weight
function w and minimise the energy

E(u,w) = 1
h

∫
Ω

∫
K
w(x,x′)V (x,x′) dx dx′ −

∫
Ω
H(x, w) dx, (6.3)

s.t.
∫
K
w(x,x′) dx′ = 1. (6.4)

Optimal weights w minimise the weighted total patch error according to V while maximising
the entropy

H(x, w) = −
∫
K
w(x,x′) logw(x,x′) dx′. (6.5)

For a given u, the patch similarity weights w impose a Gaussian-like weighting of the patch
differences V (x,x′):

w(x,x′) = exp
(
− 1
h
V (x,x′)

)
. (6.6)

Thus, the parameter h ∈ R from Eq. (6.3) steers the standard deviation of the Gaussian weights
w. In practice, the reconstruction u is found by alternating minimisation of u and w.
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6.2 Strengths and Weaknesses
of the Inpainting Techniques„ Only strength can cooperate. Weakness can only beg.

— Dwight D. Eisenhower
(34th President of the United States)

In the following sections we want to assess the advantages and drawbacks of diffusion and
exemplar-based inpainting in the context of image compression. Before we consider exper-
iments, let us first briefly recall diffusion-based inpainting, which we have discussed in the
previous chapters, and its properties.

The role of the diffusion process is to propagate the known information to the inpainting
domain Ω \K. Thereby, the missing parts are filled in. This process of data propagation follows
the partial differential equation (PDE)

∂tu = div(D∇u) on Ω \K, (6.7)

with reflecting boundary conditions on ∂Ω and Dirichlet boundary conditions on K. The
reconstruction is the non-trivial steady-state for t → ∞. For our purposes we choose the
edge-enhancing anisotropic diffusion (EED) [295] from Chapter 3.1, since it has been proven
to be particular well-suited for inpainting by Schmaltz et al. [252] and the previous chapters of
this thesis. EED uses an anisotropic, structure-adaptive diffusion tensor of the form

D := λ1(∇uσ)v1v
>
1 + λ2v2v

>
2 , (6.8)

v1 ‖∇uσ, λ1(∇uσ) := g(|∇uσ|2), (6.9)

v2⊥∇uσ, λ2 := 1. (6.10)

It guides the diffusion process in terms of its eigenvalues λ1 and λ2 that specify the amount of
diffusion in the direction of the corresponding eigenvectors v1 and v2. The tensor design in
Eq. (6.8) implies that diffusion across edges is inhibited by the Charbonnier diffusivity [54]

g(s2) := 1√
1 + s2/λ2 (6.11)

with some contrast parameter λ > 0. Full diffusion along edges is achieved with a constant
second eigenvalue λ2 := 1. Optimising both the positions of the known data, i.e. the inpainting
mask K, as well as the contrast parameter λ can improve the reconstruction quality.

Experiments in [252] show that the convolution uσ := Kσ ∗ u with a Gaussian Kσ of standard
deviation σ in Eq. (6.8) plays an important role for the application of EED in image compression.
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(a) initialisation (b) mask

(c) EED (d) exemplar-based

Figure 6.2.: Experiment: Structure Propagation Known data is only given at black locations
in the mask. EED (λ = 0.01, σ = 4) continues the edge structures into the inpainting domain
and reconstructs an almost perfect triangle. The exemplar-based method (h = 100) propagates
structure only locally and creates copies of structure.

It propagates structural information into the neighbourhood of each pixel and thereby allows
reconstruction of edges from a very sparse inpainting mask.

Note that for both diffusion- and exemplar-based inpainting, known data can have a global
influence, but the propagation differs significantly nonetheless. In diffusion inpainting, struc-
ture is propagated over long distance indirectly through pixel neighbourhoods. Thus, this
propagation affects all pixels on the propagation path. Patch-based inpainting, however, is
inherently non-local, since each pixel is directly averaged from contributions of similar patches,
no matter where they are located. Figure 6.1 illustrates this difference.

Now that we have briefly reviewed both inpainting methods, we demonstrate specific properties
with simple synthetic examples and discuss their implications for practical purposes. Let us first
consider the capabilities of both algorithms in respect to structure propagation. To this end, we
consider a variation of the well-known Kanizsa triangle that was used in [252] to demonstrate
the capabilities of EED. For a human observer, the known data in Figure 6.2 (a) suggests that
three corners of a triangle are given here, since human perception tends to continue sharp
edges.
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(a) original (b) mask

(c) EED (d) exemplar-based

Figure 6.3.: Experiment: Texture. Known data from the original image is only given at black
locations in the mask. EED with σ = 0.8 and λ = 0.9 completely fails to reconstruct the texture
and creates a coarser pattern instead. Exemplar-based inpainting (h = 150) reconstructs
regular texture very well, but has problems at the interface between textures.

EED is able to preserve sharp edges and propagates image structure due to the locally adaptive
diffusion tensor. Therefore, with adequate parameter choices, it is possible to match the
expected reconstruction very well (see Figure 6.2 (c)). In contrast, exemplar-based inpainting
continues structures only in close vicinity to the known data (Figure 6.2 (d)). In regions of the
inpainting domain where known data is far away, structures are copied and multiplied.

For image compression, this behaviour implies that EED is well-suited to reconstruct coarse-
scale image features from sparse known data, if they consist of mostly homogeneous areas that
are separated by high contrast edges. Exemplar-based inpainting, however, tends to create
visually distracting artefacts in such a setting. The reconstructions of the test image barbara
in Figure 6.4 (a) and (b) illustrate the practical effects well. For example in the face region,
exemplar-based inpainting repeats vertical structures of the hood in the cheeks, while EED
produces a much more convincing reconstruction. Similar effects can be observed throughout
the whole image.
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(a) EED (b) NLI (c) block decomposition

Figure 6.4.: Reconstruction of the Image barbara with EED (a) and NLI (b) from the
Same Known Data. The reconstructions correspond to intermediate results from steps 1 and
2 of the hybrid algorithm for a compression ratio of ≈ 18 : 1. The block decomposition (c) with
b = 48 indicates where EED (black) and NLI (white) yield better results.

In a second synthetic experiment we consider the reconstruction of textured areas. Figure 6.3
displays the test image interface from [90], a representative for another extreme type of image
content, namely repetitive texture. Here, EED completely fails to reconstruct the texture in a
satisfying way. If an isolated region like e.g. a grey dot in the left hand side of the image is not
represented by several known pixels that encode both its grey value and its shape, EED has no
chance to recreate it. In contrast, exemplar-based inpainting benefits from its tendency to copy
structure and create regular patterns. Its reconstruction in Figure 6.3 (d) is fairly close to the
original, except for the sharp boundary between both repetitive patterns.

In practical compression applications, EED struggles with repetitive small-scale structure even
when a lot of known data is given (e.g. Barbara’s trousers in Figure 6.4 (a)). Therefore,
compression algorithms that purely use EED for reconstruction have to store textures almost
verbatim to achieve a good reconstruction. NLI produces a visually much more pleasing texture
inpainting (see Figure 6.4 (b)) that is also close to the ground truth in regard to quantitative
error measures. Therefore, a sparse inpainting mask in combination with NLI inpainting can
potentially be used for compression.
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6.3 A Hybrid Compression Algorithm
for Textured Images„Combine the extremes,

and you will have the true centre.

— Karl W. F. Schlegel
(Poet and Philosopher)

Block Decomposition. The core idea of our hybrid algorithm is to combine the strengths of
diffusion- and exemplar-based inpainting by decomposing the image into EED and NLI blocks.
From a common set of known data, EED blocks are reconstructed with diffusion inpainting and
NLI blocks with exemplar-based inpainting. Shared known data for both methods offers two
distinct advantages: storage efficiency and direct decomposition. Since the inpainting mask is
only stored once, the only overhead generated by employing two different inpainting methods
is the block decomposition and the respective model parameters. In addition, no a priori
method for texture/cartoon decomposition is needed. Blocks can be directly classified as EED
and NLI blocks by comparing the corresponding reconstructions to the original file, which is
(in contrast to the inpainting case) available during compression.

Point Selection and Storage. In the previous sections we have only discussed diffusion and
patch-based ideas in an inpainting context, where the inpainting mask K ⊂ Ω is already known.
For compression, in addition to the right reconstruction method, also a good inpainting mask
must be chosen and stored efficiently.

To this end, we employ a rectangular subdivision technique that proves to be successful in the
R-EED codec [250, 252]. It limits the choice of the known data positions K to a rectangular
adaptive grid that can be represented by a binary decision tree. We iteratively refine this
grid by adding known pixels in image regions where the local reconstruction error with EED
inpainting exceeds a given threshold. This strategy yields a mask that is optimised for a
good diffusion-based reconstruction and efficient storage in form of a binary tree. As soon as
the mask is known, we apply a so-called brightness optimisation step: Introducing errors to
the small amount of known pixel values can improve the reconstruction quality in the large
inpainting domain Ω \K. For more details, we refer to [252]. The optimised grey values are
finally quantised and stored with the entropy coder PAQ [178].

Our goal to create a hybrid algorithm requires some modifications to this point selection
strategy. Since the subdivision grid adapts to the reconstruction abilities of EED, the point
density in an R-EED inpainting mask is low in homogeneous regions, medium near coarse scale
edges and very high in textured areas. Since our goal is to reconstruct homogeneous areas and
sharp edges with EED and textures with exemplar-based inpainting, this point distribution is
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not ideal. In particular, textured areas are over-represented in the inpainting mask at the cost
of more coarsely quantised grey values. Therefore, we limit the depth N of the binary tree and
by that also the minimum grid size of the adaptive inpainting mask.

Avoiding Block Artefacts. For compression algorithms that use block decomposition steps,
there is always the danger of visually very distracting discontinuities at block boundaries. In
order to keep such effects to a minimum and simultaneously improve the overall reconstruction
quality, we propose a modified diffusion-reconstruction in the decompression step. In addition
to the known data on K, we also consider the reconstructed NLI blocks as Dirichlet boundary
data for the final EED reconstruction. This ensures smoother transitions between NLI and EED
blocks and can even improve the EED block reconstructions due to the good approximation of
additional known data.

Compression Algorithm. The complete compression pipeline for our hybrid scheme consists
of five steps.

1. Depth-Limited Subdivision: Perform rectangular subdivision with a maximum tree
depth N to avoid oversampling in highly textured areas. Create a preliminary diffusion
reconstruction of the whole image with EED.

2. Exemplar-Based Inpainting: Reconstruct the image with NLI and the inpainting mask
acquired in the previous step. In order to provide a good prior for structure propagation
in non-texture areas to the exemplar-based method, we initialise the inpainting domain
Ω \K with the diffusion reconstruction from Step 1.

3. Block Decomposition: Compute a block decomposition: If the mean square error
(MSE) of the diffusion reconstruction is lower than the MSE of the exemplar-based
inpainting in a given block, consider it to be an EED block, otherwise mark it as an NLI
block. Optimising the number b of blocks in x- and y-direction can improve the overall
compression quality.

4. Encoding: Store the known data in a modified R-EED file format (see [252]) with the
number of blocks in the file header. Encode the block decomposition row-wise as a
sequence of binary flags for each block (1: EED block, 0: texture block). Here, the
context mixing method PAQ [178] yields the best results by encoding the binary tree,
block decomposition and grey values jointly.

Decompression Algorithm. Decompression comes down to three straightforward inpainting
steps, since the compressed file provides all parameters, known data and the cartoon/texture-
decomposition.
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Figure 6.5.: (a)+(b) Original images bridge (No. 22090 in the Berkeley database [188]) and
barbara. (c) Error comparison of barbara at different compression ratios.

1. Diffusion-Based Reconstruction: Extract the inpainting mask and R-EED parameters
from the compressed file and reconstruct all missing data on Ω \K with EED inpainting.

2. Exemplar-Based Reconstruction: Initialise Ω \ K with the result from step 1 and
perform an NLI reconstruction of the inpainting domain.

3. Final Inpainting: Reconstruct the EED blocks with EED inpainting. Use the data of the
inpainting mask Ω as well as the reconstructed NLI blocks as known data to improve the
final reconstruction.

6.4 Experiments„The ultimate court of appeal is observation
and experiment, not authority.

— Thomas Huxley
(Writer)

In the following we evaluate the performance of our hybrid approach in comparison to the
R-EED codec and the transform-based coders JPEG and JPEG 2000. For the first step in our
hybrid algorithm and the results of R-EED we use the same reference implementation with
PAQ for entropy coding. We optimise all model parameters as described in [250]. In our
R-EED experiments, we allow larger tree depths N than in the depth-restricted hybrid step
wherever this improves the result. For the implementation of NLI in our hybrid scheme we use
the publicly available reference implementation of Facciolo et al. [90]. In particular, we apply
the fast approximation to the variational NLI scheme AB that is referred to as algorithm O in
[90].
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The results on the test image barbara in Figure 6.5 (c) and Figure 6.6 demonstrate that
on images with significant amounts of regular texture content, the hybrid scheme offers a
significant quality gain over R-EED. R-EED stores some of the texture almost completely
as known data (e.g. in the trouser region) and fails to reconstruct other parts completely
(e.g. parts of the hood and tablecloth). Depending on the compression ratio, the hybrid
algorithm improves the mean square error (MSE) by more than 50% and is visually much more
compelling. It also surpasses JPEG quantitatively by a large margin and does not suffer from
similarly obvious artefacts. For compression ratios larger than 25:1, the hybrid algorithm is
quantitatively on par with JPEG 2000. While it is not able to beat JPEG 2000, yet, it is the first
time that a diffusion-based algorithm achieves comparable results on images with such a high
amount of texture.

On images with irregular texture, e.g. bridge from Figure 6.5 (a), the quality gain of the hybrid
algorithm over R-EED is less significant, but can still reach around 10% depending on the
compression ratio. While the image quality is quantitatively worse than JPEG, it is subjectively
better due to the absence of block artefacts, especially in zoom-ins.
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JPEG JPEG 2000

MSE 118.70 MSE 77.35

R-EED Hybrid

MSE 107.60 MSE 62.62

Figure 6.6.: Results for barbara with Ratio ≈ 18 : 1. The hybrid algorithm uses the upper
tree limit N = 16, block parameter b = 48, and the NLI parameter h = 100.
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JPEG JPEG 2000

MSE 32.80 MSE 21.80

R-EED Hybrid

MSE 40.80 MSE 37.41

Figure 6.7.: Results for bridge with Ratio ≈ 19 : 1. The hybrid algorithm uses the upper
tree limit N = 16, the block size b = 62, and the NLI parameter h = 25.
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6.5 Conclusion„ It’s more fun to arrive at a conclusion than to justify it.

— Malcolm Forbes
(Publisher)

With the first combination of diffusion-based and exemplar-based inpainting from sparse data,
textured images can be compressed efficiently. Our hybrid algorithm uses the full spectrum
of inpainting ideas for compression while keeping the resulting overhead small. This is an
important step towards closing the gap between the widely accepted general purpose encoders
JPEG and JPEG2000 and diffusion-based methods that have thus far shown their advantages
primarily in more specialised applications like depth-map or cartoon encoding.

For future work it would be particularly interesting to investigate how far the quality could be
improved further, if exemplar-based inpainting is treated equally with EED instead of using it
as a postprocessing step. In particular, a lot of additional potential lies in optimising the choice
of known data for a good trade-off between quality in EED and NLI reconstructions.

It should also be noted that the block-decomposition proposed in this chapter is not limited
to a combination of EED and the NLI approach of Facciolo et al. [90]. Both methods can be
exchanged, if more efficient alternatives should arise in the future. Moreover, we use the subdi-
vision strategy of R-EED to find known data. This means that with minor modifications, our
framework is compatible with the region of interest coding from Chapter 8 or the progressive
modes of Schmaltz et al. [251]. Thus, it is flexible enough to act as a foundation for potential
future hybrid algorithms.

Publication Info

The contents of this chapter were introduced by Peter and Weickert [220] on the
International Conference on Scale Space and Variational Methods in Computer
Vision 2015. This thesis goes into more details at some points and provides
additional visualisations, but the algorithm and results have not been modified
compared to the original publication.

�
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7Immediacy: Real-Time
Video Decoding

„ Time is the most valuable thing a man can spend.

— Teophrastus
(Philosopher)

The first chapters of this thesis, as well as most previous publications [99, 100, 250, 252] on
PDE-based compression, focused purely on reconstructing the original image as accurately as
possible at a given compression ratio. The immediacy aspect, providing reconstructions to the
user in a short amount of time, was not considered at all. However, in time critical applications
such as video playback, the runtime of the algorithm is essential.

In a first step towards real-time applications, we want to be able to compress full-length
movies in a feasible amount of time and be able to play them back in real-time. At this point,
competing qualitatively with the established video coders is not feasible, yet. In contrast to
image compression, real-time decompression is a minimum requirement for video data and
has therefore to be addressed before quality. Consequently, we aim at a proof-of-concept
solution that preserves the compression quality of existing PDE-based coders without exploiting
additional redundancies in the time-domain of the video compression setting.

Our Contribution. We present a new PDE-based video compression codec based on R-EED
that is specifically designed for real-time playback and can act as a basis for future codecs. It
organises the video into groups of pictures (GOPs) that allow to adapt compression parameters
locally to the scene content. Furthermore, these GOPs provide the necessary structure for
caching and random access in video playback. To achieve real-time performance of the decoder,
we examine the performance of R-EED with different numerical solvers and implement a player
that relies on parallelisation on the GPU and efficient reuse of already inpainted frames. We
evaluate our algorithm on a realistic real-world example for monochrome video data: The
famous vampire movie Nosferatu by F. W. Murnau [87].

Related Work. Almost the whole existing body of work on PDE-based compression focuses on
still image compression. However, there are some notable exceptions from the rule. So far, the
only codec that is fully PDE-based and qualitatively competitive to transform-based approaches
is the model-based approach by Schmaltz and Weickert [249]. It combines PDE-based image
compression for static backgrounds with tracking of moving objects. These moving objects can
then be replaced by 3-D models and only the movement has to be encoded. However, this
method is only applicable to a narrow field of videos in practice (e.g. video conferencing).
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Gao [101] used diffusion-based inpainting to compress optic flow fields for motion compen-
sation in video coding. However, the actual compression of video data in this approach
relies on block-coding with the discrete cosine transform. Therefore, the codec is still mainly
transform-based. In a similar fashion, Doshkov et al. [77] also just replace one step of a
transform-based coder. They use linear homogeneous diffusion for prediction: Already encoded
data is prescribed as boundary conditions and the diffusion inpainting provides a prediction of
the remaining unknown values.

So far, real-time video decoding with fully PDE-based general purpose algorithms has only
been implemented by Köstler et al. [156] and Baum [22]. The work of Köstler et al. considers
320 × 200 videos on a Playstation 3 while the approach of Baum deals with a resolution of
640× 480 like our own experiments. It only achieves real-time decompression at the price of a
noticeably degraded compression quality.

Organisation of the Chapter. Before we define our actual codec, we first discuss how the
challenges of real-time performance can be overcome by a combination of efficient numerical
solvers (Section 7.1) and reuse of already decompressed frames (Section 7.2). Both techniques
are prerequisites for the real-time capabilities of the proof-of-concept codec that we propose
in Section 7.3. The architecture of the corresponding video player is discussed in Section 7.4.
In Section 7.5, we compare the results of our codec to the ground truth obtained from
a decompression without time constraints. Finally, we conclude the chapter with a short
summary in Section 7.6.

7.1 Numerical Solvers„A problem well put is half solved.

— John Dewey
(Writer)

Our goal is to compress a full movie frame-by-frame with the R-EED algorithm from Chapter 3.3
and decompress it in real-time. Therefore, the most important component for fast compression
and decompression is an efficient implementation of inpainting with EED. In R-EED, the
inpainting problem is described by the elliptic PDE

(1− cK) div(D(∇uσ)∇u)− cK (u− f) = 0, (7.1)

a special case of the general inpainting equation (3.25) from Chapter 3.1. There are different
approaches to discretise and solve this continuous inpainting problem. In the following we
discuss solvers from previous implementations of R-EED as well as recent cyclic schemes and
compare their suitability for real-time decompression.

146 Chapter 7 Immediacy: Real-Time Video Decoding



One possibility to acquire the inpainted image is to compute the steady state of the evolution

∂tu = div(D∇u) on Ω \K × (0,∞), (7.2)

u(x, t) = f(x) on ∂K × (0,∞), (7.3)

〈D∇u,n〉 = 0 on ∂Ω× (0,∞). (7.4)

In the previous chapters, we have mainly relied on this parabolic formulation of the inpainting
problem. A straightforward and easy to implement approach is the explicit discretisation of
the parabolic formulation (7.2). An explicit scheme discretises both the temporal and spatial
derivatives with suitable finite difference approximations (for more details see [299]). This
yields an iterative scheme of the form

uk+1 − uk

τ
= A(uk)uk (7.5)

⇔ uk+1 = (I + τA(uk))uk. (7.6)

Here, A(uk) is the discretisation of the spatial derivative operators from Equation (7.2), and τ
is the discrete time step size. For stability reasons, the time step size is severely limited and
thus the scheme requires a large number of iterations to reach the steady state. However,
fast explicit diffusion (FED) [114], a recent cyclic scheme, makes efficient implementations of
explicit approaches possible. In particular, FED is well-suited for parallelisation and performs
exceptionally well on graphics processing units.

Alternatively, one can also solve the elliptic formulation (7.1) of the inpainting problem directly.
Using the same spatial discretisation A(u) of the divergence term as before, one obtains

(I −CK)A(u)u−CK(u− f) = 0. (7.7)

Here, CK is a quadratic diagonal matrix that contains the entries of the discrete inpainting
mask vector cK . Following the approach of Mainberger et al. [184], Equation (7.7) can be
rearranged into the nonlinear system of equations

−((I −CK)A(u)−CK)︸ ︷︷ ︸
=:M(u)

u = CKf . (7.8)

We obtain the solution of this system by the fixed point iteration

M(uk)uk+1 = CKf . (7.9)

For each iteration k, a linear system of equations has to be solved. Previous publications on
PDE-based compression [250, 252] use successive overrelaxation (SOR) (see e.g. [287]) for
this task. Unlike FED, SOR is in essence a sequential algorithm. Therefore, there is virtually no
potential for increasing its performance by parallelisation.
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Figure 7.1.: Comparison of Numerical Solvers. (a) Mean square error in respect to reference
solution over time on frame 130254 of the movie Nosferatu (licensed by the F.W. Murnau
foundation). (b) Known data selected by the R-EED subdivision scheme. Pixels from the set of
mask locations K are marked in black, unknown pixels in white. (c) EED-inpainting results
after ≈ 0.04 seconds for FED with flat initialisation with the average grey value of the known
data. Homogeneous regions with a low density of known data are not fully inpainted. (d)
Reference inpainting.

However, there is also a cyclic extension of the Jacobi overrelaxation scheme (see e.g. [287])
by Weickert et al. [298], the Fast-Jacobi (FJ) method. Since the cyclic FJ solver can be more
efficient than its parabolic counterpart FED, in particular for elliptic problems with strongly
varying coefficients, we also consider it for our purposes.

In order to analyse the suitability of solvers for real-time video decoding with R-EED, we
compare FED, FJ, and SOR with respect to their convergence behaviour. To this end, we
compute a reference solution for R-EED compressed frames of the movie Nosferatu [87] by
iterating the explicit scheme until convergence. Each frame has a resolution of 640× 480 and
we initialise the missing image parts with the average grey value of the known data. For all
three solvers, Fig. 7.1 (a) provides the evolution over time of the mean square error (MSE) in
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relation to the reference inpainting. It becomes clear immediately that FJ does not offer a real
advantage compared to FED in this context, their convergence behaviour is almost identical.

On a test system with an Intel Xeon CPU W3565@3.20GHz and an Nvidia Geforce GTX 460, a par-
allelised explicit scheme on the GPU typically takes almost 5 minutes to converge. SOR requires
around 6 seconds and parallelised FED still needs approximately 2 seconds for convergence.
For ill-posed frames, the total inpainting runtime can be even longer.

The comparison in Fig. 7.1 clearly demonstrates that even the advanced cyclic algorithms with
parallelisation cannot achieve real-time video decoding on consumer hardware. Fig. 7.1 (b)
and (c) show the known data and a reconstruction with FED after a runtime of 0.04 seconds.
This is the time budget that is available to achieve 25 frames per second. Clearly visible artefacts
that are not present in the converged reference inpainting (Fig. 7.1 (d)) make these results
unsuitable for video playback.

7.2 Smart Initialisation„The purpose - where I start - is the idea of use.
It is not recycling, it’s reuse.

— Issey Miyake
(Designer)

One way to reduce the runtime of iterative diffusion schemes is to provide a good initalisation.
So-called coarse-to-fine approaches [29] already successfully apply this idea. First, they
generate a pyramid of subsampled versions of the inpainting mask. On the coarsest level, i.e.
the smallest representation of the image, inpainting is performed. The upsampled result of this
inpainting provides an initialisation for the next finer level of the pyramid. A successive ascend
through the finer levels of the pyramid finally yields a good initialisation for an inpainting of
the full image. Such approaches can be interpreted as special cases of multigrid solvers [37,
117].

While coarse-to-fine approaches yield a substantial increase in performance, subsampling and
diffusion on coarser scales creates some overhead. Furthermore, the benefits of parallelisation
are less pronounced on coarse levels due to the smaller number of possible simultaneous
calculations. In video sequences, however, there is an additional way to obtain suitable
initialisations: In many cases, subsequent frames are very similar. Therefore, the inpainting
result of an already processed frame can be reused as an initialisation for the next frame. For
groups of pictures (GOPs) that are sufficiently similar, the reuse of inpainting results provides a
significant speed-up without any additional computational cost. Consequentially, the core idea
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Frame 4931 Frame 4932

Frame 9600 Frame 9601

Figure 7.2.: Scenes with Quick Movement. In frames frames 4932 and 9601 and and their
predecessors, quick movement takes place. From frame 4931 to 4932 a book page is flipped.
Frames 9600 and 9601 contain quick movement of a hat in the hand of the character to the
left.

of the smart initialisation scheme is to segment a video into such GOPs that allow to reuse as
much already computed information as possible.

In some cases, the initialisation with the previous frame is not useful or more difficult, though.
In particular at scene transitions or in case of rapid camera movements, the content of subse-
quent frames can change drastically and make this initialisation infeasible. Motion can also be
a problem, if it affects only small areas of the video. It is possible that the initialisation is very
good for large parts of the frame, but unsuitable in the vicinity of moving objects. For example,
a character rapidly moves a dark object in front of a bright background in the frames 9600 and
9601 of the movie Nosferatu (see Fig. 7.2). This generates almost a worst case initialisation.

However, frames that are partially unsuitable for reuse can still be useful. Initialisations that
deviate significantly from the final steady state are only problematic if they occur in areas with
a low density of known points. If many known data is given in the corresponding region, their
information does not need to be propagated over large distances. Thus, a small number of
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Reference Flat Initialisation

MSE 1141.64

Reuse Initialisation Smart Initialisation

MSE 28.45 MSE 0.14
Figure 7.3.: Reconstruction of Frame 4932 based on Different Initialisations (Compres-
sion Ratio 20:1). The top row displays the reference inpainting and a reconstruction that uses
a flat initialisation with the average grey value of the known pixels. In the second row, the
last frame was used as initialisation on the left, and on the right linear interpolation is used in
addition based on a confidence measure. Smart initialisation provides the lowest MSE for the
total reconstruction.
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Reference Flat Initialisation

MSE 34.61

Reuse Initialisation Smart Initialisation

MSE 20.47 MSE 0.53

Figure 7.4.: Reconstruction of Frame 9601 based on Different Initialisations (Compres-
sion Ratio 20:1). The top row displays the reference inpainting and a reconstruction that uses
a flat initialisation with the average grey value of the known pixels. In the second row, the
last frame was used as initialisation on the left, and on the right linear interpolation is used in
addition based on a confidence measure. Smart initialisation provides the lowest MSE for the
total reconstruction.
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iterations is sufficient to reach a good approximation to the steady state. Since diffusion only
needs a very low amount of known data to reproduce homogeneous image regions, these are
prone to initialisation problems. However, in flat image areas, a good approximation to the
steady state can be achieved by simple and fast linear interpolation.

Therefore, we use a confidence function to decide if parts of the initialisation with the last
frame should be replaced by linear interpolation results. Let a rectangular image section from
the R-EED subdivision be given by the set P of its corner points:

P := {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}. (7.10)

The confidence in the linear interpolation quality in this rectangle is influenced by two factors:
the size of the subimage and its homogeneity. We define the size factor sP as the maximum
side length of the rectangular region:

sP := max{|x2 − x1|, |y2 − y1|}. (7.11)

The larger the region, the larger the expected error of the linear interpolation with the known
points from this rectangle. However, this error also depends on the homogeneity of the region.
If the rectangular region is perfectly flat, the linear interpolation will be flawless, no matter
the size of the region. The more discontinuities appear in the rectangle, the less accurate it
becomes.

Therefore, we also incorporate a homogeneity factor hp. Since only the known image points
can be used to determine this aspect of the region, we define hP as

hP := max
(x,y)∈P

f(x, y)− min
(x,y)∈P

f(x, y). (7.12)

For large maximal deviations of the known grey values in the region, less accurate results can
be expected from the linear interpolation.

A multiplicative combination of the size and homogeneity factors yields the overall confidence
function cP :

cP := ψ(sP ) · hP . (7.13)

Here ψ is a truncated quadratic function with a threshold parameter ξ (default value ξ = 30)
that also rescales the range of the size factor to the interval [0, 1]:

ψ(x) = min(x2, ξ)/ξ. (7.14)

The threshold ξ and the rescaling avoids that the size factor dominates the confidence measure.
This can happen since the homogeneity factor is limited to the range [0, 255] while the image
size is not limited. For image sections with a height or width smaller than ξ, the homogeneity
factor is attenuated. For larger sections, it has the full impact.
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The two examples in Figure 7.3 and Figure 7.4 illustrate that the use of the confidence-
dependent linear initialisation in smart initialisation offers significant improvements over a
pure reuse initialisation. Experimental results on a large number of images are discussed in
Section 7.5.

7.3 An EED-based Framework for Video Playback„A scene has to have a rhythm of its own,
a structure of its own.

— Michelangelo Antonioni
(Director)

In the following, we use the fast inpainting techniques from the previous section to build a
framework for real-time video reconstruction with anisotropic diffusion inpainting. Note that
we solely focus on the aspect of real-time reconstruction and not on qualitative competitiveness
to transform-based coders. For this proof-of-concept codec, we want to preserve the quality of
PDE-based still-image compression. To this end, we first present a wrapper that extends R-EED
to video sequences and the necessary structures for frame reuse. In future publications, the
R-EED wrapper can act as a starting point for true PDE-based video encoders that explicitly
exploit temporal redundancies in the video. The second part of the video player framework is
the real-time decoder that we discuss in detail in Section 7.4.

The core structure of our framework relies on a segmentation of the video in groups of pictures
(GOPs). The primary purpose of these GOPs is to define regions where smart initialisation is
feasible. Therefore, we employ scene change detection to create a temporal segmentation.

Smart initialisation always requires the reconstruction of the previous frame to decode the
current frame. Therefore, the frames in a GOP require successive decoding starting with the
first frame of the GOP. This implies that random access in the video (e.g. for fast forwarding or
chapter selection) is limited to the beginning of GOPs, similar to common video compression
codecs such as the ones from the MPEG and H26X family. Due to this constraint, we also limit
the maximal number of frames N in a GOP. For practical purposes, we choose N = 32 in this
thesis.

Each GOP is essentially a collection of up to N R-EED encoded images. Since by definition the
frames in a GOP have similar content, we can choose a common R-EED contrast parameter λ
and a common quantisation parameter q for the whole GOP. All other R-EED parameters are
identical for the whole video and thus only the inpainting mask has to be stored for individual
frames. For sufficiently similar frames, it is possible to reuse the mask positions or even the
whole inpainting mask including the grey values without a significant loss in compression
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quality. Therefore, we introduce four different frame types which we categorise by the similarity
to previous frames. Depending on the frame type, the framework stores different parts of the
inpainting mask.

• GOP start (type 1): Always contains the binary tree that encodes the known point
positions and the grey values of the inpainting mask. This guarantees that all information
to reconstruct this frame independently from other frames is available. The framework
assigns type 1 to a frame, if the maximum number N was reached in the previous
GOP or the difference to the previous frame exceeds a threshold t1 > 0 (default value:
t1 = 15). Additionally, we create a new GOP, if the difference between the reference
steady state and the reconstruction exceeds a threshold tref > 0 (default value: tref = 5).
This additional constraint avoids error spikes at ill-posed images, e.g. those that contain
interlacing artefacts.

• No mask reuse (type 2): For this type, the framework does not reuse point positions,
just the initialisation and R-EED parameters. Just like for a type 1 frame, we store both
the binary tree and the quantised grey values. The framework assigns type 2, if the
difference to the previous frame exceeds the threshold t2 ≤ t1 (default value: t2 = 5).

• Tree reuse (type 3): The point positions from the previous frame remain unchanged,
but we store different quantised grey values for these positions. The framework assigns
type 3, if the difference to the previous frame exceeds the threshold t3 ≤ t2 (default
value: t3 = 1).

• Full mask reuse (type 4): We consider this frame to be fully redundant and no additional
data is stored. The framework assigns type 4, if the difference to the previous frame does
not exceed the threshold t3.

Just as in the regular R-EED scheme, we store the mask positions as a binary sequence of
splitting decisions and a minimum and maximum tree depth. An entropy coder saves the grey
values efficiently. Furthermore, a GOP header contains all information that is needed to decode
the GOP frames. It provides the content-dependent R-EED parameters λ and q, as well as a list
of frame types. Additionally, the header includes a list with the lengths of each GOP data set to
enable separation of the frame data for all possible entropy coders.

Finally, all of the GOP data must be included in a single video file. This container format
consists of a global video header and a concatenation of all GOP data. The global header
contains all parameters that do not have to be adapted to the specific image content: video
resolution, total number of frames, a colour flag, the entropy encoding type, the point pattern
for rectangular subdivision (see [252]), and the progressive mode parameters. In order to
allow random access to the GOP start frames, the header also includes the length of all GOPs.
This enables the video player to jump to arbitrary GOP data.
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For the global header and all GOP headers, the parameters are encoded directly as binary
numbers of custom length. The frame and GOP lengths are stored efficiently with Golomb
coding [106].

7.4 Architecture of the Real-Time Decoder„Multitasking? I can’t even do two things at once.
I can’t even do one thing at once.

— Helena Bonham Carter
(Actress)

Since the main goal of our framework is real-time video playback, the decoder has to provide
reconstructions of a rate of 25 frames per second. This implies that each reconstruction must be
available in a time window of 0.04s. Consumer class GPUs can perform around 100 iterations
with 5 linear updates for FED solvers in this time.

Additionally, there is some overhead due to file operations, entropy decoding, smart initial-
isation, and data transfer between CPU and GPU. Moreover, at GOP start frames, there is
no initialisation with the reconstruction from the last frame available. In order to minimise
overhead and handle start frames, we propose a multi-threaded decoder with caching that
makes use of widely available multicore CPUs.

The decoder relies on four distinct threads that operate in parallel and only communicate over
a system of caches for initialisation and reconstructed image data.

• Loader: The loader parses header data and extracts compressed data for a single frame
from the video file. It rebuilds the inpainting mask from stored tree data and decom-
presses the entropy coded grey-value data. Finally, it computes the linear interpolation
for smart initialisation. In order to use times of low CPU usage efficiently, a GOP init cache
collects the complete inpainting mask and computed linear initialisation for multiple
GOP start frames ahead of time. Similarly, the frame init cache provides the initialisation
data for all other frames. These caches are separated due to their different amount of
localisation. The initialisations for GOP start frames correspond to video parts that have
a larger temporal distance to the currently displayed frames in order to enable random
access and avoid quality loss through inpainting activity spikes in video regions with
rapid scene changes. In contrast, precomputed initialisations for other frames only cover
GOPs in a close vicinity to the current frame.

• GOP Starter: Another thread is entirely dedicated to generating an initialisation for
GOP-start frames with coarse-to-fine inpainting on the CPU. It reads the mask and known
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grey values from the GOP init cache, reconstructs the start frames and stores them in
a third cache, the GOP start cache. In order to avoid playback pauses, slowdowns or
dropped frames, the start handler dynamically adapts the number of iterations and
nonlinear updates of the numerical solver to the number of cached frames. If the cache
is in danger of running empty, the number of iterations is reduced, if it is sufficiently full,
the number of iterations is increased. Thereby, fluent playback is maintained at the cost
of a slight degradation in reconstruction quality for the GOP start frames. This is e.g.
relevant for user interaction with random access or temporary load spikes of the CPU
due to other applications or hard-to-compress sections in the video.

• Reconstructor: The reconstructor is responsible for the final inpainting of the frames.
Its main task is to transfer initialisation data to the GPU, perform FED inpainting and
store the finished reconstruction in the frame cache. For all frames except GOP start
frames, it also generates the final initialisation. According to the confidence measure
for the smart initialisation, it combines the linear interpolation data from the frame init
cache with the last reconstruction from the frame cache. Just as the GOP starter, the
reconstructor also adapts the number of iterations and nonlinear updates to the number
of cached frames to guarantee fluent playback (if the cache is nearly empty) or increase
the fidelity (if the cache is sufficiently full).

• Presenter: The presenter handles all user interaction and video-playback with the
OpenGL toolkit GLUT. It reads the decompressed images from the frame cache at a rate
of 25 frames per second.

The architecture of the decoder allows to dedicate more time to the actual inpainting by
focussing the time-critical GPU interpolation to a single thread and distributing all other
tasks to the three other threads. Additionally, the caching system even allows to increase
the inpainting runtime above 0.04s, if a larger time budget is available. This can happen if
time is saved due to the reuse of whole frames (frame type 4) or if the user pauses the video.
Figure 7.5 provides a visualisation of a typical interaction between the different threads in the
real-time decoder.
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7.5 Experiments„I’m one of those people who says, “yes, cinema died
when they invented sound.”

— George Lucas
(Director)

In the following we present experiments that assess the quality of the decoded images with
different initialisation strategies. Since the decoded results should approximate the steady-state
as accurately as possible, we compare them against reference results.

These reference inpaintings result from an explicit scheme with FED acceleration. As a stopping
criterion, we used the maximal per-pixel change after a stopping time of T = 10000 with 20
nonlinear updates. For the initialisation uk and the corresponding reconstruction uk+1 after a
diffusion time of 10000 we define the per-pixel change

d(uk,uk+1) := max
i,j
{|uki,j − uk+1

i,j |}. (7.15)

For u0 we use a flat initialisation with the average grey value of the known data. The FED
inpaintings with stopping time T = 10000 are then iterated until d(uk,uk+1) < 0.001.

All tests were performed on an Intel Xeon CPU W3565@3.20GHz with an Nvidia Geforce GTX
460. A restored version of the classical movie Nosferatu [87] from 1922 acts as a test file.
The frames in Figure 7.2, Figure 7.3, Figure 7.4, and (see Figure 7.1) are copyrighted by the
Friedrich-Wilhelm-Murnau-Foundation and are published with their consent. It has 141680
grey scale frames at a resolution of 640 × 480. For our testing purposes, the full movie was
encoded at a compression ratio of 20:1 with the default encoder parameters from Section 7.3.
For the decoder, we used an FED scheme with 5 nonlinear updates and 20 iterations per cycle
for all tested initialisation strategies.

In Table 7.1 the deviation of the inpainting results from the reference solutions are displayed
for several initialisation strategies. We measure this deviation in terms of the mean square error
(MSE) between the reference reconstruction and the decoder reconstructions with different
initialisation strategies.

Using a flat initialisation is completely infeasible for video playback. An average error of 461.46
suggests severe artefacts in many frames. In contrast, the reuse heuristic already decreases the
average MSE to 0.20. In fact, 91.42% of the frames have a reference MSE below 0.5. In practice,
they are visually indistinguishable from the reference solution. We also compare against our
smart initialisation strategy, which is mainly used to avoid the creation of local artefacts in
worst case scenarios as described in Section 7.2. The results in Table 7.1 also demonstrate that
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Table 7.1.: Deviation of inpainting results from the corresponding reference reconstructions.
Different initialisation strategies with a Fast Explicit Diffusion solver are compared in respect
to the reference MSE on the movie Nosferatu. The default parameters from Section 7.3 were
used for encoding. The maximum error is the same for reuse and smart initialisation due to
the application of the tref threshold (see Section 7.3). For flat initialisation, the high maximum
error is an outlier that results from ill-posed frames, where the average of the mask points
is a bright grey and homogeneous black areas have to be reconstructed. Note that the main
benefit of smart initialisation is the removal of local artefacts. Nevertheless, there is also an
improvement in the average error.

Strategy Flat (FED) Reuse (FED) Smart (FED)

Maximum Error 16788.51 4.99 4.99

Average Error 461.46 0.20 0.19

Error < 0.5 1.39% 91.42% 91.60%

Error < 1 2.51% 95.31% 95.68%

Error < 5 4.91% 100% 100%

Error < 10 6.94% 100% 100%

smart initialisation does not introduce significant negative side effects. On the contrary, the
average error is decreased by 5%.

For the reuse and smart initialisation strategies, there are still some frames with an MSE close
to the GOP reference threshold tref = 5. However, their number is relatively small and the
visual difference is hard to spot at 25 frames per second.

In total, the results show that real time playback of R-EED-encoded videos is possible on
consumer hardware. In particular, no compromises have to be made in regard to encoding
quality in order to achieve a good approximation of the reference solution. Due to smart
initialisation, no additional data has to be stored in problematic regions.
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7.6 Conclusion„Recognizing isn’t at all like seeing;
the two often don’t even agree.

— Sten Nadolny
(Writer)

The real-time decoding capabilities of our video player framework demonstrate that even
though PDE-based methods are in general more computationally intensive than transformation-
based methods, a clever use of available resources allows surprising performance on consumer
hardware. It does not solve the entire problem of immediacy, yet: The initialisation strategy is
not directly transferable to image compression.

However, we use the parallelisation on the GPU in Chapter 8 to improve compression and
decompression speed significantly. In particular, the experiences for fast inpainting that the
proof of concept for video decompression provided us suffice to perform experiments on image
databases for the first time. Up to this point, an evaluation was only feasible on selected test
images due to runtime constraints. In this sense, the results of this chapter have not only
provided a first glance at what is possible in video compression, but have also advanced image
compression significantly on its way to practical viability.

Of course, from the point of view of immediacy, the future goal in image compression has to be
a synchronous codec, where the difference between compression and decompression time is
small. For video compression, a longer compression time is acceptable in a broadcasting context
where the video is compressed once and then distributed to many recipients (for example on
DVDs, Blurays or via an online video platform).

Finally, the codec that we have proposed in this chapter can act as a basis for future PDE-based
methods that aim to be qualitatively competitive to transform-based coders. They can use
a similar GOP structure and caching system to achieve real-time playback and, in addition,
exploit temporal redundancies.

Publication Info

The video compression codec was published by Peter, Schmaltz, Mach, Main-
berger, and Weickert [221] in the Journal of Visual Communication and Image
Representation. In contrast to this chapter, the paper contains also a progressive
mode for PDE-based compression by Schmaltz, Mach, and Mainberger and the
region of interest coding from Chapter 8.1.
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8Perceptive Coding in
PDE-based Image
Compression

„In this treacherous world
Nothing is the truth nor a lie.
Everything depends on the color
Of the crystal through which one sees it.

— Pedro Calderón de la Barca y Henao
(Dramatist)

In the previous chapters we have dealt with a purely quantitative view of diffusion-based
compression. So far, our goal has always been to achieve reconstructions that are close to the
original image w.r.t. the mean squared error (MSE). However, for many practical applications,
it is more important how a human observer perceives the compressed image than how closely
it approximates the ground truth.

Our Contributions. We address perceptive coding with two distinct new features for diffusion-
based compression. First, we present a simple but powerful algorithm for region of interest
coding, that allows users to mark important image regions that should be reconstructed more
accurately than the other areas. This algorithm can be applied universally to all compression
algorithms in this thesis. Our second contribution is a colour compression codec. Human
perception values brightness contrast higher than colour contrast. In order to exploit this fact
and simultaneously decrease the overall reconstruction error, we introduce a new diffusion-
based colourisation technique. We can then store a full colour image as a monochromatic
picture with a small amount of additional colour information. Colourisation recovers the full
image during decompression.

Organisation of the Chapter. Since this chapter covers two different types of perceptive
coding, we discuss related work in the respective subsections. Section 8.1 covers region of
interest coding with a short introduction, a description of our new method in Section 8.1.1,
and experiments in Section 8.1.2. For colour compression in Section 8.2, we first propose
our new luma-guided colourisation method in Section 8.2.2 and evaluate it experimentally
in Section 8.2.3. Section 8.2.4 is dedicated to our luma-preference mode for diffusion-based
compression. Finally, we conclude the chapter in Section 8.3 with a summary and an outlook
on future work.
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8.1 Region of Interest Coding„If you just focus on the smallest details,
you never get the big picture right.

— Leroy Hood
(Biologist)

All the compression algorithms discussed so far have two things in common: they are
optimisation-driven, and they try to minimise the overall reconstruction error. Strategies
like the subdivision scheme of R-EED from Chapter 3.3 or the stochastic approaches from
Chapter 5 actually try to equalise the error in different regions of the image: they store more
known data where the local error is high.

However, a homogeneous distribution of the error over the whole image is not always desired.
For example in medical imaging, it is important to ensure a high reconstruction quality in
image regions that are relevant for diagnostic purposes, while other regions can contain more
errors. In the following, we introduce a weighting to the error computation in the specific case
of R-EED. However, this particular approach to region of interest (ROI) coding could also be
applied to stochastic sparsification or any other optimisation-driven method.

Related Work. There is no direct support for region of interest coding in JPEG. Nevertheless, a
simple standard compliant idea is to set additional DC coefficients to zero outside the region of
interest (see Pennebaker and Mitchell [215]). JPEG2000 contains many methods for region
of interest coding, for instance the bitplane-by-bitplane shift method (BbBShift) [288], the
partial significant bitplane shift method (PSBShift) [171], or ROI coding through component
priority (ROITCOP) [19]. Due to the large amount of approaches, we refer to Kaur [151] and
Pawadshetty and Bakal [213] for an overview of the field. To the best of our knowledge, no
PDE-based codec with ROI coding capabilities has been proposed so far.

8.1.1 Continuous Error Weighting
As discussed in Chapter 3.3, the R-EED encoder decides in which image region to add more
known data based on a rectangular subdivision scheme: If the MSE of local reconstructions
exceeds an error threshold, more points are added in this region. Our region of interest (ROI)
extension allows to specify a continuous a priori weighting of different locations in the image.
To this end, we introduce local weights ri,j ∈ [0, 1], i ∈ {0, . . . , nx − 1}, j ∈ {0, . . . ny − 1} for
a discrete image of size nx × ny. The ROI-weighted MSE for a reference image f and the
corresponding reconstruction u is computed by

MSEROI(u,v) :=
∑
i,j∈Ω

ri,j(ui,j − fi,j)2

nxny
. (8.1)

164 Chapter 8 Perceptive Coding in PDE-based Image Compression



Subdivision steps with the modified MSE lead to a higher density of known data in regions of
interest with high weight ri,j . Consequently, we can reconstruct these regions more accurately
than areas with a low weight. Thereby, the ratio of weights between two regions of interest
decides the turning point at which R-EED prefers a smaller quality gain in a high-priority region
over a more substantial gain in quality in a low-priority region.

Note that ROI encoding only influences the choice of the inpainting mask by modifying the
decisions in the subdivision tree. No additional information needs to be stored and the
standard decoder is also applicable for ROI-encoded files. Furthermore, the error-weighting on
a per-pixel basis allows to specify multiple regions of interest of arbitrary shape and relative
importance. Since we only modify the error measurement, we can apply this ROI modification
to any optimisation-driven algorithm that allows arbitrary error measures. For example, ROI
coding can be used for the stochastic methods for exact masks and trees in Chapter 5.

8.1.2 Experiments
Figure 8.1 shows different applications of ROI coding. In medical imaging, ROI coding can be
used to store image regions that are important for diagnostic reasons with a local error that
is close to zero. The algorithm still reconstructs image regions with a lower priority, albeit
with decreased accuracy. Their primary use is to coarsely represent the neighbourhood of high
priority ROIs to help the observer with identifying the location of the subregions in respect to
the whole imaged object.

Furthermore, ROI coding can provide semantic context to the compression algorithm. Optimi-
sation-driven algorithms try to generate images with a consistent quality in all image regions.
Especially for high compression ratios, this can lead to suboptimal perceptive image quality
since important image structures like faces are treated equally with relatively unimportant
background features. This behaviour is particularity detrimental in cases where unimportant
features are costly to compress and thus the quality of the whole image is diminished (see
Figure 8.1). Providing suitable ROI weights either manually or automatically, e.g. with a face
recognition algorithm, can substantially improve the perceived quality.

Publication Info

ROI coding was published in by Peter, Schmaltz, Mach, Mainberger, and Weickert
[221] in the Journal of Visual Communication and Image Representation.
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Figure 8.1.: Reconstruction Examples with and without Region of Interest Coding for
the test images brain, trui, and nosferatu. The test images are ordered from top to bottom
by increasing compression ratio. Bright areas in the ROI-mask have a larger weight in error
computation than dark areas. For brain the ROI reconstruction is almost perfect in the
cerebellum at the cost of reduced quality in other parts. Details such as text are reconstructed
more accurately with ROI coding for nosferatu, while background structures are omitted.
Finally, the ROI in trui allows a much higher perceived quality at high compression ratios due
to better quality in facial features (in particular the eyes).
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8.2 Compression of Colour Images with
Edge-Enhancing Diffusion„ In order to use colour effectively it is necessary to

recognize that colour deceives continually.

— Josef Albers
(Artist, Colour Theorist)

Colourisation is a practically relevant image processing task that has its origins in the movie
industry. In the 1970’s, many monochromatic films were remastered manually to include colour.
Sỳkora et al. [274] provide a good overview over the history of early colourisation methods.
Since this task is time-consuming and tedious, researchers aim at minimising the amount of
user-interaction that is required while still allowing artists to influence the result. Levin et al.
[164] have paved the way for stroke-based methods were the user prescribes a few colour
scribbles and the colourisation algorithm fills in the missing colours.

At first glance, compression seems like an unrelated field. However, the sparse representations
of images created by our diffusion-based codecs from the previous chapters are comparable to
the colour scribbles in stroke-based colourisation. In Chapter 1, we have already illustrated in
Figure 1.3, that R-EED [250], the current state-of-the art in PDE-based compression, is not able
to beat JPEG2000 [277] on colour images. Both JPEG [215] and JPEG2000 exploit the fact
that the human visual system values structure higher than colour. The different perception of
monochromatic and colour contrast is well documented from a biological point of view (see
e.g. Mullen [198]). Consequently, transform-based coders use colour spaces that decompose
the image into brightness and colour information to compress colour channels in a coarser
manner. In comparison, R-EED only allows compression in an RGB colour space [252] and
does not provide the option to take into account human perception.

In regards to compression, colourisation has so far only been integrated into JPEG and
JPEG2000. However, diffusion-based codecs are related much more closely to the concept of
Levin et al. and are lacking a dedicated colour mode. In this chapter, we close this gap with a
new continuous diffusion-framework for colourisation and a colour codec based on R-EED.

Our Contributions. Since the successful method of Levin et al. has been formulated purely in
a discrete setting, we present a new continuous framework for colourisation. We consider the
problem in YCbCr space where the luma (brightness) channel Y is given by the greyscale input
image. Our novel luma-guided diffusion adapts to the structure of the brightness channel and
propagates the user-specified colour scribbles in the chroma (colour) channels to the missing
areas. We evaluate four different diffusion models from our general framework, namely
linear isotropic and edge-enhancing diffusion, as well as two newly proposed higher-order
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counterparts to the aforementioned models. We show that the method of Levin et al. is closely
related to higher-order isotropic diffusion. Moreover, we demonstrate with experiments on well-
known test images that our anisotropic models outperform isotropic methods significantly.

For compression, we combine our luma-guided diffusion with the R-EED codec to a luma
preference (LP) mode. It relies on the core idea that the structural information in the luma
channel is more important for the human visual system than the colour components. Therefore,
this channel should be stored with higher accuracy than the chroma channels Cb and Cr. To
this end, we dedicate a large part of our file size budget to the luma channel. The luma-guided
diffusion profits from the accurate structure in the brightness channel and allows to reconstruct
the chroma channels from a smaller amount of known data.

Moreover, we use a more efficient implementation than the original R-EED codec. Building on
our results for real-time diffusion in Chapter 7, it uses different solvers and parallelisation on
the GPU. This allows us to conduct experiments on a real-world image database [83] for the
first time in diffusion-based compression.

8.2.1 Related Work
Colourisation. Following the taxonomy of Luan et al. [176], we classify colourisation methods
as stroke- or example-based. In stroke-based methods [135, 147, 154, 164, 176, 231, 313], the
user manually specifies a small amount of colour scribbles on a single image or a sequence of
images. In contrast, example-based algorithms [142, 274, 276, 306] require one or multiple
fully coloured images that are similar to the greyscale image to be colourised. This approach is
particularly useful for video sequences and can be combined with stroke-based approaches: A
single frame can be coloured with scribbles and serve as an example for the remaining frames.
Since we focus on single images, we only consider the stroke-based approach. For a review for
colourisation by example, we refer to Luan et al. [176].

In this chapter, we establish a close relationship of our diffusion framework to the work of Levin
et al. [164]. They minimise a discrete energy that relies on a simple assumption: Neighbouring
pixels with similar intensities also have similar colours. To this end, they first transform the
image to YUV space to obtain a structure-colour-decomposition similar to YCbCr. Then, they
minimise the difference of each unknown colour pixel in YUV space to a weighted average of
its 3× 3 neighbourhood. The weights are determined by the Y channel.

Several other contributions directly extend the concepts of Levin et al. [164]. Huang et al.
[135] modify the weighting function and, in order to stop colour propagation across brightness
edges, they compute thin, closed edges with a Sobel operator and multiple postprocessing
steps. With an approach inspired by total variation models, Kang and March [147] deviate
further from the ideas of Levin et al. However, they still rely on energy minimisation. Lischinski
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et al. [168] go beyond the original task of colourisation and extend the method of Levin et
al. to a wide variety of other tasks such as tone mapping or hight dynamic range imaging.
In a similar direction, Hua et al. [132] interpret the approach of Levin et al. from a gradient
domain perspective. They propose a framework with edge-preserving constraints that includes
colourisation among other tasks.

Konushin and Vezhnevets [154] employ a biologically motivated algorithm that models the
averaging of colours by the spread and mutation of bacteria over cells that correspond to
the image pixels. There are also various non-local approaches for colourisation. Yatziv and
Sapiro [316] work in YCbCr space. They obtain the missing colour in each pixel as a weighted
average of known colours according to their respective geodesic distance in the luma channel.
Luan et al. [176] group pixels locally by intensity and globally by texture similarity before they
propagate colour. A mapping between brightness and colour values is obtained by Quang et al.
[231] by means of a machine learning approach. Yang [313] propagates colour information
with a recursive bilateral filter. For the specialised class of monochromatic manga comics, Qu
et al. [230] use clustering according to texture similarity and evolving level sets.

The higher-order approaches that we consider in Section 8.2.2 are very rare in the literature.
To our best knowledge, only Greer et al. [112] have proposed a similar, but nonlinear model in
the context of heat flow on surfaces.

Compression. In the second part of this chapter, we propose a new diffusion-based compression
approach. We rely on a sophisticated extension of the R-EED codec by Schmaltz et al. [250].
We have discussed this method in more detail in Chapter 3.3. So far, there are no dedicated
colour codecs with diffusion, but there is a variety of other specialised compression methods.
They focus for example on cartoons [183], depth maps [103, 127, 166], 3-D data [218], or
texture [220]. Chapter 3.2 provides a full review of diffusion-based compression.

Our colour compression codec is inspired by the treatment of colour in the transform-based
coders JPEG [215] and JPEG2000 [277]. Both of them exploit the properties of the human
visual system in order to improve the perceived fidelity of compressed colour images. JPEG
performs a subsampling of the chroma channels in YCbCr space, while JPEG2000 omits
fine-scale wavelet coefficients for the colour components of YUV space.

With our method, we go one step further since we compensate the reduced amount of known
data for the colour channels by reusing structural information from the brightness component.
Similarly, some transformation-based coders exploit colourisation ideas for compression. Most
of them rely on the method of Levin et al. [164]. In [129], Horiuchi and Tominagaan use an
extended version of the method of Levin et al. in combination with JPEG to restore colour
information from samples in CIELAB space. Cheng and Vishwanathan [60] investigate a
machine learning approach to the problem. They interpret the approach of Levin et al. as
a learning algorithm and incorporate a modified version into JPEG. Furthermore, variations
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of a colourisation method based on Markov random fields [207] have been applied in a
postprocessing step to JPEG [208] and JPEG2000 [206]. In a more broadly related approach
that goes beyond colour image compression, Förster et al. [95] also employ the concept
of reusing structural information of a guidance image: They compress depth maps with
compressed sensing and exploit information of the corresponding RGB-image.

8.2.2 From Inpainting to Colourisation

Recap: Inpainting RGB-Colour Images.

Diffusion inpainting on colour images, as it is used in R-EED, considers a coupled model. For
an image f = (fR, fG, fB)> with the RGB channels fc : Ω→ R, c ∈ {R,G,B}, we assume the
full colour data is given at each pixel of the inpainting mask K ⊂ Ω. As for denoising of colour
images in Chapter 4, we consider the PDE

∂tuc = div(D(JRGB)∇uc), c ∈ {R,G,B} (8.2)

with reflecting boundary conditions at the image boundaries ∂Ω and fixed known data on
K. The diffusion tensor adapts to the local image geometry according to Di Zenzo’s structure
tensor for colour images [75]:

JRGB :=
3∑

c∈{R,G,B}
∇uc,σ∇u>c,σ. (8.3)

However, this time, the known data is fixed on K and we consider the steady state t→∞ of
Eq. 8.2 to obtain the reconstruction on Ω \K. As in Chapter 4, we can penalise the eigenvalues
of the joint structure tensor JRGB in different ways to obtain isotropic or anisotropic diffusion
models.

Colourisation Models

In contrast to inpainting, a full original grey value image is known for colourisation. In addition,
a user can specify some colour information at arbitrary positions. In practice, users often draw
some freehand colour “scribbles” into the image (see Fig. 8.3 (a)).

The formulation of inpainting in RGB space from Eq. 8.2 is not adequate for an elegant
mathematical description of this situation. For colourisation, we need a clear separation of the
brightness information from the original image and the newly added colour data. Therefore,
we use the YCbCr colour space instead. It separates the image data into intensity information
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in the luma channel Y and colour information in the chroma channels Cb and Cr; see e.g. Pratt
[228]. We use the following transform of an RGB image f = (fR, fG, fB) to YCbCr space

fY

fCb

fCr

 =


0

127.5

127.5

 + T


fR

fG

fB

 , (8.4)

T :=


0.2990 0.5870 0.1140

−0.1687 −0.3313 0.5000

0.5000 −0.4187 −0.0813

 . (8.5)

Please note that “luma” is an engeneering term from the original YCbCr definition for TV
formats. For the sake of consistency with the YCbCr notation we use this term to refer to the
channel that contains our abstract, device-agnostic brightness information. We do not consider
photometric concepts in this context.

With this transformation, we can now adequately describe the colourisation task: We want to
obtain a colourised version u : Ω → R3 of a greyscale image f : Ω → R. In YCbCr space, f
corresponds to the Y channel of u, which yields uY = f on the entire domain Ω. On a subset
K ⊂ Ω, colour scribbles uCb = fCb and uCr = fCr are given in addition. Our task is now to
inpaint the missing colours in Ω \K in the channels uCb and uCr.

Again, our processes should be able to reconstruct sharp edges accurately from small amounts
of data. Fortunately, chroma edges mostly coincide with luma edges. Therefore, we do not use
a joint structure tensor (see Eq. (8.3)) to adapt our colourisation locally to the image structure.
Instead, we consider a luma tensor

JY := ∇uY,σ∇u>Y,σ (8.6)

which describes only the known image structure in the brightness channel. Now we can
formulate the colourisation in YCbCr space as a variational problem. We impose a smoothness
constraint to the missing parts of the chroma channels. For a given channel c ∈ {Cb,Cr}, we
minimise the energy functional

E(uc) = 1
2

∫
Ω\K

(
∇>ucD(JY )∇uc

)
dx. (8.7)

Variational calculus tells us that a channel uc that minimises the energy from Eq. 8.7 must fulfil
the Euler-Lagrange Equation

0 = div(D(JY )∇uc), c ∈ {Cb,Cr} (8.8)

8.2 Compression of Colour Images with Edge-Enhancing Diffusion 171



Table 8.1.: Overview of our Diffusion-based Colourisation Methods.

model energy diffusion PDE

isotropic E(uc) = 1
2
∫

Ω\K
g(|∇uY |2) |∇uc|2 dx ∂tuc = div(g(|∇uY |2)∇uc)

bi-isotropic E(uc) = 1
2
∫

Ω\K

(
div(g(|∇uY |2)∇uc)

)2
dx ∂tuc = div(g(|∇uY |2)∇(div(g(|∇uY |2)∇uc)))

EED E(uc) = 1
2
∫

Ω\K
∇>ucD(JY ) ∇uc dx ∂tuc = div(D(JY )∇uc)

Bi-EED E(uc) = 1
2
∫

Ω\K

(
div(D(JY )∇uc)

)2
dx ∂tuc = div(D(JY )∇(div(D(JY )∇uc)))

on Ω \K. This corresponds to the steady state of the diffusion process

∂tuc = div(D(JY )∇uc), c ∈ {Cb,Cr} (8.9)

with Dirichlet boundary conditions uc = fc on K.

Since the propagation is steered by the brightness information in the luma tensor JY this luma-
guided diffusion can also reconstruct edges in the chroma channels. Note that the luma tensor
has the eigenvectors v1 = ∇uY,σ/|∇uY,σ| and v2 = ∇u⊥Y,σ/|∇uY,σ| with the corresponding
eigenvalues µ1 = |∇uY,σ|2 and µ2 = 0. As in the previous sections, we choose the eigenvectors
of D(JY ) to be v1 and v2.

If we just want to inhibit diffusion at luma edges, we can set the eigenvalues of D to λ1 =
λ2 = g(|∇uY,σ|2) with the Charbonnier diffusivity g from Eq. 3.20 in Chapter 3.1. This leads to
a linear isotropic inpainting model with scalar diffusivity instead of a diffusion tensor. Setting
λ2 = 1 allows full diffusion along luma edges, while the diffusion across them is still restricted.
Thus, our model also allows luma-guided edge-enhancing anisotropic diffusion.

Finally, we can also derive higher-order colourisation models from a functional of the form

E(uc) = 1
2

∫
Ω\K

(div(D(JY )∇uc))2dx. (8.10)

It leads us to a novel higher-order diffusion process of the form

∂tu = div(D(JY )∇(div(D(JY )∇uc))). (8.11)

Again, by choosing the eigenvalues of the diffusion tensor D(JY ) we can obtain both isotropic
and anisotropic processes. In accordance to the biharmonic operator (D(JY ) = I) we denote
these two diffusion models as bi-isotropic and Bi-EED. Table 8.1 provides an overview over the
four energies and their corresponding diffusion PDEs.
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Relation to the Method of Levin et al. [164]

In the following, we will show that the method of Levin et al. is closely related to the variational
formulation of our higher-order isotropic model from the previous section. In order to obtain a
discrete energy from the continuous bi-isotropic functional in Table 8.1, we consider a standard
finite-difference approximation [294] of the divergence term with equal grid size h in each
direction:

div(g(|∇uY |2) ≈ 1
h

(gi+1,j + gi,j
2

uc,i+1,j − uc,i,j
h

(8.12)

− gi,j + gi−1,j
2

uc,i,j − uc,i−1,j
h

(8.13)

+ gi,j+1 + gi,j
2

uc,i,j+1 − uc,i,j
h

(8.14)

− gi,j + gi,j−1
2

uc,i,j − uc,i,j−1
h

)
. (8.15)

This detailed notation of the discretisation emphasizes the averaging of diffusivities and
the derivative approximations, but it can also be expressed in a more compact way. Let
N (r) denote the set of indices belonging to the 3 × 3 neighbourhood of the image point
r ∈ Γ = {0, ..., nx−1}×{0, ..., ny−1} in the discrete image domain of size nx×ny. Furthermore,
we define the neighbourhood weighting function

wr,s =


1
2
gs

h2 (r 6= s),

2 gs

h2 (r = s).
(8.16)

With our new notation we can write the discrete energy that corresponds to Eq. (8.15) as

E(uc) =
∑

r∈Γ\K

 ∑
s∈N (r)

wr,s

uc,r − ∑
s∈N (r)

wr,suc,s

2

. (8.17)

The discrete energy from Eq. 8.17 has exactly the same form as the one of Levin et al. Only the
weights wr,s are not necessarily the same. Levin et al. choose them according to a normalised
correlation between the intensity values uY (r) and uY (s), while we employ a diffusivity.

8.2.3 Colourisation Experiments
In the following, we want to evaluate the performance of our four methods luma-guided
isotropic and bi-isotropic diffusion, EED, and Bi-EED against the reference implementation
of the method of Levin et al. In order to achieve a quantitative evaluation, we colourise the
brightness channel of the well known test images house, landscape, and mandrill, as well as
fish, an image from the Berkeley database [188]. We only select a very small amount of colour
scribbles or regular samples in Figure 8.3 and Figure 8.4. After colourisation, we compute the
mean-squared error (MSE) in respect to the original colour images.
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Figure 8.2.: Error Dependencies on the Discretisation Parameters α and γ on the Test
Images fish (left) and mandrill (right). Depending on the image content and known data,
the discretisation can have a large impact or only affect the reconstruction if border cases are
used. The contrast parameter λ = 0.01 was also optimised for the overall smallest error.

For our implementation, we use the finite difference framework of Weickert et al. [299]. We
consider the evolution of the parabolic PDEs from the previous section and solve the inpainting
problem iteratively with fast explicit diffusion (FED) [114] combined with a coarse-to-fine
initialisation. We stop the iterative scheme as soon as the norm of the residual has decreased
by a factor 10−5.

Experimentally, we have determined that a small contrast parameter (λ in Eq. 3.20 from
Chapter 3.1) seems to consistently yield the best results for all four of our diffusion models.
Thereby, the contrast parameter is fixed to λ = 0.01 for all results shown in this section. Note
that for our later experiments with compression, where the original luma component is only
approximated, this does not always hold.

hFurthermore, we have also investigated the influence of the discretisation parameters α and
γ on the colourisation results. More information on these parameters can be found in Eqs.
3.44–3.47 and the accompanying explanations in Chapter 3.1. Optimal parameters and the
gain from optimisation of the discretisation vary from image to image. In the case of the image
fish, the error varies from 92.38 (α = 0, γ = −1) to 48.61 (α = 0.4, γ = 1) (see Fig. 8.2).
However, this influence depends a lot on the image content. For example, in the case of the
image mandrill, most parameter choices yielded almost the same reconstruction error. For the
following experiments, we choose the optimal α and γ for the respective images.

As Tab. 8.2 reveals, the isotropic PDEs perform slightly worse than the method of Levin et al.,
but the anisotropic models yield by far the best results. As the zoom-in into the test image fish in
Figure 8.5 reveals, the edge-enhancing properties of anisotropic diffusion allow to reconstruct
areas with sharp colour contrast accurately: The other models wrongly propagate red colour
into the white stripes of the fish, an effect that is often called colour bleeding. Similarly, they
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house landscape

Figure 8.3.: Colourisation with Bi-EED for house and landscape. For each image, we show
the greyscale version (top), the colour scribbles (middle) and the colourised images (bottom).
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fish mandrill

Figure 8.4.: Colourisation with Bi-EED for fish and mandrill. For each image, we show the
greyscale version (top), the colour scribbles (middle) and the colourised images (bottom).
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Original Bi-Isotropic Levin et al. Bi-EED

Figure 8.5.: Comparison of Different Colourisation Methods for the Test Image fish.
Since the structure in the luma channel is identical in all images, the differences are hard
to spot for the human visual system. However, zooming into the images reveals significant
differences. Perceptually, the bi-isotropic model and the model of Levin et al. yield similar
results. Bi-EED reproduces the high contrast differences of the eye and the white stripe
significantly better than both competitors. The isotropic and EED results are omitted here,
since they cannot be visually distinguished from the other methods.

Table 8.2.: Comparison of colourisation techniques by MSE.

Algorithm house landscape fish mandrill

isotropic 101.59 86.64 105.88 205.33

bi-isotropic 101.59 86.70 105.82 205.34

Levin et al. 75.46 82.57 88.61 194.25

EED 57.70 65.88 48.98 171.22

Bi-EED 58.48 65.86 48.61 170.94

fail to reconstruct the eye as sharply as EED or Bi-EED. The colourisation results of Bi-EED for
all images can be found in Figure 8.3 and Figure 8.4.

Tab. 8.2 also demonstrates that, in general, higher-order models do not yield a significant
advantage. Empirically, we found that they have an evolution that differs from their lower-order
counterpart, but yield almost the same steady state. Therefore, isotropic diffusion and EED
should be preferred for this specific task since they converge significantly faster.

All of the aforementioned experiments are artificial in the sense that a colour ground truth
is available. In real-life applications of colourisation, only the greyscale image is known and
colour must be specified manually. In Figure 8.6 we present a colourisation of an authentic
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greyscale image colour scribbles colourised image

Figure 8.6.: Authentic Image Colourisation. Left: Authentic photograph of the author’s
grandfather. Restored with EED-based inpainting in Chapter 3.1, Figure 3.3. Middle: Manually
drawn colour scribbles. Right: Colourisation with EED.

greyscale photograph. Only a few, coarsely drawn colour scribbles suffice to achieve visually
pleasing results.

8.2.4 Compression with Luma Preference Mode
Currently, R-EED by Schmaltz et al. [250] only supports compression of colour images in RGB
space. It treats all channels equally by inpainting with the coupled multi-channel EED from
Section 3.3. The locations of known data are shared between these channels. This reduces the
overhead since only one inpainting mask needs to be stored, but it also implicitly encodes the
image structure (such as edges) in all three channels. In the following, we use our luma-guided
inpainting in YCbCr space to eliminate this redundancy.

Since we use YCbCr space, we can also exploit the fact that the human visual system is much
more sensitive to errors in the luma channel than to deviations in the chroma components (see
e.g. [36]). Therefore, we can increase the perceived quality by storing the luma channel with
higher accuracy compared to the chroma information.

Motivated by the two observations above, we propose a luma preference (LP) mode for colour
compression with R-EED. In order to reach our goal of accurate luma compression, we prescribe
a target compression ratio R : 1 and dedicate a larger amount of the resulting bit budget to
the brightness channel. We describe this weighting of the luma and chroma components by
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the LP ratio r ≥ 1. This free parameter expresses the file sizes sCb and sCr for colour data as
multiples of the luma size sY :

sY = r · sCb = r · sCr. (8.18)

Therefore, the desired compression ratio R : 1 also determines sY . Due to Eq. (8.18), the total
size of the compressed file is (1 + 2r)sY . Consequently, for an original file size sO, LP mode
reaches the target ratio if sY satisfies

sY := sO
(1 + 2r)R. (8.19)

Our channel weighting with the LP ratio introduces perceptive coding to R-EED, acting as a
counterpart to chroma subsampling in JPEG. However, this by itself only addresses one of
our two goals. Instead of just improving the quality of structural information at the cost of
colour accuracy, we want to exploit correlations between the channels. Even though the edges
are not identical in the Y, Cb, and Cr components, a luma edge is still a good indicator for
a chroma edge, as the high-fidelity colourisations in Section 8.2.3 demonstrate. To this end,
we use the compressed luma channel as the grey-valued guidance image for our colourisation
method from Section 8.2.2. In contrast to Eq. (8.9), we inpaint all three channels with the
luma diffusion tensor. Note that we have individual known data Kc now for every channel. On
Ω \Kc, we compute the steady state of the evolution

∂tuc = div(D(JY )∇uc), c ∈ {Y,Cb, Cr}. (8.20)

Since it offers the best combination of reconstruction quality and performance in the experi-
ments from Section 8.2.3, we use the anisotropic diffusion tensor. Thus, we perform regular
non-linear edge-enhancing diffusion in the luma channel and linear luma-guided EED in the
chroma channels.

Finally, we combine the channel weighting and luma-guided diffusion to our luma preference
codec. In the following, we describe its compression and decompression pipelines as well as its
file structure (see Fig. 8.8 and Fig. 8.9).

Compression in LP mode consists of two sequential steps.

Step 1: Luma Compression. For the luma channel, we obtain the mask with the R-EED
subdivision scheme from Section 3.3. We optimise the contrast parameter λY , and the number
of quantised grey-values qY in the luma channel for the best brightness MSE at the target file
size sY . We approximate sY by compressing the positions of known data represented by a
binary luma tree and the quantised grey values with PAQ [178]. In addition, we optimise the
intensity values at the locations of the final luma inpainting mask.

Step 2: Chroma Compression. In this compression step, we also perform subdivision and
optimise a contrast parameter λCbCr and a quantisation parameter qCbCr. However, there are
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(a) Luma Mask

(b) Chroma Mask

(c) Reconstruction

Figure 8.7.: Masks and Reconstruction in LP Mode. Image 23 of the Kodak database with
compression ratio 60:1, LP factor r = 0.625. Known data clusters near edges and textured
areas in the luma mask. This encodes structure with very high accuracy. For the chroma mask,
we only require a few scattered points that indicate colour.
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Luma Subdivision
Luma-guided
Subdivision

RGB → YCbCr Joint Entropy Coding

Luma Optimisation Chroma Optimisation

Compression

Entropy Decoding Luma Inpainting Chroma Inpainting YCbCr → RGB

Decompression

Figure 8.8.: Compression and Decompression in LP-mode. In both steps, luma inpainting
has to be performed first such that the luma tensor is available for luma-guided inpainting.

content nx, ny λ r luma tree qY luma intensities chroma tree qCbCr chroma intensities

size 9–18 bit 8 bit 2 bit dynamic 8 bit dynamic dynamic 8 bit dynamic

PAQ Container

Figure 8.9.: File Structure in LP Mode for a nx × ny image with contrast parameters
λY , λCbCr, and quantised grey values qY , qCbCr.

some important differences. We use luma-guided EED in this step, which also implies that
accurate structural information is already encoded in the luma tensor. Thus, the exact position
of the known data is not as important as in the first step. To reduce overhead, we therefore
use a joint chroma tree for both channels. This is especially important for small values of r,
since the reduced cost of a shared tree frees up bits for additional or less coarsely quantised
data points. In contrast to the first step, we can now also optimise our parameters, known
data, and chroma values w.r.t. the final MSE after transformation of the reconstruction back
to RGB space. Figure 8.7 shows that the joint chroma mask resulting from this step contains
significantly less data than its luma counterpart, but represents colour information accurately
nonetheless.

Decompression is very straightforward and strictly sequential (see Fig. 8.8). A PAQ decoding
yields access to the parameters and known data. With the trees, we reconstruct the inpainting
masks for all channels. We need to inpaint the luma channel first, since we need the structural
information of the reconstructed brightness component. This allows us finish the reconstruction
by colourising the image with a transformation from YCbCr to RGB space.

File Format. We first write all data sequentially in a binary file. The header contains the image
dimensions nx, ny, the contrast parameter λ, and the LP factor r, each as a binary number of
adequate size. Note that we limit r to the values 1

2 ,
1
4 ,

1
8 , and 1

16 such that we can encode it
with 2 bits. The subdivision schemes are stored as a minimal and maximal depth and a binary
sequence that indicates the tree structure in-between, just as in the original R-EED. In addition,
we also write the quantised luma or chroma values as a sequence of raw binary numbers.
Finally, we apply the entropy coder PAQ [178] to the whole file. Fig. 8.9 shows a visualisation
of this file structure.
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Figure 8.10.: Error Comparison at Different Compression Ratios for the 256× 256 Image
peppers. (a) Left: Joint MSE in RGB space. Lower is better. (b) Top right: MSE in the luma
channel. (c) Bottom right: SSIM. Higher is better.

Table 8.3.: Comparison of Compression Techniques on the Kodak Database at Ratio 60 : 1.

Algorithm Average Ratio Average MSE Maximum MSE Average SSIM Minimum SSIM

JPEG 59.40 109.50 341.52 0.83 0.665

JPEG2000 59.37 78.91 278.83 0.84 0.74

LP-EED 59.38 84.95 309.66 0.818 0.714

8.2.5 Compression Experiments
We compare our luma preference codec to the state-of-the-art in PDE-based compression,
namely R-EED in RGB space, and the established transform coders JPEG and JPEG2000. For
a quantitative evaluation, we consider mainly the mean square error (MSE) over all three
channels of RGB space. Since structural information is particularly important for perception,
we also use the luma channel MSE and the structural similarity index (SSIM), a perceptually
motivated measure for greyscale-converted colour images [289].

In previous chapters, we have conducted experiments only on a small set of standard test
images. Here, in addition, we speed up our algorithm such that for the first time, we can
perform experiments with PDE-based codecs on the Kodak database [83]. This database is used
frequently for the evaluation of compression methods in the industry [2, 108]. In particular,
we replace the SOR scheme of R-EED by the FED-approach with coarse-to-fine initialisation
from Section 8.2.2 and parallelise it on the GPU. On peppers, additional technical modifications
to the parameter optimisation reduce the runtime for a full compression from weeks (R-EED)
to ≈ 5 hours on an Intel Xeon CPU W3565@3.20GHz with an Nvidia Geforce GTX 460. A typical
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compression without brightness optimisation is done in ≈ 7 minutes and the corresponding
decompression takes ≈ 0.7 seconds.

Let us first consider the test image peppers, which contains only moderate amounts of texture.
This is well-suited for our algorithm since it fits the smoothness assumption of our diffusion-
based inpainting. Therefore, even R-EED in RGB-mode can outperform JPEG2000 consistently
(see Fig. 8.10 (a)) in regards to the overall MSE. However, LP mode offers additional perceived
quality with a more accurate luma channel (Fig. 8.10 (b) and (c)). For high compression
ratios, it improves both the luma and the chroma MSE compared to R-EED (RGB). Even
at a ratio of 110 : 1 in Fig. 8.11 (a), our codec still produces a good representation of the
original image while JPEG2000 reaches its limits. The transform-based coders suffer from
block-artefacts at this ratio and the overall error is almost twice as high for JPEG2000. The
same behaviour can also be observed for the test image lena at low to medium compression
ratios (see Fig. 8.11 (b)).

On the natural images of the Kodak database, transform-based coders have the advantage that
they can deal better with highly textured images. On images from the database with a medium
amount of texture, LP mode outperforms all competitors, while R-EED (RGB) stays behind
JPEG and JPEG2000 (see Fig. 8.11 (c)). Even considering the whole database including also
highly textured images in Table 8.3, LP mode beats JPEG consistently in regards to the RGB
MSE. JPEG has still a slight advantage in the luma channel, but only since it drives chroma
subsampling to the extreme. In some cases, very severe colour artefacts are visible. The average
quality is only slightly behind JPEG2000, even though texture is not specifically addressed by
this codec.

Publication Info

The colourisation and colour compression in this chapter have been published
by Peter, Kaufhold, and Weickert [225] in a technical report. This thesis contains
additional experiments with different discretisation parameters. Note that the
technical report extends on previous publications: The basic ideas of diffusion-
based colourisation have been investigated first by Lilli Kaufhold [150] in her
Bachelor’s thesis under supervision of Joachim Weickert. The compression part
of this chapter extends preliminary results presented by Peter and Weickert [219]
at the IEEE International Conference on Image Processing 2014.

�
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JPEG JPEG2000 R-EED (RGB) R-EED (LP)

MSE 214.59, SSIM 0.768 MSE 151.31, SSIM 0.793 MSE 88.58, SSIM 0.819 MSE 77.53, SSIM 0.833

MSE 53.88, SSIM 0.931 MSE 34.05, SSIM 0.932 MSE 33.70, SSIM 0.914 MSE 30.46, SSIM 0.943

MSE 55.37, SSIM 0.911 MSE 35.94, SSIM 0.922 MSE 68.82, SSIM 0.884 MSE 32.14, SSIM 0.927

Figure 8.11.: Compression Results (Overall MSE and SSIM) for peppers, lena, and
kodim07 from the Kodak Database. (a) Top: Results for peppers (256 × 256 pixels) with
compression ratio 110:1. (a) Middle: Results for lena (256 × 256 pixels) with compression
ratio 20:1. (b) Bottom: Results for kodim07 (768× 512 pixels) with compression ratio 60:1.
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8.3 Conclusion„There are things known and there are things unknown,
and in between are the doors of perception.

— Aldous Huxley
(Writer)

With this chapter, we have introduced perceptive coding to PDE-based compression for the first
time. Our region of interest coding by error weighting shows that optimisation-driven diffusion
codecs can easily adapt image quality in different regions without creating overhead. This is
an important addition for the use of PDE-based compression in specialised areas like medical
imaging.

Moreover, we have presented a new diffusion-based colourisation framework in YCbCr space
and have shown that the method of Levin et al. is related to isotropic diffusion inpainting. An
evaluation shows that luma-guided anisotropic diffusion outperforms the approach of Levin et
al. and can reconstruct colour from very sparse known data. This makes it a valuable tool for
compression. Our luma preference mode is the first codec that introduces perceptive coding to
PDE-based compression. An evaluation on well-known test images and the Kodak database
demonstrates that on pictures with medium amounts of texture, LP mode can beat both PDE-
and transform-based competitors. Even for highly textured images, our method outperforms
JPEG and comes close to the quality of JPEG2000.

Our contributions open up interesting perspectives for future work: In combinations with optic
flow or 3-D diffusion, luma-guided diffusion is promising for video colourisation. Moreover, the
new higher-order models could be evaluated in different applications. On the compression side,
the performance on highly textured images can be addressed by applying texture synthesis in
the luma channel. Hybrid approaches with non-local and PDE-based inpainting have already
shown promise [220] in this regard. Overall, our contributions demonstrate that there is still a
lot of unlocked potential for new applications in diffusion-based image processing. In particular,
with perceptive coding of colour images, we provide another important step towards reaching
the same sophisticated level of engineering as transform-based coders.
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9Conclusions and Outlook

„The wheel is come full circle, I am here.

— William Shakespeare
(Dramatist)

In the beginning of this thesis, we set out to analyse the status quo of PDE-based compression
and develop a deeper understanding of its success and limitations. Furthermore, we proposed
different categories for successful codecs based on the requirements for JPEG by Pennebaker
and Mitchell [215] as a guideline for new features in PDE-based compression. Throughout
the thesis, we have addressed four of these categories: quality, consistency, immediacy and
perceptive coding. In the following, we discuss in how far our findings in each area contribute
to the field and what they imply for future research.

General Observations

From a modelling perspective, we have found close, systematic connections between tensor-
driven diffusion processes and natural image priors in Chapter 4. On the one hand, this
allows us to integrate eight existing diffusion models into a unifying, statistically-motivated
framework and provide a new justification for the success of anisotropic diffusion in PDE-based
compression. On the other hand, it is particularly intriguing that the historical evolution
of PDE-based inpainting was originally a task-driven development process in which experts
developed increasingly better smoothness assumptions. From a statistical perspective, however,
this evolution can be interpreted as a gradual improvement of approximation quality towards a
structure tensor prior that measures anisotropy in natural images.

The aforementioned findings concentrate on the general capabilities of individual PDEs in
image processing. For the specific purpose of compression, however, a lot of additional
factors determine the overall performance: the selection and storage efficiency of known data,
quantisation, and entropy coding can affect the trade-off between file size and reconstruction
quality. In Chapter 5, we have proposed two new codecs: the first one uses optimal control to
optimise pixel-accurate inpainting masks, a technique that no codec uses so far. Our second
codec restricts point positions to a regular adaptive grid that can be efficiently stored by a
binary tree representation, sacrificing reconstruction quality for smaller coding cost. In contrast
to established techniques like R-EED, we do not use a heuristic to determine the tree, but
instead employ a probabilistic densification technique.
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Both codecs allow an evaluation with the most popular reconstruction algorithms in compres-
sion: harmonic, biharmonic, and edge-enhancing diffusion (EED). Each inpainting technique
is combined with a tonal optimisation step as postprocessing. This setup allows a thorough
analysis of the interplay between optimisation techniques for inpainting and compression steps.
Coarse quantisation that allows more efficient entropy coding deteriorates compression quality.
However, this negative effect can be partially compensated by tonal optimisation. Interestingly,
the higher-order biharmonic inpainting is more sensitive to quantisation than homogeneous
diffusion and EED.

While these experiments confirm the overall superiority of EED and thereby motivate the use
of EED in the rest of the thesis, the different sensitivity of inpainting operators to compression
also leads to surprising results. In other studies that consider the inpainting capabilities without
actually storing data [59, 125], biharmonic inpainting beats the simpler harmonic operator.
In practice, however, it turns out that quantisation and entropy encoding actually favour
homogeneous inpainting in certain situations. These results show that it is vital to consider
PDEs in the actual context of a codec, since comparative studies that ignore compression steps
can yield misleading results.

Practical Viability

Building on the general insights from the previous sections, we addressed the four areas that
we have identified as limitations of the current generation of PDE-based codecs in Chapter 1.

Consistency. Since texture does not fit to the smoothness assumptions that are enforced in the
inpainting domain by diffusion operators, PDE-based compression struggles with images with a
large amount of small-scale texture. To this end, we have proposed a straightforward block
decomposition scheme in Chapter 6 that allows to augment diffusion-based reconstructions
with additional texture synthesis methods and produces minimal overhead. We have evaluated
the capabilities of this hybrid framework in combination with the patch-based inpainting
approach for sparse known data by Facciolo et al. [90]. This leads to significant improvements
for images with regular texture and allows to surpass JPEG2000. Interestingly, a surprising
amount of robustness under texture data also comes from another codec that we introduced
in Chapter 8.2, which was originally intended for another purpose. Our colour compression
codec allows us to store a lot more of the texture that cannot be reconstructed by PDE-based
inpainting and allows us to surpass JPEG and come close to JPEG2000 without resorting to
patch-based inpainting at all on the Kodak image database [83].

Immediacy. The second big challenge for PDE-based compression is runtime. The powerful
inpainting capabilities of EED are bought at the price of more challenging numerics and higher
runtime in comparison to simple linear inpainting. For video coding, we have demonstrated
that real-time performance is possible on customer hardware with powerful solvers that
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are simultaneously simple to implement. The black box fast explicit diffusion (FED) solver
by Weickert et al. [298] offers a very efficient and straightforward way to implement EED
inpainting. In particular, it is also well-suited for parallelisation on customer class GPUs. In
combination with a smart initialisation system that reuses as much of the previous frame to
speed up the convergence of the next inpainting, we achieve real-time performance. With a
sophisticated caching system, the 640× 480 movie Nosferatu can be played back at 25 frames
per second. In particular, we reach a compression ratio of 20:1 without making noticeable
compromises in regards to reconstruction quality in comparison to full regular frame-by-frame
decompression without time constraints. Before the thesis, this was only possible for videos
with significantly lower resolution and by sacrificing quality [22, 156].

Perceptive Coding. In Chapter 8 we have combined many of the findings from the rest of the
thesis. Since the combination of binary subdivision trees and EED is qualitatively still the most
advanced method, we propose two new features for tree-based compression: region of interest
coding and colour compression.

Our ROI extension is backwards compatible with R-EED [252], but can also be integrated
in our new codecs from this thesis. It is simultaneously simple to implement, powerful, and
flexible. The user defines a pixel-accurate weighting of the error measure that is used for spatial
and tonal optimisation. This creates no additional overhead in the compressed file and the
subdivision scheme provides an automatic adaptation of the regular grid to ROIs of arbitrary
shape.

The novel colour compression codec from Chapter 8.2 also falls in the category of perceptive
coding since it exploits the fact that the human visual system values structure higher than colour.
It is based on a new colourisation technique, luma-guided inpainting. Here, a decomposition
into brightness and colour information enables us to reuse structural information from the
brightness or luma channel to get a good reconstruction in the chroma channels with very few
known data. We first show the relationship of this method to the approach of Levin et al. [164].
The anisotropy in our approach leads to a large qualitative advantage that we can exploit in our
novel codec. By allowing the brightness channel a large file size budget, structural information
can be stored accurately. Due to the luma-guided inpainting, also the chroma channels benefit
from this information. This allows us to outperform both the state-of-the art in PDE-based
image compression, R-EED, as well as JPEG2000, by a large margin on images with medium
and low amounts of texture.

Furthermore, our experiences with real-time processing in video compression allow us to
evaluate PDE-based codecs under more realistic conditions than before. For the first time, we
are able to conduct experiments on a well-recognised database of natural images [83]. Since
this database contains a lot of images with high amounts of texture, it is ill-posed for our codec.
Nevertheless, we are able to beat JPEG consistently by a large margin and even come close to
JPEG2000.
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Summary. In total, we have introduced important new features, namely region of interest
and colour coding. Furthermore, we have proposed ways to improve robustness for textured
image content and improved runtime performance. This also allowed us to assess the current
state of PDE-based compression for the first time under realistic conditions on a natural image
database, showing that it vastly outperforms JPEG and comes close to JPEG2000, even when
heavy texture is involved. All of these new contributions are compatible with important
existing features for PDE-based compression such as progressive modes [251] or steganography
[182].

9.1 Future Work„Prediction is very difficult,
especially if it’s about the future.

— Niels Bohr
(Physicist, Winner of the Nobel Prize)

While we have found answers to many important questions from multiple areas of PDE-based
compression, just as many new questions arise. In the following we sketch ideas for additional
theoretical and practical research topics that go beyond our contributions.

Theoretical Perspectives

There are many opportunities to extend on the relationship between statistical priors and
diffusion. So far, we have used statistics mainly to justify existing models. In this regard, the
search for a variational formulation of EED is still not resolved. So far, it has neither been
proven nor disproven if a corresponding energy functional exists. However, our analysis of
directional derivative priors in Chapter 4.8 gives another hint that EED is closely related to the
statistics of natural images. In future research, we want to investigate these relations more
closely.

Beyond the search for correspondences to prior work, it is also attractive to motivate new and
potentially more powerful diffusion models from statistics: The fact that probabilistic models
like Field-of-Experts (FoE) [238] achieve better results with learned filters than with fixed
features suggests that there might be also better corresponding diffusion models. Many of the
learned features still resemble derivative filters or show some symmetries. Thereby, it could
be fruitful to investigate if there is a consistent underlying pattern to the learned filters that
implies a new class of diffusion or diffusion-reaction filters.
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Moreover, our experiments in Chapter 4.8 suggest that the learned models are not as well-
suited for inpainting as for denoising, since they do not incorporate different distributions of
known data and only incorporate localised statistics. Therefore, it seems viable to investigate
new, specifically designed inpainting priors that investigate more global relationships between
different MRF random variables.

In a similar direction, texture priors could be a valuable research topic. Exemplar-based
inpainting methods also exploit global interactions between image patches to reconstruct
texture. Recently, a theory for non-local diffusion processes has been established by Cárdenas
et al. [46]. Possibly, the prior-framework could also be extended to contain such non-local
approaches.

Furthermore, little research on PDE-based compression has been conducted from the point of
view of information theory. Only Scheer [247] tried to deviate from standard entropy coders,
albeit with limited success. However, the current use of entropy coders like PAQ [178] discards
a lot of valuable information. Instead of simply encoding a sequence of grey values and ignoring
the spatial relationships of mask locations, new file type models could be introduced to entropy
coders that incorporate this information.

Towards Practical Viability

For some specific classes of images like depth-maps and cartoon images where the smoothness
assumption is fulfilled, diffusion-based codecs are already viable. However, for general purpose
encoding, it is clear that even after the progress made in this thesis, texture and runtime remain
the two most pressing issues that have to be addressed before a wide-spread use of these codecs
is possible.

Our block-based approach for texture encoding is successful, but can still be improved. Cur-
rently, it conducts spatial optimisation only in regards to PDE. The exemplar-based inpainting
only comes into play in postprocessing. A refined method should treat both reconstruction
approaches equally. Beyond block-based encoding, a unifying inpainting approach would be
even more promising. Such a method would locally adapt to the image structure and decide
if structure propagation or texture synthesis is more efficient in a given image area. Recent
progress on non-local diffusion models [46] could provide the tools for such an endeavour.
Furthermore, learned multi-stage diffusion processes [58] seem to be able to reproduce texture
from sparse data remarkably well [318].

The aforementioned multi-stage models could also help in regards to runtime, since they only
require a limited number of iterations by definition. Furthermore, the results from Chapter 5
show that especially for low compression ratios, linear models seem to be quite promising. For
these models, there are strong indications that very efficient implementations with runtimes
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comparable to JPEG and JPEG2000 are possible [128].This could also be exploited in combina-
tion with the colour compression from Chapter 8.2 to create a completely linear compression
pipeline: The brightness channel could be compressed with a low compression ratio using linear
homogeneous diffusion. Based on the accurate structural information from this compression, a
linear anisotropic colourisation approach can then be applied to reconstruct colour information.
This would help to reduce the bottleneck of tonal optimisation which currently makes up most
of the runtime of compression.

In regard to brightness optimisation, it could also be viable to explore localisation strategies
based on the influence regions of the mask points. Since localised diffusion is already employed
successfully for subdivision trees in R-EED [252] and this thesis, it would be consequent to also
try this not only for spatial, but also for tonal optimisation.

Ultimately, PDE-based compression has to aim for synchronous codecs where compression and
decompression are both possible in real-time. Especially for widespread use in browsers this is
vital. Of course, standardisation and patent-free components are also important. Practitioners
like Google [108] and Mozilla [2] both invest heavily into replacements for JPEG in webbrowers
and consider the aforementioned criteria just as important as quality [1].

In order to go towards standardisation, it would help to establish a common platform for
PDE-based codecs that unifies the engineering aspects. PDE-based compression is largely
model-driven and uses ready-made entropy coding techniques. Interoperability could be
improved and the results made available to a broader audience by standardising. Furthermore,
such a framework would allow to design a standardised decoder that ensures backwards-
compatibility while encoders can be improved over the years. This concept was very successful
for JPEG. In Appendix I we provide a rough sketch of how such a framework could look like. In
particular, it would also be helpful to propose benchmarking tools for PDE-based compression
together with such a framework. As Chapter 5 shows, comparative studies in PDE-based
compression are currently not standardised and can easily lead to wrong conclusions if not all
aspects of compression are properly considered.

Extensions

Beyond general purpose encoding, chances of pure diffusion lie in image areas where the
smoothness assumption is fulfilled or structural data is cheap to store. For example, there are
dedicated transform-based codecs for remote sensing, which includes hyperspectral data (see
Serra-Sagristà and Aulí-Llinàs [256] for an overview). Here, a large number of channels with
highly correlated edges have to be compressed. Since luma-guided inpainting from Chapter 8.2
seems to exploit the structural correlation in multi-channel images well, hyperspectral imaging
could be a good specialised application for PDE-based inpainting. In particular, it would be
interesting how PDE-based encoding would impact subsequent practical applications (such as
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classification of the compressed images) compared to transform-based coders [102]. Further-
more, tensor data from medical imaging could also be a content type that might benefit from
PDE-based compression.

Obviously, video compression is another big area that has seen only small amounts of attention
in the PDE-based compression community. A particularly interesting starting point seems to be
cartoon videos. Here, linear diffusion approaches [184] are very successful on single images
quality wise. Simultaneously, achieving real-time performance is easier than for non-linear
diffusion models. So far, the possibility of using redundancies between different frames for
PDE-based encoding remains virtually unexplored. This could be either achieved by prediction
as in current transform-based coders, or by applying 3-D diffusion [218].

Furthermore, current PDE-based compression methods rely primarily on storing selected pixels
and thus creating a sparse representation of the image in the spatial domain. However,
diffusion-based reconstruction is not necessarily limited to this kind of known data. Only
few methods try to prescribe other kinds of data, namely gradients [39, 254]. One could
also consider to specify diffusivities or whole diffusion tensors explicitly at key points in the
image. Such ideas could be interesting whenever the trade-off between storing diffusion tensors
verbatim and storing them indirectly via the configuration of several pixels is in favour of the
tensor. Closest to this approach is the reproduction of geometric shapes by Huth [138] and
Steil [265] that relies on carefully chosen quadrupoles or nonapoles.

Another very important future field for PDE-based compression could be psycho-visual encoding.
In video coding, an increasing number of codecs emerge that do not rely purely on classic
quantitative metrics like the MSE. Instead, they explicitly consider highly textured regions as
“perceptually irrelevant” [203, p. 2] and try to substitute them with synthesised textures that
are only visually similar. However, such visual similarity is very difficult to detect and current
methods still struggle with finding adequate metrics. A good overview over different methods
is given by Ndjiki-Nya et al. [203].

9.2 Closing Words„Despair is the conclusion of fools.

— Benjamin Disraeli
(Politician and Writer)

Since the dawn of PDE-based compression, critics had it always easy to dismiss this new type
of codecs and even now some of the initial arguments are still used against it: The texture
problem is not completely solved and runtime is not on par with JPEG and JPEG2000.
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In most cases, it requires little effort to provide a pessimistic view on competitors to established
methods. However, many of the initial arguments have been proven wrong: The argument that
JPEG could not be beaten was countered already by Galić et al. [99]. The same assumption
on the general superiority of JPEG 2000 was set aside by Schmaltz et al. [252] for grey value
images and in Chapter 8.2 we did the same for colour images. Our real-time video compression
from Chapter 7 shows that the scepticism regarding the performance of anisotropic diffusion
can be overcome with tenacity and efficient use of available information. All of these examples
indicate that even the small current compression community can overcome many challenging
issues that remain.

The contributions of this thesis and the outlook in the previous section convey a current trend:
PDE-based compression is gaining momentum. An honest assessment of the current situation
has to admit that the journey towards practical viability is still a difficult one. However,
promising results indicate that the most pressing issues are either getting resolved or can be
addressed in the future. As more researchers show their interest in the topic, the future of
PDE-based compression might very well be a bright one.
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CGlossary

AMLE Absolute Minimal Lipschitz Extension.

BMP Bitmap Image File.

BPG Better Portable Graphics.

BTTC B-tree Triangular Coding.

CCITT International Telegraph and Telephone Consultative Committee.

Convolution Integral transform that can be used to describe any liner shift invariant filter.
In particular, linear homogeneous diffusion can be seen as Gaussian convolution. It is
defined in Eq. 2.6.

DCT Discrete Cosine Transform.

DDD Directional Derivative Diffusion.

Diffusion Tensor Symmetric, positive matrix D that describes the directional behaviour of a
diffusion process. Its eigenvalues indicate the amount of diffusion in the direction of the
corresponding eigenvector.

DWT Discrete Wavelet Transform.

EED Edge-enhancing Anisotropic Diffusion.

EEDC Edge-enhancing Diffusion Codec.

FED Fast Explicit Diffusion.

FoE Field-of-Experts.

GIF Graphics Interchange Format.

GOP Group of Pictures.
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GPU Graphics Processing Unit.

GRF Gibbs Random Field.

HFR High Frame Rate Video.

IEC International Electrotechnical Commission.

ISO International Organisation for Standardisation.

JPEG Joint Photographic Experts Group.

JPEG2000 Joint Photographic Experts Group 2000.

Lossless Compression Compression that removes redundancy from data and ensures an
exact reconstruction.

Lossy Compression Compression that removes visually unimportant image data to increase
the compression ratio.

LZW Lempel-Ziv-Welch Coding.

MRF Markov Random Field.

MSE Mean Squared Error.

NLI Nonlocal Inpainting.

NLNE Nonlocal Node Exchange.

NLPE Nonlocal Pixel Exchange.

PAQ Context-mixing scheme for compression of heterogeneous data. PAQ is not an acronym,
but an onomatopoeic transcription of “pack”.

PCX Picture Exchange.

PDE Partial Differential Equation.

PNG Portable Network Graphics.
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PPM Prediction by Partial Matching.

PSNR Peak Signal-to-noise Ratio.

Quantisation Discretisation of the co-domain of a continuous image. Grey or colour values
are represented by a finite set of integer numbers instead of using a continuous range of
real numbers.

R-EED Rectangular Subdivision with Edge-enhancing Diffusion.

RLE Run-length Encoding.

ROI Region of Interest Coding.

Sampling Discretisation of the spatial domain of a continuous image. Pixel locations live on a
grid instead of a continuous coordinate system.

SOR Successive Overrelaxation.

SSIM Structural Similarity Measure.

Transform-based Compression Compression based on sparsity resulting from a transforma-
tion to another domain.

TV Total Variation.

VIF Visual Information Fidelity.
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DList of Symbols

a . . . . . . . . . Global error threshold in R-EED, defined in Chapter 3.3.

A . . . . . . . . Semi-implicit discretisation of a diffusion PDE, defined in Eq. 3.48.

b . . . . . . . . . Number of blocks in the hybrid texture compression algorithm of
Chapter 6.

c . . . . . . . . . Inpainting mask. Can be defined as a continuous confidence func-
tion c : Ω→ R, a continuous binary function, or a discrete vector c
(see Chapter 3.1).

C . . . . . . . . . Neighbourhood clique, defined in Chapter 4.

c(P,f , g) . . . . Contrast coefficient for the images f and g on a patch P , defined
in Eq. 2.31.

cP . . . . . . . . Confidence function for frame reuse in real-time video playback,
defined in Eq. 7.13.

D . . . . . . . . Diffusion tensor, defined in its most general form in Eq. 4.36.

d . . . . . . . . . Target mask density in stochast sparsification in Chapter 5. Also:
Tree depth in R-EED, defined in Chapter 3.3.

D±x/y . . . . . . . Finite difference, defined in Eq. 3.40– Eq. 3.43.

div . . . . . . . . Divergence operator, defined in Eq. 2.11.

E . . . . . . . . Energy that is minimised in various variational approaches, see
Chapter 4 and Chapter 6. Also: Edges of an MRF graph, defined in
Chapter 4.

f . . . . . . . . . Original image in an inpainting context, noisy initial image in a
denoising context.

GC . . . . . . . . Potential function for a neighbourhood clique C, defined in Chap-
ter 4.
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g . . . . . . . . . Diffusivity, determines amount of diffusion. Popular diffusivities
are defined in Eq. 3.20.

H(S) . . . . . . Entropy of an alphabet S, defined in Eq. 3.68.

hP . . . . . . . . Homogeneity factor for confidence function in real-time video play-
back, defined in Eq. 7.12.

hx, hy . . . . . . Grid sizes in x- and y-direction for discrete images. See definition
of sampling in Chapter 2.

I(s) . . . . . . . Self information of a symbol s, defined in Eq. 3.67.

I . . . . . . . . . Unit matrix I := diag(1, . . . , 1).

J . . . . . . . . . Structure tensor, defined in Eq. 4.5.

j . . . . . . . . . Flux according to Fick’s law, defined in Eq. 3.1.

K . . . . . . . . Inpainting mask K ⊂ Ω. Contains locations of known image data.

Kσ . . . . . . . . Gaussian with mean zero and standard deviation σ, defined in
Eq. 2.7.

`(P,f , g) . . . . Mean luminance of the image f on a patch P , defined in Eq. 2.29.

` . . . . . . . . . Level factor in R-EED, defined in Chapter 3.3.

m . . . . . . . . Size of candidate set in stochastic sparsification or densification,
see Chapter 5.

n . . . . . . . . . Fraction of candidate points that are discarded again in stochastic
sparsification or densification, see Chapter 5.

n . . . . . . . . . Outer normal at image boundary ∂Ω.

nc . . . . . . . . Number of image channels (integer). Throughout this thesis, we
only consider nc = 1 for greyscale images and nc = 3 for colour
images.

N . . . . . . . . Neighbourhood system, defined in Chapter 4.

nf . . . . . . . . Number of filters in a statistical prior (integer).
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nx, ny . . . . . . Spatial image dimensions (integer).

O . . . . . . . . Bachmann-Landau notation, defined in Chapter 3.1.

p . . . . . . . . . Probability density in Chapter 4. Also: Point pattern in R-EED,
defined in Chapter 3.3.

P . . . . . . . . Image patch P ⊂ R. Contains coordinates of a neighbourhood that
defines a patch.

p1, p2, p3 . . . . . Exponential SSIM weights, defined in Eq. 2.34.

P . . . . . . . . Power set.

q . . . . . . . . . Number of quantised grey values.

ri,j . . . . . . . . Weights for region of interest coding in Chapter 8.1.

r(c, g) . . . . . . Reconstruction from image data g and a binary mask c Chapter 5.

sP . . . . . . . . Size factor for confidence function in real-time video playback,
defined in Eq. 7.11.

s(P,f , g) . . . . Structure coefficient for the images f and g on a patch P , defined
in Eq. 2.33.

T . . . . . . . . . Subdivision tree in Chapter 5. Also: Adaptive error threshold in
R-EED, defined in Chapter 3.3.

t . . . . . . . . . Time variable.

t1, t2, t3 . . . . . Thresholds for frame types in video encoding, see Chapter 7.

u . . . . . . . . . Evolving image in a diffusion process.

V . . . . . . . . Vertices of an MRF graph, defined in Chapter 4. Also: Similarity
function of non-local inpainting, defined in Eq. 6.1

vi . . . . . . . . Eigenvector i of the structure or diffusion tensor.

w . . . . . . . . . Gaussian-like weights of non-local inpainting, defined in Eq. 6.6.

x . . . . . . . . . Spatial variable for x-direction (real-valued), image point x (vector-
valued), or generic scalar.
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y . . . . . . . . . Spatial variable for y-direction (real-valued), image point y (vector-
valued), or generic scalar.

α . . . . . . . . . Discretisation weight in Chapter 3.1. Also: Luminance weight for
SSIM, defined in Eq. 2.29.

αk . . . . . . . . Free parameter for the k-th Student-t expert in a prior model, see
Eq. 4.8.

β . . . . . . . . . Discretisation weight in Chapter 3.1. Also: Contrast weight for
SSIM, defined in Eq. 2.31.

χA . . . . . . . . Indicator function of the set A, defined in Eq. 3.27.

∆ . . . . . . . . Laplace operator, defined in Eq. 2.12.

Γ . . . . . . . . . Discrete image domain Γ ⊂ N. Contains indices {0, . . . , nx− 1} and
{0, . . . , ny − 1} for x- and y-direction.

γ . . . . . . . . . Discretisation weight in Chapter 3.1, diffusivity parameter in Chap-
ter 4. Also: Contrast weight for SSIM, defined in Eq. 2.33.

λ . . . . . . . . . Contrast parameter for diffusion models, see e.g. Eq. 3.20.

λi . . . . . . . . Eigenvalue i of the diffusion tensor.

µ . . . . . . . . . Average grey value of an image, defined in Eq. 3.9.

µi . . . . . . . . Eigenvalue i of the structure tensor.

µP,f . . . . . . . Mean value of grey values of the image f on a patch P , defined in
Eq. 2.28.

∇ . . . . . . . . Gradient operator, defined in Eq. 2.10.

Ω . . . . . . . . . Continuous image domain Ω ⊂ R. In this thesis, we assume that
the domain is rectangular.

Ω \K . . . . . . Inpainting domain Ω \ K ⊂ Ω. Contains locations of unknown
image data.

φ . . . . . . . . . Student-t expert function, see Eq. 4.8.
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ψ . . . . . . . . . Kurtotic distribution for variational penalisers, see Eq. 4.27. Also:
Penaliser used to define a confidence function in Eq. 7.14

ρ . . . . . . . . . Standard deviation of a Gaussian as defined in Eq. 2.7. In the
context of diffusion, ρ describes the integration scale of the structure
tensor (see Eq. 4.5).

σ . . . . . . . . . Standard deviation of a Gaussian, defined in Eq. 2.7. In the context
of diffusion, σ describes the smoothing scale of the structure tensor
(see Eq. 4.5).

σP,f . . . . . . . Standard deviation of an image f on a patch P , defined in Eq. 2.30.

σP,f ,g . . . . . . Correlation coefficient of the images f and g on a patch P , defined
in Eq. 2.32.

τ . . . . . . . . . Discrete time step size, defined in Chapter 3.1.

| · | . . . . . . . . Absolute value or Euclidean norm (see Eq. 2.2).

∗ . . . . . . . . . Convolution operator, defined in Eq. 2.6.

b·c . . . . . . . . Floor operator, defined in Eq. 2.8.

‖ . . . . . . . . . parallel, i.e. for two vectors u ‖ v ⇔ u = av with a ∈ R.

∂A . . . . . . . . Boundary of a set A.

∂v . . . . . . . . Directional derivative in respect to the vectorial direction v ∈ Rn,
defined in Eq. 2.13.

du . . . . . . . . Gâteaux derivative in respect to a function u : R 7→ R, defined in
Eq. 2.15.

∂x . . . . . . . . Partial derivative in respect to argument x ∈ R, defined in Eq. 2.9.

⊥ . . . . . . . . perpendicular/orthogonal, defined in Eq. 2.4.

List of Symbols 231





EList of Figures

1.1 Comparison of R-EED and JPEG2000 on Grey Scale Images . . . . . . . . . . . . 3
1.2 Cartoon and Depth Map Compression with PDEs . . . . . . . . . . . . . . . . . . 4
1.3 Comparison of R-EED and JPEG2000 on Colour Images . . . . . . . . . . . . . . 5
1.4 Comparison of R-EED and JPEG on Textured Images . . . . . . . . . . . . . . . . 6
1.5 Visual Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Image Vectorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 MSE Hypersphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 SSIM Hypersphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Diffusion of Iodine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Denoising with Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Image Restoration with PDE-based Inpainting . . . . . . . . . . . . . . . . . . . . 36
3.4 Inpainting with Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Transform-based Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Cartoon Reconstruction with PDE-based Inpainting . . . . . . . . . . . . . . . . . 58
3.7 3-D Reconstructions with PDE-based Inpainting . . . . . . . . . . . . . . . . . . . 60
3.8 Timeline: Evolution of Image Compression . . . . . . . . . . . . . . . . . . . . . 63
3.9 Point patterns in R-EED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.10 Subdivision in R-EED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Natural Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Invariances of Derivative Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Eigenvalue Pair Histogram of the Structure Tensor on the Berkeley Image Database. 82
4.4 Scale-Invariance of the Structure Tensor . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Influence of Smoothing Scales on Eigenvalue Histograms . . . . . . . . . . . . . 84
4.6 Estimated Diffusivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7 Denoising Results on the Berkeley Database . . . . . . . . . . . . . . . . . . . . . 92
4.8 Inpainting with Image Specific Parameters . . . . . . . . . . . . . . . . . . . . . . 95
4.9 Denoising with Directional Derivative Diffusion . . . . . . . . . . . . . . . . . . . 98
4.10 Inpainting with Directional Derivative Diffusion . . . . . . . . . . . . . . . . . . . 99

5.1 Example: Spatial and Tonal Optimisation . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Visual Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Example: Stored Edges and Exact Masks . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Example: Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5 Coding of Exact Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6 Nonlocal Node Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

233



5.7 Optimal Inpainting Masks for Different PDEs . . . . . . . . . . . . . . . . . . . . 123
5.8 Influence of Data Selection Strategies on Inpainting . . . . . . . . . . . . . . . . 124
5.9 MSE Evaluation with Different Inpainting Operators on peppers . . . . . . . . . . 125
5.10 Influence of Quantisation on Inpainting . . . . . . . . . . . . . . . . . . . . . . . 126
5.11 Visual Comparison of Different Inpainting Operators on peppers and elaine . . . 127

6.1 Visualisation of Propagation with Diffusion- and Exemplar-based Inpainting . . . 132
6.2 Structure Propagation with Diffusion- and Exemplar-based Inpainting . . . . . . 135
6.3 Texture Propagation with Diffusion- and Exemplar-based Inpainting . . . . . . . 136
6.4 Reconstruction and Block Decomposition with Diffusion- and Exemplar-based

Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5 Original Images and Ratio-Dependent Error for Texture Compression . . . . . . . 140
6.6 Texture Compression Results for barbara . . . . . . . . . . . . . . . . . . . . . . . 142
6.7 Texture Compression Results for bridge . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1 Comparison of Numerical Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2 Scenes with Quick Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Reconstruction of Frame 4932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.4 Reconstruction of Frame 9601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.5 Thread Interaction in Video Decompression . . . . . . . . . . . . . . . . . . . . . 158

8.1 Reconstruction Examples with and without Region of Interest Coding for the Test
Images brain, trui, and nosferatu . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.2 Discretisation Dependency of Colourisation . . . . . . . . . . . . . . . . . . . . . 174
8.3 Colourisation with Bi-EED for house and landscape . . . . . . . . . . . . . . . . . 175
8.4 Colourisation with Bi-EED for fish and mandrill . . . . . . . . . . . . . . . . . . . 176
8.5 Comparison of Colourisation Methods . . . . . . . . . . . . . . . . . . . . . . . . 177
8.6 Authentic Image Colourisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.7 Masks and Reconstruction in Luma Preference Mode . . . . . . . . . . . . . . . . 180
8.8 Compression and Decompression in Luma Preference Mode . . . . . . . . . . . . 181
8.9 File Structure in Luma Preference Mode . . . . . . . . . . . . . . . . . . . . . . . 181
8.10 Colour Compression at Different Compression Ratios . . . . . . . . . . . . . . . . 182
8.11 Examples for Colour Compression with Luma-guided Diffusion . . . . . . . . . . 184

I.1 Codec Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

234 Chapter E List of Figures



FList of Tables

2.1 Notational Conventions for Different Mathematical Entities . . . . . . . . . . . . 15

3.1 Comparison of PDE-based Coders . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Existing Diffusion Models and their Relation to the Unifying Framework . . . . . 87
4.2 Denoising Results on the Berkeley Database . . . . . . . . . . . . . . . . . . . . . 91
4.3 Learning Parameters for Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 MSE Comparison of Inpainting Operators on Popular Test Images . . . . . . . . . 127

7.1 Comparison of Video Decompression to Reference Inpaintings . . . . . . . . . . . 160

8.1 Overview of our Diffusion-based Colourisation Methods . . . . . . . . . . . . . . 172
8.2 Comparison of Colourisation Techniques by MSE . . . . . . . . . . . . . . . . . . 177
8.3 Comparison of Compression Techniques on the Kodak Database at Ratio 60 : 1 . . 182

I.1 Data Types Supported by File Headers . . . . . . . . . . . . . . . . . . . . . . . . 250

235





GDetailed Derivations for
Probabilistic Diffusion Models

„Computations are everywhere, once you begin to look
at things in a certain way.

— Rudy von Bitter Rucker
(Mathematician and Science Fiction Author)

In this appendix we cover the computations necessary to derive the newly introduced PDEs in
Chapter 4 in more detail. First, we derive the PDE corresponding to the unifying probabilistic
framework from Chapter 4.5 in Section G.1. The EED-related DDD model from Chapter 4.8 is
the topic of Section G.2.

In both cases, we are interested in the necessary conditions, that a minimiser u : R2 7→ Rnc of
an energy

E(u) =
∫

Ω
F (x, y,u) dx dy (G.1)

has to fulfil. To this end, we compute the Gâteaux-derivatives

d

dε

∫
Ω
F (x, y,u+ diag(h)ε) dx dy

∣∣∣∣
ε=0

. (G.2)

for k = 1, . . . , nc, the test function h : R2 7→ Rnxny , and ε ∈ Rnc . The term diag(h) denotes an
nc × nc diagonal matrix that contains the components of the vector-valued test function h on
its diagonal:

diag(h) :=


h1 0 0 0
0 h2 0 0

. . . . . . . . . . . .

0 0 0 hnc

 (G.3)

These derivations follow well-known rules from variational calculus. We have collected some
of the relations that are relevant for both cases in Section G.3 to reduce overhead.

Note that the treatment of the structure tensor derivatives in Section G.1 follows the formulation
of Roussos and Maragos [239], who derive a special case of our general minimiser in their
paper.
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G.1 Deriving the Unifying Probabilistic
Diffusion Framework
In Chapter 4, we want to derive diffusion PDEs from the unifying energy

E(u) = 1
2

∫
Ω

(1
τ
|u− f |2 + ψ(µ1, µ2)

)
dx dy (G.4)

that contains the noise prior τ |u − f | and the natural image prior ψ(µ1, µ2). The latter is a
function of the eigenvalues µ1 and µ2 of the structure tensor

Jnc,ρ,σ := Kρ ∗
( m∑
k=1

∇σ uk∇σu>k
)

(G.5)

The noise prior directly leads to a term that can be interpreted as a discrete time derivative with
step size τ . However, we still need to compute the divergence term from the Gâteaux-derivative
of the image prior

0 = 1
τ

(uk − fk) + 1
2

∫
Ω

(
dεk
(
ψ(µ1(u+Hε), µ2(u+Hε))

))
dx dy (G.6)

for k ∈ {1, ..., nc}. As already mentioned in Chapter 4, we focus on the derivatives

dεk
(
ψ(µ1(u+Hε), µ2(u+Hε))

)
= ∂ψ

∂µ1
dεk(µ1) + ∂ψ

∂µ2
dεk(µ2) (G.7)

of the penaliser ψ, first.

Derivatives of Structure Tensor Entries

The eigenvalues of the structure tensor Jnc,σ,ρ can be defined in terms of its matrix elements
Ji,j , i, j ∈ {1, 2}. In order to compute the Gâteaux-derivatives of µ1 and µ2, we therefore
establish a common structure for the derivatives of Ji,j first. This simplifies later computations
significantly.

d

dεk
J11

∣∣∣∣
εk=0

= Kρ ∗ 2∂xuk,σ∂xhk,σ ,

d

dεk
J22

∣∣∣∣
εk=0

= Kρ ∗ 2∂yuk,σ∂yhk,σ ,

d

dεk
J12

∣∣∣∣
εk=0

= Kρ ∗ ∂xuk,σ∂yhk,σ + ∂yuk,σ∂xhk,σ ,

= Kρ ∗ (∂yuk,σ, ∂xuk,σ)∇hk,σ .

(G.8)
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The derivative d
dεk
J12|εk=0 allows a direct formulation as the dot product between ∇hk,σ

and (∂yuk,σ, ∂xuk,σ)>. For the components J11 and J22, we cannot achieve such a structure
immediately. However, in later computations we will only need sums and differences of J11

and J22. To this end, we can simplify both terms as dot products:

d

dεk

(
J11 + J22

)∣∣∣∣
εk=0

= Kρ ∗ 2
(
∂xuk,σ∂xhk,σ + ∂yuk,σ∂yhk,σ

)
= Kρ ∗ 2∇u>k,σ∇hk,σ ,

d

dεk

(
J11 − J22

)∣∣∣∣
εk=0

= Kρ ∗ 2
(
∂xuk,σ∂xhk,σ − ∂yuk,σ∂yhk,σ

)
= Kρ ∗ 2(∂xuk,σ,−∂yuk,σ)∇hk,σ .

(G.9)

Note that for the special case σ = 0 and with a different notation (M1∇u = ∇u⊥, M2∇u =
(uy, ux)> with suitable matrices M1 and M2) these derivatives are consistent with the interme-
diate results of Roussos and Maragos in Section 6.2 of their publication [239].

Derivatives of the Eigenvalues

Now that we have a compact notation for the derivatives of the structure tensor entries, we
can deal with the derivatives of the eigenvalues µ1 and µ2. In order to shorten notations, let
v := (∂xuk,σ,−∂yuk,σ) and w := (∂yuk,σ, ∂xuk,σ).

d

dεk
µ1

∣∣∣∣
εk=0

= d

dεk

1
2
(
J11 + J22 +

√
(J11 − J22)2 + 4J2

12

)∣∣∣∣
εk=0

=
d
dεk
J11 + J22|εk=0

2 +
(J11 − J22) d

dεk
(J11 − J22)|εk=0 + 4J12

d
dεk
J12|εk=0

2
√

(J11 − J22)2 + 4J2
12

= Kρ ∗
((

∇u>k,σ + (J11 − J22)v + 2J12w√
(J11 − J22)2 + 4J2

12

)
∇hk,σ

)

= Kρ ∗
(
(M∇uk,σ)>∇hk,σ

)
(G.10)

Note that
√

(J11 − J22)2 + 4J2
12 = µ1 − µ2 which enables us to define the matrix M as

M := 1
µ1 − µ2

µ1 − µ2 + J11 − J22 2J12

2J12 µ1 − µ2 − J11 + J22

 . (G.11)
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The matrix M can be directly related to the eigenvectors of Jnc,σ,ρ in a similar way as in [239]
by computing the eigenvalues λ1 and λ2 and the first eigenvector u1 of M directly:

λ1 =
M11 +M22 +

√
(M11 −M22)2 + 4M2

12

2

=
2 +

√
4 (J11−J22)2+4J2

12
(J11−J22)2+4J2

12

2 = 2 +
√

4
2 = 2 ,

λ2 = 2−
√

4
2 = 0 ,

û1 =

M11 −M22 +
√

(M11 −M22)2 + 4M2
12

2M12



= 2
λ1 − λ2

J11 − J22 +
√

(J11 − J22)2 + 4J2
12

2J12

 .

(G.12)

Thus, the eigenvector corresponding to the only non-zero eigenvalue of M has the same
direction as û1. This vector is parallel to v1, i.e. after normalisation u1 = û1/‖û1‖ = v1. From
this and the fact that λ1 = 2 and λ2 = 0 we can conclude that

M = 2v1v
>
1 . (G.13)

With analogous computations for d
dεk
µ2|εk=0 we finally arrive at the following compact notation

for the Gâteaux-derivatives of the eigenvalues:

d

dεk
µ1

∣∣∣∣
εk=0

= Kρ ∗
(
(2v1v

>
1 ∇uk,σ)>∇hk,σ

)
,

d

dεk
µ2

∣∣∣∣
εk=0

= Kρ ∗
(
(2v2v

>
2 ∇uk,σ)>∇hk,σ

)
.

(G.14)

Divergence Term

With the results from Eq. G.14 we can finally compute the missing divergence term in Eq. G.6.
We exploit the fact that integral

1
2

∫
Ω

(
∂

∂µ1
ψ(µ1, µ2) d

dεk
µ1

∣∣∣∣
εk=0

+ ∂

∂µ2
ψ(µ1, µ2) d

dεk
µ2

∣∣∣∣
εk=0

)
dx dy (G.15)
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can be split into two parts. First, we explicitly derive the Gâteaux-Derivative for the part related
to the first eigenvalue µ1.

1
2

∫
Ω
∂µ1ψ ·Kρ ∗

(
(2v1v

>
1 ∇uk,σ)>∇hk,σ

)
dx dy

(G.35)=
∫

Ω
(Kρ ∗ ∂µ1ψ)

(
(v1v

>
1 ∇uk,σ)>∇hk,σ

)
dx dy

=
∫

Ω

(
(Kρ ∗ (∂µ1ψ)v1v

>
1 )∇uk,σ

)>
∇hk,σ dx dy

(G.37)=
∫

Ω
−Kσ ∗ div

(
(Kρ ∗ (∂µ1ψ)v1v

>
1 )∇uk,σ

)
hk,σ dx dy

(G.16)

The computations above rely on rules for variational calculus with Guassian convolutions from
Section G.3. A similar treatment of the second part and a combination of both results leads to
the final Gâteaux-derivative

1
2

∫
Ω

(
dεk
(
ψ(µ1(u+Hε), µ2(u+Hε))

))
dx dy

=
∫

Ω
−Kσ ∗ div

(
(Kρ ∗D)∇uk,σ

)
hk,σ dx dy

(G.17)

with the diffusion tensor

D = ∂µ1ψ(µ1, µ2)v1v
>
1 + ∂µ2ψ(µ1, µ2)v2v

>
2 . (G.18)

Plugging the results of Eq. G.17 into Eq. G.6 finally yields

uk − fk
τ

= ∇>σ
(
(Kρ∗D) ∇σuk

)
, k = 1, ..., nc. (G.19)

This concludes the detailed version of our proof.
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G.2 Deriving the Directional Diffusion Model
In this Section, we consider an energy that relies on the prior functions ψ1, ψ2 : R 7→ R that
represent the distribution of the of directional derivatives along the presmoothed gradient ∇uσ

and the orthogonal direction ∇uσ
⊥. To obtain a compact notation we define

∂∇uσu := ∇u>σ
|∇uσ|

∇u, (G.20)

∂∇u⊥σ
u :=∇u⊥σ

>

|∇uσ|
∇u. (G.21)

Now, we consider the energy

E(u) = 1
2

∫
Ω
ψ1

((
∂∇uσu

)2)
+ ψ2

((
∂∇u⊥σ

u
)2)

︸ ︷︷ ︸
=:F (x,y,u)

dx dy (G.22)

and want to compute the corresponding Gâteaux-derivative

d

dε

1
2

∫
Ω
F (x, y, u+ εh) dx dy

∣∣∣∣
ε=0

. (G.23)

Preparatory Derivative Calculations

In the same way as for the unifying model, we first compute some derivatives that we can
use as building blocks for a compact notation of our final Gâteaux-derivatives. We start with
the squared magnitude of the smoothed gradient which requires the normalisation of the
directional derivatives:

d

dε

(
|∇(u+ εh)σ|2

) ∣∣∣∣
ε=0

= d

dε

(
(∂xuσ + ε∂xhσ)2 + (∂yuσ + ε∂yhσ)2

) ∣∣∣∣
ε=0

=
(
2(∂x(u+ εh)σ∂xhσ) + 2(∂y(u+ εh)σ∂yhσ)

)∣∣∣∣
ε=0

= 2∇u>σ ∇hσ .

(G.24)

In addition, we need the dot product between the smoothed and unsmoothed gradient, which
amounts to

d

dε

(
∇(u+ εh)>σ ∇(u+ εh)

) ∣∣∣∣
ε=0

= d

dε
∇(u+ εh)>σ

∣∣∣∣
ε=0

∇u+ ∇u>σ
d

dε
∇(u+ εh)

∣∣∣∣
ε=0

= ∇h>σ ∇u+ ∇u>σ ∇h.

(G.25)
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From there on, we can proceed to the last building block that we need, the squared dot
product

d

dε
(∇(u+ εh)>σ ∇(u+ εh))2

∣∣∣∣
ε=0

= 2(∇u>σ ∇u) d
dε

(
∇(u+ εh)>σ ∇(u+ εh)

) ∣∣∣∣
ε=0

(G.25)= 2(∇u∇u>∇uσ)>∇hσ + 2(∇uσ∇u>σ ∇u)>∇h .

(G.26)

Finally, we can compute the Gâteaux-derivative of the full argument of ψ1, which leads to
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Repeating four analogous steps for the orthogonal direction ∇uσ
⊥ yields
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Note that we have exploited here the identity ∇u>∇h⊥σ = −∇u⊥
>∇hσ to obtain the same

structure as in Eq. G.27. In the following, we combine the results from Eq. G.27 and Eq. G.28
to obtain the Euler-Lagrange equation.

Euler-Lagrange Equation

We split our energy again in two separate derivatives, one for ψ1, and one for ψ2:
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d
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Now, we can use Eq. G.27 to compute the first partial problem and obtain
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In the same way, we use Eq. G.28 to compute
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Finally, the Euler-Lagrange equation is
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This concludes our detailed computation since we have arrived at the formulation of Chap-
ter 4.8: We have one divergence term that resembles EED and an additional anisotropic
divergence term.
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Reduction to Isotropic Diffusion

For σ = 0, the equation can be significantly simplified:
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and one obtains the isotropic case

0 = −div
(
ψ′1(|∇u|2)∇u

)
. (G.34)

G.3 Common Relations for Variational Derivations
In order to compute the minimisers in the previous sections, we need some well-known results
from variational calculus. For F : R2 7→ R, f : R2 7→ R2, a test function h : R2 7→ R, and a
symmetric convolution kernel K with K(x, y) = K(−x,−y), we have:∫

Ω
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HImplementations

„Normal people don’t understand this concept;
they believe that if it ain’t broke, don’t fix it.
Engineers believe that if it ain’t broke,
it doesn’t have enough features yet.

— Scott Adams
(Cartoonist)

Most of the program code for this thesis was primarily written by Pascal Peter in ANSI C. Cuda
was used for parallelisation on the GPU. In addition, code of many other people has contributed
to this work directly or indirectly. The following list contains all external code in alphabetic
order.

Basic Tools: An assortment of small basic tools like memory allocation, file input/output,
subsampling, Gaussian smoothing, and many more was provided by many different
authors of the MIA Group.

Binary Representation of Trees: As a programming contractor, Leif Bergerhoff has written
a library for efficient binary representations of subdivision trees.

Colourisation of Levin et al. For comparative experiments, we have used the reference im-
plementation of Levin et al. [164].

Cuda Implementation of Diffusion: All of the Cuda implementations in this thesis were
inspired by examples provided by Christopher Schroers.

Discretisation of Diffusion Processes: Joachim Weickert has provided a reference imple-
mentation of the discretisation scheme from [299].

DjVu: For our comparative experiments, we have used the DjVuLibre library from http:
//djvu.sourceforge.net/.

Exemplar-based Inpainting with sparse known data in Chapter 6 uses the reference imple-
mentation by Facciolo et al. [90].

Fast Explicit Diffusion: In most cases, we use the freely available implementation of the FED
framework by Grewenig et al. [113].
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Index Structure of the Video Codec: Christian Schmaltz contributed the implementation of
the index structure that enables random access in the video codec of Chapter 7.

JBIG: For our comparative experiments, we have used the JBIG-KIT by Markus Kuhn (https:
//www.cl.cam.ac.uk/~mgk25/jbigkit/).

JBIG2: For our comparative experiments, we used the jbig2enc library maintained by Adam
Langley (https://github.com/agl/jbig2enc).

JPEG: For our experiments with JPEG, we have used libjpeg 6.2 (https://packages.debian.
org/de/sid/libjpeg62) via graphics magick 1.3.21 (http://www.graphicsmagick.
org/) tool convert. All parameters remained at default settings.

JPEG2000: For our experiments with JPEG2000 (or more precisely, Part 1 of the standard),
we have used the Jasper library v1.900.1 (http://www.ece.uvic.ca/~frodo/jasper/)
via graphics magick 1.3.21 (http://www.graphicsmagick.org/) tool convert. All pa-
rameters remained at default settings: LRCP lossy mode with 9/7 real-to-real wavelets, 6
resolution levels, and nominal blocks of size 64× 64 for Tier 1 encoding.

Optimal Control: The original reference code for the optimal control scheme for homogeneous
diffusion in Chapter 5 came from Laurent Hoeltgen. Sebastian Hoffmann extended it to
biharmonic diffusion.

PAQ: We have used a slightly modified version of PAQ [178] that was originally adapted by
Christian Schmaltz for use in R-EED.

R-EED: The reference implementation of R-EED maintained by Christian Schmaltz was used
for comparisons and as basis for the video compression codec in Chapter 7.

Stochastic Sparsification: In order to find exact masks with stochastic sparsification in
Chapter 5, we have used the reference implementation by Markus Mainberger.

Stochastic Tree Densification: Frank Nedwed has provided an original implementation of
stochastic tree densification and non-local node exchange that we have extended and
improved for Chapter 5.

Successive Overrelaxation: In order to compare performance to FED, we have used a coarse-
to-fine implementation of anisotropic diffusion by Andrés Bruhn.
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IMIAPDE - Towards A Unifying
Framework for PDE-based
Compression

In the following we provide a sketch of a unifying MIAPDE codec that could provide a common
development platform for PDE-based codecs. It does not aim at a final standardisation process,
yet, but would facilitate compatibility and interchangeability of standard components that
are often used in PDE-based compression. Moreover, it could act as a basis for first publicly
available PDE-based codecs.

The MIAPDE codec supports multiple “content types” that allow to address different kinds
of image data in individual ways. For each content type, a combination of custom header
information and efficiently encoded image data can be stored. The codec does not restrict
the type of inpainting that is employed, i.e. it can also be used for future projects that use
novel inpainting techniques or combine multiple methods. The standardisation allows to use
both individual encoders/decoders for different projects as well as one encoder/decoder for all
compression methods that obey the standard.

A modular block structure forms the foundation of the MIAPDE codec. A MIAPDE file always
starts with with a content ID block that indicates what to expect from the rest of the file.

The next block is the file header which contains general information about the image (e.g.
dimensions) and optional parameters for the decompression algorithm. If the decoder requires
jumping addresses to either decode the rest of the file or for quick random access, the header
also contains these addresses. This address list is referred to as the index.

Finally, the actual image data is encoded in a sequence of data containers. There must be at
least one container (otherwise the file would be empty). Each container can optionally provide
its own container header with information that is only relevant for decoding this container. A
sequence of data blocks can contain different content (e.g. one block of positional data, one
block of grey value data).

Content Type
The content ID is a binary number of the length one byte. It encodes two main messages: 1.
what type of image content is contained in the file, 2. which decoder has to be used to decode
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cID Main Header Data Container 1 Container 2 Container 3

Image Properties Parameters Index

Container Header Data Block 1 Data Block 2

mandatory optional

Figure I.1.: Codec Structure: Each PDE-file consists out of a mandatory content ID, an
optional file header and at least one data container with at least one block of data.

Table I.1.: Data types supported by file headers.

Data Type Size

Bit-Flag 1 bit

Integer 1 byte

Integer custom

Float custom

the image. Adding a new content type consequently implies adding a also a new corresponding
decoder module to the universal decoder. Since the length is one byte, 256 different content
types can be encoded, which should suffice for the lifetime of the MIAPDE-codec.

The type of image content includes the dimensionality of the data, the number of channels and,
if available, information on the structure of the encoded images. Possible content types are for
example: generic, cartoon, depth map, medical,...

With the associated decoder, the image can be extracted from the rest of the file. More than
one decoder can be associated with the same type of image content. For example: ID 0 is
associated to cartoon images with a decoder that uses homogeneous diffusion and data close
to edges, encoded with JBIG. At the same time, ID 1 could also be associated to cartoon images
and homogeneous diffusion, but this decoder uses scattered data instead (e.g. from an optimal
control scheme as in Chapter 5).

File Header
In general, the header consists of a sequence of binary codes. This sequences is predetermined
by the content ID. Each binary code belongs to a small set of predetermined data types (see
Table I.1).

By design, the number of supported data types is limited in order to keep the framework simple.
Arbitrary other data types can be added by individual encoders by using type conversions (e.g.
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quantised floats stored as an integer) or custom bit-sequences (with the bit-flag data type). By
default, image properties and parameters are stored in a raw binary format without additional
entropy coding, since the overhead is often larger than the gain of compressing this data.

The index contains a list of potentially very large integer numbers. In order to store these
numbers efficiently, the framework supports Golomb-coding [106].

Data Containers
The idea behind data containers is to encapsulate data that belongs together. Each container
consists of a container header and a sequence of data blocks that might encode different types
of data (e.g. positional data, grey value data, image gradients, ...). Each block is encoded with
a suitable entropy-coder or another (potentially lossy) encoding scheme. All of the information
that the decoder requires to access and decode each data block is contained in the container
header. The structure of the container header is determined by the content ID and it consists
out of the same data types as the file header.

Data containers are motivated by applications like progressive mode in R-EED, where a low
detail and a high detail version of an image are stored in the same file. Here, one container
corresponds to the low detail version and another one to the high detail version. In this
example, both containers encode both positional and grey value data. These different kinds of
data are entropy-coded separately and stored in individual data blocks within the corresponding
container.

Outlook
Overall, the concept of the MIAPDE codec exploits the fact that many PDE-based compression
codecs rely on the same or very similar building blocks. A framework that supports only a small
amount of different entropy coders, inpainting operators and data types could already cover
most of the current literature on PDE-based compression (see Table 3.1). In combination with
standardised benchmarks for different content types, development of PDE-based codecs could
be potentially accelerated. Of course, such a unifying framework needs a broad consensus
about required features among researchers from the PDE-based compression community to be
successful.
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