
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

A Temporal Logic Approach
to Information-flow Control

Thesis for obtaining the title of Doctor of Natural Science
of the Faculty of Natural Science and Technology I

of Saarland University

by

Markus N. Rabe

Saarbrücken
February, 2016

Dean of the Faculty Prof. Dr. Markus Bläser

Day of Colloquium January 28, 2016

Chair of the Committee Prof. Dr. Dr. h.c. Reinhard Wilhelm

Reviewers Prof. Bernd Finkbeiner, Ph.D.

Prof. David Basin, Ph.D.

Prof. Sanjit A. Seshia, Ph.D.

Academic Assistant Dr. Swen Jacobs

i

Abstract

Information leaks and other violations of information security pose a severe
threat to individuals, companies, and even countries. The mechanisms by
which attackers threaten information security are diverse and to show their
absence thus proved to be a challenging problem. Information-flow control is a
principled approach to prevent security incidents in programs and other tech-
nical systems. In information-flow control we define information-flow proper-
ties, which are sufficient conditions for when the system is secure in a particu-
lar attack scenario. By defining the information-flow property only based on
what parts of the executions of the system a potential attacker can observe or
control, we obtain security guarantees that are independent of implementa-
tion details and thus easy to understand. There are several methods available
to enforce (or verify) information-flow properties once defined. We focus on
static enforcement methods, which automatically determine whether a given
system satisfies a given information-flow property for all possible inputs to
the system. Most enforcement approaches that are available today have one
problem in common: they each only work for one particular programming
language or information-flow property.

In this thesis, we propose a temporal logic approach to information-flow
control to provide a simple formal basis for the specification and enforcement
of information-flow properties. We show that the approach can be used to
enforce a wide range of information-flow properties with a single algorithm.

The main challenge is that the standard temporal logics are unable to ex-
press information-flow properties. They lack the ability to relate multiple
executions of a system, which is essential for information-flow properties. We
thus extend the temporal logics LTL and CTL∗ by the ability to quantify over
multiple executions and to relate them using boolean and temporal operators.
The resulting temporal logics HyperLTL and HyperCTL∗ can express many
information-flow properties of interest. The extension of temporal logics com-
pels us to revisit the algorithmic problem to check whether a given system
(model) satisfies a given specification in HyperLTL or HyperCTL∗; also called
the model checking problem. On the technical side, the main contribution is
a model checking algorithm for HyperLTL and HyperCTL∗ and the detailed
complexity analysis of the model checking problem: We give nonelementary
lower and upper bounds for its computational complexity, both in the size
of the system and the size of the specification. The complexity analysis also
reveals a class of specification, which includes many of the commonly consid-
ered information-flow properties and for which the algorithm is efficient (in
NLOGSPACE in the size of the system). For this class of efficiently checkable
properties, we provide an approach to reuse existing technology in hardware
model checking for information-flow control. We demonstrate along a case
study that the temporal logic approach to information-flow control is flexible
and effective. We further provide two case studies that demonstrate the use of
HyperLTL and HyperCTL∗ for proving properties of error resistant codes and
distributed protocols that have so far only been considered in manual proofs.

ii

iii

Zusammenfassung

Informationssicherheit stellt eine immer größere Bedrohung für einzelne Per-
sonen, Firmen und selbst ganze Länder dar. Ein grundlegender Ansatz zur
Vorbeugung von Sicherheitsproblemen in technischen Systemen, wie zum
Beispiel Programmen, ist Informationsflusskontrolle. In der Informationsfluss-
kontrolle definieren wir zunächst sogenannte Informationsflusseigenschaf-
ten, welche hinreichende Bedingungen für die Sicherheit des gegebenen Sys-
tems in einem Sicherheitsszenario darstellen. Indem wir Informationsfluss-
eigenschaften nur auf Basis der möglichen Beobachtungen eines Angreifers
über das System definieren, erhalten wir einfach zu verstehende Sicherheits-
garantien, die unabhängig von Implementierungsdetails sind. Nach der Defi-
nition von Eigenschaften muss sichergestellt werden, dass ein gegebenes Sys-
tem seine Informationsflusseigenschaft erfüllt, wofür es bereits verschiedene
Methoden gibt. Wir fokussieren uns in dieser Arbeit auf statische Metho-
den, welche für ein gegebenes System und eine gegebene Informationsfluss-
eigenschaft automatisch entscheiden, ob das System die Eigenschaft für alle
möglichen Eingaben erfüllt, was wir auch das Modellprüfungsproblem nen-
nen. Die meisten verfügbaren Methoden zum Sicherstellen der Einhaltung
von Informationsflusseigenschaften teilen jedoch eine Schwäche: sie funk-
tionieren nur für eine einzelne Programmiersprache oder eine einzelne Infor-
mationsflusseigenschaft.

In dieser Arbeit verfolgen wir einen Ansatz basierend auf Temporallogi-
ken, um eine einfache theoretische Basis für die Spezifikation von Informa-
tionsflusseigenschaften und deren Umsetzung zu erhalten. Wir analysieren
den Zusammenhang von der Ausdrucksmächtigkeit von Spezifikationsspra-
chen und dem algorithmischen Problem Spezifikationen für ein System zu
überprüfen. Anhand einer Fallstudie im Bereich der Hardwaresicherheit zei-
gen wir, dass der Ansatz dazu geeignet ist eine breite Palette von bekannten
und neuen Informationsflusseigenschaften mittels eines einzelnen Modell-
prüfungsalgorithmus zu beweisen.

Das Kernproblem hierbei ist, dass wir in den üblichen Temporallogiken
Informationsflusseigenschaften nicht ausdrücken können, es fehlt die Fähig-
keit mehrere Ausführungen eines Systems miteinander zu vergleichen, was
der gemeinsame Nenner von Informationsflusseigenschaften ist. Wir erweit-
ern Temporallogiken daher um die Fähigkeit über mehrere Ausführungen
zu quantifizieren und diese miteinander zu vergleichen. Der Hauptbeitrag
auf der technischen Ebene ist ein Modellprüfungsalgorithmus und eine de-
taillierte Analyse der Komplexität des Modellprüfungsproblems. Wir geben
einen Modellprüfungsalgorithmus an und beweisen, dass der Algorithmus
asymptotisch optimal ist. Die Komplexitätsanalyse zeigt auch eine Klasse von
Eigenschaften auf, welche viele der üblichen Informationsflusseigenschaften
beinhaltet, und für welche der gegebene Algorithmus effizient ist (in NLOG-
SPACE in der Größe des Systems). Für diese Klasse von effizient überprüf-
baren Eigenschaften diskutieren wir einen Ansatz bestehende Technologie
zur Modellprüfung von Hardware für Informationsflusskontrolle wiederzu-

iv

verwenden. Anhand einer Fallstudie zeigen wir, dass der Ansatz flexibel
und effektiv eingesetzt werden kann. Desweiteren diskutieren wir zwei weit-
ere Fallstudien, welche demonstrieren, dass die vorgeschlagene Erweiterung
von Temporallogiken auch eingesetzt werden kann, um Eigenschaften für
fehlerresistente Kodierungen und verteilte Protokolle zu beweisen, welche
bisher nur Abstrakt betrachtet werden konnten.

v

Acknowledgements

It is impossible to do justice to all those wonderful people who contributed
in direct and indirect ways to this thesis. Nevertheless I want to highlight
several persons and groups to which I am particularly indebted.

I want to start with expressing my deep gratitude to my advisor Bernd
Finkbeiner. I admire his commitment to his students and his ability to provide
subtle guidance. He showed a great deal of patience with me and always kept
his door open. I cannot imagine a better supervisor.

I want to thank my colleagues, Rayna Dimitrova, Klaus Dräger, Rüdi-
ger Ehlers, Peter Faymonville, Michael Gerke, Swen Jacobs, Felix Klein, Lars
Kuhtz, Andrey Kupriyanov, Hans-Jörg Peter, Christa Schäfer, Leander Ten-
trup, Hazem Torfah, and Martin Zimmermann for the countless shared cof-
fees and inspiring conversations. I am grateful for having worked with Sven
Schewe during the first year of my PhD. Even though our common work is
not directly a part of this thesis, my research is heavily influenced by him.
Thanks also to my doctoral committee for their time and feedback; the exter-
nal reviewers, David Basin and Sanjit A. Seshia, the committee chair Reinhard
Wilhelm, and the academic staff committee member Swen Jacobs.

It would take too many pages to describe what each of my friends means
to me, but at least I want to mention their names here. I will always remember
my flatmates with whom I shared a home for all those years: Justus, Anika,
Claudia, Jana; and of course the co-founders Klaas andMatthias who also hap-
pen to be two of my oldest friends. Let us enjoy more roof parties, sunny af-
ternoons on the balcony, and evenings in the kitchen. I am grateful for having
met so many wonderful people during conferences, summer schools, and my
stay at Cambridge; in particular I want to mention Heidy Khlaaf, Christoph
Wintersteiger, and Anton Stefanek. The friends I made in Saarbrücken influ-
enced this thesis in so many ways; AnnaMarie, Anne-Christin, Christian, Eva,
Fabian, Jonas, Jörg, Kevin, Nikolai, Nora, Richard, and Verena, and also my
cinema buddies Ariane and Jana. And finally I want to mention two friends
who had big influence on this thesis: Tim and Raphael. Thanks to all these
friends for making my time in Saarbrücken so enjoyable and productive, and
for helping me during difficult times.

Last but not least, a special thanks to my parents, Winfried and Cornelia,
and my sisters, Lena and Gerda. Without their continuous support and their
love this thesis would not have been possible.

vi

Contents

Contents vii

1 Introduction 1
1.1 Information Security . 1
1.2 A Property-oriented Approach 7
1.3 Temporal Logics . 12
1.4 Contributions . 15
1.5 Publications and Collaborations 18

2 Systems and Properties 21
2.1 Kripke Structures . 22
2.2 Properties . 24

3 Linear-time Temporal Logics 29
3.1 Linear-time Temporal Logics . 29
3.2 HyperLTL . 30
3.3 Applications in Information-flow Control 31
3.4 Applications in Distributed Systems 37
3.5 Applications in Error Resistant Codes 38

4 Branching-time Temporal Logics 41
4.1 CTL and CTL∗ . 42
4.2 HyperCTL∗ . 45
4.3 SecLTL . 49
4.4 Applications: Temporal Information-flow 51

5 Algorithmic Verification 53
5.1 Alternating Büchi Automata . 54
5.2 Model Checking the Alternation-Free Fragment 55
5.3 From Alternation-free Formulas to Full HyperCTL∗ 57
5.4 Extended Path Quantification 60
5.5 Quantification over Propositions 62
5.6 Lower Bounds . 64
5.7 Efficient Fragments . 70

vii

viii CONTENTS

6 Symbolic Verification and Case Studies 73
6.1 Symbolic Model Checking of Circuits 73
6.2 Case Studies and Experimental Results 78

7 Related Logics 83
7.1 Epistemic Temporal Logic . 83
7.2 Fixed-point Calculi . 86

8 Conclusions 91

Bibliography 95

Chapter 1

Introduction

1.1 Information Security

Information leaks can have serious implications for individuals and organiza-
tions. The loss of personal communication, bank statements, location data,
health records, or passwords is suited to severely harm an individuals per-
sonal freedom and reputation. On a larger scale, companies are concerned
about loosing their users’ data as it is suited to deteriorate the trust in the
company’s services. Even the operation of governmental organizations, like
the military or intelligence services, can be severely harmed by information
leaks.

The integrity of information and services can be an even bigger concern
than secrecy. Integrity denotes that information or services cannot be altered
maliciously. The widespread use of digital technology in infrastructure, such
as power nets, nuclear plants, or (air) traffic, opens the possibility of attacks
and it is clear that their malicious manipulation could lead to catastrophes of
vast scale. The use of the Stuxnet worm to destroy nuclear facilities in Iran [3]
can be seen as a proof of concept for the suitability of such attacks for warfare.

Similar to the integrity of information, it may suffice to interfere with the
availability of information to cause serious harm. Distributed denial of service
attacks (DDOS attacks) are a common technique to inhibit the availability of
particular websites or internet-based services in the internet. DDOS attacks
make use of computer viruses to infect and thereby control large numbers
of computers, called botnets, and then bombard a particular internet-based
service with vast numbers of meaningless requests issued by the controlled
computers. Even though this kind of attack can be easily detected, and is,
in fact, observed many thousand times per day, the use of botnets makes it
extremely hard to track the source of the attack.

Confidentiality (i.e. the absence of information leaks), integrity, and avail-
ability of information constitute the so called CIA triad that defines the goals
of information security [121]. The exact definition of the set of goals is, how-
ever, disputed and sometimes also lists closely related concerns like account-

1

2 CHAPTER 1. INTRODUCTION

ability or authenticity (e.g. [107]). The academic study of information security
concerns the analysis of threats to any of these goals and of countermeasures
against them. In computer science, we typically study information security
for a particular technical system, such as a program, a computer, or network
of computers and we also restrict our attention to technical countermeasures.
General information security, however, can be addressed on many levels and
includes legal and economical aspects [57].

Violations of Information Security

The recent years have shown an alarming number of severe incidents in infor-
mation security. Through coverage by the media, information security even
starts to become a public concern [68, 106, 142, 102, 116, 122, 43, 128, 44,
101, 46, 123]. The vast majority of violations of information security, how-
ever, likely remain undisclosed; either because they are not detected in the
first place or, in the case of detection, because they are held secret to avoid
erosion of the trust in the victim’s ability to fend of future attacks.

A fundamental problem in information security is that the causes of se-
curity violations are extremely diverse. In fact there are at least hundreds of
types of vulnerabilities as reported by the Mitre research center [1]. To give
the unfamiliar reader an impression on the range of possible mechanisms, by
which a system can be attacked, we review two noteworthy security incidents,
discuss problems in hardware security, and information-leaks via variations
in execution times.

Heartbleed

Heartbleed1 is maybe the most severe breach of information security that we
have witnessed so far. It enables attackers to extract secret data like the en-
cryption keys from web servers and thereby renders their cryptographic mea-
sures useless.

Heartbleed is a vulnerability in OpenSSL, an implementation of the cryp-
tography protocol SSL/TLS. SSL/TLS is used to encrypt the communication
between two parties and includes a “heartbeat” request (giving rise to the
name of the vulnerability) that allows the communicating parties to check
whether the other side is still responsive. Normally the “heartbeat” request
consists of a short word, which the other party is supposed to send back, and
also a number indicating the length of the word. The implementation of the
standard in OpenSSL did not check whether the number indicating the length
of the word matched the actual length of the word. Sending a request that in-
dicates a larger word length x than the actual length y of the word (e.g. word:
“hat”, length of the word: “500” characters) made the other party to answer
with the next x characters it stored in memory, instead of the intended y char-
acters. The request could thus be misused to request arbitrary parts of a web

1It has become common to give names to major security incidents.

1.1. INFORMATION SECURITY 3

servers memory, which could include, for example, encryption keys or pass-
words of users. Figure 1.1 depicts how the attack works.

Fixing OpenSSL once the problem was identified was very simple and
mainly consists of adding the following two lines of code [60]:

if (1 + 2 + payload + 16 > s->s3->rrec.length)

return 0;

This piece of code suppresses the reply to a heartbeat request, whenever the
word length indicated in the message is larger than the actual word length.

Heartbleed existed since March 2012 and was discovered only in April
2014 [49]. At the time Heartbleed was revealed many of the most commonly
visited web servers were vulnerable to the attack [25]. Even though no attacks
based onHeartbleed prior to its release are known, themonths after its release
showed a number of attacks on web services that did not patch their OpenSSL
library timely. For example, Community Health Systems, Inc. reported the
loss of 4.5 million patient records from their database due to Heartbleed [32,
133].

Shellshock

Shellshock affected the Bash, a widely used interpreter for the Bash script lan-
guage [51]. Even though the Bash shell is typically not directly interacting
with requests from the internet, it is often used within web servers to process
parts of these requests. Sending specially prepared requests made the Bash
shell executing arbitrary commands on the web server. For example a request
via the hyper text transfer protocol (HTTP), as used by web browsers when a
website is opened, could be prepared as follows:

GET / HTTP/1.1

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8,fr;q=0.6

Cache-Control: no-cache

Pragma: no-cache

User-Agent:() { :; }; /bin/cat /etc/passwd

Host: www.victim.com/website.html

This HTTP request asks the web server with the URL www.victim.com to
send the file website.html. Additionally, the request indicates several pieces
of information, such as the preferred language (Accept-Language), possible
encodings of the reply (Accept-Encoding), and program that sent the request
(User-Agent). The last field would typically indicate the browser used to open
the website, such as Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4)

AppleWebKit/537.36 Safari/537.36. Here, however, the attacker inserted
the string () { :;}; followed by the malicious command:

/bin/cat /etc/passwd

4 CHAPTER 1. INTRODUCTION

Figure 1.1: How the Heartbleed vulnerability was exploited as explained by
http://xkcd.com [98].

http://xkcd.com

1.1. INFORMATION SECURITY 5

which lets the web server append a particular password file to the answer to
the HTTP request.

The attack uses the fact that these items of data are often processed by
Bash scripts, by which they are parsed and stored in variables. The following
piece of code was used for this task:

315 /* Initialize the shell variables from the current environment.

316 If PRIVMODE is nonzero, don’t import functions from ENV or

317 parse $SHELLOPTS. */

318 void

319 initialize_shell_variables (env, privmode)

320 char **env;

321 int privmode;

322 {

[...]

329 for (string_index = 0; string = env[string_index++];)

330 {

[...]

350 /* If exported function, define it now. Don’t import functions

351 from the environment in privileged mode. */

352 if (privmode == 0 &&

353 read_but_dont_execute == 0 &&

354 STREQN ("()␣{", string, 4))

355 {

[...]

361 parse_and_execute (temp_string, name, SEVAL_NONINT|SEVAL_NOHIST);

362 [...]

363 }

364 [...]

365 }

366 [...]

367 }

For parsing the said variable definitions, the function parse_and_execute

is called in line 361. This function, however, does not only parse, but also
execute any code contained in the variable tmp_string. If the variable con-
tains a single function definition, as it was intended, no problem occurs. The
string () { :; }; that was embedded in the HTTP request, however, ends
the function definition. Any commands that come after that string are then
simply executed. The problem was fixed by introducing a check making sure
that the variable temp_string contained only a function definition.

The vulnerability in the code of Bash was introduced in 1992 [109] and
was in use until it was detected and published in September 2014. That is, the
Shellshock vulnerability existed for more than two decades. Scans revealed
that an alarming number of web servers were vulnerable at the time when the
problem was published and shortly after its publication, the bug was widely
exploited; at peak times over a million individual attacks and probes were de-
tected within 24 hours. The number of compromised systems and the effects
can hardly be estimated.

6 CHAPTER 1. INTRODUCTION

Security-critical Programming Errors

We have seen two major security incidents that stand prototypical for viola-
tions of confidentiality (Heartbleed) and violations of integrity (Shellshock)
and both were caused by simple programming errors. Developers working on
security critical implementations, such as cryptographic protocols, are typi-
cally highly skilled and very aware of the criticality of their code. They follow
the best practices of creating secure code, such as code reviews, and in the
cases discussed above the source code is openly available, such that every in-
terested person can analyze the code. Yet mistakes happen frequently and
may remain unnoticed for years.

Hardware Security

Security critical programming errors also occur in hardware such as micro-
processors. Vendors like Intel and AMD publish lists of errors found in their
processors, so called specification updates, though typically without detailed
information about their impact in case of malicious usage. A study found that
these errors include security critical errors, such as bugs that lead to privi-
lege escalation or arbitrary memory access [61]. Attackers that can execute a
program on erroneous hardware can use these errors to circumvent otherwise
secure protection mechanisms in operating systems or browsers.

A big problemwith security critical errors in hardware is that they are par-
ticularly hard to fix once the hardware is shipped. Hence most vulnerabilities
remain attackable even after they have been detected.

Timing Channels

The exact time at which a computation finishes may also contain information
about secret information used during the execution, which gives rise to the
term timing channel. Several attacks have demonstrated the feasibility of re-
constructing secret information from subtle timing dependencies. In a well
known work, Brumley and Boneh demonstrated that by statistical analysis
of the answering times of a web server the encryption keys of a web server
can be extracted [22]. The problem was that the implementation of certain
cryptographic operations depended on the key in use.

Also concurrently executed processes that share the same hardware re-
sources, such as the cache infrastructure of a processor and the instruction
pipeline, pose a security problem. Depending on which processes running
in parallel, the execution times of the processes vary slightly. It has been
demonstrated that simple timing dependencies can suffice to reconstruct se-
cret information, such as encryption keys [105].

Countermeasures

Once a security problem has been identified it is typically possible to counter
the threat, for example by updating a piece of software. We suggest that the

1.2. A PROPERTY-ORIENTED APPROACH 7

main challenge in information security is thus to find security problems in
the first place.

Today, the best practice in finding security problems is to rely on code
reviews and testing. Testing is somewhat effective at finding programming er-
rors that affect the anticipated behavior of the program, but it is less suited to
find bugs for unusual inputs, as it is hard to anticipate all possible kinds of
inputs for which the software should fail. Errors like Heartbleed and Shell-
shock, however, are of that kind. While code reviews are effective at iden-
tifying security problems [77], they rely on highly trained experts and are
therefore costly. Only large software companies or companies specialized to
security critical systems are therefore able to implement the thorough proce-
dures needed to ensure a reasonably high level of security for their systems.

More automatic approaches are suited to reduce the cost of security mea-
sures and the entry barrier to apply them. Popularly cited countermeasures
with a higher degree of automation include fuzz testing, memory-safety mea-
sures, and static analysis. The excellent essay by David A. Wheeler elaborates
on which of them could have helped to detect or prevent Heartbleed [143].
The issue with the methods that would have prevented Heartbleed, however,
is that they would not have helped against Shellshock, not to speak of timing
attacks, because the mechanisms through which the information leaked were
fundamentally different.

This represents a fundamental problem in information security: There is
an endless number of mechanisms by which a system can be compromised,
as witnessed by the list of hundreds of types of software vulnerabilities main-
tained by the Mitre research center [1], but most countermeasures only de-
fend against a particular type of attacks. This calls for a principled approach
to information security.

1.2 A Property-oriented Approach

In this thesis, we follow a property-oriented approach to information security.
Starting from the basic goals of information security, such as confidentiality
and integrity, we formulate mathematically precise specifications (properties)
of secure system behavior. The idea is that for a given system we want to
mathematically prove (or otherwise enforce) that the system satisfies these
specifications.

To ensure that the specifications provide general security guarantees - and
do not only protect against a specific kind of attack - it is crucial that the spec-
ifications are independent of the mechanisms by which information security
is violated. We thus consider specifications that only refer to the possible ob-
servations of an attacker about the inputs and outputs of the given system.
Figure 1.2 depicts this so called black-box view on systems: we are only in-
terested in which inputs I are read by the system and which outputs O are
produced in response to these inputs. For a web server, for example the in-
puts and outputs could represent the received and sent network traffic.

8 CHAPTER 1. INTRODUCTION

SystemI O

Figure 1.2: The abstract view on a reactive system. Specifications should only
refer to the observable behavior of a system. We are indifferent to imple-
mentation details, such as whether a system is implemented as software or
hardware.

The formalization of information security was started in the early eight-
ies with formal specifications of confidentiality (or interchangeably secrecy)
such as the notion of noninterference for multi-agent systems by Goguen and
Meseguer [55]. It assumes that the attacker can observe the so called public
part of the inputs and the outputs, and that the non-public part of the inputs
constitutes the secret information.

Excursion: A Formal Definition of Noninterference

In this excursion we present the simple formal definition of noninterference.
To have an idea what we specify, we need to introduce a formal system model
with a minimum of formal notation.

We assume that the system operates stepwise; in the step with number
k, the system reads an input ik and outputs a value ok . The system may have
internal state, such that its outputs may depend not only on the current input,
but also on previous inputs. This could, for example, represent a web server,
where the HTTP requests are modeled as inputs, and the websites sent in
return are modeled as outputs.

For simplicity let us assume that the input Ik to a system at a particular
point of time k consists of the boolean variables i1, . . . , in, and likewise the
output O consists of the boolean variables o1, . . . , om. That is, if ij is in set Ik
then input variable ij is true at time k. An execution trace, or short trace, of
a system is a sequence of inputs I1, I2 . . . together with a sequence of outputs
O1,O2, . . . produced by the system on this sequence of inputs. Formally, the
trace is defined to be the sequence (I1 ∪O1), (I2 ∪O2), (By Ik ∪Ok we de-
note the union of the sets Ik and Ok , i.e. the set of elements that contains the
elements of both Ik and Ok .) For now, we define systems K by the set of traces
they generate, denoted by Traces(K). (We choose the letter K for systems to
be consistent with their more detailed formalization as Kripke structures that
follows later.)

1.2. A PROPERTY-ORIENTED APPROACH 9

We now present a modern version of noninterference, adapted to our sys-
tem model. We assume that the public inputs Ip are a subset of the input
variables I and the public outputs Op are a subset of the output variables O.
In formal notation noninterference is then defined as follows:

∀t, t′ ∈ Traces(K) : t =Ip t
′ =⇒ t =Op

t′ ,

where t =Ip t
′ and t =Op

t′ denotes the stepwise equality of the public inputs
and public outputs, respectively. The definition reads as follows: all pairs
of traces of a system that have the same sequence of public inputs must also
have the same public outputs. That is, confidentiality is defined as the public
output’s independence of the secret information (i.e. the non-public inputs).

The insight behind the definition of noninterference is that, to precisely
specify confidentiality for a given system, we only need to identify which
parts of the inputs and outputs of the system are directly observable by the at-
tacker. In particular, this definition guarantees the confidentiality of a system
independent from the mechanism by which information may be leaked. The
only assumption is that the model of the system truthfully represents what
the attacker can observe about the system. Based on this insight, the field
of information-flow control emerged. In information-flow control we discuss
noninterference-like specifications, which we call information-flow properties,
and ways to prove or enforce that a system satisfies the specification [55, 87,
89, 85, 119].

Since then a plenitude of information-flow properties were proposed, in-
cluding different generalizations confidentiality, such as noninference [89]
and generalized noninterference [87]. In some scenarios, we also need to
allow for exceptions under which information may be leaked, so called de-
classification policies [120]. Consider a program that is supposed to show a
particular website only after the user enters the correct password. The pass-
word checker necessarily needs to provide different answers depending on
whether the provided password matches the correct password. This scenario
includes two declassifications: (1) upon entering an incorrect password, the
fact that the correct password is different to the provided password needs to
be revealed, and (2) upon entering the correct password, the previously se-
cret website becomes accessible. A large variety of different scenarios where
declassification is needed and properties that match the needs of particular
scenarios were discussed and classified in the literature [120].

Enforcement of Security Policies

Specifying secure behavior alone does not prevent security incidents. We
also need to enforce that a system adheres to a given information-flow prop-
erty. The enforcement of an information-flow property before a program is
executed is called static enforcement. The most commonly considered static

10 CHAPTER 1. INTRODUCTION

enforcement approaches are language-based information-flow control and en-
forcement based on program analysis.

In language-based information-flow control we consider programming lan-
guages that come with a security type system [140, 119]. A security type system
assigns a security type to every occurrence of every variable in a program. The
available security types depend on the security type system, but often consist
of the two types secret, indicating that it may contain secret information, and
public, indicating that it certainly contains no secret information. The secu-
rity type system accepts a program, if the observable outputs (or observable
variables) are typed public. The security type systems are designed in a way
such that a program that is accepted by the security type system is guaran-
teed to satisfy a specific information-flow property—and there are different
type systems for different information-flow properties. The rules according
to which it is decided which security type is given to the occurrences of each
variable depend on the language and the property. As an example, consider
the following piece of code:

int z = x + y;

This statement introduces a variable z and assigns to it the sum of the
variables x and y. Assume that variable x has the security type secret and that
variable y has the security type public. For typical programming languages
and information-flow properties, the variable z would then be assigned the
security type secret, as it may contain secret information—in particular in case
y is 0, z is equal to x after the assignment.

More intricate cases to consider in security type systems include control-
flow dependencies:

if (x == 5) {

z = 0;

} else {

z = 1;

}

This piece of code assigns the variable z the values 0 or 1 depending on
whether x is equal to 5. Assuming the variable x to have the security type
secret, typical security type systems would also give the security type secret to
the variable z, as variable z now contains the information whether or not the
secret variable x is 5. Control-flow dependencies are representative for a large
number of intricate information flows.

Designing a security type system requires to think of all possible ways
in which information can propagate from one variable to another variable.
While most of the approaches in language-based information-flow control are
not available for real programming languages it has been demonstrated that
they can be extended to real programming languages such as Java [100] or
Verilog [149].

A problem with security type systems is that they may not be precise. In
the case of the if-statement above, we may know from the context of the code
that x cannot have value 5. In this case, security type systems would still

1.2. A PROPERTY-ORIENTED APPROACH 11

assign z the security type high, since it abstracts from the actual semantics of
the program to simplify the analysis. In this way it can happen that perfectly
secure programs are not accepted by a security type system. That is, security
type systems are “inherently imprecise” [12].

As an alternative to security type systems also program analysis [36, 82, 6,
58, 72, 71] and manual (or semi-automatic) proofs [66, 99] has been proposed
as a means to statically enforce information-flow properties. Program analy-
ses for information-flow properties, similar to security type systems, abstract
from the exact semantics of the program andmay thus give false alarms in the
analysis.

Lastly, it has been observed that instead of analyzing the original pro-
gram for the information-flow property, we can analyze a transformed pro-
gram for a more simple property—a property over single execution traces [12,
129, 13, 11]. The transformation, called self-composition, creates two copies
of the original system that run in parallel. A run of the self-composed sys-
tem corresponds to two runs of the original system. Hence we can express
certain information-flow properties of the original system as properties over
single executions of the self-composed system. The advantage over the previ-
ously considered techniques for enforcing information-flow properties is self-
composition enables us to reuse existing theories and tools for the analysis of
single-trace properties, and hence profits from the precision and scalability
of the available approaches. First approaches demonstrated the feasibility of
model checking information-flow properties [63].

An alternative to the static enforcement approach is to enforce the compli-
ance with an information-flow property at the runtime of a program, which is
called dynamic enforcement. That is, a specially programmedmonitor observes
the run of the program and raises an alarm (or stops the execution of the mon-
itored program) whenever a violation of a specific information-flow property
is detected [42, 37]. This thesis focusses on static enforcement, though an
extension to dynamic enforcement seems possible [104].

Challenges in Information-flow Control

Despite its promise to provide general security guarantees, information-flow
control has not been widely adapted in the practice of information security
so far. One major problem shared by most of the approaches in information-
flow control is that they focus on the enforcement of a single and fixed infor-
mation-flow property. For example, these methods are so specialized that
even the fact whether the termination is observable by the attacker is hard-
coded in the enforcement approach. Most of the approaches also do not admit
flexible declassification methods, such that they are not applicable for simple
scenarios like the password checker.

However, even minor changes of the information-flow property require a
redesign of the security type system or the program analysis technique and
also non-trivial changes in the proof of soundness of the technique. We thus
need approaches that support a wide range of information-flow properties.

12 CHAPTER 1. INTRODUCTION

We are not the first to observe this deficiency of existing enforcement meth-
ods. In an invited talk on information-flow control at the ETAPS conferences
in 2014 David Maziéres stated that one of the next challenges in information-
flow control is to design specification languages that allow us to easily specify
information-flow properties [53].

First steps in this direction were taken with the development of speci-
fication frameworks for information-flow control. Early works, such as the
Modular Assembly Kit for Security Properties (MAKS) by Mantel [85, 86], pro-
vided the basis for comparing various information-flow properties. More re-
cent works on specification frameworks focus on generality: Clarkson and
Schneider propose to consider a class of properties they coin hyperproperties.
Hyperproperties only refer to the traces of a system, but may relate multiple
traces [31]. They show that the notion of hyperproperties includes many of
the known information-flow properties.

Unfortunately, these specification frameworks do not come with approa-
ches for the automatic enforcement of properties. What we need are speci-
fication languages for information-flow properties that enable the automatic
enforcement of the specified properties.

1.3 Temporal Logics

Temporal logics provide a unique connection between specification languages
and the enforcement of specifications. In this context, the static enforcement
of properties is usually called verification or model checking. The origins of
temporal logics lie in the philosophical inquiry into the reasoning about tem-
poral relationships, but their use in computer science was soon discovered
by Pnueli [110]. He proposed what today is called the linear-time temporal
logic (LTL). LTL is now the standard logic to describe properties of individual
traces, called trace properties, such as invariants (“x > y is true for all times”)
or response properties (“every event a is followed by an event b”).

LTL is built from simple logical operations such as the globally operator
φ and the eventually operatorφ. The globally operatorφ expresses that
its subformula φ has to hold for all future times, i.e. φ is invariant. The
eventually operatorφ expresses that its subformula φ has to hold for some
time in the future. Using these simple building blocks, we can express more
complex properties, such as that an event a has to hold infinitely often: The
formulaa expresses that for all times, there is a point further in the future
where a holds. If there were only finitely many events a, the subformula 
would be violated after the last occurrence of a.

The semantics of LTL is not concerned with the meaning of events such as
a or expressions like “x > y.” Statements that can be interpreted independent
of time (i.e. are either true or false at any point of time) are considered as
atomic propositions and LTL only defines their temporal relationship.

LTL specifies properties based on single traces. A system satisfies an LTL
property, if all its traces, considered individually, satisfy the property. As its

1.3. TEMPORAL LOGICS 13

name suggests this logic thus corresponds to the philosophical view that time
is linear—by considering a fixed trace, we implicitly fix the complete future
of the computation. The rivaling philosophical view is that of branching time,
which assumes that at any point in the execution different futures are still
possible. This view led to the so called branching-time temporal logics, such
as the computation tree logic CTL [29] and the more general CTL∗ [41]. CTL∗

extends LTL by existential and universal quantification over traces, such as
“there is a trace where event a occurs eventually”. Combining quantification
over traces with temporal operators we can express more complex properties,
such as A(Eoff), which expresses that along all computations (A) and for
all points of time (), there exists a continuation of the computation (E) where
eventually () the atomic proposition “off” holds. In other words, there is
always a way to shut the system off. (This does not mean, however, that the
system is necessarily shut off eventually.)

From the beginnings of temporal logics in computer science the model
checking problemwas one of the defining research questions. The model check-
ing problem is to decide whether a given system satisfies a given property
specified in a temporal logic. Temporal logics are considered to provide a
unique understanding of the relationship between specifications and the prob-
lem to check a system for accordance with a specification. Many variants of
temporal logics were proposed with the aim to study how the expressiveness
of temporal logics interacts with our ability to automatically check whether a
system satisfies a given specification.

The first model checking algorithms considered a system as an automaton
(also called a labeled graph) that consists of a list of states with a designated
initial state and a list of transitions between the states. The states may further
have labels that indicate, e.g. whether an atomic proposition such as “x >
5” holds in this state. For a graphical representation of an automaton take
a glance at Fig. 2.1. The problem to check whether a simple property like
“for all times it holds x > 5,” that is x > 5 in LTL notation, is then simply
to determine whether there is a path from the initial state to a state where
“x > 5” does not hold using the transitions of the automaton. If such a path is
found, the system violates the property. It is clear that this search can be done
automatically. The connection to automata was discovered early and led to a
well-understood branch of automata-theory [144, 138, 76].

Even though these algorithms provide a beautiful theoretical basis and
were proven to be optimal in terms of worst-case complexity, they only allow
us to check small systems. Larger system show the so called state-space explo-
sion problem. That is, the number of states of a system grows exponentially
with the number of variables. The run-times of algorithms that consider indi-
vidual states, so called explicit-state algorithms, thus also grow exponentially
and quickly become ineffective.

Relief was brought by symbolicmodel checking algorithms that try to avoid
considering systems as a list of states and transitions, and instead operate on
the level of a succinct representation of the system, such as binary decision di-
agrams [90] or boolean logic [16]. In the worst-case, symbolic algorithms can-

14 CHAPTER 1. INTRODUCTION

not perform faster than the previous explicit-state algorithms, but in practice
they often work for systems that simply could not be checked by explicit-state
algorithms. A series of developments in symbolic model checking algorithms
enabled checking substantial pieces of software and hardware [91, 9, 28, 111,
39, 20, 33, 34]. In this way, implementation errors can now be found effec-
tively and early in the design process. An extension of LTL, the property spec-
ification language (PSL) [2], is used to find design flaws in hardware modules,
such as CPUs.

Challenges in Temporal Logics

It would be desirable to use temporal logics also for the specification of infor-
mation-flow properties. This would link the problem to enforce information-
flow properties to the well understood theory onmodel checking and it would
allow us to leverage the existing model checking algorithms for finding viola-
tions of information-flow properties in software and hardware.

It turns out, however, that information-flow properties are not expressible
in the commonly considered temporal logics and thus the model checking
approach did not seem to be applicable to information security [5]. LTL con-
siders traces individually and hence it is not surprising that information-flow
properties cannot be expressed using LTL. At a first glance, the quantification
over executions in CTL and CTL∗ seems to be a reasonable candidate to ex-
press properties relating multiple traces. Both logics restrict the semantics,
however, to always refer only to one execution at a time. In the example prop-
erty A(Eoff) discussed above, the subformulaoff only refers to the exe-
cution quantified by the inner quantifier E and CTL∗ offers no means to refer
to the execution quantified by the outer quantifier A. In fact, it has been ob-
served that noninterference is not even an ω-regular tree language [5], which
is a class of properties that includes most temporal logics.

This raises the question how temporal logics can be extended to enable
expressing information-flow properties and other hyperproperties of interest.
First, the study of such extensions will lead to a better understanding of the
interplay between the expressiveness of specification languages and the com-
plexity of the model checking problem. Second, temporal logics capable of
expressing information-flow properties may also lead to very practical impact
as it may provide new options to ensure information security—in particular
in the design of hardware, where temporal logic model checking is widely
applied already.

Excursion: Epistemic temporal logic

Epistemic temporal logic extends the commonly considered temporal logics by
the ability to specify the knowledge of agents [135, 45]. The knowledge opera-
tor KAφ expresses that agent A knows the fact φ, which is again a temporal

1.4. CONTRIBUTIONS 15

formula. It is assumed that every agent can only observe a certain part of the
system. For example the property KAa expresses that eventually agent A
knows that a holds. For knowing that a holds, however, agent A does not have
to be able to observe it. The agent may just deduce from other observations
that the fact must hold.

Similar to information-flow properties, knowledge is formalized using
pairs of traces: Agent A knows fact φ at some time i in a given trace t, if
φ holds for t at time i and for all traces t′ that look the same as t to agent A
the fact φ holds at time i as well.

It turns out that certain information-flow properties can be expressed in
epistemic temporal logics [10]. These encodings are, however, fairly com-
plex. For example, the encoding of a simplified variant of noninterference
states that for all possible values v of the secret the attacker must not know
whether the actual secret does not have the value v. In formal notation that
is (∀v : ¬K(h , v)). Besides making use of the quantification over a set of
values, which would lead to a formula of exponential size in the number of
variables, the encoding is very different from the original formulation of non-
interference - and with its double negation arguable more complex. It is thus
questionable whether epistemic temporal logic is suited to serve as a speci-
fication language for information-flow properties and other hyperproperties
of interest. We believe further that the study of the interplay between the ex-
pressive power and the complexity of the algorithmic problems in the area of
hyperproperties demands to look beyond epistemic temporal logic and study
alternative mechanisms to specify relations over multiple executions.

1.4 Contributions

In this thesis, we consider the use of temporal logics for information-flow
control and ask which classes of properties that relate multiple executions of
a system can be automatically enforced. For that we consider an extension
of temporal logics that enables the quantification over multiple traces and
that extends the atomic propositions with the ability to refer to any of those
traces—not only the “current” trace. We propose two temporal logics: Hyper-
LTL and HyperCTL∗. Both logics extend the LTL syntax by the trace quanti-
fiers ∀π.φ and ∃π.φ, and they require to index each atomic proposition by a
variable π indicating the trace it refers to. HyperLTL differs from HyperCTL∗

in that it requires that the trace quantifiers occur only in the beginning of the
formula, while HyperCTL∗ allows us to use quantifiers also inside boolean
and temporal operators.

Noninterference can then be specified as follows in HyperLTL (assuming
that the public inputs consist of a single input variable i and the public out-
puts consist of a single output variable o):

∀π.∀π′ .  (iπ = iπ′) =⇒  (oπ = oπ′)

16 CHAPTER 1. INTRODUCTION

The two quantifiers in the beginning of the formula, i.e. ∀π.∀π′ ., state that
the remaining formula must hold for all pairs of traces, which we assign the
names π and π′ . The remaining formula is an implication (=⇒) that states
that if  (iπ = iπ′) holds, then also the formula  (oπ = oπ′) must hold. The
first subformula (iπ = iπ′) states that for all times the public input variable i
has the same values on the traces π and π′ . Analogously  (oπ = oπ′) denotes
that the public output variable o has the same value on the traces π and π′

for all times. That is, the specification above states that all pairs of execution
traces that have the same public input, the public output must be equal. We
prove in Theorem 3.3.1 that the formulation above exactly reflects the original
definition of noninterference as proposed by Goguen and Meseguer [55].

Semantics

The most immediate question that arises from an extension of temporal log-
ics is how it affects the expressiveness. We start with a practical perspective
and determine that we can express different information-flow properties and
their declassification policies in Chapter 3. The encodings are simple and of-
ten close to the original formulation in the literature. That is, we argue that
with HyperLTL and HyperCTL∗ we can express information-flow properties
in a natural way—the proposed temporal logics apparently provide a suitable
level of abstraction for information-security experts. We also provide natu-
ral encodings of hyperproperties from other fields, including error resistant
codes (the distance of code words) and in distributed computing (symmetries
in protocols), suggesting that the proposed extensions have applications be-
yond information security.

A fundamental question that arises from extensions of temporal logics is
how it affects their classification as linear-time temporal logic or branching-
time temporal logic [54, 103]. Considering HyperLTL and HyperCTL∗ as ex-
tensions of LTL and CTL∗, we come to the conclusion that the extension of
temporal logics to hyperproperties is orthogonal to the classification in linear-
time and branching-time logics. HyperLTL remains in the linear-time setting
and HyperCTL∗ remains in the branching-time setting (Chapter 3 and Chap-
ter 4). We argue that the logic HyperCTL∗ combines the unique abilities to
specify how information enters a system (branching-time), and how informa-
tion flows through and leaves a system (information-flow).

Lastly, a comparison to existing temporal logics that relate multiple ex-
ecutions is in order. While in general the expressiveness of HyperLTL and
epistemic temporal logics is incomparable, we show in Chapter 7 that with
minor assumptions HyperLTL can be shown to be more expressive than the
epistemic temporal logic. We also consider the relation to fixed point logics,
such as the polyadic modal µ-calculus [7].

1.4. CONTRIBUTIONS 17

Algorithmics

Extending temporal logics compels us to revisit the question whether any
property expressible in the new temporal logics can be model checked. We
give a positive answer to this question by giving a model checking algorithm
for HyperLTL and HyperCTL∗ in Chapter 5. As it is common in the analysis
of temporal logics we focus on systems with finitely many states. The algo-
rithmic insights for finite-state systems have repeatedly led to advances in the
analysis of more general system models.

In the worst-case the algorithm has nonelementary run-time and space re-
quirements. That is, the run-time and space requirements of the algorithm
grow faster than any exponential function, even any nesting of exponential
functions. This suggests that the algorithm is highly impractical and our com-
plexity analysis even shows that there cannot be a substantially better model
checking algorithm in general. Our complexity analysis, however, also reveals
a structure behind the complexity issues and draws a more positive picture of
the model checking problems of HyperLTL and HyperCTL∗.

We identify quantifier alternations in the formula as the main source of
computational complexity. A use of a universal quantifier ∀π. inside an exis-
tential quantifier ∃π. or vice versa is considered a quantifier alternation. For
example, the formula ∀π.∃π′ .∀π′′ .φ has (at least) 2 quantifier alternations.
When we bound the number of quantifier alternations in the formula we can
give better bounds on the run-time and space requirements of the algorithm.
We show that the class of model checking problems for formulas with k quan-
tifier alternations is equivalent to the class of problems solvable by a nonde-
terministic Turing machine with g(k,n) memory cells, where n is the size of
the formula and where the function g(k,n) represents a tower of exponentials
of height k. That is g(k,n) is defined to be n for k = 0 and for a height k > 0 the
tower of exponentials is recursively constructed as follows:

g(k,n) = 2g(k−1,n)

When we measure the complexity in the size m of the system instead of
the size of the formula, the complexity is g(k − 1,m). That is, quantifier alter-
nations in the formula still play a decisive role, but the tower of exponentials
has one level less.

In particular, these results imply that for formulas without quantifier al-
ternations, the so called alternation-free fragment, the model checking problem
is PSPACE-complete in the size of the formula and NLOGSPACE-complete in
the size of the system. This coincides with the complexities of the model
checking problems of LTL and CTL∗.

Practical Challenges

It turns out that many of the information-flow properties can be described
without using quantifier alternations and thus are in the alternation-free frag-
ment. Symbolic model checking algorithms for this fragment would thus en-

18 CHAPTER 1. INTRODUCTION

able the automatic enforcement of a large class of information-flow policies.
In Chapter 6 we ask how to devise symbolic model checking algorithms for
the alternation-free fragments of HyperLTL and HyperCTL∗. Considering
the more widespread use of temporal logic model checking in the hardware
industry, as opposed to the software industry, we focus on hardware model
checking in this chapter.

We propose an approach that allows us to reuse existing symbolic hard-
ware model checkers. Given a hardware module to check and an alternation-
free HyperLTL or HyperCTL∗ formula, our algorithm compiles a new hard-
ware module. The new hardware module is then checked for a simple prop-
erty using any of the existing hardware model checkers. From their answer we
can derive whether the original hardware module satisfied the HyperLTL or
HyperCTL∗ formula. This approach has several advantages over devising spe-
cialized symbolic algorithms for this problem: (1) The concept can be adopted
easily in other tool chains, because it requires comparably little engineering
effort, (2) we can easily evaluate how the various symbolic approaches to hard-
ware model checking compare for the new class of properties, and (3) our ap-
proach likely profits from future improvements to symbolic model checking
algorithms.

Along three case studies, we demonstrate that the proposed approach en-
ables us to check real hardware modules for interesting hyperproperties. We
consider a variety of information-flow properties of an I2C bus master imple-
mentation, symmetries in the bakery protocol for mutual exclusion, and the
correctness of error resistant encoders and decoders.

Summary

To summarize, we propose the use of temporal logics as specification lan-
guages for information-flow control to provide a formal basis and to overcome
the inflexibility of current enforcement approaches. We propose a simple ex-
tension to temporal logics that can express various information-flow prop-
erties and other hyperproperties of interest, but that still allows us to give
effective model checking algorithms. We study the expressiveness of the pro-
posed temporal logics HyperLTL and HyperCTL∗, propose a model checking
algorithm, and give a detailed analysis of the complexity of the model check-
ing problem. The proposed approach is directly applicable in hardware secu-
rity: We demonstrate how to leverage existing model checking technology for
checking information-flow properties for real hardware modules.

1.5 Publications and Collaborations

This thesis is based on the following peer reviewed publications:

[30] Michael Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Mi-
cinski, Markus N. Rabe, and César Sánchez. “Temporal Logics for Hy-

1.5. PUBLICATIONS AND COLLABORATIONS 19

perproperties.” In Proceedings of the 3rd Conference on Principles of
Security and Trust (POST), pages 265-284, 2014.

[38] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and
Helmut Seidl. “Model Checking Information Flow in Reactive Systems.”
In Proceedings of the 13th International Conference on Verification, Mo-
del Checking, and Abstract Interpretation (VMCAI), pages 169-185,
2012.

[47] Bernd Finkbeiner and Markus N. Rabe. “The Linear-Hyper-Branching
Spectrum of Temporal Logics.” it-Information Technology, 56, no. 6,
pages 273-279, 2014.

[48] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. “Algorithms for
Model Checking HyperLTL andHyperCTL∗.” In Proceedings of the 27th
International Conference on Computer Aided Verification (CAV), pages
30-48, 2015.

Further, the thesis contains material published in the following report:

[115] Markus N. Rabe, Peter Lammich, and Andrei Popescu. “A shallow em-
bedding of HyperCTL∗.” Archive of Formal Proofs, April 2014. http:
//afp.sf.net/entries/HyperCTL.shtml, Formal proof development.

http://afp.sf.net/entries/HyperCTL.shtml
http://afp.sf.net/entries/HyperCTL.shtml

Chapter 2

Systems and Properties

In this chapter, we discuss the system model used throughout the thesis and
we introduce different notions of properties. In the introduction we relied
on the view that a system is defined by the set of executions (traces) it can
produce, but for the discussion of richer classes of properties and also for
the analysis of systems it will be of importance how the set of traces is gen-
erated. While there are many ways to represent systems (programming lan-
guages, circuits, . . .), we emphasize simplicity in this work and hence choose
Kripke structures as a unified system model. A Kripke structure consists of
a collection of states, transitions between states, and labels that describe the
properties of states.

Each Kripke structure generates a set of execution traces, but there may
be different Kripke structures generating the same set of traces. We can thus
distinguish systems even when they share the same set of traces. Branching-
time properties, for example, may also specify the branching structure, that is
the points of time when two traces split and take different states in the system
(though may still share the same sequence of labels). These are the points of
time when inputs or decisions in the system take place.

In this chapter we provide the formal definition of Kripke structures, be-
fore we discuss, along an example, how Kripke structures relate to real soft-
ware and hardware. Then we turn to a discussion on the different terms of
properties. We define trace properties, hyperproperties, and branching-time
properties and we relate them to the spectrum of process equivalences as
defined by van Glabbeek [54]. We discover a tight connection between the
process equivalence defining linear-time semantics - trace equivalence - and
hyperproperties.

This discussion gives also rise to the structure of this thesis: We start with
temporal logics for the linear-time end of the spectrum (Chapter 3), before we
discuss branching-time temporal logics (Chapter 4). Only after the semantical
discussion, we turn to the algorithmic verification in Chapter 5 and Chapter 6.
We wrap up with a detailed comparison to related temporal logics and fixed
point calculi in Chapter 7.

21

22 CHAPTER 2. SYSTEMS AND PROPERTIES

2.1 Kripke Structures

A Kripke structure is a tuple K = (S,s0,δ,AP,L) consisting of a set of states S,
an initial state s0, a transition function δ : S → 2S , a set of atomic propositions
AP, and a labeling function L : S → 2AP. We require that each state has a suc-
cessor, that is δ(s) , ∅, to ensure that every execution of a Kripke structure can
always be continued to infinity. The size of a Kripke structure is defined as the
cardinality of its set of states |S |. (The restriction to a single initial state here
will prove convenient for the definitions of the logics. We can easily encode
multiple initial states in the first transition of the system.)

A path of a Kripke structure is an infinite sequence s0s1 . . . ∈ Sω such that
s0 is the initial state of K and si+1 ∈ δ(si) for all i ∈ N. By Paths(K,s) and
Paths∗(K,s) we denote the set of all paths of K starting in state s ∈ S and the set
of their suffixes, respectively. An execution trace, or simply trace, of a path σ =
s0s1 . . . is the sequence of labels l0l1 . . . with li = L(si) for all i ∈ N. Traces(K,s)
(and Traces∗(K,s)) is the set of all (suffixes of) traces of paths of a Kripke
structure K starting in state s. The sets of traces and paths starting in the
initial state of a system are denoted with Traces(K) and Paths(K), respectively.

For traces t = a0a1 . . . and paths p = p0p1 . . . we denote the n-th element
with t(n) and p(n), respectively. The n-th suffix of a trace or path , written
t[n,∞] and p[n,∞], is defined as the subsequence of the trace or path starting
from the n-th element.

A Simple Example

We consider the Kripke structure K∗:

• S = {s0, s′0, s1, s2, s3}

• s0 is the initial state.

• δ(s0) = {s′0, s1}

• δ(s′0) = {s
′
0, s1}

• δ(s1) = {s′0, s2}

• δ(s2) = {s′0, s3}

• δ(s3) = {s0, s′0}

• AP = {a, r}

• L(s0) = {a}

• L(s′0) = {a, r}

• L(si) = ∅ for all i ∈ {1,2,3}

2.1. KRIPKE STRUCTURES 23

s0

a

s′0

a,r

s1 s2 s3

Figure 2.1: A graphical representation of the Kripke structure K∗.

As a mathematical definition of Kripke structures is sometimes hard to
read, we often depict Kripke structures as labelled graphs as shown in Fig. 2.1.
The Kripke structure K∗ represents a resettable counter modulo 4. Consider r
to be the input and a to be the output of the system. Without giving the reset
input, the system is supposed to produce the output a every fourth step. By
giving the reset input, the system gives the output a immediately and resets
its counter to 0. As Kripke structures have no explicit notion of inputs and
outputs, both kinds of signals are represented as atomic propositions. Each
state is labelled by the inputs that were given in the last step and the outputs
that the system produced. In particular this means that each state has two
successors: one where the r is set and another one where r is not set.

The Kripke structure K∗ generates an infinite set of execution traces. For
the input sequence that never sets the signal r, the output of the system is
a in the first step and then exactly every four steps. The path taken in the
Kripke structure would be an infinite repetition of the states s0, s1, s2, and s3,
in this order. For each infinite sequence of input signals (where in each step r
is either set or not set) this Kripke has a unique execution trace.

In case of incomplete or underspecified systems, however, this may not be
the case and the Kripke structure may offer different possible executions for
the same input sequence. We call this nondeterministic behavior, or short non-
determinism. Nondeterminism is a useful tool for modeling systems; when
we do not know how exactly a system behaves, or if we intentionally want to
abstract from details to keep the model simple, we can include a nondeter-
ministic choice of behavior in the Kripke structure.

From Software and Hardware to Kripke Structures

Pieces of software and hardware can be seen as succinct representations of
Kripke structures. By a hardware module, we typically understand a circuit
(or a program-like description of a circuit in a language like Verilog or VHDL)
that consists of a certain number of memory cells, that is latches, and a com-
binational part that determines, for a given input and state of the latches, the

24 CHAPTER 2. SYSTEMS AND PROPERTIES

outputs and the next state of the latches. Given a hardware module, that is
a circuit, we consider the set of all possible values of the memory cells in the
circuit as the set of states of the Kripke structure. The transitions between the
states are then determined by the combinational part.

Given a program we typically consider the set of all possible values of the
variables as the set of states of the Kripke structure. For that purpose we
also consider the program counter as a variable. The transitions of a program
are then determined by considering for each state the effect of the current
program statement.

While for hardware circuits the translation into Kripke structures is fairly
unique, for software there are more degrees of freedom in the translation. In
particular there are different options available for modeling how the variables
are initialized, how inputs are read, and how programs terminate. By defin-
ing temporal logics on Kripke structures we abstract from these modeling
choices, which allows us to focus on the fundamental questions of how the
expressiveness of specification languages interacts with the model checking
problem.

2.2 Properties

In this thesis we consider properties of systems. Each Kripke structure K either
satisfies a given property P , denoted K |= P , or violates it. A property can
be represented by the set of systems it satisfies—the characteristic set of the
property.

Analogously, properties of traces are either satisfied or violated by any
given trace and we can represent them by their characteristic set of traces.
We will denote properties of traces with trace properties to clearly distinguish
them from properties of systems. Trace properties can be interpreted as sys-
tem properties, by requiring that all traces of a given system satisfy the trace
property. As an exercise, we formalize the use of trace properties as system
properties as follows: Let T (AP) = (2AP)ω be the set of all traces over a given
set of atomic propositions AP. Then a (the characteristic set of a) trace prop-
erty P ∈ 2T (AP) is said to be satisfied by a Kripke structure K , if the traces of K
are a subset of P .

Earlier studies identified a beautiful structure in trace properties. As is
well known from topology, every set can be represented as the intersection
of an open and a closed set. For the characteristic set of trace properties this
decomposition corresponds to the notions of liveness trace properties (e.g. a)
and safety trace properties (e.g. a) [4]. This is an insight of great practical
relevance, as safety trace properties are trace properties that can be refuted by
a finite (prefix of a) trace and liveness trace properties are the trace properties
that need an infinite trace to be refuted.

2.2. PROPERTIES 25

System Equivalences

A different approach to the classification of properties is to ask what features
of systems we want to be able to specify and to what features of systems we
want to be indifferent. The induced process equivalence of a given class of prop-
erties is the equivalence that distinguishes two systems exactly if there exists
a property in the class that is satisfied by one system but not by the other.
Van Glabbeek studied classes of properties defined by process semantics and
the equivalences they induce [54]. In the same way classes of properties gen-
erated by temporal logics can be analyzed for their induced process equiva-
lences [8, 103].

The coarsest of the typically considered process equivalence of the spec-
trum is trace equivalence. Two systems are considered trace equivalent, if the
sets of traces they generate are equal. Trace equivalence gives rise to the no-
tion linear-time properties, which abstract from the state space and the inner
structure of a system, and only consider the execution traces a system gener-
ates. In this thesis we consider a property as a linear-time property (not to be
confused with the commonly used term linear property, which we call trace
property in this work), if all pairs of trace equivalent Kripke structures K and
K ′ either both satisfy the property or both violate the property. That is, it is
the most general term of properties that still induces trace equivalence. It is
clear that trace properties are a subset of the linear-time properties.

Bisimulation (or bisimilarity) is the finest of the typically considered pro-
cess equivalences and corresponds to the branching-time view. Two processes
are bisimilar if there exists a relation between their states that relates their
initial states and that ensures that for every pair of related states, every tran-
sition from one state can be simulated by a transition from the other state such
that the successors are related again. Analogous to linear-time properties we
define branching-time properties to be the most general class of properties that
still induces bisimulation. That is, a property is a branching-time property, if
all pairs of bisimilar Kripke structures K and K ′ either both satisfy the prop-
erty or both violate the property.

Hyperproperties

Information-flow properties relate multiple traces and thus fall outside of the
class of trace properties, which consider traces in isolation. Consider the se-
crecy (confidentiality) property noninterference [55].1

Given a Kripke structure K and a partition of propositions into low and
high input propositions Il and Ih, and low and high output propositions Ol
and Oh. While the low propositions are considered to be observable by the
attacker, the high propositions model the secret. The set of high input propo-
sitions Ih is defined to be noninterferent with the low output propositions Ol ,
if for all traces t = t0t1t2 . . . and u = u0u1u2 . . . with ti ∩ Il = ui ∩ Il for all i ∈ N,

1We consider amodern presentation of noninterference that is also referred to as observational
determinism [117, 148].

26 CHAPTER 2. SYSTEMS AND PROPERTIES

it holds that ti ∩Ol = ui ∩Ol for all i ∈ N. That is, Ol may not depend on the
high input Ih and thus the attacker cannot obtain any information about the
secret.

To formally prove that noninterference is not a trace property, we give a
proof by contradiction. Suppose that there is a trace property φ that expresses
noninterference. The set of traces T that satisfy the formula cannot be the
full set of traces (with respect to some non-empty set of atomic propositions),
because in that case all Kripke structures would satisfy the property. We pick
a trace t that is not in T and consider a Kripke structure that only allows for
trace t. Since this Kripke structure only has a single trace, it obviously satisfies
noninterference; but since that trace is not in T , it violates φ, contradicting
our assumption that φ expresses noninterference.

Clarkson and Schneider proposed the notion of hyperproperties to pro-
vide a new class of properties that includesmany information-flow properties.
They define a hyperproperty H ∈ 22T (AP) to be a set of sets of traces. A system
K satisfies a hyperproperty H , if its set of traces is an element of H , that is
Traces(K) ∈ H . Similar to trace properties, hyperproperties can be classified
into safety hyperproperties and liveness hyperproperties [31]. For example,
for a given classification of inputs and outputs into public and secret nonin-
terference is the hyperproperty that consists of all sets of traces that satisfy
the noninterference condition:{

T ⊆ T (AP) | ∀t, t′ ∈ T : t =Ip t
′ =⇒ t =Op

t′
}

The definition of the class of hyperproperties compels us to compare it
to the known classes of properties. Hyperproperties clearly are a subclass
of the linear-time properties: a pair of trace equivalent systems clearly sat-
isfies the same set of hyperproperties. Given two systems K and K ′ with
Traces(K) = Traces(K ′) then clearly Traces(K) ∈ H iff Traces(K ′) ∈ H for any
hyperproperty H . A close look reveals that the converse is true as well. Given
two systems K and K ′ with Traces(K) , Traces(K ′) then there is a hyperprop-
erty H that is satisfied by K but violated by K ′ : Choose H = {Traces(K)}.

Theorem 2.2.1. A property is a hyperproperty iff it is a linear-time property.

This comes at no surprise. Already Clarkson and Schneider observed that
hyperproperties are the most general class of properties that can be defined
over traces [31]. The formulation via trace equivalence, however, lets us re-
late hyperproperties to the branching-time view: there are branching-time
properties that are not hyperproperties. However, if we assume the model-
ing principles proposed by Nain and Vardi, which let trace equivalence and
bisimulation collapse [103], hyperproperties are models of all branching-time
properties. This can be seen as a strengthening of Clarkson and Schneider’s
observation that “hyperproperties can bemodels for branching-time temporal
predicates” [31].

2.2. PROPERTIES 27

The Spectrum of Temporal Logics

The classifications of LTL as linear-time temporal logic, and CTL and CTL∗

as branching-time temporal logics is based on the process equivalences they
induce: LTL induces trace equivalence and both CTL and CTL∗ induce bisim-
ulation [8]. The first two chapters of this thesis follow the classification of
temporal logics into linear-time and branching-time. In Chapter 3 we start
with extending LTL to enable expressing information-flow properties while
staying within the linear-time properties. In Chapter 4 we then discuss the
effect of extending branching-time temporal logics. In particular, we identify
a class of information-flow properties, which are not linear-time properties,
i.e. are not hyperproperties.

Chapter 3

Linear-time Temporal Logics

In this chapter, we study linear-time temporal logics as specification lan-
guages. We review the well-known linear-time temporal logic (LTL) before we
discuss an extension of LTL, HyperLTL. HyperLTL enables us to express hy-
perproperties that are not trace properties but remains a linear-time temporal
logic. Along a number of encodings of common information-flow properties
and hyperproperties from other fields we demonstrate the versatility of the
logic. We also prove that the original definition of Goguen and Meseguer’s
noninterference can be encoded in HyperLTL.

3.1 Linear-time Temporal Logics

Linear-time temporal logic is the most commonly studied specification lan-
guage in the linear-time setting [110]. LTL specifies properties of single traces
such as invariants, (“for all times variable x is greater than 5”) or eventualities
(“eventually variable x is greater than 5”). For example the property “event
a is always followed by event b” would be (a⇒b) in LTL syntax. LTL is
generated by the following grammar:

φ ::= a | ¬φ | φ∧φ | φ | φU φ

where a is an atomic proposition, ¬ is the negation operator, ∧ is conjunction,
denotes next, and U is the until operator. We also consider the usual derived
Boolean operators and the derived temporal operators eventuallyφ ≡ trueU
φ and globally φ ≡ ¬¬φ.

LTL is interpreted over traces t:

t |= a iff a ∈ t(0)
t |= ¬φ iff t ̸|= φ
t |= φ1 ∧φ2 iff t |= φ1 ∧ t |= φ2
t |=φ iff t[1,∞] |= φ
t |= φ1Uφ2 iff for some i ≥ 0 : t[i,∞] |= φ2 and

for all 0 ≤ j < i : t[j,∞] |= φ1

29

30 CHAPTER 3. LINEAR-TIME TEMPORAL LOGICS

LTL formulas define, by definition, trace properties. A system K is then
defined to satisfy an LTL formula φ, denoted denoted K |= φ, if all execution
traces of the system satisfy the property.

3.2 HyperLTL

Even though most information-flow properties are linear-time properties (hy-
perproperties) LTL cannot express them, as LTL can only express trace prop-
erties but, as we discussed in Chapter 2, information-flow properties involves
the comparison of two or more execution traces. We thus propose to extend
LTL with trace quantifiers, which allow us to relate multiple execution traces.
In the resulting logic, HyperLTL [30], we can then express noninterference as
follows:

∀π.∀π′ .(Il,π = Il,π′)⇒(Ol,π =Ol,π′) ,

where Il and Ol are the sets of propositions for the public inputs and outputs
as introduced in the definition of noninterference, and Il,π = Il,π′ and Ol,π =
Ol,π′ express that at the current point of time the paths π and π′ are equal
on the atomic propositions Il and Ol respectively. The formula states that
when for all pairs of traces π and π′ and for all times, indicated by the “box”-
operator , the low inputs on π and π′ are equal, then also the low outputs
shall be equal for all times.

The formulas of HyperLTL are generated by the following grammar, where
a ∈ AP and π ranges over trace variables:

φ ::= true | aπ | ¬φ | φ∨φ | φ∧φ
| φ | φU φ | φRφ | ∃π. φ | ∀π. φ

We require that HyperLTL formulas are closed and in prenex form. A
formula is in prenex form if it starts with a quantifier prefix and continues
with a quantifier-free subformula. Quantifiers ∀π.ψ bind all occurrences of
path variables in their subformula ψ, and path variables that are not bound
by quantifiers are called free. A formula is closed, if it does not contain any
free path variables.

As we will frequently specify the comparison among traces, we intro-
duce the equality on sets of atomic propositions as syntactic sugar and define
Aπ = Aπ′ as

∧
a∈A aπ↔ aπ′ . We also introduce the derived temporal operators

φ B true U φ, φ B ¬¬φ, and φ1W φ2 B φ1 U φ2 ∨φ1, as well as
the boolean connectives φ1 ⇒ φ2 B ¬φ1 ∨φ2, φ1 ⇔ φ2 B φ1 ⇒ φ2 ∧ φ2 ⇒
φ1, and φ1 xor φ2 B ¬(φ1⇔ φ2).

Semantics. In the following we define the semantics for the operators aπ,
¬φ, φ1 ∨ φ2, φ, φ1 U φ2, and ∃π. φ. The other operators are defined via
the following equalities: ∀π. φ = ¬∃π. ¬φ, φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2), and
φ1 R φ2 = ¬(¬φ1 U ¬φ1). These derived operators are kept in the syntax to
guarantee the existence of equivalent formulas in negation normal form.

3.3. APPLICATIONS IN INFORMATION-FLOW CONTROL 31

Let K be a Kripke structure and let s0 be its initial state. The semantics
of HyperLTL is given via trace assignments Π : N → Traces∗(K,s0) of a set
of trace variables N to suffixes of traces. We use Π[i,∞] for the trace assign-
ment that assigns to each trace variable π the suffix Π(π)[i,∞]. We define the
validity of a formula as follows:

Π |=K aπ iff a ∈Π(π)(0)
Π |=K ¬φ iff Π ̸|=K φ

Π |=K φ1 ∨φ2 iff Π |=K φ1 orΠ |=K φ2
Π |=K φ iff Π[1,∞] |=K φ

Π |=K φ1 U φ2 iff for some i ≥ 0 : Π[i,∞] |=K φ2 and
for all 0 ≤ j < i : Π[j,∞] |=K φ1

Π |=K ∃π. φ iff for some t ∈ Traces(K,s0) : Π[π 7→ t] |=K φ

Validity on a Kripke structure K , written K |= φ, is defined as ∅ |=K φ,
where ∅ is the empty assignment.

The extension of LTL by the ability to quantify over multiple traces com-
pels us to ask whether HyperLTL still is a linear-time logic. Given that LTL is
a sublogic of HyperLTL, it is clear that its induced equivalence is at least as
fine as trace equivalence. HyperLTL also cannot distinguish more than trace
equivalence, because its semantics refers to the system only in terms of the set
of traces starting from the initial state.

Theorem 3.2.1. HyperLTL induces trace equivalence.

HyperLTL is thus a logic for linear-time properties, or hyperproperties.
This observation is helpful to understand the limits of the expressiveness of
HyperLTL. For example, we can immediately conclude that it is impossible
to specify when a nondeterministic choice happens - the standard example to
separate linear-time logics from branching-time logics. We refer to Chapter 4
for a detailed discussion.

3.3 Applications in Information-flow Control

We have already seen that we can express noninterference [55] in HyperLTL
in a natural way: ∀π.∀π′ . (Il,π = Il,π′)⇒ (Ol,π = Ol,π′). In the following,
we discuss various encodings of information-flow properties, properties of
distributed systems and of coding theory.

The property-oriented approach to information-flow control considers sys-
tem properties that restrict the information that the system reveals to an at-
tacker. The information visible to the attacker can be specified as a relation
over the executions of the system. The inputs and outputs of the system are
typically partitioned into high and low, which gives rise to an attacker model:
The attacker is modeled as a an (implicit) entity that can observe the low out-
puts and that has full control over the low inputs. We assume that the attacker
can repeatedly execute the systemwith various low inputs of his or her choice.

32 CHAPTER 3. LINEAR-TIME TEMPORAL LOGICS

Since there is no notion of inputs and outputs in Kripke structures, we
assume a partitioning of the atomic propositions into inputs I and outputs
O for the purpose of the following example encodings. To simplify the dis-
cussion further, we assume input-enabled systems in this section: A Kripke
structure is input-enabled in some set of sets of propositions I ⊆ 2AP, if for all
states s of the Kripke structure and all a ∈ I there is a successor state s′ with
label L(s′)∩ I = a. Input-enabled Kripke structures model systems whose be-
havior is modeled for all inputs and where the last input is visible in each
state. Common reactive system, such as circuits or reactive programs, can be
interpreted as input-enabled Kripke structures.

Security Lattices

A classical security model is that of multiple levels of secrecy [15, 35]. For
example, consider a simplified model of the “United States government clas-
sification system” that includes the following classifications: “unclassified”,
“confidential”, “secret”, “top secret”, and “no contractor”. When the security
levels do not form a linear hierarchy (e.g. the classification “confidential, no
contractor” is incomparable to the classification “secret”), but are only par-
tially ordered, the possible classifications of data form a security lattice. A
security lattice (L,≤) consists of a set of security levels L and a partial order ≤
on L. The security lattice for the example classification system can be depicted
as follows (transitive edges are not drawn):

unclassified

confidential

secret

top secret

confidential, no contractor

secret, no contractor

top secret, no contractor

Starting from a classification of inputs and outputs of the system, we can
easily express a security lattice as the conjunction over multiple instances of
noninterference (or a different basic notion of secrecy). Each conjunct restricts
a security level to only depend on the information in lower security levels:∧

λ∈L
∀π.∀π′ .(I≤λ,π = I≤λ,π′)⇒(Oλ,π =Oλ,π′) ,

where I≤λ are the inputs classified on the security level λ or a lower classified
security level, and Oλ are the outputs classified on security level λ.

3.3. APPLICATIONS IN INFORMATION-FLOW CONTROL 33

Declassification

Noninterference forbids the leakage of any information about the secret. Ma-
ny security critical systems, however, are intended reveal secret information
partially or under certain conditions. For example, a piece of software that
checks passwords must reveal whether the entered password is correct or not.
The term declassification summarizes the various ways by which the degree of
intended information release can be specified; see [120] for a survey.

For example, we can release predefined facts about the secret (the “what-
dimension” [120]):

∀π.∀π′ .(Il,π = Il,π′ ∧ φ)⇒(Ol,π =Ol,π′) ,

where φ is a formula (typically not containing temporal operators) describing
the fact that may be released. In our password checker example discussed in
the introduction, φ B Il,π = Ih,π ↔ Il,π′ = Ih,π′ describes that the information
whether the public input is equal to the secret input (i.e. the password) may
be released.

We can also release information when a certain condition ψ is met (the
“when-dimension” [120]):

∀π.∀π′ . (Ol,π =Ol,π′)W (Il,π , Il,π′ ∨ ψ) .

For example, a system that protects a secret until the correct password is
entered could be specified by defining ψ B Il,π = Ih,π. (Consider that for
φ B false the property is equivalent to noninterference, due to our assump-
tion of input enabledness.)

Quantitative Information Flow

In cases where leaks cannot be prevented absolutely, we may still be able to
limit the quantity of the lost information [64, 27, 70, 126, 146]. Different no-
tions of entropy have been proposed to measure the amount of leaked infor-
mation. Two definitions of entropy that are argued to be appropriate for secu-
rity considerations are min entropy [126] and minimal guessing entropy [70].
For our discussion on quantitative information flow properties, we assume
that the secrets Ih is chosen uniform at random and that for a fixed low input
Il , we obtain a unique probability distribution over the traces of the system.

Min entropy measures the expected likelihood to guess the secret after ob-
serving the run of the system. The min entropy of Ih in the observable output
Ol is the logarithm of the number of different observations in Ol [126]. In
HyperLTL, we can express that the min entropy is bounded by n bits by re-
quiring that for any set of 2n+1 traces of the system, at least one pair has equal
observations:

∀π1. ∀π2n+1 .
∨
i,j

(Ol,πi =Ol,πj) .

34 CHAPTER 3. LINEAR-TIME TEMPORAL LOGICS

To incorporate public input that is controllable by the attacker, we can
refine the property by as follows:

∀π1. ∀π2n+1 .
(∧
i,j

(Il,πi = Il,πj)
)
⇒

∨
i,j

(Ol,πi =Ol,πj) .

Minimal guessing entropy is an alternative definition of entropy that mea-
sures the worst-case likelihood to guess the secret after observing the run of
the system [70]. Bounding the minimal guessing entropy by n bits boils down
to the requirement that for every observation that the system may produce,
there must be at least 2n secrets that produce the observation. In HyperLTL,
we formalize this as follows:

∀π. ∃π1. ∃π2n .
(∧

i

(Ol,π =Ol,πi)
)
∧

∧
i,j

(Ih,πi , Ih,πj) .

Noninterference and Event-based SystemModels

Noninterference, introduced by Goguen and Meseguer in 1982 [55], is seen as
the starting point for information-flow security. They state secrecy in terms
of groups of “users” that may issue commands to the system and that may
make observations. The commands of one group of users are considered to be
the secret and a second group of users is considered to be a group of attack-
ers. The original definition of noninterference then requires that the attackers
observations remain unchanged when removing the secret user’s commands.

Steps in the system model are not necessarily observable. Sequences of
observations are identified only after contracting equal observations: obser-
vations o1o1o2 and o1o2o2 are considered to be indistinguishable. This repre-
sents the assumption that the attackers cannot tell, whether or not the secret
users performed a command in case its execution does not affect the attackers’
observations.

At a first glance, the observational equivalence required for our formaliza-
tion of noninterference seems different in nature, as it involves the lock-step
comparison of traces. Two (finite prefixes of) traces with the observations
o1o1o2 and o1o2o2 are hence considered distinguishable by the attackers in
our setting.

A closer look reveals, however, that this intuition is misleading. We show
in this subsection that noninterference, as formalized in HyperLTL above, is
equivalent to the original definition of noninterference for a natural trans-
lation of their system model in Kripke structures that allows the system to
stutter [115]. The key idea is that quantifying over two traces of the stut-
tering system generates all possible alignments of pairs of traces of the non-
stuttering version of the system. It is then sufficient to synchronize the traces
by the common choices of low inputs. This suggests that HyperLTL may also
serve as a specification language for information-flow properties for event-
based system models.

3.3. APPLICATIONS IN INFORMATION-FLOW CONTROL 35

Encoding GM’s System Model. The system model used in [55], which we
will refer to as deterministic state machines, is a tuple (S,U,C,Out,out,do, s0),
where S is some set of states with an initial state s0, C is a set of commands
that are issued by users u ∈U , and Out is a set of observations. The evolution
of a deterministic state machine is governed by the transition function do :
S ×U ×C→ S and there is a separate observation function out : S ×U → Out
that for each user indicates what he can observe.

We define standard notions on sequences of users and events. For w ∈
(U ×C)∗ and G ⊆U let |w|G denote the projection of w to the tuples (u,c) with
u ∈ G, i.e. those commands that are issued by the users in G. (Goguen and
Meseguer called this the purge operation [55].) Further, we extend the transi-
tion function do to sequences, do(s, (u,c).w) = do(do(s,u,c),w), where the dot
indicates concatenation. Finally, we extend the observation function out to
sequences w, indicating the observation after w: out(w,G) = out(do(s0,w),G).
GM-noninterference is then defined as a property on deterministic state ma-
chines M = (S,U,C,do,out). A set of users GH ⊆ U does not interfere with a
second group of users GL ⊆U , if:

∀w ∈ (U ×C)∗. out(w,GL) = out(|w|U\GH
,GL) .

That is, GM-noninterference asks whether the same output would have
been produced by the system, if all actions issued by users in GH were re-
moved.

To show that GM-noninterference can be expressed in HyperLTL, we need
to translate deterministic state machines to Kripke structures. We give an
intuitive translation that indicates in every state which observations can be
made for the different users and which action was issued last by which user.
Given a deterministic state machine M = (S,U,C,Out,out,do, s0), we con-
struct the Kripke structure K(M) = (S ′ , s′0,δ,AP,L), where S ′ = S × U × C ∪
S, s′0 = s0, AP = U × C ∪ U × Out, and the labeling function is defined
as L((s,u,c)) = {(u,c)} ∪ {(u′ ,out(s,u′)) | u′ ∈ U } for tuple states and L(s) =
{(u′ ,out(s,u′)) | u′ ∈ U } for all other states. The transition function is defined
as follows:

δ(s) = {s} ∪ {(s′ ,u′ , c′) | do(s,u′ , c′) = s′}
δ((s,u,c)) = {s} ∪ {(s′ ,u′ , c′) | do(s,u′ , c′) = s′}

The states without a user-command pair indicate states in which no com-
mand was issued in the last step. Except for the initial state they are only
reachable via the newly introduced stuttering transitions. Consider thatK(M)
is input-enabled in the set I = {(u,c) | u ∈U, c ∈ C}.

Theorem 3.3.1. Let M be a deterministic state machine, let GL and GH be two
disjoint groups of users, and let Il = {(u,c) | u ∈ U \GH , c ∈ C} and Ol = {(u,o) |
u ∈ GL, o ∈Out} be the inputs and observations as modeled in the Kripke structure.
Then K(M) |= ∀π.∀π′ . (Il,π = Il,π′)⇒ (Ol,π = Ol,π′) holds if, and only if, GH
does not interfere with GL.

36 CHAPTER 3. LINEAR-TIME TEMPORAL LOGICS

Proof. Given a sequences w ∈ (U ×C)∗ of length n with w = (u1, c1), . . . , (un, cn),
the path prefix p(w) = s′0, ((w|1),u1, c1), . . . , ((w|n),un, cn) can be extended to a
path in Paths(K(M), s0) (i.e. it exists), where w|i is the prefix of w up to and
including position i (i.e. w|n = w). Note that path p(w) has length n + 1. The
labels l0, l1, . . . , ln along path p(w) represent the observations out(w|i ,U) and
the users commands, i.e. l0 = {(u,out(s0,u)) | u ∈ U } and li = {(u,out(w|i ,u)) |
u ∈U } ∪ {(u(i), c(i))} for all 0 < i ≤ n.

We can pump all paths of K(M) at any point: if p = s0, . . . , si−1, si , si+1, . . .
is a path in Paths(K(M), s0), then also p′ = s0, . . . , si−1, si , si , si+1, . . . is a path
in Paths(K(M), s0) for any i. In particular, we know that p and its stuttered
version p′ show the same final observation, as seen from all observers.

Consider any finite sequence w ∈ (U ×C)∗ in the given deterministic state
machine M. If M violates noninterference, then the last observations of the
users GL disagree for w and |w|U\GH

, i.e. out(w,GL) = out(|w|U\GH
,GL). The

path prefixes p(w) and p(|w|U\GH
) necessarily have different labels in the last

position, but they are not be compared to each other in the HyperLTL prop-
erty, as they don’t have the same length.

We now insert for every position in w that was deleted by the projection
|w|U\GH

a stuttering step in p(|w|U\GH
). We obtain a path p′′(|w|U\GH

) that
has again length n + 1 and that shows the same low inputs, i.e. Il,π = Il,π′
is not violated up to position n. Further, as K(M) is input-enabled, we can
extend p(w) and p′′(|w|U\GH

) in a way such that (Il,π = Il,π′) holds (for all
times). Their observation at position n, however, are still different, such that
the HyperLTL property is violated.

Now assume the HyperLTL property ∀π.∀π′ . (Il,π = Il,π′) ⇒ (Ol,π =
Ol,π′) is violated. Let p and p′ be two paths that have the same low inputs
but different low observations and let n be the first position such that their
low observations disagree. We consider their prefixes pn and p′n up to and
including position n and remove all stuttering steps to obtain qn and q′n. The
last state of prefix qn still has the same observation as the last state of pn and
equivalently the last state of q′n has the same observation as the last state of p′n.
We consider the command sequences w of qn and w′ of q′n and their common
subsequence |w|U\GH

of commands of users in U \GH . GM-noninterference
requires that both, w and w′ , must lead to the same observation as |w|U\GH

,
but w and w′ have different observations (in their last states).

Security Definitions for Nondeterministic Systems

The system model used to define Goguen and Meseguer’s noninterference
only allowed for deterministic transition relations when all agents fixed their
transitions. A common concern of many pieces of work following the seminal
work of Goguen and Meseguer is the extension of noninterference to nonde-
terministic systems (e.g. [147, 85, 148, 88]). How should nondeterministic
choices in the transition relation be treated, if they are not resolved upon fix-
ing an input? The notions proposed in the literature for this case differ in
their assumptions on the source of nondeterminism.

3.4. APPLICATIONS IN DISTRIBUTED SYSTEMS 37

Observational determinism [148, 117] treats nondeterminism in the same
way as secrets, representing the worst-case assumption that the nondetermin-
ism may depend on the secret information. In particular, unspecified behav-
ior in the low behavior leads to a violation of observational determinism, and
hence the property is not necessarily applicable on abstract models. We con-
sider observational determinism to be a modern formalization of noninterfer-
ence and thus the two notions coincide in this thesis.

Noninference, in contrast, treats nondeterminism as an existential choice
and requires that for every trace there must be an alternative trace that re-
ceives a dummy value λ as the secret input but produces the same output [89]:

∀π.∃π′ .(Il,π = Il,π′) ∧ (Ih,π′ = λπ′) ∧ (Ol,π =Ol,π′) .

Noninference is satisfied for strictly more systems compared to noninter-
ference, but noninference is not necessarily preserved under refinement. That
is, it is unclear which security guarantees hold for implementations of an ab-
stract model satisfying noninference.

Generalized noninterference tries to find a middle ground by requiring
that for all traces and all alternative secrets, there is an execution trace that
combines the alternative secret with the low input and low observation of the
first trace [87, 89]. Thus, any secret can be an explanation for every observa-
tion.

∀π.∀π′ . ∃π′′ .(Il,π′′ = Il,π) ∧ (Ih,π′′ = Ih,π′) ∧ (Ol,π′′ =Ol,π) .

Integrity

Besides secrecy, information-flow security also considers the integrity of sys-
tems. Integrity requires that the high behavior of the system is not influ-
enced by the low inputs that are potentially controlled by an attacker. Shell-
shock [51], POODLE [96, 50] and Stuxnet [3] are well-known incidents that
affected the integrity of systems. On the technical level, integrity is similar
to secrecy: It can be specified as a relation over the executions of the system
requiring that all pairs of traces having the same high inputs, but possibly
different low inputs, have the same high outputs. The following HyperLTL
property specifies integrity:

∀π.∀π′ .(Ih,π = Ih,π′)⇒(Oh,π =Oh,π′) ,

Analogous to the discussion of declassification, we can also express excep-
tions to integrity in HyperLTL.

3.4 Applications in Distributed Systems

Mutual exclusion protocols are a classical object of study in distributed sys-
tems. The typical fairness properties for which mutual exclusion protocols

38 CHAPTER 3. LINEAR-TIME TEMPORAL LOGICS

have been analyzed can be seen as coarse abstractions of what is really ex-
pected from mutual exclusion protocols: symmetric access to the shared re-
source. HyperLTL enables a finer grained analysis of the symmetry between
the processes by permitting to express, for example, that switching the ac-
tions and roles between two components in a trace results in another legal
trace, in which the access to the shared resource is switched accordingly. That
is, in a setting with two components that signal requests via the propositions
r1 and r2, and receive grants via the propositions g1 and g2, the property can
be expressed as follows:

∀π.∀π′ .(r1,π↔ r2,π′ ∧ r2,π↔ r1,π′)⇒(g1,π↔ g2,π′ ∧ g2,π↔ g1,π′)

It is well-known that mutual exclusion protocols cannot fulfill this strict
version of symmetry, since both processes may request the resource at the
same time and the protocol has to resolve this conflict in some (non-symmet-
ric) way [83]. In Chapter 6, we study under which circumstances an imple-
mentation of a mutual exclusion protocol guarantees symmetric access.

3.5 Applications in Error Resistant Codes

Error resistant codes enable the transmission of data over noisy channels.
While the correct operation of encoder and decoders is crucial for communi-
cation systems, the formal verification of their functional correctness has re-
ceived little attention. A typical model of errors bounds the number of flipped
bits that may happen for a given code word length. Then, error correction
coding schemes must guarantee that all code words have a minimal Ham-
ming distance. Alternation-free HyperLTL can specify that all code words
produced by an encoder have a minimal Hamming distance of d:

∀π.∀π′ .(
∨
a∈I

aπ,aπ′)⇒¬HamO(d − 1,π,π′)

where I are the inputs denoting the data, O denote the code words, and the
predicate HamO(d,π,π′) is defined as HamO(−1,π,π′)B false and:

HamO(d,π,π′) B
(∧

a∈O aπ=aπ′
)
W

(∨
a∈O aπ,aπ′ ∧ HamO(d−1,π,π′)

)
Note that this formalization is independent of the encoding scheme and

can hence be applied to different coding schemes, as we demonstrate in Chap-
ter 6.

Symmetries in the Golay code. The Golay code [56] is a block-code that
operates on data words of 12 bits and uses code words of 23 bits (in some
variants 24 bits). It was used by NASA during the first years of the Voyager
missions [112], and was object of study in many works, also due to its tight
links to group theory.

3.5. APPLICATIONS IN ERROR RESISTANT CODES 39

The code enjoys interesting properties, such as symmetries in the space
of code words. For example, a code word of the Golay code that is inverted
bitwise, is also a code word:

∀π.∃π′ .(Cπ xor Cπ′) .

Even though many of the properties considered in this section have been
analyzed so far on abstract models, little attention has been paid to the ver-
ification on the implementation level. In Chapter 6 we show that their for-
mulation HyperLTL formulas enables the automatic verification of industrial
hardware designs.

Chapter 4

Branching-time Temporal Logics

Additional to the traces a system generates, the branching-time view consid-
ers the branching structure of the system’s behavior. The branching structure
describes when nondeterministic choices are made, that is when information
enters the system [92]. In this chapter we study temporal logics for branching-
time in the light of information-flow properties.

Branching-time temporal logics like CTL and CTL∗ introduce use path
quantifiers to distinguish Kripke structures with different branching struc-
tures. We determine that the extension of LTL to HyperLTL and the extension
of LTL to CTL∗ introduces different kinds of expressiveness. That is, the ex-
pressiveness of HyperLTL and CTL/CTL∗ is incomparable. This raises the
question what the combination of both kinds of expressiveness yields. We ex-
amine the extension of CTL and CTL∗ by the quantification over named paths,
resulting in the logic HyperCTL∗. The difference to HyperLTL is that the path
quantifiers of HyperCTL∗ can be used inside temporal operators. HyperCTL∗

can thus reason both about the branching-structure of a system, which are the
points where information enters the system, and the information-flows within
the system.

We describe the class of temporal information-flow properties, which de-
scribes information-flow requirements that change over time. Temporal infor-
mation-flow properties specify both aspects - the information-flow and the
branching structure - and therefore fall outside HyperLTL and even outside
hyperproperties (as hyperproperties do not include branching-time proper-
ties; see Section 2.2). We introduce a sublogic of HyperCTL∗, which we call
SecLTL, to ease the specification of (temporal) information-flow properties.
Syntactically, SecLTL extends LTL by the hide operator, HH,Oφ, which ex-
presses that the secret input H that is read at the current point of time re-
mains secret with respect to observations in O until a release condition φ be-
comes true. We also discuss how SecLTL expresses standard information-flow
properties like noninterference and information-flow properties with declas-
sification policies.

41

42 CHAPTER 4. BRANCHING-TIME TEMPORAL LOGICS

4.1 CTL and CTL∗

CTL∗ is generated by the following grammar of state formulas Φ and path
formulas φ:

Φ ::= a | ¬Φ | Φ ∧Φ | Aφ | Eφ
φ ::= Φ | ¬φ | φ∧φ | φ | φU φ

Again, we consider the usual derived Boolean and temporal operators. CTL
is the sublogic of CTL∗ where every temporal operator is immediately pre-
ceded by a path quantifier. CTL∗ state formulas Φ are interpreted over states
and path formulas φ are interpreted over paths of a given Kripke structure and
thus have access to more information than LTL formulas. For a given Kripke
structure K = (S,s0,δ,AP,L) and a state s ∈ S, the semantics of CTL∗ state for-
mulas is defined as follows:

s |=K a iff a ∈ L(s)
s |=K ¬Φ iff s ̸|=K Φ

s |=K Φ1 ∧Φ2 iff s |=K Φ1 and s |=K Φ2
s |=K Aφ iff ∀p ∈ Paths(K,s) : p |=K φ

s |=K Eφ iff ∃p ∈ Paths(K,s) : p |=K φ

The semantics of path formulas closely resembles the interpretation of
LTL formulas. For a given Kripke structure K = (S,s0,δ,AP,L) and a path
p ∈ Paths∗(K,s0), we define:

p |=K Φ iff p(0) |=K Φ

p |=K ¬φ iff s ̸|=K φ

p |=K φ1 ∧φ2 iff s |=K φ1 and s |=K φ2
p |=K φ iff t[1,∞] |= φ, and
p |=K φ1 U φ2 iff for some i ≥ 0 : t[i,∞] |= φ2 and

for all 0 ≤ j < i : t[j,∞] |= φ1

We say that a Kripke structure K with initial state s0 satisfies a CTL∗ for-
mula Φ , denoted K |= Φ if s0 |=K Φ .

CTL and CTL∗ can distinguish trace-equivalent Kripke structures that dif-
fer in their branching structure. For example, the CTL formula A(Ea)∧
Eb distinguishes the following pair of Kripke structures:

s0 :

a b

s0 :

a b

4.1. CTL AND CTL∗ 43

CTL and CTL∗ cannot, however, express noninterference, despite their
ability to quantify over paths. Alur et al. observed that noninterference is not
a regular tree property and hence is not expressible in CTL∗ [5]. The fact can
also be shown by the following direct argument: Consider a family of obser-
vationally deterministic Kripke structures K1,K2, . . . , where each Ki consists
of a single branch from the initial state that only has one label a at step i:

Ki : Kj : K∗ :

s0 :

s1 :

...

si : a

...

...

s′0 :

s′1 :

...

...

s′j : a

...

t0 :

t1 :

...

ti : a

...

...

t′1 :

...

...

t′j : a

...

All members of this family trivially satisfy noninterference. We pick a pair
Ki and Kj with i , j of Kripke structures such that s1 and s′1 satisfy the same
subformulas of φ. (We can treat path formulas as state formulas as each path
uniquely corresponds to a certain state.) Such a pair of Kripke structures must
exist as φ has finitely many subformulas and the family of Kripke structures
is infinite. We “merge” K and K ′ into one Kripke structure K∗, such that they
share only the initial state as depicted above. By construction, states s1, s′1, t1,
and t′1 all fulfill the same subformulas. Both, t0 and s0, have the same label
(i.e. none) and all their successors satisfy the same subformulas of φ. Hence,
they also satisfy the same subformulas of φ. In particular K∗ satisfies φ but
not noninterference, which contradicts the assumption.

This shows already that HyperLTL and CTL/CTL∗ are incomparable in
terms of expressiveness.

A Branching-time Information-flow Property

This raises the immediate question of what could be gained by the combination
of the two types of expressiveness. Is there an information-flow property that
requires branching-time aspects? To develop some intuition, let us consider
the following example programs and their computation trees:

44 CHAPTER 4. BRANCHING-TIME TEMPORAL LOGICS

Program 1:

bool y;

bool x = read();

output(y);

s0 :

read

o o

read

o o

Program 2:

bool x = read();

output(x);

s0 :

read

o o

We assume program semantics where the uninitialized variables, like vari-
able y in Program 1, have a nondeterministic value that is fixed in the first
step of the program. The computation tree of Program 1 thus branches in the
initialization step into the cases where y is true and where y is false. In the
second step of both Program 1 and Program 2 some input is read and stored
in variable x. Here the programs branch again into the cases true and false.

Let us assume a security scenario in which the input is secret and should
not be observable in the output. Then Program 1 is intuitively secure as the
output is independent from the secret input (in particular it is chosen before
the secret). Program 2, on the other hand, is obviously insecure.

We observe that the two programs are trace equivalent: they both admit
exactly the two execution traces ∅{read}∅{o}∅ω and ∅{read}∅{o}∅ω. To develop
an information-flow property that distinguishes the two cases, we thus have
to look beyond hyperproperties.

The requirement needed to distinguish the two computation trees is that
the outputs may depend on the choice of y, but not on the secret. This is
a branching-time property: only the paths of the subtrees that are rooted in
some state where the read-operation is executed, but not all paths in the com-
putation tree, must have the same outputs. While CTL∗ can surely distinguish
the two computation trees, as they are not bisimilar, the property cannot be
expressed in CTL∗. (The argument is the same as for noninterference: the class
of systems that give arbitrary output over an unknown number steps could not
be correctly classified in CTL∗.)

We observe that the branching-time aspect helps us to isolate the origin of
the relevant information. We are not the first ones to make this observation;
Robin Milner formulated that “information enters a non-deterministic pro-
cess in finite quantities throughout time”, and that the branching-time view
allows us to observe “in which states, and in what ways” this happens and
he attributed this insight to Carl-Adam Petri [92]. Information-flow proper-

4.2. HYPERCTL∗ 45

ties, in contrast, specify the wherabouts of information. While branching-time
and hyperproperties are thus already useful individually, it is the combina-
tion that allows us to track information all the way from the point of entry,
via some nondeterministic choice, to the point of exit through some externally
observable variable.

4.2 HyperCTL∗

Extending the path quantifiers of CTL∗ by path variables leads to the logic
HyperCTL∗, which subsumes both HyperLTL and CTL∗. HyperCTL∗ allows us
to express the property, “all paths rooted in some state where a read-operation
is to be executed next must have the same output”, discussed in the previous
example:

∀π.(readπ⇒∀π′ .(oπ↔ oπ′))

The formulas of HyperCTL∗ are generated by the following grammar:

φ ::= true | aπ | ¬φ | φ∨φ | φ∧φ
| φ | φU φ | φRφ | ∃π. φ | ∀π. φ

We require that temporal operators only occur inside the scope of path
quantifiers, and that HyperCTL∗ formulas are closed, which is defined anal-
ogous to closed HyperLTL formulas. In contrast to HyperLTL, we do not
require formulas to be in prenex form. We introduce the derived operators
φ = trueU φ,φ = ¬¬φ, and φ1W φ2 = φ1 U φ2 ∨φ1.

The semantics of HyperCTL∗ is given in terms of assignments of variables
to paths, which are defined analogous to trace assignments. As for HyperLTL,
we define the semantics only for the core set of operators and define the re-
maining operators with the equalities: ∀π. φ = ¬∃π. ¬φ, φ1 ∧φ2 = ¬(¬φ1 ∨
¬φ2), and φ1Rφ2 = ¬(¬φ1U¬φ1). Given a Kripke structureK = (S,s0,δ,AP,L)
and a special name ε ∈ N , the validity of HyperCTL∗ formulas is defined as
follows:

Π |=K aπ iff a ∈ L
(
Π(π)(0)

)
Π |=K ¬φ iff Π ̸|=K φ

Π |=K φ1 ∨φ2 iff Π |=K φ1 orΠ |=K φ2
Π |=K φ iff Π[1,∞] |=K φ

Π |=K φ1 U φ2 iff for some i ≥ 0 : Π[i,∞] |=K φ2 and
for all 0 ≤ j < i : Π[j,∞] |=K φ1

Π |=K ∃π. φ iff for some p ∈ Paths(K,Π(ε)(0)) : Π[π 7→ p,ε 7→ p] |=K φ

The variable ε denotes the path most recently added to Π (i.e., closest in
scope to π). For the empty assignment Π = ∅, we define Π(ε)(0) to yield the
initial state of K . A Kripke structure K = (S,s0,δ,AP,L) satisfies a HyperCTL∗

formula φ, denoted with K |= φ, iff ∅ |=K φ.

46 CHAPTER 4. BRANCHING-TIME TEMPORAL LOGICS

Induced process equivalence. When we restrict HyperCTL∗ to a single path
variable (thus all path quantifiers have to use the same path variable), its for-
mulas directly correspond to formulas in CTL∗. CTL∗ can hence be seen as
a sublogic of HyperCTL∗. Since CTL∗ induces bisimulation [8], the induced
equivalence of HyperCTL∗ must be at least as fine as bisimulation equiva-
lence. A bisimulation for a pair of Kripke structures K = (S,s0,δ,AP,L) and
K ′ = (S ′ , s′0,δ

′ ,AP′ ,L′) is an equivalence relation R ⊆ S ×S ′ on their states, such
that it holds for all pairs (s, s′) ∈ R that L(s) = L′(s′) and for all successors
t ∈ δ(s) of s, there exists a successor t′ ∈ δ′(s′) of s′ such that (t, t′) ∈ R, and
vice versa. Two Kripke structures K = (S,s0,δ,AP,L) and K ′ = (S ′ , s′0,δ

′ ,AP′ ,L′)
are called bisimulation equivalent (or bisimilar), iff there exists a bisimulation
R ⊆ S × S ′ and (s0, s′0) ∈ R.

Before we show that the equivalence induced by HyperCTL∗ is not finer
than bisimulation, we need to lift bisimulation to paths and path assignments.
In the following, let K and K ′ be Kripke two structures. A pair of paths p ∈
Paths∗(K,s0) and p′ ∈ Paths∗(K ′ , s′0) with p = s0s1 . . . and p′ = s′0s

′
1 . . . is called

bisimilar, written p ∼ p′ , if there is a bisimulation ∼ on the states of K and K ′

such that sj ∼ s′j for all j ∈ N. A pair of path assignmentsΠ :N → Paths∗(K,s0)
and Π′ : N → Paths∗(K ′ , s′0) is called bisimilar, written Π ∼ Π′ , if they bind
the same set of variables, Π−1(Paths∗(K,s0)) = Π′−1(Paths∗(K ′ , s′0)) = N , and
for all π ∈ N it holds Π(π) ∼ Π′(π). In the special case of two empty path
assignments, the path assignments are bisimilar iff there is a bisimulation for
K and K ′ such that their initial states s0 and s′0 are bisimilar.

We show by induction on the formula structure that a HyperCTL∗ for-
mula has the same value in all bisimilar path assignments. This implies that
HyperCTL∗ cannot distinguish two bisimilar Kripke structures, because the
empty assignments ∅ are bisimilar for all bisimilar Kripke structures. Bisim-
ilar path assignments satisfy, by definition, the same atomic propositions.
The path quantifier ∃π.φ selects a new path starting in the state Π(ε)(0) and
Π′(ε)(0), respectively. Because these states are bisimilar, there is a pair of
bisimilar paths starting in these states [8, Lemma 7.5]. Hence, the path as-
signments Π[π → p] and Π′[π → p′] are again bisimilar and, by induction
hypothesis, ∃π.φ has the same value in Π[π → p] |= φ and Π′[π → p′] |= φ.
For the temporal operators  and U , we note that suffixes from identical po-
sitions of bisimilar paths are bisimilar again; hence, suffixes of bisimilar path
assignments are bisimilar again. Therefore, by induction hypothesis,φ, and
likewise φ1 U φ2, has the same value in bisimilar path assignments.

Theorem 4.2.1. HyperCTL∗ induces bisimulation.

The ability to express hyperproperties is thus orthogonal to the ability to
express branching-time properties. In Fig. 4.1 we classify the expressiveness
of the standard temporal logics LTL, CTL, and CTL∗ as well as HyperLTL
and HyperCTL∗ along two axes. The linear-branching axis organizes the log-
ics according to the induced process equivalence and therefore puts LTL and
HyperLTL, and CTL∗ and HyperCTL∗ into the same group. The “hyper” axis

4.2. HYPERCTL∗ 47

linear-branching

LTL

⊊

HyperLTL

⊊ CTL∗

⊊

HyperCTL∗⊊

hy
p
er

Figure 4.1: Linear-hyper-branching spectrum of temporal logics

classifies the logics according to their expressiveness with respect to prop-
erties that relate multiple paths, which separates HyperLTL and HyperCTL∗

from LTL and CTL∗.

Relation to HyperLTL

Syntactically HyperCTL∗ extends HyperLTL by formulas that are not in prenex
form; that is we can now use path quantifiers inside temporal operators. While
the semantics of HyperLTL is based on trace assignments, the semantics of
HyperCTL∗ is based on path assignments and thus carry additional infor-
mation about the states visited during the execution. It is easy to see that
quantifier-free subformulas of HyperCTL∗ only depend on the sequence of
labels and thus have the same interpretation as in HyperLTL.

Lemma 4.2.2. Given a Kripke structure K with labelling function L, a path as-
signment Π, a trace assignment Π′ with Π′(π)(i) = L(Π(π)(i)) for all π and i,
and a quantifier-free subformula φ, then the interpretations of φ in HyperLTL and
HyperCTL∗ agree:

Π |=K φ iff Π′ |=K φ .

Since path quantifiers only accesses the first state of the most recently
quantified path and it is clear that the paths bound by two path quantifiers
that are not separated by temporal operators (i.e. where no Next, Until, or
Release occurs on the unique path between the to operators in the syntax tree
of the formula) always agree on their first state. In particular, when no path
quantifier occurs inside temporal operators the expressiveness of HyperCTL∗

reduces to the expressiveness of HyperLTL.

Theorem 4.2.3. For all HyperCTL∗ formulas φ where no path quantifier occurs
inside Next, Until, or Release, there is a HyperLTL formula φ′ that satisfies the
same Kripke structures K .

Proof. Given a HyperCTL∗ formula φ, we rename the path variables such that
every path variable occurs in at most one the path quantifier. We can then
pull the quantifiers to the front of the formula to obtain the formula φ′ . As
Kripke structures have a unique initial state, quantifying over all traces of the

48 CHAPTER 4. BRANCHING-TIME TEMPORAL LOGICS

Kripke structure is the same as quantifying over all traces starting in the first
state of the most recently quantified path (Π(ε)(0)) when the path quantifiers
do not occur inside temporal operators.

Satisfiability

The satisfiability problem, that is to ask for the existence of a model for a
given formula, is a common problem analyzed in computational logics. The
finite-state satisfiability problem for HyperCTL∗ is to determine the existence of
a finite model, while the general satisfiability problem for HyperCTL∗ asks for
the existence of a possibly infinite model. That is, the satisfiability problem
for HyperCTL∗ is unlike the satisfiability problem for LTL, where the satis-
fiability problem asks for the existence of a trace that satisfies the property.
Instead, the satisfiability problem of HyperCTL∗ is closely related to the reac-
tive synthesis problem for LTL. We can express on which inputs the outputs
may depend and thus it is not surprising that the problem is undecidable.
The general satisfiability problem may be even harder: we give a reduction
from the Halting problem for Turing machines with an oracle for the Turing
machine Halting problem, which defines the complexity class Σ1

1 from the
arithmetical hierarchy.

Theorem 4.2.4. The finite-state satisfiability problem for HyperCTL∗ is undecid-
able and the satisfiability problem is hard for Σ1

1.

Proof. We give a reduction from the synthesis problem for LTL specifications
in a distributed architecture consisting of two processes with disjoint sets of
variables. The synthesis problem consists on deciding whether there exist
transition systems for the two processes with input variables I1 and I2, re-
spectively, and output variables O1 and O2, respectively, such that the syn-
chronous product of the two transition systems satisfies a given LTL formula
φ. This problem is hard for Σ0

1 if the transition systems are required to be
finite, and hard for Σ1

1 if infinite transition systems are allowed (Theorems
5.1.8 and 5.1.11 in [118]).

To reduce the synthesis problem to HyperCTL∗ satisfiability, we construct
a HyperCTL∗ formula ψ as a conjunction ψ = ψ1 ∧ ψ2 ∧ ψ3. The first con-
junct ensures that φ holds on all paths: ψ1 = ∀π.[φ]π. The second conjunct
ensures that every state of the model has a successor for every possible input:
∀π.

∧
I⊆I1∪I2 ∃π

′ .
∧

i∈I i
∧

i<I ¬i. The third conjunct ensures that the out-
put in O1 does not depend on I2 and the output in O2 does not depend on I1:
ψ3 = ∀π.∀π′ .

(
π =I1 π

′ → π =O1
π′
)
∧
(
π =I2 π

′ → π =O2
π′
)
. The distributed

synthesis problem has a (finite) solution iff the HyperCTL∗ formula ψ has a
(finite) model.

Logics with an undecidable satisfiability problem can still be of practical
use. In particular for temporal logics, the model checking problem, that is
to decide K |= φ for a given Kripke structure K and a given formula φ, is

4.3. SECLTL 49

highly relevant for the functional verification of software and hardware. In
Chapter 5 we determine that the model checking problem is decidable.

4.3 SecLTL

The usability of a logic is not only determined by its expressiveness, but also
by its simplicity. This is particularly important in security, because a users
lack of understanding of the conditions under which his or her system is se-
cure easily opens the possibility for attacks. In this section, we discuss an
attempt to tackle this problem.

Nested path quantifiers and temporal operators are likely too complex to
be used in a specification language for a wider audience. The temporal logic
SecLTL [38], a fragment of HyperCTL∗, simplifies the specification of many
information-flow properties. SecLTL is based on LTL syntax and introduces
theHidemodalityHH,Oφ, which expresses the absence of an information flow
between two sets H and O of atomic propositions until the release condition
φ is met. The property discussed in the example in Section 4.1 can also be
expressed in SecLTL:

(read⇒H {},{o}false)

To give SecLTL formulas an intuitive meaning, we restrict our discussion
to Kripke structures that are input-enabled for 2I , where I ⊂ AP is the set of
input propositions.

The formulas of SecLTL are generated by the following grammar:

φ ::= a | ¬φ | φ∧φ | φ | φU φ | HH,Oφ ,

where H ⊆ I and O ⊆ AP.
Given a SecLTL formula φ, we define the validity on Kripke structures K

that are input-enabled for I , denoted K |= φ, via a translation to HyperCTL∗:
Select two distinct path variables π and π′ , prepend a universal quantifier ∀π,
index all atomic propositions in φ with the path variable π, and we replace
any Hide operatorHH,Oψ by

∀π′ .
(
(I \H)π=(I \H)π′ ∧  Iπ= Iπ′

)
=⇒

(
Oπ=Oπ′ W [ψ]

)
,

where [ψ] denotes the formula that results from ψ when through indexing all
atomic propositions with π and replacing the hide operators by the formula
above. Consider that the outermost “Next” operator () of the antecedent in
the translation from SecLTL to HyperCTL∗ only compensates the unit delay
of the input: in each state, we can only see the last input.

The Hide operator thus compares all those paths to the “main path” that
have the same input I , except for the first valuation of H . Let us take another
look at the example in Section 4.1 to see how this enables simple specifica-
tions of interesting information flow properties. The system considered in
the example had a single input that is represented by the nondeterministic
choice after the read-operation of which the result is stored in variable x. The

50 CHAPTER 4. BRANCHING-TIME TEMPORAL LOGICS

x

x

x x

x

x x

x

x

x x

x

x x

π π3 π2 π1 π′

Figure 4.2: A sketch of a computation tree of a Kripke structure that is
input-enabled in an atomic proposition x. Consider the SecLTL formula
H {x},Ofalse applied to the blue execution path π. The other three paths
marked blue indicate the paths that π is compared to. Those segments on
paths π1, π2, and π3 that are drawn with a squiggly line indicate the unique
points where paths πi differ from π. The red execution path π′ is not directly
compared to π according to the semantics of the Hide operator.

SecLTL formula (read⇒H {},{o}false) translates1 to the HyperCTL∗ formula
∀π. (readπ =⇒ ∀π′ .  oπ↔ oπ′), which is exactly the formulation of the
property in HyperCTL∗ in Section 4.1. This exactly matches our intuition for
the example, where we wanted to characterize the secret as the single point in
the computation tree where we branch for the input. But how does this relate
to the standard information-flow policies like noninterference?

In contrast to noninterference, a single application of a Hide operator con-
siders only the first input in the specified input proposition as the secret. Us-
ing temporal connectives, however, it is easy to declare any branching in the
input propositions H as a secret. The formula HH,Ofalse expresses that for
all executions π and all points in time i, the alternative executions that dif-
fer from π only in the branching in the inputs H at time i produce the same
sequence of observationsO. We thus compare executions only to those execu-
tions that differ in one point of time, but not multiple points in time.

Consider the simple computation tree in Fig. 4.2. For the SecLTL formula
HH,Ofalse, the execution path π is only compared to the executions π1, π2,
and π3. The red execution path π′ is not directly compared to π according to
the semantics of the Hide operator, as there are two points in time, i.e. step 1
and step 2, in which their input differs.

Nevertheless, the formulaHH,Ofalse is equivalent to noninterference for
input-enabled Kripke structures. The input-enabledness of the Kripke struc-
ture guarantees that every sequence of inputs results in a path. Since SecLTL

1We also applied the simplification φW false =φ.

4.4. APPLICATIONS: TEMPORAL INFORMATION-FLOW 51

formulas are implicitly quantified over all executions, also the execution path
π1 has to satisfy the path formula HH,Ofalse, which involves the compari-
son to path π′ . If π is observationally equivalent to π1 and π1 is observation-
ally equivalent to π′ , then also π and π′ must be observationally equivalent.

Theorem 4.3.1. For Kripke structures K that are input-enabled in I , the SecLTL
formula HH,Ofalse expresses that O is observationally deterministic in I \H .
That is,

K |=HH,Ofalse iff K |= ∀π.∀π′ .((I \H)π = (I \H)π′)⇒(Ol,π =Ol,π′) .

Proof. The formula φ = HH,Ofalse is clearly weaker than noninterference.
To prove the other direction, consider an input-enabled Kripke structure, and
two execution paths p and p′ that have the inputs in I \H , i.e. the same low
inputs. We have to show that φ is violated, if p and p′ differ in the valuations
of O.

Assume that i ∈ N is the first position at which p(i) , p′(i) and consider
the finite set D ⊂ N of positions smaller than i at which p and p′ differ in the
valuation in H . Let j1 < j2 < · · · < jd be elements of D in increasing order.
We construct a sequence of paths pj1 ,pj2 , . . . ,pjd , such that each pjk has the
same high input as p except for the positions j1, j2, . . . , jk , where it has the high
inputs of p′ . We additionally require p′ = pjd .

The formula φ requires that each pair of paths (pjk ,pjk+1) and also (p,pj1)
have the same low observations. As the equivalence of low observations on
paths is an equivalence relation, p and p′ must be in the same equivalence
class.

4.4 Applications: Temporal Information-flow

HyperCTL∗ and SecLTL enable the specification of information-flow require-
ments that change over time. Because of their branching-time nature we can
also precisely classify single inputs as high or low. The Hide modality of Sec-
LTL eases the specification of such that we can formulate understandable se-
curity properties for complex scenarios. In this section, we demonstrate this
by specifying information-flow requirements in a conference management
system; a system in which multiple users cooperate to submit, review, dis-
cuss, and select scientific documents.

Besides the static requirement that the reviewer’s identities must remain
secret, conference management systems show intricate information-flow re-
quirements that change over time. Properties of interest are, for example,
that (4.1) “the final decision of the program committee remains secret until the
notification is sent to the authors” and that (4.2) “all intermediate decisions of
the program committee are never revealed to the author”. Their formalization in
SecLTL is intuitive:

(last_decision⇒HH,O notification_phase) (4.1)

(¬last_decision⇒HH,Ofalse) (4.2)

52 CHAPTER 4. BRANCHING-TIME TEMPORAL LOGICS

where H is defined as the set of propositions that concern the acceptance and
rejectance decisions of the program committee, as well as the contributions
to the discussion, and O is defined as the set of propositions visible to the
authors.

Here, we assume that the point of time of the last decision can be charac-
terized by the atomic proposition “last_decision”. In case the system does not
indicate this fact by a dedicated atomic proposition, we could easily adapt the
property by characterizing this point with a temporal formula. For example,
we could specify the last decision as the last time a new decision is entered
before the notification phase: (¬new_decision U notification_phase).

This shows the strength of the approach to use temporal logics for the
specification of information-flow requirements: in the common situation that
a static property such as noninterference is not applicable, a logic like Se-
cLTL or HyperCTL∗ allows us to precisely formulate the circumstances un-
der which the information-flow requirements are lifted. The formulations
of information-flow properties for conference management systems in Sec-
LTL [38] have inspired a large-scale case study of the construction and ver-
ification of a secure conference management system [67] that included the
verification of the properties above.

Chapter 5

Algorithmic Verification

The aim of algorithmic verification is to automatically verify the correctness of
a system or otherwise to reveal a flaw in its design. Thereby it promises to im-
prove the quality of software and hardware and to simplify the development
process, in which the validation, e.g. via testing and code reviews, accounts
for a significant portion of the development time. The automatic analysis of
software and hardware systems is undecidable in general [134], but the prob-
lem has attracted a lot of research since the early days of computer science.

Automata-theoretic model checking is a fundamental approach to the auto-
matic analysis of software and hardware systems that focuses on the decid-
ability and complexity of the analysis of restricted classes of systems, such
as finite state systems, which may represent hardware systems or abstrac-
tions of software systems. Instead of considering fixed properties, model
checking typically considers specification languages such as temporal log-
ics. While the model checking problem for the standard temporal logics LTL
and CTL/CTL∗ has been well-studied [110, 29, 41, 76], a comparable algo-
rithmic theory is not available for information-flow properties. After the
seminal work of Goguen and Meseguer proposing noninterference [55] as a
fundamental notion of secrecy, research on the automatic analysis of secrecy
properties has mostly focused on language-based techniques that merely ap-
proximate the property [119]. To check notions of secrecy without approxi-
mation, Barthe et al. [12] proposed self-composition, a system transformation
that reduces information-flow properties to trace properties [129]. On a self-
composed system, the requirements to check observational determinism can
be formulated in standard temporal logics [63]. So far, however, the verifi-
cation of information-flow properties via self-composition has only been con-
sidered for isolated properties.

This chapter develops a general verification approach for arbitrary prop-
erties specified in HyperLTL and HyperCTL∗ and thereby represents the cen-
ter piece of this thesis. Via an alternating automaton construction, we give
a model checking algorithm for finite state systems (Section 5.2). We then
generalize the model checking algorithm to formulas with quantifier alter-

53

54 CHAPTER 5. ALGORITHMIC VERIFICATION

nations (Section 5.3). A detailed complexity analysis of the model checking
problem, both in the size of the formula and the size of the Kripke structure
to check, shows that the algorithm is optimal in terms of complexity (Sec-
tion 5.6). While the algorithm is efficient for alternation-free formulas, it is
non-elementary in the general case. We conclude this chapter with a discus-
sion of cases when the exponential blow-up caused by quantifier-alternations
can be avoided (Section 5.7).

5.1 Alternating Büchi Automata

We start with a brief review of alternating automata. Given a finite set Q,
B(Q) denotes the set of Boolean formulas over Q and B+(Q) the set of pos-
itive Boolean formulas, that is, formulas that do not contain negation. The
satisfaction of a formula θ ∈ B(Q) by a set Q′ ⊆Q is denoted by Q′ |= θ.

Definition 5.1.1 (Alternating Büchi automata). An alternating Büchi automa-
ton (on words) is a tupleA = (Q,q0,Σ,ρ,F), whereQ is a finite set of states, q0 ∈Q
is the initial state, Σ is a finite alphabet, ρ : Q ×Σ→ B+(Q) is a transition func-
tion that maps a state and a letter to a positive Boolean combination of states, and
F ⊆Q are the accepting states.

A run of an alternating automaton is a Q-labeled tree. A tree T is a subset
of N∗>0 such that for every node τ ∈ N∗>0 and every positive integer n ∈ N>0, (i)
if τ · n ∈ T then τ ∈ T (i.e., T is prefix-closed), and (ii) for every 0 < m < n,
τ ·m ∈ T . The root of T is the empty sequence ε and for a node τ ∈ T , |τ| is the
length of the sequence τ, in other words, its distance from the root. A run of
A on an infinite word π ∈ Σω is a Q-labeled tree (T ,r) such that r(ε) = q0 and
for every node τ in T with children τ1, . . . ,τk the following holds: 1 ≤ k ≤ |Q|
and {r(τ1), . . . , r(τk)} |= ρ(q,π[i]), where q = r(τ) and i = |τ|. A run r of A on
π ∈ Σω is accepting whenever for every infinite path τ0τ1 . . . in T , there are
infinitely many i with r(τi) ∈ F. We say that π is accepted by A whenever
there is an accepting run of A on π, and denote with Lω(A) the set of infinite
words accepted by A.

If the transition function of an alternating automaton does not contain any
conjunctions, we call the automaton nondeterministic. The transition function
ρ of a nondeterministic automaton thus identifies a disjunction over a set of
successor states. Such a transition function can also be stated as a function
ρ : Q × Σ → 2Q identifying the successors. Our model checking algorithm
relies on the standard translation for alternation removal due to Miyano and
Hayashi:

Theorem 5.1.2 ([95]). Let A be an alternating Büchi automaton with n states.
There is a nondeterministic Büchi automaton MH(A) with 2O(n) states that accepts
the same language.

Proof. Let A = (Q,q0,Σ,ρ,F) be an alternating Büchi automaton. We con-
struct a nondeterministic Büchi automaton N = (QN ,qN0 ,Σ,ρN ,FN) as fol-

5.2. MODEL CHECKING THE ALTERNATION-FREE FRAGMENT 55

lows: QN = 2Q×2Q, qN0 = ({q0},∅), FN = {(R,∅) | R ⊆Q}. The transition relation
is defined as ρN ((R1,R2), a) = {(R′1,R

′
1 \F) | R

′
1 |=

∧
q∈R1

ρ(q,a)}, if R2 = ∅, and

ρN ((R1,R2),a) = {(R′1,R
′
2 \F) | R′2 ⊆ R′1,

R′1 |=
∧

q∈R1
ρ(q,a),

R′2 |=
∧

q∈R2
ρ(q,a)}

if R2 , ∅. Furthermore, we may assume that the sets R1 are minimal, that is
that ∀R′′1 ⊂ R′1. R

′′
1 ̸|=

∧
q∈R1

ρ(q,a) .

5.2 Model Checking the Alternation-Free Fragment

We present a model checking algorithm for the alternation-free fragments of
HyperLTL and HyperCTL∗. For the purpose of the following discussion, we
can consider HyperLTL as the prenex fragment of HyperCTL∗ and thus fo-
cus on HyperCTL∗. The alternation-free fragment is expressive enough to
capture a broad range of other information-flow properties, like declassifi-
cation mechanisms, quantitative noninterference, and information-flow re-
quirements that change over time [30, 38]. The case studies in Chapter 6
illustrate that this fragment also captures properties in application domains
beyond information-flow security.

Definition 5.2.1 (Alternation-free HyperCTL∗). A HyperCTL∗ formula φ in
negation normal form is alternation-free, if φ contains only quantifiers of one
type. Additionally, we require that no existential quantifier occurs in the left sub-
formula of an until operator or in the right subformula of a release operator, and,
symmetrically, that no universal quantifier occurs in the right subformula of an
until operator or in the left subformula of a release operator.

Similar to the automata-theoretic approach to LTL properties [97, 137],
we construct an alternating automaton bottom up from the formula, but han-
dling multiple path quantifiers. For alternation-free HyperCTL∗, the quanti-
fiers may occur inside temporal operators (with the restrictions in Def. 5.2.1)
as long as there is no quantifier alternation.

Let K be a Kripke structure K = (S,s0,δ,AP,L). To check the satisfaction
of a HyperCTL∗ formula φ by K , we translate φ into a K-equivalent alternat-
ing automaton Aφ. The construction of Aφ proceeds inductively following
the structure of φ, as follows. Assume that φ is in negation normal form and
starts with an existential quantifier, and consider a subformula ψ of φ. Let
n be the number of path quantifiers occurring on the path from the root of
the syntax tree of φ to ψ, and let these path quantifiers bind the variables
π1, . . . ,πn. The alphabet Σ of Aψ is Sn, the set of n-tuples of states of K . We
say that a language L ⊆ (Sn)ω is K-equivalent to ψ, if all sequences of state tu-
ples (s00, . . . , s

0
n)(s

1
0, . . . , s

1
n) . . . in L correspond to a path assignment Π satisfying

ψ. That is, for all (s00, . . . , s
0
n)(s

1
0, . . . , s

1
n) . . . ∈ L it holds Π |=K ψ for the path as-

signment Π(πi) = s0i s
1
i . . . (for all i ≤ n). An automaton is K-equivalent to ψ if

its language is K-equivalent to ψ.

56 CHAPTER 5. ALGORITHMIC VERIFICATION

For atomic propositions, Boolean connectives, and temporal operators,
our construction follows the standard translation from LTL to alternating
automata [97, 137]. LetAψ1

= (Q1,q0,1,Σ1,ρ1,F1) andAψ2
= (Q2,q0,2,Σ2,ρ2,F2)

be the alternating automata for the subformulas ψ1 and ψ2:

ψ = aπk Aψ = ({q0},q0,Σ,ρ,∅),

where ρ(q0, s⃗) = (a ∈ L(⃗s |k))

ψ = ¬aπk Aψ = ({q0},q0,Σ,ρ,∅),

where ρ(q0, s⃗) = (a < L(⃗s |k))

ψ = ψ1∨ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0},q0,Σ,ρ,F1 ·∪F2),

where ρ(q0, s⃗) = ρ1(q0,1, s⃗)∨ ρ2(q0,2, s⃗)
and ρ(q, s⃗) = ρi(q, s⃗) for q ∈Qi , i ∈ {1,2}

ψ = ψ1 ∧ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0},q0,Σ,ρ,F1 ·∪F2),

where ρ(q0, s⃗) = ρ1(q0,1, s⃗)∧ ρ2(q0,2, s⃗)
and ρ(q, s⃗) = ρi(q, s⃗) for q ∈Qi , i ∈ {1,2}

ψ =ψ1 Aψ = (Q1 ·∪{q0},q0,Σ,ρ,F),

where ρ(q0, s⃗) = q0,1
and ρ(q, s⃗) = ρ1(q, s⃗) for q ∈Q1

ψ = ψ1 U ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0},q0,Σ,ρ,F),

where ρ(q0, s⃗) = ρ2(q0,2, s⃗)∨ (ρ1(q0,1, s⃗)∧ q0)
and ρ(q, s⃗) = ρi(q, s⃗) for q ∈Qi , i ∈ {1,2}

ψ = ψ1Rψ2 Aψ = (Q1 ·∪Q2 ·∪{q0},q0,Σ,ρ,F ·∪{q0}),

where ρ(q0, s⃗) = ρ2(q0,2, s⃗)∧ (ρ1(q0,1, s⃗)∨ q0)
and ρ(q, s⃗) = ρi(q, s⃗) for q ∈Qi , i ∈ {1,2}

For a quantified subformula ψ = ∃π.ψ1, we have to reduce the alphabet
Σψ1

= Sn+1 to Σ = Sn. The language for formula ψ contains exactly those
sequences σ of state tuples, such that there is a path p through the Kripke
structure K for which σ extended by p is in L(Aψ1

). LetN ′ψ1
= (Q′ ,q′0,Σ,ρ

′ ,F′)
be the nondeterministic automaton N ′ψ1

= MH(Aψ1
) constructed from Aψ1

by
the construction in Theorem 5.1.2, and let Aψ = (Q′′ ,q′′0 ,Σψ,ρ

′′ ,F′′) be con-
structed fromN ′ψ1

and the Kripke structure K = (S,s0,δ,AP,L) as follows:

ψ = ∃π.ψ1 Aψ = (Q′ × S ·∪{q′′0 },q
′′
0 ,Σψ,ρ

′′ ,F′ × S),

where ρ′′(q′′0 , s⃗) = {(q′ , s′) | q′ ∈ ρ′(q
′
0, s⃗ + s⃗ |n), s′ ∈

δ(⃗s |n)}
and ρ′′((q,s), s⃗) = {(q′ , s′) | q′ ∈ ρ′(q, s⃗ + s), s′ ∈ δ(s)}

5.3. FROM ALTERNATION-FREE FORMULAS TO FULL HYPERCTL∗ 57

For the case that n = 0 we define that s⃗ |n is the initial state s0 of K .
This completes the construction for the alternation-free fragment. Its cor-

rectness can be shown by structural induction.

Proposition 5.2.2. Let φ be a HyperCTL∗ formula and Aφ the alternating au-
tomaton obtained by the previous construction. Then, φ andAφ are K-equivalent.

So far, we only considered alternation-free formulas that start with exis-
tential quantifiers. To decide K |= φ for an arbitrary φ, we first transform φ in
a Boolean combination over a set X of quantified subformulas. Each element
ψ′ of X is now in the form ∃π.φ for which we apply the construction above.
Since ψ′ is of the form ∃π.ψ1, Aψ′ is a nondeterministic Büchi automaton.
We apply a standard nonemptiness test to determine the answer to the model
checking problem [139].

Theorem 5.2.3. The model checking problem for the alternation-free fragment
of HyperCTL∗ is PSPACE-complete in the size of the formula and NLOGSPACE-
complete in the size of the Kripke structure.

Proof. The alternating automaton Aψ1
is a tree with self-loops, when we con-

sider automata created for quantified subformulas as leafs of the tree. By
structural induction, we show that the size of Aψ′ for an alternation-free for-
mula ψ′ is polynomial in |ψ′ | and in |K | and that sub-automata for quantified
subformulas are not reachable via actions that are self-loops with conjunc-
tions.

Base case: for atomic propositions and negated atomic propositions, the
induction hypothesis is fulfilled.

Induction step: Let ψ = ∃π. ψ1. Only Until operators and Release operators
in the formula lead to nodes that have two transitions, one with a self-loop and
one without self-loops. By the restrictions in the definition of the alternation-
free fragment, we guarantee that automata of quantified subformulas are not
reachable via transitions with self-loops that contain conjunctions.

Conjunctive transitions that are not part of loops or self-loops only lead to
a polynomial increase in size during nondeterminization. Emptiness of non-
deterministic Büchi automata is in NLOGSPACE [139], so the upper bound of
the theorem follows. Since HyperCTL∗ subsumes LTL, the lower bound for
LTL model checking [124] implies the lower bound for HyperCTL∗.

5.3 From Alternation-free Formulas to Full HyperCTL∗

The construction from the previous subsection can be extended to full Hyper-
CTL∗ by adding a construction for negated quantified subformulas. We com-
pute an automaton for the complement language, based on the following the-
orem:

Theorem 5.3.1 ([75]). For every alternating Büchi automatonA = (Q,q0,Σ,ρ,F),
there is an alternating Büchi automaton A with O(|Q|)2 states that accepts the
complemented language: Lω(A) = Lω(A).

58 CHAPTER 5. ALGORITHMIC VERIFICATION

We extend the previous construction with the following case:

φ = ¬∃π.ψ1 N ′ψ1
, whereN ′ψ1

=MH(Aψ1
) via Theorem 5.1.2

We capture the complexity of the resulting model checking algorithm in
terms of the alternation depth of the HyperCTL∗ formula. The formulas with
alternation depth 0 are exactly the alternation-free formulas.

Definition 5.3.2. The alternation depth of a HyperCTL∗ formula in negation
normal form is the highest number of alternations from existential to universal and
universal to existential quantifiers along any of the paths of the formula’s syntax
tree. Existential quantifiers in the left subformula of an until operator or in the
right subformula of a release operator, and, symmetrically, universal quantifiers
in the right subformula of an until operator or in the left subformula of a release
operator also count as alternation.

For example, let ψ be a formula without additional quantifiers, then

• ∃π. ψ has alternation depth 0,

• ∀π1.∃π. ψ has alternation depth 1,

• ∃π.∃π′ . ψ has alternation depth 0,

• ∃π.∃π′ . ψ has alternation depth 1,

• (∀π. ψ)∧ (∃π. ψ) has alternation depth 0.

Note that the above definition of alternation depth refines the definition
in [30], which would classify the formula ∃π. ∃π′ . ψ to have alternation
depth 1. The new definition of alternation depth also allows us to unify the
algorithms of HyperCTL∗ and SecLTL and the analysis of their upper bounds
(see Section 5.7).

Let gc(k,n) be a tower of exponentiations of height k, defined simply as
gc(0,n) = n and gc(k,n) = cgc(k−1,n). We define NSPACE(g(k,n)) to be the lan-
guages that are accepted by a nondeterministic Turing machine that runs in
SPACEO(gc(k,n)) for some c > 1. For convenience, we defineNSPACE(g(−1,n))
to be NLOGSPACE.

Proposition 5.3.3. Let K be a Kripke structure and φ a HyperCTL∗ formula with
alternation depth k. The alternating automaton Aφ resulting from the previous
construction has O(g(k + 1, |φ|)) and O(g(k, |K |)) states and can be constructed in
NSPACE(g(k, |φ|)) and NSPACE(g(k − 1, |K |)).

Proof. We compute the number of states ofAφ by induction on the alternation
depth of φ.

5.3. FROM ALTERNATION-FREE FORMULAS TO FULL HYPERCTL∗ 59

• Base case: In the base case, φ has alternation depth 0, and φ does not
contain quantifier alternations. By induction on the structure of φ the
number of states ofAφ is linear in |φ| if φ has no quantifiers, and single-
exponential if φ contains at least one quantifier. The base case of the
atomic propositions and the induction step for the Boolean connectives
and temporal operators satisfy the claim. The first occurrence of a quan-
tifier requires a nondeterminization via the Miyano-Hayashi construc-
tion, and therefore results in a single-exponential number of states. The
interesting case is a quantified formula φ = ∃π. ψ1, where ψ1 contains
again at least one quantified subformula ∃π′ . ψ2, but no such quantified
subformula occurs after a negation, in the left subformula of an until, or
in the right subformula of a release. The repeated nondeterminization
does not cause a further exponential increase in the number of states,
because the automaton A∃π′ .ψ2

for the subformula ∃π′ . ψ2 is nondeter-
ministic and forms a closed subautomaton ofAψ1

, i.e. has no transitions
to states outside A∃π′ .ψ2

. Each state of A∃.π′ .ψ2
therefore occurs at most

once in the state sets R,R′ of the Miyano-Hayashi construction and the
total number of states ofN ′ψ1

is linear in the number of states ofA∃π′ .ψ2
.

• Inductive step For the inductive step, we prove, again by structural in-
duction on φ, that the number of states of Aφ is linear in the number of
states ofAψ for any subformula that does not occur in φ after a negation,
in the left subformula of an until, or in the right subformula of a release.
As in the base case, the repeated nondeterminization in quantified sub-
formulas of φ that contain ψ does not cause a further exponential in-
crease in the number of states, because the nondeterministic automaton
A∃π′ .ψ2

for the subformula ∃π′ . ψ forms a closed subautomaton of Aφ,
i.e. has no transitions to states outside A∃π′ .ψ2

. For subformulas ψ that
occur in φ directly after the first negation, as the first left subformula
of an until, or as the first right subformula of a release, the number of
states of Aφ is single exponential in the number of states of Aψ due to
the Miyano-Hayashi construction.

Theorem 5.3.4. Given a Kripke structure K and a HyperCTL∗ formula φ with
alternation depth k, we can decide whether K |= φ in NSPACE(g(k, |φ|)) and in
NSPACE(g(k − 1, |K |)).

Proof. Since φ is a Boolean combination of a set X of quantified subformu-
las, we first check, as discussed in the previous subsection, for each quan-
tified formula ψ ∈ X whether K |= ψ holds. We then determine, indepen-
dently of |K | and in linear space in |φ|, the truth value of the Boolean com-
bination. To determine for a subformula ψ ∈ X whether K |= ψ holds, we
construct the automaton Aψ for ψ. Since ψ is of the form ∃π.ψ′ , Aψ is a
nondeterministic automaton with, by Proposition 5.3.3, O(g(k, (|φ| · log |K |)))
states. Since the nonemptiness problem for nondeterministic Büchi automata
is in NLOGSPACE [139], the nonemptiness of Aψ can be determined in space
O(g(k − 1, (|φ| · log |K |))).

60 CHAPTER 5. ALGORITHMIC VERIFICATION

Theorem 5.3.4 subsumes the result for the alternation-free fragment:

Corollary 5.3.5. The model-checking problem of the alternation-free fragment of
HyperCTL∗ is in PSPACE in the size of the formula and in NLOGSPACE in the
size of the Kripke structure.

5.4 Extended Path Quantification

We generalize the quantification over paths of a single Kripke structure to the
quantification over paths from multiple Kripke structures. Besides the unifi-
cation of QPTL with HyperLTL and HyperCTL∗, this allows us to simplify the
proof of Theorem 5.6.4.

We introduce extended path quantifiers, that extend the syntax of the path
quantifier by an additional parameter ∃Kπ. φ to indicate the Kripke struc-
ture from which the new execution path should be chosen. We generalize
the Kripke structure in the validity relation Π |=K φ to an environment Γ that
maps names to Kripke structures. Given a Kripke structure environment Γ
for which Γ (κ) is defined, we extend the semantics of HyperLTL for extended
path quantifiers as follows:

Π |=Γ ∃κπ. φ iff ∃t ∈ Traces∗
(
Γ (κ), s0(Γ (κ))

)
:Π[π 7→ t] |=Γ φ ,

and for HyperCTL∗ we define

Π |=Γ ∃κπ. φ iff ∃p ∈ Paths∗
(
Γ (κ), s0(Γ (κ))

)
:Π[π 7→ p,ε 7→ p] |=Γ φ

where s0(Γ (κ)) is the initial state of Γ (κ). To resolve the question which Kripke
structure the first path starts in, we require that HyperLTL and HyperCTL∗

formulas with extended path quantifiers start with an extended path quanti-
fier. We say that a Kripke structure environment Γ is valid for a HyperLTL
formula or a HyperCTL∗ formula φ with extended path quantifiers, denoted
Γ |= φ, if ∅ |=Γ φ.

Trace equivalence. In HyperLTL with extended path quantifiers we can eas-
ily express trace-based relations between Kripke structures with a common
alphabet AP, such as language inclusion, that is Traces(K1, s0) ⊆ Traces(K2, s

′
0):

∀κ1π.∃κ2π
′ .

∧
a∈AP

aπ↔ aπ′

and trace equivalence, that is Traces(K1, s0) = Traces(K2, s
′
0):

∀κ1π.∃κ2π
′ .

∧
a∈AP

aπ↔ aπ′ ∧ ∀κ2π.∃κ1π
′ .

∧
a∈AP

aπ↔ aπ′

5.4. EXTENDED PATH QUANTIFICATION 61

Model checking of concurrent processes. Given n Kripke structures, we
can express that their common execution that synchronize on the actions la-
beled S satisfy an LTL property φ:

∀κ1π1. . . .∀κnπn.
∧
i,j

Sκi = Sκj ⇒ φ

Elimination of Extended Path Quantifiers

Model checking HyperLTL and HyperCTL∗ with extended path quantifiers is
not harder than model checking HyperLTL and HyperCTL∗.

Theorem 5.4.1. Let φ be a HyperLTL (HyperCTL∗) formula with extended path
quantifiers and let Γ be an environment binding the Kripke structure names occur-
ring in φ to the finite Kripke structures K1, . . .Kn. We can construct in LOGSPACE
a HyperLTL (HyperCTL∗) formula φ′ without extended path quantifiers and a sin-
gle Kripke structure K such that Γ |= φ iff K |= φ′ . Further the size of φ′ is inO(|φ|)
and the size of K is in O(|K1|+ · · ·+ |Kn|).

Proof. Let φ be a HyperLTL or HyperCTL∗ formula with extended path quan-
tifiers and let Γ be an environment that binds the Kripke structure names oc-
curring in φ. Let K1, . . . ,Kn be the Kripke structures that occur in the formula
with the names κ1, . . . ,κn. We denote the components of the Kripke structures
by indices: Ki = (Si , s0,i ,δi ,APi ,Li), and we assume their sets of states to be
disjoint. We construct K = (S,s0,δ,AP,L) as follows:

S = {s0} ·∪
∪

i Si
δ(s0) =

∪
i s0,i

δ(s) = δi(s) ·∪
∪

j δj (s0,j), for s ∈ Si
AP = {κ1, . . . ,κn} ·∪

∪
APi

L(s0) = ∅
L(s) = {κi} ·∪ Li(s) for s ∈ Si

We obtain the formula φ′ from φ by replacing every extended path quantifier
∃κiπ. ψ with ∃π. κi,π ∧ [ψ]π,s0,i , where [ψ]π,s0,i is the formula that results
when we “unroll” the until and release operators in ψ once and then replace
the atomic propositions referring to π in the propositional part. That is, we
apply the following rules:

[aπ′]π,s0,i B a ∈ Li(s0,i) for π = π′

[aπ′]π,s0,i B aπ′ for π , π′

[¬ψ′]π,s0,i B ¬[ψ′]π,s0,i
[ψ1 ∨ψ2]π,s0,i B [ψ1]π,s0,i ∨ [ψ2]π,s0,i
[ψ′]π,s0,i B ψ′

[ψ1 U ψ2]π,s0,i B [ψ2]π,s0,i ∨ [ψ1]π,s0,i ∧(ψ1 U ψ2)
[ψ]π,s0,i B ψ otherwise

In particular, in case φwas a HyperLTL formula the transformationmaintains
the number and polarity of the quantifiers.

62 CHAPTER 5. ALGORITHMIC VERIFICATION

Checking whether two Kripke structures are trace equivalent is PSPACE-
complete [62, Section 11.3.5]. The encoding of trace equivalence in HyperLTL
hence yields a lower bound of the model checking complexity in the size of
the Kripke structure.

Corollary 5.4.2. The model checking problem for HyperLTL is PSPACE-hard in
the size of the Kripke structure.

Wewill refine this result in Section 5.6 to a non-elementary lower bound in
both the size of the formula and the size of the Kripke structure withmatching
upper bounds.

5.5 Quantification over Propositions

Quantified propositional temporal logic (QPTL) [125] extends LTL with quan-
tification over propositions. Quantification over a proposition ∃a.φ fixes an
interpretation of the proposition for all points of time. This enables us to ex-
press arbitrary ω-regular properties and it adds a high degree of compactness.
While the concepts of quantification are different, they share similarities on
the algorithmic level. We show that the satisfiability problem of QPTL can be
reduced to the model checking problem of HyperCTL∗ and thereby obtain a
lower bound on the complexity.

QPTL formulas are generated by the following grammar, where a ∈ AP:

φ ::= a | ¬φ | φ∨φ | φ | φ | ∃a. φ ,

QPTL formulas are interpreted over traces with all operators inheriting the
LTL semantics except ∃a.φ:

t |= ∃a. φ iff ∃t′ ∈ (2AP)ω. t =AP\a t
′ ∧ t′ |= φ ,

where t =AP\a t
′ denotes that for all points in time i it holds (t(i)\a) = (t′(i)\a).

The satisfiability problem of QPTL is to determine, for a given QPTL for-
mula φ, the existence of a trace t ∈ (2AP)ω sucht that t |= φ. A Kripke structure
K satisfies a QPTL formula φ, denoted K |= φ, if all traces of K from the ini-
tial state satisfy the formula. In particular, QPTL expresses trace properties,
which gives us the following theorem:

Theorem 5.5.1. QPTL does not subsume HyperLTL.

Also the converse statement is not true. Adding quantification over propo-
sitions to LTL extends the expressiveness from theω-star-free languages to the
ω-regular languages [65, 79, 131, 125, 132]. For example, the ω-regular trace
property over Σ = {a,b} that every second element is b, which is (ab + bb)ω in
ω-regular expression syntax, is not ω-star-free.

Theorem 5.5.2. HyperCTL∗ does not subsume QPTL.

5.5. QUANTIFICATION OVER PROPOSITIONS 63

Proof. Consider the class of linear Kripke structures. A Kripke structure is
linear, if all states have exactly one successor. In particular, properties of lin-
ear Kripke structures can be seen word languages. Every HyperCTL∗ formula
is equivalent to its LTL interpretation on this class of Kripke structures. We
obtain the LTL interpretation of a HyperCTL∗ formula, by syntactically remov-
ing all quantifiers and all path variables from the atomic propositions. The
equivalence stems from the fact that quantifiers always bind a unique path
in linear Kripke structures. QPTL can express any ω-regular language [125],
while LTL, and thus HyperCTL∗ over linear Kripke structures, can only ex-
press the ω-star-free languages.

Hence, quantification over propositions and quantification over paths are
orthogonal extensions to temporal logics. In the first publications on Hy-
perLTL and HyperCTL∗ [30], we presented a slightly different semantics for
HyperLTL and HyperCTL∗ that naturally unifies the two concepts. The se-
mantics allowed us to refer to propositions that not part of the Kripke struc-
ture that were then interpreted in the same was as quantified propositions,
which lead to the result that HyperCTL∗ subsumes QPTL. In the subsequent
works [47, 48] and in this thesis, however, we dropped this feature for the sake
of simplicity. The only result that is affected by this change is the ability to ex-
press ω-regular languages and the inclusion of epistemic temporal logics. We
show how the more elegant unification in the extended path quantification
semantics enables both results again.

Encoding QPTL via Extended Path Quantification

Quantification over propositions can now be easily encoded as the quantifi-
cation over the paths in a fixed Kripke structure Ka = ({s0, s1}, s0,δ, {a},L) with
δ(si) = {s0, s1} for all i ∈ {0,1}, and L(s0) = ∅ and L(s1) = {a}:

¬a a

To encode the satisfiability problem of a QPTL formula we additionally
consider the trivial Kripke structure KAP generating all traces (2AP)ω. Given a
QPTL formula φ we first transform it into prenex normal form [125], prepend
a universal path quantifier ∀κAPπ, we index all atomic propositions that are
not bound by a quantifier by π and then we replace every quantifier over
propositions ∃a (∀a) by an extended path quantifier ∃κaπ

′ (∀κaπ
′), where π′ is

a fresh path variable, and replace every atomic proposition a bound by that
quantifier by a′π. Checking the satisfiability of φ is equivalent to checking
the resulting HyperLTL formula with extended path quantification over the
Kripke structures KAP and Ka.

Theorem 5.5.3. For every QPTL formula φ there is a HyperLTL formula φ′ with
extended path quantifiers such that ∃t. t |= φ iff {κa 7→ Ka,κAP 7→ KAP} |= φ′ .

64 CHAPTER 5. ALGORITHMIC VERIFICATION

EQCTL∗ and QCTL∗. The logic EQCTL∗ [74, 76] extends CTL∗ by the exis-
tential quantification over propositions. QCTL∗ [52] additionally allows for
negated existential (i.e. universal) quantifiers. Like the satisfiability problem
of HyperLTL, the satisfiability of QCTL∗ is undecidable. The proof, however,
relies on a different technique [52]. To the best of the author’s knowledge, no
model checking algorithm has been proposed for QCTL∗, but it is straightfor-
ward to derive such an algorithm via HyperCTL∗ with extended path quanti-
fiers, using a similar encoding as for QPTL. The model checking problem for
QCTL, a restricted version of QCTL∗ that builds on CTL instead of CTL∗, al-
lows for a comparably low worst-case complexity of the model checking prob-
lem [108]. It is open how these results relate to the model checking problems
of HyperLTL and HyperCTL∗.

5.6 Lower Bounds

In this section, we give lower bounds to the runtime and space requirements
of the algorithm that match the upper bounds. We characterize the complex-
ity both in the size of the formula and in the size of the Kripke structure.

The lower bound in the size of the formula is given by the encoding of
QPTL into HyperLTL given in Section 5.5. By combining Theorem 5.4.1 and
Theorem 5.5.3 we obtain a lower bound in the size of the formula. As the
transformations in the proofs of the theorems maintain the number of quan-
tifier alternations, we can even state the stronger result that the complexity
grows with every quantifier alternation.

Theorem 5.6.1. The model checking problem for HyperCTL∗ with quantifier al-
ternation depth k is hard for NSPACE(g(k, |φ|)).

The lower bound in the size of the Kripke structure is of particular impor-
tance for this work. Not only are Kripke structures often much larger than
the formulas, lower bounds in the complexity also provide an interesting ar-
gument for the comparison of two specification logics. Consider two logics
L and L′ with model checking problems that are complete for two complex-
ity classes in the size of the Kripke structure to check C and C′ with C ⪇ C′ .
Then there are properties expressible in L′ that characterize a language, i.e. a
class of Kripke structures, that is only checkable in C′ , but not in C. Hence L′
cannot be contained in L.

We now establish that the complexity in the size of the Kripke structure
also grows by one exponent for each additional quantifier alternation in the
formula. The proof builds on a technique developed by Stockmeyer [127] and
its adaption to the proof of the computational hardness of QPTL [125]. Our
proof extends the technique by making the formula independent of the size
of the input to the Turing machine. We also simplify the encoding compared
to the encoding in QPTL [125], by making use of the Until operator, which is
not available in QPTL.

5.6. LOWER BOUNDS 65

We start with expressing yardsticks in HyperLTL. A yardstick is a subfor-
mula that defines a distance of length hc(k,n) with

hc(0,n) = n and hc(k,n) = hc(k,n− 1) · chc(k,n−1)

In particular we will use yardsticks to define the length of the tape avail-
able to a Turing machine. Clearly it holds hc(k,n) ≥ gc(k,n).

Lemma 5.6.2. Let c ∈ R, let x and y be atomic propositions, and let π be a trace
variable. For all k ∈ N there is a HyperLTL subformula φc,k(xπ, yπ′) with extended
path quantifiers and alternation depth k that has an unbound trace variable π, such
that for all n ∈ N≥1 there is a Kripke structure K(n), such that Π |=Γ φc,k(xπ, yπ′),
whereΠ = {π 7→ t,π′ 7→ t′} and Γ = {κ 7→ K(n), κa 7→ Ka}, holds iff

1. x occurs exactly once on t, and

2. y occurs exactly once on t′ , and

3. y occurs exactly on t′ exactly hc(k,n) steps after x occurs on t, that is x ∈ t(i)
iff y ∈ t′(i + hc(k,n)).

The length of φ is in O(c · k) and the size of K is in O(n). Further, the Kripke
structure K(n) is constructible in space O(logn).

Proof. We prove the statement by induction over k. For k = 0, we choose the
following HyperLTL subformula with alternation depth 0:

φc,k(xπ, yπ′) B ∃κπ′′ .x′π′′ ∧ (xπ↔x′π′′ ∧ yπ′ ↔y′π′′)

and we choose K(n) as follows:

x′ . . . y′

where the states labeled x′ and y′ are exactly n steps apart. As our Kripke
structures are defined to have a single initial state, we are forced to use the
Next operator in front of the atomic propositions referring to π′′ in order to
leave both options for x on path π in the first position. Note that K(n) can be
constructed in O(logn) space and that the formula is independent of n.

Induction step (k > 0). To create the yardstick of length hc(k,n) = hc(k −
1,n) · chc(k−1,n) from the yardstick of length hc(k − 1,n), we encode a counter
with hc(k − 1,n) · ⌈log2 c⌉ bits. The bits of the counter are represented as quan-
tified propositions, as in the logic QPTL [125]. We have seen in Subsection 5.5
that quantification over propositions can be encoded into HyperLTL with
extended path quantifiers. In the following, we thus use quantifiers over
propositions, e.g. ∃b. ψ(b), as syntactic sugar for extended trace quantifiers

66 CHAPTER 5. ALGORITHMIC VERIFICATION

∃κaπb. ψ(aπb), with a fresh trace variable πb, interpreted over the Kripke
structure Ka.

One valuation of the counter will then be spread over hc(k − 1,n) posi-
tions and thus we need to introduce ⌈log2 c⌉ atomic propositions b1, . . . ,b⌈log2 c⌉
via quantifiers over propositions. For simplicity we restrict the discussion to
c = 2, such that we can represent the counter with (consecutive valuations
of) a single proposition b. The extension of the formula below to arbitrary c
is straight-forward. We use little endian encoding for the valuations of the
counter, i.e. the least significant bit occurs first on the trace.

We introduce an additional quantified proposition r that helps us to sepa-
rate the counter valuations. Every occurrence of r indicates that a new valua-
tion of the counter starts (the least significant bit).

The figure below depicts the yardstick of level k. The values b indicate the
valuation of the counter.

r r r r r r

x y

b: 0 1 . . . 2hc(k−1,n)-2 2hc(k−1,n)-1

hc(k − 1,n) steps

We construct φc,k(xπ, yπ′) as follows:

∃b.∃r.∀x′ .∀y′ . φc,k−2(x′ , y′) ⇒
(¬xπ U (xπ ∧¬xπ))∧ (¬yπ′ U (yπ′ ∧¬yπ′)) ∧ (1)
(xπ ∨ yπ′ ⇒ r) ∧ (2)
(x′⇒ (¬y′ ∧¬r)U (r ∧¬y′ ∧(¬r U y′))) ∧ (3)
(xπ⇒ (¬bU (¬b∧r))) ∧ (4)
((¬r U yπ′)⇒ b) ∧ (5)
(r ∧¬xπ ⇒ (¬r)U b) ∧ (6)(
((x′⇒ b)↔(y′⇒ b))↔(r⇒¬x′ U (¬x′ ∧ (¬b∨r)))

)
(7)

The subformulas (1) to (7) express the requirements of φc,k(x,y) as follows:

(1) xπ and yπ′ occur exactly once.

(2) r is aligned with xπ and with yπ′ .

(3) r occurs exactly once between x′ and y′ . As x′ and y′ are universally quan-
tified and are exactly hc(k − 1,n) steps apart, r must occur at exactly every
hc(k − 1,n) steps.

(4) The counter must be initialized with 0. That is, the first hc(k − 1,n) occur-
rences of b starting from the point where xπ holds, must be 0.

(5) The last counter value must be 2hc(k−1,n) − 1, as we assumed c = 2.

(6) The counter is never 0 except for the first valuation.

5.6. LOWER BOUNDS 67

(7) Consecutive counter valuations must increment by one. Given consecu-
tive counter valuations α = α0,α1, . . . ,αhc(k−1,n) and β = β0,β1, . . . ,βhc(k−1,n),
where α0 and β0 are the least significant bits, we know that β = α + 1
mod 2hc(k−1,n), iff for all i:

αi = βi iff ∃j < i such that αj = 0 .

Like subformula (3), subformula (7) relies on the yardstick of level k − 1.
The sequences over propositions x′ and y′ , such that each of them occurs
only once and y′ occurs exactly hc(k − 1,n) steps after x′ , indicate two cor-
responding positions in consecutive counter valuations. If, and only if,
they are the same, we require that there must be a less significant bit b in
the first counter valuation, i.e. at a position before x′ , that is 0.

Formally, the formula φc,k(x,y) is a HyperCTL∗ formula and not yet in
HyperLTL, as the subformula φc,k−1(x′ , y′) contains quantifiers. Through The-
orem 4.2.3 we obtain an equivalent HyperLTL formula. As the subformula
φc,k−1(x′ , y′) starts with an existential quantifier and occurs negated, the num-
ber of quantifier alternations grows (just) by one with every new level of the
yardstick.

The formula is thus independent of n, but it uses extended path quantifiers
over the Kripke structures Ka and K(n). By Theorem 5.4.1 the model check-
ing problem with extended path quantifiers can be reduced in LOGSPACE to
checking a single Kripke structure of size |Ka|+ |K(n)|.

Lemma 5.6.3. Given k ∈ N, every language in NSPACE(g(k−1,n)) is LOGSPACE
reducible to the model checking problem of a fixed HyperLTL formula with quanti-
fier alternation depth k.

Proof. For k = 0 the statement follows from Theorem 5.2.3. For the case k > 0
we encode a hc(k − 1,n)-space bounded Turing machine M into a HyperLTL
formula ψ(M) of alternation depth k. The input word I to the Turing machine
will be encoded as a Kripke structures K(I) of linear size in the input. If and
only if the Turing machine terminates on (accepts) the input, the HyperLTL
formula holds on the Kripke structure.

A Turing machine M = (Q,Σ,δ,q0,qA) consists of a finite set of states Q, an
alphabet Σ, a transition relation δ : Q × Σ → 2Q×Σ×{left,right}, an initial state
q0, and an accepting state qA. A Turing machine operates with a read/write-
head on a tape of cells that is infinite in one direction, say to the right, and
each cell of the tape contains a single symbol from Σ. Initially the Turing
machine starts in the initial state q0 with the head on the leftmost cell, and
the input of length n is given as the sequence of symbols in the first n cells. All
other cells initially contain the blank symbol # ∈ Σ. In each step, the Turing
machine changes its state, writes to the current cell, and moves the head left
or right on the tape as indicated by the transition relation. For the current
state q and the content σ of the cell at the current head position, the Turing
machine nondeterministically picks one of the successor states q′ , a symbol

68 CHAPTER 5. ALGORITHMIC VERIFICATION

σ ′ ∈ Σ to write, and moves the head in the direction dir ∈ {left,right} such that
(q′ ,σ ′ ,dir) ∈ δ(q,σ). A configuration of a Turing machine consists of the current
state, the head position, and the tape. We say that a Turing machine accepts an
input, if there is a finite sequence of configurations C0,C1, . . . ,Cm that satisfies
the step relation of the Turing machine and ends in the accepting state qA.

An hc(k − 1,n)-space bounded Turing machine is restricted to a tape with
hc(k − 1,n) cells. We represent configurations of an hc(k − 1,n)-space bounded
Turing machine as sequences of length hc(k−1,n) over the alphabet Σ∪(Σ×Q),
where exactly one position is from Σ × Q and all other positions are from
Σ. Given some input word i1, . . . , in, the initial configuration C0 is thus the
sequence (q0, i1), i1, . . . , in followed by hc(k − 1,n)−n occurrences of #.

We encode a configuration of an hc(k−1,n)-space bounded Turing machine
as hc(k − 1,n) consecutive valuations of (quantified) propositions P = {σP | σ ∈
Σ}∪{qP | q ∈Q} that include one proposition for every state in Q and for every
alphabet symbol. The computation of the Turingmachine is then encoded as a
sequence of configurations. Similar to the encoding of the yardstick φc,k(x,y),
we use an additional proposition r ∈ AP to indicate the beginning of each
configuration.

r r r r r

C0 C1 C2 . . .

Given an hc(k − 1,n)-space bounded Turing machine M = (Q,Σ,δ,q0,qA),
we choose the formula ψc,k(M) as follows:

∃P .∃K(I)πI .∃r.∀x.∀y. φc,k−1(x,y) ⇒
r ∧ (x⇒ (¬y ∧¬r) U (r ∧¬y ∧(¬r U y))) ∧ (1)∧
σ∈Σ(σP =σπI ∧ ¬r) U (σP =σπI ∧ r) ∧ (2)

q0,P ∧
∧

q∈Q\q0¬qP ∧ ((
∧

q∈Q¬qP)U r) ∧ (3)
qA,P ∧ (4)∧

p1,p2,p3∈2P 
(
x⇒ p1 ∧ (p2 ∧¬r) ∧ (p3 ∧¬r)

)
⇒ (5.1)∨

(p′1,p
′
2,p
′
3)∈∆(p1,p2,p3)

(
y⇒ p′1 ∧ p′2 ∧ p′3

)
(5.2)

The subformulas describe an accepting computation of M as follows:

(1) Proposition r occurs in the first state and then every hc(k − 1,n) steps.

(2) The tape of the initial configuration is equal to the first hc(k − 1,n) labels
of the unique trace of the Kripke structure K(I), which for a given input
I = σ1, . . . ,σn is defined as follows:

σ1 σ2 σ3 . . . σn−1 σn #

5.6. LOWER BOUNDS 69

(3) The Turing machine starts in the initial state qA. All other tape positions
do not contain labels for the state of the Turing machine. That is, the head
position is indicated by the position of the state relative to the tape.

(4) The Turing machine reaches an accepting configuration.

(5) Consecutive configurations must follow the step relation of the Turing
machine. As the Turingmachine canmove its head only by one position in
every step, all but three consecutive tape cells can potentially be affected:
the current cell, and the left or the right cell (to which the head is moved).
This allows us to characterize the step relation δ as a relation∆ over triples
of tape cells [127]: A triple (p′1,p

′
2,p
′
3) ∈ Σ ∪ (Σ ×Q) is in ∆(p1,p2,p3) iff

there is a configuration C and a successor configuration C′ , such that p1,
p2, and p3 form consecutive symbols in the configuration C starting at
position i and p′1, p

′
2, and p′3 form consecutive symbols in the successor

configuration C′ also starting at position i.

In (5.1) we assume that the p1, p2, and p3 form consecutive (sets of) sym-
bols starting at a position marked with x, which is required to be at least
two states before the start of a new configuration (indicated by r). Subfor-
mula (5.2) asserts that one of the successor triples (p′1a,p

′
2,p
′
3) ∈ ∆(p1,p2,p3)

occurs at the corresponding position marked with y in the consecutive
configuration.

By Lemma 5.6.2 the subformula φc,k−1(x,y) has alternation depth k−1 and
starts with an existential quantifier. Since φc,k−1(x,y) occurs under one nega-
tion in a universally quantified subformula, the formula ψc,k(M) has quanti-
fier alternation depth k. We eliminate the extended path quantifiers by Theo-
rem 5.4.1 and bring the formula ψc,k(M) into prenex form by Theorem 4.2.3.
This maintains the quantifier alternation depth of k.

The family of Kripke structures for which the model checking problem
of the formula ψc,k(M) represents the halting problem for M on input I of
length |I | = n results from Ka, K(n), and K(I) through the construction in The-
orem 5.4.1.

Together with the algorithm presented in Section 5.3, we obtain a precise
characterization of the complexity in the size of the Kripke structure to check.

Theorem 5.6.4. The model checking problem for HyperLTL and HyperCTL∗ for-
mulas with alternation depth k is NSPACE(g(k − 1,n))-complete in the size of the
Kripke structure.

In particular this means that we can express strictly more properties with
every new quantifier alternation.

Corollary 5.6.5. The hierarchy of fragments with fixed alternation depths is strict.

70 CHAPTER 5. ALGORITHMIC VERIFICATION

5.7 Efficient Fragments

Though the model checking problems of HyperLTL and HyperCTL∗ is non-
elementary in general, it is may be feasible for many applications, as many
properties fall into the alternation-free fragment. For these encodings, the
model checking problem is only NLOGSPACE in the size of the Kripke struc-
ture. In fact, we demonstrate in the next and final chapter that the alternation-
free fragment of HyperCTL∗ can be efficiently checked in practice.

In this section we show that beyond the quantifier alternation depth there
are other syntactic fragments that limit the complexity. We show that the
model checking problem of SecLTL is in PSPACE, both in the size of the for-
mula and the size of the Kripke structure. As a second example, we consider
CTL∗, whose model checking problem is not harder than LTL model check-
ing, despite the presence of quantifier alternations. We observe that CTL∗

formulas can be seen as HyperCTL∗ formulas in which the quantifiers are re-
stricted to be closed subformulas and derive a criterion that can be used to
significantly speed up the algorithm.

SecLTL

We defined SecLTL as a fragment of HyperCTL∗ that uses only two path quan-
tifiers and at most a single quantifier alternation. The model checking prob-
lem of SecLTL is hence in EXPSPACE in the size of the formula and PSPACE in
the size of the Kripke structure. The bounds on the space requirements in the
size of the formula can be improved to PSPACE, when we consider that the
inner path quantifiers in SecLTL formulas (for the “alternative paths”) have
a fixed subformula up to renaming. This matches the lower bound that we
know through the subsumption of LTL in SecLTL.

Theorem 5.7.1. The model checking problem for SecLTL is in PSPACE, both in
the size of the formula and in the size of the Kripke structure.

Corollary 5.7.2. The inclusion of SecLTL in HyperCTL∗ is strict.

When, however, is it possible to check SecLTL formulas efficiently in the
size of the Kripke structure? We use the definition of alternation-free Hyper-
CTL∗ formulas to derive a SecLTL fragment. Hide operators are the only op-
erator to introduce additional paths in SecLTL, and they only introduce uni-
versally quantified formulas. Negated hide operators necessarily lead to for-
mulas that fall outside the alternation-free fragment. If we restrict the Hide
operator to occur only under an even number of negations and that, in the
negation normal form of a formula, occur only on the left side of Until op-
erators and on the right side of Release operators, we obtain the efficiently
checkable fragment called restricted SecLTL. It is easy to see that a SecLTL
formula is in the restricted fragment, iff it has alternation depth 0.

Corollary 5.7.3. The model checking problem K |= φ for formulas φ in restricted
SecLTL is in PSPACE in both |φ| and in NLOGSPACE in |K |.

5.7. EFFICIENT FRAGMENTS 71

CTL∗ and Closed Subformulas

Common algorithms for CTL∗ use the fact that the evaluation of CTL∗ state
formulas, including the quantifiers A and E, only depends on the current
state. Subformulas ψ that are state formulas can thus be eliminated by an-
notating all states s of the Kripke structure to check with the truth value of
s |= ψ and replacing ψ by a fresh atomic proposition indicating the annotated
value. Thereby the CTL∗ model checking problem is reduced to a sequence of
LTL model checking problems.

We observe that, in the automaton construction for HyperCTL∗, this prin-
ciple can be applied to closed HyperCTL∗ subformulas, which include all CTL∗

state formulas. Closed HyperCTL∗ subformulas depend only on the current
state of the most recently quantified path and can therefore be eliminated in
the same way as CTL∗ state formulas. In particular, this provides a means
to avoid the expensive complementation operation for quantifier alternations
where the inner quantifier is a closed subformula.

Chapter 6

Symbolic Verification and Case
Studies

In this chapter we demonstrate that the automaton-based construction from
Chapter 5 for alternation-free formulas translates into a practical verification
approach. The key to practical verification is to avoid listing the states of the
Kripke structure and the nondeterministic Büchi automata explicitly, but in-
stead work with their symbolic (succinct) representation. Popular symbolic
representations of state spaces are binary decision diagrams [90] and boolean
logic [16]. Even though the worst-case complexities still hold for symbolic
model checking algorithms, they can often avoid the exploration of all states
and thereby enable the verification of systems that could not be analyzed by
explicit-state methods. Today a variety of different methods are available,
each with different strengths and weaknesses. SAT-based bounded model
checking [16], interpolation [91], and IC3 [20].

While model checking of software remains a challenging problem, the de-
velopment of hardware components, such as micro processors, heavily relies
on model checking already. In the following, we discuss an approach to lever-
age existing hardware model checking technology for the verification of cir-
cuits for alternation-free HyperCTL∗ formulas (Section 6.1). Along several
case studies we demonstrate the feasibility of the approach for industrial-size
hardware components (Section 6.2).

6.1 Symbolic Model Checking of Circuits

In this section we translate the automaton-based construction for alternation-
free formulas from Section 5.2 into a practical verification algorithm for cir-
cuits. Given a circuit C and an alternation-free formula φ the algorithm pro-
duces a new circuit Cφ that is linear in the size of C and also linear in the
size of φ. The compactness of the encoding builds on the ability of circuits to
describe systems of exponential size with a linear number of binary variables.
The circuit Cφ is then checked for fair reachability to determine the validity

73

74 CHAPTER 6. SYMBOLIC VERIFICATION AND CASE STUDIES

of C |= φ. This check can be done with of-the-shelf model checkers leveraging
modern hardware verification technology [23, 16, 21].

A circuit1 C = (X, init, I , O, T) consists of a set X of binary variables
(latches with unit delay), a condition init ∈ B(X) characterizing a non-empty
set of initial states of X, a set of input variables I , a set of output variables
O, and a transition relation T ∈ B(X × I ×O ×X). We require that T is input-
enabled and input-deterministic. That is, for all x ⊆ X, i ⊆ I , there is exactly
one o ⊆ O and one x′ ⊆ X such that T (x, i,o,x′) holds. We denote a subset of
X as a state of circuit C, indicating exactly those latches that are set to 1. The
size of a circuit C, denoted |C|, is defined as the number of latches |X |.

A circuit C can be interpreted as a Kripke structure KC of potentially ex-
ponential but finite size. The state space of KC is S = s0 ∪ 2X × 2I × 2O × 2X ,
where s0 is a fresh initial state. The transition relation distinguishes the initial
step of the computation: s′ ∈ δ(s0) iff there is a circuit state x ⊆ X with init(x)
and x = s′ |X such that T (x,s′ |I , s′ |O, s′ |X), where s′ |I , s′ |O, s′ |X , and s′ |X′ are the
projections to variables I , O, the first copy of X, and the second copy of X re-
spectively. For subsequent steps of computation we define s′ ∈ δ(s) whenever
T (s|X , s′ |I , s′ |O, s′ |X′) and s|X′ = s′ |X . That is, the first copy of the state latches
X denotes the previous state, whereas the second copy X ′ of the state latches
denotes the current state. The labelling function of KC maps each state s to
the set s|X ·∪ s|I ·∪ s|O. That is, the alphabet APKC

is I ·∪ O ·∪ X. The semantics
of HyperCTL∗ on a circuit C is defined using the associated Kripke structure
KC . We write C |= φ whenever KC |= φ′ , where φ′ is obtained by replacing all
atomic propositions aπ by aπ. This leads to a natural semantics on circuits:
the atomic propositions always refer to the current value of the latches, the
next input, and the next output.

Given a circuit C and an alternation-free HyperCTL∗ formula φ, we re-
duce the model checking problem C |= φ to finding a computation path in a
circuit Cφ that does not visit a bad state and satisfies a conjunction of strong
fairness (or compassion) constraints F = {f1, . . . , fk}. A strong fairness con-
straint f of a circuit consists of a tuple (a1, a2) of atomic propositions and a
path p satisfies f , if a1 holds only finitely often or a2 holds infinitely often
on p. We build Cφ bottom up following the formula structure. Without loss
of generality, we assume that φ contains only existential quantifiers and is
in negation normal form. Let ψ be a subformula of φ that occurs under n
quantifiers. Let ψ be a subformula of φ that occurs under n quantifiers. Let
Cψ1

= (Xψ1
, initψ1

, Iψ1
,Oψ1

,Tψ1
), Cψ2

= (Xψ2
, initψ2

, Iψ2
,Oψ2

,Tψ2
) be the circuits,

and let Fψ1
and Fψ2

be the fairness constraints for the subformulas ψ1 and ψ2.
For LTL operators, the construction resembles the standard translation from

1Our definition of circuits can be considered as a model of and-inverter graphs in the Aiger
standard [17], where the gate list is abstracted to a transition relation.

6.1. SYMBOLIC MODEL CHECKING OF CIRCUITS 75

LTL to circuits [69, 26]. We construct Cψ and Fψ as follows:

ψ = aπk Cψ = (∅, true, Iψ, {oψ}, oψ↔ aπk),

Fψ = ∅

ψ = ¬aπk Cψ = (∅, true, Iψ, {oψ}, oψ xor aπk),

Fψ = ∅

ψ = ψ1∨ψ2 Cψ = (Xψ1
·∪Xψ2

, initψ1
∧ initψ2

,
Iψ1
∪ Iψ2

, Oψ1
·∪Oψ2

·∪{oψ},
(oψ↔ (oψ1

∨ oψ2
))∧ Tψ1

∧ Tψ2
),

Fψ = Fψ1
∪Fψ2

ψ = ψ1 ∧ψ2 Cψ = (Xψ1
·∪Xψ2

, initψ1
∧ initψ2

,
Iψ1
∪ Iψ2

, Oψ1
·∪Oψ2

·∪{oψ},
(oψ↔ oψ1

∧ oψ2
)∧ Tψ1

∧ Tψ2
),

Fψ = Fψ1
∪Fψ2

ψ =ψ1 Cψ = (Xψ1
·∪{xψ}, initψ1

, Iψ1
·∪{iψ}, Oψ1

·∪{oψ,bψ},
Tψ1
∧ (oψ↔ iψ)∧ (x′ψ↔ iψ)∧ (¬bψ↔ (oψ1

↔ xψ))),

Fψ = Fψ1

ψ = ψ1 U ψ2 Cψ = (Xψ1
·∪Xψ2

·∪{xψ}, initψ1
∧ initψ2

,
Iψ1
∪ Iψ2

·∪{iψ}, Oψ1
·∪Oψ2

·∪{oψ,bψ},
Tψ1
∧ Tψ2

∧ (oψ↔ xψ)∧ (x′ψ↔ iψ) ∧
(¬bψ↔ (¬xψ ∨ oψ2

∨ oψ1
∧ x′ψ))),

Fψ = Fψ1
∪Fψ2

∪ {(xψ, oψ2
)}

ψ = ψ1Rψ2 Cψ = (Xψ1
·∪Xψ2

·∪{xψ}, initψ1
∧ initψ2

,
Iψ1
∪ Iψ2

·∪{iψ}, Oψ1
·∪Oψ2

·∪{oψ,bψ},
Tψ1
∧ Tψ2

∧ (oψ↔ xψ)∧ (x′ψ↔ iψ) ∧
(¬bψ↔ (¬xψ ∨ oψ1

∧ oψ2
∨ oψ2

∧ x′ψ))),

Fψ = Fψ1
∪Fψ2

ψ = ∃π. ψ1 Cψ = (Xψ1
·∪Xn, initψ1

∧ (n = 1⇒ init(Xn)),
Iψ1
\Xn, (Oψ1

\On) ·∪{oψ},
Tψ1
∧ T (Xn)∧ (¬bψ↔ ((oψ↔ oψ1

)∧ (Xn = Xn−1)))),

Fψ = Fψ1

Here Iψ =
∪

i≤n Ii ·∪Oi ·∪Xi ; init(Xn) is the initial condition applied to copy Xn
of the latches; and likewise T (Xn) is the transition relation of C applied to the
copy Xn. We use Xn = Xn−1 to denote the expression that all latches in Xn are

76 CHAPTER 6. SYMBOLIC VERIFICATION AND CASE STUDIES

equal to their counterparts in Xn−1 (at the current point of time). It is easy to
verify that the transition relation is input-enabled and input-deterministic.

Proposition 6.1.1. Given a circuit C and an alternation-free formula φ with k
quantifiers, the size of the circuit Cφ is at most |C| · k + |φ|.

For each subformula ψ of φ, the output oψ in the circuit Cφ indicates that
ψ must hold for the current computation path, and the latch xψ represent the
requirements on the future of the computation that arise from the output oψ.
The output bψ indicates that the requirements for subformula ψ are violated
and a bad state is entered. We thus say that a computation of such a circuit Cφ
is accepting, if oφ holds in the first step, none of the outputs bψ holds along the
computation for any subformula ψ of φ, and every fairness constraint in Fφ is
satisfied.

Proposition 6.1.2. Let C be a circuit and let φ be an alternation-free HyperCTL∗

formula in negation normal form that has only existential quantifiers. C |= φ holds
iff there is an accepting computation for the circuit Cφ.

Accepting computations of Cφ directly correspond to accepting runs of the
alternating automata Aφ constructed in Chapter 5. The circuit construction
additionally guarantees that every suffix of a computation that corresponds to
an accepting run inAφ, again shows itself is an accepting computation for Cφ
(i.e. shows the output oφ in the first step of the suffix, . . .).

The proof proceeds by structural induction on the structure of the for-
mula. The base cases (the proposition and the negated proposition) are triv-
ially fulfilled. For each of the remaining cases we use the property that the
sub-circuitCψ1

(and likewise Cψ2
) corresponds to the language ofAψ1

(orAψ2
)

whenever we require its propositions oψ1
(or oψ2

). The transition relation T
for every case is then a direct translation of the transitions of the alternating
automata construction in Chapter 5.

The only significant difference to the automaton construction is the lack of
nondeterminism in the system model - instead we make use of the existential
choice of inputs in circuits. Nondeterministic choices are necessary whenever
we formulate proof obligations for the future of the computation. Consider
the formula ∃π. (aπ) ∨ (bπ). Intuitively, when analyzing the first step of
the computation, we cannot know which of the two disjuncts holds and thus
have to guess for each of the disjuncts whether it is the case. For each subfor-
mula ψ that starts with a temporal operator we thus introduce an additional
input iψ to indicate the guess that this subformula holds. Every guess is stored
in the additional variable xψ. The additional variables thus represent proof
obligations for the future of the computation. (In the automaton construction
of Chapter 5 the states of the alternating automaton correspond to the proof
obligations.) The transition relation is then designed to indicate in the output
bψ whether the proof obligation is violated.

The search for accepting computations of circuits can be performed by
standard hardware model checkers. Below we report on experiments using
the circuit encoding of alternation-free HyperCTL∗.

6.1. SYMBOLIC MODEL CHECKING OF CIRCUITS 77

Verification time in s
Model #Latches #Gates IC3 INT BMC

IF1 (NI1)

I2C Master 254 1207

95.17 1.13 0.07 ×
IF2 (NI2) 53.08 1.16 0.08 ×
IF3 (NI3) 168.96 1.38 - ✓
IF4 (NI4) 438.41 1.01 0.09 ×
IF5 (NI5) 717.74 8.31 0.77 ×
IF6 (NI6) 186.20 1.10 0.07 ×
IF7 (NI7) TO 6.82 0.55 ×
IF8 (NI8) 1557.14 2.92 0.16 ×
IF9 (NI2′) Ethernet 21093 70837 TO 155.77 6.27 ×

Sym1 (S1)
Bakery 46 1829

6.34 0.88 0.08 ×
Sym2

(S2)
168.59 464.52 7.00 ×

Sym3 Bakery.a 47 1588 69.12 TO 71.92 ×
Sym4

(S3)
Bakery.a.n 47 1618 26.31 4.75 0.39 ×

Sym5
Bakery.a.n.s 47 1532

66.41 TO - ✓
Sym6 (S4) 16.83 TO - ✓
Sym7 (S5)

Bakery.a.n.s.5proc 90 3762
97.45 TO - ✓

Sym8 (S6) 13.59 TO - ✓
Sym9 (S7) Bakery.a.n.s.7proc 136 6775 312.53∗ TO - ✓
Huff1 (HD1)

Huffman_enc 19 571
3.08 37.19 - ✓

Huff2 (HD2) 0.62 0.09 0.02 ×
8b10b_1 (HD1)

8b10b_enc 39 271
0.32 0.09 0.02 ×

8b10b_2 (HD1′) 1.19 9.06 - ✓
8b10b_3 (HD2′) 0.03 0.04 0.02 ×
8b10b_4 (HD1′′) 8b10b_dec 19 157 0.05 0.09 - ✓
Hamm1 (HD11)

Hamming_enc 27 47

0.02 0.04 0.02 ×
Hamm2 (HD12) 0.02 0.03 0.02 ×
Hamm3 (HD13) 0.03 0.04 0.02 ×
Hamm3’ (HD1′3) 7.34 0.18 - ✓
Hamm4 (HD14) 66.93 0.10 - ✓
Hamm5 (HD21) 11.83 1.31 - ✓
Hamm6 (HD22) 14.44 0.78 - ✓
Hamm7 (HD3) 12.23 1.25 - ✓

Table 6.1: Experimental results for the case studies.

78 CHAPTER 6. SYMBOLIC VERIFICATION AND CASE STUDIES

6.2 Case Studies and Experimental Results

The practical model checking algorithm from Section 6.1 is implemented in a
tool called MCHyper [114]. We rely on standard hardware synthesis tools to
compile VHDL and Verilog files into Aiger circuits [17] to which we the apply
the tool. Given an Aiger circuit C and a formula φ MCHyper produces the
circuit Cφ that can then be checked by hardware model checkers.

For the experiments, we used the ABC model checker [21] as the backend
verification engine. ABC is well-suited for our experiments, because it pro-
vides many of the modern verification algorithms, including IC3 [20]/PDR
[40], interpolation (INT) [91], and SAT-based bounded model checking (BMC)
[16]. Table 6.1 shows the verification times for the various circuits and prop-
erties considered in our case studies. The running times are as reported by
ABC on an Intel Core i5 processor, model 4278U, with 2.6 GHz. In all verifi-
cation runs except for the entry marked with ∗, we used the default settings of
ABC. The symbol ✓ in the last column indicates that an invariant was found,
and × that a (counter-) example path was found. The running times for BMC
are only reported for (counter-) examples.

The experimental results show that our approach enables the verification
of hyperproperties for hardware modules with hundreds or even thousands
of latches. Further, the table shows that bounded model checking is partic-
ularly efficient in finding counterexamples, and for cases where an invariant
was needed, the relative performance of IC3/PDR vs. interpolation was in-
conclusive. In addition to benchmarking, our goal for these case studies has
been to explore the versatility of alternation-free HyperCTL∗ model-checking
and the potential of our prototype tool. In the following subsections, we re-
port on the setup and results of the case studies, as well as on the verification
workflow from a user perspective. Our case studies come from three different
areas: information flow, symmetry, and error resistant codes.

Case Study 1: Information Flow Properties of I2C

Our first case study investigates the information flow properties of an I2C bus
master. I2C is a widely used bus protocol that connects multiple components
in a master-slave topology. Even though the I2C bus has no security features,
it has been used in security-critical applications, such as the smart cards of the
German public health insurance, which led to exploits in the years between
1995 and 2013 [130]. We analyzed a I2C bus master implementation from the
open source repository opencores.org. The setup consits of one master, one
controller, and up to eight slaves. The master communicates to the slaves via
two physical wires, the clock line (SCL) and the data line (SDA). The interface
of the master towards the controller consists of 8 bit wide words for input and
output of data, a 3-bit wide address to encode slave numbers, a system clock
input, and several reset and control signals. We checked the I2C bus master
implementation against the information flow properties shown in Table 6.2.

opencores.org

6.2. CASE STUDIES AND EXPERIMENTAL RESULTS 79

(NI1) ∀π.∀π′ . (ADDR_Iπ=ADDR_Iπ′)⇒(SDA_Oπ=SDA_Oπ′)

(NI2) ∀π.∀π′ . (DAT_Iπ = DAT_Iπ′)⇒(SDA_Oπ=SDA_Oπ′)

(NI3) ∀π.∀π′ . (¬WEn∧DAT_Iπ=DAT_Iπ′)⇒
(SDA_Oπ=SDA_Oπ′)

(NI4) ∀π.∀π′ . ({SDA_I,SCL_I}π= {SDA_I,SCL_I}π′)⇒
(DAT_Oπ=DAT_Oπ′)

(NI5) ∀π (SDA_Enable⇒H{SDA_I,SCL_I},{DAT_O}false)

(NI6) ∀π.∀π′ . (SDA_Iπ = SDA_Iπ′)⇒(SDA_Oπ=SDA_Oπ′)

(NI7) ∀π.∀π′ . (DAT_Iπ = DAT_Iπ′)⇒
((Iπ= Iπ′)⇒(SDA_Oπ=SDA_Oπ′))

(NI8) ∀π.∀π′ . ({SDA_I,SCL_I}π= {SDA_I,SCL_I}π′)⇒
((Iπ= Iπ′)⇒(DAT_Oπ=DAT_Oπ′))

Table 6.2: Information flow properties for the verification of the I2C bus mas-
ter. In this list of properties, Pπ = Pπ′ is defined as

∧
a∈P aπ = aπ′ . P π = P π′ is

defined as (I \ P)π = (I \ P)π′ where P ⊆ AP and I ⊆ AP are the inputs of the
circuit.

From the controller to the bus. Property (NI1) states that there is no in-
formation flow with respect to the address to which the I2C master intends
to send data, and (NI2) with respect to the data words themselves. Both in-
formation flows are present and obviously intended, and our tool reports the
violation. We tried to bound the information flow between the first valuation
of the 3 bit wide address input and the bus data by encoding [30] the quanti-
tative information-flow property. While the information flow of 3 bit could be
determined (QNI1), checking the upper bound of log9 ≈ 3.17 bit (QNI2) led
to a timeout. Property (NI3) states that when the write enable bit is not set, no
information should flow from the controller inputs to the bus. This property
is satisfied by the implementation.

From the bus to the controller. Property (NI4) claims the absence of in-
formation flow from the slaves to the controller, which is again legitimately
violated by the implementation. Property (NI5) refines (NI4) to determine
whether the flow can still happenwhenwe only consider information received
on SDA while the master sends data too. The branching time operator H in
(NI5), called the Hide operatorHI,Oφ, is borrowed from the logic SecLTL [38]
and expresses that information from the inputs I do not interfere with the out-

80 CHAPTER 6. SYMBOLIC VERIFICATION AND CASE STUDIES

puts O. The Hide operator is easily expressible in HyperCTL∗ [30]. Property
(NI5) is violated by the implementation, because the concurrent transmission
of data on the bus by multiple masters can bring I2C into arbitration mode
and changes the interpretation of information sent over the bus later.

Long-term information flow: Properties (NI7) and (NI8) claim that the in-
formation flows from (NI1) and (NI4) cannot happen for an arbitrary delay.
These properties are violated, which indicates that information may not be
eventually forgotten by the I2C master.

All properties on the I2CMaster were easily analyzed by the model check-
er. In order to determine if our approach scales to even larger designs, we
checked an adapted version of property (NI2) on an Ethernet IP core with
21093 latches. The counterexample was still found within seconds.

Case Study 2: Symmetry in Mutual Exclusion Protocols

In our second case study, we investigate symmetry properties of mutual ex-
clusion protocols. Mutual exclusion is a classical problem in distributed sys-
tems, for which several solutions have been proposed and analyzed. Violation
of symmetry indicates that some clients have an unfair advantage over the
other clients.

Our case study is based on a Verilog implementation of the Bakery proto-
col [80] from the VIS verification benchmark. The Bakery protocol works as
follows. When a process wants to access the critical section it draws a “ticket”,
i.e., it obtains a number that is incremented every time a ticket is drawn. If
there is more than one process who wishes to enter the critical section, the
process with the smallest ticket number goes first. When two processes draw
tickets concurrently, they may receive tickets with the same number, so ties
among processes with the same ticket must be resolved by a different mech-
anism, for example by comparing process IDs. The Verilog implementation
has an input select to indicate the process ID that runs in the next step, and
an input pause to indicate whether the step is stuttering. Each process n has a
program counter pc(n). When process n is selected, the statement correspond-
ing the program counter pc(n) is executed.

We are interested in the following HyperLTL property:

(S1) ∀π.∀π′ . (sym(selectπ,selectπ′) ∧ pauseπ=pauseπ′)⇒
(pc(0)π=pc(1)π′ ∧ pc(1)π=pc(0)π′)

where sym(selectπ,selectπ′) means that process 0 is selected on path π when
process 1 is selected on path π′ and vice versa. Property (S1) states that, for
every execution, there is another execution in which the select inputs corre-
sponding to processes 0 and 1 are swapped and the outcome (i.e., the sequence
of program counters of the processes) is also swapped. It is well known that it
is impossible to accomplish mutual exclusion in an entirely symmetric fash-
ion [84]. It is therefore not surprising that the implementation indeed violates
Property (S1).

6.2. CASE STUDIES AND EXPERIMENTAL RESULTS 81

Inspecting the counterexample revealed, however, that the symmetry is
broken even before the critical section is reached: if a non-existing process ID
is selected by the variable select, process 0 proceeds instead. Property (S2)
excludes paths on which a non-existing process ID is selected. The model-
checker produced a counterexample in which processes 0 and 1 tried to access
the critical section, but were treated differently.

(S2) ∀π.∀π′ . 
(
sym(selectπ,selectπ′) ∧
pauseπ=pauseπ′ ∧
selectπ < 3∧ selectπ′ < 3

)
⇒


(
pc(0)π=pc(1)π′ ∧ pc(1)π=pc(0)π′

)
Next, we parameterized the necessary symmetry breaking in the system.

We introduced additional inputs indicating which process may move, in case
of a tie of the tickets and extended the property by the assumption that the
symmetry is broken symmetrically.

(S3) ∀π.∀π′ . 
(
sym(selectπ,selectπ′) ∧
pauseπ=pauseπ′ ∧
selectπ < 3∧ selectπ′ < 3 ∧
sym(sym_breakπ,sym_breakπ′)

)
⇒


(
pc(0)π=pc(1)π′ ∧ pc(1)π=pc(0)π′

)
Property (S3) is still violated by the implementation: the order in which

the processes were checked depends on the process IDs and causes delays
in how the program counters evolve. After contracting the comparison of
process IDs into a single step, property (S3) became satisfied.

In further experiments, we changed the structure of property from the
form (S3) ∀π.∀π′ . φ ⇒ ψ to (S7) ∀π.∀π′ . ψW ¬φ, which removes the
liveness part of the property, while maintaining the semantics (for input-
deterministic and input-enabled systems). This change significantly reduced
the verification times and enabled the verification of the protocol for up to 7
participants.

Case Study 3: Error Resistant Codes

Error resistant codes enable the transmission of data over noisy channels.
While the correct operation of encoder and decoders is crucial for communi-
cation systems, the formal verification of their functional correctness has re-
ceived little attention. A typical model of errors bounds the number of flipped
bits that may happen for a given code word length. Then, error correction
coding schemes must guarantee that all code words have a minimal Ham-
ming distance. Alternation-free HyperCTL∗ can specify that all code words
produced by an encoder have a minimal Hamming distance of d:

(HDd) ∀π.∀π′ .(
∨

a∈I aπ,aπ′)⇒¬HamO(d − 1,π,π′)

82 CHAPTER 6. SYMBOLIC VERIFICATION AND CASE STUDIES

where I are the inputs denoting the data, O denote the code words, and the
predicate HamO(d,π,π′) is defined, like in Chapter 3, as HamO(−1,π,π′) =
false and:

HamO(d,π,π′)B
(∧

a∈O aπ=aπ′
)
W

(∨
a∈O aπ,aπ′ ∧ HamO(d−1,π,π′)

)
.

We started with two simple encoders that are not intended to provide error
resistance: a Huffman encoder from the VIS benchmarks, and an 8bit-10bit
encoder from opencores.org that guarantees that the difference between the
number of 1s and the number of 0s in the codeword is bounded by 2. As ex-
pected, encoders provide a Hamming distance of 1 (Huff1 and 8b10b_2), but
not more (Huff2 and 8b10b_3). The experiments on these simple encoders
were useful to determine the configuration of the command signals that en-
able the transmission of data. For example, checking the plain property as
specified above for the 8bit-10bit encoder reveals that the reset signal must
be set to false before sending data (8b10b_1). Similarly, for the 8bit-10bit
decoder, we checked whether all codewords of Hamming distance 1 produce
different outputs (8b10b_4).

Next, we considered an encoder for the 7-4-Hamming code, which encodes
blocks of 4 bits into codewords of length 7, and guarantees a Hamming dis-
tance of 3. We started with finding out in which configuration the encoder
actually sends encoded data (Hamm1 to Hamm4). With Hamm3 we discov-
ered that the implementation deviates from the specification because the re-
set signal for the circuit is active high, instead of active low as specified. In
Hamm3, we fixed the usage of the reset bit. We then scaled the specification
to Hamming distances 2 and 3 (Hamm5 to Hamm7).

opencores.org

Chapter 7

Related Logics

In this Chapter, we study the relation of HyperLTL and HyperCTL∗ to other
logics that are able to express certain information-flow properties. The com-
parison of logics (or specification languages) is difficult, as they often have
very different aims. Some logics are designed for the largest possible expres-
siveness, others restrict the expressiveness on purpose to obtain algorithmic
results. Also theoretical purity and usability can be conflicting goals in the
design of logics. It is therefore futile to find the best logic and we focus on
establishing the basic facts about the relations to other logics.

First, we consider the epistemic temporal logic that concern the specifica-
tion of the knowledge of agents or absence thereof. The concept of knowl-
edge is also formalized as a property over pairs of executions and it has been
observed that we can encode certain information-flow properties via epis-
temic temporal logics [136, 10]. We show that with extended path quan-
tification HyperLTL includes epistemic temporal logics and we explain how
results by Bozzelli et al. [19], who showed that HyperLTL and epistemic tem-
poral logics are incomparable in their expressiveness, fit in the picture (Sec-
tion 7.1). Second, we consider fixed point calculi that are suited to relate
multiple execution traces (Section 7.2). We show that the expressiveness of
HyperCTL∗ is incomparable to both the polyadic modal µ-calculus [7], the
higher-dimensional µ-calculus [81]. Holistic hyperproperties, a fixed point
based logic for hyperproperties, aims for generality and includes much more
than HyperCTL∗ [94, 93]. We show that this comes at the cost of an undecid-
able model checking problem and that its sublogic incremental hyperproperties,
for which model checking is again decidable, does not include HyperLTL.

7.1 Epistemic Temporal Logic

Epistemic temporal logic, or the logic of knowledge and time, extends tem-
poral logics by the knowledge operator KAφ that expresses that agent A knows
fact φ. Knowledge is defined via the quantification over all traces that are
observationally equivalent for agent A. Thereby, epistemic temporal logic al-

83

84 CHAPTER 7. RELATED LOGICS

lows us to express certain information-flow properties [10, 24, 136]. In this
section, we consider the epistemic temporal logic LTLK that extends LTL with
the knowledge operator [135, 45]:

φ ::= aπ | ¬φ | φ∧φ | φ | φU φ | KAφ

Agents are only referred to as entities with a particular observational pow-
er, and hence we define A ⊆ AP to be the set of atomic propositions this agent
can observe. Again, we introduce the derived temporal operatorsφ andφ
as well as the derived boolean operators φ∨φ and φ⇒ φ.

Epistemic temporal logic is typically defined on interpreted systems, but
here define its semantics on Kripke structures, to enable a clean comparison
to HyperLTL. We consider the epistemic operator with perfect recall semantics
and with the synchronous time assumption. We introduce a parameter i in the
validity relation to indicate the current point of time to the semantics of LTL
and define the semantics of epistemic temporal logic as follows:

t, i |=K a iff a ∈ t(i)
t, i |=K ¬φ iff t, i ̸|=K φ

t, i |=K φ1 ∧φ2 iff t, i |=K φ1 and t, i |=K φ2
t, i |=K φ iff t, i +1 |=K φ

t, i |=K φ1 U φ2 iff there is k ≥ i : t,k |=K φ2 and
for all i ≤ j < k : t, j |=K φ1

t, i |=K KAφ iff ∀t′ ∈ Traces(K,s0). t[0, i] =A t′[0, i] ⇒ t′ , i |=K φ ,

where t[0, i] =A t′[0, i] denotes the equivalence of t and t′ on the atomic propo-
sitions in A for all positions in [0, i]. A Kripke structure K satisfies a formula
φ, denoted K |= φ, iff for all traces t in Traces(K,s0) it holds t,0 |=K φ.

Even though knowledge operators may occur inside temporal operators, it
only refers to the Kripke structure via its set of traces Traces(K,s0). Epistemic
temporal logics is thus preserved under trace equivalence, i.e. it is a linear-
time logic. In the following, we show that LTLK can be encoded in HyperLTL,
when we also allow for quantification via propositions and we discuss related
results that show that this is necessary.

Theorem 7.1.1. HyperLTL with quantification over propositions subsumes LTLK .

Proof. We start by considering the straight forward unification of the logics
HyperLTL with quantification over propositions and epistemic temporal log-
ics: HyperLTLK . The validity relation Π, i |=K φ of the logic is defined as

7.1. EPISTEMIC TEMPORAL LOGIC 85

follows:

Π, i |=K aπ iff a ∈ L
(
Π(π)(i)

)
Π, i |=K ¬φ iff Π, i ̸|=K φ

Π, i |=K φ1 ∨φ2 iff Π, i |=K φ1 orΠ, i |=K φ2
Π, i |=K φ iff Π, i +1 |=K φ

Π, i |=K φ1 U φ2 iff for some k ≥ i : Π, k |=K φ2 and
for all i ≤ j < k : Π, j |=K φ1
for all i ≤ j < k : t, j |=K φ1

Π, i |=K KA,πφ iff ∀t′ ∈ Traces(K,s0).Π(π)[0, i] =A t′[0, i] ⇒ t′ , i |=K φ

Π, i |=K ∃π.φ iff for some t ∈ Traces(K,s0) : Π[π 7→ t], i |=K φ

Π, i |=K ∃a.φ iff for some t ∈ (2a)ω : Π[a 7→ t], i |=K φ

Π, i |=K a iff a ∈Π(a)(i) ,

The knowledge operator KA,πφ here received an additional parameter π, to
indicate which path the knowledge refers to. Note that the semantics includes
an operator ∃a for quantification over propositions and also includes propo-
sitions a that are not bound to any path.

The logic is a straight-forward extension of HyperLTL with with extended
path quantification and it also subsumes LTLK : given any LTLK formula ψ,
we prepend a universal quantifier ∀π and index all atomic propositions and
knowledge operators in ψ with π.

In the following, we show how to remove a single knowledge operator
from a HyperLTLK formula. Applying the construction repeatedly, until no
knowledge operator is left, provides a HyperLTL formula with quantification
over propositions.

Let φ =Q.φ′ be a HyperLTL formula in NNF that possibly has knowledge
operators, letQ be its quantifier prefix, and let φ′ be the quantifier-free part of
φ. Let t and u be propositions that φ does not refer to and that are not in the
alphabet of the Kripke structure. In case a knowledge operator KA,πψ occurs
in φ′ with positive polarity (i.e. non-negated), we translate φ as follows:

Q.∃u. ∀t. ∀π′ . φ′ |KA,πψ→u ∧
(
(t U (u ∧ t∧¬t)) ∧ (t→ Aπ=Aπ′) →

(t∧¬t→ ψ|π→π′)
)

and, if the knowledge operator occurs negated, we translate φ as follows:

Q.∃u. ∀t. ∃π′ . φ′ |¬KA,πψ→u ∧
(
(t U (u ∧ t∧¬t)) →

(t→ Aπ=Aπ′) ∧ (t∧¬t→¬ψ|π→π′)
)

where π′ is assumed to be fresh, φ′ |KA,πψ→u denotes that in φ′ one occurrence
of the knowledge operator KA,πψ is replaced by proposition u, and ψ|π→π′
denotes the formula ψ where indices π are replaced by π′ (assuming that π is
not bound again in ψ).

86 CHAPTER 7. RELATED LOGICS

The sequence of the atomic proposition u indicates all points of time the
knowledge operator needs to be true. By requiring that φ′ |¬KA,πψ→u holds, we
make sure that this sequence of points satisfies φ′ . Subsequently, we quantify
over proposition t, which marks a particular point in time when the knowl-
edge operator needs to be true: when the sequence of t turns from true to false.
The existence of this point is guaranteed by the subformula tU (u∧t∧¬t).

Consider the first case where the knowledge operator occurs positively. In
this setup, we require that all paths π′ that share the same sequence of propo-
sitions A on path π, the subformula ψ has to hold on path π′ exactly at the
point marked by t. Otherwise, if the knowledge operator occurred negatively,
we require that there is a path π′ that shares the same sequence of proposi-
tions A on path π and on which ¬ψ holds at this point of time.

Bozzelli et al. [19] recently proved that this claim does not hold for Hyper-
LTL without quantification over propositions. In fact, the expressiveness of
HyperLTL without quantification over propositions and LTLK is incompara-
ble.

Theorem 7.1.2 ([19]). The LTLK propertyK∅a cannot be expressed in Hyper-
LTL.

Theorem7.1.3 ([19]). The HyperLTL property ∃π.∃π′ .aπU
(
aπ∧¬aπ′∧(aπ↔

aπ′)
)
cannot be expressed in LTLK .

The knowledge operator pinpoints a particular point of time and consid-
ers all traces at this point of time. The quantification over paths in HyperLTL
cannot do that in general, as the traces are quantified before the time is quan-
tified. When we allow for quantification over propositions, however, we unify
the two worlds. In particular, this shows that quantification over propositions
adds more to HyperLTL than ω-regularity (over single traces).

7.2 Fixed-point Calculi

In this section we compare the expressiveness of various fixed-point calculi to
the expressiveness of HyperLTL and HyperCTL∗.

Modal µ-Calculus

Expressions of the modal µ-calculus [73] are generated by the following gram-
mar:

φ ::= a | X | ¬φ | φ∨φ | ⟨δ⟩φ | µX.φ(X)

where X is chosen from a set N of set variable names and a is chosen from a
set of atomic propositions. The expression φ(X) denotes a formula in which
X occurs only under an even number of negations. We also define the derived
operator [δ]φ ≡ ¬⟨δ⟩¬φ.

7.2. FIXED-POINT CALCULI 87

Semantics of the modal µ-calculus. The semantics of the modal µ-calculus
is defined via assignments of set variables. An assignment of set variables is a
partial function β : N → 2S , where S is a set of states in a given Kripke struc-
ture and N is a set of names for set variables. For a given expression φ in the
modal µ-calculus, an assignment β, and a Kripke structure K = (S,s0,δ,AP,L)
we define the set ∥φ∥β,K ⊆ S as follows:

∥a∥β,K :=
{
s ∈ S | a ∈ L(s)

}
∥X∥β,K := β(X)
∥¬φ∥β,K := S \ ∥φ∥β,K
∥φ1 ∨φ2∥β,K := ∥φ1∥β,K ∪∥φ2∥β,K
∥⟨δ⟩φ∥β,K :=

{
s ∈ S | δ(s)∩∥φ∥β,K

}
∥µX.φ(X)∥β,K :=

∩{
T ⊆ S | ∥φ(X)∥β[X 7→T],K ⊆ T

}
Validity on states of a Kripke structure K , written (K,s) |= φ, is then de-

fined as s ∈ ∥φ∥β,K . A Kripke structure K = (S,s0,δ,AP,L) satisfies a modal
µ-calculus expression φ, denoted with K |= φ, iff (K,s0) |= φ.

Incomparability ofHyperLTL/HyperCTL∗ and themodal µ-calculus. Non-
interference can be expressed in HyperLTL and HyperCTL∗, but not in the
modal µ-calculus [5]. Vice versa, HyperLTL and HyperCTL∗ cannot express
all ω-regular properties on paths, as shown in Theorem 5.5.2.

Polyadic Modal µ-Calculus

Polyadic modal µ-calculus is an extension of the µ-calculus to multiple Kripke
structures [7]. It operates on tuples of states (possibly of different Kripke
structures) and extends the operator ⟨δ⟩ by an index i denoting to the position
in the tuple of states that does a step. Also the atomic propositions receive an
index. The grammar of the polyadic modal µ-calculus is thus:

φ ::= ai | X | ¬φ | φ∨φ | ⟨δ⟩iφ | µX.φ(X)

where i ∈ N, X is chosen from a set N of set variable names, and a is chosen
from a set of atomic propositions. The expression φ(X) denotes a formula in
which X occurs only under an even number of negations.

Semantics of the polyadic modal µ-calculus. In contrast to the modal µ-
calculus, set variables here range over tuples of states. An assignment of set
variables is thus a partial function β : N → 2S

+
, where S is a set of states in a

given Kripke structure and N is a set of names for set variables. For a given
expression φ in the polyadic modal µ-calculus, an assignment β, and a tuple

88 CHAPTER 7. RELATED LOGICS

of Kripke structures K = (K1, . . . ,Kn) we define the set ∥φ∥β,K ⊆ S as follows:

∥ai∥β,K :=
{
(s1, . . . , sn) ∈ Sn | a ∈ Li(si)

}
∥X∥β,K := β(X)
∥¬φ∥β,K := Sn \ ∥φ∥β,K
∥φ1 ∨φ2∥β,K := ∥φ1∥β,K ∪∥φ2∥β,K
∥⟨δ⟩iφ∥β,K :=

{
(s1, . . . , sn) ∈ Sn | ∃s′i ∈ δi(si) : (s1, . . . , s

′
i , . . . , sn) ∈ ∥φ∥β,K

}
∥µX.φ(X)∥β,K :=

∩{
T ⊆ Sn | ∥φ(X)∥β[X 7→T],K ⊆ T

}
Validity on tuples s of states of Kripke structures K , written (K,s) |= φ, is

then defined as s ∈ ∥φ∥β,K . A tuple of Kripke structures K satisfies a polyadic

modal µ-calculus expression φ, denoted with K |= φ, iff (K,s0) |= φ, where s0
is the tuple of initial states of the Kripke structures K (in that order). Note
that we adapted the definition of the polyadic modal µ-calculus to Kripke
structures. The original definition uses to transition systems.

Similar to HyperLTL and HyperCTL∗ its model checking problem of the
polyadic modal µ-calculus is decidable, while its satisfiability problem is un-
decidable. Its model checking problem is even not harder than the model
checking problem of the modal µ-calculus, i.e. PTIME.

Unlike the semantics of HyperLTL and HyperCTL∗, the progression of
time in the polyadic modal µ-calculus is not synchronous by default. Instead
we always replace one of the states in the tuple by one of its successors. This
further allows us to express that two Kripke structures are bisimilar [7].

The expressiveness of HyperLTL/HyperCTL∗ and the polyadic modal µ-
calculus is incomparable too. While the argument that the polyadic modal
µ-calculus is not subsumed by HyperLTL or HyperCTL∗ is the same as for the
modal µ-calculus, the other direction is harder, as the interpretation over pairs
of states of the same Kripke structure allows us to express noninterference in
the polyadic modal µ-calculus.

Theorem 7.2.1. The polyadic modal µ-calculus does not subsume HyperLTL.

Proof. HyperLTL can express properties that are EXPSPACE-hard in the size
of the Kripke structure. Any property expressible in the polyadic modal µ-
calculus can be checked in PTIME. Thus there must be properties expressible
in HyperLTL that cannot be expressed in the polyadic modal µ-calculus.

Higher-dimensional Modal µ-Calculus

The higher-dimensional µ-calculus can be seen as an extension of the polyadic
modal µ-calculus by the variable replacement operator [81]. The variable re-
placement operator allows us for example to permute the states in the tu-
ple. Similar to the polyadic modal µ-calculus, the model checking problem of
the higher-dimensional modal µ-calculus is in PTIME. This implies that the

7.2. FIXED-POINT CALCULI 89

expressiveness of HyperLTL/HyperCTL∗ and the higher-dimensional modal
µ-calculus is again incomparable.

More interestingly, however, Lange and Lozes prove that the higher-dimen-
sional modal µ-calculus can express any bisimulation invariant property of
systems that can be decided in PTIME. That is, the higher-dimensional modal
µ-calculus subsumes alternation-free HyperCTL∗.

Holistic and Incremental Hyperproperties

Milushev and Clarke proposed the holistic hyperproperties logic as a means to
specify information-flow properties [94]. Similar to HyperCTL∗ the holistic
hyperproperties logic introduces the quantification over paths to an existing
logic, the least fixed point logic, which is a variant of first order logic with
fixed point operators. In contrast to the µ-calculi considered before, the holis-
tic hyperproperties logic is unable to refer to the branching structure of the
system and can therefore only express linear-time properties. The logic is thus
incomparable to HyperCTL∗ in terms of expressiveness. (The holistic hyper-
property logic also cannot be subsumed by HyperLTL, as we will see below,
but the other direction is open.)

The algorithmic problems of the holistic hyperproperties logic are not yet
established. Given the generality of the logic it comes at no surprise that its
model checking problem is undecidable. We sketch the proof here to suggest
that holistic hyperproperties are not suited as a specification logic for algo-
rithmic verification.

Theorem 7.2.2. The model checking problem of holistic hyperproperties is unde-
cidable.

Proof. We encode Post’s correspondence problem [113] in the model checking
problem of incremental hyperproperties. Post’s correspondence problem is to
decide, given two lists of finite words a1, . . . , an and b1, . . . ,bn, whether there
exists a sequence of indices i1, . . . , ik such that ai1 . . . aik = bi1 . . .bik .

We consider a class of Kripke structures that represents the two lists of
finite words and admits any sequence of the words as a trace. Additionally
we require that on the start of each word, the Kripke structure also provides
labels to indicate whether the word is from the first or the second list of words
and to identify the word index. (Word indices can be represented sequentially,
such that a finite number of labels suffices.) It is clear that we can pick a
representation such that each Kripke structure in this family has finitelymany
states. The holistic hyperproperty existentially quantifies over two traces πa
and πb. We require with co-inductive predicates

• that πa only contains words ai ,

• that πb only contains words bi ,

• that the letters of both sequences (except for the word numbers) agree
in each position of the pair of traces, and

90 CHAPTER 7. RELATED LOGICS

• that the sequence of word indices agree.

Model checking holistic hyperproperties is thus undecidable.

To obtain a logic with a decidable model checking problem, Milushev and
Clarke propose the fragment named incremental hyperproperties and give a
reduction of a subset of incremental hyperproperties to the polyadic modal
µ-calculus.

Chapter 8

Conclusions

We propose using temporal logics as specification languages for information-
flow control to overcome the limited flexibility of the available enforcement
approaches. However, the commonly considered temporal logics, like LTL
and CTL∗, cannot express information-flow properties, as they lack the ability
to relate multiple traces. We extend linear-time temporal logics and branch-
ing-time temporal logics in a simple way to overcome this limitation. We
demonstrate that the resulting temporal logics, HyperLTL and HyperCTL∗,
enable us to express various information-flow properties. It turns out that Hy-
perLTL and HyperCTL∗ are also suited to express properties from other areas
that have not been considered before. We study the connection between Hy-
perLTL and HyperCTL∗ and related extensions of temporal logics. This also
yields the result that HyperLTL extended by the quantification over propo-
sitions subsumes epistemic temporal logics. We study the model checking
problems of HyperLTL and HyperCTL∗. We give an automata-theoretic algo-
rithm, analyze its complexity, and provide matching lower bounds, both in
the formula size and in the size of the system. Finally, we consider the sym-
bolic model checking of alternation-free formulas for hardware designs. We
propose a circuit construction that enables us to reuse existing model check-
ing technology in an effective way. Along several case studies we demonstrate
the flexibility of the approach for information-flow control and applications
beyond security.

To summarize, the temporal logic approach to information-flow control
provides a simple formal basis for the analysis of systems for violations of con-
fidentiality and integrity and an effective and flexible enforcement approach
for hardware security.

Outlook

The temporal logic approach to information-flow control opens pressing ques-
tions for further research. Besides the practical problem of improving the ap-
plicability of the approach, there are more fundamental question about the
limits of expressiveness while maintaining verifiability.

91

92 CHAPTER 8. CONCLUSIONS

Information-flow Control for Software. The promise of information-flow
control to provide comprehensive information-security for software is not yet
fulfilled. To prevent the next Heartbleed or Shellshock with the property-
oriented approach of information-flow control, we still need to devise flexible
enforcement methods for software that scale to (many) thousands of lines of
code. Recent advances in symbolic software model checking raise hope for
scalable software model checking for HyperLTL and HyperCTL∗.

On amore technical level, the analysis of software requires to reason about
the synchronization of execution traces as typical system models of software
are oblivious of execution time. A first example of an appropriate property
is the encoding of Goguen and Meseguers noninterference in Chapter 3. In
other approaches the synchronization has been included in the verification
approach itself [71].

Software can be also be represented with systemmodels with infinite state
spaces. For instance, it is an open problem what hyperproperties can be veri-
fied for Petri nets.

Practical Aspects of Specification Languages and Modeling. While tem-
poral logics emphasize abstraction and simplicity, there are other aspects to
consider for the usability of specification languages. A big challenge will
be to enable non-expert users to write specifications that truthfully repre-
sent their intent and solutions are likely domain specific (cf. [53]). HyperLTL
and HyperCTL∗ may serve here as a backbone logic to ensure the verifiability
of specifications. First practical languages in language based information-
flow control frame specification languages as a part of the programming lan-
guage [145].

Modeling the system and the security threat is a very related issue [14].
The property oriented approach of information-flow control reduces the de-
pendence of information security on implementation details. However, The
approach still depends on the truthful representation of an attacker’s ability
to influence and observe about the system. A holistic security analysis should
therefore start already with the choice of the system and attacker model.

Cryptography. Information-flow control assumes that whenever an attacker
obtains some information about the secret, confidentiality is lost. Cryptogra-
phy offers a refined view that takes into account that the attacker has only
limited computing resources. Even though the encrypted communication be-
tween two parties (typically) contains the full information about the secret,
it is practically impossible to reconstruct the secret. Küsters and Truderung
demonstrated that with the assumption that cryptographic primitives cannot
be circumvented, we can abstract from cryptography in a way that enables
us to use information-flow control to ensure the correctness of the rest of the
program [78].

93

Beyond Security. The ability to express properties outside information-flow
control raises the question what other applications HyperLTL and HyperCTL∗

could be useful for. Memory models [141] and fault detection [18] seem to
profit from properties that relate multiple executions and their encodings in
HyperLTL and HyperCTL∗ may lead to effective verification approaches.

Quantitative Properties Clarkson and Schneider observed that also quan-
titative properties, such as the mean response time, quantitative noninterfer-
ence, and probabilistic properties, are hyperproperties [31]. A first approach
may be to combine quantifiers over named paths, as introduced in HyperLTL
and HyperCTL∗, and quantitative quantification such as the probabilistic oper-
ator in PCTL [59].

Fixed-point Calculi. The quantification over execution traces in fixed-point
logics easily leads to undecidability, as discussed in Chapter 7. It will be in-
teresting to test the limits of expressiveness, while preserving the decidability
of the model checking problem.

Algorithmics. The alternation-free fragments of HyperLTL and HyperCTL∗

provided effective verification approaches. To scale the verification to large
systems we should explore abstractions that make use of the fact that we an-
alyze multiple copies of the same system.

Some interesting properties, such as trace equivalence, strictly require
quantifier alternations. Focussing on certain classes of systems or combina-
tions of classes of systems and fragments of the logics may offer a way around
the exponential explosion in the model checking complexity.

Bibliography

[1] Common weakness enumeration - a community-developed dictionary
of software weakness types. http://cwe.mitre.org. Accessed on June
29, 2015.

[2] Property specification language reference manual. http://www.eda.or
g/vfv/docs/PSL-v1.1.pdf. Accessed on July 7, 2015. Version 1.1.

[3] David Albright, Paul Brannan, and Christina Walrond. Did Stuxnet
take out 1,000 centrifuges at the Natanz enrichment plant? Institute
for Science and International Security, http://media.washingtonpo
st.com/wp-srv/world/documents/stuxnet_update_15Feb2011.pdf,
2010. Accessed Feb 27, 2015.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181 – 185, 1985.

[5] Rajeev Alur, Pavol Černý, and Steve Zdancewic. Preserving secrecy un-
der refinement. In Proceedings of ICALP, pages 107–118, 2006.

[6] Torben Amtoft and Anindya Banerjee. Information flow analysis in log-
ical form. In Proceedings of SAS, pages 100–115, 2004.

[7] Henrik Reif Andersen. A polyadic modal µ-calculus, 1994. Technical
Report.

[8] Christel Baier and Joost-Pieter Katoen. Principles of model checking. The
MIT Press, 2008.

[9] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K Raja-
mani. Automatic predicate abstraction of C programs. In ACM SIG-
PLAN Notices, volume 36, pages 203–213. ACM, 2001.

[10] Musard Balliu, Mads Dam, and Gurvan Le Guernic. Epistemic tempo-
ral logic for information flow security. In Proceedings of PLAS, 2011.

[11] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verifi-
cation using product programs. In Proceedings of FM, pages 200–214.
Springer, 2011.

95

http://cwe.mitre.org
http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://media.washingtonpost.com/wp-srv/world/documents/stuxnet_update_15Feb2011.pdf
http://media.washingtonpost.com/wp-srv/world/documents/stuxnet_update_15Feb2011.pdf

96 BIBLIOGRAPHY

[12] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure informa-
tion flow by self-composition. In Proceedings of CSFW, pages 100–114.
IEEE Computer Society Press, 2004.

[13] Gilles Barthe, Pedro RD’Argenio, and Tamara Rezk. Secure information
flow by self-composition. Mathematical Structures in Computer Science,
21(06):1207–1252, 2011.

[14] Jason Bau and John C. Mitchell. Security modeling and analysis. IEEE
Security & Privacy, 9(3):18–25, 2011.

[15] D. Elliot Bell and Leonard J. LaPadula. Secure computer systems: Math-
ematical foundations. Technical Report 2547, Volume I, MITRE Corpo-
ration, Mar 1973.

[16] Armin Biere, Edmund M. Clarke, Richard Raimi, and Yunshan Zhu.
Verifiying safety properties of a power PC microprocessor using sym-
bolic model checking without BDDs. In Proceedings of CAV, volume
1633 of LNCS, pages 60–71. Springer, 1999.

[17] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and be-
yond. http://fmv.jku.at/hwmcc11/beyond1.pdf, 2011. Accessed Feb
6, 2015. Via website: http://fmv.jku.at/aiger/.

[18] Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta.
Formal design of fault detection and identification components using
temporal epistemic logic. In Proceedings of TACAS, pages 326–340,
2014.

[19] Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper
and epistemic temporal logics. In Proceedings of FoSSaCS, pages 167–
182, 2015.

[20] Aaron R. Bradley. SAT-based model checking without unrolling. In
Proceedings of VMCAI, volume 6538 of LNCS, pages 70–87. Springer,
2011.

[21] Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-
strength verification tool. In Proceedings of CAV, volume 6174 of LNCS,
pages 24–40. Springer, 2010.

[22] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

[23] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, and David L.
Dill. Sequential circuit verification using symbolic model checking. In
Proceedings of DAC, pages 46–51. IEEE CS Press, 1990.

[24] Rohit Chadha, Stéphanie Delaune, and Steve Kremer. Epistemic Logic
for the Applied Pi Calculus. In Proceedings of FMOODS/FORTE, pages
182–197. Springer, 2009.

http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/aiger/

BIBLIOGRAPHY 97

[25] Jason Cipriani. Heartbleed bug: Check which sites have been
patched. http://www.cnet.com/how-to/which-sites-have-patche

d-the-heartbleed-bug/, 2014. Accessed June 4, 2015.

[26] Koen Claessen, Niklas Eén, and Baruch Sterin. A circuit approach to
LTL model checking. In Proceedings of FMCAD, pages 53–60, 2013.

[27] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative
analysis of the leakage of confidential data. In Proceedings of QAPL,
volume 59 of ENTCS, pages 238–251. ENTCS, 2002.

[28] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for check-
ing ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors,
Proceedings of TACAS, volume 2988 of Lecture Notes in Computer Sci-
ence, pages 168–176. Springer, 2004.

[29] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logic of
Programs, pages 52–71. Springer, 1982.

[30] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sánchez. Temporal logics for hy-
perproperties. In Proceedings of POST, pages 265–284, 2014.

[31] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. of Com-
puter Security, 18(6):1157–1210, 2010.

[32] Inc. Community Health Systems. Form 8-K, Commission File Num-
ber 001-15925. http://phx.corporate-ir.net/phoenix.zhtml?c

=120730&p=irol-SECText&TEXT=aHR0cDovL2FwaS50ZW5rd2l6YXJkL

mNvbS9maWxpbmcueG1sP2lwYWdlPTk3NjE4NTImRFNFUT0wJlNFUT0wJl

NRREVTQz1TRUNUSU9OX0VOVElSRSZzdWJzaWQ9NTc%3d, 2014. Accessed
June 4, 2015.

[33] Byron Cook, Heidy Khlaaf, and Nir Piterman. Faster temporal reason-
ing for infinite-state programs. In Proceedings of FMCAD, pages 75–82,
2014.

[34] Byron Cook, Heidy Khlaaf, and Nir Piterman. Fairness for infinite-state
systems. In Proceedings of TACAS, pages 384–398. Springer, 2015.

[35] Dorothy E. Denning. A lattice model of secure information flow. Com-
mun. ACM, 19(5):236–243, May 1976.

[36] Dorothy E Denning and Peter J Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):504–513,
1977.

[37] Dominique Devriese and Frank Piessens. Noninterference through se-
cure multi-execution. In Proceedings of S&P, pages 109–124. IEEE,
2010.

http://www.cnet.com/how-to/which-sites-have-patched-the-heartbleed-bug/
http://www.cnet.com/how-to/which-sites-have-patched-the-heartbleed-bug/
http://phx.corporate-ir.net/phoenix.zhtml?c=120730&p=irol-SECText&TEXT=aHR0cDovL2FwaS50ZW5rd2l6YXJkLmNvbS9maWxpbmcueG1sP2lwYWdlPTk3NjE4NTImRFNFUT0wJlNFUT0wJlNRREVTQz1TRUNUSU9OX0VOVElSRSZzdWJzaWQ9NTc%3d
http://phx.corporate-ir.net/phoenix.zhtml?c=120730&p=irol-SECText&TEXT=aHR0cDovL2FwaS50ZW5rd2l6YXJkLmNvbS9maWxpbmcueG1sP2lwYWdlPTk3NjE4NTImRFNFUT0wJlNFUT0wJlNRREVTQz1TRUNUSU9OX0VOVElSRSZzdWJzaWQ9NTc%3d
http://phx.corporate-ir.net/phoenix.zhtml?c=120730&p=irol-SECText&TEXT=aHR0cDovL2FwaS50ZW5rd2l6YXJkLmNvbS9maWxpbmcueG1sP2lwYWdlPTk3NjE4NTImRFNFUT0wJlNFUT0wJlNRREVTQz1TRUNUSU9OX0VOVElSRSZzdWJzaWQ9NTc%3d
http://phx.corporate-ir.net/phoenix.zhtml?c=120730&p=irol-SECText&TEXT=aHR0cDovL2FwaS50ZW5rd2l6YXJkLmNvbS9maWxpbmcueG1sP2lwYWdlPTk3NjE4NTImRFNFUT0wJlNFUT0wJlNRREVTQz1TRUNUSU9OX0VOVElSRSZzdWJzaWQ9NTc%3d

98 BIBLIOGRAPHY

[38] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and
Helmut Seidl. Model checking information flow in reactive systems. In
Proceedings of VMCAI, pages 169–185, 2012.

[39] Klaus Dräger, Andrey Kupriyanov, Bernd Finkbeiner, and Heike
Wehrheim. Slab: A certifying model checker for infinite-state concur-
rent systems. In Proceedings of TACAS, Lecture Notes in Computer Sci-
ence. Springer, 2010.

[40] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient imple-
mentation of property directed reachability. In Proceedings of FMCAD,
pages 125–134, 2011.

[41] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never”
revisited: on branching versus linear time temporal logic. JACM,
33:151–178, 1986.

[42] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of OSDI, pages 1–6, Berkeley, CA, USA,
2010. USENIX Association.

[43] Yves Eudes. Poodle, une faille de sécurité pour “espionner lo-
cal”. http://www.lemonde.fr/pixels/article/2014/10/17/poodle-une-
faille-de-securite-pour-espionner-local_4508285_4408996.html, 2014.
Accessed May 31, 2015.

[44] Yves Eudes. Shellshock, la faille de sécurité majeure découverte
“presque par hasard” par un Francais. http://www.lemonde.

fr/pixels/article/2014/10/02/shellshock-la-faille-de-

securite-majeure-decouverte-presque-par-hasard-par-un-

francais_4498904_4408996.html, 2014. Accessed May 31, 2015.

[45] Ronald Fagin, Yoram Moses, Joseph Y. Halpern, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[46] Jonathan Fildes. Stuxnet worm ’targeted high-value Iranian assets’. ht
tp://www.bbc.com/news/technology-11388018, 2010. Accessed May
31, 2015.

[47] Bernd Finkbeiner and Markus N. Rabe. The linear-hyper-branching
spectrum of temporal logics. it - Information Technology, 56:273–279,
November 2014.

[48] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms
for model checking HyperLTL and HyperCTL∗. In Proceedings of CAV,
volume 9206 of LNCS, pages 30–48. Springer, 2015.

http://www.lemonde.fr/pixels/article/2014/10/02/shellshock-la-faille-de-securite-majeure-decouverte-presque-par-hasard-par-un-francais_4498904_4408996.html
http://www.lemonde.fr/pixels/article/2014/10/02/shellshock-la-faille-de-securite-majeure-decouverte-presque-par-hasard-par-un-francais_4498904_4408996.html
http://www.lemonde.fr/pixels/article/2014/10/02/shellshock-la-faille-de-securite-majeure-decouverte-presque-par-hasard-par-un-francais_4498904_4408996.html
http://www.lemonde.fr/pixels/article/2014/10/02/shellshock-la-faille-de-securite-majeure-decouverte-presque-par-hasard-par-un-francais_4498904_4408996.html
http://www.bbc.com/news/technology-11388018
http://www.bbc.com/news/technology-11388018

BIBLIOGRAPHY 99

[49] National Institute for Standards and Technology. Heartbleed, CVE-
2014-0160. https://web.nvd.nist.gov/view/vuln/detail?vulnId

=CVE-2014-0160, 2014. Accessed Dec 30, 2014.

[50] National Institute for Standards and Technology. The poodle attack,
CVE-2014-3566. https://web.nvd.nist.gov/view/vuln/detail?vu

lnId=CVE-2014-3566, 2014. Accessed Jan 4, 2015.

[51] National Institute for Standards and Technology. Shellshock, CVE-
2014-6271. http://web.nvd.nist.gov/view/vuln/detail?vulnId=C
VE-2014-6271, 2014. Accessed Dec 30, 2014.

[52] Tim French. Decidability of quantifed propositional branching time
logics. In Proceedings of AI, pages 165–176. Springer, 2001.

[53] Daniel Giffin, Stefan Heule, Amit Levy, David Mazières, John Mitchell,
Alejandro Russo, Amy Shen, Deian Stefan, David Terei, and Edward Z.
Yang. Security and the average programmer. In Proceedings of POST,
April 2014.

[54] Rob J. Glabbeek. The linear time - branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings of CONCUR, volume 458 of
Lecture Notes in Computer Science, pages 278–297. Springer, 1990.

[55] J. A. Goguen and J. Meseguer. Security policies and security models. In
Proceedings of S&P, pages 11–20, 1982.

[56] Marcel J. E. Golay. Notes on digital coding. Proceedings IRE, 37:657,
1949.

[57] Lawrence A Gordon and Martin P Loeb. The economics of informa-
tion security investment. ACM Transactions on Information and System
Security (TISSEC), 5(4):438–457, 2002.

[58] Christian Hammer. Information Flow Control for Java - A Comprehensive
Approach based on Path Conditions in Dependence Graphs. PhD thesis,
Universität Karlsruhe (TH), Fak. f. Informatik, July 2009. ISBN 978-3-
86644-398-3.

[59] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal aspects of computing, 6(5):512–535, 1994.

[60] Stephen Henson. Add heartbeat extension bounds check. http://gi

t.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902.
Accessed on June 5, 2015. Commit 96db902.

[61] Matthew Hicks, Cynthia Sturton, Samuel T King, and Jonathan M
Smith. Specs: A lightweight runtime mechanism for protecting soft-
ware from security-critical processor bugs. In Proceedings of ASPLOS,
pages 517–529. ACM, 2015.

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3566
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3566
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271
http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902
http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902

100 BIBLIOGRAPHY

[62] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley, 1979.

[63] Marieke Huisman, Pratik Worah, and Kim Sunesen. A temporal logic
characterisation of observational determinism. In Proceedings of CSFW.
IEEE Computer Society, 2006.

[64] James W. Gray III. Toward a mathematical foundation for information
flow security. In Proceedings of S&P, pages 210–34, may 1991.

[65] Johan Anthony Wilem Kamp. Tense logic and the theory of linear order.
PhD thesis, University of California, Los Angeles, 1968.

[66] Sudeep Kanav, Peter Lammich, and Andrei Popescu. A conferenceman-
agement system with verified document confidentiality. In Proceedings
of CAV, volume 8559, pages 167–183. Springer International Publish-
ing, 2014.

[67] Sudeep Kanav, Peter Lammich, and Andrei Popescu. A conferenceman-
agement system with verified document confidentiality. In Proceedings
of CAV, pages 167–183, 2014.

[68] Heather Kelly. The ’Heartbleed’ security flaw that affects most of the
internet. http://www.cnn.com/2014/04/08/tech/web/heartbleed-

openssl/, 2014. Accessed May 31, 2015.

[69] Yonit Kesten, Amir Pnueli, and Li-on Raviv. Algorithmic verification
of linear temporal logic specifications. In Proceedings of ICALP, pages
1–16, 1998.

[70] B. Köpf and D. Basin. An information-theoretic model for adaptive
side-channel attacks. In Proceedings of CCS, pages 286–296. ACM, 2007.

[71] Máté Kovács. Information Flow Security in Tree-Manipulating Processes.
PhD thesis, Institut für Informatik, Technische Universität München,
March 2014.

[72] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. Relational abstract
interpretation for the verification of 2-Hypersafety Properties. In Pro-
ceedings of CCS, pages 211–222, November 2013.

[73] Dexter Kozen. Results on the propositional µ-calculus. Theor. Comput.
Sci., 27:333–354, 1983.

[74] Orna Kupferman. Augmenting branching temporal logics with exis-
tential quantification over atomic propositions. In Proceedings of CAV,
pages 325–338. Springer, 1995.

[75] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are
not that weak. ACM TOCL, 2(3):408–429, 2001.

http://www.cnn.com/2014/04/08/tech/web/heartbleed-openssl/
http://www.cnn.com/2014/04/08/tech/web/heartbleed-openssl/

BIBLIOGRAPHY 101

[76] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. JACM,
47(2):312–360, 2000.

[77] James A Kupsch and Barton P Miller. Manual vs. automated vulnera-
bility assessment: A case study. In Proceedings of MIST, pages 83–97,
2009.

[78] Ralf Küsters, Tomasz Truderung, and Jürgen Graf. A Framework for
the Cryptographic Verification of Java-like Programs. In Proceedings of
CSF, pages 198–212. IEEE Computer Society, 2012.

[79] Richard E. Ladner. Application of model theoretic games to discrete
linear orders and finite automata. Information and Control, 33(4):281 –
303, 1977.

[80] Leslie Lamport. A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, August 1974.

[81] Martin Lange and Étienne Lozes. Model-checking the higher-
dimensional modal mu-calculus. In FICS, pages 39–46, 2012.

[82] K Rustan M Leino and Rajeev Joshi. A semantic approach to secure
information flow. LNCS, 1422:254–271, 1998.

[83] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems:
Specification. The Temporal Logic of Reactive and Concurrent Systems.
Springer, 1992.

[84] ZoharManna andAmir Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer, 1995.

[85] Heiko Mantel. Possibilistic definitions of security - an assembly kit. In
Proceedings of CSFW, pages 185–199, 2000.

[86] Heiko Mantel. The framework of selective interleaving functions and
the modular assembly kit. In Proceedings of FMSE, pages 53–62, New
York, NY, USA, 2005. ACM.

[87] Daryl McCullough. Noninterference and the composability of security
properties. In Proceedings of S&P, pages 177–186, April 1988.

[88] John McLean. Proving noninterference and functional correctness us-
ing traces. J. of Computer Security, 1:37–58, 1992.

[89] John McLean. A general theory of composition for trace sets closed
under selective interleaving functions. In Proceedings of S&P, pages 79–
93, May 1994.

[90] Kenneth L McMillan. Symbolic model checking. Springer, 1993.

102 BIBLIOGRAPHY

[91] Kenneth L. McMillan. Craig interpolation and reachability analysis. In
Proceedings of SAS, volume 2694 of LNCS, page 336. Springer, 2003.

[92] Robin Milner. What is a process?, September 2009. http://www.cs.r
ice.edu/~vardi/papers/milner09.pdf.

[93] Dimiter Milushev. Reasoning about Hyperproperties. PhD thesis,
Katholieke Universiteit Leuven, Faculty of Engineering, Celestijnen-
laan 200A, box 2402, B3001 Heverlee, Belgium, 6 2013.

[94] Dimiter Milushev and Dave Clarke. Towards incrementalization of
holistic hyperproperties. In Proceedings of POST, pages 329–348.
Springer, 2012.

[95] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on
omega-words. Theor. Comput. Sci., 32:321–330, 1984.

[96] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This poodle bites:
Exploiting the ssl 3.0 fallback. https://www.openssl.org/~bodo/ss

l-poodle.pdf, 2014. Accessed Jan 4, 2015.

[97] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Weak alternating
automata give a simple explanation of whymost temporal and dynamic
logics are decidable in exponential time. In Proceedings of LICS, pages
422 –427, 0-0 1988.

[98] Randall Munroe. How the Heartbleed bug works.
http://xkcd.com/1354/, 2014. Accessed June 1, 2015.

[99] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timo-
thy Bourke, Sean Seefried, Carmen Lewis, Xin Gao, and Gerwin Klein.
sel4: from general purpose to a proof of information flow enforcement.
In Proceedings of S&P, pages 415–429. IEEE, 2013.

[100] Andrew C Myers. Jflow: Practical mostly-static information flow con-
trol. In Proceedings of POPL, pages 228–241. ACM, 1999.

[101] NA. Le virus Stuxnet viserait le nucléaire iranien. http:

//www.lemonde.fr/technologies/article/2010/11/17/le-virus-

stuxnet-viserait-le-nucleaire-iranien_1441212_651865.html,
2010. Accessed May 31, 2015.

[102] NA. Poodle bug less bite than Heartbleed, say experts. http://www.bb
c.com/news/technology-29627887, 2014. Accessed May 31, 2015.

[103] Sumit Nain and Moshe Y. Vardi. Branching vs. linear time: Semantical
perspective. In Proceedings of ATVA, volume 4762 of Lecture Notes in
Computer Science, pages 19–34. 2007.

[104] Zhazira Oskenbayeva. Monitoring SecLTL for android applications.
Master’s thesis, Saarland University, 2013.

http://www.cs.rice.edu/~vardi/papers/milner09.pdf
http://www.cs.rice.edu/~vardi/papers/milner09.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://www.lemonde.fr/technologies/article/2010/11/17/le-virus-stuxnet-viserait-le-nucleaire-iranien_1441212_651865.html
http://www.lemonde.fr/technologies/article/2010/11/17/le-virus-stuxnet-viserait-le-nucleaire-iranien_1441212_651865.html
http://www.lemonde.fr/technologies/article/2010/11/17/le-virus-stuxnet-viserait-le-nucleaire-iranien_1441212_651865.html
http://www.bbc.com/news/technology-29627887
http://www.bbc.com/news/technology-29627887

BIBLIOGRAPHY 103

[105] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. In Topics in Cryptology–CT-RSA 2006,
pages 1–20. Springer, 2006.

[106] Jose Pagliery. Poodles are attacking the internet. http://money.cnn.co
m/2014/10/15/technology/security/poodle-bug/, 2014. Accessed
May 31, 2015.

[107] Donn B Parker. Fighting computer crime: A new framework for protecting
information. John Wiley & Sons, Inc., 1998.

[108] Anindya C. Patthak, Indrajit Bhattacharya, Anirban Dasgupta, Pallab
Dasgupta, and P. P. Chakrabarti. Quantified Computation Tree Logic.
Information Processing Letters, 82:123–129, 2002.

[109] Nicole Perlroth. Security experts expect shellshock software bug in
bash to be significant. http://www.nytimes.com/2014/09/26/tech

nology/security-experts-expect-shellshock-software-bug-to-

be-significant.html. Accessed on June 27, 2015.

[110] Amir Pnueli. The temporal logic of programs. In Proceedings of FOCS,
pages 46–57, 1977.

[111] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In
Proceedings of LICS, pages 32–41. IEEE, 2004.

[112] Edward C. Posner, Lawrence L. Rauch, and Boyd D. Madsen. Voyager
mission telecommunication firsts. Communications Magazine, IEEE,
28(9):22 –27, sept. 1990.

[113] Emil L Post. A variant of a recursively unsolvable problem. Bulletin of
the American Mathematical Society, 52(4):264–268, 1946.

[114] Markus N. Rabe. MCHyper: A model checker for hyperproperties. ht
tp://www.react.uni-saarland.de/tools/mchyper/, 2015. Accessed
Feb 6, 2015.

[115] Markus N. Rabe, Peter Lammich, and Andrei Popescu. A shallow em-
bedding of HyperCTL*. Archive of Formal Proofs, April 2014. http:

//afp.sf.net/entries/HyperCTL.shtml, Formal proof development.

[116] Frank Rieger. Der digitale Erstschlag ist erfolgt. http://www.faz.

net/aktuell/feuilleton/debatten/digitales-denken/trojaner-

stuxnet-der-digitale-erstschlag-ist-erfolgt-1578889.html,
2010. Accessed May 31, 2015.

[117] A. William Roscoe. CSP and determinism in security modelling. In
Proceedings of S&P, pages 114–127. IEEE Computer Society Press, 1995.

[118] Roni Rosner. Modular synthesis of reactive systems. PhD thesis, Weiz-
mann Institute of Science, 1992.

http://money.cnn.com/2014/10/15/technology/security/poodle-bug/
http://money.cnn.com/2014/10/15/technology/security/poodle-bug/
http://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
http://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
http://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
http://www.react.uni-saarland.de/tools/mchyper/
http://www.react.uni-saarland.de/tools/mchyper/
http://afp.sf.net/entries/HyperCTL.shtml
http://afp.sf.net/entries/HyperCTL.shtml
http://www.faz.net/aktuell/feuilleton/debatten/digitales-denken/trojaner-stuxnet-der-digitale-erstschlag-ist-erfolgt-1578889.html
http://www.faz.net/aktuell/feuilleton/debatten/digitales-denken/trojaner-stuxnet-der-digitale-erstschlag-ist-erfolgt-1578889.html
http://www.faz.net/aktuell/feuilleton/debatten/digitales-denken/trojaner-stuxnet-der-digitale-erstschlag-ist-erfolgt-1578889.html

104 BIBLIOGRAPHY

[119] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. Selected Areas in Communications, IEEE Journal on,
21(1):5–19, Jan 2003.

[120] Andrei Sabelfeld and David Sands. Dimensions and principles of de-
classification. In Proceedings of CSFW, pages 255–269. IEEE Computer
Society, 2005.

[121] Jerome H Saltzer and Michael D Schroeder. The protection of informa-
tion in computer systems. Proceedings of the Symposium on Operating
System Principles, 63(9):1278–1308, 1975.

[122] Stefan Schulz. Der Herzfehler. http://www.faz.net/aktuell/

feuilleton/debatten/ueberwachung/die-sicherheitsluecke-

heartbleed-zeigt-wir-brauchen-mehr-internetsicherheit-

12893695.html, 2014. Accessed May 31, 2015.

[123] Atika Shubert. Cyber warfare: A different way to attack Iran’s reac-
tors. http://www.cnn.com/2011/11/08/tech/iran-stuxnet/, 2010.
Accessed May 31, 2015.

[124] A. Prasad Sistla and Edmund M. Clarke. The complexity of proposi-
tional linear temporal logics. J. ACM, 32(3):733–749, 1985.

[125] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementa-
tion problem for Büchi automata with appplications to temporal logic.
TCS, 49:217–237, 1987.

[126] Geoffrey Smith. On the foundations of quantitative information flow.
In Proceedings of FOSSACS, pages 288–302. Springer, 2009.

[127] Larry Stockmeyer. The complexity of decision problems in automata theory
and logic. PhD thesis, MIT, 1974.

[128] Michaël Szadkowski. Faille Heartbleed: les sites pour lesquels il
est conseillé de changer son mot de passe. http://www.lemonde.

fr/technologies/article/2014/04/11/faille-heartbleed-les-

sites-pour-lesquels-il-est-conseille-de-changer-son-mot-

de-passe_4399564_651865.html, 2014. Accessed May 31, 2015.

[129] Tachio Terauchi and Alex Aiken. Secure information flow as a safety
problem. In Proceedings SAS, pages 352–367, 2005.

[130] Wolfgang Thielke. Code geknackt. http://www.focus.de/finanze

n/news/krankenkassen-code-geknackt_aid_148829.html, 1994. Ac-
cessed Feb 6, 2015.

[131] Wolfgang Thomas. Star-free regular sets of ω-sequences. Information
and Control, 42(2):148 – 156, 1979.

http://www.faz.net/aktuell/feuilleton/debatten/ueberwachung/die-sicherheitsluecke-heartbleed-zeigt-wir-brauchen-mehr-internetsicherheit-12893695.html
http://www.faz.net/aktuell/feuilleton/debatten/ueberwachung/die-sicherheitsluecke-heartbleed-zeigt-wir-brauchen-mehr-internetsicherheit-12893695.html
http://www.faz.net/aktuell/feuilleton/debatten/ueberwachung/die-sicherheitsluecke-heartbleed-zeigt-wir-brauchen-mehr-internetsicherheit-12893695.html
http://www.faz.net/aktuell/feuilleton/debatten/ueberwachung/die-sicherheitsluecke-heartbleed-zeigt-wir-brauchen-mehr-internetsicherheit-12893695.html
http://www.cnn.com/2011/11/08/tech/iran-stuxnet/
http://www.lemonde.fr/technologies/article/2014/04/11/faille-heartbleed-les-sites-pour-lesquels-il-est-conseille-de-changer-son-mot-de-passe_4399564_651865.html
http://www.lemonde.fr/technologies/article/2014/04/11/faille-heartbleed-les-sites-pour-lesquels-il-est-conseille-de-changer-son-mot-de-passe_4399564_651865.html
http://www.lemonde.fr/technologies/article/2014/04/11/faille-heartbleed-les-sites-pour-lesquels-il-est-conseille-de-changer-son-mot-de-passe_4399564_651865.html
http://www.lemonde.fr/technologies/article/2014/04/11/faille-heartbleed-les-sites-pour-lesquels-il-est-conseille-de-changer-son-mot-de-passe_4399564_651865.html
http://www.focus.de/finanzen/news/krankenkassen-code-geknackt_aid_148829.html
http://www.focus.de/finanzen/news/krankenkassen-code-geknackt_aid_148829.html

BIBLIOGRAPHY 105

[132] Wolfgang Thomas. Safety- and liveness-properties in propositional
temporal logic: characterizations and decidability. Banach Center Pub-
lications, 21(1):403–417, 0 1988.

[133] TrustedSec. Chs hacked via Heartbleed vulnerability. https:

//www.trustedsec.com/august-2014/chs-hacked-heartbleed-

exclusive-trustedsec/, 2014. Accessed June 4, 2015.

[134] Alan Mathison Turing. On computable numbers, with an application
to the entscheidungsproblem. J. of Math, 58(5):230–265, 1936.

[135] Ron van der Meyden. Axioms for knowledge and time in distributed
systems with perfect recall. In Proceedings of LICS, pages 448–457,
1993.

[136] Ron van der Meyden and Thomas Wilke. Preservation of epistemic
properties in security protocol implementations. In Proceedings of
TARK, pages 212–221. ACM, 2007.

[137] Moshe Y. Vardi. Alternating automata and program verification. In Jan
Leeuwen, editor, Computer Science Today, volume 1000 of Lecture Notes
in Computer Science, pages 471–485. Springer, 1995.

[138] Moshe Y Vardi. An automata-theoretic approach to linear temporal
logic. In Logics for concurrency, pages 238–266. Springer, 1996.

[139] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computa-
tions. Inf. Comput., 115(1):1–37, 1994.

[140] Dennis Volpano, Geoffrey Smith, and Cynthia E. Irvine. A sound type
system for secure flow analysis. 1996.

[141] Klaus von Gleissenthall and Andrey Rybalchenko. An epistemic per-
spective on consistency of concurrent computations. In CONCUR
2013–Concurrency Theory, pages 212–226. Springer, 2013.

[142] Jane Wakefield. Heartbleed bug: What you need to know. http://www.
bbc.com/news/technology-26969629, 2014. Accessed May 31, 2015.

[143] David A. Wheeler. How to prevent the next Heartbleed. http://www.
dwheeler.com/essays/heartbleed.html, 2014 (updated 2015). Ac-
cessed June 1, 2015.

[144] P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite com-
putation paths. In Proceedings of FOCS, pages 185–194. IEEE Computer
Society, 1983.

[145] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for
automatically enforcing privacy policies. InACMSIGPLANNotices, vol-
ume 47, pages 85–96. ACM, 2012.

https://www.trustedsec.com/august-2014/chs-hacked-heartbleed-exclusive-trustedsec/
https://www.trustedsec.com/august-2014/chs-hacked-heartbleed-exclusive-trustedsec/
https://www.trustedsec.com/august-2014/chs-hacked-heartbleed-exclusive-trustedsec/
http://www.bbc.com/news/technology-26969629
http://www.bbc.com/news/technology-26969629
http://www.dwheeler.com/essays/heartbleed.html
http://www.dwheeler.com/essays/heartbleed.html

106 BIBLIOGRAPHY

[146] H. Yasuoka and T. Terauchi. On bounding problems of quantitative
information flow. In Proceedings of ESORICS, pages 357–372. Springer,
2010.

[147] Aris Zakinthinos and E. Stewart Lee. A general theory of security prop-
erties. In Proceedings of S&P, pages 94–102. IEEE Computer Society
Press, 1997.

[148] Steve Zdancewic and Andrew C. Myers. Observational determinism
for concurrent program security. In Proceedings of CSFW, pages 29–43,
2003.

[149] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-
based control andmitigation of timing channels. In Proceedings of PLDI,
pages 99–110, 2012.

	Contents
	Introduction
	Information Security
	A Property-oriented Approach
	Temporal Logics
	Contributions
	Publications and Collaborations

	Systems and Properties
	Kripke Structures
	Properties

	Linear-time Temporal Logics
	Linear-time Temporal Logics
	HyperLTL
	Applications in Information-flow Control
	Applications in Distributed Systems
	Applications in Error Resistant Codes

	Branching-time Temporal Logics
	CTL and CTL*
	HyperCTL*
	SecLTL
	Applications: Temporal Information-flow

	Algorithmic Verification
	Alternating Büchi Automata
	Model Checking the Alternation-Free Fragment
	From Alternation-free Formulas to Full HyperCTL*
	Extended Path Quantification
	Quantification over Propositions
	Lower Bounds
	Efficient Fragments

	Symbolic Verification and Case Studies
	Symbolic Model Checking of Circuits
	Case Studies and Experimental Results

	Related Logics
	Epistemic Temporal Logic
	Fixed-point Calculi

	Conclusions
	Bibliography

