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Abstract

The aim of epigenetic cancer research is to connect tumor development with processes
involving gene regulations, which are not directly encoded in the DNA. Recent advanced
techniques for genome-wide mapping of epigenetic information are significantly improv-
ing this knowledge by generating large amounts of high resolution data. But still many
dependencies remain unknown due to the presence of technical errors such as batch
effect. This thesis describes the associations discovered during DNA methylation data
mining as well as technical challenges which should be considered during data processing.
Moreover, the same computational methods applied to epigenetic data were adapted to
process bacterial genome data.
Hereby, thesis is mainly structured into four parts. The first part presents the baseline
for DNA methylation data analysis, pathway and functional enrichment which helped
in explaining DNA co-methylation phenomenon. The second part covers the problem of
batch effect detection and adjustment. Here the newly developed BEclear R software
package is described and is compared against existing well established methods. In ad-
dition, we suggest the optimal strategy for batch effect assessment, parameter selection
and the impact of this negative effect on the final result. The third part addresses the
analysis of S. aureus genome using different data mining techniques ranging from hier-
archical agglomerative clustering to Affinity Propagation. Interestingly, that ambiguous
bacterial genome data was successfully predicted with the same exact matrix completion
algorithm used in BEclear. The final part describes statistical analysis of community
acquired S. aureus isolates which revealed important associations between bacterial re-
sistance and virulence profiles with the geographical location.
Conceivably the most important outcome of the current thesis is the in-depth review of
batch effect. It is notorious for its ability to affect the whole data processing procedure.
Moreover, it can influence the results tremendously and is of current interest among
researchers who work with genome-wide high-throughput data sets. There exist several
approaches that allow diminishing the negative effect of batch effect on the investigated
data sets. Our new tool BEclear allows not only detecting and assessing batch effect,
but also adjusting it only in the batch affected part of data using Latent factor models
matrix approximation. We tested the devised methodology on breast invasive carcinoma
data from The Cancer Genome Atlas and compared it with the existing algorithms Com-
Bat, Surrogate Variable Analysis and Functional normalization. We show that BEclear
outperformed these methods with respect to precision while avoiding changing the un-
affected data, since it focuses on the batch affected genes only. This makes BEclear
a competitive algorithm in batch effect correction and can be widely applied to DNA
methylation or even gene expression data. BEclear is available as an R package.
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Kurzfassung

Das Ziel der epigenetischen Krebsforschung liegt darin, die Verknpfungen der Tu-
morentwicklung mit der Genregulation, die nicht direkt durch die DNA kodiert ist,
aufzudecken. Vor kurzem erfolgte Fortschritte in den Techniken fr die genomweite
Kartierung epigenetischer Informationen steigerten den Wissensstand erheblich durch
die Erzeugung riesiger, hochaufgelter Datenmengen. Dennoch bleiben viele Abhngigkeiten,
aufgrund des Vorhandenseins von technischen Fehlern wie etwa von Batch Effekten, un-
entdeckt. Diese Doktorarbeit beschreibt die Zusammenhnge, die whrend der Gewinnung
von DNA-Methylierungsdaten entdeckt wurden, sowie technische Herausforderungen,
die bei der Datenverarbeitung bercksichtigt werden sollten. Darber hinaus wurden die
gleichen computergesttzten Methoden, die zur Verarbeitung der epigenetischen Daten
angewandt wurden, zur Verarbeitung von Bakteriengenomdaten angepasst.
Diese Abschlussarbeit ist in vier Hauptteile gegliedert. Der erste Teil prsentiert die
Grundlagen der Analyse von DNA-Methylierungsdaten sowie von Regulierungspfaden
und deren funktionellen Zusammenhngen, die dabei helfen, das Phnomen der DNA-
Comethylierung zu erklren. Der zweite Teil deckt das Problem des Auffindens und
Korrigierens von Batch Effekten ab. Dafr wird das neu entwickelte BEclear R Soft-
warepacket beschrieben und mit bereits existierenden, etablierten Methoden verglichen.
Zustzlich wird die optimale Strategie hinsichtlich des Umganges mit Batch Effekten, mit
der diesbezglichen Parameterauswahl und mit den Auswirkungen dieser negativen Ef-
fekte auf das Endergebnis, vorgeschlagen. Der dritte Teil behandelt die Analyse von S.
aureus Genomen durch die Nutzung verschiedener Techniken der Datengewinnung, die
von der aufhufenden hierarchischen Clusteranalyse bis zur Affinity Propagation reichen.
Interessanterweise wurden diese vieldeutigen Bakteriengenomdaten durch die gleichen
exakten Matrixvervollstndigungs-Algorithmen erfolgreich komplettiert, die auch in BE-
clear genutzt werden. Der letzte Teil beschreibt statistische Analysen von Community
aquired S. aureus Stmmen, die wichtige Verbindungen von Bakterienresistenzen und
Virulenzprofilen mit der geografischen Lage aufdeckten.
Das wichtigste Ergbenis meiner Doktorarbeit ist sicherlich die tiefgrndige Begutachtung
von Batch Effekten. Diese sind dafr berchtigt, den kompletten Datenverarbeitungsprozess
zu beeintrchtigen. Darber hinaus knnen sie das Endergebnis ungemein beeinflussen und
sind daher zur Zeit von besonderem Interesse unter Forschern, die sich mit genomweiten
Hochdurchsatz- Datenstzen beschftigen. Es gibt bereits verschiedene Anstze, die es er-
lauben, die negativen Auswirkungen von Batch Effekten auf die erforschten Datenstze zu
vermindern. Hier prsentieren wir eine neue Alternative fr diese Zielsetzung mit dem Na-
men ”BEclear”. Diese Methode erlaubt es nicht nur Batch Effekte aufzufinden und deren
Auswirkungen einzuschtzen, sondern auch diese nur in den tatschlich betroffenen Teilen
der Daten mithilfe von Latent Factor Model Matrixvervollstndigungs-Algorithmen zu
korrigieren. Wir testeten die entwickelte Methodik an Brustkrebsdaten des The Can-
cer Genome Atlas Portals und verglichen die Ergebnisse mit den bereits vorhandenen
Algorithmen ComBat, Surrogate Variable Analysis und Functional Normalization. Wir
zeigen, dass BEclear die genannten Methoden hinsichtlich der Genauigkeit an Leistung
bertrifft und gleichzeitig die Vernderung der nicht von Batch Effekten betroffenen Daten
vermeidet, da es sich nur auf die beeintrchtigten Gene fokussiert. Diese Eigenschaften
macht BEclear zu einem wettbewerbsfhigen Algorithmus zur Korrektur von Batch Ef-
fekten, der weithin auf DNA Methylierungsdaten oder selbst auf Genexpressionsdaten
angewandt werden kann. BEclear steht als R Softwarepaket zur Verfgung.
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Chapter 1

An Introduction to DNA
Methylation and Cancer

Methylation is a chemical modification catalyzed by various enzymes whereby a methyl
(CH3) group is attached to specific sites of proteins, DNA and RNA. Epigenetic infor-
mation is not encoded in genes but the information encoded by DNA can be directly
affected by epigenetic modification such as DNA methylation [18].

One form of methylation, the most common in mammals, is the conversion of cytosine
to 5-methylcytosine in the sequence of CpG dinucleotides, i.e. the cytosine base is
directly followed by a guanine base. Methylation may prevent cleavage of DNA at the
recognition site of a restriction enzyme. For example, the restriction enzyme Hpall
cleaves CCGG, but not Cm5CGG.

The methylation reaction is catalyzed by one of several DNA methylation enzymes
- DNA methyltransferase, which carries out the transfer of a methyl group from S-
adenosylmethionine to cytosine. In humans and most mammals, DNA methylation is
a natural DNA modification and mostly affects the base cytosine (C), facing a guanine
(G), i.e. methylation occurs mainly at CpG-dinucleotides.

In differentiated cells 70− 80% of all CpG-dinucleotides are methylated in the human
genome. However, normal tissue methylation occurs primarily in genomic regions where
the density of CpG dinucleotides is low, and the majority of CpG-normal islands are
completely unmethylated.

Besides all the large or small genetic variations that have been linked to many human
diseases so far, we are just about to start appreciating the large amount of variability
with regards to epigenetic variations in humans and between normal and disease samples
[176].

1.1 DNA methylation

About 1% of all human DNA base pairs consist of methylated cytosine bases, where
a methyl group is covalently attached to the C5 position of cytosine [105]. Since
most of these occur in the context of CpG dinucleotides, from 60 – 90% of all CpGs
are methylated in human [55]. DNA methylation is associated with parasitic DNA
suppression [212], repression of gene transcription [29], and genomic imprinting [168].

1



2 Chapter 1 An Introduction to DNA Methylation and Cancer

In addition to that, DNA methylation plays an important role in cancer where the
genome is mostly hypomethylated except for promoter regions of tumor suppressor genes
that are hypermethylated [95, 111, 108].

1.2 Breast invasive carcinoma-BRCA, Kidney Renal Clear
Cell Carcinoma - KIRC

1.2.1 BRCA

Mammary glands are composed of three main types of tissues - fat, connective and
glandular tissue. Breast cancer (BRCA) is a malignant tumor that develops from cells
namely in the glandular tissue. Breast cancer has similarities to that of other malignant
tumors in the body. As a result of several mutations occurred one or more cells in the
glandular tissue start abnormally fast sharing. These cells form tumors that can invade
nearby tissues and create secondary tumor hearths - metastases.

Breast cancer occurs as a result of active uncontrolled division of abnormal cancer
cells. Without treatment the tumor is growing rapidly in size, can grow into the skin,
muscles and chest. In the lymph vessels cancer cells penetrate into the lymph nodes
nearest to the breast. With the bloodstream, they spread throughout the body, giving
rise to new tumors - metastasis. In most cases, breast cancer metastasizes to the lungs,
liver, bone, brain. The defeat of these bodies, as well as the disintegration of the tumor,
leads to death. Breast cancer can develop on the background of precancerous diseases,
which include breast- and fibro-adenoma.

Genetic alterations of the BRCA1 and BRCA2 (tumor suppressor) genes have been
associated with breast cancer formation [7]. Researches have discovered large number
of different types of mutations of these genes [39]. Some of these are harmless, while
others can cause serious issues duch as hereditary breast-ovarian cancer syndrome 1.

Identification of mutations in the genes analyzed has predictive value for determining
the risk of developing breast cancer and / or ovarian cancer [8]. The discovery of a gene
defect in clinically healthy women allows for timely diagnosis in case of cancer of the
breast and / or ovarian cancer and warn about their possible serious consequences. For
patients with confirmed malignant disease already this alarm signal makes it possible to
determine its possible hereditary nature. In the studies of breast and ovarian cancers,
researchers identified 10 of the most frequent mutations in the genes BRCA1, BRCA2,
CHEK2 and NBS1.

The genes BRCA1 and BRCA2 (BREAST CANCER GENES 1 and 2) encode the
amino acid sequence of nuclear proteins involved in the regulation of DNA repair and cell
division. The intact (wild-type) forms of both genes act as a tumor suppressor and en-
sure the integrity of the genome. Furthermore, the protein products of the genes repress
transcription of estrogen receptor, thus constraining excessive cell proliferation of breast
cancer and other estrogen-bodies, in particular at puberty and pregnancy. Mutations in
the genes BRCA1 and BRCA2 have been shown to lead to increased levels of chromoso-
mal instability in cells, which may contribute to their malignant transformation. Today
there are more than 1,000 different mutations in BRCA1 and BRCA2, associated with
an increased risk of developing breast cancer, ovarian, prostate, colon, throat, skin, and

1http : //en.wikipedia.org/wiki/Hereditary breast%E2%80%93ovarian cancer syndrome
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others. Upon detection of mutation (s) in the BRCA1 and BRCA2 genes in a woman,
her individual risk of developing breast cancer and / or ovarian cancer is 50 to 80%.

1.2.2 KIRC

Kidney Renal Clear Cell Carcinoma (KIRC) accounts for most malignant kidney tumors
and is known to cause fatal genitourinary diseases. Very often it is not treated by
radiotherapy and chemotherapy due to inherent resistance. The metastatic phase of
KIRC can currently not be cured. Thus, genome analysis can be a clue to successful
diagnosis and anticipated treatment during early stages of the disease.

Research groups all over the world use advanced sequencing technologies and TCGA
(more details in Subsection 1.4.2) to figure out groups of differentially expressed genes
to determine subtypes of the cancer [210]. This, in turn, combined with identification of
distinctly expressed genes and altered pathways is important for biomarker identification
for early cancer diagnosis and treatment planning. Sophisticated computational methods
can be used to identify upstream disease causal genes and assist in remedy prescription.

1.3 Role of DNA methylation in Cancer

DNA methylation is an important mechanism for regulation of gene expression. It has
been shown that altered methylation patterns are associated with diseases such as various
cancers, diabetes, first and second class, schizophrenia, etc. It is therefore important
to be able to experimentally characterize and analyze the methylation profile of the
genome.

Methylation patterns in neoplastic cells change considerably compared to normal cells,
wherein the total demethylation of the genome is accompanied by an increased methyl-
transferase activity and hypermethylation of local CpG-islands. In all studied neoplasies
such an imbalanced methylation has been observed. It is obvious that these disorders
can alter the chromatin structure and function of DNA, thereby making a significant
contribution to the phenotypic and genetic instability of tumor cells.

It was found that one of the primary disorders of DNA methylation in neoplastic cells,
is a total genome hypomethylation. Reducing the number of methyl groups is one of the
early steps, often even before the tumor develops and leads to cellular transformation.
The direct role of DNA hypomethylation in cell transformation has been proved on the
basis of low-methionine diet, leading to a shortage of donor of methyl groups, what
causes hypomethylation of DNA and liver tumors [160].

Despite the apparent association of hypomethylation of DNA with the formation of
tumors, the causes and specific mechanisms underlying its carcinogenic effect is still
unclear. There is evidence that hypomethylation may affect certain oncogenes such as
KRAS in lung cancer and bowel in humans. These gene-specific local changes occur in
the early stages of carcinogenesis, and were found in particular in benign polyps, which
are precursors of colon carcinoma [82].

Disregulation of genomic imprinting as a result of demethylation and its role in car-
cinogenesis has been demonstrated in the study of Wilms’ tumor [61]

Another consequence is a total hypomethylation resulting from perturbations of the
general pattern of methylation of genomic instability. So hypomethylation of DNA in
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embryonic mouse cells, gene knockout dnmt1, increased frequency of endogenous retro-
viruses and re-arrangements of parasitic sequences re-arrangements, the incidence of
deletions and translocations of some unique genes, i.e. it caused chromosomal abnor-
malities and subsequent death [32].

Local hypermethylation is represented by a small portion (app.20%) of CpG dinu-
cleotides , which then form CpG-islands. CpG-islands are mostly unmethylated in nor-
mal cells. Aberrant hypermethylation of CpG-islands is a peculiarity of immortalized
and transformed cells and is associated with inactivation of certain tumor suppressor
genes in human [194].

An important role in increasing local hypermethylation plays methyltransferase ac-
tivity, especially as it is a characteristic feature of tumor cells [172]. In the study of
some cell cultures it was shown that the increase of DNA methyltransferase activity
often precedes malignant transformation. Thus, transfection of a cloned gene in human
Dnmt1 immortalized human fibroblasts leading to aberrant CpG-island methylation in
the promoter regions of several genes.

Thus, it appears that increasing Dnmt1 activity plays a role in the aberrant methyla-
tion of CpG-islands. However, simply increasing the level of expression can not explain
the appearance in the ability of the enzyme to gain the methylation de novo. Appar-
ently, in transformed cells and tumor, the protection mechanism is broken by CpG-island
methylation.

Hypermethylation of CpG-islands results in a stable inactivation of the adjacent gene,
that is the phenomenon of MAGI (methylation-associated gene inactivation). It occurs
as a result of occurrence of steric hindrance to the binding of transcription factors or as
a result of heterochromatin mediated binding of methylcytosine binding proteins MBD
[171].

Suppression of the expression of any of the tissue-specific genes causes some damage
to the differential phenotype cells, without affecting the overall viability. At the same
time, the inactivation of tumor suppressor genes or gene repair can create conditions
for an uncontrolled proliferation [59]. Aberrant methylation of CpG-islands is an early
event in the process of formation of a tumor.

A characteristic feature of tumor and of transformed in vitro mammalian cells is an
imbalance of methylation of genomic DNA, which makes a significant contribution to
the phenotypic and genetic instability. At the same time, the instability of the 5−MeC
composed CpG dinucleotide, leading to epimutations may have the same end result.
Thus, methylation, as one type of the epigenetic modifications of DNA may eventually
lead to genetic changes, making clear the relationship between genetic and epigenetic
processes in the formation and development of tumors.

It was reported that methylation patterns appear in the early stages of malignant
transformation of mammalian cells. From a medical point of view, this opens opportu-
nities for early diagnosis and treatment of disease. Moreover, in contrast to mutations
that are essentially irreversible modification of DNA, epigenetic modifications are very
stable, but essentially reversible modifications.
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1.4 Measuring of DNA Methylation

1.4.1 Overview of techniques

Nowadays there exist a number of different approaches for performing epigenome-wide
association studies. The following methods are considered to produce accurate DNA
methylation data: methylated DNA immunoprecipitation sequencing (MeDIP-seq), methy-
lated DNA capture by affinity purication (MethylCap-seq), bisulphite sequencing (NGS),
and Illumina arrays (Infinium HumanMethylation450 BeadChip). Depending on the
goals of the study, the appropriate approach for analysis of DNA methylation must be
selected. For example, NGS technologies are the gold standard to produce high resolu-
tion epigenomic data and their working procedure is relatively complicated.

Initially, genomic DNA must be purified (Phenol/Chlorophorm) and fragmented (Son-
ication). Further, ends are polished and methylated adaptors are added. Further, DNA
strands are separated and DNA is treated with sodium bisulfit. Later DNA is puri-
fied (single stranded) and amplified by few PCR-cycles, what makes it again double
stranded. Finally, library fragments are purified, materials are clustered and loaded on
a sequencing device. The experimental part is followed by data processing procedures,
namely process and quality control of the data to form FASTq files; aligning the reads
to a reference genome (bisulfite converted), count the number of methylated and un-
methylated positions. Overall, NGS results in 3 · 1011 bases in 10-12 days what is equal
to 4 genomes and can produce 1 TB (fastQ) to 40 TB (processed images) of data. In
comparison to array based technologies: NGS is more complicated and less cost efficient.

Another widespread technology is represented by the Infinium HumanMethylation450
BeadChip array. It allows to interrogate more than 485 000 methylation sites per sample
at single-nucleotide resolution. This array covers 99% of RefSeq genes, with an average
of 17CpG sites per gene region distributed across the promoter, 5’UTR, first exon, gene
body, and 3’UTR. It also delivers data for 96% of CpG islands, with additional coverage
in island shores and the regions flanking them. Finally, Illumina Kit is able to run up
to 96 samples in parallel what significantly reduces the time during large cohort studies.
Here we analysed data produced by Infinium HumanMethylation450 that was obtained
from the TCGA portal.

1.4.2 The Cancer Genome Atlas - TCGA

Cancer has hundreds of different forms depending on the organs and tissues where it
originated, and on the genetic changes that cause the development of tumours and affect
the outcome of treatment. Therefore, a treatment effective in one case might be useless
in another one.

If it were possible to identify all the mutations that have occurred in the genomes of
cancer cells of all types, and the changes caused by these mutations, and then to analyse
their relationships with the course of the disease; One may be able to find molecular
markers that would classify cancer cells and may select treatment in accordance with this
classification. If all this were possible, humanity would have made significant progress
in cancer therapy.

Such an ambitious goal was set by the creators of the project Pan-Cancer Initiative,
launched in October 2012. Work on the project is a part of a cancer genome atlas (the
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Cancer Genome Atlas (TCGA 2), through which the specialists of the National Cancer
Institute and the National Institute of Research of the human genome share obtained
data. The results of the first phase of this work were presented in 18 articles, four of
which were published in the journal Nature Genetics.

The study required the coordinated work of several dozens of research groups. Scien-
tists analysed the results of several thousands of patients with twelve types of tumors:
glioblastoma multiforme, myeloid leukemia, acute lymphoblastic, squamous cell carci-
noma of the head and neck, adenocarcinoma of the lung, squamous carcinoma of the
lung, breast, kidney, cervix, ovary, bladder, endometrium, colon adenocarcinoma colon
and rectum. In these tumors they considered all mutations, gene copy number and the
activity of their work, the metabolic pathways in which each gene is involved, the degree
of DNA methylation, microRNAs and protein synthesis, and the clinical picture of the
disease. Then, all the data were combined and it was tried to find a connection between
them.

Malignant tumors are traditionally divided according to their place of origin, such as
lung cancer, skin or intestines. As shown by molecular analysis, ’the relationship of
tissue’ really puts an overall mark on cancer cells, but the tumor from one organ or
tissue often differ, and tumors of different organs may have common molecular markers.

Thus, the same genetic mutation may be characteristic for certain tumors and glioblas-
tomas gastric serosa endometrial, bladder and lung. Therefore, a drug effective for lung
cancer, may be appropriate for a bladder tumor with the same molecular marker too. A
breast ductal cancer is a group of diseases which are controlled by different genes. Some-
times the same genetic defect causes different effects depending on the organ where it
is found. Thus, a family of genes Notch, inactive in some lung tumors, head and neck,
skin, cervical, is active in leukemia.

The global objective of this research of cancer is to identify biomarkers that can be
used to classify tumors and to determine which treatment is best suited for each type.

To fully explore every option of cancer, the corresponding sample is subject to large-
scale study using the methods of sequencing and bioinformatics: quantitative gene ex-
pression analysis, quantitative analysis of gene copy number variation, SNP genotyping,
genome-wide analysis of DNA methylation patterns, sequencing of exons. The data is
made publicly available, so that any researcher can see them and use them in their work.
The project TCGA showed that active and large-scale cooperation of researchers from
different institutions can be fruitful, and the data resulting from the work can be used
by scientists around the world.

TCGA already includes samples from more than 11 000 patients for 33 types of cancer,
and today is the largest collection of tumors. All these samples were analyzed for the
presence of the key genomic and molecular features. Results for 13 types of cancer
were published in major scientific journals. By the end of 2014 TCGA scientists had
almost finished exome sequencing for most types of tumors and full genome sequencing
for more than 1,000 samples of cancerous tissue. More than 2,700 scientific articles cited
the TCGA portal, proving its large impact.

2http://cancergenome.nih.gov/
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1.4.3 Illumina Infinium HumanMethylation 27, 450K Chip

DNA methylation is a crucial part in the regulation of gene expression. Cellular devel-
opment and maintaining tissue identities require certain methylation levels to maintain
normal functionality.

Many research projects have implicated aberrant methylation in the etiology of many
human diseases, especially cancer. At the moment, several common methods for quan-
titative measurements of methylation exist. One of the most common is a series of mi-
croarray company Illumina. Illuminas Infinium Methylation Assay provides quantitative
methylation measurements at the single-CpG-site level, offering the highest resolution for
understanding epigenetic changes to date. We will focus on The HumanMethylation27
BeadChip and its successor - 450K chip.

Both of them use Infinium technology 3 described for SNP genotyping to perform
genome-wide screening of DNA methylation patterns [187].

The 450K chip allows measuring the level of methylation of CpG sites in about 486,000,
more or less evenly distributed locations throughout the genome. The technology can
be described as follows. Each CpG site is measured with two fluorescent probes. The
fluorescent signal is proportional to the sample according to the amount of methylated
and unmethylated CpG sites in the test sample. The chip allows one to test up to
12 biological samples simultaneously. Thus, we have the output value table in which
the number of rows equals the number of CpG sites, and the number of columns - the
number of biological samples being analyzed.

The pipeline for data analysis using the R language and Bioconductor 4 libraries has
approximately the following items (with the corresponding packages from Bioconductor):

• The choice of scale (β or M value 5).

• Adjust the color balance (color channel balance adjustment). Some CpG sites are
measured using samples of one color and some with two. This problem is eliminated
by normalizing the signals of the two samples in each biological sample.

• Background correction. Each slot of biological samples on the chip has a different
default background. Therefore, the alignment of values between the samples must
be background corrected.

• The normalization between samples (between-sample normalization). Used are
mainly quantile normalization and normalization of SVN (package lumi 6).

• Testing for group effect (batch effect) using principal component analysis.

• Peak based correction.

• Correction of the effect on the group with packages ComBat 7 and SV A 8.

3http://www.illumina.com/technology/beadarray-technology/infinium-hd-assay.html
4http://www.bioconductor.org/
5http://www.biomedcentral.com/1471-2105/11/587
6http://www.bioconductor.org/packages/release/bioc/html/lumi.html
7jlab.byu.edu/ComBat/Abstract.html
8http://www.bioconductor.org/packages/release/bioc/html/sva.html
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• Testing for statistical significance using linear models, permutations, or routine
testing to test hypotheses (limma 9 packages and multtest 10).

• Analysis of data using different algorithms machine learning.

• The correlation of gene expression data and SNP (methylation Quantitative Trait
Loci).

9http://www.bioconductor.org/packages/release/bioc/html/limma.html
10http://www.bioconductor.org/packages/release/bioc/html/multtest.html



Chapter 2

Statistical methods

This chapter provides the methodological background for the projects that I worked on
during my thesis and that are described in the following chapters.

2.1 Kolmogorov-Smirnov - KS

In statistics, there exist many criteria and statistical tests for the various types of com-
parisons of data. They are all based on the following main concept.

The principle steps of the analysis are:

• using experimental values the criterion is calculated according to a formula

• the experimental value is compared with the critical value (the standard set) by a
certain algorithm

• a comparison is conducted for the experimentally obtained and statistically deter-
mined in the statistics critical values and conclusion on the extent of the differences
of the compared data.

The Kolmogorov-Smirnov test determines whether the two compared distributions
are of the same type. If we compare the experimentally obtained distribution with a
normal distribution, then using this criterion enables to get an answer about whether
our distribution follows the normal distribution.

The One-sided Kolmogorov-Smirnov test is based on the maximum difference between
the cumulative distribution of the sample and the expected cumulative distribution:

Dn = supp|Fn(x)− F (x)|

With:

Fn(x) the cumulative distribution of the sample;

F (x) - the expected cumulative distribution (with certain parameters).

If we want to compare between two experimental distributions, it is also possible
conduct this with the help of this criterion, but in this case we get a response about

9



10 Chapter 2 Statistical methods

whether these two belong to the distribution of any one type (binomial and Poisson, etc.)
without specifying the distribution type. The principle of comparing distributions in the
Kolmogorov-Smirnov test is to compare the percentile curves of the two distributions.
Percentile curves are curves of the frequency distribution of data, built on the basis of
summing up the accumulated frequency of all values below given.

If the Kolmogorov-Smirnov statistics D is significant, the hypothesis that the appro-
priate allocation is normal, must be rejected. The output probability values are based
on the assumption that the mean and standard deviation of the normal distribution is
known a priori and are not estimated from the data. However, in practice parameters are
usually calculated directly from the data depending on how many discrete (individual)
values were obtained by the test performed on the gradation values of the x-axis.

At the same time, we mark percentiles (percentiles ranks) on the y-axis. To build
the curve, for each value (the value of the test results) its percentile rank is previously
determined, which is obtained by adding the percentage of occurrence of this result and
the percentage of occurrence of all results that lay below the given one. [53]

If two distributions are compared, then two separate corresponding percentiles curves
are built (cumulative frequency). Then you need to determine the degree of divergence
in between, i.e. calculate the difference between the percentile values applied to each
result.

The maximum value in differences Dmax is selected in percentiles and it becomes the
experimental value for the Kolmogorov-Smirnov test [19, 37, 202].

So, suppose we have built percentiles curves for these two distributions, one of which
is a normal (according to preliminary information, for example, obtained by other re-
searchers). In order to assess the normality of our distribution, it should be compared
with normal.

To this end, in relation to each category are calculated the difference between the
percentile values, and the largest absolute value of Dmax is selected. Next, we must take
a critical value for this test to make a comparison of the experimental and critical values
in order to build the output of differences of distributions. All statistical methods are
designed to test the null hypothesis, in other words, they assess the legality of it. With
regard to the Kolmogorov-Smirnov test this rule is: if the experimental value of the test
is equal to or greater than the critical value, the hypothesis of significant differences is
accepted.

Limitations of the Kolmogorov-Smirnov test

The criterion requires that the sample was large enough. When comparing the two
empirical distributions n1,2 ≥ 50 is needed. Comparison of the empirical distribution
with the theoretical sometimes is allowed in cases of n ≥ 5 [75].

Categories should be arranged in ascending or descending of some entity. For example,
you can take as a category day of the week, or the 1st, 2nd, 3rd months after a course
of therapy, increased body temperature, increased feelings of failure, etc. At the same
time, if we take the level which happened to be aligned to this sequence, then it will be
impossible to accumulate the frequency of categories, because they differ only in quality
and do not represent the scale of the order.
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2.2 False Discovery Rate p-value adjustment

False discovery rate (FDR) p-value adjustment algorithm was proposed by Benjamini
and Hochberg in 1995 [16] and is used for controlling the expected rate of rejected null
hypotheses which appeared to be false discoveries when a large number of tests is being
conducted. In comparison to its main competing method, which is familywise error rate
(FWER), FDR is more flexible and allows a small number of tests to be wrongly detected
by providing not so rigorous regulation of type I errors (false positives). The problem
is formulated as following. Assume the simultaneous testing of m null hypothesis is
performed and m0 is the number of true null hypothesis. We will use the common
variables:

• V number of false positives;

• S true positives;

• T false negatives;

• U true negatives;

• R number of rejected null hypotheses.

For these variables, the next equations are valid:

• R = V + S

• m−R = U + T

• m0 = V + U

• m−m0 = S + T

Now the rate of erroneously rejected null hypotheses can be defined as Q =
V

V + S
.

Certainly, when V + S = 0 this rate Q will be also equal to 0. Finally, the false
discovery rate FDR is defined as Qe and is the expectation of Q. This expectation can
be formulated as:

FDR = E[Q] = E[
V

V + S
] = E[

V

R
].

Thus the procedure of FDR correction efficiently finds a certain threshold, which is
used to define tests to be significant or no at the level q. As a result, the equation defined
above implies that all procedures that control the familywise error rate also control the
false discovery rate. But if some procedure controls exclusively FDR, than the gain in
power is assumed [16]. For example, if the number of non-true null hypothesis is large,
then the number of true positives S is abundant as well. This leads to the increase of
difference between error rates. Y. Benjamini and Y. Hochberg defined the false discovery
rate procedure as following (cited from [16]).

”Consider testing H1, H2, ...,Hm based on the corresponding p-values P1, P2, ..., Pm.
Let P(l) ≤ P(2) ≤ ... < P(m) be the ordered p-values, and denote by H(i) the null hy-
pothesis corresponding to P(i). Define the following Bonferroni-type multiple-testing
procedure:

let k be the largest i for which P(i) ≤
i

m
q∗;
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then reject all H(i)i = 1, 2, ..., k. (1)

Theorem 1. For independent test statistics and for any configuration of false null hy-
potheses, the above procedure controls the FDR at q∗.
Lemma. For any 0 ≤ m0 ≤ m independent p-values corresponding to true null hy-
potheses, and for any values that the m1 = m−mO p-values corresponding to the false
null hypotheses can take, the multiple-testing procedure defined by procedure (1) above
satisfies the inequality

E(Q|Pm0+1 = p1, ..., pm = pm1) ≤ i

m
q∗. (2)

Now, suppose that m1 = m − mO of the hypotheses are false. Whatever the joint
distribution of P1”, ..., Pm1” which corresponds to these false hypotheses is, integration
inequality (2) above we obtain

E(Q) ≤ i

m
q∗ ≤ q∗,

and the FDR is controlled.

Remark. Note that the independence of the test statistics corresponding to the false
null hypotheses is not needed for the proof of the theorem.

This procedure was mentioned by Simes (1986) as an exploratory extension to his pro-
cedure for rejecting the intersection hypotheses that all null hypotheses are true if, for

some i, P(i) ≤
iα

m
. Whereas Simes (1986) showed that his procedure controls the FWER

under the intersection null hypothesis, Hommel (1988) showed that the extended pro-
cedure for inference on individual hypotheses does not control the FWER in the strong
sense: for some configuration of the false null hypotheses, the probability of an erro-
neous rejection is greater than α. Hochberg (1988) has suggested a different way to
utilize Simes’s procedure so that it controls the FWER in the strong sense, by offering
the following procedure:

let k be the largest i for which P(i) ≤
i

m+ 1− i
α;

then reject all H(i)i = 1, 2, ..., k.
Note the relationship between Hochberg’s procedure and the FDR controlling procedure
when q∗ is chosen to equal α. Both Hochberg’s procedure and the FDR controlling pro-
cedure are step-down procedures, which start by comparing p(m) with α, and if smaller
all hypotheses are rejected - as if a per comparison error rate (PCER) approach had been
taken. If p(m) > α one should proceed to smaller p-values until it satisfies the condition.
The procedures end, if not terminated earlier, by comparing p(1) with α/m, as in a pure
Bonferroni comparison. At the two ends the procedures are similar, but, in between, the

sequence of p(i)s is compared with
1− (i− 1)

m
α in the current procedure, rather than

with
1

m+ 1− i
α in Hochberg’s procedure. The series of linearly decreasing constants

of the FDR controlling method is always larger than the hyperbolically decreasing con-

strants of Hochberg, and the extreme ratio is as large as
4m

(m+ 1)2
at i =

m+ 1

2
. This

shows that the suggested procedure rejects samplewise at least as many hypotheses as
Hochberg’s method and therefore has also greater power than other FWER controlling
methods such as Holm’s (1979).”
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2.3 Latent Factor Models - LFM

The two primary areas of collaborative filtering are the neighborhood methods and latent
factor models. Neighborhood methods are centered on computing the relationships
between items. Item-oriented approach evaluates a preference for an item based on
ratings of neighboring items by the same user. In practice this methods are applied, for
example, to predict the rating of a user for some item (film or item on the market). The
neighbors of a product are other products that tend to get similar ratings when rated
by the same user.

Very often in practice data sets are not complete, i.e. they contain missing values. In
Bionformatics, scientists encounter these cases quite frequently. We will not be covering
the causes of incomplete data, yet, would adopt methods to overcome this issue. Latent
factor models applied to identify user’s preferences for a movie can be tailored and used
here to supplement the missing entries in data set.

The straightforward way to overcome this problem is simply a removal of rows/-
columns. However this may lead to considerable data distortion which is not acceptable
for comprehensive research.

Latent factor models are an alternative approach that tries to explain the ratings by
characterizing both items and users based on the inferred from the ratings patterns.
Thus, these patterns can be used to extract useful information about genes as well.

Latent Factor Models (LFM) - is a novel technique which can be applied to data sets
with missing values. Some of the most well-known and effective realizations of latent
factor models are based on matrix factorization. In its basic form, matrix factoriza-
tion characterizes both items and users by vectors of factors inferred from item rating
patterns. High correspondence between between these two factors leads to a similarity.
These methods have become popular in recent years by combining good scalability with
predictive accuracy. In addition, they offer much flexibility for modelling various real-life
situations.

One strength of matrix factorization is that it allows incorporation of additional in-
formation. Recommender systems rely on different types of input data, which are often
placed in a matrix with one dimension representing users and the other dimension rep-
resenting items of interest. Thus, formally the problem is follows: we want to recover
matrix D (size m× n), but have access to only k of its entries, where k is much smaller
than the total number of entries (i.e. m ·n) In general, it seems to be impossible without
some extra information.

Suppose we would like to recover a square n × n matrix D of rank r. Although D
contains n2 entries, our assumption of its rank r means that it can be represented exactly
using singular value decomposition (SVD) [71].

D = UΣV T =
r∑

i=1
σiuiv

T
i

With: V T is transposed of V . Σ is an r×r diagonal matrix with real, positive elements
σi > 0. U is an n × r matrix with orthonormal columns u1, ..., ur. That is, ui · uTi = 1
and uTi ·uj = 0 if i 6= j. V is also n× r with orthonormal columns v1, ..., vr. The column
space of D is spanned by the columns of U , and the row space is spanned by the columns
ofV .
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The number of degrees of freedom associated with a rank r matrix D is r(2nr). To
see this, note that Σ has r non-zero entries, and U and V each have nr total entries.
Since U and V each satisfy r(r + 1)/2 orthogonality constraints, the total number of
degrees of freedom is r+ 2nr− r(r+ 1) = r(2nr). Thus, when r is much smaller than n,
there are significantly fewer degrees of freedom than the size of D would suggest. The
question is then whetherD can be recovered from a suitably chosen sampling of its entries
without collecting the double amount of measurements. The authors of [27] consider
an alternative which minimizes the sum of the singular values over the constraint set.
This sum is called the nuclear norm.

In our approach we, analogously to [103], incorporate Gradient descent optimization
algorithm (see chapter 4). The algorithm loops through all ratings in the training
set. For each given training case, the system predicts dmn and computes the associated
prediction error:

Errorij = Dij − LT
i ·Rj

Then it modifies the parameters by a magnitude proportional to γ in the opposite
direction of the gradient.

Li ← Li + γ · (Errorij ·Rj − αLi)

Rj ← Rj + γ · (Errorij · Li − αRj)

The main advantage of this method is the ability to incorporate both gene and sample
preferences by taking into account the values of neighboring entries when predicting a
missing value. Assuming that the data set is represented by the m× n matrix D, given
rank r, LFM iteratively constructs an m× r matrix L and an r× n matrix R such that
matrix multiplication [LR]ij approximately equals to Dij for every unaffected entry A.
The gradient descent optimization algorithm was used to minimize the global loss i.e.
the difference between [LR] and D [103].

We explain in detail the usage of LFM (with corresponding α and γ parameters) in
Section 4.

To sum up, the system learns the model by fitting the previously observed entries.
However, the goal is to generalize those previous entries in a way that predicts future,
unknown entries. Thus, the system should avoid overfitting the observed data by regu-
larizing the learned parameters, whose magnitudes are penalized.

Stochastic gradient descent

There are two approaches to minimizing an error. These are stochastic gradient descent
and alternating least squares (ALS).

The first algorithm loops through all entries in the training set. For each given training
case, the system predicts rui and computes the associated prediction error. Then it mod-
ifies the parameters by a magnitude proportional to gradient in the opposite direction.
This popular optimization algorithm combines implementation ease with a relatively
fast running time. Yet, in some cases, it is beneficial to use ALS optimization. While
in general stochastic gradient descent is easier and faster than ALS, ALS has at least
two main benefits. Firstly, it allows the usage of parallelization. In ALS, the system
computes each Li independently of the other item factors and computes each Rj inde-
pendently of the other user factors. This gives rise to potentially massive parallelization
of the algorithm. Secondly, for systems centered on implicit data. Because the train-
ing set cannot be considered sparse, looping over each single training case, as gradient
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descent does, would not be practical. ALS can efficiently handle such cases [89].

One of the main advantages of the matrix factorization approach to collaborative fil-
tering is its flexibility in dealing with various data aspects and other application-specific
requirements. A lot of the observed variation in values within the studied array is due
to effects associated with biases (inclination towards something, or a predisposition,
partiality, prejudice, preference, or predilection)or intercepts, independent of any in-
teractions. For instance, common collaborative filtering data exhibits large systematic
tendencies for some users to give higher ratings than others, and for some items to re-
ceive higher ratings than others. After all, some products are widely perceived as better
(or worse) than others. Thus, the same computational approach is useful when working
with data sets of genetic information.

2.4 Principal component analysis

Principal component analysis is one of the main ways to reduce the dimensionality of the
data, having lost the least amount of information. Principal component analysis (PCA)
has many diverse interpretations. The basic one is a projection method which finds
projections of maximal variability. It searches for linear combinations of the columns
of X with the largest or the smallest variance. Since the variance can be changed by
rescaling the combination, the combinations are modified so that they have unit length
(what is valid for projections).

Let S stand for the covariance matrix and X for the original data. Then it is defined
by the following equation:

nS = (Xn111T −X)T (Xn111TX) = (XTXnxxT )

where x = 1TX/n is the row vector of means of the variables. Then xa stands for the
sample variance of a linear combination of a row vector x, and is equal to the aTΣa. It
should be maximized or minimized with the subject to ‖a‖2 = aTa = 1. Due to the fact
that Σ is a non-negative matrix, eigendecomposition can be applied.

Σ = CTΛC

where Λ represents the diagonal matrix of eigenvalues in descending order. Let b = Ca.
b in this case is of the same length as a because of orthogonality of C. Then the problem
can be modified to maximizing bTΛb = λib

2
i with the subject to Σb2i = 1.

If b is the first unit vector, then the variance is maximized. Alternatively, the same
can be achieved if a is the column eigenvector corresponding to the largest eigenvalue
of Σ. Considering subsequent eigenvectors yields in covering the largest combined vari-
ance whereas the chosen linear combinations are not correlated with each other. As a
result the ith principal component is indeed the ith linear combination selected by the
algorithm.

k initial principal components represent the best k - dimensional projection of the data.
The covariance matrix is maximized whereas the sum of squared distances between the
original points and their projections is minimal yielding the best approximation. First
several principal components (PCs) are usually considered when searching for specific
associations or patterns in the data (generally, 2 PCs are enough for plotting and for
deeper analysis the number of PCs representing 90% of variance is considered as a rule
of thumb). It should be pointed, that principal components are highly dependent on
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the scaling of the initial data. This should be avoided unless the original variables are
of similar units. Alternatively, principle components of the correlation matrix should be
computed while all the initial variables should be scaled to have unit sample variance.

PCA is the approach to the assessment of the main component of the variance pro-
portion contained in the data. It implicitly assumes that there is no separation of the
real signal and technical noise. So, other heuristics are often more productive, based on
the hypothesis of a ”signal” (a relatively small dimension, a relatively large amplitude)
and ”noise” (large dimension, a relatively small amplitude). From this perspective the
principal component analysis works as a filter: the signal contained mainly in the pro-
jection onto the first principal component and the remaining components of the much
higher proportion of the noise.

One ancillary use of principal component analysis is to sphere the data. After trans-
formation to principal components, the coordinates are uncorrelated, but they now have
different levels of variance. Sphering the data needs to modify the scale for every prin-
cipal component so that they will have unit variance. It also results in the change of
variance matrix to become identity matrix. In case when samples are represented by the
points following normal distribution, the point cloud would look spherical, and many
measures of interestingness in exploratory projection pursuit look for features in sphered
data. Borrowing a term from time series, sphering is sometimes known as pre-whitening
[170].

The search for principal components can be cut down to the performing of singular
value decomposition of the given data matrix, or to the computing of eigenvalues and
eigenvectors of the covariance matrix (obtained from the initial data matrix).

The task of analyzing the main component has at least four basic versions:

• approximate data linear manifolds of smaller dimension;

• find a subspace of smaller dimension, in an orthogonal projection on which data
spread (i. e. the standard deviation from the average value) is maximal;

• find a subspace of smaller dimension, in an orthogonal projection on which the
mean square distance between the point of maximum is projected;

• for this multi-dimensional random variable to construct an orthogonal coordinate
transformation, in which the correlations between the individual coordinates van-
ish.

The first three options operate with finite sets of data. They are equivalent, and
are not using a statistical hypothesis about the generation of data. The fourth option
operates with random variables. The principal component analysis is always applicable.
The usual assumption about the applicability to the normally distributed data (or the
data with the distribution close to normal) is wrong. However, the method is not always
effective in reducing the dimension with the given constraints on accuracy. For example,
data with high accuracy can follow any curve, and the curve may be differently located
in the data space. In this case, the principal component analysis for the acceptable
accuracy requires several components (instead of one), or not at all will reduce the
dimension with acceptable accuracy.

The principal component analysis is heavily used in Bioinformatics to reduce the di-
mensionality of description, highlight important information, data visualization, and
others.
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2.5 Hierarchical clustering

Hierarchical clustering is a set of algorithms for organizing data visualization which is
provided via graphs.

Algorithms for ordering this type of data are based on the fact that a certain set of
objects are characterized by a certain degree of coherence. They presuppose the exis-
tence of sub-groups (clusters of different order). Algorithms, in turn, are subdivided
into agglomerate (Unity) and devising (sharing). Based on the number of treats they
are sometimes devided into emit monothetic and polythetic classification methods. Like
most visual ways of presenting dependency graphs they quickly lose visibility by in-
creasing the number of objects. There are a number of specialized programs for the
construction of graphs.

Devising clustering. First, each object is considered a separate cluster. Singleton
clusters are naturally determined by the distance function:

R({x}, {x′}) = p(x, x′)

Then the algorithm starts the process of merges. At each iteration, the pair of the
most close clusters U and V form a new cluster W = U ∪V . The distance from the new
cluster W to any other cluster S is calculated by the distances

R(U ∪ V, S) = αUR(U, S) + αUR(V, S) + βR(U, V ) + γ|R(U, S)−R(V, S)|

This universal formula generalizes practically all reasonable means to determine the
distance between the clusters. It was presented by Lance and Williams and in 1967.
[113].

The most time consuming operation in Algorithm is the search for the nearest pair of
clusters. It requiresO(l2) operations within the main loop. Accordingly, the construction
of all taxonomic trees requires O(l3) operations. This limits the applicability to the
samples of the length of a few hundred objects. The idea of acceleration algorithm is to
sort out only the closest couples. A parameter δ is set and only those pairs are computed
which convey the rule:

{(U, V ) : R(U, V ) ≤ δ}When all pairs have been exhausted, the parameter δ increases,
and formed a new set of pairs. And so on, until complete fusion of all objects in one
cluster is obtained.

A dendrogram usually denotes a tree , i. e. a graph without cycles, built on a matrix of
proximity measures. Dendrogram represents a mutual communication between objects
in a given set. A similarity matrix (or differences) is required to create a dendrogram,
which determines the level of similarity between pairs of objects. Most used methods are
agglomerative methods. Next, you must choose a method of constructing a dendrogram,
which determines how the conversion of the matrix of similarity (difference) after the
merger (or division) joins next two objects in a cluster.

Dendrogram allows representing a cluster structure in the form of a flat schedule
regardless of the dimensions of the original item space. There are other ways to visualize
multidimensional data such as a multidimensional scaling or Kohonen maps, but they
bring into the picture artificially used distortions, the effect of which is quite difficult to
assess.

Hierarchical clustering produces a set of clusters, usually one with k clusters for each
k = n, ..., 2 , successively amalgamating groups. The main differences are in calculating
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group-group dissimilarities from point-point dissimilarities. Many methods are based on
a measure of the similarity or dissimilarity between cases, but some need the data matrix
itself. A dissimilarity coefficient d is symmetric (d(A,B) = d(B,A)), non-negative and
d(A,A) is zero. A similarity coefficient has the scale reversed.

Among the hierarchical clustering algorithms are two main types: ascending and de-
scending algorithms. Decreasing algorithms operate on the principle of ”top-down”. In
the beginning all the objects placed in a single cluster, which is then broken down into
smaller clusters. More common ascending algorithms that are placed at the beginning
of each object in a separate cluster and the clusters are then combined into larger and
larger, until all objects sample will not be contained in a single cluster. This results into
a system of nested partitions. The results of these algorithms are usually in the form of
a tree - a dendrogram. A classic example of such a tree is the classification of animals
and plants. To calculate the distance between the clusters often two distances are used:
a single link or a complete link. One of the disadvantages of hierarchical algorithms is
that full system partitions can be included, which may be unnecessary in the context of
the problem being solved. Issues when solving clustering tasks are:

• The solution of the problem of clustering is fundamentally ambiguous:

• there is no exact formulation of the problem of clustering;

• There are many quality criteria in clustering;

• There are many heuristic clustering techniques ;

• the number of clusters is usually unknown in advance;

• clustering result depends essentially on the metric that is defined by the expert in
a subjective manner.

Clustering or natural classification is the process of combining objects into groups with
similar characteristics. In contrast to conventional classification, where the number of
groups of objects is fixed and predetermined set of ideals, the group is not pre-defined
and generated during the operation of the system on the basis of a particular measure
of the proximity of objects.

2.6 Affinity propagation clustering

As described before, the standard approach for clustering is to distribute the data into
groups (in other words clusters) by defining centers so that the sum of squared errors
between members of clusters and their central points is as small as possible. In case
when real data points serve as these cluster centers, they are named exemplars. Conse-
quently we can say that exemplars are data points, which represent complete clusters.
Affinity propagation is a clustering technique which is able to define exemplars and their
corresponding clusters efficiently [67]. This concept further helps in explaining the main
advantage of Affinity propagation over its main concurrent, widely known clustering ap-
proach k -centers clustering. k -centers clustering starts with randomly chosen exemplars
and constantly adjusts this set in order to lower the sum of squared errors. As a result,
this method is very dependent on the initial set of exemplars and it should be performed
several times to get the proper clustering result. But this approach fails when the num-
ber of clusters is large and the chance of generating a proper initial set of exemplars is
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Figure 2.1: Sending responsibilities r(i, k).

Figure 2.2: Sending availabilities a(i, k).

low. In contrary, Affinity propagation uses another approach. It assumes all data points
as prospective exemplars by considering them as network nodes. And iteratively sending
real-valued messages through network edges if finds the proper clustering of data as well
as exemplars which represent those clusters. The following types of messages are used
in this procedure:

Issues when solving clustering tasks:

• Responsibilities r(i, k). These messages are sent from data points to candidate
exemplars and indicate how strongly each data point favors the candidate exemplar
over other candidate exemplar (Fig 2.1).

• Availabilities a(i, k). This type of messages is transmitted in the opposite direction
from possible exemplars towards data points. They show the level of availability
of every possible exemplar as a cluster center for every specific data point (Fig
2.2).
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Figure 2.3: Messages are sent between the data points. The darkness of the arrow
directed from point i to point k corresponds to the strength of the transmitted message

that point i belongs to exemplar point k.

Figure 2.4: The result of the Affinity Propagation technique. The data is divided
into three clusters. Exemplars (red data points) represent clusters and they are located

in the centers. Other cluster members are marked green.

Transaction of real-valued messages throughout all data points is shown on Fig 2.3.
This process ends when the selection of exemplars and corresponding clusters reaches
an acceptable sum of squared errors (Fig 2.4).

The main steps of the Affinity Propagation Algorithm are:

1. Input data:

1.1. Compute similarities of the data points s(i, k). s(i, k) = −‖xi − xk‖2
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Figure 2.5: The effect of the value of the input preference on the number of identified
exemplars.

1.2. Determine preferences p(i) (or alternatively s(i, i)) of the data points. Higher
p(i) means, that these data points are more likely to be chosen as exemplars. In
case when all data points have similar initial preference to serve as exemplars, then
the value for this preference is selected depending on the number of clusters (Fig
2.4).

2. Initialization. a(i, k) = 0.

3. Compute messages.
r(i, k)←− s(i, k)− max

k′s.t.k′ 6=k
(a(i, k

′
) + s(i, k

′
))

a(i, k)←− min{0, r(k, k) +
∑

i
′
s.t.i

′
/∈i,k

max(0, r(i
′
, k)}

4. Update messages.

4.1. Self-availability a(k, k) is updated as follows:
a(k, k)←−

∑
k′s.t.k′ 6=k

max{0, r(i′ , k)}

4.2. Update messages according to the following rule:
mesnew = λ ·mesprev + (1− λ) ·mesupd
where λ is a damping factor, which is between 0 and 1. By default λ = 0.5.
mesnew - new message, mesprev previous message and mesupd update value
for the messages. This is calculated for both message types (responsibility and
availability).

5. If the number of iteration is less than the initially fixed number or data changes
in the messages are above the initially fixed threshold (or they do not remain the
same during some number of iterations) go to step 3, otherwise stop.

Brendan J. Frey and Delbert Dueck have used Affinity Propagation to solve a variety of
clustering problems, among them are: clustering faces, detecting genes, identifying key
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sentences and air-travel routing [67]. These authors discovered two main advantages of
Affinity propagation (AP) over k -centers clustering: the computational time needed for
AP was approximately one-hundred time less and AP assigned data points to the cluster
more accurately yielding small misclassification error rate. In conclusion, the following
main advantages of the Affinity Propagation clustering should be mentioned:

• AP is easy to implement;

• This clustering method outperforms commonly used k-centers clustering;

• It is able to solve random satisfiability problems where the size grows with the
order of magnitude speed;

• AP can solve the NP-hard two dimensional phase unwrapping problem;

• When analyzing stereo images, Affinity propagation can successfully evaluate the
depth.



Chapter 3

DNA co-methylation analysis

This chapter is based on the publication entitled ”DNA co-methylation analysis suggests
novel functional associations between gene pairs in breast cancer samples” by Akulenko
et al. in journal Human molecular genetics (2013) [3].

Localized promoter hypermethylation and overall DNA hypomethylation have been
associated with the presence of tumor in human. Yet, despite the large amount of
recently produced epigenetic data, there is still a lack of understanding how several
genes behave in tumor cells with respect to their epigenetic alterations such as DNA
methylation.

In this chapter we performed a novel type of analysis that measures the correlation of
the DNA methylation levels of two genes across many samples. We linked this so-called
co-methylation to the genomic distance of the genes, their functional similarity, and
their expression levels.

Besides all the large or small genetic variations that have been linked to many human
diseases so far, we are just about to start appreciating the large amount of variability
with regards to epigenetic variations in humans and between normal and disease samples.
Clearly, the epigenome is different and it impacts gene expression [176]. Epigenetic
information is not encoded in genes but the information encoded by DNA can be directly
affected by epigenetic modification such as DNA methylation [18].

About 1% of all human DNA base pairs consist of methylated cytosine bases, where
a methyl group is covalently attached to the C5 position of cytosine [105]. Since most
of these occur in the context of CpG dinucleotides, 60 − 90% of all CpGs are methy-
lated in human [55]. DNA methylation is associated with parasitic DNA suppression
[212], repression of gene transcription [29], and genomic imprinting [168]. In addi-
tion to that, DNA methylation plays an important role in cancer where the genome is
mostly hypomethylated except for promoter regions of tumor suppressor genes that are
hypermethylated [95, 111, 108].

In our analysis we focused on breast cancer, a genetically heterogeneous type of cancer
that belongs to the most prevalent and best studied ones [146]. The OMIM database
contains 22 genes, mutations of which are associated with this cancer type (Online
Mendelian Inheritance in Man, OMIMr. John Hopkins University, Baltimore, MD.
MIM Number: 114480. 1). Among these, the important BRCA1 gene has been shown
to show cancer-specific methylation patterns [28] and a number of other genes such

1 http://omim.org
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Figure 3.1: Schematic example of CpG methylation in five genes. The ticks indicate
CpG sites. Filled circles indicate CpG methylation. The first and the third gene show
highly correlated methylation levels across the 10 samples. Here, we term this behavior
’co-methylation’. The second gene is mostly unmethylated. Even though genes five and

four are mostly methylated, they are not co-methylated.

as RASSF1, ARHGDIB, GRB7, SEMA3B, MMP7, PEG10, GSTP1, CHI3L2 [84].
Thus, there exists ample evidence that altered DNA methylation is associated with the
development of breast cancer [211] .

Since huge amounts of epigenetic data are nowadays being generated thanks to modern
technologies such as ChIP-on-chip, ChIP-seq, and bisulfite sequencing, the new field of
computational epigenetics aims to analyze these data and to link them to functional data
[20]. A number of international projects like TCGA, BLUEPRINT, DEEP, AHEAD,
ENCODE, HEP and IHEC initiated human epigenome sequencing and mapping. A
recent study reported an association of the promoter methylation profile of P14ARF,
MDM2, TP53 and PTEN genes with regulatory pathways of the tumor suppressor gene
TP53 [14]. Generally, functional similarity or participation in a common pathway is
known to lead to gene co-expression [87, 12, 207]. This motivated us to investigate in
an analogous way the possibility of co-methylation of genes across samples. Fig. 3.1
illustrates the main idea behind this study.

We based our analysis on breast cancer samples from the TCGA initiative that collects
and analyzes tumor and non-tumor samples and makes it available to the public through
their data portal. We analyzed possible relations between DNA-co-methylation and
genomic distance, functional similarity or pathway enrichment. We cover in detail all
used data set and its processing routins in the Section 3.1.

3.1 Materials

Tumor data
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DNA methylation data for tissue samples from breast invasive carcinoma patients
were obtained from The Cancer Genome Atlas (TCGA) Data Portal 2. The level 3
DNA methylation data which had been used was deposited by the group of Dr. Peter
Laird of Johns Hopkins and University of Southern California (USC) 3 and consists of
preprocessed DNA methylation data that was obtained using Illuminas Infinium Human
DNA Methylation 27 platform. This BeadChip detects 27,578 CpG Sites in 14,475
RefSeq Genes, among which are 982 cancer-related targets. Since the data is deposited
continuously, we first analyzed 183 available tumor samples deposited in September 2011
(tumor group 1) and then an additional 134 tumor samples (tumor group 2) as well as 27
matched tissue mostly from adjacent normal tissues that were both deposited in October
2011.

3.1.1 Randomization of data

Comparison against randomized data

In order to characterize the statistical significance of the correlations of gene methy-
lation, we repeated the same steps with random data. For this, we generated a random
permutation on a per gene level of the original data using the ’sample’ function in R so
that the distribution of the β − value in the randomly permutated data is identical to
the distribution of β − value in the real data.

The algorithm works as follows: all β−values are selected for the specific gene among
all samples. As a result we have 344 entries for one gene which are then randomly
permutated by the ’sample’ function. Afterwards, permutated β − values are assigned
back to random samples that are mostly different from the original samples. Effectively,
this changes their order of appearance during the correlation computing. This procedure
is repeated for all 13313 genes.

3.1.2 Detailed description of data base set up

Preprocessing of raw data

Every sample is represented by a separate .txt file that contains the barcode of the
samples, the β − value between 0 and 1 (ratio of methylated to the sum of methylated
and unmethylated sites), gene symbol, chromosome and gene position. Using Microsoft
SQL Server 2008 Express all 344 samples were uploaded to two tables of our database
and parsed. About 73 genes that contained NA β − values or did not contain gene
symbols were removed. If there were several entries for the same gene within a single
sample, the average β − value was computed and assigned to that gene so that every
gene had only one respective β − value. Thereby the number of entries for each sample
decreased from approximately 27500 to 13313.

Data filtering

The group of Dr. Peter Laird kindly made available to us a list of 2676 bad probes
that they had identified in the deposited raw Illumina27k data, which were apparently
affected by batch effects. Thus, in the first filtering stage we excluded any pair of genes
showing correlated methylation in the combined cancer and normal samples if at least
one of the two genes belonged to the list of bad probes Results reported on Figure 3.2.

2http://cancergenome.nih.gov/
3http://www.usc.edu/
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Figure 3.2: Examples of three undesirable cases where nave data processing indicates
a high correlation of co-methylation. All such cases were removed by applying suitable
filtering steps described in the data filtering section. In all three cases, the Pearson
correlation of pairs of genes is r = 0.98. A. ZNF143 and DLGAP5 belong to the top 10
genes that were most affected by the batch effect. Samples from tumor groups 1 and 2
show significantly different methylation levels whereas samples from tumor group 2 and
normal samples overlap. These associations were removed during stage one of filtering.

To avoid cases where significant correlation is found due to single very high or very low
β−values as in the case of the genes CLK1 and YPF5 (Figure 3.3), only genes were kept
after stage two filtering that have no outlier β − values according to the ’boxplot.stats’
function in R.

Figure 3.3: Examples of three undesirable cases where naive data processing indicates
a high correlation of co-methylation. All such cases were removed by applying suitable
filtering steps described in the data filtering section. In all three cases, the Pearson
correlation of pairs of genes is r = 0.98. The two genes CLK1 and YIPF5 have the
same level of methylation and both genes were not affected by batch effect. Also, the
difference between maximal and minimal β − values is high due to one outlier data
point. To avoid such cases showing very small variation of β − values, such pairs were

filtered out at stage two filtering.

The third stage of filtering aimed at removing genes with very small variance of the
β − values like in the case of the two genes C1R and LEMD3 (Figure 3.4). For this,
we required that the third and first quartiles, respectively, of all β − values for a single
gene differed by more than 0.1.

Functional similarity
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Figure 3.4: Due to three undesirable cases where naive data processing indicates a
high correlation of co-methylation. All such cases were removed by applying suitable
filtering steps described in the data filtering section. In all three cases, the Pearson
correlation of pairs of genes is r = 0.98. Because of the small variance in β − values
for C1R and LEMD3, the two genes appear highly correlated. However this kind of
associations is not meaningful. All similar pairs of genes were removed from the list of

results during the third stage of filtering.

Finally, we characterized the functional similarity of pairs of genes showing highly
correlated methylation levels. For this, we computed the functional similarity with
respect to the biological process (BPscore), molecular function (MFscore) and cellular
component (CCscore) categories [182] of the Gene Ontology. The functional similarity
was computed based on simRel and GOscore measures [169, 121, 183] as follows:

funSimAll = 1/3 · [(BPscore(p,q)2

maxBPscore
) + (MFscore(p,q)2

maxMFscore
) + (CCscore(p,q)2

maxCCscore
)]

by mapping gene names to UniProt accession identifiers with the online portal Biomyn.de.

3.2 Results and Discussion

Co-methylation analysis of more than 300 breast cancer samples from the TCGA 4 por-
tal yielded 187 pairs of genes with Pearson correlation coefficient |r| ≥ 0.75. These pairs
were formed by 133 genes. Less than half of these pairs are located on the same chromo-
some. For these, we found that the level of co-methylation is weakly anti-correlated with
genomic distance (r = −0.29). Linking co-methylation with the functional similarity of
genes showed that genes with r ≥ 0.8 tend to have similar molecular function and to be
involved in the same biological process as described in the Gene Ontology. In addition to
that, the found genes have high functional similarity to 22 breast cancer genes annotated
in the OMIM database. Clustering of highly co-methylated genes identified six enriched
KEGG pathways. Individual members of these pathways have already been linked to the
progression and detection of breast cancer. Hence we have introduced co-methylation as
a new tool to discover functional associations between gene pairs in breast cancer and
to discover new candidate genes that should be inspected more closely in the context of
the studied disease.

Pearson correlation coefficients for DNA methylation were computed for 88611328
unique pairs of genes retained after preprocessing of the raw data as described in the

4http://cancergenome.nih.gov/
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Figure 3.5: Distribution of different levels of co-methylation. The black curve shows
the correlation computed for gene pairs in 344 breast cancer samples obtained from the
TCGA portal (real data). For comparison, the gray dash curve shows the same analysis

for randomly permutated samples.

Section 3.1.1. Co-methylation analysis of 183 tumor samples deposited in September
2012 (termed ’tumor group 1’) yielded 98820 pairs of genes with |r| ≥ 0.75 and 139 pairs
with |r| ≥ 0.9. For comparison, co-methylation analysis of all 344 samples (including
tumor group 1 and data deposited in October 2012 termed ’tumor group 2’) yielded
377547 pairs of genes with |r| ≥ 0.75 and 13643 pairs with |r| ≥ 0.9 . The absolute
frequencies of different levels of co-methylation for real data and for permutated data
are shown in Fig 3.5. The co-methylation plot for randomized data on a logarithmic
scale shows that 99, 9% of all gene pairs possess an absolute correlation of less than 0.2.
In contrast, 25, 41% of the gene pairs show correlation higher than 0.2 for real data.

During data processing we noticed that high correlation levels may sometimes be
caused by a single or a few outlying data points or may arise between genes that show
very little variation in their methylation levels. Therefore we removed all gene pairs
where one or both genes contained ’outlier’ data points in one or more samples (see
methods) and we required that all genes showed a certain variation of their CpG methy-
lation levels. After filtering of co-methylated pairs of genes, 187 highly correlated pairs
were kept (with correlation |r| ≥ 0.75) involving 133 different genes. These gene pairs
are listed in Table 3.1. Full table can be found in Appendix B.

Table 3.1: BE scoring of batches in BRCA adjacent normal data. The median differ-
ence counts the number of genes for which the median DNA methylation in this batch
differs from its median in all other batches by a value falling into the respective intervals

specified at the top.
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ID KEGG pathways p− value Genes involved
in pathways FDR

8 hsa04950:
Maturity onset diabetes of the young 0.003 HNF1B,

FOXA2, NEUROD1 2.622
9 hsa04640:

Hematopoietic cell lineage 0.009 CD1A,
CD1E, CD1D 6.229

15 hsa04730:
Long-term depression 0.004 GRM5,

C7ORF16, PRKG2 2.952
22 hsa04060:

Cytokine-cytokine receptor interaction 0.047 EGF,
TNFSF18, IL20 31.263

27 hsa04512:
ECM-receptor interaction 0.005 COL5A2,

COL11A1, SPP1 3.500
27 hsa04510:

Focal adhesion 0.029 COL5A2,
COL11A1, SPP1 17.498

Table 3.2: he results of disease enrichment analysis of 29 gene clusters obtained using
DAVID. These clusters of genes are identical to clusters described in Table 4.4.

ID OMIIM disease term p− value Genes
involved in pathways FDR

19 Population-based genome-wide
association studies reveal six loci
influencing plasma levels of liver enzymes 0.031 ALPL, ABO 21.382

24 Genome-wide association
with bone mass and geometry
in the Framingham Heart Study 0.005 CNTNAP2, KCNH8 2.345

In contrast, the data set of 344 randomly permutated TCGA samples did not contain
any highly correlated gene pairs after filtering (before filtering only 91 pairs of genes
passed the threshold of the correlation |r| ≥ 0.75). The probability of identifying highly
correlated methylation levels for pairs of genes in randomly shuffled data therefore equals
91/377547 = 2.41·e−4. This is the p−value for identifying highly correlated methylation
levels for gene pairs in breast cancer samples.

Genomic distance

Similar to bacterial operons where neighboring genes are often expressed all at once,
and in analogy to the phenomenon of genomic imprinting where a few imprinting control
regions affect the allele-specific methylation in their genomic environment, one may
suspect that also the methylation of neighboring genes may be more strongly correlated
than that of distant genes. Here, we tested the related question whether genes showing a
high correlation of their DNA methylation levels tend to be located closely to each other
on chromosomes. Among the 187 pairs of genes that passed the threshold |r| ≥ 0.75,
74 pairs of genes are located on the same chromosome. 53 out of these 74 genes are
annotated in the Gene Ontology (and thus in FunSimMat) with contained BP or MF
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Figure 3.6: Distribution of different levels of co-methylation. The black curve shows
the correlation computed for gene pairs in 344 breast cancer samples obtained from the
TCGA portal (real data). For comparison, the gray dash curve shows the same analysis

for randomly permutated samples.

scores. Figure 3.6 shows that pairs of genes on the same chromosome with strongly
correlated methylation levels have a typical genomic distance between 1 e4 to 1 e6 base
pairs. These values are similar to the average distance between neighboring genes of1.4 ·
105bp that is obtained when assuming that the 2.2 · 104human genes are evenly spread
over the 3·109bases of the genome. However, the plot shows that the co-methylation level
is only weakly anti-correlated with genomic distance, r = −0.29. For comparison, Li et
al. [118] found that in human peripheral blood mononuclear cells co-methylation of CpG
sites deteriorated over distance and became nearly undetectable at distances > 1.000bp
[118]. We did not detect a difference between functionally similar and dissimilar gene
pairs.

Functional similarity

After filtering co-methylated genes, all gene pairs were ordered according to the level
of co-methylation observed. Table 3.3 shows the ten gene pairs with the strongest
correlations. Interestingly, half of the cases involve two genes from the same gene family:
SPRR1B and SPRR1A; FCN2 and FCN1; SPRR1B and SPRR4; REG1B and REG1P;
SPRR3 and SPRR4.

Table 3.3: The ten strongest correlations for pairs of genes with respect to their
-values, obtained after three stage filtering
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First gene Second gene Pearson correlation

SPRR1B SPRR1A 0.872
FCN2 FCN1 0.870
CD244 CD48 0.866
SPRR1B SPRR4 0.862
TAS2R13 PRB4 0.859
F7 TFF1 0.856
SH3TC2 SPARCL1 0.853
ABCE1 SC4MOL 0.849
REG1B REG1P 0.846
SPRR3 SPRR4 0.843

Next, we computed the functional similarity between the same 187 pairs of strong
co-methylated genes having unique UniProt identifiers. Among these, 74 pairs involved
genes located on the same chromosome and 113 involved genes on different chromosomes.
Out of these, 28 and 70 pairs had complete GO annotations (Figure 3.7).

The analysis showed that, in breast cancer samples, co-methylated gene pairs on the
same chromosome share a higher combined functional similarity (BP, MF, CC) than
average pairs between the 133 candidate genes and the 9889 genes that are annotated in
the Biomyn database out of the 14,475 genes on the Illumina27k Chip (p−valuesamechr =
3.1e− 4, Welch two-tailed t-test).

In the same manner, we also analyzed the functional similarity of the 133 candidate
genes to the 22 genes associated with breast cancer in OMIM, see Fig. S4. Whereas some
of the candidate genes (e.g. TOX2 and GCM2) showing a large functional similarity to
the 22 known OMIM genes of more than 0.8 are already being investigated with respect
to breast cancer [193, 142], the 133 candidate genes as a group are less similar to the 22
OMIM genes than all 9889 genes on the Illumina27k chip with functional annotations
(p − value = 4.55e − 4, Welch one-tailed t-test). This suggests that co-methylation
analysis identifies different gene players of the cellular network that are related to breast
cancer on top of the 22 well-known breast cancer genes listed in OMIM.

For comparison, we also performed co-methylation analysis of the 19 OMIM breast
cancer genes (out of 22) that are included in the TCGA data samples. None of them
passed our strict 3 stage filtering. This is largely due to the fact that most of these
genes tend to be unmethylated throughout all samples (Figure 3.8). If we leave out the
last filtering condition only the ’BARD1’ gene remains showing a maximum correlation
value ofr = 0.626. Interestingly, almost all OMIM breast cancer genes were methylated
at low levels in the data samples that we analyzed.

Relating co-methylation to co-expression

Next, co-expression values were computed for the 187 highly co-methylated gene pairs.
For this, 599 gene expression samples were downloaded from the TCGA portal and
matched to DNA methylation samples by using barcodes. Altogether 336 samples were
successfully matched and used for computing Pearson correlation coefficients of gene
expression data. Only two pairs showed co-expression exceeding the threshold r ≥ 0.75
(these are CD48 and SLAMF1 with r = 0.851; SPRR1B and SPRR2D with r = 0.783)
and 11 pairs with co-expression r > 0.5 . The mean Pearson correlation coefficient
for the expression levels of 187 gene pairs was quite low, rmean = 0.136. However,
we found that 10 out of the 11 pairs with co-expression r > 0.5 are located on the
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Figure 3.7: Q-Q plot comparing the distributions of two sets of rfunSimAll scores.
Shown on the x-axis are the scores for the functional similarity among the 98 most
strongly co-methylated and fully annotated pairs of genes. Here, we distinguished
between gene pairs on the same chromosome and on different chromosomes. Shown on
the y−axis are the scores for the functional similarity of gene pairs formed between the
133 candidate genes and the 9889 annotated genes found on the HumanMethylation27
chip that could be successfully mapped to BioMyn. The semantic similarities have
values between 0 (not similar at all) and 1 (totally similar) and are based on the
distance of the GO terms to the lowest common ancestor in the GO hierarchy and the

specificity of the lowest common ancestor.

Figure 3.8: Methylation levels of 19 OMIM breast cancer genes found among the 344
TCGA data samples analyzed here.
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same chromosome, and the 6 pairs with functional annotation have high to very high
similarities (rfunSimAll is between 0.61 and 0.96).

Pathway enrichment analysis

Enriched pathways were identified by affinity propagation clustering that was per-
formed by the ’apcluster’ function in R using default parameters. Prior to clustering,
three-stage filtering was applied to the methylation data of all 13313 genes. Among the
779 genes that passed the filtering steps, Affinity Propagation then identified 29 clusters
of genes with similar methylation patterns. The members of each cluster were further
analyzed for pathway and disease enrichment using the NIH tool DAVID [90] (Table
3.1, Table 4.4 and Appendix B Table B.1).

Among these results, we found those from pathway enrichment most interesting. Table
4.4 lists the six KEGG pathways that were significantly enriched with p−value < 0.05 in
individual co-methylation clusters (maturity onset diabetes of the young, hematopoietic
cell lineage, long-term depression, cytokine-cytokine receptor interaction, ECM-receptor
interaction, and Focal adhesion). The last two pathways are related and are due to
the same three genes. Interestingly, in all cases, genes belonging to these six enriched
pathways have been previously shown to be associated with breast cancer.

For example, KEGG pathway ’hsa04950’ relates to a form of type II diabetes termed
maturity onset diabetes of the young that is caused by heterozygous mutations in at
least five genes. Among these is the gene Pancreatic and duodenal homeobox 1 (PDX1)
that is also known as insulin promoter factor 1.

Notably, PDX1 has been established as a marker for breast cancer by the company
Roche (US patent 20070196844). Secondly, three members of the CD1 gene family,
which are participants of the hematopoietic cell linage pathway, are already targets of
breast cancer research [142, 70]. Moreover, CD1A has been suggested as a prognostic
marker for breast cancer [110]. Thirdly, GRM5, which is a member of the long-term
depression pathway, is known to be altered in breast cancer [142]. Also, gene IL20,
which belongs to the cytokine-cytokine receptor interaction pathway, was shown to play
a central role in the progression of breast cancer [88].

Finally, elevated expression levels of focal adhesion kinase have been associated with
highly invasive human breast cancers [119, 155], focal adhesion disassembly has been
linked to the potential of breast cancer metastasis [208], and ECM-receptor interaction
is suggested to play an important role in carcinogenesis [106].

In conclusion, we have shown that unexpectedly strongly correlated DNA methyla-
tion levels are found in gene pairs from breast cancer patients. Importantly, correlated
gene pairs show strong combined functional similarity. These findings may be helpful to
annotate unknown genes and to suggest candidate genes that should be closely inves-
tigated with respect to a particular disease. We believe that our findings may also be
transferable to other types of cancer, and possibly to related diseases.

We will re-visit the topic of co=methylation in the next chapter. There, we employ a
novel method for correction of batch effects to avoid the problems encountered during
this work where we had to filter the number of considered genes.





Chapter 4

Batch Effect detection and
correction in DNA methylation
data

This chapter is based on a manuscript ”BEclear: batch effect detection and correction
in DNA methylation data” that we submitted to the journal Bioinformatics.

When working with genome-wide high-throughput data sets e.g. for gene expression
or DNA methylation, scientists encounter diverse issues connected to inconsistencies in
the data. The reasons for this range from human factor over erroneous measurements,
to not properly organized experiments. The well-known batch effect, a non-biological
experimental variation, can be regarded as one of the vivid examples of the imprecisions
that may affect the whole processing procedure of the data [158].

It can appear within one or several batches coming from experiments using high-
throughput technologies making future analysis of them distorted, or even misleading.
The most straightforward way to avoid batch effect is leaving out affected batches [3].
Yet, this is often not desirable since this may result in incomplete coverage of the studied
issue. There exist several algorithms for detecting [25] and dealing [94] with batch
effects. However, such methods typically use normalization what affects all samples in
the complete dataset and might not completely remove batch effect [190]. For example,
even standard normalization techniques, which are part of pipelines for transforming raw
signal intensities for the DNA methylation probes into calculated β− values mapped to
the genome, might still be susceptible to batch effect (Fig 4.1).

Here, we present a novel approach for batch effect correction called BEclear. It assigns a
batch effect score to every batch and exploits Latent factor models matrix approximation
[103] to adjust erroneous entries. This characteristics of our algorithm is essential since
it allows processing of smaller sample sizes. Moreover, we explicitly show that BEclear
is able to detect not only the batches and samples that are affected by batch effect
but also distinct genes responsible for that inside the samples. The correction can
be applied solely to the respective genes, leaving the data for other members of the
sample unchanged. We provide a detailed algorithmic framework of BEclear and report
experimental results on real-world datasets demonstrating its effectiveness. In addition
to this, we provide a comparison to other existing well established methods named
ComBat, SVA and the recently issued Functional normalization.

35
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Figure 4.1: Per sample boxplot of adjacent normal data. A. Level 1 data - DNA
methylation raw signal intensities of probes for each participant’s sample. B. Level
3 data - calculated -values mapped to genome. In both cases, batch effect is clearly
present in batch 136 since the distribution of β−values in these samples significantly de-
viates comparing to other samples. This demonstrates the susceptibility of background

correction technique from methylumi package to batch effect.



Chapter 4 Batch Effect detection and correction in DNA methylation data 37

4.1 Materials and Methods

Tumor and Normal data

DNA methylation data for tumor and adjacent normal tissue for different tested
cancer types were downloaded from The Cancer Genome Atlas (TCGA) Data Portal
1. Level 1 (raw signal intensities of probes for each participant’s sample obtained by
HumanMethylation450 chip [17]) and level 3 (calculated β − values mapped to the
genome) array-based DNA methylation data was considered for the analysis. Our batch
effect detection and correction method was established using level 3 data. However,
testing was performed on both levels. We established our method on breast invasive
carcinoma (BRCA) data with 745 tumor and 96 adjacent normal samples and then
applied it to other cancer types.

Preprocessing of data

In a similar way as was done in [3], data from TCGA was locally stored in a MySQL
database and pre-processed. Tumor and adjacent normal data were considered sepa-
rately to avoid batch effects resulting from the data mixture. As a first cleaning step,
all entries with missing β − values or gene names as well as entries with indistinct gene
names were removed. The next step was to keep only those probes which originate from
the promoter regions of genes. For this we used annotations of the Eukaryotic Promoter
Database EPDnew [50] 2 as a reference for the location of transcription start sites for ev-
ery human gene. Thus, HumanMethylation450 DNA methylation probes were mapped
to EPDnew data by gene name and chromosome, and only probes lying within 2000 bp
up-or downstream (depending on the strand direction) were kept for further analysis.
Some genes were still represented by multiple probes in a single sample file. For those
genes we assigned the mean β−value of all its respective entries. This resulted in 11154
gene β − value pairs in tumor matched data and 11213 in adjacent normal.

4.1.1 Batch effect detection and correction method BEclear

Visual inspection of the data

At the beginning of this procedure, it is essential to establish a standard for the
grouping of samples into batches. Here we used the batch identifier from the TCGA
data portal to assign every single sample to its respective batch. In order to find out
whether the data is affected by batch effects, several standard visualization approaches
were applied separately to tumor and adjacent normal samples, namely box plots, density
plots, heat map together with hierarchical clustering, and principal component analysis
(PCA). These well established methods are very good at representing data globally to
get a general impression on batch effects in a single batch or even distinct sample. But
they do not reveal whether single genes within a group of samples belonging to the same
batch are affected or not.

Detection of single batch effected genes (BE-genes)

Genes within a batch that are likely affected by batch effects were discovered by ap-
plying statistical analysis based on the comparison of batch medians. Since it is unclear
whether DNA methylation data is distributed e.g. according to a normal distribution, we

1http://cancergenome.nih.gov/
2http://epd.vital-it.ch/
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used the nonparametric Kolmogorov-Smirnov test. Iteratively going through all batches,
the distribution of every gene in one batch was compared to the distribution of the same
gene in all other batches. The p-value returned by KS-test was then corrected by FDR
[16] All genes with significant p− value below 0.01 were considered for further analysis.

Next, to consider only biologically relevant differences in methylation levels, the me-
dians of the β− values for the previously identified genes were computed in exactly the
same manner as when applying the KS-test. Thereby, we identified the median differ-
ence the absolute difference between the median of all β − values within a batch for a
specific gene and the respective median of the same gene within all batches. Those genes
from our list with median difference above 5%of β − value distribution (mdif ≥ 0.05)
that also passed the KS-test were considered as batch effected genes in a specific batch.
Importantly, every batch has its own list of BE-genes.

Batch effect scoring (BE-score) and correction

After single BE-genes were found, the decision about batch effect correction can be
made. The scoring for the batch effect in a dataset was computed for every batch
according to the formula:

BEscore =

∑
i∈mdifcut

(NBEgenesi
·Wi)

N

where N is the total number of genes in a current batch, is the category of median
differences, mdifcut is the number of BE-genes belonging to the i − th mdif category
and wi is the weight for the respective mdif category. Weights were assigned in the
following way:

• if mdif < 0.05, then weight = 0;

• if 0.05 ≤ mdif < 0.1, then weight = 1;

• whenever mdif takes values in the interval [0.1; 1], with step size 0.1 wi is increased
by two.

This formula considers not only the number of BE-genes in the batch, but also the
deviation of the medians of BE-genes in one batch compared to all other batches. Thus,
the higher the BE-score for a batch is, the more this batch was affected.

If at least one of the batches has a high BE-score, then all BE-gene entries in respective
batches should be adjusted. This was done by removing them and then performing
matrix completion using Latent Factor Models (LFM) based on matrix factorization
[103, 27]. The main advantage of this method is the ability to incorporate both gene and
sample preferences by taking into account the values of neighbor entries when predicting
a missing value.

Assuming that the dataset is represented by the m× n matrix D, given rank r, LFM
iteratively constructs an m × r matrix L and an r × n matrix R such that matrix
multiplication [LRij ] approximately equals to [Dij ] for every unaffected entry A.

The Gradient descent optimization algorithm was used to minimize the global loss i.e.
the difference between [LR] and D. When it converges, non batch effected entries were
preserved in the completed matrix Dcomp = LR from the original data matrix D, so
that the algorithm affects only the matrix entries for BE-genes in some of the batches.
In case if some of the predicted entries lie below 0 or above 1, they were assigned 0 and
1, respectively.
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4.1.2 Method validation

Different values were tested for mdif , p−value and p−value adjustment methods used
during the detection of single batch effected genes in adjacent normal BRCA data. In
case when mdif was too strict (larger than 0.1), only few genes (from 103 to 1465 BE-
genes) were detected as BE-genes. After removing them, batch effect was still visually
observed. In contrast if mdif was 0.01 then it detected more than 82% of all genes
as BE-genes. Different thresholds for the p-value did not affect the results so strongly.
With a p − value = 0.05 Beclear identified 5990 BE-genes and for p − value = 0.001
5032 BE-genes. All three p−value adjustment methods (FDR, Hommel and Bonferroni)
yielded approximately similar numbers of BE-genes which is around 5500 genes.

The proposed method for matrix completion was assessed from the perspectives of
overall accuracy and prediction time when applied to DNA methylation data. For testing
purposes again the BRCA adjacent normal dataset was used. As a measure of accuracy,
we computed the average absolute deviation between known and predicted entries of
the matrix. Due to the fact that BEclear found 5.8% entries to be affected, testing was
performed on 6% of additionally randomly selected entries.

Generally, the time needed to perform LFM prediction grows exponentially with the
size of the data. For the BRCA dataset studied here (11213 genes in 96 samples),
this task could be infeasible without separating the initial matrix into blocks of data
and running LFM independently for every block. This approach gives an additional
advantage since it allows usage of parallel computing using multi-core processors, what
leads to significant savings in computation time.

We also analyzed how the size of the block of data to which LFM was applied affected
the prediction accuracy. This parameter was varied from 10 to 250 in increments of 5.
In all cases LFM yielded a similar accuracy which is in the range of 0.02 (Figure 4.2).

Note that in case when the size of the block of data is too large, this significantly affects
the computation time without bringing an improvement in accuracy. From another point
of view, a very small block size might not incorporate gene preference since there might
be some large batch with batch effect. And the block could contain some inner part of
that batch.
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Figure 4.2: Latent Factor Model accuracy assessment. Investigating the impact of
the block size on the overall accuracy of LFM matrix completion. Four parameters were
computed: mean, median, minimal and maximum of the difference between actual and
predicted β − value entries. The size of the block of the data, to which LFM was
applied, changes from 10 to 250. With the increase of the block size, the chance to
get few high β − value differences also grows. However, LFM shows good prediction
accuracy since median of difference remains in the range of 0.01 whereas the mean stays

around 0.02.

4.2 Results and Discussion

4.2.1 Box plots and further visual analysis of BRCA data

The BEclear method is currently tailored towards level 3 data for genome-wide DNA
methylation data. We will illustrate its performance using data for breast cancer samples
from the TCGA portal 3.

Box plots representing the distribution of β − values (proportion of methylated CpG
nucleotides ranging from 0 to 1) for all genes were generated both on a per sample and
a per batch basis (Figure 4.3).

These plots illustrate clearly that the distribution of β − values for genes in batch
136 from the BRCA samples is noticeably increased compared to the other batches.

3http://cancergenome.nih.gov/
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Figure 4.3: Box plots of breast cancer samples. A. Adjacent normal samples per
batch level (13 batches). B. Tumor samples, per batch level (32 batches). C. Adjacent
normal samples, per sample level (96 samples). D. Subset of tumor samples for batch
136 and surrounding batches, per sample level. All these plots illustrate clearly that

batch 136 is affected by batch effect in both tumor and adjacent normal samples.
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Particularly, in the adjacent normal data the first quartile, median and third quartile
are increased by more than 0.05 compared to all other corresponding values from the
other batches. The per sample plot (Fig 4.3 C) shows that the difference in batch 136
is not due to only one sample but exists in all except two samples within this batch.

Also the tumor data (Fig. 4.3 B) of batch 136 show a general increase of β − values.
However, the difference is not as large as in the adjacent normal data, as seen in the
per sample plot, where only 15 out of 27 samples behave differently compared to other
batches. This may reflect that tumor data has inherently more variation in the distri-
bution of the β − values than normal data.

This batch effect in adjacent normal data was also well apparent in the PCA, heatmap
and density plots (Fig 4.4.).

Clearly, most of the batch 136 samples tend to cluster together (Fig 4.4 A, B) and the
density of this batch is less sharp and shifted compared to other batches (Figure 4.4C).

4.2.2 Batch effect detection and correction results in BRCA data

As just explained, both tumor and adjacent normal samples in the BRCA data from the
TCGA portal contain a batch effect in batch 136.

Table 4.1: BE scoring of batches in BRCA adjacent normal data. The median differ-
ence counts the number of genes for which the median DNA methylation in this batch
differs from its median in all other batches by a value falling into the respective intervals

specified at the top.

batch ID [0.05;0.1) [0.1;0.2) [0.2;0.3) [0.3;0.4) [0.4;0.5) BE-score

47 91 32 4 0 0 0.015
61 274 63 8 0 0 0.039
72 6 5 1 0 0 0.002
96 33 2 0 0 0 0.003
103 13 0 0 0 0 0.001
109 143 5 0 0 0 0.014
117 93 3 0 0 0 0.009
120 3 0 0 0 0 0
124 14 1 0 0 0 0.001
136 3992 1159 104 9 1 0.605
142 10 0 1 0 0 0.001
155 8 0 1 0 0 0.001
185 0 0 0 0 0 0

This result observed by visual inspection was also confirmed by the new BEclear
method introduced in this manuscript. Table 4.1 lists the number of BE-genes in
every batch separated by the median difference mdif. For example, the distribution
of the SPINK2 gene in batch 136 (Figure 4.5) is statistically significantly different
from the distribution in all other batches, as confirmed by Kolmogorov Smirnov test
(p− value = 9.41 · e− 6). The difference between the median β − value for this gene in
batch 136 and the median in all other batches is in the range of [0.4; 0.5). Table 1 shows
that all except one batch contain some BE-genes. However their number is typically
relatively small as well as the median deviation, what leads to a small BE-score. It is
immediately noticeable that this dataset clearly is affected by a strong batch effect in
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Figure 4.4: Visual inspection of batch effect in adjacent normal Breast Invasive Car-
cinoma data. A. The heatmap demonstrates that all but two samples from batch 136
form a cluster that splits off from the other samples at the top of the hierarchy. B.
Plotting the first two Principle Components and projecting samples on them clearly
distinguishes batch 136 samples from the rest. C. The density plot of every batch shows
the difference between the distribution of β−values of all genes in batch 136 compared

to all other batches
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Figure 4.5: Per batch boxplot of the β−values for gene SPINK2 in adjacent normal
data. For this gene we identified the largest median difference of 0.428.

batch 136 since approximately 47% of all genes in this batch differ from the same genes
in the other batches with respect to β−value by more than 0.05. This median difference
can reach up to 0.5 resulting in a BE-score = 0.6. A similar picture is observed in BRCA
tumor data. There the batch effect in batch 136 is not as drastic as in adjacent normal
data but still has a BE-score = 0.19 (Table 4.2).

The high BE-score for batch 136 in breast cancer data suggests the necessity of applying
a batch effect correction method to this dataset such as the one presented in this chapter.
BEclear adjusted the methylation values of 6079 genes in 12 batches in adjacent normal
data and 3587 in 31 batches in tumor data. The results are shown in Figure 4.6. In the
per batch boxplot (Fig. 4.6 A) batch 136 does not stand out explicitly anymore what
is also confirmed by the per sample boxplot (Fig. 4.6 B). However, it is also apparent
that a certain variation between samples remains since BEclear adjusted only BE-genes.
Even though the tumor dataset had a smaller batch effect than adjacent normal samples,
it was successfully adjusted and now the bar corresponding to batch 136 is in a similar
range compared to other batches (Fig. 4.6 C). Additionally, Fig. 4.6 D and E confirm
the positive effect of BEclear on normal data. The corrected 136-th batch data is now
positioned next to all other batches.

Table 4.2: BE scoring of batches in BRCA tumor data
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batch ID [0.05;0.1) [0.1;0.2) [0.2;0.3) [0.3;0.4) BE-score

109 37 2 0 0 0.0037
117 25 3 0 0 0.0028
120 12 4 0 0 0.0018
124 166 13 1 0 0.0176
136 1661 199 10 1 0.1887
142 19 3 0 0 0.0022
147 14 2 0 0 0.0016
155 6 2 0 0 0.0009
167 13 1 0 0 0.0013
177 69 11 0 0 0.0082
185 1 2 0 0 0.0004
202 4 1 0 0 0.0005
216 1 0 0 0 0.0001
227 13 2 0 0 0.0015
234 3 1 0 0 0.0004
239 17 2 0 0 0.0019
255 12 2 0 0 0.0014
271 31 7 0 0 0.004
296 3 2 0 0 0.0006
305 12 3 0 0 0.0016
61 165 24 0 0 0.0191
322 102 31 5 2 0.0176
334 300 93 16 7 0.0531
338 16 2 0 0 0.0018
72 45 5 0 0 0.0049
74 79 10 0 0 0.0089
80 189 26 2 0 0.0223
93 0 0 0 0 0
96 18 0 0 0 0.0016
103 9 1 0 0 0.001
360 13 3 0 0 0.0017
372 24 6 1 0 0.0036

Batch effect scoring of other tumor types

To show the general applicability of the BEclear method to DNA methylation data, 7
further well represented cancer types from the TCGA portal were assessed toward batch
effect. Here only level 3 data was considered for the analysis. Beside breast invasive
carcinoma, which was discussed above, BEclear only identified a minor batch effect in
tumor samples of Kidney renal clear cell carcinoma, KIRC (Table 4.3). Interestingly,
a similar findings was recently reported by Fortin et al. [64]. As in the case of BRCA
data, KIRC has relatively many batches but batch 32 is represented by only 2 samples
(Figure 4.7 A). Even though this batch doesn’t contain many BE-genes, the median
difference mdif of those genes is very large (Figure 4.7 B.), yielding a BE-score of 0.185.

This analysis gives the clue to the question how large should the BE-score be in order
to perform batch effect correction of the data. Hence, BE-score greater than 0.1 is a
strong signal toward the presence of batch effect in the dataset. Another conclusion
suggests that the more batches exist and the smaller they are, the higher is the chance
of finding a batch effect there.
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Figure 4.6: Results of batch effect correction of breast cancer data using BEclear. A.
Per batch and B. Per sample boxplot of adjacent normal data. C. Per batch boxplot of

tumor data. D. Density plot and E. PCA plot of adjacent normal data.
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Table 4.3: BE scoring of 7 different cancer types from the TCGA portal. Cancer
types and batches which were confirmed to have batch effect are marked in bold. This
table contains the description of cancer types, batch identifiers obtained from TCGA
portal and batch effect score. Only those batches with BE-score over 0.01 are listed
here since, generally, every batch has some extremely small non-zero BE-score. This is
due to some variation in a few genes and only in rare cases the BE-score for a batch
is exactly zero. All the batches belonging to Lung squamous cell carcinoma have BE
score in a range of (0; 0.01) because not more than 97 genes in a single batch behave

differently compared to other batches.

batch ID BE score

Breast invasive carcinoma BRCA,adjacent normal data, represented by 13 batches

47 0.015
61 0.038
109 0.013
136 0.605

BRCA, tumor data, represented by 32 batches

61 0.019
80 0.022
124 0.017
136 0.188
322 0.017
334 0.053

Uterine Corpus Endometrial Carcinoma UCEC, adjacent normal data, represented by 12 batches

104 0.027

UCEC, tumor data, represented by 23 batches

49 0.021
92 0.036
156 0.015
186 0.017

Thyroid carcinoma THCA, adjacent normal data, represented by 12 batches

115 0.014

THCA, tumor data, represented by 17 batches

115 0.016

Kidney renal clear cell carcinoma KIRC, adjacent normal data, represented by 5 batches

82 0.042

KIRC, tumor data, represented by 12 batches

32 0.185
387 0.037
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batch ID BE score

Head and Neck squamous cell carcinoma HNSC, adjacent normal data, represented by 4 batches

83 0.0108
107 0.0106
151 0.0143

HNSC, tumor data, represented by 18 batches

107 0.013
145 0.015
260 0.0107
265 0.032
403 0.019

Lung adenocarcinoma LUAD 4, adjacent normal data, represented by 4 batches

37 0.015

LUAD, tumor data, represented by 18 batches

37 0.027
52 0.016
84 0.02

4.2.3 Comparison against existing BE correction methods

Next, we compared BEclear against several existing well established methods for batch
effect correction. ComBat [94] is used for batch effect adjustment of microarray expres-
sion data and is a part of the Surrogate Variable Analysis package [115] in R 5. ComBat
uses an empirical Bayes framework based on a location (mean)/ scale (variance) model
and assumes that batch effects can be corrected so that all batches have similar values
of means and variances in all batches.

Since DNA methylation data generally does not follow a normal distribution, the
decision was made towards the nonparametric version of ComBat to correct BRCA
data. Before running the batch effect adjustment, batches 185 and 93 were excluded
from normal and tumor data, respectively, because ComBat is not able to handle batches
with just one sample.

Both adjacent normal and tumor (Figure 4.8 data were corrected separately by Com-
Bat. The tool was obviously able to remove the observed batch effect in batch 136 by
equalizing upper quartiles, medians and lower quartiles for every box in normal data.
In contrast to the adjacent normal data, the variation between the range of the boxes
in tumor data is mostly maintained compared to the original data whereas the formerly
outstanding batch 136 is obviously corrected and boxes are shifted to a similar level
compared to the other batches. Inspection of the number of BE-genes remaining after
BE correction showed that both ComBat and BEclear were able to remove batch effect
and had a similar performance (Figure 4.9).

Nevertheless, we noticed that ComBat has important drawbacks and unwanted effects
which are not present in BEclear. Previously, we mentioned that ComBat cannot handle

5http://www.r-project.org/
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Figure 4.7: DNA methylation data for kidney renal clear cell carcinoma tumor sam-
ples, KIRC. A. Per sample boxplot. Batch 32, which is represented by two samples, has
a batch effect score equal to 0.185 signaling that his data should be corrected. B. The
number of genes belonging to different categories of median differences (mdif) between
genes in the current batch and the same gene in all other batches (as described in the

section ’Batch effect scoring’).
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Figure 4.8: Removing batch effect in BRCA data using ComBat. The previously
observed batch effect in batch 136 was corrected both in A. adjacent normal and B.

tumor data.

batches that only contain a single sample and requires that the data should follow a
normal distribution. More importantly, ComBat adjusts all entries in the dataset even
though not all of them are affected by batch effect.

Especially in the tumor data, which inherently contains more variation, this eventually
could smoothen the data too much and might diminish biological variation to some
extent. In contrast, BEclear leaves all unaffected parts of the data as is and only replaces
batch effected genes in some specific batches by the predicted entry based on the gene
and samples preference. Another artifact, which should be pointed out, is that ComBat
produces many values above 1 and below 0, what should not be the case, because the
distribution of βvalue should stay in the range of [0;1] (Figure 4.10).

For tumor data after BE correction, ComBat produced 261 values above 1 and 6529
below 0. In contrast, BEclear yielded only 32 for every case. But more important is
that the undesired entries generated by BEclear do not exceed the interval [0;1] by more
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Figure 4.9: Comparison of original data, data adjusted by ComBat and data adjusted
by the proposed BE correction method. Shown are the counts for the number of batch
effected genes. A. BRCA adjacent normal and B. BRCA tumor data were used. As a

measure, the number of BE-genes in every single batch was used.

than 0.06 whereas for ComBat those values can be beyond 0.15. In the case of adjacent
normal data only few such cases were observed - ComBat didn’t give any value above
1, whereas BEclear had only 3 entries. However, ComBat returned 37 entries below
0 whereas BEclear had no violating entries in this category. This could be explained
by the fact that ComBat was designed to handle batch effects in gene expression data
whereby the value range is not restricted to stay between 0 and 1. In cases, where most
of the genes are unmethylated, it will shift the data too much towards 0 resulting in
many entries lying below 0 (Figure 4.10 B.). Such problems arise with BEclear much
less often. We finally eliminated this problem by cutting values at 0 and 1.

Another method against which we benchmarked BEclear was Surrogate Variable Anal-
ysis (SVA). Since it still uses ComBat as a correction tool, it has the same drawbacks
as discussed above. When applying SVA to level 3 adjacent normal BRCA data, we
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Figure 4.10: Comparison of ComBat and BEclear with respect to the number of
wrongly predicted entries below 0 or above 1. A. Boxplot of entries which are above
one and come from the batch effect adjusted tumor data. Both ComBat and BEclear
were applied. B. The same as in A showing the number of values below 0. C. Boxplot

of values below 0 of adjacent normal data after correction by ComBat.
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Figure 4.11: Comparison of BEclear, SVA and Functional normalization (minfi
package) with respect to the number of BE-genes still remaining after the correction.

According to this criteria, BEclear was able to outperform the two other methods.

noticed that it was able to remove batch effect to a large extent still preserving variation
in the data, in distinction to ComBat. However, computing the number of BE-genes left
after batch effect adjustment, SVA was outperformed by BEclear (Figure 4.11).

Finally, BEclear was compared to Functional normalization, which was introduced
recently and was designed specifically for 450k methylation array. This method is part
of the minfi package [10] and can work only with level 1 data. Thus following the pipeline
introduced in this package we reached level 3 data and then preprocessed this data as
described in the respective section of the current paper. This method was indeed able
to remove batch effect from the first prospective (Figure 4.12 A), but then the density
of batch 136, the most affected group of samples, still differs from the density of other
batches (p− value = 4.03 · e− 4, Figure 4.12 B).

When counting the number of BE-genes remaining after batch effect correction, func-
tional normalization didn’t reach the performance of BEclear having 1128 BE-genes
(755 out of which identified in the batch 136, the most affect batch) in contrast to 223
BE-genes (20 from batch 136), respectively (Figure 4.11 ). Another important fact we
observed is that almost half (1353 out of 3804) of all human housekeeping genes (HKG)
[56] are affected by batch effect what leads to an increase of the methylation level in the
most affected batch 136. Since generally HKG promoter regions should be unmethy-
lated, we studied their behavior in the adjacent normal BRCA data before batch effect
correction and after applying BEclear or functional normalization (Figure 4.13).

Especially focusing on those 1353 batch affected HKG it is clearly seen that batch 136
is still shifted slightly upwards after functional normalization what is not the case for
BEclear where all the bars have approximately equal first, third quartiles and median.
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Figure 4.12: Results of batch effect adjustment of breast cancer adjacent normal data
using Functional normalization. A. Per sample boxplot B. Density plot. Functional
normalization was able to adjust batch effect well and Fig 11 A looks very similar to

what was obtained after BEclear correction (Figure 4.6B).

4.2.4 Co-methylation and differential methylation

Co-methylation analysis was performed in the same manner as in our previous work [3]
on BRCA data before and after applying BEclear, in order to investigate the impact
of batch effect on the amount of artifacts. Since the data is already preprocessed and
contains promoter region methylation, then only pairwise Pearson correlation and 3 step
filtering are left. Co-methylation analysis was performed for three sorts of data: adjacent
normal, tumor and combination of tumor and adjacent normal data. The number of
tumor samples significantly exceeds the number of adjacent normal samples, hence only
samples coming from the same participants were considered for the combined dataset.
They were matched by TCGA barcodes resulting in 190 samples all together. One of the
filtering steps suggests excluding batch effected genes from the analysis, however this
step was avoided because co-methylation was applied on both kinds of datasets with and
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Figure 4.13: Boxplots of 1353 batch affected housekeeping genes in adjacent normal
breast invasive carcinoma data A. before any batch effect adjustment B. after functional
normalization C. after BEclear batch effect correction. The most affected batch is

marked in red.
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without batch effect. Table 4.4 contains the number of pairs of genes with correlation
higher than 0.75 or lower than −0.75 for different datasets. Clearly, batch effects are
responsible not only for generating false associations between genes with respect to their
methylation levels in different samples, but also for losing a large portion of expected
relationships. This behavior doesn’t depend on the data type and can be observed in
tumor, adjacent normal and combined samples.

Table 4.4: Statistics representing co-methylation results. This table contains the
number of highly co-methylated pairs of genes for three different types of data after

batch effect adjustment and before.

Tumor samples Adjacent
normal samples Combined samples

Total number of pairs
of genes in dataset before
BE correction 115 8206 9592
Total number of pairs
of genes in dataset after
BE correction 112 4517 10616
Number of common pairs
of genes in BE-corrected
and uncorrected datasets 112 4228 8893
Number of pairs of genes
present in corrected dataset
and absent in uncorrected 0 289 1723
Number of pairs of genes
present in uncorrected dataset
and absent in corrected 3 3978 699

Finally, differential methylation analysis between tumor and normal samples was car-
ried out applying Kolmogorov Smirnov test (KS-test) [19, 206, 53, 202] and Significance
analysis of microarrays SAM [195, 116] for 190 combined adjacent normal and tumor
samples. The KS-test returned the list of genes whose distribution in normal samples
differs from the distribution in tumor samples with p− value below 0.01. To verify this
list, SAM was applied independently and only genes returned by both methods were
considered for further analysis. In this way two lists of differentially methylated genes
were generated one for data without batch effect correction and another for data after
applying BEclear. These lists contain 6147 and 6672 genes, respectively, resulting in
616 genes which were present in the data after batch effect adjusting only. Inspecting
these genes one can find genes which are known to play an important role during cancer
development or even have been associated with breast cancer before: NRG4, TUBB,
LPL, BRD2, MYB, RAP2C, SIRT7, MAZ, HRAS, TXN, PPM1D, TP53I3, PARK7,
TP63 [81, 97, 107, 4, 164, 76, 11, 203, 204, 83, 120, 24, 30, 143, 98].

We have shown that batch effect may cause missing differentially methylated genes and
the neglect of batch effect adjustment may generally be a barrier towards discovering
important associations in cancer studies.



Chapter 5

Matched-cohort DNA microarray
divercity analysis of methicillin
sensitive and methicillin resistant
S.aureus isolates from hospital
admission patients

This chapter is based on the publication entitled ”Matched-cohort DNA microarray
diversity analysis of methicillin sensitive and methicillin resistant Staphylococcus aureus
isolates from hospital admission patients” by Ruffing et al. in PLoS One journal (2012)
[174].

Staphylococcus aureus is notorious as a major human pathogen causing invasive disease
such as deep abscess formation, endocarditis, osteomyelitis, and sepsis [126]. The health
care system of the world is challenged by the presence of methicillin-resistant S. aureus
(MRSA). Diverse strains of it have been characterized based on genetic profiles for
healthcare associated (haMRSA), community associated (caMRSA) [72] and also for
livestock associated infections (laMRSA) [99, 100].

A lot of efforts have been put to to associate S. aureus gene profiling [93, 124, 141]
of clonal lineages with either ecological success [178] or clinical disease [80]. However,
genetic traits responsible for rendering a given S. aureus clone are still to be outlined.
the main point to overcome MRSA in medical buildings must be a drastic reduction
of its transmission. This control needs a precise information regarding the source and
spread of nosocomial pathogens.

Yet, this information is limited with regard to prevalent healthcare associated MRSA
strains, as the typically clonal albeit regionally divergent phylogenetic traits of prevalent
isolates [74] often preclude in-depth transmission pattern analyses. Moreover, the lack of
routinely accessible information on the virulence gene equipment prevents any attempt
for differentiated therapeutic or infection control approach as a function of pathogen
equipment [174].

Hygiene management is highly dependent on genotyping of S. aureus. Standardised
and fast methods are needed for effective and fast evaluation of closely related epidemic
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and methicillin resistant S.aureus isolates from hospital admission patients

strains. In this chapter data obtained from a commercially available DNA microar-
ray (IdentiBAC) is compared with standard spa-typing for S. aureus genotyping. A
subgroup of 46 MRSA and matched 46 MSSA nasal isolates were collected within a
state-wide admission prevalence screening in he Saarland University Medical Center.

Author contributions The data collected for these samples was provided to us by
our collaborators Prof. Dr. med. Mathias Herrmann, Prof. Dr. med. Lutz von Müller
and Ulla Ruffing. My task was the bioinformatics analysis of this data except for the
splits graph analysis that was performed by Ulla Ruffing.

Normally spa-typing along with Microarray (MA) are capable to distinguish genetically
diverse MSSA groups. Yet, due to the predominance of CC5/t003 samples in the MRSA
group, a more detailed subtyping is needed for more complex genetic profiles analysis.

The genetic repertoire of the MRSA group is characterized by more virulence genes as
compared to the MSSA group. The standard evaluation of MA results by the original
software into CCs, agr-, SCCmec- and capsule-types was substituted by implementation
of multivariate subtyping of closely related CC5 isolates using three different bioinfor-
matic methods (splits graph performed by Ulla Ruffing, cluster dendrogram, and princi-
pal component analysis). Every of these approaches was applicable for standardized and
highly discriminative subtyping with high concordance. We assumed that the identified
S. aureus subtypes with characteristic virulence gene profiles are presumably associated
also with virulence and pathogenicity in vivo. However, this is to be studied in more
detail in the future.

5.1 Preliminaries

Simplicity and standard processing with the help of easy software tools have made
genomic analysis of the variable X-region of the S. aureus protein A gene (spa) [102, 188]
by single locus sequencing (spa-typing) very popular. However, the discriminatory power
of this analysis has limited abilities in an epidemiological setting. One can use it as a
frontline tool for S. aureus typing exclusively with additional discriminatory markers
as e.g. SCCmec typing, lineage-specific genes or specific gene polymorphisms [188,
43]. Usage of Multilocus sequence typing (MLST) together with DNA macrorestriction
results in even smaller numbers of distinguishable genotypes.

Multiple-locus variable-number tandem-repeat analysis (MLVA) [66, 85, 184] is able to
provide distinction even within similar genotypes. At the same time it includes numerous
steps of sequencing which involve expensive consumables and equipment.

Complete genome analysis with the help of next generation sequencing is being suc-
cessfully applied for outbreak analysis [104] and in the nearest future will still remain
an application for specialized laboratories. When applied to a specific cluster (e.g. the
t003 type) analysis of single nucleotide polymorphism (SNP) is able to further differen-
tiate with a high discriminatory power, yet, in general each SNP probe is unique and
restricted to respective clonal complexes [150].

One promising perspective which provides a reasonable compromise between easy ap-
plications, cost and adequate time limits is a commercial diagnostic DNA-based MA
panel (Alere IdentiBACH StaphyType Microarray [IdentiBAC MA]). Is is specifically
aimed for S. aureus genotyping [139]. This approach consists of the comprehensive
analysis of the S. aureus genome by hybridization to 334 different genetic probes. This
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offers highly reproducible simultaneous analysis of 174 genes distributed over the com-
plete S. aureus genome [134, 135, 51]. Genes which are being analysed can be combined
into lineage specific S. aureus groups: resistance and virulence genes. Consequently, agr-
, capsule- and SCCmec typing as well as a highly accurate discrimination of S. aureus
lineages is implemented [173, 132].

Crude IdentiBAC MA results are available and MA analysis has been applied for a
broad collection of MRSA isolates [134], reporting 34 MRSA lineages and more than
100 different strains in human as well as veterinary isolates.

Here, IdentiBAC MA data is used for the first time in a subgroup of MRSA and
matched MSSA isolates collected within a large, state-wide admission prevalence screen-
ing in the State of Saarland. All isolates of MSSA colonized patients matched based
on gender, age and previous hospital admissions were included as a control group of
patients with similar predisposition and exposition to healthcare associated infections
[174]. MA analysis is augmented with spa-typing for independent lineage attribution,
and results are subjected to advanced bioinformatic analysis. The following questions
are to be answered:

• What is the clonal lineage distribution of MSSA and MRSA isolates across a time
and region-restricted hospital admission screening?

• Can one observe any a difference in the accessory gene equipment of MRSA and
MSSA hospital admission- associated isolates?

• Are there differences between bioinformatics models in respect to phylogenetic lin-
eage delineation?

• Does bioinformatics analysis help to further differentiate between predominant
clones indistinguishable by spa-typing and clonal complex (CC ) attribution?

The next section 5.2 gives further details on data and methods used.

5.2 Materials and Methods

Patients and Clinical Isolates

Clinical isolates were collected in a 4 weeks interval during routine hospital entry
screening from patients with nasal S. aureus colonization admitted to the Saarland
University Medical Center. 6 MRSA isolates and 46 matched isolates of the MSSA
colonized control group were included. Matched controls were selected according to
gender, age (< 70vs. > 70years), previous hospitalizations in general and in the last
6 months (Table 5.1). Criteria were selected to match patients with a similar risk
exposure for community and healthcare associated S. aureus contacts. The study was
approved by the ethic commission of Saarland (registration No. 127/10).

Table 5.1: Risk factors of MRSA and matched MSSA control group isolates.
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Risk factors MRSA, n (%) MSSA, n (%) p− value
Male 18 (39.13%) 18 (39.13%) ∗
Female 28 (60.87%) 28 (60.87%) ∗
< 70years 24 (52.17%) 24 (52.17%) ∗
> 70 years 22 (47.83%) 22 (47.83%) ∗
Hospitalisations < 6 months 21 (45.65%) 21 (45.65%) ∗
Inter-hospital transfer 5 (10.64%) 1 (2.17%) ns
Previous MRSA colonization 3(6.52%) 1(2.17%) ns
MRSA contacts 8(17.39%) 4(8.70%) ns
Long-term care 11(23.91%) 2(4.26%) 0.014
Retirement home 3(6.52%) 0(0.00%) ns
Diabetes mellitus 9(19.57%) 8(17.39%) ns
Antibiotic therapy 21(45.65%) 8(17.39%) 0.007
Dialysis 3(6.52%) 0(0.00%) ns
Medical devices 8(17.39%) 0(0.00%) 0.006
Skin lesions 6(13.04%) 2(4.26%) ns

Spa-typing

DNA of clinical isolates was prepared by boiling (95 ◦ C for 10 minutes) followed by
amplification of the polymorphic X region of the protein A gene (spa) using standard
primers spa-1113f (5’ TAA AGA CGA TCC TTC GGT GAG C 39) and spa-1514r (5’
CAG CAG TAG TGC CGT TTG CTT 39). Before sequencing (ITseq, Kaiserslautern,
Germany) the PCR product was digested by Exo- SAP ITH (Affymetrix, Cleveland,
United States) at 37 ◦ C (15 minutes), and the reaction was terminated at 80 ◦ C (15
minutes). Sequences were assigned into spa-types using the Ridom StaphType software
version 2.1.1 and BURP algorithm (Ridom GmbH, Münster, Germany), as described
previously [79].

DNA Microarray-based Genotyping

DNA extraction and hybridization to the IdentiBAC MA (Alere Technologies GmbH,
Jena, Germany) was performed as described in the manufacturers instructions [14, 137]
. In brief, genomic DNA was purified using the cell lysis components of the assay in
combination with DNeasy blood and Tissue kit (Qiagen, Hilden, Germany). The test
principal is based on a linear multiplex primer elongation using one primer for every
single target and DNA labeling by incorporation of biotin-16-dUTP. Following DNA hy-
bridization, microarray probes were washed, then horseradish- peroxidase-streptavidin
precipitation reaction was performed resulting in visible grey spots in case of a positive
reaction. Spot signals were recorded, and automatically analyzed using the designated
ArrayMate reader and the corresponding software (Iconoclust, Alere Technologies) [14].
As result, the MA readings of 334 target sequences corresponding to 174 distinct genes
were classified into species markers, genes encoding virulence factors, microbial surface
components recognizing adhesive matrix mol- ecules (MSCRAMMS), antimicrobial re-
sistance genes or SCCmec-, capsule- and agr- typing markers. As part of the IdentiBAC
MA results in conjunction with the Iconoclust analysis, array profiles are attributed to a
specific clonal complex (CC) and sequence type (ST) based on a proprietary algorithm
provided by the manufac- turer. Similarly, SCCmec types are attributed as a result of
array signals obtained.

Splits Graph Construction
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A network tree was constructed by splits graph analysis (SplitsTree 4.11.3 software,
www.splitstree.org) which was automatically linked to spa-typing results based on
the computed export cost/distance matrix using the BURP algorithm of the Ridom
StaphType software. The microarray results were imported directly into SplitsTree
software 4.11.3 [91], and analyzed on default settings (characters transformation, uncor-
rected P; distance transformation, Neighbour-Net; and variance, ordinary least squares).

Cluster Dendrogram Construction

Phylogenetic-like analysis of microarray hybridization pattern profiles was performed
using R (version 2.13.1, http : //www.r − project.org/) in conjunction with Biocon-
ductor packages [68]. First, the data were preprocessed by removing all gene IDs
containing ambiguous results. Afterwards, genes can only be present (1’) or absent (0’)
in a particular sample. Next, the Euclidean distance matrix was computed to measure
the similarity of gene hybridization profiles in different samples using the dist function
in the software package ”Stats R, version 2.13.1). Finally, a cluster dendrogram was
constructed employing the hierarchical agglomerative clustering method and using by
the hclust function in ”Stats” that is based on Wards method [162, 161].

Principal Component Analysis

As a multivariate analysis, principal component analysis (PCA) was carried out for S.
aureus MA results to reduce the dimensionality of the MA data, and to identify groups
of correlated variables. PCA characterizes the degree of variability (variance) observed
among the detected genes. It combines the data for individual genes into so-called
principal components (PCs) that are ordered according to the magnitude of variance
observed in the data. Projecting the full data set onto the first few PC vectors showing
the largest variance then allows a powerful reduction of data without loosing much
information. The same preprocessed data was used as in the clustering analysis. PCs
were computed by the R function prcomp in package ”stats” with default parameters and
the options retx = TRUE, center = TRUE and scale = FALSE). By definition, the first
principal component is the particular linear combination of gene hybridization profiles
that contains the largest variation in the data. The second PC is the linear combination
of the hybridization profiles that explains the largest variation after removing the first
PC and so on. Here, only the first two PCs were considered for the present analysis.

Statistics

Statistical evaluation was done by non-parametric tests using Fishers exact test.

5.3 Results

Patients and Clinical Isolates

Patient characteristics were matched between the MRSA and the MSSA group for the
selection criteria (sex, age, previous hospitalizations) whereas significant differences were
found between groups for history of long-term care, previous antibiotic therapy, dialysis
and the presence of medical devices (Table 5.1).

spa-typing

The 46 MRSA isolates were assigned to 13 different spa-types (Table 6.1). The predom-
inant MRSA spa-type was the epidemic strain t003, Rhine-Hesse (29, 63%). A higher
diversity was uncovered among the 46 MSSA-isolates classified into 33 different spa-types
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Figure 5.1: Diversity analysis of all MSSA (S1S46) and MRSA (R1R46) isolates
by splits graph. (A) Splits graph constructed based on cost distance matrix pro-
duced by Ridom StaphType and (B) on default settings of the IdentiBAC microar-
ray hybridization profiles of 334 genes and alleles. Clonal complexes (CC) as well
as the most abundant spa-types t003 (circles) and t012 (quadrates) were highlighted.

doi:10.1371/journal.pone.0052487.g001

with the most common MSSA spa-types being t012 (6, 13%) and t015 (5, 10.9%). For
MSSA, spa-typing allowed for good discrimination of patient isolates which was shown
here by splits graph analysis; however, the majority of MRSA isolates clustered into
CC5/t003 which hampered sub-classification by spa-typing (Figure 5.1A).

Table 5.2: Differences of spa-types and clonal complexes in MSSA and MRSA isolates.
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Clonal complex Spa -type MRSA, n (%) MSSA, n (%)

CC1 t8864 1 (2.17%) 0 (0%)
CC5 t003 0 (0%) 29 (63.04%)

t504 0 (0%) 4 (8.70%)
t010 0 (0%) 2 (4.35%)
t002 1 (2.17%) 1 (2.17%)
t045 0 (0%) 1 (2.17%)
t481 0 (0%) 1 (2.17%)
t493 1 (2.17%) 0 (0%)
t887 0 (0%) 1 (2.17%)
t1079 0 (0%) 1 (2.17%)
t3195 0 (0%) 1 (2.17%)

CC7 t091 2 (4.35%) 0 (0%)
CC8 t008 1 (2.17%) 2 (4.35%)
CC15 t084 2 (4.35%) 0 (0%)

t018 1 (2.17%) 0 (0%)
t306 1 (2.17%) 0 (0%)
t8786 1 (2.17%) 0 (0%)

CC22 t005 1 (2.17%) 0 (0%)
t022 0 (0%) 1 (2.17%)
t310 1 (2.17%) 0 (0%)
t625 1 (2.17%) 0 (0%)

CC30 t012 6 (13.04%) 0 (0%)
t019 1 (2.17%) 0 (0%)
t273 1 (2.17%) 0 (0%)
t584 1 (2.17%) 0 (0%)
t8831 1 (2.17%) 0 (0%)

CC45 t015 5 (10.90%) 1 (2.17%)
t026 1 (2.17%) 0 (0%)
t040 1 (2.17%) 0 (0%)
t050 1 (2.17%) 0 (0%)
t073 1 (2.17%) 0 (0%)
t339 1 (2.17%) 0 (0%)
t620 1 (2.17%) 0 (0%)
t1689 1 (2.17%) 0 (0%)
t2239 1 (2.17%) 0 (0%)

CC78 t8863 1 (2.17%) 0 (0%)
CC97 t267 3 (6.62%) 0 (0%)

t131 1 (2.17%) 0 (0%)
t8831 1 (2.17%) 0 (0%)

CC101 t4044 1 (2.17%) 0 (0%)
CC398 t011 0 (0%) 1 (2.17%)

t571 1 (2.17%) 0 (0%)
unknown t078 1 (2.17%) 0 (0%)

Clonal Complex Affiliation

Upon application of the original MA evaluation software (Iconoclust, Alere Technolo-
gies), isolates could be assigned to MLST clonal complexes (CCs) based on the hy-
bridization profiles, except for two untypable MSSA isolates (S19, S27) (Figure 5.1B).
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The MRSA isolates clustered into only five different CCs, while MA analysis of MSSA
revealed twelve different CCs. MRSA isolates were dominated by CC5 (41, 89.1%)
whereas the predominant MSSA types were found to be CC45 (12, 28.6%) and CC30(10, 23.8%).
Isolates of CC5, CC8, CC22, CC45 and CC398 were found both in the MRSA and the
MSSA group, whereas CC30, CC15, CC97, CC7, CC1, CC78 and CC101 were present
only in the MSSA group. CCs attributed to the MRSA group only were not found.

Analysis of Gene Equipment

Microarray results of MRSA and MSSA isolates were analysed for individual genes
associated with e.g. antibiotic susceptibility, toxin production, adhesion and immune
evasion. An overview of the most relevant genes in the investigated isolate cohort was
provided for MRSA as compared to MSSA (Figure A.1) Appendix A.

Genes respectively gene components which were not detected in any cohort isolate were
not displayed (ermB, mefA, mph(C), vat(A), vat(B), vga, aphA3, sat, dfrS1, far1, cat,
fexA, cfr, vanA/B/C, mercury resistance locus, qacA/C, seb,sef, she, seq, PVL, lukM,
etB, edinA/D, splE, vwb, Q2YUB3) as well as allelic variants (vga, lukF, lukS, lukY,
hlIII, aur, map, sdrC, sdrD, vwb, sasG, isaB, mprF, ImrP). For more detailed analysis
of selected gene profiles of individual isolates we refer to the supporting information
(Table S1). Appendix A

Agr-typing

All CC5 isolates (n = 41, 89.13%) affiliated with agrII (accessory gene regulator type
II). The remaining 5 MRSA isolates of CC8, CC22, CC45, CC398 (10.9%) as well as
MSSA of CC7, CC22, CC45, CC97, CC101, CC398 (n = 26, 52.2%) were associated
with agrI, 12 MSSA isolates of CC1, CC30, CC78 with agrIII (26.1%) and 7 isolates of
CC5 and CC15 with agrII (15.2%). The agr type of three MSSA isolates could not be
determined using MA.

SCCmec Typing

SCCmec types were identified based on hybridization patterns. Corresponding to the
predominant clonal complex of the MRSA isolates all except four isolates of CC5 (37 of
41, 90.2%) comprised a SCCmec-cassette of type II. Isolates of the CC8 (n = 2), CC22
(n = 1), CC45 (n = 1) and one isolate of CC5 harbored the SCCmec type IV while
the CC398 isolate were characterized by SCCmec type V. The SCCmec types of three
isolates could not be determined by MA. Resistance Genes MRSA isolates were defined
and characterized by the detection of mecA in the SCCmec cassette. 39 MRSA isolates
(84.8%) and also 29 (63.0%)MSSA isolates were positive for the β − lactamase operon
(blaZ, blaI, blaR). 43 (93.5%) MRSA yet only 20 (43.5%) MSSA isolates carried fosB, a
putative marker for fosfomycin and bleomycin resistance (p < 0.001); the detection of the
fosB gene was limited to CC5, CC8, CC15, CC30, CC101. The macrolide, lincosamide
and streptrogramin (MLS B ) resistance gene ermA was detected with significantly
higher rates in the MRSA (41, 89.1%) as compared to the MSSA group (3, 6.5%)
(p < 0.001). Only one (2.2%) MSSA isolate was positive for ermC. The aminoglycoside
resistance gene aadD was detected more frequently in MRSA (27, 58.7%) than in MSSA
isolates (1, 2.2%) (p < 0.001). Most isolates (84/92 [91.3%]) carried the unspecific efflux
pump gene (sdrM, formally tetEfflux ) which was equally distributed among MSSA and
MRSA isolates. The tetracycline resistance gene tet(K) was detected in only one MRSA
(2.2%) and two MSSA (4.3%) isolates, respectively.

Virulence Genes
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Panton-Valentine leukocidin (pvl) genes (lukF/S-PV) were not detected in the total
study cohort. Only 9/46 (19.6%) MSSA isolates were tst1 (toxic shock syndrome toxin)
positive, most of them clustering into CC30 (8,17.4%). The genetically linked leukocidin
components (lukD and lukE as well as lukS, lukF and hlgA) were found more frequently
in MRSA than in MSSA (p < 0.001).

Among the haemolysin gene family, high abundance was detected among MRSA and
MSSA for hla, hlb, hld and hlIII, whereas differences between groups were detected for
hlb (p < 0.001).

The immune evasion gene cluster of sak (staphylokinase), chp (chemotaxis-inhibiting
protein), or scn (staphylococcal complement inhibitor) was abundantly found both in
the MRSA and the MSSA group. Hybridization signals for exfoliative toxin etA, etB,
etD and epidermal cell differentiation inhibitor edinA, edinB, edinC genes were detected
only in a minority of strains.

The enterotoxin gene cluster (egc comprising seg, sei, sem, sen, seo, seu) was fre-
quently identified both in MRSA (43/46, 93.5%) and MSSA (29/46, 63%) (p < 0.001),
yet, the gene cluster was restricted to isolates of CC5, CC22, CC30, CC45. Enterotoxin
genes sea, sed, sej and ser were significantly more frequent in the MRSA group while
all isolates were negative for seb, sef, sek and seq . Interestingly, the 16 isolates of CC7,
CC15, CC78, CC97, CC101 and CC398 (one MRSA and 15 MSSA) did not contain any
hybridization signal for enterotoxin genes.

The serineprotease genes, splA and slpB, were predominantly found in the MRSA
group (p < 0.001), and this gene cluster was restricted to clonal complexes CC1, CC5,
CC7, CC8, CC15 and CC97. The aureolysin gene (aur) was detected in 43 MRSA
(93.5%) and 30 MSSA isolates (65.2%) (p < 0.001). Other protease genes such as
sspA (glutamylendopeptidase), sspB and sspP (staphopain B and A) were detected in
the entirety of isolates tested. The ACME gene cluster, which had been brought to
attention during analysis of caMRSA outbreak strains, was found in our population in
the ST5-MRSA-II group (3, 6.5%).

Microbial surface components recognizing adhesive matrix molecule genes (MSCRAMM)
comprising cna (collagen-binding adhesin), sasG (S. aureus surface protein G), vwb (van
Willebrand factor binding protein) and fib (fibrinogen binding protein) are abundantly
expressed, however, with higher proportions of cna positive isolates in the MSSA group,
and higher rates of fib, sasG and vwb in the MRSA group. Other MSCRAMM genes such
bbp (bone sialoprotein-binding protein), clf A (clumping factor gene A), clf B (clump-
ing factor gene B), ebh (cell wall associated fibronectin-binding protein), eno (enolase
binding protein), ebpS (cell surface elastin binding protein), fnbA (fibronectin-binding
protein A) and sdrC (serine aspartate repeat fibrinogen binding protein) were found in
the majority of strains without clear association to the methicillin resistance profiles.

As expected, the most obvious genetic differences in the highly abundant CC5 MRSA
group (bla-operon, aadD, sea, sed, sej, ser, hlb and chp) were associated with altered
mobile genetic elements. More detailed characteristics of individual isolate in respect to
spa-type, repeat succession, CC, SCCmec-type, agr -type, toxin profile, resistance profile,
strain assignment and relation analysed by hierarchical cluster dendrogram was shown
in the supporting information (Figure A.1) Appendix A.

Microarray and spa-type Based Subclassification of CC5 Isolates

Most MRSA isolates were attributed to a genetic group of healthcare associated strains
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Figure 5.2: Subclassification analysis of 41 MRSA (R1R41) and two MSSA (S42, S43)
of CC5. (A) Splits graph based on cost distance matrix computed by Ridom StaphType
software. (B) Splits graph based on MA hybridization profiles. Characteristic gene
profiles for isolate cluster assignment were arbitrarily stated into group A-E. The most
common MRSA spa-types t003 (circles), t504 (quadrates) and t010 (hexagons) were

highlighed. doi:10.1371/journal.pone.0052487.g002

clustering into the CC5 (41, 89.1%). Except for two isolates of unidentified strain assign-
ment, all isolates of CC5 referred to ST5-MRSA-II. This phylogenetically related and
epidemiologically important CC5 was then selected for more detailed subtyping using
MA hybridization as compared to classical spa-typing. A more detailed subtyping of
spa-sequence data beyond the spa- type level was not possible as was demonstrated by
splits graph distance matrix analysis (Figure 5.2A).

Using the standard IdentiBAC MA software, subtyping of the MA results was not
straight-forward. Instead, three alternative bioinformatics methods were found to be
very helpful in subdividing genetically related strains by analysis of comprehensive ge-
netic signatures determined by the MA. Results obtained by splits graph analysis (Figure
5.2B), cluster analysis using dendrograms (Figure 5.3), and principal component analy-
sis (PCA) based on MA hybridization signals were evaluated (Figure 5.4). Splits graph
of the MA results allowed subclassification of the 41 CC5 isolates into 5 different clusters
(A- E), including subclassification of spa-type t003 and of both t010 isolates. Interest-
ingly the t504 isolates with regional cumulation clustered exclusively into the subgroup
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Figure 5.3: CC5 isolates (n = 43) characterized by spa -typing and comprehensive
MA subgroup analysis using three different bioinformatic modes (principal component
analyses, splits graph and cluster dendrogram). doi:10.1371/journal.pone.0052487.g003
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Figure 5.4: Principal component cluster analysis (PCA) of 41 MRSA (R1R41)
and two MSSA (S42, S43) of CC5. (A) Clustering of the 43 CC5 isolates by
PCA as well as (B) subclustering of 30 MRSA CC5 cluster I isolates using a
higher resolution PCA plot for in-depth identification of additional subgroups (IaId).

doi:10.1371/journal.pone.0052487.g004

B. Clusters A (kdp negative), C (ACME locus positive) and D (b-lactamase negative)
were characterized by indicated specific genetic groups, whereas the genetic repertoire
of cluster B and E was more heterogeneous. Cluster dendrogram of CC5 isolates re-
vealed similar subclustering as compared to splits graph analysis except for few isolates
(R1, R2, R11, R15, R16, R17). All CC5 cohort isolates were agrII and the majority of
CC5 isolates with MRSA resistance profile were SCCmec type II positive strains of the
Rhine-Hesse clone (95%). Using PCA, 39 CC5 strains (90.9%) could be discriminated
in two major clusters; additionally, four singleton isolates without clustering were found
(9.1%) (Figure 5.4 A).

For more detailed information, the predominant cluster I (30 isolates) could be subdi-
vided by focused PCA into four different subclusters (Ia-Id) (Figure 5.4 B) resembling
similar subtypes as compared to splits graph and cluster analysis (Figure 5.3).

5.3.1 Discussion

In the present single centre study, the novel IdentiBAC MA platform was applied to the
genotypic characterization of matched nasal methicillin sensitive and resistant S. aureus
isolates collected upon patient admission to a tertiary care university hospital. We
could demonstrate that within the colonizing MSSA population tested, a large diversity
of CCs was found in contrast to MRSA isolates with limited numbers of CCs and over-
representation of CC5/t003. Low lineage diversity in the MRSA in contrast to the MSSA
group was found very similarly also in clinical setting e.g. in cystic fibrosis patients [200].
Despite limited number of isolates the IdentiBAC MA revealed significant differences in
the genetic repertoire of MRSA vs. MSSA isolates. Genetic differences were found to
be distributed among various types of gene families including antimicrobial resistance
genes, agr types and capsule type. In the present study the MRSA population was
characterized by a significantly higher abundance of virulence genes attributed to the
leukocidin, enterotoxin, haemolysin, protease and adhesion gene families, whereas only
few single virulence genes (tst, entL and cna) were found more frequently in the MSSA
group. Certainly, the genetic profile of the MRSA group was dominated by the genetic
repertoire of one single epidemic MRSA clone (Rhine-Hesse); however, it may be also
hypothesized that the Rhine-Hesse virulence gene repertoire was relevant for epidemic
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spreading of this successful epidemic MRSA clone. Of note, all isolates tested in this
study were of commensal nature precluding association of virulence gene equipment with
disease, yet, MA may become a regular diagnostic tool if specific clinical features could
be associated with virulence gene patterns in subsequent studies.

In this study, it was demonstrated for the first time that evaluation of the raw Iden-
tiBAC MA hybridization data by three independent bioinformatic methods allowed
for in-depth phylo- genetic MRSA isolate typing even beyond the prevalent CC5/t003
MRSA genotype. Poor diversity of MRSA with predominance of CC5 isolates could be
assumed as a limitation of this study; however, discrimination of these closely related
strains is the most important challenge for analysis of healthcare-associated MRSA iso-
late cohorts obtained from geographically confined studies. In fact, it is the challenge for
MA as a new alternative to established typing systems to overcome these limitations.
Spa-types and MA results were clustered into the same CCs; however, subclustering
of the spa-types into STs [189] and also MA associated subtyps was not compelling.
While genetic signatures of MA allow direct assignment to CCs and STs an assignment
to spa- types cannot be achieved due to the heterogeneous genetic repertoire in the same
spa-type. Single run IdentiBAC MA analysis in conjunction with appropriate software
tools may now answer detailed questions both of epidemiologic as well as of infection
control character.

Splits graph analysis by neighbor joining clustering, cluster dendrogram using hier-
archical agglomerative clustering and also principal component analysis (PCA) formed
very similar sub- groups of the closely related CC5 isolates. In general, for more detailed
strain assignment it has to be amended that a clearcut nomenclature discriminating
strains and clones is still missing. In the present study, the CC5 subgroups characterized
by a different lineage specific accessory gene repertoire were arbitrarily named group A-
E. These predominant subgroups differed for specific gene families encoding b-lactamase
resistance (blaZ/blaI/blaR) [77], the arginine catabolic mobile element (ACME) [46],
the K+ -transporting ATPase A-C chain, or the sensor histidine kinase, i.e. the kdp
operon [209]. ACME positive ST5-MRSA-II isolates have been identified before also
in Hong Kong and USA (California) which could be the base for new clone/substrain
assignment by MA analysis. MRSA strains of the same CC can be attributed to charac-
terized epidemic strains based on the presence/absence of characteristic genes. Thereby,
the highly abundant toxic shock gene (tst) negative ST5-MRSA-II isolates were iden-
tified as Rhine-Hesse clone [136] whereas the CC8- MRSA-IV isolates were attributed
to the Lyon clone [112] due to their carriage of enterotoxin A (sea) with or without
sed/sej/ser. The tst positive New-York Japan clone [96] of ST5-MRSA-II.

was not detected in our population. By implementation of MA into routine diagnostics
more detailed subtyping with elaborate techniques as e.g. whole genome sequencing can
be restricted to few closely related isolates with identical MA profiles clustering in the
same genetic subgroup. Differences in characteristic gene families could result in altered
metabolism and biologic activity.

However, there is still limited evidence that genetically different subgroups may act
differently according to S. aureus virulence in vivo. Additionally, also single nucleotide
mutations beyond the resolution of the MA may influence the biologic behaviour of S.
aureus strains which remains undetectable by MA [213]. Correlation between genotypic
variants and clinical pheno- type remains to be confirmed in future clinical studies.

While splits graph and cluster dendrogram evaluation are abundantly used for phylo-
genetic analysis [40], PCA is a dimension reduction model becoming popular in recent
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years for genome-wide association studies. Thereby most of the original variability in
the data can be retained without organizing them in a hierarchical format.

Comparing the three independent bioinformatic methods, a very similar sub-clustering
of closely related CC5 isolates was demonstrated although each model may have its spe-
cific strengths for clinical application [149]. The optimal choice between the three
methods may indeed depend on the number of samples to be visualized and on the
degree of diversity. For example, PCA enables a direct simple overview of an almost
unlimited amount of isolates as shown here in the 2-dimensional graph. However, simple
assignment of each point in the graph to the corresponding isolate is difficult in the case
of densely overlapping samples. On the other hand, cluster dendrogram analysis reveals
a more detailed isolate relationship with direct assignment of each isolate to the corre-
sponding subgroup. Yet, this representation is most useful for sample sizes of less than a
hundred. In the present case, splits graph analysis appeared to be most appropriate for
diversity analysis during routine diagnostics due to ease-of-applicability, open- source
software tools and direct assignment of each isolate to the branched subgroups in the
2-dimensional graph. For future application of MA as an internationally accepted diag-
nostic tool it is important that a common standardized database-associated software tool
is implemented independent of universally applicable bioinformatic tools investigated in
the present study.

In conclusion, the present matched control study demonstrated a high genetic diver-
sity for MSSA, either directly by spa-typing or by MA. However, differentiation of the
predominant epidemic CC5 MRSA isolates was limited for spa-typing whereas detailed
subtyping was achieved by bioinformatic-assisted MA analysis. The IdentiBAC MA
could fulfil a number of criteria required for a new standard test for S. aureus typing
including standardisation, ease of performance, low turn-around time (< 24hours), ap-
propriate costs and superiority to established typing methods as was shown here for
spa-typing. Based on the IdentiBAC MA concept, and as goal for the future devel-
opment, standardized and easily applicable software tools based on the bioinformatic
approaches with set highly differentiated strain assignment would then allow for com-
prehensive strain differentiation and global data exchange.



Chapter 6

Community-Acquired
Staphylococcus aureus Isolates
From Various Sub-Saharan
African and German regions:
Clonal Cluster Analysis Reveals
Significant Differences by
Geographical Origin and Clinical
Significance

This chapter is based on a manuscript resulting from a collaborative project funded
through the DFG-Africa initiative. Our project partners Prof. Dr. med. Mathias
Herrmann, Prof. Dr. med. Lutz von Müller and Ulla Ruffing were responsible for
sample collection and generation of experimental data. My task was to process the data
from the Alere IdentiBAC chip. The manuscript was written in collaboration with Prof.
Dr. med. Mathias Herrmann and Ulla Ruffing.

In developing and emerging countries limitation of molecular, pathogenicity and epi-
demiologic data of pathogens as S. aureus is a great challenge [33, 73, 78]. Many
African studies demonstrate the frequency, resistance profile and higher mortality asso-
ciated with S. aureus diseases in comparison to developed countries [148]. But there are
only a limited number of publications available of S. aureus prevalence, genotype as well
as of PVL prevalence [2, 69]. This is the situation particularly for the Central African
region in comparison to other African regions where more data becomes available.

Recent studies demonstrate that S. aureus is one of the most often isolated bacteria of
infections in Sub-Saharan Africa [6, 144], that community-acquired S. aureus bacteremia
(9.5%) could be seen more often than meningococcal sepsis (1%) and that it could be
identified as one of the leading causes of bacteria sepsis in Nigeria [151, 196, 166].
Altogether publications with the focus on community acquired CA-MRSA and CA-
MSSA in Africa including one multicentre study comprises only small isolate numbers
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[57, 69, 175, 163]. Available African and international multicenter studies including a
limited number of African isolates are performed using different molecular techniques
as spa-typing, Multilocus sequence typing (MLST) and pulse-field-gel-electrophoresis
(PFGE). A multicenter study comparing molecular and epidemiologic data based on the
same identical technique of different African and European isolates of equal numbers for
comparison of local and international clone distribution was not performed till yet.

Community acquired MRSA is defined as any infection diagnosed in an outpatient or
within 48h of hospital admission not fulfilling any of the following risk factors of HA-
MRSA: haemodialysis, surgery, and residence in a long term care facility or treatment
during the last year, presence of a permanent catheter or percutaneous device or previous
isolation of MRSA. The hospital environment still is a risk factor for S. aureus carriage
and nosocomial infections but an increasing number of S. aureus infections are caused
by community-associated strains [34, 157]. This means that the known differences of
the established clonal structures are burring too. Differences of clonal lineages of S.
aureus could be influenced by their localization isolate of an asymptomatic healthy
volunteer or from a patient infection site as well as by their geographic origin [74]. But
little is known about the population structure and geographical abundance of methicillin
susceptible S. aureus (MSSA) as genetic MRSA reservoir in the African as well as in
the German community.

In this multicenter study three African and three German study sites collected 1200
African and German community acquired S. aureus with the aim of the analysis and
comparison of their molecular characteristics and clonal structure based on one identical
molecular method (DNA microarray, Alere). Thereby carriage isolates of healthy volun-
teers and infection site isolates of patients without previous clinical contact for further
analysis of isolate source dependent gene associations were discriminated.

6.1 Material and Methods

Study design and participants. In this prospective cohort study of the German-
African network on staphylococci and staphylococcal disease (DFG PAK 296) 1200
community-associated isolates were collected in three African (Lambarn, Gabon; Dar-
es-Salaam,Tanzania; Ifakara, Mozambique) and three German study sites (Homburg,
Saarland; Freiburg, Baden-Wrttemberg; Mnster, Nordrhein-Westfalen) in accordance to
the predefined case-related-forms (CRFs) of the StaphNet consortium to exclude hospital
acquired S. aureus strains. Every study site collected 100 isolates of healthy volunteers
and 100 isolates of clinical infection sites of people without previous clinical contact
during the last half year. The clinical data were compiled with the CRFs and collected
in one database for all 1200 cases.

All isolates were assigned an unique strain identification encoding the study site LG=
Lambarn, Gabon, MM= Manhica, Mozambique, IT= Ifakara, Tanzania, HS = Homburg,
Saarland, MW= Münster, Westfalen, FR= Freiburg, Baden-Württemberg, the strain
origin N= nasal, B= blood culture, O= wound infection and others and its specific
number as e. g. IT-N075.

Ethics approval was obtained from the Ministry of Health and social Welfare of Tan-
zania, Institutional Ethics Committee of the Medical Research Unit of the International
Foundation of Dr. Albert-Schweitzer Hospital (Lambarn, Gabon), Comit nationale de
Biotica para a saud (Manhia, Mozambique), ethics committee of the medical association
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and medical department of the Westfälische Wilhelms-University (Münster, Nordrhein-
Westfalen), ethics committee of the medical department of the Albert-Ludwigs-University
(Freiburg, Baden-Wrttemberg) and the ethics committee of the medical association of
the Saarland (Homburg, Saarland). A written informant consent was received from all
study subjects or their legal guardians.

Isolate collection and microbiological methods. Nasal swabs were collected
using nasal swabs of healthy volunteers with no clinical contact during the last half
year. Strains from infections sites were collected in the different health institutes of
the six study sites according to standard procedure and methods. Nasal swabs and
infection sites strains were cultured using standard methods. Isolates were identified by
colony morphology on sheep blood agar, catalase test, latex test Pastorex[TM ] Staph-
Plus-Latex Test, Bio-Rad, Marnes-la-Coquette/Frankreich) and identity confirmation
by Maldi-TOF (BRUKER Daltonics).

According to the Kirby-Bauer-method disk diffusion tests were performed for peni-
cillin, cefoxitin, tetracycline, erythromycin, clindamycin, gentamycin, chloramphenicol
and cotrimoxazol, MICs were determined by E-Test for cefoxitin, clindamycin, linezolid,
vancomycin, daptomycin and tigecyclin (CLSI, M100-S16, 2006); furthermore inducible
clindamycin resistance was carried out by performing D-test using (CLSI, M100-S16,
2006) criteria.

DNA microarray-based genotyping and MLST. DNA extraction and hybridiza-
tion to the IdentiBAC MA (Alere Technologies GmbH, Jena, Germany) was performed
as described in the manufacturers instructions in combination with DNeasy blood and
Tissue kit (Qiagen, Hilden, Germany) [139, 137]. The test principle is based on a linear
multiplex primer elongation using one primer for every single target and DNA labeling
by incorporation of biotin-16-dUTP in the approximately 40-fold DNA amplification.
DNA hybridization microarray probes were washed and then horseradish-peroxidase-
streptavidin precipitation reaction was performed resulting in visible grey spots in case
of a positive reaction. Spot signals were recorded and automatically analyzed using the
designated ArrayMate reader and the corresponding software (Iconoclust, Alere Tech-
nologies) [139]. In conjunction with the Iconoclust analysis, array profiles are attributed
to a specific clonal complex (CC) and sequence type (ST) based on a proprietary al-
gorithm provided by the manufacturer. Similarly, SCCmec types are attributed as a
result of array signals obtained. Multilocus sequence typing (MLST) was performed for
samples without CC assignment by the DNA microarray as published previously [58].

CC assignment confirmation and Statistics. Correctness of the CC identification
by DNA-MA was confirmed by next generation sequencing (NGS) of 160 representative
samples. DNA purification (MagAttract HMW DNA Kit (Qiagen, Hilden, Germany)
and NGS (MiSeq, Illumina, San Diego, USA) was performed according to manufacturers
instructions. Obtained reads were de novo assembled using the velvet assembler imple-
mented in the software SeqSphere+ (version 2.0, Ridom GmbH, Mnster, Germany) with
a minimum coverage of 5 and an aspirated mean coverage of 100. Short reads <200 nu-
cleotides were excluded. The multilocus sequences typing sequence types (MLST ST)
were inferred from the data according to a WGS adapted scheme of Enrights method [58]
[PMID:10698988] including an up-to-date comparison with the online MLST database
www.mlst.net using SeqSphere+.

Exemplars were defined by Affinity propagation. Affinity propagation is a clustering
algorithm that has as input measures of similarity between pairs of data points (e. g.
isolates with DNA microarray data) and simultaneously considers the whole data points
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as potential exemplars out of the collection. An exemplar is a member (e. g. isolate) of
the data input (isolate and its genotype data) which is representative for a cluster (e.g.
group of isolates).

Principal component analysis (PCA) was performed to represent the isolates geno-
type in a two-dimensional graphical space. PCA reduce the dimensionality of the MA
data and identified groups of correlated variables. Multivariate analysis (Kolmogorov-
Smirnoff test) was used to determine genotypic differences of isolate clusters defined by
(PCA) (Figure 6.4).

All comparisons were statistically analyzed by Chi-Square test using Graph pad (on-
line tool); differences yielding statistical significance (p < 0.05) were annotated (not
shown). A correction for multiple testing was not employed. Multivariate and principal
component analysis was performed with the software R, version 3.2.0.

Silhouette analysis. The silhouette plot based on KMeans clustering displays a measure
of how close each point (sample) in one cluster is to points (isolates) in the neighbouring
clusters and thus provides a way to assess parameters like a number of clusters visu-
ally. It is a method to measure the strength of clusters or how well one element was
clustered. The measure has a range of [-1, 1]. The silhouette analysis was performed
to determine the number of different isolate clusters in the PCA. Silhouette coefficients
(as these values are referred to as) near +1 indicate that the sample is far away from
the neighbouring clusters. A value of 0 indicates that the sample is on or very close to
the decision boundary between two neighbouring clusters. Negative values indicate that
those samples might have been assigned to the wrong cluster.

6.2 Results

Patients and isolates characteristics. A total of 600 nasal and 600 clinical associated
isolates were included; each study site collected 100 nasal isolates from healthy volunteers
and 100 isolates from patients from clinically significant specimens, positive samples
taken ≤ 48h of admission (including at transferring hospital).

The patients characteristics are summarized in Table 1.

Table 6.1: Differences of spa-types and clonal complexes in MSSA and MRSA isolates.
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Africa Germany Commensal P Africa Germany clinical P

Total 300 300 300 300
From blood culture na na 29 50
From clinically material
other than blood na na 271 250
Median age (range) 17 (0-71) 23 (0-89) 0-71 0-98
Female 167 (56%) 150 (50%) 0.1907 144 (48%) 112 (37%) 0.0104
Patient history
- hospitalization last 6 months 0 14 (5%) 0.0001 29 (10%) 128 (43%) 0.0001
- close health care contact last 30 days na na na 36 (12%) 94 (31%) 0.0001
- nursing home 0 0 1 2 (>1%) 2 1
- tuberculosis last 6 months: na na na 4 (1%) 0 0.1237
- antituberculous drugs last 4 weeks 0 0 1 1 (>1%) 0 1
- including rifampin 0 0 1 1 (>1%) 0 1
- antibiotics last 4 weeks 0 0 1 55 (18%) 78 (26%) 0.0304
McCabe-Jackson underlying disease prognosis
- rapidly fatal 0 0 10 11
- fatal within the next few years 0 1 5 47
- not expected to be fatal within the next 4 years 5 8 3 110
Comorbidities
- HIV infection 14 0 0.0001 25 0 0.0001
- AIDS 0 0 1 8 0 0.0075
- Myocardial infarction/coronary heart disease 2 4 0.6859 0 37 0.0001
- Congestive heart failure 0 3 0.2487 0 26 0.0001
- Peripheral vascular disease 0 4 0.1237 0 65 0.0001
- Cerebrovascular disease 0 0 1 0 25 0.0001
- Dementia 0 0 1 0 7 0.0151
- Chronic obstructive pulmonary disease 2 0 0.4992 2 17 0.0006

Continued
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Africa Germany Commensal P Africa Germany clinical P

- Connective tissue disease 0 4 0.1237 0 31 0.0001
- Peptic ulcer disease 8 1 2 11 0.0211
- Mild liver disease 0 3 0.2487 0 22 0.0001
OR moderate-severe liver disease 0 0 1 0 7 0.0151
- Diabetes mellitus 0 8 0.0075 4 54 0.0001
OR diabetes mellitus with organ damage 0 1 1 0 15 0.0001
- Hemiplegia 1 0 1 2 4 0.6859
- Moderate-severe renal disease 0 1 1 0 25 0.0001
- Any tumour (within last 5 years) 0 0 1 0 50 0.0001
Lymphoma 0 0 1 0 5 0.0615
Leukemia 0 0 1 0 4 0.1237
Metastatic solid tumor 0 0 1 0 20 0.0001
SAB risk factors
- IVDA 0 0 1 0 7 0.0151
- vascular catheter 0 0 1 1 21 0.0001
- vascular foreign body 0 6 0.0305 0 27 0.0001
- other foreign body 17 19 0.8638 2 70 0.0001
Resistance phenotype
Penicillin 271 181 <0.0001 289 203/279
Cefoxitin 7 2 0.1764 10 21 0.0636
Tetracycline 106 (35%) 4 (1%) <0.0001 145 (48%) 17 (6%) 0.0001
Erythromycin 61 (20%) 46 (16%) 0.1352 56 (19%) 59 (20%) 0.8357
Gentamicin 15 1 0.0004 3 8 0.2222
Choramphenicol 7 1 0.0685 13 3 0.0196
Cotrimoxazole 42 (14%) 0 (<1%) <0.0001 58 (19%) 4 (1%) 0.0001
Inducible clindamycin resistance 48 (16%) 40/207 47 (16%) 14/153
Inducible clindamycin resistance 48 (16%) -19% 47 (16%)

Africa Germany Africa Germany

Continued
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Africa Germany Commensal P Africa Germany clinical P

O (N=271) O (N=250) p-value B (N=29) B (n=50) p-value
Severe systemic disease
Severe sepsis 3 (1%) 3 (1%) 1 15 (52%) 16 (32%) 1
Septic shock 1 1 1 1 (3%) 4 (8%) 0.3729
Clinical site(s) of infection
- superficial [skin and skin structure] 184 (68%) 133 (53%) <0.0001 9 (31%) 20 (40%) 0.0553
- deep skin abscess 78 (29%) 37 (15%) <0.0001 4 3 1
- other (deep) sites:
- bone 0 20 <0.0001 0 2 0.4992
- joint 2 12 0.0120 1 3 0.6237
- thigh 1 0 1 1 1 1
- muscle: regions other than thigh 0 5 0.0615 1 0 1
- fasciitis 0 1 1 0 0 1
- respiratory tract/lungs incl. pleura 1 16 0.0002 5 2 0.4504
- heart/heart valve 0 0 1 0 5 0.0615
- CSF/brain 1 0 1 0 0 1
- urinary tract 0 4 0.1237 0 4 0.1237
New metastatic lesions
- any na na na 2 (7%) 30 (60%) 0.0001
- bone na na na 0 6 0.0305
- joint na na na 0 1 1
- deep skin abscess na na na 1 2 1
- thigh na na na 0 0 1
- other muscle na na na 0 4 0.1237
- fasciities na na na 0 0 1
- respiratory tract na na na 1 1 1
- heart na na na 0 6 0.0305
- brain na na na 0 1 1
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Africa Germany Commensal P Africa Germany clinical P

- urinary tract na na na 1 0 1
- other na na na 0 6 0.0305
Patient admitted because of SAB within 14 days 28 (97%) 43 (86%) 0.0762
Patient admitted because of SAB within 3 days 47 (17%) 138 (55%) <0.0001
Patient died within 14 days 0 3 (1%) 0.2487 1 (3%) 6 (12%) 0.1228
Antibiotic therapy day 1 245 (90%) 127 (51%) <0.0001 29 (100%) 43 (86%) 0.1019
Antibiotic therapy day 2 243 (90%) 127 (51%) <0.0001 29 (100%) 44 (88%) 0.0798
Antibiotic therapy day 3 242 (89%) 129 (52%) <0.0001 29 (100%) 45 (90%) 0.0620
Antibiotic therapy day 5 na na na 27 (93%) 45 (90%) 0.0321
Antibiotic therapy day 7 na na na 26 (90%) 44 (88%) 0.0301
Antibiotic therapy day 10 na na na 18 (62%) 41 (82%) 0.0023
Antibiotic therapy day 14 na na na 9 (31%) 37 (74%) 0.0001
Type of intervention
I and D surgery within 3 days 168 (62%) 66 (26%) <0.0001 3 (10%) 11 (22%) 0.0545
I and D surgery days 4-7 na na na 1 6 0.1228
I and D surgery days 8-14 na na na 1 6 0.1228
Vascular catheter removal within 3 days na na na 2 8 0.1064
Vascular catheter removal days 4-7 na na na 3 1 0.6237
Vascular catheter removal days 8-14 na na na 0 3 0.2487
Foreign body removal within 3 days 3 17 0.0022 0 1 1
Foreign body removal days 4-7 na na na 1 1 1
Foreign body removal days 8-14 na na na 0 1 1
Other surgery within 14 day na na na 1 7 0.0685
Other surgery within 3 days 12 41 <0.0001 na na na
Antibiotic therapy day 1 245 (90%) 127 (51%) <0.0001 29 (100%) 43 (86%) 0.1019
Monotherapy 215 (79%) 90 (36%) <0.0001 12 (41%) 21 (42%) 0.1510
Antibacterial agents used
- Pen/Amoxi 75 4 <0.0001 19 0 0.0001

Continued
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Africa Germany Commensal P Africa Germany clinical P

- / 7 9 0.8009 1 10 0.0110
- Oxa 106 9 <0.0001 2 2 1
- Cef1/2 1 43 <0.0001 0 11 0.0009
- Cef3 10 20 0.0903 4 7 0.5450
- Clinda 0 32 <0.0001 0 3 0.2487
- Macrolides 34 2 <0.0001 0 6 0.0305
Antibiotic therapy day 2 243 (90%) 127 (51%) <0.0001 29 (100%) 44 (88%) 0.0798
Monotherapy 213 (79%) 89 (36%) <0.0001 11 (38%) 15 (30%) 0.5483
Antibacterial agents used
- Pen/Amoxi 51 4 <0.0001 18 1 0.2531
- / 7 16 0.0869 1 8 0.0378
- Oxa 101 10 <0.0001 3 7 0.3396
- Cef1/2 1 42 <0.0001 0 10 0.0018
- Cef3 9 21 0.0903 4 8 0.3828
- Clinda 0 30 <0.0001 0 4 0.1237
- Macrolides 34 2 <0.0001 0 4 0.1237
Antibiotic therapy day 3 242 (89%) 129 (52%) <0.0001 29 (100%) 45 (90%) 0.0620
Monotherapy 212 (78%) 91 (36%) <0.0001 14 (48%) 16 (32%) 0.8518
Antibacterial agents used
- Pen/Amoxi 73 4 <0.0001 16 1 0.0002
- / 7 16 0.0869 0 7 0.0151
- Oxa 102 10 <0.0001 3 11 0.545
- Cef1/2 1 49 <0.0001 0 10 0.0018
- Cef3 9 20 0.0903 6 6 1
- Clinda 0 30 <0.0001 0 4 0.1237
- Macrolides 34 2 <0.0001 0 4 0.1237
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Of the African and German volunteers with positive nasal cultures, 56% and 50% were
female, while in patient cohort providing clinical isolates, 48% and 37% were female
in the African and the German cohort, respectively. Clonal complex affiliation. Upon
application of the original MA evaluation software (Iconoclust, Alere Technologies) 1193
isolates of the 1200 Staphylococcus aureus isolates could be assigned to established 32
clonal complexes (CC) and three sequence types based on the hybridization profiles.
Clonal complex assignment with DNA microarray could not be performed for 8 isolates.
For these 8 isolates, new sequence types (ST) were identified (ST2370, ST2678, ST2733,
ST2735, ST2744) by MLST which were not covered before by known array profiles.
In a pilot of 160 selected isolates, NGS was applied in parallel to assess the validity
of ST/CCs assignment by the DNA microarray as compared to the current sequence-
based gold standard. CC assignment using MA was correct for 154 (96.3%) isolates.
Interestingly, strain assignment for CCs could be optimized for three isolates (1.3%)
using CC assignment of MA profiles using affinity propagation analysis instead of the
original IdentiBAC software.

CC association with geographic S. aureus origin or with clinical signifi-
cance. Except of four CCs (CC80, CC88 in Africa and CC50, CC398 in Germany)
all other CCs with a number of at least six isolates were found in Africa as well as in
Germany. Isolates of CC5, CC8, CC9, CC25 and CC707 were equally distributed in
Africa and Germany, while significant differences for the geographic CC distribution in
Africa and Germany were found for 17 of the 40 detected CCs and sequence types (ST).
Predominant African CCs were CC1 (p < 0.0001), CC6 (p = 0.002), CC15 (p < 0.0001),
CC80 (p = 0.0002), CC88 (p < 0.0001), CC121 (p < 0.0001) and CC152 (p < 0.0001).
In Germany the most common CCs are CC7 (p < 0.0001), CC12 (p = 0.0002), CC22
(p < 0.0001), CC30 (p < 0.0001), CC45 (p = 0.001), CC50 (p = 0.03), CC59 (p = 0.02),
CC97 (p = 0.003), CC101 (p = 0.001) and CC398 (p < 0.001) (Figure 1). Addition-
ally CC121 (p < 0.0001) and CC152 (p < 0.0001) were significantly more often found
in isolates of clinical origin, whereas CC45 (p < 0.0001), CC101 (p=0.03) and CC707
(p = 0.03) where significantly more often identified in nasal isolates (Figure 6.1).

Clinical and nasal origin dependent CC distribution in African and Ger-
man study sites. While above data describe the CC attribution on overall differences
between the clinical/commensal and African/German groups, figure 3 details the pro-
portions of CCs as a function of the clinical significance within the geographic subgroups,
as well as the CCs proportion as function of geographic origin within the two clinical
significance groups (left panel). In addition, the relative proportions of the different CCs
annotated by their respective institution of origin were analyzed (right panel).

When comparing the 600 African strains (left panel, first and third bar), in clinical
isolates a significantly larger proportion was found for CC121 (yellow section) (p <
0.0001) and CC152 (black)(p < 0.001), while in nasal isolates a significantly larger
proportion of CC8 (orange) (p < 0.05) and CC45 (red)(p < 0.0001) was ascertained.
In the group of strains from Germany (left panel, second and fourth bar), a significant
larger proportion of CCs could only be found in the group of nasal isolates, i.e. the
CC15 complex (blue section) (p < 0.05).

When inspecting the differences in CC proportion analysed as a function of the in-
stitutional origin (Figure 6.2, right panel, with the African and German institutions
in both group of columns depicted from left to right, respectively), the following ob-
servations could be made: Within the group of isolates collected in Ifakara (Tanzania),
CC121 (yellow) (p < 0.0001) and CC152 (black) (p < 0.0001) were more predominantly
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Figure 6.1: Prevalence of the 22 most prevalent clonal complexes comparing the nasal
or clinical origin. Nasal isolates were collected by nasal swabs. Clinical isolates were
of different wound infections or blood cultures. Clonal complexes and sequence types
with less than six isolates where taken together as others. The clonal complexes in the
y-axis were ordered according to the total number of identified isolates independent of
the study site from the bottom to the top. Prevalence of German (grey) and African
(black) isolates in the clinical (left side) and nasal group (right side) is shown. Statistical
analysis for association of clonal complexes with clinical or nasal isolate origin were

performed by Fishers exact test; *: p < 0.05, **: p < 0.01, ***: p < 0.001.

identified in the group of clinical strains while CC8 (orange) (p < 0.0001), while CC15
(blue)(p < 0.5) and CC45 (red) (p < 0.0001) were overrepresented in the group of
nasal isolates. In Lambarn, within the group of clinical strains CC1 (purple) (p < 0.05)
and CC152 isolates (black) (p < 0.001) were predominant while CC45 isolates (red)
(p < 0.0001) were overrepresented by isolates of nasal origin. In Manhiça an overrep-
resentation of isolates belonging to the CC121 complex (yellow) (p < 0.01) could be
observed in the group of clinical origin, similarly to Ifakara. Contrasting to the African
study sites, the CC distribution of isolates collected in the three German institutions
was quite homogenous, both in the overall proportions comparing clinical versus nasal
strains as well as with respect of differences within the institutions. Only at the study
site in Homburg, a slight but significant association of CC121 (yellow) (p < 0.0001) of
clinical origin was found, and similarly to Ifakara and Manhiça - CC15 strains (blue)
(p < 0.05) were more frequently encountered in the nasal isolate group obtained in
Freiburg.

Identibac microarray target recognition as a function of geographical origin
and clinical significance of S. aureus isolates.

S. aureus species markers. The S. aureus species markers rrn, gapA, katA, coa,



82

Chapter 6 Community-Acquired Staphylococcus aureus Isolates From Various
Sub-Saharan African and German regions: Clonal Cluster Analysis Reveals Significant

Differences by Geographical Origin and Clinical Significance

Figure 6.2: Relative abundance of the 22 most prevalent clonal complexes in the
different study sites and the isolates body localization. Nasal isolates were collected
by nasal swabs. Clinical isolates were of different wound infections or blood cultures.
Clonal complexes and sequence types with less than six isolates where taken together

as others.

nuc1, spa, and sbi were all unanimously (100%) positive in all isolates tested providing for
an internal quality control both of the species identification during the isolate recovery
as well as for the microarray.

Gene regulators. The accessory gene regulator-I (agrI) encoding genes revealed an
overrepresentation in German isolates (55% vs 35%, p < 0.0001) while the accessory
gene regulator-IV (agrIV) encoding genes were overrepresented in African isolates (37%
vs 6%, p < 0.0001). In commensal samples, the capsule type 5 encoding genes were
predominant in isolates from African volunteers (43% vs 33%, p < 0.01) while capsule
type 8 encoding genes were more frequent in isolates obtained from nasal samples (67%
vs 56%, p < 0.01) in Germany.

Methicillin resistance and SCCmec typing. With respect to the presence or absence of
the methicillin resistance gene cassette, mecA, in total 40/1200 (3%) strains were found
to carry this gene. MRSA strains were found to be equally distributed in isolates from
Africa (n = 17, 3%) and from Germany (n = 23, 4%). Moreover, in Africa, the MRSA
isolates were equally distributed between clinical (n = 9) and nasal isolates (n = 8)
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(Table S5, first panel, third gene group), yet in Germany significantly (p < 0.0001) more
MRSA isolates could be observed in clinical (n = 21, 7%) than in nasal isolates (n = 2,
1%).

Betalactamase resistance. The beta lactamase resistance operon (blaZ, blaI, blaR)
was detected throughout isolates from CCs in Africa and Germany, yet, in African
isolates (p < 0.0001) it was predominant with more than 90% of the isolates carrying
this gene while only approximately 2/3 of the German isolates carried the bla operon.
This difference was independent of clinical versus nasal origin (Table S1, fourth gene
group), and it was particularly pronounced in CC5 (98% versus 53%, p < 0.0001), CC8
(100% versus 74%, p < 0.0001)and CC45 (86% versus 55%, p = 0.0002). Independent of
the isolates geographic origin blaZ, blaI, blaR could be found more often in CC45 nasal
isolates (74% versus 52%, p < 0.01) while in the CC152 isolates, blaZ could be more
frequently (98% vs. 80%, p < 0.01) observed in the clinical group.

Other resistance markers. The erythromycin resistance genes ermA were detected
in 12 different CCs (n = 43, 4%) and ermC in 21 CCs (n = 134, 11%). In German
isolates, ermA was more frequently positive when compared to isolates from Africa (7%
vs. 1%, p < 0.001), both in clinical (8% vs. 1%, p < 0.001) and nasal isolates (5%
vs. 0%, p < 0.001) while for ermC such higher positivity could be seen in African
isolates overall (15% vs. 7%, p < 0.001) as well as in the subgroups of clinical (14%
vs.8%, p < 0.05) or nasal origin (17% versus 6%, p < 0.001). The tetracycline resistance
gene tetK were found in all CCs in Africa except of CC30. In Germany it could be
detected in CC5, CC7, CC8, CC15 and CC121. A significantly larger proportion of
tetK and tetM were found in African isolates independent whether they were of clinical
or nasal origin (35% vs. 3% for tetK and 8% vs. 1% for tetM, p < 0.001). Moreover,
in African isolates an association of tetK positivity with the CCs CC5 (p < 0.01),
CC15 (p < 0.001), CC30 (p < 0.001) and CC45 (p < 0.001) was found while tetM was
significantly associated with CC8 (p < 0.01) and CC121 (p < 0.001) (Table S1).

Particularly elevated positivity rates were found for the fosfomycin resistance marker
fosB, yet, this resistance gene was detected in even a higher proportion in clinical African
isolates (62% vs. 57%, p < 0.01). Interestingly, the distribution of fosB was found to be
very heterogeneous. In CC5, CC8, CC15, CC30 and CC121 (almost) 100% of the isolates
were positive while all 139 isolates belonging to CC45 were negative. Only isolates of
CC1 revealed a difference when comparing African versus German origin (11% versus
60%, p < 0.01). Efflux resistance markers (qak) were only rarely found to be positive,
and while almost all (> 95%) of isolates were positive for the sdrM gene (encoding a S.
aureus multidrug efflux pump), the other genes associated with glykopeptide resistance
were unanimously found to yield a negative signal.

Toxic shock syndrome toxin. The toxic shock syndrome toxin tst1 was found in 13
different CCs (n = 103, 12

Enterotoxins. For sea (staphylococcal enterotoxin A) only CC specific geographic
differences were identified. In African isolates, the gene was predominant in CC5 and
CC15, while in CC30 it was predominant in German isolates. Overall, seb recognition
was also predominant in African isolates (19% vs. 8%, p < 0.001), in particular in
CC5 and CC121 complexes (table S1), yet, independent of the geographic origin this
enterotoxin was more often found in clinical isolates(16% vs. 11%, p < 0.05). sec and sed
were overrepresented in clinical German isolates (p < 0.001). A higher predominance of
sej (p < 0.01), sel (p < 0.001) especially in CC1 isolates (p < 0.001) and ser (p < 0.01)
was identified for clinical German in comparison to clinical African samples. In contrast
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sek and seq were more often in nasal African than in nasal German isolates (p < 0.05).
The enterotoxin gene cluster egc consisting of the six enterotoxin genes seg, sei, sem,
sen, seo and seu were significantly more often ascertained in clinical German isolates
(p < 0.001) but CC specific they could be detected more often in African CC8 isolates
(p < 0.001).

Leukocidins. The leucocidin genes lukD, lukE, lukY were predominant in African
isolates (71% vs. 55%, 73% vs. 54%, 89% vs. 72%, respectively, p < 0.0001) with lukD
and lukE particularly pronounced in CC1. lukX was most frequently found in German
isolates (98% vs. 86%, p < 0.0001). Moreover, both lukX (p = 0.0002) and lukY
(p = 0.0008) were predominant in clinical isolates. The major difference between African
and German isolates, however, was ascertained when testing for the PVL encoding genes:
Overall, lukF-PV and lukS-PV was found in 287 (24

Immune evasion cluster converting phage genes. The genes sak encoding Staphylok-
inase, chp, encoding the protein CHIPS and scn, encoding the protein SCIN are genes
of the immune evasion cluster. sak and scn were recognized in the large majority (80%
and above) of isolates, while recognition of chp was only seen in approximately one half
of the isolates. Moreover, sak was found predominant in clinical isolates (82% vs. 76

Exfoliatin genes. etA and etB could be detected in nine (etA;n = 63, 19%) and five
(etB;n = 28, 0.02%) different CCs. Both toxin genes etA (p < 0.01) and etB (p < 0.05)
were overrepresented in clinical CC15 and CC121 isolates independent of the isolates
geographic origin as well as etA was significantly more often identified in German CC121
isolates (p < 0.01). ACME gene cluster. The arginine deiminase gene cluster was only
rarely identified, in single isolates belonging to various CCs.

Proteases. The target sequence of aureolysin, a metalloprotease aur-consensus were
found in comparable amounts in the African and German isolates. In African isolates
two other proteases, serineproteases splA (66% vs. 56%, p < 0.0001) and slpB were
significantly more often detected (72% vs. 56%, p < 0.0001). In contrast the third
serineprotease splE were predominant in German isolates (39% vs. 53%, p < 0.0001)
and nasal isolates (42% vs. 50%, p < 0.01).

set/ssl genes. This group of genes encoding of superantigen/superantigen-like proteins
revealed a marked heterogeneity, both with respect to the recognition of the various
targets of the same gene as well as of the different genes represented on the Identibac
chip. Overall, the differences between African and German isolates in recognition of the
entire sets of these genes and alleles were minor, particularly in the interesting group of
clinical isolates. Remarkably, with exception of few alleles, CC152 isolates did not yield
a positive signal for most of the set/ssl alleles tested.

Capsule genes / biofilm associated genes. The signals recognizing the cap5 and cap8
target were associated with CCs with CC5, CC8, CC22, and CC152 carrying type 5
capsule genes while the others with exception of CC1 carried type 8 genes. CC1
was found to be inhomogeneous with the majority of isolates (21/27) demonstrating
type 8 type, yet a smaller number (6/27) was positive for type 5. In line, the overall
presence of these genes in the various geographic or clinical significance groups depends
rather on the representation of the CCs: for instance, in commensal samples, the capsule
type 5 encoding genes were predominant in isolates from African volunteers (43% vs.
33%, p < 0.01) while capsule type 8 encoding genes were more frequent in isolates from
Germany (67% vs. 56%, p < 0.01). All isolates were positive for icaA and icaD. DNA
from CC152 isolates did not hybridize with the icaC target. In contrast, a signal for
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the bap gene associated with bovine S. aureus strains was absent in all 1200 isolates
investigated.

Adhesion factors / MSCRAMM proteins. Similarly to the set/ssl gene cluster,
this group of genes revealed a heterogeneous result when probed with the DNA of study
isolates. While for some genes a positive signal could be detected in the large majority
of isolates (e.g. the consensus targets for bbp, clf A, clf B, ebp, eno, fnbA, sdrC and
SdrD, and vwb), detection of fib (a gene encoding for a fibrinogen binding protein), ebh
(encoding for the cell wall associated fibronectin-binding protein), fnbB (the gene encod-
ing for a fibronectin binding protein), and sasG (Staphylococcus aureus surface protein
G) were ascertained more frequently in African isolates (p¡0.0001). In contrast the map
(major histocompatibility complex class II analog protein) or also called eap (extracel-
lular adhesion protein) were more often detected in German isolates (p < 0.0001). In
contrast to the differences observed in the above-mentioned genes or gene alleles (with
target recognition more or less frequent throughout several CCs), these overall differ-
ences in adhesive proteins have in common that they are caused by a numeric effect of
isolates belonging to one CC or few CCs whose DNA is not recognized by this target
of interest for array hybridization, yet, with a numerical isolate imbalance within these
specific CCs with respect to isolate provenience (Africa/Germany). For instance, the
fib gene is not recognized in CC22, yet with 37 German and only 4 African isolates
belonging to CC22, this skews the overall result towards a larger fib positivity among
African isolates. In line, for map/eap (a gene which in previous studies has been shown
to be present throughout the S. aureus species) the overall 18% map/eap negative iso-
lates in the African cohort (as compared to only 3%in the German cohort) are largely
caused by the entire lack of map/eap target recognition in all isolates of the CC152
complex which, however, is being represented by 83 African and only 2 German isolates.
In addition, the reduced portion of map/eap positive isolates from Africa in the CC1
complex further contributes to the overall different result. map/eap recognition in the
other CCs approached 100% irrespective of isolate origin. It is therefore suggested that
in particular within the group of these repeat-rich adhesin genes, gene polymorphisms
unique to clones or geographic clades and not represented on the array may contribute
to this result. In order to find support for this hypothesis, we examined those exemplar
isolates of the CC152 complex which had undergone WGS, and found indeed an aberrant
map/eap gene contained in their genome (not shown). The vwb gene tested revealed no
differences between the groups when taking into account all alleles represented on the
array.

mprF, isdA, and lmrP genes. These groups of genes also revealed no significant dif-
ference when accounting for all alleles tested.

hsd type I restriction enzymes. This class of genes revealed some significant differences
of gene allele positivity between isolates of African versus German origin, however, in
part they were compensated by recognition of additional allele target. No clear trend or
conclusion can be made.

hyaluronate lyse genes. Similarly to the hsd type genes, significant differences between
isolate groups were found for a given allele, yet, upon consideration of the target recog-
nition over several alleles represented on the array, these differences were compensated.

Association analysis of genes with isolate clusters. Principal component anal-
ysis (Figure 6.3) showed the 1200 isolates each characterized by 333 DNA microarray
target sequences in a two dimensional space. Isolates were discriminated according to
their genetic background (clonal complex) in six separate isolate clusters (3-8), on the
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Figure 6.3: Two dimensional ordination of 600 clinical and 600 nasal S. aureus isolates
based on the first two axes of a principal component analysis corresponding to the
presence or absence of the 333 target sequences, determined by DNA Microarray. Genes
responsible for significant differences (p < 0.01) which were found in less then four

clusters were shown in boxes.

right plot side and two clusters (1, 2) on the left plot side. Further a heterogeneous
isolate group belonging to different clonal complexes could be seen on the left plot side
without grouping in specific genotypic clusters. The silhouette analysis underlines that
each isolate lays well within the defined clusters with a silhouette value of 0.59, minimum
and maximum the same.

No separation of isolates according to geographical origin or previous localization in
or on the body could be seen, except of 24 CC45 nasal samples which cluster inde-
pendently of a second heterogeneous CC45 cluster of isolates of different clinical origin.
Kolmogorov-Smirnoff test was performed to analyze which genes/ alleles are responsi-
ble for significant differences between the eight detected PCA isolate clusters. Cluster
1 (CC8) were specified by the presence of the genes encoding the PVL (lukF/S-PV),
leucocidin Y (lukY) and the staphylococcal enterotoxins sea, sej, ser. CC15 isolates
of cluster 2 carry the genes or target sequences of agrIII total, bbp (bone sialoprotein-
binding protein), fnbA (fibronectin A), lukY, the target sequence for the hypothetical
protein Q2FXC0, staphylococcal exotoxin like protein (setB1) and for the undisrupted
haemolysin b. CC152 isolates of cluster 3 were the gene sak (staphylokinase) while the
characteristic genes of CC22 (cluster 4) and of the nasal isolates of the CC45 (cluster 6)
were genes of the enterotoxin gene cluster (egc) which are sei, selm, seln-cons, selo and
selu. Isolates of the zoonotic CC398 of cluster 5 were characterized by the carriage of the
resistance operon blaI, blaR1, blaZ encoding for the beta-lactamase resistance the egc
target sequence and single genes of the egc cluster, as well as the gene mprF, encoding
for mupirocin resistance and sak. The second, heterogenous cluster of CC45 isolates
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(cluster 7) were marked by the genes blaI, blaR1, blaZ, fnbA, lukF/S-PV, mprF. The
CC30 isolates of the last cluster 8 were characterized by staphylococcal enterotoxin sea.

Subgroup analysis of clonal complexes associated with clinical isolate origin.
The clonal complexes (Figure 6.4) CC45 (Figure 6.4 A), CC101 (Figure 6.4 B), CC121
(Figure 6.4 C) and CC152 (Figure 6.4 D) were found to be either associated to clinical
associated isolates or nasal origin. Because of this PCA were performed for isolates
of these CCs to identify potential isolate localization specific subgroups and subgroup
specific genes. PCA plots show that origin specific clustering of isolates could be seen in
CC45 (Figure 6.4 A) and CC121 (Figure 6.4 B) while in the PCAs of CC101 (Figure
6.4 C) and CC152 (Figure 6.4 D) such a clustering could not be found. The nasal CC45
isolates were specified by the presence of target sequences of the von-Willebrandt-factor
vwb consensus and aureolysin (aur), the presence of the Fibronectin binding protein
B allele fnbB ST45 and of the sdrD other (Ser-Asp rich fibrinogen-/bone sialoprotein-
binding protein D) target sequence. Further the absence of the enterotoxin genes sec,
sel and the allele sdrD-COL-MW2. The clinical isolate cluster of CC121 were associated
with the presence of lukF- and lukS-PV and characterized by the minor presence of
hsdSx-CC15, the exfoliative toxin etA and the target sequence for the hypothetical
protein Q2YUB3 according to all other isolates outside of the predominantly clinical
cluster.
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Figure 6.4: Principal component analysis based on the first two axes corresponding
to the presence or absence of the 333 target sequences which were determined by DNA
microarray of the S. aureus isolates of A, CC45; B CC121; C CC101 and D CC152.

Genes/Alleles written in the boxes are specific for the joined isolate cluster.



90

Chapter 6 Community-Acquired Staphylococcus aureus Isolates From Various
Sub-Saharan African and German regions: Clonal Cluster Analysis Reveals Significant

Differences by Geographical Origin and Clinical Significance

6.3 Discussion

Although current studies show that community associated MRSA are on the rise there
are still only a limited number of studies available examining the topic of community
associated S. aureus. Independent of this in developing countries, as in sub-Saharan
Africa epidemiological and molecular data of comparable methods of S. aureus infections
and nasal isolates are rare.

To the best of our knowledge this is the first African-German multicenter study of com-
munity associated S. aureus isolates of her size determining the geographic differences of
the clonal structure of S. aureus in three sub-Saharan Africa and German regions with
special regard to the original isolate localization site and addressing the question of gene
associations to the isolate origin based on one comparable molecular characterization
method.

In our study we identified 22 MSSA CCs with at least six isolates in the African
and German study sites showing the geographic independent S. aureus diversity in
the African and German community. Further it has to be stated that the diversity is
independent of the previous isolate localization, if they are of clinical or nasal origin.
The MRSA isolates in contrast could be only assigned to 8 different CCs showing in
accordance to previous suggestions that the acquisition of the SCCmec cassette carrying
the methicillin resistance mecA is restricted to special S. aureus lineages [65] or that is
has to be triggered by antibiotic treatment.

Population studies of S. aureus identified five main genotypic clusters CC5, CC8,
CC22, CC30 and CC45 as the essential genetic backgrounds of S. aureus with differences
in the local prevalence in Europe and the USA as well as in Indonesia [152]. In our
study these clonal complexes belong to the 10 predominant CCs (Figures 6.1 and 6.5)
completed by three other pandemic clones CC1, CC80 and CC121. For all these CCs the
dissemination in different African countries had been shown before [21, 147, 185, 140].

The most predominant CC in this study, CC15 was significantly higher prevalent in
the African study cohort but with no significant higher proportion of clinical or nasal
isolates. This clonal complex is reported worldwide (www.mlst.net) and identified as
predominant CC in previous studies of Mali, former Portuguese colonies as Angola,
Cape Verde and Sao Tom and the United Kingdom [36, 62, 175]. Moreover CC15 as
well as CC30, CC121 and CC152 are known PVL-positive clones as shown in our study,
as well [21, 74].

CC22, CC30 and CC45 known as typical MRSA lineages in the Euregio-Meuse-Rhine
region [42] were in correspondence to these findings more often found in the German
isolates. But interestingly the isolates were mainly Methicillin-susceptible while most
available studies described them as Methicillin-resistant strains what could be explained
by the fact that these were mainly studies of isolates collected in hospitals [23, 49].

CC121 as well as isolates of CC15 were rarely identified as MRSA [44, 109] according
to our study findings. In previous studies it has been investigated why the SCCmec
dont integrate in the CC121 genotypes but the answer could not be found.

ST152/CC152 is considered as the major clone of CA-MRSA in the Balkan region
and is also responsible for cases of PVL positive CA-MRSA infection in Central Europe
and is supposed to originate in Africa, migrated through central Europe and acquired
the methicillin resistance [154, 157]. A study from Mali showed that it is the second
most frequent MSSA lineage isolated from healthy carriers with 100% PVL positive
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Figure 6.5: Distribution of the 22 most prevalent clonal complexes in the African
and German study sites. Clonal complexes and sequence types with not at least six
isolates where taken together as others. The clonal complexes in the y-axis were ordered
according to the total number of identified isolates independent of the study site from
the bottom to the top. Prevalence of clinical (red) and nasal (green) isolates in the
African (left side) and German group (right side) is shown. Fishers exact test; *:

p < 0.05, **: p < 0.01, ***: p < 0.001.

isolates [175] and taken together the results of different studies it could be considered
that CC152 is the major PVL positive clonal complex in sub-Saharan Africa [179].
These is supported by our data which shows that we have only two German CC152
isolates while all other isolates were PVL positive and of African as well as notably of
clinical infection sites.

Surprisingly ST80/CC80 known as the most frequently reported community-associated
MRSA clone in Europe, also identified in Australia [38], the USA [192] and the UK
[133] in this study ST80/CC80 MSSA which are not common [157] has been found in
the African cohort as in previous African countries [145, 163] and while strains are not
common.

In African studies the MRSA isolates mostly could be assigned to the multi locus
sequence type CC88 in South Africa, CC88 in Nigeria as well as in five African towns
of a multicenter study [21, 156]. Among all isolates of the study agr types (agrI to
agrIV), agrIV were identified with an overrepresentation in African and agrI in German
isolates. The different agr types are known to be associated with some diseases as e.g.
agrIV is associated with exfoliatin production [92] and the association of agrI and II
with reduced vancomycin susceptibility [177]. It has been suggested that the genome of
a certain agr -group has specific gene combinations that give rise to a specific phenotype
[63] or regulate specific gene combinations as described before [22, 52]. In our study a
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geographic and maybe host specific factors. The same can be postulated for the both
detected capsule types, capsule type 5, predominant in African nasal or capsule type 8
predominant in German nasal samples which were found in all examined isolates of the
study.

Comparable results the capsule type distribution for an African cohort and European
data overall have been shown in a study of remote African pygmies as well [180]. Both
capsule types have been reported that they were the only capsular serotypes associated
with human disease [130, 205, 114]. Although the both capsule types could only be
detected with geographic dependent predominance in nasal isolates it can be supposed
that these were the predominant capsule types of colonizing S. aureus strains.

The MRSA prevalence in our study was very low (3%) compared to data of USA,
Europe, and previous African studies of Southwestern Nigeria (1.4 to 50%), a meta-
analysis in Central Africa (27.7%) and another study on clinical S. aureus isolates from
this region (11.1%) or in a study on neonatal bloodstream infection on Tanzania (28%)
[131, 198, 181, 1, 191]. The reason for the low MRSA rate could be the defined inclusion
criteria of the case related forms, that the participants were only included if they didnt
have contact with clinical institutions during the last 6 months. This let suggest that
they didnt get antibiotics and they should not be in contact with hospital-associated S.
aureus strains and therefore shouldnt be colonized by them.

In accordance to the phenotypic data of many African studies showing a high resistance
to penicillin (73.7−100%) [101, 163, 179] and tetracycline (21.8−92%). [127, 48] found
a significant predominance of the beta lactamase operon and of the tetracycline encoding
genes tetK and tetM in the African isolates particularly pronounced in special CCs what
has not been described like that before for African isolates. The frequent prescription of
aminopenicillins and the use of tetracycline in livestock [54]) maybe could explain the
high resistance towards these antimicrobial agents in sub-Sahara Africa. Interestingly
the beta lactamase operon was predominant in nasal CC45 but in clinical CC152 African
isolates but with a higher relative abundance of the resistance genes in the CC152
isolates. This lead to the assumption that CC45 is a more colonizing strain while CC152
strains in combination with the PVL encoding genes are strains with a higher risk of
causing infections, adopted to the possible treatment.

In previous studies [123, 5] ermA was described as the dominant erythromycin resis-
tance gene in their investigated MRSA isolates while the prevalence of ermB in S. aureus
was less than 2%. It has been found that the ermA were carried on a transposon (Tn554)
[41] while ermC is typically located on a plasmid (pUSA03) [45]. In the present study
we found a geographic dependent predominance of the erythromycin resistance genes
ermA in German isolates and of ermC in African isolates [125] while ermB were not
found in contrast to a study of a Algiers hospital and Taiwanese studies investigating
CA-MRSA. In these studies they found that ermB was more widespread than ermA or
ermC [201, 125, 47], maybe this is caused by a region specific distribution of the mobile
genetic elements carrying ermA or ermC. A review considering the antibiotic suscep-
tibility profile of MRSA in Africa [60] showed that 84 − 99% of the MRSA isolates
were fosfomycin susceptible. For MSSA isolates data of a remote pygmie study showed
fosfomycin susceptibility in all isolates as well (Schaumburg, PlosNegTropDis, 2011). In
this study the fosfomycin resistance gene fosB was detected in even a higher proportion
in African isolates especially of clinical origin but in lower numbers in African CC1 than
in German CC1 isolates. This might suggest that the fosfomycin sensitive strains could
be a reservoir for the development of fosfomycin resistant MRSA and that different CC1
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lineages were spread in the African and German regions.

A prominent finding of this study is the high prevalence of the Panton Valentine
encoding genes lukS/F-PV, identified in 287 mainly African isolates (24%) of the CCs 15,
88, 121 and 152. African field studies of the last two decades showed that Africa is a PVL-
endemic region with high rates of PVL in pandemic CA-MRSA- and MSSA-lineages [26,
129, 180, 175, 154] but mainly in MSSA ranging from 17 to 74%. This is not in agreement
with other European findings with PVL prevalences between 1 to 5% [133, 199, 126].
The higher rates of PVL positive African isolates in our study group correspond to the
previous African studies and significant PVL prevalence differences between developing
countries and the German study sites as example for an industrialized country has been
seen before [153]. But the question why there is a higher predominance of PVL in Africa
is still unanswered. Based on previous studies it has been hypothesized that host factors,
such as an altered C5a receptor, unidentified S. aureus virulence factors or the humid
environment of tropical Africa could be parameters has to be considered [117, 186].
Taken together PVL positive MSSA are a likely reservoir for the development of PVL
positive MRSA [165] why surveillance of developing MRSA-PVL positive isolates would
be important to control the possible rise.

As well as PVL the leukocidins LukD-LukE are more prevalent in clinical than in
carrier isolates and could be isolated from different kinds of staphylococcal infections
[15]. In this study in contrast we didnt see such predominance of the corresponding genes
lukD and lukE but for lukX and lukY in clinical isolates maybe because we analyzed only
community associated isolates. Further a geographic and CC dependent prevalence of
lukD and lukE especially in CC1 could be seen maybe cause by the presence of different
lineages in the African and German regions. Overall it could be said that the prevalence
of leukocidin genes is higher in African isolates.

The toxic shock syndrome toxin tst1 was found in 13 different CCs with an overrep-
resentation in German isolates (p < 0.01) especially in CC30 as described in previous
studies [138] that there is an association of tst1 and CC30. Although the tst gene
was less frequently present in the African isolates (6%) than in other investigations of
nasal isolates of Ireland, Germany and Poland [35, 13], the data were comparable to a
Gabonese study [181]. Interestingly in CC8 the gene was significantly more often found
in African isolates what has not described before.

Prevalence reports of pyrogentic toxin superantigens (PTSAg genes) differ depending
on the geographic affiliation, the analyzed population structure and the included, tested
staphylococcal PTSAg genes. Special enterotoxins were detected as group because they
were carried by the same mobile genetic element sec-sel, sed-sej-ser, sek-seq and egc
(seg, sei, sem, sen, seo, seu) [86]. Although at least half of the investigated study
isolates harbor one of these exotoxins or sea, seb. We found geographic and genotypic
differences for the PTSAG prevalence in accordance with other studies of different ge-
ographic origin [15, 101]. The geographic origin, previous body localization as well as
CC specific (e.g. sea) enterotoxin abundance differences let assume that the distribution
of different mobile genetic elements (MGE) could be responsible for these significant en-
terotoxin predominances because it could be shown that MGEs carrying PTSAg genes
were strongly associated with the clonal background. So seb as seen in the pygmies
study were predominant in African isolates especially of CC5 and CC121 but further
a higher seb prevalence in the German isolates in comparison to European data [138]
could be found. Overall seb has been more often detected in clinical isolates.

Sak, chp, scn and sea located on β − hemolysinconverting bacteriophages build an
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immune evations cluster (IEC). Different IEC variants were described [197]. It has
been shown that each CC lineage has a unique but highly conserved combination of
immune evations genes but that they were no differences between MSSA and MRSA
or CA-MRSA and HA-MRSA [128] but it has been supposed that the host-pathogen
interaction is lineage specific. In this study we found lineage, geographic and previous
body localization dependent gene prevalence differences this let suggest that different
bacteriophages and immune evasion clusters could be found not only in Africa and
Germany but also CC specific in Africa in Germany. Because of this it has to be
investigated in more detail the kind and distribution of the bacteriophages with regard
to the clinical outcome.

The scalded skin syndrome typically occurring in neonates and infants, but also possi-
ble to affect predisposed adults, is caused by the epidermolytic proteases ETA and ETB
encoded by the genes eta and etb [122]. Authors in [159] reported that 22%of invasive
strains carried eta but not etb. The reported prevalences of different studies of clinical
isolates were variable according to the study focus [9]. In comparison to literature
[15, 86, 145] we have a higher prevalence of etA and a similar etB rate without geo-
graphic specificity but clonal specific overrepresentation in CC15 and CC121 particular
pronounced in German CC121 isolates as could be seen before in a study of German
healthy carriers [138].

The proteases, as a group, are of great importance to the virulence of the bacterium
[214, 167]. Staphylococci are able to secrete up to eight different serine proteases, two
cysteine proteases, and one metalloprotease. Two analysed serine proteasse encoded
by e.g. splA and splE were significantly more often detected in African isolates while
splE were predominant in German and nasal isolates. In a Swedish study comparing
commensal and invasive S. aureus isolates splA, splB were found to be significantly
associated with invasive disease while no significant association with one of the both
groups were found for splE (Rasmussen, PlosOne, 2013). This is in contrast to our
results, we didnt find such an association but geographic specific differences for the
different proteases as we see have not been described till yet based on the fact that only
a limited numbers of publications investigating the role of spl -genes in infection diseases
are available.

We could show that there is a geographic dependent and/or clinical/nasal origin de-
pendent prevalence for specific single genes while the appearance of other genes is strictly
in line with the genetic S. aureus lineage as has been show by [128, 159]. This goes in
line with the global gene prevalence analysis which show that independent of the isolate
origin the isolates build genotypic based clusters except of some CC45 isolates. Because
of this further expression and phenotypic analysis have to be performed to clarify if there
are geographic or nasal/ clinical phenotypic differences and to see who are the respon-
sible factors of the success of CC15, CC121 and CC152 in the African countries while
the known pandemic MRSA lineages CC22, CC30 and CC45 arent successful there.

Taken together we can conclude that always the genetic background has to be con-
sidered and therefore surveillance taken molecular characteristics into account are of
importance for adjusted empirical treatment and to control the distribution of success-
ful newly adapted strains.



Chapter 7

Conclusions and outlook

7.1 BEclear package

We developed a novel tool called BEclear that reduces the negative impact of batch
effect on DNA methylation data sets. It is array platform independent. We tested the
devised methodology on breast invasive carcinoma data from The Cancer Genome Atlas
and compared it with the existing algorithms ComBat, Surrogate Variable Analysis and
Functional normalization. BEclear outperformed these methods in terms of precision
and avoids changing the unaffected data. BEclear is available as an R package at the
Bioconductor project 1

7.2 AKSmooth: enhancing low-coverage bisulfite sequenc-
ing data via kernel-based smoothing

A method of growing importance is called WGBS - Whole-genome bisulfite sequencing.
It exclusively provides a consistent outlook on the genome-wide DNA methylation pro-
file. Yet, normally to get a sufficient amount of genome and read coverage it involves
high sequencing costs. The efforts of bioinformaticians to postprocess sequencing data
and thereby increase its quality can lower this costs. Thus, our method called Adjusted
Local Kernel Smoother or AKSmooth is aimed to embody this. It is a statistical ap-
proach which is able to reconstruct the single CpG methylation estimate across the entire
methylome using low-coverage bisulfite sequencing (Bi−Seq) data consistently and effi-
ciently. We have showed its performance on the low-coverage (∼ 4×) DNA methylation
profiles of three human colon cancer samples and matched controls [31].

Having used diverse parameters, we received high concordance with the gold stan-
dard high-coverage sample (Pearson 0.90), outperforming the popular analogous method
BSmooth (for AKSmooth-curated). AKSmooth reported computational efficiency with
runtime benchmark over 4.5 times better than the reference tool.

AKSmooth turned out to be a simple and resultant tool that can provide an accurate
human colon methylome estimation profile from low-coverage WGBS data. Moreover,
its implementation is available in R package 2.

1http://bioconductor.org/packages/release/bioc/html/BEclear.html
2https://github.com/Junfang/AKSmooth
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7.3 Outlook

Several future research projects aim to exploit the practical utility of results highlighted
in current thesis, in terms of both batch effect correction and S. aureus data analysis.
These projects intend to study deeper mechanisms of cancerogenesis as well as applying
other data mining tools to S. aureus data, namely redescription mining and classification
trees, in order to connect clinical data with the bacterial genome.

On the one hand, the performance of BEclear can still be improved by optimizing its
programming code. On the other hand, BEclear was designed to be platform indepen-
dent, that means that it has potential of batch effect adjustment of DNA methylation
data obtained from other technologies than Infinium HumanMethylation450 array. Of
special interest would be the application of BEclear to the Whole genome bisulfite se-
quencing data since it is considered as the gold standard in producing high resolution
epigenomic data. Furthermore, batch effect detection and correction in other epigenetic
changes, such as chromatin modifications, is still not completely investigated. Thus I
believe, that additional methods developed within this PhD project and now available
as software packages will contribute for progress in all areas of epigenetic research.
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

1 CD1C hsa04640:Hematopoietic cell lineage,
1 CD48 hsa04650:Natural killer cell mediated cytotoxicity,
1 GALNT8 hsa00512:O-Glycan biosynthesis,
1 EPX hsa05310:Asthma,
1 FSHR hsa04080:Neuroactive ligand-receptor interaction,
1 GRM8 hsa04080:Neuroactive ligand-receptor interaction,
1 IFNA8 hsa04060:Cytokine-cytokine receptor interaction,

hsa04140:Regulation of autophagy,
hsa04612:Antigen processing and presentation,
hsa04620:Toll-like receptor signaling pathway,
hsa04622:RIG-I-like receptor signaling pathway,
hsa04623:Cytosolic DNA-sensing pathway,
hsa04630:Jak-STAT signaling pathway,
hsa04650:Natural killer cell mediated cytotoxicity,
hsa05320:Autoimmune thyroid disease,

1 MASP1 hsa04610:Complement and coagulation cascades,
1 MBL2 hsa04610:Complement and coagulation cascades,
1 TAAR5 hsa04080:Neuroactive ligand-receptor interaction,
1 VNN1 hsa00770:Pantothenate and CoA biosynthesis,
2 AIFM1 hsa04210:Apoptosis,
2 COX7B hsa00190:Oxidative phosphorylation,

hsa04260:Cardiac muscle contraction,
hsa05010:Alzheimer’s disease,
hsa05012:Parkinson’s disease,
hsa05016:Huntington’s disease,

2 PDHA1 hsa00010:Glycolysis \Gluconeogenesis,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa00020:Citrate cycle (TCA cycle),
hsa00290:Valine, leucine and isoleucine biosynthesis,
hsa00620:Pyruvate metabolism,
hsa00650:Butanoate metabolism,

3 CYSLTR2 hsa04020:Calcium signaling pathway,
hsa04080:Neuroactive ligand-receptor interaction,

3 GNRH1 hsa04912:GnRH signaling pathway,
3 LEFTY1 hsa04350:TGF-beta signaling pathway,
3 PLXNB1 hsa04360:Axon guidance,
3 PPP1R3A hsa04910:Insulin signaling pathway,
4 ARHGEF4 hsa04810:Regulation of actin cytoskeleton,
4 CCL7 hsa04060:Cytokine-cytokine receptor interaction,

hsa04062:Chemokine signaling pathway,
hsa04621:NOD-like receptor signaling pathway,

4 GABRA5 hsa04080:Neuroactive ligand-receptor interaction,
4 OR5P2 hsa04740:Olfactory transduction,
5 HTR4 hsa04020:Calcium signaling pathway,

hsa04080:Neuroactive ligand-receptor interaction,
5 BMP8A hsa04340:Hedgehog signaling pathway,

hsa04350:TGF-beta signaling pathway,
5 EREG hsa04012:ErbB signaling pathway,
5 EPB41L3 hsa04530:Tight junction,
5 JAM3 hsa04514:Cell adhesion molecules (CAMs),

hsa04530:Tight junction,
hsa04670:Leukocyte transendothelial migration,
hsa05120:Epithelial cell signaling in Helicobacter pylori infection,

Continued
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

5 LPL hsa00561:Glycerolipid metabolism,
hsa03320:PPAR signaling pathway,
hsa05010:Alzheimer’s disease,

5 PDX1 hsa04930:Type II diabetes mellitus,
hsa04950:Maturity onset diabetes of the young,

5 PLA2G7 hsa00565:Ether lipid metabolism,
6 CD244 hsa04650:Natural killer cell mediated cytotoxicity,
6 ALDOB hsa00010:Glycolysis / Gluconeogenesis,

hsa00030:Pentose phosphate pathway,
hsa00051:Fructose and mannose metabolism,

6 AIRE hsa04120:Ubiquitin mediated proteolysis,
hsa05340:Primary immunodeficiency,

6 CACNG5 hsa04010:MAPK signaling pathway,
hsa04260:Cardiac muscle contraction,
hsa05410:Hypertrophic cardiomyopathy (HCM),
hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC),
hsa05414:Dilated cardiomyopathy,

6 CES7 hsa00983:Drug metabolism,
6 CCL8 hsa04060:Cytokine-cytokine receptor interaction,

hsa04062:Chemokine signaling pathway,
hsa04621:NOD-like receptor signaling pathway,

6 C1QB hsa04610:Complement and coagulation cascades,
hsa05020:Prion diseases,
hsa05322:Systemic lupus erythematosus,

6 C9 hsa04610:Complement and coagulation cascades,
hsa05020:Prion diseases,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa05322:Systemic lupus erythematosus,
6 ENTPD1 hsa00230:Purine metabolism,

hsa00240:Pyrimidine metabolism,
6 KLK3 hsa05200:Pathways in cancer,

hsa05215:Prostate cancer,
6 MYH6 hsa04260:Cardiac muscle contraction,

hsa04530:Tight junction,
hsa05410:Hypertrophic cardiomyopathy (HCM),
hsa05414:Dilated cardiomyopathy,
hsa05416:Viral myocarditis,

6 OR10H3 hsa04740:Olfactory transduction,
6 PRODH2 hsa00330:Arginine and proline metabolism,
6 PRSS1 hsa04080:Neuroactive ligand-receptor interaction,
6 RIPK3 hsa04623:Cytosolic DNA-sensing pathway,
7 LIMK1 hsa04360:Axon guidance,

hsa04666:Fc gamma R-mediated phagocytosis,
hsa04810:Regulation of actin cytoskeleton,

7 B4GALT6 hsa00600:Sphingolipid metabolism,
7 ALDOC hsa00010:Glycolysis / Gluconeogenesis,

hsa00030:Pentose phosphate pathway,
hsa00051:Fructose and mannose metabolism,

7 EGFR hsa04010:MAPK signaling pathway,
hsa04012:ErbB signaling pathway,
hsa04020:Calcium signaling pathway,
hsa04060:Cytokine-cytokine receptor interaction,
hsa04144:Endocytosis,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa04320:Dorso-ventral axis formation,
hsa04510:Focal adhesion,
hsa04520:Adherens junction,
hsa04540:Gap junction,
hsa04810:Regulation of actin cytoskeleton,
hsa04912:GnRH signaling pathway,
hsa05120:Epithelial cell signaling in Helicobacter pylori infection,
hsa05200:Pathways in cancer,
hsa05210:Colorectal cancer,
hsa05212:Pancreatic cancer,
hsa05213:Endometrial cancer,
hsa05214:Glioma,
hsa05215:Prostate cancer,
hsa05218:Melanoma,
hsa05219:Bladder cancer,
hsa05223:Non-small cell lung cancer,

7 FADS2 hsa00592:alpha-Linolenic acid metabolism,
hsa01040:Biosynthesis of unsaturated fatty acids,
hsa03320:PPAR signaling pathway,

7 HIST1H3J hsa05322:Systemic lupus erythematosus,
7 MAGI2 hsa04530:Tight junction,
7 RPL31 hsa03010:Ribosome,
7 SCNN1B hsa04742:Taste transduction,

hsa04960:Aldosterone-regulated sodium reabsorption,
7 TUBB6 hsa04540:Gap junction,

hsa05130:Pathogenic Escherichia coli infection,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

8 HTR1B hsa04080:Neuroactive ligand-receptor interaction,
8 HNF1B hsa04950:Maturity onset diabetes of the young,
8 ACTN2 hsa04510:Focal adhesion,

hsa04520:Adherens junction,
hsa04530:Tight junction,
hsa04670:Leukocyte transendothelial migration,
hsa04810:Regulation of actin cytoskeleton,
hsa05322:Systemic lupus erythematosus,
hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC),

8 APC2 hsa04310:Wnt signaling pathway,
hsa04810:Regulation of actin cytoskeleton,
hsa05200:Pathways in cancer,
hsa05210:Colorectal cancer,
hsa05213:Endometrial cancer,
hsa05217:Basal cell carcinoma,

8 ALDH1A2 hsa00830:Retinol metabolism,
8 BDNF hsa04010:MAPK signaling pathway,

hsa04722:Neurotrophin signaling pathway,
hsa05016:Huntington’s disease,

8 CACNA1A hsa04010:MAPK signaling pathway,
hsa04020:Calcium signaling pathway,
hsa04730:Long-term depression,
hsa04742:Taste transduction,
hsa04930:Type II diabetes mellitus,

8 CCNA1 hsa04110:Cell cycle,
hsa04914:Progesterone-mediated oocyte maturation,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa05200:Pathways in cancer,
hsa05221:Acute myeloid leukemia,

8 DRD5 hsa04020:Calcium signaling pathway,
hsa04080:Neuroactive ligand-receptor interaction,

8 EPO hsa04060:Cytokine-cytokine receptor interaction,
hsa04630:Jak-STAT signaling pathway,
hsa04640:Hematopoietic cell lineage,

8 FOXA2 hsa04950:Maturity onset diabetes of the young,
8 GHSR hsa04080:Neuroactive ligand-receptor interaction,
8 NEUROD1 hsa04950:Maturity onset diabetes of the young,
8 NOS1 hsa00330:Arginine and proline metabolism,

hsa04020:Calcium signaling pathway,
hsa04730:Long-term depression,
hsa05010:Alzheimer’s disease,
hsa05014:Amyotrophic lateral sclerosis (ALS),

8 OPRM1 hsa04080:Neuroactive ligand-receptor interaction,
8 PTPRN hsa04940:Type I diabetes mellitus,
8 TNFRSF8 hsa04060:Cytokine-cytokine receptor interaction,
8 WNT2 hsa04310:Wnt signaling pathway,

hsa04340:Hedgehog signaling pathway,
hsa04916:Melanogenesis,
hsa05200:Pathways in cancer,
hsa05217:Basal cell carcinoma,

9 CD1A hsa04640:Hematopoietic cell lineage,
9 CD1D hsa04640:Hematopoietic cell lineage,
9 CD1E hsa04640:Hematopoietic cell lineage,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

9 CDH4 hsa04514:Cell adhesion molecules (CAMs),
9 CCL11 hsa04060:Cytokine-cytokine receptor interaction,

hsa04062:Chemokine signaling pathway,
hsa04621:NOD-like receptor signaling pathway,
hsa05310:Asthma,

9 LAMA3 hsa04510:Focal adhesion,
hsa04512:ECM-receptor interaction,
hsa05200:Pathways in cancer,
hsa05222:Small cell lung cancer,

9 MYH4 hsa04530:Tight junction,
hsa05416:Viral myocarditis,

9 OR1G1 hsa04740:Olfactory transduction,
9 OR12D3 hsa04740:Olfactory transduction,
9 PAX4 hsa04950:Maturity onset diabetes of the young,
10 CD34 hsa04514:Cell adhesion molecules (CAMs),

hsa04640:Hematopoietic cell lineage,
10 ST6GALNAC1 hsa00512:O-Glycan biosynthesis,
10 CA9 hsa00910:Nitrogen metabolism,
10 CCKAR hsa04020:Calcium signaling pathway,

hsa04080:Neuroactive ligand-receptor interaction,
10 F2RL3 hsa04080:Neuroactive ligand-receptor interaction,
10 C1S hsa04610:Complement and coagulation cascades,

hsa05322:Systemic lupus erythematosus,
10 DOCK2 hsa04062:Chemokine signaling pathway,

hsa04666:Fc gamma R-mediated phagocytosis,
10 GABRD hsa04080:Neuroactive ligand-receptor interaction,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

10 GNA13 hsa04270:Vascular smooth muscle contraction,
hsa04730:Long-term depression,
hsa04810:Regulation of actin cytoskeleton,

10 IGF1 hsa04114:Oocyte meiosis,
hsa04115:p53 signaling pathway,
hsa04150:mTOR signaling pathway,
hsa04510:Focal adhesion,
hsa04730:Long-term depression,
hsa04914:Progesterone-mediated oocyte maturation,
hsa04960:Aldosterone-regulated sodium reabsorption,
hsa05200:Pathways in cancer,
hsa05214:Glioma,
hsa05215:Prostate cancer,
hsa05218:Melanoma,
hsa05410:Hypertrophic cardiomyopathy (HCM),
hsa05414:Dilated cardiomyopathy,

10 LY96 hsa04620:Toll-like receptor signaling pathway,
hsa05130:Pathogenic Escherichia coli infection,

10 NPFFR2 hsa04080:Neuroactive ligand-receptor interaction,
10 PITX2 hsa04350:TGF-beta signaling pathway,
10 PCYT1B hsa00564:Glycerophospholipid metabolism,
10 PDE4C hsa00230:Purine metabolism,
10 P4HA3 hsa00330:Arginine and proline metabolism,
10 POMC hsa04916:Melanogenesis,

hsa04920:Adipocytokine signaling pathway,
10 SGCD hsa05410:Hypertrophic cardiomyopathy (HCM),
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC),
hsa05414:Dilated cardiomyopathy,
hsa05416:Viral myocarditis,

10 TNFRSF17 hsa04060:Cytokine-cytokine receptor interaction,
hsa04672:Intestinal immune network for IgA production,

11 HAAO hsa00380:Tryptophan metabolism,
11 CD38 hsa00760:Nicotinate and nicotinamide metabolism,

hsa04020:Calcium signaling pathway,
hsa04640:Hematopoietic cell lineage,

11 AKR1B1 hsa00040:Pentose and glucuronate interconversions,
hsa00051:Fructose and mannose metabolism,
hsa00052:Galactose metabolism,
hsa00561:Glycerolipid metabolism,
hsa00620:Pyruvate metabolism,

11 CNTN2 hsa04514:Cell adhesion molecules (CAMs),
11 FABP5 hsa03320:PPAR signaling pathway,
11 GRIA1 hsa04080:Neuroactive ligand-receptor interaction,

hsa04720:Long-term potentiation,
hsa04730:Long-term depression,
hsa05014:Amyotrophic lateral sclerosis (ALS),

11 GNA15 hsa04020:Calcium signaling pathway,
11 GUCY2D hsa00230:Purine metabolism,

hsa04740:Olfactory transduction,
11 IL23A hsa04060:Cytokine-cytokine receptor interaction,

hsa04630:Jak-STAT signaling pathway,
11 MAT1A hsa00270:Cysteine and methionine metabolism,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa00450:Selenoamino acid metabolism,
11 NPY hsa04920:Adipocytokine signaling pathway,
11 NODAL hsa04350:TGF-beta signaling pathway,
11 SIPA1 hsa04670:Leukocyte transendothelial migration,
11 SLC8A2 hsa04020:Calcium signaling pathway,
11 TNFRSF10D hsa04060:Cytokine-cytokine receptor interaction,

hsa04210:Apoptosis,
hsa04650:Natural killer cell mediated cytotoxicity,

11 TNFRSF1B hsa04060:Cytokine-cytokine receptor interaction,
hsa04920:Adipocytokine signaling pathway,
hsa05014:Amyotrophic lateral sclerosis (ALS),

12 CLDN8 hsa04514:Cell adhesion molecules (CAMs),
hsa04530:Tight junction,
hsa04670:Leukocyte transendothelial migration,

12 KLHL13 hsa04120:Ubiquitin mediated proteolysis,
12 TNFRSF9 hsa04060:Cytokine-cytokine receptor interaction,
12 VDAC1 hsa04020:Calcium signaling pathway,

hsa05012:Parkinson’s disease,
hsa05016:Huntington’s disease,

13 CFB hsa04610:Complement and coagulation cascades,
13 CYFIP2 hsa04810:Regulation of actin cytoskeleton,
13 IL18 hsa04060:Cytokine-cytokine receptor interaction,

hsa04621:NOD-like receptor signaling pathway,
hsa04623:Cytosolic DNA-sensing pathway,

13 HLA-DRA hsa04514:Cell adhesion molecules (CAMs),
hsa04612:Antigen processing and presentation,

Continued



A
p

p
en

d
ix

B
C

o
-m

eth
y
la

tion
su

p
p

lem
en

tary
m

aterial
(ch

ap
ter

4)
127

Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa04640:Hematopoietic cell lineage,
hsa04672:Intestinal immune network for IgA production,
hsa04940:Type I diabetes mellitus,
hsa05310:Asthma,
hsa05320:Autoimmune thyroid disease,
hsa05322:Systemic lupus erythematosus,
hsa05330:Allograft rejection,
hsa05332:Graft-versus-host disease,
hsa05416:Viral myocarditis,

13 RHOH hsa04670:Leukocyte transendothelial migration,
13 TJP3 hsa04530:Tight junction,
14 CD40 hsa04060:Cytokine-cytokine receptor interaction,

hsa04514:Cell adhesion molecules (CAMs),
hsa04620:Toll-like receptor signaling pathway,
hsa04672:Intestinal immune network for IgA production,
hsa05310:Asthma,
hsa05320:Autoimmune thyroid disease,
hsa05322:Systemic lupus erythematosus,
hsa05330:Allograft rejection,
hsa05340:Primary immunodeficiency,
hsa05416:Viral myocarditis,

14 CTPS hsa00240:Pyrimidine metabolism,
14 CHST3 hsa00532:Chondroitin sulfate biosynthesis,
14 CXCL12 hsa04060:Cytokine-cytokine receptor interaction,

hsa04062:Chemokine signaling pathway,
hsa04360:Axon guidance,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa04670:Leukocyte transendothelial migration,
hsa04672:Intestinal immune network for IgA production,

14 CDO1 hsa00270:Cysteine and methionine metabolism,
hsa00430:Taurine and hypotaurine metabolism,

14 HIST1H4L hsa05322:Systemic lupus erythematosus,
14 IRAK3 hsa04210:Apoptosis,

hsa04722:Neurotrophin signaling pathway,
14 NPR2 hsa00230:Purine metabolism,

hsa04270:Vascular smooth muscle contraction,
14 PLAT hsa04610:Complement and coagulation cascades,
14 VAV1 hsa04062:Chemokine signaling pathway,

hsa04510:Focal adhesion,
hsa04650:Natural killer cell mediated cytotoxicity,
hsa04660:T cell receptor signaling pathway,
hsa04662:B cell receptor signaling pathway,
hsa04664:Fc epsilon RI signaling pathway,
hsa04666:Fc gamma R-mediated phagocytosis,
hsa04670:Leukocyte transendothelial migration,
hsa04810:Regulation of actin cytoskeleton,

15 C7orf16 hsa04730:Long-term depression,
15 C6 hsa04610:Complement and coagulation cascades,

hsa05020:Prion diseases,
hsa05322:Systemic lupus erythematosus,

15 GRM5 hsa04020:Calcium signaling pathway,
hsa04080:Neuroactive ligand-receptor interaction,
hsa04540:Gap junction,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa04720:Long-term potentiation,
hsa04730:Long-term depression,
hsa05016:Huntington’s disease,

15 GYS2 hsa00500:Starch and sucrose metabolism,
hsa04910:Insulin signaling pathway,

15 IFNG hsa03050:Proteasome,
hsa04060:Cytokine-cytokine receptor interaction,
hsa04140:Regulation of autophagy,
hsa04350:TGF-beta signaling pathway,
hsa04630:Jak-STAT signaling pathway,
hsa04650:Natural killer cell mediated cytotoxicity,
hsa04660:T cell receptor signaling pathway,
hsa04940:Type I diabetes mellitus,
hsa05322:Systemic lupus erythematosus,
hsa05330:Allograft rejection,
hsa05332:Graft-versus-host disease,

15 OR5I1 hsa04740:Olfactory transduction,
15 PRKG2 hsa04540:Gap junction,

hsa04730:Long-term depression,
hsa04740:Olfactory transduction,

15 SGCG hsa05410:Hypertrophic cardiomyopathy (HCM),
hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC),
hsa05414:Dilated cardiomyopathy,
hsa05416:Viral myocarditis,

16 ACOX2 hsa00120:Primary bile acid biosynthesis,
hsa03320:PPAR signaling pathway,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

16 CARD11 hsa04660:T cell receptor signaling pathway,
hsa04662:B cell receptor signaling pathway,

16 GRIK2 hsa04080:Neuroactive ligand-receptor interaction,
16 GDA hsa00230:Purine metabolism,
16 LCP2 hsa04650:Natural killer cell mediated cytotoxicity,

hsa04660:T cell receptor signaling pathway,
hsa04664:Fc epsilon RI signaling pathway,

16 MCHR2 hsa04080:Neuroactive ligand-receptor interaction,
16 MAOA hsa00260:Glycine, serine and threonine metabolism,

hsa00330:Arginine and proline metabolism,
hsa00340:Histidine metabolism,
hsa00350:Tyrosine metabolism,
hsa00360:Phenylalanine metabolism,
hsa00380:Tryptophan metabolism,
hsa00982:Drug metabolism,

16 PRLHR hsa04080:Neuroactive ligand-receptor interaction,
16 RUNX1T1 hsa05200:Pathways in cancer,

hsa05221:Acute myeloid leukemia,
16 RYR2 hsa04020:Calcium signaling pathway,

hsa04260:Cardiac muscle contraction,
hsa05410:Hypertrophic cardiomyopathy (HCM),
hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC),
hsa05414:Dilated cardiomyopathy,

17 H2AFY hsa05322:Systemic lupus erythematosus,
17 RAB4A hsa04144:Endocytosis,
17 ADCY4 hsa00230:Purine metabolism,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa04020:Calcium signaling pathway,
hsa04062:Chemokine signaling pathway,
hsa04114:Oocyte meiosis,
hsa04270:Vascular smooth muscle contraction,
hsa04540:Gap junction,
hsa04742:Taste transduction,
hsa04912:GnRH signaling pathway,
hsa04914:Progesterone-mediated oocyte maturation,
hsa04916:Melanogenesis,
hsa05414:Dilated cardiomyopathy,

17 CDH5 hsa04514:Cell adhesion molecules (CAMs),
hsa04670:Leukocyte transendothelial migration,

17 DNM3 hsa04144:Endocytosis,
hsa04666:Fc gamma R-mediated phagocytosis,

17 FMO2 hsa00982:Drug metabolism,
17 LAMB3 hsa04510:Focal adhesion,

hsa04512:ECM-receptor interaction,
hsa05200:Pathways in cancer,
hsa05222:Small cell lung cancer,

17 MMP7 hsa04310:Wnt signaling pathway,
17 MGST1 hsa00480:Glutathione metabolism,

hsa00980:Metabolism of xenobiotics by cytochrome P450,
hsa00982:Drug metabolism,

17 RDH5 hsa00830:Retinol metabolism,
19 ABO hsa00601:Glycosphingolipid biosynthesis,
19 ST8SIA5 hsa00604:Glycosphingolipid biosynthesis,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

19 ALPL hsa00790:Folate biosynthesis,
19 ALOX15 hsa00590:Arachidonic acid metabolism,

hsa00591:Linoleic acid metabolism,
19 CRHR2 hsa04080:Neuroactive ligand-receptor interaction,
19 ITGA4 hsa04510:Focal adhesion,

hsa04512:ECM-receptor interaction,
hsa04514:Cell adhesion molecules (CAMs),
hsa04640:Hematopoietic cell lineage,
hsa04670:Leukocyte transendothelial migration,
hsa04672:Intestinal immune network for IgA production,
hsa04810:Regulation of actin cytoskeleton,
hsa05410:Hypertrophic cardiomyopathy (HCM),
hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC),
hsa05414:Dilated cardiomyopathy,

20 ATP6V0C hsa00190:Oxidative phosphorylation,
hsa04142:Lysosome,
hsa05110:Vibrio cholerae infection,
hsa05120:Epithelial cell signaling in Helicobacter pylori infection,

20 CD8B hsa04514:Cell adhesion molecules (CAMs),
hsa04612:Antigen processing and presentation,
hsa04640:Hematopoietic cell lineage,
hsa04660:T cell receptor signaling pathway,
hsa05340:Primary immunodeficiency,

20 RAB11FIP4 hsa04144:Endocytosis,
20 ACSS1 hsa00010:Glycolysis / Gluconeogenesis,

hsa00620:Pyruvate metabolism,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa00640:Propanoate metabolism,
20 APC hsa04310:Wnt signaling pathway,

hsa04810:Regulation of actin cytoskeleton,
hsa05200:Pathways in cancer,
hsa05210:Colorectal cancer,
hsa05213:Endometrial cancer,
hsa05217:Basal cell carcinoma,

20 ADA hsa00230:Purine metabolism,
hsa05340:Primary immunodeficiency,

20 ALOX15B hsa00590:Arachidonic acid metabolism,
20 CXCL6 hsa04060:Cytokine-cytokine receptor interaction,

hsa04062:Chemokine signaling pathway,
20 CX3CL1 hsa04060:Cytokine-cytokine receptor interaction,

hsa04062:Chemokine signaling pathway,
20 C5AR1 hsa04080:Neuroactive ligand-receptor interaction,

hsa04610:Complement and coagulation cascades,
20 HIST1H4F hsa05322:Systemic lupus erythematosus,
20 MMP2 hsa04670:Leukocyte transendothelial migration,

hsa04912:GnRH signaling pathway,
hsa05200:Pathways in cancer,
hsa05219:Bladder cancer,

21 CYBA hsa04670:Leukocyte transendothelial migration,
21 EXTL2 hsa00534:Heparan sulfate biosynthesis,
21 GSTM2 hsa00480:Glutathione metabolism,

hsa00980:Metabolism of xenobiotics by cytochrome P450,
hsa00982:Drug metabolism,

Continued



13
4

A
p

p
en

d
ix

B
C

o-m
eth

y
lation

su
p

p
lem

en
tary

m
aterial

(ch
ap

ter
4)

Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

21 HIST1H3I hsa05322:Systemic lupus erythematosus,
21 MMP14 hsa04912:GnRH signaling pathway,
21 NCAM2 hsa04514:Cell adhesion molecules (CAMs),

hsa05020:Prion diseases,
21 UCP1 hsa03320:PPAR signaling pathway,

hsa05016:Huntington’s disease,
22 CLCA1 hsa04740:Olfactory transduction,
22 F7 hsa04610:Complement and coagulation cascades,
22 EGF hsa04010:MAPK signaling pathway,

hsa04012:ErbB signaling pathway,
hsa04060:Cytokine-cytokine receptor interaction,
hsa04144:Endocytosis,
hsa04510:Focal adhesion,
hsa04540:Gap junction,
hsa04810:Regulation of actin cytoskeleton,
hsa05200:Pathways in cancer,
hsa05212:Pancreatic cancer,
hsa05213:Endometrial cancer,
hsa05214:Glioma,
hsa05215:Prostate cancer,
hsa05218:Melanoma,
hsa05219:Bladder cancer,
hsa05223:Non-small cell lung cancer,

22 EPHX1 hsa00980:Metabolism of xenobiotics by cytochrome P450,
22 IL20 hsa04060:Cytokine-cytokine receptor interaction,

hsa04630:Jak-STAT signaling pathway,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

22 SCNN1A hsa04742:Taste transduction,
hsa04960:Aldosterone-regulated sodium reabsorption,

22 THPO hsa04640:Hematopoietic cell lineage,
22 TNFSF18 hsa04060:Cytokine-cytokine receptor interaction,
23 DUSP16 hsa04010:MAPK signaling pathway,
23 LRDD hsa04115:p53 signaling pathway,
23 NCL hsa05130:Pathogenic Escherichia coli infection,
23 PPIL2 hsa04120:Ubiquitin mediated proteolysis,
23 SC4MOL hsa00100:Steroid biosynthesis,
23 SOCS3 hsa04120:Ubiquitin mediated proteolysis,

hsa04630:Jak-STAT signaling pathway,
hsa04910:Insulin signaling pathway,
hsa04920:Adipocytokine signaling pathway,
hsa04930:Type II diabetes mellitus,

24 CHST2 hsa00533:Keratan sulfate biosynthesis,
24 CNTNAP2 hsa04514:Cell adhesion molecules (CAMs),
24 GRIN3A hsa04080:Neuroactive ligand-receptor interaction,
25 BCL10 hsa04660:T cell receptor signaling pathway,

hsa04662:B cell receptor signaling pathway,
25 DBH hsa00350:Tyrosine metabolism,
26 F2RL1 hsa04080:Neuroactive ligand-receptor interaction,
26 EXTL1 hsa00534:Heparan sulfate biosynthesis,
26 FABP3 hsa03320:PPAR signaling pathway,
26 HIST1H3G hsa05322:Systemic lupus erythematosus,
26 IFNGR2 hsa04060:Cytokine-cytokine receptor interaction,

hsa04630:Jak-STAT signaling pathway,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa04650:Natural killer cell mediated cytotoxicity,
26 LHCGR hsa04020:Calcium signaling pathway,

hsa04080:Neuroactive ligand-receptor interaction,
26 PGAM2 hsa00010:Glycolysis / Gluconeogenesis,
26 PIPOX hsa00260:Glycine, serine and threonine metabolism,

hsa00310:Lysine degradation,
26 PDCD1LG2 hsa04514:Cell adhesion molecules (CAMs),
26 PPP1R14A hsa04270:Vascular smooth muscle contraction,
26 PTPRR hsa04010:MAPK signaling pathway,
26 SREBF1 hsa04910:Insulin signaling pathway,
26 SV2A hsa04512:ECM-receptor interaction,
26 TRIP10 hsa04910:Insulin signaling pathway,
26 UCK1 hsa00240:Pyrimidine metabolism,

hsa00983:Drug metabolism,
27 CHRM5 hsa04020:Calcium signaling pathway,

hsa04080:Neuroactive ligand-receptor interaction,
hsa04810:Regulation of actin cytoskeleton,

27 COL5A2 hsa04510:Focal adhesion,
hsa04512:ECM-receptor interaction,

27 COL11A1 hsa04510:Focal adhesion,
hsa04512:ECM-receptor interaction,

27 CA5B hsa00910:Nitrogen metabolism,
27 NTSR1 hsa04020:Calcium signaling pathway,

hsa04080:Neuroactive ligand-receptor interaction,
27 KCNMB2 hsa04270:Vascular smooth muscle contraction,
27 SPP1 hsa04510:Focal adhesion,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

hsa04512:ECM-receptor interaction,
hsa04620:Toll-like receptor signaling pathway,

27 TAT hsa00130:Ubiquinone and other terpenoid-quinone biosynthesis,
hsa00270:Cysteine and methionine metabolism,
hsa00350:Tyrosine metabolism,
hsa00360:Phenylalanine metabolism,
hsa00400:Phenylalanine, tyrosine and tryptophan biosynthesis,

28 NLRP3 hsa04621:NOD-like receptor signaling pathway,
28 CYP11B1 hsa00140:Steroid hormone biosynthesis,

hsa00150:Androgen and estrogen metabolism,
28 FGF6 hsa04010:MAPK signaling pathway,

hsa04810:Regulation of actin cytoskeleton,
hsa05200:Pathways in cancer,
hsa05218:Melanoma,

28 GRIK5 hsa04080:Neuroactive ligand-receptor interaction,
28 NOS3 hsa00330:Arginine and proline metabolism,

hsa04020:Calcium signaling pathway,
hsa04370:VEGF signaling pathway,

28 OR7A5 hsa04740:Olfactory transduction,
28 OR8B8 hsa04740:Olfactory transduction,
28 TPO hsa00350:Tyrosine metabolism,

hsa04060:Cytokine-cytokine receptor interaction,
hsa04630:Jak-STAT signaling pathway,
hsa04640:Hematopoietic cell lineage,
hsa05320:Autoimmune thyroid disease,

29 HUWE1 hsa04120:Ubiquitin mediated proteolysis,
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Table B.1: Pathway mapping of 29 clusters using DAVID. These clusters of genes are identical to clusters described in Table S1.

Cluster ID Gene symbol KEGG pathways

29 AMH hsa04060:Cytokine-cytokine receptor interaction,
hsa04350:TGF-beta signaling pathway,

29 CTNNBL1 hsa03040:Spliceosome,
29 COL3A1 hsa04510:Focal adhesion,

hsa04512:ECM-receptor interaction,
29 MAP3K14 hsa04010:MAPK signaling pathway,

hsa04210:Apoptosis,
hsa04660:T cell receptor signaling pathway,
hsa04672:Intestinal immune network for IgA production,
hsa05120:Epithelial cell signaling in Helicobacter pylori infection,

29 PLA2G2E hsa00564:Glycerophospholipid metabolism,
hsa00565:Ether lipid metabolism,
hsa00590:Arachidonic acid metabolism,
hsa00591:Linoleic acid metabolism,
hsa00592:alpha-Linolenic acid metabolism,
hsa04010:MAPK signaling pathway,
hsa04270:Vascular smooth muscle contraction,
hsa04370:VEGF signaling pathway,
hsa04664:Fc epsilon RI signaling pathway,
hsa04730:Long-term depression,
hsa04912:GnRH signaling pathway,

29 KCNB1 hsa04742:Taste transduction.
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
SPRR1B SPRR1A 0.872 0.584 0.96 48136
FCN2 FCN1 0.870 0.260 0.98 37462
CD244 CD48 0.866 0.713 0.85 151800
SPRR1B SPRR4 0.862 0.101 NA 61112
TAS2R13 PRB4 0.859 0.456 0 401809
F7 TFF1 0.856 0.462 0.81 d
SH3TC2 SPARCL1 0.853 0.070 NA d
ABCE1 SC4MOL 0.849 0.122 0.25 20230109
REG1B REG1P 0.846 NA 0.92 67887
SPRR3 SPRR4 0.843 0.078 NA 30747
SPRR1B SPRR2D 0.842 0.783 NA 10959
TAS2R13 SCOC 0.842 -0.060 NA d
C3orf32 TFF1 0.840 0.060 NA d
REG1B REG1A 0.840 0.331 NA 31695
PGLYRP3 LOR 0.836 0.050 0.11 51646
SPRR1A SPRR4 0.834 0.152 NA 12976
C1orf64 TFF1 0.832 0.415 NA d
KRTAP8-1 KRTAP20-1 0.830 NA NA 196749
TXLNA SC4MOL 0.829 0.102 0.10 d
TFF1 TNFSF18 0.827 0.051 0.70 d
REG1P REG3A 0.827 NA 0.92 3382
KRTAP8-1 KRTAP21-1 0.826 NA NA 56305
KRTAP21-1 KRTAP20-1 0.824 NA NA 140444
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
CDH5 NDRG2 0.821 0.121 0.43 d
PPIL2 SC4MOL 0.820 0.112 0.16 d
HBB HBE1 0.820 -0.018 0.92 41218
TXLNA PPIL2 0.820 0.250 0.13 d
CD8A PODN 0.817 NA 0.49 d
CD48 SLAMF1 0.816 0.851 0.79 64890
C3orf32 SCOC 0.815 0.022 NA d
MYH1 MYH4 0.813 0.341 NA 45771
REG1P REG1A 0.810 NA NA 36192
SPRR2D SPRR1A 0.809 0.662 NA 59095
DNM3 INA 0.808 -0.021 0.53 d
SCOC TFF1 0.808 0.014 NA d
TXLNA ABCE1 0.807 -0.199 0.38 d
KRTAP20-1 KRTAP13-4 0.806 NA NA 185787
TAS2R13 TNFSF18 0.806 -0.048 0.48 d
PODN INA 0.805 -0.218 0.08 d
PRKCB MSC 0.804 NA 0.67 d
TAS2R13 TFF1 0.804 -0.033 0.28 d
C3orf32 C1orf64 0.804 0.095 NA d
SPRR2D SPRR4 0.803 0.118 NA 72071
CD8A ST8SIA5 0.802 NA 0.24 d
SERPINB12 SPP2 0.801 0.013 0.68 d
REG1B MORC1 0.800 0.032 0.18 d
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
REG1A REG3A 0.799 0.068 NA 39574
KRTAP13-3 KRTAP15-1 0.799 0.094 NA 15143
SCOC TNFSF18 0.795 0.029 NA d
KRTAP21-1 KRTAP13-4 0.795 NA NA 326231
F7 C1orf64 0.794 0.388 NA d
KRTAP13-3 KRTAP13-4 0.793 0.051 NA 4897
SPRR3 SPRR1B 0.792 0.502 0.86 30365
C3orf32 TNFSF18 0.789 -0.122 NA d
CYP11B1 CACNG5 0.789 0.352 0.22 d
PRB4 SCOC 0.788 -0.078 NA d
SPRR1A LCE3D 0.787 0.578 NA 403692
SLC5A12 SERPINB12 0.787 0.012 0.01 d
TAS2R13 TBX19 0.787 -0.038 0.21 d
AHSG FETUB 0.786 0.246 0.71 25674
TAS2R13 C3orf32 0.786 0.083 NA d
AHSG CACNG5 0.786 0.231 0.23 d
CDH5 SPARCL1 0.784 0.509 0.61 d
TNFRSF1B PODN 0.783 0.232 0.56 41150913
SPRR4 LCE5A 0.783 -0.029 NA 459535
KRTAP13-3 KRTAP13-1 0.782 -0.054 NA 29206
TAS2R13 C15orf21 0.782 -0.020 NA d
SCRG1 SPARCL1 0.782 0.132 NA 85887912
TGIF2LY TGIF2LX 0.781 NA 0.97 d
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
KRTAP13-3 KRTAP20-1 0.781 NA NA 190684
WNT2 RASGRF2 0.781 0.426 0.46 d
SCOC C1orf64 0.780 0.241 NA d
LOR LCE5A 0.780 0.111 NA 748673
NDRG2 SPARCL1 0.780 0.219 0.55 d
F7 C3orf32 0.779 0.107 NA d
F7 TNFSF18 0.779 0.024 0.60 d
CRCT1 LCE5A 0.779 0.055 NA 3660
KRTAP8-1 KRTAP13-4 0.779 0.182 NA 382536
DNM3 POU4F1 0.778 0.132 0.48 d
CD8A SIX6 0.778 NA 0.27 d
REG1B REG3A 0.777 0.113 0.92 71269
PRB4 SERPINB12 0.777 0.081 0 d
ATP8A2 INA 0.775 0.020 0 d
C1orf64 TNFSF18 0.775 0.051 NA 155083744
APCS REG1B 0.774 -0.049 0.67 d
ST8SIA5 PODN 0.774 -0.091 0.08 d
LCE3D LCE2B 0.773 0.191 NA 106303
SERPINB4 SERPINB7 0.773 0.423 0.92 130561
CDX2 INA 0.772 -0.009 0.57 d
COX7B MAGT1 0.772 NA 0.47 3907
WNT2 POU3F3 0.772 -0.121 0.49 d
SPRR1B PGLYRP3 0.772 0.309 0.16 279672
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
CUBN SERPINB12 0.771 -0.128 0.47 d
GREM1 PODN 0.771 0.500 NA d
PRB4 TNFSF18 0.771 0.014 0.33 d
DNM3 SH3TC2 0.771 0.296 NA d
KRTAP8-1 KRTAP11-1 0.770 0.319 NA 68599
FGF6 CACNG5 0.770 0.202 0.11 d
SLC18A3 PTF1A 0.770 0.000 0.25 26967317
CD8A POU3F3 0.770 NA 0.31 17966756
APCS CRP 0.770 0.111 0.77 126545
SIGLEC9 KLK3 0.770 -0.127 NA 269952
NEUROG1 GLB1L3 0.769 -0.154 NA d
PRB4 C15orf21 0.769 -0.057 NA d
CD8A GCM2 0.769 NA 0.21 d
CUBN SPP2 0.769 0.044 0.36 d
TMEM132D GJD2 0.768 NA 0.39 d
UBD OR12D3 0.768 -0.068 0.23 185440
F7 PRR15L 0.767 NA NA d
LCE2B LCE5A 0.766 -0.048 NA 175122
SCOC C15orf21 0.766 0.195 NA d
POU4F1 INA 0.766 0.431 0.6 d
SPRR1B LCE3D 0.766 0.562 NA 451828
PRR15L TOM1L1 0.766 NA NA 6943240
NDRG2 CD9 0.765 -0.095 0.55 d
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
F7 SCOC 0.765 0.032 NA d
C3orf32 PRB4 0.765 0.180 NA d
CD38 PODN 0.765 -0.091 0.41 d
SPRR3 SPRR1A 0.765 0.414 0.92 17771
DNM3 CORIN 0.765 0.053 0.26 d
TMCO5A SPP2 0.765 NA NA d
CDX2 ST8SIA5 0.763 0.093 0.19 d
CD8A TOX2 0.763 NA 0.19 d
LCE3D CRCT1 0.763 0.394 NA 65159
PROK2 TBX21 0.762 0.266 0.29 d
FGF6 CYP11B1 0.762 0.187 0.21 d
IL23A C12orf34 0.761 -0.064 NA 53637741
CD8A IHH 0.761 NA 0.52 132761597
GREM1 INA 0.760 -0.015 NA d
TNFRSF1B IL23A 0.760 0.229 0.54 d
CD8A POU4F1 0.760 NA 0.24 d
CD8A INA 0.759 NA 0.31 d
H2AFY PODN 0.759 -0.035 0.16 d
CD34 PDCD1LG2 0.759 0.028 0.52 d
CD8A SOX8 0.759 NA 0.37 d
SCOC TBX19 0.758 -0.167 NA d
FLG CRCT1 0.758 0.247 NA 188257
SPRR4 LOR 0.758 -0.017 NA 289138
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
MSC ISL1 0.757 0.075 0.82 d
CDH5 SH3TC2 0.757 -0.042 NA d
FLG LCE3D 0.756 0.212 NA 253416
REG1A OR12D3 0.756 0.060 NA d
CD8A PROK2 0.756 NA 0.71 d
CD8A TBX21 0.755 NA 0.36 d
KRTAP13-3 KRTAP8-1 0.755 0.018 NA 387433
CD8A RASGRF2 0.755 NA 0.46 d
ST8SIA5 INA 0.755 0.096 0.16 d
KRTAP13-3 KRTAP21-1 0.755 NA NA 331128
SIGLEC9 PCBP3 0.755 0.013 0.08 d
IHH POU3F3 0.754 -0.094 0.44 114794841
SIX6 INA 0.754 0.413 0.49 d
ADAMTS4 NDUFS2 0.754 0.181 NA 536
MAPK4 AHSG 0.754 0.201 NA d
PPP3R2 MORC1 0.754 0.278 NA d
PPP3R2 REG1B 0.754 -0.005 NA d
CD244 SLAMF1 0.754 0.746 0.65 216690
SLC9A3 NEUROG1 0.754 0.124 0.07 134322082
RECK POU3F3 0.753 -0.158 NA d
APCS CD1E 0.753 -0.037 NA 1233555
TBC1D8B PSMD10 0.753 0.232 0.49 1288760
KRT1 IQCF2 0.753 NA NA d
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
TAS2R13 C1orf64 0.753 0.024 NA d
TMCO5A CLDN16 0.752 NA NA d
CD8A CLIP4 0.752 NA NA 57679313
SIGLEC9 AHSG 0.752 -0.020 0.11 d
FGD4 SH3TC2 0.752 0.314 NA d
REG1B OR12D3 0.752 0.175 0 d
KRTAP21-1 KRTAP11-1 0.752 NA NA 124904
KRT1 AHSG 0.751 0.027 0.38 d
APCS REG1A 0.751 0.092 NA d
PGLYRP3 SPRR4 0.751 0.009 NA 340784
ST8SIA5 NEUROG1 0.751 0.198 0.17 d
DNM3 PODN 0.751 0.243 0.38 116776395
CD1E CD1A 0.751 0.589 NA 100397
PPP3R2 GPR1 0.751 -0.086 NA d
SCN7A SERPINB12 0.751 -0.012 0.13 d
CD8A DNM3 0.751 NA 0.35 d
NPY INA 0.751 0.277 0.43 d
IHH ST8SIA5 0.751 0.062 0.19 d
ST8SIA5 TBX21 0.751 -0.138 0.17 d
SPRR4 LCE3D 0.751 0.091 NA 390716
SH3TC2 NDRG2 0.750 0.402 NA d
SPARCL1 C15orf21 -0.752 -0.037 NA d
TFF1 C12orf34 -0.755 0.130 NA d
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Table B.2: The 187 strongest correlations for pairs of genes with respect to their -values, obtained after three stage filtering. For these pairs of
genes, we also computed the Pearson correlation of their expression values (fourth column). In case at least one out of two genes was not found in
the gene expression sample, NA was assigned to their co-expression value. Genomic distance contains d for those pairs of genes, which are located

on different chromosomes.

First gene Second gene Co-methylation Co-expression rfunSimAll Genomic distance
DNM3 TAS2R13 -0.756 -0.066 0.09 d
C12orf34 TNFSF18 -0.763 0.002 NA d
TAS2R13 SH3TC2 -0.775 0.023 NA d


