
Why are certain polynomials
hard?

A look at non-commutative, parameterized and
homomorphism polynomials

Christian Engels

Dissertation

zur Erlangung des Grades des
Doktors der Naturwissenschaften

an der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

September, 2015

U
N IV E R S IT A

S

S
A

R A V I E N S I S

Tag des Kolloquiums: Wednesday 27th January, 2016

Dekan: Prof. Dr. Markus Bläser

Vorsitzender Prof. Dr. Holger Hermanns
Universität des Saarlandes, Saarbrücken

Gutachter : Prof. Dr. Markus Bläser
Universität des Saarlandes, Saarbrücken

Prof. Dr. Raghavendra Rao B. V.
Indian Institute of Technology Madras, Chennai

Akademischer Mitarbeiter: Dr. Karteek Sreenivasaiah

Abstract
In this thesis we will try to answer the question why specific polynomials have no
small suspected arithmetic circuits. We will look at this general problem in three
different ways.

First, we study non-commutative computation. Here we show matching upper and
lower bounds for the non-commutative permanent for various restricted graph classes.
Our main result gives algebraic branching program upper and lower bounds for graphs
with connected component size 6 as well as a #P hardness result. We introduce a
measure that characterizes this complexity on these instances.

Secondly, we introduce a new framework for arithmetic circuits, similar to fixed
parameter tractability in the boolean setting. This framework shows that specific
polynomials based on graph problems have the expected complexity as in the counting
FPT case. We introduce classes BVW[t] which are close to the boolean setting but
hardly use the power of arithmetic circuits. We then introduce VW[t] with modified
problems to remedy this situation.

Thirdly, we study polynomials defined by graph homomorphisms and show various
dichotomy theorems. This shows that even restrictions on the graphs can already
give us hard instances.

Finally, we stray from our main continuous thread and handle simple heuristics for
metric graphs. Instead of studying specific metrics we look at a randomized process
giving us shortest path metric instances.

i

Zusammenfassung
In dieser Thesis versuchen wir die Frage zu beantworten, warum allgemein vermutet
wird dass bestimmte Polynome keine kleinen arithmetischen Schaltkreise haben. Wir
untersuchen dieses Problem in drei verschiedene Richtungen.

Erstens, untersuchen wir nicht kommutative Berechnungen. Wir zeigen hier, obere
und untere Schranken für die nicht kommutative Permanente auf verschiedenen
eingeschränkten Graphen. Unser Hauptresultat zeigt Schranken für Graphen mit
Komponenten der Größe höchstens 6 sowie ein #P-härte Resultat. Wir führen ein
Maß ein, dass die Komplexität solcher Instanzen charakterisiert.

Zweitens, führen wir ein neue theoretischen Rahmen für arithmetische Schaltkreise
ein, ähnlich der parametrisierten Komplexität. Dieses zeigt das bestimmte Polynome
die auf Graphproblemen basieren, die erwartete Komplexität haben. Die von uns
eingeführten Klassen sind ähnlich zu der boolschen Situation und benutzen die Kraft
der arithmetischen Schaltkreise kaum. Um dies zu beheben führen wir Klassen VW[t]
ein, die modifizierte Probleme beinhalten.

Drittens, untersuchen wir Polynome definiert durch Graphhomomorphismen und
beweisen Dichotomie Theoreme die zeigen, dass selbst Restriktionen auf den Graphen
uns harte Instanzen geben.

Zum Schluss weichen wir von unserem roten Faden ab und untersuchen einfache
Heuristiken auf metrischen Graphen. Anstatt eine bestimmte Metrik zu untersuchen,
schauen wir uns einen randomisierten Prozess an der uns eine kürzeste Pfade Metrik
erzeugt.

iii

Acknowledgements

In no particular order I want to thanks the following people.
First I want to thank my family because without their emotional and financial

support I would be a very different person. I also want to thank some brilliant minds.
Markus Bläser, my advisor who was always open to listen to my half cooked ideas and
ramblings. Rahgavendra Rao who brought me many interesting problems as well as
give me confidence to tackle these problems together with him. Karteek Sreenivasaiah
who after subsequent visits turned into a friend and a good colleague. And finally
Radu Curticapean with whom I shared an office space. While he gave me many
headaches he was still a good office mate with many discussions about various fixed
parameter tractable algorithms, immanants and many more topics. I do not want to
forget to mention all the friends I made while studying in Saarbrücken who for their
sake shall stay anonymous. They gave me the strength to follow the path I wanted to
follow. And they were always there if i needed to vent about various topics. I also
want to mention the various colleagues at the chair with whom I had many interesting
discussion either about theoretical computer science or the world in general.

Finally, I want to thank Jessica Schulze who not only listened to my rants all the
time but who also was always there with good advice, I declined to follow, as well as
show me that if life gives you lemons you should make life take the lemons back. And
sue life.

v

Nothing can happen till you swing the bat.

Contents

1 Introduction 1
1.1 Outline . 3
1.2 Preliminaries . 4

2 Arithmetic Circuits and Complete Problems 7
2.1 Introduction to Arithmetic Circuits . 7
2.2 Restricted Circuit Models . 11
2.3 The Defining Problems in Arithmetic Circuit Complexity 13
2.4 Generating Functions of Graph Properties 15
2.5 Tools . 17
2.6 The Immanant and a Short Introduction to Characters of the Symmetric

Group . 19

3 On Hard Instances of Non-Commutative Problems. 25
3.1 Introduction . 25
3.2 Preliminaries . 27
3.3 An Algorithm for the Cayley Permanent 29
3.4 Unconditional Lower Bound . 32

3.4.1 ABPs . 32
3.4.2 Weakly Skew Circuits . 37

3.5 Completeness Results . 40
3.5.1 A Recap of Gentry’s Proof . 40
3.5.2 Connected Components of Size 6 of Permanent and Immanant 45
3.5.3 Other Hard Polynomials . 47

3.6 Computational Problems . 50

4 A Fixed Parameter Theory of Arithmetic Circuits 55
4.1 Introduction . 55
4.2 Parameterized Complexity . 56

4.2.1 A Recap of Boolean Parameterized Complexity 56
4.2.2 A Recap of Parameterized Counting Complexity 62

4.3 General Definitions for Parameterized Arithmetic Circuits 67
4.4 VFPT . 68

4.4.1 Kernelization . 69
4.5 Boolean-Arithmetic and BVW[t] . 70

4.5.1 Independent Set and BVW[1] 72
4.5.2 Dominating Set and BVW[2] 73

ix

4.5.3 3-SCM Single-Product Cover and BVW[3] 73
4.5.4 Discussion . 74

4.6 VW[t] . 74
4.6.1 VW[1] . 77
4.6.2 VW[2] . 78
4.6.3 VW[3] . 79

4.7 The Immanant . 81
4.8 Open Problems . 82

5 Homomorphism Polynomials 85
5.1 Introduction to Homomorphism Polynomials 85
5.2 Model and Notation of Homomorphism Polynomials 87

5.2.1 Facts about Planar and Outerplanar Graphs 87
5.2.2 A Short Introduction to Graph Genus 88
5.2.3 The Problem and Related Definitions 92

5.3 Dichotomies . 94
5.3.1 Cycles . 94
5.3.2 Cliques . 95
5.3.3 Trees . 96
5.3.4 Outerplanar Graphs . 98
5.3.5 Planar Graphs . 100
5.3.6 Genus k graphs . 101

5.4 Open Problems . 103

6 Average Case Analysis of Graph Algorithms on Metric Graphs 105
6.1 Introduction . 105
6.2 Preliminaries . 107

6.2.1 Model and Notation . 107
6.2.2 Facts about Exponential Distributions 108

6.3 Structural Properties of Shortest Path Metrics 110
6.3.1 Random Process . 110
6.3.2 Distribution of τk(v) . 112
6.3.3 Tail Bounds for |B∆(v)| and ∆max 113
6.3.4 Balls and Clusters . 114

6.4 Analysis of Heuristics . 115
6.4.1 Greedy Heuristic for Minimum-Length Perfect Matching 115
6.4.2 Nearest-Neighbor Algorithm for the TSP 118
6.4.3 Insertion Heuristics for the TSP 119
6.4.4 Running-Time of 2-Opt for the TSP 120

6.5 k-Median . 123
6.6 Concluding Remarks . 128

6.6.1 General Probability Distributions 128
6.6.2 Open Problems on Metric Graphs 128

x

Bibliography 131

xi

1 Introduction

With the introduction of computer science and the general study of boolean functions
and their complexity, one of the most studied question is “Which problems are hard
to compute?” This is evident in the classification of different problems into complexity
classes like the time hierarchy theorems or the famous P vs NP distinction. To solve
the question whether P = NP or in general if specific classes fall together we study
upper and lower bounds for specific complete problems. Both, finding upper and
lower bounds, is highly linked with the following intuitive question: “Why are certain
problems hard to compute?”

Despite this question seldom being stated directly they are at the heart of most
discoveries in theoretical computer science. In algorithms design, we ask why a
problem should be easy to solve and these answers then give us insight in how to
construct the algorithms. Of course, more often than not we need multiple iterations
to have a final answer. A noteworthy example is the case for primality testing. One
of the big result in the last century was by Agrawal, Kayal, and Saxena [AKS04] that
testing for primality is in P. Previously, the wisdom was that there will not be a
non-randomized deterministic polynomial time algorithm without relying on major
mathematical assumptions. However, with the invention of new techniques such as by
Agrawal and Biswas [AB03], the complexity and hence the fundamental question what
makes this problem hard could be reevaluated. This is such a well known pattern
in algorithms design such that if we find a polynomial time algorithm, even with a
running time of e.g. n100, we will often find an algorithm with a running time given
by a small degree polynomial after some additional studying of the problem.

In the view of upper bounds, we can also see that sometimes “obvious” hard
problems might not be hard at all. A good example for this is the determinant. After
all, the determinant is an exponentially large sum over all cycle covers of a graph
where every cycle cover is weighted by 1 or −1. Surely, computing the determinant
must be hard. But as it turns out, it is widely known that computing the determinant
is easy. We can even chose from multiple algorithms such as gaussian elimination or
the combinatorial algorithm from Mahajan and Vinay [MV99]. As it turns out the
weights actually give us the power to compute the determinant in polynomial time
while a version where the cycle covers are not weighted with 1 and −1, called the
permanent, is hard to compute1. The gap between the determinant and permanent
is assumed to be exponential, as the best known algorithm for the permanent has a
running time of O(2nn2). The difference of complexity between the determinant and

1At least that is the general suspected complexity of the permanent. As always, proving unconditional
lower bounds is difficult.

1

1 Introduction

the permanent is simply astonishing. Asking the question why the permanent is hard
is a central question.

Even fields such as average case analysis use the given meta question. But instead
of asking in general what makes certain problems hard to compute they ask what
makes specific instances for a given problem hard to solve. Average case analysis
looks at some distribution on instances and hence asks the fundamental question
if the hardness of the known computational expensive instances are widespread or
if they are only a few of them. This can even be seen in newly developed theory
such as Smoothed Analysis, developed by Spielman and Teng [ST04]. Here they look
explicitly onto hard instances but permute them slightly with a gaussian distribution.
In essence, they ask the question if the hard instances have to be constructed very
precisely, by sharp “peaks” if you will, or if they are more fundamental throughout
the problem instances. Of course, both these reasons for hardness are in some sense
fundamental on the problem we study but the first case seems much more important
than the second case.

In the field of finding lower bounds, we, of course, ask the question more directly.
Starting from beautiful undergraduate courses lower bounds such as the n logn bound
for the number of comparisons for any sorting algorithms on an arbitrary set of elements,
up to the recent separation by Williams [Wil14] of non-deterministic exponential time
versus constant depth polynomial size circuits with modulo gates. All these proofs
were developed with this question in mind. What makes these problems hard and
how can we exploit this to actually prove this hardness.

A good example are various lower bounds based on shifted partial derivatives [Kay12,
GKKS14, KSS14, FLMS14]. We will not introduce the method in this thesis but state
later some important results achieved by it in Chapter 2. The basic idea of any lower
bound proof using a specific measure can be summed up as follows. We prove that
specific circuits of size s can only construct polynomials with a measure related to
s. Then if we want to prove a lower bound for a polynomial, we just have to show
that this polynomial has large measure and hence s has to be large for the circuit
computing our target polynomial. Of course, this needs fundamental understanding
of the circuits and the target polynomial. To find lower bounds, we need to cleverly
chose a polynomial that will be hard to compute with the structure of the circuit and
we need to be able to prove this with the help of our measure. We see again that our
question is important here.

Of course, there are other lower bounds not based on a specific measure, mostly
related to specific subclasses of circuits [JS82, RY09, LMS15, Raz09]. Here we restrict
the class of circuits we look at, e.g. multilinear circuits, to try to find a lower bound
using the specific property. Again our question is related in a slightly different
formulation “What makes these restricted circuits weak for a specific polynomial?”

We see that the question of why certain things are hard is at the core of upper and
lower bounds. We will try to answer this question partially for the case of arithmetic
circuits and hence the question transforms to “Why are certain polynomials hard?”
Arithmetic circuits complexity tries to distinguish the complexity of polynomials and
answer the question VP =? VNP for the main classes in this field given by Valiant

2

1.1 Outline

[Val79a]. However, an extensive amount of research was already done dealing with
lower bounds for arithmetic circuits. We, however, by asking this question directly,
can see a continuous thread throughout this thesis and our major motivation for the
very diverse topics we will cover in arithmetic circuit complexity.

1.1 Outline

We will give a basic introduction to arithmetic circuits in Chapter 2. This will show
the basic model and some tools we need. We will also give a short introduction to
the immanant in Section 2.6 which is a certain polynomial we study to some extend.
To give basic context we also include some important results as well as some of the
recent new techniques for proving lower bounds. The following chapters will be self
contained if Chapter 2 is understood.

In Chapter 3 we will study certain non-commutative polynomials. The non-
commutative setting is especially interesting as certain polynomials which can be
easy in the commutative case, can already be hard in the non-commutative case. We
will prove several lower bounds and show that under certain orderings of variables
some polynomials change their hardness characteristics. Hence, we can answer our
continuous thread throughout this thesis with this insight that some non-commutative
polynomials have inherit in them the complexity related to the order of the variables.
In detail, we show algebraic branching program (ABP) lower bounds for computing
the permanent on graphs of connected component size two with an almost matching
upper bound. The difference between a large and small ABP here depends on the
specific ordering of the vertices. We also show for connected component of size 6
the #P hardness of the non-commutative Cayley permanent which is a permanent
with an order of the vertices specified. This bound can be transferred to the Cayley
determinant and the Cayley immanant. We will construct a polynomial for which the
commutative variant is easy but a certain non-commmutative variant is VNP hard.
Finally, we prove upper bounds on some computational problems on non-commutative
circuits such as computing coefficients of a given monomial.

In Chapter 4 we develop a version of Fixed Parameter Tractability, a notion
which essentially says that specific problems can be easy to compute if a certain
parameter is small. We will give a small recap of parameterized complexity theory
in Section 4.2. We transfer this to an arithmetic circuit setting in two different
ways. The first way (Section 4.5) is heavily based on the fixed parameter counting
complexity and mostly ignores the power of arithmetic circuits. In the second way, we
try to remedy this situation and define new hardness classes as well as new complete
problems (Section 4.6). We believe that such a theory give us a good way to handle
parameterizing arithmetic circuit complexity. With this theory we can hope to find
certain parameters that shed light on how the complexity changes with changes in
the parameter. We give a first clue about a special polynomial in Section 4.7 which
will be related to the immanant. We can see this as starting a study in a more
formal framework for fixed parameter tractability for arithmetic circuits which directly

3

1 Introduction

corresponds to our question.
In Chapter 5 we give dichotomies for certain polynomials on graph classes. These

will show us that even simply to define polynomials can already exhibit a dichotomy.
Additionally, if we see this from the viewpoint of studying what makes polynomials
hard, our results show that polynomials on graph homomorphisms almost always
explode in the complexity. This is related to the fact that homomorphisms are
invariant under isomorphisms which we especially make use of. This is especially
interesting with the recent result that restricted homomorphisms polynomials can
characterize VP. In detail, we study the homomorphisms from a class of graphs to a
specific given graph, similar to the original question about deciding if homomorphisms
exist by Hell and Nešetřil [HN90]. These homomorphisms are given by polynomials
which are the sum over all graphs that are homomorphic to the given graph from our
graph class where a graph is represented by the product of its edge variables. For this
model we show dichotomies for cycles, cliques, outerplanar graphs, planar graphs and
graphs for genus bounded by a constant k.

We shift our gaze away from the main theme of arithmetic circuits of the thesis
in Chapter 6. We will study certain graph problems in the optimization setting on
general metric graphs. We rediscover a framework for studying these graphs, and show
multiple result for simple approximation algorithms. On these certain randomized
metrics almost all algorithms we study have a constant approximation ratio or better.
In our main theme of asking why certain problems are hard, we answer the question
wether just having a metric graph makes the problem easy or if there is something
more special about specific metrics such as the euclidean metric. We show that nearest
neighbour and insertion heuristics for the traveling salesman problem (TSP) have
constant approximation ratio even under shortest path metric graphs. In addition,
we show that for the k-median a trivial algorithm has already a 1 + ε approximation
ratio and a bound on the expected running time of the 2-Opt algorithm.

1.2 Preliminaries

We generally keep relevant definitions inside their respective chapters but we want to
state some general definitions now.

We start with general definitions on graphs. A graph is a set of vertices V and a
set of edges E ⊆ V × V . We denote a graph by G = (V,E). The edges can either
be directed which we denote by (u, v) or undirected which we denote by {u, v}. For
a given graph G = (V,E) we define V (G) = V the vertex set and E(G) = E the
edge set. We will also denote by V (S) where S ⊆ E a set of edges, the vertices
given by the set {u, v | (u, v) ∈ S or {u, v} ∈ S}, all vertices which occur in the edges.
We will denote by N(v) the neighbourhood of v for a given graph, meaning the set
{u | (u, v) ∈ E or {u, v} ∈ E}.

We will sometimes use the special graphs denoted by Kn, the complete graph,
without self-loops, on n vertices and Kn,m the complete bipartite graph with one
partition having n vertices and another partition having m vertices, again without

4

1.2 Preliminaries

self-loops.
We call a function f polynomially bounded if there exists a polynomial p such that

for all n, f(n) ≤ p(n). We define the shorthand notation poly(n) to be the set of all
polynomially bounded functions N→ N.

We denote by P(S) the powerset of S. We will denote by N the set of natural
numbers (starting from one). We denote by [n] the set {1, . . . , n} ⊆ N. Let S be
a set. We call a mapping f : Sn → Sm for m < n a projection if it is idempotent,
meaning f ◦ f|Sm = f where f|Sm is the function that threats Sm as the subspace of
Sn. Intuitively, a projection removes some elements from the set Sn and maps them
remaining elements to the same elements in Sm.

As we will sometimes refer to the class #P, which is defined on counting problems,
we will introduce the class here. A counting problem is given by a function Σ∗ → N.

Definition 1.1 ([AB09]). We call #P the class of all functions f : Σ∗ → N such that
there exists a polynomial time decidable relation R ⊆ Σ∗ × Σ∗ such that

f(x) = |{y | (x, y) ∈ R}|.

The class itself contains the major interesting hard counting problems in this world
such as counting the number of perfect matchings. Additionally, it is known that
#P under polynomial time oracle reductions already contains the whole polynomial
hierarchy.

We can also talk about the witness function for a given problem that is given by
f : Σ∗ → P(S) and is defined by

f(x) = {y | (x, y) ∈ R}

for a computable relation R ⊆ Σ∗×Σ∗. With this we can see #P as counting the size
of the image of the witness function for a given input x.

To complete our definition for the counting class, we mention the three kinds of
reduction used for counting problems.

Definition 1.2 ([AB09]). Let f, g : Σ∗ → N be two functions.

• We call (s, t) where s : Σ∗ → Σ∗ and t : N → N a polynomial time many-one
reduction from f to g if

f(x) = t(g(s(x)))

for all x ∈ Σ∗.

• We call s : Σ∗ → Σ∗ a parsimonious reduction from f to g if

f(x) = g(s(x))

for all x ∈ Σ∗.

• We call M a polynomial time Turing reduction if M with oracle access to g
computes f and M has a running time bounded by a polynomial.

5

1 Introduction

We will sometimes use the notation C/poly if C is a given complexity class defined
on Turing machines.

Definition 1.3. We denote by C/poly the class of all languages L where L is given as
follows: There exists a Turing machine M ∈ C which in addition to normal operations
can read an extra tape, called an advice tape. For any L ∈ C/poly. The advice tape
contains for any n = |x|, the input size, a unique string.

With this we can define the class P/poly which is equivalent to the class given by
all families of polynomial sized circuits that decide a given language.

We will also sometimes refer to other well known complexity classes which are
defined in various textbooks such as [AB09].

For the case of randomized algorithms, we need some standard notation which we
clarify here. We will use the symbols P(X) for the probability that event X occurs.
We will use E(X) to mean the expected value of a random variable X.

6

2 Arithmetic Circuits and Complete
Problems

The complexity of boolean functions and of decision problems is one of the fundamental
research areas in theoretical computer science. For quite a while the hope was that
we can find general lower bounds for various problems and for boolean circuit classes.
However, the famous P vs NP problem is still unsolved and finding general circuit
lower bounds seems hard. In fact, research showed fundamental walls for using some
techniques to find separations [BGS75, RR97, AW09]. Only recently the separation of
non-uniform constant depth polynomial size circuits and non-deterministic exponential
time was found [Wil14]. Even such an “obvious” separation needed many decades of
research.

Because of this inability to find lower bounds the study of arithmetic circuits
was founded. The hope was that the additional structure of polynomials as well
as sophisticated techniques from algebra would enable us to prove lower bounds in
this model. Additionally, these lower bounds might transfer to the boolean setting
or give us new insights into the original problems. Combining this reasoning with
the strong result by Kabanets and Impagliazzo [KI04] that proving lower bounds for
boolean circuits is essentially equivalent to showing that derandomizing polynomial
identity testing is possible, shows how useful the arithmetic circuit model can be.
The connection between NP and the algebraic classes was recently reinvigorated by
Mulmuley and Sohoni [MS01] and subsequent papers where they started the study of
Geometric Complexity Theory, the newest approach to settle the question of P vs NP.

We give an introduction to this topic and the curious reader can dive deeper into
the field with the textbook by Bürgisser [Bür00a] or the excellent survey by Shpilka
and Yehudayoff [SY10].

2.1 Introduction to Arithmetic Circuits
Let R be a ring. For a monomial in multiple variables we define the degree to be the
sum of the degrees of all variables. For a polynomial p ∈ R[x1, . . . , xn] we denote by
deg(p) the degree of p, namely the maximum of the degree of the monomials. This is
also called the total degree of the polynomial.

The basic computational structure in this field is an arithmetic circuit.

Definition 2.1. An arithmetic circuit over a ring R in n variables x1, . . . , xn is a
directed acyclic connected graph with vertices, called gates, of the following type:

• Vertices of in-degree two, labeled by ∗ and +.

7

2 Arithmetic Circuits

+

+

∗

x1 2

∗

x2

∗

x2

Figure 2.1: A possible circuit for the polynomial 2x2
2 + 2x1 + 2x2.

• Vertices with in-degree zero labeled by constants from R or variables from
{x1, . . . , xn}, called input gates.

• A unique vertex with out-degree zero and in-degree two, called the output gate.

We can iteratively define the computation model. The polynomial computed at an
input gate is the variable or constant labeled with it. Let g be a gate with label ◦
and let the children of g compute the polynomials p` and pr. Then the polynomial
computed at gate g is p` ◦ pr where ◦ ∈ {+, ∗}. We call the polynomial computed at
the output gate the polynomial computed by the circuit.

The given definition is very similar to boolean circuits but instead of boolean
primitives being used at a gate, we compute with the primitive operations on the
ring, namely multiplication and addition. We give an example of an arithmetic circuit
in Figure 2.1.

This definition can easily be extended to gates of in-degree more than two where
we will talk about unbounded fan-in circuits. We denote by the fan-in of a gate the
in-degree of the vertex. We call the fan-in of the circuit the maximum fan-in over all
gates in the circuit. In the literature the form of circuits will generally be described
by the layers they have. A

∑∏∑
circuit, for example, is a circuit of depth 3 where

every gate has unbounded fan-in with the top gate being a summation gate, followed
by a product gate, followed by a summation gate. If we have a circuit of fan-in more
than two but still want to restrict the fan-in to k we will denote this by

∏k or
∑k. If

we do not mention any bound, we will assume circuits of fan-in two.
We can now setup our computation model.

Definition 2.2. We call an infinite family of polynomials, written (fn), a p-family
if for all n, fn ∈ R[x1, . . . , xq′(n)] and deg(fn) ≤ q(n) for some polynomially bounded
function q and q′. Additionally, fn can be computed by a circuit Cn for all n.

We will slightly abuse notation by writing (fn) ∈ R[x1, . . . , xq(n)] to specify that for
all n, fn ∈ R[x1, . . . , xq(n)] where q(n) is clear from the context. The reader should
notice that our model is non-uniform.

Now we can define a complexity measure on such circuits. The obvious choice is
the circuit size.

8

2.1 Introduction to Arithmetic Circuits

Definition 2.3. Let f be a polynomial. Then L(f) is the minimum number of gates
of all arithmetic circuit computing f . We define size(C) to be the number of gates of
the circuit C.

We can extend this definition to p-families such that L((fn)) is now a function
N→ N, mapping n to L(fn).

The complexity of polynomials can be very different depending on the ring they
are defined in. One of the most well known restriction is to fields of characteristic not
equal to two. We will see why such a restriction is useful in a later section. In this
thesis, we also want to distinguish between the polynomial ring being commutative,
denoted by R[x1, . . . , xn], or non-commutative, denoted by R〈x1, . . . , xn〉. We will
deal in Chapter 3 extensively with the non-commutative case. In all other chapters
we will assume R to be commutative unless specified. Additionally, we keep the
dependency on the ring implicit when defining arithmetic circuit classes. Notice that
the previous definitions can be transferred to the non-commutative case.

Now we can introduce the analogues to boolean complexity classes P and NP, first
introduced by Valiant [Val79a].

Definition 2.4. A p-family (fn) of polynomials is in VP if L((fn)) is a polynomially
bounded function.

This gives us the analogue to boolean complexity class P for polynomials but can
we define an analogue to NP? Indeed we can, with the following, slightly surprising
definition.

Definition 2.5. Let q(n), s(n) be polynomially bounded functions. We say a p-family
(fn) ∈ R[x1, . . . , xq(n)] is in VNP if the following condition holds. There exists a
p-family (gn) ∈ R[x1, . . . , xq(n), y1, . . . , ys(n)] in VP such that

f(x1, . . . , xq(n)) =
∑

e∈{0,1}s(n)

g(x1, . . . , xq(n), e1, . . . , es(n)).

As a quick glance reveals, this corresponds more to the class #P than to the class
NP. This connection goes even deeper as we will see in the next theorem.

We will sometimes use the operator semantic as in the boolean world, meaning that
we define

∑
·C for an arithmetic circuit class C to be the set of all polynomial families

(fn) ∈ R[x1, . . . , xn] such that there exists polynomially bounded functions r(n), s(n)
and a polynomial family (gn) ∈ C such that for all n

fn =
∑

e∈{0,1}s(n)

gr(n)+s(n)(x1, . . . , xr(n), e).

In this notation VNP =
∑
·VP. We can easily extend this notation to the cases where

(fn) ∈ R[x1, . . . , xq(n)].
Let us first take a look at the membership of p-families in VNP. How can we prove

membership in VNP? After all the definition is rather cumbersome to use. Thankfully,
there is a nice theorem by Valiant which shows another connection with #P.

9

2 Arithmetic Circuits

Theorem 2.1.1 (Valiant’s Criterion). Suppose φ : {0, 1}∗ → N is a function in the
class #P/poly. Then the family (fn) of polynomials defined for all n by

fn =
∑

e∈{0,1}n
φ(e)xe1

1 . . . xenn

is in VNP.

We can now introduce the central notion of a reduction used in arithmetic circuit
complexity. While it looks very restrictive it is still a powerful form of reduction.

Definition 2.6. A polynomial family (fn) ∈ R[x1, . . . , xq(n)] is a p-projection of a
polynomial family (gn′) ∈ R[x1, . . . , xq(n′)] and denoted by (fn) ≤p (gn′) if the following
holds:
f(x1, . . . , xq(n)) = g(a1, . . . , aq(n′)) where ai ∈ R∪{x1, . . . , xq(n)} and n′ ≤ q(n) for

some polynomially bounded function q.

Many completeness results can be obtained even with this restricted type of reduc-
tion.

In the standard literature the notation ≤ is normally used but in this thesis we use
the explicit notation given in the definition to avoid confusion with the second type
of reduction, called c-reduction.

Let (fn) ∈ R[x1, . . . , xq(n)], (gn′) ∈ R[x1, . . . , xq′(n′)] be polynomial families. Let
Lgn′ (f) be the minimal number of gates for computing f where the circuit is enhanced
with oracle gates that on input a1, . . . , aq′(n′i) compute g(a1, . . . , aq′(n′i)) for some
natural number n′i ≤ n′.

Definition 2.7. Let (fn), (gn′) be as in the previous definition. We say f c-reduces
to g, written (fn) ≤c (gn), if there exists a polynomial q such that Lgq(n)(f) is bounded
by some polynomial.

Readers familiar with Turing reductions in the boolean world will notice the
similarity. As in the boolean world, they carry some problems if we define complexity
classes based on them. For example, the class complete for the zero polynomial is
equal to VP which is not quite what we expect. Hence, we will only use c-reductions
for larger classes than VP. We will discuss some complete problems for VNP in
Section 2.3.

We can also define these reductions on non-commutative algebras in a similar way.
Another interesting question is how these classes relate to the boolean complexity.

As these were invented to produce lower bounds, can we perhaps transfer such bounds
easily? Sadly, the relation to the boolean complexity classes is not trivial. It can
be shown that proving P/poly 6= NP/poly implies that VP 6= VNP but this is the
only implication we know of. We will discuss the classes VP and VNP a bit more in
Section 2.3. However, there exists an interesting connection with computing integers
(starting from 1 and only using addition and multiplication) with related classes to VP
and VNP called VP0 and VNP0. The classes can be roughly seen as their analogue VP

10

2.2 Restricted Circuit Models

and VNP but without being permitted to use arbitrary elements from R. Instead we
are only allowed to use 1 and −1 and need to compute all other constants in the circuit
itself. This model was studied by Koiran [Koi05] and he showed that if computing
specific numbers is hard then a separation between VP0 and VNP0 is proven. How
this separation transfers to the VP vs VNP question is, however, unclear.

For completeness sake we will mention Valiant’s Conjecture.

Conjecture 2.1. Let R[X] be a commutative polynomial ring. Then VP 6= VNP over
this ring.

2.2 Restricted Circuit Models

In the previous section we only introduced the general circuit model but there are
many different restricted models known. As we will discuss and use some of these in
later sections, we give an introduction here, starting with the most restricted model.

Definition 2.8. We call an arithmetic circuit an arithmetic formula if the underlying
graph of the circuit is a tree. We call the set of all p-families computable by a family
of polynomial size formulas VF.

It is known that
∑
·VF is already equal to VNP. This will be a part of the motivation

why we study formulas instead of arithmetic circuits in Chapter 4.
Next we can define a seemingly completely different model which actually turns out

to be a restriction of general circuits and a generalization of arithmetic formulas.

Definition 2.9. An algebraic branching program (ABP) is a directed acyclic weighted
graph with two special nodes s, t and edges with weights given by variables or constants
in R. The weight of a path is the product of the weights of its edges. The polynomial
computed by an ABP P is the sum of the weights of all s to t paths in P and is
denoted by pP .

We call the set of all p-families computable by a family of polynomial sized ABPs
VBP

We will use this model extensively in Chapter 3 because of the easy to analyze
structure. First notice that we can unify an ABP by layering it. For this we first
ensure that every path through the ABP has the same length by adding edges of
weight 1. Then we put every vertex in a layer i for some i and only allow connections
from layer i− 1 to layer i and from layer i to layer i+ 1. This shows that, in essence,
an ABP can only save a number of “states” corresponding to the width. This makes
ABPs simpler to analyze, especially if the width is restricted to constant size. In
fact, constant width ABPs are equivalent to formulas as proven by Ben-Or and Cleve
[BC92]. Their proof extends Barrington’s ([Bar89]) characterization of NC1 by boolean
bounded-width branching programs. Another extension of Barrington’s proof will
occur in Section 3.5.

11

2 Arithmetic Circuits

Definition 2.10. We call an arithmetic circuit a skew circuit if for every product
gate at least one of its inputs is a variable.

We denote the class of all p-families computable by a family of polynomial size skew
circuits by VPskew.

Skew circuits can be seen as a simple extension of ABPs but as it turns out they
are equally powerful in the commutative setting. Let us give a short intuition for this
proof. Assume we already transformed for every vertex v the ABP into the circuit Cv.
We can then iteratively compute for an edge v to u with input x the circuit Cv · x.
This is obviously a skew circuit and as we can sum over all incomming edges to u we
stay roughly the same size. For the other direction, we can reverse this construction.

An extension of skew circuits is given in the following definition.

Definition 2.11. We call an arithmetic circuit a weakly skew circuit if for every
product gate at least one child forms a sub circuit that has no other connection to the
rest of the circuit.

We call the class of all p-families computable by a family of polynomial size weakly
skew circuits by VPws.

The next theorem proven by Toda [Tod92] given with the simple to prove fact that
VBP = VPskew gives us the following theorem

Theorem 2.2.1 ([Tod92]). Let R[x1, . . . , xn] be a commutative ring. Then VPskew =
VBP = VPws.

Chapter 3 will extensively deal with the non-commutative case of ABPs and general
circuits and Section 3.4.2 will discuss skew and weakly skew circuits in the non-
commutative setting.

We can also define a class which we will only use sparingly. It is assumed to be
much smaller than VP and was first mentioned by Mahajan and Rao [MR13] and is
defined as its boolean analogue AC0.

Definition 2.12. Let (fn) be a p-family. Then (fn) ∈ VAC0 if there exists a family
of constant depth, unbounded fanin and polynomial size arithmetic circuit.

Now that we learned about new smaller complexity classes and the surprising result
that some structural restrictions on the circuit are not restrictions on the power, we
can ask ourselves what other restrictions on VP are possible without decreasing the
power. Malod and Portier [MP08] gave a first answer. It is enough to have polynomial
size circuits that have for every multiplication gate g two disjoint subcircuits as
children of g. They called these circuits multiplicatively disjoint. Notice, that on first
sight this model is closer to formulas than VP or VPskew. However, every weakly skew
circuit is also multiplicatively disjoint. Mengel [Men13] found a more restrictive model
equal to VP. In this model, called stack branching programs, we can use constant
width ABPs but with a stack attached to it. Later VP was characterized by specific
homomorphism polynomials by Durand, Mahajan, et al. [DMMRS14]. Not only does

12

2.3 The Defining Problems in Arithmetic Circuit Complexity

this give us another possibility of reducing VP without reducing it power but it also
gives one of the few characterizations of VP in regards to the closure of a natural
problem under p-projections.

A collection of various arithmetic circuit complexity classes and their restriction
was written by Mahajan [Mah13].

2.3 The Defining Problems in Arithmetic Circuit Complexity
We can now finally come back to VP and VNP and state the major complete problems.
The first problem is the well known permanent.

Definition 2.13. Let A be a matrix with entries ai,j in R[x1,1, . . . , xn,n] then the
permanent is defined as

permn(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

where Sn is the symmetric group, the set of all permutations on n elements.

In fact, the permanent was shown to be complete for matrices with entries in {0, 1}
for the related class #P by Valiant [Val79b]. While the completeness proof is more
involved the membership can be easily seen even without Valiant’s Criterion. Let
(yi,j) be n2 new variables which will correspond to the entries of a matrix. Let us now
build the polynomial from several pieces. Let X = {x1,1, . . . , xn,n}.

αn(X,Y) :=

∏
i,j

n∏
m=1
m6=j

(1− yi,jyi,m)

 , βn(X,Y) :=

∏
i,j

∏
m=1
m 6=i

(1− yi,jym,j)

 ,
γn(X,Y) :=

n∏
i=1

n∑
j=1

yi,j , δn(X,Y) :=
n∏
i=1

n∑
j=1

xi,jyi,j .

The permanent can then be computed as

permn(X) =
∑

e∈{0,1}n2

αn(X, e)βn(X, e)γn(X, e)δn(X, e).

This is relatively easy to see. For the permanent we need to enforce a permutation
matrix in the entries (yi,j), meaning a matrix where every row and every column has
exactly a single one. The polynomial αn(X,Y) enforces that at most a single one is in
every column and βn(X,Y) enforces the same property for every row. Then γn(X,Y)
enforces a lower bound of at least a single one for every row. Finally, δn(X,Y) just
selects the correct xi,j for every yi,j with value one. In essence, we have a boolean
computation on the set {y1,1, . . . , yn,n} to check a property and then select the xi,j
corresponding to the selected yi,j . We will see similar definitions for new circuit classes
in Chapter 4.

We can easily compare the definition of the permanent to the definition of the
determinant.

13

2 Arithmetic Circuits

Definition 2.14. Let A be a matrix with entries ai,j in R[x1,1, . . . , xn,n] then the
determinant is defined as

detn(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

where Sn is the symmetric group, the set of all permutations on n elements.

A surprising belief is that these very similar definitions have vastly different com-
plexity in the commutative setting. While the determinant has a polynomial time
algorithm (for example, via Gaussian elimination or the beautiful combinatorial algo-
rithm in [MV99]) the complexity for the permanent has a much larger upper bound.
The famous Ryser’s formula for the permanent is one of the most efficient algorithms
we know with a circuit size of O(2nn2). Studying the complexity of the permanent on
various restricted inputs is an active field. We will skip these results as we are only
interested in the permanent as a polynomial and hence cannot restrict the input.

The reader might suspect that these two problems are the general complete problems
for VP and VNP, however this is not the case. While Valiant [Val79a] showed the
completeness for the permanent, the determinant is only VP complete for a different
reduction, so called qp-reductions. They roughly correspond to quasi-polynomial size
projections.

Theorem 2.3.1 ([Val79a]). Let R be a ring of characteristic not equal to two and
X = {x1,1, x1,2, . . . , xn,n}. Then (permn(X)) is complete for VNP under p-projections.

The restriction away from characteristic two is obviously needed as the determinant
is equal to the permanent on such fields.

VP and VNP were extensively studied in relation to lower bounds with the goal of
understanding the arithmetic circuit model and to eventually separate VP from VNP.
Research started on finding general lower bounds for various restricted models in the
commutative setting. As we have seen already in Theorem 2.2.1 many natural syntactic
restrictions on the circuits are not a restriction on the power of arithmetic circuits and
hence do not give us any new insight into proving lower bounds for arithmetic circuits.
Jerrum and Snir [JS82] and Raz and Yehudayoff [RY11] started the study of lower
bounds for restricted circuit classes by giving lower bounds for monotone circuits for
the permanent. The next candidate restriction to study were multilinear formulas as
both the determinant and permanent are multilinear. However, a multilinear formula
requires the circuit to be multilinear at every gate which is a major restriction. The
first lower bound for Iterated Matrix Multiplication was given by Nisan and Wigderson
[NW97] using the powerful technique of partial derivatives. They showed that any
depth 3 circuit can be transformed to a multilinear circuit without much cost and
then showed a lower bound for multilinear circuits. In combination they achieved a
bound of Ω(nd−1/d!) for depth 3 circuits computing Iterated Matrix Multiplication.
This was improved by Raz [Raz09] to show that permanent and determinant require
superpolynomial size multilinear formulas. The technique of partial derivatives was

14

2.4 Generating Functions of Graph Properties

later enhanced by Kayal [Kay12] to prove a lower bound for the polynomial x1 · · ·xn for
a very restricted class of circuits. He called this technique shifted partial derivatives.

Finally, research culminated in the depth reduction arguments by Agrawal and
Vinay [AV08], Koiran [Koi12], and Tavenas [Tav13]. They successively proved that
any circuit of size s computing a polynomial of degree d has a homogeneous formula
of depth 4 and size exp(O(

√
d logn · log ds)) where the fan-in of the bottom product

gate is bounded by
√
n. Plugging a circuit of polynomial size and polynomially degree

d into this, we get an upper bound of exp(ω(
√
d logn)) for the equivalent depth four

homogeneous formula. Gupta, Kamath, et al. [GKKS14] searched for a matching
lower bound of homogeneous depth 4 circuits but they could only manage a bound of
exp(ω(

√
d)) for the permanent and determinant using the shifted partial derivatives

technique from [Kay12]. Additionally, they had to restrict the fan-in of the bottom
product gate in a similar fashion. But still, using shifted partial derivatives and a
tighter analysis of it, finding lower bounds seemed possible. Later, Kayal, Saha, and
Saptharishi [KSS14] gave a matching bound for formula size of exp(Ω(

√
d logn)) for

a polynomial in VNP with a similar fan-in bound on the bottom product gate. Any
asymptotic improvement in the exponent of either Tavenas’s depth reduction or Kayal,
Saha, and Saptharishi’s lower bound would show a separation between VP and VNP
in the following way. Either all polynomials in VP can be transformed to a formula of
size exp(o(

√
d logn)) and the polynomial in [KSS14] separates VP from VNP or we

find a new polynomial in VNP with an asymptotically higher homogeneous circuit
lower bound.

However, this approach seems to be at its end. Recently, Fournier, Limaye, et al.
[FLMS14] showed that the Iterated Matrix Multiplication polynomial, which is in
VP, has a depth 4 homogeneous formula of size at least exp(Ω(

√
d logn)). Hence this

approach cannot disprove that the permanent has polynomial size circuits even if it
could be proven that a homogeneous depth 4 circuit computing the permanent has a
size of at least exp(Ω(

√
d logn)).

A good introduction to some general lower bounds and the history of shifted partial
derivatives can be found in [KS14]. A survey on the power of partial derivatives and
shifted partial derivatives was written by Chen, Kayal, and Wigderson [CKW11].

2.4 Generating Functions of Graph Properties

We have now a perfect framework to reason about polynomials and their complexity.
However, in the boolean world many basic problems are graph based. We are still
missing an easy way to transfer or even define polynomials based on graph problems.
In fact, we cannot even simulate many of the counting problems in #P. To remedy
this fact, we will define Graph Properties and the Generating Functions in this section.
We will later use them in Chapters 4 and 5. We will only deal with the commutative
setting in this section but the definitions transfer to the non-commutative case if we
take some care about the ordering of variables.

For this section, let G = (V,E) be a graph and let X = {xe | e ∈ E}. We label

15

2 Arithmetic Circuits

each edge e by the indeterminate xe. We will generally switch freely between having
the variables indexed by either edges (xe) or pairs of vertices (xi,j for i, j ∈ V). We
let xj correspond to the self-loop at vertex j. While we mainly only use edge weights,
we sometimes will also use vertex weights.

Definition 2.15. Let V0 ⊆ V1 ⊆ . . . be an infinite ascending chain of set of vertices.
We call graphs on these vertices G1,1, . . . where Gi,j are all isomorphic copies of Gi,1
on Vi. Then a graph property E is given by ∪i,jGi,j.

Most graph properties used in the literature have very simple natural language
statements such as “all cycles of length 5” or “all matching on an infinite family of
graphs”. Now we can combine graph properties with generating functions to construct
polynomials.

Definition 2.16. Let X be a set of indeterminates. Let E be a graph property. Let
G = (V,E) be an edge weighted, undirected graph with a weight function w : E → R∪X.
We extend the weight function by w(E′) :=

∏
e∈E′ w(e) to subsets E′ ⊆ E.

The generating function GF(G, E) of the property E is defined as

GF(G, E) :=
∑
E′⊆E

w(E′)

where the sum is over all subsets E′ such that the subgraph (V,E′) of G has property
E.

We easily generalize this definition and the definition for graph properties for
families to produce families of polynomials and will denote this by writing GF(Gn, E)
or GF(Gn, En). As we from now on deal exclusively with families this will not cause
confusion. The parameter n will always be clear from the context. The reader should
notice that technically the subgraphs we sum over have all vertices included and only
edges missing.

Let us look at a short example. Let E , our graph property, be the set of all graphs
where every connected component has two vertices. Then our graph G from Figure 2.2
gives the following generating function.

GF(G, E) = xa,bxc,d + xb,dxc,a + xa,b + xc,d + xb,d + xc,a.

While this may look on the first glance to be a complication these generating
functions are actually very useful. They subsume counting the number of graphs
fulfilling the graph property by just evaluating every variable with one. We can even
use this technique to ask the same question for specific subgraphs by setting specific
edge variables to zero.

Readers familiar with the Holographic Framework will see the relationship of
generating functions and the framework.

We conclude by stating some VNP complete problems based on generating functions.
Proofs of these theorems can be found in the textbook by Bürgisser [Bür00a].

16

2.5 Tools

ab

cd

xa,b

xb,d

xc,d

xc,a

Figure 2.2: Example Graph G

Theorem 2.4.1 ([Bür00a]). (GF(Kn,UHCn)) is VNP complete under p-projections
where UHCn is the set of all undirected Hamiltonian cycles in Kn.
Theorem 2.4.2 ([Bür00a]). Let CL be the graph property of all cliques. Meaning,
the set of all graphs, where one connected component is a complete graph and each
of the remaining connected components consist of one vertex only. Then the family
GF(Kn, CL) is VNP complete under p-projections.
Theorem 2.4.3 ([Bür00a]). Let M be the set of all graphs where all connected
components have exactly two vertices. Then the family GF(Kn,M) is VNP complete
under p-projections.

This polynomial gives us all perfect matchings in a graph which is equal to
GF(Kn,n,M) for bipartite graphs which is a projection of GF(Kn2 ,M).

A generalization of UHCn is the cycle format polynomial. We can write a partition
of n in frequency notation ρ = (ρ(1), ρ(2), . . .) where ρ(i) denotes the number of
pieces of size i. With this we can write the Cycle Format graph property CFρ which
describes all graphs which are the union of ρ(i) many i-cycles.
Theorem 2.4.4 ([Bür00a]). Let ρn be a sequence of partitions of n such that there
exists some ε > 0 with n − ρn(1) ≥ nε for all n. Then the corresponding sequence
(GF(Kn CFρ)) is VNP complete under p-projections.

This polynomial immediately characterized the problems of counting k-cycles for
any k and many more similar problems.

2.5 Tools
We gather some useful tools in this section which we will need throughout the thesis.
One of the most useful one is extracting homogeneous components.
Definition 2.17. Let x̄ = xi1 , . . . , xil be a subset of variables and (fn) be a p-family
over R[x1, . . . , xq(n)]. We can write fn as

fn =
∑
ī

αī

q(n)∏
j=1

x
ij
j

17

2 Arithmetic Circuits

where αī ∈ R. The homogeneous component of fn of degree k with variables x̄ is

HOMCx̄
k(fn) =

∑
i1,...,iq(n)

k=
∑q(n)

j=1 ij

αi1,...,iq(n)x
i1
1 . . . x

iq(n)
q(n) .

We will show in the next lemma how we can extract homogeneous components
with oracle reductions. This lemma was stated explicit by Rugy-Altherre [Rug12]
and can also be found in [Bür00a]. It will give us a way to extract all polynomials of
homogeneous degree k in some set of variables in c-reductions.

Lemma 2.5.1. Let K be a field of characteristic zero. Then for any sequence of
integers (kn) and x̄n a sequence of variables there exists a c-reduction from the
homogeneous component to the polynomial itself:

(HOMCx̄n
kn

(fn)) ≤c (fn).

The circuit for the reduction has size in O(q(n)δn) where δn is the degree of fn and
q(n) the number of variables fn has.

We will give a proof based on [Rug12] for completeness sake as this is a simple
interpolation argument.

Proof. Let us look at a polynomial f from the family (fn). With an induction we can
easily prove this for all n. Let d = deg(f). We can write

f(2ix) =
d∑

k=0
(2i)k HOMCk(f).

We can rewrite this equation into a matrix form.

f(21x)
...

f(2dx)

 =

1 1 · · · 1
21 22 · · · 2d
...

...
...

...
(21)d (22)d · · · (2d)d

HOMC1(f)

...
HOMCd(f)

 .

It is easy to see that our matrix is a Vandermonde matrix with entries (ai,j) = αj−1
i

where αi = 2i. As the determinant of a general Vandermonde matrix is equal
to
∏

1≤i<j≤d(αj − αi) it is invertible for our choice of αi. Hence, from the values
f(21x), . . . , f(2dx) can be used to compute the vector consisting of the homogeneous
components.

The size bounds follow from this computation.

As seen in the proof this theorem works actually for any α1, . . . , αd where αj−αi 6= 0
for all i, j.

18

2.6 The Immanant and a Short Introduction to Characters of the Symmetric Group

The reader should note that using this theorem will blow up our circuit polynomially
in size and can hence be used only a constant number of times in succession. However,
we can use this lemma on subsets of vertices. We replace every variable xi in the
subset by xiy for a new variable y and take the homogeneous components of y. This
then can give us polynomials where the coefficients are in R[x1, . . . , xq(n)].

The disadvantage of this algorithm is that we need a field of characteristic zero1.
If we have access to the whole circuit as a whitebox we could also transform it to
extract the homogeneous components. The transformation is straightforward by going
bottom to top. Let us split every gate g into d gates g1, . . . , gd where gi computes
the homogeneous component of degree i for the polynomial computed at g. For an
addition gate g with the two children f and h construct gate gi = fi + hi while for a
multiplication gate we get the convolution gi =

∑d
j=0 fj · hd−j . It is easy to see that

this just increases the size of the circuit by a factor of d and as it does not use any
constants it works over any field.

2.6 The Immanant and a Short Introduction to Characters
of the Symmetric Group

As we previous learned, research focused on the determinant and permanent but there
is a concept combining these two into one mathematical construct. This is called
the immanant. The definition needs some mathematical background knowledge from
representation theory and characters of a representation. We will give a brief overview
of these concepts. For further information, the reader should consult the excellent
textbook by Fulton and Harris [FH91] and the detailed theses by Tessier [Tes13] and
Heide-Jørgensen [Hei12] as well as the section in [Bür00a] or the two papers [Bür00b,
Bür00c].

Definition 2.18. Let V be a complex vector space and GL(V) the group of the linear
automorphisms on V and let G be a group. Then a representation of G is a group
homomorphism ρ : G→ GL(V).

Definition 2.19. Let ρ a representation of a group G on V where V is a vector space
over K. The character of ρ is given by the function χρ : G→ K such that

χρ(g) = Tr(ρ(g))

where Tr is the trace.

Some basic facts about some characters are gathered in the next proposition. We
can use

Proposition 2.1 ([FH91]). Let ρ, ρ′ be a representation of Sn and σ, π elements of
Sn. Then

1We could modify the proof to work over any field with maxn k elements if this is constant.

19

2 Arithmetic Circuits

1. χρ(π) = χρ(σ−1πσ).

2. χρ⊗ρ′(π) = χρ(π) + χρ′(π).

While the definition of the character is very general it is hard to work with in a
combinatorial way. But as it turns out we can just reason about partitions of [n] as
we restrict ourselves to characters of the group Sn. For this we need to introduce a
few ways to speak about partitions.

Definition 2.20. A Young diagram is a set of n boxes arranged in left-justified rows
where the length of the rows is weakly decreasing from top to bottom.

A Young diagram with n boxes gives a set of partitions of n elements where the
sets are of size λ1, . . . , λm with λi being the length of the ith row. As previously
mentioned, this is also sometimes called the partition in frequency notation. While
slightly missleading the literature generally calls the set λ = (λ1, . . . , λm) the partition
and identifies partitions with Young diagrams with the obvious injection. For clarity
we break with this tradition and call λ = (λ1, . . . , λn) the type of the partition. We
will denote this by λ ` n.

The literature has many different names for slightly different but related diagrams.
For example, a Young tableaux is a Young diagram where the boxes are filled with
symbols from an ordered set and hence denotes exactly one partition of this set. A
Ferrers diagram is an alternative name for a Young diagram. We should also mention
the french notation used in some textbooks which has the longest row on the bottom
instead of the top. In general, we will switch freely between λ denoting the Young
diagram or the type of the partition.

Let us give a short example. The type of the partition given by the Young diagram
in Figure 2.3a of the set [15] = {1, . . . , 15} is (6, 4, 3, 1, 1), meaning the first set has 6
elements, the second four and so forth. Let us give two other examples which will
play an important role later on. We can imagine a Young diagram with only one
row with n boxes. This corresponds to the single partition of n elements where every
element is in the same set, i.e., {1, . . . , n}. On the opposite side we can imagine a
Young diagram with n rows, or equivalently, only one column. This then corresponds
to the partition where every element is in a unique set, i.e. {{i} | i ∈ [n]}. See also
Figure 2.4 for a graphical representation of the Young diagrams.

Definition 2.21. A skew hook of a Young diagram λ is a connected region of boundary
boxes such that removing them from λ leaves a smaller Young diagram.

We call the height of a skew hook the number of vertical steps in the skew hook;
one less than the number of rows.

Let λ be a type of the partition with appropriate Young diagram and τ a skew
hook. Then we denote by λ \ τ the Young diagram where we remove the skew hook
τ from the diagram for λ. This is only possible if after removing the skew hook the
remaining diagram is still a valid Young diagram.

20

2.6 The Immanant

(a) Example Young Diagram for 15. (b) Skew Hook

Figure 2.3

For example, removing all the red boxes in Figure 2.3b results in an invalid Young
diagram whereas removing all the green boxes is fine. We can see this as being allowed
to remove a connected part of the right border.

The next theorem shows us how we can use Young diagrams and types of the
partitions to compute the character of the symmetric group.

Theorem 2.6.1 (Murnaghan-Nakayama Rule). Let λ ` n and and σ = πψ be a
disjoint product of π ∈ Sn−k and ψ a cycle of length k. Then

χλ(σ) =
∑
τ

(−1)r(τ)χλ\τ (π)

where the sum is over all skew hooks of length k of λ and r(τ) is the height of the
skew hook τ .

We will give an example how to use this formula a bit later in this section.
Now we can finally state the major definition for this section, given by Littlewood

and Richardson [LR34].

Definition 2.22 ([LR34]). Let λ ` n. Then the immanant of a matrix A ∈ Rn×n is
defined as

Imλ(A) :=
∑
π∈Sn

χλ(π)
n∏
i=1

Ai,π(i).

We see the immanant has a similar definition as the permanent or determinant.
Indeed the following holds. Let λ(1) be the Young diagram from before with a single
column and λ(n) be the Young diagram with a single row. Then for all matrices A,
Imλ(1)(A) = det(A) and Imλ(n)(A) = perm(A). As in the determinant/permanent
case we can define the matrix to consist of variables xi,j to define a polynomial. The
corresponding Young diagrams for λ(n) and λ(1) are given in Figure 2.4.

We can use the Murnaghan-Nakayama Rule to understand computation of the
immanant for λ(1) and λ(n). Let us start with λ(n). Let σ = πψ be given where ψ is a
cycle of length k. There is only one way to remove a skew hook of length k from this
diagram and this skew hook has height zero. Repeating this for all cycles (including
self-loops) shows that the character for every permutation σ is one.

21

2 Arithmetic Circuits

...

...

(a) λ = λ(n) and Imλ(A) = det(A).

.

(b) λ = λ(1) and Imλ(A) = perm(A).

Figure 2.4

.

Figure 2.5: Hook Diagram with λ = (n− 2, 1, 1)

Similarly, we can look at λ(1). Here there is again only one way to remove a skew
hook of length k but now the skew hook has height k − 1. If we want to expand this
formula it is useful to think about the permutation σ as a series of transpositions
σ1, . . . , σ`. With this we can now expand the recursive definition which results in

(−1)2−1 . . . (−1)2−1︸ ︷︷ ︸
` many

.

Indeed this gives us the character χλ(1)(σ) = sgn(σ).
We can see that immanant is a very general polynomial. It can “interpolate” between

hard and computationally easy polynomials depending on which type of the partitions
λ we allow. Hence, the complexity of the immanant is an interesting field to study. To
formulate result about the VNP hardness of the immanant, we have to talk about the
immanant family, which we denote by Imn,λn with families of Young diagrams. It is
clear that for general λn the immanant is #P-hard as it can compute the permanent.
Let us now restrict ourselves to the commutative setting. What happens then to
the complexity of the immanant if we restrict the possible types of the partitions λ?
This initial question was posed by Strassen [Str90]. Hartmann [Har85] gave a first
upper bound a few years earlier of O(nn−s) for any immanant that has a family of
type of the partition λn = (λ1, . . . , λs). He also gave lower bounds related to the
computation of specific permanents. The upper bound was improved in some cases
by Barvinok [Bar90]. He could show a bound of O(n3dλ) where dλ the number of
standard tableaux of shape λ. This was followed by Bürgisser [Bür00c] with another
improvement. Finally, a partial completeness result was found by Bürgisser [Bür00b].

Bürgisser conjectured that for any diagram of polynomially growing width the
corresponding immanant is VNP complete. We call a type of the partition a hook

22

2.6 The Immanant

diagram, if the type of the partition is λn = (n−c, 1, . . . , 1) (cf. Figure 2.5). Bürgisser
showed that for the special case of any family of hook diagrams or rectangular diagrams
the immanant is VNP complete in the commutative setting. For the proof he used
the following amazing observation by Merris [Mer83]. Let HIn,i be the immanant for
the hook diagrams of type λn = (n− i, 1, . . . , 1). Then

n−1∑
i=0

(−1)i HIn,i = nHCn

where HCn is the directed Hamiltonian cycle polynomial in n variables2. With this
he was able to show the completeness. He shows the membership by using Valiant’s
Criterion and the result by Hepler [Hep94] that computing the character of the
symmetric group is #P complete when the type λ is given as input.

For the non-commutative setting we give a complete characterization of the com-
plexity of the immanant polynomial in Theorem 3.5.7.

Bürgisser’s conjecture was partially solved by Brylinski and Brylinski [BB03] with
respect to diagrams who have at least an “overhang” that is polynomially growing. In
contrast Mertens and Moore [MM13] showed that even non-hook diagrams, namely
diagrams with constant width but polynomially growing height make the immanant
VNP complete.

Finally, on the positive side there was the result by Grone and Merris [GM84] who
showed that a HI2,n−2 is easy to compute. In essence, their proof notices that we can
use the Murnaghan-Nakayama Rule to see that χ(2,1,...,1)(σ) = sgn(σ)(F (σ)−1) where
F (σ) is the number of fix points in σ. With this they are able to use the determinant
in a clever way to compute the immanant.

We see that the complexity of the immanant is only understood in very specialized
settings. One natural question is if there are better combinatorial ways to view the
immanant that might help us analyzing its complexity. One of the few results on
this was by Clearman, Shelton, and Skandera [CSS11] on a combinatorial way to see
hook immanants. They interpret the determinant as specific paths on a graph and
use this to define the immanant. However, their precise definition, while interesting,
seems still to complicated to analyze and is far away from the simple definition of the
permanent as the sum of all cycle covers.

We will sometimes need the hook formula given as follows which in turn needs the
notion of a standard Young tableaux.

Definition 2.23. A standard Young tableaux is a Young tableaux where the set
to partition is {1, . . . , n} such that each row and each column form an increasing
sequence.

For each cell we can define the hook Hλ(i, j) the set of cells (a, b) such that a = i
and b ≥ j or a ≥ i and b = j.

2The original paper by Merris shows that that the identity holds for undirected Hamiltonian cycle
but Bürgisser uses the directed variant for the completeness proof.

23

2 Arithmetic Circuits

Lemma 2.6.2 (Hook Length formula). The number of standard Young tableaux is
given by

dλ = n!∏
|Hλ(i, j)|

where the product is over all possible hooks Hλ(i, j).

We did not find the next lemma in the literature but include it for completeness

Lemma 2.6.3. Let M =
(
A 0
0 B

)
be a block matrix. Then Im(M) = Im(A) · Im(B).

Proof. Let ρ : Sn → GL(V) be a representation of partition type λ. And we have two
groups G1 = Sn′1 , G2 = Sn′2 such that n′1 + n′2 = n.

Then we can build representations

π1(g) =
{
ρ(g) g ∈ G1,
0 otherwise,

and

π2(g) =
{
ρ(g) g ∈ G2,
0 otherwise.

First, it is clear that these are group homomorphism and hence representations of
type λ. Then we can use Proposition 2.1 Item 2.

Imλ(M) =
∑
σ∈Sn

χG1⊕G2(σ)
n∏
i=1

xi,σ(i)

=

 ∑
σ∈G1

χG1(σ)
n∏
i=1

xi,σ(i)

 ·
 ∑
σ∈G2

χG2(σ)
n∏
i=1

xi,σ(i)

= Imλ(A) · Imλ(B).

The second to last equality holds now because χG2(g) for g ∈ G1 is zero and vice
versa for χG1 .

24

3 On Hard Instances of
Non-Commutative Problems.

This chapter is based on joint work with B. V. Raghavendra Rao and was partially
published under [ER14].

3.1 Introduction

Background

The underlying ring plays an important role in algebraic complexity theory. While
the research focused mainly on the permanent vs determinant problem over fields
and commutative rings there has also been an increasing amount of interest over
non-commutative algebras. Nisan [Nis91] was the first to consider the complexity
of these two polynomial families over non-commutative algebras. He showed that
for any field K, any non-commutative arithmetic formula over the free K algebra on
x1, . . . , xn2 computing the permanent or determinant of an n × n matrix requires
size 2Ω(n). Later on, this was generalized to other classes of algebras by Chien and
Sinclair [CS07]. Nisan’s work left the problem of determining the arithmetic circuit
complexity of the non-commutative determinant as an open question.

In a significant breakthrough, Arvind and Srinivasan [AS10] showed that computing
the Cayley determinant is #P-hard over certain matrix algebras. The Cayley deter-
minant and Cayley permanent are special non-commutative forms which we specify
in the Preliminaries of this chapter. Their result was improved to other algebras by
Chien, Harsha, et al. [CHSS11] and finally this question was settled by Bläser [Blä13]
who classified such algebras. Further, Gentry [Gen14] simplified the reduction by
Bläser considerably.

Motivation

Though the studies in [AS10, CHSS11, Blä13] highlight the role of the underlying
algebra in determining the complexity of the non-commutative determinant they do
not shed much light on the combinatorial structure of non-commutative polynomials
that are #P-hard. One could ask: Does the hardness stem from the underlying
algebra or are there inherent properties of polynomials that make them #P-hard in
the non-commutative setting? This chapters aims at answering this question.

As a first step, we look for polynomials that are easier to compute than the
determinant in the commutative setting and whose non-commutative versions are

25

3 Non-Commutative Problems

#P-hard. Natural candidate polynomials are the elementary symmetric polynomials
and special cases of the determinant/permanent. One way to obtain special cases of
determinant/permanent would be to restrict the structure of the underlying graph.
For example, let G be a directed graph consisting of n cycles (0, 1), (2, 3), . . . , (2n−
2, 2n− 1) of length two with self-loops at every node where each edge is labeled by a
distinct variable. The permanent of G, perm(G), is given by

∏n−1
i=0 (x2i,2ix2i+1,2i+1 +

x2i,2i+1x2i+1,2i) where xi,j is the variable labeling of the edge (i, j). This is one of the
easiest to compute but non trivial special case of the permanent. Other candidates of
special cases of graphs are outerplanar graphs, planar graphs and graphs of bounded
treewidth to name a few.

Results

In this chapter, we study the complexity of the Cayley permanent (Cayley-perm) on
special classes of graphs. We exhibit a family of collections of disjoint two-cycles for
which any algebraic branching program (ABP) computing the Cayley-perm should
have size 2Ω(n) (Corollary 3.4.6) and extend it to outerplanar graphs (Corollary 3.4.7).
Furthermore, we exhibit a parameter cut(G) (see Section 3.4.1 for the definition) for
a collection G of disjoint two-cycles on n vertices such that any ABP computing
Cayley-perm(G) has size 2Θ(cut(G)) (Theorem 3.4.5). This makes the lower bound in
Corollary 3.4.6 tight up to a constant factor in the exponent. It should be noted
that our results also hold for the case of the Cayley determinant (Cayley-det) on such
graphs. We also observe that for graphs of connected component size greater or equal
to six the problem of evaluating Cayley-perm, Cayley-det and Cayley-Im (the Cayley
Immanant) is #P complete (Theorems 3.5.6 and 3.5.7).

On the positive side, for graphs where each strongly connected component has at
most c vertices we obtain an ABP of size nO(c)cnear(G) computing the Cayley-perm
(Theorem 3.3.3) where near(G) is a parameter (see Definition 3.1) depending on the
labeling of vertices on the graph.

We construct a non-commutative variant of the elementary symmetric polynomial
that is #P-hard over certain algebras (Theorem 3.5.9). We show that computing
Cayley-perm on rank one matrices is #P-hard.

In contrast to these hardness results, we will, as a side note, show some com-
putational problems which are hard in the commutative case but easy in the non-
commutative case (Section 3.6).

Related Results

The study of commutative permanent on special classes of matrices was initiated by
Barvinok [Bar96] who gave a polynomial time algorithm for computing the permanent
of rank one matrices over a field. More recently, Flarup, Koiran, and Lyaudet [FKL07]
showed that computing the permanent of bounded treewidth graphs can be done by
polynomial size formulas. This was further extended by Flarup and Lyaudet [FL10]
to other width measures on graphs. Datta, Kulkarni, et al. [DKLM10] showed that

26

3.2 Preliminaries

computing the permanent on planar graphs is as hard as the general case.

Comparison to Other Results

Results reported in [AS10, CHSS11, Blä13, Gen14] highlight the importance of the
underlying algebra and characterizes algebras for which Cayley-det is #P-hard. In
contrast, our results shed light on the role played by the order in which vertices
are labeled in a graph. For example, the commutative permanent of disjoint two-
cycles has a depth three formula given by

∏n−1
i=0 (x2i,2ix2i+1,2i+1 + x2i,2i+1x2i+1,2i)

whereas Cayley-perm on almost all orderings of vertices requires exponential size
ABPs. Independently, some lower bounds for skew circuits where recently found by
Limaye, Malod, and Srinivasan [LMS15] using techniques based on Nisan’s lower
bounds.

3.2 Preliminaries
Over a non-commutative ring R, there are many possibilities for defining the deter-
minant/permanent of a matrix depending on the ordering of the variables (see for
example [Asl96]). We will use the well known definitions of the Cayley determinant
and the Cayley permanent. Let X = (xi,j)1≤i,j≤n be an n× n matrix with distinct
variables xi,j . Then

Cayley-det(X) =
∑
σ∈Sn

sgn(σ)x1,σ(1) · · ·xn,σ(n),

Cayley-perm(X) =
∑
σ∈Sn

x1,σ(1) · · ·xn,σ(n).

In the above, Sn denotes the set of all permutations on [n] symbols. Note that
Cayley-det and Cayley-perm can also be seen as functions taking n× n matrices with
entries from R as input.

The tensor product, or Kronecker product, of two matrices A,B ∈ Kn×n with
entries ai,j , bi,j is denoted by A⊗B and is given by

A⊗B =

a1,1B · · · a1,nB
...

an,1B · · · an,nB

 .
We use the notion of read once certificate for ABPs as in [MR13]. Let P be an ABP
over disjoint sets of variables X ∪ Y , with |X| = n and |Y | = m. Let pP (X,Y) be
the polynomial computed by P . P is said to be read once certified in Y if there are
numbers 0 = i0 < i1 < · · · < im where im is at most the length of P and there is
a permutation π ∈ Sm such that between layers from ij to ij+1 no variable other
than yπ(j+1) from the set Y appears as a label. We will reprove the following result
from [MR13] as the original proof only works in the commutative setting.

27

3 Non-Commutative Problems

Proposition 3.1 ([MR13]). Let P be an ABP on X ∪ Y read-once certified in Y .
Then the polynomial

∑
e1,e2,...,em∈{0,1} pP (X, e1, . . . , em) can be computed by an ABP

of size poly(size(P)).

Note that the proof given in [MR13] uses the equivalence of skew circuits with
ABPs, which does not hold in the non-commutative setting. We postpone a more
detailed discussion about non-commutative skew circuits to Section 3.4.2.

Proof. Our argument is similar to the one in [MR13] except that we argue over ABPs
themselves rather than skew circuits. Let P be an ABP computing the non-commu-
tative polynomial given by pP (x1, . . . , xn, y1, . . . , ym). Let 0 = i0 < i1 < · · · < im be
the layers of P that witness the fact that P is read-once certified in Y = {y1, . . . , ym}.
Without loss of generality assume that every layer of P has exactly r nodes. Let
gj1, . . . , g

j
r be the nodes in the layer ij . Note that variable yj is read in layers between

ij−1 to ij and is never used beyond that point and no other variable from Y appears
in layers between ij−1 and ij . Let Pj be the portion of P consisting only of layers
of P from ij−1 to ij . Let pj [`, k] be the polynomial represented as sum of weights of
gj` gj+1

k paths in P . Then

pP =
∑

k1,...,km

p0[s, k1] · p1[k1, k2] · · · pm−2[km−2, km−1] · pm−1[km−1, t].

For 0 ≤ j < m and k, k′ ∈ {1, . . . r} and b ∈ {0, 1}, let pbj [k, k′] = pj [k, k′]|yj+1→b
where we substitute yj+1 with b. Then∑

e1,...,em∈{0,1}
pP (X, e1, . . . , em)

is equal to

∑
k1,...,km

((
p0

0[s, k1] + p1
0[s, k1]

)
·
(
p0

1[k1, k2] + p1
1[k1, k2]

)
...

·
(
p0
m−2[km−2, km−1] + p1

m−2[km−2, km−1]
)

·
(
p0
m−1[km−1, t] + p1

m−1[km−1, t]
))

.

(3.1)

Thus we can take sums of Pj with yj = 0 and yj = 1 independent of Pj′ when j 6= j′.
In the following we describe this construction.

We construct the new ABP inductively for every layer. We create two copies P 0
j

and P 1
j where P bj is obtained by setting yj = b for b ∈ {0, 1}. The copies are connected

left as they where previously, meaning if there was an edge gj−1
k to a vertex v there is

28

3.3 An Algorithm for the Cayley Permanent

now an edge from gj−1
k to both copies of v. For the edges to the next layer, we do the

same. If there was an edge (gj` , g
j+1
k) in Pj we connect this edge for gj` in P 0

j and P 1
j .

The correctness is obvious from Equation (3.1). The size is at most two times the
original size.

Let A be a non-deterministic s-space bounded algorithm that uses non-deterministic
bits in a read-once fashion and outputs a monomial on each of the accepting paths.
We assume that a non-commutative monomial is output as a string on a write-only
tape and non-deterministic paths are represented by binary strings e ∈ {0, 1}m where
m ≤ 2O(s). The polynomial pA computed by A is the sum of the monomial output
on each of the accepting paths of A, i.e., p(x1, . . . , xn) =

∑
eA(x1, . . . , xn, e), where

the sum is taken over all accepting paths e of A, and A(x1, . . . , xn, e) denotes the
monomial output along the path represented by e.

Proposition 3.2 (folklore). Let A(X) be an s-space bounded non-deterministic algo-
rithm as above. There is a non-commutative ABP P of size 2O(s) that computes the
polynomial pA(X).

3.3 An Algorithm for the Cayley Permanent
In this section, we give an algorithm for Cayley-perm that is parameterized by the
maximum difference between labels of vertices in individual components.

In what follows, we identify the vertices of a graph with the set [n]. A directed
graph G on n vertices is said to have component size bounded by c if every strongly
connected component of G contains at most c vertices where c > 0. We assume that
edges of G are labeled by distinct variables. Let us define a parameter that measures
the closeness of labelings in each component.

Definition 3.1. Let G be a directed graph. The nearness parameter near(C) of a
strongly connected component C of G is defined as near(C) = maxi,j∈C |i − j|. The
nearness parameter of G is defined as near(G) = maxC near(C), where the maximum
is taken over the set of all strongly connected components in G.

We now give Algorithm 3.1 which is a non-deterministic log-space bounded procedure
P that will guess a cycle cover γ in G and output the product of the weights of γ
with respect to the Cayley ordering as a monomial. Additionally, we ensure that the
algorithm P uses the non-deterministic bits in a read-once fashion.

We will denote by C1, . . . , Cr the strongly connected components of G, sorted in
the ascending order of the smallest vertex in each component. We represent a cycle
cover in G as a permutation γ where γ(i) is the successor of the vertex i in the cycle
cover represented by γ.

Lemma 3.3.1. The Algorithm 3.1 can be implemented to use O(log c ·near(G)+logn)
space, and is read-once on the non-deterministic bits.

29

3 Non-Commutative Problems

1 2 3 4 5 6 7 8

Figure 3.1: A graph with near(G) = 7.

1 pos := 1
2 T := ∅
3 γ := the cycle cover of the empty graph
4 f := 1
5 for 1 ≤ i ≤ r do
6 Non-deterministically guess a cycle cover γ′ for Ci
7 γ := γ] γ′
8 T := T ∪ V (Ci), where V (Ci) are the vertices in Ci.
9 while ∃k ∈ T with k = pos do

10 f := f · xk,γ(k)
11 pos := pos + 1
12 T := T \ {k}
13 if pos = n then
14 Output f and accept.

Algorithm 3.1: Procedure P for computing the Cayley Permanent

Proof. Let T represent the set of vertices v in the partial cover that is being built by
the procedure where the weight of the edge going out of v is not yet output, and pos
the current position going from 1 to n. We have

T = {k | pos < k and k occurs in the components already explored}.

Firstly, we argue that at any point in time in the algorithm, |T | ≤ near(G) + c.
Suppose the algorithm has processed components up to Ci and is yet to process Ci+1.
Let µ = maxv∈T v. Since the components are in ascending order with respect to the
smallest vertex in them, the component Cj with µ ∈ Cj must have near(Cj) ≥ µ−pos.
Thus µ− pos ≤ near(G). Also, just before Line 6 in any iteration, we have that for
any v ∈ T , pos < v ≤ µ and hence |T | ≤ µ − pos + c ≤ near(G) + c. Note that it
is enough to store the labels of the vertices in T and the choice γ(v) made during
the non-deterministic guess for each v ∈ T and hence O(|T | logn) additional bits of
information needs to be stored.

However, we will show that it is possible to implement the algorithm without

30

3.3 An Algorithm for the Cayley Permanent

explicitly remembering the vertices in T and using only O(|T | log c) additional bits in
memory. Suppose that the vertices in T are ordered as they appear in C1, C2, . . . , Cr
where vertices within a component are considered in the ascending order of their
labels. Let B be a vector of length near(G) where each entry Bj is log c bits long
which indicates the neighbour of the jth vertex in T . Now, we show how to implement
Lines 9 to 12 in the procedure using B as a data structure for T . To check if there
is a k ∈ T with k = pos, we can scan the components from C1, . . . , Ci and check if
the vertex assigned to pos occurs in one of the components. Remember that γ(k)
is the successor of k in the cycle cover γ. To obtain γ(k) from B, we need to know
the number j of vertices v that appear in components C1, . . . , Ci such that v ≥ pos
and that occur before k. Then γ(k) = Bj . Once Bj is used, we remove Bj from B
and shift the array Bj+1, . . . , Bnear(G)+c by one index towards the left. Further, we
can implement Line 6 by simply appending the information for V (Ci) given by γ′ to
the right of the array B. We require at most O(c logn) bits of space guessing a cycle
cover γi for component Ci which can be re-used after the non-deterministic guessing
of γi is complete. Thus the overall space requirement of the algorithm is bounded by
O(log c · (near(G) + c) + c logn).

Lemma 3.3.2. Let Acc(G) be the sum of the monomials output by Algorithm 3.1 on
all accepting paths. Then Acc(G) = Cayley-perm(G).

Proof. For an edge (i, j) ∈ E(G), let xi,j denote the variable label on (i, j). Let AG
be the weighted adjacency matrix of G. Note that the Cayley permanent of AG equals
the sum of weights of cycle covers in G where the weight of a cycle cover γ is the
product of labels of edges in γ multiplied in the Cayley order.

Recall that a permutation γ ∈ Sn is a cycle cover of G if and only if it can be
decomposed into vertex disjoint cycle covers γ1, . . . , γr of the strongly connected
components C1, . . . , Cr in G. Thus Line 6 enumerates all possible cycle covers in G.
Also, the weights output at every accepting path are in the Cayley order.

Theorem 3.3.3. Let G be a directed graph with component size bounded by c and
edges labeled by distinct variables. Then there exists an ABP of size nO(c)cnear(G)

computing the Cayley permanent of the adjacency matrix of G.

Proof. By Lemma 3.3.2 and Proposition 3.2, we get an ABP P computing a poly-
nomial pG(X,Y) such that Cayley-perm(G) =

∑
e1,...,em∈{0,1} pG(X, e) where m =

O(c logn). Combining the above algorithm with the closure property of algebraic
branching programs over read-once variables given by Proposition 3.1, we get a
non-commutative arithmetic branching program computing Cayley-perm(G). It can
be seen from Lemma 3.3.1 that size of the resulting branching program is at most
m2O((c log c+log c·near(G))+c logn) which is equal to nO(c) · cnear(G) for large enough n.

Corollary 3.3.4. Let G be as in Theorem 3.3.3. There is an ABP of size nO(c)cnear(G)

computing the Cayley determinant of G.

31

3 Non-Commutative Problems

Proof. The argument is the same as in Theorem 3.3.3 except that now the non-deter-
ministic algorithm given in the proof of Theorem 3.3.3 also needs to compute the sign
of the monomial being output. Let C1, . . . , Cr be the strongly connected components
of G. Then the sign of the permutation corresponding to a cycle cover τ of G is
the product of signs of the corresponding cycle covers of Ci. It can also be seen as
sgn(σ) = (−1)n−#disjoint cylces in σ. Thus it is enough to modify the algorithm given in
the proof of Theorem 3.3.3 to output the sign of the cycle cover chosen for Ci. We do
not violate the read-once restriction as the cycle cover is copied to the data structure
B. The remaining arguments are exactly the same.

3.4 Unconditional Lower Bound
3.4.1 ABPs
We now show that any branching program computing the non-commutative permanent
of directed graphs with component size 2 must be of exponential size. This shows that
the upper bound from Theorem 3.3.3 is tight up to a constant factor in the exponent,
however, with a different but related parameter. All these lower bound results hold
for free algebras over any field K.

Our proof uses Nisan’s ([Nis91]) partial derivative technique. We begin with some
notation following his proof. Let f be a non-commutative degree d polynomial in n
variables. Let B(f) denote the smallest size of a non-commutative ABP computing f .
For k ∈ {0, . . . , d} let Mk(f) be the matrix with rows indexed by all possible sequences
containing k variables and columns indexed by all possible sequences containing d− k
variables (repetitions allowed). The entry of Mk(f) at (xi1 . . . xik , xj1 . . . xjd−k) is the
coefficient of the monomial xi1 · · ·xik · xj1 · · ·xjd−k in f .

Intuitively, such a matrix shows “correlation” between the first k variables and the
next n−k many variables. However, a polynomial size ABP can only have polynomial
width and hence a low “correlation”. Nisan was able to prove this with the following
theorem.

Theorem 3.4.1 ([Nis91]). For any homogeneous polynomial f of degree d

B(f) =
d∑

k=0
rank(Mk(f)).

We prove lower bounds for the Cayley permanent of graphs with every strongly
connected component of size exactly 2, i.e., each strongly connected component being
a two-cycle with self-loops on the vertices. Note that any collection of n/2 vertex
disjoint two-cycles can be viewed as a permutation π ∈ Sn consisting of disjoint
transpositions and that π is in fact an involution. Conversely, any involution π on n
elements represents a graph Gπ with connected component size 2.

For a permutation π ∈ Sn let the cut at i denoted by Ci(π) be the set of pairs
(j, π(j)) that cross i, i.e.,

Ci(π) = {(j, π(j)) | i ∈ [j, π(j)] ∪ [π(j), j] }.

32

3.4 Unconditional Lower Bound

The cut parameter cut(π) of π is defined as

cut(π) = max
1≤k≤n

|Ck(π)|.

Let G be a collection of vertex disjoint 2-cycles denoted by (a1, b1), . . . , (an/2, bn/2)
where n is even. The corresponding involution is πG = (a1, b1) · · · (an/2, bn/2). By
abusing the notation a bit, we let cut(G) = cut(πG). Without loss of generality,
assume that ai < bi, and a1 < a2 < · · · < an/2. Firstly, we note that cut(π) is
bounded by near(G).

Lemma 3.4.2. For any collection of disjoint 2-cycles G on n vertices, cut(π) ≤
near(G) where π is the involution represented by G.

Proof. Suppose cut(π) = r and 1 ≤ i ≤ n be such that |Ci(π)| = r. Let (a, b) ∈ G
where a is the least value with a < i and b > i be the maximum such value. Then
b− a ≥ 2|Ci(π)|

2 = r. This concludes the proof.

Figure 3.1 gives us an example where the equality does not hold. In this graph
near(G) = 7 but cut(G) = 3.

Further, we note that the upper bound given in Theorem 3.3.3 holds true even if
we consider cut(G) instead of near(G).

Lemma 3.4.3. Let G be a collection of disjoint 2-cycles and self-loops where every
edge is labeled by a distinct variable or a constant from R. Then there is an ABP of
size 2O(cut(G))n2 computing the Cayley permanent of G.

Proof. The algorithm is the same as in Theorem 3.3.3. We only need to argue the
space bound as in Lemma 3.3.1. First note that either ai = i, or i has already occurred
in one of the involutions (a1, b1), . . . , (ai−1, bi−1). When the algorithm processes the
component corresponding to the involution (ai, bi), it needs to remember the outgoing
edge chosen for bi (either the self-loop or the edge bi → ai). Thus at any stage, the
number of edges that needs to be stored is bounded by t = maxk|Ck(σ)|. The rest of
the arguments are exactly the same as in the original proof (Lemmas 3.3.1 and 3.3.2
and Theorem 3.3.3).

Lemma 3.4.4. Let G be a collection of ` disjoint 2-cycles described by the involu-
tion π and self loops at every vertex with edge labeled by distinct variables. Then
M`(Cayley-perm(G)) contains I⊗t2 as a sub-matrix where t = maxk|Ck(π)| and I⊗t2 is
the tensor product of I2 with itself t times and I2 is the 2× 2 identity matrix.

Proof. Let k ∈ [`], and m = |Ck(π)| ≤ `. Let Ck(π) = {(ai1 , bi1), . . . , (aim , bim)} be
such that aij ≤ k ≤ bij for all j. Let Gk be the graph restricted to involutions in
Ck(π). By induction on m, we argue that Mm(Cayley-perm(Gk)) contains I⊗m2 as
a sub-matrix. The lemma would then follow since Mm(Cayley-perm(Gk)) is itself a
sub-matrix of M`(Cayley-perm(G)).

We begin with m = 1 as the base case. Consider the transposition (aij , bij), with
aij ≤ k ≤ bij . The corresponding two cycle has four edges. Let fij be the Cayley

33

3 Non-Commutative Problems

|C4|

Figure 3.2: An example of a two connected component graph with high cut(G).

permanent of this graph then M1(fij) has the 2× 2 identity matrix as a sub-matrix.
Let us dwell on this simple part. For ease of notation let the variables corresponding
to the self-loops be given by x(a), x(b) for (aij , aij) and (bij , bij) respectively and the
edge (aij , bij) by x(a,b) and the edge (bij , aij) by x(b,a). Now our matrix has monomials
x(a), x(a,b) as rows and x(b), x(b,a) as columns. We can ignore the other orderings as
these will always be zero. As the valid cycle covers are given by x(a)x(b) and x(a,b)x(b,a)
the base case is clear.

For the induction step, suppose m > 1. Suppose a1 < a2 < · · · < am. Let G′k be
the graph induced by Ck(π) \ (a1, b1). Let M ′ = Mm−1(Cayley-perm(G′k)). The rows
of M ′ are labeled by monomials consisting of variables with first index ≤ k and the
columns of M ′ are labeled by monomials consisting only of variables with first index
> k. Let M = Mm(Cayley-perm(Gk)). M can be obtained from M ′ as follows: Make
two copies of the row labels of M ′, the first one with monomials pre-multiplied by
xa1,a1 , and the second pre-multiplied by xa1,b1 . Similarly, make two copies of the
columns of M ′, the first by inserting xb1,b1 to the column labels of M ′ at appropriate
position, and then inserting xb1,a1 similarly. Now, the matrix M can be viewed as
two copies of M ′ that are placed along the diagonal. Thus M = M ′ ⊗ I2, combining
this with Induction Hypothesis completes the proof.

Remark 3.1. It should be noted that the ordering of the variables is crucial in the
above argument. If a1, b1 < k in the above, then rank(M) = rank(M ′).

As a side note, this proof above can also be visualized using basic facts from
Quantum Computation. Consider a cycle (aij , bij). We can assign 2 Q-bits for edges
outgoing from these vertices. A zero means the edge (aij , aij) is taken and a one
that (aij , bij) is taken for the first bit. The other bit behaves similar but with the
edges (bij , bij) and (bij , aij). It is clear that for valid cycle covers these pair form an
entangled quantum state with two Q-bits but only two states (the (0, 0) state and the
(1, 1) state). Now adding Q-bits which have no connection to the previous two cycles
gives us the tensor product of the states.

We give an example of a two connected component graph along with the involution
in Figure 3.2. We assume every vertex has a self-loop in this drawing. You can see

34

3.4 Unconditional Lower Bound

that the size of Ck directly corresponds to the number of decisions a cycle cover has
to “keep in mind” if it is constructed iteratively from left to right.

Theorem 3.4.5. Let G be a collection of disjoint two cycles described by the involution
π and self-loops at every vertex, with edges labeled by distinct variables. Then any non-
commutative ABP computing the Cayley permanent on G has size at least 2Ω(cut(G)).

Proof. It is enough to argue that for every k, there is an ` with rank(M`(f)) ≥
2Ω(|Ck(π)|), then the claim follows from Theorem 3.4.1. Let ` = |Ck(π)|, and suppose
the transpositions crossing k are given by (ai1 , bi1), . . . , (ai` , bi`). Let G′ be the sub-
graph of G induced by the vertices corresponding to the transpositions above. Let
f = Cayley-perm(G′). Applying Lemma 3.4.4 on G′ we conclude that M`(f) has
I
⊗|Ck(π)|
2 as a sub-matrix, i.e., the identity matrix of dimension 2|Ck(π)|×2|Ck(π)|. Note

that f can be obtained by setting weights of the self-loops of vertices not in G′ to
zero, and setting the remaining variables to one. Moreover, the matrix M`(f) is a
sub matrix of M`(Cayley-perm(G)) obtained by relabeling the rows and columns as
per the substitution mentioned above, and removing rows and columns that are zero.
We conclude rank(M`(Cayley-perm(G))) ≥ rank(M`(f)) ≥ 2|Ck(π)|.

The structural characterization above can be used to prove lower bounds for
the Cayley permanent of a collection of 2-cycles. Let π = (a1, b1) · · · (an/2, bn/2),
a1 < a2 < · · · < an/2 be an involution. Then the graph Gπ associated with π is the
collection of 2-cycles (a1, b1), . . . , (an/2, bn/2) and self-loops at every vertex.

Corollary 3.4.6. Let G be a collection of disjoint two cycles described by the involu-
tion π and self-loops at every vertex, with edges labeled by distinct variables. Then
B(Cayley-perm(G)) ∈ 2Θ(cut(G)). Further, there exists a graph G with cut(G) = Θ(n).

Proof. The first part follows immediately from Lemma 3.4.3 and Theorem 3.4.5. For
the second statement, consider the invoution π with π(i) = n/2+ i. It can be seen that
maxk|Ck(π)| = n/2. Thus by Theorem 3.4.5 we have any ABP computing the Cayley
permanent of G is of size 2Ω(n). Since cut(π) ≤ n for any graph, by Lemma 3.4.3 the
result follows.

We get another immediate Corollary.

Corollary 3.4.7. Any non-commutative ABP computing the Cayley permanent of all
matrices represented by outer planar graphs require size 2Ω(n) where n is the number
of vertices.

Proof. Given an involution π = (a1, b1), . . . , (an/2, bn/2) with associated graph G, the
outerplanar graph is already given in a non outerplanar embedding. If we arrange the
vertices in a way that (a1, b1) lie next to each other we get an outerplanar embedding.
Similarly we can get a graph with only one connected component by connecting these
vertices with edges of weight zero. The result now follows from Corollary 3.4.6.

35

3 Non-Commutative Problems

1 2 3 4 5 6 7 8

Figure 3.3: Graph and the corresponding intervals and the Interval Graph

Finally, we show that the hard instance exhibited in Corollary 3.4.6 is not an
exception but in fact a rule, i.e., almost all involutions π except an 1/

√
n fraction

have cut(π) = Ω(n). As before, let n = 2m. Then an involution π on {1, . . . , n} with
π(i) 6= i represents a collection of m intervals

Iπ = {[i, π(i)] | 1 ≤ i ≤ n, i < π(i)}.

Definition 3.2. The Interval Graph for a set of intervals I = {i1, . . . , in} is given
by (V,E). Every interval ij ∈ I has exactly one vertex and two vertices vi, vj have an
edge between them if for the corresponding intervals ii ∩ ij 6= ∅.

Let Hπ be the interval graph formed by the intervals in Iπ.

Lemma 3.4.8. Let π be an involution and Hπ be the interval graph as defined above.
Then cut(π) ≥ l/n where l is the number of edges in Hπ.

Proof. For every edge (a, b) in Hπ, the corresponding intervals Ia = [i, π(i)] and
Ib = [j, π(j)] have non empty intersection. Suppose i < j, then j ∈ [i, π(i)]. (In
the case when j > π(j), we have π(j) ∈ [i, π(i)]. Other cases can be handled
analogously.) Thus every edge in Hπ contributes at least one distinct interval [i, π(i)]
with i ≤ k ≤ π(i), i.e., it contributes a value to Ck(π) for some k. Then

l ≤
∑
k

|Ck(π)| ≤
∑
k

cut(π) ≤ n · cut(π),

as 1 ≤ k ≤ n.

With this we have a correspondence between the graphs and interval graphs. As an
example we show the graph on the left in Figure 3.3 and the corresponding intervals
and the interval graph on the right.

Scheinerman [Sch88] showed that, random interval graphs have Ω(n2) edges with
high probability.

36

3.4 Unconditional Lower Bound

Theorem 3.4.9 ([Sch88]). Let Hπ be an interval graph where π is an involution
on [n] chosen uniformly at random. Then Hπ has at least n2/3 − n7/4 edges with
probability at least 1− 1/

√
n.

Corollary 3.4.10. For an involution π on [n] chosen uniformly at random, we have
cut(π) = Ω(n) with probability 1− 1/

√
n.

The theorem now follows.

Theorem 3.4.11. For all but a 1/
√
n fraction of graphs G with connected component

size 2, any ABP computing the Cayley-perm on G requires size 2Ω(n).

We can also prove a small corollary about the involutions.

Corollary 3.4.12. Let π be the involution in Corollary 3.4.6. Let π′ be an involution
which can be constructed from π with at most O(logn) transpositions. Then any
non-commutative ABP computing the Cayley permanent on π′ has exponential size.

We want to mention the relationship with the result by Hrubes, Wigderson, and
Yehudayoff [HWY10] which shows that for any “ordered” non-commutative polynomial
is it enough to prove lower bounds for multilinear circuits. However, the best known
bound, to our knowledge, is by Raz and Yehudayoff [RY09] for constant depth
multilinear circuits.

3.4.2 Weakly Skew Circuits
Recently Limaye, Malod, and Srinivasan [LMS15] showed lower bounds for non-com-
mutative skew circuits and generalizations of these in independent work. In fact,
they use the Palindrome Polynomial in variables x0, x1. Let xe = xe1xe2 . . . xen for
e ∈ {0, 1}n and xeR = xenxen−1 . . . xe1 , the reverse product of the binary string e.
Then the Palindrome Polynomial is given by

Pal(X) =
∑

e∈{0,1}n
xexeR .

They showed that the Palindrome Polynomial has exponential size ABPs in the
non-commutative setting but can be easily computed with a weakly skew circuit based
on the recursive structure F (n) = x0F (n− 1)x0 + x1F (n− 1)x1. We can view this
polynomial with a different variable set. Let us order the variables occurring in the
binary string from left to right and replace them by new variables x0,i or x1,i for
i ∈ [n]. Now we can set x0,i corresponding to a self-loop and x1,i to the edges in the
loop. In fact, this is a polynomial we shown to be hard for ABPs by Theorem 3.4.5
and is a generalization of the example in Figure 3.2.

Further, they showed some extension to this work, one of them being a lower bound
for weakly skew circuits. They use the Palindrome Squared Polynomial given by

Pal(X)2 =
∑

e1,e2∈{0,1}n
xe1xeR1

xe2xeR2
.

37

3 Non-Commutative Problems

Figure 3.4: Palindrome Squared Graph

We can do a similar replacement as for the Palindrome Polynomial. We will take two
different sets of variables, namely x0,i, x1,i, y0,i, y1,i where we replace the first two
sets of variables with x0,i and x1,i, and the second set with the other variables. The
polynomial can be represented similar to our previous example as a graph where we
omitted the self-loops (Figure 3.4). Notice, that this graph also has exponential size
ABP as the maximum for maxk|Ck| is obtained for k = n

4 .
This immediately gives us the following corollary from their work.

Corollary 3.4.13. There exists a graph with component size two such that every
non-commutative skew circuit computing the permanent on this graph has exponential
size.

We will now spent a bit of time on explaining their lower bound for skew circuits
as it is closely related to our previous proof. It is clear that simply using the same
lower bound technique does not work as the Palindrome Polynomial is a counter
example. It has exponential large rank for the Nisan matrix but a skew circuit of
linear size. Hence, a new version needs to be introduced. A natural generalization of
Nisan’s matrix can be constructed. For this, we label the rows by all possible pairs
of monomials (m1,m2) and the columns by all possible monomials m where m has
degree k and deg(m1)+deg(m2) = d−k. The value in the cell then corresponds to the
coefficient of the monomial m1 ·m ·m2. The matrix has nk rows and (d− k + 1)nd−k
columns. The intuition behind this measure can be given as follows. It is clear that a
skew circuit can easily correlate the last and first few values together, in contrast to
an ABP. However, it should have a hard time with correlations that are between the
left part and parts left from the middle as the power of left and right multiplication
can only give this with large skew circuit size.

We can imagine decomposing our polynomial f as
∑
i∈[t] higih

′
i. And use this matrix

to show a lower bound. However, this seems difficult as hi and h′i can have any degree
in [0, d4]. Hence, the matrix cannot even be defined.

Arvind and Raja [AR14] solved this problem by modifying the matrix. They defined
that the coefficient of a monomial m′ is now given by

∑
m′=m1mm2 Mk((m1,m2),m),

the sum over all possible decompositon of m′ into m1mm2. However, with this matrix
they could only show a lower bound for monotone skew circuits. The many different
possible “partitions” where to hard to analyze.

38

3.4 Unconditional Lower Bound

d/4

d/2

d/4

g

h

Figure 3.5: Partition

Limaye et al. could actually prove such a decomposition for weakly skew circuit,
similar to the work by Hrubes, Wigderson, and Yehudayoff [HWY10].

Lemma 3.4.14 ([LMS15]). Let f be a polynomial of degree d computed by a non-
commutative skew circuit of size s. Fix any d′ ∈ [d]. Let g1, . . . , gt be the intermediate
polynomials of degree d′ computed by C. Then there exist homogeneous polynomials
hi,j of degree j′ and h′i,j of degree d− d′ − j for i ∈ [t] and j ∈ [d− d′] such that

f =
∑
i∈[t]

∑
j∈[d−d′]

hi,j · gi · h′i,j .

Furthermore, each hi,j and h′i,j can be computed by a skew circuit of size at most sd.

One of the key insights was that [t] is actually a small constant. They could now
continue with the proof in the following way. Let us pick d′ = 3d

4 which gives us a
small sum of homogeneous polynomials g of degree 3d

4 and hi, h′i of combined degree
d
4 . Notice that hi,j and h′i,j now have a fixed degree. With this they can look at the
rank for every hi,jgih′i,j for 1 ≤ i ≤ t and 0 ≤ j ≤ d

4 .
They were able to show that for this partition Π, rank(M(f,Π)) is equal to the

rank of ∑
i∈[t],j∈[d4]

rank(M(g,Πg)) · rank(M((hi,j , h′i,j),Πh))

for the restricted partitions Πh on h and Πg on g. Here the partitions are actually
sets of matrix coordinates. Let us clear up the different partitions. Π is just the
partition ([d/4] ∪ [3d/4 + 1, d], [d/4 + 1, 3d/4]). Then Πh is, in essence, the partition
restricted to the set of indices that overlap with h or h′ and Πg the one that overlap
with g. As you see in Figure 3.5 our original partition does not necessarily correspond
to the monomials gi and hi,j , h′i,j and now it should be clear why we have to restrict
our partitions. Their proof can be seen as showing that even using these restricted
partitions is enough to show a lower bound.

Let us continue with the proof. Limaye et al. could prove that the rank(M(hi,j , h′i,j),Πh)
is one for all i, j. This is intuitively clear as the there is only one index on the columns
selected. They can further show that rank(M(g,Πg)) is bounded by1 2

d
4 by a similar

tensor argument as in our Lemma 3.4.4. As the first d
4 many variables are fully

1In the paper, they give an upper bound of n
d
4 as they use n variables instead of two.

39

3 Non-Commutative Problems

correlated with the variables in [d+1
4 , d2]. Notice that this bound will only be met if

deg(hi,j) = 0, or deg(h′i,j) = 0. With this they can combine their results to give an
upper bound for rank(M(f)) as sd2

d
4 where s is the size of the skew circuit. This

immediately implies that for a large size a large rank is necessary.

Open Problem 3.1. Can we use the proof from [LMS15] to get a similar result for
weakly skew circuits as Theorem 3.4.11 for graphs with connected components of size
two?

Similarly, they could show lower bounds for skew circuits where they allow at most
a constant number of non-skew gates.

3.5 Completeness Results

In this section, we show multiple hardness results for simple polynomials over certain
classes of non-commutative algebras. We give a #P completeness result for specific
graphs of component size at most six. The completeness result is obtained by a careful
analysis of the parameters in the reduction from 3 − #SAT to non-commutative
determinant given recently by Gentry [Gen14] and the modification we will do to
make this proof work for the Cayley permanent and the Cayley immanant.

3.5.1 A Recap of Gentry’s Proof

For clarity we will repeat the proof of Gentry with some corrections by Goldreich. We
will switch freely between denoting the inverse of an element g in a group by 1

g or g−1.

Definition 3.3. Let R be some algebra. A product program P over R with n instruc-
tions for an input of length m is given by P = (a0, (ι1, a1,0, a1,1) , . . . , (ιn, an,0, an,1)).
Where we call the sequence of length n of the form (ιi, ai,0, ai,1)i∈[n] ∈ ([m],R,R)n
the instructions and a0 the starting element.

It computes on an input x1, . . . , xm ∈ {0, 1} the product

a0 ·
n∏
i=1

ai,xιi .

In words, our product program decides for every instruction (ιi, ai,0, ai,1) if it should
multiply ai,0, if the bit of x at the position ιi is zero, or ai,1, if the bit of x at the
position ιi is one. These product programs where created in a line of research related
to binary decision graphs and boolean branching program (cf. [Bar89]). They were
famously used in Barrington’s Theorem which states that constant width boolean
branching programs are equal to the class NC1. We will generally not distinguish
between an input as vector of length m or a string of length m and will index the
string x with xi to mean the ith bit.

40

3.5 Completeness Results

Lemma 3.5.1 ([Gen14, Lemma 2]). For any division algebra R, the group of units of
R2×2 contains a subgroup isomoprhic to S3. In particular, R2×2 contains the matrices

r =
(

0 −1
1 −1

)
and s =

(
0 1
1 0

)
.

Proof. It is clear that R2×2 contains these matrices. It is easy to see that r has order
three and s order two and hence by Lagrange’s Theorem they generate a group of
order at least six. We know that the only elements in the group are 1, s, r, r2, rs, sr
as rs = sr2 and r2s = sr and s has order two. As S3 is the only non-abelian group of
order six the lemma holds.

With this we can now show a product program that outputs one if an assignment
satisfies a d-CNF formula and zero else.

Lemma 3.5.2 ([Gen14, Lemma 3]). There exists a product program of length 2d +
2d−1 − 2 over the group S3 that computes a disjunction of any d literals. It outputs 1
if x satisfies the disjunction and r otherwise.

Proof. Let 1 be the multiplicative neutral element of the R2×2.
We give a proof by induction and assume a0 to be 1. Let d = 1. Either the bit x1

is true, then a1,1 is returned or the bit is zero and hence a1,0 is returned. As a1,0 = r
and a1,1 = 1 the base case is clear.

Let us now assume that the lemma is true for d− 1 and let Pd−1 be the constructed
product program. Let x1, . . . , xn be the bits of our input and b0 = s and b1 = 1. Then
we construct the program such that the multiplication will be performed as follows:

bxd · Pd−1(x1, . . . , xd−1) · bxd · (Pd−1(x1, . . . , xd−1))−1 .

Here (Pd−1(x1, . . . , xd−1)−1 is replacing all instructions (ιi, (α, β)) by the correspond-
ing instruction (ιi, (α−1, β−1)).

Let us now prove the correctness. If xi = 1 then it is clear that the layer i evaluates
to one as one commutes with all elements, especially Pd−1 and P−1

d−1. Hence all layers
above will also evaluate to one as b20 = b21 = 1.

If all bits of the input are zero then Pd−1(x1, . . . , xd−1) = r by induction, bxd = s
and hence Pd(x1, . . . , xd) = srsr−1. By the equalities above this is equal to

s(rs)r−1 = s(sr2)r−1 = s2r = 1r.

Let

t =
(

1 0
0 0

)
.

41

3 Non-Commutative Problems

Theorem 3.5.3 ([Gen14, Theorem 6]). For any division algebra R and any constant
d one can construct a product program of length k(2d + 2d−1− 2) for a d-CNF formula
with k clauses. It outputs t if the formula is satisfied by x and 0 otherwise.

Proof. Let our clauses be given by c1, . . . , ck. By Lemma 3.5.2 we get a product
program Pci for every clause ci. Then we construct our product program P to
compute the multiplication as follows:(

k∏
i=1

t · Pci(x1, . . . , xm)
)
t.

Here the multiplication with t can easily be simulated with an instruction of the form
(1, (t, t)).

For ease of notation we have written the complete variable set for our clause product
programs but we can easily remove unneeded variables from a clause.

Let us give a correctness argument. Suppose one of the clauses is not satisfied. This
then contributes a value of t · r to our product. It can be seen that this program has
only two possible outcomes if one equation is not fulfilled. Namely,

t · r =
(

0 −1
0 0

)

and for any g

t · r · t · g =
(

0 0
0 0

)
,

as t · r · t = 0. Notice, that we will always multiply the value t · r from an unsatisfied
clause with t to the right. Hence, by associativity the resulting matrix will always be
zero.

If all clauses are fulfilled the value computed is tk+1. However, t is idempotent in
R2×2 and hence is equal to t.

Let P be the product program as in Theorem 3.5.3. Then it is obvious that

#3-SAT(φ) =

 ∑
e∈{0,1}m

Pφ(e)

(1,1)

,

the first entry in the resulting matrix, as every satisfying assignment contributes
exactly one and every unsatisfied assignment zero. To compute the sum with the
Cayley determinant we will use the following special matrix form.

42

3.5 Completeness Results

Definition 3.4. We say a n×n matrix M is a barber pole matrix if it is of the form

M [i, j] =

αi if i = j,
βi if i = j + 1 mod n,
0 otherwise,

for αi, βi non zero.

As an example, we can see that the following matrix is a barber pole matrix of size
5× 5 over N.

1 2 0 0 0
0 1 2 0 0
0 0 4 5 0
0 0 0 8 3
4 0 0 0 7

 .
Notice, that for every barber pole matrix there exists only two cycle covers. Either
the one where every vertex takes a self-loop or the single cycle.

Theorem 3.5.4 ([Gen14, Theorem 5]). The value
∑
e∈{0,1}m Pφ(e) can be computed

by the Cayley determinant of a matrix of size n× n over the algebra R2×2.

Proof. Let P = (1, (ι1, a1,0, a1,1) , . . . , (ιn, an,0, an,1)). Let

I` = {i ∈ [n] | the ith instruction uses the `th bit of the input}.

Let I` have the instructions i`,1, . . . , i`,|I`|. Without loss of generality we can assume
that these have odd size greater than one by adding dummy instructions. Let π0
be the identity permutation and π1(i`,κ) = i`,κ+1 mod |I`| the “shifted” permutation.
Notice, that this corresponds to multiple cyclic permutation, consisting of cycles of
length |I`| for 2 ≤ ` ≤ n where the elements of the cycle are the elements in I`. They
are ordered in the natural order of the instructions.

Then we define the matrix

M [i, j] =
{
ai,b if j = πb(i),
0 otherwise.

Left to show is that Cayley-det(M) is indeed computing the value of the product
program. Let us look at this matrix a bit closer. We can see that this is a block
barber pole matrix where the entry not on the diagonal are permuted.

Let us generate the matrix only for the set of instructions I` = {i`,1, . . . , i`,|I`|}. At
first we add all the entries for π0 which are just on the diagonal. If we now look at
π1, we see that the first entry we add is at position (1, i`,2) where i`,2 is the index of
the next instruction. We continue this until π1 wraps around. This is clearly a cycle
in the graph corresponding to the matrix.

It is now clear that π1 produces a cycle for every I`. In essence it enforces that
we either take all self-loops or all elements corresponding to π1. Meaning we either

43

3 Non-Commutative Problems

multiply all values in the instructions asking x` for x` being zero or all values for the
instructions where x` is one.

By this argument it is clear that one cycle cover is the value of the product program
where we chosen every bit of the input and hence the value of all cycle cover is∑
e∈{0,1}m P (e). As we enforced every cycle to have odd length and we have an even

number of even length cycles, this can be computed with the determinant of the
matrix.

As the Cayley permanent is equal to the Cayley determinant for this construction
we get the following corollary.

Corollary 3.5.5. The value
∑
e∈{0,1}m Pφ(e) can be computed by the Cayley perma-

nent of a matrix of size n× n over the algebra R2×2.

Notice, that the Cayley permanent does not need the requirement that I` has odd
size. This concludes the proof by Gentry.

Let us give a complete example how Gentry’s Proof works. Let our formula be

(x1 ∨ x2) ∧ (x3 ∨ x1). (3.2)

We then build the product programs for this. For the the disjunctions we get the
following instructions for our product program

(2, (s, 1)), (1, (r, 1)), (2, (s, 1)), (1, (r−1, 1−1))

and

(1, (s, 1)), (3, (r, 1)), (1, (s, 1)), (3, (r−1, 1−1)).

With this we can get the complete product program which is

(1,
(
(4, (t, t)), (2, (s, 1)), (1, (r, 1)), (2, (s, 1)), (1, (r−1, 1)),

(4, (t, t)), (1, (s, 1)), (3, (r, 1)), (1, (s, 1)), (3, (r−1, 1)), (4, (t, t))
)
).

We make two conceits for clarity of presentation. Firstly, we did not pad the number
of instructions to an odd number. Secondly, we added the new variable x4 for the
dummy instructions containing t.

Now with this we can build the matrix. Let us first state I1, . . . , I4.

I1 = {3, 5, 7, 9},
I2 = {2, 4},
I3 = {8, 10},
I4 = {1, 6, 11}.

44

3.5 Completeness Results

t 0 0 0 0 t 0 0 0 0 0
0 s 0 1 0 0 0 0 0 0 0
0 0 r 0 1 0 0 0 0 0 0
0 1 0 s 0 0 0 0 0 0 0
0 0 0 0 1

r 0 1 0 0 0 0
0 0 0 0 0 t 0 0 0 0 t
0 0 0 0 0 0 s 0 1 0 0
0 0 0 0 0 0 0 r 0 1 0
0 0 1 0 0 0 0 0 s 0 0
0 0 0 0 0 0 0 1 0 1

r 0
t 0 0 0 0 0 0 0 0 0 t

Equation Figure 3.3: Matrix corresponding to Equation (3.2)

For ease of recognizing we color coded these cycles in this example. From this, we see
that the permutation π1, here stated in the standard notation, is given by

π1 =
(

1 2 3 4 5 6 7 8 9 10 11
6 4 5 2 7 11 9 10 3 8 1

)
.

Now the cycle covers are straightforward to see and we get the matrix as in Equation
Figure 3.3 on Page 45.

3.5.2 Connected Components of Size 6 of Permanent and Immanant

With this recap we can now prove two new theorems.

Theorem 3.5.6. Let R be a division algebra over a field K of characteristic zero
containing the algebra of 2× 2 matrices over K. Computing the Cayley determinant
or Cayley permanent on graphs with component size 6 with edges labeled from R is
#P complete.

Proof. It is known that counting the number of satisfying assignments in a 2-CNF
formula where every variable occurs at most three times is already #P complete
([Rot96]). Let φ be a 2-CNF where every variable occurs at most three times with k
clauses.

With Lemma 3.5.2 we get a product program of length 22 + 22−1 − 2 = 4 for
computing a disjunction of two literals. In fact the program for x1 ∨ x2 is given by
(1, (s, I2)), (2, (r, I2)), (1, (s, I2)), (2, (r−1, I2)) where I2 is the 2× 2 identity matrix in
R2×2.

If we now combine the clauses with the product program from Theorem 3.5.3 we
see that every variable which occurs at most three times in φ gets read at most 6
times in the product program. This gives us a bound of 6 for I` from Corollary 3.5.5.

45

3 Non-Commutative Problems

Hence, the cycle in the barber pole matrix and the corresponding graph have a length
of at most 6 for the case of the Cayley permanent.

If we look at the Cayley determinant, we get a bound of 7 for the component size
by the previous argument as we padded the cycle length to be odd. However, we can
push this down to 6.

We redefine M to be

M [i, j] =

(−1)|Ik|−1ai,0 if i = ik,1, j = ik,2 for some k,
ai,b otherwise, if j = πb(i),
0 otherwise.

With this we can remove the restriction that I` has to have odd size as the Cayley
determinant of M is equal to the Cayley permanent of the matrix originally defined
in Theorem 3.5.4.

As a side note, the matrix defined here is the original matrix used in Gentry’s proof.
With this framework we can also prove completeness for a related polynomial which

has not been studied in the non-commutative setting, the immanant. Of course, we
know that the immanant is already hard for some young diagrams. However, we
can show that it is hard, irregardless of the young diagram, in the non-commutative
setting. Seeing that the Cayley determinant is already #P complete this is not a
surprising result but Gentry’s result allows us to prove this easily.

Definition 3.5. Let λ ` n. We define the Cayley immanant to be

Cayley-Im(X)λ =
∑
σ∈Sn

χλ(σ)x1,σ(1) . . . xn,σ(n).

Theorem 3.5.7. The Cayley immanant is #P-hard for graphs with components of
size 6.

Proof. The proof works as the proof for Theorem 3.5.4 except that we modify our
matrix. Let π0, π1 and i`,ι be defined as in the proof of Theorem 3.5.4. Let π0,` be
the identity permutation π0 restricted to the elements in I` and π1,` the permutation
π1 restricted to elements in I`, namely (i`,2, i`,3, . . . , i`,|I`|, i`,1).

We then set our matrix to be

M [i, j] =

1
χλ(π0,`)ai,0 if i = ik,1, j = ik,1 for some k,

1
χλ(π1,`)ai,1 otherwise, if i = ik,1, j = ik,2 for some k,
ai,b otherwise, if j = πb(i),
0 otherwise.

In essence, we replace the first values in the cycle for every block with a scaled value.
In the following we will only reason about the character. We know that χλ is

invariant under permutations from Proposition 2.1 Item 1. This means we can

46

3.5 Completeness Results

reorder our block barber pole matrix to have the blocks separately. Now we can use
Lemma 2.6.3 and only look at one block.

We know that this corresponds to either the cycle cover with all self-loops which
has character χλ(π0,`) or the cycle cover with one loop which has character χλ(π1,`).
We chosen the first entry of the matrix cleverly to cancel these factors. As our cycles
are of constant size, these constants are easy to compute by bruteforce.

With this the correctness proof works as in Theorem 3.5.4.

Of course, this subsumes the previous result (Theorem 3.5.6) as the Cayley immanant
is equal to the Cayley determinant or Cayley permanent for specific partitions λ.

3.5.3 Other Hard Polynomials
It is known that computing the commutative permanent of the weighted adjacency
matrix of a planar graph is as hard as the general case as seen by Datta, Kulkarni,
et al. [DKLM10]. We observe that their reduction extends to the non-commutative
case.

Theorem 3.5.8. The following reductions work over any non-commutative algebra.

• Cayley-perm ≤pm planar−Cayley-perm,

• Cayley-det ≤pm planar−Cayley-det.

Proof. The proof is essentially the same as in [DKLM10]. We give a brief sketch here
for the sake of completeness. Let G be a weighted digraph. Consider an arbitrary
embedding E of G. Obtain a new graph by changing the graph as follows:

• For each pair of edges (u, v) and (u′, v′) that cross each other in the embedding
E , do the following:

• introduce two new vertices a and b; and

• new edges {(a, b), (b, a), (u′, a), (a, v), (u, b), (b, v′)} replacing (u, v) and (u′, v′).

Note that any of the iterations above do not introduce any new crossings, and hence
the process terminates after at most O(n2) many steps where n is the number of
vertices in G. The weight of (u, v) is given to (v, a) and the weight of (u′, v′) to (v′, b).
The remaining edges have the weight 1. By the construction, we can conclude that
Cayley-perm(G) = Cayley-perm(G′) and Cayley-det(G) = Cayley-det(G′).

We demonstrate some more families of polynomials whose commutative variants are
easy but certain non-commutative variants are as hard as the permanent polynomial.
We begin with a non-commutative variant of the elementary symmetric polynomial.
The elementary symmetric polynomial Symn,d is given by

Symn,d(x1, . . . , xn) =
∑
S⊆[n]
|S|=d

∏
i∈S

xi.

47

3 Non-Commutative Problems

There are several non-commutative variants of the above polynomial. The first one is
analogous to the Cayley permanent, i.e.,

Cayley-Symn,d =
∑

S={i1<i2<···<id}

d∏
j=1

xij .

It is not hard to see that the above mentioned non-commutative version of Cayley-Symn,d

can be computed by depth 3 non-commutative circuits for every value of d ∈ [n]. How-
ever, the above definition is not satisfactory, since it is not invariant under permutation
of variables, which is the inherent property of elementary symmetric polynomials.
We define a variant of non-commutative elementary symmetric polynomial which is
invariant under the permutation of variables.

nc-Symn,d(x1, . . . , xn) :=
∑

{i1,...,id}⊆[n]

∑
σ∈Sd

d∏
j=1

xiσ(j) .

We show that with coefficients from the algebra of n× n matrices allowed, nc-Symn,d

cannot be computed by polynomial size circuits unless VP = VNP. For this we need
a small definition introduced in [AJS09, AS10].

Definition 3.6. The Hadamard product between two polynomials f =
∑
m αmm and

g =
∑
m βmm, written as f � g, is defined as f � g =

∑
m αmβmm where we sum over

all possible monomials m.

We can now show the following theorem. Keeping in mind the fact that the non-
commutative Hadamard product of a polynomial size circuit f with a polynomial size
ABP g can be computed efficiently as proven by Arvind, Joglekar, and Srinivasan
[AJS09].

Theorem 3.5.9. Over any K algebra R containing the n×n matrices as a sub-algebra,
nc-Symn,n does not have polynomial size arithmetic circuits unless permn ∈ VP.

Suppose that nc-Symn,n has a circuit C of size polynomial in n. We need to show
that perm ∈ VP. Let X = (xi,j)1≤i,j≤n be matrix of variables, and y1, . . . , yn be
distinct variables different from xi,j . In the commutative setting, it was observed by
Gathen [Gat87] that perm(X) equals the coefficient of y1 · · · yn in the polynomial

P (X,Y) :=
n∏
i=1

 n∑
j=1

xi,jyj

 (3.4)

over the polynomial ring K[x1,1, . . . , xn,n]. However, the same cannot be said in
the case of non-commuting variables. If xi,jyk = ykxi,j for i, j, k ∈ [n], then in
the non-commutative development of Equation (3.4), the sum of coefficients of all
permutations of the monomial y1 · · · yn equals perm(X). Hence the value perm(X)
could be extracted using a Hadamard product with nc-Symn,n(y1, . . . , yn) and then
substituting y1 = 1, . . . , yn = 1. However, we cannot assume xi,jyk = ykxi,j , since the
Hadamard product may not be computable under this assumption.

48

3.5 Completeness Results

Proof of Theorem 3.5.9. Let ` =
∑
i,j xi,j and P as above. Now we argue that

perm(X) = (nc-Symn,n(`y1, . . . , `yn)� P)|y1=1,...,yn=1.

Given a permutation σ ∈ Sn, there is a unique monomialmσ = x1,σ(1)yσ(1) · · ·xn,σ(n)yσ(n)
in P containing the variables yσ(1), . . . , yσ(n) in that order. Thus taking Hadamard
product with P filters out all monomials but mσ from the term

∏n
i=1 `yσ(i). The mono-

mials where a yj occurs more than once are eliminated by nc-Symn,n(`y1, . . . , `yn).
Thus the only monomials that survive in the Hadamard product are of the form mσ

where σ ∈ Sn. Now substituting yi = 1 for i ∈ [n] we get

perm(X) = (nc-Symn,n(`y1, . . . , `yn)� P)|y1=1,...,yn=1.

Note that the polynomial P (X,Y) can be computed by an ABP of size O(n2).
Then, by [AJS09, AS10], we obtain an arithmetic circuit D of size O(n2size(C)) that
computes the polynomial nc-Symn,n � P . Substituting y1 = 1, . . . , yn = 1 in D gives
the required arithmetic circuit for perm(X).

Note that by considering the following signed variant of nc-Symn,n, we can obtain
a result analogous to Theorem 3.5.9 with Cayley-det. Let

snc-Symn,n(x1, . . . , xn) :=
∑
σ∈Sn

sgn(σ)
n∏
i=1

xi,σ(i).

Corollary 3.5.10. Over a K algebra containing the algebra of n × n matrices,
snc-Symn,n is not in VP unless Cayley-det has polynomial size arithmetic circuits.

The reader should notice, that snc-Symn, n is not an ordered polynomial in the
sense of [HWY10].

Barvinok [Bar96] showed that computing the permanent of an integer matrix of
constant rank can be done in strong polynomial time. In a similar spirit, we explore
the complexity of computing the Cayley permanent of bounded rank matrices with
entries from K ∪ {x1, . . . , xn}. We consider the following notion of rank for matrices
with variable entries. Let A ∈ (K ∪ {x1, . . . , xn})n×n. Then

row-rank(A) = max
a1,...,an∈K

rank(A|x1=a1,...,xn=an).

The column rank of A is defined analogously. As opposed to the case of the commu-
tative permanent, for any algebra R containing the algebra of n× n matrices over K,
we have:

Corollary 3.5.11. Cayley-perm and Cayley-det of rank one matrices with entries
from K ∪ {x1, . . . , xn} over any K algebra do not have polynomial size arithmetic
circuits unless perm ∈ VP.

49

3 Non-Commutative Problems

Proof. We will argue the case of Cayley-perm. Let x1, . . . , xn be non-commuting
variables. Consider the matrix A with A[i, j] = xj , 1 ≤ i, j ≤ n. A has rank one over
K. We then have nc-Symn,n(x1, . . . , xn) = Cayley-perm(A). The result now follows
by applying Theorem 3.5.9. For Cayley-det, we can use Corollary 3.5.10 in place of
Theorem 3.5.9 in the argument above.

3.6 Computational Problems
In this section, we look at non-commutative computation. Are there computational
problems that are easy in the non-commutative case but hard in the commutative
case?

Computing Coefficients
We start with the problem of computing the coefficient of a given monomial in the
polynomial computed by an arithmetic circuit. In the commutative setting, the
problem lies in the second level of the counting hierarchy, proven by Fournier, Malod,
and Mengel [FMM15], and is known to be hard for #P (see [Mal07]). It was first seen
by Arvind, Mukhopadhyay, and Srinivasan [AMS10] that mcoeff is easy to compute
in the non-commutative case by simply using the Hadamard Product. We provide a
different proof of the fact as it is useful in our later arguments.

Problem 3.1 (Monomial Coefficient (mcoeff)).

Input: A non-commutative arithmetic circuit C and a non-commutative monomial m
of degree d.

Output: The coefficient of monomial m in the polynomial computed by C.

Theorem 3.6.1 ([FMM15]). mcoeff is in P.

Proof. Suppose that the monomial m = xj1 · · ·xjd is given as an ordered listing of
variables. Let f be a non-commutative polynomial. Then we have the following
recursive formulation for the coefficient function mc : K〈x1, . . . , xn〉 × M → K,
where M is the set of all non-commutative monomials in variables {x1 . . . , xn}. Let
m` = xi1 · · ·xi`−1 and m′` = xi` · · ·xid . Then

mc(f,m) =

α if f = αyj and m = yj ,

0 if f = αyj and m = yi, i 6= j ,

mc(g,m) + mc(h,m) if f = g + h,∑d+1
`=1 mc(g,m`)×mc(h,m′`) if f = g × h.

(3.5)

However, if we apply the above recursive definition on the circuit C in a straightforward
fashion, the time required to compute mc(f,m) will be dO(depth(C)), since depth(C)
could be as big as size(C), the running time would be exponential. However, we can

50

3.6 Computational Problems

have a more careful implementation of the above formulation by allowing a little more
space.

We will use a similar construction as computing homogeneous component for a
circuit. For ` < k ∈ [1, d], let m`,k = xi`+1 · · ·xik a “slice” of the monomial m from `
to k. Let M = {m`,k | 0 ≤ ` ≤ d− 1, 0 ≤ k ≤ d} be the set of all such slices. Consider
a gate v in the circuit C. Note that in the process of computing mc(f,m), we require
only the values from the set Mv = {mc(pv,m′) | m′ ∈M}, where pv is the polynomial
computed at v. Thus it is enough to compute and maintain the values mc(pv,m′),
where m′ ∈ M , in a bottom up fashion. For the base case, compute the values for
polynomials computed at a leaf gate v as follows, let m′ ∈M and α ∈ K. Then

mc(pv,m′) =

α if pv = α where α ∈ K and m′ = ∅,
α if pv = αxj where α ∈ K and m′ = xj ,

0 otherwise.

For other nodes, we can apply the recursive formula given in Equation (3.5). Let us
start with an addition gate. Let pv = pv1 + pv2 . Then

mc(pv1 + pv2 ,m
′) = mc(pv1 ,m

′) + mc(pv2 ,m
′)

by induction. Let v now be a multiplication gate such that pv = pv1 · pv2 . Then the
values mc(pvi ,m′′) are available for prefix and suffix of the monomial m′, as every
such monomial occurs as mi,j ∈M for some i < j. Now, mc(pv,m′) can be computed
by Equation (3.5).

The algorithm increases the size of the circuit by at most d2 at every gate as we
keep separate gates for every possible m′ ∈M . Every computation at a gate needs at
most d many operations. Hence the overall size is at most O(d3size(C)).

Coefficient function as a polynomial
In the commutative setting, the coefficient function of a given polynomial can be
represented as a polynomial (cf. [Mal07]). Thus it is desirable to study the arithmetic
circuit complexity of coefficient functions. However, over non-commutative rings, we
need a carefully chosen representation of monomials to obtain an arithmetic circuit
that computes the coefficient function for a given polynomial with small circuits.
In the proof of Theorem 3.6.1, we have used an ordered listing of variables as a
representation of the monomial m. Here we use a vector representation for non-
commutative monomials of a given degree d. Let Y = {y1,1, . . . , y1,n, y2,1, . . . , yd,n} be
a set of nd distinct variables, and let Ỹi = (yi,1, . . . , yi,n). The vector of variables Ỹ`
can be seen as representing the characteristic vector of xj , i.e., yi,j = 1, and yi,j′ = 0,
∀j′ 6= j. In essence, yi,j stands for the variable xj at the ith position in the monomial.
Let f(x1, . . . , xn) be a polynomial of degree d, then we can define the coefficient
polynomial pcf (Y) as

pcf (Y) =
d∑

D=1

∑
(i1,...,iD)∈[n]D

D∏
`=1

mc(f, xi1 · · ·xiD)y`,i`
∏
j 6=k

(1− y`,jy`,k)

 .

51

3 Non-Commutative Problems

Here the last product just enforces that we have a valid assignment to the Y variables.

Theorem 3.6.2. For any non-commutative polynomial f that can be computed by a
polynomial size arithmetic circuit, pcf (Y) has a polynomial size arithmetic circuit.

Proof. We will apply Equation (3.5) to obtain an arithmetic circuit computing the
polynomial pcf (Y). Let C be an arithmetic circuit of size s, computing f . By
induction on the structure of C, we construct a circuit C ′ for pcf (Y). Note that, it
is enough to compute homogeneous degree D components HOMCX

D(pcf (Y)) for the
variable set X of pcf (Y), where

HOMCX
D(pcf (Y)) =

∑
(i1,...,iD)∈[n]D

D∏
`=1

mc(f, xi1 · · ·xiD)y`,i`
∏
j 6=k

(1− y`,jy`,k)

 .
Let Y i,j denote the set of variables in the vectors Ỹi+1, . . . , Ỹj . In the base case, we
have C = γ ∈ {x1, . . . , xn} ∪ R. Then the all of the homogeneous components of
pcf (Y) can be described as follows.

HOMCX
0 (pcf (Y)) =

{
γ if Y = ∅ and γ ∈ R,
0 otherwise.

HOMCX
0 pcf (Y)) =

1 if Y = ej and γ = xj ,
0 if Y = ∅ and γ ∈ R,
0 otherwise.

HOMCX
i>1(pcf (Y)) = 0.

Naturally, the induction step has two cases: f = g + h and f = g · h.

Case 1: f = g + h, then for any D

HOMCX
D(pcf (Y)) = HOMCX

D(pcg(Y)) + HOMCX
D(pch(Y)).

Case 2: f = g × h, then for any D

HOMCX
D(pcf (Y)) =

d∑
i=0

D∑
j=0

HOMCX
j (pcg(Y 1,i)) HOMCX

D−j(pch(Y i+1,d))

where Y = ỹ1, . . . , ỹd.

The size of the resulting circuit C ′ is O(d3size(C)), and C ′ can in fact be computed
in time O(d3size(C)) given C as the input.

52

3.6 Computational Problems

Partial Coefficient functions

For a given commutative polynomial let f(X) =
∑
m cmm, the partial coefficient of a

given monomial m (cf. [Mal07]) is a polynomial defined as

pcoeff(f,m) =
∑
m′
m|m′

cm′
m′

m
.

We extend the above definition to the case of non-commutative polynomials as
follows. Let f be non-commutative polynomial, and m a non-commutative monomial.
Then

pcoeffr(f,m) =
∑

m′=m·m′′
cm′m

′′.

Similarly, we can define

pcoeffl(f,m) =
∑

m′=m′′·m
cm′m

′′.

The corresponding computational problem can be defined in the following way.

Problem 3.2 (Coefficient Polynomial (pcoeffl,pcoeffr)).

Input: A non-commutative arithmetic circuit C computing a polynomial f , and a
monomial m.

Output: A non-commutative arithmetic circuit that computes pcoeffl(f,m),
(pcoeffr(f,m)).

Theorem 3.6.3. pcoeffl and pcoeffr can be computed by a deterministic algorithm
with a running time of polynomial in size(C), n and deg(m)).

Proof. The algorithm is similar to the proof of Theorem 3.6.1, except that we need to
construct an arithmetic circuit rather than a value. We will only proof this theorem
for pcoeffr as pcoeffl behaves similar. We use the following recursive formulation
similar to Equation (3.5).

If f = α ∈ R ∪ {x1, . . . , xn} and m = ∅ then pcoeffr(f,m) = α. For the summation
f = g + h we compute pcoeffr(f,m) = pcoeffr(g,m) + pcoeffr(h,m). The final case
to handle is a multiplication gate. We define shorthand for sets of variables. Let
m = x1 · · ·xd, mi = x1 · · ·xi and m′i = xi+1 · · ·xd the rest of the monomial. We define
m0 = ∅. Then

pcoeffr(f,m) = pcoeffr(g,m) · pcoeffr(h, ∅) +
d−1∑
i=0

mc(g,mi)pcoeffr(h,m′i).

With this formula we simply check all possibilities to extend the monomial mi with the
monomial m′i to get the monomial m. However, we only take the coefficient from the

53

3 Non-Commutative Problems

left part and the complete coefficient from the right part. Remember that mc(g,mi)
computes the exact coefficient in R and not the partial coefficient.

The rest of the proof is analogous to that of Theorem 3.6.1 except that, we need to
compute and store the values mc(pv,mi,j), and pcoeffr(pv,mi,j) for every gate v in
the circuit in a bottom up fashion.

54

4 A Fixed Parameter Theory of
Arithmetic Circuits

4.1 Introduction
The field of Parameterized Complexity was developed to give us new insight into
why finding fast algorithms for known and important problems is difficult. Many
researchers before observed that a number of different problems exhibit some set of
instances which are solvable in polynomial time. These instances can in general be
characterized by having a specific parameter being small or constant. While we can
prove theorems with these restrictions, the restrictions are rather ad-hoc and do not
provide a consistent framework. Especially if we bound a running time of nk versus
2knc which are similar if k is constant but a running time of 2knc is desired if k can
be asymptotically larger. To remedy this situation, Downey and Fellows [DF95a,
DF95b, DF93] and Abrahamson, Downey, and Fellows [ADF95] as well as subsequent
papers molded this distinction into a cohesive framework. They called the framework
Fixed Parameter Tractable (FPT). With this they founded one of the exciting new
research directions in Complexity Theory. And the field of FPT algorithms grows in
importance steadily. With this popularity new parameters for old problems and new
improved algorithms in this setting are found constantly.

As already hinted at, in our running time example, we can also define a notion of
hardness. Intuitively, this will correspond to algorithms that do not have a running
time of 2knc but only nk.1 Notice that a running time of nk roughly corresponds to
iterating over all sets of size k and checking a condition with constant running time.
We call such algorithms to not be fixed parameter tractable for a specific parameter.
Beyond this intuition there exists a complete hierarchy of hardness, similar to the
polynomial hierarchy. We will focus on this hardness aspect in this chapter.

While this field was initially only made for decision versions of problems, it was
later extend to encompass counting algorithms independently by McCartin [McC03]
and Flum and Grohe [FG04]. Later this theory was generalized to a framework based
on logic by the second authors [FG06]. As with fixed parameter tractability, the
counting version is an active research area and new and surprising results are found
often.

We want to transfer the field of fixed parameter tractability to arithmetic circuit
complexity. With the well known relationship between arithmetic circuit complexity

1As most of the time in Complexity Theory, we will conjecture that FPT 6= W[1] but fail to prove it.
Hence problems in W[1] will have algorithms with a running time of nk but it is unclear if they
have algorithms with a running time of f(k)nc for some function f : N → N.

55

4 A Fixed Parameter Theory of Arithmetic Circuits

of Generating Functions and counting complexity the theory should transfer. While
just extending the FPT framework to arithmetic circuit is interesting in itself, there
are many more natural questions we can try to answer. One of the core questions
is the following. What makes specific polynomials hard to compute? We can see the
study of arithmetic FPT algorithms and arithmetic FPT hardness to give a partial
answer to this question. As we can see and prove directly how the complexity grows
in specific parameters we can form an understanding how these parameters influence
the complexity of the polynomial. We will first study specific generating functions,
based on well known counting problems in the FPT world such as Independent Set or
Dominating Set. This will base our framework in the familiar FPT framework while
at the same time gives us an indication of the correctness of our newly introduced
definitions. Additionally, we can ask the following question. Does the same parameter
as in the counting setting make these polynomials hard?

The second major question we want to ask is about the immanant. As it “interpolates”
between hard and easy polynomials, can we perhaps find an FPT algorithm in our
framework?

We will give a recap of parameterized complexity in Section 4.2. Sections 4.3 and 4.4
define the basic arithmetic circuit FPT class as well as a notion of kernelization.

We then continue with the major definitions about fixed parameter hardness. We
give a first definition for the BVW[t] hierarchy where most hardness results transfer
(Section 4.5). This definition will be heavily based on the counting versions. However,
this is rather unsatisfactory as they do not use the full power of arithmetic cricuits..
We will use this as a motivation to define VW[t]. We give such definitions and show
complete problems for our newly defined classes VW[1], VW[2], VW[3] (Section 4.6).
Finally, we give in Section 4.7 two short proofs about the complexity of the immanant
in this setting.

4.2 Parameterized Complexity
4.2.1 A Recap of Boolean Parameterized Complexity
In this section we will recap basic definitions from parameterized complexity theory.
This will guide us to our new definition and show similarities and differences between
the two settings. The major definitions and theorems can be found in the book by
Flum and Grohe [FG06], the classic book by Downey and Fellows [DF99] or the new
book by Downey and Fellows [DF13]. However, we will adjust some definitions for
clarity.

Definition 4.1. Let Σ be a finite alphabet and κ : Σ∗ → N and Q ⊆ Σ∗. We call a
tuple (Q, κ) a parameterized problem.

The central definition of fixed parameter tractability is as follows.

Definition 4.2. Let p(n) be a polynomially bounded function and f(k) a computable
function. A parameterized problem (Q, κ) is fixed parameter tractable if there exists
an algorithm A that decides Q and A has a running time of p(|x|)f(κ(x)).

56

4.2 Parameterized Complexity

With this we can present our first problem that is fixed parameter tractable. Let us
remember that a vertex cover for a given graph G is a set of vertices such that every
edge is incident to at least one vertex in the set.

Problem 4.1. Let L be the set of all (G, k) where G is a graph, k ∈ N and G has a
vertex cover of size k. Then (L, κ) where κ((G, k)) = k is the parameterized problem
we denote by p-Vertex Cover.

Theorem 4.2.1. p-Vertex Cover is fixed parameter tractable.

We also define two notions of reductions.

Definition 4.3. Let (Q, κ), (Q′, κ′) be two parameterized problems. We say (Q, κ)
reduces to (Q′, κ′) with the reduction algorithm R : Σ∗ → Σ∗ and call this a fpt
many-one reduction, written (Q, κ) ≤fpt (Q′, κ′), if the following holds:

• For all x ∈ Q′ ⇔ R(x) ∈ Q.

• R has an algorithm with running time bounded by f(κ′(x))p(|x|) for every x ∈ Σ∗
for some polynomially bounded function p(n) and some computable function
f(n).

• There is a computable function g : N→ N such that κ(R(x)) ≤ g(κ′(x)) for all
x ∈ Σ∗.

Definition 4.4. Let (Q, κ), (Q′, κ′) be two parameterized problems. We say (Q, κ)
reduces to (Q′, κ′). We call this a fpt Turing reduction, written (Q, κ) ≤fpt,c (Q′, κ′),
if the following holds:

• R is an algorithm with oracle access to Q′.

• R decides (Q, κ).

• R is an algorithm with runtime f(κ′(x))p(|x|) for a polynomial p(n) and a
computable function f(k) on input x ∈ Σ∗.

• There is a computable function g : N → N such that for all oracle queries y
posed by R on input κ(y) ≤ g(κ′(x)).

While we will not use Turing reductions in this chapter but we will later build our
arithmetic reduction on this model.

Equivalently to fixed parameter tractability, there exists the notion of a fixed
parameter kernel.

Definition 4.5. Let (Q, κ) be a parameterized problem. A polynomial time computable
function K : Σ∗ → Σ∗ is a kernelization of (Q, κ) if there is a computable function
h : N→ N such that for all x ∈ Q that

x ∈ Q⇔ K(x) ∈ Q) and |K(x)| ≤ h(κ(x)).

We call K(x) the kernel.

57

4 A Fixed Parameter Theory of Arithmetic Circuits

In essence, we can use kernels to decrease the size of the instances.

Theorem 4.2.2 (see [Nie02]). For every parameterized problem (Q, κ), the following
statements are equivalent:

1. (Q, κ) ∈ FPT.

2. The language Q is decidable and (Q, κ) has a kernelization.

We can now continue with defining the hard classes of parameterized complexity.
We will follow closely the original definitions by Downey and Fellows as they give
circuit constructions. While the new definition by Flum and Grohe are cleaner, the
circuit model is easier to transfer to the arithmetic world.

Definition 4.6. Let C be a boolean circuit of constant depth d with unbounded fan-in.
We call this circuit having weft t if there are at most t layers where at least one gate
in the layer has fan-in greater than two.

We call a family of boolean circuits to have weft t if all circuits in the family have
weft t.

Let us remember that the hamming weight of an assignment φ is the number of
variables set to true.

Problem 4.2. Let Q be the set of all (C, k) such that C is a boolean circuit which
has a hamming weight k satisfying assignment. We call the parameterized problem
(Q, κ) where κ(((Cn), k)) = k, WSat(C).

Theorem 4.2.3. The class W[t] is defined by all parameterized problems (Q, κ) such
that there exists a fpt reduction to WSat(C) for a family of boolean circuits (Cn) which
have depth d and weft t for some constants d and t.

We will introduce the notion of a t-normalized boolean circuit. This will be a mutal
recursive definition as follows.

We call a boolean circuit 1-∧-normalized if it is of the form ∧iLi for literals Li. We
call a boolean circuit 1-∨-normalized if it is of the form ∨iLi for literals Li.

We call a circuit t+1-∧-normalized if it is of the form ∧iCi and Ci are t-∨-normalized
circuits. Similarly, we call a circuit t+ 1-∨-normalized if it is of the form ∨iCi and Ci
are t-∧-normalized circuits.

Finally, we can define a t-normalized circuit for t ∈ N if it is either a t-∧-normalized
circuit or a t-∨-normalized circuit.

The following problem is the general complete problem.

Problem 4.3. Let Q be the set of all (C, k) such that C is a t-Normalized boolean
formula and C has a hamming weight k satisfying assignment. Then we denote
by p-Weighted t-Normalized Satisfiability the parameterized problem of (Q, κ) where
κ((C, k)) = k.

This is essentially a specialized form of WSat(C).

58

4.2 Parameterized Complexity

BlockJump Cliques

Li

Li+1

(a) Construction gadget from Theorem 4.2.6.

...

. . .

. . .

. . .

. . .

k many blocks

(b) Combining the blocks.

Figure 4.1

Theorem 4.2.4 (Normalization Theorem [DF95a]). For all t ≥ 2, p-Weighted t-
Normalized Satisfiability is complete for W[t].

With this the following natural complete problems are known. An Independent Set
is a set of vertices such that no two vertices in the set are connected by an edge.

Problem 4.4. Let Q be the set of all (G, k) such that G is a graph and G has an
Independent Set of size exactly k. Then we call the parameterized problem (Q, κ)
where κ((G, k)) = k p-Independent Set.

Theorem 4.2.5 ([DF95b]). p-Independent Set is complete for W[1].

A Dominating Set of a graph is a set of vertices S such that for every vertex either
the vertex is in S or N(v), the neighbourhood of v, contains at least one vertex in S.

Problem 4.5. Let Q be the set of all (G, k) where G is a graph and G has a Dom-
inating Set of size exactly k. We then call the parameterized problem (Q, κ) where
κ((G, k)) = k the p-Dominating Set problem.

Theorem 4.2.6 ([DF95a]). p-Dominating Set is complete for W[2].

We will describe the original reduction by Downey and Fellows [DF95a] as we later
modify it for our purposes. Our construction will select 2k vertices such that they are
in lexicographical order. We enforce this by having k layers with n vertices which
select the vertices. These layers will be connected to other sets of vertices (which we
later call jump cliques) which denote the gap between the current vertex and the next
selected vertex in this order.

59

4 A Fixed Parameter Theory of Arithmetic Circuits

. . .

. . . 2k + 1 enforcer vertices

...
...

2k + 1
enforcer
vertices

...

. . .

...

. . .

Block

Figure 4.2: Partial construction from Theorem 4.2.6 in combined form.

60

4.2 Parameterized Complexity

Proof. We construct nk vertices in layers and call them Li with vertices vi,j for
1 ≤ i ≤ k and 1 ≤ j ≤ n. We then add for every vertex vi,j new vertices we denote by
ui,j,ν for 1 ≤ ν ≤ n. We will call these vertices the jump cliques and denote them by
Ci,j = {ui,j,ν | 1 ≤ ν ≤ n}. Additionally, we introduce new vertices we call wi,j for
2 ≤ i ≤ k, 1 ≤ j ≤ n. We denote by L′i = {wi,j | 1 ≤ j ≤ n} and connect vertex wi,j
in L′i with vertex wi+1,j in Li+1 for all 1 ≤ i ≤ n− 1 and for all j.

For all i, we connect the vertex vi,j with all vertices in Ci,µ for µ 6= j. We then
connect a vertex ui,j,ν with every vertex in L′i+1 except the ν+ j+ 1th one, namely we
add edges {ui,j,ν , wi+1,µ} where µ 6= j + ν + 1. The construction is almost complete.
We are only missing some way to enforce that we have to take a vertex for every i in
Li.

We connect vertices in Ci,j for all i, j such that Ci,j is a clique and add in a same
way edges to Li such that Li is a clique for every i. We now add for every Li 2k + 1
enforcer vertices, namely 2k + 1 new vertices connected to every vertex in Li. We
add another 2k + 1 enforcer vertices for every Ci,j for all i that is connected to every
vertex in Ci,j for all j.

The construction of one of these gadgets is given in Figure 4.1a with only three
y variables where we did not draw the edges and vertices for y3 and removed the
enforcer vertices. Additionally, we marked edges missing by dashed lines. Figure 4.1b
gives an overview how the layers are connected and Figure 4.2 gives us a zoomed in
view of one gadget.
vi,j will correspond to a variable xi. We now have to use the formula ∧i

(
¬ ∧j ¬xϕ(i,j)

)
which is given as our input to the reduction where ϕ maps the indices i, j to the index
of x in the formula. We rewrite it as ∧i

(
xϕ(i,1) ∨ · · · ∨ xϕ(i,m)

)
. Now for every i we

construct a single new vertex that is connected to the following vertices.

{vϕ(i,1),ν | 1 ≤ ν ≤ k} ∪ · · · ∪ {vϕ(i,m),ν | 1 ≤ ν ≤ k}.

If we see the set of vi,j as one vertex splitted by j, we connected it to all vertices in
our ∧ gate.

We skip the correctness proof as it can be found in the literature. Informally, we
can argue the following way. The enforcer vertices enforce that every Layer Li has to
have at least one vertex selected. The upper bound of 2k enforces that exactly one
vertex in every layer has to be selected. A Dominating Set has to pick an ordered
set of vertices from the different Li. Picking a vertex in a jump cliques Ci,j defines
how many vertices are skipped from the current selected one to the next. Finally, the
construction of the vertex ci enforces that we have to select a valid assignment for
the formula.

An Independent Dominating Set is an Dominating Set that is also an Independent
Set. Unsurprisingly, Independent Dominating Set is complete for W[2] as well. We
can even use the same reduction as in the Dominating Set case.

Theorem 4.2.7. p-Independent Dominating Set is complete for W[2].

61

4 A Fixed Parameter Theory of Arithmetic Circuits

We will need a graph problem complete for W[3]. We chose the one defined by Chen
and Zhang [CZ06]. We call a set of vertices a k-3-SCM Single-Product Cover on a
graph G = (S1] · · ·]Sk ∪M ∪R,E) if when selecting k vertices out of S every vertex
in R is covered. We call a vertex in R covered if there exists an edge (u, v) ∈ R×M
such that v is covered. We call a vertex v in M covered if for all 1 ≤ i ≤ k there
exists a u ∈ Si that is covered and the edge (u, v) exists.

In words, a manufacturer needs k different materials, where material i is produced
by all suppliers in Si, to produce a product. A product can be at a retailer if it has a
connection to a manufacturer producing it.

Problem 4.6. Let Q be the set of all (G, k) that have a k-3-SCM Single-Product
Cover. We call the parameterized problem (Q, κ) p-3-SCM Single-Product Cover where
κ((G, k)) = k.

Theorem 4.2.8. p-3-SCM Single-Product Cover is complete for W[3].

We will give a sketch of the proof for completeness.

Proof. By the Normalization theorem (Theorem 4.2.4) we can just reduce from a∧∨∧
formula. Notice, that the formula for 3-SCM Single-Product Cover is given by

∧
ν∈R

∨
µ∈Mν

k∧
i=1

∨
v∈Si∩N(µ)

v.

We can transform this into a circuit of the form∧
ν∈R

∨
µ∈Mν

k∧
i=1

∧
v∈Si\N(µ)

¬v

 k∧
i=1

∨
v∈Si

v.

In essence, this formula enforces that every Si has at least one vertex selected by the
second part. The first part now ensures that for every k and for every v which is not
in our neighbourhood v is unselected. As this is now a

∧∨∧
antimonotone formula

the reduction is clear.

4.2.2 A Recap of Parameterized Counting Complexity
With a basic understanding of the boolean parameterized complexity we can shift our
gaze to the counting version. As we know that computing polynomials with arithmetic
circuits is related to counting problems, we shall spent some time on understanding
the basic parameterized definitions as well as the used reductions in this world.

Definition 4.7. We call (F, κ) where F : Σ∗ → N0 and κ : Σ∗ → N a parameterized
counting problem.

Definition 4.8. We call a parameterized counting problem (F, κ) fixed parameter
tractable if there exists an algorithm that computes F (x) on input x ∈ Σ∗ with a
running time bounded by f(κ(x))poly(|x|) for some computable function f : N→ N.

62

4.2 Parameterized Complexity

As an example we can look at the vertex cover problem. Here we have to count the
number of vertex cover of size k and as expected this is fixed parameter tractable.

Let us look at the different definitions for the reductions.

Definition 4.9. Let (F, κ) and (F ′, κ′) be two parameterized counting problems.

1. A fpt parsimonious reduction from (F, κ) to (F ′, κ′), written (F, κ) ≤#fpt,p
(F ′, κ′), is a mapping R : Σ∗ → Σ∗ such that:
• For all x ∈ Σ∗ we have F (x) = F ′(R(x)).
• R is computable by an fpt algorithm with respect to κ′(x).
• There is a computable function g : N → N such that for every κ(R(x) ≤
g(κ′(x)).

2. A fpt Turing reduction from (F, κ) to (F ′, κ′), written (F, κ) ≤#fpt,c (F ′, κ′), is
an algorithm A with oracle to F ′ such that:
• A on input x ∈ Σ∗ is an fpt algorithm with respect to κ′(x).
• A computes F (x).
• There is a computable function g : N→ N such that for all oracle queries
y posed by A on input x, κ(y) ≤ g(κ′(x)).

Problem 4.7. Let p-#WSat((C, k)) be the problem of counting the number of k
hamming weight satisfying assignments of a boolean circuit (C).

Definition 4.10. We can now define #W[t] to be the class of all parameterized
counting problems (F, κ) which are in

[#WSat((C, k))]≤#fpt,p

where C is a boolean circuits of weft t and constant depth and [◦]≤#fpt,p is the closure
under parsimonious fpt reductions.

We now continue with two important results which are not surprising. They were
first shown in the thesis by McCartin [McC03] but are heavily influenced by the
previously stated result by Downey and Fellows [DF95a]. We will only give a brief
sketch of the proofs here and make particularly note of the relations between the
witnesses in the reduction. We especially skip the size bounds, the bounds on k and
the correctness arguments. We start with the proof for #p-Independent Set which is
just the analogue counting problem to p-Independent Set where F ((G, k)) now counts
the number of independent sets of size k in G.

Theorem 4.2.9. #p-Independent Set is complete for #W[1].

The proof is divided into three lemmas. We define #W[1, s] to be all counting
problems that have a circuits of weft 1 and depth 2 with the ∨ gate on level 1 having
fan-in bounded by s. Let us call the witness function f : {0, 1}∗ → P({0, 1}∗) the
function that maps instances to sets of witnesses.

63

4 A Fixed Parameter Theory of Arithmetic Circuits

Lemma 4.2.10. If we have a circuit of weft 1 and constant depth then this is reducible
to a family in #W[1, s].

Proof (Sketch).

Step 1 We transform the circuit to a tree circuit. The witness function remains
unchanged.

Step 2 We move the not gates to the bottom of the circuit. The witness function
remains unchanged.

Step 3 Normalize the circuit to depth four. The step can be seen in [DF13, Theorem
21.2.1]. On page 651 they mention explicitly that the witness function remains
unchanged after this step.

In the proof they transform a constant size circuit into a ∧∨ or ∨∧ circuit
respectively where the gates have fan-in greater than 2. However, they can still
be counted as small gates as the fan-in is bounded by a constant.

Step 4 Employ additional variables to transform the circuit into a ∧∨ circuit. In
[DF13, p. 656] it is explicitly mentioned that given a witness for the transformed
circuit C ′ of witness size k′ that then the restriction of v of v′ is a witness for
the original circuit of witness size k.

In the proof they employ additional variables which check that the constant size
∧∨, ∨∧ respectively, circuit is fulfilled.

We define a circuit to be antimonotone if all input variables are negated and the
circuit has no other negations. We call the class Antimonotone #W[1, s] to be the
class of all antimonotone circuits that are in #W[1, s].

Lemma 4.2.11. #W[1, s] = Antimonotone #W[1, s], ∀s ≥ 2.

Proof. We will not discuss the whole proof here as it is a reduction to a new problem
called Red-Blue Nonblocker. This problem will be hard for #W[1, s] and belongs
to Antimonotone #W[1, s]. The reduction shows the hardness of the problem. In
essence, we have sets A(0), . . . , A(k − 1) of vertices that will give our assignment.
Let τ be the selected vertices in the Red-Blue Nonblocker graph and τ ′ a satisfying
assignment. In [McC03, p. 112f] we can see that any solution of Red-Blue Nonblocker
uniquely corresponds to an assignment τ ′ where if a variable i is set to true there
exists a vertex in A(i) selected in τ .

Hence, there exists a projection to transform the new witness function into the old
witness function.

Lemma 4.2.12. #W[1] = #W[1, 2].

64

4.2 Parameterized Complexity

Proof. Now we show that a problem in Antimonotone #W[1, s] for s ≥ 2 can be solved
in #W[1, 2]. In this reduction the input variable x[i] is replaced by a set of variables
x[i, j] for 0 ≤ j ≤ 2k− 1. Again by [McC03, p. 114] it follows that a if x[i] was true in
the previous circuit all x[i, j] are true. As the implication x[j, r]→ x[j, r+ 1 mod 2k]
is enforced it is again clear that the old witness function can be given by a projection
of the new witness function.

We can now prove the theorem.

Proof of Theorem 4.2.9. Taking an arbitrary circuit and using Lemmas 4.2.10 to 4.2.12
we get a circuit of the form

∧
{(i,j)}∈S (¬vi ∨ ¬vj) for some set S. We can easily

transform this into an undirected graph where we add a vertex for every vi and add
an edge between vi and vj if {(i, j)} ∈ S.

A similar normalization theorem as in the decision setting also holds in the counting
case.

Theorem 4.2.13 ([McC03]). For all t ≥ 2, counting the number of Weighted t-
Normalized Satisfiability is complete for #W[t].

We will use the shorthand notation of
∧n and

∨n for unbounded fan-in gates.

Proof (Sketch). The reduction is based on transforming a circuit in a few basic steps.

Step 1 Transform the circuit into a tree. The witness function is unchanged.

Step 2 Transfer the negation gates to the bottom. The witness function is unchanged.

Step 3a We describe this reduction briefly. We want to transform the circuit into
a circuit with a unbounded ∧ gate on top. If this is not already the case, we
transform the top layer of bounded ∨ and ∧ gates into a ∧∨ gate. We then
introduce new variables that for an input originating from an unbounded ∨ gate
and from an unbounded ∧ gate. We then enforce that for a ∨ gate the least
index that is one is represented in our new variables. If it originates from a
large ∧ or input gate we take the smallest index such that the gate evaluates to
zero. From these two inputs we can then reconstruct with a large ∧ gate the
value of the bounded ∨ gate. We then enforce the above described behaviour
with a large ∧ gate which collapse with the constant size ∧ gate. For a detailed
proof the reader should consult the original construction.
As we keep the old variables, the witness function of the circuit before the
transformation is a projection of the witness function after the transformation.

Step 3b We iteratively do the following four procedures:
• Contract one layer of multiple small gates to a ∧c∨c′ or ∨c∧c′ construction

for constants c, c′.
• Contract small gates into large gates of the same type.

65

4 A Fixed Parameter Theory of Arithmetic Circuits

• Transform ∨c∧n into ∧n∨c by distributive law.
• Transform ∨c with inputs from large ∧ and ∨ gates with ∧n∨n which now

permits a contraction.
Through all this the witness function remains unchanged.

Step 4 If it exists, remove the final large ∨ gate in the following way. Let m be
the fan-in of the large ∨ gate. We then copy the circuit m times and add new
variables x1, . . . , xm. We then enforce that exactly one xi is set to true and that
when xi is true the subcircuit Ci has to evaluate to true. The last thing we
enforce is that xi is the smallest i such that Ci evaluates to true. For this we
use the formula ∧mi=1 ∧

i−1
j=1 (¬xi ∨ Cj). There exists a projection from the new

witness function to the old witness function.

Step 5 Repeat step 1 and step 2 if necessary. Additionally, if the lowest large gate
is a ∧ replace the circuit of small gates with a ∧∨ gate. If the lowest large
gate is an ∨ gate, replace the circuit of small gates with a ∨∧ gate. After the
replacement we collapse gates of the same type.
This does not change the witness function.

Step 6 Let x1, . . . , xm be the inputs of the circuit. Take the graph from the Dom-
inating Set reduction with inputs z1, . . . , zm′ . By using the vertices and the
Skip vertices we can unify if a variable has positive or negative connections. For
each positive connection from xi add a large unbounded fan-in ∨ gate over all
positive values. For each negative connection from xi take a large ∨ gate of all
values that imply xi is false. Then we connect the to the top product gate a
circuit corresponding to the Dominating Set formula.
Notice that while the witness function changes, there exists a projection to the
old witness function as we still have to set the correct variables from x1, . . . , xm
to true.

Step 7 Eliminating remaining small gates. We are now in two different cases. Either
t is even then the small gates at the bottom are ∧ and C is monotone, meaning
all literals are positive. Or t is odd and then the small gates are ∨ and C has
all inputs going to the level one small gates negated. With this we can gather
the inputs into new variables which will represent the ∧ or ∨ value of the set
of variables and enforce the variables representing the sets to have the correct
value.
The witness function after the transformation is again just a projection of the
witness function before the transformation.

With this and the proof for the decision version, as well as the discussion about the
witness function, we know that counting the number of Dominating Sets is complete.
The definitions of the next two problems is obvious.

66

4.3 General Definitions for Parameterized Arithmetic Circuits

Theorem 4.2.14. #p-Dominating Set is complete for #W[2].

Again with the same reduction as in the Dominating Set case, we can show the
completeness for counting Independent Dominating Sets. The witness function behaves
as in the #p-Dominating Set case.

Theorem 4.2.15. #p-Independent Dominating Set is complete for #W[2].

4.3 General Definitions for Parameterized Arithmetic
Circuits

Before we study any classes, we need to define the problems we want to study.

Definition 4.11. Let (pn) be a family of polynomials of degree k in R[x1, . . . , xq(n)]
for a polynomially bounded function q(n). We call the tuple ((pn), k) a parameterized
family of polynomials.

Definition 4.12. Let ((pn)i, ki) be parameterized families of polynomials. We call
the set {((pn)i, ki) | i ∈ S ⊆ N} a parameterized arithmetic problem where (pn)i is a
family of polynomials.

We will generally use the notation {((pn)i, ki)} as a shorthand notation. Our
definition looks complicated but looking at this problem it is easy to explain. First
notice, that for every polynomial family, we have a fixed k as the parameter should
not change on a polynomial family. But we also want to have different k in the same
problem as in the boolean case. Also the polynomial family obviously can change for
different k.

We first introduce a reduction similar to projection in the arithmetic circuit model.
This is the weakest form of reduction we know.

Definition 4.13. Let L = {((pn)i, ki)}, L′ = {((p′n)i, k′i)} be two parameterized
arithmetic problems. We call L to be reducible to L′ with an arithmetic fpt projection,
written L ≤afpt,p L

′, if for every ((pn), k) ∈ L there exists a ((p′n), k′) ∈ L′ such that
the following conditions hold:

• pn = p′q(q′(n)f(k))(a1, . . . , aq(q′(n)f(k))) where q′(n) a polynomially bounded func-
tion and f(k) some function and ai ∈ R∪{x1, . . . , xq(n)} where pn has variables
x1, . . . , xq(n).

• There is a function g : N→ N such that k′ ≤ g(k).

Next we continue with a reduction more akin to Turing reductions.

Definition 4.14. Let q(n) and q′(n) be polynomially bounded function and f(k) a
function.
L = {((pn)i, ki)}, L′ = {((p′n)i, k′i)} be two parameterized arithmetic problems. We

call L to be reducible to L′ with an arithmetic fpt c-reduction, written L ≤afpt,c L
′, if

for all ((pn), k) ∈ L there exists a ((p′n), k′) ∈ L′ such that the following conditions
hold:

67

4 A Fixed Parameter Theory of Arithmetic Circuits

• pn can be computed by a circuit C with an oracle gate to p′q(n) and queries
(pq1(n), k1), . . . , (pq(q′(n)f(k)), kf(k)q′(n)).

• C has size f(k)q′(n).

• There is a function g : N → N such that for all queries (pn, ki) to the oracle,
ki ≤ g(k).

Notice that the last item allows us to ask the oracle different questions for different
ki.

We now introduce a shorthand notation.
Definition 4.15. We define

〈n
k

〉
∈ {0, 1}n to be the set of all vectors of length n of

hamming weight exactly k, i.e. the vectors with exactly k ones and the rest of the
entries being zero.

Similar as in the boolean case, our circuits will have fan-in two but have large gates
with larger fan-in.
Definition 4.16. Let C be a layered arithmetic circuit. We say a gate is large if the
fan-in is greater than two but bounded by a polynomial in n and small if it has fan-in
two.

4.4 VFPT
We first deal with the arithmetic FPT class. We introduce a definition which corre-
sponds to a circuit of size f(k)poly(n).
Definition 4.17. Let q(n) be a polynomially bounded function and f(k) a function.

We define the class VFPT to be the class of all parameterized arithmetic problems
{((pn)i, ki)} such that for every ((pn), k) there exists a family of arithmetic circuits
(Cn) that for all n computes pn and the size of Cn is bounded by f(k)q(n).

We can now show our first parameterized polynomial to be contained in VFPT. As
in the boolean case this will be related to vertex cover.
Problem 4.8. The parameterized k Vertex Cover Generating Polynomial is defined
as follows.

fVC,G,k := GF(G, k-VCG)

where k-VCG is the graph property of all vertex covers in G of size k.

Notice that this polynomial is only given for a specific graph which is in contrast to
the setting in Chapter 5.

As a reminder, let the symmetric polynomial of a set of n vertices of degree d,
written Symn

d(x1, . . . , xn) be the elementary symmetric polynomial of degree d over
the variables x1, . . . , xn. The elementary symmetric polynomial can be computed
by taking the product

∏n
i=1(y + xi) and extracting the homogeneous components

of degree n− d of variable y. This can be computed with a polynomial size circuit
(Lemma 2.5.1).

68

4.4 VFPT

Theorem 4.4.1. {(fVC,G,k, k) | k,G} is in VFPT.

Proof. Given a G = (V,E) and k, we work in the same way as the FPT algorithm.
We take an arbitrary order of edges. For every edge, we branch on which vertex
we add to our cover and recurse. We define for an edge set E\{v} to denote the set
{(u, u′) ∈ E | u 6= v and u′ 6= v}. Our formula can be written as

P (G, k) =

1 if k = 0 and E = ∅,
0 if k = 0, E 6= ∅,
Sym`

k(xi1 , . . . , xi`) if k 6= 0, E = ∅, V = xi1 , . . . , xi` ,

xu · P ((V \ {u}, E\{u}), k − 1)
+ xvP ((V \ {v}, E\{v}), k − 1)

otherwise.

As every edge has to be covered by at least one vertex, the order does not matter.
If the set of edges left after k steps in a path is not the empty set, we remove this
computation subtree by multiplying with zero. By construction it is easy to see that
these are precisely all vertex covers.

The number of operations and hence the size of the circuit is bounded by T (n, k) =
2T (n, k − 1) + 1 plus O(nk) for computing the symmetric polynomial.

4.4.1 Kernelization
Another important topic in fixed parameter tractable algorithm theory is the notion
of a kernel and kernelization. We can construct a similar notion here by using a
modification of the definition in the paper by Creignou, Meier, et al. [CMMSV13].

Definition 4.18. Let L = {((pn)i, ki)} be a parameterized arithmetic problem and
x1, . . . , xf(k) a set of variables. We call (Kn) : L → L a kernel if the following
conditions hold:

1. Kn can be computed by a polynomial size family of circuits for all n.

2. Kn((pn), k) = ((p′n), k′) and k′ ≤ f(k) for some function f and ((p′n), k′) ∈ L if
and only if ((pn), k) ∈ L.

3. p′n is a polynomial on at most f ′(k′) variables.

Theorem 4.4.2. There exists a kernel for {(fVC,G,k, k) | G, k}.

Proof. We can follow the famous Buss’ kernelization [FG06, pp. 208ff]. This kernel-
ization has the following rules:

1. If v is a vertex of degree greater than k, remove v from the graph and decrease
k by one.

2. If v is an isolated vertex, remove v.

3. Terminate if the remaining graph has less than k2 edges.

69

4 A Fixed Parameter Theory of Arithmetic Circuits

If no rule can be applied we return the complete graph on k + 1 vertices.
Now we can use the proof from Creignou, Meier, et al. [CMMSV13] to finish. One

can verify that whenever we can apply one of the rules for a set of vertices, we can
apply the same rule to the same set of vertices at a later time. Let V1 be the vertices
that are removed by rule 1 and V2 the vertices removed by rule 2. No vertex in V2 is
in the vertex cover and hence can be removed. On the other hand every vertex cover
of size less than k has to contain every vertex in V1. This shows we can look at the
reduced graph.

Assume W is a vertex cover of the reduced graph and let S be our final vertex
cover, meaning V ∪V1∪V ′2 where |V ′2 | ≤ k−|V |− |V1|. It is clear that different vertex
cover in our reduced graph W1,W2 give different vertex cover in our final graph and
that we get all vertex cover by the previous discussion.

Our fpt reduction R is given by applying the reduction backwards for every valid
set of variables y1, . . . , yf(k).

We can also prove the general theorem as in the boolean setting.
Theorem 4.4.3. Let L be a parameterized arithmetic problem. Then L has a kernel
if and only if L is in VFPT.
Proof. If a parameterized arithmetic problem has a kernel then it has a VFPT circuit
by the following argument. We can compute the polynomial pf(k′) by brute force
enumeration of all monomials. The circuit is then given by the reduction from the
kernelization.

If a parameterized family is in VFPT, then it has a kernel. Take a polynomial pc for
some constant c. Now our reduction is simple. Because L was in VFPT the reduction
just uses this algorithm and ignores the input.

4.5 Boolean-Arithmetic and BVW[t]
Now we can introduce our first definition of larger arithmetic circuit classes for the
fixed parameter world. These will generally be the “hard” problems and corresponds
to the #W[t] hierarchy in the counting world. In essence, we will simulate boolean
circuits with arithmetic circuits and hence can use definitions and reductions close to
the boolean counting setting which we described in Section 4.2.2.

Let X = {x1, . . . , xq(n)} and Y = {y1, . . . , yq(n)} be a set of variables where q(n) is
a polynomially bounded function. Let us identify the value true of a boolean formula
with 1 and the value 0 with false.
Definition 4.19. We call a family of arithmetic formulas boolean-arithmetic if every
circuit in the family is of the following form. It has at the top a product gate with two
children Cl and Cr. Cr =

∏q(n)
i=1 (1− yi + xiyi). For Cl there exists a boolean formula

φ on ∧ and ∨ gates over inputs Y such that for all assignments e ∈ {0, 1}q(n)

Cl(e) = αφ(e)

for some α ∈ N. Additionally, Cl has polynomial size and constant depth.

70

4.5 Boolean-Arithmetic and BVW[t]

Now we can define our central definition of hard classes. We will first define a set
called BA[t] and then use the closure under our reduction for the class.

Definition 4.20. We call a parameterized polynomial family {((pn), k)} to be in
BA[t] if for every ((pn), k) there exists a family of boolean-arithmetic formula where φ
which is equivalent to the left part of the formula has weft t,

pn =
∑

e∈〈q(n)
f(k)〉

Cn(X, e)

and pn has q(n) variables.
We call BVW[t] = [BA[t]]≤afpt,c.

Notice that the α is chosen beforehand and hence the same for all possible assign-
ments. We can generally ignore α as we can add a k fraction of the value to every
element in our reduction or if we use oracle reductions we can multiply it in the
reduction. Notice that we did not restrict the weft of the arithmetic realization of
the boolean formula. In our case the distinction is not necessary as a ∧ gate can be
directly simulated with a product gate and a ∨ gate by using DeMorgan’s rule with
two negations and a product gate. However, we formulated our definition this way
to distinguish explicitly between the boolean equivalent of the boolean-arithmetic
formula and the boolean-arithmetic formula itself.

As BA[t] is just a syntactic defined class, it is unclear if two different circuits
computing the same polynomial will be in the class. This is the reason why we chose
the closure under a reduction. We chose oracle reductions because they are more
powerful than projections. Additionally, they give us various tools such as extracting
homogeneous components which make the proofs technically easier. However, we will
see that our main result of this section transfers also in the case for fpt projections.
From now on we will only work with BVW[t] and essentially ignore BA[t].

We can now introduce some sanity checks for the definition. First we obviously
have a hierarchy for BVW[t].

Proposition 4.1. BVW[t] ⊆ BVW[t+ 1].

The next proposition holds trivially by the closure under arithmetic fpt c-reduction.

Proposition 4.2. VFPT ⊆ BVW[1].

Second our now defined classes are trivially included in VNP.

Lemma 4.5.1. If a parameterized arithmetic problem L = {((pn), k)} is in BVW[t]
then all elements ((pn), k) ∈ L, (pn) are in VNP.

Proof. Given a polynomial family ((pn), k) ∈ BVW[t] we construct a new polynomial
p′ where we multiply pn with an arithmetic circuit computing∏

i 6=k(i−
∑q(n)
j=1 yj)∏

i 6=k (i− k)

71

4 A Fixed Parameter Theory of Arithmetic Circuits

where q(n) gives us the number of variables pn has.
This ensures exactly k of our y variables are set to one. As we can transform the

large gates to binary gates we see that this circuit is in VP. The summation over all
{0, 1}n vectors gives us the required polynomial.

4.5.1 Independent Set and BVW[1]
Now we can show the first problem that is complete for BVW[1]. As in the boolean
case a variant of Independent Set will be our complete problem.

Problem 4.9. The parameterized k Independent Set Generating Polynomial is defined
as follows:

fIS,G,k := GF(G, k-ISG)

where k-ISG is the graph property of all Independent Sets in G of size k.

Let us look at how we want to construct the reduction. We want to take the
parsimonious reduction from the completeness of W[1] to Independent Set on the
formula corresponding to φ and set the weights correctly for the fulfilling the right
side. For this we need the following property the parsimonious reduction has to have.

Definition 4.21. We call a fpt parsimonious reduction from a boolean formula F on
variables y1, . . . , yn to a boolean formula F ′ on variables y′1, . . . , y′m witness projectable
if the following holds. There exists a projection ψ : {0, 1}m → {0, 1}n such that for
the sets

SF := {a | a is a valid k-weight assignment for F},
SF ′ := {ψ(b)| b is a valid k-weight assignment for F ′}

it holds that

SF = SF ′ .

This definition is needed to know that we can transfer a witness between these two
problems. We will hence transfer the

∏
(1− yi + xiyi) part with this projection ψ to

construct the correct witness.

Theorem 4.5.2. {(fIS,G,k, k) | G, k} is complete for BVW[1].

Proof. Because the formula has as left child a formula corresponding to φ we can
transform this part to a boolean formula φ′ of weft one. We can now use the reduction
from k-Independent Set to #W[1] for this part (see Theorem 4.2.9). Notice that
this reduction is witness projectable. This will then give us a graph which has an
Independent Set for every k weight assignments to the ys.

We can then put the weights xi in the variable yi. Selecting k vertices from the set
Y and using the projection stemming from the witness projectable of the reduction
finishes the reduction. The correctness is obvious from the previous lemma and the
correctness of the original reduction.

72

4.5 Boolean-Arithmetic and BVW[t]

The membership is easy to see with the following formula.∏
{u,v}∈E

(1− yuyv) ·
∏
v∈V

(1− yv + xvyv) .

Notice that directly transforming the arithmetic formula corresponding to φ could
result in a vastly different formula which might not fulfill the requirements in the
reduction. It is best to see this as transforming the boolean-arithmetic formula into a
boolean formula, transform this with the reduction and then transfer this back to a
boolean-arithmetic form

4.5.2 Dominating Set and BVW[2]

Problem 4.10. The parameterized k Dominating Set Generating Polynomial is
defined as follows:

fDS,G,k := GF(G, k-DOMG)

where k-DOMG is the graph property of all Dominating Sets in G of size k.

Theorem 4.5.3. {(fDS,G,k, k) | G, k} is BVW[2] complete.

Proof. We now have a reduction for the arithmeterized boolean formula with the
boolean reduction to k-Dominating Set. Notice that this reduction is witness pro-
jectable which can be seen by the proof given in Theorems 4.2.6 and 4.2.13.

For the right part we can take the reduction and set the weight of the vertices
corresponding to yi to xi. Notice that the reduction already prevents us from taking
multiple vertices assigned to the same yi. As the previous reduction was witness
projectable this one is too.

The membership is again easy to see with the following formula where N(v) is the
neighbourhood of v.

∏
v∈V

1−
∏

u∈N(v)∪{v}
(1− yu)

 · ∏
v∈V

(1− yv + yvxv) .

Now we can already see a pattern in our reductions. The majority of the work is
done in the boolean formula and the “arithmetic complexity” does not increase.

4.5.3 3-SCM Single-Product Cover and BVW[3]

Problem 4.11. The parameterized k-3-SCM Single-Product Cover Polynomial is
defined as follows:

fSCM,G,k := GF(G, k − SCMG)

where k-SCMG is the graph property of all 3-SCM Single-Product Covers in G of size
k.

73

4 A Fixed Parameter Theory of Arithmetic Circuits

Theorem 4.5.4. {(fSCM,G,k, k) | G, k} is complete for BVW[3].

Proof. We take the original reduction from Theorems 4.2.8 and 4.2.13 to reduce the
boolean part. Notice that this again is a witness projectable reduction.

As in the Dominating Set case, we can set the weight of the vertices corresponding
to yi to xi. With this we can then use the projection stemming from the reduction
being witness projectable to get the correct weights.

The membership is easy to see with the following formula.∏
ν∈R

1−
∏
µ∈Mν

k∏
i=1

1−
∏

v∈Si\N(µ)
(1− v)

 · k∏
i=1

1−
∏
v∈Si

v

·
k∏
i=1

∏
v∈Si

(1− yv + yvxv)

4.5.4 Discussion

We now want to discuss our various decisions in defining this model. The first one
is the top summation of e ∈

〈n
k

〉
. This seems necessary as it is unclear how to check

over all sets of size k without such a summation. Additionally, the definition seems
reasonable because it is similar to the definition of VNP.

Let us now look at how we could define the circuits we sum over. The obvious first
idea would be without any restrictions, meaning to just have unbounded fan-in gates
for products and for summations of some weft t with some constant depth t. However,
finding complete problems for this seems to be hard. We can easily assume a circuit
being HOMCk∏n

i (pi + i · y) where pi is the ith prime. Now this polynomial has only
degree k but we still need to consider all 2n possible monomials in some sense. This
seems impossible with some complete problems which can only have order of

(n
k

)
many

monomials. It is also unclear how to “collapse” multiple of these monomials with the
same variables but different coefficients into one circuit for every computed monomial.
This implies we need to have some restriction on the gates we allow. We postpone
some additional argument about our model to the next section.

4.6 VW[t]
We have seen in the previous section that taking a definition close to the boolean
setting gives us consistent classes. However, this classes are far away from having the
full power of arithmetic circuits. Can we, for example, construct a model that can
give different weights to different assignments? We will reexam the defining problems
of the W[t] hierarchy to construct different problems for VW[t].

First, we will give our model which is based on the simple requirement that we
want to incorporate constants.

74

4.6 VW[t]

Definition 4.22. Let α, αi, βi ∈ K[x1, . . . , xq(n)]. We call an arithmetic formula an
extended boolean-arithmetic formula if the formula is iteratively constructed from gates
of one of the following forms

• C =
∏q(n)
i=1 (αi + βiCi) for some polynomially bounded function q(n) where Ci is

an extended boolean-arithmetic formula.

• C = α
∏c
i=1 yϕ(i)

∏c′ xϕ′(i) for some mapping ϕ, ϕ′ and constants c, c′.

We call an extended boolean-arithmetic formula of weft t if it has at most t layers of
gates of the first type. We call the closure under arithmetic fpt c-reduction the class
VW[t].

The reader should notice that we again build our model only on product gates.
We do not know how to handle summation gates in our model. The problem arises
from the following simple observation. As soon as multiple branches of a summation
gate are selected, a simple generating function which multiplies the weight of all
selected vertices will make mistakes by multiplying weights that should be summed
up. It might multiply two different trees connected by a summation gate, unless
the graph is carefully crafted to remove these mistakes in a later step. Hence, we
would need to treat every summand separately, similarly to the notion of a proof tree
in an arithmetic circuit. But here we again meet our limit of choices. As we have
unbounded product gates, a

∏∑
formula can already have nn proof trees while we

only have
(n
k

)
choices.

It would be interesting if we can find a theory that encompasses summation gates
despite these difficulties. However, we will not use unbounded summation gates in
this thesis.

As it turns out, we need to change the defining problems of our hierarchy. We will
now discuss why. In the boolean setting, where we look at weighted satisfiability with
exactly k many values set to true, we can imagine selecting k points and then checking
some condition. In essence, checking a boolean condition, like checking if the selected
vertices are a Dominating Set, is easy for boolean circuits. For arithmetic circuits,
this problem gets more complicated. While we can easily deny certain products to
take place which we shown in Section 4.5 it is unclear if this captures the essence
of arithmetic computation. We argue that to be closer to the power of arithmetic
circuits we need to be able to change the value by arbitrary constants if a certain
condition (here represented by some y variables) is not fulfilled.

This can be seen in an example for Dominating Set where we just change the formula
slightly from the case in BVW[2]. Let a circuit be given by

∏n (1− βi
∏n (1− yj)).

Here it seems that we also need to look at variables that are not 1 to calculate
the correct value of the polynomial. It is unclear how we could avoid having to
change constants depending on specific vertices not selected without introducing more
restrictions.

To simplify notation we will use UDEF (T) to denote the following function. Let T
be a constant arithmetic term and β the evaluation of this term if it is defined. Then

75

4 A Fixed Parameter Theory of Arithmetic Circuits

we define

UDEF (T) =
{
β if T is defined,
0 otherwise.

We will need a short lemma to simplify the proofs for constant size products at the
bottom.

Let a set of vertices y1, . . . , yc be given. Let for every set ∅ 6= S ⊆ {y1, . . . , yc} a
new vertex with the weight of α if |S| is odd and 1

α if |S| is even be connected to all
vertices in the set S.

We will call a vertex that is included in an instance to a problem to be selected.
We say a set S is counted if it is connected to a yi and yi is selected and otherwise

not counted. The weight of an assignment where some yi are selected is the product
over all sets that are counted where every set is the product of its elements.

Lemma 4.6.1. Let the setting be as above. Then the value of the assignment where
all yi are selected is α and 1 otherwise.

Proof. We can see the construction as counting positive and negative numbers by
identifying α with a positive one and 1

α with a negative one.2
We know that

(−1) ·
c∑
i=0

1c−i
(
c

i

)
(−1)i = (−1) · (1− 1)c = 0.

Notice that in our construction the set has to be of odd size to have a weight of α
which corresponds to a weight of one here.

Then the sum over all weights in our construction is given by

(−1) ·
c∑
i=1

(
c

i

)
(−1)i = 1 + (−1) ·

c∑
i=0

(
c

i

)
(−1)i = 1 + 0 = 1. (4.1)

Hence we know that our value is 1 if all yi are selected.
Now we pick ` 6= 0 where ` is the number of yi selected.
We know that the uncounted values are

(−1)
∑̀
i=1

(
`

i

)
(−1)i = 1

as these are all vertices that have no selected vertex adjacent.
Hence the sum over the uncounted values is one. Notice that the summation of the

counted and uncounted values is exactly the value from Equation (4.1). Hence, we
follow that the sum over all counted vertices is zero.

As the counted vertices correspond to the set we actually sum over, the proof is
finished.

2Essentially we take the logarithm of our values and compute with these.

76

4.6 VW[t]

y1 y2

1 + β 1
1+β 1 + β

Figure 4.3: Example Independent Set construction for 1 + βy1y2

As an example we can look at Figure 4.3 which results in the following values.

yi yj
0 0 1
0 1 UDEF

(
(1 + βi) · 1

1+βi = 1
)

1 0 UDEF
(
(1 + βi) · 1

1+βi = 1
)

1 1 UDEF
(
(1 + βi) · 1

1+βi · (1 + βi) = 1 + βi
)

In general, we will again ignore a constant α in front of the product as we can just
multiply every variable by α

k to get the correct value.
In general, we will assume our circuits to have top fan-in bounded by n instead of

q(n) to simplify notation.

4.6.1 VW[1]

Problem 4.12. Let a graph G be given with every vertex having two values out of
K[x1, . . . , xn]. Let us denote the values by (xv, αv). Let now a full cover k-Independent
Set be a set of k vertices {v1, . . . , vk}. Let R be the set of all vertices that are not
selected in the chosen Independent Set and when would be selected would have an edge
with a vertex in {v1, . . . , vk}. The weight of a full cover k-Independent Set ve1 , . . . , vek
is given by

k∏
i=1

vei ·
∏
v∈R

αv.

We define the polynomial ffc−IS,G,k to be the sum over all the weights of all full cover
k-Independent Set in a graph G.

Theorem 4.6.2. {(ffc−IS,G,k, k) | G, k} is complete for VW[1].

Proof. The membership is obvious with the formula

(n2)∏
(i,j)∈E

(1− yiyj)
∏
v∈V

(αv + (xv − αv) yv) .

For the completeness, we have a circuit of the form α
∏n
i

(
1 + βi

∏c
j yιi,j

)
. Notice

that here βi can be a constant size product of variables xi. We build now the following

77

4 A Fixed Parameter Theory of Arithmetic Circuits

construction. Connect a new vertex to every yj and set the weight as (1, 1 +βi). Now,
if c ≥ 1 similar to the inclusion exclusion formula like in Lemma 4.6.1, connect more
vertices with the weight given by either (1, 1 + βi) if the number of connected vertices
is odd or (1, 1

1+βi) when the number of selected vertices is even. We give a short
example in Figure 4.3.

By Lemma 4.6.1 this is always calculating the correct weight.

4.6.2 VW[2]

Problem 4.13. Let a graph G be given with every vertex having two values out of
K[x1, . . . , xn]. Let us denote the values by (xv, αv). Let now a full cover k-Dominating
Set be a set of k vertices such that there exists set {v1, . . . , vk} ∪A ∪R = V and the
following conditions hold:

• For every v ∈ A there exists i such that the edge (v, vi) ∈ E.

• For every v ∈ R and all i no edge (v, vi) ∈ E exist.

The weight of a full cover k-Dominating Set with vertices vi1 , . . . , vik is

k∏
`=1

vi` ·
∏
v∈R

αv.

We define the polynomial ffc−DS,G,k to be the sum over the weights of all full cover
k-Dominating Set.

In essence we take all possible Dominating Sets of a graph and weight them by the
vertices which violate the Dominating Set condition.

Lemma 4.6.3. Let C =
∏n
i=1

(
1 + αi

∏ni
j=1

(
1 + βi,jyϕ(i,j)

))
be a circuit. Then C

has a graph such that ffc−DS,G,k is equal to
∑
e∈〈q(n)

k 〉
C(x, e) for some polynomially

bounded function q(n).

Proof. We take the general Dominating Set construction and modify it in the following
way. For every branch in the formula corresponding to yφ(i,j)

3 we add a vertex that is
connected with all representatives of yφ(i,j) in our construction. We set the weight of
this vertex to (

0, UDEF

(
1 + αi

1 + αi (1 + βi,j)

))
.

Notice that if the fraction is undefined the overall value of our product is zero.
Additionally, for every variable yi we add the weight∏n

i=1

(
1 + αi

∏ni
j=1 (1 + βi,j)

)
k

, 1

 .
3Notice that this can have repetition corresponding to the same variable y`

78

4.6 VW[t]

This corresponds to the overall value of the circuit if all yii,j would be one.
Now by construction, whenever we have a specific variable set to zero, we cancel

the weight of this variable in our overall value of the circuit.

Lemma 4.6.4. Every arithmetic formula of the form

f =
n∏
i=1

1 + βi

ni∏
j=1

(
1 + γi,j

ci,j∏
m=1

yϕ(i,j,m)

)
admits a graph G such that ffc−DS,G,k on this graph is

∑
e∈〈q(n)

k 〉
f(X, e) for some

polynomially bounded function q(n).

Proof. We transform the circuit into the following form for all γi,j 6= −1

n∏
i=1

1 + βi

ni∏
j=1

(1 + γi,j) ·
ni∏
j=1

(
1 +

(
1

1 + γi,j
− 1

) ci,j∏
m=1

yϕ(i,j,m)

) . (4.2)

If we now look at Lemma 4.6.1 we see that we can use the same construction. But
instead of a vertex v being denied when it has a neighbour it is now allowed (and
hence not counted) on the other hand if a vertex does not have a neighbour it is
allowed in the original construction and denied now. With this it is clear that we just
need to use this construction to compute the “inverse”. For this, as you can see in
Equation (4.2) we did exactly that. Whenever our construction produces a one, we
remove the value 1 + γi,j from

∏ni
j (1 + γi,j). Whenever we have a zero, we do not

remove it. For γi,j = −1 we treat it normally but with a vertex of weight (0, 0).
Let us call the constants from the formula above by β′i = βi

∏ni
j=1

(
1 + yii,j

)
and

γ′i,j = 1
1+γi,j−1. As described earlier, we put γ′i,j onto the vertices as in the construction

in Lemma 4.6.1.

Theorem 4.6.5. {(ffc−DS,G,k, k) | G, k} is complete for VW[2].

Proof. From Lemma 4.6.4 we can prove the completeness. The membership is easy
to see with the formula

∏
v∈V

1− (1− αv) ·
∏

u∈N(v)∪{v}
(1− yu)

 ∏
v∈V

(1 + (xv − 1) yv) .

4.6.3 VW[3]

We again look at a variant of k-3-SCM Single-Product Cover.

79

4 A Fixed Parameter Theory of Arithmetic Circuits

Problem 4.14. Given a graph G = S ∪M ∪R a tripartite graph with every vertex
having two linear forms out of K[x1, . . . , xn] as weights. Let us denote by by a full
cover 3-SCM Single-Product Cover a set of k vertices {v1, . . . , vk} from the set S.
Then the weight is given by ∏

v∈{v1,...,vk}
xv ·

∏
f∈F

γ(vf) ·
∏
s∈S

γ′(vs).

Here γ(vf) is w1 if all values v ∈ P with (v, vf) ∈ E are selected and w2 otherwise.
Similarly, γ′(vf) = w1 if there exists a vertex v such that for all vertices u with
(u, v) ∈ E, u ∈ P u is selected and w2 otherwise.

We define ffc−SCM,G,k to be the sum over the weights of all full cover 3-SCM Single-
Product Cover.

In essence, we set weights onto the vertices and select the weights if this is a valid
assignment for the subgraph or not.

y1

y2

y3

y4

y5

y6

1 + β1,1
1

1 + β1,2
1

(1, 1
α1

)

1 + β2,1
1

1 + β2,21

1, 1
α2

Figure 4.4: Gadget for polynomial (1 + α1 (1 + β1,2y4y5y6) (1 + β1,2y1y2))
· (1 + α2 (1 + β2,1y1y3y4) (1 + β2,2y2))

Lemma 4.6.6. Let

C =
n∏
i=1

1 + αi

ni∏
j=1

(
1 + βi,j

ni,j∏
m=1

(
1 + γi,j,myφ(i,j,m)

)) .
Then C has a graph such that ffc−SCM,G,k is equal to

∑
e∈〈q(n)

k 〉
C(X, e).

Proof. For αi, βi,j or γi,j,m being zero, we can add the resulting coefficient to a
separate vertex that is enforced to be taken. We can build a graph for this type of
monomial in a way as in Figure 4.4. For every βi,j we introduce a new vertex into the
set F that is connected to all yϕ(i,j,m) with the weight (1 + βi,j , 1). Let us call this

80

4.7 The Immanant

vertex fi,j . For the second layer, we add the following vertices into S. We connect a
vertex v with the weight (1, 1

αi
) to every fi,j for every j. We produce n such vertices.

For the third layer we just add the weight product of all γi,j,m that yφ(i,j,m) has.

Theorem 4.6.7. {(ffc−SCM,G,k, k) | G, k} is complete for VW[3].

Proof. After Lemma 4.6.6 we only need to handle the case of constant size products
at the bottom. We can handle this again with Lemma 4.6.1. The correctness now
follows from the construction.

The membership is easy to see with the formula

n∏
i=1

αi + (αi − 1)
ni∏
j=1

(
βi,j + (βi,j − 1)

ni,j∏
m=1

(
1 + γi,j,myφ(i,j,m)

)) .

4.7 The Immanant
The immanant is an interesting problem in arithmetic circuit complexity. As described
in Section 2.6 it is a polynomial that can encompass the determinant or the permanent,
two polynomials that could not be any different in their complexity. This is why it
makes sense to look at the parameterized complexity of the permanent.

Perhaps for hook diagrams of horizontal size at most k we can find a fixed parameter
algorithm? Instead want to show that a k-hook diagram is already VW[1] hard.

However, we are faced with one problem. The immanant is a multilinear polynomial
of degree n but our parameterized families of polynomials are only allowed to have
degree f(k) for some function f : N→ N. We need to define a polynomial related to
the immanant that has degree depending only on k.

Problem 4.15. Let λ = (k, 1, . . . , 1) be a k-hook diagram. Let

S′n,k := {π : [k]→ [n] | π(1), . . . , π(k) describes a cycle cover}

and ψ : ([k] → [n]) → ([n] → [n]) which maps the partial permutations to complete
permutations by setting ψ(π(i)) = i for every i 6∈ Dom(π).

Then we define the k-cycle immanant to be

Imk,hook :=
∑

π∈S′
n,k

χλ(ψ(π))
k∏
i=1

Ai,π(i).

Notice that we can easily have a c-reduction from the immanant polynomial to the
Imk polynomial. We do this by just enforcing n−k self-loops via taking homogeneous
components.

We will first reduce immanant to a modified cycle format polynomial. Here we
denote by Fcf := CF (k,1,...,1)|∀i,xi→1, the cycle format polynomial where evaluate all

81

4 A Fixed Parameter Theory of Arithmetic Circuits

variables corresponding self-loops with the constant one. This polynomial has a degree
of k.

Lemma 4.7.1. Let ρ be a frequency notation. Then for any cycle σ that has the
same frequency as ρ the character is the same.

Proof. Let us remember the Murnaghan-Nakayama Rule (Theorem 2.6.1). By the
decomposition given by the rule it is clear that it only matters what cycles the
frequency notation has and that for every cycle cover with the same cycle format the
character is the same.

Theorem 4.7.2. {(Fcf , k) | k} ≤c {(Imk,hook, k) | k}.

Proof. These two polynomials are almost equal. However, Imk,hook has monomials
corresponding to self-loops while the cycle format polynomial has not. We can extract
these by taking the homogeneous components of all self-loops of degree zero. Left
to do is the corresponding coefficient. By Lemma 4.7.1 this is the same for all cycle
formats (which we only have one). Hence, we can hardcode this into the reduction by
adding a 1

χ(ρ) multiplication at the top.

Now the idea is clear. We just need to prove that Fcf is hard for VW[1] to show
that hook immanants are hard. In the counting world, there is a proof based on fpt
Turing reduction ([FG06, pp. 372ff]). However, it is unclear how to transfer this proof
to our setting. In their proof, they look at two different homomorphisms. Let us call
the first homomorphism of type f which is given by the following description. The
sum of specific homomorphisms from cycles of length k · l to graphs H0, . . . ,Hm where
these are all graphs on k vertices not identical under isomorphism. The second type
they look at, let us call it of type g is the following. They look at homomorphisms
from cycles of length k · l to a given graph G4, let us call them of type g. While
they could use relations of the number of homomorphism between type f and type
g for different parameters l, it is unclear how to transfer these in our settings. Our
homomorphisms of type f would have different variables from the homomorphisms of
type g and we would need to rename these somehow.

Conjecture 4.1. {(CF (k,1,...,1)|∀i,xi→1, k)} is hard for VW[1].

4.8 Open Problems
Our theory of fixed parameter tractable arithmetic problems is far from complete.
We will discuss some further directions for this topic.

The class VFPT is very sparsely populated at the moment. While it seems easy to
transfer Generating Functions based on well known fixed parameter tractable counting
problems we can study this class with respect to the setting. A good start would be
to study various homomorphism polynomials as in Chapter 5. As we will discuss in

4To be precise they look at directed versions of the graphs.

82

4.8 Open Problems

that chapter there exists a relationship between homomorphism polynomials and VP.
Can we get more insight into this by finding more homomorphism polynomials in
VFPT?

Secondly, an important question regarding the complexity of determinant and
permanent would be to find various parameters for these problems where they are
actually fixed parameter tractable. But even proving hardness for these problems for
natural parameters would give us some insight into the complexity of these problems.

As for the hardness, there are some obvious hanging threads. Solving Conjecture 4.1
would be an interesting result. Recently, Curticapean [Cur15] gave a different proof
for hardness of k-cycles in the counting setting. Can we perhaps transfer this proof?

Finally, research into different fixed parameter tractable models can be very inter-
esting. With our omission of summation gates, finding a different model which either
includes bounded summation gates or even unbounded one would be interesting. Not
only would the model be more flexible in representing polynomials but it also would
be closer to encompassing the power of arithmetic circuits.

83

5 Homomorphism Polynomials

The following chapter is an extension of the work submitted to WALCOM [Eng15].

5.1 Introduction to Homomorphism Polynomials

Graph homomorphisms of undirected graphs are studied because they give important
generalizations of many natural questions (k-coloring, acyclicity, binary CSP and
many more cf. [HN04]). One major theorem, proved by Lovász [Lov67], showing the
importance of homomorphisms is the following. Two graphs H and H ′ are isomorphic
if and only if for all G the number of homomorphisms from G to H and from G
to H ′ are identical. Similarly, the relation to coloring is obvious as every graph
homomorphic to a complete graph Kk (if we disregard self-loops) is k colorable but
the other relations mentioned earlier are more involved. We can also look at vertex
cover. Let H be a single edge and a loop at one vertex. Then the homomorphisms
from G to H give us the vertex covers in G. These are just some examples of the
usefulness of graph homomorphisms.

One of the first results on the decision problem of graph homomorphisms was given
by Hell and Nešetřil [HN90]. They showed the following dichotomy: Deciding if there
exists a homomorphism from some graph G to a fixed graph H is polynomial time
computable if H is bipartite and NP complete otherwise. Some different but related
problems were studied by Chekuri and Rajaraman [CR00], Dalmau, Kolaitis, and
Vardi [DKV02], and Freuder [Fre90]. They looked at the constraint satisfaction side of
the graph homomorphism problem which was finally generalized by Grohe [Gro07]. He
studied the problem even for arbitrary relational structures. In summary, they looked
at the following graph homomorphism problem: For a restricted graph class G, decide
if a given graph G ∈ G is homomorphic to a given graph H. Grohe indeed showed that
the problem is fixed parameter tractable if every graph in the graph class has bounded
treewidth1 and is otherwise W[1]-hard. In contrast to the decision problem they could
not show a dichotomy for the problem in relation to P and NP. Such a dichotomy
seems unlikely as they give a reduction to the Log-Clique problem. The Log-Clique
problem is defined by deciding if a given graph G has a clique of size at least logn
and was studied by Papadimitriou and Yannakakis [PY96]. It is contained in NP but
unlikely to be complete for NP and similarly unlikely to be in P. NP completeness
would imply that NP ⊆ DTIME(nO(logn)). Recently, a new conditional lower bound
was found for the first problem. Fomin, Golovnev, et al. [FGKM15] showed that any

1Actually, he showed that if every graph in the graph class is homomorphic to a bounded treewidth
graph then the problem is fixed parameter tractable.

85

5 Homomorphism Polynomials

algorithm needs time at least 2Ω(n logh
log logh) if the Exponential Time Hypothesis holds.

Later, focus shifted onto the counting versions of these two sides where we have to
count the number of homomorphisms. Dyer and Greenhill [DG00, DG04] solved the
first side in the counting case and Dalmau and Jonsson [DJ04] the second. Let us state
the results precisely. Dyer and Greenhill showed that counting graph homomorphism
from any graphG to a fixed graphH is #P complete unless every connected component
of H is either an isolated vertex without a self-loop, a complete graph with all self-loops
or a complete bipartite graph without self-loops. Dalmau and Jonsson, who looked at
the second case, gave a similar answer as in the decision case. Counting the number
of homomorphisms from a given graph G ∈ G to a given graph H is fixed parameter
tractable if all graphs in G have bounded treewidth otherwise it is complete for #W[1].
In fact, the algorithm for the bounded treewidth case was already shown by Flum
and Grohe [FG04] in their seminal paper about parameterized counting complexity.

Later this problem was extended by Bulatov and Grohe [BG05] to graphs with
multiple edges. They also noticed some interesting connections to statistical physics
and constraint satisfaction problems. Statistical physics defines the partition function
as follows:

ZA(G) =
∑

ζ:V (G)→[m]

∏
(u,v)∈E(G)

Aζ(u),ζ(v)

where A ∈ Km×m. In essence it counts the number of homomorphisms from some
graph G to a fixed graph given by the matrix A. Research continued to have dichotomy
theorems for different type of matrices A, with two noticeable works being by Goldberg,
Grohe, et al. [GGJT10] who proved a dichotomy for real valued symmetric matrices A
and by Cai, Chen, and Lu [CCL13] who showed a dichotomy for all symmetric matrices
with complex entries. Even today the research field for the counting case is very active
as the recent results on counting specific restrictions of homomorphisms such as in
[GJ14, GGR14, GGR15] show. A good, short introduction to graph homomorphism
can be found in the excellent introduction of Cai, Chen, and Lu [CCL13] and a richer
historic background in [GT11].

However, the arithmetic circuit complexity of graph homomorphisms was still
open. The previous results could only show that the hard cases have no polynomial
size circuits for counting the number of homomorphisms but it was unclear if these
problems are VNP complete. Recently, a dichotomy for graph homomorphisms was
shown by Rugy-Altherre [Rug12]. While not explicit, this paper also uses generating
functions as the base structure which we explained in Section 2.4. However, their
result was for the first side of the graph homomorphism problem.

In this chapter we look at a problem related to the first side of the problem to
complete the picture for the arithmetic circuit world. In words, we will look at all
graphs from some graph class G that are homomorphic to a given graph H and encode
these graphs into polynomials. In contrast to [DJ04] we will look at the arithmetic
circuit complexity in terms of VP and VNP instead of a parameterized counting version.
Hence, we could not get a general dichotomy theorem. We will look at cycles, cliques,
trees, outerplanar graphs, planar graphs and graphs of bounded genus (for various

86

5.2 Model and Notation of Homomorphism Polynomials

different genera).
Recently, a new use was found for homomorphism polynomials. They can be used

to give natural characterizations of VP independent of the circuit definition as seen by
Durand, Mahajan, et al. [DMMRS14]. They showed that all homomorphisms from
a balanced binary tree with n leaves to a complete graph on n6 vertices on specific
weights is VP complete. However, their polynomially differs from the one presented
here. They looked at a polynomial encoding all homomorphism from a given graph G
to a given graph H where they have weights on edges and vertices. Our polynomials
encode all graphs from some graph class homomorphic to a given graph H. While
these two problems are very different, we can see our result as showing that that
some straightforward candidates originating from the counting world do not give a
characterization of VP.

Section 5.2 gives a formal introduction to our model. We prove our dichotomies in
Sections 5.3.1 to 5.3.6 where the constructions in Sections 5.3.4 to 5.3.6 build upon
each other. The construction in Section 5.3.3 will use a slightly different model as
the other sections. We will give a brief introduction into concepts from graph genus
in Section 5.2.2 and the completeness proof for these homomorphism polynomials in
Section 5.3.6.

5.2 Model and Notation of Homomorphism Polynomials
We refer the reader to Chapter 2 and especially Section 2.4 for graph properties and
for some complete problems we need. However, we first introduce some simple facts
about planar and outerplanar graphs. After this in Section 5.2.2 the concept of graph
genus will be introduced to later define some interesting graph classes. A rigorous
description of the problem will be given in Section 5.2.3.

5.2.1 Facts about Planar and Outerplanar Graphs
This subsection gives some background knowledge on the few graph classes we use. If
the reader is familiar with planar and outerplanar graphs and minors he is free to
skip to the next subsection.

We first state what a minor of a graph is.

Definition 5.1. G′ is a minor of a graph G if G′ can be obtained by deleting edges or
contracting edges. Here, contracting the edge (u, v) deletes the edge (u, v) adds N(u)
to N(v) and deletes the vertex u.

We call the operation edge deletion and edge contraction. The inverse operation for
edge contraction is denoted by edge subdivision.2

Definition 5.2. A graph G is called planar if it can be drawn in the plane without
any edges crossing.

2As the reader might notice there are multiple inverses of one contracting operation depending on
how we split the edges. It will be clear from the proof which one we took.

87

5 Homomorphism Polynomials

Figure 5.1: Crosscap

This is a well known graph class. There are two well known facts about planar
graphs which we state in the next fact.

Proposition 5.1. Let G = (V,E) be a finite planar graph. Then

• If |V | ≥ 3 then |E| ≤ 3|V | − 6.

• It does not have K3,3 or K5 as a minor.

The second fact is the famous Kuratowski’s theorem. We will only use the second
fact in this chapter but state the first for completeness.

Next we will briefly state the definition for outerplanar graphs which is a well known
restriction of planar graphs.

Definition 5.3. A graph G is called outerplanar if it is planar and it can be drawn
such that every vertex belongs to the unbounded face of the drawing.

We can have a similar minor theorem for outerplanar graphs.

Proposition 5.2. A graph G is outerplanar if and only if G does not have K3,2 as a
minor.

5.2.2 A Short Introduction to Graph Genus

As we later need graph genus in Section 5.3.6, we will give a short introduction to this
topic here. However, this introduction is not mathematically rigorous and interested
readers should look into the textbooks [Arc96] or [Die00] and accompanying literature
for a precise handling. Instead we will focus on building an intuition while keeping
precise definitions for later reference. To keep this introduction short and useful, we
will not define every concept used.

Definition 5.4. We call Σ a surface if it is a compact Hausdorf topological space.

Intuitively, the reader can imagine it as being a space where every point has an ε
environment around it homeomorphic to some open subset of the euclidean plane in
two dimensions. Surfaces give us an extension of a 2 dimensional space.

Definition 5.5. We call a surface orientable if it contains no subset that is homeo-
morphic to a mobius strip.

88

5.2 Models and Notation

(a) Orientable genus one sur-
face

(b) Non-orientable genus one
surface

(c) Orientable genus two sur-
face

Figure 5.2: Surfaces with different genera

Intuitively we can assume a surface be constructed from a disc by either attaching
handles or crosscaps to it. Handles, similar to their real life counterpart, give a loop
protruding from the surface. Crosscaps are constructed by gluing the same colored
edges in Figure 5.1 together such that the directions match.

Now we can define the three genus definitions we will use. Let Σ be a surface. We
call a sphere or disc to have orientable, non-orientable and euler genus zero. We can
iteratively construct a surface of genus g for the different types of genera with the
following definition.

Definition 5.6.

• Σ has orientable genus, γ(Σ), g if it can be constructed from adding g handles
to the surface.

• Σ has non-orientable genus, γ′(Σ), g if it can be constructed from adding g
crosscaps to the surface.

• Σ has euler genus γ̄(Σ) =
{

2− 2g if the surface can be constructed from g handles,
2− g if the surface can be constructed from g crosscaps.

Sometimes the euler genus is named the general genus.
For illustration, we can look at the following figures (Figures 5.2a to 5.2c) for

examples of surfaces.
Now we can talk about embedding graphs into these surfaces.

Definition 5.7. We call a graph G = (V,E) embeddable into a surface Σ if we can
map every vertex v to a point on the surface Σ and edges to paths on Σ such that no
two edges cross each other. We call the mapping from vertices to points the embedding
of G onto Σ.

Intuitively, the handles and crosscaps allow us “hop over” some edges without
crossing an actual edge. The next example should make this clear.

In the following we will talk about genus (without any further specification) if it
doesn’t matter which genus we talk about. It is easy to see that a planar graph has

89

5 Homomorphism Polynomials

(a) Orientable genus one graph (b) Non-orientable genus one graph

Figure 5.3: Graph Genus

genus zero. And that the graph in Figure 5.3a has genus one. Notice, that the graph
has a higher number of crossings than genus. Indeed, the genus is only a lower bound
for the number of crossings a planar drawing of a graph has to have. The graph in
Figure 5.3a is complete bipartite graph on 6 vertices, K3,3 with edges colored for
clarification.

We also show a graph with non-orientable genus one in Figure 5.3b. Here we have
taken the mobius strip but for clarity did not yet glue the red edges together. The
graph is also K3,3.

Definition 5.8. We call a graph G having orientable genus γ(G), non-orientable
genus γ̂(G) or euler genus γ̄(G) if the specific condition holds:

γ(G) = min{γ(Σ) | G can be embedded into Σ},
γ̂(G) = min{γ̂(Σ) | G can be embedded into Σ},
γ̄(G) = min{γ̄(Σ) | G can be embedded into Σ}.

The genus of a graph gives us now a good restriction on the type of graphs we can
have. However, dealing with genus and proving by hand that a graph has a specific
genus is rather hard. As it turns out it is even hard to test if a graph has a fixed genus
as the problem is NP complete ([Tho89]). There exists a fixed parameter tractable
algorithm by Filotti, Miller, and Reif [FMR79] or the more recent algorithm with
double exponential time in the genus but linear time in the size of the graph by Mohar
[Moh99]. As we only need NP completeness and not the fixed paramter tractable
algorithms, we state the theorem by Thomassen.

Theorem 5.2.1 ([Tho89]). Let k be fixed. Testing if a given graph G has γ(G) ≤ k
or γ′(G) ≤ k or γ̄(G) ≤ k is NP complete respectively.

While the proof for non-orientable genus was not given by Thomassen it follows
from his proof, as was mentioned in [Arc96].

However, we can even use an easier approach. We only need to be able to construct
specific graphs with a fixed genus. Intuitively, we should be able to take two graphs

90

5.2 Models and Notation

with genus one, connect them in a specific way (or create edges such that both graphs
are fully enclosed by them) to construct a graph with genus two, the sum of the genera
of both graphs. While this looks simple to prove, it is actually more complicated
which a simple try on the part of the reader will show. Let us start looking at the
orientable genus first.

An additivity theorem was shown by Battle, Harary, and Kodama [BHK62]. We
first need a way to glue two graphs together we can either glue them together at
vertices, as in the intuition, or on edges.

Definition 5.9 ([BHK62]). G is a vertex (edge) amalgam of H1, H2 if G is obtained
from disjoint graphs H1 and H2 where we identify one vertex (edge) from H1 with
one vertex (edge) from H2.

With this we can state a theorem from [BHK62] to compute the orientable genus
of a given graph.

Theorem 5.2.2 ([BHK62]). Let γ(G) be the orientable genus of a graph G. Let G be
constructed from vertex amalgams of graphs G1, . . . , Gn. Then γ(G) =

∑n
i=1 γ(Gi).

Next we will look at the euler genus which is additive over edge amalgams proven
by Miller [Mil87]. The operation of edge amalgams is associative.

Theorem 5.2.3 ([Mil87]). Let γ̄(G) be the euler genus of a graph G. Let G be
constructed from edge amalgams of graphs G1, . . . , Gn. Then γ̄(G) =

∑n
i=1 γ̄(Gi).

The non-orientable genus is unclear in its additivity property. It was shown by
Stahl and Beineke [SB77] that the non-orientable genus of the blocks differ from the
non-orientable genus of the vertex amalgam by only one. However, this is not useful
for us as we will need to construct graphs with a precise genus. Thankfully, we do
not need an additivity theorem, just the existence of a non-orientable genus k graph
is necessary for us. Let Kn,m be a complete bipartite graph with n vertices on one
side and m vertices on the other side. We then have the following theorem proven by
Mohar [Moh88].

Theorem 5.2.4 ([Moh88]). Let K(k)
n,m be the graph obtained from Kn,m by deleting

an arbitrary set of k edges. Then the non-orientable genus of K(k)
n,m is given by

γ̂(K(k)
n,m) = max{d(m− 2)(n− 2)− k

2 e, 1}

unless n = k,m = k + 1 or n = k + 1,m = k and k even or n = m = k for every k.

This immediately shows that there exists a graph for every non-orientable genus g
which is even constructible.

As a final ingredient we need this short fact.

Proposition 5.3. The orientable genus, non-orientable genus and the euler genus is
closed under edge subdivision.

This is rather easy to see. If we just subdivide our edge we cannot decrease the
genus as the original edge could take the same path as the two new subdivided edges.

91

5 Homomorphism Polynomials

ab

cd

xa,b

xb,d

xc,d

xc,a

Figure 5.4: Graph G

5.2.3 The Problem and Related Definitions

We now formulate our main problems we want to study in this chapter. Let G = (V,E),
H = (V ′, E′) be undirected graphs. A homomorphism from G to H is a mapping
f : V → V ′ such that for all edges {u, v} ∈ E there exist an edge {f(u), f(v)} ∈ E′.
We can define the corresponding generating function as follows.

Definition 5.10. Let HH be the property of all connected graphs homomorphic to a
fixed H. We denote by FH,n the generating function FH,n := GF(Kn,HH).

Let us give a short example for this polynomial. Let H be a triangle and let HH as
above and n = 4. Then all graphs homomorphic to a triangle on four vertices give us
the following polynomial.

GF(K4,HH) = x1,2x2,4x4,1 (1 + x3,1 + x3,2 + x3,4 + x1,3x3,2 + x1,3x3,4 + x4,3x3,2)
+ x1,2x2,3x3,1 (1 + x4,1 + x4,2 + x4,3 + x1,4x4,2 + x1,4x4,3 + x2,4x4,3)
+ x1,3x3,4x4,1 (1 + x2,1 + x2,3 + x2,4 + x1,2x2,3 + x1,2x2,4 + x3,2x4,2)
+ x2,3x3,4x4,2 (1 + x1,2 + x1,3 + x1,4 + x2,1x1,3 + x3,1x1,4 + x2,1x1,4) .

Either it is a triangle or a triangle with one edge connected to the fourth vertex or it
is a triangle with the remaining vertex connected by two edges. The polynomial gives
us exactly these graphs.

We can now continue and state the first dichotomy theorem.

Theorem 5.2.5 (Rugy-Altherre [Rug12]). If H has a loop or no edges, FH,n is in
VAC0 and otherwise it is VNP complete under c-reductions.

Instead of looking at all graphs, we want to look at a restricted version. What
happens if we do not want to find every graph homomorphic to a given H but every
cycle homomorphic to a given H? We state our problem in the next definitions.

Definition 5.11. Let En be a graph property. Then FH,nEn is the generating function
for all graphs in En on n vertices homomorphic to a fixed graph H.

92

5.2 Models and Notation

Let us give a simple example. Let G be the graph from Figure 5.4 and HH,En all
trees homomorphic to a path of length two. Notice, that this includes connected
components which are only single vertices. Hence the trees do not have to span the
graph. As all trees are homomorphic to a path of length two, we get the following
polynomial.

GF(G,HH,En) = xa,bxb,cxc,d + xb,cxc,dxd,a

+ xc,dxd,axb,c + xd,axa,bxb,c

+ xa,bxb,c + xb,cxc,d + xc,dxd,a

+ xd,axa,b

+ xa,b + xb,c + xc,d + xd,a.

Let us now change the graph class to be all triangles, we notice that no triangle
is homomorphic to a path of length two and hence our polynomial GF(G,HH,E ′n) is
zero. This shows that similar settings can give very different sets of graphs and hence
polynomials. In general it is unclear how easy or hard the resulting polynomials are.
We will look at the following polynomials in this chapter.

Definition 5.12. We define the following graph polynomials.

• FH,ncyclen where cyclen is the property where one connected component is a cycle
and the others are single vertices in a graph of size n.

• FH,ncliquen where cliquen is the property where one connected component is a clique
and the others are single vertices in a graph of size n.

• FH,ntreen where treen is the property where one connected component is a tree and
the others are single vertices in a graph of size n.

• FH,nouterplanarn where outerplanarn is the property where one connected component
is a outerplanar graph and the others are single vertices in a graph of size n.

• FH,nplanarn where planarn is the property where one connected component is a
planar graph and the others are single vertices in a graph of size n.

• FH,nγ,k,n where γ, k, n is the property where one connected component has orientable
genus k and the others are single vertices in a graph of size n.

• FH,nγ̂,k,n where γ̂, k, n is the property where one connected component has non-
orientable genus k and the others are single vertices in a graph of size n.

• FH,nγ̄,k,n where γ̄, k, n is the property where one connected component has euler
genus k and the others are single vertices in a graph of size n.

We will use the notation Fcycle, Fclique, F tree, Fouterplanar, Fplanar, Fγ,k, F γ̂,k and
F γ̄,k as a shorthand.

93

5 Homomorphism Polynomials

5.3 Dichotomies
We now assume all our circuits to be over the field of the real numbers R. The
reductions also work over C.

Before we show the dichotomies we need one hardness proof which will be very
useful to us throughout this section.

Lemma 5.3.1. Let HP is the property where the single connected component is a
Hamiltonian path from vertex denoted by one to vertex denoted by n that are not
cycles. Then GF(Kn,HP) is VNP-hard.

Proof. We will reduce this to Hamiltonian cycle on Kn. Let F be the polynomial
GF(Kn,HP). We will compute

∑
1<i<j<n HOMC(1,i)

1 (HOMC(n,j)
1 (F)). Now we can

replace every x{u,n} with x{u,1}. This gives us now all Hamiltonian cycles on n− 1
vertices.

In general we call the Hamiltonian paths without cycles Hamiltonian paths.
Almost all of our dichotomy proofs work the following way. Given the polynomial of

all graphs in some specific graph class homomorphic to H we will extract only a sum
of some specific monomials with the help of homogeneous components. In general,
we restrict all the sets of graphs to have a specific type. We can then evaluate some
variables in this sum with constants to get the sum over all monomials for Hamiltonian
cycles, Matchings or Hamiltonian paths. This will yield the reduction. Most of our
polynomials will be hard even if H has just one edge.

5.3.1 Cycles
As a first graph class we look at cycles. The proof for the dichotomy will be relatively
easy and gives us a nice example to get familiar with homomorphism polynomials
and hardness proofs.

Our main dichotomy for cycles is the following theorem.

Theorem 5.3.2. If H has at least one edge or has a self-loop, then Fcycle is VNP
complete under c-reductions. Else it is in VAC0.

The next simple fact shows us which cycles are homomorphic to a given graph H.
Let ev(n) be defined as n if n is even and n− 1 if n is odd.

Proposition 5.4. Given H a graph with at least one edge, all cycles of length ev(n)
are homomorphic to H.

It is easy to see that by folding the graph in half we get one path which is trivially
homomorphic to an edge. Our hardness proof will only be able to handle cycles of
even length. Luckily this is enough to prove hardness.

Lemma 5.3.3. Let UHCev(n),even be the graph property of all cycles of length ev(n).
Then GF(Kev(n),UHCev(n),even) is VNP-hard under c-reductions.

94

5.3 Dichotomies

Proof. If n is even, we can immediately use the hardness of GF(Kn,UHCn) (cf.
Theorem 2.4.1).

If n is odd, we need to fix one edge to get all cycles of some even length. We do this
by evaluating GF(Kn+1,UHCev(n),even). Notice how Kn+1 now has ev(n+ 1) = n+ 1
vertices. We now need to contract one edge to get the polynomial GF(Kn,UHCn).
We do this with the following argument. We enforce, via taking the homogeneous
component of degree one of xn+1,1, all cycles to use xn+1,1. Additionally to this
restriction, we will sum over all our given cycles where x1,i and xn,j are enforced for
i < j (cf. the proof of Lemma 5.3.1). We then replace xi,n+1 by xi,1 for all i and set
xn+1,1 to one. This gives us all cycles of length n.

To prove the contraction let us look at the following argument. Let the edge
(n+ 1, 1) be the edge we contract and let i, j be the points picked in the sum. If we
connect i, j with a path through every point we can complete this into a cycle only
one way. Notice, that every different choice of i, j will construct a different cycle if we
contract 1 and n+ 1 and that this construction even works for the characteristic of
the field being equal to two.

This concludes our reduction to GF(Kn,UHCn). As our circuit can easily divide
by two if the polynomial is over any field.

Later proofs will also use the contracting idea from the previous lemma. A simple
case distinction will give us the proof of the theorem.

Proof of Theorem 5.3.2. If H has at least one edge, we know from Proposition 5.4
that all even cycles are homomorphic to H and by this represented in our polynomial.
If we take the homogeneous components of degree ev(n), we extract all even cycles of
length ev(n). This is VNP-hard via the previous Lemma (5.3.3).

If H has a self-loop, we can map all cycles to the one vertex in H. We can then
extract the Hamiltonian cycles of length n by using the homogeneous degree of n as
all cycles are homogeneous to a self-loop.

If H has no edge, our polynomial is the zero polynomial as we cannot map any
graph G containing an edge to H.

Using Valiant’s Criterion, we can prove membership of Fcycle in VNP (Theo-
rem 2.1.1).

5.3.2 Cliques

Here, we will not use cycles in the hardness proof but use the clique polynomial which
was defined by Bürgisser, directly. The completeness proof is an easy exercise. In
contrast to the other results, we show that computing Fclique is easy for most choices
of H.

Theorem 5.3.4. If H has a self-loop then Fclique is VNP complete under c-reductions.
Otherwise Fclique is in VAC0.

95

5 Homomorphism Polynomials

Proof. Let H have no self-loop. We can use that H has constant size which implies
that H has a maximal subgraph which forms a clique or H has no clique. We include
cliques of size two (edges) and of size one (single vertices without a self-loop) in this.

Let us now look at the case for cliques of size c. We can compute Fclique explicitly by
a brute-force algorithm. The number of monomials can be bounded by the following
argument. There are

∑c
i=1

(n
i

)
many different cliques. As we can bound

(n
i

)
by ni we

get an upper bound of cnc monomials. Further inspection yields, that constant depth,
unbounded fan-in circuits of polynomial size are enough to compute all cliques up to
size c.

Let H now have one self-loop. The fact that all cliques are homomorphic to a given
graph with a self-loop tells us that Fclique contains different monomials for all cliques
of size i for i = 1, . . . , n. The VNP hardness follows via Theorem 2.4.2.

The empty graph has the zero polynomial.
As a polynomial time deterministic machine can easily check if a given instance is

a clique, we can use Valiant’s Criterion to show membership in VNP.

5.3.3 Trees

As the new characterization of VP had a specific tree structure we want to look at
the general problem. In previous sections our polynomial just contained the edges
of the graph but for this section we need a slightly different model. But first, let us
motivate why this is necessary. In this introduction, we will keep the definitions of
the homomorphisms and graph classes informal. If our graph class is the set of all
spanning trees then we can use a slight modification of Kirchhoff’s algorithm. We set
our matrix to have the variables xi,j and the Laplacian to be ai,j =

∑
j′∈N(j) xi,j′−xi,i

where N(j) is the neighborhood of j excluding j. The determinant of (ai,j) gives us all
spanning trees of the graph. As trees are homomorphic to an edge we get immediatly
the fact that computing all homomorphisms from all spanning trees is easy.

However, we generally defined our homomorphisms polynomials to have one con-
nected component which can have smaller size than n. Another try might be to get all
forests instead of all trees. It is unclear how we can modify Kirchhoff’s algorithm to
achieve this. Just inserting 1 +xi,j for variable xi,j gives us a weighted sum of all trees
as we will count different forests a different number of times. In fact, the problem of
counting forests is #P-hard as it is equal to evaluating the Tutte polynomial at the
point (2, 1) which was proven to be hard by Jaeger, Vertigan, and Welsh [JVW90].

Instead we will use our original definition for trees3 and the following modification
to our generating function. If a monomial in our polynomial would select the edges
E′ we also select the vertices {u, v | {u, v} ∈ E′} in our monomial. In essence, we
will also select the vertices forming the edges, giving us polynomials with variables
X = {xe | e ∈ E} ∪ {xv | v ∈ V }. We will later give details why this special form has
an advantage.

While this might look rather arbitrary, a similar generating function was used in
3Remember, here one connected component is a tree and the others are single vertices.

96

5.3 Dichotomies

s

{u, v}

{u, v′}

{u′, v}

u

v

u′

v′

HOMCnHOMC
n
2

(a) Reduction from Trees to matching

s

{u, v}

{u, v′}

{u′, v}

u

v

u′

v′

(b) Invalid Construction

[DMMRS14] but augmented with an additional function α : V → N as the power of
the variable xv and some restrictions. As they can show equality of their model with
VP there is hope that this addition to our model does not increase the complexity.
While we give hardness results, it is unclear if the original problem is VNP-hard or if
our extension made the model to powerful.

Theorem 5.3.5. If H contains an edge, then F tree is VNP complete under c-
reductions. Otherwise F tree is in VAC0.

Proof. We use a reduction from connected partial trees to perfect matchings. It is
obvious that a tree is always homomorphic to one edge.

We want to compute a matching on a graph given by (V,E). We can build a
graph as in Figure 5.5a from a Kn by setting the weight of every edge not given
to zero. In detail, our graph has vertices {v ∈ V } ∪ {ve | e ∈ E} ∪ {s}. We add
the edges {(u, v), u}, {(u, v), v} and {s, ve} for every e ∈ E. Vertices of the form
{ve | e ∈ E} will be called edge-vertices in this proof. Now as the vertices are given
by our polynomials we can take the homogeneous components over vertices. We take
the homogeneous components of degree n/2 over vertices {ve | e ∈ E} and of degree
n of vertices v ∈ V . Our matching in the original graph is given by the edges (s, ve).
Every matching in the original graph has obviously a tree in our graph.

The other direction is left. Given a tree in our graph, we know that only n/2
edge-vertices are selected. As every vertex v ∈ V has to be connected by an edge,
edge-vertices have to go to pairwise different sets of v ∈ V . Hence we can compute a
perfect matching which is as hard as computing the permanent.

Valiant’s Criterion will again show the membership.

We crucially need the fact that we get the adjacent vertices for free in our homo-
morphism polynomials. The reader might think restricting the edges out of s might
suffice but this is not the case. Let us look at Figure 5.5b where we removed the
restriction that a specific number of vertices have to be selected. The thick path then
gives us a valid tree but an invalid matching. In this case our monomial would be

xs,{u,v}x{u,v},vx{u,v},ux{u,v′},ux{u′,v},v′

97

5 Homomorphism Polynomials

(a) Triangle graph
(b) Illustration of graph with

buddy vertices

c

p(v) u u′

v

(c)

Figure 5.6

if we ignore the variables xv for all v. We can see that replacing every edge xa,b with
the variable yaybxa,b for vertices a, b in our constructed graph and new variables ya,
yb can be used for extracting homogeneous components. However, the monomial
above has already degree 4 in the new y variables, namely yvyuyuyv′ is a factor of our
monomial. Hence, this cannot be used to forbid the wrong instances.

It is unclear how to forbid this general behaviour without using our modified
generating function. Splitting the vertices into two parts does not help but splitting a
vertex into n many different vertices might. However, taking homogeneous components
then would give us exponentially sized circuits. If we restrict the graph such that
we would always select all edges outgoing from s we would prevent this case but the
reconstruction of a matching is non trivial.

5.3.4 Outerplanar Graphs
Next we will show a dichotomy for outerplanar graphs. We start with the case of a
triangle homomorphic to H. We will use the case of triangles homomorphic to H as
a simple stepping stone.

Lemma 5.3.6. If a triangle is homomorphic to H then Fouterplanar is VNP-hard
under c-reductions.

Proof. We have given an outerplanar graph that is homomorphic to a triangle and
want to compute the Hamiltonian path polynomial.

We will enforce a construction as in Figure 5.6a to occur exclusively in a polynomial
p we compute with the help of homogeneous components from Fouterplanar. For this,
we pick an arbitrary vertex c and enforce all n outgoing edges from this vertex via
homogeneous components. We further enforce the whole graph to have n + n − 3
edges. The graph given in Figure 5.6a is outerplanar as the outerplanar embedding
(where all vertices belong to the unbounded face) is given in the figure. Let us call
the set of graphs represented by the polynomial p now S. We still need to proof that
all graphs in S are isomorphic to Figure 5.6a.

We call the implied order of the graph, the order of the outer circle of vertices
starting from the star and ending at it again without any edges crossing. As there
are two such orderings let us fix an arbitrary one for every graph. Let us now look at
a graph which has not an implied order of the outer vertices. This implies that there

98

5.3 Dichotomies

exists a vertex v which has a degree of at least 4. With our ordering every vertex
(except c) up to and including the later defined vertex v has a single predecessor.
Furthermore, let v be the first vertex with a degree of at least 4 in this order and let
p(v) be the predecessor of v in this order. Notice that by enforcing all n instead of
just n− 2 edges starting at the center, a predecessor p(v) 6= c has to exist.

Let u, u′ denote the other vertices adjacent to v different than p(v) and c. As we
enforced edges from c to every vertex, we can easily see the K2,3 with v, c on the one
side and u, u′, p(v) on the other side. Hence the graph cannot be outerplanar. This
implies that every vertex except c and the two neighbouring vertices have degree at
most 3. Enforcing the overall number of edges gives us at least degree 3 and hence
implies equality.

Now we the sum of all monomials corresponding to the graph in Figure 5.6a. The
outer path gives us almost all Hamiltonian paths. In fact, it gives us all permutation
of n− 2 vertices. We need to remove the center of the star by evaluating the edges
with one as well as evaluate the other enforced edges with one. This polynomial is
now VNP-hard by Lemma 5.3.1. Taking the homogeneous components as described
only increases the circuit by a factor of n.

It is easy to see that our graph is homomorphic to a triangle.

With this in mind we can now show a completeness result.

Theorem 5.3.7. If H has an edge then Fouterplanar is VNP complete under c-
reductions and otherwise trivial.

Proof. For every vertex v, except c, we choose a buddy vertex v′. We enforce the edge
between every vertex and his buddy vertex and set the edge between a buddy vertex
and c to zero. Additionally, we set all edges from v to any other non buddy vertex
to zero and all edges from a buddy vertex to a different buddy vertex to be zero. In
essence this splits every vertex into a left and right part (see Figure 5.6b). Similar to
the proof of Lemma 5.3.6 we enforce edges from c to v for every non buddy vertex
and to take exactly n+ 2n− 3 edges. Let us call the sets of all graphs here S′ and
the set of all graphs from Lemma 5.3.6 S.

Let us now prove that the set of all graphs constructed here and in Lemma 5.3.6
are of the same size. Take an outerplanar graph G′ from S′. We can then contract
the edges between a vertex and its buddy vertex. This gives us a graph G in S. If
the combined degree of a vertex and its buddy vertex (disregarding the connecting
edge) would be greater than 3 G′ would be not outerplanar. The reason for this is
again the contraction. As we can contract it to a graph with a vertex of degree 4 of
the form in S the proof of Lemma 5.3.6 would tell us that this graph would be not
outerplanar. As this graph is a minor of the graph in S′, G′ would not be outerplanar.
In essence, our graph with combined degree greater than 3 can be constructed from a
G by adding and subdividing edges which can be constructed from K2,3 if G was not
outerplanar.

For the other direction a similar proof holds. If we have given a graph as in
Figure 5.6a we can subdivide the edges as stated earlier and have a graph of the form

99

5 Homomorphism Polynomials

a

b

Figure 5.7: Planar Gadget

Figure 5.6b.
Now that we know that the sets of graphs S and S′ are of the same size, we need

to transfer the hardness. This is easy as we can do the following variable replacement.
Let us look at the variable xu′,v corresponding to the edge (u′, v), where u′ is the
buddy vertex of u and v is a non buddy vertex. We can evaluate this with xu,v.
Similarly, for the edge (v′, u) we can evaluate xv′,u with xv,u. Finally, we evaluate
xv,v′ with 1. As there exists a bijection from S to S′ and our replacement is also
bijective, we constructed the polynomial Fouterplanar as in Lemma 5.3.6 even if H is
homomorphic to an edge.

Taking the homogeneous components increases the circuit size by a factor of n.
We know by [Mit79] that checking if a graph is outerplanar is possible in linear

time. With this we can use Valiant’s Criterion to show the membership.

5.3.5 Planar Graphs

The next lemma will show that we can use homomorphisms restricted to planar graphs
to construct all permutations of a set of vertices.

Lemma 5.3.8. All graphs isomorphic to Figure 5.7 with the thick edges fixed and
n+ 2 + 2(n+ 2) edges required contain all possible paths on a set of vertices we can
denote by v′1, . . . , v′n.

Proof. Take an embedding in the plane of the graph without any crossings. If we
show that every vertex has at most one edge going to the right, it follows that the
set of vertices from left to right ordered is a permutation of the vertices. By slightly
adjusting this to exclude the first and last two vertices and the vertices denoted by a
and b we get a path for these vertices. We call these vertices v′1, . . . , v′n.

Let us look at the following subgraph with the left to right ordering. Let v be a
vertex with two right successors u, u′ and a predecessor p(v). By construction the
predecessor always exists. We denote the top and bottom vertex by a and b in our
graph. We can now build a K3,3 minor in the following way. S1 = {v, a, b} and
S2 = {u, u′, p′}. As a and b are connected to every vertex we only need to check that u
is connected to u, u′ and p which is by assumption. This proves that via edge deletion
our graph would have a K3,3 minor if the vertices would not give us a permutation.

100

5.3 Dichotomies

1

2 3

4
5

6 7

8

(a) Gadget (b) Two Gadgets (c) Gadget with planar gadget

Figure 5.8

Theorem 5.3.9. If H has an edge then Fplanar is VNP complete under c-reductions.
Otherwise Fplanar is in VAC0.

Proof. We again get all paths by enforcing our polynomial to have the graph from
Figure 5.7. By Lemma 5.3.8 this gives us all path which is VNP-hard by Lemma 5.3.1.

However, this graph is not yet homomorphic to a single edge. To accomplish this,
we will use a graph of size 2n. We, as in the outerplanar case, enforce every vertex,
except a and b, to have a buddy vertex uv. Then we subdivide the edge (a, v) and (b, v)
for every original, meaning none buddy, vertex v with a new vertex v′a, v′b respectively.
This will give us for every part a square consisting of the vertices a, v, v′a, uv and the
square b, v, v′b, uv.

Now it is easy to see that we can fold a to b which leaves us with a grid of height
one. A grid can be easily folded to one edge. The size of the circuit is increased by a
factor of at most 2n.

As testing planarity is easy, we can use Valiant’s Criterion to show membership.

5.3.6 Genus k graphs
With the planar result in place we can use the simple proof strategy. Construct a
genus k graph where we append the planar construction. If we now enforce all our
graphs in the homomorphism polynomial to have these graphs our genus bound will
ensure that our planar gadget gives us all Hamiltonian paths of vertices. Of course
this holds only if the combination of the genus k graph and the planar construction
does not reduce the genus.

Lemma 5.3.10. The graph in Figure 5.8a has orientable genus one.

Proof. We can use the given embedding with one handle for the crossing in the middle
to show an upper bound of one.

We again construct a K3,3 with the sets S1 = {2, 1, 6′}, S2 = {3, 4, 7′} where 6′ is
the vertex constructed from contracting the edge (5, 6) and 7′ from the edge (7, 8).
And hence the graph is not planar and has a lower bound for the orientable genus of
one.

Now we can use Theorem 5.2.2 to glue these graphs together. This now gives us
immediately the result that a graph constructed as in Figure 5.8b with k gadgets has
orientable genus k.

101

5 Homomorphism Polynomials

Figure 5.9: Non-orientable Genus one graph

Theorem 5.3.11. If H has an edge then Fγ,k is VNP complete under c-reductions
for any k. Otherwise Fγ,k is in VAC0.

Proof. With Theorem 5.2.2, Lemma 5.3.8 and the construction in Figure 5.8 we are
almost done. Because we enforced a orientable genus k graph to occur. All graphs
that homomorphic to the planar gadget have orientable genus zero and hence are
planar. Therefore, as in Lemma 5.3.8 we can extract all Hamiltonian paths. This is
VNP-hard according to Lemma 5.3.1.

The only thing left to do is to modify our graphs such that they are homomorphic
to an edge without violating the properties. It is clear that we can fold our orientable
genus one gadgets together. If we then subdivide the edge (1, 3) and (2, 4) (which
keeps our block property) we can first fold 7 to 5 and 3 to 1. Folding then again 6 to
8 and 2 to 4 we get a square with two dangling edges. The dangling edges can be
folded onto the square and the square is homomorphic to one edge. This construction
increases the size of the circuit at most by a factor of 14k + 2n. As testing for a fixed
orientable genus is in NP (see Theorem 5.2.1), we can use Valiant’s Criterion to show
membership.

We only need a similar gadget with euler genus one. By the definition of euler genus
it is enough to give a graph with non-orientable genus one. We could use the later
Theorem 5.2.4 to construct but in the interest of the understanding of the reader we
will show a simple graph with euler genus one.

Lemma 5.3.12. The graph in Figure 5.9 has non-orientable genus one and hence
euler genus one.

Proof. It is clear that the graph is not planar. Let us enumerate the vertices coun-
terclockwise with the numbers 1, . . . , 6. The sets {1, 3, 5} and {2, 4, 6} give us a K3,3
minor. It is also clear that we can use one crosscap in the middle to embed this graph
into a surface of non-orientable genus one.

We can also now prove a similar theorem for the euler genus and the non-orientable
genus.

Theorem 5.3.13. If H has an edge then F γ̄,k is VNP complete under c-reductions
for any k. Otherwise F γ̄,k is in VAC0.

Proof. The proof works as in the previous theorem. As every genus is closed under
edge subdivision (Proposition 5.3) and contraction we can similarly augment our

102

5.4 Open Problems

graph to construct a graph homomorphic to one edge. We get again membership with
Valiant’s criterion as testing euler genus is in NP (see Theorem 5.2.1).

Theorem 5.3.14. If H has an edge then F γ̂,k is VNP complete under c-reductions
for any k. Otherwise Fγ,k is in VAC0.

Proof. By Theorem 5.2.4 we now can construct a graph that has non-orientable genus
k. With this we can continue as in the proof of Theorems 5.3.11 and 5.3.13. Notice
that a bipartite graph can always be folded to an edge. Finally, with the fact that
testing for a fixed non-orientable genus is in NP (see Theorem 5.2.1) we get again
membership.

5.4 Open Problems

We have shown many dichotomy results for different graph classes but some classes
are still open. We want to especially mention the case of our graph class being the
class of trees. We mentioned earlier that we can use Kirchoff’s Theorem to find all
spanning trees of a given graph. This, however, does not include monomials of total
degree less than n− 1 which our polynomials include. It is unclear how to decrease
the size of the trees without disconnecting them into forests4. And even constructing
all forests is non trivial. From the algebraic view, the knowledge ends here. In the
counting view, where we solve the task of counting all trees in a graph, a bit more
is known. Goldberg, Grohe, et al. [GGJT10] showed that counting the number of
subtrees that are distinct up to isomorphism is #P complete. This, combined with
our dichotomy for trees including the vertices, gives us a strong indication that the
similar problem is VNP-hard in the algebraic world.

A different expansion of these results would be the case of bounded treewidth. As
mentioned earlier, in the counting version the case of bounded treewidth is indeed
the most general form and completely characterizes the easy and hard instances of
counting graph homomorphisms. Additionally, recent advancements showed that
graph homomorphisms of a specific type characterize VP. Can homomorphism from
graph classes parameterized by treewidth, similar to the counting case, be used for a
complete characterization of VP and VNP?

An interesting research direction would be the case of disconnected graph properties.
Rugy-Altherre looked at the property that any graph is homomorphic to a given
graph H. This includes disconnected graphs with connected components larger than
one vertex. We instead only looked at restricted homomorphisms where one major
connected component exists. It is unclear to the author if our proofs could be adapted
to this case.

Finally, the presented hardness proofs rely solely on the fact that we almost always
get all permutation of a graph for free. Instead we could look at the following model.
Instead of graph properties, we take a graph class without isomorphic copies and then

4Here forests are the set of all edges that do not have any cycle.

103

5 Homomorphism Polynomials

weight the isomorphic copies of the graphs by the sign of their mapping. In essence,
our polynomial would be∑

G∈G

∑
σ∈Sn

ψ(G,H) sgn(σ)
∏
e∈G

xe,σ(e)

where ψ(G,H) is one if there exists a homomorphism from G to H and zero otherwise.
Even the case where G is a fixed graph might be interesting. Here, while the

permutation is still for free, it is also weighted similar to the determinant which
could drastically decrease the complexity of the polynomials. However, while every
graph with their permutations could now easily be constructed with the help of the
determinant, it is unclear how different graphs homomorphic to the same H could be
incorporated.

104

6 Average Case Analysis of Graph
Algorithms on Metric Graphs

The following chapter is based on joint work with Bringmann, Manthey and Rao and
was published in MFCS under [BEMR13].

6.1 Introduction
In this chapter we step away from arithmetic circuits and study general optimization
problems. For large-scale optimization problems, finding optimal solutions within
reasonable time is often impossible, because many such problems, like the traveling
salesman problem (TSP), are NP-hard. Nevertheless, we often observe that simple
heuristics succeed surprisingly quickly in finding close-to-optimal solutions. Many
such heuristics perform well in practice but have a poor worst-case performance. In
order to explain the performance of such heuristics, probabilistic analysis has proved
to be a useful alternative to worst-case analysis. Probabilistic analysis of optimization
problems has been conducted with respect to arbitrary instances (without the triangle
inequality) [Fri04, Kar77] or instances embedded in Euclidean space. In particular,
the asymptotic behavior of various heuristics for many of the Euclidean optimization
problems is known precisely [Yuk98].

However, the average-case performance of heuristics for general metric instances
is not well understood. This lack of understanding can be explained by two reasons:
First, independent random edge lengths (without the triangle inequality) and random
geometric instances are relatively easy to handle from a technical point of view – the
former because of the independence of the lengths, the latter because Euclidean space
provides a structure that can be exploited. Second, analyzing heuristics on random
metric spaces requires an understanding of random metric spaces in the first place.
While Vershik [Ver04] gave an analysis of a process for obtaining random metric spaces,
using this directly to analyze algorithms seems difficult. Let us give a quick overview
how the construction works on the example of the exponential distribution. First we
pick a distance between vertices v1, v2 by the exponential distribution. Depending
on d(v1, v2) we have to pick two new distances such that the triangle inequalities
between v3, v1 and v2 is fulfilled. We do this by restricting and scaling the exponential
distribution to these intervals. With this we can iteratively construct a “most random
metric space” as Vershik calls it.

In order to initiate systematic research of heuristics on general metric spaces, we
use the following model, proposed by Karp and Steele [KS85, Section 3.4]. Given an
undirected complete graph, we draw edge weights independently at random according

105

6 Algorithms on Metric Graphs

to exponential distributions with parameter one. The distance between any two
vertices is the total weight of the shortest path between them, measured with respect
to the random weights. We call such instances random shortest path metrics.

This model is also known as first-passage percolation, and has been introduced by
Broadbent and Hammersley as a model for passage of fluid in a porous medium [Bla10,
BH57]. More recently, it has also been used to model shortest paths in networks such
as the Internet [EGHN13]. The appealing feature of random shortest path metrics is
their simplicity, which enables us to use them for the analysis of heuristics.

Known and Related Results

There has been significant study of random shortest path metrics or first-passage
percolation. The expected length of an edge is known to be lnn/n [DP93, Jan99].
Asymptotically the same bound holds also for the longest edge almost surely [HZ85,
Jan99]. These results hold not only for the exponential distribution, but for every
distribution with the cumulative distribution function F satisfying F (x) = x+ o(x)
for small values of x [Jan99]. (See also Section 6.6.) This model has been used to
analyze algorithms for computing shortest paths [HZ85, PSSZ13, FG85]. Kulkarni and
Adlakha have developed algorithmic methods to compute distribution and moments of
several optimization problems [Kul88, KA85, Kul86]. Beyond shortest path algorithms,
random shortest path metrics have been applied only rarely to analyze algorithms.
Dyer and Frieze [DF90], answering a question raised by Karp and Steele [KS85, Section
3.4], analyzed the patching heuristic for the asymmetric TSP (ATSP) in this model.
They showed that it comes within a factor of 1+o(1) of the optimal solution with high
probability. Hassin and Zemel [HZ85] applied their findings to the 1-center problem.

From a more structural point of view, first-passage percolation has been analyzed in
the area of complex networks, where the hop-count (the number of edges on a shortest
path) and the length of shortest path trees have been analyzed [HHM06]. These
properties have also been studied on random graphs with random edge weights in
various settings [BHH10, HHM01, BHH11, KK12, BHH12]. Addario-Berry, Broutin,
and Lugosi [ABL10] have shown that the number of edges in the longest of the shortest
paths is O(logn) with high probability, and hence the shortest path trees have depth
O(logn).

Our Results

As far as we are aware, simple heuristics such as greedy heuristics have not been
studied in this model yet. Understanding the performance of such algorithms is
particularly important as they are easy to implement and used in many applications.

We provide a probabilistic analysis of simple heuristics for optimization under
random shortest path metrics. First, we provide structural properties of random
shortest path metrics (Section 6.3). Our most important structural contribution
is proving the existence of a good clustering (Lemma 6.3.9). Then we use these
structural insights to analyze simple algorithms for minimum weight matching and

106

6.2 Preliminaries

the TSP to obtain better expected approximation ratios compared to the worst-case
bounds. In particular, we show that the greedy algorithm for minimum-weight perfect
matching (Theorem 6.4.2), the nearest-neighbor heuristic for the TSP (Theorem 6.4.4),
and every insertion heuristic for the TSP (Theorem 6.4.5) achieve constant expected
approximation ratios. We also analyze the 2-opt heuristic for the TSP and show that
the expected number of 2-exchanges required before the termination of the algorithm
is bounded by O(n8 log3 n) (Theorem 6.4.6). Investigating further the structural
properties of random shortest path metrics, we then consider the k-median problem
(Section 6.5), and show that the most trivial procedure of choosing k arbitrary vertices
as k-median yields a 1 + o(1) approximation in expectation, provided k = O(n1−ε)
for some ε > 0 (Theorem 6.5.5).

6.2 Preliminaries

6.2.1 Model and Notation

In this chapter we consider undirected complete graphs G = (V,E) without self-
loops. First, we draw edge weights w(e) independently at random according to the
exponential distribution1 with parameter 1.

Second, let the distances d : V × V → [0,∞) be given as follows: the distance
d(u, v) between u and v is the minimum total weight of a path connecting u and v. In
particular, we have d(v, v) = 0 for all v ∈ V , d(u, v) = d(v, u) because G is undirected,
and the triangle inequality: d(u, v) ≤ d(u, x) + d(x, v) for all u, x, v ∈ V . We call the
complete graph with distances d obtained from random weights w a random shortest
path metric.

We use the following notation: Let ∆max = maxu,v d(u, v) denote the diameter of
the random shortest path metric. Let B∆(v) = {u ∈ V | d(u, v) ≤ ∆} be the ball of
radius ∆ around v, i.e., the set of all nodes whose distance to v is at most ∆.

We denote the minimal ∆ such that there are at least k nodes within a distance of
∆ of v by τk(v). Formally, we define τk(v) = min{∆ | |B∆(v)| ≥ k}.

By Exp(λ), we denote the exponential distribution with parameter λ. If a random
variable X is distributed according to a probability distribution P , we write X ∼ P . In
particular, X ∼

∑m
i=1 Exp(λi) means thatX is the sum ofm independent exponentially

distributed random variables with parameters λ1, . . . , λm. Let F,G be two cumulative
distribution functions. We say F stochastically dominates G if for all x, F (x) ≥ G(x).
In general the definition of stochastically dominance assumes that at least for one x
the value is strictly greater. As we will only use inequalities with equality, we can
ignore this.

For n ∈ N let Hn =
∑n
i=1 1/i be the nth harmonic number.

1Exponential distributions are technically the easiest to handle because they are memoryless. We
will discuss other distributions in Section 6.6.

107

6 Algorithms on Metric Graphs

6.2.2 Facts about Exponential Distributions
We will extensively need some facts about the exponential distribution which we
gather in this section.

Proposition 6.1. The random variable Y ∼ min{X1, . . . , Xn} where Xi are inde-
pendent exponential distributed random variables with parameter λi has the same
distribution as Exp(λ1 + · · ·+ λn).

Proof. Follows from a simple argument and is widely known. Let Xi be an exponential
variable distributed with parameter λi.

P[Y ≥ α] = P[X1 ≥ α, . . . ,Xn ≥ α]

=
n∏
i=1

P[Xi ≥ α]

=
n∏
i=1

exp(−αλi)

= exp(−α
n∑
i=1

λi).

Proposition 6.2 ([Ros10] p. 308). Let X ∼
∑n
i=1 Exp(λ) then the probability density

function of X is given by

f(x) = λ exp(−λx)(λx)n−1

(n− 1)! .

Proposition 6.3 ([Ros10] p. 308ff). Let X ∼
∑n
i=1 Exp(λi). Then the probability

density function of X is given by

f(x) =
n∑
i=1

λi exp(−λix)∏n
j=1
j 6=i

(
1− λi

λj

) .
Hence the density for X ∼

∑n
i=1 Exp(i) is given by

n∑
i=1

i exp(−ix)∏n
j=1
j 6=i

(
1− i

j

)

=
n∑
i=1

 n∏
j=1
i 6=j

j

j − i

 i exp(−ix).

Lemma 6.2.1. Let X ∼
∑n
i=1 Exp(ci). The random variable X has the same

distribution as max{Y1, . . . , Yn} where Yi ∼ Exp(c). Then P(X ≤ α) = (1− e−cα)n.

108

6.2 Preliminaries

Proof. By Proposition 6.3 we can write the cumulative distribution function of X as

P[X ≤ x] =
∫ x

0

n∑
i=1

 ∏
j∈[n]\{i}

j

j − i

 · ci · exp(−ciy) dy

=
∫ x

0

n∑
i=1

n!
i
·

 ∏
j∈[n]\{i}

1
j − i

 · ci · exp(−ciy) dy.

Notice that we multiply 1
j−i · · · 1 · (−1) · · · 1

1−i and hence we can simplify this to

∫ x

0

n∑
i=1

n!
i
· (−1)i−1

(i− 1)!(n− i)! · ci · exp(−ciy) dy

=
∫ x

0

n∑
i=1

(
n

i

)
(−1)i−1 · ci · exp(−ciy) dy.

Integrating over y yields

n∑
i=1

((
n

i

)
− (exp(−ciy))

ci
· (−1)i−1 · ci

)∣∣∣∣∣
x

0

which we rewrite to
n∑
i=1

((
n

i

)
(− exp(−cy))i

)∣∣∣∣∣
x

0

and finally with the binomial theorem we get

(1− exp(−cy))n|x0 .

Evaluating this at 0 and x we get (1− exp(−cx))n.
By the following argument, we can get the cumulative distribution function of the

maximum of n random variables distributed according to Exp(c).

P(max{Y1, . . . , Yn} ≤ x) ≤ = P(Y1 ≤ x) · · ·P(Yn ≤ x)
=
(
1− e−cx

)
· · ·
(
1− e−cx

)
= (1− e−cx)n.

This shows that these two distributions are equal.

Lemma 6.2.2. The density f of
∑n
i=k Exp(i) is given by

f(x) = k ·
(
n

k

)
· exp(−kx) ·

(
1− exp(−x)

)n−k
.

109

6 Algorithms on Metric Graphs

Proof. By the previous argument the density is the same as the kth smallest element
of a set of n independent, exponentially distributed random variables with parameter
1. We know from [Ros10, Example 2.37] that the density function of the ith minimum
for exponentially distributed random variables with parameter 1 is given by

i

(
n

i

)
exp(−x)(1− e−x)i−1(1− (1− e−x))n−i.

Now as i = n− k + 1 we get

(n− k + 1)
(

n

n− k + 1

)
exp(−x)(1− e−x)n−k exp(−(k − 1)x)

= (n− k + 1) n!
(n− k + 1)!(k − 1)! exp(−kx)(1− exp(−x))n−k

= k

(
n

k

)
exp(−kx)(1− exp(−x))n−k.

6.3 Structural Properties of Shortest Path Metrics
6.3.1 Random Process
To understand random shortest path metrics, it is convenient to fix a starting vertex v
and see how the lengths from v to the other vertices develop. In this way, we analyze
the distribution of τk(v). Remember that τk(v) is the ∆ we need to have at least k
vertices in a ball around v with the radius ∆.

The values τk(v) are generated by a simple birth process as we will describe in
the next proof. The same process has been analyzed by Davis and Prieditis [DP93],
Janson [Jan99], and also in subsequent papers.

Lemma 6.3.1. τk+1(v)− τk(v) ∼ Exp(k · (n− k)).

Proof. For k = 1, we have τk(v) = 0 because d(v, v) = 0.
For k ≥ 1, let us look at the set Bτk(v)(v). If we look at the closest vertex to

any vertex in this set, we can obtain τk+1(v). This conditions all edges (u, x) with
u ∈ Bτk(v)(v) and x /∈ Bτk(v)(v) to be of length at least τk(v) − d(v, u). This holds
because we know that d(u, x) + d(u, v) ≥ d(v, x) ≥ τk(v).

The set Bτk(v)(v) contains exactly k vertices as the probability that two vertices
have the same distance from v is zero. Thus, there are k · (n− k) edges from Bτk(v) to
the rest of the graph. Consequently, the difference τk+1(v)−τk(v) is distributed as the
minimum of k(n− k) exponential random variables (with parameter 1). Equivalently,
we can state this as distributed the same as Exp(k · (n− k)) by Proposition 6.1.

Lemma 6.3.2.

τk(v) ∼
k−1∑
i=1

Exp (i · (n− i)) .

110

6.3 Structural Properties

Proof. We obtain that

τk+1 ∼
k∑
i=1

τi+1 − τi ∼
k∑
i=1

Exp(i · (n− i)).

Note that these exponential distributions as well as the random variables τ2 −
τ1, . . . , τn − τn−1 are independent.

Exploiting linearity of expectation and that the expected value of Exp(λ) is 1/λ
we obtain the following lemma.

Lemma 6.3.3. For any k ∈ [n] and any v ∈ V , we have

E (τk(v)) = 1
n
· (Hk−1 +Hn−1 −Hn−k) .

Proof. The proof is by induction on k. For k = 1, we have τk(v) = 0 and Hk−1 +
Hn−1 −Hn−k = H0 +Hn−1 −Hn−1 = 0. Now assume that the lemma holds for some
k ≥ 1. By Lemma 6.3.1 we have seen that τk+1(v)− τk(v) ∼ Exp(k(n− k)). Thus,
E(τk+1(v)− τk(v)) = 1

k(n−k) . Plugging in the induction hypothesis yields

E
(
τk+1(v)

)
=E

(
τk(v)

)
+ 1
k · (n− k)

= 1
n
·
(
Hk−1 +Hn−1 −Hn−k + n− k + k

k(n− k)

)
= 1
n
·
(
Hk−1 +Hn−1 −Hn−k + 1

k
+ 1
n− k

)
= 1
n
·
(
Hk +Hn−1 −Hn−(k+1)

)
.

From this result, we can easily deduce two known results: averaging over k yields
the following equations for the expected distance of an edge.

n∑
k=0

E (τk(v)) = 1
n2

n∑
k=0

(Hk−1 +Hn−1 −Hn−k)

= Hn−1
n

+ 1
n2

n∑
k=0

(Hk−1 −Hn−k).

As the last summand is equal to zero we get that the expected distance of an edge is
roughly Hn−1

n as in [DP93, Jan99]. The longest distance from v to any other node
is τn(v), which is 2Hn−1/n ≈ 2 lnn/n in expectation [Jan99]. For completeness, let
us mention that the diameter ∆max is approximately 3 lnn/n [Jan99]. However, this
does not follow immediately from Lemma 6.3.3.

111

6 Algorithms on Metric Graphs

6.3.2 Distribution of τk(v)

Let us now have a closer look at cumulative distribution function of τk(v) for fixed
v ∈ V and k ∈ [n]. To do this, the following lemma is very useful.

In the following, let Tk denote the cumulative distribution function of τk(v) for
some fixed vertex v ∈ V , i.e., Tk(x) = P(τk(v) ≤ x).

Lemma 6.3.4. For every ∆ ≥ 0, v ∈ V , and k ∈ [n], we have

(
1− exp(−(n− k)∆)

)k−1 ≤ Tk(∆) ≤
(
1− exp(−n∆)

)k−1
.

Proof. Lemma 6.3.2 states that τk(v) ∼
∑k−1
i=1 Exp(i(n − i)). Let us look at the

distribution for ci for c ∈ {n − k, n}. We can use the following inequalities to see
which distribution dominates.

k∑
i=1

Exp (i(n− k)) ≤
k∑
i=1

Exp (i(n− i)) ≤
k∑
i=1

Exp (in) .

Hence, the distribution with c = n is stochastically dominated by the true distribution
which in turn is dominated by the distribution obtained for c = n − k. We apply
Lemma 6.2.1 with c = n and c = n− k to finish the proof.

We can use this to bound the probability of having at least k vertices in a ball of
diameter ∆ around v.

Lemma 6.3.5. Fix ∆ ≥ 0 and a vertex v ∈ V . Then(
1− exp(−(n− k)∆)

)k−1 ≤ P
(
|B∆(v)| ≥ k

)
≤
(
1− exp(−n∆)

)k−1
.

Proof. We have |B∆(v)| ≥ k if and only if τk(v) ≤ ∆. In words, if we need ∆′ ≤ ∆
distance from v to already have k vertices in B∆′(v) then |B∆(v)| is greater or equal
to k. The other direction follows with a similar argument.

Then the lemma follows from Lemma 6.3.4.

We can improve Lemma 6.3.4 slightly in order to obtain even closer upper and
lower bounds. For n, k ≥ 2, combining Lemmas 6.3.4 and 6.3.6 yields tight upper
and lower bounds if we disregard the constants in the exponent, namely Tk(∆) =(
1− exp(−Θ(n∆))

)Θ(k).

Lemma 6.3.6. For all v ∈ V , k ∈ [n], and ∆ ≥ 0, we have

Tk(∆) ≥
(
1− exp(−(n− 1)∆/4)

)n−1

and

Tk(∆) ≥
(
1− exp(−(n− 1)∆/4)

) 4
3 (k−1)

.

112

6.3 Structural Properties

Proof. As τk(v) is monotonically increasing in k, we have Tk(∆) ≥ Tk+1(∆) for all
k. Thus, we have to prove the first claim only for k = n. In this case, τn(v) ∼∑n−1
i=1 Exp(λi), with λi = i(n − i) = λn−i. Setting m = dn/2e and exploiting the

symmetry around m yields

τn(v) ≤
m∑
i=1

Exp(λi) +
m∑
i=1

Exp(λi) ∼ τm(v) + τm(v).

Here, “≤” means stochastic dominance and “+” means adding up two independent
random variables. Hence,

Tn(∆) = P
(
τn(v) ≤ ∆

)
≥ P

(
τm(v) + τm(v) ≤ ∆

)
≥ P

(
τm(v) ≤ ∆/2

)2
.

By Lemma 6.3.4, and using m ≤ (n+ 1)/2, this is bounded by

Tn(∆) ≥ (1− exp(−(n−m)∆/2))2(m−1) ≥ (1− exp(−(n− 1)∆/4))n−1.

For the second inequality, we use the first inequality of Lemma 6.3.6 for k − 1 ≥
3
4(n− 1) and 6.3.4 for k − 1 < 3

4(n− 1) as then n− k ≥ (n− 1)/4.

6.3.3 Tail Bounds for |B∆(v)| and ∆max

Our first tail bound for |B∆(v)|, which is the number of vertices within distance ∆ of
a given vertex v, follows directly from Lemma 6.3.4. From this lemma we derive the
following corollary, which is a crucial ingredient for the existence of good clusterings
and, thus, for the analysis of heuristics in the remainder of this paper.

Corollary 6.3.7. Let n ≥ 5 and fix ∆ ≥ 0 and a vertex v ∈ V . Then we have

P
(
|B∆(v)| < min

{
exp (∆n/5) , n+ 1

2

})
≤ exp (−∆n/5) .

Proof. Lemma 6.3.5 yields

P
(
|B∆(v)| < min

{
exp

(
∆n− 1

4

)
,
n+ 1

2

})
≤ 1−

(
1− exp

(
−∆

(
n− n+ 1

2

)))exp(∆n−1
4)

.

In the last inequality, we used the fact that the minimum of two values is always
smaller or equal to one of the values. This can then be upper bounded by

1−
(

1− exp
(
−∆n− 1

2

))exp(∆n−1
4)

≤ exp
(
−∆n− 1

2

)
exp

(
∆n− 1

4

)
≤ exp

(
−∆n− 1

4

)
,

where the last two inequalities follows from (1− x)y ≥ 1− xy for y ≥ 1, x ≥ 0. Using
(n− 1)/4 ≥ n/5 for n ≥ 5 completes the proof.

113

6 Algorithms on Metric Graphs

1

2

3

4

5

(a) Clustering before the matching (b) Complete Clustering

Figure 6.1: Clustering Example

Janson [Jan99] derived the following tail bound for the diameter ∆max. A qualita-
tively similar bound can be derived from Hassin and Zemel [HZ85]’s analysis. However,
Janson’s bound is stronger with respect to the constants in the exponent.

Lemma 6.3.8 ([Jan99], p. 352). For any fixed c > 3, we have P(∆max > c ln(n)/n) ≤
O(n3−c log2 n).

6.3.4 Balls and Clusters

In this section, we show our main structural contribution, which is a global property
of random shortest path metrics. We show that such instances can be divided into a
small number of clusters of any given diameter.

From now on, let s∆ = min{exp(∆n/5), (n+1)/2}, as in Corollary 6.3.7. If |B∆(v)|,
the number of vertices within distance ∆ of v, is at least s∆, then we call the vertex
v a dense ∆-center, and we call the set B∆(v) of vertices within distance ∆ of v
(including v itself) the ∆-ball of v. Otherwise, if |B∆(v)| < s∆, and v is not part of
any ∆-ball, we call the vertex v a sparse ∆-center. Any two vertices in the same
∆-ball have a distance of at most 2∆ because of the triangle inequality.

If ∆ is clear from the context, then we also speak about centers and balls without
parameter. We can bound the expected number of sparse ∆-centers to be at most
O(n/s∆) as we can bound the expected value by n · exp(−∆n/5) using Corollary 6.3.7.

We want to partition the graph into a small number of clusters, each of diameter
at most 6∆. For this purpose, we put each sparse ∆-center in its own cluster (of size
1). Then the diameter of each such cluster is 0, which is trivially upper-bounded by
6∆, and the number of these clusters is expected to be at most O(n/s∆).

We are left with the dense ∆-centers, which we cluster using the following algorithm:
Consider an auxiliary graph whose vertices are all dense ∆-centers. We draw an

114

6.4 Analysis of Heuristics

edge between two dense ∆-centers u and v if B∆(u) ∩B∆(v) 6= ∅. Now consider any
maximal Independent Set of this auxiliary graph (for instance, a greedy independent
set), and let t be the number of its vertices. Then we form initial clusters C ′1, . . . , C ′t,
each containing one of the ∆-balls corresponding to the vertices in the Independent
Set. By the independence, all these t ∆-balls are disjoint, which implies t ≤ n/s∆.
The ball of every remaining center v has at least one vertex in one of the C ′i. We
add all remaining vertices of B∆(v) to such a C ′i to form the final clusters C1, . . . , Ct.
By construction, the diameter of each Ci is at most 6∆: Consider any two vertices
u, v ∈ Ci. The distance of u towards its closest neighbor in the initial ball C ′i is at
most 2∆. The same holds for v. Finally, the diameter of the initial ball C ′i is also at
most 2∆.

We shown an example in Figure 6.1a. Here the ellipses show the dense ∆-centers
where the dashed ellipse is a sparse ∆-center. We named the ∆ centers from 1 to 5.
It is easy to see that the graph has an edge between the clusters denoted by 1 and 2
and an edge between 4 and 5. We chose the Independent Set corresponding to 1, 3
and 5 and get the resulting clustering as in Figure 6.1b.

With this partitioning, we have obtained the following structure: We have an
expected number of O(n/s∆) clusters of size 1 and diameter 0, and a number of
O(n/s∆) clusters of size at least s∆ and diameter at most 6∆ as as shown earlier
t < n/s∆. Thus, we have O(n/s∆) = O(1 + n/ exp(∆n/5)) clusters in total. We
summarize these findings in the following lemma. This lemma is the crucial ingredient
for bounding the expected approximation ratios of the greedy, nearest-neighbor, and
insertion heuristics.

Lemma 6.3.9. Consider a random shortest path metric and let ∆ ≥ 0. If we partition
the instance into clusters, each of diameter at most 6∆, then the expected number of
clusters is O(1 + n/ exp(∆n/5)).

6.4 Analysis of Heuristics

6.4.1 Greedy Heuristic for Minimum-Length Perfect Matching

Finding minimum-length perfect matchings in metric instances is the first problem that
we consider. This problem has been widely considered in the past and had applications
in, e.g., optimizing the speed of mechanical plotters [RT81, SPR80]. The worst-case
running-time of O(n3) for finding an optimal matching is prohibitive if the number n
of points is large. Thus, simple heuristics are often used, with the greedy heuristic
being probably the simplest one: at every step, choose an edge of minimum length
incident to the unmatched vertices and add it to the partial matching. Let GREEDY
denote the cost of the matching output by this greedy matching heuristic, and let MM
denote the optimum value of the minimum-length perfect matching. The worst-case
approximation ratio for greedy matching on metric instances is Θ(nlog2(3/2)) [RT81],
where log2(3/2) ≈ 0.58. In the case of Euclidean instances, the greedy algorithm has
an approximation ratio of O(1) with high probability on random instances [ADS88].

115

6 Algorithms on Metric Graphs

Step i

Step i+ 1

Figure 6.2: Greedy Matching Algorithm Example

For independent random edge weights (without the triangle inequality), the expected
weight of the matching computed by the greedy algorithm is Θ(logn) [DFP93] whereas
the optimal matching has a weight of Θ(1) with high probability, which gives an
O(logn) approximation ratio.

We show that greedy matching finds a matching of constant expected length on
random shortest path metrics.

Theorem 6.4.1. E(GREEDY) = O(1) for random shortest path metric with the edge
weights drawn from the exponential distribution.

Proof. Let ∆i = i
n . We divide the run of GREEDY in phases as follows: we say that

GREEDY is in phase i if edges {u, v} are inserted such that d(u, v) ∈ (6∆i−1, 6∆i].
Lemma 6.3.8 allows to show that the expected sum of all edges longer than ∆Ω(logn)
is o(1), so we can ignore them.

GREEDY goes through phases i with increasing i (phases can be empty). We now
estimate the contribution of phase i to the matching computed by GREEDY. Using
Lemma 6.3.9, after phase i−1 we can find a clustering into clusters of diameter at most
6∆i−1 using an expected number of O(1 + n/e(i−1)/5) clusters. Each such cluster can
have at most one unmatched vertex. Thus, we have to add at most O(1 + n/e(i−1)/5)
edges in phase i. Each such edge connects vertices at a distance of at most 6∆i.
Hence, the contribution of phase i is O(in · (1 + n/e(i−1)/5)) in expectation. Summing
over all phases yields the desired bound. Notice that we have at most O(logn) phases
as the longest edge is almost surely of length at most O(logn).

E
(
GREEDY

)
= o(1) +

O(logn)∑
i=1

O

(
i

e(i−1)/5 + i

n

)
= O(1).

116

6.4 Analysis of Heuristics

We gave an illustration of the phases in Figure 6.2.
Careful analysis allows us to bound the expected approximation ratio.

Theorem 6.4.2. The greedy algorithm for minimum-length perfect matching has
constant approximation ratio on random shortest path metrics, i.e., E

(
GREEDY

MM

)
=

O(1).

For the proof we will use the following tail bound to estimate the approximation
ratio of the greedy heuristic for matching as well as the nearest-neighbor and insertion
heuristics for the TSP.

Lemma 6.4.3. Let α ∈ [0, 1]. Let Sm be the sum of the lightest m edge weights,
where m ≥ αn. Then, for all c ∈ [0, 1), we have

P(Sm ≤ c) ≤
(
e2c

2α2

)αn
.

Furthermore, Sn/2 ≤ MM ≤ TSP, where TSP and MM denote the length of the
shortest TSP tour and the minimum-weight perfect matching, respectively, in the
corresponding shortest path metric.

Notice that this lemma proves a fact about the weight of the edges and not the
shortest path distances. This will suffice for bounding the expected ratio.

Proof. LetX ∼
∑m
i=1 Exp(1), and let Y be the sum ofm independent random variables

drawn uniformly from [0, 1]. The random variable Y stochastically dominates X. Let
us study Y further. This distribution is also known as the Irwin-Hall Distribution or
Uniform Sum Distribution and we know that the cumulative distribution function is

P(Y ≤ c) = 1
m!

bcc∑
k=0

(−1)k
(
m

k

)
(c− k)m

as, for example, given in [Usp37, p. 277f].
As c ∈ [0, 1) we get that P(Y ≤ c) = cm/m!.
The probability that Sm ≤ c is at most the probability that there exists a subset of

the edges of cardinality m whose total weight is at most c. By a union bound and
using

(a
b

)
≤ (ae/b)b,

(n
2
)
≤ n2/2, and a! > (a/e)a, we obtain

P(Sm ≤ c) ≤
((n

2
)

m

)
· c

m

m! ≤
(
en2

2m

)m
cm
(
e

m

)m
=
(
n2e2c

2m2

)m
≤
(
e2c

2α2

)m
.

Here this bound only makes sense if c < 2α2

e2 . As we will later fix c to be a small
enough constant, this does not matter.

117

6 Algorithms on Metric Graphs

We can replace m by its lower bound αn in the exponent [AMR11, Fact 2.1] to
obtain the first claim.

It remains to prove TSP ≥ MM ≥ Sn/2. The first inequality is trivial. For the
second inequality, consider a minimum-weight perfect matching in a random shortest
path metric. We replace every edge by the corresponding paths. If we disregard
multiple edges, then we are still left with at least n/2 edges whose length is not
shortened by taking shortest paths. The sum of the weights of these n/2 edges is at
most MM and at least Sn/2.

Proof of Theorem 6.4.2. The worst-case approximation ratio of GREEDY for minimum-
weight perfect matching is nlog2(3/2) [RT81]. Let c > 0 be a sufficiently small constant.
Then the approximation ratio of GREEDY on random shortest path instances is

E
(GREEDY

MM

)
≤ E

(GREEDY
c

)
+ P(MM < c) · nlog2(3/2).

By Theorem 6.4.1, the first term is O(1). Since c is sufficiently small, we know by
Lemma 6.4.3 that

P(MM < c) ≤
(
2e2c

)n
2 .

This shows that the second term is o(1).

6.4.2 Nearest-Neighbor Algorithm for the TSP

A greedy analogue for the traveling salesman problem (TSP) is the nearest neighbor
heuristic:

1. Start with some starting vertex v0 as the current vertex v.

2. At every iteration, choose the nearest yet unvisited neighbor u of the current
vertex v (called the successor of v) as the next vertex in the tour, and move to
the next iteration with the new vertex u as the current vertex v.

3. Go back to the first vertex v0 if all vertices are visited.

Let NN denote both the nearest-neighbor heuristic itself and the cost of the tour
computed by it. Let TSP denote the cost of an optimal tour. The nearest-neighbor
heuristic NN achieves a worst-case ratio of O(logn) for metric instances and also an
average-case ratio (for independent, non-metric edge lengths) of O(logn) [ACG+99].
We show that NN achieves a constant approximation ratio on random shortest path
instances.

Theorem 6.4.4. For random shortest path instances we have E(NN) = O(1) and
E
(

NN
TSP

)
= O(1).

Proof. The proof is similar to the proof of Theorem 6.4.2. Let ∆i = i/n for i ∈ N.
Let Q = O(logn/n) be sufficiently large.

118

6.4 Analysis of Heuristics

Consider the clusters obtained with parameter ∆i as in the discussion preceding
Lemma 6.3.9. These clusters have diameters of at most 6∆i. We refer to these clusters
as the i-clusters. Let v be any vertex. We call v bad at i, if v is in some i-cluster
and NN chooses a vertex at a distance of more than 6∆i from v for leaving v. Hence,
if v is bad at i, then the next vertex lies outside of the cluster to which v belongs.
Note that v is not bad at i if the outgoing edge at v leads to a neighbor outside of
the cluster of v but at a distance of at most 6∆i from v.

In the following, let the cost of a vertex v be the distance from v to its successor u.
The length of the tour produced by NN is equal to the sum of costs over all vertices.

Claim 6.1. The expected number of vertices with costs in the range (6∆i, 6∆i+1] is
at most O(1 + n/ exp(i/5)).

Proof of Claim 6.1. Suppose that the cost of the neighbor chosen by NN for a vertex
v is in the interval (6∆i, 6∆i+1] and hence v is bad at i. This happens only if all
other vertices of the i-cluster containing v have already been visited. Otherwise, there
would be another vertex u in the same i-cluster with a distance of at most 6∆i to v.
By Lemma 6.3.9, the number of i-clusters is at most O(1 + n/ exp(i/5)).

If ∆max ≤ Q, then it suffices to consider i for i ≤ O(logn). If ∆max > Q, then we
bound the value of the tour produced by NN by n∆max. This failure event, however,
contributes only o(1) to the expected value by Lemma 6.3.8. For the case ∆max ≤ Q,
the contribution to the expected length of the NN tour is bounded from above by

O(logn)∑
i=0

6∆i+1 ·O
(

1 + n

exp(i/5)

)
=

O(logn)∑
i=0

O

(
i+ 1
n

+ i+ 1
exp(i/5)

)
= O(1).

Using the fact that the worst-case approximation ratio of NN is O(logn), the proof
of the constant expected approximation ratio is similar to the proof of Theorem 6.4.2.

E
(NN

TSP

)
≤ E

(NN
c

)
+ P(TSP ≤ c) ·O(logn).

Using again Lemma 6.4.3 shows that P(TSP ≤ c) is in o(1).

6.4.3 Insertion Heuristics for the TSP

An insertion heuristic for the TSP is an algorithm that starts with an initial tour
on a few vertices and extends this tour iteratively by adding the remaining vertices.
In every iteration, a vertex is chosen according to some rule, and this vertex is
inserted at the place in the current tour where it increases the total tour length the
least. The approximation ratio achieved depends on the rule used for selecting the
next node to insert. Certain insertion heuristics such as nearest neighbor insertion
(which is different from the nearest neighbor algorithm from the previous section)
achieve constant approximation ratio [RSI77]. The random insertion algorithm, where
the next vertex is chosen uniformly at random from the remaining vertices, has a

119

6 Algorithms on Metric Graphs

worst-case approximation ratio of Ω(log logn/ log log logn), and there are insertion
heuristics with a worst-case approximation ratio of Ω(logn/ log logn) [Aza94].

A rule R that specifies an insertion heuristic can be viewed as follows. Depending
on the distances d, it:

1. Choose a set RV of vertices for computing an initial tour.

2. Given any tour of vertices V ′ ⊇ RV , describes how to choose the next vertex.

Let INSERTR denote the length of the tour produced with rule R.
For random shortest path metrics, we show that any insertion heuristic produces

a tour whose length is expected to be within a constant factor of the optimal tour.
This result holds irrespective of which insertion strategy we actually use.

Theorem 6.4.5. For every rule R, we have E(INSERTR) = O(1) and E
(INSERTR

TSP
)

=
O(1).

Proof. Let ∆i = i/n for i ∈ N and Q = O(logn/n) be sufficiently large. Assume that
∆max ≤ Q. If ∆max > Q, then we bound the length of the tour produced by n ·∆max.
This contributes only o(1) to the expected value of length of the tour produced by
Lemma 6.3.8.

Suppose we have a partial tour T and v is the vertex that we have to insert next. If T
has a vertex u such that v and u are in a common i-cluster, then the triangle inequality
implies that the costs of inserting v into T is at most 12∆i because the diameters of
i-clusters are at most 6∆i [RSI77, Lemma 2]. For each i, only the insertion of the
first vertex of each i-cluster can possibly cost more than 12∆i. Thus, the number
of vertices whose insertion would incur costs in the range (12∆i, 12∆i+1] is at most
O
(
1 + n

exp(i/5)
)

in expectation. Note that we only have to consider i with i ≤ O(logn)
since ∆max ≤ Q. The expected cost of the initial tour is at most TSP = O(1) [Fri04].
Summing up the expected costs for all i plus the costs of the initial tour, we obtain
that the expected costs of the tour obtained by an insertion heuristic is bounded from
above by

E(INSERTR) = O(1) +
O(logn)∑
i=0

∆i ·O
(

1 + n

exp(i/5)

)
= O(1).

Note that the above argument is independent of the rule R used.
The proof for the approximation ratio is similar to the proof of Theorem 6.4.2 and

uses the worst-case ratio of O(logn) for insertion heuristics for any rule R [RSI77,
Theorem 3].

6.4.4 Running-Time of 2-Opt for the TSP
The 2-opt heuristic for the TSP starts with an initial tour and successively improves the
tour by so-called 2-exchanges until no further refinement is possible. In a 2-exchange,
a pair of edges e12 = {v1, v2} and e34 = {v3, v4}, where v1, v2, v3, v4 appear in this

120

6.4 Analysis of Heuristics

order in the Hamiltonian tour, are replaced by a pair of edges e13 = {v1, v3} and
e24 = {v2, v4} to get a shorter tour. The 2-opt heuristic is easy to implement and
widely used but can have exponential running time. In practice, it usually converges
quite quickly to close-to-optimal solutions [JM02]. To explain its performance in
practice, probabilistic analyses of its running-time on geometric instances [ERV14,
MV13, Ker89] and its approximation performance on geometric instances [ERV14]
and with independent, non-metric edge lengths [EM09] have been conducted. We
prove that for random shortest path metrics, the expected number of iterations that
2-opt needs is bounded by a polynomial.

Theorem 6.4.6. The expected number of iterations that 2-opt needs to find a local
optimum is bounded by O(n8 log3 n).

Proof. The proof is similar to the analysis of 2-opt by Englert, Röglin, and Vöcking
[ERV14]. Consider a 2-exchange where edges e1 = {v1, v2} and e2 = {v3, v4} are
replaced by edges f1 = {v1, v3} and f2 = {v2, v4} as described above. The improvement
obtained from this exchange is given by δ = δ(v1, v2, v3, v4) = d(v1, v2) + d(v3, v4)−
d(v1, v3)− d(v2, v4).

We estimate the probability P(δ ∈ (0, ε]) of the event that the improvement is at
most ε for some ε > 0. The distances d(vi, vj) correspond to shortest paths with
respect to the exponentially distributed edge weights w. Assume for the moment that
we know these paths. We will now rewrite the equation for δ. Let the shortest path
between v1, v2 be given by the edges Ev1,v2 . Then

δ =
∑

e∈Ev1,v2

w(e) +
∑

e∈Ev3,v4

w(e)−
∑

e∈Ev1,v3

w(e)−
∑

e∈Ev2,v4

w(e).

We can simplify this to

δ =
∑
e∈E

αew(e) (6.1)

for some coefficients αe ∈ {−2,−1, 0, 1, 2}. If the exchange considered is indeed a
2-exchange, then δ > 0. Thus, in this case, there exists at least on edge e = {u, u′}
with αe > 0. Let I ⊆ {e12, e34, e13, e24} be the set of edges of the 2-exchange such
that the corresponding paths use e.

For all combinations of I and e = {u, u′}, let δI,eij be the following quantity:

• If eij /∈ I, then δI,eij is the length of a shortest path from vi to vj without using
e.

• If eij ∈ I, then δI,eij is the minimum of
– the length of a shortest path from vi to u without e plus the length of a

shortest path from u′ to vj without e and
– the length of a shortest path from vi to u′ without e plus the length of a

shortest path from u to vj without e.

121

6 Algorithms on Metric Graphs

Let δe,I = δe,I12 + δe,I34 − δ
e,I
13 − δ

e,I
24 .

Claim 6.2. For every outcome of the random edge weights, there exists an edge e and
a set I such that δ = δe,I + αw(e), where α ∈ {−2,−1, 1, 2} is determined by e and I.

Proof of Claim 6.2. Fix the edge weights arbitrarily and consider any four shortest
paths all different. Then there exists some edge e with non-zero αe in Equation (6.1).
We choose this e, an appropriate set I, such that all edges except e are in I, and we
choose α = αe. Then the claim follows from the definition of δe,I .

Claim 6.2 yields that δ ∈ (0, ε] implies that there are an e and an I with δe,I+αw(e) ∈
(0, ε].

Claim 6.3. Let e and I be arbitrary with α = αe > 0. Then P(δe,I +αw(e) ∈ (0, ε]) ≤
ε.

Proof of Claim 6.3. We fix the edge weights of all edges except for e. This determines
δe,I . Thus, δe,I + αw(e) ∈ (0, ε] if and only of w(e) assumes a value in a now fixed
interval of size ε/α ≤ ε. Since the density of the exponential distribution is bounded
from above by 1, the claim follows.

The number of possible choices for e and I is O(n2). Thus, P(δ ∈ (0, ε]) = O(n2ε).
Let δmin > 0 be the minimum improvement made by any 2-exchange. Since there

are at most n4 different 2-exchanges, we have P(δmin ≤ ε) = O(n6ε).
The initial tour has a length of at most n∆max. Let T be the number of iterations

that 2-opt takes. Then T ≤ n∆max/δmin. Now, T > x implies ∆max/δmin > x/n. The
event ∆max/δmin > x/n is contained in the union of the events ∆max > log x lnn/n,
and δmin < lnn · log x/x. To further explain this, when one of these conditions is
fulfilled we know that

∆max
δmin

>
log x lnn

n
· x

lnn log x = x

n
.

The first happens with a probability of at most n−Ω(log(x)) by Lemma 6.3.8. The
second happens with a probability of at most O(n6 log(x)/x). Thus, we obtain

P(T > x) ≤ n−Ω(log(x)) +O
(
n6 lnn · log(x)/x

)
.

Since the number of iterations is at most n!, we obtain an upper bound of

E(T) ≤
n!∑
x=1

(
n−Ω(log(x)) +O(n6 lnn log(x)/x)

)
.

The sum over n−Ω(log(x)) is negligible. The sum over O(n6 lnn log(x)/x) contributes
O(n6 lnn log(n!)2) ⊆ O(n8 log3 n).

122

6.5 k-Median

6.5 k-Median

In the (metric) k-median problem, we are given a finite metric space (V, d) and should
pick k points U ⊆ V such that

∑
v∈V minu∈U d(v, u) is minimized. We call the set U

a k-median. Regarding worst-case analysis, the best known approximation algorithm
for this problem achieves an approximation ratio of 3 + ε [AGK+04].

In this section, we consider the k-median problem in the setting of random shortest
path metrics. In particular we examine the approximation ratio of the algorithm
TRIVIAL, which picks k points independently of the metric space, e.g., U = {1, . . . , k}
or k random points in V . We show that TRIVIAL yields a (1 + o(1))-approximation
for k = O(n1−ε). This can be seen as an algorithmic result since it improves upon
the worst-case approximation ratio, but it is essentially a structural result on random
shortest path metrics. It means that any set of k points is, with high probability,
a very good k-median, which gives some knowledge about the topology of random
shortest path metrics. For larger, but not too large k, i.e., k ≤ (1− ε)n, TRIVIAL still
yields an O(1)-approximation.

The main insight comes from generalizing the growth process described in Sec-
tion 6.3.2. Fixing U = {v1, . . . , vk} ⊆ V we sort the vertices V \ U by their distance
to U in ascending order, calling the resulting order vk+1, . . . , vn. Now we consider
δi = d(vi+1, U)− d(vi, U) for k ≤ i < n. These random variables are generated by a
simple growth process analogous to the one described in Section 6.3.2. This shows that
the δi are independent and δi ∼ Exp(i · (n− i)). We know that Exp(λ)/a ∼ Exp(λa)
by the simple inequality: P[1

aX ≤ x] = P[X ≤ ax] ≤ 1− Exp(λa). Hence

cost(U) =
n−1∑
i=k

(n− i) · δi ∼
n−1∑
i=k

(n− i) · Exp(i · (n− i)) ∼
n−1∑
i=k

Exp(i).

From this, we can read off the expected cost of U immediately, and thus the expected
cost of TRIVIAL.

Lemma 6.5.1. Fix U ⊆ V of size k. We have

E(TRIVIAL) = E
(
cost(U)

)
= Hn−1 −Hk−1 = ln(n/k) + Θ(1).

Proof. We have E(cost(U)) =
∑n−1
i=k

1
i = Hn−1 − Hk−1. Using Hn = ln(n) + Θ(1)

yields the last equality.

By closely examining the random variable
∑n−1
i=k Exp(i), we can show good tail

bounds for the probability that the cost of U is lower than expected. Together with
the union bound this yields tail bounds for the optimal k-median MEDIAN, which
implies the following theorem. In this theorem, the approximation ratio becomes
1 +O

(ln ln(n)
ln(n)

)
for k = O(n1−ε).

We need the following lemmas to prove Theorem 6.5.5.

123

6 Algorithms on Metric Graphs

Lemma 6.5.2. Let c > 0 be sufficiently large, and let k ≤ c′n for c′ = c′(c) > 0 be
sufficiently small. Then

P
(

MEDIAN < ln
(
n

k

)
− ln ln

(
n

k

)
− ln c

)
= n−Ω(c).

Proof. Fix U ⊆ V of size k and consider cost(U) ∼
∑n−1
i=k Exp(i). In the following we

set m := n− 1 to shorten notation. Let f(x) be the probability density function of
MEDIAN as in Lemma 6.2.2. We now want to bound f(x) from above at x = ln

(
m
ak

)
for a sufficiently large a with 1 ≤ a ≤ m/k (such an a exists since k is small enough).
Plugging in this particular x and using

(m
k

)
≤ mkek/kk yields the following inequations.

f

(
ln
(
m

ak

))
=k ·

(
m

k

)
·
(
ak

m

)k
·
(

1− ak

m

)m−k
=k ·

(
m

k

)
· a

kkk

mk
− akkk

mk
·
(
ak

m

)m−k
=k ·

(
m

k

)
· a

kkkmm−k

mm
− akkk

mm
· am−kkm−k

=k ·
(
m

k

)
· a

kkk(m− ak)m−k

mm

≤kekm
k

kk
· a

kkk(m− ak)m−k

mm

≤k(ea)k
(
m− ak
m

)m−k
≤k(ea)k

(
1− ak

m

)m−k
.

Using 1 + x ≤ ex and m− k = Ω(m), so that (m− k)/m = Ω(1), yields

f(x) ≤ k(ea)k exp(−Ω(ak)).

Since a is sufficiently large, the first two factors are lower order terms that we can
hide by the Ω. Thus, we can simplify this further to

f(x) ≤ exp(−Ω(ak)).

Rearranging this using a = m
k e
−x yields

f(x) ≤ exp(−Ω(m exp(−x)), (6.2)

which holds for any x ∈ [0, ln
(
m
αk

)
] for any sufficiently large α ≥ 1. Now we can bound

the probability that cost(U) < ln
(
m
αk

)
. We can rewrite our probability∫ ln(m

αk
)

0
f(x) dx

124

6.5 k-Median

to

=
∫ ln(m

αk
)

0
f

(
ln
(
m

αk

)
− x

)
dx

as this is just the mirrored function. We can then use Equation (6.2) and get the
upper bound ∫ ln(m

αk
)

0
exp

(
−Ω(αk exp(x))

)
dx

≤
∫ ∞

0
exp

(
−Ω(αk(1 + x))

)
dx

≤ exp
(
−Ω(αk)

)
since ex ≤ 1 + x and

∫∞
0 exp(−Ω(αkx)) dx = O(1/(αk)) ≤ 1 as α is sufficiently large.

In order for MEDIAN to be less than ln
(
m
αk

)
, one of the subsets U ⊆ V of size k has

to have cost less than ln
(
m
αk

)
. We bound the probability of the latter using the union

bound and get

P
(

MEDIAN < ln
(
m

αk

))
= P

(
∃U ⊆ V, |U | = k : cost(U) < ln

(
m

αk

))
≤
(
n

k

)
· P
(

cost(U) < ln
(
m

αk

))

≤
(
n

k

)
· exp

(
−Ω(αk)

)
.

By setting α = c ln
(
n
k

)
for sufficiently large c ≥ 1, we fulfill all conditions on α. If we

plug this into ln
(
m
αk

)
we get

ln
(

m

c ln n
kk

)
= ln

(
m

k

)
− ln ln

(
n

k

)
− ln c.

Plugging this into our probability estimation we get

P
(

MEDIAN < ln
(
n

k

)
− ln ln

(
n

k

)
− ln c

)
≤
(
n

k

)
· e−(Ω(kc ln n

k
))

≤
(
en

k

)k
·
(
n

k

)−Ω(ck)
.

Since k is sufficiently smaller than n, we have en
k ≤ (nk)2. Thus, for sufficiently large

c, the right hand side simplifies to (nk)−Ω(ck). Since k is at least 1 and sufficiently
smaller than n, we have (nk)k ≥ n. Thus, the probability is bounded by n−Ω(c), which
finishes the proof.

125

6 Algorithms on Metric Graphs

To bound the expected value of the quotient TRIVIAL /MEDIAN, we further need
to bound the probabilities that TRIVIAL is much too large or MEDIAN is much too
small. This is achieved by the following two lemmas.

Lemma 6.5.3. Let k ≤ (1− ε)n for some constant ε > 0. Then, for any c > 0, we
have

P(MEDIAN < c) = O(c)Ω(n).

Proof. Since n − k vertices have to be connected to the k-median, the cost of the
k-median is the sum of n− k shortest path lengths. Thus, the cost of the minimal k-
median is at least the sum of the smallest n−k edge weights w(e). We use Lemma 6.4.3
with α = ε.

Lemma 6.5.4. For any c ≥ 3, we have P(TRIVIAL > nc) ≤ exp(−nc/3).

Proof. We can bound very roughly TRIVIAL ≤ nmaxe{w(e)}. As maxe{w(e)} is the
maximum of

(n
2
)

independent exponentially distributed random variables, we have

P
(
TRIVIAL ≤ nc

)
≥ (1− exp(−nc−1))(

n
2) ≥ 1−

(
n

2

)
· exp(−nc−1)

≥ 1− exp
(
−nc−2) ≥ 1− exp

(
−nc/3

)
.

These two lemmas give us the final theorem.

Theorem 6.5.5. Let k ≤ (1− ε)n for some constant ε > 0. Then

E
(TRIVIAL

MEDIAN

)
= O(1).

If we have k ≤ κn for some sufficiently small constant κ ∈ (0, 1), then

E
(TRIVIAL

MEDIAN

)
= 1 +O

(ln ln(n/k)
ln(n/k)

)
. (6.3)

We know that TRIVIAL and MEDIAN are not independent and hence we do not
know if E[TRIVIAL]

E[MEDIAN] = E[TRIVIAL
MEDIAN]. Hence, to get a good bound on the expected difference

we need a slightly more complicated proof.

Proof. Let T = TRIVIAL and M = MEDIAN for short. We have for any m ≥ 0

E
(
T

M

)
≤ E

(
T

m

)
+ P(M < m) · E

(
T

M

∣∣ M < m

)
. (6.4)

Case 1, k ≤ c′n, c′ sufficiently small: Using Lemma 6.5.2, we can pick c > 0 such
that

P
[
M < ln

(
n

k

)
− ln ln

(
n

k

)
− ln c

]
≤ n−7. (6.5)

126

6.5 k-Median

Set m = ln
(
n
k

)
− ln ln

(
n
k

)
− ln c. Then, by Lemma 6.5.1

E
(
T

m

)
≤ ln(n/k) +O(1)

m
≤ O(1)

where the last part holds for large enough n as the limit of ln(n/k)/m is 1.

We show that the second summand of inequality (6.4) is O(1/n) in the current
situation, which shows the claim. As T

M is non-negative, we can bound the
expectation in the following way.

P(C < m) · E
(
T

M

∣∣ M < m

)
= P(M < m) ·

∫ ∞
0

P
(
T

M
≥ x

∣∣ M < m

)
dx

≤ P(M < m) ·
(
n6 +

∫ ∞
n6

P
(
T

M
≥ x

∣∣ M < m

)
dx
)
.

As we chosen c such that Equation (6.5) holds, we can bound the equation by

n−1 +
∫ ∞
n6

P
(
T

M
≥ x and M < m

)
dx

≤ n−1 +
∫ ∞
n6

P
(
T

M
≥ x

)
dx

≤ n−1 +
∫ ∞
n6

2 max
{
P
(
T ≥

√
x
)
,P
(
M ≤ 1√

x

)}
dx

since T/M ≥ x implies T ≥
√
x or M ≤ 1/

√
x. Using Lemmas 6.5.3 and 6.5.4,

this yields

P(M < m) · E
(
T

C

∣∣ M < m

)
≤ n−1 +

∫ ∞
n6

2 max
{

exp
(
−x1/6), O(1√

x

)Ω(n)
}

dx.

This is now equal to O(1/n).

Case 2, c′n < k ≤ (1− ε)n: We repeat the proof above, now choosing m to be a suffi-
ciently small constant. Then P(M < m) = O(m)Ω(n) ≤ O(n−7) by Lemma 6.5.3,
and we have

E
(
T

m

)
= ln(n/k) +O(1)

m
= O(1),

since k > c′n. Together with the first case, this shows the first claim.

127

6 Algorithms on Metric Graphs

6.6 Concluding Remarks

6.6.1 General Probability Distributions

Using a coupling argument, Janson [Jan99, Section 3] proved that the results about
the length of a fixed edge and the longest edge carry over if the exponential distribution
is replaced by a probability distribution with the following property: The probability
that an edge weight is smaller than x is x+ o(x). This property is satisfied, e.g., by
the exponential distribution with parameter 1 and by the uniform distribution on
the interval [0, 1]. The intuition is that, because the longest edge has a length of
O(logn/n) = o(1), only the behavior of the distribution in a small, shrinking interval
[0, o(1)] is relevant and the o(x) term becomes irrelevant.

For completeness we will sketch a standard coupling argument. We can see the
exponential distribution as resulting from the uniform distribution on [0, 1]. For
this we take the cummulative distribution function F (u) = 1 − exp(−λu). Then
there exists an inverse F−1 : [0, 1]→ [0,∞) such that F−1(U) gives the exponential
distribution with parameter λ.

We believe that also all of our results carry over to such probability distributions
by a similar argument. In fact, we started our research using the uniform distribution
and only switched to exponential distributions because they are technically easier to
handle. However, we decided not to carry out the corresponding proofs because, we
feel that they do not add much to our understanding of algorithms on general metric
spaces.

6.6.2 Open Problems on Metric Graphs

To conclude this chapter, let us list the open problems that we consider most interesting:

1. While the distribution of distances in asymmetric instances does not differ much
from the symmetric case, an obstacle in the application of asymmetric random
shortest path metrics seems to be the lack of clusters of small diameter (see
Section 6.3). Is there an asymmetric counterpart for this?

2. Is it possible to prove an 1 + o(1) approximation ratio (like Dyer and Frieze
[DF90] for the patching algorithm) for any of the simple heuristics that we
analyzed?

3. What is the approximation ratio of 2-opt in random shortest path metrics? In
the worst case on metric instances, it is O(

√
n) [CKT99]. For independent,

non-metric edge lengths drawn uniformly from the interval [0, 1], the expected
approximation ratio is O(

√
n · log3/2 n) [EM09]. For d-dimensional geometric

instances, the smoothed approximation ratio is O(φ1/d) [ERV14], where φ is the
perturbation parameter.
We easily get an approximation ratio of O(logn) based on the two facts that
the length of the optimal tour is Θ(1) with high probability and that ∆max =

128

6.6 Concluding Remarks

O(logn/n) with high probability. Can we prove that the expected ratio of 2-opt
is o(logn)?

129

Bibliography

[AW09] Scott Aaronson and Avi Wigderson. “Algebrization: A New Barrier in
Complexity Theory”. In: TOCT 1.1 (2009).

[ADF95] Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows.
“Fixed-Parameter Tractability and Completeness IV: On Completeness
for W[P] and PSPACE Analogues”. In: Ann. Pure Appl. Logic 73.3
(1995), pp. 235–276.

[ABL10] Louigi Addario-Berry, Nicolas Broutin, and Gábor Lugosi. “The
Longest Minimum-Weight Path in a Complete Graph”. In: Combina-
torics, Probability & Computing 19.1 (2010), pp. 1–19.

[AB03] Manindra Agrawal and Somenath Biswas. “Primality and identity
testing via Chinese remaindering”. In: J. ACM 50.4 (2003), pp. 429–
443.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in
P”. In: Ann. of Math. (2) 160.2 (2004), pp. 781–793.

[AV08] Manindra Agrawal and V. Vinay. “Arithmetic Circuits: A Chasm at
Depth Four”. In: 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA,
USA. IEEE Computer Society, 2008, pp. 67–75.

[Arc96] Dan Archdeacon. “Topological Graph Theory – A Survey”. In: CONG.
NUM 115 (1996), pp. 115–5.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[AMR11] David Arthur, Bodo Manthey, and Heiko Röglin. “Smoothed Analysis
of the k-Means Method”. In: J. ACM 58.5 (2011), p. 19.

[AJS09] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan.
“Arithmetic Circuits and the Hadamard Product of Polynomials”. In:
IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2009, December 15-17,
2009, IIT Kanpur, India. Ed. by Ravi Kannan and K. Narayan Kumar.
Vol. 4. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2009, pp. 25–36.

131

Bibliography

[AMS10] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan.
“New Results on Noncommutative and Commutative Polynomial Iden-
tity Testing”. In: Computational Complexity 19.4 (2010), pp. 521–
558.

[AR14] Vikraman Arvind and S. Raja. “The Complexity of Two Register
and Skew Arithmetic Computation”. In: Electronic Colloquium on
Computational Complexity (ECCC) 21 (2014).

[AS10] Vikraman Arvind and Srikanth Srinivasan. “On the hardness of the
noncommutative determinant”. In: Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Mas-
sachusetts, USA, 5-8 June 2010. Ed. by Leonard J. Schulman. ACM,
2010, pp. 677–686.

[AGK+04] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh
Munagala, and Vinayaka Pandit. “Local Search Heuristics for k-Median
and Facility Location Problems”. In: SIAM J. Comput. 33.3 (2004),
pp. 544–562.

[Asl96] Helmer Aslaksen. “Quaternionic determinants”. In: Math. Intelli-
gencer 18.3 (1996), pp. 57–65.

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and Approximation: Combinatorial Op-
timization Problems and Their Approximability Properties. Springer,
1999.

[ADS88] David Avis, Burgess Davis, and J. Michael Steele. “Probabilistic
Analysis of a Greedy Heuristic for Euclidean Matching”. In: Probability
in the Engineering and Informational Sciences 2 (02 Apr. 1988),
pp. 143–156.

[Aza94] Yossi Azar. “Lower Bounds for Insertion Methods for TSP”. In:
Combinatorics, Probability & Computing 3 (1994), pp. 285–292.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. “Relativizations of
the P =? NP Question”. In: SIAM J. Comput. 4.4 (1975), pp. 431–
442.

[Bar89] David A. Barrington. “Bounded-width polynomial-size branching
programs recognize exactly those languages in {NC1}”. In: Journal of
Computer and System Sciences 38.1 (1989), pp. 150–164.

[Bar90] Alexander I. Barvinok. “Computational complexity of immanents and
representations of the full linear group”. In: Functional Analysis and
Its Applications 24.2 (1990), pp. 144–145.

[Bar96] Alexander I. Barvinok. “Two Algorithmic Results for the Traveling
Salesman Problem”. In: Mathematics of Operations Research 21.1
(1996), pp. 65–84.

132

Bibliography

[BHK62] Joseph Battle, Frank Harary, and Yukihiro Kodama. “Additivity of
the genus of a graph”. In: Bull. Amer. Math. Soc. 68.6 (Nov. 1962),
pp. 565–568.

[BC92] Michael Ben-Or and Richard Cleve. “Computing Algebraic Formulas
Using a Constant Number of Registers”. In: SIAM J. Comput. 21.1
(1992), pp. 54–58.

[BHH10] Shankar Bhamidi, Remco van der Hofstad, and Gerard Hooghiem-
stra. “First Passage Percolation on Random Graphs with Finite Mean
Degrees”. In: Annals of Applied Probability 20.5 (2010), pp. 1907–1965.

[BHH11] Shankar Bhamidi, Remco van der Hofstad, and Gerard Hooghiemstra.
“First Passage Percolation on the Erdős-Rényi Random Graph”. In:
Combinatorics, Probability & Computing 20.5 (2011), pp. 683–707.

[BHH12] Shankar Bhamidi, Remco van der Hofstad, and Gerard Hooghiemstra.
Universality for first passage percolation on sparse random graphs. Tech.
rep. 1210.6839 [math.PR]. arXiv, 2012.

[Bla10] Nathaniel D. Blair-Stahn. First passage percolation and competition
models. Tech. rep. 1005.0649v1 [math.PR]. arXiv, 2010.

[Blä13] Markus Bläser. “Noncommutativity Makes Determinants Hard”. In:
Automata, Languages, and Programming - 40th International Collo-
quium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I.
Ed. by Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and
David Peleg. Vol. 7965. Lecture Notes in Computer Science. Springer,
2013, pp. 172–183.

[BEMR13] Karl Bringmann, Christian Engels, Bodo Manthey, and B. V. Raghaven-
dra Rao. “Random Shortest Paths: Non-euclidean Instances for Metric
Optimization Problems”. In: Mathematical Foundations of Com-
puter Science 2013 - 38th International Symposium, MFCS 2013,
Klosterneuburg, Austria, August 26-30, 2013. Proceedings. Ed. by
Krishnendu Chatterjee and Jiri Sgall. Vol. 8087. Lecture Notes in
Computer Science. Springer, 2013, pp. 219–230.

[BH57] S. R. Broadbent and J.M. Hammersley. “Percolation Processes. I.
Crystals and Mazes”. In: Proceedings of the Cambridge Philosophical
Society 53.3 (1957), pp. 629–641.

[BB03] Jean-Luc Brylinski and Ranee Brylinski. “Complexity and Complete-
ness of Immanants”. In: CoRR cs.CC/0301024 (2003).

[BG05] Andrei A. Bulatov and Martin Grohe. “The complexity of partition
functions”. In: Theor. Comput. Sci. 348.2-3 (2005), pp. 148–186.

[Bür00a] Peter Bürgisser. Completeness and reduction in algebraic complexity
theory. Vol. 7. Springer, 2000.

133

Bibliography

[Bür00b] Peter Bürgisser. “The Computational Complexity of Immanants”. In:
SIAM J. Comput. 30.3 (2000), pp. 1023–1040.

[Bür00c] Peter Bürgisser. “The Computational Complexity to Evaluate Rep-
resentations of General Linear Groups”. In: SIAM J. Comput. 30.3
(2000), pp. 1010–1022.

[CCL13] Jin-Yi Cai, Xi Chen, and Pinyan Lu. “Graph Homomorphisms with
Complex Values: A Dichotomy Theorem”. In: SIAM J. Comput. 42.3
(2013), pp. 924–1029.

[CKT99] Barun Chandra, Howard J. Karloff, and Craig A. Tovey. “New Results
on the Old k-opt Algorithm for the Traveling Salesman Problem”. In:
SIAM J. Comput. 28.6 (1999), pp. 1998–2029.

[CR00] Chandra Chekuri and Anand Rajaraman. “Conjunctive query con-
tainment revisited”. In: Theor. Comput. Sci. 239.2 (2000), pp. 211–
229.

[CZ06] Jianer Chen and Fenghui Zhang. “On product covering in 3-tier supply
chain models: Natural complete problems for W [3] and W [4]”. In:
Theor. Comput. Sci. 363.3 (2006), pp. 278–288.

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. “Partial Derivatives in
Arithmetic Complexity and Beyond”. In: Foundations and Trends in
Theoretical Computer Science 6.1-2 (2011), pp. 1–138.

[CHSS11] Steve Chien, Prahladh Harsha, Alistair Sinclair, and Srikanth Srini-
vasan. “Almost settling the hardness of noncommutative determinant”.
In: Proceedings of the 43rd ACM Symposium on Theory of Comput-
ing, STOC 2011, San Jose, CA, USA, 6-8 June 2011. Ed. by Lance
Fortnow and Salil P. Vadhan. ACM, 2011, pp. 499–508.

[CS07] Steve Chien and Alistair Sinclair. “Algebras with Polynomial Identities
and Computing the Determinant”. In: SIAM J. Comput. 37.1 (2007),
pp. 252–266.

[CSS11] Sam Clearman, Brittany Shelton, and Mark Skandera. “Path tableaux
and combinatorial interpretations of immanants for class functions on
Sn”. In: The 23rd International Conference on Formal Power Series
and Algebraic Combinatorics, FPSAC 2011. 2011, pp. 233–244.

[CMMSV13] Nadia Creignou, Arne Meier, Julian-Steffen Müller, Johannes Schmidt,
and Heribert Vollmer. “Paradigms for Parameterized Enumeration”.
In: Mathematical Foundations of Computer Science 2013 - 38th In-
ternational Symposium, MFCS 2013, Klosterneuburg, Austria, August
26-30, 2013. Proceedings. Ed. by Krishnendu Chatterjee and Jiri
Sgall. Vol. 8087. Lecture Notes in Computer Science. Springer, 2013,
pp. 290–301.

[Cur15] Radu Curticapean. “The simple, little and slow things count”. PhD
thesis. Saarland University, 2015.

134

Bibliography

[DJ04] V́ıctor Dalmau and Peter Jonsson. “The complexity of counting homo-
morphisms seen from the other side”. In: Theor. Comput. Sci. 329.1-3
(2004), pp. 315–323.

[DKV02] V́ıctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. “Constraint
Satisfaction, Bounded Treewidth, and Finite-Variable Logics”. In: The
8th International Conference on Principles and Practice of Constraint
Programming - CP 2002, Ithaca, NY, USA, September 9-13, 2002,
Proceedings. Ed. by Pascal Van Hentenryck. Vol. 2470. Lecture Notes
in Computer Science. Springer, 2002, pp. 310–326.

[DKLM10] Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan.
“Planarity, Determinants, Permanents, and (Unique) Matchings”. In:
TOCT 1.3 (2010).

[DP93] Robert Davis and Armand Prieditis. “The Expected Length of a
Shortest Path”. In: Inf. Process. Lett. 46.3 (1993), pp. 135–141.

[Die00] Reinhard Diestel. Graph Theory. Springer, 2000.
[DF93] Rod G. Downey and Michael. R. Fellows. “Fixed parameter tractability

and completeness III: some structural aspects of the W hierarchy”. In:
Complexity Theory (1993), pp. 166–191.

[DF95a] Rodney G. Downey and Michael R. Fellows. “Fixed-Parameter Tractabil-
ity and Completeness I: Basic Results”. In: SIAM J. Comput. 24 (4
1995), pp. 873–921.

[DF95b] Rodney G. Downey and Michael R. Fellows. “Fixed-Parameter Tractabil-
ity and Completeness II: On Completeness for W[1]”. In: Theor.
Comput. Sci. 141.1&2 (1995), pp. 109–131.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Vol. 3. Springer Heidelberg, 1999.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parame-
terized Complexity. Texts in Computer Science. Springer, 2013.

[DMMRS14] Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-
Altherre, and Nitin Saurabh. “Homomorphism Polynomials Complete
for VP”. In: 34th International Conference on Foundation of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India. Ed. by Venkatesh Raman
and S. P. Suresh. Vol. 29. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2014, pp. 493–504.

[DF90] Martin E. Dyer and Alan M. Frieze. “On Patching Algorithms for Ran-
dom Asymmetric Travelling Salesman Problems”. In: Math. Program.
46 (1990), pp. 361–378.

135

Bibliography

[DG00] Martin E. Dyer and Catherine S. Greenhill. “The complexity of count-
ing graph homomorphisms”. In: Random Struct. Algorithms 17.3-4
(2000), pp. 260–289.

[DG04] Martin E. Dyer and Catherine S. Greenhill. “Corrigendum: The
complexity of counting graph homomorphisms”. In: Random Struct.
Algorithms 25.3 (2004), pp. 346–352.

[DFP93] Martin Dyer, Alan Frieze, and Boris Pittel. “The Average Performance
of the Greedy Matching Algorithm”. In: Annals of Applied Probability
3.2 (1993), pp. 526–552.

[EGHN13] Maren Eckhoff, Jesse Goodman, Remco van der Hofstad, and Francesca
R. Nardi. “Short Paths for First Passage Percolation on the Complete
Graph”. In: Journal of Statistical Physics 151.6 (2013), pp. 1056–1088.

[Eng14] Christian Engels. “Dichotomy Theorems for Homomorphism Polyno-
mials of Graph Classes”. In: CoRR abs/1412.0423 (2014).

[Eng15] Christian Engels. “Dichotomy Theorems for Homomorphism Polyno-
mials of Graph Classes”. In: WALCOM: Algorithms and Computation
- 9th International Workshop, WALCOM 2015, Dhaka, Bangladesh,
February 26-28, 2015. Proceedings. Ed. by M. Sohel Rahman and Et-
suji Tomita. Vol. 8973. Lecture Notes in Computer Science. Springer,
2015, pp. 282–293.

[EM09] Christian Engels and Bodo Manthey. “Average-case approximation
ratio of the 2-opt algorithm for the TSP”. In: Oper. Res. Lett. 37.2
(2009), pp. 83–84.

[ER14] Christian Engels and B. V. Raghavendra Rao. “New Algorithms
and Hard Instances for Non-Commutative Computation”. In: CoRR
abs/1409.0742 (2014).

[ERV14] Matthias Englert, Heiko Röglin, and Berthold Vöcking. “Worst Case
and Probabilistic Analysis of the 2-Opt Algorithm for the TSP”. In:
Algorithmica 68.1 (2014), pp. 190–264.

[FMR79] I. S. Filotti, Gary L. Miller, and John H. Reif. “On Determining the
Genus of a Graph in O(vˆO(g)) Steps”. In: Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 - May 2,
1979, Atlanta, Georgia, USA. Ed. by Michael J. Fischer, Richard A.
DeMillo, Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho.
ACM, 1979, pp. 27–37.

[FKL07] Uffe Flarup, Pascal Koiran, and Laurent Lyaudet. “On the Expres-
sive Power of Planar Perfect Matching and Permanents of Bounded
Treewidth Matrices”. In: Algorithms and Computation, 18th Interna-
tional Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007,
Proceedings. Ed. by Takeshi Tokuyama. Vol. 4835. Lecture Notes in
Computer Science. Springer, 2007, pp. 124–136.

136

Bibliography

[FL10] Uffe Flarup and Laurent Lyaudet. “On the Expressive Power of
Permanents and Perfect Matchings of Matrices of Bounded Path-
width/Cliquewidth”. In: Theory Comput. Syst. 46.4 (2010), pp. 761–
791.

[FG04] Jörg Flum and Martin Grohe. “The Parameterized Complexity of
Counting Problems”. In: SIAM J. Comput. 33.4 (2004), pp. 892–922.

[FG06] Jörg Flum and Martin Grohe. Parameterized complexity theory. Vol. 3.
Springer, 2006.

[FGKM15] Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, and Ivan
Mihajlin. “Lower Bounds for the Graph Homomorphism Problem”. In:
CoRR abs/1502.05447 (2015).

[FLMS14] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srini-
vasan. “Lower bounds for depth 4 formulas computing iterated matrix
multiplication”. In: Proceedings of the 46th ACM Symposium on The-
ory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014. Ed. by David B. Shmoys. ACM, 2014, pp. 128–135.

[FMM15] Hervé Fournier, Guillaume Malod, and Stefan Mengel. “Monomials in
Arithmetic Circuits: Complete Problems in the Counting Hierarchy”.
In: Computational Complexity 24.1 (2015), pp. 1–30.

[Fre90] Eugene C. Freuder. “Complexity of K-Tree Structured Constraint
Satisfaction Problems”. In: Proceedings of the 8th National Conference
on Artificial Intelligence. Boston, Massachusetts, July 29 - August 3,
1990, 2 Volumes. Ed. by Howard E. Shrobe, Thomas G. Dietterich, and
William R. Swartout. AAAI Press / The MIT Press, 1990, pp. 4–9.

[Fri04] Alan M. Frieze. “On Random Symmetric Travelling Salesman Prob-
lems”. In: Math. Oper. Res. 29.4 (2004), pp. 878–890.

[FG85] Alan M. Frieze and G. R. Grimmett. “The Shortest-Path Problem for
Graphs with Random Arc-Lengths”. In: Discrete Applied Mathematics
10 (1985), pp. 57–77.

[FH91] William Fulton and Joe Harris. Representation theory. Vol. 129.
Springer, 1991.

[Gat87] Joachim von zur Gathen. “Feasible Arithmetic Computations: Valiant’s
Hypothesis”. In: J. Symb. Comput. 4.2 (1987), pp. 137–172.

[Gen14] Craig Gentry. “Noncommutative Determinant is Hard: A Simple
Proof Using an Extension of Barrington’s Theorem”. In: IEEE 29th
Conference on Computational Complexity, CCC 2014, Vancouver, BC,
Canada, June 11-13, 2014. IEEE, 2014, pp. 181–187.

[GGR14] Andreas Göbel, Leslie Ann Goldberg, and David Richerby. “The
complexity of counting homomorphisms to cactus graphs modulo 2”.
In: TOCT 6.4 (2014), p. 17.

137

Bibliography

[GGR15] Andreas Göbel, Leslie Ann Goldberg, and David Richerby. “Count-
ing Homomorphisms to Square-Free Graphs, Modulo 2”. In: CoRR
abs/1501.07539 (2015).

[GGJT10] Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley.
“A Complexity Dichotomy for Partition Functions with Mixed Signs”.
In: SIAM J. Comput. 39.7 (2010), pp. 3336–3402.

[GJ14] Leslie Ann Goldberg and Mark Jerrum. “The Complexity of Ap-
proximately Counting Tree Homomorphisms”. In: TOCT 6.2 (2014),
p. 8.

[Gro07] Martin Grohe. “The complexity of homomorphism and constraint
satisfaction problems seen from the other side”. In: J. ACM 54.1
(2007).

[GT11] Martin Grohe and Marc Thurley. “Counting Homomorphisms and
Partition Functions”. In: CoRR abs/1104.0185 (2011).

[GM84] Robert Grone and Russell Merris. “An algorithm for the second
immanant”. In: Math. Comp. 43.168 (1984), pp. 589–591.

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Sapthar-
ishi. “Approaching the Chasm at Depth Four”. In: J. ACM 61.6
(2014), p. 33.

[Har85] Wolfgang Hartmann. “On the complexity of immanants”. In: Linear
and Multilinear Algebra 18.2 (1985), pp. 127–140.

[HZ85] Refael Hassin and Eitan Zemel. “On Shortest Paths in Graphs with
Random Weights”. In: Mathematics of Operations Research 10.4
(1985), pp. 557–564.

[Hei12] Uffe Heide-Jørgensen. “On the determinantal complexity of the 2-
Hook-Immanant”. PhD thesis. Aarhus University, 2012.

[HN90] Pavol Hell and Jaroslav Nešetřil. “On the complexity of H -coloring”.
In: J. Comb. Theory, Ser. B 48.1 (1990), pp. 92–110.

[HN04] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Vol. 28.
Oxford University Press Oxford, 2004.

[Hep94] Charles Thomas Hepler. “On the complexity of computing characters of
finite groups”. Master Thesis. Dept. of Computer Science, University
of Calgary, Canada, 1994.

[HHM01] Remco van der Hofstad, Gerard Hooghiemstra, and Piet van Mieghem.
“First Passage Percolation on the Random Graph”. In: Probability in
the Engineering and Informational Sciences 15.2 (2001), pp. 225–237.

[HHM06] Remco van der Hofstad, Gerard Hooghiemstra, and Piet Van Mieghem.
“Size and Weight of Shortest Path Trees with Exponential Link Weights”.
In: Combinatorics, Probability & Computing 15.6 (2006), pp. 903–926.

138

Bibliography

[HWY10] Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. “Non-commutative
circuits and the sum-of-squares problem”. In: Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010. Ed. by Leonard J. Schulman.
ACM, 2010, pp. 667–676.

[JVW90] F. Jaeger, D. L. Vertigan, and Dominic J. A. Welsh. “On the compu-
tational complexity of the Jones and Tutte polynomials”. In: Math-
ematical Proceedings of the Cambridge Philosophical Society 108 (01
July 1990), pp. 35–53.

[Jan99] Svante Janson. “One, Two And Three Times Log N/N For Paths
In A Complete Graph With Random Weights”. In: Combinatorics,
Probability & Computing 8.4 (1999), pp. 347–361.

[JS82] Mark Jerrum and Marc Snir. “Some Exact Complexity Results for
Straight-Line Computations over Semirings”. In: J. ACM 29.3 (1982),
pp. 874–897.

[JM02] David S. Johnson and Lyle A. McGeoch. “Experimental Analysis of
Heuristics for the STSP”. In: The Traveling Salesman Problem and its
Variations. Ed. by Gregory Gutin and Abraham P. Punnen. Kluwer,
2002. Chap. 9.

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Poly-
nomial Identity Tests Means Proving Circuit Lower Bounds”. In:
Computational Complexity 13.1-2 (2004), pp. 1–46.

[Kar77] Richard M. Karp. “Probabilistic Analysis of Partitioning Algorithms
for the Traveling-Salesman Problem in the Plane”. In: Mathematics
of Operations Research 2.3 (1977), pp. 209–224.

[KS85] Richard M. Karp and J. Michael Steele. “Probabilistic Analysis of
Heuristics”. In: The Traveling Salesman Problem: A Guided Tour
of Combinatorial Optimization. Ed. by Eugene L. Lawler, Jan Karel
Lenstra, Alexander H. G. Rinnooy Kan, and David B. Shmoys. Wiley,
1985, pp. 181–205.

[Kay12] Neeraj Kayal. “An exponential lower bound for the sum of powers of
bounded degree polynomials”. In: Electronic Colloquium on Computa-
tional Complexity (ECCC) 19 (2012).

[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. “A super-
polynomial lower bound for regular arithmetic formulas”. In: Proceed-
ings of the 46th ACM Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014. Ed. by David B.
Shmoys. ACM, 2014, pp. 146–153.

[KS14] Neeraj Kayal and Ramprasad Saptharishi. “A selection of lower bounds
for arithmetic circuits”. In: Perspectives in Computational Complexity.
Springer, 2014, pp. 77–115.

139

Bibliography

[Ker89] Walter Kern. “A probabilistic analysis of the switching algorithm for
the euclidean TSP”. In: Math. Program. 44.1-3 (1989), pp. 213–219.

[Koi05] Pascal Koiran. “Valiant’s model and the cost of computing integers”.
In: Computational Complexity 13.3-4 (2005), pp. 131–146.

[Koi12] Pascal Koiran. “Arithmetic circuits: The chasm at depth four gets
wider”. In: Theor. Comput. Sci. 448 (2012), pp. 56–65.

[KK12] István Kolossváry and Júlia Komjáthy. First Passage Percolation on
Inhomogeneous Random Graphs. Tech. rep. 1201.3137v1 [math.PR].
arXiv, 2012.

[KA85] V. G. Kulkarni and V. G. Adlakha. “Maximum Flow in Planar Net-
works in Exponentially Distributed Arc Capacities”. In: Communica-
tions in Statistics. Stochastic Models 1.3 (1985), pp. 263–289.

[Kul86] Vidyadhar G. Kulkarni. “Shortest paths in networks with exponentially
distributed arc lengths”. In: Networks 16.3 (1986), pp. 255–274.

[Kul88] Vidyadhar G. Kulkarni. “Minimal spanning trees in undirected net-
works with exponentially distributed arc weights”. In: Networks 18.2
(1988), pp. 111–124.

[LMS15] Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. “Lower
bounds for non-commutative skew circuits”. In: Electronic Colloquium
on Computational Complexity (ECCC) 22 (2015).

[LR34] Dudley E. Littlewood and Archibald R. Richardson. “Group Characters
and Algebra”. In: Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 233.721-
730 (1934), pp. 99–141.

[Lov67] László Lovász. “Operations with structures”. English. In: Acta
Mathematica Academiae Scientiarum Hungarica 18.3-4 (1967), pp. 321–
328.

[Mah13] Meena Mahajan. “Algebraic Complexity Classes”. In: CoRR abs/1307.3863
(2013).

[MR13] Meena Mahajan and B. V. Raghavendra Rao. “Small Space Ana-
logues of Valiant’s Classes and the Limitations of Skew Formulas”. In:
Computational Complexity 22.1 (2013), pp. 1–38.

[MV99] Meena Mahajan and V. Vinay. “Determinant: Old Algorithms, New
Insights”. In: SIAM J. Discrete Math. 12.4 (1999), pp. 474–490.

[Mal07] Guillaume Malod. “The Complexity of Polynomials and Their Coeffi-
cient Functions”. In: 22nd Annual IEEE Conference on Computational
Complexity (CCC 2007), 13-16 June 2007, San Diego, California, USA.
IEEE Computer Society, 2007, pp. 193–204.

140

Bibliography

[MP08] Guillaume Malod and Natacha Portier. “Characterizing Valiant’s
algebraic complexity classes”. In: J. Complexity 24.1 (2008), pp. 16–
38.

[MV13] Bodo Manthey and Rianne Veenstra. “Smoothed Analysis of the 2-Opt
Heuristic for the TSP: Polynomial Bounds for Gaussian Noise”. In:
Algorithms and Computation - 24th International Symposium, ISAAC
2013, Hong Kong, China, December 16-18, 2013, Proceedings. Ed. by
Leizhen Cai, Siu-Wing Cheng, and Tak Wah Lam. Vol. 8283. Lecture
Notes in Computer Science. Springer, 2013, pp. 579–589.

[McC03] Catherine McCartin. “Contributions to Parameterized Complexity”.
PhD thesis. Victoria University of Wellington, 2003.

[Men13] Stefan Mengel. “Arithmetic Branching Programs with Memory”. In:
Mathematical Foundations of Computer Science 2013 - 38th Inter-
national Symposium, MFCS 2013, Klosterneuburg, Austria, August
26-30, 2013. Proceedings. Ed. by Krishnendu Chatterjee and Jiri
Sgall. Vol. 8087. Lecture Notes in Computer Science. Springer, 2013,
pp. 667–678.

[Mer83] Russell Merris. “Single-hook characters and hamiltonian circuits”. In:
Linear and Multilinear Algebra 14.1 (1983), pp. 21–35.

[MM13] Stephan Mertens and Cristopher Moore. “The Complexity of the
Fermionant and Immanants of Constant Width [Note]”. In: Theory of
Computing 9 (2013), pp. 273–282.

[Mil87] Gary L. Miller. “An additivity theorem for the genus of a graph”. In:
J. Comb. Theory, Ser. B 43.1 (1987), pp. 25–47.

[Mit79] Sandra L. Mitchell. “Linear Algorithms to Recognize Outerplanar and
Maximal Outerplanar Graphs”. In: Inf. Process. Lett. 9.5 (1979),
pp. 229–232.

[Moh88] Bojan Mohar. “Nonorientable Genus of Nearly Complete Bipartite
Graphs”. In: Discrete & Computational Geometry 3 (1988), pp. 137–
146.

[Moh99] Bojan Mohar. “A Linear Time Algorithm for Embedding Graphs in an
Arbitrary Surface”. In: SIAM J. Discrete Math. 12.1 (1999), pp. 6–26.

[MS01] Ketan Mulmuley and Milind A. Sohoni. “Geometric Complexity Theory
I: An Approach to the P vs. NP and Related Problems”. In: SIAM J.
Comput. 31.2 (2001), pp. 496–526.

[Nie02] Rolf Niedermeier. “Invitation to fixed-parameter algorithms”. Habili-
tation Thesis. 2002.

141

Bibliography

[Nis91] Noam Nisan. “Lower Bounds for Non-Commutative Computation
(Extended Abstract)”. In: Proceedings of the 23rd Annual ACM Sym-
posium on Theory of Computing, STOC 1991, May 5-8, 1991, New
Orleans, Louisiana, USA. Ed. by Cris Koutsougeras and Jeffrey Scott
Vitter. ACM, 1991, pp. 410–418.

[NW97] Noam Nisan and Avi Wigderson. “Lower Bounds on Arithmetic Circuits
Via Partial Derivatives”. In: Computational Complexity 6.3 (1997),
pp. 217–234.

[PY96] Christos H. Papadimitriou and Mihalis Yannakakis. “On Limited
Nondeterminism and the Complexity of the V-C Dimension”. In: J.
Comput. Syst. Sci. 53.2 (1996), pp. 161–170.

[PSSZ13] Yuval Peres, Dmitry Sotnikov, Benny Sudakov, and Uri Zwick. “All-
pairs shortest paths in O(n2) time with high probability”. In: J. ACM
60.4 (2013), p. 26.

[Raz09] Ran Raz. “Multi-linear formulas for permanent and determinant are
of super-polynomial size”. In: J. ACM 56.2 (2009).

[RY09] Ran Raz and Amir Yehudayoff. “Lower Bounds and Separations for
Constant Depth Multilinear Circuits”. In: Computational Complexity
18.2 (2009), pp. 171–207.

[RY11] Ran Raz and Amir Yehudayoff. “Multilinear formulas, maximal-
partition discrepancy and mixed-sources extractors”. In: J. Comput.
Syst. Sci. 77.1 (2011), pp. 167–190.

[RR97] Alexander A. Razborov and Steven Rudich. “Natural Proofs”. In: J.
Comput. Syst. Sci. 55.1 (1997), pp. 24–35.

[RT81] Edward M. Reingold and Robert Endre Tarjan. “On a Greedy Heuristic
for Complete Matching”. In: SIAM J. Comput. 10.4 (1981), pp. 676–
681.

[RSI77] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II.
“An Analysis of Several Heuristics for the Traveling Salesman Problem”.
In: SIAM J. Comput. 6.3 (1977), pp. 563–581.

[Ros10] Sheldon M. Ross. Introduction to Probability Models. 10th. Academic
Press, 2010.

[Rot96] Dan Roth. “On the Hardness of Approximate Reasoning”. In: Artif.
Intell. 82.1-2 (1996), pp. 273–302.

[Rug12] Nicolas de Rugy-Altherre. “A Dichotomy Theorem for Homomorphism
Polynomials”. In: Mathematical Foundations of Computer Science
2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia,
August 27-31, 2012. Proceedings. Ed. by Branislav Rovan, Vladimiro
Sassone, and Peter Widmayer. Vol. 7464. Lecture Notes in Computer
Science. Springer, 2012, pp. 308–322.

142

Bibliography

[Sch88] Edward R. Scheinerman. “Random interval graphs”. In: Combinator-
ica 8.4 (1988), pp. 357–371.

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A survey
of recent results and open questions”. In: Foundations and Trends in
Theoretical Computer Science 5.3-4 (2010), pp. 207–388.

[ST04] Daniel A. Spielman and Shang-Hua Teng. “Smoothed analysis of
algorithms: Why the simplex algorithm usually takes polynomial time”.
In: J. ACM 51.3 (2004), pp. 385–463.

[SB77] Saul Stahl and Lowell W. Beineke. “Blocks and the nonorientable
genus of graphs”. In: Journal of Graph Theory 1.1 (1977), pp. 75–78.

[Str90] Volker Strassen. “Algebraic complexity theory”. In: Handbook of
theoretical computer science, Vol. A. Elsevier, Amsterdam, 1990,
pp. 633–672.

[SPR80] Kenneth J. Supowit, David A. Plaisted, and Edward M. Reingold.
“Heuristics for Weighted Perfect Matching”. In: Proceedings of the 12th
Annual ACM Symposium on Theory of Computing, April 28-30, 1980,
Los Angeles, California, USA. Ed. by Raymond E. Miller, Seymour
Ginsburg, Walter A. Burkhard, and Richard J. Lipton. ACM, 1980,
pp. 398–419.

[Tav13] Sébastien Tavenas. “Improved Bounds for Reduction to Depth 4 and
Depth 3”. In: Mathematical Foundations of Computer Science 2013 -
38th International Symposium, MFCS 2013, Klosterneuburg, Austria,
August 26-30, 2013. Proceedings. Ed. by Krishnendu Chatterjee and
Jiri Sgall. Vol. 8087. Lecture Notes in Computer Science. Springer,
2013, pp. 813–824.

[Tes13] Rebecca Tessier. “Path Tableaux and the Combinatorics of the Im-
manant Function”. Master Thesis. University of Waterloo, 2013.

[Tho89] Carsten Thomassen. “The Graph Genus Problem is NP-Complete”.
In: J. Algorithms 10.4 (1989), pp. 568–576.

[Tod92] Seinosuke Toda. “Classes of arithmetic circuits capturing the com-
plexity of computing the determinant”. In: IEICE Transactions on
Information and Systems 75.1 (1992), pp. 116–124.

[Usp37] James V. Uspensky. Introduction to mathematical probability. McGraw-
Hill, 1937.

[Val79a] Leslie G. Valiant. “Completeness Classes in Algebra”. In: Proceedings
of the 11h Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1979, Atlanta, Georgia, USA. Ed. by Michael J. Fischer,
Richard A. DeMillo, Nancy A. Lynch, Walter A. Burkhard, and Alfred
V. Aho. ACM, 1979, pp. 249–261.

143

Bibliography

[Val79b] Leslie G. Valiant. “The Complexity of Computing the Permanent”. In:
Theor. Comput. Sci. 8 (1979), pp. 189–201.

[Ver04] Anatoly M. Vershik. “Random Metric Spaces and Universality”. In:
Russian Mathematical Surveys 59.2 (2004), pp. 259–295.

[Wil14] Ryan Williams. “Nonuniform ACC Circuit Lower Bounds”. In: J.
ACM 61.1 (2014), 2:1–2:32.

[Yuk98] Joseph E. Yukich. Probability Theory of Classical Euclidean Optimiza-
tion Problems. Vol. 1675. Lecture Notes in Mathematics. Springer,
1998.

144

	Introduction
	Outline
	Preliminaries

	Arithmetic Circuits and Complete Problems
	Introduction to Arithmetic Circuits
	Restricted Circuit Models
	The Defining Problems in Arithmetic Circuit Complexity
	Generating Functions of Graph Properties
	Tools
	The Immanant and a Short Introduction to Characters of the Symmetric Group

	On Hard Instances of Non-Commutative Problems.
	Introduction
	Preliminaries
	An Algorithm for the Cayley Permanent
	Unconditional Lower Bound
	ABPs
	Weakly Skew Circuits

	Completeness Results
	A Recap of Gentry's Proof
	Connected Components of Size 6 of Permanent and Immanant
	Other Hard Polynomials

	Computational Problems

	A Fixed Parameter Theory of Arithmetic Circuits
	Introduction
	Parameterized Complexity
	A Recap of Boolean Parameterized Complexity
	A Recap of Parameterized Counting Complexity

	General Definitions for Parameterized Arithmetic Circuits
	VFPT
	Kernelization

	Boolean-Arithmetic and BVW[t]
	Independent Set and BVW[1]
	Dominating Set and BVW[2]
	3-SCM Single-Product Cover and BVW[3]
	Discussion

	VW[t]
	VW[1]
	VW[2]
	VW[3]

	The Immanant
	Open Problems

	Homomorphism Polynomials
	Introduction to Homomorphism Polynomials
	Model and Notation of Homomorphism Polynomials
	Facts about Planar and Outerplanar Graphs
	A Short Introduction to Graph Genus
	The Problem and Related Definitions

	Dichotomies
	Cycles
	Cliques
	Trees
	Outerplanar Graphs
	Planar Graphs
	Genus k graphs

	Open Problems

	Average Case Analysis of Graph Algorithms on Metric Graphs
	Introduction
	Preliminaries
	Model and Notation
	Facts about Exponential Distributions

	Structural Properties of Shortest Path Metrics
	Random Process
	Distribution of tauk(v)
	Tail Bounds for |B(v)| and Delta-max
	Balls and Clusters

	Analysis of Heuristics
	Greedy Heuristic for Minimum-Length Perfect Matching
	Nearest-Neighbor Algorithm for the TSP
	Insertion Heuristics for the TSP
	Running-Time of 2-Opt for the TSP

	k-Median
	Concluding Remarks
	General Probability Distributions
	Open Problems on Metric Graphs

	Bibliography

