
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Trustworthy and Privacy-Preserving
Processing of Personal Information

Cryptographic Constructions, Protocols, and Tools

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

von
Kim Rouven Pecina

Saarbrücken, Mai 2015

Tag des Kolloquiums: 10 März 2016

Dekan: Prof. Dr. Markus Bläser

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Wolfgang J. Paul
Berichterstattende: Prof. Dr. Matteo Maffei

Prof. Dr. Michael Backes
Dr. Steve Kremer

Akademischer Mitarbeiter: Dr. Sven Bugiel

Zusammenfassung

Internetservices sammeln viele von Benutzern als sensibel eingestufte Daten, z.B. den
Browserverlauf und Emailadressen, oft ohne, dass Benutzer dies merken. Die gesammelten
Daten werden zum Personalisieren und zum Geld machen, bspw. durch zielgerichtete
Werbung, genutzt.

Die funktionalitätserhaltende Umsetzung moderner Webservices, die die scheinbar
unvereinbaren Eigenschaften Vertrauenswürdigkeit und Privacy erfüllen, gestaltet sich als
schwierig: Wie können in sozialen Netzwerken nur Kommentare von Freunden zugelassen
werden, wenn niemand seine Identität verrät? Wie ist personaliserte, zielgerichtete Werbung
möglich, wenn Benutzer ihre Interessen geheim halten?

In dieser Dissertation stellen wir Techniken für die vertrauenswürdige und Privacy-
erhaltende Verarbeitung von persönlichen Informationen vor.

Zuerst präsentieren wir eine API für die vertrauenswürdige und Privacy-erhaltende
Verbreitung von persönlichen Daten. Die API erlaubt die deklarative Spezifizierung von
verteilten Systemen; diese erfüllen anspruchsvolle Sicherheitseigenschaften wie Authoriza-
tion, Anonymität und Accountability. Mit der API implementieren wir ein anonymes
Evaluationssystem, anonyme Webs of Trust und ein sicheres soziales Netzwerk.

Weiterhin stellen wir eine Methodik für das vertrauenswürdige und Privacy-erhaltende
Abrufen von Informationen vor. Beispielhaft dafür präsentieren wir ObliviAd, eine Ar-
chitektur für hoch personalisierte Onlinewerbung, die beweisbar Benutzerprofile schützt.

iii

iv

Abstract

Internet services collect lots of information that users deem highly sensitive such as the
browsing history and email addresses, often without users noticing this conduct. The
collected information is used for personalizing services and it is monetized, e.g., in the form
of targeted advertisements.

Realizing modern web services that maintain their functionality and satisfy the
seemingly conflicting properties of trustworthiness and privacy is challenging: in a social
network, how to enforce that only friends can post comments, if users are unwilling to
reveal their identity? in online behavioral advertising, how to serve personalized ads, if
users insist on keeping their interests private?

In this thesis, we propose techniques for the trustworthy and privacy-preserving
processing of personal information.

First, we present an API for the trustworthy and privacy-preserving release of personal
information. The API enables the declarative specification of distributed systems that satisfy
sophisticated security properties, including authorization, anonymity, and accountability.
We use this API to implement an anonymous evaluation system, anonymous webs of trust,
and a secure social network.

Second, we present a methodology for the trustworthy and privacy-preserving retrieval
of information. We exemplify our approach by presenting ObliviAd, an architecture for
online behavioral advertising that provably protects user profiles and delivers highly-
personalized advertisements.

v

vi

Background of this Dissertation

This dissertation builds on the following papers. The author contributed to all of these
papers as main author as well as to their elaboration.

Chapter 2 builds on the following works:

• Matteo Maffei and Kim Pecina [170].
Position Paper: Privacy-Aware Proof-Carrying Authorization. In Proc. ACM SIG-
PLAN Workshop on Programming Languages and Analysis for Security (PLAS’11).
ACM Digital Library, 2011.

• Michael Backes, Matteo Maffei, and Kim Pecina [30].
Automated Synthesis of Privacy-Preserving Distributed Applications. In Proc.
Network and Distributed System Security Symposium (NDSS’12). Internet Society,
2012.

• Matteo Maffei, Kim Pecina, and Manuel Reinert [171].
Security and Privacy by Declarative Design. In Proc. IEEE Symposium on Computer
Security Foundations (CSF’13), pages 81–96. IEEE Computer Society Press, 2013.

Chapter 3 builds on the following works:

• Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina [25].
Anonymous Webs of Trust. In Proc. Privacy Enhancing Technologies Symposium
(PETS’10), volume 6205 of Lecture Notes in Computer Science, pages 130–148.
Springer-Verlag, 2010.

• Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina [26].
Brief Announcement: Anonymity and Trust in Distributed Systems. In Proc.
Symposium on Principles of Distributed Computing (PODC’10), pages 237–238.
ACM Press, 2010.

• Michael Backes, Matteo Maffei, and Kim Pecina [28].
A Security API for Distributed Social Networks. In Proc. Network and Distributed
System Security Symposium (NDSS’11), pages 35–51. Internet Society, 2011.

• Michael Backes, Matteo Maffei, and Kim Pecina [29].
Brief Announcement: Securing Social Networks. In Proc. Symposium on Principles
of Distributed Computing (PODC’11), pages 341–342. ACM Press, 2011.

Chapter 4 builds on the following work:

• Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina [23].
ObliviAd: Provably Secure and Practical Online Behavioral Advertising. In Proc.
IEEE Symposium on Security & Privacy (S&P’12), pages 257–271. IEEE Computer
Society Press, 2012.

vii

Acknowledgments

I owe a great gratitude to Matteo Maffei. Working with him was an honor and an
inspiration. During the last decade, he advised my Bachelor’s thesis and this PhD thesis,
thus accompanying me for the majority of my academic journey so far. Matteo also became
a friend with a lot of understanding for my (sometimes challenging) personality.
Many thanks go to Michael Backes. His enthusiasm both as a teacher and as a researcher
has drawn me towards cryptography and information security. He took me in as a Bachelor
student and supervised my Bachelor’s thesis. He showed me that you need to set high
goals and pursue them, and he encouraged me to do the same.
I am very grateful to both Matteo and Michael for agreeing to review this thesis.

I thank all members of the CISPA and the MMCI administration. Without their
administrative aid and without the countless, fruitful discussions and continuous support, I
could not have mastered this thesis. I particular like to thank all my collaborators during
my PhD studies (works with collaborations marked with a ∗ are not contained in this
thesis): Michael Backes, Fabian Bendun∗, Aniket Kate, Stefan Lorenz, Matteo Maffei,
Esfandiar Mohammadi, Pedro Moreno-Sanchez∗, Christina Pöpper∗, Raphael Reischuk∗,
and Manuel Reinert.

Thanks go to Stefan Lorenz and Andrea Ney for proof-reading this thesis. Special
thanks go to Manuel Reinert for proof-reading this thesis including the appendix. Very
special thanks go to my office mate Fabienne Eigner for enduring me during my PhD
studies, her cheering me up, having an open ear, and for being a great friend.

For keeping the body fit and in sync with the mind, my gratitude goes to our tennis
crew Sebastian Gerling, Milivoj Simeonovski, Manuel Reinert, and Hazem Torfah; I am
still amazed that five computer scientists manage to play tennis at 7 in the morning. I also
thank Fabian Bendun for demonstrating the RNC on me and, in the process, introducing
me to a fantastic sport.

I thank Julian Backes and Stefan Lorenz for the elaborate freedom to finish this thesis
during the time I took.

I am grateful to my parents, my family, and friends for their constant support, their
patience and their understanding during the last years, especially when my time for them
was rare. I particularly thank my girlfriend, fiancée, and soon-to-be wife Andrea Ney
during the last years of this thesis: She was and is my motivation and compass when I lose
my direction.

Typically, family and close friends constitute the final part of the acknowledgments.
To me however, there are three more people that are cornerstones of my path to this thesis.
Thanks to Robert Wirth for showing me that computers can also be used for something
besides gaming. Back in the days, he gave me a copy of SuSE LinuX 6.1 and introduced me
to C programming. Thanks to Walburga Reinert for helping me in dropping my sloppiness
(Matteo knows what I mean). Thanks to Nima Zeini-Jahromi for making me join the
Graduate School, thus taking the very first step towards a PhD thesis in the first place.

viii

Contents

1 Introduction ... 1
1.1 Contribution . 2

1.1.1 Trustworthy and privacy-preserving release of personal information. 2
1.1.2 Trustworthy and privacy-preserving retrieval of personal information 4

1.2 Outline of the Thesis . 5

Trustworthy and Privacy-Preserving Release
of Personal Information 7

2 Security and Privacy by Declarative Design... 9
2.1 Introduction . 9
2.2 Key Ideas . 10
2.3 Declarative API . 13

2.3.1 Authorization . 13
2.3.2 Privacy . 15
2.3.3 Controlled Linkability . 16
2.3.4 Accountability . 17
2.3.5 Identity Escrow . 18
2.3.6 Open-endedness and Interoperability 19

2.4 Cryptographic Realization . 20
2.4.1 Cryptographic Setup . 20
2.4.2 Cryptographic Realization of API Methods 24

2.5 Proofs . 27
2.5.1 Cryptographic Proofs of Anonymity and Unlinkablity 27
2.5.2 Type-Based Verification of the API Methods 35

2.6 Implementation and Experiments . 40
2.6.1 Experimental Evaluation . 41

2.7 Related Work . 44

3 Case Studies ... 51
3.1 Experimental Setup . 51
3.2 tales . 52

3.2.1 Design of tales . 52

ix

Contents

3.2.2 Java Implementation of tales . 53
3.2.3 Experimental Evaluation . 54

3.3 Anonymous Webs of Trust . 56
3.3.1 Designing Anonymous Webs of Trust 57
3.3.2 Implementation of Anonymous Webs of Trust 58
3.3.3 Experimental Evaluation . 59
3.3.4 Formal Verification . 61
3.3.5 Implementing Sophisticated Trust Measures 64

3.4 A Security API for Distributed Social Networks 65
3.4.1 A Core API for Social Networking 66
3.4.2 Implementation of the Core API . 69
3.4.3 Experiments . 72
3.4.4 Comparison: Dedicated Implementation vs. Declarative API Imple-

mentation. 77

Trustworthy and Privacy-Preserving Retrieval
of Personal Information 79

4 ObliviAd:
Provably Secure and Practical Online Behavioral Advertising 81
4.1 Introduction . 81
4.2 Key Ideas . 82
4.3 Protocol Overview . 85

4.3.1 Adversary Model . 85
4.3.2 Preliminaries . 85
4.3.3 Cryptographic Assumptions and Requirements 87
4.3.4 Protocol Overview . 87

4.4 ORAM Construction . 91
4.4.1 ORAM Scheme by Shi et al. 92
4.4.2 Adapted Construction . 93

4.5 Performance Analysis . 94
4.5.1 Implementation . 96
4.5.2 Experiments . 96
4.5.3 Discussion . 97

4.6 Formal Verification . 98
4.6.1 Profile Privacy . 98
4.6.2 Profile Unlinkability . 99
4.6.3 Billing Correctness . 101

4.7 Related Work . 102

5 Conclusion and Outlook ...105

x

Contents

Appendices 107

A Well-Typedness of the API Methods ...109
A.1 RCF Implementation of the API . 109

A.1.1 Preliminaries: RCF Type System . 110
A.1.2 API Data Types . 114
A.1.3 Strong Types and Typed API Methods 121

A.2 Well-Typedness of the RCF Implementation 174
A.2.1 Type-Checking Auxiliary Functions 197
A.2.2 Type-Checking Main API Methods 202

A.3 Well-Typedness of the ML Implementation 265

B ProVerif Code ..269
B.1 Anonymous Webs of Trust . 269
B.2 ObliviAd . 276

Bibliography ...289

List of Figures ...311

List of Tables ..313

List of Listings ..315

xi

xii

1. Introduction
We live in the digital age in which exchanging information between one end of the world
and the other is only a click of a button away and takes merely a fraction of a second.
Staying in touch with family and friends even across continents, and sharing personal
details has never been easier. In fact, giving away such details has become so easy that
people tend to overshare personal information, often oblivious to the fact of oversharing
and to its consequences [67, 172, 86].

Big Internet companies, among them Google and Facebook, offer highly utilized
services [103, 102] that are centered around collecting, assessing, and evaluating information
shared by users [126, 108, 88]. For instance, if a user decides to join the largest online social
network Facebook [103], she has to register with her name, age, and email address. Once a
user is registered, she can enjoy the activities offered by modern social networks such as
exchanging messages with her friends and liking new articles. While participating in these
activities, her every action is recorded. The data aggregated that way is used to derive
frighteningly detailed user profiles, typically used for advertising purposes. Among the
most notable traits revealed by the resulting profiles are the political preferences, religious
beliefs, and sexual orientation [7].

Awareness of these practices is rising and many Internet users realize the importance
and the value of their personal information. In particular, users are beginning to acknowl-
edge the implications on their privacy when data is lost, stolen, or in any other way shared:
in a recent survey, a significant fraction of the participants classified personal data such as
browsing history, name, demographic data (e.g., age and gender), and email address as
highly sensitive [50, 151].

When faced with the decision whether to join a service or not, the strategy for privacy-
aware users seems apparent: do not participate. Unfortunately, this strategy does not offer
much protection: while casually browsing the web and without using any services, users
are constantly tracked and their actions are recorded. For instance, advertisements that
are included in many web sites are utilized to record the browsing behavior of users, even
across different web sites. The brokers, i.e., the parties that provide these advertisements,
use the gathered tracking data to display ads that are personally targeted towards the
users’ interests and hobbies.

A first intuition may be that since there is no registration of any kind, the tracking
data is disconnected from the actual user identities and, consequently, privacy is only
marginally affected. An extensive body of research shows that connecting anonymous
profiles to users is feasible (e.g., [143, 188, 213, 51, 203, 97, 183, 224]) and, in fact, this
tracking mechanism poses serious threats to the privacy of users [158, 159].

To respond to these privacy threats, to protect its citizens, and to reflect the growing

1

Chapter 1. Introduction

desire of the Internet users to protect their privacy, legislation in Europe and the USA
have become active: they started to define regulatory frameworks and guides for handling
sensitive data and to promote privacy to be an an important cornerstone of IT systems
and Internet services [190]. More precisely, the European Commission proposed a general
data protection regulation [106] and in the USA the Federal Trade Commission issued
recommendations for businesses on how to protect consumer privacy in a digital era [109, 90].

The ultimate goal of all legal regulations is to protect the users’ rights and to require
service providers to respect users and protect their data. These legal efforts are a crucial
and important ingredient but they lack the technological counterparts that help to enforce
legal requirements: for instance, a service provider can always choose to actively ignore
legal restrictions and misuse data; technical solutions can help to identify malicious service
providers or the solutions may prevent service providers from misusing user data in the
first place.

There are many reasons and incentives for companies to offer their services in a privacy-
preserving way: be it because legislation is expected to set hard requirements on service
providers in the future, be it because companies respect their users’ concerns and take them
seriously, or be it in the light of the big data thefts of the recent years (e.g., [226, 162, 157,
222, 184, 13, 196]) along with the bad record for the affected companies (e.g. [35, 217, 113]).

Finding solutions that offer reliable security is challenging. Devising technical solutions
that yield provable guarantees while satisfying the complex and seemingly conflicting
requirements of modern web services such as privacy, anonymity, and authorization is
even more daunting: how can users participate in Facebook without revealing private
information? how can brokers serve targeted and personalized advertisements without
collecting privacy-relevant user data? More generally, how to achieve trustworthy and
privacy-preserving processing of personal information?

1.1. Contribution
In this thesis, we propose constructions, protocols, and tools that address the problems
of the trustworthy and privacy-preserving processing of personal information. We split
the general topic of information processing into two parts and treat the release and the
retrieval of personal information separately.

1.1.1. Trustworthy and privacy-preserving release of
personal information.

Releasing authentic, i.e., trustworthy, information is easy, for instance, by means of a
digital signature. A signature, however, explicitly and intentionally reveals the creator of
the data. In other words, it does not offer any form of privacy.

Releasing information in a privacy-preserving way is also easy: tools such as TOR [99]
enable users to release information in an anonymous, i.e., a privacy-preserving, manner.
Since the origin of the data remains anonymous, the data lacks any form of credibility.

2

1.1. Contribution

Ideally, users would like to release their information such that they remain anonymous (or
at least that the data does not point back to them directly) and, at the same time, the
authenticity of the released data remains intact.

In the first part of this thesis, we propose a cryptographic solution that combines
privacy, anonymity, and authorization in distributed systems. Intuitively, our solution
enables users to selectively hide parts of a signed message such as their identity while
still convincing the recipient that the messages is signed. More precisely, we combine
digital signatures with powerful non-interactive zero-knowledge proofs of knowledge.1 The
resulting systems adopt the strong trust and authorization properties offered by digital
signatures and inherit the strong privacy-guarantees achievable by zero-knowledge proofs.
For instance, in the scenario of social networks, we can prove statements of the form “one
of your friends posted this comment”. Notice that this statement guarantees that the post
originates from a friend while it keeps the identity of that friend secret.

Additionally to this anonymous authentication, we deploy service-specific pseudonyms.
The compelling properties of service-specific pseudonyms are that they are pseudonyms:
they hide the identity of its owner, and, at the same time, enable us to link user actions
within a service (intra-service linkability) while user actions are unlinkable across different
services (inter-service unlinkability). Service-specific pseudonyms are an ideal tool to
restrict the amount of actions a user is allowed to take, for instance, to prevent users from
submitting multiple anonymous reviews for a single product. Additionally, we develop an
identity escrow protocol that, given a trusted third party, allows for revealing the identity
of a user. In particular, users are aware if they use messages that can reveal their identity
and only the trusted third party can associate a user to a certain action.

We provide a unified access to these cryptographic primitives. We devise a declarative
API that harnesses this powerful combination of digital signatures, pseudonyms, identity
escrow, and zero-knowledge proofs. The API is expressive enough to enforce sophisticated
security properties such as authorization (trustworthiness), privacy, anonymity, controlled
linkability, and accountability in complex distributed systems. It is designed to be easy
to use and to be accessible even by cryptographic non-experts. In the API, information
known to users is represented as logical formulas and the messages exchanged by parties
as validity proofs for logical formulas [170]. The resulting systems enjoy the specified
authorization properties by construction. Since the API allows users to selectively hide
parts of a message, including the identity of the creator of that message, it is a salient tool
for the trustworthy and privacy-preserving release of personal information.

We provide cryptographic proofs of the service-specific pseudonym properties, namely,
anonymity, intra-service linkability, and inter-service unlinkability, and we show that the
escrow mechanism only enables the trusted third party to identify a user. Furthermore,

1A zero-knowledge proof combines two seemingly contradictory properties. First, it is a proof of a
statement that cannot be forged, that is, it is impossible, or at least computationally infeasible, to
produce a zero-knowledge proof of a wrong statement. Second, a zero-knowledge proof does not reveal
any information besides the bare fact that the proven statement is valid [122]. A non-interactive
zero-knowledge proof consists of a single message sent by the prover to the verifier. A proof of knowledge
further shows that the prover was in possession of the information kept secret by the zero-knowledge
proof.

3

Chapter 1. Introduction

we derive a security-by-construction guarantee, proving that the authorization policies in
declarative specifications are enforced statically by leveraging a state-of-the-art security
type system.

We implemented the declarative API in Java. With this implementation, we conducted
case studies and we experimentally evaluated the resulting systems to demonstrate the
expressiveness and the feasibility of our approach: using the declarative API, we design
and implement a toy lecture evaluation system, and we re-implement anonymous webs of
trust [25] and a security API for distributed social networks [28]. In previous works, the
latter two systems required a complicated, dedicated cryptographic realization. Using the
declarative API, we recreate these systems within a few lines of code. This code is easy
to understand, even by cryptographic non-experts, and it is secure by construction. We
discuss and compare our results to those obtained using the dedicated implementations.

1.1.2. Trustworthy and privacy-preserving retrieval of
personal information

It is immediate that releasing information can be a privacy threat. In the same way,
retrieving information has the potential to leak highly sensitive details: for instance, a
big department store chain in the USA identified pregnant customers by analyzing which
products customers looked at and which products they bought [136, 100, 156].

Obtaining information in a privacy-preserving manner is easy: private information
retrieval methods [185, 87, 223] enable users to request information while concealing
the retrieved data from the data provider. These methods by themselves, however,
completely shut down targeted advertisements, since brokers have no information to base
the personalization on. The same problem occurs if anonymous browsing solutions such as
TOR are used.

In the second part of the thesis, we present ObliviAd, an online behavioral advertising
system that enables users to retrieve highly personalized advertisements without revealing
their profile. While ObliviAd is specifically designed to mitigate privacy issues that arise
when dealing with targeted online advertising, we believe that the underlying technique is
general and applicable to many more scenarios where users retrieve data from the Internet.
In fact, we successfully applied the principle underlying ObliviAd to protect online money
transactions [182].

The distinguishing features of ObliviAd are that brokers (the companies that distribute
the advertisements to various web sites) can use their existing infrastructure (e.g., hardware
and software) with only minor modifications, widely-used processes such as bid auctioning
(only the ad of the advertiser willing to pay the most is shown) can be conducted without
major modifications, important properties including click-through rates (a way of measuring
the success of an advertisement) can be determined, and, most importantly, ObliviAd
provably preserves the users’ privacy.

Under the hood, we combine state-of-the-art private information retrieval techniques
based on the powerful combination of trusted hardware and oblivious RAMs (ORAM) [223],
client-side user profile creation [114], and a powerful billing mechanism. We extend the

4

1.2. Outline of the Thesis

ORAM scheme to accommodate requirements of online behavioral advertising. We achieve
provable security guarantees without putting any trust assumptions on the broker or any
other third party. The hardware-based private information retrieval technique and our
billing mechanism cause virtually no computational overhead for users, making it an ideal
solution even for mobile devices.

We show that in ObliviAd, no information about the user profiles are leaked (profile
privacy) and that retrieved advertisements cannot be associated to a user profile, even if
a-priori information about user profiles are available (profile unlinkability); for the billing
correctness, we show that an advertiser is charged only if her ad is displayed (or clicked,
depending on the payment model). More formally, we model profile privacy and profile
unlinkability as an observational equivalence relation and we model the correctness of our
billing mechanism as a trace property. Using ProVerif [52, 1], a state-of-the-art automated
theorem prover, we show that the aforementioned security and privacy properties hold.

We implemented a prototypical Java-based program that mimics the operations of the
trusted hardware to demonstrate the feasibility of our approach.

1.2. Outline of the Thesis
This thesis is separated into two parts. The first part discusses our approach to the trust-
worthy and privacy-preserving release of personal information and comprises Chapter 2 and
Chapter 3. Chapter 2 introduces the declarative API and its key ideas, the cryptographic
realization, the cryptographic proofs, and the experimental evaluation. Chapter 3 contains
the case studies along with the corresponding code and the experimental evaluation.

The second part of the thesis is dedicated to our approach to the trustworthy and
privacy-preserving retrieval of personal information. This part comprises Chapter 4 that
describes ObliviAd, a system for practical and provably secure online behavioral advertising.

Finally, Chapter 5 concludes.

5

6

Part I
Trustworthy and

Privacy-Preserving Release of
Personal Information

7

8

2. Security and Privacy by
Declarative Design

The results presented in this chapter build on the following works:

• Maffei and Pecina [170]: “Position Paper: Privacy-aware Proof-Carrying Authoriza-
tion”

• Backes, Maffei, and Pecina [30]: “Automated Synthesis of Privacy-Preserving Dis-
tributed Applications”

• Maffei, Pecina, and Reinert [171]: “Security and Privacy by Declarative Design”

2.1. Introduction
In this chapter, we introduce a novel framework for specifying systems in a declarative
language. The core of the framework comprises a declarative API for data processing and
its cryptographic implementation. The API allows the programmer to conveniently specify
the overall system architecture and a variety of security requirements such as authorization,
privacy, controlled linkability, and accountability, while concealing from the programmer the
cryptographic details. Developing such a framework is challenging for three fundamental
reasons.

Security versus privacy. A generally applicable design methodology for privacy-
preserving distributed systems is particularly challenging, since it requires the development
of sophisticated and carefully designed cryptographic protocols to reconcile the privacy
of users with other seemingly contradictory security requirements, such as authorization
policies and accountability, or system functionalities, such as linkability of user actions
(for instance, to implement pay-per-usage or access-only-once policies). How to make sure
that the principal trying to access a sensitive resource is authorized if this principal is not
willing to share any personally identifying information? How to link user actions without
jeopardizing the privacy of users? How to hold misbehaving users accountable for their
actions without compromising the privacy of honest users?

General applicability and efficiency. The cryptographic realization should guaran-
tee all the aforementioned security requirements. At the same time, it should not put
restrictions or assumptions on the structure of the system, e.g., the presence of a trusted

9

Chapter 2. Security and Privacy by Declarative Design

third party (TTP), and it should not hamper the system performance, for instance, by
requiring additional bootstrapping phases or interactions among parties. Furthermore, the
cryptographic framework should allow for open-endedness, that is, the extension of the
system with new components, and interoperability, i.e., the sharing of data among them.

Sound and convenient development workflow. Finally, developing a generally ap-
plicable and efficient cryptographic infrastructure is not enough. Implementing distributed
programs based on advanced cryptographic schemes is highly error-prone, as witnessed
by the number of attacks on largely deployed cryptographic protocol implementations
(e.g., [191, 55]), and typically requires a strong cryptographic expertise, which may easily
go beyond the background of the average programmer. We believe that it is of paramount
importance to provide the system developer with programming abstractions that are
conveniently integrated in the usual workflow and allow her to concentrate on the system
structure and on the desired security properties, ignoring the details of the cryptographic
realization.

Outline. The rest of this chapter is organized as follows: Section 2.2 introduces the key
ideas underlying the declarative API. Section 2.3 introduces the API methods and their
semantics. In Section 2.4, we detail our cryptographic realization of the API methods.
Section 2.5 presents the cryptographic proofs for the introduced cryptographic primitives
and outlines the authorization property proofs of the API methods. We present our
implementation and obtained micro benchmarks in Section 2.6. We discuss related work in
Section 2.7.

2.2. Key Ideas
This section provides an overview of the fundamental concepts underlying the declarative
API. We start by identifying a suitable digital signature scheme that is powerful enough to
express the desired authorization properties. We then proceed with the zero-knowledge
scheme that is compatible with the digital signature scheme and supports the anticipated
privacy properties. Finally, we shed light on our high-level representation that concen-
trates on messages and security and privacy properties while concealing the underlying
cryptographic details.

Enforcing authenticity: digital signatures. We use digital signatures for enforcing
the desired authorization property. Digital signatures are a well-established tool to enforce
authorization policies in distributed systems (e.g., [39, 118, 11, 40]). Let m be a message,
vk be a verification key, and sig be a digital signature. We write

ver(sig,m, vk)

to denote the successful signature verification of sig on m with vk. Since the digital
signature cannot be forged, the successful verification shows that the owner of vk has

10

2.2. Key Ideas

signed message m. We call the pair (m, sig) of message and signature a digital certificate
on message m issued by the owner of vk.

We deploy the automorphic1 signature scheme by Abe et al. [6] to create the certificates.
This signature scheme can sign arbitrary tuples of messages but the distinguishing feature
is the support of signing verification keys without resorting to any kind of encoding. As we
can sign verification keys without encoding, this signature scheme enables a very elegant
and powerful symbiosis with zero-knowledge proofs to enforce privacy. In particular, this
feature paves the way for efficient zero-knowledge proofs of statements of the form

ver(sig, (m, vk ′), vk) ∧ ver(sig′,m′, vk ′),

i.e., the successful signature verification on a message consisting of the two parts m and vk ′,
the second part vk ′ is also used as a verification key in a successful signature verification
on message m′.

Anticipating the final design, we use verification keys to encode principal identifiers.
For instance, one can imagine the above example to model delegation by letting m authorize
the owner of vk ′ to act on behalf of the owner of vk. Consequently, the message m′ is
treated as if it originated from the owner of vk.

Enforcing privacy and general applicability: zero-knowledge proofs. Zero-
knowledge proofs are an established tool to enforce privacy in distributed systems (e.g., [82,
83, 28, 25, 167, 73]). In our case, however, simply applying any zero-knowledge scheme
is not enough. Indeed, any zero-knowledge scheme compatible with the chosen digital
signatures can be used to enforce privacy properties. We, however, strive for privacy in
combination with a general applicability, especially open-endedness and interoperability
properties, as well as efficiency. In particular, the requirement for interoperability, i.e.,
sharing cryptographic material between protocols calls for a malleable zero-knowledge
solution.

In typical scenarios, malleability is considered a bug rather than a feature. Intuitively,
suppose the following scenario: let p1 and p2 be proofs for the statements “I, Alice, own
bank account BA” and “Pay $200 from BA to Eve”, respectively. Even if Eve manages to
obtain the two individual proofs, we want to prevent the combination of these two proofs
into a single proof of the form p1 ∧ p2 that authorizes a payment. In our case, however, we
need exactly that kind of malleability to enable the desired interoperability property, i.e.,
to combine proofs from different protocols into one new proof.2

The Groth-Sahai zero-knowledge proof scheme [128] perfectly satisfies these require-
ments. It is expressive enough to prove the necessary statements such as the validity of
digital signatures and we can selectively hide parts of the proven statement. For instance,

1Automorphic denotes that verification keys are a subset of the message space, i.e., verification keys can
be signed as part of a message without any kind of encoding.

2We do not run into this problem because we deploy zero-knowledge proofs that are associated to a
principal. More precisely, in our scenario, the proven statements would read “Alice says I, Alice, own
back account BA” and “Alice says Pay $200 from BA to Eve”, i.e., the payment was originally authorized
by Alice (in particular, the authorization is not derived from the combination of the two proofs).

11

Chapter 2. Security and Privacy by Declarative Design

we can show a signature verification of the form

ver(sig, (m, vk ′), vk) ∧ ver(sig′,m′, vk ′),

in zero-knowledge and it is straightforward to selectively hide parts of the statement such
as the signatures sig and sig′. Furthermore, Groth-Sahai proofs are endowed with just
the right amount of malleability [42] that enables us to re-randomize a proof: Given a
proof p, a user can re-randomize p to yield p′. Then p′ shows the same statement but
it is unlinkable to p. In particular, re-randomization is also possible, if the user did not
compute p but received it during a protocol, a crucial feature for anonymity.

Enabling a convenient development workflow: logic-based programming ab-
straction. We have identified the necessary cryptographic schemes to enforce the desired
security and privacy properties. Building complex distributed systems without any ab-
straction layer, however, is a daunting task that requires a great amount of expertise that
may easily overwhelm programmers and system designers that often lack the cryptographic
background. Consequently, the right abstraction is of paramount importance to enable a
convenient development workflow.

We choose to describe zero-knowledge statements by means of a logical specification
language. For instance, we denote the successful signature verification

ver(sig, (MayAccess, vk ′, lab), vk)

with the logical formula
vk says MayAccess(vk ′, lab).

Here, this signature allows the owner of vk ′ to enter the lab. This description language is easy
to understand: the use of the “says” modality binds logical formulas (here, MayAccess) to
principals (here, vk) and naturally captures the semantics of digital signatures [11, 41, 118].
Such a logical representation also elegantly captures the hiding of selected parts of a
zero-knowledge statement by existential quantification [170]. For instance, the formula
that uses a zero-knowledge proof to hide vk ′ in order to enable the owner of vk ′ to access
the lab anonymously looks as follows:

∃x. vk says MayAccess(x, lab).

Additionally, this abstraction hides the cryptographic implementation from programmers.
For instance, the above says-statement mentions the principal identifier vk and the predicate
MayAccess(vk ′, lab). It hides the fact that the statement is implemented as a digital
signature, in particular, sig, the signature itself, is not visible.

Controlled linkability of user actions: service-specific pseudonyms. The combi-
nation of digital signatures and zero-knowledge proofs enforces authorization and privacy
properties. It, however, lacks the possibility to link user actions in a controlled way. We use
service-specific pseudonyms (SSPs) to link user actions. Intuitively, an SSP hides the iden-
tity of the user and it remains constant throughout a service. For instance, suppose SSPF

12

2.3. Declarative API

and SSPR are user U ’s SSPs for services “Facebook” and “Rating Platform”, respectively.
The corresponding logical representations look as follows:

SSP(vkU , “Facebook”,SSPF)
SSP(vkU , “Rating Platform”,SSPR).

Since pseudonyms are constant, proofs that reveal the SSP for a given service are linkable
within that service. The pseudonyms, however, are unlinkable across different services,
i.e., it is not possible to decide whether SSPF and SSPR belong to the same user or two
different users.

2.3. Declarative API
This section introduces the security-oriented, declarative API for the design of distributed
systems. We instantiate the API in ML because of the impressive line of research on analysis
techniques for ML-like languages (e.g., [49, 104, 27, 19, 62, 38, 160]). We remark, however,
that the API is in principle language-independent and can easily be implemented in any
other programming language. In fact, we present a Java implementation in Section 2.6.

Inspired by prior work on information logics for distributed systems [9, 30], the
programming abstraction we propose represents the information known to principals as
logical formulas and the messages exchanged by parties as validity proofs for logical formulas.
The framework is independent of the choice of the logic: we just assume the presence of
the “says” modality that binds logical formulas to principals.

Table 2.1 illustrates the methods composing our API, along with the respective
functional types. We describe these methods below, classifying them according to the
security property they capture.

2.3.1. Authorization
Example 2.1. As a running example, we design a collaborative platform that combines
two services. In the first service, a patient receives a certificate from the doctor attesting
her visit and including additional information such as the date of the visit and the results
of the examination. In the second service, the patient uses this information to evaluate
her doctor on a rating platform such as Jameda [142] or Healthgrades [133]. We assume
the following authorization policy for the hypothetical rating platform RateYourDoc that
allows a patient to evaluate only her treating doctors:

∀Pat,Doc, results, date, opinion.
Doc says Visit(Pat, date, results)
∧ Pat says Rating(opinion)

=⇒ Rated(Doc, opinion).

(2.1)

This authorization policy states that if a patient Pat visited the doctor Doc on a date date
with the results results, and Pat rates Doc with opinion, then this rating is accepted.

13

Chapter 2. Security and Privacy by Declarative Design

mkId : string → uid ∗ uidpub create a fresh pair of identifiers

mkSays : x : uid → f : formula → proof
make proof of y says f ,
y : uidpub corresponds to x

mk∧ : proof ∗ proof → proof make conjunctive proof
split∧ : proof → proof ∗ proof split conjunctive proof
mk∨ : proof → formula → proof make disjunctive proof
extractForm : p : proof → formula return description of statement for p
verify : p : proof → f : formula → bool verify that p is a proof of f

hide : proof → formula → proof
hide witnesses from a proof
(as specified by formula)

rerand : proof → formula → proof
re-randomize proof
(as specified by formula)

mkSSP : x : uid → s : string → proof
make proof of SSP(y, s, psd),
y : uidpub corresponds to x

mkREL : f : formula → proof make proof of relation f
mkEQN : f : formula → proof make proof of equation f
mkLM : x : pseudo → b : string →

` : list → proof make proof of (x, b) ∈ `

mkLNM : x : pseudo → ` : list → proof make proof of (x,_) /∈ `
mkIDRev : proof → s : string → proof make identity escrow proof for service s

Table 2.1.: High-level API interface functions.

Formulas are encoded as terms of the language (in ML, using data-type constructors):
for the sake of readability, here and throughout the remainder of the thesis, we use the
standard logical notation. In the first service, the doctor provides a validity proof of his
medical license along with personal information PI Doc for the patient Alice, vouched for
by the hospital Hosp, and an attestation of Alice’s visit. More precisely, the doctor issues
a proof for the formula

Hosp says IsDoc(Doc,PI Doc) ∧Doc says Visit(Alice, date, results).

To express her opinion happy about the doctor, Alice submits a validity proof for the
formula Doc says Visit(Alice, date, results) ∧ Pat says Rating(happy). This formula satisfies
the authorization policy and the reviewing platform can deduce Rated(Doc, opinion).

Each user u has two identifiers: a private one of type uid that is used to refer to the
principal executing a certain piece of code, and a public one of type uidpub that is used to
refer to other principals. The function mkId takes as input a string such as the name, and
returns a pair of private and public identifiers.

The function mkSays x f takes the private identifier x of the user running the code, a
formula f , and returns a validity proof for the predicate y says f , where y is the public
identifier corresponding to x.

14

2.3. Declarative API

The API provides methods to manipulate proofs, which is crucial for the expressiveness
of our framework. The function mk∧ takes as input a proof of f1 and a proof of f2, and
returns a proof of the conjunction f1∧f2. This function, as well as the other API functions,
raises an exception if the input is not of the expected form (in this case, a pair of validity
proofs). Conversely, the function split∧ takes a proof of f1 ∧ f2, and returns a proof of f1
and a proof of f2. The function mk∨ takes as input a proof of f1 and a formula of the
form f1 ∨ f2 or f2 ∨ f1, and returns a proof of the specified disjunctive statement. Due to
our cryptographic implementation, the construction of a disjunction is only possible if the
hide function has not been applied to the input proof yet, i.e., no argument is existentially
quantified (see Section 2.4). The function extractForm takes as input a proof and returns
the corresponding formula. Finally, the function verify takes as input a proof and a formula,
and checks that the former is a proof of the latter.

Example 2.2. The code for the patient is shown below:

1 let Pat xPat yPat yHosp yDoc xPI Doc xresults xdate xopinion xaddrPat xaddrRYD =
2 let c = listen xaddrPat ;
3 let y = recv c;

4 if verify y

(
yHosp says IsDoc(yDoc, xPI Doc)
∧ yDoc says Visit(yPat , xdate, xresults)

)
then

5 let (pf IsDoc, pf Visit) = split∧ y;
6 let pf s = mkSays xPat Rating(xopinion);
7 let pf = mk∧ (pf Visit, pf s);
8 connect c′ xaddrRYD ;
9 send pf c′

Listing 2.1: Code for the patient.

The code is self-explanatory: the patient receives a proof for the attestation of her
visit from the doctor and constructs the rating proof. She combines the proof of her
visit (obtained by splitting the proof received by the doctor apart) and the rating proof
in conjunctive form. Finally, she sends the resulting proof to the rating platform. The
communication functions such as listen are the standard communication primitives available
in any language.

2.3.2. Privacy
The function hide allows for hiding sensitive arguments, which can be logically captured
by existential quantification. This function takes as input a proof p of f and a formula f ′
obtained from f by existentially quantifying some of the arguments, and it returns a proof
of f ′.

15

Chapter 2. Security and Privacy by Declarative Design

Example 2.3. The doctor certainly does not want the patient to know her personal
information PI Doc included in the certificate. Hence, she sends a proof in which this
particular information is hidden. This changes the call to verify:

. . .

4 if verify y

 ∃wPI Doc .
yHosp says IsDoc(yDoc, wPI Doc)
∧ yDoc says Visit(yPat , xdate, xresults)

 then

. . .

Additionally, the patient might desire to submit her evaluation anonymously. She can do
so by existentially quantifying her identity, the results, and the date, which is achieved by
the following piece of code:

. . .
7 let pf = mk∧ (pf Visit, pf s);

7e let pf ′ = hide pf

 ∃wPat , wresults, wdate.
yDoc says Visit(wPat , wdate, wresults)
∧ wPat says Rating(xopinion)

;

8 connect c′ xaddrRYD ;
9 send pf ′ c′

where pf is the proof produced in line 7 of the code shown in Example 2.2. This proof
suffices to convince the rating platform of the patient’s evaluation for the doctor Doc and,
from a logical perspective, to entail the predicate Rating(Doc, opinion).

2.3.3. Controlled Linkability
The previous example suggests that hiding the identity of users may hinder the enforcement
of meaningful authorization policies. For instance, in order to avoid biased results, we
would like to make sure that patients cannot submit more than one evaluation. In general,
there may be the need for the service provider to link the actions of the users, which should
be achieved without making user actions linkable across different services. We rely on
service-specific pseudonyms to achieve this goal: each user can create at most one valid
SSP per service, which provides intra-service linkability, while her pseudonyms cannot
be linked and tracked across different services, which provides inter-service unlinkability.
Since SSPs hide the identity of their owner, they can be revealed; a simple comparison
suffices to determine whether the user behind a given pseudonym is using a service for the
first time or not. Notice that the service structure determines the degree of unlinkability
offered to each user: increasing the number of services (e.g., by splitting a service) limits
the tracking of user actions and provides stronger unlinkability guarantees.

16

2.3. Declarative API

The function mkSSP takes as input the private user identifier x and the service
identifier s, and it returns a proof of the predicate SSP(y, s, psd), which states that psd is
the pseudonym for the public identifier y corresponding to x and the service s.

Example 2.4. We set the service structure so as to reflect doctor specializations. Assume
that the doctor who visited the patient is an internist offering the service xInternist . Then
the patient can extend the proof pf produced in Example 2.2 to accommodate both privacy
and linkability requirements as follows:

. . .
6 let pf s = mkSays xPat Rating(xopinion);

6a let pf ssp = mkSSP xPat xInternist ;
6b let s = extractForm pfssp;
6c match s with SSP(yPat , xInternist , xpsd) →
7 let pf ∧ = mk∧ (pf s, pf ssp);

7e let pf ′ = hide pf


∃wPat , wresults, wdate.
xDoc says Visit(wPat , wdate, wresults)
∧ wPat says Rating(xopinion)
∧ SSP(wPat , xInternist , xpsd)


· · ·

Notice that the existential quantification binds all occurrences of the patient identifier,
including the one in the SSP predicate. The rating platform can discard multiple evaluations
by simply checking the pseudonyms conveyed by each proof.

2.3.4. Accountability
SSPs are designed to prevent the tracking of users across different services. In many
applications, however, it is desirable to ban misbehaving users from the whole system or to
reward well-behaving ones. We use reputation lists to achieve this kind of accountability
requirements without disclosing user identities.

A reputation list binds SSPs to attributes. For the sake of simplicity, we assume that
each reputation list refers to a specific service s and contains pairs of the form (psd, attr),
where psd is a pseudonym for service s and attr is an attribute. We could easily support
lists referring to several services and binding pseudonyms to several attributes, but this
would solely complicate the presentation without adding any interesting insight.

The function mkLM takes as input a pseudonym psd, an attribute attr , and a reputation
list `, and it returns a proof for the formula (psd, attr) ∈ `. The function mkLNM takes
as input a pseudonym psd and a reputation list `, and it returns a proof for the formula
(psd,_) /∈ `, where _ serves as wildcard. Technically, wildcards are universally quantified:
∀x. (psd, x) /∈ `.

The function mkREL takes as input a formula describing a binary arithmetic relation
between attributes and returns the corresponding proof. We support arithmetic relations
of the form b op b′, with op ∈ {>,≥, <,≤,=, 6=}.

17

Chapter 2. Security and Privacy by Declarative Design

Similarly, the function mkEQN takes as input a formula describing the computation of
a mathematical operation. We support mathematical equations of the form b1 = b2 op b3,
with op ∈ {+,−, ·}.

Example 2.5. We maintain a reputation list for each service (here, doctor specialization).
This list contains the pseudonyms of the patients that previously uploaded offensive
comments in the associated service. In order to prevent such patients from further
participating in evaluation procedures, we require patients to prove that their pseudonyms
have not been included in any of such lists. We show below how to extend the proof from
Example 2.4. For simplicity, we focus on just one reputation list x` for the service xDentist .
The extension to multiple lists is straightforward.

· · ·
6a let pf ′ssp = mkSSP xPat xDentist ;
6b let s′ = extractForm pf ′ssp
6c match s′ with SSP(xPat , xDentist , x

′
psd) →

6d let pf/∈ = mkLNM x′psd x`;
7 let pf ′∧ = mk∧(mk∧ (pf ∧, pf ′ssp), pf /∈);

7e let pf ′ = hide pf ′∧



∃wPat , wdate, wresults, wpsd′ .
xDoc says Visit(wPat , wdate, wresults)
∧ wPat says Rating(xopinion)
∧ SSP(wPat , xInternist , xpsd)
∧ SSP(wPat , xDentist , wpsd′)
∧ (wpsd′ , _) /∈ x`


. . .

The patient pseudonym for xDentist is existentially quantified, which makes patient evalua-
tions unlinkable across different doctor specializations.

Finally, we remark that a user can in principle obtain multiple pseudonyms for a
service if she registers several user identifiers with the corresponding provider. Notice,
however, that the registration phase is not anonymous (see Example 2.1) and the service
provider has to willingly register users multiple times.

2.3.5. Identity Escrow
In some scenarios, it is desirable to have a mechanism to reveal the identity of misbehaving
users, for instance, if the user severely violated certain regulations or if she even committed
a crime. We can achieve that in our framework by means of an identity escrow mechanism.

The user initially contacts the trusted third party EA acting as an escrow agent, which
provides the user with a proof of the predicate EA says EscrowId(y, r), where y is the public
identifier of the user and r is a number chosen by EA to identify the user.

18

2.3. Declarative API

The user creates an escrow proof by means of the mkIDRev function. This function
takes as input the proof received from EA and the service, and it returns a proof of the
predicate EscrowInfo(EA, y, r, s, idr), where idr is the user’s escrow identifier for the service
s. Given idr and s, the trusted party EA and only EA can extract the identity of the
user. Thus, the user has simply to send a proof of ∃w, xr. EscrowInfo(EA, w, xr, s, idr) to
the service provider, which hides the user’s identity and the value r. Since, similarly to
pseudonyms, the escrow identifiers of a user are unlinkable across different services, the
identity escrow protocol preserves the inter-service unlinkability of user actions.

We stress that requiring a user action to enable the identity escrow service is an
intentional feature of the API: the user has to give her explicit consent to engage in a
service in which her anonymity might in principle be compromised.

Example 2.6. We show below how to extend the proof from Example 2.5, assuming that
pf EA is the proof that the patient previously received from the rating platform acting as
an escrow agent.

· · ·
7 let pf ′∧ = mk∧(mk∧ (pf ∧, pf ′ssp), pf /∈);

7a let pf escrow = mkIDRev pf EA xInternist ;
7b let s′′ = extractForm pf escrow
7c match s′′ with wEA says EscrowId(xPat , xr) →
7d let pf ′′∧ = mk∧ (pf ′∧, pf escrow);

7e let pf ′ = hide pf ′′∧



∃wPat , wdate, wresults, wpsd′ , wr.
xDoc says Visit(wPat , wdate, wresults)
∧ wPat says Rating(xopinion)
∧ SSP(wPat , xInternist , xpsd)
∧ SSP(wPat , xDentist , wpsd′)
∧ (wpsd′ , _) /∈ x`
∧ EscrowInfo(wEA, wPat , wr, xInternist , xidr)


. . .

2.3.6. Open-endedness and Interoperability
We have already demonstrated that the API is well-suited for open-ended applications by
extending the client code to accommodate the new functionality added to the protocol. We
finally remark that the API is also well-suited for the development of interoperable systems,
that is, systems that can be extended with services sharing resources and interoperating
with each other.

Example 2.7. We introduce an online pharmacy service (e.g., Medco [178]) that delivers
medicines on request. To this end, the patient appends the order to the doctor’s attestation

19

Chapter 2. Security and Privacy by Declarative Design

of her visit, hiding the doctor’s identity. Formally, she combines the validity proof issued
by the doctor at her visit with the request to buy medication from the online pharmacy.
She sends the resulting validity proof of the following formula to the pharmacy:

∃wDoc, wPI Doc .
xHosp says IsDoc(wDoc, wPI Doc)
∧ wDoc says Visit(xPat , xdate, xresults)
∧ xPat says Buy(medicine).

2.4. Cryptographic Realization
This section details the cryptographic realization of the API methods. We start by
setting-out the cryptographic building blocks in Section 2.4.1 and we describe the concrete
cryptographic implementation of the zero-knowledge proofs deployed in the API methods
in Section 2.4.2.

2.4.1. Cryptographic Setup
We cryptographically implement private user identifiers as handles to the corresponding
signing keys. The keys themselves are not accessible by the interface and, thus, are invisible
to the programmer. In particular, programmers cannot accidentally leak signing keys.
The storage medium for the signing key is chosen depending on the security requirements:
signing keys can be stored in files protected by the operating system or, to achieve better
security guarantees, in cryptographic devices capable of computing digital signatures (e.g.,
cryptographic coprocessors [139, 23]).

Public user identifiers are realized as verification keys and we rely on a public-key
infrastructure (PKI) to bind users to their key; the running example in Section 2.3
implements a decentralized PKI that resembles webs of trust, where the hospital vouches
for the doctor, who in turn vouches for the user.

In the following, we detail the cryptographic constructions used in the implementation
of our API.

Security parameter. In cryptography, the security of a system is virtually always
relative to a security parameter η.3 Depending on the cryptographic primitives, the
security parameter influences the group size in the case of asymmetric schemes, the key
size in the case of symmetric cryptographic schemes, or the length of the output in the
case of hash functions. Current recommendations stipulate that a security parameter of
at least 112 bits is used [208]. Throughout the rest of the thesis, we use η to denote the
security parameter.

3A notable exception is the one-time pad which is unconditionally secure [198].

20

2.4. Cryptographic Realization

2.4.1.1. Elliptic Curves with a Bilinear Map

Elliptic curves have proven to be a highly versatile tool in cryptography. Firstly, they allow
for significantly smaller group sizes when compared to classical cryptographic groups [147];
secondly, elliptic curves often have bilinear maps that have given rise to many sophisticated
cryptographic constructions. In fact, all known and cryptographically relevant bilinear
maps operate on elliptic curves. Since most of the cryptographic schemes used in the
cryptographic realization of the API methods require a bilinear map, elliptic curves are a
crucial building block.

A bilinear map e is a function e : G1 ×G2 → GT that takes as input two values from
the groups G1 and G2, respectively, and returns a value in the group GT . For our particular
setup, we require that |G1| = |G2| = |GT | = p, for some large prime p, and that e is a
type III pairing [116], i.e., G1 6= G2 and there is no efficiently computable homomorphism
between G1 and G2. From e, we require that

1. e is efficiently computable;

2. e is bilinear (linear in both arguments), i.e., the condition

∀a, b ∈ Zp,X ∈ G1,Y ∈ G2 :
e(aX , bY) = e(X , bY)a = e(aX ,Y)b

holds;

3. e is non-degenerate, i.e., if 〈G〉 = G1 and 〈H〉 = G2, then 〈e(G,H)〉 = GT , where 〈x〉
denotes the group generated by x.

We instantiate the elliptic curves with bilinear map with MNT curves [181].

Notation. In cryptography, group operations are typically written in multiplicative
form gx. For historical reasons, we write elliptic curve operations in additive form xG.
More precisely, we use the convention that operations on the elliptic curve groups G1
and G2 are written in additive form; operations in the target group GT are written in
multiplicative form.

Here and throughout the rest of this thesis, we let G and H denote the distinguished
generators of G1 and G2, respectively. Furthermore, we let p denote a large prime,
calligraphic uppercase letters (G, H, . . .) denote elliptic curve elements, lowercase letters
denote elements from Zp.

2.4.1.2. Commitments

Commitments are an essential building block for the Groth-Sahai zero-knowledge proof
scheme. Intuitively, a commitment is the digital equivalent of a message in a closed envelope
lying on top of a table. The creator of the message cannot change it and no one can look
inside until it is opened.

More formally, a principal commits to a value x by applying the randomized com-
mitment function to obtain a commitment Cx on x along with the so-called opening

21

Chapter 2. Security and Privacy by Declarative Design

information O. Opening Cx requires the opening information O, and Cx itself. In our
case, the opening information is the committed value x and the randomness r used in the
commitment.

We use ElGamal encryptions as commitments in order to obtain proofs of knowledge. A
proof of knowledge is formalized by a knowledge extractor [121] that, given a zero-knowledge
proof, can extract the witnesses hidden by a zero-knowledge proof. Since instances of
ElGamal encryptions [105] naturally have a decryption key, this key allows a knowledge
extractor to open all commitments and to extract all values used in a zero-knowledge
proof, including the hidden ones. As such, the security of the commitments relies on the
decisional Diffie-Hellman (DDH) problem. To achieve security in our setting, we should
have a security parameter of at least η = 112 [208].

Throughout the remainder of this thesis, we let Cx denote a commitment to value x
and JCK denote the value committed to in C, i.e., JCxK = x.

2.4.1.3. Groth-Sahai Zero-Knowledge Proof Scheme

Groth-Sahai proofs are non-interactive zero-knowledge proofs of knowledge,4 which capture
relations among committed values that involve elliptic curve operations and bilinear map
applications. For instance, the equation

JCxK · JCGK = JCHK

states that the value committed to in Cx multiplied by the value committed to in CG equals
the value committed to in CH, where c·V denotes the scalar multiplication of c by V . In gen-
eral, Groth-Sahai proofs fulfill only the weaker notion of witness-indistinguishability [122].
Our equations, however, are of a special form for which Groth-Sahai proofs are also
zero-knowledge [128].

A Groth-Sahai proof on its own solely states that some values contained inside
commitments satisfy a given equation. The expressive power of the Groth-Sahai scheme
stems from the capability to selectively reveal and hide values occurring in these equations.
For instance, if the proof for the equation above contains the opening information for CG
and CH, then this proof shows the knowledge of the discrete logarithm x of H to the basis
G, keeping the discrete logarithm x hidden. Naturally, values can be hidden by removing
the respective opening information from a proof. The zero-knowledge property ensures that
no information about the hidden witnesses can be learned by the verifier, which faithfully
captures the privacy property expressed by existential quantification.

Since Groth-Sahai proofs show the validity of a set of equations, concatenating two
proofs shows the validity of the union of the equations proven by the two individual proofs;
separating the set of proven equations creates two proofs, each showing the validity of its
share of the equations. Realizing a logical disjunction is significantly more challenging since
such a proof must hide which branch is valid. We use arithmetization techniques [128] but
the prover must have all values appearing in the proof at her disposal. This explains why
function mk∨ succeeds only if the proof passed as input has not previously been processed

4Technically, the non-interactive property of Groth-Sahai proofs relies on a common reference string [121].

22

2.4. Cryptographic Realization

by the function hide (see Section 2.3.1). Finally, we mention that the Groth-Sahai scheme
relies on a common reference string (CRS). We assume a global, trustworthy CRS. Such a
CRS can be created by a TTP or by a distributed community effort, for instance, using
secure multiparty computation schemes.

The Groth-Sahai proof system can be setup to rely on different assumptions. We use
the instantiation based on the symmetric external Diffie-Hellman assumption (SXDH) [128],
that is, the DDH problem is intractable in G1 and G2 (evidence that MNT curves satisfy
the SXDH assumptions are given, for instance, by Ballard et al. [36] and Ateniese et
al. [16]). This assumption justified the necessity of a type-III map as otherwise, the DDH
problem would be trivially solvable in G1 [117]. As for the commitment schemes, a security
parameter of at least η = 112 is recommended [208].

2.4.1.4. Automorphic Signature Scheme

We use the automorphic digital signature scheme proposed by Abe et al. [6]. This scheme is
highly efficient and allows us to sign verification keys without encoding them. As previously
mentioned, this is crucial to obtain efficient zero-knowledge proofs.

A verification key is a tuple of the form vk = (xG, xH), where sk := x ∈R Zp is the
randomly-chosen signing key corresponding to vk. Here and throughout the remainder of
the thesis, we use the notation e ∈R S to denote that element e is chosen uniformly at
random from the set S. We write sign(m)skI to denote the signature on message m with
I ’s signing key skI . Given a verification key vk = (xG, xH), the first component xG is used
as part of a signed message and the second component xH is used as a verification key in
a signature verification. If both components occur simultaneously, they are connected by
proving that

e(xG,H) = e(G, xH),

that is, both components belong together because they are associated to the same secret
key. Furthermore, the scheme is fully compatible with the Groth-Sahai proof system: we
write

ver(JCsigK, JCmK, JCvkK)

to denote a zero-knowledge proof showing that the value committed to in Csig is a signature
on the value committed to in Cm, which can be verified using the verification key committed
to in Cvk [6]. This proof realizes a proof for the formula JCvkK says JCmK and can be fine-
tuned to open any of these commitments, revealing the respective values. Notice that the
cryptographic as well as the logical notation hide the proofs for connecting xG and xH.
We keep these implicit throughout the remainder of the thesis.

The digital signature scheme by Abe et al. is existentially unforgeable under chosen-
message attacks [124], the standard notion of security for signature schemes. Its security
relies on the q-ADH-SDH assumption [6] and the AWF-CDH assumption. The AWF-CDH
assumption is implied by the SXDH assumption (see [6], Lemma 1). As a consequence,
we need a security parameter η that at least renders the SXDH problem infeasible, i.e.,
η ≥ 112 [208].

23

Chapter 2. Security and Privacy by Declarative Design

2.4.1.5. Hashing into G1.

There are several ways to define hash functions h that map arbitrary strings into the
group G1. The most straightforward way is to use any ordinary hash function such as
SHA-256 and let h(x) := SHA-256(x) · G. The drawback of this method is that it reveals
the discrete logarithm of the hash value with respect to G, which will break the security of
service-specific pseudonyms. There are several schemes in the literature (e.g., [53, 197, 140])
that solve this problem by encoding points directly on the curve. We use the method by
Icart [140] as this scheme enjoys properties such as one-wayness and collision-resistance.

We idealize the hash function and assume the random oracle model [111, 47], that is,
we assume that hash functions output a truly random string but answer consistently with
previous queries.

2.4.1.6. Service-Specific Pseudonyms.

Service-specific pseudonyms are a cryptographic primitive that is compatible with the
Groth-Sahai proof scheme. An SSP is computed from a service description S and a signing
key. More precisely, the owner of verification key vk = x · G computes her pseudonym
psd for the service S as follows: psd := x · S where S := h(S). The hash function h is as
described above. In particular, the discrete logarithm of S to the basis G is unknown. The
zero-knowledge proof for service-specific pseudonyms then shows the validity of the two
equations

JCxK · JCGK = JCvkK ∧ JCxK · JCSK = JCpsdK.

The left conjunct shows the well-formedness of the verification key. The right conjunct
computes the service-specific pseudonym in zero-knowledge, using the same commitment for
the signing key in both proofs. This proof shows the validity of the formula SSP(vk,S, psd).
Notice that the signing key x is essential for the creation of the proof but does not occur in
the logical description. We stipulate that this proof always keeps the signing key x hidden
and always reveals G. In a proof comprising more than one pseudonym, the left conjunct
needs to be shown only once since it is the same for all of the user’s pseudonyms.

The security of SSPs relies on the DDH assumption in G1 and the random oracle
model. The DDH assumption is implied by the SXDH assumption. Consequently, we need
a security parameter of at least η = 112 [208].

2.4.2. Cryptographic Realization of API Methods
We describe the concrete cryptographic realization of all API methods using the construc-
tions and building blocks introduced in Section 2.4.1.

Proving binary relations. Proving binary relations in zero-knowledge is a well-studied
problem and several approaches that are compatible with the Groth-Sahai zero-knowledge
proof scheme exist. Proofs of equality are natively supported by the Groth-Sahai proof sys-
tem and inequality proofs are well known (see, e.g., Bangerter et al. [37], §4.6). Respectively,

24

2.4. Cryptographic Realization

we denote these proofs by
JCK = JDK and JCK 6= JDK.

For arithmetic relations op ∈ {<,≤,≥, >}, we follow the approach proposed by
Meiklejohn [179] to implement the zero-knowledge proofs JCs1K op JCs2K.

The construction of Meiklejohn requires the strong non-degeneracy from the bilinear
map e, i.e., e(X ,Y) = 0 if and only if X = O or if Y = O, whereas the definition of bilinear
map requires that e(X ,Y) 6= 0 for all generators X and Y of G1 and G2, respectively.
In the setting where G1, G2, and GT are prime-order groups, however, every non-zero
element is a generator and the non-degeneracy property implies the strong non-degeneracy
requirement.

Proving mathematical operations. Proving mathematical operations in zero-
knowledge is natively supported by the Groth-Sahai proof scheme. We denote these
proofs by

JCK = JD1K op JD2K

for arithmetic operations op ∈ {+,−, ·} and the elements C, D1, and D2 from Zr. Since
Zr is finite, numbers can grow large enough to be affected by the computation modulo the
group order. For instance, let p = 11 and let JD1K = JD2K = 6. Then JD1K + JD2K = 1.
However, in many application scenarios, numbers will remain small enough and can be
treated as if they were integers.

Proving the ownership of a pseudonym. We already discussed above how SSPs are
cryptographically realized. We use the notation

SSP(JCxK, JCvkK, JCSK) = JCpsdK

as shorthand for
JCxK · JCGK = JCvkK ∧ JCxK · JCSK = JCpsdK.

Proving list non-membership. For proving (psd,_) /∈ L, given a list L =
(psd1, attr1), . . . , (psd`, attr`), we show that psd is different from all pseudonyms in L:

SSP(JCxK, JCvkK, JCSK) = JCpsdK ∧
∧`
i=1JCpsdK 6= JCpsdi

K.

Proving list membership. The proof of list membership assumes the list admin-
istrator’s signatures sign(psdi, attr i, tag)skAdmin on each of the individual list elements
(psdi, attr i), where tag uniquely identifies the list L. We exploit this particular list rep-
resentation to make the list membership proof independent of the list size: we show the
existence of a signature that belongs to the list without revealing the signature itself
nor the pseudonym it signs. This construction closely resembles the signature-based set
membership proof by Camenisch et al. [70], which we extend in order to prove statements

25

Chapter 2. Security and Privacy by Declarative Design

of the form (x,_) ∈ L as opposed to x ∈ L. Specifically, a proof for (psd, attr) ∈ L shows
the validity of the formula

ver(JCsK, (JCpsdK, JCattrK, JCtagK), JCvkK).

We stipulate that this proof always reveals the tag tag to show that the (psd, attr) pair
indeed belongs to the list L.

As reputation lists are dynamic objects that change over time, one has to be careful
in the choice of the tag uniquely identifying the list. For instance, if the tag were the
hash value of the list, a change in the list would require re-signing all individual elements.
Therefore, we propose to use a combination of a list description and an epoch number as
tags. For instance, the list for a service S would be tagged “List for service S, epoch 2” for
the second epoch. Thus, adding elements does not require any re-signing, since only the
newly added entries must be signed. Only removing elements causes an increase of the
epoch numbers and requires the list administrator to re-sign all elements.

Identity escrow. The identity escrow proof exploits the idea of the service-specific
pseudonyms. Since SSPs are designed to protect the identity of the users, however, we have
to modify the protocol and add an extra piece of information to enable an escrow agent
EA to reveal the user’s identity. More precisely, the user obtains from the EA a random
value r and a signature s := sign(R)skEA on the escrow value R := r · vk where vk is the
user’s verification key. We use this value to compute the escrow information idr := r · S
for service S. The user has to prove the following statement:

ver(JCsK, JCRK, JCvkEAK)
∧ JCrK · JCvkK = JCRK
∧ JCrK · JCSK = JCidrK.

We stipulate that r is never revealed.
Akin to SSPs, this proof does not reveal the identity of the user. The EA, however,

knows all the random value-user pairs, in our case r and vk. If the EA is informed of a
cogent reason to reveal the identity of the user associated with the escrow information idr
for service S, the EA can successively try all stored random values r′ to check whether
r′ · S = idr ; eventually, r′ = r and the user is identified.

For some scenarios, assuming the presence of a trusted third party is not possible. It is
possible to decrease the trust assumption from a TTP via secure multiparty computation
schemes (e.g., [48, 74]). Furthermore, the escrow agents can be distributed to offer better
trust guarantees. In the latter case, the user has to obtain a random value and the
corresponding signature from each of the escrow agents and combine the random values
into one. Identity escrow then requires the collaboration of all the escrow agents. They
may use a secure multi-party computation to compute the joint value r without revealing
one’s share to other parties.

The security of escrow identifiers relies on the DDH assumption in G1 and the random
oracle model. The DDH assumption is implied by the SXDH assumption.

26

2.5. Proofs

2.5. Proofs
Dedicated to the API proofs, this section is organized in two parts: the first part proves the
anonymity and (un-)linkability properties of service-specific pseudonyms and the identity
escrow protocol in a cryptographic setting; the second part proves the soundness result for
the API methods in a symbolic setting.

The proofs for the cryptographic building blocks rely on hardness assumptions. More
precisely, we show that breaking any of the claimed security properties requires operations
that are computationally infeasible. The soundness proofs for the API methods rely upon
a symbolic abstraction of the cryptographic primitives. Intuitively, the soundness results
shows that whenever a zero-knowledge proof for a formula successfully verifies, then that
formula holds. The different proof techniques are necessary because the computational
proofs show properties for single cryptographic building blocks. The individual security of
these building blocks, however, does not imply the overall security of the API methods. For
instance, one could imagine that the malleability properties of the zero-knowledge scheme
enables an unforeseen interleavings of API methods that breaks the desired soundness
result.

We start with the computational proofs for the cryptographic building blocks.

2.5.1. Cryptographic Proofs of Anonymity and Unlinkablity
In this section, we prove the uniqueness, the unlinkability, and the anonymity properties
of pseudonyms and escrow identifiers. We start with the SSP properties and then proceed
to the properties of the escrow identifiers.

2.5.1.1. Uniqueness, Unlinkability, and Anonymity of Service-Specific
Pseudonyms

Uniqueness of pseudonyms. In the following, we use function Y to define the unique-
ness property. Intuitively, YX (A,B) extracts the discrete logarithm x of A to the basis X
and returns xB. Notice that the value YG(vk,S) corresponds to the SSP of the owner of
vk and the service S, and the value Yvk(R,S) corresponds to the escrow identifier of the
owner of vk and the service S.

Definition 2.1. We define the function YX : G1 ×G1 → G1 as YX (xX ,Y) 7→ xY.

In general, YX cannot be efficiently computed and is only used for defining properties
of SSPs and escrow identifiers. In fact, the DDH assumption implies that the discrete
logarithm cannot be extracted and used as suggested by function Y .

To prove the uniqueness result, we first state basic facts about the distribution of hash
values and of secret signing keys. The following proposition holds since the output of the
(random oracle) hash function h and the signing key are uniformly random values from
a set that is exponentially large in the security parameter η (see Section 2.4 and Abe et
al. [6]).

27

Chapter 2. Security and Privacy by Declarative Design

Proposition 2.1. The following probabilities are negligible in η:

• The output of the hash function h : {0, 1}∗ → G1 is O, the neutral element of the
group operation of G1.

• The output of the hash function h : {0, 1}∗ → G1 coincides for polynomially (in η)
many different inputs.

• A signing key x is 0.

• A pseudonym psd := xS is O.

• Two signing keys from a set of polynomially (in η) many coincide.

We can now proceed to prove the uniqueness theorem. First, we formally define the
uniqueness for SSPs using the Y function.

Definition 2.2 (Uniqueness of service-specific pseudonyms). We say that service-specific
pseudonyms are unique if and only if, the following conditions hold with overwhelming
probability:

1. for any service S and two honestly-generated verification keys vk1 and vk2,
YG(vk1,S) 6= YG(vk2,S),

2. for any verification key vk and service S, YG(vk,S) is a unique value,

3. for any two different service descriptions S1 and S2 and verification key vk,
YG(vk, h(S1)) 6= YG(vk, h(S2)).

Theorem 2.1 (Uniqueness of SSP). In the random oracle model service-specific pseudonyms
and escrow identifiers are unique.

Proof. First, we note that the signing key x is chosen randomly from the set Zp.
Condition 1: for any service S and two verification keys vk1 and vk2, YG(vk1,S) =

YG(vk2,S) if and only if S = O, the only non-generator of G1, or vk1 = vk2; the two
verification keys coincide if and only if the two corresponding, honestly-chosen signing keys
coincide. These two events happen only with negligible probability by Proposition 2.1.

Condition 2: follows immediately since Y is a deterministic function.
Condition 3: for any verification key and two different service descriptions S1 and

S2, YG(vk, h(S1)) = YG(vk, h(S2)) if and only if h maps S1 and S2 to the same hash value
or the signing key is 0. These two events happen only with negligible probability by
Proposition 2.1.

28

2.5. Proofs

Anonymity of pseudonyms (intra-service unlinkability). We now prove the theo-
rem asserting that service-specific pseudonyms preserve the anonymity of users. We begin
by stating our definition of anonymity.

Definition 2.3 (Pseudonym-based Anonymity). A set of k pseudonyms {psd1 :=
xS1, . . . , psdk := xSk} for k services (as constructed in Section 2.4) provides anonymity if
and only if, given a set {vk1, . . . , vkm} of m verification keys, any polynomially-bounded
attacker can determine which verification key was used to compute psd1, . . . , psdk with
probability at most 1

m + µ, where µ is negligible in η.

Intuitively, pseudonyms provide anonymity if pure guessing essentially is as good as
an attacker that tries to determine which verification key vk from the set M was used for
computing psd1, . . . , psdk.

We now work our way towards the main theorem. The proof is a reduction against
the decisional Diffie-Hellman (DDH) problem. For the sake of completeness, we give all
the necessary definitions.

Definition 2.4 (DDH and DDH Advantage). Given the tuple (G, xG, yG, C), where 〈G〉 =
G1 is a generator of G1, and x, y ∈ Zp are randomly chosen, the DDH problem is to decide
whether C = xyG.

The advantage of a DDH attacker B is defined as

AdvDDH(B) =
|Pr[1← B(1n,G, xG, yG, xyG) | b = 1]− Pr[1← B(1n,G, xG, yG, zG) | b = 0]|

where z is a random value in G1 and b is randomly chosen from {0, 1}.

Intuitively, the advantage of a DDH attacker states how much better than pure guessing
the attacker performs.

Assumption 2.1 (Hardness of DDH). For all polynomially-bounded attackers B, the
advantage AdvDDH(B) is negligible in η.

Reviewing the construction of service-specific pseudonyms, we see that the values
(G, vk,S, psd) form a valid Diffie-Hellman tuple since vk = xG for a random x, S = rG
for a random r, and psd = xS = xrG. We now state and prove our main theorem about
service-specific pseudonyms.

Theorem 2.2 (Anonymity of Service-Specific Pseudonyms). In the random oracle model
and under the DDH assumption, service-specific pseudonyms (as constructed in Section 2.4)
provide anonymity.

Proof. The proof is a reduction against DDH. Figure 2.2 visualizes the steps of this
reduction proof. Intuitively, the set {vk1, . . . , vkk} consists of the verification keys obtained
by a service provider during the registration of k principals. Suppose there is an attacker A
that, on input (G, {vk1, . . . , vkm}, (S1, . . . ,Sk), (psd1, . . . , psdk)), outputs ` such that vk`
and psd1, . . . , psdk are associated with probability 1/m+µ where µ is non-negligible. From

29

Chapter 2. Security and Privacy by Declarative Design

this attacker, we construct an attacker B that breaks the decisional Diffie-Hellman problem
with non-negligible probability.

The DDH challenger C uniformly at random draws a bit b ∈R {0, 1}. If b = 1, C
generates a valid DDH tuple, if b = 0, C generates a fake DDH tuple, that is, a tuple where
C = zG for z ∈R Zp. The resulting tuple is sent to attacker B.

Given that DDH challenge (G, xG, yG, C), attacker B must give a perfect simulation
to attacker A, so that A cannot differentiate between a normal challenge and a challenge
constructed by B. We note that the value S in our service-specific pseudonym construction
is a value that is indistinguishable from a random value in G1: it is the output of a
random oracle and hence, its discrete logarithm r with respect to G is also indistinguishable
from a random number in Zp. Hence, a computationally bounded attacker cannot notice
the difference and S matches with yG. Furthermore, we note that verification keys are
constructed exactly as xG.

B chooses `′ ∈R {1, . . . ,m} and generates m random verification keys vki ∈ G1. Next,
B randomly draws si ∈R Zp for i ∈ {2, . . . , k}. Since we are in a set with prime-order
groups, every service and every pseudonym is a generator of the whole group G1 (except
for O, which occurs only with negligible probability, see Proposition 2.1). Therefore, given
a service S and a corresponding pseudonym psd := x · S, multiplying both with a random
value s yields s · S and s · psd = x · (s · S). The products form another random service and
the corresponding (random) pseudonym, justifying B’s action to draw random numbers
and multiply them in the following call to A.

A({vk1, . . . , vk`′−1, xG, vk`′+1, . . . , vkm},G, (yG, ys2G, . . . , yskG), (C, s2C, . . . , skC)) is
called by B. In turn, B receives ` as answer. B returns 1 if and only if ` = `′ where
1 denotes B’s decision that c = xyG. In the following calculation, we let z ∈R Zp.

AdvDDH(B)
= |Pr[1← B(G, xG, yG, xyG) | b = 1]− Pr[1← B(G, xG, yG, zG) | b = 0]|

(1)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr[vki ∈R G1, `
′ ∈R {1, . . . ,m}, si ∈R Zp :

`← A({vk1, . . . , vk`′−1, xG, vk`′+1, . . . , vkm},G, (yG, ys2G, . . . , yskG),
(xyG, s2xyG, . . . , skxyG)) ∧ ` = `′]

−Pr[vki ∈R G1, `
′ ∈R {1, . . . ,m}, si ∈R Zp :

`← A({vk1, . . . , vk`′−1, xG, vk`′+1, . . . , vkm},G, (yG, ys2G, . . . , yskG),
(zG, s2zG, . . . , skzG)) ∧ ` = `′]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2)=

∣∣∣(1
m + µ

)
− 1

m

∣∣∣ = µ

For equality (1), we substitute the attacker B with its definition. Equality (2) holds for
the following reason: the left part of the difference holds as we give a perfect simulation
for attacker A who, by assumption, can associate the verification key with the pseudonym
with probability 1/m+ µ, where µ is non-negligible. For the right part of the difference,
there are only uniformly random values involved. More precisely, G, xG, yG, and zG are
values that are chosen independently and uniformly at random. As there is no structure
that can be used to correlate the values, the best that A can do is to return some number
from {1, . . . , k}. This number hits `′ with probability 1/m (since `′ was chosen uniformly

30

2.5. Proofs

C AB

b 2R {0, 1}
x, r, z 2R Zp

vk = x · G
S = r · G

vk1, . . . , vk `0�1 2R G1

vk `0 = vk

if b = 1 then
C = x · r · G

else
C = z · G

`0 2R {1, . . . , m}

s2, . . . , sk 2R Zp

vk `0+1, . . . , vkm 2R G1

`` = `0

(G, vk , S, C)
0
@

G, {vk1, . . . , vkm},
(S, s2S, . . . , skS),
(C, s2C, . . . , skC)

1
A

Figure 2.2.: Proof overview of Theorem 2.2.

at random). Consequently, B can use A to break the DDH problem with non-negligible
probability. This contradicts our intractability assumption and we conclude that no such
attacker A can exist and our protocol provides anonymity.

Unlinkability across services (inter-service unlinkability). The last property of
service-specific pseudonyms is unlinkability across services, i.e., it is computationally
infeasible to associate two pseudonyms from the same user but for different services with
each other. We first define the desired security property and proceed directly with proving
that our construction satisfies that definition.

Definition 2.5 (Pseudonym-based Unlinkability across Services). We say pseudonyms (as
constructed in Section 2.4) are unlinkable across services if and only if given a verification
key vk := xG, an associated pseudonym psd1 := xS1 for service S1, and a pseudonym psd2
for service S2 6= S1, it is computationally infeasible to decide whether psd2 = xS2, that is,
to decide whether the two pseudonyms belong to the same user or not.

Theorem 2.3 (Unlinkability of Pseudonyms across Services). In the random oracle model
and under the DDH assumptions, pseudonyms (as constructed in Section 2.4) are unlinkable
across services.

Proof. Suppose A is an attacker that takes as input a tuple of the form (G, vk,S1, psd1 :=
x1S1,S2, psd2 := x2S2) where S1 6= S2, and decides whether x1 = x2 with a probability
1/2 +µ, where µ is non-negligible; A outputs 1 to denote that x1 = x2 and 0 to denote that
x1 6= x2. We use this attacker to construct attacker B against the decisional Diffie-Hellman
assumption.

The DDH challenger randomly chooses b ∈R {0, 1}. If b = 1, the challenger produces a
valid DDH tuple (G, xG, yG, zG) for uniformly random values x and y, where z = x · y. If
b = 0, z is randomly chosen. We construct attacker B that uses A to solve the given DDH
challenge.

First, B chooses r ∈R {1, . . . , |G1|}, sets vk := xG, S1 := rG, psd1 := r · vk, S2 := yG,
psd2 := zG, calls A(G, vk,S1, psd1,S2, psd2), and answers the challenge with A’s answer.
We observe that S1 is indistinguishable from the output of a (random oracle) hash function

31

Chapter 2. Security and Privacy by Declarative Design

and that psd1 is the pseudonym associated to vk and S1. Notice that psd2 = xS2 if and
only if z = x · y.

Let us now compute the success probability of our constructed adversary against the
DDH challenge, where we let z denote a random value.

AdvDDH(B)
= |Pr[1← B(G, xG, yG, xyG) | b = 1]− Pr[1← B(G, xG, yG, zG) | b = 0]|

(1)=
∣∣∣∣∣Pr[r ∈R {1, . . . , |G1|} : 1← A(G, xG, rG, rxG, yG, xyG) | b = 1]
−Pr[r ∈R {1, . . . , |G1|} : 1← A(G, xG, rG, rxG, yG, zG) | b = 0]

∣∣∣∣∣
(2)=

∣∣∣∣∣Pr[r ∈R {1, . . . , |G1|} : 1← A(G, xG, rG, rxG, yG, xyG) | b = 1]
−(1− Pr[r ∈R {1, . . . , |G1|} : 0← A(G, xG, rG, rxG, yG, zG) | b = 0])|

∣∣∣∣∣
(3)= |12 + µ− (1− (1

2 + µ))| = 2µ

In step (1), we substitute attacker B with its definition, and in step (2), we consider that
if A decides whether z = x · y, then A also decides whether z 6= x · y. In step (3), we
substitute A with its success probability. Thus, attacker B can use A to break the decisional
Diffie-Hellman challenge with non-negligible probability, which violates our assumption.
We conclude that no attacker A exists.

2.5.1.2. Uniqueness, Unlinkability, and Anonymity of Escrow Identifiers

Analogous to the proofs for service-specific pseudonyms, we show that escrow identifiers
are unique, preserve the anonymity of users, and that they are unlinkable across services.
The cryptographic construction strongly resembles that of service-specific pseudonyms but
the amount of information available to outside parties is different and requires different
proofs. We use most of the notation introduced above and begin by stating the uniqueness
property.

Definition 2.6 (Uniqueness of escrow identifiers). We say that escrow identifier are unique
if and only if, the following conditions hold with overwhelming probability:

1. for any service S, two verification keys vk1 and vk2, and two honestly-generated
escrow values R1 and R2, Yvk1(R1,S) 6= Yvk2(R2,S),

2. for any verification key vk, corresponding escrow value R, and service S, the escrow
identifier Yvk(R,S) is a unique value,

3. for any two different service descriptions S1 and S2 and verification key vk and
corresponding escrow value R, Yvk(R, h(S1)) 6= Yvk(R, h(S2)).

Theorem 2.4 (Uniqueness of Escrow Identifiers). In the random oracle model, escrow
identifiers are unique.

Proof. The proof is analogous to that of Theorem 2.1, where the secret x is replaced by
the value r that is randomly chosen by the trusted third party EA.

32

2.5. Proofs

C AB

b 2R {0, 1}
u, v, z 2R Zp

mi := (xiG, xiriG)

` 2R {1, . . . , m}

S := (vG, s2vG, . . . , skvG)

I := (wG, s2wG, . . . , skwG)

M :=

8
<
:

m1, . . . , m`�1,
(x`G, x`uG),

m`+1, . . . , mm

9
=
;

(G, M, S, I)

`0` = `0

(G, uG, vG, wG)

if b = 1 then
w = u · v

else
w = z

xi, ri, si 2R {1, . . . , |G1|}

Figure 2.3.: Proof overview of Theorem 2.3.

Definition 2.7 (Escrow-Identifier-based Anonymity). Let M = {(vk1,R1 :=
r1vk1), . . . , (vkm,Rm := rmvkm)} be a set of verification keys and their corresponding ran-
dom values (induced by the signing process of the EA). We say that escrow identifiers (as con-
structed in Section 2.4) provide anonymity if and only if, given k services S := (S1, . . . ,Sk)
and k corresponding escrow identifiers I := (idr1 := riS1, . . . , idrk := riSk), it is computa-
tionally infeasible to decide which (vk,R) pair is associated with the services and escrow
identifier (that is, which i is such that R = rivk).

The following theorem states that escrow identifiers preserve the anonymity of users.

Theorem 2.5 (Anonymity for Escrow Identifiers). In the random oracle model and under
the DDH assumptions, escrow identifiers (as constructed in Section 2.4) provide anonymity.

Proof. We reduce this problem against the decisional Diffie-Hellman problem. Suppose
we are given an attacker A that breaks the anonymity of escrow identifiers, that is, given
M , S, and I as in Definition 2.7, A outputs the correct i with probability greater than
1/m + µ where µ is non-negligible in the security parameter η. From this attacker, we
construct attacker B that breaks the DDH problem.

We are given the tuple (G, uG, vG, wG) and we are to decide whether w = u · v.
First we draw xi, ri, and si uniformly at random from the set of exponents
{1, . . . , |G1|}, and we draw ` ∈R {1, . . . ,m}. Let M := {(x1G, x1r1G), . . . ,
(x`−1G, x`−1r`−1G), (x`G, x`uG), (x`+1G, x`+1r`+1G), . . . , (xmG, xmrmG)}, let S :=
(vG, s2vG, . . . , skvG), and let I := (wG, s2wG, . . . , skwG). We run A(G,M, S, I).
The set M , S, and I now have exactly the shape of M , S, and I as described in
Definition 2.7, respectively, if w = u · v. If A can figure out `, then our attacker B can
break the given DDH challenge.

33

Chapter 2. Security and Privacy by Declarative Design

Let us now compute the advantage of our construction B against the given DDH
challenge:

AdvDDH(B)
= |Pr[1← B(G, uG, vG, uvG) | b = 1]− Pr[1← B(G, uG, vG, wG) | b = 0]|

(1)=

∣∣∣∣∣∣∣∣∣
Pr[xi, ri, si ∈R {1, . . . , |G1|} :

` ∈R {1, . . . ,m} : `′ ← A(G,M, S, I) | ` = `′ ∧ b = 1]
−Pr[xi, ri, si ∈R {1, . . . , |G1|} :

` ∈R {1, . . . ,m} : `′ ← A(G,M, S, I) | ` = `′ ∧ b = 0]

∣∣∣∣∣∣∣∣∣
(2)= | 1

m + µ− 1
m | = µ

Equality (1) holds as we substituted B by its definition. For equality (2), the left part
holds by assumption, A succeeds with a probability non-negligibly higher than 1/m. For
the right part, however, the DDH challenge consists of 4 uniformly random values that are
not correlated in any way and the best that A can do is to output some number k. With
probability 1/m, this number coincides with `. Since µ is non-negligible, it contradicts our
assumption that DDH is computationally intractable. We conclude that no such attacker
A exists.

Due to the very close construction of escrow identifiers and SSPs, the definition for
unlinkability of escrow-identifiers across services is also close to the definition of unlinkability
of SSPs across services.

Definition 2.8 (Escrow-identifier-based Unlinkability across Services). We say escrow
identifiers (as constructed in Section 2.4) are unlinkable across services if and only if
given a verification key vk := xG, an associated escrow value R := r · vk, an escrow
identifier idr1 := rS1 for service S1, and an escrow identifier idr2 for service S2 6= S1, it
is computationally infeasible to decide whether idr2 = xS2, that is, to decide whether the
two escrow identifiers belong to the same user or not.

The following theorem states the unlinkability of escrow identifiers across services.

Theorem 2.6 (Unlinkability of Escrow Identifiers across Services). In the random oracle
model and under the DDH assumptions, escrow identifiers (as constructed in Section 2.4)
are unlinkable across services.

Proof. Suppose A is an attacker that takes as input a tuple of the form (D, vk,R :=
r · vk,S1, idr1 := rS1,S2, idr2) where S1 6= S2, and decides whether idr2 = t · S2 with a
probability 1/2 + µ, where µ is non-negligible; A outputs 1 to denote that idr2 = rS2 and
0 to denote that idr2 6= rS2. We use this attacker to construct attacker B against the
decisional Diffie-Hellman assumption.

The DDH challenger randomly chooses b ∈R {0, 1}. If b = 1, the challenger produces a
valid DDH tuple (G, xG, yG, zG) for uniformly random values x and y, where z = x · y. If
b = 0, z is randomly chosen. We construct attacker B that uses A to solve the given DDH
challenge.

34

2.5. Proofs

First, B chooses d, r ∈R {1, . . . , |G1|} and sets D := dG, vk := G, R := xG, S2 := yG,
idr2 := zG, S1 := rD, and idr1 := r · d · R and calls A(D, vk,S1, idr1,S2, idr2) and answers
the challenge with A’s answer. We observe that we can derive vk from D by setting
vk = d−1D. Therefore, vk is of the correct distribution and forms an honestly-generated
verification key (since d is chosen uniformly at random from a prime-order group, d−1 exists
and is a uniformly random value), S1 = rD and idr1 = r · d · R = r · d · xG = rxD = xS1,
that is, S1 and idr1 have the correct form and distribution (since r is chosen uniformly
at random) of a service and an escrow identifier. Notice that idr2 = xS2 if and only if
z = x · y.

Let us now compute the success probability of our constructed adversary against the
DDH challenge, where we let z denote a random value.

AdvDDH(B)
= |Pr[1← B(G, xG, yG, xyG) | b = 1]− Pr[1← B(G, xG, yG, zG) | b = 0]|

(1)=
∣∣∣∣∣Pr[d, r ∈R {1, . . . , |G1|} : 1← A(dG,G, xG, r · d · G, r · d · xG, yG, xyG) | b = 1]
−Pr[d, r ∈R {1, . . . , |G1|} : 1← A(dG,G, xG, r · d · G, r · d · xG, yG, zG) | b = 0]

∣∣∣∣∣
(2)=
∣∣∣∣∣Pr[d, r ∈R {1, . . . , |G1|} : 1← A(dG,G, xG, r · d · G, r · d · xG, yG, xyG) | b = 1]
−(1− Pr[d, r ∈R {1, . . . , |G1|} : 0← A(dG,G, xG, r · d · G, r · d · xG, yG, zG) | b = 0])

∣∣∣∣∣
(3)= |12 + µ− (1− (1

2 + µ))| = 2µ

In step (1), we substitute attacker B with its definition; in step (2), we consider that if
A decides if z = xy, then A also decides if z 6= xy. In step (3), we substitute A with its
success probability. Thus, attacker B can use A to break the decisional Diffie-Hellman
challenge with non-negligible probability, which violates our assumption. We conclude that
no attacker A exists.

2.5.2. Type-Based Verification of the API Methods

This section formally proves that the cryptographic implementation enforces the authoriza-
tion policies specified by the programmer. This is of paramount importance in our setting
to make sure that the malleability of zero-knowledge proofs does not constitute an attack
surface. Intuitively, we aim at showing that whenever a principal successfully verifies a
validity proof for formula F , then F holds true. First, we formally define what it means for
a logical formula to hold true (Section 2.5.2.1). We then show how to symbolically encode
the semantics of malleable zero-knowledge proofs (Section 2.5.2.2). This encoding allows
us to leverage F7 [49], a state-of-the-art type checker for verifying security properties on
the source code of cryptographic implementations (Section 2.5.2.3). We obtain security
by construction guarantees (Section 2.5.2.4): using the API suffices to enforce the desired
authorization policies.

35

Chapter 2. Security and Privacy by Declarative Design

2.5.2.1. Authorization Policies

Following a well-established methodology for the specification and static analysis of au-
thorization policies in a distributed setting, we decorate the code with assumptions and
assertions [49]: assumptions introduce logical formulas which are assumed to hold at a
given point, while assertions specify logical formulas which are expected to follow from the
previously introduced (active) assumptions.

Authorization policies (for instance, Equation 2.1) are explicitly assumed in the system.
Furthermore, we place an assumption within the implementation of the mkSays method,
reflecting the intention of the user to introduce a new logical formula in the system: for
instance, let us recall Example 2.2 from Section 2.3.1:

. . .

4 if verify y

(
xHosp says IsDoc(xDoc, xPI Doc)
∧ xDoc says Visit(xPat , xdate, xresults)

)
then

5 let (pf IsDoc, pf Visit) = split∧ y;
6 let pf s = mkSays yPat Rating(xopinion);

...

There, executing the mkSays method on line 6 introduces an assumption of the form

assume yPat says Eval(xopinion).

Finally, assertions are placed immediately after each call to the verify method: for instance,
the call to the verify method on line 4 of Example 2.2 is followed by

assert
(
xHosp says IsDoc(xDoc, xPI Doc)
∧ xDoc says Visit(xPat , xdate, xresults)

)

2.5.2.2. Symbolic Cryptography

As usual in the static analysis of cryptographic protocol implementations, we rely on a
symbolic abstraction of cryptographic primitives that captures their ideal behavior.

Prior work showed how standard cryptographic primitives such as encryptions and
signatures [49] as well as non-malleable zero-knowledge proofs [27] can be faithfully modeled
using a sealing-based technique [148]. The advantage of sealing-based techniques is that
they are purely based on standard language constructs. Sealing-based abstractions are well-
suited for verification purposes because they do not require any extension or modification
of the programming language.

In a nutshell, a seal comprises two functions: (i) a sealing function that takes as input
a message, stores this message in a secret list along with a fresh handle, and returns this
handle; (ii) an unsealing function that takes as input a handle, scans the secret list in
search for the associated message, and returns that message. The fundamental insight is
that the only way to extract a sealed value is via the unsealing function. Sealing-based
abstractions of encryptions and signatures have been proven computationally sound [33],

36

2.5. Proofs

that is, security results verified on these abstractions carry over to the actual cryptographic
implementation.

Previous sealing-based abstractions for non-malleable zero-knowledge proofs [27] use
one seal per proven statement. The sealing and unsealing functions can only be accessed
by the functions to create and verify proofs. Since the number of proven statements in a
protocol is finite in the non-malleable setting, the number of seals is finite as well. In a
malleable setting, however, this approach yields an unbounded number of seals since proofs
can be arbitrarily combined. We therefore devise a finite sealing-based library for malleable
zero-knowledge proofs: We model malleable zero-knowledge proofs using one seal for the
proofs themselves and one seal to model the commitments used inside zero-knowledge
proofs.

The seal for zero-knowledge proofs stores the proven statement and a random value; the
random value corresponds to the randomness used in the generation of the computational
zero-knowledge proof and the fresh handle corresponds to the zero-knowledge proof. The
sealing and unsealing functions are only used inside the functions to create and verify
zero-knowledge proofs, respectively.

The seal for commitments stores in its secret list the committed values and the
randomness used in the commitment; the fresh handle corresponds to the commitment.
Only the sealing function to compute commitments is public.

The proof creation function takes the formula to be proven as input (say, a ≤ b), creates
the commitments (Ca and Cb), and passes the zero-knowledge statement (JCaK ≤ JCbK) to
the sealing function, which outputs the zero-knowledge proof. The verification function
takes as input the proof along with the zero-knowledge statement, internally opens the
commitments, and executes the zero-knowledge statement on the witnesses to check its
validity. The functions to manipulate zero-knowledge proofs (for instance, splitting of
logical conjunctions) are straightforwardly implemented by using the sealing and unsealing
functions for zero-knowledge proofs and for commitments.

2.5.2.3. Typed Interface

Type systems (and static analysis techniques in general [52, 24]), proved successful in the
certification of formal security guarantees for cryptographic protocols [52, 64, 127, 63, 22,
65, 21, 66, 112, 61] and implementations thereof [49, 104, 62]. We type-check the symbolic
implementation of our API using F7 [49], a type-checker for authorization policies. This
type-checker works on RCF, a refined and concurrent λ-calculus that can be used to reason
about a large fragment of ML and of Java by encoding. In F7, the universal type unit
describes values without a security import, that is, values of type unit can be passed to
and received from the attacker. All types used in the API interface (see Table 2.1) are
encoded as unit. Signing keys are the only confidential data but, as previously discussed,
they are not exported by the API. The interface types coincide with the ones shown in
Table 2.1, except for the type of the verify method. This method is given a refinement type
of the form:

verifyF : proof → y : formula →
{z : bool | ∀x̃. y = F ∧ z = true =⇒ F}

37

Chapter 2. Security and Privacy by Declarative Design

Intuitively, a value v has type {x : T | F} if v has type T and, additionally, the logical
formula F{v/x} (i.e., F where every occurrence of x is replaced by v) is entailed by the
active assumptions. The type of verify ensures that if the returned value z is true and the
formula y passed as input is the ML encoding F (defined in Appendix A.1.2) of the logical
formula F , then the formula F is entailed at run-time by the currently active assumptions.
In other words, malleable zero-knowledge proofs constitute a sound implementation of our
logic-based data processing API.

Well-formedness of formulas. It is interesting to observe that not all proofs are
meaningful. For instance, suppose that a principal receives a proof of the following formula:

∃x. x says Eval(ev, course) (2.4)

We would be tempted to let this principal entail ∃x. x says Eval(ev, course). The proof for
this formula, however, does not reveal the identity of the person issuing the statement,
nor is there any information about the origin of the creator of the proof. In fact, this
proof might have been constructed by an attacker, using a fresh key-pair and, therefore,
the formula ∃x. x says Eval(ev, course) is not necessarily entailed by the formulas proved
by principals of the system. Notice that we assume that the principals of the system
are honest, i.e., they issue signatures to witness the validity of the corresponding logical
predicates. We cannot, of course, assume the same for the attacker.

We stipulate that principals only use public identifiers that belong to principals of the
system (as opposed to the attacker identity) in their formulas. We call these identifiers
trustworthy. Checking whether an identifier that occurs in a zero-knowledge proof is
trustworthy is subtle. The idea is that an identifier is considered trustworthy if either it is
revealed by the proof and known to belong to a principal of the system, or, recursively,
it is endorsed by a trustworthy public identifier. For instance, the formula depicted in
Equation 2.4 does not guarantee that the existentially quantified public identifier x is
trustworthy. Conversely, let us recall Example 2.4 from Section 2.3.3:

. . .

7 let pf ′ = hide pf

 ∃wPat , wresults, wdate.
xDoc says Visit(wPat , wdate, wresults)
∧ wPat says Rating(xopinion)

;

...

There, the identifier of the patient is endorsed by the doctor and, therefore, is trustworthy.
Hence, the proof pf ′ justifies the corresponding formula.

In a nutshell, a formula is well-formed if it ensures that all private identifiers are
trustworthy. Despite the simplicity of this intuition, the formal definition has to consider a
number of complications, including the presence of logical disjunctions in the statement.
For instance, the statement

∃x1. x1 says F ∨ Doc says F

38

2.5. Proofs

is not well-formed, since we do not know which of the two disjuncts holds true. The idea is
to transform a statement in disjunctive form and then to check that all identifiers in each
sequence of conjunctions are registered.

We formalize the notion of trustworthiness for keys in Appendix A.2. Here and
throughout the rest of the chapter, we stipulate that all formulas are well-formed.

2.5.2.4. Soundness Result

The soundness result shows security by construction for the API methods. In other words,
the programmer does not have to type-check her code. Instead, the usage of our API
suffices to yield security guarantees by construction.

We first formalize the notion of safety for authorization policies and then proceed
to the soundness results. The complete source code along with the proofs and elaborate
explanations are given in Appendix A.

Intuitively, safety states that assertions never fail at run-time, even in the presence of
an opponent.

Definition 2.9 (Safety, Opponent, and Robust Safety [49]). A program P is safe if and
only if, in all executions of P , all assertions are entailed by the current assumptions.

A program B is an opponent if and only if B contains no assertions and the only type
occurring in B is unit.

A program P is robustly safe if and only if the application B P is safe for all
opponents B.

The type system establishes judgments of the form E ` P : T for some typing
environment E, program P , and type T . Intuitively, E tracks the types of variables in
scope. The following theorem states that well-typed programs are robustly safe.

Theorem 2.7 (Safety by Typing [49]). If ∅ ` P : T , then P is safe. If ∅ ` P : unit, then
P is robustly safe.

Finally, the soundness theorem states that well-typed programs that are linked to the
typed API implementation are robustly safe. This definition uses the typed API interface
EAPI (see Table A.4) and the typed API implementation PAPI (see Appendix A).

Theorem 2.8 (Soundness). If EAPI ` P : unit, then PAPI;P is robustly safe.

Notice that Theorem 2.8 only applies to well-typed programs P . In the following, we
formally demonstrate that the soundness result depends only on the well-typing of the API
implementation and not on the program using the API.

This result is based on the opponent typability lemma [49]. Opponent typability
captures our intuition that programs that only use values of type unit and do not use
assertions are safe. In the API, the only values whose type is different from unit is the
verification function. Therefore, we construct a verification wrapper function verify′F . This
function calls the corresponding verification function verifyF . If the result is true, the

39

Chapter 2. Security and Privacy by Declarative Design

wrapper function immediately executes the corresponding assertion assert F . We state the
wrapper function in Appendix A.3.

We proved that EAPI ` verify′F : unit. Furthermore, as previously mentioned, all
types except for verifyF in EAPI are encoded as unit. We can then define a variant of our
typed API, named E′API, in which the verifyF method is replaced by verify′F . We call P ′API
the corresponding implementation. E′API is refinement-free and only exports unit types,
which allows us to prove the following theorem. Intuitively, this theorem states that user
programs linked to P ′API are robustly safe.

Theorem 2.9 (Security by Construction). Let P be an assertion-free program such that
unit is the only type occurring therein and the free names and free variables fnfv(P) ⊆ E′API
(that is, P only uses functions exported by E′API). Then P ′API;P is robustly safe.

2.6. Implementation and Experiments
We implemented the API methods as a Java library on top of the the jPBC library [94],
the PBC library [168], and the peloba ZK Library [20]. The jPBC library implements
elliptic curve operations and the corresponding bilinear map. It supports a pure Java
implementation as well as an implementation that uses the native PBC library to speedup
the mathematical computations. The peloba ZK Library works on top of the jPBC library
and implements the equations provable with the Groth-Sahai proof system (see Section 2.4).

Our implementation uses the peloba ZK Library with the jPBC library running the
native PBC library for better performance. Furthermore, it exploits the multi-core architec-
ture of modern CPUs: to get a good trade-off between implementation work and efficiency
advantages, the multi-threading is situated at the level of Groth-Sahai equations. Thus,
we compute Groth-Sahai equations in parallel but we do not multi-thread the individual
mathematical operations. The library is freely available [187].

Implementing an efficient and secure re-randomization mechanism. Groth-
Sahai proofs allow for re-randomizing commitments contained in a proof and the proof
itself [42], that is, we can change and adapt both the randomness contained in the commit-
ments and in the proof. Re-randomization is crucial, for instance, to enforce unlinkability
and anonymity properties. Since re-randomization operations are computationally expen-
sive, we tried to reduce the number of these operations without sacrificing security.

In general, there are two approaches to implement API methods: a transaction-like
system and an immediate-effect system. In a transaction-like system, a user starts a
transaction and begins queuing proof manipulation steps, for instance, adding a pseudonym
and hiding an identity. When she is finished, she closes the transaction and the API executes
the necessary API methods including the re-randomization steps. In an immediate-effect
system, every modification to a proof is executed immediately, even if the resulting proof
is only intermediate and will be modified further.

We implemented the immediate-effect system. This approach spares users the necessity
to open and close transactions, and it yields access to intermediate proofs. In particular,

40

2.6. Implementation and Experiments

these proofs are useful in an open-ended setting, where they can be used as cryptographic
material in a different protocol. More precisely, we use the following strategy when dealing
with re-randomization: when computing the logical conjunction of two proofs, the API
only re-randomizes commitments so that all equal, non-hidden values are represented by
one single commitment; when hiding parts of a proof, the API completely re-randomizes
the resulting proof. This prevents users from accidentally revealing their identity: original
proof and proofs derived by hiding operations are always unlinkable.

Cryptographic setup. The implementation is parametric in the security parameter
and the number of threads to use. We use MNT elliptic curves with security parameter
η = 112 bits, η = 128 bits, and η = 256 bits; NIST recommendations [208] deem 112
bit security parameters secure until the year 2030, larger key sizes are expected to hold
even longer. To derive these security parameters, let the group sizes of G1 and G2 be
approximately 22η. With MNT curves, this corresponds to η = 112. To achieve a security
parameter beyond that, different curve types are preferable over MNT curves [115].

Since we are not aware of an off-the-shelf implementation of these curves, we use MNT
curves to estimate the running times of higher security parameters. We stress, however,
that the times obtained for η = 128 and η = 256 are to be understood as lower bounds.

2.6.1. Experimental Evaluation
We conduct an experimental evaluation of the Java implementation to demonstrate the
feasibility of our approach. We measure the proof generation time, proof verification
time, and the proof size for the concrete implementation of SSP proofs, list membership
and non-membership proofs, and the identity escrow protocol. For the list membership
and non-membership proofs, we fix the total number of list elements to 1000, which we
distribute over various amounts of lists. We evaluate the identity escrow protocol for
various security parameters and we determine how many escrow identifiers an escrow agent
can check per second. We report the average results of 1000 runs on a computer with an
Intel Xeon E5645 six core processor with 2.4 GHz and hyper-threading (i.e., the processor
can handle 12 threads at the same time), and 4 GB of RAM. Notice that although this
computer has great multi-tasking capabilities, the proofs tested here are too small to show
the potential of parallel computation. Anticipating the experimental evaluation of the case
studies in Chapter 3, we show the impact of the multi-threaded application. Also, the case
studies highlight the impact of re-randomizing parts of the proof.

Discussion. In the following, all quantities refer to a 112 bit security parameter.
Figure 2.5 depicts the results for SSP proofs. Proof generation as well as proof

verification are highly efficient and take 76ms and 67ms, respectively. The proof size is
2.6KB.

Figure 2.6 shows that the list non-membership proof is practical, even for long lists. We
vary the number of lists since users have to recompute their pseudonym in zero-knowledge
for every list. The number of lists, however, plays only a small role as the proof is dominated

41

Chapter 2. Security and Privacy by Declarative Design

112 128 256

100

150

200

250

300

Security Parameter η

T
im

e
in

m
s

Proof generation time
Proof verification time

112 128 2562

2.5

3

3.5

4

4.5

5

5.5

Security Parameter η

Si
ze

in
K
B

Proof size

Figure 2.5.: The results for the computation of a service-specific pseudonym.

1 10 20 40 50 10090

95

100

105

110

115

120

Number of lists `

T
im

e
in

s

Proof generation time
Proof verification time

1 10 20 40 50 100
3,200

3,250

3,300

3,350

3,400

3,450

3,500

Number of lists `

Si
ze

in
K
B

Proof size

Figure 2.6.: The results for the non-membership proof for ` lists, a total number of 1000 elements
distributed over the lists, and a security parameter of η = 112 bits.

42

2.6. Implementation and Experiments

1 10 20 40 50 1000

100

200

300

400

Number of lists `

T
im

e
in

s

Proof generation time
Proof verification time

1 10 20 40 50 1000

2

4

6

8

10

12

14

Number of lists `
Si
ze

in
M
B

Proof size

Figure 2.7.: The results for the membership proof for ` lists, a total number of 1000 elements
distributed over the lists, and a security parameter of η = 112 bits.

112 128 2560

0.2

0.4

0.6

0.8

1

1.2

1.4

Security parameter η

T
im

e
in

s

Proof generation time
Verification time

112 128 2560

5

10

15

20

25

Security parameter η

Si
ze

in
K
B

Proof size

Figure 2.8.: The results for the identity escrow protocol.

43

Chapter 2. Security and Privacy by Declarative Design

by the computations for the list elements: the proof for one list with 1, 000 elements takes
109 s and the proof for 100 lists with a total of 1, 000 elements takes 116.5 s. The proof
size varies between 3.2MB for 1 list and 3.4MB for 100 lists.

Figure 2.7 presents the results for the list membership proof. As expected, the proof
for a single list is very efficient as it is independent of the size of the list. Creating a
proof for many lists, however, is more expensive, since signatures on message tuples are
computationally burdensome. The proof for one list and 1, 000 elements takes 3 s and
the proof for 100 lists with a total of 1, 000 elements takes 309.1 s. The proof size varies
between 133KB for 1 list and 13.3MB for 100 lists. We believe that these numbers do not
undermine the practicality of our approach: typical users only participate in a small number
of services and therefore are only confronted with a small number of list membership proofs.

As shown in Figure 2.8, the identity escrow proof constitutes only a small computational
burden for the prover and the verifier: the proof takes 360ms to generate, requires 350ms
to verify, and is 10.8KB in size. The computation of the EA consists only of scalar
multiplications and equality tests. These are extremely efficient and the EA can perform
more than 10, 000 of the necessary computations per second on a single core. Furthermore,
these computations can be conducted in parallel.

In many proof systems, generating a proof takes longer than verifying a proof
(e.g. [28, 25]). The Groth-Sahai setting is a notable difference to this rule of thumb.
The technical reason is that the proof generation relies on computations in G1 and G2, the
proof verification relies mostly on the bilinear map that maps elements into an extension
field. Since G1 and G2 are six times smaller than the extension field (in the case of our
MNT curves), the proof computation is faster than the proof verification. Nonetheless,
the experiments show that the proof computation often takes longer than the verification.
The reason is that computing a proof consists of many steps, for instance, the compu-
tation of digital signatures, the actual computation of the zero-knowledge proofs, and
re-randomization steps. As a consequence, proof generation is only faster if the number of
these steps is small. This is the case for the list membership proof (see Figure 2.7), where
the proof computation only involves a signature computation and its transformation into a
zero-knowledge proof.

2.7. Related Work
We discuss work related to the declarative API and its cryptographic realization. We survey
various alternative cryptographic realizations and detail their advantages and disadvantages.
Finally, we relate schemes and systems including anonymous credentials and declarative
languages to the API.

Σ-protocols. Σ-protocols are interactive protocols [93] that are highly efficient and,
when properly used, have many desirable properties [91]. A Σ-protocol is an atomic
zero-knowledge proof, for instance, for proving knowledge of a discrete logarithm [195]
and proving the equality of two discrete logarithms [73]. Larger Σ-protocols are built
on top of these atomic protocols. The most notable properties of Σ-protocols are their

44

2.7. Related Work

efficiency and the range of provable statements [72, 73, 25, 28]. In particular, virtually
all of these protocols can be arbitrarily combined to prove their logical conjunctions and
logical disjunctions [91].

Despite these properties, Σ-protocols suffer from shortcomings with respect to flexibility.
First of all, Σ-protocols are interactive proofs that cannot be used as a credential. Intuitively,
for a proof to be convincing, the verifier must contribute randomness. Consequently, a
forwarded proof transcript is not convincing since the verifier did not contribute randomness
to the proof.

Σ-protocol based zero-knowledge proofs can be made non-interactive by applying the
Fiat-Shamir heuristic [111]. This heuristic relies on the random oracle model. A random
oracle is a function that, upon a query, outputs true randomness and answers queries
consistently with previous answers. The random oracle is used to derive the random input
expected from the verifier. Since also the prover can obtain true randomness without
interacting with the verifier, the proof becomes non-interactive. This technique is highly
efficient, but it has one far-reaching consequence:

Using a hash function to substitute the random input from the verifier yields non-
malleable proofs, i.e., proofs cannot be changed in any way. Consequently, it is impossible
to selectively hide parts of the statement or to apply re-randomization: this would change
the input to the hash function and in turn require re-computation of a given proof. In
particular, re-computation requires knowledge of all witnesses, which renders the Fiat-
Shamir heuristic impractical for our scenario. As elaborated in Section 2.4, the Groth-Sahai
proof system overcomes these shortcomings and supports the selective hiding of parts of
the statement and the re-randomization of any commitment as well as the zero-knowledge
proof itself, even without any knowledge of the involved witnesses.

Group signatures and ring signatures. Group signatures (e.g., [17, 54, 85, 152])
allow a member of a group to sign a message on behalf of the group. They often rely on a
group manager to distribute keys and, in case of a dispute, reveal the signer of a message.
The presence of a trusted third party that can reveal the identity of a signer is the most
noticeable difference from our approach, where a third party (the escrow agent) is only
needed to reveal the identity of misbehaving users. Furthermore, group signatures tend to
increase the key management overhead since every group requires a different set of keys,
whereas in our system, each user needs just one key-pair.

Ring signatures (e.g., [193, 58, 218]) allow a user to sign a message m on behalf of
a set of users: the user gathers all the verification keys of the users in the set (including
her own key) and uses the ring signature to create a signature on m [193]. The verifier of
this signature will only learn the members of the set and that a member of the set created
the signature but not which one. Consequently, the use of ring signatures requires that it
is public knowledge which principal uses which service. Otherwise, the set of principals
for one particular service cannot be assembled. This poses serious privacy issues and
even prohibits the specification of certain systems: for instance, in decentralized social
networks, users want to hide their friend list (see Section 3.4) which is not possible using
ring signatures. Users take the role of service providers and their friends constitute the set
of users using that service, which must be public to construct a ring signature.

45

Chapter 2. Security and Privacy by Declarative Design

Identity-based and attribute-based signatures. The advent of elliptic curve cryp-
tography and bilinear maps has given rise to identity-based cryptography [220, 225, 135]
and attribute-based cryptography [163, 4]. In identity-based cryptography, the identity of
a user (e.g., the name of the user) is used as a public key. In attribute-based signatures,
a signature does not yield the identity of the signer but that a certain attribute (e.g.,
“is-a-doctor”) is allotted to the signer.

For our application scenario, it is crucial that verification keys can be signed and
that signatures and, in particular, signatures on verification keys are efficiently provable
in zero-knowledge. We are not aware of any automorphic signature scheme based on
identity-based or attribute-based cryptography.

Pseudonyms. Chaum [82] initiated the research on pseudonyms and since then many
schemes have been introduced (e.g., [194, 167, 28, 173, 43, 12, 68, 221, 56]). Many
schemes do not consider the notion of service (e.g., [167, 28, 43, 194]), they incorporate a
compulsory trusted third party (e.g., [68, 221]), they do not enforce the uniqueness property
(e.g., [167, 28, 43]), or they do not support any form of authorization policy unless the
pseudonym owner is fully disclosed (e.g., [194]). In the following, we discuss four recent
pseudonym schemes closely related to our concept of service-specific pseudonyms.

Martucci et al. [173] use a TTP only to register the real identity. After the registration,
users generate pseudonyms on their own using a non-interactive publicly verifiable variant
of a special signature scheme and then self-certify them by means of anonymous credentials
and group signatures. A pseudonym is unique within a given context and a user is linkable
for actions performed within this context. The compulsory presence of a trusted third party
is a fundamental difference from the pseudonym system considered in this thesis: here, the
presence of a TTP is optional and only needed to reveal the identity of misbehaving users.

Brands et al. [56] use a central authority to register users in a system: they receive
a fixed number of pseudonyms that are used to register with a service provider, one
pseudonym for every available service. Should a user misbehave, she can be completely
revoked from the system but identity escrow is not possible. The central authority, the fixed
number of services, and the absence of an identity escrow protocol significantly differentiate
their work from ours.

Service-specific pseudonyms coincide with the concept of domain pseudonyms from
Identity Mixer cryptographic library (idemix) [141], scope-exclusive pseudonyms from the
attributed-based credentials for trust project (ABC4Trust) [4], and pseudonyms used in
U-Prove [101]. The flexibility of our cryptographic setup based on Groth-Sahai proofs and
the identity escrow protocol are the most prominent differences.

Accumulators. Accumulators store an arbitrary number of values and are generally
equipped with efficient membership and non-membership proofs, that is, proofs of whether
a value is stored in an accumulator or not. While accumulators seem to be ideal for
implementing reputation lists, incorporating them into the existing framework requires
encoding pseudonyms into a special form that is compatible with the accumulator. Proving
this encoding in zero-knowledge, however, makes the overall protocol very inefficient,

46

2.7. Related Work

outweighing the gains of accumulators over reputation lists.
For instance, there exist accumulators for numbers in Zn (e.g., [212]). The Groth-Sahai

scheme only supports quadratic equations and proving the computation of an SSP Sx in
zero-knowledge takes time linear in the security parameter since we would have to resort
to the square-and-multiply algorithm. The resulting computational overhead each time a
user uses a pseudonym is significant. Other schemes that work on elliptic curves directly
(e.g., [71, 77]) require a symmetric bilinear map, or they work in an RSA-like system
(e.g., [77]), requiring composite-order groups. These requirements are incompatible with
automorphic signatures.

Set (non-)membership proofs. Set membership and set non-membership proofs are
efficient protocols to convince a verifier that a prover is in possession of a value that is
contained in a set or that is not contained in a set without revealing the value to the
verifier [70, 78, 180, 153]. Our protocols are trivial set membership and set non-membership
protocols that fit our cryptographic setting because they rely on digital signatures and
zero-knowledge proofs only. Naturally, it is possible to adapt the cryptographic setting to
incorporate more sophisticated and efficient set (non-) membership proofs.

Anonymous credential systems. We compare our work to the line of research on
anonymous credential systems that support anonymous and delegatable authentication. All
the following protocols, apart from the scheme by Belenkiy et al. [42], rely on Σ-protocols
and, as a consequence lack the flexibility to selectively hide individual parts of the proven
statement. This limitation is prohibitive for the design of open-ended systems. For instance,
the protocol in Example 2.7 cannot be implemented using Σ-protocols, since it requires
the hiding of the doctor’s identity and parts of the signed message from a given proof. Our
work instead relies on the Groth-Sahai zero-knowledge proof system that is flexible, general,
and, in particular, efficient enough to selectively hide and reveal any given part of the
proven statement. Furthermore, our work supports an optional TTP-based identity-escrow
functionality, which is offered by neither of the systems mentioned below.

The direct anonymous attestation (DAA) protocol [59] offers a pseudonymous-
attestation functionality, which allows users to authenticate their trusted platform module
(TPM) with a service provider using a pseudonym, derived from the TPM’s secret value
(chosen by an external party) and a base value chosen by the resource provider, yielding
the notion of service. The TPM’s secret value is signed by a third party, called the issuer.
In this work, we do not require trusted hardware and a trusted third party is only needed
if identity escrow is desired.

From the recently-proposed Nymble systems (e.g., [145, 60, 211, 18, 212, 134, 164]),
BLACR [18] is the most expressive and efficient. In BLACR, users generate fresh private
keys that get authenticated by a group manager. Users use their keys to generate tickets
that are revealed to service providers. Service providers can blacklist or whitelist these
tickets and assign scores to them. Users traverse all lists, adding up the scores in zero-
knowledge and revealing the final result to the service provider who can use this result to
allow or deny access. The complexity of such proofs is linear in the size and number of

47

Chapter 2. Security and Privacy by Declarative Design

lists. For monotonically increasing lists, the user can ask the service provider for a token
certifying her reputation for the current list, allowing the user to prove her reputation
only for the subsequent part of the list for future requests. In our framework, every
membership proof is independent of the list size (see Section 2.4) and our construction is
fully distributed, does not involve any group manager, and supports a much larger class of
authorization policies, which may depend on (possibly anonymous) certificates released by
any party of the system.

The delegatable anonymous credential scheme by Belenkiy et al. [42] is based on the
Groth-Sahai proof system. There, a root authority issues anonymous credentials that can
further be delegated. Delegatable credentials indicate the root authority and they reveal
how often they have been delegated. For instance, in Example 2.1, the doctor has a level-1
credential and the patient has a level-2 credential, both rooted at the hospital. Although
based on Groth-Sahai proofs, their scheme is not open-ended because the root is unalterably
anchored in every credential and proofs originating from different root authorities cannot
be combined. Additionally, it is not possible to change the root authority without re-issuing
all delegated credentials, e.g., when the doctor switches to another hospital.

Security-oriented, declarative languages. The seminal works by Abadi et al. [161, 2]
on access control in distributed systems paved the way for the development of a number of
authorization logics and languages [41, 144, 118, 79, 215], which all rely on digital signatures
to implement logical formulas based on the says modality. Maffei and Pecina extended
this line of research with the concept of privacy-aware proof carrying authorization [170],
showing how to cryptographically realize existential quantification by zero-knowledge
proofs.

Building on that work, Backes et al. [30] have devised a framework for automatically
deriving cryptographic implementations from a logic-based declarative specification lan-
guage derived from evidential DKAL [9]. In their work, the programmer has to supply a
logical derivation that is compiled piece by piece into executable code. In our framework,
the high-level declarative API is directly embedded into the programming language, which
allows programmers to devise systems without switching to an external logic-based lan-
guage and to conveniently access the data exchanged in the protocol. Furthermore, besides
authorization and privacy, our framework supports controlled linkability, accountability,
and identity escrow.

G2C [31] is a goal-driven specification language for distributed applications capable of
expressing secrecy, access control, and anonymity properties. These properties are enforced
using broadcast encryption schemes and group signatures and the cryptographic details
are automatically generated by a compiler. This compiler generates cryptographic protocol
descriptions as opposed to executable implementations. Furthermore, the protocols are not
open-ended and extending them often requires the re-generation of the whole system from
scratch.

Encryption schemes. Our framework supports security as well as privacy properties.
In the framework, messages are created in the form of zero-knowledge proofs and we

48

2.7. Related Work

preserve the privacy of sensitive information by selectively hiding parts of the message
inside the secret witnesses of a zero-knowledge proof. The resulting proof can be used as
a credential to gain access to resources or to log-in to a system. Naturally, the question
arises how to preserve the privacy of those credentials themselves.

The necessary encryption mechanism is intentionally not part of the API methods.
Intuitively, the reason is that a public-key encryption does not yield any useful logical
information since everybody can create ciphertexts. Since the encryption is decoupled from
the API, we can use any off-the-shelf, state-of-the-art encryption scheme to protect the
privacy of zero-knowledge proofs.

49

50

3. Case Studies
The results presented in this chapter build on the following works:

• Backes, Lorenz, Maffei, and Pecina [25]: “Anonymous Webs of Trust”

• Backes, Lorenz, Maffei, and Pecina [26]: “Brief Announcement: Anonymity and
Trust in Distributed Systems”

• Backes, Maffei, and Pecina [28]: “A Security API for Distributed Social Networks”

• Backes, Maffei, and Pecina [29]: “Brief Announcement: Securing Social Networks”

We conducted three case studies to show the expressiveness and applicability of the
declarative API (introduced in Chapter 2) to real-world applications.

The first case study demonstrates the usefulness of the API: we let a programmer
without prior experience in the declarative, logic-based system design devise and implement
tales, an anonymous lecture evaluation system. In the second and the third case study, we
re-design, re-implement, and improve previous work on anonymous webs of trust [25] and
distributed social networks [28].

The remarkable result is that the API enables us to easily and conveniently implement
the systems cryptographically within only a few days. For the two previous works on
anonymous webs of trust and distributed social networks, a significant effort was necessary
to develop a cryptographic realization in the first place.

3.1. Experimental Setup
Since the experimental setup for all three case studies is identical, we describe the setup
here; the case studies solely report the results for the pure computation time1 followed by
a discussion. The experiments all use the high-level library as described in Section 2.6. We
used a computer that is equipped with 8 CPUs2 with hyper threading clocked at 2.40GHz
and 32GB of RAM. We report the average of 100 runs for a security parameter η = 112,
η = 128, and η = 256 bits. To stress the scalability of the implementation on modern
computer architectures, we explicitly highlight the number of threads used during the proof
generation and verification. To test the impact of the CPU clock speed on the computation,
we also conducted several experiments with 8 threads on a computer with 32 CPUs3 with

1This time excludes pre-computation steps such as drawing random values.
2Intel Xeon CPU E5-2665
3Intel Xeon CPU E5-4650L

51

Chapter 3. Case Studies

hyper threading that are clocked at 2.6GHz and equipped with 768GB of RAM. The
number of threads used by the implementation is restricted programatically.

3.2. tales
To determine how easy it is to use the API, we developed tales,4 an anonymous lecture
evaluation system. In tales, professors can register students to a lecture and registered
students may hand in lecture evaluations anonymously. Naturally, evaluations and students
must not be linkable but students are only allowed to submit at most one evaluation.

We provided a programmer5 with the API and only briefly explained the available
methods and their purpose. The API turned out to be widely self-explanatory; we received
only a few questions, mostly to confirm that all necessary parts of a message were hidden
in order to achieve the privacy and anonymity properties expected of the lecture evaluation
system. Devising and implementing tales took approximately two weeks. Out of these two
weeks, roughly two days were effectively spent on implementing the core functionality. The
remainder of the time was used to design and to internationalize the user interface. tales
is freely available online for downloading and testing [165].

3.2.1. Design of tales
Since the requirements are straightforward and we already described in Section 2.3 how to
achieve these properties, we only briefly discuss the design of tales.

Lecture registration. The professor Prof registers a student Stud for her lecture
Security by issuing a proof for the formula Prof says Registered(Stud,Security). The
professor forwards this proof to the student, who in turn can create her evaluation.

Evaluating a lecture. The student Stud receives the professor’s registration proof. She
appends a proof for the formula Stud says evaluate(Security, fb) to give her feedback fb to the
professor. Additionally, she creates a service-specific pseudonym SSP(Stud,Security, psd)
for the lecture; this pseudonym prevents multiple submissions even though she hides her
identity in the next step before submitting the feedback.

Anonymizing the evaluation. At this point, the student has assembled the following
proof:

Prof says Registered(Stud,Security)
∧ Stud says evaluate(Security, fb)
∧ SSP(Stud,Security, psd).

Since her identity is the only information that would reveal Stud as the originator of this
evaluation, she existentially quantifies her identity and turns this proof into an anonymous

4tales stands for the anonymous lecture evaluation system.
5Special thanks to Stefan Lorenz for participating in this case study.

52

3.2. tales

evaluation:
∃x.

Prof says Registered(x,Security)
∧ x says evaluate(Security, fb)
∧ SSP(x,Security, psd).

3.2.2. Java Implementation of tales
In the following paragraphs, we describe the calls to the Java implementation of the library.
Each API method has its counterpart in the Java implementation. The most notable
difference is that variable-sized arguments are always passed as arrays, here denoted by
square brackets [a1, . . . , an] (technically, these are realized as an instance of the Java class
ArrayList<Object>).

We detail the calls to the API and leave the Java-related code abstract (e.g., we write
<read from file> rather than showing the actual Java calls to read a file from disk and we
do not show the construction of the arrays).

Lecture registration. The name of the student and the name of the lecture are denoted
by the Java variables studId and lectureName, respectively. The API to create the
registration proof looks as follows:

1 Formula regFormula = new Says(profId , " registered ", [studId ,
lectureName]);

2 Proof regProof = new Proof(regFormula);

The professor sends this proof by her favorite means of transportation, for instance, via a
TLS-secured connection.

Lecture evaluation. After importing this proof, the student can evaluate the lecture
by creating the proof for the evaluation and the service-specific pseudonym. The student
evaluation is denoted by the Java variable fb:

1 Proof proof = <read from file >;
2 Formula eval = new Says(studId , " evaluate ", [lectureName , fb

]);
3 proof. append (eval);
4 Formula ssp = new SSP(studId , lectureName);
5 proof. append (ssp);

The append method of the proof objects corresponds to the logical conjunction.

53

Chapter 3. Case Studies

112 128 2560

20

40

60

80

100

120

Security parameter η in bits

T
im

e
in

s

Proof generation time
Proof verification time

112 128 2560

200

400

600

800

Security parameter η in bits

Si
ze

in
K
B

Proof size

Figure 3.1.: The results for anonymous evaluation proof for various security parameters. The
number of threads is fixed to 8.

Anonymizing the evaluation. Finally, the student needs to hide her identity from the
proof.

1 proof.hide(studId);

This hide method call ensures that all occurrences of the identity are hidden. Technically,
this call also ensures that the commitments and the proof itself are appropriately re-
randomized.

To not trivially break anonymity, the student must use an anonymous and secure
connection to submit the evaluation to the professor, e.g., by using TLS over TOR.

3.2.3. Experimental Evaluation
We fixed the number of threads to 8 and we experimentally evaluated the time needed by
students to transform a registration proof into an anonymous evaluation proof, the time it
takes the professor to verify such a proof, and the size of such a proof. The results are
reported in Figure 3.1. Furthermore, we fixed the security parameter to η = 112 bits and
we evaluated the effect of multi-threading on the proof generation and the proof verification;
Figure 3.2 reports these results. Finally, Figure 3.3 evaluates the effect of the CPU clock
speed on the experimental results.

Discussion. As depicted by Figure 3.1, creating a proof for the anonymous evaluation
requires between 32.7 s and 123.6 s, the verification is significantly faster and varies between
8.8 s and 36.6 s for a security parameter of η = 112 bits and η = 256 bits, respectively.
A large portion of the proof generation time, however, is spent on re-randomizing. For
instance, the 32.7 seconds for the smallest security parameter consists of 29.4 s of re-
randomization. The reason is that adding the service-specific pseudonym to the proof

54

3.2. tales

1 2 4 80

20

40

60

80

100

120

140

Number of threads

T
im

e
in

s

Proof generation time
Proof verification time

Figure 3.2.: The results for anonymous evaluation proof for various numbers of concurrent threads.
The security parameter is fixed to η = 112 bits.

112 128 2560

20

40

60

80

100

120

140

Security parameter η

T
im

e
in

s

Proof generation time @ 2.4GHz
Proof generation time @ 2.6GHz

112 128 2560

10

20

30

40

Security parameter η

T
im

e
in

s

Proof verification time @ 2.4GHz
Proof verification time @ 2.6GHz

Figure 3.3.: The results for anonymous evaluation proof using different CPUs with different clock
speed. The number of threads is fixed to 8.

55

Chapter 3. Case Studies

as well as the hide operation both trigger re-randomization steps. The proof size varies
between 405KB and 805KB.

As expected, increasing the security parameter causes a linear-logarithmic increase in
the computation time (it may appear linear because of the compressed scaling of the y-axis
versus the elaborate scaling of the x-axis). Although the computations are not fast enough
for daily use, we believe they are fast enough for handing in anonymous evaluations several
times a year. Also the proof size of roughly 500KB does not pose a problem thanks to the
broadband internet connections that are becoming increasingly available.

Figure 3.2 shows the impact of multi-threading on the computation times. As expected,
the time decreases. Overhead such as thread management and thread communication
prevent the performance to scale inverse-proportionally. In other words, using n threads
does not divide the total time required by n.

Figure 3.3 shows the impact of a faster CPU with the fixed number of 8 threads.
As expected, the CPU with the faster cores outperform the slower CPU. This effect is
even more prominent with larger security parameters: larger security parameters are
computationally more involved and push overhead such as thread management into the
background.

3.3. Anonymous Webs of Trust
Over the last years, the Internet has evolved into the premium forum for freely disseminating
and collecting data, information, and opinions. Often, information providers want to
keep their true identity hidden: for instance, some may want to present their opinions
anonymously to avoid associations with their race, ethnic background, or other sensitive
characteristics. The ability to anonymously exchange information, and hence the inability
of users to identify the information providers and to determine their credibility, raises
serious concerns about the reliability of exchanged information. Ideally, one would like
to have a mechanism for assigning trust levels to users, allowing them to anonymously
exchange data and, at the same time, certifying the trust level of the information provider.

Webs of trust. Webs of trust (WOT) constitute a well-established alternative to central-
ized public key infrastructures (PKI) such as those incorporated in browsers and operating
systems (e.g., VeriSign [216]). The role of a PKI is to bind public keys to their owner, the
reason being that public keys by themselves are only related to their corresponding secret
keys but not to their owners. Hence, using a public key to encrypt a sensitive message can
only guarantee privacy if this public key in fact belongs to the intended recipient. Similarly,
signatures guarantee the authenticity of a message only if the verification key is bound to
some well-known identity. In a WOT, there is no central authority but each participant
decides which public keys she considers trustworthy. This trust is expressed by signing the
public keys that are considered authentic along with a set of user and key attributes (e.g.,
user name and key expiration date). These certificates along with the signed public key
and user attributes are publicly stored on so-called key servers; everybody with access to

56

3.3. Anonymous Webs of Trust

the key servers can participate in the WOT. Furthermore, these certificates can be chained
in order to express longer trust relationships: For instance, the certificate chain

sign(vk1, attr1)sk2 , sign(vk2, attr2)sk3

says that the owner of vk3 has certified the binding between the public key vk2 and the
set attr2 of attributes, and the owner of vk2 has certified the binding between the public
key vk1 and the set attr1 of attributes. After receiving a signature on message m that
can be verified using vk1, the owner of vk3 knows that m comes from a user bound to the
attributes attr1 of trust level 2; initially, we define the trust level provided by a certificate
chain as the number of chained elements. In Section 3.3.5, we consider a more sophisticated
trust measure. Hence for authenticating a message in the context of a WOT, the sender
needs to search the key servers to find a chain of certificates starting with a certificate
released by the intended recipient and ending with a certificate for the sender’s key.

3.3.1. Designing Anonymous Webs of Trust

Anonymous webs of trust are an extension of WOT that preserve the privacy of users
while offering strong authenticity guarantees. For instance, the owner of vk1 might want to
prove the existence of the certificate chain sign(vk1, attr1)sk2 , sign(vk2, attr2)sk3 in order to
authenticate a message m with the owner of sk3, without revealing any information about
the keys and attributes involved in this certificate chain but proving to be a user of trust
level 2.

Loosely speaking, the owner of vk1 would like to prove a statement of the form “there
exist certificates C1, C2, a signature S, keys K1,K2, and attributes A1, A2 such that (i)
C1 is a certificate for (K1, A1) that can be verified with key K2 (ii) C2 is a certificate for
(K2, A2) that can be verified with key vk3, and (iii) S is a signature on m that can be
verified with K1”. This statement reveals only the length of the chain, i.e., the trust level
of the sender, the authenticated message, and the public key of the intended recipient,
without saying anything about the other keys, the certificates, and the attributes involved
in the certificate chain.

In this way, the sender achieves a high degree of anonymity. In some circumstances,
however, hiding all the attributes in the certificate chain may not be desirable since these
attributes may capture trust properties that the receiver may want to check. For instance,
each certificate could contain a number describing to what extent the signer trusts the
signed key (as in the trust signatures of the OpenPGP standard [69]). The other extreme,
namely revealing all the attributes, may leak too much information about the sender.
To remedy this trade-off between anonymity and trust, one could reveal the average of
the trust attributes along the chain, or some more sophisticated trust measure, without
disclosing the individual attributes.

57

Chapter 3. Case Studies

3.3.2. Implementation of Anonymous Webs of Trust
Using the API, we implement anonymous webs of trust via formulas of the form

vkU says trusted(vkU2 , attrU2).

Recall that public keys serve as user identifiers. Instead of uploading certificates along
with the signed keys to the key servers, the corresponding proof is uploaded.

Since trust into public keys cannot always be established directly, we use certificate
chains.

Definition 3.1 (Certificate Chain). A certificate chain from (vk1, attr1) to (vk`, attr`)
is a sequence of certificates C = (cert1, . . . , cert`−1) of length ` − 1, where certi =
sign(vki+1, attr i+1)ski and ` ≥ 2. We say that (vk`, attr`) has trust level ` − 1. We
assume to know the binding between sk1 and (vk1, attr1), which can be captured by an
additional self-generated certificate sign(vk1, attr1)sk1.

In order to authenticate a message m with the owner of vk1, the owner of vk` has to
retrieve a certificate chain from vk1 to vk` and create a proof p for the formula

vk1 says trusted(vk2, attr2) ∧ · · · ∧ vk`−1 says trusted(vk`, attr`) ∧ vk` says msg(m)

using the following code, where the values pi are retrieved from the key servers and
correspond to proofs for formulas vki says trusted(vki+1, attr i+1), respectively:

1 let p′2 = mk∧ (p1, p2);
2 let p′3 = mk∧ (p′2, p3);
3 let p′4 = mk∧ (p′3, p4);

...
4 let p′`−1 = mk∧ (p′`−2, p`−1);

The logical conjunction p′`−1 constitutes a validity proof for the corresponding certificate
chain.

Using certificate chains, we can transmit authenticated messages from the user whose
key vk` comprises the end of the certificate chain to the user who signed the first element.
We use the predicate msg(m), which encapsulates the authenticated message m.

1 let pm = mkSays sk` msg(m);
2 let p = mk∧ (p′`−1, pm);

Since the proof should not reveal the user identities, we weaken this statement by
existentially quantifying over all secret witnesses:

let p′ = hide p


∃x̃, ỹ. vk1 says trusted(x2, y2)

...
∧ x`−1 says trusted(x`, y`)
∧ x` says msg(m)



58

3.3. Anonymous Webs of Trust

112 128 2560

20

40

60

Security parameter η in bits

T
im

e
in

s
Proof generation time
Proof verification time

112 128 2560

200

400

600

800

1,000

Security parameter η in bits

Si
ze

in
K
B

Proof size

Figure 3.4.: The results for anonymously authenticating a message via a certificate chain of length 2
using various security parameters. The number of threads is fixed to 8.

using the expected API calls.
The proof p′ shows that the formula only reveals the public key vk1 of the intended

recipient, the authenticated message m, and the length of the chain (that is, the trust level
of the sender); p′ is sent to the verifier, who, after successful verification, authenticates
message m as coming from a principal of level `− 1.

3.3.3. Experimental Evaluation
We fixed the number of threads to 8 and we experimentally evaluated the time needed
to create a proof for authenticating a message via a certificate chain of length 2. The
results are reported in Figure 3.4. Furthermore, we fixed the security parameter to η = 112
bits and we evaluated the effect of multi-threading on the proof generation and the proof
verification times. Figure 3.5 reports the results.

Discussion. As depicted by Figure 3.4, creating a proof for anonymously authenticating
a message over a chain of length 2 requires between 19.6 s and 72.4 s, the verification times
varies between 10.1 s and 40.7 s for a security parameter of for η = 112 bits and η = 256 bits,
respectively. As for the tales case study, a large portion of the proof generation time is
spent on re-randomizing the proof parts that are hidden. In particular, the non-optimized
API implementation re-randomizes the complete proof for every hide operation. Since this
proof requires three hide operations, namely for the two principals and the message, the
fraction spent on re-randomizing is even larger. The proof size varies between 500KB and
996.3KB.

Increasing the security parameter increases the computation time but due to the
scaling of the y-axis versus the scaling of the x-axis. As for the tales case study, the
computation costs are too high for online use, but they are feasible if used for certain

59

Chapter 3. Case Studies

1 2 4 80

20

40

60

80

Number of threads

T
im

e
in

s

Proof generation time
Proof verification time

Figure 3.5.: The results for anonymously authenticating a message via a certificate chain of length 2
using various number of threads. The security parameter is fixed to η = 112 bits.

112 128 2560

20

40

60

80

Security parameter η

T
im

e
in

s

Proof generation time @ 2.4GHz
Proof generation time @ 2.6GHz

112 128 2560

10

20

30

40

50

Security parameter η

T
im

e
in

s

Proof verification time @ 2.4GHz
Proof verification time @ 2.6GHz

Figure 3.6.: The results for the anonymous authentication of a message via a certificate chain of
length 2 using different CPUs with different clock speed. The number of threads is
fixed to 8.

60

3.3. Anonymous Webs of Trust

scenarios. The proof size of 500KB does not pose a problem due to the widely available
broadband internet connections today.

Figure 3.5 shows the impact of multi-threading on the computation times. The
time decreases but computational overhead such as thread management and inter-thread
communication prevent the optimal performance gain.

Figure 3.6 shows the impact of a faster CPU with the fixed number of 8 threads.
As expected, the CPU with the faster cores outperform the slower CPU. This effect is
even more prominent with larger security parameters that demand more mathematical
operations.

Comparison: dedicated implementation vs. declarative API implementation.
In previous work, Backes et al. [25] implemented anonymous webs of trust using a dedicated
cryptographic setup based on Σ-protocols. As discussed in Section 2.7, statements for
which Σ-protocols exist are generally more efficient than the respective proof based on the
Groth-Sahai zero-knowledge scheme. For the statements of the form “I know a signature
on a verification key that is used to verify a signature”, i.e., statements necessary in webs
of trust, we are not aware of an efficient Σ-protocol.6 Intuitively, the reason is that it is
extraordinarily expensive to draw a connection between a verification key signed as part of
the message and the same verification key used as key to verify a signature. Technically, this
connection requires a non-standard exponentiation proof [73] that shows that a committed
value is the result of computing the exponentiation of a committed value to the power of
a committed value. This proof re-computes in zero-knowledge the square-and-multiply
algorithm. This algorithm branches on every exponent bit and does an exponentiation or a
multiplication followed by an exponentiation, depending on whether the exponent bit was
0 or 1, respectively. The corresponding zero-knowledge proof, however, cannot mimic this
branching because the resulting branching pattern reveals the secret exponent. Intuitively,
the zero-knowledge proof mitigates this by always computing both branches and hiding
which result is used for the next computation step. The additional computation overhead
renders this proof impractical.

At this point, we would expect a comparison between the running time of the dedicated,
Σ-protocol based implementation and the implementation based on the declarative API.
Using the dedicated implementation for a small security parameter of η = 80 bits, computing
a proof takes several days. The experiments for a security parameter of η = 112 bits, let
alone an even larger one did not terminate in a feasible amount of time.

3.3.4. Formal Verification
Implementations based on the declarative API guarantee that the specified authorization
properties hold. It is important, however, to verify that the protocol as a whole guarantees
the desired anonymity properties to exclude unintended protocol interleavings or logical
protocol errors. We conducted a formal security analysis by modeling our protocol in the
applied pi-calculus [3], formalizing the anonymity property as an observational equivalence

6Here, automorphic signatures show their strength: proving such statements causes virtually no overhead.

61

Chapter 3. Case Studies

A B B0 C 0C
t

A

∃x1, y1, x2, y2.!
 vkA says Trusted(x1, y1)!
 ∧ x1 says Trusted(x2, y2)!
 ∧ x2 says Msg(m)

∃x1, y1, x2, y2.!
 vkA says Trusted(x1, y1)!
 ∧ x1 says Trusted(x2, y2)!
 ∧ x2 says Msg(m)

Figure 3.7.: Anonymity game.

relation, and verifying our model with ProVerif [52, 1], a state-of-the-art automated theorem
prover that provides security proofs for an unbounded number of protocol sessions. We
model zero-knowledge proofs following the approach described in Chapter 2. For easing the
presentation, in this section we focus on certificate chains without attributes. We discuss
the ProVerif model in more detail below. The scripts used in the analysis are reported in
Section B.1.

Attacker model. In our analysis, we consider a standard symbolic Dolev-Yao active
attacker who dictates the certificates released by each party (i.e., the attacker controls the
web of trust), the certificate chains proven in zero-knowledge, and the proofs received by
each verifier.

Verification of anonymity. Intuitively, we formalize the anonymity property as a
cryptographic game where two principals act in a web of trust set up by the attacker and
one of them authenticates by proving in a certificate chain chosen by the attacker. If the
attacker cannot guess which of the two principals generated the corresponding proof, then
the protocol guarantees anonymity. Our model includes an arbitrary number of honest
and compromised parties as well as the two (honest) principals engaging in the anonymity
game.

The anonymity game is defined by two distinct processes that are replicated (that is,
spawned an unbounded number of times) and in parallel composition (i.e., concurrently
executed). In the first process, each of the two principals releases certificates as dictated by
the attacker. Since the attacker controls also the certificates released by the other parties
in the system, both honest and compromised ones, the attacker controls the topology of the
whole web of trust. In the second process, the two principals receive two (possibly different)
certificate chains from the attacker. If both certificate chains are valid and of the same
length, we non-deterministically choose one of the two principals C and C ′, and we let it
output the corresponding proof. The observational equivalence relation ≈ (see Figure 3.7)
says that the attacker should not be able to determine whether modelMAnon

1 in which C
outputs the proof orMAnon

2 in which C ′ outputs the proof is being executed.

Theorem 3.1 (Anonymity). For the two processesMAnon
1 andMAnon

2 , the observational
equivalence relationMAnon

1 ≈MAnon
2 holds true.

Proof. Automatically proven using ProVerif. The scripts are given in Appendix B.

62

3.3. Anonymous Webs of Trust

Discussion. Malleable zero-knowledge models are conceptually simple and often yield
more compact and cleaner models than non-malleable counterparts. The reason is that
malleability requires only the modeling of the atomic proofs occurring in the protocol.
Complex proofs can be assembled from the atomic proofs, exploiting the malleable nature.
In the non-malleable case, proofs cannot be combined and all used constellations of atomic
proofs occurring in the protocol have to be explicitly considered in the model. This
conceptual simplicity becomes apparent in the anonymous webs of trust case because the
protocol relies solely on signature verifications. Using the malleability property, these
verifications are stringed-together to prove signature chains. The malleable nature, however,
causes problems in the termination behaviour of automated verification techniques.

Malleable proofs are designed to be separable and arbitrarily combinable. While this
makes them a perfect match for open-ended and interoperable systems, the sheer number of
possible combinations causes problems for the automated verification techniques underlying
ProVerif. It requires careful design to devise a faithful malleable zero-knowledge model
that yields termination, especially because the model contains re-randomization operations.

In general, creating a sound symbolical model of re-randomization is impossible [214].
Intuitively, the reason is that randomness can cancel each other out (using inverse elements
in the respective mathematical groups), which cannot be captured symbolically. The
insight is that we require only properties that have a sound model. For instance, we assume
that honest protocol participants always use a true random value in the re-randomization
process, i.e., values are never chosen in order to cancel each other out.

Furthermore, the model must allow honest participants and the attacker to re-
randomize any part of the proof, even if they did not create the proof and the corresponding
part is hidden. A first approach is to let re-randomization replace randomness in a proof,
i.e., the proof itself and the contained commitments, with a given value. Since commit-
ments can be opened once the randomness is known, such an approach cannot provide
any privacy properties. Another idea is to symbolically combine the randomness using a
constructor. While functional, this approach effectively yields non-termination due to the
sheer number of possible combinations. In particular, the corresponding equational theory
must consider the commutativity of the underlying mathematical operation in order to
be sound: neglecting commutativity yields concrete attacks that exploit this property but
that are not captured symbolically.

We solve the two aforementioned problems by introducing for every component of the
zero-knowledge proof two different random values: one that can only be modified by honest
protocol participants and one that can be arbitrarily modified by the attacker. If a protocol
participant applies re-randomization, we replace the corresponding “honest randomness”; if
the attacker applies re-randomization, we replace the corresponding “attacker randomness”.
At first, this method seems to enable protocol participants and the attacker to selectively
replace and in turn learn the randomness used in a proof. Naturally, honest protocol
participants do not exploit this fact. For the malicious case, the attacker cannot touch the
“honest randomness”. Consequently, the attacker can only know the complete randomness
(honest and attacker randomness), if the randomness was revealed in the first place.

Still, re-randomization has a huge impact on the verification process, even with all

63

Chapter 3. Case Studies

99%95%
95% 99%

95%80%

(a) (b) (c)

B

C1

C2

A

D

A B C A

B

C

Z

99%95%
95% 99%

95%80%

(a) (b) (c)

B

C1

C2

A

D

A B C A

B

C

Z

Figure 3.8.: Single chain annotated with trust
values. Figure 3.9.: Web of trust with multiple paths.

these insights and tweaks: the model without re-randomization terminates within a few
minutes while the model with re-randomization requires several days.

3.3.5. Implementing Sophisticated Trust Measures
Since the API is very expressive and allows for selectively hiding parts of the proven
statement, it is easy to implement the extensions envisioned by Backes et al. [25]. For
instance, it is straightforward to create a proof for certificate chains with complex attributes.

In the following, we use complex attributes to show how to accommodate sophisticated
trust measures (e.g., [174, 5, 146, 76, 75, 14, 138]). Specifically, we focus on the trust
measure proposed by Caronni [76]. The examples in this section are intentionally borrowed
from Caronni in order to show the applicability of the API to existing trust models. Let
us consider the web of trust in Figure 3.8. As shown by the weight of the two links, the
trust of B in C is higher than the trust of A in B. Caronni’s trust measure is based on
the multiplication of the trust values of the individual links. Therefore the trust degree
provided by the chain between A and C is 95% · 99% = 94.05%.

The trust degree is embedded into the attributes of the respective signatures: attrB :=
(t1, attr ′B) and attrC := (t2, attr ′C) where t1 := 95 and t2 := 99 are the trust values taken
from Figure 3.8, and attr ′B and attr ′C are further attributes such as an expiration date.
More precisely, the used predicates are:

vkA says trusted(vkB, t1, attr ′B) vkB says trusted(vkC , t2, attr ′C)

In addition to proving the validity of the certificate chain, we additionally show the formula

t = t1 · t2

using the mkEQN method. Naturally, we can hide any value of this equation. Notice that
the result t of this proof equals 9, 405, because division is not supported. The recipient
of the proof has to manually divide this number by 10, 000 to obtain the expected result
in percent. In general, the recipient has to divide the result by 100` where ` equals the
number of chain elements.

64

3.4. A Security API for Distributed Social Networks

Often, revealing the exact trust value t severely threatens the users’ anonymity: the
exact trust value limits the number of possible chains or even uniquely identifies the used
chains and consequently identifies the users involved in the chain. We solve this problem by
showing a lower (or upper) bound with the API method mkREL. For instance, in addition
to the validity proof of certificate chains, we show the formula

t = t1 · t2
∧ 9000 < t

where t, t1, and t2 are hidden and only the lower bound 9, 000 is revealed. This formula
convinces the recipient that the trust value is larger than 90%, thus strengthening the
anonymity of the involved users.7

Exploiting the ability to prove logical conjunctions and inequalities, we can deal with
even more complex scenarios. Consider the graph in Figure 3.9: Z has to show that there
exist two distinct paths from A to Z. The total trust degree is computed as

1− (1− 95% · 99%) · (1− 80% · 95%) ≈ 98.6%. (3.10)

More precisely, we prove the following formula

t1 = tAB · tBZ

∧ t2 = tAC · tCZ
∧ t′1 = 1002 − t1
∧ t′2 = 1002 − t2
∧ t3 = t′1 · t′2
∧ t = 1004 − t3
∧ vkB 6= vkC

where tI,J corresponds to the trust value from I to J (extracted from the respective formula
vkI says trusted(vkJ , tIJ , attr ′J)); the values 1002 and 1004 stem from the fact that we
cannot divide and need to adjust Equation 3.10 accordingly. In this proof, the inequality
proof vkB 6= vkC is of particular importance to prevent a malicious user from reusing the
same certificate chain over and over to boost the trust value: using the same chain n times
yields a trust value of 1− (1− x)n that approaches the highest possible trust value of 1 as
n grows and x > 0.

3.4. A Security API for
Distributed Social Networks

Over the last years, online social networks (OSNs) have become the natural means to get in
touch with people and to engage in a number of social activities, such as sharing information,
exchanging opinions, organizing events, and publishing advertisements. The new dimensions

7As noted by Backes et al. [25], Section 4, it is possible to hide the exact length of a certificate chain. The
same idea can be applied using the API.

65

Chapter 3. Case Studies

M ::= masks
| p pseudonym
| R social relation

op ::= operations
r | w | rw

ACL ::= access control list
(M,op)::ACL | []

M ::= Register (J ,pJ)
| getHandles (MJ)
| getResource (MJ ,hdl(res))
| putResource (MJ ,hdl(res), res′)
| getFriends (MJ)
| IndirectRegister (MJ ,K)

We let I , J , and K range over principals. We write hdl(res) to denote the handle of the
resource res.

Table 3.1.: Grammar of access control lists.

of social interaction and the opportunities deriving from these novel functionalities tend to
push into the background the impressive leakage of personal information (e.g., religious
beliefs, political opinions, and sexual orientations) and the consequent threats to users’
privacy.

3.4.1. A Core API for Social Networking
This section describes a security API for social networking, which includes methods to
establish social relationships as well as to upload and download resources (for instance,
pictures and videos). The goal is not to specify a fully-fledged API but to focus on a
concise set of methods, which suffice to encode the most prominent features of modern
social networks.

A central feature of the social network API is that social links are kept secret and
principals can engage in social activities (e.g., post a comment or retrieve a picture) without
disclosing their identities. In particular, the API protects the social relations of a user,
even if her server is compromised and all her secret information is disclosed.

We could not keep social relations private if access control lists revealed the identity
of the principals with read and write capabilities: an attacker compromising the server of
principal I would be able to read the access control lists stored therein and immediately
learn the identity of I ’s friends. For this reason, access control lists are defined on masks
(see Table 3.1), which are ranged over byM and consist of either a pseudonym p or a social
relation R. The idea is that a user J communicates its pseudonym pJ while establishing
social relations: J is the only user that can use this pseudonym and only the users whom
J registered with know the link between pJ and J (the pseudonym itself does not reveal
any information about the owner’s identity, see Section 2.5). We do not impose constraints
on the usage of pseudonyms: B can decide to always use the same pseudonym such that
friends can track all its activities or to use different pseudonyms to become unlinkable. The
social relation R is simply a tag characterizing a certain social relation. An access control
list consists of a list of pairs, whose first component is a mask and the second component is
an operation (e.g., r, w, and rw). For instance, [(pJ , rw), (friends, r)] is an access control
list specifying that the associated resource can be read and written by the principal with

66

3.4. A Security API for Distributed Social Networks

pseudonym pJ and it can additionally be read by the principals in the friends relation.
The protocols comprising the social network API are designed to protect the social

relations and the anonymity of principals against external observers and against attackers
that compromise the servers running the API. A dishonest principal can of course reveal
its social relations but an attacker that observes the network traffic or breaks into an API
server should not be able to learn them. The key idea to achieve this strong anonymity
property is that principals can get and post resources by simply revealing their pseudonym
or by proving to be in a certain social relation with the resource provider. Since the
cryptographic protocols rely on our declarative security API (see Chapter 2), the messages
exchanged between protocol parties are zero-knowledge proofs that do not require any
secret input to the verification process; only the access control lists are required to grant
access or reject a request. As expected, the requester has to prove to be associated to a
certain pseudonym or to be in a certain social relation with the resource provider. This
procedure requires the knowledge of some information about the social relations that is,
however, only needed when a principal goes online and wants to authenticate. Hence, this
data does not need to be stored on a server (it can be stored, for example, on a secure
portable device) and it is not leaked in case of server compromise.

Note that an ACL does not reveal enough structure about the social graph to apply de-
anonymization techniques [183]. An access control list typically consists of social relations
that do not reveal any structural information on the social graph. Should a user decide
to mainly use pseudonyms, “padding” the ACL with fake pseudonyms (e.g., stipulating
that social relatives register only fresh pseudonyms and adding fake pseudonyms until all
resources have a fixed number, for instance, 1,000, of pseudonyms associated with them)
suffices to hide the actual structure of the social graph and to render de-anonymization
techniques inapplicable. Such a blinding technique has no consequence for the requester
and only causes a negligible computational overhead for the resource provider. Moreover,
since all authorization credentials, i.e., proofs for formulas such as I says friend(J), and
the pseudonym-user bindings are stored on a well-hidden external device, even complete
access to a number of servers does not reveal any social relation.

We now describe the methods composing the API, which are summarized in Table 3.1.
We write I .M to denote the method M exported by I ’s API.

R ← I .Register(J , pJ): This method takes as input the identifier J of the principal that
wants to establish a social relationship with I and a pseudonym pJ created by J
(see Section 2.4). This method returns a tag R chosen by I to characterize the social
relation (e.g., a string such as “friends”). The cryptographic realization ensures that
the caller corresponds to the identifier specified in the argument. The pseudonym pJ
can be used by I to allow user-based access to J when setting up its access control
list. Although I is able to link pJ to J ’s identity, the pseudonym itself does not reveal
anything about J ’s identity, which is crucial to achieve anonymity. In particular,
even if I ’s server is compromised, the access control list is leaked, and the incoming
authentication requests are monitored, the anonymity guarantees still hold.

hdl(res1), . . . , hdl(resn)← I .getHandles(MJ): This method takes as input the caller’s mask

67

Chapter 3. Case Studies

MJ and returns the handles to I ’s resources. A handle identifies and describes the
resource without disclosing it.8 Handles are passed to the other methods to specify
the resource of interest, as discussed below. Since this method takes as input the
caller’s mask, J has the option to reveal its pseudonym or to stay anonymous by just
proving to be in a certain social relation with I , depending on whether I accepts
anonymous requests or reveals its handles only to non-anonymous requesters.

res ← I .getResource(MJ , hdl(res)): This method takes as input the caller’s maskMJ and
the handle hdl(res) of the requested resource. IfMJ is given read access to res in
the corresponding access control list, getResource returns the resource res.

ack ← I .putResource(MJ , hdl(res), res′): This method takes as input the caller’s mask
MJ , the handle hdl(res) of the resource to modify, and the new content res′. This
method encodes the methods used by J to post comments on I ’s wall, to upload
pictures, and so on. Typically, messages and pictures are appended while other
resources such as the profile picture are replaced. Since the result of this method
depends on the specific social network and on the kind of resource, we intentionally
leave the behavior unspecified.

R ← I .IndirectRegister(RIJ , pJ ,K): This method allows users to establish indirect social
relations (e.g., “friend of a friend”). It takes as input the social relation RIJ between
I and J , a pseudonym pJ chosen by J and the identifier K of the principal which
J is interested in establishing an indirect relation with. Notice that J must be in
a direct social relation with I , and I has to be in a direct social relation with K .
The idea is that if K accepts indirect relations, J can ask I to establish an indirect
relation with K on her behalf. This method returns a tag R that describes the newly
established social relation between K and J .

This method could in principle be cascaded to establish indirect relationships of
arbitrary degree (e.g., “friend of a friend of a friend” relations). Since such relations
are not used in practice, we do not consider them here.

K1, . . . ,Kn ← I .getFriends(MJ): This method takes as input the caller’s maskMJ and
returns the list of I ’s friends that accept indirect relations. Notice that J must be in
a direct social relation with I .

The API additionally comprises standard functions to deal with access control lists (e.g.,
creation and modification). Since these operations are local, they do not need any cryp-
tographic infrastructure and, for the sake of readability, we omit them throughout this
chapter.

8For the sake of generality, we do not specify the format of handles: for instance, one can use thumbnails
as handles for pictures and URI-style descriptions for text documents.

68

3.4. A Security API for Distributed Social Networks

I

I

A.Register(B, pB)

enc(∃r. J says Register(I, pJ, k) ∧ SSP(J, r, pJ))

enc(I says Registered(J, R , pJ))k

enc(∃J, pJ. I says Registered(J, R , pJ) ∧ J says getHandles(k))

enc(hdl(res1), ..., hdl(resn))k

I+

enc(∃J, pJ. I says Registered(J, R , pJ) ∧ J says getResource(S, k))

enc(result)k

J

I+

I

J

JI+

Figure 3.11.: Protocol Register: user J registers with user I .

3.4.2. Implementation of the Core API
We now describe the cryptographic protocols implementing the social network API using
the declarative security API described in Chapter 2. Since the social network API comprises
complete cryptographic protocols, they require asymmetric and symmetric encryption
schemes, which are not included in the declarative security API. We briefly discuss their
application in the social network API.

Symmetric and asymmetric encryptions. The social network API is used to ex-
change messages between users. To protect these messages from unsolicited eavesdropping,
a natural solution is to encrypt all exchanged messages with the public key of the intended
recipient. In our scenario, however, we want to keep the identity of the sender of a message
hidden, while enabling the recipient of a message to reply to the sender in private. There-
fore, we also include symmetric encryption: the sender of a message includes a symmetric
session key and the recipient can use this key to reply to the sender without knowing
the identity of the sender. In the following, we write enc(m)k to denote the symmetric
encryption of the message m with the key k; we write enc(m)I + to denote the asymmetric
encryption of message m with I ’s public key.

Implementing the core API. We describe the declarative implementation of the core
API methods.

R ← I .Register(J , pJ): The protocol is depicted in Figure 3.11. J starts the registration
procedure by encrypting a proof for the formula

∃r.
J says Register(I , pJ , k)
∧ SSP(J , r, pJ)

with the asymmetric public key of J . The corresponding proof attests J ’s wish
to be registered with I using the pseudonym pJ . The randomly chosen value r
(corresponding to the service in the computation of the service-specific pseudonym)
and the fresh (symmetric) session key k is used in the response. The intended
recipient’s identity prevents I to reuse this proof and to impersonate J .

I replies by encrypting a proof for the formula

I says Registered(J ,R, pJ)

69

Chapter 3. Case Studies

I

I

A.Register(B, pB)

enc(∃r. J says Register(I, pJ, k) ∧ SSP(J, r, pJ))

enc(I says Registered(J, R , pJ))k

enc(∃J, pJ. I says Registered(J, R , pJ) ∧ J says getHandles(k))

enc(hdl(res1), ..., hdl(resn))k

I+

enc(∃J, pJ. I says Registered(J, R , pJ) ∧ J says getResource(S, k))

enc(result)k

J

I+ J

JI+
Figure 3.12.: Protocol for getHandles: user J anonymously requests user I ’s handles.

I

I

A.Register(B, pB)

enc(∃r. J says Register(I, pJ, k) ∧ SSP(J, r, pJ))

enc(I says Registered(J, R , pJ))k

enc(∃J, pJ. I says Registered(J, R , pJ) ∧ J says getHandles(k))

enc(hdl(res1), ..., hdl(resn))k

I+

enc(∃J, pJ. I says Registered(J, R , pJ) ∧ J says getResource(S, k))

enc(result)k

J

I+ J

JI+

For the putResource and the getFriends protocol, the transmitted predicate changes accord-
ingly. Furthermore, for the getResource protocol, S corresponds to a handle obtained by
getHandles; for the putResource, S corresponds to a handle and a new resource; for the
getFriends protocol, S is empty. For every protocol, the general placeholder result contains
the expected return value.

Figure 3.13.: Protocols for getResource, putResource, and getFriends: user J issues a request to
user I .

with the transmitted session key k for J . This proof witnesses the social relation of
I towards J and also acknowledges that pJ is now recognized by I . This proof is the
basis for all future authentication requests from J to I .

We remark that social relations are unidirectional but they can straightforwardly be
made bidirectional by running twice the registration protocol. Furthermore, two users
can repeat this procedure with a different random value for r to register different
pseudonyms with one another. It is also straightforward to modify the registration
procedure and all subsequent protocols to only use the social relation or to include
more authentication modalities.

hdl(res1), . . . , hdl(resn)← I .getHandles(MJ): The protocol is depicted in Figure 3.12. J
sends a proof in encrypted form to authenticate with I . We provide three authenti-
cation modalities, namely, pseudonymous authentication, relation authentication, and
anonymous authentication. In the pseudonymous authentication, J creates a proof
for the formula

∃J ,R, r.
I says Registered(J ,R, pJ)
∧ SSP(J , r, pJ)
∧ J says getHandles(k)

to show that the pseudonym pJ is acknowledged by I and that it belongs to the
requester J . In the relational authentication, J creates a proof for the formula

∃J , pI .
I says Registered(J ,R, pJ)
∧ J says getHandles(k).

70

3.4. A Security API for Distributed Social Networks

Jenc(∃J, pJ. I says Registered(J, R IJ, pJ) ∧ J says IndirectRegister(K, k))

enc(∃I,J,pI, pJ. K says Registered(R KI, I, pI) ∧ I says Registered(J, R IJ, pJ))k

I
K says Registered(I, R KI, pI)K I+

The dotted line denotes the registration process between K and I that must have occurred
at some point before the indirect registration method can succeed.

Figure 3.14.: Protocol for IndirectRegister: user J anonymously issues an indirect registration request
to user I . After the successful completion of the protocol, J is in an indirect social
relation with user K .

and for the anonymous authentication, J creates a proof for the formula

∃J ,R, pI .
I says Registered(J ,R, pJ)
∧ J says getHandles(k).

We apply a re-randomization step to ensure that the proof parts taken from the
registration procedure cannot be linked to J .
Naturally, one could also use the proof for the pseudonymous authentication and
hide the pseudonym to achieve an anonymous authentication. Since the proof for
the pseudonymous authentication contains more proof elements, the variant shown
above is computationally more efficient. The fresh session key k to be used in the
response is attached as to the request predicate getHandles. Upon receiving the proof
for either formula, I verifies it, checks which resource handles the prover has the
permission to read, and sends them to the prover encrypted with the session key
received in the first message.
A variant of this protocol is used to implement the getResource, putResource,
getFriends methods, shown in Figure 3.13. The only difference is that the correspond-
ing arguments (e.g., hdl(res) in the case of getResource) are additional arguments to
the respective predicate (denoted as S in the picture) and the message encrypted
in the response is in general the result of the method call (denoted as result in the
figure).
The three authentication modalities give different anonymity guarantees and their
usage depends on the required service (or resource) and on the access control
list. For instance, if a certain resource res is protected by the access control list
[(pJ , rw), (friends, r)], then J can run the relation authentication protocol to read res
but B has to run the pseudonymous authentication protocol, thus revealing its iden-
tity to I , to write on res. In general, there is a trade-off between the restrictiveness
of access control lists and the anonymity of requesters.

RKJ ← I .IndirectRegister(RIJ , pJ ,K): The protocol is depicted in Figure 3.14. J sends
the formula

∃J , pJ .
I says Registered(J ,RIJ , pJ)
∧ J says IndirectRegister(K , k).

71

Chapter 3. Case Studies

to I , proving to have a social relation with I and requesting an indirect relation with
K . As usual, the session key k to be used in the response from I is an argument to
the IndirectRegister predicate. I verifies the proof and responds with the formula

∃I , J , pI , pJ .
K says Registered(I ,RKI , pI)
∧ I says Registered(J ,RIJ , pJ)

encrypted with the session key k. To break any connection between this proof, K ,
and I , I can re-randomize all components of the proof except for the hidden identity
J of the requester. Intuitively, if J ’s identity in the proof is not re-randomized, then
J can remove the existential quantification on it. Technically, the reason is that since
the commitments corresponding to the identity J of the requester did not change,
the opening information can be used to unhide the identity. Finally, after removing
the existential quantification, J obtains a proof for the formula

∃I , pI , pJ .
K says Registered(I ,RKI , pI)
∧ I says Registered(J ,RIJ , pJ)

Notice that since the identity of J is revealed in this formula, it is easy to attach
any request such as getHandles to the formula. Since the social relations RKI and
RIJ , K can deduce the relation between her and J . For instance, if RKI equals
“colleague” and RIJ equals “friend”, the proof obtained at the end by J classifies J
as a “friend-of-a-colleague” to K .
In order to allow for fine-grained access control policies, we additionally enable a
similar protocol in which I authenticates with K by revealing its pseudonym pI
instead of the social relation RKI . The variants of this protocol allow K to define a
more precise access control list, built on relations of the form “friends-of-pI”.
Concerning the anonymity guarantees provided by this protocol, I does not learn the
identity of J , and K learns neither the identity of I nor the one of J . In particular,
K does not actively participate in this protocol; the only requirement is that K
previously registered I . Finally, since future requests are encrypted with a session
key and sent directly from J to K , I can neither read let alone modify messages sent
by K to I .

3.4.3. Experiments
We have experimentally evaluated the proofs used in the protocol of the social network
API. More precisely, we used several security parameters to evaluate the proofs used in the
registration protocol, the resource request protocols (specifically, the getHandles-protocol)
and the indirect registration protocol. For all these proofs, we fixed the number of threads
to 8 and we have determined the time needed to create a proof, to verify a proof, and
the size of the proof. Furthermore, for the resource request and the indirect registration

72

3.4. A Security API for Distributed Social Networks

112 128 2560

10

20

30

40

Security parameter η in bits

T
im

e
in

s
Proof generation time
Proof verification time

112 128 2560

50

100

150

200

250

300

Security parameter η in bits

Si
ze

in
K
B

Proof size

Figure 3.15.: The results for proof used to initiate the registration protocol. The number of threads
is fixed to 8.

protocol, we have fixed the security parameter to η = 112 and used various amounts of
threads to show how these computation times scale with the number of used cores. The
results are reported in Figure 3.15–3.22.

Discussion. We structure the discussion based on the different proofs:

• Figure 3.15 shows the results for the friend request proof. The proof generation
time varies between 10.4 s and 40.4 s, the proof verification time between 4.4 s and
17.7 s, and the proof size between 147.5KB and 291.9KB for a security parameter
η = 112 bits and η = 256 bits, respectively.

• Figure 3.16 shows the results for the friend registration proof, i.e., the response to the
friend request proof. The proof generation time varies between 2.8 s and 10.3 s, the
proof verification time between 4 s and 16.1 s, and the proof size between 137.3KB
and 271.8KB for a security parameter η = 112 bits and η = 256 bits, respectively.
Since this proof consists only of one signature, i.e., there are no re-randomization
steps, the proof generation is faster than the proof verification.

• We evaluate the getHandles and the indirect registration protocol more thoroughly
since they deploy the most complex and involved proofs. Figure 3.17, Figure 3.18, and
Figure 3.19 show the obtained results. The proof generation time varies between 15 s
and 57.3 s, the verification time between 7.5 s and 30.4 s, and the proof size between
336.1KB and 668.7KB for a security parameter η = 112 bits and η = 256 bits,
respectively.

• The indirect registration protocol is arguably the most complex protocol occurring
in the social network API. It requires input from three different parties and exploits

73

Chapter 3. Case Studies

112 128 2560

5

10

15

20

Security parameter η in bits

T
im

e
in

s

Proof generation time
Proof verification time

112 128 2560

50

100

150

200

250

300

Security parameter η in bits

Si
ze

in
K
B

Proof size

Figure 3.16.: The results for registration proof used to register a protocol participant. The number
of threads is fixed to 8.

112 128 2560

10

20

30

40

50

60

Security parameter η in bits

T
im

e
in

s

Proof generation time
Proof verification time

112 128 2560

100

200

300

400

500

600

700

Security parameter η in bits

Si
ze

in
K
B

Proof size

Figure 3.17.: The results for proof used in the getHandles protocol. The number of threads is fixed
to 8.

74

3.4. A Security API for Distributed Social Networks

1 2 4 80

10

20

30

40

50

60

70

Number of threads

T
im

e
in

s

Proof generation time
Proof verification time

Figure 3.18.: The results for the proof used in the getHandles protocol using various number of
threads. The security parameter is fixed to η = 112 bits.

112 128 2560

10

20

30

40

50

60

70

Security parameter η

T
im

e
in

s

Proof generation time @ 2.4GHz
Proof generation time @ 2.6GHz

112 128 2560

10

20

30

40

Security parameter η

T
im

e
in

s

Proof verification time @ 2.4GHz
Proof verification time @ 2.6GHz

Figure 3.19.: The results for the proof used to initiate the getHandles protocol using different CPUs
with different clock speed. The number of threads is fixed to 8.

75

Chapter 3. Case Studies

112 128 2560

20

40

60

Security parameter η in bits

T
im

e
in

s

Proof generation time
Proof verification time

112 128 2560

200

400

600

800

1,000

Security parameter η in bits

Si
ze

in
K
B

Proof size

Figure 3.20.: The results for proof used to initiate the indirect registration protocol. The number
of threads is fixed to 8.

1 2 4 80

20

40

60

80

Number of threads

T
im

e
in

s

Proof generation time
Proof verification time

Figure 3.21.: The results for the proof used to initiate the indirect registration protocol using
various number of threads. The security parameter is fixed to η = 112 bits.

76

3.4. A Security API for Distributed Social Networks

112 128 2560

20

40

60

80

Security parameter η

T
im

e
in

s
Proof generation time @ 2.4GHz
Proof generation time @ 2.6GHz

112 128 2560

10

20

30

40

Security parameter η

T
im

e
in

s

Proof verification time @ 2.4GHz
Proof verification time @ 2.6GHz

Figure 3.22.: The results for the proof used to initiate the indirect registration protocol using
different CPUs with different clock speed. The number of threads is fixed to 8.

all properties that are offered by the underlying zero-knowledge proof scheme. The
obtained results are depicted by Figure 3.20, Figure 3.21, and Figure 3.22. The proof
generation time varies between 17.8 s and 66.8 s, the proof verification time between
8.7 s and 34.7 s, and the proof size between 530.1KB and 1055.3KB for a security
parameter η = 112 bits and η = 256 bits, respectively.

As for all case studies above, increasing the security parameter causes a linear-logarithmic
increase in the computational costs. There are certain scenarios where the incurred costs
are bearable for the users, but for the way social networks are used today, the time required
to create and verify proofs is too long. Since social networks are also excessively used from
mobile devices such as cell phones, the proof size can also become a limiting factor.

Using a different cryptographic implementation, Backes et al. [28] achieve more
competitive experimental results. We compare their results with ours below.

3.4.4. Comparison: Dedicated Implementation vs.
Declarative API Implementation.

In general, there is a trade-off between a high-level, API-based implementation and a
dedicated implementation that is tailored for a given application. For instance, our API
enables a programmer to specify sophisticated authorization properties using a high-level,
declarative language. At the same time, this deprives programmers from the opportunity
to exploit application-specific optimizations.

Efficiency. In previous work, Backes et al. [25] implemented the social network API using
a dedicated cryptographic setup based on Σ-protocols. In particular, their signature scheme
is equipped with highly-efficient Σ-protocols that outperform our general implementation.

77

Chapter 3. Case Studies

For instance, creating and verifying a proof for an anonymous request of a resource takes
less than 580ms and 410ms, respectively. The proof size is below 30KB.

Devising this dedicated implementation was a significant effort and implementing it
took several weeks. Furthermore, achieving provable authorization properties required
several design iterations. Using the declarative API, the implementation of the social
network API took only one day and the authorization properties hold by construction.

Formal verification of anonymity properties. The dedicated implementation based
on Σ-protocols relies on non-malleable zero-knowledge proofs. For non-malleable proofs,
efficient proof techniques that are compatible with ProVerif exist [32]. Since the declarative
API is based on malleable zero-knowledge proofs, such techniques cannot be applied.

We modeled the malleable social network zero-knowledge proofs as we have for the
anonymous webs of trust case study (see Section 3.3.4). The malleable nature and the
different proofs used in the various protocols, however, prevented ProVerif from terminating
during our experiments. This even was the case without the equational theory for the
re-randomization of zero-knowledge proofs, which, in our experience with the anonymous
webs of trust case study, causes the largest workload for the automated theorem prover.
We leave it as future work to devise a faithful zero-knowledge model that allows us to prove
anonymity properties for large malleable zero-knowledge models.

78

Part II
Trustworthy and

Privacy-Preserving Retrieval of
Personal Information

79

80

4. ObliviAd: Provably Secure and
Practical Online Behavioral
Advertising

The results presented in this chapter build on the following work:

• Backes, Kate, Maffei, and Pecina [23]: “ObliviAd: Provably Secure and Practical
Online Behavioral Advertising”

4.1. Introduction
In this section, we introduce ObliviAd, an architecture for practical and privacy-preserving
online behavioral advertising. The core of ObliviAd is a mechanism that enables users to
retrieve advertisements in a privacy-preserving way. More precisely, only the user learns
which advertisement she downloaded. The overall construction provably guarantees profile
privacy and profile unlinkability, two newly defined properties that are specific to online
behavioral advertising. Furthermore, the ObliviAd architecture guarantees the correctness
of the billing process inherent to the advertising business.

The results in this chapter are clearly targeted towards online behavioral advertising
and how to retrieve advertisements in a privacy-preserving manner. Nonetheless, we are
convinced that the underlying techniques and building blocks are applicable to other
domains and, in general, facilitate the privacy-preserving retrieval of personal information.

Online behavioral advertising. Today, a large majority of online services garner most
of their revenues through advertising instead of directly charging their clientele for the
usage. Online advertisements, however, are not effective unless they are targeted to the
right audience. As a result, online advertisements are no longer shown in a scattershot way
but rather targeted to reach a clientele that is selected according to various traits such as
demographics, previously visited urls, the current web page, information stored in cookies,
and, in general, any kind of observed behavior.

An online behavioral advertising (OBA) system consists of four principal players: the
advertisers, brokers, publishers, and clients. Advertisers want the ads for their products to
reach plausible clients (e.g., car manufacturers want to inform those people interested in
buying a car about a new model) and they are willing to pay for this service. Publishers
(e.g., newspapers and blogs) are willing to place ads on their webpages, but they expect

81

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

to be payed in return. Brokers (e.g., Google and Yahoo) mediate between advertisers,
publishers, and clients: the advertisers send their ads and bids to the broker, who then
distributes them to the publishers’ webpages, which are in turn viewed by the clients.

The client may click on an ad if she finds it to be relevant to her needs or interests. For
every ad viewed in the pay-per-view (PPV) advertising model or clicked in the pay-per-click
(PPC) advertising model, the advertiser pays the broker who in turn pays the publisher.
The PPC, being a pay-for-performance model, receives more attention in the industry.
OBA protocols are divided in two phases: the distribution phase, in which the broker
distributes the ads, and the tallying phase, in which the broker computes the number of
viewed (or clicked) ads for billing purposes.

In existing OBA systems, publishers embed a link for the broker on their webpages.
The sole purpose of these broker links is user tracking. When a user views the webpage,
the user’s browser contacts the broker’s servers, which enables the broker to track the user
across all partnering publishers. The broker then runs its own algorithm over the tracked
data to decide which ad to present on the publisher’s page. This tracking practice poses a
significant threat to the privacy of users as research has shown that it is often easy to link
tracked information with an individual’s personally identifying information (PII) [158, 159].

Outline. The rest of this chapter is organized as follows. Section 4.2 introduces the
key ideas underlying ObliviAd and defines the privacy and system goals of non-tracking
behavioral advertising. Section 4.3 presents an overview of the ObliviAd architecture. In
Section 4.4, we describe the cryptographic constructions and systems underlying ObliviAd.
We analyze the performance of our system in Section 4.5. In Section 4.6, we conduct a
formal security analysis. Section 4.7 discusses the related work.

4.2. Key Ideas
Building an OBA system that has the potential to meet approval from brokers must
satisfy several criteria. Meeting them individually is easy but achieving a system that
combines all the properties mentioned below is a challenging task. For instance, we cannot
expect brokers to change their established OBA systems on a large scale; yet, we have to
significantly improve the privacy properties of users.

Practicality and reusability of established broker infrastructure and techniques.
We design ObliviAd such that the broker infrastructure can mostly be reused. More precisely,
brokers will need to add to their existing infrastructure special hardware that enables the
trustworthy and privacy-preserving distribution of advertisements. This, however, is the
only change to the overall system. Every other point in the system such as the bidding and
ad selection remain unchanged. Furthermore, ObliviAd supports fraud prevention such
as click-fraud. The key insight is that we obtain privacy without relying on anonymous
channels. Consequently, all techniques that detect fraudulent behavior without relying on
the advertisement itself but rather on the click behavior work virtually out of the box.

82

4.2. Key Ideas

Overall, ObliviAd does not introduce significant computational overhead or financial
costs to either the users or the broker. We avoid fancy cryptography at the user’s end
as we want our solution to work even for web browsers on mobile devices. ObliviAd’s
design is scalable, since brokers can utilize multiple secure coprocessors, thus improving
the performance without altering the privacy properties of our system. We believe that the
privacy guarantees that the broker may demonstrate to the privacy-conscious user base
make the investment into ObliviAd a worthwhile venture.

Private information retrieval. Users want to retrieve targeted advertisements from
brokers in a privacy-preserving manner. A natural candidate for this task is a private
information retrieval (PIR) technique. Following the approach proposed by Williams
and Sion [223], we implement our PIR protocol using a secure coprocessor (SC). SC s
such as the 4765 cryptographic coprocessor by IBM [139] are independent computers
that run on a PC extension card. They are protected by many hardware mechanisms
so that it is not possible to extract information stored on the card, for instance, via
cold-boot attacks [132]. They run a dedicated operating system and are generally able to
execute arbitrary code. Hardware-based PIR constitutes the first practically usable PIR
construction and additionally offloads most of the computational costs to the hardware. In
particular, it is feasible for users to access the PIR from mobile devices such as cell phones.

SC s offer a remote code attestation procedure that allows clients to verify which code
is being executed [201]. This prevents brokers from changing the code run by the SC to
leak information. In a nutshell, this remote attestation mechanism ensures the privacy of
data as well as the integrity of the computation, even if the broker is malicious.

Hardware-based PIR relies on oblivious RAM (ORAM) that enables the SC to
query advertisements from the broker’s advertisement database without revealing which
advertisement was retrieved. While fetching an ad, the user sends her profile in encrypted
form to the SC that resides on the broker side. The SC runs an ORAM protocol to retrieve
the candidate advertisements. The broker may learn the identity of the user but not the
user profile. The SC selects the advertisement that best fits the user profile according to
the algorithm specified by the broker.

We build on a state-of-the-art ORAM protocol [199], to prevent the broker from
learning any information about the selected advertisement. Since ORAM emulates memory,
ORAM protocols can only handle one entry per keyword, that is, only one stored piece
of information per memory address. We modify the ORAM scheme to handle multiple
entries per keyword, i.e., multiple, different advertisements can be stored and retrieved
for a single keyword, and we prove our modifications secure. The advertisement is finally
shipped in encrypted form to the user along with a fresh electronic token.

Token-based billing process. Every advertisement that is delivered to a user also
contains an electronic token, i.e., a signed piece of data comprising a sequential timestamp
and the symmetrically encrypted advertisement id. The creation of such tokens causes
only a minimal computational overhead. As soon as the ad is clicked or viewed, depending
on the business model, the token is sent back to the broker. After gathering a sufficiently

83

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

large number of tokens, the broker passes the tokens to the SC , which decrypts, mixes,
and finally publishes them in order to charge advertisers. The tokens themselves do not
reveal for which advertisement they were issued and mixing prevents the final output from
being linked to the input tokens. The timestamps prevent brokers from having the SC
conduct a decryption and mix process twice with a set of tokens that differ only in a few
places and consequently identify the advertisements seen by clients.

Privacy and system goals. Our privacy-preserving OBA system meets the following
privacy goals [192]:

Profile Privacy. The broker cannot associate any unit of learned information (e.g., clicked
ads) with any user PII (including the network address).1

Profile Unlinkability. The broker cannot associate separate units of learned information
with a single client.

The former property is analogous to vote privacy in the setting of electronic voting, i.e.,
the impossibility of associating a vote in the final tally with a specific voter. The latter
property prevents a broker from building up a user profile and then associating it with
a known user by using externally gathered information. For instance, even if the broker
knows that two users have seen two ads each and the four ads comprise two car ads and
two football ads, the broker does not know whether the two car-ads were seen by the same
user or not, i.e., whether or not the two users have disjoint interests.

In principle, both privacy goals can be trivially satisfied by any anonymous browsing
solution [209, 10]. Existing anonymity networks, however, have two drawbacks: they do
not provide adequate performance (ads should be displayed almost instantaneously) and
they make users unaccountable [57], implications of which are not acceptable to the ad
industry.

Besides the properties above, we additionally satisfy the following system properties.

Client-side Fraud Detection. The likelihood of detection of clients’ malicious behaviors
should not decrease as compared to existing systems.

Click Success Measures. Computations of success measures such as click-through rate [110]
or click-probability [192] should be possible on the broker’s or the client’s side.

Performance. Privacy-preserving mechanisms should not hamper the system performance
and the auction mechanism should achieve close-to-ideal ranking of ads.

1Reznichenko, Guha, and Francis [192] term this property anonymity. We intentionally use profile privacy
since users need not be anonymous in ObliviAd.

84

4.3. Protocol Overview

4.3. Protocol Overview
We first define our attacker model that we intend to secure our OBA system (Section 4.3.1)
and we introduce the cryptographic concepts that are deployed by ObliviAd (Section 4.3.2).
We then describe the cryptographic assumptions and requirements of the system (Sec-
tion 4.3.3). Finally, we present a high-level protocol description and discuss the most
important properties of the ObliviAd architecture (Section 4.3.4).

4.3.1. Adversary Model

We assume an active adversary with read and write capabilities on the public network, on
the SC -to-database bus, and on the database itself. The adversary exercises full control
over the broker2 and the publisher can issue arbitrary requests to the secure coprocessor,
obtain the respective response, and observe the resulting operations on the database. The
trusted computing base is limited to the management of key material within the SC , i.e.,
we assume that secret keys are not leaked. The integrity of the code executed by the
SC can be enforced, since modern secure coprocessors offer a remote code attestation
procedure [201] that gives clients the ability to verify that the SC is executing a specific
code. In our architecture, this server-side code is made public for peer scrutiny.

Unlike other privacy-preserving advertising systems [129] where brokers are assumed
to be honest-but-curious, we do not make any assumptions about them. We also allow the
attacker to arbitrarily corrupt or create client principals and act on their behalf.

In the case of the user clicking on the retrieved ad, we have to assume that the
advertiser and the brokers are not colluding; profile privacy is otherwise impossible without
using an external anonymity solution such as Tor [209] or Anonymizer [10], since the
client reveals her identity to the broker when retrieving an advertisement and clicking
on it reveals her identity along with the retrieved advertisement, i.e., her profile, to the
advertiser.

4.3.2. Preliminaries

Digital signatures and encryption schemes. Our construction requires an existen-
tially unforgeable digital signature scheme [124] and an authenticated encryption scheme
(for instance, INT-CTXT and IND-CPA secure [46] or IND-CCA2 secure [44, 92]).

We do not rely on any particular digital signature or encryption scheme. In fact, our
construction is fully parametric in these two cryptographic primitives, as long as they
satisfy the respective security definitions.

2Since users cannot select which broker will deliver their ads, it is perfectly reasonable to consider the
broker to be a malicious (rather than honest but curious) party. In fact, users are usually not even
aware of the identity of the broker that is serving them ads.

85

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

Oblivious RAM (ORAM). Oblivious RAM was originally devised to protect the
access pattern of software on the local memory and thus to prevent the reverse engineering
of that software [120]. The observation is that encryption by itself prevents an attacker
from learning the content of any memory cell but monitoring how memory is accessed and
modified still leaks a great amount of sensitive information.

In the ORAM model, the processor executing a program is considered a black box,
i.e., it is impossible to observe the processor’s internal state, internal storage, and internal
operations. The external storage and the bus connecting that storage with the processor
are observable and ORAM schemes use sophisticated combinations of data structures and
cryptographic operations to mask their access pattern on the external storage. In our
construction, the ORAM scheme is running on a secure coprocessor (SC), which enforces
the black-box characteristics. Clients contact the black box via a secure channel (e.g., TLS)
to prevent an attacker from obtaining any information on the requested operation. The
ORAM storage is organized as a data structure such that every entry contains a keyword
kw and a payload (i.e., an ad and possibly additional information in our case). ORAM
schemes export two methods, namely Read(kw) and Write(kw, ad). The former returns the
list of ads associated with kw and, for access privacy reasons, removes the corresponding
entries from the data structure; the latter adds the entry (kw, ad) to the data structure.

Private information retrieval. Private information retrieval schemes allow a client to
access a database stored on a server, while hiding the query and the resulting answer from
the database [87]. ObliviAd uses a PIR scheme to allow the client to download relevant ads
from the broker, without the broker learning any information about such ads or the user
profile. Following the approach by Williams and Sion [223] we implement a PIR scheme
using ORAM over a secure coprocessor. However, as we discuss in Section 4.4 below,
the previously mentioned ORAM constructions are not useful for OBA systems. Our
construction instead builds on the ORAM protocol recently developed by Shi et al. [199].
We modify this scheme to fit our needs. In particular, we require the ORAM to run on a
SC and to associate multiple ads with single keywords.

This solution is also well-suited for clients with only little computational power such
as cell phones and netbooks, because the main work (i.e., the cryptographic operations)
is performed by the SC , which has dedicated cryptographic hardware and resides on the
broker’s side; the client merely has to establish a secure connection to the SC , send the
query, and receive the result.

Electronic tokens. Intuitively, electronic tokens are the digital equivalent of real-world
money, i.e., it is impossible or, at least, computationally infeasible to fake them; a token
by itself reveals neither its spender nor what it was spent on; and double-spending a
token is detectable. In our construction, electronic tokens enforce the correct billing of the
advertiser, while preventing brokers from tracking the respective user.

Electronic tokens may resemble electronic coins [84, 81]. Our tokens, however, are
purely based on highly efficient symmetric encryption and digital signature schemes.
Intuitively, a token contains a timestamp to prevent double-spending and an identifier

86

4.3. Protocol Overview

that associates this token with the corresponding advertisement; the encryption keeps the
identifier, i.e., the user profile, private, the signature prevents forgeries.

Mixing. The concept of mixing was introduced by Chaum [80]. Here, we use it to prevent
the attacker from learning the correlation between the content of electronic tokens and
the respective users. Specifically, the broker provides the SC with a set of (symmetrically)
encrypted tokens containing the ad identifiers. The SC decrypts those tokens on behalf of
the broker. It also randomly permutes (or mixes) the resulting ad identifiers in order to
maintain profile privacy and profile unlinkability.

4.3.3. Cryptographic Assumptions and Requirements
We assume a publicly verifiable binding between the SC and its public key. Such a binding
is easily possible with a standard public key infrastructure (PKI) such as VeriSign [216].
Using this binding, the client software can establish authenticated and encrypted TLS
connections with the SC .

Our broker-side code must be executed in a trusted environment, and it requires
a rich set of operations, e.g., file I/O, data structure management, TLS connections,
digital signatures, and authenticated encryptions; thus, we need a programmable SC [202].
Furthermore, to guarantee that an SC is executing a correct program, we also expect a
remote attestation capability from the SC [201].

4.3.4. Protocol Overview
We now overview the cryptographic protocol underlying ObliviAd.

1. The advertisers initiate the protocol by uploading their ads ad, the corresponding
keywords kws, and other information (e.g., bids) to the broker’s server. The broker
forwards these triples to the SC along with unique ad identifiers. The SC includes
these tuples in the ORAM structure, i.e., it stores tuples containing the advertise-
ment ad, the corresponding identifierMad , and one keyword kwad in encrypted form
on the broker’s server. Notice that for every advertisement-keyword pair, there is a
distinct triple in the ORAM structure. Publishers that are interested in showing ads
on their webpages must also register with the broker.

2. When a user visits a publisher’s webpage containing an ad box, the broker’s client
program on the user machine is invoked. This program maintains the user’s profile in
the form of keywords kwsU based on the user’s online behavioral history and sends
those keywords to the SC over a secure and (server-side) authenticated channel.

3. The SC then searches the ORAM structure for kwsU , collects the resulting ads,
and selects a subset according to the ranking algorithm specified by the broker,
which usually takes into account a number of factors, such as bids, click-probabilities,
and so on. Finally, the SC attaches an electronic token to each selected ad for the

87

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

Figure 4.1.: Distribution phase.

Figure 4.2.: Tallying phase.

future accounting. The electronic token for the advertisement ad is of the form
sig(enc(Mad , kwad)k, t)skSC , that is, it consists of a digital signature produced by
SC on (i) the ciphertext obtained by encrypting the ad’s identifier Mad and the
corresponding keyword kwad with a symmetric key k, which is chosen by the SC and
kept secret, and on (ii) a timestamp t (or, alternatively, on an increasing number).

4. Once the SC has finished its processing, it sends the retrieved ads and associated
tokens to the client software over the secure and authenticated channel. The client
software then presents a selection of these ads to the user.

88

4.3. Protocol Overview

5. When the presented ad is viewed by the user in the PPV model or is clicked in the
PPC model, the client software sends back the token to the broker server.

6. Following the mixing methodology, the broker server accumulates the tokens over a
predefined billing period and sends the set of accumulated tokens to the SC . The SC
removes duplicates (i.e., tokens with the same timestamp), removes the tokens with
timestamps outside of the current billing period, decrypts the ads in the remaining
tokens, and publishes a random permutation thereof.

7. The broker then distributes these identifiers to the corresponding advertisers and
charges them accordingly. The ad keywords retrieved from the tokens may be used
for improving future auctions, e.g., for further click-through analysis.

8. Finally, the broker provides revenue shares to publishers.

4.3.4.1. Discussion

Role of the client. Similarly to other privacy preserving OBA architectures (e.g.,
Adnostic [210] and Privad [129]), we assume that user profiles, encoded as sets of keywords,
are created and managed in the broker’s client software, which is envisioned as a browser
extension on the user’s device. The client monitors user behavior (that is, the user’s
browsing, ads viewed and clicked and so on) in order to create and maintain the user profile.
We assume that the client is not compromised and specifically does not leak the keywords
or the ads to the broker. Although our system is flexible in the choice and implementation
of the client, privacy preserving browser-based mining of core interests can be performed
by using, for instance, the recently introduced RePriv platform [114].

Role of the SC . The secure coprocessor establishes a secure program execution environ-
ment on the server. The SC ’s public key is certified by a PKI to ensure that the user is
indeed communicating with the SC ; a remote code attestation procedure [201] ensures the
user that the correct program is running.

Privacy of the user profile. User profiles are transferred to the SC in encrypted
form over secured channels, and are therefore not visible to any third party. The ORAM
architecture on the broker’s side ensures that not even the selection of ads leaks any
information about user profiles to the broker. The broker may learn which electronic
token was processed by which user, since we do not assume anonymous channels. Still, the
broker cannot learn which electronic token corresponds to which ad, thanks to the mixing
performed by the SC . It is interesting to observe that the degree of privacy of user profiles
is determined by the number of electronic tokens that are provided by non-compromised
clients in the respective mixing procedure, given that the tally of the ads must be made
public for billing purposes. If all other electronic tokens are provided by the attacker, the
user profile privacy cannot be guaranteed. This is reminiscent of electronic elections, where
the privacy of the user vote cannot be guaranteed if all other voters are under the control
of the attacker, given that the final tally is public [96].

89

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

Notice that a malicious broker could in principle derive a particular user profile by
allowing only the tokens of that honest client to reach the SC . The resulting bill would
reveal the user profile, thus breaking the desired privacy property. For protecting client
profiles unconditionally, the usage of anonymous channels is indispensable, a solution we do
not advocate due to its computational cost and network delay. Typical brokers, however,
behave rationally, i.e., their primary goal is to excel in commerce rather than to identify
users at all costs. Intuitively, our scheme protects the privacy of the user profile against
rationally-behaving brokers: excluding user tokens from the tally leads to a significant
monetary loss, since the timestamp mechanism prevents those tokens from being counted
in the next tallying periods.

Profile unlinkability. Not only is the broker unable to learn which user has seen which
ad, she cannot even learn whether or not two or more ads were seen by the same user.
This property is enforced by (i) the structure of the electronic tokens, which are unlinkable
and do not reveal any information about user profiles, and (ii) the mixing, which breaks
the correlation between the list of tallied ads and the list of received tokens. Breaking
this correlation is crucial since the attacker may learn the correlation between tokens and
clients by looking at the traffic on the non-anonymous communication channel between
clients and SC .

Billing correctness. The timestamp mechanism also serves the purpose of ensuring the
correctness of the billing process, since each ad cannot be counted more than once in the
final tally and it is counted only if the client has forwarded the electronic token to the
broker, i.e., the user has viewed (or clicked) the ad.

Click-related information. Without using an anonymous browsing solution, which we
do not want to adopt for efficiency reasons and for the sake of click-fraud detection (see
below), it is impossible to prevent the advertiser from learning which user clicked which ad.
In practice, the broker may try to collude with the advertiser to obtain this information.
If OBA is the only goal of the broker, however, there is no motivation for the broker to
determine which user clicked a particular ad. The information required to hold auctions,
such as the click-through rate or the click-probability of an ad, can be derived by the
broker from the tally produced by the SC .

Click-fraud detection. In our design the interaction pattern between clients and brokers
remains almost unchanged and the broker is still notified when the client clicks on an ad,
although she does not know which ad was clicked. Thus, real-time click-fraud detection
mechanisms, which typically monitor the click-ratio of each user, continue to work. Offline
detection mechanisms are expected to continue to work as well, since they are typically
enforced on the advertiser side and, in our architecture, advertisers know who clicked their
ads.

90

4.4. ORAM Construction

1 2 3 4 5 6 7 8

Keyword
kw

- Leaf -
5

: Root-leaf connection
: traversed for Read(kw)kw,ad1

kw,ad2

kw,ad3

1 2 3 4 5 6 7 8

: Connection affected by
: eviction

: Node selected for eviction

Searching for kw1 2 3 4 5 6 7 8

Keyword
kw

- Leaf -
5

: Root-leaf connection
: traversed for Read(kw)kw,ad1

kw,ad2

kw,ad3

1 2 3 4 5 6 7 8

: Connection affected by
: eviction

: Node selected for eviction

Eviction with ν = 1

Figure 4.3.: ORAM Operations for a bucket size of 2 and a tree depth of 4.

4.4. ORAM Construction

We adopt the ORAM scheme by Shi et al. [199], which we modify to fit the OBA setting.
We first review their basic construction in Section 4.4.1 and we discuss our modifications
in Section 4.4.2.

91

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

4.4.1. ORAM Scheme by Shi et al.

Shi et al. propose three different constructions. In this work, we adopt their “basic
construction with trivial buckets”. The complete database is stored as a binary tree. Every
node in the binary tree is a bucket ORAM, i.e., an array of entries. Each entry consists of
a keyword kw and a payload in encrypted form. An authenticated encryption scheme is
used to prevent an active attacker from learning and modifying entries in an unobservable
way.

Initially, the bucket is filled with dummy entries. The ORAM scheme manipulates
buckets via the ReadAndRemove(kw, b) and Add(b, e) operations. Both traverse the complete
bucket b, reading and decrypting every entry eold, and replacing eold with a new entry enew.
In case of ReadAndRemove(kw, b), this new entry is either a re-randomization of eold if the
keyword does not match eold, or an encryption of a dummy entry otherwise. In case of
Add(b, e), this new entry is either e if eold is a dummy entry and e has not been stored yet,
or a re-randomization of eold otherwise. The IND-CPA indistinguishability property of the
encryption scheme ensures that the adversary cannot differentiate between a dummy entry
and an entry comprising a kw and a payload.

The ORAM construction maintains the invariant that the entries for every keyword
kw are located on a unique path from the root node to a leaf ` assigned to that keyword.
This keyword-leaf (kw, `) assignment is securely maintained in the ORAM (in the SC in
our case).

To read the entry for a keyword kw, the Read operation (see Section 4.3.2) traverses
the complete path from the root node to the leaf assigned to kw, searching for a bucket
containing kw (see Figure 4.3). The entry for kw is removed from that bucket using
ReadAndRemove bucket operations and stored in the ORAM program. Finally, the program
assigns a new randomly chosen leaf `′ to the keyword kw, and moves the retrieved entry
from its internal memory to the root node using the Add bucket operation. Any subsequent
query for the same keyword kw is indistinguishable from queries to other keywords as the
search paths are randomly distributed in the tree.

To write a new entry for the keyword kw, the Write operation first retrieves the entry
stored for that keyword and drops it. This enforces that at most one entry per keyword is
present in the database. The new entry is added to the root node.

If we keep on adding entries to the root bucket, it will eventually overflow. To prevent
that, a background eviction process continuously moves entries from the root towards their
designated leaves. After every query and on every tree level (starting from the root towards
the leaves), a constant number ν of buckets is randomly chosen and evicted (a bucket can
be chosen multiple times during one eviction phase). One entry (kw, payload) in a chosen
bucket N is removed and written to the next bucket on the path towards the leaf ` assigned
to kw; the other child bucket of N is re-randomized; if N contains only dummy elements,
both of its child buckets are re-randomized. To make this operation oblivious, the order is
fixed and the left child is always processed before the right child. Figure 4.3 provides an
example of the eviction process for ν = 1. Notice that it is not necessary for the security
of the scheme to perform an eviction after every ORAM operation and, in fact, eviction

92

4.4. ORAM Construction

is only necessary to prevent bucket overflows3 and to guarantee the performance of the
scheme, although the eviction process must, of course, be performed in an oblivious way.

We now state the security property for ORAM schemes.

Definition 4.1 (ORAM security [199]). A data request sequence ~x is an operation-argument
tuple sequence ~x = ((op1, arg1), . . . , (op`, arg`)) where argi = kw if opi = Read and argj =
(kw, ad) if opj = Write for keyword kw and data ad. We let ops(~x) := (op1, . . . , op`) and
A(~x) denote the access pattern resulting for the execution of the data request sequence ~x.

An ORAM construction is secure if and only if for every two arbitrary data request
sequences ~x and ~y such that ops(~x) = ops(~y), the access patterns A(~x) and A(~y) are
computationally indistinguishable.

The ORAM scheme by Shi et al. is secure according to that definition.

Theorem 4.1 (ORAM properties [199]). The data structure by Shi et al. is a secure
oblivious RAM with an O(log2N) worst-case and average-case time complexity and program
storage of O(K logN) size, where N is the number of entries in the database and K is the
number of keywords.

4.4.2. Adapted Construction
In OBA, there can be multiple ads for every kw. It is therefore natural to have multiple
entries for a keyword kw in our database, and we need to obtain all of them while searching
(i.e., executing the Read operation) for a keyword kw. Note that the ability to store and
retrieve multiple elements per keyword is not definitional to ORAM. In fact, ORAM designs
based on the so-called square-root solution [123, 125] cannot retrieve more than one entry
per query from their ORAM architecture. In contrast, the construction by Shi et al. can
retrieve multiple entries associated with a kw, which, together with its good worst-case
complexity, is the reason we chose it as ORAM scheme. We now explain how the ORAM
data structure described above can handle multiple entries per keyword without hampering
the access privacy.

In the ORAM construction, it is possible to retrieve (Read) all the entries for a specific
keyword while the SC goes through the complete path (from the root to the leaf) assigned
to the keyword: we modify the ReadAndRemove operation to store these entries in the
ORAM memory and removing from traversed buckets. The subsequent Write operation
stores the retrieved entries back into the root bucket. We stress that these modifications
do not affect the cryptographic operations performed in the query processing, but only the
amount of retrieved and written data.

Like the original ReadAndRemove (resp. Add) operation, the adapted ReadAndRemove
(resp. Add) operation also modifies the complete bucket; thus, this operation remains secure
as the IND-CPA property of the encryption scheme prevents the attacker from learning the

3Should a bucket, however, overflow at some point, it leaks information. Such overflows, therefore should
be prevented by regularly evicting the tree.

93

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

number of entries which have been replaced by (resp. have replaced) dummy entries. As a
result, there is no difference in the adversarial view of ORAM from a privacy perspective
between the original ORAM construction and our variant.

One further important difference is that the ORAM client is replaced by a SC in our
setting, as we use ORAM to efficiently perform PIR. As a result, during an ORAM Read
operation, we cache the retrieved entries inside the SC internal memory before sending the
response to the client and putting (via the Add operation) the retrieved entries into the
root node bucket.

Let K be the number of keywords in the system. Let N be the number of keyword-
advertisement entries (kw,Mad , ad) to be stored in the database, where every entry is
of size B bits. Note that N is generally greater than the number of ads as there can be
multiple keywords kws attached to an ad. Therefore, the database size D is equal to N ·B,
which we expect to be in the order of several GB or even a couple of TB for some brokers.
Further, we expect the server storage n to be larger than D due to the overhead imposed
by the ORAM construction. We also expect the SC to have an internal storage of size
m = Ω(K logN), which we use to store a mapping between keywords and leaves: we need
to associate K keywords with leaves and we need O(logN) space to describe a leaf.

The tree contains O(N) nodes and we let the ORAM buckets be of size O(log2N),
implicitly bounding the maximum number of entries per keyword to O(logN). As a
result, our Read and Evict operations take O(log3N) time, while the write operation takes
O(log2N) time. Intuitively, Read and Evict operate on each level of the tree (from the root
to the leaves) a constant number of times, while Write operates on the root only.

Theorem 4.2 (Properties of the adapted ORAM scheme). The data structure by Shi
et al. with the modifications detailed above is a secure oblivious RAM with an O(log3N)
worst-case and average-case time complexity and an O(K log(N)) SC storage requirement.

Proof (Sketch). The ORAM property follows from the ORAM property of the original
scheme [199]. The required decryption and encryption operations are performed also in
the original version and our modifications are not distinguishable for the attacker thanks
to the IND-CPA property of the encryption scheme.

4.5. Performance Analysis
In this section, we describe the implementation and evaluate the practicality of our ORAM
construction, which dominates the computational cost of our solution. We also suggest
some optimizations based on our analysis and discuss other important system factors of
our solution.

94

4.5. Performance Analysis

10 20 30 40 50
125

250

500
750

1,000
1,500
2,000
3,000
4,000

Bucket size

T
im

e
in

m
s

Read operation
Eviction

a)

1 10 20 30 40 500
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

of advertisements retrieved per query

T
im

e
in

m
s

Read operation
Eviction

b)

10 15 20 25 30
250

500

750
1,000

1,500
2,000

3,000
4,000
5,000

Tree depth

T
im

e
in

m
s

Read operation
Eviction

c)

Figure 4.4.: Results of our microbenchmark. For experiments a) and b), the tree depth is fixed
to 24. For experiment c), the bucket size is fixed to 30.

95

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

4.5.1. Implementation
We have developed a prototype to demonstrate the feasibility of our construction. Our
implementation is a single-threaded application, comprising approximately 1200 lines of
Java code, which performs the operations that in a concrete implementation of our system
would be performed by the SC .

In our implementation, we assume that the ranking and selection of ads is conducted
inside the SC [189]; note that it would, in principle, be possible to shift these actions to
the client side, if required [192]. We implemented buckets as arrays. The array size is
determined at compile-time. Every array slot holds an advertisement and the corresponding
keyword. Typically, buckets are only a few MB in size and fit easily into the SC memory.
Therefore, we encrypt at the bucket level and not at the slot level. Consequently, if the
advertisements differ greatly in size, we must apply a padding before encrypting a bucket.

4.5.2. Experiments
All experiments were conducted on a commodity PC with an Intel i5 quad-core processor
with 3.3GHz and 8GB RAM. The hard drive has a speed of 7200RPM and a cache of
16MB. We implement the authenticated encryption scheme with AES encryption and
HMAC. The cryptographic implementation was provided by the standard SunJCE Provider.
To get consistent and comparable results, we set the advertisement size to 20KB and fix the
tree depth to 24,4 and report the average of 100 repetitions of the following experiments:

• We measure the impact of the bucket size (in terms of array slots) on the overall
performance of our system. Figure 4.4 a) displays the time required to read an
advertisement from the database and the time required for the eviction process for a
bucket size varying between 10 and 50 entries; the tree depth remains unchanged
at 25.

For a reasonable bucket size of 30, we are able to read advertisements for a keyword
in 424ms. Even for a large bucket of size 50, we only require 750ms where more
than 85% of the time was spent on the cryptographic operations.

The eviction process takes longer (in between 1 s and 4.1 s, depending on the bucket
size) but is performed after the reply is sent and, therefore, not experienced by the
user.

• We measure how the number of ads retrieved in a single query influences the system
performance. We fix the bucket size to 50 (the tree depth remains unmodified) and
we store various amounts of advertisements for a single keyword inside the ORAM.
Figure 4.4 b) depicts the time required to read all the advertisements for the given
keyword and the time spent by the eviction process. The results show that the
number of ads does not affect the retrieval time.

4A tree with depth 24 stores more than 16 million advertisements. Given an average advertisement size of
20KB, the database stores over 300GB of advertisement data.

96

4.5. Performance Analysis

• We show the scalability of our approach and fix the bucket size to 30 and let the
depth of the tree vary from 10 to 30 entries, i.e., we let the number of advertisements
stored in the tree vary from one million to over one billion. Figure 4.4 c) depicts
the obtained timings; the experienced delay increases linearly from 280ms for one
million advertisements to 780ms for one billion advertisements.

4.5.3. Discussion
Impact on the user-experienced delay. The experiments show that the Read opera-
tion requires up to 750ms and the Evict operation requires up to 4.2 s. As the eviction is
not necessary for achieving security, a client does not have to wait for the eviction process
to finish. We can deliver the retrieved ad as soon as the Read process has terminated,
increasing the overall delay of our system only by the amount of time required by a Read
operation.

Our experimental results show that on a commodity PC with the cryptographic
operations performed in software, our implementation requires, depending on the bucket
size, between 150ms and 728ms. More than 85% of that time is spent in the various
cryptographic routines. A dedicated hardware implementation as available in an SC will
further decrease the time required to retrieve an advertisement and increase the performance
of our system.

We use a secure and authenticated link between user devices and the SC to privately
download the ads. Comprehensive studies [89] show that this delay is negligible compared
to the ORAM-induced delay and, as SC CPU speeds increases, this delay will drop even
further. The generation of an electronic token takes only 1.4ms using RSA signatures
and also constitutes a negligible overhead in comparison with the ORAM computations.
Since the final tallying among the broker, publishers, and advertisers remains virtually
identical to the existing system, the overall experienced user delay is dominated by the
delay induced by the ORAM scheme.

Other system delays. We determined that individual token verification operations take
only 0.08ms for RSA signatures. In addition, batch verification techniques [45] can further
improve the overall verification performance during the tallying phase. Thus, our billing
system can quickly process large amounts of electronic tokens.

Replication and concurrency. The bottleneck of our construction is the SC fetching
an advertisement from the database. Replications of the database and resulting concurrent
computations can significantly improve the performance. It is possible for the broker
to employ multiple SC units so that each of them maintains its own replicated copy of
the database and caters to a different set of users in a completely parallel fashion. This
replication does not affect the profile privacy of the users as their network addresses
are known to the broker anyway. Realizing such a replication is harder to achieve in
anonymity-based solutions as opposed to privacy preserving OBA (e.g., Privad).

97

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

≈
3B. sign(Ead , tB)sk SC

 kwB
1B.

 ad2, sign(Ead , tB)sk SC
2B.

 kwA
1A.

 ad1, sign(Ead , tA)sk SC1
2A.

3A. sign(Ead , tA)sk SCClient A

Client B

Compromised clients

Bill
3B.sign(Ead , tA)sk SC

 kwA
1B.

 ad1, sign(Ead , tA)sk SC
2B.

 kwB
1A.

 ad2, sign(Ead , tB)sk SC2
2A.

3A.sign(Ead , tB)sk 2 SC Client A

Client B

Compromised clients

Bill

4. 4.

5. 5.

ad1, ad2 ad1, ad2
0. 0.

: Transmission via secure channel : Transmission via public channel

≈
3B. sign(Ead , tB)sk SC

 kwB
1B.

 ad3, sign(Ead , tB)sk SC
2B.

 kwA
1A.

 ad1, sign(Ead , tA)sk SC
2A.

3A. sign(Ead , tA)sk SC

Client A

Client B

Compromised clients

Bill

3B.sign(Ead , tA)sk SC

 kwA
1B.

 ad2, sign(Ead , tA)sk SC
2B.

 kwB
1A.

 ad1, sign(Ead , tB)sk SC
2A.

3A.sign(Ead , tB)sk SC

Client A

Client B

Compromised clients

Bill

4. 4.

5. 5.

ad1, ad2, ad3, ad4
0. 0.

: Transmission via secure channel
: Transmission via public channel

 kwB
4A.

 ad3, sign(Ead , tʼB)sk SC
5A.

6A. sign(Ead , tʼB)sk SC

 kwA
4A.

 ad2, sign(Ead , tʼA)sk SC
5A.

6A. sign(Ead , tʼA)sk SC

6B. sign(Ead , tʼB)sk SC

 kwB
4B.

 ad4, sign(Ead , tʼB)sk SC
5B.

6B.sign(Ead , tʼA)sk SC

 kwA
4B.

 ad4, sign(Ead , tʼA)sk SC
5B.

2

2

1

1

1

1

1

1

1

2 3

4

2

2

2

3

3

3

4 4

4

ad1, ad2, ad3, ad4

Figure 4.5.: Overview of the observational equivalence relation for profile privacy. The left side of
the picture corresponds to P and the right side to Q.

It is also possible to let multiple SC units operate on the same ORAM storage since
all ORAM operations consist of bucket-level operations, since they are independent from
each other. We just have to let all SC units share the same key material and enforce that
at most one SC unit operates on a single bucket. Consequently, the only concurrency
issue that needs to be taken care of is that all collaborating SC chips maintain the same
copy of the keyword-leaf assignment. In that respect, the only blocking operation is the
Add operation at the root node (as it changes the keyword-leaf assignment). At the cost
of using memory in the SC chip, it is possible to postpone these Add operations, thus
improving the performance. Finally, we mention that the eviction procedure is also highly
parallelizable since it operates on distinct buckets.

4.6. Formal Verification
We conduct a formal security analysis of our system. Although the deployed cryptographic
primitives are secure by themselves, we must ensure the absence of flaws in the protocol
design, e.g., unintended or attacker-driven interleavings of concurrently executed protocol
sessions that break the security properties. To exclude such flaws and to establish a security
proof, we model our protocol in the applied-pi calculus [3]. We formalize privacy properties
as observational equivalence relations between processes and correctness properties as trace
properties. The verification is automatically conducted using ProVerif [52]. The ProVerif
scripts used in the analysis can be found in Appendix B.2.

4.6.1. Profile Privacy
We verify that an attacker cannot obtain any information about client profiles, even when
in full control of the advertiser, the publisher, and the broker. We model this property as
an indistinguishability game denoted by ≈ between two processes, as depicted in Figure 4.5.
Here and throughout the rest of this chapter, we let Ead denote the symmetric encryption
enc(Mad , kwad)k of the ad identifier Mad along with the ad keyword kwad . In the first
process P (left-hand side), A and B’s profiles consist of the keywords kwA and kwB,
respectively. In the second process Q (right-hand side), the two profiles are swapped. If

98

4.6. Formal Verification

the processes P and Q are observationally equivalent, written P ≈ Q, then the attacker
cannot learn which profile belongs to which client. We assume a very pessimistic setting
where the attacker has the control over arbitrarily many clients and knows the two profiles
kwA and kwB. More precisely, our game works as follows:

0. The attacker chooses two advertisements adA and adB and stores them in the SC
(this corresponds to the broker filling her ORAM database via the SC). These two
advertisements match the two profiles kwA and kwB, respectively.

1A./1B. Client A and Client B send their profile to the SC via a secure channel.

2A./2B. The SC sends back the response, comprising the advertisement that best matches
the received profile along with the accompanying token.

3A./3B. The two clients publish their token on a public channel.

4. Corrupted clients, i.e., clients acting exclusively on behalf of the attacker, can arbitrarily
interact with the SC .

5. After collecting the two honest clients’ tokens, and possibly other tokens from compro-
mised clients, the SC initiates the accounting process. The SC verifies the signatures
in the tokens, verifies the timestamps, decrypts the ad identifiers, and publishes a
permutation thereof, which constitutes the bill.

The attacker has full control over scheduling decisions, e.g., the actions of client A, client
B, and compromised clients can be interleaved in any order, with the natural constraint
that client A and client B follow the protocol, i.e., their respective actions are executed in
the right order.

Theorem 4.3 (Profile Privacy). The observational equivalence relation P ≈ Q holds true.

Proof. Automatically proven using ProVerif.

4.6.2. Profile Unlinkability
When verifying the privacy of the client profiles, we assume the worst case scenario, i.e.,
the attacker knows the client profiles. We now analyze a different property, namely, profile
unlinkability. In this scenario, the attacker does not know the client profiles. We verify
that it is impossible for an attacker to deduce any information about client profiles by
observing the tokens sent by that client and the final tally, even when in full control of the
advertiser, the publisher, and the broker. We model this property as an indistinguishability
game between two processes P (left-hand side) and Q (right-hand side), as depicted in
Figure 4.6. In both processes, A and B’s profiles consist of the keyword kwA and kwB,
respectively. The game obeys the following steps:

99

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

⇡
3B. sign(Ead , tB)sk SC

 kwB
1B.

 ad2, sign(Ead , tB)sk SC
2B.

 kwA
1A.

 ad1, sign(Ead , tA)sk SC1
2A.

3A. sign(Ead , tA)sk SCClient A

Client B

Compromised clients

Bill
3B.sign(Ead , tA)sk SC

 kwA
1B.

 ad1, sign(Ead , tA)sk SC
2B.

 kwB
1A.

 ad2, sign(Ead , tB)sk SC2
2A.

3A.sign(Ead , tB)sk 2 SC Client A

Client B

Compromised clients

Bill

4. 4.

5. 5.

ad1, ad2 ad1, ad2

0. 0.

: Transmission via secure channel : Transmission via public channel

⇡
3B. sign(Ead , tB)sk SC

 kwB
1B.

 ad3, sign(Ead , tB)sk SC
2B.

 kwA
1A.

 ad1, sign(Ead , tA)sk SC
2A.

3A. sign(Ead , tA)sk SC

Client A

Client B

Compromised clients

Bill

3B.sign(Ead , tA)sk SC

 kwA
1B.

 ad2, sign(Ead , tA)sk SC
2B.

 kwB
1A.

 ad1, sign(Ead , tB)sk SC
2A.

3A.sign(Ead , tB)sk SC

Client A

Client B

Compromised clients

Bill

7. 7.

8. 8.

ad1, ad2, ad3, ad4

0. 0.

: Transmission via secure channel
: Transmission via public channel

 kwB
4A.

 ad3, sign(Ead , t’B)sk SC
5A.

6A. sign(Ead , t’B)sk SC

 kwA
4A.

 ad2, sign(Ead , t’A)sk SC
5A.

6A. sign(Ead , t’A)sk SC

6B. sign(Ead , t’B)sk SC

 kwB
4B.

 ad4, sign(Ead , t’B)sk SC
5B.

6B.sign(Ead , t’A)sk
SC

 kwA
4B.

 ad4, sign(Ead , t’A)sk SC
5B.

2

2

1

1

1

1

1

1

1

2 3

4

2

2

2

3

3

3

4 4

4

ad1, ad3, ad2, ad4

Figure 4.6.: Overview of the observational equivalence relation for profile unlinkability. The left
side of the picture corresponds to P and the right side to Q.

0. The attacker chooses four advertisements ad1, ad2, ad3, and ad4, and stores them in
the SC (this corresponds to the broker filling her ORAM database via the SC). In
process P, advertisements ad1 and ad3 are the best-matching advertisements for kwA
and kwB, and ad2 and ad4 are the second-best-matching advertisements for kwA and
kwB, respectively.5 Notice that we assume the worst-case scenario, i.e., the two client
profiles kwA and kwB are disjoint and, thus, easier to be distinguished. In process Q,
ad2 and ad3 are swapped.

1A./1B to 3A./3B. Client A and B both send their keyword to the SC via a secured
channel and receive back the best-matching advertisements (i.e., ad1 and ad3 in P
and ad1 and ad2 in Q), and the corresponding tokens. Following the protocol, the
tokens are immediately sent to the SC .

4A./4B to 6A./6B. Both clients perform the same steps as above. The returned advertise-
ments, however, are the second-best-matching ones (i.e., ad2 and ad4 in P and ad3
and ad4 in Q).

7. Compromised clients can arbitrarily interact with the SC .

8. After collecting the four honest clients’ tokens, and possibly other tokens from compro-
mised clients, the SC initiates the accounting process. The SC verifies the signatures
on the tokens, verifies the time stamps, decrypts the ad identifiers, and publishes a
permutation thereof, which constitutes the bill.

As in the game for profile privacy, the attacker has full control over scheduling decisions
and the above described game steps can be interleaved in any order, as long as the actions
of client A and client B follow the protocol. If the processes P and Q are observationally
equivalent, then the profiles are unlinkable, i.e., the adversary cannot determine which
entries in the final tally were caused by which profile. For instance, if the final tally contains
two entries for cars and two for sports, it is impossible to say if each client is interested
only in one of the two topics, or if the two clients are both interested in sports and in cars.

5We recall that the SC ranks the advertisements according to each user profile.

100

4.6. Formal Verification

 kw

 ad, sign(Ead, t)sk SC

sign(Ead , t)sk SC

IssueHonToken(id, t)

SendToken(id, t) CountToken(id, t)

1.

ad
0.

2.

3. 5.

: Transmission via secure channel

Client

Compromised clients

4.

: Transmission via public channel

Bill

sign(Ead , t)sk SC

CountToken(id, t)

ad
0.

1.

3.
Compromised clients

: Transmission via public channel
Bill

IssueToken(id, t)

2.

ad, sign(Ead , t)sk SC

IssueCompToken(id, t)

Figure 4.7.: The process P, annotated with logical predicates, used in the verification of the trace
property in Equation 4.8.

Theorem 4.4 (Profile Unlinkability). The observational equivalence relation P ≈ Q holds
true.

Proof. Automatically proven using ProVerif.

4.6.3. Billing Correctness
A fundamental goal of our system is the correctness of the billing process. Brokers expect to
be reimbursed for their services and the advertiser is only willing to pay for advertisements
that have been seen or clicked on. A first property we expect is non-reusability of tokens
(each token is counted at most once). A second property is billing fairness, i.e., whenever
a token is counted, then the corresponding ad was really clicked (or viewed) by the
user. We formalize and verify these two properties in a strong adversarial model, in
which the attacker has the control over arbitrarily many corrupted clients. Therefore,
we distinguish whether a token sig(Ead , t)skSC is issued for an honest client, annotated
with the predicate IssueHonToken(Mad , t), or for a compromised client, marked with the
predicate IssueCompToken(Mad , t). Additionally, we decorate the point in the protocol
where an honest client views the ad and sends her token with SendToken(Mad , t) and
the point where the SC counts a token with CountToken(Mad , t). Notice that we cannot
decorate compromised clients, since they run arbitrary code under the control of the
attacker. Figure 4.7 depicts the process P annotated with these predicates. We want
to verify that in all protocol executions each CountToken predicate is preceded either by
a distinct SendToken predicate, which is in turn preceded by a distinct IssueHonToken
predicate (honest clients), or by a distinct IssueCompToken predicate (compromised clients).
This kind of properties are known as injective agreement [166]. The billing correctness
property can be formalized in ProVerif notation as follows:

CountToken(Mad , t) ==>1
(SendToken(Mad , t) ==>1 IssueHonToken(Mad , t))
∨ IssueCompToken(Mad , t)

(4.8)

where P1 ==>1 P2 denotes the requirement that each predicate P1 must be preceded by a
distinct predicate P2 in all protocol executions. The above property says that tokens are
never counted more than once. For honest clients, we also know that whenever a token
is counted, then the corresponding ad has been viewed. Compromised clients cannot be

101

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

decorated with events, reflecting the fact that a compromised client might forward the
token to the broker behind the scenes, i.e., without the user actually having viewed the ad.
Theorem 4.5. The trace property stated in Equation 4.8 holds true in all possible execution
traces of the process P.
Proof. Automatically proven using ProVerif.

4.7. Related Work
We discuss work and projects related to online behavioral advertising. We start with
proposals and opt-out solutions that depend on the cooperation of brokers to a certain
degree. We then focus on anonymous browsing solutions, PIR schemes, and ORAM
constructions. Finally, we proceed by comparing ObliviAd with other OBA systems.

Consumer group proposals, initiatives, and regulatory reformations. There
have been a number of proposals for addressing these privacy concerns. Consumer groups
have suggested that the behavioral advertising industry undergo regulatory reforms, with
the goal of enhancing users’ privacy and data protection by constraining the role and
the activities of third-parties such as advertisers and brokers [90, 154]. However, the
effectiveness of such a reform is questionable, since it is hard to prevent third parties from
passively gathering PII (personally identifying information) and later destroying any traces
in the case of a future investigation [155]. Initiatives like Do Not Track [175] enable users
to opt out of tracking by analytics services, advertising networks, and social platforms.
These initiatives do not solve the core problem, however, as they significantly hamper the
economic model of free online services that depend solely on advertising revenue.

Anonymity solutions. Anonymous browsing solutions such as Tor [209] can enforce
the desired privacy goals. In fact, truly anonymous browsing prevents any kind of tracking
and naturally prevents profile building. Anonymous browsing solutions, however, make
detection of client-side fraud (e.g., click fraud6) infeasible. Moreover, they are not considered
scalable enough to support the existing user base [177]. As a consequence, they do not
offer a scalable solution that simultaneously satisfies the financial goals of web services and
the privacy requirements of users.

ORAM schemes. Originally introduced by Goldreich and Ostrovsky [123],
oblivious RAM and oblivious techniques in general received a growing interest in the
research community (e.g., [169, 204, 199]); several highly efficient ORAM schemes have
been introduced [206, 205] that superseed the ORAM scheme described in ObliviAd. Since
the ORAM scheme in ObliviAd is a modular building block, it is suited to accommodate
new and improved schemes. The only requirement that the ORAM scheme must satisfy is
the possibility to store and retrieve multiple entries per keyword.

6Click-fraud consists of users or bots clicking on ads in order to drive up a given advertiser’s costs, a
publisher’s revenue, the click-through rate of an advertisement, and so on.

102

4.7. Related Work

PIR schemes. There are many PIR schemes that work in different situations. For
instance, PIR can be achieved in either an information-theoretic or a computational
setting, or in a single-server or a multiple-server setting (e.g. [186, 119, 15, 87]). The
trivial single-server PIR solution is to download the whole database, which is infeasible
given mobile devices and the massive amount of advertisements. Other information-
theoretic PIR schemes require multiple non-colluding database servers. The non-collusion
assumption is certainly inappropriate for broker servers. Computational PIR, instead,
relies on cryptographic assumptions, is suitable also for a single database server, and
thus better fits our setting. According to recent analyses, however, none of the existing
computational PIR schemes significantly outperforms the trivial solution of downloading
the whole database [200, 185]. For this reason, we follow the approach proposed by Wang et
al. [219, 98]. Hardware-based solutions turn out to be orders of magnitude faster than the
other computational PIR solutions. In particular the recent scientific interest in efficient
ORAM schemes significantly improved the performance of hardware-based PIR.

OBA systems. Given the significance of the privacy-preserving OBA problem to the
masses, the privacy enhancing technologies (PETs) research community is showing a
growing interest in this problem [130, 129, 149, 150, 114, 210, 107]. Instead of blocking
online behavioral advertising [175] or trying to obscure the user profile [137], these PETs
are meant to be practical privacy preserving alternatives that the advertising industry
should also find attractive. The solutions proposed so far, however, fall short of providing
an adequate degree of privacy and a satisfactory performance at the same time.

Juels [149] was the first to explore the notion of targeted yet privacy-preserving
advertising and the first to suggest the usage of client-side proxies to manage user profiles,
a concept used by almost all privacy-preserving advertising systems today. Like ObliviAd,
Juels utilizes a PIR scheme for privacy-preserving distribution of ads. That PIR scheme,
however, is impractical for a real time use and, in particular, makes it impossible to retrieve
ads on-the-fly. Furthermore, that work does not secure the tallying phase, in which the
broker computes the number of ads viewed by clients for billing purposes. Finally, provable
anonymity is achieved against a threshold adversary, which we believe does not model real
life brokers accurately. In contrast, we use a highly efficient PIR solution based on a secure
coprocessor, which enables us to retrieve ads on-the-fly. We secure the tallying phase using
electronic tokens that are mixed by the SC in order to preserve the privacy of the client
profiles and we model the broker as a malicious party.

Privad [130, 129] presents a complete system for privacy-preserving targeted advertising.
Along with the usual client software and broker entities, Privad introduces a reference
monitor that watches the client software to ensure that no information is sent by the client
to the broker through a covert channel, and a dealer that works as an anonymizing proxy
between the user and the broker. Similar to our system, the Privad client builds a user
profile and requests relevant ads from the broker by sending the profile information to the
broker system, with the fundamental difference that every communication in Privad is
proxied by the dealer. Further, in Privad, any communication between the client and the
broker is encrypted with the broker’s public key or an agreed session key so that the dealer

103

Chapter 4. ObliviAd:
Provably Secure and Practical Online Behavioral Advertising

cannot see the profile information or the downloaded, viewed or clicked ads.
Privad achieves profile privacy through the anonymity of the client. In order to

facilitate client-side fraud detection, Privad does not employ a reliable anonymity solution
like Tor [209]; it instead asks for a privacy-preserving proxy (the dealer) that is assumed to
be honest-but-curious and, specifically, to not collude with the broker. For detecting client-
side fraud, however, the dealer needs to satisfy the advertiser’s and the broker’s demands.
Realizing such a party seems to be a difficult problem to solve from the administrative, legal,
and technological perspective. Even if realized, the dealer is highly susceptible to traffic
analysis attacks and may also introduce a single-point-of-failure in the advertising system.
In our solution, we avoid such an entity and completely eliminate the corresponding trust
requirement by introducing a broker-side (unbribable) trusted hardware. As a result, we
achieve profile privacy without enforcing user anonymity.

Adnostic [210] provides a completely different approach to privacy-preserving OBA:
when a user visits a webpage that contains a slot for advertisements, a privacy-protecting
client software obtains a small set of ads that are randomly chosen by the broker. The
software then selects the most appropriate ad based on the user profile and shows it to the
user. For the viewed ads, Adnostic computes homomorphic encryptions and zero-knowledge
proofs on the user devices and sends them to the broker. In turn, the broker uses the
encryptions and zero-knowledge proofs to reliably settle the accounts with the publishers
and the advertisers without knowing who viewed which ad. A fundamental assumption in
Adnostic is that the advertisers and the broker will always collaborate; thus, ad-clicks are
treated the same as in current ad networks, where the client reports clicks directly to the
broker.

Unlike ObliviAd and Privad, Adnostic does not hide users’ web browsing or clicking
behavior from the broker, which makes their privacy goals considerably weaker. Further,
as ads are sent without any behavioral targeting and only in small sets, it seems that this
approach would be more comparable to the old scattershot approach than today’s modern
OBA methods. Further, although their accounting solution is novel and cryptographically
interesting, it does not provide any information about the viewed ads. This information
is needed for conducting future ad-auctions and click-through analysis; thus, the quality
of OBA will not improve, even over a longer period. Finally, our solution is significantly
more efficient on both the client’s and the broker’s end: Adnostic uses fairly expensive
public-key homomorphic encryptions and zero knowledge proofs, while we, instead, rely on
inexpensive symmetric-key encryptions.

An interesting work in the field of OBA is RePriv [114], an architecture that provides
an ideal solution for realizing the client-side software required by virtually all privacy-
preserving OBA systems, including ours. Reznichenko, Guha and Francis [192] have
recently proposed a solution for running advertising auctions that leverage user profiles for
ad ranking without compromising their privacy. We observe that their auction design can
easily be incorporated in our system.

104

5. Conclusion and Outlook
In this thesis, we presented solutions for the trustworthy and privacy-preserving processing
of personal information. We divided this comprehensive problem into the release and the
retrieval of information.

Trustworthy and privacy-preserving release of personal information. We pre-
sented a framework for the declarative design of distributed systems, which supports
a wide range of security properties, including authorization policies, privacy, controlled
linkability, and accountability. The core component of the framework is a declarative
API that exports primitives for data processing. The programming abstraction represents
the information known to principals as logical formulas and the messages exchanged by
parties as validity proofs for logical formulas. The cryptographic implementation relies
on a powerful combination of digital signatures, non-interactive zero-knowledge proofs of
knowledge, service-specific pseudonyms, and reputation lists. Our framework constitutes
an ideal plugin for proof-carrying authorization infrastructures [144, 118, 19, 170, 30].

We showed how to leverage an existing security type system for ML to statically
enforce authorization policies in declarative specifications and we proved that these policies
are enforced by the cryptographic implementation. In particular, the authorization policies
specified via the API methods hold by construction. We also proved the security of the
cryptographic constructions introduced in this thesis (namely, service-specific pseudonyms
and the identity escrow protocol).

We conducted several case studies to show the feasibility and the applicability of our
declarative API: we designed and implemented tales (The Anonymous Lecture Evaluation
System), and we re-designed, re-implemented, and improved previous works on anonymous
webs of trust [25] and on a security API for distributed social networks [28]. For the latter
two case studies, we were able to conveniently and quickly derive a cryptographic implemen-
tation that offered more functionality than the dedicated cryptographic implementations
of the corresponding previous works.

Trustworthy and privacy-preserving retrieval of personal information. We pre-
sented a methodology for the privacy-preserving retrieval of personal information that
relies on secure hardware and oblivious RAM. We exemplify our approach and devised
ObliviAd, an architecture for online behavioral advertising.

We showed that it is possible to achieve strong privacy properties while retaining
practicality in current online behavioral advertisement models. In particular, our solution
introduces only minor changes to the current broker infrastructure, namely, the installation
of secure coprocessors on the servers of the brokers. The current business and system

105

Chapter 5. Conclusion and Outlook

models also require only very minor adaptations. Our solution utilizes PIR technology,
which we implemented using secure coprocessors and an efficient ORAM construction.
This technology allows clients to retrieve advertisements that best match their behavioral
profile without the broker learning any personal information. At the same time, our
architecture allows brokers to learn any non-personal information that they may find
useful for improving their business model (e.g., click-through rates, statistics for click-fraud
detection, etc.).

We formalized the two fundamental privacy goals profile privacy and profile unlinka-
bility as observational equivalence relations and the billing correctness property as a trace
property. These are the first formal security definitions for OBA. We used ProVerif, an
automated cryptographic protocol verifier, to formally establish them on ObliviAd. An
experimental evaluation demonstrates the feasibility of our approach.

Outlook. The API presented in the first part of this thesis supports a rich set of properties
such as authorization in distributed systems. There are many more properties that are
desirable to have, in particular in distributed systems. For instance, electronic voting
schemes typically strive for properties such as coercion-resistance and receipt-freeness [95].
The presented API may be able to express some of these properties but it lacks a first-class
support within the declarative language.

Programs that use our security API have security-by-construction guarantees while
anonymity properties are still proven by hand. Obtaining anonymity-by-construction
guarantees would remove the necessity to prove privacy properties separately. There are
techniques capable of proving privacy properties (e.g. [104, 52]). It is conceivable that
they can be used to achieve by-construction-style guarantees, albeit protocols that provide
anonymity properties are not generally composable.1

We have presented ObliviAd as an example of how to realize the privacy-preserving
retrieval of personal information. We have successfully demonstrated that the underlying
technique is also powerful and flexible enough to be applied to other scenarios such
as privacy-preserving payment systems [182]. There are many questions that impose
themselves: for instance, using this approach, is there a general way to transform any
protocol (of a certain form or class) to improve the offered privacy?

Our technique relies on a complex piece of hardware. Recently, CPU manufacturers
have started to incorporate special instruction sets that enable code attestation [8, 176].
While this approach does not yield obliviousness, it may still be sufficient to yield provable
guarantees, possibly against a weaker attacker model.

1Consider two protocol P1 and P2 for the same service s. In P1, a pseudonym psd1 either originated from
Alice or Bob, and in P2, a pseudonym psd2 either originated from Bob or Charlie. If the pseudonyms
coincide, Bob is the owner of the pseudonym, otherwise Alice is the owner of psd1 and Charlie is the
owner of psd2.

106

Appendices

107

108

A. Well-Typedness of the API
Methods

This chapter details the implementation of the API in RCF and the proof of well-typedness.
RCF is a λ-calculus that is very well suited for verification purposes and it is expressive
enough to encode programming languages such as ML and Java. Appendix A.1 starts with
the implementation of the API methods in RCF. Appendix A.2 leverages the state-of-the-art
F7 type-checker [49] to obtain the well-formedness of the RCF implementation.

A.1. RCF Implementation of the API
This section contains all the details of the symbolic, sealing-based [148] RCF API implemen-
tation. First, we introduce the necessary machinery including the RCF types. As suggested
by Bengtson et al. [49], we use the standard ML notation to keep the code readable.

In the remainder of this section, we use the following convention: we write Fe to
denote an elementary formula, i.e., a formula for says-statements, SSP-statements and
so on without conjunctions and disjunction. We write F∧ to denote formulas that may
contain conjunctions of elementary formulas but do not contain disjunctions, we write F∨
to denote formulas that contain disjunctions in disjunctive normal form, and we write F
to denote arbitrary formulas built from conjunction, disjunction, and elementary formulas.
The difference between a formula F∨ and F is that formula F∨ is stated in disjunctive
normal form, i.e., formulas F∨ are of the form

F∨ :=
n∨
i=1
F∧i

where the F∧i in turn are of the form

F∧i :=
m∧
j=1
Fej

for some n and m. It is a well-known result that every logical formula can be written in
disjunctive normal form. The distinction between Fe, F∧, and F∨ is crucial for the proofs.

109

Appendix A. Well-Typedness of the API Methods

H,T, U, V ::= type
unit unit type
{x : T | F∨} refinement type (scope of x is F∨)
Πx : T. U dependent function type (scope of x is U)
Σx : T. U dependent pair type (scope of x is U)
T + U disjoint sum type
µα. T iso-recursive type (scope of α is T)
α type variable
{F∨} , {_ : unit | F∨} ok type
bool , unit + unit Boolean type

Table A.1.: RCF syntax of types.

A.1.1. Preliminaries: RCF Type System
This section briefly reviews the RCF type system components, namely, the types, subtyping
and kinding. Bengtson et al. [49] describe all of these concepts in detail.

Typing environments. Type-checking and, in general, all judgments of a type system
are always conducted relative to a typing environment E. This typing environment E
keeps track of bound variables, logical formulas, and so on. For instance, suppose we are
given a typing environment E and we are to type-check the following code borrowed from
Example 2.2:

6 let pf s = mkSays xPat Rating(xopinion);

After type-checking this line, the extended typing environment E′ inherits all information
from E and also records that pf s is a variable of type proof . More precisely, E′ := E, pf s :
proof . How the entries affect the type-checking process depends on the currently proven
judgment. In RCF, the typing environment is monotonously increasing, i.e., there is no
judgment that removes entries from the environment. In the following description, we
assume that E “fits” the current context; we formalize the meaning of “fits” and typing
environment in Appendix A.2.

RCF types. We give a brief overview of the RCF type system and the types that appear
in our API. RCF is a security type system that statically enforces authorization policies on
distributed systems. As such, the types it supports are not integer or string. Rather, a
type in RCF intuitively determines whom a value might originate from and to whom it
can be sent. If RCF determines that a values comes from a trustworthy source, this value
conveys information that helps to enforce authorization policies. For instance, if we can
determine that a message was sent from a trustworthy source that the value can convey
information that helps to enforce authorization policies.

We overview the syntax of RCF types in Table A.1. The only basic type is the universal
type unit. A value v : unit does not convey any additional information besides the value

110

A.1. RCF Implementation of the API

itself. In general, the RCF type unit captures all concrete untrusted values, i.e., values can
be sent over and received from the Internet such as Boolean values, principal identifiers,
strings and so on. The name unit is a little misleading since the RCF type unit is populated
by a plethora of values and does not correspond to the unit type in programming languages
such as OCaml and F#; in these two language, the empty tuple () is the only value of type
unit.

Based on the basic type unit, more complicated RCF types are constructed as follows:

Refinement types {x : T | F}:
Refinement types determine the type of a given value and additionally transport a
logical formula that may depend on the value itself. More precisely, a value v of
type {x : T | F} is first of all a value of type T and additionally, the formula F{v/x}
holds, i.e., the formula F where every occurrence of x is replaced by v (the formula
F need not contain x). These refinement types are a salient tool to convey logical
predicates from one principal in the system to another.

For instance, let us reconsider the doctor evaluation system from Section 2.3: if
the patient can give v type unit and additionally deduce the predicate Rating(v),
then she can give the value v the type {x : unit | Rating(x)}. The patient sends v
to the evaluation platform. If the evaluation platform can assign v the refinement
type {x : unit | Rating(x)}, then in the context of the evaluation platform, v : unit
and additionally, the logical predicate Rating(v) holds.

Dependent functions Πx : T. U
and

Dependent pairs Σx : T. U :
RCF uses standard dependent functions Πx : T. U and dependent pairs Σx : T. U . If
x does not occur in the type U , i.e., the function or the pair is not dependent on the
first component, then the dependent function and the dependent pair corresponds to
the usual function and pair types as used in OCaml and F#. If x occurs in U , then
the return value of a function or the second component of a tuple depends on the
first component.

For instance, we use dependent functions to specify the type of the proof verification
function

verifyF∨ : proof → f : formula → {z : bool | ∀x̃. f = F∨ ∧ z = true =⇒ F∨}.

It is a function that takes as input a proof p and a formula f where f is the encoding
of F∨, and returns a Boolean value z. Additionally, the formula

∀x̃. f = F∨ ∧ z = true =⇒ F∨

holds for the return value z. Here and throughout the rest of this thesis, we write F
to denote the ML encoding of the logical formula F .

111

Appendix A. Well-Typedness of the API Methods

Disjoint sum types T + U :
Disjoint sum types T + U are used to encode the usual ML data types. For instance,
common ML data types such as datatype bool = true | false are encoded as a disjoint
sum type. More precisely, the type T + U is constructed by the type constructors
inl and inr; inl takes as input a value of type T (i.e., the left side) and returns a
value of type T + U and the type constructor inr takes as input a value of type U
(i.e., the right side) and returns a value of type T + U . In the following, we encode
bool , unit +unit where we define true := inr() and false := inl(). We use the notation
inl〈T, T + U〉 (resp. inr〈U, T + U〉) to denote that this use of the type constructor inl
(resp. inr) takes type T (resp. U) and returns type T + U .

Technically, all sum types are built from the inl〈T, T +U〉 and inr〈U, T +U〉 type
constructors, i.e., more complicated types have to be encoded using only these two
type constructors. For instance, the type T + U + V = T + T ′ where T ′ := U + V .
As suggested by Bengtson et al. [49], we assume a unique encoding and use arbitrary
data type constructors as syntactic sugar and we will use the usual ML data type
notation.

Iso-recursive types µα. T :
Iso-recursive types are constructed with the fold type constructor and allow for
defining recursive data structures such as lists. The core idea of iso-recursive types
T := µα. U is that the type variable α that occurs in U can be replaced with T .

For instance, the usual ML list datatype T list = NIL | Cons of T ∗(T list) for values
of type T is defined in RCF as T list , µα. unit +T ∗α. Initially, lists are constructed
from a value NIL : unit by applying the constructor fold〈unit + T{(µα. unit + T ∗
α)/α}, µα. unit + T ∗ α〉 to the value inl NIL. Unfolding T list , µα. unit + T ∗ α
yields unit + T ∗ (µα. unit + T ∗ α); the unfolded type is a disjoint sum and can be
matched to check if the list is empty (left case) or whether the list has a head and a
tail (right case).

For a more formal and exhaustive discussion, we refer to Bengtson et al. [49] and
the book by Gunter [131].

Concretely, we use iso-recursion to specify the types for our signature scheme.
Intuitively, we verify signatures on verification keys (which encode principal identifiers)
and therefore, the type of a verification key must be able to describe verification keys.
As for the disjoint sum types, we use the standard ML notation as syntactic sugar to
describe iso-recursive types.

We use the abbreviation {F} := {_ | F} to denote that a refinement type where the
variable (denoted by the anonymous variable “_”) does not occur in the formula.

Polymorphic types. RCF does not support polymorphic types. Since in a program,
only a finite number of types can occur, it is possible to encode this polymorphism by
instantiating the type variable as needed [49]. For instance, suppose a program uses the
polymorphic function fail〈α〉 : unit → α once with the return type α := T and once

112

A.1. RCF Implementation of the API

with the return type α := U , for some types T and U ; 〈α〉 denotes that α is universally
quantified. This can be translated into two functions failT : unit → T and failU : unit → U
that instantiate α with T and U , respectively. Since an implementation has only finitely
many occurrences of polymorphic functions, the translation is also finite and well-founded.
We use the same convention for polymorphic data types and we write datatype α T = U to
denote the data type T that is parameterized in α; the scope of α is U .

Names, restrictions, and channels. Channels model communication media such as
the Internet. For instance, the Internet is modeled as a l unit, i.e., a channel a used for
sending and receiving values of type unit. Technically, channels are the only names in
RCF. Since channels do not surface in the API, we only mention them here for the sake of
completeness. Technically, they are used to implement references that, in turn, are used to
implement the sealing mechanism.

Subtyping and kinding. Type systems without the possibility to compare types by
subtyping are simple but they severely lack expressiveness. For instance, a channel a l unit
for values of type unit could not be used to transmit values of type v : {x : unit | F}, even
though v is a value of type unit. RCF solves this restriction by means of an elaborate
subtyping mechanism.

Subtyping in RCF relies on two concepts: standard subtyping purely based on types
and a mechanism based on kinding. For instance, standard subtyping allows us to deduce
that values of type {x : unit | F}, are also of type unit. We write E ` T <: U to denote
that type T is a subtype of U under typing environment E, i.e., E proves that a value
of type T can be used in place of a value of type U . Intuitively, the kinding mechanism
decides subtyping based on whether a type is of kind public, i.e., it can be sent to the
attacker, or whether a type is of kind tainted, i.e., it can originate from the attacker. We
write E ` T :: ν, i.e., E proves type T to be of kind ν.

Sub Public Tainted
E ` T :: pub E ` U :: tnt

E ` T <: U

Kinding interacts with the standard subtyping via the rule Sub Public Tainted. The
kinding mechanism is necessary as pure type-based subtyping cannot decide whether a
functional type T → U is a subtype of unit. This is necessary since only values that can be
given type unit can be sent over an untrusted channel such as the Internet. The problem
occurs while subtyping the functional type: the subtyping rule Sub Fun for function types
only relates two function types but unit is not a functional type.

Sub Fun
E ` T ′ <: T E ` U <: U ′

E ` (Πx : T. U) <: (Πx : T ′. U ′)

The kinding relation, however, can decide E ` T → U <: unit if the function f of type

113

Appendix A. Well-Typedness of the API Methods

T → U can be given kind pub (public), i.e., f can be given to the attacker.

Kind Fun
E ` T :: ν E, x : T ` (Πx : T. U) :: ν

E ` (Πx : T. U) :: ν

Intuitively, it is safe to pass a function to the attacker, if the attacker cannot extract
non-public information from it. Indeed, Kind Fun formalizes this intuition. It states that
a function type is public if the arguments are tainted (i.e., the attacker controls the input
to the function) and the output is public.

A.1.2. API Data Types
In this section, we describe the data types used in the API implementation in an ML-style
language.

Basic data types. We start by describing the basic data types used by the API. We
use self-explanatory names such as commitment to make the API as easily accessible as
possible.

Type random:
The type random describes random numbers.

Type bitstring:
The type bitstring describes raw data that can, for instance, be directly sent over or
received from the network. We also use it to denote integers. In the latter case, an
implementation would interpret the bit string as an encoded integer, for instance, in
two’s complement representation.

Type signature:
The type signature denotes digital signatures.

Type commitment:
The type commitment denotes cryptographic commitments.

Type zero-knowledge:
A Groth-Sahai proof consists of three components: the commitments of the values
used in the proof, possible opening information for selected commitments, and
the cryptographic zero-knowledge proof. The type zero-knowledge describes the
cryptographic zero-knowledge proof.

Type pseudo:
The type pseudo describes service-specific pseudonyms.

Type string:
The type string denotes ordinary strings. In the API, they are used to describe the
services of SSPs.

114

A.1. RCF Implementation of the API

datatype α list = Cons of α ∗ α list | NIL

datatype α RevHid =
| Revealed of α
| Hidden of bitstring

datatype α option =
| Some of α
| None

predicateF ::=
| PF1 of T 1

1 ∗ · · · ∗ T 1
n1

| · · ·
| PFm of Tm1 ∗ · · · ∗ Tmnm

predicateP ::=
| PP1 of commitment ∗ (T 1

1 ∗ random) option ∗
· · · ∗ commitment ∗ (T 1

n1 ∗ random) option
| · · ·
| PPm of commitment ∗ (Tm1 ∗ random) option ∗

· · · ∗ commitment ∗ (Tmnm
∗ random) option

where T ji ∈ {bitstring RevHid, uidpub RevHid}

datatype formula =
| Says of (z : uidpub RevHid) ∗ predicateF

| SSP of (z : uidpub RevHid) ∗ (s : string RevHid) ∗ (psd : pseudo RevHid)
| REL of (x : bitstring RevHid) ∗ (op : string) ∗ (y : bitstring RevHid)
| EQN of (x : bitstring RevHid) ∗ (op : string) ∗ (y : bitstring RevHid) ∗

(z : bitstring RevHid)
| LM of (x : pseudo RevHid) ∗ (b : bitstring RevHid) ∗ (` : (pseudo ∗ bitstring) list)
| LNM of (x : pseudo RevHid) ∗

(` : (pseudo ∗ bitstring) list)
| EscrowInfo of (z : uidpub) ∗ (x : uidpub RevHid) ∗

(R : bitstring RevHid) ∗ (s : string RevHid) ∗ (idr : bitstring RevHid)
| And of (f1 : formula) ∗ (f2 : formula)
| Or of (f1 : formula) ∗ (f2 : formula)

Nullary type constructors C denote C of unit.

Table A.2.: ML data type declarations.

Type uidpub:
The type uidpub describes public verification keys.

Type uid:
Instead of letting users handle secret cryptographic keys directly, we stipulate the
usage of handles. Since these handles do not contain the actual key, they can be
leaked without compromising the corresponding key. The type uid denotes such
handles.

Constructed data types. We use the basic types to construct the types that describe
the input to the API methods. Table A.2 and Table A.3 depict the constructed data types
in an ML-style notation. In the following, we briefly describe each of them.

115

Appendix A. Well-Typedness of the API Methods

datatype statement =
| Saysp of (cz : commitment) ∗ ((z : uidpub) ∗ (rz : random)) option ∗

(csig : commitment) ∗ ((sig : signature) ∗ (rsig : random)) option ∗ predicateP

| SSPp of (cz : commitment) ∗ ((z : uidpub) ∗ (rz : random)) option ∗
(cs : commitment) ∗ ((s : string) ∗ (rs : random)) option ∗
(cpsd : commitment) ∗
((psd : pseudo) ∗ (rpsd : random)) option ∗ (cx : commitment)

| RELp of (cx : commitment) ∗ ((x : bitstring) ∗ (rx : random)) option ∗
(op : string) ∗
(cy : commitment) ∗ ((y : bitstring) ∗ (ry : random)) option

| EQNp of (cx : commitment) ∗ ((x : bitstring RevHid) ∗ (rx : random)) option ∗
(op : string) ∗
(cy : commitment) ∗ ((y : bitstring RevHid) ∗ (ry : random)) option ∗
(cz : commitment) ∗ ((z : bitstring RevHid) ∗ (rz : random)) option

| LMp of (cx : commitment) ∗ ((x : pseudo) ∗ (rx : random)) option ∗
(cb : commitment) ∗ ((b : bitstring) ∗ (rb : random)) option ∗
(` : (pseudo ∗ bitstring) list)

| LNMp of (cx : commitment) ∗ ((x : pseudo) ∗ (rx : random)) option ∗
(` : (pseudo ∗ bitstring) list)

| EscrowInfop of (z : uidpub) ∗
(cx : commitment) ∗ ((x : uidpub) ∗ (rx : random)) option ∗
(cR : commitment) ∗ ((R : bitstring) ∗ (rR : random)) option ∗
(cs : commitment) ∗ ((s : string) ∗ (rs : random)) option ∗
(cidr : commitment) ∗ ((idr : pseudo) ∗ (ridr : random)) option ∗
(cr : commitment)

| Andp of (p1 : statement) ∗ (p2 : statement)
| Orp of (p1 : statement) ∗ (p2 : statement)

datatype proof =
ZK of (zkv : zero-knowledge) ∗ (stm : statement)

Nullary type constructors C denote C of unit.

Table A.3.: ML data type declarations continued.

116

A.1. RCF Implementation of the API

Type α RevHid:
The type α RevHid describes values that occur in the ML encoding of formulas. The
values can be either revealed, denoted by the type constructor Revealed x, or they
can be hidden, denoted by Hidden z.

The argument z of the Hidden type constructor acts as a positional index and
is used to establish the equality among hidden values. For instance, consider the
formula Revealed vk says GoodF (Revealed m,Revealed m); the superscript F denotes
that this is a formula, see below. A proof for this formula can be changed into a
proof for the formula Revealed vk says GoodF (Hidden 1,Hidden 1), i.e., the first and
the second argument to the predicate Good are the same, indicated by the same
index. We stress that the converse is not true, since this proof would also verify for
the formula Revealed vk says GoodF (Hidden 1,Hidden 2), i.e., different arguments to
the type constructor Hidden do not imply that the hidden values are different.

Type α option:
The usual option type is used to capture whether a proof contains the opening
information to a commitment or whether the opening information has been removed.
In the former case, the constructor Some holds the opening information, in the latter
case, the constructor None denotes the removal of the opening information.

We now describe the types formula for encoding logical formulas and type statement
for describing zero-knowledge proof statements. Every value v that occurs in a logical
formula must be encoded into type formula and in type statement. The canonical encoding
into type formula uses the RevHid, i.e., v can either be revealed or hidden. The type
statement has to closely match the requirements of zero-knowledge proofs. Consequently,
it contains for every value v a commitment cv : commitment to v and opening information
(v, rv) to the commitment. The opening information are in turn described by an option
type to capture that they can be removed from a proof. Additionally, type statement
contains the cryptographic material used in the zero-knowledge proofs. This material is
also represented by commitments and opening information.

Since all values that are contained in type formula are also contained in type statement,
we only describe type formula and highlight the additional information contained inside of
zero-knowledge proof statements.

Types predicateF and predicateP :

predicateF ::=
| PF1 of T 1

1 ∗ · · · ∗ T 1
n1

| · · ·
| PFm of Tm1 ∗ · · · ∗ Tmnm

predicateP ::=
| PP1 of commitment ∗ (T 1

1 ∗ random) option∗
· · · ∗ commitment ∗ (T 1

n1 ∗ random) option
| · · ·
| PPm of commitment ∗ (Tm1 ∗ random) option∗

· · · ∗ commitment ∗ (Tmnm
∗ random) option

where T ji ∈ {bitstring RevHid, uidpub RevHid}

117

Appendix A. Well-Typedness of the API Methods

The types predicateF and predicateP describe logical predicates that are used in
combination with the says modality. The type predicateF represents predicates
inside of formulas, indicated by the superscript F , and the type predicateP represents
predicates inside of zero-knowledge proof statements, indicated by the superscript P .

We use the convention that the name of the type constructor coincides with
that of the logical predicate; the predicate name of the logical formula does not
have a superscript. For instance, the logical predicate Good(m) is represented by
GoodF (Revealed(m)) : predicateF and by GoodP (cm, Some(m, rm)) : predicateP .

The type predicateF is a sum type, where each type constructor corresponds to
exactly one predicate proven in a protocol. The arity of each case PFi matches
the arity of the corresponding logical predicate Pi. Each type argument of a type
constructor PFi is of type α RevHid to allow the distinction between hidden and
revealed values. The values may be user identifiers (α := uidpub) or any other value
(α := bitstring).

As explained above, the type predicateP represents every value occurring in type
predicateF with two values: one value of type commitment and one value of type
option.

Types formula and statement:
The type formula captures the logical formula that can be proven by a zero-
knowledge proof. The type statement captures the corresponding zero-knowledge
statement. For instance, a logical formula Alice says Good(m) is represented by
the value Says(Revealed(vkAlice),GoodF (Revealed(m)) : formula and by the value
Saysp(cvkAlice , Some(vkAlice, rvkAlice), csig, Some(sig, rsig),GoodP (cm,Some(m, rm))) :
statement.

Every logical formula provable by the API is represented by a case in formula and
statement.

Says modality proofs Says and Saysp:

Says of (z : uidpub RevHid) ∗ predicateF

Saysp of (cz : commitment) ∗ ((z : uidpub) ∗ (rz : random)) option ∗
(csig : commitment) ∗ ((sig : signature) ∗ (rsig : random)) option ∗
predicateP

Says and Saysp canonically encode the formula Alice says P where the principal
Alice is encoded using a principal identifier z : uidpub RevHid and P corresponds
to the predicate encoded by the predicateF in Says and to predicateP in Saysp.
The statement Saysp additionally contains a commitment to the digital signature
sig as well as to the corresponding opening information.

118

A.1. RCF Implementation of the API

Pseudonym ownership proofs SSP and SSPp:

SSP of (z : uidpub RevHid) ∗ (s : string RevHid) ∗
(psd : pseudo RevHid)

SSPp of (cz : commitment) ∗ ((z : uidpub) ∗ (rz : random)) option ∗
(cs : commitment) ∗ ((s : string) ∗ (rs : random)) option ∗
(cpsd : commitment) ∗

((psd : pseudo) ∗ (rpsd : random)) option ∗
(cx : commitment)

The encoding of service-specific pseudonyms contains the principal identifier
z of the owner of the pseudonym, the service s, and the pseudonym psd itself.
The proof SSPp additionally contains a commitment cx to the signing key used
in the computation of the pseudonym (see Section 2.4). To protect the signing
key, the statement contains no opening information for it.

Relational proofs REL and RELp:

REL of (x : bitstring RevHid) ∗ (op : string) ∗ (y : bitstring RevHid)
RELp of (cx : commitment) ∗ ((x : bitstring) ∗ (rx : random)) option ∗

(op : string) ∗
(cy : commitment) ∗ ((y : bitstring) ∗ (ry : random)) option

The encoding of relational proofs contains the two operands x and y as well
as the relation op. Since the proven Groth-Sahai equations allow for deducing
the proven operation, the operation occurs in plain in the types formula and
statement.

Equation proofs EQN and EQNp:

EQN of (x : bitstring RevHid) ∗ (op : string) ∗ (y : bitstring RevHid) ∗
(z : bitstring RevHid)

EQNp of (cx : commitment)∗((x : bitstring RevHid)∗(rx : random)) option ∗
(op : string) ∗
(cy : commitment) ∗ ((y : bitstring RevHid) ∗ (ry : random)) option∗
(cz : commitment) ∗ ((z : bitstring RevHid) ∗ (rz : random)) option

The encoding of proofs of mathematical operations contains the two operands x
and y, the operation op, as well as the result z. Since the proven Groth-Sahai
equations allow for deducing the proven operation, the operation in formula
and statement occurs in plain. Here and throughout the remainder of this
thesis, plain means that the values are not wrapped in type RevHid in formula
and the value occurs directly in statement without commitment and opening
information.

119

Appendix A. Well-Typedness of the API Methods

List membership proofs LM and LMp:

LM of (x : pseudo RevHid) ∗ (b : bitstring RevHid) ∗
(` : (pseudo ∗ bitstring) list)

LMp of (cx : commitment) ∗ ((x : pseudo) ∗ (rx : random)) option ∗
(cb : commitment) ∗ ((b : bitstring) ∗ (rb : random)) option ∗
(` : (pseudo ∗ bitstring) list)

The list-membership branch of the types formula and statement consists of the
pseudonym x, the attribute b, and the list `. Since we disallow the list to be
hidden, the list occurs in plain.

List non-membership proofs LNM and LNMp:

LNM of (x : pseudo RevHid) ∗
(` : (pseudo ∗ bitstring) list)

LNMp of (cx : commitment) ∗ ((x : pseudo) ∗ (rx : random)) option ∗
(` : (pseudo ∗ bitstring) list)

The list-nonmembership branch of the types formula and statement consists of
the pseudonym x and the list `. Since we disallow the list to be hidden, the list
occurs plainly in formula and in statement.

Identity escrow proofs EscrowInfo and EscrowInfop:

EscrowInfo of (z : uidpub) ∗ (x : uidpub RevHid) ∗
(R : bitstring RevHid) ∗ (s : string RevHid) ∗ (idr : bitstring RevHid)

EscrowInfop of (z : uidpub) ∗
(cx : commitment) ∗ ((x : uidpub) ∗ (rx : random)) option ∗
(cR : commitment) ∗ ((R : bitstring) ∗ (rR : random)) option ∗
(cs : commitment) ∗ ((s : string) ∗ (rs : random)) option ∗
(cidr : commitment) ∗ ((idr : pseudo) ∗ (ridr : random)) option ∗
(cr : commitment)

The identity escrow case of formula consists of the following components: the
verification key of the trusted third party z, the verification key x of the user,
the value R that was signed and issued by the TTP (see Section 2.4), the service
s for which the escrow identifier is issued, and the escrow identifier idr itself.
The corresponding case of statement additionally contains the commitment cr
on the value r used to compute the escrow identifier. We stipulate that r is
never revealed and that z (the public identifier of the trusted party) is never
hidden; these values occur plainly.

Conjunctive proofs And and Andp:

And of (f1 : formula) ∗ (f2 : formula)
Andp of (p1 : statement) ∗ (p2 : statement)

The conjunction case of types formula and statement contains the two sub-
proofs.

120

A.1. RCF Implementation of the API

mkId : string → uid ∗ uidpub
mkSays : x : uid → f : predicateF → proof
mkSSP : x : uid → s : string → proof
mkREL : f : formula → proof
mkEQN : f : formula → proof
mkLM : x : pseudo → b : string → ` : list → proof
mkLNM : x : pseudo → ` : list → proof
mkIDRev : proof → s : string → proof
mk∧ : proof ∗ proof → proof
split∧ : proof → proof ∗ proof
mk∨ : proof → formula → proof
extractForm : p : proof → formula
hide : proof → formula → proof
rerand : proof → formula → proof
verifyF∨ : proof → f : formula → {z : bool | ∀x̃. f = F∨ ∧ z = true =⇒ F∨}

Table A.4.: EAPI: API RCF interface functions.

Disjunctive proofs Or and Orp:

Or of (f1 : formula) ∗ (f2 : formula)
Orp of (p1 : statement) ∗ (p2 : statement)

The disjunction case of types formula and statement contains the two sub-proofs.

Type proof :
ZK of (zkv : zero-knowledge) ∗ (stm : statement)

The type proof consists of a value zkv : zero-knowledge, modeling the cryptographic
zero-knowledge proof and of the proven statement stm : statement. This closely
corresponds to the Groth-Sahai zero-knowledge proof system.

A.1.3. Strong Types and Typed API Methods
In this section, we introduce the strong types used in the API. Intuitively, strong types
with logical refinements are given to trustworthy components such as the zero-knowledge
proof verification function. Notice that the types described in Appendix A.1.2 do not
describe trustworthy components as they can be created by the attacker. For instance,
zero-knowledge proofs can be created by anybody. Intuitively, zero-knowledge proofs can
still be used for authorization purposes, if the proven statement contains a digital signature
from an honest protocol participant, i.e. a trustworthy source.

From a type-checking point of view, all types described in Appendix A.1.2 are equivalent
to unit. Whenever possible, we use meaningful names (e.g., commitment and proof) in
order to keep the API implementation easily accessible.

121

Appendix A. Well-Typedness of the API Methods

T oy := +n
k=1 P

S
k (x1 : T k1 ∗ · · · ∗ x`k−1 : T k`k−1

∗ {x`k : T k`k | y says Pk(x1, . . . , x`k)})

Ty := y : bitstring ∗ T oy
Uosk := +n

k=1 P
S
k (x1 : T k1 ∗ · · · ∗ x`k−1 : T k`k−1

∗
{x`k : T k`k | ∃z, y. sk = (z, y) ∧ y says Pk(x1, . . . , x`k)})

where T ji ∈ {bitstring, α}

verkey := µα. signature → Ty
sigkey := (µα. Ty → signature) ∗ verkey = (Ty{verkey/α} → signature) ∗ verkey

Table A.5.: Definition of the signing key type sigkey and verification key type verkey.

Stronger types for the API methods. The key idea of the API is that zero-knowledge
proofs can be used to transport logical formulas between principals. Since zero-knowledge
proofs are only significant if we are convinced of their validity, the natural way to extract
these formulas from a proof is to use the verification method. Therefore, we strengthen the
type of the verification method to express that after a successful verification, the expected
formula holds true in the current typing environment. The final type looks as follows:

verifyF∨ : proof → f : formula → {z : bool | ∀x̃. f = F∨ ∧ z = true =⇒ F∨},

where F corresponds to the ML encoding of the logical formula F . This type ensures that
if the returned value z is true and the formula f passed as input is the ML encoding F∨
of the logical formula F∨, then the formula F∨ is entailed. The universal quantification
∀x̃ binds all names in the ML encoding that would otherwise be unbound. Furthermore,
the subscript F∨ of the verification function binds the formula used in the return type. In
particular, every formula has its own verification function.

We change the type of the mkSays method to accept as input only predicates rather
than formulas. We stress that this is not a conceptual restriction of the API: arbitrary
formulas consist of predicates that are connected using Boolean conjunction and disjunction.
This choice merely keeps the already lengthy implementations at a reasonable size. Table A.4
depicts the resulting typed API.

Signing and verification keys. Signing and verification keys are an important corner-
stone of the API. Although they are well-concealed within the API, these cryptographic
objects are the key ingredients (pun intended) from a type-checking point of view. In par-
ticular, they are crucial in the process of transporting logical formulas from one principal to
another principal. In a nutshell, a principal Alice can sign a value only if the corresponding
logical formula holds true in the environment of Alice. Correspondingly, if a principal Bob
verifies such a signature, then that principal can deduce that the formula corresponding to
the signed value holds true.

122

A.1. RCF Implementation of the API

The ability to transport logical formulas is anchored in the types of the signing function
and the signing key. We have already established the convention that the superscript P is
used for the predicate type constructors in proof statements and the superscript F for type
constructors in formulas. To distinguish the predicate type constructors used in digital
signatures, we use the superscript S .

The full type definitions are shown in Table A.5. The (open) type T oy is the type for
messages. It is a large disjoint sum type that contains one case for every possible predicate
Pk that occurs in a protocol; the logical predicate Pk is represented by the type constructor
PSk . Every predicate Pk and, consequently, every type constructor PSk consists of a specific
number `k of arguments xi, each of which is of a specific type T ki , where i ranges from 1
to `k. The last argument of PSk is additionally refined with the logical predicate Pk itself,
namely, y says Pk(x1, . . . , x`k). This refinement establishes the connection between the
logical predicate and its representation in the disjoint sum. In this definition of T oy , y is
intentionally left unbound. We add the identity of the signer and, at the same time, bind
the free variable y in the type Ty. The value y will be instantiated by a verification key; we
will see below that verkey <: unit, i.e., a value v : verkey can be used as a value v : unit.
The binding between the signing key and the corresponding verification key is enforced by
the signature creation function.

We defined verkey as µα. signature → Ty and sigkey as µα. Ty → signature. The
value k : sigkey is a sealing function and verkey is the corresponding unsealing function. If
a value is applied to the sealing function of a value k : sigkey, the resulting value of type
signature is interpreted as signature. Applying the unsealing function, i.e., the verification
key, to a signature returns the sealed value, i.e., the signed message, with the original type.

The type Ty encodes says-predicates. For signing, however, we need to connect a
user’s signing key with the principal identifier (verification key), which, in turn, needs
to be connected to the says-predicate. This is taken care of by the type Uosk : the (open)
type Uosk corresponds to T oy for the purpose of signing. As in the definition of T oy , the
type Uosk is a large disjoint sum type that contains one case for every possible predicate
Pk that can occur. The main addition is the refinement of the last element in the tuple
that logically relates the signing key and the verification key. Given type Uosk , a principal
can derive the logical refinement required by the type Ty. More precisely, given the
logical predicates ∃z, y. sk = (z, y)∧ y says Pk(x1, . . . , x`k) and sk = (_, vk), one can derive
vk says Pk(x1, . . . , x`k). The formula sk = (_, vk) originates from extracting the verification
key from the signing key.

Creating fresh values and seals. In RCF, we use only the function mkUn to create
fresh values of type unit; these values can be combined to form more complex types, for
instance, using disjoint unions, tuples, or logical refinements. mkUn takes as input a value
of type unit and outputs a fresh value of type unit.

A glance at Table A.1 reveals that the empty tuple () is the only non-functional value
that occurs in RCF. Naturally, one may wonder how equality checks that occur in the
API methods in form of if-statements, can ever fail. The intuitive reason is that RCF does
not actually perform any equality checks but enters the then-branch of an if-statement

123

Appendix A. Well-Typedness of the API Methods

mkUn: unit → unit
mkSeal〈α〉: unit → ((α→ unit) ∗ (unit → α))
fail〈α〉: unit → α

List.member(i,j)〈α1, . . . , αi, βi+1, . . . , βj〉:
(y1 : α1) → · · · → (yi : αi) →
(` : α1 ∗ · · · ∗ αi ∗ βi+1 ∗ · · · ∗ βj list) →
{x : bool | x = true⇔ ∃yi+1, . . . , yj . (y1, . . . , yj) ∈ `}

List.get(i,j)〈α1, . . . , αi, βi+1, . . . , βj〉:
(y1 : α1) → · · · → (yi : αi) →
(` : α1 ∗ · · · ∗ αi ∗ βi+1 ∗ · · · ∗ βj list) →
{(y′1, . . . , y′i, yi+1, . . . , yj) : α1 ∗ · · · ∗ αi ∗ βi+1 ∗ · · · ∗ βj |

(y1, . . . , yj) ∈ ` ∧
∧i
k=1 y

′
k = yk}

funcrop: (x : bitstring) → (y : bitstring) → {z : bool | z = true⇔ x op y}
funceop: (x : bitstring) → (y : bitstring) → {z : bitstring | z = x op y}
PKI: (x : uidpub) → {y : verkey | x = y}

Table A.6.: Typed library functions used by the API methods.

under the premise that the equality check succeeded and it enters the else-branch under
the premise that the check failed. Since RCF type unit captures, for instance, integers and
strings, the equality checks in a type-checked program will be performed on meaningful
values.

mkUn: unit → unit

We encode cryptographic primitives using a sealing-based encoding [148]. In RCF, seals are
created using the polymorphic function mkSeal〈α〉 that takes as input a value of type unit
and returns a seal for type α. The argument to mkSeal could be a (textual) description
of the seal. The first component of the returned pair is the sealing function, the second
component is the unsealing function.

mkSeal〈α〉: unit → ((α→ unit) ∗ (unit → α))

Implementing malleable zero-knowledge proofs using a sealing-based abstrac-
tion. Several possibilities for implementing zero-knowledge proofs with seals exist. The
implementation in particular has to exclude the following attack: given a valid proof p for
a disjunctive statement stm1 ∨ stm2, it must not be possible to determine whether only
the statement stm1 is valid, only the statement stm2 is valid, or stm1 and stm2 both are
valid. More precisely, we need to prevent an attacker from abstractly using the malleability
to separate a disjunction and verifying the left and the right branch individually, thus
determining which branches are valid.

124

A.1. RCF Implementation of the API

getOperationr: (op : string) → ((x : bitstring) → (y : bitstring) → bool)
getOperatione: (op : string) → ((x : bitstring) → (y : bitstring) → bitstring)
rand: unit → random
sign: (sk : sigkey) → (m : Uosk) → signature
checksig: (y : verkey) → (sig : signature) → Ty{verkey/α}
storeSK: sigkey → uid
restoreSK: uid → sigkey
computeR: (x : bitstring) → (r : bitstring) → bitstring
computePsd:

(sk : sigkey) → (s : string) → {x : pseudo | ∃y, z. sk = (y, z) ∧ SSP(z, s, x)}
computeIDR: (vkEA : bitstring) → (vk : bitstring) → (r : bitstring) →

(R : bitstring) → (s : string) → {idr : pseudo | EscrowInfo(vkEA, vk, R, s, idr)}
commit: bitstring ∗ random → commitment
openCommit: commitment → bitstring ∗ random
commitsk: sigkey ∗ random → commitment
openCommitsk: commitment → sigkey ∗ random
getSome: (x : (unit ∗ unit) option) → {y : unit ∗ unit | x = Some y}
getRevealed: (x : unit RevHid) → {y : unit | x = Revealed y}
commitZK: statement ∗ random → zero-knowledge
openZK: zero-knowledge → statement ∗ random
stripStm: statement → statement
checkZK: proof → bool
fakestm: formula → statement
createZKe: statement → random → proof ∗ zero-knowledge ∗ statement
createZK: statement → random → proof ∗ zero-knowledge ∗ statement
rerandstm: statement → statement → statement
checkEq1〈α〉: α RevHid → commitment → α option →

(bitstring ∗ commitment) list ref → bool
checkEq: statement → formula → bool
verifystm: statement → bool
verify: proof → formula → bool
hidestm: statement → formula → statement
combineOr: proof → formula → random → proof
commuteOr: proof → statement → proof
commuteAnd: proof → statement → proof

Table A.7.: Typed auxiliary functions used by the API methods.

125

Appendix A. Well-Typedness of the API Methods

We prevent this kind of distinction by introducing the value zkv : zero-knowledge.
Intuitively, this value zkv models a cryptographic zero-knowledge proof, which makes a
disjunction inseparable.1

We implement zkv using a dedicated seal that is only available to the API methods.
This seal takes as input the proven statement stm and a randomness r. The returned
handle is used as zkv. Different randomness results in different zkv values, reflecting that
many different zero-knowledge proofs for the same statement exist. Having access to the
unsealing function, the verification function will use zkv to retrieve the sealed statement
stm′ and enforce that stm′ and stm of the proof to be verified match. More precisely,
the structure as well as the commitments of stm′ and stm have to be equal. Since the
attacker does not have access to the unsealing function, she cannot produce a zkv value
that matches either branch. Consequently, trying to split a disjunction and constructing a
proof to determine which branches are valid fails.

Notation. In the following implementation, we will often write code of the form

let (x, y) = M N ;A,

i.e., we apply a split operation on an expression. Technically, this is not valid RCF
(see Table A.8). We use this notation as shorthand for

let z = M N ;
let (x, y) = z;A,

since it is more readable: the code is shorter and it contains one variable less.
We will use this notation only when the formula {(x, y) = z} (e.g., as introduced by

rule Exp Split) is not relevant for the remaining type-checking process and we will only
use this notation for the auxiliary functions. For the verification code macros and the
verification function, we will strictly adhere to the RCF syntax.

External library functions and internal auxiliary functions. The API uses sev-
eral standard library functions and auxiliary functions. These provide commonly used
functionality such as list operations and computing hash values. The former are provided
by standard libraries of programming languages and we implement the latter. Table A.7
overviews the used functions with their type.

In the following implementation, we focus on the functional part and do not assign
line numbers to error-handling code because this code always type-checks. For instance,
fail (see below) has return value α that always matches the required type.

fail〈α〉 : unit → α:
The function fail implements the standard exception mechanism of modern program-
ming languages.

1In fact, if a cryptographic proof leaked which branch of a disjunction holds true, then it would not be
zero-knowledge: this proof reveals more than just the bare validity of the proven statement.

126

A.1. RCF Implementation of the API

List.member(i,j)〈α1, . . . , αi, βi+1, . . . , βj〉 : (y1 : α1)→ · · · → (yi : αi)
→ (` : 〈α1, . . . , αi, βi+1, . . . , βj〉list)
→ {x : bool | x = true⇔ ∃yi+1, . . . , yj . (y1, . . . , yj) ∈ `}

and

List.get(i,j)〈α1, . . . , αi, βi+1, . . . , βj〉 : (y1 : α1)→ · · · → (yi : αi)
→ (` : 〈α1, . . . , αi, βi+1, . . . , βj〉list)
→ {(y′1, . . . , y′i, yi+1, . . . , yj) : α1 ∗ · · · ∗ αi ∗ βi+1 ∗ · · · ∗ βj |

(y1, . . . , yj) ∈ `
∧i
k=1 y

′
k = yk} :

The two functions implement the list membership functionality and the list element
retrieval functionality for lists of tuples. In the implementation, there are lists that
contain tuples of different arity. Rather than stating a strongly-typed function for
every such occasion, we add parameters i and j. The parameter j denotes the arity
of the tuples stored in the list. The parameter i enables us to ask for statements of
the form “is there a tuple in the list where the first i elements are y1 to yi”.

For instance, let ` be a list that contains triples. If we want to know whether there
is a triple in ` that has as first two elements a and b, we call List.member(2,3) a b `.
The return value is true if and only if there is a tripe (a, b, c) ∈ ` for some c. This
fact is also reflected in the logical refinement of the return value.

The semantics of List.get is similar: it works on lists that contain tuples of arity j
and it takes i elements as input. The return value is the first element in the list, that
contains as the first i elements y1 to yi.

For instance, let ` be a list comprising the triples (a, b′, c) and (a, b, c) and assume
that all variables are different. Then, List.get(1,3) a ` returns (a, b′, c) because this
triple occurs in the list first, the call List.get(2,3) a′ b ` throws an exception because
there is no triple in the list with the first component equal to a′, and the call
List.get(2,3) a b ` returns (a, b, c). The list membership is also reflected in the logical
refinement.

In the following, we will not consider the intermediate values y′k and the correspond-
ing equalities y′k = yk. Instead, we immediately use the refinement (y1, . . . yj) ∈ `.

funcrop : (x : bitstring) → (y : bitstring) → {z : bool | z = true⇔ x op y}
and

funceop : (x : bitstring) → (y : bitstring) → {z : bitstring | z = x op y}:
The families of functions funcrop and funceop correspond to the usual mathematical
comparison and computation functions.

For instance, if x ≤ y, then funcr≤ x y returns the Boolean value z = true, which
is refined with the logical predicate z = true⇔ x ≤ y; if z = x+ y, then funce+ x y
returns a value z′ = z, which is refined with the logical predicate z′ = x+ y.

PKI : (x : uidpub)→ {y : verkey | x = y}:
The PKI function represents a public-key infrastructure. It takes as input a value
x : uidpub, and returns a value y : verkey that is equal to x. From a type-checking

127

Appendix A. Well-Typedness of the API Methods

point of view, the PKI allows us to upgrade the type of a value from unit to verkey,
a concrete implementation ensures that a key is trustworthy by checking that the
key is part of the PKI.

We assume that the PKI function is initialized and ready to use. Concretely
establishing a PKI is a well-recognized bootstrapping step for which many solutions
exists (e.g., centralized PKIs such as VeriSign [216] or decentralized solutions such as
webs of trust [207, 25]) and the function PKI reflects the PKI into the API.

getOperationr : (op : string)→ ((x : bitstring)→ (y : bitstring)→ bool)
and

getOperatione : (op : string)→ ((x : bitstring)→ (y : bitstring)→ bitstring):
These helper functions translate a function description into the corresponding function
and they are used in the implementation of the unrefined verification method. The
function getOperationr takes as input op ∈ {“ = ”, “ 6= ”, “ ≤ ”, “ < ”, “ > ”, “ ≥ ”}
and getOperatione takes as input op ∈ {“ + ”, “− ”, “ ∗ ”}.

For instance, the call getOperationr “ = ” returns the usual equality check, i.e.,
getOperationr “ = ” x x returns true and getOperatione “ + ” returns the usual add
operation, i.e., getOperatione “ + ” 4 3 returns 7.

let getOperationr (op : string): ((x : bitstring)→ (y : bitstring)→ bool) =
1 if op = “ ≤ ” then
2 funcr≤
3 else if op = “ < ” then
4 funcr<
5 else if op = “ = ” then
6 funcr=
7 else if op = “ > ” then
8 funcr>
9 else if op = “ ≥ ” then
10 funcr≥

else
fail〈bitstring → bitstring → bool〉 ()

let getOperatione (op : string): ((x : bitstring)→ (y : bitstring)→ bitstring) =

1 if op = “ + ” then
2 funce+
3 else if op = “− ” then
4 funce−
5 else if op = “ · ” then
6 funce·

else
fail〈bitstring → bitstring → bool〉 ()

128

A.1. RCF Implementation of the API

rand : unit → random:
Randomness is an essential ingredient in zero-knowledge proofs: the commitments
used in a proof require randomness and even the proof itself contains randomness.
In RCF, randomness is generated by calling the rand function that takes as argument
of type unit and returns a fresh (random) value of type unit.

let rand (x : unit): random =
1 mkUn ()

sign : (sk : sigkey) → (m : Uosk) → signature:
The signing function takes as input a signing key sk : sigkey and a message m : Uosk
and returns a signature of type signature for m.

Despite of what we stated above, the sign function takes as input a signing key
directly instead of a public identifier of type uid. The reason is that the sign function
is not part of the API but an internal function. The API methods that are exposed
to programmers expect values of type uid.

let sign (sk : sigkey) (m : Uosk): signature =
1 let (x, y) = sk;
2 x (y,m)

The type Uosk by itself not closed because the variable sk is free in Uosk . Due to the
dependent function that binds sk in the type Uosk , the type of the signing function
is closed. The user identifier y that is signed along with the message occurs in the
logical refinement and determines the actor of the says modality. Intuitively, the
logical refinement is of the form y says m.

checksig : (y : verkey) → (sig : signature) → Ty{verkey/α}:
The verification function takes as input a verification key y : verkey and a signature
sig : signature and returns a value of type T oy {verkey/α}, i.e., the type T oy where all
occurrences of α are replaced by verkey.

let checksig (y : verkey) (sig : signature): Ty{verkey/α} =
1 let x′ = y sig;
2 let (x,m) = x′;
3 if x = y then
4 m

else
fail〈Ty{verkey/α}〉 ()

In particular, the implementation ensures that the verification key used to verify the
signature is also the verification key that is signed along with the message.

129

Appendix A. Well-Typedness of the API Methods

storeSK : sigkey → uid
and

restoreSK : uid → sigkey:
The functions storeSK and restoreSK are internally used to store and restore a signing
key to and from a handle, respectively. Every principal has her own local two
functions. The function storeSK takes as input a signing key and returns a handle
for that key, the function restoreSK takes as input a handle and returns the stored
signing key.

For instance, if sk is a secret key, calling storeSK sk locally stores sk and returns a
handle hdl. That handle points to the stored key and can be used within the API.
In practice, hdl is realized, e.g., as a filename or a URI. Since hdl does not contain
any secret information, it can be sent over the internet. If the user with the locally
stored secret key calls restoreSK hdl, the stored key sk is returned.

We symbolically implement these functions as a seal. The fresh handle to the
signing key will only resolve if applied by its owner to the corresponding local
restoreSK function to retrieve the signing key. To every other principal, it is of no
use.

1 let (storeSK, restoreSK) = mkSeal〈sigkey〉 ();

computeR : (x : bitstring)→ (r : bitstring)→ bitstring,

computePsd : (sk : sigkey)→ (s : string)→
{x : pseudo | ∃y, z. sk = (y, z) ∧ SSP(z, s, x)},
and

computeIDR : (vkEA : bitstring)→ (vk : bitstring)→ (r : bitstring)→
(R : bitstring)→ (s : string)→ {idr : pseudo | EscrowInfo(vkEA, vk, R, s, idr)} The

functions computeR, computePsd, and computeIDR model the mathematical opera-
tions detailed in Section 2.4. Although computeIDR and computePsd perform the
same mathematical operations, we use different RCF functions to distinguish between
their different application scenarios and, in particular, between their different input
and output types.

computeR takes as input two values r and vk of type bitstring and returns a value
R of type bitstring.

1 let computeR =
2 let (a, _) = mkSeal〈bitstring ∗ bitstring〉 ();
3 fun (x : bitstring)→ fun (y : bitstring)→ a (x, y)

computePsd takes as input the signing key sk : sigkey and a service description
s : string, and it returns the SSP psd : pseudo for which additionally the logical
predicate ∃y, z. sk = (y, z) ∧ SSP(z, s, psd) holds.

130

A.1. RCF Implementation of the API

1 let computePsd =
2 let (a, _) = mkSeal〈verkey ∗ string〉 ();
3 fun (x : sigkey)→ fun (s : string)→
4 let (_, vk) = x;
5 let psd = a (vk, s);
6 let _ = assume(SSP(vk, s, psd));
7 psd

computeIDR takes as input five values vkEA, vk, r, and R of type bitstring, and
s of type string; it returns a value idr of type pseudo that additionally carries the
logical formula EscrowInfo(vkEA, vk, R, s, idr). The inputs are necessary to bind the
corresponding values occurring in the refinement; the value r occurs only implicitly
in the formula since it is only used to mathematically compute the value idr .

1 let computeIDR =
2 let (a, _) = mkSeal〈bitstring ∗ bitstring ∗ bitstring ∗ bitstring ∗ string〉 ();
3 fun (vkEA : bitstring)→ fun (vk : bitstring)→ fun (r : bitstring)→

fun (R : bitstring)→ fun (s : bitstring)→
4 let idr = a (vkTTP, vk, r, R, s);
5 let _ = assume(EscrowInfo(vkEA, vk, R, s, idr));
6 idr

commit : bitstring ∗ random → commitment
and

openCommit : commitment → bitstring ∗ random:
The functions commit and openCommit are sealing and unsealing functions, respec-
tively, for values of type bitstring. We use the seal directly to model the commitment
function and the handle to model commitments. The unsealing function openCommit
is used only internally in the API methods; it cannot be accessed from the outside
and it is not exported by the API.

In practice, the commit function corresponds to the mathematical operation that
computes commitments from a given bit string and randomness. The openCommit
function in general does not exist or it is computationally infeasible to compute.
Symbolically, it is necessary for the zero-knowledge verification: in the concrete proof
verification, we use algebraic properties. Since these cannot be soundly modeled
symbolically [214], we symbolically open the commitments and use the committed
values for the verification [34].

1 let (commit, openCommit) = mkSeal〈bitstring ∗ random〉 ()

131

Appendix A. Well-Typedness of the API Methods

commitsk : sigkey ∗ random → commitment
and

openCommitsk : commitment → sigkey ∗ random:
The functions commitsk and openCommitsk are sealing and unsealing functions, re-
spectively, for values of type sigkey ∗ random. We use the seal directly to model
the dedicated commitment function for signing keys and the handle to model the
commitments to signing keys; the random part corresponds to the randomness used
in the creation of the commitment. The unsealing function openCommitsk is not
available outside of the API implementation (in fact, the unsealing function is not of
kind public, so the type system prevents us from giving the function to the attacker).

Analogous to the commit and openCommit operation, the commitsk and the
openCommitsk operation model commitments to secret keys rather than bit strings.

1 let (commitsk , openCommitsk) = mkSeal〈sigkey ∗ random〉 ()

getSome : (x : (unit ∗ unit) option) → {y : unit ∗ unit | x = Some y}
and

getRevealed : (x : unit RevHid) → {y : unit | x = RevHid y}:
These two functions retrieve and return the values stored in a given option type and
in a given RevHid type, respectively. If no value was contained, i.e., x = None or
x = Hidden i for some i, an exception is raised.

These functions are abbreviations so that we can call a function and do not need
to write match-statements in our code.

let getSome (x : (unit ∗ unit) option) : {y : unit ∗ unit | x = Some y} =
1 match x with
2 | Some(y1, y2) =⇒
3 (y1, y2)

| _ =⇒
fail〈unit ∗ unit〉 ()

let getRevealed (x : unit RevHid) : {y : unit | x = Revealed y} =
1 match x with
2 | Revealed y =⇒
3 y

| _ =⇒
fail〈unit〉 ()

132

A.1. RCF Implementation of the API

commitZK : statement ∗ random → zero-knowledge
and

openZK : zero-knowledge → statement ∗ random:
The commitZK and the openZK functions are sealing and unsealing functions for
values of type statement ∗ random, respectively. They are used to create the zkv
value, the first component of values of type proof . The random part corresponds
to the randomness used in a zero-knowledge proof. Both functions are only used
internally and are not exported.

In practice, the commitZK function corresponds to the concrete mathematical
computation of a zero-knowledge proof.2 Analogous to the openCommit and the
openCommitsk function, we need the openZK function to enable the symbolic zero-
knowledge verification.

1 let (commitZK, openZK) = mkSeal〈statement ∗ random〉 ()

stripStm : statement → statement:
The function stripStm takes as input a value of type statement and returns that value
where all the opening information are set to None, i.e., all opening information from
commitments are removed.

stripStm (stm : statement): statement =
1 match stm with
2 | Saysp(cz, _, csig, _, P) =⇒
3 let P ′ = match P with
4 | PP1 (carg1 , _, . . . , cargn1

, _) =⇒
5 PP1 (carg1 ,None, . . . , cargn1

,None)
6 | PP2 (carg1 , _, . . . , cargn2

, _) =⇒
...

7 | PPm(carg1 , _, . . . , cargnm
, _) =⇒

...
8 PPm(carg1 ,None, . . . , cargnm

,None);
9 Saysp(cz,None, csig,None, P ′)

10 | SSPp(cz, _, cs, _, cpsd , _, cx) =⇒
...

11 | LMp(cx, _, cb, _, `) =⇒
...

12 | LNMp(cx, _, `) =⇒
...

2In a Groth-Sahai implementation, the output to the commitZK function corresponds to the values ~π and
~θ, see Groth and Sahai [128], revised May 23, 2012, page 12

133

Appendix A. Well-Typedness of the API Methods

13 | RELp(cx, _, op, cy, _) =⇒
...

14 | EscrowInfop(z, cx, _, cR, _, cs, _, cidr , _, cr) =⇒
...

| Andp(stm1, stm2) =⇒
Andp(stripStm stm1, stripStm stm2)

| Orp(stm1, stm2) =⇒
Orp(stripStm stm1, stripStm stm2)

| _ =⇒
fail〈proof ∗ unit ∗ statement〉 ()

Listing A.15: Implementation of stripStm.

checkZK : proof → bool:
The checkZK methods is used to prevent the following symbolic attack that generally
does not exist for zero-knowledge proofs: let z be a valid zero-knowledge proof and let
d be a commitment contained within that proof. Furthermore, let c be a commitment
different from d. If the attacker could replace d with c inside of z and the proof
would still verify, the attacker would learn that the d and c are commitments to the
same value.

Without the checkZK method, this attack is possible symbolically. In a concrete
proof, this is prevented by mathematical properties. For instance, in the Groth-Sahai
scheme, the randomness used to compute the commitments is also contained in the
proof. If these randomnesses do not match, the verification fails.

1 let checkZK (p : proof) =
2 match p with
3 | ZK(zkv, stm) =⇒
4 let (stm′, _) = openZK zkv;
5 let s1 = stripStm stm;
6 let s2 = stripStm stm′;
7 if s1 = s2 then
8 true

else
false

| _ =⇒
fail〈bool〉 ()

fakestm : formula → statement:
We need two statements for a disjunctive proof: a valid branch and a (possibly)
invalid branch. These have to be indistinguishable. The fakestm method generates
statements that can be used as invalid branches of a disjunction. More precisely,

134

A.1. RCF Implementation of the API

it takes as input a formula and creates a statement that is indistinguishable from
a statement contained in a valid zero-knowledge proof. The values revealed in the
formula will be revealed in the statement; the hidden values will be hidden in the
statement. The respective commitments will contain randomly chosen values.

The fakestm function takes as input a formula f and produces a statement for
that formula. Intuitively, fakestm pattern-matches the given formula, extracts all the
contained information to create commitments at the proper places. All cryptographic
values such as digital signatures that occur in the proof but not in the formula are
chosen randomly and are inserted into the proof. Consequently, a proof using a
statement that was created by fakestm will not verify but they can be used as the
“false” branch in a disjunctive proof.

fakestm (f : formula) : statement =
1 match f with
2 | And(f1, f2) =⇒
3 Andp(fakestm f1, fakestm f2)
4 | Or(f1, f2) =⇒
5 Orp(fakestm f1, fakestm f2)
6 | Says(vk ′, p′) =⇒
7 match p’ with P (y′1, . . . , y′n) =⇒
8 let vk = getRevealed vk ′;
9 let y1 = getRevealed y′1;

...
10 let yn = getRevealed y′n;
11 let sig = rand();
12 let rsig = rand();
13 let csig = commit(sig, rsig);
14 let rvk = rand();
15 let cvk = commit(vk, rvk);
16 let r1 = rand();
17 let c1 = commit(y1, r1);

...
18 let rn = rand();
19 let cn = commit(yn, rn);
20 Saysp(csig,Some(sig, rsig), cvk ,Some(vk, rvk),

P (c1,Some(y1, r1), . . . , cn,Some(yn, rn)))
| _ =⇒

fail〈statement〉 ()
21 | SSP(vk ′, s′, psd ′) =⇒
22 let vk = getRevealed vk ′;
23 let s = getRevealed s′;
24 let psd = getRevealed psd ′;
25 let rvk = rand();

135

Appendix A. Well-Typedness of the API Methods

26 let cvk = commit(vk, rvk);
27 let rs = rand();
28 let cs = commit(s, rs);
29 let rpsd = rand();
30 let cpsd = commit(psd, rpsd);
31 let x = rand();
32 let rx = rand();
33 let cx = commit(x, rx);
34 SSPp(cvk , Some(vk, rvk), cs, Some(s, rs), cpsd ,Some(psd, rpsd), cx)
35 | LM(x′, b′, `) =⇒
36 let x = getRevealed x′;
37 let b = getRevealed b′;
38 let rx = rand();
39 let cx = commit(x, rx);
40 let rb = rand();
41 let cb = commit(b, rb);
42 LMp(cx,Some(x, rx), cb,Some(b, rb), `)
43 | LNM(x′, `) =⇒
44 let x = getRevealed x′;
45 let rx = rand();
46 let cx = commit(x, rx);
47 LNMp(cx,Some(x, rx), `)
48 | REL(x′, op, y′) =⇒
49 let x = getRevealed x′;
50 let y = getRevealed y′;
51 let rx = rand();
52 let cx = commit(x, rx);
53 letry = rand();
54 let cy = commit(y, ry);
55 RELp(cx, Some(x, rx), op, cy, Some(y, ry))
56 | EscrowInfo(z′, x′, r′, s′, idr ′) =⇒
57 let z = getRevealed z′;
58 let x = getRevealed x′;
59 let r = getRevealed r′;
60 let s = getRevealed s′;
61 let idr = getRevealed idr ′;
62 let rx = rand();
63 let cx = commit(x, rx);
64 let rr = rand();
65 let cr = commit(r, rr);
66 let R = computeR x r;
67 let rR = rand();
68 let cR = commit(R, rR)

136

A.1. RCF Implementation of the API

69 let rs = rand();
70 let cs = commit(s, rs);
71 let ridr = rand();
72 let cidr = commit(idr , ridr)
73 EscrowInfop(z, cx,Some(x, rx), cR,Some(R, rR),
74 cs, Some(s, rs), cidr , Some(idr , ridr), cr)

| _ =⇒
fail〈statement〉 ()

Listing A.17: Implementation of fakestm.

createZKe : statement → random → proof ∗ zero-knowledge ∗ statement
and

createZK : statement → random → proof ∗ zero-knowledge ∗ statement:
The API methods are a convenient interface to create zero-knowledge methods.

For instance, the mkSays method takes as input a public identifier and a predicate;
it outputs a zero-knowledge proof for a Saysp-statement, i.e., for the validity of a
signature verification. To create the zero-knowledge proof, however, only the public
identifier (verification key), the signature, and the predicate are necessary. The
createZK method enables the creation of zero-knowledge proofs based on the values
contained in the proof: given a verification key vk, a signature sig, and a predicate p,
createZK will create a zero-knowledge proof for the statement vk says p. The proof
verifies if sig is a valid signature on p that verifies using key vk.

The createZK function takes as input a non-conjunctive, non-disjunctive statement
stm, a randomness r and creates a zero-knowledge proof p from the opening infor-
mation contained in stm; the randomness r is used to compute the corresponding
zero-knowledge value zkv.

createZKe (stm : statement) (r : random): proof ∗ zero-knowledge ∗ statement =
1 match stm with
2 | Saysp(_, oz, _, osig, P

′) =⇒
3 let (z, rz) = getSome oz;
4 let (sig, rsig) = getSome osig ;
5 let cz = commit (z, rz);
6 let csig = commit(sig, rsig);
7 let P = match P ′ with
8 | PP1 (_, o1, . . . , _, on1) =⇒
9 let (arg1, rarg1) = getSome o1;

...
10 let (argn1 , rargn1

) = getSome on1 ;
11 let carg1 = commit(arg1, rarg1);

...

137

Appendix A. Well-Typedness of the API Methods

12 let cargn1
= commit(argn1 , rargn1

);
13 PP1 (carg1 ,Some(arg1, rarg1), . . . , cargn1

,Some(argn1 , rargn1
))

14 | PP2 (_, o1, . . . , _, on2) =⇒
...

15 | PPm(_, o1, . . . , _, onm) =⇒
...

16 PPm(carg1 ,Some(arg1, rarg1), . . . , cargnm
,Some(argnm

, rargnm
));

| _ =⇒
fail〈predicateP〉 ()

17 let stm′ = Saysp(cz,Some(z, rz), csig,Some(sig, rsig), P);
18 let zkv = commitZK(stm′, r);
19 let p = ZK(zkv, stm′);
20 (p, zkv, stm′)
21 | SSPp(_, oz, _, os, _, opsd , cx) =⇒

...
22 | LMp(_, ox, _, ob, `) =⇒

...
23 | LNMp(_, ox, `) =⇒

...
24 | RELp(_, ox, op, _, oy) =⇒

...
25 | EscrowInfop(z, _, ox, _, oR, _, os, _, oidr , cr) =⇒

...
| _ =⇒

fail〈proof ∗ zero-knowledge ∗ statement〉 ()

Listing A.18: Implementation of createZKe.

createZK (stm : statement) (r : random): proof ∗ zero-knowledge ∗ statement =
1 match stm with
2 | Saysp _ =⇒
3 createZKe stm r
4 | SSPp _ =⇒
5 createZKe stm r
6 | LMp _ =⇒
7 createZKe stm r
8 | LNMp _ =⇒
9 createZKe stm r
10 | RELp _ =⇒
11 createZKe stm r

138

A.1. RCF Implementation of the API

12 | EscrowInfop _ =⇒
13 createZKe stm r
14 | Andp(stm1, stm2) =⇒
15 let (r1, r2) = r;
16 let (p1, zkv′1, stm′1) = createZK stm1 r1;
17 let (p2, zkv′2, stm′2) = createZK stm2 r2;
18 let stm′ = Andp(stm′1, stm′2);
19 let zkv = commitZK(stm′, r);
20 let p = ZK(zkv, stm′);
21 (p, zkv, stm′)
22 | Orp(stm1, stm2) =⇒
23 let (r1, r2) = r;
24 let (p1, zkv′1, stm′1) = createZK stm1 r1;
25 let (p2, zkv′2, stm′2) = createZK stm2 r2;
26 let stm′ = Orp(stm′1, stm′2);
27 let zkv = commitZK(stm′, r);
28 let p = ZK(zkv, stm′);
29 (p, zkv, stm′)

| _ =⇒
fail〈proof ∗ zero-knowledge ∗ statement〉 ()

Listing A.19: Implementation of createZK.

Internally, the createZKe function recomputes all commitments using the opening
information contained in the input statement; the commitments for values without
opening information (e.g., signing keys) are copied. The createZK function relies on
the createZKe function for all non-conjunctive and non-disjunctive statements. The
cases for the other two kinds of statements recursively call the createZK function, as
expected.

rerandstm : statement → statement → statement:
The rerandstm function takes as input a statement stm to be re-randomized and a
statement g that guides this process, i.e., g determines which values in stm are to
be re-randomized. More precisely, if an opening information in g is different from
None, then the randomness contained in the corresponding commitment in stm is
re-randomized with freshly-chosen randomness; commitments for values that do not
contain opening information (e.g., signing keys) are always re-randomized.

For instance, let stm = Saysp(cvk , Some(vk, rvk), csig,P(cm,Some(m, rm))) and
let g = Saysp(_,Some(_,_), csig,P(_,None)), calling rerandstm stm g returns
Saysp(c′vk ,Some(vk, r′vk), c′sig,P(cm,Some(m, rm))) where the primed values have
changed due to the re-randomization process. For the process, only the structure of
g but not the contained values are important.

Notice that using the Groth-Sahai implementation, it is possible to re-randomize
values and to choose the randomness that will be added to the randomness contained

139

Appendix A. Well-Typedness of the API Methods

in the corresponding commitment [42]. Since a symbolic model of such algebraic struc-
tures in inherently unsound [214], we do not consider this selective re-randomization.
Furthermore, a concrete implementation uses the group operation to combine the
freshly-chosen randomness with the already existing one.

rerandstm (stm : statement) → (g : statement) : statement =
1 match stm with
2 | Saysp(cz, oz, csig, osig, P) =⇒

...
3 | SSPp(cz, oz, cs, os, cpsd , opsd , cx) =⇒
4 match g with SSPp(_, ogz, _, ogs , _, o

g
psd , _) =⇒

5 let (c′z, o′z) =
6 if ogz = None then
7 (cz, oz)
8 else
9 let r = rand ();

10 let cnz =
11 let (v, _) = openCommit cz;
12 commit (v, r);
13 let onz =
14 if oz = None then
15 None
16 else
17 let (v, rv) = getSome oz;
18 if cz = commit (v, rv) then
19 Some (v, r)
20 else
21 oz;
22 (cnz , onz);
23 let (c′s, o′s) =
24 if ogs = None then
25 (cs, os)
26 else
27 let r = rand ();
28 let cns =
29 let (v, _) = openCommit cs;
30 commit (v, r);
31 let ons =
32 if os = None then
33 None
34 else
35 let (v, rv) = getSome os;
36 if cs = commit (v, rv) then

140

A.1. RCF Implementation of the API

37 Some (v, r)
38 else
39 os;
40 (cns , ons);
41 let (c′psd , o

′
psd) =

42 if ogpsd = None then
43 (cpsd , opsd)
44 else
45 let r = rand ();
46 let cnpsd =
47 let (v, _) = openCommit cpsd ;
48 commit (v, r);
49 let onpsd =
50 if opsd = None then
51 None
52 else
53 let (v, rv) = getSome opsd ;
54 if cpsd = commit (v, rv) then
55 Some (v, r)
56 else
57 opsd ;
58 (cnpsd , o

n
psd);

59 let c′x =
60 let r = rand ();
61 let (v, _) = openCommit cx;
62 commit (v, r);
63 SSPp(cnz , onz , cns , ons , cnpsd , o

n
psd , c

n
x)

| _ =⇒
fail〈proof 〉 ()

64 | LMp(cx, ox, cb, ob, `) =⇒
...

65 | LNMp(cx, ox, `) =⇒
...

66 | RELp(cx, ox, op, cy, oy) =⇒
...

67 | EscrowInfop(z, cx, ox, cR, oR, cs, os, cidr , oidr , cr) =⇒
...

68 | Andp(stm1, stm2) =⇒
69 match g with Andp(g1, g2) =⇒
70 Andp(rerandstm stm1 g1, rerandstm stm2 g2)

| _ =⇒

141

Appendix A. Well-Typedness of the API Methods

fail〈statement〉 ()
71 | Orp(stm1, stm2) =⇒
72 match g with Orp(g1, g2) =⇒
73 Orp(rerandstm stm1 g1, rerandstm stm2 g2)

| _ =⇒
fail〈statement〉 ()

| _ =⇒
fail〈statement〉 ()

The rerand function is a large case split. It uses the re-randomization guide g : formula
to determine whether to re-randomize a specific commitment or not. More precisely,
if the opening information is different from None (e.g., line 6), then we choose new
randomness and apply it to the respective commitment (e.g., line 12). If the original
opening information was removed (e.g., line 14) or modified (e.g., line 18), the original
opening information is used. Otherwise, the new randomness is inserted (e.g., line 19)

We stress that the check in line 18 is crucial. Otherwise, it is possible to extract
the content of a commitment by supplying any value that is different from None.

checkEq1: α RevHid → bitstring → (bitstring ∗ commitment) list ref → bool:
The function checkEq1 is used to enforce that hidden values with the same index are
equal and that revealed values in the proof and the formula match. It is heavily used
in the checkEq method below.

The function checkEq1 takes as input a value v1 : α RevHid from a formula, a
commitment v2 : commitment from a proof statement, opening information v3 :
α option to v2, and a list reference `. checkEq1 verifies that if v1 is revealed, then it
matches v3 (in particular, v3 is not None) and that if v1 matches Hidden x for some
x, then v2 is equal to all values also hidden with the index x. The list reference `
is used to keep track of the index-commitment pairs. It is updated in the process
accordingly.

let checkEq1 (v1 : α RevHid) (v2 : commitment) (v3 : α option)
(` : (bitstring ∗ commitment) list ref): bool =

1 match v1 with
2 | Revealed x =⇒
3 match v3 with
4 | Some(y, ry) =⇒
5 if x = y then
6 true

else
false

| _ =⇒
false

7 | Hidden x =⇒
8 match v3 with None =⇒

142

A.1. RCF Implementation of the API

9 if List.member(1,2) x (!`) = true then
10 let (_, v) = List.get(1,2) x (!`);
11 if v = v2 then
12 true

else
false

13 else
14 let _ = ` := Cons((x, v2), !`);
15 true

| _ =⇒
false

checkEq: (stm : statement) → (f : formula) → bool:
The checkEq function returns true only if the given statement matches the provided
formula. It traverses the types statement and formula, enforcing that they structurally
match. Additionally, checkEq applies checkEq1 to establish the required equality
between hidden values with the same index. In other words, checkEq enforces that
the given formula matches the given statement.

For instance, let stm =
Saysp(cvk ,Some(vk, rvk), csig,P(cm,None, cn,None, c`,Some(`, r`))) and f =
Revealed vk says P(Hidden 1,Hidden 1,Revealed `)), i.e. the first and second
argument to the predicate P are equal, the third argument is `. The function checkEq
enforces that the two hidden values are equal (i.e., the two commitments cm and cn
contain the same value) and that the value ` contained in the statement is equal to
the value contained in the formula.

The equality between lists and between operations (described by strings) is defined
as expected; values without opening information (e.g., signing keys in the SSP
predicate) are not checked since the real implementation establishes the equality via
the user identifier (see Section 2.4).

let checkEq (stm : statement) (f : formula) : bool =
1 let ` = ref NIL;
2 match stm with
3 | Saysp(cz, oz, p) =⇒
4 match p with
5 | PP1 (c1, o1, . . . , cn1 , on1) =⇒
6 match f with
7 | Says(z, P ′) =⇒
8 match P ′ with
9 | PF1 (x1, . . . , xn1) =⇒
10 if checkEq1 z cz oz ` then
11 if checkEq1 x1 c1 o1 ` then

143

Appendix A. Well-Typedness of the API Methods

...
12 if checkEq1 xn1−1 cn1−1 on1−1 ` then
13 checkEq1 xn1 cn1 on1 `

else
false
...

else
false

| _ =⇒
false

| _ =⇒
false

14 | PP2 (c1, o1, . . . , cn2 , on2) =⇒
...

15 | PPm(c1, o1, . . . , cnm , onm) =⇒
...

| _ =⇒
false

16 | SSPp(cz, oz, cs, os, cpsd , opsd , cx) =⇒
17 match f with
18 | SSP(z, s, psd) =⇒
19 if checkEq1 z cz oz ` then
20 if checkEq1 s cs os ` then
21 checkEq1 psd cpsd opsd `

else
false

else
false

| _ =⇒
false

22 | RELp(cx, ox, op, cy, oy) =⇒
23 match f with
24 | REL(x, op′, y) =⇒
25 if checkEq1 x cx ox ` then
26 if checkEq1 y cy oy ` then
27 op = op′

else
false

else
false

...

144

A.1. RCF Implementation of the API

28 | LMp(cx, ox, cb, ob, `) =⇒
29 match f with
30 | LM(x, b, `′) =⇒
31 if checkEq1 x cx ox ` then
32 if checkEq1 b cb ob ` then
33 ` = `′

else
false

else
false

...
34 | Orp(stm1, stm2) =⇒
35 match f with
36 | Or(f1, f2) =⇒
37 if checkEq stm1 f1 then
38 checkEq stm2 f2

else
false

| _ =⇒
false

| _ =⇒
false

verifystm : statement → bool:
The verifystm function takes as input a statement stm and verifies its validity.

For instance, if the given statement is a vk says p-statement, verifystm opens the
commitments and calls the signature verification on the committed signature with
the predicate p as message and vk as verification key.

Internally, verifystm matches stm and checks the validity of the respective case f .

verifystm (p : statement): bool =
1 match p with
2 | Andp(p1, p2) =⇒
3 if verifystm p1 = true then
4 verifystm p2

else
false

5 | Orp(p1, p2) =⇒
6 if verifystm p1 = true then
7 true
8 else
9 verifystm p2
10 | RELp(cx, _, op, cy, _) =⇒

145

Appendix A. Well-Typedness of the API Methods

11 let (x, rx) = openCommit(cx);
12 let (y, ry) = openCommit(cy);
13 let op′′ = getOperationr op;
14 op′′ x y
15 | EQNp(cx, _, op, cy, _, cz, _) =⇒
16 let (x, rx) = openCommit(cx);
17 let (y, ry) = openCommit(cy);
18 let (z, rz) = openCommit(cz);
19 let op′′ = getOperatione op;
20 if z = op′′ x y then
21 true

else
false

22 | Saysp(csig, _, cz, _, P (c1, _, . . . , cn, _)) =⇒
23 let (sig, rsig) = openCommit(csig);
24 let (z, rz) = openCommit(cz);
25 let (y1, r1) = openCommit(c1);

...
26 let (yn, rn) = openCommit(cn);
27 let (z′′, q) = z sig;
28 if z = z′′ then
29 true

else
false

30 | EscrowInfop(z, cx, _, cR, _, cs, _, cidr , _, cr) =⇒
31 let (s, rs) = openCommit(cs);
32 let (idr , ridr) = openCommit(cidr);
33 let (x, rx) = openCommit(cx);
34 let (r, rr) = openCommit(cr);
35 let (R, rR) = openCommit(cR);
36 let R′ = computeR x r;
37 let idr ′ = computeIDR z x r R s;
38 if R = R′ then
39 if idr = idr ′ then
40 true

else
false

41 | SSPp(cy, _, cs, _, cpsd , _, cx) =⇒
42 let (y, ry) = openCommit(cy);
43 let (s, rs) = openCommit(cs);
44 let (psd, rpsd) = openCommit(cpsd);
45 let (x, rx) = openCommitsk(cx);
46 let (_, w) = x;

146

A.1. RCF Implementation of the API

47 let psd ′ = computePsd x s;
48 if psd ′ = psd then
49 if w = y then
50 true

else
false

51 | LMp(cx, _, cb, _, `) =⇒
52 let (x, rx) = openCommit(cx);
53 let (b, rb) = openCommit(cb);
54 List.member(2,2)〈pseudo ∗ bitstring〉 x b `;
55 | LNMp(cx, _, `) =⇒
56 let (x, rx) = openCommit(cx);
57 let b` = List.member(1,2)〈pseudo ∗ bitstring〉 x `;

if b` = true then
false

58 else
59 true

| _ =⇒ false

Listing A.23: Implementation of verifystm.

verify : proof → formula → bool:
The verify API method takes as input a proof p : proof , a formula f : formula, and
returns true if p is a valid proof for f . This method is generally accessible and,
unlike the verifyF∨ method, does not depend on a certain logical formula. However,
it returns only a Boolean value without a logical refinement.

verify (p : proof) (f : formula) : bool =
1 match p with ZK(zkv, stm) =⇒
2 let ` = ref [];
3 let b1 = checkEq stm f `;
4 let b2 = checkZK p;
5 if b1 = true then
6 if b2 = true then
7 verifystm stm

else
false

else
false

| _ =⇒ false

Internally, verify first creates the list reference ` (line 2) that will be passed to verifystm
and is used to keep track of the equality of hidden values with the same index. Next,
we check that the statement contained inside p is a statement for the zero-knowledge

147

Appendix A. Well-Typedness of the API Methods

proof (lines 1 to 5); intuitively, this check enforces that the commitments in both
parts are equal (see checkEq above). Finally, verifystm verifies that the statement
stm in p is a valid zero-knowledge statement for formula f . Since we checked that
stm and the zero-knowledge proof also match, this method verifies that p is a valid
zero-knowledge proof for formula f .

hidestm : statement → formula → statement:
The hidestm function takes as input a statement stm and a formula f , and it returns
the statement that is derived from stm by hiding all values that are hidden in f .

For instance, let stm = Saysp(cvk ,Some(vk, rvk), csig,P(cm,Some(m, rm)))
and let f = Hidden 1 says Revealed m, then hidestm stm f returns
Saysp(cvk ,None,P(cm,Some(m, rm))).

Internally, hidestm matches stm and f and if a value in f is hidden (via the Hidden
constructor of the α RevHid type), then the corresponding opening information are
replaced by None, otherwise the opening information are not modified.

hidestm (stm : statement) → (f : formula) : statement =
1 match stm with
2 | Saysp(cz, oz, csig, osig, P) =⇒

...
3 | SSPp(cz, oz, cs, os, cpsd , opsd , cx) =⇒
4 match f with SSP(z′, s′, psd ′) =⇒
5 let o′z = match z′ with
6 | Revealed _ =⇒ oz
7 | _ =⇒ None;
8 let o′s = match s′ with
9 | Revealed _ =⇒ os
10 | _ =⇒ None;
11 let o′psd = match psd ′ with
12 | Revealed _ =⇒ opsd
13 | _ =⇒ None;
14 SSPp(cz, o′z, cs, o

′
s, cpsd , o

′
psd , cx)

| _ =⇒
fail〈proof 〉 ()

15 | LMp(cx, ox, cb, ob, `) =⇒
...

16 | LNMp(cx, ox, `) =⇒
...

17 | RELp(cx, ox, op, cy, oy) =⇒
...

18 | EscrowInfop(z, cx, ox, cR, oR, cs, os, cidr , oidr , cr) =⇒

148

A.1. RCF Implementation of the API

...
19 | Andp(stm1, stm2) =⇒
20 match f with And(f1, f2) =⇒
21 Andp(hidestm stm1 f1, hidestm stm2 f2)

| _ =⇒
fail〈statement〉 ()

22 | Orp(stm1, stm2) =⇒
23 match f with Or(f1, f2) =⇒
24 Orp(hidestm stm1 f1, hidestm stm2 f2)

| _ =⇒
fail〈statement〉 ()

| _ =⇒
fail〈statement〉 ()

combineOr : proof → formula → random → proof :
The combineOr function is used to implement the mk∨ API method. It takes as input
a proof p : proof , a disjunctive formula f : formula, and randomness r : random. It
returns a proof for the formula f that is valid only if p is a valid proof for either the
left or the right branch of the disjunctive formula f .

combineOr (p : proof) (f : formula) (rfake : random):
proof ∗ zero-knowledge ∗ statement =

1 match p with ZK(zkv, stm) =⇒
2 let (t, r) = openZK zkv;
3 match f with Or(f1, f2) =⇒
4 if verify p f1 then
5 let stmfake = fakestm f2;
6 let stm′ = Orp(stm, stmfake);
7 let zkv′ = commitZK((t, stmfake), (r, rfake));
8 let p′ = ZK(zkv′, stm′);
9 p′

10 else
11 let stmfake = fakestm f1;
12 let stm′ = Orp(stmfake, stm);
13 let zkv′ = commitZK((stmfake, t), (rfake, r));
14 let p′ = ZK(zkv′, stm′);
15 p′

| _ =⇒ fail〈proof 〉 ()
| _ =⇒ fail〈proof 〉 ()

The function combineOr first matches the proof p to gain access to the zero-knowledge
value zkv and the proven statement stm. The zero-knowledge value is opened (line 2)
to obtain access to the randomness r used in the creation of p. Next, combineOr

149

Appendix A. Well-Typedness of the API Methods

matches the formula f with a disjunction. The following if-statement decides at
which position the valid branch (i.e., the one evidenced by p) is placed.

Inside the then- and the else-branch, first the statement stmfake for the invalid
branch (i.e., the branch not evidenced by p) is created with the fakestm function. The
statement stm′ for the created disjunction consists of the Orp constructor applied
to the original statement stm of p and stmfake. The zero-knowledge value zkv′ for
the disjunction consists of the disjunctive statement stm′ and randomness. This
randomness consists of the original randomness r of p and the input randomness
rfake. Finally, the disjunctive proof p′ is constructed and returned. The order of the
construction depends on whether p is a proof for f1 or not.

Notice that if p is not a proof for either f1 or f2, then it is treated as a proof for f2.
Furthermore, in contrast to the cryptographic description in Section 2.4, we allow for
the creation of disjunctive statements from proofs where not all opening information
are available. Our symbolic model is general and also captures schemes that support
the creation of disjunctive proofs without re-computing the whole proof.

commuteOr : proof → statement → proof
and

commuteAnd : proof → statement → proof :
The RCF model of zero-knowledge proofs does not allow for commuting the statement.
For instance, a proof for a statement of the form Orp(stm1, stm2) cannot be changed
into Orp(stm2, stm1); in a concrete implementation, however, such a commutative
transformation might be a very simple operation. In fact, the cryptographic realization
detailed in Section 2.4 allows for a trivial change of order. To reflect this concrete
operation into the symbolic model, the functions commuteAnd and commuteOr are
necessary. The two functions enable the respective transformations on the symbolic
zero-knowledge proofs.

The functions commuteOr and commuteAnd both take as input a value p : proof
and a statement stm : statement. The statement stm denotes where in p the order of
a conjunction or disjunction will be swapped. The implementation consists only of
match-statements without any insight and is therefore omitted.

Precision of the abstract zero-knowledge model. It is mandatory that the API
types proof and statement are public. Certain kinds of computational proofs, however,
require information whose abstract counterpart is neither public nor tainted. For instance,
the pseudonym proofs computationally require the signing key of type sigkey and the
type sigkey is neither public nor tainted. Intuitively, the reason is that a signing key is a
tuple. The second component, the verification key is public (see Lemma A.11) and the
first component, the sealing function, is tainted (using Kind Fun). The kinding rule for
tuples requires that both components are either public or tainted. Consequently, type
sigkey is neither public nor tainted. The RCF kinding mechanism propagates this property
and deems all types that use such non-public, non-tainted types as also non-public and
non-tainted. Thus, if the type statement contains type sigkey, then statement would also

150

A.1. RCF Implementation of the API

be neither public nor tainted and, as a result, type proof would not be public and the type
system would prevent proofs from being be sent over a publicly readable network such as
the Internet.

We address the problem by keeping the commitments to signing keys in the type
statement but we do not keep the corresponding opening information. This relaxation
is no threat to the soundness of our abstraction. In fact, quite the opposite is the case:
an abstract attacker can create zero-knowledge proofs that the attacker could not create
computationally (because the attacker lacks the knowledge of the signing key).

For instance, the implementation of createZK recomputes all commitments in a state-
ment from the given opening information and returns a proof for the resulting value of
type statement; the commitment to signing keys is used without requiring the key itself.
Thus, an attacker can create a proof, for instance, an SSP proof, without supplying the
opening information of some commitments.

At first glance, this seems to be a severe flaw in our model since we use SSPs to
authenticate users. The issue, however, is immediately resolved because we only consider
SSPs that are equipped with a valid says-statement. Since the says-statement necessarily
requires the knowledge of the secret signing key (or the knowledge of a signature that,
in turn, requires the signing key), the attacker cannot abuse the createZK function to
authenticate users without their consent.3

In fact, since an abstract attacker can create abstract zero-knowledge proofs without
knowing the opening information to the signing key, we technically lose the abstract
of-knowledge property for these values. This is not a problem in our setting since the
predicates we transfer do not rely on a principal knowing the witnesses but only on the
validity of the proven formula.

Main API methods. The rest of the section is organized in two parts.

• first, we implement the main API methods except for the verification method. The
implementation is often surprisingly short because the creation functions only perform
checks regarding the well-formedness of the inputs;

• secondly, we develop important concepts for the implementation of the verify method
and finally implement the verify method. From a type-checking and from a logical
point of view, the verification method is the most important and most complex
function because it allows principals to deduce logical formulas from data received
from an untrusted public network.

We start with the mkId API method.

mkId : (x : string)→ (uid ∗ uidpub):
mkId takes a textual description x : string as input and returns a freshly generated
signing key handle/public key pair.

3Naturally, if a user already authenticated herself, the attacker can use that authentication information
with the createZK method to create another authentication information. The newly derived information,
however, would carry the same logical formula, i.e., the user has already consented to that authentication.

151

Appendix A. Well-Typedness of the API Methods

mkId (x : string) : uid ∗ uidpub =
1 let sk = mkSeal〈Ty{verkey/α}〉 x;
2 let (_, vk ′) = sk;
3 let hdl = storeSK sk;
4 (hdl , fold〈Ty{verkey/α}, verkey〉 vk ′)

The signing keys are the pairs of sealing and unsealing functions, and verification
keys are the unsealing function. We apply the fold constructor to obtain the desired
recursive type verkey for the verification key.

mkSays : uid → predicateF → proof :
mkSays takes as input a handle to the signing key x′ of the principal A executing
the API method (recall that the API does not allow for direct access to secret key
material) and a predicate y. For the sake of readability, we use a predicate rather
than a formula, since the core insight lies in the transport of the logical formula and
not the complexity thereof. mkSays outputs a proof that, when verified by a principal
B, will allow B to logically entail A says F where f is the RCF encoding of predicate
F . Since calling the mkSays method expresses the intention of the executing principal
to state the provided formula, we internalized the necessary assumption into the code
of the API method.

mkSays (x′ : uid) (f : predicateF): proof
1 let x = restoreSK x′;
2 let (w, z) = x;
3 match f with
4 | PF1 (Revealed y1, . . . ,Revealed yn1) =⇒
5 let y′ = PS1 (y1, . . . , yn1);
6 let t = assume z says P1(y1, . . . , yn1);
7 let sig = sign x (z, y′);
8 let rsig = rand();
9 let csig = commit(sig, rsig);
10 let rz = rand();
11 let cz = commit(z, rz);
12 let r1 = rand();
13 let c1 = commit(y1, r1);

...
14 let rn1 = rand();
15 let cn1 = commit(yn1 , rn1);
16 let stm = Saysp(csig, Some(sig, rsig), cz,Some(z, rz),

PP1 (c1,Some(y1, r1), . . . , cn1 ,Some(yn1 , rn1)));
17 let rzkv = rand();
18 let zkv = commitZK (stm, rzkv);
19 ZK (zkv, stm)

152

A.1. RCF Implementation of the API

20 | PF2 (Revealed y1, . . . ,Revealed yn2) =⇒
...

21 | PFm(Revealed y1, . . . ,Revealed ynm) =⇒
22 let y′ = PSm(y1, . . . , ynm);
23 let t = assume z says Pm(y1, . . . , ynm);
24 let sig = w (z, y′);
25 let rsig = rand();
26 let csig = commit(sig, rsig);
27 let rz = rand();
28 let cz = commit(z, rz);
29 let r1 = rand();
30 let c1 = commit(y1, r1);

...
31 let rnm = rand();
32 let cnm = commit(ynm , rnm);
33 let stm = Saysp(csig, Some(sig, rsig), cz,Some(z, rz),

PPm(c1,Some(y1, r1), . . . , cnm ,Some(ynm , rnm)))
34 let rzkv = rand();
35 let zkv = commitZK (stm, rzkv);
36 ZK (zkv, stm)

| _ =⇒ fail〈proof 〉 ()

We implement mkSays as a match statement over all possible predicates in the system.
As a result, mkSays is general and does not require a formula annotation as is needed
for the verification function (see below). mkSays first splits the signing key (line 2)
to obtain the signing component used in creating the signature (line 3), matches
predicate y with the type predicateF to access the arguments for the PFi (lines 4, 20,
. . . , 21) respectively, and creates the signature. The matching of the supplied formula
without any hidden components enforces that all values in the formula are revealed
and, in particular, available for computation. This corresponds to the of-knowledge
property of the zero-knowledge proofs.
The rest of the proof draws the randomness, computes the commitments, and builds
the proof. The code for the different cases only differs in the matched pattern and
on the number of calls to rand and commit (they depend on the arity of the matched
pattern).

mkSSP : uid → bitstring → proof :
mkSSP takes as input the handle of the signing key x′ of the principal running the
code and the service description s. It extracts the signing key x using x′ and uses
computePsd, x, and s to compute the pseudonym psd.
The remainder of the function draws the randomness for the commitments, computes
the commitments, and builds the proof. In accordance with the API description, the

153

Appendix A. Well-Typedness of the API Methods

opening information for commitment cx on the signing key are not included in the
proof. This prevents accidental or intentional leaking of secret key material.

mkSSP (x′ : uid) (s : bitstring) : proof =
1 let x = restoreSK x′;
2 let (_, y) = x;
3 let psd = computePsd x s;
4 let ry = rand();
5 let cy = commit(y, ry);
6 let rs = rand();
7 let cs = commit(s, rs);
8 let rpsd = rand();
9 let cpsd = commit(psd, rpsd);

10 let rx = rand();
11 let cx = commitsk(x, rx);
12 let stm = SSPp(cy,Some(y, ry), cs, Some(s, rs), cpsd ,Some(psd, rpsd), cx)
13 let rzkv = rand();
14 let zkv = commitZK(stm, rzkv);
15 ZK(zkv, stm)

mkREL : formula → proof :
mkREL takes as input the formula y that describes an (in)equality relation. The
function draws randomness, builds the corresponding commitments, and creates
the zero-knowledge proof. Since the operation can be deduced from the performed
cryptographic operation, the proven operation occurs inside the abstract proof in
plain.

mkREL (y : formula): proof =
1 match y with REL(Revealed x, op,Revealed y)
2 let rx = rand();
3 let cx = commit(x, rx);
4 let ry = rand();
5 let cy = commit(y, ry);
6 let stm = RELp(cx, Some(x, rx), op, cy, Some(y, ry))
7 let rzkv = rand();
8 let zkv = commitZK(stm, rzkv);
9 ZK(zkv, stm)

| _ =⇒
fail〈proof 〉 ()

mkLM : pseudo → string → (pseudo ∗ string) list → proof :
mkLM takes as argument a pseudonym x, an attribute b, and a list `. The function

154

A.1. RCF Implementation of the API

draws randomness, builds the corresponding commitments, and creates the zero-
knowledge proof. We only create commitments and opening information for x and b
since, by convention, lists are always revealed.

mkLM (x : pseudo) (b : string) (` : (pseudo ∗ string) list): proof =
1 let rx = rand();
2 let cx = commit(x, rx);
3 let rb = rand();
4 let cb = commit(b, rb);
5 let stm = LMp(cx,Some(x, rx), cb, Some(b, rb), `)
6 let rzkv = rand();
7 let zkv = commitZK(stm, rzkv);
8 ZK(zkv, stm)

mkLNM : pseudo → (pseudo ∗ string) list → proof :
mkLNM takes as argument a pseudonym x and a list `. The function draws random-
ness, builds the corresponding commitments, and creates the zero-knowledge proof.
Analogously to the list membership proof, we only create commitments and opening
information for x since we use the convention that lists cannot be hidden.

mkLNM (x : pseudo) (` : (pseudo ∗ string) list): proof =
1 let rx = rand();
2 let cx = commit(x, rx);
3 let stm = LNMp(cx,Some(x, rx), `)
4 let rzkv = rand();
5 let zkv = commitZK(stm, rzkv);
6 ZK(zkv, stm)

mkIDRev : proof → bitstring → proof :
mkIDRev takes as input a special proof p constructed by a trusted third party and a
service description s. The TTP can, in case of a dispute or another cogent reason
reveal the identity of the user. The proof p shows that the principal A running the
code is registered with the trusted third party and contains the values used by the
TTP to identify A (see Section 2.4). Since mkIDRev creates a proof from scratch and
all values in p are used, p must contain all the opening information.

The escrow value R is computed using the computeR function, the escrow identifier
idr is computed by applying the function computeIDR to z, x, r, R, and the service
description s.

After the computation, the method draws the randomness to compute the commit-
ments and creates the proof. As the value r is considered secret, we only include the
commitment cr on r in the proof.

155

Appendix A. Well-Typedness of the API Methods

mkIDRev (p : proof) (s : string): proof =
1 match p with Saysp(csig, osig, cz, oz, f) =⇒
2 match f with EscrowId(cx, ox, cr, or) =⇒
3 let (z, rz) = getSome oz;
4 let (x, rx) = getSome ox;
5 let (r, rr) = getSome or;
6 let R = computeR x r;
7 let idr = computeIDR z x r R s;
8 let rR = rand();
9 let cR = commit(R, rR);
10 let ridr = rand();
11 let cidr = commit(idr , ridr);
12 let rs = rand();
13 let cs = commit(s, rs);
14 let stm = EscrowInfop(z, cx,Some(x, rx), cR,Some(R, rR),

cs, Some(s, rs), cidr , Some(idr , ridr), cr)
15 let rzkv = rand();
16 let zkv = commitZK(stm, rzkv);
17 ZK(zkv, stm)

| _ =⇒ fail〈proof 〉 ()
| _ =⇒ fail〈proof 〉 ()

mk∧ : (proof ∗ proof)→ proof :
mk∧ takes as input two proofs p1 and p2, and returns the proof for the logical
conjunction p1 ∧ p2.

mk∧ (p : proof ∗ proof) : proof =
1 let (p1, p2) = p;
2 match p1 with ZK(zkv1, stm1) =⇒
3 match p2 with ZK(zkv2, stm2) =⇒
4 let (t1, r1) = openZK zkv1;
5 let (t2, r2) = openZK zkv2;
6 let zkv = commitZK(Andp(t1, t2), (r1, r2));
7 ZK(zkv,Andp(stm1, stm2))

| _ =⇒ fail〈proof 〉 ()
| _ =⇒ fail〈proof 〉 ()

mk∧ function matches the two proofs p1 and p2 to obtain the two corresponding
zero-knowledge values zkv1 and zkv2 as well as the two corresponding statements stm1
and stm2. For the unsealed contents (t1, r1) and (t2, r2) of zkv1 and zkv2, respectively,
it holds that t1 equals stm1 and t2 equals stm2 up to opening information that has
been removed via the hide API method from stm1 and stm2. Consequently, the
correct content of the zkv value consists of the constructed value Andp(t1, t2).

156

A.1. RCF Implementation of the API

The randomness for the zero-knowledge proof is a subtle matter. Since the cryp-
tographic realization does not require any special randomness (the two proofs are
concatenated), we reflect this implementation by using the paired randomness of
the two sub-proofs as randomness for the conjunction. Thus, exactly as in the
cryptographic implementation, the proof for a logical conjunction only depends on
its two sub-proofs.

split∧ : proof → (proof ∗ proof):
split∧ takes as input a proof. If this proof is a conjunction, it returns the two
conjuncted proofs by reversing the operations conducted by mk∧.

split∧ (p : proof) : proof ∗ proof =
1 match p with ZK(zkv, stm) =⇒
2 match stm with Andp(stm1, stm2) =⇒
3 let (t, r) = openZK zkv;
4 let (r1, r2) = r;
5 match t with Andp(t1, t2) =⇒
6 let zkv1 = commitZK(t1, r1);
7 let zkv2 = commitZK(t2, r2);
8 (ZK(zkv1, stm1),ZK(zkv2, stm2))

| _ =⇒ fail〈proof ∗ proof 〉 ()
| _ =⇒ fail〈proof ∗ proof 〉 ()

| _ =⇒ fail〈proof ∗ proof 〉 ()

The implementation performs the following steps: it matches the given proof p against
a conjunction proof (line 1), splits the statement to retrieve the two sub-statements of
the individual sub-proofs (line 2), opens the zkv value (line 3), splits the randomness
(line 4) and reassembles the zero-knowledge proofs for the two sub-proofs, accordingly
(lines 5 through 8).

mk∨ : proof → formula → proof :
The method mk∨ takes as input a proof p and a formula f . If f is a disjunctive
formula and p is a valid proof for the left or the right branch of the disjunction,
then mk∨ returns a disjunctive proof for f . Internally, mk∨ exploits the combineOr
function to create the desired zero-knowledge proof.

mk∨ (p : proof) (f : formula) : proof =
1 let r = rand();
2 combineOr p f r

hide : proof → formula → proof :
The hide method takes as input a proof p and formula f and outputs the proof where
all the values specified by f are hidden. hide takes as input a proof p and a formula

157

Appendix A. Well-Typedness of the API Methods

f , and it returns the proof obtained by hiding all variables specified by f . Internally,
hide relies on the hidestm function.

hide (p : proof) (f : formula) : proof =
1 match p with ZK(zkv, stm) =⇒
2 let stm′ = hidestm stm f ;
3 ZK(zkv, stm′)

| _ =⇒
fail〈proof 〉 ()

rerand : proof → statement → proof :
The function rerand implements the re-randomization of Groth-Sahai zero-knowledge
proofs as first observed by Belenkiy et al. [42]. It takes as input a proof p, statement
stm, and it returns the re-randomization of p. The re-randomization is guided by
stm (see rerandstm).

let rerand (p : proof) (stm : statement) : proof =
1 match p with
2 | ZK(zkv, stm2) =⇒
3 let r′ = rand ();
4 let (stm1, r) = openZK zkv;
5 let stm′1 = rerandstm stm1 stm;
6 let stm′2 = rerandstm stm2 stm;
7 let zkv′ = commitZK (stm′1, r′);
8 ZK(zkv′, stm′2)

| _ =⇒
fail〈proof 〉 ()

We symbolically implement re-randomization by choosing a fresh randomness for the
zero-knowledge proof. We do not consider arithmetic properties of randomness, i.e.,
we do not model protocols that rely on the fact that randomness can be canceled.

The verification function verifyF∨. We begin to detail the code for the proof verification
function. Before we start giving the code, we define all the necessary ingredients of the
verification function.

For technical type-checking reasons, we cannot provide one implementation that covers
all cases. Intuitively, one implementation would need to call itself recursively in case of
a conjunction proof. All variables and logical formulas occurring within these recursive
calls are lost, after the verification function returns. Therefore, we could at most make
existentially quantified statements about the sub-proofs. In particular, the equalities
between the values could never be established. For instance, consider the following formula

158

A.1. RCF Implementation of the API

from Example 2.5 of Section 2.3:

∃wPat , wdate, wresults, wpsd′ .
xDoc says Visit(wPat , wdate, wresults)
∧ wPat says Rating(xopinion)
∧ SSP(wPat , xInternist , xpsd)
∧ SSP(wPat , xDentist , wpsd′)
∧ (wpsd′ ,_) /∈ x`

(A.1)

The recursive verification function would verify each part of the proof individually. Ulti-
mately, we would logically obtain the following formula:

∃wPat , wdate, wresults. xDoc says Visit(wPat , wdate, wresults)
∧ ∃wPat . wPat says Rating(xopinion)
∧ ∃wPat . SSP(wPat , xInternist , xpsd)
∧ ∃wPat , wpsd′ . SSP(wPat , xDentist , wpsd′)
∧ ∃wpsd′ . (wpsd′ ,_) /∈ x`

(A.2)

At this point, however, we cannot argue about the equality of existentially quantified
variables, e.g., why the variable wPat from the first line should hide the same value as
the variable wPat from the second line. Intuitively, all the intermediate representations of
the hidden variables are lost inside the function calls and we cannot retrieve the equality
between these anymore. Thus, instead of giving one implementation for the verification
function, we provide code macros that are assembled into the final implementation.

Technically, the code macros are contexts. Intuitively, a context is an expression with
a unique hole and into this hole, another context or another expression can be inserted.
We write C[•] to denote the context C and the hole is denoted by •. Let C ′ be another
context or an expression. C[C ′] is the result of replacing the unique • in context C with
the context C ′. If C ′ is a context, the result is a context again, and if C ′ is an expression,
the result will be an expression.

Clearly, the code macros depend on the proven formula. For instance, verifying a
list membership proof requires different procedures than verifying a says-statement. The
macros, however, do not only depend on the statement but also on the code assembled
for the parts of the statement proven before. This dependence of the code macros on
the previously assembled code is crucial and subtler than hinted in Equation A.1 and
Equation A.2. We use logical maps to record and enforce equalities of variables within the
code macros. The maps rely on the following definition that identifies variables with their
canonical positional index.

Intuitively, the following definition extracts the offset ∆→ of a formula, the positions
of principal identifiers Ivk , i.e., verification keys, and the variables Vars occurring in a
formula ordered from “left to right”. Intuitively, Ivk determines which elements of Vars
are user identifiers. In the implementation, we ensure that we associate user identifiers
with verification keys that have the strong type verkey. We use ∆→ to properly adjust
the indices of Ivk in the right branch of conjunctions and disjunctions by considering the
respective left branch and the number of variables occurring therein.

159

Appendix A. Well-Typedness of the API Methods

Definition A.1 (Formula offset, verification key indices, and variables of conjunctive
formulas). Let eI (f : formula) be the function that extracts information from f as follows:

eI

Says


x0 : uidpub RevHid,

PFk (x1 : T k1 ,
. . . ,

{xn : T kn | Fe})


 ::=

 n+ 1,
{0} ∪ {i | T ki = uidpub RevHid},
(x0, . . . , xn))



eI

SSP

 vk : uidpub RevHid,
s : bitstring RevHid,

psd : bitstring RevHid


 ::= (3, ∅, (vk, s, psd))

eI

REL

 x : bitstring RevHid,
op : string,

y : bitstring RevHid


 ::= (3, ∅, (x, op, y))

eI

EQN


x : bitstring RevHid,

op : string,
y : bitstring RevHid,
z : bitstring RevHid


 ::= (4, ∅, (x, op, y, z))

eI

LM

 x : pseudo RevHid,
b : bitstring RevHid,

` : list


 ::= (3, ∅, (x, b, `))

eI
(

LNM
(
x : pseudo RevHid,

` : list

))
::= (2, ∅, (x, `))

eI

EscrowInfo


vkEA : uidpub,

vk : uidpub RevHid,
R : bitstring RevHid,
s : bitstring RevHid,

idr : bitstring RevHid



 ::= (5, ∅, (vkEA, vk, R, s, idr))

eI (And(f1, f2)) ::= (n+ n′, S ∪ (n+ S′), V@V ′),

where (n, S, V) = eI (f1), (n′, S′, V ′) = eI (f2), i + M := {i + m | m ∈ M}, and
(x0, . . . , xn)@(y0, . . . , ym) := (x0, . . . , xn, y0, . . . , ym).

Notice that we explicitly differentiate between uidpub and bitstring in the definition of
eI (f), i.e., we consider the ML definition of uidpub and bitstring since both coincide with
type unit in RCF.

Let (n, S, V) = eI (f). We call ∆→(f) := n the formula offset of f . We call Ivk(f) := S
the verification key indices of f , and we call Vars(f) := V the variables occurring in f .

The verification key indices report the positions in a formula that are filled with public
identifiers. This notion is important because we use it to identify variables that have
the strong type verkey. More precisely, we will later require that for each user identifier

160

A.1. RCF Implementation of the API

x : uidpub at these positions, there is a variable y such that x = y and y : verkey w.r.t. the
current typing environment. The formula offset indicates how many elements a formula
contains and is important to keep the logical maps aligned. The variables of a formula
allow us to name variables in a formula.

For instance, let

F∧ := ∃y. Prof says Reg(y) ∧ y says Eval(sec, good) (A.3)

with the encoding

F∧ := And



f1︷ ︸︸ ︷
Says(Revealed xProf︸ ︷︷ ︸

0

,RegF (Hidden y︸ ︷︷ ︸
1

)),

Says(
2︷ ︸︸ ︷

Hidden y,EvalF (
3︷ ︸︸ ︷

Revealed xsec,

4︷ ︸︸ ︷
Revealed xgood))︸ ︷︷ ︸

f2


Then

• ∆→(f1) = 2, ∆→(f2) = 3, and ∆→(F∧) = 5

• Ivk(F∧) = {0, 1, 2}

• Vars(F∧) = (Revealed xProf ,Hidden y,Hidden y,Revealed xsec,Revealed xgood)

We deploy three maps: EF , ψ, and φ. Intuitively,

• EF takes as input a positional index i of a variable and returns the smallest positional
index j ≤ i such that the value at position j is equal to the value at position i (in
the formula). For instance, the example in Equation A.3 yields the following map

EF∧(0) = 0 EF∧(1) = 1 EF∧(2) = 1
EF∧(3) = 3 EF∧(4) = 4

• ψ partitions the variables occurring in the verification function verifyF∨ w.r.t. equality,
i.e., variables in one partition are pairwise equal. This is of paramount importance:
the sealing mechanism will provide access to the witnesses (i.e., the hidden values) in
the verification function. We use ψ to prove equality of these witnesses and these
equalities allow us to logically represent equal witnesses by a single existentially
quantified variable.

• φ tracks variables that can be typed with the strong type verkey under the current
typing environment. The reason for the tracking is of a very technical nature and
inherently necessary for the type-checking process. For instance, the signature
verification function requires as argument a value of type verkey. If a value, however,
is hidden in a formula, then the formula does not provide us with a value of that type

161

Appendix A. Well-Typedness of the API Methods

and the proof only contains values of type bitstring. In these situations, φ will point
us to a variable y : verkey that can be used as argument to the verification function
(the code performs the necessary equality checks to justify using y as verification key).
Notice that y may only be known within the verification by unsealing the witnesses,
i.e., the value in the proven statement corresponding to y may be hidden.

We formally define the maps using Definition A.1.

Definition A.2 (EF∧ , ψ, and φ). Let f := F∧ be a formula without disjunctions and
(x0, . . . , xn) = Vars(F∧). We define the index map function EF∧ as follows:

EF∧ : N→ N, EF∧(i) = min
0≤j≤i

xj
F= xi

where xi
F= xj denotes that the values or variables corresponding to xi and xj in the logical

formula F∧ are equal, i.e., the variables xi and xj correspond to the same existentially
quantified variable in F∧ or that the variables xi and xj correspond to the same value in
F∧.

ψ : N→ ℘(Vars) φ : N→ Vars.

where Vars denotes the set of all RCF variables and ℘(S) denotes the power set of the set
S. Additionally, we define the usual update:

φ[x 7→ y](z) =
{
y if x = z

φ(z) otherwise
ψ[x 7→ y](z) =

{
y if x = z

ψ(z) otherwise

Initially (i.e., if no update is applied) ∀x. φ(x) = ⊥ and ∀x. ψ(x) = ∅.

The updates are contained in the proper locations in the code macros and are marked
in the special line numbers.

The following proposition states that extending a formula F∧ with a logical conjunction
does not change the index map restricted to the old formula F∧.

Proposition A.1. Let F∧1 and F∧2 be a conjunctive formulas. Then, ∀i <
∆→(F∧1). EF∧1 (i) = EF∧1 ∧F∧2 (i).

Notation (Extending formulas with logical conjunctions). In the following, we will discuss
formulas that are extended by applying a logical conjunctions to it. To simplify our
soundness proof, we stipulate that formulas are in a normal form. More precisely, we
extended formulas only with elementary formulas, i.e., a formula F∧ is extended to
F∧′ := F∧ ∧Fe for some elementary formula Fe. Since logical conjunction is commutative
and associative, this restricts only the syntax but does not change the logical meaning.

Notation (Index map E subscript). As stated by Proposition A.1, the index map E
induced by a formula F∧ and by a formula F∧ ∧Fe is the same for all indices i < ∆→(F∧).
Therefore, if the formula is clear from the context, we will drop it from the subscript for
the sake of readability in the rest of the thesis.

162

A.1. RCF Implementation of the API

Above, we stated that we use the logical map ψ to keep track of the variables that are
equal to each other. We now define the code that will enforce these equalities so that we
can use them while type-checking later on.

Definition A.3 (ψ-induced code). We define Mψ := {S | S = ψ(i) for some i},

context=({x1, . . . , xn})[•] :=



if x1 = x2 then
...

if x1 = xn then
•

else
false
...

else
false

and context=({S1, . . . , Sn})[•] as

context=({S1, . . . , Sn})[•] := context=(S1)[context=(S2)[. . . [context=(Sn)[•]] . . .]].

We let context=(ψ) := context=(Mψ).

The last piece missing before we can finally define the verification function is the formula
translation JF , zkv, stm, f, ωK. This translation defines how we assemble the individual code
macros into the final, formula-specific verification function. This translation canonically
follows the structure of F .

Definition A.4 (Formula translation). We define the formula translation
JF , zkv, stm, f, ωK for a general formula F , a zero-knowledge value zkv : zero-knowledge, a
statement stm : statement, a formula f : formula, and positional index ω.

s
Says(xvk , P

F
k (x1, . . . , xn)),

zkv, stm, f, ω

{
::= Says-Macro

(
Says(xvk , P

F
k (x1, . . . , xn)),

stm, f, ω

)
JSSP(xvk , xs, xpsd), zkv, stm, f, ωK ::= SSP-Macro(SSP(xvk , xs, xpsd), stm, f, ω)

JREL(x, op, y), zkv, stm, f, ωK ::= REL-Macro(REL(x, op, y), stm, f, ω)
JEQN(x, op, y, z), zkv, stm, f, ωK ::= EQN -Macro(EQN(x, op, y, z), stm, f, ω)

JLM(x, b, `), zkv, stm, f, ωK ::= LM -Macro(LM(x, b, `), stm, f, ω)
JLNM(x, `), zkv, stm, f, ωK ::= LNM -Macro(LNM(x, `), stm, f, ω)u

vEscrowInfo
(
xEA, xvk ,
xR, xs, xidr

)
,

zkv, stm, f, ω

}

~ ::= Escrow-Macro

EscrowInfo
(
xEA, xvk ,
xR, xs, xidr

)
,

stm, f, ω


r

And(F∧1 ,F∧2), zkv, stm, f, ω
z

::= And-Macro
(

And(F∧1 ,F∧2), stm, f,
ω, ω + ∆→(F∧1)

)
r

Or(F∨1 ,F∨2), zkv, stm, f, ω
z

::= Or-Macro(Or(F∨1 ,F∨2), zkv, stm, f)

163

Appendix A. Well-Typedness of the API Methods

Verification code macros. We discuss the code macros that are the building blocks of
the verification function. Since each verification function is specialized for a given formula,
the code macros will be tailored for that formula. All code macros are contexts. The
corresponding hole • is always placed at the point of the verification code that is reached
if all checks turned out positive, i.e., if the verification up to this point succeeded.

The verify method is parameterized with the formula F∨ to be verified. The code
macros and the refinement of the return value are tailored for that formula. The method
takes as input the proof p : proof and the formula y : formula. The refinement on the
returned Boolean intuitively states that if the return value is true, then F∨ holds.

verifyF∨ (p : proof) (f : formula) : {x : bool | ∀z̃. f = F∨ ∧ x = true =⇒ F∨} =
1 match p with ZK(zkv, stm) ⇒
2 let c1 = checkEq stm f ;
3 let c2 = checkZK p;
4 if c1 = true then
5 if c2 = true then
6 JF∨, zkv, stm, f, 0K [context=(ψ)[true]]

else
false

else
false

Listing A.39: verify top-level structure

The code first obtains access to the proven statement stm to check whether the statement
inside p matches the formula f . Then, it ensures, that the zero-knowledge value of p and
the proven statement match. Only if both checks succeed, are the specific tests for for F∨
executed. Finally, when the logical map ψ is set up by the macros, we run the code that
checks for the equalities induced by ψ. We emphasize that the conditional code for ψ is
created after the translation function has set up that map.

Or-Macro(Or(F∨1 ,F∨2), zkv, stm, f) ,
1 match stm with Orp(stm1, stm2) =⇒
2 match f with Or(f1, f2) =⇒
3 let tmpzkv = openZK zkv;
4 let (stm′, r) = tmpzkv ;
5 match stm′ with Orp(stm1, stm2) =⇒
6 let zkv1 = commitZK (stm′1, r);
7 let zkv2 = commitZK (stm′2, r);
8 let res1 = verifyF∨1 ZK(zkv1, stm1) f1;

9 if res1 = true then
10 res1
11 else

164

A.1. RCF Implementation of the API

12 verifyF∨2 ZK(zkv2, r) f2

| _ =⇒ false
| _ =⇒ false

| _ =⇒ false

Listing A.40: Or-Macro(Or(F∨1 ,F∨2), zkv, stm, f).

The macro for the logical disjunction first matches the given statement stm and the given
formula f , and then destructs the zero-knowledge value. The reason is that it verifies the
left branch of the disjunction and, should that verification return false, verifies the right
branch. If the left branch returns true, then the result is returned, otherwise the result of
the verification of the right branch is returned. Since the verification expects as input a
value of type proof, we assemble the proofs ZK(zkv1, r) and ZK(zkv2, r) for both branches
on the fly using the randomness contained in the original proof. Since these proof values
are only used internally and never accessible outside of the verification function, using this
randomness causes no problems.

Since the disjunction is valid if either of the branches is valid (and in particular, the
disjunctive formula F∨ is implied if either of its branches is valid), this check is sufficient to
return the refinement F∨. Also notice that this fact is also sufficient to extend a possible
existential quantification across a disjunction, i.e., if ∃x̃. F∨1 holds, then ∃x̃, x̃′. F∨1 ∨ F∨2
holds.

And-Macro(And(F∧1 ,F∧2), stm, f, ω1, ω2) ,
1 match stm with Andp(stm1, stm2) =⇒
2 match f with And(f1, f2) =⇒
3

r
F∧1 , ∗, stm1, f1, ω1

z
[

r
F∧2 , ∗, stm2, f2, ω2

z
]

| _ =⇒ false
| _ =⇒ false

Listing A.41: And-Macro(And(F∧1 ,F∧2), stm, f, ω1, ω2).

The macro for logical conjunctions first executes the code for the left branch and if this
branch verifies successfully, then the code for the right branch is executed.

Formally, the translation function requires us to input a zero-knowledge value. Since
this value is only necessary for disjunctions that, by the required disjunctive form, may
not appear underneath conjunctions, we intentionally neglect the code for assembling some
zero-knowledge values and input no value (denoted by ∗).

Notation. The following macros conditionally contain code that is highlighted in gray.
This code is added depending on whether values in the corresponding formula are revealed or
not. For instance, in the following says-macro, we add code for every individual arguments
of the stated predicate that is revealed.

165

Appendix A. Well-Typedness of the API Methods

Says-Macro(Says(xvk , P
F
k (x1, . . . , xn)), stm, f, ω)

1 match stm with Saysp(csig, _, cz, _, p′) =⇒
2 match p′ with PPk (carg1 , _, . . . , cargn

, _) =⇒
3 match f with Says(arg′0, f ′) =⇒
4 match f ′ with PFk (arg′1, . . . , arg′n) =⇒
5 let tmpsig = openCommit csig ;
6 let (sig, rsig) = tmpsig ;
7 let tmpz = openCommit cz;
8 let (arg0, rarg0) = tmpz;

...
9 let tmpn−1 = openCommit cargn−1 ;
10 let (argn−1, rargn−1) = tmpn−1;
11 let tmpn = openCommit cargn

;
12 let (argn, rargn

) = tmpn;

Add lines 13 and Uψ0

for each i > 0 if ∃x. arg′i = Revealed x, i.e., i-th argument is revealed

13 let argoi = getRevealed arg′i;
Uψ0 ψ := ψ[E(ω + i) 7→ ψ(E(ω + i)) ∪ {argoi }]

EndAdd

15 let z′′ = match arg′0 with
16 | Revealed x =⇒
17 PKI x

Uφ0 φ := φ[E(ω) 7→ z′′]
19 | _ =⇒
20 φ(E(ω))
21 if z′′ = arg0 then
22 let m = checksig z′′ sig;
23 match m with
24 | PSk (y′1, . . . , y′n) =⇒
25 if arg1 = y′1 then

...
26 if argn = y′n then
Uφ1 φ := φ[E(ω + 1) 7→ y′1]

...
Uφn φ := φ[E(ω + n) 7→ y′n]
Uψ1 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {arg0}]
Uψ2 ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {arg1}]

...

166

A.1. RCF Implementation of the API

Uψn+1 ψ := ψ[E(ω + n) 7→ ψ(E(ω + n)) ∪ {argn}]
32 •

else
false
...

else
false

| _ =⇒ false
else
false

| _ =⇒ false
| _ =⇒ false

| _ =⇒ false
| _ =⇒ false

Listing A.42: Says-Macro(Says(xvk , P
F
k (x1, . . . , xn)), stm, f, ω)

The says-macro matches f and stm with the expected pattern and starts to unseal all the
commitments. The purpose of the code lines 13 and Uψ0 is to bind the revealed values (i.e.,
the values themselves, not the RevHid values) to the variables argoi . These variables are
then stored in the map ψ together with the content of the corresponding commitments
argi. Consequently, the equality tests performed by the context=(ψ) will enforce that the
values stored in the commitments and corresponding revealed values in a formula are equal
in case the return value is true.

We establish the authenticity of the user that originally created the zero-knowledge
proof is determined in lines 15-20. If the user is revealed, we use the PKI to establish
the type verkey for the corresponding value. Otherwise, we use the map E to retrieve the
previously established verification key. Here, we see why the well-formedness of formulas
(see Section 2.5.2.3 and Appendix A.2) is important: without well-formed formulas, e.g.,
if all user identifiers are hidden, we cannot obtain the corresponding strongly-typed
verification keys since the map E is empty and there is no value to retrieve from the PKI.

If the committed user identifier matches the signing key derived in line 15 and the
committed values match the values contained within the signature (lines 21-26), the
verification successfully finished.

The remaining lines Uφ1 -U
ψ
n+1 update the logical maps, ensuring that newly obtained

verification keys (since these messages are taken from the signature, verification keys are
given type verkey) are stored in φ (lines Uφ1 -Uφn) and that the necessary equality constraints
are recorded in ψ (lines Uψ1 -Uψn+1).

SSP-Macro(SSP(xvk , xs, xpsd), stm, f, ω) ,
1 match stm with SSPp(cz, _, cs, _, cpsd , _, cx) =⇒
2 match f with SSP(z′, s′, psd ′) =⇒
3 let tmpx = openCommitsk cx;

167

Appendix A. Well-Typedness of the API Methods

4 let (x, rx) = tmpx;
5 let tmpz = openCommit cz;
6 let (z, rz) = tmpz;
7 let tmps = openCommit cs;
8 let (s, rs) = tmps;
9 let tmppsd = openCommit cpsd ;
10 let (psd, rpsd) = tmppsd ;
11 let (x′′, x′) = x;

Add lines 12 and Uψ0

if ∃y. z′ = Revealed y, i.e., the verification key is revealed

12 let zo = getRevealed z′;
Uψ0 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {zo}]

End Add

Add lines 14 andUψ1

if ∃y. s′ = Revealed y, i.e., the service is revealed

14 let so = getRevealed s′;
Uψ1 ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {so}]

End Add

Add lines 16 and Uψ2

if ∃y. psd ′ = Revealed y, i.e., the pseudonym is revealed

16 let psdo = getRevealed psd ′;
Uψ2 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {psdo}]

End Add

Uψ3 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z, x′}]
Uψ4 ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {s}]
Uψ5 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {psd}]
21 let psd ′′ = computePsd x s;
22 if psd ′′ = psd then
23 •

else
false

| _ =⇒ false
| _ =⇒ false

Listing A.43: SSP-Macro(SSP(xvk , xs, xpsd), stm, f, ω)

The first step is the usual opening of all the commitments. The notable difference from the
other code is the splitting of the signing key x to obtain the corresponding verification key
x′ in line 11. We will use x′ to tie the verification key used in computing the service-specific

168

A.1. RCF Implementation of the API

pseudonym to the user identifier contained therein using ψ (line Uψ3).
Similarly to lines 13 and Uψ0 from the says-macro, the lines 12 and Uψ2 enforce that

the values revealed in the formula are bound to the respective variables zo, so, and psdo.
These are put into the logical map ψ and are compared to the corresponding variables z, s,
and psd in the code context=(ψ) at the end of the verification; z, s, and psd are put into
the logical map in lines Uψ3 -Uψ5 .

The whole purpose of the SSP proof is to show that a pseudonym is computed correctly.
We compute the pseudonym corresponding to the given signing key and service in line 21
and compare to the given pseudonym line 22. This modus operandi of the symbolic
implementation very closely matches the concrete cryptographic implementation.

Rel-Macro(REL(x, op, y), stm, f, ω) ,
1 match stm with RELp(cx, _, op, cy, _) =⇒
2 match f with REL(x′, op′, y′) =⇒
3 let tmpx = openCommit cx;
4 let (x, rx) = tmpx;
5 let tmpy = openCommit cy;
6 let (y, ry) = tmpy;

Add lines 7 and Uψ0

if ∃z. x′ = Revealed z, i.e., the left operand is revealed

7 let xo = getRevealed x′;
Uψ0 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}]

End Add

Add lines 9 and Uψ1

if ∃z. y′ = Revealed z, i.e., the right operand is revealed

9 let yo = getRevealed y′;
Uψ1 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {yo}]

End Add

Uψ2 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
Uψ3 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {y}]
13 let b = funcrop x y;
14 if b = true then
15 if op = op′ then
16 •

else
false

else
false

| _ =⇒ false

169

Appendix A. Well-Typedness of the API Methods

| _ =⇒ false

Listing A.44: Rel-Macro(REL(x, op, y), stm, f, ω)

The code macro for relational proofs proceeds along the usual pattern. The commitments
are opened and the values revealed in the formula are bound to variables and added the
map ψ. We validate the proven relation in line 13 and the result in line 14. Additionally,
we ensure that the checked relation matches the one requested in the formula in line 15.

Eqn-Macro(EQN(x, op, y, z), stm, f, ω) ,
1 match stm with EQNp(cx, _, op, cy, _, cz, _) =⇒
2 match f with EQN(x′, op′, y′, z′) =⇒
3 let tmpx = openCommit cx;
4 let (x, rx) = tmpx;
5 let tmpy = openCommit cy;
6 let (y, ry) = tmpy;
7 let tmpz = openCommit cz;
8 let (z, rz) = tmpz

Add lines 9 and Uψ0

if ∃z. x′ = Revealed z, i.e., the left operand is revealed

9 let xo = getRevealed x′;
Uψ0 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}]

End Add

Add lines 11 and Uψ1

if ∃z. y′ = Revealed z, i.e., the right operand is revealed

11 let yo = getRevealed y′;
Uψ1 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {yo}]

End Add

Add lines 13 and Uψ2

if ∃z. y′ = Revealed z, i.e., the right operand is revealed

13 let zo = getRevealed z′;
Uψ2 ψ := ψ[E(ω + 3) 7→ ψ(E(ω + 3)) ∪ {zo}]

End Add

Uψ3 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
Uψ4 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {y}]
Uψ5 ψ := ψ[E(ω + 3) 7→ ψ(E(ω + 3)) ∪ {z}]
18 let b = funceop x y;
19 if b = z then

170

A.1. RCF Implementation of the API

20 if op = op′ then
21 •

else
false

else
false

| _ =⇒ false
| _ =⇒ false

Listing A.45: Eqn-Macro(EQN(x, op, y, z), stm, f, ω)

As usual, the commitments are opened and the values revealed in the formula are bound to
variables and added the map ψ. We validate the proven equation in line 18, we compare
the obtained result in line 19 and we check the performed operation in line 20.

LM -Macro(LM(x, b, `), stm, f, ω) ,
1 match stm with LMp(cx, _, cb, _, `) =⇒
2 match f with LM(x′, b′, `′) =⇒
3 let tmpx = openCommit cx;
4 let (x, rx) = tmpx;
5 let tmpb = openCommit cb;
6 let (b, rb) = tmpb;

Add lines 7 and Uψ0

if ∃y. x′ = Revealed y, i.e., the pseudonym is revealed

7 let xo = getRevealed x′;
Uψ0 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}]

End Add

Add lines 9 and Uψ1

if ∃x. b′ = Revealed y, i.e., the attribute is revealed

9 let bo = getRevealed b′;
Uψ1 ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {bo}]

End Add

Uψ2 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
Uψ3 ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {b}]
Uψ4 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {`, `′}]
14 let r = List.member(2,2)〈pseudo ∗ bitstring〉 x b `;
15 if r = true then
16 •

else
false

171

Appendix A. Well-Typedness of the API Methods

| _ =⇒ false
| _ =⇒ false

Listing A.46: LM -Macro(LM(x, b, `), stm, f, ω)

The code macro for list membership proofs proceeds along the usual pattern. The commit-
ments are opened and the values revealed in the formula are bound to variables and added
the map ψ. We validate the list membership in line 14 and 15.

LNM -Macro(LNM(x, `), stm, f, ω) ,
1 match stm with LNMp(cx, _, `) =⇒
2 match f with LNM(x′, `′) =⇒
3 let tmpx = openCommit cx;
4 let (x, rx) = tmpx;

Add lines 5 and Uψ0

if ∃y. x′ = Revealed y, i.e., the pseudonym is revealed

5 let xo = getRevealed x′;
Uψ0 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}]

End Add

Uψ1 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
Uψ2 ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {`, `′}]
9 let r = List.member(1,2)〈pseudo ∗ bitstring〉 x `;
10 if r = false then
11 •

else
false

| _ =⇒ false
| _ =⇒ false

Listing A.47: LNM -Macro(LNM(x, `), stm, f, ω)

As usual, the code macro for list non-membership proofs opens the commitments, and the
values revealed in the formula are bound to variables and added the map ψ. We validate
the list non-membership in line 9 and 10. Notice that for the non-membership, we need
the result r test to be false in order to continue.

Escrow-Macro(EscrowInfo(xEA, xvk , xR, xs, xidr), stm, f, ω) ,
1 match stm with EscrowInfop(z, cx, _, cR, _, cs, _, cidr , _, cr) =⇒
2 match f with EscrowInfo(z′, x′, R′, s′, idr ′) =⇒
3 let tmpx = openCommit cx;
4 let (x, rx) = tmpx;

172

A.1. RCF Implementation of the API

5 let tmpR = openCommit cR;
6 let (R, rR) = tmpR;
7 let tmps = openCommit cs;
8 let (s, rs) = tmps;
9 let tmpidr = openCommit cidr ;

10 let (idr , ridr) = tmpidr ;
11 let tmpr = openCommit cr;
12 let (r, rr) = tmpr;
Uψ0 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z′}]

Add lines 14 and Uψ1

if ∃y. x′ = Revealed y, i.e., if the user identifier is revealed

14 let xo = getRevealed x′;
Uψ1 ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {xo}]

End Add

Add lines 16 and Uψ2

if ∃y. R′ = Revealed y, i.e., if the value R is revealed

16 let Ro = getRevealed R′;
Uψ2 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {Ro}]

End Add

Add lines 18 and Uψ3

if ∃y. s′ = Revealed y, i.e., if the service is revealed

18 let so = getRevealed s′;
Uψ3 ψ := ψ[E(ω + 3) 7→ ψ(E(ω + 3)) ∪ {so}]

End Add

Add lines 20 and Uψ4

if ∃y. idr ′ = Revealed y, i.e., the escrow identifier is revealed

20 let idro = getRevealed idr ′;
Uψ4 ψ := ψ[E(ω + 4) 7→ ψ(E(ω + 4)) ∪ {idro}]

End Add

Uψ5 ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z}]
Uψ6 ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {x}]
Uψ7 ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {R}]
Uψ8 ψ := ψ[E(ω + 3) 7→ ψ(E(ω + 3)) ∪ {s}]
Uψ9 ψ := ψ[E(ω + 4) 7→ ψ(E(ω + 4)) ∪ {idr}]
27 let idr ′′ = computeIDR z x r R s;
28 if idr = idr ′′ then

173

Appendix A. Well-Typedness of the API Methods

29 •
else

else
| _ =⇒ false

| _ =⇒ false

Listing A.48: Escrow-Macro(EscrowInfo(xEA, xvk , xR, xs, xidr), stm, f, ω)

Following the usual pattern, the commitments are opened and the values revealed in the
formula are bound to variables and added to the map ψ. Since we stipulate that the
identity z of the involved trusted third party is always revealed, there is no code added to
extract the identity when it is revealed. Instead, we immediately add z into the map ψ in
line Uψ0 .

A.2. Well-Typedness of the RCF Implementation
We start with the definitions and lemmas that will ultimately pave our way to showing
that our API methods are well-typed. We start formalizing our notion of well-formed
formula. Intuitively, a formula is well-formed if we can check that it originates from a
trustworthy principal of the system. Later in the type-checking proofs, the well-formedness
will establish that all values that are used as verification keys can be given the verification
key type verkey. Since type-checking depends on the types of values, well-formedness is a
central notion and is of paramount importance in our proofs.

We call a key u registered if it is publicly verifiable that u belongs to a principal of
the system. Typically, the owner of a key u registers her key in a public-key infrastructure
(PKI) to establish a publicly-verifiable connection between her identity and her public
key. This infrastructure can be hierarchically-ordered such as VeriSign [216] or it can be
distributed such as webs of trust [207].

Definition A.5 (Trustworthiness of keys). A key u is trustworthy in a monomialM =∧m
i=1 api iff one of the following conditions holds:

• u = vk is registered;

• there exists apj = Says(uk, F) such that u is a variable occurring free in F and uk is
trustworthy inM<j :=

∧j−1
i=1 api.

If we apply this definition to our zero-knowledge proofs, the intuitive meaning is that
a key is trustworthy if the key is not hidden and it originates from a known principal of
the system, or if it is hidden but it is authenticated (via a says-predicate) that is issued by
a trustworthy key.

174

A.2. Well-Typedness of the RCF Implementation

Definition A.6 (Disjunctive form). We say a formula F is in disjunctive form if and
only if F = ∃x̃.

∨m
i=1Mi, whereMi =

∧n
j=1 apj.

Lemma A.1 states the well-known result that every logical formula F can be rewritten in
disjunctive form. A disjunctive normal form can be obtained, for instance, by lexicographical
order. We write dnf (F) for the disjunctive normal form of F .

Definition A.7 (Well-formedness of formulas). A monomialM =
∧m
i=1 api is well-formed

if and only if for every api = Says(uk, F), and for every apj = SSP(u`, s, psd), uk and u`
are trustworthy inM<i andM<j, respectively.

A formula S such that dnf (S) = ∃x̃.
∨m
i=1Mi is well-formed if eachMi is well-formed.

Lemma A.1 (Representation lemma). For every Boolean formula f , there is a formula g
in disjunctive form such that f ⇔ g.

Proof. The proof is by induction: whenever there is a conjunction on top of a disjunction,
apply the distributivity law (x∨ y)∧ z ⇔ (x∧ z)∨ (y ∧ z) or z ∧ (x∨ y)⇔ (z ∧ x)∨ (z ∧ y).
Possible negations will be pushed down using De’Morgan’s laws ¬(x ∧ y)⇔ ¬x ∨ ¬y and
¬(x ∨ y)⇔ ¬x ∧ ¬y.

In the following, we assume that all formulas are well-formed and in disjunctive normal
form. Note that we do not have negations in our formulas.

Notation and auxiliary lemmas. In this paragraph, we review and briefly discuss
important definitions, notations, and lemmas that play a role in the well-typedness proof
below. In particular, we will also show all the typing rules since they play a central role in
the proofs. The definitions, lemmas, and rules are borrowed from Bengtson et al. [49].

Table A.8 introduces the syntax of RCF. We assume collections of names, variables,
and type variables. A name is an identifier, generated at run time, for a channel, while a
variable is a placeholder for a value. The RCF syntax is to be read as a reference only; in
previous sections, we relaxed this syntax and use the usual programming language syntax,
i.e., we use arg0 as variable names rather than writing xarg0 . If Φ is a phrase of syntax, we
write Φ{M/x} to denote the outcome of substituting a value M for each free occurrence
of the variable x in Φ. We identify syntax up to the capture-avoiding renaming of bound
names and variables. Table A.9 introduces the two RCF kinds and the · notation. As
mentioned above, intuitively, a public value can be sent to the attacker and a tainted value
originates from the attacker. Table A.11 shows the deduction system that decides the
well-formedness of typing environments E. Intuitively, this syntactic restriction ensures
that, if E is read from left to right, there are no unbound variables in E and every name is
at most bound once. Table A.12 and Table A.13 depict the kinding and subtyping rules.
Since RCF is equipped with a classical subtyping relation as well as a subtyping based on
kinds, both sets of rules often work closely together. Finally, Table A.14 and Table A.15
show all the RCF typing rules. The typing rules depend on all the rules introduced above.

175

Appendix A. Well-Typedness of the API Methods

a, b, c names
x, y, z variables
h ::= value constructors

fold constructor for recursive types
inl left constructor for sum types
inr right constructor for sum types
hi constructor for arbitrary sum types

datatype U = h1 of T1 | · · · | hn of Tn
M,N ::= values
x variables
() unit
fun x→ A function (scope of x is A)
(M,N) pairs
h M construction

A,B ::= expressions
M value
M N application
M = N syntactic equality
let x = A; B let (scope of x is B)
let (x, y) = M ; B pair split (scope of x, y is B)
match M with h x→ A else B constructor match (scope of x is A)
(νa)A restriction (scope of a is A)
A � B fork
a!M transmission of M on channel a
a? receive message off channel a
assume F assumption of the formula F
assert F assertion of formula F

Table A.8.: Syntax of RCF

ν ::= pub | tnt kind (public or tainted)

Let ν be defined as pub := tnt and tnt := pub.

Table A.9.: Syntax of kinds

176

A.2. Well-Typedness of the RCF Implementation

µ ::= environment entry
α type variable
α :: ν kinding for recursive type α
α <: α′ subtyping for recursive types α 6= α′

a l T channel name
x : T variable

E ::= µ1, . . . , µ`

dom(α) = {α}
dom(α :: ν) = {α}
dom(α <: α′) = {α, α′}
dom(a l T) = {a}
dom(x : T) = {x}
dom(E) = dom(µ1) ∪ · · · ∪ dom(µ`)

recvar(E) = {α, α′ | (α <: α′) ∈ E} ∪ {α | (α :: ν) ∈ E}

Let E = µ1, . . . , µ`. We write µ ∈ E to denote that µ = µi for some i ∈ {1, . . . , `}.
We use the notation T <:> T ′ to denote T <: T ′ and T ′ <: T .

Table A.10.: Syntax of typing environments.

Empty Env
E ` �

Env Entry
E ` � fnfv(µ) ⊆ dom(E) dom(µ) ∩ dom(E) = ∅

E,µ ` �

Type
E ` � fnfv(T) ⊆ dom(E)

E ` T

Derive
E ` � fnfv(F) ⊆ dom(E) forms(E) ` F

E ` F

forms(E) ::=


{F{y/x}} ∪ forms(y : T) if E = (y : {x : T | F})
forms(E′) ∪ forms(µ) if E = E′, µ

∅ otherwise

Table A.11.: Rules for well-formedness and deduction.

177

Appendix A. Well-Typedness of the API Methods

Kind Var
E ` � (α :: ν) ∈ E

E ` α :: ν

Kind Unit
E ` �

E ` unit :: ν

Kind Fun
E ` T :: ν E, x : T ` (Πx : T. U) :: ν

E ` (Πx : T. U) :: ν

Kind Pair
E ` T :: ν E, x : T ` U :: ν

E ` (Σx : T. U) :: ν

Kind Sum
E ` T :: ν E ` U :: ν

E ` (T + U) :: ν

Kind Rec
E,α :: ν ` T :: ν
E ` (µα. T) :: ν

Kind Refine Public
E ` {x : T | F} E ` T :: pub

E ` {x : T | F} :: pub

Kind Refine Tainted
E ` T :: tnt E, x : T ` C

E ` {x : T | F} :: tnt

Kind OK Tainted
E ` {F} E ` F
E ` {F} :: tnt

Table A.12.: Kinding rules: E ` T :: ν

Sub Refl
E ` T recvar(E) ∩ fnfv(T) = ∅

E ` T <: T

Sub Public Tainted
E ` T :: pub E ` U :: tnt

E ` T <: U

Sub Fun
E ` T ′ <: T E ` U <: U ′

E ` (Πx : T. U) <: (Πx : T ′. U ′)

Sub Pair
E ` T <: T ′ E, x : T ` U <: U ′

E ` (Σx : T. U) <: (Σx : T ′. U ′)

Sub Sum
E ` T <: T ′ E ` U <: U ′

E ` (T + U) <: (T ′ + U ′)

Sub Var
E ` � E ` (α <: α′) ∈ E

E ` α <: α′

Sub Refine Left
E ` {x : T | F} E ` T <: T ′

E ` {x : T | F} <: T ′

Sub Refine Right
E ` T <: T ′ E, x : T ` F

E ` T <: {x : T ′ | F}

Table A.13.: Subtyping rules: E ` T <: U

178

A.2. Well-Typedness of the RCF Implementation

Val Var
E ` � (x : T) ∈ E

E ` x : T

Val Unit
E ` �

E ` () : unit

Val Fun
E, x : T ` A : U

E ` fun x→ A : (Πx : T. U)

Val Pair
E `M : T E ` N : U{M/x}

E ` (M,N) : Σx : T. U

Val Refine
E `M : T E ` F{M/x}

E `M : {x : T | F}

Val Inl Inr Fold
h : (T,U) E `M : T E ` U

E ` h(M) : U

Val Ok
E ` F

E ` () : {F}

fold : (T{µα. T/α}, µα. T)
hi : (Ti, U) for types of the form datatype U = h1 of T1 | · · · | hn of Tn

Table A.14.: Rules for values: E `M : T

Definition A.8 (Free names and free variables, executable typing environment). We write
fnfv(Φ) for the set of names and variables occurring free in a phrase of syntax Φ. We say
a phrase is closed to mean it has no free variables (although it may have free names), i.e.,
fv(Φ) = ∅.

We call a typing environment E executable if and only if recvarE = ∅ (see Table A.10
for the definition of recvar).

The definition of fv (free variables) and fn (free names) is analogous to that of fnfv
and helpful when describing properties of the syntax phrases. The notion of executable
environment is a technical necessity and we introduce it as it is a precondition to several
lemmas that we use. Intuitively, a typing environment is executable if it only contains
entries of the form (a l T) and (x : T) for some names a, variables x, and types T .

Logical formulas F that are tracked in typing environments E are a substantial part of
our proofs. Technically, a formula F does not occur in E plainly but it is always attached
to a refined variable v : {x : unit | F} where x is some fresh variable that does not occur
in F . We use the abbreviated notation {F} of ok types to denote {_ : unit | F}. In this
type, the variable of the refinement type is unnamed (as it does not occur in F). Formally,
we use fresh variables that occur nowhere else to instantiate the placeholders _. With a
slight abuse of notation, we also write µ := {F} to occur in typing environments to denote
µ := _ : {F} where the placeholder is also instantiated with a fresh variable that does
not occur in F and, in particular, that does not occur anywhere else in E. As mentioned
above, we use the convention that F∨ denotes formulas in disjunctive normal form without
negation, F∧ denotes formulas that contain no disjunctions and no negations, and Fe
denotes positive elementary formulas.

179

Appendix A. Well-Typedness of the API Methods

Exp Subsum
E ` A : T E ` T <: T ′

E ` A : T ′

Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x}

Exp Split
E `M : (Σx : T. U)

E, x : T, y : U,_ : {(x, y) = M} ` A : V {x, y} ∩ fv(V) = ∅
E ` let (x, y) = M ; A : V

Exp Match
E `M : T

h : (H,T) E, x : H,_ : {h x = M} ` A : U E,_ : {∀x. h x 6= M} ` B : U
E ` match M with h x→ A else B : U

Exp Eq
E `M : T E ` N : U x /∈ fv(M,N)

E `M = N : {x : bool | (x = true ∧M = N) ∨ (x = false ∧M 6= N)}

Exp Assume
E ` � fnfv(F) ⊆ dom(E)

E ` assume F : {F}

Exp Assert
E ` F

E ` assert F : unit

Exp Let
E ` A : T E, x : T ` B : U x /∈ fv(U)

E ` let x = A; B : U

We omit the rules for channels (Exp Res, Exp Send, and Exp Recv), and for
parallel execution (Exp Fork), as they are not used in the proofs.

Table A.15.: Rules for expressions: E ` A : T

E ` � E is syntactically well-formed
E ` T in E, T is syntactically well-formed
E ` F formula F is derivable from E
E ` T :: ν in E, type T has kind ν
E ` T <: U in E, type T is a subtype of U
E ` A : T in E, expression A has type T

Table A.16.: Judgments of the RCF type system.

180

A.2. Well-Typedness of the RCF Implementation

Regarding the well-typedness of an expression, we state the following lemmas needed
in the proofs below. Intuitively, Lemma A.2 states that removing entries from a well-formed
environment “from the right” yields a well-formed environment; Corollary A.1 says that if
an expression type-checks under a typing environment E, then E is well-formed.

Lemma A.2 (Shortening typing environments). Let E,µ ` �. Then E ` �.

Proof. Follows immediately as a consequence of rule Env Entry.

Lemma A.3 (Derived judgments (Lemma 2 [49])).

(1) If E ` T , then E ` � and fnfv(T) ⊆ dom(E).

(2) If E ` F , then E ` � and fnfv(F) ⊆ dom(E).

(3) If E ` T :: v, then E ` T .

(4) If E ` T <: U , then E ` T and E ` U .

(5) If E ` A : T , then E ` T and fnfv(A) ⊆ dom(E)

In the following proofs, we let let J range over judgments {�, T,F , T :: ν, T <: U,A :
T}.

Corollary A.1 (Type-checking implies well-formedness). Let E be a typing environment.
If E ` J , then E ` �.

Proof of Corollary A.1. The claim is a direct consequence of Lemma A.3.

In our proofs, we will often find ourselves in a situation where we know that certain
facts can be proven by a typing environment E,E′, but we need to prove these facts with
an environment of the form E,µ,E′, i.e., the environment E,E′ extended with the entry
in µ. Intuitively, we would like to drop µ and prove the fact with the environment E,E′.
This intuition is formalized and proven by the following weakening lemma.

Lemma A.4 (Weakening, Lemma 6 [49]). If E,E′ ` J and E,µ,E′ ` �, then E,µ,E′ ` J ,
where µ corresponds to one single entry in the typing environment.

Similar to weakening, it will be handy to be able to add formulas to our typing
environment E that we can logically derive from E. This strengthening and formalized as
follows:

Lemma A.5 (Anon Variable Strengthening, Lemma 4 [49]). If E, {C}, E′ ` J and
forms(E,E′) ` C, then E,E′ ` J , where forms(E′′) returns all the logical formulas (i.e.,
formulas in refinement types) contained in E′′.

181

Appendix A. Well-Typedness of the API Methods

Many of the upcoming type-checking proofs will be discharged to the following lemma.
Intuitively, the lemma states that if an expression does not contain assertions and all
exported variables and names are of type unit, then the expression type-checks.

Lemma A.6. Opponent typability (Lemma 34 [49]) Let E ` � and E be executable. If O
is an expression containing no assert such that (a l unit) ∈ E for all names a ∈ fn(O),
and (x : unit) ∈ E for each variable x ∈ fv(O), then E ` O : unit.

In the code, we make heavy use of if-statements. These are syntactic sugar that we
encode via match-statements into RCF as follows:

Definition A.9 (Encoding and type-checking of conditionals). We encode conditionals as
follows:

if M = N then
A

else
B

let x = (M = N) in
match x with true→ A else B

where x is a fresh variable that occurs nowhere else. Additionally, we add the following
(derived) rule to the RCF type-system:

Exp If
E `M : T E ` N : U E, {M = N} ` A : V E ` B : V

E ` if M = N then A else B : V

The following lemma justifies that we can extend the RCF type system by the Exp If
rule.

Lemma A.7. Rule Exp If is derivable in F7.

Proof. We show that the hypotheses of Exp If are strong enough to imply the premises
deriving from type-checking the de-sugared code for the if statement. We start by type-
checking the de-sugared version of the code under a typing environment E.

1 let x = (M = N) in

2
C:=︷ ︸︸ ︷

match x with true→ A else B

In the following, we let the type W := {y : bool | x = true∧M = N ∨ x = false∧M 6=
N}.

Code (line 1):

let x = (M = N) in

182

A.2. Well-Typedness of the RCF Implementation

Environment:
E

Rules:

Exp Let

Exp Eq
E `M : T E ` N : U x /∈ fv(M,N)

E ` (M = N) : W
E,x : W ` C : V x /∈ fv(V)
E ` let x = (M = N) in C : V

Proof Obligations:
1. E `M : T
2. E ` N : U
3. x /∈ fv(M,N)
4. E, x : W ` C : V

Proving 4 requires the application of rule Exp Match.

Code (line 2):

match x with true→ A else B

Environment:
E′ := E, x : W

Rules:

Exp Match
E′ ` x : bool

inr : (unit, bool) E′, () : unit, {
=true︷ ︸︸ ︷
inr () = x} ` A : V E′, {∀y. inr y 6= x} ` B : V

E′ ` match x with true→ A else B : V

Proof Obligations:

4. E, x : W ` x : bool
5. E, x : W, () : unit, {inr() = x} ` A : V
6. E, x : W, {∀y. inr y 6= x} ` B : V
7. inr : (unit, bool)

We now show that the hypotheses of Exp If imply the hypotheses of the derivation
for the de-sugared if-statement, i.e., we show that (a)-(d) imply (1)-(6).

183

Appendix A. Well-Typedness of the API Methods

(a) E `M : T

(b) E ` N : U

(c) E, {M = N} ` A : V

(d) E ` B : V

(1) E `M : T

(2) E ` N : U

(3) x /∈ fv(M,N, V)

(4) E, x : W ` x : bool

(5) E, x : W, () : unit, {inr() =
x} ` A : V

(6) E, x : W, {∀y. inr y 6= x} ` B :
V

(1): E `M : T

Immediately by (a)

(2): E ` N : U

Immediately by (b).

(3): x /∈ fv(M,N, V)

Follows since x is fresh and occurs nowhere else.

(4): E, x : W ` x : bool

Follows since W := {y : bool |
=:F︷ ︸︸ ︷

x = true ∧M = N ∨ x = false ∧M 6= N} and E, x :
W `W <: bool by Sub Refine Left and Sub Refl.

Sub Refine Left

Sub Refl

Type

E, x : W ` �
fnfv(bool) ⊆ dom(E, x : W)

E, x : W ` bool
recvar(E, x : W) ∩ fnfv(bool) = ∅

E, x : W ` bool <: bool
E, x : W ` �

fnfv({x : bool | F}) ⊆ dom(E)
E, x : W ` {x : bool | F}

Type

E, x : W ` {y : bool | F} <: bool

We are left with the obligations to show that

(i) fnfv(bool) ⊆ dom(E, x : W) (ii) recvar(E, x : W) ∩ fnfv(bool) = ∅
(iii) E, x : W ` � (iv) fnfv({x : bool | F}) ⊆ dom(E)

184

A.2. Well-Typedness of the RCF Implementation

Proof steps: Proven statement:

Immediately, since bool contains neither free names nor free
variables. (i) and (ii)

The only thing left to consider is that x might cause a
double-binding in the typing environment, causing the well-
formedness check to fail (more precisely, the condition
dom(µ) ∩ dom(E) = ∅ in rule Env Entry). This is ex-
cluded since x is fresh and occurs nowhere else.

(iii)

We first notice that the names and variables occurring free in
F , i.e., x and fnfv(M,N), are contained in dom(E, x : W):
obviously, x ∈ dom(E, x : W), the relation fnfv(M,N) ⊆
dom(E, x : W) follows from premises (a) and (b) applied to
Lemma A.3 (5).

(iv)

(5): E, x : W, () : unit, {inr() = x} ` A : V

This case is the most involved one in the proof.
Proof steps: Proven statement:

This is proven as hypothesis (c) of rule Exp If. E, {M = N} ` A : V

The shape of the current typing environment is al-
most the one from (c). We apply Lemma A.4 (Weak-
ening) thrice to add the entries {inr () = x},
() : unit, and x : W in that order to our current
typing environment. The order is important to
maintain the well-formedness condition required by
the weakening lemma. We stress that adding x does
not break any well-formedness since x is fresh and
does not occur anywhere else.

E, x : W, () : unit, {inr() = x}︸ ︷︷ ︸
E1

,

{M = N} ` A : V

We note that forms(E1) `M = N , i.e., the formula
contained in x : W combined with the formula
inr () = x (i.e., x = true), yields the desired formula
M = N . We apply Lemma A.5 (Strengthening)
which allows us to drop {M = N} from our typing
environment.

E1 ` A : V

This is the required hypothesis (5) of the desugared
version of the if statement.

185

Appendix A. Well-Typedness of the API Methods

(6): E, x : W, {∀y. inr y 6= x} ` B : V

Proof steps: Proven statement:

Proven as premise (d). E ` B : V

We apply Lemma A.4 (Weakening) twice on (d),
adding the x : W and {∀y. inr y 6= x} in that
order. Since x is fresh, and the free names and
free variables in W are bound in E, the well-
formedness of the extended environment is not
affected.

E, x : W, {∀y. inr y 6= x} ` B : V

This is the required hypothesis (6).

We have proven that the premises of rule Exp If imply the premises required to type-check
the de-sugared version of an if-statement. This concludes our proof.

Also, in our code we often have large cascades of if-statements. The following lemma
eases the type-checking effort for these constructions.

Lemma A.8 (Type-checking cascaded if-statements). Let C be a cascade of ` if statements
that only test equality between two variables and the cascade ends with C ′, i.e., C is of the
form

C :=



if M1 = N1 then
if M2 = N2 then
. . .

if M` = N` then
C ′

else
fail〈V 〉 ()

. .
.

else
fail〈V 〉 ()

else
fail〈V 〉 ()

If E, {M1 = N1}, . . . , {M` = N`} ` C ′ : V for some type V and for all i, E `Mi : Ti
and E ` Ni : Ui for some Ti and Ui, then E ` C : V .

Proof. The proof is by induction on the number of cascaded if statements.

RCF only allows pairs rather than n-ary tuple. We use the following abbreviation to
encode arbitrary tuples in RCF.

186

A.2. Well-Typedness of the RCF Implementation

Definition A.10 (General tuples). We use the convention that pairs are right-associative
and we write

x1 : T1 ∗ · · · ∗ xn−1 : Tn−1 ∗ Tn

to denote
∑
x1 : T1.

∑
x2 : T2. . . .

∑
xn−1 : Tn−1. Tn, where the scope of xi is Ti+1, . . . , Tn,

and we write
T1 ∗ · · · ∗ Tn

if the pair is not dependent.

Definition A.11 (General functions). We use the convention that functions are right-
associative and we write

x1 : T1 → · · · → xn−1 : Tn−1 → Tn

to denote Πx1 : T1. Πx2 : T2. . . .Πxn−1 : Tn−1. Tn, where the scope of xi is Ti+1, . . . , Tn,
and we write

T1 → · · · → Tn

if the function is not dependent.

The RCF calculus allows for splitting of pairs, however, not for splitting tuples of
arbitrary length. We introduce syntactic sugar for such a construct.

Definition A.12 (Splitting tuples). We use the following syntactic sugar:

let (x1, . . . , xn) = x in A

as syntactic sugar for
let (x1, x

1) = x in
let (x2, x

2) = x1 in
...

let (xn−1, xn) = xn−1 in A

Additionally, we add the following (derived) rule to the type system:

Exp Splitn

E, x1 : T1, . . . , xn : Tn, {(x1, . . . , xn) = M} ` A : V
E `M : (x1 : T1 ∗ · · · ∗ xn−1 : Tn−1 ∗ Tn) {x1, . . . , xn} ∩ fv(V) = ∅

E ` let (x1, . . . , xn) = M in A : V

Lemma A.9. Exp Splitn is derivable in F7.

187

Appendix A. Well-Typedness of the API Methods

Proof. We show that the hypotheses of Exp Splitn imply the hypotheses of the de-sugared
code. We start by type-checking the de-sugared version of the code under the typing
environment E.

let (x1, x
1) = M ;

let (x2, x
2) = x1;

...
let (xn−1, xn) = xn−2; A

where x1, . . . , xn−2 are fresh variables that occur nowhere else.
We denote the hypothesis of rule Exp Splitn as follows:

(a) E `M : U1

(b) E, x1 : T1, . . . , xn : Tn, {(x1, . . . , xn) = M} ` A : V

(c) {x1, . . . , xn} ∩ fv(V) = ∅

where we let Ui := xi : Ti ∗ · · · ∗ xn−1 : Tn−1 ∗ Tn. We type-check the de-sugared code as
illustrated below

Exp Split

Exp Split

Exp Split

Exp Split

E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . ,
xn−2 : Un−1, xn−1 : Tn−1, xn : Tn, {(xn−1, xn) = xn−2}`A : V

E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . ,
xn−2 : Un−1, xn−1 : Tn−1, xn : Tn, {(xn−1, xn) = xn−2}`xn−2 : (xn−1 : Tn−1 ∗ Tn)

{xn−1, xn} ∩ fv(V) = ∅
...

E, x1 : T1, x
1 : U2, {(x1, x

1) = M},
x2 : T2, x

2 : U2, {(x2, x
2) = x1}`let (x3, x

3) = x2; . . .
let (xn−1, xn) = xn−2; A : V

{x2, x
2} ∩ fv(V) = ∅ E, x1 : T1, x

1 : U2, {(x1, x
1) = M} ` x1 : (x2 : T2, U3)

E, x1 : T1, x
1 : U2, {(x1, x

1) = M} ` let (x2, x
2) = x1; . . .

let (xn−1, xn) = xn−2; A : V
E ` x : (x1 : T1 ∗ U2) {x1, x

1} ∩ fv(V) = ∅
E ` let (x1, x

1) = M ; let (x2, x
2) = x1; . . . let (xn−1, xn) = xn−2; A : V

This result is easily obtained by induction on the arity of the tuple.

(1) E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . , xn−2 : Un−1, xn−1 : Tn−1, xn :
Tn, {(xn−1, xn) = xn−2} ` A : V

(2) E ` x : (x1 : T1 ∗ U2)

(3) E, x1 : T1, x
1 : U2, {(x1, x

1) = M} ` x1 : (x2 : T2 ∗ U3)

(4) ∀3 < i < n. E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . , xi−2 : Ui−1, {(xi−2, x
i−2) =

xi−3} ` xi−2 : (xi−1 : Ti−1 ∗ Ui)

(5) E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . , xn−2 : Un−1, {(xn−2, x
n−2) = xn−3} ` xn−2 :

(xn−1 : Tn−1 ∗ Tn)

188

A.2. Well-Typedness of the RCF Implementation

(6) ∀1 ≤ i ≤ n− 2. {xi, xi} ∩ fv(V) = ∅

(7) {xn−1, xn} ∩ fv(V) = ∅

We prove that the hypotheses (a)-(c) of rule Exp Splitn are strong enough to entail
the obligations collected above.

(1): E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . ,
xn−2 : Un−1, xn−1 : Tn−1, xn : Tn, {(xn−1, xn) = xn−2} ` A : V

This one is the most involved one in the proof.
Proof steps: Proven statement:

This is proven as hypothesis (b) of
Exp Splitn. E, x1 : T1, . . . , xn : Tn, {(x1, . . . , xn) = M} ` A : V

We apply Lemma A.4 (Weakening)
2n− 3 times (n− 1 times for entries
of the form {(xi, xi) = xi−1} and
n− 2 times for variables of the form
xi) to introduce x1 : U2, . . . , x

n−2 :
Un−1 and the entries {(x1, x

1) =
M}, . . . , {(xn−1, xn) = xn−2}.

E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . ,
xn−2 : Tn−2, x

n−2 : Un−1,
{(xn−2, x

n−2) = xn−3},
xn−1 : Tn−1, xn : Tn,
{(xn−1, xn) = xn−2}
{(x1, . . . , xn) = M}︸ ︷︷ ︸

=:E1

`A : V

We can see that forms(E1) `
(x1, . . . , xn) = M (viewing the
n-tuple as nested pairs). This
is the case because we can use
the substitution property of the
logic and derive (x1, . . . , xn) = M
from {(x1, x

1) = M}, {(x2, x
2) =

x1}, . . . , {(xn−1, xn) = xn−2}.
Hence, by using strengthening
(Lemma A.5), we can drop the last
entry in the environment.

E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . ,
xn−2 : Tn−2, x

n−2 : Un−1,
{(xn−2, x

n−2) = xn−3},
xn−1 : Tn−1, xn : Tn,
{(xn−1, xn) = xn−2}

`A : V

This is the required premise (1) of
the de-sugared version.

(2): E `M : x1 : T1 ∗ U2

Follows immediately from (a) (E ` M : U1) since Ui is defined as
Ui := xi : Ti ∗ · · · ∗ xn−1 : Tn−1 ∗ Tn.

189

Appendix A. Well-Typedness of the API Methods

(3): E, x1 : T1, x
1 : U2, {(x1, x

1) = M} ` x1 : (x2 : T2 ∗ U3)

(4): ∀3 < i < n. E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . , xi−2 : Ui−1, {(xi−2, x
i−2) = xi−3}

` xi−2 : (xi−1 : Ti−1 ∗ Ui)

(5): E, x1 : T1, x
1 : U2, {(x1, x

1) = M}, . . . , xn−2 : Un−1, {(xn−2, x
n−2) = xn−3}

` xn−2 : (xn−1 : Tn−1 ∗ Tn)
For these cases, we will use rule Val Var. This rule has two premises, namely
that the current typing environment is well-formed and that there is an entry in the
environment of the current variable with the appropriate type.

Since hypothesis (b) holds, we can apply Corollary A.1 to derive that the extended
typing environment E used in (b) is well-formed. All the typing environments used
in (4) and the environment used in (3) can be derived from E by dropping entries
“from the right”. In particular, all such environments are well-formed by Lemma A.2.

All the environments contain the respective variables since xi : Ui+1 and
Uj := xj : Tj ∗ · · · ∗ xn−1 : Tn−1 : Tn. We can apply Val Var and obtain the desired
result.

(6): ∀1 ≤ i ≤ n− 2. {xi, xi} ∩ fv(V) = ∅

(7): {xn−1, xn} ∩ fv(V) = ∅ ∩ fv(V) = ∅

Follows from (c) ({x1, . . . , xn} ∩ fv(V) = ∅) and the fact that x1, . . . , xn−2 are fresh
and occur nowhere else.

The RCF calculus does not allow to match type-constructors and, at the same time
split the arguments if it is a tuple. We use the following syntactic sugar.

Definition A.13 (Matching of constructor with tuples as arguments). We use the following
syntactic sugar:

match M with
| h1 (x1

1, . . . , x
1
m1) → A1

| h2 (x2
1, . . . , x

2
m2) → A2

...
| hn (xn1 , . . . , xnmn

) → An
| _→ Afail

190

A.2. Well-Typedness of the RCF Implementation

as abbreviation for
match M with h1 x

1 →
let (x1

1, . . . , x
1
m1) = x1 in A1

else match M with h2 x
2 →

let (x2
1, . . . , x

2
m2) = x2 in A2

...
else match M with hn xn →

let (xn1 , . . . , xnmn
) = xn in An

else Afail;

where the variables xi are fresh variables that occur nowhere else.
Additionally, we add the following (derived) rule to the type system:

Exp Match-Splitn
(m1,...,mn)

E `M : T
∀0 < i ≤ n. hi : (Hi, T) ∀0 < i ≤ n. Hi = xi1 : T i1 ∗ · · · ∗ ximi−1 : T imi−1 ∗ T imi

∀0 < i ≤ n. E, xi1 : T i1, . . . , ximi
: T imi

, {M = hi(xi1, . . . , ximi
)} ` Ai : U E ` Afail : U

{xij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∩ fv(U) = ∅
E ` match M with | h1 (x1

1, . . . , x
1
m1) → A1 . . . | hn (xn1 , . . . , xnmn

) → An | _→ Afail : U

For the sake of readbility, we omit the parameters n and (m1, . . . ,mn) if they are obvious
from the context.

Lemma A.10. Exp Match-Splitn(m1,...,mn) is derivable in F7.

Proof. We show that the hypothesis of the individual cases are strong enough to imply
the premises required to type-check the de-sugared version of the match construct. In
our proof, we will first show that the individual match statements and tuple splits of the
de-sugared version can be type-checked. Then we will give an inductive argument that
shows that the logical formulas we accumulate in the else branches can be reconstructed
using weakening (Lemma A.4).

We denote the hypothesis of Exp Match-Splitn(m1,...,mn) as follows:

(a) E `M : T

(b) ∀0 < i ≤ n. hi : (Hi, T)

(c) ∀0 < i ≤ n. Hi = xi1 : T i1, . . . , ximi−1 : T imi−1 ∗ T imi

(d) ∀0 < i ≤ n. E, xi1 : T i1, . . . , ximi
: T imi

, {M = hi(xi1, . . . , ximi
)} ` Ai : Ti

(e) {xij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∩ fv(U) = ∅

We type-check the i-th the de-sugared code to gather the obligations which we need to
prove. We do not consider the else case here; we will reason about it in our inductive

191

Appendix A. Well-Typedness of the API Methods

argument.

Exp Match

E, xi : Hi, {h xi = M} ` xi : (xi1 : T i1 ∗ · · · ∗ T imi
)

E, xi : Hi, {h xi = M}, xi1 : T i1, . . . , ximi
: T imi

,

{(xi1, . . . , ximi
) = xi}`A : Ti

{xi1, . . . , ximi} ∩ fv(Ti) = ∅
E, xi : Hi, {h xi = M} ` let (xi1, . . . , ximi

) = xi in Ai : Ti
Exp Splitmi

E `M : T hi : (Hi, T)
E ` match M with hi xi → let (xi1, . . . , ximi

) = xi in Ai

(1) E `M : T

(2) ∀i. hi : (Hi, T)

(3) ∀i. E, xi : Hi, {h xi = M} ` xi : (xi1 : T i1 ∗ · · · ∗ T imi
)

(4) ∀i. E, xi : Hi, {h xi = M}, xi1 : T i1, . . . , ximi
: T imi

, {(xi1, . . . , ximi
) = xi} ` A : Ti

(5) ∀i. {xi1, . . . , ximi} ∩ fv(Ti) = ∅

We prove that the hypotheses (a)-(e) of rule Exp Match-Splitn(m1,...,mn) are strong
enough to entail the obligations collected above.

(1): E `M : T

Immediate by (a) (E `M : T).

(2): ∀i. hi : (Hi, T)

Immediate by (c) (∀1 ≤ i ≤ n. hi : (Hi, T)).

(3): ∀i. E, xi : Hi, {h xi = M} ` xi : (xi1 : T i1 ∗ · · · ∗ T imi
)

Since Hi is exactly defined as Hi = xi1 : T i1, . . . , x
i
mi−1 : T imi−1 ∗ T imi

by (c)
(∀0 < i ≤ n. Hi = xi1 : T i1, . . . , ximi−1 : T imi−1 ∗ T imi

), where all newly-introduced
variables are fresh, the typing environment is well-formed. Furthermore, the typing
environment contains all xi : Hi. The statement follows by applying rule Val Var.

(4): ∀i. E, xi : Hi, {h xi = M}, xi1 : T i1, . . . , ximi
: T imi

, {(xi1, . . . , ximi
) = xi} ` A : Ti

This is the most involved proof step.

192

A.2. Well-Typedness of the RCF Implementation

Proof steps: Proven statement:

Proven as hypothesis (d) of rule
Exp Match-Splitn(m1,...,mn).

E, xi
1 : T i

1, . . . , x
i
mi

: T i
mi
,

{M = hi(xi
1, . . . , x

i
mi

)} `Ai : U

We apply weakening thrice to add
the two entries xi : Hi, {M =
hi x

i}, and {(xi1, . . . , ximi
) = xi}

to the typing environment.

E, xi : Hi, {M = hi x
i}, xi

1 : T i
1, . . . , x

i
mi

: T i
mi
,

{(xi
1, . . . , x

i
mi

) = xi}, {M = hi(xi
1, . . . , x

i
mi

)} `Ai : Ti

The formulas in the environ-
ment, in particular {M = hi x

i}
and {(xi1, . . . , ximi

) = xi} logi-
cally entail the formula M =
hi(xi1, . . . , ximi

). We use strength-
ening (Lemma A.5) to drop the
last environment entry {M =
hi(xi1, . . . , ximi

)}.

E, xi : Hi, {M = hi x
i}, xi

1 : T i
1, . . . , x

i
mi

: T i
mi
,

{(xi
1, . . . , x

i
mi

) = xi} `Ai : Ti

This is the required hypothe-
sis (4).

(5): ∀i. {xi1, . . . , ximi} ∩ fv(Ti) = ∅

Immediately, since all variables xij are fresh and occur nowhere else.

In the above proof, we have lazily neglected to type-check the else branch of the match
statements. We now argue why the else branches will also type-check.

Using a simple inductive argument, we see that the i-th else branch will type-
check with the typing environment E, {∀x. h1 x 6= M}, . . . , {∀x. hi x 6= M}. Above,
we have proven that every branch of the n branches will type-check under the typ-
ing environment E. Therefore, we can apply weakening i times and add the entries
{∀x. h1 x 6= M}, . . . , {∀x. hi x 6= M} to accommodate the typing environment of the i-th
else branch.

Lemma A.11 (Type verkey is public). Let E ` �. Then E ` verkey :: pub.

Proof. First, we review the definition of type verkey:

T oy := +n
k=1 P

S
k (x1 : T k1 ∗ · · · ∗ x`k−1 : T k`k−1

∗ {x`k : T k`k | y says Pk(x1, . . . , x`k)})
where T ji ∈ {bitstring, α}

Ty := y : bitstring ∗ T oy
verkey := µα. signature → Ty

Notice that the variables xj are fresh and occur nowhere else.

193

Appendix A. Well-Typedness of the API Methods

1. While proving that E ` verkey :: pub, we naturally apply

Kind Rec
E,α :: ν ` T :: ν
E ` (µα. T) :: ν

.

This rule assumes that α :: pub (where α corresponds to verkey) and proceeds to the
inner type.

2. We are left to show that E,α :: pub ` (signature → Ty) :: pub. We apply

Kind Fun
E ` T :: ν E, x : T ` (Πx : T. U) :: ν

E ` (Πx : T. U) :: ν
.

T corresponds to bitstring and U corresponds to Ty. Since bitstring := unit, we get
that bitstring :: tnt by rule

Kind Unit
E ` �

E ` unit :: ν

immediately.

3. Ty is a sum type. We apply

Kind Sum
E ` T :: ν E ` U :: ν

E ` (T + U) :: ν
.

Without loss of generality, we only consider the k-th case; all other cases are analogous.

4. To show that the individual sub-cases of Ty are of kind pub, we apply

Kind Pair
E ` T :: ν E, x : T ` U :: ν

E ` (Σx : T. U) :: ν

recursively (the general tuple (M1, . . . ,Mn) is defined as (M1, (· · · (Mn−1,Mn)) · · ·),
see Definition A.11). We denote the extended typing environment after the i-th step
as Ei := Ei−1, xi : T ki where E0 := E. Since the variables xi occur only in this type,
Ei ` � for all i.

5. The individual tuple elements are either of type bitstring or of type α. The type α is
in the environment as kind pub (see step 1)). As such, rule Kind Var yields that
α :: pub. The other type is defined to be unit and is also pub.

Kind Var
E ` � (α :: ν) ∈ E

E ` α :: ν

Kind Unit
E ` �

E ` unit :: ν

194

A.2. Well-Typedness of the RCF Implementation

6. The very last element in the tuple is refined. Rule

Kind Refine Public
E ` {x : T | F} E ` T :: pub

E ` {x : T | F} :: pub

forces us to prove statements. We already argued in that step 5) that T k`k :: pub.

7. For showing that E`k−1 `

=:U︷ ︸︸ ︷
{x`k : T k`k | y says Pk(x1, . . . , xk)}, we apply rule

Type
E ` � fnfv(T) ⊆ dom(E)

E ` T
.

The type is closed since all the values occurring in the refinement are bound above.
More precisely, all variables xi are contained in E`k−1 by the definition of Ei; variable
x`k is bound due to the refinement type. Consequently, fnfv(T) ⊆ dom(E`i−1). As
argued in step 4), E`k−1 ` �.

This concludes the proof.

Corollary A.2. Let E ` � and let x be such that E ` x : verkey. Then E ` x : unit.

Proof. Follows immediately from Lemma A.11 and rules Sub Public Tainted, Kind
Unit, and Exp Subsum.

Sub Public Tainted
E ` T :: pub E ` U :: tnt

E ` T <: U

Kind Unit
E ` �

E ` unit :: ν

Exp Subsum
E ` A : T E ` T <: T ′

E ` A : T ′

Proposition A.2 (Kinding option and RevHid). Let E ` �. Then E ` T option :: ν and
E ` T RevHid :: ν if and only if E ` T :: ν.

Proof. We recall that α option := Some of α | None and α RevHid := Revealed of α |
Hidden of bitstring. The claim then follows directly from rules

Kind Sum
E ` T :: ν E ` U :: ν

E ` (T + U) :: ν

Kind Unit
E ` �

E ` unit :: ν
,

since T always corresponds to α and U = unit in all cases (recall that None := None of unit).

195

Appendix A. Well-Typedness of the API Methods

Lemma A.12 (unit <: {predicateF , predicateP , formula, statement, proof } <: unit).
Let E ` �. Then E ` T <: unit and E ` unit <: T for T ∈
{predicateF , predicateP , formula, statement, proof }.

Proof. The types are defined in Table A.2. We first show that the types predicateF ,
predicateP , formula, statement, and proof are public and tainted. We notice that all types
that occur within the respective types are of kind ν by Proposition A.2 and Kind Unit.
The intermediate claim follows by applying

Kind Sum
E ` T :: ν E ` U :: ν

E ` (T + U) :: ν

Kind Pair
E ` T :: ν E, x : T ` U :: ν

E ` (Σx : T. U) :: ν

Kind Unit
E ` �

E ` unit :: ν

similarly to the proof of Lemma A.11 and of Proposition A.2. The claim itself follows by
rule Sub Public Tainted

Sub Public Tainted
E ` T :: pub E ` U :: tnt

E ` T <: U

and Kind Unit.

The last proposition captures that the type unit and any type that, as base types,
only contains unit are subtypes of one another.

Proposition A.3. Let E ` � and let T and U be types such that E ` T <:> unit and
E ` U <:> unit. Then E ` T → U <:> unit, E ` T ∗ U <:> unit, E ` T + U <:> unit,
E ` µα. T <:> unit.

Corollary A.3. Let E ` �. Then for all types T constructed of only unit, we have that
E ` T <:> unit.

The above lemmas and propositions are the building block to showing that the auxiliary
functions are well-typed.

196

A.2. Well-Typedness of the RCF Implementation

A.2.1. Type-Checking Auxiliary Functions

This subsection is devoted to showing that all the auxiliary functions depicted in Table A.7
are well-typed. We will assume that the library functions listed in Table A.6 are implemented
and contained in the typing environment E. More precisely, we assume that for all functions
f : T in that table, E ` f : T . Furthermore, we will useR to denote the respective remainder
of the function body that is to be type-checked.

Convention. Here and through the remainder of this work, we implicitly use Val Fun
to type-check functions.

Val Fun
E, x : T ` A : U

E ` fun x→ A : (Πx : T. U)

More precisely, when type-checking a function f : (x1 : T1)→ · · · → (xn : Tn) under typing
environment E, we implicitly apply Val Fun n times and type-check the body of f under
the typing environment E, x1 : T1, . . . , xn : Tn. Additionally, we will silently fold and unfold
iso-recursive values and we will not argue why the current typing environment is well-formed,
since all variables occurring in the functions are fresh (we will, however, highlight why
variables occurring free in a type are bound). Furthermore, we intentionally name variables
that occur free in a type the same way as they occur in the typing environment. Although
this formally prevents us from type-checking the code (mostly because of conditions of the
form x /∈ fv(T)), it increases the readability and can easily be fixed by using consistent
α-renaming. Finally, we will omit the else-branches and the | _ =⇒ catch-all cases
since they always contain either a fail (which always has the right type) or, in case of the
verification function, false as return value, which makes the logical refinement vacuously
true.

Since we have many auxiliary functions and most of the proofs are straightforward or
follow immediately from the opponent typability lemma (Lemma A.6), we keep the proofs
high-level, only highlighting the crucial points. We use the order given by Table A.7.

getOperationr : (op : string)→ ((x : bitstring)→ (y : bitstring)→ bool),

getOperatione : (op : string)→ ((x : bitstring)→ (y : bitstring)→ bitstring), and

rand : unit → random:
The types of these functions are equivalent to unit and they only contains free
variables of that type (e.g., ≤ can be seen as a variable of type unit, the type of
mkUn is equivalent to unit). Consequently, the function type-checks by Lemma A.6.

197

Appendix A. Well-Typedness of the API Methods

sign : (sk : sigkey) → (m : Uosk) → signature:
First, we quickly recall the signing and verification key types:

T oy := +n
k=1 P

S
k (x1 : T k1 ∗ · · · ∗ x`k−1 : T k`k−1

∗ {x`k : T k`k | y says Pk(x1, . . . , x`k)})

Ty := y : bitstring ∗ T oy
Uosk := +n

k=1 P
S
k (x1 : T k1 ∗ · · · ∗ x`k−1 : T k`k−1

∗
{x`k : T k`k | ∃z, y. sk = (z, y) ∧ y says Pk(x1, . . . , x`k)})

where T ji ∈ {bitstring, α}

verkey := µα. signature → Ty
sigkey := (µα. Ty → signature) ∗ verkey

In particular, the only difference between Uosk and T oy is the logical refinement
∃z, y. sk = (z, y). We use this fact to derive that a message m : Uosk is also a message
m : T oy . Formally, we apply Sub Refine.

Sub Refine
E ` T <: T ′ E, x : {x : T | F} ` F ′

E ` {x : T | F} <: {x : T ′ | F ′}

In the following, let E′ := E, sk : sigkey,m : Uosk .

Code (line 1):

let (x, y) = sk;

Environment:
E′

Rules:
Exp Split

E `M : (Σx : T. U)
E, x : T, y : U,_ : {(x, y) = M} ` A : V {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V

Proof Obligations:

1. E′ ` sk : sigkey
2. {x, y} ∩ fv(V) = ∅

3.

=:E′1︷ ︸︸ ︷
E′, x : (µα. Ty → signature), y : verkey, {(x, y) = sk} ` R : signature

The first and the second obligation are immediate by Type and the fact that signature
does not contain free names, respectively.

198

A.2. Well-Typedness of the RCF Implementation

Code (line 2):

x (y,m)

Environment:
E′1

Rules:
Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x}

Proof Obligations:

1. E′1 ` x : (µα. Ty → signature)
2. E′1 ` (y,m) : Ty

The first obligation is trivially fulfilled since x : (µα. Ty → signature) ∈ E′1 by

Val Var
E ` � (x : T) ∈ E

E ` x : T
.

For the second obligation, we use Corollary A.2 to derive that E′1 ` y : bitstring.
Rule Val Pair together with the above observation thatm : T oy yields that (y,m) : Ty.

The resulting type of the application is bitstring, which concludes the proof.

checksig : (y : verkey) → (sig : signature) → Ty{verkey/α}:
We let E′ := E, y : verkey, sig : signature.

Code (line 1):

let x′ = y sig

Environment:
E′

Rules:
Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x}

Exp Let
E ` A : T E, x : T ` B : U x /∈ fv(U)

E ` let x = A; B : U

199

Appendix A. Well-Typedness of the API Methods

Proof Obligations:

1. E′ ` y : verkey
2. E′ ` sig : bitstring
3. (E′ ` (y sig) : Ty, which is proven by the two obligations above as Exp Appl)
4. x′ /∈ fv(Ty)
5. E′, x′ : Ty ` R : Ty

The first two proof obligations are trivially fulfilled. Since fv(Ty) = {y}, the require-
ment x′ /∈ fv(Ty) follows.

Code (line 2):

let (x,m) = x′;

Environment:
E′1 := E′, x′ : Ty

Rules:
Exp Split

E `M : (Σx : T. U)
E, x : T, y : U,_ : {(x, y) = M} ` A : V {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V

Proof Obligations:

1. E′1 ` x′ : Ty
2. {x,m} ∩ {Ty} = ∅
3. E′1, x : bitstring,m : T oy , {(x,m) = x′} ` R : Ty

The first obligation is immediate, the second follows from inspection. At this point,
we stress that the free variable y in the type of m : T oy is replaced by the variable x,
i.e., if we returned m as is, we could not meet the required return type: in the return
type T oy , the argument variable y takes the place of the free variable y.

Code (line 3):

if x = y then

Environment:

E′2 := E′1, x : bitstring,m : T oy , {(x,m) = x′}

Rules:
Exp If
E `M : T E ` N : U E, {M = N} ` A : V E ` B : V

E ` if M = N then A else B : V

200

A.2. Well-Typedness of the RCF Implementation

Proof Obligations:
1. E′2 ` x : bitstring
2. E′2 ` y : verkey
3. E′2, {x = y} ` m : Ty

The first two obligations are immediate. For the final requirement, we recall that
the free variable y within the refinement of type m : T oy is replaced by x but the
argument variable y takes the place of the free variable y in the refinement of the
return type T oy . We use the equality x = y to substitute x with y in the refinement
of type m : T oy which now equals the return type. This concludes the proof.

storeSK : sigkey → uid and

restoreSK : uid → sigkey:
Immediate by using Exp Appl to the library function mkSeal.

computeR : (x : bitstring)→ (r : bitstring)→ bitstring,

computePsd : (sk : sigkey)→(s : string)→{x : pseudo | ∃y, z. sk = (y, z) ∧ SSP(z, s, x)},
and

computeIDR : (vkEA : bitstring)→ (vk : bitstring)→ (r : bitstring)→ (R : bitstring)
→ (s : string) :

The type-checking is straightforward, since the matching logical formula is assumed
within the respective function.

commit : bitstring ∗ random → commitment and

openCommit : commitment → bitstring ∗ random:
Immediate by using Exp Appl to the library function mkSeal.

commitsk : sigkey ∗ random → commitment and

openCommitsk : commitment → sigkey ∗ random:
Immediate by using Exp Appl to the library function mkSeal.

getSome : (x : (unit ∗ unit) option) → {y : unit ∗ unit | x = Some y} and

getRevealed : (x : unit RevHid) → {y : unit | x = RevHid y}:
The type-checking is straightforward. The respective logical refinement originates
from the rule Exp Match.

Exp Match
E `M : T

h : (H,T) E, x : H,_ : {h x = M} ` A : U E,_ : {∀x. h x 6= M} ` B : U
E ` match M with h x→ A else B : U

commitZK : statement ∗ random → commitment,

openZK : commitment → statement ∗ random,

201

Appendix A. Well-Typedness of the API Methods

stripStm : statement → statement,

checkZK : proof → bool,

fakestm : formula → statement,

createZKe : statement → random → proof ∗ zero-knowledge ∗ statement, and

createZK : statement → random → proof ∗ zero-knowledge ∗ statement:
Type-check by opponent typability (Lemma A.6).

rerandstm : statement → statement → statement:
Large parts of the code type-check using opponent typability (Lemma A.6). However,
the branches for SSPs and escrow identifiers contain the free variables commitsk
and openCommitsk that are not of type unit. The type-checking is nonetheless
straightforward since the logical refinements occur solely as part of the type sigkey
and are not returned or used in any way.

checkEq1 : α RevHid → bitstring → (bitstring ∗ commitment) list ref → bool:
The implementation of checkEq1 uses the refined list library functions. As a result,
the type of these functions is not equivalent to unit. The type-checking, however, is
straightforward since the logical refinements are not internally used and they are not
returned as a refinement to the return value.

checkEq : statement → formula → bool:
Type-checks by opponent typability (Lemma A.6).

verifystm : statement → bool:
The function uses refined library functions. The type-checking, however, is straight-
forward since the logical refinements are not used.

verify : proof → formula → bool,

hidestm : statement → formula → statement,

combineOr : proof → formula → random → proof ,

commuteOr : proof → statement → proof , and

commuteAnd : proof → statement → proof :
Type-check by opponent typability (Lemma A.6).

A.2.2. Type-Checking Main API Methods
We proceed to showing the well-typedness of the main API methods. From a type-checking
point of view, all of the proof creation methods are mostly trivially well-typed. This is not
surprising since they mimic the corresponding cryptographic implementation, which almost
only creates commitments; the complicated cryptographic operations take place during the
zero-knowledge verification. As we will see, this is reflected into the well-typedness proof
since the verification is the most complex method to type-check.

202

A.2. Well-Typedness of the RCF Implementation

For the following proofs, we have two requirements on the typing environment E: the
library and the auxiliary functions need to be contained in E with their proper types and
E must be well-formed. This is the most basic typing environment that we can use to
type-check the main API methods.

Definition A.14 (Basic typing environment). We call a typing environment E basic if
and only if the following three conditions hold:

• E ` �;

• For all auxiliary functions f : T (see Table A.7), E ` f : T ;

• For all library functions f : T (see Table A.6), E ` f : T .

Lemma A.13 (mkSays well-typed). Let E be a basic. Then, E ` mkSays : (x′ : uid) →
(f : predicateF)→ proof .

Proof sketch.

mkSays (x′ : uid) (f : predicateF): proof
1 let x = restoreSK x′;
2 let (w, z) = x;
3 match f with
4 | PF1 (Revealed y1, . . . ,Revealed yn1) =⇒
5 let y′ = PS1 (y1, . . . , yn1);
6 let t = assume z says P1(y1, . . . , yn1);
7 let sig = sign x (z, y′);

...

Although the types of the values used internally are complicated, the proof is straightforward.
The key insights are that the signing key x corresponding to the handle x′ is extracted in
line (1). The split in line (2) yields the logical formula {x = (w, z)}; this formula together
with the predicate assumed in line (6) allow for deriving that the value y′ : Uosk{z/y}; the
second component z of the pair (w, z) replaces the free variable y in the type Uosk , yielding
a closed type. The resulting logical refinement is only needed for type-checking the sign
method in line (7). Since the rest of the proof only deals with values of type unit, the
remainder of the type-checking procedure poses no problems.

203

Appendix A. Well-Typedness of the API Methods

Lemma A.14 (mkSSP well-typed). Let E be a basic. Then, E ` mkSSP : (x : uid)→ (s :
string)→ proof .

Proof sketch.

mkSSP (x′ : uid) (s : bitstring) : proof =
1 let x = restoreSK x′;
2 let (_, y) = x;
3 let psd = computePsd x s;

...

The only difficulty that may arise in this proof is the occurrence of logical refinements,
e.g., by the signing key x in line (1). The refinements, however, are not used and the
type-checking process is straightforward.

Lemma A.15 (mkIDRev well-typed). Let E be a basic. Then, E ` mkSSP : (x : uid)→
(s : string)→ proof .

Proof sketch.

mkIDRev (p : proof) (s : string): proof =
1 match p with Saysp(csig, osig, cz, oz, f) =⇒
2 match f with EscrowId(cx, ox, cr, or) =⇒
3 let (z, rz) = getSome oz;
4 let (x, rx) = getSome ox;
5 let (r, rr) = getSome or;
6 let R = computeR x r;
7 let idr = computeIDR z x r R s;

...

The only difficulty that may arise in this proof is the occurrence of logical refinements,
caused by the use of computeIDR in line (7). The refinement, however, is not used and the
type-checking process is straightforward.

Lemma A.16. Let E be basic. Then, the following holds:

• E ` mkREL : (y : formula)→ proof

• E ` mkLM : (x : pseudo)→ (s : string)→ (` : (pseudo ∗ string) list)→ proof

• E ` mkLNM : (x : pseudo)→ (` : (pseudo ∗ string) list)→ proof

• E ` mk∧ : (p : proof ∗ proof)→ proof

• E ` split∧ : (p : proof)→ (proof ∗ proof)

204

A.2. Well-Typedness of the RCF Implementation

• E ` mk∨ : (p : proof)→ (f : formula)→ proof

• E ` hide : (p : proof)→ (f : formula)→ proof

• E ` rerand : (p : proof)→ (stm : statement)→ proof

Proof. Follows from opponent typability (Lemma A.6).

A.2.2.1. Type-Checking verifyF∨

Finally, we type-check the verifyF∨ function and complete the type-checking of the RCF
implementation. Since the verification function is assembled of different parts, we will
type-check each part individually and prove that every part respects a strong invariant.
Finally, we will show that this invariant is strong enough to deduce the logical refinement
of the return type of the verification.

Type-checking contexts. The verification macros are contexts. Formally, we cannot
type-check a context because there is no rule that can handle the hole •. We introduce the
rule

Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F}

that allows us to formally type-check contexts. The annotated logical formula is part of the
refinement given to the hole. This is necessary for the invariance proof below. Naturally,
the final verification code is not a context and, therefore, does not use this rule.

Typing environment after type-checking. During the invariance proof, we will need
to keep track of the typing environment resulting from type-checking the code contexts.
In particular, after we finished type-checking one verification macro, we need to reason
about the proceeding verification macro. For this reasoning, we inherently need the typing
environment extended with the binding that we just established when checking the current
macro. Since the RCF typing rules do not yield access to the typing environment after
the type-checking process is finished, we extend the typing rules. We stress that this
modification merely offers a way for us to formalize the notion of “typing environment
after type-checking” and does not affect the type system in any other way. In particular, it
does not invalidate any soundness results of the original type system.

Additional bindings are only introduced in expressions that contain a continuation
process. For instance, the expression

let (x, rx) = getSome ox in R

adds the binding x : T, rx : random for some type T to the continuation process R. As a

205

Appendix A. Well-Typedness of the API Methods

Ext Exp Subsum
E ` A : T E′ E ` T <: T ′

E ` A : T ′ E

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E
Ext Exp Match

E `M : T h : (H,T)
E, x : H,_ : {h x = M} ` A : U E′ E,_ : {∀x. h x 6= M} ` B : U E′′

E ` match M with h x→ A else B : U E′

Ext Exp Eq
E `M : T E ` N : U x /∈ fv(M,N)

E `M = N : {x : bool | (x = true ∧M = N) ∨ (x = false ∧M 6= N)} E

Ext Exp Assume
E ` � fnfv(F) ⊆ dom(E)
E ` assume F : {F} E

Ext Exp Assert
E ` F

E ` assert F : unit E
Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Ext Exp Splitn

E, x1 : T1, . . . , xn : Tn, {(x1, . . . , xn) = M} ` A : V E′

E `M : (x1 : T1 ∗ · · · ∗ xn−1 : Tn−1 ∗ Tn) {x1, . . . , xn} ∩ fv(V) = ∅
E ` let (x1, . . . , xn) = M in A : V E′

Ext Exp Match-Splitn
(m1,...,mn)

E `M : T
∀0 < i ≤ n. hi : (Hi, T) ∀0 < i ≤ n. Hi = xi1 : T i1 ∗ · · · ∗ ximi−1 : T imi−1 ∗ T imi

∀0 < i ≤ n. E, xi1 : T i1, . . . , ximi
: T imi

, {M = hi(xi1, . . . , ximi
)} ` Ai : U E′i

E ` Afail : U E′′′

{xij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∩ fv(U) = ∅
E ` match M with

| h1 (x1
1, . . . , x

1
m1) → A1 . . . | hn (xn1 , . . . , xnmn

) → An | _→ Afail : U E′1

Ext Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F} E

We omit the rules for channels (Exp Res, Exp Send, and Exp Recv), and for
parallel execution (Exp Fork), as they are not used in the proofs.

Table A.17.: Excerpt of the extended rules for expressions: E ` A : T E′

206

A.2. Well-Typedness of the RCF Implementation

consequence, we extend the rule

Exp Split
E `M : (Σx : T. U) E, x : T, y : U,_ : {(x, y) = M} ` A : V {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V

to

Ext Exp Split
E `M : (Σx : T. U)

E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅
E ` let (x, y) = M ; A : V E′

Most rules do not require the type-checking of a continuation process. In fact, only a few
of the typing rules for expressions have that requirement. We show all the extended rules
for expressions in Table A.17. For instance, rule

Ext Exp Subsum
E ` A : T E′ E ` T <: T ′

E ` A : T ′ E

that ignores the typing environment E′ and returns the initial environment E. For all
other rules, i.e., the value typing, kinding, and subtyping, the extension is not necessary:
they use the typing environment to derive facts but they do not extend the environment.

In some expressions, it is not clear which environment to return in the extended rules.
For instance, rule

Ext Exp Match-Splitn
(m1,...,mn)

E `M : T
∀0 < i ≤ n. hi : (Hi, T) ∀0 < i ≤ n. Hi = xi1 : T i1 ∗ · · · ∗ ximi−1 : T imi−1 ∗ T imi

∀0 < i ≤ n. E, xi1 : T i1, . . . , ximi
: T imi

, {M = hi(xi1, . . . , ximi
)} ` Ai : U E′i

E ` Afail : U E′′′

{xij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∩ fv(U) = ∅
E ` match M with

| h1 (x1
1, . . . , x

1
m1) → A1 . . . | hn (xn1 , . . . , xnmn

) → An | _→ Afail : U E′1

takes the continuation of the first match. We resolve this ambiguity by restricting the
expressions which we consider. Intuitively, we need processes where the continuation is
uniquely determined, i.e., where there is no significant branching. We call these expressions
linear (to denote that there is no significant branch).

Definition A.15 (Linear context). We call a context linear if and only if C is of either
of the following forms:

• C = •;

• C = match M with | h(x) =⇒ C ′ | _ =⇒ false where C ′ is a linear context;

207

Appendix A. Well-Typedness of the API Methods

• C = if x = y then C ′ else false where C ′ is a linear context;

• C = let x = A;C ′ where C ′ is a linear context;

• C = let (x1, . . . , xn) = A;C ′ where C ′ is a linear context.

Lemma A.17 (Linear context environment extension). Let C be a linear context and let
E′ be a typing environment such that E′ ` C : {x : bool | x = true =⇒ F} E′′ for some
formula F , and let

Ext Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F} E

be the only application of this rule. Then E = E′′.

Proof. Let C, E′, and E′′ be as in the lemma. We show that the hole lies always in the
branch whose typing environment is returned by the extended judgments.

The proof is by induction on the structure of linear processes. The base case is trivial
since the only possible rule to apply is Ext Exp ContextF . For the induction, there are
only three cases to consider. A glimpse at the extended rules in Table A.17 shows that
the environment passed down is always in the position where the linear context C ′ resides
(see Definition A.15). Applying the induction hypothesis yields the desired result.

Lemma A.18 (Transitivity linear process). Let C1 and C2 be two linear contexts. Then
C1[C2] is a linear process.

Proof. The proof is by induction on the length of the linear process C2.

Lemma A.19 (Linear verification code). Let F be a formula and let C =
JF∧, zkv, stm, f, ωK for some zkv, stm, f , and ω. Then C is a linear context.

Proof. The claim follows by inspection of the code macros and Lemma A.18.

Here and throughout the rest of the thesis, we let TF denote TF := {x : bool | ∀z̃. f =
F ∧ x = true =⇒ F}. Notice that f is free in this type. It will be closed by the overall
type of the verification function

verifyF∧ : (p : proof)→ (f : formula)→ TF
∧
.

Definition A.16 (ψ-induced equalities). Let Mψ := {S1, . . . , Sm} be defined as in Defini-
tion A.3. We define

({x1, . . . , xn})= := {x1 = x2}, . . . , {x1 = xn}, {x2 = x3}, . . . , {xn−1 = xn}

and
(ψ)= := (Mψ)= := (S1)=, . . . , (Sm)=.

208

A.2. Well-Typedness of the RCF Implementation

The following lemma establishes the anticipated relation between the code induced by
ψ and the equalities induced by ψ.

Lemma A.20 (context=(ψ) and (ψ)=). Let ψ be a logical mapping as described above,
C := context=(ψ), and E be a typing environment. Then

(1) C is a linear context

(2) if E, (ψ)= ` A : T for some expression A and some type T , then E ` C[A] : T .

Proof. The part 1 follows by inspecting the code generated for context=(ψ) as defined in
Definition A.3. Part 2 follows from Lemma A.8.

Well-typedness of verifyF∨. Finally, we have all the machinery to prove that our
verification method is well-typed. We now state the intuition of appropriateness of typing
environments, the central notion in the proof. Then we give a quick road map how the
proofs will proceed and we will finally prove the well-typedness of the verification function.

The central notion of our well-typedness proof is the appropriateness
appropriate(E,E′, ψ, φ,F∧, stm, f) of typing environments and the logical maps with re-
spect to a formula F∧. We establish this notion as an invariance throughout all of our
following proofs. Intuitively, if appropriate(E,E′, ψ, φ,F∧, stm, f) holds, then E type-checks
the verification code for formula F∧. The typing environment E′ is the resulting typing
environment that is already strong enough to proof the formula F∧. The maps ψ and φ
are needed to establish the invariance if F∧ is extended.

The proofs will proceed as follows.

(i) First, we show that if, for a given formula F∧, typing environments, and mappings,
appropriateness holds, then we also establish appropriateness for the extended formula
F∧∧Fe. More precisely, we show that appropriateness is an invariant of the verification
code.

(ii) Second, we show that starting from a basic typing environment and the verification
code for a formula, we can establish the appropriateness after we finished type-checking
the code.
Formally, this is a proof by induction. The base case corresponds to the empty
formula and the induction step corresponds to the proof from step (i).

(iii) Third, we show that the verification function is well-typed.
Formally, we conclude that the code for formulas F∧ containing no disjunctions is
well-typed and, leveraging this result, show that the code macro for disjunctions is
also well-typed.

In our proof, we will also need to reason about the logical maps ψ and φ and relate
them to the code that was type-checked.

209

Appendix A. Well-Typedness of the API Methods

Definition A.17 (Mapping extension). Let F∧ be a formula and ψ and φ be empty
mappings. We call φ′ and ψ′ extended by F∧ if φ′ is derived from φ and ψ′ is derived from
ψ only from the modification described in the lines Uφi and Uψj in JF∧, zkv, stm, f, ωK for
some zkv, stm, f , and ω. We write ext(F∧, ψ′, φ′).

We proceed to the central definition of this section:

Definition A.18 (Appropriate). Let E and E′ be typing environments, p and f be variables,
ψ and φ be the mappings as described above, and F∧ be a formula. Furthermore, let the
context C = JF∧, zkv, stm, f, 0K as in the definition, and let (x0, . . . , xn) := Vars(F∧).
Then, the predicate

appropriate(E,E′, ψ, φ,F∧, stm, f).
holds if and only if, all of the following conditions are fulfilled:

(1) E ` C : {x : bool | ∀z̃. f = F∧ ∧ x = true =⇒ F∧} E′;

(2) E is basic and E′ ` �;

(3) ext(F∧, ψ, φ);

(4) ∀i ∈ Ivk(F∧). E′ ` φ(i) : verkey;

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i)));

(6) E ` stm : statement and E ` f : formula;

(7) E′ ` {f = F∧};

(8) E′, (ψ)= ` F∧.

Intuitively, the individual parts of the definition of appropriate(E,E′, ψ, φ,F∧, stm, f)
express the following:

(1) E ` C : {x : bool | ∀z̃. f = F∧ ∧ x = true =⇒ F∧} E′:
E is the typing environment initially used to start type-checking the verification context.
E′ is the resulting typing environment when arriving at the hole • of the current context.

(2) E is basic and E′ ` �:
This requirement is mostly a sanity check since, when E is basic and E′ is well-formed,
then E′ is also basic.

(3) ext(F∧, ψ, φ):
This requirement only enforces that the maps contain exactly the modifications that
are described in the verification macros.

(4) ∀i ∈ Ivk(F∧). E′ ` φ(i) : verkey:
The key ingredient to deriving logical formulas during the verification process are
verification keys. This requirement states that if a formula contains a public user
identifier x at position i, i.e., a handle to a verification key, then there is a variable
y = φ(i) that corresponds to this handle and E′ ` y : verkey.

210

A.2. Well-Typedness of the RCF Implementation

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i))):
This requirement states that all values, no matter whether they are revealed or hidden,
occur in the equality map ψ. In the revealed case, the variable itself occurs in ψ.
Otherwise, there is an index inside of the Hidden constructor. However, there is a value
also for hidden values in ψ (in the RCF implementation, that value y corresponds to
the sealed value inside the commitment corresponding to the hidden value).

(6) E ` stm : statement and E ` f : formula:
Since stm and f are an essential part of the verification macros, they have to occur
in the typing environment. Ultimately, the formula f is an input to the verification
function and the statement is extracted from the proof p : proof that is also an input
to the verification function.

(7) E′ ` {f = F∧}:
This requirement ensures that we maintain a close binding between the formula f that
will be an input into the verification function and the formula which we are proving.

(8) E′, (ψ)= ` F∧:
This point states the expected condition, that the formulas contained in the typing
environment after type-checking the verification context and the equalities induced by
the map ψ are sufficient to logically deduce the formula F∧.

Proposition A.4 (Appropriate for true). Let E be basic such that {stm : statement, f :
formula} ⊆ dom(E) and let ψ and φ be empty maps, i.e., ∀x. ψ(x) = ⊥ = φ(x). Then
appropriate(E,E, ψ, φ, true, stm, f).

We now prove that type-checking the verification macros maintains an invariance that
is close to appropriateness.

Definition A.19 (Almost appropriate). Let E, E′, and E′′ be typing environments,
stm, stm′ and f, f ′ be variables, ψ,ψ′ and φ, φ′ be the mappings, and F∧ and Fe be formulas.
Furthermore, let the context C = JF∧, zkv, stm, f, 0K and C ′ =

q
Fe, zkv′, stm′, f ′,∆→F∧

y
,

let (x0, . . . , xn−1) = Vars(F∧ ∧ Fe) for some zero-knowledge values zkv and zkv′, and let
appropriate(E,E′, ψ, φ,F∧, stm, f) hold. Then, the predicate

appropriate′(E,E′, E′′, ψ′, φ′,F∧,Fe, stm′, f ′).

holds if and only if, all of the following conditions are fulfilled:

(1) E′ ` C ′ : {x : bool | ∀z̃. y = F∧ ∧ Fe ∧ x = true =⇒ F∧ ∧ Fe} E′′;

(2) E is basic and E′′ ` �;

(3) ext(F∧ ∧ Fe, ψ′, φ′);

(4) ∀i ∈ Ivk(F∧ ∧ Fe). E′′ ` φ′(i) : verkey;

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i)));

211

Appendix A. Well-Typedness of the API Methods

(6) E′ ` stm′ : proof and E′ ` f ′ : formula;

(7) E′′ ` {f ′ = Fe};

(8) E′′, (ψ′)= ` F∧ ∧ Fe.

Intuitively, almost appropriate matches appropriate up to the requirement, that
the resulting typing environment shows that the formula f equals the complete formula
F∧ ∧ Fe. This missing link allows for considering all elementary cases by themselves and,
in the main theorem, use this consideration in an inductive proof. There, the code for the
logical conjunction paired with the almost appropriateness ensures that the corresponding
formula matches the logical conjunction. The following proposition captures this intuition.

Proposition A.5 (Linking appropriateness and almost-appropriateness). Let E,E′, E′′ be
typing environments, ψ,ψ′, φ, φ′ be mappings, F∧,Fe be formulas, and stm, stm′, f, f ′ such
that appropriate(E,E′, ψ, φ,F∧, stm, f) and appropriate′(E,E′, E′′, ψ′, φ′,F∧,Fe, stm′, y′).

If E′′ ` f ′′ : formula and E′′ ` stm′′ : statement for some variables f ′′ and stm′′, and
E′′, (ψ′)= ` {f ′′ = F∧ ∧ Fe}, then appropriate(E,E′′, ψ′, φ′,F∧ ∧ Fe, stm′′, f ′′).

Lemma A.21 (Almost appropriate invariance). Let E, E′, ψ, φ, F∧, stm, f be such that
appropriate(E,E′, ψ, φ,F∧, stm, f) and let stm′ and f ′ be such that E′ ` stm′ : statement
and E′ ` f ′ : formula. Then for every elementary formula Fe, there are a typing environ-
ment E′′ and mappings ψ′, φ′ such that appropriate′(E,E′, E′′, ψ′, φ′,F∧,Fe, stm′, f ′).

Proof. Let E, E′, ψ, φ, F∧, stm, f be such that appropriate(E,E′, ψ, φ,F∧, stm, f) and let
stm′ and f ′ be such that E′ ` stm′ : statement and E′ ` f ′ : formula be as in the lemma.

We assume appropriate(E,E′, ψ, φ,F∧′, stm′, f ′) and we show that type-checking an
additional elementary formula Fe yields an almost appropriate state.

In the following proof, we stress that we never violate the well-formedness of any typing
environment due to the freshness of all names and implicit α-renaming. Consequently, all
typing environments we use are basic since they all originate from E.

We will omit type-checking the non-matching branches: they immediately return false.
The return type false : {x : bool | ∀z̃. y = F∧ ∧ x = true =⇒ F∧} vacuously holds true
since x turns the complete premise of the implication into false. We will also skip the
initial matching statements. They hold by inspecting the type definitions in Table A.2 and
Table A.3.

We will implicitly use rule

Val Var
E ` � (x : T) ∈ E

E ` x : T

by arguing that a variable along with a certain type is entered in the current typing
environment. Finally, we use Lemma A.17 (linear context environment extension) and
Lemma A.19 (linear verification code) to derive that the environment E′′ used to type-check

212

A.2. Well-Typedness of the RCF Implementation

the hole • in the respective verification context is also the environment returned by the
extended rules.
Case Fe , A says Pk(m1, . . . ,mn):
Code (line 5):

let tmpsig = openCommit csig;

Environment:
E′, csig : commitment, cz : commitment, carg1 : commitment, . . . , cargn

: commitment,
{stm = Saysp(csig,_, cz,_, PPk (carg1 ,_, . . . , cargn

,_))}
arg′0 : uidpub RevHid, arg′1 : unit, . . . , arg′n : unit,
{f = Says(arg′0, PFk (arg′1, . . . , arg′n))}︸ ︷︷ ︸

=:E′1

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′1 ` openCommit : commitment → bitstring ∗ random
2. E′1 ` csig : commitment
3. tmpsig /∈ fv(TF∧)
4. E′1, tmpsig : bitstring ∗ random ` R : TF∧

Since E′1 is basic, the first obligation follows. The second obligation follows because
csig : commitment ∈ E′1. The third obligation holds since the variable does not occur in
the return type.
Code (line 6):

let (sig, rsig) = tmpsig;

Environment:
E′1, tmpsig : bitstring ∗ random︸ ︷︷ ︸

=:E′2

Rules:
Ext Exp Split

E `M : (Σx : T. U)
E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V E′

213

Appendix A. Well-Typedness of the API Methods

Proof Obligations:

1. E′2 ` tmpsig : bitstring ∗ random
2. {sig, rsig} ∩ fv(TF∧) = ∅

3. E′2, tmpsig : bitstring ∗ random, sig : signature,
rsig : random, {(sig, rsig) = tmpsig} `R : TF∧

Since tmpsig : bitstring ∗ random ∈ E′2, the first obligation follows. The second obligation
follows because tmpsig is fresh and does not occur anywhere else. For the next type-checking
steps, we recall that bitstring = signature = unit, i.e., we can safely add sig with type
signature into the typing environment.

We repeat this step until we arrive at line 12 (the arguments for the obligations are
analogous to the two type-checking steps above.
Code (lines 7-12):

let tmpz = openCommit cz;
let (arg0, rarg0) = tmpz;
...
let tmpn−1 = openCommit cargn−1 ;
let (argn−1, rargn−1) = tmpn−1;
let tmpn = openCommit cargn

;
let (argn, rargn

) = tmpn;

In the proceeding proof, we implicitly use Lemma A.4 (weakening) to skip the logical
formulas obtained by the splitting process since we do not need them.

We type-check under the assumption that the i-th argument is revealed.
Code (line 13):

let argoi = getRevealed arg′i;

Environment:

E′2, tmpsig : bitstring ∗ random, sig : signature, rsig : random,
tmpz : bitstring ∗ random, arg0 : bitstring, rarg0 : random, . . .
tmpn : bitstring ∗ random, argn : bitstring, rargn

: random︸ ︷︷ ︸
=:E′3

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

214

A.2. Well-Typedness of the RCF Implementation

Proof Obligations:

1. E′3 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′3 ` arg′i : unit RevHid
3. argoi /∈ fv(TF∧)
4. E′3, argoi : {y : unit | arg′i = Revealed y} ` R : TF∧

The obligations hold analogously to the previous step.

Code (line Uψ0):

ψ := ψ[E(ω + i) 7→ ψ(E(ω + i)) ∪ {argoi }]

We extend the map ψ to include the revealed arguments of the formula. Together with the
map extension in lines Uψ1 -Uψn+1, we ensure that the formula matches the proof and that
the desired formula can be proven.

Code (lines 15-20):

let z′′ = match arg′0 with
| Revealed x =⇒

PKI x
φ := φ[E(ω) 7→ z′′]
| _ =⇒
φ(E(ω));

Environment:
E′3, argoi : {y : unit | arg′i = Revealed y}︸ ︷︷ ︸

=:E′4

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Ext Exp Match
E `M : T h : (H,T)

E, x : H,_ : {h x = M} ` A : U E′ E,_ : {∀x. h x 6= M} ` B : U E′′

E ` match M with h x→ A else B : U E′

215

Appendix A. Well-Typedness of the API Methods

Proof Obligations:

1. E′4 ` arg′0 : uidpub RevHid
2. E′4 ` Revealed : (uidpub, uidpub RevHid)
3. E′4, x : unit, {arg′0 = Revealed x} ` PKI : (x : unit) → {y : verkey | x = y}
4. E′4, x : unit, {arg′0 = Revealed x} ` x : unit
5. E′4, x : unit, {arg′0 = Revealed x} ` PKI x : verkey
6. z′′ /∈ fv(TF∧) = ∅
7. E′4, {∀y. arg′0 6= Revealed y} ` φ(E(ω)) : verkey
8. if the verification key is revealed: E′4, z′′ : {y : verkey | arg′0 = Revealed y} ` R : TF∧

9. otherwise: E′4, z′′ : verkey ` R : TF∧

The first four premises hold due to E′4 being basic and because the variables have been
added to the typing environments in previous steps. The fifth premise follows immediately
by Exp Appl.

Since z′′ does not occur in TF∧ , the sixth obligation follows.
For the remaining obligations, we notice that due to the assumed appropriateness of

the formula F∧ in combination with the well-formedness of the logical formula: If E(ω) = ω,
i.e., there is no occurrence of a variable y at a position i < ω that is equal to arg′0 in the
formula F∧, then the variable occurs here for the first time. Since it is a verification key,
well-formedness requires that the variable is revealed: were we type-checking the “hiding”
branch, it would contradict the well-formedness of the proven formula. If there is such a
position i < ω, then the appropriateness of formula F∧ yields that E′ ` φ(E(i)) : verkey.
Since E(i) = E(ω) by definition of the map E and by extending E′ without breaking the well-
formedness, we derive that E′4, {∀y. arg′0 6= Revealed y} ` φ(E(ω)) : verkey. In either case,
E′4 ` φ(E(ω)) : verkey, i.e., z′′ will have type verkey in the resulting typing environment. If
the verification key is revealed, the matching yields the formula {arg′0 = Revealed x} and
the application of the auxiliary function PKI yields a variable of type {y : verkey | x = y}.
Combining them gives the type {y : verkey | arg′0 = Revealed y}.
Code (line 21):

if z′′ = arg0 then

Environment:
E′4, z

′′ : verkey︸ ︷︷ ︸
=:E′5

Rules:
Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Proof Obligations:
1. E′5 ` z′′ : verkey
2. E′5 ` arg0 : unit
3. E′5, {z′′ = arg0} ` R : TF∧

216

A.2. Well-Typedness of the RCF Implementation

The first two obligations follow since the respective variables have been added to the typing
environment in previous steps.

Code (line 22):

let m = checksig z
′′ sig;

Environment:
E′5, {z′′ = arg0}︸ ︷︷ ︸

=:E′6

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′6 ` checksig : (y : verkey) → (sig : signature) → Ty{verkey/α}
2. E′6 ` z′′ : verkey
3. E′6 ` sig : signature
4. E′6 ` m : Ty{z′′/y}
5. m /∈ fv(TF∧)
6. E′6,m : Ty{z′′/y} ` R : TF∧

The first three obligations hold since E′6 is basic and because the respective variables have
been added to the typing environment with the proper types. The fourth obligation is a
direct consequence of Exp Appl. The fifth obligation holds since m does not occur in
TF

∧ .

Code (lines 23-24):

match m with
| PSk (y′1, . . . , y′n) =⇒

Environment:
E′6,m : Ty{z′′/y}︸ ︷︷ ︸

=:E′7

217

Appendix A. Well-Typedness of the API Methods

Rules:

Ext Exp Match-Splitn
(m1,...,mn)

E `M : T ∀0 < i ≤ n. hi : (Hi, T) ∀0 < i ≤ n. Hi = xi
1 : T i

1 ∗ · · · ∗ xi
mi−1 : T i

mi−1 ∗ T i
mi

∀0 < i ≤ n. E, xi
1 : T i

1, . . . , x
i
mi

: T i
mi
, {M = hi(xi

1, . . . , x
i
mi

)} ` Ai : U E′i
E ` Afail : U E′′

{xi
j | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∩ fv(U) = ∅

E ` match M with | h1 (x1
1, . . . , x

1
m1

) → A1 . . . | hn (xn
1 , . . . , x

n
mn

) → An | _→ Afail : U E′1

Proof Obligations:

1. E′7 ` m : Ty{z′′/y}
2. E′7 ` PSk : (xk1 : T k1 ∗ · · · ∗ xkn−1 : T kn−1 ∗ {xkn : T kn | z′′ says Pk(xk1, . . . , xkn)}, Ty{z′′/y})

3. E′7, y
′
1 : T k1 , . . . , y′n : {xkn : T kn | z′′ says Pk(y′1, . . . , y′n−1, x

k
n)},

{m = PS(y′1, . . . , y′n)} `R : TF∧

The first hypothesis follows since m has been added to the typing environment in the
previous step. The second hypothesis follows by inspecting the definition of type verkey
(see Table A.5).

Code (lines 25-26):

if arg1 = y′1 then
...
if argn = y′n then

Environment:

E′7, y
′
1 : T k1 , . . . , y′n : {xkn : T kn | z′′ says Pk(y′1, . . . , y′n−1, x

k
n)}, {m = PS(y′1, . . . , y′n)}︸ ︷︷ ︸

=:E′8

Rules:

Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Proof Obligations:

1. ∀i. E′8 ` argi : unit
2. ∀i. E′8 ` yi : T ki
3. E′8, {arg1 = y′1}, . . . {argn = y′n} ` R : TF∧

The first two obligations hold because all the variables have been entered into the typing
environment in previous steps.

218

A.2. Well-Typedness of the RCF Implementation

Code (lines Uφ1 -U
ψ
n+1):

φ := φ[E(ω + 1) 7→ y′1]
...
φ := φ[E(ω + n) 7→ y′n]
ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {arg0}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {arg1}]
...
ψ := ψ[E(ω + n) 7→ ψ(E(ω + n)) ∪ {argn}]

At this point, we greatly extend the maps ψ and φ. We add all the newly-derived
variables y′i into the map φ. Since only the y′i are potentially typed verkey, we ensure that
E′8 ` φ(E(ω + i)) : verkey.

Furthermore, we add all the variables argi to the correct position in the map ψ. This
ensures that if the content of two commitments are equal, then we can also reflect this
back into the proven logical formula, even if the values are hidden. Notice that this step
also connects the proof to the proven formula: the equalities between the y′i and the argi
are proven in lines 25-26; the equality between z′′ and arg0 is proven in line 21.

Finally, we arrived at •.

Code (line 28):

•

Environment:
E′8, {arg1 = y′1}, . . . , {argn = y′n}︸ ︷︷ ︸

=:E′9

Rules:

Ext Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F} E

Proof Obligations:
none

We let φ′ := φ and ψ′ := ψ and argue why the current typing environment and maps are
almost appropriate:

(1) E′ ` C ′ : {x : bool | ∀z̃. f = F∧ ∧ Fe ∧ x = true =⇒ F∧ ∧ Fe} E′′:
We conducted the type-checking and we have derived that E′′ := E′9. We stress that
this type only holds due to the typing rule Exp ContextF . The typing environment
cannot prove that f = F∧ ∧ Fe. The final code, however, will be able to prove this
type.

219

Appendix A. Well-Typedness of the API Methods

(2) E is basic and E′′ ` �:
We never double-bind values and all the free names and variables of a type are closed
inside of the typing environment.

(3) ext(F∧ ∧ Fe, ψ′, φ′):
From appropriate(E,E′,F∧, ψ, φ, stm, f), we immediately obtain that ext(F∧, ψ, φ).
The only modifications applied to ψ and φ are those described in the verification
context. Since the verification context for logical conjunction and logical disjunction
do not contain changes to ψ and φ, we conclude that ext(F∧ ∧ Fe, ψ′, φ′).

(4) ∀i ∈ Ivk(F∧ ∧ Fe). E′′ ` φ′(i) : verkey:
For the variables in the formula F∧, this holds by the assumed appropriateness of E′.
For the other values, we argued that all variables that might be given type verkey are
entered into the map φ. More precisely, the variables are entered in lines Uφ1 -Uφn .

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i))):
If the i-th argument arg′i to the says predicate is revealed, we have executed lines 9
and Uψ0 for that variable. Consequently, we have added argoi in to ψ′ where arg′i =
Revealed argoi .

In either case, we add the variable argi to ψ′ in line Uψi+1. In particular, this variable
will ensure that all values hidden by the same existential quantifier are represented by
the same committed value (the equality between them is ensured by the map E).

(6) E′ ` stm′ : statement and E′ ` f ′ : formula:
This is an assumption.

(7) E′′ ` {f ′ = Fe} and

(8) E′′, (ψ′)= ` F∧ ∧ Fe:
The assumed appropriateness yields that E′, (ψ)= ` F∧. Since E′′ is an extension of
E′ and ψ′ is an extension of ψ, we obtain that E′′, (ψ′)= ` F∧.

For the formula Fe with the encoding Fe = Says(arg′0, PFk (arg′1, . . . , arg′n)), we consider
the following formulas in E′′ and the entries of ψ′:

(a) lines 1-4: {f ′ = Says(arg′0, PFk (arg′1, . . . , arg′n))}

(b) line 13: For all revealed entries: {arg′i = Revealed argoi }

(c) line Uψ0 ψ[E(ω + i) 7→ ψ(E(ω + i)) ∪ {argoi }]

(d) lines 16-20: If arg′0 is revealed, then we additionally get {arg′0 = Revealed z′′}

(e) line 21: {z′′ = arg0}

(f) lines 22-24: {z′′ says Pk(y′1, . . . , y′n)}

(g) lines 25-26: {arg1 = y′1}, . . . {argn = y′n}

220

A.2. Well-Typedness of the RCF Implementation

(h) lines Uψ1 -Uψn+1:
ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {arg0}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {arg1}]
...
ψ := ψ[E(ω + n) 7→ ψ(E(ω + n)) ∪ {argn}]

First, we note that by (e), (f), and (g), we derive

arg0 says Pk(arg1, . . . , argn).

More precisely, we derive the logical formula where all values are derived from the
commitments attached to the proof. If the i-th value is revealed in F∧, we obtain
arg′i = Revealed argoi by (b) and by (d) we get arg′0 = Revealed z′′. We obtain the
expected equalities argoi = argi by (c) and (h), and arg0 = z′′ by (e); for all hidden
values, we get the necessary equalities by (h). In particular, this substitution shows
that E′′ ` {f ′ = Fe}. Furthermore, it shows that E′′ ` Fe since substituting all
the argoi for the revealed values and consistently replacing the committed values argj
with existential quantified values proves Fe. The equalities induced by ψ enable us to
consistently existentially quantify across F∧ and Fe, yielding E′′ ` F∧ ∧ Fe.

Case Fe , SSP(A, s, psd):
Code (line 3):

let tmpx = openCommitsk cx;

Environment:
E′, cz : commitment, cs : commitment, cpsd : commitment, cx : commitment,
{stm = SSPp(cz,_, cs,_, cpsd , cx)}

z′ : uidpub RevHid, s′ : string RevHid, psd ′ : pseudo RevHid,
{f = SSP(z′, s′, psd ′)}︸ ︷︷ ︸

=:E′1

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:
1. E′1 ` openCommitsk : commitment → sigkey ∗ random
2. E′1 ` cx : commitment
3. tmpx /∈ fv(TF∧)
4. E′1, tmpx : sigkey ∗ random ` R : TF∧

221

Appendix A. Well-Typedness of the API Methods

Since E′1 is basic, the first obligation follows. The second obligation follows since cx :
commitment ∈ E′1. The third obligation holds since tmpx does not occur in the return
type.

Code (line 4):

let (x, rx) = tmpx;

Environment:
E′1, tmpx : sigkey ∗ random︸ ︷︷ ︸

=:E′2

Rules:

Ext Exp Split
E `M : (Σx : T. U)

E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅
E ` let (x, y) = M ; A : V E′

Proof Obligations:

1. E′2 ` tmpx : sigkey ∗ random
2. {x, rx} ∩ fv(TF∧) = ∅
3. E′2, x : sigkey, rx : random, {(x, rx) = tmpx} ` R : TF∧

The first obligation follows since cx : commitment ∈ E′2. The second obligation holds since
the variables do not occur in the return type.

Code (line 5):

let tmpz = openCommit cz;

Environment:
E′2, x : sigkey, rx : random, {(x, rx) = tmpx}︸ ︷︷ ︸

=:E′3

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

222

A.2. Well-Typedness of the RCF Implementation

Proof Obligations:

1. E′3 ` openCommit : commitment → bitstring ∗ random
2. E′3 ` cz : commitment
3. tmpz /∈ fv(TF∧)
4. E′3, tmpz : bitstring ∗ random ` R : TF∧

Since E′3 is basic, the first obligation follows. The second obligation follows since cz :
commitment ∈ E′3. The third obligation holds since the variable does not occur in the
return type.

Code (line 6):

let (z, rz) = tmpz;

Environment:
E′3, tmpz : bitstring ∗ random︸ ︷︷ ︸

=:E′4

Rules:
Ext Exp Split

E `M : (Σx : T. U)
E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V E′

Proof Obligations:

1. E′4 ` tmpz : bitstring ∗ random
2. {z, rz} ∩ fv(TF∧) = ∅
3. E′4, z : bitstring, rz : random, {(z, rz) = tmpz} ` R : TF∧

The first obligation follows since tmpz : bitstring ∗ random ∈ E′4. The second obligation
holds since the variables do not occur in the return type.

Code (line 7):

let tmps = openCommit cs;

Code (line 8):

let (s, rs) = tmps;

Code (line 9):

let tmppsd = openCommit cpsd ;

Code (line 10):

let (psd, rpsd) = tmppsd ;

223

Appendix A. Well-Typedness of the API Methods

Lines 7 through 10 are analogous to lines 5 and 6.

Code (line 11):

let (x′′, x′) = x;

Environment:

E′4, tmps : bitstring ∗ random, s : bitstring, rs : random, {(s, rs) = tmps},
tmppsd : bitstring ∗ random, psd : bitstring, rpsd : random, {(psd, rpsd) = tmppsd}︸ ︷︷ ︸

=:E′5

Rules:

Ext Exp Split
E `M : (Σx : T. U)

E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅
E ` let (x, y) = M ; A : V E′

Proof Obligations:

1. E′5 ` x : sigkey
2. {x′′, x′} ∩ fv(TF∧) = ∅
3. E′5, x

′′ : (µα. Ty → signature), x′ : verkey, {x = (x′′, x′)} ` R : TF∧

The first obligation follows since x : sigkey ∈ E′5 and because sigkey := (µα. Ty →
signature) ∗ verkey, i.e., the type sigkey can be split. The second obligation holds because
neither x′ nor x′′ occur in TF∧ .

We will type-check the code as if all values were revealed.

Code (line 12):

let zo = getRevealed z′;

Environment:

E′5, x
′′ : (µα. Ty → signature), x′ : verkey, {(x′′, x′) = x}︸ ︷︷ ︸

=:E′6

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

224

A.2. Well-Typedness of the RCF Implementation

Proof Obligations:

1. E′6 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′6 ` z′ : uidpub RevHid
3. zo /∈ fv(TF∧)
4. E′6, z

o : {y : unit | z′ = Revealed y} ` R : TF∧

The first obligation follows since E′6 is basic. The second obligation holds since z′ :
uidpub RevHid ∈ E′6. The third obligation follows since zo does not occur in TF∧ .

Code (line Uψ0):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {zo}]

We extend the map ψ to include zo.

Code (line 14):

let so = getRevealed s′;

Environment:
E′6, z

o : {y : unit | z′ = Revealed y}︸ ︷︷ ︸
=:E′7

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′7 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′7 ` s′ : bitstring RevHid
3. so /∈ fv(TF∧)
4. E′7, so : {y : unit | s′ = Revealed y} ` R : TF∧

The first obligation follows since E′7 is basic. The second obligation holds since s′ :
bitstring RevHid ∈ E′7. The third obligation follows since so does not occur in TF∧ .

Code (line Uψ1):

ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {so}]

We extend the map ψ to include so.

225

Appendix A. Well-Typedness of the API Methods

Code (line 16):

let psdo = getRevealed psd ′;

Environment:
E′7, so : {y : unit | s′ = Revealed y}︸ ︷︷ ︸

=:E′8

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′8 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′8 ` psd ′ : bitstring RevHid
3. psdo /∈ fv(TF∧)
4. E′8, psdo : {y : unit | psd ′ = Revealed y} ` R : TF∧

The first obligation follows since E′8 is basic. The second obligation holds since psd ′ :
bitstring RevHid ∈ E′8. The third obligation follows since psdo does not occur in TF∧ .

Code (line Uψ2):

ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {psdo}]

We extend the map ψ to include psdo.

Code (lines Uψ3 -Uψ5):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z, x′}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {s}]
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {psd}]

We extend the map ψ to prove the equality of z and x′, and to further include psd and s.

Code (line 21):

let psd ′′ = computePsd x s;

Environment:
E′8, psdo : {y : unit | psd ′ = Revealed y}︸ ︷︷ ︸

=:E′9

226

A.2. Well-Typedness of the RCF Implementation

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′9 ` computePsd : (sk : sigkey) → (s : string) →
{x : pseudo | ∃y, z. sk = (y, z) ∧ SSP(z, s, x)}

2. E′9 ` x : sigkey
3. E′9 ` s : string
4. psd ′′ /∈ fv(TF∧)
5. E′9, psd ′′ : {z : pseudo | ∃y′, y. x = (y′, y) ∧ SSP(y, s, z)} ` R : TF∧

The first obligation follows since E′9 is basic. The second and third obligations hold since
{x : sigkey, s : string} ⊂ E′9. The fourth obligation follows since psd ′′ does not occur in
TF

∧ .

Code (line 22):

if psd ′′ = psd then

Environment:

E′9, psd ′′ : {z : pseudo | ∃y′, y. x = (y′, y) ∧ SSP(y, s, z)}︸ ︷︷ ︸
=:E′10

Rules:

Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Proof Obligations:

1. E′10 ` psd ′′ : {z : pseudo | ∃y′, y. x = (y′, y) ∧ SSP(y, s, z)}
2. E′10 ` psd : pseudo
3. E′10, {psd ′′ = psd} ` R : TF∧

The first obligation follows since psd ′′ was added with this type in the step above. The
second obligation holds since psd : pseudo ∈ E′10.

227

Appendix A. Well-Typedness of the API Methods

Code (line 23):

•

Environment:
E′10, {psd ′′ = psd}︸ ︷︷ ︸

=:E′11

Rules:

Ext Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F} E

Proof Obligations:
none

We let φ′ := φ and ψ′ := ψ and argue why the current typing environment and maps are
almost appropriate:

(1) E′ ` C ′ : {x : bool | ∀z̃. y = F∧ ∧ Fe ∧ x = true =⇒ F∧ ∧ Fe} E′′:
We conducted the type-checking and we have derived that E′′ := E′11. We stress that
this type only holds due to the typing rule Exp ContextF . The typing environment
cannot prove that y = F∧ ∧ Fe. The final code, however, will be able to prove this
type.

(2) E is basic and E′′ ` �:
We never double-bind values and all the free names and variables of a type are closed
inside of the typing environment.

(3) ext(F∧ ∧ Fe, ψ′, φ′):
From appropriate(E,E′,F∧, ψ, φ, stm, f), we immediately obtain that ext(F∧, ψ, φ).
The only modifications applied to ψ and φ are those described in the verification
context. Since the verification context for logical conjunction and logical disjunction
do not contain changes to ψ and φ, we conclude that ext(F∧ ∧ Fe, ψ′, φ′).

(4) ∀i ∈ Ivk(F∧ ∧ Fe). E′′ ` φ′(i) : verkey:
For the variables in the formula F∧, this holds by the assumed appropriateness of E′.
Since Ivk(Fe) = ∅, the obligation follows.

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i))):
If any of the user identifier z, the service description s, or the pseudonym psd are
revealed, we will have executed lines 12 and Uψ0 , lines 14 and Uψ1 , and lines 16 and Uψ2 ,
respectively. Consequently, we have derived that ν ′ = Revealed νo for ν ∈ {z, s, psd}.

In either case, we add the variables z, s, and psd to ψ′ in lines Uψ3 −U
ψ
5 . In particular,

these variables will ensure that all values hidden by the same existential quantifier are
represented by the same committed value (the equality between them is ensured by E
that maps the indices of these variables to the same index).

228

A.2. Well-Typedness of the RCF Implementation

(6) E′ ` stm′ : statement and E′ ` f ′ : formula:
This is an assumption.

(7) E′′ ` {f ′ = Fe} and

(8) E′′, (ψ′)= ` F∧ ∧ Fe:
The assumed appropriateness yields that E′, (ψ)= ` F∧. Since E′′ is an extension of
E′ and ψ′ is an extension of ψ, we obtain that E′′, (ψ′)= ` F∧.
For the formula Fe with the encoding Fe = SSP(z′, s′, psd ′), we consider the following
formulas in E′′ and the entries of ψ′:
(a) lines 1-2: {f = SSP(z′, s′, psd ′)}
(b) line 11: {(x′′, x′) = x}
(c) line 12-Uψ2 : {z′ = Revealed zo}, {s′ = Revealed so}, {psd ′ = Revealed psdo} if the

corresponding values are revealed.
(d) lines Uψ3 -Uψ5 :

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z, x′}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {s}]
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {psd}]

(e) lines 21: {∃y, z. x = (y, z) ∧ SSP(z, s, psd ′′)}
(f) line 22: {psd ′′ = psd}
First, we note that by (e), (b), and (f), we derive

SSP(z, s, psd).

More precisely, we derive the logical formula where all values are derived from the
commitments attached to the proof. For the revealed arguments, we obtain the
expected equalities by the respective entries into ψ′ by (c); for all hidden values,
we get the necessary equalities by (d). In particular, this substitution shows that
E′′ ` {f ′ = Fe}. Furthermore, it shows that E′′ ` Fe since substituting all the “ o ”
variables for the revealed values and consistently replacing the committed values with
existential quantified values proves Fe. The equalities induced by ψ′ enable us to
consistently existentially quantify across F∧ and Fe, yielding E′′ ` F∧ ∧ Fe.

Case Fe , x op y:
Code (line 3):

let tmpx = openCommit cx;

Environment:
E′, cx : commitment, op : string, cy : commitment,
{stm = RELp(cx,_, op,_, cy)}

x′ : bitstring RevHid, op : string, y : bitstring RevHid,
{f = REL(x′, op, y′)}︸ ︷︷ ︸

=:E′1

229

Appendix A. Well-Typedness of the API Methods

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′1 ` openCommit : commitment → bitstring ∗ random
2. E′1 ` cx : commitment
3. tmpx /∈ fv(TF∧)
4. E′1, tmpx : bitstring ∗ random ` R : TF∧

Since E′1 is basic, the first obligation follows. The second obligation follows since cx :
commitment ∈ E′1. The third obligation holds as the variable is fresh and does not occur
in the return type.

Code (line 4):

let (x, rx) = tmpx;

Environment:
E′1, tmpx : bitstring ∗ random︸ ︷︷ ︸

=:E′2

Rules:
Ext Exp Split

E `M : (Σx : T. U)
E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V E′

Proof Obligations:

1. E′2 ` tmpx : bitstring ∗ random
2. {x, rx} ∩ fv(TF∧) = ∅
3. E′2, x : bitstring, rx : random, {(x, rx) = tmpx} ` R : TF∧

The first obligation follows since tmpx : bitstring ∗ random ∈ E′2. The second obligation
holds as the variables do not occur in the return type.

Code (line 5):

let tmpy = openCommit cy;

230

A.2. Well-Typedness of the RCF Implementation

Code (line 6):

let (y, ry) = tmpy;

These steps are analogous to those for lines 3 and 4.

We will type-check the code as if all values were revealed.

Code (line 7):

let xo = getRevealed x′;

Environment:

E′2, x : bitstring, rx : random, {(x, rx) = tmpx},
tmpy : bitstring ∗ random, y : bitstring, ry : random, {(y, ry) = tmpy}︸ ︷︷ ︸

=:E′3

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′3 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′3 ` x′ : bitstring RevHid
3. xo /∈ fv(TF∧)
4. E′3, x

o : {y : unit | x′ = Revealed y} ` R : TF∧

The first obligation follows since E′3 is basic. The second obligation holds since x′ :
bitstring RevHid ∈ E′3. The third obligation follows since xo does not occur in TF∧ .

Code (line Uψ0):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}]

We extend the map ψ to include xo.

Code (line 9):

let yo = getRevealed y′;

231

Appendix A. Well-Typedness of the API Methods

Environment:
E′3, x

o : {y : unit | x′ = Revealed y}︸ ︷︷ ︸
=:E′4

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′4 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′4 ` y′ : bitstring RevHid
3. yo /∈ fv(TF∧)
4. E′4, y

o : {y : unit | y′ = Revealed y} ` R : TF∧

The first obligation follows since E′4 is basic. The second obligation holds since y′ :
bitstring RevHid ∈ E′4. The third obligation follows since yo does not occur in TF∧ .

Code (line Uψ1):

ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {yo}]

We extend the map ψ to include yo.

Code (line Uψ2 -Uψ3):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {y}]

We extend the map ψ to include the committed values x and y.

Code (line 13):

let b = funcrop x y;

Environment:
E′4, y

o : {y : unit | y′ = Revealed y}︸ ︷︷ ︸
=:E′5

232

A.2. Well-Typedness of the RCF Implementation

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′5 ` funcrop : (x : bitstring) → (y : bitstring) → {z : bool | z = true⇔ x op y}
2. E′5 ` x : bitstring
3. E′5 ` y : bitstring
4. b /∈ fv(TF∧)
5. E′5, b : {z : bool | z = true⇔ x op y} ` R : TF∧

The first obligation follows since E′5 is basic. The second and third obligations hold since
{x : bitstring, y : bitstring} ⊂ E′5 (recall that bitstring = unit). The fourth obligation
follows since b does not occur in TF∧ .

Code (line 14):

if b = true then

Environment:
E′5, b : {z : bool | z = true⇔ x op y}︸ ︷︷ ︸

=:E′6

Rules:
Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Proof Obligations:

1. E′6 ` b : {z : bool | z = true⇔ x op y}
2. E′6 ` true : bool
3. E′6, {b = true} ` R : TF∧

The first obligation holds since b is contained in E′6 with the proper type. The second
obligation holds since true , inr() is defined to be of type bool.

Code (line 15):

if op = op′ then

233

Appendix A. Well-Typedness of the API Methods

Environment:
E′6, {b = true}︸ ︷︷ ︸

=:E′7

Rules:

Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Proof Obligations:
1. E′7 ` op : string
2. E′7 ` op′ : string
3. E′7, {op = op′} ` R : TF∧

The first and second obligation hold by inspecting the statement and the formula data
type.

Code (line 16):

•

Environment:
E′7, {op = op′}︸ ︷︷ ︸

=:E′8

Rules:

Ext Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F} E

Proof Obligations:
none

We let φ′ := φ and ψ′ := ψ and argue why the current typing environment and maps are
almost appropriate:

(1) E′ ` C ′ : {x : bool | ∀z̃. y = F∧ ∧ Fe ∧ x = true =⇒ F∧ ∧ Fe} E′′:
We conducted the type-checking and we have derived that E′′ := E′8. We stress that
this type only holds due to the typing rule Exp ContextF . The typing environment
cannot prove that y = F∧ ∧ Fe. The final code, however, will be able to prove this
type.

(2) E is basic and E′′ ` �:
We never double-bind values and all the free names and variables of a type are closed
inside of the typing environment.

234

A.2. Well-Typedness of the RCF Implementation

(3) ext(F∧ ∧ Fe, ψ′, φ′):
From appropriate(E,E′,F∧, ψ, φ, stm, f), we immediately obtain that ext(F∧, ψ, φ).
The only modifications applied to ψ and φ are those described in the verification
context. Since the verification context for logical conjunction and logical disjunction
do not contain changes to ψ and φ, we conclude that ext(F∧ ∧ Fe, ψ′, φ′).

(4) ∀i ∈ Ivk(F∧ ∧ Fe). E′′ ` φ′(i) : verkey:
For the variables in the formula F∧, this holds by the assumed appropriateness of E′.
Since Ivk(Fe) = ∅, the obligation follows.

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i))):
If any of the committed values x and y are revealed, we have executed lines 7 and Uψ0 ,
and lines 9 and Uψ1 , respectively. Consequently, we have derived that x′ = Revealed xo
and y′ = Revealed yo and put xo and yo into ψ.

In either case, we add the variables x and y to ψ′ in lines Uψ2 − U
ψ
3 . In particular,

these variables will ensure that all values hidden by the same existential quantifier are
represented by the same committed value (the equality between them is ensured by
the map E).

(6) E′ ` stm′ : statement and E′ ` f ′ : formula:
This is an assumption.

(7) E′′ ` {f ′ = Fe} and

(8) E′′, (ψ′)= ` F∧ ∧ Fe:
The assumed appropriateness yield that E′, (ψ)= ` F∧. Since E′′ is an extension of E′
and ψ′ is an extension of ψ, we obtain that E′′, (ψ′)= ` F∧.

For the formula Fe with the encoding Fe = REL(x′, op, y′), we consider the following
formulas in E′′ and the entries of ψ′:

(a) lines 1-2: {f = REL(x′, op, y′)}

(b) lines 7 and Uψ0 :
{x′ = Revealed xo}
ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}] if the corresponding value is revealed.

(c) lines 9 and Uψ1 :
{y′ = Revealed yo}
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {yo}] if the corresponding value is revealed.

(d) lines Uψ2 -Uψ3 :
ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {y}]

(e) line 13: {b = true⇔ x op y}

(f) line 14: {b = true}

235

Appendix A. Well-Typedness of the API Methods

First, we note that from (e) and (f), we derive

x op y.

More precisely, we derive the logical formula where all values are derived from the
commitments attached to the proof. For the revealed arguments, we obtain the
expected equalities by the respective entries into ψ′ by (b) and (c); for all hidden
values, we get the necessary equalities by (d). In particular, this substitution shows
that E′′ ` {f ′ = Fe}. Furthermore, it shows that E′′ ` Fe since substituting all the
“ o ” variables for the revealed values and consistently replacing the committed values
with existential quantified values proves Fe. The equalities induced by ψ′ enable us to
consistently existentially quantify across F∧ and Fe, yielding E′′ ` F∧ ∧ Fe.

Case Fe , x op y = z: The macro for this case is very close to the macro for relations.
The only addition is argument z for which the corresponding commitments needs to be
opened, possibly extracted if z is revealed in the formula, and added to the map ψ. Apart
from that, the case is analogous to that of the relational proofs.

Case Fe , (x, b) ∈ `:

Code (line 3):

let tmpx = openCommit cx;

Environment:

E′, cx : commitment, cb : commitment, ` : (pseudo ∗ bitstring) list
{stm = RELp(cx,_, cb,_, `)}

x′ : bitstring RevHid, b′ : bitstring RevHid, `′ : (pseudo ∗ bitstring) list
{f = REL(x′, b′, `′)}︸ ︷︷ ︸

=:E′1

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′1 ` openCommit : commitment → bitstring ∗ random
2. E′1 ` cx : commitment
3. tmpx /∈ fv(TF∧)
4. E′1, tmpx : bitstring ∗ random ` R : TF∧

236

A.2. Well-Typedness of the RCF Implementation

Since E′1 is basic, the first obligation follows. The second obligation follows since cx :
commitment ∈ E′1. The third obligation holds as tmpx does not occur in TF∧ .

Code (line 4):

let (x, rx) = tmpx;

Environment:
E′1, tmpx : bitstring ∗ random︸ ︷︷ ︸

=:E′2

Rules:

Ext Exp Split
E `M : (Σx : T. U)

E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅
E ` let (x, y) = M ; A : V E′

Proof Obligations:

1. E′2 ` tmpx : bitstring ∗ random
2. {x, rx} ∩ fv(TF∧) = ∅
3. E′2, x : bitstring, rx : random, {(x, rx) = tmpx} ` R : TF∧

The first obligation follows since tmpx : bitstring ∗ random ∈ E′2. The second obligation
holds since the variables do not occur in the return type.

Code (line 5):

let tmpb = openCommit cb;

Code (line 6):

let (b, rb) = tmpb;

This steps are analogous to lines 3 and 4.

We will type-check the code as if all values were revealed.

Code (line 7):

let xo = getRevealed x′;

Environment:

E′2, x : bitstring, rx : random, {(x, rx) = tmpx}
tmpb : bitstring ∗ random, b : bitstring, rb : random, {(b, rb) = tmpb}︸ ︷︷ ︸

=:E′3

237

Appendix A. Well-Typedness of the API Methods

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′3 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′3 ` x′ : bitstring RevHid
3. xo /∈ fv(TF∧)
4. E′3, x

o : {y : unit | x′ = Revealed y} ` R : TF∧

The first obligation follows since E′3 is basic. The second obligation holds since x′ :
bitstring RevHid ∈ E′3. The third obligation follows since xo does not occur in TF∧ .

Code (line Uψ0):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}]

We extend the map ψ to include xo.
Code (line 9):

let bo = getRevealed b′;

Environment:
E′3, x

o : {y : unit | x′ = Revealed y}︸ ︷︷ ︸
=:E′4

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′4 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′4 ` b′ : bitstring RevHid
3. bo /∈ fv(TF∧)
4. E′4, b

o : {y : unit | b′ = Revealed y} ` R : TF∧

238

A.2. Well-Typedness of the RCF Implementation

The first obligation follows since E′4 is basic. The second obligation holds since b′ :
bitstring RevHid ∈ E′4. The third obligation follows since bo does not occur in TF∧ .

Code (line Uψ1):

ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {bo}]

We extend the map ψ to include bo.

Code (line Uψ2 -Uψ3):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {b}]
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {`, `′}]

We extend the map ψ to include the committed values x and b. Additionally, we use ψ
to enforce that the list ` contained in the proof and the list `′ provided with the formula
coincide.

Code (line 14):

let r = List.member(2,2)〈pseudo ∗ bitstring〉 x b `;

Environment:
E′4, b

o : {y : unit | b′ = Revealed y}︸ ︷︷ ︸
=:E′5

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′5 ` List.member(2,2)〈pseudo ∗ bitstring〉 : (x : pseudo)→ (b : bitstring)→
(` : (pseudo ∗ bitstring) list)→ {z : bool | z = true⇔ (x, b) ∈ `}

2. E′5 ` x : pseudo
3. E′5 ` b : bitstring
4. r /∈ fv(TF∧)
5. E′5, r : {z : bool | z = true⇔ (x, b) ∈ `} ` R : TF∧

The first obligation follows since E′5 is basic. The second and third obligations hold since
{x : pseudo, b : bitstring} ⊂ E′5. The fourth obligation follows since r does not occur in
TF

∧ .

Code (line 15):

239

Appendix A. Well-Typedness of the API Methods

if r = true then

Environment:
E′5, r : {z : bool | z = true⇔ (x, b) ∈ `}︸ ︷︷ ︸

=:E′6

Rules:
Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Proof Obligations:

1. E′6 ` r : {z : bool | z = true⇔ (x, b) ∈ `}
2. E′6 ` true : bool
3. E′6, {r = true} ` R : TF∧

The first obligation holds since r is in E′6 with the proper type. The second obligation
holds since true , inr() is defined to be of type bool.

Code (line 16):

•

Environment:
E′6, {r = true}︸ ︷︷ ︸

=:E′7

Rules:

Ext Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F} E

Proof Obligations:
none

We let φ′ := φ and ψ′ := ψ and argue why the current typing environment and maps are
almost appropriate:

(1) E′ ` C ′ : {x : bool | ∀z̃. y = F∧ ∧ Fe ∧ x = true =⇒ F∧ ∧ Fe} E′′:
We conducted the type-checking and we have derived that E′′ := E′7. We stress that
this type only holds due to the typing rule Exp ContextF . The typing environment
cannot prove that y = F∧ ∧ Fe. The final code, however, will be able to prove this
type.

(2) E is basic and E′′ ` �:
We never double-bind values and all the free names and variables of a type are closed
inside of the typing environment.

240

A.2. Well-Typedness of the RCF Implementation

(3) ext(F∧ ∧ Fe, ψ′, φ′):
From appropriate(E,E′,F∧, ψ, φ, stm, f), we immediately obtain that ext(F∧, ψ, φ).
The only modifications applied to ψ and φ are those described in the verification
context. Since the verification context for logical conjunction and logical disjunction
do not contain changes to ψ and φ, we conclude that ext(F∧ ∧ Fe, ψ′, φ′).

(4) ∀i ∈ Ivk(F∧ ∧ Fe). E′′ ` φ′(i) : verkey:
For the variables in the formula F∧, this holds by the assumed appropriateness of E′.
Since Ivk(Fe) = ∅, the obligation follows.

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i))):
If any of the committed variables x and b are revealed, we have executed lines 7 and Uψ0 ,
and lines 9 and Uψ1 , respectively. Consequently, we have derived that x′ = Revealed xo
and y′ = Revealed yo and added xo and yo to ψ.
In either case, we add the variables x and b to ψ′ in lines Uψ2 -U

ψ
3 . In particular,

these variables will ensure that all values hidden by the same existential quantifier are
represented by the same committed value (the equality between them is ensured by
the map E).

(6) E′ ` stm′ : statement and E′ ` f ′ : formula:
This is an assumption.

(7) E′′ ` {f ′ = Fe} and

(8) E′′, (ψ′)= ` F∧ ∧ Fe:
The assumed appropriateness yield that E′, (ψ)= ` F∧. Since E′′ is an extension of E′
and ψ′ is an extension of ψ, we obtain that E′′, (ψ′)= ` F∧.
For the formula Fe with the encoding Fe = LM(x′, b′, `′), we consider the following
formulas in E′′ and the entries of ψ′:
(a) lines 1-2: {f = LM(x′, b′, `′)}

(b) line 7 and Uψ0 :
{x′ = Revealed xo}
ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}] if the corresponding value is revealed.

(c) line 9 and Uψ1 :
{b′ = Revealed bo}
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {bo}] if the corresponding value is revealed.

(d) lines Uψ2 -Uψ4 :
ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {b}]
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {`, `′}]

(e) line 13: {r = true⇔ (x, b) ∈ `}
(f) line 14: {r = true}

241

Appendix A. Well-Typedness of the API Methods

First, we note that by (e) and (f), we derive

(x, b) ∈ `.

More precisely, we derive the logical formula where all values are derived from the
commitments attached to the proof. For the revealed arguments, we obtain the
expected equalities by the respective entries into ψ′ by (b) and (c); for all hidden
values, we get the necessary equalities by (d). In particular, this substitution shows
that E′′ ` {f ′ = Fe}. Furthermore, it shows that E′′ ` Fe since substituting all the
“ o ” variables for the revealed values and consistently replacing the committed values
with existential quantified values proves Fe. The equalities induced by ψ′ enable us to
consistently existentially quantify across F∧ and Fe, yielding E′′ ` F∧ ∧ Fe.

Case Fe , ∀b. (x, b) /∈ `:

Code (line 3):

let tmpx = openCommit cx;

Environment:

E′, cx : commitment, cb : commitment, ` : (pseudo ∗ bitstring) list
{stm = RELp(cx,_, cb,_, `)}

x′ : bitstring RevHid, b′ : bitstring RevHid, `′ : (pseudo ∗ bitstring) list
{f = REL(x′, b′, `′)}︸ ︷︷ ︸

=:E′1

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′1 ` openCommit : commitment → bitstring ∗ random
2. E′1 ` cx : commitment
3. tmpx /∈ fv(TF∧)
4. E′1, tmpx : bitstring ∗ random ` R : TF∧

Since E′1 is basic, the first obligation follows. The second obligation follows since cx :
commitment ∈ E′1. The third obligation holds since the variable does not occur in the
return type.

242

A.2. Well-Typedness of the RCF Implementation

Code (line 4):

let (x, rx) = tmpx;

Environment:
E′1, tmpx : bitstring ∗ random︸ ︷︷ ︸

=:E′2

Rules:
Ext Exp Split

E `M : (Σx : T. U)
E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V E′

Proof Obligations:

1. E′2 ` tmpx : bitstring ∗ random
2. {x, rx} ∩ fv(TF∧) = ∅
3. E′2, x : bitstring, rx : random, {(x, rx) = tmpx} ` R : TF∧

The first obligation follows since tmpx : bitstring ∗ random ∈ E′2. The second obligation
holds since the variables do not occur in the return type.

We will type-check the code as if the value x′ was revealed.

Code (line 5):

let xo = getRevealed x′;

Environment:
E′2, x : bitstring, rx : random, {(x, rx) = tmpx}︸ ︷︷ ︸

=:E′3

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′3 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′3 ` x′ : bitstring RevHid
3. xo /∈ fv(TF∧)
4. E′3, x

o : {y : unit | x′ = Revealed y} ` R : TF∧

243

Appendix A. Well-Typedness of the API Methods

The first obligation follows since E′3 is basic. The second obligation holds since x′ :
bitstring RevHid ∈ E′3. The third obligation follows since xo does not occur in TF∧ .

Code (line Uψ0):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}]

We extend the map ψ to include xo.

Code (line Uψ1 -Uψ2):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {`, `′}]

We extend the map ψ to include the committed value x. Additionally, we use ψ to enforce
that the ` list contained in the proof and the list `′ provided with the formula coincide.

Code (line 9):

let r = List.member(1,2)〈pseudo ∗ bitstring〉 x `;

Environment:
E′3, x

o : {y : unit | x′ = Revealed y}︸ ︷︷ ︸
=:E′4

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′4 ` List.member(1,2)〈pseudo ∗ bitstring〉 : (x : pseudo)→ (b : bitstring)→
(` : (pseudo ∗ bitstring) list)→ {z : bool | z = true⇔ ∃b. (x, b) ∈ `}

2. E′4 ` x : pseudo
3. r /∈ fv(TF∧)
4. E′4, r : {z : bool | z = true⇔ ∃b. (x, b) ∈ `} ` R : TF∧

The first obligation follows since E′4 is basic. The second obligations hold since x : pseudo ∈
E′4. The third obligation follows since r does not occur in TF∧ .

Code (line 10):

if r = false then

244

A.2. Well-Typedness of the RCF Implementation

Environment:
E′4, r : {z : bool | z = true⇔ ∃b. (x, b) ∈ `}︸ ︷︷ ︸

=:E′5

Rules:

Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Proof Obligations:

1. E′5 ` r : {z : bool | z = true⇔ ∃b. (x, b) ∈ `}
2. E′5 ` false : bool
3. E′5, {r = false} ` R : TF∧

The first obligation holds since r is in E′5 with the proper type. The second obligation
holds since false , inl() is defined to be of type bool.

Code (line 11):

•

Environment:
E′5, {r = false}︸ ︷︷ ︸

=:E′6

Rules:

Ext Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F} E

Proof Obligations:
none

We let φ′ := φ and ψ′ := ψ and argue why the current typing environment and maps are
almost appropriate:

(1) E′ ` C ′ : {x : bool | ∀z̃. y = F∧ ∧ Fe ∧ x = true =⇒ F∧ ∧ Fe} E′′:
We conducted the type-checking and we have derived that E′′ := E′6. We stress that
this type only holds due to the typing rule Exp ContextF . The typing environment
cannot prove that y = F∧ ∧ Fe. The final code, however, will be able to prove this
type.

(2) E is basic and E′′ ` �:
We never double-bind values and all the free names and variables of a type are closed
inside of the typing environment.

245

Appendix A. Well-Typedness of the API Methods

(3) ext(F∧ ∧ Fe, ψ′, φ′):
From appropriate(E,E′,F∧, ψ, φ, stm, f), we immediately obtain that ext(F∧, ψ, φ).
The only modifications applied to ψ and φ are those described in the verification
context. Since the verification context for logical conjunction and logical disjunction
do not contain changes to ψ and φ, we conclude that ext(F∧ ∧ Fe, ψ′, φ′).

(4) ∀i ∈ Ivk(F∧ ∧ Fe). E′′ ` φ′(i) : verkey:
For the variables in the formula F∧, this holds by the assumed appropriateness of E′.
Since Ivk(Fe) = ∅, the obligation follows.

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i))):
If the committed variable x is revealed, we have executed lines 6 and Uψ0 . Consequently,
we have derived that x′ = Revealed xo.
In either case, we add the variable x to ψ′ in lines Uψ0 . In particular, this variable will
ensure that all values hidden by the same existential quantifier are represented by the
same committed value (the equality between them is ensured by the map E).

(6) E′ ` stm′ : statement and E′ ` f ′ : formula:
This is an assumption.

(7) E′′ ` {f ′ = Fe} and

(8) E′′, (ψ′)= ` F∧ ∧ Fe:
The assumed appropriateness yield that E′, (ψ)= ` F∧. Since E′′ is an extension of E′
and ψ′ is an extension of ψ, we obtain that E′′, (ψ′)= ` F∧.
For the formula Fe with the encoding Fe = LNM(x′, `′), we consider the following
formulas in E′′ and the entries of ψ′:
(a) lines 1-2: {f = LNM(x′, `′)}

(b) line 5 and Uψ0 :
{x′ = Revealed xo}
ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {xo}] if the corresponding value is revealed.

(c) lines Uψ1 -Uψ2 :
ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {x}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {`, `′}]

(d) line 12: {r = true⇔ ∃b. (x, b) ∈ `}
(e) line 13: {r = false}
First, we note that by (e) and (f), we derive

r = true⇔ ∃b. (x, b) ∈ `(x, b) ∈ `
⇐⇒ r 6= true⇔ ¬∃b. (x, b) ∈ `
⇐⇒ r = false⇔ ∀b. (x, b) /∈ `
r=false=⇒ ∀b. (x, b) /∈ `

246

A.2. Well-Typedness of the RCF Implementation

More precisely, we derive the logical formula where all values are derived from the
commitments attached to the proof. For the revealed argument, we obtain the expected
equality by (b); for all hidden values, we get the necessary equalities by (c). In particular,
this substitution shows that E′′ ` {f ′ = Fe}. Furthermore, it shows that E′′ ` Fe
since substituting xo variable for the revealed values and consistently replacing the
committed values with existential quantified values proves Fe. The equalities induced
by ψ′ enable us to consistently existentially quantify across F∧ and Fe, yielding
E′′ ` F∧ ∧ Fe.

Case Fe , EscrowInfo(EA, A,R, s, idr):

Code (line 3):

let tmpx = openCommit cx;

Environment:

E′, z : uidpub, cx : commitment, cR : commitment, cs : commitment, cidr , cr : commitment
{stm = EscrowInfop(z, cx,_, cR,_, cs,_, cidr ,_, cr)}

z′ : uidpub, x
′ : uidpub RevHid, R′ : bitstring RevHid, s′ : string RevHid,

idr ′ : pseudo RevHid, {f = EscrowInfo(z′, x′, R′, s′, idr ′)}︸ ︷︷ ︸
=:E′1

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′1 ` openCommit : commitment → bitstring ∗ random
2. E′1 ` cx : commitment
3. tmpx /∈ fv(TF∧)
4. E′1, tmpx : bitstring ∗ random ` R : TF∧

Since E′1 is basic, the first obligation follows. The second obligation follows since cx :
commitment ∈ E′1. The third obligation holds since the variable does not occur in the
return type.

247

Appendix A. Well-Typedness of the API Methods

Code (line 4):

let (x, rx) = tmpx;

Environment:
E′1, tmpx : bitstring ∗ random︸ ︷︷ ︸

=:E′2

Rules:
Ext Exp Split

E `M : (Σx : T. U)
E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V E′

Proof Obligations:

1. E′2 ` tmpx : bitstring ∗ random
2. {x, rx} ∩ fv(TF∧) = ∅
3. E′2, x : bitstring, rx : random, {(x, rx) = tmpx} ` R : TF∧

The second obligation follows since tmpx : bitstring ∗ random ∈ E′2. The second obligation
holds because the variables do not occur in the return type.

Code (line 5):

let tmpR = openCommit cR;

Code (line 6):

let (R, rR) = tmpR;

Code (line 7):

let tmps = openCommit cs;

Code (line 8):

let (s, rs) = tmps;

Code (line 9):

let tmpidr = openCommit cidr ;

Code (line 10):

let (idr , ridr) = tmpidr ;

Code (line 11):

let tmpr = openCommit cr;

248

A.2. Well-Typedness of the RCF Implementation

Code (line 12):

let (r, rr) = tmpr;

The proofs for lines 5 through 12 are analogous to that of lines 3 and 4.

Code (line Uψ0):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z′}]

We extend the map ψ to include z′. Should the public identifier of the trusted third party
occur several times in a proof, ψ enforces equality among them, i.e., the TTP will be
represented by the same identifier across the proof.

We will type-check the code as if all values were revealed.

Code (line 14):

let xo = getRevealed x′;

Environment:

E′2, x : bitstring, rx : random, {(x, rx) = tmpx}
tmpR : bitstring ∗ random, R : bitstring, rR : random, {(R, rR) = tmpR}
tmps : bitstring ∗ random, s : bitstring, rs : random, {(s, rs) = tmps}
tmpidr : bitstring ∗ random, idr : bitstring, ridr : random, {(idr , ridr) = tmpidr}
tmpr : bitstring ∗ random, r : bitstring, rr : random, {(r, rr) = tmpr}︸ ︷︷ ︸

=:E′3

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′3 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′3 ` x′ : uidpub RevHid
3. xo /∈ fv(TF∧)
4. E′3, x

o : {y : unit | x′ = Revealed y} ` R : TF∧

The first obligation follows since E′3 is basic. The second obligation holds since x′ :
uidpub RevHid ∈ E′3. The third obligation follows since xo does not occur in TF∧ .

249

Appendix A. Well-Typedness of the API Methods

Code (line Uψ1):

ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {xo}]

We extend the map ψ to include xo.

Code (line 16):

let Ro = getRevealed R′;

Environment:
E′3, x

o : {y : unit | x′ = Revealed y}︸ ︷︷ ︸
=:E′4

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′4 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′4 ` R′ : bitstring RevHid
3. XXXRo /∈ fv(TF∧)
4. E′4, R

o : {y : unit | R′ = Revealed y} ` R : TF∧

The first obligation follows since E′4 is basic. The second obligation holds since R′ :
bitstring RevHid ∈ E′4. The third obligation follows since Ro does not occur in TF∧ .

Code (line Uψ2):

ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {Ro}]

We extend the map ψ to include Ro.

Code (line 18):

let so = getRevealed s′;

Environment:
E′4, so : {y : unit | s′ = Revealed y}︸ ︷︷ ︸

=:E′5

250

A.2. Well-Typedness of the RCF Implementation

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′5 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′5 ` s′ : bitstring RevHid
3. so /∈ fv(TF∧)
4. E′5, R

o : {y : unit | s′ = Revealed y} ` R : TF∧

The first obligation follows since E′5 is basic. The second obligation holds since s′ :
bitstring RevHid ∈ E′5. The third obligation follows since so does not occur in TF∧ .

Code (line Uψ3):

ψ := ψ[E(ω + 3) 7→ ψ(E(ω + 3)) ∪ {so}]

We extend the map ψ to include so.
Code (line 20):

let idro = getRevealed idr ′;

Environment:
E′5, idro : {y : unit | idr ′ = Revealed y}︸ ︷︷ ︸

=:E′6

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′6 ` getRevealed : (x : unit RevHid) → {y : unit | x = Revealed y}
2. E′6 ` idr ′ : bitstring RevHid
3. idro /∈ fv(TF∧)
4. E′6, idro : {y : unit | idr ′ = Revealed y} ` R : TF∧

251

Appendix A. Well-Typedness of the API Methods

The first obligation follows since E′6 is basic. The second obligation holds since idr ′ :
bitstring RevHid ∈ E′6. The third obligation follows since idro does not occur in TF∧ .

Code (line Uψ4):

ψ := ψ[E(ω + 4) 7→ ψ(E(ω + 4)) ∪ {idro}]

We extend the map ψ to include idro.

Code (lines Uψ5 -Uψ9):

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {x}]
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {R}]
ψ := ψ[E(ω + 3) 7→ ψ(E(ω + 3)) ∪ {s}]
ψ := ψ[E(ω + 4) 7→ ψ(E(ω + 4)) ∪ {idr}]

We extend the map ψ to prove the equality of z and z′, and to further include R, s, and
idr .

Code (line 27):

let idr ′′ = computeIDR z x r R s;

Environment:
E′6, idro : {y : unit | idr ′ = Revealed y}︸ ︷︷ ︸

=:E′7

Rules:

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Proof Obligations:

1. E′7 ` computeIDR : (vkEA : bitstring)→ (vk : bitstring)→ (r : bitstring)→
(R : bitstring)→ (s : string)→ {idr : pseudo | EscrowInfo(vkEA, vk, R, s, idr)}

2. E′7 ` z : bitstring
3. E′7 ` x : bitstring
4. E′7 ` r : bitstring
5. E′7 ` R : bitstring
6. E′7 ` s : string
7. idr ′′ /∈ fv(TF∧)
8. E′7, idr ′′ : {y : pseudo | EscrowInfo(z, x,R, s, y)} ` R : TF∧

252

A.2. Well-Typedness of the RCF Implementation

The first obligation follows since E′7 is basic. The second through the sixth obligations
hold since the variables are contained in E′7 with the proper types. The seventh obligation
follows since idr ′′ does not occur in TF∧ .
Code (line 28):

if idr = idr ′′ then

Environment:
E′7, idr ′′ : {z : pseudo | EscrowInfo(z, x,R, s, y)}︸ ︷︷ ︸

=:E′8

Rules:
Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Proof Obligations:

1. E′8 ` idr ′′ : {z : pseudo | EscrowInfo(z, x,R, s, y)}
2. E′8 ` idr : bitstring
3. E′8, {idr = idr ′′} ` R : TF∧

The first obligation follows since idr ′′ was added with this type in the step above. The
second obligation holds since idr : bitstring ∈ E′8.
Code (line 29):

•

Environment:
E′8, {idr = idr ′′}︸ ︷︷ ︸

=:E′9

Rules:
Ext Exp ContextF

E ` • : {x : bool | ∀z̃. y = F ∧ x = true =⇒ F} E

Proof Obligations:
none

We let φ′ := φ and ψ′ := ψ and argue why the current typing environment and maps are
almost appropriate:

(1) E′ ` C ′ : {x : bool | ∀z̃. y = F∧ ∧ Fe ∧ x = true =⇒ F∧ ∧ Fe} E′′:
We conducted the type-checking and we have derived that E′′ := E′9. We stress that
this type only holds due to the typing rule Exp ContextF . The typing environment
cannot prove that y = F∧ ∧ Fe. The final code, however, will be able to prove this
type.

253

Appendix A. Well-Typedness of the API Methods

(2) E is basic and E′′ ` �:
We never double-bind values and all the free names and variables of a type are closed
inside of the typing environment.

(3) ext(F∧ ∧ Fe, ψ′, φ′):
From appropriate(E,E′,F∧, ψ, φ, stm, f), we immediately obtain that ext(F∧, ψ, φ).
The only modifications applied to ψ and φ are those described in the verification
context. Since the verification context for logical conjunction and logical disjunction
do not contain changes to ψ and φ, we conclude that ext(F∧ ∧ Fe, ψ′, φ′).

(4) ∀i ∈ Ivk(F∧ ∧ Fe). E′′ ` φ′(i) : verkey:
For the variables in the formula F∧, this holds by the assumed appropriateness of E′.
Since Ivk(Fe) = ∅, the obligation follows.

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i))):
If any of the user identifier x, the value R, the service description s, and the escrow
identifier idr are revealed, we will have executed lines 14 and Uψ1 , lines 16 and Uψ2 ,
lines 18 and Uψ3 , and lines 20 and Uψ4 , respectively. Consequently, we have derived
that w′ = Revealed wo for w ∈ {x,R, s, idr}.

In either case, we add the variables z, x, R, s, and idr to ψ′ in lines Uψ5 -U
ψ
9 . In

particular, these variables will ensure that all values hidden by the same existential
quantifier are represented by the same committed value (the equality between them is
ensured by E that maps the indices of these variables to the same index).

(6) E′ ` stm′ : statement and E′ ` f ′ : formula:
This is an assumption.

(7) E′′ ` {f ′ = Fe} and

(8) E′′, (ψ′)= ` F∧ ∧ Fe:
The assumed appropriateness yields that E′, (ψ)= ` F∧. Since E′′ is an extension of
E′ and ψ′ is an extension of ψ, we obtain that E′′, (ψ′)= ` F∧.

For the formula Fe with the encoding Fe = EscrowInfo(z′, x′, R′, s′, idr ′), we consider
the following formulas in E′′ and the entries of ψ′:

(a) lines 1-2: {f = EscrowInfo(z′, x′, R′, s′, idr ′}

(b) line Uψ0 : ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z′}]

(c) line 14-Uψ4 : {x′ = Revealed xo}, {R′ = Revealed Ro}, {s′ = Revealed so}, {idr ′ =
Revealed idro} along with the corresponding entries in ψ′, if the corresponding
values are revealed.

(d) lines Uψ5 -Uψ9 :

254

A.2. Well-Typedness of the RCF Implementation

ψ := ψ[E(ω) 7→ ψ(E(ω)) ∪ {z}]
ψ := ψ[E(ω + 1) 7→ ψ(E(ω + 1)) ∪ {x}]
ψ := ψ[E(ω + 2) 7→ ψ(E(ω + 2)) ∪ {R}]
ψ := ψ[E(ω + 3) 7→ ψ(E(ω + 3)) ∪ {s}]
ψ := ψ[E(ω + 4) 7→ ψ(E(ω + 4)) ∪ {idr}]

(e) line 27: {EscrowInfo(z, x,R, s, idr ′′)}
(f) line 28: {idr = idr ′′}
First, we note that by (e) and (f), we derive

EscrowInfo(z, x,R, s, idr).

More precisely, we derive the logical formula where all values are derived from the
commitments attached to the proof. For the revealed arguments, we obtain the
expected equalities by the respective entries into ψ′ by (c); for all hidden values,
we get the necessary equalities by (d). In particular, this substitution shows that
E′′ ` {f ′ = Fe}. Furthermore, it shows that E′′ ` Fe since substituting all the “ o ”
variables for the revealed values and consistently replacing the committed values with
existential quantified values proves Fe. The equalities induced by ψ′ enable us to
consistently existentially quantify across F∧ and Fe, yielding E′′ ` F∧ ∧ Fe.

This case concludes the proof.

Lemma A.22 (Appropriate invariance). Let E be basic such that E ` stm : statement
and E ` f : formula. Then, for every formula F∧, there are a typing environment E′ and
mappings ψ′, φ′ such that appropriate(E,E′, ψ′, φ′,F∧, stm, f).

Proof. Let E, stm and f be as in the lemma. Furthermore, let ψ and φ be empty mappings.
The proof proceeds by induction on the structure of F∧. We consider the base case to be
the “empty” formula true.

Case F∧ = Fe:
In this case F∧ = Fe = true. We obtain appropriate(E,E, true, ψ, φ, stm, f) by Proposi-
tion A.4 (appropriate for true).

From Lemma A.21 (almost-appropriate invariance), we obtain that there are a typing
environment E′′ and mappings ψ′, φ′ such that appropriate′(E,E,E′′, ψ′, φ′, true,Fe, stm, f).
Notice that we used stm and f as guaranteed by the theorem. Since F∧ = Fe, we can
immediately apply Proposition A.5 (linking appropriateness and almost-appropriateness)
and derive that appropriate(E,E′′, ψ′, φ′,Fe, stm, f).

Case F∧ = F∧′ ∧ Fe:
In this case, we type-check the verification code for the logical conjunction applied to F∧′
and Fe.

And-Macro(F∧′ ∧ Fe, p, f, 0,∆→(F∧′)) ,
1 match stm with Andp(stm1, stm2) =⇒

255

Appendix A. Well-Typedness of the API Methods

2 match f with And(f1, f2) =⇒
3

q
F∧′, ∗, stm1, f1, ω1

y
[JFe, ∗, stm2, f2, ω2K]

We type-check this expression until we arrive at the code for F∧′ and Fe. Since we want
to prove that the resulting typing environment and maps are appropriate, we start with
the given maps and the typing environment E.
Code (line 1):

match stm with Andp(stm1, stm2) =⇒

Environment:
E

Rules:
Ext Exp Match-Splitn

(m1,...,mn)

E `M : T ∀0 < i ≤ n. hi : (Hi, T) ∀0 < i ≤ n. Hi = xi
1 : T i

1 ∗ · · · ∗ xi
mi−1 : T i

mi−1 ∗ T i
mi

∀0 < i ≤ n. E, xi
1 : T i

1, . . . , x
i
mi

: T i
mi
, {M = hi(xi

1, . . . , x
i
mi

)} ` Ai : U E′i
E ` Afail : U E′′

{xi
j | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∩ fv(U) = ∅

E ` match M with | h1 (x1
1, . . . , x

1
m1

) → A1 . . . | hn (xn
1 , . . . , x

n
mn

) → An | _→ Afail : U E′1

Proof Obligations:

E ` stm : statement
Andp : (statement ∗ statement, statement)
{stm1, stm2} ∩ fv(TF∧

′∧Fe) = ∅
E, stm1 : statement, stm2 : statement, {stm = Andp(stm1, stm2)} ` R : TF∧

′∧Fe

The first obligation is an assumption, the second obligation holds by definition of the type
constructor Andp, and the third assumption follows since stm1 and stm2 do not occur in
TF

∧′∧Fe .
Code (line 2):

match f with And(f1, f2) =⇒

Environment:

E, stm1 : statement, stm2 : statement, {stm = Andp(stm1, stm2)}︸ ︷︷ ︸
=:E1

Rules:
Ext Exp Match-Splitn

(m1,...,mn)

E `M : T ∀0 < i ≤ n. hi : (Hi, T) ∀0 < i ≤ n. Hi = xi
1 : T i

1 ∗ · · · ∗ xi
mi−1 : T i

mi−1 ∗ T i
mi

∀0 < i ≤ n. E, xi
1 : T i

1, . . . , x
i
mi

: T i
mi
, {M = hi(xi

1, . . . , x
i
mi

)} ` Ai : U E′i
E ` Afail : U E′′

{xi
j | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∩ fv(U) = ∅

E ` match M with | h1 (x1
1, . . . , x

1
m1

) → A1 . . . | hn (xn
1 , . . . , x

n
mn

) → An | _→ Afail : U E′1

256

A.2. Well-Typedness of the RCF Implementation

Proof Obligations:

E1 ` f : formula
And : (formula ∗ formula, formula)
{f1, f2} ∩ fv(TF∧

′∧Fe) = ∅

=:E2︷ ︸︸ ︷
E1, f1 : formula, f2 : formula, {f = Andp(f1, f2)}`R

The first three obligation are analogous to the arguments for line 1.

At this point, we notice that E1 is basic and that

E2 ` stm : statement
E2 ` stm1 : statement
E2 ` stm2 : statement
E2 ` f : formula
E2 ` f1 : formula
E2 ` f2 : formula

We apply the induction hypothesis for the code of F∧′ and derive
appropriate(E1, E

′, ψ′, φ′,F∧′, stm1, f1) for some typing environment E′ and some
mappings ψ′ and φ′. We now have all the necessary premises to apply Lemma A.21 (almost-
appropriate invariance). We derive that appropriate′(E1, E

′, E′′, ψ′′, φ′′,F∧′,Fe′, stm2, f2)
for some typing environment E′′ and mappings ψ′′ and φ′′.

At this point, the appropriateness of F∧′ yields that E1, (φ′)= ` {f1 = F∧′}; the almost-
appropriateness of Fe yields E′′ ` {f2 = Fe}. In particular, E1 ` {f = Andp(f1, f2)}. It
follows that

f = And(f1, f2)
= And(F∧′,Fe)
= F∧′ ∧ Fe

We will now argue that appropriate(E,E′′, ψ′′, φ′′,F∧, stm, f):

(1) E ` C : {x : bool | ∀z̃. y = F∧ ∧ x = true =⇒ F∧} E′:
We have proven that the type-checking succeeds. In particular, the type-checking of
the code for Fe proves this type.

(2) E is basic and E′′ ` �:
Follows since appropriateness and almost-appropriateness preserves the well-formedness.

(3) ext(F∧, ψ, φ):
Follows by the appropriateness and the almost-appropriateness.

(4) ∀i ∈ Ivk(F∧). E′ ` φ(i) : verkey:
Follows immediately by the almost-appropriateness.

257

Appendix A. Well-Typedness of the API Methods

(5) ∀i. ∃y. (xi = Revealed y ∧ y ∈ ψ(E(i))) ∨ (∃z. xi = Hidden z ∧ y ∈ ψ(E(i))):
Follows immediately by the almost-appropriateness.

(6) E ` stm : statement and E ` f : formula:
This is an assumption.

(7) E′′ ` {f = F∧}:
The appropriateness and the almost-appropriateness establish that E′′ ` {f1 = F∧′}
and E′′ ` {f2 = Fe}. Using the observation above, we immediately conclude that
E′′ ` {f = F∧}.

(8) E′, (ψ)= ` F∧:
This follows immediately by the almost-appropriateness.

This concludes the proof.

The final steps of the well-typedness proof are as follows: First, we use the appropriate
invariance to type-check all verification functions for conjunctive formulas. Inductively, we
will then type-check all verification functions for formulas with disjunctions. The crucial
point will be that all formulas are in disjunctive normal form, i.e., the disjunctions are
“stacked on top” of the conjunctions.

Lemma A.23 (Well-typedness of verifyF∧). Let F∧ be a formula that only contains
elementary formulas connected with logical conjunctions and let E be basic. Then E `
verifyF∧ : (p : proof)→ (f : formula)→ TF

∧.

Proof.

verifyF∧ (p : proof) (y : formula) : {x : bool | ∀z̃. y = F∧ ∧ x = true =⇒ F∧} =
1 match p with ZK(zkv, stm) ⇒
2 let c1 = checkEq stm f ;
3 let c2 = checkZK p;
4 if c1 = true then
5 if c2 = true then
6 JF∧, zkv, stm, f, 0K [context=(ψ)[true]]

Listing A.52: Excerpt of the implementation of verify.

Since we are familiar with how to type-check match statements, let statements and if
statements, we immediately skip to code of the verification macros.

Code (line 5):

JF∧, zkv, stm, f, 0K [context=(ψ)[true]]

Environment:

E, p : proof , f : formula, zkv : zero-knowledge, stm : statement, {p = ZK(zkv, stm)}
c1 : bool, c2 : bool, {c1 = true}, {c2 = true}︸ ︷︷ ︸

=:E1

258

A.2. Well-Typedness of the RCF Implementation

At this point, we let ψ and φ be empty mappings. Notice that E1 satisfies the premise
of Lemma A.22 (Appropriate invariance), i.e., E1 is basic and E1 ` stm : statement and
E1 ` f : formula. We conclude that there is a typing environment E′′ and mappings
ψ′ and φ′ such that appropriate(E1, E

′′, ψ′, φ′,F∧, stm, f). In particular, we obtain that
E′′, (ψ′)= ` F∧ and E′′, (ψ′)= ` {f = F∧}. Combining these two facts, we derive that
E′′, context=(ψ′) ` {(f = F∧) ∧ F∧}.

The final step in the verification is to type-check E′′ ` context=(ψ′)[true] : TF∧ . We
apply Lemma A.20 (context=(ψ) and (ψ)=) and derive that if E′′, context=(ψ′) ` true : TF∧ ,
then E′′ ` context=(ψ′)[true] : TF∧ . As observed above, E′′, (ψ′)= ` F∧. We apply

Val Refine
E `M : T E ` F{M/x}

E `M : {x : T | F}

to conclude that E′′, (ψ′)= ` true : {x : bool | f = F∧ ∧ F∧}. We logically derive that
true : {x : bool | f = F∧ ∧ x = true =⇒ F∧} since x = true holds. Any of the other
branches will result in returning false, which makes the refinement hold vacuously. This
concludes the proof.

Finally, we prove that the (general) verification function is well-typed.

Theorem A.1 (Well-typedness of verifyF∨). Let E be basic. Then E ` verifyF∨ : (p :
proof)→ (f : formula)→ TF

∨.

Proof. The proof proceeds by induction on the structure of F∨. The base case is F∨ = F∧,
i.e., the formula does not contain any disjunction.

Case F∨ = F∧:
The claim follows directly from Lemma A.23 (Well-typedness of verifyF∧).

In the following, we assume that E is basic and verifyF∨′ is well-typed relative to E
for all formulas F∨′ that are structurally smaller w.r.t. disjunctions than F∨.

Case F∨ = F∨1 ∨ F∨2 :
In this case, we have to type-check

verifyF∨ (p : proof) (f : formula) : {x : bool | ∀z̃. f = F∨ ∧ x = true =⇒ F∨} =
1 match p with ZK(zkv, stm) ⇒
2 let c1 = checkEq stm f ;
3 let c2 = checkZK p;
4 if c1 = true then
5 if c2 = true then
6 match stm with Orp(stm1, stm2) =⇒
7 match f with Or(f1, f2) =⇒
8 let tmpzkv = openZK zkv;
9 let (stm′, r) = tmpzkv ;

10 match stm′ with Orp(stm1, stm2) =⇒

259

Appendix A. Well-Typedness of the API Methods

11 let zkv1 = commitZK (stm′1, r);
12 let zkv2 = commitZK (stm′2, r);
13 let res1 = verifyF∨1 ZK(zkv1, stm1) f1;

14 if res1 = true then
15 res1
16 else
17 verifyF∨2 ZK(zkv2, r) f2

| _ =⇒ false
| _ =⇒ false
| _ =⇒ false

18 else
19 false
20 else
21 false

We skip in initial application of

Val Fun
E, x : T ` A : U

E ` fun x→ A : (Πx : T. U)

and the type-checking of the two let-statements with the checks as in Lemma A.23 (Well-
typedness of verifyF∧) and proceed with line 9 and the extended typing environment

E, p : proof , f : formula, zkv : zero-knowledge, stm : statement, {p = ZK(zkv, stm)}
c1 : bool, c2 : bool, {c1 = true}, {c2 = true}
stm1 : statement, stm2 : statement, {stm = Orp(stm1, stm2)}
f1 : formula, f2 : formula, {f = Or(f1, f2)}︸ ︷︷ ︸

=:E1

Code (lines 8):

let tmpzkv = openZK zkv;

Environment:
E1

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

260

A.2. Well-Typedness of the RCF Implementation

Proof Obligations:

1. E1 ` openZK : zero-knowledge → statement ∗ random
2. E1 ` zkv : zero-knowledge
3. tmpzkv /∈ fv(TF∨)
4. E1, tmpzkv : statement ∗ random ` R : TF∨

Requirement 1 follows since E1 is basic. Obligation 2 holds as zkv is contained in E1 with
the proper type. The third obligation holds because the value tmpzkv is not contained in
the return type.
Code (lines 9):

let (stm′, r) = tmpzkv ;

Environment:
E1, tmpzkv : statement ∗ random︸ ︷︷ ︸

=:E2

Rules:
Ext Exp Split

E `M : (Σx : T. U)
E, x : T, y : U,_ : {(x, y) = M} ` A : V E′ {x, y} ∩ fv(V) = ∅

E ` let (x, y) = M ; A : V E′

Proof Obligations:

1. E2 ` tmpzkv : statement ∗ random
2. {stm′, r} ∩ fv(TF∨) = ∅
3. E2, stm′ : statement, r : random, {(stm′, r) = tmpzkv} ` R : TF∨

Requirements 1 follows since we added the variable with the proper type in the step above.
As the newly introduced variables do not occur in the type TF∨ , obligation 2 follows.
Code (lines 10):

match stm′ with Orp(stm1, stm2) =⇒

Environment:

E2, stm′ : statement, r : random, {(stm′, r) = tmpzkv}︸ ︷︷ ︸
=:E3

Rules:
Ext Exp Match-Splitn

(m1,...,mn)

E `M : T ∀0 < i ≤ n. hi : (Hi, T) ∀0 < i ≤ n. Hi = xi
1 : T i

1 ∗ · · · ∗ xi
mi−1 : T i

mi−1 ∗ T i
mi

∀0 < i ≤ n. E, xi
1 : T i

1, . . . , x
i
mi

: T i
mi
, {M = hi(xi

1, . . . , x
i
mi

)} ` Ai : U E′i
E ` Afail : U E′′

{xi
j | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∩ fv(U) = ∅

E ` match M with | h1 (x1
1, . . . , x

1
m1

) → A1 . . . | hn (xn
1 , . . . , x

n
mn

) → An | _→ Afail : U E′1

261

Appendix A. Well-Typedness of the API Methods

Proof Obligations:

1. E′3 ` stm′ : statement
2. {stm1, stm2} ∩ fv(TF∨) = ∅
3. Orp : (statement ∗ statement, statement)
4. E′3, stm1 : statement, stm2 : statement, {stm′ = Orp(stm1, stm2)} ` R : TF∨

Requirement 1 follows since we added the variable with the proper type in the step above.
As the newly introduced variables do not occur in the type TF∨ , requirement 2 follows. The
third requirement holds by inspection of the type definitions in Table A.2 and Table A.3.

Code (lines 11):

let zkv1 = commitZK (stm1, r);

Environment:

E′3, stm1 : statement, stm2 : statement, {stm′ = Orp(stm1, stm2)}︸ ︷︷ ︸
=:E4

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Val Pair
E `M : T E ` N : U{M/x}

E ` (M,N) : Σx : T. U

Proof Obligations:

1. E4 ` commitZK : (statement ∗ random)→ zero-knowledge
2. E4 ` stm1 : statement
3. E4 ` r : random
4. zkv1 /∈ fv(TF∨)
5. E4, zkv1 : zero-knowledge ` R : TF∨

The first obligation follows because E4 is basic. The second and third obligations hold
as we added the variables with the proper type in the steps above. The forth obligation
follows as the variable does not occur in the return type.

Code (lines 12):

let zkv2 = commitZK (stm2, r);

262

A.2. Well-Typedness of the RCF Implementation

Environment:
E′4, zkv1 : zero-knowledge︸ ︷︷ ︸

=:E5

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Val Pair
E `M : T E ` N : U{M/x}

E ` (M,N) : Σx : T. U

Proof Obligations:

1. E5 ` commitZK : (statement ∗ random)→ zero-knowledge
2. E5 ` stm2 : statement
3. E5 ` r : random
4. zkv2 /∈ fv(TF∨)
5. E5, zkv2 : zero-knowledge ` R : TF∨

The reasoning is analogous to the step above.
Code (lines 13):

let res1 = verifyF∨1 ZK(zkv1, stm1) f1;

Environment:
E5, zkv2 : zero-knowledge︸ ︷︷ ︸

=:E6

Rules:
Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Ext Exp Let
E ` A : T E′′ E, x : T ` B : U E′ x /∈ fv(U)

E ` let x = A; B : U E′

Val Inl Inr Fold
h : (T,U) E `M : T E ` U

E ` h(M) : U

Val Pair
E `M : T E ` N : U{M/x}

E ` (M,N) : Σx : T. U

263

Appendix A. Well-Typedness of the API Methods

Proof Obligations:

1. E6 ` verifyF∨1 : (p : proof)→ (f : formula)→ TF
∨
1

2. ZK : (zero-knowledge ∗ statement, proof)
3. E6 ` zkv1 : zero-knowledge
4. E6 ` stm1 : zero-knowledge
5. E6 ` f1 : formula
6. res1 /∈ fv(TF∨)
7. E6, res1 : TF∨1 ` R : TF∨

The first claim follows from the induction hypothesis. The second obligation follows from
inspecting the type definition in Table A.2 and Table A.3. The third, fourth, and fifth
requirement follow since the variables with the corresponding types are contained in E6.
The sixth requirement follows since res1 does not occur in TF∨ .

Code (lines 14-17):

if res1 = true then
res1

else
verifyF∨2 ZK(stm2, r) f2

Environment:
E6, res1 : TF∨1︸ ︷︷ ︸

=:E7

Rules:
Ext Exp If
E `M : T E ` N : U E, {M = N} ` A : V E′ E ` B : V E′′

E ` if M = N then A else B : V E′

Ext Exp Appl
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x} E

Val Inl Inr Fold
h : (T,U) E `M : T E ` U

E ` h(M) : U

Proof Obligations:

1. E7 ` res1 : TF∨1
2. E7 ` stm2 : statement
3. E7 ` r : random
4. E7 ` f2 : formula
5. E7 ` true : bool
6. ZK : (statement ∗ random, proof)

7. E7, {res1 = true} ` res1 : TF∨

8. E7 ` verifyF∨2 ZK(stm2, r) f2 : TF∨

264

A.3. Well-Typedness of the ML Implementation

The first through the fourth requirements follow since the corresponding variables are
contained in E7 with the proper types. Requirement 5 and 6 follow by definition of bool
and by inspection of the type definitions in Table A.2 and Table A.3.

For the eighth obligation, we notice that by induction hypothesis, the return type is
TF

∨
2 . To summarize, the then-branch has the returns type TF∨1 and the else-branch returns

type TF∨2 (the reasoning here is analogous to that of the line 13).

The two branches only prove their respective branch of the disjunction. However, if one
branch of a disjunction holds true, then the whole disjunction is valid. Therefore, from
type TF∨i , i ∈ {1, 2}, we derive TF∨ if we additionally can argue that the condition on the
proven formula holds. This reasoning is taken care of in line 7 that shows that

f = Or(f1, f2)
= Or(F∨1 ,F∨2)
= F∨.

Should both res1 and res2 be false, then the verification returns value false and the type
TF

∨ vacuously holds. This concludes the proof.

A.3. Well-Typedness of the ML Implementation
We have proven that the RCF implementation is well-typed. This implementation contains
standard ML types such as bitstring and bool but it also contains refined types that do not
exist in an ML context. Although we kept the number of functions that rely on refinement
types to a minimum, we have to type-check every program that uses the refined API with
the RCF type system.

The reason is that for programs containing non-ML types (i.e., types that are not
equivalent to unit), the program deals with security-sensitive data and we cannot “skip”
the type-checking process. The key idea therefore is to hide away the refined types. In a
nutshell, we proceed as follows: we expose to programmers an augmented API that only
exports functions that exclusively contain ML types, i.e., types that in RCF are captured by
the type unit. Since the all types occurring in an ML program correspond to the RCF type
unit and the augmented API also does not introduce non-unit types, we do not need to
type-check the program with the RCF type system. Technically, we will apply the opponent
typability lemma (Lemma A.6), which intuitively states that programs that only use ML
types will always type-check. In particular, we do not have to conduct the type-checking.

To create an API with only ML types, we have to adapt the API. In particular, we have
to enforce that the expected logical formulas hold since the ML programs also cannot use
assertions. The core idea is to encapsulate the refinement types and the assertions inside
of wrapper functions that, in turn, only export ML types. More precisely, we implement
the method verify′F . This method internally uses the refined method verifyF and executes
the expected assertion after a successful verification to enforce that formula F is logically
entailed while it only exports ML types.

265

Appendix A. Well-Typedness of the API Methods

mkId : string → uid ∗ uidpub
mkSays : x : uid → f : predicateF → proof
mkSSP : x : uid → s : string → proof
mkREL : f : formula → proof
mkLM : x : pseudo → b : string → ` : list → proof
mkLNM : x : pseudo → ` : list → proof
mkIDRev : proof → s : string → proof
mk∧ : proof ∗ proof → proof
split∧ : proof → proof ∗ proof
mk∨ : proof → formula → proof
extractForm : p : proof → formula
hide : proof → formula → proof
rerand : proof → formula → proof
verify′F : proof → f : formula → bool

Table A.18.: ML API methods.

verify′F (p : proof) (f : formula) : bool =
1 let r = verifyF p f ;
2 if r = true then
3 assert F;
4 r
5 else
6 r

The type-checking of this function is straightforward since the logical formula F is guar-
anteed to hold by the return type of verifyF and the formula {r = true} obtained by the
match-statement.

Table A.18 show the augmented ML API. It contains all the methods that are
also contained in the RCF API except for the refined verification method that has been
substituted by the unrefined method verify′F . While this interface still depends on the
proven formulas (the verify′F method is parameterized by the proven formula), it does not
contain refinement types.

Regarding assumptions and assertions, we have proven that if a zero-knowledge proof
verification succeeds and returns true, then the passed formula (in encoded form) holds.
Thus, there is no need for a programmer to explicitly state the assertion since it will always
succeed by construction (the needed assumptions have already been internalized in the
RCF API).

Using this API protects secret cryptographic material against accidental leakage. In
particular, the programmer cannot access the signing key directly but only has access to a
handle. Leaking this handle does not reveal the secret key. Of course, using techniques
such as reflection, it is still possible to obtain access to the signing key directly, i.e., we

266

A.3. Well-Typedness of the ML Implementation

only protect against accidental leakage. This, however, is not surprising since the signing
key is stored locally on the user’s computer and can always be extracted.

We let PAPI be the code that defines all the API methods (including the necessary
library functions). We prove the following theorem.

Theorem A.2. Let A be an expression such that the set S := fv(A) of free variables
consists only of the methods listed in Table A.18. Then PAPI;A is robustly safe, i.e.,
∅ ` PAPI;A : unit.

Proof of Theorem A.2. Follows directly from Lemma A.6 (opponent typability).

Theorem A.2 guarantees that any ML program linked against the ML API as shown in
Table A.18 is well-typed, thus yielding a security by construction guarantee. In particular,
the encoding of the verification method ensures that if a call to the method returns true,
then the expected logical formula holds true (guaranteed by the internalized assertion).

267

268

B. ProVerif Code
We give the ProVerif models used to prove anonymity of the case studies from Chapter 3
as well as ObliviAd from Chapter 4.

B.1. Anonymous Webs of Trust
We present the ProVerif script for proving anonymity of the anonymous webs of trust case
study. As detailed in Section 3.3.4, the model uses two random values per proof part to
distinguish between a re-randomization initiated by a protocol participant and one initiated
by the attacker.

1 type ZKVerSig .
2 type ZKProofVerSig .
3 type VerKey .
4 type CommitVerKey .
5 type SigKey .
6 type Signature .
7 type CommitSignature .
8 type Message .
9 type CommitMessage .

10 type Identity .
11 type RND.
12
13 free c : channel .
14
15 free Alice : Identity .
16 free Bob : Identity .
17
18 const EpsRnd : RND.
19
20 (* proof computation *)
21
22 fun zkVerSig (ZKProofVerSig , CommitSignature , CommitMessage ,

CommitVerKey) : ZKVerSig .
23
24
25 (* Alternating honest / attacker randomness for

269

Appendix B. ProVerif Code

26 signature , message , verification key , zk proof *)
27
28 fun computeZkVerSig (RND , RND , RND , RND , RND , RND , RND , RND) :

ZKProofVerSig .
29
30
31 (* key derivation *)
32
33 fun deriveVk (SigKey) : VerKey .
34 reduc forall sk : SigKey ; isVerKey (deriveVk (sk)) = true.
35
36
37 (* proof opening , opening the actual ZKP is private *)
38
39 reduc forall zkp : ZKProofVerSig , cs : CommitSignature , cm :

CommitMessage , cvk : CommitVerKey ;
40 openZkVerSig (zkVerSig (zkp , cs , cm , cvk)) = (zkp , cs , cm ,

cvk).
41
42
43 (* verkey message wrapper *)
44
45 fun vkMsg(VerKey) : Message .
46 reduc forall vk : VerKey ; getVkMsg (vkMsg(vk)) = vk.
47
48 (* commitments *)
49
50 fun commitSig (Signature , RND , RND) : CommitSignature .
51 fun commitMsg (Message , RND , RND) : CommitMessage .
52 fun commitVk (VerKey , RND , RND) : CommitVerKey .
53
54 (* to compensate for the verkey wrapper *)
55 reduc forall vk : VerKey , r : RND , ar : RND; msgVkComEq (

commitMsg (vkMsg(vk), r, ar), commitVk (vk , r, ar)) = true.
56
57 (* signing and verification *)
58
59 fun sign(Message , RND , SigKey) : Signature .
60
61 reduc forall m : Message , r : RND , sk : SigKey ; verSig (sign(m

, r, sk), m, deriveVk (sk)) = m.
62
63 (* zero - knowledge verification *)

270

B.1. Anonymous Webs of Trust

64
65 reduc forall rs : RND , ars : RND , m : Message , rm : RND , arm

: RND , sk : SigKey , rvk : RND , arvk : RND , r : RND , ar :
RND , rsig : RND;

66 verifyZkVerSig (zkVerSig (
67 computeZkVerSig (rs , ars , rm , arm , rvk , arvk , r,

ar),
68 commitSig (sign(m, rsig , sk), rs , ars),
69 commitMsg (m, rm , arm),
70 commitVk (deriveVk (sk), rvk , arvk))) = true.
71
72 (*
73 re - randomization
74 this system assumes , that honest principals do not exploit

algebraic properties of re - randomization
75
76 in particular , if a principal hides a value , it must be re

- randomized before outputting it again (this model
enforces this);

77 otherwise , the attacker can unhide the value (we also
enforce this in the concrete implementation)

78 *)
79
80 reduc forall x : Signature , r : RND , ar : RND , r2 : RND;

rerandCommitSig (commitSig (x, r, ar), r2) = commitSig (x, r2
, ar) [private].

81 reduc forall x : Message , r : RND , ar : RND , r2 : RND;
rerandCommitMsg (commitMsg (x, r, ar), r2) = commitMsg (x, r2
, ar) [private].

82 reduc forall x : VerKey , r : RND , ar : RND , r2 : RND;
rerandCommitVk (commitVk (x, r, ar), r2) = commitVk (x, r2 ,
ar) [private].

83
84 reduc forall rs : RND , ars : RND , rm : RND , arm : RND , rvk :

RND , arvk : RND , r : RND , ar : RND , rs2 : RND , rm2 : RND ,
rvk2 : RND , r2 : RND , s : Signature , m : Message , vk :
VerKey ;

85 rerandZkVerSig (zkVerSig (computeZkVerSig (rs , ars , rm , arm ,
rvk , arvk , r, ar), commitSig (s, rs , ars), commitMsg (m

, rm , arm), commitVk (vk , rvk , arvk)), rs2 , rm2 , rvk2 ,
r2) =

86 zkVerSig (computeZkVerSig (rs2 , ars , rm2 , arm , rvk2 ,
arvk , r2 , ar), commitSig (s, rs2 , ars), commitMsg (m

271

Appendix B. ProVerif Code

, rm2 , arm), commitVk (vk , rvk2 , arvk)) [private].
87
88
89 reduc forall x : Signature , r : RND , ar : RND , ar2 : RND;

att_rerandCommitSig (commitSig (x, r, ar), ar2) = commitSig (
x, r, ar2).

90 reduc forall x : Message , r : RND , ar : RND , ar2 : RND;
att_rerandCommitMsg (commitMsg (x, r, ar), ar2) = commitMsg (
x, r, ar2).

91 reduc forall x : VerKey , r : RND , ar : RND , ar2 : RND;
att_rerandCommitVk (commitVk (x, r, ar), ar2) = commitVk (x,
r, ar2).

92
93 reduc forall rs : RND , ars : RND , rm : RND , arm : RND , rvk :

RND , arvk : RND , r : RND , ar : RND , ars2 : RND , arm2 : RND
, arvk2 : RND , ar2 : RND;

94 att_rerandZkVerSig (computeZkVerSig (rs , ars , rm , arm , rvk ,
arvk , r, ar), ars2 , arm2 , arvk2 , ar2) =

95 computeZkVerSig (rs , ars2 , rm , arm2 , rvk , arvk2 , r,
ar2).

96
97
98 (* Function Macros *)
99

100 letfun rerandZkVerSigAll (p : ZKVerSig) =
101 let (= true) = verifyZkVerSig (p) in
102 let (zkp : ZKProofVerSig , cs : CommitSignature , cm :

CommitMessage , cvk : CommitVerKey) = openZkVerSig (p)
in

103 new rs2 : RND;
104 new rm2 : RND;
105 new rvk2 : RND;
106 new r2 : RND;
107 (rm2 , rvk2 , rerandZkVerSig (p, rs2 , rm2 , rvk2 , r2)).
108
109
110 (* sig creation *)
111
112 letfun createSig (m : Message , sk : SigKey) =
113 new r : RND;
114 sign(m, r, sk).
115
116 letfun createVkSig (vk : VerKey , sk : SigKey) =

272

B.1. Anonymous Webs of Trust

117 createSig (vkMsg(vk), sk).
118
119
120 (* Zero - Knowledge stuff *)
121
122 letfun createZkVerSig_int (s : Signature , m : Message , vk :

VerKey , rs : RND , rm : RND , rvk : RND , r : RND) =
123 let (=m) = verSig (s, m, vk) in
124 let zkp = computeZkVerSig (rs , EpsRnd , rm , EpsRnd , rvk ,

EpsRnd , r, EpsRnd) in
125 zkVerSig (zkp , commitSig (s, rs , EpsRnd), commitMsg (m, rm ,

EpsRnd), commitVk (vk , rvk , EpsRnd)).
126
127 letfun createZkVerSig (s : Signature , m : Message , vk : VerKey

) =
128 new rs : RND;
129 new rm : RND;
130 new rvk : RND;
131 new r : RND;
132 (rm , rvk , createZkVerSig_int (s, m, vk , rs , rm , rvk , r)).
133
134
135 (* Zero - knowledge stuff for chain proofs *)
136
137 letfun createZKVerChain (m : Message , sigm : Signature , vk1 :

VerKey , sigVk1 : Signature , vk2 : VerKey , sigVk2 :
Signature , vk3 : VerKey) =

138 new rzkp1 : RND;
139 new rzkp2 : RND;
140 new rzkp3 : RND;
141 new rSigm : RND;
142 new rSigVk1 : RND;
143 new rSigVk2 : RND;
144 new rm : RND;
145 new rVk1 : RND;
146 new rVk2 : RND;
147 new rVk3 : RND;
148 (* first proof *)
149 let proofMsg = createZkVerSig_int (sigm , m, vk1 , rSigm , rm

, rVk1 , rzkp1) in
150 (* second proof *)
151 let proofVk1 = createZkVerSig_int (sigVk1 , vkMsg(vk1), vk2

, rSigVk1 , rVk1 , rVk2 , rzkp2) in

273

Appendix B. ProVerif Code

152 (* third proof *)
153 let proofVk2 = createZkVerSig_int (sigVk2 , vkMsg(vk2), vk3

, rSigVk2 , rVk2 , rVk3 , rzkp3) in
154 (**)
155 (m, rm , vk3 , rVk3 , proofMsg , proofVk1 , proofVk2).
156
157 letfun verifyZkChain (m : Message , rm : RND , vk3 : VerKey ,

rvk3 : RND , proofMsg : ZKVerSig , proofVk1 : ZKVerSig ,
proofVk2 : ZKVerSig) =

158 if verifyZkVerSig (proofMsg) = true then
159 if verifyZkVerSig (proofVk1) = true then
160 if verifyZkVerSig (proofVk2) = true then
161 let (zkp1m: ZKProofVerSig , c1Sigm : CommitSignature ,

c1Msgm : CommitMessage , c1Vk1 : CommitVerKey) =
openZkVerSig (proofMsg) in

162 let (zkp2Vk1 : ZKProofVerSig , c2SigVk1 : CommitSignature ,
c2Vk1 : CommitMessage , c2Vk2 : CommitVerKey) =

openZkVerSig (proofVk1) in
163 let (zkp3Vk2 : ZKProofVerSig , c3SigVk2 : CommitSignature ,

c3Vk2 : CommitMessage , c3Vk3 : CommitVerKey) =
openZkVerSig (proofVk2) in

164 let (= c1Msgm) = commitMsg (m, rm , EpsRnd) in
165 let (= true) = msgVkComEq (c2Vk1 , c1Vk1) in
166 let (= true) = msgVkComEq (c3Vk2 , c2Vk2) in
167 let (= c3Vk3) = commitVk (vk3 , rvk3 , EpsRnd) in
168 true.
169
170
171 (* AWoT Processes *)
172
173 let distinguishedSigning (sk : SigKey) =
174 in(c, x : VerKey);
175 out(c, createVkSig (x, sk));
176 0.
177
178 let honestSigner =
179 in(c, (= true));
180 new skH : SigKey ;
181 out(c, deriveVk (skH));
182 (!distinguishedSigning (skH)).
183
184 let distinguishedPrincipal (id : Identity , sk : SigKey) =
185 let vk = deriveVk (sk) in

274

B.1. Anonymous Webs of Trust

186 out(c, (id , vk));
187 (!distinguishedSigning (sk) | 0)
188 .
189
190 let distinguishedChain (ska : SigKey , skb : SigKey) =
191 in(c, (m : Message , sigVkA : Signature , sigVkB :

Signature , vkB1 : VerKey , sigVkB1 : Signature , vkB2 :
VerKey , sigVkB2 : Signature , vkC : VerKey));

192 (* check first chain *)
193 if deriveVk (ska) = verVkSig (sigVkA , deriveVk (ska), vkB1)

then
194 if vkB1 = verVkSig (sigVkB1 , vkB1 , vkC) then
195 (* check second chain *)
196 if deriveVk (skb) = verVkSig (sigVkB , deriveVk (skb), vkB2)

then
197 if vkB2 = verVkSig (sigVkB2 , vkB2 , vkC) then
198 (**)
199 let sigAm = createSig (m, ska) in
200 let sigBm = createSig (m, skb) in
201 let (=m, rm1 : RND , =vkC , rvkC1 : RND , chainA1 : ZKVerSig

, chainA2 : ZKVerSig , chainA3 : ZKVerSig) =
202 createZKVerChain (m, sigAm , deriveVk (ska), sigVkA ,

vkB1 , sigVkB1 , vkC) in
203 let (=m, rm2 : RND , =vkC , rvkC2 : RND , chainB1 : ZKVerSig

, chainB2 : ZKVerSig , chainB3 : ZKVerSig) =
204 createZKVerChain (m, sigBm , deriveVk (skb), sigVkB ,

vkB2 , sigVkB2 , vkC) in
205 let (= true) = verifyZkChain (m, rm1 , vkC , rvkC1 , chainA1 ,

chainA2 , chainA3) in
206 let (= true) = verifyZkChain (m, rm2 , vkC , rvkC2 , chainB1 ,

chainB2 , chainB3) in
207 out(c, choice [(m, rm1 , vkC , rvkC1 , chainA1 , chainA2 ,

chainA3), (m, rm2 , vkC , rvkC2 , chainB1 , chainB2 ,
chainB3)]);

208 0.
209
210
211 process
212 new ska : SigKey ;
213 new skb : SigKey ;
214 (
215 distinguishedPrincipal (Alice , ska) |
216 distinguishedPrincipal (Bob , skb) |

275

Appendix B. ProVerif Code

217 (!distinguishedChain (ska , skb)) |
218 (!honestSigner)
219)

Listing B.1: ProVerif model for anonymity in anonymous webs of trust.

B.2. ObliviAd
First, we list the ProVerif code for profile privacy Listing B.2. We list the code for profile
unlinkability in Listing B.3. Finally, the code for billing correctness is shown in Listing B.4.

1 free c, corc.
2 free c1 , c2.
3 free start.
4
5 fun kw1 /0.
6 fun kw2 /0.
7
8 fun sign /2.
9 fun enc /3.
10
11 fun vk /1.
12 fun sk /1.
13 fun ek /1.
14 fun dk /1.
15
16 fun id /1.
17 fun ad /1.
18
19 reduc dec(enc(m,r,ek(k)), dk(k)) = m.
20 reduc verify (sign(x,sk(y)), vk(y)) = x.
21
22 reduc retrieveAd (kw1 (), (x, y)) = x;
23 retrieveAd (kw2 (), (x, y)) = y.
24
25 let TPMaccount =
26 new TPMchannel ;
27 (
28 (
29 in(c, xs1);
30 let (ct1 ,= counter1) = verify (xs1 , VKTPM) in
31 let pt1 = dec(ct1 , DKTPM) in
32 out(TPMchannel , (counter1 , pt1))

276

B.2. ObliviAd

33)
34 |
35 (
36 in(c, xs2);
37 let (ct2 ,= counter2) = verify (xs2 , VKTPM) in
38 let pt2 = dec(ct2 , DKTPM) in
39 out(TPMchannel , (counter2 , pt2))
40)
41 |
42 (
43 in(TPMchannel , (= counter1 , xxpt1));
44 in(TPMchannel , (= counter2 , xxpt2));
45 out(c, choice [xxpt1 ,xxpt2]);
46 out(c, choice [xxpt2 ,xxpt1])
47)
48).
49
50 let TPMaccountCor =
51 (
52 in(c, xs1);
53 let (ct1 ,= corcounter) = verify (xs1 , VKTPM) in
54 let pt1 = dec(ct1 , DKTPM) in
55 out(c, pt1)
56).
57
58 let TPMdistAdd =
59 (
60 (
61 in(TPMReq1 , xp1);
62 new r1;
63 let adn1 = retrieveAd (xp1 , (xad1 , xad2)) in
64 let cct1 = enc(id(adn1), r1 , EKTPM) in
65 let scct1 = sign((cct1 , counter1), SKTPM) in
66 out(TPMResp1 , (adn1 , scct1))
67)
68 |
69 (
70 in(TPMReq2 , xp2);
71 new r2;
72 let adn2 = retrieveAd (xp2 , (xad1 , xad2)) in
73 let cct2 = enc(id(adn2), r2 , EKTPM) in
74 let scct2 = sign((cct2 , counter2), SKTPM) in
75 out(TPMResp2 , (adn2 , scct2))

277

Appendix B. ProVerif Code

76)
77 |
78 (
79 in(corc , xadvkw);
80 let advad = retrieveAd (xadvkw , (xad1 , xad2)) in
81 new ulr1;
82 let cul11 = enc(id(advad), ulr1 , EKTPM) in
83 let cul21 = sign((cul11 , corcounter), SKTPM) in
84 out(c, (advad , cul21))
85)
86).
87
88 let Client1 =
89 in(c1 , =start);
90 (
91 (!out(TPMReq1 , choice [kw1 (), kw2 ()]))
92 |
93 (
94 in(TPMResp1 , (xrad1 , xc1));
95 out(c1 , xc1)
96)
97).
98
99 let Client2 =

100 in(c2 , =start);
101 (
102 (!out(TPMReq2 , choice [kw2 (), kw1 ()]))
103 |
104 (
105 in(TPMResp2 , (xrad2 , xc2));
106 out(c2 , xc2)
107)
108).
109
110
111 process
112 new TPMseed ;
113 let SKTPM = sk(TPMseed) in
114 let VKTPM = vk(TPMseed) in
115 let EKTPM = ek(TPMseed) in
116 let DKTPM = dk(TPMseed) in
117 out(c, VKTPM);
118 out(c, EKTPM);

278

B.2. ObliviAd

119 (
120 !(in(c, (xad1 , xad2));
121 new counter1 ;
122 new counter2 ;
123 new corcounter ;
124 new TPMReq1 ;
125 new TPMReq2 ;
126 new TPMResp1 ;
127 new TPMResp2 ;
128 (
129 (!TPMdistAdd)
130 |
131 (!TPMaccount)
132 |
133 (!TPMaccountCor)
134 |
135 (!Client1)
136 |
137 (!Client2)
138)
139)
140)

Listing B.2: ProVerif model for profile privacy.

1 free c, corc.
2 free c1 , c2.
3 free start.
4
5 private fun kw1 /0.
6 private fun kw2 /0.
7
8 fun first /0.
9 fun second /0.

10
11 fun akw1 /0.
12 fun akw2 /0.
13
14 fun sign /2.
15 fun enc /3.
16
17 fun vk /1.
18 fun sk /1.
19 fun ek /1.

279

Appendix B. ProVerif Code

20 fun dk /1.
21
22 fun id /1.
23 fun ad /1.
24
25 reduc dec(enc(m,r,ek(k)), dk(k)) = m.
26 reduc verify (sign(x,sk(y)), vk(y)) = x.
27
28 reduc retrieveAd (kw1 (), first (), (a,b,c,d)) = a;
29 retrieveAd (kw1 (), second (), (a,b,c,d)) = b;
30 retrieveAd (kw2 (), first (), (a,b,c,d)) = c;
31 retrieveAd (kw2 (), second (), (a,b,c,d)) = d.
32
33 reduc retrieveAdvAd (akw1 (), first (), (a,b,c,d)) = a;
34 retrieveAdvAd (akw1 (), second (), (a,b,c,d)) = b;
35 retrieveAdvAd (akw2 (), first (), (a,b,c,d)) = c;
36 retrieveAdvAd (akw2 (), second (), (a,b,c,d)) = d.
37
38 let TPMaccount =
39 new TPMchannel ;
40 (
41 (
42 in(c, xs1);
43 let (ct1 ,= counter1) = verify (xs1 , VKTPM) in
44 let pt1 = dec(ct1 , DKTPM) in
45 out(TPMchannel , (counter1 , pt1))
46)
47 |
48 (
49 in(c, xs2);
50 let (ct2 ,= counter2) = verify (xs2 , VKTPM) in
51 let pt2 = dec(ct2 , DKTPM) in
52 out(TPMchannel , (counter2 , pt2))
53)
54 |
55 (
56 in(c, xs3);
57 let (ct3 ,= counter3) = verify (xs3 , VKTPM) in
58 let pt3 = dec(ct3 , DKTPM) in
59 out(TPMchannel , (counter3 , pt3))
60)
61 |
62 (

280

B.2. ObliviAd

63 in(c, xs4);
64 let (ct4 ,= counter4) = verify (xs4 , VKTPM) in
65 let pt4 = dec(ct4 , DKTPM) in
66 out(TPMchannel , (counter4 , pt4))
67)
68 |
69 (
70 in(TPMchannel , (= counter1 , xxpt1));
71 in(TPMchannel , (= counter2 , xxpt2));
72 in(TPMchannel , (= counter3 , xxpt3));
73 in(TPMchannel , (= counter4 , xxpt4));
74 out(c, xxpt1);
75 out(c, choice [xxpt2 ,xxpt3]);
76 out(c, choice [xxpt3 ,xxpt2]);
77 out(c, xxpt4)
78)
79).
80
81 let TPMaccountCor =
82 (
83 in(corc , xadvc);
84 let (xdrad , = corcounter) = verify (xadvc , VKTPM) in
85 let xrad = dec(xdrad , DKTPM) in
86 out(c, xrad)
87)
88 |
89 (
90 in(corc , xadvc);
91 let (xdrad , = corcounter2) = verify (xadvc , VKTPM) in
92 let xrad = dec(xdrad , DKTPM) in
93 out(c, xrad)
94).
95
96 let TPMdistAdd =
97 (
98 (
99 in(TPMReqA1 , xp1);

100 new r1;
101 let adn1 = retrieveAd (xp1 , first () , (xad1 , choice [xad2 ,

xad3], choice [xad3 , xad2], xad4)) in
102 let cct1 = enc(id(adn1), r1 , EKTPM) in
103 let scct1 = sign((cct1 , counter1), SKTPM) in
104 out(TPMRespA1 , (adn1 , scct1));

281

Appendix B. ProVerif Code

105 in(TPMReqA2 , xp2);
106 new r2;
107 let adn2 = retrieveAd (xp2 , second (), (xad1 , choice [xad2

, xad3], choice [xad3 , xad2], xad4)) in
108 let cct2 = enc(id(adn2), r2 , EKTPM) in
109 let scct2 = sign((cct2 , counter2), SKTPM) in
110 out(TPMRespA2 , (adn2 , scct2))
111)
112 |
113 (
114 in(TPMReqB1 , xp1);
115 new r1;
116 let adn1 = retrieveAd (xp1 , first (), (xad1 , choice [xad2 ,

xad3], choice [xad3 , xad2], xad4)) in
117 let cct1 = enc(id(adn1), r1 , EKTPM) in
118 let scct1 = sign((cct1 , counter3), SKTPM) in
119 out(TPMRespB1 , (adn1 , scct1));
120 in(TPMReqB2 , xp2);
121 new r2;
122 let adn2 = retrieveAd (xp2 , second (), (xad1 , choice [xad2

, xad3], choice [xad3 , xad2], xad4)) in
123 let cct2 = enc(id(adn2), r2 , EKTPM) in
124 let scct2 = sign((cct2 , counter4), SKTPM) in
125 out(TPMRespB2 , (adn2 , scct2))
126)
127 |
128 (
129 in(corc , xadvkw);
130 new ulr1;
131 let xadvad = retrieveAdvAd (xadvkw , first (), (xad1 , xad2

, xad3 , xad4)) in
132 let cul11 = enc(id(xadvad), ulr1 , EKTPM) in
133 let dcul11 = sign((cul11 , corcounter), SKTPM) in
134 out(c, (xadvad , dcul11));
135 in(corc , xadvkw2);
136 new ulr12;
137 let xadvad2 = retrieveAdvAd (xadvkw2 , second (), (xad1 ,

xad2 , xad3 , xad4)) in
138 let cul112 = enc(id(xadvad2), ulr12 , EKTPM) in
139 let dcul112 = sign((cul112 , corcounter2), SKTPM) in
140 out(c, (xadvad2 , dcul11))
141)
142).

282

B.2. ObliviAd

143
144 let Client1 =
145 in(c1 , =start);
146 (
147 (!out(TPMReqA1 , kw1))
148 |
149 (!out(TPMReqA2 , kw1))
150 |
151 (
152 in(TPMRespA1 , (xrad1 , xc1));
153 out(c1 , xc1)
154)
155 |
156 (
157 in(TPMRespA2 , (xrad1 , xc1));
158 out(c1 , xc1)
159)
160).
161
162 let Client2 =
163 in(c2 , =start);
164 (
165 (!out(TPMReqB1 , kw2))
166 |
167 (!out(TPMReqB2 , kw2))
168 |
169 (
170 in(TPMRespB1 , (xrad2 , xc2));
171 out(c2 , xc2)
172)
173 |
174 (
175 in(TPMRespB2 , (xrad2 , xc2));
176 out(c2 , xc2)
177)
178).
179
180
181 process
182 new TPMseed ;
183 let SKTPM = sk(TPMseed) in
184 let VKTPM = vk(TPMseed) in
185 let EKTPM = ek(TPMseed) in

283

Appendix B. ProVerif Code

186 let DKTPM = dk(TPMseed) in
187 out(c, VKTPM);
188 out(c, EKTPM);
189 (
190 !(in(c, (xad1 , xad2 , xad3 , xad4));
191 new counter1 ;
192 new counter2 ;
193 new counter3 ;
194 new counter4 ;
195 new corcounter ;
196 new corcounter2 ;
197 new TPMReqA1 ;
198 new TPMReqA2 ;
199 new TPMRespA1 ;
200 new TPMRespA2 ;
201 new TPMReqB1 ;
202 new TPMReqB2 ;
203 new TPMRespB1 ;
204 new TPMRespB2 ;
205 (
206 (!TPMdistAdd)
207 |
208 (!TPMaccount)
209 |
210 (!TPMaccountCor)
211 |
212 (!Client1)
213 |
214 (!Client2)
215)
216)
217)

Listing B.3: ProVerif model for profile unlinkability.

1 free c.
2 free c1.
3 free start.
4
5 fun kw /0.
6
7 fun sign /2.
8 fun enc /3.
9

284

B.2. ObliviAd

10 fun vk /1.
11 fun sk /1.
12 fun ek /1.
13 fun dk /1.
14
15 fun id /1.
16
17 reduc dec(enc(m,r,ek(k)), dk(k)) = m.
18 reduc verify (sign(x,sk(y)), vk(y)) = x.
19
20 reduc retrieveAd (kw(), x) = x.
21
22 let TPMaccount =
23 in(c, xs1);
24 let (ct1 ,= counter) = verify (xs1 , VKTPM) in
25 let pt1 = dec(ct1 , DKTPM) in
26 event CountCoin (pt1 , counter);
27 out(c, pt1);
28 event liveness0 ().
29
30 let TPMdistAdH =
31 (
32 new r;
33 in(TPMchannelReq , xprof);
34 event liveness1 ();
35 let xretad = retrieveAd (xprof , xad1) in
36 let c11 = enc(id(xretad), r, EKTPM) in
37 let c21 = sign((c11 , counter), SKTPM) in
38 event IssueHonCoin (id(xretad), counter);
39 out(TPMchannelResp , (xretad , c21))
40).
41
42 let TPMdistAdC =
43 (
44 in(c, =start);
45 new r;
46 let c11 = enc(id(xad1), r, EKTPM) in
47 let c21 = sign((c11 , counter), SKTPM) in
48 event IssueCompCoin (id(xad1), counter);
49 out(c, c21);
50 event liveness2 ()
51).
52

285

Appendix B. ProVerif Code

53 let Client =
54 (
55 in(c1 , =start);
56 out(TPMchannelReq , kw);
57 in(TPMchannelResp , (x1 , x2));
58 let (xid , zctr) = verify (x2 , VKTPM) in
59 event SendCoin (id(x1), zctr);
60 out(c1 , x2)
61).
62
63 query ev: liveness0 ().
64 query ev: liveness1 ().
65 query ev: liveness2 ().
66
67 query evinj: CountCoin (id(advertisement), timestamp) ==>
68 ((evinj: SendCoin (id(advertisement), timestamp) ==>

evinj: IssueHonCoin (id(advertisement), timestamp))
69 | evinj: IssueCompCoin (id(advertisement), timestamp)).
70
71
72 process
73 new TPMseed ;
74 let SKTPM = sk(TPMseed) in
75 let VKTPM = vk(TPMseed) in
76 let EKTPM = ek(TPMseed) in
77 let DKTPM = dk(TPMseed) in
78 out(c, VKTPM);
79 out(c, EKTPM);
80 (
81 !(in(c, xad1);
82 (* new counter and new tpm connections for every time

clients do requests *)
83 (!(new counter ;
84 new TPMchannelReq ;
85 new TPMchannelResp ;
86 (* different counter to prove unlinkability *)
87 (
88 (TPMdistAdH)
89 |
90 (TPMdistAdC)
91 |
92 (TPMaccount)
93 |

286

B.2. ObliviAd

94 (Client)
95)))
96)
97)

Listing B.4: ProVerif model for billing correctness.

287

288

Bibliography
[1] Martín Abadi, Bruno Blanchet, and Cédric Fournet. Automated Verification of

Selected Equivalences for Security Protocols. In Proc. IEEE Symposium on Logic in
Computer Science (LICS’05), pages 331–340. IEEE Computer Society Press, 2005.
(Cited on pages 5 and 62.)

[2] Martín Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus
for Access Control in Distributed Systems. ACM Transactions on Programming
Languages and Systems, 15:706–734, September 1993. (Cited on page 48.)

[3] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communi-
cation. In Proc. Symposium on Principles of Programming Languages (POPL’01),
pages 104–115. ACM Press, 2001. (Cited on pages 61 and 98.)

[4] Attribute-based Credentials for Trust EU Project. https://abc4trust.eu. (Cited
on page 46.)

[5] Alfarez Abdul-Rahman and Stephen Hailes. A Distributed Trust Model. In Proc.
Wworkshop on New Security Paradigms (NSPW’97), pages 48–60. ACM Press, 1997.
(Cited on page 64.)

[6] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-Preserving Signatures and Commitments to Group Elements.
In Proc. Advances in Cryptology (CRYPTO’10), volume 6223 of Lecture Notes in
Computer Science, pages 209–236. Springer-Verlag, 2010. (Cited on pages 11, 23,
and 27.)

[7] Agence French-Presse. Study: Facebook ‘likes’ reveal personal information. The Raw
Story, March 2013. http://www.rawstory.com/rs/2013/03/11/study-facebook-
likes-reveal-personal-information. (Cited on page 1.)

[8] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative Tech-
nology for CPU Based Attestation and Sealing. In Proc. International Workshop
on Hardware and Architectural Support for Security and Privacy (HASP’13). ACM
Press, 2013. (Cited on page 106.)

[9] Michal Moskal Andreas Blass, Yuri Gurevich and Itay Neeman. Evidential Autho-
rization. The Future of Software Engineering, pages 77–99, 2011. (Cited on pages 13
and 48.)

[10] http://www.anonymizer.com. (Cited on pages 84 and 85.)

289

https://abc4trust.eu
http://www.rawstory.com/rs/2013/03/11/study-facebook-likes-reveal-personal-information
http://www.rawstory.com/rs/2013/03/11/study-facebook-likes-reveal-personal-information
http://www.anonymizer.com

Bibliography

[11] Andrew W. Appel and Edward W. Felten. Proof-Carrying Authentication. In Proc.
ACM Conference on Computer and Communications Security (CCS’99), pages 52–62.
ACM Press, 1999. (Cited on pages 10 and 12.)

[12] Claudio A. Ardagna, Jan Camenisch, Markulf Kohlweiss, Ronald Leenes, Gregory
Neven, Bart Priem, Pierangela Samarati, Dieter Sommer, and Mario Verdicchio.
Exploiting Cryptography for Privacy-Enhanced Aaccess Control: A result of the
PRIME Project. Journal of Computer Security, 18(1):123–160, January 2010. (Cited
on page 46.)

[13] Charles Arthur and Keith Stuart. PlayStation Network users fear identity theft
after major data leak. The Guardian, April 2011. http://www.guardian.co.
uk/technology/2011/apr/27/playstation-users-identity-theft-data-leak.
(Cited on page 2.)

[14] Donovan Artz and Yolanda Gil. A Survey of Trust in Computer Science and the
Semantic Web. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2):58–71, 2007. (Cited on page 64.)

[15] Dmitri Asonov and Johann Christoph Freytag. Almost Optimal Private Information
Retrieval. In Proc. Privacy Enhancing Technologies Symposium (PETS’02), pages
209–223, 2002. (Cited on page 103.)

[16] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical Group Signatures without Random Oracles. http://eprint.iacr.org/
2005/385, 2005. (Cited on page 23.)

[17] Jan Ateniese, Giuseppeand Camenisch, Marc Joye, and Gene Tsudik. A Practical
and Provably Secure Coalition-Resistant Group Signature Scheme. In Proc. Advances
in Cryptology (CRYPTO’00), volume 1880 of Lecture Notes in Computer Science,
pages 255–270. Springer-Verlag, 2000. (Cited on page 45.)

[18] Man H. Au, Apu Kapadia, and Willy Susilo. BLACR: TTP-Free Blacklistable
Anonymous Credentials with Reputation. In Proc. Network and Distributed System
Security Symposium (NDSS’12). Internet Society, 2012. (Cited on page 47.)

[19] Kumar Avijit, Anupam Datta, and Robert Harper. Distributed Programming with
Distributed Authorization. In Proc. ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI’10), pages 27–38. ACM Press, 2010. (Cited on
pages 13 and 105.)

[20] Julian Backes and Stefan Lorenz Kim Pecina. peloba Zero-Knowledge Library.
Available at https://github.com/peloba/zk-library. (Cited on page 40.)

[21] Michael Backes, Martin P. Grochulla, Cătălin Hriţcu, and Matteo Maffei. Achieving
Security Despite Compromise Using Zero-knowledge. In Proc. IEEE Symposium
on Computer Security Foundations (CSF’09). IEEE Computer Society Press, 2009.
(Cited on page 37.)

290

http://www.guardian.co.uk/technology/2011/apr/27/playstation-users-identity-theft-data-leak
http://www.guardian.co.uk/technology/2011/apr/27/playstation-users-identity-theft-data-leak
http://eprint.iacr.org/2005/385
http://eprint.iacr.org/2005/385
https://github.com/peloba/zk-library

Bibliography

[22] Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Type-checking Zero-knowledge.
In Proc. ACM Conference on Computer and Communications Security (CCS’08),
pages 357–370. ACM Press, 2008. (Cited on page 37.)

[23] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably
Secure and Practical Online Behavioral Advertising. In Proc. IEEE Symposium on
Security & Privacy (S&P’12), pages 257–271. IEEE Computer Society Press, 2012.
(Cited on pages vii, 20, and 81.)

[24] Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina. The CASPA Tool:
Causality-based Abstraction for Security Protocol Analysis (Tool Paper). In Proc.
Computer Aided Verification (CAV’08), volume 5123 of Lecture Notes in Computer
Science, pages 419–422. Springer-Verlag, 2008. (Cited on page 37.)

[25] Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina. Anonymous Webs
of Trust. In Proc. Privacy Enhancing Technologies Symposium (PETS’10), volume
6205 of Lecture Notes in Computer Science, pages 130–148. Springer-Verlag, 2010.
(Cited on pages vii, 4, 11, 44, 45, 51, 61, 64, 65, 77, 105, and 128.)

[26] Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina. Brief Announcement:
Anonymity and Trust in Distributed Systems. In Proc. Symposium on Principles
of Distributed Computing (PODC’10), pages 237–238. ACM Press, 2010. (Cited on
pages vii and 51.)

[27] Michael Backes, Matteo Maffei, and Cătălin Hriţcu. Union and Intersection Types
for Secure Protocol Implementations. In Proc. Conference on Theory of Security
and Applications (TOSCA’11), Lecture Notes in Computer Science. Springer-Verlag,
2011. (Cited on pages 13, 36, and 37.)

[28] Michael Backes, Matteo Maffei, and Kim Pecina. A Security API for Distributed
Social Networks. In Proc. Network and Distributed System Security Symposium
(NDSS’11), pages 35–51. Internet Society, 2011. (Cited on pages vii, 4, 11, 44, 45, 46,
51, 77, and 105.)

[29] Michael Backes, Matteo Maffei, and Kim Pecina. Brief Announcement: Securing
Social Networks. In Proc. Symposium on Principles of Distributed Computing
(PODC’11), pages 341–342. ACM Press, 2011. (Cited on pages vii and 51.)

[30] Michael Backes, Matteo Maffei, and Kim Pecina. Automated Synthesis of Privacy-
Preserving Distributed Applications. In Proc. Network and Distributed System
Security Symposium (NDSS’12). Internet Society, 2012. (Cited on pages vii, 9, 13,
48, and 105.)

[31] Michael Backes, Matteo Maffei, Kim Pecina, and Raphael M. Reischuk. G2C:
Cryptographic Protocols From Goal-Driven Specifications. In Proc. Conference on
Theory of Security and Applications (TOSCA’11), Lecture Notes in Computer Science.
Springer-Verlag, 2011. (Cited on page 48.)

291

Bibliography

[32] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-Knowledge in the
Applied Pi-calculus and Automated Verification of the Direct Anonymous Attestation
Protocol. In Proc. IEEE Symposium on Security & Privacy (S&P’08), pages 202–215.
IEEE Computer Society Press, 2008. (Cited on page 78.)

[33] Michael Backes, Matteo Maffei, and Dominique Unruh. Computationally Sound Veri-
fication of Source Code. In Proc. ACM Conference on Computer and Communications
Security (CCS’10), pages 387–398. ACM Press, 2010. (Cited on page 36.)

[34] Michael Backes and Dominique Unruh. Computational Soundness of Symbolic Zero-
Knowledge Proofs Against Active Attackers. In Proc. IEEE Symposium on Computer
Security Foundations (CSF’08), pages 255–269. IEEE Computer Society Press, 2008.
(Cited on page 131.)

[35] Tucker Bailey, Andrea Del Miglio, , and Wolf Richter. The rising strategic risks of
cyberattacks. McKinsey & Company, 2014. Accessed March 2015. (Cited on page 2.)

[36] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-
Resistant Storage via Keyword-Searchable Encryption. http://eprint.iacr.org/
2005/417, 2005. (Cited on page 23.)

[37] Endre Bangerter, Essam Ghadafi, Stephan Krenn, Ahmad-Reza Sadeghi, Thomas
Schneider, Nigel Smart, Joe-Kai Tsay, and Bogdan Warinschi. Final Report on
Unified Theoretical Framework of Efficient Zero-Knowledge Proofs of Knowledge.
Technical report, CACE: Computer Aided Cryptography Engineering, 2009. http:
//zkc.cace-project.eu/resources/ZKPoK_theory.pdf. (Cited on page 24.)

[38] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy,
and Santiago Zanella-Béguelin. Probabilistic Relational Verification for Cryptographic
Implementations. In Proc. Symposium on Principles of Programming Languages
(POPL’14), pages 193–205. ACM Press, 2014. (Cited on page 13.)

[39] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse,
and Peter Rutenbar. Device-enabled Authorization in the Grey System. In Proc.
Information Security Conference (ISC’05), Lecture Notes in Computer Science, pages
431–445. Springer-Verlag, 2005. (Cited on page 10.)

[40] Lujo Bauer, Michael A. Schneider, Eduard W. Felten, and Andrew W. Appel. Access
Control on the Web Using Proof-Carrying Authorization. In Proc. DARPA Conference
on Information Survivability Conference and Exposition (DISCEX’03), pages 117–119,
Washington, DC, USA, 2003. IEEE Computer Society Press. (Cited on page 10.)

[41] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and Semantics of
a Decentralized Authorization Language. In Proc. IEEE Symposium on Computer
Security Foundations (CSF’07), pages 3–15. IEEE Computer Society Press, 2007.
(Cited on pages 12 and 48.)

292

http://eprint.iacr.org/2005/417
http://eprint.iacr.org/2005/417
http://zkc.cace-project.eu/resources/ZKPoK_theory.pdf
http://zkc.cace-project.eu/resources/ZKPoK_theory.pdf

Bibliography

[42] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya,
and Hovav Shacham. Randomizable Proofs and Delegatable Anonymous Credentials.
In Proc. Advances in Cryptology (CRYPTO’09), volume 5677 of Lecture Notes in
Computer Science, pages 108–125. Springer-Verlag, 2009. (Cited on pages 12, 40, 47,
48, 140, and 158.)

[43] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-
signatures and Noninteractive Anonymous Credentials. In Proc. Theory of Cryp-
tography Conference (TCC’08), pages 356–374. Springer-Verlag, 2008. (Cited on
page 46.)

[44] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
Among Notions of Security for Public-Key Encryption Schemes. In Proc. Advances
in Cryptology (CRYPTO’98), volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998. (Cited on page 85.)

[45] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast Batch Verification for Modular
Exponentiation and Digital Signatures. In Proc. Advances in Cryptology (EURO-
CRYPT’98), pages 236–250, 1998. (Cited on page 97.)

[46] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm. Journal of
Computer Security, 21(4):469–491, 2008. (Cited on page 85.)

[47] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In Proc. ACM Conference on Computer and
Communications Security (CCS’93), pages 62–73. ACM Press, 1993. (Cited on
page 24.)

[48] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: A System for
Secure Multi-Party Computation. In Proc. ACM Conference on Computer and
Communications Security (CCS’08), pages 257–266, New York, NY, USA, 2008.
ACM Press. (Cited on page 26.)

[49] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and
Sergio Maffeis. Refinement Types for Secure Implementations. ACM Transactions
on Programming Languages and Systems, 33(2):8, 2011. (Cited on pages 13, 35, 36,
37, 39, 109, 110, 112, 175, 181, and 182.)

[50] Josh Bernoff. Do people care about the data you collect? Now, more than
ever, they do. empowered, 2012. Available at http://forrester.typepad.com/
groundswell/2012/01/do-people-care-about-the-data-you-collect-now-
more-than-ever-they-do.html. (Cited on page 1.)

[51] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for Tor Hid-
den Services: Detection, Measurement, Deanonymization. In Proc. IEEE Symposium

293

http://forrester.typepad.com/groundswell/2012/01/do-people-care-about-the-data-you-collect-now-more-than-ever-they-do.html
http://forrester.typepad.com/groundswell/2012/01/do-people-care-about-the-data-you-collect-now-more-than-ever-they-do.html
http://forrester.typepad.com/groundswell/2012/01/do-people-care-about-the-data-you-collect-now-more-than-ever-they-do.html

Bibliography

on Security & Privacy (S&P’13), pages 80–94. IEEE Computer Society Press, 2013.
(Cited on page 1.)

[52] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In Proc. IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96.
IEEE Computer Society Press, 2001. (Cited on pages 5, 37, 62, 98, and 106.)

[53] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil Pairing.
Journal of Cryptology, 17(4):297–319, 2004. (Cited on page 24.)

[54] Dan Boneh and Hovav Shacham. Group Signatures with Verifier-Local Revocation.
In Proc. ACM Conference on Computer and Communications Security (CCS’04),
pages 168–177. ACM Press, 2004. (Cited on page 45.)

[55] Emmanuel Bouillon. Taming the Beast : Assess Kerberos-protected Networks, 2009.
White paper presented at Black Hat E 2009. (Cited on page 10.)

[56] Stefan Brands, Liesje Demuynck, and Bart De Decker. A Practical System for Globally
Revoking the Unlinkable Pseudonyms of Unknown Users. In Proc. Australasian
Conference on Information Security and Privacy (ACISP’07), volume 4586 of Lecture
Notes in Computer Science, pages 400–415. Springer-Verlag, 2007. (Cited on page 46.)

[57] Anne Wells Branscomb. Anonymity, Autonomy, and Accountability: Challenges to
the First Amendment in Cyberspaces. The Yale Law Journal, 104(7), 1995. (Cited
on page 84.)

[58] Emmanuel Bresson, Jacque Stern, and Michael Szydlo. Threshold Ring Signatures
and Applications to Ad-hoc Groups. In Proc. Advances in Cryptology (CRYPTO’02),
volume 2442 of Lecture Notes in Computer Science, pages 465–480. Springer-Verlag,
2002. (Cited on page 45.)

[59] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct Anonymous Attestation.
In Proc. ACM Conference on Computer and Communications Security (CCS’04),
pages 132–145, 2004. (Cited on page 47.)

[60] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID: a Direct Anonymous Attestation
Scheme with Enhanced Revocation Capabilities. In Proc. ACM Workshop on Privacy
in the Electronic Society (WPES’07), pages 21–30. ACM Press, 2007. (Cited on
page 47.)

[61] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Resource-
aware Authorization Policies in Statically Typed Cryptographic Protocols. In Proc.
IEEE Symposium on Computer Security Foundations (CSF’11), pages 83–98. IEEE
Computer Society Press, 2011. (Cited on page 37.)

[62] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Logical
Foundations of Secure Resource Management in Protocol Implementations. In

294

Bibliography

Proc. Principles of Security and Trust (POST’13), volume 7796 of Lecture Notes in
Computer Science, pages 105–125. Springer-Verlag, 2013. (Cited on pages 13 and 37.)

[63] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Authenticity by Tagging
and Typing. In Proc. ACM Workshop on Formal Methods in Security Engineering
(FMSE’04), pages 1–12. ACM Press, 2004. (Cited on page 37.)

[64] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Compositional Analysis of
Authentication Protocols. In Proc. European Symposium on Programming (ESOP’04),
volume 2986 of Lecture Notes in Computer Science, pages 140–154. Springer-Verlag,
2004. (Cited on page 37.)

[65] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Analysis of Typed-Based
Analyses of Authentication Protocols. In Proc. IEEE Computer Security Foundations
Workshop (CSFW’05), pages 112–125. IEEE Computer Society Press, 2005. (Cited
on page 37.)

[66] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Dynamic Types for Authen-
tication. Journal of Computer Security, 15(6):563–617, 2007. (Cited on page 37.)

[67] Elizabeth Butler, Elizabeth McCann, and Joseph Thomas. Privacy Setting Awareness
on Facebook and Its Effect on User-Posted Content. Human Communication, pages
39–55, 2011. (Cited on page 1.)

[68] Giorgio Calandriello, Panos Papadimitratos, Jean-Pierre Hubaux, and Antonio Lioy.
Efficient and Robust Pseudonymous Authentication in VANET. In Proc. ACM
International Workshop on Vehicular Ad Hoc Networks (VANET’07), pages 19–28.
ACM Press, 2007. (Cited on page 46.)

[69] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. Request for Comments
4880: OpenPGP Message Format. Internet Engineering Task Force, 2007. (Cited on
page 57.)

[70] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient Protocols for Set
Membership and Range Proofs. In Proc. International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT’08), volume
5350 of Lecture Notes in Computer Science, pages 234–252. Springer-Verlag, 2008.
(Cited on pages 25 and 47.)

[71] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An Accumulator Based on
Bilinear Maps and Efficient Revocation for Anonymous Credentials. In Proc. Inter-
national Conference on Practice and Theory in Public Key Cryptography (PKC’09),
volume 5443 of Lecture Notes in Computer Science, pages 481–500. Springer-Verlag,
2009. (Cited on page 47.)

[72] Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with Efficient Protocols.
In Proc. International Conference on Security in Communication Networks (SCN’02),

295

Bibliography

volume 2576 of Lecture Notes in Computer Science, pages 268–289. Springer-Verlag,
2002. (Cited on page 45.)

[73] Jan Camenisch and Markus Michels. Proving in Zero-Knowledge that a Number is the
Product of Two Safe Primes. In Proc. Advances in Cryptology (EUROCRYPT’98),
volume 1592 of Lecture Notes in Computer Science, pages 107–122. Springer-Verlag,
1998. (Cited on pages 11, 44, 45, and 61.)

[74] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally Com-
posable Two-Party and Multi-Party Secure Computation. In Proc. ACM Symposium
on Theory of Computing (STOC’02), pages 494–503, New York, NY, USA, 2002.
ACM Press. (Cited on page 26.)

[75] Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A Formal Model for Trust
in Dynamic Networks. In International Conference on Software Engineering and
Formal Methods (SEFM ’03), pages 54–64. IEEE Computer Society Press, 2003.
(Cited on page 64.)

[76] Germano Caronni. Walking the Web of Trust. In Proc. IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’00),
pages 153–158. IEEE Computer Society Press, 2000. (Cited on page 64.)

[77] Dario Catalano and Dario Fiore. Vector Commitments and their Applications. In
Proc. International Conference on Practice and Theory in Public Key Cryptography
(PKC’13), volume 7778 of Lecture Notes in Computer Science, pages 55–72. Springer-
Verlag, 2013. (Cited on page 47.)

[78] Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-Knowledge Sets with
Short Proofs. In Proc. Advances in Cryptology (EUROCRYPT’08), volume 4965 of
Lecture Notes in Computer Science, pages 433–450. Springer-Verlag, 2008. (Cited on
page 47.)

[79] Avik Chaudhuri and Deepak Garg. PCAL: Language Support for Proof-Carrying
Authorization Systems. In Proc. European Symposium on Research in Computer
Security (ESORICS’09), pages 184–199. Springer-Verlag, 2009. (Cited on page 48.)

[80] David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 24(2):84–88, 1981. (Cited on page 87.)

[81] David Chaum. Blind Signatures for Untraceable Payments. In Proc. Advances in
Cryptology (CRYPTO’82), pages 199–203, 1982. (Cited on page 86.)

[82] David Chaum. Security without Identification: Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM, 28(10):1030–1044, October 1985.
(Cited on pages 11 and 46.)

296

Bibliography

[83] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An Improved Protocol
for Demonstrating Possession of Discrete Logarithms and Some Generalizations. In
Proc. Advances in Cryptology (EUROCRYPT’87), volume 304 of Lecture Notes in
Computer Science, pages 127–141. Springer-Verlag, 1987. (Cited on page 11.)

[84] David Chaum, Amos Fiat, and Moni Naor. Untraceable Electronic Cash. In Proc.
Advances in Cryptology (CRYPTO’88), pages 319–327, New York, NY, USA, 1990.
Springer-Verlag. (Cited on page 86.)

[85] David Chaum and Eugene van Heyst. Group Signatures. In Proc. Advances in
Cryptology (EUROCRYPT’91), volume 547 of Lecture Notes in Computer Science,
pages 257–265. Springer-Verlag, 1991. (Cited on page 45.)

[86] Adnan A Chawdhry, Karen Paullet, and David M Douglas. Data Privacy: Are We
Accidentally Sharing Too Much Information? In Proc. Conference for Information
Systems Applied Research (CONISAR’13), 2013. (Cited on page 1.)

[87] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private informa-
tion retrieval. Journal of the ACM, 45:965–981, November 1998. (Cited on pages 4,
86, and 103.)

[88] Amit Chowdhry. Facebook Relaunches Atlas For Marketers To Serve Tar-
geted Ads Across Multiple Devices. Forbes, 2014. Available at http:
//www.forbes.com/sites/amitchowdhry/2014/09/29/facebook-relaunches-
atlas-for-marketers-to-serve-targeted-ads-across-multiple-devices/.
(Cited on page 1.)

[89] Cristian Coarfa, Peter Druschel, and Dan S. Wallach. Performance Analysis of TLS
Web Servers. ACM Transactions on Computer Systems, 24(1):39–69, 2006. (Cited
on page 97.)

[90] Federal Trade Commission. FTC Staff Report: Self-Regulatory Principles For Online
Behavioral Advertising. http://www.ftc.gov/opa/2009/02/behavad.shtm, Feb
2009. Accessed November 2013. (Cited on pages 2 and 102.)

[91] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. In Proc. Advances in Cryptology
(CRYPTO’94), volume 839 of Lecture Notes in Computer Science, pages 174–187.
Springer-Verlag, 1994. (Cited on pages 44 and 45.)

[92] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Provably
Secure against Adaptive Chosen Ciphertext Attack. In Proc. Advances in Cryptology
(CRYPTO’98), volume 1462 of Lecture Notes in Computer Science, pages 13–25.
Springer-Verlag, 1998. (Cited on page 85.)

[93] Ivan Damgård. On Σ-protocols. http://www.cs.au.dk/~ivan/Sigma.pdf. (Cited
on page 44.)

297

http://www.forbes.com/sites/amitchowdhry/2014/09/29/facebook-relaunches-atlas-for-marketers-to-serve-targeted-ads-across-multiple-devices/
http://www.forbes.com/sites/amitchowdhry/2014/09/29/facebook-relaunches-atlas-for-marketers-to-serve-targeted-ads-across-multiple-devices/
http://www.forbes.com/sites/amitchowdhry/2014/09/29/facebook-relaunches-atlas-for-marketers-to-serve-targeted-ads-across-multiple-devices/
http://www.ftc.gov/opa/2009/02/behavad.shtm
http://www.cs.au.dk/~ivan/Sigma.pdf

Bibliography

[94] Angelo De Caro. jPBC Library. http://libeccio.dia.unisa.it/projects/jpbc/
download.html. (Cited on page 40.)

[95] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-resistance and receipt-
freeness in electronic voting. In Proc. IEEE Computer Security Foundations Workshop
(CSFW’06), pages 28–42. IEEE Computer Society Press, 2006. (Cited on page 106.)

[96] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying Privacy-Type Properties
of Electronic Voting Protocols. Journal of Computer Security, 17:435–487, 2009.
(Cited on page 89.)

[97] Xuan Ding, Lan Zhang, Zhiguo Wan, and Ming Gu. De-Anonymizing Dynamic
Social Networks. In Proc. Global Communications Conference (GLOBECOM’11),
pages 1–6, 2011. (Cited on page 1.)

[98] Xuhua Ding, Yanjiang Yang, Robert H. Deng, and Shuhong Wang. A new hardware-
assisted PIR with O(n) shuffle cost. International Journal of Information Security,
9(4):237–252, 2010. (Cited on page 103.)

[99] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The Second-
Generation Onion Router. In Proc. USENIX Security Symposium (USENIX’04),
pages 303–320. USENIX Association, 2004. (Cited on page 2.)

[100] Charles Duhigg. How Companies Learn Your Secrets. New York Times, 2012.
Available at http://www.nytimes.com/2012/02/19/magazine/shopping-habits.
html. (Cited on page 4.)

[101] Karen Easterbrook, Kevin Kane, Lan Nguyen, Christian Paquin, and Greg Zaverucha.
U-Prove. http://research.microsoft.com/en-us/projects/u-prove. (Cited on
page 46.)

[102] eBizMBA Inc. Top 15 Most Popular Search Engines, Februrary 2015. http://www.
ebizmba.com/articles/search-engines, 2015. Accessed Februrary 2015. (Cited
on page 1.)

[103] eBizMBA Inc. Top 15 Most Popular Social Networking Sites, January 2015.
http://www.ebizmba.com/articles/social-networking-websites, 2015. Ac-
cessed January 2015. (Cited on page 1.)

[104] Fabienne Eigner and Matteo Maffei. Differential Privacy by Typing in Security
Protocols. In Proc. IEEE Symposium on Computer Security Foundations (CSF’13),
pages 272–286. IEEE Computer Society Press, 2013. (Cited on pages 13, 37, and 106.)

[105] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme based on
Discrete Logarithms. In Proc. Advances in Cryptology (CRYPTO’84), pages 10–18,
New York, NY, USA, 1985. Springer-Verlag. (Cited on page 22.)

298

http://libeccio.dia.unisa.it/projects/jpbc/download.html
http://libeccio.dia.unisa.it/projects/jpbc/download.html
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
http://research.microsoft.com/en-us/projects/u-prove
http://www.ebizmba.com/articles/search-engines
http://www.ebizmba.com/articles/search-engines
http://www.ebizmba.com/articles/social-networking-websites

Bibliography

[106] European Commission. General Data Protection Regulation. http://ec.europa.
eu/justice/data-protection/document/review2012/com_2012_11_en.pdf. Ac-
cessed January 2015. (Cited on page 2.)

[107] David S. Evans. The Online Advertising Industry: Economics, Evolution, and Privacy.
Journal of Economic Perspectives, 23(3):37–60, 2009. (Cited on page 103.)

[108] https://www.facebook.com/advertising/how-it-works. (Cited on page 1.)

[109] Federal Trade Commission. Protecting Consumer Privacy in an Era of Rapid Change:
Recommendations For Businesses and Policymakers. http://ftc.gov/os/2012/03/
120326privacyreport.pdf, 2012. Accessed January 2015. (Cited on page 2.)

[110] Juan Feng, Hemant K. Bhargava, and David M. Pennock. Implementing Sponsored
Search in Web Search Engines: Computational Evaluation of Alternative Mechanisms.
INFORMS Journal on Computing, 19:137–148, January 2007. (Cited on page 84.)

[111] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In Proc. Advances in Cryptology (CRYPTO’87),
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer-Verlag,
1987. (Cited on pages 24 and 45.)

[112] Riccardo Focardi and Matteo Maffei. Types for Security Protocols, volume 5, chapter 7,
pages 143–181. IOS Press, 2010. (Cited on page 37.)

[113] Tynan Ford. Cyber Attacks and Their Impact on Business. globalEDGE, 2014.
Accessed March 2015. (Cited on page 2.)

[114] Matthew Fredrikson and Benjamin Livshits. RePriv: Re-imagining Content Person-
alization and In-browser Privacy. In Proc. IEEE Symposium on Security & Privacy
(S&P’11), pages 131–146. IEEE Computer Society Press, 2011. (Cited on pages 4,
89, 103, and 104.)

[115] David Mandell Freeman. Converting Pairing-Based Cryptosystems from Composite-
Order Groups to Prime-Order Groups. In Proc. Advances in Cryptology (EU-
ROCRYPT’10), volume 6110 of Lecture Notes in Computer Science, pages 44–61.
Springer-Verlag, 2010. (Cited on page 41.)

[116] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for Cryptog-
raphers. Discrete Applied Mathematics, 156(16):3113–3121, September 2008. (Cited
on page 21.)

[117] Steven D. Galbraith and Victor Rotger. Easy decision-diffie-hellman groups. LMS
Journal of Computation and Mathematics, 7:201–218, 2004. (Cited on page 23.)

[118] Deepak Garg and Frank Pfenning. A Proof-Carrying File System. In Proc. IEEE
Symposium on Security & Privacy (S&P’10), pages 349–364. IEEE Computer Society
Press, 2010. (Cited on pages 10, 12, 48, and 105.)

299

http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
https://www.facebook.com/advertising/how-it-works
http://ftc.gov/os/2012/03/120326privacyreport.pdf
http://ftc.gov/os/2012/03/120326privacyreport.pdf

Bibliography

[119] Craig Gentry and Zulfikar Ramzan. Single-Database Private Information Retrieval
with Constant Communication Rate. In Proc. International Colloquium on Automata,
Languages and Programming (ICALP’05), volume 3580 of Lecture Notes in Computer
Science, pages 803–815. Springer-Verlag, 2005. (Cited on page 103.)

[120] Oded Goldreich. Towards a Theory of Software Protection and Simulation by
Oblivious RAMs. In Proc. ACM Symposium on Theory of Computing (STOC’87),
pages 182–194. ACM Press, 1987. (Cited on page 86.)

[121] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001. (Cited on page 22.)

[122] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Nothing but
Their Validity or All Languages in NP have Zero-Knowledge Proof Systems. Journal
of the ACM, 38(3):690–728, 1991. (Cited on pages 3 and 22.)

[123] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM, 43:431–473, May 1996. (Cited on pages 93 and 102.)

[124] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
17(2):281–308, April 1988. (Cited on pages 23 and 85.)

[125] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Oblivious RAM Simulation with Efficient Worst-Case Access Overhead. WPES,
abs/1107.5093, 2011. (Cited on page 93.)

[126] http://www.wired.com/2011/07/google-revenue-sources/. (Cited on page 1.)

[127] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security protocols.
Journal of Computer Security, 4(11):451–521, 2003. (Cited on page 37.)

[128] Jens Groth and Amit Sahai. Efficient Non-interactive Proof Systems for Bilinear
Groups. In Proc. Advances in Cryptology (EUROCRYPT’08), volume 4965 of Lecture
Notes in Computer Science, pages 415–432. Springer-Verlag, 2008. (Cited on pages 11,
22, 23, and 133.)

[129] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical Privacy in Online
Advertising. In Proc. Symposium on Networked Systems Design and Implementation
(NSDI’11), Mar 2011. (Cited on pages 85, 89, and 103.)

[130] Saikat Guha, Alexey Reznichenko, Kevin Tang, Hamed Haddadi, and Paul Francis.
Serving Ads from localhost for Performance, Privacy, and Profit. In Proc. Workshop
on Hot Topics in Networks (HotNets), 2009. (Cited on page 103.)

[131] Carl A. Gunter. Semantics of Programming Languages. Foundations of Computing
Series. MIT Press, 1993. (Cited on page 112.)

300

http://www.wired.com/2011/07/google-revenue-sources/

Bibliography

[132] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest We Remember: Cold-Boot Attacks on Encryption Keys. Journal of the
ACM, 52(5):91–98, May 2009. (Cited on page 83.)

[133] http://www.healthgrades.com. (Cited on page 13.)

[134] Ryan Henry, Kevin Henry, and Ian Goldberg. Making a Nymbler Nymble Using
VERBS. In Proc. Privacy Enhancing Technologies Symposium (PETS’10), pages
111–129. Springer-Verlag, 2010. (Cited on page 47.)

[135] Javier Herranz. Identity-based Ring Signatures from RSA. Theoretical Computer
Science, 389(1-2):100–117, 2007. (Cited on page 46.)

[136] Kashmir Hill. How Target Figured Out A Teen Girl Was Pregnant Before Her Father
Did. Forbes, 2012. Available at http://www.forbes.com/sites/kashmirhill/
2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-
her-father-did/. (Cited on page 4.)

[137] Daniel C. Howe and Helen Nissenbaum. TrackMeNot: Resisting Surveillance in
Web Search, chapter 23, pages 417–436. Oxford University Press, 2009. (Cited on
page 103.)

[138] Jingwei Huang and David Nicol. A Calculus of Trust and its Application to PKI and
Identity Management. In Proc. Symposium on Identity and Trust on the Internet
(IDTrust’09), pages 23–37. ACM Press, 2009. (Cited on page 64.)

[139] http://www-03.ibm.com/security/cryptocards. (Cited on pages 20 and 83.)

[140] Thomas Icart. How to Hash into Elliptic Curves. In Proc. Advances in Cryptology
(CRYPTO’09), pages 303–316, 2009. (Cited on page 24.)

[141] Identity Mixer. http://idemix.wordpress.com/category/projects. (Cited on
page 46.)

[142] http://www.jameda.de. (Cited on page 13.)

[143] Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuermann. The Sniper
Attack: Anonymously Deanonymizing and Disabling the Tor Network. In Proc.
Network and Distributed System Security Symposium (NDSS’14). Internet Society,
2014. (Cited on page 1.)

[144] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph
Schorr, and Steve Zdancewic. Aura: a Programming Language for Authorization and
Audit. ACM SIGPLAN Notices, 43(9):27–38, 2008. (Cited on pages 48 and 105.)

301

http://www.healthgrades.com
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www-03.ibm.com/security/cryptocards
http://idemix.wordpress.com/category/projects
http://www.jameda.de

Bibliography

[145] Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and Sean W. Smith. Nymble:
Anonymous IP-address Blocking. In Proc. Privacy Enhancing Technologies Sympo-
sium (PETS’07), Lecture Notes in Computer Science, pages 113–133. Springer-Verlag,
2007. (Cited on page 47.)

[146] Audun Jøsang. An Algebra for Assessing Trust in Certification Chains. In Proc.
Network and Distributed System Security Symposium (NDSS’99). Internet Society,
1999. (Cited on page 64.)

[147] Antoine Joux. The Weil and Tate Pairings as Building Blocks for Public Key
Cryptosystems. In Proc. International Conference on Algorithmic Number Theory
(ANTS’02), volume 2369 of Lecture Notes in Computer Science, pages 20–32. Springer-
Verlag, 2002. (Cited on page 21.)

[148] James H. Morris Jr. Protection in Programming Languages. Communications of the
ACM, 16(1):15–21, January 1973. (Cited on pages 36, 109, and 124.)

[149] Ari Juels. Targeted Advertising ... And Privacy Too. In CT-RSA’01, pages 408–424,
2001. (Cited on page 103.)

[150] Przemyslaw Kazienko and Michal Adamski. AdROSA - Adaptive personalization of
web advertising. Inf. Sci., 177(11):2269–2295, 2007. (Cited on page 103.)

[151] Fatemeh Khatibloo, Dave Frankland, Amelia Martland, and Allison Smith. Personal
Identity Management Success Starts With Customer Understanding. Forrester
Research, 2012. Available at http://www.forrester.com/Personal+Identity+
Management+Success+Starts+With+Customer+Understanding/fulltext/-/E-
RES61039. (Cited on page 1.)

[152] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable Signatures. In Proc. Ad-
vances in Cryptology (EUROCRYPT’04), volume 3027 of Lecture Notes in Computer
Science, pages 571–589. Springer-Verlag, 2004. (Cited on page 45.)

[153] Myungsun Kim, Hyung Tae Lee, and Jung Hee Cheon. Mutual Private Set Intersection
with Linear Complexity. In Proc. International Conference on Information Security
Applications (WISA’11), volume 7115 of Lecture Notes in Computer Science, pages
219–231. Springer-Verlag, 2011. (Cited on page 47.)

[154] Nancy J. King. Why Privacy Discussions about Pervasive Online Customer Profiling
Should Focus on the Expanding Roles of Third-Parties. International Journal of
Private Law, 4(2):193–229, 2011. (Cited on page 102.)

[155] Saranga Komanduri, Richard Shay, Blase Ur Greg Norcie, and Lorrie Faith Cranor.
AdChoices? Compliance with Online Behavioral Advertising Notice and Choice
Requirements. Technical Report CMU-CyLab-11-005, Carnegie Mellon University,
October 2011. (Cited on page 102.)

302

http://www.forrester.com/Personal+Identity+Management+Success+Starts+With+Customer+Understanding/fulltext/-/E-RES61039
http://www.forrester.com/Personal+Identity+Management+Success+Starts+With+Customer+Understanding/fulltext/-/E-RES61039
http://www.forrester.com/Personal+Identity+Management+Success+Starts+With+Customer+Understanding/fulltext/-/E-RES61039

Bibliography

[156] Michal Kosinski, David Stillwell, and Thore Graepel. Private traits and attributes are
predictable from digital records of human behavior. Proc. of the National Academy
of Sciences, 110(15):5802–5805, 2013. (Cited on page 4.)

[157] Eduard Kovacs. Web Hosting Provider Hetzner Hacked, Users Advised to
Change Passwords. Softpedia, June 2013. http://news.softpedia.com/news/Web-
Hosting-Provider-Hetzner-Hacked-Users-Advised-to-Change-Passwords-
359368.shtml. (Cited on page 2.)

[158] Balachander Krishnamurthy and Craig E. Wills. Cat and mouse: content deliv-
ery tradeoffs in web access. In Proc. International World Wide Web Conferences
(WWW’06), pages 337–346. ACM Press, 2006. (Cited on pages 1 and 82.)

[159] Balachander Krishnamurthy and Craig E. Wills. Privacy diffusion on the web:
a longitudinal perspective. In Proc. International World Wide Web Conferences
(WWW’09), pages 541–550. ACM Press, 2009. (Cited on pages 1 and 82.)

[160] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: A
Verified Implementation of ML. In Proc. Symposium on Principles of Programming
Languages (POPL’14), pages 179–191. ACM Press, 2014. (Cited on page 13.)

[161] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber. Authentica-
tion in Distributed Systems: Theory and Practice. ACM Transactions on Computer
Systems, 10:265–310, November 1992. (Cited on page 48.)

[162] Issie Lapowsky. Apple Will Impose Tougher Security After Celeb Photo Hack. WIRED
Magazine, 2014. http://www.wired.com/2014/09/tim-cook-hack/. (Cited on
page 2.)

[163] Jin Li, Man Ho Au, Willy Susilo, Dongqing Xie, and Kui Ren. Attribute-based
signature and its applications. In Proc. ACM Symposium on Information, Computer
and Communications Security (ASIACCS’10), pages 60–69, New York, NY, USA,
2010. ACM Press. (Cited on page 46.)

[164] Zi Lin and Nicholas Hopper. Jack: Scalable Accumulator-Based Nymble System. In
Proc. ACM Workshop on Privacy in the Electronic Society (WPES’10), pages 53–62.
ACM Press, 2010. (Cited on page 47.)

[165] Stefan Lorenz, Manuel Reinert, Kim Pecina, and Julian Backes. tales: The Anony-
mous Lecture Evaluation System. Available at http://tales.peloba.de. (Cited
on page 52.)

[166] Gavin Lowe. A Hierarchy of Authentication Specifications. In Proc. IEEE Computer
Security Foundations Workshop (CSFW’97), pages 31–44. IEEE Computer Society
Press, 1997. (Cited on page 101.)

303

http://news.softpedia.com/news/Web-Hosting-Provider-Hetzner-Hacked-Users-Advised-to-Change-Passwords-359368.shtml
http://news.softpedia.com/news/Web-Hosting-Provider-Hetzner-Hacked-Users-Advised-to-Change-Passwords-359368.shtml
http://news.softpedia.com/news/Web-Hosting-Provider-Hetzner-Hacked-Users-Advised-to-Change-Passwords-359368.shtml
http://www.wired.com/2014/09/tim-cook-hack/
http://tales.peloba.de

Bibliography

[167] Li Lu, Jinsong Han, Yunhao Liu, Lei Hu, Jin-Peng Huai, Lionel Ni, and Jian
Ma. Pseudo Trust: Zero-Knowledge Authentication in Anonymous P2Ps. IEEE
Transactions on Parallel and Distributed Systems, 19(10):1325–1337, 2008. (Cited on
pages 11 and 46.)

[168] Ben Lynn. The Pairing-Based Cryptography Library. http://crypto.stanford.
edu/pbc. (Cited on page 40.)

[169] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. PHANTOM: Practical Oblivious Computation
in a Secure Processor. In Proc. ACM Conference on Computer and Communications
Security (CCS’14), pages 311–324. ACM Press, 2013. (Cited on page 102.)

[170] Matteo Maffei and Kim Pecina. Position Paper: Privacy-aware Proof-Carrying
Authorization. In Proc. ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS’11). ACM Digital Library, 2011. (Cited on pages vii, 3,
9, 12, 48, and 105.)

[171] Matteo Maffei, Kim Pecina, and Manuel Reinert. Security and Privacy by Declarative
Design. In Proc. IEEE Symposium on Computer Security Foundations (CSF’13),
pages 81–96. IEEE Computer Society Press, 2013. (Cited on pages vii and 9.)

[172] Delfina Malandrino, Vittorio Scarano, and Raffaele Spinelli. How Increased Awareness
Can Impact Attitudes and Behaviors toward Online Privacy Protection. In Proc.
International Conference on Social Computing (SocialCom’13), pages 57–62, 2013.
(Cited on page 1.)

[173] Leonardo A. Martucci, Sebastian Ries, and Max Mühlhäuser. Sybil-Free Pseudonyms,
Privacy and Trust: Identity Management in the Internet of Services. Journal of
Information Processing, 19:317–331, 2011. (Cited on page 46.)

[174] Ueli Maurer. Modelling a public-key infrastructure. In Proc. European Symposium
on Research in Computer Security (ESORICS’96), volume 1146 of Lecture Notes in
Computer Science, pages 325–350. Springer-Verlag, 1996. (Cited on page 64.)

[175] Jonathan Mayer and Arvind Narayanan. Do Not Track: Universal Web Tracking
Opt-Out. http://donottrack.us. Accessed February 2015. (Cited on pages 102
and 103.)

[176] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative Instructions and Software
Model for Isolated Execution. In Proc. International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP’13). ACM Press, 2013. (Cited
on page 106.)

[177] Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim. Scalable onion
routing with torsk. In Proc. ACM Conference on Computer and Communications
Security (CCS’09), pages 590–599. ACM Press, 2009. (Cited on page 102.)

304

http://crypto.stanford.edu/pbc
http://crypto.stanford.edu/pbc
http://donottrack.us

Bibliography

[178] http://www.express-scripts.com. (Cited on page 19.)

[179] Sarah Meiklejohn. An Extension of the Groth-Sahai Proof System, 2009. Master’s
Thesis, Brown University, Computer Science Department. (Cited on page 25.)

[180] Silvio Micali, Michael Rabin, and Joe Kilian. Zero-Knowledge Sets. In Proc.
IEEE Symposium on Foundations of Computer Science (FOCS’03), page 80. IEEE
Computer Society Press, 2003. (Cited on page 47.)

[181] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New Explicit Conditions of
Elliptic Curve Traces for FR-Reduction. Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 84(5):1234–1243, 2001. (Cited on page 21.)

[182] Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Kim Pecina. Privacy
Preserving Payments in Credit Networks: Enabling trust with privacy in online mar-
ketplaces. In Proc. Network and Distributed System Security Symposium (NDSS’15),
2015. (Cited on pages 4 and 106.)

[183] Arvind Narayanan and Vitaly Shmatikov. De-Anonymizing Social Networks. In Proc.
IEEE Symposium on Security & Privacy (S&P’09), pages 173 – 187. IEEE Computer
Society Press, 2009. (Cited on pages 1 and 67.)

[184] Nathan Olivares-Giles and Mat Honan. After Epic Hack, Apple Suspends Over-
the-Phone AppleID Password Resets. WIRED Magazine, 2012. http://www.wired.
com/2012/08/apple-icloud-password-freeze/. (Cited on page 2.)

[185] Femi Olumofin and Ian Goldberg. Revisiting the Computational Practicality of
Private Information Retrieval. In Proc. International Conference on Financial
Cryptography and Data Security (FC’11), volume 7035 of Lecture Notes in Computer
Science, pages 158–172, 2011. (Cited on pages 4 and 103.)

[186] Rafail Ostrovsky and III Skeith, WilliamE. A Survey of Single-Database Private
Information Retrieval: Techniques and Applications. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, Proc. International Conference on Practice and Theory in
Public Key Cryptography (PKC’07), volume 4450 of Lecture Notes in Computer
Science, pages 393–411. Springer-Verlag, 2007. (Cited on page 103.)

[187] Kim Pecina and Manuel Reinert. ASPLADA Library. Available at http://www.lbs.
cs.uni-saarland.de/spdd. (Cited on page 40.)

[188] Wei Peng, Feng Li, Xukai Zou, and Jie Wu. A Two-Stage Deanonymization Attack
Against Anonymized Social Networks. IEEE Transactions on Computers, 63(2):290–
303, February 2014. (Cited on page 1.)

[189] Adrian Perrig, Sean W. Smith, Dawn Xiaodong Song, and J. D. Tygar. SAM:
A Flexible and Secure Auction Architecture Using Trusted Hardware. In Proc.
International Parallel & Distributed Processing Symposium (IPDPS’01), page 170,
2001. http://sparrow.ece.cmu.edu/~adrian/projects/SAM. (Cited on page 96.)

305

http://www.express-scripts.com
http://www.wired.com/2012/08/apple-icloud-password-freeze/
http://www.wired.com/2012/08/apple-icloud-password-freeze/
http://www.lbs.cs.uni-saarland.de/spdd
http://www.lbs.cs.uni-saarland.de/spdd
http://sparrow.ece.cmu.edu/~adrian/projects/SAM

Bibliography

[190] Privacy by Design. http://privacybydesign.ca. (Cited on page 2.)

[191] Jean-François Raymond and Anton Stiglic. Security Issues in the Diffie-Hellman
Key Agreement Protocol. IEEE Transactions on Information Theory, 22:1–17, 2000.
(Cited on page 10.)

[192] Alexey Reznichenko, Saikat Guha, and Paul Francis. Auctions in Do-Not-Track
Compliant Internet Advertising. In Proc. ACM Conference on Computer and Com-
munications Security (CCS’11), pages 667–676. ACM Press, 2011. (Cited on pages 84,
96, and 104.)

[193] Ronald Linn Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. In
Proc. International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT’01), volume 2248 of Lecture Notes in Computer
Science, pages 552–565. Springer-Verlag, 2001. (Cited on page 45.)

[194] Peter Schartner and Martin Schaffer. Unique User-generated Digital Pseudonyms. In
Proc. International Workshop on Mathematical Methods, Models, and Architectures
for Computer Network Security (MMM-ACNS’05), volume 3685 of Lecture Notes in
Computer Science, pages 194–205, Berlin, Germany, 2005. Springer-Verlag. (Cited
on page 46.)

[195] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. Journal of
Cryptology, 4(3):161–174, 1991. (Cited on page 44.)

[196] Jason Schreier. PlayStation Network Hack Leaves Credit Card Info at Risk.
WIRED Magazine, 2011. http://www.wired.com/2011/04/playstation-network-
hacked/. (Cited on page 2.)

[197] Andrew Shallue and Christiaan E. van de Woestijne. Construction of Rational
Points on Elliptic Curves over Finite Fields. In Proc. International Conference
on Algorithmic Number Theory (ANTS’06), pages 510–524, Berlin, Germany, 2006.
Springer-Verlag. (Cited on page 24.)

[198] Claude Elwood Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 28(4):656–715, July 1949. (Cited on page 20.)

[199] Elaine Shi, T.-H.Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O(log3N) Worst-Case Cost. In Proc. International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT’11), volume 7073
of Lecture Notes in Computer Science, pages 197–214. Springer-Verlag, 2011. (Cited
on pages 83, 86, 91, 93, 94, and 102.)

[200] Radu Sion and Bogdan Carbunar. On the Practicality of Private Information
Retrieval. In Proc. Network and Distributed System Security Symposium (NDSS’07).
Internet Society, 2007. (Cited on page 103.)

306

http://privacybydesign.ca
http://www.wired.com/2011/04/playstation-network-hacked/
http://www.wired.com/2011/04/playstation-network-hacked/

Bibliography

[201] Sean W. Smith. Outbound Authentication for Programmable Secure Coprocessors.
International Journal of Information Security, 3(1):28–41, 2004. (Cited on pages 83,
85, 87, and 89.)

[202] Sean W. Smith and Steve Weingart. Building a high-performance, programmable
secure coprocessor. Computer Networks, 31(8):831–860, 1999. (Cited on page 87.)

[203] Mudhakar Srivatsa and Mike Hicks. Deanonymizing Mobility Traces: Using Social
Network As a Side-channel. In Proc. ACM Conference on Computer and Communi-
cations Security (CCS’12), pages 628–637. ACM Press, 2012. (Cited on page 1.)

[204] Emil Stefanov and Elaine Shi. ObliviStore: High Performance Oblivious Cloud
Storage. In Proc. IEEE Symposium on Security & Privacy (S&P’13), pages 253–267.
IEEE Computer Society Press, 2013. (Cited on page 102.)

[205] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards Practical Oblivious
RAM. In Proc. Network and Distributed System Security Symposium (NDSS’12).
Internet Society, 2012. (Cited on page 102.)

[206] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: An Extremely Simple Oblivious RAM
Protocol. In Proc. ACM Conference on Computer and Communications Security
(CCS’14), pages 299–310. ACM Press, 2013. (Cited on page 102.)

[207] The GNU Privacy Guard Team. GnuPG. http://www.gnupg.org. (Cited on
pages 128 and 174.)

[208] The National Institute of Standards and Technology. Recommendataion for Key
Management – Part 1: General (Revision 3). NIST Special Publications, 800–57, July
2012. http://csrc.nist.gov/groups/ST/toolkit/key_management.html. (Cited
on pages 20, 22, 23, 24, and 41.)

[209] The Tor Project. https://www.torproject.org. Accessed October 2011. (Cited
on pages 84, 85, 102, and 104.)

[210] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon
Barocas. Adnostic: Privacy Preserving Targeted Advertising. In Proc. Network and
Distributed System Security Symposium (NDSS’10), 2010. (Cited on pages 89, 103,
and 104.)

[211] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. PEREA: Towards
Practical TTP-Free Revocation in Anonymous Authentication. In Proc. ACM
Conference on Computer and Communications Security (CCS’08), pages 333–344.
ACM Press, 2008. (Cited on page 47.)

[212] Patrick P. Tsang, Apu Kapadia, Cory Cornelius, and Sean W. Smith. Nymble:
Blocking Misbehaving Users in Anonymizing Networks. IEEE Transactions of
Dependable and Secure Computing, 8:256–269, 2011. (Cited on page 47.)

307

http://www.gnupg.org
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
https://www.torproject.org

Bibliography

[213] Jayakrishnan Unnikrishnan and Farid Movahedi Naini. De-Anonymizing Private
Data by Matching Statistics. In Proc. Conference on Communication, Control, and
Computing (CCC’13), pages 1616–1623. IEEE Computer Society Press, 2013. (Cited
on page 1.)

[214] Dominique Unruh. The Impossibility of Computationally Sound XOR. http://
eprint.iacr.org/2010/389, 2010. (Cited on pages 63, 131, and 140.)

[215] Jeffrey A. Vaughan. AuraConf: a Unified Approach to Authorization and Confi-
dentiality. In Proc. ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI’11), pages 45–58, New York, NY, USA, 2011. ACM Press.
(Cited on page 48.)

[216] http://www.verisign.com. (Cited on pages 56, 87, 128, and 174.)

[217] Riley Walters. Cyber Attacks on U.S. Companies in 2014. The Heritage Foundation,
2014. Accessed March 2015. (Cited on page 2.)

[218] Huaqun Wang and Hong Yu. A Novel Signer-Admission Ring Signature Scheme from
Bilinear Pairings. In Proc. International Workshop on Education Technology and
Computer Science (ETCS’09), pages 631–634. IEEE Computer Society Press, 2009.
(Cited on page 45.)

[219] Shuhong Wang, Xuhua Ding, Robert H. Deng, and Feng Bao. Private Information
Retrieval Using Trusted Hardware. In Proc. European Symposium on Research in
Computer Security (ESORICS’06), pages 49–64, 2006. (Cited on page 103.)

[220] Victor Wei, Tsz Hon Yuen, and Fangguo Zhang. Group Signature Where Group
Manager, Members and Open Authority are Identity-Based. In Proc. Australasian
Conference on Information Security and Privacy (ACISP’05), volume 3574 of Lecture
Notes in Computer Science, pages 468–480. Springer-Verlag, 2005. (Cited on page 46.)

[221] Yunzhao Wei and YanXiang He. A Pseudonym Changing-Based Anonymity Protocol
for P2P Reputation Systems. In Proc. International Workshop on Education Tech-
nology and Computer Science (ETCS’09), pages 975–980. IEEE Computer Society
Press, 2009. (Cited on page 46.)

[222] Mike Wheatley. Facebook Hacked Again: Only This Time, Anyone Can Do It.
Silicon Angle, May 2013. http://siliconangle.com/blog/2013/05/16/facebook-
hacked-again-only-this-time-anyone-can-do-it. (Cited on page 2.)

[223] Peter Williams and Radu Sion. Usable PIR. In Proc. Network and Distributed
System Security Symposium (NDSS’08). Internet Society, 2008. (Cited on pages 4,
83, and 86.)

[224] Yinglian Xie, Fang Yu, and Martin Abadi. De-anonymizing the Internet Using
Unreliable IDs. In Proc. 2009 ACM SIGCOMM conference on Data communication,
pages 75–86. ACM Press, 2009. (Cited on page 1.)

308

http://eprint.iacr.org/2010/389
http://eprint.iacr.org/2010/389
http://www.verisign.com
http://siliconangle.com/blog/2013/05/16/facebook-hacked-again-only-this-time-anyone-can-do-it
http://siliconangle.com/blog/2013/05/16/facebook-hacked-again-only-this-time-anyone-can-do-it

Bibliography

[225] Tsz Hon Yuen and Victor Wei. Fast and Proven Secure Blind Identity-Based
Signcryption from Pairings. In Proc. RSA Conference (CTRSA’05), volume 3376
of Lecture Notes in Computer Science, pages 305–322. Springer-Verlag, Heidelberg,
Germany, 2005. (Cited on page 46.)

[226] Kim Zetter. Sony Got Hacked Hard: What We Know and Don’t Know So Far.
WIRED Magazine, 2014. http://www.wired.com/2014/12/sony-hack-what-we-
know/. (Cited on page 2.)

309

http://www.wired.com/2014/12/sony-hack-what-we-know/
http://www.wired.com/2014/12/sony-hack-what-we-know/

310

List of Figures

2.2 Proof overview: anonymity of service-specific pseudonyms. 31
2.3 Proof overview: unlinkability of service-specific pseudonyms. 33
2.5 The results for the computation of a service-specific pseudonym. 42
2.6 The results for the non-membership proof for ` lists, a total number of 1000

elements distributed over the lists, and a security parameter of η = 112 bits. 42
2.7 The results for the membership proof for ` lists, a total number of 1000

elements distributed over the lists, and a security parameter of η = 112 bits. 43
2.8 The results for the identity escrow protocol. 43

3.1 The results for anonymous evaluation proof for various security parameters.
The number of threads is fixed to 8. 54

3.2 The results for anonymous evaluation proof for various numbers of concurrent
threads. The security parameter is fixed to η = 112 bits. 55

3.3 The results for anonymous evaluation proof using different CPUs with
different clock speed. The number of threads is fixed to 8. 55

3.4 The results for anonymously authenticating a message via a certificate chain
of length 2 using various security parameters. The number of threads is
fixed to 8. 59

3.5 The results for anonymously authenticating a message via a certificate chain
of length 2 using various number of threads. The security parameter is fixed
to η = 112 bits. 60

3.6 The results for the anonymous authentication of a message via a certificate
chain of length 2 using different CPUs with different clock speed. The
number of threads is fixed to 8. 60

3.7 Anonymity game. 62
3.8 Single chain annotated with trust values. 64
3.9 Web of trust with multiple paths. 64
3.11 Protocol Register: user J registers with user I 69
3.12 Protocol for getHandles: user J anonymously requests user I ’s handles. . . . 70
3.13 Protocols for getResource, putResource, and getFriends: user J issues a

request to user I . 70
3.14 Protocol for IndirectRegister: user J anonymously issues an indirect registra-

tion request to user I . After the successful completion of the protocol, J is
in an indirect social relation with user K . 71

311

List of Figures

3.15 The results for proof used to initiate the registration protocol. The number
of threads is fixed to 8. 73

3.16 The results for registration proof used to register a protocol participant.
The number of threads is fixed to 8. 74

3.17 The results for proof used in the getHandles protocol. The number of threads
is fixed to 8. 74

3.18 The results for the proof used in the getHandles protocol using various
number of threads. The security parameter is fixed to η = 112 bits. 75

3.19 The results for the proof used to initiate the getHandles protocol using
different CPUs with different clock speed. The number of threads is fixed to 8. 75

3.20 The results for proof used to initiate the indirect registration protocol. The
number of threads is fixed to 8. 76

3.21 The results for the proof used to initiate the indirect registration protocol
using various number of threads. The security parameter is fixed to η = 112
bits. 76

3.22 The results for the proof used to initiate the indirect registration protocol
using different CPUs with different clock speed. The number of threads is
fixed to 8. 77

4.1 Distribution phase. 88
4.2 Tallying phase. 88
4.3 ORAM Operations for a bucket size of 2 and a tree depth of 4. 91
4.4 Results of our microbenchmark. For experiments a) and b), the tree depth

is fixed to 24. For experiment c), the bucket size is fixed to 30. 95
4.5 Overview of the observational equivalence relation for profile privacy. The

left side of the picture corresponds to P and the right side to Q. 98
4.6 Overview of the observational equivalence relation for profile unlinkability.

The left side of the picture corresponds to P and the right side to Q. 100
4.7 The process P, annotated with logical predicates, used in the verification of

the trace property in Equation 4.8. 101

312

List of Tables

2.1 High-level API interface functions. 14

3.1 Grammar of access control lists. 66

A.1 RCF syntax of types. 110
A.2 ML data type declarations. 115
A.3 ML data type declarations continued. 116
A.4 EAPI: API RCF interface functions. 121
A.5 Definition of the signing key type sigkey and verification key type verkey. . 122
A.6 Typed library functions used by the API methods. 124
A.7 Typed auxiliary functions used by the API methods. 125
A.8 Syntax of RCF . 176
A.9 Syntax of kinds . 176
A.10 Syntax of typing environments. 177
A.11 Rules for well-formedness and deduction. 177
A.12 Kinding rules: E ` T :: ν . 178
A.13 Subtyping rules: E ` T <: U . 178
A.14 Rules for values: E `M : T . 179
A.15 Rules for expressions: E ` A : T . 180
A.16 Judgments of the RCF type system. 180
A.17 Excerpt of the extended rules for expressions: E ` A : T E′ 206
A.18 ML API methods. 266

313

314

List of Listings

2.1 Code for the patient. 15

A.1 Implementation of getOperationr. 128
A.2 Implementation of getOperatione. 128
A.3 Implementation of rand. 129
A.4 Implementation of sign. 129
A.5 Implementation of checksig. 129
A.6 Implementation of storeSK and restoreSK. 130
A.7 Implementation of computeR. 130
A.8 Implementation of computePsd. 131
A.9 Implementation of computeIDR. 131
A.10 Implementation of commit and openCommit. 131
A.11 Implementation of commitsk and openCommitsk 132
A.12 Implementation of getSome. 132
A.13 Implementation of getRevealed. 132
A.14 Implementation of commitZK and openZK. 133
A.15 Implementation of stripStm. 133
A.16 Implementation of checkZK. 134
A.17 Implementation of fakestm. 135
A.18 Implementation of createZKe. 137
A.19 Implementation of createZK. 138
A.20 Implementation of rerandstm. 140
A.21 Implementation of checkEq1. 142
A.22 Implementation of checkEq. 143
A.23 Implementation of verifystm . 145
A.24 Implementation of the verify function for the adversary. 147
A.25 Implementation of hidestm. 148
A.26 Implementation of combineOr. 149
A.27 Implementation of mkId. 152
A.28 Implementation of mkSays. 152
A.29 Implementation of mkSSP. 154
A.30 Implementation of mkREL. 154
A.31 Implementation of mkLM. 155
A.32 Implementation of mkLNM. 155
A.33 Implementation of mkIDRev. 156
A.34 Implementation of mk∧. 156

315

List of Listings

A.35 Implementation of split∧. 157
A.36 Implementation of mk∨. 157
A.37 Implementation of hide. 158
A.38 Implementation of rerand. 158
A.39 verify top-level structure . 164
A.40 Or-Macro(Or(F∨1 ,F∨2), zkv, stm, f). 164
A.41 And-Macro(And(F∧1 ,F∧2), stm, f, ω1, ω2). 165
A.42 Says-Macro(Says(xvk , P

F
k (x1, . . . , xn)), stm, f, ω) 166

A.43 SSP-Macro(SSP(xvk , xs, xpsd), stm, f, ω) . 167
A.44 Rel-Macro(REL(x, op, y), stm, f, ω) . 169
A.45 Eqn-Macro(EQN(x, op, y, z), stm, f, ω) . 170
A.46 LM -Macro(LM(x, b, `), stm, f, ω) . 171
A.47 LNM -Macro(LNM(x, `), stm, f, ω) . 172
A.48 Escrow-Macro(EscrowInfo(xEA, xvk , xR, xs, xidr), stm, f, ω) 172
A.49 Excerpt of the implementation of mkSays. 203
A.50 Excerpt of the implementation of mkSSP. 204
A.51 Excerpt of the implementation of mkIDRev. 204
A.52 Excerpt of the implementation of verify. 258
A.53 Excerpt of the verification function for disjunctions. 259
A.54 ML verification function verify′F . 266

B.1 ProVerif model for anonymity in anonymous webs of trust. 269
B.2 ProVerif model for profile privacy. 276
B.3 ProVerif model for profile unlinkability. 279
B.4 ProVerif model for billing correctness. 284

316

	Contents
	Introduction
	Contribution
	Trustworthy and privacy-preserving release of personal information.
	Trustworthy and privacy-preserving retrieval of personal information

	Outline of the Thesis

	Trustworthy and Privacy-Preserving Releaseof Personal Information
	Security and Privacy by Declarative Design
	Introduction
	Key Ideas
	Declarative API
	Authorization
	Privacy
	Controlled Linkability
	Accountability
	Identity Escrow
	Open-endedness and Interoperability

	Cryptographic Realization
	Cryptographic Setup
	Cryptographic Realization of API Methods

	Proofs
	Cryptographic Proofs of Anonymity and Unlinkablity
	Type-Based Verification of the API Methods

	Implementation and Experiments
	Experimental Evaluation

	Related Work

	Case Studies
	Experimental Setup
	tales
	Design of tales
	Java Implementation of tales
	Experimental Evaluation

	Anonymous Webs of Trust
	Designing Anonymous Webs of Trust
	Implementation of Anonymous Webs of Trust
	Experimental Evaluation
	Formal Verification
	Implementing Sophisticated Trust Measures

	A Security API for Distributed Social Networks
	A Core API for Social Networking
	Implementation of the Core API
	Experiments
	Comparison: Dedicated Implementation vs. Declarative API Implementation.

	Trustworthy and Privacy-Preserving Retrievalof Personal Information
	ObliviAd: Provably Secure and Practical Online Behavioral Advertising
	Introduction
	Key Ideas
	Protocol Overview
	Adversary Model
	Preliminaries
	Cryptographic Assumptions and Requirements
	Protocol Overview

	ORAM Construction
	Scheme by Shi et al.
	Adapted Construction

	Performance Analysis
	Implementation
	Experiments
	Discussion

	Formal Verification
	Profile Privacy
	Profile Unlinkability
	Billing Correctness

	Related Work

	Conclusion and Outlook

	Appendices
	Well-Typedness of the API Methods
	RCF Implementation of the API
	Preliminaries: RCF Type System
	API Data Types
	Strong Types and Typed API Methods

	Well-Typedness of the RCF Implementation
	Type-Checking Auxiliary Functions
	Type-Checking Main API Methods

	Well-Typedness of the ML Implementation

	ProVerif Code
	Anonymous Webs of Trust
	ObliviAd

	Bibliography
	List of Figures
	List of Tables
	List of Listings

