
SiAM-dp: An open development platform
for massively multimodal dialogue systems

in cyber-physical environments

Robert Neßelrath

Thesis for obtaining the title of
Doctor of Engineering Science

of the Faculty of Natural Science and Technology I
of Saarland University

Saarbrücken, December 17, 2015

Tag des Kolloquiums:
27. Januar 2016

Dekan:
Prof. Dr. Markus Bläser

Berichterstatter:
Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster
Prof. Dr. Wolfgang Maaß

Vorsitzender:
Prof. Dr. Jörg Hoffmann

Akademischer Mitarbeiter:
Dr. Michael Feld

Danksagung

Eine Reihe von Personen hat zur Entstehung dieser Arbeit sowohl durch fachliche als
auch moralische Unterstützung beigetragen. An dieser Stelle möchte ich hierfür meinen
herzlichen Dank aussprechen.

An erster Stelle gilt dieser Dank meinem Doktorvater Prof. Wolfgang Wahlster, der
es mir überhaupt ermöglicht hat, in seiner Forschungsgruppe für intelligente Benutzer-
schnittstellen am Deutschen Forschungszentrum für künstliche Intelligenz (DFKI), im
Rahmen meiner Tätigkeiten als Forscher, diese Doktorarbeit zu verfassen. Besonders
die Betreuung in der Endphase war sehr intensiv und hat es mir ermöglicht, in einer
konstruktiven und angenehmen Arbeitsatmosphäre der Arbeit den finalen Feinschliff zu
geben. Bei Prof. Wolfgang Maaß möchte ich mich für die kurzfristige Bereitschaft zum
Verfassen des Zweitgutachtens bedanken.

Ein besonderes Augenmerk gilt meinen Arbeitskollegen am DFKI, die zu einem spannen-
den und inspirierenden Arbeitsumfeld beigetragen haben. Da ich nach Abgabe meiner
Arbeit das DFKI verlassen werde, möchte ich mich für 7,5 Jahre der angenehmen und
freundlichen Zusammenarbeit bedanken. Dies betrifft insbesondere die vielen Kollegen,
mit denen ich über die Jahre in den Projekten i2home, Theseus, Inwero und SemProM
zusammenarbeiten durfte. Meinen Kollegen in den Projekten SiAM und MadMacs,
mit denen ich gemeinsam mehrere der Demonstratoren zu dieser Arbeit gebaut habe,
ein großes Dankeschön für die schöne Zeit: Michael Feld, Yannick Körber, Mohammad
Mehdi Moniri, Monika Pepik und Tim Schwartz.

Ein ganz besonderer Dank gilt meinen ’Leidensgenossen’, den ehemaligen und aktuellen
Doktoranden, mit denen ich durch unterstützende Diskussionen, besonders in der lang-
wierigen Phase zum Ende hin, die Motivation aufrechterhalten konnte. Namentlich
möchte ich hier Matthieu Deru, Jochen Frey und Daniel Porta nennen.

Für die sprachliche Korrektur bedanke ich mich bei Sylvia Krüger und Kate Flynn
Rau.

Von ganzem Herzen bedanke ich mich bei meiner Familie, Prisca und meinen Freunden,
die mich während der Erstellung dieser Arbeit - von nah und fern - über all die Jahre
nach Kräften unterstützt, gefördert und für die nötige Balance gesorgt haben.

iii

Zusammenfassung

Cyber-physische Umgebungen (CPEs) erweitern natürliche Alltagsumgebungen wie Heim,
Fabrik, Büro und Auto durch Verbindung der kybernetischen Welt der Computer und
Kommunikation mit der realen, physischen Welt. Die möglichen Anwendungsgebiete
hierbei sind weitreichend. Während unter dem Stichwort Industrie 4.0 cyber-physische
Umgebungen eine bedeutende Rolle für die nächste industrielle Revolution spielen wer-
den, erhalten sie ebenfalls Einzug in Heim, Büro, Werkstatt und zahlreiche weitere
Bereiche. In solch einer neuen Welt geraten klassische Interaktionskonzepte, in denen
Benutzer ausschließlich mit einem einzigen Gerät, PC oder Smartphone interagieren,
immer weiter in den Hintergrund und machen Platz für eine neue Ausprägung der In-
teraktion zwischen dem Menschen und der Umgebung selbst. Darüber hinaus sorgen
neue Technologien und ein wachsendes Spektrum an einsetzbaren Modalitäten dafür,
dass sich im Interaktionsdesign neue Möglichkeiten für eine natürlichere und intuitivere
verbale und nonverbale Kommunikation auftun.

Die dynamische Natur von cyber-physischen Umgebungen und die Mobilität der Be-
nutzer darin stellt Anwendungsentwickler vor die Herausforderung, Systeme zu entwick-
eln, die flexibel bezüglich der verbundenen und verwendeten Geräte und Modalitäten
sind. Dies impliziert auch neue Möglichkeiten in der modalitätsübergreifenden Kom-
munikation, die über duale Interaktionskonzepte, wie sie heutzutage bereits üblich sind,
hinausgehen.

Die vorliegende Arbeit befasst sich mit der Unterstützung von Anwendungsentwicklern
mit Hilfe einer Plattform zur deklarativen und modellbasierten Entwicklung von multi-
modalen Dialogapplikationen mit einem Fokus auf verteilte Ein- und Ausgabegeräte in
cyber-physischen Umgebungen. Die bearbeiteten Aufgaben können grundlegend in drei
Teile gegliedert werden:

• Die Konzeption von Modellen und Strategien für die Spezifikation von Dialog-
anwendungen in einem deklarativen Entwicklungsansatz. Dies beinhaltet Mo-
delle für das Definieren von Projektressourcen, Dialogverhalten, Spracherkenner-
grammatiken, graphischen Benutzerschnittstellen und Abbildungsregeln, die die
gerätespezifische Darstellung von Ein- und Ausgabegeräten in eine gemeinsame
Repräsentationssprache transformieren.

• Die Implementierung einer Laufzeitumgebung, die eine flexible und erweiterbare
Architektur für die einfache Integration neuer Geräte und Komponenten bietet.
Die Plattform realisiert Konzepte und Strategien der multimodalen Mensch-Maschine-
Interaktion und ist die Basis vollwertiger multimodaler Dialoganwendungen für
beliebige Domänen, Szenarien und Gerätekonfigurationen.

• Eine Softwareentwicklungsumgebung, die in die Eclipse Rich Client Plattform in-
tegriert ist und Entwicklern Assistenten und Editoren an die Hand gibt, die das
Erstellen und Editieren von neuen multimodalen Dialoganwendungen unterstützen.

v

Abstract

Cyber-physical Environments (CPEs) enhance natural environments of daily life such
as homes, factories, offices, and cars by connecting the cybernetic world of computers
and communication with the real physical world. While under the keyword of Industrie
4.0, CPEs will take a relevant role in the next industrial revolution, and they will also
appear in homes, offices, workshops, and numerous other areas.

In this new world, classical interaction concepts where users exclusively interact with a
single stationary device, PC or smartphone become less dominant and make room for
new occurrences of interaction between humans and the environment itself. Furthermore,
new technologies and a rising spectrum of applicable modalities broaden the possibilities
for interaction designers to include more natural and intuitive non-verbal and verbal
communication.

The dynamic characteristic of a CPE and the mobility of users confronts developers with
the challenge of developing systems that are flexible concerning the connected and used
devices and modalities. This implies new opportunities for cross-modal interaction that
go beyond dual modalities interaction as is well known nowadays.

This thesis addresses the support of application developers with a platform for the
declarative and model based development of multimodal dialogue applications, with a
focus on distributed input and output devices in CPEs. The main contributions can be
divided into three parts:

• Design of models and strategies for the specification of dialogue applications in
a declarative development approach. This includes models for the definition of
project resources, dialogue behaviour, speech recognition grammars, and graphical
user interfaces and mapping rules, which convert the device specific representation
of input and output description to a common representation language.

• The implementation of a runtime platform that provides a flexible and extendable
architecture for the easy integration of new devices and components. The platform
realises concepts and strategies of multimodal human-computer interaction and
is the basis for full-fledged multimodal dialogue applications for arbitrary device
setups, domains, and scenarios.

• A software development toolkit that is integrated in the Eclipse rich client platform
and provides wizards and editors for creating and editing new multimodal dialogue
applications.

vii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Research Questions . 5

1.3 Chapter Outline . 7

2 Fundamental Concepts 9
2.1 Human Perception and Communication 9

2.1.1 Verbal and Nonverbal Communication 11

2.1.2 Human-Computer-Communication 13

2.2 Multimodal Human-Computer Interaction 15

2.2.1 Terminology . 15

2.2.2 Multimodal Systems . 18

2.2.3 Advantages and Myths . 20

2.2.4 Integration and Fusion of Multimodal Input 21

2.2.5 Presentation Planning and Multimodal Fission 24

2.3 Dialogue Systems . 27

2.3.1 Dialogue Management . 28

2.3.2 Context Resolution . 30

2.4 Cyber-physical Environments . 31

2.4.1 Human Computer Interaction in CPEs 33

2.4.2 Requirements . 33

2.5 Summary . 34

3 Related Work 35
3.1 Overview of research in multimodal interaction 35

3.1.1 Speech & Pointing . 36

3.1.2 Gaze, eye and head-tracking . 39

3.1.3 Hand and body gestures . 43

ix

3.2 Multimodal Dialogue Frameworks . 50

3.2.1 AT&T speech mashup architecture 50

3.2.2 WAMI toolkit . 51

3.2.3 DIANE . 52

3.2.4 Dialog OS . 52

3.2.5 SmartKom . 53

3.2.6 ODP . 56

3.2.7 Cue-me . 57

3.2.8 Summary and Conclusion . 58

3.3 Representing Multimodal Interaction . 60

3.3.1 M3L - Multimodal Markup Language 61

3.3.2 EMMA . 61

3.3.3 SWEMMA . 63

3.3.4 SALT . 64

3.3.5 Summary and Conclusion . 66

3.4 Dialogue Act Annotation . 67

3.4.1 EMMA specification . 69

3.4.2 SAIBA framework . 69

3.4.3 CDE framework in VirtualHuman 72

3.4.4 Semantic Dialogue Annotation Framework ISO 24617-2 74

3.4.5 Summary . 76

4 The SiAM-dp modelling language 79
4.1 Semantic Knowledge Representation . 79

4.1.1 RDF - Resource Description Framework 81

4.1.2 RDF Schema . 81

4.1.3 OWL . 82

4.2 Typed Feature Structures . 83

4.2.1 Extended Typed Feature Structure 84

4.3 SiAM Meta Model . 84

4.3.1 Requirements . 84

4.3.2 Eclipse Modelling Framework . 86

4.3.3 EMF API Extensions . 88

4.3.4 Declaration of dynamic content: The Bindable Concept 92

4.4 Pattern Model . 96

4.4.1 Pattern Model Concepts . 97

4.4.2 Pattern Matching Example . 100

4.5 Summary . 101

5 Massive Multimodality in Cyber-Physical Environments 103
5.1 Introduction . 103

5.2 Device Classification . 104

5.3 Representing Input and Output . 107

5.3.1 The IO-Model Type Hierarchy . 109

x

5.3.2 Communicative Acts . 110

5.3.3 Control Messages . 113

5.4 Massively multimodal integration . 114

5.5 Semantic Dialogue Act Model . 116

5.5.1 Modelling Referring Expressions 118

5.6 Mapping between syntactic and semantic representations 119

5.6.1 Mapping rules . 120

5.6.2 Example . 121

5.7 Summary . 122

6 Declarative Specification of Multimodal Dialogue Applications 123
6.1 Dialogue Specification Model . 123

6.1.1 Modelling Interaction Workflows 124

6.1.2 The SiAM dialogue model . 126

6.1.3 Embedding the IO-Model into the dialogue specification model . . 130

6.1.4 Example . 130

6.2 Modelling Speech Recognition Grammars 131

6.2.1 Grammar Rules Specification Model 133

6.2.2 Example . 134

6.3 Modelling Graphical User Interfaces . 136

6.3.1 GUI Model Concepts . 138

6.3.2 Semantic Data Binding . 141

6.3.3 Example . 143

6.4 Project Definition Model . 145

6.5 Summary . 146

7 SiAM Dialogue Platform 149
7.1 SiAM-dp Architecture . 149

7.1.1 The OSGi platform . 150

7.1.2 Eclipse Modelling Framework . 151

7.1.3 Platform Layers . 152

7.2 Event Management . 155

7.3 Dialogue Manager . 158

7.4 Project Manager . 160

7.5 Knowledge Manager . 161

7.6 Session, Device & User Management . 161

7.6.1 Device Manager . 162

7.7 Speech Recognition Components . 164

7.7.1 Grammar Management Service . 165

7.7.2 GRXML Converter . 166

7.7.3 Speech Recognition Interpretation 166

7.8 Managing Graphical User Interfaces . 167

7.8.1 Display Context Manager . 168

7.8.2 GUI Input Interpreter . 169

xi

7.9 Fusion & Discourse Resolution . 170
7.9.1 Managing the Discourse Context 170
7.9.2 Reference Resolution . 172

7.10 Presentation Planning & Distribution . 173
7.11 Summary . 175

8 Development Tools 177
8.1 The Eclipse Rich Client Platform . 177
8.2 SiAM Workbench . 178

8.2.1 Wizard for New Applications . 178
8.2.2 New Device Wizard . 180
8.2.3 Extended EMF instance editor . 182
8.2.4 Grammar Rule Editor . 183
8.2.5 Graphical Dialogue Model Editor 185
8.2.6 Domain Ontology Editor . 187

8.3 Runtime Tools . 187
8.3.1 Application Debug GUI . 188
8.3.2 JDT Extensions . 189
8.3.3 Automatic GUI prototyping with HTML 5 190

8.4 SiAM-dp deployment . 192
8.5 Summary . 193

9 Applications 195
9.1 SiAM Project Demonstrator . 195

9.1.1 Multimodal Control of Car Functions 196
9.1.2 Discourse aware Interaction with the Outside Environment 203
9.1.3 Persuasive Travel Assistant . 208
9.1.4 Distributed Input and Output . 210

9.2 MADMACS - CeBIT Demonstrator 2015 212
9.3 SINNODIUM Demonstrator . 214
9.4 KOGNIT demonstrator . 215
9.5 HySociaTea project . 217
9.6 Summary . 220

10 Conclusion and Outlook 221
10.1 Summary . 221
10.2 Contributions and Results . 222

10.2.1 Research Questions Revisited . 222
10.2.2 Related Work Revisited . 225
10.2.3 Scientific Publications . 229

10.3 Future Work . 231

Bibliography 235

xii

List of Figures

1.1 The structural overview of the dissertation 8

2.1 The allegory of the Five Senses by Theodore Rombouts 10

2.2 Classification of verbal and nonverbal communication 12

2.3 Google Glasses and Oculus Rift . 13

2.4 Relations of the terms Device, Device Service, Device Component, Modal-
ity, and Code . 18

2.5 Richly expressive communication interfaces. 19

2.6 Temporal relations between modalities . 22

2.7 Multimodal fusion on distinct levels . 24

2.8 The multimodal fission process . 25

2.9 Reference architecture for multimodal dialogue systems 27

2.10 A CPE is the integration of multiple CPSs 32

3.1 Multimodal interfaces with combined spoken and gestural interaction . . . 37

3.2 The collaborative and multimodal pen and voice system QUICKSET . . . 38

3.3 Multimodal interface for speech, gesture and eye-gaze input. 40

3.4 Head and eye-tracking are used for identifying the building in the focus
of attention of the co-driver. 41

3.5 Comparison of body parts that have been employed in literature about
gestural interaction . 43

3.6 Example applications for gesture based interaction. 45

3.7 Example applications for gesture based interaction. 47

3.8 Infrastructure of the Bremen Ambient Assisted Living Labs 48

3.9 Physical acts with tangible user-interfaces in the retail scenario 49

3.10 Architecture comparison of the the WAMI toolkit and the speech mashup
framework. 51

3.11 The dialogue specification workbench in DialogOS 53

xiii

3.12 The SmartKom reference installation for demonstrations 55

3.13 The tool chain of the ODP S3 workbench. 57

3.14 EMMA sample document. 62

3.15 EMMA derivation example. 64

3.16 Steps during multimodal output generation in the SAIBA framework. . . 70

3.17 Two different and situation dependent forms for the realisation of a com-
municative intent. 71

3.18 Example for a conversational agent architecture where decisions are only
made on an abstract representation of intentions. 71

3.19 The VirtualHuman demonstrator system. 72

3.20 Overview of the Act hierarchy in the CDE ontology. 73

3.21 Meta-model for dialogue act annotation. 75

3.22 Hierarchy of communicative functions in ISO 24617-2. 76

4.1 Example of an RDF instance describing a music CD from Bob Dylan . . . 81

4.2 Example of an RDFS document. 82

4.3 Example of a typed feature structure . 83

4.4 Subset of the Ecore metamodel . 87

4.5 Interrelation between EMF and Java, XML, and UML 88

4.6 Example of the successful unification of two TFSs 89

4.7 Examples of failed unification . 90

4.8 Example of an overlay operation . 91

4.9 Example of a failed restricted unification 91

4.10 Comparison of the results from the copy and clone method. The red
marked entities are newly created during the copy or clone process. 92

4.11 Example of an instance with bindable datatype content 94

4.12 Example for the evaluation of a bindable object 95

4.13 The main concepts of the pattern model 97

4.14 A pattern example and a matching instance for this pattern 100

5.1 The classification of devices in a massively multimodal system 105

5.2 Orthogonal classification features . 107

5.3 The upper level of the IO-model type hierarchy 109

5.4 Graphical representation of the EMF specification of the InputAct concept 111

5.5 Graphical representation of the EMF specification of the OutputAct concept112

5.6 Graphical representation of the EMF specification of the ControlMessage
concept . 113

5.7 Snippet of the type hierarchy for the representation of input and output
events . 114

5.8 Upper level excerpt of the communicative function type hierarchy 117

5.9 The ReferenceModel class diagram . 118

5.10 Example of an output mapping rule . 121

6.1 Snippet of the graphical Visual Studios Windows Workflow editor 125

xiv

6.2 Overview of the main control concepts of the dialogue model 127

6.3 Overview of the statechart concepts in the dialogue model 128

6.4 Overview of the executable contents in the dialogue model 130

6.5 Snippet of a simple hotel booking dialogue 131

6.6 Overview of the specification model for grammar rules 133

6.7 Example: A named entity rule for movie names 135

6.8 Example: A named entity rule for book names 136

6.9 Example: A Semantic Mapping Rule for a media entity 137

6.10 Example: An utterance rule for questions about media descriptions 137

6.11 Snippet of the Graphical User Interface (GUI) model 139

6.12 Snippet of the model for describing GUI requests 140

6.13 Overview of the GUI event model . 141

6.14 Overview of the concepts that are involved in the semantic data binding . 142

6.15 A GUI model example for a window which presents a list of cinemas that
show the movie Iron Man 3 . 143

6.16 The GUI model example with resolved data bindings and the mockup of
a possible rendering result . 144

6.17 Overview of the model for the project description of a dialogue application145

7.1 Logical layers of the OSGi framework . 150

7.2 The main architecture of the SiAM dialogue platform. 153

7.3 Integration of the SiAM-dp event manager into the OSGi framework. . . . 156

7.4 The call sequence for components in the SiAM-dp event manager. 158

7.5 The internal architecture of the dialogue manager. 159

7.6 Distribution of the dialogue specification resources by the project manager 160

7.7 The concepts for the representation of sessions, users, devices, user inter-
faces, and their relations to each other . 162

7.8 Detailed overview of the speech recognition component 164

7.9 Information flow in the GUI management component 168

7.10 Structure of the working memory . 171

7.11 The strategy for processing incoming and outgoing semantically repre-
sented dialogue acts . 173

7.12 The presentation planning and fission process in SiAM-dp 174

8.1 Overview of the in Eclipse RCP integrated Situation Adaptive Multimodal
Dialogue Platform (SiAM-dp) workbench 179

8.2 Overview of the modal windows in the application wizard 181

8.3 Overview of the modal windows in the device wizard 182

8.4 The views of the extended EMF instance editor 183

8.5 The three tabs of the grammar rule editor 184

8.6 The graphical editor for dialogue specification models 186

8.7 Editors for modelling the domain ontology 187

8.8 The SiAM-dp debug GUI . 189

8.9 Comparison of the standard and extended representation of EMF objects 190

xv

8.10 Example for a generated HTML page from a GUI model instance. 191
8.11 The Eclipse Update Manager with the SiAM-dp update site as target

location . 192

9.1 Input devices in the scenario for car function control 196
9.2 The external components connected to SiAM-dp in the multimodal control

scenario . 197
9.3 Micro-Gesture Control in the car . 200
9.4 Examples for the representation of unimodal input 201
9.5 Examples for the representation of multimodal input 202
9.6 The input act after modality fusion . 203
9.7 Architecture overview of the restaurant reservation scenario 204
9.8 Reference resolution of deictic expressions with entities from the discourse

context . 206
9.9 Input act representation examples . 207
9.10 Example for the resolution of elliptic expressions 208
9.11 The Persuasive Travel Assistant uses near-field and far-field screens to

inform the driver . 209
9.12 Demonstrator setup for distributed input and output in the car. 210
9.13 Modalities involved in the SiAM demonstrator 211
9.14 MADMACS demonstrator interaction examples. 213
9.15 The SINNODIUM demonstrator. 215
9.16 The KOGNIT demonstrator. 216
9.17 Collaboration of robots, humans, and virtual characters in HySociaTea. . 217
9.18 Planned architecture in HySociaTea . 218

xvi

List of Tables

2.1 The five senses and examples for corresponding sensors and devices 14
2.2 Features with effect on presentation output planning 26

3.1 Features of the multimodal dialogue frameworks in related work. 59
3.2 Features of interaction modelling supported in related work. 68
3.3 Dialogue act annotation aspects in related work. 78

7.1 The contexts involved in the individual context resolutions 172

9.1 Classification of the devices integrated in the car control scenario 197
9.2 Interaction concepts for the gesture only control 199
9.3 Classification of the devices integrated in the restaurant reservation scenario205
9.4 Classification of the devices integrated in the persuasive travel assistant . 210
9.5 Classification of the devices integrated in the public display scenario . . . 212
9.6 Classification of the devices integrated in the CeBIT demonstrator 214
9.7 Classification of the devices integrated in the SINNODIUM demonstrator 215
9.8 Classification of the devices integrated in the KOGNIT demonstrator . . . 217
9.9 Classification of the devices integrated in HySociaTea 219

10.1 Comparison of SiAM-dp with multimodal dialogue frameworks in the re-
lated work . 225

10.2 Comparison of SiAM-dp with multimodal modelling languages in the re-
lated work . 227

10.3 Dialogue act annotation aspects in related work. 228

xvii

List of Acronyms

ABNF Augmented Backus-Naur-Form

BCI Brain-Computer Interface

CFG context-free grammar

CPE Cyber-physical Environment

CPS Cyber-physical System

CSS Cascading Style Sheet

EMF Eclipse Modeling Framework

EMMA Extensible MultiModal Annotation markup language

eTFS extended Typed Feature Structure

FADE Fusion and Discourse Engine

FSA Finite state automaton

GRXML Speech Recognition Grammar Specification

GUI Graphical User Interface

HCI Human-Computer Interaction

HEI Human-Environment Interaction

LTM Long-Term Memory

MUI Multimodal User Interface

NLP Natural Language Processing

xix

List of Acronyms

ODP Ontology-based Dialog Platform

OWL Web Ontology Language

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SCXML State Chart XML

SiAM-dp Situation Adaptive Multimodal Dialogue Platform

SRGS Speech Recognition Grammar Specification

SSML Speech Synthesis Markup Language

SWEMMA SmartWeb EMMA

TFS Typed Feature Structure

URI Uniform Resource Identifier

WM Working Memory

xx

1
Introduction

1.1 Motivation

Intelligent environments enhance natural environments of daily life such as homes, facto-
ries, offices, and cars by bringing computation into the physical world. Recent advances
in technologies like microprocessors, networks, middleware, sensors, and mobile devices
increasingly push the evolution of ubiquitous computing where technology is omnipresent
and wirelessly connected processing units can be found in arbitrary everyday objects.
Thus, technology is increasingly embedded into the environment, obfuscating the under-
lying IT technology from users. Especially in the context of industry and production, the
term CPE has been established, which connects the cybernetic world of computer and
communication with the real world where intelligent objects and agents can communi-
cate with each other. This is a starting position for a wide range of application areas like
intelligent factories, intelligent buildings, intelligent retail shops, and intelligent mobility
solutions, which will have a high impact on society and industry in the future.

The emergence of such CPEs requires a complete rethinking of the interaction between
the environment and the users that become part of the environment, move in it, and
interact with it. The classical interaction concepts where a user exclusively interacts
with one stationary device, PC or smartphone, become less dominant and make room
for concepts where the user interacts with the environment (Human-Environment Inter-
action (HEI)). Novel interface technologies like speech interaction, gesture recognition,
distributed displays, eye-tracking, and wearable devices reinforce the trend to carry the
interaction away from stationary places where keyboards, mice, buttons, and switches
are the usual input devices, into the room.

In a heavily instrumented environment with a high number of various sensors and ac-
tuators it becomes possible to address all human senses in a multimodal manner. This
provides the opportunity of multiadaptive systems, which are precisely customised and

2 Chapter 1 Introduction

personalised to the requirements of the users and contextual conditions. Since new tech-
nologies and the availability of a great spectrum of communication through numerous
modalities enable the use of a large number of verbal and non-verbal human communi-
cation characteristics, a great opportunity is offered to design the interaction between
human and the environment more naturally and thus more intuitively.

With new opportunities researchers also face new challenges regarding the applied inter-
action technologies. Due to the dynamic characteristic of a CPE and the mobility of the
users, they need to develop systems that are flexible concerning the connected and used
devices and modalities. Furthermore, multiple users may simultaneously interact with
the environment either jointly in a dialogue with a common intention or simultaneously
in parallel and independent sessions. Besides that, even physical acts may be part of
interactions and can play a key role, e.g., for collaborative task solving or capturing the
attention of the user. The new chances of multimodal interaction go beyond modality
combinations with up to two or three diverse modalities in previous research, but at the
same time raise the question of how information and meaning of the individual contri-
butions should be practically combined. Further research is heading into the direction
in which interaction metaphors should be applied to present the CPE to the user. This
could be a pervasive intelligence but alternatively distributed, even anthropomorphic
interfaces. All of them could take on different roles in dialogue interaction; they can,
depending on the use-case, act as a butler, supervisor or supporter.

Many former research projects addressed relevant topics that are considered to be funda-
mental preconditions for the above introduced aims. This includes multimodal integra-
tion, multimodal fusion, multimodal fission, dialogue management, discourse resolution,
ontology based knowledge representation, and situation adaptive systems. Other impor-
tant works deal with the representation of interaction and propose language models for
the description of interaction on the levels of realisation and the communicative meaning
behind. Furthermore, in literature one can find a significant number of prototypes and
demonstration systems that integrate many kinds of modalities and devices in a wide
range of scenarios and domains.

However, most of the projects focus on concrete research questions and provide proto-
typical, often ‘hard-wired’ software solutions for individual challenges. More scenario
oriented projects highly concentrate on usability without attaching importance to the
reusability of technology in other domains or extendability with new interfaces and de-
vices. Some existing toolkits for the development and deployment of multimodal inter-
faces present promising design approaches, but only integrate solutions with two modal-
ities like speech together with graphical user interfaces or pointing gestures. Other
extensive projects deploy well elaborated platforms for multimodal dialogue systems.
Unfortunately they are not sustainable due to the lack of maintenance, open accessibil-
ity or they are built upon out-of-date software engineering technologies. Furthermore,
often toolkits that support the work of application developers are missing.

A base requirement for the research regarding interaction in CPE is a platform that is
able to handle multimodal interaction to a high degree. This includes, on the one hand,

1.1 Motivation 3

a technical architecture for the flexible management of connected devices that is able
to efficiently and robustly distribute input and output events. On the other hand, a
modelling language is required that hides the heterogeneity of devices, technologies, pro-
tocols and information behind a sophisticated and extendable approach that additionally
allows one to semantically represent knowledge entities and communicative intentions.
Standard modalities like speech recognition, speech synthesis and graphical user inter-
faces should be accessible out-of-the-box by declarative development concepts. The rapid
integration of new devices should be realisable by supporting design methodologies and
functionalities. Furthermore, concepts and technological solutions for multimodal dia-
logue system aspects like fusion, fission, context management, and discourse resolution
should be available in a comprehensive and easy to apply way. Research on interaction
metaphors and their evaluation requires a concept for the rapid prototyping of dialogue
strategies. This process should be aided by a declarative modelling language that is
comprehensible even for non-expert dialogue engineers.

The SiAM-dp that has been developed for this thesis is intended to bridge this gap.
It introduces a declarative model-based development approach that covers the above
mentioned features on a conceptual as well as a functional level. Complementary to
the runtime environment, the platform contains a toolkit integrated in the Eclipse de-
velopment environment that supports the development, debugging and deployment of
multimodal dialogue applications. In the following, some main features of SiAM-dp are
listed.

Massively Multimodal Interaction

The most current systems in research mainly address scenarios that support multimodal-
ity as a combination of two different modalities. A dialogue management system for a
CPE must be able to deal with massively multimodal interactions trying to concurrently
address all human senses in heavily instrumented environments. On the one hand, this
includes the free choice of modality, which means that any interaction should be, if pos-
sible, realisable by every modality available based on the preferences of the user. On the
other hand, clearly more than two modalities are integrated into a multimodal system
that are also used in combination. In Section 9.1, a dialogue application is presented
that exemplarily combines gaze detection, speech input, and finger gestures together in
a combined input. Massive modality also means that many homogeneous devices of the
same modality are used together in one application. This can be several microphones
that collect speech input commands from several users. Other examples are several
tangible interfaces like buttons or levers in a car. In classical HMIs the ‘hard-wired’
connection between button and function is isomorphic. One button triggers exactly one
function and one function can only be triggered by one specific button. In a massively
multimodal system this isomorphic relation is decoupled and allows interface designers
to trigger one function by an arbitrary modality. On the other way around the trig-
gered function, when pressing a button, can be made dependent on the actual context,
e.g., affected by a synchronous speech command or the situational context. SiAM-dp is
capable of handling these scenarios in a highly flexible way.

4 Chapter 1 Introduction

Distributed Input and Output

SiAM-dp supports a wide range of ways to connect devices to the system. Thus, a
multimodal dialogue application can distribute input and output over devices that are
directly connected to the system on which the application is running, devices that are
wirelessly connected via Ethernet or Bluetooth, over CANBus in a car, internet services,
and even public displays or other cars that use Car2X technology (many examples are
presented in Chapter 9).

Ontology Based

SiAM-dp is fully ontology based and uses a single domain adaptable knowledge repre-
sentation throughout the complete dialogue system. This includes that interactions can
be annotated with semantics, which provide information about communicative inten-
tions and eventually transported semantic content. Thus, interactions can be described
on two separate levels of abstraction, the above mentioned semantic intention and the
actual surface realisation. The task of performing the step between these two levels is
resolved by modality-specific interpreters on the input side and generators on the output
side. The advantage of this approach is that multimodal late fusion, context resolution,
dialogue planning, and presentation planning can be realised on the abstract semantic
level, independent from the actually applied surface realisations.

Situation Adaptivity

SiAM-dp allows one to adjust dialogue behaviour and presentation dependent on the
user, who is actually using the system, and the current context. This is supported by a
central knowledge base that is accessible system-wide. An important factor for this fea-
ture is an architecture that decouples the decision about dialogue planning from the de-
cisions about presentation planning. Furthermore, it is possible to build resource-aware
systems that makes decisions based on the expected resource / cost impact (workload,
distraction, time) under varying goals.

Software Development Kit

SiAM-dp contains a complete Software Development Kit (SDK) with a collection of
tools and editors that support the developer in the creation of domain-specific dialogue
applications. This includes elaborated development processes and strategies for the
model-based development of applications. Furthermore, it supports the extension of the
dialogue platform with new devices and thus allows one to easily integrate new modalities
into the platform which can be reused in diverse dialogue applications.

1.2 Research Questions 5

1.2 Research Questions

The primary and overall aim of the work presented in this thesis is the development
of a multiadaptive and massively multimodal dialogue platform by proposing a runtime
platform and a development environment which support the rapid development of di-
alogue applications that are flexible, adaptable and extendable to scenarios in various
domains. The concrete objectives of this work are manifold and include concepts and
ideas from diverse research perspectives. First, the technical question for an architecture
arises that robustly integrates and handles input and output from a heterogeneous set of
devices and technologies. Second, information must be processed in a way that typical
aspects from multimodal dialogues like mutual disambiguation, context representation,
referring expressions and discourse resolution are supported. Furthermore, the fusion
of information and the distribution of output play a relevant role. Finally, we aim at a
comprehensive and easy-to-use declarative development approach that supports the user
in creating specifications of dialogue behaviour, input interpretation, output generation
and context description. The main outcome of this work is SiAM-dp, which has already
been deployed in a first version and is successfully used by several research and indus-
try projects in the intelligent user interfaces group of the German Research Center for
Artificial Intelligence. Some of these system are presented in Chapter 9.

The following research questions are addressed in this dissertation:

1. Modelling Language: Which requirements must be fulfilled by a meta-modelling
language that is used in a declarative development approach for multimodal dialogue
applications?

Different tasks demand different features from the meta modelling language. It
must be expressive enough to represent semantic knowledge and interrelations be-
tween entities. Features for multimodal dialogue processing and context resolution
need specific operations for reasoning purposes. From a technical point of view
the model must be capable of being easily integrated into a comprehensive run-
time environment. Finally, the meta-language should already support concepts for
creating and editing models in an integrated development environment.

2. Massive Multimodality: How can the massive modality of devices in a CPE
be represented in a hierarchical device model and how can this hierarchy be trans-
ferred to a structured model for the representation of input and output acts in the
communication between the dialogue system and devices?

CPEs can contribute a great number of accessible devices to multimodal dialogue
applications. The selection of a suitable combination of devices that are actu-
ally involved in interaction is an essential question for situation adaptive dialogue
systems. Therefore devices must be classified in terms of their type, the kind of
information they provide or process, and other characteristic features like loca-
tion and interaction range. This hierarchy should be universally transferred to the

6 Chapter 1 Introduction

applied model for input and output representation in order to ensure a holistic
approach for the representation of information.

3. Representation of Communicative Meaning: How can interaction between
dialogue systems and a highly heterogeneous set of devices in a CPE be represented
independently of modality, and how can this support the multimodal integration?

Dialogue acts enrich a dialogue with new content but what is more important
is their communicative meaning. Especially contributions in a natural language
dialogue can be incomplete or ambiguous as long as context information from dis-
course and environment is not considered. Physical acts that occur simultaneously
or contemporarily are part of this context. The joint integration of dialogue acts
and physical acts requires that their content and containing (cross-modal) referring
expressions are semantically represented in a common and consistent way. Espe-
cially in a massively multimodal system and, associated therewith, an enormous
increase of available context information, the requirements to a language for the
representation of input and output are increasing.

4. Declarative Dialogue Application Design: Which dialogue application speci-
fication models support the rapid development of multimodal dialogue applications
in Human-Computer Interactions (HCIs)?

The creation of multimodal dialogue applications requires a modelling approach
that supports the development process and is flexible enough to easily adapt appli-
cations to new domains, device setups and situations. Several previous works have
dealt with the creation of full-fledged languages for the description of multimodal
interaction. Findings from these projects should be examined and transferred to a
development platform for multimodal interaction in CPEs.

5. Dialogue System Architecture: Which type of architecture is required for the
realisation of distributed coordinated communication in an CPE?

The support of modalities and physical devices that are available at the time of
implementation, as well as those that become available in the future, requires a
modular and flexible platform architecture. Events that occur simultaneously or
sequentially must be adequately time stamped and handled by components that
are responsible for modality fusion. Since output can be distributed over several
modalities the architecture must allow one to coordinate and time the presentation
of information.

6. Tool Support: How is an integrated development environment designed that sim-
plifies and accelerates the creation of multimodal dialogue applications ?

A convincing and easy-to-use tool support is an important factor for the acceptance
of a development framework. Recurring tasks should be simplified or taken over by
wizards. Furthermore, the toolkit should organise application relevant resources
in projects and deploy editors for the creation and manipulation of their content.

1.3 Chapter Outline 7

1.3 Chapter Outline

This dissertation is divided into three main parts, which are again structured into eight
chapters. Figure 1.1 gives an overview of the structure of the work:

Foundations

Chapter 2 (Fundamental Concepts) presents general concepts and background informa-
tion about the terminology used in this dissertation. This includes a basic understanding
of human communication and multimodal HCI. This is followed by an introduction of
the research topics Dialogue Systems and Cyber-physical Environments. Chapter 3 starts
with related work in the field of multimodal interaction. It forms a bridge from the first
pioneer works to modern multimodal dialogue applications in intelligent environments.
Further sections in this chapter deal with multimodal dialogue development frameworks
and modelling approaches for the representation of multimodal interaction and the se-
mantic annotation of dialogue acts with communicative meaning.

Concepts

The second part presents the acquired concepts in this work within three chapters.
Chapter 4 (The SiAM-dp modelling language) examines the requirements that must be
fulfilled by the meta-modelling language, which is used in the dialogue platform. This
includes a short excursion about semantic knowledge representation. Finally, the chap-
ter describes the modelling language that has been chosen and explains which extensions
were made in order to satisfy the identified requirements. Chapter 5 (Massive Multi-
modality in Cyber-Physical Systems) presents a classification approach for devices in
massively multimodal CPEs, which is used for the creation of a uniform interface that
helps one to consider the heterogeneity of devices during integration. Furthermore, the
chapter describes in detail the model that has been developed for the representation of
interaction based on the before elaborated device classification. Here a special focus is
set on the support of a semantic level that additionally allows the modality-independent
description of the intention behind an interaction. The chapter closes with the presen-
tation of a rule-based approach that supports developers in easily performing the step
between the syntactic and semantic representation of dialogue acts. Chapter 6 (Dialogue
Application Specification Models) deals with the models that have been developed in
this thesis for the declarative development of dialogue applications. This includes mod-
els for the specification of projects, dialogue behaviour, speech recognition grammars,
and graphical user interfaces. Furthermore, a strategy is presented in order to specify
model instances that are dynamically filled with content during runtime based on script
expressions and the overlay algorithm.

Realisation

In the final part, the aforementioned concepts and models are realised and applied.
Chapter 7 (SiAM Dialogue Platform) presents the architecture of the SiAM-dp run-
time environment and gives detailed insight into event management and the individual

8 Chapter 1 Introduction

components of the platform. Chapter 8 (Development Tools) describes the SiAM-dp
workbench, an Eclipse based tool set for the development of multimodal dialogue appli-
cations. Finally, Chapter 9 (Applications) outlines prototypes and demonstrator applica-
tions that have been developed in several research projects on the basis of SiAM-dp. The
chapter emphasises the great heterogeneous set of devices and modalities that already
have been integrated into the platform.

Discussion

In Chapter 10 the results of this thesis are discussed with respect to the underlying
research questions. Especially the scientific and practical contributions are highlighted.
After an enumeration of all publications on international conferences and workshops that
have been written in the context of this work, an outlook is given for future work that
might extend the results of this thesis.

Figure 1.1 – The structural overview of the dissertation

2
Fundamental Concepts

This chapter introduces some fundamental concepts which provide the relevant founda-
tion for the multimodal dialogue platform presented in this thesis. For a better under-
standing of human-computer interaction, we first take a closer look at human perception
and communication in Section 2.1. A special focus is set on the interplay between verbal
and nonverbal communication and the hereby involved modalities.

In the following we show how these concepts are adopted and adapted for the commu-
nication between human and computer. For the output, this affects how human senses
are stimulated for the transfer of information; for the input how sensors equivalently to
human senses can perceive human communication. Section 2.2 deals with multimodal
communication and considers its advantages and the resulting challenges that arise.

Section 2.3 gives a short introduction to the idea of dialogue systems, several approaches
of dialogue management, and finally the challenge of context resolution which increas-
ingly appears with dialogue systems that support a multimodal architecture in Cyber-
physical Environments (CPEs).

Since the platform has been developed for operation in CPEs, this concept is defined and
explained in Section 2.4. This includes the typical structure, some relevant requirements,
and the affect on human-computer interaction.

2.1 Human Perception and Communication

“The environmental stimulus is all of the things in our environment that we can po-
tentially perceive” (Goldstein, 2009). Animals and humans perceive by the physical or
chemical stimulation of sense organs that produce signals in the nervous system. Thus,
the sense organs provide the data for estimating states of the environment and are a
person’s interface to the world. In his treatise ‘De Anima’ Aristotle already described

10 Chapter 2 Fundamental Concepts

the five classic human senses: sight, hearing, touch, taste, and smell. This allegory of
the five senses was very popular throughout the Middle Ages (see Figure 2.1). However,
in modern science additional senses are accepted, e.g., thermoception(heat), nocicep-
tion (physiological pain), equilibrioception (balance, acceleration), and proprioception
(kinesthetic sense).

Originally, senses played an important role for collecting properties from the environ-
ment in order to gather food, recognise hazards, or find potential mates. Furthermore,
senses helped to perceive the communicative behaviour of other individuals and thus
made communication possible. Generally, multiple senses are employed while retrieving
information from other individuals. Very common are sight and hearing, and nearly ev-
ery kind of animal developed their own set of body gestures and sounds for intra-specific
and inter-specific communication. In the course of evolution, other, more complex com-
munication types have evolved. The apparently most manlike animal species in terms of
communication are apes. Like humans, they apply facial expressions to show emotions.
Gillespie-Lynch et al. (2013) describe a function and formal similarity of many gestures
between a chimpanzee, a bonobo, and a human child, e.g., deictic gestures. With the
modern human, a new form of communication, language, has evolved to be the primary
mode of communication. While language was originally transferred by speech, with the
appearance of human cultures, new ways for exchanging information were invented like
written language and symbols.

Figure 2.1 – The allegory of the Five Senses by Theodore Rombouts: From left to right
the five senses are presented: sight, hearing, touch, taste, and smell.

2.1 Human Perception and Communication 11

2.1.1 Verbal and Nonverbal Communication

The word communication stems from the latin word communicare, which can be trans-
lated as join with or share. The National Joint Committee for the Communication
Needs of Persons with Severe Disabilities (1992) defines communication as “any act by
which one person gives to or receives from another person information about that per-
son’s needs, desires, perceptions, knowledge, or affective states. Communication may be
intentional or unintentional, may involve conventional or unconventional signals, may
take linguistic or non-linguistic forms, and may occur through spoken or other modes”.
In addition to the ‘one-to-one’ communication, as mentioned in the definition, commu-
nication can also be ‘one-to-many’ (giving a speech), ‘many-to-many’ (group conversa-
tions) or ‘one-to-many-undetermined-recipients’ (market-crier). The latter can also be
called ‘now-to-future’ communication if the information is persistent (books, video talk)
(Wasinger, 2006). With the increasing importance of computers and the aim to build
intuitive and easy-to-use control interfaces, the concepts of human communication are
adopted to the communication between computer and human. Thus, the previously
mentioned definition can be extended to include machines as a potential communication
participant (see Section 2.2).

Although verbal communication (spoken or written language) is the most expressive way
to exchange information, a great amount of the content is conveyed by bodily activity,
gesture, facial expression, posture and spacing, touch and smell, and of those aspects
of spoken utterances that can be considered apart from the referential content of what
is said (Ruesch and Kees, 1956; Kendon et al., 1981; Knapp and Hall, 2009). Wasinger
(2006) provides a classification of communication types (Figure 2.2). On the top level,
communication is categorized into verbal and nonverbal types. The verbal contribution
consists of language in spoken or written form. Nonverbal communication is expressed
by means others than words. The three major subcategories of nonverbal communi-
cation are visual, auditory, and invisible communication. Auditory information mostly
appears with spoken language. By varying the acoustic properties of speech, e.g. speed,
accentuation or volume, the speaker can embed additional messages into verbal content,
like emotions or detailed information concerning the function of an utterance (irony,
command, criticism). The invisible communication, e.g., contains tactile and olfactory
communication. Finally, a huge amount of information is visually transferred, whereas
kinesic communication makes up the largest part of it (body gestures, face expressions,
eye behaviour). Furthermore, information like personal feelings, the social status of a
contributor or his personal relationship to the dialogue partner can be expressed by
the two other subclasses of visual communication, which are proxemic and artefactual
communication.

In most cases, verbal and nonverbal communication operate together since a person
constantly (intentionally and unintentionally) transmits messages with his body lan-
guage. Knapp and Hall (2009) describe six ways of the interrelation between verbal and
nonverbal communication that occur simultaneously:

12 Chapter 2 Fundamental Concepts

Figure 2.2 – Classification of verbal and nonverbal communication (Wasinger (2006))

1. Substituting - The nonverbal message is used in the place of a verbal message. This
can be an iconic gesture like a raised thumb or a “stop” gesture. Facial expressions
can provide information about the actual emotional state of a speaker without an
additional verbal message.

2. Repeating - The content of the verbal channel is simply repeated and reinforces
the meaning of the verbal messages, e.g., a nodding during an agreeing verbal
utterance.

3. Complementing - A verbal utterance is enhanced with additional content, e.g., a
pointing gesture that identifies an entity while the speaker asks for information
about it.

4. Contradicting - Nonverbal and verbal messages can send contradicting information.
The reasons for this can be identified in a mixed feeling about the content or in
imperfect lying. While in these situations the nonverbal message is unconsciously
done, the behaviour can also be planned, e.g., with a sarcastic tone of voice or a
wink of the eye.

5. Communication Flow Regulating - Nonverbal behaviour is used to manage conver-
sations, especially the turn-taking. The moderator of a discussion uses gestures in
order to invite a contributor to talk. Also the tone of the voice indicates whether
a speaker’s contribution ends or if he wants to speak. If an answer is expected, the
speaker directly makes eye contact with the other person.

6. Accenting/Moderating - Nonverbal behaviour can be used to emphasize or moder-
ate parts of a verbal message.

2.1 Human Perception and Communication 13

Another interrelation, which is not mentioned here, is the mutual disambiguation that
helps to correct unimodal recognition errors by using partial information provided by
a second modality. Kelly et al. (1999) found out in four experiments that “speech and
gesture may interactively contribute to the meaning of a communicative act” and thus
help to correctly understand intended meanings. Oviatt (1999a) demonstrates that with
mutual disambiguation, also multimodal systems can be designed to run in a more robust
and stable manner. In a study she showed that within a multimodal architecture the
total error rate could be reduced by 41% for spoken language processing, compared with
standalone spoken language processing.

2.1.2 Human-Computer-Communication

The previous section discussed that humans intentionally and unintentionally address
several of their senses to communicate with each other; they see, hear, feel and smell.
Under this aspect, a system for human-computer interaction with the aim to make
communication natural and intuitive has to apply or imitate this way of communication
when interacting with humans. For the direction from the computer to the human, this
means the human senses are stimulated for information transfer. The most applied senses
today are sight (display) and hearing (sound or speech feedback), but the technological
progress within the last few years has opened new opportunities to design communication
in advanced ways, e.g., by HUD displays or virtual reality glasses (Figure 2.3), or even
by addressing new senses.

On the input side, a computer perceives information from the user with sensors and
input devices. Nowadays, the classic input devices keyboard and mouse are extended or
replaced by new technologies like touch screens, speech input and gesture recognition.
These new technologies, like multi-touch screens, are also continuously extended with
new functionalities. The new iPhone 6s does an exemplarily job at introducing 3D
touch and thus is capable of sensing how much pressure is applied to a display. Many

Figure 2.3 – Google Glasses and Oculus Rift

14 Chapter 2 Fundamental Concepts

Sense Modality Sense Input Output Device
Organ Device/Sensor

Sight Visual Eyes Camera Display
Hearing Auditory Ears Microphone Speaker

Touch Tactile Skin Touch Screen Vibration Alarm
Force Feedback

Braille
Taste Gustatory Tongue Taste Sensor -
Smell Olfactory Nose Electronic Nose Olfactory Display

Table 2.1 – The five senses and examples for corresponding sensors and devices

input devices can be considered to correspond to one human sense: cameras (sight),
haptic sensors (touch), microphones (hearing) or even olfactory sensors (smell and taste)
(Jaimes and Sebe, 2007). Table 2.1 gives an overview of the five human senses and
examples of corresponding devices for input and output, including devices that are still
uncommon today like the taste sensor (Tahara et al., 2011), electronic nose (Gutiérrez
and Horrillo, 2014) and olfactory display (Matsukura et al., 2013).

The modality that is used to perceive interaction can differ between humans and com-
puters. Humans recognise a body gesture by observing the movements. A corresponding
approach for the computer that also uses the visual modality would be the interpretation
of two-dimensional images from a conventional camera or three-dimensional information
from a range camera like the Kinect from Microsoft. Additionally, a computer can access
other sensor information that applies various modalities. In the case of the body move-
ments, gesture recognition with accelerometers (Neßelrath and Alexandersson, 2009)
shows that hand movements can be perceived by observing features that are hidden to
humans, in the example the acceleration data of the hand instead of visual observations.
Currently some sensors find no equivalent human sense like a Brain-Computer Interface
(BCI) or biometric sensors, e.g., for measuring the galvanic skin response. They can ex-
tend the interaction concepts already known from the communication between humans
with completely innovative possibilities.

In Human-Computer Interaction (HCI) a distinction can be made between intrusive and
non-intrusive devices. While intrusive devices, like sensor gloves or virtual reality glasses,
allow one to measure and present a larger set of information, they have to be attached
first and may consequently restrict the free movement and sight of the carrier. In the
industry context this is finally arguable, since the device may be part of the professional
clothing. In a private context, e.g. in the car or a museum, this is hardly acceptable
by the user. Here HCI systems have to rely on non-intrusive technologies like cameras
with the disadvantage that normally the interpretation of the measured values is based
on machine-learning and pattern-matching technologies, which can be more error-prone
than intrusive devices, especially when considering external interferences like poor light

2.2 Multimodal Human-Computer Interaction 15

conditions or noisy environments. With new wearable technologies like the smart watch,
a first step has been taken in order to integrate more technologies into the people’s lives
without being intrusive.

2.2 Multimodal Human-Computer Interaction

Many surveys have been written about Multimodal User Interfaces (MUIs). Some of
them give a general overview of the key aspects, concepts and frameworks in the evolution
of multimodal interaction research (Dumas et al., 2009; Turk, 2014; Oviatt, 2012; Karray
et al., 2008; Benoit et al., 2000). Others approach this topic from a certain perspective,
e.g., from the multimodal fusion (Lalanne et al., 2009; Atrey et al., 2010) or computer
vision (Turk and Kölsch, 2003; Jaimes and Sebe, 2007).

In the literature, terms related to this topic like channel, medium, mode, modality, de-
vice, sensor, multimedia, and multimodality are often used with diverse meanings and
with time, the definitions of them have blurred. Bernsen (1997), e.g., states that in
modality theory a medium is the physical realisation of some particular presentation
of information, so it is more related to the human sensory modality, i.e., visual, acous-
tics and haptics. However, the term medium is too coarse-grained for a comprehensive
classification of output variations. For instance, graphical displays allow different con-
cepts for the presentation of information. It can be natural language text on the screen,
symbols, animations or even virtual characters that communicate with the user using
gestures. Acoustic output presents information in the form of alarm beeps, music or a
synthetic spoken language. Thus, Bernsen defines the modality as “a mode or way of
representing information to humans or machines in a physically realised inter subjective
form, such as in one of the media of graphics, acoustics and haptics. Thus, a modality
is a representational modality and not a sensory modality as the term ‘modality’ has
traditionally been used by psychologists.”

This example shows that the perspective of a psychologist significantly differs from a
technical point of view. In order to have a clear foundation, the following definitions
specify how the terms are used in this technically oriented thesis:

2.2.1 Terminology

Modality

In the literature like in Wahlster (2006b), the term modality often refers to the human
senses employed to process incoming information: vision, audition, olfaction, touch, and
taste. Other literature about MUIs like Oviatt and Cohen (2015b) from a more technical
view use the term modality to describe the type of interfaces that are applied for user
input -such as speech, pen, touch and multi-touch, gestures, gaze, and virtual keyboard-
and system output -such as speech synthesis, Graphical User Interface (GUI) or sound.

16 Chapter 2 Fundamental Concepts

Wasinger (2006) points out that with the term modality, a focus is set on the perception
of the senses and the process in which user input is captured by the system or presented
to the user. This definition combines both above mentioned definitions quite well and is
accepted for this work.

Definition 1 (Modality)
Modality describes the perception of the senses and the process in which the user input
is captured by the system or system output is presented to the user.

Code

With the term ‘code’, Maybury and Wahlster (1998a) refer to a system of symbols or
information encoding (e.g., text, gestures or sign language). For the realisation of the
code, a particular combination of user ability and device capability may be utilised.
Thus, the modality actually used to present a code can differ, e.g., text can be entered
via a keyboard or displayed on a monitor for output. Here the concrete involved modality
is not crucial for the code; alternative examples for the concrete presentation of text are
the spoken language or the braille language.

Definition 2 (Code)
A system of symbols or information encoding like text, gestures, or sign language. One
code can be presented by diverse modalities.

Device

Nowadays, a device is not restricted to support only one specific modality or code.
Moreover, modern devices can contain a wide range of different user interfaces. For
example, current smartphones present information with sound, spoken language, GUIs,
vibrations, and more. On the input side the user, e.g, interacts through multi-touch,
speech input or motion, which is detected by accelerometers.

From the technical point of view of the Situation Adaptive Multimodal Dialogue Plat-
form (SiAM-dp), presented in this thesis, a device is considered to be one unit in the
environment that is connected to a multimodal dialogue application. Later in Section
2.4, in the context of CPEs, this unit will also be called a cyber physical unit. The various
interfaces supported by one unit are called device services in this thesis. This term is
examined in detail in the following definition and includes also sensors and actuators.

Definition 3 (Device)
One unit in the environment that is connected to a multimodal dialogue application. A
device can combine several user interfaces for input and output but also sensors and
actuators.

2.2 Multimodal Human-Computer Interaction 17

Device Service

Oviatt and Cohen (2015b) make a distinction between active input modes and passive
input modes. They define active input modes as input modes “that are deployed by the
user intentionally as explicit input to a computer system (e.g., speaking, writing, typ-
ing, gesturing, pointing)”. Equivalently, in this thesis active output modes are directly
deployed to the user by a user interface (e.g., graphical output on the screen or speech
synthesis). Since the initiative is originated from the computer system, it is difficult to
speak of intentional and unintentional output. Thus, we consider output to be active
output if there exists a possibly active equivalent in the interaction between humans.

Passive input modes are defined as “naturally occurring user behaviour or actions that
are recognised and processed by the system (e.g., facial expressions, gaze, physiological
or brain wave patterns, sensor input such as location). They involve user or contextual
input that is unobtrusively and passively monitored, without requiring any explicit user
command to a computer” (Oviatt and Cohen, 2015b). Passive input is typically recog-
nised by sensors, like cameras, eye-tracker, time-of-flight cameras, and motion sensors.
For system output, passive output modes are, e.g., realised with virtual characters and
their facial expressions. Another set of devices that can be used for passive output are
actuators. Exemplarily, lamps can be used to unconsciously attract the user’s attention
on a specific region or object in a product shelf.

The generic term for an interaction mode that is provided by a device is the device
service. The interaction mode in this context is the combination of modality and code
that can be processed by the device service. Chapter 5 will introduce a more exact
classification of the above mentioned types of device services.

Definition 4 (Device Service)
An interaction mode that is supported by a device. The interaction mode is the combi-
nation of modality and code that can be processed by the device service. This can be user
interfaces for input and output, but also actuators and sensors. One device may contain
more than one device services.

Definition 5 (Device Component)
The physical component of a device that is used to generate a system output or perceive
a user input.

Table 2.4 shows the relations between the above mentioned terms using the example of
a modern smartphone. Four typical device services are listed: speech synthesis, speech
recognition, GUI, and hand gesture recognition. Every device service employs an indi-
vidual device component. The modalities and codes also differ with the exception of
speech synthesis and speech recognition. Here the decisive difference is the direction of
the communication. Speech synthesis is used to present system output whereas speech
recognition recognises user input.

18 Chapter 2 Fundamental Concepts

Figure 2.4 – Relations of the terms Device, Device Service, Device Component, Modal-
ity, and Code

2.2.2 Multimodal Systems

Nigay and Coutaz (1993) define the term multimodal system in the general sense as a
system that “supports communication with the user through different modalities such
as voice, gesture, and typing.” They claim that the two main features of a multimodal
system are the concurrency of processing and the combination of input/output data.
Literally, “multi” refers to more than one and the term “modal” covers the notion of
“modality”. In their view multimodal systems, in contrast to multimedia systems, work
on a higher abstraction level and understand the semantics of what they capture or
present. So the multimodal system strives for meaning by also considering the context
of an interaction.

In the W3C-specification EMMA (Johnston et al., 2009) multimodal interaction is de-
fined as “the means for a user to interact with an application using more than one mode
of interaction, for instance, offering the user the choice of speaking or typing, or in some
cases, allowing the user to provide a composite input involving multiple modes”. This
definition implicitly says that interaction need not necessarily be always multimodal;
sometimes interaction can also be unimodal.

Oviatt and Cohen (2015b) write that multimodal systems process two or more modal-
ities, such as speech, pen, touch, gestures, gaze, and head and body movements. The
modalities may coexist together but can be used simultaneously or alternately. “The
input may involve recognition-based technologies (e.g., speech, gesture), simpler discrete
input (e.g., keyboard, touch), or sensor-based information. Some of these modalities
may be capable of expressing semantically rich information and creating new content
(e.g., speech, writing, keyboard), while others are limited to making discrete selections
and controlling the system display (e.g., touching a URL to open it, pinching to shrink
a visual display). They mostly focus on user input but the same definition can be trans-
ferred to multimodal output where several modalities are combined in order to present
information to the user on distributed output devices.

2.2 Multimodal Human-Computer Interaction 19

Definition 6 (Multimodal System)
Multimodal systems process two or more modalities for input and output, such as speech,
pen, touch, gestures, gaze, and head and body movements. The modalities may coexist
together but can be used simultaneously or alternately.

Oviatt and Cohen (2015b) also argue that in future, richly expressive communication
interfaces will not only incorporate multiple modalities but also multiple linguistic codes
and multiple representation systems (Figure 2.5). They use the term representation
synonymously with the above defined term code. In a longer-term direction, thus com-
munication interfaces can be established that are more capable of supporting people’s
ability to communicate fluently as they think and work (Oviatt, 2012).

As we will see in Chapter 5, concepts for the integration of multiple modalities in SiAM-
dp can easily be adapted to support multiple representation systems as well as multiple
codes.

Figure 2.5 – Richly expressive communication interfaces support multiple modalities,
representation systems, and linguistic codes (Oviatt (2012))

20 Chapter 2 Fundamental Concepts

2.2.3 Advantages and Myths

Oviatt (2012) discusses the advantages of multimodal interfaces. In the following list
some of them are outlined:

Flexible use of modes: Users can select their preferred input and output modes
and combine or alternate between modes.

Accommodation of a broader range of users: Multimodal interfaces permit
users of distinct age, skill level, native language status, cognitive styles, sensory
impairment, and other temporary illnesses or permanent handicaps to interact with
them.

Better adaptation to environmental conditions: Especially in a mobile sce-
nario, multimodal interfaces can adapt to changing environmental conditions. For
example, interaction is hands-free in an in-vehicle application or avoids speech in a
noisy environment.

Improvement of efficiency: Studies showed that multimodal interfaces can im-
prove efficiency. Efficiency is estimated by measuring the task completion time when
using multimodal interfaces. This speed advantage also includes the time needed
to correct recognition errors. Cohen et al. (2015) compared the task completion
time of keyboard-based graphical interfaces with multimodal speech and pen ones
and found that multimodal interfaces sped up the creation of complex simulation
scenarios on a map by a factor of between 2.4 and 4-fold.

Facilitation of error recovery: Users can choose the input mode that they judge
to be less error prone for a particular content.

Support of mutual disambiguation for input signals: Unimodal recognition
errors can be recovered by semantic information from each input mode that supplies
partial disambiguation of another mode.

Reduction of cognitive load: By distributing information across multiple modal-
ities separate parts of the working memory are loaded (based on Baddeley’s theory
of working memory (Baddeley, 2012)). Thus, the user’s overall cognitive load is
minimized and their task performance enhanced.

On the other hand, Oviatt (1999b) disproves some myths about multimodal interaction.
Some of them are briefly presented here:

Myth #1: If you build a multimodal system, users will interact multi-
modally - Mostly interaction is a combination of unimodal and multimodal con-
tributions.

Myth #2: Speech and pointing is the dominant multimodal integration
pattern - This myth represents the idea of the early multimodal systems that used

2.2 Multimodal Human-Computer Interaction 21

a mouse-oriented metaphor. Nowadays many other modalities like gestures, gaze
and touch can be part of multimodal interaction.

Myth #3: Multimodal input involves simultaneous signals - Input can also
occur sequentially (see also section 2.2.4).

Myth #6: Multimodal integration involves redundancy of content be-
tween modes - More often multimodal content appears complementarily than
redundantly.

Myth #7: Individual error-prone recognition technologies combine mul-
timodally to produce even greater unreliability - In practice users figure out
how to use the available input modes in an efficient way. Furthermore, mutual
disambiguation of signals improves robustness.

Myth #9: Different input modes are capable of transmitting comparable
content - Different modes differ in their functionality, the way they are integrated
and the type of content they can provide.

Myth #10: Enhanced efficiency is the main advantage of multimodal sys-
tems - This is not always the case. Other advantages have already been presented
above.

2.2.4 Integration and Fusion of Multimodal Input

Johnston et al. (2009) define multimodal integration as the process of combining input
from different modes to create an interpretation of composite input. A synonym is the
term multimodal fusion which is adopted from the terminology in physics. Multimodal
fusion is a process that combines manifold types of input data, each associated with a
particular modality. It is a fundamental task in the integration of various modalities.

Classification of Multimodal Input

Nigay and Coutaz (1993) call the absence of fusion Independent Modalities and the
presence Combined Modalities. Serrano and Nigay (2009) organise the combination
space of interaction modalities into two dimensions, the type of the relationship between
modalities and the temporal relationship. The type of relationship is explained with the
CARE properties Coutaz et al. (1995):

The CARE properties (Complementary, Assignment, Redundancy, and Equivalence)
characterise multimodal interaction from the usability perspective on HCI. They are a
set of properties that describe the relationship between modalities for reaching a goal or
the next state in a multimodal system.

22 Chapter 2 Fundamental Concepts

Equivalence - Expresses the concept of free choice of modality. Multiple modalities
can reach the same goal and it is sufficient to use only one of them without any
temporal constraint on them.

Assignment - Expresses the absence of choice. One, and only one, modality can
be used in order to reach a goal. An example is the steering wheel of a car.

Redundancy - Two modalities have the same expressive power but are both re-
quired to be used within a temporal window in order to reach a goal. Redundancy
can be important for safety relevant functionalities.

Complementary - Two modalities are used within a temporal window for reaching
a goal. Both modalities are needed to describe the desired meaning. A speak-and-
point system is a classic example of this.

Equivalence and Assignment are independent modalities and can be interpreted individ-
ually from one another. Redundancy and Complementary are combined modalities and
require a multimodal fusion of the input. While redundant input must be compared and
verified for an identical meaning, the complementary input must be combined in order
to express the meaning.

Temporal Relationship and Synchronisation

As mentioned above, the time frame during which multimodal input occurs is relevant
for the multimodal fusion. This implies the importance of the temporal synchronisation
of all input devices. Vernier and Nigay (2001) specify five distinct combination schemes
for the temporal relation between multimodal inputs (Figure 2.6). Three of the relations
describe multimodal inputs that overlap and occur simultaneously (Concomitance, Co-
incidence, Parallelism). Anachronism and Sequence are sequential and are distinguished
by the size of the temporal window between the usage of the two modalities.

The temporal relations can provide relevant indications of whether and how multimodal
input should be combined. Early multimodal systems like the “Put-That-There” system
by Bolt (1980) relied on the fact that multimodal constructions temporally co-occur.

Figure 2.6 – Temporal relations between modalities (c.f. Vernier and Nigay (2001))

2.2 Multimodal Human-Computer Interaction 23

The meaning of the deictic term “that” in the spoken utterance “put that there”, e.g.,
was resolved with the object at which the user was pointing when it was spoken.

This multimodal integration approach seems to be suitable for multimodal speak-and-
point systems but has a restricted practical use in the design of future multimodal
systems that involve other modes like gestures or body movements without deictic-
point relations (Oviatt, 2012). It turned out that the temporal overlap of signals not
urgently determines which signals should be combined. A series of studies showed that
there exist two distinct types of users with respect to integration patterns and that
their integration patterns occur across the lifespan from children through the elderly
(Xiao et al., 2002, 2003). An integration pattern here specifies the strategy of how
users combine multimodal input with respect to the temporal relation. Simultaneous
integrators overlap their input temporally, whereas sequential integrators begin with one
mode after the other one has been finished (Oviatt, 1999b; Oviatt et al., 2005). Since
a user’s habitual integration pattern remains highly consistent during a session, this
may allow systems to automatically detect and adapt to a user’s dominant multimodal
integration pattern. This may also include the temporal thresholds during the sequential
use of modalities.

Fusion level

An important aspect for multimodal fusion is the appropriate fusion technique that is
applied to combine incoming unimodal events into a single representation of the user’s
intention. Literature often distinguishes between two stages where fusion occurs: early
fusion and late fusion (Turk and Kölsch, 2003; Jaimes and Sebe, 2007; Nigay and Coutaz,
1993). The decisive factor here is the level of abstraction at which the fusion takes
place.

Early fusion occurs at a feature level. The input signals are concatenated and provided to
a joint classifier that generates an interpretation (see Figure 2.7a). The interpretation (or
classification) is mostly based on machine-learning technologies like neural networks, or
hidden Markov models. A classic example for early fusion is the audio-visual combination
of speech and lip movements. Here the motion data from the lips are concatenated with
features from the recorded voice in order to recognise a spoken utterance (Tamura et al.,
2004).

During the late fusion or decision fusion, the signals are first classified independently on
a feature level. After that the results are combined to a joint interpretation (see Figure
2.7b). The late fusion is realised on a semantic level and techniques like unification on
graphs or Bayesian networks are employed in order to combine information.

Atrey et al. (2010) mention several advantages of the late over the early fusion. One
is that the interpretations at a semantic level have the same form making their fusion
easier. A second one is that for each single modality, the most suitable methods for
analyzing the input data can be applied, making the process more flexible than the early

24 Chapter 2 Fundamental Concepts

(a) Early fusion at a feature level (b) Late fusion at a semantic level

Figure 2.7 – Multimodal fusion on distinct levels (Oviatt and Cohen, 2015b)

fusion. Wahlster (2003) explains that at a semantic level, the back-tracking and rein-
terpretation of a result is easier. Furthermore, the development process is less complex
since multimodality with new modalities can be handled without specifying all varieties
of cross-modal references in advance. Oviatt and Cohen (2015b) point out that the
development process is simplified because commercial “black box” recognisers can also
be applied, which provide no access to their internal state or data. Late fusion is able
to fuse modalities that are not time-synchronous. With early fusion, the feature vectors
usually have a close temporally bound. However, early fusion can gain potentially useful
information that would already have been thrown away when the late fusion is applied
(Wasinger, 2006).

In SiAM-dp the focus is laid upon the late fusion process, since the system works with
already semantically represented content that is provided by modality-specific inter-
preters/recognisers. Nevertheless, it is possible that recognisers already applied early
fusion for the interpretation of input from multiple modalities before they provide the
result to the dialogue system.

2.2.5 Presentation Planning and Multimodal Fission

The previous section discussed the fusion of modalities during input; in this section
we look at the output side. Modality fission is the process of splitting semantic repre-
sentation from an intended modality-free output into a multimodal presentation to be
realised. Like the term fusion, the term fission has also been borrowed from physics and
emphasises that the output is split into several output modality presentations. Modality
fission includes the decision of how the output is channeled and coordinated through-
out the diverse available output modalities based on the user’s perceptual abilities and
preferences (Costa and Duarte, 2013).

Foster (2002) subdivides the tasks of a multimodal fission component into three parts:

2.2 Multimodal Human-Computer Interaction 25

Figure 2.8 – The multimodal fission process for the creation of context aware output
from abstract information

Content selection and structuring - Often the content to present is already
selected by the dialogue management component and provided on a semantic level.
In the first step, a fission component must divide the overall meaning into elementary
elements that can be presented to the user. Here the main approaches are schema-
based or plan-based.

Modality selection - In the next step the devices and modalities are selected that
contribute to the multimodal output. The available devices are described by several
features that include the type of information they can handle, the perceptual task
they permit, the availability, the characteristic of information to present, resource
limitations and the user’s profile which includes his abilities, skills and impairments.

Output Coordination - After the output modalities are selected, the modality
specific realisations must be created. For these modality attributes, spatial and tem-
poral parameters, as well as user characteristics, etc., are considered. Especially for
multimodal outputs with cross-modal references, the scheduling, synchronisation,
and coordination of presentations play a large role.

Honold et al. (2012) implement this concept in an adaptive probabilistic approach for
multimodal fission. Their fission process is depicted in Figure 2.8. Outgoing from a
modality-independent dialogue output, they first partition the data items into elemen-
tary data. Then they use a probabilistic reasoning approach for the selection of the
devices and modalities to involve. In the next step they post-process the output data
and, e.g., obfuscate private messages if only public devices for presentation are available.
In the last intermediate step, the final concrete output realisations are created for each
information item. Finally, the output is distributed between the target output devices.

26 Chapter 2 Fundamental Concepts

Table 2.2 – Features with effect on presentation output planning

All the processing steps involve context knowledge about available devices, users, and
the environment in their decisions. Wasinger et al. (2003) present several features from
diverse context sources that affect on the presentation output planning. They are sum-
marised in Table 2.2 and are extended with some features that play an increasing role
in CPEs. Endres (2012a,b) presents with PresTK a platform for the situation-aware
presentation of messages and infotainment content for drivers. The main goal of the
platform is to present a dramatically increasing number of in-car information systems
to the driver without also increasing the risk of driver distraction. In the first step, the
system applies techniques from scheduling and presentation planning in order to avoid
conflicts when competing for scarce resources such as screen space. In the second step,
the system considers the cognitive capacity of the driver.

Wasinger (2006) also sets a focus on symmetric multimodality that has been introduced
by Wahlster (2003) within the SmartKom project. The main statement here is that all
input modes should also be available for output, and vice versa: “only true multimodal
dialogue systems create a natural experience for the user in the form of daily human-
to-human communication, by allowing both the user and the system to combine the
same spectrum of modalities”. Thus, the presentation planner must take into account
the modality a user applied for input, and adequately adapt the selection of output
modalities. For example, speech input is responded to with speech output, interaction
with a GUI is responded to with GUI updates and if a user performs a pointing gesture
in order to identify an entity in the room, the reaction of the system could use light
spots in order to highlight the referred entity or maybe even use a robot arm.

One important design principle in the SmartKom project (Wahlster, 2006b) was “no
presentation without representation”. This means that the generated multimodal pre-
sentations must be explicitly represented in order to ensure the dialogue coherence in
multimodal communication. This plays a relevant role for the resolution of anaphoric,
cross-modal, and gestural references of the user. In the developed system, a text gen-
erator provided a list of referential items that were mentioned in the last turn of the
system. A display management component permanently kept track of the currently
presented screen content in an internally managed model for the display context.

2.3 Dialogue Systems 27

2.3 Dialogue Systems

A dialogue system is a software agent that allows users to converse with a computer in
a coherent structure. Its origins are in spoken dialogue but over time many additional
modalities have been employed in multimodal dialogue systems like text, speech, haptics,
graphics, gestures, and other modes. Figure 2.9 shows an abstract reference architecture
for multimodal dialogue systems introduced by Bunt et al. (2005) that extends the orig-
inal reference architecture of Maybury and Wahlster (1998b). The typical architecture
comprises three sequential processing phases.

1. Analyzing and understanding user input. This includes modality specific recognis-
ers and analysers, and fusion as well as discourse processing.

2. Dialogue management and action planning.

3. Planning and generation of system output by modality fission and modality specific
generation and realisation.

Furthermore, the architecture includes models for user, discourse, context, domain, task,
media, and application that are accessible by all components.

Figure 2.9 – Reference architecture for multimodal dialogue systems (c.f. Bunt et al.
(2005))

28 Chapter 2 Fundamental Concepts

2.3.1 Dialogue Management

The dialogue manager is the component in a dialogue system which controls the archi-
tecture and structure of the dialogue. Traum and Larsson (2003) define the following
functions as the main tasks of a dialogue manager:

• Updating the dialogue context on the basis of interpreted communication. The
communication can originate from the human user, the system itself, or any other
connected software agent.

• Providing context dependent expectations for interpretation of observed signals as
communicative behaviour.

• Interfacing with task/domain processing (e.g., database, planner, execution mod-
ule, other back-end system), to coordinate dialogue and non-dialogue behaviour
and reasoning.

• Deciding the content that is expressed next and when to express it.

While the first two points concern the management of the dialogue context and the
context-based interpretation of communication, the latter two rather handle the control
of the conversation with the user. A distinction is made between user-initiative, system-
initiative, and mixed-initiative systems, whereby the initiative belongs to the speaker
in control of the conversation (Jurafsky and Martin, 2009, page 865). User-initiative
systems are typical command and control systems. In a system-initiative system, the
conversation is completely controlled by the system. Thus, the system asks a question
to the user and solely reacts on inputs of the user that exactly answer the question. An
improvement of this concept is universal commands that can be said anywhere in the
dialogue and for example provide the user a shortcut for the navigation to a help or a
main menu.

Often a user wants to communicate something that is not exactly the answer to a specific
question, maybe in a sentence that provides more than one relevant piece of information.
In a restaurant-reservation example, this would be the sentence “I want to reserve a
table at five p.m. on Monday for three people”. Here, besides the day and the time,
the number of people for the reservation is also given. This type of interaction is more
natural for humans. Systems that support such a shift of conversational initiative are
called mixed-initiative systems.

Dialogue Management Approaches

Several approaches for dialogue management are mentioned in literature (Bui, 2006;
Jurafsky and Martin, 2009):

2.3 Dialogue Systems 29

Finite state-based - This approach is the simplest one and very well suited for
less complex dialogue systems with well-structured tasks. However, for handling
a mixed-initiative dialogue, a finite-state architecture is inappropriate due to the
enormous number of states that would be required to handle each possible subset
of questions and answers.

Frame-based - This approach is analogous to a form-filling task in which a prede-
termined set of information is collected. A frame-based dialogue manager collects
information from the user by asking questions until enough information is available
to perform a task. If a user happens to answer more than one question at a time,
the system has to fill the appropriate frames.

Information state-based - This architecture consists of five components: Infor-
mation state, dialogue act interpreter, dialogue act generator, a set of update rules,
and a control structure that selects which update rules to apply. The term “infor-
mation state” is quite abstract and might include things like the discourse context
and the common ground of dialogue participants, their beliefs or intentions, user
models, environment models, and so on. Thus, in contrast to a static state in the
finite state-based approach, the information state is more complex and includes the
values of many variables, the discourse context, and other elements. The update
rules are responsible for modifying the information state based on the information
of the dialogue acts. One subset of these rules is called selection rules and is used
to generate dialogue acts in order to control the dialogue.

Plan-based Dialogue Agents - Plan-based approaches are based on the idea
that people communicate in order to achieve goals, which includes the change of the
mental state of the listener. Thus, plan-based models are often referred to as beliefs,
desires, and intentions (BDI) models, which were first introduced by Perrault and
Allen (1980) and Cohen and Perrault (1979). In the plan-based theory, the speaker’s
speech act is part of a plan and it is the listener’s job to identify and respond to
this plan. Communication and conversation are thus just special cases of rational
actions in the world that can be planned as any other action by applying AI planning
techniques like the TRIPS agent (Allen et al., 2001).

Recent approaches represent the underlying structure of a dialogue using probabilistic
models (Lison, 2012). For this, rules are specified using high-level conditions and effects
and are defined as structured mappings over variables of the dialogue state. Nowadays,
probabilistic models such as Bayesian Networks are in widespread use in spoken dia-
logue systems, but their scalability to complex interaction domains remains a challenge.
Probabilistic models should help to make dialogue system more robust against noise
and uncertainty and to be capable of automatically learning and optimising from data,
making them more flexible and adaptive.

30 Chapter 2 Fundamental Concepts

2.3.2 Context Resolution

Often contributions in a dialogue have to be interpreted with respect to the actual
context, which includes the context of the world, the actual discourse, but also coherent
contributions of other input channels (compare, e.g., Bunt (2000)). Hence, in multimodal
dialogue systems it is inevitable to incorporate contextual information in order to resolve
linguistic phenomena like referring expressions.

Referring expressions

Referring expressions are a key linguistic phenomenon in verbal utterances for the iden-
tification of specific entities in the real world. The referred entity is called the referent.
Pfleger (2007) gives an extensive introduction of the role and the various types of refer-
ring expressions from a linguistic point of view. Deixis or deictic expressions is a group
of referring expressions that refer to “some entity or concept of the physical, situational
or discourse context”. They are immanently dependent on the contextual information
and can only be interpreted if the context is considered. Since they play a relevant role
in the representation of meaning in communicative acts, we give a short overview of
some referring expressions Pfleger supported in his discourse resolution for multimodal
dialogues.

Anaphora - The term anaphora stems from the Greek word meaning “carrying
back” and is a reference to an entity of the preceding discourse. In linguistics, an
anaphoric expression is a pronoun or a nominal phrase that is linked to a noun
which has been previously introduced in an utterance.

Place Deixis - Describes a spatial reference either relative to the participants of a
communicative act or to other entities in the context. The object with respect to
which the figure is located is called relatum. The important thing for the resolution
of a spatial deixis is the frame of reference. This can be intrinsic if the speaker takes
the viewpoint of the relatum; relative, if the object is located relative to another
object; or absolute, if an unambiguous reference point is used.

Time Deixis - Describes time points or time spans that are relative to the time
point when a communicative act was produced. In natural language, adverbs like
then, now or tomorrow express a temporal deixis. Temporal deixis also comprises
complex compound temporal references like next Monday which consist of an adverb
and a non-deictic name or unit of time that is modified.

Exophoric References - These are references to the visual or situational context
of the discourse. This can, e.g., be an object in the physical environment or objects
that are presented on a graphical display.

References to Collections - Sometimes an expression references an object in
a collection of possible referents, e.g., in a list of entities. Here a differentiation

2.4 Cyber-physical Environments 31

criterion like “the third entry” describes the referred object.

Cross-modal references - In a multimodal contribution, sometimes the content
of one input modality refers to content that is provided by a second modality. For
example, in the combination of a pointing gesture with the utterance “What is this
building?”, the pronoun refers to the entity that is indicated by the pointing gesture.

Ellipsis - In an elliptical construction, one or more words of an expression are
omitted, e.g., if some of the constituents have already been mentioned in a previous
turn. This especially may occur in information-seeking dialogues. The following
example shows an elliptical construction:

User: What is the menu for today?

System: (Presents the actual menu)

User: And for tomorrow?

Constraints on References

Communicative acts that contain referring expressions can additionally provide restric-
tions on the referred object which is valuable information for the resolution of matching
referents. Pfleger introduced two types of constraints:

Syntactic Constraints - A referring expression can contain linguistic information
about number, person, and gender of the referent. Usually these features must
match the result of the reference resolution.

Semantic Constraints - A referring expression can also contain semantic infor-
mation about the referent. For example in the utterance “turn on this lamp”, it is
semantically clear that the user refers to a lamp and not to, e.g., a ventilator in a
room. Semantic constraints can provide information about the type but also about
features of an object like in the utterance “the green lamp”.

2.4 Cyber-physical Environments

The combination of the physical environment, the virtual world, and data from local
networks and the internet is called CPE and enables a new spectrum of applications and
business models. A CPE is the integration of several connected Cyber-physical Systems
(CPSs) of the environment.

MacDougall (2013) defines CPSs as “enabling technologies which bring the virtual and
physical worlds together to create a truly networked world in which intelligent objects
communicate and interact with each other”. Thus, they integrate computation with
physical processes. CPSs are a complement to embedded systems, which are engineered
systems which combine computing with physical processes. Examples for the latter are

32 Chapter 2 Fundamental Concepts

Figure 2.10 – A CPE is the integration of multiple CPSs (c.f. Kahl (2014))

automotive electronics, aircraft control systems, home appliances, etc. These systems
all have one thing in common; they are realised in a closed box that does not connect its
computing capability to the outer world. “A common feature of almost all CPS is that
they heavily rely on networking” (Giese et al., 2011). Thus, together with the integration
of modern multimodal human-computer interfaces and software-based internet services,
this technology enables new interaction possibilities and applications that make the
frontiers between the virtual and real world disappear. Furthermore, the connection
of several embedded systems in the environment allows the provision of higher-level
services.

Kahl (2014) gives an overview of the components in a CPS and the integration of multiple
CPSs to a CPE. A CPS is a network of sensors, actuators, objects, and services (see
Figure 2.10). Sensors perceive changes in the environment and can detect and monitor
real objects and people. A set of dedicated services can process this sensor information
and infer further findings about the actual physical context. Furthermore, a CPS is able
to manipulate and interact with the environment by accessing actuators that form the
counterparts of sensors. Then control commands in the form of electronic signals are
transformed into physical measurable actions. The control of the actuators is a reaction
to the processed sensor information. In a simple example, the signal of a motion sensor
turns on the light in a room.

CPSs are an important requirement for the realisation of the Internet of Things (Wahlster,
2013). Together with the Internet of Services (Wahlster et al., 2014), they are key tech-
nologies for the future projects Industrie 4.0 (Kagermann et al., 2013) and the Smart
Service Welt (Acatech, 2014). Acatech (2011) see further potential of CPSs in energy
(smart grid), networked mobility, health (tele-medicine and remote diagnosis), and in-
dustry.

One possible application scenario of CPEs is the Smart Factory, where workers are
supported during their work with sensor and service information, e.g., for localizing
tools and construction units, controlling devices, or synchronising dates and tasks. The
applied user interfaces are wearables or interfaces that support the interaction from a

2.4 Cyber-physical Environments 33

distance. Thus, the worker is able to retrieve information without leaving his workplace,
dropping his tools, or polluting the input device.

2.4.1 Human Computer Interaction in CPEs

The emergence of CPEs requires a complete rethinking of the interaction between the
environment and the users that become part of the environment, move in it, and interact
with it. The classical interaction concepts where a user exclusively interacts with one
stationary device, PC, or smartphone become less dominant and make room for concepts
where the user interacts with the environment (Human-Environment Interaction (HEI)).
Input and output devices are combined with sensors and actuators in the environment for
the communication between humans and computers, and thus new interaction paradigms
will evolve. Novel interface technologies like speech interaction, gesture recognition,
distributed displays, eye-tracking, and wearable devices reinforce the trend to carry the
interaction away from stationary places where keyboards, mouse, buttons, and switches
are the usual input devices, into the room.

On the output side, the system may use classic devices for interaction, like displays or
speakers. Additionally, new actuators are available in order to gain the attention of the
user, e.g., a light spot that is turned on. On the input side, the stimulus for a system’s
reaction can be triggered actively by the user, e.g., by pressing a button, or it can be
an autonomous decision of the system based on received sensor information. However,
if a user is aware of the trigger conditions for a system’s reaction, it is possible that
he triggers a sensor event on purpose. Thus, the transition between direct and indirect
interaction may blur. In the perception of the human, the old-established interaction
with only one assigned modality for one functionality changes to an interaction with the
environment independent from the actually involved sensors and actuators.

2.4.2 Requirements

Often, higher standards are demanded from an embedded system compared to general-
purpose computing systems. From household and consumer electronics, a reliable and
robust functionality is expected. A crashing stove or TV is not tolerated by the customer.
This seems even more essential for aircraft or automotive control systems. Here, a
malfunction can decide between life and death. In CPEs a large number of heterogeneous
embedded and physical subsystems are networked and have to interact concurrently
as well as collaboratively. Meanwhile, the environmental conditions can permanently
change and the CPE must be able to adapt to unpredictable situations and be robust
enough in order to react to subsystem failures (Lee, 2008).

Kahl (2014) argues that the communication infrastructure of a CPE must be flexible and
preferably error resistant. Especially the number of integrated components is not a priori
known and can dynamically change. He expects that an event-based communication

34 Chapter 2 Fundamental Concepts

service like his Event Broadcasting Service (EBS) will be able to ad-hoc bind new sensors
and actuators into a CPE. The concrete interactions can be seen as events at a specific
time point. The involved actuators and sensors thereby interfere with each other. An
asynchronous communication would help to avoid deadlocks.

2.5 Summary

This chapter introduced the fundamental concepts for this thesis. Therefore, first an
overview of human verbal and nonverbal communication was given and examined how
communication is realised in human-computer interaction. The following part gave a def-
inition for multimodal systems, reflected on advantages and myths, and finally described
the challenges that arise from multimodal integration. Afterwards a short introduction
into dialogue systems, strategies for dialogue management, and the task of context reso-
lution was presented. The last part explains the term “cyber-phyiscal environment”.

3
Related Work

During recent years, multimodal interaction has emerged as an important topic for the
research in Human-Computer Interaction (HCI). New technologies and the use of mobile
devices in various domains have increased the requirement for more flexible, more robust,
and more natural interaction concepts. This chapter presents relevant work in the area of
multimodal interaction from the beginning to the present and summarises projects and
numerous use-cases that show the relevance of multimodal interaction in state-of-the-art
research. Furthermore, the chapter outlines existing frameworks for the development of
multimodal applications. The final sections present and compare several models for the
representation of multimodal interaction. In the first part the focus is set on existing
markup languages; the second part observes related work that deals with the semantic
annotation of dialogue acts.

3.1 Overview of research in multimodal interaction

This section gives an overview of multimodal dialogue applications. It starts with the
evolution of systems for multimodal interaction. In the first part it describes the break-
through of the first multimodal systems which was the starting point for the development
of a great number of systems that challenged a wide spectrum of integration issues. With
the experience drawn from these systems, the first design rules were formulated. This
included strategies for the fusion of modalities but also requirements for multimodal
architectures. Since the already presented classical systems mostly integrated Graphical
User Interfaces (GUIs), speech interaction and pointing gestures, the last two subsec-
tions deal with systems that extend the set of modalities with devices for nonverbal
communication, gaze and gestures. They summarise possible areas of application with
respect to the domain and their contribution to research in HCI.

36 Chapter 3 Related Work

3.1.1 Speech & Pointing

The “Put That There” Bolt (1980) system is one of the earliest multimodal concept
demonstrations. Bolt built a media room with a wall-sized screen display and a user
chair in front of it (see Figure 3.1a). The system enables the user to interact by voice and
pointing gesture inputs in a spatial data management context. Commands like “create
a blue square there”, “Put that there” or “Make that smaller” allow the user to create,
move or manipulate geometric objects on the screen. All of these phrases are incomplete
since either the information about the object to manipulate or the target position of a
movement action is missing. The missing content is complemented with the integration
of pointing gestures that provide spatial information and allow one to resolve pronoun
references and to eliminate ambiguity. Semantic processing is, e.g., realised by replacing
the deictic term ’there’ with the x,y coordinate indicated by the cursor at the time of
the utterance.

The CUBRICON system from Neal et al. (1989) supports multimodal input and output
in the context of map-based tactical mission-planning. It enables the user to interact
using spoken or typed natural language in combination with pointing gestures generated
by mouse input on a graphical display. In the other direction, the system multimodally
presents information distributed to three output devices: Two displays and speech syn-
thesis. Thus, it combines generated spoken natural language output with graphical
pointing gestures. For example, if speech output provides information about an ob-
ject, the icon that represents this object is simultaneously highlighted by blinking. The
system uses a semantic based reference resolution process that supports the handling
of ambiguous pointing gestures by considering the type or particular properties of the
object that is represented by a selected icon. For example, if more than one icon is
close to the coordinate of the pointing gesture, the utterance “What is the status of this
<point> airbase?” is only combined with icons from objects of the type airbase.

The XTRA (Wahlster, 1991) system allows the user to combine natural language input
together with pointing gestures in the context of an expert system that assists the user
in filling out a tax form. The goal is to simulate a face-to-face conversation between
humans where they frequently use deictic gestures parallel to verbal descriptions for
referent identification. A focus lies on the interpretation of distinct pointing gesture
granularities that range from exact pointing with a pencil, via standard pointing with the
index finger, to vague pointing with the entire hand. Since each granularity level results
in a different number of referential candidates, is it necessary to involve more knowledge
in the reference resolution process. The content of the knowledge base embraces the
tax form and the form hierarchy, the pointing gestures, a conceptual domain-specific
model, the functional-semantic structure of natural-language input, and the dialogue
memory. In a multi-step approach, the correct reference is resolved by analyzing the
pointing gesture, the semantics of the verbal object descriptors, and the appearance
of an object in the dialogue memory (Kobsa et al., 1986). Additionally, simultaneous
pointing gestures with both hands are supported. Figure 3.1b shows how this can help

3.1 Overview of research in multimodal interaction 37

(a) The “Put That There” system (Bolt,
1980)

(b) Simultaneous pointing gestures in the XTRA
system (Wahlster, 1992)

Figure 3.1 – Multimodal interfaces with combined spoken and gestural interaction

to prevent ambiguities. Here, the pencil in one hand specifies the focus by pointing to a
region of the form, and the index finger of the other hand points to a specific object in
the marked region. Although the finger of the second hand points at the same location,
the selected numbers differ depending on the location of the pencil, which is used for
focusing (i: {3,4},ii:{4,5}). Three reasons for the advantage of using pointing gestures
are mentioned: The natural language dialogue is simplified by saving the speaker the
generation, and the hearer the analysis of complex referential descriptions; they make
reference possible in situations in which linguistic reference is not sufficient; and they
allow the speaker to be imprecise or ambiguous, especially if the precise technological
term is unknown to him.

The AlFresco system Stock et al. (1996) is a multimodal system that integrates natu-
ral language and hypermedia. It is an interactive system for users interested in frescoes
and paintings and provides information, images, and videos of Fourteenth Century Ital-
ian frescoes and monuments. Besides an understanding of natural language, the system
integrates the typing of sentences and navigating in underlying hypertexts using a touch-
screen. For a better hypertextual exploration, the output of images and text with buttons
offers new entry points for further communication. It has been one of the first systems
that managed the coherence between dialogue and displayed output. The dialogue man-
ager provides a graphical representation of the discourse which helps to limit the problem
of opacity in the system’s behaviour and thus allows the user to easily resolve misinter-
pretations. With the support of the resolution of anaphoras and deictic references on
displayed images and hypertext buttons, the system allows much more effective access
to information than a system with natural language only communication.

The QUICKSET -system (Cohen et al., 1997) is a multimodal pen and voice system

38 Chapter 3 Related Work

Figure 3.2 – The collaborative and multimodal pen and voice system QUICKSET
(Cohen et al., 1997)

that allows the collaborative interaction via a number of distributed devices. It provides
a multimodal interface to various applications by integrating components responsible
for speech recognition, natural language generation, graphical user interfaces and mul-
timodal integration. The architecture allows the connection to distributed devices and
the outsourcing of expensive input processing to resource-rich devices. Communication
is achieved via WLAN and through a distributed multi-agent architecture. The same
interaction capabilities can be enabled for distinct types of supported devices, e.g., hand-
helds, desktops, and wall-sized terminals. The system allows one to realise applications
in diverse scenarios with a special focus on map-based interaction. A core functionality
is the unimodal and multimodal integration of spoken language and pen input. Whereas
speech input is the main modality for initiating interactions with the system, the pen
input can provide valuable additional input information. The pen input is interpreted
by a gesture recognition agent that uses neural network and hidden Markov models and
is able to recognise 68 pen-gestures, including various military map symbols (platoon,
mortar, fortified line, etc.), editing gestures (deletion, grouping), route indications, area
indications, taps, etc. Furthermore, hand-written text can be interpreted.

One presented example application (Figure 3.2) is a military strategy simulator. The
user can use pointing gestures combined with utterances to create new objects like tanks
at a specific point on the map. He can also add barbed-wire fences or fortified lines by
drawing lines at the desired locations. The typification is done either unimodally by
drawing the appropriate military symbol or multimodally by saying the label.

The author specifies some multimodal architecture requirements for future human-computer
interfaces that mean a further evolution step and additional value over the multimodal
systems of the first phase. First is a flexible asynchronous architecture that allows mul-
tiprocessing and parallel running recognisers and interpreters. Their result should be
a set of time-stamped meaning fragments for each input that are described in a com-
mon representation. With the support of a time-sensitive grouping process and a fusion

3.1 Overview of research in multimodal interaction 39

concept, it should be possible to semantically combine meaning fragments from each
modality stream to a joint interpretation.

The QUICKSET system fulfills these requirements with a flexible asynchronous frame-
work and employs continuous speech and continuous gesture recognisers running in par-
allel. The representation of meaning is solved with typed feature structures that are
very well suited to multimodal integration because they allow the sharing of structures
and the representation of partial meaning. By applying typed feature structure unifica-
tion on the input, it is possible to combine complementary and redundant information
whereas contradictory information can be recognised and refused.

Further early works on the combination of spoken and gestural interaction are presented
in (Siroux et al., 1995; Cohen et al., 1997; Oviatt, 1996).

3.1.2 Gaze, eye and head-tracking

While the previously mentioned modes of interaction primarily focused on deictic ges-
tures that are performed either directly by hand or with the help of a pointing device,
other research approaches used eye-tracking for the resolution of deictic references. It
can be assumed that eyes are an ideal pointer and a person’s eye movements and eye
fixations strongly correlate with the person’s attention to an object in the environment
(Just and Carpenter, 1976; Starker and Bolt, 1990). Sibert and Jacob (2000) argue that
people easily gaze at the world while performing other tasks. So the additional effort for
eye-gaze combined with other input techniques is quite low. In their studies they found
out that the selection of objects by eye-gaze is faster than selecting with a mouse.

People tend to look at things that are in the focus of their interest. Thus, it can be
expected that a user is tracking the object he is talking about while he is formulating
a speech command. Koons et al. (1991) utilise this feature of gaze and augment the
interpretation of deictic references when the input from other modes is partial or seg-
mented. They designed a prototype system that collects input from speech, gestures,
and eye movements. In their emergency scenario they display a two-dimensional map
on the screen and show icons representing helicopters, airplanes, trucks, fire crews, and
fire locations (Figure 3.3). With the multimodal interface, the user is able to request
information or give commands to modify the contents of the map database. The input
from all three modalities is interpreted by modality-specific parsers that represent their
results in a common intermediate frame-based form. The important thing is that each
syntactical token of the interpretation is annotated with timing information. Since in
their prototype both gestures and eye movements are adequately treated as contributors
with deictic interpretations, the timing information can be used to replace ambiguous
or underspecified information of the spoken request with their interpretation results.
The resolution of the missing content is based on typed features of a taxonomy for the
presented objects.

40 Chapter 3 Related Work

Figure 3.3 – Multimodal interface for speech, gesture and eye-gaze input. (Koons et al.,
1991)

Moniri et al. (2012) extend the concept of eye-gaze based reference resolution with the
identification of real objects in the environment. Their scenario takes place in a modern
car which is instrumented with an eye tracker, head tracker, GPS logging module, two
displays, and a speech recogniser. The aim of the presented system is to improve the
car infotainment system with multimodal communication. While the driver controls the
car, he is able to request information about objects in the environment. For example,
the command “what is this building?” that is recognised by the speech recogniser is
answered with information about the building that is actually in the line of sight of the
driver. In contrast to the system introduced before, the referenced object is not displayed
on a screen where the current 2-dimensional location is known but it is part of the real
3D world. Thus, the spatial resolution of the object is much more complex and is solved
using an algorithm that regards the eye-tracking data, head tracking information, GPS
position, orientation of the car, and a spatial model of the environment.

In Kern et al. (2010), drivers’ glances at the screen are used for an explicit gaze-based
interaction. The approach realises a direct interaction on a visual display without the
drawback of taking the hands off the steering wheel. The benefit of a hands-free in-
teraction is an increase in road safety. The idea is to replace all actions that can be
performed by a single touch on the touch screen with gazes. The duration of the gazes
on the screen should not significantly increase in comparison to the use of the touch
screen. While looking on the screen, the user gets a visual feedback by highlighting the
object the user is currently looking at. Two strategies are tested for the selection of
an item. The first strategy uses a gaze in combination with pressing a button. The

3.1 Overview of research in multimodal interaction 41

Figure 3.4 – Head and eye-tracking are used for identifying the building in the focus
of attention of the co-driver (Moniri and Müller, 2012).

second uses a dwell time approach where the user has to look at an item for a predefined
period of time (about 150-250ms). In an experimental application, gazes were used for
the post-correction of unconstrained dictation for, e.g., email, twitter, or text messages.
For this, a misunderstood word was selected by an eye-gaze and replaced with a word
from a list of alternative recognition results.

Toyama et al. (2014) combine a head mounted eye-tracker with an augmented reality
system on a head mounted display. The eyes are used to indicate regions of interest in
text documents and to activate text recognition and translation functions. The mixed-
reality system translates text snippets from Japanese to English and displays the result
close to the Japanese text on the head mounted display. Two gaze gestures are proposed
for activating OCR text reading and translation. The first strategy is to look at the
beginning and the end of the text line alternately and repeatedly (gaze repetitive leap).
The second strategy moves the gaze from the beginning to the end gradually (gaze
scan).

In Qvarfordt (2005), eye-gaze patterns are used to directly influence the dialogue be-
haviour on an interaction and not only to apply additional information. The presented
iTourist system is an interactive system for city trip planning and exploits findings from
a user study of human-human collaboration systems that showed that users’ interest
can be sensed based on eye-gaze patterns. A city map contains icons for several points
of interest, including hotels, restaurants, attractions, nightclubs, bus terminals, and the
tourist information office. If a place is presented, the system gives information about the
object via speech output and simultaneously shows images of the object. The activation
of this presentation is exclusively controlled by eye-gazes. For this purpose, an algo-
rithm was developed that calculates the activation level of every object on the screen.

42 Chapter 3 Related Work

The level depends on how long and how often a user focuses on an object. Thus, the
presentation of an object starts if the activation level exceeds a defined threshold value,
respectively it stops if the activation level drops below this threshold again. A second
eye-gaze pattern detects whether the user switches back and forth between two places
on the map. In this case information about the distance between these two objects is
given.

Nowadays eye-gaze control systems are often used for enabling people with disabilities
to communicate and interact with the world. They can use their eyes to write texts
by looking on the keys of a virtual keyboard that is afterwards synthesised to spoken
language. Other systems let them control graphical user interfaces by clicking on buttons
or selecting elements on the screen. First implementations of eye-gaze control have
already found their way onto the mass market. For example Samsung introduced with
their smartphone Galaxy S4 the “smart pause” functionality. This feature recognises
with the front camera if the user looks away from the handset and when watching a
movie, the device will pause the film.

In the previously presented examples, eye-tracking plays an active role when commands
are given to the computer. Stiefelhagen and Yang (1997) propose that eye-gaze can
also be passively applied in a multimodal dialogue system. Their presented dialogue
system is a system that allows one to work on diverse tasks that are each running in
an individual window on the screen. The primary interaction is performed by speech
commands. Although today in modern speech recognition systems the problem is not
critical anymore, 20 years ago it was important to limit grammar size in order to main-
tain performance and reliability. To achieve this, a camera-based gaze-tracking system
detected the window that was currently in focus of the user. Thus, the grammar model
could be reduced to grammar rules that only concern the tasks that are available for
this window.

Marshall (2007) describes an approach for identifying the individual’s cognitive state
from eye metrics and presents a set of metrics that are useful in measuring the cognitive
awareness of the user. First is the index of cognitive activity that is determined from raw
pupil measurements. This approach observes the high frequency details of pupil changes
that are independent from pupillary responses to changes in light which is a slow dila-
tion. A correlation between an increasing index and demanding cognitive processing has
been validated across a number of complex cognitive tasks. Other metrics are blinking,
the movement of the eyes, and a difference between horizontal location for left and right
eye that permits inferences whether the eyes are focused on a specific feature or not.
Although this information is not used to directly contribute to human-computer inter-
action, it provides valuable information about the user’s state. In a situation adaptive
dialogue system it can be used to adapt the dialogue strategy currently being pursued
by the system to the user’s attention.

3.1 Overview of research in multimodal interaction 43

3.1.3 Hand and body gestures

Since the early stages of human development, gestures and body movements have been
important channels for communication. In human-computer communication they are
also a promising approach for the realisation of natural and intuitive interaction strate-
gies. Starting from the “Put That There” system that already supported pointing ges-
tures in a multimodal context, many further research projects have worked on this
topic.

Especially hand movements play an important role and can contribute a rich set of infor-
mation to a conversation. Karam (2009) compared literature about gestural interaction
regarding the body parts that have been employed for gesturing and found out that es-
pecially hand gestures have been widely used (compare Figure 3.5). Aigner et al. (2012)
describe a classification scheme for gesture types. Pointing gestures are used to indicate
objects, persons or directions. Semaphoric gestures are hand postures and movements
that have a specific meaning which is mostly dependent on the actor’s cultural back-
ground and experience. For example, a thumbs-up gesture means “OK” and a flat palm
facing hand “STOP”. Pantomimic gestures imitate a specific action. Often they involve
imaginary objects that are not actually present. With iconic gestures, information about
entities or objects is communicated, e.g., size, shape or paths of motion.

Although gesture interfaces have not achieved a breakthrough in commercial systems
yet, with the success in video games like the Wii Remote or Microsoft Kinect and the
development of new inexpensive gesture-based input devices like the Leap Motion de-
vice, over the last few years principles of gestural interaction have become more and more
topical for other domains like the smart home, car or robot control. Wachs et al. (2011)
identify three main advantages of gesture applications over conventional human-machine

Figure 3.5 – Comparison of body parts that have been employed in literature about
gestural interaction (from Rautaray and Agrawal (2015))

44 Chapter 3 Related Work

interaction: (i) Touchless interfaces that allow total sterility especially in health-care en-
vironments; (ii) Overcoming of physical handicaps for the elderly or people with impaired
mobility; (iii) Exploration and manipulation of big data through intuitive actions that
benefit from 3D interaction. The following part provides a brief overview of related
work (sorted by the application domain) that use gesture based recognition systems for
interaction.

Medicine

Gestures have the great advantage that they are touchless. Especially in an operating
room where the sterility of the surgeons’ hands and the surgical instruments has the
highest priority, this provides a better protection against contamination. Graetzel et al.
(2004) present the non-contact mouse, a vision-based gesture recognition system that
allows the surgeon to navigate through and manipulate images and data visualisations
by simulating standard mouse functions with hand gestures. More advanced systems
(Gallo et al., 2011; Jacob et al., 2013) support a gesture lexicon of semaphoric gestures
which cover a set of functions that have been identified as being useful in an operating
room while navigating through radiological images, e.g., by browsing, zooming, rotating
and changing the brightness (Figure 3.6a). Both systems use the Microsoft Kinect
device for gesture recognition. Wachs (2010) presents an intelligent and collaborative
operating room that supports multimodal input and uses computer vision techniques in
order to determine the focus of attention of the surgeon by evaluating the surgeon’s head
orientation, torso posture and orientation. The focus of attention serves two purposes:
First, the system can use the gaze orientation for the projection of medical imagery; a
steerable projector allows one to use the wall in focus as a display surface. Second, the
system can decide whether the surgeon intends to communicate with the patient, the
system or another person in the room. The doctor can use two different input modalities
for the interaction with the system. A gesture interface allows him to browse medical
databases and manipulate the projected radiological images. Speech input extends the
input options with functions that are difficult to describe with hand gestures because
no natural association exists, e.g., the surgeon says the name of the patient in order to
retrieve medical images of him.

Automotive user interfaces

Besides their primary task to control the car, drivers interact with a variety of controls
and applications while operating a vehicle. They make use of information, communica-
tion and entertainment systems in the car. A great challenge for car manufacturers is to
design user interfaces that cover the large variety of functions and to provide interaction
concepts that are intuitive and straightforward to use without distracting the driver and
endangering his safety. Recent developments focus on gesture interaction with the aim
of replacing the classical tangible controls like buttons or levers. Riener (2012) presents

3.1 Overview of research in multimodal interaction 45

(a) Image Navigation in medicine (source
Gallo et al. (2011)

(b) VW Golf R Touch (source www.cnet.com

Figure 3.6 – Example applications for gesture based interaction.

two possible setups for gestural interaction in the car. The first is a capacitive system
that tracks finger movements with the hand on the shift knob. The second is vision
based and uses a Kinect device mounted on the ceiling for the recognition of static and
dynamic fingers as well as hand gestures in the vehicle’s gearshift area. Mahr et al.
(2011) evaluated finger gestures with the hands on the steering wheel in terms of pref-
erence and perceived physical demand. The industry is also starting to embrace gesture
interaction in the car. At the CES 2015 in Las Vegas, Volkswagen presented the Golf
R Touch, a new touchless gesture-controlled interface where drivers can navigate and
activate areas of the dashboard interface by holding their open hand, palm down, over
the shift knob (Figure 3.6b).

Human-robot interaction

Robots are machines that look like humans or can perform human functionalities. This
fact motivated researchers to apply gestures and body poses as an intuitive way to
communicate with robots. Wachs et al. (2011) mention the following advantages of
gestures in human-robot interaction: (i) Gestures can be combined with speech and
thus improve robustness. (ii) Hand actions involve valuable geometric properties. This
is especially helpful for navigational robot tasks, e.g., a pointing gesture with a “move
there” command. Furthermore, hand gestures can simulate actions of a robot gripper.
(iii) Gesture interaction is very intuitive and brings operability to beginners who are not
used to sophisticated robot control commands.

Obaid et al. (2014) describe a system that uses gestures of either one hand, two hands
or the complete body to control a humanoid robot. The basis of their work is the Full
Body Interaction framework (FUBI), which allows full body user tracking on the data of
depth sensors. In a study with technical and non-technical user-groups, they defined an
intuitive gesture set for navigational commands that is used to control a humanoid Nao

46 Chapter 3 Related Work

robot. The gesture set includes move forward, move backward, move right, move left,
turn left, turn right, stop movement, speed up, slow down, stand up, and sit-down.

Jokinen and Wilcock (2014) present a framework for multimodal interaction with a
Nao robot. In contrast to the previously presented work, gestures are used as an output
modality. The main idea is to extend a speech-based conversational system that presents
Wikipedia articles with the expressiveness of gestures by experimenting with various
gestures that are performed by the Nao robot. One of the main issues here was to
synchronise gestures and speech.

Xiao et al. (2014) present the interaction with a humanoid social robot based on body
language (Figure 3.7a). In their work the robot understands the meaning of human
upper body gestures. For output, it combines body movements with speech and facial
expressions. Thus, their approach follows the symmetric multimodality paradigm by
Wahlster (2003). Gestures are recognised by the early fusion of data from a CyberGlove
II for capturing hand positions and a Kinect for the detection of upper body poses.
The controlled robot is a realistic human-sized robot with 27 degrees of freedom for
displaying natural looking movements. In their scenario the robot interacts with the
user in a classroom. The robot takes the role of a lecturer and the user is the student.
The robot is able to understand and interpret 12 different symbolic or pantomimic
upper body gestures. For example, a raised hand is interpreted as “I have a question”,
a pantomimic drinking gesture asks for a permission to drink. The reaction of the robot
is a combination of verbal and nonverbal output where the latter consists of bodily
emotional expressions that emphasize the spoken answers.

Smart Home and Ambient Assisted Living

In the domestic domain, user interfaces are often distributed throughout the room. Some
are simple like light switches, others complicated like remote controls for the TV. Many
projects have examined the use of gesture-based interaction in smart homes, e.g., the
Swoozy Semantic Television System (Deru and Bergweiler, 2014) can be controlled by
hand or finger gestures (Figure 3.7b). Kühnel et al. (2011) access the accelerometers
of a smartphone for the recognition of dynamic arm gestures in order to control home
functionalities like lamps, TV, video recorder, or the window shutters. In a study they
tried to find intuitive gestures that can be used for the control of home appliances.
One of their findings was that one gesture should be used to control several devices in
order to shrink the gesture vocabulary. The referred device could be selected either by
pointing or by pressing a certain area on the mobile device. Neßelrath et al. (2011)
go a step further and classify functionalities into categories. All functionalities in one
category have a common meaning. For example, the category ‘turn on’ can be applied to
many devices, e.g., a television, a lamp but also the a hood fan. The category ‘increase’
includes, amongst others, the volume of a television or the fan speed of the extraction
hood. The finally triggered functionality is dependent on the current context of the
discourse. In the demonstrator system, which uses a Wii Remote Controller instead of

3.1 Overview of research in multimodal interaction 47

(a) Interaction between a human and a hu-
manoid robot (source Xiao et al. (2014))

(b) Gesture based interaction in the Swoozy
system (source www.swoozy.net)

Figure 3.7 – Example applications for gesture based interaction.

a smartphone, the context was set by speech input. If the user mentions the TV while
performing a ‘turn on’-gesture, the TV is activated. If he mentions the lamp, instead,
the light is turned on.

Physically impaired people are often incapable of performing natural body gestures.
Nevertheless, gestures may improve their possibility to control devices in their environ-
ment. The set of gestures in this case must be more personalised to the specific person
and regard the parts of their body they can control and the degree of freedom of the
movements. Hirsch et al. (2014) for example present a novel sensing modality for hands-
free gesture controlled user interfaces. They integrate four capacitive electrodes into
a textile neckband and use active capacitive sensing for continuous unobtrusive head
movement monitoring. The device is capable of recognising head movements like nod,
tilt, look, circle and woodpecker move. The system can be used for recognising natural
communicative behaviour like nodding in order to affirm something. Disabled people
who can only move their heads can now operate arbitrary devices if the head gesture
vocabulary is appropriately defined.

Krieg-Brückner et al. (2010) present with the Bremen Ambient Assisted Living Lab
(BAALL) (see Figure 3.8) a smart environment for people with diminishing physical and
cognitive faculties. This includes the Rolland wheelchair, a mobility assistant that can
automatically navigate through the environment and automatically avoids any obstacles
and assists the user when going through doors. A safety assistant ensures that the vehicle
stops before a collision can occur. This is realised using laser range sensors. Furthermore,
BAALL contains smart furniture that adapts to the users’ needs like a kitchen counter
that can be moved up and down or cabinets that can be individually moved. The
communication between the user, smart devices, and other assistants is intended to be
natural and effective. Due to the complexity of the systems to control and the users’
impairments, new multimodal interaction concepts are tested in order to introduce the

48 Chapter 3 Related Work

Figure 3.8 – Infrastructure of the Bremen Ambient Assisted Living Labs (from Frey
et al. (2010b))

system into people’s daily living. This includes natural language dialogues, visualisation,
gestures via touch screen, and a head joystick. By the combination of several services
it is possible to create higher-level services. One example presented is the utterance
“I’d like to eat a pizza”. After interpreting the user’s intention the smart environment
can proactively plan the next actions. While the mobility assistant navigates the user
to the kitchen (which includes opening the doors, planning a route, etc.), the smart
furniture adapts to the user’s need and moves the microwave downward in order to
make it accessible to the user who sits in the wheelchair.

Innovative interaction in the retail domain

Especially shopping scenarios provide reasonable use-cases for physical acts with tan-
gible user-interfaces. Wasinger et al. (2005) show how the interaction with real world
artifacts can be multimodally combined with input that is based on speech, handwrit-
ing, and gestures. They describe a demonstrator called Mobile ShopAssist that supports
the customer with additional product and product comparison information while he is
shopping in a store. The shelves and products are instrumented with RFID technol-
ogy and allow the users to directly refer their information request to the products in
their hands. For this they define the two concepts intra-gestures and extra-gestures.
The intra-gestures are on-device interactions, in the scenario on the touchscreen of a
mobile device. They are used to introduce products that are displayed on the screen
into the discourse by pointing gestures. Extra-gestures are off-device interactions and

3.1 Overview of research in multimodal interaction 49

(a) The Mobile Shop Assistant (from
Wasinger et al. (2005))

(b) The Digital Sommelier (source
http://www.innovative-retail.de)

Figure 3.9 – Physical acts with tangible user-interfaces in the retail scenario

occur when the user interacts with artifacts in the real world. In the demonstrator, the
RFID technology is used in order to detect “pick-up” and “put back” actions. The user
can combine speech with intra or extra-gestures and thus retrieve information about
products either by referring to them via pointing gesture on the touch-screen or by pick-
ing them up from the shelf. Furthermore, it is possible to compare real world artifacts
with objects presented on the screen by combining intra and extra-gesture within one
multimodal interaction (see Figure 3.9a).

Schmitz et al. (2008) present an interactive wine shopping assistant with the name Digital
Sommelier. The shop assistant provides an intuitive multimodal interface for retrieving
general product information but also particular attributes of a specific product, such as
the temperature. The wine bottles are instrumented with wireless sensors, e.g., for re-
trieving the current temperature. Furthermore, RFID and acceleration sensors are used
in order to detect physical user interactions with the bottle. Combined with natural
language, the customer can retrieve information about a wine bottle he picked up off
the shelf. If the user takes a bottle off of the shelf, the Digital Sommelier generates a
corresponding product information page and displays it on a nearby screen. Simultane-
ously the product is introduced using speech synthesis technology. The application also
receives the current temperature of the wine, compares the actual temperature against
the proposed temperature at which the wine should be served, and generates appropriate
tips. If the user turns the wine in order to read the information on the rear side of the
bottle, the rotation is detected by the accelerometer sensors and the Digital Sommelier
changes the information displayed on the nearby monitor. In this case the web page of
the manufacturer is referred, which provides additional information to the customer.

50 Chapter 3 Related Work

3.2 Multimodal Dialogue Frameworks

The previous section introduced some applications in several domains that benefit from
multimodal interaction. For the development of new applications, it is of advantage to
use frameworks that support the development process in technical terms as well as in
the provided design patterns and strategies that support the multimodal integration. In
this section some such frameworks are examined.

3.2.1 AT&T speech mashup architecture

The AT&T speech mashup architecture (Di Fabbrizio et al., 2009) aims to simplify the
combination of web content with speech processing and makes speech recognition and
TTS synthesis available by web services. The main idea is the support of speech prac-
titioners and researchers in the easy and rapid development of speech and multimodal
mobile services. The architecture consists of four components:

Speech Mashup Server (SMS) - This server provides the services for speech
recognition and speech synthesis. Furthermore, the server contains the AT&T
speech mashup server that handles the direct connections between the connected
client devices, including resolving device-dependency issues, performing authentica-
tion, and general accounting.

Speech Mashup Client - A client application that runs on the mobile device
which presents the UI (e.g., iPhone, Safari browser). The client sends and receives
audio buffers for speech input and output and receives the recognition results from
the server.

Main Application Server - A web service (e.g., Apache or Tomcat). Depending
on the application, the server provides access to a back-end database, collects and
aggregates data from other application servers and could implement the application
logic.

A mobile client application establishes connections to the application server and the
SMS. Between the client and SMS, data and speech are exchanged. The speech either
consists of the voice of the user that is recorded for speech recognition and sent to the
server, or the synthesised speech output that is sent to the client for audio output. The
speech processing resources are centrally managed in a web-based portal that supports
rule-based and stochastic grammars. For rule-based grammar specification, the Speech
Recognition Grammar Specification (SRGS) standard is used. One task of the web portal
is the grammar management which allows one to extend the shared grammar rule-set
with personalised user grammars. For the representation of recognition results, three
different language formats are supported: XML, JavaScript Object Notation (JSON),

3.2 Multimodal Dialogue Frameworks 51

(a) Speech Mashup Framework (from Di Fab-
brizio et al. (2009))

(b) WAMI Toolkit (from Gruenstein et al.
(2008))

Figure 3.10 – Architecture comparison of the the WAMI toolkit and the speech mashup
framework. In both architectures a client connects to server components for speech
recognition, speech synthesis, and application processing. The WAMI toolkit addition-
ally manages the GUI presentations.

and the EMMA markup language, a W3C standard for the interoperable input repre-
sentation in multimodal systems (see Section 3.3.2). TTS tasks are described with the
W3C Speech Synthesis Markup Language (SSML).

The applications that have been implemented with this framework range from speech
based information retrieval from a business directory to the ordering of food from a
pizza service. The applications combine graphical interfaces with speech interaction,
the possible input is a mix of voice and touch inputs. Nevertheless, the support of
cross-modal interaction is not mentioned.

3.2.2 WAMI toolkit

The Web-Accessible Multimodal Interfaces (WAMI) toolkit (Gruenstein et al., 2008)
provides a framework for the web-based development, deployment, and evaluation of
multimodal user interfaces. The supported interaction channels are speech input, speech
output and graphical user interfaces that can be controlled by mouse, pen or touch, de-
pending on the used device. The main goal of the framework is to be able to rapidly
build applications that are accessible from outside a laboratory in order to more easily
perform user evaluations. A secondary goal is that the toolkit supports a lightweight
development model for non-expert dialogue application developers in order to build in-
teractive multimodal applications. The framework supports desktop, laptop, and tablet
PCs.

The framework uses a server-client architecture where the main application runs on the
server. On the client, a web browser presents the GUI application in HTML and AJAX
while an audio controller handles the audio stream between device and server. Speech

52 Chapter 3 Related Work

recognition and synthesis are realised on the server. Thus, the client only has the task to
establish the interface to the user; the program logic is located on the server. Grammars
are specified using the Java Speech Grammar Format (JSGF), GUI information is either
sent in final HTML that is rendered in the browser or in XML messages that update
the content of an application specific GUI on the client. As example applications, some
web-based showcases are presented that support speech based interaction as well as
interaction with the GUI. Cross-modal interactions are not included.

3.2.3 DIANE

The speech dialogue system DIANE (DIAlogmaschiNE) is a frame-based dialogue sys-
tem for speech interaction developed by Siemens CT (Song, 2006; Block et al., 2004).
Applications are modelled with DIANE as a set of transactions, where a transaction is
considered similar to a frame. Each function provided by the backend application corre-
sponds to one transaction in the dialogue model. Additional information that is required
for the execution of a transaction is modelled as parameters of the transaction. At the
example of a transaction for train ticket reservation, these parameters are information
about departure, destination, date, and time of the itinerary. For each of these parame-
ters an own grammar and prompts for query or confirmation are defined. Furthermore,
trigger grammars for the direct access to the transactions can be defined.

Siemens developed DIANEXML, an XML-based dialogue design language for support-
ing the development process of speech user interfaces. This design language is used to
automatically generate the runtime resources for the DIANE dialogue system. A dia-
logue application is specified by three kinds of documents. With a transaction file the
application is defined as a set of executable transactions. Additional necessary informa-
tion is defined in a parameter file the transaction file can refer to. The grammar files
provide important information for speech recognition and language understanding. Fur-
ther functionalities like callback functions in order to specify inference rules, consistency
conditions, repair mechanisms and to invoke backend functions, are implemented by a
Java interface.

The framework focuses on the frame-based dialogue management approach, which allows
one to build mixed-initiative dialogue applications. The support of the resolution of
discourse phenomena and integration of additional modalities are not mentioned.

3.2.4 Dialog OS

The Dialog OS (Bobbert and Wolska, 2007) is an extensible platform for the development
of dialogue systems with the focus on spoken language. It is an educational tool that
allows students with even non-technological background to develop relatively complex
applications with flexible strategies for various domains. It is a commercial product that
has been developed by the former CLT Sprachtechnologie GmbH.

3.2 Multimodal Dialogue Frameworks 53

Figure 3.11 – The dialogue specification workbench in DialogOS (source:
http://www.debacher.de/wiki/DialogOS)

The system mainly focuses on speech based dialogues but can be extended with new
components over a communication API, for example actuators like a LEGO Mindstorm
robot or an elevator. The dialogue modelling approach is based on a Finite state au-
tomaton (FSA) that can be built in a GUI workspace (see Figure 3.11) where dialogue
nodes of the FSA are created and linked to each other. Nodes can be input nodes, out-
put nodes or nodes that perform internal actions. The latter can be the execution of a
JavaScripts or the assignment of variables. Furthermore, sub-automata can be executed
that describe recurring parts of the dialogue. Input nodes allow one to define a list of
expected input values either as plain text or regular expression. If an incoming text-
or speech-based input message matches the value, the FSA follows the outgoing edge to
the next node. Output nodes can be used to trigger TTS tasks.

3.2.5 SmartKom

The SmartKom project (Wahlster, 2003, 2006b) was one of the largest projects world-
wide that examined multimodal interaction. It was funded by the German Federal
Ministry of Education and Research (BMBF) and consisted of over 10 consortium part-
ners led by the DFKI. The result of SmartKom was a multimodal dialogue system that
combined speech, gesture, and facial expression for input and output (Figure 3.12). One
focus was set on symmetric multimodality. For this, a virtual character was used to
communicate with the user via speech, pointing-gestures, and facial expressions by imi-
tating human characteristics. For input, the system supported gesture input recognised
by an infrared camera, speech recognition, and a camera for facial analyses. Handwriting

54 Chapter 3 Related Work

and hand contour recognition were used only during biometric signature identification.
Furthermore, physical actions were recognised and used in order to validate whether the
user executed a correct action in order to complete a collaborative task. SmartKom
was built on an architecture for distributed components called Multiplatform which
is an open, flexible and scalable software architecture that allows one to integrate het-
erogeneous software modules written in diverse programming languages and running
on various platforms. In total, 40 asynchronously running modules were included in
SmartKom. The data interface between the components is covered by the M3L (Mul-
timodal Markup Language) which is described in detail in subsection 3.3.1.

The integration and mutual disambiguation of multimodal input and output is solved
by statistical and symbolic methods that are processed on both the semantic and prag-
matic level. The uncertainty and ambiguity during the analysis of the various input
modalities is corrected with the help of scored hypothesis graphs that stem from the
user interactions. The speech recogniser provides word hypothesis graphs, the prosody
component clause and sentence boundary hypothesis graphs, the gesture recogniser hy-
potheses about possible referenced objects, and the facial expression interpreter about
the emotional state of the user. They are unified by the fusion component using uni-
fication and overlay and the resulting interaction hypotheses ranked by the intention
recogniser. Here also, the particular context of the multimodal discourse model is con-
sidered making the final ranking highly context sensitive. The presentation planning in
SmartKom is solved with a plan-based approach. The presentation goal for the planner
is encoded in a modality-free representation. The goal is recursively decomposed into
primitive presentation tasks. For this, the system contains 121 presentations strategies
that are parametrised by the discourse context, the user model, and the environmental
context. Finally, each presentation task is sent to the appropriate generator for concrete
output realisations.

The reference resolution in SmartKom is based on a three-tiered multimodal discourse
model. This consists of a discourse layer, a domain layer, and a modality layer. The
discourse layer stores information about every discourse object mentioned. Since it is
multimodal, this comprises verbal as well as visual and the conceptual context which
includes all visible objects on the screen and the spatial relationships between them.
Each of the stored objects can have multiple surface realisations on the modality layer.
Each element in the discourse layer is also linked to an instance in the ontology-based
domain model of SmartKom. The discourse model allows one to address the following
multimodal dialogue discourse phenomena: multimodal deixis resolution and generation,
multimodal anaphora resolution and generation, cross-modal reference-resolution and
generation, multimodal ellipsis resolution and generation. Furthermore, the dialogue
management supports strategies for turn-taking and back-channeling.

One goal of the SmartKom project was to integrate the previously presented multimodal
capabilities in a dialogue shell that is reusable, efficient, and robust. With a flexible
configuration, domain independence and a plug-and-play functionality, it was possible

3.2 Multimodal Dialogue Frameworks 55

Figure 3.12 – The SmartKom reference installation for demonstrations (c.f. Wahlster
(2006b))

to simply adapt the system to new scenarios. The three scenarios that were implemented
under the SmartKom project are the following (Wasinger, 2006):

SmartKom-Public - A multimodal public communication kiosk application for
domains like train stations and airports. Input can be provided by speech, facial
expressions, and gestures on a touch screen. Output is provided by a virtual char-
acter that combines multimodal interaction in the form of graphical output, speech,
and gestures.

SmartKom-Mobile - A mobile travel application on a PDA for navigation and
point-of-interest information retrieval. The interaction is adapted to the limited
resources of the PDA. Input is provided by speech and pen-based pointing, output
by a simplified version of the virtual character agent.

SmartKom-Home/Office - The user can use multimodal interaction in the form
of speech combined with gestures in order to control an infotainment system. The
scenario includes information retrieval from an electronic program guide and the
control of consumer electronic devices like TVs, VCRs and DVD players.

56 Chapter 3 Related Work

3.2.6 ODP

The Ontology-based Dialog Platform (ODP) framework (Porta et al., 2014a; Neßelrath
and Porta, 2011) evolved from the SmartKom dialogue shell and was developed with
the aim to enable developers to easily design and implement homogeneous ODP-based
UIs for services. The complexity of the back-end architecture should be hidden from
the user. The development mainly took place during the THESEUS research program
that was funded by the Federal Ministry of Economics and Technology with the goal of
developing new technologies and methodologies for the Internet of Services.

The ODP framework provided a platform and development methods for the rapid cre-
ation of multimodal dialogue applications with the main task to retrieve heterogeneous
data from web services (Sonntag et al., 2009). A declarative programming approach
helped UI experts, who are not necessarily Java programming experts, to build appli-
cations. A main concern was to offer more abstract and comprehensible work levels
instead of working on the most concrete level of abstraction. For example, the plat-
form provides an advanced domain-independent grammar specification language. The
language allows one to directly map utterances to a semantic interpretation of the in-
put. Furthermore, algorithms are supported that handle the dynamic generation and
management of named entity grammars. Rule-based speech synthesis templates allow
a generic output generation strategy. A GUI model that can directly be connected to
the semantic data model fulfills the paradigm “no presentation without representation”
and is used to represent interaction-relevant graphical components. The platform out of
the box supports the multimodal integration of speech recognition, speech synthesis and
interaction with GUIs. Therefore, concepts for dialogue management, modality fusion,
and discourse resolution have been adopted from the predecessor project SmartKom.

All content in ODP is semantically modelled. This is a necessary requirement for the
robust multimodal processing and dialogue management. Information that is retrieved
from integrated services must first be transformed into a semantic representation and
mediated back into the internal domain model that is based on extended Typed Feature
Structures (eTFSs) (see also Section 4.2). Thus, several multimodal dialogue UIs have
been implemented for scenarios in various application domains:

TEXO (Porta et al., 2009a) - A mobile business application for the management of
business processes. A decision-maker can handle purchase order requisitions in an
enterprise resource planning system. Alternative products are visualised in three-
dimensional space. The interaction is achieved by speech and GUI on an iPhone.

MEDICO (Sonntag and Möller, 2009) - A stationary medical system for the re-
trieval of diagnoses, semantic annotation of radiological images, and comparison of
patients’ findings.

CALISTO (Bergweiler et al., 2010) - A collaborative kiosk infotainment system
that combines mobile interaction with the interaction on a tabletop surface. The

3.2 Multimodal Dialogue Frameworks 57

Figure 3.13 – The tool chain of the ODP S3 workbench (c.f. SemVox (2015))

scenario comprises information from several application domains that is retrieved by
accessing a large heterogeneous service back-end including semantic web services.

Since the end of the project, ODP has been further developed by the DFKI spin-off com-
pany SemVox GmbH1 and is sold under the name ODP S3. Heavy improvements have
been made regarding the software development kit with the aim that “developing dialog
components becomes as easy as developing apps for a smartphone” (SemVox, 2015). The
extended ODP S3 workbench provides an integrated tool chain (see Figure 3.13) based
on Eclipse and supports all steps of the development process, from the specification of
dialogues, over system integration, to an improved quality management for commer-
cial and professional use. This, e.g., includes automatically generated test cases and
system documentation. The platform itself demands low resources and is available for
the target platforms Linux x86/ARM, QNX Neutrino, Android, Windows Embedded,
and more. The supported features have also been extended with goal-oriented inter-
action, task-based dialogue models, hybrid speech recognition and the consideration of
personalisation, user models, and cognitive load.

3.2.7 Cue-me

The CueMeTM (Openstream, 2015, 2011) software development platform is developed
and licensed by Openstream and allows one to create multimodal systems based on
the W3C international standard reference architecture (Dahl, 2013). This standard
embraces EMMA, a standard for content in messages for multimodal interaction (see
Section 3.3.2). The framework is based on the OSGi standard.

The framework collects user input from diverse modalities like type, touch, talk, ges-
tures, handwriting, or stylus and can also incorporate sensor information from on-device
peripherals like camera, GPS, card reader, and bar-code scans. The information can

1www.semvox.de

58 Chapter 3 Related Work

be distributed across multiple devices, like smartphones, tablets and PCs whereby all
current operating systems are supported.

The system is context-aware and allows one to consider information from “hard sensors”,
such as location awareness, and “soft sensors” such as user preferences. For example,
if the user is moving (as in a car) the framework allows one to use speech interaction
technology for navigation and control. Multimodality increases the robustness of appli-
cations by reducing data entry errors and common mistakes. One modality of input is
hereby used to validate the content of other input modalities, which is called “mutual
disambiguation”.

An interaction manager is responsible for the coordination of information. For this, the
“Openstream MAM Server” holds application definitions that help to map collected in-
put information to appropriate methods on connected application servers. A wide variety
of enterprise SOA (Service Oriented Architecture) backend systems are supported.

The spectrum of applications covers form filling, question answering, personal infor-
mation management, annotation of drawings and more and is settled in domains like
health-care, financial services, media and entertainment, and utility and transportation
sectors (Oviatt and Cohen, 2015a). Various corporations like Walmart, Merck, Roche,
and the Bank of NY/Mellon are mentioned to have implemented multimodal applications
based on the CueMe framework.

3.2.8 Summary and Conclusion

In this subsection, several multimodal dialogue frameworks are presented. The individual
frameworks focus on specific aspects, Table 3.1 gives an overview. It is intended that the
multimodal dialogue platform presented in this thesis incorporates the identified aspects
in a comprehensive approach. The following aspects have been identified in detail:

Resolution of Dialogue Discourse Phenomena - The framework provides mod-
els and concepts that support the resolution of dialogue discourse phenomena like
anaphoras, ellipsis or deixis.

Cross-modal Reference Resolution - A fusion component combines the content
of two modalities for cross-modal interaction.

Cross-modal Fission and Presentation Planning - The system supports strate-
gies for presentation planning and multimodal output presentation.

Distributed Devices - Input and output can be distributed over several devices.

Physical Acts - Physical acts are intended to be part of HCI.

Dialogue Specification - The framework supports a strategy for the specification
of dialogues.

3.2 Multimodal Dialogue Frameworks 59

Language Standards - The framework includes international language standards
if available.

Centralized Grammar Management - The grammar resources should be cen-
trally managed, context adaptive, and distributed to connected speech recognition
engines.

Extensibility - The framework is easily extendable with new devices and modali-
ties.

Reusability and Domain Independence - Strategies, concepts and components
are easily and rapidly adaptable to new applications and domains.

Development Platform - The framework provides a comprehensive development
platform that supports even non-expert developers in the creation of multimodal
dialogue applications.

D
is

co
u

rs
e

P
h

en
o
m

en
a

C
ro

ss
-m

o
d

al
R

ef
er

en
ce

s

F
is

si
on

D
is

tr
ib

u
te

d
D

ev
ic

es

P
h
y
si

ca
l

A
ct

s

D
ia

lo
gu

e
S

p
ec

ifi
ca

ti
on

L
an

gu
ag

e
S

ta
n

d
ar

d
s

C
en

tr
al

is
ed

G
ra

m
m

ar
M

an
ag

em
en

t

E
x
te

n
si

b
il

it
y

R
eu

sa
b

il
it

y

D
ev

el
op

m
en

t
P

la
tf

or
m

AT&T SMA x x x

WAMI x x x

DIANE x x ? x ?

Dialog OS x x x

SmartKom x x x x x x x

ODP x x x x x x x x x

CueMe ? x x x x x x

SiAM-dp x x x x x x x x x x x

Table 3.1 – Comparison of the multimodal dialogue frameworks. Each framework
addresses a specific range of important aspects. For entries with a ‘?’ the literature does
not provide enough information for the classification.

60 Chapter 3 Related Work

Although some of the frameworks emphasize the extensibility with new modalities and
devices, the main focus in the presented example applications was mostly on the combi-
nation of speech and graphical user interfaces. The strengths of the AT&T SMA, WAMI
toolkit, and DIANE are modular and flexible architectures especially for speech based
dialogue applications, where WAMI and AT&T also integrate interaction with a GUI.
The disadvantages are the missing multimodality with more than two modalities and
the support of cross-modal reference and discourse phenomena resolution, as well as the
fission of output presentations. Systems that contain these features are the SmartKom
and the ODP framework. While SmartKom already distributes interaction over several
devices and includes physical acts, the ODP system is mostly used for the combination
of speech with GUIs.

In contrast to the SmartKom system, ODP and the CueMe system have included a
development platform. Furthermore, ODP integrates concepts for the specification of
dialogues that support the developer in application development. Similar concepts are
introduced by the DIANE and the Dialog OS systems. While most of the presented
frameworks use proprietary languages, AT&T SMA, ODP, and CueMe use language
standards, e.g., for the description of grammar specifications, speech synthesis and mul-
timodal interaction.

The work presented in this thesis adopts the strengths of the diverse related work frame-
works and fills their gaps. Thus, we developed an extensible dialogue platform for the
creation of dialogue applications and provide strategies for the specification of dialogues.
The first three related works showed that a centralised grammar management compo-
nent is useful for a context and user dependent grammar recognition. In the presented
SiAM framework, we also follow this approach. The representation of grammars, speech
output and multimodal interaction are based on international standards. In order to also
support more sophisticated dialogues the platform supports cross-modal references and
dialogue phenomena. Since the focus of the work is set on Cyber-physical Environments
(CPEs), a support of massively multimodality, distributed devices, and the support
of physical acts is heavily supported. A further advantage of SiAM-dp in contrast to
commercial frameworks is its openness.

3.3 Representing Multimodal Interaction

Many components are typically involved in multimodal dialogue processing, including
components for connecting input and output devices, dialogue management, multimodal
integration and fusion, and presentation planning. Unfortunately, all these distinct
components often use heterogeneous, sometimes proprietary, protocols for information
transfer, making the communication between them highly complex and expensive due
to the high overhead of model transformations. In this section several approaches are
presented that aim to overcome this problem by developing meta languages for the
representation of multimodal input and output.

3.3 Representing Multimodal Interaction 61

3.3.1 M3L - Multimodal Markup Language

M3L (Multimodal Markup Language) (Wahlster, 2003, 2006a) has been developed for
the SmartKom project (see Section 3.2.5). It is based on XML and comprises all data
interfaces within a complex multimodal dialogue system. Therefore, all sub-structures
of the particular pools involved in the system are coherently integrated into the language
specification. For this, the definition of the M3L language is decomposed into 40 schema
specifications. The idea is that during the particular processing steps from user input
to system output, the information of a message is continuously enriched with additional
content.

The input representation of M3L allows one to provide information about input seg-
mentation, the confidence of recognition and interpretation results, and interpretations
of the user’s input intention that contain discourse relevant parts as well as knowledge
instances or references. On the output-side, M3L supports the modality-independent
representation of the system’s communicative intention. A media fission component and
unimodal generators and renderers extend this representation with concrete descriptions
of the corresponding linguistic and visual objects for the surface realisation.

Semantic knowledge representation in M3L is supported with the ontology language
OIL (Fensel et al., 2001) that is transformed into a format compatible to M3L. It is
represented with XML schemata and can be handled as typed feature structures allowing
one to apply unification and overlay algorithms on instances encoded in M3L.

3.3.2 EMMA

The Extensible MultiModal Annotation markup language (EMMA) is an XML-based
W3C standard for describing the interpretation of multimodal user input (Johnston,
2009). It is in the state of a W3C Recommendation with the latest version published2

in February 2009 (Johnston et al., 2009).

The general idea of EMMA is the representation of information that has been auto-
matically extracted from user input by interpreters. Especially the message history of
the different stages during input processing from raw-signal, over input interpretation
to multimodal integration can be logged.

For the representation of an interpretation, no fix specification is defined. Moreover the
standard allows one to integrate application specific markups into therefore assigned
containers, giving the required degree of freedom for the content. Further concepts
allow one to group mutually exclusive, sequential, or in some manner related inputs.
Interpretation instances that are derived from other interpretation instances during the
process of the increasing representation refinement from raw data to interpretation can
be linked.

2http://www.w3.org/TR/emma/

62 Chapter 3 Related Work

A set of annotation attributes and elements allows one to provide additional meta-
data about the input event. This includes information about media-type, signal-format,
recognition and interpretation confidence, input source, timestamps, medium, mode and
others. For multimodal integration it is possible to define hooks which serve as place-
holders for content from other input instances. Furthermore, the language allows the
extension with non-standardised input annotation with custom vendor or application
specific information.

Examples

The EMMA document depicted in Figure 3.14 shows a markup that could have been
produced by a speech recognition and natural language understanding component in

<emma:emma version=” 1 .0 ” xmlns:emma=” ht tp : //www.w3 . org /2003/04/emma” . . .>
<emma:one−o f id=” r1 ”

emma:medium=” acou s t i c ” emma:mode=” vo i c e ”
emma:function=” d i a l o g ” emma:verbal=” true ”
emma:start=”1241035886246”
emma:end=”1241035889306”
emma:source=”smm:platform=iPhone−2.2.1−5H1 1”
emma:signal=” smm: f i l e=audio −416120.amr”
emma:signal−s i z e=”4902”
emma:process=”smm:type=asr&ve r s i on=as r eng 2 .4 ”
emma:media−type=”audio /amr ; r a t e=8000”
emma:lang=”en−US” emma:grammar−r e f=”gram1”
emma:model−r e f=”model1”>

<emma: interpretat ion id=” in t1 ”
emma:confidence=” 0 .75 ”
emma:tokens=” f l i g h t s from boston to denver ”>

< f l t><o r i g>Boston</ o r i g>
<dest>Denver</ dest></ f l t>

</ emma: interpretat ion>
<emma: interpretat ion id=” in t2 ”

emma:confidence=” 0 .68 ”
emma:tokens=” f l i g h t s from aus t in to denver ”>

< f l t><o r i g>Austin</ o r i g>
<dest>Denver</ dest></ f l t>

</ emma: interpretat ion>
</emma:one−o f>
<emma:info>

<s e s s i o n>E50DAE19−79B5−44BA−892D</ s e s s i o n>
</emma:info>
<emma:grammar id=”gram1” r e f=”smm:grammar=f l i g h t s ”/>
<emma:model id=”model1” r e f=” smm: f i l e=f l i g h t s . xsd”/>

</emma:emma>

Figure 3.14 – EMMA sample document (taken from Johnston (2009))

3.3 Representing Multimodal Interaction 63

a flight booking system. On the first level of the root element (emma:emma) it con-
tains a container (emma:one-of) element that holds two alternative interpretations
(emma:interpretation) for a speech input. One attribute of an interpretation is the
emma:confidence that reflects the interpreter’s confidence with the recognition result.
A second attribute is a list of emma:tokens, here the term token is used in the com-
putational and syntactic sense of units of input. The syntax for these tokens is not
predefined, in the example it is the list of words and phrases that have been recognised
by the speech recogniser. The element emma:interpretation itself is a container for
a single interpretation represented in an arbitrary application specific markup, in the
example the flight information with origin and destination. The data model behind this
semantic representation is directly supplied with the attribute emma:model-ref that
refers to the model defined in the emma:model tag at the end of the listing.

Further annotations are given as attributes within the element emma:one-of which are
valid for all emma:interpretation elements it contains. They comprise annotations
for modality classification (emma:medium, emma:mode), information about the raw input
source (emma:source, emma:signal, emma:signal-size, emma:process, emma:media-
type), the consulted grammar (emma:lang, emma:grammar ref) and timestamps for the
start and stop of the input (emma:start, emma:stop). Furthermore, it is possible to clas-
sify the inputs with respect to their communicative function (emma:function). EMMA
also provides an extensibility mechanism for the annotation of user inputs with ven-
dor or application specific metadata that is not covered by the standard. For this, the
container emma:info is used. In the example the container introduces vendor specific
session information.

If an interpretation instance is derived from another instance, the derivation annota-
tion can be used to log the derivation process. Figure 3.15 shows the result of an
interpretation process that goes from raw data to increasingly refined input representa-
tion. Here, interpretations from earlier stages of input processing are collected in the
emma:derivation element. The first interpretation with the ID raw contains the re-
sult from the speech recogniser which is just the utterance of the speech input (“from
Boston to Denver tomorrow”). The next interpretation with the ID better is result of
the first interpretation step and describes flight information with the origin and des-
tination of the flight and the unresolved specification “tomorrow” for the date. The
emma:derived-from indicates that this interpretation is derived from the first interpre-
tation with the ID raw. In the final interpretation with the ID best, the date is also
resolved and the correct date for the flight is added. Here, the emma:derived-from

indicates the direct derivation from the previous interpretation with the ID better.

3.3.3 SWEMMA

SmartWeb EMMA (SWEMMA) extends W3C EMMA and introduces additional struc-
tures for the representation of output (Sonntag and Romanelli, 2006). It was developed
as part of the integrated ontology in the project SmartWeb (Oberle et al., 2007; Sonntag

64 Chapter 3 Related Work

<emma:emma version=” 1 .0 ” xmlns:emma=” ht tp : //www.w3 . org /2003/04/emma” . . .>
<emma:derivation>

<emma: interpretat ion id=”raw”
emma:medium=” acou s t i c ” emma:mode=” vo i c e ”>
<answer>From Boston to Denver tomorrow</answer>

</ emma: interpretat ion>

<emma: interpretat ion id=” be t t e r ”
emma:process=” ht tp : // example . com/mysemproc1 . xml”>

<o r i g i n>Boston</ o r i g i n>
<de s t i n a t i on>Denver</ d e s t i n a t i on>
<date>tomorrow</date>
<emma:derived−from re sou r c e=”#raw”/>

</ emma: interpretat ion>
</ emma:derivation>

<emma: interpretat ion id=” best ”
emma:process=” ht tp : // example . com/mysemproc2 . xml”>

<o r i g i n>Boston</ o r i g i n>
<de s t i n a t i on>Denver</ d e s t i n a t i on>
<date>03152003</date>
<emma:derived−from re sou r c e=”#be t t e r ”/>

</ emma: interpretat ion>
</emma:emma>

Figure 3.15 – EMMA derivation example (taken from Johnston et al. (2009))

et al., 2007). The idea was to model the result of output-related components (e.g., a
presentation manager) in the extension, explicitly the results of the speech recognition
analysis.

It contains concepts for monitoring the output generation process (swemma:status) and
representing the result of the query in a processed interpretation. The result in the ele-
ment swemma:result contains data for the output as well as the presentation. Since the
project SmartWeb was focused on speech interaction, the output presentation was lim-
ited to speech synthesis. For the presentation of speech synthesis requests, the standard
SSML was used that is nested inside of the element swemma:result.

3.3.4 SALT

SALT (Speech Application Language Tags) (Wang, 2002) is a spoken language interface
standard from Microsoft Research for multimodal or speech-only applications. The main
idea of the language is to adapt UI principles known from graphical web based appli-
cations to a design approach for spoken dialogues. This enables dialogue designers to
concentrate on the pure user interface design instead of details in software engineering.

3.3 Representing Multimodal Interaction 65

Wang compares a GUI application with a goal-oriented dialogue system where the infor-
mation is exchanged with an iconic language. The interaction strategy is mostly system-
initiative since the workflow of the interaction is normally prescribed by the design of the
graphical user interfaces. Some mixed-initiative aspects can be realised using features
such as type-in help or search boxes. The dialogue management is mainly page-based
where the subtasks of a transaction are encapsulated in single pages or forms.

The SALT approach is built on the belief that spoken dialogues can also be modelled by
a page-based interaction where each spoken interaction turn (the equivalent of a page)
is designed to achieve a task’s sub-goal. Thus, the same mechanisms that dynamically
generate web pages today should be used for the planning of a speech-based dialogue.
This includes the synthesis of spoken utterances and generation of grammars that define
the utterances supported by a speech recognition component.

Consequently the object-oriented, event-driven model approach that is commonly used
for GUIs is utilised for the integration of multiple input methods. If a user interacts with
a GUI element, e.g., by a mouse-click on a graphical icon, this event is represented by
an event object instance that contains all necessary information about the event, in this
case the action type mouse-click and the coordinates of the mouse pointer on the screen.
A speech input is correspondingly represented with the notion of semantic objects that
capture the meaning of the spoken language. The semantic objects used are based on a
type hierarchy.

Furthermore, SALT follows a semantic driven multimodal integration strategy and for
this provides handlers that enrich the previously mentioned GUI events with a semantic
representation of the objects with which the user interacts. This can be used for the
resolution of cross-modal references, e.g., in a unification-based multimodal integration
algorithm. Since speech objects share the same high level abstraction as GUI objects,
in SALT speech objects can consistently interoperate with GUI objects, allowing multi-
modal dialogue designers to extend the currently used modality for communication.

The syntax for the SALT object examples is expressed in XML. The following snippet
instantiates a SALT object that describes a speech input event:

< l i s t e n id=” foo ” onreco=” f () ” onnoreco=”g () ” mode=”automatic ”>
<grammar name=”main” s r c=” . . / meeting . xml”/>

</ l i s t e n>

The listen instance defines the grammar used for speech recognition by a universal
resource indicator (URI). Furthermore, the attributes onreco and onnoreco specify the
callback methods that are executed in case of a successful respectively failed speech
recognition event.

A SALT speech output object is a prompt object. It is used to perform text to speech
synthesis (TTS) or to play prerecorded audio. A prompt request can contain static but

66 Chapter 3 Related Work

also dynamic content by adopting a simple template-based approach for prompt gener-
ation. The following snippet shows an example. Here, the value tags refer to data from
the input part of the SALT interaction turn:

<input name=” o r i g i n ” type=” text ”/>
<input name=” de s t i n a t i on ” type=” text ”/>
<input name=”date ” type=” text ”/>
. . .
<prompt . . .>Do you want to f l y from

<value targetElement=” o r i g i n ”/> to
<value targetElement=” de s t i n a t i on ”/> on
<value targetElement=”date ”/>?

</prompt>

SALT also supports the expression of deictic (or spatial) references within a listen object.
The following snippet is part of a grammar that additionally to the supported utterances
defines propname and propvalue attributes that are used to generate a semantic object:

<r u l e propname=”dr ink ” . . .>
<opt ion> the </ opt ion>
< l i s t> <phrase propvalue=” c o f f e e ”> l e f t </ phrase>

<phrase propvalue=” j u i c e ”> r i g h t </ phrase> </ l i s t>
<opt ion> one </ opt ion>

</ ru l e>

Dialogue designers can use this mechanism to bind particular speech phrases that contain
spatial references to the current situational context, in this example the presentation of
the two drinks on the GUI. Alternatively, the GUI may render a list of drinks and the
speech grammar is adapted with the expressions “the first one” or “the bottom one”.
In this approach the grammar is statically bound to the actual presentation in the GUI
which means that a change in the GUI implicitly results in the demand of a change in
the speech recognition grammar.

Unfortunately the integration of other modalities beyond GUIs and speech is not in-
tended. The inclusion of speech act notions and pragmatics and natural language gen-
eration are planned as future work.

3.3.5 Summary and Conclusion

In this section four languages are presented for the representation of multimodal inter-
action. The following important features have been identified:

XML-based Language - All languages use XML-based languages for representa-
tion.

3.4 Dialogue Act Annotation 67

Continuous Refinement of Content - Since several components may deploy
content to a message, it must be possible to continuously refine the message during
the data workflow from raw data to interpretation.

Concrete Schemes for Modalities - Predefined schemes for the syntactic de-
scription of input and output should exist.

Modality Independent Representation of Interaction - The system should
support a concept for the modality independent representation of content.

Semantic Knowledge Representation - Semantic knowledge representation should
be supported based on ontologies.

Representation of Uncertainties - Recognition and interpretation uncertain-
ties can be annotated with confidence values. This includes the representation
of scope ambiguities. Scope ambiguities occur if two quantifiers take scope over
each other and thus allow one to interpret an expression in different ways (Hurum,
1988). Humans are also capable of representing semantic ambiguity by means of
underspecified representations that do not require all aspects of interpretation to be
resolved (Poesio, 1994). An intermediate representation like the Quasi Logical Form
(QLF) (Alshawi, 1990) is needed that contains unresolved terms corresponding to
the uncertainties in underspecified representations.

Extensibility - The model should be extendable with content from new devices or
interpreters.

Table 3.2 gives an overview of the features that are supported by the individual mod-
elling languages introduced in this section. SALT already contains most of the above
listed features but is designed for speech interaction in combination with GUIs, an ex-
tension with other modalities is not intended. The M3L language contains a large set
of concrete representation schemes but is not designed for extensibility. EMMA and
SWEMMA, which is based on ontologies and extends EMMA with output representa-
tions, are well elaborated and the only missing feature is a comprehensive approach for
the uniform syntactical and semantical representation of interaction. This additional
issue is addressed by SiAM-dp which is described in Chapter 5.

3.4 Dialogue Act Annotation

In order to successfully build a conversational model, the simple description of conver-
sational behaviour is not sufficient. Even if the content of two conversations is equal,
the actual set of exhibited behaviours differs from person to person and conversation
to conversation (Cassell, 2000). This also means that one particular behaviour can be
employed in a variety of circumstances to produce distinct communicative effects and the
same communicative function may be realised through various sets of behaviour. The

68 Chapter 3 Related Work

In
p

u
t

O
u

tp
u

t

M
u

lt
im

o
d

a
l

X
M

L
-b

as
ed

C
o
n
t.

R
efi

n
em

en
t

C
o
n

cr
et

e
S

ch
em

es

M
o
d

al
it

y
In

d
ep

en
-

d
en

t
R

ep
re

se
n
ta

ti
o
n

S
em

a
n
ti

c
K

n
ow

le
d

g
e

R
ep

re
se

n
ta

ti
o
n

R
ep

re
se

n
ta

ti
on

o
f

U
n

ce
rt

ai
n
ti

es

E
x
te

n
si

b
il

it
y

M3L x x x x x x x x x

EMMA x x x x x x x x

SWEMMA x x x x x x x x x

SALT x x o x x x x x

SiAM-dp x x x x x x x x x x

Table 3.2 – Features supported by the individual interaction modelling languages. The
symbol (o) indicates that multimodality is restricted to speech interaction and GUIs.

actually applied communicative behaviour is dependent on the type of conversation,
availability of modality, cultural patterns, and also the personal style.

Thus, in order to build a model for the description of how conversation works, it is nec-
essary to identify high level structural elements of interaction and their communicative
function in the discourse. These elements describe a role or function in a contribution,
e.g., conversation invitation, turn taking, providing feedback, or task requests (Cassell,
2000). Especially the examination and annotation of linguistic data at the semantic
level in terms of their communicative function experience a growing interest resulting in
various dialogue act annotation schemes. The maybe most widely used one is DAMSL
(Dialogue Act Markup using Several Layers) by Allen and Core (1997).

The scheme DIT++ (Bunt, 2009) extends this scheme with the possibility to annotate
multifunctional communicative acts, which is necessary because of the phenomenon that
utterances in a dialogue often have more than one communicative function (Bunt, 2011b).
For example, the request “Henry, could you take us through these slides?” contains,
besides the function to assign the turn to Henry, also a specific request. It is argued
that this phenomenon can be explained by analysing the participation in a dialogue
as involving the performance of several types of activities in parallel, relating to the
different dimensions of communication (Bunt, 2011a). Therefore the annotation language
of dialogue acts must be multidimensional which means that multiple tags must be
assignable to a single dialogue act (Petukhova, 2011).

Since human communication is not only restricted to verbal communication, also non-
verbal and multimodal dialogues can be annotated with these schemes. Petukhova and

3.4 Dialogue Act Annotation 69

Bunt (2012) argue that nonverbal behaviour may emphasize the intended meaning of
synchronous verbal behaviour. It may also express a separate dialogue act in parallel
to a verbal speech act expressed by the same speaker and add multi-functionality to a
communicative contribution.

Petukhova and Bunt (2012) also point out the importance of a distinction between
the description of the conversational behaviour and the communicative function, more
precisely the separation from description and interpretation (in this thesis we will address
this issue also with a distinction between the syntactic and semantic representation of a
dialogue act). This is well-founded by the argument that even in speech-only dialogues
one function can be expressed in several different ways. Above all, the same functions
can additionally be communicated by diverse modalities.

A model that decouples the two abstraction levels of representation easily allows one to
consider the above mentioned phenomena. The following subsections will discuss how
three frameworks for multimodal interaction support and realise this idea. The fourth
related work presented is an ISO standard for the annotation of dialogue acts on which
the dialogue act model in SiAM-dp is based.

3.4.1 EMMA specification

EMMA (see also Section 3.3.2) does not directly support a well elaborated annotation
language for the description of communicative functions. Anyway, the standard is aware
of the fact that a user input can serve as several functions. Thus, orthogonally to
the mode, user inputs can be classified with respect to it. The simple classification is
defined by the attribute emma:function that contains a string with a value of the open
set {recording, transcription, dialog, verification, ...}. A more concrete
subdivision is not specified by the standard.

3.4.2 SAIBA framework

SAIBA is a framework for the multimodal generation of communicative behaviour with
embodied conversational agents (Kopp et al., 2006) with the main goal to help researchers
in building more sophisticated virtual humans. It is based on a three stage model called
SAIBA (Situation, Agent, Intention, Behaviour, Animation) where the stages represent
intent planning, behaviour planning and behaviour realisation. Figure 3.16 depicts the
three different levels of the generation process. This approach is necessary since the
generation of natural multimodal output requires a time-critical production process with
high flexibility.

The framework defines two markup languages that serve as interfaces between the gen-
eration steps: FML and BML.

70 Chapter 3 Related Work

Figure 3.16 – Steps during multimodal output generation in the SAIBA framework
(from Kopp et al. (2006))

The Function Markup Language (FML) describes the communicative function at the level
of intent independent from the actual realisation of the surface behaviour. It constitutes
the interface between the Intent Planning and Behaviour Planning components and
provides a semantic description of a dialogue act and its associated semantic units or
content. A unified language for the functions is still a work in progress but the containing
aspects are relevant for the planning of verbal and nonverbal behaviour.

The Behaviour Markup Language (BML) describes the surface realisation of multimodal
behaviour which is then implemented by realisation engines like GUI or speech render-
ers. The latter can theoretically realise every aspect of content the behaviour planner is
generating (verbal, gestural, phonological, etc.). In practice, the scope is often restricted
to a limited set of predefined realisations. However, BML avoids specific process imple-
mentations and provides general descriptions of multimodal behaviour independent from
the applied renderer.

Example

Vilhjálmsson (2009) provides an example that gives a better understanding of the impor-
tance of the distinction between communicative function and communicative behaviour
(see Figure 3.17).

Here a narrator wants to report about his contrasting chocolate flavours. The com-
municative intent is represented on the left side of the figure in a formal notation. It
contains the wish to open a new topic, a representation of emotions and finally the com-
municative function to inform the listener about the flavours. The figure demonstrates
two actually applied conversational realisations for the narrator’s intent. In the first
case, the recipient of the message is not present and the the realisation of the commu-
nicative intent is written. In the second case the recipient is present and the intent is
realised in a combination of spoken language and body gestures.

The example points out that the actual realisation of communicative behaviour is highly
dependent on the situational context, here the presence of the listener. The communica-
tive intention, however, stays the same. Thus, the division into two levels of abstraction
helps modern applications to integrate multimodal behaviour.

3.4 Dialogue Act Annotation 71

Figure 3.17 – Two different and situation dependent forms for the realisation of a
communicative intent (from Vilhjálmsson (2009))

Especially in an embodied conversational agent architecture (see Figure 3.18), the cen-
tral dialogue module can make decisions purely on the abstract level of communicative
intention. The modules that understand or generate the behaviour map the agent’s
intentions to behaviour and vice versa, depending on the current context. This con-
cept enormously simplifies the process of adapting an agent’s behaviour to particular
situational contexts like users, cultures, or available devices.

Figure 3.18 – Example for a conversational agent architecture where decisions are only
made on an abstract representation of intentions (from Vilhjálmsson (2009))

72 Chapter 3 Related Work

3.4.3 CDE framework in VirtualHuman

The VirtualHuman project (Reithinger et al., 2006) aimed at developing a scenario
with virtual characters that interact in cooperation with the user as comprehensive,
life-like dialogue partners. In the demonstrator system (Figure 3.19), the user can mul-
timodally communicate with virtual characters that are located in a highly realistic
virtual environment. A main focus was placed on the simulation of lifelike interactivity
in a mixed group of real people and believable virtual characters. Thus, characters show
the typical interaction behaviour that is expected by real humans depending on the
actual situation of interaction (Löckelt et al., 2007). The 3D rendering engine creates
naturalistic virtual characters with the ability to show communicative behaviour using
body gestures and facial expressions and can even express emotions, moods and person-
ality. These are combined with spoken utterances that are generated by a text-to-speech
system and synchronised with the non-verbal behaviour.

The communicative behaviour of the virtual characters is represented with the Player
Markup Language (PML), a XML-based language that provides both high level abstract
concepts (e.g., gestures, complexions, emotions) and detailed, technical information re-
quired for the character and player-related realisation of those concepts, e.g., timing
information. One important part of this language are PML actions that are used for
the specification of synchronised multimodal output (e.g., postures, gestures, facial an-
imations, speech). This representation of interaction is located on the level of surface
realisation.

For each of the dialogue participants, the real and virtual humans, a conversational
dialogue engine (CDE) is responsible for dialogue and behaviour control. The atomic
units of the communication are communicative acts, the set of possible communicative
acts is shared and agreed upon between all CDEs. They are organised in an ontology

Figure 3.19 – The VirtualHuman demonstrator system (from Reithinger et al.
(2006))

3.4 Dialogue Act Annotation 73

and extend concepts of the common DAMSL annotation scheme (Allen and Core, 1997).
The top-level class of the hierarchy is the Act class which is parent of four kinds of
acts: PhysicalActs, DialogActs, NonverbalActs, and StartOfSpeech. Figure 3.20 shows an
excerpt of the hierarchy. NonverbalActs include gestures like Iconics, Metaphorics, and
Gazes. Instances of the DialogueAct class represent the intention of a character and are
further divided into more concrete concepts, e.g., Questions, Responses and Statements
(Kempe et al., 2005).

Pfleger (2007) points out that the VirtualHuman architecture distinguishes between
User-CDEs and Character-CDEs. While the User-CDE represents a human user of the
system, the Character-CDE represents an autonomous character of the virtual world.
Accordingly the User-CDE is more responsible for input processing and has to convert
the recognised verbal and nonverbal actions by the user into instances of the above men-
tioned ontology, applying speech recogniser, gesture recogniser and natural language
understanding components. On the other hand, the Character-CDEs generate multi-
modal output in the form of synchronised verbal and nonverbal contributions of the
virtual character. For this the ontological instance of a dialogue act is converted into the
surface realising PML syntax, containing spoken utterances and nonverbal actions.

Overall, it can be said that the CDEs serve as a translator between an abstract ontolog-
ical instance of a dialogue act and the multimodal contribution of a participant. While
the surface realisation is appropriate for the interaction with the user, internally the in-
terfaces between the diverse CDEs and dialogue management are based on the abstract
dialogue act representations.

Figure 3.20 – Overview of the Act hierarchy in the CDE ontology (from Pfleger (2007))

74 Chapter 3 Related Work

3.4.4 Semantic Dialogue Annotation Framework ISO 24617-2

ISO 24617-2:2012 (2012) is an international standard for the annotation of dialogues
with dialogue act information (Bunt, 2011b; Bunt et al., 2010). The motivation for
the standard was a wide range of alternative dialogue act taxonomies and inventories
causing considerable terminological and conceptual confusion and incompatibility of an-
notated corpora (Bunt, 2011b). The standard is partly based on the DIT++ (Bunt,
2009) taxonomy which follows a dynamic approach for describing utterance meaning in
the Dynamic Interpretation Theory (DIT). In this theory dialogue acts correspond to
update operations on the information states of participants in the dialogue.

The representation of dialogue acts is defined in the Dialogue Act Markup Language
(DiAML), a formal language for expressing dialogue annotations. With the dialogue
act theory it follows an empirically-based approach to the computational modelling of
communication, in particular of linguistic and nonverbal communicative behaviour in
dialogue. Furthermore, the standard provides a set of empirically and theoretically well-
motivated concepts for dialogue annotation and a method for segmenting a dialogue into
semantic units.

The standard defines a dialogue act as “a semantic unit of communicative behaviour
in dialogue, which has a certain communicative function (possibly more than one) and
semantic content”. Figure 3.21 depicts how dialogue act annotation concepts are related.
A dialogue is divided into two or more functional segments. Each functional segment
is related to one or more dialogue acts, allowing one to represent a possible multi-
functionality of functional segments. Nevertheless, the sender of a functional segment
is exactly one dialogue participant, the addressee can be one or also more participants
if the sender communicates with a group. Furthermore, participants in other roles can
be modelled, so-called side-participants. Semantically, a dialogue act is divided into a
communicative function part and a semantic content category. While the latter provides
information about the type of semantic content carried by the dialogue act, the former
indicates how the particular function of the sender’s behaviour should be understood.

The annotation scheme aims to support both manual and automatic annotation. Thus,
the concepts can be settled at various granularities: concepts with a depth that match
human understanding of a communicative function and additionally more rough concepts
that allow a more surface-oriented form of annotation. For this, the standard defines a
hierarchy of communicative functions where functions deeper down in the hierarchy are
more fine-granular. It contains two different types of functions:

Dimension-specific functions
These functions often do not transport semantic content. They are used to annotate
utterances that are responsible for turn management, providing feedback, time man-
agement, discourse structuring, communication management, and social obligations
management.

3.4 Dialogue Act Annotation 75

Figure 3.21 – Meta-model for dialogue act annotation (from ISO 24617-2:2012 (2012))

General-purpose functions
These are domain-independent functions that transfer information or discuss com-
municative or other actions. Figure 3.22 depicts this hierarchy. It contains two main
groups: Information-transfer functions and action-discussion functions. The first
type can again be subdivided in information-seeking functions and information-
providing functions. The latter is split into the main groups commissives and direc-
tives. Farther downward in the hierarchy tree, the functions become more concrete
and are used to annotate functions like check question, confirm, accept offers, or
decline requests. General-purpose functions often transport semantic content, e.g.,
the information that is provided/requested or a specific task that is content of an
instruction.

The ISO standard explicitly claims that the core annotation concepts provided cannot
be expected to be ideal for every kind of dialogue analysis, for every task domain,
every dialogue, or every annotation purpose. Hence, it is open and provides guidelines
and general principles for extensions (e.g., domain-specific concepts), and for selecting
coherent subsets of core concepts.

76 Chapter 3 Related Work

Figure 3.22 – Hierarchy of communicative functions in ISO 24617-2:2012 (2012)

3.4.5 Summary

This section discussed the advantages of semantic dialogue act annotation. Several
projects were examined that consider this way of representing dialogue acts in HCI.
We identified the following relevant aspects that influence the work presented in this
thesis:

Separate representation of communicative behaviour and function

It has been discussed that the communicative behaviour of a dialogue participant
can be interpreted in various ways, depending on cultural, personal, and situational
issues. Thus, the interpretation or intention behind an extrinsic identical verbal
or nonverbal communicative act can differ. Furthermore, one and the same com-
municative intention can be expressed in different ways. There can be variations
in the utterances of spoken language or even non-verbal acts expressing the same
intention.

In order to consider the loose coupling between communicative function and be-
haviour, it makes sense to provide representation languages for both of them. Fur-
thermore, a mechanism for the transformation between both models is necessary.

3.4 Dialogue Act Annotation 77

On the input side interpreters have the task of understanding the intention of a
dialogue participant’s behaviour and representing it in the language for commu-
nicative functions. On the output side the system’s communicative intention must
be presented to the dialogue participant in a way that is perceptible for him. For
this output generators or renderers are responsible for, e.g., synthesising spoken
language or generating graphical user interfaces.

Dialogue Management based on communicative functions

The frameworks presented use communicative functions for the internal planning of
dialogue management decisions and for the communication between involved mod-
ules. This has two advantages:

First, the decisions in dialogue planning can be made purely on the more ab-
stract representation of the dialogue participants’ intentions. The actually consulted
modalities and surface realisations must not be regarded at this point. This auto-
matically makes the dialogue management independent from the effectively used
modalities and devices. Thus, a compensating or complementing extension with
new devices is realisable without adapting the dialogue management specification
of an application.

Second, the dialogue applications become highly flexible in terms of the devices and
surface realisation actually used. These can be created by generators or renderers,
regarding situational, personal, or cultural aspects.

Classification of communicative functions in a hierarchical taxonomy

Some of the dialogue act annotation languages presented use a hierarchical tax-
onomy for the classification of dialogue acts. This allows one either to build more
precise annotations with concepts from a deeper hierarchy level, or less fine-grained
annotations with communicative functions from a higher level. Thus, on the one
hand it is possible to make manual annotations with a satisfying reliability, on the
other hand automatically performed annotations maintain a high accuracy.

Table 3.3 gives an overview of the multimodal dialogue-act annotation aspects that
have been addressed by the individual related work presented in this section. The first
three columns classify the work into international standards, language specifications,
and dialogue systems. The other columns recall the above mentioned aspects and depict
which of the presented languages support them.

The first three annotation languages for dialogue acts have not primarily been designed
for the use in a dialogue system. Nevertheless, their concepts are well suited to de-
scribing the intention of an interaction act in the dialogue system and the hierarchy
for communicative functions is a feature that has not been deeply elaborated on in the
other related work presented in this subsection. This work fills this gap by adopting

78 Chapter 3 Related Work

these concepts, which are even part of an international standard, and using them for the
modality independent representation of interactions.

Both presented frameworks SAIBA and CDE show how important the separation be-
tween the representation of the communicative behaviour and the intention is in order
to build highly flexible multimodal dialogue systems. Both systems use interpreters and
generators for the translation between behaviour and intention. SiAM-dp transfers these
ideas and provides models for describing interactions on both levels of abstraction and
strategies for realising the translations between them (see Chapter 5). In contrast to
the other dialogue system frameworks presented in this section, the description of the
intention is based on the concepts of international dialogue act annotation standards.
This approach is assumed to provide a good basis for further research in dialogue man-
agement as well as speech and language processing in combination with a diversity of
additional modalities.

In
te

rn
at

io
n

al

S
ta

n
d

ar
d

L
an

gu
ag

e

S
p

ec
ifi

ca
ti

on

D
S

F
ra

m
ew

or
k

R
ep

re
se

n
ta

ti
on

of
B

eh
av

io
u

r

R
ep

re
se

n
ta

ti
on

of
In

te
n
ti

on

B
eh

av
io

u
r

In
te

rp
re

te
r

B
eh

av
io

u
r

G
en

er
at

or

S
it

u
at

io
n

al

A
d

ap
ti

ve
B

eh
av

io
u

r

H
ie

ra
rc

h
y

fo
r

C
om

m
u

n
ic

at
iv

e
F

u
n

ct
io

n
s

DAMSL x x

DIT++ x x x

DiAML / ISO 24617-2 x x x x

EMMA x x x o

SAIBA x x x x x x

CDE / Virtual Human x x x x x o

SiAM-dp x x x x x x x

Table 3.3 – Identified dialogue act annotation aspects in related work. The symbol (o)
indicates that the aspect has been considered but not deeply elaborated upon.

4
The SiAM-dp modelling language

The choice of the right modelling language has been the first and a very important
step for the design of the model-based development approach in this thesis and a lot of
effort has been put into this question. Several aspects from diverse requirements have
influenced the final decision, outgoing from the findings in related work and current
languages and formats for representing meaning and metadata in multimodal dialogue
systems. They mainly raise demands on the expressiveness and the representation of
meaning and knowledge as well as reasoning capabilities for the fusion of information
from different sources. These aspects are analysed in Sections 4.1 and 4.2.

Furthermore, several practical issues have been taken into account since the modelling
language must form the basis of the complete dialogue platform, including the runtime
components and a development environment. Section 4.3 discusses these requirements
and presents the modelling language finally used in the Situation Adaptive Multimodal
Dialogue Platform (SiAM-dp) and the extensions that have been developed in order to
fulfill them. Section 4.4 presents a model for defining match patterns which is a valuable
feature throughout the dialogue platform.

4.1 Semantic Knowledge Representation

The early multimodal systems presented in Section 3.1 already used knowledge bases
for fusion and reference resolution. They mostly accessed taxonomies and typed fea-
ture structures for the representation of their knowledge bases. Milward and Beveridge
(2003) elaborate that semantic knowledge and ontologies may play a relevant role in the
replacement of hand crafted dialogue design with generic dialogue systems that work
on an ontological domain knowledge. Thus, the complexity of dialogue system com-
ponents could be reduced. In their case studies that worked on speech-based dialogue
systems, they showed that, additionally to reference resolution, ontologies can contribute

80 Chapter 4 The SiAM-dp modelling language

to dialogue management, speech recognition, speech interpretation, and speech genera-
tion. Other state-of-the-art dialogue platforms that rely on ontologies were introduced
in Section 3.2. Here the semantic representation of knowledge is especially exploited
in discourse and context resolution in order to gain relevant knowledge about a user’s
intention in the context of the actual discourse and environment.

A base requirement for those systems is a suitable meta-language that can represent
the content of interactions in a semantic and thus machine-understandable way. It is
necessary to have a structural framework that allows one to organise the information, to
define concepts and to set them in relation to each other. Several W3C and semantic web
projects developed standards for knowledge modelling, e.g., the Resource Description
Framework (RDF), RDFs, DAML, and OWL. Others try to annotate information that is
available in human-readable form with additional semantic content. RDFa, for instance,
allows one to embed rich metadata within already existing HTML, XHTML or XML-
based web documents, making the information presented in this document additionally
machine-understandable.

All these languages can be grouped under the term ontology language. Originally the
term ontology comes from philosophy and is the study of ’what there is’, i.e., whether
a certain thing, or more broadly entity, exists (Hofweber, 2014). Furthermore, it de-
scribes the most general features and relations of entities. With an ontology language
it is possible to set a syntactic predication of formal logic into relation to an interpre-
tation with model-theoretic semantics. A difference is made between the terminological
component (TBox) and the assertion component (ABox) of an ontology. The TBox
describes the terminology of a world with a set of concepts, their relations, and their
properties. The ABox describes concrete objects (individuals) within a knowledge base
by TBox-compliant statements.

In computer science, ontologies play a relevant role for knowledge engineers (ontologists)
and researchers in artificial intelligence. The following epistemological primitives are the
most common for ontologies and are supported by most semantic modelling languages:

Concepts: Ontologies contain taxonomies that group entities into concepts (also
called classes) that share common features (e.g., attributes or relations). For ex-
ample the concept Vehicle represents all classes of vehicles like cars, airplanes, or
bikes. Often the taxonomies have a hierarchical structure and define derivations by
is-subtypeOf relations.

Attributes: Each concept in an ontology can contain attributes that are defined
by a name or identifier and an attribute type. They describe a special characteristic
or feature of a concept, e.g., the colour of a car.

Relations: Relations build up connections between the concepts of an ontology.
Mostly the relations is-a and is-subtypeOf relations are used in order to define
individuals of a concept or hierarchies between concepts. Another common repre-
sentative is the has-a relationship.

4.1 Semantic Knowledge Representation 81

Individuals: Individuals are instantiations of a specific concept and defined by
the is-a relation. For example, the individual Angela Merkel is an instance of the
concept Person.

In the following subsections some common semantic modelling languages are presented
(see also Allemang and Hendler (2008)).

4.1.1 RDF - Resource Description Framework

A basic framework of the semantic web as promoted by W3C is the Resource Description
Framework (RDF)1. In the semantic web things or entities are referred to as resources
that can be directly identified by a Uniform Resource Identifier (URI). Nevertheless,
the availability of the resource at the URI is not absolutely necessary. RDF has been
developed for the annotation of these web resources with meta-information. The basic
building blocks of RDF are the so-called subject-predicate-object triples. Here the sub-
ject and object are set in relation by a predicate. Usually RDF models are presented as
XML-document (Figure 4.1 shows an example). RDF is the basis for the more expressive
languages RDFs and OWL.

<rdf:RDF
xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns:cd=” ht tp : //www. recshop . fake /cd#”>
<r d f :D e s c r i p t i o n
rd f : about=” ht tp : //www. recshop . fake /cd/Empire Burlesque ”>
<c d : a r t i s t>Bob Dylan</ c d : a r t i s t>
<cd :country>USA</ cd :country>
<cd:company>Columbia</cd:company>
<c d : p r i c e>10 .90</ c d : p r i c e>
<cd :yea r>1985</ cd :yea r>

</ r d f :D e s c r i p t i o n>
</rdf:RDF>

Figure 4.1 – Example of an RDF instance describing a music CD from Bob Dylan (code
snippet taken from w3schools.com)

4.1.2 RDF Schema

The Resource Description Framework Schema (RDFS)2 is a recommendation from W3C
for the representation of knowledge. It builds upon RDF with the intention to structure
resources. For this it provides basic concepts for the description of ontologies. Practi-
cally, the schema is an extension of the RDF vocabulary with - inter alia - the following
additional epistemological primitives:

1http://www.w3.org/RDF/
2http://www.w3.org/TR/rdf-schema/

82 Chapter 4 The SiAM-dp modelling language

• rdfs:Class: Declares a concept/class resource for other resources

• rdfs:datatype: A class for datatypes. rdfs:Datatype is a subclass of rdfs:Class

• rdfs:subClassOf: Predicate that declares hierarchies of classes.

• rdfs:subPropertyOf: Declares relations between two properties that are used as
predicates.

• rdfs:domain: Declares the class of a property’s subject.

• rdfs:range: Declares the class of a property’s object.

Figure 4.2 shows a RDFS snippet that describes the concept Animal and its subconcept
Horse.

<rdf:RDF
xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
xml:base=” ht tp : //www. animals . f ake / animals#”>

<r d f :D e s c r i p t i o n rd f : ID=”animal ”>
<r d f : t yp e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2000/01/ rdf−schema#Class ”/>

</ r d f :D e s c r i p t i o n>

<r d f :D e s c r i p t i o n rd f : ID=”horse ”>
<r d f : t yp e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2000/01/ rdf−schema#Class ”/>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#animal ”/>

</ r d f :D e s c r i p t i o n>

</rdf:RDF>

Figure 4.2 – Example of an RDFS document. It defines the concept animal and a
subclass horse. (code snippet taken from w3schools.com)

4.1.3 OWL

The Web Ontology Language (OWL)3 enables knowledge engineers to design ontologies
and knowledge bases. The language was majorly influenced by the ontology language
DAML+OIL and extends the RDF framework. The specification of OWL is endorsed
by W3C. Several sublanguages like OWL Lite, OWL DL, and OWL Full allow different
levels of expressiveness. OWL provides constructs for the expression of constraints and
restrictions. In a simple way these are cardinality constraints but the more expressive
OWL DL and OWL Full also support description logic that gives ontologies a meaning.

3http://www.w3.org/TR/owl2-syntax/

4.2 Typed Feature Structures 83

4.2 Typed Feature Structures

Typed Feature Structures (TFSs) provide a different way to represent complex structured
data than using triples like RDF does. TFSs extend the concept of feature structures
that are sets of slot-value pairs (Carpenter, 1992). The slots are identified by names and
contain values that can either be atomic or complex. A complex value can again be a
feature structure or a collection of several entries. Feature structures can alternatively be
seen as a directed acyclic graph. In this case the nodes are the values that are connected
by paths that represent the attributes.

The added value of typed feature structures in comparison to feature structures is that
they are based on type hierarchies. This allows one to restrict the permitted slot-fillers
of a slot to a specific type and its subtypes. Furthermore, a subtype inherits all slot
definitions from its supertype.

Figure 4.3a shows a type hierarchy. The concepts Person and Movie are subtypes of the
concept NamedEntity and inherit the slot name with the atomic datatype BString. The
concept Movie contains three slots with atomic datatypes as slot-fillers (genre, length,
rating). The slot director has the complex type Person as a slot-filler. Figure 4.3b shows
the TFS instance Iron Man 3 which is of the concept Movie.

TFSs have often been used in Natural Language Processing (NLP) for the representa-
tion of lexical entries, grammar rules, and communicative meaning (Oviatt et al., 2000).
Krieger and Schäfer (1994) list some benefits of TFSs, e.g., structured knowledge, effi-
cient processing, type checking, and recursive types. A further advantage is that uni-
fication and overlay operations allow one to compare and merge information from two
typed feature structures to one common representation (see also Section 4.3.3).

TFSs are also important for the modality fusion in multimodal dialogue systems. One of
the first papers where TFSs are mentioned together with multimodal fusion in dialogue

(a) Type hierarchy.



Movie

name: Iron Man 3

director:

[
Person

name: Shane Black

]
genre: Action

length: 130

rating: 4.5


(b) TFS instance.

Figure 4.3 – Example of a typed feature structure

84 Chapter 4 The SiAM-dp modelling language

systems is Cohen et al. (1997). Various types of unification and overlay algorithms on
TFS were also involved in the SmartKom project (Wahlster, 2002) and constituted the
fundamental computational processes for modality fusion and fission.

4.2.1 Extended Typed Feature Structure

Pfleger (2007) introduced extended Typed Feature Structures (eTFSs) for his Ontology
Based Dialogue Platform (ODP). The goal of his approach was to complement TFS with
features known from RDF/RDFS. One of these extensions was the support of cardinality
constraints for multiple slot-fillers. Thus, besides defining type restrictions for slot-fillers
it is also possible to set the minimum and maximum cardinality of a slot’s content (as
it is possible in OWL).

A further extension was the support of unique identifiers that allow co-referenced objects
across documents. With the unique identifier one instance can be the slot filler of two
slots in different documents. Thus, changes to an instance in one document also affect
the referred instance in the other document. In classical TFSs this support is only
restricted to one document.

Furthermore, each eTFS instance can be annotated with an activation value that has a
range between 0 and 1 and defines its accessibility from not accessible to highest acces-
sible. Pfleger used this concept as a resource for computational processes in reference
and discourse resolution (Pfleger and Alexandersson, 2006) and as an input parameter
for the weighting component of PATE, a production rule system based on typed feature
structures (Pfleger and Schehl, 2006).

Finally, he provided a well-defined Java API for the work on eTFS instances. The
library, which implemented this API, supported operations for pattern matching and
merging based on unification and overlay (see Section 4.3.3). Furthermore, access meth-
ods allowed one to traverse complex structures and to examine substructures for specific
types.

It turned out that the features of eTFS are very useful for the development of multimodal
dialogue systems. Thus, it had a great influence on the design of the modelling language
for the SiAM dialogue platform. This modelling language is introduced in the next
section.

4.3 SiAM Meta Model

4.3.1 Requirements

Gurevych et al. (2003) claim that a complex dialogue system with many distributed but
cooperative components should utilise a uniform representation language which forms

4.3 SiAM Meta Model 85

a common language between all involved components. Thus, it is easier to exchange
information between modules, to reuse modules and to switch between different domains.
Outgoing from this request, the first task for the development of the new multimodal
dialogue system was to find an appropriate modelling language. Originally, the request
from Gurevych concerned the representation of domain knowledge. In SiAM-dp we want
to go a step further and model everything with only one meta-modelling language. This
embraces the following aspects:

• Domain Knowledge: Both the terminology (TBox) of an ontology and its indi-
viduals (ABox), should be representable with the same modelling language. This
idea is taken from RDFs where typification and instantiation are realised by entity-
attribute-value triples and the RDF vocabulary.

• Dialogue Platform Resources: These are resources that are necessary for run-
ning the platform like session information, user description, device description and
media resources.

• Input/Output Interface: The communication between the platform and ex-
ternal input and output devices as well as actuators and sensors is based on a
markup language (see Section 5.3) that should be modelled with the common lan-
guage. This model should also be used between internal core components that are
involved in the main interaction workflow.

• Grammar Rules for Speech Recognition: For applications that support
speech input, the platform should provide a common model for grammar rule
specification (see 6.2).

• Graphical User Interfaces: Graphical presentation should be internally repre-
sented with a common model for graphical user interfaces (see Section 6.3).

• Dialogue Workflow Specification: The platform should provide a model for
the declarative specification of the interaction workflow (see Section 6.1).

• Dialogue Application Project Specification: The platform allows one to
declaratively create dialogue applications. This means a dialogue project will con-
sist of several instances of the previously mentioned models. These instances are
summarised in a project application specification which should also be represented
with the same modelling language (see Section 6.4).

Another advantage of a common modelling language, besides the easy interchange of
information between all platform components, is that instances from one model can be
embedded into the instance of another model. For example, an instance of the knowledge
model can be content of the model for defining input and output messages. This message
can again be part of a model that describes the dialogue application’s behaviour.

Findings from the previous section helped to identify the following requirements for the
dialogue modelling language:

86 Chapter 4 The SiAM-dp modelling language

1. Meta-modelling language for defining domain models

2. Support of type hierarchies

3. Multiple inheritance

4. Type restriction for slots

5. Cardinality restriction for slots

6. Co-references between different documents

7. Support of pattern matching and merging algorithms based on unification and
overlay

For practical reasons regarding the implementation and integration, additionally the
following features are claimed:

1. Serialisation of model instances for the communication between the platform and
external components

2. Generation of POJOs (Plain Old Java Objects) for platform internal representation
of objects

3. Editor support for the creation of instances

All these requirements are fulfilled by the Eclipse Modeling Framework (EMF), which
is introduced in the next subsection.

4.3.2 Eclipse Modelling Framework

EMF is an open-source Java framework for modelling that exploits the facilities provided
by Eclipse. It was originally developed to create structured data models in model-
driven software engineering (Steinberg et al., 2009). The core (meta-)model of EMF is
Ecore, which is a reference implementation of EMOF (Essential Meta Object Facility), a
standardised specification for meta-model architectures 4. Ecore also is an EMF model
and thus its own metamodel (a subset of the Ecore metamodel is shown in Figure 4.4).
Consequently, not only domain models are expressed with Ecore but also the concepts
that are used to describe the domain model. This fact makes it possible to reference
model classes from inside a model instance. This will be especially important for the
pattern definition as described in Section 4.4.

The semantic expressiveness is comparable to eTFS since it is possible to define type
hierarchies, slots, and restrictions for the slot type as well as cardinalities.

The language does not provide the full semantic expressiveness of an ontology language
like OWL. Hillairet et al. (2008) list some significant differences:

4http://www.omg.org/spec/MOF/2.4.2

4.3 SiAM Meta Model 87

EClass
name:String

EAttribute
name:String

EDataType

EReference
name:String
containment: boolean

eAttributes
0..*

eAttributeType
1

eReferences
0..*

eReferenceType
1

eSuperType
0..*

Figure 4.4 – Subset of the Ecore metamodel

• Class membership: In OWL an object can be a member of multiple classes. In
EMF the membership is fixed to only one class.

• Slot definition: The properties in OWL are stand-alone entities that define their
domain and range and can be used by any resource. EMF attributes and references
are bound to their domain classes and can only be used there.

• Structural inheritance: In EMF, objects inherit their attributes from their
parent classes. In OWL, properties are not inherited since they are not associated
with a special class. Instead, properties define their own domains. These domains
propagate upwards through the class hierarchy. In contrast to EMF, the language
OWL supports a taxonomy for properties.

• Flexibility: OWL allows one to define new classes during runtime; in EMF this
is not possible.

In Hillairet et al. (2008) some strategies are presented to overcome these restrictions.
Another missing feature is an ontology reference layer for semantic reasoning on a set
of asserted facts or axioms. This, e.g., can be based on first-order predicate logic and
is relevant for semantic reasoning on world knowledge. Also for natural language un-
derstanding (NLU), the use of higher level inference mechanism is crucial in order to
translate a text from natural language to a representation in an unambiguous formal
language (Ovchinnikova, 2012).

However, in this thesis we work with the result of a natural language understanding
component and the reasoning processes mostly focus on multimodal fusion, and discourse
and context resolution. Related work showed that a language with an expressiveness that
is compliant to TFS and additional reasoning algorithms like unification and overlay
fulfill most of the requirements here. Since EMF expressiveness is compliant to TFS, it
is suitable for use in SiAM-dp.

EMF is more than just a pure modelling framework. Models can be defined in three
different representation forms and, outgoing from one form, the other two forms can be
automatically generated. Figure 4.5 shows how EMF unifies three common modelling
technologies: Java interfaces, XML Schema, and UML diagram. So it is possible to

88 Chapter 4 The SiAM-dp modelling language

Figure 4.5 – Interrelation between EMF and Java, XML, and UML

define a model in the language of choice and generate EMF and the other languages
from it. This implicitly means that XML serialisation of model instances is an integral
part of the framework which is a required feature for the communication between the
core dialogue platform and external components.

Furthermore, EMF allows one to automatically generate Java implementations (POJOs)
from an Ecore model that can internally be used in the dialogue system for processing
model instances. One of the biggest advantages of EMF is the integration into the
Eclipse Workbench5. Outgoing from a model specification, a set of adapter classes can
be generated that enable viewing and command-based editing of model instances in
custom editors inside Eclipse. Besides that, a standard editor can be generated that
directly allows the creation, access, manipulation, and validation of model instances in
a tree or table editor view of Eclipse.

Finally, EMF contains a powerful framework for model persistence. It allows one to
manage resources and to distribute them across documents or any other kind of stor-
age. Furthermore, a highly customisable XML serialisation is supported. This makes
it possible to directly integrate XML based language standards into our platform by
representing them with Ecore models and customising their serialisation to the correct
XML format. Some of the standards integrated into SiAM-dp are Speech Recognition
Grammar Specification (GRXML)6, Speech Synthesis Markup Language (SSML)7, and
State Chart XML (SCXML).

4.3.3 EMF API Extensions

Based on the Ecore meta-model we implemented an API that, among other function-
alities, supports commonly used algorithms on typed feature structures that are very
valuable for knowledge processing in multimodal dialogue systems. These algorithms

5http://www.eclipse.org/eclipse/
6http://www.w3.org/TR/speech-grammar/
7http://www.w3.org/TR/speech-synthesis/

4.3 SiAM Meta Model 89

are adopted from algorithms in the eTFS API as described in Pfleger (2007) and imple-
mented for EMF models.

Unification

The API contains the static method Unification.unify(EObject a, EObject b) where
EObject is the upper class for each Ecore model instance that - as discussed above - can
be considered a typed feature structure. This commutative operation takes two typed
features structures and returns a new typed feature structure that merges the informa-
tion of both TFSs if they are compatible. Otherwise the result is null. Formally, Pfleger
(2007) defines the unification as follows:

Definition 7 (Unification)
In an inheritance hierarchy of a typed feature structure the unification of two feature
structures is their greatest lower bound (GLB). The GLB is the most specific type that
subsumes the types of both TFSs.

A type subsumes another type if it is a superclass of it, e.g., the type Person subsumes
the type Man. Figure 4.6 provides an example for a successful unification operation on
two compatible typed feature structures.

A unification fails either if the two types of the TFSs do not subsume each other or if
the values of a specific slot do not match. Figure 4.7 gives examples for both cases.

unify(


Movie

name: Iron Man 3

genre: Action

length: 130

,


Movie

name: Iron Man 3

director:

[
Person

name: Shane Black

]
)=



Movie

name: Iron Man 3

director:

[
Person

name: Shane Black

]
genre: Action

length: 130


Figure 4.6 – Example of the successful unification of two TFSs

90 Chapter 4 The SiAM-dp modelling language

unify(


Movie

name: Iron Man 3

genre: Action

length: 130

,
[
Person

name: Shane Black

]
) = null

unify(

Movie

name: Iron Man 3

genre: Action

,
Movie

name: The First Avenger

genre: Action

) = null

Figure 4.7 – Examples of failed unification. In the first example the types are not
compatible. In the second one the TFSs have a conflicting value (name).

Strict Unification

The strict unification is a special implementation of the unification operation. The
significant difference is the handling of multi-slot content. The standard unification
approach does not consider the order of the entries in a multi-slot. Thus, two typed
feature structures also unify if the content entities of a mulit-slot match but appear in
a different order. In some situations, the order of multi-slot entries plays a relevant
semantic role. In this case two typed feature structures should only unify if the order
also matches. The static method StrictUnification.unify(EObject a, EObject b)

provides an algorithm for this.

Overlay

The overlay operation is a non-commutative operation on typed feature structures that
was introduced by Alexandersson and Becker (Alexandersson and Becker, 2001, 2003;
Alexandersson et al., 2006; Alexandersson and Becker, 2007). The basis for this operation
is the unification on two TFS instances where one is called covering (co) and the other
background (bg). In contrast to standard unification, the overlay operation never fails.
If possible, the content from the covering is extended with additional content from the
background. In the case of a conflict, at least the content of the covering is returned with
the risk that some of the background information is possibly lost. The overlay operation
is composed of two basic steps:

Assimilation: A direct subsumption relation is necessary between the covering
and background object in order to merge them. In the case of a type-clash the
background must be refined to the most specific supertype of both objects.

Overlay The overlay of content is similar to the unification operation with the
difference that in the case of conflicts, the information from the background is
overwritten by the content of the covering so that an overlay is always possible.

4.3 SiAM Meta Model 91

Figure 4.8 depicts an example of an overlay operation. In this example the movie name
causes a conflict so that the name of the background entry is overwritten with the name
of the covering. The other content is merged as known from standard unification.

Besides the effect that overlay never fails, the key-feature is a scoring mechanism for the
resulting TFS that shows how well the two TFSs fit together. Two different types of
score mechanism exist: one that reflects the structural consistency (Pfleger et al., 2002)
and one that estimates the information distance between the two arguments (Alexander-
sson et al., 2004). This score, especially, plays a relevant role in discourse resolution with
ambiguous content since it reflects the quality of the merge result. The static method
Overlay.overlay(EObject co, EObject bg) provides an algorithm for the overlay op-
eration.

unify(co, bg) = unify(

Movie

name: Iron Man 3

length: 130

,
Movie

name: The First Avenger

genre: Action

) =


Movie

name: Iron Man 3

genre: Action

length: 130


Figure 4.8 – Example of an overlay operation

Restricted Unification

The restricted unification is a special case of unification that was introduced by Pfleger
(2007) for pattern matching. In contrast to the standard unification it is a non-commutative
operation. It is implemented in the static method RestrictedUnification.runify(

EObject a, EObject b). The main difference to standard unification is that the first
argument defines a pattern that at least must be comprised by the second argument.
Thus, our unification example would fail with restricted unification (see Figure 4.9).

Although the algorithm for restricted unification played a relevant role in the predecessor
dialogue platform ODP, it is supported only for the sake of completeness. Instead, SiAM-
dp introduces the more powerful PPattern model (see 4.4) for pattern matching.

unify(


Movie

name: Iron Man 3

genre: Action

length: 130

 ,


Movie

name: Iron Man 3

director:

[
Person

name: Shane Black

]
) = null

Figure 4.9 – Example of a failed restricted unification

92 Chapter 4 The SiAM-dp modelling language

Clone

Because the components of the dialogue platform often work independently from each
other it is necessary to make deep copies of instances. Thus, it is possible to change
the content of a copied instance without affecting the original one. With the method
EcoreUtil.copy(EObject eObject), the EMF framework already provides such a
functionality, unfortunately with an unwanted effect:

EMF provides two types of references: containment and non-containment. A contain-
ment reference refers to an object that belongs to the object which defines the reference,
a non-containment reference refers to an object that is content of another element or is
a root element. In other words, you can say a non-containment reference is a plain “A
knows B” relation, a containment reference is a “A has B” relation.

The EMF copy-method actually creates copies of objects that are the content of con-
tainment references and even considers non-containment references and redirects these
references to the copied objects (compare Figure 4.10). The figure shows that Entity 0
and the objects in its containment references (solid lines) Entity 1 and Entity 2 are
copied. The non-containment reference (dashed line) from Entity 3 to Entity 2 is redi-
rected from Entity 6 to the newly created Entity 5. Nevertheless, if a non-containment
reference refers to an object not contained in the actual instance, no copy is created and
the reference is still directed to the original entity (Entity 1).

Since this behaviour is unwanted, we provide the method EmfUtils.clone(EObject

eObject) with a full deep-copy functionality that also copies the external content of
non-containment references (Entity 10).

Figure 4.10 – Comparison of the results from the copy and clone method. The red
marked entities are newly created during the copy or clone process.

4.3.4 Declaration of dynamic content: The Bindable Concept

The development approach of SiAM-dp supports the declarative specification of dialogue
applications with EMF models. With the standard modelling solution, this has the

4.3 SiAM Meta Model 93

big disadvantage that all contents of a model instance must be known already at time
of design only allowing one to specify static information. With the newly introduced
Bindable-Concept, we overcome this handicap and support instances whose contents can
dynamically and context dependently be estimated during runtime.

The main idea behind the bindable concept is that objects or instances can have two
different states (or simultaneously both for bindable objects). The first one is the static
state, where the content of the instance is tightly predefined. This is the standard case
when defining an instance, e.g., with the model editor. In the second state, the content
of the instance is defined by an expression that is formulated in Apache Commons JEXL
(Java Expression Language). This expression is evaluated just-in-time when the object
is processed. We can say the content is ‘bound’ to the evaluation result.

JEXL8 is a library that implements an expression language supporting most of the
constructs seen in ECMAScript which is a standardised scripting language and base of
Java Script. The language supports all relevant literals, operators, and conditionals, thus
providing an extensive scripting syntax. Furthermore, two variable types are available:
Local Variables are valid in the actual script scope and declared by the syntax var x.
Context Variables are defined and valid in the scope of a specific context. This context is
provided by the model containing the JEXL-expression. E.g., the context of a dialogue
model is the variable scope of the active node in a flow or statechart (see Section 6.1).
Since the JEXL-API is written in Java, it is also possible to register Java objects as
plugins and perform method calls on these objects directly from the script.

We differentiate between two types of bindables:

Bindable Datatype
Bindable Datatypes are the bindable versions of atomic datatypes. For every atomic
datatype in Java we introduce a new bindable datatype that is derived from the
abstract common class BDataType. For example, a BString extends the String, a
BFloat the Float, BInteger the Integer datatype, and so on. Normally a datatype
can only have a fixed value of this specific datatype. The bindable datatype can
additionally be defined by a script expression. To distinguish between a fixed value
and a bound value, the keyword $expr(...) is used. When the application de-
veloper declaratively fills the content of a datatype slot with a static value, he
enters the string representation of the data which is then parsed using the standard
valueOf(String input)-method of the datatype. If he wants to specify dynamic
content, he uses the $expr(...)-keyword and specifies the script code inside the
brackets. When the entity is processed, the script is evaluated with respect to the
actual context and the result set as the content of the slot.

Figure 4.11a depicts the example concept PostalAddress, whose attributes are
of the type BString and BInteger. Figure 4.11b shows an example instance of

8http://commons.apache.org/proper/commons-jexl/

94 Chapter 4 The SiAM-dp modelling language

(a) The concept PostalAddress


PostalAddress

cityName “Cologne”

houseNumber “23”

postalCode “50667”

streetName “Aachener Str.”


(b) The content of variable neighbourAddress


PostalAddress

cityName “Cologne”

houseNumber “$expr(neighbourAddress.getHouseNumber() + 2)”

postalCode “$expr(neighbourAddress.getPostalCode())”

streetName “Aachener Str.”




PostalAddress

cityName “Cologne”

houseNumber “25”

postalCode “50667”

streetName “Aachener Str.”


(c) Instance of PostalAddress with bindable datatype before and after script evaluation

Figure 4.11 – Example of an instance with bindable datatype content

this concept that is assigned to the variable neighbourAddress in the applica-
tion context. This example only contains static values. Figure 4.11c shows an
example of PostalAddress as possibly defined by an application developer. In the
example the slots cityName and streetName are filled with static content. The
attributes houseNumber and postalCode contain dynamic values described with
JEXL-expressions which refer to the content of the variable neighbourAddress.
During runtime the slots are filled with the results of the script evaluation as demon-
strated in the figure.

Bindable Object
Bindable objects are the bindable versions of complex data types. They must be
derived from the common abstract class BObject and inherit the attribute binding

from this class. BObject is part of the SiAM-dp base ontology that also contains
the concept Entity which is a child concept of BObject. Every semantic entity
concept should be derived from this Entity concept and thus is automatically a

4.3 SiAM Meta Model 95

bindable object. Furthermore, every concept of the SiAM-dp model is derived from
BObject and therefore bindable.

In contrast to the bindable datatype, a bindable object is hybrid and can simulta-
neously contain static and dynamic content. The static content is defined by the
developer during development time. The dynamic content is specified by a JEXL-
expression in the binding property. This expression is evaluated during runtime
and the result merged with the static content. Merging is realised by the overlay
operation (see 4.3.3) at which the dynamic content constitutes the background and
the static content the covering. Thus, in the case of a conflict, the information from
the static content overwrites the information from the dynamic content.

Figure 4.12 shows the example of an object which specifies a binding. The in-
stance of type Person contains a postal address that is bound to the variable
neigbourAddress as defined in Figure 4.11b. During runtime, the content is re-
placed by the content of this variable. Only the nonmatching content for cityName
is kept by the overlay operation.

Person

firstname “Thomas”

lastname “Mueller”

address

PostalAddress

binding “neighbourAddress”

cityName ”Köln”







Person

firstname “Thomas”

lastname “Mueller”

address


PostalAddress

cityName “Köln”

houseNumber “23”

postalCode “50667”

streetName “Aachener Str.”




Figure 4.12 – Example for the evaluation of a bindable object

96 Chapter 4 The SiAM-dp modelling language

4.4 Pattern Model

The predecessor dialogue platform ODP used restricted unification (see Section 4.3.3)
for pattern matching on typed feature structures. This mechanism was excessively used
in the matching phase of the integrated rule-based system. Nevertheless, for the use in
SiAM-dp, we identified some disadvantages leading us to develop our own pattern model
in order to overcome the following restrictions:

• Restricted unification works on TFS instances. When formulating a pattern based
on abstract concepts, we face the problem that EMF does not permit one to
create instances from abstract concepts. Thus, we would be forced to model type
hierarchies without the use of abstract concepts which would limit our modelling
potential.

• Restricted unification only supports the exists-quantor(∃). We also want to support
the not-exists-quantor(@) and for-all-quantor(∀). The latter is especially suitable
for multi-slots.

• The value restriction on atomic datatypes only supports the equals-operator for
validation. In our use cases it turned out that additional operators like relational
operators, logical operators (AND, OR), or even arbitrary script expressions are
required.

Taking into account the above-mentioned requirements, a model for pattern definition
was developed. In the dialogue platform it is used for different purposes.

Message Subscription:
Platform components can subscribe to messages distributed by the central event
management. With the pattern model it is possible to restrict the subscription to
only those messages whose content match a specific pattern.

Event Matching in dialogue specification:
The dialogue model (see Section 6.1) allows one to set a condition to an event that
triggers a transition in the internally used statechart engine. This condition can be
defined by pattern model instances which are matched with incoming messages.

Describing unresolved content:
Unresolved content in the reference model (see Section 5.5.1) is more closely defined
with the help of the pattern model.

Definition of model mapping rules:
SiAM-dp contains an internal rule-based engine for mapping syntactic content on
semantic content and vice versa (see Section 5.3). The conditions for the rules are
defined with the pattern model.

4.4 Pattern Model 97

Figure 4.13 – The main concepts of the pattern model

4.4.1 Pattern Model Concepts

A first version of the pattern model was developed by Denerz (2013). This model has
been adopted and extended for the requirements of SiAM-dp. Figure 4.13 shows the
main concepts of this pattern model which are outlined in this section.

PPattern

PPattern is the abstract parent concept of all patterns. A pattern can specify the root
entity or the content of a slot. It contains the following attributes:

quantor - this attribute sets the quantor for the pattern. Possible values are exists,
not-exists, and for-all (∃, @, ∀).

varName - the pattern matching algorithm allows one to assign matching content
to variables. Thus, the matching content can easily be accessed from the result
of the match report. This attribute can only be used in combination with the
exists-quantor.

instIndx - in the case of multi-slot features, this attribute can demand an exact
index position for the content. Otherwise, the position is not considered. This
attribute can only be used in combination with the exists-quantor.

PObject

PObject defines patterns for model instances. An instance satisfies a PObject if its type
is a subtype of the type in PObject and all PSlots of the PObject are satisfied. PObject

98 Chapter 4 The SiAM-dp modelling language

contains the following attributes:

type - defines the type of the instance.

slot - contains any number of instances of PSlot that define restrictions on the
content.

PSlot

PSlot makes restrictions on the slot content of a PObject. PSlot has the following
attributes:

feature - the feature specifies the slot of the containing PObject on which the
restrictions are made.

range - is of type PPattern and specifies a pattern that must match the content
of the given feature. Depending on the feature’s type, the PSlot may have any
number of instances of PObjects or PValues. If the feature is a non-many feature,
the slot is a normal slot with only one content element, otherwise it is a multi-slot.

For the exists-quantor, a PSlot with a non-many feature is satisfied by an instance if the
range PPattern is satisfied by the subinstance or value in the instance at the PSlot’s
feature. PSlots that are multi-slots are satisfied if there is a subset of subinstances
or values in the instance at PSlots’ feature, such that all of them are satisfied by one
PPattern pairwise exclusively. That means for each PObject or PValue, there must be
a subinstance or value which satisfies the PPattern and each sub instance or value may
be used at maximum once. If the instIndx-attribute of a pattern is set, the pattern
must match the multi-slot entry at the given index position. If the non-exists quantor is
set, the specified pattern must not match any instance in the slot. If the for-all quantor
is set, every instance must match this pattern.

PValue

PValues define fillers for attribute slots. They can impose PRestrictions as value
constraints. A PValue is satisfied by a value if the attached PRestrictions are satisfied
or if no PRestrictions is set. PValue contains the following attributes:

type - defines the datatype of the value.

restrictions - may impose restrictions on the value.

PEmptySlot

A PEmptySlot claims that the content of a slot must be empty.

4.4 Pattern Model 99

PRestrictions

With PRestrictions, conjunctions or disjunctions of value constraints are represented.
Restrictions can be nested and contain the following attributes:

function - defines the logical operator for the collection of restrictions. PRestrictions
with a function set to AND is satisfied by a value if all sub-restrictions are satis-
fied. If the function is set to OR, only one of the containing PRestrictions or
PRestriction has to be satisfied.

restriction - contains an instance of type PRestriction that restricts the value
of a slot.

restrictions - defines nested PRestrictions.

PRestriction

PRestriction is an abstract class. For every datatype the model contains a con-
crete concept, e.g., PStringRestriction or PIntegerRestriction. For example, a
PBooleanRestriction can be used to specify constraints on values of the type boolean.
PRestriction contains the following attributes:

value - the value against which the content is validated.

expression - a JEXL expression whose result replaces the content of the value
attribute during runtime.

function - the function that is used for validation. The type of the supported func-
tion is dependent on the concrete datatype. For example, the PBooleanRestriction
supports the two functions EQUALS and NOT EQUALS. PStringRestriction

additionally provides STARTS WITH, ENDS WITH, CONTAINS, or MATCHES
for regular expressions.

100 Chapter 4 The SiAM-dp modelling language

4.4.2 Pattern Matching Example

Figure 4.14 shows a pattern example and a matching instance beneath. The type of the
root object is set to SetQuestion and the result of a matching instance is assigned to the
variable commFunction. The content of the multi-slot feature reference must contain
one element of the type ReferenceModel whose feature resolved is a boolean value
and restricted to the content true. Additionally, the ReferenceModel must contain
one semanticContent of the type Movie. The id of the movie must be set but is not
restricted to a value. The content of it should be assigned to the variable movie id.
Furthermore, the feature knowledgeItem of the SetQuestion must equal the string
“movie.trailer”. The given instance matches all these restrictions. After the match
process, the complete SetQuestion-instance is assigned to the variable commFunction.
The movie id variable will be set to the value “13”.



SetQuestion

reference


ReferenceModel

resolved true

semanticContent

Movie

id “13”

name ”IronMan3”




knowldegeItem “movie.trailer”


Figure 4.14 – A pattern example and a matching instance for this pattern

4.5 Summary 101

4.5 Summary

This chapter dealt with the first research question:

1. Modelling Language: Which requirements must be fulfilled by a meta-modelling
language that is used for the declarative development of multimodal dialogue appli-
cations?

First, the chapter described approaches for the semantic representation of knowledge and
briefly discussed their expressiveness and qualification for use in a multimodal dialogue
system. In a requirement analysis, we derived a set of features for the meta-modelling
language which is used in SiAM.

In the next part the finally used Eclipse Modelling Framework (EMF) was introduced
and it is argued why this framework fulfills the previously mentioned requirements.
Additionally, several API extensions and their implementations are described. This
comprises several algorithms for unification and overlay that turned out to be very
valuable for knowledge processing in multimodal dialogue systems. Furthermore, the
framework needed an additional functionality for cloning model instances.

The standard modelling solution only allows one to specify static content during design
time. To overcome this restriction, the following section introduced the bindable concept
which allows developers to define instances whose content is dynamically evaluated from
script expressions during runtime, taking into account the current context.

Pattern matching is used throughout the dialogue platform in order to define semantic
constraints on instances. The final part of the chapter introduced a pattern model which
allows one to define patterns for EMF instances. Pattern matching in SiAM-dp respects
type-hierarchies, multi-slots and can specify arbitrary functions that are used for the
validation of content.

5
Massive Multimodality in Cyber-Physical Environments

5.1 Introduction

We introduced the term Cyber-physical Environment (CPE) in Section 2.4. One feature
of a CPE is the high number of devices that are spread throughout the surrounding
environment but are part of an extensive network in the Internet of Things. From the
dialogue platform’s point of view, all devices in the environment are possible input and
output devices for the realisation of the interaction between users and the environment.
Input devices can be either controllers that serve the user as devices for multimodal
input or sensors that allow to recognise non-intrusive activities in the environment.
Output devices can be renderers that are part of a multimodal output representation or
actuators that are directly controlled by the dialogue platform as part of the intelligent
environment.

In the CPE a multimodal dialogue system must be able to handle a great number
of devices and modalities. A human in the environment is not bound to one specific
computer or control interface anymore. In fact, he interacts inside the environment, he
changes his position in the environment, and may switch the applied control interfaces
in order to conduct changes to the environment. Thus, in the perception of the human,
the interaction with the various interfaces blurs into an interaction with the environment
independent from the currently involved devices of the CPE.

From this new interaction paradigm, new requirements for the usability of the system
arise. From the perspective of the user, the heterogeneous set of devices and modalities
must be smoothly integrated, even if the user moves inside the environment. Different
situations or users may pose diverse demands to the applied devices and modalities.
Thus, a free choice of modality and the arbitrary combination of modalities are imper-
ative for the dialogue platform. The following requirements must be considered:

• Free choice of modalities and multimodal combinations

104 Chapter 5 Massive Multimodality in Cyber-Physical Environments

• Dynamic reconfiguration of the set of available devices

• Adaptation to device failure or unavailability

• High heterogeneity of input and output devices

• Modality independent representation of user and system intentions

These requirements are not fulfilled by the multimodal dialogue systems presented in the
related work in Chapter 3. Here at most three modalities are integrated into one system
and the set of modalities is fixed. Also, current commercial systems like Apple’s Siri or
modern in-car systems concentrate on two modalities, mostly GUI and speech, sometimes
also gestures. This makes a major difference in the requirements of multimodal platforms
in heavily instrumented environments that try to capture all human senses. The platform
must be flexible enough to integrate a massive heterogeneous set of devices and modalities
concurrently that can dynamically change during runtime. In addition, a great variety of
actuators and sensors must be considered. We use the term massively multimodality
to capture the extreme variety in input and output modalities.

The challenge to a massively multimodal system on a technical level is to support a
uniform interface for devices that encapsulate the heterogeneity in protocols and tech-
nologies. For a better understanding of the heterogeneity, we first classify possible devices
into several categories (Section 5.2). For the communication between devices and the
platform, a common language is required that is introduced in Sections 5.3 and 5.4.

The following sections deal with the semantic representation of the meaning behind an
interaction (Section 5.5). An important task here is the conversion from a pure syntactic
representation of input and output to a semantic level and back. This issue is discussed
in Section 5.6. Here a generic rule-based approach is introduced that shifts content from
the syntactic to semantic level or vice versa. This allows the fast and easy integration
of arbitrary devices by the declaration of mapping rules.

5.2 Device Classification

In this section, we propose a new classification scheme for devices in massively multi-
modal interaction systems in CPEs. The goal is to find groups that describe properties
of devices concerning the way that the devices are used and the role they play in the
interaction between user and CPEs. The conclusions of the classification are intended
to be integrated into the input and output model described later in this chapter.

One distinction can be made between devices that provide input to the system and
devices that receive output from the system. A second distinction is made between de-
vices that appear as user interfaces and non-interactive networked devices that
are the basic components of the CPE. The main difference is that a user interface sup-
ports direct communication between users and the environment. This means that each

5.2 Device Classification 105

Figure 5.1 – The classification of devices in a massively multimodal system

interaction via a user interface transports a communicative meaning that is contributed
to a dialogue between system and user.

The combination of both previously mentioned features results in four groups to which
a device can be associated:

Controller - A controller is a user interface that provides input to the system.
Thus, it constitutes a channel for the multimodal input of a user.

Sensor - A sensor is an input device that is used for non-intrusive activity recog-
nition or the recognition of changes in the environment.

Actuator - An actuator is a static or movable device in the environment that can
be controlled by the dialogue system in order to change the environment state.

106 Chapter 5 Massive Multimodality in Cyber-Physical Environments

Renderer - A renderer is an output device that presents information to the user.
It is part of the multimodal output of the system.

Figure 5.1 shows the four classification categories and a set of devices that have already
been used for the integration of use-cases with SiAM-dp (see Chapter 9). It additionally
gives information about the modalities that are involved in the interaction between user
and environment.

However, the classification of devices is not always unambiguous. In this case the devices
are associated to more than one of the categories. For example, a smartphone already
constitutes a multimodal interface with the support of a Graphical User Interface (GUI)
and speech interaction in both communication directions. Furthermore, it is the carrier
of a wealth of sensors that can actively or passively contribute to a dialogue application.
The same applies to other smart devices like the smart watch or smart glasses. Other
sensors like a body motion sensor can detect the users’s intentional gestures but also
recognise activities. A robot may communicate with a user by speech or perform physical
actions like moving an arm or walking through the room.

Therefore, an advisable approach is not to classify the device as a whole but first to
identify the separate services of the device that contribute to the dialogue system. The
classification will then be made for the services. In Chapter 9, concrete applications are
presented that are built with the SiAM-dp platform. They integrate many of the devices
presented in Figure 5.1. For each application a table will show the supported devices
and a classification of the applied device channels.

In the following we present some additional features that can be used for the classification
of a device. These features are orthogonal to the previously introduced features. Figure
5.2 shows the classification of a selection of devices by these features.

Device Position:

Wearable - A device that is worn by the user under, with, or on top of clothing.

Immobile - A device with a static location in the environment.

Mobile - A device with a changeable location in the environment.

Interaction Range:

Near-field - The interaction takes place at a close distance to the device.

Far-field - Interaction is possible from an arbitrary position in the room.

Number of Users:

Single-user - Only one person uses the device.

Multi-user - Many persons use the device.

5.3 Representing Input and Output 107

Figure 5.2 – The classification of devices in a massively multimodal system into features
orthogonal to the device type

5.3 Representing Input and Output

One of our requirement specifications was that a heterogeneous set of input and out-
put modalities can be integrated into the system. They differ in terms of the type of
information they provide and the protocol they use for transmitting information to the
dialogue system and vice versa. This creates the problem that the system in a first step
is not able to handle all the various information in a well defined procedure due to a
lack of common and structured representation.

Towards the goal to achieve a comprehensive processing of input and generation of
output for all devices, modalities, and technologies, it is necessary to represent all input
and output messages in a common model that is used throughout the complete dialogue
platform and serves as an interface between the dialogue system and external modules
with their proprietary representations. This model must be open and flexible enough
to integrate all the various modalities and accordingly has to integrate modality specific
content descriptions. This particularly means that concepts for important modalities
such as speech input or graphical user interfaces should already be supported. For

108 Chapter 5 Massive Multimodality in Cyber-Physical Environments

example, for speech input representation the model should contain predefined structures
that contain further meta-information besides the recognised utterance, like recognition
confidence, word lattices, or phonetic transcriptions that are provided by state-of-the-art
speech recognisers by default. For the most common modalities the model should already
propose an elaborated representation but the flexibility of the system demands that the
model can be freely extended if new modalities are integrated. In order to maintain the
compatibility to existing standards like, e.g., GRXML for speech recognition grammars
or SSML for speech synthesis the specific structures should also allow one to incorporate
external language specifications.

In Section 3.4 we discussed the advantages of separating dialogue acts into the represen-
tation of communicative behaviour and communicative function. The IO model should
also encourage this idea by making information representable on two distinct levels of
abstraction:

Syntactic level: Embraces annotations for common meta data of a dialogue
act such as the begin time, duration of the action, device ID, modality, initiator,
or addressee. This level also includes modality-specific content that describes the
communicative behaviour.

Semantic level: The semantic representation is located on a more abstract level.
Here the content is device independent and incorporates the communicative function
of the dialogue act as well as the thereby transported semantic content.

In Section 3.3 we introduced some markup languages for modelling multimodal inter-
action. The most sophisticated and already standardised language is the Extensible
MultiModal Annotation markup language (EMMA). After a systematic examination of
the standard, we decided against the use of this standard and for the development of
our own model for input and output representation for the following reasons:

1. EMMA has been primarily developed for the representation and annotation of
user input. Our model should additionally can represent output messages that are
distributed through a heterogeneous set of output modalities.

2. The model should enable the communication of sensor input information and con-
trol messages to actuators. This is also not supported by EMMA

3. EMMA is not modelled in EMF and thus does not allow easy combination with
other models of SiAM-dp.

4. The representation of communicative functions is only based on strings that are
not predefined by the standard. This does not apply to our approach to repre-
sent communicative acts with the standardised dialogue act model as presented in
Section 5.5.

5. The EMMA model is not built on a type hierarchy. Thus, unification and pattern
matching that are based on inheritance in the type hierarchies cannot be exploited.

5.3 Representing Input and Output 109

Nevertheless, many ideas and concepts of EMMA have been incorporated into this
work.

5.3.1 The IO-Model Type Hierarchy

While developing the model for input and output representation, we pursue two major
objectives. First, the model should serve as an interface between external input and
output devices and the core dialogue system. Second is to provide help structures that
support situation-adaptive multimodal behaviour of the system.

On the input side it must be possible to consider the uncertainty of an input and to deliver
several interpretation hypotheses that can be later evaluated by the system taking into
account other input modalities or the current context. On the output side it should be
possible to suggest distinct alternatives inside the model. Based on these alternatives the
situation adaptive system selects the presentation that is most suitable to the current
context, situation, and available devices.

Figure 5.3 gives an overview of the top-level type hierarchy of the IO-model. In the
following sections we often use diagrams in order to depict the models in SiAM-dp. A
box in this diagram describes a concept, the name of the concept is the header of the box.
If the name is written in cursive letters, the concept is an abstract concept. The entries
in the main part of the box define the names, types and cardinality of the concept’s
attributes. Inheritance between concepts is indicated by a line with a closed, unfilled
arrowhead pointing at the superclass. If this line is dashed, the superclass is an abstract
concept. Associations are indicated by a solid line, the direction of the association is
expressed by an open arrowhead. In the following sections an association will also be

Figure 5.3 – The upper level of the IO-model type hierarchy

110 Chapter 5 Massive Multimodality in Cyber-Physical Environments

called a reference to another concept. The label of the line gives information about the
cardinality and name of the reference.

In the IO-model every message that is exchanged between external and core components
of the dialogue platform is represented with an instance of the abstract concept Message
which is also the top concept of the type hierarchy. It defines some general attributes
like a unique identifier for the message, a timestamp, and the current session, to which
the message is associated.

The four main types of concrete message realisations can be classified according to two
categories:

• The communication direction of the message is distinguished by the two abstract
concepts InputMessage and OutputMessage. InputMessages are messages sent from
external components to the core system. The other way around, OutputMessages
are sent from the core system to external components.

• The second distinction is made between communicative acts and control messages
that are described by the abstract concepts CommunicativeAct and ControlMes-
sage. Communicative acts transport messages with a communicative intention
between users, dialogue application, and the CPE. Control messages are used for
device setup and configuration and can either update the state of a device from
the dialogue application or report on state changes.

Combinations of these categories lead to the four concrete upper message concepts:

InputAct: Input from the user with a communicative intention.

OutputAct: Output to the user with a communicative intention.

DeviceStateChange: Notification about device state changes externally initiated.

UpdateDeviceMode: Device state change initiated by the dialogue system.

5.3.2 Communicative Acts

Subclasses of the CommunicativeAct inherit attributes that describe the initiator and
addressee of an interaction. In the following, the derived concepts InputAct and Out-
putAct are introduced:

Input Acts

Figure 5.4 shows the diagram of the InputAct concept. Generally one can assume that
a user input contains the syntactic representation of the input and hypotheses about its
interpretation. Therefore, the InputAct comprises two content types:

5.3 Representing Input and Output 111

InputRepresentation
The input representation embraces certain data of an input act. It contains common
meta data, such as device identifier, modality, begin time, and duration of the in-
teraction. From this the abstract classes SensorInput, ControllerInput are derived.
These are the parent classes for all concrete device specific concepts for the repre-
sentation of input (see Section 5.4). The IO-model already comprises concepts for
common input devices but can arbitrarily be extended by new concepts. Further-
more, it is possible to represent an input act in diverse formats and granularities
by appending more than one representation of an input. For example a pointing
gesture on a touchscreen can be represented only with the associated coordinates
of the pointing gesture or as a click event on an eventually displayed GUI element.

Hypothesis
The slot hypotheses contains possible interpretations of the input. Every hypoth-
esis in this slot can be annotated with a confidence value of the interval [0..1] that
reflects the recognition and interpretation certainty. Thus, more than one possible
interpretation result with distinct certainty can be passed to the dialogue system.
The decision about the effectively processed interpretation is made later, based
on the dialogue or environment context. Figure 5.4 contains three device specific
hypotheses. The SpeechHypotheses contains information about the outcome of a
speech recogniser, the text of the recognised phrase. Respectively, the GestureHy-
pothesis contains assumptions about a performed gesture and PointingHypotheses
about the target of a pointing gesture or a gaze. Every hypothesis can contain a
CommunicativeFunction instance. Here, the semantic result of the interpretation
process is described with the device independent dialogue act model (Section 5.5).

Often in a standard interaction workflow, an InputAct instance is not directly filled by
the input device on the whole. Moreover, the content is continuously added by the
individual input processing modules.

Figure 5.4 – Graphical representation of the EMF specification of the InputAct concept

112 Chapter 5 Massive Multimodality in Cyber-Physical Environments

Output Acts

The output of the system is generated by the dialogue management component. One
significant difference to the input is that the output of the system and its communicative
intention is not based on hypotheses, it is well defined. Thus, the semantic representation
of the communicative function is a direct content of the OutputAct. Figure 5.5 shows a
diagram of the OutputAct-concept.

SiAM-dp is a situation adaptive system which means that the actually used modalities
and the mode of presentation can differ depending on the current context. For this
the model has to allow content to be provided in multiple alternative representations,
some usually being more specific than others. Hence, one OutputAct can contain one
or more PresentationAlternatives that serve as the foundation for a situation-dependent
behaviour. Based on the current context, available devices, and users, the system can
evaluate and select the most suitable alternative and forward its containing OutputRep-
resentations to the affected output devices.

A PresentationAlternative can again consist of one or more OutputRepresentations, al-
lowing the distribution of the system’s output to several devices, e.g., a combination
of speech output with a GUI presentation. The abstract concept OutputRepresentation
is basis object for all modality specific output representations. It collects common at-
tributes like the device ID, modality type, or begin time and duration of the output. For
a better classification, the abstract concepts RendererOutput and ActuatorOutput are
derived from this concept. Modality specific content is described in concrete concepts
that are derived from them (see also Section 5.4). Our IO-model already provides con-
cepts for the most common output devices. Nevertheless, the model is easily extendable

Figure 5.5 – Graphical representation of the EMF specification of the OutputAct con-
cept

5.3 Representing Input and Output 113

with new devices if necessary.

An output act is enriched with additional content while being processed by the particular
interaction workflow components for presentation planning and multimodal fission.

5.3.3 Control Messages

Subclasses of the abstract concept ControlMessage inherit attributes that describe the
device ID, channel, and modality of the affected device. Figure 5.6 shows a diagram of
the derived subconcepts.

Update Device Modes

When the dialogue system triggers the change of a device mode or configuration, an
instance of this concept is sent to the device. The instance contains the new device
mode that should be adopted. Every description of a new device state must be derived
from the abstract concept DeviceMode. Examples for such device modes include the
request to cancel a presentation, update the grammar of a speech recogniser, or set
the speech recognition mode to push-to-talk or speak-to-activate. Besides the already
supported device modes, the model can be arbitrarily extended with modes for new or
existing devices.

Device State Change

The change of a device state is propagated to the dialogue system with an instance
of the DeviceStateChanged message. It contains an instance of the abstract concept
DeviceState which describes the change. This can be information about a started or
stopped presentation or about a started or rejected speech input. The states that are
part of the base model can be extended with device states for arbitrary devices.

Figure 5.6 – Graphical representation of the EMF specification of the ControlMessage
concept

114 Chapter 5 Massive Multimodality in Cyber-Physical Environments

5.4 Massively multimodal integration

In the previous sections we presented an approach for classifying devices in a CPE and
the model that is used for the representation of input and output in a multimodal di-
alogue application. This model already contains entry points for the representation of
device specific input and output. To sum up, these are the abstract concepts SensorIn-
put, ControllerInput, RendererOutput, and ActuatorOutput. These concepts are directly
derived from the main features for classification we identified in Section 5.2.

Figure 5.7 shows a snippet of the type hierarchy outgoing from these entry points. For
every representation type it contains some examples for device specific representations
as they have been used in various use-cases (see Chapter 9). The branch for the concept
Gesture shows that within this tree it is possible to specify sub-hierarchies. Here, the
concepts HeadGesture, HandGesture and BodyGesture are collected under the concept
Gesture.

The other categories that have been identified as appropriate classification features in
Section 5.2 can be realised as attributes for every representation. These attributes are
defined in the root concept IORepresentation. In detail these are the attributes modality,
position, interactionRange, and userNumber.

The base hierarchy already contains concepts for many common devices. Nevertheless,
the world of CPEs is very heterogeneous, making it impossible to cover every device
type. Therefore, it is intended that the model is domain specifically extendable with

Figure 5.7 – Snippet of the type hierarchy for the representation of input and output
events

5.4 Massively multimodal integration 115

representations for new devices by deriving more concrete concepts from concepts that
are already part of the hierarchy tree. In the following we present how the representation
is realised in practice for some selected devices.

Custom Format: The concept CustomFormat is used for the non-standard rep-
resentation of data. This has to be accompanied by a format identifier and should
only be processed or interpreted by components that support this particular format.
The data is given with a list of key value pairs. Additionally, a URL can be provided
from which the custom format data should be retrieved if desired (if it is considered
too large to include in the message). Using the custom format, representations can
quickly be provided without extending the underlying model. This is particularly
useful for ad hoc solutions for prototyping or devices that do not fit into a specific
category.

Graphical User Interfaces: Since SiAM-dp provides a specific concept for de-
scribing graphical user interfaces, the models for representing GUI output and the
input events on GUIs are very well elaborated upon. The GUI model and related
representations are described in detail in Section 6.3.

Speech Synthesis: The concept SpeechSynthesis for describing speech synthesis
output contains two attributes. For the easy and fast synthesis of an utterance, the
attribute utterance can be used. Furthermore, it is possible to define the output with
the standard language for speech synthesis, the Speech Synthesis Markup Language
(SSML) which is more powerful and e.g., allows one to define attributes like voice,
prosody, break, or emphasis. The SSML syntax is given with the attribute ssml.

Speech Recognition: The concept Speech is used for the description of a speech
input. Besides some meta-information, it provides hypotheses about the recognised
utterance. Since this information is not certain, it is provided with the concept
SpeechHypothesis in the hypothesis slot of the input act.

Tangibles: The abstract concept Tangibles is the root concept for tangible devices.
Concepts that describe input from tangible devices should be derived from this
concept.

Gestures and Postures: In the diagram the concept of gestures is divided into the
three subconcepts HeadGesture, BodyGesture and HandGesture. The information
provided by the three subconcepts differs in the content provided. While the hand
gesture is described by coordinates of the fingers, a body posture may describe the
complete skeleton of the body. A movement of the head can be described by the
attributes pitch, yaw, and roll. Hypotheses about recognised gestures can be given
in the hypothesis slot of the input act. Since the data from diverse devices can vary
considerably, in most situations it is suitable to derive a new concrete concept from
the Gesture tree.

Wearable devices: Most wearable devices can be considered a Cyber-physical

116 Chapter 5 Massive Multimodality in Cyber-Physical Environments

System (CPS) since they combine several sensors and interfaces. Thus, several
representation formats are suitable for use with a wearable device. Smart glasses,
smart watches as well as smart phones, are equipped with GUIs. Here the above-
mentioned representation concepts for a GUI should be used. If speech interaction
is supported, the models for speech are the right choice. Further sensors and but-
tons can be covered either by new concepts derived from the concepts Sensors or
Tangibles or by the CustomFormat.

Virtual Characters: Similarly to the approach for speech synthesis virtual char-
acters can be controlled in two ways. The first is to send API specific utterances that
are directly transcribed by the connected engine for presenting virtual characters.
The second is to use a standardised Agent BML (Behaviour Modelling Language)
model which describes an interaction that a virtual character should perform. This
may also include speech.

Actuators: A complete taxonomy can be developed outgoing from the abstract
concept ActuatorOutput. In the diagram this is exemplarily done for the control of
a multicolour lamp and a ventilator.

Sensors: A complete taxonomy can be developed outgoing from the abstract con-
cept SensorInput. In the diagram, this is exemplarily done for a thermometer and
a pulse monitor.

5.5 Semantic Dialogue Act Model

In Section 3.4 we discussed the fact that a disadvantage of representation on a purely
syntactic level is that input or output messages from a device are very modality specific.
As a result, every description of a dialogue workflow must be adapted to each specific
device and modality. In practice, when specifying the dialogue workflow, the application
developer has to explicitly react to the input of every input modality and send an output
message for each output modality, respectively. In order to make the dialogue platform
more flexible and adaptable to new modalities and devices, we introduce a model for
dialogue acts that describes the user’s or system’s communicative intentions. Instances of
this model contain the communicative intention of a dialogue act and eventually thereby
provided semantic content. Thus, the model for controlling the dialogue workflow can be
based on these semantic dialogue acts and be completely independent from the actually
used modalities and devices.

The model for the definition of communicative functions is inspired by a standard for
the semantic annotation of dialogue acts (ISO/DIS 24617) as introduced in Section
3.4.4. For the semantic description of dialogue acts, we adopted the type hierarchy of
communicative acts that is specified by this standard and integrated it into our model
for communicative functions (Figure 5.8 shows an excerpt of the upper level). This type

5.5 Semantic Dialogue Act Model 117

Figure 5.8 – Upper level excerpt of the communicative function type hierarchy

hierarchy, inter alia, contains concepts for seeking and providing information, offering
and demanding tasks, or controlling the dialogue, e.g., turn taking or giving feedback.

The diagram shows that every communicative function can contain one or more elements
of the type SemanticContent. This concept is a container for entities that are carried
by the dialogue act. One can generally distinguish between resolved and unresolved se-
mantic content elements and a SemanticContent instance can adopt one of the following
two states:

resolved - Resolved semantic content is an entity that is introduced with the dia-
logue act into the discourse context. For example the utterance “What is Iron Man
about?” introduces the movie Iron Man into the discourse.

unresolved - Unresolved semantic content contains referring expressions to entities
that have already been introduced by a previous interaction turn (anaphora), will
be subsequently introduced into the discourse context (cataphora), or are part of
the environment context. The dialogue act in the utterance “Who is starring in
this movie?” for example refers to an entity of type Movie that is not implicitly
given but is already part of the discourse context.

Entities in the platform must derive from the base concept Entity. This concept also
serves as the anchor point for new domain-specific concepts, thus the concepts in new
domain specifications should be derived from this basic concept.

Already resolved content is added to the content slot of the SemanticContent concept.
If the content is unresolved, the information of the referring expression is represented by
an instance of the ReferenceModel (see next subsection) that uses concepts similar to
the approach of Pfleger (2007). Instances of this model are added to the slot reference.

118 Chapter 5 Massive Multimodality in Cyber-Physical Environments

During runtime it is the responsibility of the fusion and discourse resolution engine to
resolve the referring expressions and fill the content slot with entities from the context.

5.5.1 Modelling Referring Expressions

The concept diagram for the ReferenceModel is depicted in Figure 5.9. As discussed
in Section 2.3.2 communicative acts can contain different types of referring expressions.
The reference model of SiAM-dp already supports a subset of them, each represented by a
specific concept derived from the abstract concept ReferenceModel. This upper concept
contains the slot referencePattern where semantic restrictions on the referenced enti-
ties can be specified. Since referring expressions mainly appear in verbal interaction, it is
also possible to define syntactic restrictions in the slot hasMorphoSyntacticDecomposition.
The linguistic properties that can be specified here are taken from the LingInfo ontology
(see Buitelaar et al. (2006)) and allow one to describe case, gender, part-of-speech, and
number of a linguistic expressions.

The model contains the following concrete concepts for referring expressions:

Deictic Reference - Represents a deictic expression, for example in the utterance
“Give me information about this movie” that occurs together with a pointing gesture
in a multimodal input. A deictic referring expression can also appear without a
gesture. In this case, the expression is handled as an anaphoric reference to content
that has been introduced into the discourse context in the previous discourse. In
the example, the movie has perhaps been mentioned in a input and is now referred
to.

Knowledge Base Reference - This concept describes an exophoric reference to
an entity that is part of the environment context. It is used for retrieving knowledge
from the world that has not been previously introduced into discourse. For example
the utterance “Turn off the red lamp” can refer to a lamp in the environment that

Figure 5.9 – The ReferenceModel class diagram

5.6 Mapping between syntactic and semantic representations 119

has not been previously mentioned in dialogue and thus is not part of the discourse
context. Nevertheless, in an environment-aware system it is possible to resolve
references to entities in the environment that are stored in the knowledge base.

Spatial Reference - A spatial expression is a reference to an object relative to
the current location of the participant of an utterance or relative to other objects
mentioned during the discourse. The SpatialReference object allows one to model
the relatum of the referenced object and the spatial relation to it, e.g., with northOf,
leftOf, topOf.

Collection Reference - Can express differentiation criteria in order to distinguish
the referenced object out of a collection of possible referents, e.g., in a list of entries
(“Book a ticket for the second cinema!”). The concept provides attributes for the
starting point from which the resolution is applied and the ordinal number of the
referred element.

Temporal Reference - An absolute temporal expression can specify the temporal
frame of an interaction. This temporal frame is either the current time and date
or a time point previously mentioned in a discourse. A relative temporal reference
applies to this temporal frame. This reference can be quite precise (e.g., “The movie
next Monday.”) or specify a vague relation (e.g., “I booked a later screening”).

5.6 Mapping between syntactic and semantic representations

In the previous section we discussed the fact that the specification of the dialogue flow
on a semantic level improves the expandability and maintainability of an application.
For this it is necessary to perform a transformation from the syntactic to a semantic
representation and vice versa during runtime. In SiAM-dp this task is done by specific
components that are engaged in the processing workflow. On the input side interpreters
lift the syntactic to a semantic representation. On the output side the generation of syn-
tactic from a semantic representation is performed by renderers and actuator controllers
(see also Section 7.1).

The core platform already integrates interpreters for speech input and input from GUIs.
SiAM-dp deploys modelling languages for speech recognition grammars and GUI pre-
sentations. They allow application designers to directly annotate their models with
annotations for the semantic interpretation of the users’ inputs. Based on these anno-
tations, the interpreters preprocess syntactically represented input and enhance it with
a semantic representation. This procedure is explained in detail in Section 6.3 for GUIs
and in Section 6.2 for speech input.

Similarly to this approach, it is possible to extend the platform with arbitrary inter-
preters and renderers. Mostly the approach here is to map values from one level of rep-
resentation to the other one. Since this procedure can also be described declaratively,

120 Chapter 5 Massive Multimodality in Cyber-Physical Environments

SiAM-dp provides a rule-based, generic component that accomplishes this task. Thus,
application developers can easily specify the transformations by a declarative approach
without writing new processing components.

5.6.1 Mapping rules

In SiAM-dp it is possible to define mappings for input messages that map syntactic
to semantic representations and for output messages that map semantic to syntactic
representations. The definition of mappings is based on rules that consist of two parts.

Condition - The first part specifies a rule’s condition and indicates when a rule
should be applied. The condition is defined with the pattern model that was intro-
duced in Section 4.4. Thus, the pattern matching mechanism uses unification on
the inheritance hierarchy of the involved models. Furthermore, the pattern model
allows one to assign specific content of a matching instance to variables, which may
be used for the generation of the mapping target.

Target - The second part of a rule describes the content that is generated if the
rule matches. This content is declaratively specified and supports the advantages
of the bindable concept introduced in Section 4.3.4. Thus, it is possible to access
and process content of the incoming message that has previously been assigned to
variables by the pattern model. This also includes the invocation of script code or
Java plugins in order to generate more sophisticated mapping results.

Besides mapping rules for input and output messages, it is possible to define subrules
that are applied on the inner elements of a message. This helps to avoid redundancy, for
example, if an inner element occurs in several distinct messages but is always mapped to
the same result. The further evaluation of an inner element by subrules can be triggered
in the target definition by specifying the binding attribute of a bindable concept to
the result of the script command Subrules.map(<content>). In this case the element
content is the input for a new mapping process and validated against the conditions of
all available subrules.

A rule conflict occurs if more than one rule matches an input. The set of the mapping
rules in SiAM-dp is an ordered rule set. This fact is used for conflict resolution which
follows the strategy First in First Served. This means the applied rule will be the first
rule in the ordered set that is matched. Thus, the application developer has to specify
during design time which rule will be applied in the case of a conflict.

5.6 Mapping between syntactic and semantic representations 121

5.6.2 Example

Figure 5.10 shows the example of an output mapping rule and how the application of
the rule affects an outgoing message that matches the condition pattern of the rule. The
pattern of the output mapping rule with the name LightControl describes an instruction
to access the light control of the environment. An instance of the concept Lamp should
be attached as the semantic content of the instruction.

The result of the mapping process is defined as a CustomFormat instance which is filled
with content that is bound to the result of several script expressions. The scripts all refer
to the variable lamp which is assigned by the lamp pattern with the Lamp instance of
the input message. For the attributes onstate, colour, and brightness, the scripts simply
access the get-methods of the several attributes. For the attribute colour the script
additionally calls on a method that converts the name of the colour to its appropriate
RGB value. Unlike the name of the colour, the RGB value can be processed by the
target device.

(a) Output mapping rule (b) Outgoing message before and after passing the
mapping rule engine

Figure 5.10 – Example of an output mapping rule

122 Chapter 5 Massive Multimodality in Cyber-Physical Environments

5.7 Summary

This chapter dealt with the following two research questions:

2. Massive Multimodality: How can the massive modality of devices in a CPE
be represented in a hierarchical device model and how can this hierarchy be trans-
ferred to a structured model for the representation of input and output acts in the
communication between the dialogue system and devices?

3. Representation of Communicative Meaning: How can interaction between
dialogue systems and a highly heterogeneous set of devices in a CPE be represented
independently of modality, and how can this support the multimodal integration?

In the first section the upper level of a type hierarchy for the classification of devices
was introduced. The root classes are controller, sensor, renderer, and actuator. From
these starting points more and more specific concepts for the description of the type and
modality evolve. Orthogonal to this type hierarchy are three attributes for classification,
namely the device position, interaction range, and the distinction between single and
multi-user interaction, are presented. The type hierarchy is the basis of the model for the
representation of dialogue acts used in Situation Adaptive Multimodal Dialogue Platform
(SiAM-dp). Outgoing from an abstract class for dialogue act representation, which
additionally contains meta-information like timestamps, addressee, and initiator of the
message, the device specific information is structured equivalently to the abovementioned
type hierarchy. Thus, devices with an equal type of content are consolidated in one class
which serves as a common interface which is important for the device integration, making
it easier to interchange devices without adapting the core application.

Furthermore, the model contains concepts for the modality independent representation
of communicative intentions which is inherited from the standard for the semantic an-
notation of dialogue acts (ISO/DIS 24617). Those intentions can also be carriers of
semantic content entities deployed within an interaction. Furthermore, it includes a spe-
cific model for the definition of referring expressions that are used to describe unresolved
entities with relation to the current context.

The semantic representation can be loosely coupled with the device specific presentation.
This approach to shift the representation of interaction to a semantic level improves the
integration, expandability, and maintainability of applications since it can be used in
order to specify the dialogue flow independent from the actually used modality.

Finally, a rule based mapping approach was presented that supports the mapping from
syntactic to semantic representation and vice versa.

6
Declarative Specification of Multimodal Dialogue

Applications

This chapter gives a detailed introduction to the models that have been developed for
the declarative specification of multimodal dialogue applications. The objectives pursued
with the models’ concepts form the basis of the model-based development approach in
SiAM-dp.

The behaviour of a dialogue application is defined with the dialogue model presented in
Section 6.1. This is used by the dialogue manager to control the interaction flow of the
dialogue. In Section 6.2 the model for the definition of speech grammar rules is presented.
A model for describing graphical user interfaces and events on these interfaces is shown
in Section 6.3. Finally, the model for project specifications is presented in Section 6.4.

6.1 Dialogue Specification Model

The dialogue manager is a core component of the dialogue system and controls the
structure and interaction flow of the dialogue. It is responsible for determining the
implications of user interactions and triggering system reactions. In Section 2.3.1, we
discussed four kinds of dialogue management architectures that can be differentiated
in complexity and powerfulness. Since the focus of this work is not on dialogue man-
agement, we followed the simplest architecture, a finite-state-manager which is a very
robust and transparent solution for implementing dialogue applications. Nevertheless,
other approaches like a frame-based one can be implemented with finite-state-machines,
covering a broad range of multimodal interaction use cases.

124 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

6.1.1 Modelling Interaction Workflows

One of the design goals of SiAM-dp is a development approach for the rapid creation of
multimodal applications for technology demonstrations or the evaluation of interaction
concepts. Therefore, we want to enable even non-expert programmers to create sim-
ple applications with compelling dialogue and interaction behaviour. In the following,
three concepts for the declarative specification of interaction flows are presented. In our
dialogue model we adopted concepts from the latter two.

Virtual Scene Maker

An example toolkit for this kind of interaction workflow design is the Virtual SceneMaker
(Gebhard et al., 2003, 2012) which is a visual authoring tool for virtual characters.
The system’s behaviour and the logical and temporal order in which scenes are played,
commands are executed, and user interactions are processed, is specified by a sceneflow,
a hierarchical statechart variant. The commands are expressed in a simple scripting
language that supports variable assignments and function calls to the underlying higher
programming language. The statechart concept in Virtual Scene Maker supports super-
nodes as composite states for constituting subautomaton and scoping variable validity.

Windows Workflow Foundation

Another framework is the Windows Workflow Foundation (WF) in the .NET program-
ming environment from Microsoft (Andrew et al., 2005) which allows declarative pro-
gramming with a graphical workflow editor (see Figure 6.1). With the framework’s
concept developers can model a program with flowcharts and simple statecharts that
can call C# code fragments for more complex tasks. Assignment and condition expres-
sions can be given by C# or Visual Basic instructions and the definition of variable
scopes is supported. In other projects for customers from industry we already gained
positive experience with the WF design approach that resulted in a European patent
application (Bierwas et al., 2014).

State Chart XML

State Chart XML (SCXML)1 is an XML-based markup language that describes a generic
state-machine-based execution environment (Barnett et al., 2014). It is a standard pub-
lished by the Word Wide Web Consortium (W3C) and is still a Working Draft speci-
fication but at a very advanced stage and near completion. The language allows one to
define complex state-machines with an event-based state machine language, including
sophisticated concepts like sub-states, parallel states, synchronisation, history states,

1http://www.w3.org/TR/scxml/

6.1 Dialogue Specification Model 125

Figure 6.1 – Snippet of the graphical Visual Studios Windows Workflow editor

and concurrency. The standard was mainly developed for generalising and replacing
state diagram notations already included in other XML specifications, for example, the
Call Control eXtensible Markup Language (CCXML) that is used to describe telephony
call control or in VoiceXML (Hoepfinger and Candell, 2010) as a high-level dialogue lan-
guage. It is also planned to use SCXML as a multimodal control language in the W3C
Multimodal interaction framework (MMI) (Dahl, 2013) where VoiceXML is combined
with other modalities like a Graphical User Interface (GUI) described in XHTML.

The idea of statecharts goes back to Harel (1987) who extended conventional state-
transition diagrams with three new features: State hierarchy, concurrency and commu-
nication. Generally, a statechart is a visual modelling approach for defining event-driven
behaviour of systems that is often used in agent-based models or models for process and
system dynamics. The main components of a statechart are the states that describe the
actual context of the system and possible reactions to external events. For this, a partic-
ular state defines exiting transitions that are fired in reaction to a specific trigger which
can be messages, events, conditions, or timeouts. After a transition is fired, the state may
change and activate a new set of transitions and thus reactions. Entering states, exiting
states, and following transitions can be associated with actions, e.g., output messages
can be sent, the context can be changed, or methods can be invoked. The advantage
of a state hierarchy is that states can be combined in composite states and share com-
mon context and transitions. Furthermore, the number of nodes and transitions and the

126 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

complexity of the chart is reduced and thus the readability increased.

SCXML is supported by several implementations in diverse programming languages, like
Java, C++, Python, or Java Script. One of them is Apache Commons SCXML, which
provides a Java library for parsing SCXML documents and running them in its own
engine. A main advantage of this library is the abstraction of the environment making
the engine highly adaptable. In the implementation of the dialogue component in SiAM-
dp the Apache Commons SCXML is used as the base engine for dialogue processing.

6.1.2 The SiAM dialogue model

Shukla and Schmidt (2006) start their book with the following sentences:

“Windows Workflow Foundation (WF) is a general-purpose programming
framework for creating reactive programs that act in response to stimulus
from external entities. The basic characteristics of reactive programs is that
they pause during their execution, for unknown amounts of time, awaiting
input. . . . The focal point of the WF programming model is the concept
of an activity-a program statement in a WF program. An activity’s execu-
tion is inherently resumable and unfolds in an episodic manner, pausing and
resuming according to the activity’s interactions with external entities.”

It is quite evident that this concept perfectly fits to the design of dialogue interactions.
Normally, a multimodal dialogue system in a Cyber-physical Environment (CPE) is a
reactive program, either reacting to the external stimuli of a user input or an event in
the environment. Consequently, during an interaction, pauses with an unknown amount
of time occur, for example, in an instrumented environment that automatically reacts to
specific sensor events. Here, most of the time the system runs in idle and awaits events.
There can also be periods of time while a user is not interacting with the system or has
to decide about an appropriate answer. So current activities must be interruptible and
resumable during an interaction between user and system.

Because of these arguments and the idea of creating an easy-to-use dialogue modelling
approach, we decided to adopt concepts from the WF into our modelling language. This
mainly concerns the main sequence control elements. Figure 6.2 depicts a diagram of the
main concepts that represent these control elements in the model for dialogue definition
in SiAM-dp:

Dialogue - This concept represents the description of the whole dialogue. It con-
tains one Node which is the parent node for the complete workflow description.

Node - Abstract class for all control elements of the dialogue model. It is derived
from the AbstractState concept which specifies a variable scope for the node.

Variable - A variable is described by the type of an entity and the name to which
the entity is associated. When initialised, the variable can receive a default value.

6.1 Dialogue Specification Model 127

ExecutabeContentNode - Contains executable content which lets the engine per-
form primitive actions. It allows one to modify variables, send events to other
modules, raise messages, call scripts, or write logging messages (see 6.1.3).

Sequence - A sequence contains other nodes that are sequentially executed.

Decision - Enters the node in the then-slot if the given JEXL-condition (see Sec-
tion 4.3.4) is true, otherwise the node in the else-slot is entered.

While - Repeatedly enters the node in the body-slot while the given JEXL-condition
is true.

DoWhile - Enters the node in the body-slot once and then continuously while the
given JEXL-condition is true.

WaitForEvent - Pauses the workflow execution until the defined event is fired and
the given JEXL-condition is true.

Furthermore, it is possible to define more complex workflows with the StateChart con-
cept. This node allows one to define a complete statechart that is executed when this
node is reached. A statechart provides all the advantages introduced in the previous
section 6.1.1, thus allowing one to define concurrent processes and global reactions to
certain user events. The statechart concepts are adapted from the SCXML model and
thus its complete potential is provided. The statechart concepts of the dialogue model
are depicted in Figure 6.3.

Abstract State - Abstract parent concept for all states that primarily defines the
variable scope of the state.

State - The base concept for the representation of a state. With the onEntry and

Figure 6.2 – Overview of the main control concepts of the dialogue model

128 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

Figure 6.3 – Overview of the statechart concepts in the dialogue model

onExit slots it allows one to specify the actions that are executed when the state is
entered or left, respectively. A state is derived from the concepts SourceState and
TargetState and thus can be source or target content of a Transition.

Transition - Describes the transitions between states. A CondEvents can be
assigned to a transition that specifies the trigger of the transition. The onTrigger
slot may contain executable content, which is executed when the transition is taken.

AbstractCompositeState - The abstract concept represents all states that are
composite states and hence can contain one or more states as content in the states
slot. An AbstractCompositeState may also define a history state for state configu-
ration recording.

HistoryState - A pseudo-state that records the last visited state inside a com-
posite state before it is left. It allows one to return to a previously interrupted
workflow. The type of a history state can be shallow or deep. A shallow history
state remembers the last visited state on the same level of hierarchy. The deep his-
tory state remembers the last visited atomic descendant, which may be at a deeper
level. A history state can be the target of a transition.

CompositeState - A composite state is a state that contains one or more sub
states. The initial state that becomes active if the composite state is entered is
defined with the slot initialState.

6.1 Dialogue Specification Model 129

StateChart - A special version of the CompositeState concept, which describes
the root element of a statechart. It is also derived from the concept Node (see
Figure 6.2).

ParallelState - A parallel state executes all its child states in parallel. Thus,
when a parallel state is active, all of its child states are active. This also means that
each event is handled in each child state separately. Thus, one event can trigger
distinct transitions inside the parallel child states.

CondEvent - This concept describes the trigger for a transition. It contains three
slots. The slot event specifies the name of the event and corresponds to the event
name in the SCXML standard. If the trigger should react to input events from
the SiAM-dp event manager, the event name must be InputEvent. In this case
it is possible to set an additional event filter by defining a pattern in the pattern
slot. Additionally, a trigger condition can be given with a JEXL-expression in the
condition slot. The CondEvent concept is also used for defining an event in the
WaitForEvent concept.

ExecutableContent - Is an abstract concept that represents all actions from the
dialogue that can be performed. An executable content can be content of an Ex-
ecutableContentNode or occur inside the onEntry and onEntry slots of a state or
inside a transition in the slot onTrigger. Figure 6.4 gives an overview of the concrete
concepts.

If - Allows the conditional execution of executable elements.

Assign - Changes the value of a variable in the variable scope. The to-slot defines
the variable and the expression-slot contains a JEXL-expression for the value that
is assigned to the variable.

Delay - Delays the state machine for the given amount of time.

Raise - Raises an internal event in the SCXML session. The identifier in the event
slot is the event name on which a trigger can react.

Log - Writes a logging or debug message with the given label and expression.

Send - Sends an OutputMessage to the SiAM-dp event manager and thus enables
the dialogue manager to communicate with the environment.

Since every control element is an abstract state and every statechart is a control element,
it is possible to mix statecharts and control elements. If a control element is used as a
state in a statechart, the instructions of the control element are initially processed when
the state is entered.

In practice, the dialogue model is converted to pure SCXML by the dialogue manager
component (Section 7.3) before it is provided to the Apache Commons SCXML engine.

130 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

Figure 6.4 – Overview of the executable contents in the dialogue model

6.1.3 Embedding the IO-Model into the dialogue specification model

A focus during the development of the dialogue model lay on the integration of the
input and output model that was introduced in Section 5.3. A major benefit of this
approach is that application developers can directly use the model for input and output
description within their dialogue specification in order to effectively and rapidly create
new dialogue applications. Thus, it is possible to define patterns for input messages on
which the application should react and trigger transitions between dialogue states. For
this, the pattern model (see Section 4.4) is used that allows pattern matching, taking
into account the type hierarchy of the involved models.

In the other direction, an application developer can descriptively define the output mes-
sages that are sent to the output devices. The abstractness of the output representation
is open at the dialogue specification stage. On the one hand it is possible to just define
the semantic intention of outputs using the dialogue act model (see Section 5.5). In
this case the concrete output representation is planned by the presentation planning
and output generation modules (see Section 7.10). On the other hand the designer can
directly define the target devices and the concrete realisation of the output by using for
example the GUI model (see Section6.3) or similar models for other modalities.

6.1.4 Example

Figure 6.5 shows on the left side a snippet of a simple hotel booking dialogue specification
that holds a statechart. The complete statechart is the scope of the variable elementID
(a) of type BString with the default value “homeImg”. The initial state of the statechart
has the ID “homeScreen” (b). The actions defined in the slot onEntry (c) are executed
if this state is entered. It contains a send command that owns an output act with two
presentations in the first and unique presentation alternative. First is the definition of
a GUI with a start screen, second a welcome message presented via speech synthesis.
Both are sent when the dialogue is started (see the right side of the figure).

6.2 Modelling Speech Recognition Grammars 131

Figure 6.5 – Snippet of a simple hotel booking dialogue. The Send command (c),
which is executed when the initial state homeScreen (b) is entered, describes two output
representations, a welcome page on the GUI and the speech output “Welcome”. The
transition pattern (f) describes a click event on the home image and is the condition for
the transition (d) that updates the content of the GUI (g) when triggered.

The presented start screen shows an image which can be clicked by the user. If this
happens, the screen is updated with a list of cities that can be selected. This behaviour
is defined in a transition (d) with a composite state (e) as the target. The transition can
be triggered by an input event (f) with a condition that restricts the triggering event to
the click on the image of the start screen. This is described by a pattern for a ClickEvent
with a target ID that equals the value of the variable elementID, in this example the
variable’s default value “homeImg” (a).

The onTrigger slot (g) of this transition contains the executable content Send that sends
a new output message via the event manager. It contains an output act that updates
the GUI with a new window for the city selection task. The further progress in city
selection is defined in the composite state with the ID citySelection (e) (in the snippet
not depicted in detail).

6.2 Modelling Speech Recognition Grammars

Situation Adaptive Multimodal Dialogue Platform (SiAM-dp) supports the development
of speech controlled applications by providing a grammar rule model that allows one to

132 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

specify speech recogniser grammars and their corresponding mapping rules to a semantic
interpretation based on the semantic dialogue act model, as introduced in Section 5.5,
and the domain model. A speech recognition grammar allows developers to specify the
words and pattern of words that should be detected by a speech recogniser.

For the representation of the grammar we use a syntax that is closely oriented to the
Speech Recognition Grammar Specification (SRGS)2, the W3C-standard for the speci-
fication of speech recognition grammars. This standard supports the presentation of
grammars in two forms, an Augmented Backus-Naur-Form (ABNF) and the XML based
GRXML. While GRMXL is more often used in practice (nearly all leading commercial
speech recognition systems, like systems from Nuance and Microsoft, support the gram-
mar specification with GRXML) the ABNF form is more compact and human readable.
Thus, we decided that grammar phrases are defined in the ABNF form in order to
provide the application developers with a clear and compact modelling overview. The
conversion from this form to GRXML is automatically done by the internal grammar
management service that in a further step distributes the generated grammars to the
connected speech recognisers (see Section 7.7.1).

It is possible to tag SRGS grammars with a semantic representation, the content of
these tag elements is not specified by the standard. Although our system internally
uses this mechanism, the grammar rule specification model has its own concepts to
define mappings from recognised utterances to a semantic interpretation. These concepts
are adapted to the semantic dialogue act model and are designed considering that the
semantic interpretation of a dialogue act can be split into a communicative intention
and the implicitly given semantic content. A linguistic utterance itself is normally given
with a specific communicative intention. Thus, the complete utterance can be mapped
to a communicative function.

Furthermore, the utterance can implicitly contribute semantic content to the dialogue
in the form of named entities but also referring expressions. The term named entity
is widely used in natural language processing and stands for information units like the
names of persons, organisations, or locations but also numeric expressions including
time, date, money, and percent expressions (Nadeau and Sekine, 2007). In named-entity
recognition, the classification of the names by the type of entity they refer to is an
important subtask. Since we expect that every entity of one class is mapped to one
concept of the domain ontology, we support the definition of mapping rules for named
entities that are similar in their semantics. In the case of a referring expression, the
expression is mapped to an instance of the reference model which was introduced in
Section 5.5.1.

Both the ABNF form and the XML Form of SRGS have the expressive power of a context-
free grammar (CFG) and support recursive rules. However, the grammar manager of
our dialogue platform allows one to enable and disable individual grammar rules and to

2http://www.w3.org/TR/speech-grammar/

6.2 Modelling Speech Recognition Grammars 133

Figure 6.6 – Overview of the specification model for grammar rules

adapt named entities dynamically from the interaction flow. Thus, the currently active
grammar can be manipulated based on the current discourse context.

6.2.1 Grammar Rules Specification Model

The mapping rules are modelled with the grammar rule specification model. A context
free grammar is used in the sense of a semantic grammar with non-terminals (Entity
Rule, Semantic Mapping Rule) that denote semantical categories. Figure 6.6 presents
a diagram of the grammar model. A set of rules is collected in an instance of the
concept Ruleset. Every rule set must have an identifier and defines the language of
the grammar rules. Every rule in the rule set is identifiable by a unique name and can
be enabled or disabled. The enabled state can be changed during runtime, allowing a
context dependent restriction of the active rules. In the model we distinguish between
three types of rules.

Utterance Rule - An UtteranceRule defines a set of utterances or variations of
utterances that are all mapped to the same semantic interpretation. The utterance
rules are located at the root level, which means that one utterance rule describes
a complete speech-based input act. The phrases are defined in the phrases slot
using the ABNF syntax. It should be noted that a rule reference that is introduced
by a $-character refers to another rule of the rule set. Since utterance rules are
only allowed at root level, the referenced rule must be either of the type Entity or
SemanticMapping.

Every UtteranceRule can specify a communicative function as a mapping target

134 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

for the interpretation. In order to integrate the interpretation result of a referenced
rule as semantic content to this communicative function it is possible to specify
a binding of a semantic content to this rule by setting the binding attribute to
$<rulename>.

Entity Rule - EntityRules allow one to define phrases for named entities and
their mapping to the corresponding semantic representation. One rule allows one to
collect several named entities of the same semantic concept and to define a general
rule for the semantic mapping process. Every entity rule can be of the type static or
dynamic. A dynamic rule is adaptable, which means that the list of entity entries
can be manipulated during runtime.

The various entries for named entities are collected in the entries-slot. Each entry
is represented by a PhraseValuePair that consists of the phrase syntax and a value.
Thus, it is possible to define different word variations for one instance, e.g., the
phrases “D F K I” or “German Research Center for Artificial Intelligence” are valid
expressions for our research institute. Independently from the actually used phrase,
the assigned value of a named entity is definite.

The value can be used for the specification of the mapping target. This is defined
in the interpretation slot as an instance of SemanticContent that serves for the
semantic description of entities.

Semantic Mapping Rule - SemanticMappingRules allow one to define subrules
that can be referred by utterance rules. With this type of rules we pursue three
different objectives. The first is to avoid redundancy of phrases since subrules can
be reused in several varying utterances. The second is to provide the opportunity to
map single phrases directly to a semantic representation. The third is to consolidate
semantic interpretations from other subrules in order to either merge several named
entities into one subrule or to integrate interpretation results into more complex
structures.

For every semantic mapping rule, one mapping target can be defined in the slot
mappingTarget. This is the supertype of all semantic interpretations that are de-
fined in this rule. The mapping target is used for the internal semantic consistency
check, thus every defined interpretation in this rule must be a subtype of it. Fur-
thermore, the rule contains a list of phrase mappings that describe the recognisable
phrases and their semantic interpretation. The description-attribute has no prac-
tical use but serves as a documentation possibility for the application developer.

6.2.2 Example

The following example should give a better understanding of the grammar rule model.
First, we introduce a named entity rule for movies as depicted in Figure 6.7. In the
example two phrase-value pairs are listed, one for the movie “Iron Man”, the second for

6.2 Modelling Speech Recognition Grammars 135



EntityRule

name: MOVIE

entries:

PhraseValuePair

phrase: iron man

value: 1300854


PhraseValuePair

phrase: the? great gatsby

value: 1343092


. . .

interpretation:


Movie

IMDB-Id $expr
(

value
)

. . .




Figure 6.7 – Example: A named entity rule for movie names

“The Great Gatsby”. The word the in the phrase “the great gatsby” is optional and
therefore ends with a question mark. The recognisable phrases are the names of the
movies. Mapping targets are the ids from the movies in the international movie data
base. As the semantic interpretation for the named entities, we define an instance of the
type Movie. The content of the value in the phrase mapping is mapped to the IMBD-id
attribute of this instance. This is possible because the attribute is of the type BString
which allows one to resolve a JEXL-expression during runtime. In this case a variable
is resolved. Analogously to this rule we define a second rule for the type Book (Figure
6.8). Here we use a database ID of the book as an identifier and define a book instance
as the mapping target.

Figure 6.9 shows a Semantic Mapping rule that consolidates the named entity rules
for movies and books to one common upper concept, the media entity. Both semantic
concepts are derived from the super type Media, which is defined as the mapping target
for this rule. For each named entity rule we specify one phrase mapping. The phrases
are references to the named entity rules defined before and the interpretation of each
mapping is bound to the corresponding entity rule interpretation.

The advantage of defining this semantic mapping rule is that we can now specify utter-
ance rules that refer to the MEDIA rule and implicitly address the more specific concepts
of the entity rules. An example rule is depicted in Figure 6.10. The rule lists all syn-
tactic variants that can be used for gaining more detailed information about a media
item. Exemplarily we specify two possible phrases that contain a reference to the previ-
ously defined semantic mapping rule MEDIA ENTITY. Possible utterances that match this
utterance rule are:

136 Chapter 6 Declarative Specification of Multimodal Dialogue Applications



EntityRule

name: BOOK

entries:

PhraseValuePair

phrase: the? lord of the rings

value: 9783608938289


PhraseValuePair

phrase: the? little prince

value: 9781853261589


. . .

interpretation:


Book

BookDB-ID $expr
(

value
)

. . .




Figure 6.8 – Example: A named entity rule for book names

“What is iron man about?”
“Tell me more about the little prince!”
“What is the lord of the rings about?”

The interpretation for this rule is a communicative function, more precisely a SetQuestion.
The aim of the question and thus the item of interest is given with knowledgeItem at-
tribute. The semantic content of this question is an object of the concept Media which
is bound to the result of the semantic mapping rule. Here it is important that the type
of the content is semantically compatible to the mapping target of the referred rule.

6.3 Modelling Graphical User Interfaces

The design principle “no presentation without representation” (Wahlster, 2002) guar-
antees dialogue coherence in multimodal dialogue systems since the user can refer to
elements of the system’s output. This especially includes the representation of the cur-
rent screen content on displays involved in the multimodal dialogue application. Without
a dialogue system that is aware of the content it is presenting to the user, the resolution
of referring expressions from speech or deictic input is impossible.

Therefore our dialogue system is always aware of the display context that is managed in
a special component which is introduced in Section 7.8.1. The description of the display
context is realised using a model for graphical user interfaces. In order to support
arbitrary visualisation techniques, a focus lies on developing an abstract GUI model
which describes the presented graphical components and contents without restrictions
on the actually used devices or GUI frameworks. On the one hand, this allows one to

6.3 Modelling Graphical User Interfaces 137



SemanticMapping

name: MEDIA ENTITY

mappingTarget:
[
Media

]

phraseMapping:


PhraseMapping

phrase: $MOVIE

interpretation:

[
Movie

binding:MOVIE

]



PhraseMapping

phrase: $BOOK

interpretation:

[
Book

binding:BOOK

]



Figure 6.9 – Example: A Semantic Mapping Rule for a media entity that combines the
named entity rules for book and movie

Utterance

name: MEDIA INFO

phrase: what is $MEDIA ENTITY about

tell me more about $MEDIA ENTITY

interpretation:


SetQuestion

knowledgeItem: description

semanticContent:

[
Media

binding: MEDIA ENTITY

]



Figure 6.10 – Example: An utterance rule for questions about media descriptions

completely build generators that create GUI presentations only from instances of this
model as it is exemplarily implemented for HTML 5 (see Section 8.3.3). On the other
hand already existing GUIs may continue to be used in multimodal dialogue applications.
In this case the model describes an abstract representation of this GUI with all relevant
elements and content. Adaptions to the specific GUI are then only made by changing
the content of the model but not the GUI component structure, which is indirectly
predefined by the existing GUI.

Furthermore, the GUI model supports the creation of graphical user interfaces by pro-
viding a declarative design approach. The declarative design of user interfaces using
XML structures is nowadays supported by nearly every modern GUI framework. While
HTML completely relies on a declarative design, other frameworks provide a declarative
specification language in parallel to the conventional programmatic approach. Microsoft

138 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

developed the Extensible Application Markup Language (XAML) for the .NET frame-
work in the Windows Presentation Foundation (WPF) which is an XML-based language
for the specification of, among others, graphical elements, user interfaces, animations,
transformations and data binding. MXML is used by Adobe Flash. JavaFX 2.0 is part
of the Oracle Java distribution and, in contrast to SWT or Swing, includes the declar-
ative XML-based language FXML for defining user interfaces. Also, the development
frameworks for mobile applications are placing an emphasis on declarative GUI design.
Android supports XML-based layout resources for the design of the GUI in so-called
Activity or a component of a GUI. Apple allows one to create graphical user interfaces
for iOS with the Interface Builder, a tool for defining graphical surfaces.

Common GUI frameworks support the philosophy of stylesheets that allow one to sep-
arate the design from the content. A style sheet is a collection of properties that can
specify the look and the format of a graphical user interface, such as sizes, padding,
colour, font sizes, and many more. One style sheet language in widespread use is cas-
cading style sheets (CSS) which is applied in prominent languages like HTML, SVG,
FXML and other markup languages. Hence, the concept of cascading style sheets is also
supported by our model.

The next subsection gives an overview of the GUI model of SiAM-dp. First the model
concepts are explained in detail. The following subsection deals with the modelling
approach for GUI events. Afterwards, the way in which semantic information, com-
municative acts as well as semantic entities are bound to the GUI representation, is
explained. The section concludes with a model example.

6.3.1 GUI Model Concepts

Figure 6.11 depicts a snippet of the GUI model diagram. The basis concept for all
elements of a GUI is the concept UIElement which provides some relevant basic attributes
like the element ID, the dedicated style, a flag that represents the enabled state, and the
absolute coordinates of the element on the screen.

One important subtype of this concept is the Container concept which consolidates all
elements that can be a container for a collection of other UIElements. The most ele-
mentary concrete subtype of this is a Canvas, an empty box that will apply an absolute
layout in order to set up and place the inner elements. Elements within this container
should be annotated with x and y coordinates for the position. Other concepts automat-
ically manage the layout of their inner elements, e.g., a VBox arranges them vertically,
an HBox does this correspondingly in a horizontal direction. With a GridContainer the
developer can arrange the inner elements in a grid layout. It consists of rectangular areas
defined by rows and columns, resulting in a grid that is used to position the inner items.
Each element is placed in one or more cells which is fully covered by the element. Forms
are used to combine several input elements like text fields, check boxes, radio buttons,
selection lists, and more. With a Form it is possible to collect the information from all

6.3 Modelling Graphical User Interfaces 139

Figure 6.11 – Snippet of the GUI model

these input elements and send them together to the dialogue system in one event by
clicking on a SubmitButton. One other important subtype is the concept Window, which
represents the main widget of a display and is the root element of a GUI.

Another subgroup of the UIElement constitutes concrete GUI control elements, the
figure only depicts the most common of them. However, the model supports most
control elements already known from other GUI specification languages. It is possible
to design labels, buttons, text input fields and areas, check boxes and more, and to
configure them, e.g., by setting an attribute for the label of a button. Other elements
show media information like an image or a media player. Also more complex views are
possible, e.g., the model supports dialogue boxes, calendar views, progress bars, colour
pickers and HTML viewer.

The content of a GUI is manipulated by the use of a GUIRequest (Figure 6.12), a
subconcept of the IoModel concept OutputRepresentation. Two concrete subtypes
are derived from this abstract concept. A new user interface is introduced to a display
with the concept GUIApplication. The GUIApplication must define the complete GUI
content with a Window instance. Additionally, it is possible to add a style sheet resource
to the application.

If an existing GUI should be adapted, the concept GUIUpdate is used that contains the
attribute applicationID for identifying the correct application to update. The following
updates can be specified:

AddUIElement - A new element is added to the element with the given parent id.
Furthermore, the position of the new element in the parent element can be specified.

RemoveUIElement - The element with the given ID is removed from the GUI.

140 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

Figure 6.12 – Snippet of the model for describing GUI requests

UIElementUpdate - The attributes of the element with the given ID are updated
to new values. Some general attributes are already defined in this abstract concept,
e.g., the enabled attribute, the style, or a tooltip for the triggering of help informa-
tion. Other attributes are element specific and defined in concrete update concepts
for the particular types of control elements.

WindowUpdate - This update replaces the complete window with the definition of
a new window.

StyleSheetUpdate - With this update the GUI can be connected to a new style
sheet resource.

A GUIUpdate request can contain more than one update. In this case all updates are
performed simultaneously.

GUI Events

A GUI is an interface with a bidirectional communication direction which means that it
is not only used for output purposes, the user also interacts with the displayed control
elements: He presses buttons, inserts text, or selects entries of a list and thus gives input
to the application. In GUI programming, the action of a user is normally represented by
GUI events in an event driven programming approach. SiAM-dp follows this approach
and defines a GUI event model that describes user actions. The concept diagram of this
model is depicted in Figure 6.13.

6.3 Modelling Graphical User Interfaces 141

Figure 6.13 – Overview of the GUI event model

The main concept of this model is the GUIEvent that is derived from the IO model con-
cept InputRepresentation. A GUIEvent contains an instance of the concept GUIEventData
that provides all the necessary information of an event. This class is abstract and a super
concept of all event specific representations. It describes some common attributes like
the ID of the affected control element and a value that describes the input if necessary,
e.g., an inserted text.

The particular events are represented by concrete subconcepts of the GUIEvent and can
provide additional event attributes. The diagram shows a subset of these events. The
SubmitEvent is a special event that is fired if the submit button of a Form container is
triggered. It provides a map that contains all current values of the input elements inside
of this form with the corresponding element ID as the key.

6.3.2 Semantic Data Binding

UI data binding is a software design pattern that simplifies the development of user
interface applications by binding user interface components to entities of the application
domain. One advantage is that the entity model is separated from the actually applied
user interface technology and thus reusability and maintainability are ensured. Never-
theless, communication between the user interface and entity model must be possible;
the user interface has to present the information of the bound data. Often the connection
between the components is bidirectional which means that changes in the user interface
also affect the entity model.

Actually, the GUI model supports a unidirectional connection to the entity model which
means that the information presented by a control element is directly derived from
the content of a bound entity. So-called adapters are responsible for the presentation
based on the semantic representation of the intended output. They take the individual

142 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

Figure 6.14 – Overview of the concepts that are involved in the semantic data binding

information elements of an entity and use them to fill the features of a control element.
Figure 6.14 gives an overview of the concepts involved in the binding process:

Every UIElement can contain the semantic content that is presented by the element
which is an instance derived from the basic concept Entity. Additionally a UIElement

can specify adapters that act as bridges between the UIElement and the contained se-
mantic content. An ElementAdapter is responsible for describing the mapping between
individual elements of the semantic content entities and the feature attributes of the con-
nected UIElement. The individual elements are addressed with the help of a PPattern

(see Section 4.4) and assigned to variables that are afterwards used in the specification
of the adapter mappings. An AdapterMapping contains two attributes. The first is the
target feature of the UIElement to which a value should be mapped. The second is
a JEXL-expression that generates the new content of this feature based on the values
of the variables previously assigned in the pattern. The evaluation of the mapping is
processed during runtime and either triggered if a new GUI element with a binding to a
semantic content is defined or if the bound content is updated.

In contrast to the other GUI languages mentioned in the introduction of this section, it is
also possible to annotate control elements with the communicative intention of the user
that may provoke him to interact with the element. For this, every UIElement can specify
the supported interactions of the user with the element by the feature supportedEvents.
Content of this feature is an instance of the concept SupportedEvent which describes
the event type, a concept of the previously introduced event model, e.g., ClickEvent,
ChangeEvent, MouseDownEvent. Additionally, the interpretation of this interaction can
be specified by using an instance of the communicative function model (see Section 5.5).
The implicitly given content of the communicative function can refer to the semantic
content of the UIElement. This connection is declared by a GuiContentReference that
is a subconcept of the ReferenceModel introduced in Section 5.5.1. The annotation
with semantic information is used by the GUI input interpreter (see 7.8.2) for lifting the
syntactic description of the interaction with a control element on a semantic level.

6.3 Modelling Graphical User Interfaces 143

6.3.3 Example

Figure 6.15 shows the example of a semantically annotated GUI model. The model
instance describes a window that contains two GUI control elements and one semantic
data entity. The semantic content (a) of the window is the movie instance Iron Man
3. The instance originally contains more data but for simplification purposes the figure
only shows a list of cinemas where the movie is shown.

The control elements of the window are vertically aligned in a composite box (VBox).
The first GUI element is a label (b) that displays the movie name. The content of the
label is bound to the semantic content by an element adapter. The adapter defines a
pattern describing the type of the semantic content that should be bound to the label
and assigns the value of the name slot to the variable name. The adapter mapping
describes how this content should fill the label’s features. In this example the name of
the movie is used to fill the text feature of the label.

Figure 6.15 – A GUI model example for a window which presents a list of cinemas that
show the movie Iron Man 3

144 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

Figure 6.16 – The GUI model example with resolved data bindings and the mockup of
a possible rendering result

The second GUI element is a list (c) that presents the cinemas where the movie is
running. The content of the list is again bound to the semantic content, in this case
by an array adapter. The given pattern assigns the content of the movie’s cinema slot
to the variable content. The array adapter behaves differently from a normal adapter
because it creates one GUI element for each item in an array of entities. Thus, for every
cinema where the movie is running, a list item is created with the name of the cinema
as a label. This is defined by the ElementAdapter that is attached to the ListItem in
the ArrayAdapter.

With the SupportedEvent we define which types of user interactions are supported by the
list control element. In the example (d) this is a ChangeEvent that fires whenever the user
selects a new item in the list. The model allows one to bind the semantic interpretation
of the user’s intention to this event. Here the semantic entity of the cinema is introduced
into the dialogue with the communicative function Inform. The semantic content of this
communicative function is referenced to the content of the selected list item which is
bound to the cinema entity it represents. This is defined by the GuiContentReference.

The display context manager of the dialogue platform is responsible for resolving the
data bindings and complements the GUI model with the necessary information that is
retrieved from the bound semantic entities. The resulting GUI model from this process
is depicted in Figure 6.16. Here the control elements are extended with the text that is
displayed on the screen. It must be mentioned that for every cinema a ListItem has
been generated that contains the corresponding cinema entity as semantic content.

6.4 Project Definition Model 145

6.4 Project Definition Model

The previous sections introduced several models that form the building blocks of a
complex multimodal dialogue application. The model that brings all these components
together is the project model that is used as a starting point for the specification of a
dialogue application in SiAM-dp. It comprises all information that is relevant for the
declarative specification of an application, including amongst others resources, models,
devices, and participating users. When the application is started the project model is
read by the project manager and the contained information distributed to the appropri-
ate components of the dialogue platform (see Section 7.4).

Figure 6.17 shows a diagram with the concepts of the project model. The root element
of an instance of this model is of the concept Project. This concept contains references
to the following elements:

Device - The devices that are registered and supported by the dialogue applica-
tion. The platform only connects to devices in the environment that match the
attributes of devices registered for the application here. Section 7.6.1 shows how
the device manager controls the assignment.

Dialogue Participant - The participating users in the dialogue.

Dialogue - The model that describes the interaction flow of the dialogue manager
for the application (see Section 6.1).

Figure 6.17 – Overview of the model for the project description of a dialogue application

146 Chapter 6 Declarative Specification of Multimodal Dialogue Applications

Ruleset - The rule sets that define the grammar specifications for speech recogni-
tion (see Section 6.2). Several rule sets with distinct languages can be attached to
this slot. The platform automatically selects the rule set that matches the current
language configuration.

JavaPlugin - A JavaPlugin makes Java classes globally accessible from JEXL-
scripts in other models via the given namespace. The class must be known from the
class loader of the main application bundle and is identified by the full class name.

Entity Resource - The slot allows developers to specify domain entities in ad-
vance. The entities are accessible from every component in the dialogue platform
by a resource management service. If the attribute addToKB of an entity resource
is set to true, the entity directly becomes part of the knowledge base which is im-
portant for the engine that is responsible for context resolution.

Digital Resource - A digital resource is accessible by a Uniform Resource Iden-
tifier (URI). This can be a media resource like a video or an image, a style sheet,
or the link to a web service.

Mapping Rules - In Section 5.6 we presented a rule-based approach for the generic
mapping of syntactically to semantically represented input and output. The valid
mapping rules for the project are defined in this slot.

6.5 Summary

This chapter dealt with the following research question:

4. Declarative Dialogue Application Design: Which dialogue application speci-
fication models support the rapid development of multimodal dialogue applications
in Human-Computer Interaction (HCI)?

Several models have been designed for the declarative development of multimodal di-
alogue applications. These were explained in detail in this chapter. The model for
dialogue specification is a combination of flowcharts and statecharts and enables ap-
plication developers to directly integrate the model for input and output description.
Thus, it is possible to define patterns that indicate on which input messages, transitions
between dialogue states should be triggered. On the other hand developers can directly
declare the output messages that are emitted. Furthermore, a very high degree of free-
dom for developers is ensured by the possibility to invoke script expressions and Java
plugins.

The comprehensive tasks of designing graphical user interfaces and speech recognition
grammars is supported by user friendly and easy-to-use models. During the develop-
ment of both models, the focus was set on hiding the complexity of grammar and GUI

6.5 Summary 147

design behind abstract concepts. Thus, they are independent from the grammar speci-
fication languages and GUI frameworks actually used for realisation. Furthermore, the
models allow one to directly bind named entity rules or graphical components to the
corresponding semantic entities they present. The communicative meaning behind com-
plete speech utterances or GUI events can be represented by dialogue acts. Hereby the
transformation between syntactic and semantic representation is explicitly declared in
the models. The massively multimodal dialogue system can easily be extended with
further modalities by utilising the generic mapping rules that were introduced in Section
5.6.

The project model consolidates all resources for dialogue applications. First of all these
are instances of the previously introduced models. Other resources are the participating
users, supported devices, digital resources, and semantically described entities of the
world knowledge.

7
SiAM Dialogue Platform

This chapter presents the concrete implementation of SiAM-dp. The conceptual founda-
tions have been laid in the previous chapters. The specification models for the platform
were presented in Chapter 6. This chapter starts with a description of the platform ar-
chitecture and an overview of the underlying technologies. In the following, the various
components are described more in detail. This includes the event management (Sec-
tion 7.2), session management (Section 7.6), project management (Section 7.4), dialogue
management (Section 7.3), and knowledge management (Section 7.5). The technical
aspects of device integration and management is explained in Section 7.6.1.

The platform additionally contains components that directly help to integrate the most
common modalities. For speech recognition the creation and management of grammars
and the interpretation of speech input is implicitly supported (Section 7.7). Other
components, which are described in Section 7.8, are responsible for the management
of Graphical User Interfaces (GUIs) and interpretation of GUI input.

Important for the massively multimodal integration is a comprehensive approach which
supports cross-modal interaction in the current discourse context. On the input side this
is enabled by the fusion and discourse resolution engine, which is introduced in Section
7.9. Output to the users can be situation dependently distributed to the available devices
in the Cyber-physical Environment (CPE). This is explained in Section 7.10.

7.1 SiAM-dp Architecture

One of the key goals of SiAM-dp is a modular architecture that allows modules to be
easily added, removed, or replaced. This is particularly important for components that
integrate input and output devices since it is essential for a modern multimodal dialogue
platform to simplify the extension with new devices and modalities. This is one of the

150 Chapter 7 SiAM Dialogue Platform

main reasons for choosing the OSGi platform as underlying technology. The platform is
described in the next subsection.

7.1.1 The OSGi platform

The OSGi (Open Service Gateway Initiative) is a specification maintained by the OSGi
Alliance. It describes a Java-based platform model that supports a modular and dy-
namic architecture for component and service models. The multi-layered architecture is
depicted in Figure 7.1

OSGi works on the Java Virtual Machine that is a platform independent interface to the
underlying operating system. The following components are part of the framework:

Module Layer: Defines the basic modularization units. An OSGi bundle is the
smallest modular unit in an OSGi service platform that can be dynamically started
and stopped during runtime.

Lifecycle Management: Specifies and manages the lifecycle states of a bundle.
A bundle can adopt the following states: INSTALLED, RESOLVED, STARTING,
ACTIVE, STOPPING, and UNINSTALLED.

Service Layer: Specifies a common service model that makes services accessible
throughout the system via a service registry.

Security: The OSGi specification defines an optional security layer. It is responsi-
ble for handling signed bundles and limiting execution rights for individual bundles.

Framework Services: The framework services are introduced in the core speci-
fication. They support the implementation of management components.

Figure 7.1 – Logical layers of the OSGi framework (according to Wütherich et al.
(2009))

7.1 SiAM-dp Architecture 151

Besides industrial implementations of the OSGi framework also numerous open-source
implementations are available, e.g., Knopplerfish, Apache Felix, or Concierge. The de-
velopment of SiAM-dp is based on the Equinox OSGi framework which is promoted by
the Eclipse foundation.

OSGi provides the following characteristics for the development of the multimodal dia-
logue platform:

Extensibility: Functionalities can easily be extended by adding new bundles.

Encapsulation: The modularization into bundles encapsulates the functionalities
of the platform components and allows their extension or replacement.

Dynamic: The bundles’ lifecycles are independent from each other (as long as there
exist no dependencies). Thus, they can also be started and stopped independently
from each other.

Dependency Management: Dependencies between bundles are declared inside
the bundles’ manifests. They are automatically queried and checked during runtime
and development.

Orthogonal services: The service layer of OSGi gives a native support of orthog-
onal services.

Devices and components in SiAM-dp are defined in individual OSGi bundles. They are
either part of the dialogue standard workflow or provide orthogonal services that are
accessible by all other components (or both).

7.1.2 Eclipse Modelling Framework

Modelling in SiAM-dp is realised with the Eclipse Modeling Framework (EMF) which is
introduced in Section 4.3.2. The basic models provided by the platform are located in the
dedicated bundle de.dfki.iui.mmds.core.model that must be imported by the other
platform components. A new domain can easily be added by creating a new EMF model
bundle that extends the existing models with new domain-specific concepts. Normally,
the concepts in the domain-specific model are derived from the base model which allows
an easy integration of the new domain in the overall model concept of the platform.
EMF provides the following advantages for the development of SiAM-dp.

• Generation of Java code from EMF models.

• Serialisation of model instances.

• Validation of model instances.

• Model editor integration into the Eclipse workbench.

152 Chapter 7 SiAM Dialogue Platform

7.1.3 Platform Layers

Figure 7.2 gives an overview of the main dialogue platform components. Rectangular
boxes depict software components, elliptic boxes components in the physical world, e.g.,
sensors, devices, or actuators. The black arrows visualise the main data flow of a stan-
dard interaction. Coloured arrows represent the flow of information independent from
the main data flow. All components of SiAM-dp can be attributed to one of four layers
(in Figure 7.2 layers are distinguished by their colour):

Environment Layer:

The environment layer contains all modules that directly constitute the interface to the
physical environment. For the interaction between human and computer it comprises
input devices and output devices that exchange information with the users. Fur-
thermore, it includes those components that build an interface to the cyber-physical
environment of the current domain, e.g., a smart home or a vehicle. These components
either observe changes in the environment with sensors or directly manipulate it by
actuators.

It is intended that components of this layer are highly adaptable and extendable in order
to develop dialogue applications for a wide range of various domains and interaction
modalities. Therefore, the platform and programming language for the implementation
of a module in this layer is not restricted to a specific type and the connection for
communication between these modules and the core system supports a variety of different
protocols, to mention some of them: TCP, REST, SIP, Apache Thrift, or the direct
implementation in an OSGi bundle.

Core Layer:

The core components contain the main functionality of a dialogue application and the
architecture corresponds to reference architectures well known from other multimodal
dialogue system architectures, e.g., from SmartKom (Herzog and Reithinger, 2006). For
all modules in the core layer SiAM-dp provides implementations with strategies that are
based on the declarative models which are introduced in Section 6. These concepts are
designed with respect to requirements that were derived from many years of experience in
multimodal dialogue system research (Schehl et al., 2008; Porta et al., 2009a; Neßelrath
and Porta, 2011; Bergweiler et al., 2010).

However, the topics for multimodal dialogue interaction are widely scattered and can
have their origins in diverse areas such as research in HCI/CHI, computational linguis-
tics, cognitive science, usability, or knowledge management. In order to provide a high
flexibility and the option of customisation, all core modules are encapsulated in their own

7.1 SiAM-dp Architecture 153

OSGi bundles and can be arbitrarily replaced by modules that address a very specific
research issue in a more adequate way.

The black arrows in the figure represent the data flow of a standard interaction. A
component that is origin of an arrow provides information to the component the arrow
is pointing to. Normally an interaction starts with an input from the environment layer,
passes through the components of the core layer, and ends up with a response to the
environment again. Nevertheless, it is feasible that when initiative is taken by the system
the interaction starts in the dialogue management.

First, the input from sensors and input modalities is further processed in unimodal
interpreters for devices and sensors, which generate a semantic representation of the
input and hypotheses about the users’ intentions. This step is necessary in order to
make the input machine-understandable and allow further processing steps in the fol-

Figure 7.2 – The main architecture of the SiAM dialogue platform. The black arrows
visualise the data flow of a standard interaction. The resource and context management,
and backend components are orthogonally integrated and can be applied by all core
components.

154 Chapter 7 SiAM Dialogue Platform

lowing multimodal fusion and discourse resolution component (see Section 7.9).
It merges multimodal input from distinct modalities and complements missing and am-
biguous meaning with information from the discourse context.

The main application logic is located in the dialogue manager (see Section 7.3) that
reacts to user input and events in the physical environment. The dialogue manager
is responsible for the flow of conversation with the user and generates the output of
a dialogue application. If not enough information is available for performing a task, a
clarification dialogue with the user may be triggered in order to retrieve additional input.
Other tasks of the dialogue manager are retrieving information from backend services,
which give answers to users’ questions, and the control of actuators in the environment.
In all cases it is an approved approach to give feedback to the user. In the dialogue
manager component this is done on an abstract level using concepts for the semantic
representation of communicative functions as defined in Section 5.5. So the dialogue
manager decides which information is given to the user but not how and where it is
presented.

The latter is realised in the presentation planning and multimodal fission (see
Section 7.10) component that decides which devices are involved in output presentation
and what the presentation looks like. Finally, the modality specific output generators
produce concrete device and technology specific representations of the output that are
presented to the user by applying the output devices in the physical environment. Ad-
ditionally, actuator controllers generate commands in order to control actuators that
change the state of the physical environment.

All modules of the core layer have access to support modules that are located in the
resource and context management layer and the backend layer. These components are
orthogonally integrated into the architecture by utilising the OSGi service concept. This
allows to register the components to the OSGi service registry and makes them available
to every other OSGi component. Thus, for every component it is possible to retrieve
information necessary for dialogue processing that is provided by the support modules.
Furthermore, core components can update resource and context knowledge or execute
calls on external services for information retrieval and transfer.

Resource, Context, and Knowledge Management Layer:

The resource, context, and knowledge management layer comprises all components that
keep track of the current system and context states. This includes a project manager
(see Section 7.4) that manages and distributes the dialogue application specification
models. The device manager (see Section 7.6.1) monitors connected devices and joins
them to the dialogue application if the application supports them. Furthermore, it pro-
vides valuable information to the presentation planning module. The session manager
(see Section 7.6) collects information about the active sessions, participating users, and
used devices. The content represented on graphical user interfaces is managed by the

7.2 Event Management 155

display context manager (see Section 7.8.1). The grammar manager (see Section
7.7) is responsible for activating and deactivating grammar rules and distributing them
to the connected speech recognisers taking into account the appropriate languages. The
discourse manager manages the discourse context (see Section 7.9.1). SiAM-dp pro-
vides an internal component that supports a semantic-based knowledge management
(see Section 7.5).

All components are orthogonally available through the OSGi service concept. Further-
more, they can subscribe to every event that is distributed be the event manager (see
Section 7.2) and thus have the opportunity to follow and analyse every message that is
internally sent by the dialogue system.

Backend Layer:

The backend layer comprises all components that establish connections to backend sys-
tems. These can be internet services for information retrieval, booking, or communi-
cation but also local running services like a database access on the host system. All
of these components are orthogonally available through the OSGi service concept.

7.2 Event Management

SiAM-dp is implemented in Java/OSGi and the native OSGi service architecture is
utilised in order to enable communication between the modules and to distribute com-
municative messages. The black arrows in Figure 7.2 represent the communication be-
tween the dialogue platform components within a dialogue workflow. The content of
the communication is based on the concept IOEvent as defined in Section 5.3. Subcon-
cepts derived from this concept are InputActs, OutputActs, and control messages that
change the state of a device or notify the platform about device state changes. The
event messages can contain syntactic information, semantic information, or both.

Basically, every bundle in the OSGI framework can subscribe to messages that are sent
within SiAM-dp. For this, the SiAM platform provides abstract event handler classes,
which implement the connection to the event management service. The main component
in a bundle can be derived from such handlers for input messages, output messages or
any message, whichever is needed by the component. Furthermore, it is possible to
use patterns as introduced in Section 4.4 in order to filter the received messages only by
those that unify with the specified patterns. SiAM-dp uses a hub and spokes architecture,
where the event management service is the hub and the single components are the spokes.
A component can take the role of an event source, which sends events, or an event sink,
which subscribes for specific events.

Figure 7.3 depicts how the event manager is integrated into the OSGi framework. It
shows that the OSGi event admin service is exploited for message distribution within the

156 Chapter 7 SiAM Dialogue Platform

Figure 7.3 – Integration of the SiAM-dp event manager into the OSGi framework. The
event manager distributes messages by exploiting the OSGi event admin service. The
black arrows depict the handler registration workflow, the red arrows the workflow for
message distribution.

platform. A reason for this is that the event admin service is a central OSGi standard
service that allows to send messages across OSGi components both, synchronously and
asynchronously. When sending a message synchronously the event admin waits for the
response of the message receiver before the next message is sent. In contrast it directly
continues with the next message if it has been sent asynchronously. The task of iterating
over the registered event listeners and managing the execution queues is automatically
solved by the event admin service.

Figure 7.3 contains arrows in two different colours. The black arrows show how the reg-
istration of components is realised. A SiAM-dp component can subscribe or unsubscribe
to the event manager as an event listener and additionally provide a filter pattern for
the messages that should be received. Then the event manager registers the handler to
the event admin service and provides some additional meta information that manage
the method call behaviour for preprocessor and component priority support described
later in this section.

The red arrows depict the flow of a message that is sent from an arbitrary component via

7.2 Event Management 157

the event manager. The latter packs the message into an OSGi event and passes it to the
OSGi event admin service which calls all registered handlers for this message. Within
this call the pattern for the message content is evaluated by the subscription pattern
unifier. Thus, a component’s handler method is called if and only if the component’s
subscription pattern unifies the received message.

Normally, every component that is subscribed to a message receives a clone of the mes-
sage. Thus, it it ensured that the components handle the message independently from
each other and manipulations on a message made by one component have no effect on the
message that is processed by another component. In contrast, in some cases it is neces-
sary that components make adaptations to a message before other components take this
modified message as input for processing. One example for this are input interpreters
that enrich syntactical input messages with semantic information. This must happen be-
fore the message reaches the fusion and discourse component and the dialogue manager
component. For achieving this, the event manager supports the concept of preprocessor
modules. A module that is marked as preprocessor module receives a message before it
is forwarded to any other component. In this case the following components receive and
work with the messages modified by the preprocessor component. In order to allow more
than one preprocessor component and to coordinate their temporal execution order, it is
additionally possible to define priority levels of a preprocessor component. A component
with a high priority is invoked prior to a component with a medium priority; likewise a
component with a medium priority is invoked prior to a method with a low priority.

Figure 7.4 visualises how the distribution of messages is realised in the SiAM-dp event
manager. A new message that is received by the event manager is at first sent to the
preprocessor with the highest priority using the OSGi event admin service. Since it is
synchronous, the call must be finished before its result is sent to a preprocessor with a
medium priority. Congruently, the result of the preprocessor call with a medium priority
is used for the call of preprocessor components with a low priority. The resulting message
is finally cloned and the copies are distributed to any other subscribing component. In
this case the calls are asynchronous.

This is for example used for the generation of output. Two preprocessor components
subscribe for messages that are sent by the dialogue manager. The first one is the
presentation planner, which has a high priority and determines which of the available
devices and modalities are involved in the realization of the output. The second one
is the dynamic mapping rule engine (see Section 5.6), which generates syntactic output
presentations outgoing from a semantic representation. It requires the decisions about
the involved devices from the presentation planner and thus gains a low priority. If
a modality specific output generator is used, it would subscribe to the message as a
preprocessor with medium priority. Thus it can generate a syntactic presentation, before
the generic mapping rule engine is started.

158 Chapter 7 SiAM Dialogue Platform

SiAM-dp
Components

SiAM-dp
Components

SiAM-dp
Event

Manager

Tim
elin

e

Sending SiAM-dp
Component

message 1,0

via
OSGi Event Admin Service

Preprocessor
Component

(high priority)

Preprocessor
Component

(medium priority)

Preprocessor
Component

(low priority)

Other
Components

synchronous call

asynchronous call

message 1,0

message 1,1

message 1,1

message 1,2

message 1,2

message 1,3

copies of message 1,3

Figure 7.4 – The call sequence for components in the SiAM-dp event manager. At first
a new message is sent to the preprocessor component with the highest priority. The
resulting modified message is forwarded to the preprocessor component with medium
priority and the result from this call again to the preprocessor component with low
priority. Finally, a copy of the resulting message is asynchronously distributed to all
other subscribed non-preprocessor components.

7.3 Dialogue Manager

The dialogue manager which is deployed with SiAM-dp is based on state machines and
uses model instances of the dialogue model as introduced in Section 6.1 as input data.
Figure 7.5 gives an overview of the internal architecture.

In the background, the Java Apache Commons SCXML1 engine is running as an execu-
tion environment for dialogue applications. Since the expressive power of the dialogue
model is not limited to pure statecharts and has been extended with further workflow
specification concepts, the dialogue model is not directly compatible to SCXML. Hence,
the dialogue manager contains the component DialogueToSCXMLConverter that re-
ceives dialogue model instances as input and generates valid SCXML documents which
are the data sources for the Apache SCXML engine.

1http://commons.apache.org/proper/commons-scxml/

7.3 Dialogue Manager 159

Figure 7.5 – The internal architecture of the dialogue manager. Red arrows represent
the workflow of dialogue specification models that are converted to SCXML documents
and forwarded to the Apache SCXML engine. Blue arrows represent the flow of input
and output messages. The green arrows represent the information transfer between the
Java Expression Language (JEXL) engine and other components.

Another task of the dialogue manager is to connect the underlying SCXML engine to
the event management. The Event Bridge is responsible for this. It transforms incoming
input messages from the event manager to state machine internal events. The content of
the message is added as context information to these events. It is used for the pattern-
based evaluation of trigger conditions in transitions of a statechart. Furthermore, parts
of the message contents can contribute to the context of the SCXML engine. On the
output side send-requests, which are part of the SCXML standard and are used to send
events and data to external systems, are intercepted and redirected to the event manager
of the dialogue system.

The SCXML specification allows to support multiple expression languages. The dialogue
manager utilises the Apache Common Java Expression Language (JEXL) library2, an
open source implementation of an expression language based on some extensions to
the JSTL Expression language supporting most of the constructs available in shell-
script or ECMAScript. The API contributes interfaces for Context and Evaluator where
the Context is a collection of variables that define a variable scope within a state and

2http://commons.apache.org/proper/commons-jexl/

160 Chapter 7 SiAM Dialogue Platform

the Evaluator is a component that is capable of parsing and evaluating expressions,
the expression language engine. This API is implicitly used by the SCXML engine.
Additionally, the dialogue manager can manipulate the variable context and register
Java plugins to the JEXL engine that are afterwards callable from the Evaluator.

7.4 Project Manager

The project manager is directly launched with a dialogue application. The main task of
the component is to read project specifications, to validate them, and to distribute the
content to the other involved components. Furthermore, it is responsible for controlling
the lifecycle of the dialogue engine and contributing services. So it is possible to start,
stop, and reset the complete dialogue application with this manager.

Figure 7.6 gives an overview of the distribution flow of the resources defined in the
project specification. The complete dialogue application is described with the project
model (see Section 6.4). This specification is read by the project manager and the
content is validated based on the EMF model specifications. In a next step the content
is distributed to the components which are involved in the dialogue application. After all
information is distributed, the project manager starts the dialogue engine. Additionally,
it provides methods for resetting the application. The following content is distributed:

Figure 7.6 – Distribution of the dialogue specification resources by the project manager

7.5 Knowledge Manager 161

• Predefined knowledge entities are sent to the knowledge manager and become part
of the world knowledge.

• The specification of the dialogue is sent to the dialogue manager.

• The information about registered devices for the application is forwarded to the
device manager.

• The specified grammar rules are forwarded to the grammar management compo-
nent.

• The mapping rules for interpretation and rendering are forwarded to the generic
rule-base mapping engine that has been introduced in Section 5.6

7.5 Knowledge Manager

SiAM-dp utilises an interface to a knowledge manager that encapsulates the integration
of a system-specific knowledge base. Currently SiAM-dp supports an implementation for
the connection to KAPCom (Knowledge Management, Adaptation, and Personalization
Component), a knowledge base for scenarios supporting the knowledge exchange between
the dialogue platform and other applications. The KAPCom platform has been especially
used for the management of knowledge inside vehicles and the sharing of information
between cars (Feld and Müller, 2011). A focus lies on the organised and efficient access
to data which is required because of the heterogeneity and increased distribution of data
sources. The domain-specific data is annotated with meta-information such as time,
confidence, and privacy. The actual KAPCom implementation connects to devices such
as the speech recogniser and speech synthesiser and retrieves information about their
availability and the connection points through which they are accessible.

A newer version, which is currently in development, is started within the OSGi envi-
ronment of SiAM-dp and builds on the resource management that is already provided
by EMF. In SiAM-dp this knowledge manager is internally accessible by an OSGi ser-
vice, which implements the abovementioned knowledge manager interface. It contains
methods for the creation, modification, removal, and retrieval of knowledge entities.
Furthermore, it is possible to register listeners to specific changes in the knowledge base
that are notified if this change occurs. External components have access to the know-
ledge base via an Apache Thrift interface that is additionally provided by the knowledge
manager.

7.6 Session, Device & User Management

The knowledge manager (see Section 7.5) stores information about the active sessions in
an dialogue application, the participating users in these sessions, and the devices they

162 Chapter 7 SiAM Dialogue Platform

use as interfaces to the dialogue system. Figure 7.7 depicts the model that represents
these concepts and their relations to each other. A Session can contain several users
(DialogParticipant), whereas a user can apply one or more user interfaces for the com-
munication with the dialogue application. In the model, a user interface is represented
by a Service, which, e.g., can be a gesture recognizer, a GUI, or a component for the
output of synthesised speech output. One or more services are provided by a ServiceIn-
stance, which describes a Device in the CPE from a technological point of view. This
means, a service interface is one networked component in the CPE. Detailed informa-
tion about the type of connection is given with the CommunicationInfo, respectively a
communication specific subconcept of it.

In a massively multimodal dialogue system and a highly dynamic environment, the con-
stellations represented with this model can change during runtime. External components
like a device discovery service or a service for user and group detection may frequently
modify this information in the knowledge base. Thus, a dialogue application must be
flexible enough to adapt to newly occurring situations. The component that is respon-
sible for monitoring this information is the session and user manager that collaborates
with the device manager (see Section 7.6.1). It is also responsible for updating the
session and user model with information which is retrieved from the currently running
dialogue application.

7.6.1 Device Manager

For a massively multimodal dialogue system, it is important that the system is aware of
the services of the existing and available devices. In SiAM-dp the device manager is re-
sponsible for this, a service that keeps track of the registered, discovered, and connected

Figure 7.7 – The concepts for the representation of sessions, users, devices, user inter-
faces, and their relations to each other

7.6 Session, Device & User Management 163

services (user interfaces). The supported user interfaces of a multimodal dialogue appli-
cation are declared in the project specification (see Section 6.4) with information about
the modality, type of the interface, service instance ID, and service name. Based on this
information, a matching process is started that compares the registered user interfaces
with the discovered user interfaces, which are available via the knowledge manager.

Device Assignment

The device manager uses three different sets for the device management:

Registered User Interfaces: These are user interfaces that are registered in the
project definition and thus are supported by the dialogue application. Additionally,
new user interfaces can be registered and existing user interfaces can be unregistered
during runtime.

Discovered User Interfaces: The discovered user interfaces are not directly
maintained by the device manager. Information about available user interfaces are
stored in the knowledge base and can externally be manipulated, e.g by a device
discovery component. This means that user interfaces can be discovered and lost
during runtime. The device manager uses this information and is also registered as
listener to the knowledge base and thus is notified about changes.

Connected User Interfaces: User interfaces that are actually connected and
involved in the dialogue application.

During runtime not every registered user interface must be available and not every
discovered user interface must be connected to the dialogue application. In fact, the
device manager permanently compares the set of discovered user interfaces with the set
of registered user interfaces. If a user interface is discovered that meets the requirements
of a registered user interface, the dialogue application connects to this user interface and
makes it accessible to the dialogue application.

The matching process between registered and discovered user interfaces is divided into
two steps. In the first step, it checks for an explicit assignment of the user interface,
which is given by the service instance ID and the service name. If no explicit information
is available, the matching process is based on the given meta-information of the user
interface. This includes attributes describing the modality, the addressed user, and the
type of the user interface (see Section 5.4). Thus, it is possible to register a user interface
to a dialogue application independently from the concrete applied one, making a dialogue
application adaptable to the user interfaces currently available in the CPE.

164 Chapter 7 SiAM Dialogue Platform

7.7 Speech Recognition Components

SiAM-dp contains an integrated speech recognition component that is responsible for the
generation of speech recognition grammars and the semantic interpretation of speech
input from connected speech recognisers. The component is working on instances of
the grammar rule model that has been introduced in Section 6.2. This model provides
an integrated and well structured approach for the definition of utterance phrases, sub
phrases, and entities and allows to annotate them with semantic interpretations.

Figure 7.8 gives an overview of the elements in the speech recognition component. The
Grammar Management Service (see Section 7.7.1) is responsible for managing the
registered and active grammars and for distributing grammar updates to the connected
speech recognition devices. For this the GRXML Converter (see Section 7.7.2) first
generates valid GRXML syntax from the active grammar rules.

The result of a speech input from speech recognisers is first processed by the Speech
Recognition Interpreter (see Section 7.7.3) before it is forwarded to other components
via the event manager. Here, the input is raised on a semantic interpretation level based
on the annotations in the grammar rule model.

Figure 7.8 – Detailed overview of the speech recognition component

7.7 Speech Recognition Components 165

public interface IGrammarManagementService {
// ru l e management
void addRuleset (Ruleset r u l e s e t) ;
void d i sab l eRu l e (S t r ing ru l e se t ID , S t r ing ruleName) ;
void enableRule (S t r ing ru le se t ID , S t r ing ruleName) ;
void enab l eRu le se t (S t r ing ru l e s e t ID) ;
void d i s ab l eRu l e s e t (S t r ing ru l e s e t ID) ;
Rule getRule (S t r ing ru l e se t ID , S t r ing ruleName) ;

// manipu lat ion o f dynamic e n t i t i e s
void setDynamicRuleEnt i t ies (S t r ing ru l e se t ID , S t r ing ruleName ,

PhraseValueList e n t i t i e s) ;
void addEntityToDynamicRule (S t r ing ru l e se t ID , S t r ing ruleName ,

S t r ing phrase , S t r ing value) ;
void clearDynamicRuleEntity (S t r ing ru le se t ID , S t r ing ruleName) ;

void sendGrammarToDevice (Device dev i c e) ;
void commit () ;

void r e s e t () ;
}

Listing 7.1 – The grammar manager interface

7.7.1 Grammar Management Service

The registered grammar rules can be modified during runtime. Thus, it is possible to
enable or disable single rules and even complete rule sets. Furthermore, rules that specify
lists of entities can be extended with new content, e.g., from a backend service. All this
functionality is covered by the grammar management service. Listing 7.1 presents its
interface.

The first set of methods provides access to the registered rule sets and allows one to
enable and disable them. Thus, the grammar space can be reduced depending on the
context, which improves the recognition accuracy. The second set can be used for edit-
ing dynamic entity rules. Furthermore, a grammar can manually be sent to a specific
connected device. If some changes to the active grammar rules are committed with the
corresponding method, the step of grammar distribution to the proper connected speech
recognition devices is processed automatically.

A further task of the grammar manager is to deploy grammars to newly connected speech
recognition devices. For this the grammar management service is informed by the device
manager (see 7.6.1) if a new speech recognition device is connected and provides the
active grammars to this device.

166 Chapter 7 SiAM Dialogue Platform

7.7.2 GRXML Converter

The most speech recognition engines use standardized GRXML as grammar definition
syntax. Thus, the grammar model must be converted to valid GRXML syntax. The
GRXML Converter component is responsible for this. It has the following tasks:

1. Parsing the ABNF syntax that is internally used in the grammar rule model.

2. Validating the syntactical correctness of the given ABNF.

3. Converting the ABNF syntax into GRXML.

4. Representing the references between the specified grammar rules in GRXML.

5. Creation of annotation tags in GRXML that help to reconstruct the interpretation
of a speech input.

Tags are grammar rule expansions, which are arbitrary strings that may be included
inline in each rule. They do not affect the grammatical patterns for speech recognition.
Moreover, they provide additional content that can be used for semantic interpretation.
We use this annotation mechanism for providing the rule ID of these rules that have been
consulted for the recognition of a speech utterances. For the speech input interpreter
this is a very valuable information and used for the reconstruction of the semantic
interpretations which the grammar rules are annotated with.

7.7.3 Speech Recognition Interpretation

The supported semantic annotations in the grammar rule model cannot directly be
integrated into the generated GRXML syntax since here only string content is supported
for the interpretation of speech input. Thus, the result of speech recognisers, that can
only use GRXML as input and have no access to the defined semantic annotations, does
not contain the semantic interpretation of a speech input act we defined in the grammar
rule model.

As mentioned in the previous section, we use GRXML tags in order to identify the rules
and referenced subrules that contain the word patterns for the recognised utterance. This
information is provided together with a recognition result. Listing 7.2 gives an example
for this. The speech recognition interpreter combines this recognition result with the
information from the grammar rule model and reconstructs the semantic interpretation
based on the semantic annotations that are attached to the involved grammar rules.

For this, it retrieves the semantic annotation of the root rule and resolves its inner con-
tent (compare the grammar rule annotation example in 6.2.2). During this resolution
process, it has to follow the references to other grammar rules and integrate their seman-
tic annotations to the interpretation of the root rule. Furthermore, JEXL-Expression
that can be used for generating attribute content must be evaluated during runtime by
accessing the Apache JEXL-engine.

7.8 Managing Graphical User Interfaces 167

<hypotheses con f id ence=” 0.9545653 ” grammar=”ROOT” utte rance=”what i s i r on
man about” x s i : t y p e=” io :SpeechHypothes i s ”>

<tokens key=”RULE ID” value=”sab demo@MEDIA INFO”/>
<tokens key=” text ” value=”what i s i r on man about”/>
<tokens key=”MEDIA ENTITY.RULE ID” value=”sab demo@MEDIA ENTITY”/>
<tokens key=”MEDIA ENTITY. text ” value=” i ron man”/>
<tokens key=”MEDIA ENTITY. s co r e ” value=”1”/>
<tokens key=”MEDIA ENTITY.MOVIE.RULE ID” value=”sab demo@MOVIE”/>
<tokens key=”MEDIA ENTITY.MOVIE. text ” value=” i ron man”/>
<tokens key=”MEDIA ENTITY.MOVIE. s co r e ” value=”1”/>
<tokens key=”MEDIA ENTITY.MOVIE. va lue ” value=”1300854”/>
<tokens key=”MEDIA ENTITY.PHRASE INDEX” value=”0”/>

</ hypotheses>

Listing 7.2 – Example for a hypothesis in a speech recognition result. The
tokens provide additional information about the ID, recognised text as well as the
recognition score for the main grammar rule (MEDIA INFO) and all involved subrules
(MEDIA ENTITY, MEDIA ENTITY.MOVIE).

7.8 Managing Graphical User Interfaces

SiAM-dp contains a component that manages the display context of GUI presentations.
Since context knowledge about information that is presented to the user on a graphical
display is highly important for the resolution of deictic expressions, spatial expressions,
and cross-modal references, it is necessary to manage the internal representations of
GUIs and make them available to other components that are involved in the dialogue
application. The component works on GUI model instances, which are in detail intro-
duced in Section 6.3. This model provides an integrated and well structured approach
to declaratively create GUIs. Furthermore, it allows to bind semantic content to GUI
elements and to annotate GUI events with a semantic representation in form of dialogue
acts.

Figure 7.9 gives an overview of the elements and the information flow in the GUI manage-
ment component. The Display Context Management Service (see 7.8.1) is respon-
sible for managing and updating the active display contexts and distributes the modified
GUI model instances to the connected GUI rendering engines. These are responsible for
the creation of the concrete presentations based on the platform and technology sup-
ported by the engine. Furthermore, they have to report user events back to the dialogue
system based on syntactic representation. The GUI Input Interpreter has the task to
shift the syntactic representation on a semantic level. For this, it evaluates the semantic
annotations for content and input interpretation that are attached to the GUI model.

168 Chapter 7 SiAM Dialogue Platform

Figure 7.9 – Information flow in the GUI management component

7.8.1 Display Context Manager

The display context manager contains all GUIs that are currently presented by the
dialogue application. Thus, the manager holds one appropriate GUI model instance for
every GUI that is presented by a graphical output device. The GUI update mechanism
supports two types of output requests: it can specify a complete new GUI application
and provide the complete GUI model that is presented. Or it can update the content
of an already existing GUI model instance. In the first case the old display context of
a device is replaced by a new one. In the second case the display context manager is
responsible for adapting the actual display context with the changes committed with an
update request.

Before it distributes a GUI model to a connected GUI rendering engine, the display con-
text manager has to resolve semantic data bindings and to complement the actual GUI
model with the necessary information that is retrieved from the bound semantic entities
(compare section 6.3.2). Thus, a GUI model instance also changes if a new semantic
entity is bound to a GUI element. Furthermore, the display context manager has to
evaluate content that is computed during runtime by accessing Java Script expressions
or executing Java plugin calls. For this the Apache JEXL engine is called.

7.8 Managing Graphical User Interfaces 169

7.8.2 GUI Input Interpreter

Since a concrete realisation of a GUI does not contain information about the semantic
annotations in the GUI model, we need a component that complements the interpreta-
tion of the syntactic representation of a user event with a semantic representation. The
GUI input interpreter fulfills this task and is registered as a preprocessor for incoming
GUI events. Together with the semantic annotations in the GUI model instance, which
it retrieves from the display context manager, it reconstructs the annotations about the
user’s intention. Listing 7.3 shows an example of the syntactic representation of a GUI
input for the GUI model instance example in Figure 6.16. The GUI input interpreter
preprocesses this message and gets the current display context for the device with ID
car display from the display context manager. In the next step, it searches for the Ele-
ment with ID “cinemaList”, which besides a semantic annotation of the ChangeEvent,
contains a list of items with Cinema entities attached as semantic content. In a last step
it adds the communicative function, the ChangeEvent is annotated with, as a hypoth-
esis to the InputAct. The containing GuiContentReference refers to an entity of type
Cinema. This is taken from the ListItem with index 0 and added to the communicative
function. The result is shown in listing 7.4.

<i o : InputAct>
<r ep r e s en t a t i on dev i ce=” c a r d i s p l a y ” modal ity=”\ g l s { gui }” x s i : t y p e=” gu i : \

g l s { gui }Event”>
<eventData index=”0” ta r g e t Id=” cinemaList ” value=”Cines tar ” x s i : t y p e=”

gui events :ChangeEvent ”/>
</ r ep r e s en t a t i on>

</ io : InputAct>

Listing 7.3 – Example for a GUI input event

<i o : InputAct>
<r ep r e s en t a t i on . . .
<hypotheses con f id ence=” 1 .0 ”>

<communicativeFunction x s i : t y p e=” communicat ive funct ions : In form ”>
<semanticContent r e s o l v ed=” true ” v a l i d i t y=”−1”>

<content name=”Cines tar ” x s i : t y p e=”sab:Cinema”/>
<r e f e r e n c e x s i : t y p e=” re f e r ence s :Gu iContentRe f e r ence ”>

<r e f e r en c ePa t t e rn i n s t I dx=”−1”>
<type h r e f=” ht tp : //www. d f k i . de/ i u i /mmds/sab demo/

model#//Cinema”/>
</ r e f e r en c ePa t t e rn>

</ r e f e r e n c e>
</ semanticContent>

</ communicativeFunction>
</ hypotheses>

</ io : InputAct>

Listing 7.4 – GUI input event after passing the GUI Input Interpreter

170 Chapter 7 SiAM Dialogue Platform

7.9 Fusion & Discourse Resolution

The SiAM-dp platform contains a component which can be used for handling multi-
modal and dialogue phenomena, the Fusion and Discourse Engine (FADE). Our FADE
component is inspired by the work of Pfleger (2007) and supports the core function-
alities described by him. Section 5.5 already describes how his ontological modelling
approaches for dialogue acts and referring expressions have been adopted to the general
modelling environment of the SiAM platform.

FADE provides generic and reusable implementations for the resolution of missing con-
tent that arises from multimodal integration and phenomena in dialogue. It monitors
the incoming and outgoing dialogue acts during discourse and becomes active in three
situations:

1. An input act contains unresolved semantic content.

2. An input act is marked as ellipsis.

3. An output act contains a referring expression to the long-term memory.

Furthermore, it is responsible for updating the discourse context with the monitored
information and works closely together with the discourse manager. Hence, in the next
subsection the internal representation of data in the discourse context is described.

7.9.1 Managing the Discourse Context

The discourse context provides the required information for resolving context dependent
phenomena in the FADE component. Furthermore, it can be used by other components
for arbitrary analyses on the discourse since it keeps track of the complete dialogue his-
tory. Internally, three different types of data are managed in their own data structures:

Discourse History: In the discourse history the complete communication between
the dialogue platform and the CPE is logged. Every input and output act is saved
in a list ordered by the time point when the action occurred.

Long-Term Memory: According to Pfleger (2007) the Long-Term Memory (LTM)
is used for representing the knowledge about the world independently from the
knowledge that has implicitly been mentioned during the discourse. This has two
reasons: First, it is possible to reference to entities in the world that have never
been mentioned during the previous discourse. Second, it serves as source for the
real world context since content that is introduced by discourse not necessarily de-
scribes the real world state but rather the subjective point of view of the user. The
long-term memory is not implicitly modified by the FADE component. Moreover,
entities must be explicitly modified by, e.g., external services that collect environ-
ment information or the dialogue management. For this, every entity in the LTM is

7.9 Fusion & Discourse Resolution 171

Figure 7.10 – Structure of the working memory. The resolved semantic content entries
of every communicative act are saved in an own entry. Newer contributions are saved
on a higher level. The figure shows how the working memory is changed if new content
is introduced into the system that updates the actual knowledge about Entity 4. Since
the temporal difference between both working memory states is greater than 500 ms,
the validity of Entity 5 is expired and the entity is removed.

addressable by a unique identifier. In SiAM-dp the Knowledge Manager is respon-
sible for controlling the access to the LTM.

Working Memory: The Working Memory (WM) holds the entities of the semantic
content that is transported within a communicative act. Only resolved content is
added to this memory since a unresolved or ambiguous content does not provide
additional contributions to the discourse. For every communicative act that contains
resolved semantic content, a new entry in the working memory is created. The
entries are organised in a list arranged by the time-point of content contribution.
Semantic content contributions can manually be annotated with an expiration time
by the property validity. If the assigned time span is elapsed, the semantic content
is removed from the working memory.

Figure 7.10 shows how the WM is updated. The WM state at time point t0 contains
content from four different contributions. Entity 2 and Entity 3 have been jointly
contributed by one communicative act. Entity 5 is annotated with a validity of
500 milliseconds. We assume that a new communicative act, which occurs 500
milliseconds or later after time-point t0, provides new semantic content that extends
the knowledge about Entity 4. For this, FADE searches the WM for entities that
are unifiable with the new entity. If this happens, the old entity is updated with
the new content by unification and pushed onto the top level of the memory. Since
the validity of Entity 5 is expired, this entity is removed from the WM.

172 Chapter 7 SiAM Dialogue Platform

7.9.2 Reference Resolution

The FADE component uses information from the context for the resolution of referring
expressions. In Section 5.5.1 the model for describing references has already been in-
troduced. For each reference type presented there, an individual resolution strategy is
applied that involves various parts of the context. Table 7.1 gives an overview of which
context is involved in the resolution of the individual reference types.

A special phenomenon that can be handled by FADE is the ellipsis. It must be examined
separately since an ellipsis has no referring expression that can be resolved. Moreover,
FADE scans the discourse context for previously introduced dialogue acts that contribute
semantic content with compatible concepts to the content that is contributed by the el-
lipsis. If matching instances are found, the FADE component overlays the content of
the discourse history with the new instances of the elliptic expression. The resulting se-
mantic content is incorporated into the communicative function of the previous dialogue
act.

The overall processing strategy in FADE is organised as depicted in Figure 7.11. For
incoming input, the component first looks up for unresolved content and tries to re-
solve the contributed references. In the next step it checks whether the contribution is
annotated as ellipsis and, if this is the case, tries to resolve it. In the final step, new
content is propagated to the discourse context manager. If the input contains resolved
semantic content entities, these are added to the working memory. The complete input
is appended to the discourse history.

Output messages are generated by the dialogue manager which means that no resolution
of ambiguous content is necessary. Nevertheless, the concept of the KnowledgeBaseRef-
erence allows the application designer to reference to content in the environment without
knowing the concrete entities. Thus, it is possible to specify an entity with its properties

Table 7.1 – The contexts involved in the individual context resolutions

Reference Type Scope of application Involved Context

Deictic Reference

Place Deixis
Multimodal Fusion

Anaphoric References Working Memory

Knowledge Base Reference Reference to world context Knowledge Base

Spatial Reference Spatial References
Display Context
Knowledge Base

Collection Reference Collection References WM

Temporal Reference Temporal References World Knowledge

- Ellipsis Discourse History

7.10 Presentation Planning & Distribution 173

Figure 7.11 – The strategy for processing incoming and outgoing semantically repre-
sented dialogue acts

in a pattern. The FADE component fulfills the task of finding the concrete entity in
the world context. After the resolution of the KnowledgeBaseReferences, the discourse
context is also updated with the new content before the message is forwarded to the
following components.

The process of multimodal integration, mutual disambiguation, and resolution of elliptic
and referring expressions is explained in detail with the help of an application example
in Section 9.1.1 and 9.1.2.

7.10 Presentation Planning & Distribution

The component that is responsible for output distribution and planning in SiAM-dp
receives the semantically represented output from the dialogue manager. Its task is to
select the output devices and modalities that are used for presenting the content of the

174 Chapter 7 SiAM Dialogue Platform

Figure 7.12 – The presentation planning and fission process in SiAM-dp

output act and distribute the data for output to the specific rendering components of
the devices.

The processing steps are oriented at the steps introduced in Section 2.2.5. Figure 7.12
shows the adapted fission process in SiAM-dp.

A main difference is that the system first has to determine the available devices in a CPE
since, in contrast to the presented approach, system devices in a CPE are distributed
throughout the room and can eventually be shared between several users. Also the
availability during runtime can change. This is caused by the shutdown of devices, local
unavailability if the user is located in the wrong area of the physical environment, or the
occupancy of a device by a different user. The assessment of the devices is supported
by the device manager that presents information about the availability of devices and
the session manager that contains information about the actually used devices and their
allocation to the particular users.

The selection of the output modalities is realised in the next step, where the prioritised
devices are determined. Here the choice is not only limited to the users’ preferences.
We discussed in Section 2.2.5 that several context features may play a role for this

7.11 Summary 175

decision. Thus, the current environment context may be important, for example, in a
noisy environment where the use of speech output is not feasible. This, together with
information from the user model, like the user’s preferences and disabilities, results in a
ranked list of devices that should be used for output.

Finally, the multimodal fission is realised. Here, the data for presentation is distributed
to the devices in the priority list based on device specific features. This process takes
account of the fact that not every device is suitable for presenting every output. In this
case, a less ranked device must be selected for the output. Furthermore, some data can be
obfuscated, e.g., if it is presented on a public display and violates privacy protection. A
further task in this step is to synchronise the presentation of information. Especially for
multimodal parallel output with synergistic information and cross-modal references this
is quite important, e.g., if a pointing information is combined with speech output. Here,
the device manager delivers valuable information about presentation delay of connected
devices. The synchronisation is realised by providing additional information about the
start time and the duration of an output presentation. A basic requirement therefore is
that the connected devices are properly time-stamped and synchronised.

Afterwards, the modality specific output representations are forwarded to the device
specific renderer that generate the concrete output presentations on the involved output
devices in the CPE.

7.11 Summary

This chapter dealt with the following research question:

5. Dialogue System Architecture: Which type of architecture is required for the
realisation of distributed coordinated communication in a CPE?

The chapter described the main architecture of SiAM-dp. This is based on the OSGi
framework and basically following the dialogue system reference architecture (Maybury
and Wahlster, 1998b). The event management is implemented with the publish-subscribe
pattern which supports a modular architecture approach and is easily adaptable and
extendable. Message filtering is content-based and specified by the pattern model which
has been introduced in Section 4.4. It is implemented on the basis of the OSGi services
functionality.

Four layers group the components of the the SiAM-dp platform: the environment layer,
the core layer, the resource, context and knowledge management layer, and the backend
layer. Principally components can be distinguished between those that are part of the
main data flow of an interaction and those that are orthogonally accessible for arbitrary
components and responsible for management tasks and the allocation of information.

Finally, the following individual components of the core SiAM-dp deployment were de-
scribed in detail:

176 Chapter 7 SiAM Dialogue Platform

Components for the main processing workflow:

• Dialogue Manager
• Fusion & Discourse Resolution
• Presentation Planning & Distribution
• Speech Recognition Interpreter
• GUI Event Interpreter

Supplemental Components:

• Project Manager
• Session & User Manager
• Device Manager
• Knowledge Manager
• GUI Manager
• Speech Grammar Manager

8
Development Tools

The previous chapter introduced the runtime environment of the Situation Adaptive
Multimodal Dialogue Platform (SiAM-dp), which is responsible for the practical real-
isation of a dialogue application. The description of the content and the behaviour of
the application is based on declarative models as described in Chapter 6. These models
must be be defined by the application engineer. The SiAM-dp Software Development
Kit (SDK), which is presented in this chapter, supports his work and contains a collec-
tion of tools and editors for the creation of new domain-specific dialogue applications.
Furthermore, it provides a wizard for the extension of the dialogue platform with new
devices and thus allows to easily integrate new modalities into the platform, which can
be reused in other dialogue applications. The toolkit is fully integrated into the Eclipse
Rich Client Platform (RCP), which is shortly introduced in the first section. Other tools
and views can be used for monitoring and debugging running dialogue applications.

8.1 The Eclipse Rich Client Platform

Eclipse is an open-source programming tool and provides an integrated development en-
vironment (IDE) for various programming languages. It has been originally developed by
IBM for the programming language Java. In 2004 IBM founded the Eclipse Consortium1

which now is primarily responsible for the further development of Eclipse.

Eclipse offers the possibility to extend the IDE with new extensions and thus to adapt
the environment to custom demands. Especially for this, Eclipse contains the integrated
plugin development environment (PDE) (Clayberg and Rubel, 2008). In the terminology
of Eclipse the expression plugin stands for a software component that provides additional
content to the environment. Since Eclipse is built upon the runtime environment Equinox
OSGi, a plugin is in technical terms an OSGi bundle that is started together with the

1https://eclipse.org/

178 Chapter 8 Development Tools

IDE. By using the so-called Extension Points of Eclipse it can provide additional content
to the workbench or extend the functionality of other already available plug-ins.

The basic RCP framework consists only of the basic application framework, including
action sets, perspectives, views, and editors. The tooling for IDE specific aspects is
optional and can be installed on demand. This includes , e.g., functionalities for source
editing, refactoring, compiling, debugging or building. Furthermore, the PDE allows to
bundle several plugins to features and deploy them via a web-based update manager
that hosts new content on so-called p2 repositories.

8.2 SiAM Workbench

An important factor for the acceptance and success of a new development platform is
the set of available tools that enable developers an easy entry into the creation of new
applications. We aim to achieve this with the SiAM-dp workbench, a kit of tools that
supports developers during the complete development process. It contains three wizards
for the creation of new model instances, new application projects, and new projects for
the integration of new devices.

Figure 8.1 gives an overview of the SiAM-dp workbench. It extends the Eclipse RCP
concepts with an own set of actions and views. In the following sections these components
are described in detail.

8.2.1 Wizard for New Applications

The most of the first steps, when creating a new dialogue application from scratch, can
be automated. This includes the generation of Java code, the correct configuration of
the OSGi plugin, launch configurations, and first templates for model instances that
actually form the real content of an application.

A project generator is responsible for creating the relevant Java classes and configuration
files and putting them at the right place in the file hierarchy. The generation process is
based on templates filled with meta-information that must be manually provided by the
developer. For the structured input of this meta-information we define a new Eclipse
extension point, a wizard. This PDE concept collects the required information from
the developer with the help of a sequence of modal dialogue windows (see Figure 8.2).
The user can switch between the single dialogue windows and provide the necessary
information. The wizard validates the information and only creates the new project
if all necessary information is available. After the developer has confirmed the given
information with the Finish button, the project generator creates the skeletal structure of
the new project. Basis of this project is a standard plugin project which is extended with
some SiAM-dp relevant code and configurations. For this, the generator fills templates

8.2 SiAM Workbench 179

Figure 8.1 – Overview of the in Eclipse RCP integrated SiAM-dp workbench

180 Chapter 8 Development Tools

of the relevant project files with the information collected from the developer. The
following resources are part of the generated project:

Java Code: Every dialogue application contains a class that is derived from the
AbstractDialogueApplication class. In this class the file name of the model for
the project definition (see Section 6.4) is provided. This class can be automatically
generated by the project generator.

Runtime Configurations: Component configurations are collected in one central
directory and distributed with the OSGi configuration manager. The configura-
tion directory is permanently monitored for file changes during runtime, which are
directly forwarded to the affected plug-ins. The project generator creates basic
configurations for some SiAM-dp internal components like the logger or the FADE
component.

OSGi component description: The component description provides an entry
point to the application class and defines relevant dependencies to internal SiAM-
dp services. In the bundle’s manifest the bundle configuration is defined. This
includes the bundle name, bundle version, and dependencies to other bundles of the
OSGi framework and SiAM-dp.

Project model resources: The wizard creates a folder structure for resources
of the dialogue application. This includes models for the project, Graphical User
Interfaces (GUIs), and grammar rules, as well as other resource like media files and
style cheats. The most directories must be filled with content by the developer but
the resource folder already contains a project definition model with a reference to
an empty dialogue specification model.

Launch configuration: Since the dialogue application runs within a OSGi frame-
work, it is important to specify a correct launch configuration. There exist some
dependencies to bundles of the SiAM-dp runtime but also to OSGi and external
support bundles. Some of the bundles must also be started in the right order. Fi-
nally, the correct Java virtual machine arguments and system properties must be
set.

8.2.2 New Device Wizard

Supporting the rapid extension with new devices is one of the main goals of the work-
bench. Beside the possibility to connect a device via diverse protocols (XML with a
TCP connection, Thrift with a TCP connection, XML via REST), a developer can also
create an OSGi bundle that implements the connection to the a device API.

Projects that implement a new device are called Device Projects. Similar to the “New
Application Wizard” the workbench also contains a wizard for the creation of a new
device project. The approach here is similar to the one for new applications. Within

8.2 SiAM Workbench 181

Figure 8.2 – Overview of the modal windows in the application wizard

182 Chapter 8 Development Tools

some modal dialogue windows, the developer has to provide the necessary information
for the new project like the device name and some bundle settings. Afterwards, a project
generator creates a new plugin project with the relevant files (Figure 8.3):

Java Code: The main class in a device project represents a device component and
is derived from the class AbstractDeviceComponent. This class already implements
the communication with the event manager and provides abstract method stubs for
handling output messages with the device as target.

OSGi configurations: In the component description the relevant dependencies to
the services for device management and event management are specified. Further-
more, a bundle manifest is generated.

Figure 8.3 – Overview of the modal windows in the device wizard

8.2.3 Extended EMF instance editor

The EMF framework allows to generate code for tree based standard EMF model editors
that are integrated in the Eclipse platform. This editor consists of two views as depicted
in Figure 8.4. The tree view based editor gives an overview of the instance being edited
and its containing elements. In this view a developer can add new child instances or
remove existing ones. When adding new child elements, the editor makes suggestions
for the type of the new element based on the underlying metamodel of the instance.
Attributes of the instance can be edited in an own property view. For the SiAM-
dp workbench the generated editor has been extended with features that increase the
functionality and usability:

8.2 SiAM Workbench 183

Global clipboard: The copy & paste functionality for model instances has been
extended to a global clipboard which allows to copy instances between different
editor windows and edited files.

Dynamic model extension: In the standard version of the editor, recommen-
dations for new elements only consider concepts of a static set of already existing
models that cannot be modified after the deployment of the workbench. Since SiAM-
dp allows to introduce new domain-specific models, we adapted this approach to
work on a dynamic set of models that can be modified later on by the application
developer. Furthermore, the proposed elements are now categorized by the slot they
are attached to and thus provide a more structured menu.

Figure 8.4 – The views of the extended EMF instance editor

8.2.4 Grammar Rule Editor

The previously introduced tree view editor is able to handle every model deployed with
the SiAM-dp platform. However, for some models it makes sense to provide editors that
are tailored to a specific model type in order to support a rapid development approach.
The speech grammar rule editor (Figure 8.5) is one of these editors. Here, individual
content of the grammar rules can be edited in particular subviews in a way that is most
suitable for presentation and modification.

The editor is divided into three tabs, one specific tab for every grammar rule type. The
different grammar rule types are explained in detail in Section 6.2. Global settings like
the identifier for the rule set and the target language are available in each tab.

Utterance Rules Tab:
This tab shows a list view containing each utterance rule in the rule set. In the
list view it is possible to add and remove rules, edit their identifier, and the enabled
status for the rule at application start. If one of the rules is selected, it is possible to
edit the specified phrases for the rule in a separate list view. This view additionally

184 Chapter 8 Development Tools

Figure 8.5 – The three tabs of the grammar rule editor

8.2 SiAM Workbench 185

verifies the ABNF syntax correctness of the given phrases. The annotations for the
semantic interpretation of the rule can be specified in a separate tree view.

Entity Rules Tab:
This tab contains a list view with all entity rules of the grammar rule set. It allows
to specify the identifier for this rule and to set the enabled and type attribute. The
mappings from ABNF phrases to values are defined in a separate list view. Every
entity rule can have a SemanticContent instance as interpretation result, which is
defined in a separate tree view.

Semantic Mapping Rules Tab:
Semantic mapping rules allow to directly map phrases to SemanticContent in-
stances. This tab contains a list view with all semantic mapping rules in the gram-
mar rule set that allows to set the identifier and the enabled attribute. The various
phrase mappings of a selected rule are presented in a separate list view. If one of
these mappings is selected, it is possible to edit the assigned phrases in a third list
view and the definition of the semantic interpretation in a tree view.

8.2.5 Graphical Dialogue Model Editor

The SiAM-dp dialogue model editor (Figure 8.6) is a visual designer for the graphical
definition of dialogue models (see Section 6.1). Since the main content of a dialogue
model consists of flow charts and statecharts, it has a great practical value for the
developer to visualise the program flow using a graph view.

The editor has been developed with Graphiti, a graphical tooling infrastructure that
enables the rapid development and customisation of state-of-the-art diagram editors for
EMF models2. Graphiti is Eclipse-based and can directly integrate editors into the
Eclipse RCP workbench.

The main window of the dialogue editor is a canvas that shows elements of the models
and their relations to each other. Thus, the hierarchical structure of composite states
and their inner simple states are immediately apparent to the developer. Transitions
between states can be defined by drawing an array from the source to the target state.
Single elements of the canvas can be moved per drag and drop. A tool palette at the
right side of the window allows the user to select a new element and to add it to the
model.

Furthermore, several editor views are included that support the modification of the
various model instances’ properties. Here, we emphasised that the edit functionalities
are appropriate to the content that is modified. For example, tree editors are used for
more complex and hierarchical content (e.g., other embedded model instances) and list
based property views for simple attributes.

2https://eclipse.org/graphiti/

186 Chapter 8 Development Tools

Figure 8.6 – The graphical editor for dialogue specification models

8.3 Runtime Tools 187

8.2.6 Domain Ontology Editor

The domain ontologies in SiAM-dp are modelled with the meta-modelling language
EMF. This framework already provides Eclipse-based standard model editors, which
can be used by the application developer to create and modify application specific do-
main ontologies. These editors are included into the SiAM-dp workbench and accessible
via the Modelling Perspective. The standard editor for EMF models is a tree-based ed-
itor that hierarchically lists all concepts and their containing attributes and references.
Alternatively, the framework contributes a graphical editor that presents models in a
class diagram view (see Figure 8.7).

Furthermore, the EMF framework contains a comprehensive tooling for EMF models.
A model generator can be used by the developer in order to generate Java classes that
cover the defined ontology concepts. Another functionality of this generator is to deploy
content providers for the concepts in the ontology. Their purpose is to fill the previously
described instance editor with the necessary information in order to display model in-
stances of the domain-specific ontology. Thus, it is possible to directly create and modify
instances of the new domain.

Figure 8.7 – Editors for modelling the domain ontology

8.3 Runtime Tools

In the previous section we presented those elements of the SiAM-dp toolkit that support
the development of massively multimodal dialogue applications at design time. The
following set of tools provides assistance during the runtime of an application.

188 Chapter 8 Development Tools

8.3.1 Application Debug GUI

Especially when debugging an application, it is a large benefit if the developer can
monitor the behaviour of the runtime environment in detail and directly inspect states
and variables of the application. Beside the Eclipse Java Development Tools (JDT)
that are integrated in the Eclipse Platform by default, we provide a separate GUI that
can be started together with a dialogue application and provides detailed information
and control functions for monitoring and debugging issues. A screenshot of the GUI is
presented in Figure 8.8.

State-machine log
An important part of the information in this GUI is about the internally running
statechart engine. It contains a log view that lists every state change, which is
triggered during runtime. If a new event is fired that matches the condition of an
active transition, the engine changes from the active state to the target state that is
specified by the transition. Thus, the target state becomes the new active state. If
a state change occurs, the monitor logs the ID of the fired transitions and the states
that have been left and entered. For the identification of states, the list provides
two identifiers. The first is the dialogue node ID, which is the ID of the associated
node as specified in the dialogue model. Since the dialogue model is converted to
SCXML before it is loaded into the statechart engine, the node structure and the
real identifiers can sometimes differ. So, the real internal state ID is additionally
presented in this view.

Variable Overview
This overview lists all variables in the actual scope of the active states and their
values. More detailed information about EMF instances can be retrieved by clicking
on the concrete value. In this case, an extra window opens that shows the content
of the EMF instance in a serialised XML representation.

Stepwise state-machine debugging
Sometimes several transitions of the statechart engine fire successively. In this case,
the tracking of variable changes is difficult for an application developer. With this
option, transitions are triggered only if manually initiated by the developer.

Manual microphone activator
This button opens the microphone of the connected speech recognition device with
the given ID. Since speech recognition is very often used in multimodal applications,
this button is a shortcut for triggering an open microphone event.

Manual input event trigger
Sometimes it is difficult to trigger input events for testing, due to a non-finished con-
crete device implementation or the development of an application at a working place
beyond the target domain with the appropriate infrastructure. This function allows
to simulate the messages that are sent by the input device. For this, the transition

8.3 Runtime Tools 189

patterns in the dialogue model are collected and appropriate least matching mes-
sages proposed. The developer can select the messages, modify them in serialised
XML form, and send them to the event manager of the running application.

Figure 8.8 – The SiAM-dp debug GUI

8.3.2 JDT Extensions

The Eclipse Java development tools (JDT) provide some plug-ins that support the Java
development in Eclipse, including debugging and IDE user interfaces. One of the func-
tionalities is a debug view that displays the result of a Java expression during runtime.
It allows developers to specify so-called ‘detail formatters’ that customise the represen-
tation of Java instances. In the default case, the toString() method of the object is
used. In the case of EMF instances, this method only returns a short summary of the
object type and its attributes (see Figure 8.9a). The containing objects are hidden in
this representation.

For developing and debugging dialogue applications, it is helpful to have a quick and
complete overview of the content of an instance. For this issue, the SiAM-dp platform
provides a specific detail formatter that displays the EMF instance in serialised XML
from (compare Figure 8.9b). Thus, the content is more human readable allowing the
developer a better understanding of the running workflows during a debug session.

190 Chapter 8 Development Tools

(a) Standard JDT detail formatter for EMF objects.

(b) Extended JDT detail formatter for EMF objects.

Figure 8.9 – Comparison of the standard and extended representation of EMF objects

8.3.3 Automatic GUI prototyping with HTML 5

SiAM-dp defines a model for the abstract specification of GUIs (see Section 6.3). With
this model the application developer can define the structure and content of graphical
elements. The design aspects for the presentation can be expressed by attaching addi-
tional style sheets to the document, a list of stylistic rules. The concrete realisation of
the graphical output is implemented by graphical renderers.

Experiences from previous work on multimodal dialogue applications in the Theseus
project (Wahlster et al., 2014) showed that the development of dialogue applications
and graphical renderer not always make simultaneous progress. This often led to the
situation that application developers designed a graphical output presentation based on
the GUI model, but were not directly able to test the system during development since
the graphical renderer had not been finished.

To overcome this problem, SiAM-dp provides the bundle de.dfki.iui.mmds.io.html that
is responsible for two tasks. First, it contains a full-fledged web-socket server that
establishes bidirectional connections to web browser clients. Second, it contains a generic
GUI renderer that dynamically creates HTML 5 content based on the actual display
context of the GUI devices in the dialogue application. Figure 8.10 shows the generated

8.3 Runtime Tools 191

presentation of a GUI model instance in the web browser. Here, developers can directly
preview the result of their graphical output. On the other way around, user interactions
with the presented HTML page are sent back to the dialogue platform event manager,
after they are converted to a format that is compliant to the IO model of SiAM-dp.
Thus, the complete interaction of the user with a GUI can be simulated.

Based on this approach for GUI previews, the web-socket functionality has more and
more been refined and is now at a state where it can serve as an adequate output device.
Here, a main focus has been placed on the customisation of the generated HTML code.
The generated HTML pages fully support style sheets that are attached to the GUI
model. Cascading Style Sheets (CSSs) enable designers to create user interfaces on a
professional level by adding styles like fonts, colours and spacing, or easily define and
exchange the common style of a complete application.

Furthermore, the developer can inject Java script or register arbitrary methods that
manipulate the generated HTML document before it is deployed to the browser. All
these functionalities offer a large degree of freedom for generating a concrete realisation
of GUIs .

Figure 8.10 – Example for a generated HTML page from a GUI model instance. The
model defines a grid layout with two grid rows that both contain one element. The first
element is a label, the second element a list with city names. The generated HTML page
consists of a label entry and a combo box that contains the items of the list.

192 Chapter 8 Development Tools

8.4 SiAM-dp deployment

SiAM-dp is deployed via an Eclipse p2 repository and an update site. An update site is
a special website for hosting eclipse features and plugins and giving additional informa-
tion like product descriptions and copyright information. The Eclipse Update Manager
can read the sites’ manifest files and automatically install and update plugins that are
deployed on the repository.

The SiAM-dp plugins are distributed by two features (Figure 8.11): first, the plugins
that constitute the core components of the SiAM-dp runtime environment. Second,
the plugins that extend the eclipse workbench with SiAM-dp development tools. The
plugins of this feature contain the wizards, editors, and JDT extensions, which have
been introduced in this chapter.

Figure 8.11 – The Eclipse Update Manager with the SiAM-dp update site as target
location

8.5 Summary 193

8.5 Summary

This chapter dealt with the following research question:

6. Tool Support: How is an integrated development environment designed that sim-
plifies and accelerates the creation of multimodal dialogue applications?

This chapter described the application development tools of SiAM-dp that support devel-
opers in the rapid design of new dialogue applications. The tools are directly integrated
into the Eclipse RCP environment. In summary, the developers are supported at three
stages of the development process:

Project Generation
Wizards support the developer in the generation of new projects and create project
templates as starting point for the implementation. The workbench contains the
following wizards:

• New Application Wizard

• New Device Wizard

• New Model Instance Wizard

Model Declaration
Editors that are specialized for concrete models and a general editor for all SiAM-dp
models. The workbench contains the following editors:

• General SiAM-dp model editor

• Grammar rule editor

• Graphical dialogue model editor

Debugging and Testing
These tools support the developer in testing and debugging a running dialogue
application. They allow the developer to monitor and stepwise control the dialogue
workflow and give previews on the appearance of graphical output. The following
features are presented:

• Extensions to the Eclipse Java Development Tools (JDT)

• Application debug GUI for monitoring and controlling the dialogue workflow

• HTML 5 preview of graphical output

9
Applications

For the evaluation of the practical applicability and acceptance, it is a fundamental
step to use the dialogue platform for the development of concrete massively multimodal
dialogue applications. In this chapter some projects are presented whose demonstrator
applications have been developed on the basis of SiAM-dp. The concrete applications
presented in the following section are each assigned to their corresponding projects.

The first three demonstrators are explained in more detail. They are part of the SiAM
project in which context SiAM-dp has been developed, tested, and refined with the expe-
rience that could be collected during the development process. Furthermore, they are an
excellent representative example to explain the strategies and processes for multimodal
fusion and reference resolution and therefore supplement the section about these topics
(Section 7.9).

The remaining sections give an overview of research projects in which other working
groups of the DFKI are involved that highly benefit from the development strategies
deployed with SiAM-dp. The structure of the sections in each case is as follows: First, a
main overview about the projects and their goals is given. The following parts show in
detail which devices are involved in the applications. In order to highlight the massively
multimodal approach of SiAM-dp, each demonstrator is summarised in a table that lists
all devices and communication channels that have been integrated. Here, each device is
classified by the attributes that have been identified in Section 5.2.

9.1 SiAM Project Demonstrator

SiAM-dp was developed in the SiAM (Situation-Adaptive Multimodal Interaction for
Innovative Mobility Concepts of the Future) project and constitutes the central in-car
platform of the project. The final result of the project is a system for smart vehicles
that incorporates multimodal dialogue interaction with an approach for assessing the

196 Chapter 9 Applications

driver’s focus of attention. In the demo scenario of the project, the knowledge from
many sources, inside and outside the car, is combined to provide the optimal type of
interaction for the current situation.

In the following subsections, four scenarios of the demonstrator are presented which
illustrate the individual facets of the platform’s strengths in a concrete application. All
of these applications have been demonstrated live at various occasions, i.a., the project’s
review by the scientific advisory board of the DFKI, and the DFKI-TechDay (Mitrevska
et al., 2015).

9.1.1 Multimodal Control of Car Functions

In this scenario the support of multimodal interaction in the SiAM dialogue platform is
demonstrated. It comprises the multimodal control of several in-car actuators like the
windows, outside mirrors, or the turn signals. The main idea of the adaptive approach
is that the various input modalities can synergistically or alternatively be employed,
depending on the actual situation and the preferences of the driver. Table 9.1 shows the
classification of the devices that are integrated in this scenario.

In-Car Setup

Figure 9.1 shows the setup of the input devices involved in this scenario. An overview of
the component architecture is given in Figure 9.2. In total, three input modalities have
been integrated into the dialogue application:

Figure 9.1 – Input devices in the scenario for car function control

9.1 SiAM Project Demonstrator 197

Table 9.1 – Classification of the devices integrated in the car control scenario

EyeVIUS is a research prototype that provides third party applications the possi-
bility to integrate information about the driver’s attention in their existing platforms
(Moniri and Müller, 2014). It consists of three different modules to monitor the
driver’s eye-gaze, head-pose, and facial expression. They collect and process data
from a head tracker and an eye tracker that have been placed in front of the driver
behind the steering wheel. This information is evaluated together with a model of
the car environment and provides assumptions about objects in the driver’s focus
to the dialogue application.

Micro Gestures are directly performed with the hands on the steering wheel. For
the recognition of finger movements, a Leap Motion Controller1 is placed at the
center of the steering wheel. We have designed a special holder for the device and

1https://www.leapmotion.com

Figure 9.2 – The external components connected to SiAM-dp in the multimodal control
scenario

198 Chapter 9 Applications

printed it with a 3D printer. The Leap Motion controller contains two monochro-
matic IR cameras and three infrared LEDs. The LEDs generate a 3D pattern of
IR light dots. If fingers are placed within a roughly hemispherical area above the
device, they reflect the infrared signal which is registered by the IR camera and
afterwards processed by a Leap Motion Software for the creation of a hand model.

Figure 9.1 shows that only a narrow part of the steering wheel lies within the high-
lighted field of view of the leap device. Hence, for this prototype the hands must be
placed within this region. Furthermore, the steering wheel obfuscates the thumbs
and large parts of the hands. This handicaps the Leap Motion software in generat-
ing a complete hand model, making if difficult to allocate detected fingers to the left
or right hand. We face this issue by defining separate zones for the left and the right
hand and assigning detected fingers to the hand of the corresponding zone. Thus,
we can recognise the number of stretched fingers for every hand (unfortunately not
the type of finger due to the missing hand skeleton model). The zones and the
coordinates of the detected fingers are processed by a gesture interpretation com-
ponent that generates a semantic interpretation of the driver’s finger gestures. The
interpretation results are based on some micro gesture strategies we have defined
for the demonstrator. They are explained in detail in the next section.

Speech Input is a common hands-free input modality for the interaction in the
car. For this, the dialogue application establishes a TCP connection to the SiAM-dp
Audio Manager, a standalone application for the easy and robust access to audio
hardware and audio services. It supports the IO protocol of the SiAM-dp model and
can directly be connected to the dialogue application. The most common supported
speech services are ASR (Automatic Speech Recognition) and TTS (Text-to-Speech
synthesis). In this scenario, the Audio Manager accesses the Microsoft Speech API
(SAPI) which is an integral part of any actual Windows distribution. SAPI provides
a grammar-based speech recognition interface and a speech synthesis component.

The car functions are accessed via an interface with the car’s CAN bus (Controller Area
Network). The CAN bus is a vehicle bus standard that allows micro controllers and
devices to communicate without a host computer. It is widespread and can be found
in nearly every modern car. Besides diagnostic issues, it is used for the control of car
actuators. We access this interface for the control of the in-car functions via a standalone
application that is connected to the dialogue application via a TCP connection.

Interaction strategy

Since we support multimodal interaction in this scenario where different parts of a user’s
intention originate from different input devices, we identified two types of contributions
that input can provide. The first is the context or the concrete actuator instance the
driver intends to control, e.g., the front right window or the left turn signal. The second

9.1 SiAM Project Demonstrator 199

Table 9.2 – Interaction concepts for the gesture only control

is the function the driver wants to perform, like opening (a window) or folding (the
outside mirrors).

Our interaction strategy allows that both input types can be contributed to by a single
input device but also as a multimodal combination of two devices. We support the
following combinations:

Speech Only Both context and function can be communicated in one utterance
spoken by the driver. Examples for possible utterances are “Open the right win-
dows” or “Fold the outside mirrors in”. Furthermore, content can subsequently be
contributed. E.g., the first utterance “the right front window” introduces the actu-
ator instance and the following contribution “open it”, which contains an anaphoric
reference to the previous utterance, specifies the function.

Gestures Only We have developed an interaction concept that assigns each type
of contribution to one hand. The left hand specifies the context, more precisely the
actuator to control. One stretched finger indicates the turn signals, two fingers the
front windows, and three fingers the outside mirrors. The right hand specifies the
function. Two fingers of the hand are stretched to a plain level zero position (see
Figure 9.3). Relative to this plain level, we additionally define an upper and a lower
position. The concrete function is dependent on the actuator (see Table 9.2).

Speech & Gesture In this multimodal combination each content type is con-
tributed by an individual modality. The dialogue platform is responsible for the
fusion of this input. One possibility is that the actuator is introduced by a left hand
micro gesture and the function is given by speech. E.g., one stretched finger of the
left hand combined with the utterance “open” opens the front windows. The other
possibility is to introduce the actuator by speech and to specify the function by
right hand motions. In this case, the utterance “the right front window” combined

200 Chapter 9 Applications

Figure 9.3 – Micro-Gesture Control in the car

with the right hand’s fingers on a lower level opens the right front window.

Speech & Focus of Attention Gaze is a fundamental deictic marker (Meurant,
2008). However, the stationary eye tracker, which is used to monitor the driver’s
gaze direction, has a limited functioning angle. Thus, we also use the head pose
of the user as an indicator of the focus of attention if the eyes are not in the
opening angle of the eye-tracker (when the head is turned to the right or left).
The communicative meaning of an eye-gaze or a head pose, for an interaction, is
comparable to a deictic gesture. Nevertheless, we always have to bear in mind that
the gaze (or a head pose) upon an object can occur unconsciously. Because of this,
we use this information only to complement an incompletely spoken utterance that
solely specifies the function but not the actuator to control. A gaze (or a head pose)
alone can not trigger an action. Thus, we avoid unwanted behaviour.

It is possible that more than one actuator is located in the line of sight, e.g., if
the driver looks through a window at the right outside mirror. Here the mutual
disambiguation of speech and eye gaze helps to resolve the ambiguity of the se-
mantics behind a spoken utterance, like “fold this mirror in”, because it is possible
to fold in an outside mirror but not a window.

Representation and fusion of the driver’s intentions

In SiAM-dp we developed models for the description of the communicative function of
a user’s input and the implicitly transported semantic content. The representation is
based on TFS. On this higher semantic level, the input description is device independent

9.1 SiAM Project Demonstrator 201

(a) Speech Input (b) Micro gesture input

Figure 9.4 – Examples for the representation of unimodal input

and can be used for modality fusion as described in this section.

Unimodal

Figure 9.4a shows the (simplified) input message representation of the speech utterance
“open the front windows” after it has passed the speech input interpreter. The content of
the slot representation is the syntactic representation of the input act. In this example,
it contains the recognised utterance (other meta-information is not presented for better
clarity). The speech input interpreter shifts the content to a semantic level and extracts
two relevant pieces of information from this utterance. The first is the context which is
presented in the form of both addressed actuators, the left and the right front window.
The second is the control function with the desired control state less, which stands for
opening the windows. Both bits of information are added as the semantic content to the
representation of the communicative function of the input act, an instruction to control
a function of the car.

The second example (Figure 9.4b) shows the same command generated by a gesture only
interaction. In this case, the driver stretches two fingers of the left hand and holds the
right hand’s fingers on a lower level. The syntactic representation of the input act now
contains micro gesture specific information. This is information about the number of
stretched fingers for every hand and the level of the right hand’s fingers. The gesture
interpreter generates an input interpretation based on the above mentioned interaction
strategies. The resulting content is the same as in the speech input act with the same

202 Chapter 9 Applications

(a) EyeGaze (b) Speech input

Figure 9.5 – Examples for the representation of multimodal input

intention.

The reaction of the system is determined only based on the content of the communicative
function and is thus completely device independent. Especially in a more complex and
adaptive system, this is a relevant advantage for maintainability and extensibility.

Multimodal

This example examines a multimodal input case with the combination of eye-gaze and
speech input. The driver is looking at the right outside mirror and gives the command:
“Fold this mirror”. In this utterance it is not clear which of the two mirrors is referenced,
so the system has to consider the additional information of the eye-gaze interpreter.

Figure 9.5a shows an input example for the EyeVIUS component. The syntactic rep-
resentation provides the identifier of two actuators with an attached confidence value,
both coded together in a string. Here, two entities are provided since the driver is look-
ing through the window at the mirror, which is also a possible actuator. The eye-gaze
interpreter takes this input and raises it on a semantic level. Thus, we obtain two hy-
potheses, one for each possible entity. The communicative function behind the input act
is interpreted as an Inform, the introduction of a new entity to the system, either for
the right window or for the right outside mirror. Both hypotheses adopt the confidence
value of the syntactic representation.

9.1 SiAM Project Demonstrator 203

Figure 9.6 – The input act after modality fusion

The input message from the speech recogniser is shown in Figure 9.5b. Here, the function
of the control command is given by the utterance and represented in the communicative
function with the additional information about the desired control state. Furthermore,
we know that the driver references an outside mirror. This is also valuable information
for modality fusion and is represented in a deictic reference that contains a pattern for
an entity of the type OutsideMirror.

Since both input messages are received in a very narrow time interval, the modality
fusion component (see Section 7.9) of SiAM-dp tries to combine them and finds the
missing referenced content of the speech input act in the representation of the eye-gaze
input. For this, it examines both hypotheses of the latter for semantic content entities
that match the given pattern in the deictic reference. Only one entity, the right outside
mirror, is unifiable with the object’s type in the pattern. Thus, the mirror is used to
resolve the ambiguous content of the speech input act (see Figure 9.6).

9.1.2 Discourse aware Interaction with the Outside Environment

In the second scenario we take the step from in-car interaction to interaction with the
outer world, which requires a slightly different approach regarding the model of the envi-
ronment and the accessed external services. In this approach, the EyeVIUS component
provides hypotheses about the buildings that are actually in the driver’s focus of atten-
tion. If the building is a restaurant, it is possible to retrieve further information and even
reserve a table for this restaurant by a natural speech-based dialogue with the system.

204 Chapter 9 Applications

Figure 9.7 – Architecture overview of the restaurant reservation scenario

The necessary information is gained from a restaurant information and reservation web
service and redundantly presented to the driver by speech synthesis and GUI output.

Setup

The approach for resolving references to the outside environment used in this scenario
is an extension of Moniri et al. (2012). For this, the outside environment was scanned
with a professional 3D laser scanner which resulted in a point cloud that was the basis
for a 2.5D polygon model. Together with a GPS map-matching algorithm, this model is
used to position the vehicle in the environment in real-time. The information from the
EyeVIUS system about the driver’s attention is then combined with the 2.5D model and
the vehicle’s position to identify which object in the environment is in the focus of the
driver. The result of this reference resolution process serves as input for the dialogue
application in the scenario.

Figure 9.7 shows the external components involved in the restaurant scenario. We use
the speech synthesis and speech recognition ability of the audio manager for the speech
interaction with the driver. Additionally, the EyeVIUS component sends input informa-
tion about the driver’s focus to the dialogue application. The input is processed by the
appropriate interpreter components in order to lift syntactical information on a seman-
tic interpretation level before it is handled in the dialogue manager. Table 9.3 shows a
classification of the devices integrated in this scenario.

9.1 SiAM Project Demonstrator 205

Table 9.3 – Classification of the devices integrated in the restaurant reservation scenario

On the backend side, the application is connected to a web service for restaurant informa-
tion and reservation via a UMTS internet connection. The content of the received data
is mapped on the domain-specific ontology of the application, which contains concepts
for the representation of restaurants and information about the actual menu.

Dialogue Phenomena

One main focus in this scenario of the demonstrator is to show the capability of SiAM-dp
in handling diverse dialogue phenomena. These are in detail:

Deictic References: Deictic references are part of an utterance that refers to entities
that have been introduced into the discourse context in a previous turn or by a different
modality. Examples of deictic expressions in the multimodal case have already been
shown in the previous scenario. In this scenario the driver starts the restaurant dialogue
with the following sequence:

Driver: [gazes at the restaurant] “What is the name of this restaurant?”
System: “The name of the restaurant is AC Café.”

Here, the expression “this restaurant” refers to the restaurant entity that is introduced
by the driver’s gaze via the EyeVIUS component. A second possibility for the referred
content of a deictic reference is content from a previous dialogue turn. This is done in
the driver’s question in the following sequence:

Driver: “What is the menu for today (for this restaurant)?”
System: “Here is the menu for the restaurant AC Café: Fish fillet . . . ”

Figure 9.8 shows how the driver’s question is represented in the semantic interpretation.
The communicative function is a SetQuestion with the attribute knowledgeItem set to
menu. This value specifies the requested information. The reference to the restaurant
is described in the first deictic reference which specifies a pattern that restricts the
missing entity to an entity of the type Restaurant. The second reference is a temporal
reference and is described in the next dialogue phenomenon. When passing the fusion
and discourse engine (Section 7.9), the deictic reference is resolved with content from

206 Chapter 9 Applications

Figure 9.8 – Reference resolution of deictic expressions with entities from the discourse
context

the discourse context. The restaurant introduced in the previous turn lies on top of the
internal entity stack of the discourse context and since it matches the specified pattern,
it is used to complement the missing content.

Temporal References: Temporal references are used in an utterance in order to specify
a point in time mostly relative to a specific temporal fixed-point. The example presented
above still contains an unresolved temporal reference. It is the result from the interpre-
tation of the expression “for today” and beside the temporal frame now, which stands
for the actual moment, contains information about the unit and the distance of the refer-
enced point in time to this temporal frame. The FADE component contains algorithms
that can automatically resolve temporal references. After the message has passed, this
component looks as depicted in Figure 9.9a. Here, both references are resolved allowing
the dialogue application to answer the question.

Ellipsis: In an elliptical construction, one or more words of an expression can be omit-
ted, e.g., if some of the constituents have already been mentioned in a previous turn.
Nevertheless, the expression makes sense in the current discourse. The following example
of the scenario illustrates this:

Driver: “What is the menu for today?”
System: “Here is the menu for the restaurant AC Café: Fish fillet . . . ”
Driver: “And tomorrow?”

Here, the second question of the driver “And tomorrow?” relates to the first one. The

9.1 SiAM Project Demonstrator 207

(a) Result of the temporal reference resolution
process

(b) Example for the representation of an ellip-
tic expression

Figure 9.9 – Input act representation examples

stand-alone expression cannot be comprehensively interpreted. Only the implication of
the first utterance gives it meaning.

Figure 9.9b shows how an elliptic expression can be represented by the speech input
interpreter. Considered separately from the discourse context, the expression “And
tomorrow?” contains three pieces of information. First, the expression is a question
which is represented in the communicative function with the concept Question. Secondly
the temporal information “tomorrow” is a temporal reference that is represented as
semantic content. Furthermore, it is very apparent that the expression is an elliptic
expression. This is defined with the attribute isEllisis that is set to true.

The FADE component follows a special approach in processing input that is marked
as ellipsis. This approach is depicted in Figure 9.10. Here, the temporal reference is
already resolved. The next step is to resolve the ellipsis. The FADE component searches
in the previous dialogue acts of the discourse context for a communicative function that
is of the same type or a subtype of Question. Furthermore, it searches in a matching
communicative function for semantic content that is of the same type as the content of
the elliptic expression. If a matching instance is found, the original content is replaced
with an overlay of the new content with the old content as the background.

In the example, the previously handled SetQuestion is a subtype of Question. It also
contains content of the type DateTimeDescription. This content is replaced with the

208 Chapter 9 Applications

Figure 9.10 – Example for the resolution of elliptic expressions

new content provided by the elliptic expression. The restaurant entity is retained. The
result of the resolution process is a complete request that can be answered by the dialogue
application.

Anaphoric references on system’s output: Anaphoric references on entities in the
system’s output can be resolved in the same way that references to entities in a user’s
utterance are resolved. For this, it is necessary that the output of the system is also
semantically represented. The following sequence is an example:

System: “Here is the menu for the restaurant AC Café: Fish fillet . . . ”
Driver: “How much is the fish?”

Besides the utterance of the speech output in syntactic form, the system’s response is
also represented as a communicative function of the type Answer. Furthermore, the
presented menu item with the fish is available as an entity in the semantic content.
Thus, the entity becomes content of the entity stack in the discourse context and can be
referred to by the driver within the next utterance.

9.1.3 Persuasive Travel Assistant

Persuasive technology in the context of cars is employed to help drivers to optimise their
driving behaviour. This can be achieved by driving safer, driving more ecologically,
saving money on fuel, or reducing travel time. The main goal of a persuasive system is
the long-term effect of a change in driver behaviour by exploiting the situational context

9.1 SiAM Project Demonstrator 209

(a) In-car screen with the suggestion to
switch to the bus and information about the
saved travel time

(b) Public billboard with real-time information
about the bus schedule

Figure 9.11 – The Persuasive Travel Assistant uses near-field and far-field screens to
inform the driver

and giving the right suggestion at the right time. Based on SiAM-dp, a persuasive travel
assistant was developed that raises the driver’s awareness of the transportation possi-
bilities outside his own car. Learning from drivers’ past behaviour in correlation with
the driver’s agenda, current position, weather and traffic conditions, the travel assistant
makes context-aware suggestions for alternative trips, e.g., in case of traffic jams on the
route or a lack of parking places around the destination. It finds alternative solutions
by combining the trip with public transport or car/bike sharing services available along
the selected driving route. Real-time information on public transport or bike sharing
services are acquired through external web services. Part of the context, e.g., weather
conditions and parking availability, is also provided by external web services.

For this part of the demonstration, two use-cases were selected to show the functionality
that is provided by the persuasive component. In the first use-case, a traffic jam situation
is resolved by proposing that users take the next bus to their destination. Correlation
of bus line and schedule information with underlying route attributes (in this case a bus
priority lane on the affected route) and weather conditions results in a context-aware
decision that the bus is the best travel option for the driver. Therefore, a persuasive
system should provide valuable information, if possible, to assist the driver’s decision.

This strategy can sometimes conflict with the goal of avoiding distraction while driving.
Showing a lot of background information in the car, especially on a small screen, may
have adverse effects and possibly even reduce the effectiveness of the advice. Therefore,
the SiAM Persuasive Trip Assistant exploits the strengths of the underlying multimodal
dialogue platform and combines the following ideas:

1. The in-car screen space provides the most valuable information.

2. Information is presented both visually and through speech output, thereby allowing
the user to choose the most suitable modality depending on the situation.

210 Chapter 9 Applications

3. In addition, an external roadside display (electronic billboard) for further comple-
mentary information is included.

In this scenario, additional information about the parking availability around the selected
bus stop and the ticket price is displayed on the main in-car screen. As a result, the driver
receives a suggestion to take a specific bus from the closest bus stop, gets information
about the arrival time and ticket price, information about the saved travel time, and
parking options. On the outside billboard, real-time bus schedule information was shown
so that the driver could further inform himself about alternative options. In the second
use-case, a traffic jam situation is resolved by proposing to use a bike-sharing service.
In this case, the availability of a bike sharing service, weather conditions and terrain
information result in a suggestion to the driver to continue the trip with a bicycle.
Information on the saved money on fuel and the arrival time are used as persuasion
methods.

Table 9.4 – Classification of the devices integrated in the persuasive travel assistant

9.1.4 Distributed Input and Output

The last scenario is a massively multimodal scenario that shows a driver who books
cinema tickets directly from his car while he is waiting at a traffic light. During the
interaction, several input and output devices are involved that are connected to the
dialogue system using a variety of technologies and protocols.

Figure 9.12 – The demonstrator setup. The urban display is simulated by a billboard
inside the DFKI building. Two touch screens are mounted at the cockpit of the car.

9.1 SiAM Project Demonstrator 211

Figure 9.13 – Seven modalities are involved in the communication between driver and
dialogue application

The protagonist in this scenario is a driver who is looking at an urban display while he is
waiting at a red traffic light. The display and the car are connected via Car2X commu-
nication technology, a highly dynamic mobile network where cars and other devices are
used as mobile nodes that can create ad-hoc networks (Castronovo, 2013). By using this
information source, the dialogue application in the car is aware of the environment and
implicitly of the content currently presented on the urban display; in this scenario the
posters of two movies. An eye tracker that is installed inside of the car in combination
with the EyeVIUS system records eye movements of the driver and recognises if the
driver’s focus of attention lies on the urban display. In a speech driven dialogue, the
driver asks several questions about the movie he is currently looking at, requests a list of
cinemas showing this movie, and finally books some tickets for the movie. The answer
is distributed via several output modalities. While a video trailer of the movie is shown
on the urban display, the associated audio track is played inside the car. Additionally,
the dialogue application provides information about the movie via speech output and a
display inside the car (Figure 9.12).

In total, seven modalities are involved in the dialogue application (see Figure 9.13 and
Table 9.5). For the dialogue system, here arises the challenge to integrate all modalities
into the application in a way that they can contribute to one dialogue in a complemen-
tary, synchronised and coherent way. The following modalities and technologies are part
of the demonstration:

212 Chapter 9 Applications

• Speech input is realised with the Audio Manager (TCP).

• Eye-gaze information is provided by EyeVIUS (UDP).

• Graphical User Interface (GUI) output is generated via HTML 5 and AJAX
provided by a RESTful web service.

• Touch input is realised via touch screen and an HTML 5 user interface (RESTful).

• Speech output is generated by the speech synthesis in the Audio Manager (TCP).

• Audio output is directly played from the connected Audio Manager. (TCP).

• Urban display: The urban display is simulated by a billboard that is connected
to a desktop PC. The PC establishes a connection to the car via Car2X.

Table 9.5 – Classification of the devices integrated in the public display scenario

9.2 MADMACS - CeBIT Demonstrator 2015

The MADMACS project (Multi adaptive dialogue management for cyber-physical envi-
ronments) aims to make a large number of sensors and actuators in the cyber-physical
environment available for mobile users, who can interact with them intuitively and at
any time in a multimodal fashion.

Just as users change in a Cyber-physical Environment (CPE), the environment should
adapt in multiple ways to the user, the task, and the interaction method. Multimodal in-
put and output should allow a free choice of modalities, including near-field and far-field
interaction. In all situations, the system should be aware of the user’s focus of attention,
and be able to guide it using output devices on the user and in the environment.

A first demonstrator of this project was developed for the CeBIT 2015. The system allows
one to control actuators in the environment, specifically three lamps and a ventilator.
The modality for interaction could be chosen arbitrarily. Thus, the system supports
head movements, speech, touchscreens and proximity sensors in a various number of

9.2 MADMACS - CeBIT Demonstrator 2015 213

Figure 9.14 – Two multimodal interaction examples of the MADMACS demonstrator.
In the first example the lamp colour is changed by a combination of speech input and
gaze detection. A graphical feedback is given on the HUD of the Google Glass. The
second example embraces the proximity sensor of the smart watch and touch input for
the precise selection of the desired colour.

combinations. The device integration and control and the interaction logic were realised
by SiAM-dp. Two wearables, Google Glass and a smart watch, are used as interaction
devices and are connected to a profoundly multimodal interaction scenario (see Figure
9.14). The supported channels are summarised in Table 9.6.

Two types of actuators are integrated into the demonstrator. The first are LED lights
that can be turned on or off and are able to change the colour of their light. The lamps
are installed in three different rooms: In the kitchen, the bedroom and the living room.
The second actuator type is a fan whose level of speed can be changed remotely.

One of the main aims of the demonstrator is that users can arbitrarily choose the modal-
ities for interaction. Thus, various ways are possible in order to specify the actuator that
is actually in focus. One way is to address an actuator directly using speech commands.
For the fan, the identification is easy since only one fan is located in the environment.
For the identification of the lamp, the speech command must contain additional infor-
mation about the location of the lamp or the actual colour state, for example “turn on
the lamp in the living room” or “change the colour of the red lamp to green”. Also, more
than one lamp can be addressed by speech commands, e.g., by the expressions “set all
lamps to red” or “turn off the red lamps”. Alternatively, the focus of attention can be
recognised by the sensor for head rotation of the Google Glass. The feedback of the
system is given on the HUD of the glasses in the form of a symbol of the device actual
in sight. Another variation is to use a bluetooth proximity sensor that is integrated in
the smart watch and to set an actuator into the focus of discourse if the watch is drawn
near to it.

214 Chapter 9 Applications

Additionally, the control commands can be provided by the use of other modalities.
Again, the function can be completely specified by speech input as already demonstrated
in the speech utterance examples above.

For more fine-grained statements, other devices are more suitable. The speed level of
the fan or the brightness of the lamps can alternatively be set by swipe gestures on the
touch pad of the Google Glass. The smart watch allows one to precisely set a concrete
colour for a lamp by providing a colour scheme for selection. Such a detailed adjustment
is not possible with speech utterances.

Table 9.6 – Classification of the devices integrated in the CeBIT demonstrator

9.3 SINNODIUM Demonstrator

In the SINNODIUM project a demonstrator for the multimodal task assignment and
introspection in distributed agricultural harvesting processes (Porta et al., 2014b) has
been developed. The cloud-based system presented allows one to orchestrate and coor-
dinate a fleet of agricultural machinery and their drivers during an ongoing harvest in
case of an unexpected incident. The harvesting process can be replanned in real-time by
a management dashboard. The updated instruction is then sent to each affected driver’s
mobile device. The interaction with the driver must be quick and safe for the driver
in order to keep track of a tight schedule. Another factor that is even more crucial is
that the driver suffers from a high cognitive load in phases of high concentration, which
only leaves little room for additional attention. For such situations multimodal dialogue
interaction, including speech and gestures, is highly beneficial.

The multimodal dialogue application in this project is based on SiAM-dp and integrates
several channels of a Google Nexus 7 mobile client (see Table 9.7 and Figure 9.15).
This includes speech recognition, speech synthesis, and an HTML5 based GUI. In the
scenario, the dialogue strategy can be adapted to the current cognitive load of the driver
increasing the safety of the driver and ensuring that a new task has been understood.

9.4 KOGNIT demonstrator 215

Figure 9.15 – The multimodal interaction with the driver is realised with an android
tablet that is mounted in the cockpit of the tractor.

Table 9.7 – Classification of the devices integrated in the SINNODIUM demonstrator

9.4 KOGNIT demonstrator

In the KOGNIT project, the humanoid robot NAO2 is used as a companion to demen-
tia patients (Prange et al., 2015). His tasks are to continuously monitor the patients’
activities and provide cognitive assistance in daily life situations. An integrated speech
dialogue functionality allows patients to communicate with NAO through natural lan-
guage. Thus, the patient can easily ask NAO to remind him to, e.g., take his pills at
a specific point in time by speech. Furthermore, the system has access to a knowledge
memory that keeps track of the subject’s belongings such as keys, glasses, or medica-
tions as well as the subject’s contacts including people the subject met during the day.
Thus, the patient can ask NAO where he can find a specific object in the flat and can
request NAO by speech to write a message to a contact in his address book. Here, the
system exploits the fact that the contact information is extended with information about
relationships making it possible to understand commands like “write an e-mail to my
daughter”. The control of further actuators in the flat is planned. In the demonstrator,
the control of Phillips HUE LED lamps is already supported.

The patient is equipped with a wearable eye tracker from Pupil Labs3 that can track eye-
gazes. This in combination with an integrated camera and image processing algorithms
allows one to identify objects on the table that are currently in his focus. NAO shares

2https://www.aldebaran.com/en/humanoid-robot/nao-robot
3http://pupil-labs.com/

216 Chapter 9 Applications

Figure 9.16 – The NAO robot looks at the red block on the table that is currently in
focus of the user. The user can start a spoken dialogue and ask questions about the
focused element or control the lamp on the table. Another input mode is handwritten
text on the smartphone. The messages can be sent to arbitrary people in the user’s
address book by speech command.

this focus of attention by moving his head and looking at the same object and can answer
questions and provide further information about the object (see Figure 9.16).

A further input modality is an interactive pen with which the user writes on the display
of a smartphone. The system can automatically distinguish between pen gestures and
handwriting and guesses the user’s intention. Thus, the user can, alternatively to speech
input, write his utterances. Multimodal interaction is also supported. The user can
write the message he wants to send to one of his contacts and then give the speech
command “send this to Susan”. If the recipient is unclear, e.g., if duplicate names exist
in the contact list, a clarification dialogue is triggered.

For sending messages, the system actually supports both SMS and e-mail messages, but
it is planned to add extensions for social networks. Furthermore, listening services for
both messages are steadily running. As soon as a new message is received, the NAO
robot gets notified and presents the content to the patient by speech synthesis.

Table 9.8 summarises all devices that are actually included in the demonstrator.

9.5 HySociaTea project 217

Table 9.8 – Classification of the devices integrated in the KOGNIT demonstrator

9.5 HySociaTea project

The main research topic of the project HySociaTea (Hybrid Social Teams for Long-Term
Collaboration in Cyber-Physical Environments) is the realisation and examination of
the collaboration of technological augmented workers with virtual agents, autonomous
robots, and soft-bots who work together in a team on common tasks.

In the context of Industrie 4.0, the production of the future becomes more individual
with respect to the produced components. In the context of production, the expression
“production batch” is defined as the “range of a certain number of units (or assembly
units), which are being produced with each set-up of the machine and in the production
planning are being followed as one individual unit” (Loudová, 2012). One goal is the
batch size 1 production, which means that every produced unit differs from the previous
one. For this, a higher flexibility of installation procedures and workflows is required. In
order to react quickly on therefore necessary short-term modifications of manufacturing
series, component properties, and installation parameters while maintaining efficiency
and quality, an appropriate training and optimal support of the workers is essential.

Figure 9.17 – Collaboration of robots, humans, and virtual characters in HySociaTea

218 Chapter 9 Applications

Figure 9.18 – Planned architecture in HySociaTea

The basic idea in HySociaTea is that in the manufacturing environment of the future,
human workers will collaborate with robots and virtual characters in a team (see Figure
9.17) that reacts quickly and flexible to new requirements. This especially should allow
the team to react to unplanned events by autonomous reorganisation.

The technical systems developed in HySociaTea are mainly meant to be used as assistance-
systems for humans working in production-plants. Here, wearable technologies like smart
glasses or smart watches may provide valuable information to the workers in a hands-free
fashion, e.g., over the HUD display of glasses. Sensors in the environment should help
one to understand all physical and communicative interactions of all team members.
The team members will be interacting socially and physically. Sharing their individual
capabilities for a given sub-task will help the team be able to perform highly challenging
or dangerous tasks that would otherwise be infeasible. In order to effectively coordinate
a robotic team’s actions with those of humans and virtual characters in the team, the
robots and virtual characters must be able to effectively convey their planned actions
clearly to the human team members and vice versa. Thus, communication is required
between all agents as they attempt to solve collaborative multi-agent tasks in a highly
dynamic cyber-physical environment.

To create such an intuitive and direct interaction between all involved humans and the
artificial entities in the team, integrated sensory information is provided from the hu-
man (wearable sensors), the robot (on-board sensors) and the real-world environment
equipped with technology (e.g., cameras). All team members in the hybrid team can

9.5 HySociaTea project 219

fulfill various roles: For instance, a robot can serve for the human team member as a
physically present companion to naturally interact with, e.g. using speech or gestures.
Or the robot can be an active team-member, collaborating to accomplish a physical task
(e.g., by helping to lift a certain item or supply a production unit from the store). Other
virtual entities, e.g. virtual characters, exist to support straightforward interfacing with
the infrastructure. For better integration of the human agents into the whole framework,
instrumentation will include direct feedback from sensors or other team members, e.g.
using attention recognition and augmented vision. The wearable devices are comple-
mented with other technical devices like tablets or smart phones. The interaction will
be multimodal (e.g. using speech and gesture), will have a social nature and will take
place between all team members, so that artificial agents interact among one another
and with the involved humans.

Figure 9.18 shows the planned architecture in the HySociaTea project. In this archi-
tecture, a dialogue engine is responsible for the communication of relevant information
between the team members. This module is planned to be realised with SiAM-dp. It
will manage the communication between human team members, virtual characters and
robots. In this setup, the artificial team members will not only be seen as actuators or
sensors of the environment. They take over the role of autonomous and fully-fledged
dialogue participants with their own models of the interacting partners, the team as a
whole, and the context of the present action. Depending on their current role, they
actively contribute to running dialogues, e.g., they answer questions of the human co-
workers or accept new commands from them. The technical integration will be realised
with the Event Broadcasting System (EBS) (Kahl, 2014), which has been extended with
the support of Apache Thrift, an open-source communication protocol for the creation of
scalable and interoperable services and is now called Thrift Broadcasting System (TBS).
SiAM-dp already contains a component that supports Apache Thrift.

Table 9.9 – Classification of the devices integrated in HySociaTea

220 Chapter 9 Applications

9.6 Summary

In this chapter applications and demonstrators from various research projects were in-
troduced which have been designed and implemented with the framework and design
concepts developed in this thesis. The examples cover a wide spectrum of scenarios and
integrated devices and prove the practical relevance of SiAM-dp as well as the flexible
field of application.

10
Conclusion and Outlook

10.1 Summary

The goal of this work was the conception, the design and the realisation of a multimodal
dialogue platform for the declarative and model-based development of multimodal dia-
logue applications with a focus on distributed input and output devices in Cyber-physical
Environments (CPEs). The main contributions can be divided into three parts:

1. The design of adequate models and strategies for dialogue application specification.
This requires the choice of an appropriate meta modelling language which was
discussed in Chapter 4. The critical thing for a massively multimodal system is a
flexible model for input and output representation which supports arbitrary devices
and the description of information on different levels of granularity and meaning.
A model that allows this was introduced in Chapter 5. Finally, the models that
have been developed for the declarative development of dialogue applications like
the specification of projects, dialogue behaviour, speech recognition grammars, and
graphical user interfaces were described in detail in Chapter 6.

2. The implementation of a runtime platform that provides a flexible, extendable
architecture for the easy integration of new devices and components. The platform
deploys several components that implement the concepts and strategies of the
previously introduced models and allows one to develop full-fledged multimodal
dialogue applications for arbitrary device setups, domains, and scenarios. The
runtime platform was presented in Chapter 7.

3. A software development toolkit that is integrated into the Eclipse rich client plat-
form and provides wizards and editors for creating and editing new multimodal
dialogue applications based on the above mentioned declarative models. Further-
more, wizards support the creation of new applications and devices from scratch.

222 Chapter 10 Conclusion and Outlook

Several debugging extensions and monitors support the developers during the de-
velopment process in searching bugs and testing new features. The available tools
were described in Chapter 8.

In Chapter 9, several current and finished research projects were introduced that used
the Situation Adaptive Multimodal Dialogue Platform (SiAM-dp) presented in this work
for the successful implementation of their scenario specific multimodal demonstrator
systems. As a result a large and heterogeneous set of various devices were integrated
into the platform.

10.2 Contributions and Results

10.2.1 Research Questions Revisited

In order to highlight the contributions of this work, this section revisits the research
questions posed in Section 1.2 and shortly summarises the answers given throughout
this thesis.

1. Modelling Language: Which requirements must be fulfilled by a meta-modelling
language that is used for the declarative development of multimodal dialogue appli-
cations?

We looked at this issue from several perspectives, examined diverse approaches
for the semantic representation of knowledge and language models that are used
in related work about multimodal integration and identified several features that
should be fulfilled for the model-based development approach. The final choice fell
on the Eclipse Modeling Framework (EMF) which was extended with additionally
required functionalities and algorithms like cloning, unification, overlay, dynamic
data binding, and a model for the definition of patterns.

2. Massive Multimodality: How can the massive modality of devices in a CPE
be represented in a hierarchical device model and how can this hierarchy be trans-
ferred to a structured model for the representation of input and output acts in the
communication between the dialogue system and devices?

The top level of a type hierarchy for the classification of devices was worked out
starting with a partition into sensors, actuators, renderers, and controllers. More
concrete device concepts were derived from these top-level concepts. On this basis,
the model for the representation of input and output was specified. Outgoing from
an abstract class which contains meta-information like timestamps, addressee, and
initiator of the message, the device-specific information was structured equivalently
to the above mentioned type hierarchy. Thus, devices with an equal type of content
were consolidated in one representation which serves as a common interface for
them. This is an important factor for device integration allowing one to interchange

10.2 Contributions and Results 223

devices that process the same type of information without the need to adapt the
core application.

3. Representation of Communicative Meaning: How can interaction between
dialogue systems and a highly heterogeneous set of devices in a CPE be represented
as modality independent and how can this support the multimodal integration?

In related work, several frameworks have been introduced that represent the com-
municative function or meaning separately from the behaviour respective to re-
alisation. For the multimodal integration, this has two advantages. First, the
decisions in dialogue planning can be made purely on the more abstract represen-
tation of the dialogue participant’s intentions. The actually consulted modalities
and surface realisations must not be regarded at this point. This automatically
makes the dialogue management independent from the actually used modalities
and devices. Thus, the replacement or extension with new devices is realisable
without adapting the dialogue management definitions of an application. Second,
the description of the communicative meaning introduces a semantic level for the
representation of dialogue acts and thus a common representation language for
all modalities. In this work we inherited the concepts from the standard for the
semantic annotation of dialogue acts (ISO/DIS 24617). Those dialogue acts can
also be carriers of semantic content entities deployed within an interaction. We
furthermore developed a specific model for the definition of referring expressions
that are used to describe unresolved entities with relation to the actual context or
cross-modal references that are used for the realisation of modality fusion.

4. Declarative Dialogue Application Design: What requirements are demanded
of models for the rapid development of systems for multimodal Human-Environment
Interaction (HEI) and how can these be satisfied?

Several models have been designed for the declarative development of multimodal
dialogue applications. The model for dialogue specification is a combination of
flowcharts and statecharts and enables application developers to directly integrate
the model for input and output description into the workflow. Thus, it is possi-
ble to define patterns that indicate on which input messages transitions between
dialogue states should be triggered. On the other hand, developers can directly
declare the output messages that are emitted. The comprehensive tasks of de-
signing graphical user interfaces and speech recognition grammars is supported by
user friendly and easy-to-use models. During the development of both models,
the focus was set on hiding the complexity of grammar and Graphical User In-
terface (GUI) design behind abstract concepts. Thus, they are independent from
the grammar specification languages and GUI frameworks actually used for real-
isation. Furthermore, the models allow one to directly bind named entity rules
or graphical components to the corresponding semantic entities they present. The
communicative meaning behind complete speech utterances or GUI events can be
represented by dialogue act annotations. Hereby, the transformation between syn-
tactic and semantic representation is implicitly defined in the models. For other

224 Chapter 10 Conclusion and Outlook

modalities, the transformations can be declared by mapping rules. The project
model consolidates all resources for dialogue applications.

5. Dialogue System Architecture: Which type of architecture is required for the
realisation of distributed coordinated communication in a CPE?

The architecture developed in this thesis was inherited from the dialogue system
reference architecture by Maybury and Wahlster (1998a). It was built upon the
OSGi framework, an open, modular, and scalable service platform written in Java.
The event management was implemented with the publish-subscribe pattern and
supports a modular architecture approach which is easily adaptable and extend-
able. Message filtering is based on a unification-based pattern resolution process.
It was implemented on the basis of the OSGi services functionality. Four lay-
ers group the components of the the SiAM-dp platform: Environment layer, core
layer, resource and context management layer, and backend layer. The follow-
ing components were described in detail as part of the core platform: Dialogue
Manager, Fusion & Discourse Resolution, Presentation Planning & Distribution,
Speech Recognition Interpreter, GUI Event Interpreter, Project Manager, Session
& User Manager, Device Manager, Knowledge Manager, GUI Manager, Speech
Grammar Manager.

6. Tool Support: How is an integrated development environment designed that sim-
plifies and accelerates the creation of multimodal dialogue applications?

Dialogue application developers are supported with a comprehensive development
kit. The development tools were integrated and deployed as plugins for the Eclipse
rich client platform. The SiAM-dp development kit comprises the following com-
ponents:

• New Application Wizard for the creation of new application projects.

• New Device Wizard for the creation of new device components.

• General SiAM-dp model editor for editing domain models.

• Grammar rule editor for editing SiAM-dp specific grammar rules.

• Graphical dialogue model editor for editing workflows.

• Application Debug GUI for monitoring the dialogue workflow and observ-
ing the application’s context.

• HTML 5 Renderer for prototyping and the dynamic creation of graphical
user interfaces.

10.2 Contributions and Results 225

10.2.2 Related Work Revisited

In this section SiAM-dp is classified regarding the related work presented in Chapter
3.

Multimodal Dialogue Frameworks

Section 3.2 compared several multimodal dialogue frameworks. In Table 10.1, Table 3.1
is extended with an entry for SiAM-dp.

D
is

co
u

rs
e

P
h

en
o
m

en
a

C
ro

ss
-m

o
d

al
R

ef
er

en
ce

s

F
is

si
o
n

D
is

tr
ib

u
te

d
D

ev
ic

es

P
h
y
si

ca
l

A
ct

s

D
ia

lo
g
u

e
S

p
ec

ifi
ca

ti
on

L
a
n

g
u

ag
e

S
ta

n
d

a
rd

s

C
en

tr
al

is
ed

G
ra

m
m

ar
M

an
a
ge

m
en

t

E
x
te

n
si

b
il

it
y

R
eu

sa
b

il
it

y

D
ev

el
op

m
en

t
P

la
tf

or
m

AT&T SMA x x x

WAMI x x x

DIANE x x ? x ?

Dialog OS x x x

SmartKom x x x x x x x

ODP x x x x x x x x

CueMe ? x x x x x x

SiAM-dp x x x x x x x x x x x

Table 10.1 – Comparison of SiAM-dp with multimodal dialogue frameworks in the
related work

Resolution of Dialogue Discourse Phenomena - Section 7.9 described how dialogue
discourse phenomena are resolved in SiAM-dp with the FADE component.

Cross-modal Reference Resolution - The FADE component is also responsible for
cross-modal reference resolution (see Section 7.9).

Cross-modal Fission and Presentation Planning - Multimodal fission and presen-
tation planning is realised in the presentation planning component (see Section 7.10)

226 Chapter 10 Conclusion and Outlook

Distributed Devices - SiAM-dp allows one to flexibly integrate heterogeneous devices
of the entire environment (see Section 5.4).

Physical Acts - Physical acts are handled equivalently to communicative acts. Thus,
it is possible to syntactically describe physical acts (see Section 5.4) with device-specific
representations and semantically annotate them with concepts from the semantic dia-
logue act model (see Section 5.5).

Dialogue Specification - SiAM-dp supports a statechart and flowchart-based dialogue
model for the specification of dialogue behaviour (see Section 6.1).

Language Standards - SiAM-dp incorporates the following standards: SRGS, SCXML,
SSML, Agent BML, Semantic Dialogue Annotation Framework.

Centralised Grammar Management - The central Grammar Management Service is
responsible for maintaining the supported grammars with respect to the current language
and distributing them to the connected speech recogniser (see Section 7.7.1).

Extensibility - The modular architecture of SiAM-dp is built on OSGi and is thus
easily extendable with new components and devices (see Section 7.1).

Reusability and Domain Independence - The modelling language of SiAM-dp al-
lows one to easily extend the ontology with domain-specific concepts by Ecore models
(see Section 4).

Development Platform - SiAM-dp provides a complete software development kit
which is integrated in Eclipse RCP (see Chapter 8).

Multimodal Interaction Modelling

Section 3.2 compared several possibilities for modelling for multimodal interaction. In
Table 10.2, Table 3.2 is extended with an entry for SiAM-dp.

Multimodal Representation of Input and Output - Section 5.3 introduced a model
taxonomy for the representation of multimodal input and output.

XML-based Language - All Ecore models are persisted or transferred in the form of
an XML-based serialisation.

Continuous Refinement of Content - During the data workflow, a message can pass
several preprocessing components like interpreters or generators. They continuously
refine the message with additional content (see Section 7.2).

Concrete Schemes for Modalities - The modality-specific representations in SiAM-
dp are organised in a hierarchical structure which already provides concrete specifications
for the most common modalities. New modalities can easily be extended (see 5.4).

Modality Independent Representation of Interaction - The semantic annotation
of interaction with dialogue acts as introduced in Section 5.5 is modality independent.

10.2 Contributions and Results 227

In
p

u
t

O
u

tp
u

t

M
u

lt
im

o
d

a
l

X
M

L
-b

as
ed

C
o
n
t.

R
efi

n
em

en
t

C
o
n

cr
et

e
S

ch
em

es

M
o
d

al
it

y
In

d
ep

en
-

d
en

t
R

ep
re

se
n
ta

ti
o
n

S
em

a
n
ti

c
K

n
ow

le
d

g
e

R
ep

re
se

n
ta

ti
o
n

R
ep

re
se

n
ta

ti
o
n

o
f

U
n

ce
rt

ai
n
ti

es

E
x
te

n
si

b
il

it
y

M3L x x x x x x x x x

EMMA x x x x x x x x

SWEMMA x x x x x x x x x

SALT x x o x x x x x

SiAM-dp x x x x x x x x x x

Table 10.2 – Comparison of SiAM-dp with multimodal modelling languages in the
related work

Semantic Knowledge Representation - Semantic knowledge is represented with
ontologies that are modelled in Ecore (see Chapter 4).

Representation of Uncertainties - Input interpretations are added as hypotheses
that contain a confidence attribute (see Section 5.3.2). Quantifiers in the pattern model
allow one to express the diverse interpretations of scope ambiguities (see Section 4.4).
With the introduction of the reference model (see Section 5.5.1) and the pattern model,
which is based on type hierarchies in semantics, it is possible to represent underspecified
expressions.

Extensibility - New concepts can easily be derived from the SiAM-dp core concepts.

Dialogue Act Annotation

Section 3.4 compared several languages for the annotation of dialogue acts. In Table
10.3, Table 3.3 is extended with an entry for SiAM-dp.

Representation of Behaviour - In SiAM-dp behaviour is described by the IORepre-
sentation taxonomy (see Section 5.4).

Representation of Intention - For the representation of intentions, SiAM-dp uses the
model for semantic dialogue acts (see Section 5.5).

Behaviour Interpreter - The interpreter components in SiAM-dp are responsible for
lifting syntactic to semantic representation (see Section 5.6).

228 Chapter 10 Conclusion and Outlook

R
ep

re
se

n
ta

ti
on

of
B

eh
av

io
u
r

R
ep

re
se

n
ta

ti
on

of
In

te
n
ti

on

B
eh

av
io

u
r

In
te

rp
re

te
r

B
eh

av
io

u
r

G
en

er
a
to

r

S
it

u
at

io
n

a
l

A
d

ap
ti

ve
B

eh
av

io
u

r

H
ie

ra
rc

h
y

fo
r

C
om

m
u

n
ic

a
ti

ve
F

u
n

ct
io

n
s

DAMSL x

DIT++ x x

DiAML / ISO 24617-2 x x

EMMA x o

SAIBA x x x x x

CDE / Virtual Human x x x x o

SiAM-dp x x x x x x

Table 10.3 – Dialogue act annotation aspects identified in the related work. The symbol
(o) indicates that the aspect has been considered but not deeply elaborated upon.

Behaviour Generator - The generator components generate syntactic from semantic
representations (see Section 5.6).

Situational Adaptive Behaviour - The presentation planner chooses a situation de-
pendent on which generator components are applied for the creation of behaviour. Ad-
ditionally the generators may consider the current context (see Section 7.10).

Hierarchy for Communicative Functions - For the hierarchy of communicative
functions, SiAM-dp uses the ISO 24617-2 standard for the annotation of dialogue acts
(see Section 5.5).

10.2 Contributions and Results 229

10.2.3 Scientific Publications

This section summarises the scientific papers that have been published in the context of
this work.

Conferences

• 2. Deutscher AAL-Kongress 2009:
Robert Neßelrath, C. H. Schulz, J. Schehl, A. Pfalzgraf, N. Pfleger, V. Stein, J.
Alexandersson (2009). Homogeneous multimodal access to the digital home for
people with cognitive disabilities. In Ambient Assisted Living 2009. 2. Deutscher
AAL-Kongress (AAL-09), January 27-28, Berlin, Germany. VDE.

• 11th International Conference on Human-Computer Interaction with
Mobile Devices and Services 2009:
Daniel Porta, Daniel Sonntag, Robert Neßelrath (2009b). New Business to Busi-
ness Interaction: Shake your iPhone and speak to it In Proceedings of the 11th
International Conference on Human-Computer Interaction with Mobile Devices
and Services. MobileHCI-09, September 15 - August 18, Bonn, Germany, ACM

• 3rd International Conference on Health Informatics 2010:
Jochen Frey, Christian Husodo Schulz, Robert Neßelrath, Verena Stein, Jan Alexan-
dersson (2010a). Towards pluggable user interfaces for people with cognitive dis-
abilities. In Proceedings of the 3rd International Conference on Health Informatics.
HEALTHINF-2010, January 20-23, Valencia, Spain. Springer.

• 4. Deutscher AAL-Kongress 2011:
Robert Neßelrath, Chensheng Lu, Christian H. Schulz, Jochen Frey, Jan Alexan-
dersson (2011). A gesture based system for context-sensitive interaction with smart
homes. In Wichert, R. and Eberhardt, B., editors, Ambient Assisted Living, 4.
AAL-Kongress 2011, Advanced Technologies and Societal Change, pages 209-219.
VDE, Springer.

• 9th International Conference on Intelligent Environments 2013:
Robert Neßelrath (2013). Towards a cognitive load aware multimodal dialogue
framework for the automotive domain. In IEEE, editor, Proceedings of the 9th
International Conference on Intelligent Environments (IE). International Confer-
ence on Intelligent Environments (IE-13) July 18-19, Athen, Greece. IEEE.

• 10th International Conference on Intelligent Environments 2014:
Robert Neßelrath and Michael Feld (2014). Siam-dp: A platform for the model-
based development of context-aware multimodal dialogue applications. In IE’14:
Proceedings of the 10th International Conference on Intelligent Environments,
Shanghai, China. IEEE.

230 Chapter 10 Conclusion and Outlook

• 4th ACM International Symposium on Pervasive Displays:
Matthieu Deru and Robert Neßelrath (2015). autoUI-ML: A design language for
the flexible creation of automotive GUIs based on semantically represented data.
In Gehring, S., Krüger, A., Alt, F., Taylor, N., and Schneegaß, S., editors, Pro-
ceedings of the 4th ACM international symposium on pervasive displays, pages
235-236, Saarbrücken, Germany. ACM.

Workshops

• 6th Workshop on Knowledge and Reasoning in Practical Dialogue Sys-
tems 2009:
Robert Neßelrath, Jan Alexandersson (2009). A 3d gesture recognition system
for multimodal dialog systems. In Proceedings of the 6th IJCAI Workshop on
Knowledge and Reasoning in Practical Dialogue Systems. Twenty-First Interna-
tional Joint Conference On Artificial Intelligence (IJCAI -09), July 12, Pasadena,
California, United States, pages 46-51. IJCAI 2009.

• 1st International Workshop On Spoken Dialogue Systems Technology
2009:
Daniel Sonntag, Gerhard Sonnenberg, Robert Neßelrath, Gerd Herzog (2009). Sup-
porting a rapid dialogue engineering process. Paper presented at the First Interna-
tional Workshop on Spoken Dialogue Systems Technology (IWSDS-2009), Kloster
Irsee, Germany.

• 4th Workshop on Speech in Mobile and Pervasive Environments 2009:
Daniel Porta, Daniel Sonntag, Robert Neßelrath (2009a). A multimodal mobile
b2b dialogue interface on the iPhone. In Proceedings of the 4th Workshop on
Speech in Mobile and Pervasive Environments in conjunction with MobileHCI ’09.
SiMPE-09, September 15, Bonn, Germany.

• 7th Workshop on Knowledge and Reasoning in Practical Dialogue Sys-
tems 2009:
Robert Neßelrath and Daniel Porta (2011). Rapid development of multimodal di-
alogue applications with semantic models. In Proceedings of the 7th IJCAI Work-
shop on Knowledge and Reasoning in Practical Dialogue Systems (KRPD-11).
Twenty-Second International Joint Conference On Artificial Intelligence (IJCAI
-11), Barcelona, Spain

• 3th Workshop on Cognitive Load and In-Vehicle Human-Machine In-
teraction:
Robert Neßelrath and Michael Feld (2013). Towards a cognitive load ready mul-
timodal dialogue system for in-vehicle human-machine interaction. In Adjunct
Proceedings of the 5th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications, pages 49-52, Eindhoven, Netherlands.

10.3 Future Work 231

Book Contributions

• A SemProM use case: Health care and compliance:
Boris Brandherm, Michael Schmitz, Robert Neßelrath, and Frank Lehmann (2013).
In SemProM: Foundations of Semantic Product Memories for the Internet of Things,
pages 349-361.

• SiAM-dp, eine multimodale Dialogplattform im Industriekontext:
Robert Neßelrath, Tilman Becker, Melanie Reiplinger, and Tim Schwartz (2015).
In Intelligente Vernetzung in der Fabrik - Industrie 4.0 Umsetzungsbeispiele für
die Praxis. Fraunhofer Verlag.

10.3 Future Work

The main goal of this work was the design and realisation of a platform for the devel-
opment of multimodal dialogue applications in CPEs. The research on this topic covers
a very wide spectrum of interdisciplinary research questions. Consequently, this thesis
had to address many important research areas, but in the context of this work only
some of them could be examined in detail. However, the platform offers the basis and an
excellent opportunity for future research and development. The following list presents
some possible research questions for future work which are already partly addressed in
the follow-up project MadMacs.

• Strategies for device selection and output planning

Presentation planning includes the decision on how output is distributed and coor-
dinated throughout the different available output channels which are dependent on
the user’s perceptual abilities and preferences. Additionally, in CPEs several activ-
ities may take place in parallel, maybe with several users included and in physical
proximity to each other. This can potentially imply mutual interference, for ex-
ample, if output includes audio output, lights or mobile actuators like robots that
can block each other. In Section 7.10, the component for presentation planning
and distribution is presented which is responsible for the selection of the applied
devices and the coordination of output. This base component is a good entry point
for further research and the development of rules and strategies that fulfill the task
of hardware assignment, presentation planning, and physical actions.

• Research on different dialogue metaphors

The design of an optimal interaction behaviour is dependent on factors like the user,
the environment, or the assigned task. The way that the system is represented is
important for the way the system is perceived and which interaction metaphors are
applied by the user. The CPE can take different roles, e.g., a mentor, an assistant,
a business partner, a co-worker or a moderator. The flexible and adaptive nature

232 Chapter 10 Conclusion and Outlook

of the dialogue platform supports the research for adequate interaction metaphors,
therefore the behaviour of the system can rapidly be changed for prototyping and
the evaluation of usability and user acceptance.

• Dynamic dialogue model update during runtime

In the current version of SiAM-dp, the dialogue model is loaded during the startup
process and cannot be manipulated during runtime. For debugging and a dynamic
extension of the dialogue workflow, an implementation that allows the replacement
or extension of the dialogue model during runtime is a valuable improvement.

• Extension with sophisticated dialogue management

The dialogue manager of the core platform that was introduced in Section 7.3 im-
plements a finite-state based solution based on statecharts. On top of this, more so-
phisticated dialogue management approaches like frame or information-state based
ones (compare Section 2.3.1) can be developed that generate more natural dialogues
and are especially useful for collaborative task solving in multi-party scenarios and
the realisation of mixed-initiative dialogues. Especially conversations that involve
a high number of independent participants (either real participants or virtual ones
in the form of, e.g., virtual characters or the system in a specific role) require the
management of numerous individual situations and participants’ goals that affect
the dialogue and therein occurring communicative actions. A purely state-based
approach is not an appropriate solution since it is nearly impossible to design ev-
ery feasible state and transition in such a complex scenario. Furthermore, the
design, extension, and maintenance would be extremely laborious and confusing.
In order to support advanced, flexible, and mixed initiative interaction with effi-
cient dialogue strategies, SiAM-dp could be extended with information-state and
plan-based dialogue managers like FLoReS (Forward Looking, Reward Seeking) of
Morbini et al. (2014) or the Conversational Behaviour Generation Framework of
Löckelt (2008).

• Multi-user interaction in small groups

The interaction in CPEs is typically not restricted to a single person. Often more
than one user interacts with more than one system and research has to observe
n:m-relations where n users can interact with m systems. These constellations
can even dynamically change during the runtime of a dialogue application. The
sessions manager (see 7.6) already contains models that group users, and the de-
vices they use to participate, into sessions. An interesting question is to retrieve
the information for filling this model with content. The research area of atten-
tion tracking deals with this topic. For speech input, this includes the questions
of who is speaking and with whom. Gestures and multi-touch input must be as-
signed to the contributing persons. Furthermore, body tracking can help to find
out which person in the room interacts with which other dialogue participant (or
which Cyber-physical System (CPS)). Therefore the position, but also the line of
sight of the user, is relevant. Here, eye-tracking may deliver additional knowledge.

10.3 Future Work 233

The collected information provides valuable information for dialogue management
and presentation planning. It helps to assign incoming input from devices in the
environment to the contributing dialogue participants and, with the information
of the session model, allows one to identify the intended recipients of information.
On the output side, the information can be used for planning the representation
of an application. If a communicative act should be provided to a group (the
members of a session), the presentation planner can use the knowledge of the
session management for selecting all those devices that are necessary in order to
reach all participating individuals of the group.

• Uniform ontology for device description

In Chapter 5, a basis approach for the semantic representation of devices in CPEs
has been presented. This issue is also addressed in related research areas. Bonino
et al. (2008) introduce an ontology for modelling intelligent domotic environments.
Beside concepts for the description of rooms and architectural elements, the on-
tology also supports “controllable” devices with a detailed description of their
functionalities and states. This topic also has relevance for middle-ware platforms
(Epelde et al., 2011) and smart service architectures for intelligent environments
(Frey, 2015). An intended goal would be to develop a homogeneous and commonly
accepted standard ontology that raises the interoperability between such systems
to a high degree.

Bibliography

Acatech, editor (2011). Cyber-Physical Systems: Driving Force for Innovation in Mobil-
ity, Health, Energy and Production. Acatech Position. Acatech – National Academy
of Science and Engineering, Munich, Germany.

Acatech (2014). Smart Service Welt: Umsetzungsempfehlungen für das Zukunftsprojekt
Internetbasierte Dienste für die Wirtschaft.

Aigner, R., Wigdor, D., Benko, H., Haller, M., Lindbauer, D., Ion, A., Zhao, S., and
Koh, J. (2012). Understanding mid-air hand gestures: A study of human preferences
in usage of gesture types for HCI. Microsoft Research TechReport MSR-TR-2012-111.

Alexandersson, J. and Becker, T. (2001). Overlay as the basic operation for discourse
processing in a multimodal dialogue system. In Proceedings of the IJCAI-01 Workshop
on Knowledge and Reasoning in Practical Dialogue Systems, pages 1–7.

Alexandersson, J. and Becker, T. (2003). The formal foundations underlying overlay. In
Proceedings of the Fifth International Workshop on Computational Semantics (IWCS-
5), pages 1–14, Tilburg, The Netherlands.

Alexandersson, J. and Becker, T. (2007). Efficient Computation of Overlay for Multiple
Inheritance Hierachies in Discourse Modeling, volume 3 of Studies in Linguistics and
Philosophy, pages 423–455. Kluwer.

Alexandersson, J., Becker, T., and Pfleger, N. (2004). Scoring for overlay based on
informational distance. In Proceedings der 7. Konferenz zur Verarbeitung natürlicher
Sprache (KONVENS’04), pages 1–4, Vienna, Austria.

Alexandersson, J., Becker, T., and Pfleger, N. (2006). Overlay: The basic operation for
discourse processing. In Wahlster, W., editor, SmartKom: Foundations of Multimodal
Dialogue Systems, Cognitive Technologies, pages 255–267. Springer Berlin Heidelberg.

236 Bibliography

Allemang, D. and Hendler, J. (2008). Semantic Web for the Working Ontologist Effective
Modeling in RDFS and OWL. Morgan Kaufmann.

Allen, J. and Core, M. (1997). Draft of DAMSL: Dialog act markup in several layers.
Unpublished manuscript.

Allen, J., Ferguson, G., and Stent, A. (2001). An architecture for more realistic conver-
sational systems. In Proceedings of Intelligent User Interfaces 2001 (IUI-01)., pages
1–8. Santa Fe, NM.

Alshawi, H. (1990). Resolving quasi logical forms. Comput. Linguist., 16(3):133–144.

Andrew, P., Conard, J., and Woodgate, S. (2005). Presenting Windows Workflow Foun-
dation. Sams, Indianapolis, IN, USA.

Atrey, P. K., Hossain, M., El Saddik, A., and Kankanhalli, M. S. (2010). Multimodal
fusion for multimedia analysis: A survey. Multimedia Systems, 16(6):345–379.

Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual
review of psychology, 63:1–29.

Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D. C., Carter, J., McGlashan,
S., Lager, T., Helbing, M., Hosn, R., Raman, T., Reifenrath, K., Rosenthal, N., and
Roxendal, J. (2014). State Chart XML (SCXML): State Machine Notation for Control
Abstraction - W3C Last Call Working Draft 29.

Benoit, C., Martin, J.-C., Pelachaud, C., Schomkaer, L., and Suhm, B. (2000). Audio-
visual and multimodal speech-based systems. In Gibbon, D., Mertins, I., and Moore,
R., editors, Handbook of Multimodal and Spoken Dialogue Systems, volume 565 of The
Springer International Series in Engineering and Computer Science, pages 102–203.
Springer US.

Bergweiler, S., Deru, M., and Porta, D. (2010). Integrating a multitouch kiosk system
with mobile devices and multimodal interaction. In ACM International Conference
on Interactive Tabletops and Surfaces, ITS ’10, pages 245–246, New York, NY, USA.
ACM.

Bernsen, N. O. (1997). Defining a taxonomy of output modalities from an HCI perspec-
tive. Computer Standards & Interfaces, 18(67):537 – 553.

Bierwas, I., Dengler, D., Porta, D., Neßelrath, R., and Germesin, S. (2014). Intelligent
automated online transaction system for automated interaction with online transaction
web sites. EP Patent App. EP20130000558.

Block, H. U., Caspari, R., and Schachtl, S. (2004). Callable manuals - access to product
documentation via voice (Anrufbare Bedienungsanleitungen - Zugang zu Produkt-
dokumentation über Sprache). it - Information Technology, 46(6):299–305.

Bibliography 237

Bobbert, D. and Wolska, M. (2007). Dialog OS: An extensible platform for teaching
spoken dialogue systems. In Proceedings of the 11th Workshop on the Semantics and
Pragmatics of Dialogue. Trento. Ron Artstein and Laure Vieu, pages 159–160.

Bolt, R. A. (1980). ”Put-that-there”: Voice and gesture at the graphics interface. In
Proceedings of the 7th annual conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’80, pages 262–270, New York, NY, USA. ACM.

Bonino, D., Castellina, E., and Corno, F. (2008). DOG: An Ontology-Powered OSGi
Domotic Gateway. 2012 IEEE 24th International Conference on Tools with Artificial
Intelligence, 1:157–160.

Brandherm, B., Schmitz, M., Neßelrath, R., and Lehmann, F. (2013). A SemProM use
case: Health care and compliance. In SemProM: Foundations of Semantic Product
Memories for the Internet of Things, pages 349–361. Springer.

Bui, T. H. (2006). Multimodal dialogue management - state of the art. Technical Report
TR-CTIT-06-01, Centre for Telematics and Information Technology, University of
Twente, Enschede.

Buitelaar, P., Declerck, T., Frank, A., Racioppa, S., Kiesel, M., Sintek, M., Engel, R.,
Romanelli, M., Sonntag, D., Loos, B., Micelli, V., Porzel, R., and Cimiano, P. (2006).
LingInfo: Design and Applications of a Model for the Integration of Linguistic Infor-
mation in Ontologies. In Proceedings of the 5th international conference on Language
Resources and Evaluation (LREC).

Bunt, H. (2000). Dialogue pragmatics and context specification. In In Abduction, Belief
and Context in Dialogue; studies in computational, pages 81–150. John Benjamins.

Bunt, H. (2009). The DIT++ taxonomy for functional dialogue markup. In Heylen,
D., Pelachaud, C., Catizone, R., and Traum, D., editors, AAMAS 2009 Workshop,
Towards a Standard Markup Language for Embodied Dialogue Acts, pages 13–24.

Bunt, H. (2011a). Multifunctionality in dialogue. Journal Computer Speech and Lan-
guage, 25(2):222–245.

Bunt, H. (2011b). The semantics of dialogue acts. In Proceedings of the Ninth Interna-
tional Conference on Computational Semantics, IWCS ’11, pages 1–13, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Bunt, H., Alexandersson, J., Carletta, J., Choe, J.-W., Fang, A. C., Hasida, K., Lee, K.,
Petukhova, V., Popescu-Belis, A., Romary, L., Soria, C., and Traum, D. R. (2010).
Towards an ISO Standard for Dialogue Act Annotation. In Calzolari, N., Choukri,
K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., and Tapias, D.,
editors, LREC. European Language Resources Association.

Bunt, H., Kipp, M., Maybury, M. T., and Wahlster, W. (2005). Fusion and coordina-
tion for multimodal interactive information presentation. In Multimodal Intelligent
Information Presentation, pages 325–340. Springer.

238 Bibliography

Carpenter, B. (1992). The Logic of Typed Feature Structures. Cambridge University
Press, Cambridge.

Cassell, J. (2000). More than just another pretty face: Embodied conversational interface
agents. Communications of the ACM, 43(4):70–78.

Castronovo, S. (2013). The Pull Paradigm : foundations of user-centric advanced driver
assistant systems based on bidirectional car2X communication. PhD thesis, Universität
des Saarlandes.

Clayberg, E. and Rubel, D. (2008). Eclipse Plug-ins. Eclipse Series. Pearson Education.

Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen, L., and
Clow, J. (1997). Quickset: Multimodal interaction for distributed applications. In Pro-
ceedings of the Fifth ACM International Conference on Multimedia, MULTIMEDIA
’97, pages 31–40, New York, NY, USA. ACM.

Cohen, P. R., Kaiser, E. C., Buchanan, M. C., Lind, S., Corrigan, M. J., and Wesson,
R. M. (2015). Sketch-thru-plan: A multimodal interface for command and control.
Commun. ACM, 58(4):56–65.

Cohen, P. R. and Perrault, C. R. (1979). Elements of a plan-based theory of speech acts.
Cognitive Science, 3(3):177–212.

Costa, D. and Duarte, C. (2013). Improving Interaction with TV-Based applications
through adaptive multimodal fission. Emerging Research and Trends in Interactivity
and the Human-Computer Interface, page 54.

Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., and Young, R. M. (1995).
Four easy pieces for assessing the usability of multimodal interaction: The CARE
properties. In InterAct, volume 95, pages 115–120.

Dahl, D. A. (2013). The W3C multimodal architecture and interfaces standard. Journal
on Multimodal User Interfaces, 7(3):171–182.

Denerz, E. (2013). A formal approach for modelling and implementing agent-based and
privacy-aware dialogue management. Master’s thesis, Universität des Saarlandes.

Deru, M. and Bergweiler, S. (2014). Swoozy-an innovative design of a distributed and
gesture-based semantic television system. In UBICOMM 2014, The Eighth Interna-
tional Conference on Mobile Ubiquitous Computing, Systems, Services and Technolo-
gies, pages 131–139.

Deru, M. and Neßelrath, R. (2015). autoUI-ML: A design language for the flexible
creation of automotive GUIs based on semantically represented data. In Gehring, S.,
Krüger, A., Alt, F., Taylor, N., and Schneegaß, S., editors, Proceedings of the 4th
ACM international symposium on pervasive displays, pages 235–236, Saarbrücken,
Germany. ACM.

Bibliography 239

Di Fabbrizio, G., Wilpon, J., and Okken, T. (2009). A speech mashup framework for
multimodal mobile services. In Proceedings of the 11th International Conference on
Multimodal Interfaces and the 6th Workshop on Machine Learning for Multimodal
Interfaces (ICMI-MLMI ’09), Cambridge, MA, USA, pages 71–78.

Dumas, B., Lalanne, D., and Oviatt, S. (2009). Multimodal interfaces: A survey of
principles, models and frameworks. In Human Machine Interaction: Research Results
of the MMI Program, pages 3–26. Springer.

Endres, C. (2012a). PresTK: Situation-Aware Presentation of Messages and Infotain-
ment Content for Drivers. PhD thesis, Universität des Saarlandes.

Endres, C. (2012b). Real-time assessment of driver cognitive load as a prerequisite for
the situation-aware presentation toolkit PresTK. In Adjunct Proceedings of the 4th
International Conference on Automotive User Interfaces and Interactive Vehicular
Applications (AutomotiveUI 2012), pages 76–79, Portsmouth, New Hampshire, USA.

Epelde, G., Carrasco, E., Zimmermann, G., Alexandersson, J., Neßelrath, R., and Du-
bielzig, M. (2011). Universal remote console-based next-generation accessible televi-
sion. Universal Access in the Information Society, 10:1–15.

Feld, M. and Müller, C. A. (2011). The automotive ontology: Managing knowledge
inside the vehicle and sharing it between cars. In Tscheligi, M., Kranz, M., Weinberg,
G., Meschtscherjakov, A., Murer, M., and Wilfinger, D., editors, AutomotiveUI, pages
79–86. ACM.

Fensel, D., van Harmelen, F., Horrocks, I., McGuiness, D. L., and Patel-Schneider, P. F.
(2001). OIL An Ontology Infrastructure for the Semantic Web. IEEE Intelligent
Systems, 16.

Foster, M. E. (2002). State of the art review: Multimodal fission. COMIC project
Deliverable, 6(09).

Frey, J. (2015). ASaP - Integrationsplattform für Smart Services in Intelligenten Umge-
bungen. PhD thesis, Universität des Saarlandes.

Frey, J., Schulz, C. H., Neßelrath, R., Stein, V., and Alexandersson, J. (2010a). Towards
pluggable user interfaces for people with cognitive disabilities. In Proceedings of the 3rd
International Conference on Health Informatics. HEALTHINF-2010, in Conjunction
with Proceedings of the 3rd International Conference on Health Informatics, January
20-23, Valencia, Spain. Springer.

Frey, J., Stahl, C., Röfer, T., Krieg-Brückner, B., and Alexandersson, J. (2010b). The
DFKI competence center for ambient assisted living. In de Ruyter, B., Wichert,
R., Keyson, D. V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., and
Mana Gomez, A., editors, Ambient Intelligence: First International Joint Conference,
AmI 2010, Málaga, Spain, volume 6439 of Lecture Notes in Computer Science, pages
310–314. Springer, Berlin.

240 Bibliography

Gallo, L., Placitelli, A. P., and Ciampi, M. (2011). Controller-free exploration of medical
image data: Experiencing the kinect. In Computer-Based Medical Systems (CBMS),
2011 24th International Symposium on, pages 1–6. IEEE.

Gebhard, P., Kipp, M., Klesen, M., and Rist, T. (2003). Authoring scenes for adaptive,
interactive performances. In AAMAS, pages 725–732. ACM.

Gebhard, P., Mehlmann, G., and Kipp, M. (2012). Visual SceneMaker—a tool for
authoring interactive virtual characters. Journal on Multimodal User Interfaces, 6(1-
2):3–11.

Giese, H., Rumpe, B., Schätz, B., and Sztipanovits, J. (2011). Science and engineering
of cyber-physical systems (dagstuhl seminar 11441). Dagstuhl Reports, 1(11):1–22.

Gillespie-Lynch, K., Greenfield, P. M., Feng, Y., Savage-Rumbaugh, S., and Lyn, H.
(2013). A cross-species study of gesture and its role in symbolic development: Impli-
cations for the gestural theory of language evolution. Frontiers in Psychology, 4(160).

Goldstein, E. B. (2009). Sensation and perception. Cengage Learning, eighth edition.

Graetzel, C., Fong, T., Grange, S., and Baur, C. (2004). A non-contact mouse for
surgeon-computer interaction. Technology and Health Care, 12(3):245–257.

Gruenstein, A., McGraw, I., and Badr, I. (2008). The WAMI toolkit for developing,
deploying, and evaluating web-accessible multimodal interfaces. In Proceedings of the
10th international conference on Multimodal interfaces, ICMI ’08, pages 141–148, New
York, NY, USA. ACM.

Gurevych, I., Porzel, R., Slinko, E., Pfleger, N., Alexandersson, J., and Merten, S.
(2003). Less is more: Using a single knowledge representation in dialogue systems. In
Proceedings of the HLT-NAACL 2003 Workshop on Text Meaning, pages 14–21.

Gutiérrez, J. and Horrillo, M. (2014). Advances in artificial olfaction: Sensors and
applications. Talanta, 124:95 – 105.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3).

Herzog, G. and Reithinger, N. (2006). The SmartKom architecture: A framework for
multimodal dialogue systems. In Wahlster (2006b), pages 55–70.

Hillairet, G., Bertrand, F., Lafaye, J. Y., et al. (2008). Bridging EMF applications and
RDF data sources. In Proceedings of the 4th International Workshop on Semantic
Web Enabled Software Engineering, SWESE2008.

Hirsch, M., Cheng, J., Reiss, A., Sundholm, M., Lukowicz, P., and Amft, O. (2014).
Hands-free gesture control with a capacitive textile neckband. In Proceedings of the
2014 ACM International Symposium on Wearable Computers, pages 55–58. ACM.

Bibliography 241

Hoepfinger, J. and Candell, E. (2010). Voice extensible markup language (VoiceXML)
3.0 requirements. World Wide Web Consortium, Working Draft.

Hofweber, T. (2014). Logic and ontology. In Zalta, E. N., editor, The Stanford Encyclo-
pedia of Philosophy. Standford University, fall 2014 edition.

Honold, F., Schüssel, F., and Weber, M. (2012). Adaptive probabilistic fission for mul-
timodal systems. In Proceedings of the 24th Australian Computer-Human Interaction
Conference, pages 222–231. ACM.

Hurum, S. (1988). Handling scope ambiguities in english. In Proceedings of the Sec-
ond Conference on Applied Natural Language Processing, ANLC ’88, pages 58–65,
Stroudsburg, PA, USA. Association for Computational Linguistics.

ISO 24617-2:2012 (2012). Language resource management – Semantic annotation frame-
work (SemAF) – Part 2: Dialogue acts. ISO, Geneva, Switzerland.

Jacob, M. G., Wachs, J. P., and Packer, R. A. (2013). Hand-gesture-based sterile in-
terface for the operating room using contextual cues for the navigation of radiological
images. Journal of the American Medical Informatics Association, 20(e1):e183–e186.

Jaimes, A. and Sebe, N. (2007). Multimodal human-computer interaction: A survey.
Computer Vision and Image Understanding, 108(1-2):116–134.

Johnston, M. (2009). Building multimodal applications with EMMA. In Proceedings
of the 11th International Conference on Multimodal Interfaces and the 6th Workshop
on Machine Learning for Multimodal Interfaces (ICMI-MLMI ’09), Cambridge, MA,
USA, pages 47–54.

Johnston, M., Baggia, P., Burnett, D. C., Carter, J., Dahl, D. A., McCobb, G., and
Raggett, D. (2009). EMMA: Extensible MultiModal Annotation Markup Language -
W3C Recommendation 10 February 2009.

Jokinen, K. and Wilcock, G. (2014). Multimodal open-domain conversations with the
NAO robot. In Mariani, J., Rosset, S., Garnier-Rizet, M., and Devillers, L., editors,
Natural Interaction with Robots, Knowbots and Smartphones, pages 213–224. Springer
New York.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing, chapter 24,
pages 863–891. Pearson Education International, 2nd edition.

Just, M. A. and Carpenter, P. A. (1976). The role of eye-fixation research in cognitive
psychology. Behavior Research Methods & Instrumentation, 8(2):139–143.

Kagermann, H., Wahlster, W., and Helbig, J., editors (2013). Deutschlands Zukunft als
Produktionsstandort sichern: Umsetzungsempfehlungen für das Zukunftsprojekt In-
dustrie 4.0, Abschlussbericht des Arbeitskreises Industrie 4.0. Forschungsunion im
Stifterverband für die Deutsche Wirtschaft e.V., Berlin.

242 Bibliography

Kahl, G. (2014). Dual Reality Framework: Basistechnologien zum Monitoring und
Steuern von cyber-physischen Umgebungen. PhD thesis, Universität des Saarlandes.

Karam, M. (2009). A Framework for Gesture-based Human Computer Interactions.
VDM Verlag, Saarbrücken, Germany.

Karray, F., Alemzadeh, M., Saleh, J. A., and Arab, M. N. (2008). Human-computer
interaction: Overview on state of the art. International Journal on Smart Sensing
and Intelligent Systems, 1(1):137–159.

Kelly, S. D., Barr, D. J., Church, R. B., and Lynch, K. (1999). Offering a hand to prag-
matic understanding: The role of speech and gesture in comprehension and memory.
Journal of Memory and Language, 40(4):577 – 592.

Kempe, B., Pfleger, N., and Löckelt, M. (2005). Generating verbal and nonverbal ut-
terances for virtual characters. In Subsol, G., editor, International Conference on
Virtual Storytelling, volume 3805 of Lecture Notes in Computer Science, pages 73–76.
Springer.

Kendon, A., Sebeok, T. A., and Umiker-Sebeok, J. (1981). Nonverbal communication,
interaction, and gesture: Selections from Semiotica, volume 41. Walter de Gruyter.

Kern, D., Mahr, A., Castronovo, S., Schmidt, A., and Müller, C. (2010). Making use
of drivers’ glances onto the screen for explicit gaze-based interaction. In Proceedings
of the 2Nd International Conference on Automotive User Interfaces and Interactive
Vehicular Applications, AutomotiveUI ’10, pages 110–116, New York, NY, USA. ACM.

Kühnel, C., Westermann, T., Hemmert, F., Kratz, S. G., Müller, A., and Möller, S.
(2011). I’m home: Defining and evaluating a gesture set for smart-home control. Int.
J. Hum.-Comput. Stud., 69(11):693–704.

Knapp, M. and Hall, J. (2009). Nonverbal communication in human interaction. Cengage
Learning.

Kobsa, A., Allgayer, J., Reddig, C., Reithinger, N., Schmauks, D., Harbusch, K., and
Wahlster, W. (1986). Combining deictic gestures and natural language for referent
identification. In COLING, pages 356–361.

Koons, D. B., Sparrell, C. J., and Thórisson, K. R. (1991). Integrating simultaneous in-
put from speech, gaze, and hand gestures. In Maybury, M. T., editor, AAAI Workshop
on Intelligent Multimedia Interfaces, pages 257–276. AAAI Press / The MIT Press.

Kopp, S., Krenn, B., Marsella, S., Marshall, A. N., Pelachaud, C., Pirker, H., Thórisson,
K. R., and Vilhjálmsson, H. H. (2006). Towards a common framework for multimodal
generation: The behavior markup language. In Gratch, J., Young, M., Aylett, R.,
Ballin, D., and Olivier, P., editors, IVA, volume 4133 of Lecture Notes in Computer
Science, pages 205–217. Springer.

Bibliography 243

Krieg-Brückner, B., Röfer, T., Shi, H., and Gersdorf, B. (2010). Mobility assistance in
the bremen ambient assisted living lab. GeroPsych: The Journal of Gerontopsychology
and Geriatric Psychiatry, 23(2):121 – 130.

Krieger, H.-U. and Schäfer, U. (1994). TDL-A Type Description Language for
Constraint-Based Grammars. In COLING, pages 893–899.

Lalanne, D., Nigay, L., Palanque, P., Robinson, P., Vanderdonckt, J., and Ladr, J.-F.
(2009). Fusion engines for input multimodal interfaces: A survey. In IMCI-MLMI
’09: Proceedings of the 11th International Conference on Multimodal Interfaces and
the 6th Workshop on Machine Learning for Multimodal Interfaces, Cambridge, MA,
USA, pages 153–160.

Löckelt, M. (2008). A Flexible and Reusable Framework for Dialogue and Action Man-
agement in Multi-Party Discourse. PhD thesis, Universität des Saarlandes.

Lee, E. A. (2008). Cyber physical systems: Design challenges. In Proceedings of the 11th
IEEE International Symposium on Object Oriented Real-Time Distributed Computing
(ISORC ’08), Orlando, FL, USA, pages 363–369.

Lison, P. (2012). Probabilistic dialogue models with prior domain knowledge. In Pro-
ceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and
Dialogue, SIGDIAL ’12, pages 179–188, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Löckelt, M., Pfleger, N., and Reithinger, N. (2007). Multi-party conversation for mixed
reality. International Journal of Virtual Reality, 6(4):31–42.

Loudová, B. (2012). Influence of production batch size on companys logistic costs. In
Proceedings in EIIC-1st Electronic International Interdisciplinary Conference.

MacDougall, W. (2013). Industrie 4.0: Smart Manufacturing for the Future. Germany
Trade and Invest, Gesellschaft für Außenwirtschaft und Standortmarketing mbH,
Berlin.

Mahr, A., Endres, C., Schneeberger, T., and Müller, C. (2011). Determining human-
centered parameters of ergonomic micro-gesture interaction for drivers using the the-
atre approach. In Proceedings of the 3rd International Conference on Automotive
User Interfaces and Interactive Vehicular Applications, 3rd, December 1-2, Salzburg,
Austria. ACM.

Marshall, S. P. (2007). Identifying cognitive state from eye metrics. Aviation, Space,
and Environmental Medicine, 78(5).

Matsukura, H., Yoneda, T., and Ishida, H. (2013). Smelling screen: Development and
evaluation of an olfactory display system for presenting a virtual odor source. Visual-
ization and Computer Graphics, IEEE Transactions on, 19(4):606–615.

244 Bibliography

Maybury, M. T. and Wahlster, W. (1998a). An introduction to intelligent user interfaces.
In Maybury and Wahlster (1998b), pages 1–13.

Maybury, M. T. and Wahlster, W., editors (1998b). Readings in Intelligent User Inter-
faces. Morgan Kaufmann, San Francisco, CA.

Meurant, L. (2008). The speaker’s eye gaze: Creating deictic, anaphoric and pseudo-
deictic spaces of reference. Sign Languages: Spinning and Unraveling the Past, Present
and Future. TISLR, 9:403–414.

Milward, D. and Beveridge, M. (2003). Ontology-based dialogue systems. In Proceed-
ings of the 3rd IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue
Systems, Acapulco, Mexico, pages 9–18.

Mitrevska, M., Moniri, M. M., Neßelrath, R., Schwartz, T., Feld, M., Körber, Y., Deru,
M., and Müller, C. (2015). SiAM - Situtation-adaptive multimodal interaction for
innovative mobility concepts of the future. In IE’15: Proceedings of the 11th Interna-
tional Conference on Intelligent Environments, Prague, Czech Republic. IEEE.

Moniri, M. M., Feld, M., and Müller, C. (2012). Personalized in-vehicle information
systems: Building an application infrastructure for smart cars in smart spaces. In
Intelligent Environments (IE), 2012 8th International Conference on, pages 379–382.

Moniri, M. M. and Müller, C. (2012). Multimodal reference resolution for mobile spatial
interaction in urban environments. In Proceedings of the 4th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI
’12, pages 241–248, New York, NY, USA. ACM.

Moniri, M. M. and Müller, C. (2014). Eyevius: Intelligent vehicles in intelligent urban
spaces. In Adjunct Proceedings of the 6th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications, pages 1–6, New York, NY,
USA. ACM.

Morbini, F., Devault, D., Sagae, K., Gerten, J., Nazarian, A., and Traum, D. (2014).
FLoReS: A forward looking, reward seeking, dialogue manager. In Natural Interac-
tion with Robots, Knowbots and Smartphones - Putting Spoken Dialog Systems into
Practice, pages 313–325. Sp.

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classifica-
tion. Linguisticae Investigationes, 30(1):3–26. Publisher: John Benjamins Publishing
Company.

National Joint Committee for the Communication Needs of Persons with Severe Disabil-
ities (1992). Guidelines for meeting the communication needs of persons with severe
disabilities.

Neal, J. G., Thielman, C. Y., Dobes, Z., Haller, S. M., and Shapiro, S. C. (1989).
Natural language with integrated deictic and graphic gestures. In Proceedings of the

Bibliography 245

Workshop on Speech and Natural Language, HLT ’89, pages 410–423, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Neßelrath, R. (2013). Towards a cognitive load aware multimodal dialogue framework
for the automotive domain. In Proceedings of the 9th International Conference on
Intelligent Environments (IE). International Conference on Intelligent Environments
(IE-13), July 18-19, Athen, Greece. IEEE.

Neßelrath, R. and Alexandersson, J. (2009). A 3D gesture recognition system for mul-
timodal dialog systems. In Proceedings of the 6th IJCAI Workshop on Knowledge
and Reasoning in Practical Dialogue Systems. Twenty-First International Joint Con-
ference On Artificial Intelligence (IJCAI -09), July 12, Pasadena, California, United
States, pages 46–51. IJCAI 2009.

Neßelrath, R. and Feld, M. (2013). Towards a cognitive load ready multimodal dialogue
system for in-vehicle human-machine interaction. In Adjunct Proceedings of the 5th
International Conference on Automotive User Interfaces and Interactive Vehicular
Applications, pages 49–52, Eindhoven, Netherlands.

Neßelrath, R. and Feld, M. (2014). SiAM-dp: A platform for the model-based develop-
ment of context-aware multimodal dialogue applications. In IE’14: Proceedings of the
10th International Conference on Intelligent Environments, Shanghai, China. IEEE.

Neßelrath, R., Lu, C., Schulz, C. H., Frey, J., and Alexandersson, J. (2011). A gesture
based system for context-sensitive interaction with smart homes. In Wichert, R. and
Eberhardt, B., editors, Ambient Assisted Living, 4. AAL-Kongress 2011, Advanced
Technologies and Societal Change, pages 209–219, Berlin, Germany. VDE, Springer.

Neßelrath, R. and Porta, D. (2011). Rapid development of multimodal dialogue applica-
tions with semantic models. In Proceedings of the 7th IJCAI Workshop on Knowledge
and Reasoning in Practical Dialogue Systems (KRPD-11). Twenty-Second Interna-
tional Joint Conference On Artificial Intelligence (IJCAI -11), Barcelona, Spain.

Neßelrath, R., Schulz, C. H., Schehl, J., Pfalzgraf, A., Pfleger, N., Stein, V., and Alexan-
dersson, J. (2009). Homogeneous multimodal access to the digital home for people
with cognitive disabilities. In Ambient Assisted Living, 2. AAL-Kongress 2009, Berlin,
Germany. VDE.

Neßelrath, R., Becker, T., Reiplinger, M., and Schwartz, T. (2015). SiAM-dp, eine
multimodale Dialogplattform im Industriekontext. In Intelligente Vernetzung in der
Fabrik - Industrie 4.0 Umsetzungsbeispiele für die Praxis, pages 277–288. Fraunhofer
Verlag.

Nigay, L. and Coutaz, J. (1993). A design space for multimodal systems: Concurrent
processing and data fusion. In Proceedings of the INTERACT ’93 and CHI ’93 Con-
ference on Human Factors in Computing Systems, CHI ’93, pages 172–178, New York,
NY, USA. ACM.

246 Bibliography

Obaid, M., Kistler, F., Häring, M., Bühling, R., and André, E. (2014). A framework
for user-defined body gestures to control a humanoid robot. I. J. Social Robotics,
6(3):383–396.

Oberle, D., Ankolekar, A., Hitzler, P., Cimiano, P., Sintek, M., Kiesel, M., Mougouie,
B., Baumann, S., Vembu, S., Romanelli, M., Buitelaar, P., Engel, R., Sonntag, D.,
Reithinger, N., Loos, B., Zorn, H.-P., Micelli, V., Porzel, R., Schmidt, C., Weiten,
M., Burkhardt, F., and Zhou, J. (2007). DOLCE ergo SUMO: On foundational and
domain models in the SmartWeb integrated ontology (SWIntO). Web Semantics,
5(3):156–174.

Openstream (2011). Enterprise mobility: Benefits of multimodality in mobile force
automation. Technical report, Openstream Inc.

Openstream (2015). Cue-me: Context-aware and multimodal mobile development plat-
form. http://www.openstream.com/cueme/ (retrieved Aug. 31, 2015).

Ovchinnikova, E. (2012). Integration of World Knowledge for Natural Language Un-
derstanding, chapter Natural Language Understanding and World Knowledge, pages
15–37. Atlantis Press.

Oviatt, S. (1996). Multimodal interfaces for dynamic interactive maps. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’96, pages
95–102, New York, NY, USA. ACM.

Oviatt, S. (1999a). Mutual disambiguation of recognition errors in a multimodel archi-
tecture. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’99, pages 576–583, New York, NY, USA. ACM.

Oviatt, S. (1999b). Ten myths of multimodal interaction. Communications of the ACM,
42(11):74–81.

Oviatt, S. (2012). Multimodal interfaces. In The Human Computer Interaction Hand-
book, chapter 18, pages 405–430. Crc Pr Inc.

Oviatt, S., Cohen, P., Wu, L., Vergo, J., Duncan, L., Suhm, B., Bers, J., Holzman,
T., Winograd, T., Landay, J., Larson, J., and Ferro, D. (2000). Designing the user
interface for multimodal speech and pen-based gesture applications: State-of-the-art
systems and future research directions. Hum.-Comput. Interact., 15(4):263–322.

Oviatt, S. L. and Cohen, P. R. (2015a). Commercialization of multoimodal interfaces. In
The paradigm shift to multimodality in contemporary computer interfaces, chapter 9.
Morgan & Claypool Publishers.

Oviatt, S. L. and Cohen, P. R. (2015b). The Paradigm Shift to Multimodality in Con-
temporary Computer Interfaces. Morgan & Claypool Publishers.

http://www.openstream.com/cueme/

Bibliography 247

Oviatt, S. L., Lunsford, R., and Coulston, R. (2005). Individual differences in multimodal
integration patterns: What are they and why do they exist? In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’05, pages 241–
249, New York, NY, USA. ACM.

Perrault, C. R. and Allen, J. (1980). A plan-based analysis of indirect speech acts.
American Journal of Computational Linguistics, 6(3-4):167–182.

Petukhova, V. and Bunt, H. (2012). The coding and annotation of multimodal dialogue
acts. In Proceedings of the Eight International Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European Language Resources Association
(ELRA).

Petukhova, V. V. (2011). Multidimensional dialogue modelling. PhD thesis, Tilburg
University.

Pfleger, N. (2007). Context-based Multimodal Interpretation: An Integrated Approach to
Multimodal Fusion and Discourse Processing. PhD thesis, Universität des Saarlandes.

Pfleger, N. and Alexandersson, J. (2006). Towards resolving referring expression by
implicitly activated referents in practical dialogue systems. In The Proceedings of the
10th Workshop on the Semantics and Pragmaticsof Dialogue - BRANDIAL06, pages
2–9, Potsdam, Germany.

Pfleger, N., Alexandersson, J., and Becker, T. (2002). Scoring functions for overlay and
their application in discourse processing. In Proceedings of KONVENS 2002, pages
139–146.

Pfleger, N. and Schehl, J. (2006). Development of advanced dialog systems with PATE.
In Proceedings of Interspeech 2006—ICSLP: 9th International Conference on Spoken
Language Processing, Pittsburgh, PA, USA, pages 1778–1781.

Poesio, M. (1994). Ambiguity, underspecification and discourse interpretation. In Pro-
ceedings of the First International Workshop on Computational Semantics, pages 151–
160.

Porta, D., Deru, M., Bergweiler, S., Herzog, G., and Poller, P. (2014a). Building Multi-
modal Dialog User Interfaces in the Context of the Internet of Services, pages 145–162.
Cognitive Technologies. Springer.

Porta, D., Sonntag, D., and Neßelrath, R. (2009a). A multimodal mobile B2B dialogue
interface on the iPhone. In Proceedings of the 4th Workshop on Speech in Mobile and
Pervasive Environments in conjunction with MobileHCI ’09. SiMPE-09, September
15, Bonn, Germany.

Porta, D., Sonntag, D., and Neßelrath, R. (2009b). New business to business interaction:
Shake your iphone and speak to it. In Proceedings of the 11th International Confer-
ence on Human-ComputerInteraction with Mobile Devices and Services. MobileHCI-
09, September15 - August 18, Bonn, Germany. ACM.

248 Bibliography

Porta, D., Tuncer, Z., Wirth, M., and Hellenschmidt, M. (2014b). Multimodal task
assignment and introspection in distributed agricultural harvesting processes. In Pro-
ceedings of the Eighth International Conference on Mobile Ubiquitous Computing, Sys-
tems, Services and Technologies (UBICOMM 2014), Rome, Italy, pages 227–232. In-
ternational Academy, Research and Industry Association (IARIA).

Prange, A., Sandrala, I. P., Weber, M., and Sonntag, D. (2015). Robot companions and
smartpens for improved social communication of dementia patients. In Brdiczka, O.,
Chau, P., Carenini, G., Pan, S., and Kristensson, P. O., editors, Proceedings of the 20th
International Conference on Intelligent User Interfaces Companion, IUI Companion
’15, pages 65–68, New York, NY, USA. ACM.

Qvarfordt, P. (2005). Conversing with the user based on eye-gaze patterns. In In
Proceedings of CHI05, pages 221–230. ACM Press.

Rautaray, S. S. and Agrawal, A. (2015). Vision based hand gesture recognition for human
computer interaction: A survey. Artificial Intelligence Review, 43(1):1–54.

Reithinger, N., Gebhard, P., Löckelt, M., Ndiaye, A., Pfleger, N., and Klesen, M. (2006).
VirtualHuman: Dialogic and affective interaction with virtual characters. In Proceed-
ings of the 8th International Conference on Multimodal Interfaces, ICMI ’06, pages
51–58, New York, NY, USA. ACM.

Riener, A. (2012). Gestural interaction in vehicular applications. Computer, 45(4):42–47.

Ruesch, J. and Kees, W. (1956). Nonverbal communication: Notes on the visual percep-
tion of human relations. University of California Press.

Schehl, J., Pfalzgraf, A., Pfleger, N., and Steigner, J. (2008). The BabbleTunes system—
talk to your iPod! In Proceedings of the 10th International Conference on Multimodal
Interfaces (ICMI ’08), Chania, Crete, Greece, pages 77–80.

Schmitz, M., Baus, J., and Dörr, R. (2008). The digital sommelier: Interacting with
intelligent products. In Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern,
F., and Sarma, S., editors, The Internet of Things, volume 4952 of Lecture Notes in
Computer Science, pages 247–262. Springer Berlin Heidelberg.

SemVox, G. (2015). ODP S3 - The leading dialog and assistance technology. http:

//www.semvox.de/uploads/pdf/SEM_Produktblatt_FINAL_Web_EN.pdf. Accessed:
2015-10-14.

Serrano, M. and Nigay, L. (2009). Temporal aspects of care-based multimodal fusion:
From a fusion mechanism to composition components and woz components. In Pro-
ceedings of the 2009 International Conference on Multimodal Interfaces, ICMI-MLMI
’09, pages 177–184, New York, NY, USA. ACM.

Shukla, D. and Schmidt, B. (2006). Essential Windows workflow foundation. Addison-
Wesley Professional.

http://www.semvox.de/uploads/pdf/SEM_Produktblatt_FINAL_Web_EN.pdf
http://www.semvox.de/uploads/pdf/SEM_Produktblatt_FINAL_Web_EN.pdf

Bibliography 249

Sibert, L. E. and Jacob, R. J. K. (2000). Evaluation of eye gaze interaction. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’00,
pages 281–288, New York, NY, USA. ACM.

Siroux, J., Guyomard, M., Multon, F., and Remondeau, C. (1995). Modeling and pro-
cessing of oral and tactile activities in the georal system. In Bunt, H., Beun, R.-J., and
Borghuis, T., editors, Multimodal Human-Computer Communication, volume 1374 of
Lecture Notes in Computer Science, pages 101–110. Springer.

Song, D. (2006). Combining Speech User Interfaces of Different Applications. PhD
thesis, Ludwig-Maximilians-Universität München.

Sonntag, D., Engel, R., Herzog, G., Pfalzgraf, A., Pfleger, N., Romanelli, M., and
Reithinger, N. (2007). SmartWeb handheld—multimodal interaction with ontolog-
ical knowledge bases and semantic web services. In Artifical Intelligence for Human
Computing: ICMI 2006 and IJCAI 2007 International Workshops, pages 272–295.
Springer.

Sonntag, D. and Möller, M. (2009). Unifying semantic annotation and querying in
biomedical images repositories. In Proceedings of the International Conference on
Knowledge Management and Information Sharing (KMIS), Madeira, Portugal.

Sonntag, D., Neßelrath, R., Sonnenberg, G., and Herzog, G. (2009). Supporting a rapid
dialogue engineering process. Paper presented at the First International Workshop on
Spoken Dialogue Systems Technology (IWSDS-2009), Kloster Irsee, Germany.

Sonntag, D. and Romanelli, M. (2006). A multimodal result ontology for integrated
semantic web dialogue applications. In Proceedings of the 5th Conference on Language
Resources and Evaluation(LREC 2006), Genova, Italy.

Starker, I. and Bolt, R. A. (1990). A gaze-responsive self-disclosing display. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’90,
pages 3–10, New York, NY, USA. ACM.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2009). EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition.

Stiefelhagen, R. and Yang, J. (1997). Gaze tracking for multimodal human-computer
interaction. In Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997
IEEE International Conference on, volume 4, pages 2617–2620 vol.4.

Stock, O., Strapparava, C., and Zancanaro, M. (1996). Human-computer interaction
through natural language and hypermedia in alfresco. SIGCHI Bull., 28(3):102–107.

Tahara, Y., Ikeda, A., Maehara, Y., Habara, M., and Toko, K. (2011). Development and
evaluation of a miniaturized taste sensor chip. Sensors, 11(10):9878–9886.

250 Bibliography

Tamura, S., Iwano, K., and Furui, S. (2004). Multi-modal speech recognition using
optical-flow analysis for lip images. In Wang, J.-F., Furui, S., and Juang, B.-H.,
editors, Real World Speech Processing, pages 43–50. Springer US.

Toyama, T., Sonntag, D., Dengel, A., Matsuda, T., Iwamura, M., and Kise, K. (2014).
A mixed reality head-mounted text translation system using eye gaze input. In Pro-
ceedings of the 19th International Conference on Intelligent User Interfaces, IUI ’14,
pages 329–334, New York, NY, USA. ACM.

Traum, D. and Larsson, S. (2003). The information state approach to dialogue manage-
ment. In Current and New Directions in Discourse and Dialogue, volume 22 of Text,
Speech and Language Technology, pages 325–353. Springer Netherlands.

Turk, M. (2014). Multimodal interaction: A review. Pattern Recognition Letters, 36:189–
195.

Turk, M. and Kölsch, M. (2003). Perceptual interfaces. Technical report, University of
California, Santa Barbara.

Vernier, F. and Nigay, L. (2001). A framework for the combination and characterization
of output modalities. In Palanque, P. and Paternò, F., editors, Interactive Systems
Design, Specification, and Verification, volume 1946 of Lecture Notes in Computer
Science, pages 35–50. Springer Berlin Heidelberg.

Vilhjálmsson, H. (2009). Representing communicative function and behavior in multi-
modal communication. In Esposito, A., Hussain, A., Marinaro, M., and Martone, R.,
editors, Multimodal Signals: Cognitive and Algorithmic Issues, volume 5398 of Lecture
Notes in Computer Science, pages 47–59. Springer Berlin Heidelberg.

Wachs, J. P. (2010). Gaze, posture and gesture recognition to minimize focus shifts for
intelligent operating rooms in a collaborative support system. International Journal
of Computers, Communications & Control, 5(1).

Wachs, J. P., Kölsch, M., Stern, H., and Edan, Y. (2011). Vision-based hand-gesture
applications. Communications ACM, 54(2):60–71.

Wahlster, W. (1991). User and discourse models for multimodal communication. In J.
W. Sullivan and S. W. Tyler, editor, Intelligent User Interfaces, pages 45–67. ACM
Press.

Wahlster, W. (1992). An intelligent multimodal interface. In Buchmann, J., Ganzinger,
H., and Paul, W., editors, Informatik, volume 1 of TEUBNER-TEXTE zur Informatik,
pages 481–494. Vieweg+Teubner Verlag.

Wahlster, W. (2002). Smartkom: Fusion and fission of speech, gestures, and facial expres-
sions. In Proceedings of the 1st International Workshop on Man-Machine Symbiotic
Systems, pages 213–225. MIT Press.

Bibliography 251

Wahlster, W. (2003). SmartKom: Symmetric multimodality in an adaptive and reusable
dialogue shell. In Krahl, R. Günther, D., editor, Proceedings of the Human Computer
Interaction Status Conference 2003, pages 47–62. DLR.

Wahlster, W. (2006a). Dialogue systems go multimodal: The SmartKom experience. In
Wahlster (2006b), pages 3–27.

Wahlster, W., editor (2006b). SmartKom: Foundations of Multimodal Dialogue Systems.
Springer, Berlin.

Wahlster, W., editor (2013). SemProM - Foundations of Semantic Product Memories
for the Internet of Things. Cognitive Technologies. Springer.

Wahlster, W., Grallert, H.-J., Wess, S., Friedrich, H., and Widenka, T., editors (2014).
Towards the Internet of Services: The THESEUS Program. Springer, Berlin.

Wang, K. (2002). SALT: a spoken language interface for web-based multimodal dialog
systems. In Proceedings of ICSLP—Interspeech 2002: 7th International Conference
on Spoken Language Processing, Denver, CO, USA, pages 2241–2244.

Wasinger, R. (2006). Multimodal interaction with mobile devices: Fusing a broad spec-
trum of modality combinations. Aka Verlag.

Wasinger, R., Kray, C., and Endres, C. (2003). Controlling multiple devices. In Physical
Interaction (PI03) Workshop on Real World User Interfaces, pages 60–63.

Wasinger, R., Krüger, A., and Jacobs, O. (2005). Integrating intra and extra gestures
into a mobile and multimodal shopping assistant. In Gellersen, H.-W., Want, R., and
Schmidt, A., editors, Pervasive Computing, volume 3468 of Lecture Notes in Computer
Science, pages 297–314. Springer Berlin Heidelberg.

Wütherich, G., Hartmann, N., Kolb, B., and Lübken, M. (2009). Die OSGi Service
Platform. dpunkt.verlag.

Xiao, B., Girand, C., and Oviatt, S. L. (2002). Multimodal integration patterns in
children. In Hansen, J. H. L. and Pellom, B. L., editors, INTERSPEECH. ISCA.

Xiao, B., Lunsford, R., Coulston, R., Wesson, M., and Oviatt, S. (2003). Modeling
multimodal integration patterns and performance in seniors: Toward adaptive pro-
cessing of individual differences. In Proceedings of the 5th International Conference
on Multimodal Interfaces, ICMI ’03, pages 265–272, New York, NY, USA. ACM.

Xiao, Y., Zhang, Z., Beck, A., Yuan, J., and Thalmann, D. (2014). Human-robot
interaction by understanding upper body gestures. Presence, 23(2):133–154.

	Contents
	Introduction
	Motivation
	Research Questions
	Chapter Outline

	Fundamental Concepts
	Human Perception and Communication
	Verbal and Nonverbal Communication
	Human-Computer-Communication

	Multimodal Human-Computer Interaction
	Terminology
	Multimodal Systems
	Advantages and Myths
	Integration and Fusion of Multimodal Input
	Presentation Planning and Multimodal Fission

	Dialogue Systems
	Dialogue Management
	Context Resolution

	Cyber-physical Environments
	Human Computer Interaction in CPEs
	Requirements

	Summary

	Related Work
	Overview of research in multimodal interaction
	Speech & Pointing
	Gaze, eye and head-tracking
	Hand and body gestures

	Multimodal Dialogue Frameworks
	AT&T speech mashup architecture
	WAMI toolkit
	DIANE
	Dialog OS
	SmartKom
	ODP
	Cue-me
	Summary and Conclusion

	Representing Multimodal Interaction
	M3L - Multimodal Markup Language
	EMMA
	SWEMMA
	SALT
	Summary and Conclusion

	Dialogue Act Annotation
	EMMA specification
	SAIBA framework
	CDE framework in VirtualHuman
	Semantic Dialogue Annotation Framework ISO 24617-2
	Summary

	The SiAM-dp modelling language
	Semantic Knowledge Representation
	RDF - Resource Description Framework
	RDF Schema
	OWL

	Typed Feature Structures
	Extended Typed Feature Structure

	SiAM Meta Model
	Requirements
	Eclipse Modelling Framework
	EMF API Extensions
	Declaration of dynamic content: The Bindable Concept

	Pattern Model
	Pattern Model Concepts
	Pattern Matching Example

	Summary

	Massive Multimodality in Cyber-Physical Environments
	Introduction
	Device Classification
	Representing Input and Output
	The IO-Model Type Hierarchy
	Communicative Acts
	Control Messages

	Massively multimodal integration
	Semantic Dialogue Act Model
	Modelling Referring Expressions

	Mapping between syntactic and semantic representations
	Mapping rules
	Example

	Summary

	Declarative Specification of Multimodal Dialogue Applications
	Dialogue Specification Model
	Modelling Interaction Workflows
	The SiAM dialogue model
	Embedding the IO-Model into the dialogue specification model
	Example

	Modelling Speech Recognition Grammars
	Grammar Rules Specification Model
	Example

	Modelling Graphical User Interfaces
	GUI Model Concepts
	Semantic Data Binding
	Example

	Project Definition Model
	Summary

	SiAM Dialogue Platform
	SiAM-dp Architecture
	The OSGi platform
	Eclipse Modelling Framework
	Platform Layers

	Event Management
	Dialogue Manager
	Project Manager
	Knowledge Manager
	Session, Device & User Management
	Device Manager

	Speech Recognition Components
	Grammar Management Service
	GRXML Converter
	Speech Recognition Interpretation

	Managing Graphical User Interfaces
	Display Context Manager
	GUI Input Interpreter

	Fusion & Discourse Resolution
	Managing the Discourse Context
	Reference Resolution

	Presentation Planning & Distribution
	Summary

	Development Tools
	The Eclipse Rich Client Platform
	SiAM Workbench
	Wizard for New Applications
	New Device Wizard
	Extended EMF instance editor
	Grammar Rule Editor
	Graphical Dialogue Model Editor
	Domain Ontology Editor

	Runtime Tools
	Application Debug GUI
	JDT Extensions
	Automatic GUI prototyping with HTML 5

	SiAM-dp deployment
	Summary

	Applications
	SiAM Project Demonstrator
	Multimodal Control of Car Functions
	Discourse aware Interaction with the Outside Environment
	Persuasive Travel Assistant
	Distributed Input and Output

	MADMACS - CeBIT Demonstrator 2015
	SINNODIUM Demonstrator
	KOGNIT demonstrator
	HySociaTea project
	Summary

	Conclusion and Outlook
	Summary
	Contributions and Results
	Research Questions Revisited
	Related Work Revisited
	Scientific Publications

	Future Work

	Bibliography

