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Abstract
Natural language text has been the main and most comprehensive way of expressing and
storing knowledge. A long standing goal in computer science is to develop systems that
automatically understand textual data, making this knowledge accessible to computers and
humans alike. We conceive automatic text understanding as a bottom-up approach, in which
a series of interleaved tasks build upon each other. Each task achieves more understanding
over the text than the previous one. In this regard, we present three methods that aim to
contribute to the primary stages of this setting.

Our first contribution, ClausIE, is an open information extraction method intended
to recognize textual expressions of potential facts in text (e.g. “Dante wrote the Divine
Comedy”) and represent them with an amenable structure for computers [(“Dante”, “wrote”,
“the Divine Comedy”)]. Unlike previous approaches, ClausIE separates the recognition of the
information from its representation, a process that understands the former as universal (i.e.,
domain-independent) and the later as application-dependent. ClausIE is a principled method
that relies on properties of the English language and thereby avoids the use of manually or
automatically generated training data.

Once the information in text has been correctly identified, probably the most important
element in a structured fact is the relation which links its arguments, a relation whose
main component is usually a verbal phrase. Our second contribution, Werdy, is a word
entry recognition and disambiguation method. It aims to recognize words or multi-word
expressions (e.g., “Divine Comedy” is a multi-word expression) in a fact and disambiguate
verbs (e.g., what does “write” mean?). Werdy is also an unsupervised approach, mainly
relying on the syntactic and semantic relation established between a verb sense and its
arguments.

The other key components in a structured fact are the named entities (e.g., “Dante”) that
often appear in the arguments. FINET, our last contribution, is a named entity typing method.
It aims to understand the types or classes of those names entities (e.g., “Dante” refers to
a writer). FINET is focused on typing named entities in short inputs (like facts). Unlike
previous systems, it is designed to find the types that match the entity mention context (e.g.,
the fact in which it appears). It uses the most comprehensive type system of any entity typing
method to date with more than 16k classes for persons, organizations and locations.
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These contributions are intended to constitute constructive building blocks for deeper
understanding tasks in a bottom-up automatic text understanding setting.



Kurzfassung
Das Schreiben von Texten ist die wichtigste und reichhaltigste Art und Weise, Wissen aus-
zudrücken und zu speichern. Schon lange verfolgt die Informatik das Ziel, Systeme zu
entwickeln, die Texte automatisch verstehen, um dieses Wissen sowohl Maschinen als auch
Menschen zugänglich zu machen. In dieser Arbeit verstehen wir das Automatische Textver-
stehen als bottom-up Aufgabe, in der eine Reihe ineinandergreifender Bausteine aufeinander
aufbauen. Jeder Baustein erlangt dabei ein tieferes Textverständnis als der vorhergehende. In
diesem Sinne präsentieren wir drei Methoden, die alle zu den fundamentalen Stufen dieses
Prozesses beizutragen.

Unser erster Beitrag, ClausIE, ist eine Methode der Offenen Informationsextraktion, die
textuelle Ausdrücke von Faktekandidaten (z.B. “Dante schrieb die Göttliche Kommödie”)
erkennt, und diese in einer maschinenlesbaren Struktur repräsentiert [(“Dante”, “schrieb”,
“die Göttliche Kommödie”)]. Im Gegensatz zu vorherigen Ansätzen trennt ClausIE die
Erkennung der faktischen Information von der Repräsentation, in einem Prozess der ersters
als universell (d.h. domänenunabhängig), letzteres als streng anwendungsabhängig versteht.
ClausIE löst diese Aufgabe in einer grundsätzlichen, auf den Prinzipien der englischen
Sprache aufbauenden Weise und vermeidet damit den Gebrauch manueller oder automatisch
generierter Trainingsdaten.

Wurde diese Art der Information korrekt identifiziert, ist das wahrscheinlich wich-
tigste Element eines strukturierten Fakts die Relation, welche die verschiedenen Argu-
mente miteinander verbindet. Hauptbestandteil einer solchen Relation ist üblicherweise
eine Verbalphrase. Unser zweiter Beitrag, Werdy, ist eine Worteintrag-Erkennungs und
-Disambiguierungsmethode. Es erkennt Wörter oder Mehrwortausdrücke (z.B. ist die “Göttli-
che Kommdödie” ein Mehrwortausdruck) in einem Fakt und disambiguiert Verben (z.B. was
“schreiben” bedeutet). Werdy ist auch ein nichtüberwachtes Verfahren, das hauptsächlich auf
der semantischen Beziehung zwischen einer Verbbedeutung und dessen Argumenten beruht.

Die anderen Schlüsselkomponenten eines strukturierten Fakts sind Eigennamen (z.B.
“Dante”), die häufig als Argument auftreten. FINET, unser letzer Beitrag, ist eine Methode zur
Typisierung von Eigennamen. Sie versteht die Typen oder Klassen solcher Eigennamen (z.B.
ist “Dante” ein “Schriftsteller”). FINETs Fokus ist die Typisierung von Eigennamen in kurzen
Eingaben, beispielsweise Fakten. Im Gegensatz zu vorherigen Systemen ist es so konzipiert,
dass es Typen findet, die dem Kontext der Eigennamen entspricht (z.B. dem Fakt in dem er
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auftritt). FINET verwendet mit mehr als 16.000 Typen für Personen, Organisationen und
Orten das reichhaltigste Typsystem aller bisherigen Typisierungsmethoden.

Alle Beiträge stellen Bausteine für das tiefere Verständnis in einem bottom-up Verfahren
zum automatischen Textverstehen dar.



To Leticia, the love of my life, and Dante, the product of it.





Acknowledgements

First of all I would like to thank my supervisor Rainer Gemulla for his invaluable trust,
guidance and support. I enjoyed working with him very much and I am especially grateful
for the freedom he gave me during this time and his constant willingness to teach. I would
also like to thank Gerhard Weikum for his unbounded support and vital insight. The D5
group at the Max Planck for Informatics provided me with an excellent working environment
especially affable and cooperative. I am thankful to my co-authors Abdullah Abujabal, Fabio
Petroni and Kaustubh Beedkar, and to Christina Teflioudi, Faraz Makari, Mohamed Yahya
and Alejandro Pironti who in one way or the other contributed to my research. Virgilio Tedín
Uriburu, Daniel Heymann and Emiliano Chamorro provided me invaluable inspiration and
selfless support in my career. I would like to thank the Ambinauts Johannes Hoffart (who
also translated the abstract), Dragan Milchevski and Daniel Bär for sharing with me the
next adventure. I am grateful to my friends and family, especially to Leticia, without her
everything I have achieved would have been truly impossible. Last but not least, I would
like to thank all those idealists that encourage me to progress towards an unachievable and
always evolving ideal. At least I try.





Contents

Nomenclature xv

1 Introduction 1
1.1 Automatic Text Understanding: Goals and Challenges . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Why Automatic Text Understanding? . . . . . . . . . . . . . . . . . . . . 11
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 ClausIE: Clause-Based Open Information Extraction 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The Seven Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 ClausIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Step 1: Dependency Parsing . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Step 2: From Dependencies to Clauses . . . . . . . . . . . . . . . 22
2.3.3 Step 3: Identifying Clause Types . . . . . . . . . . . . . . . . . . . 24
2.3.4 Step 4: From Clauses to Propositions . . . . . . . . . . . . . . . . 27

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Example Extractions . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Precision and Number of Extractions . . . . . . . . . . . . . . . . 32
2.4.4 Extractions Errors of ClausIE . . . . . . . . . . . . . . . . . . . . 35

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Werdy: Recognition and Disambiguation of Verbs and Verb Phrases 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



xiv Contents

3.2 Overview of Werdy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Entry Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Syntactic Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Semantic Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Verb-Object Sense Repository . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 FINET: Context-Aware Fine-Grained Named Entity Typing 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Candidate Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Pattern-based extractor . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 Exploiting a knowledge base . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Mention-based extractor . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.5 Verb-based extractor . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.6 Corpus-based extractor . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Type Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Obtaining context . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Selecting types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusion and Future Directions 85

List of Figures 89

List of Tables 91

Bibliography 93



Nomenclature

DER Derivationally related form

DP Dependency parse

KB Knowledge-base

NED Named entity disambiguation

NER Named entity recognition

NET Named entity typing

NLP Natural language processing

OIE Open information extraction

POS Part-of-speech

VOS repository Verb-object-sense repository

WERD Word entry recognition and disambiguation

WSD Word sense disambiguation





Chapter 1

Introduction

1.1 Automatic Text Understanding: Goals and Challenges

The great majority of the knowledge that mankind has produced and still produces is available
only in the form of natural language text, including books, news articles, scientific papers,
and web pages. In much of human history, the most effective and comprehensive way of
storing knowledge has been plain text. Our work contributes with methods to represent and
understand this knowledge such that it is amenable to automated processing by computers.

Automatic text understanding is not a trivial task. Natural language is written for
humans; it can be noisy, ambiguous, opinionated, or difficult to interpret without context
or the appropriate background knowledge. Machine Reading (Etzioni et al., 2006) defines
“understanding text“ as the formation of a coherent set of beliefs based on a textual corpus
and a background theory. The success of this paradigm hinges on the capacity to construct a
semantic representation of the knowledge in text that can be understood and reasoned about
by computers. It requires to identify this ”set of beliefs“ in its natural language expression,
an automatic way to unveil its meaning, and a representation formalism suited for computer
processing. These requirements involve the combination of techniques from the machine
learning, logic, linguistics, and data management communities, among others. An ideal –
or perhaps idealized – system would be sufficiently powerful to capture the entire set of
information represented in a given text collection, regardless of its domain (e.g., biology,
history, economics).

Conceptually, the goal of automatic text understanding is to develop a system that
replicates human text understanding capabilities; a system able to generate a computer
readable semantic representation of the information embedded in natural language text.
According to Woods (1975), this representation (logical adequacy) should ”precisely, formally
and unambiguously“ represent any particular interpretation of the text.
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An automatic text understanding system must then overcome multiple challenges. Regard-
less of its representation formalism, the system must be common to every domain, powerful
enough to unveil every possible meaning of the text, capture any piece of information inside
it, and be able to infer the non-explicitly stated knowledge. Even more, it must be open in
the sense that it must not depend on a bounded set of words, entities, relations or any other
element but must able to learn new concepts as they appear. This last characteristic implies
that automatic text understanding cannot be exclusively a supervised task as it must not solely
rely on existing knowledge. Additionally, as text can be noisy, ambiguous or opinionated,
the outcome of the system may well be expressed probabilistically or through certain degree
of confidence.

Achieving such an ideal text understanding setting implies the capacity to construct
a computer-based ontology which stores in a computer readable format the knowledge
processed by the system. This ontology should be able to characterize every object or entity,
physical or abstract, and every relation between them. An ontology ultimately constitutes the
knowledge available to the machine, which in addition to certain reasoning capabilities, shape
applications to serve the most varied purposes. Accordingly, automatic text understanding
can also be seen as the challenge to solve the necessary steps to represent natural language
written information in a computer based ontology, a task that has been commonly referred as
Information Extraction.

In this work, we propose a set of methods to contribute to the initial stages of an automatic
text understanding system, a system which, in a near or distant future, can replicate human
text understanding capabilities. This, perhaps unachievable, full artificial intelligence does
not have to be seen as an all or nothing bet but as a hill climbing approach: any step towards
it implies new risks and challenges, but also opens up the set of possible applications that in
a major or minor extent have the potential to improve the welfare of humanity.

1.2 Contributions

In a bottom-up approach, an automatic text understanding system can be thought of as a set
of interleaved tasks whose aim is to construct a fully fledged ontology or knowledge-base
(KB) from natural language text. The KB is conceived as a collection of computer readable
facts, statements or beliefs, ideally containing all the information in the original text. Each
task in the pipeline achieves more semantic understanding with respect to the previous one.
Fig. 1.1 displays a possible example pipeline for this bottom-up approach, in which our
contributions are marked in blue.
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Figure 1.1 Text to ontology: related work

This work proposes three methods that aim to solve the very initial stages on this text
understanding (or information extraction) bottom-up approach. They target the most basic
processing, aiming to provide strong foundations for semantically deeper tasks. In line with
the automatic text understanding setting described in the previous section, our methods are
mostly unsupervised, domain independent and avoid filtering information.

The driving idea in this work is that natural language text as the primary form of storing
knowledge already entails clear principles to express information. Any method that translates
natural language text into a computer readable representation should be able to exploit those
principles. Even though linguistic rules may be at times vague or ambiguous, they provide a
valuable ground to construct that representation. In this regard, our methods have also the
common characteristic of being linguistically-based. Even though they make use a multiple
computational techniques, they intensively rely on linguistic knowledge.

As it was stated above, text understanding refers to the formation of a coherent set of
beliefs based on a textual corpus and a background theory. At a high level, this first requires
to extract or identify the “set of beliefs” (or facts) in text and second to unveil their meaning.
Our first method, ClausIE (Del Corro and Gemulla, 2013), is an open information extraction
(OIE) (Banko et al., 2007) method which deals with that first phase. It extracts an unbounded
set of propositions (i.e., a textual representation of a potential fact1) from natural language
text with a clear structure in the form of triples or n-ary propositions amenable for computer
processing. The second and third methods are focused on the second part: they attempt to
discover the elemental semantics of the verbs and named entities, the most important elements
in a proposition. The second method, Werdy (Del Corro et al., 2014), a word recognition and

1We refer simply as a “fact” to a KB fact, a canonicalized (or disambiguated) representation of a fact
[e.g., “Dante passed away in Ravenna” → diedIn(Dante Alighieri, Ravenna)], and to a “proposition” as a
non-canonicalized representation of a potential fact [e.g., (“Dante, passed away, in Ravenna”)]. None of the
elements inside a proposition are disambiguated. We mark non-disambiguated pieces of text in quotation marks
and disambiguated ones in italics.
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(“Dante”, completed, “Divine Comedy”, “in 1320”) (“Dante”, died,  “in the city of Ravenna”) 
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Figure 1.2 Contributions: example

disambiguation (WERD) system, identifies words and multi-word expressions in text and
disambiguates verbs. The third one, FINET (Del Corro et al., 2015), is a named entity typing
(NET) system which classifies named entities such as persons, organizations or locations
with very specific types such as scientist, company, city, etc. Fig. 1.2 presents an overview of
our contributions. In the following, we give a more detailed description of each method.

ClausIE. OIE attempts to extract propositions from natural language text. A proposition is
a textual (or non-disambiguated) representation of a potential fact. It consist of a relation and
a set of arguments. For instance, (“Dante”, “passed away in” “Ravenna“) is a proposition
with a relation ”passed away in“ linking the arguments ”Dante“ and ”Ravenna“

An OIE system should be scalable, domain independent and not filter out any piece of
information. It must be unbounded in the sense that the extracted propositions must not be
constrained to any particular set of entities or relations. ClausIE is an OIE system which
structures information in text solely based on syntactic properties of the English language.
ClausIE overcomes two of the main problems by previous OIE systems.

First, while virtually all of existing OIE methods make use of hand-crafted extraction
heuristics or automatically constructed training data to learn extractors (and/or estimate the
confidence of propositions) we consider that the detection of the information can be addressed
accurately and in a principled and unsupervised way by exploiting well established linguistic
principles. Our hypothesis to approach OIE is that language, as the primary representation
of knowledge, already provides a systematic way of structuring information, although this
structure is often oblivious to computers. Second, unlike previous OIE systems, ClausIE
manages to separate the recognition of the information from its materialization. ClausIE is
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built on the idea that the recognition of the information should be universal, and therefore
domain or application independent, while its materialization should be strictly application
dependent.

ClausIE, translates the information in text in "computer language" by exploiting the
grammatical structure of sentences. It makes use of the fact that propositions are often
expressed in terms of clauses. A clause is essentially a simple sentence that consists of
a set of grammatical units, some obligatory (e.g., subject, verb) and some optional (e.g.,
adverbials). Not all combinations of these constituents appear in the English language.
In fact, it is well known that there is exactly seven different clause types containing only
obligatory constituents (Quirk et al., 1985). The type of the clause determines the structure
of the information and given a clause, we can (in principle) determine its type by exploiting
the interaction between the constituents and the verb. Our detection of clauses is based on
deep syntactic analysis, a type of analysis which reveals the entire syntactic structure of the
sentence (e.g. subjects, direct objects, adverbials, etc).

Consider for example the sentence in Fig. 1.2 "Dante completed the Divine Comedy in
1320 and died one year later in the city of Ravenna". This sentence contains two clauses:
"Dante completed the Divine Comedy in 1320" and "Dante died one year later in the city
of Ravenna". The first clause is of subject-verb-object (SVO) type with a subject “Dante”,
a verb “completed”, an object “the Divine Comedy” and an optional adverbial “in 1320”,
which can be eventually omitted. The second clause is of type Subject-Verb (SV) with two
optional adverbials: “in the city of Ravenna” and “one year later”. Note that an element is
obligatory when it cannot be discarded without changing the meaning of the clause.

After recognizing the clauses and their types ClausIE forms so-called propositions from
their grammatical units. In this context, a proposition is ultimately a structured representation
of a clause. The generation of propositions can be eventually customized to the underlying
application with no effect in the information recognition process. In our example, the
propositions can be, for instance, expressed as (“Dante”, “completed”, “the Divine Comedy”,
“in 1320”) and (“Dante”, “died”, “in Ravenna”). Propositions are easier to process by
computers because they are simple, have a clear representation, and provide information
about the structure in terms of subjects, relations, and arguments.

Werdy. The structure of a proposition does not, however, provide a complete picture of
the information in a clause. For example, in the proposition (“Dante”, “completed”, “the
Divine Comedy”), we would like to understand that "Dante" refers to the famous Italian
poet Dante Alighieri, that "Divine Comedy" refers to a literary work, or that "completed"
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means "bring to an end or finish". The disambiguation of the verb or verbal phrase, the main
element linking the constituents of a proposition has received little attention in the literature.

Our Werdy system addresses this gap by automatically disambiguating the verb. Werdy
is a method to (i) automatically recognize in natural language text both single words and
multi-word phrases that match entries in a lexical KB like WordNet (Fellbaum, 1998), and
(ii) disambiguate these words or phrases by identifying their senses in the KB. WordNet is
a comprehensive lexical resource for Word sense disambiguation (WSD), covering nouns,
verbs, adjectives, adverbs, and many multi-word expressions.

A key challenge for recognizing KB entries in natural language text is that entries often
consist of multiple words. In WordNet-3.0 more than 40% of the entries are multi-word. Such
entries are challenging to recognize accurately for two main reasons: First, the components
of multi-word entries in the KB (such as fiscal year) often consist of components that are
themselves KB entries (fiscal and year). Second, multi-word entries (such as take a breath)
may not appear consecutively in a sentence (“He takes a deep breath.”). Unlike other systems
which are bounded to continuous fragments of text of a given maximum length, Werdy
addresses this problem in a principled way by (conceptually) matching the dependency
syntactic structure of the KB entries to the dependency syntactic structure of the input
sentence. This allows the system to discard modifiers that break the continuity of the KB
entries in the text. Once Werdy identifies all possible entries in a sentence it passes them to
the disambiguation step.

Regarding the disambiguation step, previous work has achieved relative success in the
disambiguation of nouns, adjectives and adverbs. However, the disambiguation of verbs and
verb-phrases has received less attention. Verb-sense disambiguation is regarded as more
difficult task in artificial intelligence because verbs tend to have many different meanings.
For instance, the verb "complete" has 5 different meanings in WordNet; other common verbs
such as "take" can have more than 40. Werdy is an unsupervised linguistic based system; to
determine the correct sense, it exploits the observation that each verb sense occurs in only
a limited set of clause types and only with a limited set of arguments. For example, the
sense of "complete" that refers to bring to an end requires an SVO clause and an object or
semantic argument type that can serve as "piece of work" (e.g., Divine Comedy). Given a
verb or verbal phrases Werdy prunes its possible senses based on the idea that a verb selects
the categories of its arguments both syntactically (c-selection) and semantically (s-selection).
By systematically leveraging this knowledge, Werdy is able to determine the sense of each
verb with high precision.
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FINET. After the verb, the main constituents of a proposition are probably the named
entities that may appear in it. In our example proposition (“Dante”, “completed”, “the Divine
Comedy”), once we know the meaning of the verb, we may want to understand what "Dante"
or "Divine Comedy" refer to. One way of characterizing named entities is through their types
or classes. For instance, we could infer that “Dante” is a poet or writer and “Divine Comedy”
is a poem, a literary work, or a book. NET is a key task in automatic text understanding since
it allows a new level of semantic understanding.

In this work we describe FINET, a NET system which efficiently types named entity
mentions in short inputs —such as propositions, sentences or tweets— with respect to
WordNet’s super fine-grained type system. Unlike previous systems FINET aims to extract
the most explicit type, the one that best fits the context. For instance, for the input “Obama
wrote a book” the best type according to the context for the named entity “Obama” would
be author or writer. However, given the supervised or semi-supervised nature of existing
systems the most likely type would be president. Supervised or semi-supervised systems
cannot detect types that were not present in the training set and have difficulties in mapping
types to context when the training data is not adequate.

FINET is different from previous approaches in the sense that it generates explicit candi-
date types in an unsupervised way. It uses a sequence of multiple extractors, ranging from
explicitly mentioned types to implicit types, and subsequently selects the most appropriate
one using ideas from WSD. FINET combats the data scarcity and noise problems that plague
existing systems for named entity typing: it does not rely on supervision in many of its
extractors and it generates training data for type selection directly from WordNet and other
resources.

Our system makes use of explicit type extractions whenever possible. FINET consists of
four extractors. The first one is pattern based for cases in which the explicit type is mentioned
in the sentence (e.g., “President Barack Obama gave a speech”). The second one attempts to
detect the type from the type mention (e.g., “New York City”). The third one exploits the
verb-argument concordance reasoning over the verb (e.g., “Messi plays soccer”). Finally, if
none of the previous steps fire, our corpus-based extractor, leverage a large unlabeled corpus
to propagate types from similar named entities occurring in the same context. This last
extractor makes use of the distributional hypothesis: entities appearing in the same context
tend to be of the same type (e.g., “Barack Obama met Dilma Rousseff in Brasilia”).

FINET supports the most fine-grained type system so far, including types for which no
training data is provided. FINET supports the entire WordNet hierarchy with more than
16k types for locations, organizations and persons, the previous most fine grained system
supports only frequent 505 types.
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Dante completed the Divine Comedy in 1320 and died one year later in the city of Ravenna. Input sentence 

Open Information 
Extraction 

Named Entity 
Typing 

Relation 
Extraction 

Discourse 
Processing 

(“Dante”, completed, “the Divine Comedy”, “in" 1320)        (“Dante”, died “in”, “Ravenna”) 

poet: “a writer of poems” 

epic poem: “a long narrative 
poem about a hero’s deeds”. city: “a large and densely 

populated urban area” 

(“Dante”, “completed”, “the Divine Comedy”, “in 1320”)        (“Dante”, “died in”, “Ravenna”) 

finished(Dante Alighieri, Divine Comedy , 1320)        diedIn(Dante Alighieri, Ravenna) 

“the completion of a piece of work 
by a person in a certain date” 

“the death of a person 
in a certain location” 

finished(Dante Alighieri, Divine Comedy , 1320)                                   diedIn(Dante Alighieri, Ravenna ) 
before 

Word Sense 
Disambiguation 

(“Dante”, completed, “the Divine Comedy”, “in 1320”)        (“Dante”, died “in”, “Ravenna”) 

“come or bring to a finish or an end” “stop living (person, animal, or plant)” 

Named Entity 
Disambiguation 

(Dante Alighieri, completed, Divine Comedy, “in” 1320)        (Dante Alighieri, died “in”, Ravenna) 

“A major Italian poet of the middle ages” 

“An Italian epic poem by Dante” 

person: “a human being” 
year 

A city in Italy 

Figure 1.3 Text to ontology: example.

1.3 Applications

In a bottom-up approach to automatic text understanding (as displayed in Fig. 1.1) shallower
tasks can be seen as input for deeper ones. In this perspective, going from plain text to a
full text understanding setting configures a multiple-layer build up, each of them carrying
additional semantic information (or increasing the “understanding degree”) with respect to
the previous one until a “final” full (computer-based) semantic layer is achieved. In this
section, we describe how our methods may serve as input for deeper text understanding tasks.
Fig. 1.3 displays an example of this semantic build-up.

Named Entity Disambiguation. NED (Ferragina and Scaiella, 2010; Hoffart et al., 2011;
Usbeck et al., 2014; Moro et al., 2014). is the task of linking a named entity mention in
text to an entity in a KB. For instance, the goal is to understand that in the clause “Dante
completed the Divine Comedy”, “Dante” refers to the famous Italian poet Dante Alighieri
and not to the soccer player Dante Bonfim Costa Santos. NED is not a trivial task, named
entity mentions can be highly ambiguous with hundreds of named entity candidates. NET
systems like FINET can help to prune that candidate space. For instance, if we know in
advance that the text fragment “Dante” must refer to a poet or a writer we can immediately
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discard entities like soccer players. NED can also benefit from WERD. First, given a named
entity repository, the recognition of a named entity in text is equivalent to the recognition
of words as presented in Werdy. This is specially important in the case of certain named
entities whose mentions may occur in discontinuous pieces of text (e.g., “Antony ’Tony’
Montana”). Second, it has already been shown that disambiguating word senses may help
NED and vice-versa (Moro et al., 2014). The idea is that some word senses are more related
to certain named entities. For instance, soccer players like Thomas Müller tend to occur
more often with the verb play which refers to “participate in sports” and musicians such as
Wolfang Müller are more related to the sense of play which denotes “play on an instrument”.

Relation Extraction. Commonly, relation extraction (Surdeanu and Ciaramita, 2007;
Mintz et al., 2009; Nickel et al., 2012; Drumond et al., 2012; Min et al., 2013; Riedel
et al., 2013; Petroni et al., 2015) refers to the extraction of facts from natural language text.
Relation Extraction, takes as input (or subsumes) all the shallower tasks to its left in Fig. 1.1.
Relation extraction requires to understand the form of the fact, a task tackled by ClausIE. It
also requires disambiguated named entities and to understand the relation between them. In
open relation extraction, where relations are not constrained to any subset (a more appropriate
setting for automatic text understanding), it has been shown that if the named entities of
the fact are previously disambiguated (Riedel et al., 2013) or if their types are provided as
context (Petroni et al., 2015) the performance of the extractor increases significantly. Relation
extraction is also close to verb sense disambiguation. In some cases, when the object of
the relation corresponds to a grammatical object (as in (“Dante”, “completed”, “the Divine
Comedy”)), the relation simply corresponds to the verb sense.

Event Extraction. An event is something that happens in a given point of time and place.
Event extraction (Ling and Weld, 2010; Kuzey and Weikum, 2014) is the task of recog-
nizing and classifying events in text. It is a very related task to entity typing, verb-sense
disambiguation and relation extraction. Examples of event types are elections, tournaments
or volcanic eruptions and the occurrences or instances of these event types are known as
named events. Extracting an event requires first to recognize the proposition referring to
an event (e.g., (“Dante”, “died”, “in Ravenna”, “in 1320”)), an OIE task, and later tag it
with the appropriate type (e.g., death). Types from events are very related to verb-senses. A
verb describes what is happening in a clause, and therefore, the type of the event through an
appropriate nominalization (i.e., the transformation of a verb into a noun die → death). In
this regard, FINET describes a method to extract types from verbs.



10 Introduction

Discourse Parsing. Discourse Parsing (Stede, 2012; Hernault et al., 2010; Feng and Hirst,
2012) is the task of discovering the semantic relation between different text units (clauses,
sentences and other groupings). As we show in ClausIE, propositions can be directly extracted
from text clauses. Thus, discourse parsing, is a very suitable framework to understand the
relations between facts or propositions. Discourse Parsing is a relatively newly explored field
which recently has acquired high prominence. It is probably one of the deeper tasks in the
text understanding pipeline and one could consider it as the task of discovering relations
between facts. For instance, one could explicitly think of a KB not only as a collection
of facts, but as a collection of linked facts. Given our example sentences above, we could
include in our ontology two connected facts as completed(Dante Alighieri, Divine Comedy)
−−−−→
be f ore

diedIn(Dante Alighieri, Ravenna).

Ontology Construction. In principle, a KB is a collection of entities and relations between
them. Ontology or KB construction traditionally consists of gathering facts from unstructured
or semi-structured sources and store them in a KB. The unstructured source is usually plain
text, while semi-structured sources corresponds to tables or data arrangements without a
well defined schema (e.g., Wikipedia infoboxes). Most of the well established KBs, extract
information from semi-structured sources (Hoffart et al., 2013; Lehmann et al., 2014) or rely
on manual efforts (Foundation, 2015; Bollacker et al., 2008). However, there is increasing
amount of work in the construction of KBs from plain text (Suchanek et al., 2009; Carlson
et al., 2010; Zouaq, 2011; Wu et al., 2012; Dong et al., 2014).

KB construction from text takes as input or subsumes the tasks described to its left in
the pipeline above. For instance, it needs to structure the information in text (as OIE would
do) and it needs to disambiguate the components of the propositions like the entities and the
relation. In principle it basically requires to go from a proposition or clause to the fact that
will be eventually stored. Taking advantage of an ontology in a text understanding setting
also requires a formalism that allows to reason about the information in the KB; an aim
of semantic parsing (Krishnamurthy and Mitchell, 2014; Grefenstette et al., 2014) which
has received considerable attention recently. Different methods related to KB construction
have been developed to address user privacy (Biega et al., 2014), the credibility of the
information (Qazvinian et al., 2011; Mocanu et al., 2014) or the sources (Dong et al., 2015),
the extraction of metaphorical (Strzalkowski et al., 2013; Schulder and Hovy, 2014) or
common sense knowledge (Tandon et al., 2014), the extension of a given KB (Gupta et al.,
2014; West et al., 2014; Carlson et al., 2010), the discovery of non explicitly stated knowledge
(Carlson et al., 2010; Galárraga et al., 2013), among others.
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KB construction is a titanic effort which needs to cover many important aspects of the
automatic text understanding framework. A KB ultimately constitutes the knowledge accessi-
ble to the computer and it is reasonable to assume that the more accurate and comprehensive
this knowledge, the more complex and useful the applications that can be developed. In this
regard, it is important that each task in the pipeline is solved appropriately to guarantee an
acceptable output.

1.4 Why Automatic Text Understanding?

The ultimate goal of research should be to improve human life quality in its various aspects. In
computer science this has a direct materialization though the range of applications that reach
end-users. In the previous section we have described different semantic layers according to
the degree of understanding that each task accomplishes. In this section we discuss a few
end-user applications that can be derived from the pipeline above.

The set of layers in the process of automatic text understanding are mostly built upon
each other in the sense that more semantic layers already carry the information embedded
in the shallower ones. Each subsequent layer increases the understanding capabilities over
the information, and therefore the knowledge accessible to the computer, but also requires
deeper and more complex reasoning, and therefore more computing resources. This makes
important to determine what is the optimal level necessary to acquire the required knowledge
for the underlying application.

Each level of understanding allows the development of a new range of more complex
applications. From basic tasks such as keyword or structured search to more complex ones
such as question answering or semantic search that require deeper understanding. The
potentiality of the given application depends ultimately on the system capacity to replicate
human understanding capabilities.

At the the deeper understanding level we can name applications such as Semantic Search,
Question Answering or Dialogue Systems. Semantic Search (Hoffart et al., 2014) refers to
the capacity of the search engine to fully abstract itself from the lexical form of the concepts
(i.e., it does not search for strings but for concepts or meaning). This allows the engine to
better interpret the intentions of the user and handle more general and complex queries. If
the search engine first understands in which pieces of text Dante Alighieri is mentioned
regardless of how he is "mentioned" (e.g, “Dante Alighieri”, “Dante”, “the author of the
Divine Comedy”, etc) the user can directly search for the person Dante Alighieri and all the
documents where he is mentioned will be retrieved no matter how he is "textually" mentioned.
Even more, if types of the entities are known the user can directly search for writers so
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that all documents were Dante Alighieri or other writers are mentioned will be retrieved
regardless if the term “writer” is mentioned in them. A range of semantic search engines
have recently appeared mostly as prototypes (e.g., Hoffart et al. (2014)) and even major
search engines have become more semantically based recently.

Question Answering (Yahya et al., 2013; Ravichandran and Hovy, 2002) is also a task
requiring deep text understanding capabilities. It aims to automatically answer questions
posed in natural language, or more generally to provide the user with the piece of information
it requested and not a document which may contain it. Given our example in Fig. 1.3 we can
ask questions like “Where did Dante died?” and the answer will be Ravenna. Again in this
case, the knowledge over the entities can be used to answer questions not directly stated in
text such as “In which continent did Dante died?”. Question Answering is, in principle, a
more complex task than semantic search since it additionally requires understanding and
structuring the information in a form that can be later mapped to questions and answers. It
requires the difficult task to interpret the question in terms of KB queries. At a high level
the question must be structured in terms of a proposition, as OIE would do, understand its
meaning, and unknown variables in terms of a KB fact. Recently, the IBM system Watson
was able to beat the champions of Jeopardy, a popular question answering TV program in the
United States. Of course one can think that there is still a long way to go since questions
in a TV program tend to be rather predictable; they tend to be structurally simple, direct
and limited in the number of topics. However, it still constitutes a landmark achievement
showing not only the importance of generating computer manageable knowledge but also
that the potentiality to generate text understanding based applications for everyday life is not
anymore an unachievable ideal.

Finally, as an ultimate application one can think of a system which engages in full
conversational interaction with the user. A system able to not only answer questions but to
better interpret user intention, ask the user for feedback in order to fulfill specific requirements
or adapt to particular circumstances. The field dealing with such a system has been called
dialogue systems (Milward and Beveridge, 2003; Sonntag et al., 2010). A dialogue system
should ideally be able to interact with a person as it was an ordinary human being but with
faster reasoning capabilities. Some applications of dialogue systems, although still far away
from this idealized version, have been introduced in every day life (e.g. Apple Siri, Microsoft
Cortana, Google Now), industry (e.g. call-centers) and even the medical domain (Sonntag
and Schulz, 2014).

According to Alan Turing an intelligent system is one in which a machine behaves in
a indistinguishable way with a man while interacting. The range of applications that a
system like that may trigger is enormous and beyond today’s imagination, imposing risks
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and challenges that will need to be addressed, but also huge benefits to our everyday life. We
believe that the possibility to achieve such a goal highly depends on our ability to maximize
the automatic text understanding capabilities and therefore the knowledge that the machine
is able to handle. We hope that the methods presented here constitute strong foundations that
contribute to that goal.

1.5 Publications

This work includes material published in peer-reviewed papers and in the reports of the Max-
Planck scientific advisory board and curatorship board. These publications in chronological
order are the following:

• Del Corro, L., and Gemulla, R. (2013). ClausIE: Clause-Based Open Information
Extraction. In Proceedings of WWW, pages 355-366.

• Del Corro, L., and Gemulla, R. (2013). Clause-Based Open Information Extraction.
MPI for Informatics, Max Planck Society, editor, Eleventh Biennial Report : May 2011
– March 2013, pages 570-572.

• Del Corro, L., Gemulla, R., and Weikum, G. (2014). Werdy: Recognition and dis-
ambiguation of verbs and verb phrases with syntactic and semantic pruning. In
Proceedings of EMNLP, pages 374–385.

• Del Corro, L., and Gemulla, R. (2015). Clause-Based Open Information Extraction.
MPI for Informatics, Max Planck Society, editor, Twelfth Biennial Report : April 2013
– March 2015, pages 678-680.

• Del Corro, L., Gemulla, R., and Weikum, G. (2015). Werdy: Recognition and Dis-
ambiguation of Verbs and Verb Phrases with Syntactic and Semantic Pruning. MPI
for Informatics, Max Planck Society, editor, Twelfth Biennial Report : April 2013 –
March 2015, pages 680-682.

• Del Corro, L., Gemulla, R. (2015). Open Information Extraction. MPI for Informatics,
Max Planck Society, editor, Report 2015, page 75.

• Del Corro, L., Abujabal, A., Gemulla, R., and Weikum, G. (2015). Finet: Context-
aware fine-grained named entity typing. In Proceedings of EMNLP, pages 868–878.
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1.6 Outlook

The reminder of this thesis is organized as follows. Chapter 2 describes ClausIE, our OIE
system. Chapter 3 presents Werdy a WERD system which recognizes words and multi-word
expressions and disambiguates verbs. Chapter 4 introduces FINET our NET system. Each
chapter contains a detailed description of the method, a comprehensive discussion over related
work and an extensive experimental evaluation. The source code with the implementation of
each method and the datasets used in the experimental evaluations are openly available in
all cases. Finally, Chapter 5 provides the conclusion of this work and future directions for
improvements.



Chapter 2

ClausIE: Clause-Based Open
Information Extraction

2.1 Introduction

As described in the previous chapter, open information extraction (OIE) (Banko et al., 2007)
is the natural first step to any automatic text understanding approach. It aims to obtain a
structured machine-readable representation of the information in text in the form of triples or
n-ary propositions. The propositions itself may also be used in end-user applications such as
structured search or may serve as input to deeper text understanding tasks.

OIE requires a general method capable of working on text regardless its domain (e.g.
biology, history, economics, etc) that captures the entire set of information inside it. It aims
to structure large amounts of natural-language text with a clear representation in the form
of triples or n-ary propositions. The key goals of OIE are (1) domain independence, (2)
unsupervised extraction, and (3) scalability to large amounts of text. OIE methods do not
require any background knowledge or manually labeled training data and are not limited to a
set of pre-specified relations or entities. In this context, we developed an OIE method called
ClausIE (Del Corro and Gemulla, 2013). ClausIE is completely unsupervised, solely based
on linguistic principles of the English language.

Consider for example the sentence “A. Einstein, who was born in Ulm, has won the
Nobel Prize.” OIE systems aim to extract triples (“A. Einstein”, “has won”, “Nobel Prize”)
and (“A. Einstein”, “was born in”, “Ulm”) from this sentence, in which no entity resolution
or disambiguation of the verbal phrase is performed. We call each extraction a proposition.
A proposition consists of a subject (“A. Einstein”), a relational phrase or simply relation
(“has won”), and zero, one, or more arguments (“the Nobel Prize”). OIE is perhaps simplest
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form of text analysis (i.e., we know the structure of the information but not the meaning
of it). The extracted propositions can be used directly for applications such as shallow
semantic querying (Who has won the Nobel Prize?) or structured search (e.g., retrieve all
propositions with “Albert Einstein” as subject), and, as discussed in the previous chapter,
it may serve as input for deeper text understanding tasks such as semantic role labeling,
relation extraction, KB construction. Consider for example the task of extending a given
ontology about persons and their prizes. Entity disambiguation techniques may identify
and link both “Albert Einstein” and the “Nobel Prize” in the above sentence, OIE methods
establish the connection between these entities [(Albert Einstein, “has won”, Nobel Prize)],
and relation extraction techniques try to obtain the fully disambiguated fact (Petroni et al.,
2015) [won(Albert Einstein, Nobel Prize)].

Virtually all existing OIE methods make use of hand-crafted extraction heuristics or
automatically constructed training data to learn extractors (and/or estimate the confidence of
propositions). Some approaches—such as TextRunner (Banko et al., 2007), WOEpos (Wu
and Weld, 2010), Reverb (Fader et al., 2011), and R2A2 (Etzioni et al., 2011)—focus on
efficiency by restricting syntactic analysis to part-of-speech (POS) tagging and chunking.
These fast extractors usually obtain high precision for high-confidence propositions, i.e.,
at low points of recall, but the restriction to shallow syntactic analysis limits maximum
recall and/or may lead to a significant drop of precision at higher points of recall. Other
approaches—such as Wanderlust (Akbik and Broß, 2009), WOEparse (Wu and Weld, 2010),
KrakeN (Akbik and Löser, 2012), OLLIE (Mausam et al., 2012), Gamallo et al. (2012),
Bast and Haussmann (2013)—additionally use dependency parsing or parse trees. These
extractors are more expensive than the extractors above; they trade efficiency for improved
precision and recall. Each of these approaches makes use of various heuristics to obtain
propositions from the dependency parses.

Our approach to OIE called ClausIE (for clause-based open information extraction)
falls into the second category. ClausIE fundamentally differs from previous approaches in
that it separates (i) the detection of the information expressed in a sentence from (ii) its
representation in terms of one or more propositions. The output of this first phase is the
detection of the full structure of the clause, which can be used in a second phase to materialize
propositions according to the underlying application. The key idea is that the first step should
be “universal” (i.e., domain and application independent), whereas the second step will be
determined by the requirements of the underlying application or the domain. The first step
identifies the information and the second expresses it.

The main reasoning behind this separation is that (i) can be addressed accurately and in a
principled way by exploiting properties of the English language. In ClausIE, we establish the
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connection between, linguistic clauses, clause types and propositions. We identify the set of
“clauses” of each sentence and, for each clause, the corresponding clause type according to
the grammatical function of its constituent (e.g., subject-verb-object, SVO). Our detection
of clauses is based on the grammatical structure of the sentence; to detect clause types, we
additionally use a small set of domain-independent lexica (e.g., of copular verbs). In contrast
to many previous approaches, ClausIE does not make use of any training data, whether
labeled or automatically constructed, and does not require global post-processing (e.g., to
filter out low-precision extractions), i.e., document processing in ClausIE is embarrassingly
parallel. These properties allow ClausIE to process both individual sentences as well as large
document collections automatically and in a scalable way. Since ClausIE is a principled
technique, its accuracy greatly depends on the ability of the syntactic analyzer, used at the
background, to correctly detect the grammatical structure of the sentence.

In the second phase, we generate one or more propositions for each clause based on
the type of the clause; the generation of propositions can be customized to the underlying
application. Once we have identified the type of clause, we can determine the optional and
obligatory constituents of the proposition (to be generated) to which the clause refers to. It is,
we can identify the essential and optional pieces of information inside each clause and give
the representation required by the specific application (e.g. triples, n-ary propositions, with
optional arguments, etc) and since each clause expresses a proposition, we can generate at
least one proposition per clause. For example, from the clause “Anna passed the exam with
ease,” we may want to generate one or more of the following propositions: (“Anna”, “passed
the exam with”, “ease”), (“Anna”, “passed”, “the exam with ease”), (“Anna”, “passed”, “the
exam”), or 4-tuple (“Anna”, “passed”, “the exam”, “with ease”?) where the last argument is
marked as optional. The form that the relation can take, can be also potentially customized in
the context of the particular application. For example, in the sentence “Messi from Argentina
plays in Bacelona” either (“Messi from Argentina”, “plays”, “in Barcelona”) or (“Messi from
Argentina”, “plays in”, “Barcelona”) or alternatively (“Messi”, “plays in”, “Barcelona”) are
different materialization of the same original information.

In contrast to previous approaches, ClausIE does not make use of any training data,
whether labeled or automatically constructed. Moreover, ClausIE, unlike other OIE systems,
can (optionally) extract propositions in which the subject or one or more of the arguments
does not constitute a noun phrase.

ClausIE also generates extractions from non-verbal relations. For instance, from the
sentence “Albert Einstein, the German scientist, won the Nobel Prize”, ClausIE can generate
the proposition (“Albert Einstein”, “is”, “German scientist”). The coverage of non verbal
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relations is at the moment limited to appositions or participial modifiers but it can be extended
by including the appropriate syntactic-based rules over the clause structure.

Compared to existing methods ClausIE achieves higher precision and recall of the
extracted propositions. We conducted an experimental study on multiple real-world datasets
of varying quality in order to compare ClausIE to alternative approaches. We found that
ClausIE obtains significantly more propositions than most previous approaches (3.8–4.6
times more correct propositions) at similar or higher precision.

2.2 The Seven Clauses

A clause is a part of a sentence that expresses some coherent piece of information; it consists
of one subject (S), one verb (V), and optionally of an indirect object (O), a direct object
(O), a complement (C), and one or more adverbials (A). Not all combinations of these
constituents appear in the English language. In fact, when clauses are classified according
to the grammatical function of their constituents, we obtain only seven different clause
types (Quirk et al., 1985).1 For example, the sentence “AE has won the Nobel Prize” is of
type SVO; here “AE” is the subject, “has won” the verb, and “the Nobel Prize” the object. A
complete list of all seven clause types is given in the upper part of Tab. 2.1.

Assume for the moment that the input sentence consists of only a single clause. ClausIE is
based on the observation that the clause type conveys the minimal unit of coherent information
in the clause. Intuitively, this means that if we remove a constituent of a clause that is also part
of its type, the resulting clause does not carry semantically meaningful information (or the
sense of the verb changes). For example, the sentence “AE remained in Princeton” consists of
a subject, a verb, and an adverbial. The clause is of type SVA, i.e., the clause “AE remained”
obtained by ignoring the adverbial is incoherent (and indeed semantically meaningless). In
contrast, clause “AE died in Princeton”—which also consists of a subject, a verb, and an
adverbial—is of type SV. Since here the adverbial does not appear in the clause type, the
derived clause “AE died” is coherent. In what follows, we call constituents of a clause that
are also part of the clause type essential (here “AE” and “died”); all other constituents are
called optional (“in Princeton”). Note that subjects, verbs, (direct and indirect) objects, and
complements are always essential; adverbials, however, may or may not be essential.

Coherence plays an important role in OIE. For example, Reverb (Fader et al., 2011)
employs heuristic rules in order to avoid (some) incoherent extractions. ClausIE ultimately
aims to generate propositions from the constituents of the clause. Coherency tells us which
constituents must be included into a proposition and which may be omitted. One option to

1There is also an existential clause (such as this one), which we treat similarly to SV.
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ensure coherent extractions is to always construct propositions that include all constituents of
a clause. Such an approach addresses coherency, but—as argued by Fader et al. (2011)—may
in turn lead to over-specified extractions. Consider, for example, sentence “AE was awarded
the NP in Sweden in 1921” and suppose we limit attention to noun-phrase arguments; such
an approach is followed by most OIE systems. We can then extract coherent propositions

P1=(“AE”, “was awarded”, “the NP”),
P2=(“AE”, “was awarded the NP in”, “Sweden”),
P3=(“AE”, “was awarded the NP in”, “1921”),
P4=(”AE“, ”was awarded the NP in Sweden in“, ”1921“).

Here P4 (and perhaps P2 and P3) is over-specified in that phrase ”was awarded the Nobel
Prize in Sweden in“ is probably not a good relational phrase. Since ClausIE detects essential
and optional constituents of a clause, we can customize proposition generation as desired;
coherency is always guaranteed. One potential customization—which we also used in our
experimental study—is to extract all coherent propositions in combination with zero or
one optional adverbial. With this approach, we extract P1, P2, and P3, but not P4 from the
sentence above.2 Heuristic approaches such as Reverb do not allow for such flexibility (in
our example, Reverb extracts P2 only). As a final note, over-specificity can also arise in
subjects, objects, and complements; here the dependency parse (DP) can be exploited to
address over-specificity in a natural way. For instance in the sentence “The great AE from
Germany was awarded the NP in Sweden in 1921” a proposition like P1 above can be easily
generated by ignoring the prepositional phrase and the adjective in the subject which modify
“AE”. The hyerarchical structure of the DP naturally tells us the relative importance of the
information inside each argument (i.e. “AE” is the parent of both the adjective and the
prepositional phrase). Currently, ClausIE does not explicitly adress over-specificity of the
arguments, a natural direction for future work.

Given a clause, we can (in principle) determine its type. First observe that each occurrence
of a verb in an English sentence is of exactly one of the following types: intransitive,
(extended) copular, monotransitive, ditransitive, or complex transitive. A verb is intransitive if
it does not take an object argument, monotransitive if it takes a direct object, and ditransitive if
it takes both a direct and an indirect object. Copular verbs link the subject with a complement
or predicative, while extended-copular verbs express a relation between the subject and an
obligatory adverbial (Quirk et al., 1985). As it can be seen in Tab. 2.1, which also gives
an example sentence for each verb type, the verb type along with the presence of a direct
object, indirect object, or complement uniquely identifies the type of a clause. Vice versa,

2ClausIE may also be customized to extract n-tuple (”AE“, ”was awarded“, ”the NP“, ”in Sweden“?, “in
1921”?), where “?” indicates optional arguments.
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the verb type is uniquely determined by the (type of the) constituents and the type of the
clause. We exploit this observation directly in ClausIE, i.e., we exploit information about the
clause obtained from the DP, and information about verb types from a small set of domain
independent lexica. In many cases, this combined approach allows us to accurately determine
the clause type; see Sec. 2.3.

If a sentence contains multiple (potentially nested) clauses, ClausIE considers each clause
separately. Consider, for example, sentence “AE was awarded the NP before Schrödinger
devised his famous thought experiment”. The sentence contains two clauses (one spanning
the entire sentence, and one starting at “Schrödinger”); coherent propositions include (“AE”,
“was awarded”, “the NP”) and (“Schrödinger”, “devised”, “his famous thought experiment”).
OIE does not aim to capture the “context” of each clause; this simplification allows for
effective extraction but may also lead to non-factual extractions (Mausam et al., 2012). For
example, the proposition (“the only real valuable thing”, “is”, “intuition”) obtained from the
second clause of sentence “AE said the only real valuable thing is intuition” is non-factual.
We do not specifically avoid non-factual propositions in ClausIE; see Mausam et al. (2012)
for techniques that can detect such propositions.
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Bell , a telecommunication company , which is based in Los Angeles , makes and distributes electronic , computer and building products .

B-NP B-NP I-NP I-NP , B-NP B-VP I-VP B-PP B-NP I-NP , B-VP I-VP I-VP B-ADJP , B-NP I-NP I-NP I-NP .

NNP DT JJ NN , WDT VBZ VBN IN NNP NNP , VBZ CC VBZ JJ , NN CC NN NNS .

nsubj

det
nn

appos

nsubjpass

auxpass

rcmod

nn

prep in
conj and

amod

conj and

conj and

dobjroot

1

Figure 2.1 An example sentence with dependency parse, chunks, and POS tags (chunks by
Apache OpenNLP)

2.3 ClausIE

We now describe how we obtain and subsequently exploit clauses and clause types in ClausIE.
For each input sentence, ClausIE conducts the following steps:

1. Compute the DP of the sentence (Sec. 2.3.1).

2. Determine the set of clauses using the DP (Sec. 2.3.2)

3. For each clause, determine the set of coherent derived clauses based on the DP and
small, domain-independent lexica (Sec. 2.3.3).

4. Generate propositions from (a subset of) the coherent clauses (Sec. 2.3.4).

The overall runtime of ClausIE is dominated by dependency parsing in step 1; steps 2–4 are
inexpensive. Since ClausIE is a principled method, its accuracy will greatly depend on the
ability of the parser in step 1 to correctly determine the grammatical structure of the sentence.

2.3.1 Step 1: Dependency Parsing

ClausIE makes use of the unlexicalized Stanford dependency parser (Klein and Manning,
2003) to discover the syntactical structure of an input sentence. The DP consists of a set of
directed syntactic relations between the words in the sentence. The root of the DP is either
a non-copular verb or the subject complement of a copular verb. For instance, in sentence
“Messi plays football”, word “plays” forms the root of DP; it is connected to “Messi” via
a subject relation (nsubj) and to “football” via the direct-object relation (dobj). A more
complex example is shown in Fig. 2.1; a complete list of relations can be found in de Marnee
and Manning (2012).

2.3.2 Step 2: From Dependencies to Clauses

We first identify the clauses in the input sentence, i.e., we aim to obtain the head word
of all the constituents of each clause. For example, we obtain (S: “Bell”, V: “makes”,
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O: “products”) for the main clause of the sentence shown in Fig. 2.1. We use a simple
mapping of dependency relations to clause constituents. First, we construct a clause for every
subject dependency in the DP (e.g., nsubj); the dependant constitutes the subject (S) and
the governor the verb (V).3 All other constituents of the clause are dependants of the verb:
objects (O) and complements (C) via dobj, iobj, xcomp, or ccomp; 4 and adverbials (A) via
dependency relations such as advmod, advcl, or prep.

To cope with non-verb-mediated relations, and to improve recall and informativeness of
extractions, ClausIE additionally creates a number of “synthetic clauses”, i.e., clauses that do
not directly appear in the sentence. In subsequent steps, these synthetic clauses are treated
in the same way as the actual clauses of the sentence. As discussed below, the constituents
of a synthetic clause either refer to a word in the DP or correspond to an artificially created
verb. In more detail, we replace the relative pronoun (e.g., “who” or “which”) of a relative
clause by its antecedent, which is obtained via rcmod dependency to the governor of the
relative pronoun. The replacement of relative pronouns aims to increase the informativeness
of extractions; e.g., we obtain (S: “Bell”, V: “based”, A: “Angeles”) instead of (S: “which”,
V: “based”, A: “Angeles”) in Fig. 2.1. ClausIE also handles non-verb-mediated extractions
to a limited extent: We create synthetic clauses for appositions (appos) and possessives (pos
or via the pronoun “whose”; see above). The so-obtained clauses use an artificial verb such
as ’is’ (typed as copula) or ’has’ (typed as monotransitive), respectively. In our example,
we obtain clause (S: “Bell”, Vc: ’is’, C: “company”) in this way, where words within single
quotation marks refer to an artificial verb and without with quotation marks refer to a word
in the (DP of the) original sentence. Finally, we generate a synthetic clause from participial
modifiers (partmod), which indicate reduced relative clauses. The dependant of a participial
modifier relation is a participial verb form, which we combine with an artificial verb such as
“are” to obtain the “verb” of the synthetic clause (typed SVA). For example, we obtain from
sentence “Truffles picked during the spring are tasty” the synthetic clause (S: “Truffles”, V:
“are picked”, A: “[during the] spring”).

In summary, we identify the following clauses for the sentence of Fig. 2.1:

(S: “Bell”, V: “makes”, O: “products”),
(S: “Bell”, V: “based”, A: “Angeles”),
(S: “Bell”, Vc: “is”, C: “company”).

3Except for the SVC clause type. Here the governor of the subject dependency is the complement (C), and
both verb and adverbials are dependants of the complement.

4For SVOC clauses, complements may appear as dependants of the direct object.
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2.3.3 Step 3: Identifying Clause Types

Once clauses have been obtained, ClausIE tries to identify the type of each clause (recall
Tab. 2.1). As argued in Sec. 2.2, we can combine knowledge of properties of verbs with
knowledge about the structure of the input clause. Our approach to clause-type detection can
be viewed as a decision tree, i.e., we ask a number of question whose answers ultimately
determine the clause type. The decision tree is shown as Fig. 2.2; here questions Q1–Q3

and Q7–Q9 refer to the clause structure; questions Q4, Q5, and Q10 to verb properties, and
questions Q6 and Q11 deal with ambiguous cases. We describe each of these questions in
detail below, and also discuss some techniques that help dealing with potential errors in the
DP. After clause types have been identified, we mark all optional adverbials. In our example
of Fig. 2.1, we obtain

(S: “Bell”, V: “makes”, O: “products”),
(S: “Bell”, V: “based”, A!: “Angeles”),
(S: “Bell”, V: “is”, A!: “company”),

where “A!” indicates essential adverbials and “A?” indicates optional adverbials.
Clause types SVC, SVOO, and SVOC are identified solely by the structure of the clause;

all adverbials are optional for these types. For example, if a clause does not contain an object
(Q1) but does contain a complement (Q2), it must be of type SVC. For example, we identify
S10 of Tab. 2.1 as SVC so that its adverbial “of the 20th century” is optional.

If the sentence contains neither object nor complement, we are left with distinguishing
clause types SV (intransitive verb) and SVA (extended-copular verb), a more difficult task.
In many cases, the distinction can be performed accurately. We say that an adverbial is a
candidate adverbial (for an essential adverbial) if it (1) is a dependant of the verb and (2)
appears to the right of the verb. If the clause does not contain a candidate adverbial (Q3),
it is of type SV; e.g.,“The year after, AE succeeded”. Otherwise, ClausIE makes use of
two lexica of verb types: a lexicon of verbs that are known to be non-extended-copular (Q4,
implies SV) and a lexicon of verbs known to be extended-copular (Q5, implies SVA).5 E.g.,
the adverbial in “AE remained in Princeton” is identified as essential since “remain” is a
copular verb. If both dictionaries fail, we cannot determine the clause type accurately. In
its default configuration, ClausIE then proceeds conservatively (Q6), i.e., it assumes SVA to
avoid marking an essential adverbial as optional.

5Note that these lexica can be learned automatically by observing which verbs appear (sufficiently frequently)
without a candidate adverbial in the text collection or by using resources such as WordNet frames. We did not
yet employ such techniques; our current implementation makes use of only a small hand-crafted dictionary of
31 extended-copular verbs (e.g., “be” or “remain”) and two non-extended copular verbs (“die” and “walk”).
The dictionary is not hard-wired into ClausIE though, and can be eventually extended.
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We proceed to distinguishing SVO and SVOA for clauses that neither contain a comple-
ment nor both a direct and an indirect object (SVOO). If the clause does not have a candidate
adverbial (Q9), we mark it as SVO. Similarly, if the clause has an indirect object (but not
a direct object, Q9), it cannot be of type SVOA (Quirk et al., 1985) so that we also mark it
SVO; e.g., as in “He taught his students passionately”. Otherwise, the clause contains both
a direct object (but no indirect object and no complement) and a candidate adverbial. The
distinction between SVO and SVOA is difficult in this (quite common) case; e.g., S11 (SVO)
and S6 (SVOA) in Tab. 2.1. Here we proceed heuristically. First, ClausIE accepts a lexicon
of verbs that are potentially complex-transitive (Q10) and outputs SVOA if the verb appears
in the lexicon.6 Otherwise, in ClausIE’s default configuration, we proceed greedily (Q11)
and choose SVO, i.e., we mark the adverbial as optional.

Dependency tree ClausIE performs a number of additional steps in order to deal with
design choices and errors of the Stanford parser.

We first discuss how we deal with clauses that have constituents of clausal form. The
Stanford parser outputs dependency relations such as xcomp or ccomp for the object and
the complement of a clause if they have a clausal form. We treat these dependencies as
complements if the verb appears in our lexicon of copular verbs, and treat them as objects
(or object complements) otherwise. If the clause additionally contains an indirect object, the
parser outputs dobj instead of iobj. In this case, we cannot distinguish between SVOO and
SVOC. Since we are ultimately interested in optional adverbials, and since all adverbials
are optional for both SVOO and SVOC, we still obtain correct extractions. The Stanford
parser sometimes places the object complement within the direct object. If this happens,
we may determine clause types SVO or SVOA instead of SVOC. In both cases, extractions
are coherent; if we detect SVOA, however, an optional adverbial is incorrectly flagged as
essential. Finally, the parser outputs relation dep when it is unable to identify the type of
a relation. ClausIE avoids processing the dependant of dep in verbal phrases to reduce
potential extraction errors.

6The lexicon currently contains 15 verbs (e.g., “put” and “get”).
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2.3.4 Step 4: From Clauses to Propositions

As a consequence of ClausIE’s separation of clause and clause-type detection from propo-
sition generation, the latter is flexible and can be customized to the application. In the
current version, there are two basic steps involved in proposition generation. The first step
is to decide which (combinations of) constituents form a proposition; the second step then
generates the proposition from the constituents.

Constituent selection. Recall that a proposition consists of a subject, a relation, and zero,
one, or more arguments. A natural choice is to generate n-ary propositions that consist of
all the constituents of the clause, potentially with some arguments being marked optional.
ClausIE supports generation of such n-ary propositions, but in addition allows to generate
triple propositions, i.e., propositions that consist of a subject, a relation, and a (potentially
empty) argument.7 In fact, the concept of a triple (or binary relation) is fundamental to the
semantic web, most ontological knowledge bases, and most OIE systems. A key question is
which constituents should be included into the generated triple. For the setting we use here,
we take a pragmatic approach: We do not only generate a single triple from each clause, but
allow for the generation of multiple triples, each exposing different pieces of information.
Consider for example the clause (S: “AE”, V: “died”, A?: “[in] Princeton”, A?: “[in] 1955”)
obtained from S8 in Tab. 2.1. Since both adverbials are marked optional, we can select four
coherent derived clauses:

(S: “AE”, V: “died”),
(S: “AE”, V: “died”, A: [“in”] “Princeton”),
(S: “AE”, V: “died”, A: [“in”] “1955”),
(S: “AE”, V: “died”, A: [“in”] “Princeton”, A: “[in] 1955”).

In general, if there are n optional adverbials, there are 2n coherent derived clauses. To avoid
over-specified triples, our default choice in ClausIE—which we also used in our experi-
ments—is to select at most one optional adverbial (and all essential constituents). ClausIE
also makes use of a lexicon consisting of small set of adverbials to be always omitted (e.g.,
“so”) or included (e.g., “hardly”) when optional.

Coordinated conjunctions (CC). A coordinated conjunction is a conjunction that con-
nects two or more parts of the sentence—called conjoints—via a coordinator such as “and”

7In OIE, the argument component of a triple is often called “object”; e.g., “1921” in (“AE”, “has won
the NP in”, “1921”). Here we avoid the term object for the argument of a triple to avoid confusion with the
grammatical object of the clause.
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or “or”. CCs are detected by the Stanford parser and indicated by dependency relations such
as conj. If a CC is present in a constituent of a clause, ClausIE optionally processes the CC,
i.e., replaces the CC by each of its conjoints to avoid over-specified extractions. Consider
the example sentence shown in Fig. 2.1. There is a CC in the verb constituent (“makes and
distributes”) and in the object constituent (“electronic, computer, and building products”) of
the main clause. By replacing CCs by conjoints, we obtain the following clauses:

(S: “Bell”, V: “makes”, O: “[electronic] products”),
(S: “Bell”, V: “makes”, O: “[computer] products”),
(S: “Bell”, V: “makes”, O: “[building] products”),
(S: “Bell”, V: “distributes”, O: “[electronic] products”),
(S: “Bell”, V: “distributes”, O: “[computer] products”),
(S: “Bell”, V: “distributes”, O: “[building] products”).

The processing of CCs is closely related to text simplification (Evans, 2011); we can view
the resulting clauses as simpler versions of the original clauses.

Note that in noun phrases, the replacement of a CC by one of its conjoints may lead to
incorrect extractions when the CC is combinatory (as opposed to segregatory). For example,
the CC in “Anna and Bob married each other” is combinatory; thus an extraction such
as “Anna married each other” is incoherent. If the CC has an ampersand as coordinator,
ClausIE treats it as combinatory and thus does not process it (e.g., “Standard & Poor’s”).
Similarly, CCs headed by words such as “between” are not processed (e.g., “between Norway
and Finland”). In all other cases, the CC is treated as segregatory and thus processed.
Combinatory CCs are rare in some domains (Evans, 2011), but may occur frequently in
others. Since combinatory CCs are hard to detect (in some cases even for humans), ClausIE
exposes an option to disable processing of CCs.

Finally, ClausIE treats CCs with preconjuncts (preconj dependency; e.g., “both [red and
blue]”) and (pre)determiners ((pre)det; e.g., “both [the boys and the girls]”) specially. In
particular, we omit all preconjuncts and some (pre)determiners (like “between” or “both”)
when processing a CC. For example, we extract from “Anna likes both red and blue” the
propositions (“Anna”, “likes”, “red”) and (“Anna”, “likes”, “blue”).

Proposition generation. ClausIE generates one proposition for each selected subset of
constituents. To generate a proposition, ClausIE needs to decide which part of each con-
stituent to place into the subject, the relation, and the arguments. The perhaps simplest option
is to first generate a textual representation of each constituent in its entirety and then use
these representations to construct the proposition. We map the subject (verb) of each clause
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to the subject (relation) of the proposition. When n-ary propositions are extracted, we create
an argument for each of the remaining constituents (first all constituents following the verb,
then all constituents preceding the verb, in the order in which they appear). To extract triples,
we concatenate all arguments. From the sentence of Fig. 2.1, ClausIE extracts the following
triples:

(“Bell”, ’is’, “a telecommunication company”),
(“Bell”, “is based”, “in Los Angeles”),
(“Bell”, “makes”, “electronic products”),
(“Bell”, “makes”, “computer products”),
(“Bell”, “makes”, “building products”),
(“Bell”, “distributes”, “electronic products”),
(“Bell”, “distributes”, “computer products”),
(“Bell”, “distributes”, “building products”).

As it was mentioned before, since the materialization of the information is not constrained
by the detection phase, the system is easily customizable. For example, we can eventually
obtain extractions similar to Reverb (Fader et al., 2011) by appending all but the final
argument into the relation; if the final argument is a prepositional phrase, we also include the
preposition into the relation. Another natural direction is to analyze the composition of each
constituent in order to generate alternative textual representations. For instance in the sentence
“Albert Einstein from Ulm won the Nobel Prize”, one could generate propositions such as
(“AE from Ulm”, “won”, “the Nobel Prize”) or probably more appropriate (“AE”, “won”,
“Nobel Prize”). A natural, extension of ClausIE is to wok on the proposition generation so
that applications can customize each constituent in the proposition according to their needs.
For instance, some applications may want to avoid generating large arguments or the use of
unnecessary modifiers (e.g. adjectives). This future work could be tackled in a principled
way by taking into account the hierarchies of the dependency trees which defines a degree of
importance between the words.

2.4 Experiments

We conducted an experimental study to compare ClausIE to a number of alternative ap-
proaches. We found that ClausIE achieved significantly higher recall than the OIE extractors
we compared to. Moreover, ClausIE consistently provided higher precision than alternative
extractors over all levels of recall.
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2.4.1 Experimental Setup

We first describe the datasets and the methodology used in our experiments.8 We compared
ClausIE to TextRunner (Banko et al., 2007), Reverb (Fader et al., 2011), WOE (Wu and
Weld, 2010) (using DP), OLLIE (Mausam et al., 2012) and KrakeN (Akbik and Löser, 2012);
neither extractions nor source code of any other extractor were available to us. Since most
of OIE methods make use of machine-learning techniques, which require sensibly-chosen
training data, or may need tweaking to provide good extractions, we did not compare ClausIE
to these other OIE extractors. In all our experiments, we used the unlexicalized version of the
Stanford DP (version 2.0.4). We configured ClausIE to generate triple propositions and ran
it both with and without processing of coordinated conjunctions in subjects and arguments
(denoted “ClausIE” and “ClausIE w/o CCs,” respectively); coordinated conjunctions in verbal
phrases were processed in both configurations.

We used three different datasets in our experiments. First, the Reverb dataset9 consists of
500 sentences with manually-labeled extractions for TextRunner, TextRunner trained using
Reverb, Reverb, OLLIE, and WOE. The sentences have been obtained via the random-link
service of Yahoo and are generally very noisy. Second, we extracted 200 random sentences
from Wikipedia pages. These sentences are shorter, simpler, and less noisy than those of
the Reverb dataset. Since some Wikipedia articles are written by non-experts, however,
the Wikipedia sentences do contain some incorrect grammatical constructions. Finally, we
extracted 200 random sentences from the New York Times collection (NYT (Sandhaus,
2008)); these sentences are generally very clean but tend to be long and complex.

We manually labeled the extractions obtained from all extractors. To maintain consistency
among the labels, the entire set of extractions of TextRunner, WOE, and Reverb for the
Reverb dataset was relabeled; the precision numbers obtained using our labels closely agreed
with those obtained using the original labels. For the Wikipedia and NYT datasets, we
compare ClausIE with only Reverb and OLLIE, for which an extractor was publicly available.
Each extraction was labeled by two independent labelers; an extraction was treated as correct
only if it was labeled as correct by both labelers. Since we are primarily interested in the
ability of OIE to capture verb-mediated propositions, labelers were instructed to ignore
the context of the clause during labeling. For example, in the sentence “But inexpensive
point-and-shoot cameras can do the job if they have a telephoto setting or a zoom lens”,
the proposition (“inexpensive point-and-shoot cameras”, “can do”, “the job”) is treated as a
correct extraction. We also asked labelers to be liberal w.r.t. coreference or entity resolution;

8All datasets, extractions, labels, as well as ClausIE’s source code are available at http://people.mpi-inf.
mpg.de/~corrogg/.

9http://reverb.cs.washington.edu/

http://people.mpi-inf.mpg.de/~corrogg/
http://people.mpi-inf.mpg.de/~corrogg/
http://reverb.cs.washington.edu/
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e.g., a proposition such as (“he”, ’has’, “office”), or any unlemmatized version thereof, is
treated as correct. Finally, we instructed labelers to label as incorrect relations that were
overly specific, i.e., that contained named entities or numbers, or were excessively long (e.g.,
“has reported 1993 events in Moscow in”). We measured the agreement between labelers
in terms of Cohen’s Kappa (Scott’s Pi). The score was 0.57 (0.57) for the Reverb dataset,
0.68 (0.68) for the Wikipedia dataset, 0.63 (0.63) for the New York Times dataset. The lower
agreement score for the Reverb data might be attributed to the high amount of noise in the
input sentences, which made it hard to judge the correctness of some of the extractions.

We used the absolute number of extractions instead of recall since it is infeasible to
obtain the set of “all” correct propositions. For ClausIE, we determined the total number
of extractions but also the number of non-redundant extractions (marked “non-red.”), i.e.,
extractions not “contained” in other extractions. For example, ClausIE extracts from sentence
“AE remained in Princeton until his death” propositions (“AE”, “remained”, “in Princeton”)
and (“AE”, “remained”, “in Princeton until his death”); the former extraction is marked
redundant. We ordered all extractions by decreasing confidence; for ClausIE, we took the
confidence of the DP as obtained by the Stanford parser as the confidence of a proposition.
For KrakeN, extractions were unavailable to us; we reproduce the information provided
in Akbik and Löser (2012) instead.

2.4.2 Example Extractions

We first illustrate the differences between the extractors for some manually-selected example
sentences; Tab. 2.4 shows the extractions of each OIE extractor for a sentence of each of the
datasets.

On the Reverb sentence, all OIE extractors agree on proposition R1, which is correct.
Reverb obtains a second proposition R2, which is incorrect; it is[obtained because Reverb
restricts subjects to noun phrases without prepositions and thus incorrectly omits “the only
other name on”. In contrast, ClausIE identifies the subject correctly and hence extracts a
correct proposition (R20); it exploits access to the DP, which is (deliberately) not used by
Reverb. WOE and OLLIE also make use of the DP, but still fail to identify the subject of the
second clause correctly (R5 and R11, respectively), perhaps due to their use of automatically
learned DP patterns (e.g., OLLIE learns from Reverb). For this reason, OLLIE also produces
a number of additional incorrect extractions. Note that propositions R18 and R20 produced by
ClausIE are labeled as redundant. As argued below, redundant extractions may be valuable
by themselves due to their simpler structure.

On the Wikipedia dataset, almost all of the extractions are correct; ClausIE extracts
the largest number of propositions, followed by OLLIE and Reverb. OLLIE misses the
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essential adverbial “in Aberdeen” in proposition W5, but still produces a correct (although
tautological) proposition. ClausIE produces incorrect proposition W11 due to an error in
the dependency parse (which does not associate “from Tuberculosis” with “death” but with
“lived”). Proposition W12 was labeled correct (although this is arguable); here “his” refers to
“he”, and “has” is our synthetic verb for a possessive. Finally, ClausIE produces propositions
W6–W8 due to its processing of the coordinated conjunctions. In this particular case, the
parser identified “two children”, “Edna”, and “Donald” incorrectly as conjoints; otherwise
propositions W7 and W8 would not have been generated.

Finally, on the NYT dataset, Reverb produces incorrect proposition N2 by incorrectly
identifying the argument. Reverb is designed to extract at most one prepositional phrase
following the verb and thus misses “outside the United States”. It also misses “in NATO” due
its use of a lexical constraint (i.e., the phrase “includes the biggest standing army in”, which
is over-specified, does not appear sufficiently frequently in the corpus). ClausIE creates a
correct and an incorrect (but coherent) proposition (N13 and N12, resp.) from this clause of
the sentence; the latter proposition is incorrect due to an error in the DP parse (which does
not correctly associate “in NATO outside the United States” with “army”). ClausIE also
produces three additional incorrect propositions (N15–N17). Proposition N15 has an incorrect
subject due to an incorrect DP, propositions N16 and N17 are non-informative and thus labeled
as incorrect (here we labeled conservatively). The sentence also contains a possessive, which
is processed correctly by ClausIE to obtain proposition N14. Finally, OLLIE extracts three
incorrect propositions with an over-specified relation (N3–N5), and incorrect proposition N6

due to a noisy extraction pattern.

2.4.3 Precision and Number of Extractions

Our results are summarized in Tab. 2.2 and Fig. 2.3. Tab. 2.2 shows the total number of
correct extractions as well as the total number of extractions for each method and dataset.
Fig. 2.3 plots the precision of each OIE extractor as a function of the number of extractions
(ordered by decreasing confidence).

We found that in its default configuration, ClausIE produced 2.5–3.5 times more correct
extractions than OLLIE, the best-performing alternative method. This increase in recall
is obtained because ClausIE considers all adverbials in a clause (instead of only the one
following the verb), extracts non-verb-mediated propositions, detects non-consecutive con-
stituents, processes coordinated conjunctions, and outputs triples with non-noun-phrase
arguments. Roughly 27–29% of the extractions of ClausIE were redundant. We believe that
redundant extractions can be valuable: Even though a non-redundant proposition expresses
more information, the corresponding redundant propositions has a simpler structure and is
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Reverb dataset Wikipedia dataset NYT dataset

C I P C I P C I P
ClausIE 1706 2975 57.34 598 1001 59.74 696 1303 53.42
ClausIE w/o CCs 1466 2344 62.54 536 792 67.67 594 926 64.15
ClausIE (non-redundant) 1221 2161 56.50 424 727 58.32 508 926 54.86
ClausIE w/o CCs (non-redundant) 1050 1707 61.51 381 569 66.96 444 685 64.82
OLLIE 547 1242 44.04 234 565 41.42 211 497 42.45
Reverb 388 727 53.37 165 249 66.27 149 271 54.98
WOE 447 1028 43.48 – –
TextRunner (Reverb) 343 837 40.98 – –
TextRunner 286 798 35.84 – –

C: Correct, I: Incorrect, P: Precision

Table 2.2 Number of correct extractions and total number of extractions

easier to deal with. When redundant extractions are removed, ClausIE produces 1.8–2.4
times more correct extractions than OLLIE.

The precision of TextRunner was significantly lower than that of Reverb, WOE, and
ClausIE. The latter three extractors obtain high precision on high-confidence propositions;
the precision drops as we include more and more low-confidence propositions. In the case of
ClausIE, the precision dropped quickly initially but then stabilized at between 53% and 60%
(whether or not we include redundant propositions). Except for the Wikipedia dataset, the
precision over all extractions obtained by ClausIE was higher than that of any other method,
and ClausIE extracted significantly more propositions.

We also ran a configuration of ClausIE in which processing of coordinated conjunctions
in subjects and arguments was disabled. This resulted in an increase of precision between
5% and 10.7% (on Wikipedia). Thus ClausIE’s processing of CCs is somewhat error-prone,
partly due to the presence of combinatory conjunctions and partly due to errors in the
dependency parse. Nevertheless, when CCs are not processed, the number of extractions
dropped significantly (between 11% and 27%), so that CC processing appears to be beneficial
overall.

According to Akbik and Löser (2012), KrakeN extracts 572 propositions from the
Reverb data; 308 of these propositions were correct and complete, 81 were correct but not
complete. Note that KrakeN extracts n-ary propositions, whereas our experiments focus on
triples (which cannot be produced by KrakeN for n > 3). Note that KrakeN did not extract
propositions from dependency parses that contained the dep relation (i.e., an unknown
dependency); this was true for 155 out of the 500 sentences in the Reverb data. ClausIE
handles such cases gracefully, e.g., by extracting propositions from clauses that appear
unaffected by the unknown dependency.
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Figure 2.3 Experimental results
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The high recall and consistently good precision of ClausIE observed in our experiments
indicates that reasoning over clauses and clause-types is a viable approach to OIE.

2.4.4 Extractions Errors of ClausIE

We did a preliminary analysis of the results obtained by ClausIE. We found that in most
of the cases, ClausIE’s extraction errors were due to incorrect dependency parses (see
Sec. 2.4.2 for examples). In some cases, the incorrect DP resulted from noise in the input
sentences, such as bad grammatical forms or spurious words. Our hope is that potential
future improvements in dependency parsing will also lead to higher-precision extractions
obtained by ClausIE. Another source of imprecision of ClausIE was due to our processing of
coordinated conjunctions; see the discussion in Sec. 2.4.3. On the one hand, the Stanford
DP parser tended to produce erroneous parses in the presence of CCs. On the other hand,
when the coordinated conjunction was combinatory, the extractions obtained by ClausIE
were incorrect. ClausIE also misclassified some SVOA clauses as SVO and thus omitted an
essential adverbial. As mentioned previously, it is often hard to distinguish SVO from SVOA;
an improved dictionary of potentially complex-transitive verbs may help to avoid some of
these extraction errors. Moreover, Quirk (Quirk et al., 1985) notes that adverbials in SVA and
SVOA clauses are largely restricted to space adjuncts, which may also help in identifying
such clauses. Finally, this problem is alleviated to some extent if ClausIE is configured to
produce n-ary extractions; then essential adverbials will not be omitted, although they can
potentially be flagged as optional.

2.5 Related Work

Open Information Extraction. The task of OIE was introduced by the seminal work of
Banko et al. (2007), who also proposed the TextRunner OIE system. A number of methods
have been developed to improve on TextRunner. At a high level, all of these approaches
make use of a set of patterns in order to obtain propositions. Depending on the specific
approach, these patterns are either hand-crafted (based on on various heuristics) or learned
from automatically generated training data (e.g., in the form of a classifier); the patterns
apply to POS tags, chunks, DPs and parse trees. Early work mostly explored the use shallow
syntactic analysis as POS tags and chunks, however, more recent work has focused on the
use of deeper syntactic analysis.

The degree of syntactic analysis that should be used in information extraction methods has
been discussed in the natural language processing (NLP) community (Bunescu and Mooney,
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2005; Wilks and Brewster, 2009; Zouaq et al., 2009) and it is reasonable to assume that more
syntactic information has a positive impact on extraction accuracy. Our experiments confirm
this hypothesis. Moreover, as new syntactic analyzers keep appearing with improvements
in both parsing precision and processing speed, as well as the increasing availability of
hardware resources for heavy processing, it seems reasonable to work on systems using as
input deep syntactic analysis. Deeper syntactic analysis provides a more complete picture of
the syntactic structure of the sentence.

Most of the existing approaches aim to extract triples, i.e., propositions of form (subject,
relation and argument); extraction of higher-arity propositions are handled by Akbik and
Löser (2012) and Christensen et al. (2010). ClausIE also makes use of a set of hand-crafted
patterns, which are constructed in a principled way, and can generate either triples or higher-
arity propositions. Unlike ClausIE, all OIE systems do not separate the detection of the
information from its representation. Tab. 2.3 provides a summary of the existing OIE systems.

Systems using shallow syntactic parsing. As it was previously mentioned, there are two
major categories of OIE systems: approaches that make use of only shallow syntactic parsing,
and approaches that apply heavier NLP technology. TextRunner (Banko et al., 2007) belongs
to the former class. It first trains a Bayes classifier based on DPs of 1000s of sentences
in an offline phase; the classifier is then applied to efficiently extract propositions in an
online phase. The training data is automatically generated; it corresponds to triples based
on short paths heuristics. Shortest paths are a popular heuristic to generate triples from raw
text (Bunescu and Mooney, 2005). In a shortest path, the relation between two entities is
formed by the minimum number of words, containing a verb, that connects them. The words
are collected by following the grammatical relations in a DP ignoring their directions. The
starting and ending point of the path are the entities that serve as the arguments of the triple.
Specifically in the case of TextRunner, the shortest path is relaxed so that it does not only
search for the shortest path but for a path of a minimum length: a triple is considered as a
positive example if the path connecting them does not cross clauses, does not contain solely
a pronoun and is not bigger than a certain length.

WOEpos (Wu and Weld, 2010) also uses a classifier, but the classifier is based on a
high-quality training corpus obtained automatically from Wikipedia for improved precision
and recall. The training data is formed by triples generated via shortest path. In contrast,
although ClausIE also generates extractions from DPs it does not rely on the extensively used
shortest path heuristic but on a principled technique based on well founded linguistic theories.
This means that ClausIE could be also used to generate training data for OIE classifiers or
any other task requiring triples as input.
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Reverb (Fader et al., 2011) is the perhaps simplest (and thus very attractive) shallow
extractor; it makes use of syntactical and lexical constraints that aim to reduce the amount of
uninformative, incoherent, and over-specified extractions (see Sec. 2.2). Reverb defines a
simple pattern based on shallow syntax which allows to capture at once, at a general level,
some of the relevant clause types that we present in this chapter. However, as it works at
a shallow syntactic level it is unable to understand the complex internal structure of each
extraction, so it makes mistakes derived from this simplification . This implies, that it is
faster because it uses much less complex syntactic analysis but also less precise because it
only attempts to target very generic patterns. Recall is lower because it misses patterns that
cannot be generalized to this single pattern.

Finally, R2A2 (Etzioni et al., 2011) uses a number of classifiers to identify the arguments
of a verbal phrase (based on hand-labeled training data), and is able to extract propositions
that contain arguments beyond noun phrases. R2A2 is the best-performing shallow OIE
extractor to date. ClausIE uses more complex syntactic information, and therefore it is slower,
however, as it produces high-quality extractions it can potentially be used as training for
R2A2.

Systems using deep syntactic parsing. The second category of OIE systems makes use
of deep syntactic processing like dependency parsing (Akbik and Broß, 2009; Wu and Weld,
2010; Akbik and Löser, 2012; Mausam et al., 2012; Gamallo et al., 2012; Yahya et al.,
2014) or parse trees (Bast and Haussmann, 2013). Some systems use either hand-labeled
(Wanderlust (Akbik and Broß, 2009)) or automatically generated (WOEparse (Wu and Weld,
2010) and OLLIE (Mausam et al., 2012)) training data to learn extraction patterns on the
dependency tree.

OLLIE is a semi-supervised dependency-based system. It generates dependency patterns
via a bootstrapping process over a big corpus. The seeds are generated by extracting high
confidence propositions from Reverb, and assuming that each sentence containing the subject
and argument from those propositions, imply the extracted relation. OLLIE generates in this
way a large corpus of DP-based patterns, which are used to extract triples from new input
sentences. ClausIE, on the contrary, does not need to learn patterns and avoids mistakes that
may be generated by the learning process or the assumption, common in semi-supervised
models, that two co-occurring entities in a sentence express the relation observed in the
annotated data. Our system does not need to learn those patterns or rely in any assumption.

Other approaches (KrakeN (Akbik and Löser, 2012), Gamallo et al. (2012) and Zouaq
(2011)) use a set of hand-crafted patterns on the DP. In contrast to all existing approaches,
ClausIE reasons about the set of clauses (and their types) that appear in an input sentence;



38 ClausIE: Clause-Based Open Information Extraction

this reasoning is based on the DP and a small set of domain-independent lexica. Most
of the patterns of Akbik and Löser (2012). Gamallo et al. (2012) and Zouaq (2011) are
naturally captured by ClausIE. Moreover, ClausIE can be customized to output triples or n-ary
propositions, and the conceptual separation between recognition and representation implies
that it can be eventually adapted to focus on either noun-phrase or more general subjects and
arguments, or to flexibly adjust how much information is included in the relational phrase
and how much in its arguments.

Finally, Bast and Haussmann (2013) identifies building blocks in the sentence and applies
a set of patterns to generate propositions, both verb and non-verb mediated. ClausIE covers
in a principled way all verb based patterns generated by Bast and Haussmann (2013) and at
the same time it is able to understand the internal structure of each extraction, which makes
it more flexible in the representation of the information allowing potential customization if
needed (e.g. reduce the size of the arguments by removing unnecessary modifiers).

OIE and Semantic Role Labeling. OIE is the perhaps simplest form of semantic analysis.
A closely related and more general problem is semantic role labeling (SRL), which aims to
identify arguments of verbs as well as their semantic roles. Christensen et al. (2010) have
shown that SRL can be used to increase the precision and recall of OIE; however, existing
SRL systems heavily rely on manually labeled training data and are posed to solve a task
that, although related, goes semantically beyond OIE with the risk of lowering recall. OIE is
a shallower semantic task that can be potentially used in the argument recognition step of
SRL systems.

Non verb-based relations. OIE focus mainly on verb-mediated propositions. ClausIE
is able to identify non-verb-mediated propositions, although to a limited extent, special-
ized techniques—such as Venetis et al. (2011) for extracting the “is-a” relationship—go
significantly further. Renoun (Yahya et al., 2014), a recent system, intends to cover this
gap by systematically extracting noun mediated propositions via a bootstrapping process.
This pattern-based semi-supervised method attempt to extract propositions such as “pres-
ident”(“Barack Obama”, “US”), where a noun acts as the relation between the entity
arguments.

KB construction. A KB can be thought as a collection of facts, and these, in turn as
disambiguated propositions. This means that OIE can be seen as the very first step in KB
construction. Techniques for automated ontology construction (e.g., (Suchanek et al., 2009;
Carlson et al., 2010; Zouaq, 2011; Wu et al., 2012)) require to first identify the proposition in
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text before mapping it to an ontological fact. Since many KB construction approaches rely
on a pre-specified set of entities or relations, OIE is the natural starting point for systems that
go beyond the closed-world assumption. Patty (Nakashole et al., 2012), for example, aims to
extract a set of typed lexical patterns that are indicative of a relation. It clusters relational
phrases based on the types of its arguments, so that OIE would be the ideal framework to
accurately extract those relational phrases.

2.6 Conclusion

OIE is the natural first step to any automatic text understanding task: it recognizes and
structures the information in text in a way that can be managed and reasoned about by
computers. We presented principled approach to open information extraction called ClausIE
which relies on well founded linguistic theories. In contrast to previous approaches, ClausIE
separates the detection of clauses and clause types from the actual generation of propositions;
the detection of information is general for every text but the materialization of that information
ultimately depends on the underlying application. ClausIE obtains more and higher-precision
extractions than alternative methods and allows a flexible generation of propositions. ClausIE
can be seen as a first step towards clause-based open information extraction. Potential
improvements include construction of richer lexica, improved processing of the constituents
of each clause to avoid over-specification in subjects and arguments, as well as context
analysis to detect relations between clauses and the extraction of non-verb mediated relations.

ClausIE’s accuracy mostly relies on a correct syntactic analysis of the sentences, which
in our case is provided by a standard dependency parser, and on a set of dictionaries which
contain known verbs for each verb type. However, each verb may in fact belong to different
verb categories according to the different senses it has. This means that if we know the sense
of the verb and its corresponding clause type, we can identify more accurately the clause
type of the clause and therefore generate a more accurate structuring of the information. In
the next chapter, we present a method to detect the sense of the verbs given a clause.
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System # Proposition Label

Reverb dataset

The principal opposition parties boycotted the polls after accusations of vote-rigging , and the only other name on the ballot was a little-known challenger
from a marginal political party.

Reverb R1: (“The principal opposition parties”, “boycotted”, “the polls”) Correct
R2: (“the ballot”, “was”, “a little-known challenger”) Incorrect

TextRunner R3: (“The principal opposition parties”, “boycotted”, “the polls”) Correct
WOE R4: (“The principal opposition parties”, “boycotted”, “the polls”) Correct

R5: (“the only other name”, “was”, “a little-known challenger”) Incorrect
OLLIE R6: (“The principal opposition parties”, “boycotted”, “the polls”) Correct

R7: (“The principal opposition parties”, “boycotted the polls after”, “accusations of vote-rigging”) Correct
R8: (“The principal opposition parties”, “was”, “a little-known challenger”) Incorrect
R9: (“The principal opposition parties”, “was a little-known challenger from”, “a marginal political party”) Incorrect
R10: (“the polls”, “be boycotted after”, “accusations of vote-rigging”) Correct
R11: (“the only other name”, “was”, “a little-known challenger”) Incorrect
R12: (“the only other name”, “was a little-known challenger from”, “a marginal political party”) Incorrect
R13: (“the only other name”, “boycotted”, “the polls”) Incorrect
R14: (“the only other name”, “boycotted the polls after”, “accusations of vote-rigging”) Incorrect
R15: (“a little-known challenger”, “be the only other name on”, “the ballot”) Correct
R16: (“only”, “be other name on”, “the ballot”) Incorrect
R17: (“other”, “be name on”, “the ballot”) Incorrect

ClausIE R18: (“The principal opposition parties”, “boycotted”, “the polls”) Correct (red.)
R19: (“The principal opposition parties”, “boycotted”, “the polls after accusations of vote-rigging”) Correct
R20: (“the only other name on the ballot”, “was”, “a little-known challenger”) Correct (red.)
R21: (“the only other name on the ballot”, “was”, “a little-known challenger from a marginal political party”) Correct

Wikipedia dataset

He fathered two children, Edna and Donald, and lived in Aberdeen until his death from tuberculosis in 1942.

Reverb W1: (“He”, “fathered”, “two children”) Correct
W2: (“two children”, “lived in”, “Aberdeen”) Correct

OLLIE W3: (“He”, “fathered”, “two children”) Correct
W4: (“He”, “lived in”, “Aberdeen”) Correct
W5: (“He”, “lived until”, “his death”) Correct

ClausIE W6: (“He”, “fathered”, “two children”) Correct
W7: (“He”, “fathered”, “Edna”) Correct
W8: (“He”, “fathered”, “Donald”) Correct
W9: (“He”, “lived”, “in Aberdeen”) Correct (red.)
W10: (“He”, “lived”, “in Aberdeen until his death”) Correct
W11: (“He”, “lived”, “in Aberdeen from tuberculosis in 1942”) Incorrect
W12: (“his”, “has”, “death”) Correct

New York Times dataset

Taken for granted it sometimes may be, but this year the Defense Department sought $950 million in assistance from Congress (and secured half that
amount) for Ankara’s huge military machine, which includes the biggest standing army in NATO outside the United States.

Reverb N1: (“the Defense Department”, “sought”, “$ 950 million”) Correct
N2: (“Ankara’s huge military machine”, “includes”, “the biggest standing army”) Incorrect

OLLIE N3: (“the Defense Department”, “sought $ 950 million in assistance from Congress half ”, “( and secured half)”) Incorrect
N4: (“the Defense Department”, “sought $ 950 million in assistance from Congress in”, “this year”) Incorrect
N5: (“Ankara ’s huge military machine”, “includes the biggest standing army in NATO outside”,

“the United States”) Incorrect
N6: (“the biggest standing army”, “be includes by”, “Ankara ’s huge military machine”) Incorrect

ClausIE N7: (“the Defense Department”, “sought”, “$ 950 million”) Correct (red.)
N8: (“the Defense Department”, “sought”, “$ 950 million in assistance”) Correct
N9: (“the Defense Department”, “sought”, “$ 950 million this year”) Correct
N10: (“the Defense Department”, “sought”, “$ 950 million for Ankara’s huge military machine”) Correct
N11: (“the Defense Department”, “sought”, “$ 950 million from Congress”) Correct
N12: (“Ankara’s huge military machine”, “includes”, “the biggest standing army in NATO”) Incorrect
N13: (“Ankara’s huge military machine”, “includes”, “the biggest standing army in NATO outside the United States”) Correct
N14: (“Ankara”, “has”, “huge military machine”) Correct
N15: (“Taken for”, “granted”, “it sometimes may be”) Incorrect
N16: (“it”, “may be”) Incorrect
N17: (“it”, “may be”, “sometimes”) Incorrect

Table 2.4 Example extractions from a sentence of each dataset





Chapter 3

Werdy: Recognition and Disambiguation
of Verbs and Verb Phrases

3.1 Introduction

Understanding the semantics of words and multi-word expressions in natural language
text is an important task for automatic knowledge acquisition. It serves as a fundamental
building block in a wide area of applications, including semantic parsing, question answering,
paraphrasing, knowledge base construction, etc. In this chapter, we study the task of word-
sense recognition and disambiguation (WERD) with a focus on verbs and verbal phrases.
Verbs are the central element in a sentence, and the key to understand the relations between
sets of entities expressed in a sentence. In some occasions, disambiguating a verb is equivalent
to the disambiguation of a relation in a proposition (e.g., (“Messi”, “plays”, “soccer”)). Even
more, as we show in the previous chapter, knowing the type of the verb, plays a key role in
structuring the information in a sentence.

In this chapter, we present Werdy, a method to (i) automatically recognize in natural
language text both single words and multi-word phrases that match entries in a lexical
knowledge base (KB) like WordNet (Fellbaum, 1998), and (ii) disambiguate these words or
phrases by identifying their senses in the KB. WordNet is a comprehensive lexical resource
for word-sense disambiguation (WSD), covering nouns, verbs, adjectives, adverbs, and many
multi-word expressions. In the following, the notion of an entry refers to a word or phrase
in the KB, whereas a sense denotes the lexical synset of the entry’s meaning in the given
sentence.

A key challenge for recognizing KB entries in natural language text is that entries often
consist of multiple words. In WordNet-3.0, more than 40% of the entries are multi-word. Such
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entries are challenging to recognize accurately for two main reasons: First, the components
of multi-word entries in the KB (such as fiscal year) often consist of components that are
themselves KB entries (fiscal and year). Second, multi-word entries (such as take a breath)
may not appear consecutively in a sentence (“He takes a deep breath.”). Werdy addresses the
latter problem by (conceptually) matching the syntactic structure of the KB entries to the
syntactic structure of the input sentence. To address the former problem, Werdy identifies all
possible entries in a sentence and passes them to the disambiguation phase (take, breath, take
a breath, . . . ); the disambiguation phase provides more information about which multi-word
entries to keep. Thus, our method solves the recognition and the disambiguation tasks jointly.

Once KB entries have been identified, Werdy disambiguates each entry against its possible
senses. State-of-the-art methods for WSD (Navigli, 2009) work fairly well for nouns and
noun phrases. However, the disambiguation of verbs and verbal phrases has received much
less attention in the literature.

WSD methods can be roughly categorized into (i) methods that are based on supervised
training over sense-annotated corpora (e.g., Zhong and Ng (2010)), and (ii) methods that
harness KB’s to assess the semantic relatedness among word senses for mapping entries
to senses (e.g., Ponzetto and Navigli (2010)). For these methods, mapping verbs to senses
is a difficult task since verbs tend to have more senses than nouns. In WordNet (including
monosemous words) there are on average 1.24 senses per noun and 2.17 per verb.

To disambiguate verbs and verbal phrases, Werdy proceeds in multiple steps. First, Werdy
obtains the set of candidate senses for each recognized entry from the KB. Second, it reduces
the set of candidate entries using novel syntactic and semantic pruning techniques. The
key insight behind our syntactic pruning is that each verb sense tends to occur in only a
limited number of syntactic patterns. For example, the sentence “Albert Einstein remained
in Princeton” has a subject (“Albert Einstein”), a verb (“remained”) and an adverbial (“in
Princeton”), and it follows an SVA (subject-verb-adverbial) clause pattern. We can thus
safely prune verb senses that do not match the syntactic structure of the sentence. Moreover,
each verb sense is compatible with only a limited number of semantic argument types (such
as location, river, person, musician, etc); this phenomena is called selectional preference or
selectional restriction. Senses that are compatible only with argument types not present in
the sentence can be pruned. Our pruning steps are based on the idea that a verb selects the
categories of its arguments both syntactically (c-selection) and semantically (s-selection).
In the final step, Werdy employs a state-of-the-art general WSD method to select the most
suitable sense from the remaining candidates. Since many incorrect senses have already been
pruned, this step significantly gains in accuracy and efficiency over standard WSD.
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Our semantic pruning technique builds on a newly created resource of pairs of senses for
verbs and their object arguments. For example, the WordNet verb sense ⟨play-1⟩ (i.e., the 1st
sense in WordNet of the verb entry “play”) selects as direct object the noun sense ⟨sport-1⟩.
We refer to this novel resource as the VO Sense Repository, or VOS repository for short.1 It
is constructed from the WordNet gloss-tags corpus, the SemCor dataset, and a small set of
manually created VO sense pairs.

We evaluated Werdy on the SemEval-2007 coarse-grained WSD task (Navigli et al.,
2007), both with and without automatic recognition of entries. We found that our techniques
boost state-of-the-art WSD methods and obtain high-quality results. Werdy significantly
increases the precision and recall of the best performing baselines.

3.2 Overview of Werdy

Werdy consists of four steps: (i) entry recognition, (ii) syntactic pruning, (iii) semantic
pruning, and (iv) word-sense disambiguation. The contribution of this work is in the first
three steps, and in the construction of the VO sense repository. Each of these steps operates
on the clause level, i.e., we first determine the set of clauses present in the input sentence and
then process clauses separately. A clause is a part of a sentence that expresses some statement
or coherent piece of information. Clauses are thus suitable minimal units for automatic text
understanding tasks (see chapter 2); see Sec.3.3 for details.

In the entry-recognition step (Sec. 3.3), Werdy obtains for the input sentence a set of
potential KB entries along with their part-of-speech tags (POS). The candidate senses of each
entry are obtained from WordNet. For instance, in the sentence “He takes a deep and long
breath”, the set of potential entries includes take (verb, 44 candidate senses), take a breath
(verb, 1 candidate sense), and breath (noun, 5 candidate senses). Note that in contrast to
Werdy, most existing word-sense disambiguation methods assume that entries have already
been (correctly) identified.

In the syntactic-pruning step (Sec. 3.4), we eliminate candidate senses that do not agree
with the syntactic structure of the clause. It is well-established that the syntactic realization
of a clause is intrinsically related with the sense of its verb (Quirk et al., 1985; Levin, 1993;
Hanks, 1996; Baker et al., 1998; Palmer et al., 2005). Quirk et al. (1985) identified seven
possible clause types in the English language (such as “subject verb adverbial”, SVA). We
make use of techniques from chapter 2 to identify the clause type of each clause in the
sentence. We then match the clause type with the set of WordNet frames (e.g., “somebody

1The VOS repository, Werdy’s source code, and results of our experimental study are available at http:
//people.mpi-inf.mpg.de/~corrogg/.

http://people.mpi-inf.mpg.de/~corrogg/
http://people.mpi-inf.mpg.de/~corrogg/
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verb something”) that WordNet provides for each verb sense, and prune verb senses for
which there is no match.

In the semantic-pruning step (Sec. 3.5), we further prune the set of candidate senses by
taking the semantic types of direct objects into account. Similarly to the syntactic relation
mentioned above, a verb sense also imposes a (selectional) restriction on the semantic type
of its arguments (Quirk et al., 1985; Levin, 1993; Hanks, 1996; Baker et al., 1998; Palmer
et al., 2005). For instance, the verb play with sense participate in games or sports requires
an object argument of type ⟨game-1⟩, ⟨game-3⟩, or ⟨sport-1⟩. Senses that do not match the
arguments found in the clause are pruned. This step is based on the newly constructed VOS
Repository (Sec. 3.6). Note that when there is no direct object, only the syntactic pruning
step applies.

3.3 Entry Recognition

The key challenge in recognizing lexical KB entries in text is that entries are not restricted
to single words. In addition to named entities (such as people, places, etc.), KB’s contain
multi-word expressions. For example, WordNet-3.0 contains entries such as take place (verb),
let down (verb), take into account (verb), be born (verb), high school (noun), fiscal year
(noun), and Prime Minister (noun). Note that each individual word in a multi-word entry is
usually also an entry by itself, and can even be part of several multi-word entries. To ensure
correct disambiguation, all potential multi-word entries need to be recognized (Finlayson
and Kulkarni, 2011), even when they do not appear as consecutive words in a sentence.

Werdy addresses these challenges by exploring the syntactic structure of both the input
sentence and the lexical KB entries. The structure of the sentence is captured in a dependency
parse (DP). Given a word in a sentence, Werdy conceptually generates all subtrees of the
DP starting at that word, and matches them against the KB. This process can be performed
efficiently as WordNet entries are short and can be indexed appropriately. To match the
individual words of a sentence against the words of a KB entry, we follow the standard
approach and perform lemmatization and stemming (Finlayson, 2014). To further handle
personal pronouns and possessives, we follow Arranz et al. (2005) and normalize personal
pronouns (I, you, my, your, . . . ) to one’s, and reflexive pronouns (myself, yourself, . . . ) to
oneself.

Consider the example sentence “He takes my hand and a deep breath”. We first identify
the clauses and their DP’s (Fig. 3.1) using the method described in chapter 2, which also
processes coordinating conjunctions. We obtain clauses “He takes my hand” and “He takes a
deep breath”, which we process separately. To obtain possible entries for the first clause, we
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He takes my hand and a deep breath .

nsubj poss

dobj

cc

det

amod

conj
root

Figure 3.1 An example dependency parse

start with its head word (take) and incrementally consider its descendants (take hand, take
one’s hand, . . . ). The exploration is terminated as early as possible; for example, we do not
consider take one’s hand because there is no WordNet entry that contains both take and hand.
For the second clause, we start with take (found in WordNet), then expand to take breath
(not found but can occur together), then take a breath (found), then take a deep breath (not
found, cannot occur together) and so on.

Note that the word “take” in the sentence refers to two different entries and senses:
⟨take-4⟩ for the first clause and ⟨take a breath-1⟩ for the second clause. In this stage no
decisions are made about selecting entries and disambiguating them; these decisions are
made in the final WSD stage of Werdy.

We tested Werdy’s entry-recognizer on the SemEval-2007 corpus. We detected the correct
entries for all but two verbs (out of more than 400). The two missed entries (“take up” and
“get rolling”) resulted from incorrect dependency parses.

3.4 Syntactic Pruning

Once KB entries have been recognized, Werdy prunes the set of possible senses of each
verb entry by considering the syntactic structure of the clause in which the entry occurs.
This pruning is based on the observation that each verb sense may occur only in a limited
number of clause types, each having specific semantic functions (Quirk et al., 1985). When
the clause type of the sentence is incompatible with a candidate sense of an entry, this sense
is eliminated.

Werdy first detects in the input sentence the set of clauses and their constituents. Recall
from chapter 2 that a clause consists of one subject (S), one verb (V), and optionally an
indirect object (O), a direct object (O), a complement (C) and one or more adverbials (A).
Not all combinations of clause constituents appear in the English language. When we classify
clauses according to the grammatical function of their constituents, we obtain only seven
different clause types (Quirk et al., 1985); see Tab. 3.1. For example, the sentence “He takes
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Pattern Clause type Example WN frame example [frame number]

SVi SV AE died. Somebody verb [2]
SVeA SVA AE remained in Princeton. Somebody verb PP [22]
SVcC SVC AE is smart. Somebody verb adjective [6]
SVmtO SVO AE has won the Nobel Prize. Somebody verb something [8]
SVdtOiO SVOO RSAS gave AE the Nobel Prize. Somebody verb somebody something [14]
SVctOA SVOA The doorman showed AE to his office. Somebody verb somebody PP [20]
SVctOC SVOC AE declared the meeting open. Something verb something adjective/noun [5]
S: Subject, V: Verb, C: Complement, O: Direct object, Oi: Indirect object, A: Adverbial, Vi: Intransitive verb, Vc: Copular verb,

Vc: Extended-copular verb, Vmt: Monotransitive verb, Vdt: Ditransitive verb, Vct: Complex-transitive verb

Table 3.1 Clause types and examples of matching WordNet frames

my hand” is of type SVO; here “He” is the subject, “takes” the verb, and “my hand” the
object. The clause type can (in principle) be determined by observing the verb type and its
complementation.

For instance, consider the SVA clause “The student remained in Princeton”. The verb
remain has four senses in WN: (1) stay the same; remain in a certain state (e.g., “The dress
remained wet”), (2) continue in a place, position, or situation (“He remained dean for another
year”), (3) be left; of persons, questions, problems (“There remains the question of who
pulled the trigger”) or (4) stay behind (“The hostility remained long after they made up”).
The first sense of remain requires an SVC pattern; the other cases require either SV or SVA.
Our example clause is of type SVA so that we can safely prune the first sense.

WordNet provides an important resource for obtaining the set of clause types that are
compatible with each sense of a verb. In particular, each verb sense in WordNet is annotated
with a set of frames (e.g., “somebody verb something”) in which they may occur, capturing
both syntactic and semantic constraints. There are 35 different frames in total which are
displayed in Tab. 3.2. We manually assigned a set of clause types to each frame (e.g., SVO
to frame “somebody verb something”). Tab. 3.1 shows an example frame for each of the
seven clause types. On average, each WordNet-3.0 verb sense is associated with 1.57 frames;
the maximum number of frames per sense is 9. The distribution of frames is highly skewed:
More than 61% of the 21,649 frame annotations belong to one of four simple SVO frames
(numbers 8, 9, 10 and 11), and 22 out of the 35 frames have less than 100 instances. This
skew makes the syntactic pruning step effective for non-SVO clauses, but less effective for
SVO clauses.

Werdy directly determines a set of possible frame types for each clause of the input
sentence. Our approach is based on the clause-type detection method from chapter 2, but
we also consider additional information that is captured in frames but not in clause types.
For example, we distinguish different realizations of objects (such as clausal objects from
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Frame Number Frame Examples Rel. Freq.

1 Something verb The plane turns 0.0842
2 Somebody verb He runs 0.1255
3 It is verb -ing It is raining 0.0010
4 Something is verb -ing PP The plane is going to Paris 0.0260
5 Something verb something Adjective/Noun It makes it clear 0.0013
6 Something verb Adjective/Noun It becomes difficult 0.0018
7 Somebody verb Adjective He seems crazy 0.0016
8 Somebody verb something He knows physics 0.3128
9 Somebody verb somebody He believes the judge 0.1212
10 Something verb somebody The airline helped the passengers 0.0498
11 Something verb something The airline provided new planes 0.1144
12 Something verb to somebody The airline reacted to the market 0.0006
13 Somebody verb on something He agrees on some points 0.0014
14 Somebody verb somebody something He told him the secret 0.005
15 Somebody verb something to somebody He read a book to her 0.0091
16 Somebody verb something from somebody He took a word from her 0.0035
17 Somebody verb somebody with something He provided her with shelter 0.0033
18 Somebody verb somebody of something The police accuse him of stealing 0.0014
19 Somebody verb something on somebody He inflicted pain on him 0.0008
20 Somebody verb somebody PP She asked him for a loan 0.0111
21 Somebody verb something PP He used his influence to win 0.0243
22 Somebody verb PP He comes into the office 0.0605
23 Somebody’s (body part) verb The leg hurts 0.0008
24 Somebody verb somebody to INFINITIVE He wants him to win 0.0054
25 Somebody verb somebody INFINITIVE He lets me win 0.0004
26 Somebody verb that CLAUSE The president says that the situation is difficult 0.0170
27 Somebody verb to somebody He talks to her 0.0016
28 Somebody verb to INFINITIVE He wants to believe 0.0055
29 Somebody verb whether INFINITIVE He will decide whether to come or not 0.0013
30 Somebody verb somebody into V-ing something He talked her into doing that 0.0010
31 Somebody verb something with something He replaced the pen with a pencil 0.0024
32 Somebody verb INFINITIVE He dares to come 0.0002
33 Somebody verb VERB-ing He enjoys swimming 0.0026
34 It verb that CLAUSE It requires that you trust her 0.0014
35 Something verb INFINITIVE This will help to prevent accidents 0.0002

Table 3.2 WordNet frames
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non-clausal objects), which are not captured in the clause type. Given the DP of a clause,
Werdy identifies the set of WN frames that can potentially match the clause as outlined in
the flowchart of Fig. 3.2. Werdy walks through the flowchart; for each question, we check
for the presence or absence of a specific constituent of a clause (e.g., a direct object for
Q1) and proceed appropriately until we obtain a set of possible frames. This set is further
reduced by considering additional information in the frames (not shown; e.g., that the verb
must end on “-ing”). For our example clause “The student remained in Princeton”, we first
identify possible frames {1,2,12,13,22,27} (see 3.2) using the flowchart (Q1 no, Q2 no,
Q3 yes); using the additional information in the frames, Werdy then further prunes this set to
{1,2,22}. The corresponding set of remaining candidate sense for remain is as given above,
i.e., {⟨remain-2⟩,⟨remain-3⟩,⟨remain-4⟩}.

Our mapping of clause types to WordNet frames is judiciously designed for the way
WordNet is organized. For instance, frames containing adverbials generally do not specify
whether or not the adverbial is obligatory; here we are conservative in that we do not prune
such frames if the input clause does not contain an adverbial. As another example, some
frames overlap or subsume each other; e.g, frame “somebody verb something” (8) subsumes
“somebody verb that clause” (26). In some word senses annotated with the more general
frame, the more specific one can also apply (e.g., ⟨point out-1⟩ is annotated with 8 but not
26; 26 can apply), in others it does not (e.g., ⟨play-1⟩ is also annotated with 8 but not 26; but
here 26 cannot apply). To ensure the effectiveness of syntactic pruning, we only consider
the frames that are directly specified in WordNet. This procedure often produces the desired
results; in a few cases, however, we do prune the correct sense (e.g., frame 26 for clause “He
points out that . . . ”).
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Figure 3.2 Flow chart for frame detection
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3.5 Semantic Pruning

A verb sense imposes a restriction on the semantic type of the arguments it may take and vice
versa (Quirk et al., 1985; Levin, 1993; Hanks, 1996; Baker et al., 1998; Palmer et al., 2005;
Kipper et al., 2008). This allows us to further prune the verb candidate set by discarding verb
senses whose semantic argument is not present in the clause.

WordNet frames potentially allow a shallow type pruning based on the semantics provided
for the clause constituents. However we could solely distinguish people (“somebody”) from
things (“something”), which is too crude to obtain substantial pruning effects. Moreover, this
distinction is sometimes ambiguous.

Instead, we have developed a more powerful approach to semantic pruning based on
our VOS repository. We remove from the verb candidate set those senses whose semantic
argument cannot be present in the sentence. For instance, consider the clause “The man plays
football.” Suppose that we know that the verb entry play with sense ⟨play-1⟩ (“participate
in sports”) takes an object of type ⟨sport-1⟩; i.e., we have a tuple ⟨play-1, sport-1⟩ in our
repository. Then, we check whether any of the possible senses of football—(i) sport or
(ii) ball—is of type ⟨sport-1⟩. Here the first sense has the correct type (the second sense
does not); thus we retain ⟨play-1⟩ as a possible sense for the verb entry play. Next, suppose
that we consider sense ⟨play-3⟩ (“play on an instrument”), which according to our corpus
takes ⟨instrument-6⟩ as argument (i.e., there is a tuple ⟨play-3, instrument-6⟩ in our VOS
repository). Since none of the senses of football is of type ⟨instrument-6⟩, we can safely
drop ⟨play-3⟩ from our candidate set. We perform this procedure for every verb sense in the
candidate set.

Semantic pruning makes use of both VOS repository and the hypernym structure of the
noun senses in WordNet. For each sentence, we obtain the possible senses of the direct-object
argument of the verb. We then consider each candidate sense of the verb (e.g., ⟨play-1⟩),
and check whether any of its compatible object-argument senses (from our repository) is a
hypernym of any of the possible senses of its actual object argument (in the sentence); e.g.,
⟨sport-1⟩ is a hypernym of ⟨football-1⟩. If so, we retain the verb’s candidate sense. If not,
either the candidate sense of the verb is indeed incompatible with the object argument in the
sentence, or our repository is incomplete. To handle incompleteness to some extent, we also
consider hyponyms of the object-argument senses in our repository; e.g., if we observe object
sport in a sentence and have verb-sense argument ⟨football-1⟩ in our corpus, we consider this
a match. If the hyponyms lead to a match, we retain the verb’s candidate sense; otherwise,
we discard it.
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3.6 Verb-Object Sense Repository

We use three different methods to construct the repository. In particular, we harness the
sense-annotated WordNet glosses2 as well as the sense-annotated SemCor corpus (Landes
et al., 1998).3

The major part of the VOS repository was acquired from WordNet’s gloss tags, a corpus
containing sense annotations for WordNet glosses. According to Atkins and Rundell (2008),
noun definitions should be expressed in terms of the class to which they belong, and verb
definitions should refer to the types of the subjects or objects related to the action. Based on
this rationale, we extracted all noun senses that appear in the gloss of each verb sense; each of
these noun senses is treated as a possible sense of the object argument of the corresponding
verb sense. For example, the gloss of ⟨play-1⟩ is “participate in games or sports;” each
noun is annotated with its senses (2 and 3 for “games”, 1 for “sports”). We extract tuples
⟨play-1, game-2⟩, ⟨play-1, game-3⟩, and ⟨play-1, sport-1⟩ from this gloss. Note that we only
extract direct-object arguments, i.e., we do not consider the type of the subject argument of a
verb sense. Since the constituents of the predicate are much more important than the subject
to determine or describe a verb sense, lexical resources rarely contain information on the
subject (Atkins and Rundell, 2008). Similarly, WordNet glosses typically do not provide any
information about adverbials. Overall, we collected arguments for 8,657 verb senses (out of
WordNet’s 13,767 verb senses) and a total of 13,050 ⟨verb-#, object-#⟩-pairs.

We leveraged the sense-annotated SemCor corpus to further extend our VOS repository.
We parsed each sentence in the corpus to obtain the respective pairs of verb sense and
object sense. Since sentences are often more specific than glosses, and thus less helpful
for constructing our repository, we generalized the so-found object senses using a heuristic
method. In particular, we first obtained all the object senses of each verb sense, and then
repeatedly generalized sets of at least two senses that share a direct hypernym to this
hypernym. The rationale is that we only want to generalize if we have some evidence that a
more general sense may apply; we thus require at least two hyponyms before we generalize.
For instance, ⟨play-1, soccer-1⟩ and ⟨play-1, American football-1⟩ is generalized to ⟨play-
1, football-1⟩, which implies that the pair ⟨play-1, rugby-1⟩ is also now considered given that
⟨rugby-1⟩ is a hyponym of ⟨football-1⟩. Using this method, we collected arguments for 1,516
verb senses and a total of 4,131 sense pairs.

Finally, we noticed that the most frequent senses used in the English language are usually
so general that their glosses do not contain any relevant semantic argument. For instance,
one of the most frequent verbs is ⟨see-1⟩, which has gloss “perceive by ⟨sight-3⟩”. The

2http://wordnet.princeton.edu/glosstag.shtml
3http://web.eecs.umich.edu/~mihalcea/downloads.html

http://wordnet.princeton.edu/glosstag.shtml
http://web.eecs.umich.edu/~mihalcea/downloads.html
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correct semantic argument ⟨entity-1⟩ is so general that it is omitted from the gloss. In fact,
our gloss-tag extractor generates tuple ⟨see-1, sight-3⟩, which is incorrect. We thus manually
annotated the 30 most frequent verb senses with their object argument types.

Our final repository contains arguments for 9,335 verb senses and a total of 17,181 pairs.
Pairs from SemCor tend to be more specific because they refer to text occurrences. The
assumption of taking the nouns of the glosses as arguments seems to be mostly correct,
although some errors may be introduced. Consider the pair ⟨play-28, stream-2⟩ extracted
from the gloss “discharge or direct or be discharged or directed as if in a continuous ⟨stream-
2⟩”. Also, in some cases, the glosses may refer to adverbials as in ⟨play-14, location-1⟩,
taken from gloss “perform on a certain ⟨location-1⟩”. Note that if an argument is missing
from our repository, we may prune the correct sense of the verb. If, however, there is an
additional, incorrect argument in the repository, the correct verb sense is retained but pruning
may be less effective.

3.7 Evaluation

Dataset. We tested Werdy on the SemEval-2007 coarse-grained dataset.4 It consists of
five sense-annotated documents; the sense annotations refer to a coarse-grained version of
WordNet. In addition to sense annotations, the corpus also provides the corresponding KB
entries (henceforth termed “gold entries”) as well as a POS tag. We restrict our evaluation to
verbs that act as clause heads. In total, 461 such verbs were recognized by ClausIE (chapter
2) and the Stanford Parser (Klein and Manning, 2003).5

WSD Algorithms. For the final step of Werdy, we used the KB-based WSD algorithms of
Ponzetto and Navigli (2010) and It-Makes-Sense (Zhong and Ng, 2010), a state-of-the-art
supervised system that was the best performer in SemEval-2007. Each method only labels
entries for which it is sufficiently confident.

Simplified Extended Lesk (SimpleExtLesk). A version of Lesk (1986). Each entry is
assigned the sense with highest term overlap between the entry’s context (words in the
sentence) and both the sense’s gloss (Kilgarriff and Rosenzweig, 2000) as well as the glosses
of its neighbors (Banerjee and Pedersen, 2003). A sense is output only if the overlap
exceeds some threshold; we used thresholds in the range of 1–20 in our experiments and
selected the best performing (see Tab. 3.3). There are many subtleties and details in the

4The data is annotated with WordNet 2.1 senses; we converted the annotations to WordNet-3.0 using
DKPro-WSD (Miller et al., 2013).

5Version 3.3.1, model englishRNN.ser.gz
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implementation of SimpleExtLesk so we used two different libraries: a Java implementation
of WordNet::Similarity (Pedersen et al., 2004),6 which we modified to accept a context string,
and DKPro-WSD (Miller et al., 2013) version 1.1.0, with lemmatization, removal of stop
words, paired overlap enabled and normalization disabled.

Degree Centrality. Proposed by Navigli and Lapata (2010). The method collects all paths
connecting each candidate sense of an entry to the set of candidate senses of the words the
entry’s context. The candidate sense with the highest degree in the resulting subgraph is
selected. We implemented this algorithm using the Neo4j library.7 We used a fixed threshold
of 1 and vary the search depth in range 1–20 to search for the best performing (see Tab. 3.3).
We used the candidate senses of all nouns and verbs in a sentence as context.

It-Makes-Sense (IMS). A state-of-the-art, publicly available supervised system Zhong
and Ng (2010) and a refined version of (Chan et al., 2007), which ranked first in the SemEval-
2007 coarse grained task. We modified the code to accept KB entries and their candidate
senses. We tested both in WordNet-2.1 and 3.0; for the later we mapped Werdy’s set of
candidates to WordNet-2.1.

Most Frequent Sense (MFS). Selects the most frequent sense (according to WordNet
frequencies) among the set of candidate senses of an entry. If there is a tie, we do not label.
Note that this procedure differs slightly from the standard of picking the entry with the
smallest sense id. We do not follow this approach because it cannot handle overlapping
entries: if we have overlapping entries we will have ids which are not related to each other
given that a set of ids is only defined for a single entry.

MFS back-off. When one of the above methods fails to provide a sense label (or provides
more than one), we used the MFS method above with a threshold of 1. This procedure
increased the performance in all cases.

Methodology. The disambiguation was performed with respect to coarse-grained sense
clusters. The score of a cluster is the sum of the individual scores of its senses (except
for IMS which provides only one answer per word); the cluster with the highest score was
selected. Our source code and the results of our evaluation are publicly available8.

The SemEval-2007 task was not designed for automatic entry recognition: for each word
or multi-word expression it provides the WordNet entry and the POS tag. We proceeded as
follows to handle multi-word entries. In the WSD step, we considered the candidate senses
of all recognized entries that overlap with the gold entry. For example, we considered the
candidate senses of entries take, breath, and take a breath for gold entry take a breath.

6http://www.sussex.ac.uk/Users/drh21/
7http://www.neo4j.org/
8http://people.mpi-inf.mpg.de/~corrogg/

http://www.sussex.ac.uk/Users/drh21/
http://www.neo4j.org/
http://people.mpi-inf.mpg.de/~corrogg/
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The SemEval-2007 task uses WordNet-2.1 but Werdy uses WordNet-3.0. We mapped
both the sense keys and clusters from WordNet-2.1 to WordNet-3.0 using DKPro. All senses
in WordNet-3.0 that could not be mapped to any cluster were considered to belong to a single
sense cluster each. Note that this procedure is fair: for such senses, the disambiguation is
equivalent to a fine-grained disambiguation, which is harder.

Results. Our results are displayed in Tab. 3.3. We ran each algorithm with the gold KB
entries provided by in the dataset (+ in column “gold entry) as well as the entries obtained by
our method of Sec. 3.3 (-). We also enabled (+) and disabled (-) the pruning steps as well as
the MFS back-off strategy. The highest F1 score was achieved by SimpleExtLesk (DKPro)
with pruning and MFS back-off: 81.18 with gold entries and 78.52 with automatic entry
recognition. In all cases, our syntactic and semantic pruning strategy increased performance
(up to +10.85 F1 points). We next discuss the impact of the various steps of Werdy in detail.

Detailed Analysis. Tab. 3.4 displays step-by-step results for DKPro’s SimpleExtLesk, for
MFS, as well as SimpleExtLesk with MFS back-off, the best performing strategy. The table
shows results when only some Werdy’s steps are used. We start from a direct use of the
respective algorithm with the gold entries of SemEval-2007 after each horizontal line, and
then successively add the Werdy steps indicated in the table.

When no gold entries were provided, performance dropped due to the increase of sense
candidates for multi-word expressions, which include the possible senses of the expression
itself as well as the senses of the entry’s parts that are themselves WordNet entries. Our entry
recognizer tends to do a good job since it managed to correctly identify all the relevant entries
except in two cases (i.e. “take up” and “get rolling”), in which the dependency parse was
incorrect. The drop in F1 for our automatic entry recognition was mainly due to incorrect
selection of the correct entry of a set of alternative, overlapping entries.

Syntactic pruning did not prune the correct sense in most cases. In 16 cases (with gold
entries), however, the correct sense was pruned. Five of these senses were pruned due
to incorrect dependency parses, which led to incorrect frame identification. In two cases,
the sense was not annotated with the recognized frame in WordNet, although it seemed
adequate. In the remaining cases, a general frame from WordNet was incorrectly omitted.
Improvements to WordNet’s frame annotations may thus make syntactic pruning even more
effective.

Semantic pruning also improves performance. Here the correct sense was pruned for 11
verbs, mainly due to the noisiness and incompleteness of our VOS repository. Without using
gold entries, we found in total 237 semantic matches between possible verbs senses and
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possible object senses (200 with gold entries). We also found that our manual annotations in
the VOS repository (see Sec. 3.6) did not affect our experiments.

The results show that syntactic and semantic pruning are beneficial for verb sense
disambiguation, but also stress the necessity to improve existing resources. Ideally, each verb
sense would be annotated with both the possible clause types or syntactic patterns in which it
can occur as well as the possible senses of its objects. Annotations for subjects and adverbial
arguments may also be beneficial.

3.8 Related Work

WSD is a classification task where for every word there is a set of possible senses given
by some external resource (as a KB). Two types of methods can be distinguished in WSD:
supervised and KB-based. A comprehensive overview of WSD systems can be found in
Navigli (2009) and Navigli (2012). An overview of related work is displayed on Tab. 3.5.

Supervised systems Supervised systems (Dang and Palmer, 2005; Dligach and Palmer,
2008; Chen and Palmer, 2009; Zhong and Ng, 2010) train a classifier to assign senses to
words, mostly relying on manually annotated data for training. Zhong and Ng (2010) is one
of the best performing methods to date. It uses a linear classifier for each word type appearing
in the training data. The system is trained on SemCor (Landes et al., 1998), DSO (Ng and
Lee, 1997) and parallel data. As features it uses the POS tags of the surrounding words (3 in
each direction), the surrounding words themselves (without stopping words) and a set of 11
collocations, which are ordered sequences of the surrounding words.

In principle, supervised systems suffer from low coverage since the training data is
usually sparse. Some authors have tried to overcome this limitation by exploiting linked
resources (like Wikipedia) as training data (Shen et al., 2013; Cholakov et al., 2014). Shen
et al. (2013) generates a repository of senses in which each sense is a Wikipedia article,
and the anchor text of the entities linked to the articles is used as contextual data for each
sense. Cholakov et al. (2014) annotates text corpora automatically with verb senses via a
pattern-based representation of the senses. The method first identifies representative patterns
for verb senses in UBY (Gurevych et al., 2012), an integrated of several lexical-semantic
resources such as WordNet, Wikipedia and FrameNet. The pattern representing each verb
context is both syntactic (via POS tags) and semantic (via types like person or location). For
instance, the sentence “But an insider told TODAY : ‘ There was no animosity.’ ” can be
generalized as “person tell location be feeling”. Once the patterns for each verb sense have
been identified, the authors label verb senses in a big text corpora by looking at occurrences
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of those patterns. This way of constructing the patterns captures somehow the syntactic and
semantic concordance between the verb and its arguments which we also exploit in Werdy in
a more direct way.

KB-based methods The second WSD approach corresponds to the so-called KB methods
(Agirre and Soroa, 2009; Navigli and Lapata, 2010; Ponzetto and Navigli, 2010; Miller et al.,
2012; Agirre et al., 2014; Moro et al., 2014). They rely on a background KB (typically
WordNet or extended versions (Navigli and Ponzetto, 2012)), where related senses appear
close to each other. KB-based algorithms often differ in the way the KB is explored. Agirre
and Soroa (2009) uses Personalized PageRank to explore WordNet and detect the most
meaningful set of word senses in a sentence. It has been shown, however, that a key point
to enhance performance is to include more semantic information into the KB (Ponzetto
and Navigli, 2010; Miller et al., 2012). Ponzetto and Navigli (2010) extends WordNet by
linking Wikipedia articles to generate a much richer semantic network. Miller et al. (2012)
increases the contextual information of the sentence by including words which co-occur with
the word context in a large corpus. Our framework fits this line of work in the sense that it
also KB-based and it enriches the background knowledge in order to enhance performance
of standard WSD algorithms.

Verb-sense disambiguation The disambiguation of nouns has received most of the at-
tention in the WSD field, achieving significant results in both supervised and KB-based
approaches. Zhong and Ng (2010) is a supervised system which was the best performing
method in the Semeval-2007 coarse grained WSD task. It achieved more than 82,3% F1 in a
coarse-grained setting for the disambiguation of nouns. Similar numbers (85,5%) have been
achieved by the KB-based approach by Ponzetto and Navigli (2010). However, verb sense
disambiguation is still an open issue. It is a more difficult task since the polysemy of verbs is
bigger that the polysemy of nouns (2.17 vs. 1.24). Even more, the distribution of verbs use
is, according to WordNet statistics, more skewed than the use of nouns. Some verb senses
are so frequent that makes them difficult to distinguish by context; i.e. a veb sense may be so
generic that it fits in almost every context. However, as stated before, understanding verbs is
important for automatic text understanding: verbs are the key to understand the relation of
the extraction and to structure the information appropriately. Dang and Palmer (2005) was a
pioneering work on verb sense disambiguation. They use a classifier to disambiguate verbs
in which the main feature are the semantic roles of the verb arguments in the clause.

Linguists have noted the link between verb senses and the syntactic structure and argument
types (Quirk et al., 1985; Levin, 1993; Hanks, 1996), and supervised WSD systems were
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developed to capture this relation (Dang and Palmer, 2005; Chen and Palmer, 2009; Dligach
and Palmer, 2008; Cholakov et al., 2014). In Dang and Palmer (2005) and Chen and Palmer
(2009), it is shown that WSD tasks can be improved with features that capture the syntactic
structure and information about verb arguments and their types. They use features such
as shallow named entity recognition and the hypernyms of the possible senses of the noun
arguments. Dang and Palmer (2005) also included features extracted from PropBank (Palmer
et al., 2005) from role labels and frames. Dligach and Palmer (2008) generated a corpus of
verb and their arguments (both surface forms), which was used to incorporate a semantic
feature to the supervised system.

In our work, we also incorporate syntactic and semantic information. Instead of learning
the relation between the verb senses and the syntactic structure, however we incorporate it
explicitly using the WordNet frames, which provide information about which verb sense
should be consider for a given syntactic pattern. We also incorporate explicitly the semantic
relation between each verb sense and its arguments using our VOS repository.

Word entry recognition To bring WSD to real-world applications, the mapping between
text and KB entries is a fundamental first step. It has been argued that the existence of multi-
word expressions imposes multiple challenges to text understanding tasks (Sag et al., 2002).
The problem has been addressed by Arranz et al. (2005) and Finlayson and Kulkarni (2011).
They find multi-word entries by matching word sequences allowing some morphological and
POS variations according to a predefined set of patterns. Our method differs in that we can
recognize words and multi-word expressions in a principled way by exploiting the syntactic
structure of the sentence., in that we can discover KB entries that appear discontinuously and
in that we do not select the correct entry but generate a set of potential entries. The selection
of the entry is jointly performed with the disambiguation.

Resources Different resources of semantic arguments for automatic text understanding
tasks have been constructed (Baker et al., 1998; Palmer et al., 2005; Kipper et al., 2008;
Gurevych et al., 2012; Nakashole et al., 2012; Flati and Navigli, 2013). In Baker et al. (1998),
Palmer et al. (2005) , Kipper et al. (2008) and Gurevych et al. (2012), the classification of
verbs and arguments is focused toward semantic or thematic roles. Nakashole et al. (2012)
uses semantic types to construct a taxonomy of binary relations and Flati and Navigli (2013)
collected semantic arguments for given textual expressions. For instance, given the verb
“break”, they extract a pattern “break ⟨body part-1⟩”. In contrast to existing resources, our
VOS repository disambiguates both the verb sense and the senses of its arguments.
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3.9 Conclusion

We presented Werdy, an unsupervised framework for word-sense recognition and disam-
biguation with a particular focus on verbs and verbal phrases. Our main contributions rely
on a principled way to recognize words and multi-word expressions in natural language text
and in a set of linguistic-based techniques to reduce the candidate set of senses for a given
verb. Our results indicate that incorporating syntactic and semantic constraints improves the
performance of verb sense disambiguation methods. This stresses the necessity of extending
and improving the available syntactic and semantic resources, such as WordNet or our VOS
repository.
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Algorithm Gold Pruning MFS threshold Verbs (clause heads) F1
Entry back-off /depth P R F1 points

Degree + - + 5 73.54 73.54 73.54
Centrality + + + 11 79.61 79.61 79.61 + 6.07

+ - - 5 73.99 71.58 72.77
+ + - 8 79.91 78.52 79.21 + 6.44

- - + 5 70.41 70.41 70.41
- + + 10 76.46 76.46 76.46 + 6.05

- - - 4 71.05 68.90 69.96
- + - 10 76.81 75.81 76.30 + 6.34

SimpleExtLesk + - + 6 77.28 75.27 76.26
(DKPro) + + + 5 81.90 80.48 81.18 + 4.92

+ - - 1 73.70 52.28 61.17
+ + - 1 81.99 64.21 72.02 + 10.85

- - + 5 74.33 72.57 73.44
- + + 5 79.30 77.75 78.52 + 5.08

- - - 1 69.85 50.54 58.65
- + - 1 78.69 62.20 69.48 + 10.83

SimpleExtLesk + - + 5 77.11 75.27 76.18
(WordNet::Sim) + + + 5 80.57 79.18 79.87 + 3.69

+ - - 1 74.82 68.98 71.78
+ + - 1 79.04 75.27 77.11 + 5.33

- - + 6 74.12 72.35 73.22
- + + 7 77.97 76.46 77.21 + 3.99

- - - 1 71.36 65.66 68.39
- + - 1 76.20 71.92 74.00 + 5.61

MFS + - - 1 76.61 74.62 75.60
+ + - 1 80.35 78.96 79.65 + 4.05

- - - 1 73.67 71.92 72.79
- + - 1 77.75 76.24 76.99 + 4.20

IMS + - + n.a. 79.60 79.60 79.60
(WordNet-2.1) + + + n.a. 80.04 80.04 80.04 + 0.44

- - + n.a. 76.21 75.05 75.63
- + + n.a. 77.53 76.36 76.94 + 1.31

IMS + - + n.a. 78.96 78.96 78.96
(WordNet-3.0) + + + n.a. 79.83 79.83 79.83 + 0.87

- - + n.a. 75.77 74.62 75.19
- + + n.a. 77.53 76.36 76.94 + 1.75

Table 3.3 Results on SemEval-2007 coarse-grained (verbs as clause heads)
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Steps Performed threshold P R F1 F1 points

SimpleExtLesk (DKPro)

Plain with gold entries 1 73.70 52.28 61.17

+ Entry Recognition 1 69.85 50.54 58.65 - 2.52
+ Syntactic Pruning 1 76.47 58.84 66.50 + 7.85
+ Semantic Pruning 1 78.69 62.20 69.48 + 2.98

+ Entry Recognition 1 69.85 50.54 58.65 - 2.52
+ Semantic Pruning 1 73.85 55.39 63.30 + 4.65

+ Syntactic Pruning 1 79.33 61.21 69.10 + 7.93
+ Semantic Pruning 1 81.99 64.21 72.02 + 2.92

+ Semantic Pruning 1 78.11 56.90 65.84 + 4.67

MFS

Plain with gold entries 1 76.61 74.62 75.60

+ Entry Recognition 1 73.67 71.92 72.79 - 2.81
+ Syntactic Pruning 1 75.77 74.14 74.95 + 2.16
+ Semantic Pruning 1 77.75 76.24 76.99 + 2.04

+ Entry Recognition 1 73.67 71.92 72.79 - 2.81
+ Semantic Pruning 1 77.09 75.43 76.25 + 3.46

+ Syntactic Pruning 1 78.46 76.94 77.69 + 2.09
+ Semantic Pruning 1 80.35 78.96 79.65 + 1.96

+ Semantic Pruning 1 79.91 78.02 78.95 + 3.35

SimpleExtLesk (DKPro) with MFS back-off

Plain with gold entries 6 77.28 75.27 76.26

+ Entry Recognition 6 74.33 72.57 73.44 - 2.82
+ Syntactic Pruning 5 76.65 75.00 75.82 + 2.38
+ Semantic Pruning 5 79.30 77.75 78.52 + 2.70

+ Entry Recognition 5 74.33 72.57 73.44 - 2.82
+ Semantic Pruning 5 78.19 76.51 77.34 +3.90

+ Syntactic Pruning 5 79.34 77.80 78.56 + 2.30
+ Semantic Pruning 5 81.90 80.48 81.18 + 2.62

+ Semantic Pruning 5 81.02 79.09 80.04 + 3.78

Table 3.4 Step-by-step results
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WSD Supervised Manual Annotated Dang and Palmer (2005);
Dligach and Palmer (2008);
Chen and Palmer (2009);Zhong and Ng (2010)

Linked Data Shen et al. (2013); Cholakov et al. (2014)
KB-based Pure KB Agirre and Soroa (2009)

Enriched resources Ponzetto and Navigli (2010); Miller et al. (2012)
Del Corro et al. (2014); Moro et al. (2014)

Table 3.5 WSD related work map and (mostly recent) example citations



Chapter 4

FINET: Context-Aware Fine-Grained
Named Entity Typing

4.1 Introduction

Named entity typing (NET) is the task of detecting the type(s) of a named entity in a given
context. For instance, given the sentence “John plays guitar on the stage”, our goal is to infer
that “John” is a guitarist, a musician and a person. This work proposes FINET, a system for
detecting the types of named entities that occur in short inputs—such as sentences or tweets—
with respect to WordNet’s super fine-grained type system (16k types of organizations, persons
and locations).

Named entity typing is a fundamental building block for many natural-language process-
ing tasks. NET is at the heart of information extraction methods for finding types for entities
in a knowledge base1 (KB) from natural-language text (Mitchell et al., 2015). Likewise,
NET aids named entity disambiguation by reducing the space of candidates for a given entity
mention. Entity types are an important resource for entity-based retrieval or aggregation
tasks, such as semantic search (Hoffart et al., 2014) or question answering (Yahya et al.,
2013). Finally, type information helps to increase the semantic content of syntactic pat-
terns (Nakashole et al., 2012) or the extractions from open information extraction (Lin et al.,
2012).

The extraction of explicit types has been studied in the literature, most prominently in
the context of taxonomy induction (Snow et al., 2006). Explicit types occur, for example,
in phrases such as “Steinmeier, the German Foreign Minister, [...]”, “Foreign Minister
Steinmeier”, or “Steinmeier is the German Foreign Minister.” These explicit types are

1In this chapter, we refer to WordNet as a type system and to a collection of entities and their types as a KB.
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often extracted via patterns, such as the well-known Hearst patterns (Hearst, 1992), and
subsequently integrated into a taxonomy. Pattern-based methods often have high precision
but low recall: Types are usually mentioned when a named entity is introduced or expected
to be unknown to readers, but often are not explicitly stated. The NET problem differs from
taxonomy induction in that (1) the type system is prespecified, (2) types are disambiguated,
and (3) types are associated with each occurrence of named entity in context.

Our FINET system makes use of explicit type extractions whenever possible. But even
when types are not explicitly mentioned, sentences may give clues to the correct type. These
clues can range from almost explicit to highly implicit. For example, in “Messi plays soccer”,
the type soccer player is almost explicit. The sentence “Pavano never even made it to
the mound,” however, only implicitly indicates that “Pavano” is a baseball player. A key
challenge in NET is to extract such implicit, context-aware types to improve recall.

One way to extract implicit types is to train a supervised extractor on labeled training data,
in which each entity is annotated with a set of appropriate types. The key problem of this
approach is that labeled training data is scarce; this scarcity is amplified for fine-grained type
systems. To address this problem, many existing systems generate training data by exploiting
KBs as a resource of entities and their types (Yosef et al., 2012). A popular approach is
to train an extractor on a corpus of sentences (e.g., on Wikipedia), in which each named
entity has been associated with all its types known to the KB. The key problem with such
an approach is that the so-obtained type information is oblivious to the context in which the
entity was mentioned. For example, in both sentences “Klitschko is known for his powerful
punches” and “Klitschko is the Mayor of Kiew,” “Klitschko” will be associated with all its
types, e.g., boxer, politician and mayor. As a consequence, the labels in the training data can
be misleading and may negatively affect both precision and recall of the learned extractors.
Moreover, such extractors are often biased towards prominent types but perform poorly on
infrequent types, and they are generally problematic when types are correlated (e.g., most
presidents are also graduates and authors).

FINET addresses the above problems by first generating a set of type candidates using
multiple different extractors and then selecting the most appropriate type(s). To generate
candidates, we make use of a sequence of extractors that range from explicit to highly implicit
type extractors. Implicit extractors are only used when more explicit type extractors fail to
produce a good type. Our extractors are based on patterns, mention text, and verbal phrases.
To additionally extract highly implicit types for a named entity, FINET makes use of word
vectors (Mikolov et al., 2013) trained on a large unlabeled corpus to determine the types
of similar entities that appear in a similar context. This extractor is comparable to the KB
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methods discussed above, but is unsupervised, and takes as candidates the types frequent
within the related entities and contexts.

After type candidates have been generated, the final step of FINET selects the subset of
appropriate types that fit the context. We leverage previous work on word sense disambigua-
tion (WSD) in this step, as well as resources such as WordNet glosses, WordNet example
sentences, and, if available, manually annotated training data.

FINET leverages ideas from state-of-the-art systems and extends them by (1) handling
short inputs such as sentences or tweets (2) supporting a very fine-grained type hierarchy, and
(3) producing types that match the context of the entity mention. Most existing systems are
unable to extract more than a couple of hundred different types. For example, Hyena (Yosef
et al., 2012), the system with the most fine-grained type system so far, focuses on a KB
frequent set of 505 types from WordNet. Hyena lacks important types such as president or
businessman, and includes soccer player but not tennis player. Instead of restricting types,
FINET operates on the the entire set of types provided by WordNet, a popular, fine-grained
type system with more than 16k types for persons, organizations, and locations.

We evaluated FINET on a number of real-world datasets. Our results indicate that FINET
significantly outperforms previous methods.

4.2 Candidate Generation

In the candidate generation phase, we collect possible types for each entity mention. We
start with preprocessing the input and subsequently apply a (i) pattern-based extractor, (ii) a
mention-based extractor, (iii) a verb-based extractor, and (iv) a corpus-based extractor. The
extractors are ordered by decreasing degree of explicitness of their extracted types.

Each extractor has a stopping condition, which we check whenever the extractor produced
at least one type. When the stopping condition is met, we directly proceed to the type selection
phase. The reasoning behind this approach is to bias FINET towards the most explicit types,
i.e., when an explicit type is found, the stopping condition generally fires. Otherwise, when
the stopping condition is not met, we enrich the set of candidate types of the extractor with
their hypernyms. In this case, we expect types to be overly specific so that we want to allow
the selection phase to be able to select a more general type. We also run subsequent extractors
when the stopping condition is not met. Tab. 4.1 displays a summary of the extractors and
their corresponding stopping conditions.

In what follows, we discuss preprocessing as well as each extractor and its corresponding
stopping condition. All so-found type candidates are passed to the candidate selection phase,
which we discuss in Sec. 4.3.
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Extractor Stopping Condition

Pattern-based (final) Always stop
Pattern-based (non-final) KB-lookup
Mention-based KB-lookup
Verb-based KB-lookup
Corpus-based ⩾ 50% of score in most

frequent ⩽ 10 types

Table 4.1 Extractors and their stopping conditions

4.2.1 Preprocessing

The preprocessing phase consists of 5 steps: (i) dependency parsing (Socher et al., 2013); (ii)
co-reference resolution (Recasens et al., 2013); (iii) named entity recognition (NER) (Finkel
et al., 2005), including the detection of coarse-grained types (i.e., person, organization,
location); (iv) clause identification (chapter 2); and (v) word and multi-word expression
recognition (chapter 3).

FINET restricts its candidate set to the hyponmys of the coarse-grained type of the
named entity recognizer. Named entities with the same coarse-grained type occurring in a
coordinating relation (e.g., “Messi and Ronaldo are soccer players”) are linked so that they
share the candidate set. Similarly, identical mentions share their candidate set (which is
reasonable in short inputs).

FINET extractors operate either on the sentence or the clause level; see the next sections.
A clause is a part of a sentence that expresses some statement or coherent piece of information
and is thus a suitable units for automatic text processing tasks (see chapter 2). Finally, we
identify multi-word explicit type mentions such as Prime Minister or Secretary of Housing
and Urban Development (see chapter 3).

4.2.2 Pattern-based extractor

Our pattern-based extractor targets explicit type mentions. Explicit type mentions are
commonly used to introduce entities when they first appear in text (“US President Barack
Obama”) or when their mention does not refer to the most prominent entity (“Barack Obama,
father of the US President”). Following previous work (Hearst, 1992), we make use of a set
of patterns to look for words or expressions that may refer to the type of a given named entity.
We refer to the so-found expressions as lexical types (e.g., “father”). Once lexical types have
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NAMED ENTITY , (modifier) NOUN (modifier) ,

appos
mod mod

(a) A syntactic pattern

NAMED_ENTITY , NOUN
(b) A regular expression pattern

Figure 4.1 Patterns capturing appositions

been identified, we collect as candidate types the types i.e., WordNet synsets–to which the
lexical type may refer (e.g., ⟨father-1⟩, . . . , ⟨father-8⟩, the eight senses of “father”).

Our extractor makes use of two types of patterns: syntactic patterns, which operate
on the dependency parse, and regular expression patterns, which operate on the input text.
Syntactic patterns are preferable in that they do not rely on continuous chunks of text and
can skip non-relevant information. However, mistakes in the dependency parse may lower
recall. To cope with these potential mistakes, we additionally include regular expressions
for some syntactic patterns. Fig. 4.1 shows an example of a syntactic pattern and a related
regular-expression pattern. Both patterns produce lexical type “president” from “Barack
Obama, president of the US,” but only the syntactic pattern applies to “Barack Obama, the
current US president.”

Tab. 4.2 gives an overview of all our patterns. Most of the patterns also have a symmetric
version (e.g., “The president, Barack Obama” and “Barack Obama, the president”), which
is not displayed. We divide our patterns into final and non-final patterns. Final patterns
generally have high precision and extract the lexical type exactly as it occurs in the text.
When a final pattern produces a lexical type, we add the corresponding types to the candidate
set and go directly to the type selection phase, i.e., we do not consider any other extractor.
For non-final patterns, however, we expect erroneous extractions and thus proceed differently.
In more detail, we perform a KB lookup for all so-found lexical types. The KB lookup,
which we describe in detail in the next section, both prunes and expands the candidate set
using a KB, and acts as a stopping condition, i.e., it decides whether to move to the next
extractor or directly to the type selection phase. FINET can also be run without using KB
lookups; see below.

We treat a pattern as non-final if it may or may not denote a lexical type (e.g., “the
president of Argentina” vs. “the city of Buenos Aires”) or if a transformation between
verbs and nouns is required to obtain the lexical type (e.g. “Shakespeare’s productions” to
“producer”). To perform transformations, we make use of WordNet’s derivationally related
forms, which connect semantically related morphological variations of verbs and nouns. For
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Pattern Example

Final patterns
Hearst I {Presidents} such as [Obama] (and) [Bush]
Hearst II {Presidents} like [Obama] (and) [Bush]
Hearst III Obama (and) other {presidents}
Hearst IV {Presidents} including [Obama] (and) [Bush]
Apposition [Obama], (the) {president}
Copular [Obama] is (the) {president}
Noun modifier {President} [Barack Obama]
Among [Joe Biden] among (other) {vice presidents}
Enough [Messi] is enough (of) a {player}
As [Messi] as {player}

Non-final patterns
Location {City} of [London]
Poss. + transf. [Shakespeare]’s {productions}
by-prep + transf. {productions} by [Shakespeare]

Table 4.2 Patterns for explicit type extraction

instance, the noun “production” is connected to the verb “produce,” which in turn is connected
to the noun “producer”. These variations can be exploited for explicit type extractions;
see Tab. 4.2. For example, we obtain the lexical type “producer” from “Shakespeare‘s
productions”. We treat such transformations as non-final because we may make mistakes
in the path. Moreover, WordNet is highly incomplete in terms of derivational forms so that
we may not be able to reach all the possible senses for “producer”. Finally, morphological
variations are insufficient in some cases. For instance, in “works by Schumann”, we cannot
reach “musician” or “artist” from “work”, but we reach “worker” and there is no synset of
“worker” that specifically denotes an artist.

4.2.3 Exploiting a knowledge base

Most of our extractors (optionally) leverage a knowledge base to (1) prune candidate types,
(2) find additional candidate types, and (3) decide whether or not to consider subsequent
extractors. To do so, we extract from a KB a repository of (entity mention, type)-pairs.2 We
use the KB conservatively, i.e., we consider KB evidence only if the extracted types match
the ones in the KB.

2We used the Yago2 KB (Hoffart et al., 2013) in our experiments. Our repository contained roughly 9M
different entity mentions and 20M (mention, type)-pairs.
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The KB is leveraged via a KB lookup. Each KB lookup takes as input an entity mention
e and a set T of candidate types found by the extractor (lexical or disambiguated). We
first replace each lexical type in T by the set of types from WordNet that can refer to the
lexical type (see previous section). Afterwards, for each type t ∈ T separately, we check
whether there is one or more matching types (e, tKB) in the KB for the given mention. Type
tKB matches t if it is either identical, a hypernym, or a hyponym of t. For each match, the
KB lookup outputs t. If tKB is a hyponym of t, we additionally output tKB, that is, a type
more specific than the one found by the extractor. We leave the decision of whether t or
tKB is a more suitable type to the type selection phase. For example, for e = “Messi” and
t = ⟨player-1⟩, we output ⟨player-1⟩ and ⟨soccer_player-1⟩ (a hyponym) with our KB.

The KB lookup is successful if it outputs at least one type. Whenever an extractor
performs a successful KB lookup, we add the resulting types to the candidate set and directly
go to the type selection phase.

A KB lookup fails if no matching type was found in the KB, i.e., the KB does not provide
sufficient information to guide type extraction. We then proceed differently: if a KB lookup
fails, we add the complete set T (with lexical types replaced by types) to the candidate set
and continue to the next extractor, i.e., we do not stop looking for additional candidate types.

As mentioned above, FINET can also be run without performing any KB lookups; the
corresponding extractors then do not have a stopping condition. In our experimental study
(Sec. 4.4), we experimented with both variants and found that KB lookups generally help.

4.2.4 Mention-based extractor

Our second extractor aims to extract type candidates from the entity mention itself. This
approach is particularly effective for organizations, which often contain the lexical type
in their name. Examples include “Johnson & Wales University,” “Republican House,” or
“Massachusetts General Hospital”.

Given an entity mention, we check if any of the words or expressions embedded in the
name corresponds to a lexical type in WordNet. If so, we consider the corresponding types
as potential candidates. For instance, for “Imperial College London”, we extract lexical
type “college” and obtain types ⟨college-1⟩ and ⟨college-2⟩ (as before, we consider only
types matching the coarse-grained type) from WordNet. Similar to our handling of non-final
patterns in the pattern-based extractor, we subsequently perform a KB lookup.

We extend the above procedure for entities tagged as location, because the set of (named-
entity) locations is quite static and known. In more detail, we assume that the KB contains
all locations and all their possible types. (Our experiments strengthened this assumption.) If
a mention of a location (e.g., “Berlin”) occurs in the repository and the above procedure did



70 FINET: Context-Aware Fine-Grained Named Entity Typing

not produce any candidates, we instead add all the corresponding types from the repository
to the candidate set (e.g., ⟨city-1⟩) and move to the type selection phase.

4.2.5 Verb-based extractor

Verbs have been widely exploited as an element to determine the types or roles of its
arguments: A verb sense imposes a restriction on the semantic type of its arguments (Quirk
et al., 1985; Levin, 1993; Hanks, 1996; Baker et al., 1998; Palmer et al., 2005; Kipper et al.,
2008). For instance, from the sentence “Ted Kennedy was elected to Congress,” we know that
Ted Kennedy is a person who can be elected. Corresponding types include ⟨representative-1⟩,
⟨representative-2⟩, or ⟨politician-1⟩. Our verb-based extractor leverages this insight to extract
candidate types based on verbs. The extractor operates at the clause level.

A simple way to infer lexical types for entities acting as subjects or objects of a clause
is nominalization, i.e., the transformation of the verb into so-called deverbal nouns (e.g.,
“play” into “player”). We exploit nominalization as follows. We apply a set of morphological
transformations to the verb (Quirk et al., 1985). The set of transformation depends on the
grammatical function of the entity, i.e., subject or object. If the entity mention acts as a
subject, we try adding the suffixes “-er,”, “-or,” and “-ant” to the verb’s lemma. If the mention
acts as an object, we use suffixes “-ee” and “-ed” instead. To obtain candidate types, we again
make use of the WordNet’s derivationally related forms (DER). In particular, we consider as
potential candidates all types referred to by one of the deverbal nouns and are connected to a
sense of the verb via the DER relation. For instance, given clause “Messi plays in Barcelona,”
we collect for “Messi” all the senses of “player” that are connected (via the DER relation) to
some sense of “play.”; here ⟨player-1⟩, ⟨musician-1⟩ and ⟨actor-1⟩.

We also explore WordNet in a way that is not restricted to morphological variations of
the verb. For instance, in sentence “John committed a crime,” “commit” is a synonym of
“perpetrate,” which in turn can be morphologically varied to “perpetrator”. We consider the
morphological variations of all synonyms of a sense of the verb. Moreover, if the named
entity is the subject of the clause, and if the clause also contains a direct object, we try to
form a new lexical type by adding the direct object as a noun modifier of the deverbal noun.
For example, from “Messi plays soccer”, we form the (potential) lexical type “soccer player”.
If the lexical type exists in WordNet, we consider the respective types as potential candidates
as well.

Another more indirect way of exploiting the semantic concordance between types and
verbs is via a corpus of frequent (verb, type)-pairs, where the type refers to possible types of
the verb’s subject or object. As stated above, the set of argument types compatible with a
verb is generally limited. For instance, “treat” is usually followed by types like ⟨condition-1⟩,
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⟨disease-1⟩, or ⟨patient-1⟩. FINET, uses the corpora of Flati and Navigli (2013) and the
VOS repository presented in chapter 3. Given a verb and an entity, we search for frequent
candidate types (depending on whether the entity acts as a subject or object). For example,
from “Messi was treated in the hospital,” we obtain ⟨patient-1⟩ in this way.

Once potential candidates have been collected, we perform a KB lookup to decide how
to proceed.

4.2.6 Corpus-based extractor

Our final extractor leverages a large unlabeled corpus to find entities that co-occur in similar
contexts. The extractor is based on the distributional hypothesis (Sahlgren, 2008): similar
entities tend to occur in similar context. For example, “Messi” and “Cristiano Ronaldo”
may both be mentioned in the context of sport or, more specifically, soccer. Thus entity
mentions similar to “Messi” in a sport context are likely to include other soccer players,
such as “Cristiano Ronaldo”. Our corpus-based extractor is related to semi-supervised KB
methods in that it propagates the types of named entity mentions that may appear in a similar
context as the entity under consideration. In contrast, however, it is fully unsupervised and
does not require manually or automatically generated training data. Our method also differs
in the way context is modeled and candidate types are generated.

Our corpus-based extractor makes use of word vectors (Rumelhart et al., 1988) trained
on a large unlabeled corpus. A word vector is a semantic representation of a phrase and
represents the semantic context in which the phrase occurs in the corpus. Phrases that are
semantically related, and thus appear in similar contexts, are close to each other in the word
vector space (e.g., with respect to cosine similarity). For instance, if “Messi” and “Cristiano
Ronaldo” tend to co-occur with a similar sets of words, their word vectors are close. As
another example, we may expect “Arnold Schwarzenegger” to be close to both other actors
but also other politicians, since his name occurs in both contexts. In our work, we use
word2vec (Mikolov et al., 2013), which provides a model trained on Google News to predict
related words or phrases for a query, which is specified as a set of phrases. Given an integer
k, word2vec outputs the set of k phrases that are most similar to the query.

Our corpus-based extractor uses (1) the input sentence to construct a set of relevant
queries and (2) the word2vec query results and a KB to find candidate types. To construct
a query for a given entity mention, we focus on the relevant part of the sentence, i.e., the
part that is directly related to the entity. The relevant part consists of the clause in which the
entity occurs as well as all subordinate clauses that do not contain another entity mention.
Since word2vec is most effective when queries are short, we construct a set of small queries,
each consisting of the named entity mention and some context information. In particular,
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we construct a query for each noun phrase (of length at most 2) and for each other entity
mention in the relevant part of the sentence. Moreover, if the named entity occurs as subject
or object, we also take the corresponding verb and the head of the other object or subject as
context. For example, the set of queries for “Maradona expects to win in South Africa” is
{“Maradona”, “South Africa”} and {“Maradona”, “expect”, “win”}.

For each query, we retrieve the 100 most related words or phrases along with their
similarity score and union the results. We filter them using our KB of (entity mention,
type)-pairs and retain only those phrases that correspond to entity mentions (with the correct
coarse-grained types). Tab. 4.3 shows the top-15 results for query {“Maradona” “South
Africa”} of type person as well as a subset of their types (assuming a correct and complete
KB). We then enrich each mention by the set of their possible types from the KB. Here we
exclude widespread but irrelevant implicit types such as ⟨male-1⟩, ⟨female-1⟩, ⟨adult-1⟩,
⟨commoner-1⟩, ⟨friend-1⟩, or ⟨alumnus-1⟩. We also include the types corresponding to the
entity mention in the KB (with score 1). If there is sufficient evidence that some of the
so-obtained types are most prominent, we take these types as a candidate mention. In our
example, all of the top-15 persons have type ⟨coach-1⟩, which is a strong indication that
Maradona may also be of type ⟨coach-1⟩ in our example sentence. We select prominent types
as follows: we traverse the result list until we collect 50% of the total score of all results. We
take all so-collected types as candidates. If no more than 10 different types were added this
way, we directly go to the type selection phase. Otherwhise, we add all types to the candidate
set.

4.3 Type Selection

The type selection phase selects the most appropriate type from the set of candidates of a
given named entity. We use techniques originally applied for WSD, but adapt them to our
setting. In more detail, WSD aims to disambiguate a lexical phrase (e.g., a noun or verb) with
respect to a type system as WordNet; e.g., from “player” to ⟨player-1⟩. The main difference
between classic WSD and our type selection method is that our goal is to decide between a set
of types for an entity mention; e.g., from “Messi” to ⟨soccer_player-1⟩. Our type selection
step can be used as-is for all inputs; it is not trained on any domain- or corpus-specific data.

4.3.1 Obtaining context

In essence, all WSD systems take a set of candidate types and contextual information as
input, and subsequently select the most appropriate type. Such methods are thus almost
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Mention of person Type

“Diego Maradona” ⟨coach-1⟩, . . .
“Parreira” ⟨coach-1⟩, . . .
“Carlos Alberto Parreira” ⟨coach-1⟩, . . .
“Dunga” ⟨coach-1⟩, . . .
“Carlos Parreira” ⟨coach-1⟩, . . .
“Carlos Dunga” ⟨coach-1⟩, . . .
“Mario Zagallo” ⟨coach-1⟩, . . .
“Zagallo” ⟨coach-1⟩, . . .
“Beckenbauer” ⟨coach-1⟩, . . .
“Jose Pekerman” ⟨coach-1⟩, . . .
“Lavolpe” ⟨coach-1⟩, . . .
“Joel Santana” ⟨coach-1⟩, . . .
“Alberto Parreira” ⟨coach-1⟩, . . .
“Ephraim Shakes Mashaba” ⟨coach-1⟩, . . .
“Tele Santana” ⟨coach-1⟩, . . .

Table 4.3 Top-15 persons from word2vec for query {“Maradona”, “South Africa”}

directly applicable to our problem. The key challenge lies in the construction of candidate
types, which we discussed in Sec. 4.2, and in the construction of context, which we discuss
next. For each entity, we consider entity-oblivious context (from the input sentence) as well
as entity-specific context (using lexical expansions).

We take all words in the sentence as entity-oblivious context (shared by all entities in the
sentence). To construct entity-specific context, we make use of lexical expansions, which
have been successfully applied in WSD (Miller et al., 2012). Its goal is to enrich context
information to boost disambiguation accuracy. In our case, lexical expansions additionally
help to differentiate between multiple entities in a sentence. We construct the entity-specific
context using word vectors trained from a large unlabeled corpus. As in the corpus-based
extractor, we construct a set of queries for the entity mention. In contrast to the corpus-
based extractor, we take as context all so-obtained words that do not correspond to a named
entity. For instance, the entity-specific context for the entity mention “Maradona” for query
“Maradona South_Africa” is: “coach”, “cup”, “striker”, “midfielder”, and “captain”. The full
context for “Maradona” in “Maradona expects to win in South Africa” additionally includes
the entity-oblivious context “expects”, “win”, “South Africa”.
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4.3.2 Selecting types

WSD systems fall into two classes: unsupervised, which rely on background knowledge
such as WordNet and differ in the way this knowledge is explored (Ponzetto and Navigli,
2010), and supervised which require training data (Zhong and Ng, 2010). Here we take a
combination of both approaches, i.e., we leverage WordNet and manually annotated data.

We train a Naive Bayes classifier to select the most appropriate type given its context.
As described above, we represent context by a bag of words, each lemmatized. This simple
form of context allows us to automatically generate training data from WordNet (as well as
using manually labeled training data). Since WordNet provides useful information for each
of the 16k relevant types, this approach combats the data sparsity problem that accompanies
supervised systems. We construct appropriate context for each individual WordNet type. The
context consists of all words appearing in the type’s gloss and the glosses of its neighbors,
similar to Extended Lesk (Banerjee and Pedersen, 2003). We also include for each type the
neighbors from Ponzetto and Navigli (2010) and the corresponding verbs from the (verb,
type)-repository in chaper 3. Finally, we add all words in sentences containing the type in
SemCor3 (Landes et al., 1998) and Ontonotes 5.0 (Hovy et al., 2006).

We trained a separate classifier for each of the coarse-grained types using the above
training data, e.g., one classifier that selects a fine-grained type for only persons. To train
the classifier, we create a single training point for each corresponding WordNet type (the
target variable) and use the type’s context as features. To map the coarse-grained types
from our NER system to WordNet, we considered as persons all descendants of ⟨person-1⟩,
⟨imaginary being-1⟩, ⟨characterization-3⟩, and ⟨operator-2⟩ (10584 in total); as locations all
descendants of ⟨location-1⟩, ⟨way-1⟩, and ⟨landmass-1⟩ (3681 in total); and as organizations
all descendants of ⟨organization-1⟩ and ⟨social group-1⟩ (1968 in total). This approach
of handling coarse-grained types suffers to some extent from WordNet’s incompleteness,
esp. with respect to persons and organizations. For instance, phrase “sponsored by Coca-Cola”
implies that “Coca-Cola” is a “sponsor,” but according to WordNet, only persons can be
sponsors. Nevertheless, this approach worked reasonably well in our experiments.

4.4 Experiments

We conducted an experimental study on multiple real-word datasets to compare FINET with
various state-of-the-art approaches. FINET is used as-is; it does not require training or tuning

3http://web.eecs.umich.edu/~mihalcea/downloads.html
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for any specific dataset. All datasets, detected types, labels, and our source code are publicly
available.4

4.4.1 Experimental Setup

Methods. We compare FINET to Hyena and Pearl, two recent systems for fine-grained
NET.

Hyena (Yosef et al., 2012). Hyena is a representative supervised NET method that uses a
hierarchical classifier. The features of the classifier include the words in the named entity
mention, the words in the sentence and paragraph of the mention, as well as part-of-speech
tags. Hyena performs basic co-reference resolution and marks entity mentions connected to
a type in the KB using a binary feature. Similar to Ling and Weld (2012), Hyena is trained
on Wikipedia mentions, each being annotated with its corresponding WordNet types from
YAGO. Hyena’s type system is restricted to 505 WordNet types from the top categories
⟨artifact-1⟩, ⟨event-1⟩, ⟨person-1⟩, ⟨location-1⟩, and ⟨organization-1⟩. Yosef et al. (2012)
compared Hyena to a number of previous systems (Fleischman and Hovy, 2002; Rahman
and Ng, 2010; Ling and Weld, 2012) and found that Hyena outperformed these systems. In
our experiment, we used Hyena via its web service API (Yosef et al., 2013).

Pearl (Nakashole et al., 2013). Pearl is a semi-supervised NET system that leverages a
large repository of relational patterns (Nakashole et al., 2012), which consists of roughly
300k typed paraphrases. Subjects and objects of each pattern carry type information. Pearl
types named entity mentions by the most likely type according to its pattern database. Pearl’s
type system is based on around 200 “interesting” WordNet types. We ran Pearl in its hard
setting, which performed best; the hard setting additionally makes use of (disjoint) groups of
types that are unlikely to appear together in a sentence.

FINET. We ran FINET in two configurations: (1) using the KB lookup described in
Sec. 4.2.3, (2) without using the KB lookup. This allows us to estimate the extent to which
referring to a KB helps FINET for typing the more explicit types. Note that the corpus-based
extractor makes use of the KB in both configurations.

Datasets. We used three different datasets in our experiments. Our datasets represent
different real-world use cases. We created two new datasets (New York Times and Twitter)
and use as a third dataset a subset of the CoNLL data, which provides gold annotations for
coarse-grained NER types. We did not consider datasets such as in FIGER (Ling and Weld,
2012) or BBN (Weischedel and Brunstein, 2005) used in previous studies because these

4http://dws.informatik.uni-mannheim.de/en/resources/software/finet/

http://dws.informatik.uni-mannheim.de/en/resources/software/finet/
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dataset are generally not suitable for fine-grained typing. The granularity of the type systems
from the datasets is not as fine grained as it is required for this evaluation.

New York Times. The New Times Dataset consists of 500 random sentences from the New
York Times corpus (Sandhaus, 2008), year 2007; we selected only sentences that contained
at least one named entity. We extracted named entity mentions and their coarse-grained types
using Stanford CoreNLP 4.4.1.

CoNLL. We sampled 500 sentences from the CoNLL 2003 dataset (Tjong Kim Sang and
De Meulder, 2003), a collection of newswire articles with manually annotated entities and
their coarse-grained labels. We directly used the provided annotations in our evaluation. The
sentences in this dataset tend to be rather short and sometimes non-verbal (e.g., “Jim Grabb (
U.S. ) vs. Sandon Stolle ( Australia )”). Most entities are prominent, i.e., we expect these
entities to be present in our KB (as well as the KB used by existing methods).

Twitter. We sampled 100 tweets from recent tweets using Twitter API. We collected the
first 100 tweets retrieved containing named entity mentions.

Type system. FINET’s type system consists of more than 16k types with top categories
persons, locations and organizations. We used the mapping between these top categories
and WordNet types described in Sec. 4.3.2. Hyena (505 most frequent WordNet types) and
Pearl (200 “interesting” WordNet types) consider a significantly smaller set of types. To
compare the performance across different granularities, we classified each type as either
coarse-grained (CG), fine-grained (FG) or super fine-grained (SFG). The CG types were
⟨artifact-1⟩, ⟨event-1⟩, ⟨person-1⟩, ⟨location-1⟩ and ⟨organization-1⟩. The FG types were
those included in Pearl (Nakashole et al., 2013). All remaining types were considered SFG.

Labeling. All type extractions by all systems were independently labeled by two labelers.
We adapted a pessimistic view, i.e., we considered an extraction correct if it was labeled
correct by both labelers; otherwise we considered the extraction incorrect. The Cohen’s
kappa measure ranged 0.54–0.86, which indicates a substantial inter-annotator agreement.

4.4.2 Results

Description of Tab. 4.4. Our results are summarized in Tab. 4.4. We ran each method on
each dataset, focusing on either CG, FG or SFG types. When a method did not produce a
type of the considered granularity but a more fine-grained type instead, we selected its closest
hypernym. For each configuration, the table shows the number of named entities for which
types have been extracted, the total number of extracted types (more than one distinct type
per named entity for some methods), the total number of correct types, and the precision of
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System Coarse-Grained (CG) Fine-Grained (FG) Super Fine-Grained (SFG) Distinct Avg. Depth Cohen’s

Enti- Total Correct Enti- Total Correct Enti- Total Correct types FG SFG kappa
ties types types (P) ties types types (P) ties types types (P)

New York Times (500 sentences)

FINET 992 992 872 616 631 457 319 329 233 191 5.96 7.25 0.60
(87.90) (72.42) (70.82)

FINET (w/o KB l.) 992 992 872 598 613 436 294 304 204 174 5.98 7.18 0.58
(87.90) (71.13) (67.11)

Hyena 895 1076 779 770 1847 522 518 775 160 127 5.79 6.98 0.74
(72.40) (28.26) (20.65)

Pearl (hard) 15 15 5 2 2 0 – 0 – 1 – – 0.54
(33.33) (–) (–)

CoNLL (500 sentences)

FINET 1355 1355 1355 1074 1086 876 668 679 510 136 6.09 7.38 0.62
(1.0) (80.66) (75.11)

FINET (w/o KB l.) 1355 1355 1355 1075 1087 869 661 672 498 134 6.06 7.35 0.62
(1.0) (79.94) (66.13)

Hyena 1162 1172 1172 1064 2218 1329 719 944 268 103 5.89 6.57 0.69
(1.0) (59.92) (28.39)

Pearl (hard) 18 18 18 8 11 5 – – – 7 5.6 – 0.74
(1.0) (45.45) (–)

Twitter (100 tweets)

FINET 135 135 123 103 104 69 54 54 33 40 6.25 7.64 0.58
(91.11) (66.35) (61.11)

FINET (w/o KB l.) 135 135 123 104 105 65 56 56 30 40 6.14 7.6 0.55
(91.11) (61.90) (53.57)

Hyena 125 146 105 117 280 75 91 129 21 42 6.11 6.19 0.67
(71.91) (26.79) (16.28)

Pearl (hard) 10 10 5 3 4 1 – – – 3 6 – 0.86
(50.00) (25.00) (–)

Table 4.4 Summary of results

each method (P). The number of named entities for which types have been found and the
total number of correct extractions can be seen as a loose measure of recall. In general, it
is difficult to estimate recall directly for FG and SFG types because some entities may be
associated with multiple types, and some with no FG type. To gain more insight into the
extracted types, we also show the number of correct distinct types that have been extracted,
and the average depth (shortest path from ⟨entity-1⟩ in WordNet) for both correct FG and
correct SFG types. Finally, we list the Cohen’s kappa inter-annotator agreement measure for
each method.

Discussion. First note that Pearl extracted significantly fewer types than any other system,
across all configurations. Pearl does not support SFG types. For CG and FG, we conjecture
that Pearl’s pattern database did not reflect well the syntactic structure of the sentences in our
datasets so that often no match was found. In fact, Pearl’s pattern set was generated from
Wikipedia; its patterns may be less suitable for our datasets. This finding strengthens the
case for the use of heterogeneous sources in semi-supervised methods.
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Hyena performed better than Pearl and in many cases extracted the largest number of
types. This is because Hyena tended to extract multiple types per named entity and, in almost
all cases, provided at least one FG type. This more recall-oriented approach, as well as its
context-unaware use of supervision, significantly reduced the precision of Hyena so that a
large fraction of the extracted types were incorrect.

FINET had significantly higher precision across all settings, especially for SFG types,
for which FINET achieved almost three times more precision than Hyena. One reason for
this boost is that FINET is conservative: We provide more than one type per named entity
only if the types were explicit (i.e., come from the pattern-based extractor). In all other cases,
our type selection phase produced only a single type. FINET extracted the largest number of
correct SFG types on each dataset. Hyena extracted more FG types, but with a significantly
lower precision. The average depth of correct FG and SFG types in FINET was higher than
that of Pearl and Hyena, FINET also tended to use more distinct correct types (191 in NYT
vs. 127 for Hyena). Again, this more fine-grained typing stemmed from FINET’s use of
multiple extractors, many of which do not rely on supervision.

Note that FINET also has higher precision for CG types than Hyena. As described earlier,
FINET makes use of the Stanford NER tagger to extract CG types (except in CoNLL, were
we used the provided manual labels), and respects these types for its FG and SFG extractions.
Hyena has lower precision for CG types than FINET because it sometimes outputs multiple
CG types for a single named entity mention. Pearl does not make use of Stanfords NER
tagger to extract CG types, but uses its pattern database instead. To ensure a fair comparison,
we indirectly used the gold labels for CoNLL for Pearl and Hyena by discarding all produced
FG and SFG types with an incorrect CG type.

FINET’s extractors. Tab. 4.5 shows individual influence of each of FINET’s extractors;
here we used the NYT dataset with our full type system. The table shows the number of
entities typed by each extractor and the precision of the resulting type after type selection. The
mention-based extractor was the most precise and also fired most often; this was mainly due
to locations. The pattern-based extractor also had a good precision and tended to fire often.
The first three extractors, which focus on the more explicit types, together generated more
than half of the extracted types; this indicates that explicit type extractors are important. There
were also a substantial fraction of implicit types, which were covered by our corpus-based
extractor. The verb-based extractor had lowest precision, mostly because of the noisiness and
incompleteness of its underlying resources (such as the (verb,type)-repository). In fact, we
expect overall precision to increase if this extractor is removed. However, this would hinder
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Last used extractor Entities P

Pattern-based 180 71.11
Mention-based 219 82.65
Verb-based 47 48.94
Corpus-based 205 64.39

Table 4.5 Per-extractor performance on NYT (all types)

FINET to infer types from verbs. Thus instead of removing the extractor, we believe a better
direction is to conduct more research into improving the underlying resources.

Error analysis. One major source of error for FINET were incorrect coarse-grained labels.
We found that when CG labels were correct (by Stanford NER), the precision of FINET for
FG types increased to more than 70% for all datasets. When FG labels were correct, the
precision of SFG labels exceeded 90%.

Incompleteness of and noise in our underlying resources also affected precision. For
example, some types in WordNet have missing hypernyms, which reduced recall; e.g.,
sponsor in WordNet is a person but cannot be an organization. WordNet is also biased
towards US types (e.g., supreme court only refers to the US institutions). Our repositories of
verbs and their argument types are incomplete and noisy as well. Finally, errors in the KB
affected both KB lookups and our corpus-based extractor. One example of such errors are
temporal discrepancies; e.g., in the sports domain, a person who used to be a ⟨player-1⟩ may
now be a ⟨coach-1⟩. The KB types are also noisy, e.g., many soccer players in Yago2 are
typed as ⟨football_player-1⟩ and the United Nations is typed as a ⟨nation-1⟩.

Finally, the type selection phase of FINET introduced mistakes (i.e., even when the
correct type was in the candidate set, type selection sometimes failed to select it). This
is especially visible for our verb-based extractor, which may produce a large number of
nominalizations and thus make type selection difficult.

Hyena mainly suffered from the general problems of supervised systems for NET. For
instance, since ⟨graduate-1⟩ or ⟨region-1⟩ are highly frequent in the KB, many persons
(locations) were incorrectly typed as ⟨graduate-1⟩ (⟨region-1⟩). Errors in the KB also
propagate in supervised system, which may lead to “contradictory” types (i.e., an entity being
typed as both ⟨person-1⟩ and ⟨location-1⟩).
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4.5 Related Work

Taxonomy Induction and KB construction The NET problem is related to taxonomy
induction (Snow et al., 2006; Wu et al., 2012; Shi et al., 2010; Velardi et al., 2013) and KB
construction (Lee et al., 2013; Mitchell et al., 2015; Paulheim and Bizer, 2014), although
the goals are different. Taxonomy induction methods aim to produce or extend a taxonomy
of types, whereas KB construction methods aim to find new types for the entities present
in some KB. In both cases, this is done by reasoning over a large corpus and each distinct
entity is assigned a type. Those methods do not type each occurence of the entity but try
to find measures to determine the best fitting type for them according to all the occurences
in the corpus. In contrast, we are interested in typing each named entity mention individu-
ally according to each particular context in which it occurs using an existing type system.
Nevertheless, FINET draws from ideas used in taxonomy induction or KB construction.

Existing systems are either based on patterns or the distributional hypothesis. In a pattern
based approach, the system uses a set of fixed manually crafted or learned patterns to perform
the extractions. Patterns gather types for each entity and a general measure (e.g., frequency)
is used to determine which types are the most appropriate. In contrast, the distributional
hypothesis, states that semantically related terms tend to occur in similar context. Co-
occurency is the main aspect to assign types to entities in a distributional hypothesis setting.
These two approaches are discussed and compared in Shi et al. (2010). In FINET, we make
use of patterns (such as the ones of Hearst (1992)) in most of our extractors, and of the
distributional hypothesis in our corpus-based extractor.

Open domain class extraction Open domain class extraction has recently gained signifi-
cant attention (Pasca, 2013). It tends to infer lexical types for entities without a predefined
type system, mostly from user intended input like search query logs (e.g. “List of US
presidents”). These classes are constructed from a noun and a set of modifiers (e.g., “cars”,
“electric cars”, “electric cars of Germany”), where the root is likely to correspond to a Word-
Net type. FINET shares characteristics with these systems in the sense that our explicit
extractors try to construct the most specific lexical type for the entity, which is only latter
mapped to the WordNet type hierarchy.

Open Information Extraction In the context of open information extraction, Yahya et al.
(2014) developed a pattern-based semi-supervised method that attempts to extract proposi-
tions such as “president”(“Barack Obama”, “US”), in which the relation can be seen as a
type. None of the elements in the proposition are disambiguated. FINET differs in that it
supports implicit types, and produces disambiguated types.
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Named entity recognition NER is the task of recognizing named entities in natural lan-
guage text (Nadeau and Sekine, 2007). NER is a task which has achieved a significant
performance in terms of precision and recall. A number of tools are openly available for
NER. Finkel et al. (2005), for instance, is a CRF-based system which recognize named
entities in raw text and classifies them according to a set of coarse grained types (e.g., person,
location, organization, etc) with high performance (ca. 80-90% F1). We use this tool to
recognize and type entities with their coarse-grained types with a precision of around 90%
across datasets.

Semi-supervised NET systems A number of NET systems have been proposed in the
literature specifically regarding fine grained typing. These systems generally make use of
a predefined type hierarchy. Lin et al. (2012) is a semi-supervised system developed in
the context of open information extraction which uses relational patterns to propagate type
information from a KB to entity mentions acting as subject. This work is not restricted to
named entities but focus on entities in general. It first recognize entities from noun phrases
via a classifier, whose main features try to capture the time frame in which the entity occurs.
The assumption is that usage patterns between unlikable entities and non-entities can be
identified across time; patterns used for entities do not vary accoss time as well as patterns
used for non-entities. The idea is that noun phrases from old text corpora that cannot be linked
to a KB tend to be non-entities. Therefore, entities and non-entities can be characterized
via patterns in old corpora. Finally, once the classifier has recognized an unlikable entity,
types are propagated from known entities via relational patterns. Each linkable entity is
characterized via relational patterns occurring in their Wikipedia page. So if an unlikable
entity occurs in similar patterns to a linkable entity, types from Freebase are propagated.

Similarly, Pearl (Nakashole et al., 2013), another semi-supervised system, is based on a
corpus of typed relation patterns (Nakashole et al., 2012) for around 200 WordNet classes
extracted from Wikipedia sentences containing YAGO named entities. Each relational pattern
links subject and object entity types. The idea is that given a pattern, if the pattern is in the
repository the subject and objects entities are typed according to the information provided by
the typed pattern in the repository. Compared to Lin et al. (2012), Pearl can type entities not
only in the subject but also in the object of the relation. Due to its pattern-based design Pearl
tends to have low recall.

Supervised NET systems An alternative approach is taken by supervised methods, which
train classifiers based on linguistic features (Fleischman and Hovy, 2002; Rahman and Ng,
2010; Ling and Weld, 2012). Both Hyena (Yosef et al., 2013) and FINGER (Ling and Weld,
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2012) use Wikipedia and a KB to generate automatic training data, in which each named
entity is annotated according to its types in the KB. Hyena uses YAGO as a KB (type system
is based on WordNet) while FINGER makes use of Freebase (Bollacker et al., 2008).

Hyena is implemented as a top-down hyerarchical classifier. It starts from the top
categories and advances down in the hyerarchy accorrding to a threshold which indicates if
the type should be further specified. Hyena relies on features such as the surrounding words
(both in the sentence and in the paragraph) where the entity occurs and POS tags. It also
incorporates a feature which indicates if the entity mention is assciated in YAGO to a specific
type. Hyena is the most fine-grained type system so far with a set of 505 WordNet types.
This subset is selected according to the prominence of the types. However, it lacks important
types such as president or businessman, and includes soccer player but not tennis player.

FINGER trains a CRF which uses as features the tokens of the entity mention, the POS
tags, the syntactic dependencies of the head of the entity mention, the Reverb relational
pattern involving the mention, among others. FINGER type system consists of 112 freebase
types organized in a hierarchy.

In contrast to supervised or semi-supervised FINET is less reliant on a KB or training
data, which improves both precision (no bias against KB types) and recall (more fine-grained
types supported). FINET is to date the system using the most fine-grained types. FINET
operates on the the entire set of types provided by WordNet, with more than 16k types for
persons, organizations, and locations.

Word Sense Disambiguation Our type selection phase is based on WSD (Navigli, 2012),
a classification task where every word or phrase is disambiguated against senses from some
external resource such as WordNet. Supervised WSD systems (Dang and Palmer, 2005;
Dligach and Palmer, 2008; Chen and Palmer, 2009; Zhong and Ng, 2010) use a classifier to
assign such senses, mostly relying on manually annotated data. KB methods as Agirre and
Soroa (2009), Ponzetto and Navigli (2010), Miller et al. (2012) and Agirre et al. (2014) or
the one presented in chapter 3 make use of a background KB instead. For a deeper treatment
of WSD related work refer to the related work section on Chapter 3.

4.6 Conclusion

We presented FINET, a system for fine-grained typing of named entities in context. FINET
generates candidates using multiple extractors, ranging from explicitly mentioned types to
implicit types, and subsequently selects the most appropriate type. Our experimental study
indicates that FINET has significantly better performance than previous methods. FINET
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would benefit from the improvement of the underlying resources specially those concerned
with the verb-based extractor.





Chapter 5

Conclusion and Future Directions

This work is centered on the initial stages of a bottom-up perspective to automatic text
understanding. Conceptually, the goal of automatic text understanding is to generate a system
that replicates human text understanding capabilities. In our bottom-up perspective, automatic
text understanding can be thought of as a set of interleaved tasks which aim to construct a
computer-based knowledge-base from natural language text. The knowledge-base, which is
conceived as a set of computer-readable facts, should ideally capture all the information in
the original text.

Under this vision, the tasks in the pipeline build upon each other, and each subsequent
task achieves more semantic understanding with respect to the previous one, increasing the
“understanding degree” and opening-up the set of possible end-user applications that can be
developed. The complexity (or the intelligence) of the possible applications increases as the
semantic information gets deeper. It could also be said that each application has a specific
need in terms of the amount of semantic information (or “understanding degree”). The idea is
that this computer-readable semantic information constitutes the knowledge available to the
machine, which in addition to certain reasoning capabilities generate applications serving the
most varied purposes like, for example, keyword search, semantic search, question answering
or dialogue systems to mention just a few.

In this work we focus on the initial stages of this automatic text understanding pipeline.
Open information extraction, word entry recognition and disambiguation, and named entity
typing are fundamental building blocks to recognize textual expressions of facts in natural
language text, and unveil the fundamental semantics of its key components. They can also
serve specific end-user applications and constitute a valuable input for other tasks in the
pipeline performing deeper text understanding.

Specifically, we contribute with three methods: ClausIE, Werdy and FINET. As a general
concept, the methods respect three postulates that, we believe, should be respected by any
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text understanding task: they are mostly unsupervised, domain independent and based on
linguistic principles. Regarding this last element our hypothesis is that as language already
entails a systematic way of expressing information, linguistic knowledge should play an
important role in any automatic text understanding task.

Our first method, ClausIE, is an open information extraction system. In a bottom-up
approach, open information extraction can be seen as the first step towards any automatic
text understanding task. It attempts to identify propositions (i.e. a textual expression of a
potential fact) in text and represent them in an amenable way for computers. Propositions
can be used as input for tasks such as structured search, relation or event extraction, semantic
role labeling, knowledge-based construction, among others.

ClausIE aims to discover propositions in text through a set of basic linguistic principles.
In contrast to previous approaches, the method does not rely on any manual or automatic
training data, and it conceptually separates the recognition of the information from its
materialization. ClausIE achieves significantly higher precision and recall than previous open
information extraction methods. As it is fundamentally based on deep syntactic analysis of
the sentence, it is reasonable to assume that as long as dependency parsing techniques became
more accurate and faster (something in principle expected), ClausIE will also become more
accurate and scalable.

Regarding future directions, the natural next step for ClausIE would be to achieve more
flexibility in the proposition generation phase. Allowing tunable expressions for relations
would make it useful for specific applications which require specific relation forms. Also,
allowing shorter arguments or even to allow the user to focus on some specific arguments
would be an interesting improvement. All these elements would make the system more
customizable and therefore more user-friendly. Another possible direction would be to enrich
the non-verb mediated proposition extractors and to extract propositions by reasoning directly
from textual data (e.g. the pattern and verb based extractors from FINET, without the type
selection step).

Our second contribution, Werdy, provides a principled method to recognize words
(and multi-word expressions) and disambiguate verbs, a key component of a relation in
a proposition. Recognizing words or multi-word expressions is the first step to word sense
and named entity disambiguation, or any task requiring to recognize the words or phrases
present in natural language text. Regarding the disambiguation of the verb, understanding
the verb sense can be useful in tasks such as relation extraction, entity typing, semantic role
labeling, discourse parsing, etc.

Werdy recognizes words by working at the syntactic level, avoiding heuristics that usually
rely on continuous text fragments. For the disambiguation part, Werdy makes use of the
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verb context and a background dictionary. To map words to senses, Werdy selects the set
of candidate senses for a verb according to the syntactic or semantic context in which the
verb appears. Our experiments indicate that incorporating Werdy as a preprocessing task
improves the performance on existing disambiguating methods in standard disambiguation
tasks.

The natural future direction to improve Werdy is to work on its underlying resources,
like WordNet and, more importantly, the VOS repository. Improving WordNet frames would
have a direct impact on the syntactic pruning step. WordNet frames are currently a mix of
syntactic and semantic frames but a bit imprecise at times. Mapping WordNet frames to
clause types, for instance, would reduce the ambiguity of the current frames and the loss in
performance which results from the arbitrary mapping between WordNet frames and clause
types. On the other hand, making the VOS repository more complete would have a direct
impact on Werdy performance via the semantic pruning step. First, by reducing mistakes
arising from this incompleteness and second, by increasing its pruning power.

In our third method, FINET, we type named entities. A named entity is together with
the verb a key component in a proposition. Entity types, are important to understand the
semantics of a named entity. Entity types may be useful to prune the set of candidates in
named entity disambiguation tasks, for relation extraction or relation clustering, allowing
generalizations across propositions. Entity types are also relevant in end-user applications
such as semantic search or question answering.

FINET, unlike previous approaches, aims to select the type of the entity which is closer
to the context where it occurs. FINET is designed through a set of type extractors ranging
from explicit to implicit extractors. The idea is to bias the system to select types which are
as close to the context as possible. FINET exploits rules on how entity types are expressed
in language. It also uses the most fine-grained type system so far with more than 16k types
for persons, organizations and locations. FINET achieves high precision outperforming
state-of-the-art methods on real-world datasets and it provides more fine-grained types that
are also closer to the entity mention context.

FINET would benefit from improvements in both ClausIE and Werdy. In the first case,
ClausIE determines the entity context. In the second, the boost in precision may have a big
impact through the verb-based extractor which currently has a lower precision with respect
to the other extractors. FINET would also benefit with improvements on the type selection
step, mainly by enriching the context information of each synset. Furthermore, a better type
description in the underlying knowledge-base would help in the corpus-based extractor but
also in the other extractors which use a knowledge-base-lookup.
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All our methods should not be thought as completely independent tasks but as part of
the text understanding pipeline we have previously described. One method builds upon the
other as we move to the higher end of the pipeline. Following ClausIE, both methods Werdy
and FINET work at clause level. Werdy also requires the clause structure both to recognize
word entries and in its syntactic pruning step. In FINET, a clause defines the scope in which
the patterns apply, it intervenes in the nominalization of the verb and it also defines the
contextual scope of the named entities. Finally, FINET also incorporates Werdy principles to
recognize the words and multi-word expressions, and to exploit the interaction between a
verb and its arguments. FINET also makes use of Werdy’s VOS repository.

Overall, this work presented methods covering three fundamental building blocks of
a bottom-up text understanding pipeline, aiming to provide strong foundations for deeper
understanding tasks.
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