
Universität des Saarlandes

Naturwissenschaftlich-Technische Fakultät I

Fachrichtung Informatik

Abstracting Cryptographic

Protocols

Esfandiar Mohammadi

Dissertation

zur Erlangung des Grades

des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken

Eingereicht: Oktober 2014

Thesis for obtaining the title of Doctor of Natural Sciences of the Faculties of Natural
Sciences and Technology of Saarland University

Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-
Technischen Fakultäten der Universität des Saarlandes

Reporters / Berichterstattende

Prof. Dr. Michael Backes (Universität des Saarlandes & MPI-SWS)

Prof. Dr. Dominique Schröder (Universität des Saarlandes)

Prof. Dr. Dennis Hofheinz (Karlsruher Institut für Technologie)

Dean / Dekan

Prof. Dr. Markus Bläser

Examination Board / Prüfungsausschuss

Prof. Dr. Markus Bläser, chair (Universität des Saarlandes)

Prof. Dr. Michael Backes (Universität des Saarlandes & MPI-SWS)

Prof. Dr. Dominique Schröder (Universität des Saarlandes)

Prof. Dr. Dennis Hofheinz (Karlsruher Institut für Technologie)

Giancarlo Pellegrino, PhD

Date of the Colloquium / Tag des Kolloquiums

29 June 2015

Copyright c© 2014-2015 Esfandiar Mohammadi. All rights reserved.

ii

Zusammenfassung

Kryptographische Protokolle haben den Zweck die Sicherheit von IT Systemen zu härten,
allerdings sind diese Protokolle nur dann wirksam, wenn sie sorgfältig in ein System
eingearbeitet werden. Da kryptographische Sicherheitsbeweise, eine Standardtechnik für
Sicherheitsbeweise, inhärent komplex und fehleranfällig sind, gibt es erfolgreiche Ansätze
zur modularen Abstraktion von kryptographischen Protokollen.

Die vorliegende Arbeit analysiert die Fehlerfreiheit von zwei Arten von Abstraktionen:
ideale Funktionalitäten, ein Szenario in dem die ehrlichen Parteien als unkorrumpierbare
Maschine mit einem geteilten Speicher dargestellt werden, und symbolische Abstraktionen,
ein Szenario in dem als Berechnungsmodell ein symbolisches Kalkül betrachtet wird und
kryptographische Operationen mittels simplen, formalen Regeln charakterisiert werden.

Die Fehlerfreiheit von symbolischen Abstraktionen wird Computational Soundness
genannt. Wir präsentieren Resultate, um Wiederbenutzbarkeit von existierenden Com-
putational Soundness Beweisen zu ermöglichen, insbesondere um Garantien für starke
äquivalenzbasierte Eigenschaften zu erhalten.

Wir benutzen ideale Funktionalitäten, um anonyme Kommunikationstechniken zu
analysieren. Wir analysieren die Sicherheit von Tor (dem meistegenutzten Anonymität-
snetzwerk) zugrundeliegenden Protokolls und schlagen Techniken zur Verbesserung der
Leistung des Tor Netzwerkes vor.

iii

Abstract

Cryptographic protocols can be used to harden the security of IT systems, but only if
these protocols are carefully woven into the system. Thus, a security analysis of the overall
system is necessary to ensure that the cryptographic protocols are effectively applied. The
classical proof technique for computational security proofs (reduction proofs) are, due
to their complexity, hard to automatically derive, already for medium-sized IT systems.
Hence, there is a successful line of research about abstracting cryptographic protocols.

In this thesis, we consider two kinds of abstractions: i) symbolic abstractions, where formal
rules characterize the attacker’s capabilities and the functionality of the cryptographic
operations, and ii) ideal functionalities, where all honest parties are replaced by one single
incorruptible machine.

For symbolic abstractions, we study their accuracy (called computational soundness), i.e.,
under which conditions these abstractions capture all cryptographic attacks. We establish
a computational soundness result for malleable zero-knowledge proofs, and we establish
two results for re-using existing computational soundness proofs, in particular for obtaining
strong equivalence properties.

Additionally, we devise an ideal functionality for the most-widely used anonymous
communication protocol Tor and (using the UC framework) prove its accuracy. For
improving Tor’s performance, we moreover propose a novel, provably secure key-exchange
protocol.

v

Background of this Dissertation

The present thesis is based on papers that were written during my doctorate under the
supervision of Michael Backes, in the IS&C group of CISPA at the Saarland University. The
thesis is based on six research papers [BBMMP15; BGKM12; BKM12; BMM10; BMR14;
BMR15]. Whenever a chapter of this thesis is based on a publication, a brief disclaimer [in
square parenthesis and marked in green] mentions the respective publication and clarifies
my contribution to the part was that is presented in the respective chapter.

The paper on computational soundness for malleable zero-knowledge proofs [BBMMP15]
extends the work from the present thesis (in Chapter 3) to equivalence properties and uses a
more restrictive and simpler symbolic model from the PhD thesis of Kim Pecina. The work
in the present thesis is in turn a substantial extension of the my master’s thesis [Moh09]
to a significantly more general setting and more precise symbolic abstraction. Moreover,
the work on generalizing computational soundness for interactive primitives [BMR15] (on
which Chapter 5 is based) builds on the bachelor’s thesis of Tim Ruffing [Ruf12], which I
supervised.

The work on on anonymous communication [BGKM12] (on which Chapter 7 is based)
serves as a foundational building block of anonymity quantifications for three papers to
which I contributed [BKMM14; BKMMM13; BMM14].

Research papers on which this thesis is based

[BMM10] M. Backes, M. Maffei, and E. Mohammadi. “Computationally Sound Ab-
straction and Verification of Secure Multi-Party Computations”. In: Proc.
30th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2010, pp. 352–363.

[BGKM12] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi. “Provably Secure and
Practical Onion Routing”. In: Proc. 25th IEEE Computer Security Foun-
dations Symposium (CSF). IEEE Computer Society Press, 2012, pp. 369–
385.

[BKM12] M. Backes, A. Kate, and E. Mohammadi. “Ace: an efficient key-exchange
protocol for onion routing”. In: Proc. 11th annual ACM Workshop on
Privacy in the Electronic Society (WPES). ACM Press, 2012, pp. 55–64.

[BMR14] M. Backes, E. Mohammadi, and T. Ruffing. “Computational Soundness
Results for ProVerif”. In: Proc. 3rd Conference on Principles of Security
and Trust (POST). Springer, 2014, pp. 42–62.

[BBMMP15] M. Backes, F. Bendun, M. Maffei, E. Mohammadi, and K. Pecina. “A Com-
putationally Sound, Symbolic Abstraction for Malleable Zero-knowledge
Proofs”. In: Proc. 28th IEEE Computer Security Foundations Symposium
(CSF). IEEE Computer Society Press, 2015, pp. 412–480.

[BMR15] M. Backes, E. Mohammadi, and T. Ruffing. “Computational Soundness for
Interactive Primitives for Equivalence Properties”. In: Proc. 20th European
Symposium on Research in Computer Security (ESORICS). Springer, 2015,
pp. 125–145.

vii

Other research papers of the author

[BFM13] M. Backes, D. Fiore, and E. Mohammadi. “Privacy-Preserving Account-
able Computation”. In: Proc. 18th European Symposium on Research in
Computer Security (ESORICS). Springer, 2013, pp. 38–56.

[BKMMM13] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi. “AnoA:
A Framework For Analyzing Anonymous Communication Protocols”. In:
Proc. 26th IEEE Computer Security Foundations Symposium (CSF). IEEE
Computer Society Press, 2013, pp. 163–178.

[BKMM14] M. Backes, A. Kate, S. Meiser, and E. Mohammadi. “(Nothing else) MA-
Tor(s): Monitoring the Anonymity of Tor’s Path Selection”. In: Proc. 21st
ACM Conference on Computer and Communication Security (CCS). ACM
Press, 2014, pp. 513–524.

[BMM14] M. Backes, P. Manoharan, and E. Mohammadi. “TUC: Time-sensitive and
Modular Analysis of Anonymous Communication”. In: Proc. 27th IEEE
Computer Security Foundations Symposium (CSF). IEEE Computer Society
Press, 2014, pp. 383–397.

[PMP14] K. Pecina, E. Mohammadi, and C. Pöpper. “Zero-Communication Seed
Establishment for Anti-Jamming Techniques”. In: Proc. 1st NDSS Workshop
on Security of Emerging Networking Technologies (SENT). Internet Society,
2014.

Related Bachelor’s & Master’s Thesis

[Moh09] E. Mohammadi. Computational Soundness for Symbolic Zero - Knowl-
edge Proofs Against Active Attackers under Relaxed Assumptions. Master’s
Thesis. 2009.

[Ruf12] T. Ruffing. Computational Soundness of Interactive Primitives. Bachelor’s
Thesis. 2012.

viii

Acknowledgements

First and foremost, I would like to thank my wife, Melanie Mohammadi, for all the patient
support and love throughout the last years.

During my doctorate, my supervisor Michael Backes constantly pushed forward and
supported my work and ideas. He clarified to me time and time again that successful
long-term research needs a clear vision as a steering wheel. Thank you for all of that and
for your huge support.

The group’s secretary, Bettina Balthasar, was one of the most valuable persons during
my doctorate. Her mindful and caring support protected me numerous times from the
university’s bureaucracy. She always had an open door for any non-scientific problems, and
brightened every day with her good mood and colorful (and tasteful) clothing.

I would like to thank Dominique Unruh for teaching me the handicraft of weaving complex
proofs. In numerous enlightening discussions Dominique convinced me that all too often
corner cases elude a hand-wavy argumentation and that a solid proof typically has a clear
line of argumentation.

Rose Hoberman taught me the handicraft of writing. Countless times she intensely
explained to me why some write-up was confusing or lacked emphasis. Her explanations
were priceless. Thank you for these invaluable lessons.

The entire area of anonymous communication was introduced to me by Aniket Kate. He
illustrated to me in various discussions that anonymous communication is an inherently
hard problem but fundamental for numerous applications. Thank you, and thank you also
for your steady support when you, without hesitation, introduced me to various interesting
fellow researchers, be it on conferences or when we had visitors.

Like a second supervisor Matteo Maffei always had an open door for research ideas and
problems that I encountered. Thank you for your support and for the countless discussions.

Special thanks are due to my long-standing office-mate Raphael Reischuk. I enjoyed our
time together, and I will miss our inspiring discussions. I learnt much from you.

I am grateful to have met my colleague Sebastian Meiser in my undergraduate studies.
We have not only designed – in our (almost non-existent) research-free time – one of the
best strategic board games that I am aware of but also had numerous invaluable scientific
discussions that were extremely fruitful.

I would also like to thank my other co-authors, Praveen Manoharan, Fabian Bendun,
Tim Ruffing, Kim Pecina, Christina Pöpper, Ian Goldberg, Dario Fiore, Christian Rossow,
and Simon Koch, for all the insightful and productive discussions. In addition, I would like
to thank all my colleagues in the CISPA for the good working environment and for many
inspiring discussions. I also would like to thank my fellow students, Arnd Hartmanns and
Sebastiano Barbieri, for all the evening we spent together. In particular, thank you Arnd
for the curly-leafed kale evenings. Your curly-leafed kale dish is unchallenged.

Of course, I also thank my family for all the support. It is hard to be so far away from
you. I hope that future generations have such a thorough connectivity such that they will
not have to leave their families for the working place.

Last, thank you Saarland for the warm embrace and the investment into my education
and for giving me such a good starting point for my career.

ix

Contents

1. Introduction 1

I. Computational Soundness 9

2. Theoretical Foundations 11
2.1. Motivation . 11
2.2. The CoSP Framework for Trace Properties 12

2.2.1. Symbolic Model . 12
2.2.2. Computational Model . 14
2.2.3. Computational Soundness . 16
2.2.4. A Sufficient Criterion for Soundness 16

2.3. The CoSP Framework for Equivalence properties 19
2.3.1. Symbolic Indistinguishability . 19
2.3.2. Computational Indistinguishability 21
2.3.3. Computational Soundness . 24
2.3.4. Bi-Protocols . 24

2.4. Review of the Applied π-calculus . 25
2.5. Embedding from the Applied π-calculus Calculus 27

2.5.1. Embedding into CoSP . 28
2.6. Equivalence Notions . 31

3. Malleable Zero-Knowledge Proofs 35
3.1. Motivation . 35
3.2. Symbolic abstraction of Malleable ZK Proofs 37

3.2.1. The basic symbolic model . 37
3.2.2. Symbolic MZK proofs . 38

3.2.2.1. Terms and statements . 38
3.2.2.2. Destructors for MZK Proofs 40
3.2.2.3. ZK preservation . 43
3.2.2.4. Symbolic attacker . 44

3.3. Computational soundness . 44
3.4. MZK-safe protocols . 44
3.5. Implementation conditions . 46

3.5.1. Computational ZK Relation . 48
3.5.2. List of implementation conditions . 50

3.6. Complete proof of computational soundness 52
3.6.1. Proof overview . 53
3.6.2. Symbolic and computational ZK relation 53
3.6.3. Transparent hybrid executions . 54

xi

3.6.4. The simulator Sim . 57

3.6.5. Simf is Dolev-Yao . 60

3.6.6. Simf is indistinguishable . 66

3.7. Conclusion . 87

3.8. Postponed definitions . 87

4. Secure Multi-Party Computation 91
4.1. Motivation . 91

4.2. The symbolic abstraction of SMPC . 93

4.2.1. Abstracting SMPC in the Applied π-calculus 94

4.3. Formal Verification . 97

4.4. Computational Execution . 100

4.4.1. SMPC in the UC framework . 101

4.4.1.1. The UC Framework . 101

4.4.1.2. From an SMPC Process to an Ideal Functionality 102

4.4.2. Computational execution of a process 105

4.5. Computational soundness . 108

4.5.1. Computational safety . 108

4.5.2. Computational soundness for non-interactive primitives 111

4.5.2.1. The symbolic model . 112

4.5.2.2. Implementation conditions 114

4.5.2.3. The Class of Key-safe Protocols 115

4.5.2.4. The computational soundness proof 116

4.5.3. From the π-execution to the SMPC-execution 117

4.5.4. The construction of the scheduling simulator 118

4.5.5. The proof of the soundness of SSim 125

4.5.6. Leveraging UC-realizability . 129

4.5.7. Plugging the results together . 133

4.6. Conclusion . 136

5. Equivalence Properties for Interactive Primitives 139
5.1. Motivation . 139

5.2. Interactive Primitives in CoSP . 140

5.2.1. Ideal Functionalities . 140

5.2.1.1. Communication . 141

5.2.1.2. Formal Definition . 142

5.2.1.3. Ideal Functionalities in the Symbolic Setting 143

5.2.1.4. Ideal Functionalities in the Computational Setting 143

5.2.2. Realization of Implementations . 145

5.2.3. Good Ideal Functionalities and Real Protocols 147

5.3. Protocol Conditions for Interactive Primitives 152

5.4. Computational Soundness . 154

5.5. Conclusion . 155

6. From Trace Properties to Equivalence Properties 157
6.1. Motivation . 157

xii

6.2. Self-monitoring . 158

6.2.1. CS for Trace Properties . 158

6.2.2. Bridging the Gap from Trace Properties to Uniformity 160

6.3. Case Study: Encryption and Signatures with Lengths 163

6.3.1. The Symbolic Model . 163

6.3.2. Implementation Conditions . 166

6.3.3. Randomness-safe Bi-protocols . 168

6.3.4. The branching monitor . 169

6.3.4.1. The construction of fbad-branch,Π(b, tr) 170

6.3.4.2. Extended Symbolic Model 173

6.3.4.3. Extended Symbolic Execution 175

6.3.4.4. fbad-branch,Π is a distinguishing subprotocol 176

6.3.5. The knowledge monitor . 183

6.3.5.1. Construction of the knowledge monitor 184

6.3.5.2. Symbolic self-monitoring of the knowledge monitor 184

6.3.5.3. The Faking Simulator Simf 185

6.3.5.4. CS for Trace Properties with Length Functions 189

6.3.5.5. Decision variant of a protocol 190

6.3.5.6. Uniqueness of a symbolic operation 192

6.3.5.7. Unrolled variants . 194

6.3.5.8. Computational self-monitoring for the knowledge monitor . 196

6.3.6. CS for Uniform Bi-processes in the Applied π-calculus 204

6.4. Conclusion . 205

II. Anonymous Communication 207

7. Provably Secure Onion Routing 209
7.1. Motivation . 209

7.2. Background . 211

7.2.1. Onion Routing Circuit Construction 212

7.2.2. One-Way Authenticated Key Exchange – 1W-AKE 213

7.2.3. Generalized UC Framework . 214

7.2.4. The OR Protocol . 214

7.2.5. An OR Black Box Model . 218

7.3. Security Definition of OR . 219

7.3.1. System and Adversary Model . 219

7.3.2. Ideal Functionality . 220

7.4. Secure OR modules . 223

7.4.1. Predictably Malleable Encryption 224

7.4.2. Secure Onion Algorithms . 225

7.4.3. One-Way Authenticated Key-Exchange 228

7.5. Πor UC-Realizes For . 230

7.6. Instantiating Secure OR Modules . 234

7.6.1. Deterministic Counter Mode and Predictable Malleability 235

7.6.2. Security of Tor’s Onion Algorithms 236

7.6.3. ntor : A 1W-AKE . 238

xiii

Related Bachelor’s & Master’s Thesis

7.7. Forward Secrecy and Anonymity Analysis 239
7.7.1. OR Anonymity Analysis . 239

7.7.1.1. Πor realizes Bor . 239
7.7.1.2. Generalizing Bor to partially global attackers 242

7.7.2. Forward Secrecy . 243
7.8. Conclusion . 247

8. Ace: An Efficient Key-Exchange Protocol 249
8.1. Motivation . 249
8.2. Background . 250

8.2.1. The current Tor Authentication Protocol 250
8.2.2. The A-DHKE Protocol . 251
8.2.3. The ØS Protocol . 251
8.2.4. The ntor Protocol . 251
8.2.5. A Note on Non-Interactive KE . 252

8.3. The Ace Procotol . 252
8.3.1. The Construction . 253

8.4. Performance Comparison . 254
8.4.1. Computational Efficiency . 255
8.4.2. Message Sizes . 256

8.5. Security Analysis . 256
8.5.1. Security Definition of Anonymous 1W-AKE 257
8.5.2. The Security of Ace . 260

8.6. Conclusion . 263

Conclusion, Appendix & Bibliography 265

9. Conclusion 265

A. The Source Code for the Sugar Beet Case Study 267

B. Bibliography 291

xiv

Chapter 1.

Introduction

Modern IT systems tremendously increase the cost- and time-efficiency of even sensitive
tasks, such as online transactions, e-voting, and sharing health-related information. In
particular for such sensitive tasks, however, the trust into these IT systems is essential.
Cryptographic protocols, e.g., TLS [DR06] or Kerberos [MIT], are a fundamental building
block for strengthening the security of IT systems and thereby increasing the trust in them.

Interactive (i.e., cryptographic protocols) and non-interactive cryptographic primitives
(e.g., encryption) have to be carefully incorporated into a system. Recent events [App14;
Duc14] have shown that already minor mistakes in the usage of cryptographic primitives
can have disastrous effects on the security of a system. Due to the randomized nature and
the complex mathematical operations involved in cryptographic primitives, it is highly
non-trivial to conduct a security proof of already medium-sized systems.

There is a successful line of work that abstracts cryptographic primitives as simpler,
idealized operations that typically do not involve any cryptography. These abstractions
are often deterministic and limit the attacker’s capabilities to a small set of actions. For
cryptographic primitives there are two kinds of abstractions: ideal functionalities, i.e,
incorruptible machines where the involved parties have a shared memory, or symbolic
abstractions in a symbolic model, e.g., the applied π-calculus, where, e.g., the encryption
of a message m with a key k, is a symbolic term enc(k,m) and decryption follows simple
rules (dec(k, enc(k,m)) = m). For symbolic abstractions the security proofs state that
the symbolic abstraction captures all attacks. This accuracy of an abstraction is called
computational soundness.

While symbolic abstractions enable the automated verification of entire classes of protocols
that use the abstracted cryptographic primitive, the symbolic verification tools for security
verification are in some cases not sufficiently expressive: e.g., symbolic models, used for
security proofs, typically only characterize computations without randomized decisions.
There are important classes of cryptographic protocols that include randomized decisions,
such as the anonymous communication network Tor. Anonymous communication constitutes
a core building block for privacy preserving IT systems. For the abstraction of such a
cryptographic protocol, an ideal functionality is needed.

This thesis contains proofs of security for both kinds of abstractions: Dolev-Yao-style
abstractions and ideal functionalities. In Part I we present five results on computational
soundness, and in Part II we present two results on anonymous communication, using an
ideal functionality.

1

Computational Soundness

A security proof typically reduces the security properties of a protocol, such as secrecy
of RSA-OAEP, to hardness assumptions, such as factoring. These security proofs are
typically manually conducted in the computational model in which both the protocol and
the attacker are modeled as interactive polynomial-time Turing machines. Such manual
security proofs are complex and error-prone, and vulnerabilities have accompanied the
early design of security protocols [BCJSW06; Ble98; Fis03; NS78]. As these proofs are
inherently complex and we increasingly rely on them, verification tools for proving the
security of such protocols are indispensable.

Such verification tools have considerably advanced in recent years. A successful line of
work on verification tools [BAF05; BHM08a; BJP02; BMU08; CCD10; CW12; DKR09;
DKRS11; DY83; EG83; KMM94; MSCB13] uses, instead of the real underlying crypto-
graphic primitive, an abstract representation, a so-called symbolic model : in a symbolic
model all cryptographic primitives are represented as symbolic terms, such as enc(k,m)
for an encryption, and the attacker is reduced to a small set of simple rules, such as
dec(k, enc(k,m)) = m for decryption.

A symbolic model, however, is not necessarily sound with respect to the computational
model: it might fail to model attacks that are possible in the computational model, such as
computing the length of a plaintext from the length of a ciphertext. A symbolic model of
a set of cryptographic primitives has computational soundness (CS) if all possible attacks
in the computational model can be modeled in the symbolic model. In particular, a single
CS result enables provable security results for an entire class of protocols: each successful
verification, with verification tools like ProVerif [BAF05], Tamarin [MSCB13; SMCB12;
SSCB14] or APTE [CCD10], yields a security result in the computational model.

Backes, Hofheinz, and Unruh developed a modular and generic framework for symbolic
protocol analysis and computational soundness proofs: the CoSP framework [BHU09].
In CoSP, the embedding of the calculi (e.g., the applied π-calculus) is decoupled from
computational soundness proofs of cryptographic primitives. As a result, CoSP enables
proving x Dolev-Yao models computationally sound for y calculi with x+ y proofs instead
of x · y. This CoSP framework is the basis of this thesis.

The contribution of this thesis is fourfold: first, the first computational soundness result of
a sophisticated primitive under weak cryptographic assumptions, malleable zero-knowledge
proofs, second, the extension of the CoSP framework to equivalence properties, third,
a computational soundness result that states that all symbolic models can be extended
with composably secure interactive primitive, fourth the characterization of a property,
called self-monitoring, that enables the conclusion that computational soundness for trace
properties implies computational soundness for uniformity, i.e., the equivalence of protocols
with the same control flow.

Computational Soundness for Malleable Zero-Knowledge Proofs. While sym-
bolic models traditionally include only basic cryptographic primitives such as encryption
and digital signatures, recent work has started to extend them to more sophisticated
primitives, such as zero-knowledge (ZK) proofs, with unique security features. These
security features go far beyond the traditional goal of cryptography to solely offer secrecy
and authenticity of communication. ZK proofs [GMR89] arguably constitute the most

2

CHAPTER 1. INTRODUCTION

prominent such primitive (though not the only one1) and have become a central building
block for a variety of modern security protocols. A zero-knowledge proof consists of a
message or a sequence of messages that combines two seemingly contradictory properties:
First, it constitutes a proof of a statement x (e.g, x = “the message within this ciphertext
begins with 0”) that cannot be forged, i.e., it is impossible, or at least computationally in-
feasible, to produce a zero-knowledge proof of a wrong statement. Second, a zero-knowledge
proof does not reveal any information other than the sole fact that x constitutes a valid
statement.

In addition to these core properties, commonly used ZK proof schemes, such as the
Groth-Sahai proof system [GS08], offer a novel type of cryptographic flexibility. First, a
participant is able to re-randomize existing ZK proofs, which is fundamental for achieving
unlinkability in anonymity protocols. Second, in order to adhere to individual privacy
requirements, a participant can hide public parts of a ZK proof statement to selectively
hide information of third-party proofs (e.g., this enables the design of privacy-preserving
credentials for open-ended systems [BMP12; MP11; MPR13]). Third, a participant can
logically compose ZK proofs in order to construct new proof statements. ZK proof systems
that permit these transformations are called malleable. In addition to offering this extended
functionality, malleable ZK constructions are often significantly more efficient than their
non-malleable counterparts.

Existing symbolic abstractions are restricted to non-malleable ZK proofs, which model
ZK proofs as monolithic building blocks that cannot be further transformed [BHM08b;
BHM12; BMU08]. A symbolic model for malleable ZK proofs is intrinsically more difficult
for automated verification techniques because the much more comprehensive adversary
model that includes ZK transformations requires a significantly more involved symbolic
analysis.

The symbolic models of non-malleable ZK proofs have been justified by computational
soundness results, i.e., a successful symbolic analysis carries over to the corresponding
cryptographic ZK realizations [BBU13; BU10]. The symbolic model of malleable ZK proofs
imposes challenges for such a result due to the significantly more complex adversary model.

First, we provide a symbolic abstraction of malleable ZK (MZK) proofs by means of an
equational theory.2 The main conceptual challenge we faced when devising this abstraction
was to identify a finite representation of the infinite number of possible transformations
that are available to the adversary. Roughly, we categorize transformations as one of the
three types: re-randomizing, logical transformations (used, e.g., to produce a proof of the
statement x ∧ y from independent proofs of x and y, or to prove ∃w.x from a proof of x,
thereby hiding the witness w in the statement x), and functional transformations (used,
e.g., to prove enc(k, x, r) = enc(k, y, r) from a proof of x = y for two secret values x, y, key
k, and randomness r).

The last category of transformations (i.e., functional transformations) is rarely used in the
literature, but it is nevertheless available to the attacker, as shown by Fuchsbauer [Fuc10,
Lemma 6]. Therefore, we present two variations of our symbolic model that only differ in
this last category: the fully MZK (FMZK) abstraction grants the attacker the capability
to apply transformations that modify the witnesses of a proof, which allows for weaker

1Examples for other primitives studied in symbolic models are blind-signatures [KR05], Diffie-Hellman-style
exponentiation [AF01], and private contract signatures [KKW05].

2We further consider asymmetric encryptions and digital signatures, handled in a standard way [BHU09].

3

cryptographic realizations; the controlled MZK (CMZK) abstraction excludes this kind of
transformations but requires a slightly less efficient cryptographic realization. Concerning
automated verification, the CMZK abstraction is accessible to standard automated reasoning
tools for equational theories, whereas reasoning about the FMZK abstraction additionally
requires solving constraints, e.g., via a theorem prover.

Second, we prove the computational soundness of the FMZK and CMZK abstractions
with respect to trace properties. We first identify the class of MZK-safe protocols, which
basically disallows the reuse of randomness as well as revealing signature keys or decryption
keys to the adversary. We then establish computational soundness of the FMZK abstraction
for all MZK-safe protocols based on weak cryptographic definitions (non-interactive zero-
knowledge arguments of knowledge). For establishing the computational soundness of the
CMZK abstraction for all MZK-safe protocols, we leverage the cryptographic construction
for controlled malleability proposed by Chase et al. [CKLM12]. These results are given
in CoSP [BHU09], a modular and generic framework for symbolic protocol analysis and
computational soundness proofs. The process of embedding calculi is decoupled from com-
putational soundness proofs of cryptographic primitives. As a result, our work immediately
entails a computationally sound symbolic model in the applied-pi calculus, and we show
that our result also entails a computationally sound symbolic abstraction in ML (building
on results from [BMU10]).

Extending the CoSP Framework to Equivalence Properties. A successful line of
work showed over the past decade that numerous symbolic models are indeed computation-
ally sound. Most of these CS results against active attacks, however, have been specific to
the class of trace properties [BBU13; BCW13; BHU09; BU10; CKKW06; CW05; CW11;
GGV08; JLM05; MW04], which is only sufficient as long as strong notions of privacy are
not considered, e.g., in particular for establishing various authentication properties. Only
few CS results are known for the class of equivalence properties against active attackers,
which are restricted in of the following three ways: either they are restricted to a small
class of simple processes, e.g., processes that do not contain private channels and abort
if a conditional fails [CC08; CCS12; CH11], or they rely on non-standard abstractions
for which it is not clear how to formalize any equivalence property beyond the secrecy
of payloads [BL06; BP04; BPW03a], such as anonymity properties in protocols that en-
crypt different signatures, or existing automated tool support is not applicable [CHKS12;
SBBPW06]. We are thus facing a situation where CS results, despite tremendous progress
in the last decade, still fall short in comprehensively addressing the class of equivalence
properties and protocols that state-of-the-art verification tools are capable to deal with.
Moreover, it is unknown to which extent existing results on CS for trace properties can be
extended to achieve more comprehensive CS results for equivalence properties.

The CoSP framework originally only modelled CS w.r.t. trace properties. As a basis
for future work and our for other contributions, we extend this framework to equivalence
properties.

A Composable Computational Soundness Result for Interactive Primitives.
While Dolev-Yao models traditionally comprise only non-interactive cryptographic opera-
tions (i.e., cryptographic operations that produce a single message and do not involve any
form of communication, such as encryption and digital signatures), recent cryptographic
protocols rely on more sophisticated interactive primitives (i.e., cryptographic operations
that involve several message exchanges among parties), with unique features that go far

4

CHAPTER 1. INTRODUCTION

beyond the traditional goals of cryptography to solely offer secrecy and authenticity of
communication.

From previous [BBU13; BCW13; BHU09; BMM10; BU10; CKKW06; CW05; CW11;
GGV08; JLM05; MW04], which is only sufficient as long as strong notions of privacy are
not considered, e.g., in particular for establishing various authentication properties. Only
few CS results are known for the class of equivalence properties against active attackers,
and these results either do not cover interactive primitives [BL06; BP04; BPW03a; CC08;
CCS12; CH11; CHKS12; SBBPW06] or do not allow to combine the DY model with
non-interactive primitives [KTG12].

As a first step, we present an abstraction of a concrete interactive primitive, secure
multi-party computation (SMPC), within the applied π-calculus [AF01]. In an SMPC, a
number of parties P1, . . . , Pn wish to securely compute the value F (d1, . . . , dn), for some
well-known public function F , where each party Pi holds a private input di. This multi-
party computation is considered secure if it does not divulge any information about the
private inputs to other parties This abstraction consists of a process that receives the
inputs from the parties involved in the protocol over private channels, computes the result,
and sends it to the parties again over private channels, however augmented with certain
details to enable computational soundness results, see below. This abstraction can be used
to model and reason about larger cryptographic protocols that employ SMPC as a building
block.

We establish computational soundness results (in the sense of preservation of trace
properties) for protocols built upon our abstraction of SMPC. This result is obtained in
essentially two steps: We first establish a connection between our symbolic abstraction of
SMPC in the applied π-calculus (symbolic setting) and the notion of an ideal functionality
for SMPC in the UC framework [CLOS02], which constitutes a low-level abstraction of
SMPC that is defined based on bitstrings, Turing machines, etc. (cryptographic setting)
Second, we build upon existing results on the secure realization of this functionality in
the UC framework in order to obtain a secure cryptographic realization of our symbolic
abstraction of SMPC. This computational soundness result holds for SMPC that involve
arbitrary arithmetic operations; moreover, it is compositional, since the proof is parametric
over the other (non-interactive) cryptographic primitives used in the symbolic protocol and
within the SMPC itself. Computational soundness holds as long as these primitives are
shown to be computationally sound (e.g., in the CoSP framework [BHU09]). We prove in
particular the computational soundness of a Dolev-Yao model with public-key encryption,
signatures, and the aforementioned arithmetic operations, leveraging and extending prior
work in CoSP. Such a result allows for soundly modelling and verifying many applications
employing SMPC as a building block, including the case studies considered in this paper.

As a second step, we generalize the previous result and formalize interactive primitives
in CoSP. Then, we prove a sufficient conditions for computational soundness of interactive
primitives w.r.t. uniformity: as long as these interactive primitive satisfy the cryptographic
definition of universal composability [Can01] computational soundness for the symbolic
representation of an ideal functionality holds.We stress that this result is parametric in the
Dolev-Yao model, i.e., in the non-interactive primitives.

From Trace Properties to Equivalence Properties. As mentioned above, only
limited CS results exist w.r.t. equivalence properties. Complimentarily to our other results,
we identify and establish sufficient conditions under which CS results w.r.t. trace properties

5

imply CS results for uniformity, i.e., the equivalence of protocols with the same control
flow. We illustrate this proof-technique by proving these sufficient conditions for a strong
CS result for signatures and encryption. This result enables the reusability of numerous
previous results.

Anonymous Communication

The onion routing (OR) network Tor [Tor03] has emerged as a successful technology for
anonymous web browsing. It currently employs more than 6000 dedicated relays, and serves
millions of users across the world. Its impact is also evident from the media coverage it has
received over the last few years [Gre11]. Despite its success, the existing Tor network still
lacks a rigorous security analysis. Previous analysis abstracted away from the cryptographic
protocol underlying Tor [CL05; FJS07b; FJS11; MVV04], which lead to abstracted models
are only accurate in very limited circumstances (see Section 7.7.1 for more details).

We extract from the specification of the Tor client and server protocol, an onion routing
protocol in the universal composability framework [Can01]. Then, we devise an ideal
representation of onion routing (in an ideal functionality), which assumes incorruptible
parties, does not use any cryptographic operations, and restricts the adversary to a small set
of actions. We prove that the onion routing protocol securely realizes this ideal functionality,
i.e., we prove that all attacks that can be mounted against the onion routing protocol can
be mounted against the ideal functionality. In contraposition, if there is no attack against
the ideal functionality, then there is no attack against the onion routing protocol. We
determine the exact security properties required for underlying cryptographic primitives
(onion construction and processing algorithms, and a key exchange protocol) to achieve a
provably secure OR protocol. We show that the currently deployed onion algorithms with
slightly strengthened integrity properties can be used in a provably secure OR construction.

We furthermore present a novel key-exchange protocol that, compared to Tor’s current key-
exchange protocol improves on the computation costs without decreasing the communication
costs. In numbers, the client has an efficiency improvement of 46% and the server of nearly
19%. The proposed protocol requires a client to send one additional group element to a
server, compared to the ntor protocol. However, an additional group element easily fits
into the 512 bytes fix-sized Tor packets (or cell) in the elliptic curve cryptography (ECC)
setting. Consequently, our protocol does not produce a communication overhead in the
Tor protocol. Moreover, we prove that our protocol satisfies the security definitions that
we require in the realization proof for the onion routing protocol. Given that the ECC
setting is under consideration for the Tor system, the improved computational efficiency,
and the proven security properties make our 1W-AKE an ideal candidate for use in the
Tor protocol.

Outline of this Thesis

Chapter 2 reviews the original CoSP framework (for trace properties) and presents the
extension of the CoSP framework for equivalence properties. Moreover, we present how
to embed the applied π-calculus into the CoSP framework such that uniformity is pre-
served. To this end, we first review the applied π-calculus. Chapter 3 presents the
symbolic abstraction of malleable zero-knowledge proofs and its computational soundness

6

CHAPTER 1. INTRODUCTION

proof. Chapter 4 presents the symbolic abstraction of secure multi-party computation, its
computational soundness proof, and a case study in the applied π-calculus. Chapter 5
generalizes the results of the previous chapter introducing a generic way to integrate
an interactive primitive into the CoSP framework (for equivalence properties). Then, a
sufficient conditions for computational soundness is proven: the well-known notion of
universal composability [Can01]. Chapter 6 identifies and proves a sufficient conditions
for connecting computational soundness w.r.t. trace properties and w.r.t. uniformity. We
show that as long as the symbolic model allows for a technical condition that we call
“self-monitoring” computational soundness w.r.t. trace properties of that symbolic model
suffices to conclude computation soundness w.r.t. uniformity.

Chapter 7 extracts a cryptographic onion routing protocol from Tor’s specification, and
abstracts this onion routing protocol as an ideal functionality. We identify cryptographic
properties for the cryptographic building blocks of the onion routing protocol under which
this abstraction is UC-secure. (UC-security is a similar notion to computational soundness
for equivalence properties.) Chapter 8 presents the Ace protocol: an computation efficient
key-exchange protocol for Tor. We prove this protocol secure w.r.t. the cryptographic
properties that we identified in Chapter 7. Moreover, we evaluate the performance of Ace.

Chapter 9 concludes the work, and Appendix A contains the source code of the case
study from Chapter 4.

7

Part I.

Computational Soundness

Malleable Zero-Knowledge Proofs & Sufficient

Conditions for Computational Soundness of

Interactive & Non-Interactive Primitives

9

Chapter 2.

Theoretical Foundations: The CoSP
Framework, The Applied π-calculus &
Limitations of ProVerif

2.1. Motivation

This chapter presents the theoretical framework in which all results of this thesis are cast:
the CoSP (Computational Soundness Proofs) framework [BHU09]. CoSP decouples the
computational soundness (CS) of Dolev-Yao models from the embedding of the calculi,
such as the applied π-calculus or RCF. As a result, CoSP enables proving x Dolev-Yao
models computationally sound for y calculi by only having x+ y proofs instead of x · y.

Section 2.2 reviews the original CoSP framework [BHU09]. This version, however, is
restricted to trace properties, such as authentication, and does not include the essential
class of equivalence properties, such as vote privacy (in e-voting schemes) or strong secrecy.
Section 2.3 extends this original version to equivalence properties. For this generalized
framework, we show that the applied π-calculus can be soundly embedded. First, Section 2.4
briefly reviews the applied π-calculus (also needed in other chapters of the present thesis),
and second, Section 2.5 proves the existence of an embedding from the applied π-calculus to
the generalized CoSP framework. We show that this embedding preserves the uniformity of
bi-processes, using a slight variation of the already existing embedding for trace properties.
Finally, we additionally observe that the automated verification tool ProVerif is not able
to cope with symbolic models that involve length functions. Section 2.6 shows how
computationally sound automated analyses can still be achieved in those situations in
which ProVerif does not manage to terminate whenever the Dolev-Yao model supports a
length function. We propose to proceed in two steps. First, a stripped-down version of
the protocol without length functions is fed to ProVerif, and ProVerif then yields a result
concerning the uniformity of bi-processes, but only for this stripped-down protocol. Second,
the original protocol is fed to the APTE tool by Cheval, Cortier, and Plet [CCP13], which
is specifically tailored to length functions. This yields a result for the original protocol but
only concerning trace equivalences, which are not covered by the computational soundness
results of Chapter 5 and Chapter 6. It is shown that both results can be combined to
achieve uniformity of bi-processes for the original protocol, which are covered by our
computational soundness results.

11

2.2. THE COSP FRAMEWORK FOR TRACE PROPERTIES

2.2. The CoSP Framework for Trace Properties

Backes, Hofheinz, and Unruh presented a framework for conducting computational sound-
ness proofs [BHU09]. This framework separates the task of proving computational sound-
ness for a set of (non-interactive) primitives against Dolev-Yao attackers from the task of
embedding a calculus into a setting with a symbolic Dolev-Yao attacker.

CoSP compares two models: the symbolic and the computational model. In Section 2.2.1,
we review the symbolic model, which specifies the notion of a protocol, the set of constructors
and destructors that abstract the cryptographic primitives, and the symbolic counterpart
to the execution of a program. In Section 2.2.2, we review the computational model, and
in Section 2.2.3 we review the notion of computational soundness, which compares the
symbolic and the computational model. Finally, in Section 2.2.4 we review a sufficient
condition for computational soundness by Backes, Hofheinz, and Unruh [BHU09], which
we satisfy in Chapter 3.

All definitions are copied verbatim from the original CoSP paper [BHU09], marked with
a reference to the paper in the name of the definition.

2.2.1. Symbolic Model

We begin the review of CoSP with the symbolic model, including the symbolic attacker, the
notion of a protocol in CoSP, and the notion of a symbolic execution in CoSP. A symbolic
model includes the symbolic abstraction of the set of functions that can be used in the
protocols that are considered and that are used to characterize the symbolic attacker (also
called the Dolev-Yao attacker). This set of functions consists of a set of uninterpreted
functions, called constructors, and a set of partial functions, called destructors. The set
of symbolic terms is induced by the set of constructors and destructors. The symbolic
attacker is a relation, called the deduction relation, over symbolic terms that characterizes
the set of terms that the symbolic attacker can deduce from another term.

Definition 1 (Symbolic model [BHU09]). A constructor C is a symbol with an arity. We
write C/n ∈ C to say that the set C contains a constructor C with arity n. A nonce N
is a symbols with zero arity. A message type T over C and N is a set of terms over
constructors C and nonces N. A destructor D of arity n over a message type T is a partial
map Tn → T. If D is undefined on t, we write D(t) = ⊥. A deduction relation ` over a
message type T is a relation between 2T and T.

A symbolic model M = (C,N,T,D,`) consists of a set of constructors C, a set of
nonces N, a message type T over C and N with N ⊆ T, a set of destructors D over T,
and a deduction relation ` over T.

A protocol is in CoSP defined as an infinite tree with labelled nodes and edges. The tree
has a distinguished root and otherwise consists of five kind of nodes: computation nodes
for producing terms by applying constructors or destructors, input and output nodes for
receiving and sending messages to the adversary, control nodes for enabling the adversary
to influence a protocol’s control flow (e.g., if the adversary is used to schedule concurrent
threads), and nondeterministic nodes for nondeterministic choices in the protocol (meant for
modeling probabilistic choices for which the probability distribution is not known a-priori).
The labels at the nodes and the edges carry various kinds of additional data needed for the

12

CHAPTER 2. THEORETICAL FOUNDATIONS

execution of the protocol, e.g., each nodes-label carries a unique identifier, a computation
node is additionally labelled with an identifier for the constructor or destructor, and edges
are used to mark distinct branches of a protocol such as a yes and a no label after each
computation node.

Definition 2 (CoSP protocol [BHU09]). A CoSP protocol Πs is a tree with a distinguished
root and labels on both edges and nodes. Each node has a unique identifier N and one of
the following types:

• Computation nodes are annotated with a constructor, nonce, or destructor F/n
together with the identifiers of n (not necessarily distinct) nodes. Computation nodes
have exactly two successors; the corresponding edges are labeled with yes and no,
respectively.
• Output nodes are annotated with the identifier of one node. An output node has

exactly one successor.
• Input nodes have no further annotation. An input node has exactly one successor.
• Control nodes are annotated with a bitstring l. A control node has at least one and

up to countably many successors annotated with distinct bitstrings l′ ∈ {0, 1}∗∗. (We
call l the out-metadata and l′ the in-metadata.)
• Nondeterministic nodes have no further annotation. Nondetermininistic nodes have

at least one and at most finitely many successors; the corresponding edges are labeled
with distinct bitstrings.

We assume that the annotations are part of the node identifier N . If a node N contains an
identifier N ′ in its annotation, then N ′ has to be on the path from the root to N (including
the root, excluding N), and N ′ must be a computation node or input node. In case N ′ is a
computation node, the path from N ′ to N has to additionally go through the outgoing edge
of N ′ with label yes.

Nondeterministic nodes are an abstraction, modelling protocol with random choices for
any probability distribution of the random choices. Real protocols do not include such
nondeterministic choices. Hence, CoSP introduces an intermediate protocol, probabilistic
CoSP protocols, where every nondeterministic node has a probability distribution labelling
its outgoing edges. By removing the probability distributions from the labels of the
nondeterministic nodes, there is a canonical CoSP protocol Πs for every probabilistic CoSP
protocol Πp. We say that Πs is the symbolic protocol that corresponds to Πp.

Definition 3 (Probabilistic CoSP protocol [BHU09]). A probabilistic CoSP protocol Πp

is a CoSP protocol, where each nondeterministic node is additionally annotated with a
probability distribution over the labels of the outgoing edges.

So far, a CoSP protocol is not necessarily poly-time computable, some are not even
computable at all. Hence, CoSP introduces a notion of an efficient protocol for CoSP
protocols. If there is one poly-time algorithm that enables a iterative computation of the
protocol, the protocol is efficient.

Definition 4 (Efficient Protocol [BHU09]). We call a CoSP protocol efficient if:

• There is a polynomial p such that for any node N , the length of the identifier of N is
bounded by p(m) where m is the length (including the total length of the edge-labels)
of the path from the root to N .

13

2.2. THE COSP FRAMEWORK FOR TRACE PROPERTIES

• There is a deterministic polynomial-time algorithm that, given the identifiers of all
nodes and the edge labels on the path to a node N , computes the identifier of N .

• There is a deterministic polynomial-time algorithm that, given the identifier of a
control node N , the identifiers of all nodes and all edge labels on the path to N ,
computes the lexicographically smallest label of an edge (i.e., the in-metadata) of all
edges that lead from N to one of its successors.

Next, CoSP includes a symbolic counterpart to the actual execution of a protocol, called
the symbolic execution. It represents a trace of the execution of the protocol. Technically,
the symbolic execution is a sequence of triples (S, ν, f) with S modeling the knowledge of
the adversary if the execution is at the node ν and with a partial mapping f from node
identifiers to messages, needed, for computation nodes, to keep track of a computation
node’s result and, for input nodes, to fix the messages that have been sent by the symbolic
adversary (i.e., terms that adhere the deduction relation `).

The following notation makes the definition of a symbolic execution more succinct: for
a constructor or nonce F evalF (t1, . . . , tn) := F (t) denotes F (t) ∈ T and evalF (t) := ⊥
otherwise. For a destructor F evalF (t) := F (t) denotes F (t) 6= ⊥ and evalF (t) := ⊥
otherwise.

Definition 5 (Symbolic execution [BHU09]). Let a symbolic model (C,N,T,D,`) and a
CoSP protocol Πs be given. A full trace is a (finite) list of tuples (Si, νi, fi) such that the
following conditions hold:

• Correct start: S1 = ∅, ν1 is the root of Πs, f1 is a totally undefined partial function
mapping node identifiers to terms.
• Valid transition: For every two consecutive tuples (S, ν, f) and (S′, ν ′, f ′) in the list,

let ν̃ be the node identifiers in the annotation of ν and define t̃ through t̃j := f(ν̃j).
We have:

– If ν is a computation node with constructor, destructor or nonce F , then S′ = S.
If m := evalF (t̃) 6= ⊥, ν ′ is the yes-successor of ν in Πs, and f ′ = f(ν := m).
If m = ⊥, then ν ′ is the no-successor of ν and f ′ = f .

– If ν is an input node, then S′ = S and ν ′ is the successor of ν in Πs and there
exists an m with S ` m and f ′ = f(ν := m).

– If ν is an output node, then S′ = S ∪ {t̃1}, ν ′ is the successor of ν in Πs and
f ′ = f .

– If ν is a control or a nondeterministic node, then ν ′ is a successor of ν and
f ′ = f and S′ = S.

A list of node identifiers (νi) is a node trace if there is a full trace with these node identifiers.

2.2.2. Computational Model

CoSP defines a computational execution of a protocol, which represents the execution of a
protocol in a cryptographic setting. For defining the notion of computational soundness,
CoSP compares the symbolic execution (see Definition 5) and this computational execution.

Before arriving at the notion of a computational execution, we say when an algorithm is
suitable for realizing a constructor, a destructor, or drawing a nonce in the cryptographic
setting. CoSP calls these algorithms computational implementations. Such a computational

14

CHAPTER 2. THEORETICAL FOUNDATIONS

implementation needs to be poly-time computable and all implementations need to be
deterministic, except for the the algorithm AN for drawing a nonce. Requiring determinism
is not a severe restriction, since most cryptographic algorithms can be modeled by adding
AN as an argument.1

Definition 6 (Computational implementation [BHU09]). Let a symbolic model M =
(C,N,T,D,`) be given. A computational implementation of M is a family of functions
A = (Ax)x∈C∪D∪N such that AF for F/n ∈ C ∪ D is a partial deterministic function
N× ({0, 1}∗∗)n → {0, 1}∗∗, and AN for N ∈ N is a total probabilistic function with domain
N and range {0, 1}∗∗ (i.e., it specifies a probability distribution on bitstrings that depends
on its argument). The first argument of AF and AN represents the security parameter.

All functions AF have to be computable in deterministic polynomial-time, and all AN
have to be computable in probabilistic polynomial-time.2

The computational execution is a probabilistic algorithm that executes the interaction
between a (probabilistic) CoSP protocol and some ppt machine, which represents the
adversary. The computational execution traverses the CoSP protocol, runs for each
computation node the corresponding computational implementation, sends messages to
the adversary, runs the adversary, and stores the responses of the adversary.

Definition 7 (Computational execution [BHU09]). Let a symbolic model M = (C,N,T,D,`
), a computational implementation A of M, and a probabilistic CoSP protocol Πp be
given. Let a probabilistic polynomial-time interactive machine E (the adversary) be given
(polynomial-time in the sense that the number of steps in all activations are bounded in the
length of the first input of E), and let p be a polynomial. We define a probability distribution
NodespM,A,Πp,E

(k), the computational node trace, on (finite) lists of node identifiers (νi)

according to the following probabilistic algorithm (both the algorithm and E are run on
input k):

• Initial state: ν1 := ν is the root of Πp. Let f be an initially empty partial function
from node identifiers to bitstrings, and let n be an initially empty partial function
from N to bitstrings.

• For i = 2, 3, . . . do the following:
– Let ν̃ be the node identifiers in the annotation of ν. m̃j := f(ν̃j).
– Proceed depending on the type of node ν:
∗ If ν is a computation node with nonce N ∈ N: Let m′ := n(N) if n(N) 6= ⊥

and sample m′ according to AN (k) otherwise. Let ν ′ be the yes-successor
of ν, f ′ := f(ν := m′), and n′ := n(N := m′). Let ν := ν ′, f := f ′ and
n := n′.

∗ If ν is a computation node with constructor or destructor F , then m′ :=
AF (k, m̃). If m′ 6= ⊥, then ν ′ is the yes-successor of ν, if m′ = ⊥, then ν ′

is the no-successor of ν. Let f ′ := f(ν := m′). Let ν := ν ′ and f := f ′.
∗ If ν is an input node, ask for a bitstring m from E. Abort the loop if E

halts. Let ν ′ be the successor of ν. Let f := f(ν := m) and ν := ν ′.

1As an example, if AN uniformly draws randomness, all cryptographic algorithms that use uniform
randomness can be modelled.

2More precisely, there has to exist a single uniform probabilistic polynomial-time algorithm A that, given
the name of C ∈ C, D ∈ D, or N ∈ N, together with an integer k and the inputs m, computes the
output of AC , AD, and AN or determines that the output is undefined. This algorithm must run in
polynomial-time in k + |m| and may not use random coins when computing AC and AD.

15

2.2. THE COSP FRAMEWORK FOR TRACE PROPERTIES

∗ If ν is an output node, send m̃1 to E. Abort the loop if E halts. Let ν ′ be
the successor of ν. Let ν := ν ′.
∗ If ν is a control node, annotated with out-metadata l, send l to E. Abort

the loop if E halts. Upon receiving an answer l′, let ν ′ be the successor of ν
along the edge labeled l′ (or the lexicographically smallest edge if there is no
edge with label l′). Let ν := ν ′.
∗ If ν is a nondeterministic node, let D be the probability distribution in the

annotation of ν. Pick ν ′ according to the distribution D, and let ν := ν ′.
– Let νi := ν.
– Let len be the number of nodes from the root to ν plus the total length of all

bitstrings in the range of f . If len > p(k), stop.

2.2.3. Computational Soundness

For defining computational soundness for trace properties, we define trace properties in a
way that they are compatible with the computational and the symbolic execution: traces
are sequences of protocol states (technically nodes) of one protocol run and trace properties
are prefix-closed sets of such traces.

Definition 8 (Trace property [BHU09]). A trace property ℘ is an efficiently decidable
and prefix-closed set of (finite) lists of node identifiers.

Let M = (C,N,T,D,`) be a symbolic model and Πs a CoSP protocol. Then Πs sym-
bolically satisfies a trace property ℘ in M iff every node trace of Πs is contained in ℘.
Let Impl be a computational implementation of M and let Πp be a probabilistic CoSP
protocol. Then (Πp, Impl) computationally satisfies a trace property ℘ in M iff for all
probabilistic polynomial-time interactive machines E and all polynomials p, the probability
is overwhelming that Nodes pM,Impl,Πp,E

(k) ∈ ℘.

Finally, we are in a position to define computational soundness for trace properties.

Definition 9 (Computational soundness for trace properties [BHU09]). A computational
implementation Impl of a symbolic model M = (C,N,T,D,`) is computationally sound
for a class P of CoSP protocols iff for every trace property ℘ and for every efficient
probabilistic CoSP protocol Πp, we have that (Πp, Impl) computationally satisfies ℘ whenever
the corresponding CoSP protocol Πs of Πp symbolically satisfies ℘ and Πs ∈ P .

2.2.4. A Sufficient Criterion for Soundness

The CoSP framework provides a technical tool for proving soundness: a simulator that
translates between bitstrings and symbolic terms and that satisfies two important properties.
First, the simulator has to adhere to the deduction relation that models the symbolic
attacker, i.e., all terms that the simulator produces have to be deducable in the sense of
the deduction relation from Definition 1. This property is called Dolev-Yaoness. Second,
at the same time the simulator has to behave towards the adversary in a manner such that
the resulting distribution of node traces are indistinguishable. This property is a sanity
condition that forces the simulator to translate all attacks against trace properties of the
adversary (or an indistinguishable version of them) to symbolic terms. This property is
called indistinguishability.

16

CHAPTER 2. THEORETICAL FOUNDATIONS

For the sake of brevity, we use an arbitrary by fixed symbolic model M = (C,N,T,D,`)
and computational implementation Impl of M. Furthermore, we make the following
assumption: each term or node identifier that a machine sends can be encoded as a
bitstring.

We start with presenting syntactic conditions on interactive machines for the notion of a
simulator.

Definition 10 (Simulator [BHU09]). A simulator is an interactive machine Sim that
satisfies the following syntactic requirements:

• When activated without input, it replies with a term m ∈ T. (This corresponds to
the situation that the protocol expects some message from the adversary.)
• When activated with some t ∈ T, it replies with an empty output. (This corresponds

to the situation that the protocol sends a message to the adversary.)
• When activated with (info, ν, t) where ν is a node identifier and t ∈ T, it replies

with (proceed).
• At any point (in particular instead of sending a reply), it may terminate.

The simulator communicates with a symbolic execution and behaves like a computational
execution towards the adversary. However, since the symbolic execution is not an interactive
machine, CoSP introduces an interactive machine, called the hybrid execution, that executes
the symbolic execution.

Definition 11 (Hybrid execution [BHU09]). Let Πp be a probabilistic CoSP protocol, and
let Sim be a simulator. We define a probability distribution H-TraceM,Πp,Sim

(k) on (finite)
lists of tuples (Si, νi, fi) called the full hybrid trace according to the following probabilistic
algorithm ΠC , run on input k, that interacts with Sim. (ΠC is called the hybrid protocol
machine associated with Πp and internally runs a symbolic simulation of Πp as follows:)

• Start: S1 := S := ∅, ν1 := ν is the root of Πp, and f1 := f is a totally undefined
partial function mapping node identifiers to T. Run Πp on ν.
• Transition: For i = 2, 3, . . . do the following:

– Let ν̃ be the node identifiers in the label of ν. Define t̃ through t̃j := f(ν̃j).
– Proceed depending on the type of ν:
∗ If ν is a computation node with constructor, destructor, or nonce F , then

let m := evalF (̃t). If m 6= ⊥, let ν ′ be the yes-successor of ν and let
f ′ := f(ν := m). If m = ⊥, let ν ′ be the no-successor of ν and let f ′ := f .

∗ If ν is an output node, send t̃1 to Sim (but without handing over control to
Sim). Let ν ′ be the unique successor of ν. Set ν := ν ′.
∗ If ν is an input node, hand control to Sim, and wait to receive m ∈ T from

Sim. Let f ′ := f(ν := m), and let ν ′ be the unique successor of ν. Set
f := f ′ and ν := ν ′.

∗ If ν is a control node labeled with out-metadata l, send l to Sim, hand
control to Sim, and wait to receive a bitstring l′ from Sim. Let ν ′ be the
successor of ν along the edge labeled l′ (or the lexicographically smallest edge
if there is no edge with label l′). Let ν := ν ′.
∗ If ν is a nondeterministic node, sample ν ′ according to the probability

distribution specified in ν. Let ν := ν ′.
– Send (info, ν, t) to Sim. When receiving an answer (proceed) from Sim, continue.
– If Sim has terminated, stop. Otherwise let (Si, νi, fi) := (S, ν, f).

17

2.2. THE COSP FRAMEWORK FOR TRACE PROPERTIES

The probability distribution of the (finite) list ν1, . . . produced by this algorithm we denote
H-NodesM,Πp,Sim(k). We call this distribution the hybrid node trace.

If we write Sim + ΠC , we mean the execution of Sim and ΠC .

As a next step, we define the two semantic properties of the simulator: Dolev-Yaoness
and indistinguishability. Dolev-Yaoness requires the simulator to only produce terms that
adhere to the deduction relation of Definition 1.

Definition 12 (Dolev-Yao style simulator [BHU09]). A simulator Sim is Dolev-Yao style
(short: DY) for M and Πp, if with overwhelming probability the following holds:

In an execution of Sim + ΠC , for each `, let m` ∈ T be the `-th term sent (during
processing of one of ΠC ’s input nodes) from Sim to ΠC in that execution. Let T` ⊆ T the
set of all terms that Sim has received from ΠC (during processing of output nodes) prior to
sending m`. Then we have T` ` m`.

The indistinguishability of a simulator is a sanity condition. It requires that while
satisfying Dolev-Yaoness the simulator is not allowed to change the behavior of the
adversary in the following sense: the distribution of node trace of the hybrid execution and
of the computational execution have to be indistinguishable.

Definition 13 (Indistinguishable simulator). A simulator Sim is indistinguishable for M,
Πp, an implementation Impl, an adversary E, and a polynomial p, if

NodespM,Impl,Πp,E
(k)

C≈ H-NodesM,Πp,Sim(k),

i.e., if the computational node trace and the hybrid node trace are computationally indistin-
guishable.

We define the following abbreviation.

Definition 14 (Good simulator). A simulator is good for M, Πp, Impl, E, and p if it is
Dolev-Yao style for M, and Πp, and indistinguishable for M, Πp, Impl, E, and p.

A good simulator is sufficient to achieve computational soundness for trace properties.

Theorem 1 (Good simulator implies soundness [BHU09]). Let M = (C,N,T,D,`) be
a symbolic model, let P be a class of CoSP protocols, and let Impl be a computational
implementation of M. Assume that for every efficient probabilistic CoSP protocol Πp (whose
corresponding CoSP protocol is in P), every probabilistic polynomial-time adversary E, and
every polynomial p, there exists a good simulator for M, Πp, Impl, E, and p. Then Impl is
computationally sound for protocols in P .

18

CHAPTER 2. THEORETICAL FOUNDATIONS

2.3. The CoSP Framework for Equivalence properties

The original CoSP framework presented so far (Section 2.2) is only capable of handling
CS with respect to trace properties, i.e., properties that can be formulated in terms of
a single trace. Typical examples include the non-reachability of a certain “bad” protocol
state, in that the attacker is assumed to have succeeded (e.g., the protocol never reveals
a secret), or correspondence properties such as authentication (e.g., a user can access a
resource only after proving a credential). However, many interesting protocol properties
cannot be expressed in terms of a single trace. For instance, strong secrecy or anonymity
are properties that are, in the computational setting, usually formulated by means of a
game in which the attacker has to distinguish between several scenarios.

To be able to handle the class of equivalence properties, we extend the CoSP framework
to support equivalence properties. First, we recall the basic definitions of the original
framework. Dolev-Yao models are formalized as follows in CoSP.

2.3.1. Symbolic Indistinguishability

In this section, we define a symbolic notion of indistinguishability. First, we model the
capabilities of the symbolic attacker. Operations that the symbolic attacker can perform
on terms are defined as follows, including the destruction of already known terms and the
creation of new terms.3

Definition 15 (Symbolic Operation). Let M = (C,N,T,D) be a symbolic model. A
symbolic operation O/n (of arity n) on M is a finite tree whose nodes are labeled with
constructors from C, destructors from D, nonces from N, and formal parameters xi with
i ∈ {1, . . . , n}. For constructors and destructors, the children of a node represent its
arguments (if any). Formal parameters xi and nonces do not have children.

We extend the evaluation function to symbolic operations. Given a list of terms t ∈ Tn,
the evaluation function evalO : Tn → T recursively evaluates the tree O starting at the
root as follows: The formal parameter xi evaluates to ti. A node with F ∈ C ∪NE ∪D
evaluates according to evalF . If there is a node that evaluates to ⊥, the whole tree evaluates
to ⊥.

We stress that the identity function is included in the set of symbolic operations. It is
the tree that contains only x1 as node.

A symbolic execution of a protocol is a valid path through the protocol tree together with
a communication with the attacker. A view only consists of the communication with the
attacker. Equivalence of two protocols is formalized by requiring that the set of possible
views looks the same for the symbolic adversary.

Definition 16 (Symbolic Execution). Let a symbolic model M = (C,N,T,D) and a CoSP
protocol Π be given. A symbolic view of the protocol Π is a (finite) list of triples (Vi, νi, fi)
with the following conditions:

3We deviate from the definition in the original CoSP framework [BHU09], where a deduction relation
describes which terms the attacker can deduce from the already seen terms. This modification is not
essential; all results for trace properties that have been established in the original framework so far are
compatible with our definition.

19

2.3. THE COSP FRAMEWORK FOR EQUIVALENCE PROPERTIES

For the first triple, we have V1 = ε, ν1 is the root of Π, and f1 is an empty partial function,
mapping node identifiers to terms. For every two consecutive tuples (V, ν, f) and (V ′, ν ′, f ′)
in the list, let ν̃ be the nodes referenced by ν and define t̃ through t̃j ··= f(ν̃j). We conduct
a case distinction on ν.

• ν is a computation node with constructor, destructor or nonce F . Let
V ′ = V . If m ··= evalF (t̃) 6= ⊥, ν ′ is the yes-successor of ν in Π, and f ′ = f(ν ··= m).
If m = ⊥, then ν ′ is the no-successor of ν, and f ′ = f .

• ν is an input node. If there exists a term t ∈ T and a symbolic operation O on
M with evalO(VOut) = t, let ν ′ be the successor of ν in Π, V ′ = V :: (in, (t, O)), and
f ′ = f(ν ··= t).

• ν is an output node. Let V ′ = V :: (out, t̃1), ν ′ is the successor of ν in Π, and
f ′ = f .

• ν is a control node with out-metadata l. Let ν ′ be the successor of ν with the
in-metadata l′ (or the lexicographically smallest edge if there is no edge with label l′),
f ′ = f , and V ′ = V :: (control, (l, l′)).

Here, VOut denotes the list of terms in V that have been sent at output nodes, i.e., the
terms t contained in entries of the form (out, t) in V . Analogously, VOut-Meta denotes the
list of out-metadata in V that has been sent at control nodes.

The set of all symbolic views of Π is denoted by SViews(Π). Furthermore, VIn denotes
the partial list of V that contains only entries of the form (in, (∗, O)) or (control, (∗, l′))
for some symbolic operation O and some in-metadata l′, where the input term and the
out-metadata have been masked with the symbol ∗. The list VIn is called attacker strategy.
We write [VIn]SViews(Π) to denote the class of all views U ∈ SViews(Π) with UIn = VIn .

The knowledge of the attacker comprises the results of all the symbolic tests the attacker
can perform on the messages output by the protocol. To define the attacker knowledge
formally, we have to pay attention to two important details. First, we concentrate on
whether a symbolic operation fails or not, i.e., if it evaluates to ⊥ or not; we are not
interested in the resulting term in case the operation succeeds. The following example
illustrates why. Let us consider a protocol Π1 that does nothing more than sending a
ciphertext c to the attacker, whereas another protocol Π2 sends a different ciphertext c′

(with the same plaintext length) to the attacker. Assume that the decryption key is kept
secret. This pair of protocols should be symbolically indistinguishable. More precisely, the
attacker knowledge in Π1 should be statically indistinguishable from the attacker knowledge
in the Π2. Recall that O = x1 is the symbolic operation that just returns the first message
received by the attacker. If the result of O were part of the attacker knowledge, the
knowledge in Π1 (containing c) would differ from the knowledge in the Π2 (containing c′),
which is not what we would like to express. On the other hand, our definition, which only
cares about the failure or success of a operation, requires that the symbolic model contains
an operation equals to be reasonable. This operation equals allows the attacker to test
equality between terms: consider the case where Π2 sends a publicly known term t instead
of c′, but still of the same length as c. In that case the attacker can distinguish this pair of
protocols with the help of the symbolic operation equals(t, x1).

The second observation is that the definition should cover the fact that the attacker
knows which symbolic operation leads to which result. This is essential to reason about
indistinguishability: consider a pair of protocols Π1 and Π2 such that the first protocol

20

CHAPTER 2. THEORETICAL FOUNDATIONS

Π1 sends the pair (n, t), but the second protocol Π2 sends the pair (t, n), where t is again
a publicly known term and n is a fresh protocol nonce. The two protocols do not differ
in the terms that the attacker can deduce after their execution; the deducible terms are
all publicly known terms as well as n. Still, the protocols are trivially distinguishable
by the symbolic operation equals(Ot, snd(x1)) because equals(Ot, snd((n, t))) 6= ⊥ but
equals(t, snd((t, n))) = ⊥, where snd returns the second component of a pair and Ot is a
symbolic operation that constructs t.

Definition 17 (Symbolic Knowledge). Let M be a symbolic model. Given a view V with
|VOut | = n, a symbolic knowledge function fV : SO(M)n → {>,⊥} is a partial function
from symbolic operations (see Definition 15) of arity n to {>,⊥}. The full symbolic
knowledge function is a total symbolic knowledge function is defined by

KV (O) ··=
{
⊥ if evalO(VOut) = ⊥
> otherwise.

Intuitively, we would like to consider two views equivalent if they look the same for a
symbolic attacker. Despite the requirement that they have the same order of output, input
and control nodes, this is the case if they agree on the out-metadata (the control data sent
by the protocol) as well as the symbolic knowledge that can be gained out of the terms
sent by the protocol.

Definition 18 (Equivalent Views). Let two views V, V ′ of the same length be given. We
denote their ith entry by Vi and V ′i , respectively. V and V ′ are equivalent (V ∼ V ′), if the
following three conditions hold:

1. (Same structure) Vi is of the form (s, ·) if and only if V ′i is of the form (s, ·) for some
s ∈ {out, in, control}.

2. (Same out-metadata) VOut-Meta = V ′Out-Meta .

3. (Same symbolic knowledge) KV = KV ′.

Finally, we define two protocols to be symbolically indistinguishable if its two variants
lead to equivalent views when faced with the same attacker strategy. Thus, a definition
of “symbolic indistinguishability” should compare the symbolic knowledge of two protocol
runs only if the attacker behaves identically in both runs.

Definition 19 (Symbolic Indistinguishability). Let M be a symbolic model and P be a
class of protocols on M. Given an attacker strategy VIn (in the sense of Definition 16),
two protocols Π1,Π2 ∈ P are symbolically indistinguishable under VIn if for all views
V1 ∈ [VIn]SViews(Π1) of Π1 under VIn , there is a view V2 ∈ [VIn]SViews(Π2) of Π2 under VIn
such that V1 ∼ V2, and vice versa.

Two protocols Π1,Π2 ∈ P are symbolically indistinguishable (Π1 ≈s Π2), if Π1 and Π2

are indistinguishable under all attacker strategies.

2.3.2. Computational Indistinguishability

The computational challenger of a protocol is a randomized interactive machine that runs
against a ppt attacker A. This interaction is called the computational execution. The
transcript of the execution is the computational counterparts of a symbolic view.

21

2.3. THE COSP FRAMEWORK FOR EQUIVALENCE PROPERTIES

Definition 20 (Computational Challenger). Let A be a computational implementation of
the symbolic model M = (C,N,T,D) and Π be a CoSP protocol. Let A be a ppt machine.
For a security parameter k, the computational challenger ExecM,Impl,Π(k) is the following
interactive machine:

Initially, let ν be the root of Π. Let f and n be empty partial functions from node
identifiers to bitstrings and from N to bitstrings, respectively. Enter a loop and proceed
depending on the type of ν:

• ν is a computation node with nonce N ∈ N. If n(N) 6= ⊥, let m′ ··= n(N);
otherwise sample m′ according to AN (k). Let ν ′ be the yes-successor of ν. Let
f ··= f(ν ··= m′), n ··= n(N ··= m′), and νi ··= ν ′.

• ν is a computation node with constructor or destructor F . Let ν̃ be the nodes
referenced by ν and m̃j ··= f(ν̃j). Then, m′ ··= AF (k, m̃). If m′ 6= ⊥, then ν ′ is the
yes-successor of ν, if m′ = ⊥, then ν ′ is the no-successor of ν. Let f ··= f(ν ··= m′)
and νi ··= ν ′.

• ν is an input node. Ask the adversary A for a bitstring m. Let ν ′ be the successor
of ν. Let f ··= f(ν ··= m) and νi ··= ν ′.

• ν is an output node. Send m̃1 to A. Let ν ′ be the successor of ν, and let νi ··= ν ′.

• ν is a control node with out-metadata l. Send l to A. Upon receiving in-
metadata l′, let ν ′ be the successor of ν along the edge labeled l′ (or the edge with the
lexicographically smallest label if there is no edge with label l′). Let νi ··= ν ′.

Definition 21 (Computational Execution). The interaction between the challenger
ExecM,A,Π(k) and the adversary A(k) is called the computational execution, denoted
by 〈ExecM,A,Π(k) | A(k)〉. It stops whenever one of the two machines stops, and the output
of 〈ExecM,A,Π(k) | A(k)〉 is the output of A(k).

We do not use the standard notion of computational indistinguishability for defining the in-
distinguishability in the computational model, as it has severe limitations for computational
soundness. To understand these limitation, consider a pair of protocols that is symbolically
indistinguishable from a uniformity enforcing class of pairs of protocols. After receiving an
input, the first protocol Π1 immediately produces an output, and the second protocol Π2

enters a loop that takes a superpolynomial number of steps but afterwards produces the
same output. While these two protocols are symbolically indistinguishable (as the symbolic
model abstracts away from running time), a polynomial-time distinguisher can observe
that the second protocol Π2 prematurely halts, i.e., the protocols are computationally
distinguishable. Thus, computational soundness cannot hold in this case.

Another problem arises because many reactive systems, such as file servers, have actually
no a-priori bound for their running time and that protocols that could (potentially) run in
superpolynomial time prevent us of from using computational assumptions. Unruh [Unr11]
gives the following example. Consider a pair of protocols Π1,Π2 that both describe a file
server that allows clients to store values to files, read (parts of) files, store the concatenation
of two files as a new file, and store the encryption of a files as a new file. Both protocols use
an IND-CCA secure public encryption scheme and have only access to the public key; the
secret key is never used. In Π1, the encryption uses the actual contents of the file of length
n, and in Π2, the encryption instead uses 0n. Now consider the following polynomial-time
distinguisher A: First, A creates a file f0 with content 1. Second, A creates k files f1, . . . , fk

22

CHAPTER 2. THEORETICAL FOUNDATIONS

by concatenation operations such that fi = 12i , where k is the security parameter. Third,
A creates a file f by letting the file server encrypt the file fk. Finally, A reads the first bit
of f . Since IND-CCA security does not consider input messages of superpolynomial size
(e.g., 12k), nothing is guaranteed about the resulting ciphertext f . Indeed, the first bit of f
could the first bit of fk, in which case A can easily distinguish Π1 from Π2.

As a remedy, Unruh introduced a notion, called tic-indistinguishability, which defines
indistinguishability up to running time tests. With tic-indistinguishability we are able to
formulate a meaningful CS result, because it guarantees indistinguishability as long as
the protocol does not long actually run in a superpolynomial time, while it ignores the
situation after a superpolynomial number of steps.

Note that both these problems could be solved also by restricting the protocol class to
pairs of protocols that always run in polynomial time. In that case, we could use normal
computational indistinguishability. However, this way comes with drastic restrictions:
First, it excludes many plausible protocols like the protocol described above. Second, to
enable mechanized verification, it is highly desirable to define the class of pairs of protocols
captured by the CS result using statically-verifiable conditions, e.g., syntactic conditions
such as disallowing loops. (This way is taken by Comon-Lundh and Cortier [CC08] as
well as Comon-Lundh, Cortier and Scerri [CCS12].) This, however, comes with even
more restrictions, because such syntactic restrictions are typically only a rough over-
approximation of polynomial-time protocols. Thus, even more protocols are excluded.

Definition 22 (Tic-indistinguishability [Unr11]). Given two machines M,M ′ and a poly-
nomial p, we write Pr[〈M |M ′〉 ⇓p(k) x] for the probability that the interaction between M
and M ′ terminates within p(k) steps and M ′ outputs x. We call two machines A and B
termination-insensitively computationally indistinguishable for a machine A (A ≈Atic B) if
for all polynomials p, there is a negligible function µ such that for all z, a, b ∈ {0, 1}∗ with
a 6= b,

Pr[〈A(k) | A(k, z)〉 ⇓p(k) a] + Pr[〈B(k) | A(k, z)〉 ⇓p(k) b] ≤ 1 + µ(k).

Here, z represents an auxiliary string. Additionally, we call A and B termination-
insensitively computationally indistinguishable (A ≈tic B) if we have A ≈Atic B for all
polynomial-time machines A.

Termination insensitive computational indistinguishability is not transitive, i.e., A ≈tic B
and B ≈tic C does not imply A ≈tic C in general (see [Unr11] for more details). Due to
this limitation, we additionally use in the proofs the standard notion of computational
indistinguishability, denoted as A ≈comp B. Moreover, we also use a notion of time-
equivalence, denoted as A ≈time B, that states that the output of two machines A and B
is statistically indistinguishable, as long as only the output that A or B produces after
super-polynomially many steps is ignored.4

We refer the reader to Unruh [Unr11] for a further discussion of tic-indistinguishability
and a precise technical definition of the underlying machine model.

Given this definition, computational indistinguishability for pairs of protocols is naturally
defined. A pair of protocols is indistinguishable if its challengers are computationally
indistinguishable for every ppt attacker A.

4Technically, the definition formalizes this intuition by only considering outputs generated after a polyno-
mially bounded number of steps. For the full definition, we refer to the original paper [Unr11].

23

2.3. THE COSP FRAMEWORK FOR EQUIVALENCE PROPERTIES

Definition 23 (Termination Insensitive Computational Indistinguishability). Let Π1 and
Π2 be an efficient CoSP protocol and let Impl be a computational implementation of M.
Π1 and Π2 are termination-insensitively computationally indistinguishable if for all ppt
attackers A and for all polynomials p,

ExecA,M,Π1 ≈tic ExecA,M,Π2 .

2.3.3. Computational Soundness

The previous definitions culminate in the definition of CS for equivalence properties. It
states that the symbolic indistinguishability of a pair of protocols implies its computational
indistinguishability. In other words, it suffices to check the security of the symbolic pair of
protocols, e.g., using mechanized protocol verifiers such as ProVerif.

Definition 24 (Computational Soundness for Equivalence Properties). Let a symbolic
model M and a class P of efficient protocols be given. An implementation Impl of M
is computationally sound (w.r.t. equivalence properties) for M and P if for every pair
Π1,Π2 ∈ P, we have that Π1 and Π2 are computationally indistinguishable whenever Π1

and Π2 are symbolically indistinguishable.

2.3.4. Bi-Protocols

In order to compare two variants of a protocol, we consider bi-protocols, which rely on
the same idea as bi-processes in the applied π-calculus [BAF05]. Bi-protocols are pairs of
protocols that only differ in the messages they operate on.

Definition 25 (CoSP Bi-protocol). A CoSP bi-protocol Π is defined like a protocol but uses
bi-references instead of references. A bi-reference is a pair (νleft , νright) of node identifiers
of two (not necessarily distinct) nodes in the protocol tree. In the left protocol left(Π) the
bi-references are replaced by their left components; the right protocol right(Π) is defined
analogously.

Efficiency for CoSP bi-protocols is defined as for CoSP protocols.

Definition 26 (Efficient Bi-Protocol). We call a CoSP bi-protocol efficient if:

• There is a polynomial p such that for any node N , the length of the identifier of N is
bounded by p(m) where m is the length (including the total length of the edge-labels)
of the path from the root to N .

• There is a deterministic polynomial-time algorithm that, given the identifiers of all
nodes and the edge labels on the path to a node N , computes the identifier of N .

• There is a deterministic polynomial-time algorithm that, given the identifier of a
control node N , the identifiers of all nodes and all edge labels on the path to N ,
computes the lexicographically smallest label of an edge (i.e., the in-metadata) of all
edges that lead from N to one of its successors.

Definition 27 (Symbolic Indistinguishability for Bi-Protocols). For a bi-protocol Π, we
say that Π is symbolically indistinguishable if left(Π) ≈s right(Π).

24

CHAPTER 2. THEORETICAL FOUNDATIONS

2.4. Review of the Applied π-calculus

In this section, we review the syntax and semantics of the applied π-calculus in a very brief
manner.

Figure 2.1 depicts the syntax of the applied π-calculus. The set of terms in the applied π-
calculus is the free algebra according to the grammar in Figure 2.1. The applied π-calculus
is parametric in a set of uninterpreted function symbols, called constructors. As an example,
constructors modeling symbolic public-key encryption could contain the constructor enc/3
with arity 3 and the constructor pk/1 with arity 1. The term enc(M, pk(K), L) would
represent the result of an encryption operation applied to the message (term) M , the public-
key (term) pk(K), and the randomness (term) L. As a notation, we use M for denoting a
tuple M1, . . . ,Mn. Moreover, applied π-calculus is parametric in partial functions, called
destructors, from terms to terms. Whenever a destructor is not defined, we say it fails
(denoted as d(M) = ⊥). For symbolic public-key encryption, a destructor dec could be
defined as dec(enc(M, pk(K), L),K) = M .

Having defined terms in the applied π-calculus, we define the notion of processes, whose
grammar is depicted in Figure 2.1 and whose inference rules for the operational semantics
is depicted in Figure 2.2. We begin with plain processes. The empty process denotes that
a process terminates at that point; as syntactic sugar, it is typically omitted from the code.
A name restriction νn.P produces a fresh name n and afterwards behaves as P with the
additional fresh name n. a(x).P expects a message N from the channel a and afterwards
behaves as P{N/x}. a〈N 〉.P sends a message N on channel a and afterwards behaves as
P .5 P | Q models two parallel processes P and Q. P | Q nondeterministically behaves
for one step as either P or Q and keeps a separate state (i.e., distinct local variable and
name scopes) for both processes. !P acts as unboundedly many number of copies of P
that are executed in parallel; For let x = D then P else Q it is checked whether D is of the
form d(M) for a destructor d and terms M . If D is of that form and if the application
fails ⊥ = d(M), the processes let x = D then P else Q behaves as the process Q. If D is of
the form d(M) and the application results in a term N = d(M) or if D = N , the process
let x = D then P else Q behaves as P{N/x}.6

Name restrictions, inputs, and lets restrict the scope of names and variables. In a process
P , we write for free variables fv(P) and for free names fn(P). We call a term without any
variables a ground term. We call a process without free variables a closed process. We call
a process with a hole • a context. We call a context whose hole is not under replication, a
conditional (i.e., a let), an input, or an output, an evaluation context.

As depicted in Figure 2.2, the operational semantics of the applied π-calculus includes a
so-called structural equivalence relation (≡) and a so-called internal reduction relation (→).
Processes that are equivalent up to syntactic re-arrangement are structural equivalence,
and the actual way how processes are executed and synchronized is defined by the internal
reduction.

Safety properties. As in the work of Fournet, Gordon, and Maffeis [FGM07], we assume
that points in the protocol that are security-relevant are annotated with logical predicates,

5For the sake of brevity, we use a(x) and a〈N 〉 as input and output command, but the actual applied
π-calculus (hence also our case study in Appendix A) uses in(a,x) and out(a,N), respectively.

6For sets of destructors that contains a destructor equal that checks term equality (i.e.,
∀M.equals(M,M) = M), we write if a = b then P else Q for let equals(a, b) = a in P else Q.

25

2.4. REVIEW OF THE APPLIED π-CALCULUS

M,N ::= terms

x, y, z variables

a, b, c names

f(M1, . . . ,Mn) constructor application

D ::= destructor term

M terms

d(M1, . . . ,Mn) destructor application

P,Q ::= processes

M〈N〉.P output

M(x).P input

0 empty

P | Q parallel composition

!P replication

νa.P restriction

let x = D let

in P else Q

assume F assumption

assert F assertion where F is a formula in first order logic

Figure 2.1.: Syntax of the Applied π-calculus

and security requirements, such as authorization policies, are formulated as logical formulas.
Formally, we introduce two processes assume F and assert F , F being a formula in first
order logic. Assumptions and assertions are not further executed; their sole purpose is to
express security properties. On a high level, safety holds if all assertions are implied by
assumptions in every protocol execution.

Definition 28 (Safety). A closed process P is safe if and only if for every F and Q such
that P →∗ νa.(assert F | Q), there exists an evaluation context E[•] = νb. • | Q′ such that
Q ≡ E[assume F1 | . . . | assume Fn], fn(F)∩b = ∅, and we have that F1∧ . . .∧Fn =⇒ F .

A process that is safe when run in parallel with any opponent is called robustly safe.

Definition 29 (Opponent). A closed process is an opponent without any assert.

Definition 30 (Robust Safety). A closed process P is robustly safe if and only if P | O
is safe for every opponent O.

26

CHAPTER 2. THEORETICAL FOUNDATIONS

P | 0 ≡ P P ≡ P P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

P ≡ Q Q ≡ R
P ≡ R

νa.νb.P ≡ νb.νa.P
P ≡ Q

P | R ≡ Q | R
a /∈ fn(P)

νa.(P | Q) ≡ P | νa.Q

P ≡ Q
νa.P ≡ νa.Q

N ≈ N ′

N〈M〉.Q | N ′(x).P → Q | P{M/x}

d(M) = N 6= ⊥
let x = d(M) in P else Q→ P{N/x}

d(M) = ⊥
let x = d(M) in P else Q→ Q let x = N in P else Q→ P{N/x}

!P → P | !P

P → Q

P | R→ Q | R νa.P → νa.Q

P ′ ≡ P P → Q Q ≡ Q′
P ′ → Q′

P → Q

P | R→ Q | R νa.P → νa.Q

P ′ ≡ P P → Q Q ≡ Q′
P ′ → Q′

Figure 2.2.: Semantics of the applied π-calculus

2.5. Embedding from the Applied π-calculus Calculus

In this section, we present the connection between uniform bi-processes in the applied
π-calculus and our CS result in CoSP, namely that the applied π-calculus can be embedded
into the extended CoSP framework. In contrast to previous work [CC08; CCS12; CH11],
we consider CS for bi-protocols from the full applied π-calculus. In particular, we also
consider private channels and non-determinate processes.

In Section 2.4, the applied π-calculus for trace properties is reviewed. In this chapter, we
consider the variant of the applied π-calculus for bi-protocols (as described in [BAF05]),
and thus we only discuss the differences to Section 2.4.

A uniform bi-process [BAF05] in the applied π-calculus is the counterpart of a uniform
bi-protocol in CoSP. A bi-process is a pair of processes that only differ in the terms they
operate on. Formally, they contain expressions of the form choice[a, b], where a is used in

27

2.5. EMBEDDING FROM THE APPLIED π-CALCULUS CALCULUS

the left process and b is used in the right one. A bi-process Q can only reduce if both its
processes can reduce in the same way.

Definition 31 (Uniform Bi-process). A bi-process Q in the applied π-calculus is uniform
if left(Q) → Rleft implies that Q → R for some bi-process R with left(R) ≡ Rleft , and
symmetrically for right(Q)→ Rright with right(R) ≡ Rright .

2.5.1. Embedding into CoSP

The execution of an process P in the applied π-calculus can be modeled as a CoSP
protocol e(P) as defined by Backes, Hofheinz, and Unruh [BHU09]. The function e is
called embedding. e(P) sends the current state of P to the attacker, who replies with a the
description of an evaluation context E that determines which part of P should be reduced
next. Thus the attacker is given control over the whole scheduling of the process.

The state of P is used as a node identifier. An execution of the process performs only the
following operations on terms: Applying constructors (this includes nonces) and destructors,
comparing using equals ,7 and sending and receiving terms. However, terms are not encoded
directly into the node identifier; instead, the node in which they were created (or received)
is referenced instead. This is due to the fact that a CoSP protocol allows to treat terms
only as black boxes. Note that the process P and the terms occurring within P will be
encoded in the node identifier (encoded as bitstrings). Operations on messages can then be
performed by using constructor and destructor nodes, and the input and output of terms
is handled using input/output nodes. If the attacker wants to send or receive on a public
channel, she is forced to produce the term that corresponds to the channel.

To ensure that the resulting protocols are uniformity-enforcing, we have to modify
the embedding slightly as discussed in Section 6.2.1. The modification is highlighted
in blue. This modification clearly does not influence the validity of the computational
soundness result of the applied π-calculus that has been established in the original CoSP
framework [BHU09] for trace properties.

Definition 32 (Symbolic Execution of a Process in the Applied π-calculus (based on
[BHU09])). Let P0 be a closed process, and let A be an interactive machine called the
attacker. We define the symbolic π-execution as an interactive machine SExecP0 that
interacts with A:

• Start: Let P := P0 (where we rename all bound variables and names such that
they are pairwise distinct and distinct from all unbound ones). Let η be a totally
undefined partial function mapping variables to terms, let µ be a totally undefined
partial function mapping names to terms. Let a1, . . . , an denote the free names in
P0. For each i, choose a different ri ∈ NP Set µ := µ(a1 := r1, . . . , an := rn). Send
(r1, . . . , rn) to A.

• Main loop: Send P to the attacker and include the address of the resulting control
node in the protocol tree in its out-metadata. Expect an evaluation context E from
the attacker and distinguish the following cases:

– P = E[M(x).P1]: Request two CoSP-terms c, m from the attacker. If c ∼=
evalfw(Mηµ), set η := η(x := m) and P := E[P1].

7For instance, this is used to determine if two processes can communicate, i.e., if a channel on which a
message should be sent matches a channel on which a message should be received.

28

CHAPTER 2. THEORETICAL FOUNDATIONS

– P = E[νa.P1]: Choose r ∈ NP \ range(µ), set P := E[P1] and µ := µ(a := r).

– P = E[M1〈N〉.P1][M2(x).P2]: If evalfw(M1)ηµ ∼= evalfw(M2ηµ) then set P :=
E[P1][P2] and η := η(x := evalfw(Nηµ)).

– P = E[let x = D in P1 else P2]: If m := evalfw(Dηµ) 6= ⊥, set η := η(x := m)
and P := E[P1]. Otherwise set P := E[P2].

– P = E[!P1]: Rename all bound variables of P1 such that they are pairwise
distinct and distinct from all variables and names in P and in the domains of η
and µ, yielding a process P̃1. Set P := E[P̃1 |!P1].

– P = E[M〈N〉.P1]: Request a CoSP-term c from the attacker. If c ∼= evalfw(Mηµ),
set P := E[P1] and send evalfw(Nηµ) to the attacker.

– In all other cases, do nothing.

Modifications for Bi-processes. If P is the left or the right variant of a bi-process in
the applied π-calculus, expressions of the form choice[a, b] are translated to subtrees in the
CoSP protocol that compute both a and b entirely. References to such expressions are
translated to bi-references in the natural way. When a description of the process P is sent
to the attacker, expressions of the form choice[a, b] are sent untouched; if only a would be
sent left and only b right, the attacker could trivially distinguish the bi-protocol.

Relating CoSP and the Applied π-calculus. The following lemma connects uni-
formity in the applied π-calculus to uniformity in CoSP by demonstrating that uniform
bi-processes in the applied π-calculus correspond to uniform bi-protocols in CoSP.

Lemma 1 (Uniformity in CoSP and the Applied π-calculus). Let a bi-process Q in the
applied π-calculus be given. There is an embedding e from bi-processes in the applied
π-calculus to CoSP bi-protocols with the following property: If left(Q) and right(Q) are
uniform, then left(e(Q)) ≈s right(e(Q)) and range(e) is uniformity-enforcing.

Proof. We show the contrapositive. Suppose that we have left(e(Q)) 6≈s right(e(Q)).
Then there there is a distinguishing attacker strategy VIn , i.e., there is a view V ∈
[VIn]SViews(left(e(Q))) such that for all V ′ ∈ [VIn]SViews(right(e(Q))) we have V 6∼ V ′ (the
symmetric case is completely analogous).

Let V, V ′ be defined accordingly. As V ∼ V ′, there is a shortest prefix v such that for the
prefix v′ of V ′ (of the same as v), we have v 6∼ v′. Let vIn be the corresponding prefix of
the attacker strategy VIn . Recall that vIn is a list that contains operations to create input
terms to the protocol and in-metadata to schedule the execution of the protocol. This
suffices to construct an evaluation context EIn from vIn : By construction of e, input nodes
are used in e(Q) to give the attacker the possibility to send or receive on a channel. If the
attacker is able to produce the channel term, the corresponding action is performed; in the
send case the attacker has to provide the term additionally. The operations in vIn are used
in EIn to produce the required channel name as well as the term to be sent. Moreover, the
in-meta data yields a unique reduction t for left(Q) such that EIn [left(Q)]→t Pleft .

We distinguish three cases. First, the shape is different (1): there is an i such that
vi = (s, x) and v′i = (s′, y) and s 6= s′ (s, s′ ∈ {out, in, control}). Second, the out-
metadata is different (2): vOut-Meta 6= v′Out-Meta . Third, static equivalence fails (3):
K (vOut) 6= K (v′Out).

29

2.5. EMBEDDING FROM THE APPLIED π-CALCULUS CALCULUS

In case (1), different shapes in the left and right protocol correspond to different protocol
actions and thus to different cases in the main loop of the symbolic execution of the process
in the applied π-calculus. By construction of this execution, we conclude that the left
protocol has received other in-metadata that the right one. This contradicts the fact that
V and V ′ are views under the same attacker strategy VIn .

For case (2), recall that the out-metadata at control nodes is only used to send a state
of the executed process to the attacker, and to raise events. Thus, if the out-metadata
differs, then the left and the right process have reduced differently. More formally, we have
left(Q)→ Pleft but there is no bi-process P such that Q→ P and left(P) = Pleft because
otherwise there would be a view v′ of right(e(Q)) inducing a reduction right(Q)→ Pright

with Pright ≡ right(P).8 This shows that Q is not uniform.

In the remaining case (3) we construct an evaluation context Eu that breaks the obser-
vational equivalence (and thus the uniformity) of P . We know that there is a symbolic
operation O such that KV (O) 6= K ′V (O). In other words, O(VOut) = ⊥ and O(V ′Out) 6= ⊥
(or vice versa). This induces the context Eu that executes the constructors and destruc-
tors corresponding to O and branches depending on the result of the whole operation.
Finally, the combined context Eu[EIn [·]] distinguishes left(Q) and right(Q). Thus Q is not
uniform.

8Note that the CoSP bi-protocol is deterministic, because it is efficient in the sense of Definition 26. Hence
it additionally renames bound variables and chooses nonces ri ∈ NP consistently.

30

CHAPTER 2. THEORETICAL FOUNDATIONS

2.6. Equivalence Notions

ProVerif is not able to handle complicated destructors such as len, which are typically
defined recursively, e.g., len(pair(t1, t2)) = len(t1) + len(t2). Recent work by Cheval,
Cortier, and Plet [CCP13] extends the automated protocol verifier APTE [CCD11; Che],
which is capable of proving trace equivalence of two processes in the applied π-calculus
(without replication), to support such length functions. However, trace equivalence is a
weaker notion than uniformity, i.e., there are bi-processes that are trace equivalent but not
uniform, our computational soundness result does not carry over to APTE.9 Due to the
lack of a tool that is able to check (only) uniformity as well as to handle length functions
properly, we explain how APTE can be combined with ProVerif to make protocols on the
symbolic model of our case study amendable to automated verification.

In [CCP13], the notion of trace equivalence w.r.t. length is defined. Particularized for
a bi-process Q, the definition states essentially that Q is trace-equivalent w.r.t. length
if for any sequence of input or output actions that an attacker can reach with left(Q),
the same sequence is reachable in right(Q) such that the resulting attacker knowledge is
statically equivalent, and vice versa. Here, static equivalence means that the attacker has
no test (built from destructors and constructors) that tells the knowledge reached in left(Q)
apart from the knowledge reached in right(Q). This holds in particular for the test that
returns the length associated with a term in the knowledge of the attacker. We refer the
reader to [CCP13] for a precise definition. Since any len destructor as introduced in the
symbolic model M in Section 6.3 is linear, it can be regarded as the mentioned length test.
Consequently, the analysis of APTE leads to guarantees that are meaningful with respect
to the established computational soundness result.

On the other hand, ProVerif is able to decide whether the following holds on a input
bi-process Q:

1. if Q′ ≡ K ′[N〈M〉.P | N ′(x).R] then left(N) = left(N ′) if and only if right(N) =
right(N ′),

2. ifQ′ ≡ K ′[let x = d in P else R] then eval(left(d)) = ⊥ if and only if eval(right(d)) = ⊥.

In this case, we say that Q is PV-uniform. Blanchet, Abadi, and Fournet [BAF05] prove
that PV-uniformity implies uniformity.

Our goal is to show that if a bi-process Q is PV-uniform w.r.t. Cpi ∪D′pi with D′pi =
Dpi \ {len/1}, and its left and right variant are trace equivalent w.r.t. Cpi ∪Dpi , then it is
also PV-uniform w.r.t Cpi ∪Dpi . To this end, we prove the following slightly more general
lemma.

Lemma 2. Let Q be a bi-process in the applied π-calculus and Cpi be a set of constructors
and Dpi be a set of destructors. If

(i) Q only uses the constructors Cpi and the destructors D′pi ⊆ Dpi ,

(ii) Q is PV-uniform with Cpi ∪D′pi , and

(iii) for all d ∈ Dpi \ D′pi and for all terms t, the existence of a term t′ such that

9Cheval, Cortier, and Delaune [CCD13] show that trace equivalence implies observational equivalence
for so-called determinate processes. Recall that the even stronger notion of uniformity, which is only
defined for bi-processes, was introduced as a means to prove observational equivalence.

31

2.6. EQUIVALENCE NOTIONS

eval(d(t)) = t′ implies that t′ can be built using constructors only, and

(iv) left(Q) and right(Q) are trace equivalent,

then Q is PV-uniform against an attacker that uses Cpi ∪Dpi .

Proof. Assume towards contradiction that Q is not PV-uniform against an attacker that
uses Cpi ∪Dpi , but Q is PV-uniform against an attacker that uses Cpi ∪D′pi , Q only uses
Cpi ∪D′pi , and assume that left(Q) and right(Q) are trace equivalent.

Recall that if Q is not PV-uniform (against an attacker that uses Cpi ∪Dpi), then there
are evaluation contexts K,K ′ and a bi-process Q′ such that K[Q]→∗ Q′ and one of the
following two properties are violated:

1. if Q′ ≡ K ′[N〈M〉.P | N ′(x).R] then left(N) = left(N ′) if and only if right(N) =
right(N ′),

2. if Q′ ≡ K ′[let x = d in P else R] then eval(left(d)) = ⊥ if and only if eval(right(d)) =
⊥.

W.l.o.g. we can assume that Q′ is the first process in the reduction sequence K[Q]→∗ Q′
that violates the PV-uniformity-properties.

Case 1: In this case, we have w.l.o.g. left(N) = left(N ′) but right(N) 6= right(N ′). Since
Q′ is the first process that violates the PV-uniformity properties, 1 and 2 hold in all
previous reduction steps. We distinguish two cases. First, the protocol communicates with
the attacker, i.e., either N〈M〉.P or N ′(x).R is not a residue process of the protocol Q.
Then, the trace of left(Q) and right(Q) shows whether the communication over N and N ′

succeeds. Consequently, right(N) 6= right(N ′) contradicts the trace equivalence of left(Q)
and right(Q), i.e., assumption (iv).

Second, the protocol performs an internal communication, i.e., both N〈M〉.P and N ′(x).R
are residues processes of the protocol Q. In this case, we know by assumption (iii) that the
attacker context K (which uses Cpi ∪Dpi) together with the protocol process Q cannot
produce more terms than a corresponding context K ′′ that only uses Cpi ∪D′pi together
with Q. Even though K with Q can branch differently than K ′′ with Q, we know by
assumption that all previous reduction steps satisfied the PV-uniformity property 2. Hence,
there is a context K ′′ that only uses Cpi ∪D′pi but has a reduction sequence K ′′ →∗ Q′′
such that

Q′′ ≡ K ′′′[N〈M〉.P | N ′(x).R]

Then, however, right(N) 6= right(N ′) contradicts the PV-uniformity of Q against an
attacker that only uses Cpi ∪D′pi , i.e., assumption (ii).

Case 2: In this case, we assume w.l.o.g. that eval(left(d)) = ⊥ and eval(right(d)) 6= ⊥.
We distinguish two cases. First, a protocol test fails in left(Q) but not in right(Q), i.e.,

let x = d in P else R

is inside a residue process of the protocol Q. In this case, (with the same argumentation
as above) there is, by assumption iii, a context K ′′ that only uses Cpi ∪D′pi but has a
reduction sequence K ′′ →∗ Q′′ such that

Q′′ = K ′′′[let x = d in P else R]

eval(left(d)) = ⊥ and eval(right(d)) 6= ⊥, however, contradicts the PV-uniformity of Q
against attackers that only use Cpi ∪D′pi , i.e., assumption (ii).

32

CHAPTER 2. THEORETICAL FOUNDATIONS

Second, the attacker distinguishes left(Q) and right(Q) with the test d, i.e.,

let x = d in P else R

is not inside a residue process of the protocol Q and eval(left(d)) = ⊥ and eval(right(d)) 6=
⊥. Then, eval(left(d)) = ⊥ and eval(right(d)) 6= ⊥ breaks the static equivalence property
that the trace equivalence requires, i.e., assumption (iv).

The lemma allows us to prove that the combined analysis using ProVerif and APTE is
sound.

Theorem 2. Let Cpi ∪ Dpi be the symbolic model defined in Section 6.3. Let Q be a
bi-process in the applied π-calculus that uses only Cpi ∪D′pi with D′pi = Dpi \ {len}. If
ProVerif proves uniformity for Q with Cpi ∪D′pi and APTE proves trace-equivalence w.r.t.
length with Cpi ∪Dpi , then Q is uniform with Cpi ∪Dpi .

Proof. The theorem follows from Lemma 2. Condition (iii) of the lemma is satisfied,
because the destructor len outputs only length specifications, which can be built using the
constructors O and S . The other conditions hold by assumption.

Note. Assumption (iii) in Lemma 2, i.e., that the destructors in Dpi \D′pi do not allow
the attacker to learn new terms is essential, because otherwise the following counter-example
breaks the uniformity of Q with Cpi ∪Dpi :

Q := c〈hidden(magic)〉.c(x).

let y = equals(x,magic) in

let z = equals(a, choice[a, b])

in 0 else 0

else P

K[•] := νc.
(
c(x).let y = showme(hidden(x)) in c〈y〉 | •

)

Here, showme(hidden(m)) = m and showme ∈ Dpi \D′pi .

33

Chapter 3.

A Computationally Sound Symbolic
Abstraction for Malleable Zero-knowledge
Proofs

[This chapter is based on a work with Michael Backes, Fabian Bendun, Matteo Maffei,
and Kim Pecina [BBMMP15]. I am the main contributor to all parts that occur in this
chapter.]

3.1. Motivation

While symbolic models traditionally only cover basic cryptographic primitives such as
encryption and signatures, recent work started incorporating more sophisticated primi-
tives, such as zero-knowledge (ZK) proofs [GMR89]. Zero-knowledge (ZK) proofs prove
computational statements while hiding parts of that statement, making it an enabling
building block for applications that require more than solely secrecy or authenticity of
communication. In more detail, a ZK proof combines two properties that might occur
contradictory. On the one hand, a ZK proof proves of a statement, e.g., “the plaintext of
this ciphertext constitutes a signature of the certificate X” (for some certificate X), and
forging this statement is either impossible or computationally hard. On the other hand, a
ZK proof does not leak anything more than the sole fact that the statement is valid.

In addition to these core properties, commonly used ZK proof schemes, such as the
Groth-Sahai proof system [GS08], offer a novel type of cryptographic flexibility. First, a
participant is able to re-randomize existing ZK proofs, which is fundamental for achieving
unlinkability in anonymity protocols. Second, in order to adhere to individual privacy
requirements, a participant can hide public parts of a ZK proof statement to selectively
hide information of third-party proofs (e.g., this enables the design of privacy-preserving
credentials for open-ended systems [BMP12; MP11; MPR13]). Third, a participant can
logically compose ZK proofs in order to construct new proof statements. ZK proof systems
that permit these transformations are called malleable. In addition to offering this extended
functionality, malleable ZK constructions are often significantly more efficient than their
non-malleable counterparts.

The flexibility and efficiency of malleable ZK proofs is highly desirable in practice. But
existing symbolic abstractions are restricted to non-malleable ZK proofs, which model
ZK proofs as monolithic building blocks that cannot be further transformed [BHM08b;
BHM12; BMU08]. A symbolic model for malleable ZK proofs is intrinsically more difficult
for automated verification techniques because the much more comprehensive adversary

35

3.1. MOTIVATION

model that includes ZK transformations requires a significantly more involved symbolic
analysis.

The symbolic models of non-malleable ZK proofs have been justified by computational
soundness results, i.e., a successful symbolic analysis carries over to the corresponding
cryptographic ZK realizations [BBU13; BU10]. The symbolic model of malleable ZK proofs
imposes challenges for such a result due to the significantly more complex adversary model.

Our Contribution. First, we provide a symbolic abstraction of malleable ZK (MZK)
proofs by means of an equational theory.1 The main conceptual challenge we faced when
devising this abstraction was to identify a finite representation of the infinite number
of possible transformations that are available to the adversary. Roughly, we categorize
transformations as one of the three types: re-randomizing, logical transformations (used,
e.g., to produce a proof of the statement x ∧ y from independent proofs of x and y, or
to prove ∃w.x from a proof of x, thereby hiding the witness w in the statement x), and
functional transformations (used, e.g., to prove enc(k, x, r) = enc(k, y, r) from a proof of
x = y for two secret values x, y, key k, and randomness r).

The last category of transformations (i.e., functional transformations) is rarely used in the
literature, but it is nevertheless available to the attacker, as shown by Fuchsbauer [Fuc10,
Lemma 6]. Therefore, we present two variations of our symbolic model that only differ in
this last category: the fully MZK (FMZK) abstraction grants the attacker the capability
to apply transformations that modify the witnesses of a proof, which allows for weaker
cryptographic realizations; the controlled MZK (CMZK) abstraction excludes this kind of
transformations but requires a slightly less efficient cryptographic realization. Concerning
automated verification, the CMZK abstraction is accessible to standard automated reasoning
tools for equational theories, whereas reasoning about the FMZK abstraction additionally
requires solving constraints, e.g., via a theorem prover.

Second, we prove the computational soundness of the FMZK and CMZK abstractions
with respect to trace properties. We first identify the class of MZK-safe protocols, which
basically disallows the reuse of randomness as well as revealing signature keys or decryption
keys to the adversary. We then establish computational soundness of the FMZK abstraction
for all MZK-safe protocols based on weak cryptographic definitions (non-interactive zero-
knowledge arguments of knowledge). For establishing the computational soundness of the
CMZK abstraction for all MZK-safe protocols, we leverage the cryptographic construction
for controlled malleability proposed by Chase et al. [CKLM12]. These results are given
in CoSP [BHU09], a modular and generic framework for symbolic protocol analysis and
computational soundness proofs. The process of embedding calculi is decoupled from com-
putational soundness proofs of cryptographic primitives. As a result, our work immediately
entails a computationally sound symbolic model in the applied-pi calculus, and we show
that our result also entails a computationally sound symbolic abstraction in ML (building
on results from [BMU10]).

Outline of this chapter. Our symbolic abstraction of malleable ZK proofs is presented
in Section 3.2 and shown computationally sound in Section 3.3. Section 3.7 concludes the
chapter.

1We further consider asymmetric encryptions and digital signatures, handled in a standard way [BHU09].

36

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

dec(dk(t1), enc(ek(t1),m, t2)) = m

versig (vk(t1), sig(sk(t1), t2, t3)) = t2

ekof (enc(ek(t1), t2, t3)) = ek(t1)

vkof (sig(sk(t1), t2, t3)) = vk(t1)

fst(pair(t1, t2))) = t1

snd(pair(t1, t2)) = t2

unstring1(string1(s)) = s

unstring0(string0(s)) = s

equals(x, x) = x

Figure 3.1.: Definition of D′: basic destructors

3.2. Symbolic abstraction of Malleable ZK Proofs

This section presents our symbolic abstraction for malleable zero-knowledge (MZK) proofs
by means of an equational theory. We introduce two variations of our symbolic model:
fully-malleable zero-knowledge proofs (the FMZK variation) and controlled-malleable zero-
knowledge proofs (the CMZK variation). The two variations differ only in their degree of
malleability: the FMZK variation also permits functional transformations, whereas the
CMZK variation excludes this case and is therefore better suited for automated verification
tools.

For the sake of presentation, we first present a standard symbolic model for digital
signatures and public-key encryptions, which closely resembles previous work [BBU13;
BHU09]. Thereafter, we extend this symbolic abstraction with MZK proofs. Our symbolic
abstraction constitutes a symbolic model M = (C,N,T,D,`). In what follows, we write
x for a tuple (xi)

n
i=1.

3.2.1. The basic symbolic model

Terms. In the basic symbolic model, messages are modeled as basic terms T′; the
grammar for this set is presented below. Nonces are modeled as distinct terms from a
countably infinite set N ⊂ T′, with two disjoint subsets for protocol nonces NP ⊂ N and
attacker nonces NE ⊂ N. Let N,N ′ ∈ N and M,M ′ ∈ T′. Then, pairs are represented as
pair(M,M ′), an encryption key as ek(N), a decryption key as dk(N), the encryption of a
message M with the key ek(N) and randomness N ′ as enc(ek(N),M,N ′), a signature key
as sk(N), a verification key as vk(N), the signature of a message M with the key sk(N)
and randomness N ′ as sig(sk(N),M,N ′). Moreover, we also incorporate into the symbolic
model payloads, expressed by the three constructors ε, string0 and string1. We define
the set C′ := {enc, ek , dk , sig , vk , sk , pair , ε, string0, string1} of basic constructors. The
grammar of terms, which subsumes the grammar of basic terms, is depicted in Figure 3.3
(excluding technical terms, see Figure 3.7 for the full grammar).

Explicitly modeling randomness. Cryptographic terms such as encryptions and
signatures include an explicit randomness term in our symbolic model. Beside making the
model more accurate, such randomness terms allow modeling MZK proofs about ciphertexts.
Moreover, this randomness allows MZK proofs that prove ownership of a ciphertext.

Destructors. Operations on messages are modeled as partial functions f : T′
n → T′.

Whenever such a function f , called destructor, is undefined on some t we write f(t) = ⊥.
As an example, consider equality, which is modeled as the 2-ary destructor equals :={

((x, x), x) | x ∈ T′
}

. This set D′ of basic destructors is defined in Figure 3.1.

37

3.2. SYMBOLIC ABSTRACTION OF MALLEABLE ZK PROOFS

m ∈ S
S ` m

S ` t̄ t̄ ∈ T F ∈ C′ ∪D′ evalF (t̄) 6= ⊥
S ` evalF (t̄)

N ∈ NE

S ` N

Figure 3.2.: Knowledge relation for the basic model

Symbolic attacker in the basic model. The main advantage of the symbolic model
is that the attacker is restricted to a small set of well-defined actions. These actions are
formalized by a deduction relation `: 2T′ ×T′, called the knowledge relation, where S ` t
characterizes the messages t that the attacker can compute given some knowledge S ⊆ T′.
This knowledge relation is canonically defined over the set of basic constructors C′ and
destructors D′ (see Figure 3.2). For a knowledge set S ⊂ T′ the expression S ` m denotes
that the attacker can compute m out of his knowledge S.

Sort-destructors & garbage terms. For the sake of brevity, we omitted two kinds of
terms and destructors in the presentation of the basic symbolic model. The full grammar
can be found in Figure 3.7. First, in our complete symbolic model (see Figure 3.6) we
include for every constructor f a so-called sort-destructor isF , defined as isF (f(x)) = f(x)
for all terms x. Second, since we require (potentially forgeable) message types for each
cryptographic primitive, we have to model ill-typed messages, such as signatures that
do not pass verification. In order to achieve computational soundness, we model these
wrongly-typed messages in our symbolic model via so-called garbage constructors. At
this point, we stress that in contrast to previous work, we do not include a ZK-garbage
constructor, since an ill-types ZK-proof will have garbage commitments (see Section 3.6.4).

3.2.2. Symbolic MZK proofs

We first present the syntax of our model. Thereafter, we discuss how we define the validity
of symbolic MZK proofs, in particular how we prevent an MZK proof of a disjunction
A∨B from leaking the validity A or B alone. Then, we introduce a finite set of destructors
that characterizes all possible transformations that a cryptographic attacker (against trace
properties) can perform. Finally, we describe the symbolic attacker. For the sake of
readability, we postponed the full specifications for some parts of the symbolic model to
the appendix (Section 3.8).

3.2.2.1. Terms and statements

A MZK proof is represented symbolically as a term ZK (s, r,N), where ZK is a constructor,
s is the statement, r is auxiliary verification information, and N is a randomness symbol.
A statement is basically a propositional logic formula over equations of terms. In order to
give a finite characterization of all possible transformations of MZK proofs in our setting,
we explicitly model cryptographic commitments that are typically used in a cryptographic
realization of MZK proofs. A symbolic commitment on a term t with randomness r′ and
the CRS2 crs(r) is represented as com(crs(r), t, r′). For a commitment com(crs(r), t, r′),
the corresponding unveiling information is modeled as uv(t, r′), and a destructor open such
that open(com(crs(r), t, r′), uv(t, r′)) = t. A witnesses w is represented as a commitment

2The common reference string (CRS) is a central assumption in the construction of many commitment
schemes that are used in zero-knowledge proofs

38

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

T ::= enc(ek(N), T,N) | ek(N) | dk(N) | pair(T, T) |
sig(sk(N), T,N) | vk(N) | sk(N) | S | N | crs(N)

ZK (S,R,M) | com(crs(N), T,M) | uv(T,M)

Q ::= ε | string0(Q) | string1(Q)

S ::= S ∧ S | S ∨ S | TX = TX | TX 6= TX

TX ::= 〈com(crs(n), TY,M), U〉 | F 〈TX, . . . , TX︸ ︷︷ ︸
m−times

〉

R ::= R ∧R | R ∨R | RX = RX | RX 6= RX

RX ::= M | F 〈RX, . . . , RX︸ ︷︷ ︸
m−times

〉 U ::= uv(TY,M) | ε

TY ::= T | N M ::= N | rand(M,M) N ::= n

where F ∈ StF , n ∈ N and m is the arity of F .

Figure 3.3.: The syntax of terms (selection)

com(crs(r), w, r′) in the statement. Public information is also represented as a commitment
com(crs(r),m, r′); however, in contrast to witnesses, public information in the statement
also carries its unveiling information uv(m, r′), hence it is possible to retrieve m.

Analogous to common cryptographic MZK proof schemes (e.g., the Groth-Sahai scheme
[GS08]), we represent public information as commitments together with unveiling informa-
tion.

Statements. A symbolic statement is the encoding of a propositional logic formula over
atomic statements. Atomic statements are equalities and negated equalities of terms. For
simplifying the automated verification of MZK transformations, we require these logical
formulas to be in conjunctive normal form.

We represent statements as encodings of contexts with commitments instead of holes. The
tags AND , OR, COM , EQUALS , NEQUALS are encoded using string1, string0, ε. We
introduce for every constructor and destructor F ∈ StF := {ver sig , fst , snd , enc, pair , sig} a
tag F̂ . We use the following abbreviations, where for A1, . . . , An, A,B we write 〈A1, . . . , An〉
for pair(A1, . . . pair(An−1, An) . . .), A∧B for 〈AND , A,B〉, A∨B for 〈OR, A,B〉, A = B for
〈EQUALS , A,B〉, A 6= B for 〈NEQUALS , A,B〉, and F 〈A1, . . . , An〉 for 〈F̂ , A1, . . . , An〉,
where F ∈ StF .

Terms. In addition to the basic symbolic model from the previous section, the set T
of terms contains commitments and MZK proofs. MZK proofs are modeled as terms
ZK (t, r,N) that consist of three parts: a statement t as described above, a so-called
randomness tree r, which is basically a commitment to the commitments in a statement
(see Section 3.2.2.2), and a randomness nonce N .

Formally, the set of terms T is generated by the grammar from Figure 3.7 for the
non-terminal T and for which the logical formulas that correspond to the statements
t inside a term ZK (t, r,N) are in CNF. The set of constructors is defined as C :=
C′ ∪ {ZK , com, crs, uv , rand}.

Example 1: Anonymous webs of trust. We will illustrate our approach on the anonymous
webs of trust protocol [BLMP10], which can be seen as a form of anonymous delegatable

39

3.2. SYMBOLIC ABSTRACTION OF MALLEABLE ZK PROOFS

verzk (crs,ZK (t, r,N)) = checkzk (crs, t, r)

getPub(ZK (t1, r1, N)) = t1

setPub(ZK (t1, r1, N), t2, N ′) = ZK (t2, r1, rand(N,N ′))

setPubA(ZK (t1, r1, N), t2) = ZK (t2, r1, N)

andZK (ZK (t1, r1, N),ZK (t2, r2, N ′)) = ZK (t1 ∧ t2, r1 ∧ r2, rand(N,N ′))

splitAnd(ZK (t1 ∧ t2, r1 ∧ r2, rand(N,N ′))) = pair(ZK (t1, r1, N),ZK (t2, r2, N ′))

orZK (ZK (t1, r1, N),ZK (t2, r2, N ′)) = ZK (t1 ∨ t2, r1 ∨ r2, rand(N,N ′))

commute(ZK (t1 ∨ t2, r1 ∨ r2, N)) = ZK (t2 ∨ t1, r2 ∨ r1, N)

rerzk (ZK (t1, r1, N), r2, N ′) = ZK (rerPr(t1, r2, N ′), rerPr(r1, r2, N ′),

rand(N,N ′))

open(crs(t1), com(crs(t1), t2, t3), uv(t2, t3)) = t2

crsof (com(crs(t1), t2, t3)) = crs(t1)

rercom (com(crs(t1), t2, t3), t4) = com(crs(t1), t2, rand(t3, t4))

applyF (com(crs(t1), t2, t3), t4) = com(crs(t1), f(t2, t4), t3) for f ∈ D ∪C

Figure 3.4.: The set D′′ of destructors for ZK proofs for the FMZK model. The CMZK
model does not contain orZK , applyF , and setPub can only be used to hide
witnesses.

credentials [BCCKLS09] (also known as anonymous proxy signatures [FP09]). In webs
of trust, a party A shows that it trusts a party B by signing the verification key of
B (sig(skA, vkB, r)). A chain of trust from A to B via C can be expressed as follows:
sig(skC , vkB, r1), sig(skA, vkC , r2).

Anonymous webs of trust additionally hide the identity of all parties except from the
party to whom the message is sent, i.e., the statement of a proof that there is an anonymous
chain of trust to A looks as follows:

∃sC , sA, vB, vC .ver sig(vC , sC) = vB ∧ ver sig(vkA, sA) = vC

This statement corresponds to the following term:

ˆver sig
〈
〈cvC , ε〉, 〈csC , ε〉

〉
= 〈cvB , ε〉 ∧ ˆver sig

〈
〈cvkA , uv(vkA, rcvkA

)〉, 〈csA , ε〉
〉

= 〈cvC , ε〉

where ct denotes the commitment to the message t. Such an anonymous chain of trust can
be used by B to anonymously authenticate a message m with the trusted verification key
vB. Assuming B uses an anonymous channel (such as Tor), then B anonymously sends
the authenticated message m to A. The authentication is achieved with an MZK proof for
the following statement:

∃sC , sB, sA, vB, vC . ver sig(vB, sB) = m ∧ ver sig(vC , sC) = vB ∧ ver sig(vkA, sA) = vC

Let Sawot be the corresponding term. �

3.2.2.2. Destructors for MZK Proofs

We consider three kinds of destructors for MZK proofs. First, our model allows for retrieving
the public part of a MZK proof (via getPub), which outputs the statement of a ZK proof.
Second, our model allows for checking the validity of an MZK proof (via ver zk), which
checks the validity by calling the function check zk (see below) on the CRS, the statement

40

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

and the randomness tree. Third, our model allows for transforming MZK proofs (via
setPub, andZK , splitAnd , orZK , commute, rer zk). The set of destructors is defined as
D := D′ ∪D′′, where D′ are the destructors from the basic symbolic model, and D′′ are
the destructors presented in Figure 3.4. Below, we describe these MZK transformations.

Validity of symbolic proofs: check zk . A statement contains all information that a
zero-knowledge proof carries. However, for dealing with equivalence properties, we need to
capture the zero-knowledge property. As an example, consider a proof ZK (A ∨ B, r,N)
of a disjunctive statement A ∨ B. We have to ensure that ZK (A ∨ B, r,N) hides which
branch (A or B) is valid. Even though the attacker should be able to retrieve the full
statement A ∨B from a proof ZK (A ∨B, r,N), the attacker should not be able to learn
whether A or whether B is true. In particular, the verification procedure should fail if the
attacker tries to verify A or B outside of the original proof ZK (A ∨B, r,N).

We achieve the zero-knowledge property of a disjunctive proof ZK (A∨B, r,N) by keeping
track (in the auxiliary verification information r) of the randomness of the commitments,
loosely speaking by adding a commitment to the commitments. This makes the auxiliary
verification information r unique for A∨B and unguessable for anybody who did not create
the proof. Technically, the term r has exactly the same shape as the statement except
for the equalities and negated equalities over pairs of commitments and possible unveiling
information terms.

This auxiliary verification information r differs in the FMZK model and the CMZK
model. In the FMZK model, r only contains the randomness of the commitments, i.e.,
we only commit to the randomness of the commitments. Hence, check zk only checks
whether the randomness in the auxiliary verification information r coincides with the
randomness of the commitments. In the CMZK model, r contains the messages and the
randomness of the commitments, i.e., we commit to the messages and to the randomness
of the commitments. Hence, check zk checks whether the messages and the randomness in
the auxiliary verification information r coincides with the messages and randomness of the
commitments. Adding the messages to the auxiliary information and matching them with
the witness in the proof suffices to prevent functional transformations.

We say that a symbolic proof is valid if the following partial function check zk outputs true3.
check zk is recursively defined as depicted below. (The verification procedure additionally
checks whether all commitments use the same CRS.) The partial function extractW extracts
the witness of a commitment.

check zk (crs, S ∧ S′, R ∧R′)⇔ check zk (crs, S,R) and check zk (crs, S′, R′)

check zk (crs, S ∨ S′, R ∧R′)⇔ check zk (crs, S,R) or check zk (crs, S′, R′)

check zk (crs, A = B,R = R′)⇔ ⊥ 6= extractW (crs, A,R) = extractW (crs, B,R) 6= ⊥
check zk (A 6= B,R 6= R′)⇔ ⊥ 6= extractW (crs, A,R) 6= extractW (crs, B,R′) 6= ⊥
where m is the arity of the constructor or destructor F .

Recall that the auxiliary verification information differs in the FMZK and the CMZK
model. Hence, we have to adjust the witness extraction function extractW so as to reflect
the different structure of the auxiliary verification information.

3true and false are encoded using the payload constructors ε, string0, string1.

41

3.2. SYMBOLIC ABSTRACTION OF MALLEABLE ZK PROOFS

extractW (crs, F 〈t〉, F 〈u〉) = F (extractW (crs, t1, u1), . . . , extractW (crs, tm, um))

extractW (crs, 〈com(crs, t,M), U〉, 〈t,M〉) = t

In the FMZK model, the partial function extractW is defined in the same way, except that
the last equation in the FMZK model merely checks the randomness:

extractW (crs, 〈com(crs, t,M), U〉,M) = t

MZK transformations. Malleable zero-knowledge proofs allow a recipient to transform
a proof even if this recipient does not know anything about the witnesses of the proof. This
flexibility has been used in previous work for re-randomizing proofs, in order to achieve
unlinkability to previous proofs [BCCKLS09], and hiding statements from received proofs,
allowing a user to selectively disclose information [BMP12]. We discuss below the various
transformations.

Conjunctions. We realize the transformations for constructing conjunctions from two
proofs, splitting conjunctions, and reordering conjunctions with the destructors andZK

and splitAnd . For the destructor splitAnd , we need the randomness to be composed using
rand .

Commuting disjunctions. Reordering disjunctions requires modifying the randomness
tree r in a proof ZK (t, r,N), which cannot be accessed. We thus introduce a destructor
commute(ZK (t1 ∨ t2, r1 ∨ r2, N)), which simply swaps the two literals A and B and the
corresponding randomness subtrees r1 and r2.

Re-randomization. Re-randomization needs to modify the auxiliary verification information
r as well. Hence, we introduce a destructor rerPr(ZK (t, r,N), r′, N ′) that takes as input
a tree r′ and a randomness term N ′. The former specifies the commitment that is to be
re-randomized, while the latter specifies the randomness to be used.

Hiding public values. Public values occurring in the statement can be hidden (i.e.,
made private) by means of the destructor setPub(ZK (t1, r1, N), t2, N

′), which replaces the
statement t1 with the statement t2 and re-randomizes the proof with N ′. For technical
reasons, we require that every honest party re-randomizes the proof after hiding public
values. However, the attacker can hide values of the witness without re-randomizing the
proof; hence we introduce a destructor setPubA(ZK (t1, r1, N), t2).

In the CMZK model, setPub is restricted to hiding witnesses. Formally, setPub(ZK (t1,
r1, N), t2, N

′) outputs ⊥ if t2 differs from t1 in more than merely omitting unveil information.

Functional transformations. These transformations are modeled by the destructors
applyF (for any constructor f ∈ D ∪ C), which are applicable to commitments such
that applyF (com(crs, t, R), x) = com(crs, f(t, x), R). applyF can only be applied by the
symbolic attacker. Together with getPub(z) and setPub(z′) the destructors applyF allow
the symbolic attacker to modify a proofs witness. In the FMZK model, a proof that is
transformed using applyF and setPub might still pass verification. In the CMZK model,
a modified proof will not pass verification(even though commitments can be malleable),
since the randomness tree additionally carries information about the original message.

Example 2: Usage of transformations. Recall the statement Sawot for Anonymous Webs of
Trust from Example 1: an anonymously authenticated message m for the party A. Assume

42

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

that m requests A to extend the chain of trust to a party D and to send D a message
m′: m = (extend, D,m′). Moreover, assume that D trusts A. Yet, A wants to hide from
anybody intercepting the ZK proof that it was A who extended the chain of trust to D.
We can model this scenario by applying the following transformations. First, since D trusts
A, A has a signature on its verification key from D: sD := sig(skD, vkA, rA). Second, D
creates an atomic proof for the validity of sA, i.e., a MZK proof ZK (SA, rA, NA) of the
statement ∃sD.ver sig(vkD, sD) = vkA, denoted as SA:

ˆver sig

〈
〈cvkD , uv(vkD, r

′
cvkD

)〉, 〈csD , ε〉
〉

= 〈cvkA , uv(vkA, rcvkA
)〉

Third, A computes the conjunction of Sawot and SA, i.e., A applies the transformation
andZK (ZK (Sawot, r,N),ZK (SA, rD, ND)) =: z. Fourth, A hides his own verification key
vkA in the statement S := Sawot ∧SD by removing the unveiling information uv(vkA, r

′
cvkA

)

from SA. Similarly, A removes the unveiling information uv(vkA, rcvkA) from Sawot (see
above). Let S′ be the modified statement with the removed unveiling information. Finally
A applies setPub(z, S′) =: z′, to obtain an MZK proof of the following statement:

∃sB, sC , sD, sA, vA, vB, vC . ver sig(vB, sB) = m ∧
ver sig(vC , sC) = vB ∧ ver sig(vA, sA) = vC ∧ ver sig(vkD, sD) = vA �

3.2.2.3. ZK preservation

Before introducing the symbolic attacker for the FMZK and the CMZK variation, we
characterize the functional transformations available to the attacker in the FMZK model.
We introduce the notion of ZK preserving functional transformations. Consider an MZK
proof z of the statement ∃s, b.ver sig(vk , s) = m ∨ A, where b occurs in A. By applying
getPub, applyPair , and setPubA to z, an attacker can (in the symbolic model) produce
an MZK proof z′ of ∃s, b. ver sig(vk , s) = pair(m,m) ∨ A. A successful verification of z′

leaks the validity of ∃s, b.A, which contradicts the zero-knowledge property. Hence, we
only allow ZK preserving functional transformations.

We write L(t) for denoting the logical formula of a statement t. Technically, L(t) :=
∃x.L′(t), where x is the list of variables V in L′(t) with L′(t) being recursively defined
as L′(S1 ∨ S2) := L′(S1) ∨ L′(S2), analogous for ∨,=, 6=, and F̂ (for F ∈ StF). The
commitments with unveiling information are mapped to the message inside the commitment,
and those without unveiling information are mapped to variables that are indexed by the
message inside the commitment. A destructor application f(z) is ZK preserving if the
following logical formula holds for all ZK terms z = ZK (t, r,N) and L(t) = ∃x.L′(t):

∀x ∈ Tn.
(
L′(getPub(z))⇒ L′(getPub(f(z)))

)

Intuitively, the formula above says that the statement of the original proof implies the
statement of the one obtained by the transformation. This, in particular, rules out the
aforementioned problem related to proofs of logical disjunctions.

A functional transformation applyF is ZK preserving if f is ZK preserving.

ZK preservation is decidable. Ramsey showed in 1929 that EPR formulas are decid-
able, i.e., all first-order logic formulas of the following form ∃∗y∀∗x.φ(x, y) are decidable,
where φ(x, y) is a propositional logic formula about relations [Ram29]. If we consider
each atomic statement, i.e, each equation C(x) = C ′(x) or C(x) 6= C ′(x) as a relation
φ′(x), checking ZK preservation amounts to checking an EPR formula. Hence, checking ZK

43

3.3. COMPUTATIONAL SOUNDNESS

preservation is decidable. A verification tool needs to check that every applied functional
transformation applyF is ZK preserving.

3.2.2.4. Symbolic attacker

The symbolic attacker is defined as for the basic symbolic model (see Figure 3.2), except
that C′ is replaced with C and D′ with D, with the additional condition (for the FMZK
variation) that all destructor applications of the symbolic attacker have to be ZK preserving.

3.3. Computational soundness

In this section, we show the computational soundness of our symbolic model using the
CoSP framework. While we carefully designed the symbolic abstraction such that it
captures vulnerabilities that affect both trace and equivalence properties, our computational
soundness result is cast for trace properties, which constitutes the current state-of-the-art in
CoSP. We establish our computational soundness in three steps. We first identify necessary
restrictions on the class of protocols for which we can show computational soundness ,
e.g., different encryptions always use different randomness(Section 3.4). We then introduce
necessary implementation conditions for computationally sound realizations (Section 3.5).
Finally, we conduct the actual proof of computational soundness (Section 3.6.1). Due to
space constraints, we primarily elaborate on the protocol restrictions and the implementation
conditions, as these illustrate the major insights how to achieve computational soundness
for MZK proofs.

3.4. MZK-safe protocols

We first characterize the class of computationally sound protocols, which we call MZK-safe.
Mainly, our protocol conditions exclude adaptive corruption and regulate the usage of
randomness. In this section, we concentrate on the most insightful conditions. To prevent
standard problems of adaptive corruption, we disallow decryption keys to be sent over
the network. Similarly, we require that the plaintext message of a commitment is either
publicly known or secret for the entire execution by imposing the condition that unveiling
information uv(m, r) of a commitment com(crs(n),m, r) is only sent over the network as
part of an MZK proof. In other words, we basically restrict the usage of commitments to
MZK proofs. Moreover, for MZK proofs generated by honest protocol participants, we
require that all commitments of one ZK proof use the same honestly generated CRS. Finally,
we limit the way in which randomness can be reused. Recall that we distinguish nonces
and randomness terms, which are used as randomness in the computation of cryptographic
terms, such as encryptions, signatures, and MZK proofs. We only allow reusing randomness
terms as witnesses of MZK proofs. For technical reasons, we exclude protocols that reuse
the randomness of signatures as witnesses in MZK proofs. However, this restriction is
not severe in practice, since we are not aware of any protocol that uses the signature
randomness in an ZK proof.

Disallowing the re-usage of randomness completely, however, would result in exclud-
ing statements about ownership of ciphertexts, i.e., statements of the form ∃r,m.c =
enc(ek,m, r). There are IND-CCA secure encryption schemes that allow an attacker to

44

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

retrieve the plaintext once he knows the randomness of the ciphertext. Since we consider
malleable zero-knowledge proofs, we cannot exclude that an attacker uses the randomness
from some witness and a ciphertext to compute a proofs with the plaintext as a witness.
Instead of granting the symbolic attacker this possibility, we require that every proof that
carries a randomness terms N of some (protocol) ciphertext enc(ek,m,N) also carries the
corresponding plaintext m.4 In summary, a randomness term r cannot be used for different
terms unless the randomness belongs to a protocol ciphertext enc(ek,m, r). In this case, r
may additionally occur as a witness of a zero-knowledge proof if the same proof uses the
corresponding plaintext m as a witness.

This list of protocol conditions is quoted from [BBU13] except for the parts that are
marked in blue.

1. The annotation of each crs-node, each key-pair (ek , dk) and (vk , sk) is a fresh nonce,
which does not occur anywhere else.

2. There is no node annotated with a garb, garbEnc, garbSig , or N ∈ NE constructor
in the protocol.

3. No commitment is sent to the attacker that is not inside ZK term, i.e., not the result
of an term constructed by mkZK .

4. No com term that has been received over the network without being part of a ZK
term and no garbCom term is used in a constructor or destructor application.

5. For every commitment com(c,m,N) that is published in a ZK proof it holds that if
com(c,m,N) is a witness commitment, uv(m,N) is never revealed.

6. The constructor ZK and the destructors setPubA and applyF (for F ∈ C∪D) is not
used in the protocol.

The last argument of a com, enc, sig constructor and of a mkZK , rerPr destructor
are fresh nonces. These nonces are not used anywhere else except in case of enc
as part of a subterm of the second argument in a com-node if the following holds:
Construct a symbolic knowledge S out of the path from the com-node to the root,
including the com-node. Let N be the nonce of an enc constructor and m be the
corresponding (symbolic) plaintext. Then, we require that if S `w N holds true then
also S `w m holds true.

7.8. A dk -node is only used as first argument for dec-node or as subterm of the third
argument in a ZK -node.

9. A sk -node is only used as first argument for sig-node or as subterm of the third
argument in a ZK -node.

10. The first argument of a dec-computation node is a dk -node.

11. The first argument of a sig-computation node is a sk -node.

12. A mkZK -computation node is consistent in the following sense: for every com-
computation node in the statement of mkZK the destructor crsof would not output
⊥.

13. The first argument of a com-computation is a crs-computation node which is anno-
tated by a nonce N ∈ NP . This nonce is only used as annotation of this crs node

4The alternative would be to introduce an attacker-specific destructor
decR(com(crs,N, r), com(crs, enc(ek,m,N), r′)) = com(crs,m, rand(r, r′)).

45

3.5. IMPLEMENTATION CONDITIONS

and nowhere else.

14. The first argument of a ver zk -computation is a crs-computation node which is
annotated by a nonce N ∈ NP . This nonce is only used as annotation of this crs
node and nowhere else.

15. For the relation Rsym
adv it holds: There is an efficient algorithm SymbExtr, that given

a term M together with a set S of terms (which was generated according by any
protocol satisfying the protocol conditions above), outputs a term N , such that there
are t, t′ ∈ T such that S ` ZK (t, r, t′) and (N,M) ∈ Rsym

adv or outputs ⊥ if there is no
such term N . We call a relation satisfying this property symbolically extractable.

16. The relation Rsym
adv is efficiently decidable.

17. All ZK -transformations are only applied to honestly generated proofs or to terms t
for which ver zk (crs(t′), t) 6= false for some t′ ∈ NP .

18. The protocol only uses polynomially many different nonces.

19. Every hide operation is followed by a re-randomize operation. Formally, a
setPub(ZK (t, r), t′) application hides a witness w if t and t′ both contain a com-
mitment com(crs,m, r′) if S ∪m ` w and S 6` w, however t carries the corresponding
unveil information uv(m, r′) and t′ does not. We require that every transformation
setPub(ZK (t, r), t′) = ZK (t′, r) that hides a witness w in com(crs,m, r′) is followed
by a re-randomization rercom(com(crs,m, r′), r′′) in ZK (t′, r) for fresh randomness
r′′.

20. The last node of a ZK -transformations is a fresh nonce. This nonce is not used
anywhere else.

We will call a protocol satisfying these constraints a MZK-safe protocol. The class of
MZK-safe protocols is the set of all protocols which are MZK-safe.

3.5. Implementation conditions

For the computational soundness result, we define necessary implementation conditions. The
conditions can be partitioned into cryptographic requirements to cryptographic primitives
and sanity conditions that ensure that the implementation behaves similar to the symbolic
model.

Sanity conditions. We require that for each constructor and destructor f ∈ C∪D, there
is a polynomial-time computable, deterministic algorithm Af and the algorithm AN for
drawing nonces is randomized. Moreover, for all algorithms the length of the output solely
depends on the length of the input. Moreover, we require that all symbolic cancellation
rules hold computationally as well, e.g., fst(pair(x, y)) = x for all x, y ∈ {0, 1}∗.

Finally, we assume that all messages have an efficiently recognizable type. Given a
message, we require that it is efficiently possible to recognize whether the message is a pair,
a signature, a ciphertext, a commitment, a zero-knowledge proof, or a key, in particular
which type of key. More specifically, we require that Avkof (m) 6= ⊥, Aekof (m) 6= ⊥, and
Acrsof (m) 6= ⊥ for a message m of type signature, ciphertext, and commitment, respectively.

Encryptions and signatures are secure. We require that the encryption algorithms
Aek , Adk , Aenc, Adec constitute an IND-CCA secure encryption scheme. Moreover, we
require that whenever Adec(dkN , c) succeeds, and that Aekof (c) = ekN outputs the corre-

46

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

sponding public key.For the signature algorithms Ask , Avk , Asig , Aversig we require that
they constitute a CMA-existentially unforgeable signature scheme. We require that Asig

produces different signatures for different randomnesses.

Non-interactive zero-knowledge arguments of knowledge. We require the follow-
ing properties from zero-knowledge proofs: (i) completeness (honest provers and honest
verifiers succeed for true statements); (ii) zero-knowledge (given a simulation trapdoor,
all valid proofs can be efficiently simulated without using the witness); (iii) extractability
(given an extraction trapdoor, the witness is efficiently extractable from valid proofs);
(iv) unpredictability (fresh proofs cannot be guessed even if the witness is known); (v)
length-regularity (the length of the output only depends on the length of the input);
(vi) deterministic verification and extraction. The conditions (i) to (iii) are the minimal
requirements on proofs of knowledge. Conditions (iv) to (vi) are properties that we need
for our computational soundness proof and that are easy to fulfill. For the FMZK real-
ization, we require that AZK , Averzk , Acrs , Acom constitute a non-interactive argument of
knowledge (NIZKAoK), and the same commitment algorithms Acrs , Acom , Aopen belong to
an extractable non-interactive computationally hiding and binding commitment scheme.
We also assume an algorithm AgetPub such that AgetPub(AZK (t, r)) = r and we assume that
the protocol transformations setPub, andZK , splitAnd , orZK , commute, rer zk , rercom have
an implementation. These conditions are compatible with the controlled-malleability vari-
ant [CKLM12] of the widely deployed Groth-Sahai proofs [GS08]. The following definition
is to a large extend quoted from [BBU13]. All parts that are modified are marked in blue.

Definition 33 (NIZK arguments of knowledge [BBU13]). A non-interactive zero-knowledge
argument of knowledge for relations Rcomp

hon , Rcomp
adv is a tuple of polynomial-time algorithms

(K,P,V) such that there exist polynomial-time algorithms (E,S) and the following proper-
ties hold:

• Completeness: Let a polynomial-time adversary A be given. Let (crs, simtd , extd) ←
K(1η). Let (x,w) ← A(1η, crs). Let proof ← P(x,w, crs). Then with overwhelming
probability in η, it holds (x,w) 6∈ Rcomp

adv or V(x, proof , crs) = 1.

• Zero-Knowledge: Fix a polynomial-time oracle adversary A. For given crs, simtd, let
OP,crs(x,w) := P(x,w, crs) if (x,w) ∈ Rcomp

hon and OP,crs(x,w) := ⊥ otherwise, and
let OS,crs,simtd(x,w) := S(x, crs, simtd) if (x,w) ∈ Rcomp

hon and OS,crs,simtd(x,w) := ⊥
otherwise. Then

∣∣Pr[AOP,crs (1η, crs) = 1 : (crs, simtd , extd)← K(1η)]

− Pr[AOS,crs,simtd (1η, crs) = 1 : (crs, simtd , extd)← K(1η)]
∣∣

is negligible in η.

• Extractability: Let a polynomial-time oracle adversary A be given. Let (crs, simtd ,
extd) ← K(1η). Let (x, proof) ← A(1η, crs). Let w ← E(x, proof , extd). Then with
overwhelming probability, if V(x, proof , crs) = 1 then Rcomp

adv (x,w) = 1.

• Unpredictability: Let a polynomial-time adversary A be given. Let (crs, simtd , extd)←
K(1η). Let (x,w, proof ′)← A(1η, crs, simtd , extd). Then with overwhelming probability, it
holds proof ′ 6= P(x,w, crs).

• Length-regularity: Let two witnesses w and w′, and statements x and x′ be given such that
|x| = |x′|, and |w| = |w′|. Let (crs, simtd , extd) ← K(1η). Then let proof ← P(x,w, crs)
and proof ′ ← P(x′, w′, crs). Then we get |proof | = |proof ′| with probability 1.

47

3.5. IMPLEMENTATION CONDITIONS

• Deterministic verification and extraction: The algorithms V , E are deterministic.5

3.5.1. Computational ZK Relation

For the computational soundness proof and for the computational implementation, we need
four destructors extrSta, extrWit , crsof , extrNon, which traverse through the statement
and extract the statement, the witness, the CRS, and the list of nonces, respectively (see
Appendix 3.10). The computational ZK relation Rcomp

hon is then defined as follows:

{
(imgη(x), imgη(w)) | t is a valid symbolic statement ∧

x = extrSta(t), w = extrWit(t)

for a consistent η
}

We assume efficient encoding algorithms Let e∧, e∨, e=, ef (f ∈ StF , see Section 3.2.2.1).
The function imgη depends on an environment η, a partial function T → {0, 1}∗ that
assigns bitstrings to nonces and adversary-generated terms. We use the definition of a
consistent environment that lists various natural properties an environment will have (such
as mapping ZK -terms to bitstrings of the right type).

We define imgη as follows:

imgη(S1 ∧ S2) := e∧(imgη(S1), imgη(S2))

imgη(S1 ∨ S2) := e∨(imgη(S1), imgη(S2))

imgη(A = B) := e=(imgη(A), imgη(B))

imgη(f(x1, . . . , xn)) := ef (imgη(x1), . . . , imgη(xn))

for f ∈ StF

imgη(f(x1, . . . , xn)) := Af (η(x1), . . . , η(xn))

for f ∈ C ∪D \ StF

imgη(pair(com(crs(N),m, r), uv(m, r)))

:= Apair (Acom(crs(N), imgη(m), η(r)), Auv (imgη(m), η(r)))

imgη(pair(com(crs(N),m, r), ε))

:= Apair (Acom(crs(N), imgη(m), η(r)), Aε())

imgη(N) := η(N) for N ∈ N

where Xm denotes the computational encoding of a variable with index m ∈ T.

Definition 34 (Consistent environments [BBU13]). Let E be the set of all partial functions
η : T→ {0, 1}∗. We will call such an η an environment.

Let an implementation A for the symbolic model by given. Define the partial function
imgη : T→ {0, 1}∗ for η ∈ E by taking the first matching rule:

• For a nonce N define imgη(N) := η(N)

• For a term t = crs(N) define imgη(crs(N)) := η(t)

• For a term t = ZK (x,w,M) define imgη(t) := η(t)

5This is not a necessary requirement but we require them to be deterministic for the sake of simplifying
the computational soundness proof.

48

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

• Let C be a constructor from {ek , dk , vk , sk , enc, sig , crs, garbSig , garbEnc, garb}.
For t = C(t1, . . . , tn−1, N) with N ∈ NE define imgη(t) := η(t).

• For a term C(t1, . . . , tn) define imgη(C(t1, . . . , tn)) := AC(imgη(t1), . . . , imgη(tn)) ,
if for all i we have imgη(ti) 6= ⊥, and ⊥ otherwise.

An environment η is consistent if the following conditions are satisfied: 6

• η is injective.
For each constructor C we require that the bitstring imgη(C(t1, . . . , tn)) has the type
as follows: The constructors enc, garbEnc are mapped to type ciphertext, sig , garbSig
to signatures, ZK to ZK proofs,com, garbCom to commitments, ek , dk , vk , sk to en-
cryption, decryption, verification, signing key, respectively. crs to common reference
string, pair to pair, string0, string1, ε to payload-string, N to nonce, garb has none
of these types.

•• Aekof (imgη(enc(ek(N), t,M))) = imgη(ek(N)) for all N,M ∈ NP , t ∈ T.
• For all t = sig(sk(N), u,M) with N,M ∈ N, u ∈ T it holds: ver sig(vkof (t), t) 6= ⊥

implies that Aversig (imgη(vkof (t)), imgη(t))= imgη(u).
• For t = ZK (x,w,M) with M ∈ N holds:

1. Averzk (Acrsof (η(t)), η(t)) = 1

2. AgetPub(η(t)) = imgη(x)

3. Acrsof (η(t)) = Acrsof (η(c)) for all commitment terms c in x.

• For all t1, t2 ∈ T it holds that Aversig (imgη(garbSig(t1, t2))) = ⊥
• For all N,M ∈ N, t ∈ T it holds that Adec(imgη(dk(N)), imgη(enc(ek(N), t,M))) =

imgη(t) and imgη(t) 6= ⊥.
• For all enc(ek(N), t,M) ∈ T it holds: If imgη(enc(ek(N), t,M)) =: c 6= ⊥, then it

follows Aekof (c) = imgη(ek(N)).
• For all enc(ek(N), t,M) ∈ T it holds: If imgη(enc(ek(N), t,M)) 6= ⊥ and d ∈
{0, 1}∗ such that imgη(ek(N)) = p(d)7, then it follows that Adec(d, imgη(enc(ek(N),
t,M))) = imgη(t).

• For all N,M ∈ N, t ∈ T it holds that

Aopen(imgη(crs(N)), imgη(com(crs(N), t,M)), imgη(uv(t,M))) = imgη(t)

and imgη(t) 6= ⊥.
• For all com(crs(N), t,M) ∈ T it holds: If imgη(com(crs(N), t,M)) =: u 6= ⊥, then

it follows Acrsof (u) = imgη(crs(N)).

Given these notions, we formalize the conditions on Rcomp
hon , Rcomp

adv in the following defini-
tion.

Definition 35 (Implementation of relations [BBU13]). A pair of relations Rcomp
hon , Rcomp

adv

on {0, 1}∗ implement a relation Rsym
adv on T with usage restriction Rsym

hon if the following
conditions hold for any consistent η ∈ E:

(i) (x,w) ∈ Rsym
hon and imgη(x) 6= ⊥ 6= imgη(w) =⇒ (imgη(x), imgη(w)) ∈ Rcomp

hon

(ii) (imgη(x), imgη(w)) ∈ Rcomp
adv =⇒ (x,w) ∈ Rsym

adv

6We consider a condition in which a term t occurs such that imgη(t) = ⊥ as satisfied.
7Where p is the function defined in implementation condition 28.

49

3.5. IMPLEMENTATION CONDITIONS

(iii) Rsym
hon ⊆ R

sym
adv and Rcomp

hon ⊆ Rcomp
adv

Computational statements. The computational ZK relation is the computational
translation of the symbolic ZK relation. We implement a computational translation imgη
that is parametric in the randomness assignment η. Basically, imgη is recursively defined

over a symbolic statement. imgη uses an encoding of ∧,∨,=, and f̂ for f ∈ StF , and
applies for every f ∈ C the implementation Af and assigns to every nonce N the bitstring
η(N).

For the computational soundness proof and for the computational implementation, we need
four destructors extrSta, extrWit , crsof , extrNon, which traverse through the statement
and extract the statement, the witness, the CRS, and the list of nonces, respectively. The
computational ZK relation Rcomp

hon for the protocol is then defined as follows:
{

((t, imgη(x)), imgη(w)) | t symb. statement ∧ x = extrSta(t), w = extrWit(t))
}

Additional conditions for the CMZK model. Soundly realizing the more restricted
form of malleability mandated by the CMZK model requires additional strengthening of
the ZK proofs. We use a recent construction for controlled malleability [CKLM12], which
also applies to the Groth-Sahai proof scheme [GS08].

Efficient statements. In contrast to previous work on computationally symbolic ZK
proofs [BBU13; BU10], the FMZK and the CMZK model have computationally sound
realizations that allow efficient statements for encryption schemes and signature [CHKLN11;
CK11; GS08].

MZK transformations. For MZK transformations, we basically require that a trans-
formed proof looks like a freshly generated proof. We even require that a transformed
proof is indistinguishable from a simulated proof. This property, called strong derivation
privacy, was introduced in [CKLM12].

Moreover, we require that rer zk and rercom have indeed re-randomizing implementations.
Given z the proof z′ ← Arerzk (z, r) is unpredictable, for a randomly chosen nonce r.
Similarly, given c the commitment c′ ← Arercom (c, r) is unpredictable, for a randomly
chosen nonce r.

3.5.2. List of implementation conditions

This list of implementation conditions is largely quoted from [BBU13]. All modifications
and additions are marked in blue.

1. The implementation is an implementation according to Definition 6.

There are disjoint and efficiently recognizable sets of bitstrings representing the node
types nonce, ciphertext, encryption key, decryption key, signature, verification key,
signing key, common reference string, zero-knowledge proof, commitment, pair, and
payload-string.

The images of AN have type nonce (for all N ∈ N), Aenc have type ciphertext, Aek

have type encryption key, Adk have type decryption key, Asig have type signature,
Avk have type verification key, Ask have type signing key, Acrs have type common
reference string, AmkZK have type zero-knowledge proof, Acom have type commitment,
Apair have type pair, and Astring0

, Astring1
, Aε have type payload string.

50

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

2.3. The implementation AN for nonces N ∈ NP implement uniform distributions on
{0, 1}k where k is the security parameter.

4. If Adec(dkN ,m) 6= ⊥ then Aekof (m) = ekN , i.e. the decryption only succeeds if the
corresponding encryption key can be extracted out of the ciphertext.

5. Avkof (Asig(Ask (x), y, z)) = Avk (x) for all y ∈ {0, 1}∗ and x, z nonces. If e is of type
signature then Avkof (e) 6= ⊥, otherwise Avkof (e) = ⊥.

6. For all m, k ∈ {0, 1}∗, k having type encryption key, and r 6= r′ ∈ {0, 1}∗ with |r| = |r′|
holds that Aenc(k,m, r) and Aenc(k,m, r′) are equal with negligible probability.

7. For all m, k ∈ {0, 1}∗, k having type signing key, and r 6= r′ ∈ {0, 1}∗ with |r| = |r′|
holds that Asig(k,m, r) and Asig(k,m, r′) are equal with negligible probability.

8. The implementations Aek , Adk , Aenc, and Adec belong to an encryption scheme
(KeyGenenc, ENC ,DEC) which is IND-CCA secure.

9. The implementations Avk ,Ask ,Asig , and Aversig belong to a signature scheme
(KeyGensig ,SIG ,VERsig) which is strongly existential unforgeable.

10. All implementations are length regular, i.e. if the input has the same length the
output will have the same too.

11. For m1,m2 ∈ {0, 1}∗ holds Afst(Apair (m1,m2)) = m1 and Asnd (Apair (m1,m2)) = m2

12. Adec(Adk (r), Aenc(Aek (r),m, r′)) = m for all r, r′ nonces.

13. Let k ∈ {0, 1}∗ be an encryption key and m,n ∈ {0, 1}∗ such that n is of type nonce.
Then holds Aekof (Aenc(k,m, n)) = k. If c ∈ {0, 1}∗ is not of type ciphertext then
Aekof (c) = ⊥.

14. Let vk , sk ∈ {0, 1}∗ be a keypair, i.e. (vk , sk) is in the image of KeyGensig , then
holds for all m,n ∈ {0, 1}∗: Avkof (Asig(sk ,m, n)) = vk .

15. Aversig (Avk (r), Asig(Ask (r),m, r′)) = m for all r, r′ nonces.

16. For all p, s ∈ {0, 1}∗ we have that Aversig (p, s) 6= ⊥ implies Avkof (s) = p.

17. For m ∈ {0, 1}∗ holds Aunstringi(Astringi(m)) = m for i ∈ {0, 1} and Astring0
(m) 6=

Astring1
(m).

18. For all m ∈ {0, 1}∗ of type zero-knowledge proof holds that iszk(m) = m and if m
has not type zero-knowledge proof, then iszk(m) = ⊥. The same holds for issig w.r.t.
the type signature and isenc w.r.t. the type ciphertext.

19. If k ∈ {0, 1}∗ is not of the type encryption key then holds for all m,n ∈ {0, 1}∗
that Aenc(k,m, n) = ⊥. The same has to hold for the type signing key and the
implementation of signatures.

20. There are algorithms K,P,V such that

• (crs, simtd , extd) = K(1η; r), where Acrs(r) = crs,

• Azk(applyCom(x,w; r1); r2) = P(x,w; r1, r2), and

• Averzk (z) = V(z),

where applyCom(x,w; r1) traverses the statement tree and replaces each atomic
leaf (e.g., the public messages or the placeholders for the witnesses) with pairs of
commitments and their unveil information (for public messages), or an empty string
(for witnesses). For producing the commitments applyCom applies Acom(crs,m; r1),
where m is either the public message, from the statement x, or from the witness w.

51

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

The tuple (K,P,V) constitutes a non-interactive zero-knowledge argument of knowl-
edge (K,P,V), as defined in Definition 33, for the computational ZK relation Rcomp

hon

{
(imgη(x), imgη(w)) | t is a valid symbolic statement ∧

x = extrSta(t) ∧ w = extrWit(t)∧
for a consistent η

}

21. Acrs , Acom , Aopen , Auv belong to an extractable non-interactive computationally
binding and hiding commitment scheme that is length regular.

22. For all z ∈ {0, 1}∗ holds Averzk (crsof (z), z) ∈ {0, 1}, where Averzk (crsof (z), z) = true
if and only if z is correct w.r.t. to the verifier of the proof system.

23. If z ∈ {0, 1}∗ is not of type zero-knowledge, then ver zk (crsof (z), z) = false.

24. For all z ∈ {0, 1}∗ holds: If z is not of type zero-knowledge proof then Acrsof (z) = ⊥.

25. If z := AmkZK (m̄) 6= ⊥ then Averzk (Acrsof (z), z) = 1.

26. If (x,w) 6∈ Rcomp
hon then for all r ∈ {0, 1}∗, it holds AmkZK (x,w, r) = ⊥.

27. Let x,w, n ∈ {0, 1}∗ such that z = AmkZK (x,w, n). If z 6= ⊥ then holds that
x = AgetPub(z).

28. For d ∈ {0, 1}∗ of type decryption key there is a efficiently computable function
p : {0, 1}∗ → {0, 1}∗ such that for all m,n ∈ {0, 1}∗, n of type nonce, it holds
Adec(d,Aenc(p(d),m, n)) = m, i.e. p computes the encryption key corresponding to
d. The analogous statement has to holds for signing keys and verification keys.

29. Every transformation is strongly derivation private as defined my Chase, Kohlweiss,
Lysyanskaya, Meiklejohn [CKLM12].

3.6. Complete proof of computational soundness

The computational soundness proof of our symbolic model first presents a simulator Sim
(Section 3.6.4) and then shows that this simulator satisfies Dolev-Yaoness (Section 3.6.5)
and indistinguishability (Section 3.6.5), as defined in Section 2.3. The computational
soundness proof and the definition of a symbolic and computational ZK relation are based
on the work of Backes, Bendun, and Unruh [BBU13]. To a large extend, the constructions,
definitions and proofs from [BBU13] apply word for word. Section 3.6.4, 3.6.5, 3.6.6 are
quoted from [BBU13], and all modifications and additions are marked in blue.

The overall goal of this section is proving the following theorem.

Theorem 3 (Computational soundness of MZK-safe protocols). Any computational im-
plementation of the MZK-safe model M (see Section 3.4) that satisfies the implementation
conditions for MZK-safe protocols (see Section 3.5) is computationally sound for the class
of MZK-safe protocols (see Section 3.4).

3.6.1. Proof overview

Due to the length of the full proof, first a brief overview of the computational soundness
proof follows.

52

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

Recall that proving computational soundness in CoSP can be done by constructing a
simulator that behaves as the computational execution towards a computational attacker
and as a valid symbolic attacker towards the symbolic execution (see Theorem 1). Upon
receiving a term from the symbolic execution, the simulator translates this term t as a
bitstring β(t) according to a function β : T→ {0, 1}∗ and forwards this bitstring β(t) to the
attacker. Upon receiving a bitstring m from the attacker, the simulator parses m according
to a function τ : {0, 1}∗ → T and forwards τ(m) to the symbolic execution. Computational
soundness follows if the simulator satisfies two properties: Indistinguishability, i.e., the
interaction of the attacker with the simulator is indistinguishable for from attacker’s
interaction with the real computational execution of the protocol. And Dolev-Yaoness, i.e.,
for each message m from the attacker, and for the set S of terms received so far by the
symbolic execution, S ` τ(m) holds with overwhelming probability.

The core of the simulator are the constructing function β and the parsing function τ .
The constructing function β maintains a memory. Whenever a bitstring β(t) for a term t
is computed for the first time, β(t) is stored; in all future calls β(t) the stored bitstring is
used. We recursively define β over terms, e.g., β(enc(t1, t2, t3)) := Aenc(β(t1), β(t2), β(t3)).

Dolev-Yaoness and Indistinguishability of Sim. The Dolev-Yaoness of Sim is proven
by constructing a faking simulator Simf that fakes all honest encryptions, i.e., Simf instead
computes encryptions of the constant-zero bitstring, and simulates all proofs and handles
all transformations are simulated proofs. In this way no plaintext is used while constructing
encryptions, and no witness is used while constructing zero-knowledge proofs. Additionally,
we go one step further and do not even use the protocol randomness in the computation of
β: Simf uses an encryption faking oracle for constructing ciphertexts and a simulation
oracle for constructing zero-knowledge proofs. We then show that Sim and Simf are
indistinguishable. This follows from the cryptographic properties of the encryptions scheme,
the commitment scheme, and the ZK proof, and it can be shown using standard techniques.
Since Simf satisfies Dolev-Yaoness by construction, this entails that Sim does as well.

The indistinguishability of Sim is proven in several steps. First, we show that parsing
and constructing statements and witnesses preserves the validity of the statement-witness
pairs. Then, we show that the probability that Sim aborts, i.e., that an extraction failure
happens, is negligible. After these two properties have been shown, we can analyze the
computational and the hybridexecution with Sim for fixed randomness of the attacker and
the execution. We obtain that both executions are indistinguishable since β(f(t1, . . . , tn)) =
Af (β(t1), . . . , β(tn)).

3.6.2. Symbolic and computational ZK relation

Symbolically, we have the normal relation Rsym
hon for protocols

{
(x,w) | L′(x) {wi/xwi} is true, where

x = extrSta(t), w = extrWit(t))
}

53

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

L′′(S1 ∨ S2) := L′′(S1) ∨ L′′(S2)

L′′(S1 ∧ S2) := L′′(S1) ∧ L′′(S2)

L′′(A = B) := L′′(A) = L′′(B)

L′′(A 6= B) := L′′(A) 6= L′′(B)

L′′(enc〈X1, X2, Xn〉) := ∃r.F (L′′(X1), X2, r)

L′′(F 〈X1, . . . , Xn〉) := F (L′′(X1), . . . , L′′(Xn))

n = arity(F)

L′′(〈com(crs,m, r), ε〉) := xm , for xm ∈ V
L′′(〈com(crs,m, r), uv(m, r)〉) := m

Since parsing the correct randomness from attacker-generated encryptions is in general
not possible, we have to allow the attacker to use any randomness. Hence, we relax the
symbolic ZK relation for attacker messages in the ZK relation Rsym

adv . We define the following
relaxed logical formulas:

L′′(S1 ∨ S2) := L′′(S1) ∨ L′′(S2)

L′′(S1 ∧ S2) := L′′(S1) ∧ L′′(S2)

L′′(A = B) := L′′(A) = L′′(B)

L′′(A 6= B) := L′′(A) 6= L′′(B)

L′′(enc〈X1, X2, Xn〉) := ∃r.F (L′′(X1), X2, r)

L′′(F 〈X1, . . . , Xn〉) := F (L′′(X1), . . . , L′′(Xn)), for n = arity(F)

L′′(〈com(crs,m, r), ε〉) := xm , for xm ∈ V
L′′(〈com(crs,m, r), uv(m, r)〉) := m

Then, Rsym
adv is defined as follows:

{
(x,w) | L′′(x) {wi/xwi} is true, where x = extrSta(t), w = extrWit(t))

}

Computationally, recall Rcomp
hon is defined as follows:

{
(imgη(x), imgη(w)) | (x,w) ∈ Rsym

hon for a consistent η
}

We stress that our definition is equivalent to the previous definition.

Analogously, Rcomp
adv is defined using Rsym

hon :

{
(imgη(x), imgη(w)) | (x,w) ∈ Rsym

adv for a consistent η
}

By construction Definition 6 obviously holds.

3.6.3. Transparent hybrid executions

In the presence of zero-knowledge transformations it might happen that the simulator
parses a zero-knowledge proof from the attacker, further transforms this proof, and sends
this transformed proof back to the attacker. Then, the simulator in interaction with the
hybrid execution would need to construct a proof even though some witnesses are only

54

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

known to the attacker. We remedy this problem by directly applying the implementations
of the zero-knowledge transformations that lead to this term.

In order to be able to determine which zero-knowledge transformations have been applied
to a term, we modify the hybrid execution to a so-called transparent hybrid execution that
is defined as follows: the result of a destructor node is in the yes-branch instead of f(t)
the term f̂(t), where for every destructor f , we introduce a free constructor f̂ . We define
the set of extended terms T′ as the set of terms T that may also contain the constructors
f̂ for f ∈ D. Moreover, instead of checking at a destructor node whether f(t) outputs ⊥
or another term, the symbolic execution first needs to get rid of the f̂ constructors, by
evaluating each ti: eval ′f̂(s) := f(eval ′s) and eval ′t := t otherwise. With this transparent
hybrid execution the simulator is able to track the symbolically applied transformations
and thereby to compute β(f̂(t)) as Af̂ (β(t)).

We generalize this idea and let for a set of destructors Dt the transparent hybrid execution
only send terms for which every destructor application f(t) with f ∈ Dt has been replaced
by a distinguished constructor application f̂(t). For the definition of a transparent hybrid
execution, we use the evaluation function eval ′′, where T′′ denotes the extended set of terms
in which for each destructor d a constructor d̂ has been introduced. We define evald as in
the CoSP paper: for d ∈ C ∪ {ĝ | g ∈ Dt} we have evald(t) := d(t) if d(t) ∈ T, otherwise
d(t) := ⊥; for d ∈ D \Dt we have evald(t) := d(t) if d(t) 6= ⊥, otherwise d(t) := ⊥.

Recall that our symbolic abstraction explicitly models the commitments on the wit-
nesses. Compared to previous work, we therefore need to be able to determine whether
a commitment has been reused in an MZK proof. However, unless we assume extraction
zero-knowledge we cannot use the extractor on simulated MZK proofs. As a consequence,
we allow the simulator Sim to not only send terms but also variables and refine the
assignment f from nodes to terms or variables upon every destructor application of the
transparent hybrid execution. Let X be the set of variables. We define the set of terms as
T′ as T′′∪X∪{⊥}. Moreover, we allow the simulator to send an assignment α : X → T′ in
order to refine the interpretation of previously sent terms. In detail, upon each destructor
application the transparent hybrid execution queries the simulator Sim with (update) for
a refinement α of the terms. Our destructors are defined by a set of conditional rewriting

rules; hence we can naturally extend eval ′′d(t) with t ∈ T′′
|t|

to eval ′d(t) with t ∈ T′
|t|

where all variables x in t are treated as attacker nonces nx ∈ NE .

We define the following function:

saturate(f, α) := lim
i→∞

gi where

g0 := f and gi :=
{

(n, t) |∃C, y.C[y] = gi(n)

∧ t = C[α(y1), . . . , α(yn)]
}

We stress that saturate is poly-time computable if α is the identity function up to polyno-
mially many variables (which is how we use it in our proof).

Definition 36 (Transparent hybrid execution). Let Πp be a probabilistic CoSP protocol,
and let Sim be a simulator. We define a probability distribution TH-TraceM,Dt,Πp,Sim(k)
on (finite) lists of tuples (Si, νi, fi) called the full Dt-transparent hybrid trace according
to the following probabilistic algorithm ΠT , run on input k, that interacts with Sim. (ΠT

is called the transparent hybrid protocol machine associated with Πp and internally runs a
symbolic simulation of Πp as follows:)

55

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

• Start: S1 := S := ∅, ν1 := ν is the root of ΠT , and f1 := f is a totally undefined
partial function mapping node identifiers to T.
• Transition: For i = 2, 3, . . . do the following:

– Let ν̃ be the node identifiers in the label of ν. Define t̃ through t̃j := f(ν̃j).
– Proceed depending on the type of ν:
∗ If ν is a computation node with destructor d, then send (update) to Sim.

Wait for a variable assignment α : X → T′ as a response. Let idS be
the identity function of a set S. Update f := saturate(f, α) with α. Let
m := eval ′d(̃t). If eval ′d(̃t) 6= ⊥, let ν ′ be the yes-successor of ν and let
f ′ := f(ν := m). If eval ′f (̃t) = ⊥, let ν ′ be the no-successor of ν and let
f ′ := f . Set f := f ′ and ν := ν ′.
∗ If ν is a computation node with constructor, destructor, or nonce d, then

let m := evald(̃t). If eval ′d(̃t) 6= ⊥, let ν ′ be the yes-successor of ν and let
f ′ := f(ν := m). If eval ′f (̃t) = ⊥, let ν ′ be the no-successor of ν and let
f ′ := f . Set f := f ′ and ν := ν ′.
∗ If ν is an output node, send t̃1 to Sim (but without handing over control to

Sim). Let ν ′ be the unique successor of ν and let S′ := S ∪{t̃1}. Set ν := ν ′

and S := S′.
∗ If ν is an input node, hand control to Sim, and wait to receive m ∈ T from

Sim. Let f ′ := f(ν := m), and let ν ′ be the unique successor of ν. Set
f := f ′ and ν := ν ′.
∗ If ν is a control node labeled with out-metadata l, send l to Sim, hand

control to Sim, and wait to receive a bitstring l′ from Sim. Let ν ′ be the
successor of ν along the edge labeled l′ (or the lexicographically smallest edge
if there is no edge with label l′). Set ν := ν ′.
∗ If ν is a nondeterministic node, sample ν ′ according to the probability

distribution specified in ν. Set ν := ν ′.
– Send (info, ν, t) to Sim. When receiving an answer (proceed) from Sim, continue.
– If Sim has terminated, stop. Otherwise let (Si, νi, fi) := (S, ν, f).

The probability distribution of the (finite) list ν1, . . . produced by this algorithm we denote
by TH-Nodes ′M,Dt,Πp,Sim(k). By replacing every variable by distinct fresh nonce from
NE, and by replacing com(c,⊥, N) by garbCom(c,N), we get (the distribution of traces)
TH-NodesM,Dt,Πp,Sim(k). We call this distribution the Dt-transparent hybrid node trace. In
abuse of notation, we often omit the adjective transparent since we only consider transparent
hybrid executions and traces.

We stress that the definition of a good simulator can be extended to the transparent
hybrid execution.

Analogous to the proof of the CoSP paper which shows that the existence of a good
simulator implies computational soundness, it suffices to show the lemma about the hybrid
node traces.

Lemma 3. Consider a transparent hybrid execution of Sim + ΠT in which Sim is DY, i.e.,
we have {T1, . . . ,T`} ` m` for all Ti and m` as in the definition of the symbolic execution
in CoSP [BHU09] and all `.

Let tr be the full hybrid trace of that execution. Then tr is a full symbolic trace of Πs.

56

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

Proof. We show that tr fulfills the conditions on full traces of the definition of the symbolic
execution from the CoSP paper. [BHU09] This is clear for constructor, and control nodes,
since the processing of these nodes in the hybrid setting of Definition 36 matches the one in
the symbolic setting of the definition of symbolic execution in CoSP. For destructor nodes
we have for all t ∈ Tn eval f̂(t) = ⊥ ⇔ evalf (t) = ⊥. Consequently, the same branches are
taken in both settings.

Input/output nodes in tr consist of an extended term t ∈ T′ sent from ΠT to Sim, or
an extended term t′ sent from Sim to ΠT . By the DY property of Sim, we know that
S ` eval ′t′, where S denotes all terms (including t) sent from ΠT to Sim so far. Hence,
the node satisfies the requirement for input/output nodes from the definition of symbolic
execution in CoSP. This completes the proof of the lemma.

The previous lemma immediately implies the following lemma.

Lemma 4 (Good simulator implies soundness). Let M = (C,N, T,D,`) be a symbolic
model, let Dt ⊆ D be a set of destructors,let P be a class of CoSP protocols, and let A be a
computational implementation of M. Assume that for every efficient probabilistic CoSP
protocol Πp (whose corresponding CoSP protocol is in P), every probabilistic polynomial-
time adversary A, and every polynomial p, there exists a good simulator against the
Dt-transparent hybrid execution for M, Πp, A, A, and p. Then A is computationally sound
for all protocols in P .

3.6.4. The simulator Sim

In the definition of the simulator we needed two functions β and τ to translate between
the symbolic and computational worlds. Here is the full definition of the simulator. From
here on (Section 3.6.4, 3.6.5, 3.6.6), large parts of the computational soundness proof is
quoted from [BBU13]. All modifications are marked in blue.

The partial function β : T→ {0, 1}∗.
• β(N) ··= rN if N ∈ NP

• β(Nm) ··= m
• β(enc(ek(N), t,M)) ··= Aenc(β(ek(N)), β(t), rM) if M ∈ NP

• β(enc(ek(M), t, Nm)) ··= m if M ∈ NP

• β(ek(N)) ··= Aek (rN) if N ∈ NP

• β(ek(Nm)) ··= m
• β(dk(N)) ··= Adk (rN) if N ∈ NP

• β(dk(Nm)) ··= d such that τ(d) = dk(Nm) was computed earlier
• β(sig(sk(N), t,M)) ··= Asig(Ask (rN), β(t), rM) if N,M ∈ NP

• β(sig(sk(M), t, Ns)) ··= s
• β(vk(N)) ··= Avk (rN) if N ∈ NP

• β(vk(Nm)) ··= m
• β(sk(N)) ··= Ask (rN) if N ∈ NP

• β(sk(Nm)) ··= s such that τ(s) = sk(Nm) was computed earlier
• β(crs(N)) ··= Acrs(rN) if N ∈ NP

• β(crs(N c)) ··= c
• β(ZK (t1, t2, N2)) ··= AmkZK (β(crsof (t1)), β(extrSta(t1)), β(extrWit(t1)), rN2

) if N2 ∈ NP

• β(ZK (t1 ∧ t′1, t2 ∧ t′2, rand(N,N ′))) ··=
AandZK

(β(ZK (t1, t2, N)), β(ZK (t′1, t
′
2, N

′))) if N ∈ NE or N ′ ∈ NE

• β(ZK (t1, t2, N
s)) ··= s

57

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

• β(f̂(t1, . . . , tn)) ··= Af (β(t1), . . . , β(tn)) if f ∈ F̂
• β(com(crs(N),m,M)) ··= Acom(β(crs(N)), β(m), rM)
• β(pair(t1, t2)) ··= Apair (β(t1), β(t2))
• β(string0(t)) ··= Astring0

(β(t))
• β(string1(t)) ··= Astring1

(β(t))
• β(ε) ··= Aε()
• β(garb(N c)) ··= c
• β(garbCom(t,N c)) ··= c
• β(garbEnc(t,N c)) ··= c
• β(garbSig(t,Ns)) ··= s
• β(t) ··= ⊥ if no case matches

The total function τ : {0, 1}∗ → T. (by taking the first matching rule)

• τ(r) ··= N if r = rN for some N ∈ NP and N occurred in a term sent from ΠC

• τ(r) ··= Nr if r is of type nonce
• τ(c) ··= enc(ek(M), t,N) if c has earlier been output by β(enc(ek(M), t,N)) for some
M ∈ N, N ∈ NP

• τ(c) ··= enc(ek(M), τ(m), N c) if c is of type ciphertext and τ(Aekof (c)) = ek(M) for some
M ∈ NP and m ··= Adec(Adk (rN), c) 6= ⊥

• τ(c) ··= garbEnc(τ(Aekof (c)), N c) if c is of type encryption
• τ(c) ··= ek(N) if c has earlier been output by β(ek(N)) for some N ∈ NP

• τ(c) ··= ek(N c) if c is of type encryption key
• τ(c) ··= dk(N) if c = Adk (rN) for some N that occurred in a subterm of the form ek(N) or

dk(N) before
• τ(c) ··= dk(Ne) if c is of type decryption key and e is the encryption key corresponding to c
• τ(s) ··= sig(sk(M), t, N) if s has earlier been output by β(sig(sk(M), t, N)) for some M,N ∈

NP

• τ(s) ··= sig(sk(M), τ(m), Ns) if s is of type signature and τ(Avkof (s)) = vk(M) for some
M ∈ N and m ··= Aver sig (Avkof (s), s) 6= ⊥

• τ(s) ··= garbSig(τ(Avkof (s)), Ns) if s is of type signature
• τ(s) ··= vk(N) if s = Avk for some N that occurred in a subterm of the form vk(N) or sk(N)

before
• τ(s) ··= vk(Ns) if s is of type verification key
• τ(s) ··= sk(N) if s = Ask for some N that occurred in a subterm of the form vk(N) or sk(N)

before
• τ(s) ··= sk(N c) if s is of type signing key and c is the signing key corresponding to s
• τ(z) ··= crs(N) if z = Acrs(rN) for some N that occurred in a subterm of the form crs(N)

before
• τ(z) ··= crs(Nz) if z is of type common reference string
• τ(z) ··= com(c,m,N) if z is of type commitment and z has been output earlier by β(com(c,m,N))

for some N ∈ NP .
• τ(z) ··= com(τ(c), xz, N

z) if z is of type commitment and where c := Acrsof (z) and xz ∈ X is
a variable.

• τ(z) ··= f̂(s) if z is of type zero-knowledge and z has been output earlier by β(f̂(s)) for some
s

• τ(z) ··= ZK (t1, t2, N2) if z is of type zero-knowledge proof and z has been output earlier by
β(ZK (t1, t2, N2)) for some N2 ∈ NP

• τ(z) ··= ZK (t1, t2, N
z) if z is of type zero-knowledge proof, Aver zk

(Acrsof (z), z) = 1, mt1 :=
AgetPub(z) 6= ⊥, t1 := C[x1, . . . , xn] := τ(mt1) 6= ⊥, crs(N) = τ(Acrsof (mt1)) for some
N ∈ NP , and α′ := SymbExtr(S,C[α(x1), . . . , α(xn)]) where S is the set of terms sent to
the adversary before and t2 := randomnessTree(t1), where randomnessTree(t1) is defined by
replacing 〈com(crs, t, r), U〉 by r (in the FMZK variant), or 〈t, r〉 (in the CMZK) variant.
If ⊥ ∈ α′(extrWit(t1)), we say an extraction-failure on (N, z,mt1) occurred, see below for the

58

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

behavior of Sim in this case. Otherwise, set α := α′ ◦ α.8

• τ(z) ··= andZK (τ(z′), τ(z′′)) if z is of type zero-knowledge proof and AsplitAnd(z) = (z′, z′′) 6=
⊥, Aver zk

(Acrsof (z), z) = 0.
• τ(z) ··= ZK (t1, t2, N

z) if z is of type zero-knowledge proof, and t1 := τ(AgetPub(z)), where
t2 := randomnessTree(t1). Since z is of type zero-knowledge, AgetPub(z) is a valid statement
and randomnessTree(t1) is defined. Moreover, set α′(x) := ⊥ for each x ∈ extractWitness(t1)
and α := α′ ◦ α.

• τ(m) ··= pair(τ(Afst(m)), τ(Asnd(m))) if m is of type pair
• τ(m) ··= string0(τ(m′)) if m is of type payload-string and m′ ··= Aunstring0

(m) 6= ⊥
• τ(m) ··= string1(τ(m′)) if m is of type payload-string and m′ ··= Aunstring1

(m) 6= ⊥
• τ(m) ··= ε if m is of type payload-string and m = Aε()
• τ(m) ··= garb(Nm) otherwise

When an extraction-failure on (N, z,mt1) occurs(i.e., when in the computation of τ ,
α′ = SymbExtr(z, t1, α), the simulator computes (crs, simtd , extd) ← K(1η; rN) to get
the extraction trapdoor extd corresponding to crs = Acrs(rN). Then the simulator invokes
mw := E(mt1 , z, extd). If (mt1 ,mw) /∈ R, we say a ZK-break occurred.

Upon a message (update) by the transparent hybrid execution, Sim responds with its
current witness variable assignment α : X → T′, and sets α := ∅.

We define τ∗ by the same case distinction as τ but remove the case in which an extraction
failure may occur (i.e., the case where we invoke SymbExtr(S, x). Consequently, every
adversary generated ZK-proof is by τ∗ parsed as a proof that contains garbage commitments.
Thus, by definition, there is no extraction failure during a computation of τ∗.

The faking simulator Simf . In the transformations from Sim over Simi (i = 1 to 7)
to Simf all invocations of cryptographic algorithms (such as AZK and Aenc) are replaced
by oracles and thereafter by faking oracles.

• We define Sim1 like Sim but we change β to use zero-knowledge oracles instead
of computing Acrs , AmkZK , and Acom . More precisely, assume an oracle OZK ,com

that internally picks (crs, simtd , extd) ← K(1η) and that responds to four kinds
of queries: Upon a (crs)-query, it returns crs, and upon a (prove, x, w)-query, it
returns P(x,w, crs) if (x,w) ∈ Rcomp

hon and ⊥ otherwise. Upon a (extd)-query, it
returns extd . For each N ∈ NP , Sim1 maintains an instance ONZK ,com of OZK ,com .
Upon a (commit,m)-query, it uniformly chooses a random bitstring r and returns
Acom(crs,m, r). Then Sim1 computes β(crs(N)) with N ∈ NP as β(crs(N)) :=
ONZK ,com(crs), and Sim1 computes β(ZK (t1, t2, N2)) with N2 ∈ NP as β(ZK (t1,t2,

N2)) := ONZK ,com(prove, β(t1), β(t2)). In case of an extraction-failure, Sim1 performs
a (extd)-query to get extd . (Here and in the descriptions of Sim2, . . . ,Sim7,Simf ,
we implicitly require that β(t) caches the results of the oracle queries and does not
repeat the oracle query when β is applied to the same term t again.)
In the definition of τ(z) = crs(N) for N ∈ NP , instead of checking z = Acrs(rN),
Sim1 checks whether z is equal to the (crs)-query outcomes for all oracles ONZK ,com
which have been used so far.
• We define Sim2 like Sim1, except that we replace the oracle OZK ,com by an oracle
Osim. That oracle behaves like OZK ,com , except that upon a (prove, x, w)-query, it
returns S(x, crs, simtd) if (x,w) ∈ Rcomp

hon and ⊥ otherwise.
• We define Sim3 like Sim2, except that we replace the oracle Osim by an oracle O′sim.

8Formally, this is defined as
{

(x,C[C′1[z1], . . . , C′n[zn]]) | C[y] = α(x) ∧ C′[z] = α′(y)
}

.

59

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

That oracle behaves like Osim, except that upon a (prove, x, w)-query, it returns
S(x, crs, simtd) (even if (x,w) /∈ Rcomp

hon). Therefore the simulator only queries
(prove, x) and does not compute w any more.
• We define Sim4 like Sim3, but we change β to call the oracle O0 instead of com-

puting Af . For every N ∈ NP the simulator Sim4 maintains a distinct oracle
ON0 (f, ·, ·, simtd) for crs(N). Moreover, ON0 (f, ·, ·, simtd) gets a special command
(simtd) for ONZK ,com upon which the simulation trapdoor simtd is output. Upon the

first call ON0 queries ONZK ,com with (simtd).
• We define Sim5 like Sim6, but we change β and τ to call the simulating oracle
O1(f, ·, ·, simtd) instead of querying O0(f, ·, ·, simtd).
• We define Sim6 like Sim5, but we change β and τ to use encryption oracles instead

of computing Aenc, Adec, Aek , Adk . More precisely, assume an oracle Oenc that
internally picks (ek , dk) ← KeyGenenc(1

η) and that responds to three kinds of
queries: Upon an (ek)-query, it returns ek . Upon a (enc,m)-query, it returns
ENC (ek ,m). Upon a (dec, c)-query, it returns DEC (dk , c). Sim6 maintains an
instance ONenc for each N ∈ NP . Then Sim6 computes β(ek(N)) with N ∈ NP as
β(ek(N)) := ONenc(ek). And it computes β(enc(ek(N), t,M)) with N,M ∈ NP as
β(enc(ek(N), t,M)) := ONenc(enc, β(t)). And it computes β(dk(N)) := ⊥. And in
the computation of τ(c) for c of type ciphertext, the computation of Adec(Adk (rN), c)
is replaced by ONenc(dec, c).
In the definition of τ(c) = ek(N) and τ(c) = dk(N) for N ∈ NP , instead of checking
c = Aek (rN) and c = Adk (rN), Sim6 checks whether c is equal to the corresponding
query outcomes for all oracles ONenc which have been used so far.
• We define Sim7 like Sim6, except that we replace the oracle Oenc by an oracle
Ofake. That oracle behaves like Oenc, except that upon an (enc, x)-query, it returns
ENC (ek , 0|x|).
• We define Simf like Sim7, but we change β to use signing oracles instead of com-

puting Avk , Ask , Asig . More precisely, we assume an oracle Osig that internally picks
(vk , sk) ← KeyGensig(1η) and that responds to two kinds of queries: Upon a (vk)-
request, it returns vk , and upon a (sig,m)-request, it returns SIG(sk ,m). Simf

maintains an instance ONsig for each N ∈ NP . Then Simf computes β(vk(N)) with

N ∈ NP as β(vk(N)) := ONsig(vk). And β(sk(N)) with N ∈ NP as β(sk(N)) := ⊥.

And β(sig(sk(N), t,M)) with N,M ∈ NP as β(sig(sk(N), t,M)) := ONsig(sig, β(t)).
In the definition of τ(c) = vk(N) and τ(c) = sk(N) for N ∈ NP , instead of checking
c = Avk (rN) and c = Ask (rN), Simf checks whether c is equal to the corresponding
query outcomes for all oracles ONsig which have been used so far.

Large parts of the computational soundness proof follow the computational soundness
proof for non-malleable ZK proofs from Backes, Bendun and Unruh [BBU13].

The following two lemmas are shown in the work of Backes, Bendun, and Unruh [BBU13].

3.6.5. Simf is Dolev-Yao

Lemma 5 (Underivable subterms). For any invocation of τ or τ∗ in the hybrid execution
of Simf , let m denote the input to τ or τ∗, let u′ denote the output of τ or τ∗, and let S
be the set of all messages sent from ΠC to Simf up to that invocation of τ or τ∗.

Let C be a context and u ∈ T such that u′ = C[u] and S 6` u.

60

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

Then there is a term tbad and a context D such that D can be obtained by the following
grammer:

D ::= � | pair(t,D) | pair(D, t) | enc(ek(N), D,M)

| enc(D, t,M) | sig(sk(M), D,M)

| com(D, r,N) | com(t,D,M)

| com(t,D,N) (for public commitments)

| ZK (D, r,M) | garbEnc(D,M)

| garbSig(D,M) | garbCom(D,M)

with N ∈ NP ,M ∈ NE , t, t
′ ∈ T

with u = D[tbad] such that S 6` tbad and such that one of the following holds:

1. tbad ∈ NP

2. tbad = enc(p,m,N) with N ∈ NP

3. tbad = sig(k,m,N) with N ∈ NP

4. tbad = ZK (x, r,N) with N ∈ NP

5. tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE

6. tbad = com(crs(N),m,M) with N,M ∈ NP and tbad is a witness commitment
7. tbad = ZK (t, r,N) with N ∈ NP

8. tbad = crs(N) with N ∈ NP

9. tbad = ek(N) with N ∈ NP

10. tbad = vk(N) with N ∈ NP

11. tbad = sk(N) with N ∈ NP

12. tbad = dk(N) with N ∈ NP

Proof. We prove the lemma by structural induction on u. We formulate the proof for an
invocation of τ , for an invocation of τ∗ the proof is identical. There are the following
cases:

Case 1: ” u ∈ {ek(N), vk(N), crs(N), dk(N), sk(N)} with N 6∈ NP ”

Let u = C(N) for C ∈ {ek , vk , crs, dk , sk}. By protocol conditions 1 and 13 each
C-node has as annotation a nonce from NP . Therefore u cannot be honestly
generated, that means there is some e ∈ {0, 1}∗ such that τ(e) = u and u has the
form C(N e). But then S ` u contradicting the premise of the lemma.

Case 2: ” u ∈ {ek(N), vk(N), crs(N), dk(N), sk(N)} with N ∈ NP ”

Then the claim is fulfilled with D := � and tbad = u.

Case 3: “u = garb(u1)”

By protocol condition 2 no garbage term is generated by the protocol. Therefore
there is a c ∈ {0, 1}∗ such that τ(c) = garb(N c) = u. But this means that S ` u,
contradicting the premise of the lemma.

Case 4: “u = garbEnc(u1, u2) or u = garbSig(u1, u2)”

By protocol condition 2 no garbage term is generated by the protocol. So there
exists a c ∈ {0, 1}∗ with τ(c) = garbEnc(u1, N

c) or τ(c) = garbSig(u1, N
c). Since

S ` N c it follows that S 6` u1, because S 6` u. Applying the induction hypothesis
on u1 leads to a context D′ and a term tbad. Using this term tbad and the context
garbEnc(D′, N c), respectively garbSig(D′, N c), shows the claim.

61

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

Case 5: “u = pair(u1, u2)”

Since S 6` u there is an i ∈ {1, 2} such that S 6` ui. Let D be the context and tbad
the term given by applying the induction hypothesis to ui. Then D1 := pair(D,M)
or D2 := pair(M,D) is the context for the term u depending on i with the same
term tbad.

Case 6: “u = ε”

This case cannot happen because S ` ε, so the premise of the lemma is not
fulfilled.

Case 7: “u = string0(u1) or u = string1(u1)”

Again the premise is not fulfilled since inductively S ` u1 with base case u1 = ε
and therefore S ` string i(u1) for i ∈ {0, 1}.

Case 8: “u = N with N ∈ NP \N”

This case is impossible since u is not in the range of τ .

Case 9: “u = N with N ∈ N”

The context D := � and term tbad := u satisfy the lemma in this case.

Case 10: “u = N with N ∈ NE”

In this case S ` u by definition and therefore the lemma’s premise does not hold.

Case 11: “u = enc(u1, u2, N) with N ∈ NP ”

The lemma is satisfied by tbad = u and D = �.

Case 12: “u = enc(u1, u2, u3) with u3 6∈ NP and S 6` u1”

Since u3 6∈ NP it follows that u cannot be honestly generated because of protocol
condition 7. Therefore there is a c ∈ {0, 1}∗ with τ(c) = enc(ek(M), u2, N

c) = u
for some M ∈ NP . Apply the induction hypothesis to u1 getting tbad and context
D we can define D′ := enc(D,u2, N

c) fulfilling the claim of the lemma with tbad.

Case 13: “u = enc(u1, u2, u3) with u3 6∈ NP and S ` u1”

Since u3 6∈ NP it follows that u cannot be honestly generated because of protocol
condition 7. Therefore there is an c ∈ {0, 1}∗ with τ(c) = enc(ek(M), u2, N

c) = u
for some M ∈ NP . Since S ` u1, S ` N c, and S 6` u, it follows that S 6` u2.
Let D be the context and tbad be the term resulting by the induction hypothesis
applied to u2. Then D′ := enc(ek(M), D,N c) together with tbad satisfies the
lemma.

Case 14: “u = com(u1, u2, N) with N ∈ NP and u is a witness commitment”

By protocol condition 13, we know that there is a c ∈ {0, 1}∗ such that τ(c) =
com(crs(N), t, N c). Hence, the lemma is satisfied by tbad = com(crs(N), t, N c)
and D = �.

Case 15: “u = com(u1, u2,M) with M ∈ NP and u is a public commitment”

As above, by protocol condition 13 u1 = crs(N) for some N ∈ NP . Since u is
a public commitment, S ` uv(u2,M). Hence, by applying open(com(u1, u2,M),
uv(u2,M)) = u2, we know that by induction hypothesis there is a D such that
S ` D[tbad]. Consequently, the lemma is satisfied by D′ = com(u1, D,M).

Case 16: “u = com(u1, u2,M) with M ∈ NE”

Since u3 6∈ NP it follows that u cannot be honestly generated because of protocol

62

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

condition 7. Hence, there is a c ∈ {0, 1}∗ such that τ(c) = com(u′, x,N c). Since
S ` u′, S ` N c, and S 6` u, it follows that S 6` x. Let D be the context and
tbad be the term resulting by the induction hypothesis applied to u2. Then
D′ := com(u′, D,N c) together with tbad satisfies the lemma.

Case 17: “u = sig(u1, u2, N) with N ∈ NP ”

Use context D := � and tbad = u.

Case 18: “u = sig(sk(N), u1, u3) with u3 6∈ NP and N ∈ NP ”

Since u ∈ T and u3 6∈ NP follows that u3 ∈ NE . Therefore the context D := �
and tbad = u proves the claim.

Case 19: “u = sig(u1, u2, u3) and u3 6∈ NP and u1 is not of the form sk(N) with N ∈ NP ”

Since u3 6∈ NP we get by protocol condition 7 that u is not honestly generated,
i.e., there is an s ∈ {0, 1}∗ such that τ(s) = sig(sk(M), u2, N

s) = u with M ∈ N.
Because u1 has not the form sk(N) for any N ∈ NP follows that M ∈ NE , so
S ` M and therefore S ` sk(M). In total we have S ` u1, S ` u3 but S 6` u
which implies that S 6` u2. Applying the induction hypothesis to u2 leads to
a context D and a term tbad. Defining D′ := sig(sk(M), D,N s) completes the
claim.

Case 20: “u = ZK (u1, u2, N) with N ∈ NP ”

Defining tbad = u and D := � suffices.

Case 21: “u = ZK (u1, u2, N) with N ∈ NE”

Since τ uses the function randomnessTree(u1) for u2 and N ∈ NE , we know that
S 6` u1.

In this case we use the induction hypothesis on getPub(u) = u1 to get the term
tbad and a context D. Then using tbad and D′ := ZK (D,u2, N) satisfies the
lemma.

Case 22: “u = ZK (u1, u2, N) with N ∈ NE”

This case cannot occur because u is not in the range of τ .

Case 23: “u = f̂(t1, . . . , tn, x, w,N)”

By the definition of τ , we know that τ(m) = u only if m was already sent by the
protocol; hence already S ` u holds true and this case cannot occur.

Lemma 6. For any (direct or recursive) call of the function β(t) performed by Simf , it
holds that S ` t where S is the set of all terms sent by ΠC to Simf up to that point.

Proof. We prove it by induction on the recursion depth of the β-function. The base case is
that β(t) is directly invoked. But then t itself was received by the protocol, i.e., t ∈ S and
therefore S ` t.

So let β(t) be called as subroutine of some t′. By induction hypothesis we have S ` t′.
We need to show that S ` t. According to the definition of β there are the following
possibilities for t′:

1. t′ = sig(sk(N), t,M) with N,M ∈ NP

2. t′ = pair(t1, t2) with t ∈ {t1, t2}

63

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

3. t′ = string0(t) or t′ = string1(t)

4. t′ = enc(ek(N e), t,M) with M ∈ NP

5. t′ = ZK (t, t2, N) with N ∈ NP

Note that the case t′ = enc(ek(N), t,M) with N,M ∈ NP does not occur because—in
contrast to Sim—the simulator Simf does not recursively invoke β on t but uses an
oracle and produces ENC (ekN , 0

`(t)). Analogously, in Simf com(crs(N), t,M) does not
recursively invoke β but uses an oracles that commits to 0`(t). By protocol condition 13, we
know that the protocol does not send the term com(crs(N e), t,M) for N e ∈ NE . The case
t′ = ZK (t1, t, N) is not possible, either, because the simulator Simf calls the simulation
oracle to construct the proof and therefore β(·) is not called on the witness t. Also the case
t′ = f̂(t1, . . . , tn, tn+1, tn+2), N with t ∈ {t1, . . . , tn+2} and N ∈ NP does not occur since
all honest ZK -transformations are simulated.

Case 1: S ` sig(sk(N), t,M) = t′. Using ver sig(vkof (t′), t′) = t we get S ` t.
Case 2: S ` pair(t1, t2) = t′. With fst(t′) = t1, snd(t′) = t2, and t ∈ {t1, t2} we get S ` t.
Case 3: The cases t′ = string0(t) and t′ = string1(t) work as the two preceding using

unstring0 and unstring1.

Case 4: S ` enc(ek(N e), t,M). Because S ` N e it follows that S ` dk(N e), so decryption
can be applied resulting in t.

Case 5: S ` ZK (t, t2, N) = t′. The lemma follows by applying the destructor getPub. �

Lemma 7. For any invocation τ(m) of τ or τ∗(m) of τ∗ in the hybrid execution of Simf ,
the following holds with overwhelming probability: Let S be the set of terms t that the
protocol sent to the adversary up to the invocation τ(m) or τ∗(m). Then S ` τ(m) or
S ` τ∗(m), respectively.

In particular, Simf is DY for M and Π.

Proof. Assume there occurs an m as input of τ or τ∗ such that S 6` τ(m) or S 6` τ∗(m),
respectively. Consider the first such input m. Now we can use lemma 5 with context
C = � and u′ = u = t leading to a term tbad and a context D such that tbad is of the form
1-12 given by Lemma 5. Let mbad be the corresponding bitstring, i.e. τ(mbad) = tbad. For
each of these cases we will derive that it can only happen with negligible probability. Note
that τ∗ only differ from τ in the case a ZK-proof ZK (t1, t2,M) is output with M ∈ NE .
We formulate the proof for an invocation of τ ; the case of τ∗ is identical.

Case 1: “tbad = N ∈ NP ”.
By construction of β and Simf , it follows that Simf has only access to rN if
β(N) is computed directly or in τ . Because S 6` N we get by Lemma 6 that
β was never invoked on N , i.e. Simf has only access to rN via τ . Considering
the definition of τ we see that rN is used for comparisons. In particular if τ(r)
is called for an r having type nonce then the simulator checks for all N ∈ NP

whether r = rN . This check does not help guessing rN because it only succeeds if
rN was guessed correctly and therefore the probability that mbad = rN as input
of τ is negligible.

Case 2: “tbad = enc(p,m,N) with N ∈ NP ”.

64

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

By definition τ only returns tbad if β(tbad) was called earlier. But since S 6` tbad
and Lemma 6 this case cannot occur.

Case 3: “tbad = sig(k,m,N) with N ∈ NP ”.
This case is completely analogue to the case that tbad = enc(p,m,N) with
N ∈ NP .

Case 4: “tbad = com(crs(N),m,M) with N,M ∈ NP and tbad is witness commitment”.
By definition τ only returns tbad if β(tbad) was called earlier. But since S 6` tbad
and Lemma 6 this case cannot occur.

Case 5: “tbad = ZK (x, r,N) with N,M ∈ NP ”.
By definition of τ , tbad is only returned if it was a result of β(tbad) earlier. But
because S 6` tbad and Lemma 6 this can not be the case.

Case 6: “tbad = crs(N) with N ∈ NP ”.
Since Lemma 6 β was not called on crs(N), therefore τ(m) 6= crs(N) for all
m ∈ {0, 1}∗.

Case 7: “tbad = sig(sk(N),m′,M) with N ∈ NP , M ∈ NE”.
Because S 6` tbad follows that β was not invoked on tbad. Therefore mbad is a
signature that was not produced by the signing oracle, but it is valid with respect
to verification key vkN . Because of the strongly existential unforgeability this
can only be the case with negligible probability.

Case 8: “tbad = ek(N) with N ∈ NP ”.
By Lemma 6 follows that the function β was not called on tbad. So ekN was not
requested from the encryption oracle. Protocol condition 8 implies that the only
term sent by ΠC containing dk(N) is of the form ZK (·,�, N). But since the
zero-knowledge proofs are simulated in the latter case dk(N) is not part of any
computation, i.e. β(dk(N)) is not computed and dkN is never requested from
the encryption oracle. By Lemma 6 S 6` dk(N). Hence for all terms of the form
t = enc(ek(N), ·, ·) holds S 6` t and therefore no encryption having encryption
key ekN is requested from the oracle. Thus the only remaining possibly use of
ekN is requesting the decryption oracle. But by implementation condition 4 these
requests will always fail unless Aekof (mbad) = ekN , i.e. ekN has already been
guessed. This can only happen with negligible probability.

Case 9: “tbad = vk(N) with N ∈ NP ”.
By Lemma 6, β(vk(N)) is never computed and vkN is never requested from
the signing oracle. Assume S ` sk(N). Then S ` sig(sk(N), ε,N e) for some
N e ∈ NE . But using the destructor vkof follows that S ` vk(N), a contradiction.
So we also have S 6` sk(N) and S 6` sig(sk(N), ·, ·) = t. Thus β(sk(N)) and β(t)
are never computed and therefore neither skN nor a signature with respect to
skN is requested from the signing oracle. So the probability that vkN = mbad

occurs as input of τ is negligible.

Case 10: “tbad = sk(N) with N ∈ NP ”.
Because of protocol condition 9 tbad can only occur in terms of the form
sig(�, ·, ·, N) and ZK (·,�, N). In the second case the construction of the proof
is replaced by the simulation oracle and could be done by the adversary itself. So
the adversary is be able to compute skN only having signatures. By the strongly
existential unforgeability of the signature scheme, this can only happen with

65

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

negligible probability.

Case 11: “tbad = dk(N) with N ∈ NP ”.
Procotol condition 8 ensures that dk only occurs in terms of the form dec(�, ·)
and ZK (·,�, N). The latter case is replaced by the simulation oracle and can
be computed by the adversary itself. Therefore the adversary is able to decrypt
ciphertexts only knowing ciphertexts. By the IND-CCA property, this can only
occur with negligible probability.

In total we get that if Simf is not DY, then with non-negligible probability Simf

performs a computation of τ(mbad) but mbad can only occur with negligible probability as
an argument of τ , a contradiction. Therefore the assumption that Simf is not DY has to
be false, i.e. Simf is DY.

3.6.6. Simf is indistinguishable

Lemma 8 (Relating the relations). Let Rcomp
hon , Rcomp

adv be relations implementing Rsym
adv with

usage restriction Rsym
hon .

1. In the hybrid execution of Sim and Sim3 it holds with overwhelming probability: If
(x,w) ∈ Rsym

hon and x,w occur as node annotation of a ZK node in the execution, then
it holds (β(x), β(w)) ∈ Rcomp

hon .

2. In the hybrid execution of Sim2 it holds with overwhelming probability: If (mx,mw) ∈
Rcomp

adv for some bitstrings mx,mw, then it holds (τ(mx), τ∗(mw)) ∈ Rsym
adv .

Proof. We first define an environment η mapping terms to bitstrings. η depends on the
current state of the execution. We will use η in both parts of the lemma. So let t1, . . . , tn
be the terms sent by the protocol to the simulator so far.

For any term or subterm t that occurs as argument to β or output of τ , we define η as
follows:

• For t = Nm define η(t) := m.
• For t = C(t1, . . . , tn, N

m) define η(t) := m for all C as stated in definition 34.9

• For t = crs(N) with N ∈ NP define η(t) to be the crs produced by the oracle
ONZK ,com .

• For t = ZK (x, r,M) with M ∈ NP define η(t) to be proof produced by ONZK ,com in
the computation of β(t).
• For t = com(crs,m,N) with N inNP define η(t) to be the commitment produced

by ONZK ,com in the computation of β(t).
• For t = N with N ∈ NP we distinguish 2 cases. If t does neither occur in a term of

the form crs(t) nor in ZK (x, r, t) for some x, r then define η(t) := rN . Otherwise let
η(t) be undefined, i.e. η(t) := ⊥.

Note that η is a consistent environment with overwhelming probability.

Most properties of consistency are satisfied by construction. The ZK case holds because
of the indistinguishability of true proofs and their simulations. The only property that
needs to be proven is the injectivity of η. We distinguish by the type of η’s output.

9These are {ek , dk , vk , sk , enc, sig , com, crs, garbCom, garbSig , garbEnc, garb}

66

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

• Type nonce. A collision rM = rN for M,N ∈ NP occurs with negligible probability.
For N,M ∈ NP , a collision occurs with negligible probability, because rN = rM occurs
with negligible probabilityand because a collision with the randomness of ONZK ,com
has negligible probability (otherwise it would be possible to guess that randomness,
compute the simulation trapdoor and fake proofs). The case η(Na) = η(N b) for
a 6= b is even impossible. So consider the case η(N) = η(M) for N ∈ NP ,M ∈ NE .
By protocol condition 2, it follows that M was output of τ , i.e. M = Nn for
some n ∈ {0, 1}∗. First, let N be a nonce occurred inside crs(N). Then it holds
η(N) = ⊥ 6= n = η(Nn).
Otherwise, if N was used before n was received by the simulator, then n would have
been parsed to N by construction of τ . So the first occurrence of N has to be after n
was received. But then the adversary guessed a nonce. This can only happen with
negligible probability.

• Type decryption key. For the same reasons as in the case of type nonce we only
consider the case η(dk(N)) = η(dk(M)) for N ∈ NP ,M ∈ NE . By protocol
condition 2, it follows that dk(M) = dk(Nd) for some d ∈ {0, 1}∗, dk(Nd) was
subterm of an output of τ , and d was not output of β earlier (otherwise d would have
been parsed to dk(N)). So the adversary used either no input or only encryptions
plus the encryption key to compute dk(N). By the CCA property, this can only be
the case with negligible probability.

• Type signing key. This case is completely analogue to the decryption key type using
the strongly existentially unforgeability instead of the CCA property.

• Type encryption key. As in the previous cases we can only need to consider η(ek(N)) =
η(ek(M)) for N ∈ NP ,M ∈ NE . By protocol condition 2, it follows that ek(M) =
ek(N e) for some e ∈ {0, 1}∗. But then τ parsed e to ek(N e), so neither ek(N) nor
dk(N) was used. This means the adversary guessed an encryption key without having
any information about it. This can only happen with negligible probability.

• Type verification key and common reference string. Analogue to the case of encryption
key.

• Type zero-knowledge proof. Because τ is deterministic , the adversary can not
generate two different zero-knowledge proofs which are mapped to the same bistring.
So if there is a collision, then between a protocol generated proof and a adversary
generated one.

• Type ciphertext, signature, and commitment. Analogue to the case of zero-knowledge
proofs.

• Type pair. If there is a collision of two pairs, then there is a collision in the first
argument and in the second. So by induction hypothesis this case occurs with
negligible probability.

• Type payload-string. This type does not contain any nonces. So applying η to a
term of this type leads to a unique bitstring which cannot be hit by any other term
of this type (by implementation condition 17).

• No type. The only term which has no type is garb(t) for t ∈ T. By protocol
condition 2 and construction of τ , it has to hold that t = Nm for some m ∈ {0, 1}∗.

Proof of part 1 of the lemma.
By Definition 3510, it suffices to show that if (x,w) ∈ Rsym

hon then there is a consistent η ∈ E

10The part we will use here says (x,w) ∈ Rsym
hon and imgη(x) 6= ⊥ 6= imgη(w) implies (imgη(x), imgη(w)) ∈

67

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

such that (imgη(x), imgη(w)) = (β(x), β(w)) since β(x) 6= ⊥ 6= β(w). We show that the η
defined above satisfies this criterium. Here, we prove the case for Sim3. The proof for Sim
is analoguous with the only difference in the cases of ZK and crs. Here, the definition of η
is done as for enc and ek and the proof, as well.

For any term t that can occur in the execution of Sim3 as annotation of a ZK node’s
statement or witness, we show that imgη(t) = β(t). This will be done by structural
induction on the term t:

• “t = N with N ∈ NP ”. In this case β(N) = rN . The nonce N may not occur as
last argument of ZK or crs and inside x or w (protocol conditions 7 and 13). So
N did not occur as last argument of ZK nor as argument of crs. Thus, it holds
imgη(N) = η(N) = rN by definition of η.
• “t = N with N ∈ NE”. In this case N = Nn for some n ∈ {0, 1}∗. Thus η(Nn) =
n = β(Nn).
• “t ∈ {ek(u), dk(u), vk(u), sk(u)} with u ∈ T”. In this case, it holds that u ∈ N.

If u ∈ NE , i.e. u = N c for some c ∈ {0, 1}∗, then β(t) = c = η(t) = imgη(t) by
construction. So, consider u ∈ NP . Let C ∈ {ek , dk , vk , sk} be the constructor such

that t = C(u). Then, it holds that imgη(t) = AC(imgη(u))
(∗)
= AC(β(u)) = β(t).

Since u ∈ NP and occurs in C(u), it follows that u does neither occur in crs(u) nor
in ZK (x, r, u) for x, r ∈ T′ (protocol conditions forbid that these nonces are used
more than once). Thus imgη(u) = ru = β(u). Hence equality (∗) holds.

• “t = crs(N) with N ∈ NP ”. By definition β(t) produces the crs using ONZK ,com and
imgη(crs(N)) = η(crs(N)) which was defined as β(t). Thus, it holds imgη(t) = β(t).
• “t = crs(N) with N ∈ NE”. This case is analogue to the case ek(N) with N ∈ NE .
• “t = enc(u1, u2, u3)”. If u3 ∈ NE , then this case is analogue to the case t = ek(u). So

letN := u3 ∈ NP . Then β(t) = Aenc(β(u1), β(u2), rN) = Aenc(imgη(u1), imgη(u2), rN)
by induction hypothesis. The nonce N may only occur inside this encryption and as
witness of the ZK-proof (protocol condition 7). Thus, by rN = η(N) = imgη(N), it
follows β(t) = Aenc(imgη(u1), imgη(u2), imgη(N)) = imgη(t).
• “t = sig(u1, u2, u3)”. If u3 ∈ NE , then this case is analogue to the case t = ek(u). So

let N := u3 ∈ NP . By definition of τ , it follows that t was honestly generated. This
means there was a sig-computation node that produced t. By protocol condition 11
this node is annotated by an sk -node. Since the protocol only uses its randomness
(protocol condition 1), it follows that u1 = sk(M) for some M ∈ NP . Then, it holds
β(t) = Asig(Ask (rM), β(u2), rN). Again, rN = imgη(N); the same holds for M . Since
β(sk(M)) = Ask (M), it follows by induction hypothesis that Ask (rM) = imgη(sk(M)).
In total, it holds β(t) = Asig(imgη(sk(M)), imgη(u2), imgη(N)) = imgη(t).
• “t = pair(u1, u2) where u1, u2 ∈ T”. By induction hypothesis, it follows β(ui) =

imgη(ui). Thus, it holds β(pair(u1, u2)) = Apair (β(u1), β(u2)) = Apair (imgη(u1),
imgη(u2)) = imgη(pair(u1, u2)).
• “t ∈ {string0(u), string1(u), ε} with u ∈ T”. These cases are analogous to the case
t = pair(u1, u2).
• ”t ∈ ZK (t1 ∧ t′1, t2 ∧ t′2, rand(N,N ′)) with ti, t

′
i ∈ T”. This case are analogous to the

case t = pair(u1, u2) using splitAnd .
• “t ∈ {garb(u1), garbSig(u1, u2, u3), garbEnc(u1, u2), garbCom(u1, u2),

com(u1, x, u2)} where ui ∈ T and α(x) = ⊥.” By protocol condition 2 follows

Rcomp
hon .

68

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

that t was generated by τ , i.e. the last argument of t has the form Nm for some
m ∈ {0, 1}∗. By definition of β, it holds that β(t) = m. On the other hand, by
definition of imgη, it holds imgη(t) = η(t) = m, as well.

• ”ZK (t1, t2, t3) where α(x) = ⊥ for each x ∈ extrWit(t1)”. This case is analogous to
the case above.

Proof of part 2 of the lemma.
It suffices to show that for each m ∈ {0, 1}∗, that occurs with non-negligible probability in a
hybrid execution of Sim2, there is some η such that m = imgη(τ(m)) holds. Then it follows
by definition 3511 (mx,mw) ∈ Rcomp

adv =⇒ (imgη(τ(mx)), imgη(τ(mw))) ∈ Rcomp
adv =⇒

(τ(mx), τ∗(mw)) ∈ Rsym
adv .

Take the same definition of η as in the case before. Note that this definition is canonical
for an execution and does not depend on the term τ(m).

We will prove m = imgη(τ(m)) by structural induction. Note that this suffices for τ∗, as
well, since all cases for τ∗ occur in τ .

• τ(m) = N for some N ∈ NP

By construction of τ , it follows that N ∈ N . Thus N was not argument of a
crs or the last argument of a ZK node, by protocol conditions 1 and 7. Then
imgη(τ(m)) = rN = m where the last equality holds because of the definition of τ .
• τ(m) = Nm

Then by construction of η holds that imgη(τ(m)) = imgη(N
m) = η(Nm) = m.

• τ(m) = enc(ek(M), t, N) for some M ∈ N, N ∈ NP

By definition of η holds that imgη(τ(m)) = imgη(enc(ek(M), t, N))
= Aenc(Aek (η(M)), imgη(t), η(N)). By definition of τ follows that m was earlier
output by β and thus evaluating t again using imgη gives the same bitstring mt, rN is
the same argument as in the earlier call and ek(M) is the same, too. By determinism
of the implementations (implementation condition 1) follows that the output is m.

• τ(s) ∈ {sig(sk(M), t, N), com(crs(M), t2, N)} for some M,N ∈ NP

This case is analogue to the one of enc(ek(M), t, N) for some M,N ∈ NP .
• τ(m) = ek(N) for some N ∈ NP

By definition of τ , it follows m = Aek (rN). On the other hand, it holds that
imgη(ek(N)) = Aek (η(N)) = Aek (rN) = m by construction.
• τ(m) ∈ { vk(N), sk(N), dk(N)} for some N ∈ NP

The same as the case of ek(N).
• τ(m) = crs(N) for some N ∈ NP

By definition of τ follows that m was output after a call of β on crs(N). Thus m was
output by the oracle and η(N) is by definition the randomness used by the oracle to
construct m. Thus imgη(crs(N)) = Acrs(η(N)) = m where the last equality holds
because of the definition of η(N).
• τ(m) = ZK (t1, t2, N) for some N ∈ NP

By definition of η follows that imgη(ZK (t1, t2, N)) = η(ZK (t1, t2, N)) = m.
• τ(m) = pair(t1, t2)

This case follows by the induction hypothesis and the determinism of the implemen-
tations.

• τ(m) ∈ {string0(t1), string1(t1), ε}

11At this point we use (imgη(x), imgη(w)) ∈ Rcomp
adv implies (x,w) ∈ Rsym

adv .

69

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

The case of ε is trivial, since the implementation is deterministic. For the other
cases holds that - by definition of τ - t1 = τ(m′) having m′ = Aunstringi(m) where
i ∈ {0, 1} and τ(m) = string i(t1). Applying the induction hypothesis to t1 leads
to imgη(t1) = m′ and thus imgη(τ(m)) = Astringi(imgη(τ(m′))) = Astringi(m

′)
= Astringi(Aunstringi(m)) = m. Here the last equality holds by implementation
condition 17.
• τ(m) ∈ {enc(ek(M), t, Nm), ek(Nm), dk(Nm), garbEnc(t,Nm), com(t, t2, N

m),
garbCom(t,Nm), sig(sk(M), t, Nm), garbSig(t,Nm), vk(Nm), sk(Nm), crs(Nm),
ZK (x, r,Nm), garb(Nm)} for some M ∈ NP

All of these cases follow immediately by definition of η and definition 34.

The proof for Sim2 is the same. Recall, the only difference between Sim3 and Sim2 is
that Sim3 does not check if (x,w) ∈ Rcomp

hon any more.

Lemma 9 (No ZK-breaks). In the hybrid execution with Sim1, ZK-breaks occur only with
negligible probability.

Proof. The simulator Sim1 does not know the simulation trapdoor, does not have access
to a simulation oracle, and only queries the extraction trapdoor once before it halts. We
consider the machine M that behaves exactly as Sim1 and stops before it queries the
extraction trapdoor. This machine M serves as a valid adversary against the extractability
game, because it never queries the extraction trapdoor. The last part of Sim1 serves as a
valid challenger in the extractability game. A ZK-break occurs if and only if M wins in
the extractability game. But we assumed this probability to be negligible; consequently
the probability that ZK-breaks occur is negligible.

Lemma 10 (No invalid symbolic witnesses). Assume that Sim3 is DY. Then, in the
Dtrans-hybrid execution of Sim3, for each ZK node with arguments t1, t2, t3, it holds that
(t2, extrWit(t3)) ∈ Rsym

hon with overwhelming probability.

The same holds for Sim if Sim is DY.

Proof. If Sim3 is DY, then the hybrid execution of Sim3 corresponds to a symbolic execution
with overwhelming probability.

By definition of the hybrid execution, any hybrid execution is a valid symbolic execution,
as long as the simulator does not send a term in the adversary’s knowledge. Since Sim3 is
DY, this occurs only with negligible probability.

In the symbolic execution, the property (t2, t3) ∈ Rsym
hon holds since Definition 6 by

construction of Rsym
hon and Rcomp

hon . Thus in the case that the hybrid execution corresponds
to a symbolic one, it follows that (t2, t3) ∈ Rsym

hon with overwhelming probability.

The same proof shows the statement for Sim.

Lemma 11 (Preservation of simulator-properties).

(i) We have

TH-NodesM,Πp,Sim(k)
C≈ TH-NodesM,Πp,Simf

(k)

(ii) We have that Sim is DY if and only if Simf is DY.

70

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

(iii) Let TH-NodesSM,Πp,Simi
(k) be the distribution of traces of the knowledge set S from

hybrid execution with Simi. Then, we have

TH-NodesSM,Πp,Sim(k)
C≈ TH-NodesSM,Πp,Simf

(k)

Proof of (i) and (ii). For x ∈ {1, . . . , 7, f} or x being the empty word. The same way, we
denote the event that a simulator Simx is DY in that execution by DYx. We abbreviate
TH-NodesM,Πp,Simx(k) as TH-Nodesx.

To show the lemma, we will show that

(DY,TH-Nodes)
C≈ (DY1,TH-Nodes1)

(DY1,TH-Nodes1)
C≈ (DY2,TH-Nodes2)

(DY2,TH-Nodes2)
C≈ (DY3,TH-Nodes3)

(DY3,TH-Nodes3)
C≈ (DY4,TH-Nodes4)

(DY4,TH-Nodes4)
C≈ (DY5,TH-Nodes5)

(DY5,TH-Nodes5)
C≈ (DY6,TH-Nodes6)

(DY6,TH-Nodes6)
C≈ (DY7,TH-Nodes7)

(DY7,TH-Nodes7)
C≈ (DYf ,TH-Nodesf)

It is obvious that Dolev-Yao-ness transfers as stated in the lemma by transitivity. But the
extraction failures transfer because in the presence of an extraction failure each simulator
immediately stops. Thus if the extraction failures would not transfer as stated above, it
would be possible to differentiate the node traces by their length.

We will show (DY2,TH-Nodes2)
C≈ (DY3,TH-Nodes3)

at the end, because we need the intermediate result to prove it.

• (DY,TH-Nodes)
C≈ (DY1,TH-Nodes1)

Transforming Sim to Sim1 is done by replacing invocations of the ZK algorithms and
commitment algorithms by oracle-queries. We can replace Acrs(rN) by a (crs)-query
to ONZK ,com because N is only used inside this crs (protocol condition 13) and the
distributions of the implementation and the oracle are the same. Since τ(c) in Sim1 not
checks whether c = Acrs(rN) but whether c is the result of some (crs)-query, the node
traces have the same distribution.

The same holds for the replacement of AmkZK by the (prove, x, w) oracle query to
ONZK ,com and of Acom by the (commit,m) oracle query to ONZK ,com . The randomness—
the third argument of the ZK proof—only occurs inside this proof and nowhere else
(protocol condition 7), so we can replace it by the oracle’s randomness as in the crs case.

By implementation condition 26, it holds that if (x,w) 6∈ Rcomp
hon the implementation,

as well as the oracle, output ⊥. So AmkZK and the (prove, x, w)-query return ⊥ in the
same cases. In the case that (x,w) ∈ Rcomp

hon both compute a proof of x using witness w.

Thus, it holds (DY,TH-Nodes)
C≈ (DY1,TH-Nodes1).

71

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

• (DY1,TH-Nodes1)
C≈ (DY2,TH-Nodes2)

In this step we replace OZK ,com by OSim which returns a simulated proof for x if for
the input (x,w) it holds that (x,w) ∈ Rcomp

hon , and correspondingly a faked commitment
upon a commit-query.

If we change both simulators to not extract the proof in case of an extraction failure, then
the TH-Nodes does not change. The simulator stops after handling extraction failures in
any case. By definition of zero-knowledge these two modified cases are indistinguishable
(using the fact that the simulator and prover are only invoked if (x,w) ∈ Rcomp

hon). Thus
(DY1,TH-Nodes1) and (DY2,TH-Nodes2) are indistinguishable, too.

• (DY3,TH-Nodes3)
C≈ (DY4,TH-Nodes4)

As the randomness can only occur at transformations, letting the oracles draw the
randomness yields an indistinguishable execution. Moreover, adding an extra check
for the validity of the witness is possible because all proofs have been checked anyway
(protocol conditions 17). Hence, the traces are indistinguishable and the Dolev-Yaoness
carries over.

• (DY4,TH-Nodes4)
C≈ (DY5,TH-Nodes5)

We apply the sound transformation property and obtain the indistinguishability of the
traces and hence the preservation of the DYness.

• (DY5,TH-Nodes5)
C≈ (DY6,TH-Nodes6)

In this step we replace encryptions, decryptions and key-generation by an encryption-
oracle as we did for the zero-knowledge proofs in the step from Sim to Sim1. Because
Sim5 does not compute witnesses of zero-knowledge proofs anymore, nonces of encryptions
are only used once (by protocol condition 7). Nonces of keys were already only used once
(by protocol condition 1). So replacing the implementation of encryptions, decryptions
and the public key does not change the distribution of the node trace or ZK-Breaks
(since we adapted τ accordingly, cf. the replacement of Acrs in Sim1). In addition we can
define β(dk(N)) := ⊥ because decryption keys are not used as input to β (by protocol
condition 8 and the use of an oracle for decrypting).

We did neither change the bitstrings that are sent to the adversary nor the way they are
parsed. So the property of DY did not change either.

• (DY6,TH-Nodes6)
C≈ (DY7,TH-Nodes7)

In the step from Sim6 to Sim7, the only change that is done is the replacement of
the encryption oracle by a fake oracle that always encrypts 0|m| instead of m. By
construction of τ the protocol execution asks only for decryptions of ciphertexts which
were not generated by the encryption oracle (since only β invokes the encryption oracle).
So a run of the protocol is a valid adversary for the CCA property where the challenger
is the encryption oracle. In order to get indistinguishability the adversary has to be able
to use ZK-breaks, DYness and node traces to distinguish both executions. Obviously, it
is possible to use DYness and the node traces. For the case of ZK-breaks, we have to
require that Rsym

adv is efficiently decidable.

Thus replacing ENC by Ofake leads to an indistinguishable execution and hence
(DY6,TH-Nodes6) and (DY7,TH-Nodes7) are computationally indistinguishable.

72

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

• (DY7,TH-Nodes7)
C≈ (DYf ,TH-Nodesf)

As in the case for Sim5 and Sim6, we have the case that after removing the witnesses
in Sim5 the nonces, used as randomness for signatures, are only used (by protocol
condition 7) once for signing a message.

The same holds for verification and signing keys (by protocol condition 1). Thus we
can replace signing and computation of verification/signing keys by invocations of Osig

without changing the distribution of (DY,TH-Nodes) (since we adopted τ accordingly,
cf. the replacement of Acrs in Sim1). In a run of the protocol β is never applied to
sk(N) (by protocol condition 9 and the use of an oracle for signing), so we can define
β(sk(N)) := ⊥ without changing the distribution of (DY,TH-Nodes).

• (DY2,TH-Nodes2)
C≈ (DY3,TH-Nodes3)

We have already proven that (DYf)
C≈ (DY3). Together with the fact that Simf is DY

(Lemma 7), it follows that Sim3 is DY. By Lemma 10, it follows that (t2, t3) ∈ Rsym
hon

for all ZK-nodes with arguments t1, . . . , t6 in a Dtrans-hybrid execution of Sim3 (with
overwhelming probability). Applying Lemma 8 leads to (β(t2), β(t3)) ∈ Rcomp

hon for a
Dtrans-hybrid execution of Sim3 with overwhelming probability. The only difference
between Sim2 and Sim3 is that Sim2 checks whether (β(t2), β(t3)) ∈ Rcomp

hon or not.
Because this check would succeed with overwhelming probability in Sim3, it actually
succeeds in Sim2.

Thus the distribution of (DY,TH-Nodes) is the same in Sim2 as in Sim3.

�

Proof of (iii). Let Ωi := TH-NodesSM,Πp,Simi
(k). Ω and Ω1 are indistinguishable as only

a different randomness is used. For Ω1 and Ω2 we can reduce the indistinguishability to
the zero-knowledge property. We construct a machine MD that breaks the zero-knowledge
property with non-negligible probability if there is a distinguisher D that distinguishes Ω1

from Ω2.

• Draw a random coin b←R {0, 1}.
• Internally, run the hybrid execution with the simulator Simb+1.
• Forward every prover or simulator call of β to the zero-knowledge challenger.
• At the end of the execution, output the trace of the knowledge set S to the distinguisher
D. If D guesses Ωb+1, MD guesses b; otherwise, MD makes a random guess b′ ←R

{0, 1}.
Ω2 and Ω3 are indistinguishable because in (i) it has been shown that that omitting the

additional check does not change the trace, hence also not the knowledge set trace length.
Moreover, this additional check does not affect τ , and the result of β because β is only
called on true proofs in Ω2 and Ω3.

Ω3 and Ω4 again are indistinguishable since only the randomness is now freshly chosen
for every call. But the only place at which a nonce is reused is in the witness of a proof.
Sim3 and Sim4, however, simulate all proofs and therefore do not use the witnesses at all.

The indistinguishability of Ω4 and Ω5 can be reduced against the IND-CCA property of
the encryption scheme. We construct a machine MD that breaks the IND-CCA property

73

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

with non-negligible probability if there is a distinguisher D that distinguishes Ω4 from Ω5.

• Draw a random coin b←R {0, 1}.
• Internally, run the hybrid execution with the simulator Simb+4.
• Forward every encryption call of β to the IND-CCA challenger.
• Forward every decryption call of τ , i.e., excluding the cases in which τ only does a

look-up, to the IND-CCA challenger.
• At the end of the execution, output the trace of the knowledge set S to the distinguisher
D. If D guesses Ωb+4, MD guesses b; otherwise, MD makes a random guess b′ ←R

{0, 1}.
The indistinguishability of Ω5 and Ωf again follows from the fact that only proofs reuse

randomness in the witness. But all proofs are simulated; therefore, letting the signing
oracle choose fresh randomness is indistinguishable from using the protocol nonce, which is
also fresh by protocol condition 7.

No quasi extraction-failure. We first show that no quasi extraction-failures happen,
and then show that even extraction-failures do not happen with more than negligible
probability. In order to be able to prove that extraction failures do not happen, we have
to apply the extractability. However, the extractability property of the zero-knowledge
proofs is not applicable to simulated proofs. Therefore, we have to prove extraction failures
for Sim1, which does not simulate any zero-knowledge proofs. However, without applying
the zero-knowledge property we cannot show the symbolic zero-knowledge property, but
we can still apply the IND-CCA property of the encryption scheme. Hence, we show a
weaker property, namely that the only reason why extraction failures can occur is that the
symbolic zero-knowledge property is violated.

Formally, we define in Figure 3.5 a witness-knowledge relation `w, which extends the
knowledge relation ` with all messages that already occurred in a zero-knowledge proof as
a witness. Then, we define a relaxed symbolic extraction algorithm SymbExtr′, which
tries to find a valid symbolic witness w such that S `w w and outputs ⊥ if it fails. We say
that a quasi-extraction failure happens if SymbExtr′(S, x) = ⊥.

The proof goes along the lines of the proof of extraction failures in the work of Backes,
Bendun, and Unruh [BBU13]. We first show that in Sim1 ZK-Breaks happen with negligible
probability (Lemma 9). Then, we show that τ and τ∗ with overwhelming probability output
a term t such that S `w t (Lemma 15). And finally we show that quasi-extraction failures
only happen with negligible probability (Lemma 16).

The heart of this proof lies in the proof of the statement that τ and τ∗ with overwhelming
probability only produce terms t such that S `w t (Lemma 15). Even though we cannot
apply the zero-knowledge property, we can still show that encryptions hide their plaintexts,
even if the attacker knows the extraction trapdoor. However, since the zero-knowledge
proofs might contain in the witness the randomness with which a ciphertext has been
constructed, we cannot näıvely apply the IND-CCA property for showing that encryptions
hide their plaintexts. We construct for every protocol nonce n a simulator Simcf ,n that
fakes all ciphertexts that observably contain this nonce, and show that this nonce is not
guessable in the execution with Simcf ,n (Lemma 13). We also show that this simulator is
indistinguishable from Sim1 as long as no randomness of any faked ciphertext is sent as
a witness of a proof (Lemma 14). Then, we show that whenever an underivable term is
parsed by Sim1 there is an underivable subterm t that uses a nonce n (Lemma 12) such

74

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

S ` m
S `w m

S ` ZK (t2, t3, t4)

S `w extrWit(t3)

S `w t̄ t̄ ∈ T F ∈ C ∪D′ evalF (t̄) 6= ⊥
S `w evalF (t̄)

Figure 3.5.: Deduction rules for the witness knowledge relation: D′ := D ∪ {extract}

that t is either in Simcf ,n not guessable, hence also not in Sim1, or t is already derivable,
if the randomness of a faked ciphertext is already leaked (Lemma 15).

Witness-knowledge relation. The cryptographic definition of extractability, does not
exclude that the extractor applies also extracts witnesses of ZKPs that have been used as
witnesses. Therefore, we need to grant the attacker the oppurtunity to extract witnesses
out of ZKPs that are used as a witness in another ZKP. We call this operation extract ,
and it is defined as follows:

extract(com(t1, t2, t3)) = t2

Notation. Let S be the set of messages that has been sent to the symbolic attacker. We
write M(n) for the following event: A bitstring z is sent in a round ` in which the execution
is still alive every bitstring z such that S` 6`w τ(z) and τ(z) contains an underivable subterm
that uses the nonce n. Definition 12 defines the meaning of an underivable subterms t
using a nonces n.

Chosen nonces and encryptions, observably contained terms, being caught,
and dead tails. For the simulator Simcf ,n, n is the chosen nonce. We recursively define
chosen encryptions. An encryption enc(t,m,N) for which m contains the chosen nonce
n as a subterm, is called a chosen encryption unless n is in m already contained in a
chosen encryptions. In this way, every term has for every occurrence of a chosen nonce at
least one chosen encryption. More formally, for a chosen nonce n the term enc(t,m,N)
is a chosen encryption if there is a context C such that C[n] = m and there is no pair of
contexts D,D′ such that D[enc(t,D′[n], N)] = m and enc(t,D′[n], N) is already a chosen
encryption. Moreover, the randomness symbol N of a chosen encryption enc(t,m,N) is
called dangerous from that point on.

Loosely speaking, we say that a t term is (witness) observably contained in another term
m if changing something in t is always observable in β(t) for an attacker that only sees
β(m) and has access to the extraction trapdoor. Because Simcf ,n does not simulate the
zero-knowledge proofs and only fakes chosen encryptions, it suffices to consider chosen
encryptions. More formally, let t,m ∈ T be two terms. We say that t is (witness) observably
contained in m if there are no two context C,D such that C[enc(ek(N), D[t], N ′)] = m,
S 6`w N , N,N ′ ∈ N, and enc(ek(N), D[t], N ′) is a chosen encryption.

We stop the simulation before a treacherous zero-knowledge proof is sent to the attacker.
More formally, an invocation of β(t) =: q with a zero-knowledge proof ZK (crs(N), t1, t2, N

′)12

is called a catching call of β if the witness t1 observably contains a dangerous randomness
symbol r and there is no context C such that t1 = C[enc(ek(N),m, r)]. Simcf ,n halts at
the latest point at which the following two conditions are satisfied: (i) a catching call of β

12We stress that t might also be a transformed proof.

75

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

is about to be performed for the dangerous randomness symbol r and (ii) β is called with
a chosen encryption with r. In the original execution we call the part after a catching call
the dead tail of the execution.

The chosen encryption faking simulator Simcf ,n. For a chosen nonce n, we define
a faking simulator Simcf ,n that fakes all chosen encryptions but leaves everything else
in the simulation untouched except for halting before a catching call of β is computed.
We show that the hybrid execution with Simcf ,n is indistinguishable from the hybrid
execution with Sim1 even if the distinguisher knows the extraction trapdoor; for proving
this indistinguishability, we introduce the intermediate simulators Sim ′1, Sim ′2, and Sim ′3.

• We define Sim ′2 like Sim1, but we change β and τ to use encryption oracles for all
honestly generated encryptions instead of computing Aenc, Adec, Aek , Adk . More
precisely, assume an oracle Oenc that internally picks (ek , dk) ← KeyGenenc(1

η)
and that responds to three kinds of queries: Upon an (ek)-query, it returns ek .
Upon a (enc,m)-query, it returns ENC (ek ,m). Upon a (dec, c)-query, it returns
DEC (dk , c). Sim ′2 maintains an instance ONenc for each N ∈ NP . Then Sim ′2
computes β(ek(N)) with N ∈ NP as β(ek(N)) := ONenc(ek). And it computes
β(enc(ek(N), t,M)) with N,M ∈ NP as β(enc(ek(N), t,M)) := ONenc(enc, β(t)).
And it computes β(dk(N)) := ⊥. And in the computation of τ(c) for c of type
ciphertext, the computation of Adec(Adk (rN), c) is replaced by ONenc(dec, c).
• We define Sim ′3 like Sim ′2, except that we replace the oracle Oenc by an oracle
Ofake. That oracle behaves like Oenc, except that upon an (enc, x)-query, it returns
ENC (ek , 0|x|).
• We define Simcf ,n like Sim ′3, but we change β to use signing oracles instead of

computing Avk , Ask , Asig . More precisely, we assume an oracle Osig that internally
picks (vk , sk) ← KeyGensig(1η) and that responds to two kinds of queries: Upon
a (vk)-request, it returns vk , and upon a (sig,m)-request, it returns SIG(sk ,m).
Simcf ,n maintains an instance ONsig for each N ∈ NP . Then Simcf ,n computes

β(vk(N)) with N ∈ NP as β(vk(N)) := ONsig(vk). And β(sk(N)) with N ∈ NP as
β(sk(N)) := ⊥. And β(sig(sk(N), t,M)) with N,M ∈ NP as β(sig(sk(N), t,M)) :=
ONsig(sig, β(t)).

We need to further characterize the underivable witnesses, i.e., the subterms that are
underivable, given a witness w such that S 6`w w.

Lemma 12 (Witness-underivable subterms). In a given step of the Dtrans-hybrid execution
of Sim1, let S be the set of messages sent from ΠT to Sim1 before.

Let u′ ∈ T be the message sent from Sim1 to the protocol in that step. Let C be a context
and u ∈ T such that u′ = C[u] and S 6`w u.

Then there is a term tbad and a context D such that D can be obtained by the following
grammer:

D ::= � | pair(t,D) | pair(D, t) | enc(ek(N), D, t) | enc(D, t,M) | sig(sk(M), D,M ′)

| com(D, r,N) | com(t,D,M ′′) | ZK (t, t′,M) | ZK (D, t′,M) | ZK (t′, D,M) |
garbEnc(D,M) | garbSig(D,M)

with N ∈ NP ,M,M ′ ∈ NE ,M
′′ ∈ NP ∪NE , t, t

′ ∈ T and u = D[tbad] such that S 6`w tbad
and such that one of the following holds:

76

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

1. tbad ∈ NP

2. tbad = enc(p,m,N) with N ∈ NP

3. tbad = sig(k,m,N) with N ∈ NP

4. tbad = ZK (x, r,N) with N ∈ NP and
crsof (ZK (x, r,N)) = crs(M) and M ∈ NP

5. tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE

6. tbad = crs(N) with N ∈ NP

7. tbad = ek(N) with N ∈ NP

8. tbad = vk(N) with N ∈ NP

9. tbad = sk(N) with N ∈ NP

10. tbad = dk(N) with N ∈ NP

We say that an underivable subterm tbad uses the nonce N .

Proof. We prove the lemma by structural induction on u. Recall that only upon a message
m ∈ {0, 1}∗ from the attacker Sim1 sends a message τ(m). There are the following cases:

Case 1: “u ∈ {ek(N), vk(N), crs(N), dk(N), sk(N)} with N 6∈ NP ”

Let u = C(N) for C ∈ {ek , vk , crs, dk , sk}. By protocol conditions 1 and 13 each
C-node has as annotation a nonce from NP . Therefore u cannot be honestly
generated, that means there is some e ∈ {0, 1}∗ such that τ(e) = u and u has the
form C(N e). But then S `w u contradicting the premise of the lemma.

Case 2: “u ∈ {ek(N), vk(N), crs(N), dk(N), sk(N)} with N ∈ NP ”

Then the claim is fulfilled with D := � and tbad = u.

Case 3: “u = garb(u1)”

By protocol condition 2 no garbage term is generated by the protocol. Therefore
there is a c ∈ {0, 1}∗ such that τ(c) = garb(N c) = u. But this means that S `w u,
contradicting the premise of the lemma.

Case 4: “u = garbEnc(u1, u2) or u = garbSig(u1, u2)”

By protocol condition 2 no garbage term is generated by the protocol. So there
exists a c ∈ {0, 1}∗ with τ(c) = garbEnc(u1, N

c) or τ(c) = garbSig(u1, N
c). Since

S `w N c it follows that S 6`w u1, because S 6`w u. Applying the induction
hypothesis on u1 leads to a context D′ and a term tbad. Using this term tbad and
the context garbEnc(D′, N c), respectively garbSig(D′, N c), shows the claim.

Case 5: “u = com(u1, u2, N)”

By protocol condition 13, we know that there is a c ∈ {0, 1}∗ such that τ(c) =
com(crs(N), t, N c). Hence, the lemma is satisfied by tbad = com(crs(N), t, N c)
and D = �.

By applying extract(com(u1, u2,M)) = u2, we know that by induction hypothesis
there is a D such that S `w D[tbad]. Consequently, the lemma is satisfied by
D′ = com(u1, D,M).

Case 6: “u = pair(u1, u2)”

Since S 6`w u there is an i ∈ {1, 2} such that S 6`w ui. Let D be the context
and tbad the term given by applying the induction hypothesis to ui. Then
D1 := pair(D,M) or D2 := pair(M,D) is the context for the term u depending
on i with the same term tbad.

77

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

Case 7: “u = ε”

This case cannot happen because S `w ε, so the premise of the lemma is not
fulfilled.

Case 8: “u = string0(u1) or u = string1(u1)”

Again the premise is not fulfilled since inductively S `w u1 with base case u1 = ε
and therefore S `w string i(u1) for i ∈ {0, 1}.

Case 9: “u = N with N ∈ NP \N”

This case is impossible since u is not in the range of τ .

Case 10: “u = N with N ∈ N”

The context D := � and term tbad := u satisfy the lemma in this case.

Case 11: “u = N with N ∈ NE”

In this case S `w u by definition and therefore the lemma’s premise does not
hold.

Case 12: “u = enc(u1, u2, N) with N ∈ NP ”

The lemma is satisfied by tbad = u and D = �.

Case 13: “u = enc(u1, u2, u3) with u3 6∈ NP and S 6` u1”

Since u3 6∈ NP it follows that u cannot be honestly generated because of protocol
condition 7. Therefore there is a c ∈ {0, 1}∗ with τ(c) = enc(ek(M), u2, N

c) = u
for some M ∈ NP . Apply the induction hypothesis to u1 getting tbad and context
D we can define D′ := enc(D,u2, N

c) fulfilling the claim of the lemma with tbad.

Case 14: “u = enc(u1, u2, u3) with u3 6∈ NP and S ` u1”

Since u3 6∈ NP it follows that u cannot be honestly generated because of protocol
condition 7. Therefore there is an c ∈ {0, 1}∗ with τ(c) = enc(ek(M), u2, N

c) = u
for some M ∈ NP . Since S `w u1, S `w N c, and S 6`w u, it follows that S 6`w u2.
Let D be the context and tbad be the term resulting by the induction hypothesis
applied to u2. Then D′ := enc(ek(M), D,N c) together with tbad satisfies the
lemma.

Case 15: “u = sig(u1, u2, N) with N ∈ NP ”

Use context D := � and tbad = u.

Case 16: “u = sig(sk(N), u1, u3) with u3 6∈ NP and N ∈ NP ”

Since u ∈ T and u3 6∈ NP follows that u3 ∈ NE . Therefore the context D := �
and tbad = u proves the claim.

Case 17: “u = sig(u1, u2, u3) and u3 6∈ NP and u1 is not of the form sk(N) with N ∈ NP ”

Since u3 6∈ NP we get by protocol condition 7 that u is not honestly generated,
i.e., there is an s ∈ {0, 1}∗ such that τ(s) = sig(sk(M), u2, N

s) = u with M ∈ N.
Because u1 has not the form sk(N) for any N ∈ NP follows that M ∈ NE , so
S `w M and therefore S ` sk(M). In total we have S `w u1, S `w u3 but S 6`w u
which implies that S 6`w u2. Applying the induction hypothesis to u2 leads to
a context D and a term tbad. Defining D′ := sig(sk(M), D,N s) completes the
claim.

Case 18: “u = ZK (u1, u2, N) with N ∈ NP ”

Defining tbad = u and D := � suffices.

78

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

Case 19: “u = ZK (u1, u2, N) with N ∈ NE”

Since τ uses randomnessTree(u1) for u2 and N ∈ NE , we know that S 6`w u1.

In this case we use the induction hypothesis on getPub(u) = u1 to get the term
tbad and a context D. Then using tbad and D′ := ZK (D,u2, N) satisfies the
lemma.

Case 20: “u = ZK (u1, u2, N) with N ∈ NE”

This case cannot occur because u is not in the range of τ .

Case 21: “u = f̂(t1, . . . , tn, x, w,N)”

By the definition of τ , we know that τ(m) = u only if m was already sent by the
protocol; hence already S `w u holds true and this case cannot occur.

We show that for any MZK-safe protocol Π and any ppt attacker A the nonce n is not
guessable in the execution with the n-faking simulator Simcf ,n.

Lemma 13. Let Π be an arbitrary MZK-safe protocol and A be an arbitrary ppt machine.
In the Dtrans-hybrid execution with Simcf ,n, Π, A, the probability that M(n) happens is
negligible in the security parameter.

Proof. Assume that the adversary sends with non-negligible a bitstring z in a round ` in
which the execution is still alive, and S` 6`w τ(z) and τ(z) contains a chosen underivable
subterm t that uses the chosen nonce n. Therefore, only two cases can occur. First, t has
not been sent so far, and second t has only been sent along with an encryption. In the
second case, however, we know by the construction of Simcf ,n that the encryption has been
faked; in particular, t has never been constructed, i.e., β has never been applied to t. We
show that for every possible underivable subterm that uses n the assumption leads to a
contradiction.

Case 1: tbad ∈ {n, enc(p,m, n), sig(k,m, n),ZK (x, r, n)}
crs(n), ek(n), vk(n) with M,n ∈ NP .
If β has never been applied on tbad, we know by the definition of τ that n 6∈ NP .

Case 2: tbad = sig(sk(n),m,M) with n ∈ NP , M ∈ NE .
The same argumentation as for Case 1 holds for tbad = sig(sk(n),m,M) and
n ∈ NP , M ∈ NE with the only difference that the reason why tbad, even though
unused, is unguessable is that otherwise the attacker would induce a ppt machine
that breaks the unforgeability property of the signature scheme.

Case 3: tbad = sk(n) with n ∈ NP .
The same argumentation as for Case 1 holds for tbad = sk(n) and n ∈ NP ; however,
we additionally have to consider the case that the attacker is able to compute
the signature key from the verification key. In this case, however, we can use the
attacker to break the unforgeability property, which is a contradiction.

Case 4: tbad = dk(n) with n ∈ NP .
The same argumentation as for Case 1 holds for tbad = dk(n) and n ∈ NP ;
however, we additionally have to consider the case that the attacker is able to
compute the decryption key from the encryption key. In this case, however, we
can use the attacker to break the IND-CCA property, which is a contradiction.

79

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

In the following proofs, we often consider the Dtrans-hybrid execution of a protocol ΠC

with a simulator Sim ′i,n. We extend the Dtrans-hybrid execution by letting H-Nodes ′ output
the extraction trapdoors of all CRS and stops before a treacherous zero-knowledge proof is
sent. This scenario defines a probability space on traces, which we denote as

Ωi,n := (t, extd)← TH-Nodes ′Sim′i,n,ΠC

where extd are the extraction trapdoors of all protocol CRS, Sim ′1,n := Sim1, with the
chosen nonce n, and Sim ′cf ,n := Simcf ,n. Moreover, we write S` for the set of messages
that after the `th round has been sent to Sim ′i,n.

Lemma 14. Recall that p is the polynomial of the attacker. Then, the following difference
is negligible in the security parameter

∣∣ Pr[Ωcf ,n : M(n)]− Pr[Ω1,n : M(n)]
∣∣

Proof. Let ` ∈ N be arbitrary but fixed. By protocol condition 7 nonces that are used
in Ω1,n as randomness for encryptions calls can only be further used in the witness of a
zero-knowledge proof. However, for chosen encryptions, we abort before the attacker learns
both, the faked ciphertext and the proof about the faked ciphertext. Since only chosen
encryptions are faked Ω1,n is indistinguishable from Ω2,n even for distinguishers that know
the extraction trapdoors extd .

By the IND-CCA property of the encryption scheme (implementation condition 8) Ω2,n

is indistinguishable from Ω3,n even for distinguishers that know the extraction trapdoors
extd .

By protocol condition 7 nonces that are used in Ω3,n as randomness for signing calls
can not be used anywhere else, in particular not as a witness in a zero-knowledge proof.
Therefore, Ω3,n is indistinguishable from Ωcf ,n even for distinguishers that know the
extraction trapdoors extd .

Since M(n) is efficiently computable for a machine that has access to an extraction
oracle, the probability that M(n) holds can only differ by a negligible amount in Ω1,n and
Ωcf ,n.

Finally, we are able to show that all invocations of τ and τ∗ in Sim1 adhere the witness
knowldge relation.

Lemma 15 (Sim1 adheres `w). For any invocation τ(m) of τ or τ∗(m) of τ∗ in the
Dtrans-hybrid execution of Sim1, the following holds with overwhelming probability: Let S
be the set of terms t that the protocol sent to the adversary up to the invocation τ(m) or
τ∗(m). Then S `w τ(m) or S `w τ∗(m), respectively.

Proof. Assume that with non-negligible probability the attacker sends a bitstring z in a
round ` such that S` 6`w τ(z). Applying Lemma 12, we know that τ(z) has the following
underivable subterms:

Case 1: tbad ∈ {N, enc(p,m,N), sig(k,m,N),
ZK (x, r,N), crs(N), ek(N), vk(N)} with M,N ∈ NP .
If tbad has not been sent to the attacker so far, β(tbad) has not been called so far.
By definition of τ (resp., τ∗), however, we then have N,M 6∈ NP .

80

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

If tbad is contained in a term that has already been sent to the attacker, tbad can
only have occurred below an encryption. Assuming that N is the chosen nonce,
we are either in the living part of the execution or in the dead tail. If we are in the
dead tail, because of the protocol condition 7 the attacker already witness-knows
the plaintext of a chosen encryption. By the definition of chosen encryptions, we
know that the attacker then also witness-knows tbad, which is a contradiction.

If z has been sent in the living part of the execution, we know by Lemma 13 that
in the execution with Simcf ,N the attacker cannot send a bitstring z that such that
τ(z) contains an underivable subterm tbad, which uses this chosen nonce N , with
more than negligible probability. By Lemma 14, we know that the same property
holds for Sim1. This property, however, is a contradiction to the assumption that
z has been sent with non-negligible probability.

Case 2: tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE .
The same argumentation as for Case 1 holds for tbad = sig(sk(N),m,M) and
N ∈ NP , M ∈ NE with the only difference that the reason why tbad, even though
unused, is unguessable is that otherwise the attacker would induce a ppt machine
that breaks the unforgeability property of the signature scheme.

Case 3: tbad = sk(N) with N ∈ NP .
The same argumentation as for Case 1 holds for tbad = sk(N) and N ∈ NP ;
however, we additionally have to consider the case that the attacker is able to
compute the signature key from the verification key. In this case, however, we can
use the attacker to break the unforgeability property, which is a contradiction.

Case 4: tbad = dk(N) with N ∈ NP .
The same argumentation as for Case 1 holds for tbad = dk(N) and N ∈ NP ;
however, we additionally have to consider the case that the attacker is able to
compute the decryption key from the encryption key. In this case, however, we
can use the attacker to break the IND-CCA property, which is a contradiction.

In order to be able to prove that ZK-failures cannot happen with more than negligible
probability, we first need to show that the relaxed symbolic extraction SymbExtr′ always
proceeds. The relaxed symbolic extraction only checks whether the resulting candidate for
a witness w is witness-derivable, i.e., S `w w.

Lemma 16 (No quasi-extraction failures). In a Dtrans-hybrid execution with the simulator
Sim1 the following holds: A quasi-extraction failure only happens with negligible probability.

Proof. Assume a quasi-extraction failure occurs with non-negligible probability. Then τ(z)
is called for a bitstring z of type zero-knowledge proof such that the symbolic extraction
fails. Therefore, z was not generated by the protocol, i.e. it was not output of the simulation
oracle, and the corresponding crs was generated by the protocol (otherwise τ would not
invoke the symbolic extraction). Let N ∈ NP be defined by crs(N) = τ(Acrs(z)). Let
mx := AgetPub(z), x := τ(mx), mw := E(mx, z, extdN)13. Let S denote the set that the
protocol already sent to the simulator in this execution.

13Here, extdN is the extraction trapdoor that the simulator receives from the oracle ONZK ,com by querying
(extd).

81

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

We have SymbExtr′(S, x) = ⊥ by definition of quasi-extraction failures. Thus one of
the following cases occurs with non-negligible probability.

1. (x,w) 6∈ Rsym
adv

2. S 6`w w
3. (x,w) ∈ Rsym

adv and S `w w but SymbExtr′(S, x) = ⊥
We prove for each case that it only occurs with negligible probability, which leads to a

contradiction to the assumption that quasi-extraction failures occur with non-negligible
probability.

Case 1: (x,w) 6∈ Rsym
adv .

This constitutes a ZK-Break, which is a contradiction to Lemma 9.

Case 2: S 6`w w.
By Lemma 15 this case only happens with negligible probability.

Case 3: (x,w) ∈ Rsym
adv and S `w w but SymbExtr′(S, x) = ⊥.

By definition of SymbExtr′ the symbol ⊥ is only returned if there is no w such
that (x,w) ∈ Rcomp

adv and S `w w. So this case cannot occur.

No extraction-failure. In order to conclude that an extraction-failure does not happen
in Sim, we first show that in Simf no extraction-failure happens. And then, we apply the
indistinguishability of the knowledge traces (Lemma 11) of Sim and Simf .

Lemma 17 (No extraction failures - FMZK model). For the FMZK model in a hybrid
execution of Simf holds: An extraction failure can only occur with negligible probability.

Proof. Assume an extraction failure occurs with non-negligible probability. Then, a bitstring
z has been sent by the attacker such that x = τ(AgetPub(z)) and SymbExtr(S, x) = ⊥
but V(AgetPub(z), z, crs) = 1. By Lemma 16 and Lemma 11, we know that in Simf

quasi-extraction failures only happen with negligible probability. Consequently, there is
a w ∈ SymbExtr′(x) such that ⊥ 6= w, and by definition of SymbExtr′ also S `w w
holds true. We observe that S `w w if and only if there is a transformation C[•1, . . . , •n]
such that for some t1, . . . , tn ∈ S we have C[t1, . . . , tn] = w, where C is a context using
constructors and destructors from C ∪D ∪ {extract}.

Let D be a context such that D[ZK (t1, r1, N1), . . . ,ZK (tn, rn, Nn)] = ZK (t, r,N z) =
τ(z) and ZK (t1, r1, N1), . . . ,ZK (tn, rn, Nn) ∈ S. We show that D is with overwhelming
probability zero-knowledge preserving.

Next, we show the following: for every proof z such that V(AgetPub(z), z, crs) = 1 that
the attacker sends, there is a w ∈ SymbExtr′(S, τ(AgetPub(z))) such that w 6= ⊥, a

ZK -transformation ff1,f2 over D,D∪{extract}, and there are ZK (t
(i)
2 , t

(i)
3 , t

(i)
4) ∈ S, i ∈ [n],

such that τ(AgetPub(z)) = f1(t
(1)
2 , . . . , t

(n)
2) and w = f2(t

(1)
3 , . . . , t

(n)
3).

By Lemma 11, we know that the attacker can also in the hybrid execution with Sim
construct such a message with non-negligible probability. The soundness property of the
zero-knowledge proof system implies that (x,w) ∈ Rcomp

adv holds true with overwhelming
probability. Lemma 8 in turn implies that (x,w) ∈ Rsym

adv . Therefore, there are witnesses
w1, . . . , wn such that the transformation that the attacker applied produces a valid proof
for (x,w). We further know that for the statement x1, . . . , xn there is at least one tuple

82

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

of witnesses w′1, . . . , w
′
n such that the transformation of the attacker does not produce a

valid witness (x,w′) 6∈ Rsym
adv .14 But then, we can construct a machine M that emulates

the entire execution (with Sim) twice and in one case uses (w1, . . . , wn) for the proofs and
in the other case uses (w′1, . . . , w

′
n). M outputs 1 if the transformed proof is true and

0 if the transformed proof is wrong. If the probability of the attacker to produce such
an above-described transformation is non-negligible, the probability of M distinguishing
honest proofs from simulated proofs is non-negligible as well. This, however, contradicts
the zero-knowledge property.

Next, we show that every such context D that is zero-knowledge preserving does not use
extract . We show by induction on n that for all contexts D of depth n there is a context
D̃ such that eval D[M] = eval D̃[M] for all M ∈ T . The lemma directly following from
this statement.

For n = 0 the context cannot contain ˜extract . For n > 0 assume that the statement holds
for all n′ < n. Then, we either have D[•] 6= extract [D̃1[•]] or D[•] = extract [D̃1[•]]. In the
first case, the statement for n directly follows from the induction hypothesis. In the second
case, observe that the statement cannot imply that the witness is a commitment, hence
D[com(c, t, r)] 6= ⊥ (for any c, t, r) and D[t′] = ⊥ for any t′ that is not a commitment.
Hence, D is not zero-knowledge preserving.

Lemma 18 (No extraction failures - CMZK model). In the CMZK model in a hybrid
execution of Simf holds: An extraction failure can only occur with negligible probability.

Proof. By Lemma 17, we know that an extraction failure up to malleability can only
occur with negligible probability. So, the only events that we did not exclude yet are
the successful verification of a proof ẑ′ such that τ(ẑ′) = setPub(ZK (t, r), t {c′/c}), where
ZK (t, r) = τ(ẑ) and c′ = com(com(crs, f(m), r′)) = applyF (c, x) (for some r′ ∈ N) and
c = com(crs,m, r). We call this event Q.

Let vk be the verification key from the CRS. Recall that the statement is

(x,w) ∈ R ∨ (ˆver sig(τ(vk), sig, x′) = t ∧ x = Tx(x′) ∧ Tx ∈ T).

Since the proof is simulated by Simf and by the extractability property, we know that with
overwhelming probability the extracted signature s successfully verifies with vk. However,
this is a contradiction to applyF 6∈ T and to the the universal unforgeability of the signature
scheme. Hence, Q could not have happened with non-negligible probability.

This argument can directly be generalized for any context that visibly applies applyF .

The indistinguishability of Sim. Finally, applying Lemma 17 and Lemma 8, we are
able to conclude that Sim with the Dtrans-transparent hybrid execution is indistinguishable
from the real computational execution.

We show that given an attacker A, a protocol Πp, a polynomial p the traces of the
transparent hybrid execution with M and Sim are indistinguishable from the traces of the
computational execution Nodes with the implementation A and the attacker A.

14If there would not be such a witness, then there would be a transformation that behaves on all zero-
knowledge proofs with the statements x1, . . . , xn as the transformation of the attacker and on all other
statements simply outputs a trivial true proof.

83

3.6. COMPLETE PROOF OF COMPUTATIONAL SOUNDNESS

Lemma 19. Sim is indistinguishable for M,Π, A,E and for every polynomial p.

Proof. With overwhelming probability it’s the case that the messages rN , enc(. . . , N),
sig(. . . , N), ZK (. . . , N) are different for all N ∈ NP . Furthermore, by Lemma 17, we know
that no extraction-failures happen with Sim with overwhelming probability; hence, Sim
does not abort. So we can restrict to that case for indistinguishability.

For proving indistinguishability of Sim for M,Π, A,E we need to show the following
claims.

Claim 1: In the F̂ -transparent hybrid execution of Sim holds ∀m ∈ {0, 1}∗ : β(τ(m)) = m.

Claim 2: In the F̂ -transparent hybrid execution, for any term t stored at a node ν holds,
β(t) 6= ⊥.

Claim 3: For all terms t that occur in the F̂ -transparent hybrid execution holds τ(β(t)) =
t.

Claim 4: In the F̂ -transparent hybrid execution, at any computation node ν = νi with
constructor or destructor F and arguments ν̃1, . . . , ν̃n. Let tj = fCi (ν̃j). Then
holds: β(evalF (t)) = AF (β(t1), . . . , β(tn)).

In the proof we will only use the first and the last claim. Claim 1 and Claim 3 follow
from the definition of τ and β since τ first checks whether a bitstring is the result of a
previous β call on some term t. If so, τ outputs this term t. The argumentation can be
carried out via an induction over the sum of the depths of the recursion calls to β and τ
and by performing an extensive case distinction over the definition of β and τ .

Claim 2 can be shown via an induction over the recursion depth of β(t). In the base
case, t can only be a nonce. Since At implements by implementation condition 3 a uniform
distribution on {0, 1}k we have Pr[m ← At : m = ⊥] = 0. In the induction step, first
observe that t cannot contain ⊥ by the definition of a F̂ -transparent hybrid execution.
Consequently, either t = f(t) for a constructor f ∈ C or t = f̂(t) for a protocol ZK -
transformation f ∈ F̂ . We stress that f cannot be an attacker ZK -transformation, i.e.,
f ∈ Dtrans \ F̂ , since transformed proofs are parsed as attacker-generated ZK proofs.

If t = f(t) and f is a constructor, we know by the induction hypothesis that all possible
β(t) calls do not return ⊥. By the implementation conditions and the protocol conditions,
we therefore conclude that in this case the probability that β(f(t)) = ⊥] is negligible.15

If t = f̂(t) and f ∈ F̂ is a protocol ZK -transformation, then we know by the strong
derivation privacy [CKLM12] and the correctness and zero-knowledge property of the
implementation of ZK proofs (Definition 33) that with overwhelming probability Af̂ does
not fail if applied to verifiable proofs. Furthermore, we know by protocol conditions 17
that ZK -transformations are only applied to verifiable proofs.

The last Claim 4 follows from the definition of β since for all calls β(F (t)) in which
the arguments are the result of a node β(F (t)) is defined as AF (β(t1)).16 The interesting
case is F = ver zk . At that point we need to show that for an honestly generated ZK
proof with a statement x and the witness w we have that (x,w) ∈ Rsym

hon if and only if its
implementation is valid, i.e., (β(x), β(w)) ∈ Rcomp

hon . By the Dolev-Yaoness of Sim, we know

15This can be shown by an extensive case distinction on f .
16Again, this claim can be shown by an induction over the recursion depth of the β call and by an extensive

case distinction.

84

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

that (x,w) ∈ Rsym
hon with overwhelming probability. By Lemma 8, we know that then also

(β(x), β(w)) ∈ Rcomp
hon .

Fix the randomness of the protocols nondeterministic nodes, the nonces, and the adver-
saries random tape.

Let νi, fi be the nodes and functions as in the computational trace and νCi , f
C
i be the

ones in the hybrid trace. Let Si be the state of the adversary before execution of the i− th
node and SCi the corresponding state of the adversary in the hybrid execution. We show
by induction in i that νi = νCi , fi = β ◦ fCi , and Si = SCi .

Base case i = 0. The adversary E is in its starting configuration,i.e. s0 = sC0 , the node
mapping function f is totally undefined, f0 = fC0 = and the current node is the root of the
protocol, ν0 = νC0 .

Induction hypothesis: For all j ≤ i holds νj = νCj , fj = β ◦ fCj and sj = sCj .

Induction step: i→ i+ 1

Distinguish by the type of the nodes.

1. If νi = νCi is a computation node annotated with constructor or destructor.

Let F/n be the annotated constructor or destructor and ν̃1, . . . , ν̃n be the annotations

of νi and ν̃C1 , . . . , ν̃
C
n the of νCi . By induction hypothesis follows that ν̃k = ν̃Ck for

1 ≤ k ≤ n. So let m̃i = fi(ν̃i), denote the vector (m̃1, . . . , m̃n) by m̃. Analogue are
t̃i, t̃ defined for ν̃Ci and fCi .

In the hybrid execution we compute evalF (t̃). By Claim 4 holds β(evalF (t̃))
= AF (β(t1), . . . , β(tn)). Using the definition of tj we get β(tj) = (β ◦ fCi)(νCj).

Now we can apply the induction hypothesis and replace (β ◦ fCi) by fi and νCj by νj ,

i.e. (β ◦ fCi)(νCj) = fi(νj). All together leads to the equality β(evalF (t̃)) = AF (m̃).
The right hand side is the outcome of the computational execution of the node νi.
So the left side is defined if and only if the right side is, and we get νi+1, ν

C
i+1 is

the yes-successor of νi if the term is defined and the no-successor otherwise, i.e.
νi+1 = νCi+1. Since fi+1(νi) = AF (m̃) and fCi+1(νCi) = evalF (t̃) we have seen that
fi+1 = (β ◦fCi+1) still holds. In both executions the adversary does not learn anything
new, i.e. Si+1 = Si = SCi = SCi+1.

2. If νi = νCi is a computation node annotated with nonce.

Let N be the annotated nonce. Since N ∈ T we get evalN () = N 6= ⊥, so νCi+1 is
the yes-successor of νCi . In the computational case always the yes-successor is taken,
therefore νi+1 = νCi+1. The adversary is not activated, so Si+1 = Si = SCi = SCi+1.
For the functions fi+1 and fCi+1 we get fi+1(νi) = rN = β(N) = β(fCi+1(νCi)). So the
claim is true for i+ 1.

3. If νi = νCi is a input node.

Input nodes have a unique successor, so νi+1 = νCi+1 is this successor. In the
computational as in the hybrid case the adversary is asked for input. Since Si = SCi ,
i.e. in both cases the adversary has the same state, both computations are equal,
so the resulting state Si+1 and SCi+1, too, and the adversary responds with m in the
computational and mC in the symbolic case, such that m = mC . In the hybrid case
the simulator forwards tC := τ(mC) to the protocol execution. fi+1(νi) := m and
fi+1(ν) := fi(ν) for ν 6= νi by definition in the computational case and fCi+1(νi) := tC

85

3.7. CONCLUSION

and fCi+1(ν) = fCi (ν) for ν 6= νi in the hybrid case. So by induction hypothesis

fi+1(ν) = (β ◦ fCi+1)(ν) for ν 6= νi and (β ◦ fCi+1)(νi) = β(tC) = β(τ(mC))
(∗)
=

mC = m = fi+1(νi), where (∗) holds because of claim 1. Therefore the invariant
fi+1 = (β ◦ fCi+1) holds, too.

4. If νi = νCi is a output node.

An output node has a unique successor, so νi+1 = νCi+1 is the unique successor of νi.
The functions fi and fCi doesn’t change in this step, so by induction hypothesis holds
fi+1 = fCi+1, too. Let ν̃ be the node in the annotation of νi. In the computational
case m := fi(ν̃) is sent to the adversary E. In the hybrid case the simulator receives
tC := fCi (ν̃) and forwards mC := β(tC) to the adversary. By induction hypothesis
(fi = (β ◦ fCi) follows mC = m, and therefore is the state of the adversary the same
afterwards, i.e. Si+1 = SCi+1.

5. If νi = νCi is a control node.

Let l be the annotated out-metadata of node νi. In the computational case l is
sent to the adversary E and in the hybrid case it’s sent to Sim which forwards it
to E. Since Si = SCi the computation of the adversary is the same and therefore is
Si+1 = SCi+1 and E returns l′ in both cases. So the chosen successor node is the same
in both cases, i.e. νi+1 = νCi+1. Since the functions fi and fCi stay untouched, follows
fi+1 = fCi+1.

6. If νi = νCi is a nondeterministic node.

The adversary is in both cases not invoked, so Si+1 = Si = SCi = SCi+1. The same
holds for the mappings fi+1 and fCi+1. Since we fixed the random of nodes and
νi = νCi both choose the same successor and therefore νi+1 = νCi+1.

So NodespM,A,Πp,E
= TH-NodesM,Πp,Sim(k) if rN , enc(. . . , N), sig(. . . , N), ZK (. . . , N)

are different for all N ∈ NP . Since this is the case with overwhelming probability they are
indistinguishable.

Theorem 3. (Computational soundness of MZK-safe protocols) Any computational
implementation of the MZK-safe model M (see Section 3.4) that satisfies the implementation
conditions for MZK-safe protocols (see Section 3.5) is computationally sound for the class
of MZK-safe protocols (see Section 3.4).

Proof. By Lemma 7 and Lemma 11 we get by transitivity of indistinguishability that Sim
is DY. By Lemma 19 we conclude that Sim is indistinguishable for M,Π, A,E and for every
polynomial p and every MZK-safe protocol, where A satisfies the implementation conditions
for MZK-safe protocols (see Section 3.5). Consequently, Sim is a good simulator with respect
to the F̂ -transparent hybrid execution, and Lemma 4 implies that any implementation A
of the MZK-safe model satisfying the implementation conditions is computationally sound
for the class of MZK-safe protocols.

3.7. Conclusion

We have presented a computationally sound, symbolic abstraction of malleable ZK proofs by
means of an equational theory that is accessible to existing tools for automated verification

86

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

of security protocols. We have proved the computational soundness of our abstraction with
respect to trace properties and using weak cryptographic assumptions.The abstraction
and the computational soundness result are presented in CoSP, a framework for symbolic
protocol analyses and conceptually modular computational soundness proofs.

3.8. Postponed definitions

dec(dk(t1), enc(ek(t1),m, t2)) = m

versig (vk(t1), sig(sk(t1), t2, t3)) = t2

ekof (enc(ek(t1), t2, t3)) = ek(t1)

ekof (garbEnc(t1, t2)) = t1

vkof (sig(sk(t1), t2, t3)) = vk(t1)

vkof (garbSig(t1, t2)) = t1

fst(pair(t1, t2))) = t1

snd(pair(t1, t2)) = t2

unstring1(string1(s)) = s

unstring0(string0(s)) = s

equals(x, x) = x

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)
isenc(garbEnc(t1, t2)) = garbEnc(t1, t2)
issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbSig(t1, t2)) = garbSig(t1, t2)
iscom(com(t1, t2, t3)) = com(t1, t2, t3)

iscom(garbCom(t1, t2)) = garbCom(t1, t2)
iszk(ZK (t1, t2, t3)) = ZK (t1, t2, t3)

isek(ek(t)) = ek(t)
isvk(vk(t)) = vk(t)

iscrs(crs(t1)) = crs(t1)

mkZK (A = B, r,N) = ZK (A = B, r,N)

mkZK (A 6= B, r,N) = ZK (A 6= B, r,N)

verzk (crs,ZK (t, r,N)) = checkzk (crs, t)

getPub(ZK (t1, r1, N)) = t1

setPub(ZK (t1, r1, N), t2) = ZK (t2, r1, N)

andZK (ZK (t1, r1, N),ZK (t2, r2, N ′)) = ZK (t1 ∧ t2, r1 ∧ r2, rand(N,N ′))

splitAnd(ZK (t1 ∧ t2, r1 ∧ r2, rand(N,N ′))) = pair(ZK (t1, r1, N),ZK (t2, r2, N ′))

orZK (ZK (t1, r1, N),ZK (t2, r2, N ′)) = ZK (t1 ∨ t2, r1 ∨ r2, rand(N,N ′))

commute(ZK (t1 ∨ t2, r1 ∨ r2, N)) = ZK (t2 ∨ t1, r2 ∨ r1, N)

rerzk (ZK (t1, r1, N), r2, N ′) = ZK (rerPr(t1, r2, N ′), rerPr(r1, r2, N ′),

rand(N,N ′))

open(crs(t1), com(crs(t1), t2, t3), uv(t2, t3)) = t2

crsof (com(crs(t1), t2, t3)) = crs(t1)

crsof (garbCom(t1, t2)) = t1

rercom (com(crs(t1), t2, t3), t4) = com(crs(t1), t2, rand(t3, t4))

rercom (garbCom(t1, t2), t3) = garbCom(t1, rand(t2, t3))

applyF (com(crs(t1), t2, t3), t4) = com(crs(t1), f(t2, x), t3) for f ∈ D ∪C

Figure 3.6.: Definition of the set D of destructors.

87

3.8. POSTPONED DEFINITIONS

The full syntax of our symbolic model (for both, the FMZK and the CMZK model):

T ::= enc(ek(N), T,N) | ek(N) | dk(N) | pair(T, T) |
sig(sk(N), T,N) | vk(N) | sk(N) | S | N | crs(N)

ZK (S,R,M) | com(crs(N), T,M) | uv(T,M)

garb(N) | garbageEnc(ek(N), N) | garbageSig(sk(N), N) | garbCom(crs(N), N)

Q ::= ε | string0(Q) | string1(Q)

S ::= S ∧ S | S ∨ S | TX = TX | TX 6= TX

TX ::= 〈com(crs(n), TY,M), U〉 | F 〈TX, . . . , TX︸ ︷︷ ︸
m−times

〉

R ::= R ∧R | R ∨R | RX = RX | RX 6= RX

RX ::= M | F 〈RX, . . . , RX︸ ︷︷ ︸
m−times

〉 U ::= uv(TY,M) | ε

TY ::= T | N M ::= N | rand(M,M) N ::= n

where F ∈ StF , n ∈ N and m is the arity of F .

Figure 3.7.: Definition of the grammar of all terms T

If no rules applies, rerPr outputs ⊥. In the following m is the arity of the constructor or destructor F .

rerPr(S ∧ S′, Q ∧Q′, N) = rerPr(S,Q,N) ∧ rerPr(S′, Q′, N)

rerPr(S ∨ S′, Q ∨Q′, N) = rerPr(S,Q,N) ∨ rerPr(S′, Q′, N)

rerPr(A = A′, Q = Q′, N) = rerPr(A,Q,N) = rerPr(A′, Q′, N)

rerPr(A 6= A′, Q 6= Q′, N) = rerPr(A,Q,N) 6= rerPr(A′, Q′, N)

rerPr(F 〈t1, . . . , tM 〉, F 〈u1, . . . , um〉, N)

= F 〈rerPr(t1, u1, N), . . . , rerPr(tm, um, N)〉

rerPr(〈C,U〉, ε,N) = 〈C,U〉
rerPr(〈com(crs(n), t,M), uv(M ′)〉, string1(ε), N)

= 〈com(crs(n), t, rand(M,N), uv(rand(M ′, N))〉

rerPr(n, ε,N) = n

rerPr(rand(t1, t2), ε,N) = rand(t1, t2)

rerPr(n, string1(ε), N) = rand(n,N)

rerPr(rand(t1, t2), string1(ε), N) = rand(rand(t1, t2), N)

Figure 3.8.: The definition of the re-randomization rerPr

88

CHAPTER 3. MALLEABLE ZERO-KNOWLEDGE PROOFS

L′(S1 ∨ S2) := L′(S1) ∨ L′(S2)

L′(S1 ∧ S2) := L′(S1) ∧ L′(S2)

L′(A = B) := L′(A) = L′(B)

L′(A 6= B) := L′(A) 6= L′(B)

L′(F 〈X1, . . . , Xn〉) := F (L′(X1), . . . , L′(Xn))

n = arity(F)

L′(〈com(crs,m, r), ε〉) := xm , for xm ∈ V
L′(〈com(crs,m, r), uv(m, r)〉) := m

Figure 3.9.: The mapping L′ from statement terms to logical formulas.

crsof (S1 ∨ S2) := crsof (S1) if crsof (A) = crsof (B)

crsof (S1 ∧ S2) := crsof (S1) if crsof (A) = crsof (B)

crsof (A = B) := (crsof (A) if crsof (A) = crsof (B)

crsof (A 6= B) := crsof (A) if crsof (A) = crsof (B)

crsof (F 〈X1, . . . , Xn〉) := crsof (X1) if ∀i, j.crsof (Xi) = crsof (Xj)

n = arity(F)

crsof (〈com(crs,m, r), ε〉) := crs

crsof (〈com(crs,m, r), uv(r)〉) := crs

extrSta(S1 ∨ S2) := (extrSta(S1), extrSta(S2))

extrSta(S1 ∧ S2) := (extrSta(S1), extrSta(S2))

extrSta(A = B) := (extrSta(A), extrSta(B))

extrSta(A 6= B) := (extrSta(A), extrSta(B))

extrSta(F 〈X1, . . . , Xn〉) := F 〈extrSta(X1), . . . , extrSta(Xn)〉
n = arity(F)

extrSta(〈com(crs,m, r), ε〉) := ε

extrSta(〈com(crs,m, r), uv(m, r)〉) := m

extrNon(S1 ∨ S2) := (extrNon(S1), extrNon(S2))

extrNon(S1 ∧ S2) := (extrNon(S1), extrNon(S2))

extrNon(A = B) := (extrNon(A), extrNon(B))

extrNon(A 6= B) := (extrNon(A), extrNon(B))

extrNon(F 〈X1, . . . , Xn〉) := (extrNon(X1), . . . , extrNon(Xn))

n = arity(F)

extrNon(〈com(crs,m, r), ε〉) := r

extrNon(〈com(crs,m, r), uv(m, r)〉) := r

extrWit(〈com(crs,m, r), ε〉) := m

extrWit(〈com(crs,m, r), uv(m, r)〉) := ε

extrWit is defined just like extrNon except for the base cases.
The algorithms AextrSta and Acrsof are defined just like the symbolic counterpart except that the case

distinction is performed using the decoding functions d∧, d∨, d=, d 6=, dF .

Figure 3.10.: The symbolic extraction destructors.

89

Chapter 4.

Abstracting Secure Multi-Party Computation

[This chapter is based on a work with Michael Backes and Matteo Maffei [BMM10]. I am
the main contributor to all parts that occur in this chapter.]

4.1. Motivation

General-purpose secure multi-party computation (SMPC) is one of the most impressive
achievements of modern cryptography [GMW87]. On a high level, in an SMPC a number
of parties P1, . . . , Pn wish to securely compute the value F (d1, . . . , dn), for some well-
known public function F , where each party Pi holds a private input di. This multi-party
computation is considered secure if it does not divulge any information about the private
inputs to other parties; more precisely, no party can learn more from the participation in
the SMPC than she could learn purely from the result of the computation already.

SMPC provides solutions to various real-life problems such as e-voting, private bidding and
auctions, secret sharing etc. The recent advent of efficient general-purpose implementations
(e.g., FairplayMP [BNP08]) paves the way for the deployment of SMPC into modern
cryptographic protocols. Recently, the effectiveness of SMPC as a building block of large-
scale and practical applications has been demonstrated by the sugar-beet double auction
that took place in Denmark: The underlying cryptographic protocol [Bog+09], developed
within the Secure Information Management and Processing project, is based on SMPC.

Dolev-Yao models are highly amenable to automated verification techniques, but before
this work no computationally sound symbolic abstraction of SMPC was known.

Our Contribution. We present an abstraction of SMPC within the applied π-calculus
[AF01]. This abstraction consists of a process that receives the inputs from the parties
involved in the protocol over private channels, computes the result, and sends it to the
parties again over private channels, however augmented with certain details to enable
computational soundness results, see below. This abstraction can be used to model and
reason about larger cryptographic protocols that employ SMPC as a building block.

Building upon an existing type-checker [BHM08b], we propose an automated verification
technique for protocols based on our SMPC abstraction. We exemplify the applicability of
our framework by analyzing the sugar-beet double auction protocol proposed in [Bog+09].

We establish computational soundness results (in the sense of preservation of trace
properties) for protocols built upon our abstraction of SMPC. This result is obtained in
essentially two steps: We first establish a connection between our symbolic abstraction of
SMPC in the applied π-calculus (symbolic setting) and the notion of an ideal functionality
for SMPC in the UC framework [CLOS02], which constitutes a low-level abstraction of

91

4.1. MOTIVATION

SMPC that is defined based on bitstrings, Turing machines, etc. (cryptographic setting)
Second, we build upon existing results on the secure realization of this functionality in
the UC framework in order to obtain a secure cryptographic realization of our symbolic
abstraction of SMPC. This computational soundness result holds for SMPC that involve
arbitrary arithmetic operations; moreover, it is compositional, since the proof is parametric
over the other (non-interactive) cryptographic primitives used in the symbolic protocol and
within the SMPC itself. Computational soundness holds as long as these primitives are
shown to be computationally sound (e.g., in the CoSP framework [BHU09]). We prove in
particular the computational soundness of a Dolev-Yao model with public-key encryption,
signatures, and the aforementioned arithmetic operations, leveraging and extending prior
work in CoSP. Such a result allows for soundly modelling and verifying many applications
employing SMPC as a building block, including the case studies considered in this paper.

Related work. Computational soundness was first shown by Abadi and Rogaway [AR02],
against passive adversaries and for symmetric encryption. Subsequent work extended the
protocol language and extended the results for stronger security properties [ABW06; AJ01;
BCK05; HLM03; Lau01] and considered active adversaries [BHU09; BP04; BPW03a;
BPW03b; BPW07; CH06; CW05; JLM05; Lau04; MW04; SBBPW06]. Recent work even
proved computational soundness for observational equivalence [AF06; CC08; Com08]. All
these results, however, only consider non-interactive cryptographic primitives, such as
encryptions, signatures, and non-interactive zero-knowledge proofs. Up to this work, no
general computational soundness proof for an interactive primitive in combination with
Dolev-Yao style non-interactive abstractions was known.

Non-interactive primitives only get one input and output one result. Hence, all com-
putation steps that are done between the input and the output can be abstracted way.
Interactive primitives, on the other hand, are reactive and may involve several commu-
nication steps, such as committing to an input. The abstraction of these intermediate
communication steps is desirable in order to make the automated verification feasible. But
such an abstraction significantly complicates the computational soundness proofs.

A salient approach for the abstraction of interactive cryptographic primitives is the
Universal Composability framework [Can01]. The central idea is to define and prove
the security of a protocol by comparison with an ideal trusted machine, called the ideal
functionality. Although this framework has proven convenient for modularly proving security
of cryptographic protocols by hand, it is not suited to automation of security proofs, given
the intricate operational semantics of the UC framework. Dolev-Yao models (e.g., the
applied π-calculus) offer a higher level of abstraction compared to ideal functionalities in
the UC framework; in particular the adversary is abstracted from an arbitrary interactive
ppt machine to a set of rules. Most importantly, Dolev-Yao models typically enjoy a
simpler operational semantics than the UC framework (e.g., Dolev-Yao models typically
do not comprise randomness), which enables automation of security proofs. The different
degree of abstraction in these models is best understood by considering digital signatures:
While computational soundness proofs for Dolev-Yao abstractions of digital signatures
use standard techniques [BHU09; BPW03a; CW05] finding a sound ideal functionality
for digital signatures has proven to be quite intricate [BH04; Can04; DDMRS06]. Yet,
securely realizable ideal functionalities constitute a useful tool for proving computational
soundness of a Dolev-Yao model. In our proof, we establish a connection between our
symbolic abstraction of SMPC and such an ideal functionality; subsequently, we exploit

92

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

that this ideal functionality is securely realizable. A similar proof technique has already
been applied by Canetti and Herzog [CH06] for showing computational soundness of the
symbolic abstraction of public-key encryption. For the formal verification of our symbolic
abstraction, we use a type-system for authorization policies (c.f. [BHM08b; FGM07]).
Specifically, we use the type system of Backes, Hritcu, and Maffei.[BHM08b]

A generic symbolic abstraction of ideal functionalities has been proposed in [DKP09]. In
that work it is shown that the different notions of simulatability, known in the literature,
collapse in the symbolic abstraction. In contrast to our approach, that work does not
address computational soundness guarantees and does not explicitly consider SMPC.

The concept of a general secure two-party computation has been introduced by Yao [Yao82].
This work has been extended to general secure multi-party computations in [GMW87].
General secure multi-party computation in the presence of arbitrary surrounding protocols,
in the above-mentioned UC framework, has been studied in [CLOS02].

There are domain-specific languages for specifying functionalities for secure multi-party
computations and for deriving secure cryptographic realizations. FairplayMP [BNP08;
MNPS04], e.g., automatically generates a constant-round secure multi-party computation
protocol given a program in the language SFDL. Another domain-specific language SMCL
is presented in [Nie09]. SMCL supports reactive functionalities as well. Moreover, this
work introduces a type system for checking non-interference properties of the programmed
functionalities. These approaches only focus on a single instance of a secure multi-party
computation. Our framework, in contrary, can be used to reason about an unbounded num-
ber of SMPC sessions and, most importantly, about a large class of cryptographic protocols
employing SMPC as a building block. Moreover, our symbolic abstraction is amenable
to automated verification techniques and our computational soundness result ensures
that such verification techniques provide security guarantees for the actual computational
implementation.

Outline of this chapter. Section 4.2 presents our SMPC abstraction. Section 4.3
explains the technique used to statically analyze SMPC-based protocols and applies it
to our case study. Section 4.4 presents the computational implementation of a process.
Section 4.5 studies the computational soundness of our abstraction. Section 4.5.2 shows
that computational soundness results shown in the CoSP framework [BHU09] carry over
to our framework, and Section 4.6 concludes.

4.2. The symbolic abstraction of SMPC

In this section, we adopt a variant of the applied π-calculus with destructors [BHM08b].
After that, we present the symbolic abstraction of secure multi-party computation within
this calculus.

4.2.1. Abstracting SMPC in the Applied π-calculus

We recall that a secure multi-party computation is a protocol among parties P1, . . . , Pn
to jointly compute the result of a function F applied to arguments m1, . . . ,mn, where
mi is a private input provided by party Pi. More generally, not only a function but a
reactive, stateful computation is performed, which requires the participants to maintain a

93

4.2. THE SYMBOLIC ABSTRACTION OF SMPC

inouti ··= !
(
inloopi(z).ini(xi, sid

′).adv〈sid′〉.if sid = sid′

then lini〈xi〉 else inloopi〈sync()〉
)
| inloopi〈sync()〉

deliveri ··= ini〈yi, sid〉.inloopi〈sync()〉
SMPC(adv, sidc, in,F) ··= sidc(sid). νlin. νinloop.

(
input1 | · · · | inputn | F [deliver1 | . . . | delivern]

)

Figure 4.1.: The process SMPC as the symbolic abstraction of secure multi-party
computation

(synchronized) state. At the end of the computation, each party should not learn more
than the result (or, more generally, a local view ri of the result). Since the overall protocol
may involve several secure multi-party computations, a session identifier sid is often used
to link the private inputs to the intended session. Coming up with an abstraction of SMPC
that is amenable to automated verification and that can be proven computationally sound
is technically challenging, and it required us to refine the abstraction based on insights that
were gained in the soundness proof. For the sake of exposition, we thus present simple,
intuitive abstraction attempts of SMPC in the applied π-calculus first, explain why these
attempts do not allow for a computational soundness result, and then successively refine
them until we reach the final abstraction.

First attempt. A first, naive attempt to symbolically abstract SMPC in the applied
π-calculus is to let parties send to each other the public information along with the
enveloped private input on a private channel. This message can be represented by a term
smpc(F, i,m, sid), where i is the principal’s identifier. The abstraction then consists of a
destructor result whose semantics is defined by a rule like

result(mi, i, smpc(F , 1,m1, sid), . . . , smpc(F , n,mn, sid)) = π(i,F(m1, . . . ,mn))

where π(i, ·) denotes the projection on the i-th element. We are facing the common
symbolic adversary model of an active, but static adversary, i.e., the adversary controls
the (asynchronous) network, but only compromises parties before the protocol execution
starts. In this setting, computational soundness of this abstraction cannot be shown: a
computational attacker (i) is capable of altering the delivery of messages, and (ii) learns
the session identifiers that occur in the header of each individual message. Our abstraction
attempt does not grant the adversary any such capabilities; hence a symbolic adversary is
constrained much stronger than a computational adversary, thus preventing computational
soundness results. These problems could be tackled by modifying the abstraction such
that all messages are sent and received over a public channel. The adversary would then
decide which parties receive which messages. The resulting abstraction, however, would
not be tight enough anymore: Corrupted symbolic parties could send different messages
to the participants, and hence cause them to compute the function F on different inputs.
Such an attack, however, is computationally excluded by a secure multi-party computation
protocol.

94

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

Second attempt. We solved the aforementioned problems by introducing an explicit
trusted party to whom every participant i sends its private input and receives its own
result in return over a private channel ini. This follows the general ideal-functionality
paradigm for defining security that was already used in [GMW87] for defining SMPC in
the cryptographic setting. Such a trusted party can be nicely abstracted as a distinguished
process in the applied π-calculus. A first attempt, called SMPC temp, could look as
follows:

SMPC temp ··= sidc(sid).in1(x1,= sid) . . . inn(xn,= sid).

let (y1, . . . , yn) = result(F , x1, . . . , xn) in in1〈y1, sid〉 . . . inn〈yn, sid〉

There still is discrepancy between this abstraction and the computational model that
invalidates computational soundness: a computational adversary learns the session identifier,
which is instead concealed by SMPC temp. In addition, the computation of F is shifted
to the evaluation of the destructor result. Such a complicated destructor would make
mechanized verification extremely difficult.

Final abstraction. To make the abstraction amenable to automated verification, in par-
ticular type-checking, we represent F as a context that explicitly performs the computation.
The resulting abstraction of secure multi-party computation is depicted in Figure 4.1 as
the process SMPC. This process is parametrized by an adversary channel adv , a session
identifier channel sidc, n private channels ini for each of the n participants, and a context
F . We implicitly assume that private channels are authenticated such that only the ith
participant can send messages on channel ini. The computational implementation of SMPC
implements this authentication requirement. Furthermore, SMPC contains two restricted
channels for every party i: an internal loop channel inloopi and an internal input channel
lini.

SMPC receives a session identifier over the channel sidc. Then n+ 1 subprocesses are
spawned: a process inputi for every participant i that is responsible for collecting the ith
input and for divulging public information, such as the session identifier, to the adversary,
and a process that performs the actual multi-party computation. Here inputi waits (under
a replication) on the loop channel inloopi for the trigger message sync() of the next round,
and expects the private input xi and a session identifier sid′ over ini. It then sends the
session identifier sid′ to the adversary, checks whether the session identifier sid′ equals
sid, and finally sends the private input xi on the internal input channel lini. The actual
multi-party computation is performed in the last subprocess: after the private inputs of the
individual parties are collected from the internal input channels lini, the actual program F
is executed.

After each computation round, the subprocesses deliveri send the individual outputs
over the private channels ini to every participant i along with the session identifier sid. In
order to trigger the next round, sync() is sent over the internal loop channels inloopi.

The abstraction allows for a large class of functionalities F as described below.

Definition 37. [SMPC-suited context] An SMPC-suited context is a context F such that:

1. fv(F) = {sid} and fn(F [0]) = {lin1, . . . , linn}.
2. Bound names and variables are distinct and different from free names and free

variables.

95

4.3. FORMAL VERIFICATION

Although one might expect additional constraints on the context F (e.g., it is terminating,
it does not contain replications, etc.), it turns out that such constraints are not necessary
as, intuitively, having more traces in the symbolic setting does not break computational
soundness. Such constraints would probably simplify the proof of computational soundness,
but they would make our abstraction less intuitive and less general.

Finally, we briefly describe how we model the corruption of the parties involved in the
secure multi-party computation. In this paper we consider static corruption scenarios, in
which the parties to be corrupted are selected before the computation starts. As usual
in the applied π-calculus, we model corrupted parties by letting the adversary know the
secret inputs of the corrupted parties. This is achieved by letting the channel ini occur
free in the process if party i is corrupted. As we only consider static corruption, we restrict
our attention to processes that do not send these channels ini over a public channel (for a
formal definition see Definition 43 of well-formed processes).

Arithmetics in the Applied π-calculus. One of the most common applications of
SMPC is the evaluation of arithmetic operations on secret inputs. Modelling arithmetic
operations in the applied π-calculus is straightforward. We encode numbers in binary
form via the string0(M), string1(M), and empty() constructor applications. Arithmetic
operations are modelled as destructors. For instance, the greater-equal relation is defined by
the destructor ge(M1,M2), which returns M1 if M1 is greater equal then M2, M2 otherwise.
With this encoding, numbers and cryptographic messages are disjoint sets of values, which
is crucial for the soundness of our analysis and the computational soundness results.

The Millionaires problem. For the sake of illustration, we show how to express the
Millionaires problem in our formalism (two parties wish to determine who is richer, i.e.,
whose input is bigger, without divulging their inputs to each other.) The protocol is
parametrized by two numbers x1 and x2:

νsid. νsidc. νc1. νc2. sidc〈sid〉 | adv〈sid〉 | SMPC(adv, sidc, c1, c2, compare)

| c1(sid).c1〈(x1, id1), sid〉.c1(y1, sid1)

| c2(sid).c2〈(x2, id2), sid〉.c2(y2, sid2)

compare[•] ··= lin1((x1, z1)).lin2((x2, z2)).let x1 = ge(x1, x2)

then let y1 = y2 = z1 in • else let y1 = y2 = z2 in •

where [y1 := z, y2 := z] denotes the instantiation of variables y1 and y2 with variable z,
which can be defined by encoding, and • is the hole of the context.

4.3. Formal Verification

We propose a technique for formally verifying processes that use the symbolic abstraction
SMPC. In principle, our abstraction is amenable to several verification techniques for the
applied π-calculus such as [BAF05; Bla01; FGM07]. In this paper, we rely on the type-
checker for security policies presented in [BHM08b], which we extend to support arithmetic
operations. This type-checker enforces the robust safety property (cf. Definition 30).

We decorate the protocol linked to our SMPC abstraction with assumptions and assertions,
as depicted in Figure 4.2. The assumptions are used to mark the inputs of the secure

96

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

SMPCresult

assume Input(idi, xi, sid)

assume ∀x, id, sid.

n�

i=1

Input(idi, xi, sid) ∧ id1 �= · · · �= idn

∧ Frel ⇒ P(z, sid)

assert P(z, sid)

.

.

.

.

.

.

input
(xi, sid)

(z, sid)

Figure 4.2.: Assumptions and assertions for a process linked to our SMPC abstraction.

multi-party computation and to specify the correctness property for the secure multi-party
computation. The assertion is used to check that the result of the SMPC fulfills the
correctness property.

Specifically, for every party i an assumption assume Input(idi, xi, sid) is placed upon
sending a private input xi with session identifier sid, where idi is the (publicly known)
identity of party i. To check the correctness of the secure multi-party computation,
assert P(z, sid) is placed immediately after the reception of the result (z, sid). We also
assume a security policy, which takes in general the following form:

∀id, x, sid, z.
(
∧ni=1 Input(idi, xi, sid) ∧ id1 6= . . . 6= idn ∧ Frel

)
⇒ P(z, sid)

The formula Frel characterizes the expected relation between the inputs and the output.
As an example, the policy and party annotations for the Millionaires problem would be as
follows:

∀id1, id2, x1, x2, sid.
(
Input(id1, x1, sid) ∧ Input(id2, x2, sid) ∧ id1 6= id2 ∧ x1 ≥ x2

)

⇒ Richer(id1, sid).

Each party would be annotated as follows:

Pi ··= assume Input(idi, xi, sid) | ci〈(xi, idi), sid〉.ci(yi, sidi).assert Richer(yi, sid).

Arithmetics in the analysis. We extended the type-checker to support arithmetic
operations. Specifically, we modelled arithmetic operations as predicates in the logic, defined
their semantics following the semantics given in the calculus, and added a few general
properties, such as the transitivity of the greater-equal relation. The type theory is extended
to track the arithmetic properties of terms (e.g., while typing let z = ge(x1, x2) then P ,
the type-checker tracks that z is the greatest value between x1 and x2 and uses this
information to type P). The type theory supports this kind of extensions as long as the set
of added values is disjoint from the set of cryptographic messages and the added destructors
do not operate on cryptographic terms, which holds true for our encoding of arithmetics.

97

4.3. FORMAL VERIFICATION

SMPC

machine M

Bidder

input

result

command

compare

Computation party

assume Input(idi, xi, sid)

assume Policy

assert MCP(z, sid)
(z, sid)

(xi, sid)

Figure 4.3.: Our model of the sugar-beet double auction via the abstraction SMPC.

Case study: sugar-beet double auction

As a case study for our symbolic abstraction, we formalized and analyzed the sugar-beet
double auction that has been realized within the SIMAP project by using an SMPC
[Bog+09]. This protocol constitutes the first large scale application of an SMPC. The
double auction protocol determines a market clearing price for sugar-beets. More specifically,
first, a set of prices is fixed; then, for every price each producer commits itself to an amount
of sugar-beets that it is willing to sell, and each buyer commits itself to the amounts of
sugar-beets that it is willing to buy. The market clearing price is the maximal market
clearing price for which the supply did not yet exceed the demand.

The protocol assumes that for every producer the list with the amounts of sugar-beets
that this producer is willing to sell for each price is monotonically increasing. Analogously,
for every buyer the list with the amount of sugar-beets that a buyer is willing to buy for
each price is monotonically decreasing for this buyer. Beginning from the lowest price, the
protocol computes for every price i the demand, i.e., the sum of the amounts that the
buyers are willing to buy, and the supply, i.e., the sum of the amounts that the sellers are
willing to sell. Then, the protocol compares the supply and the demand. If the supply is
greater than the demand, the protocol outputs the price i− 1 as the market clearing price.
In the other case, the protocol compares the next higher price i + 1 until the protocol
exceeds the maximal price p, in which case the maximal price is output. 1

Both the producers and the buyers might want to keep their bids secret. Hence, the
private input of every party has to be kept private. In the sugar-beet double auction
developed by the SIMAP project, the sellers and buyers perform a joint secure multi-party
computation. The producer and buyer parties send initially an input and receive at the end
of the computation the result, i.e., the market clearing price. The protocol comprises three
computation parties that execute a subprotocol, which constitutes a synchronous SMPC.
In addition, before the start of the protocol, producers and buyers receive a signature on
the list of participants, the session id, and the set of prices from a trusted party. This
signature is verified by each participant and sent as an input to the SMPC, which verifies
and checks the equality of such signatures. This ensures that all participants agree on the

1We only consider the maximal market clearing price. The actual sugar-beet double auction protocol has
a more elaborate procedure for choosing one market clearing price.

98

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

common public inputs. Notice that this SMPC performs arithmetic operations as well as
cryptographic operations, yet on distinct values.

We modelled the SMPC with a context F that expects inputs from the producers and
buyers and commands from the computation parties (see Figure 4.3). Upon sending the
input x, the producer and buyer parties assume Input(id, x, sid), where id is the identifier
for that party and sid is the session identifier. Upon receiving the final result z, sid every
party asserts MCP(z, sid) (this predicate is defined below). Assume there are m different
prices; then, we represent the inputs of the producers and the buyer, i.e., the list with the
amounts, as a tuple bids := (x1, . . . , xm). Additionally, every producer uses a flag b := 1
and every buyer a flag b := 0. Every producer and buyer sends the pair (b, bids) to the
secure multi-party computation.

Finally, we are ready to state the policy characterizing the result of the computation
that is performed: the predicate MCP(z, sid) holds true if there are appropriate input
predicates Input(idi, xi, sid) and z is the maximal price for which demand is greater than
or equal to the supply, which we characterize by the predicate Is max(x1, . . . , xn, z) (the
semantics of this predicate is defined in terms of basic arithmetic operations supported by
our type-checker), where πi(t) denotes the i-th element of the tuple t.

∀x1, . . . , xn, z, i. Q(x1, . . . , xn, z) ∧Q(x1, . . . , xn, i)⇒ z ≥ i⇒ Is max(x1, . . . , xn, z) and

∀b1, . . . , bn, bids1, . . . , bidsn, l.

n∑

j=1

πl(bidsj) · (1− bj)
︸ ︷︷ ︸

demand

≥
n∑

j=1

πl(bidsj) · bj
︸ ︷︷ ︸

supply

⇒ Q((b1, bids1), . . . , (bn, bidsn), l)

The policy for the correctness of the computation (called Policy in Figure 4.3) is then
defined as follows:

∀z, sid, x1, . . . , xm, id1, . . . , idn. Input(id1, x1, sid) ∧ · · · ∧ Input(idn, xn, sid)∧
id1 6= . . . 6= idn ∧ Is max(x1, . . . , xm, z)⇒ MCP(z, sid)

Verification. The verification of this policy is challenging in that our abstraction
comprises about 1400 lines of code and it relies on complex functions. The type-checker
succeeds in 2 minutes and 22 seconds on a MacBook Pro (Intel 2GHz Dual Code, 4GB
RAM). The source code is depicted in Appendix A. We type checked the protocol with 2
prices, 3 computation parties, and 2 input parties.

4.4. Computational Execution

In this section, we present a computational soundness result for our abstraction of secure
multi-party computations. Our result builds on the universal composability (UC) frame-
work [Can01; CLOS02], where the security of a protocol ρ is defined by comparison with
an ideal functionality I. The proof proceeds in three steps, as depicted in Figure 4.4.

99

4.4. COMPUTATIONAL EXECUTION

Applied π

calculus

Computational

execution

Computational

SMPC execution

Computational

SMPC execution

Ideal functionality I Real SMPC ρ

Figure 4.4.: Overview of the computational soundness proof

In the first step, we prove that the robust safety of an applied π-calculus process carries over
to the computational setting, where the protocol is executed by interactive Turing machines
operating on bitstrings instead of symbolic terms and using cryptographic algorithms instead
of constructors and destructors. This part of the proof solely depends on additional non-
interactive cryptographic primitives that might be used in the protocol (such as encryption
and digital signatures). It does not depend on the secure multi-party computations, which
are still abstracted symbolically by processes of the form SMPC(adv , sidc, in,F). Since
the remaining steps of the proof are parametric over these non-interactive primitives,
we decided to make our result general by assuming the first step of the proof, which
is fairly standard and follows arguments similar to previous computational soundness
results for non-interactive cryptographic primitives. In Section 4.5.2, we prove this step
for processes using asymmetric encryption, digital signatures, and arithmetic operations,
basically, applying verbatim the computational soundness proof presented in [BHU09].

The first part of the proof entails the computational soundness of a process executing
the abstraction SMPC(adv , sidc, in,F). A computational implementation of the protocol,
instead should execute an actual SMPC protocol ρ. In the second step of the proof,
we show that for each SMPC-suited context F , the computational execution of our
abstraction SMPC(adv , sidc, in,F) is indistinguishable from the execution of a protocol
I (see Construction 1) that solely comprises a single incorruptible machine.

The third step of the proof builds on a result from [CLOS02], which ensures that for any
well-formed ideal functionality I there is a protocol ρ that securely realizes I in the UC
framework, which ensures in particular that the trace properties of I carry over to the
actual implementation ρ.

These three steps allow us to conclude that for each abstraction SMPC(adv , sidc, in,F)
there exists an implementation ρ such that the trace properties of any well-formed process
P containing SMPC occurrences SMPC(adv , sidc, in,F), and in particular the security
policies enforced by the type system, carry over from the execution that merely executes a
process P and executes SMPC(adv , sidc, in,F) as a regular subprocess to the execution
that communicates with ρ upon each call of a subprocess SMPC(adv , sidc, in,F). By
leveraging the composability of the UC framework and the realization result for SMPC in

100

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

the UC framework, we finally conclude that if a protocol based on our SMPC abstraction is
robustly safe, then there exists an implementation of that protocol that is computationally
safe.

We review the characterization of secure multi-party computations in the UC framework
in Section 4.4.1. We present the computational execution for our SMPC abstraction in
Section 4.4.2. In Section 4.5.1 we introduce the notion of computational safety. Finally, we
state our computational soundness result in Section 4.5.7. Throughout the entire section,
we use the notation that n is the number of parties in the current secure multi-party
computation, i.e., for SMPC(adv , sidc, in,F) we have that n := |in|.

4.4.1. SMPC in the UC framework

In this section, we discuss how to construct an interactive sub-protocol in the UC framework
out of an SMPC process. We first review a general framework for universally composable
interactive cryptographic protocols: the UC framework (Section 4.4.1.1), and then construct
the ideal functionality from the SMPC process (Section 4.4.1.2).

4.4.1.1. The UC Framework

The UC framework defines the security of a protocol ρ by comparison with an ideal
functionality I. The ideal functionality for secure multi-party computations resembles our
SMPC abstraction in that it essentially consists of a single machine performing an ideal
computation. In the UC framework, a protocol ρ is called a secure realization of an ideal
functionality I if for every attack on ρ there is an attack on I. More precisely, for any
adversary that interacts with ρ, there is a simulator that interacts with I such that no
protocol environment interacting with both the protocol and the adversary can tell an
execution of ρ from an execution of I. In this work, all these machines are polynomial-time.

As an example consider an authenticated channel between Alice and Bob with a passive
attacker. In the real world Alice would call a protocol that signs the message m to be
communicated and sends the signed message over the network such that Bob would verify
the signature. In the setting with a trusted machine T , however, Alice sends the message
m directly to T 2; T notifies the attacker about m, and T directly sends m to Bob. This
trusted machine is called the ideal functionality.

Another example would be a protocol that establishes a secret channel: an attacker
controlling the network can see the length of the message and prevent the message from
reaching its destination. The ideal functionality for such a secret channel protocol leaks
nothing more than the length of the message to the attacker and gives the attacker no
more interaction capabilities than control over the delivery of messages.

In the UC framework, a network is modelled as a set of interactive Turing machines
(ITMs). Every ITM has a unique identity. The recipient of a message is addressed by
the identity of that ITM. We say a network S is executable if it contains an ITM Z with
distinguished input and output tape and with the special identity env. An execution of
S with input z ∈ {0, 1} ∗ and security parameter k ∈ N is the following execution of the
network: Initially, Z is activated with the message z on its input tape. Whenever an ITM

2Recall that T and Alice are directly connected, as well as T and Bob.

101

4.4. COMPUTATIONAL EXECUTION

M1 ∈ S finishes an activation with an outgoing message m (tagged with the identity of the
receiver M2 ∈ S) on its outgoing communication tape, M2 is invoked with m (tagged with
the identity of the sender M1) on its incoming communication tape. If an ITM terminates
its activation without an outgoing message or sends a message to a non-existing ITM, the
distinguished ITM Z is activated. The execution of the network terminates whenever Z
writes a message on its distinguished output tape.

A network S may also contain a distinguished ITM A, called the adversary. Sending a
message over a public channel is modelled as sending a message to the adversary. A UC
protocol is a network without an adversary and an environment. Corrupted parties are
modelled as ITMs that directly forward all messages from and to the adversary. Moreover,
the adversary can read all tapes of a corrupted party.

In the UC framework, it is possible to model a port-based communication, i.e., each
party has finitely many ports on which it can send (outgoing ports !p) or receive (incoming
ports ?p) messages. In particular, in a session r every party i has an environment port
?inei,r, an environment port !outei,r, an adversary port ?inai,r, and an adversary port !outai,r.
In all cases, port ?p is connected to some port !p and vice-versa. Hence, the incoming
environment port ?inei,r and the outgoing environment port !outei,r are connected to an
outgoing port !inei,r and an incoming port ?outei,r of the environment, respectively. Similar
reasoning holds for the adversary ports ?inai,r, !in

a
i,r, ?outai,r, and ?outai,r.

As previously mentioned, in the UC framework the security of a protocol is determined
by comparison with the ideal functionality. Intuitively, we say that a protocol ρ UC-realizes
τ if there exists a simulator such that the interaction of ρ with the adversary and the
interaction of τ with the simulator are indistinguishable.

Definition 38 (Secure realization (UC) [Can01]). Let ρ and τ be protocols. We say that
ρ UC-realizes τ if for any polynomial-time adversary A there exists a polynomial-time
adversary S such that for any polynomial-time environment Z the networks ρ ∪ {A,Z}
(called the real model) and τ ∪ {S,Z} (called the ideal model) are indistinguishable.3

4.4.1.2. From an SMPC Process to an Ideal Functionality

For constructing an ideal functionality for an SMPC process, we first construct an algorithm
FF (where F denotes the SMPC process) that internally runs the computational π-execution,
and then define an ideal functionality that internally runs this algorithm FF .

Constructing the algorithm FF . We construct for each F an algorithm FF that
emulates the computational π execution, i.e., FF additionally expects a state as input and
outputs an updated state. For the construction of FF , we assume a fixed and efficiently
computable reduction strategy S. This reduction strategy acts as the adversary, i.e., it
constitutes an interactive machine (though in this construction the interaction as well as
the interactive machines are emulated by FF).

Recall that the SMPC process contains internal loop channels inloopi for ensuring that
every party only accepts a new input if an output has been delivered. The ideal functionality
performs these checks directly; hence, we can omit these loop channels and we get (for

3Recall that the execution terminates whenever the environment writes on its output tape. We say that
two executions E,E′ are indistinguishable if |Pr[E = 1]− Pr[E′ = 1]| is negligible.

102

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

n := |in|)
F [in1〈y1〉 | . . . | inn〈yn〉].

As F expects the inputs over the local input channels lini, we place processes lini〈xi〉 in
parallel and set η(xi) to be the ith input. Finally, in order to determine which message S
schedules to be sent as an output, we place processes ini(y

′
i, sid) in parallel and set the

ith output to be η̂(y′i), where η̂ is the variable mapping of the emulated execution after S
finished.

We assume an efficient encoding for processes and the name and variable mappings, µ
and η. Let n := |in|; then, FF performs on input (m1, . . . ,mn, state) the following steps:

1. If state is empty, set

compute state0 := F [in1〈y1〉 | . . . | inn〈yn〉]

and µ := η := ∅, where y′ are fresh variables. Otherwise, try to extract a process
P , a name mapping µ′, and a variable mapping η′ out of state. If this extraction
fails abort; otherwise, set compute state0 := P, µ := µ′, and η := η′. In both
cases, with an empty state and a non-empty state, extend the variable mapping
η ∪ {x1 := m1, . . . , xn := mn} and set

compute state := compute state0 | lin1〈x1〉 | . . . | linn〈xn〉
| in1(y′1) | . . . | inn(y′n).

2. Run the Main loop of the computational execution Execπcompute state,S with the
name mapping µ and the variable mapping η.

3. Let compute state′ be the process to which compute state0 has been reduced
after the reduction strategy S terminated. Let Let and η̂ and µ̂ be the variable and
name mappings at that point. Let state ′ be the encoding of η̂, µ̂ and compute state′,
and output (η̂(y′1), . . . , η̂(y′n), state ′). If η(y′i) is undefined, output a distinguished
error symbol.

The Ideal Functionality for SMPC in the UC framework. In Construction 1 (and
depicted in Figure 4.5), we construct a generic ideal functionality Isid,F,c that serves as an
abstraction of secure multi-party computations. This construction is parametric over the
session identifier sid, the function F to be computed, and the corruption scenario c4. This
function is stateful, it expects the SMPC inputs and a state, and it outputs the result and
an updated state.

The ideal functionality receives the (secret) input message of party i from port ?inei,sid
along with a session identifier. The input message is stored in the variable xi and the state
statei of i is set to input. Both the session identifier and the length of the received message
are leaked to the adversary, since in the actual implementation each party announces the
session identifier and commits to its own private input, which leaks the length of that input
(see part (a) of Construction 1). In addition, the (ideal) adversary is allowed to schedule
the delivery of the results to party i, which is achieved by letting the adversary interact
with the ideal functionality on port ?inai,sid (see part (b) of Construction 1). Since the ideal
functionality might be reactive (i.e., the computation might involve different execution
rounds), our construction additionally keeps a round counter for each participant i, denoted
by ri.

4c = (c1, . . . , cn) ∈ {0, 1}∗ where party i is corrupted if ci = 1 and uncorrupted if ci = 0.

103

4.4. COMPUTATIONAL EXECUTION

inputi

computei

deliveri

(mi, sid
�) (|mi|, sid�)

check sid = sid�
store mi

(deliver, sid�)

∀j : computej run F (x1, . . . , xn, stateF)

(y1, . . . , yn, s)←

?ine
i

?ina
i !oute

i

!outa
i

Figure 4.5.: The ideal functionality of SMPC

Construction 1 (SMPC Ideal functionality). We construct an interactive polynomial-time
machine Isid,F , called the SMPC ideal functionality, which is parametric over a session
identifier sid and a poly-time algorithm F . Initially, the variables of Isid,F are instantiated
as follows: ∀i ∈ [1, n].statei := input, ri := 1, and stateF := ∅. Upon an activation with
message m on port p, Isid,F behaves as follows.

(a) Upon (?inei,sid, (m, sid
′)) If sid = sid′ and statei = input, then set statei := compute

and xi := m. If statei = input, then send (sid′, |m|) on port ?inai,sid.
(b) Upon (?inai,sid, (deliver, sid

′)), if ∀j ∈ [1, n].statej = compute and ri = rj, then com-
pute (y1, . . . , yn, s)← F (x1, . . . , xn, stateF) and set stateF := s and ∀j ∈ [1, n].statej :=
deliver.
If statei = deliver, set ri := ri + 1, statei := input and send yi on port !outei,sid.

Since we consider static corruptions in this paper, the ports !outei,sid and ?inei,sid of the
ideal functionality are redirected to the adversary whenever a party i is corrupted, as this
party is under the control of the attacker. Such a port redirection is technically achieved by
using dummy parties that act as message forwarders. We model the corruption scenario by
a tuple c1, . . . , cn of bits, where ci = 1 if and only if party i is corrupted. In the following,
we denote by Isid,F,c the UC protocol composed of the ideal functionality Isid,F and the
dummy parties required to connect the adversary to ports !outei,sid and ?inei,sid if ci = 1.

The function F essentially plays the same role in the ideal functionality as the SMPC-
suited context F in our symbolic abstraction of SMPC.

4.4.2. Computational execution of a process

Since the applied π-calculus only has semantics in the symbolic model (without probabilities
and without the notion of a computational adversary), we need to introduce a notion of com-
putational execution for applied π-calculus processes. Our computational implementation
of a symbolic protocol P builds on the computational execution of the applied π-calculus

104

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

that has been proposed in [BHU09]. This is a probabilistic polynomial-time algorithm that
expects as input the symbolic protocol Q, a set of deterministic polynomial-time algorithms
A for the constructors and destructors in Q, and a security parameter k. This algorithm
executes the protocol by interacting with a computational adversary. In the operational
semantics of the applied π calculus, the reduction order is non-deterministic. This non-
determinism is resolved by letting the adversary determine the order of the reduction steps.
The computational execution sends the process to the adversary and expects a selection
for the next reduction step. In the following, we follow the convention that “fresh variable”
or “fresh name” means a variable or name that does not occur in any of the variables
maintained by the algorithm. The computational execution tightly follows the semantics
of the applied π-calculus, with the exception that it operates on bitstrings and does not
instantiate names and variables in the process but rather maintains an environment η that
stores the bitstrings assigned to the free variables in P , and an interpretation µ of the free
names in P as bitstrings. Given η and µ, we can computationally evaluate a term or a
destructor application D to a bitstring cevalη,µ,k,AD by using the algorithms A for the
constructors and destructors in D. (We will often omit k and A for readability if these are
clear from the context.) We set cevalη,µD := ⊥ if the application of one of the algorithms
in A fails. In abuse of notation, in the following we will use evaluation contexts with
distinguished multiple holes.

The computational execution together with the adversary A constitutes a network. The
adversary, however, can be seen as the environment; if the execution Execπ stops, A is
activated.

Definition 39 (Computational π-execution). Let Q be a closed process. Let Adv be an
interactive machine called the adversary. We define the computational π-execution as
an interactive machine ExecπQ,A(1k) that takes a security parameter k as argument and
interacts with Adv:

• Start: Let P be obtained from Q by deterministic α-renaming so that all bound
variables and names in Q are distinct. Let η and µ be a totally undefined partial
functions from variables and names, respectively, to bitstrings. Let a1, . . . , an denote
the free names in P . For each i, pick ri ∈ Noncesk at random. Set µ := µ ∪
{a1 := r1, . . . , an := rn}. Send (r1, . . . , rn) to Adv.5

• Main loop: Send P to the adversary and expect an evaluation context E from the
adversary. Distinguish the following cases:

– P = E[M(x).P1]: Request two bitstrings c, m from the adversary. If c =
cevalη,µM , set η := η ∪ {x := m} and P := E[P1].

– P = E[νa.P1]: Pick r ∈ Noncesk at random, set P := E[P1] and µ := µ(a := r).
– P = E[M1〈N〉.P1][M2(x).P2]: If cevalη,µM1 = cevalη,µM2, then set P :=
E[P1][P2] and η := η ∪ {x := cevalη,µN}.

– P = E[let x = D in P1 else P2]: If m := cevalη,µD 6= ⊥, set η := η ∪ {x := m}
and P := E[P1]; Otherwise set P := E[P2].

– P = E[assert F.P1]: Let P := E[P1] and raise the tuple ((F1, . . . , Fn), F, η, µ, P)
where assume F1, . . ., assume Fn are the top level assumptions6 in P .

– P̃ = E[!Q]: Let Q′ be obtained from Q by deterministic α-renaming so that all

5In the applied π-calculus, free names occurring in the initial process represent nonces that are honestly
chosen but known to the attacker.

6assume F is top-level in P if there exists a context E such that P = E[assume F].

105

4.4. COMPUTATIONAL EXECUTION

bound variables and names in Q′ are fresh. Set P := E[Q′|!Q].
– P = E[M〈N〉.P1]: Request a bitstring c from the adversary. If c = cevalη,µM ,

set P := E[P1] and send cevalη,µN to the adversary.
– In all other cases, do nothing.

For any interactive machine A, we define ExecπQ,A,A(1k) as the interaction between

ExecπQ,A(1k) and A; the output of ExecπQ,A,A(1k) is the output of A.

We let AssertionsπP,A,p,A(k) denote the distribution of sequences of assertion tuples of the

form ((F1, . . . , Fn), F, η, µ, P) raised in an interaction of ExecπP,A,A(1k) within the first

p(k) computation steps (jointly counted for A(1k) and ExecπP,A,τ (1k)).

When applied to a protocol built on our abstraction of SMPC, the execution Execπ

executes the abstraction SMPC(adv , sidc, in,F), which corresponds to a trusted host
performing an ideal computation. Our computational soundness result, however, has to
hold for an arbitrary protocol that incorporates an actual secure multi-party computation
protocol.

We thus introduce the notion of SMPC implementation Exec, which differs from Execπ

in that the SMPC protocol is executed instead of the abstraction SMPC(adv , sidc, in,F).
Exec takes as input the security parameter, a process Q, the algorithms A for the construc-
tors and destructors in Q, and a family τ of UC protocols, one for each of the SMPC in
Q. Intuitively, Exec is meant to act as an interface between the adversary and the UC
protocol, which can be either the ideal functionality or the actual SMPC protocol (i.e., τ
will be either a family of ideal protocols or a family of real protocols, respectively).

The behavior of Exec is depicted in Figure 4.6, where sidc(sid).SMPC′(adv , in,F) :=
SMPC(adv , sidc, in,F). The adversary may (i) initialize the secure multi-party compu-
tation, in which case a session identifier r is sent over the channel sidc; (ii) schedule the
delivery of the output to some honest party, in which case the process and the environment
η are updated accordingly; (iii) schedule the input of some honest party i, in which case
this input is sent to the UC protocol over the port !inei,r; (iv) schedule the input of some
dishonest party i, in which case this input is sent to the UC protocol over the port connected
to !inei,r; and (v) send a message to party i, in which case this message is forwarded to port
!inai,r. In all these cases, except for (i) and (ii), the computational execution interacts with
the protocol and the protocol answers with a message m. If m is sent over the outgoing
port of some honest party i (i.e., it is received from port ?outei,r), then m is stored in a
buffer waiting for delivery, otherwise m is directly forwarded to the attacker.

The execution Exec together with the adversary A and all the protocol parties for
any session constitute a network. Each session r induces a subnetwork comprising the
computational execution Exec and the protocol parties for the session r. In this session r
the execution Exec plays the role of both the environment and the adversary, respectively,
listening on the ports ?outei,r and ?outai,r (i ∈ [1, n]). In particular, Exec is activated if no
other machine in the subnetwork, composed of the is active anymore. If the execution Exec
terminates without having sent a message to a party, the adversary is activated.

Definition 40 (Computational SMPC execution). Let Q and A be as in Definition 39. Let
τ denote a family of UC protocols (intuitively, this family is composed of the implementations
of the SMPC protocols for each of the SMPC-suited contexts F , the session identifiers
r, and the corruption scenarios c, which we denote by τr,F ,c). We define the interactive

106

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

η(z := output i,

s := r)

i is corrupted

store

outputi

!ine
i,r

!ina
i,r

?oute
i,r

?outa
i,r

E[SMPC�(adv , in,F)]

E[c(z, s)][0r,in,F]

E[0r,in,F]

E[c�x, s�][0r,in,F]

(i)

(ii)

(iii)

(iv)

(v)

�
0r,in,F

SMPC(adv, sidc, in,F)

�

E[0r,in,F]

ExecSMPC

?ine
i,r

?ina
i,r

!outa
i,r

!oute
i,r

τr,F,cAdv

Figure 4.6.: The computational SMPC execution, where r := µ(sid) and
sidc(sid).SMPC′(adv , in,F) := SMPC(adv , sidc, in,F).

machine ExecQ,A,τ (1k) by modifying the main loop of ExecπQ,A(1k) (see Definition 39) as
follows:

(i) (the secure multi-party computation is initialized) P = E[SMPC′(adv , in,F)]. Set
r := cevalη,µ(M), η := η ∪ {sid := r}, and P := E[0r,in,F].7

(ii) (the output of some honest party is delivered) P = E[c(z, s).Q][0r,in,F] and outputri =
m 6= ⊥, and ∃i ∈ [1, n] : cevalη,µ ini = cevalη,µ c :
Set η := η ∪ {z := m, s := r}, set outputri := ⊥, and P := E[Q][0r,in,F].

(iii) (the input of some honest party is scheduled) P = E[c〈x, s〉.Q][0r,in,F] and ∃i ∈ [1, n] :
cevalη,µ ini = cevalη,µ c :
Let m := cevalη,µ(x, s) and send m to τr,F ,c over the port !inei,r.

8

(iv) (the input of some dishonest party is scheduled) P = E[0r,in,F] Request a bitstring m
from the adversary. If m = (ch, r,m′) and η(ini) = ch for some i ∈ [1, n], send m′

over the port !inei,r.
(v) (the adversary communicates with the protocol) P = E[0r,in,F] Request a bitstring m

from the adversary. If m = (i, r,m′)9 then send m′ over the port !inai,r.

In addition, in all cases but (i) and (ii), whenever a message m′ is received over a port
?outei,r with i not being corrupted, set outputri := m′; whenever a message m′ is received
over ?outai,r or over ?outei,r for a corrupted i, (m′, i) is forwarded to the adversary. Moreover,

7The SMPC abstraction is replaced by the dummy process 0r,in,F , which is tagged with the session
identifier r, the input channels in, and the function to be computed F .

8!inei,r is connected to the incoming port ?inei,r of party i in τr,F,c
9We implicitly assume that ∀i ∈ [1, n].µ(ini) /∈ [1, n].

107

4.5. COMPUTATIONAL SOUNDNESS

we do not send P to the adversary but the erasure of P in which all 0r,in,F are replaced by
0.

For any interactive machine A, we define ExecQ,A,τ,A(1k) as the interaction between
ExecQ,A,τ (1k) and A; the output of ExecQ,A,τ,A(1k) is the output of A.

We let AssertionssmpcP,A,τ,p,A(k) denote the distribution of sequences of assertion tuples of

the form ((F1, . . . , Fn), F, η, µ, P) raised in an interaction of ExecP,A,τ,A(1k) within the first
p(k) computation steps (jointly counted for A(1k) and ExecP,A,τ (1k)).

4.5. Computational soundness

Finally, in Section 4.5.6, we extend the embedding of the applied π-calculus into CoSP in
order to make our result compatible with all known CoSP results.

4.5.1. Computational safety

For defining computational safety, we first need to recall the logic for the security policies that
we are considering. The logic has to fulfill some standard properties such as monotonicity,
closure under substitution, and it should allow the replacement of equals by equals.

We assume a set Ds of deduction rules in the sequent calculus that define a deduction
relation `s.10 Let Γ be a set of formulas in the logic. We say that a formula F is entailed by
a premise Γ, denoted as Γ |=s F , if there is a proof tree (using Ds) such that the conclusion
of the deduction rule at the root of the tree is Γ `s F .The finite depth of a proof tree is
exploited in the proof of Lemma 24.

Following the approach of Backes, Hritcu and Maffei [BHM08b], we characterize destructor
application tests by introducing for each destructor an uninterpreted function symbol d# and
a predicate Red such that Red(d#(M1, . . . ,Mn),M) holds true only if d(M1, . . . ,Mn) = M
holds true, where Mi,M are terms.11 We could assume Ds to contain the following
deduction rule:

d(M1, . . . ,Mn) = M

`s Red(d#(M1, . . . ,Mn) = M
.

For the sake of a better presentation of the computational entailment relation, however, we
want to keep the names of the variables that have been replaced by terms. Therefore, we
introduce a mapping eval from variables to terms that just stores which variable has been
replaced by which term in the current process. Then, we represent the rule as

d(eval(v1), . . . , eval(vn)) = M

`s Red(d#(v1, . . . , vn) = v
,

with vi, v being variables only.

10We refer the interested reader to [GTL89]. The sequence calculus has been introduced by Gentzen in
1934 [Gen34].

11One minor difference is that in our setting destructors are partial functions and in [BHM08b] destructors
are defined via a reduction relation; in particular, destructors might be non-deterministic, i.e., relations.

108

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

Moreover, we assume Ds to contain rule for universal quantification:

Γ, C

{
x′

x

}
`s B

Γ, ∀x.C `s B
L∀

Γ `s C
{
x′

x

}
, B

Γ `s ∀x.C,B
R∀,

where x′ is a fresh variable. And, we assume analogous rules for existential quantification.

The computational entailment relation |=η,µ,A is based on the symbolic entailment
relation |=s. We define the computational entailment relation by the same inference
rules with the only difference that universal quantification indeed quantifies over all
bitstrings and all destructor application tests Red(d#(v1, . . . , vn), v) correspond to the check
Ad(cevalη,µ v1, . . . , cevalη,µ vn) = cevalη,µ v, where Ad is the computational implementation
of d.

Definition 41 (Computational entailment |=η,µ,A). Let `s be a symbolic entailment relation
that is inductively defined by a set of inference rules Ds. Let η and µ be variable and name
mappings, and let A be implementations. We define a set of inference rules Dη,µ,A as Ds

with the following modifications:

(a) Replace `s by `η,µ,A,

(b) replace
d(eval(v1), . . . , eval(vn)) = eval(v)

`s d(v1, . . . , vn) = v

by
Ad(cevalη,µ v1, . . . , cevalη,µ vn) = cevalη,µ v

`η,µ,A d(v1, . . . , vn) = v
,

(c) replace

Γ, C

{
x′

x

}
`s B

Γ, ∀x.C `s B
by

∀b ∈ {0, 1}∗ : Γ, C

{
x′

x

}
`η∪{x′:=b},µ,A B

Γ, ∀x.C `η,µ,A B
, and

(d) replace

Γ `s C
{
x′

x

}
, B

Γ `s ∀x.C,B
by

∀b ∈ {0, 1}∗ : Γ `η∪{x′:=b},µ,A C
{
x′

x

}
, B

Γ `η,µ,A ∀x.C,B
.

We say that a formula F is entailed by a premise Γ, denoted as Γ |=η,µ,A F , if there is a
proof tree of finite depth (using Dη,µ,A) such that the conclusion of the deduction rule at
the root of the tree is Γ `η,µ,A F .

For our computational soundness result it is important that an asserted or assumed
formula does quantify over arbitrary messages but only over protocol messages. This is
formalized by requiring that for any quantified variable x there is a predicate P that holds
x as an argument. We call such formulas well-formed.

Definition 42 (Well-formed formula). Let |=s be the entailment relation and Ds the set
of deduction rules from above. Let x, x′, xi denote variables, let p denote a predicate, and d
a destructor. Let F be formula over predicates p(x1, . . . , xm) and destructor application
tests d(x1, . . . , xm) = x′. We say that F is well-formed iff F has a proof tree of finite depth
(using Ds) and for all subformulas F ′ of F we have that

• if F ′ = ∀x.F ′′, we have F ′′ = ∀x.p(. . . , x, . . .)⇒ F ′′′, and
• if F ′ = ∃x.F ′′, we have F ′′ = ∃x.p(. . . , x, . . .) ∧ F ′′′.

109

4.5. COMPUTATIONAL SOUNDNESS

A note on well-formed formulas. This well-formedness condition might seem heavily
restrictive, but almost every formula can be easily converted into a well-formed formula.
For example, the general security policy

∀id, x, sid, z.
(
∧ni=1 Input(idi, xi, sid) ∧ id1 6= . . . 6= idn ∧ Frel

)
⇒ P(z, sid)

presented in Section 4.3 can be easily converted into a well-formed formula (given a free
predicate p):

∀id, x, sid, z.
(
∧ni=1 p

id
i (id) ∧ni=1 pi(x) ∧ psid(sid) ∧ pmcp(z)

∧ni=1 Input(idi, xi, sid) ∧ id1 6= . . . 6= idn ∧ Frel
)
⇒ P(z, sid).

This formula additionally requires that in the process at an appropriate place contains
assume pa(m) for each pa(m) that occurs in the formula.

For the computational soundness proof, we require all formulas to be well-formed.
Moreover, in tight correspondence to the UC model, we require session identifiers to
be unique. In addition, as we only consider static corruption, we need to require that the
private channels ini (occurring in an SMPC occurrence SMPC(adv , sidc, in,F)) are never
sent over a public channel. Hence, we require that a process only contains well-formed
formulas and for all subprocess SMPC(adv , sidc, in,F) that the context F is SMPC-suited
(see Definition 37), the channels ini are never sent over a public channel, every session
identifier is sent at most once over a channel sidc.

For the next definition, we need the following notation. We call a channel sidc that occurs
in an SMPC subprocess SMPC(adv , sidc, in,F) process a session identifier channel and a
channel ini that occurs in such an SMPC subprocess a party channel. A public channel is
a channel that is either free or a channel that has been sent over a public channel.

Definition 43 (Well-formed processes). A process P is well-formed if the following
conditions hold:

1. For all asserts assert F in P the formula F is a predicate and for all assumes
assume F the formula F is a well-formed formula.

2. For all subprocesses SMPC(adv , sidc, in,F) of P , F is an SMPC-suited context.
3. Every session identifier is only sent once over a session identifier channel sidc.
4. A non-free party channel ini (i.e., a term that contains ini) is never sent over a

public channel.

We call a process an atomic process if it does not contain any assumptions and only
assertions assert true and assert false.

The computational notion of robust safety depends on the computational notion of logical
entailment. We now introduce two definitions of robust computational safety, with respect
to Execπ and Exec, respectively.

Definition 44 (Robust computational safety). Let P be a process, A an implementation
of the destructors in P , and τ a family of secure multi-party computations. We say
that P is π-(resp. SMPC-)robustly computationally safe using A (resp. A, τ) iff for all

110

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

polynomial-time interactive machines A and all polynomials p,

Pr[for all ((F1, . . . , Fn), F, η, µ,Q) ∈ a, {F1, . . . , Fn} |=η,µ,A F : a← AssertionsπP,A,p,A(k)]

(resp.

Pr[for all ((F1, . . . , Fn), F, η, µ,Q) ∈ a, {F1, . . . , Fn} |=η,µ,A F : a← AssertionssmpcP,A,τ,p,A(k)]

)

is overwhelming in k.

A symbolic model is computationally sound if robust safety carries over to the computational
setting. This definition is used in our first theorem, which is parameterized over the non-
interactive primitives used in the protocol.

Definition 45 (Computationally sound model). Let A be a set of constructor and destructor
implementations. We say that a symbolic model (D,P) is computationally sound using A
iff for all P ∈ P such that P is robustly safe, P is π-robustly computationally safe using A.

Definition 46 (Well-formed symbolic models). A symbolic model (D,P) is called well-
formed if all processes P ∈ P are well-formed and P fulfills the following closure properties:

(i) If P ∈ P and P ′ is a subprocesses of P , then P ′ ∈ P.

(ii) If P ∈ P, then νn.P ∈ P for any name n.

(iii) If P ∈ P and P ′ is statically equivalent to P , then P ′ ∈ P.

(iv) If P ∈ P and P ′ is an erasure of P obtained by replacing each assumption assume F
with cp1〈v1〉 | . . . cpn〈vn〉, where vi is a quantified variable with guards pi in F , and
replacing each assert F ′ by

cp′1(w1).cp′m(wm).if d(v1, . . . , vs) = v then 0 else assert false

where d ∈ D and w1, . . . , wm are quantifies variables with guards p′1, . . . , p
′
m (respec-

tively) that occur in an assume F ′′ in P , then for this erasure P ′ we have νc. P,
where c denotes all freshly introduced channels.

(v) If P ∈ P and P = P1|P2, then for Q := if d(M) = N then assert false else 0|P2

we have Q ∈ P for any term M , N in the symbolic model and any destructor d ∈ D.

(vi) If P ∈ P and P = P1|P2, then for Q := if d(M) = N then 0 else assert false|P2

we have Q ∈ P for any term M , N in the symbolic model and any destructor d ∈ D.

4.5.2. Computational soundness for non-interactive primitives

In this section, show that computational soundness for trace properties in CoSP (as defined
in [BHU09]) implies computational soundness in our model. Leveraging the embedding of
the applied π calculus into CoSP [BHU09], we conclude that there is an implementation
A using which there is a computational sound abstraction for signatures and encryptions
in our model. We extend prior work [BHU09] in the CoSP framework with numbers and
arithmetics.

We model that numbers as symbolic bitstrings and arithmetic operations as destructors
on these bitstrings. In this way, we enforce a strict separation between numbers and

111

4.5. COMPUTATIONAL SOUNDNESS

cryptographic terms, such as signatures and keys. Thus, it is not possible to apply an
arithmetic operation on nonces, signatures, or encrypted messages. Due to this separation,
the impossibility result for computational soundness of XOR [BP05] does not apply. We
review the extended symbolic model in Section 4.5.2.1. We review the corresponding
implementation conditions in Section 4.5.2.2. As in [BHU09], we impose some standard
conditions on protocols to ensure that all encryptions and signatures are produced by using
fresh randomness and that secret keys are not sent around. A protocol satisfying these
conditions is called key-safe. We review these protocol conditions in Section 4.5.2.3. We
denote the resulting symbolic model as (DESA,PESA).

After reviewing and extending symbolic model, the implementation conditions, and the
protocol conditions, we show in Section 4.5.2.4 how to extend the computational soundness
proof to get the following result.

Theorem 4 (Computational soundness of (DESA,PESA)). If enhanced trapdoor permu-
tations exist, there is an length-regular implementation A such that (DESA,PESA) is a
computationally sound, well-formed model.

4.5.2.1. The symbolic model

We first specify the symbolic model M = (C,N,T,D,`):

• Constructors and nonces: Let C := {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2,
string0/1, string1/1, empty/0, garbageSig/2, garb/1, garbageEnc/2} and N := NP ∪
NE . Here NP and NE are countably infinite sets representing protocol and adversary
nonces, respectively. Intuitively, encryption, decryption, verification, and signing
keys are represented as ek(r), dk(r), vk(r), sk(r) with a nonce r (the randomness used
when generating the keys). enc(ek(r′),m, r) encrypts m using the encryption key
ek(r′) and randomness r. sig(sk(r′),m, r) is a signature of m using the signing key
sk(r′) and randomness r. The constructors string0 , string1 , and empty are used to
model arbitrary strings used as payload in a protocol (e.g., a bitstring 010 would be
encoded as string0 (string1 (string0 (empty)))). garb, garbageEnc, and garbageSig are
constructors necessary to express certain invalid terms the adversary may send, these
constructors are not used by the protocol.
• Message type: We define T as the set of all terms M matching the following grammar:

M ::= enc(ek(N),M,N) | ek(N) | dk(N) | sig(sk(N),M,N) | vk(N) | sk(N) |
pair(M,M) | S | N | garb(N) | garbageEnc(M,N) | garbageSig(M,N)

S ::= empty | string0(S) | string1(S)

where the nonterminal N stands for nonces.
• Destructors: D := {dec/2, isenc/1, isek/1, ekof /1, verify/2, issig/1, isvk/1,

vkof /2, fst/1, snd/1, unstring0/1, unstring1/1, equals/2, add/2, sub/2,mult/2, ge/2,
xor}. The destructors isek , isvk , isenc, and issig realize predicates to test whether
a term is an encryption key, verification key, ciphertext, or signature, respectively.
ekof extracts the encryption key from a ciphertext, vkof extracts the verification
key from a signature. dec(dk(r), c) decrypts the ciphertext c. verify(vk(r), s) verifies
the signature s with respect to the verification key vk(r) and returns the signed
message if successful. The destructors fst and snd are used to destruct pairs, and

112

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

unstring0(string0(s)) = s

unstring1(string1(s)) = s

normalize(s) = ῑ(ι(s))

add(stringi(s), stringj(s
′)) = ῑ(ι(stringi(s)) + ι(stringj(s

′)))

sub(stringi(s), stringj(s
′)) = ῑ(ι(stringi(s))− ι(stringj(s′)))

mult(stringi(s), stringj(s
′)) = ῑ(ι(stringi(s)) · ι(stringj(s′)))

ge(stringi(s), stringj(s
′)) = stringi(s) if ι(stringi(s)) ≥ ι(stringj(s′))

xor(stringi(s), empty) = stringi(s)

xor(empty, stringi(s)) = stringi(s)

xor(stringi(s), stringi(s
′)) = string0(xor(s, s′))

xor(stringi(s), string1−i(s
′)) = string1(xor(s, s′))

where i, j ∈ {0, 1}

dec(dk(t1), enc(ek(t1), t2, t3)) = t2

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageEnc(t1, t2)) = garbageEnc(t1, t2)

isek(ek(t)) = ek(t)

ekof (enc(ek(t1),m, t2)) = ek(t1)

ekof (garbageEnc(t1 , t2)) = t1

verify(vk(t1), sig(sk(t1), t2, t3)) = t2

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2)) = garbageSig(t1, t2)

isvk(vk(t1)) = vk(t1)

vkof (sig(sk(t1), t2, t3)) = vk(t1)

vkof (garbageSig(t1, t2)) = t1

fst(pair(t1, t2)) = t1

snd(pair(t1, t2)) = t2

equals(t1, t1) = t1

Figure 4.7.: Destructor Rules

m ∈ S
S ` m

N ∈ NE

S ` N
S ` t t ∈ T F ∈ C ∪D evalF (t) 6= ⊥

S ` evalF (t)

Figure 4.8.: Deduction rules for the symbolic model

the destructors unstring0 and unstring1 allow to parse payload-strings. (Destructors
ispair and isstring are not necessary, they can be emulated using fst , unstring i, and
equals(·, empty).)
The behavior of the destructors is given by the following rules; an application matching
none of these rules evaluates to ⊥. We define the functions ι from symbolic strings,
denoted as String to natural numbers, denoted as N. We use a standard binary

encoding of numbers: For s ∈ String , ι(s) :=
∑|m|

i=1 2i−1 · si, where si = 1 if the
ith string constructor is string1 and si = 0 if the ith string constructor is string0,
and, for n ∈ N, ῑ(n) denotes the be the corresponding encoding of the number n as
symbolic bitstring s ∈ String .
• Deduction relation: ` is the smallest relation satisfying the rules in Figure 4.8.

113

4.5. COMPUTATIONAL SOUNDNESS

4.5.2.2. Implementation conditions

Obtaining a computational soundness result for the symbolic model M requires its im-
plementation to use an IND-CCA2 secure encryption scheme and a strongly existentially
unforgeable signature scheme. More precisely, we require that (Aek , Adk), Aenc, and Adec

form the key generation, encryption and decryption algorithm of an IND-CCA2-secure
scheme; and that (Avk , Ask), Asig , and Averify form the key generation, signing, and verifica-
tion algorithm of a strongly existentially unforgeable signature scheme. Let Aisenc(m) = m
iff m is a ciphertext. (Only a syntactic check is performed; it is not necessary to check
whether m was correctly generated.) Aissig , Aisek , and Aisvk are defined analogously. Aekof

extracts the encryption key from a ciphertext, i.e., we assume that ciphertexts are tagged
with their encryption key. Similarly Avkof extracts the verification key from a signature,
and Averify can be used to extract the signed message from a signature, i.e., we assume
that signatures are tagged with their verification key and the signed message. Nonces are
implemented as (suitably tagged) random k-bit strings. Apair , Afst , and Asnd construct
and destruct pairs. We require that the implementation of the constructors are length
regular, i.e., the length of the result of applying a constructor depends only on the lengths
of the arguments. No restrictions are put on Agarb , AgarbageEnc, and AgarbageSig as these
are never actually used by the protocol. (The implementation of these functions need not
even fulfill equations like Aisenc(AgarbageEnc(x)) = AgarbageEnc(x).)

We require that the implementation A of the symbolic model M has the following

properties. We use a standard binary encoding of numbers, 〈m〉2 :=
∑|m|

i=1 2i−1 ·mi, where
mi is the ith bit of the string m, and let [n]2 be the corresponding encoding of the number
n as a bitstring.

1. A is an computational implementation of M in the sense of Definition 6.
2. There are disjoint and efficiently recognizable sets of bitstrings representing the types

nonces, ciphertexts, encryption keys, decryption keys, signatures, verification keys,
signing keys, pairs, and payload-strings. The set of all bitstrings of type nonce we
denote Noncesk.

12 (Here and in the following, k denotes the security parameter.)
3. The functions Aenc , Aek , Adk , Asig , Avk , Ask , Apair , Astring0

, and Astring1
are length-

regular. We call an n-ary function f length-regular if |mi| = |m′i| for i = 1, . . . , n
implies |f(m)| = |f(m′)|. All m ∈ Noncesk have the same length.

4. AN for N ∈ N returns a uniformly random r ∈ Noncesk.
5. Every image of Aenc is of type ciphertext, every image of Aek and Aekof is of type

encryption key, every image of Adk is of type decryption key, every image of Asig

is of type signature, every image of Avk and Avkof is of type verification key, every
image of Aempty , Astring0

, and Astring1
is of type payload-string.

6. For all m1,m2 ∈ {0, 1}∗∗ we have Afst(Apair (m1,m2)) = m1 and Asnd (Apair (m1,m2))
= m2. Every m of type pair is in the range of Apair . If m is not of type pair,
Afst(m) = Asnd (m) = ⊥.

7. For all m of type payload-string we have that Aunstringi (Astringi (m)) = m and
Aunstringi (Astringj (m)) = ⊥ for i, j ∈ {0, 1}, i 6= j. For m = empty or m not
of type payload-string, Aunstring0 (m) = Aunstring1 (m) = ⊥. Every m of type payload-
string is of the form m = Aunstring0 (m′) or m = Aunstring1 (m′) or m = empty for
some m′ of type payload-string. Moreover, for 〈m〉2 ≥ 〈m′〉2, we have Asub(m,m′) :=

12This would typically be the set of all k-bit strings with a tag denoting nonces.

114

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

[〈m〉2−〈m′〉2]2 and Age(m,m′) = m, and for 〈m〉2 < 〈m′〉2 we have Asub(m,m′) := ⊥
and Age(m,m′) := ⊥. Furthermore, we have Aadd (m,m′) := [〈m〉2 + 〈m′〉2]2.

8. Aekof (Aenc(p, x, y)) = p for all p of type encryption key, x ∈ {0, 1}∗∗, y ∈ Noncesk.
Aekof (e) 6= ⊥ for any e of type ciphertext and Aekof (e) = ⊥ for any e that is not of
type ciphertext.

9. Avkof (Asig(Ask (x), y, z)) = Avk (x) for all y ∈ {0, 1}∗∗, x, z ∈ Noncesk. Avkof (e) 6= ⊥
for any e of type signature and Avkof (e) = ⊥ for any e that is not of type signature.

10. Aenc(p,m, y) = ⊥ if p is not of type encryption key.
11. Adec(Adk (r),m) = ⊥ if r ∈ Noncesk and Aekof (m) 6= Aek (r). (This implies that the

encryption key is uniquely determined by the decryption key.)
12. Adec(Adk (r), Aenc(Aek (r),m, r′)) = m for all r, r′ ∈ Noncesk.
13. Averify(Avk (r), Asig(Ask (r),m, r′)) = m for all r, r′ ∈ Noncesk.
14. For all p, s ∈ {0, 1}∗∗ we have that Averify(p, s) 6= ⊥ implies Avkof (s) = p.
15. Aisek (x) = x for any x of type encryption key. Aisek (x) = ⊥ for any x not of type

encryption key.
16. Aisvk (x) = x for any x of type verification key. Aisvk (x) = ⊥ for any x not of type

verification key.
17. Aisenc(x) = x for any x of type ciphertext. Aisenc(x) = ⊥ for any x not of type

ciphertext.
18. Aissig(x) = x for any x of type signature. Aissig(x) = ⊥ for any x not of type

signature.
19. We define an encryption scheme (KeyGen,Enc,Dec) as follows: KeyGen picks a

random r ← Noncesk and returns (Aek (r), Adk (r)). Enc(p,m) picks a random r ←
Noncesk and returns Aenc(p,m, r). Dec(k, c) returns Adec(k, c). We require that then
(KeyGen,Enc,Dec) is IND-CCA secure.

20. We define a signature scheme (SKeyGen,Sig,Verify) as follows: SKeyGen picks a
random r ← Noncesk and returns (Avk (r), Ask (r)). Sig(p,m) picks a random r ←
Noncesk and returns Asig(p,m, r). Verify(p, s,m) returns 1 iff Averify(p, s) = m. We
require that then (SKeyGen, Sig,Verify) is strongly existentially unforgeable.

21. For all e of type encryption key and allm ∈ {0, 1}∗∗, the probability thatAenc(e,m, r) =
Aenc(e,m, r′) for uniformly chosen r, r′ ∈ Noncesk is negligible.

22. For all rs ∈ Noncesk and all m ∈ {0, 1}∗∗, the probability that Asig(Ask (rs),m, r) =
Asig(Ask (rs),m, r

′) for uniformly chosen r, r′ ∈ Noncesk is negligible.

Note that any IND-CCA secure encryption scheme and strongly existentially unforgeable
signature scheme can be transformed into an implementation satisfying the above conditions
by suitably tagging and padding the ciphertexts, signatures, and keys.

4.5.2.3. The Class of Key-safe Protocols

The computational soundness result we derive in this section requires that the CoSP protocol
satisfies certain constraints. In a nutshell, these constraints require that encryption, signing,
and key generation always use fresh randomness, that decryption only uses honestly
generated (i.e., through key generation) decryption keys, that only honestly generated keys
are used for signing, and that the protocol does not produce garbage terms. Decryption
and signing keys may not be sent around. (In particular, this avoids the so-called key-cycle
and key-commitment problems.) We call protocols satisfying these conditions key-safe. We
stress that key-safe protocols are not a requirement induced by our framework as such. In

115

4.5. COMPUTATIONAL SOUNDNESS

fact, requirements similar to key-safeness are standard and state-of-the art assumptions for
soundness results (either explicit or implicitly enforced by the modeling, see, e.g., [AR02;
BPW03a; MW04]).

A CoSP protocol is key-safe if it satisfies the following conditions:

1. The argument of every ek -, dk -, vk -, and sk -computation node and the third argument
of every enc- and sig-computation node is an N -computation node with N ∈ NP .
(Here and in the following, we call the nodes referenced by a protocol node its
arguments.) We call these N -computation nodes randomness nodes. Any two
randomness nodes on the same path are annotated with different nonces.

2. The argument of every string i-node (i ∈ {0, 1}) is either a stringj-node (j ∈ {0, 1})
or an empty-node.

3. Every computation node that is the argument of an ek -computation node or of a dk -
computation node on some path p occurs only as argument to ek - and dk -computation
nodes on that path p.

4. Every computation node that is the argument of a vk -computation node or of an sk -
computation node on some path p occurs only as argument to vk - and sk -computation
nodes on that path p.

5. Every computation node that is the third argument of an enc-computation node or
of a sig-computation node on some path p occurs exactly once as an argument in
that path p.

6. Every dk -computation node occurs only as the first argument of a dec-destructor
node.

7. The first argument of a dec-destructor node is a dk -computation node.
8. Every sk -computation node occurs only as the first argument of a sig-computation

node.
9. The first argument of a sig-computation node is an sk -computation node.

10. There are no computation nodes with the constructors garb, garbageEnc, garbageSig ,
or N ∈ NE .

4.5.2.4. The computational soundness proof

With the definition of the symbolic model, the implementation conditions, and the protocol
conditions at hand, we are finally in a position to discuss the slight modifications to the
original computational soundness proof [BHU09]. We do not need to change much from
the original proof since we add transparent terms that are completely independent of the
cryptographic operations.

Theorem 4. (Computational soundness of (DESA,PESA)) If enhanced trapdoor permu-
tations exist, there is an length-regular implementation A such that (DESA,PESA) is a
computationally sound, well-formed model.

Proof. Recall that by Theorem 1, it suffices to construct a simulator Sim that is Dolev-
Yao and indistinguishable. Since we only add destructors on payload strings (e.g.,
string1(string0(empty))) and a simulator only operates on messages, i.e., constructors
and nonces, the simulator does not need to be changed.

Since payload string do not hide information, i.e., they are transparent, the proof for
Dolev-Yaoness applies verbatim to our extended model. For the proof for indistinguishability

116

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

Adv

SMPC

interaction

non–SMPC

interaction

Execπ
P,A

SSim

reschedule

Figure 4.9.: The scheduling simulator SSim in interaction with the execution Execπ and
the adversary.

only Case 4 in Claim 4 in Lemma 4 has to be extended by the following line:

For F ∈ {add , sub,mult , ge} and m of type payload-string we have β(ι(m)) =
〈m〉2 ∈ N.

The rest of the proof applies verbatim to our extended model, which concludes the proof.

4.5.3. From the π-execution to the SMPC-execution

In this section, we prove that all computational robustness, i.e., trace properties, are
preserved from the computational π-execution (see Definition 39) to the computational
SMPC-execution (see Definition 40).

Let an occurrence of a subprocess SMPC(adv , sidc, in,F) in a process P be called
an SMPC session. Recall that the SMPC execution Exec for every SMPC session
SMPC(adv , sidc, in,F) does not reduce the subprocess SMPC(adv , sidc, in,F) itself
but interacts with a UC protocol, which we call the implementation of SMPC. The
lemma states that there is a family of ideal functionalities in interaction such that for all
well-formed processes P all valid assertions in the computational execution Execπ with
an implementation A also hold in the computational execution Exec with an implementa-
tion A and I (as an implementation of SMPC). The family of ideal functionalities I is
constructed in Construction 1.

The proof compares the computational execution Execπ with the computational execution
Exec that uses the ideal functionality I as the implementation of SMPC. More precisely,
let k be the security parameter and p be an arbitrary polynomial; we show that there is
a polynomially bounded function l and a machine SSim, called the scheduling simulator,
such that for all well-formed processes P , all implementations A, and all adversaries A we
have that the distribution AssertionsπP,A,(p+l),〈SSim,A〉(k) is statistically indistinguishable

from the distribution AssertionssmpcP,A,I,p,A(k) for all k.

Lemma 20. For every well-formed atomic P , there exists a family I of SMPC ideal
functionalities such that if P is π-robustly computationally safe using A and A is length-
regular (see Implementation Condition 3), then P is SMPC-robustly computationally safe
using A, I.

Proof Outline. Before we present the full proof, we first give a proof outline. We show
that there is a ppt simulator SSim that we can plug in between Execπ and the adversary.

117

4.5. COMPUTATIONAL SOUNDNESS

Such that for any process well-formed process P , for any adversary A the interaction with
the execution ExecπP,A together with SSim is indistinguishable from the interaction with
the execution ExecP,A,I (using the ideal functionality I) (see Figure 4.9). This simulator
SSim simply forwards the messages as long as the messages do not belong to the interaction
with an SMPC occurrence, i.e., as long as no subprocess SMPC(sidc, in,F) (for some
sidc, in, and F) is scheduled by the adversary. For all messages in an interaction of
an SMPC occurrence, SSim basically lets ExecπP,A behave like FF . In particular, SSim
schedules the same reduction strategy S as FF (see Section 4.4.1.2). Moreover, in order to
output the same leakage as I the scheduling simulator SSim needs to be able to compute
the length of a message given the appropriate term. As all implementation algorithms are
length-regular and the length of nonces is fixed, the scheduling simulator can efficiently
compute the length of a message given the corresponding term.

We show that the two interactions, between ExecπP,A, SSim and A and between ExecP.A,I
and A, are indistinguishable for any A.

4.5.4. The construction of the scheduling simulator

The scheduling simulator SSim basically schedules the reduction steps that correspond to
the action of I. SSim simulates against an adversary A the execution Exec while interacting
withExecπ. We stress that SSim does not have additional capabilities compared to a usual
adversary against Execπ.

As SSim does not know the bitstring η(sid) corresponding to the symbolic session
identifier sid from the beginning of the execution, SSim internally assigns an identifier
γ to every SMPC occurrence SMPC(adv , sidc, in,F) and tags in an internal copy of
the current process SMPC(adv , sidc, in,F) (and later on 0r,in,F) with γ, denoted as
SMPC(adv , sidc, in,F)γ and 0r,in,F as 0r,in,F ,γ .13

There is a discrepancy between the process that is executed by Execπ and the process
that the adversary expects from the simulation of Exec: In Exec every SMPC session is
replaced by 0r,in,F after initialization; in Execπ, on the other hand, every SMPC session
is treated as a regular subprocess. Therefore, for each SMPC(adv , sidc, in,F) occurrence
γ, the scheduling simulator stores the state of this occurrence in a process smpc state(γ).
Moreover, SSim stores the current process for the adversary as P̃ and keeps track of the
modifications as follows. SSim translates the evaluation context from the adversary by
replacing every SMPC(adv , sidc, in,F)γ (or 0r,in,F ,γ , respectively) by smpc state(γ).

Thereafter, SSim uses the translated evaluation context Ê to address the subprocess to
be reduced in the execution Execπ and sends appropriate evaluation contexts until the
process in Execπ is a desired state. At this point SSim updates P̃ such that it corresponds
to a reduction step in the execution Exec.

The process smpc state(γ) consists of a subprocess compute state(γ) for the current
state of F and a context smpc frame(γ)[•], i.e.,

smpc state(γ) := smpc frame(γ)[compute state(γ)].

smpc frame(γ)[•] can be characterized by the state of every party. Therefore, SSim
maintains a function stateπ with which SSim keeps track of the state stateπ(γ, i) of a party
i in an SMPC session γ. In Definition 47, we formally define the context smpc frame(γ)[•].
13Similar to the computational execution, SSim does not send 0r,in,F,γ to the adversary but only 0.

118

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

There is a yet another gap between I and SMPC: The ideal functionality I expects an
explicit command (i, s, deliver) for outputting the result; on the other hand, the process
SMPC(adv , sidc, in,F) expects an appropriate sequence of evaluation contexts. Moreover,
we need to maintain two partial mappings sessionid and µ̃. sessionid(γ) is in the course
of the execution assigned the real session identifier as soon as the upon receiving the first
accepted input, the real session identifier is leaked to the adversary. This mapping is used
to later on check, whether the adversary addresses the commands to the correct session. µ̃
stores the all channel bitstrings that the execution Execπ sends to the adversary, such as
the bitstrings for the private channels of the corrupted parties.

In some cases, SSim checks whether for a given term c there is an i such that cevalη,µ ini =
cevalη,µ c. Although SSim does not know η and µ, the simulator can efficiently perform
this check as it knows all intermediate processes and, hence, all reduction steps.

Characterizing the state of an SMPC session. For the construction of SSim we need
to characterize the different states of the distinguished process SMPC(adv , sidc, in,F).
This is done by a context, called smpc frame(γ)[•], that is defined in Definition 47. In
our abstraction, every party of a secure multi-party computation can be in the following
states: init, input, compute, and deliver. In the state init, the entire session is not
initialized yet; in the state input, the party expects an input; in the state compute, the
party is ready to start the main computation; and, in the state deliver, the party is ready
to deliver a message. These states are stored in a mapping stateπ (which is maintained by
SSim) such that stateπ(γ, i) is the state of party i in the session γ.

Definition 47 (smpc frame). Let a mapping stateπ from internal session identifiers
and party identifiers to states given. We assign a process to each state stateπ(γ, i). Let
α := (stateπ, γ, (adv, sidc, in,F)).

stateπ(γ, i) = input : inpi(α) ··= ini(xi, sid
′).adv〈sid′〉.

if sid = sid′ then lini〈xi〉
else inloopi〈sync()〉 | inputi

stateπ(γ, i) = compute : inpi(α) ··= lin1〈xi〉 | inputi
stateπ(γ, i) ∈ {deliver, init} : inpi(α) ··= inputi

We define the context initp(α) as initp(α)[•] ··= sidc(sid).νlin. νinloop.(•) if for all
i ∈ [1, |in|] stateπ(γ, i) = init and initp(α)[•] ··= • otherwise.

We define the context smpc frame(γ)[α] as follows.

smpc frame(α)[•] ··= initp(α)
[
inp1(α) | . . . | inpn(α) | •

]

In the construction of SSim, stateπ and (adv, sidc, in,F) are mostly clear from the
context; more precisely, in the construction stateπ is globally defined and for every γ
there is only one tuple (adv, sidc, in,F). Hence, if there is no ambiguity we also write
smpc frame(γ)[•] for smpc frame(α)[•].

The scheduling simulator keeps track of subprocesses Q in a process P ; this is done via
a context E such that E[Q] = P . As the process P might be reduced, we need for every
reduction step of the process an appropriate reduction step of the context E.

Definition 48 (Reduction of a context). Let P be a process, Q be a subprocess, and E
be the evaluation context such that E[Q] = P . We say that P is reduced to P ′ if there is

119

4.5. COMPUTATIONAL SOUNDNESS

a subprocess R of P and a corresponding evaluation context L such that L[R] = P and
there is a process R′ such that P ′ = L[R′]. We say that the evaluation context E is reduced
to E′ according to the reduction from P to P ′ if there is a context L′ with two distinct
holes such that L′[R][Q] = P , L′[R][•] = E[•], and L′[•][Q] = L[•] and L′[R′][Q] = P ′ and
L′[R′][•] = E′[•].

Construction of SSim. Before we present the actual construction of the scheduling simu-
lator, we introduce some notation for convenience. Throughout this section we use n for the
amount of parties in an SMPC occurrence, i.e., for an occurrence SMPC(adv , sidc, in,F)
we consider n to be |in|.

With abuse of notation, we denote the replacement of every occurrence of 0r,in,F ,γ in a
process P by smpc state(γ) as

P

{
smpc state(γ)

0r,in,F ,γ

}
.

Analogously, we write for an evaluation context E for the context in which each occurrence
of 0r,in,F ,γ is replaced by smpc state(γ) as

E

{
smpc state(γ)

0r,in,F ,γ

}
.

We use for a context Ẽ and a process P̃ the abbreviations Ê := Ẽ
{

smpc state(γ)
0r,in,F,γ

}
,

P̂ := P̃
{

smpc state(γ)
0r,in,F,γ

}
, and sidc(sid).SMPC′(adv , in,F) := SMPC(adv , sidc, in,F).

1. Upon receiving the initial process P0, set P̃ := P0. Enumerate every occurrence
SMPC(adv , sidc, in,F) with an internal session identifier γ, and tag this occurrence
SMPC(adv , sidc, in,F) in P̃ with γ. Let initially for each γ compute state(γ) :=
F , delivery(γ, i) := false, let sessionid(γ) be completely undefined, and let stateπ(γ, i)
:= init for all i ∈ [1, n]. For any γ let corrupt(γ, i) := true, if the corresponding ini
in SMPC(adv , sidc, in,F) is free; otherwise let corrupt(γ, i) := false.

Forward all bitstrings that are initially sent by the execution Execπ to the adversary.
In addition store all channel names in the partial mapping µ̃.

Then proceed as in 2.

2. Main loop: Let P be the last process that has been sent by the execution Execπ.
Check whether P̂ = P . If the check fails, stop the entire simulation. Otherwise, con-
struct the erasure of P̃ , i.e., remove in P̃ the tag γ from each SMPC(adv , sidc, in,F)
and remove the tag (r, in,F , γ) from each 0r,in,F ,γ . Send the erasure of P̃ to the
adversary A. Then, expect an evaluation context Ẽ. We distinguish the following
cases for Ẽ.

a) Ẽ schedules the initialization

• Evaluation context: P̃ = Ẽ[SMPC′(adv , in,F)γ]

• State check: Check whether stateπ(γ, i) := init for all i ∈ [1, n].

Schedule appropriate reduction steps until the current process in Execπ is

Ê[smpc frame(state ′π, γ, α)[compute state(γ)]],

120

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

where α := (adv, sidc, in,F) and state ′π(γ, i) := input for all i ∈ [1, n] and
state ′π coincides with stateπ on all other arguments.14

Set P̃ := Ẽ[0r,in,F ,γ], stateπ(γ, i) := input for all i ∈ [1, n].

b) Ẽ schedules an input to a corrupted party i.

• Evaluation context: P̃ = Ẽ[0r,in,F ,γ]

• State check: Request a bitstring m from the adversary. Check whether
m = (c, s, input,m′) and stateπ(γ, i) = input.

Schedule appropriate reduction steps until the current process in Execπ is

Ê[smpc frame(state ′π, γ, α)[compute state(γ)]],

where α := (adv, sidc, in,F) and state ′π(γ, i) := compute and state ′π coincides
with stateπ on all other arguments. In the first reduction step, the execution
Execπ requests a message and the bitstring for the channel ini. Upon such a
request of the execution, send (c, (m′, s)) in response. If the execution does not
accept the channel name c, i.e., if c 6= µ(ini), we schedule appropriate reduction
steps until the current process of Execπ is again

Ê[smpc frame(stateπ, γ, α)[compute state(γ)]].

Moreover, in that case we leave P̃ and stateπ(γ, i) unchanged.

If the execution accepts the channel name c, we proceed and check in case µ̃(ini)
is defined whether c = µ̃(ini); if µ̃(ini) is not defined set µ̃(ini) := c. If the check
fails, abort the entire simulation. Set channel(γ, i) := c. Execπ requests in a
later step the bitstring µ(adv) for the channel adv. Upon such a request, send
cadv and expect a bitstring s′ in response. Forward (s′, |m′|, i) to the adversary
and store the session identifier s′ that is sent to the adversary upon an accepted
input, i.e., set sessionid(γ) := s′. Reduce for all j 6= i for which context(γ, i)
is defined context(γ, j) according to the reduction steps that have just been
scheduled.

Set stateπ(γ, i) := compute, and let P̃ remain unchanged.

c) Ẽ schedules an input to an honest party i.

• Evaluation context: P̃ = Ẽ[c〈x, s〉.Q][0r,in,F ,γ]

• State check: Check whether there is an i ∈ [1, n] such that cevalη,µ c =
cevalη,µ ini, stateπ(γ, i) = input, and delivery(γ, i) = false.

Let Q′ := Q
{

smpc state(γ′)
0r,in,F,γ

}
. Schedule appropriate reduction steps until the

current process of Execπ is

Ê[smpc frame(state ′π, γ, α)[compute state(γ)]],

where α := (adv, sidc, in,F) and state ′π(γ, i) := compute and state ′π coincides
with stateπ on all other arguments.

Execπ requests in a later step the bitstring µ(adv) for the channel adv. Upon
such a request, send cadv and expect a bitstring s′ in response. Recall that all

14Recall that we have at this point compute state(γ) = F [deliver1 | . . . | delivern], as the session has
just been initialized.

121

4.5. COMPUTATIONAL SOUNDNESS

implementations are length-regular; as we know the length of the nonces, we can
compute the message length of any message. Let xi be the input term for party
i. We compute the length of the bitstring η(xi) corresponding to the input of
party i. Then, we send (s′, l, i) to the adversary and store the session identifier s′

that is sent to the adversary upon an accepted input, i.e., set sessionid(γ) := s′.
Reduce for all j 6= i for which context(γ, i) is defined context(γ, j) according to
the reduction steps that have just been scheduled.

Set stateπ(γ, i) := compute, and P̃ := Ẽ[Q][0r,in,F ,γ].

d) Start the main computation upon the first delivery command for a
party i.

• Evaluation context: P̃ = Ẽ[0r,in,F ,γ]

• State check: Request a bitstring m from the adversary. Check whether
s = sessionid(γ) and stateπ(γ, i) = compute for all i ∈ [1, n]. Moreover,
check whether (i) m = (i, s, deliver) or (ii) m = (c, s, deliver). In case
(ii), check furthermore whether there is an i ∈ [1, n] such that c = µ̃(ini).

Simulate the execution Execπ on the process

Q := compute state(γ) | lin1〈x1〉 | . . . | linn〈xn〉︸ ︷︷ ︸
=:Qlin

| in1(y′1, sid) | . . . | inn(y′n, sid)︸ ︷︷ ︸
=:Qin

against the fixed and efficiently computable reduction strategy S that is used
by FF (see Section 4.4.1.2) as follows:

– (an input is read) For every context E[•1][•2] = E′[•1] | E′′[•2] | Qin that is
sent by S such that E′′[P ′][lini〈xi〉] = Qlin for some P ′, send

E′′′[•1][•2] := Ê[inp1(α) | . . . | inpi−1(α) | •2
| inputi | inpi+1(α) | . . . | inpn(α) | E′[•1]]

to the execution Execπ, where α := (stateπ, γ, (adv, sidc, in,F)) and inpj(α)
is defined as in Definition 47. Receive an updated process

P ′ =: Ê[smpc frame(γ)[compute state(γ)]]

from the execution. If P ′ is unmodified (i.e., P ′ = E′′′[P ′][lini〈xi〉]]), send
compute state(γ) | Qlin | Qin as a response to E to the reduction strategy
S. Otherwise if P ′ = E′′′[P ′′][0]], send E′[P ′′] | E′′[0] | Qin as a response to
E to the reduction strategy S. Update Qlin := E′′[0] and reduce for all i
for which context(γ, i) is defined the context context(γ, i) according to the
reduction of compute state(γ) (see Definition 48). In all other cases, abort
the entire simulation of SSim.

– (a step inside F is performed) For every context E[•] = E′[•] | Qlin | Qin
that is sent by S, send Ê[smpc frame(γ)[E[•]]] to the execution. Receive
the updated process P ′ =: Ê[smpc frame(γ)[compute state(γ)]] from the
execution and send compute state(γ) | Qlin | Qin as a response to E to the
reduction strategy S. Reduce for all i for which context(γ, i) is defined the
context context(γ, i) according to the reduction of compute state(γ) (see
Definition 48). Do the same for an evaluation context E with two distinct
holes, i.e., for E[•1][•2] = E′[•1][•2] | Qlin | Qin.

122

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

– (an output is sent) For every context E[•1][•2] = E′[•1] | Qlin | E′′[•2] that is
sent by S such that E′′[ini(xi)] = Qin and compute state(γ) = E′[deliveri],
store context(γ, i) := E′[•]. Send E′[0] | Qlin | E′′[0] as a response to E to
the reduction strategy S. Update Qin := E′′[0] and reduce for all i for which
context(γ, i) is defined the context context(γ, i) according to the reduction of
compute state(γ) (see Definition 48).

Let P ′′ be the last process that has been sent by Execπ. Set stateπ(γ, i) :=
deliver for all i ∈ [1, n]. Update compute state(γ), i.e., set

Ê[smpc frame(γ)[compute state(γ)]] := P ′′.

Let P̃ remain unchanged.

Thereafter, proceed as in the case of a delivery command for corrupted parties
(case 2e).

e) The delivery command for a party i is sent.

• Evaluation context: P̃ = Ẽ[0r,in,F ,γ]

• State check: Request a bitstring m from the adversary. Check whether
s = sessionid(γ), and stateπ(γ, i) = deliver and either (i) m = (i, s,
deliver) or (ii) m = (c, s, deliver). In case (ii) additionally check whether
there is an i ∈ [1, n] such that µ̃(ini) = c.

In case (i), set delivery(γ, i) := true, stateπ(γ, i) = input, and let P̃ remain
unchanged.

In case (ii), schedule appropriate reduction steps until the current process of
Execπ is

Ê[smpc frame(state ′π, γ, α)[context(γ, i)[0]]],

where α := (adv, sidc, in,F) and state ′π(γ, i) := input and state ′π(γ′, j) :=
stateπ(γ′, j) for all (γ′, j) 6= (γ, i).

Upon a request from the execution Execπ for a bitstring, send µ̃(ini) to Execπ.
Expect a pair (m′, s′) and forward (m′, i) to the adversary. Reduce for all j 6= i
for which context(γ, i) is defined context(γ, j) according to the reduction steps
induced by Ê[smpc frame(γ)[context(γ, i)[•]]].
Let P ′ be the last process that has been sent by Execπ. Set Ê[smpc state(γ)] :=
P ′. Let P̃ remain unchanged. Set stateπ(γ, i) := input.

f) The output of party i is delivered to an honest party.

• Evaluation context: P̃ = Ẽ[c(x).Q][0r,in,F ,γ]

• State check: Check whether there is an i such that cevalη,µ c = cevalη,µ outi.
Check whether stateπ(γ, i) = input, delivery(γ, i) = true.

Let Q′ := Q
{

smpc state(γ′)
0r,in,F,γ

}
. In case (ii), schedule appropriate reduction steps

until the current process of Execπ is

Ê[Q′][smpc frame(state ′π, γ, α)[context(γ, i)[0]]],

where α := (adv, sidc, in,F) and state ′π(γ, i) := input and state ′π(γ′, j) :=
stateπ(γ′, j) for all (γ′, j) 6= (γ, i).

123

4.5. COMPUTATIONAL SOUNDNESS

Reduce for all j 6= i for which context(γ, i) is defined context(γ, j) according to
the reduction steps induced by Ê[smpc frame(γ)[context(γ, i)[•]]].
Let P ′ be the last process that has been sent by Execπ. Set P̃ := Ẽ[Q][0r,in,F ,γ]
and delivery(γ, i) := false.

g) P̃ = E[!Q]: For each bound variable and name in Q, choose fresh variables, or
name, from the same equivalence class, according to the same enumerations as
in Execπ, yielding a process Q′. For any SMPC(adv , sidc, in,F) occurrence in
Q, assign a fresh internal identifier γ and set for all i ∈ [1, n] stateπ(γ, i) = init,
compute state(γ) := F , delivery(γ, i) := false, corrupt(γ, i) := true if ini
is free in the initial process P0, and corrupt(γ, i) := false otherwise. Check
whether the process in response is equal to Ẽ[Q]{smpc state(γ)/0r,in,F,γ}. If the

check fails, abort; otherwise, set P̃ := E[E[Q′ | !Q].

h) P̃ = Ẽ[M(x).Q]: Request two bitstrings (c,m) from the adversary. Send to the
execution Ê. If Execπ requests two bitstrings, we send (c,m). Check whether
the process in response is equal to Ẽ[Q]{smpc state(γ)/0r,in,F,γ}. If the check

fails, abort; otherwise, set P̃ := E[Q].

i) P̃ = Ẽ[M〈N〉.Q]: Request a bitstring c from the adversary. Send to the
execution Ê. If the execution requests a bitstrings send c and expect a bitstring
m. Check whether the term N is actually a channel c. If the check succeeds,
set µ̃(c) := m. Send m to the adversary A.

Moreover, check whether the process in response is equal to
Ẽ[Q]{smpc state(γ)/0r,in,F,γ}. If the check fails, abort; otherwise, set P̃ := E[Q].

j) P̃ = Ẽ[νa.Q]: Send to the execution Ê. and check whether the process in
response is equal to Ẽ[Q]{smpc state(γ)/0r,in,F,γ}. If the check fails, abort; other-

wise, set P̃ := E[Q].

k) P̃ = Ẽ[M1〈N〉.P1][M2(x).P2]: Send to the execution Ê. and check whether the
process in response is equal to Ẽ[Q]{smpc state(γ)/0r,in,F,γ}. If the check fails,

abort; otherwise, set P̃ := Ẽ[P1][P2].

l) P̃ = Ẽ[let x = D in P1 else P2]: Send to the execution Ê and check whether the
process in response is equal to Ẽ[P ′′]{smpc state(γ)/0r,in,F,γ} with P ′′ ∈ {P1, P2}.
If the check fails, abort; otherwise, set P̃ := E[P ′′] with the matching P ′′.

m) P̃ = Ẽ[assert(F).Q]: Send to the execution Ê and check whether the process
in response is equal to Ẽ[Q]{smpc state(γ)/0r,in,F,γ}. If the check fails, abort;

otherwise, set P̃ := E[Q].

n) In all other cases do nothing.

A note on the network model. Recall that every time a party A sends a message
to a party B, the machine B is activated. Hence, upon activation by the execution, i.e.,
when SSim receives a process or a message from Execπ, or by the adversary, i.e., when
SSim receives an evaluation context or a message from A, it might happen that SSim first
finishes his actions from the previous round and only thereafter reads the new input from
the execution.

124

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

4.5.5. The proof of the soundness of SSim

The proof compares the parts of the internal state of ExecπP,A,〈SSim,A〉 with parts of the
internal state of ExecP,A,I,Adv, which is shown in Lemma 21. The proof proceeds by
induction over the evaluation contexts that A has sent. The sequence of internal states
that is being compared is defined in Definition 49.

We perform an induction over the internal states of the two settings. However, there are
slight technical mismatches between the two settings. These mismatches are not essential
to the proof and are removed in Definition 49where we define the two distributions over
the (adjusted) internal states. In Lemma 21, we show that these two distributions are
statistically indistinguishable.

Notation. For an SMPC occurrence smpc state(γ), we need for each i ∈ n the notion
of the input and the output variable of party i. Recall the process inpi from the smpc frame
(see Definition 47): inpi = Q|inputi. If there is a subprocess lini〈xi〉 in Q, then xi is called
the input variable of smpc state(γ). The output variable of party i in smpc state(γ) is
defined via context(γ, i). If context(γ, i) is defined and

smpc frame(γ)[context(γ, i)[deliveri]] = smpc state(γ),

then yi in ini〈yi, sid〉.inloopi〈sync()〉 is called the output variable of party i in smpc state(γ).

Let ⊥ be a distinguished error symbol. Moreover, for the sequence of internal states, we
enumerate all SMPC occurrences in ExecP,A,I,A with internal session identifiers γ in the
same way as the scheduling simulator SSim.

Definition 49 (Internal states). Let P be a process. Let A be a machine, called the
adversary. Let Exec be as in Definition 40, and Execπ be as in Definition 39. The
rth round of ExecP,A,I,A is the rth round of the main loop of Exec. The rth round of
ExecπP,A,〈SSim,A〉 is the rth round of the main loop of SSim.

• (m′r, n
′
r,mr, nr) Let m′r be the messages that are sent in ExecπP,A,〈SSim,A〉 to the

adversary A in the rth round and n′r be the messages that are sent by the adversary
A in the rth round; analogous with mr and nr for ExecP,A,I,A.

• (resultγ,ri , inputγ,ri) Let inputγ,ri := xi from the ideal functionality Iu,in,F ,γ (see Con-
struction 1).15 Analogously, let resultγ,ri := yi from the ideal functionality Iu,in,F ,γ.
On the other hand, for ExecπP,A,〈SSim,A〉 let xγ,ri and yγ,ri be the input and output

variable, respectively, of party i in smpc state(γ) in round r.

• (compute state) Let compute stateγr be the process that FF would extract from
stateF . If stateF = ∅ set compute stateγ0 := Fγ [0]. On the other hand, let

compute state′γr be the process compute state(γ)
{

deliveri
0

}
of SSim, i.e., for every

i every occurrence of a process deliveri is replaced by the empty process 0.

• (η′′, µ′′) η′′ and µ′′ are the variable and name mapping of Execπ restricted on
all variables and names, respectively, that are not locally bounded in a subprocess
smpc state. η and µ are the variable and name mapping, respectively, of Exec.

• (ηγ , µγ) Let Iγ denote the session in Exec that belongs to the internal session identifier
γ. The variable and name mappings ηγ and µγ are the mappings that FF in Iγ would

15In particular, inputγ,ri := ⊥, if xi is undefined.

125

4.5. COMPUTATIONAL SOUNDNESS

extract from stateF . The mappings η′γ and µ′γ are obtained by restricting η′ and µ′

to the variables and names, respectively, in smpc state(γ).

• (state ′π) Let state ′′π be the state mapping of SSim in round r. Then, let state ′π(γ, i) :=
⊥ if state ′′π(γ, i) = init and state ′π(γ, i) := state ′′π(γ, i) otherwise. On the other hand,
in Exec, let Iγ denote the session that belongs to the internal session identifier γ.
Let stateπ(γ, ·) be the state mapping of Iγ. If I has not been initialized yet, set
stateπ(γ, i) := ⊥ for all i ∈ [1, n].

Let Γ(r) be the set of all internal session identifiers in round r. Let

((ms, ns), (compute stateγs)γ∈Γ(r), state
s
π, (η

s, µs), (inputγ,s)γ∈Γ(r), (result
γ,s)γ∈Γ(r))

r
s=0

be the sequence of internal states of the execution ExecP,A,I,A up to the rth round. Let

((m′s, n
′
s), (compute state′γs)γ∈Γ(r), state

′
π
s
, (η′′

s
, µ′′

s
), (η′(xγ,s))γ∈Γ(r), (η

′(yγ,s))γ∈Γ(r))
r
s=0

be the sequence of internal states of the execution ExecπP,A,I,〈SSim,A〉 up to the rth round.

Let TAP,r be the distribution of the rth extended prefix of the execution ExecP,A,I,A and,

analogously, T ′AP,r be the distribution for ExecπP,A,〈SSim,A〉

For proving Lemma 20, we show that for all security parameters k and for all poly-
nomials p there is a polynomially bounded function l and a machine SSim such that
for all well-formed processes P , all implementations A, and all adversaries A we have
that the distribution AssertionsπP,A,(p+l),〈SSim,A〉(k) is statistically indistinguishable from

the distribution AssertionssmpcP,A,I,p,A(k). For proving the indistinguishability of these two
distributions over assertion tuples, we show an even stronger property: We show that even
the distributions over the sequences of internal states of both settings are statistically
indistinguishable. Lemma 21 is shown by an induction over the internal states of the two
settings.

Lemma 21. Let TDP,r and T ′DP,r be defined as in Definition 49. Then, for all machines D

and for all r ∈ N the two distributions TDP,r and T ′DP,r are statistically indistinguishable, i.e.,
for all (possibly unbounded) interactive machines D, all polynomials p, and all r ∈ N there
is a k0 ∈ N such that for all k > k0

∣∣∣∣Pr b = 1 : b← D(1k, t), t← TDP,r − Pr b = 1 : b← D(1k, t), t← T ′
D
P,r

∣∣∣∣ ≤ p(k)

holds true.

Proof. We prove the statement by induction on the round r of Main loop, of either the
execution Exec or the scheduling simulator SSim. More precisely, our induction hypothesis
is that the two distributions TDP,r−1 and T ′DP,r−1 are indistinguishable for any distinguisher
D. The processes that are sent to the adversary are indistinguishable as long as all checks
on expect in SSim succeed.

For r = 0, we only need to compare Start. In Start both Exec and Execπ only send the
free names and the initial process to the adversary. Moreover, the initially the current
process is the same in both settings, and we have for all γ

compute stateγ0 = compute state′γ0 = Fγ [0].

126

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

Hence, T0 and T ′0 are indistinguishable.

For r > 0, we assume that Tr−1 and T ′r−1 are statistically indistinguishable. Hence, all
previously sent subprocesses are indistinguishable in both settings. As we can see by the
construction of SSim, Exec, and Execπ, in all cases the check P = P̃ succeeds. Let P be
the process that has been sent to the adversary at the beginning of round r.

We distinguish the following cases for the evaluation context Ẽ that is sent by the adversary
in response to the last process P̃ that has been sent by SSim or Exec, respectively. Recall
that stateπ is maintained by I as well as by SSim. With abuse of notation, we denote both
stateπ and state ′π from Tr and T ′r, respectively, with the mapping stateπ in the following
case distinction.

(a) Ẽ schedules the initialization.

• Evaluation context: P̃ = Ẽ[SMPC′(adv , in,F)γ]

• State: stateπ(γ, i) := ⊥ for all i ∈ [1, n]

The scheduling simulator SSim sets state′π(γ, i) := input for all i ∈ [1, n]. On the other
hand, initially, the internal state of Ir,F is set to input. No other values in Tr and T ′r
change compared to the round r − 1; hence and by induction hypothesis, Tr and T ′r
are indistinguishable.

(b) Ẽ schedules an input of a corrupted party i.

• Evaluation context: P̃ = Ẽ[0r,in,F ,γ]

• State: A bitstring m has been requested from the adversary. Check whether
m = (c, s, input,m′), s = sessionid(γ), and stateπ(γ, i) = input.

The scheduling simulator first sends evaluation contexts such that the execution asks
for a channel name c, a message m′, and a session id s for ini(x

γ,r
i , sid), and, then, the

simulator sends (c, (s,m′)). In the two settings the probability that c = cevalη,µ ini
and sid = cevalη,µ sid

γ is the same, where η and µ denote the variable and the name
mapping of Exec or Execπ, respectively. If the two bitstrings are accepted, we have
η(xγ,pi) = m′. On the other hand, we know by the construction of I that inputpi = m′

holds true as well. By the induction hypothesis we know that Tr−1 and T ′r−1 are
computationally indistinguishable. As only the list of inputs differs r− 1 and r and we
have seen that ExecP,A accepts the inputs with the same probability as ExecπP,A,SSim

accepts the input, Tr and T ′r are computationally indistinguishable.

(c) Ẽ schedules an input for an honest party i.

• Evaluation context: P̃ = Ẽ[c〈x, s〉.Q][0r,in,F ,γ]

• State: There is an i ∈ [1, n] such that cevalη,µ c = cevalη,µ ini and stateπ(γ, i) =
input.

By construction of the computational ideal functionality, the computational ideal
functionality accepts if and only if SMPC accepts the input. Moreover, we know that
inputγ,ri = η(xγ,ri) and stateπ(γ, i) = compute. By induction hypothesis, we conclude
that Tr and T ′r are indistinguishable.

(d) Start the main computation before delivering the first result for party i.

• Evaluation context: (i) P̃ = Ẽ[0r,in,F ,γ] or (ii) P̃ = Ẽ[c(x).Q][0r,in,F ,γ]

• State: A bitstring m has been requested from the adversary. stateπ(γ, i) =
compute for all i ∈ [1, n]. Moreover, either (i) m = (c, s, deliver) and s =

127

4.5. COMPUTATIONAL SOUNDNESS

sessionid(γ) or (i) m = (i, s, deliver′) and s = sessionid(γ). In case (ii), check
additionally whether there is an i ∈ [1, |ini|] such that cevalη,µ c = cevalη,µ ini.

At this point there is a mismatch between the two settings: If in ExecP,A,I,A the
adversary sends a delivery request for a party that is uncorrupted party and for which
the channel name has not been already sent to the adversary, there is an exponentially
small chance of the adversary succeeding; in the communication with the scheduling
simulator, on the other hand, there is no chance of succeeding. However, this situation
only happens with exponentially small probability.

As a first step, let us note that by Definition 37 fv(F [0]) ⊆ ∅. η(fv(F [0])) is
contained in Tr−1 and η′(fv(F [0])) is contained in T ′r−1. Hence, by induction hypothesis,
η(fv(compute state(γ))) and η′(fv(compute state′(γ))) are indistinguishable.

I as well as SSim runs the main computation whenever deliver is scheduled and
stateπ(γ, i) = compute for all i ∈ [1, n] where in are the channels involved in the
session γ. Recall that I and SSim use the same reduction strategy and that this
reduction strategy schedules the same reduction steps. By induction hypothesis,
we know that stater−1

π , ηr−1
γ , µr−1

γ , compute stateγr−1 and state ′π
r−1, η′r−1

γ , µ′r−1
γ ,

compute state′γr−1 are indistinguishable.16

Since SSim as well as FF run Execπcompute state(γ),A, FF (inputγ,r1 , . . . , inputγ,rn , stateF)

=: (resultr1, . . . , result
r
n) and η′(yγ,r1), . . . , η′(yγ,rn) are indistinguishable for a distin-

guisher that is given Tr−1 or T ′r−1. Moreover, as compute stater−1 =
compute state′r−1 holds by induction hypothesis, compute stater = compute state′r.

Thereafter, we are in the case for delivery with corrupted parties or honest parties,
respectively.

(e) The delivery command for a party i is sent.

• Evaluation context: P̃ = Ẽ[0r,in,F ,γ]

• State: A bitstrings m has been requested from the adversary, stateπ(γ, i) =
deliver, and (i) m = (i, s, deliver) and s = sessionid(γ) or (ii) m = (c, s,
deliver) and s = sessionid(γ).

In case (i), we set in both settings stateπ(γ, i) to input. Hence, Tr and T ′r remain
indistinguishable.

In case (ii), in both settings the bitstring c is sent to the execution. If c = η(ini)
the result is sent to the adversary in both settings. Moreover, both settings set
stateπ(γ, i) := input.

By induction hypothesis, or as we have already seen in the case (d), we know that
these two results are computationally indistinguishable. Hence, we conclude that Tr
and T ′r are indistinguishable.

(f) The output of party i is delivered to an honest party.

• Evaluation context: P̃ = Ẽ[c(x).Q][0r,in,F ,γ]

• State: There is an i such that cevalη,µ c = cevalη,µ ini and stateπ(γ, i) = input.

We stress that the scheduling simulator can compute whether there is an i such that
cevalη,µ c = cevalη,µ ini.

16Formally, we consider the distribution obtained by projecting TDP,r−1 and T ′
D
P,r−1 to (stater−1

π , ηr−1
γ ,

µr−1
γ , compute stateγr−1) and (state ′π

r−1
, η′

r−1
γ , µ′

r−1
γ , compute state′

γ
r−1), respectively.

128

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

A Exec P

Adv

ea�

ea

a

e
ea�

eaA Adv Exec
a a

e
P

Figure 4.10.: The instantiation Figure 4.11.: The transformed setup

We have the invariant that delivery(γ, i) = true if and only if outputi is defined. Hence,
both ExecπP,A,〈SSim,D〉 and ExecP,A,I,D perform a message synchronization, i.e., the
message is output to the honest party.

By induction hypothesis resultγ,r−1
i and µ(yγ,ri) are indistinguishable; hence, ηr, µr

and η′′r, µ′′r are indistinguishable as well. Therefore, Tr and T ′r are indistinguishable
as well.

(g) In all other cases, either the scheduling simulator only replaces the unreduced SMPC
with the current state smpc state of Execπ in the evaluation context Ẽ and forwards
the modified evaluation context to Execπ, or both SSim and either Exec or I ignore
the evaluation context. Since Execπ coincides on these cases with Exec and the
scheduling simulator only forwards messages, Tr and T ′r are indistinguishable as well.

Finally, we prove the lemma. As a reminder, we restate the lemma:

Lemma 20. For every well-formed P , there exists a family I of SMPC ideal functionalities
such that if P is π-robustly computationally safe using A, then P is SMPC-robustly
computationally safe using A, I.

Proof of Lemma 20. In Lemma 21 we show that the distributions over the sequence of
processes that are sent to the adversary are indistinguishable. Hence, it suffices to solely
show that the messages inside the events are indistinguishable. But, as the two executions
coincide on all processes that do not contain SMPC, assertion tuples that contain message
that are distinguishable can be used to distinguish TDP,r from T ′DP,r which, however, is a
contradiction to Lemma 21.

4.5.6. Leveraging UC-realizability

As a next step, we show that if a protocol ρ UC realizes our ideal functionality I, then, ρ
is a sound implementation of SMPC as well.

Lemma 22 (Leveraging UC-realizability). Let ρ and I be two family of SMPC protocols
and ideal functionalities such that ρ UC-realizes I (i.e., ρsid,F ,c ∈ ρ iff Isid,F ,c ∈ I and
ρsid,F ,c UC-realizes Isid,F ,c). For every well-formed P , if P is π-robustly computationally
safe using A, I then P is SMPC-robustly computationally safe using A, ρ.

129

4.5. COMPUTATIONAL SOUNDNESS

Proof outline. Before, we present the full proof, we first present a proof overview. By
assumption we know that ρ UC realizes I; hence, there is for any ppt adversary a ppt
simulator such that for all environments the interaction between ρ and the adversary is
indistinguishable from the interaction between I and the simulator. We only consider a
dummy adversary that basically executes the commands of the environment. Moreover,
for our setting, we instantiate the environments as (the emulation of) a pair of machines:
the execution SMPC and a ppt machine that constitutes the adversary against SMPC,
called hereafter the distinguisher.

In Figure 4.10, P denotes the protocol, i.e., either ρ or F , respectively, Adv denotes the
adversary, i.e., the ppt adversary A from the real setting or the simulator Sim, respectively.
Moreover, the figures show the following connections (for a session r):

• e denotes the connections between the environment output ports !outei,r and incoming
ports of the environment ?outei,r and the environment input port !inei and outgoing
ports ?inei,r of the protocol (for any i ∈ [1, |in|),
• a denotes the connections between the adversary output ports !outai,r and incoming

port ?outai,r of the adversary and the adversary input ?inai,r and outgoing ports !inai,r
of the adversary,
• ea denotes the connections between the output ports of the distinguisher A and

input ports of the adversary for the distinguisher and the distinguisher A for the
adversary, respectively, and finally
• ea’ denotes the connections between the output ports of the execution and input ports

of the adversary for the execution and the execution for the adversary, respectively.

In the setting depicted in Figure 4.10, the UC protocol P directly communicates with
the adversary Adv. The distinguisher can only communicate via the dummy adversary
with the execution. The dummy adversary, forwards all messages of the form (i, s,m),
where i ∈ [1, n] to the i party of the protocol session s; all other message are redirected to
the execution. By assumption, the indistinguishability of the two interactions holds, i.e.,
between ρ and the dummy adversary and I and the simulator for the dummy adversary.

As a next step, we transform the setting such that we are in the final setting. We modify
the dummy adversary such that it redirects all messages to the execution (see Figure 4.11).
We can show that in this setting the two interactions are indistinguishable as well i.e., the
interaction between ρ and the dummy adversary and I and between the simulator for the
dummy adversary.

The full proof follows.

Proof. Let A be a set of constructor and destructor implementations. Then, we show
that for all processes Q in the applied π calculus and for all ppt machines A, hereafter
called the distinguisher, there is a ppt machine Sim such that for all ppt machines A the
following indistinguishability holds true for A the two distributions are indistinguishable
ExecQ,I,ρ,〈A,A〉 and ExecQ,I,I,〈Sim,A〉. This indistinguishability, in turn, implies that

∣∣∣∣Pr ((F1, . . . , Fn), F, η, µ) ∈ AssertionssmpcQ,A,I,p,〈Sim,A〉(k), {F1, . . . , Fn} |=η,µ,A F

− Pr ((F1, . . . , Fn), F, η, µ) ∈ AssertionssmpcQ,A,ρ,p,〈A,A〉(k), {F1, . . . , Fn} |=η,µ,A F

∣∣∣∣

is negligible. Hence, the statement follows.

130

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

The proof begins with the UC setting. As ρ UC realizes I, we know that for all
ppt adversaries M there is a simulator Sim such that for all ppt environments E the
following two settings are indistinguishable: first, P := ρsid,in,F and Adv := M and,
second, P := Isid,in,F and Adv := Sim. By the universal composability [Can01] and by

the assumption ρ
UC
≥ F , there is a simulator for the concurrent execution of all sessions.

Throughout the proof, we denote by Sim that simulator. The figures show, for clarity, only
the transformations on one protocol session, but we perform the transformations on all
sessions simultaneously.

As the UC realization property ensures that for all adversaries there is a valid simulator
for all environment, we can concentrate on one particular adversary and a subset of
all possible environments. In the course of the proof, we basically consider the dummy
adversary, called MD. Moreover, we split the environment E into two parts. The first
part constitutes a ppt distinguisher A, and the second part constitutes the computational
execution ExecQ,A. Then, we transform the environment E in several steps in which the
messages from the distinguisher A and the UC adversary Adv are redirected such that
after each transformation the two settings remain indistinguishable for A.

In Figure 4.10 and Figure 4.11, P denotes the protocol, i.e., either ρ or F , respectively,
Adv denotes the adversary, i.e., the ppt adversary A from the real setting or the simulator
Sim, respectively. Moreover, the figures show the following connections (for a session r):

• e denotes the connections between the environment output ports !outei,r and incoming
ports of the environment ?outei,r and the environment input port !inei,r and outgoing
ports ?inei,r of the protocol (for any i ∈ [1, |in|),

• a denotes the connections between the adversary output ports !outai,r and incoming
port ?outai,r of the adversary and the adversary input ?inai,r and outgoing ports !inai,r
of the adversary,

• ea denotes the connections between the output ports of the distinguisher A and
input ports of the adversary for the distinguisher and the distinguisher A for the
adversary, respectively, and finally

• ea’ denotes the connections between the output ports of the execution and input ports
of the adversary for the execution and the execution for the adversary, respectively.

The instantiation (Figure 4.10):. We consider a family of environments that consist
of two parts: a ppt distinguisher A and the computational SMPC execution ExecQ,A. The
distinguisher A can only communicate with the execution ExecQ,A and the UC adversary
Adv. The execution is modified in that all messages (i, s,m), which the execution would
usually send over an adversary port to the protocol, are ignored. Recall that we have a nested
scheduling order: Whenever a protocol party of the UC attacker is stops without sending
a message, the execution is activated. Whenever the execution stops the distinguisher is
activated.17

We restrict our attention to the UC adversary, hereafter called MD, that basically executes
the commands of the adversary. As we consider static corruption, the dummy adversary
only needs to forward messages. Upon a message m, MD checks whether m = (i, sid,m′)
and i ∈ [1, |in|], where sid is the session identifier of every party.18 If the check succeeds,

17Technically, these two machines are emulated by one master-machine that respects the constraints
mentioned.

18Recall that we assumed that the channel names are distinct from [1, n] for the maximal number of parties

131

4.5. COMPUTATIONAL SOUNDNESS

MD sends m′ over the port !inai . Otherwise, send m over ea′.

As ρ UC-realizes F , there is a simulator Sim for each ppt adversary such that the two
settings are indistinguishable for all environments E(A,ExecQ,A) where A is an arbitrary
ppt machine.

The transformed setup (Figure 4.11):. We change the setting such that all ports
from the protocol that have been connected to the adversary ports (a) are here connected
to the environment. Analogously, all ports from the adversary (a) that have been connected
to the protocol are here connected to the environment. In particular, all corrupted parties
do not redirect the messages to the UC adversary Adv anymore but send the messages to
the execution. Here, we consider the machine M ′D that internally runs MD and forwards
everything to MD. Whenever MD wants to send a message m′ over !inai,r, M

′
D sends

m := (i, sid,m′) to the execution. As M ′D reverts the effect of MD, effectively M ′D only
forwards every message from the distinguisher A. We do the same transformation for the
simulator SimMD

obtaining a simulator Sim′MD
.

Moreover, we consider usual execution ExecQ,A. In particular, the execution forwards
all messages that it receives over a port ?outai,r to the UC adversary M ′D. And, for every
message (i, s,m) that is received by the adversary, the execution forwards m over !inai,r.
We stress that the execution does not pay attention over which port a message has been
sent by the adversary; the execution processes all of them in the same way.

After these modification we effectively are in the situation in which A only communicates
with the adversary, the adversary only communicates with the execution, and the execution
communicates with the adversary and the protocol. The execution checks upon a message
over a channel ?outei whether i is corrupted. If the check succeeds, the execution forwards
the message to the adversary. Hence, the execution only forwards the messages that are
addressed to the adversary. Two settings, consequently, remain indistinguishable for A.
More precisely, given a successful distinguisher for the two settings in this transformed
setup, we can construct a successful distinguisher for the initial setup, which contradicts
assumption that ρi UC realizes Ii.

As M ′D merely forwards every message, we have shown that for any ppt distinguisher A the
following two settings are indistinguishable: ExecQ,A,Aρ,〈M ′D,A〉 and ExecQ,A,AI ,〈Sim′MD ,A〉

.

It remains to show that the following difference is negligible:

∣∣∣∣Pr ((F1, . . . , Fn), F, η, µ) ∈ AssertionssmpcQ,A,I,p,〈Sim,A〉(k), {F1, . . . , Fn} |=η,µ,A F

− Pr ((F1, . . . , Fn), F, η, µ) ∈ AssertionssmpcQ,A,ρ,p,〈A,A〉(k), {F1, . . . , Fn} |=η,µ,A F

∣∣∣∣.

The assumption tuples that are raised can only differ in the messages that they contain,
since the process is observable to the distinguisher. The two executions, however, only differ
in the implementation of SMPC; hence, it remains to show that the messages sent over e
are indistinguishable. Above, we showed that by the UC security, we can conclude that the
messages that are sent over e are indistinguishable in the two settings (see Figure 4.10). As
the execution is a polynomial-time machine, everything it computes out of indistinguishable
inputs remains indistinguishable. Hence, the statement follows.

in Q that perform a joint secure multi-party computation.

132

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

Extending the CoSP-embedding of the Applied π-calculus. The applied π calculus
that is considered in the CoSP-embedding is a variant of the calculus that we consider
in the current work: instead of assumes and asserts they only provide atomic events,
i.e., events that do not carry a message. Security properties are expressed as properties
over traces of atomic events. The operational semantics of their variant of the applied π
calculus comprises an additional rule for reducing events, and each reduction step may
be labelled by an event. With this notation, a process is said to satisfy a property if
for every reduction sequence the sequence of raised events is in the trace property. The
computational execution of the applied π calculus with events, presented in [BHU09], is
basically identical to Execπ with the difference that a sequence of events is output instead
of a sequence of assertion tuples. A process is said to computationally satisfy a trace
property if for any adversary the probability that the event trace is in the trace property
(in a polynomially long interaction) is overwhelming.

Throughout this section, we consider two versions of the applied π calculus: the applied
π calculus with atomic events, which is used in [BHU09], and the applied π calculus with
assumes and asserts, which is the calculus that is used in the present work.

We simply erase in a process P all occurrences of assert true and replace all occurrences
of assert false with event bad, obtaining a process T (P). The trace property Tp(P) then
simply requires that the event bad has not been raised. Then, the following corollary follows
immediately.

Corollary 1. There is a translation T from processes to processes and a translation Tp
from processes to traces such that the following holds true: For any well-formed process
P (in the applied π calculus with assumes and asserts) if P is robustly safe, then, T (P)
satisifies Tp(P). Moreover, whenever T (P) computationally satisfies Tp(P), P is robustly
computationally safe.

4.5.7. Plugging the results together

We now state the main computational soundness result of this work: the robust safety of
a process using non-interactive primitives and our SMPC abstraction carries over to the
computational setting, as long as the non-interactive primitives are computationally sound.
This result ensures that the verification technique from Section 4.3 provides computational
safety guarantees. We stress that the non-interactive primitives can be used both within
the SMPC abstractions and within the surrounding protocol.

In Section 4.5.2, we review the computational soundness result for encryption and
signatures using CoSP [BHU09]. This soundness result only holds for the class Pk of key-
safe protocols (e.g., secret keys are not leaked, there no key cycles, only fresh randomness
is used).

Given such a class of protocols P for which there is an implementation such that A
is a computationally sound abstraction using A, we show that subclass of well-formed
processes in P is a computationally sound abstraction using encryptions and signatures (see
Section 4.5.2). This result builds on and extends prior work on computational soundness
of the applied π-calculus [BHU09].

In [CLOS02] a general construction is given for realizing any ideal functionality, which
satisfies a particular well-formedness condition. Unfortunately, it turns out that their

133

4.5. COMPUTATIONAL SOUNDNESS

proof has a flaw. The problem with the construction is, basically, that their construction
transforms any ideal functionality into a circuit, and all parties jointly compute this circuit.
However, as they consider an attacker that controls the network, any potentially realizable
ideal functionality has to hand the message delivery over to the ideal attacker. In particular
the ideal functionality expects some message from the attacker for the message delivery.
In the circuit that they construct, however, they close all input ports from the attacker.
Hence, the circuit, which expects an order from the attacker for the message delivery, will
not output anything. Therefore, as the ideal setting sends an output but the realization
does not, an environment can simply distinguish the two settings. We propose a simple
fix: A well-formed ideal functionality, additionally, does not expect any message from
the adversary. And we construct a wrapping machine W(τ) that for a given well-formed
ideal functionality τ and executes τ , leak the message lengths of the inputs, and sends the
outputs upon a command from the ideal functionality. Then, we can apply the construction
of [CLOS02] on the ideal functionality τ , yielding a protocol ρτ , and prove, along the lines
of [CLOS02], that there is for any well-formed ideal functionality τ a protocol ρτ such that
ρ UC realizes W(τ).

Our ideal functionality Isid,F ,c constitutes such an ideal functionality W(τ), where τ is
the submachine that executes F and stores the state of F . With these modifications, we
are able to apply the result presented in [CLOS02].

Lemma 23. [CLOS02] Assume that enhanced trapdoor permutations exists. Then, for all
Isid,F ,c there exists a non-trivial protocol in the CRS-model that UC realizes Isid,F ,c in the
presence of malicious, static adversaries.

We stress that Lemma 22, and therefore also Theorem 5, holds for any secure multi-party
computation (SMPC) protocols that UC realizes our ideal functionality I. Other SMPC
protocols might be attractive for efficiency reasons. However, other SMPC protocols might
not realize the ideal functionality for any corruption scenario. Hence, they impose additional
protocol constraints in that they require that for all occurrences SMPC(adv , sidc, in,F)
only certain subsets of {in1, . . . , inn} are free.

As a next step, we show that computational soundness for atomic processes already suffices
for guaranteeing computational soundness for the large class of well-formed processes.

Lemma 24. Let P be a class of protocols. Assume there is an implementation A, ρ
such that for all atomic processes P ∈ P the robust safety of P implies the SMPC-robust
computational safety of P using A, ρ. Then also for all well-formed P ∈ P the robust safety
of P implies the SMPC-robust computational safety of P using A, ρ.

Proof. Let a be a sequence of assertion tuples such that Pr[a = a′ : a′ ← AssertionssmpcP,A,τ,p,A)]
is non-negligible. Then, for every assertion tuple t := ((F1,Fn), F, η, µ,Q) in a let Rt
be a corresponding reduction sequence from the initial process P to (Q, η, µ).

In the applied π-calculus, we apply the reduction sequence Rt to the initial process P
resulting in the same process Q (up to the renaming σ of the variables that has been
performed by the computational execution). We know by assumption that there is a
proof tree T of finite depth for the statement {F1, . . . , Fn} |=s F over symbolic terms (see
Definition 41). We define a proof tree T̂ based on T by applying the following modifications
recursively from the root to the leafs and by considering the fixpoint of this recursively
defined set:

134

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

(a) Replace

T

Γ, C

{
x′

x

}
`s B

Γ, ∀x.C `s B
by

∀b ∈ {0, 1}∗ :

T

{
η′ ∪ {x′ := b}

η′

}

Γ, C

{
x′

x

}
`η′∪{x′:=b},µ′,A B

Γ,∀x.C `η′,µ′,A B
,

(b) replace

T

Γ `η′,µ′,A C
{
x′

x

}
, A

Γ `s ∀x.C,A
by

∀b ∈ {0, 1}∗ :

T

{
η′ ∪ {x′ := b}

η′

}

Γ `η′∪{x′:=b},µ′,A C
{
x′

x

}
, A

Γ `η′,µ′,A ∀x.C,A
,

(c) replace
d(eval(v1), . . . , eval(vn)) = v

`s Red(d#(v1, . . . , vn), v)
by

Ad(cevalη′,µ′ σ(v1), . . . , cevalη′,µ′ σ(vn)) = cevalη′,µ′ σ(v)

`η′,µ′,A Red(d#(v1, . . . , vn), v)
, and finally

(d) replace all remaining `s by `η,µ,A.

We claim that this (possibly infinite) tree T̂ constitutes a proof tree for {F1, . . . , Fn} |=η,µ,A

F . Assume that there is a deduction step s that does not constitute a valid deduction step.
As T is of finite depth, T̂ is also of finite depth, and we can perform an induction over the
depth of the proof tree. In the induction proof, we distinguish the following cases:

(i) (s is a ∀-rule) By induction T
{
b
a

}
, is a proof tree and by construction s is valid.

(ii) (s 6= Ad(cevalη′,µ′ σ(v1), . . . , cevalη′,µ′ σ(vn)) = v

`η′,µ′,A Red(d#(v1, . . . , vn), v)
and s is not a ∀-rule) In this case,

there is a already in T a corresponding step s′ that is invalid, which is a contradiction
to the assumption that T is a valid proof tree.

(iii) (s =
Ad(cevalη′,µ′ v1, . . . , cevalη′,µ′ vn) = cevalη′,µ′ v

`η,µ,A Red(d#(v1, . . . , vn), v)
) As all formulas are well-formed,

we know that all quantified variables are messages that actually occur in the protocol.

We construct a process P̂ out of the process P that is robust safe but not robust
computationally safe. We introduce in P̂ the restricted channel names cv, cv1 , . . . , cvn .
As all formulas in the initial process P are well-formed, there is for each vi an
assumption assume Fj in Q that contains a predicate p that has vi as an argument,
i.e., p(. . . , vi, . . .). This assumption assume Fj also exists in the initial process P .
Replace in P this assume Fj with cvi〈vi〉 (analogously, for v). Then, we replace
assert F with the following process:

cv(v).cv1(v1).cvn(vn).if d(v1, . . . , vn) = v then assert true else assert false

Erase all other assert and assume statements. We observe that the resulting
process P̂ is robustly safe as we assumed that P is robustly safe. By assumption,
however, P̂ is not SMPC-robustly computationally safe, which is a contradiction to
the computational soundness of atomic processes.

We finally state our main computational soundness result. We apply a result of [CLOS02]

135

4.6. CONCLUSION

for UC-realizable multi-party computation protocols for virtually all ideal functionalities.
This result only holds under standard cryptographic assumptions. First, we assume that
for each session all parties share a commonly known random bitstring, called the common
reference string (CRS). Such a setup is called the CRS-model. Second, we assume that
enhanced trapdoor permutations exist, which roughly are permutations that are easy to
compute and hard to invert unless a secret trapdoor is known. Moreover, as also required
in other computational soundness results [BHU09; BU10], we require all implementations
A to be length-regular (see Section 4.5.3), i.e., the length of the output is easily computable
by the length of the input (see Section 4.5.3).

Theorem 5 (Computational soundness of symbolic SMPC). Let (D,P) be computation-
ally sound, well-formed model using A, where A is length-regular. If enhanced trapdoor
permutations exist, then there is a family ρ of SMPC implementations in the CRS-model
such that for each well-formed P ∈ P, the robust safety of P implies the SMPC-robust
computational safety of P using A, ρ.

Proof. The proof consists of four steps. Let atomic proceses be processes that only contain
assertions of the form assert false and do not contain assumption. We show in Lemma 20
that for each atomic process P the π-robust computational safety using A implies SMPC-
robust computational safety using A and I. In Lemma 22, we show for any two UC
protocols τ and ρ such that τ UC-realizes τ ′ the SMPC-robust computational safety of P
using A and τ ′ implies SMPC-robust computational safety using A and τ . In [CLOS02] it
has been shown that if enhanced trapdoor permutations exist there is a protocol ρ that
UC-realizes I in the CRS-model; hence, by applying Lemma 22 to ρ and I we obtain
SMPC-robust computational safety using A and ρ for all atomic processes P . In Lemma 24
we show for each class of protocols P if the robust safety of each atomic P ∈ calP implies
the SMPC-robust computational safety of P using A and ρ, then the robust safety of each
well-formed P ∈ P also implies the SMPC-robust computational safety of P using A and
ρ.

This theorem entails a computational soundness result for protocols based on encryptions,
signatures, and abstractions of secure multi-party computations

As a corollary of Theorem 5 and Theorem 4, we get the computational soundness of
protocols using SMPC, public-key encryption, signatures, and arithmetics, with such non-
interactive cryptographic primitives possibly used within both SMPC and the surrounding
protocol.

Corollary 2 (SMPC computational soundness with (DESA,PESA)). There is an imple-
mentation A and a family of UC-protocols τ such that for each well-formed P ∈ PESA, the
robust safety of P implies the SMPC-robust computational safety of P using A and τ .

4.6. Conclusion

We have presented an abstraction of SMPC in the applied π-calculus. We have shown that
the security of protocols based on this abstraction can be automatically verified using a
type system, and we have established computational soundness results for this abstraction
including SMPC that involve arbirtrary arithmetic operations. This is the first work to

136

CHAPTER 4. SECURE MULTI-PARTY COMPUTATION

tackle the abstraction, verification, and computational soundness of protocols based on an
interactive cryptographic primitive.

Our framework allows for the verification of protocols incorporating SMPC as a building
block. In particular, the type-checker ensures that the inputs provided by the participants
to the SMPC are well-formed and, after verifying the correctness of SMPC, the type-checker
obtains a characterization of the outputs (e.g., in the Millionaires problem, the output is
the identity of the participant providing the greatest input) that can be used to establish
global properties of the overall protocol. Our framework is general and covers SMPC based
on arithmetic operations as well as on cryptographic primitives.

This work focuses on trace properties, which include authenticity, integrity, authorization
policies, and weak secrecy (i.e., the attacker cannot compute a certain value)19. In the
next chapter, we extend our framework to uniformity, i.e. equivalence of protocols with
the same control flow.

19To symbolically model weak secrecy, one can add the process c(x).if x=n then assert false (where c is a
public channel) to check the secrecy of n: The protocol is robustly safe only if the attacker does not
learn n.

137

Chapter 5.

Computational Soundness for General
Interactive Primitives w.r.t. Equivalence
Properties

[This chapter is based on a work with Michael Backes and Tim Ruffing [BMR14]. I mainly
contributed to the computational soundness proof itself (Section 5.3 & Section 5.4). For
the sake of comprehensiveness, I also review the other parts of our work (Section 5.2).]

5.1. Motivation

Interactive cryptographic primitives, such as interactive zero-knowledge proofs [GMR89],
verifiable computation [VSBW13] or blind signatures [Cha82], are able to ensure sophis-
ticated security properties that are impossible to achieve for non-interactive primitives.
An example for a unique property in the interactive case is that for interactive zero-
knowledge proofs the verifier can not prove to a third party that the prover issued a
convincing proof. For such interactive primitives, Canetti, Backes, Pfitzmann, and Waidner
introduced frameworks for proving strong, composable security guarantees of interactive
primitives [BPW07; Can01]. Many cryptographic primitives were successfully proven to
have this strong universal composability guarantee [CGS08; CLOS02; Fis06; KO12].

There is a successful line of research that proves computational soundness for many
symbolic models, i.e., the absence of attacks against the symbolic abstraction implies
the absence of attacks in suitable cryptographic model. Most of these computational
soundness (CS) results against active attacks, however, have been specific to the class of
trace properties [BBU13; BCW13; BHU09; BMM10; BU10; CKKW06; CW05; CW11;
GGV08; JLM05; MW04], which is only sufficient as long as strong notions of privacy are
not considered, e.g., in particular for establishing various authentication properties. Only
few CS results are known for the class of equivalence properties against active attackers,
and these results either do not cover interactive primitives [BL06; BP04; BPW03a; CC08;
CCS12; CH11; CHKS12; SBBPW06] or do not allow to combine the DY model with
non-interactive primitives [KTG12].

Contribution. We prove for interactive primitives computational soundness for unifor-
mity, as long as these interactive primitive satisfy the cryptographic definition of universal
composability [Can01]. We compare symbolic bi-protocols that use ideal functionalities
with their computational counterparts that use the corresponding UC-secure realizations.
Given a Dolev-Yao model (for non-interactive primitives) that is computationally sound
for uniformity and given UC-secure interactive primitives, we show that the uniformity of

139

5.2. INTERACTIVE PRIMITIVES IN COSP

the symbolic bi-protocol implies the indistinguishability of the computational counterpart.
We stress that this result is parametric in the Dolev-Yao model, i.e., in the non-interactive
primitives.

5.2. Interactive Primitives in CoSP

An interactive primitives is a protocol for several parties that needs communication (i.e.,
interaction) among these parties to produce a result. Examples for widely deployed
interactive primitives, are key-agreement protocols (for establishing a symmetric session
key), secure channel protocols, (e.g., TLS), or consensus protocols (e.g., as in Bitcoin).
Less widely deployed but more sophisticated examples are ORAM protocols (for storing
data on a server while hiding the access patterns to the data), or SMPC protocols (for
jointly computing any function without revealing the private inputs).

Along the lines of CoSP, a straight-forward way of abstracting interactive primitives
(e.g., an SMPC scheme) would be to abstract each single message with Dolev-Yao style
abstractions, i.e., abstracting every cryptographic primitive (e.g., the secret sharing scheme
or the zero-knowledge proof scheme) as a Dolev-Yao style abstraction. While such a
piece-wise abstraction is computationally sound, it requires a computational soundness
result for all cryptographic primitives (i.e., all pieces) used in the interactive primitives.

Goldreich, Micali, and Widgerson introduced a abstraction for secure multi-party com-
putation schemes [GMW87] that has been generalized to any interactive cryptographic
protocol by Canetti [Can01] and Pfitzmann and Waidner [PW01]. This kind of abstraction
models an interactive primitive as a single machine, called an ideal functionality, that has
a direct (i.e., unobservable) connection to all participating parties.

In this section, we show how to model ideal functionality-style abstractions of interactive
primitives in the CoSP framework. Our proof strategy is to represent the ideal functionality
as a CoSP subprotocol that only contains computation nodes and then to derive a single
destructor for this CoSP subprotocol.

5.2.1. Ideal Functionalities

Before we are able to introduce ideal functionalities as CoSP subprotocols, we formulate
basic syntactic constraints on symbolic models that are essentially used to define both
the ideal functionalities and the protocols that call these functionalities. First, it should
be possible to construct pairs in the symbolic model. Second, we require that there is a
distinguished dummy term null() that can be tested to be equal to other terms. Note that
we only require the existence of certain constructors and destructors, but we do not impose
explicit semantic restrictions symbolically. However, Definition 51 formulates criteria for
the computational implementation of the required constructors and destructors.

Definition 50 (Symbolic conditions). A CoSP symbolic model M = (C,N,T,D) is
standard if it fulfills the following conditions.

1. There is a constructor pair/2 ∈ C as well as destructors fst/1, snd/2 ∈ D.
2. There is a constructor null/0 ∈ C as well as a destructor equals/2 ∈ D.
3. N = N′]NInt. We call NInt the set of nonces for interactive primitives.

140

CHAPTER 5. EQUIVALENCE PROPERTIES FOR INTERACTIVE PRIMITIVES

In the following definition, we require the computational implementations of standard
symbolic models to fulfill natural semantics for the mentioned constructors and destructors.
We will need the implementation Aequals of the destructor equals/2 only to express a unary
predicate P (x) ··= (Aequals(x,Anull()) 6= ⊥) on bitstrings x. Intuitively, Anull() is used in
certain contexts to indicate that a message belongs to communication with the the attacker.
As P provides only an interface to specify this decision, additional constraints on Aequals

are not necessary.1

Definition 51 (Implementation conditions). A CoSP computational implementation A
for the standard symbolic model M is standard if it fulfills the following conditions.

1. For all x, y ∈ {0, 1}∗, we have Afst(Apair (x, y)) = x and Asnd (Apair (x, y)) = y.
2. Anull() is of a unique type. That is, no algorithm AC in A with C ∈ C \ {null}

produces Anull () on any input.2

3. For all N ∈ NInt, the same algorithm AN is used.

We define ideal functionalities as parameterized CoSP protocols that can be formulated
as a single destructor, whose arguments correspond to the parameters of the protocol.
Loosely speaking, an application of the destructor corresponds to a message sent to the
UC machine implementing the ideal functionality. This allows another CoSP protocol to
use the ideal functionality like a subprotocol (similar to the UC framework) by applying
the destructor.

5.2.1.1. Communication

Technically, a CoSP ideal functionality F is a parameterized CoSP protocol that excepts
five parameters as inputs, denoted by state, sid , sender , input , and rand . We shall briefly
explain their meaning. Since algorithms in CoSP are stateless as opposed to machines
in the UC, we model the state explicitly by the first parameter. The second parameter
sid is interpreted as a session id. We stress that the functionality itself does not manage
sessions (this is done by the CoSP protocols that use F) and that there is no joint state
between different sessions. The only purpose of the sid parameter is to provide F access
to its session id.3 The sid parameter give F access to its session id. A message sent to
F is modeled by the parameters sender and input , where sender represents an identifier
of the sending party and input are the contents. If the message comes from the attacker,
sender is null(). Thus only one message from one party can be sent to F per invocation.
This form of communication is closely related to the sequential execution model in UC:
Whenever the execution is handed over to a machine M , e.g., an ideal functionality, only
one other machine M ′ may have written a message to a tape of M . Finally, rand should
be fresh randomness that F can use.

For the output, F contains result nodes. They indicate the end of an invocation of F and
encode its output. Note that there may be (infinite) paths through the protocol tree of F ,

1We have chosen this encoding of P because it fits existing computational soundness results [BHU09;
BMU12; BU10] that often have a destructor equals/2. In principle, our result works also with different
encodings of P .

2This can be achieved by a suitable tagging.
3In contrast to the UC framework [Can01], we need not require that F ignores invocations with a wrong

session id.

141

5.2. INTERACTIVE PRIMITIVES IN COSP

which do not contain any result nodes, however we will require that a symbolic execution
of F reaches a result after finitely many steps.

Every result node µr and its second argument node µ′r are computational nodes that
are both annotated with the pair constructor. The term (or bitstring) constructed by the
result node is to be interpreted as a triple, encoded using two pairs.4

5.2.1.2. Formal Definition

We want to define a destructor whose application basically corresponds to a symbolic
execution of F . The result of the destructor should be the same as the term produced
by the reached result node in F . To be able to define such a destructor, we require that
in a symbolic execution of F , a result node is reached for all possible terms that can be
passed as parameter, i.e., for all terms in the considered message type T. An alternative
approach would not consider all possible input terms but only a set of reasonable and
allowed parameter values. For instance, one could require that only nonces are valid values
for the rand parameter. However, the present formulation simplifies the formal treatment
significantly. Technically, a destructor is necessary because destructors (as defined in
Definition 1) are arbitrary partial functions that map terms to terms, whereas constructors
are formalized in CoSP only as symbols with an arity.

Recall that parameterized CoSP protocols are protocols that contain, in addition to
references to other nodes, references to parameters. These protocols can further contain
nodes without successors. Given terms t that instantiate the parameters of a parameterized
protocol Π, the symbolic execution of Π is defined canonically: Whenever a parameter
reference to parameter i is resolved, the parameter ti is used. This allows us to define an
ideal functionality in CoSP.

Definition 52 (CoSP ideal functionalities and ideal models). Suppose the symbolic model
M = (C,N,T,D) is standard.5 A CoSP ideal functionality is an efficient probabilistic
parameterized CoSP protocol on the symbolic model M that adheres to the following
conditions:

1. F references parameters state, sid, sender, input and rand.
2. F contains no other nodes than computation nodes that are not be annotated by a

nonce.
3. There is a subset result(F) of the nodes in F , such that µ ∈ result(F) implies that

there is no ν ′ ∈ result(F) on the path from µ to the root. The nodes in result(F) are
called result nodes of F . A result node has no successor.

4. Each result node µ is annotated with the constructor pair. The second referenced
node of µ is another computation node µ′ with the constructor pair.

5. The symbolic execution of F reaches a result nodes with all parameters tstate , tsid , tsender ,
tinput , trand ∈ T.

An ideal model F on M is a countable set such that each F ∈ F is a CoSP ideal functionality.

4A different encoding of triples, i.e., without pairs, would in principle also be possible. Again, we have
chosen the present formulation because existing computational soundness results typically include pairs.

5M is standard if it has a pair constructor as well as destructors fst and snd with the usual semantics;
and there is a distinguished dummy term null() that can be tested to be equal to other terms, using a
destructor equals.

142

CHAPTER 5. EQUIVALENCE PROPERTIES FOR INTERACTIVE PRIMITIVES

We denote an F ∈ F by ideal functionality if there is no danger of confusion with an
ideal functionality in UC sense.

5.2.1.3. Ideal Functionalities in the Symbolic Setting

Given the formalization of an ideal functionality F , defining the destructor that executes
F is straightforward.

Definition 53 (Ideal Destructor). Let an ideal model F based on the symbolic model
M = (C,N,T,D) be given. Let F ∈ F and F be the corresponding symbolic protocol of F .
The ideal destructor of F is defined as

DF : T5 → T with (tstate , tsid , tsender , tinput , trand) 7→ tres .

Here tres is the term produced by the reached result node in the symbolic execution of F
with parameters tstate , tsid , tsender , tinput , trand .

We need to show that DF is a deterministic as required by Definition 1: Definition 52
ensures that a result node νr is reached for all input terms. A step of the symbolic CoSP
execution is deterministic if the node processed in this step is a computation node or if it
is a non-deterministic node with exactly one successor. The body of an ideal functionality
contains only such nodes. Hence, until νr is reached, all full traces of F are identical up
to (and including) this node if we fix a parameter function fpar. In particular the term
computed by νr is uniquely determined.

If F is an ideal model based on M and an ideal destructor DF for every F in F, we
extend M by these destructors.

Definition 54 (Extended Symbolic Model). Let an ideal model F based on a symbolic
model M = (C,N,T,D) be given. We define the extended symbolic model with respect to
F as the symbolic model MF ··= (C,N,T,DF) where DF ··= D ∪ {DF/5 | F ∈ F}.

5.2.1.4. Ideal Functionalities in the Computational Setting

The extended symbolic model MF can be implemented by different computational imple-
mentations, in particular by a computational variant of an ideal destructor DF with F ∈ F,
and an implementation that is constructed using a real protocol which UC-realizes this
functionality. The former is formally specified by the following definition. It makes use
of the computational execution of parameterized protocols, which resolves references to
parameters by bitstrings passed at invocation time.

Definition 55 (Canonical Algorithm). Let an extended symbolic model MF based on M
and a computational implementation A of M be given. Furthermore, let E be a useless
attacker machine, i.e., E halts on the first activation. The canonical algorithm of F is the
algorithm

AF : N× ({0, 1}∗)5 → {0, 1}∗

with (bstate , bsid , bsender , binput , brand) 7→ bres ,

that runs the an unbounded variant of the computational execution of F and stops if
the first reached result node is reached. The output bres is the bitstring computed by the

143

5.2. INTERACTIVE PRIMITIVES IN COSP

that node. The first argument of AF represents the security parameter and the other
arguments determine the parameters. If the result node does not produce a bitstring, i.e.
the computation outputs ⊥, then the output of AF is also ⊥. If the result node produces ⊥
as output, then the output of AF is also ⊥.

By definition, F is efficient (in the sense of Definition 26) and the algorithms in A are
computable in polynomial time. Though, this does not imply that AF is polynomial-time.
In fact, it is possible that a result node is not reached and the execution may not terminate
at all.6 The following Lemma addresses these issues and formulates sufficient criteria
that may help to establish that a canonical algorithm AF is computable in deterministic
polynomial time. First, it suffices that the body of F is finitely high, which implies that
the length of the trace up to a result node does not depend on the parameters. Second, it
is possible to address the mentioned problem by putting a constraint on the output size of
the algorithms in A.

Lemma 25. Let a canonical algorithm AF of an ideal functionality F be given such that
AF uses the computational implementation A. Let M = (C,N,T,D) the symbolic model
that A is based on. Moreover, let n ··= k + l where k is the security parameter and l the
sum of the lengths of the other inputs of AF .

The algorithm AF is computable in deterministic polynomial time, if one of the following
conditions holds:

1. The body of F is finitely high, i.e. there is c ∈ N such that each result node is on
level c or above.

2. There is a polynomial p such that AF produces a trace whose number of entries is
bounded by p(n) and the output length of each algorithm (Ax)x∈C∪D is bounded by
n+O(1).

Proof. A CoSP protocol F is efficient (in the sense of Definition 26), i.e. its node identifiers
are computable in polynomial time by definition. Since A is a computational implementation
in the sense of definition Definition 6, all algorithms of A are computable in polynomial
time in k plus the length of their inputs. These inputs are taken from the range of the
functions f and fN mapping node identifiers to bitstrings in an execution of Nodes ?M,A,F ,Ed.
Thus, it suffices to show that the lengths of these are polynomially bounded (in k). This is
clear for the bitstrings in the range of fN as each of them is computed by a polynomial-time
algorithm AN with N ∈ N, whose running time does only depend on k. Regarding the
bitstrings in the range of f , we distinguish cases on the possible conditions in the Lemma.

1. Each algorithm Ax with x ∈ C ∪D produces output that is polynomial-sized in its
input size. As the algorithms are applied for at most c times to the inputs of length
l, the length of each bitstring in the range of f is bounded by a polynomial in n.

2. The condition immediately implies that the length of each bitstring in the range of f
is bounded by n+O(p(n)).

6Even if the number of processed nodes is polynomially bounded, the runtime can be super-polynomial, if
the functions in A produce too large outputs. For instance, consider the function F which accepts an
input of the form 1x and outputs 12x. Clearly, it is computable in deterministic polynomial time. A trace
of length O(k) can implement a k-fold application of F on the input 1, which yields the exponentially

long bitstring 12k

.

144

CHAPTER 5. EQUIVALENCE PROPERTIES FOR INTERACTIVE PRIMITIVES

Recall that Definition 54 extends a symbolic model M by ideal destructors DF , resulting in
a extended symbolic model MF . Analogously, we extend a computational implementation
A for M by the canonical algorithms AF , given that each AF is computable in polynomial-
time.

Definition 56 (Ideal Implementation). Let MF = (C,N,T,DF) be an extended symbolic
model based on M. Let a computational implementation A of M be given. Assume that
each canonical algorithms AF for F ∈ F is computable in deterministic polynomial time in
k+ l, where k is the security parameter and l the sum of the lengths of the other inputs. Let
ADF ··= AF for every F ∈ F. The computational implementation AF ··= (Ax)x∈C∪DF∪N

of MF is called ideal implementation.

The ideal implementation fulfills the definition of computational implementation of MF

because the algorithms of A and AF are required to be computable in polynomial time.

This is stated in the following lemma. In the proof, we construct a full protocol Π̂ from
Π as follows: Remove each computation nodes ν with destructor DF and replace it by the
tree of the ideal functionality F . The parameter references in F are changed to references
to the nodes referenced by ν and the subtree rooted at the yes-successor of ν is appended
to every result node of F . Π̂ ∈ P is a protocol on M, in particular it does not use DF .
This enables us to make use of a computationally sound implementation A of M.

Lemma 26 (Soundness of Ideal Implementations). Let MF be an extended symbolic model
based on M, and let A be a computationally sound implementation of M for protocols
Π ∈ P. Suppose that MF has the ideal implementation AF. Suppose that for every Π ∈ P ,
we have that the full protocol Π̂ is in P .

Then the ideal implementation AF is computationally sound for MF and P .

Proof. Let Π be an efficient CoSP bi-protocol in P that symbolically satisfies indistin-
guishability. By definition, every F ∈ F contains no input and output nodes, i.e., no
communication with the attacker is carried out. Thus the views of Π and the full protocol
Π̂ do not differ. This holds for the symbolic views as well as for the computational views.
We conclude that the symbolic indistinguishability of Π implies the symbolic indistin-
guishability of Π̂. Since A is a computationally sound implementation of the symbolic
model M and Π̂ ∈ P is a protocol on M (in particular it does not use DF) Π̂ with A is
computationally indistinguishable. As the computational views of Π̂ and Π are identical,
the computational indistinguishability of Π follows.

5.2.2. Realization of Implementations

Similarly to an algorithm AF , which executes an ideal functionality, we consider a
polynomial-time algorithm Aφ : N × ({0, 1}∗)5 → {0, 1}∗ that is a cryptographic re-
alization of the functionality. It is called real algorithm and provides the same interface
as an algorithm AF , i.e., it takes bitstrings bstate , bsid , bsender , binput , brand as input and
produces a triple (b′state , (breceiver , boutput)), encoded as nested pair, as output. Note that,
since the algorithms can output a state, each UC-protocol can be formulated as a real
algorithm. If we have a cryptographic realization for every F in an ideal model F, we can
extend an computational implementation A to a real implementation AΦ. AF and AΦ

145

5.2. INTERACTIVE PRIMITIVES IN COSP

allow us to compare an ideal implementation of the interactive primitives with a real one,
like in the UC framework.

We write Aθ to denote an algorithm that is either the canonical algorithm for an ideal
functionality θ or the algorithm for a real protocol θ. To make use of the UC framework,
we first bring interactive algorithms to the UC setting by constructing machines in the
UC sense from them. We write µ(θ) for the machine that runs Aθ internally. It basically
provides an interface to a computational CoSP execution that activates µ(θ) whenever
Aθ should be executed. In case that θ is a real algorithm, we require that it ensures that
µ(θ) separates the state of distinct protocol parties. This models de facto a real protocol
execution as the parties can only communicate via the attacker.

As we consider only UC protocol machines µ(θ) as well as variants thereof, we leave the
involved dummy parties in the definition of the ITM and in the remainder of the thesis
implicit, i.e. we face the protocol machine in an UC execution directly with the environment
and annotate each message with an explicit party identifier. Recall that the dummy parties
just relay messages from the environment to the UC ideal functionality and vice-versa. We
stress that this treatment is only a presentational decision; in fact it is straightforward to
reintroduce the dummy parties.

Definition 57 (Standard UC machine for a CoSP algorithm). Let Aθ be an algorithm that
uses the standard computational implementation A for the symbolic model M. Let AN be
the algorithm for the set of nonces for interactive primitives (as defined in Definition 51).
The interactive Turing machine (in the UC sense) µ(θ) runs the following algorithm:

• At the beginning of the first activation, initialize the variable state ··= Anull ().
• Whenever µ(Aθ) is activated with a message input, let sender be the party identifier

of the invoking party, or Anull() if the message comes from the adversary. Let
rand ··= AN (k) and res ··= AF(k, (state, sid , sender , input , rand)), where sid is the
session ID of µ(θ).

– If res = ⊥, send no to the environment and block all further activations.7

– Otherwise continue: Let state ′ ··= Afst(res), receiver ··= Asnd(Afst(res)) and
output ··= Asnd (Asnd (res)). Set state ··= state ′.
∗ If Aequals(receiver , Anull()) = ⊥, pass yes receiver , output to the environ-

ment.
∗ Else pass output to the adversary.

With the protocol machines at hand, we are able to inherit the notion of protocol
realization of the UC framework. We define that a real protocol φ realize an ideal
functionality F in terms of , if µ(φ) UC realizes µ(F).

Definition 58 (Realization). Let an extended symbolic model MF with a ideal implemen-
tation AF and a real implementation AΦ be given. For φ ∈ Φ and F ∈ F, the real protocol
φ realizes an ideal functionality F , if µ(φ) UC realizes µ(F). Furthermore, we say AΦ

realizes AF if for every real algorithm φ ∈ Φ for an ideal functionality F ∈ F, we have
that φ realizes F .

7Blocking can generally be realized by handing over the execution back to the activating party immediately.

146

CHAPTER 5. EQUIVALENCE PROPERTIES FOR INTERACTIVE PRIMITIVES

5.2.3. Good Ideal Functionalities and Real Protocols

Our goal is to consider a UC environment that runs a computational CoSP execution but
does not handle interactive nodes. Instead, this task should be delegated to a UC protocol
machine. For a interactive algorithm Aθ however, the standard machine µ(θ) does not
suffice for this purpose:

The CoSP execution only communicates with the attacker when an input or an output
node is reached in the protocol tree. Thus we have to ensure that not only the environment,
which is supposed to simulate the CoSP execution, but also the protocol machine µ(F) (or
µ(φ)) may not freely exchange messages with the attacker machine in the UC execution.
Moreover, in the ideal setting, µ(F) alone does not provide enough information to the
UC environment to simulate a CoSP execution, which outputs a computational view of a
CoSP bi-protocol. This view must contain the communication between F and the simulator,
which is not visible to the environment in the UC setting.

More precisely, a simulator can lie to the environment about the communication towards
the ideal functionality. In other words, the ideal functionality can exchange messages
with the simulator such that the state of other protocol entities is not touched. In a
CoSP protocol tree however, there is no formal notion of protocol entities. In fact, CoSP
abstracts away from them completely as only one protocol global state is encoded in the
node identifier and this encoding is left to the embedding of the considered calculus. Thus
it is not clear how to state formally that only the states of some protocol entities have
changed.

Definition 59 (honest machine & CoSP compatible machine). Given a machine µ(ρ) for
an interactive algorithm Aρ, the corresponding honest machine µ̃(ρ) internally runs µ(ρ)
and relays the communication with the following exception: If µ(ρ) generates output for
the adversary, it is not forwarded, but stored. Instead, a subroutine output output ready

is passed to the environment and all messages from the environment or the adversary are
blocked8 until the environment sends a subroutine input deliver. Then the stored message
is passed to the adversary.

Moreover, we define for a given µ(ρ) for an interactive algorithm Aρ, the corresponding
CoSP compatible machine µ̂(ρ) that internally runs µ(ρ) and relays the communication
with the following two exceptions. 1) If µ(ρ) generates output m for the adversary, it is
not forwarded, but stored. Instead, a subroutine output (output ready, m) is passed to the
environment. 2) If µ(ρ) receives a message m from the adversary, it stores this messages,
informs the environment with input ready,m, waits for a deliver messages from the
environment (and ignores all other messages), and only then forwards m to µ(ρ).

If the honest machine is used, the environment is informed before giving output to the
adversary. Then the environment is forced to let µ̃(ρ) deliver the output to the adversary
explicitly. This is similar to a computational CoSP execution with Aρ where communication
with the adversary can be observed in the views and the sent message is not available to
the adversary until a special output node is reached.

Definition 60 (Condition for the ideal functionality). Let F be an ideal functionality
using the computational implementation A, and let AN be the algorithm used for the nonces

8Blocking can generally be realized by handing over the execution back to the activating party immediately.

147

5.2. INTERACTIVE PRIMITIVES IN COSP

for interactive primitives (see Definition 51). Consider an execution of AF such that
res ··= AF (state, sid , sender , input , rand) with the following properties:

• state, sid , input ∈ {0, 1}∗
• sender = Anull(), i.e. the execution is initiated by a message from the adversary

machine
• rand ··= AN (), i.e. rand is drawn according to AN

F is good for A if the following condition holds for each such execution of AF :

• If and only if input = Anull (), we have res 6= ⊥ and Aequals(receiver , Anull ()). In that
case, we say that AF has received a dummy message from the adversary machine.
• For invocations by dummy messages, we additionally require state ′ = state and

output = Anull(), where state ′ ··= Afst(res) and receiver ··= Asnd(Afst(res)). That
is, AF does not fail but ignores the invocation completely and sends Anull() to the
adversary machine.

Another problem is a converse situation: Suppose that during an execution in the real
setting, the honest machine µ̃(φ) reports output ready to the environment, because µ(φ)
has generated a message for the adversary, whereas µ(F) in the ideal setting generates true
subroutine output s. If µ̃(φ) has been activated by a message from the dummy adversary
Ad, then the simulator S has been instructed by the environment to relay this message to
the protocol machine. Thus S has been activated and is able to send a dummy message
to µ̃(F), which delays the subroutine output such that in both settings, output ready is
reported to the environment. However, this is not possible in the case that µ̃(φ) has not
been invoked by the adversary. Consequently, Definition 61 excludes this case.

Definition 61 (Condition for the real protocol). Let φ be a real protocol, and let A be a
standard computational implementation. Moreover, let AN be the algorithm used for the
nonces for interactive primitives (see Definition 51). Consider an execution of φ such that
res ··= φ(state1, sid , sender , input , rand) with the following properties:

• state1, sid , input ∈ {0, 1}∗
• sender 6= Anull (), i.e. the execution is not initiated by a message from the adversary
• rand ··= AN (), i.e. rand is drawn according to AN

φ is good for A if for each such execution of φ, it holds that

• res 6= ⊥ and
• destination = network.

The condition in Definition 61 for a real protocol φ can also be expressed as a condition
on the corresponding real algorithm Aφ.

Lemma 27. Let φ be a real protocol, and let A be a standard computational imple-
mentation. Moreover, let AN be the algorithm used for the nonces for interactive prim-
itives (see Definition 51). Consider an execution of the real algorithm Aφ such that
res ··= Aφ(state, sid , sender , input , rand) with the following properties:

• state, sid , input ∈ {0, 1}∗
• sender 6= Anull (), i.e. the execution is not initiated by a message from the adversary
• rand ··= AN (), i.e. rand is drawn according to AN

If φ is good for A, then for each such execution of Aφ, it holds that

148

CHAPTER 5. EQUIVALENCE PROPERTIES FOR INTERACTIVE PRIMITIVES

• res 6= ⊥ and
• Aequals(receiver , Anull ()) 6= ⊥ with receiver ··= Asnd (Afst(res)), i.e. the receiver is the

adversary.

Proof. The claim follows immediately by inspection of Definition 61. Particularly, the real
algorithm Aφ sets receiver ··= Anull () if destination = network.

We stress that both conditions are rather technical requirements instead of severe
restrictions. The conditions are fulfilled by a wide range of primitives, or can often be
achieved by a trivial reformulation of the ideal functionality or the real protocol. The
following paragraphs discuss these reformulations in more detail.

Immediate outputs. Let φ be real protocol. If φ gets inputs from a protocol party
Pin, it is not able to pass a output immediately to a different party Pout 6= Pin without
having to communicate via the network (the adversary) in between. Thus a so-called
immediate output is only possible back to Pin. That is, Definition 61 basically imposes
the restriction that subroutine output cannot be given immediately back to Pin when φ
received subroutine input from φ. This essentially means that φ (and also F if φ realizes
F) must be formulated such that the results of the protocol are output whenever they are
locally determined for a party. That is, the outputs of φ need not be requested through an
interface; the reply to such a request would be an immediate output. This is a natural
assumption for interactive primitives, where cryptographic operations do not take place
only locally as it is the case for encryptions or digital signatures for instance. Indeed, the
ideal functionalities for public key encryptions and signatures proposed by Canetti use
immediate outputs, see [Can01] for a general discussion of immediate outputs.

Corruption. Our approach can be used with different corruption models. However, to
be compatible with the conditions in Definitions 60 and 61, we treat adaptive corruption
formally slightly different from the original UC framework. In particular, the real protocol
and the ideal functionality have to be formulated using the following conventions (for the
byzantine corruption model): Whenever a party in the real protocol is corrupted, it reports
that facts to the environment. Only if the environment acknowledges immediately back
to the party, i.e. from he view of the party only if it is activated by the environment the
next time, the party sends its entire internal state to the adversary. This requirement
ensures that the simulator in the ideal world is not activated immediately after it has
sent the corruption request to the ideal functionality, which would be excluded by the
condition for the ideal functionality. Note that this is only a reformulation and does not
affect the original UC model at all: w.l.o.g. consider the case that we are dealing with the
dummy adversary. Then the environment will know exactly when a party will report that
it has just been corrupted because the environment has sent the corresponding corruption
request through the dummy adversary. Moreover, we can assume that the environment
always acknowledges the corruption, because the environment does only gain additional
information by this step and the rest of the protocol does not make progress meanwhile.
Ideal functionalities usually require that inputs from a corrupted protocol party P can still
be modified by the adversary even if they are already sent to the ideal functionality. This
is the case whenever there is nothing written onto tapes of other machines that binds P to
the input. Typically, the functionalities are formulated in a way that allows the adversary
to send a message to the ideal functionality that contains modified inputs of P at any point

149

5.2. INTERACTIVE PRIMITIVES IN COSP

after the corruption and before the value is committed to. Such a message would typically
not generate subroutine output and thus violate the condition for the ideal functionality.
However, it is possible to formalize meaningful ideal functionalities in a way that requires
the simulator to provide the modified inputs exactly when the subroutine output (that is
delayed in the case of interactive protocols) is created.

Definition 62 (UC Adversary for CoSP Adversary). Given a CoSP adversary machine
E, we define the corresponding UC adversary machine UC-Adv(E) as follows:

• Run E internally and forward the communication as described in the following items.
• If E sends an input for an interactive input node,9 as defined by Item 4 in Defi-

nition 64, deliver it to the machine µ̃sid(φ). Otherwise, relay the message to the
environment.
• Write all received message on the input tape of E, regardless of their origin.

Recall that the overall goal is as follows: First, we implement a CoSP computational
execution with a real protocol φ in the UC framework. If we assume that φ realizes F , there
is a simulator for the UC execution with F . The next step is to interpret this UC execution
again in the CoSP setting. Thus we also have to transform the UC simulator to the CoSP
adversary. This is done by the next definition.

Definition 63 (CoSP Adversary for UC Adversary). Given a UC adversary machine A,
we define the corresponding CoSP adversary machine CoSP-Adv(A) as follows:

• Run A internally and forward the communication as described in the following items.
• Relay all messages generated by A to the computational CoSP execution, regardless

of the tape they have been written on.
• Whenever a message m is received from the computational CoSP execution because

an interactive output has been reached,9 write m to the communication tape of A,
where A expects messages from a protocol machine. Other messages m′ from the
computational CoSP execution are written to the input tape of A, where A expects
messages from an environment.

Lemma 28. Suppose that the real protocol φ is good and the ideal functionality F is good.
Further suppose that µ(φ) UC-realizes µ(F). Then the honest machine µ̃(φ) UC-realizes
the honest machine µ̃(F).

Proof. Let Z̃ an arbitrary polynomial-time UC environment. As µ(φ) realizes µ(F), there
is a valid simulator S for the dummy adversary Ad. The main part of the proof compares
the executions of Execµ̃(F),S,Z̃ , Execµ(F),S,Z , Execµ(φ),Ad,Z and Execµ̃(φ),Ad,Z̃ , where Z is an

environment which internally runs Z̃. Z hides the syntactic differences between the honest
machines µ̃ and the standard machines µ, i.e. the messages output ready and deliver,
by acting as a wrapper for Z̃. The considered executions are depicted in Figure 5.1. We
prove that Z̃ cannot distinguish these four executions. In particular, this environment
cannot distinguish Execµ̃(F),S,Z̃ and Execµ̃(φ),Ad,Z̃ . In other words, S is also valid simulator

for the executions with the honest machines, and µ̃(φ) UC realizes µ̃(F).

The conditions for the ideal functionality F (Definition 60) ensure that F , and thus µ(F),
produces subroutine output if and only it receives a dummy message. Dummy messages

9This case can detected, and sid as well as φ can be computed because of Item 6 in Definition 64.

150

CHAPTER 5. EQUIVALENCE PROPERTIES FOR INTERACTIVE PRIMITIVES

Z

Z̃

S µ̃(F) µ̃(ρ)Ad

µ(ρ)AdS µ(F)

Figure 5.1.: The considered executions in the proof of Lemma 28

do not have any effect on the state of the machines in the network, since the activated
machine immediately hands back to S without sending any information. That is, the
validity of S does not depend on the dummy messages it sends to µ̃(F). Thus, without
loss of generality, we may assume that S sends a dummy message to µ(F) if and only if S
is instructed to send a message to the protocol but instead would send a message to the
environment Z directly. This implies that S activates µ(F) whenever it is instructed by Z
to relay a message to the protocol, i.e. whenever the dummy adversary Ad activates µ(φ).

We distinguish cases on the possible actions of Z̃ and the reaction of the machine activated
after Z̃. First, consider the case that Z̃ instructs the respective adversary machine to
deliver a message to the protocol, and that µ̃(φ) as well as µ(φ), respectively, generate
subroutine output. In the ideal settings, assume for contradiction that S generates a
message for the environment. Then the environment Z is able to distinguish Execµ(φ),Ad,Z
and Execµ(F),S,Z ; in the former setting Z has received a message from µ(ρ) whereas in
the latter, the origin of the received the message is S. This contradicts the validity of S,
which hence sends a message to µ(F). By construction, this is no dummy message. Thus
Definition 60 guarantees that the internal instance of µ(F) does not directly reply to S.
Such a reply would be observable since µ̃(F) would report output ready. Instead, µ(F)
generates subroutine output, which is relayed to Z̃ by µ̃(F). As S is a valid simulator for
µ(F), this output is indistinguishable from the output given in the real settings.

Second, assume that we are in the case that µ(φ), internally run by µ̃(φ), generates a
message back to Ad, after this adversary has forwarded m to µ̃(φ). The honest machine
µ̃(F) informs the environment with a message containing output ready. In this case, a
standard message, i.e. not a dummy message, from S to µ(F) would lead to subroutine
output. Again, Z could distinguish Execµ(φ),Ad,Z and Execµ(F),S,Z . Hence by construction,

S generates a dummy message for µ(F) and µ̃(F) reports output ready to Z̃.

Third, it remains to consider the case that Z̃ sends subroutine input to the protocol
machines. By Definition 61 and Lemma 27, we know that the protocol machine µ(ρ) in the
real setting does not immediately reply to Z̃; it sends a message to the adversary instead.
Hence µ(F) does the same, otherwise Z could distinguish Execµ(φ),Ad,Z and Execµ(F),S,Z

151

5.3. PROTOCOL CONDITIONS FOR INTERACTIVE PRIMITIVES

trivially. The adversary machines are finally activated in all four settings. The rest of this
case is analogous to the previous case.

Altogether, Z̃ is informed about the communication between the protocol and the
respective adversary in all four executions and especially cannot distinguish Execµ̃(F),S,Z̃
and Execµ̃(φ),Ad,Z̃ . That is, µ̃(φ) UC realizes µ̃(F).

5.3. Protocol Conditions for Interactive Primitives

In order to extend CoSP protocols by interactive primitives, we have to restrict the class
of allowed CoSP protocols. The additional protocol conditions mainly plug the inputs
and outputs of interactive primitives to the right nodes in the outer CoSP protocol. For
instance, we require that a message produced by an interactive algorithm for the attacker,
is really sent to the attacker via an output node and that the protocol cannot access it. In
this section, we present these protocol conditions.

Condition 1 deals with the handling of different sessions and ensures that they will be
kept separate. Conditions 2 and 3 specify how to handle the outputs of an interactive
primitive. They require that there are nodes that compute the projections of the triple
outputted by an interactive algorithm. Additionally, if the output is intended to be sent to
the adversary, the two conditions ensure that there is an output node that does this task.
Furthermore, the conditions 2 and 3 bound the information flow out of the interactive
primitive: If the output is to be sent to the adversary, it may not be used anywhere else.
Moreover, the UC environment that executes a CoSP protocol will delegate the handling
of interactive primitives, i.e. the environment does not know about the internal state of
the interactive primitives and the randomness they have used. Thus the control flow of the
CoSP protocol may not depend on these pieces of information directly but only on the
outputs generated by an interactive primitive.

Condition 4 restricts the argument nodes of an interactive node. In particular, it deals
with the monadic state passing from one interactive node to the next interactive node
that belongs to the same session. If the session is just initialized, i.e. there is no previous
state, a computation node with constructor Anull() must be referenced, which creates a
new initial state.

Furthermore, conditions 4 and 5 together ensure that the randomness used by the
interactive algorithms is not used twice. Condition 6 guarantees that intuitively, the
adversary is able to know when the protocol expects a message to be passed to an ideal
functionality, or that a message sent to the adversary has been generated by an ideal
functionality. This attributes to the fact that a UC adversary machine has to specify the
identity of another machine M explicitly if it wants to send a message to M , whereas
a CoSP adversary machine is technically only faced with one single protocol machine.
Condition 6 is necessary because we construct a UC adversary from a CoSP adversary In a
typical embedding of a calculus into CoSP, the adversary is regularly presented a status of
the execution at a control node and then may schedule the protocol, i.e. the adversary may
decide that an ideal functionality is scheduled. Thus condition 6 is not unrealistic.

Definition 64 (Protocol conditions). Let P be a class of CoSP protocols that use an
extended symbolic model MF = (C,N,T,DF,`), and let NInt be the corresponding set of
nodes for interactive primitives. The corresponding class of protocols for P is the subset

152

CHAPTER 5. EQUIVALENCE PROPERTIES FOR INTERACTIVE PRIMITIVES

PF ⊆ P such that the following criteria are additionally met:

1. The sid argument node νsid of an interactive node must be a computation that produces
a nonce N ∈ N. On every path through νsid , there is no other computation node with
nonce N . We say that two interactive nodes belong to the same session if and only
their sid argument node is the same.

2. The following holds for every path to the protocol tree that contains an interactive
node ν.

• The only nodes on this path that may reference ν are two computation nodes
νstate′ and νs with destructors fst and snd, respectively.

• The only nodes on this path that may reference νs are two computation nodes
νreceiver and νoutput with destructors fst and snd, respectively.

• The only node on this path that may reference νreceiver is a computation node
νbranch with destructor equals. The first argument of νbranch is νreceiver , the
second is any computation node with constructor null .

• The only node on this path that may reference νoutput is an output node νo in
the yes-subtree of νbranch . We denote νo by interactive output node.

• No nodes reference νbranch .

• Only nodes in the no-subtree of νbranch reference νreceiver .

3. Let ν ′ be an interactive node with destructor IntF , where F ∈ F. Moreover, let ν be
the bottom-most predecessor10 of ν ′ that is an interactive node with IntF and belongs
to the same session as ν ′. Let νstate′, νbranch and νo be defined as in the previous
item; they belong to ν. The following folds:

• The node νbranch lies on the path from ν ′ to ν.

• If ν ′ is in the yes-subtree of νbranch , then νo lies on the path from ν ′ to ν.

• If the input argument node ν ′input of ν ′ is an input node, it lies on the path from
ν ′ to ν. If additionally, νo lies on the path from ν ′ to ν, then νo is a predecessor
of ν ′input .

• νstate′ is the state argument node of ν.

4. For each interactive node ν, let νstate ,νsender , νinput and νrand the respective nodes
referenced by ν.

• If there is not any predecessor of ν that is an interactive node and belongs to
the same session, then νstate is a computation node with constructor null .

• νstate is not referenced by other nodes than ν and ν references νstate only as
state argument.

• νsender is a computation node annotated with a constructor C ∈ C. C is the
constructor null if and only if νinput is an input node. If that is the case, νinput
is called interactive input node.

• νrand is a computation node with nonce N ∈ NInt. On every path through νrand ,
there is no other computation node with nonce N . The interactive node ν is the
only node that references νrand and ν references νrand only as rand argument.

5. Only computation nodes that are the rand argument node of an interactive node may

10Predecessor of ν′ is any node on the path from ν′ to the root, excluding ν′ itself.

153

5.4. COMPUTATIONAL SOUNDNESS

be annotated with a nonce N ∈ NInt.

6. Given all bitstrings sent to the adversary in a computational CoSP execution at
a given point, it can be decided in deterministic polynomial time whether the next
bitstring expected from the adversary (if any) is the input for an interactive input
node νinput . If that is the case, it is additionally possible to compute the session id
belonging to νinput efficiently.

Furthermore, given all bitstrings sent to the adversary in a computational CoSP
execution at a given point, it can be decided in deterministic polynomial time whether
the last bitstring sent to the adversary (if any) is the output sent by an interactive
output node νo. If that is the case, it is additionally possible to compute the session
id belonging to νo efficiently.

5.4. Computational Soundness

The main theorem of this chapter states that we can extend a computational soundness result
for equivalence properties to a computational soundness result for interactive primitives
that are soundly abstracted by ideal functionalities.

Theorem 6 (Computational Soundness for Interactive Primitives). Let MF be an extended
symbolic model (based on M) and AΦ be a computational implementation of it, based on
A. Let P be a class of CoSP bi-protocols such that every bi-protocol in P fulfills the
conditions for interactive primitives. Suppose that every F ∈ F is a good ideal functionality
and every φ ∈ Φ is a good real protocol (see Definitions 60 and 61). Suppose that for
every ideal functionality F ∈ F and the corresponding real protocol φ ∈ Φ, we have that
µ(φ) UC-realizes µ(F). If A is a computationally sound implementation of M for P with
respect to equivalence properties, then AΦ is computationally sound for MF with respect to
equivalence properties.

Proof. For simplicity, we consider only one ideal functionality F and its implementation
φ. Let Π ∈ P be a symbolically indistinguishable bi-protocol using the destructor DF .
Lemma 26 entails that the computational execution of Π with the canonical algorithm AF
is indistinguishable.

Recall that for an interactive primitive ρ (be it F or φ) with a computational implemen-
tation Aρ, there is a CoSP compatible UC machine µ̂(ρ) (see Definition 59). Since Π fulfills
the protocol conditions, the CoSP computational execution of Π can be formulated as a
UC machine CoSPUC that calls µ̂(F) (or µ̂(φ), respectively) instead of executing F (or φ)
on its own.11 Because the computational execution with AF is indistinguishable, we know
that for all protocols Π ∈ P CoSPUC with left(Π) is indistinguishable from CoSPUC with
right(Π) when using µ̂(F). Since µ̃(F) leaks less information than µ̂(F), we can conclude
that for all protocols Π ∈ P CoSPUC with left(Π) is indistinguishable from CoSPUC with
right(Π) when using µ̃(F).

11The UC machine CoSPUC is a formulation of the CoSP computational execution in the UC framework.
In contrast to the CoSP computational execution, however, CoSPUC does not compute an interactive
primitive ρ itself but calls µ̂(ρ) instead. In order to produce the same output as the CoSP computational
execution, CoSPUC constructs the CoSP view accordingly. In particular CoSPUC maps the messages
(output ready, m) and (input ready,m) to view entries that correspond to adversary communication.

154

CHAPTER 5. EQUIVALENCE PROPERTIES FOR INTERACTIVE PRIMITIVES

Suppose that µ(φ) UC-realizes µ(F), and let µ̃(φ) and µ̃(F) be its corresponding honest
machines, as described in Definition 59. Given that φ and F are good (see Definitions 60
and 61), Lemma 28 shows that µ̃(φ) UC-realizes µ̃(F). Since µ̃(F) UC-realizes µ̃(φ), it
follows that for all protocols Π ∈ P CoSPUC with left(Π) is indistinguishable from CoSPUC
with right(Π) when using µ̃(φ). By the completeness of the dummy adversary, we can
w.l.o.g. assume that the network adversary is the dummy adversary. Consequently, the
environment learns the communication from the protocol to the network adversary. Recall
that the only difference between µ̂ and µ̃ is that µ̂ additionally leaks this communication
from the protocol to the network adversary. Thus, it follows that for all protocols Π ∈ P
CoSPUC with left(Π) is indistinguishable from CoSPUC with right(Π) when using µ̂(φ).

5.5. Conclusion

This chapter presented the first computational soundness result that enables the extension
of a computationally sound symbolic models with a UC-secure ideal functionality.

155

Chapter 6.

Bridging the Gap: From Trace Properties to
Equivalence Properties

[This chapter is based on a paper with Michael Backes and Tim Ruffing [BMR14]. I
contributed the idea for this work, and I am the main contributor of the part of the work
that occurs in this chapter.]

6.1. Motivation

Most of the previous computational soundness (CS) results against active attacks have
been specific to the class of trace properties [BBU13; BCW13; BHU09; BMM10; BU10;
CKKW06; CW05; CW11; GGV08; JLM05; MW04], which is only sufficient as long as
strong notions of privacy are not considered, e.g., in particular for establishing various
authentication properties. Only few CS results are known for the class of equivalence
properties against active attackers, which are restricted in of the following three ways:
either they are restricted to a small class of simple processes, e.g., processes that do not
contain private channels and abort if a conditional fails [CC08; CCS12; CH11], or they rely
on non-standard abstractions for which it is not clear how to formalize any equivalence
property beyond the secrecy of payloads [BL06; BP04; BPW03a], such as anonymity
properties in protocols that encrypt different signatures, or existing automated tool support
is not applicable [CHKS12; SBBPW06]. We are thus facing a situation where CS results,
despite tremendous progress in the last decade, still fall short in comprehensively addressing
the class of equivalence properties and protocols that state-of-the-art verification tools are
capable to deal with. Moreover, it is unknown to which extent existing results on CS for
trace properties can be extended to achieve more comprehensive CS results for equivalence
properties.

Our Contribution. We close this gap by providing the first result that allows to leverage
existing CS results for trace properties to CS results for an expressive class of equivalence
properties: the uniformity of bi-processes in the applied π-calculus. Bi-processes are pairs
of processes that differ only in the messages they operate on but not in their structure;
a bi-process is uniform if for all surrounding contexts, i.e., all interacting attackers, both
processes take the same branches. Blanchet, Abadi, and Fournet [BAF05] have shown that
uniformity already implies observational equivalence. Moreover, uniformity of bi-processes
corresponds precisely to the class of properties that the state-of-the-art verification tool
ProVerif [BAF05] is capable to analyze, based on a symbolic model in the applied π-calculus.
In contrast to previous work dealing with equivalence properties, we consider bi-protocols
that use the fully fledged applied π-calculus, in particular including private channels and

157

6.2. SELF-MONITORING

non-determinate processes.

To establish this main result of our paper, we first identify the following general condition
for symbolic models: “whenever a computational attacker can distinguish a bi-process,
there is a test in the symbolic model that allows to successfully distinguish the bi-process.”
We say that symbolic models with this property allow for self-monitoring. We show that if
a specific symbolic model fulfills this property, then there is for every bi-process a so-called
self-monitor, i.e., a process that performs all relevant tests that the attacker could perform
on the two processes of the bi-process, and that raises an exception if of these tests in the
symbolic model distinguishes the bi-process. We finally show that whenever a symbolic
model allows for self-monitoring, CS for uniformity of bi-processes automatically holds
whenever CS for trace properties has already been established. This result in particular
allows for leveraging existing CS results for trace properties to more comprehensive CS
results for uniformity of bi-processes, provided that the symbolic model can be proven to
allow for self-monitoring.

We exemplarily show how to construct a self-monitor for a symbolic model that has
been recently introduced and proven to be computationally sound for trace properties
by Backes, Malik, and Unruh [BMU12]. This symbolic model contains signatures and
public-key encryption and allows to freely send and receive decryption keys. To establish
that the model allows for self-monitoring, we first extend it using the common concept of a
length function (without a length function, CS for uniformity of bi-processes and hence the
existence of self-monitors trivially cannot hold, since encryptions of different lengths are
distinguishable in general), and we show that this extension preserves the existing proof of
CS for trace properties. Our main result in this paper then immediately implies that this
extended model satisfies CS for uniformity of bi-processes.

6.2. Self-monitoring

In this section, we identify a sufficient condition for symbolic models under which CS for
trace properties implies CS for equivalence properties for a class of uniformity-enforcing
protocols, which correspond to uniform bi-processes in the applied π-calculus. We say that a
symbolic model that satisfies this condition allows for self-monitoring. The main idea behind
self-monitoring is that a symbolic model is sufficiently expressive (and its implementation
is sufficiently strong) such that the following holds: whenever a computational attacker can
distinguish a bi-process, there is a test in the symbolic model that allows to successfully
distinguish the bi-process.

6.2.1. CS for Trace Properties

A trace property that captures that a certain bad state (a certain class of bad node
identifiers) is not reachable, would be formalized as the set of all traces that do not contain
bad nodes.

Formally, a trace property is a prefix-closed set of node-traces. We say that a protocol Π
symbolically satisfies a trace property ℘ if for all traces t resulting from a symbolic execution,
℘ holds for t, i.e., t ∈ ℘. Correspondingly, we state that a protocol Π computationally
satisfies ℘ if for any ppt attacker A and polynomial p the probability is overwhelming that

158

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

℘ holds for t, i.e., t ∈ ℘, for any trace t resulting from a computational execution with A
and p.

We first review the relevant definitions from the original CoSP framework. Instead of a
view that contains the communication with the attacker, we are interested in a trace of the
execution of a protocol.

Definition 65 (Symbolic and Computational Traces). Let (Vi, νi, fi) be a (finite) list of
triples produced internally by the symbolic execution (Definition 16) of a CoSP protocol Π.
Then a list νi is a symbolic trace of Π.

Analogously, given a polynomial p, the probability distribution on the list νi computed by
the computational execution (Definition 21) of Π with polynomial p is called computational
trace of Π.

CS for trace properties states that all attacks (against trace properties) that can be
excluded for the symbolic abstraction can be excluded for the computational implemen-
tation as well. Hence, if all the symbolic traces satisfy a certain trace property, then all
computational traces satisfy this property as well.

Definition 66 (Computational Soundness for Trace Properties [BHU09]). A symbolic
model (C,N, T, D) is computationally sound for trace properties with respect to an
implementation A for a class P of efficient protocols if the following holds: for each protocol
I ∈ P and each trace property ℘, I computationally satisfies ℘ whenever I symbolically
satisfies ℘.

Uniformity-enforcing. For the connection to trace properties, we consider only uniform
bi-protocols. A bi-protocol is uniform if for each symbolic attacker strategy, both its variants
reach the same nodes in the CoSP tree, i.e., they never branch differently.1 Formally, we
require that the bi-protocols are uniformity-enforcing, i.e., when the left and the right
protocol of the bi-protocol Π take different branches, the attacker is informed. Since taking
different branches is only visible after a control node is reached, we additionally require
that computation nodes are immediately followed by control nodes.

Definition 67 (Uniformity-enforcing). A class P of CoSP bi-protocols is uniformity-
enforcing if for all bi-protocols Π ∈ P:

1. Every control node in Π has unique out-metadata.

2. For every computation node ν in Π and for every path rooted at ν, a control node is
reached before an output node.

All embeddings of calculi the CoSP framework described so far, namely those of the
applied π-calculus [BHU09] and RCF [BMU10], are formalized such that protocols written
in these calculi fulfill the second property: these embeddings give the attacker a scheduling
decision, using a control node, basically after every execution step. We stress that it is
straightforward to extend them to fulfill the first property by tagging the out-metadata
with the address of the node in the protocol tree.

1We show in Lemma 1 that uniformity of bi-protocols in CoSP corresponds to uniformity of bi-processes
in the applied π-calculus.

159

6.2. SELF-MONITORING

6.2.2. Bridging the Gap from Trace Properties to Uniformity

The key observation for the connection to trace properties is that, given a bi-protocol Π,
some computationally sound symbolic models enable the construction of a self-monitor
Mon(Π) – a protocol, not a bi-protocol – that has essentially the same interface to the
attacker as the bi-protocol Π and checks at run-time whether Π would behave uniformly.
In other words, non-uniformity of bi-protocols can be formulated as a trace property bad,
which can be detected by the protocol Mon(Π).

The self-monitor Mon(Π) of a bi-protocol Π behaves like one of the two variants of the
bi-protocol Π, while additionally simulating the opposite variant such that Mon(Π) itself
is able to detect whether Π would be distinguishable. (For instance, one approach to
detect whether Π is distinguishable could consist of reconstructing the symbolic view of
the attacker in the variant of Π that is not executed by Mon(Π).) At the beginning of the
execution of the self-monitor, the attacker chooses if Mon(Π) should basically behave like
left(Π) or like right(Π). We denote the chosen variant as b ∈ {left , right} and the opposite
variant as b̄. After this decision, Mon(Π) executes the the b-variant b(Π) of the bi-protocol
Π, however, enriched with the computation nodes and the corresponding output nodes of
the opposite variant b(Π).2

The goal of the self-monitor Mon(Π) is to detect whether the execution of b(Π) would be
distinguishable from b̄(Π) at the current state. If this is the case, Mon(Π) raises the event
bad, which is the disjunction of two events bad-branch and bad-knowledge.

The event bad-branch corresponds to the case that the left and the right protocol of
the bi-protocol Π take different branches. Since uniformity-enforcing protocols have a
control node immediately after every computation node (see Definition 67), the attacker can
always check whether b(Π) and b̄(Π) take the same branch. We require (in Definition 69)
the existence of a so-called distinguishing subprotocol fbad-branch,Π that checks whether
each destructor application in b(Π) succeeds if and only if it succeeds in b̄(Π); if not, the
distinguishing subprotocol fbad-branch,Π raises bad-branch.

The event bad-knowledge captures that the messages sent by b(Π) and b̄(Π) (via output
nodes, i.e., not the out-metadata) are distinguishable. This distinguishability is only
detectable by a protocol if the constructors and destructors, which are available to both the
protocol and the symbolic attacker, capture all possible tests. We require (in Definition 69)
the existence of a distinguishing subprotocol fbad-knowledge,Π that raises bad-knowledge in
Mon(Π) whenever a message, sent in Π, would allow the attacker to distinguish b(Π) and
b̄(Π).

Parameterized CoSP Protocols. For a bi-protocol Π, we formalize the distinguishing
subprotocols fbad-knowledge,Π and fbad-branch,Π with the help of parameterized CoSP protocols,
which have the following properties: Nodes in such protocols are not required to have
successors and instead of other nodes, also formal parameters can be referenced. A
parameterized CoSP protocol is intended to be plugged into another protocol; in that case

2This leads to the fact that whenever there is an output node in Π, there are two corresponding output
nodes in Mon(Π), which contradicts the goal that the interface of Π and Mon(Π) should be the same
towards the attacker. However, this technicality can be dealt with easily when applying our method.
For example, in the computational proof for our case study, we use the self-monitor in an interaction
with a filter machine that hides the results of the output nodes of b(Π) to create a good simulation
towards the computational attacker, whose goal is to distinguish Π. The filter machine is then used as a
computational attacker against Mon(Π).

160

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

the parameters references must be changed to references to nodes.

Definition 68 (Self-monitor). Let Π be a CoSP bi-protocol. Let fbad-knowledge,Π and
fbad-branch,Π be functions that map execution traces to parameterized CoSP protocols3 whose
leaves are either ok, in which case they have open edges, or halt in distinguished states
bad-knowledge, or bad-branch respectively, i.e., they end in an infinite sequence of control
nodes with out-metadata bad-knowledge, or bad-branch respectively.

Recall that nodes ν of Π have bi-references (as defined in Definition 25) consisting of a
left reference (to be used in the left protocol) and a right reference. We write left(ν) for the
node with only the left reference and right(ν) analogously. For each node ν in Π, let trν be
the execution trace of Π that leads to ν, i.e., the list of node and edge identifiers on the
path from the root of Π to ν, including ν. The self-monitor Mon(Π) protocol is defined as
follows:

Insert before the root node a control node with two copies of Π, called the left branch
(with b ··= left) and the right branch (with b ··= right). Apply the following modifications
recursively for each node ν, starting at the root of Π:

1. If ν is a computation node of Π, replace ν with fbad-branch,Π(b, trν). Append two
copies left(ν) and right(ν) of the the computation node ν to each open edge of an
ok-leaf. All left references that pointed to ν point in Mon(Π) to left(ν), and all right
references that pointed to ν point in Mon(Π) to right(ν). The successor of right(ν) is
the subtree rooted at the successor of ν.

2. If ν is an output node of Π, replace ν with fbad-knowledge,Π(b, trν). Append the
sequence of the two output nodes left(ν) (labeled with left) and right(ν) (labeled with
right) to each open edge of an ok-leaf. All left references that pointed to ν point
in Mon(Π) to left(ν), and all right references that pointed to ν point in Mon(Π) to
right(ν). The successor of right(ν) is the subtree rooted at the successor of ν.

The sub-sequence of a trace of a self-monitor that contains only those nodes that are labeled
with left is called the left trace left(tr) of Mon(Π). Analogously, the sub-sequence of a
trace of a self-monitor that contains only those nodes that are labeled with right is called
the right trace right(tr) of Mon(Π).

Recall that our goal is to identify sufficient conditions under which computational
soundness (CS) w.r.t. trace properties implies CS w.r.t. equivalence properties (see
Theorem 7). We require three properties. Beside the requirement that the class of CoSP
protocols has to be uniformity enforcing for which CS w.r.t. trace properties holds, we
require two properties from the distinguishing subprotocols: symbolic self-monitoring
and computational self-monitoring (see Figure 6.1). Symbolic self-monitoring states that
whenever a bi-protocol Π is indistinguishable, the corresponding distinguishing subprotocol
in Mon(Π) does not raise the event bad. Computational self-monitoring, in turn, states
that whenever the distinguishing subprotocol in Mon(Π) does not raises the event bad,
then Π is indistinguishable.

Shortened Protocols Πi. We prove these three requirement sufficient by induction over
the nodes in a bi-protocol. As a technical vehicle, we introduce a notion of shortened
protocols in the definition of distinguishing subprotocols. For a (bi-)protocol Π, the

3These functions are candidates for distinguishing subprotocols for bad-knowledge and bad-branch,
respectively, for the bi-protocol Π, as defined in Definition 69.

161

6.2. SELF-MONITORING

Π′ (symb.) Π (symb.)
symbolic self-monitoring

Π′ (comp.)

CS for trace properties

Π (comp.)
computational self-monitoring

CS for equivalence of
uniformity-enforcing
bi-protocols

Figure 6.1.: Symbolic and computational self-monitoring.

shortened (bi-)protocol Πi is for the first i nodes exactly like Π but that stops after the ith
node that is either a control node or an output node.4

Definition 69 (Allowing for self-monitoring). Let M be a symbolic model and Impl a
computational implementation of M. Let Π be a bi-protocol and Mon(Π) its self-monitor.
Let e ∈ {bad-knowledge, bad-branch} and nbad-knowledge denote the node type output node
and nbad-branch denote the node type control node. Then the function fe,Π(b, tr), which
takes as input b ∈ {left , right} and the path to the root node, including all node and edge
identifiers, is a distinguishing subprotocol for e for Π and M if the following conditions
hold for every i ∈ N:

1. symbolic self-monitoring: If Πi is symbolically indistinguishable, bad does symbolically
not occur in Mon(Πi−1), and the ith node in Πi is of type ne, then the event e does
not occur symbolically in Mon(Πi).

2. computational self-monitoring: If the event e in Mon(Πi) occurs computationally with
at most negligible probability, Πi−1 is computationally indistinguishable, and the ith
node in Πi is of type ne, then Πi is computationally indistinguishable.

3. The difference in the running time of Πi and Mon(Πi)− Fb polynomially bounded in
i.

We say that a model M, an implementation Impl, and a protocol class P allow for self-
monitoring if for every bi-protocol Π in the protocol class P, there are distinguishing sub-
protocols for bad-branch and bad-knowledge such that the resulting self-monitor Mon(Π)
is also in P.

Finally, we are ready to state our main theorem.

Theorem 7. Let M be a symbolic model, P be an efficient uniformity-enforcing class of
bi-protocols, and Impl be an implementation for M. If M, Impl,P allow for self-monitoring
(in the sense of Definition 69), then the following holds: If Impl is a computationally sound
implementation of a symbolic model M with respect to trace properties then Impl is also a
computationally sound implementation with respect to equivalence properties.

Proof. Let A be a computationally sound implementation of M for trace properties. Assume
that Π is symbolically indistinguishable. The goal is show that Π is also computationally
indistinguishable.

First, we show that bad does not happen symbolically in Mon(Π). To this end, we show
by induction on i that bad does not happen symbolically in Mon(Πi) for all i ∈ N. For the

4Formally, the protocol only has an infinite chain of control nodes with single successors after this node.

162

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

induction base i = 0, i.e., the empty execution, this is clear. For i > 0, we know by the
induction hypothesis that bad does not happen symbolically in Mon(Πi−1). Furthermore,
Πi is symbolically indistinguishable, because Π is symbolically indistinguishable. We
distinguish cases on the type of the ith control or output node νi that is reached in Π.
Assume it is an control node. Then we know by Item 2 of the uniformity-enforcing property
that Πi contains in contrast to Πi−1 only additional input and computation nodes (and
νi itself). Thus by construction of Mon(Π), we know that Mon(Πi) does not contain
an additional distinguishing subprotocol for bad-knowledge in contrast to Mon(Πi−1),
i.e., bad-knowledge does not happen in Mon(Πi). Since νi is a control node, Item 1 of
Definition 69 implies that bad-branch does not happen in Mon(Πi) either. The case that
νi is an output node is analogous. Taken together, bad does not happen in Mon(Πi). This
concludes the induction proof.

Since M and P allow for self-monitoring, the self-monitor Mon(Π) lies in the protocol
class P. As bad does not happen symbolically in Mon(Π), CS for trace properties thus
entails that bad happens computationally in Mon(Π) only with negligible probability. This
implies computational indistinguishability with essentially the same arguments as in the
symbolic execution apply in a reverse manner, by using Item 2 of Definition 69.

6.3. Case Study: Encryption and Signatures with Lengths

We exemplify our method by proving a CS result for equivalence properties, which captures
protocols that use public-key encryption and signatures. We use the CS result in [BMU12]
for trace properties, which we extend by a length function, realized as a destructor. Since
encryptions of plaintexts of different length can typically be distinguished,we must reflect
that fact in the symbolic model.

6.3.1. The Symbolic Model

Lengths in the Symbolic Model. In order to express lengths in the symbolic model,
we introduce length specifications, which are the result of applying a special destructor
len/1. We assume that the bitlength of every computational message mc is of the form
|mc| = rk for some natural number r, where k is the security parameter, i.e., the length of a
nonce. This assumption will be made precise. With this simplification, length specifications
only encode r; this can be done using Peano numbers, i.e., the constructors O (zero) and
S (successor).

Even though this approach leads admittedly to rather inefficient realizations from a
practical point of view,5 the aforementioned assumption can be realized using a suitable
padding. Essentially, this assumption is similar to the one introduced by Comon-Lundh
and Cortier [CC08] for a symbolic model for symmetric encryption. The underlying
problem is exactly the same: while the length of messages in the computational model, in
particular the length of ciphertexts, may depend on the security parameter, there is no
equivalent concept in the symbolic model. For instance, let n and m be nonces, and let ek
be an encryption key. For certain security parameters in the computational model, the

5Consider, e.g., a payload string that should convey n bits. This message must be encoded using at least
kn bits.

163

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

computational message pair(n,m) may have the same length as the message enc(ek , n); for
other security parameters this may not be the case. Thus it is not clear if the corresponding
symbolic messages should be of equal symbolic length. Comon-Lundh, Hagiya, Kawamoto,
and Sakurada [CHKS12] propose a different approach towards this problem, by labeling
messages symbolically with an expected length and checking the correctness of these length
computationally. However, it is not clear whether such a symbolic model can be handled
by current automated verification tools.

Automated Verification: Combinding ProVerif and APTE. ProVerif is not able
to handle recursive destructors such as len, e.g., len(pair(t1, t2)) = len(t1)+ len(t2). Recent
work by Cheval, Cortier, and Plet [CCP13] extends the protocol verifier APTE, which is
capable of proving trace equivalence of two processes in the applied π-calculus, to support
such length functions. Since however trace equivalence is a weaker notion than uniformity,
i.e., there are bi-processes that are trace equivalent but not uniform, our CS result does
not carry over to APTE. Due to the lack of a tool that is able to check uniformity as well
as to handle length functions properly, we elaborate and prove in Section 2.6 how APTE
can be combined with ProVerif to make protocols on the symbolic model of our case study
amenable to automated verification.

We consider the following symbolical model M = (C,N,T,D).

Constructors and Nonces. We define C ··= {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1,
string0/1,
string1/1, empty/0, pair/2,O/0,S/1, garbageEnc/3, garbageSig/3, garb/2,
garbageInvalidLength/1} and N ··= NE]NE for countably infinite sets of protocol nonces
NP and attacker nonces NE. Encryption, decryption, verification, and signing keys are rep-
resented as ek(r), dk(r), vk(r), sk(r) with a nonce r (the randomness used when generating
the keys). The term enc(ek(r′),m, r) encrypts m using the encryption key ek(r′) and ran-
domness r. sig(sk(r′),m, r) is a signature of m using the signing key sk(r′) and randomness
r. The constructors string0, string1, and empty are used to model arbitrary strings used
as payload in a protocol, e.g., a bitstring 010 would be encoded as string0(string1(string0(
empty()))). Length specifications can be constructed using O representing zero and S
representing the successor of a number. garb, garbageInvalidLength, garbageEnc, and
garbageSig are not used by the protocol; they express invalid terms the attacker may send.

Message Type. We define T as the set of terms M according to this grammar:

M ::= enc(ek(N),M,N) | ek(N) | dk(N) |
sig(sk(N),M,N) | vk(N) | sk(N) | pair(M,M) | P | N | L |
garb(N,L) | garbageInvalidLength(N)

garbageEnc(M,N,L) | garbageSig(M,N,L)

P ::= emp() | string0(P) | string1(P) L ::= O() | S (L)

The nonterminals P , N , and L represent payloads, nonces, and length specifications,
respectively. Note that the garbage terms carry an explicit length specification to enable
the attacker to send invalid terms of a certain length.

Destructors. We define the set D of destructors of the symbolic model M by D :=
{dec/2, isenc/1, isek/1, isdk/1, ekof /1, ekofdk/1, equals/2, verify/2, isvk/1, issk/1, issig/1,
vkofsk/1, vkof /1, fst/1, snd/1, unstring0/1, unstring1/1, len/1, unS/1}. The destructors isek ,

164

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

dec(dk(t1), enc(ek(t1),m, t2)) = m

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageEnc(t1, t2, l)) = garbageEnc(t1, t2, l)

isek(ek(t)) = ek(t)

ekof (enc(ek(t1),m, t2)) = ek(t1)

ekof (garbageEnc(t1 , t2 , l)) = t1

equals(t1, t1) = t1

verify(vk(t1), sig(sk(t1), t2, t3)) = t2

isvk(vk(t1)) = vk(t1)

issk(sk(t1)) = sk(t1)

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2, l)) = garbageSig(t1, t2, l)

vkof (sig(sk(t1), t2, t3)) = vk(t1)

vkof (garbageSig(t1, t2, l)) = t1

vkofsk(sk(t1)) = vk(t1)

fst(pair(x, y)) = x

snd(pair(x, y)) = y

unstringb(stringb(s)) = s ∀b ∈ {0, 1}
unS(S(t)) = t

Figure 6.2.: The destructor definitions for the symbolic models

isdk , isvk , issk , isenc, and issig realize predicates to test whether a term is an encryption
key, decryption key, verification key, signing key, ciphertext, or signature, respectively.
ekof extracts the encryption key from a ciphertext, vkof extracts the verification key
from a signature. dec(dk(r), c) decrypts the ciphertext c. verify(vk(r), s) verifies the
signature s with respect to the verification key vk(r) and returns the signed message if
successful. ekofdk and vkofsk compute the encryption/verification key corresponding to a
decryption/signing key. The destructors fst and snd are used to destruct pairs, and the
destructors unstring0 and unstring1 allow to parse payload-strings. The destructor len
returns a the length of message, where the unit is the length of a nonce. The purpose of
unS is destruct length specifications. (Destructors ispair and isstring are not necessary,
they can be emulated using fst , unstring i, and equals(·, empty).) The precise cancellation
rules for destructors (except for len) are depicted in Figure 6.2; application matching none
of these rules evaluates to ⊥:

Length Destructor. Our result is parametrized over the destructor len that must adhere
to the following restrictions:

1. Each message except for garbageInvalidLength is assigned a length:
len(t) 6= ⊥ for all terms t ∈ T \ {garbageInvalidLength(t′) | t′ ∈ T}.

2. The length of garbage terms (constructed by the attacker) is consistent:

len(garb(t, l)) = l, len(garbageEnc(t1, t2, l)) = l,

len(garbageSig(t1, t2, l)) = l, len(garbageInvalidLength(t1)) = ⊥

3. Let [·] be the canonical interpretation of Peano numbers, given by [O()] = 0 and
[S(l)] = [l] + 1. We require the length destructor to be linear: For each constructor

165

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

C/n ∈ C \ {garb, garbageInvalidLength, garbageEnc, garbageSig} there are ai ∈ N
(where i = 0, . . . , n) such that len(ti) = li for i = 1, . . . , n and len(C(t)) = l together
imply [l] =

∑n
i=1 ai · [li] + a0.

Length specifications are ordinary messages that the protocol can send, receive and
process. Thus we require length specifications to have a length itself.

6.3.2. Implementation Conditions

A computationally sound implementation of the symbolic model M has to adhere to the
conditions given below, which are essentially the same as in [BMU12]. Since the message
type T used here includes length specifications, i.e., an additional type of messages that
represents natural numbers (see Section 6.3.1), we need basic implementation conditions
such as AunS (AS (m)) = m for messages m of type length specification. Furthermore,
the algorithm that implements the length destructor must compute the bitlength of the
argument correctly. These additional requirements are highlighted in blue. We stress that
the strong requirements on the encryption scheme, which require the random oracle model,
namely PROG-KDM security [Unr12], are used only to handle protocols that send and
receive decryption keys. We refer to [BMU12] for more details. In principle, our proofs
do not rely on this particular security definition. We conjecture that is possible to obtain
a computational soundness result for uniformity using weaker implementation conditions
(IND-CCA secure public-key encryption) but a restricted protocol class, by applying our
proof technique to the computational soundness result for trace properties in [BHU09]; we
leave a formal treatment for future work however.

For lengths in the computational model, we require that the destructor len as well as its
computational implementation Impllen compute indeed the bitlength of its argument. To
connect the symbolic result of the destructor len to bitlengths in the computational world,
the destructor must be consistent with its implementation.

The following list of conditions is copied verbatim from [BMU12] except for the parts
that are marked in blue.

1. Impl is an implementation for M in the sense of Definition 6.

2. There are disjoint and efficiently recognizable sets of bitstrings representing the types
nonces, ciphertexts, encryption keys, decryption keys, signatures, verification keys,
signing keys, pairs, payload-strings, length specifications, and invalid-length. The
set of all bitstrings of type nonce we denote Noncesk.

6 (Here and in the following, k
denotes the security parameter.)

3. The functions Aenc , Aek , Adk , Asig , Avk , Ask , and Apair are length-regular. We call an
n-ary function f length regular if |mi| = |m′i| for i = 1, . . . , n implies |f(m)| = |f(m′)|.
All m ∈ Noncesk have the same length.

4. AN for N ∈ N returns a uniformly random r ∈ Noncesk.

5. Every image of Aenc is of type ciphertext, every image of Aek and Aekof is of type
encryption key, every image of Adk is of type decryption key, every image of Asig

is of type signature, every image of Avk and Avkof is of type verification key, every
image of Aempty , Astring0

, and Astring1
is of type payload-string, every image of AS

6This would typically be the set of all bitstrings with length k − t, with a tag of length t denoting nonces.

166

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

and AO is of type length specification. Every m ∈ {0, 1}∗ such that no r ∈ N with
|m| = rk exists, is of type invalid-length.

6. For allm1,m2 ∈ {0, 1}∗ we haveAfst(Apair (m1,m2)) = m1 andAsnd (Apair (m1,m2)) =
m2. Every m of type pair is in the range of Apair . If m is not of type pair,
Afst(m) = Asnd (m) = ⊥.

7. For all m of type payload-string we have that Aunstringi(Astringi(m)) = m and
Aunstringi(Astringj (m)) = ⊥ for i, j ∈ {0, 1}, i 6= j. For m = Aempty() or m not of type
payload-string, Aunstring0

(m) = Aunstring1
(m) = ⊥. Every m of type payload-string is

of the form m = Astring0
(m′) or m = Astring1

(m′) or m = empty for some m′ of type
payload-string. For all m of type payload-string, we have |Astring0

(m)|, |Astring1
(m)| >

|m|.
8. For all m of type length specification we have that AunS (AS (m)) = m. For m = AO()

or m not of type number, AunS (m) = ⊥.

9. Aekof (Aenc(p, x, y)) = p for all p of type encryption key, x ∈ {0, 1}∗, y ∈ Noncesk.
Aekof (e) 6= ⊥ for any e of type ciphertext and Aekof (e) = ⊥ for any e that is not of
type ciphertext.

10. Avkof (Asig(Ask (x), y, z)) = Avk (x) for all y ∈ {0, 1}∗, x, z ∈ Noncesk. Avkof (e) 6= ⊥
for any e of type signature and Avkof (e) = ⊥ for any e that is not of type signature.

11. Aenc(p,m, y) = ⊥ if p is not of type encryption key.

12. Adec(Adk (r),m) = ⊥ if r ∈ Noncesk and Aekof (m) 6= Aek (r). (This implies that the
encryption key is uniquely determined by the decryption key.)

13. Adec(d, c) = ⊥ if Aekof (c) 6= Aekofdk (d) or Aekofdk (d) = ⊥.

14. Adec(d,Aenc(Aekofdk (e),m, r)) = m if r ∈ Noncesk and d := Aekofdk (e) 6= ⊥.

15. Aekofdk (d) = ⊥ if d is not of type decryption key.

16. Aekofdk (Adk (r)) = Aek (r) for all r ∈ Noncesk.

17. Avkofsk (s) = ⊥ if s is not of type signing key.

18. Avkofsk (Ask (r)) = Avk (r) for all r ∈ Noncesk.

19. Adec(Adk (r), Aenc(Aek (r),m, r′)) = m for all r, r′ ∈ Noncesk.

20. Averify(Avk (r), Asig(Ask (r),m, r′)) = m for all r, r′ ∈ Noncesk.

21. For all p, s ∈ {0, 1}∗ we have that Averify(p, s) 6= ⊥ implies Avkof (s) = p.

22. Aisek (x) = x for any x of type encryption key. Aisek (x) = ⊥ for any x not of type
encryption key.

23. Aisvk (x) = x for any x of type verification key. Aisvk (x) = ⊥ for any x not of type
verification key.

24. Aisenc(x) = x for any x of type ciphertext. Aisenc(x) = ⊥ for any x not of type
ciphertext.

25. Aissig(x) = x for any x of type signature. Aissig(x) = ⊥ for any x not of type
signature.

26. We define an encryption scheme (KeyGen,Enc,Dec) as follows: KeyGen picks a
random r ← Noncesk and returns (Aek (r), Adk (r)). Enc(p,m) picks a random r ←
Noncesk and returns Aenc(p,m, r). Dec(k, c) returns Adec(k, c). We require that then
(KeyGen,Enc,Dec) is PROG-KDM secure.

167

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

27. Additionally, we require that (KeyGen,Enc,Dec) is malicious-key extractable.

28. We define a signature scheme (SKeyGen, Sig,Verify) as follows: SKeyGen picks a
random r ← Noncesk and returns (Avk (r), Ask (r)). Sig(p,m) picks a random r ←
Noncesk and returns Asig(p,m, r). Verify(p, s,m) returns 1 iff Averify(p, s) = m. We
require that then (SKeyGen, Sig,Verify) is strongly existentially unforgeable.

29. For all e of type encryption key and all m,m′ ∈ {0, 1}∗, the probability that
Aenc(e,m, r) = Aenc(e,m′, r′) for uniformly chosen r, r′ ∈ Noncesk is negligible.

30. For all rs ∈ Noncesk and all m ∈ {0, 1}∗, the probability that Asig(Ask (rs),m, r) =
Asig(Ask (rs),m, r

′) for uniformly chosen r, r′ ∈ Noncesk is negligible.

31. Aekofdk is injective. (That is, the encryption key uniquely determines the decryption
key.)

32. Avkofsk is injective. (That is, the verification key uniquely determines the signing
key.)

33. For all m ∈ {0, 1}∗ that are not of type invalid-length, Alen(m) = A
|m|/k
S (AO()),

where k is the security parameter and AnS is the n-fold application of AS . For all m
of type invalid-length, Alen(m) = ⊥.

34. Given a security parameter k, a computational variant of a message m ∈ T is
obtained by implementing each constructor C and nonce N in m by the correspond-
ing algorithm AC or AN , respectively. (For example, for all random choices of
AN (), Apair (Astring0

(Aempty(), Aek (AN ())) is a computational variant of the message
pair(string0(empty(), ek(N)), where N ∈ N.) We require that for each message
m ∈ T and all of its computational variants mk under security parameter k, we have
that len(m) 6= ⊥ implies |mk| = [len(m)] · k. Note that |mk| is well-defined, because
length-regularity (implementation condition 3 in Section 6.3.2) ensures that |mk|
does not depend on randomness.

6.3.3. Randomness-safe Bi-protocols

The CoSP bi-protocols we consider are almost exactly those bi-protocol for which both
the left and the right variant are randomness-safe as defined in [BMU12]. The reason is
that the self-monitor Π′ for the case study, which uses the distinguishing subprotocols
from Section 6.3.4 and Section 6.3.5, is in the protocol class of randomness-safe protocol
considered in [BMU12] if the left and the right variant of the corresponding bi-protocol Π
are randomness-safe. The exact definition is as follows, changes in comparison to [BMU12]
are highlighted in blue. The new condition 6 ensures that no constructors are applied to
messages with invalid lengths, i.e., terms of the form garbageInvalidLength(n) for a nonce
in the symbolic model. Such messages are not generated by the protocol (5). If they have
been received at an input node, the protocol must check if at least one destructor does
not fail before applying a constructor. This suffices as all destructors fail if one of their
arguments has an invalid length.

The following definition is copied verbatim from [BMU12] except for the parts that are
marked in blue.

Definition 70 (Randomness-safe Bi-Protocol). A CoSP bi-protocol Π is randomness-safe
if both its variants, i.e., left(Π) and right(Π), fulfill the following conditions:

168

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

1. The argument of every ek-, dk-, vk-, and sk-computation node and the third argument
of every enc- and sig-computation node is an N-computation node with N ∈ NP,
i.e., protocol-generated randomness. (Here and in the following, we call the nodes
referenced by a protocol node its arguments.) We call these N-computation nodes
randomness nodes. Any two randomness nodes on the same path are annotated with
different nonces.

2. Every computation node that is the argument of an ek-computation node or of a dk-
computation node on some path p occurs only as argument to ek- and dk-computation
nodes on that path p.

3. Every computation node that is the argument of a vk-computation node or of an sk-
computation node on some path p occurs only as argument to vk- and sk-computation
nodes on that path p.

4. Every computation node that is the third argument of an E-computation node or of
a sig-computation node on some path p occurs exactly once as an argument in that
path p.

5. There are no computation nodes with the constructors garb, garbageEnc, garbageSig,
garbageInvalidLength, or N ∈ NE.

6. Every computation node annotated ν with a constructor refers only to argument nodes
ν ′ that fulfill one of the these conditions:

a) Either ν ′ does not depend on an input node, i.e., no input node is reachable by
following (transitively) the references to argument nodes, or

b) ν is in the yes-branch of a computation node with a destructor that has ν ′ as
one of its arguments.

Accordingly, a CoSP protocol Π is randomness-safe it is the left or right variant of a
bi-protocol that is randomness-safe. Throughout the rest of the paper, we use P to denote
the class of CoSP bi-protocols that are randomness-safe. In abuse of notation, if the context
prevents confusion, we also use P for the class of CoSP protocols that are randomness-safe.

Theorem 8. Let M be the symbolic model from Section 6.3.1, P be the class of uniformity-
enforcing of randomness-safe bi-protocols, and Impl an implementation that satisfies the
conditions from Section 6.3.2. Then, M allows for self-monitoring for P. In particular, for
each bi-protocol Π, fbad-knowledge,Π and fbad-branch,Π as described above are distinguishing
subprotocols (see Definition 69) for M and P.

We prove Theorem 8 in Section 6.3.6.

6.3.4. The branching monitor

In this section, we define the distinguishing subprotocol fbad-branch,Π(b, tr), which we
call the branching monitor fbad-branch,Π(b, tr). The branching monitor fbad-branch,Π(b, tr)
reconstructs an attacker strategy by reconstructing a possible symbolic operation for every
input message. In more detail, in the symbolic execution, fbad-branch,Π(b, tr) parses the input
message with all symbolic operations in the model M that the attacker could have performed
as well, i.e., with all tests from the shared knowledge. This enables fbad-branch,Π(b, tr)
to simulate the symbolic execution of b̄(Π) on the constructed attacker strategy. In the
computational execution of the self-monitor, the distinguishing subprotocol constructs the

169

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

symbolic operations (i.e., the symbolic inputs) by parsing the input messages with the
implementations of all tests in the shared knowledge (i.e., lookups on output messages
and implementations of the destructors). With this reconstructed symbolic inputs (i.e.,
symbolic operations, from messages that were intended for b(Π), fbad-branch,Π(b, tr) is able
to simulate the symbolic execution of b̄(Π), called the extended symbolic execution, even
in the computational execution. The distinguishing subprotocol fbad-branch,Π(b, tr) then
checks whether this extended symbolic execution of b(Π) takes the same branch as b(Π)
would take, for the computation node ν in question. If this is not the case, the event
bad-branch is raised.

Symbolic self-monitoring follows by construction because the distinguishing subprotocol
reconstructs a correct attacker strategy and correctly simulates a symbolic execution.
Hence, fbad-branch,Π(b, tr) found a distinguishing attacker strategy for b(Π) and b̄(Π). We
show computational self-monitoring by reducing a distinguishing event due to different
branchings to computational soundness for trace properties. We then conclude that the
symbolic simulation of b̄(Π) suffices to check whether b(Π) computationally branches
differently from b̄(Π).

Notation: interfaces for interactions between machines. Throughout this chapter,
we use the notion of interfaces to connect network of machines. An interface is like a
channel through which two machines communicate. In this chapter, all machines have a
network interface, denoted as net. As a notational convention, we assume that for three
machines A,B,C where B has a left and a right network interface (often call the execution
network interface and the network interface, respectively) 〈A | 〈B | C〉〉 denotes that the
network interface of A is connected to the left network interface (i.e., the execution network
interface) of B and the right network interface (i.e., the network interface) of B is connected
to the network interface of C. Moreover, we assume that the final output of a machine is
sent over an output interface. Typically, 〈A | 〈B | C〉〉 denotes that B has a sub-output
interface that is connected to the output interface of C, and for the interaction 〈A | 〈B | C〉〉
the output is the message that is sent over the output interface (of B). Similarly, in the
case where we only have two machines A,B the output of 〈A | B〉 is typically the message
sent over the output interface of B.

6.3.4.1. The construction of fbad-branch,Π(b, tr)

Recall that the distinguishing subprotocol for bad-branch tests for a bi-protocol Π whether
the computation nodes in left(Π) and right(Π) take the same branch. The self-monitor
only executes one of the two protocols of Π. For testing that both protocols always take the
same branch, we perform a so-called extended symbolic execution of the other protocol. For
this extended symbolic execution, we construct shapes of the messages that the attacker
sends and use these shapes of the input messages for the extended symbolic execution.

Recall that for testing whether the two protocols of a bi-protocol Π always take the same
branch at each computation node ν, we execute one of the two protocols, say b(Π), in the
self-monitor Mon(Π), reconstruct for every computation node the attacker strategy and
perform with this attacker strategy a symbolic execution of the other protocol b̄(Π).

We reconstruct the attacker strategy by constructing shapes, so-called extended sym-
bolic operations, of all attacker-messages of the real execution. These extended symbolic
operations contain addresses of the trace of an execution of left(Π) or right(Π). In some

170

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

cases, it is not possible to completely reconstruct all operations that the attacker did
to construct the term. As an example consider an ciphertext sent by the attacker. If
the decryption key is not known to the protocol, the distinguishing subprotocol cannot
reconstruct the plaintext message. Instead it creates a placeholder with the right length
plaintextof (t1, enc(t2, t3, t4)), where t1 corresponds to the length of the plaintext t3. In the
same manner, we create placeholders skofvk(vk) for signature keys of signatures for which
we only know the verification key, and we create placeholders nonceof (m) for randomness
that has been used, in order to create the same extended symbolic operation for equal
attacker-messages m, e.g., ciphertext or signatures with the same key, the same message
and the same randomness.

The core idea is to reconstruct a symbolic attacker strategy from the transcript in a
manner that works, both, in the symbolic and in the computational model. Then, we use
this reconstructed attacker strategy to internally run a symbolic execution of b̄(Π) and to
check whether the internal symbolic execution of b̄(Π) branches differently than the real
execution of b(Π). As described above, this internal symbolic execution is the extended
symbolic execution from Definition 72.

The shape of a message. For characterizing the symbolic knowledge that the adversary
has about a message, we characterize the bitstring as detailed as possible in a term-
like representation, which we call a shape. Technically, a shape is a tree, labelled with
constructor and destructor names, but while constructing a shape for a given message m
the algorithm Construct-shape, applies all possible tests that the adversary could apply
as well to the message and inversely construct a shape, e.g., if for a message m a decryption
operation dec (or dec′) succeeds with the decryption key k, and to the plaintext unstring0

succeeds, then the shape would be enc(ekofdk(k), string0(empty), n). In order to make
shapes unique and to assign the same shape to the same bitstring, we refine the nonce n
as a virtual constructor nonceof /1 that gets as an argument the so-called dual symbolic
operation that lead to the term for which the randomness is retrieved: in our example
n = nonceof (dec(k),m). Moreover, in order to be able to obtain a attacker strategy, we
have to get rid of all bistrings in a shape. For our example this means that m and k have to
be replaced in the shape. For k, we recursively apply this construction of a shape to k. As
an example, the decryption key could be a message that the adversary sent to the protocol,
which was received at the jth node in the protocol states trace. For the message m, we
know that it is the message is about to be sent at output node i Then, Construct-shape
succeeds with an isdk -operation, and the corresponding shape would additionally point to
the jth node in the protocol states trace: the shape is

enc(ekofdk(dk(nonceof (xj))), string0(empty),nonceof (dec(k), xi))

Constructing the shared knowledge. The shared knowledge is a set of symbolic
operations that is constructed by adding to the shared knowledge all messages that
have been sent to the adversary and that have been received from the adversary. The
algorithm Construct-knowledge (see Figure 6.4) slowly increases the knowledge set
by iterating through the nodes of the protocol state trace, and by constructing the shapes
for all previous input and output nodes and by adding these shapes to the knowledge.
In this way, it happens that for the same input or output node several time a shape
constructed. These different shapes for the same node are, however, consistent with
each other. Since Construct-shape recursively parses a message and the knowledge

171

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

fbad-branch,Π(b, tr) for computation node d

V := Construct-attacker-strategy(b, tr)
run the extended symbolic execution of b̄(Π) with
the attacker strategy VIn
if d has not been reached in this execution then

go to a distinct abort-state
if the successor of d that is not at the x-edge has
been reached then

go to the state bad-branch

return ok

Construct-knowledge(b, tr,K, j)

for i = 1 to min(j, |tr|) do
let νi be the ith node in b(tr)
let tr′ be the prefix-trace from νi to the root
if νi is an input node then

let mi be message at the input node νi
Oi ··= Construct-shape(mi, xi,K, b, tr

′, dec′)
/*The shared knowledge also increases if an

attacker-message is received.*/

K ··= K ∪ {Oi}
/*saturate the knowledge after adding Oi*/

K ··= FP-Destruct(K, tr′)
else if νi is an output node then

let mi be message at the output node νi
Oi ··= Construct-shape(mi, xi,K, b, tr

′, dec′)
K ··= K ∪ {Oi}

/*saturate the knowledge after adding Oi*/

K ··= FP-Destruct(K, tr′)
return K

Construct-attacker-strategy(b, tr)

K ··= ∅
for i = 1 to |tr| do
K ··= Construct-knowledge(b, tr,K, i)

V ··= ε /*initialization with the empty list*/

for i = 1 to |tr| do
let νi be the ith node in b(tr)
let tr′ be the prefix-trace from νi to the root
if νi is an input node then

let mi be message at the input node νi
Oi ··= Construct-shape(mi, xi,K, b, tr

′, dec′)
V ··= V :: (in, (∗, Oi))

else if νi is an output node then
let mi be message at the output node νi
Oi ··= Construct-shape(mi, xi,K, b, tr

′, dec′)
V ··= V :: (out, (∗, Oi))

else if νi is a control node then
let l′ be the bitstring in the annotation of the
edge between νi and the successor of νi that
has been reached in tr (i.e., the in-metadata
the attacker has sent)
V ··= V :: (control, (∗, l′))

return V

Figure 6.3.: The main loop of the branching monitor.

monotonically increases, each new shape for the same node only differs in that it is a
refinement of the old shape, specifically plaintextof sub-shapes are potentially replaced by
shapes that contain more information, e.g., pair(string1(empty), string0(empty)).

Extended shared knowledge. The algorithm Extended-Shared-Knowledge (see
Figure 6.5) is defined that extends the shared knowledge with the plaintexts that the
attacker knows because it can decrypt protocol-ciphertexts that use an attacker key.
From a ciphertext enc(ek,m, r′) with attacker-generated ek, the attacker learns m and
FP-Destruct(K, tr′) for the prefix of the trace tr′ from the input node’s to the root.

Constructing an attacker strategy. Given a shared knowledge K, constructing an
attacker strategy is canonical. Using K, we again iterate over all nodes in the trace and
apply Construct-shape for each input or output node and add the result together with a
in- or out-tag to the attacker strategy. Upon encountering a control node the in-metadata
is stored in the attacker strategy, together with a control-tag.

The monitor as a parametric CoSP protocol. We stress that the branching monitor
can be constructed as a parametric CoSP protocol. The expressions evalO(tr) can be
evaluated with sequences of the computation nodes that refer to the respective nodes. The
references to previous nodes can also be checked using an equals-destructor node. Since
CoSP protocols are infinite, loops only need an if-then-else command, and an if-then-else
command can encoded into the deterministic polynomial-time algorithm be implemented
in the that computes the next identifier (see Definition 26).

Leveraging the sub-algorithms for constructing the branching monitor. Given

172

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

FP-Destruct(K, tr)

repeat
K′ := K
for all O ∈ K do
K ··= K ∪Destruct(D′, O, tr)

for all pairs (O,O′) ∈ K2 do
K ··= K ∪Destruct-binary(D′, O,O′, tr)

K ··= Extended-Shared-Knowledge(K, b, tr′)
until K reached a fixpoint, i.e.,

∀O ∈ K.∃O′ ∈ K′.evalO(tr) = eval ′O(tr)
return K

Destruct(D,O, tr)

K′′ ··= ∅
for all unary destructors d in D do
K′′ ··= K′′ ∪ {d(O)}

return K′′

Destruct-binary(D,O,O′, tr)

K′′ := ∅
for all binary destructors d in D do
K′′ := K′′ ∪ {d(O,O′)}

return K′′

Figure 6.4.: The algorithms FP-Destruct, Destruct, Destruct-binary, D′ is the
extended set of destructors (see Section 6.3.4.2).

Extended-Shared-Knowledge(K, b, tr′)

for all O ∈ K such that O(b(tr′)) is a ciphertext
do

if ∃ no O′ ∈ K such that O′(b(tr′)) and
ekof (O(b(tr′))) = ekofdk(dk) then

if ekof (O(b(tr′))) is not the result of any ek -

computation node in tr′ then
if ∃ an enc-computation node in tr′ with
the second argument from the jth node
then
K := K ∪ {xj}

return K

Figure 6.5.: Extended shared knowledge.

the algorithms for constructing an attacker strategy, we run a modified symbolic execution,
called the extended symbolic execution, with these shapes for b̄(Π) and check whether the
real execution and the extended symbolic execution always take the same branch. The
extended symbolic execution is defined Section 6.3.4.2 and Section 6.3.4.3.

6.3.4.2. Extended Symbolic Model

In order to be able to define the extended symbolic execution, we first define the ex-
tended symbolic model that contains extended terms with the extended constructors
skofvk/1, plaintextof /2,nonceof /1 and its natural extension to terms and destructors.

The extended symbolic model M′ of the symbolic model M = (C,N,T,D) is the nat-
ural extension of M with the constructors skofvk/1, plaintextof /2,nonceof /1. The set of
extended constructors is defined as C′ := C ∪ {skofvk/1, plaintextof /2,nonceof /1}. The
set of extended nonces are defined as N′ := N ∪ {nonceof (t) | t ∈ T}.

Extended Message Type T′. The set of extended terms T′ is defined as the set of

173

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

Construct-shape(m,Oq ,K, b, tr, dec
′)

Or ··= nonceof (Oq)
switch m with

case “∃O ∈ K. m = evalO(b(tr))”
return O

case “isenc(m) 6= ⊥”
Oek ··= Construct-shape(

“ekof (m), ekof ”(Oq),K, b, tr)
if ∃dk.dk = ekof (m) ∧ ∃Odk ∈ K. dk =
evalOdk

(b(tr)) then
/*Decrypt with the known dk.*/

if dec(dk,m) 6= ⊥ then
Om′ ··= Construct-shape(dec(dk,m),

“dec”(O,Oq),K, b, tr)
else

let l = len(m)
return garbageEnc(Oek , Or, l)

else if dec′(m, b(tr)) 6= ⊥ then
/*The ciphertext is protocol generated with an

non-protocol key.*/

Om′ ··= Construct-shape(dec′(m, b(tr)),
“dec′”(Oq),K, b, tr)

else
/*The plaintext is hidden.*/

l := lenofdec(Oq)
Om′ ··= plaintextof (l, Oq)

return enc(Oek , Om′ , Or)
case “issig(m) 6= ⊥”
Ovk = Construct-shape(

vkof (m), “vkof (Oq)”,K, b, tr)
if verify(evalOvk

(b(tr)),m) = m′ 6= ⊥ then
Om′ ··= Construct-shape(

m′, “verify”(Ovk , Oq),K, b, tr)
if ∃O.vkof (evalO(b(tr))) = evalOvk

(b(tr))
then

/*We know the signing key.*/

Osk = O
else

/*We know the matching vk.*/

Osk = skofvk(O′)
return sig(Osk , Om′ , Or)

else
let l = len(m)
return garbageSig(Ovk , Or, l)

case “issk(m) 6= ⊥”
if ∃O ∈ K. v = evalO(b(tr)) ∧ v = vkof (m)
then

/*We know the matching vk.*/

Osk ··= skofvk(O)
else

/*The key is fresh in the shared knowledge.*/

Osk ··= sk(Or)
return Osk

case “isvk(m) 6= ⊥”
if ∃O ∈ K. evalO(b(tr)) = s ∧ vkofsk(s) = m
then

/*We know the matching sk.*/

Ovk ··= vkofsk(O)
else

/*The key is fresh in the shared knowledge.*/

Ovk ··= vk(Or)
return Ovk

case “isdk(m) 6= ⊥”
if ∃O ∈ K. ek = evalO(b(tr)) ∧ ek =
ekofdk(m) then

/*We know the matching ek.*/

Odk ··= dkofek(O)
else

/*The key is fresh in the shared knowledge.*/

Odk ··= dk(Or)
return Odk

case “isek(m) 6= ⊥”
if ∃O ∈ K. k = evalO(b(tr)) ∧ ekofdk(k) = m
then

/*We know the matching dk.*/

Ovk ··= ekofdk(O)
else

/*The key is fresh in the shared knowledge.*/

Oek ··= ek(Or)
return Oek

case “unstringq(m) 6= ⊥ for q ∈ {0, 1}”
Om′ ··= Construct-shape(unstringq(m),

“unstringq”(Oq),K, b, tr)
return stringq(Om′)

case “fst(m) 6= ⊥”
Olt ··= Construct-shape(

fst(m), “fst”(Oq),K, b, tr)
Org ··= Construct-shape(

snd(m), “snd”(Oq),K, b, tr)
return pair(Olt, Org)

case “unS(m) 6= ⊥”
Om′ ··= Construct-shape(

unS(m), “unS”(Oq),K, b, tr)
return S(Om′)

case “l = len(m) 6= ⊥”
return garb(Or, l)

case “default”
return garbageInvalidLength(Or)

lenofdec(Oq) := (len(Oq)− a1 · len(ekof (Oq))− a0)/a2
for len(enc(k,m, r)) = a1 · len(k) + a2 · len(m) + a0

Figure 6.6.: The algorithm Construct-shape.

terms M according to the following grammar:

M ::= enc(ek(N),M,N) | ek(N) | dk(N) |
sig(sk(N),M,N) | vk(N) | sk(N) | pair(M,M) | P | N | L |
garb(N,L) | garbageInvalidLength(N)

garbageEnc(M,N,L) | garbageSig(M,N,L)

skofvk(M) | plaintextof (M,M) | nonceof (M)

P ::= emp() | string0(P) | string1(P) L ::= O() | S (L)

174

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

dec′(c, tr)

Let tr be the trace produced by the protocol so far.
if ∃ an enc-node νi in tr with the result c′, with
equals(c, c′) 6= ⊥, with the messages k,m, r as argu-
ments, and ∃ no ek -node in tr with result k′ such
that equals(k, k′) 6= ⊥ then

/*the ciphertext is protocol generated with an adver-

sarially generated key*/

return m

else if c is not the result of any enc-node in tr ∧
∃ a node νi with the result dk = xi(tr) then

/*the attacker generated the ciphertext with a proto-

col encryption key*/

m := dec(dk, c)
return m

else
return ⊥

Figure 6.7.: The shared knowledge algorithm dec′ for decryption

The nonterminals P , N , and L represent payloads, nonces, and length specifications,
respectively. Note that the garbage terms carry an explicit length specification to enable
the attacker to send invalid terms of a certain length.

Additional Destructor Rules. The set D′ of extended destructors is the set of partial
functions that is defined by the destructor rules for D, with the unary virtual destructor dec′

(see Figure 6.7 and below) with the following additional rules for the extended constructors:

verify(vk(t1), sig(skofvk(t1), t2, t3)) = t2

issk(skofvk(t1)) = skofvk(t1)

issig(sig(skofvk(t1), t2, t3)) = sig(skofvk(t1), t2, t3)

vkof (sig(skofvk(t1), t2, t3)) = t1

vkofsk(skofvk(t1)) = t1

len(enc(t1, plaintextof (t2, t3), t4)) = len(t3)

In particular, decryption is undefined on extended terms that use plaintextof (t, t′) as a
plaintext:

dec(dk(t1), enc(ek(t1), plaintextof (t2, t3), t4)) = ⊥
We define a unary virtual destructor dec′ that looks up and outputs the plaintext as
depicted in Figure 6.7.7

6.3.4.3. Extended Symbolic Execution

The only difference between the extended symbolic execution and the symbolic execution
is that the extended symbolic execution operates on M′ and, moreover, expects so-called
extended symbolic operations, which operate on traces instead of views. Moreover, the
extended symbolic model does not work on terms but on symbolic operations. In particular,
input messages not immediately parsed as terms but rather only assigned as much structure
as has already been tested by the protocol via successful destructor application tests, which
are executed on the real bitstrings. Another important difference is that the extended
symbolic execution is run inside the CoSP protocol Mon(Π). As a consequence,s the

7Formally, dec′ is not a destructor, because its result depends on the trace that the protocol has been
produced up to the invocation of dec′. However, we treat it like a destructor in the following to simplify
presentation.

175

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

extended symbolic operation, if Mon(Π) is run in the computational execution, uses the
computational implementations of the constructors and destructors, and, when Mon(Π) is
considered in the symbolic model, it uses the symbolic constructors and destructors. Since
the alarms in Mon(Π) are trace properties, the assumed computational soundness result
implies that Mon(Π), and thereby the extended symbolic execution, in the symbolic model
coincides with Mon(Π), and thereby the extended symbolic execution, in the computational
execution.

The extended symbolic operations are defined as follows.

Definition 71 (Extended Symbolic Operation). An extended symbolic operation O/n (of
arity n) on M for a protocol Π is a symbolic operation on M′ (as defined in Section 6.3.4.2)
except that the projections are evaluated on traces instead of views via the function evalO :
Traces(Π)→ T′ (where Traces denotes the set of all finite traces in Π):

evalxi(tr) =

{
m , if there is an m associated to the ith node in tr

⊥ , otherwise

evalf(O1,...,On)(tr) = f(evalO1(tr), . . . , evalOn(tr)) for f ∈ D′ with arity n

A symbolic execution of a protocol is basically a valid path through the protocol tree. It
induces a view, which contains the communication with the attacker.

Definition 72 (Extended Symbolic Execution). Let M′ = (C′,N′,T′,D′) be the extended
symbolic model from Section 6.3.4.2. Let a CoSP protocol I be given. An extended symbolic
view of the protocol I is a (finite) list L of triples (Vi, νi, fi) with the following conditions:
For the first triple, we have V1 = ε, ν1 is the root of I, and f1 is an empty partial function,
mapping node identifiers to terms. For every two consecutive tuples (V, ν, f) and (V ′, ν ′, f ′)
in the list, let ν̃ be the nodes referenced by ν and define t̃ through t̃j ··= f(ν̃j). We conduct
a case distinction on ν.

• ν is a computation node with constructor, destructor or nonce F . Let
V ′ = V . If m ··= evalF (t̃) 6= ⊥, ν ′ is the yes-successor of ν in I, and f ′ = f(ν ··= m).
If m = ⊥, then ν ′ is the no-successor of ν, and f ′ = f .

• ν is an input node. If there exists a term t ∈ T and an extended symbolic operation
O on M with evalO(L′) = t, let ν ′ be the successor of ν in I, V ′ = V :: (in, (t, O)),
and f ′ = f(ν ··= t), where L′ is the prefix of the extended symbolic view L up to the
tuple (V, ν, f).

• ν is an output node. Let V ′ = V :: (out, t̃1), ν ′ is the successor of ν in I, and
f ′ = f .

• ν is a control node with out-metadata l. Let ν ′ be the successor of ν with the
in-metadata l′ (or the lexicographically smallest edge if there is no edge with label l′),
f ′ = f , and V ′ = V :: (control, (l, l′)).

Here, VOut denotes the list of extended terms in V that have been sent at output nodes, i.e.,
the extended terms t contained in entries of the form (out, t) in V . Analogously, VOut-Meta

denotes the list of out-metadata in V that has been sent at control nodes.

The set of all symbolic views of I is denoted by SViews(I). Furthermore, VIn denotes
the partial list of V that contains only entries of the form (in, (∗, O)) or (control, (∗, l′))
for some symbolic operation O and some in-metadata l′, where the input term and the

176

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

out-metadata have been masked with the symbol ∗. The list VIn is called attacker strategy.
We write [VIn]SViews(I) to denote the class of all views U ∈ SViews(I) with UIn = VIn .

6.3.4.4. fbad-branch,Π is a distinguishing subprotocol

Finally, we are able to prove that the branching monitor satisfies symbolic and computational
self-monitoring.

Symbolic self-monitoring. Symbolic self-monitoring, at its core, follows from the insight
that all operations that the branching monitor performs are in the shared knowledge, i.e.,
are in the symbolic knowledge (of the symbolic adversary). As a consequence, we conclude
that a run of the extended symbolic execution induces a full symbolic trace.

Before, we can prove symbolic self-monitoring, we define, as a technical vehicle, a derived
view. For an output node ν of a CoSP protocol, we call the output message m associated
with ν, i.e., m is the message to which the output node references. For an input node or a
computation node ν, we call the message m produced at ν associated with ν.

Definition 73 (Derived view). Let Π be a bi-protocol and Π′ be the corresponding self-
monitor. Then, the derived left view left(tr) of Π′ for a trace tr is iteratively constructed
as follows:

left(tr) := ε (i.e., the empty list)
for i = 1 to length of tr do

if node i is an input node that is associated to a message m then
left(tr) := left(tr) :: (in,m)

if node i is a output node that is labeled as left and is associated to a message m then
left(tr) := left(tr) :: (out,m)

if node i is an control node with input metadata label l and the edge to node i+ 1 in
tr is labeled with the metadata label l′ then

left(tr) := left(tr) :: (control, (l, l′))

The derived right view right(tr) is defined analogously with right instead of left for output
nodes. For symbolic traces the messages in the view are terms and for computational traces
the messages in the view are bitstrings.

Lemma 29 (fbad-branch,Π Only Uses Symbolic Operations). For every extended symbolic
operation O that fbad-branch,Π uses in the extended symbolic execution, there is a symbolic
operation O′ such that for all traces tr we have evalO(tr) = evalO′(V (tr)), where V is the
derived view of tr (similar to Definition 73).

Proof. By construction of Construct-shape, we know that there is only one case in
which projections are generated that do not point to output nodes: for the plaintexts m of
ciphertexts c for which the attacker knows the decryption key dk. For these cases, there is
a symbolic operation dec(dk, c) that outputs the plaintext m.

As a next step, we show that the extended constructors plaintextof /2, skofvk/1,nonceof /1
are only used whenever the attacker could replace them by derivable messages. For
plaintextof /2, we know by construction of Construct-shape that plaintextof /2 is only
used on ciphertexts for which either the attacker or the protocol cannot know the plaintext.
Hence, the attacker could already generate the ciphertext, and thus there is a symbolic oper-
ation that contains an actual message instead of plaintextof /2. An analogous argumentation

177

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

shows that whenever we use skofvk/1 or nonceof /1, the message was attacker-generated
and the attacker new the secret key or the randomness, respectively.

Lemma 30 (fbad-branch,Π satisfies symbolic self-monitoring). Let Π be a bi-protocol from
the protocol class P, and M be the symbolic model from Section 6.3.1. The parametric
CoSP protocol fbad-branch,Π (see Section 6.3.4.1) satisfies symbolic self-monitoring (see
Definition 69).

Proof. By Lemma 29, we know that for every extended symbolic operation used by
fbad-branch,Π there is a symbolic operation. As a consequence, we know that there is a
full symbolic trace for each such run of the extended symbolic execution. Moreover, this
symbolic trace trace equals the resulting trace from the run of the extended symbolic
execution.

Hence, whenever an alarm is raised in Mon(Π), there is an attacker strategy such that (for
b ∈ {left , right}) the symbolic execution of b(Π) (which corresponds to the real execution
in Mon(Π)) and the symbolic execution of b̄(Π) branch at some point differently. Thus,
there is a symbolic view for which symbolic indistinguishability is violated.

Internalizing the filter into the protocol. As a technical vehicle for the proof, we
define a protocol Mon(Π)−Fb that combines the monitor with the filter Fb, which chooses
the b-variant. Then, we show that this protocol Mon(Π) − Fb is indistinguishable from
b(Π).

Definition 74 (The Filter Fb). The filter machine Fb is constructed by initially choosing
the b branch in Mon(Π) and by only forwarding the messages from the output nodes that
are labelled with b, thereby ignoring the messages from the output nodes labelled with b̄.

Lemma 31 (Indistinguishability of the Self-monitor). Let Π be an efficient bi-protocol and
Fb be the filter machine from Definition 74. Then, for every b ∈ {left , right} and every
machine A, we have

〈
ExecM,Impl,Mon(Π) | Fleft

〉
≈tic

〈
ExecM,Impl,Mon(Π) | Fright

〉

⇐⇒ ExecM,Impl,left(Π) ≈tic ExecM,Impl,right(Π)

Proof. Observe that in both relations, the messages sent to the adversary are the same
for b = left and for b = right . Hence, we only have to consider the running time to prove
the two implications. (Indeed, if one of the tic-indistinguishabilities holds, because one
of the machines needs a super-polynomial running time, then this tic-indistinguishability
states nothing about the messages sent to the adversary after a super-polynomial amount
of time. Thus, we could not use this tic-indistinguishability to prove the other one, because
the machines machines in the desired tic-indistinguishability could potentially need only
polynomial running time, which means that we have to prove a statement about all the
messages sent to the adversary.) It suffices to show that the running time of the machines
in the one tic-indistinguishability is related to the running time of the machines in the
other tic-indistinguishability. Precisely, we show: For each adversary A, for each output
a, for all auxiliary information z, and for all polynomials p there is a polynomial q and a

178

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

negligible function µ such that

Pr[
〈〈

ExecM,Impl,Mon(Π)(k) | Fb
〉
| A(k, z)

〉
⇓q(k) a]

≥ Pr[
〈
ExecM,Impl,b(Π)(k) | A(k, z)

〉
⇓p(k) a]− µ(k)

(6.1)

and vice versa, i.e., for all q there is a p such that the formula holds. In other words,
the probability that the amount of joint computation steps is polynomially bounded in〈
ExecM,Impl,b(Π) | A

〉
equals the probability that the joint computation steps are polynomi-

ally bounded in
〈〈

ExecM,Impl,Mon(Π) | Fb
〉
| A
〉
.

The direction “=⇒” follows from the fact that ExecM,Impl,Mon(Π)−Fb computes internally,
due to the extended symbolic execution, both variants and hence has always more compu-
tation steps than ExecM,Impl,b(Π). As a consequence, for all polynomials q, there is a p ≤ q
such that equation 6.1 holds.

For the direction “⇐=”, we have to show that the computation steps of the interaction〈〈
ExecM,Impl,Mon(Π)(k) | Fb

〉
| A(k, z)

〉
are polynomially bounded as well. This statement

follows from the following three other statements: (i) in fbad-knowledge the running time
of the fixpoint computation (FP-Destruct) is bounded polynomially in the sum of the
length of the prefix trace tr j and the security parameter; (ii) Mon(Π) is efficient in the sense
of Definition 4; (iii) the extended symbolic execution of b̄(Π) takes super-polynomially
many computation steps, St against b̄(Π) only needs poly many steps.

(i) follows from the construction of FP-Destruct, since we only destruct messages. (ii)
also follows from the construction Mon(Π) and from fbad-knowledge. It, hence, remains to
show (iii)

Since Mon(Π) internally also computes b̄(Π), we have to exclude that the extended
symbolic execution of b̄(Π) takes super-polynomially many computation steps. Observe
that uniformity-enforcing, symbolic indistinguishability and computational soundness for
trace properties imply that the distribution of traces induced by

〈
ExecM,Impl,left(Πi) | A

〉

is computationally indistinguishable from the distribution of node traces induced by〈
ExecM,Impl,right(Πi) | A

〉
; otherwise, we can construct a single protocol that executes both

left(Πi) and right(Πi), checks in the second run whether all inputs satisfy the same
destructor tests as the inputs of the first run, and raises an alarm if a branching was
different. This protocol breaks the computational soundness for trace properties (which
holds by Theorem 9).

We know that the length of the trace is polynomially bounded. Next, we have to show
that also the call of the algorithms does not cause a super-polynomial computation. By
Definition 6 all implementations are polynomial-time computable, and by the definition of
a length destructor and Implementation Conditions 5 and 33 the length of all bitstrings
is linear in the length of the input. The length of the input, in turn, is polynomially
bounded in the sum of the length of trj and the security parameter. Hence, every call to
an implementation algorithm only causes a polynomially bounded number of computation
steps, in the sum of the security parameter and the length of the trace so far tr j (where
tr j is the path from the computation node νj to the root).

Definition 75 (Mon(Π)− Fb). For a protocol Π, we define the protocol Mon(Π)− Fb as
the unrolled variant of the protocol in which the initial node in Mon(Π) is removed and

179

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

only the b-branch is taken and each the b̄-labelled output node that points to a node ν is
replaced by a so-called virtual output node: a computation node of the pair constructor
that points twice to ν. In Mon(Π)− Fb the monitor Mon(Π) treats virtual output nodes as
it treated output nodes.

Corollary 3 (Mon(Π)−Fb equivalence). For all CoSP protocols Π and all ppt adversaries
A, we have

ExecM,Impl,Mon(Π)−Fleft
≈tic ExecM,Impl,Mon(Π)−Fright

⇐⇒ ExecM,Impl,left(Π) ≈tic ExecM,Impl,right(Π)

Proof. This immediately follows from the definition of Mon(Π)−Fb and from Lemma 31.

Computational self-monitoring. For computational self-monitoring, we reduce the dis-
tinguishability of different branchings to trace properties and then apply the computational
soundness result for trace properties.

Lemma 32 (fbad-branch,Π satisfies computational self-monitoring). The parametric CoSP
protocol fbad-branch,Π (see Section 6.3.4.1) satisfies computational self-monitoring (see
Definition 69).

Proof. We construct an extended branching monitor Mon′(Π). Where the branching monitor
runs the extended symbolic execution for b̄(Π), the extended branching monitor Mon′

completely runs b̄(Π) once again and additionally implements input guards in the second
run (see below) and checks whether the last computation node, i.e., the node before ν,
branches the same in both runs if the input guards succeed executes Πi twice and compares
which branch was taken at the node ν.

1: in the first run, apply Construct-shape at each input node and store each resulting
shape

2: in the second run, if a branching is different from the first run, set a flag fail to true
3: in the second run, we additionally apply Construct-shape at each input node and

check whether the resulting shape coincides with the shape from same input node in
the first run. If the check fails, set the flag fail to true, as well.

4: if the flag fail equals true then
5: Πν halts in a state stop

We consider the following trace property pν : if stop is not reached (in Πν), then ν is
reached in both runs and use the same branch in both runs.

We define a filter Fb by a machine (which typically interacts with Mon(Π)) that upon
the initial query of Mon(Π) chooses the branch b and then forwards all messages to the
adversary or the simulator, i.e., over the network interface. The extended filter EFb extends
the filter Fb by completely hiding the second run from A by replaying the same messages
once again, also from the distinguisher, i.e., does not output the results of the second run.

Claim 1. Let Π be an arbitrary bi-protocol in P. If and only if Π is indistinguishable,
the extended branching monitor is indistinguishable, i.e.,

ExecM,Impl,b(Π) ≈tic ExecM,Impl,b̄(Π)

⇐⇒
〈

ExecM,Impl,Mon′(Π) | EFb
〉
≈tic

〈
ExecM,Impl,Mon′(Π) | EFb̄

〉

180

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

Proof of Claim 1. This claim directly follows from Lemma 31 since no information is sent
to the adversary A after the first run. �

As a next step, we consider a modification EF′b of the extended filter EFb that sends
firstRunDone after the first run (with b) over the network interface net. Then, it waits
for the string beginSecondRun and performs real a second run with b̄, in contrast to EFb
not the attacker messages from the first run. Moreover, let the rewinding filter RF(A) be
a machine that internally runs the adversary machine A and resets A after receiving the
string firstRunDone. Then, it sends beginSecondRun over the left network interface net.

We plug these machines together as follows:
〈〈

ExecM,Impl,Mon′(Π) | EF′b
〉
| RF(A)

〉
, i.e.,

the left network interface of the rewinding filter is connected to the right network interface
of EF′b. Moreover, the output interface of A is connected to the sub-output interface of
RF, and the output interface of RF is connected to the output interface of EF′b. EF′b
outputs the guess of the adversary from the first run.

Claim 2. The extended branching monitor Mon′(Π) is indistinguishable against the
extended filter if and only if Mon′(Π) is indistinguishable against the rewinding filter, i.e.,
for all probabilistic polynomial-time machines A, we have

〈
ExecM,Impl,Mon′(Π) | EFb

〉
≈Atic

〈
ExecM,Impl,Mon′(Π) | EFb̄

〉

⇐⇒
〈

ExecM,Impl,Mon′(Π) | EF′b
〉
≈RF(A)

tic

〈
ExecM,Impl,Mon′(Π) | EF′b̄

〉

Proof of Claim 2. The statement directly follows from the construction of EF′b against
RF(A): the guess of EF′b has exactly the same distribution as the guess of EFb against A.
�

Claim 3. If Πi is distinguishable, Πi−1 is indistinguishable, the last node ν in Πi is a
control node, then both extended branching monitors computationally raise an alarm, i.e.,

ExecM,Impl,b(Πi) 6≈tic ExecM,Impl,b̄(Πi)
and

ExecM,Impl,b(Πi−1) ≈tic ExecM,Impl,b̄(Πi−1) and ν is a control node

=⇒ Pr
[〈〈

ExecM,Impl,Mon′(Πi) | EF′b
〉
| RF(A)

〉
: pν occurs

]
is non-negligible

Moreover, we have

Pr
[〈〈

ExecM,Impl,Mon′(Πi) | EF′b
〉
| RF(A)

〉
: pν occurs

]

= Pr
[〈〈

ExecM,Impl,Mon′(Πi) | EF′b̄
〉
| RF(A)

〉
: pν occurs

]

Proof of Claim 3. Since Πi−1 is indistinguishable and by Claim 2, we know that the
following holds

〈
ExecM,Impl,Mon′(Πi−1) | EF′b

〉
≈RF(A)

tic

〈
ExecM,Impl,Mon′(Πi−1) | EF′b̄

〉

181

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

By Claim 1 and Claim 2, we know that the extended branching monitor for Πi is
distinguishable against the rewinding filter, i.e.,

〈
ExecM,Impl,Mon′(Πi) | EF′b

〉
6≈RF(A)

tic

〈
ExecM,Impl,Mon′(Πi) | EF′b̄

〉

By the definition of computational challenger (see Definition 20) and since by assumption
the last node ν in Πi is a control node we know that the only information that the
distinguisher receives against Πi that he does not receive against Πi−1 is the in-metadata.
As a consequence, we know that the computation node ν ′ directly before ν branches
differently in the execution of b(Πi) and b̄(Πi) against A, thus also in Mon′(Πi) against EF′b
and RF(A). Thus, for the two runs in Mon′(Πi) against the rewinding filter RFb(A), the
attacker produces with non-negligible probability, traces that pass all entry guards and cause
the computation node ν ′ (just before ν) to branch differently. Since the rewinding filter
resets the attacker, also the rewinding filter RFb(A) finds such a trace with non-negligible
probability, thus the statement follows:

Pr
[〈〈

ExecM,Impl,Mon′(Πi) | EF′b
〉
| RF(A)

〉
: pν occurs

]

= Pr
[〈〈

ExecM,Impl,Mon′(Πi) | EF′b̄
〉
| RF(A)

〉
: pν occurs

]
and

Pr
[〈〈

ExecM,Impl,Mon′(Πi) | EF′b̄
〉
| RF(A)

〉
: pν occurs

]
is non-negligible

�

Claim 4. Let Π be an arbitrary bi-protocol. If the branching monitor Mon(Π) symbolically
does not raise an alarm, then the extended branching monitor Mon′(Π) symbolically does
not raise an alarm.

Proof of Claim 4. We first show that in the extended symbolic execution the branching
monitor Mon(Π) never produces an extended term plaintextof (,), i.e., a term that the
monitor does not know for the extended symbolic execution. By the construction of
Construct-shape (see Section 6.3.4.1) we know that such an extended term is only inside
a ciphertext for which the protocol does not know the key and the ciphertext is attacker-
generated. However, the protocol will never be able to decrypt such an encryption, i.e.,
such an extended term plaintextof (,) is never the result of an evaluation of a computation
node in the extended symbolic execution.

If extended terms plaintextof (,) are never produced by any evaluation in the extended
symbolic execution, the shapes always produce the same branching in the extended symbolic
execution as any term for which the input guards succeed, which concludes the statement.
�

The contraposition of Claim 3 is the following statement:

ExecM,Impl,b(Πi−1) ≈tic ExecM,Impl,b̄(Πi−1) and ν is a control node

∧ Pr
[〈〈

ExecM,Impl,Mon′(Πi) | EF′b
〉
| RF(A)

〉
: pν occurs

]
is negligible

=⇒ ExecM,Impl,b(Πi) ≈tic ExecM,Impl,b̄(Πi)

Furthermore, the following statement holds by assumption:

ExecM,Impl,b(Πi−1) ≈tic ExecM,Impl,b̄(Πi−1) and ν is a control node

182

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

By Claim 4 and by the assumption that no branching alarm is raised (with more than
negligible probability), we know that

Pr
[〈〈

ExecM,Impl,Mon′(Πi) | EF′b
〉
| RF(A)

〉
: pν occurs

]
is negligible

Hence, we conclude

ExecM,Impl,b(Πi) ≈tic ExecM,Impl,b̄(Πi)

6.3.5. The knowledge monitor

The distinguishing subprotocol fbad-knowledge,Π(b, tr) for an output node ν starts like
fbad-branch,Π(b, tr) by reconstructing a (symbolic) attacker strategy and simulating a sym-
bolic execution of b̄(Π). However, instead of testing the branching behavior of b̄(Π), the
distinguishing subprotocol fbad-knowledge,Π(b, tr) characterizes the message m that is output
in b(Π) at the output node ν in question, and then fbad-knowledge,Π(b, tr) compares m to the
message that would be output in b(Π). This characterization must honor that ciphertexts
generated by the protocol are indistinguishable if the corresponding decryption key has
not been revealed to the attacker so far. If a difference in the output of b(Π) and b(Π) is
detected, the event bad-knowledge is raised.

Symbolic self-monitoring for the distinguishing subprotocol fbad-knowledge,Π(b, tr) follows
by the same arguments as for fbad-branch,Π(b, tr). We show computational self-monitoring by
first applying the PROG-KDM property to prove that the computational execution of b(Π) is
indistinguishable from a faking setting: in the faking setting, all ciphertexts generated by the
protocol do not carry any information about their plaintexts (as long as the corresponding
decryption key has not been leaked). The same holds analogously for b(Π). We then consider
all remaining real messages, i.e., all messages except ciphertexts generated by the protocol
with unleaked decryption keys. We then show that in the faking setting, fbad-knowledge,Π(b, tr)
is able to characterize all information that is information theoretically contained in a message.
We conclude by showing that with this characterization, the knowledge monitor raises the
event bad-knowledge whenever the bi-protocol Π is distinguishable.

Section 6.3.5.1 presents the construction of the knowledge monitor. The proof of symbolic
self-monitoring goes along the lines of the proof of self-monitoring for the branching
monitor (see Section 6.3.5.2). For the proof of computational self-monitoring, we use
several technical vehicles. We prove that the construction of a so-called faking simulator in
the computational soundness proof w.r.t. trace properties from previous work [BMU12]
can be reused. This faking simulator simulates a real computational execution but does not
use sensitive information at all, i.e., for all ciphertext of which the decryption key has not
been leaked yet the encryption operation does not use the actual plaintext. To this end,
we first recall this faking simulator in Section 6.3.5.3. Then, in Section 6.3.5.5, we prove
that the indistinguishability of the faking simulator and the real computational execution
does carries over to the case with equivalence properties. Thereafter, in Section 6.3.5.6,
we prove that for each symbolic operation there is exactly one bitstring in one run. As a
final vehicle, we resolve, in Section 6.3.5.7, the natural double induction, over the length
of the protocol and the structural size of the message to be sent by introducing so-called
unrolled variants, which before sending a message first send all visible sub-messages this

183

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

fbad-knowledge,Π(b, tr)

Vb ··= Construct-attacker-strategy(b, tr)
Vb̄ ··= Construct-attacker-strategy(b̄, tr)
if Vb = Vb̄ then

return ok

else
go to state bad-knowledge

Figure 6.8.: Construction of the knowledge monitor

message to the adversary. Finally, in Section 6.3.5.8, we plug all these tools together and
prove computational self-monitoring for the knowledge monitor.

6.3.5.1. Construction of the knowledge monitor

The knowledge monitor fbad-knowledge,Π (see Figure 6.8), like the branching monitor
fbad-branch,Π (see Section 6.3.4.1), first constructs an attacker strategy, using
Construct-attacker-strategy (see Figure 6.4). With the this attacker strategy,
the knowledge monitor fbad-knowledge,Π obtains for the output node for b(Π) and for b̄(Π) a
shape such that all information that is visible from the shared knowledge is contained in
these shape, i.e., these shapes have maximal information. The knowledge monitor then
simply checks whether these shapes are equal or not. If the shapes are not equal, an alarm
is raised.

6.3.5.2. Symbolic self-monitoring of the knowledge monitor

In this section, we show the symbolic self-monitoring of the knowledge monitor.

Definition 76 (Shared knowledge). A shared test is a symbolic operation for a trace tr
(for its derived view V see Definition 73) that either

• does not use any nodes labelled with nonces , or

• with attacker nonces NE that were used in protocol-constructed terms in tr.

The shared knowledge function is the knowledge function (see Definition 17) KshV : SO →
{>,⊥} that is defined on all shared tests and undefined on all other symbolic operations.

We say that a symbolic operation is in the shared knowledge if it is a shared test.

Lemma 33 (Symbolic self-monitoring for the knowledge monitor). Let Π be a bi-protocol.
Let i ∈ N. Let Π′i be the self-monitor for Πi. For all i ∈ N the following holds. If there
is an attacker strategy such that in Π′i the event bad-knowledge occurs but in Π′i−1 the
event bad does not occur and Πi−1 is symbolically indistinguishable, then Πi is symbolically
distinguishable because of knowledge.

Proof. We show this statement by induction over i. For i = 1, either the last node of Π1

is a control node or an output node. If the last node is a control node, the statement
follows. If the last node is a output node, then observe that fbad-knowledge,Π only performs
tests that are in the shared knowledge (see Lemma 29). Hence, there is an attacker
strategy that distinguishes the pair of views obtained by the symbolic execution of Π1

and Π1 is symbolically distinguishable. Since the last node was an output node and Π0 is

184

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

indistinguishable because it does not output anything to the attacker, Π1 is symbolically
distinguishable because of knowledge.

For i > 1 we know that in Π′i for all but the last control node no alarm is raised, i.e.,
bad does not occur for any attacker strategy. Hence, in the tests of before the last control
node bad-knowledge occurred. It remains to show that then Πi is distinguishable because
of knowledge. Observe that fbad-knowledge,Π only performs tests that are in the shared
knowledge (see Lemma 29). Hence, there is an attacker strategy that distinguishes the pair
of views obtained by the symbolic execution of Πi and Πi is symbolically distinguishable.
Since the last node was an output node and Πi−1 is indistinguishable by assumption, Π1 is
symbolically distinguishable because of knowledge.

6.3.5.3. The Faking Simulator Simf

We show that we can reuse the simulator of the computational soundness result of Backes,
Malik, and Unruh [BMU12]. In particular, we use the hybrid execution in which all
messages are faked. Technically, however, the previous computational soundness result for
trace properties needs indistinguishability trace properties and computational soundness
for equivalence properties needs the communication is indistinguishable for the attacker.

Hybrid Execution for Trace Properties. A successful way of proving computational
soundness (for trace properties) in the literature is the construction of a simulator that
translates bitstrings to terms and vice versa. The simulator interacts with a modified
symbolic execution, called the hybrid execution, on one side and the computational attacker
on the other side. Whenever the simulator receives a term from the hybrid execution, the
simulator constructs a corresponding bitstring and sends it to the attacker. Whenever the
simulator receives a bitstring from the attacker, the simulator parses the bitstring and
assigns a term to it, which it sends to the hybrid execution. This simulator thereby assigns
a symbolic attacker strategy for a run agains the computational attacker.

This simulator runs against a modified symbolic execution, called a hybrid execution
challenger, that lets the simulator decide the attacker strategy. In the work of Backes,
Malik, and Unruh [BMU12], the hybrid execution challenger is a further modification
in that it enables a lazy evaluation that works as follows: first, the hybrid execution
challenger accepts incomplete terms with variables inside as attacker-terms for input nodes;
second, whenever a term is evaluated the hybrid execution asks the simulator, so-called
eval-questions, to evaluate the term, potentially using an assignment for the variables. At
the end of the execution, the simulator has to send an assignment of all variables to terms
that is consistent with the responses of the simulator to the evaluation queries.

Definition 77 (Hybrid Challenger TrH -Exec (Trace Properties)). Let Π be a CoSP
protocol. We define an interactive machine TrH -ExecM,Π(k) run on input k. It is called
the hybrid protocol machine associated with Π. It internally maintains and finally outputs a
(finite) lists of tuples (Si, νi, fi), called the full hybrid trace, and runs a symbolic simulation
of Π as follows:

Initially S1 := S := ε, ν1 := ν is the root of Π, and f1 := f is a totally undefined partial
function mapping node identifiers to T. For i = 2, 3, . . . do the following (recall that net is
the network interface):

1. Let ν̃ be the node identifiers in the label of ν. Define t̃ through t̃j := f(ν̃j).

185

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

2. Proceed depending on the type of ν:

• If ν is a computation node with constructor, destructor, or nonce F ,
then send the question F (̃t) over net and wait for a response m. If m = yes,
let ν ′ be the yes-successor of ν and let f ′ := f(ν := F (̃t)). If m = no, let ν ′ be
the no-successor of ν and let f ′ := f . Set f := f ′ and ν := ν ′.

• If ν is an output node, send t̃1 over net. Let ν ′ be the unique successor of ν
and let S′ := S ∪ {t̃1}. Set ν := ν ′ and S := S′.

• If ν is an input node, wait on net to receive m ∈ T from Sim. Let f ′ :=
f(ν := m), and let ν ′ be the unique successor of ν. Set f := f ′ and ν := ν ′.

• If ν is a control node labeled with out-metadata l, send l over net, and
wait to receive a bitstring l′ from net. Let ν ′ be the successor of ν along the edge
labeled l′ (or the edge with the lexicographically smallest label if there is no edge
with label l′). Set ν := ν ′.

3. Send (info, ν, t) over net. When receiving an answer (proceed) from net, continue.

4. If over net has output a final assignment from variables to symbolic operations is
sent, check whether the final assignment is consistent with all the responses to the
eval-questions. If the check fails, abort with inconsistency. Otherwise, hand the
control back over net.

5. Otherwise, if over net a final assignment is not sent, let (Si, νi, fi) := (S, ν, f).

Indistinguishability and Dolev-Yaoness of the Faking Simulator. On one hand,
in order to ensure that this translation from a transcript of bitstrings to a symbolic attacker
strategy is accurate, the simulator needs to produce a symbolic attacker strategy that
matches the interaction of the computational attacker with the computational execution
challenger. In particular, the trace of protocol states that the hybrid execution produces
has to be computationally indistinguishable from the one that the computational execution
produces. In CoSP, this property is called indistinguishability of a simulator.

On the other hand, in spite of accurately modeling the computational execution, the
produced symbolic attacker strategy has to obey the symbolic rules, i.e., w.r.t. the symbolic
model it has to be a valid symbolic attacker strategy. In CoSP, this property is called
Dolev-Yaoness of a simulator.

The Dolev-Yaoness is proven by showing that the computational execution challenger
against the attacker A produces indistinguishable traces from the hybrid execution chal-
lenger against a faking simulator Simf

8 that fakes all ciphertexts and forwards all messages
back and forth from the internally simulated attacker A.

For the proof of the computational self-monitoring property, we use this faking simulator
Simf . We review the construction of Simf , but for the sake of brevity we only describe
in detail how Simf handles ciphertexts. The full description can be found in the work of
Backes, Malik, and Unruh [BMU12].

For translating bitstrings to terms and vice versa, the simulator Simf has two efficiently
computable stateful functions τ and β: τ assigns to each bitstring a term and β assigns to
each term a bitstring. The simulator is constructed such that τ and β are partially inverse
for each other, i.e., for all terms t that are sent by the hybrid execution (except for the

8In the paper by Backes, Malik, and Unruh [BMU12], this simulator is called Sim7.

186

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

randomness) the equation τ(β(t)) = t and for all bitstrings m the equation β(τ(m)) = m
holds.

The Honest Simulator Sim. For the sake of illustration, we present the definition of
the encryption-related cases of the honest simulator Sim, and subsequently briefly describe
how the faking simulator Simf differs from Sim.

Let R be the set of randomness terms that has been sent by the hybrid execution before
the respective invokation of β or τ . In the following definition the first case that applies is
taken.

The definition of τ for the encryption-related bitstrings is as follows:

1. τ(r) := N if r = rN for some N ∈ N \ R.
2. τ(r) := N r if r is of type nonce.
3. τ(c) := enc(ek(M),T, N) if c has earlier been output by β(enc(ek(M), t, N)) for

some M ∈ N, N ∈ R.
4. τ(c) := enc(ek(N), τ(m), N c) if c is of type ciphertext and τ(Aekof (c)) = ek(N) for

some N ∈ R and m := Adec(Adk (rN), c) 6= ⊥.
5. τ(c) := garbageEnc(ek(N), N c) if c is of type ciphertext and τ(Aekof (c)) = ek(N) for

some N ∈ R but Adec(Adk (rN), c) = ⊥.
6. τ(c) := xc if c is of type ciphertext but τ(Aekof (c)) 6= ek(N) for all N ∈ R.
7. τ(e) := ek(N) if e has earlier been output by β(ek(N)) for some N ∈ R.
8. τ(e) := ek(N e) if e is of type encryption key.
9. τ(k) := dk(N) if k has earlier been output by β(dk(N)) for some N ∈ R.

10. τ(k) := dk(N e) if k is of type decryption key and e := Aekofdk (k) 6= ⊥.

The definition of β for the encryption-related terms is as follows:

1. β(N) := rN if N ∈ N .
2. β(Nm) := m.
3. β(enc(ek(t1),T2,M)) := Implenc(β(ek(t1)), β(T2), rM) if M ∈ R.
4. β(enc(ek(t1), t, Nm)) := m.
5. β(xc) := c.
6. β(ek(N)) := Implek (rN) if N ∈ R.
7. β(ek(Nm)) := m.
8. β(dk(N)) := Adk (rN) if N ∈ R.9

9. β(dk(Nm)) := A−1
ekofdk (m). (Note that due to Implementation Condition 31, there is

at most one value A−1
ekofdk (m). And see below for a discussion of the polynomial-time

computability of A−1
ekofdk (m).)

By keeping a record of all decryption keys d, the simulator can efficiently compute A−1
ekofdk (e)

in Case 9.

Due to the limited compositionality of tic-indistinguishability (see Definition 23), we need
to ensure that even machines that are connected to the network and execution interface
cannot distinguish the honest simulator Sim from the faking simulator Simf . We say that
a term t is used in the randomness of the term t′ if there are terms t1, t2 such that t′ ∈
{ek(t), dk(t), vk(t), sk(t)}∪{sig(t1, t2, t) | t1, t2 are terms}∪{enc(t1, t2, t) | t1, t2 are terms}.

9Technically, before returning the value β(dk(N)) invokes β(ek(N)) and discards it return value. (This is
to guarantee that Aek (N) can only be guessed when β(ek(N)) was invoked.) We refer to [BMU12] for a
detailed explanation.

187

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

Sim checks whether each term t that is used in randomness position of a term t′ is only
used inside t′. If t is used somewhere else or sent in plain, Sim aborts. If Sim interacts
with a hybrid execution, these checks will always succeed; in these cases Sim behaves as
the simulator in the work of Backes, Malik, and Unruh [BMU12].

Modifications for the Faking Simulator. In the faking simulator, the ciphertext
simulator CS is used (see Implementation Conditions 26) instead of the encryption algorithm.
Technically, Simf maintains for each N ∈ NP an instance CSN of the ciphertext simulator.
Whenever the encryption scheme algorithm is honestly applied in Sim, Simf uses CSN as
follows: for β(ek(N)), Simf sends a getekch-query to CSN ; for β(enc(ek(N), t2,M)) with
N,M ∈ R, Simf either sends a fakeencch-query (if there was no getdkch-query to CSN
yet) or a enc-query to CSN (if there already was a getdkch-query to CSN ; for β(dk(N)),
Simf sends a getdkch-query to CSN .

In addition, the faking simulator internally runs an instance of the random oracle O
and gives all ciphertext simulators CSN access to O and to get the list of queries and
programming capabilities for O . To the attacker A the simulator Simf grants access to O.

Beside these modifications, Simf performs book keeping for mapping honestly generated
ciphertexts to their respective plaintexts, and Simf queries a signing oracle instead of
using the signing algorithms. A detailed description of the modifications can be found
in [BMU12].

The Hybrid Execution for Equivalence Properties.

Definition 78 (Hybrid Challenger H -Exec (Equivalence)). Let Π be a CoSP protocol, and
let Sim be a simulator. We define an interactive machine H -ExecM,Π(k) run on input k. It
is called the hybrid protocol machine associated with Π. It internally maintains on (finite)
lists of tuples (Si, νi, fi), called the full hybrid trace, and runs a symbolic simulation of Π
as follows:

Initially S1 := S := ε, ν1 := ν is the root of Π, and f1 := f is a totally undefined partial
function mapping node identifiers to T. For i = 2, 3, . . . do the following (recall that net is
the network interface):

1. Let ν̃ be the node identifiers in the label of ν. Define t̃ through t̃j := f(ν̃j).

2. Proceed depending on the type of ν:

• ν is a computation node with constructor, destructor or nonce F . Let
V ′ = V . Send the question F (t̃) over net and wait for a response m. If m = yes,
ν ′ is the yes-successor of ν in I, and f ′ = f(ν ··= F (t̃)). If m = no, then ν ′ is
the no-successor of ν, and f ′ = f .

• ν is an input node. Wait over net for a symbolic operation O. Let t :=
xevalO(VOut), where xevalO(VOut) is defined just like evalO(VOut) except that
nodes of type variables are evaluated to the variable with the name that is
annotated in the node. Let f ′ := f(ν := t), and let ν ′ be the unique successor of
ν. Set f := f ′, V ′ = V :: (in, (t, O)), and ν := ν ′.

• ν is an output node. Send t̃1 over net. Let ν ′ be the unique successor of ν
and let S′ := S ∪ {t̃1}. Set ν := ν ′, V ′ = V :: (out, t̃1), and S := S′.

• ν is a control node with out-metadata l. Let ν ′ be the successor of ν with
the in-metadata l′ (or the edge with the lexicographically smallest label if there is
no edge with label l′), f ′ = f , and V ′ = V :: (control, (l, l′)).

188

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

3. Send (info, ν, t) over net. When receiving an answer (proceed) over net, continue.

4. If over net has output a final assignment from variables to symbolic operations is
sent, check whether the final assignment is consistent with all the responses to the
eval-questions. If the check fails, abort with inconsistency. Otherwise, hand the
control back over net.

5. Otherwise, if over net a final assignment is not sent, let (Si, νi, fi) := (S, ν, f).

Here, VOut denotes the list of terms in V that have been sent at output nodes, i.e., the
terms t contained in entries of the form (out, t) in V . Analogously, VOut-Meta denotes the
list of out-metadata in V that has been sent at control nodes.

Furthermore, VIn denotes the partial list of V that contains only entries of the form
(in, (∗, O)) or (control, (∗, l′)) for some symbolic operation O and some in-metadata l′,
where the input term and the out-metadata have been masked with the symbol ∗. The list
VIn is called attacker strategy. We write [VIn]SViews(I) to denote the class of all views
U ∈ SViews(I) with UIn = VIn .

The Faking Simulator Sim ′f for Equivalence Properties. We define a faking sim-
ulator Sim ′f for equivalence properties as the faking simulator Simf for trace properties
except that the final output, i.e., the guess, of the attacker A sent over the output interface
is also output by Sim ′f and all terms that are sent to the hybrid challenger from Simf are
parsed in Sim ′f to symbolic operations, using Construct-shape.

6.3.5.4. CS for Trace Properties with Length Functions

The following theorem follows from the CS result of Backes, Unruh, and Malik [BMU12].
We discuss the differences to the CS proof in [BMU12].

Theorem 9. Let A be a computational implementation fulfilling the implementation
conditions (see Appendix 6.3.2), i.e., in particular A is length-consistent. Then, A is a
computationally sound implementation of the symbolic model M for the class of randomness-
safe protocols (see Definition 70).

Proof. The implementation conditions that we require are a superset of the conditions
in the work of Backes, Malik, and Unruh (our additional conditions are marked blue).
Hence, every implementation that satisfies our implementation condition also satisfies
the implementation condition of their work. Moreover, we add one protocol condition
that excludes garbageInvalidLength-terms as arguments for constructors. This protocol
condition only further restricts the class; hence, without length functions, their CS result
would still hold.

We extend the simulator Sim in the CS proof of the work of Backes, Malik, and Unruh
to also parse (τ) and to produce (β) length functions. The rules are straight-forward and
follow the same pattern as for stringb and unstringb.

Length functions are constant functions that the attacker can produce on its own, just
like payload strings (stringb). Consequently, the Dolev-Yaoness of the simulator also holds
in the presence of length functions

For the translation functions β : T → {0, 1}∗ and τ : {0, 1}∗ → T of the simulator,
β(len(m)) = Alen(β(m)), τ(β(t)) = t, β(t) 6= ⊥, and β(τ(b)) = b follow from the imple-

189

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

DFC(k) : upon out-metadata from a decision
node

respond with the in-metadata continue

DFC(k) : upon another message m

send m via the network interface

if a message m′ is received over the network inter-
face then

forward the message m′ to execution network in-
terface

else if a guess b is received over the output interface
then

output the guess b

DFNT(k) : upon out-metadata from a decision
node

if a guess b is received vai the output interface then
respond with the in-metadata decision-b

else
respond with the in-metadata continue

DFNT(k) : upon another message m

if no guess was received over the output interface
yet then

send m over the network interface
if a message m′ is received over the network in-
terface then

send the message m′ to the execution network
interface

else if a guess b is received over the output in-
terface then

store the guess b
else

respond with dummy messages, i.e., for an in-
put node send the constant 0 bitstring, for a con-
trol node that is not a decision node send one of
the possible in-metadata, and for an output node
give back control to the execution interface party

Figure 6.9.: Code for the Decision Node Filter for Communication and for Node Traces

mentation condition. The indistinguishability of the simulator follows from these equation
(see [BMU12]).

As shown in the initial work on CoSP (see Theorem 1), a simulator that satisfies Dolev-
Yaoness and Indistinguishability implies computational soundness.

6.3.5.5. Decision variant of a protocol

In this section, we show how to reduce indistinguishability of the transcripts to indistin-
guishability of nodes traces. To this end, we define the decision variant of a protocol.

Definition 79 (Decision Node Filter for Communication and for Node Traces). The
decision node filter for communication is the interactive machine DFC that is defined in
Figure 6.9. The decision node filter for node traces is the interactive machine DFNT that
is defined in Figure 6.9.

Both machines expect two communication partners. In our notation, there will be a left
communication partner and a right communication partner. Each of these partners offer a
network interface: the network interface of the left partner (typically the execution) is called
the execution network interface, and the network interface of the right partner (typically the
adversary or simulator) is called the network interface. The right communication partner
additionally offers an output interface (over which it typically sends its distinguisher-guess).
We call this interface the output interface.

Definition 80 (Decision-Variant). Given a bi-protocol Π, the decision-variant Π̃ is defined
like Π but with the modification that each node ν that appears in Π is preceded by an
additional control node, called decision node, as follows: The decision node has three
successors with the edges to them labeled by decision-0, decision-1, and continue. The
continue-successor is ν here (i.e., the protocol continues). Both the decision-0-successor

190

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

and the decision-1-successor are roots of infinite chains of dummy control nodes with
only one successor (i.e., the protocol stops).10

Lemma 34. Let M be a symbolic model, Impl be an implementation, A be a ppt machine,
and P be the class of all bi-protocols that are the left or the right variant of an efficient
randomness-safe bi-protocol Definition 70. If there is a ppt machine Simf such that for all
protocols Π ∈ P, the node traces 〈TrExecM,Impl,Π | A〉 and 〈TrH -ExecM,Impl,Π | 〈Simf | A〉〉
are computationally indistinguishable, then for all protocols Π ∈ P, the executions
〈ExecM,Impl,Π | A〉 and

〈
H -ExecM,Impl,Π |

〈
Sim ′f | A

〉〉
are computationally indistinguish-

able.

Proof. For convenience, we consider a computational challenger TrExec and hybrid chal-
lenger TrH -Exec for trace properties with the following modifications: instead of calling the
distinguisher with the node trace after the interaction between the (respective) challenger
and the adversary (or the simulator), the challenger assumes that the attacker consists of
two machines, the normal adversary and the distinguisher, that do not share their state and
it sends the node trace to the second machine. The distinguisher then ends the interaction
by outputting a guess b ∈ {0, 1}.

Accordingly, we define for an adversary A another machine A′ that consists of two
parts: first, a modification of A that instead of outputting its final guess b chooses via
in-metadata the decision-b node and then stops; second, a distinguisher part that checks
which decision-b was taken and outputs a guess b.

Since the simulator need to be compatible with these potentially two parts of A forwards,
we define a variant Sim∗f of the faking simulator Simf for trace properties: Sim∗f forwards
the node trace to the distinguisher part and outputs the final guess of the distinguisher
part.

The following interactions are perfectly indistinguishable for the adversary A.

ExecM,Impl,Π

(1)
≈ time

〈
ExecM,Impl,Π̃ | 〈DFC | A〉

〉

(2)
≈ time

〈
ExecM,Impl,Π̃ | 〈DFNT | A〉

〉

(3)
≈ time

〈
TrExecM,Impl,Π̃ |

〈
DFNT | A′

〉〉

10Formally, Π̃ is the limes of the operation that recursively replaces each node ν by a decision node followed
by ν.

191

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

〈
TrH -ExecM,Impl,Π̃ |

〈〈
Sim∗f | DFNT

〉
| A′

〉〉

(4)
≈ time

〈
TrH -ExecM,Impl,Π̃ |

〈〈
DFNT | Sim∗f

〉
| A′

〉〉

(3)
≈ time

〈
H -ExecM,Impl,Π̃ |

〈〈
DFNT | Sim ′f

〉
| A
〉〉

(2)
≈ time

〈
H -ExecM,Impl,Π̃ |

〈〈
DFC | Sim ′f

〉
| A
〉〉

(1)
≈ time

〈
H -ExecM,Impl,Π |

〈
Sim ′f | A

〉〉

(1): The decision-variant Π̃ of a protocol Π sends the same messages as the original
protocol Π to the adversary except for adding a special kind of control nodes: decision
nodes (see Definition 80). The messages with the out-metadata from the decision
nodes is filtered by the machine DFC, and except for filtering these additional
messages DFC does nothing more than forwarding all messages to A. Hence, the
indistinguishability holds.

(2): Until A stops with outputting a bitstring b, the machine DFNT behaves just like
DFC. Hence, the indistinguishability holds.

(3): The two executions Exec and TrExec behave exactly the same towards the communi-
cation partner (i.e., 〈DFNT | A〉 or 〈DFNT | 〈Simf | A〉〉, respectively, in our case).
Hence, the interactions are indistinguishable for A. The same holds for H -Exec and
TrH -Exec except that in this case we additionally replace Simf with Sim ′f , which,
by the construction of Sim ′f (see Section 6.3.5.3), is not observable to A.

(4): By the construction of Sim∗f , we can see that the sub-machine A does not see

a difference if first the simulator Sim∗f is invoked, as in
〈
Sim∗f | 〈DFNT | A〉

〉
or

first the decision nodes are filtered, as in
〈
DFNT |

〈
Sim∗f | A

〉〉
. Moreover, Sim ′f

outputs the output of its sub-machine, which is in one case A and in the other case
〈DFNT | A〉. Hence, the behavior towards TrH -Exec is indistinguishable, as well.

Moreover, whenever the attacker A (or the simulator
〈
Sim ′f | A

〉
) outputs a guess b,

DFNT eventually sends to a decision node the in-metadata decision-b. Hence, the
indistinguishability relations (1)–(4) imply that the node traces output by

〈
TrExecM,Impl,Π̃ | 〈DFNT | A〉

〉
and

〈
TrH -ExecM,Impl,Π̃ |

〈
Sim∗f | 〈DFNT | A〉

〉〉

are distinguishable if the adversary can distinguish

〈ExecM,Impl,Π | A〉 from
〈
H -ExecM,Impl,Π |

〈
Sim ′f | attacker

〉〉

This statement is the contraposition of the claim of the lemma.

6.3.5.6. Uniqueness of a symbolic operation

For a CoSP bi-protocol Π and an adversary A, we say that a symbolic operation O
occurs in a run of

〈
ExecM,Impl,Mon(Π)−Fb | A

〉
for a message m for one invokation of

192

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

Construct-attacker-strategy(b, tr) if it is a sub-symbolic operation of a symbolic
operation that was generated by one monitor call. More precisely, a symbolic operation O
occurs in a run of

〈
ExecM,Impl,Mon(Π)−Fb | A

〉
if in that run there is an invokation of V :=

Construct-attacker-strategy(b, tr) such that there is a symbolic operation context C
with Vj = (, C[O]) and eval Ō(tr) = m. Analogously, we talk about several symbolic oper-
ations O1, . . . , Ol occurring in a run of

〈
ExecM,Impl,Mon(Π)−Fb | A

〉
for messages m1, . . . ,ml

if each Oj (for j ∈ {1, . . . , l}) occurs in the same run of
〈
ExecM,Impl,Mon(Π)−Fb | A

〉
for mj .

If it is clear from the context which computational execution is meant and which invokation
is meant, will only say that a symbolic operation O occurs in a run for a message m.

Lemma 35. Let Oleft and Oright be two output shapes that are generated by the knowledge
monitor. If Oleft 6= Oright , then the knowledge monitor raises an alarm bad-knowledge.

In contraposition: whenever two output shapes Oleft and Oright , generated by an invokation
of the knowledge monitor, do not cause an alarm bad-knowledge, we have Oleft = Oright .
We call this shape the joint symbolic operation Ob of that invokation.

Proof. In the construction of the monitor, in Figure 6.8, an alarm is only raised if the
symbolic operations are not equal.

Modifications to Construct-shape. As a technical vehicle, we run a modification of the
knowledge monitor. We modify Construct-shape such that it additionally outputs all
sub-shapes and all symbolic operations ((Om, “x

′′
i), (O1, “O

′′
1), . . . , (On, “On”)) that charac-

terize how the messages to those sub-shapes have been computed (in Figure 6.6 denoted in
quotes: “O”). We stress that, due to the recursive implementation of Construct-shape,
the sequence of sub-shapes and symbolic operations is a list in which, if reversed, the sub-
shapes always occur before their parent shapes. All other parts of the knowledge monitor
remain the same except that they ignore these sub-shapes and the symbolic operations and
only use the (top-level) shape, as before. These sub-shapes and the symbolic operations
are need to compute the visible submessages of an output message (see Figure 6.10).

Corollary 4. Let Π be a CoSP bi-protocol and A be an adversary. If O is not a sub-
symbolic operation, i.e., C = ·, then we have the following property: For each invokation
of Construct-attacker-strategy(b, tr) in any run of

〈
ExecM,Impl,Mon(Π)−Fb | A

〉
, we

have that for every symbolic operations O for m, if m′ is the actual message for which O
was generated, i.e., the invokation of O = Construct-shape(m′, xj ,K, b, tr, dec′), then

m = m′

Proof. The dual symbolic operation output by Construct-shape′ simply points with the
projection xj to the very message m′ in the computational view.

Lemma 36. Let Π be a CoSP bi-protocol and A be an adversary. For each invokation of
Construct-attacker-strategy(b, tr) in any run of

〈
ExecM,Impl,Mon(Π)−Fb | A

〉
, we

have that for every pair of sub-symbolic operations O and O′ that occur in a run of〈
ExecM,Impl,Mon(Π)−Fb | A

〉
for m and m′, respectively, the symbolic operations are unique,

i.e.,

O 6= O′ ⇔ m 6= m′

193

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

Submessage(m, tr)

let shapes = ((Om, “x′′i), (O1, “O′′1), . . . , (On, “On”))
be the output of the last call (for m)
Construct-shape(m,xi,K, left , tr, dec

′)

reverse shapes
for each (Oj , “O

′′
j) in shapes do

let mj = eval“O′′j
(left(tr))

output mj

Figure 6.10.: The algorithm Submessage(m, tr) that is called in the unrolled variant Π̃

Proof. Assume towards contradiction that there is a pair O,O′ such that O 6= O′ but
m = m′. Let m,m′ be the first pair of messages in the run for which this violation occurs.
W. l.o.g. assume that first m and then m′ was constructed. While constructing O′, the
algorithm Construct-shape first checks whether there is already a symbolic operation
O′′ in the knowledge K such that eval Ō′′ = m′. The evaluation eval of the dual operation
Ō′′ uses exactly the same deterministic algorithms for retrieving the bitstring that were used
to construct O′′. Hence, m′ coincides with eval Ō′′ , i.e., the test eval Ō′′ = m′ is well-defined.
Thus, if the same bitstring was already parsed, the corresponding symbolic operation is
found and used and no new symbolic operation is used.

Moreover, a non-constant minimal symbolic operations O′ always uses as randomness
nonceof (Ō′′) with the dual operation Ō′′ of O′′, which prevents two symbolic operations to
be the same for two different bitstrings.

Observe that the knowledge K is already fully saturated; hence, it cannot happen that
while constructing O′ in Construct-shape a new symbolic operation is learned that leads
to a larger K ′, i.e., K 6= K ′ and K ⊂ K ′. As a consequence, if O′ occurs for m′, m = m′,
and O occurs for m, O is always found; hence O′ = O′.

For showing the contradiction, we also have to consider the case where O = O′ but m 6= m′.
By construction this cannot happen because m = eval Ō(tr) = eval Ō′(tr) = m′.

6.3.5.7. Unrolled variants

In order to simplify the main proof, we define, for a given protocol Π, its unrolled variant
Π̃, which before each output node of Π sends all visible sub-messages of the message from
that output node.

Definition 81 (Unrolled Variant). Let Submessage(m, tr) be the algorithm that is de-
picted in Figure 6.10. Given a protocol Π, we define its unrolled variant Π̃ as the protocol
in which each output node with a message m is replaced by , where tr is the trace from the
output node to the root.11

Corollary 5 (Unrolled variants preserve uniformity-enforcing). For all uniformity-enforcing
protocols Π, the unrolled variant Π̃ of Π is uniformity-enforcing.

Proof. The inserted sub-protocol is uniformity-enforcing since before each computation
node a single-successor control node is placed that has a unique out-metadata.

11Formally, Π̃ is the limes of the recursive replacement operation that replaces each output node with
Submessage(m, tr).

194

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

Lemma 37 (Symbolic indistinguishability is preserved in unrolled variants). For all
efficient pairs of protocols Π1 and Π2, if Π1 and Π2 are symbolically indistinguishable, then
the corresponding unrolled variants Π̃1 and Π̃2 are symbolically indistinguishable.

Proof. First, we show the following statememt.

Claim 1. For each CoSP protocol Π, let Π̃ be the unrolled variant of Π. For all attacker-
strategies VIn and for all views V ∈ [VIn]SViews(Π) and V ′ ∈ [VIn]SViews(Π̃) the symbolic

knowledge KV of Π and KV ′ of Π̃ is the same, i.e., KV = KV ′.

Proof of Claim 1. The statement follows from the fact that the only difference of
an unrolled variant Π̃ and the original protocol Π is that Π̃ additionally sends the out-
put messages computed by Submessage(m, tr). Since the additional messages sent by
Submessage(m, tr) are in the symbolic knowledge after m is sent, the statement follows.
�

Assume that the unrolled variants Π̃1 and Π̃2 are not symbolically indistinguishable.
W.l.o.g., there is an attacker strategy VIn and a view Ṽ ∈ [VIn]SViews(Π̃1) of Π̃1 under VIn

such that for all views Ṽ ′ ∈ [VIn]SViews(Π̃2) of Π̃2 under VIn it holds that Ṽ 6∼ V ′. Let

V ∈ [VIn]SViews(Π1) and V ′ ∈ [VIn]SViews(Π2) be the corresponding views for Π1 and Π2.

For all Ṽ ′ ∈ [VIn]SViews(Π̃2), one of the following three statements does not hold:

1. (Same structure) Ṽi is of the form (s, ·) if and only if V ′i is of the form (s, ·) for some
s ∈ {out, in, control}.

2. (Same out-metadata) ṼOut-Meta = Ṽ ′Out-Meta .

3. (Same symbolic knowledge) KṼ = KṼ ′ .

If the structure is not the same (Case 1), then we first consider the following cases, which
are related to invokations of Submessage: either a different different branch was taken in
an invokation of Submessage or a different amount of output messages were sent by an
invokation of Submessage. Since Submessage internally only branches when computing
Construct-shape, all tests that Submessage performs are in the shared knowledge and
hence in the symbolic knowledge of Πi. Thus, in these cases, the symbolic knowledge is
already different for Π1 and Π2. In all other cases, the unrolled variant Π̃i coincides with
the original protocol Πi; hence the same difference occurs in Πi.

For the case that the out-metadata is different (Case 2), observe that the unrolled variant
does not sends the same out-metadata as the original protocol. Hence, the statement
follows.

For the case that the symbolic knowledge (Case 3), the statement follows from the claim
above.

Lemma 38 (Unrolled variants preserve computational indistinguishability). For all efficient
protocols Π1, Π2, if the corresponding unrolled variants Π̃1 and Π̃2 are indistinguishable,
then Π1 and Π2 are indistinguishable. Moreover, if the corresponding unrolled variants Π̃1

and Π̃2 are perfectly indistinguishable, then Π1 and Π2 are perfectly indistinguishable.

Proof. We construct a reduction R from a distinguisher A of two original protocols Π1

and Π2 to a distinguisher RA of the two unrolled variants Π̃1 and Π̃2. The reduction

195

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

RA internally runs A but drops all sub-messages and only sends the final message to the
attacker. Finally, RA outputs the same guess as the distinguisher A. The view of A is
perfectly indistinguishable to an interaction with Π1 and Π2, and the success probability
of the reduction RA to distinguish Π̃1 from Π̃2 equals the success probability of A for
distinguishing Π1 from Π2.

6.3.5.8. Computational self-monitoring for the knowledge monitor

Finally, we are in a position present the proof of the computational self-monitoring.

Symbolic distinguishability. In the proof of computational self-monitoring, we need
the property that the monitor is symbolically distinguishing, i.e., that it symbolically
always raises an alarm if a pair of protocols is symbolically distinguishable.

Definition 82 (Symbolically distinguishing Monitor). A monitor is symbolically distin-
guishing if for all bi-protocols Π the following holds: if Π is not equivalent, then the monitor
raises an alarm.

Lemma 39 (Knowledge monitor is symbolically distinguishing). The distinguishing sub-
protocol fbad-knowledge,Π is symbolically distinguishing in the sense of Definition 82.

Proof. We have to show that if the monitor fbad-knowledge,Π does not raise an alarm, then
a bi-protocol is equivalent (see Definition 82). By Lemma 35, we know that if the monitor
does not raise an alarm, then the symbolic operation that is computed for the output
message for left(Π) and right(Π) is the same. We denote this symbolic operations as Ob.

We stress that for each run the symbolic operations output by Construct-shape are
unique w.r.t. the messages that are sent or received for the following reason: for all
symbolic operations O that use randomness, Construct-shape places nonceof (Ō) as the
symbolic operation for the randomness, where Ō is the respective dual symbolic operations
of O. As a consequence, it cannot happen that Construct-shape assigns for two different
messages in one run the same symbolic operation.

As a next step, we perform an induction over the length i of the protocol and show that
for all cases Ob is equivalent. Assume that the monitor did not raise an alarm and Πi−1 is
equivalent but Πi is not equivalent.

1. Ob is a message that is in the attacker-knowledge against Πi−1. Messages
that are in the attacker-knowledge against Πi−1 are messages that the attacker could
have sent after an interaction Π, i.e., with Πi−1,left or Πi−1,right . For these messages
the equivalence follows by induction hypothesis.

This case, in particular, covers garbage terms, garbage encryptions, garbage signatures,
and attacker-generated keys. For attacker-generated ciphertexts and signatures, since
we consider unrolled variants, all visible sub-messages do not lead to distinguishing
symbolic operations by induction hypothesis. Recall that, due to the recursive
implementation of Construct-shape, the sequence of sub-shapes and symbolic
operations is a list in which, since reversed, the sub-shapes always occur before their
parent shapes. Thus, the same holds for Submessage and thus for unrolled variants.
Hence, attacker-generated ciphertexts and signatures are also covered by this case.
Consequently, we exclude such attacker-generated messages in the following cases.

196

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

2. Empty string: Ob = empty(). If Oleft = Oright = empty(), then tleft = tright =
empty(). Hence, the equivalence follows.

3. Protocol nonce: Ob = nP . This case cannot occur. In Construct-shape, a
protocol nonce is always parsed as a projection.

4. Protocol-generated encryption or verification key: Ob ∈ {ek(nonceof (O1)),
vk(nonceof (O1))}. For protocol-generated keys, equality of the symbolic operation
means that the corresponding message is equal. Either the encryption key is fresh
in the shared knowledge, i.e., never used before, then learning it does not help
distinguishing Πi−1, or the encryption key was used earlier, then it already was in the
shared knowledge for Πi−1 and by induction hypothesis the messages are equivalent.
The same argumentation holds for the case if Ob characterizes a verification key.

5. Protocol-generated decryption key: Ob ∈ {dk(nonceof (O1)), dkofek(O1)}. For
protocol-generated keys, equality of the symbolic operation means that the correspond-
ing message is equal. The decryption key can only be used to decryption ciphertexts
with the corresponding encryption key. The Construct-attacker-strategy re-
constructs all symbolic operations after learning the output message of node i, which
Ob characterizes, and the knowledge monitor checks by whether all resulting symbolic
operations are equal. Hence, whenever a decryption key is learned, all symbolic
operations that characterize ciphertexts that are constructed with the matching en-
cryption key contain the respective plaintext. As a consequence, every distinguishing
test leads to different symbolic operations (see Lemma 36). By contraposition, since
bad-knowledge was not raised and hence all symbolic operations are equal, there is
no distinguishing test.

6. Protocol-generated signing key: Ob ∈ {sk(nonceof (O1)), skofvk(O1)}. By in-
duction hypothesis, Πi−1 is equivalent; hence, there is no distinguishing symbolic
operation for Πi−1,left or Πi−1,right . Since Oleft = Oright = Ob, learning the message
that corresponds to Ob does not offer a distinguishing equality test. Since only certain
plaintexts of ciphertexts (i.e., encryption terms) and randomness terms are unaccessi-
ble. Plaintexts can only be accessed via decryption keys, and in the symbolic model
there is no destructor that grants access to the randomness, sk does not introduce
novel distinguishing symbolic operations for Πi.

7. A protocol-generated, derived public-key: Ob ∈ {vkofsk(O1), ekofdk(O1)}. Ei-
ther these protocol-generated keys are already in the adversary’s knowledge, or they
have never been used anywhere yet. Consequently, equivalence follows from the
equivalence of Πi−1.

8. The virtual term: Ob = plaintextof (O1, O2). This case cannot occur since
plaintextof (O1, O2) only occurs inside an encryption symbolic operation and it is
never a visible sub-message.

9. Protocol-generated encryption: Ob = enc(O1, plaintextof (O2, O3), O4). Ob-
serve that by the construction of Construct-shape this case only happens for
honestly generated ciphertexts for which the decryption key has not been leaked.
More precisely, if the decryption key is not in the symbolic knowledge of the adver-
sary. Hence, it suffices to show that the length of O2 is the same in the term that
corresponds to Ob in left(Πi) and right(Πi). If no alarm was raised, the length of
both terms are the same because the knowledge monitor implicitly performs these

197

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

length tests by comparing the symbolic operations, which in turn are unique for each
length of a message.

10. Protocol-generated encryption: Ob = enc(O1, O2, O3) where O2 6= plaintextof (
O4, O5). By the construction of Construct-shape, we know that this case can
occur in two cases: first, if the corresponding the decryption key is in the shared
knowledge and second if the encryption was produced with an attacker-key. Since we
consider unrolled variants, we know that with previous output nodes the bitstrings
that correspond to O1 and O2 have been sent to the adversary. Recall that in the
unrolled variants sub-messages are always sent before their parent messages. By
assumption we know that for Πi−1 the statement holds. By the construction of
Construct-shape, we know that the term that corresponds to enc(O1, O2, O3) is
an honestly generated ciphertext. As a consequence, Πi did not leak more information
that Πi−1 since by the protocol conditions the protocol randomness is a freshly chosen
nonce. Hence, Πi is equivalence as well.

11. Protocol-generated signature: Ob ∈ {sig(sk(O1), O2, O3), sig(skofvk(O1), O2,
O3)}. Since we consider unrolled protocols, with the last two output nodes the
protocol already sent vkof (Ob) and O2 to the adversary. Recall that in the unrolled
variants sub-messages are always sent before their parent messages. In other words,
there is no distinguishing symbolic operation against Πi−1, i.e., no symbolic operation
that has a different outcome in the left and the right protocol. But then there
can also not be any distinguishing symbolic operation against sig(sk(O1), O2, O3) or
sig(skofvk(O1), O2, O3), since the symbolic model only has for signatures the verifica-
tion operation (verify), the length test (len), and the retrieval of the verification key
(vkof).

12. Pairs: pair(O1, O2). Since we solely consider unrolled variants of protocols, we know
that both O1 and O2 have already been sent in Πi−1. Recall that in the unrolled
variants sub-messages are always sent before their parent messages. Hence, the
equivalence immediately following from induction hypothesis about Πi−1.

13. Payload strings: Ob ∈ {string0(O1), string1(O1)}. This case follows by induction
hypothesis, since Lemma 38 shows that it suffices to consider unrolled variants of
protocols and Ob can be computed out of O1.

14. Length term: Ob = S (O1). This case follows by induction hypothesis, since
Lemma 38 shows that it suffices to consider unrolled variants of protocols and Ob
can be computed out of O1.

Lemma 40. The class of randomness-safe (Definition 70) bi-protocols is closed under
taking decision-variants and unrolled variants of bi-protocols:

1. A bi-protocol is randomness-safe if and only if its decision-variant is randomness-safe.

2. A bi-protocol is randomness-safe if and only if its unrolled variant is randomness-safe.

Proof.

1. By inspection of Definition 70, randomness-safety is invariant under adding and
removing control nodes (decision nodes and dummy nodes).

2. By inspection of Definition 70, randomness-safety is invariant under removing output

198

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

nodes. However, adding output nodes could potentially violate protocol conditions 2
to 4 in Definition 70. Since Definition 81 adds only output nodes that do not refer to
a randomness node, these conditions are not violated.

The main lemma. All the preparations in this section culminate in the following
technical lemma.

Lemma 41 (Same conditional distribution for faking simulator.). Let Trbreak be the event
that there is a trace property that holds symbolically but does not hold in the current run.

Let Ω(Π,A)b be defined as the following probability space:

guess ←
〈
H -ExecM,Impl,Mon(Π)−Fb |

〈
Sim ′f | A

〉〉

where Mon(Π)− Fb is defined as in Definition 75, b ∈ {left , right}, and the output guess
of this interaction denotes the output of Simf,A (and thereby of A).

For all ppt adversaries A, for all i ∈ N, and for all uniformity-enforcing, randomness-safe
efficient bi-protocols Π: If

Pr[Ω(Πi−1,A)left : guess = 1 | ¬Trbreak ∧ ¬bad]

= Pr[Ω(Πi−1,A)right : guess = 1 | ¬Trbreak ∧ ¬bad]

holds, then the following holds:

Pr[Ω(Πi,A)left : guess = 1 | ¬Trbreak ∧ ¬bad]

= Pr[Ω(Πi,A)right : guess = 1 | ¬Trbreak ∧ ¬bad]

Proof. Let Πi be the shortened protocol that halts after the ith output node. By Lemma 38
and Item 2 in Lemma 40 we can assume that Π is unrolled without loss of generality. For
i = 0, the equality holds, because Mon(Π0) does not send a message. For i > 0, we know
that the equality of the probabilities for Ω(Πi−1,A)b holds by induction hypothesis. Let
mleft and mright be the terms the are sent at output node i. For mleft and mright , let Oleft

and Oright be their respective output shapes. Lemma 35 shows that Oleft and Oright are
equal; hence, we denote them as Ob.

We stress that for each run the symbolic operations output by Construct-shape are
unique w.r.t. the bitstrings that are sent or received for the following reason: for all
symbolic operations O that use randomness, Construct-shape places nonceof (Ō) as the
symbolic operation for the randomness, where Ō is the respective dual symbolic operations
of O. As a consequence, it cannot happen that Construct-shape assigns for two different
bitstrings in one run the same symbolic operation (see Lemma 36).

We conduct a case distinction over Ob.

1. Projections: Ob = xj. The projection xj corresponds to the jth message that has
been sent by the protocol; hence, this message refers to a former message. For all
attacker strategies Strati,Ob that lead to this case for Ob for the ith output node, we
construct an reduction R against the induction hypothesis, i.e., that the probabilities
for Ω(Πi−1,A)left and Ω(Πi−1,A)right are the same.

199

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

R forwards all messages from H -ExecM,Impl,Mon(Πi−1)−Fb to and from
〈
Sim ′f | A

〉
until

the first response after the i− 1st output node. Then, R potentially responds with
the out-metadata that the protocol would send for control nodes between the i− 1st
output node and the ith output node.12 Then, R responds with jth protocol message
to the attacker. Finally, upon a guess by the attacker, R also outputs guess as a
distinguishing guess for H -ExecM,Impl,Mon(Πi−1)−Fb .

Observe that since no alarm was raised, the branching monitor, in particular, did not
raise an alarm. Thus, since by Corollary 5 Π is uniformity-enforcing, the control flow
of both programs is the same. Moreover, if this case (with Ob = xj) is reached with
non-zero probability, there is a non-zero probability that xj is the response that the
protocol would have given as well. As a consequence, if the attacker succeeds with non-
zero probability to distinguish H -ExecM,Impl,Mon(Πi)−Fb in this case, i.e., for Ob = xj ,
then R also succeeds with non-zero probability against H -ExecM,Impl,Mon(Πi−1)−Fb .

2. Ob is a message that is in the attacker-knowledge against Πi−1. Messages
that are in the attacker-knowledge are messages such that there is an extended
symbolic operation (see Definition 71) that is a shared test (see Definition 76) O
with the following property: the symbolic operation that characterizes the message
evalO(tr) is Ob (see the discussion about the uniqueness in Section 6.3.5.6 and
Lemma 36). We distinguish two cases: first, the message m characterized by Ob is not
only known through a protocol-generated ciphertext that uses an attacker-generated
key; second, m is only known through such a ciphertext.

Formally, in the first case O does not contain dec′, i.e., there is a shared test O such
that the symbolic operation that characterizes evalO(tr) is Ob we have that for all C
such that O = C[O′] we have that O′ 6= dec′(O′′). In the second case for all O such
that the symbolic operation that characterizes evalO(tr) is Ob we have that there is
a C such that O = C[O′] we have that O′ = dec′(O′′).

In the first case, the reduction to the induction hypothesis can evaluate O, i.e.,
compute evalO(tr), resulting in a projection to an input node after the jth output
node, for j ≤ i− 1. Then, we construct a reduction against Pi−1, along the lines of
the reduction from Case 1. Thus, the statement follows by the induction hypothesis.

In the second case, the reduction cannot directly evaluate O because it would need
to evaluate dec′, which directly accesses a computation node. Recall that there
is a C and a shared test Oc such that O = C[dec′(Oc)]. In particular, we know
that in each run the bitstring c characterized by Oc is known by the attacker and
is protocol-generated. In particular, by the construction of unrolled variants, we
know that c is a visible sub-message of a message that has been sent to the attacker.
Recall that in the unrolled variants sub-messages are always sent before their parent
messages. By the construction of Construct-shape (in Line 16), we know that
the symbolic operation that characterizes c is of the form enc(O1, O2, O3) with
O2 6= plaintextof (O′2). Since m is a visible sub-message of c by the construction of
unrolled variants (see Defintion 81), we know that then its plaintext m characterized
by O2 and by Ob has been sent in an earlier output node as well. In other words,
there is a projection that points to the output node that output m. As a consequence,

12This is efficiently computable since R is specific for the protocol Π and the out-metadata for all control
nodes is efficiently computable.

200

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

we can construct a reduction as in Case 1, and the statement follows by the induction
hypothesis.

We stress that these cases in particular cover garbage message, garbage ciphertexts,
garbage signatures, and attacker-generated keys. For attacker-generated ciphertexts
and signatures, since we consider unrolled variants, all visible sub-messages do not
lead to distinguishing symbolic operations by induction hypothesis. Hence, attacker-
generated ciphertexts and signatures are covered by this case, as well. Consequently,
we exclude such attacker-generated messages in the subsequent cases.

3. The empty payload string: Ob = empty(). The bitstring the corresponds to Ob
is the same for Fleft and Fright . Along the lines of Case 1, the statement follows by
the induction hypothesis.

4. Protocol nonce: Ob = nP . This case cannot occur. A protocol nonce is always
parsed as a projection.

5. Protocol-generated encryption or verification key: Ob ∈ {ek(nonceof (O1)),
vk(nonceof (O1))}. For protocol-generated keys, equality of the symbolic operations
Oleft and Oright means that the corresponding bitstrings has the same distribution.
Either the encryption key is fresh in the shared knowledge, i.e., never used before,
then learning it (information theoretically) does not help distinguishing Πi−1, or the
encryption key was used earlier, then it already was in the shared knowledge for Πi−1

and along the lines of Case 1 we can show by induction hypothesis that the equality
holds. The same argumentation holds for the case if Ob characterizes a verification
key.

6. Protocol-generated decryption key: Ob ∈ {dk(nonceof (O1)), dkofek(O1)}. For
protocol-generated keys, equality of the symbolic operations Oleft and Oright means
that the corresponding bitstrings have the same distribution. The decryption key can
only be used to decryption ciphertexts with the corresponding encryption key. In an
unrolled all plaintext messages that are in the symbolic knowledge after learning the
decryption key (the message corresponding to) Ob are sent directly before (the message
corresponding to) Ob is sent. Recall that in the unrolled variants sub-messages are
always sent before their parent messages. Since we can consider an unbounded
simulator and by Implementation Condition 31 there is exactly one decryption key
for each encryption key, we can reduce this case to the induction hypothesis (along
the lines of Case 1).

7. Protocol-generated signing key: Ob ∈ {sk(nonceof (O1)), skofvk(O1)}. For
protocol-generated keys, equality of the symbolic operations Oleft and Oright means
that the corresponding bitstrings have the same distribution. If Ob = skofvk(O1), the
equality follows from the induction hypothesis, i.e., because verification key is equally
distributed, and because for every verification key there is exactly one signing key
(Implementation Condition 32). If Ob = sk(nonceof (O1)), then by the construction
of Construct-shape, the signing key (characterized by Ob) was never used before.
Hence, the equality follows from the fact that the corresponding bitstring have the
same distribution.

8. A protocol-generated, derived public-key: Ob ∈ {vkofsk(O1), ekofdk(O1)}. For
protocol-generated keys, the distribution of the bitstring that corresponds to Ob is
equally distributed in Ω(Πi,A)left and Ω(Πi,A)right . By induction hypothesis, the

201

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

statement follows. These are public keys and Ob = Oleft = Oright . Hence, either these
keys are already in the adversary’s knowledge, or they have never been used anywhere
yet. Consequently, with an argument along the lines of Case 1 the indistinguishability
follows from the indistinguishability of Πi−1.

9. A virtual term: Ob = plaintextof (O1, O2). This case cannot occur since
plaintextof (O1, O2) only occurs inside an encryption symbolic operation.

10. Encryption: Ob = enc(O1, plaintextof (O2, O3), O4). Observe that by the construc-
tion of Construct-shape this case only happens for honestly generated ciphertexts
for which the decryption key has not been leaked. More precisely, if the decryption
key is not in the approximation of the symbolic knowledge of the adversary that
the monitor internally computes. By Lemma 39, we know that if the monitor does
not raise an alarm then there is symbolically no distinguishing symbolic operation.
Hence, if the key is not in the approximated symbolic knowledge, then the key is
also not in the full symbolic knowledge (otherwise a counterexample to Lemma 39
can be constructed). If the decryption key is not in the symbolic knowledge, then by
Lemma 1 from [BMU12] we know that the simulator (i.e., β†) never called getdkch.

If in turn getdkch was never called, then for computing a ciphertext with the
respective encryption key only fakeencch(R, l) is used, where l equals the bitstring
that corresponds to plaintextof (O2, O3) and R is some internal register of the PROG-
KDM challenger. In other words, the faking PROG-KDM challenger faked the
encryption, i.e., it did not use the plaintext for constructing the ciphertext. Hence, by
construction of the PROG-KDM challenger, the bitstrings corresponding to Oleft and
Oright are equally distributed. By induction hypothesis (for Πi−1), we can conclude
that the success probability for Ω(Πi,A)left is thus the same as for Ω(Πi,A)right .

11. Encryption: Ob = enc(O1, O2, O3) where O2 6= plaintextof (O4, O5). Since we
consider unrolled variants (see Lemma 38), we know that with previous output
nodes the bitstrings that correspond to O1 and O2 have been sent to the adversary.
Recall that in the unrolled variants sub-messages are always sent before their parent
messages. By induction hypothesis we know that for Πi−1 the statement holds. By
the construction of Construct-shape, we know that the bitstring that corresponds
to enc(O1, O2, O3) is an honestly generated ciphertext. As a consequence, Πi did not
leak more information that Πi−1 since the randomness of the encryption algorithm is
chosen uniformly at random (Item 1 in Definition 70 and Item 4 in Section 6.3.2)
Hence, the probabilities for H -ExecM,Impl,Mon(Πi)−Fleft

and H -ExecM,Impl,Mon(Πi)−Fright

are equal.

12. Signature: Ob ∈ {sig(sk(O1), O2, O3), sig(skofvk(O1), O2, O3)}. Since we consider
unrolled protocols, with in the last two output nodes the protocol already sent
vkof (Ob), O2 to the adversary. Recall that in the unrolled variants sub-messages
are always sent before their parent messages. By induction hypothesis for Πi−1, we
know that with Πi−1 the distribution is the same as long as bad has not been raised.
Assume that there is an adversary A that can distinguish H -ExecM,Impl,Mon(Πi)−Fleft

from H -ExecM,Impl,Mon(Πi)−Fright
but not the same scenario for i − 1. Information

theoretically, if the two distributions that already send vkof (Ob), O2 are the same,
then also the two distributions that additionally send vkof (Ob), O2, Ob are the same.

13. Garbage encryption or signature: Ob ∈ {garbageEnc(O1, O2, l), garbageSig(O1,

202

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

O2, l)}. By the construction of Construct-shape and the protocol conditions, we
know that the protocol cannot have produced a bitstring with a garbage encryption or
garbage signature as an output shape. Hence, Ob characterizes a previously observed
attacker-generated ciphertext or signature. Hence, the equality immediately follows
from induction hypothesis, with a reduction along the lines of Case 1.

14. Pairs: pair(O1, O2). Since we solely consider unrolled variants of protocols (see
Lemma 38), we know that both O1 and O2 have already been sent in Πi−1. Recall that
in the unrolled variants sub-messages are always sent before their parent messages.
Hence, the equality immediately follows from induction hypothesis, with a reduction
along the lines of Case 1.

15. Payload strings: Ob ∈ {string0(O1), string1(O1)}. This case follows by induction
hypothesis along the lines of Case 1, since Lemma 38 shows that it suffices to consider
unrolled variants of protocols and Ob can be computed out of O1.

16. Length term: Ob = S (O1). This case follows by induction hypothesis along the
lines of Case 1, since Lemma 38 shows that it suffices to consider unrolled variants of
protocols and Ob can be computed out of O1.

Lemma 42. For the honest simulator Sim and the faking simulator Simf (see Sec-
tion 6.3.5.3), we have

Sim ≈comp Simf

Proof. As a corollary of Lemma 34, we know that if the execution interface is connected
to a hybrid execution for some efficient randomness-safe CoSP protocol Π, the statement
holds for all machines that are connected to the network interface of Sim or Simf . For
distinguishers that are directly connected to the execution interface and behave differently,
the only inputs that cause a distinguishing behavior are inputs of protocols that do not
obey the protocol conditions, in particular if terms that are used in a randomness position,
i.e., randomness messages, are additionally sent in clear. If such randomness messages
would be sent in clear the distinguisher could, e.g., reconstruct an encryption and check
whether this randomness message has been used (as in Sim), or an external oracle has been
used to construct a known ciphertext (as in Simf). However, we constructed the honest
simulator Sim and the faking simulator Simf such that it checks whether these protocol
conditions are met (see the construction of the honest simulator in Section 6.3.5.3). If this
check fails, the execution is aborted, both in Sim and in Simf .

Lemma 43 (fbad-knowledge,Π satisfies computational self-monitoring). The parametric CoSP
protocol fbad-knowledge,Π satisfies computational self-monitoring (see Definition 69).

Proof. Recall that for computational self-monitoring, we have to show that if bad-knowledge
in Mon(Πi) occurs computationally with at most negligible probability, Πi−1 is computation-
ally indistinguishable, and the ith node in Πi is an output node, then Πi is time-insensitively
computationally indistinguishable:

ExecM,Impl,left(Πi) ≈tic ExecM,Impl,right(Πi)

203

6.3. CASE STUDY: ENCRYPTION AND SIGNATURES WITH LENGTHS

By assumption, we know that bad-knowledge occurs with at most negligible probability.
Hence, the following indistinguishability relations hold (for b ∈ {left , right}):

ExecM,Impl,Mon(Πi)−Fb
Lemma 34 & [BMU12]

≈time 〈H -Exec′M,Impl,Mon(Πi)−Fb | Sim ′〉

By the computational soundness for trace properties (Theorem 9) of the symbolic model,
Trbreak only happens with negligible probability. Furthermore, since bad only happens with
negligible probability and ExecM,Impl,left(Πi−1) is indistinguishable from ExecM,Impl,right(Πi−1),
Lemma 41 implies that 〈H -ExecM,Impl,Mon(Πi)−Fleft

| Sim ′f 〉 is indistinguishable from
〈H -ExecM,Impl,Mon(Πi)−Fright

| Sim ′f 〉.

〈H -Exec′M,Impl,Mon(Πi)−Fleft
| Sim ′f 〉 ≈tic 〈H -Exec′M,Impl,Mon(Πi)−Fright

| Sim ′f 〉

By Lemma 42, we know that Sim ′f ≈comp Sim ′. Unruh has proven that if 〈C | A〉 ≈tic

〈D | A〉 and A ≈comp B holds and A,B have polynomially bounded running-time then
〈C | B〉 ≈tic 〈D | B〉 holds [Unr11, Lemma 22]. As a consequence, we get

〈H -Exec′M,Impl,Mon(Πi)−Fleft
| Sim ′f 〉 ≈tic 〈H -Exec′M,Impl,Mon(Πi)−Fright

| Sim ′f 〉
∧ Sim ′f ≈comp Sim ′

=⇒ 〈H -Exec′M,Impl,Mon(Πi)−Fleft
| Sim ′〉 ≈tic 〈H -Exec′M,Impl,Mon(Πi)−Fright

| Sim ′〉

Unruh has, furthermore, proven that if C ≈time A and D ≈time B and A ≈tic B, then
C ≈tic D [Unr11, Corollary 13]. Thus, we conclude the proof as follows:

ExecM,Impl,Mon(Πi)−Fleft
≈time 〈H -Exec′M,Impl,Mon(Πi)−Fleft

| Sim ′〉
∧ ExecM,Impl,,Mon(Πi)−Fright

≈time 〈H -Exec′M,Impl,Mon(Πi)−Fright
| Sim ′〉

∧ 〈H -Exec′M,Impl,Mon(Πi)−Fleft
| Sim ′〉 ≈tic 〈H -Exec′M,Impl,Mon(Πi)−Fright

| Sim ′〉
=⇒ ExecM,Impl,Mon(Πi)−Fleft

≈tic ExecM,Impl,Mon(Πi)−Fright

With the application of Corollary 3, we conclude the proof:

ExecM,Impl,Mon(Π)−Fleft
≈tic ExecM,Impl,Mon(Π)−Fright

=⇒ ExecM,Impl,left(Π) ≈tic ExecM,Impl,right(Π)

6.3.6. CS for Uniform Bi-processes in the Applied π-calculus

Finally, we can prove that the symbolic model allows for self-monitoring.

Theorem 8. Let M be the symbolic model from Section 6.3.1, P be the class of uniformity-
enforcing of randomness-safe bi-protocols, and Impl an implementation that satisfies the
conditions from Section 6.3.2. Then, M, Impl,P allow for self-monitoring. In particular, for

204

CHAPTER 6. FROM TRACE PROPERTIES TO EQUIVALENCE PROPERTIES

each bi-protocol Π, fbad-knowledge,Π and fbad-branch,Π as described above are distinguishing
subprotocols (see Definition 69) for M and P.

Proof. By construction of the self-monitors (see Definition 68) and the construction of the
family of self-monitors fbad-knowledge,Π and fbad-branch,Π (see Section 6.3.4.1 and 6.3.5.1),
and by inspection of the protocol conditions for the class P of uniformity-enforcing (see
Definition 67) randomness-safe CoSP bi-protocols (see Definition 70), we can see that for
all Π ∈ P, Mon(Π) ∈ P′, where P′ is the class of randomness-safe CoSP protocols (see
Definition 70). By Lemma 30 and Lemma 32, we know that for any Π ∈ P, each member
of the family of branching monitors fbad-branch,Π satisfies symbolic and computational
self-monitoring. By Lemma 33 and Lemma 43, we know that for any Π ∈ P, each member
of the family of branching monitors fbad-knowledge,Π satisfies symbolic and computational
self-monitoring.

Theorem 10. Let M be the symbolic model from Section 6.3.1, P be the class of uniformity-
enforcing of randomness-safe bi-protocols, and Impl an implementation that satisfies the
conditions from Section 6.3.2. Then, Impl is computationally sound w.r.t. equivalence
properties for M and P.

Proof. By Theorem 9, we know that Impl is computationally sound for M the class of
randomness-safe CoSP protocols. By Theorem 8, we know that M, Impl,P allow for self-
monitoring. By Theorem 7, we can finally conclude that Impl is computationally sound
w.r.t. equivalence properties for P.

Combining our results, we conclude CS for protocols in the applied π-calculus that use
signatures, public-key encryption, and corresponding length functions.

Theorem 11 (CS for Enc. and Signatures in the Applied π-calculus). Let M be as defined
in Section 6.3. Let Q be a randomness-safe bi-process in the applied π-calculus, and let A
of M be an implementation that satisfies the conditions from above. Let e be the embedding
from bi-processes in the applied π-calculus to CoSP bi-protocols. If Q is uniform, then
left(e(Q)) ≈c right(e(Q)).

Proof. The class of the embedding of the applied π-calculus is uniformity-enforcing by
Lemma 1; thus, Theorem 10 entails the claim.

6.4. Conclusion

In this work, we provided the first result that allows to leverage existing CS results for trace
properties to CS results for uniformity of bi-processes in the applied π-calculus. Our result,
which is formulated in an extension of the CoSP framework to equivalence properties, holds
for Dolev-Yao models that fulfill the property that all distinguishing computational tests
are expressible as a process on the model. We exemplified the usefulness of our method by
applying it to a Dolev-Yao model that captures signatures and public-key encryption.

We moreover discussed how computationally sound, automated analyses can still be
achieved in those frequent situations in which ProVerif does not manage to terminate

205

6.4. CONCLUSION

whenever the Dolev-Yao model supports a length function. We propose to combine ProVerif
with the recently introduced tool APTE [CCP13].

Our results are formulated in the CoSP framework, which decouples the CS of Dolev-Yao
models from the calculi, such as the applied π-calculus. We extended this framework
with a notion of CS for equivalence properties, which might be of independent interest.
Moreover, we proved the existence of an embedding from the applied π-calculus to CoSP
that preserves uniformity of bi-processes, using a slight variation of the embedding of the
original CoSP paper.

We leave as a future work to prove for more comprehensive Dolev-Yao models (e.g., for
zero-knowledge proofs) the sufficient conditions for deducing from CS results for trace
properties the CS of uniformity. Another interesting direction for future work is the
extension of our result to observational equivalence properties that go beyond uniformity.

206

Part II.

Anonymous Communication
Protocols

Provable Security & Efficient Key-Exchange

207

Chapter 7.

Provably Secure and Practical Onion
Routing

[This chapter is based on a paper [BGKM12] with Michael Backes, Ian Goldberg, and
Aniket Kate. I am the main contributor of all parts that occur in this chapter.]

7.1. Motivation

Over the last few years the onion routing (OR) network Tor [Tor03] has emerged as
a successful technology for anonymous web browsing. It currently employs more than
two thousand dedicated relays, and serves hundreds of thousands of users across the
world. Its impact is also evident from the media coverage it has received over the last few
years [Gre11]. Despite its success, the existing Tor network still lacks a rigorous security
analysis, as its circuit construction as well as network transmission delays are found to
be large [RG09; vS07], the current infrastructure is not scalable enough for the future
users [MB09; MTHK09; PRR09], and from the cryptographic point of view its security
properties have neither been formalized cryptographically nor proven. (See [CL05; FJS07b;
MVV04] for previous attempts and their shortcomings.) In this paper, we define security
for the third-generation OR protocol Tor, and construct a provably secure and practical
OR protocol.

An OR network consists of a set of routers or OR nodes that relay traffic, a large set
of users, and directory servers that provide routing information for the OR nodes to the
users. A user (say Alice) constructs a circuit by choosing a small sequence of (usually
three) OR nodes, where the chosen nodes route Alice’s traffic over the path formed. The
crucial property of an OR protocol is that a node in a circuit can determine no circuit
nodes other than its predecessor and its successor. Alice sends data over the constructed
circuit by sending the first OR node a message wrapped in multiple layers of symmetric
encryption (one layer per node), called an onion, using symmetric keys agreed upon during
an initial circuit construction phase. Consequently, given a public-key infrastructure (PKI),
cryptographic challenges in onion routing are to securely agree upon such symmetric keys,
and then to use the symmetric keys to achieve confidentiality and integrity.

In the first generation onion routing [RSG98], circuits are constructed in a single pass.
However, the scalability issues while pursuing forward secrecy [DOW92] in the single-pass
construction prompted Dingledine, Mathewson and Syverson [DMS04] to use a telescoping
approach for the next-generation OR protocol Tor. In this telescoping approach, they
employed a forward secret, multi-pass key agreement protocol called the Tor authentication
protocol (TAP) to negotiate a symmetric session key between user Alice and a node. Here,

209

7.1. MOTIVATION

the node’s public key is only used to initiate the construction, and the compromise of this
public key does not invalidate the secrecy of the session keys once the randomness used in
the protocol is erased.Goldberg [Gol06] presented a security proof for individual instances
of TAP. The security of TAP, however, does not automatically imply the security of the
Tor protocol. (For a possible concurrent execution attack, see [Zha09].) The Tor protocol
constitutes a sequential execution of multiple TAP instances as well as onion construction
and processing algorithms, and thus its security has to be analyzed in a composability
setting.

In this direction, Camenisch and Lysyanskaya [CL05] defined an anonymous message
transmission protocol in the universal composability (UC) framework, and presented a
protocol construction that satisfies their definition. They motivated their choice of the
UC framework for a security definition by its versatility as well as its appropriateness for
capturing protocol compositions. However, Feigenbaum, Johnson and Syverson [FJS07b;
FJS11] observe that the protocol definition presented by Camenisch and Lysyanskaya [CL05]
does not correspond to the OR methodology, and a rigorous security analysis of an OR
protocol still remains an unsolved problem.

Studies on OR anonymity such as [FJS07b; MVV04; Shm04] assume simplified OR
black-box models to perform an analysis of the anonymity guarantees of these models. Due
to the complexity of an OR network’s interaction with the network and the adversary, such
black-box models are not trivially realized by deployed OR networks, such as Tor. As a
result, there is a gap between deployed OR protocols and anonymity analysis research that
has to be filled.

Our Contributions. Our contribution is threefold. First, we present a security definition
for the OR methodology as an ideal functionality For in the UC framework. This ideal
functionality in particular gives appropriate considerations to the goals of various system
entities. After that, we identify and characterize which cryptographic primitives constitute
central building blocks of onion routing, and we give corresponding security definitions:
a one-way authenticated key exchange (1W-AKE) primitive, and onion construction and
processing algorithms. We then describe an OR protocol Πor that follows the current Tor
specification and that relies on these building blocks as black boxes. We finally show that
Πor is secure in the UC framework with respect to For, provided that these building blocks
are instantiated with secure realizations (according to their respective security definitions).

Second, we present a practical OR protocol by instantiating Πor with the following OR
modules: a 1W-AKE protocol ntor [GSU12], employed onion construction and processing
algorithms in Tor with a slightly enhanced integrity mechanism. We show that these
instantiations fulfill the security definitions of the individual building blocks that we
identified before. This yields the first practical and provably secure OR protocol that
follows the Tor specification. As part of these proofs, we identify a novel security definition
of symmetric encryption notion we show to be sufficient for showing Πor secure. This notion
strictly lies between CPA-security and CCA-security and characterizes stateful deterministic
countermode encryptions. We call this notion predictably malleable encryptions, which
might be of an independent interest.

Third, we illustrate the applicability of the abstraction For by introducing the first
cryptographic definition of forward circuit secrecy for onion routing, which might be of
independent interest. We utilize the abstraction For and the UC composability theorem
for proving that Πor satisfies forward circuit secrecy by means of a simple proof. As a

210

CHAPTER 7. PROVABLY SECURE ONION ROUTING

second application, we close the gap between the OR black-box model, prevalently used in
anonymity analyses [FJS07b; FJS11; MVV04; Shm04], and a cryptographic model (Πor)
of onion routing. Again, we utilize our abstraction For and the UC composability theorem
for proving that against local, static attackers the recent analysis of the OR black-box
model [FJS11] also applies to our OR protocol Πor instantiated with secure core building
blocks.

Compared to previous work [CL05], we construct an OR circuit interactively in multiple
passes, whereas previous work did not consider circuit construction at all, and hence does
not model the widely used Tor protocol. The previous approach, and even single-pass
circuit construction in general, restricts the protocol to eventual forward secrecy, while
a multi-pass circuit construction ensures forward secrecy immediately after the circuit is
closed. Second, we show that their hop-to-hop integrity verification is not mandatory, and
that an end-to-end integrity verification suffices for onion routing. Finally, they do not
consider backward messages (from web-servers to Alice), and their onion wrapping and
unwrapping algorithms also do not work in the backward direction.

There has also been work on universally composable Mix-Nets by Wikström [Wik04].
That work has some similarities to our work, but it only considers Mix-Nets, e.g., it does
not need to cope with circuits and sessions.

Another important approach for analyzing onion routing has been conducted by Feigen-
baum, Johnson, and Syverson [FJS07a]. In contrast to our work, the authors analyze
an I/O automaton that use idealized encryption, pre-shared keys, and assume that every
party only constructs one circuit to one destination. Moreover, the result in that work only
holds in the stand-alone model against a local attackers whereas our result holds in the UC
model against global and partially global attackers. In particular, by the UC composability
theorem our result even holds with arbitrary protocols surrounding and against an attacker
that controls parts of the network.

Outline of the Paper. Section 7.2 provides background information relevant to onion
routing, 1W-AKE, and the UC framework. Section 7.3, presents our security definition
for onion routing. Section 7.4, presents cryptographic definitions for predictably malleable
encryptions and secure onion construction and processing algorithms. Section 7.5, states
that given a set of secure OR modules we can construct a secure OR protocol. Section 7.7
utilizes our security definition to analyze some security and anonymity properties of onion
routing. Finally, we discuss some further interesting directions in Section 7.8. In this work,
many proofs have been omitted due to space constraints, which can be found in the full
version [BGKM12].

7.2. Background

In this paper, we often omit the security parameter κ when calling an algorithm A; i.e., we
abbreviate A(1κ, x) by A(x). We write y ← A(x) for the assignment of the result of A(x)
to a variable y, and we write y ← S for the assignment of a uniformly chosen element from
S to y. For a given security parameter κ, we assume a message space M(κ) that is disjoint
from the set of onions. We assume a distinguished error message ⊥; in particular, ⊥ is not
in the message space. For some algorithms, we write Alg(a, b, c, [d]) and mean that the
argument d is optional. Finally, for stateful algorithms, we write y ← A(x) but we actually

211

7.2. BACKGROUND

mean (y, s′)← A(x, s), where s′ is used in the next invocation of A as a state, and s is the
stored state from the previous invocation.We assume that for all algorithms s ∈ {0, 1κ}.
We abbreviate probabilistic polynomial-time as PPT.

7.2.1. Onion Routing Circuit Construction

In the original Onion Routing project [GRS96; GRS99; RSG98; STRL00], circuits were
constructed in a single pass. However, such a single-pass circuit construction does not
provide forward secrecy: if an adversary corrupts a node and obtains the private key,
the adversary can decrypt all of the node’s past communication. Although changing the
public/private key pairs for all OR nodes after a predefined interval is a possible solution
(eventual forward secrecy), this solution does not scale to realistic OR networks such as
Tor, since at the start of each interval every user has to download a new set of public keys
for all the nodes.

A user (Alice) chooses a path of OR nodes to a receiver, and creates a forward onion
with several layers. Each onion layer is targeted at one node in the path and is encrypted
with that node’s public key. A layer contains that node’s symmetric session key for the
circuit, the next node in the path, and the next layer. Each node decrypts a layer using its
secret key, stores the symmetric key, and forwards the next layer of the onion along to the
next node. Once the last node in the path, i.e., the receiver, gets its symmetric session
key, it responds with a confirmation message encrypted with its session key. Every node in
the path wraps (encrypts) the backward onion using its session key in the reverse order,
and the message finally reaches Alice. A circuit that is constructed in this way, i.e., the
sequence of established session keys, is thereafter used for constructing and sending onions
via this circuit.

There are attempts to solve this scalability issue. Kate, Zaverucha and Goldberg [KZG07]
suggested the use of an identity-based cryptography (IBC) setting and defined a pairing-
based onion routing (PB-OR) protocol. Catalano, Fiore and Gennaro [CFG09] suggested a
certificateless cryptography (CLC) setting [AP03] instead, and defined two certificateless
onion routing protocols (CL-OR and 2-CL-OR). However, both approaches do not yield
satisfactory solutions: CL-OR and 2-CL-OR suffer from the same scalability issues as the
original OR protocol [KG10b]; PB-OR requires a distributed private-key generator [KG10a]
that may lead to inefficiency in practice.

Another problem with the single-pass approach is its intrinsic restriction to eventual
forward secrecy [KZG10]; i.e., if the current private key is leaked, then past sessions remain
secret only if their public and private keys have expired. A desirable property is that all
past sessions that are closed remain secret even if the private key is leaked; such a property
is called immediate forward secrecy.

In the current Tor protocol, circuits are constructed using a multi-pass approach that
is based on TAP. The idea is to use the private key only for establishing a temporary
session key in a key exchange protocol. Together with the private key, additional temporary
(random) values are used for establishing the key such that knowing the private key does not
suffice for reconstructing the session key. These temporary values are erased immediately
after the session key has been computed. This technique achieves immediate forward
secrecy in multi-pass constructions, which however was never formally defined or proven
before.

212

CHAPTER 7. PROVABLY SECURE ONION ROUTING

The multi-pass approach incurs additional communication overhead. However, in practice,
almost all Tor circuits are constructed for a circuit length of ` = 3, which merely causes
an overhead of six additional messages.1 With this small overhead, the multi-pass circuit
construction is the preferred choice in practice, due to its improved forward secrecy
guarantees. Consequently, for our OR security definition we consider a multi-pass circuit
construction as in Tor.

7.2.2. One-Way Authenticated Key Exchange – 1W-AKE

In a multi-pass circuit construction, a session key is established via a Diffie–Hellman key
exchange. However, the precise properties required of this protocol were not formalized
until recently. Goldberg, Stebila and Ustaoglu [GSU12] formalized the concept of 1W-AKE,
presented an efficient instantiation, and described its utility towards onion routing. We
review their work here and we refer the readers to [GSU12] for a detailed description.

An authenticated key exchange (AKE) protocol establishes an authenticated and confi-
dential communication channel between two parties. Although AKE protocols in general
aim for key secrecy and mutual authentication, there are many practical scenarios such as
onion routing where mutual authentication is undesirable. In such scenarios, two parties
establish a private shared session key, but only one party authenticates to the other. In
fact, as in Tor, the unauthenticated party may even want to preserve its anonymity. Their
1W-AKE protocol constitutes this precise primitive.

The 1W-AKE protocol consists of three procedures: Init , Resp, and CompKey . With
procedure Init , Alice (or her onion proxy) generates and sends an authentication challenge
to the server (an OR node). The OR node responds to the challenge by running the Resp
procedure, and returning the authentication response. The onion proxy (OP) then runs the
CompKey procedure over the received response to authenticate the OR node and compute
the session key.

The security of a 1W-AKE is defined by means of a challenger that represents all honest
parties. The attacker is then allowed to query this challenger. If the attacker is not able
to distinguish a fresh session key from a randomly chosen session key, we say that the
1W-AKE is secure. This challenger is constructed in a way that security of the 1W-AKE
implies one-way authentication of the responding party.

For the definition of one-way anonymity we introduce a proxy, called the anonymity
challenger, that relays all messages from and to the usual 1W-AKE challenger except for
a challenge party C. The attacker can choose two challenge parties, out of which the
anonymity challenger randomly picks one, say i∗. Then, the anonymity challenger relays
all messages that are sent to C to Pi∗ (via the 1W-AKE challenger).

In the one-way anonymity experiment, the adversary can issue the following queries to the
challenger C. All other queries are simply relayed to the 1W-AKE challenger. The session
Ψ∗ denotes the challenge session. The two queries are for activation and communication
during the test session. We say that a 1W-AKE is one-way anonymous if the attacker
cannot guess which party has been guessed with more than 1/2 + µ(κ) probability, where
µ is a negligible function.

1The overhead reduces to four additional messages if we consider the “CREATE FAST” option available
in Tor.

213

7.2. BACKGROUND

In terms of instantiation, Goldberg et al. showed that an AKE protocol suggested for
Tor—the fourth protocol in [vS07]—can be attacked, leading to an adversary determining
all of the user’s session keys. They then fixed the protocol (see Figure 7.17) and proved that
the fixed protocol (ntor) satisfies the formal properties of 1W-AKE. In our OR analysis,
we use their formal definition and their fixed protocol.

7.2.3. Generalized UC Framework

As presented in Section 4.4.1.1, the UC framework is designed to enable a modular analysis
of security protocols. In this framework, the security of a protocol is defined by comparing
it with a setting in which all parties have a direct and private connection to a trusted
machine that computes the desired functionality. In this chapter we omit the port-based
notation.

In contrast to typical UC proofs, our attacker model considers a more fine-grained network
topology. Typically, a global attacker is assumed in UC; however, as we also want to be
able to argue about local attackers, we prove our result for partially global attackers, i.e.,
in particular also for completely global attackers. A network over which the attacker does
not have full control is modelled by a network functionality Fnetq in which the attacker
can adaptively compromise up to q links between honest onion routers. This network
functionality is a global setup assumption; consequently, we have to consider the generalized
UC framework (GUC) by Canetti, Dodis, Pass, and Walfish [CDPW07].2 Throughout this
chapter, if we say that a protocol ρ UC realizes a protocol π we actually mean that ρ GUC
realizes π. (For a thorough definition of GUC, we refer to [CDPW07].)

7.2.4. The OR Protocol

We describe an OR protocol Πor that follows the Tor specification [DM08]. We do not
present the cryptographic algorithms, e.g., wrapping and unwrapping onions, in this
section but only present the skeleton of the protocol. A thorough characterization of these
cryptographic algorithms follows in Section 7.4.

We describe our protocols using pseudocode and assume that a node maintains a state for
every execution and responds (changes the state and/or sends a message) upon receiving a
message as per its current state. In Figure 7.1, we give an overview of the setup that we
consider.

As an attacker model we consider a partially global attacker in contrast to the global
attacker that is typically used in UC analyses. For modelling a partially global attacker,
we introduce an ideal functionality Fnetq that allows the attacker to compromise at most q
links.

There are two types of messages that the protocol generates and processes: the first
type contains input actions, which carry inputs to the protocol from the user (Alice), and
output actions, which carry outputs of the protocol to Alice. The second message type is a
point-to-point network message (a cell in the OR literature), which is to be delivered by
one protocol node to another. To enter a wait state, a thread may execute a command of
the form wait for a network message.

2The authors show that composability also holds true in the presence of global functionalities as long as

214

CHAPTER 7. PROVABLY SECURE ONION ROUTING

E Fscs
Freg

A

Πor

Fnet

a bidirectional link

a corruption link

Figure 7.1.: Overview of the set-up

upon an input (setup):

Generate an asymmetric key pair (skP , pkP) ←
G(1η).
send a cell (register, P, pk) to the FNreg functionality
wait for a cell (registered, 〈Pj , pkj〉nj=1) from FNreg
output (ready,N = 〈Pj〉nj=1)

upon an input (createcircuit,P = 〈P, 〈Pj〉`j=1〉):
store P and C ← 〈P 〉; call ExtendCircuit(P, C)

upon an input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):

if (m 6∈M(κ)) then abort
if Used(cid1) < ttlC then

look up the keys (〈kj〉`j=1) for cid1

O ←WrOn(m, (kj)
`
j=1); Used(cid1)++

send a cell (cid1, relay, O) to P1 over Fscs

else
call DestroyCircuit(C, cid1); output
(destroyed, C,m)

Figure 7.2.: Πor: The OR Protocol for Party P – Input/Output Commands

With this methodology, we are able to effortlessly extract an OR protocol (Πor) from
the Tor specification by categorizing actions based on the OR cell types (see Figure 7.2).
For ease of exposition, we only consider Tor cells that are cryptographically important and
relevant from the security definitional perspective. In particular, we consider create, created
and destroy cells among control cells, and data, extend and extended cells among relay cells.
We also include two input messages createcircuit and send, where Alice uses createcircuit to
create OR circuits and uses send to send messages m over already-created circuits. We do
not consider streams and the SOCKS interface in Tor as they are extraneous to the basic
OR methodology. We unify instructions for an OP (onion proxy) node and an OR node
for the simplicity of discussion. Moreover, for the sake of brevity, we restrict ourselves to
messages m ∈M(κ) that fit exactly in one cell. It is straight-forward to extend our result
to a protocol that accepts larger messages. The only difference is that the onion proxy and
the exit node divide messages into smaller pieces and recombine them in an appropriate
way.

Function calls Init , Resp and CompKey correspond to 1W-AKE function calls described
in Section 7.2.2. Function calls WrOn and UnwrOn correspond to the principal onion
algorithms. WrOn creates a layered encryption of a payload (plaintext or onion) for given
an ordered list of ` session keys for ` ≥ 1. UnwrOn removes ` layers of encryptions from
an onion to output a plaintext or an onion given an input onion and a ordered list of `

the environment has access to these functionalities, i.e., they are not simulated by the simulator.

215

7.2. BACKGROUND

upon receiving a cell (cid , create, X) from Pi over
Fscs:

〈Y, knew〉 ← Resp(pkP , skP , X)

store C ← 〈Pi
cid,knew⇐⇒ P 〉

send a cell (cid , created, Y, t) to Pi over Fscs

upon receiving a cell (cid , created, Y, t) from Pi over
Fscs:

if prev(cid) = (P ′, cid ′, k′) then
O ←WrOn(〈extended, Y, t〉, k′)
send a cell (cid ′, relay, O) to P ′ over Fscs

else if prev(cid) = ⊥ then
knew ← CompKey(pk i, Y, t)
update C with knew; call ExtendCircuit(P, C)

upon receiving a cell (cid , relay, O) from Pi over Fscs:

if prev(cid) = ⊥ then

if getkey(cid) = (kj)
`′
j=1 then

(type,m) or O ← UnwrOn(O, (kj)
`′
j=1)

(P ′, cid ′) or ⊥ ← next(cid)
else if prev(cid) = (P ′, cid ′, k′) then
O ←WrOn(O, k′) /* a backward onion */

switch (type)
case extend:

get 〈Pnext , X〉 from m; cidnext ← {0, 1}κ

update C ← 〈Pi
cid,k⇐⇒ P

cidnext⇐⇒ Pnext 〉
send a cell (cidnext , create, X) to Pnext over Fscs

case extended:
get 〈Y, t〉 from m; get Pex from (C,P)
kex ← CompKey(pk ex, Y, t)
update C with (kex); call ExtendCircuit(P, C)

case data:
if (P = OP) then output (received, C,m)
else if m = (S,m′)

generate or lookup the unique sid for cid
send (P, S, sid ,m′) to Fnetq

case corrupted : /*corrupted onion*/
call DestroyCircuit(C, cid)

case default: /*encrypted forward/backward
onion*/

send a cell (cid ′, relay, O) to P ′ over Fscs

upon receiving a msg (sid ,m) from Fnetq :

get C ← 〈P ′ cid,k⇐⇒ P 〉 for sid ; O ←WrOn(m, k)
send a cell (cid , relay, O) to P ′ over Fscs

upon receiving a cell (cid ,destroy) from Pi over Fscs:

call DestroyCircuit(C, cid)

Figure 7.3.: Πor: The OR Protocol for Party P – Network Commands

session keys for ` ≥ 1. Moreover, the onion algorithm UnwrOn also ensures end-to-end
integrity. Along with the plaintext of an onion UnwrOn outputs a flag type that indicates
whether an onion has been corrupted (type = corrupted) or has integrity (type = default).
The cryptographic requirements for these onion algorithms are presented in Section 7.4.2.

Tor uses a centralized approach to determine valid OR nodes and distribute their public
keys. Every OR node has to be registered in so-called directory servers, where each
registration is checked by an administrator. These directory servers then distribute the
list of valid OR nodes and the respective public keys. We abstract the key registration
procedure by assuming that the directory servers expect a fixed set of parties upon setup.
Formally, we model these directory servers as an ideal functionality FNreg, which is basically
defined as by Canetti [Can01] except that FNreg rejects all parties that are not in N and
only sends the public keys around once all parties in N registered.3 Tor does not guarantee
any anonymity once these directory servers are compromised. Therefore, we concentrate
on the case in which these directory servers cannot be compromised.4 As in Tor, we
assume that the list of valid OR nodes is given to the directory servers from outside, in
our case from the environment. However, for the sake of simplicity we assume that the
OR list is only synchronized initially. In detail, we slightly extend the functionality as
follows. FNreg initially receives a list of OR nodes from the environment, waits for each of
these parties for a public key, and distributes the list of OR nodes and their public keys
as (registered, 〈Pj , pk j〉nj=1). Each OR node P , on the other hand, initially computes its

long-term keys (skP , pkP) and registers the public part at FNreg. Then, the node waits to

3Technically, we also extend FNreg such that upon each (register, sid , v)-message, FNreg notifies the attacker.
And only after the attacker confirmed this message, FNreg registers v with P .

4Formally, this ideal functionality FNreg does not accept compromise-requests from the attacker.

216

CHAPTER 7. PROVABLY SECURE ONION ROUTING

ExtendCircuit(P = 〈Pj〉`j=1, C = 〈P cid1,k1⇐⇒ P1
k2⇐⇒

· · ·P`′ 〉):
determine the next node P`′+1 from P and C
if P`′+1 = ⊥ then

output (created, 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′ 〉)
else
X ← Init(pkP`′+1

, P`′+1)

if P`′+1 = P1 then
cid1 ← {0, 1}κ

send a cell (cid1, create, X) to P1 over Fscs

else
O ←WrOn({extend, P`′+1, X}, (kj)`

′
j=1)

send a cell (cid1, relay, O) to P1 over Fscs

DestroyCircuit(C, cid):

if next(cid) = (Pnext , cidnext) then
send a cell (cidnext , destroy) to Pnext over Fscs

else if prev(cid) = (Pprev , cidprev) then
send a cell (cidprev , destroy) to Pprev over Fscs

discard C and all streams

Figure 7.4.: Subroutines of Πor for Party P

receive the message (registered, 〈Pj , pk j〉nj=1) from FNreg before declaring that it is ready for

use.5

OPs develop circuits incrementally, one hop at a time, using the ExtendCircuit function
defined in Figure 7.4. To create a new circuit, an OP sends a create cell to the first node,
after calling the Init function of 1W-AKE; the first node responds with a created cell after
running the Resp function. The OP then runs the CompKey function. To extend a circuit
past the first node, the OP sends an extend relay cell after calling the Init function, which
instructs the last node in the circuit to send a create cell to extend the circuit.

Circuits are identified by circuit IDs (cid ∈ {0, 1}κ) that associate two consecutive circuit

nodes. We denote circuit at a node Pi using the terminology C = Pi−1
cidi,ki⇐⇒ Pi

cidi+1⇐⇒ Pi+1,
which says that Pi−1 and Pi+1 are respectively the predecessor and successor of Pi in a circuit
C. ki is a session key between Pi and the OP, while the absence of ki+1 indicates that a
session key between Pi+1 and the OP is not known to Pi; analogously the absence of a circuit
id cid in that notation means that only the first circuit id is known, as for OP, for example.
Functions prev and next on cid correspondingly return information about the predecessor
or successor of the current node with respect to cid ; e.g., next(cid i) returns (Pi+1, cid i+1)

and next(cid i+1) returns ⊥. The OP passes on to Alice 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉.
Within a circuit, the OP and the exit node use relay cells created using WrOn to tunnel

end-to-end commands and connections. The exit nodes use some additional mechanisms
(abstracting the streams used in Tor) to synchronize communication between the network
and a circuit C. We represent that using sid . With this auxiliary synchronization, end-
to-end communication between OP and the exit node happens with a WrOn call with
multiple session keys and a series of UnwrOn calls with individual session keys in the
forward direction, and a series of WrOn calls with individual session keys, and finally a
UnwrOn call with multiple session keys in the backward direction. Communication in the
forward direction is initiated by a send message by Alice to the OP, while communication
in the backward direction is initiated by a network message to the exit node. Cells are
exchanged between OR nodes over a secure and authenticated channels, e.g., a TLS
connection. We abstract such a channel in the UC framework by a functionality Fscs as
proposed by Canetti [Can01] with the only difference that Fscs does not output the leakage

5The functionality FNreg additionally answers upon a request retrieve with the full list of participants
〈Pj , pk j〉nj=1.

217

7.2. BACKGROUND

upon receiving a msg (compromise,NA) from A:

set compromised(P)← true for every P ∈ NA

set b← |NA|
|Nor|

upon an input (send, S) from the environment for
party U :

with probability b2, send (sent, U, S) to A
with probability (1− b)b, send (sent,−, S) to A
with probability b(1− b), send (sent, U,−) to A
with probability (1− b)2, send (sent,−,−) to A

Figure 7.5.: Black-box OR Functionality Bor [FJS11]

to the attacker but to Fnetq , i.e., the network functionality.6 We write storeX ← v for
either introducing a new variable X with value v, or assign a value v to a variable X in
case X was not previously defined.

To tear down a circuit completely, an OR or OP sends a destroy cell to the adjacent
nodes on that circuit with appropriate cid using the DestroyCircuit function defined in
Figure 7.4. Upon receiving an outgoing destroy cell, a node frees resources associated with
the corresponding circuit. If it is not the end of the circuit, it sends a destroy cell to the
next node in the circuit. Once a destroy cell has been processed, the node ignores all cells
for the corresponding circuit. Note that if an integrity check fails during UnwrOn, the
destroy cells are sent in the forward and backward directions in a similar way.

In the Tor the OP has a time limit (of ten minutes) for each established circuit; thereafter,
the OP constructs a new circuit. However, the UC framework does not provide a notion
of time. We model such a time limit in the UC framework by only allowing a circuit
to transport at most a constant number (say ttlC) of messages measured using the used
function call. Afterwards, the OP discards the circuit and establishes a fresh circuit.

7.2.5. An OR Black Box Model

Anonymity in a low-latency OR network does not only depend upon the security of the
onions but also upon the magnitudes and distributions of users and their destination servers.
In the OR literature, considerable efforts have been put towards measuring the anonymity
of onion routing [FJS07a; FJS07b; FJS11; MVV04; Shm04].

Feigenbaum, Johnson, and Syverson used for an analysis of the anonymity properties
of onion routing an ideal functionality Bor [FJS11]. This functionality emulates an
I/O-automata model for onion routing from [FJS07a; FJS07b]. Figure 7.5 presents this
functionality Bor.

Let Nor be the set of onion routers, and let NA of those be eavesdropped, where
b = |NA|/|Nor| defines the fraction of compromised nodes. It takes as input from each
user U the identity of a destination S. For every such connection between a user and a
destination, the functionality may reveal to the adversary the identity of the user (sent, U,−)
(i.e., the first OR router is compromised), the identity of the destination (sent,−, S, [m])
(i.e., the exit node is compromised), both (sent, U, S, [m]) (i.e., the first OR router and the
exit node are compromised) or only a notification that something has been sent (sent,−,−)
(i.e., neither the first OR router nor the exit node is compromised).

We stress that this functionality only abstracts an OR network against local attackers.

6As leakage function l for Fscs, we choose l(m) := |m|.

218

CHAPTER 7. PROVABLY SECURE ONION ROUTING

As the distribution of the four cases only depends on the first and the last router being
compromised but not on the probability that the attacker controls sensitive links between
honest parties, Bor only models OR against local adversaries. As an example consider, the
case in which the attacker only wiretaps the connection between the exit node and the
server. In this case, the attacker is able to determine which message has been sent to whom,
i.e., the abstraction needs to leak (sent,−, S, [m]); however, the probability of this event is
c, where c is the fraction of observed links between honest onion routers and users and
servers. Therefore, Bor cannot be used as an abstraction for onion routing against partially
global attackers. In Section 7.7.1.2, we present an extension of Bor that models onion
routing against partially global attackers and prove that it constitutes a sound abstraction.

We actually present Bor in two variants. In the first variant Bor does not send an actual
message but only a notification. This variant has been analyzed by Feigenbaum, Johnson,
and Syverson. We additionally consider the variant in which Bor sends a proper message
m. We denote these two variants by marking the message m as optional, i.e., as [m].

In order to justify these OR anonymity analyses that consider an OR network as a black
box, it is important to ascertain that these black boxes indeed model onion routing. In
particular, it is important under which adversary and network assumptions these black
boxes model and securely abstract real-world OR networks. In this work, we show that the
black box Bor can be UC-realized by a simplified version of the Tor network.

7.3. Security Definition of OR

In this section, we first describe our system and adversary model for all protocols that we
analyze (Section 7.3.1). Thereafter, we present a composable security definition of OR by
introducing an ideal functionality (abstraction) For in the UC framework (Section 7.3.2).

Tor was designed to guarantee anonymity even against partially global attackers, i.e.,
attackers that do not only control compromised OR nodes but also a portion of the network.
Previous work, however, only analyzed local, static attackers [FJS07a; FJS07b; FJS11],
such as the abstraction Bor presented in Figure 7.5. In contrast, we analyze onion routing
against partially global, active attackers. As our resulting abstraction For has to faithfully
reflect that an active attacker can hold back all onions that it observes, For is naturally
more complex than Bor.

7.3.1. System and Adversary Model

We consider a fully connected network of n parties N = {P1, . . . , Pn}. For simplicity of
presentation, we consider all parties to be OR nodes that also can function as OPs to create
circuits and send messages. It is also possible to use our formulation to model separate
user OPs that only send and receive messages but do not relay onions.

Tor has not been designed to resist against global attackers. Such an attacker is too
strong for many practical purposes as it can simply break the anonymity of an OR protocol
by holding back all but one onion and tracing that one onion though the network. However,
in contrast to previous work, we do not only consider local attackers, which do not control
more than the compromised OR routers, but also partially global attackers that control
a certain portion of the network. Analogous to the network functionality Fsyn proposed

219

7.3. SECURITY DEFINITION OF OR

upon an input (setup):

draw a fresh handle h; set registered flag← true
store lookup(h)← (dir, registered,N)
send (h, register, P) to A
wait for the message (h, register, P) from A
output (ready,N)

upon an input (createcircuit, 〈P,Q1, . . . , Q`〉):
call ExtendCircuit(〈P,Q1, . . . , Q`〉, (P))

upon an input (send, 〈P cid1⇐⇒ Q1 ⇐⇒ · · ·Q`〉,m):

if (m 6∈M(κ)) then abort
if Used(cid1) < ttlC then

Used(cid1)++
SendMessage(Q1, cid1, relay, 〈data,m〉)

else

DestroyCircuit(〈P cid1⇐⇒ Q1 ⇐⇒ · · ·Q`〉, cid1)

output (destroyed, 〈P cid1⇐⇒ Q1 ⇐⇒ · · ·Q`〉,m)

Figure 7.6.: The ideal functionality FNor (short For) for Party P – Input/Output Messages

by Canetti [Can01], we model the network as an ideal functionality Fnetq , which bounds
the number of attacker-controlled links to q ∈ [0,

(
n
2

)
]. For attacker-controlled links the

messages are forwarded to the attacker; otherwise, they are directly delivered. In Section 7.7
we show that previous black-box analyses of onion routing against local attackers applies
to our setting as well by choosing q := 0. Let S represent all possible destination servers
{S1, . . . , S∆} which reside in the network abstracted by a network functionality Fnetq .

We stress that the UC framework does not provide a notion of time; hence, the analysis
of timing attacks, such as traffic analysis, is not in the scope of this work.

Adaptive Corruptions. Forward secrecy [DOW92] is an important property for onion
routing. In order to analyze this property, we allow adaptive corruptions of nodes by the
attacker A. Such an adaptive corruption is formalized by a message compromise, which is
sent to the respective party. Upon such a compromise message the internal state of that
party is deleted and a long-term secret key sk for the node is revealed to the attacker. A
can then impersonate the node in the future; however, A cannot obtain the information
about its ongoing sessions. We note that this restriction arises due to the currently available
security proof techniques and the well-known selective opening problem with symmetric
encryptions [Hof11], and the restriction is not specific to our constructions [BMP00; GL01].
We could also restrict ourselves to a static adversary as in previous work [CL05]; however,
that would make an analysis of forward secrecy impossible.

7.3.2. Ideal Functionality

The presentation of the ideal functionality For is along the lines of the description OR
protocol Πor from Section 7.2.4. We continue to use the message-based state transitions
from Πor, and consider sub-machines for all n nodes in the ideal functionality. To
communicate with each other through messages and data structures, these sub-machines
share a memory space in the functionality. The sub-machine pseudocode for the ideal
functionality appears in Figure 7.6 and three subroutines are defined in Figure 7.8. As the
similarity between pseudocodes for the OR protocol and the ideal functionality is obvious,
rather than explaining the OR message flows again, we concentrate on the differences.

The only major difference between Πor and For is that cryptographic primitives such as
message wrapping, unwrapping, and key exchange are absent in the ideal world; we do not
have any keys in For, and the OR messages WrOn and UnwrOn as well as the 1W-AKE
messages Init , Resp, and CompKey are absent.

220

CHAPTER 7. PROVABLY SECURE ONION ROUTING

upon receiving 〈Q0, . . . , Qu, , h〉 from Fnetq :

send (msg)← lookup(h) to a receiving submachine
Qu inside FNor

upon receiving (Q, cid , create) through a handle:

SendMessage(Q, cid , created)

upon receiving (Q, cid , created) through a handle:

if prev(cid) = (Q′, cid ′) then
SendMessage(Q′, cid ′, relay, extended)

else if prev(cid) = ⊥ then
ExtendCircuit(P, circuit(cid))

upon receiving (Q, cid , relay, O) through a handle:

switch (O, prev(cid),next(cid)):
case ((extend, Qnext), (Q,),⊥):

cidnext ← {0, 1}κ;
next(cid)← (Qnext , cidnext)
prev(cidnext)← (P, cid)
SendMessage(Qnext , cidnext , create)

case ((extended,), , (Q,⊥)):
ExtendCircuit(P, circuit(cid))

case ((data,m), (P,⊥), (Q,)): /*message for the
onion proxy*/

output (received, circuit(cid),m)
case ((data, (S,m′)), (Q,), (P,⊥)): /*message for
the server*/

if (SID(cid) = ⊥) draw a fresh sid ; SID(cid)←
sid

else sid ← SID(cid)
set m′′ ← (sid ,m′); send (P, S,m′′) to Fnetq

case (, (Q,), (P, cidnext)): /*encrypted forward
onion*/

(Qnext ,) ← next(cidnext) /*retrieve the next
node in the circuit*/
SendMessage(Qnext , cidnext , relay, O)

case (, (P, cidprev), (Q,)): /*encrypted backward
onion*/

(Qprev ,)← prev(cidprev) /*retrieve the previous
node in the circuit*/
SendMessage(Qprev , cidprev , relay, O)

case ((corrupted ,), ,): /*corrupted onion*/
DestroyCircuit(C, cid)

upon receiving a msg (sid ,m) from Fnetq :

obtain C = 〈P ′ cid⇐⇒ P 〉 for sid
SendMessage(P ′, cid , relay, 〈data,m〉)

upon receiving a msg (Pi, cid , destroy) through a han-
dle:

DestroyCircuit(C, cid)

upon receiving a msg (Pi, P, h, [corrupt, T (·)]) from A:

(message)← lookup(h)
if corrupt = true then

message ← T (msg);
set corrupted(message)← true

process message as if the receiving submachine was
P

upon receiving (compromise, P) from A:

set compromised(P)← true
delete all local information at P

Figure 7.7.: The ideal functionality FNor (short For) for Party P – Network Messages, where
the function circuit(cid) is defined in Figure 7.8

The ideal functionality also abstracts the directory server and expects on the input/output
interface of FNreg (from the setting with Πor) an initial message with the list 〈Pi〉ni=1 of
valid nodes. This initial message corresponds to the list of onion routers that have been
approved by an administrator. We call the part of For that abstracts the directory servers
dir. For the sake of brevity, we do not present the pseudocode of dir. Upon an initial
message with a list 〈Pi〉ni=1 of valid nodes, dir waits for all nodes Pi (i ∈ {1, . . . , n}) for a
message (register, Pi). Once all nodes registered, dir sends a message (registered, 〈Pi〉ni=1)
with a list of valid and registered nodes to every party that registered, and to every party
that sends a retrieve message to dir.

Using Fnetq with the ideal functionality. To unify the presentation, our ideal
functionality also uses the network functionality Fnetq . While it is non-standard to use an
ideal functionality (here, Fnetq) with an ideal functionality (here, For), this setting can be
reduced to a scenario where a modified ideal functionality For

′ internally runs Fnetq . This
reduction shows, in particular, that the composability theorem of the UC-framework also
applied to our setting.

Messages from A and Fnetq . In Figure 7.6 and Figure 7.9, we present the pseudocode
for the attacker messages and the network functionality, respectively. For our basic analysis,
we model an adversary that can control all communication links and servers in Fnetq , but
cannot view or modify messages between parties due to the presence of the secure and

221

7.3. SECURITY DEFINITION OF OR

ExtendCircuit((Qj)
`
j=0, (Qj)

`′
j=0):

if `′ = ` then
output (created, (Qj)`

′
j=0)

else
if `′ = 0 then

cid1 ← {0, 1}κ; SendMessage(Q1, cid1, create)
else

SendMessage(Q1, cid1, relay, (extend, Q`′+1))

DestroyCircuit(C, cid):

if ⊥ 6= next(cid) = (Qnext , cidnext) then
SendMessage(Qnext , cidnext , destroy)

else if ⊥ 6= prev(cid) = (Qprev , cidprev) then
SendMessage(Qprev , cidprev , destroy)

discard C
SendMessage(Q, cid , command [, msg]):

if (msg is defined) draw a fresh handle h and set
lookup(h)← msg

if compromised(Q) = true then
let Qu be the last node in the contiguous

compromised path starting in Q1 ← Q
/* if Qu is the onion proxy or Qu is the exit node
*/
if prev(cid) = (Qu,⊥) or next(cid) = (Qu,⊥)
then

send 〈P,Q1, . . . , Qu, cid , command , msg〉 to A
else

send 〈P,Q1, . . . , Qu, cid , command , h〉 to A
else

send 〈P,Q1, h〉 to Fnetq

circuit(cid):

reconstruct the nodes of the circuit that has already
been established by recursively applying next(cid)

and prev(cid), obtaining a tuple (Qj)
`′
j=0

let cid0 be the circuit id such that prev(cid) =
(Q0,⊥)

return 〈Q0
cid0⇐⇒ Q1 ⇐⇒ · · ·Q`′ 〉 := (Qj , cidj)

`′
j=0,

where cidj = ⊥ for j > 0

Figure 7.8.: Subroutines of For for Party P

upon receiving a msg (observe, P,Q) for Q ∈ N from
A:

set observedLink(P,Q)← true

upon receiving a msg (compromise, Q) for Q ∈ S from
A:

set compromised(Q)← true; send SIDS(Q) to A

upon receiving a msg (P,Q,m) from For:

if Q is a For node then
if observedLink(P,Q) = true then

forward the msg (P,Q,m) to A

else
reflect the msg (P,Q,m) to For

else if Q is a Fnetq server then
if compromised(Q) = true then

forward the msg (P,Q,m) to A
else

if m is of the form (sid ,m′) then
SIDS(Q)← SIDS(Q) ∪ {sid}
output (P,Q, (sid ,m′))

upon receiving a msg (P,Q,m) from A:

forward the msg (P,Q,m) to For

Figure 7.9.: The Network Functionality Fnetq

authenticated channel. Therefore, sub-machines in the functionality store their messages in
the shared memory, and create and send handles 〈P, Pnext , h〉 for these messages in Fnetq .
The message length does not need to be leaked as we assume a fixed message size (for all
M(κ)). Here, P is the sender, Pnext is the receiver and h is a handle or a pointer to the
message in the shared memory of the ideal functionality. In our analysis, all Fnetq messages
flow to A, which may choose to return these handles back to For through Fnetq at its own
discretion. However, Fnetq also maintains a mechanism through observedLink flags for
the non-global adversary A. The adversary may also corrupt or replay the corresponding
messages; however, these active attacks are always detected by the receiver due to the
presence of a secure and authenticated channel between any two communicating parties
and we need not model these corruptions.

The adversary can compromise a party P or server S by sending a compromise message
to respectively For and Fnetq . For party P or server S, the respective functionality then
sets the compromised tag to true. Furthermore, all input or network messages that are

222

CHAPTER 7. PROVABLY SECURE ONION ROUTING

supposed to be visible to the compromised entity are forwarded to the adversary. In
principle, the adversary runs that entity for the rest of the protocol and can send messages
from that entity. In that case, it can also propagate corrupted messages which in Πor can
only be detected during UnwrOn calls at OP or the exit node. We model these corruptions
using corrupted(msg) = {true, false} status flags, where corrupted(msg) status of messages
is maintained across nodes until they reach end nodes. Furthermore, for every corrupted
message, the adversary also provides a modification function T (·) as the end nodes run by
the adversary may continue execution even after observing a corrupted flag. In that case,
T (·) captures the exact modificaiton made by the adversary.

We stress that For does not need to reflect reroutings and circuit establishments initiated
by the attacker, because the attacker learns, loosely speaking, no new information by
rerouting onions.7 Similar to the previous work [CL05], a message is directly given to the
adversary if all remaining nodes in a communication path are under adversary control.

7.4. Secure OR modules

We identify the core cryptographic primitives for a secure OR protocol. In this section, we
present a cryptographic characterization of these core cryptographic primitives, which we
call secure OR modules. We believe that proving the security of OR modules is significantly
less effort than proving the UC security of an entire protocol. Secure OR modules consist
of two parts: first, secure onion algorithm, and second, a one-way authenticated key
exchange primitive (1W-AKE), a notion recently introduced by Goldberg, Stebila, and
Ustaoglu [GSU12].

Onion algorithms typically use several layers of encryptions and possibly integrity mecha-
nisms, such as message authentication codes. Previous attempts [CL05] for proving the
security OR protocols use mechanisms to ensure hop-to-hop integrity, such as non-malleable
encryption schemes. The widely-used Tor network, however, does not use hop-to-hop in-
tegrity but only end-to-end integrity. In the analysis of OR protocols with only end-to-end
integrity guarantees, we also have to consider the cases in which the end node is com-
promised, thus no integrity check is performed at all. In order to cope with these cases,
we identify a new notion of predictably malleable encryption schemes. Predictable mal-
leability allows the attacker to change the ciphertexts but requires the resulting changes
to the plaintext to be efficiently predictable given only the changes of the ciphertext. In
Section 7.4.1 we rigorously define the notion of predictably malleable encryption schemes.

Inspired by Section 7.4.1, we introduce in Section 7.4.2 the notion of secure onion
algorithms.

In the following definitions, we assume the PPT machines to actually be oracle machines.
We write AB to denote that A has oracle access to B.

7More formally, the simulator can compute all responses for rerouting or such circuit establishments
without requesting information from For because the simulator knows all long-term and session keys.
The only information that the simulator does not have is the routing information, which the simulator
gets in case of rerouting or circuit establishment.

223

7.4. SECURE OR MODULES

upon (initialize)

k ← G(1η)
sd ← ε; se ← ε

upon (encrypt,m)

if b = 0 then
(c, s)← E(0|m|, se, k)
if q(se) 6= ⊥ then

(d, u)← q(se)
c← d

else if b = 1 then
(c, s)← E(m, se, k)

q(se)← (c,m)
se ← s; respond c

upon (decrypt, c)

(d, u)← q(sd)
T ← M (c, d)
if b = 0 then

if q(sd) = ⊥ then
(m, s)
← D(c, sd, k)

q(sd)← (c,m)
else

if q(sd) 6= ⊥ then
m← T (u)

else if b = 1 then
(m, s)← D(c, sd, k)

sd ← s; respond (m,T)

Figure 7.10.: The IND-PM Challenger PM -ChEb

7.4.1. Predictably Malleable Encryption

Simulation-based proofs often face their limits when dealing with malleable encryption
schemes. The underlying problem is that malleability induces an essentially arbitrarily
large number of possibilities to modify ciphertexts, and the simulator has no possibility to
predict the resulting changes to the corresponding plaintext.

We characterize the property of predicting the changes to the plaintext merely given the
modifications on the ciphertext. Along the lines of the IND-CCA definition for stateful
encryption schemes, we define the notion of predictably malleable (IND-PM) encryption
schemes.8 The attacker has access to an encryption and a decryption oracle, and either
all encryption and decryption queries are honestly answered (the honest game) or all are
faked (the faking game), i.e., 0|m| is encrypted instead of a message m. In the faking game,
the real messages are stored in some shared datastructure q, and upon a decryption query
only look-ups in q are performed. The IND-PM challenger maintains a separate state, e.g.,
a counter, for encryption and decryption. These respective states are updated with each
encryption decryption query. Predicable malleability is similar to HCCA [PR08] except
that it is defined for stateful encryption schemes.

In contrast to the IND-CCA challenger, the IND-PM challenger (see Figure 7.10) ad-
ditionally stores the produced ciphertext together with the corresponding plaintext for
each encryption query. Moreover, for each decryption call the challenger looks up the
stored ciphertexts and messages. The honest decryption ignores the stored values and
performs an honest decryption, but the faking decryption compares the stored ciphertext
with the ciphertext from the query and tries to predict the modifications to the plaintext.
Therefore, we require the existence of an efficiently computable algorithm M that outputs
the description of an efficient transformation procedure T for the plaintext given the original
ciphertext as well as the modified ciphertext.

Definition 83 (Predictable malleability). An encryption scheme E := (G ,E ,D) is IND-
PM if there is a negligible function µ such that there is a deterministic polynomial-time

8The name predictable malleability is justified as it can be shown that every IND-CCA secure scheme
is also IND-PM, and every IND-PM scheme in turn is IND-CPA secure. In Section 7.6.1, we present
detCTR and state that it is IND-PM secure.

224

CHAPTER 7. PROVABLY SECURE ONION ROUTING

algorithm M such that for all PPT attackers A

Pr[b′ ← {0, 1} , b← A(1κ)PM-ChEb : b = b′] ≤ 1/2 + µ(κ)

Moreover, we require that for all m, c, s, k, k′ ∈ {0, 1}∗

Pr[(c′, s′)← E (m, k, s),

(m′, s′′)← D(c, k′, s) : s′ = s′′] = 1

PM -ChE0 and PM -ChE1 are defined in Figure 7.10.

We stress that the definition implies a super-polynomial length for state-cycles; otherwise
there is in the faking game at least one repeated state s for which the two encrypt queries
output the same ciphertext for any two plaintexts.

In Section 7.6.1, we show that deterministic counter-mode is IND-PM.

7.4.2. Secure Onion Algorithms

We identify the onion wrapping (WrOn) and unwrapping (UnwrOn) algorithms as central
building blocks in onion routing. We identify four core properties of onion algorithms.
The first property is correctness, i.e., if all parties behave honestly, the result is correct.
The second property is the security of statefulness, coined synchronicity. It roughly states
that whenever a wrapping and an unwrapping algorithms are applied to a message with
unsynchronous states, the output is completely random. The third property is end-to-end
integrity. The fourth property states that for all modifications to an onion the resulting
changes in the ciphertext are predictable. We this property predictable malleability.

Onion Correctness. The first property of secure onion algorithms is onion correctness.
It states that honest wrapping and unwrapping results in the same message. Moreover, the
correctness states that whenever the unwrapping algorithm has a fake flag, it does not care
about integrity, because for m ∈M(κ) the integrity measure is always added, as required
by the end-to-end integrity. But for m 6∈ M(κ) but of the right length, the wrapping is
performed without an integrity measure. The fake flag then causes the unwrapping to
ignore the missing integrity measure. Then, we also require that the state transition is
independent from the message or the key.

Definition 84 (Onion correctness). Recall that M(κ) is the message space for the se-
curity parameter κ. Let 〈ki〉`i=1 be a sequence of randomly chosen bitstrings of length κ.

Forward: Ωf (m)

O1 ←WrOn(m, 〈ki〉`i=1)
for i = 1 to ` do
Oi+1 ← UnwrOn(Oi, ki)

x← O`+1

Backward: Ωb(m)

O` ←WrOn(m, k`)
for i = `− 1 to 1 do
Oi ←WrOn(Oi+1, ki)

x← UnwrOn(O1, 〈ki〉`i=1)

Let Ω′f be the defined as Ωf except that UnwrOn additionally uses the fake flag. Analogously,
Ω′b is defined. We say that a pair of onion algorithms (WrOn,UnwrOn) is correct if the
following three conditions hold:

(i) Pr[x← Ωd(m) : x = m] = 1 for d ∈ {f, b} and m ∈M(κ).

225

7.4. SECURE OR MODULES

(ii) Pr[x ← Ω′d(m) : x = m] = 1 for d ∈ {f, b} and all m ∈ M ′(κ) := {m′|∃m′′ ∈
M(κ).|m′| = |m′′|}.

(iii) For all m ∈M ′(κ), k, k′ ∈ {0, 1}κ and c, s ∈ {0, 1}∗ such that c is a valid onion and
s is a valid state

Pr[(c′, s′)←WrOn(m, k, s),

(m′, s′′)← UnwrOn(c, k′, s) : s′ = s′′] = 1

(iv) WrOn and UnwrOn are polynomial-time computable and randomized algorithms.

Synchronicity. The second property is synchronicity. In order to achieve replay resis-
tance, we have to require that once the wrapping and unwrapping do not have synchronized
states anymore, the output of the wrapping and unwrapping algorithms is indistinguishable
from randomness.

Definition 85 (Synchronicity). For a machine A, let Ωl,A and Ωr,A be defined as follows:

Left: Ωl,A(κ)

(m1,m2, st)← A(1κ)
k, s, s′ ← {0, 1}κ
O ←WrOn(m1, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

Right: Ωr,A(κ)

(m1,m2, st)← A(1κ)
k, s, s′ ← {0, 1}κ
O ←WrOn(m2, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

For all PPT machines A the following is negligible in κ:

|Pr[b← Ωl,A(κ) : b = 1]− Pr[b← Ωr,A(κ) : b = 1]|

End-to-end integrity. The third property that we require is end-to-end integrity ; i.e.,
the attacker is not able to produce an onion that successfully unwraps unless it compromises
the exit node. For the following definition, we modify OS-Ch0 such that, along with the
output of the attacker, also the state of the challenger is output. In turn, the resulting
challenger OS-Ch0′ can optionally get a state s as input. In particular, (a, s)← AB denotes
in the following definition the pair of the outputs of A and B.

For the following definition we use the modified challenger OS-Ch0′, which results from
modifying OS-Ch0 such that along with the output of the attacker also the state of the
challenger is output. The resulting challenger OS-Ch0′ can, moreover, optionally get a state
s as input.

Definition 86 (End-to-end integrity). Let S(O, cid) be the machine that sends a (destruct,
O) query to the challenger and outputs the response. Let Q′(s) be the set of answers to
construct queries from the challenger to the attacker. Let the last onion O`′ of an onion
O1 be defined as follows:

Last(O1):

for i = 1 to `′ − 1 do
Oi+1 ← UnwrOn(Oi)

Let Q(s) := {Last(O1) | O1 ∈ Q′(s)} be the set of last onions answers to the challenger.
We say a set of onion algorithms has end-to-end integrity if for all PPT attackers A the

226

CHAPTER 7. PROVABLY SECURE ONION ROUTING

(setup, `′)

if initiated = false then
for i = 1 to `′ do
ki ← {0, 1}κ; cidi ← {0, 1}κ

initiated ← true; store `′

send cid

(compromise, i)

initiated ← false; erase the circuit
compromised(i)← true; run setup;
for j with compromised(j) = true do

send (cidj , kj) for all

(send,m)

O ←WrOn(m, 〈ki〉`
′
i=1)

send O

(unwrap, O, cid)

look up the key k for cid
O′ ← UnwrOn(O, k)
send O′

(respond,m)

O ←WrOn(m, k`′)
send O

(wrap, O, cid)

look up the key k for cid
O′ ←WrOn(O, k)
send O′

(destruct, O)

m← UnwrOn(O, 〈ki〉`
′
i=1)

send m

Figure 7.11.: The Honest Onion Secrecy Challenger OS-Ch0: OS-Ch0 only answers for
honest parties

following is negligible in κ

Pr[(O, s)← A(1κ)OS-Ch0′
, (m, s′)← S(O, cid)OS-Ch0′(s)

: m ∈M(κ) ∧ P`′ is honest ∧O 6∈ Q(s′)].

Predictably Malleable Onion Secrecy. The fourth property that we require is pre-
dictably malleable onion secrecy, i.e., for every modification to a ciphertext the challenger
is able to compute the resulting changes for the plaintext. This even has to hold for faked
plaintexts.

In detail, we define a challenger OS-Ch0 that provides, a wrapping, a unwrapping and a
send and a destruct oracle. In other words, the challenger provides the same oracles as in
the onion routing protocol except that the challenger only provides one single session. We
additionally define a faking challenger OS-Ch1 that provides the same oracles but fakes all
onions for which the attacker does not control the final node.

For OS-Ch1, we define the maximal paths that the attacker knows from the circuit.
A visible subpath of a circuit (Pi, ki, cid i)

`
i=1 from an honest onion proxy is a minimal

subsequence of corrupted parties (Pi)
s
i=u of (Pi)

`
i=1 such that Pi−1 is honest and either

s = ` or Ps+1 is honest as well. The parties Pi−1 and, if existent, Ps+1 are called the guards
of the visible subpath (Pi)

s
i=u. We store visible subpaths by the first cid = cidu.

Figure 7.11 and 7.12 presents OS-Ch0, and OS-Ch1, respectively.9

Definition 87 (Predictably malleable onion secrecy). Let onionAlg be a pair of algorithms
WrOn and UnwrOn. We say that the algorithms onionAlg satisfy predictably malleable
onion secrecy if there is a negligible function µ such that there is a efficiently computable
function M such that for all PPT machines A and sufficiently large κ

Pr[b← {0, 1} , b′ ← A(1κ)OS-Chb : b = b′] ≤ 1/2 + µ(κ)

9We stress that in Figure 7.12 the onion Ou denotes the onion from party Pj to party Pj+1.

227

7.4. SECURE OR MODULES

(setup, `′)

do the same as OS-Ch0

additionally kS ← {0, 1}κ

(compromise, i)

do the same as OS-Ch0

(send,m)

q(st1f)← m

look up the first visible subpath (cid1, 〈ki〉ji=1)
if j = `′ then m′ ← q(st1f)

else kj+1 ← kS ; j ← j + 1; m′ ← 0|q(st1f)|

((Oi)
j
i=0, s

′)←WrOnj(m, 〈ki〉ji=1, st
1
f)

update st1f ← s′

store onions(cidj)← O1; send Oj

(unwrap, O, cidi)

look up the forward v.s. 〈ki〉ji=u for cidi
O′ ← onions(cidi)
T ← M (O,O′); q(stif)← T (q(stif))

if j = `′ then m← q(stif)

else kj+1 ← kS ; j ← j + 1; m← 0|q(stif)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
f)

update stif ← s′

store onions(cidj)← Ou; send Oj

(respond,m)

q(st`
′
b)← m

look up the last visible subpath 〈ki〉`
′
i=u

if u = 1 then m← q(st`
′
b)

else ku−1 ← kS ; u← u− 1; m← 0|q(st`
′

b)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
`′
b)

update st`
′
b ← s′

store onions(cidu)← Ou; send Oj

(wrap, O, cidi)

look up the backward v.s. 〈ki〉ji=u for cidi
O′ ← onions(cidi); T ← M (O,O′)
q(stib)← T (q(stib))

get 〈ki〉ji=u for cid
if u = 1 then m← q(stib)

else ku−1 ← kS ; u← u− 1; m← 0|q(stib)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
b)

update stib ← s′

store onions(cidu)← Ou; send Oj

(destruct, O, cid)

m← UnwrOn(, k1, st1b)
O′ ← onions(cid1); T ← M (O,O′)
q(st1b)← T (q(st1b))
if m 6= ⊥ then

send q(st1b)

Figure 7.12.: The Faking Onion Secrecy Challenger OS-Ch1: OS-Ch1 only answers for honest
parties. stif , st

i
b is the current forward, respectively backward, state of party

i. ((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st) is defined as Ou−1 ← m; for

i = u to j do (Oi, s
′)←WrOn(Oi−1, kj+u−i, st)

Definition 88 (Secure onion algorithms). A pair of onion algorithms (WrOn,UnwrOn)
is secure if it satisfies onion correctness, synchronicity, predictably malleable onion secrecy,
and end-to-end integrity.

In Section 7.6.2, we show that the Tor algorithms are secure onion algorithms.

7.4.3. One-Way Authenticated Key-Exchange

We introduce the 1W-AKE primitive in Section 7.2.2, and later use the 1W-AKE algorithms
Init , Resp, and CompKey in the OR protocol Πor in Section 7.2.4. In this section, we give
an informal description of the security requirements for 1W-AKE. The rigorous definitions
can be found in [GSU12].

The 1W-AKE establishes a symmetric key between two parties (an initiator and a
responder) such that the identity of the initiator cannot be derived from the protocol
messages. Moreover, given a public-key infrastructure, the 1W-AKE guarantees that the
responder cannot be impersonated. Init takes as input the public key of the responder
and generates a challenge. Resp takes as input the responder’s secret key and the received
challenge, and outputs a session key and a response. The algorithm CompKey runs on the

228

CHAPTER 7. PROVABLY SECURE ONION ROUTING

response and the responder’s public key, and outputs the session key or an error message
of authentication failure.

We assume a public-key infrastructure; i.e., every party knows a secret key whose
corresponding public key has been distributed in a verifiable manner. Let pkP be the
public key of party P and skP be its secret key.

The first property that a 1W-AKE has to satisfy is correctness: if all parties behave
honestly, then the protocol establishes a shared key.

Definition 89 (Correctness of 1W-AKE). Let a public-key infrastructure be given; i.e.,
for every party P every party knows a (certified) public key pkP and P itself also knows the
corresponding secret key skP . Let AKE := (Init ,Resp,CompKey) be a tuple of polynomial-
time bounded randomized algorithms. We say that AKE is a correct one-way authenticated
key-agreement if the following holds for all parties A,B:

Pr[(ake, B,m1,ΨA)← Init(pkB, B,m),

((ake, B,m2), (k2, ?,
→
v))← Resp(pkB, skB,m1),

(k1, B,
→
v
′
)← CompKey(pkB,m2,)

: k1 = k2 and
→
v =

→
v
′
] = 1.

The 1W-AKE Challenger for Security. Goldberg, Stebila, and Ustaoglu [GSU12]
formalize the security of a 1W-AKE by defining a challenger that represents all honest
parties. The attacker is then allowed to query this challenger. If the attacker is not able
to distinguish a fresh session key from a randomly chosen session key, we say that the
1W-AKE is secure. This challenger is constructed in a way that security of the 1W-AKE
implies one-way authentication of the responding party.

The challenger answers the following queries of the attacker. Internally, the challenger
runs the algorithms of AKE . All queries are directed to some party P ; we denote this
party in a superscript. If the party is clear from the context, we omit the superscript, e.g.,
we then write send(m) instead of sendP (m).

• sendP (params, P ′): Compute (m, st) ← Init (pkP , P
′, params). Send m to the at-

tacker.

• sendP (Ψ,msg , P ′): If P ′ = P and akest(Ψ) = ⊥, compute (m, result)← Resp(skP , P,
msg ,Ψ). Otherwise, if msg = (msg ′, Q) compute (m, result)← CompKey (pkQ,msg ′,
akest(Ψ),Ψ). Then, send m to the attacker.

• compromiseP : The challenger returns the long-term key of P to the attacker.

If any verification fails, i.e. one of the algorithms outputs ⊥, then the challenger erases
all session-specific information for that party and aborts the session.

Additionally, the attacker has access to the following oracle in the 1W-AKE security
experiment:

test(P,Ψ) : Abort if party P has no key stored for session Ψ or the partner for session Ψ
is anonymous(i.e., P is not the initiator of session Ψ). Otherwise, choose b← {0, 1}.
If b = 1, then return the session key k; otherwise, if b = 0, return a randomly chosen
element from the key space. Only one call to test is allowed.

229

7.5. ΠOR UC-REALIZES FOR

We say that a session Ψ at a party i is fresh if no party involved in that session is
compromised.

Definition 90 (One-way-AKE-security). Let κ be a security parameter and let n ≥ 1. A
protocol π is said to be one-way-AKE-secure if, for all PPT adversaries M , the advantage
that M distinguishes a session key of a one-way-AKE-fresh session from a randomly chosen
session key is negligible (in κ).

The 1W-AKE Challenger for One-Way Anonymity. For the definition of one-way
anonymity we introduce a proxy, called the anonymity challenger, that relays all messages
from and to the 1W-AKE challenger except for a challenge party C. The attacker can
choose two challenge parties, out of which the anonymity challenger randomly picks one,
say i∗. Then, the anonymity challenger relays all messages that are sent to C to Pi∗ (via
the 1W-AKE challenger).

In the one-way anonymity experiment, the adversary can issue the following queries to the
challenger C. All other queries are simply relayed to the 1W-AKE challenger. The session
Ψ∗ denotes the challenge session. The two queries are for activation and communication
during the test session.

startC(i, j, params, P) : Abort if i = j. Otherwise, set i ← {i, j} and (Ψ∗,msg) ←
sendPi∗ (params, P); return msg ′. Only one message startC is processed.

sendC(msg) : Relay sendPi∗ (msg) to the 1W-AKE challenger. Upon receiving an answer
msg ′, forward msg ′ to the attacker.

Definition 91 (One-way anonymity). Let κ be a security parameter and let n ≥ 1. A
protocol π is said to be one-way anonymous if, for all PPT adversaries M , the advantage
that M wins the following experiment Expt1w−anonπ,κ,n (M) is negligible (in κ).

1. Initialize parties P1, . . . , Pn.
2. The attacker M interacts with the anonymity challenger, finishing with a message

(guess, î).
3. Suppose that M made a StartC(i, j, params, P) query which chose i∗. If î = i∗, and

M ’s query satisfy the following constraints, then M wins; otherwise M loses.
• No compromiseP query for Pi and Pj.
• No Send(Ψ∗, ·) query to Pi or Pj.

A set of algorithms AKE is said to be a one-way authenticated key-exchange primitive
(short 1W-AKE) if it satisfies Definitions 89, 90, and 91.

In Section 7.6.3 we show that ntor is a 1W-AKE.

7.5. Πor UC-Realizes For

In this section, we show that Πor can be securely abstracted as the ideal functionality For.

Recall that π securely realizes F in the F ′-hybrid model if each party in the protocol
π has a direct connection to F ′. FNreg is the key registration, Fscs is the secure channel
functionality, and Fnetq is the network functionality, where q is the upper bound on the
corruptable parties. We prove our result in the FNreg, Fscs-hybrid model; i.e., our result
holds for any key registration and secure channel protocol securely realizing FNreg, and

230

CHAPTER 7. PROVABLY SECURE ONION ROUTING

E Fscs
Freg

A

Πor For

S

�

�

Fnet

a bidirectional link

Figure 7.13.: Overview of the set-up

Fscs, respectively. The network functionality Fnetq abstract partially global attacker and
is a global functionality.10

Theorem 12. If Πor uses secure OR modules M, then with the global functionality
Fnetq the resulting protocol Πor in the FNreg,Fscs-hybrid model securely realizes the ideal
functionality For for any q.

As a next step, we give a proof outline in order to highlight at which places we apply
the required security properties or the secure OR modules. The full proof can be found
in [BGKM12].

Proof. We have to show that for every PPT attacker A there is a PPT simulator S such
that no PPT environment E can distinguish the interaction with A and Πor from the
interaction with S and For. Given a PPT attacker A, we construct a simulator S that
internally runs A and simulates the public key infrastructure; i.e, the functionality FNreg.
The crucial part in this proof is that the ideal functionality For provides the simulator
with all necessary information for the simulation. We prove this indistinguishability by
examining a sequence of six games and proving their pairwise indistinguishability for the
environment E.

Game 1: Game1 is the original setting in which the environment E interacts with the
protocol Π1 = Πor and the attacker A. Moreover, Πor and A have access to a certification
authority FNreg and a secure channel functionality Fscs, and the network messages of all
honest parties are sent via Fnetq .

Game 2: In Game2 the simulator S2 internally runs the attacker A and the functionalities
Fscs and FNreg. All messages from these entities are forwarded on the corresponding channels
and all messages to these entities are forwarded to the corresponding channels. Since
S2 honestly computes the attacker A, Fscs, and FNreg, Game1 and Game2 are perfectly
indistinguishable for the environment E.

10We stress that Πor (with any modules) is Fnetq -subroutine respecting; hence the GUC composition
theorem holds.

231

7.5. ΠOR UC-REALIZES FOR

Game 3: In the protocol Π3, we modify the session keys that have been established
between two uncompromised parties. All parties are one machine and share some state.
Instead of using the established key, Π2 stores a randomly chosen value in the shared state
for each established key k. This random value is used as a session key instead of k.

Assume that there is a PPT machine that can distinguish an execution with a randomly
chosen session key from an execution with an honestly generated session key non-negligible
probability (in the security parameter κ), given the key-exchange’s transcript of messages.
Then, using a hybrid argument, it can be shown that there is an attacker that breaks the
security of the 1W-AKE, which in turn contradicts the assumption that the OR modules
are secure. Hence, Game2 and Game3 are computationally indistinguishable.

Game 4: In Game4, the onions do not contain the real messages anymore but only the
constant zero bitstring. Π4 maintains a shared datastructure q in which the real messages
are stored.

Recall that a visible subpath of a circuit (Pi, ki, cid i)
`
i=1 from an honest onion proxy is a

minimal subsequence of corrupted parties (Pi)
s
i=u of (Pi)

`
i=1 such that Pi−1 is honest and

either s = ` or Ps+1 is honest as well. The parties Pi−1 and, if existent, Ps+1 are called the
guards of the visible subpath (Pi)

s
i=u. In particular, the onion proxy is also a guard. Every

circuit can be split into a sequence of visible subpaths and guards. Π4 stores for every
circuit (Pi, ki, cid i)

`
i=1 such a splitting into visible subpaths and guards. These splittings

are updated upon each compromise command.

Upon receiving a send input or a response from a network, Π4 stores an input message
m in a shared datastructure q as follows. For a guards P , let cidP be the circuit id for
which P knows the key. Let s the state of the wrapping algorithms of the sender before
computing the onion. Then, we store q(cidP , s)← m for each P .

The attacker might be able to corrupt onions such that the contained plaintext is changed.
Π4, however, does not rely on the content of the onions anymore but rather looks up the
message in the shared memory. Therefore, Π4 needs a way to derive the changes to the
plaintext due to possible modifications of the ciphertexts. At this point our predictable
malleability applies, and we use the algorithm D from the onion secrecy definition for
computing the changes in the plaintext. However, for computing the changes in the
plaintext, we need to store the onions that the receiving guard has to expect. Hence, Π4

maintains a shared datastructure onions indexed by the cid of the receiving guard that
stores the expected onions.

Π4 initially draws some distinguished random key kS , which is later used for a distinguished
last wrapping-layer of the constant zero bitstring. Whenever in Π3 a guard P that is
neither the exit node nor the onion proxy would unwrap an onion O with key k and circuit
id cid , P looks up O′ = pending(cid). Then, it runs T ← S(O,O′) and replaces the real
message m ← q(cid , st) in the shared memory with T (m), where st is the state of the
onion algorithms in the forward direction. Then, P unwraps O with the fake flag, i.e.,
(O′′, st′) ← UnwrOn(O, kS , fake, st) instead of UnwrOn(O, k, st). We set the fake flag,
because the unwrapping has to skip the integrity check; otherwise a corrupted onion would
already in the middle of the circuit be stopped in Π4. However, instead of forwarding O′′, P
constructs a new onion either for the attacker or for the next guard as follows. P looks up
the adjacent visible subpath (Pi)

s
i=u in forward direction. If s = `, then P constructs the

onion for the attacker. P reads the real message m← q(cid , st) from the shared memory

232

CHAPTER 7. PROVABLY SECURE ONION ROUTING

and sends a forward onion Oj for the subcircuit (Pi, ki, cid i)
`
i=u that contains the message

m and is constructed as follows:

Ou−1 ← m
for i = u to ` do (Oi, st

′)←WrOn(Oi−1, kj+u−i, st)

Only then, P updates the forward state st← st′. Thereafter, P stores q(cidPj+1 , st
′)← Ou,

where cidPj+1 is the circuit id of the guard Pj+1.

If s < `, P sends a forward onion for the subcircuit (Pi, ki, cid i)
s+1
i=u that contains 0|m|

instead of m, where we replace for the last layer ks+1 by the distinguished key kS . Again
only then, P updates the forward state st ← st′. Analogously, guards that are onion
proxies, i.e., construct an onion in forward direction, also only construct an onion for the
attacker or the next guard.

Similar to the forward direction, guards that receive an onion O in backward direction do
not wrap it further as in Π3 but first unwrap O with the fake flag and the distinguished
key kS , i.e., O′ ← UnwrOn(O, kS , fake). Instead of wrapping O as in Π3, the guard
constructs an onion for the adjacent subpath in backward direction as follows. Since P
is a guard for the circuit, also the onion proxy is honest, thus u > 1. P looks up the
adjacent visible subpath (Pi)

s
i=u in backward direction. Let m ← q(cid , st) be the real

message stored in the shared memory, cid be the circuit id for which P knows the key
and s be the state of the onion algorithms in the backward direction. Then, P sends an
onion (O, st′) ← UnwrOn(0|m|, 〈ki〉si=u−1, st), where ku−1 := kS . Thereafter, update the
backward state st← st′.

It might happen that the attacker compromised a node in the middle of the circuit and
the exit node. Then the attacker sends a random message to an honest node P . In this
case, P would honestly unwrap the message. Since the attacker controls the exit node
the broken integrity is not realized. But from that point on the guard P is out of sync,
i.e., P has a different unwrapping state than the predecessor guards. Consequently, by
the synchronicity of the onion algorithms all future messages that are sent from the onion
proxy will be garbage. For guards that are out of sync, we only send randomly chosen
messages of appropriate length.

Then, by a hybrid argument it follows that any attacker distinguishing Game3 from Game4

can be used for breaking onion secrecy or synchronicity, where the hybrids are indexed by
the circuits of honest onion proxies in the order in which the circuits are initiated. Hence,
Game3 and Game4 are indistinguishable.

Game 5: In this setting the simulator remains unchanged, i.e., S5 = S4, but the protocol
Π5 in addition internally runs the ideal functionality For. We construct Π5 such that it
does not touch information in the send message, i.e., the message to be sent and the circuit,
more than forwarding the send message to For. Instead, Π5 only uses the messages that it
receives from For.

For outputs for every message from a guard to a visible subpath the entire visible subpath,
both in forward an backward direction. If the visible subpath contains the exit node, For

even sends the message. Hence, Π5 can just compute all onions to the next guard or the
attacker in the same way as Π4.

We also have to cope with the case in which Π4 modifies the real message in the shared
state with the transformation T that M computed from the differences in the expected

233

7.6. INSTANTIATING SECURE OR MODULES

and the received onion. In this case, Π5 sends a message (corrupt, T, h) to For.

Moreover, upon the message (register, P) the simulator computes a pk for party P and
sends a message (register, P, pk) to the internally emulated functionality FNreg. Upon a
response (registered, 〈Pj , pk j〉vj=1) from FNreg, we send (registered, 〈Pj〉vj=1)

Π5 behaves like Π4 except for the key agreement messages, which is computed by the
simulator instead of the real party. But by the anonymity of the 1W-AKE primitive, the
attacker cannot identify the sender with more than negligible probability. Consequently,
Game4 and Game5 are indistinguishable.

Game 6: In this setting, we replace the protocol with the ideal functionality; i.e.,
Π6 = For. The simulator S := S6 in Game6 additionally computes all network messages
exactly as Π5. As Π5 did not touch the messages from the environment to the ideal
functionality, S can compute Π5 as well.

The ideal functionality behaves towards the environment exactly as Πor; consequently, it
suffices to show that the network messages are indistinguishable. However, as the simulator
S just internally runs Π5, Game5 and Game6 are indistinguishable.

As our primitives are proven secure in the random oracle model (ROM), the main theorem
uses the ROM.

Theorem 13. If pseudorandom permutations exist, there are secure OR modules (ntor ,
onionAlgs) such that the protocol Πor in the FNreg, Fscs, Fnetq -hybrid model using (ntor ,
onionAlgs) securely realizes in the ROM the ideal functionality For in the Fnetq -hybrid
model for any q.

Proof. If pseudorandom permutations exist Lemma 45 implies that secure onion algorithms
exist. Lemma 46 shows that in the ROM 1W-AKE exist. Then, Theorem 12 implies the
statement.

Note that we could not prove 1W-AKE security for the TAP protocol currently used in
Tor as it uses a CCA-insecure version of the RSA encryption scheme.

7.6. Instantiating Secure OR Modules

We present a concrete instantiation of OR modules and show that this instantiation
constitutes a set of secure OR modules. As onion algorithms we use the algorithms that
are used in Tor with a strengthened integrity mechanism, and as 1W-AKE we use the
recently proposed ntor protocol [GSU12].

We prove that the onion algorithms of Tor constitute secure onion algorithms, as defined
in Definition 88. The crucial part in that proof is to show that these onion algorithms
are predictably malleable, i.e., for every modification of the ciphertext the changes in the
resulting plaintext are predictable by merely comparing the modified ciphertext with the
original ciphertext. We first show that the underlying encryption scheme, the deterministic
counter-mode, is predictably malleable (Section 7.6.1). Thereafter, we show the security of
Tor’s onion algorithms (Section 7.6.2).

234

CHAPTER 7. PROVABLY SECURE ONION ROUTING

Gc(1η)

output k ← G(1η)

Ec((x1, . . . , xt), (k, ctr)) = Dc((x1, . . . , xt), (k, ctr))

if ctr = ε then ctr = 0
output (PRP(s, k) ⊕ x1, . . . ,PRP(s + t − 1, k) ⊕
xt, (k, ctr + t))

Figure 7.14.: The stateful deterministic counter-mode (detCTR) Ec = (Gc,E c,Dc)

In Section 7.6.3, we briefly present the ntor protocol and cite the result from Goldberg,
Stebila, and Ustaoglu that ntor constitutes a 1W-AKE. The proofs of the lemmas in this
section are postponed to the full version [BGKM12].

7.6.1. Deterministic Counter Mode and Predictable Malleability

We show that the deterministic counter-mode (detCTR) scheme is predictably malleable,
as defined in Definition 83.

Lemma 44. If pseudorandom permutations exist, the deterministic counter mode (detCTR)
with Ec = (Gc,E c,Dc) as defined in Figure 7.14 predictably malleable.

Proof. We show the result with t = 1. This can, however, be extended to larger t in a
straight-forward way.

Game1 is the original game of A against PM -Ch1.

Game2 is the game in which PM -Ch1 is replaced by the machine B1 and the PRP
Challenger PRP -Ch1 such that B1 communicates with A and PRP -Ch1, which generates
a key applies the PRP candidate algorithms. A cannot distinguish Game1 from Game2, as
A’s view is the same in both scenarios.

Game3 is the game in which PRP -Ch1 is replaced by PRP -Ch0, which uses a randomly
chosen permutation instead of the PRP candidate. As PRP is a pseudorandom permutation,
the attacker cannot distinguish Game2 from Game3.

Game4 is the game in which B1 is replaced by B0. Upon a query (decrypt, c), the B1

outputs x ⊕ c whereas B0 outputs c ⊕ d ⊕ u = c ⊕ 0|u| ⊕ x ⊕ u = c ⊕ x ⊕ u. c can be
represented as c = d⊕ c′ for some bitstring c′. Then, B1 outputs x⊕ x⊕ u⊕ c′ = u⊕ c′,
and B0 outputs x⊕ c′ ⊕ x⊕ u = u⊕ c′. Hence, the responses of (decrypt, c) queries are
the same for B1 and B0.

Upon a query (encrypt,m), the B1 responds r ⊕m whereas B0 outputs r ⊕ 0|m| = r.
Since, r is randomly chosen and ⊕ is a group operation the attacker cannot distinguish r⊕m
from r.11 Game3 and Game4 only differ in Bb; hence, these two games are indistinguishable

Game5 is the game in which PRP -Ch0 is replaced by PRP -Ch1, which uses the PRP can-
didate instead of a randomly chosen permutation. As PRP is a pseudorandom permutation,
the attacker cannot distinguish Game4 from Game5.

11Since we use a random permutation, A can try the following: before starting the challenge phase, he
sends as many encryption queries as he is allowed to and computes the corresponding Enc(ctre). For the
challenge response cb he computes cb ⊕m and checks whether the result equals one of the Enc(ctre) he
has observed before. If so, either the encryption function is not a permutation or b = 0. This, however,
only happens with a negligible probability.

235

7.6. INSTANTIATING SECURE OR MODULES

upon (initialize)

ctrd ← 0
ctre ← 0

Bb: upon (encrypt,m)

send ctre to PRP-Ch
wait for input x from PRP-Ch
if b = 0 then
c← x⊕ 0|m|

if q(ctre) 6= ⊥ then
(d, u)← q(ctre)
c← d

else if b = 1 then
c← x⊕ 0|m|

q(ctre)← (c,m)
increment ctre

respond c

Bb: upon (decrypt, c)

send ctrd to PRP-Ch
wait for input x from PRP-Ch
(d, u)← q(ctrd)
T ← (λy.y ⊕ c⊕ d)
if b = 0 then

if q(ctrd) = ⊥ then
m← x⊕ c
q(ctrd)← (c,m)

else if q(ctrd) 6= ⊥ then
m← T (u)

else if b = 1 then
(m, s)← x⊕ c

ctrd ← s
respond (m,T)

Bb: upon (guess, b∗)

if b = b∗ then
output 0

else if b 6= b∗ then
output 1

Figure 7.15.: The machine Bb

Game6 is again the original game of A against PM -Ch0. The attacker cannot distinguish
Game5 and Game6, because the view of A is the same.

We conclude that Game1 and Game6, and therefore PM -Ch1 and PM -Ch0, are indistin-
guishable.

7.6.2. Security of Tor’s Onion Algorithms

Let E := (Gene ,Enc,Dec) be a stateful deterministic encryption scheme, and let M :=
(Genm ,Mac,V) be a deterministic MAC. Let PRG be a pseudo random generator such
that for all x ∈ {0, 1}∗ |PRG(x)| = 2 · |x|. We write PRG(x)1 for the first half of PRG(x)
and PRG(x)2 the second half. Moreover, for a randomized algorithm A, we write A(x; r)
for a call of A(x) with the randomness r.

As a PRP candidate we use AES, as in Tor, and as a MAC use H-MAC with SHA-256.
We use that in detCTR encrypting two blocks separately results in the same ciphertext as
encrypting the pair of the blocks at once. Moreover, we assume that the output of H-MAC
is exactly one block.

The correctness follows by construction. The synchronicity follows, because a PRP is
used for the state. The end-to-end integrity directly follows from the SUF of the Mac. And
the predictable malleability follows from the predictable malleability of the deterministic
counter-mode.

Lemma 45. Let onionAlg = {UnwrOnI ,WrOnI}. If pseudorandom permutations exist,
onionAlg are secure onion algorithms.

Proof. The correctness follows directly from the construction. The synchronicity can
be reduced to the pseudorandomness of PRP of the detCTR scheme. In detail, we can

236

CHAPTER 7. PROVABLY SECURE ONION ROUTING

WrOnI(O, k), for O 6∈M(κ)

O′ ← Encctr (O, k); return O′

WrOnI(m, k), for m ∈M(κ)

(r, r′)← PRG(k); km ← Genm (r)
ke ← Gene(r′)
O ← Encctr (m, ke)
O′ ← Mac(O, km); return O′

WrOnI(m, 〈ki〉`i=1), for m ∈M(κ)

O2 ←WrOnI(m, k1)
for i = 2 to ` do
Oi+1 ←WrOnI(Oi, ki)

return O`

UnwrOnI(O, k)

(r, r′)← PRG(k); km ← Genm (r)
ke ← Gene(r′)
O′ ← Decctr (O, ke)
if O′ = m||t and m ∈M(κ) then

if V (m, t, km) = 1 then
return (default, O′′)

else
return (corrupted , O′′)

else
O′ ← Decctr (O, k); return (default, O′)

UnwrOnI(O, k, fake)

O′ ← Decctr (O, k); return (default, O′)

UnwrOnI(O, 〈ki〉`i=1)

for i = 1 to ` do
(typei+1, Oi+1)← UnwrOnI(Oi, ki)

return (type`, O`)

Figure 7.16.: The Onion Algorithms onionAlg

construct a machine that breaks the pseudorandomness of PRP if there is an attacker that
breaks the synchronicity.

For showing the end-to-end integrity, assume that there is a ppt attacker that is able
to produce an onion O such that ⊥ 6= m ← UnwrOn(O, k) and O is not an answer of a
query. Then, we can construct a machine that breaks the SUF of the MAC by internally
running the attacker against the end-to-end integrity and computing all detCTR call on
our own and forwarding all Mac calls to the SUF challenger. Finally, after unwrapping the
onion, we send the tag t to the SUF challenger as a guess. If the attacker against the end-
to-end integrity wins with non-negligible probability, then we also win with non-negligible
probability.

For showing the predictable malleability, we present a sequence of games and show that
they are indistinguishable for any ppt attacker. In Game0 the challenger is exactly defined
as OS-Ch0. In Game1 additionally the message m is stored in a shared memory q(st)← m
(st being the corresponding state), and the challenger maintains a separation into visible
subpaths. Obviously, Game1 is indistinguishable from Game0 for any ppt attacker.

In Game2, the challenger initially draws a distinguished key kS . Then, the challenger
looks up for every query (unwrap, O, cid i the adjunct visible subpath 〈Pi, ki〉ji=u in forward
direction. Then, the challenger completely unwraps the onion and checks whether the
stored message q(st) equals the unwrapped message. If this check fails, the challenger
proceeds with the onion as in Game1. If the this check succeeds, however, and Pj is not

the exit node the challenger computes ((Oi)
j+1
i=u, s

′)←WrOnj−u+2
I (m, 〈ki〉j+1

i=u, st
i
f), where

WrOnj−u+2
I is defined as in Definition 87, kj+1 := kS , and stif denotes the forward state of

party i. Thereafter, the challenger updates the forward state stif ← s′ of party i. If Pj is

the exit node, then, we only use 〈ki〉ji=u, and perform one WrOn operation less. (send,m)
queries are processed in the same way except that additionally the message m is stored as
q(st1f)← m.

237

7.6. INSTANTIATING SECURE OR MODULES

For the backward direction, i.e., queries (respond,m) and (wrap, O, cid i), the challenger
proceeds analogously except that it is not checked whether P`′ is compromised but whether
P1 is compromised. Accordingly, ku−1 := kS is used in the backward direction. Game2 is
indistinguishable from Game1 because malicious onions are not touched and the length of
a circuit is not leaked by an onion.

In Game3 the challenger, loosely spoken, fakes all onions for which the message is not
visible to the attacker. For all queries, the challenger additionally also stores the onion
that the next guard has to expect. For example, consider an onion in forward direction
with an adjunct visible subpath 〈Pi, ki〉ji=u for which Pj is not the exit node. Then, the
challenger always stores onions(cid i)← Ou the onion that the guard Pj+1 expects. In the
backward direction the challenger analogously stores the expected onion for the next guard.
Upon a (unwrap, O, cid i) query, the challenger runs the predictor T ← M (O, onions(cid i))
of detCTR. The resulting transformations T is applied to the stored message q(stif).
The challenger proceeds analogously for the query (wrap, O, cid i) in backward direction.
Moreover, the challenger fakes all queries in forward direction for which the last node Pj
in the visible subpath 〈Pi, ki〉ji=u is not the exit node, i.e., instead of the actual message

q(stif) the constant zero bitstring 0|q(stif)| is used.

We can construct a machine M that breaks the predictable malleability of detCTR
given an attacker that distinguishes Game3 from Game2. M internally runs the attacker
computes the challenger Game3 except for detCTR encryption and decryption calls, which
are forwarded to the IND-PM challenger PM -Chi. Then, M breaks the predictable
malleability of detCTR if the attacker distinguishes Game3 from Game2.

The challenger in Game3 is exactly defined as OS-Ch1. Since Game0 and Game3 are
indistinguishable, also OS-Ch0 and OS-Ch1 are indistinguishable. Hence, onionAlg satisfy
predictably malleable onion secrecy.

7.6.3. ntor : A 1W-AKE

Øverlier and Syverson [vS07] proposed a 1W-AKE for use in the next generation of the Tor
protocol with improved efficiency. Goldberg, Stebila, and Ustaoglu found an authentication
flaw in this proposed protocol, fixed it, and proved the security of the fixed protocol [GSU12].
We use this fixed protocol, called ntor , as a 1W-AKE.

The protocol ntor [GSU12] is a 1W-AKE protocol between two parties P (client) and Q
(server), where client P authenticates server Q. Let (pkQ, skQ) be the static key pair for
Q. We assume that P holds Q’s certificate (Q, pkQ). P initiates an ntor session by calling
the Init function and sending the output message mP to Q. Upon receiving a message
m′P , server Q calls the Resp function and sends the output message mQ to P . Party P
then calls the CompKey function with parameters from the received message m′Q, and
completes the ntor protocol. We assume a unique mapping between the session ids ΨP of
the cid in Πor.

Lemma 46 (ntor is anonymous and secure [GSU12]). The ntor protocol is a one-way
anonymous and secure 1W-AKE protocol in the random oracle model (ROM).

238

CHAPTER 7. PROVABLY SECURE ONION ROUTING

Init(pkQ, Q):

1. Generate ephemeral keys (x,X ← gx).
2. Set session id ΨP ← Hst(X).
3. Update st(ΨP)← (ntor , Q, x,X).
4. Set mP ← (ntor , Q,X).
5. Output mP .

Resp(pkQ, skQ, X):

1. Verify that X ∈ G∗.
2. Generate ephemeral keys (y, Y ← gy).
3. Set session id ΨQ ← Hst(Y).

4. (k′, k)← H(Xy , XskQ , Q,X, Y,ntor).

5. tQ ← Hmac(k′, Q, Y,X,ntor , server).
6. Set mQ ← (ntor , Y, tQ).
7. Delete y and output mQ.

CompKey(pkQ,ΨP , tQ, Y):

1. Retrieve Q, x, X from st(ΨP) if it exists.
2. Verify that Y ∈ G∗.
3. (k′, k)← H(Y x, pkxQ, Q,X, Y,ntor).

4. If tQ = Hmac(k′, Q, Y,X,ntor , server),
5. delete st(ΨP) and output k.

If any verification fails, the party erases all session-
specific information and aborts the session.

Figure 7.17.: The ntor protocol

7.7. Forward Secrecy and Anonymity Analysis

In this section, we show that our abstraction For allows for applying previous work on the
anonymity analysis of onion routing to Πor. Moreover, we illustrate that For enables a
rigorous analysis of forward secrecy of Πor.

In Section 7.7.1, we show that the analysis of Feigenbaum, Johnson, and Syverson [FJS11]
of Tor’s anonymity properties in a black-box model can be applied to our protocol Πor.
Feigenbaum, Johnson, and Syverson show their anonymity analysis an ideal functionality
Bor (see Figure 7.5). By proving that the analysis of Bor applies to For, the UC composition
theorem and Theorem 12 imply that the analysis applies to Πor as well.

In Section 7.7.2, we present the result that immediate forward secrecy for Πor holds, by
merely by analyzing For.

7.7.1. OR Anonymity Analysis

In this section, we discuss the applicability of our result to OR anonymity analysis
techniques. First, we show that an anonymity analysis of a black-box OR abstraction Bor
by Feigenbaum, Johnson and Syverson [FJS11] carries over to the OR protocol presented
in this work (see Section 7.7.1.1). Second, we present a generalization of Bor that also
accounts for partially global attackers, i.e., attackers that can observe links between honest
ORs (see Section 7.7.1.2). We show that also all results about the generalization of Bor
carry over to the OR protocol presented in this work.

7.7.1.1. Πor realizes Bor

Feigenbaum, Johnson and Syverson [FJS11] analyzed the anonymity properties of OR
networks. In their analysis, the authors abstracted an OR network against attackers that
are local, static as a black-box functionality Bor. We reviewed their abstraction Bor in
Section 7.2.5. In this section, we show that the analysis of Bor is applicable to Πor against
local, static attackers.

There is a slight mismatch in the user-interface of Bor and Πor. The main difference is
that Πor expects separate commands for creating a circuit and sending a message whereas

239

7.7. FORWARD SECRECY AND ANONYMITY ANALYSIS

upon the first input m

send Nor to FNreg in Π; send setup to Π
wait for (ready, 〈Pi〉ni=1); further process m

upon an input (send, S, [m])

draw P1, . . . , P` at random from Nor

store (S,mdummy) [or (S,m)] in the queue for
〈P, P1, . . . , P`〉
send (createcircuit, 〈P, P1, . . . , P`〉) to Π

upon (created, 〈P cid1⇐⇒ P1 ⇐⇒ . . . P`〉) from Π

look up (S,m) from the queue for 〈P, P1, . . . , P`〉
send (send, 〈P cid1⇐⇒ P1 ⇐⇒ . . . P`〉, (S,m)) to Π

upon (received, C,m) from Π

do nothing /*Bor does not allow responses to mes-
sages*/

upon a message m from Fnet0 to the environ-
ment

do nothing /*Bor does not deliver messages*/

Figure 7.18.: User-interface U(Π) for party P

Bor only expects a command for sending a message. We construct for every party P a
wrapper U for Πor that adjusts Πor’s user-interface. Recall that we consider two versions
of Bor and U simultaneously: one version in which no message is sent and one version in
which a message is sent (denoted as [m]).

Instead of Πor, U only expects one command: (send, S, [m]). We fix the length ` of the
circuit.12 Upon (send, S, [m]), U(Π) draws the path P1, . . . , P` ← Nor at random, sends
a (createcircuit, 〈P, P1, . . . , P`〉) to Π, waits for the cid from Π, and sends a (send, cid ,m)
command, where m is a dummy message if no message is specified. Moreover, in contrast
to Bor the protocol Πor allows a response for a message m and therefore additionally sends
a session id sid to a server.13

In addition to the differences in the user-interface, Bor assumes the weaker threat model
of a local, static attacker whereas Πor assumes a partially global attacker. We formalize a
local attacker by considering Πor in the Fnet0-hybrid model, and connect the input/output
interface of Fnet0 to the wrapper U as well. For considering a static attacker, we make
the standard UC-assumption that every party only accepts compromise requests at the
beginning of the protocol. Moreover, we also need to assume that Bor is defined for a fixed
set of onion routers N in the same way as FNor.

Finally, our work culminates in the connection of previous work on black-box anonymity
analyses of onion routing with our cryptographic model of onion routing.

Lemma 47 (U(Πor) UC realizes Bor). Let U(Πor) be defined as in Figure 7.18. If Πor

uses secure OR modules, then U(Πor) in the Fnet0-hybrid model UC realizes Bor against
static attackers.

Proof. Applying the UC composition theorem, it suffices to prove that U(For) in the
Fnet0-hybrid model UC realizes Bor against static attackers. We construct a simulator
SA as in Figure 7.19 that internally runs Fnet0 and U ′(For) and an attacker A. Then,
we show that Bor against SA is indistinguishable from U(For) against A for any PPT
environment E.

12We fix the length for the sake of brevity. This choice is rather arbitrary. The analysis can be adjusted to
the case in which the length is chosen from some efficiently computable distribution or specified by the
environment for every message.

13It is also possible to modify Πor such that Πor does not accept responses and does not draw a session id
sid . However, for the sake of brevity we slightly modify Bor.

240

CHAPTER 7. PROVABLY SECURE ONION ROUTING

upon the first input m

set NA := ∅; send Nor to FNreg in For

send setup to For; wait for (ready, 〈Pi〉ni=1)
further process m

upon (compromise, P) from A

if all previous messages only were compromise mes-
sages then

set NA := NA ∪ {P}
forward (compromise, P) to party P in U(For)

upon the first message m that is not compromise

from A

send (compromise, NA) to Bor
further process m

upon any other message m from A to Fnet0

forward m to Fnet0

upon any other message m from A to U ′(For)

forward m to U ′(For)

upon a message m from U ′(For) to the environ-
ment

do nothing /* Bor already outputs the message */

upon (sent, U, S, [m]) from Bor
choose P1 ← NA and P` ← NA

choose P2, . . . , P`−1 ← Nor

send (send, 〈Pi〉`i=1, [m]) to U ′(For)

upon (sent,−, S, [m]) from Bor
choose P1 ← Nor \ NA and P` ← NA

choose P2, . . . , P`−1 ← Nor

send (send, 〈Pi〉`i=1, [m]) to U ′(For)

upon (sent, U,−) from Bor
choose P1 ← NA and P` ← Nor \ NA

choose P2, . . . , P`−1 ← Nor

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(For)

upon (sent,−,−) from Bor
choose P1 ← Nor \ NA and P` ← Nor \ NA

choose P2, . . . , P`−1 ← Nor

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(For)

Figure 7.19.: The simulator SA: U ′ gets the path as input instead of drawing it at random

We show that the following sequence of games is indistinguishable for the environment E.
The first game Game1 is the original setting with U(For) and A in the Fnet0-hybrid model.
In the second game Game2, the simulator S2 honestly simulates Fnet0 and the attacker A.
As S1 honestly simulates Fnet0 the two games Game1 and Game2 are indistinguishable.

In the third game Game3, the simulator S3 honestly runs U(For) as well. As S3 honestly
simulates U(For) the two games Game2 and Game3 are indistinguishable.

In the fourth game Game4, the simulator S4 maintains a set of compromised parties NA.
S4 runs U ′ instead of U , where U ′ gets the path as input instead of drawing the path at
random. Then, the simulator S4 upon an input (send, S, [m]) to U draws the first onion
router P1 (not the onion proxy) and the exit node P` as follows with b := |NA|/|Nor|.

(i) with probability b2, S4 draws P1, P` ← NA

(ii) with probability b(1− b), S4 draws P1 ← NA and P` ← Nor \NA

(iii) with probability (1− b)b, S4 draws P1 ← Nor \NA and P` ← NA

(iv) with probability (1− b)2 S4 draws P1, P` ← Nor \NA

The nodes P2, . . . , P`−1 ← Nor are drawn uniformly at random. Then, S4 sends (send, 〈Pi〉`i=1,
[m]) to U ′.

Game4 is indistinguishable from Game3 as the distribution of compromised parties remains
the same, and in Game4 the modified wrapper U ′ together with the simulator S4 have the
same input/output behavior as U .

The game Game5 is the scenario in which SA communicates with Bor. The simulator
does not directly communicate with the environment over the protocol interface anymore
but Bor communicates with the environment instead. The simulator S5 behaves as SA in
Figure 7.19.

241

7.7. FORWARD SECRECY AND ANONYMITY ANALYSIS

The difference between the input/output behavior of Bor and the part of S4 that
communicates with U ′ is minimal. Only for the cases in which the last onion router is
not compromised the message m is not sent to U ′. In these cases SA chooses mdummy as a
message. But as the ideal functionality does not reveal any information about m if the last
node is not compromised, Game5 and Game4 are indistinguishable.

7.7.1.2. Generalizing Bor to partially global attackers

The result from the previous section can be generalized to an onion routing network against
partially global attackers. In order to cope with the partially compromised network, the
black-box needs to maintain the amount of compromised links, in addition to the number
of compromised parties. In this section, we prove that even for q > 0 the onion routing
protocol U(Πor) realizes this modified black-box Bor′ , which is defined in Figure 7.20.

The realization proof goes along the lines of the proof of Lemma 47. However, in order
to bound the probability that a link between a user and the first onion router or an exit
node and a server is compromised, we need to restrict the number of users and servers.
Let m be the amount of users and o be the amount of servers.

Lemma 48 (U(Πor) UC realizes Bor′). Let U(Πor) be defined as in Figure 7.18. If Πor

uses secure OR modules, then U(Πor) in the Fnetq -hybrid model UC realizes Bor against
static attackers for any q ∈ {0, . . . , n}, where n is the number of onion routers.

Proof. Applying the UC composition theorem, it suffices to prove that U(For) in the
Fnetq -hybrid model UC realizes Bor′ against static attackers. We construct a simulator
S′A as in Figure 7.21 that internally runs Fnet0 and U ′(For) and an attacker A. Then,
we show that Bor′ against S′A is indistinguishable from U(For) against A for any ppt
environment E.

We show that the following sequence of games is indistinguishable for the environment E.
The first game Game1 is the original setting with U(For) and A in the Fnetq -hybrid model.
In the second game Game2, the simulator S2 honestly simulates Fnetq and the attacker A.
As S1 honestly simulates Fnetq the two games Game1 and Game2 are indistinguishable.

In the third game Game3, the simulator S3 honestly runs U(For) as well. As S3 honestly
simulates U(For) the two games Game2 and Game3 are indistinguishable.

In the fourth game Game4, the simulator S4 maintains a set of compromised parties NA.
S4 runs U ′ instead of U , where U ′ gets the path as input instead of drawing the path at
random. Then, the simulator S4 upon an input (send, S, [m]) to U draws the first onion

router P1 (not the onion proxy) and the exit node P` as follows with n := |Nor|, b← |NA|
n ,

L′A := LA ∩ (Nor \NA)2, and c← |L′A|
n(n−1)/2 :

(i) with probability (b+ c)2, S4 draws

(P1, P`)← (NA ∪ {P | ∃Q.(P,Q) ∈ LA})× (NA ∪ {P | ∃Q.(P,Q) ∈ LA})

(ii) with probability (b+ c)(1− (b+ c)), S4 draws

(P1, P`)← ((Nor \ NA) ∩ {P | (U,P) 6∈ LA})× (NA ∪ {P | (P, S) ∈ LA})

242

CHAPTER 7. PROVABLY SECURE ONION ROUTING

upon receiving a msg (compromise,NA, LA) from A:

set compromised(P)← true for every P ∈ NA

set n← |Nor|; set b← |NA|
n

set L′A ← LA ∩ ({(P, P ′) |
(P is a user ∧ P ′ ∈ (Nor \NA))∨
(P ∈ (Nor \NA) ∧ P ′ is a server}))

set c← |L′A|
nm+no

upon an input (send, S, [m]) from the environment for
party U :

with probability (b+ c)2,

choose P` ← NA

send (sent, U, S, [m]) to A
with probability (1− (b+ c))(b+ c),

choose P` ← NA

send (sent,−, S, [m]) to A
with probability (b+ c)(1− (b+ c)),

choose P` ← Nor \ NA

send (sent, U,−) to A
with probability (1− (b+ c))2,

choose P` ← Nor \ NA

send (sent,−,−) to A

Figure 7.20.: Black-box OR Functionality Bor′ for partially global attackers: Nor is the
set of all parties

(iii) with probability (1− (b+ c))(b+ c), S4 draws

(P1, P`)← (NA ∪ {P | (U,P) ∈ LA})× (Nor \ NA ∩ {P | (P, S) 6∈ LA})

(iv) with probability (1− (b+ c))2, S4 draws

(P1, P`)← (Nor \ NA ∩ {P | (U,P) 6∈ LA})× (Nor \ NA ∩ {P | (P, S) 6∈ LA})

The nodes P2, . . . , P`−1 ← Nor are drawn uniformly at random. Then, S4 sends
(send, 〈Pi〉`i=1, [m]) to U ′.

Game4 is indistinguishable from Game3 as the distribution of compromised parties remains
the same, and in Game4 the modified wrapper U ′ together with the simulator S4 have the
same input/output behavior as U .

The game Game5 is the scenario in which S′A communicates with Bor′ . The simulator
does not directly communicate with the environment over the protocol interface anymore
but Bor′ communicates with the environment instead. The simulator S5 behaves as S′A in
Figure 7.21.

The difference between the input/output behavior of Bor′ and the part of S4 that
communicates with U ′ is minimal. Only for the cases in which the last onion router is
not compromised and the last link is not observed the message m is not sent to U ′. In
these cases S′A chooses mdummy as a message. But as the ideal functionality does not reveal
any information about m if the last node is not compromised, Game5 and Game4 are
indistinguishable.

Extending Bor′ to reusing circuits. Reusing a circuit, in particular accepting answers,
raises the problem that the attacker might learn something by observing activities at the
same places. This problem suggests that the resulting abstraction cannot be much simpler
than abstraction For.

7.7.2. Forward Secrecy

Forward secrecy [DOW92] in cryptographic constructions ensures that a session key
derived from a set of long-term public and private keys will not be compromised once the

243

7.7. FORWARD SECRECY AND ANONYMITY ANALYSIS

upon the first input m

set NA := ∅
set LA := ∅
send Nor to FNreg in For

send setup to For

wait for (ready, 〈Pi〉ni=1)
further process m

upon (compromise, P) from A

if all previous messages were only compromise or
observe messages then

set NA := NA ∪ {P}
forward (compromise, P) to party P in U(For)

upon (observe, P1, P2) from A to Fnetq

if all previous messages were only compromise or
observe messages then

set LA := LA ∪ {(P1, P2)}
forward (observe, P1, P2) to Fnetq

upon the first message m that is not compromise

from A

send (compromise,NA, LA) to Bor′
further process m

upon any other message m from A to Fnetq

forward m to Fnetq

upon any other message m from A to U ′(For)

forward m to U ′(For)

upon a message m from U ′(For) to the environ-
ment

do nothing /* Bor′ already outputs the message */

upon (sent, U, S, [m]) from Bor′
choose (P1, P`)←

(NA ∪ {P | ∃Q.(P,Q) ∈ LA})
×(NA ∪ {P | ∃Q.(P,Q) ∈ LA})

choose P2, . . . , P`−1 ← Nor

send (send, 〈Pi〉`i=1, [m]) to U ′(For)

upon (sent,−, S, [m]) from Bor′
choose (P1, P`)←

((Nor \ NA) ∩ {P | (U,P) 6∈ LA})
×(NA ∪ {P | (P, S) ∈ LA})

choose P2, . . . , P`−1 ← Nor

send (send, 〈Pi〉`i=1, [m]) to U ′(For)

upon (sent, U,−) from Bor′
choose (P1, P`)←

(NA ∪ {P | (U, P) ∈ LA})
×(Nor \ NA ∩ {P | (P, S) 6∈ LA})

choose P2, . . . , P`−1 ← Nor

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(For)

upon (sent,−,−) from Bor′
choose (P1, P`)←

(Nor \ NA ∩ {P | (U, P) 6∈ LA})
×(Nor \ NA ∩ {P | (P, S) 6∈ LA})

choose P2, . . . , P`−1 ← Nor

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(For)

Figure 7.21.: The simulator S′A: U ′ gets the path as input instead of drawing it at random

session is over, even when one of the (long-term) private keys is compromised in the future.
Forward secrecy in onion routing typically refers to the privacy of a user’s circuit against
an attacker that marches down the circuit compromising the nodes until he reaches the
end and breaks the user’s anonymity.

It is commonly believed that for achieving forward secrecy in OR protocols it is sufficient
to securely erase the local circuit information once a circuit is closed, and to use a key
exchange that provides forward secrecy. Πor uses such a mechanism for ensuring forward
secrecy. Forward secrecy for OR, however, has never been proven, and not even rigorously
defined.

In this section, we present a game-based definition for OR forward secrecy (Definition 95)
and show that Πor satisfies our forward secrecy definition (Lemma 51). We require that a
local attacker does not even learn anything about a closed circuit if he compromises all
system nodes. The absence of knowledge about a circuit is formalized in the notion of OR
circuit secrecy (Definition 95), a notion that might be of independent interest.

Recall that we formalize a local attacker by considering Πor in the Fnet0-hybrid model,
i.e., the attacker cannot observe the link between any pair of nodes without compromising
any of the two nodes.

Definition 92 (Local attackers). We say that we consider a protocol Π against local

244

CHAPTER 7. PROVABLY SECURE ONION ROUTING

CS-ChΠ
b : (setup) from A

if initial = ⊥ then
send (setup) to Π
challenge← false
initial← true

CS-ChΠ
b : (compromise, P) from A

if challenge = false then
store that P is compromised
forward (compromise, P) to Π

CS-ChΠ
b : (close_initial) from A

challenge← true

CS-ChΠ
b : (createcircuit,P0,P1, P) from A

if challenge = true then
if P0 and P1 visibly coincide then

forward (createcircuit,Pb, P) to Π

CS-ChΠ
b : for every other message m from A

forward m to Π

CS-ChΠ
b : for every message m from Π

if challenge = true and

m = (created, 〈P cid⇐⇒ P1 ⇐⇒ · · ·P`′ 〉, P)
then

store P for cid
forward m to A

Figure 7.22.: OR Circuit Secrecy Game

FS-ChΠ
b behaves exactly like CS-ChΠ

b except for the
following message:

FS-ChΠ
b : upon (close_challenge) from A

if challenge = true then

challenge← false
for every circuit cid created in the challenge
phase do

look up onion proxy P for cid ; send
(cid , destroy, P) to Π

Figure 7.23.: OR Forward Secrecy Challenger: FS-ChΠ
b

attackers if we consider Π in the Fnet0-hybrid model.

The definition of circuit secrecy compares a pair of circuits and requires that the attacker
cannot tell which one has been used. Of course, we can only compare two circuits that are
not trivially distinguishable. The following notion of visibly coinciding circuits excludes
trivially distinguishable pairs of circuits. Recall that a visible subpath of a circuit is a
maximal contiguous subsequence of compromised nodes.

Definition 93 (Visibly coinciding circuits). A subsequence 〈Pj〉sj=u of a circuit 〈Pi〉`i=1 is

an extended visible subpath if 〈Pj〉s−1
j=u+1 is a visible subpath or s = ` and 〈Pj〉sj=u+1 is a

visible subpath.

We say that two circuits P0 = 〈P 0
i 〉`

0

i=0, P1 = 〈P 1
i 〉`

1

i=0 are trivially distinguishable if the
following three conditions hold:

(i) the onion proxies P 0
0 , P

1
0 are not compromised,

(ii) the sequences of extended visible subpaths of P0 and P1 are the same, and

(iii) the exit nodes of P0 and P1 are the same, i.e., P 0
`0 = P 1

`1.

For the definition of circuit secrecy of a protocol Π, we define a challenger that com-
municates with the protocol Π and the attacker. The challenger Cb is parametric in
b ∈ {0, 1}. Cb forwards all requests from the attacker to the protocol except for the
createcircuit commands. Upon a createcircuit command Cb expects a pair P0, P1 of node
sequences, checks whether P0 and P1 are visibly coinciding circuits, chooses Pb, and

245

7.7. FORWARD SECRECY AND ANONYMITY ANALYSIS

forwards (createcircuit,Pb) to the protocol Π. We require that the attacker does not learn
anything about visibly coinciding circuits.

A protocol can be represented without loss of generality as an interactive Turing machine
that internally runs every single protocol party as a submachine, forwards each messages
for a party P to that submachine, and sends every message from that submachine to the
respective communication partner. We assume that upon a message (setup), a protocol
responds with a list of self-generated party identifiers. The protocol expects for every
message from the communication partner a party identifier and reroutes the message to
the corresponding submachine. In the following definition, we use this notion of a protocol.

Definition 94. Let Π be a protocol and CS-Ch be defined as in Figure 7.22. An OR
protocol has circuit secrecy if there is a negligible function µ such that the following holds
for all PPT attackers A and sufficiently large κ

Pr[b← {0, 1} , b′ ← A(κ)CS-ChΠ
b (κ) : b = b′] ≤ 1/2 + µ(κ)

Forward secrecy requires that even if all nodes are compromised after closing all challenge
circuits the attacker cannot learn anything about the challenge circuits.

Definition 95. Let Π be a protocol and FS-Ch be defined as in Figure 7.23. An OR
protocol has circuit secrecy if there is a negligible function µ such that the following holds
for all PPT attackers A and sufficiently large κ

Pr[b← {0, 1} , b′ ← A(κ)FS-ChΠ
b (κ) : b = b′] ≤ 1/2 + µ(κ)

Lemma 49. For against local attackers satisfies OR circuit secrecy (see Definition 94).

Proof. As we consider a local attacker the attacker can only observe the communication
with compromised nodes, i.e., a guard sends a message to the first compromised node in
a visible subpath. For such messages we distinguish two kinds of scenarios: either the
visible subpath contains the exit node or not. If the visible subpath contains the exit
node, For sends to the attacker the visible subpath together with the actual message to be
transmitted. As any pair of challenge circuits visibly coincides, the visible subpaths are
the same; hence, also the messages of For are the same for b = 0 or b = 1.

In the case that the visible subpath does not contain the exit node, the circuit contains
an adjacent guard on both sides of the visible subpath. In these cases, For sends the visible
subpath, the command relay, and the cid to the attacker. As any pair of challenge circuits
visibly coincides, the visible subpaths are the same. As the cid is randomly chosen, the
distributions of the cid is the same in the scenario with b = 0 and b = 1. Consequently,
the distribution of network messages is the same in the scenario with b = 0 and b = 1.

The protocol as introduce in Section 7.2.4 presents Πor as one (sub-)machine for every
protocol party. Equivalently, Πor can be represented as one interactive Turing machine that
runs all parties as submachines, upon a message (setup) from the communication partner,
sends (setup) to every party, and sends an answer with a list of party identifiers to the
communication partner. In the following definition, Πor is represented as one interactive
Turing machine that internally runs all protocol parties.

246

CHAPTER 7. PROVABLY SECURE ONION ROUTING

Lemma 50. Πor instantiated with secure OR modules against local attackers satisfies OR
circuit secrecy (see Definition 94).

Proof. By Theorem 12, we know that there is a simulator S such that the communication
with CS-ChΠor

b and CS-ChFor+S
b is indistinguishable for any PPT attacker.14 An attacker

ACS-ChFor+S
b communicating with CS-ChFor+S

b can be represented as S′(A)CS-ChFor
b for a

wrapping machine S′ that upon every network message runs the simulator S and reroutes
the network messages of S to the environment to A. By Lemma 49, S′(A) cannot guess b

with significantly more than a probability of 1/2, hence also not ACS-ChFor+S
b . As CS-ChΠor

b

and CS-ChFor+S
b are indistinguishable, we conclude that there is no attacker that can guess

b with significantly more than a probability of 1/2.

It is easy to see that in For, once a circuit is closed, all information related to the circuit
at the uncompromised nodes is deleted. Therefore, forward secrecy for For is obvious from
the circuit secrecy in Lemma 50. Hence, the following lemma immediately follows.

Lemma 51. Πor instantiated with secure OR modules against local attackers satisfies OR
forward secrecy (see Definition 95).

7.8. Conclusion

We have proven that the core cryptographic parts in a OR protocol are a one-way anonymous
authenticated key exchange primitive (1W-AKE), and secure onion algorithms. We have
presented an improved version of the existing Tor protocol using the efficient ntor protocol
as a secure 1W-AKE [GSU12] and by proposing provably secure fixes for the Tor onion
algorithms with a minimal overhead. We have shown that this improved protocol provides
precise security guarantees in a composable setting (UC [Can01]).

We have further presented an elegant proof technique for the analysis of OR protocols,
which leverages an OR abstraction For that is induced by our UC security result. We show
that the analysis of OR protocol boils down to the analysis of the abstraction For. As an
example we have introduced a definition for forward secrecy of onion routing circuits and
shown that For satisfies this definition. Furthermore, we have proven that our abstraction
For satisfies the black-box criteria of Feigenbaum, Johnson and Syverson [FJS11], which
in turn implies that their anonymity analysis also applies to the OR protocol presented in
this paper.

It is well known that the UC framework lacks a notion of time; consequently any UC
security analysis neglects timing attacks, in particular traffic analysis. A composable
security analysis that also covers, e.g., traffic analysis, is an interesting task for future work.
Although our work proposes a provably secure and practical next generation Tor network,
users’ anonymity may still be adversely affected if different users run different versions.
Hence it is an important direction for future work to develop a anonymity-preserving
methodology for updating OR clients. Michael Backes, Praveen Manoharan, and Esfandiar

14Actually, we do not only consider Πor but Πor together with the dummy attacker that only reroutes all
messages from the environment to the protocol.

247

7.8. CONCLUSION

Mohammadi introduced a time-sensitive universal composability framework that is tailored
towards the analysis of anonymous communication protocols [BMM14]. Their work uses
the abstraction of onion routing presented in this work as a motivating example.

248

Chapter 8.

Ace: An Efficient Key-Exchange Protocol for
Onion Routing

[This chapter is based on a paper with Michael Backes and Aniket Kate [BKM12]. I
contributed the idea of this work, and I am the main contributor of all parts that occur in
this chapter.]

8.1. Motivation

The onion routing (OR) network Tor [Tor03] has been immensely successful as a privacy
enhancing technology. It currently employs nearly six thousand dedicated routers (or OR
nodes) and serves million of users all over the world. With its recently observed utility as
a censorship-resistant tool these numbers are bound to grow swiftly.

While utilizing the Tor network to access the Internet anonymously, a user constructs a
circuit choosing a small ordered subset of (usually three) OR nodes, such that the chosen
nodes route the user’s traffic over the path formed. For the anonymity in onion routing,
it is important that an OR node should not be able to determine the circuit nodes other
than its predecessor and successor, while routing the user’s messages. In the OR protocol,
the user achieves this property by sending her every message in the form of an onion—a
message wrapped in multiple layers of symmetric-key encryption (one layer per selected
node). The symmetric keys are agreed upon during an initial circuit construction phase
using a public-key infrastructure (PKI) implemented using a small set of directory servers
that also provide routing information for the OR nodes to the users. The key cryptographic
challenges in the OR protocol are to securely agree upon the symmetric keys, and then to
use those to achieve confidentiality and integrity [BGKM12]. In this work, we concentrate
on the first challenge.

Tor currently uses an interactive forward-secret key-exchange protocol called the Tor
authentication protocol (TAP) in a telescoping (or multi-pass) fashion to agree upon the
required symmetric keys [DMS04]. However, with its atypical use of an RSA encrypted group
element (or pseudonym), TAP is considered to be inefficient. Øverlier and Syverson [vS07]
suggested an efficient replacement for TAP (their fourth protocol) using a half-certified
Diffie-Hellman (DH) key agreement [MOV97, Sec. 12.6]. Recently Goldberg, Stebila and
Ustaoglu showed an attack on the fourth protocol in [vS07] that allows an adversary to
impersonate an honest server (a router in Tor) to an honest client (a user in Tor) [GSU12].
They also defined the concept of one-way authenticated key exchange (1W-AKE), fixed the
fourth protocol [vS07] to obtain a provably secure construction called the ntor protocol,
and described its utility towards onion routing. However, while obtaining a provably secure

249

8.2. BACKGROUND

construction, they sacrificed computational efficiency to a certain extend. In particular,
every ntor instance requires two online discrete logarithmic (DLog) exponentiations on
the client side and 1.33 exponentiations on the server side in ntor , where only one online
exponentiation each was required on the both sides in the original fourth protocol in [vS07].
In this paper, we work towards a computationally more efficient 1W-AKE protocol using a
practical concession provided by the Tor protocol.

Contributions. We present a novel 1W-AKE protocol Ace (anonymous circuit
establishment) that achieves an efficiency improvement of 46% at the client-side and
of nearly 19% at the server-side, compared to the ntor protocol. The crux is to use as a
pseudonym two randomly chosen group elements on the client side instead of one. In this
way, we are able to use Shamir’s multi-exponentiation trick on both the server and the client
side, requiring only 1.17 online exponentiations for the key-exchange. These requirements
can be further dropped to 1.08 exponentiations in the elliptic curve cryptographic (ECC)
setting as it provides DLog group inverses for free.

Our requirement of sending two group elements from the client to the server may look an
impeding factor in terms of communication. However, thanks to the fixed sized packets (or
cells) of size 512 bytes in Tor, two group elements of size 32 bytes each in the ECC setting can
easily be accommodated in a single cell. Given that the ECC setting is under consideration
for the Tor protocol [Mat12b], our protocol does not affect the practical communication
time of Tor circuit construction at all. We also prove Ace secure using the definition for
1W-AKE that has been introduced by Goldberg, Stebila, and Ustaoglu [GSU12].

Outline. Section 8.2 discusses the previous work on 1W-AKE. Section 8.3 introduces
the Ace protocol. Section 8.4 compares the computational efficiency and the message
sizes of the Ace protocol with the previous protocols. Section 8.5 reviews the security
requirements for a 1W-AKE protocol, and shows that Ace indeed constitutes a 1W-AKE
protocol. Section 8.6 concludes this chapter.

8.2. Background

This section discusses previous work on 1W-AKE protocols. Section 8.2.1 present the
current Tor Authentication protocol (TAP). Section 8.2.2 discusses a one-way authentica-
tion protocol by Shoup that enriches the DH key exchange with a public-key signature.
Section 8.2.3 illustrates the ØS protocol by Øverlier and Syverson, which is efficient but
insecure. Section 8.2.4 presents the ntor protocol, which fixes the issues of the ØS protocol
but is less efficient. In the end, Section 8.2.5 briefly discusses why we do not consider
non-interactive key exchange methods.

A comparative overview of these four key exchange protocols and our protocol Ace is
presented in Figure 8.6.

8.2.1. The current Tor Authentication Protocol

The current Tor authentication protocol (TAP) basically performs a DH key-exchange
where the authentication of the server is ensured by encrypting the first DH message gx

under the public key of the server, for a generator g. Using public-key encryption, however,
it is inefficient; therefore, a more efficient key exchange is desirable.

250

CHAPTER 8. ACE: AN EFFICIENT KEY-EXCHANGE PROTOCOL

8.2.2. The A-DHKE Protocol

Shoup presented a 1W-AKE protocol A-DHKE that relies on public-key signatures [Sho99]
and proved A-DHKE secure1. In A-DHKE basically, the DH key exchange is enriched in
the second message with a signature of the server on the ephemeral key gx of the client
and the ephemeral gy of the server. The key derivation function is computed as in a DH
key exchange. This protocol only needs 1 online exponentiation as in the usual DH key
exchange, but it additionally requires the protocol to compute 1 online signature. Therefore,
the efficiency of A-DHKE depends upon the efficiency of the signature scheme.

8.2.3. The ØS Protocol

Øverlier and Syverson proposed a series of more efficient key-exchange protocols for future
deployment in Tor, culminating in their fourth protocol [vS07]. This fourth protocol
basically enhances the DH protocol with a long-term key gb of the server. Neglecting the
session id and the key-confirmation message, the protocol works as follows. The client
sends a fresh ephemeral key gx to the server. The server draws a fresh ephemeral key gy,
computes the session key (gx)b+y = gx(b+y), and sends gy back to the client, which compute
(gbgy)x = g(b+y)x.

An Attack on the ØS Protocol. Unfortunately, there is a man-in-the-middle attack
against this protocol [GSU12]. The attacker intercepts the initial message gx, draws a
fresh gy, and responds with gy/gb = gy−b, where gb is the public key of the server. Then,
the client computes the session key (gbgy−b)x = gyx and the attacker computes (gx)y.
Figure 8.6 in the appendix illustrates this attack.

8.2.4. The ntor Protocol

Goldberg, Stebila, and Ustaoglu [GSU12] present a fixed version of the ØS protocol, the ntor
protocol. Moreover, the authors proved that ntor is 1W-AKE secure (see Section 8.5.1).

A closer look at the session key gxy+xb in the ØS protocol reveals that for fixing the
protocol it suffices to separate the term xy from the term xb. In ntor , this separation
is achieved by applying a hash function H to these terms: H (gxy, gxb).2 Neglecting the
session keys and the key confirmation message, in ntor the client sends a fresh ephemeral
key gx to the server, The server draws a fresh ephemeral key gy, computes the session key
as H ((gx)y, (gx)b), and responds with gy to the client.

The security of ntor is bought at a price of efficiency: the client has to compute 2 full
exponentiations, and the server has to compute 1.33 exponentiations, using square-and-
multiply optimizations since the base of (gx)y and (gx)b is the same.

8.2.5. A Note on Non-Interactive KE

In contrast to the presented interactive key-exchange a single-pass construction using a non-
interactive key exchange is possible as well. However, achieving forward secrecy of the user’s

1Technically, Shoup proved A-DHKE secure in another model, but it can be shown that A-DHKE also
satisfies the 1W-AKE definition.

2gxy, gxb denotes the concatenation of gxy and gxb.

251

8.3. THE ACE PROCOTOL

(no public key) Client Server (public key gb)

x1, x2 ←R G
gx1 ,gx2

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
= (gb)x1 (gy)x2 (gx1)b(gx2)y =

gx1b+x2y gx1b+x2y (established shared
secret gx1b+x2y)

Figure 8.1.: An overview of Ace: G is the exponent group.

circuits without regularly rotating the PKI keys for all Tor nodes is not possible [KZG10],
and the periodic public key rotation should be avoided for scalability reasons. There
has also been attempts to solve this problem by introducing the identity-based setting
[KZG07; KZG10] or the certificate-less cryptography setting [CFG09]. However, as discussed
in Section 7.2.1, the key authorities required in these constructions can be difficult to
implement in practice.

8.3. The Ace Procotol

Along the lines of the ØS protocol and the ntor protocol, the Ace protocol constitutes a
one-way authenticated variant of the DH key exchange. The crux of Ace is that it trades
computational efficiency with communication efficiency. However, we aim at improving
the key-exchange in the Tor protocol, and it turns out that in the ECC setting a large
fragment of the Tor packets are actually unused during the key exchange. As the ECC
setting is currently under consideration for deployment in Tor, using Ace will not produce
a communication overhead for the Tor protocol’s key-exchange yet gaining efficiency in
terms of computation.

Notation. We often denote the long-term secret key of a party A as a and correspondingly
ga as the public key, for a given generator g. In the security analysis and the detailed
presented of Ace, we also talk about A as an identifier. At these place, we denote the
long-term public key of a party A as pkA and the corresponding secret key as skA.

For assigning the result of a (possibly randomized) computation A to a variable v, we
write v ← A. Similarly, we write v ← V to denote the assignation of a value V to the
variable v. Moreover, we write v ←R S for denoting that a uniformly chosen element from
a set S is assigned to the variable v. For the security parameter we use the letter η. In this
work, we only consider probabilistic polynomial-time bounded machines, denoted as ppt
machines. In abuse of notation, we also call a randomized algorithm that is polynomially
bounded a ppt algorithm. We denote the hash of the concatenation of several values
v1, . . . , v2 as H (v1, . . . , v2).

8.3.1. The Construction

Recall that in the ØS protocol the client sends an ephemeral key gx and the server responds
with an ephemeral key gy, resulting in a session key gxb+xy (gb being the server’s certified
long-term key). The main problem in ØS is that the two terms xy and xb are not separated,
allowing the attacker to choose y := y′ − b, by computing gy := gy

′
/gb, and impersonating

252

CHAPTER 8. ACE: AN EFFICIENT KEY-EXCHANGE PROTOCOL

any server. In the ntor protocol this separation is achieved by letting the session key be
the hash of gxb and gxy. This remedy comes at the price of a loss in efficiency. In Ace we
achieve this separation by letting the ephemeral key be a pair (gx1 , gx2): the session key is
then gx1b+x2y.

In Ace the client sends an ephemeral pair (gx1 , gx2) and the server responds an ephemeral
key gy. Then, the client computes the session key as (gb)x1(gy)x2 = gbx1+yx2 and the server
as (gx1)b(gx2)y = gx1b+x2y. Figure 8.1 gives an overview of the Ace protocol.

The Protocol in Detail. Figure 8.2 presents the Ace protocol in detail by showing the
pseudo code for the initialization algorithm Init , the response algorithm Resp, and the
final key computation algorithm CompKey . Let (pkQ, skQ) be the static key pair for Q.
We assume that P holds Q’s certificate (Q, pkQ). Recall that cs is the queue of already
chosen ephemeral key pairs (x, gx) of which gx is already leaked to the attacker.

The algorithm Init is called for initiating a new session. It expects as input the server’s
identity, two strings new_session, Ace, and the queue cs. Then, either a fresh ephemeral
keys is chosen or an already chosen key is popped from the queue cs. Thereafter, the local
session identifier is set by applying the ephemeral pair (x1, x2) to a collision resistant hash
function H st.

3 Then, the session information of the client is stored in the variable st(Ψ),
and the client’s ephemeral keys (gx1 , gx2) together with the server identity Q and a string
Ace is output as a network message m along with the session’s state st(Ψ) and the session
identifier Ψ.

The algorithm Resp is called by the server Q for responding to a session initialization.
Resp expects as input the secret key skQ of Q, Q’s identity, the network message (Ace,
X1, X2) from the initialization, and the queue cs. First, again a ephemeral key (y, gy) is
chosen, either freshly or from cs. Then, it is verified that X1, X2 are in the public key group
G∗η. Thereafter, the local session identifier ΨQ is computed by applying the hash function

H st to the ephemeral key gy. Thereafter, the two keys km, ks are derived from gx1skQ+x2y

by applying the hash function H to gx1skQ+x2y, the session information X1, X2, Y, pkQ, and
the protocol name Ace. Since we need km and ks for the proof to be independent, we
consider H is a random oracle in the proof. km is used for the key-confirmation message,
and ks is the resulting session key. Then, the key confirmation message is computed by
basically applying a Mac to all public information using the key km. Thereafter, we output
the session identifier, the session information, and as a network message the Mac tag, the
ephemeral key gy and a string Ace.

The algorithm CompKey is called by the client for completing the key-exchange. CompKey
expects the public key of the server Q, the network message (Ace, Y, tQ) from Q, and the
temporary session state (Q, (x1, x2), (gx1 , gx2)). First, we verify that Y is indeed a group
element of G∗η. Then, we compute the key confirmation key km and the session key ks
similar as in Resp, and verify the key confirmation message tQ from the server with km.
Thereafter, we output the session information (ks, Q, (X1, X2), (Y, pkQ)).

3The purpose of this hash function is merely to reduce the space of the session key; therefore, we only
need to require collision resistance.

253

8.4. PERFORMANCE COMPARISON

Init(Q, (η, new_session,Ace), cs):

if cs = ∅ then
x1, x2 ←R Gη
compute gx1 ,gx2

else
(x1, gx1), (x2, gx2)← pop(cs)

set session id Ψ← H st(gx1 , gx2)
set st(Ψ)← (Q, (x1, x2), (gx1 , gx2))
set m← (Ace, Q, (gx1 , gx2))
output (m, st(Ψ),Ψ)

Resp(skQ, Q, (η,Ace, X1, X2), cs):

if cs = ∅ then y ←R Gη else y ← pop(cs)
verify that X1, X2 ∈ G∗η
set session id ΨQ ← H st(gy)

compute (km, ks)← H (X
skQ
1 ·Xy

2 , g
x1 , gx2 , gy , gb,Ace)

compute tQ ← Mac(km, (Q, gy , X1, X2,Ace, server))
set mQ ← (Ace, gy , tQ)

out ← (ks, ?, (X1, X2), (gy , gskQ))
output (mQ, out ,ΨQ)

CompKey(pkQ, (η,Ace, Y, tQ),Ψ, (Q, (x1, x2), (gx1 , gx2))):

verify that Y ∈ G∗η
compute (km, ks)← H (pkx1Q · Y

x2 , gx1 , gx2 , gy , gb,Ace)

if Mac(km, (Q,Y, gx1 , gx2 ,Ace, server)) = tQ then
out ← (ks, Q, (gx1 , gx2), (Y, pkQ))
output out

If any verification fails, the party erases all session-specific information and aborts the session.

Figure 8.2.: The Ace protocol: Gη is the group of the secret keys, G∗η is the group of the

public keys. Gen(1η) outputs a pair (x, gx) for a random element x of Gη.

8.4. Performance Comparison

In this section, we compare the performance of the Ace protocol with the relevant key
agreement protocols.

We consider η = 128-bit security and use the elliptic curve cryptographic (ECC) setting
with points (compressed form) of size p = 256 bits, such as provided by Dan Bernstein’s
Curve25519 [Ber06]. For the finite field setting (F), we consider a DH modulus of size
just p = 2048 bits to model 128-bit security. In these setting, we compare computational
efficiency and message sizes of our protocol with the TAP protocol, the A-DKHE proto-
col [Sho99], the fourth protocol by Øverlier and Syverson, the multi-pass pairing-based
onion routing (PB-OR) protocol [KZG10] and the ntor protocol.

8.4.1. Computational Efficiency

Table 8.1 compares computational efficiency and security of the above mentioned relevant
key exchange schemes. We also include the unauthenticated and insecure Diffie-Hellman
(DH) key exchange protocol to set the baseline for the required computation, where one
(online) exponentiation is enough on both client and server sides. The TAP protocol also

254

CHAPTER 8. ACE: AN EFFICIENT KEY-EXCHANGE PROTOCOL

Table 8.1.: Comparison between computational cost of relevant key exchange schemes for
128-bit security

Protocol Exponentiations (client) Exp. (server) Security
Off-line On-line Off-line On-line

DH 1 1 1 1 insecure
A-DHKE [Sho99] 1 1 + 1∗ 1 1 + 1∗ secure
TAP [DMS04] 1 1 + 1† 1 1 + 1† secure
ØS [vS07] 1 1 1 1 insecure
Multi-pass PB-OR [KZG10] 1 1 + 1‡ 1 1 + 1‡ secure
ntor [GSU12] 1 2 1 1.33 tight
Ace (this paper) 2 1.08(1.17) 1 1.08(1.17) tight

∗ A-DHKE requires a signature generation on the server side and a signature verification on the client side.
† TAP requires an RSA encryption on the client side and an RSA decryption on the server side.
‡ Multi-pass PB-OR requires a bilinear pairing on both client and server sides.

requires one exponentiation on both sides; however, it requires one RSA encryption on the
client side and one RSA decryption on the server side, and the latter operation increases
the server-side computational cost significantly.

The fourth protocol by Øverlier and Syverson is although as efficient as the unauthen-
ticated DH key exchange, it is insecure. The ntor protocol requires two exponentiations
on both client and server sides; however, the two exponentiations on the server side use
the same base, and they can be parallelized [MN96] to reduce the computational cost
to 1.33 exponentiations for η = 128. Although our Ace protocol näıvely also requires
two exponentiations on both client and server sides, exponentiations on both sides are
actually multi-exponentiations and using Shamir’s trick [MOV97, Algo. 14.88] can be
reduced to only 1.17 exponentiations on both sides for η = 128. In the ECC setting, where
group inverses come for free, the number of exponentiations can be further reduced to 1.08
exponentiations using Avanzi’s algorithm [Ava05] based on a sliding windows method for
the joint sparse form [Sol01].

The A-DHKE protocol uses one signature generation on the server side and one signature
verification on the client side alone with one exponentiation on each side for the session-key
computation, and its efficiency depends upon the efficiency of the signature scheme used.
In our ECC Curve25519 setting, the signature generation is expensive and A-DHKE is
significantly inefficient than the Ace protocol. However, Bernstein et al. find that high-
speed signatures are possible using table lookups and a twisted Edwards curve [BDLSY11].
Using this signature scheme, server-side computation for A-DHKE may become nearly
equal to a single exponentiation. (See the discussion on the tor-dev mailing list [Mat12a].)
Nevertheless, we observe that the multi-exponentiation techniques used in the Ace protocol
can also benefit from table lookups; hence, the performance of Ace protocol will remain
comparable to A-DHKE over the twisted Edwards curve.

We also include the multi-pass PB-OR protocol in our comparison for completeness.
It asks for a bilinear pairing along with an exponentiation on both sides. However, the
protocol belongs to the identity-based setting and the capability of the Tor network to
implement the required setup assumptions is not clear.

255

8.5. SECURITY ANALYSIS

upon sendP (params, Q):

(msg, st,Ψ)← Init(Q, params, cs)
akestP (Ψ)← (Q, st); send (msg,Ψ)

upon sendP (Ψ, msg) and akestP (Ψ) = ⊥:

(msg′, (k, ?, st),Ψ)← Resp(skP , P, msg, cs)
resustP (Ψ)← (k, ?, st)
send msg′

upon sendP (Ψ, msg) and akestP (Ψ) 6= ⊥:

(Q, st)← akestP (Ψ); check for a valid pkQ
(k,Q, st)← CompKey(pkQ, msg,Ψ, (Q, st))

erase akestP (Ψ); resustP (Ψ)← (k,Q, st)

upon reveal_nextP :

(x,X)← Gen(1η); append (x,X) to cs
send X

upon partnerP (X):

if a key pair (x,X) is in the memory

then send x

upon sk_revealP (Ψ):

if resustP (Ψ) = (k,Q, st) then send k

upon establish_certificate(Q, pkQ):

register the public key pkQ for the party Q

upon testP (Ψ): (one time query)

(k,Q, st)← resustP (Ψ)
if k 6= ⊥ and Q 6= ? and Ψ is 1W-AKE fresh then

if b = 1
then send k
else send k′ ←R {0, 1}|k|

for every query (consistency check)

if in a client session only one key Xi is partnered
then

send X3−i

Figure 8.3.: 1W-AKE Security Challenger: Chke
b(1

η). If any invocation outputs ⊥, the
challenger erases all session-specific information for that session and aborts
that session.

8.4.2. Message Sizes

All of the above discussed relevant key exchange protocols except our Ace protocol require
one group element to be communicated from the client to the server.4 For η = 128, this
asks for 256 bytes in the finite field setting, and 32 bytes in the ECC setting. In our Ace
protocol, the client communicates two group elements to the server. In the finite field
setting, this asks for 512 bytes in the finite field setting, and 64 bytes in the ECC setting.

However, the Tor uses cells of size 512 bytes, and in the ECC setting, sending 64
bytes instead of 32 bytes does not affect the Tor protocol. As the ECC setting is under
consideration for the Tor protocol [Mat12b], we find our protocol to be more aptly suited
to replace TAP instead of ntor .

8.5. Security Analysis

This sections presents a security analysis of Ace. First, Section 8.5.1 reviews the security
requirements for 1W-AKE protocol. Second, Section 8.5.2 discusses the security of Ace.

8.5.1. Security Definition of Anonymous 1W-AKE

We already presented these definitions in Section 7.4.3 but recall them here for the sake
of readability. Goldberg, Stebila, and Ustaoglu [GSU12] formalize the security of a 1W-
AKE protocol between an anonymous client and an authenticated server by requiring
the following three properties. First, the protocol should produce correct results if both
parties are honest (correctness). Second, even a malicious attacker that can compromise

4Note that the client communicates an RSA-encrypted group element in TAP.

256

CHAPTER 8. ACE: AN EFFICIENT KEY-EXCHANGE PROTOCOL

single sessions and introduce fake identities cannot learn anything about the session key of
uncompromised sessions (1W-AKE security). In particular, 1W-AKE security implies that
the attacker cannot impersonate a server. Third, a server should not be able to see any
difference while communicating with two different clients (1W-anonymity). In this section,
we review the three notions Correctness, 1W-AKE security, and 1W-anonymity.

A 1W-AKE protocol is a tuple of ppt algorithms AKE = (Gen, Init ,Resp,CompKey).
Gen is called for generating temporary asymmetric keys, Init is called at the client for
starting a 1W-AKE, Resp is called at the server for responding to a 1W-AKE initialization,
and CompKey is again called at the client for verifying the key confirmation message and
computing the key. We assume that every party P ∈ {P1, . . . , Pn} can register public keys,
and every party can obtain certificates for other parties’ public keys and verify them.

Correctness of 1W-AKE. Correctness states that if all parties behave honestly, the
protocol succeeds. Also, the correctness property requires the 1W-AKE algorithms to finally
output a vector

→
v = (v1, v2) that contains all ephemeral information and the long-term

public key. For Ace,
→
v = ((gx1 , gx2), (gy, gskP)), where x1, x2 are the ephemeral secret keys

of the client for that session, y is the ephemeral secret key of the server P ∈ {P1, . . . , Pn}
for that session, and skP is the secret long-term key of the server. Moreover, the 1W-AKE
algorithms output the session key ks, and the ID of the peer party, where the client outputs
the actual ID of the server, and the server only outputs ?, since the client is anonymous.

Definition 89. (Correctness of 1W-AKE) Let a PKI be given, i.e., for every party
P ∈ {P1, . . . , Pn} every party knows a (certified) public key pkP and P itself also knows
the corresponding secret key skP . Let AKE := (Gen, Init , Resp, CompKey) be a tuple of
polynomial-time bounded randomized algorithms. We say that AKE is a correct one-way
authenticated key exchange protocol if the following holds for all parties A,B:

Pr
[
(msg, st,Ψ)← Init(Q,m, cs),

(msg′, (k, ?,
→
v),ΨQ)← Resp(skQ, Q, msg, cs),

(k′, Q,
→
v
′
)← CompKey(pkQ, msg

′,Ψ, st)

: k = k′ and
→
v =

→
v
′]

= 1.

1W-AKE Security. We require that the attacker does not learn anything about the key
and is not able to impersonate honest parties. This notion is formalized by requiring that
even in the presence of an attacker that can send commands to each party, establish several
concurrent sessions, compromise servers and issue fake identities servers, cannot learn a
single bit of each party’s session key once the key exchange is successfully completed.

More precisely, we construct a ppt machine Chke, called the challenger, that represents
honest parties (P1, . . . , Pn) and allows the attacker a fixed set of queries (see Figure 8.3).
This challenger internally runs the 1W-AKE algorithms AKE . The definition basically
states that an attacker breaks the 1W-AKE security if in the end it successfully distin-
guishes a randomly chosen session key from the actually established session key for an
uncompromised session Ψ. For this challenge, the attacker sends a query testP (Ψ) to Chke.
For triggering the initiation of a session, triggering the response to a key exchange, and
for completing a key exchange, Chke allows the attacker to send a query sendP (m). For

257

8.5. SECURITY ANALYSIS

compromising parties, the attacker can query three different types of messages. First, the
attacker can ask party P to reveal the next public key that will be chosen with the query
reveal_nextP . Second, the attacker can ask for a secret key for a corresponding public key
X using the query partnerP (X). Third, the attacker can ask for the session key of a session
Ψ with the query sk_revealP (Ψ). Finally, the attacker can also register new long-term
public keys pkQ for unused identities Q with the query establish_certificate(Q, pkQ).

The challenger Chke maintains several variables for every party P . A variable v for a
party P is denoted as vP . First, the challenger maintains the key exchange state akestP (Ψ)
for a party P and a session Ψ. This key exchange state stores the ephemeral secret keys
that will be erased after the key exchange is completed. Then, Chke gets as input the
public parameters params, typically containing the security parameter η and the name
of the protocol. The challenger furthermore maintains for every party P the result state
resustP (Ψ) of a completed session Ψ. This result state contains the established key, the peer
party, which is ? for the server P since the client is anonymous, and a state st that typically
contains two vectors v1, v2 that contain the ephemeral public keys and the long-term keys
used for establishing the session key of Ψ. In the case of ntor , v1 contains the client’s
ephemeral key X = v1 and v2 contains the server’s long-term key B and ephemeral key
Y , i.e., (Y,B) = v2. Recall that in the case of Ace v1 contains the two ephemeral keys
(X1, X2) = v1 and v2 is the same as in ntor , i.e., (Y,B) = v2.

For characterizing those secret keys that are used in a key exchange and have not been
leaked to the attacker yet, we introduce the notion of the attacker not being a partner to a
ephemeral public key X. Formally, the attacker is a partner for a public value X if one of
the following conditions hold true.

• X was not used yet.

• X is public key that the attacker registered using the query
establish_certificate(Q,X).

• X was the response of a query sendP or reveal_nextP and there is a successive
query partnerP (X).

We stress that unused values also include all values that are only chosen by the attacker;
hence the attacker is with overwhelming probability a partner to all self-chosen values.

Moreover, we assume that if an attacker learns from a client one ephemeral key Xi of a
session Ψ, then the attacker also learns the other ephemeral key X3−i of that session. We
ensure this by making a consistency check for all partnered values for every query. Even
though this modification is particular to key exchange protocol in which the client sends
two ephemeral keys, this modification looks natural to us.

Goldberg, Stebila, and Ustaoglu proposed a freshness notion for the challenge session,
in order to prevent the attacker from trivially winning the game. We call their freshness
condition single value 1W-AKE freshness. We say that a session Ψ at a party P is single
value 1W-AKE fresh if the following two conditions hold:

1. Let (k,Q, st)← resustP (Ψ) (see Figure 8.3). For every vector vj in st there is at least
one element X in vj such that the attacker A is not a partner to X.

2. For the session Ψ such that akestP (Ψ) = (v,Q), the adversary did not issue
sk_revealQ(Ψ′) for any Ψ′ such that akestQ(Ψ′) = (v, ?).

The protocol Ace presented in this work, uses two ephemeral keys for the client, i.e.,

258

CHAPTER 8. ACE: AN EFFICIENT KEY-EXCHANGE PROTOCOL

upon start(i, j, params,Q): (one time query)

if i 6= j then
if b = 1 then i∗ ← i else i∗ ← j
send sendPi∗ (params, Q) to IChke

1(1η)
wait for the response (Ψ∗, msg′)
send msg′ to A

upon send(msg):

forward sendPi∗ to IChke
1(1η)

upon reveal_next:

forward reveal_nextPi∗ to IChke
1(1η)

upon sk_reveal:

forward sk_revealPi∗ (Ψ∗) to IChke
1(1η)

upon partner(X):

forward partnerPi∗ (X) to IChke
1(1η)

Figure 8.4.: The anonymizing machine Chan
b(1

η): I Chke
1(1η) is an internally emulated

copy of Chke
1(1η)

v1 = (gx1 , gx2) and as ntor one ephemeral key gy for the server and the long-term key gb

of the server, i.e., v2 = (gy, gb). The key is then deterministically derived from gbx1+yx2 .
Since gbx1+yx2 is computable for any attacker that is a partner to the pair (x2, b) or the
pair (x1, y), we need to exclude these cases in order to prevent the attacker from trivially
winning. We say that a session is double value 1W-AKE fresh if it is single value 1W-AKE
fresh and the following condition holds:

3. Let (k,Q, ((X1, X2), (Y,B)))← resustP (Ψ). The attacker is not a partner of the pair
(X1, Y) or (X2, B).

We call a double value 1W-AKE fresh session a fresh 1W-AKE session.

As depicted in Figure 8.3, we consider two challengers Chke
0 and Chke

1. Chke
0 sends

a randomly chosen key as a response, and Chke
1 sends the actually established key as a

response. Upon successful key exchange with a server Q, a key k, and the transcript v1, v2,
a client outputs a tuple (k,Q, (v1, v2)). A server outputs (k, ?, (v1, v2)) for denoting that
the peer party is anonymous.

Definition 90. (1W-AKE-security) Let η be the security parameter. A protocol π is said
to be 1W-AKE-secure if, for all ppt adversaries A, the following difference is negligible in
η:

|Pr[b∗ ← 〈A(1η),Chke
0(1η)〉 : b∗ = 1]

− Pr[b∗ ← 〈A(1η),Chke
1(1η)〉 : b∗ = 1]|

1W-Anonymity. A one-way authenticated key exchange is able to provide anonymity
for the unauthorized client; this client-side anonymity is called 1W-anonymity. Formally,
1W-anonymity means that the attacker cannot link a key exchange through an anonymized
channel (e.g., Tor) with a key exchange through a direct connection. More formally, we
consider the following scenario.

The attacker can communicate with all parties directly, which is modeled by the 1W-AKE
challenger Chke

1 (see Figure 8.3). In addition, the attacker chooses two candidate parties
for a key exchange challenge session Ψ∗ over an anonymous channel. This anonymous
channel is modeled by the ppt machine Chan (presented in Figure 8.4). Chan selects one
of the two candidate parties. Finally, the attacker has to guess which of the two parties
has been selected in the challenge session.

259

8.5. SECURITY ANALYSIS

In order to prevent the attacker from trivially learning the identity of the correct candidate,
we have to exclude the cases in which the attacker peaks into the state of the candidate
parties. Formally, we require that Chan internally runs a copy of the 1W-AKE challenger
Chke. We denote the internal copy of Chke as I Chke (see Figure 8.4).

Definition 91. (1W-anonymity) Let η be the security parameter. Let M,N be ppt
interactive turing machines. Let v ← 〈A(1η),M(1η), N(1η)〉 denote the interaction between
A and M and A and N and v be the output of A. A protocol AKE is said to be 1W-
anonymous if, for all PPT adversaries A, the following difference is negligible in η

|Pr[b∗ ← 〈A(1η),Chan
0(1η),Chke

1(1η)〉 : b∗ = 1]

− Pr[b∗ ← 〈A(1η),Chan
1(1η),Chke

1(1η)〉 : b∗ = 1]|

8.5.2. The Security of Ace

At this point, we are able to analyze the security of Ace. We first show that no information
about the session key is leaked by proving 1W-AKE security for Ace. Then, we show that
a Ace session cannot be linked to another Ace session by proving 1W-anonymity for Ace.

Lemma 52 (Ace is 1W-AKE secure). If H st is a collision resistant hash function, Mac is
universally unforgeable against chosen message attacks (CMA-UF), and H is a random
oracle, the protocol Ace is 1W-AKE-secure in the sense of Definition 90 under the GDH
assumption.5

More precisely, for every machine A that breaks the 1W-AKE security of Ace with
probability µ and runs in time t, there exists a bound q ≥ 1 on the number of sessions and
a machine Sq that breaks the GDH assumption with a probability of more than

(
2
|P |
)
µ/(q|P |)

and runs in time O(t), where |P | is the number of honest servers.

Proof. Let Game1 be the original setup with the Chke
1 challenger against the attacker A.

Game2 is the faking game with the Chke
0 challenger: upon a testP (Ψ)-query Chke

0

sends a randomly chosen key k instead of the real key ks for (km, ks)← H (gbx1+yx2 , gx1 , gx2 ,
gy, gb, Ace). Since H is a random oracle km is completely independent of ks; hence, no
information about the challenge key ks is leaked by using km for the Mac. Moreover, we
show below that by the gap DH assumption gbx1+yx2 cannot be computed from gx1 , gx2 ,
gy, and gb.

We construct a ppt reduction Sq against the GDH challenger for an attacker A that
distinguishes Game1 from Game2 but only allows q session-queries. Moreover, this reduction
Sq also simulates the random oracle. Let P = {P1, . . . , Pn} be the set of parties. We show
that there is a q such that Sq that solves the GDH problem with probability

(
2
|P |
)
µ/(q|P |)

if A breaks the 1W-AKE security with probability µ, where q ≤ p(η) and p is the runtime
polynomial of the attacker A. Let (g, gu, gv) be the GDH challenge. Moreover, the runtime
of Sq is asymptotically the same as the runtime of A.

5The GDH assumption states that the computational DH assumption holds even against an attacker that
has access to a decisional DH oracle [OP01].

260

CHAPTER 8. ACE: AN EFFICIENT KEY-EXCHANGE PROTOCOL

Sq: upon initialization

ask the GDH challenger for a DH tuple (g, gu, gv)
draw b←R {0, 1}
if b = 1 then

draw i←R {1, . . . , q}
else

draw i←R {1, . . . , |P |}
replace pkPi

= gb of party Pi with gv

draw j ←R {1, . . . q}

Sq: upon sendP (params, Q):

/* if the client is called for the first protocol message
*/
if b = 1 and it is the ith session then

replace gx2 with gu

honestly choose gx1

if b = 0 ∧Q = Pi and it is the jth session then
replace gx1 with gu

honestly choose gx2

proceed as in (msg, st,Ψ)
← Init(Q, (η, new_session,Ace), cs)

/* recall that cs is maintained by the challenger */
akestP (Ψ)← (Q, st); send (msg,Ψ)

Sq: upon sendP (Ψ, (η,Ace, gx1 , gx2)) and
akestP (Ψ) = ⊥

/* if the server is called */
if b = 1 and Ψ is the ith session then

replace gy with gv

honestly choose gb

draw r = (km, ks) at random from the range of
RO
store faked(gx1 , gx2 , gv , gb,Ace)← r

else
replace pkPi

= gb of party Pi with gv

honestly choose gy

draw r = (km, ks) at random from the range of
RO
store faked(gx1 , gx2 , gy , gv ,Ace)← r

proceed as in (msg′, (k, ?, st),Ψ) ←
Resp(skP , P, msg, cs)
resustP (Ψ)← (k, ?, st); send msg′

Sq upon sendP (Ψ, (η,Ace, Y, tQ)) and akestP (Ψ) 6=
⊥

/* if the client is called with the response of the
server */
lookup (Q, (x1, x2), (gx1 , gx2))← akestP (Ψ)
check for a valid pkQ
if faked(gx1 , gx2 , gy , gb,Ace) is defined then

lookup (km, ks) = r ← faked(gx1 , gx2 , gy , gb,Ace)
if gv = gb (pkQ = gb) then

query (g, gb, gx1 , Z/gyx2) to the DDH oracle
else if gv = Y = gy then

query (g, gy , gx2 , Z/gbx1) to the DDH oracle
if the DDH oracle confirms then

program RO(Z, gx1 , gx2 , gy , gb,Ace) := r
proceed as in (k,Q, st)
← CompKey(pkQ, msg,Ψ, (Q, st))

erase akestP (Ψ); resustP (Ψ)← (k,Q, st)

Sq simulating the RO: upon (Z, gx1 , gx2 , gy , gb,Ace)

if (gu, gv) = (gx1 , gb) then
query (g, gu, gv , Z/gyx2) to the DDH oracle
if the DDH oracle confirms then

send Z/gyx2 as a guess and stop
else if (gu, gv) = (gx2 , gy) then

query (g, gu, gv , Z/gbx1) to the DDH oracle
if the DDH oracle confirms then

send Z/gbx1 as a guess and stop
if RO(Z, gx1 , gx2 , gy , gb,Ace) = r is defined then

respond with r
else

draw r = (km, ks) at random from the range of
RO
program RO(Z, gx1 , gx2 , gy , gb,Ace) := r

Figure 8.5.: The simulator Sq

The reduction Sq answers all queries honestly, except for partner(gu) or partner(gv)
queries. In these cases Sq aborts the simulation. If the attacker stops, Sq draws a random
group element and sends it as a blind guess to the GDH challenger. The simulator Sq cannot
compute gbx1+yx2 if the GDH challenge exponent v equals b. Since, however, gbx1+yx2 is
never sent in plain but always hashed and Sq also simulates the random oracle, these hashes
can be faked without knowing the input.

Besides, the simulator acts as specified in Figure 8.5.

Recall that we required the challenge session to be fresh. Let (gx1 , gx2) be the ephemeral
keys of the client, gy be the ephemeral key of the server, and gb be the long-term key of
the server. By the freshness of the challenge session, we conclude that with overwhelming
probability the attacker at most a partner to (x2, y) or to (x1, b). Hence, it suffices to
consider these two cases in which the attacker is not a partner to (x2, y) or not to (x1, b).

If A is not a partner to (x1, b), then Sq either knows x2 or y and can hence compute
gyx2 . Moreover, with probability 1/(q|P |) we have b = v and x1 = u. Then, the simulator

261

8.5. SECURITY ANALYSIS

guesses guv correctly if Z is the shared secret, i.e., if Z = gbx1+yx2 , since

Z/gyx2 = gbx1+yx2−yx2 = guv+yx2−yx2 = guv.

If A is not a partner to (x2, y), then Sq knows x1 or b and can hence compute gbx1 . We
stress that the attacker cannot send a maliciously chosen y′ (such as y′ = 0) because a
successful forgery of the MAC tag would lead to an attack against the CMA-UF property
of Mac. Then, with probability 1/q we have x2 = u and y = v. Then, again the simulator
guesses guv correctly if Z is the shared secret, i.e., if Z = gbx1+yx2 , since

Z/gbx1 = gbx1+yx2−bx1 = gbx1+uv−bx1 = guv.

Note that for z = uv, Sq is indistinguishable from Game1 as long as partner(gu) and
partner(gv) is not queried. Similarly for a randomly chosen z, Sq is indistinguishable
from Game2 as long as partner(gu) and partner(gv) is not queried. Below, we denote
this event that partner(gu) and partner(gv) is not queried as T . The probability that T
occurs is more than

(
2
|P |
)

= 2
|P |(|P |−1) , where P is the set of parties.

We conclude that if the attacker can distinguish Game1 from Game2 with more than
negligible probability, then the attacker queried the random oracle with

(gbx1+yx2 , gx1 , gx2 , gy, gb,Ace).

The overall winning probability of the simulator Sq can, hence, be computed as follows.
Let E1 be the event that the attacker is not a partner to (x2, y) and E2 the event that the
attacker is not a partner to (x1, b). Recall T is the event that partner(gu) and partner(gv)
has not been queried. Moreover, let W be the event that the simulator Sq wins against
the GDH challenger, and µ be the probability that the attacker distinguishes Game1 from
Game2. Then, we get

Pr[W] = Pr[E1] · Pr[W | E1] + Pr[E2] · Pr[W | E2]

= Pr[E1] · µ

q|P | · Pr[T] + Pr[E2] · µ
q
· Pr[T]

≥ Pr[E1] · µ

q|P | ·
(

2

|P |

)
+ Pr[E2] · µ

q
·
(

2

|P |

)

(1)

≥
(

2

|P |

)
µ

(q|P |) =
2µ

q|P |2(|P | − 1)

where (1) holds since Pr[E1] + Pr[E2] = 1.

Hence, Sq breaks the GDH game with probability more than
(

2
|P |
)
µ/(q|P |) if the attacker

distinguishes Game1 from Game2 with probability µ. In particular, if the GDH assumption
holds Game2 is indistinguishable from the real setting Game1, and the 1W-AKE security
holds.

The proof for the 1W-anonymity of Ace is almost exactly the same as the proof of the
1W-anonymity of ntor [GSU12]. Therefore, we refer for the proof to their work and only
state the result.

Lemma 53 (Ace is 1W-anonymous). The Ace protocol is 1W-anonymous in the sense of
Definition 91.

262

Conclusion

8.6. Conclusion

Ace is a novel and provably secure 1W-AKE protocol, and we propose it for use in the next
generation of Tor’s circuit establishment protocol. Compared to the current key-exchange
protocol (ntor), Ace offers a client-side efficiency improvement of 46% and a server-side
efficiency improvement of nearly 19%. Even though Ace requires the client to send one
additional group element, it does not produce any communication overhead in Tor as Ace
only occupies some of the unused space in a Tor packet, in the ECC setting. Given that
the ECC setting is under consideration for the Tor system, the improved computational
efficiency, and the proven security properties make our 1W-AKE an ideal candidate for use
in the Tor protocol.

263

Conclusion

The Tor Authentication Protocol (TAP)

(no long-term keys)
Client Server (long-term keys (skB , pkB))

x←R G
Enc(pkB ,g

x)

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
(gy)x = gyx gxy = (gx)y (shared secret gxy)

The A-DHKE Protocol

Client Server (long-term keys (skB , pkB))

x←R G
gx

−−−−−−−−−−−−−−−−→ y ←R G
gy,Sig(skB ,g

x,gy)

←−−−−−−−−−−−−−−−−
(gy)x = gyx gxy = (gx)y (shared secret gxy)

The ØS Protocol

Client Server (long-term keys (b, gb))

x←R G
gx

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
(gygb)x = g(b+y)x gx(b+y) = (gx)y+b (shared secret gx(b+y))

An Attack on the ØS Protocol

Client A (long-term keys (b, gb))

x←R G
gx

−−−−−−−−−−−−−−−−→ y ←R G
gy/gb=gy−b

←−−−−−−−−−−−−−−−−
(gy−bgb)x = gyx gxy = (gx)y (shared secret gxy)

The ntor Protocol

Client Server (long-term keys (b, gb))

x←R G
gx

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
H ((gy)x, (gb)x) H ((gx)y , (gx)b)

= H (gyx, gbx) = H (gxy , gxb) (session key H (gxy , gxb))

The Ace Protocol

Client Server (long-term keys (b, gb))

x1, x2 ←R G
gx1 ,gx2

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
(gb)x1 (gy)x2 (gx1)b(gx2)y

= gx1b+x2y = gx1b+x2y (shared secret gx1b+x2y)

Figure 8.6.: A comparative overview over all discussed protocols: G is the exponent group.
For the sake of readability, we neglected the session information used for the
key derivation and the key confirmation message.

264

Chapter 9.

Conclusion

In this thesis we presented work on two kinds of abstractions: symbolic abstractions and
ideal functionalities. For symbolic abstractions, we first presented a generalization of the
CoSP framework to equivalence properties we extend the CoSP framework to equivalence
properties, and we showed that an existing embedding of the applied π-calculus to CoSP
can be re-used for uniform bi-processes. On the verification side, as analyses in ProVerif
with symbolic length functions often do not terminate, we showed how to combine the
recent protocol verifier APTE with ProVerif.

Thereafter, we presented a computationally sound, symbolic abstraction of malleable ZK
proofs that is accessible to existing tools for automated verification of security protocols.
In particular, we developed an equational theory that captures the semantics of malleable
ZK proofs . We proved the computational soundness of our abstraction with respect to
trace properties.

Moreover, we devised symbolic abstractions for interactive primitives. As a first step,
we devised an abstraction of secure multi-party computations in the applied π-calculus.
Based on this abstraction, we proposed a methodology to mechanically analyze the security
of cryptographic protocols employing secure multi-party computations. We exemplified
the applicability of our framework by analyzing the SIMAP sugar-beet double auction
protocol. We finally studied the computational soundness of our abstraction, proving that
the analysis of protocols expressed in the applied π-calculus and based on our abstraction
provides computational security guarantees.

Interactive cryptographic primitives, such as interactive zero-knowledge proofs or blind
signatures, achieve unique security properties that are impossible to achieve for non-
interactive primitives, e.g., in an interactive zero-knowledge proofs the verifier can not
prove to a third party that the prover issued a convincing proof. Canetti introduced a
framework for proving strong, composable security guarantees of interactive primitives,
called the UC framework, which has been widely used to prove UC-security of various
primitives.

As a second step, we presented a generalization to the large class of UC-secure interactive
primitives , such as interactive zero-knowledge proofs and blind signatures, for uniformity.
Moreover, our result is cast in the generalized CoSP framework for equivalence properties;
hence independent of the calculus. Our result can be combined with and is parametric
w.r.t. a given symbolic model.

Next, we identified a general condition under which CS for trace properties implies CS
for uniformity of bi-processes, i.e., the class of equivalence properties that ProVerif is
able to verify for the applied π-calculus. As a case study, we showed that this general
condition holds for a Dolev-Yao model that contains signatures, public-key encryption, and

265

corresponding length functions. We proved this result in the CoSP framework. Combined
with the results from the extension of the CoSP framework, we establish a computationally
sound automated verification chain for uniformity of bi-processes in the applied π-calculus
that use public-key encryption, signatures, and length functions.

In the area of anonymous communication, we addressed the gap between work on OR
protocols and existing OR anonymity analyses. In this work, we address both issues with
onion routing by defining a provably secure OR protocol, which is practical for deployment
in the next generation Tor network.

We first presented a security definition (an ideal functionality) for the OR methodology
in the universal composability (UC) framework. We then determine the exact security
properties required for OR cryptographic primitives (onion construction and processing
algorithms, and a key exchange protocol) to achieve a provably secure OR protocol. We
showed that the currently deployed onion algorithms with slightly strengthened integrity
properties can be used in a provably secure OR construction. In the process, we identified
the concept of predictably malleable symmetric encryptions, which might be of independent
interest and is a stateful variation of HCCA [PR08]. On the other hand, we find the
currently deployed key exchange protocol to be inefficient and difficult to analyze and
instead show that a recent, significantly more efficient, key exchange protocol can be used
in a provably secure OR construction.

In addition, our definition greatly simplifies the process of analyzing OR anonymity
metrics. We define and prove forward secrecy for the OR protocol, and realize our (white-
box) OR definition from an OR black-box model assumed in a recent anonymity analysis.
This realization not only makes the analysis formally applicable to the OR protocol but
also identifies the exact adversary and network assumptions made by the black box model.
This work has been the foundation for further provable analyses of Tor’s anonymity
guarantees [BKMM14; BKMMM13; BMM14].

Finally, we present a novel 1W-AKE protocol Ace that improves on the computation
costs of ntor : in numbers, the client has an efficiency improvement of 46% and the server of
nearly 19%. As far as communication costs are concerned, our protocol requires a client to
send one additional group element to a server, compared to the ntor protocol. However, an
additional group element easily fits into the 512 bytes fix-sized Tor packets (or cell) in the
elliptic curve cryptography (ECC) setting. Consequently, our protocol does not produce a
communication overhead in the Tor protocol. Moreover, we prove that our protocol Ace
constitutes a 1W-AKE. Given that the ECC setting is under consideration for the Tor
system, the improved computational efficiency, and the proven security properties make
our 1W-AKE an ideal candidate for use in the Tor protocol.

266

Appendix A.

The Source Code for the Sugar Beet Case
Study

(***

In this file, we model the sugar-beet double auction that has been implemented by

the SIMAP project in the applied pi calculus.

We define several predicates, which can be split into three categories. First, we

have the predicates that are used for the actual verification. The predicate INPUT

is used to signalize that and which input has been sent, and MCP is uesd to

characterize the policy. Second, we introduce the arithmetic predicate GE. Third,

we introduce message predicates, i.e., guards for the quantified; these guards are

needed for the computational soundness result.

**)

predicate INPUT(*3*).

predicate MCP(*2*).

predicate GE(*2*).

predicate ADD(*3*).

predicate MULT(*3*).

predicate SUB(*3*).

predicate EQUIV(*2*).

// The following predicates are message predicates, i.e., guards for

// quantified variables.

predicate P_ID_1(*1*).

predicate P_ID_2(*1*).

predicate P_ID_3(*1*).

predicate P_ID_4(*1*).

predicate P_ID_5(*1*).

predicate P_X_1_1(*1*).

predicate P_X_1_2(*1*).

predicate P_X_2_1(*1*).

predicate P_X_2_2(*1*).

predicate P_FLAG_1(*1*).

predicate P_FLAG_2(*1*).

predicate P_SID(*1*).

predicate P_DEC(*1*).

predicate P_MCP(*1*).

(***

Types

In this file, we define three more types upfront: The type T_sid, which is only a

synonym for the type Un. The type T_flag, which constitutes all integers that are

either 0 or 1. And, the type T_comparison_result, which carries the properties that

the output of the SMPC should have.

**)

type T_sid = s:Un | [*#P_SID(s)*].

type T_cert = <Private, Private, Private, Private, Private, Private, Un, Int>.

type T_flag = x:Int | [*#or(equal(x, string_null(empty())), equal(x, string_one(empty())))*] .

267

type T_comparison_result = <bi:Int, bd:Int, bsid:Un>

[*#exists([bx_1_1, bx_1_2, bflag_1, bx_2_1, bx_2_2, bflag_2, bid_4, bid_5,

bvar_s_1, bvar_s_2, bvar_b_1, bvar_b_2, bvar_b_1_1, bvar_b_2_1, bvar_s, bvar_b,

bvar_ss_1, bvar_ss_2, bvar_bb_1, bvar_bb_2, bvar_bb_1_1, bvar_bb_2_1, bvar_ss, bvar_bb,

bone_minus_one, btwo, btwo_minus_one],

and(and(and(P_X_1_1(bx_1_1), P_X_1_2(bx_1_2)), P_FLAG_1(bflag_1)),

and(and(and(P_X_2_1(bx_2_1), P_X_2_2(bx_2_2)), P_FLAG_2(bflag_2)),

and(and(and(and(P_ID_4(bid_4), P_ID_5(bid_5)), P_SID(bsid)),

not(equal(bid_4, bid_5))),

and(and(and(

implies(equal(bflag_1, string_one(empty())), GE(bx_1_1, bx_1_2)),

implies(equal(bflag_1, string_null(empty())), GE(bx_1_2, bx_1_1))),

INPUT(bid_4, <bflag_1, bx_1_1, bx_1_2>, bsid)),

and(and(and(

implies(equal(bflag_2, string_one(empty())), GE(bx_2_1, bx_2_2)),

implies(equal(bflag_2, string_null(empty())), GE(bx_2_2, bx_2_1))),

INPUT(bid_5, <bflag_2, bx_2_1, bx_2_2>, bsid)),

or(and(EQUIV(bi, string_one(empty())), EQUIV(bd, string_one(empty()))),

and(MULT(bx_1_1, bflag_1, bvar_s_1),

and(MULT(bx_2_1, bflag_2, bvar_s_2),

and(ADD(bvar_s_1, bvar_s_2, bvar_s),

and(SUB(string_one(empty()), bflag_1, bvar_b_1_1),

and(MULT(bx_1_1, bvar_b_1_1, bvar_b_1),

and(SUB(string_one(empty()), bflag_2, bvar_b_2_1),

and(MULT(bx_2_1, bvar_b_2_1, bvar_b_2),

and(ADD(bvar_b_1, bvar_b_2, bvar_b),

and(GE(bvar_s, bvar_b),

or(and(SUB(string_one(empty()), string_one(empty()), bone_minus_one),

and(EQUIV(bi, bone_minus_one),

and(EQUIV(bd, string_null(empty())),

and(GE(bvar_s, bvar_b),

not(equal(bvar_s, bvar_b))

)))),

and(MULT(bx_1_2, bflag_1, bvar_ss_1),

and(MULT(bx_2_2, bflag_2, bvar_ss_2),

and(ADD(bvar_ss_1, bvar_ss_2, bvar_ss),

and(SUB(string_one(empty()), bflag_1, bvar_bb_1_1),

and(MULT(bx_1_2, bvar_bb_1_1, bvar_bb_1),

and(SUB(string_one(empty()), bflag_2, bvar_bb_2_1),

and(MULT(bx_2_2, bvar_bb_2_1, bvar_bb_2),

and(ADD(bvar_bb_1, bvar_bb_2, bvar_bb),

or(and(ADD(string_one(empty()), string_one(empty()), btwo),

and(EQUIV(bi, btwo),

and(EQUIV(bd, string_one(empty())),

and(GE(bvar_bb, bvar_ss),

GE(bvar_b, bvar_s)

)))),

and(SUB(btwo, string_one(empty()), btwo_minus_one),

and(EQUIV(bi, btwo_minus_one),

and(EQUIV(bd, string_null(empty())),

and(GE(bvar_ss, bvar_bb),

and(GE(bvar_b, bvar_s),

not(equal(bvar_ss, bvar_bb))

)))))

)))))))))

)))))))))))

)))))

268

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

)

*]

.

(**

Policy

This process formalizes the properties that the final market clearing price

should have; namely, the market clearing price (bi) is the maximal price

such that the demand is greater than or equal to the supply.

***)

let MCP_Policy =

assume (*#forall([bi, bd, bid_4, bid_5, bx_1_1, bx_1_2, bflag_1, bx_2_1, bx_2_2, bflag_2, bsid,

bvar_s_1, bvar_s_2, bvar_b_1, bvar_b_2, bvar_b_1_1, bvar_b_2_1, bvar_s, bvar_b,

bvar_ss_1, bvar_ss_2, bvar_bb_1, bvar_bb_2, bvar_bb_1_1, bvar_bb_2_1, bvar_ss, bvar_bb,

bone_minus_one, btwo, btwo_minus_one],

implies(

and(and(and(P_ID_4(bid_4), P_ID_5(bid_5)), and(and(P_MCP(bi), P_DEC(bd)), P_SID(bsid))),

and(and(and(P_X_1_1(bx_1_1), P_X_1_2(bx_1_2)), P_FLAG_1(bflag_1)),

and(and(and(P_X_2_1(bx_2_1), P_X_2_2(bx_2_2)), P_FLAG_2(bflag_2)),

and(not(equal(bid_4, bid_5)),

and(and(true,

and(and(and(

implies(equal(bflag_1, one), GE(bx_1_1, bx_1_2)),

implies(equal(bflag_1, null), GE(bx_1_2, bx_1_1))),

INPUT(bid_4, <bflag_1, bx_1_1, bx_1_2>, bsid)),

and(and(

implies(equal(bflag_2, one), GE(bx_2_1, bx_2_2)),

implies(equal(bflag_2, null), GE(bx_2_2, bx_2_1))),

INPUT(bid_5, <bflag_2, bx_2_1, bx_2_2>, bsid)))

),

or(and(EQUIV(bi, string_one(empty())), EQUIV(bd, string_one(empty()))),

and(MULT(bx_1_1, bflag_1, bvar_s_1),

and(MULT(bx_2_1, bflag_2, bvar_s_2),

and(ADD(bvar_s_1, bvar_s_2, bvar_s),

and(SUB(string_one(empty()), bflag_1, bvar_b_1_1),

and(MULT(bx_1_1, bvar_b_1_1, bvar_b_1),

and(SUB(string_one(empty()), bflag_2, bvar_b_2_1),

and(MULT(bx_2_1, bvar_b_2_1, bvar_b_2),

and(ADD(bvar_b_1, bvar_b_2, bvar_b),

and(GE(bvar_s, bvar_b),

or(and(SUB(string_one(empty()), string_one(empty()), bone_minus_one),

and(EQUIV(bi, bone_minus_one),

and(EQUIV(bd, string_null(empty())),

and(GE(bvar_s, bvar_b),

not(equal(bvar_s, bvar_b))

)))),

and(MULT(bx_1_2, bflag_1, bvar_ss_1),

and(MULT(bx_2_2, bflag_2, bvar_ss_2),

and(ADD(bvar_ss_1, bvar_ss_2, bvar_ss),

and(SUB(string_one(empty()), bflag_1, bvar_bb_1_1),

and(MULT(bx_1_2, bvar_bb_1_1, bvar_bb_1),

and(SUB(string_one(empty()), bflag_2, bvar_bb_2_1),

and(MULT(bx_2_2, bvar_bb_2_1, bvar_bb_2),

and(ADD(bvar_bb_1, bvar_bb_2, bvar_bb),

or(and(ADD(string_one(empty()), string_one(empty()), btwo),

and(EQUIV(bi, btwo),

and(EQUIV(bd, string_one(empty())),

and(GE(bvar_bb, bvar_ss),

GE(bvar_b, bvar_s)

)))),

269

and(SUB(btwo, string_one(empty()), btwo_minus_one),

and(EQUIV(bi, btwo_minus_one),

and(EQUIV(bd, string_null(empty())),

and(GE(bvar_ss, bvar_bb),

and(GE(bvar_b, bvar_s),

not(equal(bvar_ss, bvar_bb))

)))))

)))))))))

)))))))))))

))))), MCP(bi, bsid)))

*)

.

(**

Certification issuer

The certification issuer is a trusted party that sends (in practice possibly

in advance) a signature of the id of that party, a list of participants,

the session id, and the set of prices to each party. The SMPC checks whether

this signature is valid and whether the information coincides with the actual

inputs of the parties.

***)

let certification_issuer = (

new sig_rand(*:Private*);

let secret_key = sk(<sig_rand, sig_rand, sig_rand, sig_rand, sig_rand, sig_rand, sid, two>)

(*:SigKey(T_cert)*) in

let ver_key = vk(<sig_rand, sig_rand, sig_rand, sig_rand, sig_rand, sig_rand, sid, two>)

(*:VerKey(T_cert)*) in

(

out(certification_channel_4, <(*=signature*)sign(<id_4, id_1, id_2, id_3, id_4, id_5, sid, two>,

secret_key)(*:Signed(T_cert)*),(*=verification_key*)ver_key(*:VerKey(T_cert)*)>

(*#Red(check(signature, verification_key),

<id_4, id_1, id_2, id_3, id_4, id_5, sid, two>)

*)) |

out(certification_channel_5, <(*=signature*)sign(<id_5, id_1, id_2, id_3, id_4, id_5, sid, two>,

secret_key)(*:Signed(T_cert)*),(*=verification_key*)ver_key(*:VerKey(T_cert)*)>

(*#Red(check(signature, verification_key),

<id_5, id_1, id_2, id_3, id_4, id_5, sid, two>)

*))

)

).

(**

bidder (2 instances)

The bidder process represents either a sugar-beet producer or a sugar-beet

buyer. In order to model arbitrary inputs of a certain form, we let the

inputs be received from a channel input_channel_i of an appropriate type,

which is refined with the properties that we require from an input.

This process receives the input over the channel input_channel_(i+3) and

the certificate over the channel certification_channel_(i+3). Then, it sends

its input consisting of the received ceritifate and the received input.

Thereafter, this process receives the result of the SMPC and asserts in case

the decision has been 0 the market clearing price predicate MCP, i.e., asserts

that this received price is the maximal price such that the demand is greater

than or equal to the supply. In case the decision is 1, the process proceeds

in that it waits for the next output of the SMPC.

**)

let bidder_1 = (

new input_channel_4(*:Ch(<f:T_flag, x1:Int, x2:Int>

270

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

[*#

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_4, <f, x1, x2>, sid))

)

]));

in(input_channel_4, private_input_4);

let <flag_1, x_1_1, x_1_2> = private_input_4 (*:<f:T_flag, x1:Int, x2:Int>

[*#

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_4, <f, x1, x2>, sid))

)

]) in

(

assume(*#and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1))*)

|

in(certification_channel_4, certificate_4);

out(in_4, <(*=bsid*)sid(*:Un*), <<(*=f*)flag_1(*:Int*), (*=x1*)x_1_1(*:Int*),

(*=x2*)x_1_2(*:Int*)>(*#

and(or(equal(f, null), equal(f, one)),

and(and(and(P_X_1_1(x1), P_X_1_2(x2)), P_FLAG_1(f)),

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_4, <f, x1, x2>, sid))

)))

), certificate_4(:<signature:Signed(T_cert), verification_key:VerKey(T_cert)>[*#

Red(check(signature, verification_key),

<id_4, id_1, id_2, id_3, id_4, id_5, sid, two>)

])>>);

in(output_channel_4, xoutput);

let <price, decision, ssid> = xoutput in

(

assume (*#P_MCP(price)*) | assume (*#P_DEC(decision)*)

|

if decision = null then

(

if price = one_minus_one then

(

assert (*#MCP(price, ssid)*)

)

)

else

// if decision = one

if price = one then

(

in(output_channel_4, xoutput_1);

let <price_1, decision_1, ssid_1> = xoutput_1 in

(

assume (*#P_MCP(price_1)*) | assume (*#P_DEC(decision_1)*)

|

271

if price_1 = two_minus_one then

(

assert (*#MCP(price_1, ssid_1)*)

)

else

let tmp_2 = two in

if price_1 = tmp_2 then

(

assert (*#MCP(price_1, ssid_1)*)

))))

)

).

let bidder_2 = (

new input_channel_5(*:Ch(<f:T_flag, x1:Int, x2:Int>

[*#

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_5, <f, x1, x2>, sid))

)

]));

in(input_channel_5, private_input_5);

let <flag_2, x_2_1, x_2_2> = private_input_5 (*:<f:T_flag, x1:Int, x2:Int>

[*#

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_5, <f, x1, x2>, sid))

)

]) in

(

assume(*#and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2))*)

|

in(certification_channel_5, certificate_5);

out(in_5, <(*=bsid*)sid(*:Un*), <<(*=f*)flag_2(*:Int*), (*=x1*)x_2_1(*:Int*),

(*=x2*)x_2_2(*:Int*)>(*#

and(or(equal(f, null), equal(f, one)),

and(and(and(P_X_2_1(x1), P_X_2_2(x2)), P_FLAG_2(f)),

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_5, <f, x1, x2>, sid))

)))

), certificate_5(:<signature:Signed(T_cert), verification_key:VerKey(T_cert)>[*#

Red(check(signature, verification_key),

<id_5, id_1, id_2, id_3, id_4, id_5, sid, two>)

])>>);

in(output_channel_5, xoutput);

let <price, decision, ssid> = xoutput in

(

assume (*#P_MCP(price)*) | assume (*#P_DEC(decision)*)

|

if decision = null then

272

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

(

if price = one_minus_one then

(

assert (*#MCP(price, ssid)*)

)

)

else

// if decision = one

if price = one then

(

in(output_channel_5, xoutput_1);

let <price_1, decision_1, ssid_1> = xoutput_1 in

(

assume (*#P_MCP(price_1)*) | assume (*#P_DEC(decision_1)*)

|

if price_1 = two_minus_one then

(

assert (*#MCP(price_1, ssid_1)*)

)

else

if price_1 = two then

(

assert (*#MCP(price_1, ssid_1)*)

))))

)

).

(**

computation server (3 instances)

The process server_i represents the computation servers. The computation

servers send a start_round message to the ideal Process SMPC and assert upon

receiving the result the policy if the decision is 0; otherwise it sends the

command for the computation of the next round. These computation servers are

introduced in the real implementation for effficiency reasons.

***)

let server_1 =

out(in_1, <sid(*:T_sid*), start_round(*:Private*)>);

(

in(output_channel_1, xoutput);

let <price, decision, ssid> = xoutput in

(

assume (*#P_MCP(price)*) | assume (*#P_DEC(decision)*)

|

if decision = null then

(

if price = one_minus_one then

(

assert (*#MCP(price, ssid)*)

)

)

else

// if decision = one

if price = one then

273

(

out(in_1, <sid(*:T_sid*), start_round(*:Private*)>);

in(output_channel_1, xoutput_1);

let <price_1, decision_1, ssid_1> = xoutput_1 in

(

assume (*#P_MCP(price_1)*) | assume (*#P_DEC(decision_1)*)

|

if price_1 = two_minus_one then

(

assert (*#MCP(price_1, ssid_1)*)

)

else

if price_1 = two then

(

assert (*#MCP(price_1, ssid_1)*)

))))

)

.

let server_2 =

out(in_2, <sid(*:T_sid*), start_round(*:Private*)>);

(

in(output_channel_2, xoutput);

let <price, decision, ssid> = xoutput in

(

assume (*#P_MCP(price)*) | assume (*#P_DEC(decision)*)

|

if decision = null then

(

if price = one_minus_one then

(

assert (*#MCP(price, ssid)*)

)

)

else

// if decision = one

if price = one then

(

out(in_2, <sid(*:T_sid*), start_round(*:Private*)>);

in(output_channel_2, xoutput_1);

let <price_1, decision_1, ssid_1> = xoutput_1 in

(

assume (*#P_MCP(price_1)*) | assume (*#P_DEC(decision_1)*)

|

if price_1 = two_minus_one then

(

assert (*#MCP(price_1, ssid_1)*)

)

else

274

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

if price_1 = two then

(

assert (*#MCP(price_1, ssid_1)*)

))))

)

.

let server_3 =

out(in_3, <sid(*:T_sid*), start_round(*:Private*)>);

(

in(output_channel_3, xoutput);

let <price, decision, ssid> = xoutput in

(

assume (*#P_MCP(price)*) | assume (*#P_DEC(decision)*)

|

if decision = null then

(

if price = one_minus_one then

(

assert (*#MCP(price, ssid)*)

)

)

else

// if decision = one

if price = one then

(

out(in_3, <sid(*:T_sid*), start_round(*:Private*)>);

in(output_channel_3, xoutput_1);

let <price_1, decision_1, ssid_1> = xoutput_1 in

(

assume (*#P_MCP(price_1)*) | assume (*#P_DEC(decision_1)*)

|

if price_1 = two_minus_one then

(

assert (*#MCP(price_1, ssid_1)*)

)

else

if price_1 = two then

(

assert (*#MCP(price_1, ssid_1)*)

))))

)

.

(**

SMPC process

At this point, we define the process SMPC(sidc, adv, in_1, .., in_5, SIMAP),

where SIMAP denotes the function that characterizes the sugar-beet double

auction.

The SIMAP[] context expects in the first round the inputs of the bidding

parties (bidder_i) and the "start_round" command from the computation

parties. In the second round it does not expect any inputs from the input

parties but only a "start_round" command from the computation parties.

275

In each round the SIMAP[] context computes the supply and the demand from

the input of the bidder parties (bidder_i) and checks whether the supply

is already greater than the supply, in which case the context sends the

price decreased by 1 to all parties. If there is not price such that the

supply is greater than the demand, the context sends the maximal price.

***)

let SMPC =

in(sidc, sid_1);

new lin_1 (*:Ch(Private)*);

new lin_2 (*:Ch(Private)*);

new lin_3 (*:Ch(Private)*);

new lin_4 (*:Ch(<<f:Int, x1:Int, x2:Int>

[*#

and(or(equal(f, null), equal(f, one)),

and(and(and(P_X_1_1(x1), P_X_1_2(x2)), P_FLAG_1(f)),

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_4, <f, x1, x2>, sid))

)))

], <signature:Signed(T_cert), verification_key:VerKey(T_cert)>[#

Red(check(signature, verification_key),

<id_4, id_1, id_2, id_3, id_4, id_5, sid, two>)

]>));

new lin_5 (*:Ch(<<f:Int, x1:Int, x2:Int>

[*#

and(or(equal(f, null), equal(f, one)),

and(and(and(P_X_2_1(x1), P_X_2_2(x2)), P_FLAG_2(f)),

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_5, <f, x1, x2>, sid))

)))

], <signature:Signed(T_cert), verification_key:VerKey(T_cert)>[#

Red(check(signature, verification_key),

<id_5, id_1, id_2, id_3, id_4, id_5, sid, two>)

]>));

new inloop_1 (*:Ch(Private)*); new inloop_2 (*:Ch(Private)*);

new inloop_3 (*:Ch(Private)*); new inloop_4 (*:Ch(Private)*);

new inloop_5 (*:Ch(Private)*);

(

// The processes input_1 | .. | input_n

out(inloop_1, sync) |

! in(inloop_1, z); in(in_1, xinput);

let <sid_tmp_1, x_1> = xinput in out(adv, sid_tmp_1);

if sid_1 = sid_tmp_1 then out(lin_1, x_1(*:Private*)) else out(inloop_1, sync) |

out(inloop_2, sync) |

! in(inloop_2, z); in(in_2, xinput);

let <sid_tmp_2, x_2> = xinput in out(adv, sid_tmp_2);

if sid_1 = sid_tmp_2 then out(lin_2, x_2(*:Private*)) else out(inloop_2, sync) |

out(inloop_3, sync) |

! in(inloop_3, z); in(in_3, xinput);

let <sid_tmp_3, x_3> = xinput in out(adv, sid_tmp_3);

if sid_1 = sid_tmp_3 then out(lin_3, x_3(*:Private*)) else out(inloop_3, sync) |

out(inloop_4, sync) |

! in(inloop_4, z); in(in_4, xinput);

let <sid_tmp_4, x_4> = xinput in out(adv, sid_tmp_4);

if sid_1 = sid_tmp_4 then out(lin_4, x_4(*:<<f:Int, x1:Int, x2:Int>

[*#

and(or(equal(f, null), equal(f, one)),

and(and(and(P_X_1_1(x1), P_X_1_2(x2)), P_FLAG_1(f)),

and(and(GE(x1, null), GE(x2, null)),

and(and(

276

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_4, <f, x1, x2>, sid))

)))

], <signature:Signed(T_cert), verification_key:VerKey(T_cert)>[#

Red(check(signature, verification_key),

<id_4, id_1, id_2, id_3, id_4, id_5, sid, two>)

]>)) else out(inloop_4, sync) |

out(inloop_5, sync) |

! in(inloop_5, z); in(in_5, xinput);

let <sid_tmp_5, x_5> = xinput in out(adv, sid_tmp_5);

if sid_1 = sid_tmp_5 then out(lin_5, x_5(*:<<f:Int, x1:Int, x2:Int>

[*#

and(or(equal(f, null), equal(f, one)),

and(and(and(P_X_2_1(x1), P_X_2_2(x2)), P_FLAG_2(f)),

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_5, <f, x1, x2>, sid))

)))

], <signature:Signed(T_cert), verification_key:VerKey(T_cert)>[#

Red(check(signature, verification_key),

<id_5, id_1, id_2, id_3, id_4, id_5, sid, two>)

]>)) else out(inloop_5, sync) |

(**

From here on the subprocess SIMAP[deliver_1 | .. | deliver_n] begins, where

SIMAP is the SMPC-suited context that computes the market clearing price and

deliver_i are the deliver processes of the SMPC process

SMPC(sidc, adv, in_1, .., in_n, SIMAP) presented in the paper.

**)

in(lin_4, xinput_1);

in(lin_5, xinput_2);

in(lin_1, cmd_1);

in(lin_2, cmd_2);

in(lin_3, cmd_3);

if cmd_1 = cmd_2 then

if cmd_1 = cmd_3 then

if cmd_1 = start_round then

let counter = one in

let <xinput_1_1, xinput_1_2> = xinput_1 in

let <flag_1, x_1_1, x_1_2> = xinput_1_1 in

let <sig_4, verif_key_4> = xinput_1_2 in

let <xinput_2_1, xinput_2_2> = xinput_2 in

let <flag_2, x_2_1, x_2_2> = xinput_2_1 in

let <sig_5, verif_key_5> = xinput_2_2 in

(

let tmp_4 = check(sig_4, verif_key_4) in

if tmp_4 = <id_4, id_1, id_2, id_3, id_4, id_5, sid, two> then

let tmp_5 = check(sig_5, verif_key_5) in

if tmp_5 = <id_5, id_1, id_2, id_3, id_4, id_5, sid, two> then

let var_s_1 = mult(x_1_1, flag_1) in

let var_s_2 = mult(x_2_1, flag_2) in

let var_s = add(var_s_1, var_s_2) in

let var_b_1_1 = sub(one, flag_1) in

let var_b_1 = mult(x_1_1, var_b_1_1) in

let var_b_2_1 = sub(one, flag_2) in

let var_b_2 = mult(x_2_1, var_b_2_1) in

let var_b = add(var_b_1, var_b_2) in

let z = greatereq(var_b, var_s) in

if z = var_b then

let decision = one (*:y:Int|[*#

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(SUB(one, flag_2, var_b_2_1),and(MULT(x_1_1, var_b_1_1, var_b_1),

277

and(MULT(x_2_1, var_b_2_1, var_b_2),

and(ADD(var_b_1, var_b_2, var_b),GE(var_b, var_s)))))))))

]) in

// Here, we are in the case that the demand for price = 1 is greater than the supply.

// We proceed, but we output decision = 1, i.e., the demand is greater than the

// supply.

(

// At this point, the process deliver_1 | .. | process_n begins.

out(output_channel_1, <(*=i*)counter(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

EQUIV(d, one)

))))))

*));out(inloop_1, sync);0

|

out(output_channel_2, <(*=i*)counter(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

EQUIV(d, one)

))))))

*));out(inloop_2, sync);0

|

out(output_channel_3, <(*=i*)counter(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

EQUIV(d, one)

))))))

*));out(inloop_3, sync);0

|

out(output_channel_4, <(*=i*)counter(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>(*#

278

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

EQUIV(d, one)

))))))

*));out(inloop_4, sync);0

|

out(output_channel_5, <(*=i*)counter(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

EQUIV(d, one)

))))))

*));out(inloop_5, sync);0

// At this point the process deliver_1 | .. | deliver_n ends.

|

in(lin_1, cmd_1);

in(lin_2, cmd_2);

in(lin_3, cmd_3);

in(lin_4, dummy_4);

in(lin_5, dummy_5);

if cmd_1 = cmd_2 then

if cmd_1 = cmd_3 then

if cmd_1 = start_round then

let counter_1 = two in

let var_ss_1 = mult(x_1_2, flag_1) in

let var_ss_2 = mult(x_2_2, flag_2) in

let var_ss = add(var_ss_1, var_ss_2) in

let var_bb_1_1 = sub(one, flag_1) in

let var_bb_1 = mult(x_1_2, var_bb_1_1) in

let var_bb_2_1 = sub(one, flag_2) in

let var_bb_2 = mult(x_2_2, var_bb_2_1) in

let var_bb = add(var_bb_1, var_bb_2) in

let z = greatereq(var_bb, var_ss) in

if z = var_bb then

let decision = one (*:y:Int|[*#

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),GE(var_bb, var_ss)

))))))))

]) in

// The demand is for price = 2 still greater than or equal to the supply:

279

// output mcp = p = 2 and decision = 1

(

// At this point, deliver_1 | .. | deliver_n is placed. The context SIMAP has its

// hole at this point.

out(output_channel_1, <(*=i*)counter_1(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two),

and(EQUIV(d, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_bb, var_ss),GE(var_b, var_s))))))))))))))))))

)))))))

*));out(inloop_1, sync);0 //Refinement for comparison result

|

out(output_channel_2, <(*=i*)counter_1(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two),

and(EQUIV(d, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_bb, var_ss),GE(var_b, var_s))))))))))))))))))

)))))))

*));out(inloop_2, sync);0 //Refinement for comparison result

|

280

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

out(output_channel_3, <(*=i*)counter_1(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two),

and(EQUIV(d, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1),and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_bb, var_ss),GE(var_b, var_s))))))))))))))))))

)))))))

*));out(inloop_3, sync);0 //Refinement for comparison result

|

out(output_channel_4, <(*=i*)counter_1(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two),

and(EQUIV(d, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_bb, var_ss),GE(var_b, var_s))))))))))))))))))

)))))))

*));out(inloop_4, sync);0 //Refinement for comparison result

|

out(output_channel_5, <(*=i*)counter_1(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

281

not(equal(id_4, id_5))),

and(EQUIV(i, two),

and(EQUIV(d, one),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_bb, var_ss),GE(var_b, var_s))))))))))))))))))

)))))))

*));out(inloop_5, sync);0 //Refinement for comparison result

)

else

// The supply is for price = 2 greater than the demand: output mcp = 1 = price-1 and

// decision = 0

let zz = greatereq(var_ss,var_bb) in

if zz = var_ss then

let decision = null (*:y:Int|[*#

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),GE(var_ss, var_bb)

))))))))

]) in

let counter_3 = sub(counter_1, one) in

(

// At this point, deliver_1 | .. | deliver_n is placed.

// The context SIMAP would have a hole here.

out(output_channel_1, <(*=i*)counter_3(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

282

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_ss, var_bb),and(GE(var_b, var_s),not(equal(var_ss, var_bb))))))))))))))))))))

)))))))

*)

);out(inloop_1,sync);0 //Refinement for comparison result

|

out(output_channel_2, <(*=i*)counter_3(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_ss, var_bb),and(GE(var_b, var_s),not(equal(var_ss, var_bb))))))))))))))))))))

)))))))

*));out(inloop_2,sync);0 //Refinement for comparison result

|

out(output_channel_3, <(*=i*)counter_3(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_ss, var_bb),and(GE(var_b, var_s),not(equal(var_ss, var_bb))))))))))))))))))))

)))))))

*));out(inloop_3,sync);0 //Refinement for comparison result

283

|

out(output_channel_4, <(*=i*)counter_3(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_ss, var_bb),and(GE(var_b, var_s),not(equal(var_ss, var_bb))))))))))))))))))))

)))))))

*));out(inloop_4,sync);0 //Refinement for comparison result

|

out(output_channel_5, <(*=i*)counter_3(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, two_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(MULT(x_1_2, flag_1, var_ss_1),and(MULT(x_2_2, flag_2, var_ss_2),

and(ADD(var_ss_1, var_ss_2, var_ss),and(SUB(one, flag_1, var_bb_1_1),

and(MULT(x_1_2, var_bb_1_1, var_bb_1), and(SUB(one, flag_2, var_bb_2_1),

and(MULT(x_2_2, var_bb_2_1, var_bb_2),and(ADD(var_bb_1, var_bb_2, var_bb),

and(GE(var_ss, var_bb),and(GE(var_b, var_s),not(equal(var_ss, var_bb))))))))))))))))))))

)))))))

*));out(inloop_5, sync);0 //Refinement for comparison result

)

)

else

284

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

// The supply is for price = 1 greater than the demand: output mcp = 0 = price-1 and

// decision = 0

let z = greatereq(var_s, var_b) in

if z = var_s then

let decision = null (*:y:Int|[*#

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),GE(var_s, var_b)

))))))))

]) in

let counter_2 = sub(counter, one) in

(

// At this point, deliver_1 | .. | deliver_n is placed.

// The context SIMAP would have a hole here.

out(output_channel_1, <(*=i*)counter_2(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid_1(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(GE(var_s, var_b),not(equal(var_s, var_b)))))))))))

)))))))

*));out(inloop_1, sync);0 //Refinement for comparison result

|

out(output_channel_2, <(*=i*)counter_2(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid_1(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(GE(var_s, var_b),not(equal(var_s, var_b)))))))))))

285

)))))))

*));out(inloop_2, sync);0 //Refinement for comparison result

|

out(output_channel_3, <(*=i*)counter_2(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid_1(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(GE(var_s, var_b),not(equal(var_s, var_b)))))))))))

)))))))

*));out(inloop_3, sync);0 //Refinement for comparison result

|

out(output_channel_4, <(*=i*)counter_2(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid_1(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(GE(var_s, var_b),not(equal(var_s, var_b)))))))))))

)))))))

*));out(inloop_4, sync);0 //Refinement for comparison result

|

out(output_channel_5, <(*=i*)counter_2(*:Int*), (*=d*)decision(*:Int*), (*=w*)sid_1(*:Un*)>

(*#

and(and(and(P_X_1_1(x_1_1), P_X_1_2(x_1_2)), P_FLAG_1(flag_1)),

and(and(and(P_X_2_1(x_2_1), P_X_2_2(x_2_2)), P_FLAG_2(flag_2)),

and(and(and(and(P_ID_4(id_4), P_ID_5(id_5)), P_SID(w)),

not(equal(id_4, id_5))),

and(EQUIV(i, one_minus_one),

and(EQUIV(d, null),

and(and(and(implies(equal(flag_1, one), GE(x_1_1, x_1_2)),

implies(equal(flag_1, null), GE(x_1_2, x_1_1))),

286

APPENDIX A. THE SOURCE CODE FOR THE SUGAR BEET CASE STUDY

INPUT(id_4, <flag_1, x_1_1, x_1_2>, w)),

and(and(and(implies(equal(flag_2, one), GE(x_2_1, x_2_2)),

implies(equal(flag_2, null), GE(x_2_2, x_2_1))),

INPUT(id_5, <flag_2, x_2_1, x_2_2>, w)),

and(MULT(x_1_1, flag_1, var_s_1),and(MULT(x_2_1, flag_2, var_s_2),

and(ADD(var_s_1, var_s_2, var_s),and(SUB(one, flag_1, var_b_1_1),

and(MULT(x_1_1, var_b_1_1, var_b_1), and(SUB(one, flag_2, var_b_2_1),

and(MULT(x_2_1, var_b_2_1, var_b_2),and(ADD(var_b_1, var_b_2, var_b),

and(GE(var_s, var_b),not(equal(var_s, var_b)))))))))))

)))))))

*));out(inloop_5, sync);0 //Refinement for comparison result

)

)

).

(**

Arithmetic theorems

This process introduces additional theorems about the arithmetic operations.

***)

let assumptions = (

assume(*#forall([x,y], implies(Red(greatereq(x,y),x), GE(x,y)))*) |

assume(*#forall([x,y,z], implies(Red(add(x,y),z), ADD(x,y,z)))*) |

assume(*#forall([x,y,z], implies(Red(mult(x,y),z), MULT(x,y,z)))*) |

assume(*#forall([x,y,z], implies(Red(sub(x,y),z), SUB(x,y,z)))*) |

assume(*#forall([x,y,z_1, z_2], implies(and(Red(add(x,y),z_1), Red(add(x,y),z_2)),

EQUIV(z_1, z_2)))*) |

assume(*#forall([x,z_1, z_2], implies(and(Red(idh(x),z_1), Red(idh(x),z_2)),

EQUIV(z_1, z_2)))*) |

assume(*#forall([x,y], implies(equal(x,y), EQUIV(x, y)))*)

).

(**

final process

The final process contains all other processes as subprocesses and provides

and environment. First, it introduces all names and several refinement type

for channels, which are used by the type system for verifying the policy.

***)

free adv.

process

(

assumptions |

new start_round (*:Private*); new sync (*:Private*);

new id_1 (*:Private*); new id_2 (*:Private*);

new id_3 (*:Private*); new id_4 (*:Private*);

new id_5 (*:Private*);

new sid (*:Un*);

new sidc (*:Ch(y:Un | [*#and(P_SID(y), equal(y,sid))*])*);

let null = string_null(empty()) in

let one = string_one(empty()) in

let one_minus_one = sub(one, one) in

let two = add(one, one) in

let two_minus_one = sub(two, one) in

(

assume(*#P_SID(sid)*) | assume(*#P_ID_1(id_1)*) |

assume(*#P_ID_2(id_2)*) | assume(*#P_ID_3(id_3)*) |

assume(*#P_ID_4(id_4)*) | assume(*#P_ID_5(id_5)*) |

assume(*#not(equal(id_1, id_2))*) | assume(*#not(equal(id_1, id_3))*) |

assume(*#not(equal(id_1, id_4))*) | assume(*#not(equal(id_1, id_5))*) |

assume(*#not(equal(id_2, id_3))*) | assume(*#not(equal(id_2, id_4))*) |

assume(*#not(equal(id_2, id_5))*) | assume(*#not(equal(id_3, id_4))*) |

287

assume(*#not(equal(id_3, id_5))*) | assume(*#not(equal(id_4, id_5))*) |

// The certification issuer channels

new certification_channel_4(*:Ch(<signature:Signed(T_cert), verification_key:VerKey(T_cert)>[*#

Red(check(signature, verification_key),

<id_4, id_1, id_2, id_3, id_4, id_5, sid, two>)

]));

new certification_channel_5(*:Ch(<signature:Signed(T_cert), verification_key:VerKey(T_cert)>[*#

Red(check(signature, verification_key),

<id_5, id_1, id_2, id_3, id_4, id_5, sid, two>)

]));

// The input channels for the SMPC

new in_1 (*: Ch(<T_sid, Private>)*);

new in_2 (*: Ch(<T_sid, Private>)*);

new in_3 (*: Ch(<T_sid, Private>)*);

new in_4 (*:Ch(<bsid:Un, <<f:Int, x1:Int, x2:Int>

[*#

and(or(equal(f, null), equal(f, one)),

and(and(and(P_X_1_1(x1), P_X_1_2(x2)), P_FLAG_1(f)),

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_4, <f, x1, x2>, sid))

)))

], <signature:Signed(T_cert), verification_key:VerKey(T_cert)>[#

Red(check(signature, verification_key),

<id_4, id_1, id_2, id_3, id_4, id_5, sid, two>)

]>>));

new in_5 (*:Ch(<bsid:Un, <<f:Int, x1:Int, x2:Int>

[*#

and(or(equal(f, null), equal(f, one)),

and(and(and(P_X_2_1(x1), P_X_2_2(x2)), P_FLAG_2(f)),

and(and(GE(x1, null), GE(x2, null)),

and(and(

implies(equal(f, one), GE(x1, x2)),

implies(equal(f, null), GE(x2, x1))),

INPUT(id_5, <f, x1, x2>, sid))

)))

], <signature:Signed(T_cert), verification_key:VerKey(T_cert)>[#

Red(check(signature, verification_key),

<id_5, id_1, id_2, id_3, id_4, id_5, sid, two>)

]>>));

// The output channel of the SMPC:

// We separate input and output channels

// as the typechecker would otherwise be overloaded.

new output_channel_1 (*:Ch(T_comparison_result)*);

new output_channel_2 (*:Ch(T_comparison_result)*);

new output_channel_3 (*:Ch(T_comparison_result)*);

new output_channel_4 (*:Ch(T_comparison_result)*);

new output_channel_5 (*:Ch(T_comparison_result)*);

// Send the session identifier to the process SMPC.

out(sidc, sid(*:y:Un | [*#and(P_SID(y), equal(y,sid))*]*));

(

// The obligatory passive adversary

!in(adv, input_variable) |

certification_issuer |

server_1 |

server_2 |

server_3 |

SMPC |

bidder_1 |

288

Bibliography

bidder_2 |

MCP_Policy

)

)

).

289

Appendix B.

Bibliography

Research papers on which this thesis is based

[BMM10] M. Backes, M. Maffei, and E. Mohammadi. “Computationally Sound Ab-
straction and Verification of Secure Multi-Party Computations”. In: Proc.
30th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2010, pp. 352–363.

[BGKM12] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi. “Provably Secure and
Practical Onion Routing”. In: Proc. 25th IEEE Computer Security Foun-
dations Symposium (CSF). IEEE Computer Society Press, 2012, pp. 369–
385.

[BKM12] M. Backes, A. Kate, and E. Mohammadi. “Ace: an efficient key-exchange
protocol for onion routing”. In: Proc. 11th annual ACM Workshop on
Privacy in the Electronic Society (WPES). ACM Press, 2012, pp. 55–64.

[BMR14] M. Backes, E. Mohammadi, and T. Ruffing. “Computational Soundness
Results for ProVerif”. In: Proc. 3rd Conference on Principles of Security
and Trust (POST). Springer, 2014, pp. 42–62.

[BBMMP15] M. Backes, F. Bendun, M. Maffei, E. Mohammadi, and K. Pecina. “A Com-
putationally Sound, Symbolic Abstraction for Malleable Zero-knowledge
Proofs”. In: Proc. 28th IEEE Computer Security Foundations Symposium
(CSF). IEEE Computer Society Press, 2015, pp. 412–480.

[BMR15] M. Backes, E. Mohammadi, and T. Ruffing. “Computational Soundness for
Interactive Primitives for Equivalence Properties”. In: Proc. 20th European
Symposium on Research in Computer Security (ESORICS). Springer, 2015,
pp. 125–145.

Other research papers of the author

[BMM14] M. Backes, P. Manoharan, and E. Mohammadi. “TUC: Time-sensitive and
Modular Analysis of Anonymous Communication”. In: Proc. 27th IEEE
Computer Security Foundations Symposium (CSF). IEEE Computer Society
Press, 2014, pp. 383–397.

291

Bibliography

[BKMMM13] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi. “AnoA:
A Framework For Analyzing Anonymous Communication Protocols”. In:
Proc. 26th IEEE Computer Security Foundations Symposium (CSF). IEEE
Computer Society Press, 2013, pp. 163–178.

[BKMM14] M. Backes, A. Kate, S. Meiser, and E. Mohammadi. “(Nothing else) MA-
Tor(s): Monitoring the Anonymity of Tor’s Path Selection”. In: Proc. 21st
ACM Conference on Computer and Communication Security (CCS). ACM
Press, 2014, pp. 513–524.

[BFM13] M. Backes, D. Fiore, and E. Mohammadi. “Privacy-Preserving Account-
able Computation”. In: Proc. 18th European Symposium on Research in
Computer Security (ESORICS). Springer, 2013, pp. 38–56.

[PMP14] K. Pecina, E. Mohammadi, and C. Pöpper. “Zero-Communication Seed
Establishment for Anti-Jamming Techniques”. In: Proc. 1st NDSS Workshop
on Security of Emerging Networking Technologies (SENT). Internet Society,
2014.

Related Bachelor’s & Master’s Thesis

[Moh09] E. Mohammadi. Computational Soundness for Symbolic Zero - Knowl-
edge Proofs Against Active Attackers under Relaxed Assumptions. Master’s
Thesis. 2009.

[Ruf12] T. Ruffing. Computational Soundness of Interactive Primitives. Bachelor’s
Thesis. 2012.

Other Papers

[ABW06] M. Abadi, M. Baudet, and B. Warinschi. “Guessing Attacks and the Com-
putational Soundness of Static Equivalence”. In: Proc. 9th International
Conference on Foundations of Software Science and Computation Structures
(FOSSACS). Springer, 2006, pp. 398–412.

[AF01] M. Abadi and C. Fournet. “Mobile Values, New Names, and Secure Com-
munication”. In: Proc. 28th Symposium on Principles of Programming
Languages (POPL). ACM Press, 2001, pp. 104–115.

[AF06] P. Adão and C. Fournet. “Cryptographically Sound Implementations for
Communicating Processes”. In: Proc. 33rd International Colloquium on
Automata, Languages and Programming (ICALP). Springer, 2006, pp. 83–
94.

[AJ01] M. Abadi and J. Jürjens. “Formal Eavesdropping and its Computational
Interpretation”. In: Proc. 4th International Symposium on Theoretical
Aspects of Computer Software (TACS). Springer, 2001, pp. 82–94.

[AP03] S. S. Al-Riyami and K. G. Paterson. “Certificateless Public Key Cryp-
tography”. In: Advances in Cryptology – ASIACRYPT. Springer, 2003,
pp. 452–473.

292

Bibliography

[App14] Apple Inc. Apple support: About the security content of iOS 7.0.6. http://

support.apple.com/kb/HT6147. Accessed in September 2014. 2014.

[AR02] M. Abadi and P. Rogaway. “Reconciling Two Views of Cryptography (The
Computational Soundness of Formal Encryption)”. In: Journal of Cryptology
15.2 (2002), pp. 103–127.

[Ava05] R. M. Avanzi.“The Complexity of Certain Multi-Exponentiation Techniques
in Cryptography”. In: Journal of Cryptology 18.4 (2005), pp. 357–373.

[BAF05] B. Blanchet, M. Abadi, and C. Fournet. “Automated Verification of Selected
Equivalences for Security Protocols”. In: Proc. 20th IEEE Symposium on
Logic in Computer Science (LICS). IEEE Computer Society Press, 2005,
pp. 331–340.

[BBU13] M. Backes, F. Bendun, and D. Unruh. “Computational Soundness of Sym-
bolic Zero-knowledge Proofs: Weaker Assumptions and Mechanized Ver-
ification”. In: Proc. 2nd Conference on Principles of Security and Trust
(POST). Springer, 2013, pp. 206–225.

[BCCKLS09] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H.
Shacham. “Randomizable Proofs and Delegatable Anonymous Credentials”.
In: Advances in Cryptology – CRYPTO. Springer, 2009, pp. 108–125.

[BCJSW06] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. “Formal
Analysis of Kerberos 5”. In: Theoretical Computer Science 367.1 (2006),
pp. 57–87.

[BCK05] M. Baudet, V. Cortier, and S. Kremer. “Computationally Sound Imple-
mentations of Equational Theories against Passive Adversaries”. In: Proc.
32nd International Colloquium on Automata, Languages and Programming
(ICALP). Springer, 2005, pp. 652–663.

[BCW13] F. Böhl, V. Cortier, and B. Warinschi. “Deduction Soundness: Prove One,
Get Five for Free”. In: Proc. 20th ACM Conference on Computer and
Communication Security (CCS). ACM Press, 2013, pp. 1261–1272.

[BDLSY11] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. “High-
Speed High-Security Signatures”. In: Proc. 13th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES). Springer, 2011,
pp. 124–142.

[Ber06] D. J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: Proc.
9th Conference on Theory and Practice of Public-Key Cryptography (PKC).
Springer, 2006, pp. 207–228.

[BH04] M. Backes and D. Hofheinz. “How to Break and Repair a Universally
Composable Signature Functionality”. In: Proc. 6th Information Security
Conference (ISC). Springer, 2004, pp. 61–72.

[BHM08a] M. Backes, C. Hritcu, and M. Maffei. “Automated Verification of Remote
Electronic Voting Protocols in the Applied Pi-Calculus”. In: Proc. 21st IEEE
Symposium on Computer Security Foundations (CSF). IEEE Computer
Society Press, 2008, pp. 195–209.

293

http://support.apple.com/kb/HT6147
http://support.apple.com/kb/HT6147

Bibliography

[BHM08b] M. Backes, C. Hriţcu, and M. Maffei. “Type-checking Zero-knowledge”.
In: Proc. of the 15th ACM conference on Computer and communications
security (CCS). ACM Press, 2008, pp. 357–370.

[BHM12] M. Backes, C. Hriţcu, and M. Maffei. “Union and Intersection Types for
Secure Protocol Implementations”. In: Proc. 2011 International Conference
on Theory of Security and Applications (TOSCA, now POST). Springer,
2012, pp. 1–28.

[BHU09] M. Backes, D. Hofheinz, and D. Unruh. “CoSP: A General Framework
for Computational Soundness Proofs”. In: Proc. 16th ACM Conference on
Computer and Communication Security (CCS). ACM Press, 2009, pp. 66–
78.

[BJP02] M. Backes, C. Jacobi, and B. Pfitzmann.“Deriving Cryptographically Sound
Implementations Using Composition and Formally Verified Bisimulation”.
In: Proc. 10th International Symposium of Formal Methods (FME). Springer,
2002, pp. 310–329.

[BL06] M. Backes and P. Laud. “Computationally Sound Secrecy Proofs by Mech-
anized Flow Analysis”. In: Proc. 13th ACM Conference on Computer and
Communications Security (CCS). ACM Press, 2006, pp. 370–379.

[Bla01] B. Blanchet. “An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules”. In: Proc. 14th IEEE Computer Security Foundations Workshop
(CSFW). IEEE Computer Society Press, 2001, pp. 82–96.

[Ble98] D. Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS”. In: Advances in Cryptology –
CRYPTO. Springer, 1998, pp. 1–12.

[BLMP10] M. Backes, S. Lorenz, M. Maffei, and K. Pecina. “Anonymous Webs of
Trust”. In: Proc. 10h Privacy Enhancing Technologies Symposium (PETS).
Springer, 2010, pp. 130–148.

[BMP00] V. Boyko, P. D. MacKenzie, and S. Patel. “Provably Secure Password-
Authenticated Key Exchange Using Diffie-Hellman”. In: Advances in Cryp-
tology – EUROCRYPT. Springer, 2000, pp. 156–171.

[BMP12] M. Backes, M. Maffei, and K. Pecina. “Automated Synthesis of Privacy-
Preserving Distributed Applications”. In: Proc. 20th Network and Dis-
tributed System Security Symposium (NDSS). Internet Society, 2012.

[BMU08] M. Backes, M. Maffei, and D. Unruh. “Zero-Knowledge in the Applied Pi-
calculus and Automated Verification of the Direct Anonymous Attestation
Protocol”. In: Proc. 29th IEEE Symposium on Security & Privacy (S&P).
IEEE Computer Society Press, 2008, pp. 158–169.

[BMU10] M. Backes, M. Maffei, and D. Unruh. “Computationally Sound Verifica-
tion of Source Code”. In: Proc. 17th ACM Conference on Computer and
Communication Security (CCS). ACM Press, 2010, pp. 387–398.

[BMU12] M. Backes, A. Malik, and D. Unruh. “Computational Soundness without
Protocol Restrictions”. In: Proc. 19th ACM Conference on Computer and
Communication Security (CCS). ACM Press, 2012, pp. 699–711.

294

Bibliography

[BNP08] A. Ben-David, N. Nisan, and B. Pinkas. “FairplayMP: A System for Se-
cure Multi-Party Computation”. In: Proc. of the 15th ACM conference on
Computer and communications security (CCS). ACM Press, 2008, pp. 257–
266.

[Bog+09] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. “Secure Multiparty Computation Goes Live”.
In: Proc. 13th Conference on Financial Cryptography and Data Security
(FC). Springer, 2009, pp. 325–343.

[BP04] M. Backes and B. Pfitzmann. “Symmetric Encryption in a Simulatable
Dolev-Yao Style Cryptographic Library”. In: Proc. 17th IEEE Computer
Security Foundations Workshop (CSFW). IEEE Computer Society Press,
2004, pp. 204–218.

[BP05] M. Backes and B. Pfitzmann. “Limits of the Cryptographic Realization of
Dolev-Yao-style XOR”. In: Proc. 10th European Symposium on Research in
Computer Security (ESORICS). Springer, 2005, pp. 178–196.

[BPW03a] M. Backes, B. Pfitzmann, and M. Waidner. “A Composable Cryptographic
Library with Nested Operations”. In: Proc. 10th ACM Conference on
Computer and Communications Security (CCS). ACM Press, 2003, pp. 220–
230.

[BPW03b] M. Backes, B. Pfitzmann, and M. Waidner. “Symmetric Authentication
Within a Simulatable Cryptographic Library”. In: Proc. 8th European
Symposium on Research in Computer Security (ESORICS). Springer, 2003,
pp. 271–290.

[BPW07] M. Backes, B. Pfitzmann, and M. Waidner. “The Reactive Simulatabil-
ity (RSIM) Framework for Asynchronous Systems”. In: Information and
Computation 205.12 (2007), pp. 1685–1720.

[BU10] M. Backes and D. Unruh. “Computational Soundness of Symbolic Zero-
Knowledge Proofs”. In: Journal of Computer Security 18.6 (2010), pp. 1077–
1155.

[Can01] R. Canetti. “Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols”. In: Proc. 42nd IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE Computer Society Press, 2001, pp. 136–
145.

[Can04] R. Canetti. “Universally Composable Signatures, Certification and Autho-
rization”. In: Proc. 17th IEEE Computer Security Foundations Workshop
(CSFW). IEEE Computer Society Press, 2004, pp. 219–233.

[CC08] H. Comon-Lundh and V. Cortier. “Computational Soundness of Observa-
tional Equivalence”. In: Proc. of the 15th ACM conference on Computer
and communications security (CCS). ACM Press, 2008, pp. 109–118.

[CCD10] V. Cheval, H. Comon-Lundh, and S. Delaune. “Automating Security Anal-
ysis: Symbolic Equivalence of Constraint Systems”. In: Proc. 5th Interna-
tional Joint Conference on Automated Reasoning (IJCAR). Springer, 2010,
pp. 412–426.

295

Bibliography

[CCD11] V. Cheval, H. Comon-Lundh, and S. Delaune. “Trace Equivalence Decision:
Negative Tests and Non-determinism”. In: Proc. 18th ACM Conference on
Computer and Communication Security (CCS). ACM Press, 2011, pp. 321–
330.

[CCD13] V. Cheval, V. Cortier, and S. Delaune. “Deciding Equivalence-Based Prop-
erties Using Constraint Solving”. In: Theoretical Computer Science 492
(2013).

[CCP13] V. Cheval, V. Cortier, and A. Plet. “Lengths May Break Privacy – Or
How to Check for Equivalences with Length”. In: Proc. 25th International
Conference Computer Aided Verification (CAV). Springer, 2013, pp. 708–
723.

[CCS12] H. Comon-Lundh, V. Cortier, and G. Scerri. “Security Proof with Dishonest
Keys”. In: Proc. 1st Conference on Principles of Security and Trust (POST).
Springer, 2012, pp. 149–168.

[CDPW07] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. “Universally Composable Se-
curity with Global Setup”. In: Proc. 4th Theory of Cryptography Conference
(TCC). Springer, 2007, pp. 61–85.

[CFG09] D. Catalano, D. Fiore, and R. Gennaro. “Certificateless Onion Routing”.
In: Proc. 16th ACM Conference on Computer and Communication Security
(CCS). ACM Press, 2009, pp. 151–160.

[CGS08] N. Chandran, V. Goyal, and A. Sahai. “New Constructions for UC Secure
Computation Using Tamper-Proof Hardware”. In: Advances in Cryptology –
EUROCRYPT. Springer, 2008, pp. 545–562.

[CH06] R. Canetti and J. Herzog. “Universally Composable Symbolic Analysis of
Mutual Authentication and Key Exchange Protocols”. In: Proc. 3rd Theory
of Cryptography Conference (TCC). Springer, 2006, pp. 380–403.

[CH11] R. Canetti and J. Herzog. “Universally Composable Symbolic Security
Analysis”. In: Journal of Cryptology 24.1 (2011), pp. 83–147.

[Cha82] D. Chaum. “Blind Signatures for Untraceable Payments”. In: Advances in
Cryptology – CRYPTO. Plenum Press, New York, 1982, pp. 199–203.

[Che] V. Cheval. APTE (Algorihm for Proving Trace Equivalence). http://projects.lsv.ens-
cachan.fr/APTE/. Accessed in October 2013.

[CHKLN11] J. Camenisch, K. Haralambiev, M. Kohlweiss, J. Lapon, and V. Naessens.
“Structure preserving CCA secure encryption and applications”. In: Advances
in Cryptology – ASIACRYPT. Springer, 2011, pp. 89–106.

[CHKS12] H. Comon-Lundh, M. Hagiya, Y. Kawamoto, and H. Sakurada. “Compu-
tational Soundness of Indistinguishability Properties without Computable
Parsing”. In: Proc. 8th International Conference on Information security
practice and experience (ISPEC). Springer, 2012, pp. 63–79.

[CK11] M. Chase and M. Kohlweiss. A Domain Transformation for Structure-
Preserving Signatures on Group Elements. Cryptology ePrint Archive,
Report 2011/342. 2011.

296

Bibliography

[CKKW06] V. Cortier, S. Kremer, R. Küsters, and B. Warinschi. “Computationally
Sound Symbolic Secrecy in the Presence of Hash Functions”. In: Proc.
26th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). Springer, 2006, pp. 176–187.

[CKLM12] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Malleable
Proof Systems and Applications”. In: Advances in Cryptology – EURO-
CRYPT. Springer, 2012, pp. 281–300.

[CL05] J. Camenisch and A. Lysyanskaya. “A Formal Treatment of Onion Routing”.
In: Advances in Cryptology – CRYPTO. Springer, 2005, pp. 169–187.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai.“Universally Composable
Two-party and Multi-party Secure Computation”. In: Proc. 34th Annual
ACM Symposium on Theory of Computing (STOC). ACM Press, 2002,
pp. 494–503.

[Com08] H. Comon-Lundh.“About Models of Security Protocols”. In: Proc. 28th Con-
ference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2008, pp. 352–356.

[CW05] V. Cortier and B. Warinschi. “Computationally Sound, Automated Proofs
for Security Protocols”. In: Proc. 14th European Symposium on Program-
ming (ESOP). Springer, 2005, pp. 157–171.

[CW11] V. Cortier and B. Warinschi. “A Composable Computational Soundness
Notion”. In: Proc. 18th ACM Conference on Computer and Communication
Security (CCS). ACM Press, 2011, pp. 63–74.

[CW12] V. Cortier and C. Wiedling. “A Formal Analysis of the Norwegian E-Voting
Protocol”. In: Proc. 1st Conference on Principles of Security and Trust
(POST). Springer, 2012, pp. 109–128.

[DDMRS06] A. Datta, A. Derek, J. Mitchell, A. Ramanathan, and A. Scedrov. “Games
and the Impossibility of Realizable Ideal Functionality”. In: Proc. 3rd Theory
of Cryptography Conference (TCC). Springer, 2006, pp. 360–379.

[DKP09] S. Delaune, S. Kremer, and O. Pereira. “Simulation-Based Security in
the Applied Pi Calculus”. In: Proc. 29th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2009, pp. 169–180.

[DKR09] S. Delaune, S. Kremer, and M. Ryan. “Verifying Privacy-Type Properties of
Electronic Voting Protocols”. In: Journal of Computer Security 17.4 (2009),
pp. 435–487.

[DKRS11] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel. “Formal Analysis of
Protocols Based on TPM State Registers”. In: Proc. 24th IEEE Computer
Security Foundations Symposium (CSF). IEEE Computer Society Press,
2011, pp. 66–80.

[DM08] R. Dingledine and N. Mathewson. Tor Protocol Specification. https://gitweb.

torproject.org/torspec.git?a=blob plain;hb=HEAD;f=tor- spec.txt. Accessed in
November 2011. 2008.

297

https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt

Bibliography

[DMS04] R. Dingledine, N. Mathewson, and P. Syverson.“Tor: The Second-Generation
Onion Router”. In: Proc. 13th USENIX Security Symposium (USENIX).
USENIX Association, 2004, pp. 303–320.

[DOW92] W. Diffie, P. C. van Oorschot, and M. J. Wiener. “Authentication and
Authenticated Key Exchanges”. In: Designs, Codes and Cryptography 2.2
(1992), pp. 107–125.

[DR06] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
(Version 1.1), Request for Comments (RFC) 4346. http://www.ietf.org/rfc/

rfc4346.txt. 2006.

[Duc14] P. Ducklin. Anatomy of a “goto fail” – Apple’s SSL bug explained, plus an
unofficial patch for OS X! http://nakedsecurity.sophos.com/2014/02/24/anatomy-of-

a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/. Accessed in October
2014. 2014.

[DY83] D. Dolev and A. C. Yao. “On the Security of Public Key Protocols”. In:
IEEE Transactions on Information Theory 29.2 (1983), pp. 198–208.

[EG83] S. Even and O. Goldreich. “On the Security of Multi-Party Ping-Pong
Protocols”. In: Proc. 24th IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society Press, 1983, pp. 34–39.

[FGM07] C. Fournet, A. D. Gordon, and S. Maffeis. “A Type Discipline for Au-
thorization in Distributed Systems”. In: Proc. 20th IEEE Symposium on
Computer Security Foundations (CSF). IEEE Computer Society Press, 2007,
pp. 31–45.

[Fis03] D. Fisher. “Millions of .Net Passport Accounts Put at Risk”. In: eWeek
(2003). (Flaw detected by Muhammad Faisal Rauf Danka.) Accessed in
August 2014. url: http://www.eweek.com/c/a/Security/Millions-of-Net-Passport-

Accounts-Put-at-Risk/.

[Fis06] M. Fischlin. “Round-Optimal Composable Blind Signatures in the Common
Reference String Model”. In: Advances in Cryptology – CRYPTO. Springer,
2006, pp. 60–77.

[FJS07a] J. Feigenbaum, A. Johnson, and P. F. Syverson. “A Model of Onion Rout-
ing with Provable Anonymity”. In: Proc. 11th Conference on Financial
Cryptography and Data Security (FC). Springer, 2007, pp. 57–71.

[FJS07b] J. Feigenbaum, A. Johnson, and P. F. Syverson. “Probabilistic Analysis of
Onion Routing in a Black-Box Model”. In: Proc. 6th ACM Workshop on
Privacy in the Electronic Society (WPES). ACM Press, 2007, pp. 1–10.

[FJS11] J. Feigenbaum, A. Johnson, and P. F. Syverson. “Probabilistic Analysis of
Onion Routing in a Black-Box Model”. In: ACM Transactions on Informa-
tion and System Security 15.14 (2011).

[FP09] G. Fuchsbauer and D. Pointcheval. “Proofs on Encrypted Values in Bilinear
Groups and an Application to Anonymity of Signatures”. In: Proc. 3rd In-
ternational Conference on Pairing-Based Cryptography (Pairing). Springer,
2009, pp. 132–149.

298

http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
http://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
http://www.eweek.com/c/a/Security/Millions-of-Net-Passport-Accounts-Put-at-Risk/
http://www.eweek.com/c/a/Security/Millions-of-Net-Passport-Accounts-Put-at-Risk/

Bibliography

[Fuc10] G. Fuchsbauer. “Automorphic Signatures and Applications”. PhD thesis.
École normale supérieure, Paris, 2010.

[Gen34] G. Gentzen. “Untersuchungen über das logische Schließen I”. In: Mathema-
tische Zeitschrift 39.2 (1934), pp. 176–210.

[GGV08] D. Galindo, F. D. Garcia, and P. Van Rossum. “Computational Soundness
of Non-Malleable Commitments”. In: Proc. 4th International Conference
on Information security practice and experience (ISPEC). Springer, 2008,
pp. 361–376.

[GL01] O. Goldreich and Y. Lindell. “Session-Key Generation Using Human Pass-
words Only”. In: Advances in Cryptology – CRYPTO. Springer, 2001,
pp. 408–432.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of
Interactive Proof Systems”. In: SIAM Journal on Computing 18.1 (1989),
pp. 186–207.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play Any Mental Game
– OR – A Completeness Theorem for Protocols with Honest Majority”. In:
Proc. 19th Annual ACM Symposium on Theory of Computing (STOC).
ACM Press, 1987, pp. 218–229.

[Gol06] I. Goldberg. “On the Security of the Tor Authentication Protocol”. In: Proc.
6th Workshop on Privacy Enhancing Technologies (PET). ACM Press,
2006, pp. 316–331.

[Gre11] A. Greenberg. How To Protect Yourself Online Like An Arab Revolutionary.
Forbes.com LLC. http://blogs.forbes.com/andygreenberg/2011/03/25/. Accessed in
January 2012. 2011.

[GRS96] D. M. Goldschlag, M. Reed, and P. Syverson. “Hiding Routing Information”.
In: Proc. 1st Workshop on Information Hiding. Springer, 1996, pp. 137–150.

[GRS99] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. “Onion Routing”. In:
Communications of the ACM 42.2 (1999), pp. 39–41.

[GS08] J. Groth and A. Sahai. “Efficient Non-Interactive Proof Systems for Bilinear
Groups”. In: Advances in Cryptology – EUROCRYPT. Springer, 2008,
pp. 415–432.

[GSU12] I. Goldberg, D. Stebila, and B. Ustaoglu.“Anonymity and One-Way Authen-
tication in Key Exchange Protocols”. In: Designs, Codes and Cryptography
(2012). Proposal for Tor: https://gitweb.torproject.org/torspec.git/blob/HEAD:/

proposals/ideas/xxx-ntor-handshake.txt, pp. 1–25.

[GTL89] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge Uni-
versity Press, 1989.

[HLM03] J. Herzog, M. Liskov, and S. Micali. “Plaintext Awareness via Key Regis-
tration”. In: Advances in Cryptology – CRYPTO. LNCS. Springer, 2003,
pp. 548–564.

[Hof11] D. Hofheinz. “Possibility and Impossibility Results for Selective Decommit-
ments”. In: Journal of Cryptology 24.3 (2011), pp. 470–516.

299

http://blogs.forbes.com/andygreenberg/2011/03/25/
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/ideas/xxx-ntor-handshake.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/ideas/xxx-ntor-handshake.txt

Bibliography

[JLM05] R. Janvier, Y. Lakhnech, and L. Mazaré. “Completing the Picture: Sound-
ness of Formal Encryption in the Presence of Active Adversaries”. In:
Proc. 14th European Symposium on Programming (ESOP). Springer, 2005,
pp. 172–185.

[KG10a] A. Kate and I. Goldberg. “Distributed Private-Key Generators for Identity-
Based Cryptography”. In: Proc. 7th Conference on Security and Cryptogra-
phy for Networks (SCN). Springer, 2010, pp. 436–453.

[KG10b] A. Kate and I. Goldberg. “Using Sphinx to Improve Onion Routing Circuit
Construction”. In: Proc. 14th Conference on Financial Cryptography and
Data Security (FC). Springer, 2010, pp. 359–366.

[KKW05] D. Kähler, R. Küsters, and T. Wilke. “Deciding Properties of Contract-
Signing Protocols”. In: Proc. 22nd Annual Symposium on Theoretical As-
pects of Computer Science (STACS). Springer, 2005, pp. 158–169.

[KMM94] R. Kemmerer, C. Meadows, and J. Millen.“Three Systems for Cryptographic
Protocol Analysis”. In: Journal of Cryptology 7.2 (1994), pp. 79–130.

[KO12] K. Kurosawa and Y. Ohtaki.“UC-Secure Searchable Symmetric Encryption”.
In: Proc. 16th Conference on Financial Cryptography and Data Security
(FC). Springer, 2012, pp. 285–298.

[KR05] S. Kremer and M. Ryan. “Analysis of an Electronic Voting Protocol in the
Applied Pi-Calculus”. In: Proc. 14th European Symposium on Programming
(ESOP). Springer, 2005, pp. 186–200.

[KTG12] R. Küsters, T. Truderung, and J. Graf. “A Framework for the Crypto-
graphic Verification of Java-like Programs”. In: Proc. 25th IEEE Computer
Security Foundations Symposium (CSF). IEEE Computer Society Press,
2012, pp. 198–212.

[KZG07] A. Kate, G. M. Zaverucha, and I. Goldberg. “Pairing-Based Onion Routing”.
In: Proc. 7th Privacy Enhancing Technologies Symposium (PETS). Springer,
2007, pp. 95–112.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Pairing-Based Onion Routing
with Improved Forward Secrecy”. In: ACM Transactions on Information
and System Security 13.4 (2010), p. 29.

[Lau01] P. Laud. “Semantics and Program Analysis of Computationally Secure
Information Flow”. In: Proc. 10th European Symposium on Programming
(ESOP). Springer, 2001, pp. 77–91.

[Lau04] P. Laud. “Symmetric Encryption in Automatic Analyses for Confidentiality
against Active Adversaries”. In: Proc. 25th IEEE Symposium on Security
& Privacy (S&P). IEEE Computer Society Press, 2004, pp. 71–85.

[Mat12a] N. Mathewson. Another key exchange algorithm for extending circuits:
alternative to ntor? The tor-dev mailing list. https ://lists . torproject . org/

pipermail/tor-dev/2012-August/003901.html. Accessed in August 2012. 2012.

[Mat12b] N. Mathewson. Talk on Tor. Rump Session in the 12th Privacy Enhancing
Technologies Symposium (PETS). 2012.

300

https://lists.torproject.org/pipermail/tor-dev/2012-August/003901.html
https://lists.torproject.org/pipermail/tor-dev/2012-August/003901.html

Bibliography

[MB09] P. Mittal and N. Borisov. “ShadowWalker: Peer-To-Peer Anonymous Com-
munication Using Redundant Structured Topologies”. In: Proc. 16th ACM
Conference on Computer and Communication Security (CCS). ACM Press,
2009, pp. 161–172.

[MIT] MIT Kerberos and Internet trust (MIT-KIT) Consortium. Official Web
Page. http://www.kerberos.org/. Accessed in June 2014.

[MN96] D. M’Räıhi and D. Naccache. “Batch Exponentiation: A Fast DLP-Based
Signature Generation Strategy”. In: Proc. 3rd ACM Conference on Com-
puter and Communications Security (CCS). ACM Press, 1996, pp. 58–
61.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. “Fairplay – Secure Two-
Party Computation System”. In: Proc. 13th USENIX Security Symposium
(USENIX). USENIX Association, 2004, pp. 287–302.

[MOV97] A. Menezes, P. V. Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. 1st ed. CRC Press, 1997.

[MP11] M. Maffei and K. Pecina. “Privacy-aware Proof-Carrying Authorization”.
In: Proc. 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS). ACM Press, 2011, Article No. 7.

[MPR13] M. Maffei, K. Pecina, and M. Reinert. “Security and Privacy by Declarative
Design”. In: Proc. 26th IEEE Computer Security Foundations Symposium
(CSF). IEEE Computer Society Press, 2013, pp. 81–96.

[MSCB13] S. Meier, B. Schmidt, C. J. F. Cremers, and D. A. Basin. “The TAMARIN
Prover for the Symbolic Analysis of Security Protocols”. In: Proc. 25th
International Conference Computer Aided Verification (CAV). Springer,
2013, pp. 696–701.

[MTHK09] J. McLachlan, A. Tran, N. Hopper, and Y. Kim. “Scalable Onion Routing
with Torsk”. In: Proc. 16th ACM Conference on Computer and Communi-
cation Security (CCS). ACM Press, 2009, pp. 590–599.

[MVV04] S. Mauw, J. Verschuren, and E. de Vink. “A Formalization of Anonymity
and Onion Routing”. In: Proc. 9th European Symposium on Research in
Computer Security (ESORICS). Springer, 2004, pp. 109–124.

[MW04] D. Micciancio and B. Warinschi. “Soundness of Formal Encryption in the
Presence of Active Adversaries”. In: Proc. 1st Theory of Cryptography
Conference (TCC). Springer, 2004, pp. 133–151.

[Nie09] J. D. Nielsen. “Languages for Secure Multiparty Computation and Towards
Strongly Typed Macros”. PhD thesis. Department of Computer Science,
University of Aarhus, Denmark, 2009.

[NS78] R. Needham and M. Schroeder. “Using Encryption for Authentication in
Large Networks of Computers”. In: Communications of the ACM 12.21
(1978), pp. 993–999.

301

http://www.kerberos.org/

Bibliography

[OP01] T. Okamoto and D. Pointcheval. “The Gap-Problems: A New Class of Prob-
lems for the Security of Cryptographic Schemes”. In: Proc. 4th Conference
on Theory and Practice of Public-Key Cryptography (PKC). Springer, 2001,
pp. 104–118.

[PR08] M. Prabhakaran and M. Rosulek. “Homomorphic Encryption with CCA
Security”. In: Proc. 35th International Colloquium on Automata, Languages
and Programming (ICALP). Springer, 2008, pp. 667–678.

[PRR09] A. Panchenko, S. Richter, and A. Rache. “NISAN: Network Information
Service for Anonymization Networks”. In: Proc. 16th ACM Conference on
Computer and Communication Security (CCS). ACM Press, 2009, pp. 141–
150.

[PW01] B. Pfitzmann and M. Waidner. “A Model for Asynchronous Reactive Sys-
tems and its Application to Secure Message Transmission”. In: IEEE Com-
puter Society Press, 2001, pp. 184–200.

[Ram29] F. Ramsey.“On a Problem of Formal Logic”. In: Proc. London Mathematical
Society. 2nd ser. 30 (1929), pp. 338–384.

[RG09] J. Reardon and I. Goldberg. “Improving Tor Using a TCP-over-DTLS
Tunnel”. In: Proc. 18th USENIX Security Symposium (USENIX). USENIX
Association, 2009, pp. 119–133.

[RSG98] M. Reed, P. Syverson, and D. Goldschlag. “Anonymous Connections and
Onion Routing”. In: IEEE Journal on Selected Areas in Communications
16.4 (1998), pp. 482–494.

[SBBPW06] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. “Cryp-
tographically Sound Theorem Proving”. In: Proc. 19th IEEE Computer
Security Foundations Workshop (CSFW). IEEE Computer Society Press,
2006, pp. 153–166.

[Shm04] V. Shmatikov.“Probabilistic Analysis of an Anonymity System”. In: Journal
of Computer Security 12.3-4 (2004), pp. 355–377.

[Sho99] V. Shoup. On Formal Models for Secure Key Exchange. Cryptology ePrint
Archive, Report 1999/012. Available as Cryptology ePrint Archive, Report
1999/012 http://eprint.iacr.org/1999/012. 1999.

[SMCB12] B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. “Automated
Analysis of Diffie-Hellman Protocols and Advanced Security Properties”.
In: Proc. 25th IEEE Computer Security Foundations Symposium (CSF).
IEEE Computer Society Press, 2012, pp. 78–94.

[Sol01] J. Solinas. Low-Weight Binary Representations for Pairs of Integers. Tech.
rep. CORR 2001-41. http://cacr .uwaterloo .ca/techreports/2001/corr2001- 41 .ps.
Accessed in June 2012. 2001.

[SSCB14] B. Schmidt, R. Sasse, C. J. F. Cremers, and D. A. Basin. “Automated
Verification of Group Key Agreement Protocols”. In: Proc. 35th IEEE
Symposium on Security & Privacy (S&P). IEEE Computer Society Press,
2014, pp. 179–194.

302

http://eprint.iacr.org/1999/012
http://cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps

Bibliography

[STRL00] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. “Towards an Analy-
sis of Onion Routing Security”. In: Proc. Workshop on Design Issues in
Anonymity and Unobservability (WDIAU). Springer, 2000, pp. 96–114.

[Tor03] Tor Project. Official Web Page. https ://www. torproject . org/. Accessed in
November 2011. 2003.

[Unr11] D. Unruh. “Termination-Insensitive Computational Indistinguishability
(and Applications to Computational Soundness)”. In: Proc. 24th IEEE
Computer Security Foundations Symposium (CSF). IEEE Computer Society
Press, 2011, pp. 251–265.

[Unr12] D. Unruh. Programmable Encryption and Key-Dependent Messages. Tech.
rep. 2012. IACR ePrint Archive: 2012/423. url: http://eprint.iacr.org/2012/423.

[vS07] L. Øverlier and P. Syverson. “Improving Efficiency and Simplicity of Tor Cir-
cuit Establishment and Hidden Services”. In: Proc. 7th Privacy Enhancing
Technologies Symposium (PETS). Springer, 2007, pp. 134–152.

[VSBW13] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. “A Hybrid Architecture
for Interactive Verifiable Computation”. In: Proc. 34th IEEE Symposium on
Security & Privacy (S&P). IEEE Computer Society Press, 2013, pp. 223–
237.

[Wik04] D. Wikström. “A Universally Composable Mix-Net”. In: Proc. 1st Theory
of Cryptography Conference (TCC). Springer, 2004, pp. 317–335.

[Yao82] A. C. Yao. “Protocols for Secure Computations”. In: Proc. 23rd IEEE
Symposium on Foundations of Computer Science (FOCS). IEEE Computer
Society Press, 1982, pp. 160–164.

[Zha09] Y. Zhang. “Effective Attacks in the Tor Authentication Protocol”. In: Proc.
3rd International Conference on Network and System Security (NSS). IEEE
Computer Society Press, 2009, pp. 81–86.

303

https://www.torproject.org/
http://eprint.iacr.org/2012/423
http://eprint.iacr.org/2012/423

	Introduction
	Computational Soundness
	Theoretical Foundations
	Motivation
	The CoSP Framework for Trace Properties
	Symbolic Model
	Computational Model
	Computational Soundness
	A Sufficient Criterion for Soundness

	The CoSP Framework for Equivalence properties
	Symbolic Indistinguishability
	Computational Indistinguishability
	Computational Soundness
	Bi-Protocols

	Review of the Applied -calculus
	Embedding from the Applied -calculus Calculus
	Embedding into CoSP

	Equivalence Notions

	Malleable Zero-Knowledge Proofs
	Motivation
	Symbolic abstraction of Malleable ZK Proofs
	The basic symbolic model
	Symbolic MZK proofs
	Terms and statements
	Destructors for MZK Proofs
	ZK preservation
	Symbolic attacker

	Computational soundness
	MZK-safe protocols
	Implementation conditions
	Computational ZK Relation
	List of implementation conditions

	Complete proof of computational soundness
	Proof overview
	Symbolic and computational ZK relation
	Transparent hybrid executions
	The simulator Sim
	Sim f is Dolev-Yao
	Sim f is indistinguishable

	Conclusion
	Postponed definitions

	Secure Multi-Party Computation
	Motivation
	The symbolic abstraction of SMPC
	Abstracting SMPC in the Applied -calculus

	Formal Verification
	Computational Execution
	SMPC in the UC framework
	The UC Framework
	From an SMPC Process to an Ideal Functionality

	Computational execution of a process

	Computational soundness
	Computational safety
	Computational soundness for non-interactive primitives
	The symbolic model
	Implementation conditions
	The Class of Key-safe Protocols
	The computational soundness proof

	From the -execution to the SMPC-execution
	The construction of the scheduling simulator
	The proof of the soundness of SSim
	Leveraging UC-realizability
	Plugging the results together

	Conclusion

	Equivalence Properties for Interactive Primitives
	Motivation
	Interactive Primitives in CoSP
	Ideal Functionalities
	Communication
	Formal Definition
	Ideal Functionalities in the Symbolic Setting
	Ideal Functionalities in the Computational Setting

	Realization of Implementations
	Good Ideal Functionalities and Real Protocols

	Protocol Conditions for Interactive Primitives
	Computational Soundness
	Conclusion

	From Trace Properties to Equivalence Properties
	Motivation
	Self-monitoring
	CS for Trace Properties
	Bridging the Gap from Trace Properties to Uniformity

	Case Study: Encryption and Signatures with Lengths
	The Symbolic Model
	Implementation Conditions
	Randomness-safe Bi-protocols
	The branching monitor
	The construction of fbad-branch,(b,tr)
	Extended Symbolic Model
	Extended Symbolic Execution
	fbad-branch, is a distinguishing subprotocol

	The knowledge monitor
	Construction of the knowledge monitor
	Symbolic self-monitoring of the knowledge monitor
	The Faking Simulator Simf
	CS for Trace Properties with Length Functions
	Decision variant of a protocol
	Uniqueness of a symbolic operation
	Unrolled variants
	Computational self-monitoring for the knowledge monitor

	CS for Uniform Bi-processes in the Applied -calculus

	Conclusion

	Anonymous Communication
	Provably Secure Onion Routing
	Motivation
	Background
	Onion Routing Circuit Construction
	One-Way Authenticated Key Exchange – 1W-AKE
	Generalized UC Framework
	The OR Protocol
	An OR Black Box Model

	Security Definition of OR
	System and Adversary Model
	Ideal Functionality

	Secure OR modules
	Predictably Malleable Encryption
	Secure Onion Algorithms
	One-Way Authenticated Key-Exchange

	or UC-Realizes For
	Instantiating Secure OR Modules
	Deterministic Counter Mode and Predictable Malleability
	Security of Tor's Onion Algorithms
	ntor: A 1W-AKE

	Forward Secrecy and Anonymity Analysis
	OR Anonymity Analysis
	or realizes Bor
	Generalizing Bor to partially global attackers

	Forward Secrecy

	Conclusion

	Ace: An Efficient Key-Exchange Protocol
	Motivation
	Background
	The current Tor Authentication Protocol
	The A-DHKE Protocol
	The ØS Protocol
	The ntor Protocol
	A Note on Non-Interactive KE

	The Ace Procotol
	The Construction

	Performance Comparison
	Computational Efficiency
	Message Sizes

	Security Analysis
	Security Definition of Anonymous 1W-AKE
	The Security of Ace

	Conclusion

	Conclusion, Appendix & Bibliography
	Conclusion
	The Source Code for the Sugar Beet Case Study
	Bibliography

