
Pattern Search for the Visualization
of Scalar, Vector, and Line Fields

Zhongjie Wang

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurswissenschaften (Dr. -Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

September 2015
Saarbrücken, Germany

Datum des Kolloquiums / Date of Defense
December 18, 2015

Dekan / Dean
Prof. Dr. Markus Bläser
Universität des Saarlandes, Saarbrücken

Vorsitzender / Chair
Prof. Dr. Philipp Slusallek

Prüfer / Examiners
Prof. Dr. Hans-Peter Seidel
Prof. Dr. Tino Weinkauf
Prof. Dr. Christoph Garth

Protokollant / Recorder
Dr. Renjie Chen

Abstract
The main topic of this thesis is pattern search in data sets for the purpose of visual
data analysis. By giving a reference pattern, pattern search aims to discover similar
occurrences in a data set with invariance to translation, rotation and scaling. To address
this problem, we developed algorithms dealing with different types of data: scalar fields,
vector fields, and line fields.

For scalar fields, we use the SIFT algorithm (Scale-Invariant Feature Transform) to
find a sparse sampling of prominent features in the data with invariance to translation,
rotation, and scaling. Then, the user can define a pattern as a set of SIFT features by
e.g. brushing a region of interest. Finally, we locate and rank matching patterns in the
entire data set. Due to the sparsity and accuracy of SIFT features, we achieve fast and
memory-saving pattern query in large scale scalar fields.

For vector fields, we propose a hashing strategy in scale space to accelerate the
convolution-based pattern query. We encode the local flow behavior in scale space using
a sequence of hierarchical base descriptors, which are pre-computed and hashed into a
number of hash tables. This ensures a fast fetching of similar occurrences in the flow
and requires only a constant number of table lookups.

For line fields, we present a stream line segmentation algorithm to split long stream
lines into globally-consistent segments, which provides similar segmentations for similar
flow structures. It gives the benefit of isolating a pattern from long and dense stream
lines, so that our patterns can be defined sparsely and have a significant extent, i.e.,
they are integration-based and not local. This allows for a greater flexibility in defining
features of interest. For user-defined patterns of curve segments, our algorithm finds
similar ones that are invariant to similarity transformations.

Additionally, we present a method for shape recovery from multiple views. This
semi-automatic method fits a template mesh to high-resolution normal data. In contrast
to existing 3D reconstruction approaches, we accelerate the data acquisition time by
omitting the structured light scanning step of obtaining low frequency 3D information.

Kurzfassung
Das Hauptthema dieser Arbeit ist die Mustersuche in Datensätzen zur visuellen Daten-
analyse. Durch die Vorgabe eines Referenzmusters versucht die Mustersuche ähnliche
Vorkommen in einem Datensatz mit Translations-, Rotations- und Skalierungsinvarianz
zu entdecken. In diesem Zusammenhang haben wir Algorithmen entwickelt, die sich mit
verschiedenen Arten von Daten befassen: Skalarfelder, Vektorfelder und Linienfelder.

Bei Skalarfeldern benutzen wir den SIFT-Algorithmus (Scale-Invariant Feature
Transform), um ein spärliches Abtasten von markanten Merkmalen in Daten mit
Translations-, Rotations- und Skalierungsinvarianz zu finden. Danach kann der Be-
nutzer ein Muster als Menge von SIFT-Merkmalspunkten definieren, zum Beispiel
durch Markieren einer interessierenden Region. Schließlich lokalisieren wir passende
Muster im gesamten Datensatz und stufen sie ein. Aufgrund der spärlichen Verteilung
und der Genauigkeit von SIFT-Merkmalspunkten erreichen wir eine schnelle und spei-
chersparende Musterabfrage in großen Skalarfeldern.

Für Vektorfelder schlagen wir eine Hashing-Strategie zur Beschleunigung der fal-
tungsbasierten Musterabfrage im Skalenraum vor. Wir kodieren das lokale Flussverhal-
ten im Skalenraum durch eine Sequenz von hierarchischen Basisdeskriptoren, welche
vorberechnet und als Zahlen in einer Hashtabelle gespeichert sind. Dies stellt eine
schnelle Abfrage von ähnlichen Vorkommen im Fluss sicher und benötigt lediglich eine
konstante Anzahl von Nachschlageoperationen in der Tabelle.

Für Linienfelder präsentieren wir einen Algorithmus zur Segmentierung von Strom-
linien, um lange Stromlinen in global konsistente Segmente aufzuteilen. Dies erlaubt
eine größere Flexibilität bei der Definition von Mustern. Für vom Benutzer definierte
Muster von Kurvensegmenten findet unser Algorithmus ähnliche Kurvensegmente, die
unter Ähnlichkeitstransformationen invariant sind.

Zusätzlich präsentieren wir eine Methode zur Rekonstruktion von Formen aus
mehreren Ansichten. Diese halbautomatische Methode passt ein Template an hochau-
flösende Normalendaten an. Im Gegensatz zu existierenden 3D-Rekonstruktionsverfahren
beschleunigen wir die Datenaufnahme, indem wir auf die Streifenprojektion verzichten,
um niederfrequente 3D Informationen zu gewinnen.

Acknowledgement
First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr. Tino
Weinkauf for introducing me to the research of flow visualization. He always shows his
endless patience in supporting and encouraging me to explore all my ideas, and also
offers selfless guidances to help me staying in the right lane. Discussions with him are
always inspirational. He uses his deep knowledge and optimistic characteristic to help
me going forward. Without him, the thesis would not be possible.

I would also like to express my gratitude to Prof. Dr. Thorsten Thormählen. He
introduced me to the Computer Graphics Department of Max Planck Institute for
Informatics. He also uses his rich experiences to build my research skills, and always
offers me detailed teachings which are very important for a freshman in academia.

I am also thankful to Prof. Dr. Hans-Peter Seidel. Thank him for arranging such
a great research environment in MPII. Many high-quality internal and external talks
tremendously broaden my vision in the whole discipline.

I also cannot forget to thank all the co-workers who made unconditional helps and
contributions in my work. They are Dr. Janick Martinez Esturo, Himangshu Saikia,
Gregorio Palmas, and Martin Grochulla. Without you, my work would be much harder
and slower.

Many thanks also go to the administrative staff members, Sabine Budde and Ellen
Fries from MPII, as well as Jennifer Gerling and Stephanie Jörg from IMPRS. They use
their professional skills and many patience to help me arranging a lot of office work.

I would also like to express my thanks to all the researchers in MPII. They are Dr.
David Günther, Dr. Alan Brunton, and Evgeny Levinkov from the visualization group
in MPII, and also my officemates, Xiaokun Wu, Mohammed Shaheen, and Abhimitra
Meka, and also many more who I cannot list their names all here. They are very smart,
and their attitudes to work always encourage me to achieve higher goals.

Finally, I would like to thank my parents, Bing Wang and Jianfei Zhong, and
my parents-in-law, Zhongchao Li and Benzhen Tan. They always stand with me and
unconditionally support and encourage me throughout these study years. At last, I
would like to thank my wife, Shujie. She is my source of power to overcome all the
difficulties in my life.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Structure and Overview . 4
1.3 Contributions . 5
1.4 List of Publications . 6

2 Related Work 7
2.1 Pattern Search . 7
2.2 Shape Recovery . 8

3 Pattern Search in Scalar Fields 11
3.1 Overview . 11
3.2 Scale-Invariant Feature Transform 12

3.2.1 Background on 3D SIFT . 12
3.2.2 Obtaining Rotation Invariance for 3D SIFT 16

3.3 Pattern Matching in Multi-Fields . 17
3.3.1 Trait fields . 17
3.3.2 Feature-Based Search for Candidate Patterns 19
3.3.3 Region-Based Cost Computation 20

3.4 Evaluation and Discussion . 21
3.4.1 Rationale Behind the Feature-Based Approach 21
3.4.2 Comparison to Vector-Based Matching Methods 22
3.4.3 Discussion of False Negatives and False Positives 28
3.4.4 Discussion of Parameters . 29
3.4.5 Evaluation of the Invariance of the SIFT Features 29
3.4.6 Invariance against Intensity Scaling or Shifting 31

3.5 Results . 31
3.6 Summary . 37

4 Hierarchical Hashing for Pattern Search in 3D Vector Fields 39
4.1 Overview . 39
4.2 Hierarchical Description, Hashing and Indexing 40

4.2.1 Scale Space . 40
4.2.2 Base Descriptors . 41

1

2 CONTENTS

4.2.3 Base Descriptor Hashing . 41
4.2.4 Base Descriptor Querying and Comparison 42

4.3 Pattern Definition and Search . 43
4.3.1 Sphere Descriptors . 43
4.3.2 Sphere Layout Filtering . 45

4.4 Evaluation and Discussion . 46
4.4.1 Parameter Overview . 46
4.4.2 Evaluation of Retrieval Accuracy 47
4.4.3 Comparison of LSH strategies 48
4.4.4 Sensitivity to Vortex Orientation 48
4.4.5 Robust to Translation, Rotation, and Scaling 49
4.4.6 Timings . 49

4.5 Results . 52
4.6 Summary . 52

5 Pattern Search in Flows based on Similarity of Stream Line Segments 55
5.1 Overview . 55
5.2 Intrinsic Stream Line Segmentation 56

5.2.1 Globally Consistent Segmentation of Stream Lines 57
5.2.2 Intrinsic Similarity of Stream Line Segments 61

5.3 Pattern Search . 61
5.3.1 Stream Lines Placement . 62
5.3.2 Pattern Definition . 63
5.3.3 Pattern Retrieval . 63

5.4 Validation . 66
5.5 Results . 69
5.6 Discussion . 72
5.7 Summary . 73

6 3D Face Template Registration Using Normal Maps 75
6.1 Overview . 75
6.2 Hardware Set-up and Normal Map Generation 76
6.3 Algorithm . 78

6.3.1 Feature-based registration 78
6.3.2 Normal registration . 80
6.3.3 Multi-view Refinement . 82

6.4 Results . 83
6.5 Summary . 86

7 Conclusion 87
7.1 Future Work . 88

Chapter 1

Introduction

Visualization focuses on the study of representing data using different visual elements.
It plays an important role in understanding the data acquired from other disciplines,
e.g., physics, chemistry, and biology. By enhancing the features or correlations in the
data regarding some criteria, people can visually examine the inertial characteristics
of the data. For example, the widely used visualization tools, e.g., line plot and pie
graph, are very useful for examining the trend of a quantity and the composition of a
subject. However, with the trend of data explosion, the quantity and the complexity of
data have increased dramatically. It becomes more and more difficult to understand the
data by using traditional visualization tools. Therefore, the requirement of information
extraction and summarization quickly gains the focus of visualization research. A large
number of feature extraction methods have been proposed over the last two decades.

However, different types of data always lead to different ways of feature extraction.
In many research communities, data exist in different types. For example, language
processing focuses on sequential signals, image processing focuses on images or videos,
and geometry processing focuses on meshes. In this thesis, we focus on the applica-
tion of pattern search in three types of data sets: scalar fields, vector fields, and line
fields. These three types of data are also widely used in different research domains in
visualization. Specifically, scalar fields exist in, for example, temperature or pressure
analysis. Electromagnetics and flow analysis often focus on the vector fields. Line fields
are widely used in streamline or trajectory analysis.

1.1 Motivation

The motivation of this thesis is the application of pattern search in flow visualization.
Pattern search is a heavily discussed topic in computer vision, while in the visualization
community, it is not widely used yet. The introduction of more advanced techniques of
pattern search into visualization can strengthen the ability of pattern based similarity
analysis. Since the flow data exists in different types, we do not directly inherit the
methods from computer vision, but only follow its methodology and propose different
algorithms which are suitable for different types of data that are most common with

3

4 CHAPTER 1. INTRODUCTION

fluid simulations, i.e., scalar fields, vector fields, and line fields.
Additionally, instead of using the classic RGB images or videos, we also investigate

the way of using normal maps (2D vector fields) into surface recovery. Vector fields
have been widely used in optical flow analysis already. Comparing with the classic
RGB images or videos (scalar fields), it gives more surface information, i.e., surface
orientations (vector fields), which is more reliable than the color information. Instead of
3D reconstruction from images or scanners, in this thesis, we model the surface recovery
problem as a template fitting problem, which solely relies on the normal data. Because
normal maps encodes the surface information, so that the surface orientation can be
iteratively optimized from multiple views.

1.2 Structure and Overview
In the following, we give an overview of the structure of the thesis. In Chapter 3, Chapter
4, and Chapter 5, we propose three algorithms for pattern search in scalar fields, vector
fields, and line fields respectively. In the following, we briefly introduce these three
algorithms.

In Chapter 3, we present an approach to pattern matching in 3D multi-field scalar
data. Existing pattern matching algorithms work on single scalar or vector fields only,
yet many numerical simulations output multi-field data where only a joint analysis
of multiple fields describes the underlying phenomenon fully. Our method takes this
into account by bundling information from multiple fields into the description of a
pattern. First, we extract a sparse set of features for each 3D scalar field using the 3D
SIFT algorithm (Scale-Invariant Feature Transform). This allows for a memory-saving
description of prominent features in the data with invariance to translation, rotation, and
scaling. Second, the user defines a pattern as a set of SIFT features in multiple fields by
e.g. brushing a region of interest. Third, we locate and rank matching patterns in the
entire data set. Experiments show that our algorithm is efficient in terms of required
memory and computational efforts.

In Chapter 4, we propose an algorithm which is able to detect 3D flow patterns of
arbitrary extent in a robust manner. We encode the local flow behavior in scale space
using a sequence of hierarchical base descriptors, which are pre-computed and hashed
into a number of hash tables. This ensures a fast fetching of similar occurrences in
the flow and requires only a constant number of table lookups. In contrast to many
previous approaches, our method supports patterns of arbitrary shape and extent. We
achieve this by assembling these patterns using several smaller spheres. The results
are independent of translation, rotation, and scaling. Our experiments show that our
approach encompasses the state of the art with respect to both the computational costs
and the accuracy.

In Chapter 5, we propose a method that allows users to define flow features in
form of patterns represented as sparse sets of stream line segments. Our approach
finds “similar” occurrences in the same or other time steps. Related approaches define
patterns using dense, local stencils or support only single segments. Our patterns are
defined sparsely and can have a significant extent, i.e., they are integration-based and
not local. This allows for a greater flexibility in defining features of interest. Similarity

5 1.3. CONTRIBUTIONS

is measured using intrinsic curve properties only, which enables invariance to location,
orientation, and scale. Our method starts with splitting stream lines using globally-
consistent segmentation criteria. It strives to maintain the visually apparent features of
the flow as a collection of stream line segments. Most importantly, it provides similar
segmentations for similar flow structures. For user-defined patterns of curve segments,
our algorithm finds similar ones that are invariant to similarity transformations. We
showcase the utility of our method using different 2D and 3D flow fields.

Additionally, in Chapter 6, we discusses a computer vision application which
recovers 3D surfaces from multiple normal maps (2D vector fields). We propose a
semi-automatic method to fit a template mesh to high-resolution normal data, which is
generated using spherical gradient illuminations in a light stage. Template fitting is an
important step to build a 3D morphable face model, which can be employed for image-
based facial performance capturing. In contrast to existing 3D reconstruction approaches,
we omit the structured light scanning step to obtain low-frequency 3D information. This
reduces the acquisition time by over 50 percent. In our experiments the proposed
algorithm is successfully applied to real faces of several subjects. Experiments with
synthetic data show that the fitted face template can closely resemble the ground truth
geometry.

Finally, in Chapter 7, we conclude the thesis and discuss some potential future
works.

1.3 Contributions
The contributions of this thesis are summarized as follows:

• In Chapter 3:

– A novel pattern matching method is proposed for 3D multi-field data sets,
which bundles the information from different fields into the description of a
pattern.

– In 3D multi-field data sets, by working with a sparse set of prominent
features, the proposed method achieves response times for pattern matching
of less than a second even for large data sets.

– In contrast to the two previous versions of the 3D SIFT algorithm [17, 70],
the proposed method achieves full invariance to 3D rotation by finding
a robust local coordinate system. This increases the accuracy of pattern
matching.

• In Chapter 4

– For vector fields, a hierarchical hashing and matching algorithm is proposed.
It can achieve a pattern search in 3D vector fields in a few seconds with an
affordable memory cost.

– The proposed algorithm allows the user to define a template by arranging
a number of spheres with arbitrary locations and radii. Flow features with
irregular extents can now be described and searched for.

6 CHAPTER 1. INTRODUCTION

• In Chapter 5

– For line fields, an example-based pattern retrieval approach is proposed. It
allows users to specify interesting flow features as patterns that are con-
structed of stream line segments, i.e., parts of stream lines. It supports
patterns represented by multiple line segments, which increases the flexibil-
ity and expressiveness of the specified patterns.

– A stream line segmentation scheme is proposed. It is based only on intrinsic
curve properties. It maintains the visually apparent features of the flow as a
collection of stream line segments, and provides similar segmentations for
similar flow structures.

• In Chapter 6

– A novel method to semi-automatically fit a 3D face template to normal
maps is proposed. This includes three main steps: feature point registration,
normal registration, and shape refinement.

– In normal registration, a novel optimization strategy to minimize a highly
non-linear function is proposed. It splits the problem to several constrained
optimization steps which can be linearized and solved efficiently.

1.4 List of Publications
The work presented in this thesis has been published in the following papers:

• Z. Wang, H.-P. Seidel, T. Weinkauf. Multi-field Pattern Matching based on
Sparse Feature Sampling. IEEE Transactions on Visualization and Computer
Graphics(Proc. IEEE VIS)21(12), December 2015. In Chapter 3

• Z. Wang, H.-P. Seidel, T. Weinkauf. Hierarchical Hashing for Pattern Search in
3D Vector Fields. Proc. Vision, Modeling and Visualization(VMV 2015). Aachen,
Germany, October 7 - 10, 2015. In Chapter 4

• Z. Wang, J. Martinez Esturo, H.-P. Seidel, T. Weinkauf. Pattern Search in Flows
based on Similarity of Stream Line Segments. Proc. Vision, Modeling and
Visualization(VMV 2014). Darmstadt, Germany, October 8 - 10, 2014. In
Chapter 5

• Z. Wang, M. Grochulla, T. Thormählen, H.-P. Seidel. 3D Face Template Reg-
istration Using Normal Maps. 3rd Joint 3DIM/3DPVT Conference(3DV 2013).
University of Washington, Seattle, USA, 29-30 June 2013. In Chapter 6

Chapter 2

Related Work

In the following, we discuss the related work based on two applications of this thesis,
i.e., pattern search and shape recovery.

2.1 Pattern Search

Pattern search automates the process of finding similarities in a data set. First of all,
we discuss the related work in this topic based on the type of reference pattern, i.e.,
Region-based and feature-based pattern search.

Region-based algorithms define a pattern as a compact spatial region and aim at
finding similar regions within a scalar or vector field. The challenges are two-fold. First,
it is necessary to detect a similar region even if it is a translated, scaled and rotated
version of the pattern. Invariance to other transformations, such as small distortions
or brightness changes, is desirable. Second, the computation times are often very
long, which hinders interactive approaches. Region-based pattern searching for scalar
fields has mainly be developed in the computer vision community and found a large
number of applications. One of the most successful approaches is SIFT, which stands
for Scale-Invariant Feature Transform. It was introduced by David Lowe [46] in 1999
and refined in 2004 [48] to describe local feature points in photos (2D images) in a
translation-, rotation-, and scale-invariant manner. Since then, it has been applied to a
number of domains including image registration [92], object recognition [47], image
stitching [8], and video tracking [4]. Generalizations to higher dimensions have been
proposed by Scovanner et al. [70] and Cheung et al. [17] independently. The former
provided a 3D version of the SIFT algorithm, the latter a generalization to n-dimensional
domains. For 3D domains, they both boil down to the same algorithm. These existing
approaches fail to capture rotation invariance in the sense that they only determine one
axis of the 3D local coordinate system. The results are sensitive to rotations around this
axis. In flow visualization, some approaches are also proposed in this topic. Ebling et
al. [25–27] and Heiberg et al. [35] independently introduced pattern matching for vector
fields to the visualization community. Both approaches use a convolution to compute
the similarity between a pattern and a location in the field. This requires to sample all

7

8 CHAPTER 2. RELATED WORK

possible rotations, translations and scales, and typically leads to high running times.
Moment-invariant descriptors are used by Schlemmer et al. [68] and Bujack et al. [11]
to achieve pattern invariance with respect to translation, rotation, and scaling. These
approaches are fast, but treat 2D vector fields only. Bujack et al. [12] later extend their
method into 3D vector fields.

Feature-based approaches aim at finding similar structures by comparing features
with each other. Several approaches use topology to compare structures in scalar
fields. Thomas et al. [76, 77] concentrate on finding all symmetric structures in a
scalar field using the contour tree. Saikia et al. [63, 64] perform a similarity search for
any structurally significant region as given by a subtree in the merge tree. The other
methods focus on the enhancements of features. Günther" et al. [32] and Weinkauf et
al. [83] propose topological denoising methods for scalar fields. Feature Flow Field
proposed by Theisel et al. [75] is also widely used in extracting and tracking features.
Weinkauf et al. [87] propose an automatic correction method to resolve the numeric
error when tracking the features in feature flow fields. A number of methods for vector
fields deal with the comparison of stream lines. Li et al. [45] uses the bag-of-features
approach to describe the characteristics of stream lines. This leads to a clustering
of line fields. McLoughlin et al. [54] compute signatures for stream and path lines,
which accelerates the similarity computation. Lu et al. [49] propose a distribution-
based segmentation algorithm to split long stream lines into segments. Wei et al. [82]
achieve field line search by comparing 2D sketches with the projections of 3D field
lines. Some approaches [7, 65, 66] use predicates to discover flow patterns. Several
approaches [42, 62] use the spatial distance between pairwise closest points as the
similarity measure for clustering stream lines. Tao et al. [73] extract shape invariant
features and compare them using a string-based algorithm. Additionally, Schulze et
al. [69] propose an global selection algorith for finds an optimal sets of stream surfaces
to visualize the data set.

Comparing with finding similarities in a single data set, revealing the complexity
of a multi-field data set is a more challenging task. Showing all fields within the
same visualization leads to massive occlusions, while individual visualizations fail
to communicate the commonalities. Several approaches have been proposed to deal
with these issues such as multiple coordinated views [24], correlation analysis [67],
or the rather recent topological approaches of Joint Contour Nets [15] and Pareto
Optimality [38]. In all these approaches, finding similarities between different parts of
the data is essentially a manual process.

2.2 Shape Recovery
In the past few years, many algorithms for recovering 3D facial geometry have been
proposed. This section gives an overview of the most related work to our method.

Marker-based Performance Capture Marker-based performance capture systems are
still the most widely adopted solutions for facial performance capture in the industry and
have achieved great success in the commercial world. As markers at certain semantically
significant locations are attached to the face, it is relatively easy to fit a template mesh
to the marker data. The advantage of this technique is that it is fast, robust to noise, and

9 2.2. SHAPE RECOVERY

easy to deploy. However, the captured detail is quite low, as measurements are only
available at the marker positions.

Photometric Stereo Photometric stereo [91] is an active illumination approach used
for surface normals recovery. The normals provide derivative information of the 3D
surface and can be used to generate accurate high-frequency local geometry [57]. Recent
light stage developments [1, 19] adopt a spherical gradient illumination approach for
generating a detailed normal map of the input face. Real-time computation [53] for this
approach has been achieved using high-speed video cameras and a fast GPU implemen-
tation. Ma et al. [51] applied structured light scanning to capture low-frequency 3D
structure, so their hardware system has to be well designed to allow capturing a large
number of images in fast succession (13 images = 8 spherical illuminations + 5 structure
light patterns per time instance). In contrast, our approach only requires 6 images per
time instance for normal map calculation, thus can greatly increase the frame rate. Many
extensions have appeared afterwards [29, 52], most related to our work is Wilson et al.’s
approach [90], which made two improvements to Ma et al.’s work by firstly reducing the
requirements of illumination condition, and secondly exploring dense temporal stereo
correspondence for 3D structure reconstruction rather than structured light scanning.
With the benefits of these improvements, their system can achieve higher frame rates and
also more stable results. However, the aim of these approaches is to generate detailed
3D geometry for every captured frame rather than fitting a consistent template mesh.

3D morphable models 3D morphable model based approaches [6,20,60] can provide
useful prior knowledge for marker-based or image-based facial performance capturing.
General facial models [5, 79], which are trained on a large database, may miss fine
details unique to a specific person, hence, recent developments also focus on subject
specific models [89], or single patch representation in region based variants [37, 74]. To
build a 3D face model, these approaches require semi-automatic fitting of templates to
3D scanner data with manually selected markers, while our automatic approach relies
solely on normal data.

10 CHAPTER 2. RELATED WORK

Chapter 3

Pattern Search in Scalar Fields

3.1 Overview
Pattern matching algorithms have proven useful for scalar [28, 34, 48] and vector
fields [11, 25, 35, 80]. The general idea is to compute the similarity between a user-
supplied pattern and every location in the data set. A pattern can be given in different
forms such as a small subset of the domain or a selection of stream lines. A desired
property for pattern matching is invariance to translation, rotation, and scaling, i.e.,
a translated, rotated and scaled copy of the pattern can be found in the data despite
these transformations. To achieve this, some existing algorithms require substantial
computation time. Furthermore, existing algorithms work for a single field only.

To the best of our knowledge, we present the first pattern matching method in the
context of multi-field visualization. Our approach offers fast responses to the user by
performing a large part of the pattern search using a sparse set of feature points. Features
are computed using the 3D SIFT algorithm [17, 70]. A 3D SIFT feature is located at a
point and describes the behavior of the scalar field in its neighborhood with invariance
to translation, rotation, and scaling. We compute SIFT features for scalar fields. We deal
with vector fields indirectly by means of computing SIFT features for derived scalar
fields such as the vorticity magnitude of a flow. Scalar fields for which we compute
SIFT features are called trait fields.

Pattern matching using our method works as follows: a user selects a search pattern
as a region of interest in the domain (a small box). For each SIFT feature within this
region, we find similar ones in the entire data set. This is a very fast procedure and yields
candidate transformations of the search pattern. In other words, instead of testing the
search pattern against every other location in the domain (as well as all possible rotations
and scale factors), we test it only against a sparse and sufficient set of candidates. The
actual similarity value is then computed using a weighted L2-norm over all considered
trait fields. The final result is a scalar field that indicates regions in the multi-field data
set where all trait fields show a similar behavior as in the user-selected region.

We give the following technical contributions:

• We introduce a novel pattern matching method for 3D multi-field data sets, which

11

12 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

bundles the information from different fields into the description of a pattern.

• We achieve response times for pattern matching of less than a second even for
large data sets by working with a sparse set of prominent features.

• In contrast to the two previous versions of the 3D SIFT algorithm [17, 70], we
achieve full invariance to 3D rotation by finding a robust local coordinate system.
This increases the accuracy of pattern matching.

The next section recapitulates the 3D SIFT algorithm and explains our improvement
to it. Section 3.3 presents our pattern search algorithm for multi-fields. We evaluate and
discuss our method in section 3.4. Results are shown in section 3.5.

3.2 Scale-Invariant Feature Transform
In the following, we recapitulate the basics of the 3D SIFT algorithm based on the
work of Scovanner et al. [70] and Cheung et al. [17] as well as the original 2D work of
Lowe [48]. Especially the original work comes with a lot of background information
both on a theoretical and practical level, which serves as justification for the individual
steps of the algorithm and for the parameter choices. In this paper, we follow these
choices and refer the interested reader to [48] for more background information.

3.2.1 Background on 3D SIFT
There are two aspects about a SIFT feature: its location and its description. The
computation of these aspects is related, as we shall see in the following.

Consider a 3D scalar field S(x,y,z) on a 3D uniform grid. The scale space of S is
constructed using a convolution with a Gaussian blur G(x,y,z,σ)

L(x,y,z,σ) = G(x,y,z,σ)∗S(x,y,z) (3.1)

where σ refers to the standard deviation of the Gaussian distribution. Note that σ

spans the new scale-dimension and larger σ correspond to blurrier versions of the scalar
field. The location of the SIFT features is computed from a derived space, namely the
convolution of the scalar field S with the Difference-of-Gaussian function

D(x,y,z,σ) = (G(x,y,z,kσ)−G(x,y,z,σ))∗S(x,y,z), (3.2)

where k > 1. This can be computed as the difference between two neighboring scales

D(x,y,z,σ) = L(x,y,z,kσ)−L(x,y,z,σ). (3.3)

The locations of the SIFT features are the extrema of D(x,y,z,σ).
In practice, the fields are constructed as shown in Figure 3.1. One starts with an

initial blur; Lowe [48] suggests σ0 = 1.6. The following scales are computed using a
repeated convolution with G(x,y,z,k). The value of k is set such that a doubling of σ

is achieved after a certain number s of steps. Doubling σ is referred to as an octave.

13 3.2. SCALE-INVARIANT FEATURE TRANSFORM

Figure 3.1: Localization of SIFT features in different scales. A sequence of Gaussian
blurred fields with increasing σ is generated. DoG (Difference-of-Gaussian) fields are
computed by subtracting neighboring blurred fields. The extrema in the DoG fields
denote the SIFT feature locations. For a given location, the neighborhood in the blurred
field of the corresponding scale (orange box) serves as a description of the SIFT feature
(see also Figure 3.2).

14 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

Figure 3.2: Computation of the SIFT descriptor. Based on a proper orientation (green
arrows), a neighborhood of size 9×9×9 is sampled in the blurred scalar field (see also
Figure 3.1). It is split into 27 blocks. For each block, a 3D histogram of the gradient is
computed and stored in the SIFT descriptor.

15 3.2. SCALE-INVARIANT FEATURE TRANSFORM

Lowe [48] suggests k = 21/s with s = 3. The Difference-of-Gaussian (DoG) fields are
computed from two neighboring scales as shown in Figure 3.1. Note that the total
number of blurred scalar fields needs to be s+3 such that the SIFT feature locations
can later be computed from a full octave. The next octave starts with 2σ0 and a halved
resolution. We use a total of three octaves throughout the paper.

The locations of the SIFT features are found as extrema in the DoG fields. More
precisely, a grid vertex in the DoG field is marked as an extremum if all its grid
neighbors in the previous, current and next scale are smaller/larger, i.e., a 3×3×3×3
neighborhood is checked. See the right part of Figure 3.1 for an illustration. It does not
matter whether an extremum is a minimum or a maximum.

The description of a SIFT feature is derived from a neighborhood in the blurred
scalar fields. This is illustrated in Figure 3.1 as orange boxes over the blurred fields.
Note that the effective physical size of these boxes is larger in higher octaves due to the
changed resolution.

The computation of the SIFT descriptor is illustrated in Figure 3.2. The key here is
to achieve rotation invariance by choosing a consistent orientation for the neighborhood
box based on local properties of the data. For 2D SIFT features, Lowe [48] uses the
local image gradient, i.e., a 2D vector, which uniquely defines the orientation of a 2D
neighborhood. For the 3D case, the existing methods by Scovanner et al. [70] and
Cheung et al. [17] use the 3D gradient vector as orientation. More precisely, they
parameterize it to the spherical coordinate system and compute a 3D rotation matrix
from that. We will show in the next section that this does not define the orientation of a
3D neighborhood in a unique manner.

However, after assigning an orientation, a neighborhood with size 9× 9× 9 is
considered around the extrema position. It is split into 27 small blocks with size
3× 3× 3 each. For each block, the gradient of the blurred scalar field is sampled at
the vertices and recorded in a 3D orientation histogram. It has 12 bins as defined by
a Platonic icosahedron. The histogram records the magnitude of the gradient. Each
histogram comprises a part of the SIFT descriptor. The complete SIFT descriptor has
12×27 = 324 elements. The descriptor is considered a vector and normalized to have
unit length. The process of computing a SIFT descriptor is shown in Figure 3.2.

Euclidean distance is used to measure the cost (dissimilarity) between two SIFT
descriptors k and m:

cost(k,m) = ||k−m||. (3.4)

This direct and fast comparison is possible, since we transformed them already into a
common space w.r.t. rotation and scale. Two SIFT descriptors are said to be matching,
if their cost is below a certain threshold. This parameter is quite unproblematic in our
setting since a larger set of matching features will just have a slight impact on running
time. We fixed it to 0.2 in our implementation, where 0 means that the two descriptors
are identical, and 2 is the largest possible distance between two diametrically opposed
descriptors.1

1 Since the descriptors are normalized to unit length, two descriptors k and m have a cost of 2, iff k =−m.

16 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

Existing approaches [17, 70] Our approach

Figure 3.3: Rotation invariance of the SIFT descriptor can only be achieved, if the
3D orientation of the neighborhood is properly fixed. See also Figure 3.2. Previous
approaches attempt this using a single vector encoded in spherical coordinates. The
result is sensitive to rotation around this vector itself. We compute a stable local
coordinate system using (3.10), which makes the 3D SIFT descriptor properly rotation
invariant.

3.2.2 Obtaining Rotation Invariance for 3D SIFT

A single vector does not suffice to fix the orientation of a 3D neighborhood. Figure 3.3
shows how the existing methods by Scovanner et al. [70] and Cheung et al. [17] use the
gradient direction T to fix two out of three possible rotations. Specifically, any rotation
around T cannot be detected with their SIFT descriptors.

We fix this issue by computing the Frenet-Serret frame in the gradient field as the
base coordinate system. This gives us a local, orthogonal coordinate system. We use
it to assign a unique orientation to the neighborhood box before computing the SIFT
descriptor.

The Frenet-Serret frame has three orthogonal axes, i.e., tangent T, normal N, and
bi-normal B. They are computed from local derivatives, but conceptually they refer to
the tangent, normal and bi-normal of the gradient curve r passing through a given point:

T =
dr
ds

(3.5)

N =
dT
ds

(3.6)

B = T×N. (3.7)

To make the frame more reliable, we compute the averages of the tangent, normal
and bi-normal of all the Frenet-Serret frames within a 3×3×3 neighborhood. Let us
denote them with T, N, and B. To obtain a orthogonal coordinate system, we apply the

17 3.3. PATTERN MATCHING IN MULTI-FIELDS

Gram-Schmidt process, which can be written as

T′ = T (3.8)

N′ = N− N ·T′

T′ ·T′
T′ (3.9)

B′ = B− B ·T′

T′ ·T′
T′− B ·N′

N′ ·N′
N′ , (3.10)

where T′, N′, and B′ are further normalized to have unit lengths.
This coordinate system gives us a reliable basis for a rotation-invariant SIFT de-

scriptor. Figure 3.3 gives an illustration. We tested the rotation invariance in a practical
setting, see Section 3.4.5.

3.3 Pattern Matching in Multi-Fields
We define a pattern as a user-defined 3D box in the data. It is characterized by its
orientation, extent, location, and, most importantly, by the data values of the individual
fields in the multi-field data set within this box. To match this pattern means to find
locations in the domain where the individual fields of the multi-field data set attain
similar values. Figure 3.4 depicts the algorithmic pipeline.

In the following, we show how we use the SIFT features from the previous section
to effectively and efficiently match such patterns. Section 3.3.2 discusses the first stage
of our algorithm, which is feature-based. Section 3.3.3 deals with the subsequent region-
based part that leads to a dense output: a scalar field giving the similarity between the
pattern and any other location. Before we come to that, we will first discuss how to
incorporate vector fields into our setup in the next section.

3.3.1 Trait fields
SIFT features are defined for scalar fields. We are not aware of an extension to vector
fields. For the purpose of this paper, we choose to incorporate vector fields indirectly
by computing SIFT features for derived scalar fields. These fields can be directly
incorporated into our multi-field approach. In general, all scalar fields for which
we compute SIFT features will be called trait fields in the following, as they bear a
characteristic trait of the underlying multi-field.

For a 3D vector field v = (u,v,w)T with its Jacobian J = [vxvyvz], we consider the
following trait fields, which reflect important characteristics of v:

• magnitude ||v||
• norm of the Jacobian || dv

dx
dv
dy

dv
dz ||

• divergence ux + vy +wz

• vorticity magnitude ||(wy− vz,uz−wx,vx−uy)
T ||

• helicity u(wy− vz)+ v(uz−wx)+w(vx−uy)

• λ2-criterion [41]
• Okubo-Weiss criterion [39]

18 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

Figure 3.4: The pipeline of the proposed algorithm. Firstly, vector fields and scalar
fields are all converted to trait fields. Later, SIFT features are extracted from each trait
field independently. We select SIFT features which have intersection with the user
brushed box as the reference features. For each reference feature, each of its matchers
within a cost threshold determines a location of the candidate pattern regarding to the
transformation between features. The actual pattern cost for each candidate pattern is
the weighted sum of the costs in all trait fields.

19 3.3. PATTERN MATCHING IN MULTI-FIELDS

M
ag

nit
ud

e

Ja
co

bia
n

Heli
cit

y λ 2

Oku
bo

−W
eis

s

Cur
va

tu
re

M
ag

nit
ud

e
Ja

co
bia

n
Heli

cit
y

λ 2
Oku

bo
−W

eis
sCur

va
tu

re

(a) Borromean data set.

low correlation

high correlation

M
ag

nit
ud

e

Ja
co

bia
n

Heli
cit

y λ 2

Oku
bo

−W
eis

s

Cur
va

tu
re

M
ag

nit
ud

e
Ja

co
bia

n
Heli

cit
y

λ 2
Oku

bo
−W

eis
sCur

va
tu

re

(b) Rayleigh-Bénard flow.

Figure 3.5: Trait correlations. Some traits correlate strongly with each other (dark blue
patches).

• curvature of the stream lines [85].

Some of these trait fields will only make sense in some applications. As an example,
most fluid simulations are executed under the assumption of a divergence-free fluid, i.e.,
the divergence field is constant zero. Other trait fields may be highly correlated and
therefore redundant. For example, both the λ2-criterion and the Okubo-Weiss criterion
describe vortex structures in flows.

In essence, each application has to decide on the specific set of trait fields. To
aid such a decision, we provide some guidance in Figure 3.5. Here, we computed the
pairwise correlation between trait fields. We employ the gradient similarity measure
(GSIM) with the correlation characteristic acN as discussed in Sauber et al. [67]. The
correlation patterns are rather similar for the two examined vector fields in Figure 3.5.
Helicity, λ2, and Okubo-Weiss are highly correlated. A high correlation can also be
observed between magnitude, the norm of the Jacobian, and the stream line curvature.
In our experiments, we often choose just one member of such a correlation group for
the actual pattern matching.

A similar approach can also be taken to incorporate tensor fields. We leave this for
future work.

3.3.2 Feature-Based Search for Candidate Patterns
Consider a user-brushed 3D box as the reference pattern P. We define its center cP as
the geometric center of the box, its orientation OP is given by the world coordinate
system, and the scale is given as sP = 1.

The following procedure is carried out individually for each trait field. We define the
set of reference SIFT features K as those SIFT features whose supporting neighborhood
fully or partly overlaps with the box of the reference pattern P. A SIFT feature k ∈K
comes with a position ck, an orientation of its neighborhood Ok = (T′, N′, B′), and a
scale sk.

20 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

Figure 3.6: Finding candidate patterns from matching SIFT features. The solid blue box
denotes the user-defined reference pattern P. The colored circles denote different types
and scales of SIFT features. The SIFT features overlapping with P are called reference
features. Matching them to other SIFT features in the data set leads to transforming
the reference pattern P to several candidate patterns P′, shown as dashed boxes. A
subsequent region-based cost computation yields the final result.

For each k ∈ K, we find the set of matching SIFT features Mk (cf. Section 3.2).
Only SIFT features from the same trait field are compared with each other. Again, each
SIFT feature m ∈Mk comes with a position cm, an orientation Om, and a scale sm.

Given (ck,Ok,sk) and (cm,Om,sm), we can compute a linear transformation that
maps the neighborhood box of k to the neighborhood box of m. We apply this trans-
formation to the user-defined reference pattern P and obtain a candidate pattern P′ by
computing its center cP′ , orientation OP′ , and scale sP′ as follows:

cP′ = cm +Om(Iv) (3.11)

OP′ = OmO−1
k (3.12)

sP′ =
sm

sk
(3.13)

with v = sP′O−1
k · (cP− ck) , (3.14)

where I is the identity matrix. Figure 3.6 depicts how we find candidate patterns from
matching SIFT features.

3.3.3 Region-Based Cost Computation

After matching the SIFT features, we have a number of candidate patterns. They are
transformed versions of the reference pattern, i.e., translated, rotated, and scaled 3D
boxes. Each candidate pattern has been computed using the SIFT features of a specific
trait field. We disregard this information now. We are only interested in the boxes
themselves. More precisely, we want to know whether the trait fields attain similar
values in a candidate pattern versus the reference pattern.

We compute the cost between the reference pattern and a candidate pattern in each
trait field using the L2-norm within these boxes. The final cost is then a weighted sum

21 3.4. EVALUATION AND DISCUSSION

of the individual costs:

cost(P′) = ∑
t

∑
i

wt ||Pit −P′it ||2, (3.15)

where t denotes the trait field, i is the index of the grid vertices of P, and wt is the
importance weight for trait field t.

The costs of all candidate patterns are combined in one global scalar field, which we
use to visualize the matching result.

3.4 Evaluation and Discussion

3.4.1 Rationale Behind the Feature-Based Approach
A straightforward way of computing the cost scalar field without the help of SIFT
features would be the following: We could sample the space of all possible rotations,
translations, and scales that can be applied to the reference pattern. After transforming
the reference pattern, we would evaluate (3.15) for each transformed box and combine
all these costs in the global cost scalar field.

A simple example shows that this approach is more time-consuming than our
matching using SIFT features. Consider a single scalar field such as the electrostatic
potential of the Benzene molecule shown in Figure 3.22. It is sampled on a 2573 grid.
In order to shift the reference pattern to every grid vertex, we require just as many
translations. Sampling 3D rotations is not as straightforward as many sampling schemes
typically oversample the polar regions. Such matters are discussed in the Robotics
community; Kuffner [43] shows how unit quaternions help in uniformly sampling
rotations. Let us assume that 100 rotation samples allow for enough accuracy. Finally,
let us use the same 18 scale samples we use in our approach (see Section 3.2). We end
up with a total of over 30 billion transformations.

On the other hand, our approach uses sparse feature sampling to drastically decrease
the number of considered pattern transformations. The numbers are shown in Table 3.1.
For the Benzene data set, we have 38 SIFT features and the pattern overlaps with 8 of
those. We have to compare those 8 features with the others, and create a transformed
candidate pattern if they match. The entire pipeline including the cost computation is
done in under 0.2 seconds. The detection of the SIFT features themselves takes about
80 seconds, but they can be reused for any pattern.

Our computation time depends on the total number of SIFT features n, and the
number of selected SIFT features m, where m≤ n but typically m� n. Every selected
feature is compared against all others. Our current implementation does this straightfor-
wardly using linear search with a computational complexity of O(mn). For very large
numbers of SIFT features, it may be beneficial to use a hashing function for a faster
comparison. We refer the interested reader to the extensive discussions of this topic
by Paulevé et al. [58] as well as Muja and Lowe [56]. The latter comes with a public
domain software library for this purpose.

For very small numbers of SIFT features, one may have the issue that parts of the
domain are not covered and therefore unavailable for defining patterns. We did not
encounter this issue in our experiments, and deem it rather negligible for two reasons:

22 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

• Consider a region in a scalar field with uniform behavior, i.e., constant scalar value
or no monotony breaks. Such a region is typically of low interest to a user and
will also not have SIFT features. On the contrary, SIFT features indicate regions
with non-uniform behavior in a scalar field, which are typically the regions of
highest interest in an analysis.

• Our method works with multi-fields. A lack or sparsity of SIFT features in one
trait field is compensated by the SIFT features of the other trait fields. In fact, our
method needs only a single SIFT feature in the user-defined reference pattern P.

Table 3.1 shows that we find a high number of SIFT features in all our experiments.
Figure 3.23 shows a number of trait fields with their SIFT features, some of which are
covered densely and some sparsely.

Ultimately, it is a data- and application-dependent question whether the patterns of
interest are covered by SIFT features. We will discuss this in the next section for the
special case of pattern matching in vector fields.

3.4.2 Comparison to Vector-Based Matching Methods
In the following, we compare our method to the pattern matching methods for vector
fields due to Ebling et al. [25] and Heiberg et al. [35]. We implemented both approaches
in our system.

The major difference is that the above approaches work directly and only on vector-
valued data, whereas our method deals with vector fields indirectly by considering
multiple derived scalar fields. This has consequences when analyzing numerical flow
simulations:

• Flow data sets are multi-fields. They contain the vector-valued flow velocity as
well as scalar-valued traits such as viscosity, pressure, and density. Our method is
able to incorporate these scalar fields, at the expense of treating the velocity field
indirectly.

• The matching results of Ebling et al. [25] and Heiberg et al. [35] are not Galilean
invariant, since they are directly obtained from the velocity vectors. Many in-
teresting flow features such as the von Kármán vortex street (cf. Figure 3.28)
can only be observed in the velocity field when choosing a particular frame of
reference. This is often not trivial. On the other hand, our method incorporates
Galilean invariant scalar fields and is therefore able to detect many flow features
directly.

We devised a fair comparison to Ebling et al. [25] and Heiberg et al. [35] by concentrating
on a single vector field and selecting a feature that can be observed in the original frame
of reference. We chose the Rayleigh-Bénard flow as shown in Figure 3.7. It is a flow
due to thermal convection of heated and cooled boundaries, obtained using the software
NaSt3DGP [31]2. The flow has 8 vortex structures. Half of them have a left-handed

2NaSt3DGP was developed by the research group in the Division of Scientific Computing and Numerical
Simulation at the University of Bonn.

23 3.4. EVALUATION AND DISCUSSION

(a) Selection of a vortex with a left-handed
sense of rotation.

(b) Detections of all three methods over-
laid.

(c) Stream lines seeded in the voxels detected by our method. Compu-
tation time for the pattern matching is 8 s, and requires the reusable
SIFT features (49 s).

(d) Stream lines seeded in the voxels detected by Ebling et al. [25].
Computation time: 284 s.

(e) Stream lines seeded in the voxels detected by Heiberg et al. [35].
Computation time: 158 s.

Figure 3.7: Comparison of the results using our multi-field method and the vector-based
methods from Ebling et al. [25] and Heiberg et al. [35]. Shown is the Rayleigh-Bénard
convection flow. All three methods correctly identify the four vortices with left-handed
sense of rotation, but require significantly different computation times.

24 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

(a) Pattern. (b) SIFT features.

Figure 3.8: Attracting Focus.

(a) Pattern. (b) SIFT features.

Figure 3.9: Attracting Focus Saddle.

sense of rotation, and the other half a right-handed one. We selected a vortex with a
left-handed sense of rotation as the search pattern (Figure 3.7a).

All three methods correctly identify the 4 left-handed vortices.3 Figures 3.7b–e
show the matched regions as well as stream line renderings highlighting these vortices.4

The computation times are rather different. Our method needs 8 seconds for the
pattern matching itself, and 49 seconds for the pre-computation of the SIFT features
in seven trait fields. Note that these SIFT features can be reused for further pattern
matching in this flow, i.e., to identify the right-handed vortices. The vector-based pattern
matching methods need significantly more computation time. The method of Ebling et
al. [25] requires 284 seconds, the method of Heiberg et al. [35] requires 158 seconds.

As a second experiment, we designed 12 vector field patterns in the spirit of Ebling

3As a side note, our method picks up on the rotation sense due to the Helicity trait field (the sign gives the
chirality), whereas the other methods detect the rotation sense from the orientation of the velocity vectors.

4Note that we seeded the stream lines in the matched regions, but their integration was unrestricted.

25 3.4. EVALUATION AND DISCUSSION

(a) Pattern. (b) SIFT features.

Figure 3.10: Attracting Saddle.

(a) Pattern. (b) SIFT features.

Figure 3.11: Convergence.

(a) Pattern. (b) SIFT features.

Figure 3.12: Convergence Divergence.

26 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

(a) Pattern. (b) SIFT features.

Figure 3.13: Divergence.

(a) Pattern. (b) SIFT features.

Figure 3.14: Node Sink.

(a) Pattern. (b) SIFT features.

Figure 3.15: Node Source.

27 3.4. EVALUATION AND DISCUSSION

(a) Pattern. (b) SIFT features.

Figure 3.16: Repelling Focus.

(a) Pattern. (b) SIFT features.

Figure 3.17: Repelling Focus Saddle.

(a) Pattern. (b) SIFT features.

Figure 3.18: Repelling Saddle.

28 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

(a) Pattern. (b) SIFT features.

Figure 3.19: Vortex.

et al. [25] and Heiberg et al. [35], including vortices, convergent/divergent flow, and
all first-order critical points. We made sure to include all patterns mentioned in these
papers. As we show in Figure 3.8-3.19, we find SIFT features for all these patterns.
Hence, our method can handle the same vector field patterns as these previous methods.

There is one exception. One pattern cannot be observed with our method: parallel
flow as in v(x) = (1,0,0)T . Such a flow does not contain any flow features and all
conceivable derived scalar fields do not contain SIFT features.

3.4.3 Discussion of False Negatives and False Positives

A false negative is a pattern P′ that has not been found despite it being a translated,
rotated, and scaled copy of the reference pattern P. It is easy to see that our algorithm
cannot have false negatives: Each SIFT feature k in the reference pattern P has a
corresponding SIFT feature k′ in P′, because SIFT features are exceptionally invariant
to translation, rotation, and scaling as we show in Section 3.4.5. The SIFT features k
and k′ are practically identical, which makes it easy to find P′.

It becomes more interesting when noise or other deformations cause a difference be-
tween P and P′. SIFT features react gradually to such changes (see the noise experiment
in Section 3.4.5), i.e., the difference between k and k′ is comparable to the difference
between P and P′. Considering an increasing difference between k and k′, we will stop
computing the cost between P and P′ after exceeding a certain threshold. As already
discussed in Section 3.2.1, we can afford a larger threshold, since this will just have a
slight impact on running time.

A false positive is a pattern B that has been found despite it being rather different
from the reference pattern P. It is easy to see that our algorithm cannot have false
positives: Consider that B and P have no matching SIFT features. Then B will also
not be considered a matching pattern of P. Alternatively, consider that B and P have
matching SIFT features. Then the region-based cost computation (3.15) will return the
actual cost between these two patterns.

29 3.4. EVALUATION AND DISCUSSION

3.4.4 Discussion of Parameters
The following parameters pertain to the computation of the SIFT features. We list their
values here and refer to the literature [48] for background information. See also Section
3.2.

• Number of octaves: 3
• Number of Gaussian blurred fields: 6
• Initial blur σ0 = 1.6
• Factor for subsequent blurring k = 21/3

• DoG extrema neighborhood: 3×3×3×3
• SIFT descriptor neighborhood: 27×27×27
• Number of SIFT histograms: 3×3×3
• Number of bins per histogram: 12

Two parameters pertain to the core of our method:

SIFT descriptor matching cost threshold Two SIFT descriptors match, if their cost
from Equation (3.4) is below this threshold. Increasing this threshold gives more
matching SIFT features, which leads to more region-based cost computations using
Equation (3.15), i.e., it has a slight impact on performance, but not on the quality of the
matching. Decreasing this threshold gives less matching SIFT features, which imposes
less flexibility for deformation of patterns other than translation, rotation and scaling.
We suggest to err on the side of increasing this threshold.

Pattern matching cost threshold After computing the region-based costs using Equa-
tion (3.15), this threshold is defined by the user for the isosurface or volume rendering
visualizations showing the matching patterns. Examples are shown throughout the paper,
e.g., in Figures 3.7b and 3.22b. Increasing this threshold shows more matching patterns,
decreasing it shows less.

3.4.5 Evaluation of the Invariance of the SIFT Features
We made the following experiment to evaluate how invariant the 3D SIFT features
are under rotation, translation, scaling, and noise. Figure 3.20 shows the setup: a
single scalar field with values in the range [0,1] and the isosurface at 0.5 is a round,
axis-aligned box. This field has 8 SIFT features corresponding to the corners of the
cube. Let us denote this set with A.

After transforming or adding noise to the scalar field, we compute the set of new
SIFT features B. We compare the sets A and B using Hausdorff distance H(A,B):

D(x,Y) = min{cost(x,y) | y ∈ Y} (3.16)

H(A,B) = max{max{D(a,B) | a ∈ A},max{D(b,A) | b ∈ B}} (3.17)

Figure 3.21 shows the results. For interpretation, remember that the SIFT feature
descriptors have unit length, i.e., the largest possible cost is 2. We will detail the
experiments in the following.

30 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

Figure 3.20: Setup for the evaluation of the invariance of the SIFT features. The scalar
field has values in the range [0,1] and the isosurface at 0.5 is a round, axis-aligned box.
For the evaluation, we rotate, translate and scale the domain as well as adding noise to
the data. Results are shown in Figure 3.21.

Degree
0 50 100 150 200 250 300 350

C
o

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation

Our method

Existing approaches

Size ratio

0 0.2 0.4 0.6 0.8 1

C
o

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Translation

Scale factor

0.5 1 1.5 2 2.5 3

C
o
s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scaling

Noise ratio

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o
s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise
Field with noise ratio 1.0

Figure 3.21: Evaluation of the invariance of the SIFT features against rotation, trans-
lation, scaling, and adding noise. The setup is shown in Figure 3.20. For the rotation
evaluation, we included the results of existing approaches [17, 70]. In these plots, lower
values are better.

31 3.5. RESULTS

Rotation We rotate the domain in steps of 10 degrees around the axis (1,1,1)T . We
also made this experiment with the existing approaches [17, 70]. As discussed earlier,
they are not fully invariant against rotation as the blue curve shows. Our results are
shown by the red curve and show a high rotation invariance.

Translation We translate the domain along the x-axis until the shifted distance reaches
the size of the box. The result shows the expected high invariance against translation.

Scaling We scale the domain uniformly with the factors [0.5,1.0,1.5,2.0,2.5,3.0].
The cost between 1.0 and 3.0 is constant zero, which shows full scale invariance. The
cost is slightly higher for the factor 0.5, because when the box becomes small enough,
the largest scale in the scale space sees the corners as one feature.

Noise We add white noise with increasing amplitude to the data. The shown noise
ratio refers to the amplitude. A noise ratio of 1 means that the value range of the noise
and the data are equal. The cost remains quite low until a noise ratio of 1.5. After that,
the data is corrupted and the cost increases rapidly. As it can be seen in Figure 3.21,
a noise ratio of 1 creates already a highly distorted field, yet the cost is still within an
acceptable range. This shows how stable the SIFT features are against noise.

3.4.6 Invariance against Intensity Scaling or Shifting

The invariances discussed above relate to transforming the domain. What about trans-
formations of the data values such as a scaling or shifting? SIFT features are naturally
invariant against it, since the SIFT descriptor contains only gradient information and is
normalized.

In detail: A multiplication of the scalar field with a constant factor (value scaling)
changes only the magnitude of the gradient and not its direction. The normalization
of the SIFT descriptor makes it invariant against this. An addition of a constant value
(value shifting) does not change the gradient of the scalar field at all. Hence, the SIFT
descriptor is invariant against it. Finally, the locations of SIFT features are computed as
extrema of the DoG fields, which are unaffected by these transformations.

3.5 Results
All results have been computed in a single thread on a 3.1 GHz Intel Xeon E31225 with
16 GB main memory. Computation times as well as the number of SIFT features are
shown in Table 3.1.

Benzene We start with a single scalar field to showcase the matching qualities of
our algorithm in a setting that is easy to understand. The electrostatic potential of the
Benzene molecule in Figure 3.22 exhibits a 6-fold symmetry. We selected the area
around one of the six carbon atoms that make up the inner ring of this molecule. The

32 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

Data set Dims # Traits # SIFT features Timings in Seconds

total selected SIFT localization SIFT Descriptor Feature Matching Cost Computation

Benzene 257×257×257 1 38 8 82 0.002 0.001 0.154
Borromean 256×256×256 6 5773 92 6 × 120 0.1 - 0.8 0.008 8.5

45 0.006 2.5
Climate 480×241×27 3 737 20 3 × 5 0.07 - 0.13 0.005 0.1
Isabel 500×500×100 11 23057 2047 11 × 120 1 1.6 3.5

Rayleigh-Bénard 127×127×127 7 1054 56 7 × 7 0.1 - 0.2 0.01 7.7
Square Cylinder 115×64×48 7 1207 670 7 × 0.5 7 × 0.03 0.03 2

Table 3.1: Running times and number of SIFT features for the data sets used in this
paper.

(a) Selection. (b) Matching patterns.

Figure 3.22: Selection of an area around a carbon atom in the electrostatic potential of
the Benzene molecule. This pattern can be found six times in this scalar field, namely
around all six carbon atoms.

result of the pattern matching highlights all six carbon atoms. This real-world example
shows once more that our 3D SIFT descriptors are rotation invariant.

Borromean Magnetic Flux Vector Field Figures 3.23-3.25 show the Borromean
magnetic flux – a vector field from an experiment studying magnetic energy decay [14].
In its initial state, it features interlocked magnetic rings. The shown state exhibits already
a large amount of decay. We include this vector field to show how our multi-field pattern
matching can help in understanding vector fields despite working only with derived
scalar fields.

Figure 3.23 shows the six trait fields we computed from the original vector field:
magnitude, norm of the Jacobian, stream line curvature, helicity, λ2, and Okubo-Weiss.
Besides a volume rendering of each trait field, Figure 3.23 also shows their SIFT features
as spheres. The size of the spheres denotes the scale of the SIFT feature, i.e., the size of
the supporting neighborhood. Some of the trait fields are densely covered with SIFT
features, while others exhibit them only in distinguished regions. This is not much
of an issue, since (i) all regions have coverage by at least one of the trait fields, and
(ii) SIFT features are only used to generate candidate patterns and the subsequent cost

33 3.5. RESULTS

(a) Flow
magni-
tude and
its SIFT
features.

(b) Norm of
the Jaco-
bian and
its SIFT
features.

(c) Curvature
and its
SIFT
features.

(d) Helicity
and its
SIFT
features.

(e) λ2 and its
SIFT fea-
tures.

(f) Okubo
Weiss and
its
SIFT
features.

Figure 3.23: Trait fields of the Borromean magnetic flux vector field. Their SIFT
features are shown as spheres.

computation involves again all traits (see Section 3.3.3).
We made two pattern selections in this data set. In Figure 3.24 we selected one of

the outer rings. The pattern matching yields the other outer ring on the opposite side
of the volume. The stream line rendering highlights these structures. Note how our
multi-field approach is able to address structures that are inherent to the vector field.

For Figure 3.25 we selected a region in the middle of the domain. The matching
result shows a ring-like structure. The stream line rendering reveals that these are
the remains of the interlocked rings from the beginning of the magnetic energy decay
experiment.

Climate Multi-Field Data Set Figure 3.26 shows a multi-field climate data set. This
is a time step of a large re-analysis of the world’s climate in the years 1979–2013. The
data set is courtesy of Dim Coumou and Thomas Nocke from the Potsdam Institute for
Climate Impact Research (PIK). This 3D multi-field data set spans the entire planet and
several kilometers of the atmosphere. Figures 3.26c–e show volume renderings of the
considered trait fields iso-pressure height, temperature, and wind speed. We selected
a region at the North-West coast of the USA. Interestingly, the iso-pressure height did
not produce any matching patterns, since this particular location does not contain SIFT
features. This is not much of a surprise, since this data set shows only structures near
the ground, but the isosurfaces are almost planar in higher regions. Anyway, we got
plenty of matches in the other two trait fields. In Figure 3.26b we show the final pattern
matching result for all traits combined.

Hurricane Isabel Multi-Field Data Set In Figure 3.27 we applied our method to the
Hurricane Isabel data set from the IEEE Visualization 2004 contest. This is a complex
3D time-dependent data set produced by the Weather Research and Forecast (WRF)

34 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

(a) Selection (top) and
matching patterns.

(b) Stream lines shown for the entire vector
field and highlighted within the matching
patterns.

Figure 3.24: Borromean data set with matching outer rings.

(a) Selection (top) and
matching patterns.

(b) Stream lines shown for the entire vector field
and highlighted within the matching patterns.

Figure 3.25: Borromean data set with the inner ring revealed by our method.

35 3.5. RESULTS

(a) Overview (b) Multi-field pattern matching result with all
three traits.

(c) Iso-Pressure Height: se-
lection (top) and match-
ing patterns (none).

(d) Temperature: selection
(top) and matching pat-
terns.

(e) Wind speed: selection
(top) and matching pat-
terns.

Figure 3.26: Climate multi-field data set with three traits.

T = 20

T = 21 T = 25 T = 29 T = 33 T = 37

T = 22 T = 26 T = 30 T = 34 T = 38

T = 23 T = 27 T = 31 T = 35 T = 39

T = 24 T = 28 T = 32 T = 36 T = 40
T = 41

Figure 3.27: The Hurricane Isabel data set. The user selects the eye of the hurricane at
T = 20 using a red box. Our algorithm uses the 3D SIFT features of 11 scalar fields
simultaneously to find matching patterns in the following time steps. This amounts to a
tracking of the eye of the hurricane.

36 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

(a) Analytic vortex description (Stuart Vor-
tex) used to define a reference pattern.

(b) Matching patterns in the numerical sim-
ulation of a flow behind a square cylin-
der.

Figure 3.28: A pattern has been analytically “designed” and then applied to a real-world
flow in order to find all vortex structures in the von Kármán vortex street. Both images
show a volume rendering of the vorticity magnitude trait field of the respective flow.

model courtesy of NCAR and the U.S. National Science Foundation (NSF). It contains
10 scalar fields and 1 vector field. For our purposes, we considered all 10 scalar fields as
well as the magnitude of the flow (wind speed).

We made a more advanced experiment with this data set: we select the eye of the
hurricane in the time step T = 20 and make this our reference pattern. However, we
apply the pattern matching to the following time steps T ∈ [21, . . . ,41]. All 11 trait
fields are considered for this. As Figure 3.27 as well as the accompanying video show,
this leads to a stable tracking of the eye of the hurricane.

Square Cylinder Flow In Figure 3.28 we take this approach even one step further.
Instead of applying a pattern from one time step to another, we apply a pattern from a
different data set to the square cylinder flow [13, 84].

The interesting part in this flow is the von Kármán vortex street. It is characterized by
alternating vortices created by periodic vortex shedding directly behind the cylinder. In
our experiment, we attempt to capture these vortices using pattern matching. However,
unlike our other experiments, the pattern is not a selection from the same data set, but
an analytic vortex description often referred to as the Stuart Vortex:

v =

(
sinh(2y) ,

1
4

sin(2x) , z (cosh(2y)− 1
4

cos(2x))
)T

.

We sampled this field and computed the same trait fields that we also have for the square
cylinder flow, namely: magnitude, stream line curvature, helicity, divergence, vorticity
magnitude, λ2, and Okubo-Weiss.

Figure 3.28a shows the selection in the Stuart Vortex. This selected vortex pattern
has been applied to the unrelated square cylinder flow. Figure 3.28b shows the matching
result, which nicely covers the vortices in the von Kármán vortex street. This example

37 3.6. SUMMARY

shows that our algorithm can also be applied in scenarios, where a reference pattern is
“designed” beforehand as a way to describe features of interest.

3.6 Summary
We introduced a novel pattern matching approach for multi-field data sets. It bundles the
information from different fields into the description of a pattern. The method is very
efficient, since we work with a sparse set of features to drastically reduce the search
space for the pattern matching. We discussed how to achieve full rotation invariance for
the SIFT features. For future work, tensor fields should be taken into consideration.

38 CHAPTER 3. PATTERN SEARCH IN SCALAR FIELDS

Chapter 4

Hierarchical Hashing for
Pattern Search in 3D Vector
Fields

4.1 Overview
The visualization and analysis of vector fields play an important role in various disci-
plines. In the past decade, feature-based flow analysis has achieved impressive results.
Amongst these methods are a few approaches for finding patterns in a 2D or 3D flow:
given a flow pattern template either from the flow itself or from other resources, users
are enabled to find similar structures in the flow.

The current state-of-the-art of pattern-based flow analysis still faces some challenges.
We observe two major issues:

(I) Templates can often not describe interesting flow features appropriately due to
their shape, which is defined by one single geometric object such as a rectangle
or a box. This is often not sufficient, since various meaningful flow behaviors
have irregular extents.

(II) In order to find similar occurrences of the pattern in the flow, the existing ap-
proaches use a linear comparison, i.e., they go through all possible locations,
orientations, and scale factors. In our observation, this is rather slow for 3D vector
fields.

In this chapter, we present a fast and accurate pattern matching approach for 3D flow
fields that overcomes these two issues. First, we allow the user to define a template
by arranging a number of spheres with arbitrary locations and radii. Flow features
with irregular extents can now be described and searched for. In fact, our definition
encompasses patterns with more than one connected component.

Second, we propose a hierarchical hashing and matching algorithm which can
achieve a pattern search in 3D vector fields in a few seconds with an affordable memory

39

40
CHAPTER 4. HIERARCHICAL HASHING FOR PATTERN SEARCH IN 3D

VECTOR FIELDS

Figure 4.1: 2D illustration of the scale space of a vector field v. The scale space consists
of a number of derived vector fields, where every level is a smoothed version of the
previous level at half the resolution. Our algorithm works with 3D vector fields.

cost. We achieve this using our novel hierarchical hashing approach. It is based on
rotation-invariant base descriptors that describe the local flow behavior at different levels
of a scale space hierarchy. We hash these descriptors in an efficient and robust manner,
and store these hashes in a number of hash tables. This leads to a fast query of similar
occurrences within a constant number of table lookups. The similarity of the entire
pattern is then essentially computed as the weighted sum of base descriptors, which
are queried in the corresponding locations and scales. Our method retrieves patterns
independent of rotation, scaling and translation.

In the following, In section 4.2 we introduce the concept of a scale space of a 3D
vector field and how we sample it using base descriptors. Furthermore, we explain the
hashing of these descriptors. Section 4.3 uses this for the actual pattern search in 3D
flows, where the patterns are defined as arrangements of spheres. In section 4.4 we
evaluate the accuracy and robustness of our method. Section 4.5 showcases results using
different flow data sets. We summarize with a discussion in section 4.6.

4.2 Hierarchical Description, Hashing and Indexing

In the following, we discuss a hierarchical description of the flow, its encoding using
base descriptors, as well as their hashing and indexing. Loosely spoken, we transform a
3D vector field into a data structure suitable for fast querying of flow patterns.

4.2.1 Scale Space

We consider a steady 3D vector field v(x) over the domain D⊆ IR3. The scale space of
v is the basis for our pattern search algorithm. It is an ordered set V = [v0, . . . ,vn] of
vector fields derived from v with decreasing complexity and resolution. It allows us to
describe the features of the flow at different scales and is the key to making the entire
algorithm scale-independent.

The original vector field v is the lowest level of the scale space, i.e., v0 = v. Each
subsequent level v`+1 is generated by filtering v` using a Gaussian kernel and halfing
the resolution. Figure 4.1 gives an illustration.

41 4.2. HIERARCHICAL DESCRIPTION, HASHING AND INDEXING

4.2.2 Base Descriptors
A base descriptor encodes the local flow behavior at a certain level of the scale space.
We will sample the domain with base descriptors. Later, we show how to combine them
to find flow patterns.

A base descriptor B(p`) is located at the grid position p` in level ` of the scale
space. We equip this position with a local coordinate system. This will allow us
to compare different base descriptors in a rotation-invariant manner. We choose the
orthonormal Frenet-Serret frames (t(p`),n(p`),b(p`)), where t(p`) is the tangent, n(p`)
is the normal, and the binormal b(p`) = t(p`)×n(p`) (cf. [23]). Hence, this describes
the local linearized behavior of the tangent curve through p`. We encode the local flow
behavior using normalized flow samples of v` at the six neighbors around p`

(p`±u`t) (p`±u`n) (p`±u`b), (4.1)

where u` refers to the voxel size in level `. This gives us the six normalized flow samples
ṽ1, . . . , ṽ6.

Rotation invariance is achieved by relating the local coordinate system to the global
one. We use Singular Value Decomposition (SVD) to compute a rotation matrix R(p`)
between the local coordinate system and the world coordinate system (cf. Arun et
al. [3]):

(x,y,z) = R(p`) · (t(p`),n(p`),b(p`)) . (4.2)

After applying R(p`) to each of the six samples, we finally obtain the normalized base
descriptor by concatenating them in a single vector

B(p`) = (Rṽ1, . . . ,Rṽ6). (4.3)

4.2.3 Base Descriptor Hashing
Hashing is used to speed up the search for similar descriptors. The general idea is to
quantize similar descriptors into bins, akin to a histogram. A search is then only a matter
of retrieving the right bin.

Base descriptors B(p`). consist of unit-length vectors, i.e., orientations. We use the
unit sphere for hashing by segmenting it into a number of equally sized cells, or bins.
Each orientation in the base descriptor is mapped onto the sphere, where it falls into
a bin. The index of this bin is recorded. In other words, this transforms B(p`) into a
vector of six indices.

The cells/bins are the Voronoi cells of an equidistant point sampling on the unit
sphere. In our implementation, we obtain this by starting from an icosahedron, We
subdivide it to obtain a higher resolution while still maintaining an as-equidistant-as-
possible point sampling. Figure 4.2 shows the result that we use in our implementation.
It gives rise to 162 bins, which allows us to discriminate two orientations if the angle
between them is larger than 17◦. Furthermore, we add an extra null-cell to gather
disappeared orientations, e.g., due to a singular point. A null-cell is not a neighbor of
any other bin.

42
CHAPTER 4. HIERARCHICAL HASHING FOR PATTERN SEARCH IN 3D

VECTOR FIELDS

Figure 4.2: Equidistant point sampling on the unit sphere. The Voronoi cells of the
shown points are the bins for hashing orientations.

Classic hashing fails to discriminate similar items at bin boundaries. We employ
two strategies to deal with this: Locality Sensitive Hashing (LSH) [40] and its extension
multi-probe Locality Sensitive Hashing [50].

LSH [40] mitigates the problem by employing several hashing functions. If two
items are hashed into the same bin by at least one of those hashing functions, then they
are considered to be similar. In our case, this means that we create several randomly
rotated copies of our hashing sphere. If two orientations end up in the same Voronoi
cell on at least one of those spheres, then these orientations are considered similar.

The multi-probe extension of LSH [50] affects the querying stage. When querying
using a particular base descriptor B(p`), we do not only return its respective bin, but
also the neighboring bins. The benefit of multi-probe LSH is that it can use fewer
hashing functions and still achieve the same discrimination quality as the original LSH.
This makes it faster. We refer to the literature for more details.

Let τ be the number of hashing spheres. This leads to 6τ indices for a base descriptor.
These codes are pre-computed at each grid point and each level of V. They are stored in
tables where a hashing index points to a set of matching descriptors. We have 6τ tables
for each hashing sphere and each of the six orientations.

4.2.4 Base Descriptor Querying and Comparison

Given a base descriptor B(p`), we find all similar base descriptors in the domain as
follows. We map an orientation in B(p`) to the unit sphere. It falls into different bins on
the different hashing spheres. A lookup in the respective tables yields τ sets of matching
descriptors. The union of these sets holds all matching descriptors with respect to this
one orientation (this follows from the multi-probe LSH algorithm). We perform this for
all other orientations in B(p`) as well and get six sets. Their intersection yields the set
of all base descriptors where all orientations are similar to the queried one.

To simplify the explanation of the following parts, we introduce a binary cost for
both querying and comparison of base descriptors. Two base descriptors Bi and B j are

43 4.3. PATTERN DEFINITION AND SEARCH

level: 0 level: 1 level: 2

Figure 4.3: 2D illustration of a sphere descriptor (blue circle) consisting of a number of
base descriptors (black dots) at different levels of the scale space.

considered to be equal if either they both can be mutually queried, or they are directly
compared and considered to be similar. We define the binary cost of two base descriptors
as

EB(Bi,B j) =

{
0 Bi =B j

1 Bi 6=B j
. (4.4)

4.3 Pattern Definition and Search
We describe a flow pattern as a layout of spheres in the flow, i.e., the pattern is defined
by selecting spherical parts of the domain. We want to find other occurrences of this
pattern where the flow behavior within the spheres is similar and the spheres themselves
form a similar layout. To do so, we will first discuss our definition of flow behavior
within a sphere, and how to query for it in the flow. Then we show how we enforce a
similar layout of spheres.

4.3.1 Sphere Descriptors
Consider a sphere with a certain origin o and radius r in the domain of the vector field
v(x). It covers a set of grid points of the original vector field v(x) as well as its derived
versions in the scale space V. We sort the base descriptors located at these grid points
by their levels and natural grid indices. This constitutes a sphere descriptor

D(o,r) = {B(p`) : ||p−o||< r, p ∈Nd(p`)} , (4.5)

where Nd is the neighborhood along dimension d. In short, a sphere descriptor D
consists of a sequence of base descriptors B(p`) covered by the sphere. A 2D illustration
of a sphere descriptor is given in Figure 4.3. Note how the sphere covers less grid points
in higher levels of the hierarchy, since the resolution is coarser there.

Given a sphere descriptor D, we are interested in finding similar occurrences below
a certain cost threshold. The query is processed in a coarse-to-fine framework, i.e., we
start at the highest level in scale space. Let B0 be the first base descriptor in D at the
coarsest level of the sphere descriptor. We find a set of possibly matching candidate

44
CHAPTER 4. HIERARCHICAL HASHING FOR PATTERN SEARCH IN 3D

VECTOR FIELDS

Template Sphere
base descriptors

Candidate Sphere Alignment

Figure 4.4: 2D illustration of finding a candidate sphere and its corresponding base
descriptors at a specific scale level. both first base descriptors B0 marked with a
coordinate system are aligned. The red dots represent the closest integer grid point for
the rotated base descriptors of the template sphere.

spheres D′ by querying all base descriptors similar to B0. Let us denote a member of
this set as B′0.

We continue by matching neighboring base descriptors as follows: we first transform
the coordinates of Bi ∈D into the local coordinate system of the sphere’s first base
descriptor B0. This is done by applying the rotation matrix R0 (cf. (4.2)). We denote the
new coordinates of Bi as pi. Note that the content of the descriptors does not change. For
a candidate sphere D′, we look up the same location pi in the local coordinate system
of B′0, and get the base descriptor at the closest integer grid point as the corresponding
base descriptor B′i. If the computed integer grid point is out of the domain, we simply
mark the base descriptor as not similar. Figure 4.4 gives a 2D illustration of the base
descriptor matching process.

When matching spheres, we give different weights w` to the base descriptors de-
pending on their level in scale space. Note that the volume of a voxel in a level `+1 is
8 times bigger than the volume of a voxel at level `. This leads to the following weights
for base descriptors:

w(0) = 1 (4.6)
w(`+1) = 8 w(`) . (4.7)

We compute the cost between a sphere descriptor D and its candidate D′ by accu-
mulating the cost of all the base descriptors

ED(D,D′) = ∑
i

wiEB(Bi,B
′
i) . (4.8)

Since the cost EB of two base descriptors is a binary value (see (4.4)), the largest possible
sphere matching cost ED is the sum of all weights of the sphere’s base descriptors. The
smallest matching cost is 0. This allows us to normalize the cost and define a normalized
similarity measure

SD(D,D′) =
∑i wi−ED(D,D′)

∑i wi
, (4.9)

45 4.3. PATTERN DEFINITION AND SEARCH

Figure 4.5: Layout verification illustrated in 2D. Four circles define a template pattern
in 2D. The yellow circle in the middle is the central circle as it is closest to the center of
the pattern. Red dotted lines indicate the pairwise verification of scaling and rotation.
The green dotted lines indicate the pairwise verification of translation.

where i is the index of the base descriptor, and S is within the range of [0, 1]. Especially,
S= 0 if D and D′ are entirely different, while S= 1 if D and D′ match up completely.

4.3.2 Sphere Layout Filtering

Consider P as a template pattern defined by m sphere descriptors Di. This is the flow
pattern that the user wants to find in a flow. Using the sphere descriptor matching from
the previous section, we can find matching spheres for each individual Di, but this
would neglect the arrangement or layout of these spheres. In this section, we introduce
our approach to finding the layouts of spheres from the set of all matching spheres. A
sphere in the flow matches to a sphere in the pattern, if their first base descriptors match.
Such a match may have a low similarity SD, but we account for that when computing
the similarity of the entire pattern below.

We define the local coordinate system Γi of each sphere descriptor Di(oi,ri) as the
local coordinate system of its first base descriptor Bi

0. It provides a stable orientation,
since it is anchored at the coarsest level in scale space. We also define the level of each
sphere descriptor Λi as the level of Bi

0. Furthermore, we define the center of a template
pattern P by weighting the origins of all its spheres

O=
∑

m
i=1 rioi

∑
m
i=1 ri . (4.10)

We designate one of the spheres in P as the center sphere Dc, namely the one whose
origin is closest to O. Furthermore, we denote P′ as candidate pattern, Di′ are its sphere
descriptors, and Dc′ is its center sphere descriptor.

46
CHAPTER 4. HIERARCHICAL HASHING FOR PATTERN SEARCH IN 3D

VECTOR FIELDS

A candidate pattern is produced by selecting a candidate sphere for each of the
spheres in the template P. The layout of the spheres is verified with respect to scaling,
rotation, and translation by the following constraints (see also Figure 4.5):

• Scaling The level difference of Di′ and Dc′ should be the same as that of Di and
Dc, which can be written as

Λ
i−Λ

c = Λ
i′−Λ

c′ . (4.11)

• Rotation The coordinate systems Γi and Γi′ should be similar in their own
coordinate system of the center sphere, i.e. Γc and Γc′. The constraint is defined
as

](RcΓ
i
j,Rc

′
Γ

i′
j)< θ , j ∈ {1,2,3} , (4.12)

where j represents the index of three axes, i.e., tangent, normal, and binormal.
Rc and Rc

′ are the rotation matrices which rotate the world coordinate system to
their center sphere coordinate system. θ is the discrimination angle of the hashing
sphere as discussed in Section 4.2.3.

• Translation A distance ratio threshold λ is introduced to constrain the distance
deviation for any pair of spheres as

∀i, j

∣∣∣∣∣∣
∣∣∣∣oi−o j

∣∣∣∣− ∣∣∣∣∣∣oi′−o j ′
∣∣∣∣∣∣

||oi−o j||

∣∣∣∣∣∣< λ , (4.13)

where i and j are the indices of spheres.

If a combination of spheres satisfies all three constraints, we accept this combination as
a match of the template pattern, and its similarity value is computed as the average of
the similarities of the single spheres

SP(P,P
′) =

1
m

m

∑
i=1

SD(D
i,Di′) . (4.14)

4.4 Evaluation and Discussion
In the following, we discuss and evaluate our method. We render the detected patterns
by coloring the parts of stream lines running through these areas. The color transitions
from red to white to indicate the pattern similarity SP, i.e., high similarity is indicated in
red, low similarity is shown in white. In regions where no pattern has been detected, we
display fainted stream lines.

4.4.1 Parameter Overview
Our pattern matching approach contains two parameters that can be adjusted by the
user: the distance ratio threshold λ from (4.13), and a threshold on the pattern similarity

47 4.4. EVALUATION AND DISCUSSION

SP

λ

SP = 0.7
λ = 0.2

SP = 0.9
λ = 0.1

SP = 0.9
λ = 0.2

SP = 0.8
λ = 0.1

SP = 0.8
λ = 0.2

SP = 0.7
λ = 0.1

SP

1.0

0.0

P

Figure 4.6: Pattern search in the BENZENE data set using different combination of
parameters. We perform pattern search using the template pattern with three spheres on
the left. The results are demonstrated in the coordinates of parameter combinations. We
choose SP ∈ {0.7, 0.8, 0.9} and λ ∈ {0.1, 0.2}.

value SP from (4.14). Larger values for the threshold on SP reduce the number of found
patterns. Smaller values of λ make the template being searched for more rigid.

Let us explain their behavior using an example from the BENZENE data set, shown in
Figure 4.6. We select a template pattern with three spheres. The middle sphere contains
laminar flow, while the other two contains a source each. We show the matching results
with different parameters in the form of a grid in Figure 4.6. Along the horizontal axis
SP is increased from 0.7 to 0.9, and along the vertical axis λ spans from 0.1 to 0.2.
We can see in the upper left corner that a small threshold on SP and a large λ lead to
a massive number of matches. To further filter the results, we can either increase the
threshold on SP or reduce λ . As observed, both ways achieve similar effects. For an
unknown data set, we recommended to choose a small threshold on SP and a large λ at
the beginning. Then users see a superset and can approach a smaller set by tuning SP
and λ .

Other parameters are on an algorithmic level and not exposed to the user. In fact, we
fixed them in our implementation as well. They include the number of Voronoi cells
on the hashing sphere (subsection 4.2.3), and the number of such (randomly rotated)
hashing spheres. We fixed the former to 162, and the latter to 20.

4.4.2 Evaluation of Retrieval Accuracy
We conduct an experiment to perform this evaluation. Given two unit vectors a and
b with angle α , we generate 20000 random vector pairs by transforming a and b in
combination with random rotation matrices. In any LSH algorithm, If a and b are
considered similar, idealy all the transformed vector pairs with angle α should be
considered similar. In this experiment, we compute the dissimilarity (cost) of two
vectors with angle α as the percentage of all 20000 pairs which are considered as

48
CHAPTER 4. HIERARCHICAL HASHING FOR PATTERN SEARCH IN 3D

VECTOR FIELDS

Transition region
with 20 spheres

Cost

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

1.0

0.9

10 20 30 40 50 60
Degree

Cost

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

1.0

0.9

10 20 30 40 50 60
Degree

1 Sphere

10 Spheres

20 Spheres

40 Spheres

1 Sphere

10 Spheres

20 Spheres

40 Spheres

Transition region
with 20 spheres

Figure 4.7: Accuracy curves of different LSH strategies and different number of hashing
functions (Spheres). Left: classic LSH algorithm. Right: Multi-probe LSH algorithm.

different. We repeat this computation for the angles from 0.0 to 60.0. The resulting
curve describes the accuracy of the retrieval algorithm. In perfection, the accuracy curve
should be a step function, i.e., starting from 0, jumping to 1 at middle and keeping the
value to the end, while in practice, a high accuracy means the transition region where
the curve jumps from 0 to 1 should be narrow. In Figure 4.7, we plot the curves under
different number of hashing functions (Spheres). In both algorithms, we observe that
the more hashing functions used, the better accuracy obtained. To ballance the accuracy
and efficiency, we choose 20 hashing functions in our algorithm.

4.4.3 Comparison of LSH strategies

We compare the classic LSH algorithm and multi-probe LSH algorithm also using
the accuracy curves as mentioned above. In Figure 4.7, we observe that when both
algorithms use 20 hashing functions, the transition region of multi-probe LSH is much
smaller than that of classic LSH algorithm. Based on this observation, we use multi-
probe LSH algorithm in this paper.

4.4.4 Sensitivity to Vortex Orientation

Our method is sensitive to the orientation of swirling flow, i.e., it detects whether the
flow swirls in clockwise or counterclockwise orientation. Figure 4.12 shows this at the
von Kármán vortex street in the flow behind a square cylinder.

49 4.5. RESULTS

4.4.5 Robust to Translation, Rotation, and Scaling

In Figure 4.8, we evaluate our approach using the pattern defined in an analytical flow
field. In this 3D flow field, each vector (u,v,w) is given by

u(x,y,z) = y

v(x,y,z) = (x−0.5) · (x+0.5)
w(x,y,z) = (z−0.5) · (z+0.5+2y), (4.15)

where (x,y,z) indicates the location. We select four spheres as the reference pattern
which is shown in Figure 4.8; We evaluate our approach under different translations,
rotations, scaling factors, white noises, and deformations. In the evaluation against
translation and rotation, we conduct two test cases. First, as solid lines marked in Figure
4.8, we translate or rotate the pattern along a number of randomly selected axes, then
evaluate their average similarity. Second, as dashed lines marked in Figure 4.8, we
translate or rotate the pattern strictly along single axis, i.e., x-axis. We observe that, in
any case, the similarities increase with the augment of the volume resolution. The reason
is that when the volume resolution increases, the error caused by pattern alignment
is thereby reduced. In the second test case of translation and rotation, as well as the
scaling validation, their similarities reach maximum when the grid point arrangement is
perfect, i.e., in 90 degree and 180 degree of rotation, in integer voxel size of translation,
and in 2n where n≥ 1 of scaling. When the scaling factor is smaller than 1.0, details of
the pattern become fewer and fewer. It causes the drop of the similarity curve. In the
noise validation, we pollute our pattern by adding different level of white noises to each
component in the data set. The level of noise is based on the range of component-wise
magnitude inside the reference pattern. In resolution of 65, our algorithm achieves
similarity of 0.7 with 20% noise. It also increases when a higher resolution volume is
given. In the deformation validation, we scale the pattern in one of three dimensions,
and record the average similarity. In resolution of 65, our approach obtains similarity
of 0.7 with the deformation ranged from 0.7 to 1.8. Again, it increases when a higher
resolution is given.

4.4.6 Timings

Table 4.1 summarizes the timings for all the experiments. All the timings are measured
in single thread processing. Several factors influence the processing time. First, if a
massive number of similar occurrences exist in a data set, then searching becomes slow.
Second, as discussed in Section 4.4.1, a small threshold on the pattern similarity SP
as well as a big distance ratio threshold λ can also increase the processing time. The
timings for hashing table generation is comparatively slow. It needs couple of minutes
for preprocessing a big data set. However, it is still acceptable as this process only needs
to run once for each data set.

50
CHAPTER 4. HIERARCHICAL HASHING FOR PATTERN SEARCH IN 3D

VECTOR FIELDS

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voxel

S
im

ila
rit

y

Translation

Resolution: 65
Resolution: 129
Resolution: 65 (single axis)
Resolution: 129 (single axis)

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

S
im

ila
rit

y

Rotation

Resolution: 65
Resolution: 129
Resolution: 65 (single axis)
Resolution: 129 (single axis)

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

S
im

ila
rit

y

Scaling

Resolution: 65
Resolution: 129

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level of Noise

S
im

ila
rit

y

Noise

Resolution: 65
Resolution: 129

0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level of Deformation
S

im
ila

rit
y

Deformation

Resolution: 65
Resolution: 129

Figure 4.8: Robustness validation. All the validations is conducted in the volume with
resolution of 65 and 129. We conduct the validation in 5 aspects, i.e., validation for
translation, rotation, scaling, noise, and deformation. The dashed curves in translation
and rotation figures indicates the transformation is performed along single axis, i.e.
x-axis.

Data set Dimensions Spheres SP λ Timing (sec.)

BENZENE 129×129×65 1 0.73 − 3.7
BENZENE 129×129×65 3 0.7∼ 0.9 0.1,0.2 ≈ 24
BENZENE 129×129×65 4 0.7 0.1 16
BÉNARD 257×65×129 2 0.8 0.1 10
CYLINDER 257×129×65 5 0.85 0.08 44
DELTAWING 257×129×65 2 0.7 0.1 40

Table 4.1: Timings. For each experiment, we list the dimensions of the data set, number
of spheres in the template pattern, the pattern similarity threshold SP, the distance ratio
threshold λ , and the timing measured in single thread processing.

51 4.5. RESULTS

SP

1.0

0.0

P

Figure 4.9: Detection of the rotational symmetry in the BENZENE data set using a
saddle-like template pattern.

P

1.0

0.0

SP

Figure 4.10: Pattern search in the BENZENE data set. The template pattern P links four
spheres. Each of them consists a singularity inside.

52
CHAPTER 4. HIERARCHICAL HASHING FOR PATTERN SEARCH IN 3D

VECTOR FIELDS

Figure 4.11: Pattern search in the RAYLEIGH-BÉNARD flow. The template pattern P

uses two spheres to describe a narrowing spiral.

4.5 Results
Figures 4.9 and 4.10 show further results from the BENZENE data set. Note how a
pattern consisting of a single sphere in Figure 4.9 is able to capture the 6-fold rotational
symmetry of this data set. The pattern in Figure 4.10 has a higher complexity and is
irregular. It consists of four spheres. This example shows how our method provides
great flexibility when defining flow patterns.

In Figure 4.11, we perform pattern search in the RAYLEIGH-BÉNARD flow. The
template pattern consists of two spheres describing a narrowing spiral in 3D. The
RAYLEIGH-BÉNARD flow has eight vortices. Two of them rotate downward in clock-
wise manner, two others rotate downward in counterclockwise manner. The other four
have the same behavior, but upwards. As the result shows, our method is able to distin-
guish between these differently oriented vortex structures. See also the corresponding
discussion in Section 4.4.4.

In Figure 4.12, we test two similar symmetric arc with different orientations. The
result nicely shows the symmetric results which reflects the different orientations of
swirling in the flow.

Figure 4.13 illustrates an example in the DELTAWING flow. This is a flow around
a jet. The most distinct features are two gradually expanding vortices above the wing.
We use two tightly placed spheres in one of them to describe a short segment of the
vortex. We can see from the figure that the detections are continuous, and their sizes
are gradually increasing. This implies that our algorithm works well with continuously
changing scales.

4.6 Summary
In this chapter, we propose a hashing-based pattern search algorithm in 3D vector fields,
which is invariant against translation, rotation, and scaling. The first contribution of this
chapter is to allow for template patterns with irregular extent. This is by arranging a
number of spheres in 3D space. This way of defining templates is flexible and users are
able to intuitively cover flow features with arbitrary extents. The second contribution
is the hierarchical hashing strategy used to find similar patterns, which gives rise to
the good performance of the algorithm. Although the proposed algorithm can obtain

53 4.6. SUMMARY

P

P

Figure 4.12: Pattern search in the CYLINDER flow. The template pattern P consists
of five spheres describing an extended arc. Since base descriptors are sensitive to the
orientation of swirling flow. This enables us to distinguish between clockwise and
counterclockwise rotating vortices.

54
CHAPTER 4. HIERARCHICAL HASHING FOR PATTERN SEARCH IN 3D

VECTOR FIELDS

SP

1.0

0.0

P

Figure 4.13: Pattern search in the DELTAWING flow. We select two small nearby spheres
to describe a small segment of a vortex core. The result shows that we detect occurrences
at different scales.

good results most of the time, it still has some limitations. For example, it works
best on vector fields with cubic voxels, i.e., the length of a voxel is the same in all
three dimensions. This is because of the rotational alignment when comparing sphere
descriptors, as illustrated in Figure 4.4. However, we can virtually create such a grid
over the domain if the data set has highly non-uniform voxels. We think a possible
direction for further improvement is to define an interpolation method between hashing
codes. With the help of code interpolation, we can query the neighboring descriptor
quickly, and also get rid off the limitation mentioned above.

Chapter 5

Pattern Search in Flows based
on Similarity of Stream Line
Segments

5.1 Overview

The visualization and analysis of vector fields is of major importance for various
scientific disciplines. Among the different classes of vector field visualization techniques,
geometry-based techniques are well-established [55]. They rely on integral curves such
as stream lines representing integrated flow behavior.

However, line-based flow visualizations face certain challenges: for instance, if
applied to very complex data sets, they can quickly lead to cluttered visualizations. In
particular, this is a problem for 3D flows. Figure 5.11 shows such an example, where
the gray stream lines of the 3D vector field occlude each other to an extent that renders
the entire visualization almost illegible. The possibly existing structures within this field
are lost due to the visual clutter.

Furthermore, a stream line is a domain-wide integrated entity, but very often not
all of its parts are equally important: for some applications, the part of a stream line in
the vicinity of a vortex or critical point is more important than the part running through
a laminar region of the flow. However, ultimately the definition of what constitutes a
“flow feature” depends on the specific application and the visualization target of the
domain expert.

The method presented in this paper empowers the user to define complex flow
features. We propose an example-based pattern retrieval approach: users are able to
specify interesting flow features as patterns that are constructed of stream line segments,
i.e., parts of stream lines. In contrast to previous work, our method supports patterns
represented by multiple line segments, which increases the flexibility and expressiveness
of the specified patterns. This way, it is possible to specify even complex flow patterns
such as the one shown in Figure 5.11. Patterns are matched with the vector field and

55

56
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

successful matches of the example pattern are presented to the user. We formulate
the matching to be invariant to similarity transformations, such that matched patterns
are found independently of their location, orientation, or scale. In addition, pattern
occurrences can be found in the same data set, in a different time step of the same data
set, or in a different data set.

At its core, our formulation of flow pattern retrieval requires suitable steam line
segmentations as well as measures for segment similarity, for which we propose possible
solutions. Suitable stream line segmentations should allow the convenient selection
of flow feature regions. We relate flow features to flow curvature, such that segment
boundaries are naturally found at minima of curvatures. In addition, segmentations
need to be consistent along multiple scales to allow scale-invariant pattern retrieval.
We propose a new stream line segmentation scheme that is based only on intrinsic
curve properties and fulfills all of these requirements. In addition, our stream line
segmentation scheme and similarity estimates are valuable on their own rights and can
also be use, e.g., for flow clustering applications.

In the following two sections, we present details of our two main contributions: the
consistent intrinsic stream line segmentation and segment similarity estimation (Section
5.2) and the segmentation-based flow feature pattern retrieval (Section 5.3). Section
5.5 examines the efficiency of the proposed method by conducting several experiments
and we discuss properties of our approach in section 5.6.

5.2 Intrinsic Stream Line Segmentation
Our approach is motivated by the observation that long stream lines often pass through
several mutually distinct flow features of the underlying vector field, e.g., through
multiple vortical regions. An independent analysis and retrieval of these distinct features
is not possible by considering whole stream lines. Instead, our method considers
spatially restricted parts of stream lines in form of shorter stream line segments, which
can be combined to form sets of segments that represent flow feature patterns. Searching
for these pattern requires stream line segmentations that are consistent both among
all possible stream lines and among similar flow features. A segmentation has to be
designed in such a way that it facilitates the estimation of individual segment similarities.
Given a consistent stream line segmentation, our method for pattern retrieval evaluates
pairwise similarities of segments. Both operations are formulated to be invariant to
similarity transformations by exploiting intrinsic curve properties. This enables our
method to find patterns at different locations and at different scales.

Notation. We make use of the following formal concepts: let v(x) denote steady
differentiable vector fields with associated over two (d = 2) and three-dimensional (d =
3) flow domains D⊂ Rd with x ∈D. Parametric stream lines c(t) = x0 +

∫ t
0 v(c(u))du

are curves defined through integration along v starting from a seed point x0 for an
integration time t. We partition stream lines c into disjoint stream line segments si(t) by
splitting c at integration times ti such that the points of c and si coincide for t ∈ [ti, ti+1].
For a stream line integrated from t0 to tn, a segmentation is defined by the sequence
[t0, . . . ti, . . . tn] of segment boundaries ti. We denote the length of si by li.

57 5.2. INTRINSIC STREAM LINE SEGMENTATION

5.2.1 Globally Consistent Segmentation of Stream Lines

We identify three requirements a globally consistent segmentation has to satisfy for our
application: first, a segmentation should be feature preserving in that all segments shall
preserve the important features of the given set of curves. In general, long and sharp
arcs of stream lines are considered to be important and significant curve features, while
short and straight curves are less important: for instance, Günther et.al. [33] define
local stream line importance by local curvature. Figure 5.1 (a) exemplifies this property:
segments of the upper curve do not preserve the important curly shapes of high curvature
in the original curve, whereas the bottom segmentation maintains this feature in the
collection of segments.

Comparison of individual segments is also facilitated by this requirement, as seg-
ment boundaries will always represent boundaries of feature regions and give suitable
reference points for similarity computations. This is related to the second requirement:
a segment should be distinct enough to describe a complete feature. For instance, a
circle should not be separated into two semi-circles. Figure 5.1 (b) shows an example
in which the upper spiral curve is over-segmented into several semi-circles, which
do not represent the more dominant spiral feature anymore. In contrast, this distinct
feature is well-represented in the segmentation underneath. The third property requires
a segmentation to be consistent in that segments, which describe similar flow features,
should have similar shapes. This implies that two congruent curves at different scales
shall always be segmented in a compatible way. In other words, the segmentation should
be invariant to translation, rotation, scaling, and reflection, i.e., invariant to similarity
transformations. This property is illustrated in Figure 5.1 (c), in which the bottom curve
is a translated, rotated, and scaled version of the upper one. Since both curves have the
same segmentation structures, their segmentations are consistent. Our segmentation
only relies on stream line curvatures κ2/3(t). Although 2D and 3D curve curvatures are
defined differently, i.e., κ2 are signed, while κ3 are always positive, our segmentation
scheme supports 2D and 3D curves in a unified way. Stream line segmentation pro-
ceeds in two phases, curvature-based splitting and subsequent segment merging, and we
continue to describe both in more detail.

Segment Splitting. Both curvature estimations κ2 and κ3 differ in their signedness.
Hence, we consider absolute local curvatures κ̂(t) = |κ2/3| for a unified stream line
segmentation scheme that is applicable for both two and three dimensional stream lines.
Vector field features are usually coupled to high absolute stream line curvatures (see,
e.g., [54]). Therefore, to obtain feature-preserving and distinct segmentations, points of
absolute local curvature minima that bound these high curvature regions are candidates
for possible segment boundaries. Along a stream line, let ti denote the integration times
corresponding to absolute local curvature minima, i.e., κ̂(t)> κ̂(ti) for t ∈ [ti− ε, ti + ε].
We call these segments bounded by consecutive absolute local curvature minima minimal
segments. Minimal segments are the initial building blocks of the final segmentation
and will not be split further to preserve the features of higher curvature they represent.
Still, as the total curvature of the features that minimal segments represent can vary
considerably, we merge minimal segments into segments of higher significance.

58
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

(a) (b) (c)

Figure 5.1: Curve Segmentation. Our segmentation scheme splits stream lines in a
globally consistent way at (•) (alternative, less suited split locations are colored as
(•)). Shown examples illustrate different properties of our segmentation, i.e., feature
preservation (a), feature distinction (b), and segmentation consistency w.r.t. location,
orientation, and scale (c).

Segment Merging. We merge neighboring segments based on two segment properties:
total segment curvature and average segment orientation. Both properties are scale-
invariant. The total segment curvature κ̂i is given by

κ̂i =
∫ ti+1

ti
κ̂ ||ċ|| dt . (5.1)

Along each segment, the orthonormal Frenet-Serret frames (t(t),n(t),b(t)) are given
by the tangent, normal, and bi-normal directions, respectively. We observe that along a
minimal segment the variation of bi-normal directions is usually small. Therefore, we
assign each segment an average orientation b̄i based on its average bi-normal direction.

Our algorithm for merging of segments consists of growing segments of low total
curvature with neighboring segments, if they are merge-compatible. Compatibility is
tested in two phases based on two criteria: first, two neighboring segments are mergeable
if they have similar average orientations, i.e., if the angle αi =](b̄i, b̄i+1) is smaller than
a user-specified upper bound α . Second, if one segment has a low total curvature, i.e.,
κ̂i < β for a user-specified upper bound β , it is mergeable with both of its neighboring
segments if these two segments have similar average orientations w.r.t. α . Figure 5.3
illustrates two examples of the criteria. The merging algorithm iteratively processes
segments based on a priority queue that is ordered by the total segment curvature such
that segments of lowest curvature are processed first.

We illustrate the different steps of our segmentation scheme in Figure 5.2. The
initial minimal segments of a single stream line are shown in Figure 5.2 (a) together with
two segmentation results for different β values. This parameter steers the coarseness of
the segmentation, and segmentations are usually not sensitive w.r.t. small β variations.
Note that curve orientation is either positive or negative for all 2D curve segmentations.
Hence, it is sufficient to select α = π/2 for this case. For a closeup region, Figure 5.2 (b)
shows segmentations and relation to local absolute curvatures after each segmentation
phase. The graphs show that neighboring segments of similar orientation are merged into
segments of higher total curvature. In the second phase, triplets of compatible segments
are merged. Figure 5.4 depicts the consistency of segmentations along multiple stream

59 5.2. INTRINSIC STREAM LINE SEGMENTATION

(b)t t t

κ̂ κ̂ κ̂κ̂i κ̂i κ̂i

First Phase SegmentationMinimal Segments Second Phase / Final Segmentation

Minimal Segments
TRIANGLE

(a)

β = 1.5

β = 0.2

Figure 5.2: Segmentation Scheme. (a) Starting from minimal segments (top) our
segmentation scheme applies two phases of iterative segment merging. Shown are
two results for different β parameters (bottom, α = π/2 in both cases). (b) For the
three segmentations of the β = 1.5 computation, the absolute curvatures κ̂ (•) and
total discrete segment curvatures κ̂i (box height) together with average 2D segment
orientation (positive •, negative •) of a cutout region are shown. In the first phase,
neighboring segments of close average orientation are merged. In the second phase,
compatible segments of low curvature are combined if its two neighbors are compatible
w.r.t. average orientation.

60
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

(a) (b)

Figure 5.3: Segment Merge Criteria. Pre-merge segment boundaries are colored (•),
and two different average segment orientations are colored (•) and (•). (a) A pair of
segments is mergeable if they both have similar average orientations. (b) A triplet
of segments is mergeable if the center segment (•) has a low average total curvature
compared to its neighboring segments, which have similar average orientations.

β = 1

β = 0.5

Minimal Segments β = 0.5

CYLINDER

RECTANGLE

Figure 5.4: Consistent Stream Line Segmentation. Starting from the minimal segments
(top left) our segmentation scheme extracts segmentations for which intrinsically similar
stream line segments are segmented in a compatible way. The closeup shows that
segmentations form orthogonal patterns to laminar flow regions. Removal of low
curvature segments is steered by the β parameter. The slowly varying CYLINDER flow
on the bottom illustrates the consistency of the segmentation.

Figure 5.5: Similarity-based Clustering. Using the consistent segmentation of the
CYLINDER flow shown in Figure 5.4, a clustering of segments based on pairwise intrin-
sic segment similarities is computed. The shown three clusters consist of approximately
laminar flow segments (•), highly curves segments (•), and circular flow segments (•).

61 5.3. PATTERN SEARCH

lines for two different flows. The results illustrate that our segmentation consistently
computes similar segments for similar flow patterns.

5.2.2 Intrinsic Similarity of Stream Line Segments
Based on our consistent curve segmentation scheme, we propose a general scale-
invariant method for intrinsic curve segment comparison.

First, we discretize the continuous intrinsic curve properties like curvatures along
each segment into n > 0 uniformly sized bins. The parameter n steers the profile
resolution and accuracy. In all our experiments, we observe that a value of n = 40 is
usually sufficient to enable accurate segment comparison, e.g., for pattern retrieval. For
comparability, we scale-normalize each profile by the curve lengths li.

To measure the intrinsic similarity of a pair of curve segments, we employ hEMD
[59], which is a generalization of the Earth Movers Distance (EMD), for the comparison
two scale-normalized profiles. hEMD is a cross-bin measure that is more robust w.r.t.
local deformations and also a well-defined metric for our setting of unequal total profile
sums.

In order to obtain similarity transformation invariance for 2D curves, we need to
compute the minimum of four distance measures, i.e., two for inverting the curve
traversal order, and two for flipping the sign of the curvature. For 3D segment similarity
estimation, we combine differences in unsigned curvature κ3 and torsion τ as dκ3 +
wτ dτ of individual hEMD profile distances in curvature dκ3 and torsion dτ . A weight
parameter wτ < 1 is chosen to reduce the influence of torsion to the final similarity
estimation. Similar to the 2D case, to evaluate the similarity of two 3D segments, four
hEMD evaluations are required, i.e., two for inverting the traversal order, and two for
flipping the sign of the torsion.

We demonstrate the effectiveness of the intrinsic segment similarity estimation in
Figure 5.5 by computing a clustering of intrinsically similar flow regions. Clustering
is based on pairwise segment similarities as the metric for hierarchical clustering
using Ward’s minimum variance algorithm [81]. The clustering result consists of three
intrinsically different clusters of segments: linear, curved, and circular segments. Note
that intrinsically similar segments are grouped to clusters at different scales, which
shows the scale-invariance of our similarity estimation.

Relying on the proposed consistent stream line segmentation and segment similarity
estimation, we are now able to present our flow pattern search method.

5.3 Pattern Search
In this section, we propose an example-based flow pattern search approach for the
detection of similar flow feature patterns given a query pattern. Patterns are defined by a
collection of stream line segments, which are obtained using our consistent segmentation
such that similar patterns are segmented similarly. Intrinsically similar occurrences of
these pattern can be retrieved from other parts of the domain, from other points in time,
or even from other data sets. Our approach starts with a dense curvature-based domain
sampling by stream line integration, followed by stream line segmentation, pattern

62
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

definition, and pattern retrieval. We formulate it independently of the curve dimension
and the algorithm is applicable for both 2D and 3D curves.

5.3.1 Stream Lines Placement

We represent flow features by segments of stream lines in their vicinity. Hence, a
sufficiently dense coverage of all important flow features by stream lines is required.
Uniform stream line placement is a well-known visualization problem and we refer to
the survey by McLoughlin et al. [55] for an overview on recent standard solutions. Note
that standard placement approaches generally strive for uniform domain coverage by
imposing both upper and lower bounds on local pointwise curve distances. In contrast,
our setting requires curves that only respect an upper distance bound, as preemptively
terminating curve integration by a lower bound on curve distances would bias the
segmentation by the order of integration. Also, curve segments in converging flow
regions often provide distinctive flow pattern candidates and should not be discarded.
This considerably simplifies global stream line placement.

As we relate flow features to regions of high flow curvature, we employ a simple
curvature-based importance sampling for stream line placement (see [85,93]): candidate
seed points are distributed uniformly in the domain using dart throwing such that they
respect a prescribed upper distance bound, i.e., a candidate seed point is rejected if its
nearest neighbor is closer than a prescribed value (we use the domain diagonal scaled by
10−5 for this upper bound). From this candidate set, we randomly draw seed points using
local absolute curvature κ̂ as the importance distribution. A prescribed number of stream
lines is integrated from these seed points. This scheme yields a denser distribution of
stream lines in regions of higher curvature. Integration is performed in both forward and
backward directions using standard fourth-order Runge Kutta integration with adaptive
stepsize and equidistant curve sampling [61]. For closed stream lines, integration is
stopped at the junction point.

Note that the number of total stream line segments governs the retrieval performance.
To increase the efficiency of the pattern retrieval, we subsample the integrated stream
lines to remove geometrically redundant, i.e., globally close curves, as redundant curves
would yield equal and therefore redundant segments. Similar to Rössl and Theisel [62],
we use two-sided Hausdorff curve distances to detect and discard extrinsically close and
redundant curves while preferring longer stream lines: a set of selected stream lines is
maintained and all stream lines are compared against the set members using two-sided
Hausdorff distance in order of their length. If the Hausdorff distance to all set members
is sufficiently high, i.e., the current curve is geometrically not redundant, it is added to
the set of selected curves. This procedure is efficient as only a fraction of all possible
pairwise Hausdorff distances need to be computed due to the length-based ordering.
Using this filter, the cardinality of the selected set of stream lines can usually be reduced
by up to 90% while retaining stream lines close to feature regions. This set of stream
lines is segmented using the consistent segmentation described in Section 5.2 to give
the set of segments S= {si}.

63 5.3. PATTERN SEARCH

(a) (b) (c)

Figure 5.6: Pattern Retrieval Overview. (a) A flow feature pattern is a set of user-
selected segments (•) with one distinguished root segment (•). (b) For global alignment,
segments similar to the root segment are found using scale-invariant intrinsic similarity
(• left), then all pattern segments are transformed to their vicinity by a fitted similarity
transformation (right). (c) For local alignment, all transformed pattern segments are
matched with the local data segments to detect matched patterns (•).

5.3.2 Pattern Definition
Example-based pattern search requires a suitable definition of the query pattern. In
this work, we rely on the consistent stream line segmentation for pattern selection and
define flow feature patterns P⊂ S as subsets of all segments consisting of |P| segments.
Example query patterns are selected by the user to define flow features for pattern
retrieval. Usually, a flow feature pattern consists of distinctive elements of different
types of flow features, e.g., a central saddle bounded by two vortical center-like closed
stream lines. For pattern search, all segments of the pattern are weighted equally and
independent of their spatial extend, i.e., no segment is preferred to evaluate matching
quality. Given a query pattern, our method returns geometrically matching occurrences
of similar patterns from a variety of different search domains, e.g., the same data set, a
different time step, or a different data set. Similar patterns are close to shape-preserving
similarity transformations of the query pattern, i.e., they are geometrically close to
translated, rotated, and uniformly scaled versions of the query pattern. Hence, for
retrieval, the relative pairwise position, orientation, and scale of segments in a pattern is
respected by our approach.

5.3.3 Pattern Retrieval
Given a query pattern, we search for differently scaled and geometrically compatible
pattern locations in the search domain. Pattern retrieval consists of two consecutive
global and local phases. In the global phase, we fit similarity transformations that align
the query pattern to possible occurrences in the search space. In the local phase, each
segment of the transformed query pattern is matched with geometrically compatible
segments in its vicinity and a match is found if all segments have matching segments in
the data. This pattern retrieval procedure is illustrated in Figure 5.6 and we continue to
present its details.

Global Pattern Alignment. Global pattern alignment requires the localization of
candidate patterns and the computation of the similarity transformations that align the

64
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

query pattern with candidate matches.
We use the segment similarities presented in Section 5.2.2 for candidate match

localization: by comparing the intrinsic similarity of individual pattern segments with
segments in the search space it is straightforward to identify possible candidate pattern
occurrences for which at least a single segment is matched. Due to the invariance of our
segment similarity measures, candidate pattern occurrences are found independently of
their location, orientation, and scale.

We observe that it is sufficient to perform similarity computations with a single
segment of the query pattern, i.e., using the most distinguishable segment from the
pattern that we call the root segment r(s) ∈ P. We define it to be the segment of highest
end point distance. This is because the estimation of similarity of closed segments
with coinciding end points depends on the particular location of the junction point
and selecting the segment with highest end point distance converses this property. For
pattern search in 3D, we additionally require the root segment to have non-vanishing
curvature.

Using the root segment, we find a set Q of similar segments q(s) ∈ Q⊂ S using the
scale and orientation-invariant segment similarity For pattern retrieval, we found that
it is usually sufficient to use p = 10% of the most similar segments in S to r to define
the set of candidate root curve matches Q. Note that the correct pairwise orientation
of r and q can be determined from the orientation of the minimal oriented difference.
Global similarity estimation to the root curve turns out to be the most expensive part
of our approach. However, note that pairwise similarities can be precomputed, which
enables more responsive pattern retrieval.

Given two similar segments r and q, we continue to compute the closest similarity
transformation that aligns r to q. The transformation is computed for discretized
segments: let rk and qk denote the vertices along each curve and |s| the number of
vertices of the segment. We resample the shorter curve to have the same number
|r| = |q| = m of vertices as the longer one. Similarity transformations consists of a
translational part t, a rotational part R, and a scaling factor c, such that for an optimal
alignment qk = cRrk + t holds. Optimal alignment of both segments is only possible
for intrinsically identical segments. Still, it is possible to fit the closest similarity
transformation in least-squares-sense, which aligns both segments sufficiently well as
they are known to be similar: given the centers of mass r̄ = 1

m ∑k rk and q̄ = 1
m ∑k qk,

the optimal scaling factor relating both segments is given by

c =

(
∑k||rk− r̄||2

∑k||qk− q̄||2

) 1
2

(5.2)

(see, e.g., Horn et al. [36]). Independent of this scale the covariance matrix of mass-
centered samples

K = ∑
k
(rk− r̄)>(qk− q̄) (5.3)

can be used to compute the optimal rotation using a spectral decomposition of
K based on quadratic (2D) or cubic (3D) polynomials (see [36]). Instead, we use

65 5.3. PATTERN SEARCH

the numerically more stable technique proposed by Arun et al. [3]: based on the
singular value decomposition K = UΣV>, the optimal rotation is obtained as the polar
decomposition R = UV>. Note that different scales of the segments are encoded in Σ

and do not contribute to the optimal rotation, which is scale-independent. From this the
optimal translational part is given by t = q̄− cRr̄. This transformation is propagated to
all segments of P to align the query pattern to a candidate match location suitable for
local pattern matching.

Local Pattern Matching Global pattern alignment yields approximate locations,
orientations, and scales of potential pattern matches by pairing the root segment with
intrinsically similar segments globally in the whole search space. Consecutively, in the
local pattern alignment step, the occurrence of a proper pattern match is checked by
incorporating all pattern segments: for each transformed segment geometrically similar
segments in the search space are sought and a pattern match is found if every segment
can be matched to a compatible segment.

Note that, for local pattern matching, we can not measure intrinsic segment similarity
anymore but instead perform an extrinsic similarity estimation, as for pattern search
extrinsically matching segment configurations are required: for two segments p and
q with vertices pi and q j (not necessarily of equal count), we measure extrinsic shape
similarity using the symmetric Chamfer distance ec(p,q) given by

ec(p→ q) =
1
|p|∑i

min
j

∣∣∣∣pi−q j
∣∣∣∣ (5.4)

ec(p,q) = max(ec(p→ q), ec(q→ p)) . (5.5)

The Chamfer distance is successfully applied for other shape matching problems [30]
and measures the average sum of closest point distances. It is therefore less sensitive
to single distance variations and more robust as, e.g., Hausdorff distances, because
all pointwise minimal distances contribute to the final distance. Usually, patterns in
vector fields will not match exactly and small variations in the pattern’s shape should
be admissible. To allow slight variations in segment shape and position, for pattern
matching we use the segment matching cost function

e(p,q) = ec(p− p̄,q− q̄)+we||p̄− q̄|| (5.6)

given as a combination of mass centered extrinsic shape similarity and segment distance
expressed by the distance in center of mass. Note that both, the Chamfer distance and
center of mass distance, are compatible estimations, as both measure forms of Euclidean
distances in the same scale of the current candidate match. The weight we allows to
balance between the required shape similarity and the allowed segment distance and it
can be choose to be we = 1 for equal weighting.

To locally match a pattern to a candidate match position, let P′ denote the set of
segments transformed by the fitted similarity transformation. We obtain the set of
candidate match segments C⊂ S of the underlying flow by also transforming the pattern
bounding box B to B′. Then all segments are included into C for which at least a single

66
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

vertex is inside the transformed box B′. The set of matched segments is computed as

M=
{

q̂i
∣∣ ∀p′i ∈ P′ : q̂i = arg min

qi∈C
e(p′i,qi)

}
, (5.7)

i.e., it is given by the segments q̂i ∈ C that minimize the segment matching costs to each
transformed pattern segment p′i. The total pattern matching cost e(M) = ∑i e(p′i, q̂i)
is then given by the sum of individual minimal segment matching costs. It represents
the quality of the geometric correspondence of the pattern with the currently matched
assignment of data segments.

By applying this local matching procedure to all occurrences of segments that are
intrinsically similar to the pattern root segment, we compute both all assignments of
matched segments and the quality of these matchings. However, as flow features usually
vary smoothly in the domain due to the continuity of the flow, it is likely that in the
vicinity of a high quality matching several very similar matchings of slightly inferior
quality are found. As a single flow feature should only be represented by a single
matching pattern, we cluster multiple matchings in a straightforward way by their
location: let b̄′ denote the center of mass of the transformed pattern bounding box B′.
Then we cluster matched segments based on their location b̄′ by simply discarding a new
matching if it found to close to a previous matching and has higher pattern matching
costs compared to the previous matching. This way distinct matches of high quality are
obtained. Users are then able to browse through the pattern matches in order of their
matching costs, or all matches up to a predefined cost value are visualized.

5.4 Validation
In this section, we use the well-known 2D flow behind a CYLINDER that develops a von
Kármán vortex street behind an obstacle to validate our algorithm.

In Figure 5.7, we apply our pattern retrieval approach to a single time step of the
CYLINDER flow. For a given user-selected flow feature pattern P, we show the resulting
pattern matching costs e(M) in the upper part. Pattern matching costs in the vicinity
of the original pattern are high due to the similarity of the surrounding repetitive flow
features at similar scale. Matching costs slightly increase away from the obstacle due to
decreased extrinsic similarity to P. The bottom figure shows the distinctively clustered
pattern representatives after aggregating close matchings. The repetitive flow feature is
well represented in the matching results.

In another validation example, we apply a pattern from one time step to all other
time steps. We demonstrate this in Figure 5.8: given the pattern P selected in one time
step of the previous CYLINDER example (Figure 5.7), we match it to all occurrences
at every time step of the time-dependent CYLINDER flow. Shown are the matched
patterns in all following time steps, which we visualize in space-time domain. The
result is consistent with the single time step result and the individual pattern evolution
is well-represented. Note that this example does not focus on tracking of individual
segments over time. Rather, it demonstrates the ability of our approach to match the
extrinsic configuration of a consistently segmented pattern from one time step to any
other time step.

67 5.4. VALIDATION

P

e(M)

low

high

CYLINDER

Figure 5.7: Pattern Retrieval in the CYLINDER Flow. In a single time step of the flow
behind a circular CYLINDER obstacle (not shown) a flow pattern P (•) is selected.
Our pattern retrieval evaluates the geometric matching costs e(M) of local candidate
occurrences of the pattern at different locations, orientations, and scales (top). Clustering
of locally similar candidate occurrences yields representative and distinctive pattern
matches (bottom, differently colored). The consistent segmentation of this flow is shown
in Figure 5.4.

CYLINDER

Time

Space

Figure 5.8: Time-dependent Pattern Search. For the time-dependent 2D CYLINDER
flow, we perform pattern retrieval for the pattern P selected in the time-step shown in
Figure 5.7. The consistent matching results are visualized in space-time domain.

68
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

P

BOUSSINESQ, β = 0.5

r

Figure 5.9: BOUSSINESQ Pattern Search. The BOUSSINESQ flow represents the ad-
vective mass transport induced by a circular heat source (•). In the segmented flow
(left), we search for occurrences of the selected pattern P (•, bottom right). For the root
segment r (bottom right), the middle image shows the most similar segments of the
data set that are used for matching. The pattern is matched to two different occurrences
(right, differently colored) at different locations, orientations, and scales.

69 5.5. RESULTS

P

BOUSSINESQ

Figure 5.10: Pattern Search with External Pattern. In the BOUSSINESQ flow, we
search for the pattern P (bottom right) that is given by two external segments from
the CYLINDER flow shown in Figure 5.7. The pattern is matched to nine occurrences
in the BOUSSINESQ flow (differently colored) at various different nested locations,
orientations, and scales.

5.5 Results
We continue to present results of our pattern retrieval approach in this section. In Figure
5.9, we show pattern search results for the more complex simulated 2D BOUSSINESQ
flow representing the Boussinesq approximation applied to solve for the flow generated
by a heated cylinder. We show both the segmentation result and the most similar
segments to a given root curve of the user selected pattern in the same data set. The
flow pattern consists of two vortical regions that are separated by a saddle-like structure.
In the same data set, two occurrences are detected. They are matched at very different
scales, illustrating the scale-invariance of our approach.

In the same date set illustrated in Figure 5.10, we exemplify the use case of matching
with externally defined patterns: using the 2D flow pattern defined by consistently
segmented segments in the CYLINDER flow of Figure 5.7, we detect nine matching
occurrences in the BOUSSINESQ flow. Note that matchings are found at various different
locations, orientation, and scales. As long as a query pattern consists of consistently
segmented segments it can be used as an external pattern in our method. In particular,
external patterns need not conform to the scale of the data set due to the invariance to
similarity transformations of our method. In addition, this result demonstrates that our
approach also retrieves nested matches, i.e., pattern occurrences at different scales but at
same locations. Nested patterns can be interpreted to give a multi-scale representation
of a particular flow pattern. They are supported by our method due to the sparseness of
our pattern definition. Note that matching of nested patterns is usually not supported by
pattern matching approaches that are defined by dense stencils [10, 27, 35, 68], as this
would require self-similar stencils.

In Figure 5.11, we illustrate the application of our approach to 3D pattern retrieval in
the electrostatic field around a BENZENE molecule [72]. The specified complex pattern
is matched at six accumulation points corresponding to the sixfold molecule symmetry.
This example demonstrates that for 3D flows matched patterns are also detected in a
rotational-invariant way by our method.

70
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

Figure 5.11: The input to our method is a vector field and a user-defined set of stream
line segments as a query pattern (• left). We find all “similar” occurrences in a location,
translation, and scale-invariant way (•middle). A representative of each cluster is shown
on the right.

DELTAWING

Figure 5.12: 3D Pattern Search in the DELTAWING Flow. The selected pattern P (•)
consists of a straight segment combined with spiraling segment at the tip of one vortex.
Segments with small matching costs (•) are detected close to similar regions entering
both vortices.

71 5.5. RESULTS

P

BÉNARD

e(M)

low

high

Figure 5.13: 3D Pattern Search in the BÉNARD Flow. For the user-selected pattern P

(• left) in the Rayleigh-BÉNARD convection flow, the pattern matching costs (middle,
low costs matches are rendered with thicker lines) indicate eight locations of increased
pattern occurrences. All eight distinctive pattern matches are found by clustering these
matches for the retrieval result (right).

Data set |L| |S| |Q| |P| SIMI (s) PSEARCH (s)

CYLINDER 55 400 400 2 0.6 0.3
BOUSSINESQ 172 473 154 4 0.9 1.7
BENZENE 7832 9116 4019 6 162 137
BÉNARD 266 8747 547 2 57 119
DELTAWING 302 1700 1646 2 12 1.6

Table 5.1: Timings. For each data set, we list the number integrated stream lines |L|,
number of total segments |S|, the number of considered match candidates |Q|, the number
of pattern segments |P|, root curve intrinsic similarity computation (SIMI) as well as the
local and global phases of the pattern search with match clustering (PSEARCH).

The DELTAWING flow in Figure 5.12 is a simulated field around a triangle-shaped
airplane, courtesy of Markus Rütten (DLR). By selecting a straight stream line segment
that has a spiraling segment at the tip of one of the two vortices as the flow feature
pattern, our method detects similar stream lines that enter one of both vortices. We only
show segments having this characteristic and color code their similarity to the pattern.

The Rayleigh-BÉNARD flow in Figure 5.13 is a simulated data set of fluid motion as
the result of thermal convection of a heated and cooled boundaries, obtained using the
software NaSt3DGP (University of Bonn). The selected pattern consists of a vortical part
with an orthogonally aligned segment. For each segment of the search space the middle
image shows the individual pattern matching costs, which results in eight locations of
increased pattern occurrences. Segment clustering results in eight representative and
distinctive pattern matches.

Table 5.1 summarizes the used number of segments and processing time of all
examples of this section. Processing times were measured with a parallel implementation
on an Intel Core i7-4770K 3.5GHz quad core system. Our consistent stream line
segmentation is a very efficient operation even for a high number of stream lines: for all
tested data sets, segmentation time is less than 0.03 seconds. Among all operations, the
similarity computation of the root curve to the search space segments is one of the most
expensive steps of our method. In fact, the costs are not unexpected, as this operation
effectively corresponds to a global and scale-invariant segment matching. Note that

72
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

other methods evaluating distances between discretized intrinsic property profiles [49,
54] have similar overall complexity. Slightly higher runtimes are caused by our usage
of the more general and accurate, but also more expensive hEMD distance estimation,
if compared to standard X2 or EMD distances. Similar to similarity estimations, pattern
search performance depends on the number of tested segments and their vertex count,
which we found to be highly data set-dependent. Still, all operations can be parallelized
in a straightforward way for increased performance.

5.6 Discussion
In our approach, we design the retrieval of flow feature patterns based on segmentations
of stream lines. Compared to existing methods, this has a number of implications w.r.t.
stream line similarity estimation and flow pattern matching.

For stream line similarity estimation, a number of previous methods either rely
on extrinsic [9, 62], intrinsic [54], or edit distances [82] of whole stream lines. As
emphasized by Lu et al. [49], the comparison of long curves based on intrinsic properties
quickly leads to ill-posed similarity estimations, and they propose a segmentation-
based approach instead. Similar EMD-based segmentation differences are estimated
in their approach. As their method is not scale-invariant and normalizes intrinsic
profiles, a more efficient EMD variant can be used. However, whole stream lines are
still the entities for which similarities are estimated in their approach, albeit based on
individual segmentations that can vary in number. Again, this leads to ill-posed similarity
estimations if curves of different segment number are compared, e.g., a single-arc curve
with a multi-arc curve. In contrast, in our work we emphasize the importance of only
comparing compatible curve segments that usually represent a single dominant region of
maximal curvature. On the one hand, this restricts the spatial extend of the comparable
entities, on the other hand, similarity estimations become more reliable. In a similar
way, Tao et al. [73] perform stream line segmentation and define patterns as a series
of partially matching segments along individual stream lines, enabling partial stream
line matching. This differs from our segmentation-based approach in that our patterns
are not restricted to belong to single stream lines. In fact, compared to related methods
for dense [10, 27, 35, 68] and sketch-based [82] flow pattern matching approaches, our
method explicitly supports the definition of sparse sets of stream line segments as query
patterns. This increases the flexibility of pattern definition and enables a greater range
of possible pattern retrieval applications, e.g., the transfer of patterns to external data
sets or the matching of nested flow patterns.

Limitations and Outlook. Although stream line segmentation enhances the reliability
of segment similarity computations, we identify a number of related drawbacks. First, as
we define flow patterns as sets of stream line segments, users must stick to these segments
when defining patterns. Artificially designed patterns will often not match properly.
Usually this is unproblematic, since segments correspond to intuitive and distinctive
flow regions due to the consistent curvature-based segmentation. However, certain types
of flow patterns are harder to describe this way: an example is the combination of a
vortical region with a straight curve of limited extend in its vicinity, because straight

73 5.7. SUMMARY

curves will not be segmented into individual segments due to the absence of curvature. It
is an interesting direction for further research to identify alternative curve segmentations,
e.g., hierarchical multi-resolution schemes for segmentation and similarity computation,
which could alleviate this limitation.

We see a second limitation in the usage of the extrinsic Chamfer distance for local
segment matching: it represents a purely geometric curve distance measure and is
not related to the potential pattern deformation due to underlying flow characteristics.
Therefore, it has a limited problem-dependent range in distinguishing purely geometric
dissimilarities from segment deformations due to local vector field advection. We believe
it is an interesting direction for further studies to formulate local distance measures
that differentiate between purely geometric distances and distances induced by the
local vector field. On the other hand, our purely geometric formulation makes our
approach also directly applicable to different field types, e.g., time-dependent flows and
tractography data. Hence, in the future, we would like to generalize our approach to
more general time-dependent line fields such as streak line fields [84, 86, 88] and fiber
bundles [16, 42], which also potentially benefit from segment-based pattern definition
and retrieval.

5.7 Summary
In this chapter, we presented a novel approach to pattern retrieval in flows that is based
on a consistent stream line segmentation. Flow patterns are defined by sparse sets of
stream line segments. This provides flexibility for their definition. They are matched
independently of position, location, and scale to the same data set, a different time
step, or even a different data set. We demonstrate the pattern retrieval effectiveness
on a number of 2D and 3D data sets. Efficient pattern matching is enabled by a new
stream line segmentation scheme that is solely based on intrinsic curve properties and
segments intrinsically similar stream lines in a scale-invariant and feature-consistent
way. Based on this segmentation, intrinsic segment similarity estimates are proposed
that are invariant w.r.t. rigid or similarity transformations.

74
CHAPTER 5. PATTERN SEARCH IN FLOWS BASED ON SIMILARITY OF

STREAM LINE SEGMENTS

Chapter 6

3D Face Template Registration
Using Normal Maps

6.1 Overview

3D face models are widely used for computer graphics and computer vision applica-
tions. Of particular interest are morphable 3D face models that are based on a single
deforming 3D template mesh, which can represent different individuals or different
facial expressions. The template deformation is typically controlled via a small set of
parameters. Examples are hand-crafted blend shapes [22] or learned morphable face
models [6], which are based on the analysis of a large database of 3D laser scans. In
order to generate a morphable face model, a template mesh has to be registered to all
3D laser scans in the database. After registration a template vertex with a particular
index in the template mesh is located at the same semantically corresponding point in
all 3D scans (e.g., vertex no. 101 is always the tip of the nose, vertex no. 512 is the
corner of the right eye, and so on). The registration is a crucial step in the generation of
a morphable face model because once corresponding vertex positions are established
in all the database exemplars, it is already possible to perform a linear blend between
the exemplars to generate new individuals or interpolated facial expressions. To reduce
the number of blending weights, typically a Principle Component Analysis (PCA) is
performed, which generates a low dimensional parameter space that can still represent
the observed differences in the vertex positions of the exemplars [6].

Using a so called light stage (a sphere with a large number of individually con-
trollable light sources) a very detailed 3D scan of a human face can be captured [1].
Here, the low resolution 3D geometry is typically acquired using a structured light
approach, and the fine details are captured via normal map generation. The normal
maps are created by taking images under 4 to 7 different illumination conditions that
are generated with the light stage. In addition, a projector is used to generate a series of
stripe patterns (typically 5 to 15 patterns of increasing frequency) for the structured light
reconstruction. Though projector and light stage patterns could be in theory displayed
at fast succession, high frame rates are difficult to achieve in practice due to frame rate

75

76CHAPTER 6. 3D FACE TEMPLATE REGISTRATION USING NORMAL MAPS

limitations of the camera as well as switching time limitations of the light stage and the
projector. Consequently, the captured subject should not move during the acquisition,
which is quite challenging, especially for less relaxed facial expressions.

In order to reduce the capturing time and effort, we propose in this paper a method
to register a 3D face template only to the normal maps. The omission of structured light
scanning reduces the capturing time by almost 50 percent. We claim that it is possible
to skip structured light scanning because the low resolution 3D geometry is already
approximately given by the initial 3D face template. However, in our experiments
we found that a normal map from a single camera view can not resolve the depth
ambiguities. Consequently, our approach uses multiple normal maps that are generated
simultaneously by observing the face with multiple cameras, which does not increase
the capturing time.

State-of-the-art approaches [1,2,6] use non-rigid ICP algorithms to fit a 3D template
mesh to point cloud data (that is obtained via laser or structured light scanning). In our
set-up this non-rigid ICP algorithm is replaced by an algorithm that registers a 3D face
template to several normal maps. Thereby, the proposed registration approach performs
three steps. First, some manually selected feature points and their projections on the
normal maps are registered to roughly align the template. Second, a normal registration
method is applied to align the template semantically to the normal maps. This step aims
to find the correlation between the template geometry and the geometry information
encoded in the normal maps. The result of this step is a deformed template mesh that
better resembles the geometry of the real subject, but still maintains its basic structure.
Third, to further refine the shape of the template, a shape refinement is executed. In
this step, we employ the constraint that for a given 3D position, its projections in
neighbouring views should have the same normals.

The proposed algorithm resides on the following core contributions:

• A novel method to semi-automatically fit a 3D face template to normal maps.
This includes three main steps: feature point registration, normal registration, and
shape refinement.

• In normal registration, a novel optimization strategy to minimize a highly non-
linear function is proposed. It splits the problem to several constrained optimiza-
tion steps which can be linearised and solved efficiently.

As structured-light scanning is omitted, the acquisition time can be reduced by over
50%, while the fitting result is still accurate.

The rest of this chapter is organized as follows. In Section 6.2, the employed
hardware set-up for normal map generation is introduced. The proposed template
registration algorithm is described in Section 6.3. In Section 6.4, several experiments
are presented to evaluate our algorithm. This chapter ends with concluding remarks and
future works in Section 6.5.

6.2 Hardware Set-up and Normal Map Generation
The employed data capturing system is shown in Fig. 6.1. It comprises of a light stage
consisting of 156 LEDs arranged on a spherical metal frame and six digital cameras. The

77 6.2. HARDWARE SET-UP AND NORMAL MAP GENERATION

Figure 6.1: (from left to right) The employed data capturing system comprising a
light stage, which can produce different illumination patterns, and several digital SLR
cameras; six spherical gradient illumination patterns; normal map computed from the
images of the six gradient illumination patterns.

78CHAPTER 6. 3D FACE TEMPLATE REGISTRATION USING NORMAL MAPS

light stage is used to produce six axis parallel spherical gradient illuminations. The set
of images captured by the c-th camera is denoted as Lc =

{
Lx

c,L−x
c ,Ly

c,L−y
c ,Lz

c,L−z
c

}
.

For the spherical gradient illumination the intensity values of the LEDs are translated
and shifted to the range [0,1], since negative light cannot be emitted. The normal map
of the c-th camera can be calculated using the spherical gradient illuminations in a
pixel-wise manner (as proposed in [90]):

Nc =

(
Lx

c−L−x
c ,Ly

c−L−y
c ,Lz

c−L−z
c

)>
∣∣∣∣∣∣(Lx

c−L−x
c ,Ly

c−L−y
c ,Lz

c−L−z
c

)> ∣∣∣∣∣∣ . (6.1)

The digital cameras are calibrated with a calibration pattern. The calibration pattern
is placed inside the light stage in an axis-aligned way such that its center coincides
with the center of the light stage. This assures that the cameras are calibrated with
respect to the light stage coordinate system. During camera calibration we employ the
focal length given by the EXIF data provided by the camera and estimate the extrinsic
camera parameters with Tsai’s approach [78]. Then a bundle adjustment is performed
to further refine the extrinsic camera parameters. The size of the normal maps used in
our experiments is 2592 × 1728.

6.3 Algorithm
The proposed algorithm aims to register a mesh template to multi-view normal maps.
The input consists of a face template, given as a polygonal mesh S= {V, E} which is
defined by a set V of vertices Vi and a set of edges E. Also, the set-up described in
Section 6.2 provides the camera perspective projection matrices Pc, and normal maps Nc
for each camera (with index c) of the camera set C. The output is a deformed template
face which is fitted to the observed face.

The algorithm has three steps. Firstly, to roughly align the template and the normal
maps, we manually select eight 3D feature points for the template and their projections
for all the views. We register these eight points to the normal maps, and the rest of
the template deforms smoothly. Secondly, ignoring the neighbour-view consistency,
a normal registration method is executed to align the vertices of the template to their
semantically correct positions in all the normal maps. Thirdly, through a multi-view
refinement, the shape of the face is further improved by enforcing neighbouring-view
consistency.

These three steps of the algorithm are described in the following three subsections
in detail.

6.3.1 Feature-based registration
This step aims to match eight 3D feature points of the template to a set of user-defined
2D locations, while the rest of the vertices should deform smoothly. In our experiments
we used the eight feature points visualized in Fig. 6.2. The problem is solved as a
non-rigid registration problem.

79 6.3. ALGORITHM

Figure 6.2: The template used in our experiments. It has 1250 vertices in total. The red
points indicate the 3D feature points.

We assign each vertex of the template Vi = (vx,vy,vz)
> a translation vector Ti =

(tx, ty, tz)>. To enforce that the back-projection of a translated vertex is located at a
user-defined 2D location u = (ux,uy)

> in the normal maps, an energy term is defined by

Ecorner = ∑
c∈C

∑
uic∈U

||uic−Pc (Vi +Ti) ||22 , (6.2)

where Pc{·} is a projection function which projects a 3D point to a 2D location in
the image plane of the c-th camera; a set U includes all the user-defined 2D locations u.
To make the rest of the vertices deform smoothly, we constrain the translations of two
connected vertices in the template mesh to be similar. The smoothness term is given by

Esmooth = ∑
(i, j)∈E

||Ti−T j||22 . (6.3)

Combining Eq. (6.2) with Eq. (6.3), the total cost can be written as

E = Ecorner +λEsmooth (6.4)

where λ is a weighting factor. The result is obtained by minimizing Eq. (6.4) using the
non-linear optimizer.

Non-linear optimization Since projection from 3D space to 2D space is non-linear,
Eq. (6.4) becomes a non-linear optimization problem. We solve it as a non-linear least
squares problem iteratively. The projection process is given as

m

 u
v
1

=

 ū
v̄
m

= Pc (Vi +Ti) , (6.5)

80CHAPTER 6. 3D FACE TEMPLATE REGISTRATION USING NORMAL MAPS

where u and v are the coordinate elements of a 2D location. To linearise this process,
we can calculate the derivatives of a 2D coordinate, i.e. ∂u

∂Ti
and ∂v

∂Ti
, analytically. Then

the Jacobian J of Eq. (6.2) is the concatenation of

Ji =

(
· · ·− ∂u

∂Ti
− ∂v

∂Ti
· · ·
)

(6.6)

for each vertex. The Jacobian of Eq. (6.3) can be written as

H = D⊗ I3×3 , (6.7)

where D is the node-arc incidence matrix [21], and ⊗ is the Kronecker product operator.
By combining Eq. (6.6) and Eq. (6.7), the final over-determined linearised equation
system can be written as (

J
λ H

)
︸ ︷︷ ︸

B

∆T =−
(

r
0

)
︸ ︷︷ ︸

b

, (6.8)

where the residual vector r is the concatenation of ri = uic−Pc (Vi) for each vertex.
The resulting normal equation is given as

B>B∆T = B>b . (6.9)

Since the coefficient matrix in Eq. (6.9) is large and sparse, it can be solved efficiently
using the iterative conjugate gradient method.

6.3.2 Normal registration
After feature-based registration, the template is roughly aligned. The purpose of normal
registration is to semantically register the template to the normal maps. The constraint
is that the projections of the normals of the template should be equal to the normals in
the normal maps.

The main difference between color images and normal maps is that normal maps
encode the geometric information, e.g. convex and concave positions, as a normal
distribution. This means a surface can be recovered using normal integration from one
normal map only, while for surface reconstruction multiple color images are needed
(approximation techniques such as shape from shading can recover a surface from only
one color image, but it also needs to approximate a normal map from the image). In
order to overcome the influence of occlusions and also the errors in normal maps, an
approach based on multi-view normal registration is proposed.

Since the three elements of a normal n = (nx,ny,nz)
> are correlated, e.g. ||n||2 = 1,

first we re-parametrize a normal to spherical coordinates, so that we can use two
independent angular components θ and φ to represent a normal. Then the cost for the
normal similarity is defined as:

Enormal = ∑
c∈C

∑
i∈V̄c

∑
p∈{θ ,φ}

∑
w∈W

(rcipw)
2 , (6.10)

81 6.3. ALGORITHM

where V̄c is the set of vertices which are not occluded in the view of camera c, p is the
element index of a normal in spherical coordinates, W is a square window. Here, rcipw
is defined as

rcipw = G(w) ·Nc (Pc (Vi +Ti)+w)p− Ñ(Vi +Ti)p , (6.11)

where G is a Gaussian kernel function defined on the window W, and Nc(·) is a function
which takes a pixel position as the input and returns the normal at the given pixel
position of the c-th normal map.

Considering that the semantics of the template changes when some non-smooth
deformations are applied, a smoothness term which not only allows a big range of
deformation but also maintains the basic structure of the template is needed. In this
paper, instead of using absolute translations, i.e. Eq. (6.3), to ensure the mesh rigidity,
we employ mesh differentials as used in [71] to define the smoothness term. It can be
written as

Esmooth = ∑
Vi∈V̄
||Vi +Ti−

1
k ∑

V j∈N{Vi}
(V j +T j)||22 , (6.12)

where N{·} represents a set of neighbouring vertices.
Combining with the cost of the feature points in Eq. (6.2), the result can be obtained

by minimizing the cost function

E = Enormal +αEsmooth +βEcorner , (6.13)

where α and β are weighting factors.

Non-linear optimization In Eq. (6.11), Nc (·) given a 2D image location returns the
normal from the normal map of view c. Since the vertex’ normal can be changed by
deforming its neighbouring vertices, the representation of a vertex normal by using the
positions of its neighbouring vertices, i.e. Ñ(·), is a non-linear function. Concluded
from that, Eq. (6.13) is a highly non-linear function. In particular, we find that the
minimization of Eq. (6.13) cannot be solved by direct linearisation. In this paper,
we address this problem by separating the whole optimization to several constrained
optimization steps. These steps are:

1. Update the normals of the template using the current structure of the template,
and fixate the normals.

2. Optimize Eq. (6.13) iteratively until the largest translation of all the vertices is
smaller than a threshold.

3. If no further optimization of Eq. (6.13) is achieved, then finish, otherwise go back
to step 1.

In step 2, when we fixate the normals of the template, Eq. (6.11) becomes

rcipw = G(w) ·Nc (Pc (Vi +Ti)+w)p−mip (6.14)

82CHAPTER 6. 3D FACE TEMPLATE REGISTRATION USING NORMAL MAPS

where mi represents the current fixated normal of the i-th vertex. We solve Eq. (6.14)
by linearization. The Jacobian of Eq. (6.14) can be calculated as

Rcipw = G(w)
∂Nc (Pc (Vi +Ti)+w)p

∂Ti

= G(w)

(
∂Ncp

∂nx

∂nx

∂Ti
+

∂Ncp

∂ny

∂ny

∂Ti

)
, (6.15)

where Ncp is an abbreviation of Nc (Pc (Vi +Ti)+w)p, and n = {nx,ny}> is a 2D
image location.

In Eq. (6.15), ∂nx
∂Ti

and ∂ny
∂Ti

can be calculated analytically, and ∂Ncp
∂nx

and ∂Ncp
∂ny

are the
normal gradients in image domain. Since we re-parametrize the normal representation to
spherical coordinates, the two angles θ and φ are independent, so that we can interpolate
a normal by performing a finite difference operation.

The Jacobian of Eq. (6.12) can be written as a constant matrix Q defined as follows:

Qi j =


1, i = j
− 1

ki
, V j ∈N (Vi)

0, else
, (6.16)

where ki is the number of the neighbouring vertices of Vi.
The final linear equation system of Eq. (6.13) can be written as R

α Q
β J


︸ ︷︷ ︸

B

∆T =−

 h
α s
β r


︸ ︷︷ ︸

b

, (6.17)

where R is the concatenations of Eq. (6.15), Q is defined as in Eq. (6.16), h is the normal
residual defined as the concatenation of

hcip = ∑
w∈W

Gw ·Nc (Pc (Vi)+w)p−mip ,

s is the smoothness term residual defined as the concatenation of

si = Vi−
1
k ∑

V j∈N{Vi}
(V j) ,

J and r are the correlated feature point terms defined in Eq. (6.8). As in Eq. (6.9), the
resulting normal equation can be solved efficiently by the conjugate gradient method.

6.3.3 Multi-view Refinement
After normal registration, the position of the vertices of the template are much closer to
their semantically correct positions in the normal maps. However, a shape refinement is
needed to further correct the resulting surface for two reasons: First, the smoothness term

83 6.4. RESULTS

that was employed in normal registration maintains the basic structure of the template,
and second, in order to make the optimization solvable, we use several constrained
optimization steps to approximate the original problem formulation. In this refinement
step, we make use of the neighboring view consistency information to enforce that the
projections of a vertex to a pair of neighboring camera views should have the same
normal in both normal maps. Since the shape refinement only refines the 3D shape but
does not have any concept of semantics, a good initial result of normal registration from
the previous step is required. A good result means that, after normal registration, vertices
are moved very close to their semantically correct positions and the back-projections
are consistent in all views.

We formulate the optimization problem as

argmin
ti

∑
(s,t)∈M

∑
i∈V̄s∩V̄t

∑
p∈{θ ,φ}

∑
w∈W

(astipw)
2

+σ ∑
(i, j)∈E

‖Ti−T j‖2
2

+ τ ∑
c∈C

∑
uic∈U

||uic−Pc (Vi +Ti) ||22 , (6.18)

where

astipw = Ns (Ps (vi + ti)+w)p

−Nt (Pt (vi + ti)+w)p (6.19)

is the difference of the two normals in normal map Ns and Nt , M is a set which consists
of all the available camera pairings, σ and τ are weighting factors. The smoothness
term and feature data term in Eq. (6.18) are the same as the ones in the feature-based
registration in Eq. (6.3) and Eq. (6.2). This optimization problem can also be solved by
linearisation. The Jacobian of the two parts of Eq. (6.19) are calculated as in Eq. (6.15),
and the final normal equations are similar to Eq. (6.9).

Multi-resolution Both in the normal registration and multi-view refinement, a multi-
resolution approach is employed to improve efficiency and accuracy. In the experiment,
we use three layers with different resolutions. Since the three elements of a normal in
Cartesian coordinates are correlated, we first convert the normal representation from
Cartesian coordinates to spherical coordinates, and employ a Gaussian kernel in this
domain to blur the images. While processing each layer, the weighting parameters of
the cost function are fixated.

6.4 Results
Our template fitting approach is evaluated with synthetic data as well as real data. Both
types of experiments are executed with the same camera setup. We use only 6 cameras
to cover the frontal face, and the face template shown in Fig. 6.2 in all experiments.

In the synthetic data experiment, we use a 3D head model to represent the human
head, and render it in 3D Max to generate normal maps. The size of the model is similar

84CHAPTER 6. 3D FACE TEMPLATE REGISTRATION USING NORMAL MAPS

Figure 6.3: Some slices of the synthesis ground-truth model and our result. The red
contour indicates the ground-truth model, and the green contour indicates our result. The
left column includes three vertical slices, and the right column includes three horizontal
slices. (To evaluate the overlap clearly, an interested reader can open a digital version of
this paper and can zoom into the figure)

85 6.4. RESULTS

Figure 6.4: Template fitting progress of our algorithm. From left to right: feature-based
registration result, normal registration result, final result, and the model used to generate
the synthetic ground-truth input data.

Figure 6.5: Quantitative results. Each column represents a test. For any column, the first
and the third figures are two of the normal maps used in the test; The second and the
forth figures are two views of the result with normal map textured and template mesh
overlapped.

86CHAPTER 6. 3D FACE TEMPLATE REGISTRATION USING NORMAL MAPS

to the size of a real human head. Fig. 6.4 shows the result after each optimization step.
We can see that after feature-based registration, the shape is still dissimilar to the input
head model. After normal registration, the face is deformed closer to the head model
but still keeping the basic shape of the face template. This step is performed to ensure
that each semantic position, i.e. concave and convex positions, is moved closer to the
corresponding position of the head model. The next step refines the shape of the face.
To compare the final result with the synthetic model, we show the comparison with
several horizontal and vertical slices in Fig. 6.3. Since the mesh of the face template
is sparser than the synthetic model, the two contours cannot be perfectly matched. We
can see that larger errors appear only at the boundary of the face. That is because the
camera matrix only covers the frontal area of the face. When computing the Hausdorff
distance between the model and our result, the mean error is 1.65mm and the root mean
squared error(RMSE) is 4.62mm.

In the real data experiment, we evaluate our algorithm with three subjects. The result
is shown in Fig. 6.5. For each subject, we use a neutral face and a face with an expression.
Since eyes and mouth have very complicated structures, in all experiments, we ask
the subjects to close their eyes and mouth. We can see from the result that the normal
maps have high-resolution, but our template is comparatively sparse. Consequently, our
algorithm can only recover the most significant features of a face, some subtle features
such as skin foldings are not captured. All computations are performed on a single
consumer-level computer, and the running time of the complete algorithm is about 5
minutes. The most time-consuming operation is to solve the large sparse linear systems.
In this paper, we solve these system directly using the conjugate gradient method. If a
factorization step, such as Cholesky factorization, is applied, the execution time can be
further reduced.

6.5 Summary
We have presented a semi-automatic approach to fit a template mesh to multi-view
normal data. This approach reduces the acquisition time compared to state-of-the-art
approaches which employ structured light scanning to generate the low-resolution 3D
reconstruction. The method consists of three steps: feature-based registration, normal
registration, and multi-view shape refinement. In the feature-based registration, we
match a few manually selected feature points. In the normal registration, we deform the
template to align semantic positions to the normal data. Since the resulting cost function
is highly non-linear, we propose a linearisation method for efficient optimization. In the
multi-view refinement step, we further refine the shape by enforcing the consistency of
normals in neighbouring views.

Chapter 7

Conclusion

In this thesis, we make contributions for pattern search in visualizatoinin. We aim to find
similar patterns in different types of data sets: scalar fields, vector fields, and line fields.
To achieve this goal, we propose three algorithms for these types of data individually.

Specifically, for scalar fields, we extract a sparse set of features using the 3D
SIFT algorithm (Scale-Invariant Feature Transform). This allows for a memory-saving
description of prominent features in the data with invariance to translation, rotation, and
scaling. Then, the user can define a pattern as a set of SIFT features in multiple scalar
fields by e.g. brushing a region of interest. The proposed algorithm can therefore locate
and rank matching patterns in the entire data set.

For vector fields, we propose an algorithm which is able to detect 3D flow patterns
of arbitrary extent in a robust manner. We encode the local flow behavior in scale space
using a sequence of hierarchical base descriptors, which are pre-computed and hashed
into a number of hash tables. This ensures a fast fetching of similar occurrences in the
flow and requires only a constant number of table lookups. In order to support patterns
of arbitrary shape and extent. We assemble these patterns using several smaller spheres.

For line fields, we propose a method that allows users to define flow patterns in
form of a sparse sets of stream line segments. They are defined sparsely and can have
a significant extent, i.e., they are integration-based and not local. This allows for a
greater flexibility in defining features of interest. Our method starts with splitting stream
lines using globally-consistent segmentation criteria. It strives to maintain the visually
apparent features of the flow as a collection of stream line segments. Most importantly,
it provides similar segmentations for similar flow structures.

Additionally, we also investigate the shape recovery problem from multiple views.
In order to reduce the acquisition time, we omit the structured light scanning step to
obtain low-frequency 3D information and rely solely on normal maps from multiple
views. The normal map is a 2D vector field, which is generated using spherical gradient
illuminations in a light stage. In contrast to shape reconstruction algorithms, we propose
a semi-automatic method to fit a template mesh to such normal maps, which includes
three main steps: feature point registration, normal registration, and shape refinement.
This reduces the acquisition time by over 50 percent. In our experiments the proposed
algorithm is successfully applied to real faces of several subjects. Experiments with

87

88 CHAPTER 7. CONCLUSION

synthetic data show that the fitted face template can closely resemble the ground truth
geometry.

7.1 Future Work
Despite the algorithms proposed in this thesis improve the application for both problems,
i.e., pattern search and shape recovery, there are still some challenging directions for
further exploration. We list some of them as follows and discuss the potential future
work.

For pattern search in flow visualization, we have discussed scalar, vector, and line
fields. Another widely existed type of data, i.e., tensor field, has not been discussed.
A possible solution can be decompose a tensor field into several scalar fields. We also
can use the eigen values decomposed from the tensor field. Moreover, for specific
applications, we can use some domain specific quantities to comprise the tensor fields.
Then we can use the algorithm in Chapter 3 to find the similar patterns in multiple scalar
fields.

Another potential future work is to automatically find similar patterns in the data
set without given a reference pattern. Given an unknown dataset, and without prior
understanding of it, users have often difficulties with finding an appropriate reference
pattern. It is better for users to find all the similar patterns by only indicating some
quantities of the desired reference, e.g., size, extent, and density. Related applications
have been discussed in computer vision such as [18, 44]. They aim to find robust
feature matchings in two sets of features. We can apply their methods into the algorithm
introduced in Chapter 3, and group these feature into clusters based on their matchings.
Then, we can further analyze these clusters, and show the group of clusters which are
similar to each other.

For shape recovery problem, in the real data experiment, to prevent errors, we have
asked our subjects to close their eyes and mouth. To relax this constraint, a reliable
face contour tracker could help. By restricting the movements of eyes and mouth to
tracked contours, many complicated expressions could be captured. Moreover, our
camera set-up is currently only capable of covering the frontal face. However, it can be
expected that adding more cameras allows fitting a complete 3D head template with the
same approach. In future work, we would like to apply this technique to a large database
of subjects to build a morphable face model that features very high resolution geometry.

Bibliography

[1] O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and P. Debevec. Creating a
photoreal digital actor: The digital emily project. In Proc. IEEE Computer Vision
and Pattern Recognition, pages 69–80, 2009. 9, 75, 76

[2] B. Amberg, S. Romdhani, and T. Vetter. Optimal step nonrigid ICP algorithms for
surface registration. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2007. 76

[3] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d
point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,
9(5):698–700, 1987. 41, 65

[4] S. Battiato, G. Gallo, G. Puglisi, and S. Scellato. Sift features tracking for video
stabilization. In Image Analysis and Processing, 2007. ICIAP 2007. 14th Interna-
tional Conference on, pages 825–830. IEEE, 2007. 7

[5] V. Blanz, C. Basso, T. Poggio, and T. Vetter. Reanimating faces in images and
video. Comput. Graph. Forum (Proc. Eurographics), 22(3):641–650, 2003. 9

[6] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In Proc.
SIGGRAPH, pages 187–194, 1999. 9, 75, 76

[7] S. Born, M. Pfeifle, M. Markl, M. Gutberlet, and G. Scheuermann. Visual anal-
ysis of cardiac 4d mri blood flow using line predicates. IEEE Transactions on
Visualization and Computer Graphics, 19:900–912, 2013. 8

[8] M. Brown and D. G. Lowe. Automatic panoramic image stitching using invariant
features. International journal of computer vision, 74(1):59–73, 2007. 7

[9] A. Brun, H. Knutsson, H.-J. Park, M. E. Shenton, and C.-F. Westin. Clustering
fiber traces using normalized cuts. In MICCAI, pages 368–375. Springer, 2004. 72

[10] R. Bujack, I. Hotz, G. Scheuermann, and E.Hitzer. Moment invariants for 2d flow
fields using normalization. In Proc. IEEE Pacific Visualization 2014, 2014. 69, 72

[11] R. Bujack, I. Hotz, G. Scheuermann, and E. Hitzer. Moment invariants for 2d flow
fields using normalization. In Pacific Visualization Symposium (PacificVis), 2014
IEEE, pages 41–48. IEEE, 2014. 8, 11

89

90 BIBLIOGRAPHY

[12] R. Bujack, J. Kasten, I. Hotz, G. Scheuermann, and E. Hitzer. Moment Invariants
for 3D Flow Fields Using Normalization. In IEEE Pacific Visualization Symposium,
PacificVis 2015 in Hangzhou, China, 2015. 8

[13] S. Camarri, M.-V. Salvetti, M. Buffoni, and A. Iollo. Simulation of the three-
dimensional flow around a square cylinder between parallel walls at moderate
Reynolds numbers. In XVII Congresso di Meccanica Teorica ed Applicata, 2005.
36

[14] S. Candelaresi and A. Brandenburg. Decay of helical and nonhelical magnetic
knots. Phys. Rev. E, 84(1):16406–16416, 2011. 32

[15] H. Carr and D. Duke. Joint contour nets. Visualization and Computer Graphics,
IEEE Transactions on, 20(8):1100–1113, 2014. 8

[16] W. Chen, S. Zhang, S. Correia, and D. S. Ebert. Abstractive representation and
exploration of hierarchically clustered diffusion tensor fiber tracts. Comput. Graph.
Forum (Proc. EuroVis), 27(3):1071–1078, 2008. 73

[17] W. Cheung and G. Hamarneh. n-sift: n-dimensional scale invariant feature trans-
form for matching medical images. In In Proceedings of the Fourth IEEE Inter-
national Symposium on Biomedical Imaging: From Nano to Macro, 2007 (ISBI
2007, pages 720–723, 2007. 5, 7, 11, 12, 15, 16, 30, 31, 98

[18] M. Cho and K. M. Lee. Progressive graph matching: Making a move of graphs via
probabilistic voting. In CVPR, pages 398–405. IEEE Computer Society, 2012. 88

[19] B. De Decker, J. Kautz, T. Mertens, and P. Bekaert. Capturing multiple illumination
conditions using time and color multiplexing. In Proc. IEEE Computer Vision and
Pattern Recognition, pages 2536–2543, 2009. 9

[20] D. Decarlo and D. Metaxas. Optical flow constraints on deformable models with
applications to face tracking. International Journal of Computer Vision, 38:99–127,
2000. 9

[21] M. Dekker. Mathematical Programming. CRC, 1986. 80

[22] Z. Deng, P.-Y. Chiang, P. Fox, and U. Neumann. Animating blendshape faces by
cross-mapping motion capture data. In Proc. Interactive 3D Graphics and Games,
pages 43–48, 2006. 75

[23] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice–Hall,
1976. 41

[24] H. Doleisch, M. Gasser, and H. Hauser. Interactive feature specification for
focus+context visualization of complex simulation data. In Proc. VisSym 03, pages
239–248, 2003. 8

[25] J. Ebling and G. Scheuermann. Clifford convolution and pattern matching on
vector fields. In Proc. IEEE Visualization, pages 193–200, 2003. 7, 11, 22, 23, 24,
28, 98

91 BIBLIOGRAPHY

[26] J. Ebling and G. Scheuermann. Clifford fourier transform on vector fields. IEEE
Transactions on Visualization and Computer Graphics, 11(4):469–479, July 2005.
7

[27] J. Ebling and G. Scheuermann. Segmentation of flow fields using pattern matching.
In Proc. EuroVis, pages 147–154, 2006. 7, 69, 72

[28] J. Flusser and T. Suk. Rotation moment invariants for recognition of symmetric
objects. IEEE Transactions on Image Processing, 15(12):3784 – 3790, 2006. 11

[29] G. Fyffe, T. Hawkins, C. Watts, W.-C. Ma, and P. Debevec. Comprehensive
facial performance capture. Computer Graphics Forum (Proc. Eurographics),
30:425–434, Apr. 2011. 9

[30] D. M. Gavrila. A bayesian, exemplar-based approach to hierarchical shape match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8):1408–
1421, 2007. 65

[31] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical simulation in fluid
dynamics, a practical introduction. In SIAM, 1998. 22

[32] D. Günther, A. Jacobson, J. Reininghaus, H.-P. Seidel, O. Sorkine-Hornung, and
T. Weinkauf. Fast and memory-efficient topological denoising of 2D and 3D scalar
fields. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE
VIS), 20(12):2585–2594, December 2014. 8

[33] T. Günther, C. Rössl, and H. Theisel. Opacity optimization for 3d line fields. ACM
Transactions on Graphics (Proc. SIGGRAPH), 32(4):120:1–120:8, 2013. 57

[34] B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clus-
tering and classification. In Proceedings of the 12th European Conference on
Computer Vision - Volume Part IV, ECCV’12, pages 459–472, Berlin, Heidelberg,
2012. Springer-Verlag. 11

[35] E. Heiberg, T. Ebbers, L. Wigstrom, and M. Karlsson. Three dimensional flow
characterization using vector pattern matching. IEEE Transactions on Visualization
and Computer Graphics, 9(3):313–319, 2003. 7, 11, 22, 23, 24, 28, 69, 72, 98

[36] B. K. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form solution of absolute
orientation using orthonormal matrices. JOSA A, 5(7):1127–1135, 1988. 64

[37] H. Huang, J. Chai, X. Tong, and H.-T. Wu. Leveraging motion capture and 3d
scanning for high-fidelity facial performance acquisition. ACM Trans. Graph.
(Proc. SIGGRAPH), 30:74:1–74:10, 2011. 9

[38] L. Huettenberger, C. Heine, H. Carr, G. Scheuermann, and C. Garth. Towards
multifield scalar topology based on pareto optimality. Computer Graphics Forum,
32(3pt3):341–350, 2013. 8

[39] J. Hunt. Vorticity and vortex dynamics in complex turbulent flows. Proc CANCAM,
Trans. Can. Soc. Mec. Engrs, 11:21, 1987. 17

92 BIBLIOGRAPHY

[40] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 604–613. ACM, 1998. 42

[41] J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mechanics,
285:69–94, 1995. 17

[42] R. Jianu, C. Demiralp, and D. H. Laidlaw. Exploring 3d dti fiber tracts with
linked 2d representations. Transactions on Visualization and Computer Graphics,
15(6):1449–1456, 2009. 8, 73

[43] J. J. Kuffner. Effective sampling and distance metrics for 3d rigid body path
planning. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, volume 4, pages 3993–3998. IEEE, 2004. 21

[44] J. Lee, M. Cho, and K. M. Lee. Hyper-graph matching via reweighted random
walks. In CVPR, pages 1633–1640. IEEE Computer Society, 2011. 88

[45] Y. Li, C. Wang, and C. Shene. Streamline similarity analysis using bag-of-features.
In Proc. SPIE, volume 9017, pages 90170N–90170N–12, 2013. 8

[46] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the International Conference on Computer Vision-Volume 2 - Volume 2, ICCV
’99, pages 1150–, Washington, DC, USA, 1999. IEEE Computer Society. 7

[47] D. G. Lowe. Local feature view clustering for 3d object recognition. In Computer
Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 1, pages I–682. IEEE, 2001. 7

[48] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, Nov. 2004. 7, 11, 12, 15, 29

[49] K. Lu, A. Chaudhuri, T. Lee, H. Shen, and P. C. Wong. Exploring vector fields
with distribution-based streamline analysis. In IEEE Pacific Visualization 2013,
2013. 8, 72

[50] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: efficient
indexing for high-dimensional similarity search. In Proceedings of the 33rd inter-
national conference on Very large data bases, pages 950–961. VLDB Endowment,
2007. 42

[51] W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. Rapid
acquisition of specular and diffuse normal maps from polarized spherical gradient
illumination. In Proc. Eurographics Symposium on Rendering Techniques, pages
183–194, June 2007. 9

[52] W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P. Peers,
M. Vukovic, M. Ouhyoung, and P. Debevec. Facial performance synthesis using
deformation-driven polynomial displacement maps. ACM Trans. Graph. (Proc.
SIGGRAPH), 27:121:1–121:10, 2008. 9

93 BIBLIOGRAPHY

[53] T. Malzbender, B. Wilburn, D. Gelb, and B. Ambrisco. Surface enhancement using
real-time photometric stereo and reflectance transformation. In Proc. Eurographics
Symposium on Rendering Techniques, pages 245–250, 2006. 9

[54] T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters, and C. D.
Hansen. Similarity measures for enhancing interactive streamline seeding. IEEE
Transactions on Visualization and Computer Graphics, 19(8):1342–1353, 2013. 8,
57, 72

[55] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen. Over two
decades of integration-based, geometric flow visualization. Computer Graphics
Forum, 29(6):1807–1829, 2010. 55, 62

[56] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In In VISAPP International Conference on Computer
Vision Theory and Applications, pages 331–340, 2009. 21

[57] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi. Efficiently combining
positions and normals for precise 3d geometry. ACM Transactions on Graphics
(Proc. SIGGRAPH), 24:536–543, July 2005. 9

[58] L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive hashing: A comparison
of hash function types and querying mechanisms. Pattern Recognition Letters,
31(11):1348–1358, 2010. 21

[59] O. Pele and M. Werman. Fast and robust earth mover’s distances. In Proc. ICCV.
IEEE, 2009. 61

[60] F. Pighin, R. Szeliski, and D. H. Salesin. Resynthesizing facial animation through
3d model-based tracking. In Proc. IEEE International Conference on Computer
Vision, volume 1, pages 143–150, 1999. 9

[61] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 2007. 62

[62] C. Rössl and H. Theisel. Streamline embedding for 3d vector field exploration.
IEEE Transactions on Visualization and Computer Graphics, 18(3):407–420, 2012.
8, 62, 72

[63] H. Saikia, H.-P. Seidel, and T. Weinkauf. Extended branch decomposition graphs:
Structural comparison of scalar data. Computer Graphics Forum (Proc. EuroVis),
33(3):41–50, June 2014. 8

[64] H. Saikia, H.-P. Seidel, and T. Weinkauf. Fast similarity search in scalar fields using
merging histograms. In H. Carr, C. Garth, and T. Weinkauf, editors, TopoInVis,
pages 1–14, Annweiler, Germany, May 2015. 8

[65] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer. Pathline predicates and
unsteady flow structures. The Visual Computer, 24(12):1039–1051, 2008. 8

94 BIBLIOGRAPHY

[66] T. Salzbrunn and G. Scheuermann. Streamline predicates. IEEE Transactions on
Visualization and Computer Graphics, 12(6):1601–1612, 2006. 8

[67] N. Sauber, H. Theisel, and H.-P. Seidel. Multifield-graphs: An approach to visual-
izing correlations in multifield scalar data. IEEE Transactions on Visualization
and Computer Graphics, 12:917–924, 2006. 8, 19

[68] M. Schlemmer, M. Heringer, F. Morr, I. Hotz, M. Hering-Bertram, C. Garth,
W. Kollmann, B. Hamann, and H. Hagen. Moment invariants for the analysis
of 2d flow fields. IEEE Transactions on Visualization and Computer Graphics,
13(6):1743–1750, 2007. 8, 69, 72

[69] M. Schulze, J. M. Esturo, T. Günther, C. Rössl, H.-P. Seidel, T. Weinkauf, and
H. Theisel. Sets of globally optimal stream surfaces for flow visualization. Com-
puter Graphics Forum (Proc. EuroVis), 33(3):1–10, June 2014. 8

[70] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its applica-
tion to action recognition. In Proceedings of the 15th International Conference
on Multimedia, MULTIMEDIA ’07, pages 357–360, New York, NY, USA, 2007.
ACM. 5, 7, 11, 12, 15, 16, 30, 31, 98

[71] O. Sorkine, D. C. Or, Y. Lipman, M. Alexa, C. Rossl, and H. P. Seidel. Laplacian
surface editing. In Proc. 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, pages 175–184, 2004. 81

[72] D. Stalling and T. Steinke. Visualization of vector fields in quantum chemistry.
Technical report, ZIB Preprint SC-96-01, 1996. 69

[73] J. Tao, C. Wang, and C. Shene. Flowstring: Partial streamline matching using
shape invariant similarity measure for exploratory flow visualization. In Proc.
IEEE Pacific Visualization, March 2014. 8, 72

[74] J. R. Tena, F. D. la Torre, and I. Matthews. Interactive region-based linear 3d face
models. ACM Trans. Graph. (Proc. SIGGRAPH), 30:76:1–76:10, July 2011. 9

[75] H. Theisel and H.-P. Seidel. Feature flow fields. In Data Visualization 2003. Proc.
VisSym 03, pages 141–148, 2003. 8

[76] D. Thomas and V. Natarajan. Multiscale symmetry detection in scalar fields by
clustering contours. Visualization and Computer Graphics, IEEE Transactions on,
20(12):2427–2436, Dec 2014. 8

[77] D. M. Thomas and V. Natarajan. Symmetry in scalar field topology. IEEE TVCG,
17(12):2035–2044, 2011. 8

[78] R. Tsai. An efficient and accurate camera calibration technique for 3d machine
vision. In Proc. IEEE Computer Vision and Pattern Recognition, pages 364–374,
1986. 78

[79] D. Vlasic, M. Brand, H. Pfister, and J. Popović. Face transfer with multilinear
models. ACM Trans. Graph. (Proc. SIGGRAPH), 24:426–433, 2005. 9

95 BIBLIOGRAPHY

[80] Z. Wang, J. M. Esturo, H.-P. Seidel, and T. Weinkauf. Pattern search in flows based
on similarity of stream line segments. In Proc. Vision, Modeling and Visualization,
2014. 11

[81] J. H. Ward. Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association, 58(301):236–244, 1963. 61

[82] J. Wei, C. Wang, H. Yu, and K. Ma. A sketch-based interface for classifying and
visualizing vector fields. In Proc. IEEE Pacific Visualization, pages 129–136, 2010.
8, 72

[83] T. Weinkauf, Y. Gingold, and O. Sorkine. Topology-based smoothing of 2D scalar
fields with c1-continuity. Computer Graphics Forum (Proc. EuroVis), 29(3):1221–
1230, June 2010. 8

[84] T. Weinkauf, H.-C. Hege, and H. Theisel. Advected tangent curves: A general
scheme for characteristic curves of flow fields. Computer Graphics Forum (Proc.
Eurographics), 31(2):825–834, April 2012. Eurographics 2012, Cagliari, Italy,
May 13 - 18. 36, 73

[85] T. Weinkauf and H. Theisel. Curvature measures of 3D vector fields and their
applications. Journal of WSCG, 10(2):507–514, 2002. 19, 62

[86] T. Weinkauf and H. Theisel. Streak lines as tangent curves of a derived vector
field. IEEE Transactions on Visualization and Computer Graphics (Proceedings
Visualization 2010), 16(6):1225–1234, November - December 2010. Received the
Vis 2010 Best Paper Award. 73

[87] T. Weinkauf, H. Theisel, A. V. Gelder, and A. Pang. Stable feature flow fields.
IEEE Transactions on Visualization and Computer Graphics, 2010. accepted. 8

[88] T. Weinkauf, H. Theisel, and O. Sorkine. Cusps of characteristic curves and
intersection-aware visualization of path and streak lines. In R. Peikert, H. Hauser,
H. Carr, and R. Fuchs, editors, Topological Methods in Data Analysis and Vi-
sualization II, Mathematics and Visualization, pages 161–176. Springer, 2012.
73

[89] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime performance-based facial
animation. ACM Trans. Graph. (Proc. SIGGRAPH), 30:77:1–77:10, July 2011. 9

[90] C. A. Wilson, A. Ghosh, P. Peers, J.-Y. Chiang, J. Busch, and P. Debevec. Tem-
poral upsampling of performance geometry using photometric alignment. ACM
Transactions on Graphics, 29:17:1–17:11, Apr. 2010. 9, 78

[91] R. J. Woodham. Shape from shading. chapter Photometric method for determining
surface orientation from multiple images, pages 513–531. MIT Press, Cambridge,
MA, USA, 1989. 9

[92] Z. Yi, C. Zhiguo, and X. Yang. Multi-spectral remote image registration based on
sift. Electronics Letters, 44(2):107–108, 2008. 7

96 BIBLIOGRAPHY

[93] M. Zöckler, D. Stalling, and H. Hege. Interactive visualization of 3D-vector fields
using illuminated stream lines. In Proc. IEEE Visualization, pages 107–113, 1996.
62

List of Figures

3.1 Localization of SIFT features in different scales. A sequence of Gaus-
sian blurred fields with increasing σ is generated. DoG (Difference-of-
Gaussian) fields are computed by subtracting neighboring blurred fields.
The extrema in the DoG fields denote the SIFT feature locations. For a
given location, the neighborhood in the blurred field of the correspond-
ing scale (orange box) serves as a description of the SIFT feature (see
also Figure 3.2). 13

3.2 Computation of the SIFT descriptor. Based on a proper orientation
(green arrows), a neighborhood of size 9× 9× 9 is sampled in the
blurred scalar field (see also Figure 3.1). It is split into 27 blocks. For
each block, a 3D histogram of the gradient is computed and stored in
the SIFT descriptor. 14

3.3 Rotation invariance of the SIFT descriptor can only be achieved, if the
3D orientation of the neighborhood is properly fixed. See also Figure
3.2. Previous approaches attempt this using a single vector encoded
in spherical coordinates. The result is sensitive to rotation around this
vector itself. We compute a stable local coordinate system using (3.10),
which makes the 3D SIFT descriptor properly rotation invariant. . . . 16

3.4 The pipeline of the proposed algorithm. Firstly, vector fields and scalar
fields are all converted to trait fields. Later, SIFT features are extracted
from each trait field independently. We select SIFT features which have
intersection with the user brushed box as the reference features. For
each reference feature, each of its matchers within a cost threshold deter-
mines a location of the candidate pattern regarding to the transformation
between features. The actual pattern cost for each candidate pattern is
the weighted sum of the costs in all trait fields. 18

3.5 Trait correlations. Some traits correlate strongly with each other (dark
blue patches). 19

97

98 LIST OF FIGURES

3.6 Finding candidate patterns from matching SIFT features. The solid blue
box denotes the user-defined reference pattern P. The colored circles
denote different types and scales of SIFT features. The SIFT features
overlapping with P are called reference features. Matching them to
other SIFT features in the data set leads to transforming the reference
pattern P to several candidate patterns P′, shown as dashed boxes. A
subsequent region-based cost computation yields the final result. . . . 20

3.7 Comparison of the results using our multi-field method and the vector-
based methods from Ebling et al. [25] and Heiberg et al. [35]. Shown
is the Rayleigh-Bénard convection flow. All three methods correctly
identify the four vortices with left-handed sense of rotation, but require
significantly different computation times. 23

3.8 Attracting Focus. 24
3.9 Attracting Focus Saddle. 24
3.10 Attracting Saddle. 25
3.11 Convergence. 25
3.12 Convergence Divergence. 25
3.13 Divergence. 26
3.14 Node Sink. 26
3.15 Node Source. 26
3.16 Repelling Focus. 27
3.17 Repelling Focus Saddle. 27
3.18 Repelling Saddle. 27
3.19 Vortex. 28
3.20 Setup for the evaluation of the invariance of the SIFT features. The

scalar field has values in the range [0,1] and the isosurface at 0.5 is a
round, axis-aligned box. For the evaluation, we rotate, translate and
scale the domain as well as adding noise to the data. Results are shown
in Figure 3.21. 30

3.21 Evaluation of the invariance of the SIFT features against rotation, trans-
lation, scaling, and adding noise. The setup is shown in Figure 3.20.
For the rotation evaluation, we included the results of existing ap-
proaches [17, 70]. In these plots, lower values are better. 30

3.22 Selection of an area around a carbon atom in the electrostatic potential
of the Benzene molecule. This pattern can be found six times in this
scalar field, namely around all six carbon atoms. 32

3.23 Trait fields of the Borromean magnetic flux vector field. Their SIFT
features are shown as spheres. 33

3.24 Borromean data set with matching outer rings. 34
3.25 Borromean data set with the inner ring revealed by our method. 34
3.26 Climate multi-field data set with three traits. 35
3.27 The Hurricane Isabel data set. The user selects the eye of the hurricane

at T = 20 using a red box. Our algorithm uses the 3D SIFT features of
11 scalar fields simultaneously to find matching patterns in the following
time steps. This amounts to a tracking of the eye of the hurricane. . . 35

99 LIST OF FIGURES

3.28 A pattern has been analytically “designed” and then applied to a real-
world flow in order to find all vortex structures in the von Kármán vortex
street. Both images show a volume rendering of the vorticity magnitude
trait field of the respective flow. 36

4.1 2D illustration of the scale space of a vector field v. The scale space
consists of a number of derived vector fields, where every level is a
smoothed version of the previous level at half the resolution. Our
algorithm works with 3D vector fields. 40

4.2 Equidistant point sampling on the unit sphere. The Voronoi cells of the
shown points are the bins for hashing orientations. 42

4.3 2D illustration of a sphere descriptor (blue circle) consisting of a number
of base descriptors (black dots) at different levels of the scale space. . 43

4.4 2D illustration of finding a candidate sphere and its corresponding
base descriptors at a specific scale level. both first base descriptors B0
marked with a coordinate system are aligned. The red dots represent the
closest integer grid point for the rotated base descriptors of the template
sphere. 44

4.5 Layout verification illustrated in 2D. Four circles define a template
pattern in 2D. The yellow circle in the middle is the central circle as
it is closest to the center of the pattern. Red dotted lines indicate the
pairwise verification of scaling and rotation. The green dotted lines
indicate the pairwise verification of translation. 45

4.6 Pattern search in the BENZENE data set using different combination
of parameters. We perform pattern search using the template pattern
with three spheres on the left. The results are demonstrated in the
coordinates of parameter combinations. We choose SP ∈ {0.7, 0.8, 0.9}
and λ ∈ {0.1, 0.2}. 47

4.7 Accuracy curves of different LSH strategies and different number of
hashing functions (Spheres). Left: classic LSH algorithm. Right: Multi-
probe LSH algorithm. 48

4.8 Robustness validation. All the validations is conducted in the volume
with resolution of 65 and 129. We conduct the validation in 5 aspects,
i.e., validation for translation, rotation, scaling, noise, and deforma-
tion. The dashed curves in translation and rotation figures indicates the
transformation is performed along single axis, i.e. x-axis. 50

4.9 Detection of the rotational symmetry in the BENZENE data set using a
saddle-like template pattern. 51

4.10 Pattern search in the BENZENE data set. The template pattern P links
four spheres. Each of them consists a singularity inside. 51

4.11 Pattern search in the RAYLEIGH-BÉNARD flow. The template pattern P

uses two spheres to describe a narrowing spiral. 52
4.12 Pattern search in the CYLINDER flow. The template pattern P consists

of five spheres describing an extended arc. Since base descriptors
are sensitive to the orientation of swirling flow. This enables us to
distinguish between clockwise and counterclockwise rotating vortices. 53

100 LIST OF FIGURES

4.13 Pattern search in the DELTAWING flow. We select two small nearby
spheres to describe a small segment of a vortex core. The result shows
that we detect occurrences at different scales. 54

5.1 Curve Segmentation. Our segmentation scheme splits stream lines in a
globally consistent way at (•) (alternative, less suited split locations are
colored as (•)). Shown examples illustrate different properties of our
segmentation, i.e., feature preservation (a), feature distinction (b), and
segmentation consistency w.r.t. location, orientation, and scale (c). . . 58

5.2 Segmentation Scheme. (a) Starting from minimal segments (top) our
segmentation scheme applies two phases of iterative segment merging.
Shown are two results for different β parameters (bottom, α = π/2 in
both cases). (b) For the three segmentations of the β = 1.5 computation,
the absolute curvatures κ̂ (•) and total discrete segment curvatures κ̂i
(box height) together with average 2D segment orientation (positive •,
negative •) of a cutout region are shown. In the first phase, neighboring
segments of close average orientation are merged. In the second phase,
compatible segments of low curvature are combined if its two neighbors
are compatible w.r.t. average orientation. 59

5.3 Segment Merge Criteria. Pre-merge segment boundaries are colored
(•), and two different average segment orientations are colored (•) and
(•). (a) A pair of segments is mergeable if they both have similar
average orientations. (b) A triplet of segments is mergeable if the
center segment (•) has a low average total curvature compared to its
neighboring segments, which have similar average orientations. . . . 60

5.4 Consistent Stream Line Segmentation. Starting from the minimal seg-
ments (top left) our segmentation scheme extracts segmentations for
which intrinsically similar stream line segments are segmented in a com-
patible way. The closeup shows that segmentations form orthogonal
patterns to laminar flow regions. Removal of low curvature segments is
steered by the β parameter. The slowly varying CYLINDER flow on the
bottom illustrates the consistency of the segmentation. 60

5.5 Similarity-based Clustering. Using the consistent segmentation of the
CYLINDER flow shown in Figure 5.4, a clustering of segments based on
pairwise intrinsic segment similarities is computed. The shown three
clusters consist of approximately laminar flow segments (•), highly
curves segments (•), and circular flow segments (•). 60

5.6 Pattern Retrieval Overview. (a) A flow feature pattern is a set of user-
selected segments (•) with one distinguished root segment (•). (b) For
global alignment, segments similar to the root segment are found using
scale-invariant intrinsic similarity (• left), then all pattern segments are
transformed to their vicinity by a fitted similarity transformation (right).
(c) For local alignment, all transformed pattern segments are matched
with the local data segments to detect matched patterns (•). 63

101 LIST OF FIGURES

5.7 Pattern Retrieval in the CYLINDER Flow. In a single time step of the
flow behind a circular CYLINDER obstacle (not shown) a flow pattern P

(•) is selected. Our pattern retrieval evaluates the geometric matching
costs e(M) of local candidate occurrences of the pattern at different
locations, orientations, and scales (top). Clustering of locally simi-
lar candidate occurrences yields representative and distinctive pattern
matches (bottom, differently colored). The consistent segmentation of
this flow is shown in Figure 5.4. 67

5.8 Time-dependent Pattern Search. For the time-dependent 2D CYLINDER
flow, we perform pattern retrieval for the pattern P selected in the time-
step shown in Figure 5.7. The consistent matching results are visualized
in space-time domain. 67

5.9 BOUSSINESQ Pattern Search. The BOUSSINESQ flow represents the
advective mass transport induced by a circular heat source (•). In the
segmented flow (left), we search for occurrences of the selected pattern
P (•, bottom right). For the root segment r (bottom right), the middle
image shows the most similar segments of the data set that are used for
matching. The pattern is matched to two different occurrences (right,
differently colored) at different locations, orientations, and scales. . . 68

5.10 Pattern Search with External Pattern. In the BOUSSINESQ flow, we
search for the pattern P (bottom right) that is given by two external
segments from the CYLINDER flow shown in Figure 5.7. The pattern
is matched to nine occurrences in the BOUSSINESQ flow (differently
colored) at various different nested locations, orientations, and scales. 69

5.11 The input to our method is a vector field and a user-defined set of
stream line segments as a query pattern (• left). We find all “similar”
occurrences in a location, translation, and scale-invariant way (•middle).
A representative of each cluster is shown on the right. 70

5.12 3D Pattern Search in the DELTAWING Flow. The selected pattern P (•)
consists of a straight segment combined with spiraling segment at the
tip of one vortex. Segments with small matching costs (•) are detected
close to similar regions entering both vortices. 70

5.13 3D Pattern Search in the BÉNARD Flow. For the user-selected pattern P

(• left) in the Rayleigh-BÉNARD convection flow, the pattern matching
costs (middle, low costs matches are rendered with thicker lines) indicate
eight locations of increased pattern occurrences. All eight distinctive
pattern matches are found by clustering these matches for the retrieval
result (right). 71

6.1 (from left to right) The employed data capturing system comprising
a light stage, which can produce different illumination patterns, and
several digital SLR cameras; six spherical gradient illumination patterns;
normal map computed from the images of the six gradient illumination
patterns. 77

6.2 The template used in our experiments. It has 1250 vertices in total. The
red points indicate the 3D feature points. 79

102 LIST OF FIGURES

6.3 Some slices of the synthesis ground-truth model and our result. The
red contour indicates the ground-truth model, and the green contour
indicates our result. The left column includes three vertical slices,
and the right column includes three horizontal slices. (To evaluate the
overlap clearly, an interested reader can open a digital version of this
paper and can zoom into the figure) 84

6.4 Template fitting progress of our algorithm. From left to right: feature-
based registration result, normal registration result, final result, and the
model used to generate the synthetic ground-truth input data. 85

6.5 Quantitative results. Each column represents a test. For any column, the
first and the third figures are two of the normal maps used in the test;
The second and the forth figures are two views of the result with normal
map textured and template mesh overlapped. 85

List of Tables

3.1 Running times and number of SIFT features for the data sets used in
this paper. 32

4.1 Timings. For each experiment, we list the dimensions of the data
set, number of spheres in the template pattern, the pattern similarity
threshold SP, the distance ratio threshold λ , and the timing measured in
single thread processing. 50

5.1 Timings. For each data set, we list the number integrated stream lines
|L|, number of total segments |S|, the number of considered match
candidates |Q|, the number of pattern segments |P|, root curve intrinsic
similarity computation (SIMI) as well as the local and global phases of
the pattern search with match clustering (PSEARCH). 71

103

	Introduction
	Motivation
	Structure and Overview
	Contributions
	List of Publications

	Related Work
	Pattern Search
	Shape Recovery

	Pattern Search in Scalar Fields
	Overview
	Scale-Invariant Feature Transform
	Background on 3D SIFT
	Obtaining Rotation Invariance for 3D SIFT

	Pattern Matching in Multi-Fields
	Trait fields
	Feature-Based Search for Candidate Patterns
	Region-Based Cost Computation

	Evaluation and Discussion
	Rationale Behind the Feature-Based Approach
	Comparison to Vector-Based Matching Methods
	Discussion of False Negatives and False Positives
	Discussion of Parameters
	Evaluation of the Invariance of the SIFT Features
	Invariance against Intensity Scaling or Shifting

	Results
	Summary

	Hierarchical Hashing for Pattern Search in 3D Vector Fields
	Overview
	Hierarchical Description, Hashing and Indexing
	Scale Space
	Base Descriptors
	Base Descriptor Hashing
	Base Descriptor Querying and Comparison

	Pattern Definition and Search
	Sphere Descriptors
	Sphere Layout Filtering

	Evaluation and Discussion
	Parameter Overview
	Evaluation of Retrieval Accuracy
	Comparison of LSH strategies
	Sensitivity to Vortex Orientation
	Robust to Translation, Rotation, and Scaling
	Timings

	Results
	Summary

	Pattern Search in Flows based on Similarity of Stream Line Segments
	Overview
	Intrinsic Stream Line Segmentation
	Globally Consistent Segmentation of Stream Lines
	Intrinsic Similarity of Stream Line Segments

	Pattern Search
	Stream Lines Placement
	Pattern Definition
	Pattern Retrieval

	Validation
	Results
	Discussion
	Summary

	3D Face Template Registration Using Normal Maps
	Overview
	Hardware Set-up and Normal Map Generation
	Algorithm
	Feature-based registration
	Normal registration
	Multi-view Refinement

	Results
	Summary

	Conclusion
	Future Work

