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Abstract

Human motion-capture from videos is one of the fundamental problems
in computer vision and computer graphics. Its applications can be found
in a wide range of industries. Even with all the developments in the
past years, industry and academia alike still rely on complex and expen-
sive marker-based systems. Many state-of-the-art marker-less motion-
capture methods come close to the performance of marker-based algo-
rithms, but only when recording in highly controlled studio environments
with exactly synchronized, static and sufficiently many cameras. While
relative to marker-based systems, this yields an easier apparatus with
a reduced setup time, the hurdles towards practical application are still
large and the costs are considerable. By being constrained to a con-
trolled studio, marker-less methods fail to fully play out their advantage
of being able to capture scenes without actively modifying them.

In the area of marker-less human motion-capture, this thesis proposes
several novel algorithms for simplifying the motion-capture to be applica-
ble in new general outdoor scenes. The first is an optical multi-video syn-
chronization method which achieves subframe accuracy in general scenes.
In this step, the synchronization parameters of multiple videos are es-
timated. Then, we propose a spatio-temporal motion-capture method
which uses the synchronization parameters for accurate motion-capture
with unsynchronized cameras. Afterwards, we propose a motion cap-
ture method that works with moving cameras, where multiple people
are tracked even in front of cluttered and dynamic backgrounds with
potentially moving cameras. Finally, we reduce the number of cameras
employed by proposing a novel motion-capture method which uses as few
as two cameras to capture high-quality motion in general environments,
even outdoors. The methods proposed in this thesis can be adopted
in many practical applications to achieve similar performance as com-
plex motion-capture studios with a few consumer-grade cameras, such
as mobile phones or GoPros, even for uncontrolled outdoor scenes.
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Kurzfassung

Die videobasierte Bewegungserfassung (Motion Capture) menschlicher
Darsteller ist ein fundamentales Problem in Computer Vision und Com-
putergrafik, das in einer Vielzahl von Branchen Anwendung findet. Trotz
des Fortschritts der letzten Jahre verlassen sich Wirtschaft und Wis-
senschaft noch immer auf komplexe und teure markerbasierte Systeme.
Viele aktuelle markerlose Motion-Capture-Verfahren kommen der Leis-
tung von markerbasierten Algorithmen nahe, aber nur bei Aufnahmen in
stark kontrollierten Studio-Umgebungen mit genügend genau synchro-
nisierten, statischen Kameras. Im Vergleich zu markerbasierten Sys-
temen wird der Aufbau erheblich vereinfacht, was Zeit beim Aufbau
spart, aber die Hürden für die praktische Anwendung sind noch immer
groß und die Kosten beträchtlich. Durch die Beschränkung auf ein kon-
trolliertes Studio können markerlose Verfahren nicht vollständig ihren
Vorteil ausspielen, Szenen aufzunehmen zu können, ohne sie aktiv zu
verändern.

Diese Arbeit schlägt mehrere neuartige markerlose Motion-Capture-Verf-
ahren vor, welche die Erfassung menschlicher Darsteller in allgemeinen
Außenaufnahmen vereinfachen. Das erste ist ein optisches Videosynchro-
nisierungsverfahren, welches die Synchronisationsparameter mehrerer Vi-
deos genauer als die Bildwiederholrate schätzt. Anschließend wird ein
Raum-Zeit-Motion-Capture-Verfahren vorgeschlagen, welches die Syn-
chronisationsparameter für präzises Motion Capture mit nicht synchro-
nisierten Kameras verwendet. Außerdem wird ein Motion-Capture-Verf-
ahren für bewegliche Kameras vorgestellt, das mehrere Menschen auch
vor unübersichtlichen und dynamischen Hintergründen erfasst. Schließlich
wird die Anzahl der erforderlichen Kameras durch ein neues Motion-
Capture-Verfahren, auf lediglich zwei Kameras reduziert, um Bewegun-
gen qualitativ hochwertig auch in allgemeinen Umgebungen wie im Freien
zu erfassen. Die in dieser Arbeit vorgeschlagenen Verfahren können
in viele praktische Anwendungen übernommen werden, um eine ähn-
liche Leistung wie komplexe Motion-Capture-Studios mit lediglich eini-
gen Videokameras der Verbraucherklasse, zum Beispiel Mobiltelefonen
oder GoPros, auch in unkontrollierten Außenaufnahmen zu erzielen.
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Chapter 1

Introduction

The last decade has seen significant advances in handheld and mobile camera tech-

nology. The widespread use of smart phones facilitated casual capturing and sharing

any scenes of interest. This abundance of videos resulted in new opportunities and

challenges in computer vision and computer graphics. For instance, there are more

chances than ever to capture the same scene with multiple cameras: e.g. street per-

formance captured by several spectators. This can significantly broaden the domain

of multi-view computer vision and graphics applications such as marker-less human

motion capture of any outdoor scene captured with mobile-phone cameras.

Human motion capture is the process of recording the movement of one or several

humans from input video. It is one of the fundamental problems in computer vision

and computer graphics and has been researched extensively in the past decades.

Applications for these methods can be found in a wide range of industries, from en-

tertainment (movies and games) to biomechanics, in sports, and medical sciences. In

computer graphics, motion capture is a widely used way to animate virtual human

characters. Real-time capture methods made possible through new sensors such as

the Microsoft Kinect have opened up new possibilities for human-computer interac-

tion. However, even with all the developments in the past years, for accurate motion

capture, industry and academia alike still rely on marker-based optical systems that

require complex and expensive setups of cameras and markers.

Recent years have seen a significant improvement of marker-less skeletal human

motion capture algorithms [Moeslund et al. (2006); Poppe (2007); Sigal et al. (2010)].

Many state-of-the-art methods come close to the performance of marker-based algo-

rithms, but only when recording in highly controlled studio setups, where 1) there

are sufficiently many exactly synchronized high-quality cameras; 2) each camera is
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1.1 Overview

static and scene motion is due to foreground objects only; 3) the background is not

cluttered; 4) lighting is controlled; 5) the main foreground actor is seldom occluded.

While relative to marker-based systems, this yields an easier apparatus with a

reduced setup time, the hurdles towards practical application are still significant and

the costs are still notable. By being constrained to a controlled studio, marker-less

methods fail to fully play out their advantage of being able to capture scenes without

actively modifying them. Many practical computer graphics and computer vision

applications require motions to be captured on site, i.e. the camera system needs

to be brought to the set location, because the motion itself cannot be relocated to a

studio. Examples are capturing drivers in cars, motion capture on outdoor film sets,

recordings of street performances, and the reconstruction of athletes in the field. In

such situations, scenes are often cluttered, and foreground and background may be

dynamic. Further on, placement and number of cameras may be starkly constrained,

cameras are often not synchronized, and they may (have to) move during recording.

In this thesis, I present new methods which address these algorithmic challenges;

namely 1) multi-camera synchronization in general scenes; 2) motion capture with

unsynchronized cameras; 3) multi-camera tracking in cluttered scenes with dynamic

foreground and background; 4) motion capture with very few cameras. I therefore

present novel methods for marker-less 3D skeletal human motion capture that suc-

ceed in uncontrolled environments and use only a sparse, heterogeneous and weakly

constrained camera setup. This implies that our contributions can be adopted in

many practical applications to achieve similar performance as the complex and ex-

pensive motion capture studios with just a few consumer-grade cameras (e.g. mobile-

phone cameras or consumer-grade action cameras, such as GoPro) even in uncon-

trolled outdoor scenes. This is a significant advance in the field of human motion

capture that we feel is required for unlimited number of future applications in a

wide range of industries.

1.1 Overview

In this thesis, we propose four new methods for solving challenging computer vision

and computer graphics problems which are related to generalizing human motion

capture setup:

1. an optical multi-video synchronization method which achieves subframe accu-

racy in general scenes

2



1. INTRODUCTION

2. a spatio-temporal motion capture method which works with unsynchronized

cameras

3. a method that allows to perform motion capture with moving cameras

4. a ConvNet (Convolutional neural network) based motion capture method that

works with very few cameras

It is important to note that each of these methods is strongly related to its

preceding method. In particular, the first method estimates multi-video synchro-

nization parameters while the second method uses these parameters to achieve very

high motion capture accuracy with unsynchronized cameras. However, the second

method fails if at least some of the cameras are moving which is often the case in

general outdoor scenes, which is resolved by the third method. Finally, the fourth

method works also with very few cameras, whereas the previous method requires 5

cameras to succeed. As a result of these relations, I consider these four approaches

as four consecutive steps toward high-quality human motion capture with few un-

synchronized handheld cameras. The methods proposed in this thesis have been

presented in international research conferences and journals This thesis presents an

extended revision of these methods.

1.1.1 Optical Multi-Video Synchronization

Our first step toward a simpler human motion capture setup is to estimate the

synchronization parameters of several cameras. In fact, there exist several synchro-

nization algorithms. However, these algorithms are limited to specific scenes, where

it is possible to track the objects of interest, or to scenes where the objects show

specific motions such as ballistic motion [Wedge et al. (2006)]. Some approaches

are also limited to synchronizing only two sequences. Therefore, we propose a novel

algorithm for temporally synchronizing multiple videos capturing the same dynamic

scene; details will be discussed in Chapter 4. This algorithm relies on general image

features in the scene and it does not require explicit tracking of any specific object.

Since such general features usually exist in any video, our algorithm is applicable

to general scenes with any number of objects. Moreover, it achieves estimation of

the synchronization parameters with sub-frame accuracy. This algorithm can be

equally applied to the multi-video case as well as to the two-video case. However, in

the multi-video case, additional robustness is achieved by identifying weakly coupled

pairs of cameras and removing them from the evaluation of the energy. This leads to

3



1.1 Overview

an automatic generation of a graph representing the cameras and their connectivity.

The output of this algorithm is the synchronization parameters (i.e. phase shifts and

frame rate ratios) of multiple videos. In the experiments, the algorithm succeeds to

synchronize datasets that are difficult to synchronize with previous object-tracking-

based synchronization techniques.

The novel algorithmic contribution of this synchronization algorithm over previ-

ous work are:

1. A set of criteria to filter out noisy and uninformative feature trajectories and

pairs of trajectories .

2. An epipolar feature trajectory matching test.

3. A novel strategy for automatic generation of a graph representing the cameras

and their connectivity.

1.1.2 Motion Capture with Unsynchronized Cameras

The second step uses the synchronization parameters to achieve high motion tracking

accuracy despite the unsynchronized cameras. Hasler et al. (2009a) have introduced

the first method that performs marker-less motion capture with unsynchronized

commodity cameras. However, their approach does not make use of sub-frame tim-

ing information and instead aligns all frames to the nearest discrete time step. The

motion tracking is then performed in the same way as if the cameras were synchro-

nized. This in turn leads to inaccuracies and a reduction of quality in the final

results. To address this problem, we propose a new spatio-temporal method for

marker-less motion capture; details will be discussed in Chapter 5. This method

reconstructs the pose and motion of a character from a multi-view video sequence

without requiring the cameras to be synchronized and without aligning captured

frames in time. This makes it possible to reconstruct motion in much higher tempo-

ral detail than was possible with previous synchronized approaches. If the cameras

are running without enforcing synchronization, more samples would be captured in

the temporal domain. Therefore, by purposefully running cameras with different

offsets in time it is possible to capture very fast motion even at frame rates that

off-the-shelf cameras provide. By design, the proposed energy functional used for

model-based generative pose estimation is smooth. Thus, the derivatives of any

order can be computed analytically, allowing effective optimization. In practice,

this algorithm simplifies the capture setup in comparison to previous marker-less

4



1. INTRODUCTION

approaches, and it enables reconstruction of much higher temporal detail than syn-

chronized capture methods. Thus, slow cameras can be used to capture very fast

motion with only little aliasing.

The novel algorithmic contributions of this spatio-temporal motion capture method

are:

1. A novel continuous spatio-temporal energy functional that measures model-

to-image alignment at any point in time: rather than estimating discrete pose

parameters at each time step, it estimates continuous temporal parameter

curves that define the motion of the actor.

2. A new method to penalize non-anatomical pose configurations in the contin-

uous pose-curve space.

1.1.3 Motion Capture with Moving Cameras

As a third step toward simple human motion capture setup, we aim to work with

handheld cameras. To this end, we capture the skeletal motions of humans using

a sparse set of potentially moving cameras in an uncontrolled environment; see

Chapter 6 for details. This novel algorithm is able to track multiple people even

in front of cluttered and dynamic backgrounds with unsynchronized cameras and

with varying image quality and frame rate. The algorithm completely relies on

optical information and does not make use of additional sensor information (such

as depth images or inertial sensors used in some related approaches). The method

simultaneously reconstructs the skeletal pose parameters of multiple actors and the

motion of each camera. We demonstrate that this algorithm is essential to deal with

scenes where cameras, foreground and background can move, and image-based pre-

calibration, for example via structure-from-motion (SfM) [Pollefeys et al. (2004);

Thormählen et al. (2008)], fails. The smooth nature and analytic derivatives of the

energy functional used to solve for body and camera pose enable continuous and

effective optimization. It also enables the automatic detection of the occlusion of

body parts either caused by the same person (self-occlusion) or by other people in

the same scene. In our experiments, we show qualitatively and quantitatively against

ground truth that this algorithm can capture even complex and fast body motion in

cluttered outdoor scenes, and that it succeeds with a wide range of heterogeneous,

unsynchronized and moving camera systems (such as mobile-phone or outdoor action

camera such as GoPro) with varying resolution.

The following novel algorithmic contributions over previous work enable this:

5



1.1 Overview

1. A new pose-fitting energy function which estimates each camera’s motion to-

gether with actor pose. In particular, the following extensions over previous

section improve the measurement of model-to-image consistency:

(a) Support for multi-person/multi-camera tracking

(b) A two-sided similarity term1

(c) Weighting in HSV color space

(d) Prior on camera motion (smoothness)

2. The pose estimation scheme is using a new and improved occlusion handling

approach.

3. A comprehensive evaluation dataset for quantitative comparison. It comprises

multi-view video footage recorded with static and moving cameras, ground-

truth camera motion data, as well as reference data from a marker-based

motion capture system.

1.1.4 Motion Capture with a Low Number of Cameras

The previous steps can achieve similar motion capture performance with consumer-

grade cameras as the complex and expensive motion capture setups need by profes-

sional studios indoors, even in uncontrolled outdoor scenes. In practice, the previ-

ous algorithms need at least five cameras to achieve reasonable tracking accuracy,

which hinders many practical outdoor motion capture applications. Therefore, in

our fourth step toward a simple human motion capture setup, we propose a novel

method to capture articulated skeleton motion from input filmed with as few as

two cameras; details will be discussed in Chapter 7. This algorithm fuses marker-

less skeletal motion tracking with body-part detections from a convolutional network

(ConvNet) in order to achieve accurate motion tracking of several subjects in general

scenes, indoors and outdoors, even from input captured with much fewer cameras.

The algorithm is computationally efficient as poses can be computed very efficiently

using iterative local optimization. The result is one of the first algorithms to capture

temporally stable, fully articulated joint angles from as little as 2-3 cameras, also

with multiple actors in front of moving backgrounds.

The core algorithmic contributions of this method are:

1The concept of symmetric similarity was first presented by [Sminchisescu & Telea (2002)].
However, our novel continuous and differentiable two-sided term is essential for moving cameras,
and allows for fast tracking.

6



1. INTRODUCTION

1. A novel way to combine evidence from a ConvNet-based monocular joint de-

tector [Tompson et al. (2014a)] with a model-based articulated pose estimation

framework [Stoll et al. (2011)].

2. A novel energy term which carefully integrates the body-part detections from

all cameras.

1.2 Thesis Outline

The rest of this thesis is structured as follows: An overview of related work is

provided in Chapter 2. Chapter 3 introduces the fundamental concept of the model-

based articulated pose estimation framework by Stoll et al. (2011) and the ConvNet-

based monocular joint detector by Tompson et al. (2014a), which are used as a

baseline for the algorithms in this thesis. In Chapter 4, we present a synchronization

algorithm which is temporally synchronizing multiple videos capturing the same

dynamic scene. This algorithm relies on general image features and it does not

require explicitly tracking any specific object, which makes it applicable to general

scenes with complex motions.

Our spatio-temporal motion tracking algorithm is presented in Chapter 5. This

algorithm takes the synchronization parameters as input, and reconstructs human

motion in much higher temporal detail than was possible with previous synchronized

approaches. This is achieved by formulating the model-to-image similarity measure

as a temporally continuous functional. In Chapter 6, we present an algorithm for

capturing the skeletal motions of humans using a set of potentially moving cameras

in an uncontrolled environment. This is facilitated by a new energy functional that

captures the alignment of the model and the camera positions with the input videos

in an analytic way.

We present the ConvNet-based motion capture algorithm in Chapter 7. This

algorithm achieves accurate tracking of several subjects in general scenes, indoors

and outdoors, even from input captured with as few as two cameras. We conclude

this thesis in Chapter 8 and propose future directions for the research on this topic.

1.3 List of Publications

The work presented in this thesis has been published in the following papers:

7



1.3 List of Publications

Elhayek et al. (2015a) A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchu-

lin, M. Andriluka, C. Bregler, B. Schiele C. Theobalt: Efficient ConvNet-

based Marker-less Motion Capture in General Scenes with a Low Number

of Cameras, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Boston, USA, 2015.

Elhayek et al. (2014a) A. Elhayek, C. Stoll, K. I. Kim, H.-P. Seidel, C. Theobalt:

Outdoor Human Motion Capture by Simultaneous Optimization of Pose and

Camera Parameters, Computer Graphics Forum (CGF), ISSN 1467-8659, 2014.

Elhayek et al. (2012a) A. Elhayek, C. Stoll, N. Hasler, K. I. Kim, H.-P. Seidel,

C. Theobalt: Spatio-temporal Motion Tracking with Unsynchronized Cam-

eras, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

Providence, USA, 2012.

Elhayek et al. (2012c) A. Elhayek, C. Stoll, K. I. Kim, H.-P. Seidel, C. Theobalt:

Feature-Based Multi-Video Synchronization with Subframe Accuracy,. In A.

Pinz, T. Pock, H. Bischof (Eds.): Pattern Recognition. Lecture Notes in

Computer Science, Springer, Berlin, 2012.

8



Chapter 2

Related Work

In this chapter, we introduce previous work related to the content of this thesis.

It is generally divided into four parts. Firstly, we introduce video synchronization

algorithms related to our multi-camera synchronization algorithm in Chapter 4. In

the second part, we discuss marker-less human motion capture algorithms related to

Chapter 5, where we introduce a spatio-temporal motion tracking approach. In the

third part, outdoors human motion capture algorithms are introduced, which are

related to our algorithm in Chapter 6 for capturing the skeletal motions of humans

using a sparse set of potentially moving cameras in an uncontrolled environment. In

the last part, we introduce hybrid discriminative and generative pose detection algo-

rithms which are related to our ConvNet-based motion capture algorithm (Chapter

7).

2.1 Synchronization Algorithms

One of the first video synchronization algorithms is described by Stein (1998) where

the algorithm detects static features and tracks moving objects. Based on these de-

tected and tracked features, it estimates the planar alignment as well as the epipolar

geometry. This algorithm permits the synchronization of videos which show sig-

nificantly different view points. However, its usage is limited because it requires

explicitly tracking specific objects, and is applicable only to a pair of videos. One

or both of these limitations are shared by most existing algorithms. For instance,

the algorithms of Dai et al. (2006) and Caspi et al. (2006) are designed specifically

for the two-video case. On the other hand, Sinha & Pollefeys’s silhouettes-based

algorithm (2004) and Meyer et al.’s algorithm for moving cameras (2008) can syn-

chronize multiple cameras, and are based on explicit feature tracking or on the (often

9



2.2 Marker-less Motion Capture

violated) assumption of the existence and detection of reliable (long and clean) tra-

jectories.

In Chapter 4 of this thesis, we present a novel algorithm for temporally syn-

chronizing multiple videos capturing the same dynamic scene. Our algorithm relies

on image features in general scenes and it does not require explicit tracking of any

specific object, making it applicable to general scenes with complex motion. Most

strongly related to the proposed algorithm is the work by Caspi et al. (2006), where

the concept of feature trajectory matching was introduced for video synchroniza-

tion. Our algorithm extends this method and explicitly overcomes its two main

limitations: 1) our algorithm is applicable when there is arbitrary time shift and

frame rate differences, 2) our algorithm enables multi-camera synchronization. Nei-

ther of this is directly feasible using Caspi et al.’s algorithm since they use grid

search of parameters, which is applicable only when one or few parameters need to

be estimated. An alternative to video-based synchronization is to exploit additional

data, such as audio [Hasler et al. (2009b)] or still images obtained with controlled

flashes [Shrestha et al. (2006)].

2.2 Marker-less Motion Capture

Marker-less human motion capture approaches reconstruct human skeletal motion

from single or multi-view video and have been studied in the computer vision com-

munity over many years. For a detailed discussion and a historical perspective on

these techniques, one can consult any of the surveys by Moeslund et al. (2006),

Poppe (2007) or Sigal et al. (2010). The approaches can be roughly divided into

methods that rely on multi-view input and methods that try to infer pose from a

single view.

The majority of multi-view tracking approaches combine the use of body model,

usually represented as a triangle mesh or simple primitives, with silhouette and

image features, such as SIFT [Lowe (2004a)], for tracking. These methods esti-

mate pose by optimizing a generative model-to-image similarity. They differ in the

type of features used and the way pose optimization is performed. The multi-layer

framework proposed by Gall et al. (2010) uses a particle-based optimization related

to Deutscher & Reid (2005), to estimate the pose from silhouette and color data in

the first layer. The second layer refines the pose and extracts silhouettes by local

optimization. The approaches by Li et al. (2010), Lee & Elgammal (2010) and Bo &

10
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Sminchisescu (2010) require training data to learn either motion models or a map-

ping from image features to the 3D pose. To evaluate the accuracy of such methods

a variety of benchmarks exist such as the HumanEVA [Sigal et al. (2010)]. However,

almost all multi-view methods to date rely on synchronized multi-view input.

In a second category of approaches, methods try to infer poses [Andriluka et al.

(2010); Ionescu et al. (2011)] from single-view images, or motions from monocu-

lar video [Wei & Chai (2010)]. Most of the methods for human pose estimation

are based on some form of probabilistic body model such as the pictorial structures

(PS) model [Felzenszwalb & Huttenlocher (2005); Fischler & Elschlager (1973)] that

represents the body configuration as a collection of rigid parts and a set of pairwise

part connections. A large number of algorithms have been proposed [Andriluka et al.

(2009); Dantone et al. (2013); Eichner & Ferrari (2009); Sapp & Taskar (2013); Yang

& Ramanan (2011)]. Yang & Ramanan (2011) proposed a flexible mixture of tem-

plates based on linear Support vector machine (SVM). Approaches that model yet

higher-order body-part dependencies have been proposed more recently. Pishchulin

et al. (2013a,b) model spatial relationships of body-parts using Poselet Bourdev &

Malik (2009) priors and a deformable part model (DPM) based part-detector. Sapp

& Taskar (2013) propose a multi-modal model which includes both holistic and local

cues for mode selection and pose estimation. Similar to the Poselets method, using a

semi-global classifier for part configuration, the Armlets approach by Gkioxari et al.

(2013) shows good performance on real-world data, however, it is demonstrated only

on arms. This category of approaches has gained more attention in the past few

years, even though the results do not yet reach the accuracy of multi-view methods

and usually do not use character models with many degrees of freedom. Further-

more, all these approaches suffer from the fact that the features used (HoG features,

edges, contours, and color histograms) are hand-crafted and not learnt.

There are also recent works on human motion capture from depth cameras, such

as the Kinect [Baak et al. (2011); Ganapathi et al. (2010); Shotton et al. (2011);

Wei et al. (2012)]. These methods are designed for real-time use. However, they

only reconstruct coarse skeletal motion and coarse surface geometry [Taylor et al.

(2012)]. High-quality pose and shape reconstruction is not their goal. Moreover,

most depth cameras work only indoors, and have a very limited range and accuracy.

Earlier vision methods such as Plänkers & Fua (2001) attempted to capture human

skeletal motion from stereo footage, but did not achieve as high-quality poses and

reconstructions as recent methods. Recent approaches such as Wu et al. (2013) use a

sparse camera system, for example a stereo setup, to achieve high-quality poses and

reconstructions. This method exploit bidirectional reflectance distribution function

11
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(BRDF) information and scene illumination for accurate pose tracking and surface

refinement. It relies on a foreground segmentation approach that combines appear-

ance, stereo, and pose tracking results to segment out actors from the background.

Tracking without silhouette information is typically approached by combining

segmentation with a shape prior and pose estimation. While Bray et al. (2006) use

graph-cut segmentation, Brox et al. (2010) and Gall et al. (2008) rely on level-set

segmentation together with motion features or an analysis-by-synthesis approach.

While these approaches iterate over segmentation and pose estimation, the energy

functional commonly used for level-set segmentation can be directly integrated in the

pose estimation scheme to speed-up the computation [Schmaltz et al. (2011)]. The

approach by Stoll et al. (2011) introduced an analytic formulation for calculating the

model-to-image similarity based on a Sums-of-Gaussians model. Both body model

and images are represented as collection of Gaussians with associated colors. The

energy functional is continuous in parameter space and allows for near real-time

tracking of complex scenes.

The only work addressing the necessity for complex and expensive synchronized

multi-view camera setups for tracking is by Hasler et al. (2009a). In their work, sub-

frame accurate synchronization is achieved by optimizing correlation of the audio

channels of each video. However, during the human pose estimation stage, the sub-

frame information is discarded and the videos are treated as synchronized with one-

frame accuracy (i.e. all images taken at the same time instant) for further processing.

The estimation step creates silhouettes using a level-set segmentation and uses these

for pose optimization. As we show in Chapter 5, this approximation is not valid for

fast motion, and we propose an algorithm that overcomes the limitation of frame-

level synchronization in [Hasler et al. (2009a)]. By representing the pose parameters

as an analytic function of time, tracking becomes possible with heterogeneous and

unsynchronized but stationary cameras at sub-frame accuracy.

2.3 Outdoor Motion Capture with Moving

Cameras

In the previous section, we discussed many marker-less motion capture algorithms.

Nevertheless, all of these algorithms, except [Hasler et al. (2009a)], do not work with

moving cameras in an uncontrolled outdoor environment. Pons-Moll et al. (2011)

introduce an outdoor human motion capture system that combines video input with

sparse inertial sensor input. As it employs an annealing particle-based optimization

12
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scheme, its idea is to use orientation cues derived from the inertial input to sample

particles from the manifold of valid poses. Then, visual cues derived from the video

input are used to weight these particles and to iteratively derive the final pose.

However, this method does not work with moving cameras.

Only few approaches deal with tracking human motion from moving cameras. As

mentioned before, Hasler et al. (2009a) proposed an algorithm for motion tracking

with unsynchronized cameras. In this algorithm, the input sequences are recorded

with handheld video cameras. However, camera synchronization and calibration

problems were decoupled from pose estimation by explicitly solving these problems

before pose estimation. The camera parameters for each set of (synchronized) video

frames are estimated using a structure-from-motion approach (SfM). A different

approach was taken by Shiratori et al. (2011) who mount outwards facing cameras to

the limbs of an actor and estimate the skeletal pose based on structure-from-motion

of the actor’s environment. These approaches have several limitations: structure-

from-motion fails in case of cluttered scenes with dense moving background (e.g.,

crowds of people), motion blur due to hand-held camera shaking, and small camera

translation or pure rotational motion. Furthermore, frame-level synchronization

might be insufficient for heterogeneous cameras as demonstrated in Chapter 5 (i.e.,

sub-frame accurate synchronization leads to a significant improvement), and body-

mounted cameras mean unwanted active modification of the scene.

Ye et al. (2012) presented an algorithm which tracks human motion with mul-

tiple consumer depth sensors (i.e. Kinects). They simultaneously optimize skeletal

pose and sensor position based on image correspondences from feature tracking

and geometric correspondences between the point clouds and the performer’s sur-

face. However, due to the use of depth sensors, the method cannot be applied in

outdoor scenarios, and fails if no stable image features can be found in the back-

ground. To enable rendered fly-arounds in virtual replays, Germann et al. (2010)

tracked articulated billboard models of soccer players from TV cameras in a soccer

stadium. However, their algorithm is not fully automatic and taylored to soccer

pitches where foreground separation is easier. Compared with those approaches,

the method proposed in Chapter 6 does not depend on structure-from-motion and

is instead based on a new generative skeletal pose tracker that minimizes a single

model-to-image consistency measure simultaneously in the skeletal actor poses and

the poses of moving cameras. We demonstrate that this strategy is essential to deal

with scenes where cameras foreground and background can move, and image-based

pre-calibration (such as structure-from-motion) fails.
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2.4 Hybrid Discriminative and Generative Pose

Detection

We discussed so far many multi-view tracking approaches which combine a body

model with silhouette or image features for tracking. Most of these approaches,

however, still rely on a sufficiently high number of cameras and they would fail if

only a small number of cameras is available, even when recording simple scenes.

On the other side, we discussed many methods that try to infer pose from a single

view. However, all these approaches suffer from the fact that the features used are

hand-crafted and not learnt.

Convolutional networks are by far the best-performing algorithms for many vi-

sion tasks such as object detection, image segmentation, video classification, pose

estimation, and face recognition. The state-of-the-art methods for human-pose esti-

mation are also based on Convolutional networks [Chen & Yuille (2014); Jain et al.

(2014a,b); Tompson et al. (2014a); Toshev & Szegedy (2014)]. Toshev & Szegedy

(2014) formulate the problem as a direct regression to joint location. Chen & Yuille

(2014) improve over Toshev & Szegedy (2014) by adding an image-dependent spatial

prior. Jain et al. (2014a) train an image patch classifier which is run in a sliding-

window fashion at run time. Tompson et al. (2014a) use a multi-resolution ConvNet

architecture to perform heat-map likelihood regression which they train jointly with

a graphical model. However, apart from the new advances of these approaches, they

still do not reach the same accuracy of multi-view methods, mainly due to the uncer-

tainty in the part detections. In addition, they usually work only on very simplified

models with few degrees of freedom, and the results often exhibit jitter over time.

Only a few methods in the literature are able to combine the individual strengths

of both strategies. Using a depth camera, Baak et al. (2011) introduce a data-driven

hybrid approach combining local optimization with global pose retrieval from a

database for real-time full body pose reconstruction. Sridhar et al. (2013) also uses

a hybrid solution, combining a discriminative part-based pose retrieval technique

with a generative pose estimation method, for articulated hand-motion tracking

using color and depth information. However, to the best of our knowledge, the

method proposed in Chapter 7 presents one of the first algorithm to fuse marker-

less skeletal motion tracking with body-part detections from a convolutional network

for efficient and accurate marker-less motion capture with a few consumer cameras.

This enables us to accurately capture full articulated motion of multiple people with

as little as 2-3 cameras in front of moving backgrounds.
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Chapter 3

Preliminaries

In this chapter, we will introduce some fundamental concepts and notations that

the following work is based on. We will first give a brief introduction to motion-

capture. Here we focus on the difference between marker-based and marker-less

human motion capture algorithms. Then, we will introduce the generative model-

based marker-less motion-capture approach by [Stoll et al. (2011)]. This approach

is the baseline of our motion-capture algorithms. The next section will give an

overview over the Convolutional neural network (ConvNet) approach which we use

later for 2D body part detection.

3.1 Motion Capture

Motion capture is the process of recording the movement of one or several perform-

ers from input video. It has many applications, for instance in sports, biomedical

research, or computer animation. The goal of motion-capture is to record the move-

ment of a performer in a compact and usable manner [Gleicher & Ferrier (2002)].

This can be achieved by approximating the human body by a kinematic skeleton

which consists of a small number of rigid segments that are connected by joints.

Based on this approach, the task of motion-capture is reduced to finding the cor-

rect 3D skeletal configuration given a stream of video observations of a performer

[Menache (1999)]. The reduction of the motion of a person to a set of skeletal joint

parameters makes the problem of capturing the movement tractable, as it reduces

drastically the dimensionality of the representation (typical skeletal representations

used for motion-capture have somewhere between 30 and 50 degrees of freedom).

Although, this reduction does not reflect the full complexity of human anatomy, it

simplifies capturing and editing the motion and form a good compromise between
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accuracy and model complexity [Stoll (2009)]. In the rest of this section, we will

present a brief overview of the difference between marker-based and marker-less

motion-capture.

3.1.1 Marker-based Motion Capture

Despite the significant amount of research which has been devoted to increasing the

accuracy of marker-less motion-capture methods, the industry standard for human

motion-capture (HMC) is by using marker-based systems. These systems require a

set of markers to be placed on the performers body. HMC systems are classified into

two categories based on the type of employed markers [Canton-Ferrer et al. (2010)]:

the first type is nonoptical (inertial, magnetic, and mechanic) which usually requires

special suits embedding rigid skeletal-like structures [Kirk et al. (2005)], magnetic

or accelerometric devices or multisensor fusion algorithms [Roetenberg (2006)]; the

second type is image-based or optical systems which are based on photogrammetric

methods. These systems allow much larger freedom of movement and are less intru-

sive. Therefore, they are more common compared to the nonoptical ones. There are

two types of optical markers: passive markers, that usually consist of retro-reflective

tape reflecting under infrared lights [Vicon (2014)]; and active markers, that consist

of infra-red LEDs [Phasespace (2014)].

In general, tracking requires the actor to wear a special suit to which a set of

markers have been attached; see Fig. 3.1. The markers are designed carefully in

order to make it easy to locate them in the video streams of the cameras recording the

scene. Each marker has a predefined position on the body and is associated with a

specific bone of the kinematic skeleton. This allows to triangulate the 3D position of

the markers in each frame and to estimate the pose of the skeleton. Although, there

are many problems (e.g. disambiguation, occlusions and missing markers) which

need to be solved with this type of setup, marker-based systems allow to record the

pose and the motion of a performer very accurately. However, these systems are also

limited in their application range because the user is required to wear the special

marker suit, which is an intrusive process [Stoll (2009)]. Additionally, these systems

are usually expensive and require a dedicated hardware. Therefore, they can not be

used in many outdoor motion-capture applications.
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Figure 3.1: Maker based motion-capture. Left: A photograph of the subject dur-
ing the capture session where markers are attached to a special suit. Right: The
resulting kinematic skeleton corresponding to when the picture was taken.

3.1.2 Marker-less Motion Capture

As a first step to address some of the limitations of marker-based systems, marker-

less motion-capture systems were introduced. Instead of using the markers in the

images to estimate the skeletal pose, the marker-less systems use computer vision

techniques to extract features directly from the video without interfering with the

scene appearance. Classically, these methods use a 3D model of the human body.

The model comprises a kinematic skeleton that defines the degrees-of-freedom Θ of

the human model, and a representation of the shape and appearance of the human

(e.g. geometric primitives or a detailed triangle mesh). In general, Θ is estimated by

maximizing the similarity between the input images and projections of the human

model to the corresponding views; see Fig. 3.2. Therefore, marker-less systems are

more flexible than marker-based systems, which increases the number of possible

applications of human motion-capture. However, it remains difficult for marker-less

systems to achieve the same level of accuracy as marker-based systems. Moreover,

image features may be very difficult to extract from the input videos and contain a
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Figure 3.2: General concept of marker-less motion-capture. The pose parameters
Θ are estimated by maximizing the similarity between each input image and a
corresponding projection of the human 3D model.

high level of noise and inaccuracies, limiting the quality of the resulting motion unless

recorded in a controlled studio environment [Stoll (2009)]. Thus, a lot of research

has been devoted to developing accurate and fast marker-less methods which can

track the motion accurately despite these algorithmic challenges. We present one of

these methods in the following section.

3.2 Sums of Gaussians Tracker

In this thesis, we present three marker-less motion-capture methods. The baseline of

these methods is the Sums of Gaussians (SoG) Tracker [Stoll et al. (2011)]. I intro-

duce the basic concept of this marker-less motion-capture algorithm in this section.

In the past, a lot of effort has been devoted to developing marker-less motion-capture

algorithms. These efforts have addressed several aspects of marker-less motion cap-

ture algorithms like the human model [Plankers & Fua (2003)], the optimization

approach [Bregler et al. (2004)], the image features [Ballan & Cortelazzo (2008)] or

motion priors [Sidenbladh & Black (2003)].

In [Stoll et al. (2011)], the authors revisit the human model that is used for

tracking. Many methods focus on realistic 3D models of humans. Although, such

models can be easily derived from full body 3D scans [Anguelov et al. (2005)], they
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Figure 3.3: SoG tracker method overview: An actor-specific human 3D body model
based on SoG is constructed from a sparse set of multi-view input images in a pre-
processing step (top, Section 3.2.1). The input video streams are converted into a
2D SoG using a quad-tree (bottom, Section 3.2.2), and are used with the 3D human
body model to estimate the skeletal pose of the actor in the frames (right, Section
3.2.3). [Stoll et al. (2011)]

decrease the computational efficiency. On the other hand, the simple models, such as

[Wren et al. (1997)], which relied on simple spatial 2D blob models, allow to achieve

real-time performance. [Wren et al. (1997)] does not rely on silhouettes obtained

by background subtraction as many current methods e.g. [Sigal et al. (2010)]. In

contrast to [Wren et al. (1997)] which estimates the articulated pose only in 2D,

[Stoll et al. (2011)] extend the simple and fast 2D blob model to 3D.

In [Stoll et al. (2011)], the human model is represented by a set of spatial Gaus-

sians (SoG). The model is equipped with a color model to represent the shape

and appearance of the human and a kinematic skeleton that defines the degrees-of-

freedom (DoF) of the human model. The person-specific model can be reconstructed

from a sparse set of images. Similar to the human model, the input images are also

represented as SoG that model color consistent image blobs. Based on the SoG

models of the image and the human body, a continuous and differentiable model-

to-image similarity measure is introduced. This allows to perform fast marker-less

motion-capture even for many camera views by optimizing the parameters of the

model such that the model-to-image similarity is maximized.

The outline of the processing pipeline of the SoG tracker is illustrated in Fig.

3.3 This pipeline can be divided into three steps: the first is SoG-based model
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Figure 3.4: Estimating an actor specific model from example pose images. Left:
Single segmented input image of the multi-view sets for each pose. Right: Result-
ing actor-specific body model after optimization and color estimation. [Stoll et al.
(2011)]

estimation (Section 3.2.1) where a low number of manually segmented multi-view

images are used to estimate an actor specific body model; the second step is SoG-

based image approxiamtion (Section 3.2.2) where each image of multi-view input

videos is converted into a SoG representation; the last step is SoG-based motion

tracking (Section 3.2.3) where the similarity between the SoG model and the SoG

images is used for tracking the articulated motion of the actor. The tracking step

starts with the estimated pose of the model in the previous frame, and optimizes

the parameters such that the overlap similarity at the current frame is maximized.

3.2.1 SoG-based Body Model

In [Stoll et al. (2011)], a default SoG-based human model is manually designed.

This model consists of a kinematic skeleton to which a 3D SoG approximation of

the performer’s body is attached. The skeleton consists of 58 joints. Each joint is

defined by an offset to its parent joint and a rotation represented in axis-angle form.

In total, the model has 61 parameters Λ (58 rotational and 3 translational). The

skeleton further features a separate degree of freedom (DoF) hierarchy, consisting of
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nDoF pose parameters Θ. The degrees of freedom are mapped to the joint parameters

using a 61× nDoF matrix M :

Λ = M Θ. (3.1)

where each entry of M defines the influence weight that the parameters of Θ have

on the joint angles Λ. All results in [Stoll et al. (2011)] were reported with a DoF

hierarchy consisting of nDoF = 43 pose parameters. Anatomically implausible pose

configurations are prevented by modeling an allowable parameter range ll to lh for

each DoF. This construction allows the model to reproduce natural deformation of

the spine, as a single DoF can model smooth bending. It also allows straight-forward

creation of several different levels of detail without having to edit the kinematic joint

hierarchy itself.

The shape of the human model is represented using 63 3D Gaussians, where each

Gaussian is attached to exactly one bone in the articulation hierarchy, resulting in

a SoG model Km that is parametrized by the pose parameters Θ of the kinematic

skeleton. In a pre-processing step, the default model is adapted to generate an

actor specific body model that roughly represents the shape and color statistics

for each person we want to track. To this end, a low number of temporally not

subsequent, multi-view images of example poses are manually segment; see Fig. 3.4

(Left). Thereafter, the pose parameters Θ are roughly initialized to correspond to

the initial poses manually. A common set of shape parameters Θshape defines bone

lengths as well as the positions and variances of the Gaussian model for a total of

216 degrees of freedom. Since the model acquisition is just a special case of the

tracking approach, both the pose parameters Θ and shape parameters Θshape are

optimized by maximizing the similarity measure (Eq. 3.7) based on the binary color

values ci of the silhouette; see Section 3.2.3. Fig. 3.4 (Right) shows an actor-specific

model that has been acquired from a set of manually segmented images of specific

body poses.

3.2.2 SOG-based Image Approximation

To reduce the computational cost, the input images are also approximated based

on 2D SoG using a fast quad-tree based clustering method. The simplest approach

of approximating an input image I by a SoG KI is to define a single Gaussian βi
for each image pixel pi and assign to each Gaussian the color value ci ∈ R3 of the

pixel. However, to reduce the computational cost, a quad-tree structure is used

to efficiently cluster image pixels with similar color into larger regions and each of

these regions is then approximated using a single Gaussian βi; see Fig. 3.5. In
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Figure 3.5: SoG-based image approximation. Left: Input image. Right: Quad-tree
structure with average colors used to generate the SoG. Each square is represented
by a single Gaussian.

[Stoll et al. (2011)] a threshold of the standard deviation of colors εcol = 0.15 is used

to determine which pixels to cluster together. Thus, each node is subdivided into

four sub-nodes when the standard deviation of colors on a quad-tree node is larger

than εcol. The quad-tree depth is limited by a maximum depth of 8. Then each

square-shaped cluster is represented by a Gaussian βi where µ is the center of the

cluster and σ2 is set to be the square of half the side-length of the node. Moreover,

each Gaussian is assigned the average color ci of the cluster.

3.2.3 SOG-based Motion Capture

The proposed tracking algorithm adopts an energy maximization approach. It uses

an energy functional which measures the similarity between the projections of the

SoG 3D model and the SoG approximation of the input sequence. Each single

Gaussian in the SoG sets is associated with a color ci that can be used to measure

the color similarity between two blobs. For each time step, measuring the similarity

between a 3D SoG and a 2D SoG is facilitated by projecting the 3D SoG of the

body model into the corresponding image plane and performing the comparison in

2D.

Model to Image Similarity Measure: For two given 2D SoGs Ka and Kb

provided with colors c for each Gaussian blob, respectively, their similarity is defined
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as

E(Ka,Kb)

=

∫
Ω

∑
i∈Ka

∑
j∈Kb

d(ci, cj)Bi(x)Bj(x) dx

=
∑
i∈Ka

∑
j∈Kb

Eij, (3.2)

where B(x) is a Gaussian basis function

B(x) = exp

(
−‖x− µ‖

2

2σ2

)
. (3.3)

Eij is the similarity between a pair of Gaussians Bi and Bj given their colors ci
and cj:

Eij = d(ci, cj)

∫
Ω

Bi(x)Bj(x) dx

= d(ci, cj)2π
σi

2σj
2

σi2 + σj2
exp

(
−‖µi − µj‖

2

σi2 + σj2

)
. (3.4)

The color similarity function d(ci, cj) measures the Euclidean distance between ci
and cj in the HSV color space and feeds the result into a Wendland function [Wend-

land (1995)]. This renders d to a smooth function bounded in [0, 1] (0 for dissimilar

input and 1 for similar input).

To measure the similarity between a given pose Θ of our body model Km(Θ)

and a given input image SoG KI , we first need to project the body model into the

respective camera image plane using the projection operator Ψ. Given a camera ςl
with respective 3× 4 camera projection matrix Pl and focal length fl, we define the

projected 2D Gaussian B = Ψl(B̃) corresponding to the 3D Gaussian B̃ based on

the following operations:

µ =

(
[µ̃p]x/[µ̃

p]z
[µ̃p]y/[µ̃p]z

)
σ = σ̃fl/[µ̃

p]z (3.5)
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with µ̃p = Plµ̃ being the perspective-transformed 3D Gaussian mean. However, this

projection function ignores possible selfocclusions that may happen when projecting

the 3D model onto the 2D image plane. Several Gaussians may be projected onto

overlapping 2D positions and thereby contribute several times to the energy function.

In [Stoll et al. (2011)], this issue is implicitly resolved by defining the following model

to image similarity:

Esim(KI ,Km(Θ))

=
∑
i∈KI

min

 ∑
j∈Ψ(Km)

Eij

 , Eii

 . (3.6)

To prevent overlapping projected 3D SoGs from contributing multiple times in the

above sum and thereby distorting the similarity function accordingly, [Stoll et al.

(2011)] clamp the similarity to be at most Eii = πσ2
i , which is the similarity of

the image Gaussian with itself. This can be seen as a simple approximation of an

occlusion term. This approximation is intuitively motivated in Fig. 3.6. Using this

SoG-based formulation as a basis has the advantage that the original formulation

is by definition smooth in space. It does not rely on calculating and updating any

image features or silhouette correspondences.

Objective Function: The ultimate goal of this algorithm is to estimate the

pose-parameters Θ of the kinematic skeleton given ncam cameras ςl with respec-

tive SoG approximation of the input images (Kl, Cl) and the 3D SoG body model

(Km;Cm). To this end, it is important to define an energy function E(Θ) that eval-

uates how accurately the model described by the parameters Θ represents what is

in the images. Thus, the most important part of E(Θ) is measuring the similarity

of the model (Km;Cm) in the pose defined by Θ with all input images (Kl, Cl). The

authors of [Stoll et al. (2011)] define this similarity function E(Θ) as

Esim(Θ) =
1

ncam

ncam∑
l=1

1

Esim(Kl,Kl)
Esim(Kl,Ψl(Km(Θ)), Cl, Cm). (3.7)

In addition to Esim(Θ) the final energy function E(Θ) includes a skeleton and

motion-specific term:

E(Θ) = Esim(Θ) + wlElim(M Θ) + waEacc(Θ). (3.8)

24
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Figure 3.6: Self-occlusion approximation. Inside boxes: Top view of 3D model SoG.
Left of dotted line: Image plane with 2D Gaussian. Left column (no occlusion):
As long as no occlusions happen, (Eq. 3.2) calculates a correct overlap of a single
element. In this example, the color (blue) and the shape are identical, yielding
the similarity Eii. Right column (occlution approximation): If several 3D
model Gaussians project to the same screen space coordinate, their contribution
is cumulative, yielding a similarity larger than Eii, even though two of the model
Gaussians should be occluded. Using (Eq. 3.6) correctly limits the contribution of
a single 2D image Gaussian, yielding the same similarity Eii for both cases. [Stoll
et al. (2011)]

where Elim(Λ), with Λ = M Θ (Eq. 3.1), is a soft constraint on the joint limits and

Eacc is a smoothness term that penalizes high acceleration in the parameter space.

The weights wl and wa influence the strength of these constraints and were set to

wl = 1 and wa = 0.05.

This similarity measure is smooth in space and accordingly the analytical deriva-

tives of any order can be computed easily with respect to the pose parameters Θ.

Therefore, it is possible to calculate the analytic gradient of E(Θ) efficiently and

use it in a gradient ascent optimization procedure. However, simple gradient ascent

tends to be very slow when optimizing energy functions that consist of long narrow

valleys in the energy landscape, as it tends to “zig-zag” between opposing walls. In

order to enhance the performance of the algorithm, an efficient conditioned gradient

ascent is applied to optimize E(Θ). To this end, a conditioning vector is introduced

into the optimization to increase step-size in directions where the gradient sign is

constant, and decrease it if the ascent is “zig-zagging”. (c.f. [Stoll et al. (2011)] for

more details).
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3.3 ConvNet Body Part Detector

Figure 3.7: Input and output of the ConvNet body part detector. Left: Input
image. Middle: Output heat-map of the right knee. Right: Input image overlaid
with the heat-map.

3.3 ConvNet Body Part Detector

Recently, deep-learning discriminative architectures have achieved state-of-the-art

performance on many difficult vision tasks [Razavian et al. (2014); Taigman et al.

(2014); Zeiler & Fergus (2014)]. In particular the works [Chen & Yuille (2014);

Jain et al. (2013); Tompson et al. (2014a, 2015); Toshev & Szegedy (2014)] have

recently shown that convolutional network (ConvNet) architectures are well suited

for the task of human-body pose detection and in most cases out-perform traditional

graphical model based techniques. Furthermore, due to the availability of modern

Graphics Processing Units (GPUs), it is possible to perform Forward Propagation

(FPROP) of deep ConvNet architectures at interactive frame-rates (for instance the

work of [Tompson et al. (2014a)] can perform single frame joint inference at 12

frames per second on an NVIDIA Titan GPU).

In practice, the SoG tracker fails with less than five cameras, which hinders many

practical motion-capture applications. Therefore, in Chapter 7, we propose a novel

algorithm to capture articulated skeleton motion from input filmed with as few as

two cameras. This algorithm fuses marker-less skeletal motion tracking with 2D

body part detections. Therefore, we briefly summarize the approach of [Tompson

et al. (2014a)], which we use for part detection. This approach achieves state-of-

the-art results on several public benchmarks, and is formulated as a convolutional

network [LeCun et al. (1998a)] to infer the location of 13 joints in monocular RGB

images.

ConvNets are biologically inspired variants of multilayered perceptrons. They

exploit spatial correlation in natural images by extracting features generated by

localized convolution kernels [Tompson et al. (2014b)]. Since the human body tends

to have many repeated local image features (for instance left and right hands and
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legs), ConvNets are well suited to perform feature extraction since multi-layered

feature banks can share common features, thereby reducing the number of required

free parameters.

Following the work of [Tompson et al. (2014a)], instead of training the ConvNet

to detect the 13 body parts at once, the full human body-pose recognition problem is

recast as an intermediate collection of easier individual body-part recognition prob-

lems, which can be more easily learned by ConvNets. Instead of directly inferring

the UV pixel location of all 13 joints at once, the ConvNet infers a distribution over

the pixel locations for each joint (or a set of heat-maps), where the detection energy

at each pixel location is an independent term in the objective function used to train

the ConvNet.

Empirically, we have found that inferring a heat-map output is less prone to

over-fitting. A likely explanation is that in the presence of strong outlier detections

(i.e. for ambiguous poses where left and right joint detections are visually similar

and thus ambiguous), for a ConvNet to infer a single UV location it must arbitrarily

choose a single detection or - more likely - choose the spatial mean of the two UV

locations. Such an output results in a large Mean Squared Error (MSE) value. To

minimize this error during training, the network is then prone to over-fitting, which

hinders generalization performance. On the other hand, inferring a heat-map output

allows for “softer” errors during training, since the MSE over independent detections

for each pixel location is less strict on outlier detections. Additionally, the ConvNet

is better at handling occlusions; by learning robust compound, high-level image

features, the ConvNet is able to infer the approximate position of an occluded and

otherwise unseen feature (for instance, when tracking multiple subjects, occluded

joint locations can be inferred by the locations of its parent joints in the kinematic

chain).

The model is a fully convolutional network and is therefore a translation invariant

part detector (see [Tompson et al. (2014a)] for details). It takes as input a single

RGB image, creates a 3 level Gaussian pyramid and outputs 13 heat-maps Hj,c

describing the per-pixel likelihood for each of the 13 joints; see Fig. 3.7. Since the

network consists of two 2 × 2 MaxPooling layers, the output heat-maps are at a

decimated resolution.

For [Jain et al. (2014b); Tompson et al. (2014a)], the part-detection network is

trained using supervised learning via batched Stochastic Gradient Descent (SGD)

with Nesterov Momentum. A MSE criterion is used to minimize the distance be-

tween the inferred response-map activation and a ground truth response-map. The

target is a 2D Gaussian with a small variance and mean centered at the ground-truth
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3.3 ConvNet Body Part Detector

Figure 3.8: Convolution Network Archiecture

joint locations. In order to prevent network over-training and improve generaliza-

tion performance, random perturbations of the input images (randomly flipping and

scaling the images) is performed. The network was trained on the MPII Human Pose

Dataset [Andriluka et al. (2014)], which consists of 28,821 training annotations of

people in a wide variety of poses and static scenes. Note that training on our own

sequences (or sequences similar to ours) may increase accuracy even further.

After downsampling (with anti-alisiang) to produce a Gaussian pyramid input,

the first layer of each resolution bank is a local contrast normalization (LNC) layer.

In conjunction with the Gaussian pyramid input, this layer creates 3 resolution

images with non-overlapping spectral content (since the 5x5 LCN kernel is the same

for each resolution bank). The advantage of this input representation is that it

promotes specialization amongst the 3 banks, reducing network redundancy and thus

improving generalization performance. Furthermore, the use of multiple resolutions

increases the amount of spatial context seen by the network without a significant

increase in the number of trainable parameters. Each of the 3 images is processed

through a 5 stage Convolution-Non-Linearity-MaxPooling network which creates a

dense and high-level feature representation for each of the multi-resolution images.

Each resolution bank is comprised of 5 convolution modules, 5 piecewise non-

linearity modules, and 2 max-pooling modules. Please note that, not all convolution

stages are followed by pooling with decimation. Each convolution module uses

a stack of learned convolution kernels with an additional learned output bias to

create a set of output feature maps (please refer to [LeCun et al. (1998b)] for an

in-depth discussion). For all non-linearity layers, a rectified linear activation [Nair

& Hinton (2010)] is used, which has been shown to improve training speed and

discrimination performance in comparison to the standard sigmoid units. Each

max-pooling module sub-samples its input image by taking the maximum in a set of
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non-overlapping rectangular windows. The max-pooling [Nagi et al. (2011)] is used

since it effectively reduces computational complexity at the cost of spatial precision,

however in practice the tradeoff between pooling size and generalization performance

is incredibly complex. Interested readers should refer to [Tompson et al. (2015)] for

an in-depth discussion on max-pooling for detection networks.

Each resolution bank other than the highest, is fed through a nearest-neighbor

up sampling layer to bring the feature maps into canonical resolution. Then, these

resolution banks are input to a pixel-wise addition. The combination of these three

operations (convolution-up-sampling-addition) is an approximation of the first fully-

connected stage in a patch-based detector architecture (see [Tompson et al. (2014a)]

for details). Lastly, the resultant feature maps are then feed through a 4 layer

Convolution-Non-Linearity network (each with 1x1 convolution kernels) to create the

final 13 heat-map images. The effective input-patch size (or alternatively “receptive-

field size”) that this network approximately simulates is 136×136 pixels in the input

resolution. To handle persons of different size, heat-maps Hs
j,c are precomputed at

4 different scales s.
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Chapter 4

Optical Multi-Camera
Synchronization

The last ten years have observed significant advances in mobile camera technol-

ogy. The widespread use of smart phones facilitated casually capturing and sharing

scenes of interest. The abundance of these data resulted in new opportunities and

challenges in computer vision and computer graphics. For instance, there are more

chances than ever to capture the same scene with multiple cameras: e.g., capturing

a street show with several spectators. This can significantly broaden the domain

of multiple-camera computer vision and graphics applications (e.g., marker-less mo-

tion capture [Stoll et al. (2011)] and video-based rendering [Ballan et al. (2010)]).

However, it should be noted that computer vision and graphics algorithms typically

assume that the cameras are synchronized, i.e., the ratio between the frame rates

and the relative temporal offsets are known. In general uncontrolled settings, this

may not be true: the cameras hardware may be heterogeneous and accordingly the

recorded sequences (videos) have different frame rates. Sometimes, we only have

the sequences with unknown source cameras. Furthermore, it is unlikely that the

recorded sequences have the same offset. This makes automatic synchronization a

necessity.

In the literature, there exist several synchronization algorithms. However, these

algorithms are limited to specific scenes where it is possible to track the objects

of interest, or to scenes where the objects show specific motions such as ballistic

motion [Wedge et al. (2006)], or to synchronizing two sequences only. Therefore,

in this chapter, we will present a feature-based multi-video synchronization algo-

rithm which is our first step towards human motion capture in general scenes with

unsynchronized cameras. This novel algorithm temporally synchronizes multiple
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videos capturing the same dynamic scene. It relies on general image features and it

does not require explicitly tracking any specific object, making it applicable to gen-

eral scenes with complex motion. This is facilitated by our new trajectory filtering

and matching schemes that correctly identify matching pairs of trajectories (inliers)

from a large set of potential candidate matches, of which many are outliers. We

find globally optimal synchronization parameters by using a stable RANSAC-based

optimization approach. For multi-video synchronization, the algorithm identifies

an informative subset of video pairs which prevents the RANSAC algorithm from

being biased by outliers. The work presented here was published in [Elhayek et al.

(2012c)].

4.1 Method Overview

The first step of our multi-video synchronization algorithm is feature-based match-

ing: we extract a set of features and track them in each video, which constitute a

set of feature trajectories. Then, the problem of synchronization is cast into spatio-

temporally matching the trajectories across different sequences. Since such general

features usually exist in any video, our algorithm is applicable to general scenes with

any number of objects. Moreover, the dynamic properties of these trajectories enable

the algorithm to achieve sub-frame accuracy of the synchronization parameters.

The technical challenges lie in the fact that the tracked trajectories are in gen-

eral very noisy, e.g., the tracked location of detected feature points are not precisely

aligned in a video and tracking could fail. Furthermore, since there can be many

trajectories in a given set of videos, identifying correctly matching pairs of trajec-

tories across different videos is challenging. One of our main contributions is a

method for resolving these problems. We propose a set of criteria to filter out noisy

and uninformative trajectories and pairs of trajectories (details will be discussed in

Section 4.3). As a result, a set of tentative trajectory pairs is generated. Among

them, the correct subset (inliers) is identified by minimizing a global energy based

on RANSAC-type optimization. The two-video version of our synchronization al-

gorithm is summarized in Fig. 7.1. Since the energy is defined for any number of

sequences, our algorithm can be equally applied to the multi-video case as well as to

the two-video case. However, in the former case, additional robustness is achieved by

identifying weakly coupled pairs of cameras and removing them from the evaluation

of energy. This leads to an automatic generation of a graph representing the cam-

eras and their connectivity. In the experiments, we demonstrate the effectiveness of
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4. OPTICAL MULTI-CAMERA SYNCHRONIZATION

Figure 4.1: Two-video synchronization overview. We extract feature-points from
each frame (left), construct in-sequence trajectories by matching these features
across consecutive frames, and use epipolar matching to find the corresponding
trajectories between two videos (middle). Then, the synchronization parameters
are estimated based on RANSAC optimization, which are refined by continuous
optimization (right).

our algorithm with datasets that are difficult to synchronize with the existing object

tracking based synchronization techniques.

4.2 Problem Formulation

Similar to other synchronization methods [Caspi et al. (2006); Pádua et al. (2010)],

we assume that each video is recorded by a camera which has a constant frame

rate. In this case, the temporal misalignment between a set of videos occurs if they

have time-shifts (offsets) between their start times, and/or when they have different

frame rates (Fig. 4.2(a)). Accordingly, there is an affine relationship between the

time lines (time coordinate values) of each pair of sequences.

For the two-video case, synchronization can be performed by setting one sequence
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(a) (b) (c)

Figure 4.2: (a) Schematic diagram of multi-video synchronization. Time lines
of different sequences with different frame rates are mapped to non-integer points
along a single reference time line, as indicated by the arrows. (b) and (c) show two
temporally corresponding frames from two different video sequences with some cor-
responding space-time trajectories resulting from the actor’s motion in the previous
frames.

as a reference (denoted as Sr) and estimating the relative offset θi and the frame

rate ratio Ri of the other sequence (denoted as Si) with respect to the reference time

line tr of Sr:

tr = Ri · ti + θi, (4.1)

where ti is the time line of Si. For general multi-video synchronization, consistent

comparison of multiple sequences can be facilitated by establishing a global refer-

ence time line. While any global parametrization should work, for a given set of

unsynchronized input sequences S = {S0, . . . , SN}, we simply set the time line of

the first sequence S0 as the reference. This sequence and the corresponding time

line will henceforth be denoted as Sr and tr, respectively. With this representation,

our algorithm produces an estimate of synchronization parameters {θi, Ri} (with

respect to tr) for each sequence Si ∈ S \ Sr.
Since the sequences in S capture the same scene, there is a geometrical relation-

ship between the appearances of the scene components in each pair of sequences: Let

xr = (xr, yr, tr) be a space-time point in the reference sequence Sr and xi = (xi, yi, ti)

be the corresponding points in Si ∈ S \ Sr (i.e., tr and ti are related based on

Eq. 4.1). Then, they should satisfy the fundamental geometrical relationship given

below:

pr(tr)
>Fi(ti)pi(ti) = 0 (4.2)
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where, pr(tr) is a vector consisting of the spatial coordinate values (i.e., {xr, yr, 1})
of xr, and Fi is the fundamental matrix relating the reference camera and the i-th

camera. Throughout this chapter, we assume static cameras. For the general moving

camera case, F has to be defined for each pair of corresponding frames. This can be

done by updating F based on the motion of the corresponding cameras. In Chapter

6, we address the problem of camera motion estimation.

4.3 General Synchronization Algorithm

This section presents our synchronization algorithm. We first discuss the two-video

synchronization setting and illustrate the essential idea. Then, the extension of this

framework to multi-video is discussed.

4.3.1 Two-video Synchronization

Our algorithm is based on matching trajectories of features appearing in a pair of

videos given their fundamental matrix F . First, a set of features (SIFT features)

are extracted from each frame of a sequence. Then, we use Best-Bin-First (BBF)-

based feature matching to establish correspondences between features appearing

in each pair of consecutive frames; see [Lowe (2004b)] for details. If the features

corresponding to a single 3D-point are matched across more than two consecutive

frames, the corresponding trajectory is constructed. Each trajectory is represented

based on spatial coordinates of the corresponding feature points, each of which is

assigned with the corresponding frame index. For instance, a trajectory in Sr can

be represented as

Tr = {pr(t), pr(t+ 1), pr(t+ 2), ..., pr(t+ k)},

where k + 1 is the length of the trajectory (i.e., tracking is successful for k + 1

consecutive frames).

Matching a pair of trajectories implies establishing the correspondence between

two sets of points contained in the two trajectories, respectively. Precisely matching

a pair of non-trivial trajectories (details will be discussed shortly), uniquely defines

the spatial parameters (i.e. fundamental matrix; c.f. Eq. 4.2), and since each point

is assigned with the time index, the corresponding temporal parameters (offset and

frame rate ratio).

In general, the construction of trajectories is noisy. For example, usually the

locations of detected features do not precisely correspond to each other across the
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consecutive frames and the tracking can be erroneous. Accordingly, the constraint

(4.2) might not be exactly satisfied. Alternatively, one could minimize the following

residual error with respect to those parameters [Caspi et al. (2006)]:

E(Fi, θi, Ri) =
∑

ti∈support(Ti)

dFi
(pr(Ri · ti + θi), pi(ti)) , (4.3)

where dF (A,B) is the Euclidean distance between a feature A and the epipolar line

corresponding to a feature B mapped based on F (see Fig. 4.4(c)).

The strategy described above is applicable only when a correct pair of trajec-

tories (each from a single sequence) is identified. In general, there are multiple

trajectories constructed in each sequence and the correspondences between them

are not known a priori. Suppose that m and n trajectories are constructed from

Sr and Si, respectively. Then there are m× n potential matching pairs of trajecto-

ries, only a few of which are correct. We therefore use RANSAC [Fischler & Bolles

(1981)] which can effectively filter out the outliers matches. However, naively feed-

ing all potential matches into a RANSAC step does not yield a proper parameter

estimate: there exist several trivial trajectories which geometrically match many

other trajectories. Moreover, the large number of trivial trajectories decreases the

computational efficiency of the method. Therefore, we introduce three trajectory

filtering steps. Firstly, we remove very short trajectories which are shorter than a

specific number of frames (5 frames in our experiments). The second filter removes

trajectories corresponding to static feature points. We call this type of trivial trajec-

tories space-static trajectories. A trajectory is removed if the variance of its spatial

coordinate values is small (i.e. less than 15 pixels in our experiments).

Finally, we remove all trajectories which may generate ambiguous matches. We

call this type of trivial trajectories epipolar-static trajectories. This happens when

the tangents of trajectory point’s are nearly parallel to the points epipolar line de-

fined by the fundamental matrix of the camera pair. It is very difficult to distinguish

any motion along that line in the other camera. This may lead to the feature match

being classified as an inlier with low energy even for wrong matches. To detect such

ambiguous (trivial) trajectories, we check each trajectory by computing the angles

between its tangents at each of its points and the epipolar line of these points in its

own camera. If the sum of these angles is too small, the corresponding trajectory

may erroneously match many trajectories in the other sequence. Thus, we reject

any trajectory if the score
∑

ti∈sup(Ti) 1 − cos(angle) is less than 0.32. Fig. 4.3(a)

shows an example of such a trivial trajectory where we check the angles between

the tangent to the trajectory at point p2 (i.e. the line defined by p2 and p3) and
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Figure 4.3: Epipolar trivial trajectory filter. (a) Left: Example of trivial trajectory
in camera X which is nearly parallel to its epipolar line Lx defined by the fundamental
matrix of this camera pair. This trajectory may match any trajectory along Ly.
However, it can be filtered by checking the angles between the tangents of each
point along the trajectory (e.g. the green line for point p2) and the epipolar line of
these points (e.g. Lx for p2). (a) Right: Example of non-trivial trajectory where
the angles between the tangents of the trajectory points and their epipolar lines are
large.

the epipolar line for p2 (the line defined by p2 and the epipole ex). Note that, for

each point in this trajectory, the sum of the angles is too small which may lead to

many incorrect matches with trajectories along Ly in the other sequence. Therefore,

we filter this trajectory before the epipolar matching step of our algorithm. On the

other hand, Fig. 4.3(b) shows an example of a non-trivial trajectory where the sum

of the angles is large (e.g. the angle corresponding to p4).

Even after the trajectory filtering stage, erroneous candidate trajectory pairs

may remain. These may negatively influence the run-time of a RANSAC optimiza-

tion, and for a prescribed finite run-time, can bias RANSAC towards an unreliable

solution. It should be noted that in order for a pair of trajectories to match, they

have to overlap with each other in space and in time. Checking this can quickly

filter out most wrong matches: Given a candidate match, we intersect the epipolar

line corresponding to each feature point in the shorter trajectory with the longer

trajectory (Fig. 4.4(a)). Since the frame rates of corresponding source videos are

fixed, the consecutive epipolar lines should intersect with the longer trajectory such

that the points of intersection are roughly equally spaced.1 To check this, we first

calculate the hypothetical frame rate ratios of two videos (denoted as RT ) based on

the entire interval of intersection. For instance, in Fig. 4.4(a), RT is calculated by

dividing the number of feature points lying between Fi · p1 and Fi · p7 on the longer

1Note that in case of corresponding trajectories from identical cameras (i.e. equal frame rates)
the distances between consecutive points of intersection along the time dimension must be 1.
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Table 4.1: Two-video synchronization algorithm

1. Extract features from each frame

2. Construct in-sequence trajectories

3. Filter out trivial trajectories:

� short trajectories

� space-static trajectories

� epipolar-static trajectories

4. Build a table of tentative matches based on epipolar geometry

5. RANSAC-based optimization:

(a) Randomly sample two pairs of matching trajectories and estimate pa-
rameters accordingly

(b) Compute the number of inliers

(c) Repeat steps (5.a) and (5.b) and choose the parameters which show the
highest number of inliers

6. (optionally) Refine the RANSAC estimate using continuous optimization

trajectory by 7 which is the number of intersecting epipolar lines. In the same way,

we calculate hypothetical frame rate ratios from each consecutive interval on the

trajectory (e.g., [Fip1, Fip2]). All of these estimated frame rate ratios should agree

roughly with RT : we decide that a new hypothetical frame rate ratio RN agrees

with RT if |RT −RN | < 0.5RT .

Then, the degree of overlap between two trajectories is measured based on the

number of consecutive epipolar lines (Pmin) which satisfies the above described con-

dition. When, Pmin is smaller than 5 (threshold found by experimental validation),

the corresponding trajectory pair is rejected. It should be noted that in general,

an epipolar line can intersect with a trajectory more than once (Fig. 4.4(a)). This

case can be dealt with by retaining multiple hypothetical frame rate ratios (RT )

accordingly. The result of this step is a table of tentative matching trajectories.

The extension of the energy functional (4.3) for the multiple trajectory case,
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Figure 4.4: (a) Left: Epipolar trajectory matching test. (b) Center: Estimation
of synchronization parameters based on two distant pairs of matching trajectories.
(c) Right: Trajectory point residual error measured as the distance between the
point pr(Ri · ti + θi) and the epipolar line Fi · pi(ti).

given a precomputed fundamental matrix Fi for static cameras, is as follows:

E(θi, Ri) =
∑
Ti∈Γi

∑
ti∈support(Ti)

dFi
(pr(Ri · ti + θi), pi(ti)) , (4.4)

where Γi is the set of trajectories for the i-th video, minimizing it with the tentative

matches does not correctly estimate the synchronization parameters since the ten-

tative matches still contain a lot of outliers. Accordingly, we apply the RANSAC

algorithm instead. It should be noted that each iteration of RANSAC requires gen-

erating hypothetical synchronization parameters. This can be determined from two

pairs of corresponding feature points. These can be sampled from a single pair of

matching trajectories, but we select them from two distinct candidate matches. This

turned out to be more robust; see Fig. 4.4(b). Then, the hypothetical parameters

are computed by solving the following equations for the two unknowns:

t11 = Ri ∗ t12 + θi,

t21 = Ri ∗ t22 + θi

and the corresponding residual error is used to classify the tentative matches into

inliers and outliers; see Fig. 4.4(c). The number of iterations of RANSAC adaptively

changes based on the number of inliers [Hartley & Zisserman (2004a)]. At the end of

the RANSAC loop, the parameters with the highest number of inliers are selected.
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Figure 4.5: An example of the multi-video connectivity graph constructed by our
algorithm.

The estimated parameters are further refined by continuously optimizing (4.4) with

only inliers:

E(θi, Ri) =
∑
Ti∈Γi

∫
ti∈support(Ti)

dFi
(pr(Ri · ti + θi), pi(ti)) dθidRi

, (4.5)

We first render the problem into continuous optimization by interpolating each tra-

jectory with cubic-splines. Then a standard gradient descent is performed. However,

our preliminary experiments revealed that the continuous optimization step does not

significantly improve the result over the initial RANSAC estimate and it is therefore

not performed in general. Our two-video synchronization algorithm is summarized

in Table 4.1.

4.3.2 Multi-video Synchronization

Once the global time coordinate is established, the extension of two-video synchro-

nization framework to the multi-video case is straightforward. In this case, the

global energy functional can be defined as the sum of pair-wise energies of the form
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(Eq. 4.4) for any possible pair i:

Eg(θi, Ri) =
∑
i

E(θi, Ri). (4.6)

However, naively optimizing this energy functional is sub-optimal: some pairs of

videos have more matching candidates and, accordingly, they are more informative

than the other pairs. For instance, for two videos showing the same scene from

significantly different viewpoints, the number of candidate trajectory matches might

be very small. In this case, the parameters estimated by emphasizing the error

corresponding to this camera pair might not be reliable. The remainder of this

section discusses a strategy for solving this problem.

The relationships between a set of videos (or cameras) can be represented as

a graph (see Fig. 4.5) in which a node corresponds to a sequence and an edge

represents a set of tentative matching pairs of trajectories plus the corresponding

synchronization parameters (of one node, with the other node treated as a reference).

In this case, there are as many sets of parameters as the number of edges (i.e. local

edge parameters), while the actual number of sets of parameters should correspond

to the number of nodes (i.e. global parameters related to the reference time line).

To ensure that a consistent global parameters can be recovered from a set of local

edge parameters, in each RANSAC step, we remove any cycle in the graph. This

can be done, in principle, by randomly building a spanning tree. However, we have

empirically observed that the accuracy of the estimated synchronization parameters

between a pair of videos decreases with increasing distance between the cameras.

Specifically, the lower the number of tentative matches between a pair of sequences,

the less accurate the resulting estimation of synchronization parameters becomes.

We exploit this observation by pre-filtering edges between distant pairs of cameras

based on the number of tentative matches (35 in our experiments). An example of

the resulting connectivity graph is shown in Fig. 4.5.

Figure 4.5 exemplifies a single step of RANSAC iteration. The global parameters

R2 and θ2 (with respect to the reference sequence S0) can be estimated based on

the paths e21, e10 and e20. In general, the pairwise estimates of local parameters for

each of these edges conflict with each other. To rule this out, in the RANSAC step,

we construct a random spanning-tree, e.g., by removing edges E20 and E10.

The estimated local edge parameters are converted to the global parameters

using the relations

Rxy =
Rx

Ry

, and θxy =
θx − θy
Ry

, (4.7)
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4.3 General Synchronization Algorithm

Table 4.2: Multi-video synchronization algorithm

1. Extract features from each frame

2. Construct in-sequence trajectories

3. Filter out trivial trajectories

4. Build connectivity graph:

(a) Build a table of tentative matches for each pair of cameras

(b) Remove edges between distant cameras (i.e. the camera pairs with low
number of tentative matching trajectories)

5. RANSAC-based optimization:

(a) Estimate the synchronization parameters based on a random spanning
tree of the graph

(b) Compute the number of inliers from the table of tentative matches

(c) Repeat steps (5.a) and (5.b) and choose the parameters which show the
highest number of inliers

6. (optionally) Refine the RANSAC estimate using continuous optimization
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4. OPTICAL MULTI-CAMERA SYNCHRONIZATION

Figure 4.6: Connectivity graphs resulting from our algorithm for S 1 (left) and S 2

(right).

where Rxy and θxy are the parameters of the edge between any two nodes x and

y. Once the global synchronization parameters are constructed, they are evaluated

based on the number of inliers using every edge in the graph, i.e, the trajectory pairs

which are not contained in the spanning tree are used as well. After the RANSAC

iteration, the set of global parameters corresponding to the highest number of inliers

is selected. The multi-video version of the algorithms is summarized in Tables 4.2.

It should be noted that the first three steps of the multi-video synchronization

algorithm are identical to those of the two-video algorithm.

4.4 Experimental Evaluation

In this section, we evaluate our algorithm based on two sets of unsynchronized

videos capturing different scenes with different number of moving persons. The

total number of videos in the sets is 7, and the resolution of each frames is 1296 x

968. To facilitate quantitative evaluation, we set the cameras up such that accurate

timestamps for each frame can be obtained, which provide the corresponding ground-

truth synchronization parameters for each set of videos. Once features are extracted,

our algorithm took on average 20 seconds and 3.5 minutes for two-video and four-

video synchronization, respectively.

In our evaluation, we show the residual error of the parameters (i.e. offset θi
and frame rate ratio Ri) as well as the average and maximum frame errors, that are

computed by aligning each frame of the synchronized video to the reference time

line and by computing the deviations of the corresponding frame numbers from the

ground-truth.
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4.4 Experimental Evaluation

Figure 4.7: An example of synchronization for three videos (S 2). Each frame (taken
from each synchronized video) has the same global time-coordinate. The average
video length is 280 frames, while the frame resolution is 1296 x 968.

In the first set of experiments, we evaluated the performance of our algorithm

for the two-video case. To gain an insight into the role of individual filtering steps

(Section 4.3), we constructed two different versions of our algorithm - one of them is

constructed by removing the static filtering, the other one by removing the epipolar

filtering stage from the original algorithm. We have also performed experiments with

known frame rates, which are assumed to be known for most existing synchroniza-

tion algorithms. Table 4.3 summarizes the result of our two-video synchronization

experiments. We selected five pairs from two sets of videos, which show two differ-

ent scenes containing four (S 1 = {S1
r , S

1
1 , S

1
2 , S

1
3}) and three (S 2 = {S2

r , S
2
1 , S

2
2})

video-sequences, respectively. It was not possible to perform any experiments with-

out static filtering for the case of S 2 since the videos in this set contain many tra-

jectories and accordingly the number of potential matches were prohibitively high1.

The results suggest that both filtering stages, most notably the epipolar filtering,

are critical to the performance of our algorithm and that once the frame rates are

known, significant improvement can be gained.

Table 4.4 summarizes the result of the multi-video synchronization experiments

for the video sets S 1 and S 2. This result demonstrates the effectiveness of our

multi-video synchronization algorithm. The average frame error is less than two

frames except for one pair of cameras: the average error for the sequence S1
3 is

rather high, which is most likely caused by the significantly different viewpoint

from the rest of the videos in S 1. Fig. 4.6 shows examples of connectivity graphs

constructed based on our algorithm while Fig. 4.7 shows an example of three-video

synchronization with synchronized frames.

1The continuous optimization step improved the average error by only 0.01 from the RANSAC
results with significant additional computation. Accordingly, for the rest of the experiments, we
do not adopt this stage.
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4. OPTICAL MULTI-CAMERA SYNCHRONIZATION

Table 4.3: The results of additional two-video synchronization experiments.

Video Experimental setup Ground Residual error Average Maximum
pairs description truth (θi/Ri) frame error frame error
S1

0 ,S1
1 Without static filtering -50.00/1 2.74 /0.014 1.32 2.73

Without epipolar filtering 9.70 / 0.052 4.55 9.70
Complete algorithm 1.57 / 0.008 0.75 1.57
With given Ri 0.19 / 0.000 0.19 0.19

S1
0 ,S1

3 Without static filtering 80.00/2 0.93/0.020 1.27 3.03
Without epipolar filtering 5.42 / 0.179 13.22 30.17
Complete algorithm 0.71 / 0.005 0.29 0.711
With given Ri 1.50 / 0.000 1.50 1.50

S2
2 ,S2

3 Without epipolar filtering 29.11/1 0.95/ 0.001 1.09 1.24
Complete algorithm 0.52 / 0.004 0.24 0.52
With given Ri 0.89 / 0.000 0.89 0.89

S2
0 ,S2

4 Without epipolar filtering 27.38/1 3.70 / 0.066 3.93 8.56
Complete algorithm 0.46 / 0.026 3.65 6.83
With given Ri 1.08 / 0.000 1.08 1.08

S1
1 ,S1

2 Without static filtering 60.00/1 1.61 / 0.026 1.46 3.52
Without epipolar filtering 1.29 / 0.022 1.31 3.16
Complete algorithm 1.32 / 0.023 1.35 3.26
With given Ri 2.13 / 0.000 2.13 2.13
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Our algorithm is capable of exploiting the relationship among more than two

video streams, and accordingly, it is naturally suited for multi-video applications.

However, it should be noted that it is always possible to decompose a given multi-

video synchronization problem into a set of two-video problems: one could first

build a spanning tree and estimate the local pairwise synchronization parameters

for each edge. Then, a globally consistent set of synchronization parameters can be

estimated based on (Eq. 4.5) which corresponds to a single step of our multi-video

RANSAC iteration. In general, the performance of multi-video synchronization

should be better than this two-video synchronization-based approach, since the for-

mer can exploit all the available pairwise relationships, most of which are discarded

when building a spanning tree. To exemplify this, we have selected three pairs of

videos (namely {S1
r , S

1
1}, {S1

r , S
1
2} and {S1

r , S
1
3}), estimated pair-wise synchroniza-

tion parameters, and obtained the global synchronization parameters based on (Eq.

4.5). The performance of this algorithm is significantly worse than of our new multi-

video synchronization algorithm: the average frame errors for S1
1 , S1

2 and S1
3 were

0.753, 0.298 and 37.5, respectively. Especially, the two-video algorithm completely

failed for S1
3 since, as mentioned above, the camera’s viewpoint is very different

from the rest of the cameras; only one edge in the graph is not sufficient to compute

reasonable estimate of the parameters.

In a final experiment, we evaluated the performance of a variant of our algorithm

which determines the parameters based on grid search: each parameter is sampled

at regular grid and the parameter set corresponding to the largest number of inlier

is selected for multi-video synchronization. This can be regarded as an instantiation

of [Caspi et al. (2006)] in our feature-based setting. We found out that the grid

search algorithm needs much longer computation time to yield results of comparable

accuracy than our method because of the high dimensionality of the parameter space.

For instance, for four videos in S 1, to achieve a comparable runtime efficiency to

Table 4.4: Multi-video synchronization results.

Video Ground truth (θi/Ri) Estimated parameters Average frame error
S1

1 -50.00 / 1.000 -50.84 / 1.005 0.35
S1

2 80.00 / 2.000 80.35 / 1.999 0.24
S1

3 -30.00 / 1.000 -23.85 / 0.969 2.61
S2

1 79.20 / 1.000 78.41 / 1.027 1.67
S2

2 50.12 / 1.000 51.06 / 1.001 1.01
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4. OPTICAL MULTI-CAMERA SYNCHRONIZATION

our original algorithm, we had to choose a very coarse grid spacings of more than

50 and 0.5 for θi and Ri, respectively (with reasonable search ranges of parameters

[−150, 150] and [0.1, 2] for θi and Ri, respectively). The parameters S1
1 , S1

2 and S1
3

optimized in this way are −150/1.6, −150/0.1 and −50/1.1, respectively, which are

considerably worse than the results of our original algorithm.

4.5 Discussion

We have presented a multi-video synchronization algorithm that succeeds on multi-

video sets comprising two or more views of general scenes. It does not require track-

ing of a specific object but utilizes feature trajectories tracked in individual cameras

that are matched across views. To enable this, we contribute a robust trajectory fil-

tering and energy minimization framework based on RANSAC for the multi-camera

case. Moreover, we propose a novel strategy for identifying an informative subset of

video pairs which further improves the multi-camera synchronization performance

and prevents the RANSAC algorithm from being biased by outliers. In the following

chapters, we propose human motion-capture algorithms which need the output of

our synchronization algorithm to achieve high accuracy results in general scenes,

indoors and outdoors. The algorithm proposed in this chapter is subject to a few

limitations. Currently, it can not synchronize videos captured with moving or un-

calibrated cameras. However, using the static background feature trajectories to

estimate the calibration between each pair of corresponding frames, would enable

our algorithm to work with these uncalibrated videos.
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4.5 Discussion
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Chapter 5

Motion Capture with
Unsynchronized Cameras

Human pose estimation from videos is one of the fundamental problems in computer

vision and computer graphics which has been researched extensively in the past

decades. Applications for these methods can be found in a wide range of industries,

from entertainment (movies and games) to biomechanics, in sports, and medical

sciences. Real-time capture methods made possible through new sensors such as the

Microsoft Kinect have opened up new possibilities for human-computer interaction.

However, even with all the developments in the past years, for accurate motion

capture both industry and academia still rely on marker-based optical systems that

require complex and expensive setups of cameras and markers.

A significant amount of research has thus been devoted to simplifying the setup

and accuracy of marker-less methods [Moeslund et al. (2006); Poppe (2007); Sigal

et al. (2010)]. However, these methods often rely on recording videos with synchro-

nized cameras. Further, these setups require special hardware, and cannot make

use of commodity camera hardware with limited frame rates. They are also often

expensive and difficult to set up. Hasler et al. (2009a) have introduced a method

that performs marker-less capture with unsynchronized commodity cameras. Their

approach does not make use of sub-frame timing information and instead aligns all

frames to the nearest discrete time step. The motion tracking is then performed in

the same way as if the cameras were synchronized. This in turn leads to inaccuracies

and a reduction of quality in the final results.

Another limitation of marker-less methods is that modern video cameras still

have a limited frame rate. Marker-based systems often capture motion with over

120 frames per second or even higher, allowing them to accurately capture fast and
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subtle motions alike. In contrast, most commodity video camera systems usually

capture images with 30 Hz, with specialized vision systems capturing up to 60 frames

per second at reasonable resolutions. This means that fast motion is harder to

capture accurately with a marker-less setup. If the cameras are run without enforcing

synchronization, more samples would be captured in the temporal domain, but

spatial coherence will be lost, as in general no two cameras capture at the same

time instance.

In Chapter 4, we have presented a multi-video synchronization algorithm that

succeeds on multi-video sets comprising two or more views of general scenes. This al-

gorithm estimate the synchronization parameters {θc, Rc} (with respect to reference

time line tr), for each camera c. As a second step toward human motion capture in

general scenes with sparse multi-camera setups, we introduce a new spatio-temporal

method for marker-less motion capture. Given an estimate of synchronization pa-

rameters for each camera, we reconstruct the pose and motion of a character from a

multi-view video sequence without requiring the cameras to be synchronized. There-

fore, our method allows cameras to capture videos with different sub-frame time off-

sets and even varying frame rates. In contrast to [Hasler et al. (2009a)], we use the

sub-frame timing information instead of aligning all frames to the nearest discrete

time step. At the same time, we are able to reconstruct motion in much higher tem-

poral detail than was possible with previous synchronized approaches [Stoll et al.

(2011)]. By purposefully running cameras unsynchronized we can capture even very

fast motion at the frame rate that off-the-shelf cameras provide.

Our main contribution is the introduction of a continuous spatio-temporal energy

functional that measures model-to-image alignment at any point in time: Rather

than estimating discrete pose parameters at each time step, we estimate continu-

ous temporal parameter curves that define the motion of the actor. By design, the

energy functional is smooth and accordingly the derivatives of any order can be com-

puted analytically, allowing effective optimization. Similar to [Stoll et al. (2011)],

we represent both the actors body as well as the input images as Sums-of-Gaussians

(SoG). We also present a method to enforce joint limits in the continuous pose-curve

space. In the experiments we show that our approach can simplify the capture setup

in comparison to previous marker-less approaches and that it enables reconstruction

of much higher temporal detail than synchronized capture methods. Because of

this, slow cameras can be used to capture very fast motion with only little aliasing.

These contributions and results have been published in [Elhayek et al. (2012a)].
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5. MOTION CAPTURE WITH UNSYNCHRONIZED CAMERAS

5.1 Method Overview

Multi-view tracking methods usually capture the performance of an actor with ncam
synchronized video cameras (Fig. 5.1a). The human body is modeled using a kine-

matic skeleton and an approximation of the body geometry, using, for example, a

triangle mesh from a laser scan [Gall et al. (2009)], a statistical model [Balan et al.

(2007)], simple primitives like cylinders [Sidenbladh et al. (2002)], or a continuous

function [Ilic & Fua (2006)]. For each frame i at time ti of the synchronized input

video streams the parameters of the kinematic skeleton Θti are optimized to max-

imize similarity of the pose with the input images. This can be measured with an

energy functional Eti (Θti) that is minimized.

Our approach instead considers unsynchronized video streams where each image

is taken at a different time t (Fig. 5.1b). Note that all cameras may run at different

frame rates as well. We assume that timestamps ti for each image are given. These

could be obtained using our optical multi-camera synchronization algorithm; see

Chapter 4. Under specific assumptions, methods such as the audio-synchronization

method from [Hasler et al. (2009a)] or the image based methods [Carceroni et al.

(2004); Meyer et al. (2009)] can be used.

When recording unsynchronized video, it is possible to sample more densely

in time compared to synchronized video. This comes at the cost of losing spatial

information at each time instant (Fig. 5.1b). This poses a new challenge, as in the

extreme case for a given time step, only a single view will be available. Exclusively

fitting pose parameters to a single image at each time step would lead to unstable

tracking since the problem is underdetermined due to ambiguities and occlusions.

Instead of estimating the pose parameters Θ for each discrete time step, we estimate

a smooth function Θ = X(t), which for each given time instance t, represents

the corresponding vector of pose parameters. This representation enables us to

aggregate information collected from nearby images in time, such that for each time

step, the determination of pose parameter becomes well-posed. Effectively, we are

trading spatial resolution for higher temporal resolution but we will show that we

only lose a little spatial resolution and gain a lot in temporal accuracy.

As fitting a single continuous function to the whole sequence at once would re-

quire a very complex function and be difficult to optimize, we instead divide the

sequence into overlapping segments Sj of length lseg and fit a set of simple polyno-

mial functions to each segment (Fig. 5.1c). A globally continuous function is then

computed by blending the segments with a partition of unity method (Fig. 5.1d).
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5.2 Spatio-Temporal Tracking

(a) (b)

(c) (d)

Figure 5.1: Basic concept: (a) Image distribution of synchronized cameras. Each
blue rectangle corresponds to a frames in a video. (b) Image distribution of unsyn-
chronized cameras after mapping to a single time line. (c) The interval functions
for a single pose parameter. (d) After blending, we have reconstructed a continuous
pose function for the entire domain.

5.2 Spatio-Temporal Tracking

The proposed tracking algorithm adopts an energy-minimization approach. We use

an energy functional which measures the dissimilarity between a human body model

and the input sequence. As described shortly, the energy functional is continuous

both in space and in time such that the evaluation of the model (i.e. measuring the

disagreement from the input) is possible at any given time (c.f. Section 5.2.1). To
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5. MOTION CAPTURE WITH UNSYNCHRONIZED CAMERAS

Figure 5.2: SoG model overview. Left: Body model generated from example input
images. Right: Image SoG approximation generated from a quad-tree (each cell
represents one Gaussian).

facilitate this, we represent the model based on continuous functions. Specifically, we

adopt the Sums-of-Gaussians (SoG) representation as proposed by Stoll et al. (2011)

and described in Section 3.2. Human articulation is modeled by a kinematic skeleton

and its shape is represented using a 3D SoG, where each 3D Gaussian is attached

to exactly one bone in the articulation hierarchy. The model is generated by fitting

it to a set of example images (Fig. 5.2 left). To reduce the computational cost, the

input images are also approximated based on 2D SoG using a fast quad-tree based

clustering method (Fig. 5.2 right). Each single Gaussian in the SoG sets is associated

with a color c that can be used to measure color similarity between two blobs.

For each time step, measuring the similarity between a 3D SoG and a 2D SoG is

facilitated by projecting the 3D SoG of the body model into the corresponding image

plane and performing the comparison in 2D (Section 3.2.3). Using this SoG-based

formulation as a basis has the advantage that the original formulation is already

smooth in space. It does not rely on calculating and updating any image features

or silhouette correspondences. As a result, extending the approach to the temporal

domain comes naturally. It can also handle tracking highly complex articulated

models; see Section 3.2 for details.

5.2.1 Spatio-Temporal Similarity Measure

As estimating a single continuous function for a whole sequence quickly becomes

intractable, we first divide the sequence into overlapping time segments Sj of length

lseg. We represent each of the nDoF parameters of the kinematic skeleton for each
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5.2 Spatio-Temporal Tracking

segment using a polynomial X(t, ψj) of degree ndeg, where ψj =
[
χkl
]

with k ∈
1 . . . nDoF and l ∈ 1 . . . ndeg are the coefficients of the polynomial. We call the

function X(t, ψj) the motion function for time segment j (see Fig. 5.1c). Choosing a

low degree polynomial as local motion function presents a good compromise between

function smoothness and function complexity.

Given an input image SoG K i
I with its respective timestamp ti and coefficients

ψj of the current motion function we can estimate the similarity between the two

using (Eq. 3.6) as

Esim(Km(X(ti, ψj)),K
i
I ). (5.1)

We can now sum up the similarity of all nimg image SoGs KI which belong to the

segment Sj to get a spatio-temporal similarity measure over the entire segment:

Esim(ψj) =
1

nimg

∑
tl∈Sj

1

Esim(K tl
I ,K

tl
I )

Esim(Km(X(ti, ψj)),K
tl
I ). (5.2)

It should be noted that this similarity measure is smooth in space and time and

accordingly the analytical derivatives of any order can be computed easily with

respect to the coefficients ψj of the model’s motion functions.

5.2.2 Spatio-Temporal Joint Limits

An important component of articulated motion tracking systems is enforcing anatom-

ically correct joint motion. All joints in the human body only have a limited amount

of articulation. To prevent anatomically implausible poses, tracking systems usu-

ally penalize poses that exceed certain joint limits. This happens either by adding a

penalty to the energy that is being optimized or by limiting the admissible range of

DoF parameters through box constraints. Modeling these limits in the discrete case

is straightforward, but becomes more involved in the spatio-temporal formulation

from Section 5.2.1.

We want to penalize motion functions X(t, ψj) where parts of the functions lie

outside an admissible limit range [ll, lh] for t ∈ Sj (see Fig. 5.3 for examples). We

can define a penalty function Elim(j) that measures the area of the functions that
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5. MOTION CAPTURE WITH UNSYNCHRONIZED CAMERAS

exceeds the limits within the segment as

Elim(ψj) =

(∫
t∈Sj∧X(t,ψj)<ll

ll −X(t, ψj) dt (5.3)

+

∫
t∈Sj∧X(t,ψj)>lh

X(t, ψj)− lh dt

)2

.

As can be seen in Fig. 5.3, this penalty function has to handle 10 different cases

depending on the position of the curve with respect to the limits and the segment

boundaries. Moreover, solving for a quadratic function can result in a linear or even

constant function. Since the quadratic intersection with the DoF limits is undefined

in such cases, it is necessary to handle them as additional limit cases. However,

each case has a compact analytical solution and derivatives with respect to the

curve coefficients ψj.

5.2.3 Segment Tracking

We combine the spatio-temporal similarity measure Esim and the limit penalty term

Elim into a single energy functional

E(ψj) = −Esim(ψj) + αElim(ψj), (5.4)

where α is a weight factor which determines how strongly we want to penalize

non-anatomical pose configurations during tracking. As we can calculate analytical

derivatives of both energy terms, we can calculate the gradient ∇E(ψj) efficiently.

We find the minimum of E(ψj) using a simple conditioned gradient descent method

similar to [Stoll et al. (2011)]:

ψi+1
j = ψij + diag(σi)∇E(ψij). (5.5)

The conditioner σi is updated after every iteration according to the rules:

σ
(l)
i+1 =


σ

(l)
i µ

+ if ∇E(ψij)∇E(ψi−1
j ) > 0

σ
(l)
i µ

− if ∇E(ψij)∇E(ψi−1
j ) ≤ 0.

(5.6)
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Figure 5.3: Limit violation cases. The red lines are the DoF limits boundaries. We
compute the DoF function in the interval S =[0,3]. The proposed error measure is
the integral of the gray areas.
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5. MOTION CAPTURE WITH UNSYNCHRONIZED CAMERAS

Figure 5.4: Motion functions. Left: Initialization of new segment (red) from previous
segment function (blue). Right: Blended global motion function (red) generated
from three local motion functions (blue).

Using the conditioner increases the convergence rate of the gradient descent method

in long and narrow valleys of the objective function, as it effectively dampens os-

cillations and increases step-size in the direction of the valley. We found that this

simple approach needs more iterations to converge than higher order optimization

schemes, but is still faster in many cases as each iteration is simpler to calculate.

We assume that the actor in each sequence starts in a known pose (for example

T-Pose) and is not moving for a brief moment. We find the parameters for the

first segment S0 by initializing the body model pose to the known pose and only

optimizing the constant coefficients χk0 of the motion function (Fig. 5.4). We ignore

all linear and higher order coefficients and set them to 0. This essentially optimizes

for a constant pose without any motion in the current segment.

Each following segment Sj is placed so that it overlaps with the previous segment

by loverlap, which is given as percentage of the segment length (Fig. 5.4). We initialize

the coefficients of our current segment to be a linear extrapolation of the motion in

the previous segment (Fig. 5.4). We then run the optimization for all parameters

χkl until convergence.

5.2.3.1 Motion Function Blending

The estimated continuous functions for each segment Sj may not agree with each

other in the overlapping regions (Fig. 5.4b in blue). To generate a globally smooth

motion function we therefore blend all local motion functions together using a

partition-of-unity approach (Fig. 5.4b in red). We define a weight function wj(t)

for each segment that is 1 at the center and falls off smoothly to 0 at the segments

boundaries, and is 0 everywhere else. Using the C2 smooth Wendland radial basis
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function ϕ3,1(x) Wendland (1995) the final global motion function is defined as

Xglobal(t) =

∑
∀Sj

wj(t)X(t, ψj)∑
∀Sj

wj(t)
. (5.7)

Blending the motion function is a post-processing step and is performed after all

segments have been optimized. The resulting motion functionXglobal(t) is C2 smooth

in t and represents the tracking result of our algorithm.

5.3 Experiments

We evaluated our method on 9 sequences recorded with 11 unsynchronized cameras

at a resolution of 162 × 121 pixels with varying frame rates between 45 and 70

frames per second with a total of about ∼ 6000 frames of video. The camera setup

used for our experiments provides us with accurate timestamps for each image.

When using setups without this possibility, we could estimate timestamps using

our optical multi-camera synchronization algorithm; see Chapter 4. Other methods

such as the audio-synchronization method from [Hasler et al. (2009a)] or the image

based synchronization methods [Carceroni et al. (2004); Meyer et al. (2009)] can

be used in specific scenes which satisfy each method’s assumptions. We estimated

kinematic skeletons and Gaussian body models for 3 actors and used the quad-tree

based image conversion from [Stoll et al. (2011)] to convert the input images to SoG

models; see Chapter 3.

The recorded scenes cover a wide range of different motions, from simple walk-

ing/running, over fast acrobatic motions, to scenes with as many as 6 people featur-

ing strong occlusions. The tracking approach does not rely on an explicit background

subtraction and implicitly separates actors from background using the colors of the

SoG body models. The green screen visible in part of the background is not used

for explicit segmentation.

Our non-optimized, single-threaded implementation of the spatio-temporal tracker

requires on average between 1 and 5 seconds to find the optimal parameters for each

segment per actor. The specific run time per segment depends mainly on the motion

complexity, i.e., fast motions with large frame-to-frame pose changes take longer to

track.

Figure 5.5 shows pose estimation results of our algorithm for some of the se-

quences from different camera views. Our method tracked all sequences successfully

with the same settings used for segment size lseg = 2.0 frames of the slowest frame
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5. MOTION CAPTURE WITH UNSYNCHRONIZED CAMERAS

Figure 5.5: Complex motion tracking with 11 cameras. Tracking results of the pro-
posed method on unsynchronized sequences shown as skeleton overlay over the input
images. We successfully tracked actors in several challenging scenarios, including se-
quences with multiple people interacting closely, heavy occlusions, and fast motion
from acrobatics and skateboarding.
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rate, overlap of loverlap = 0.6, and joint limit weight of α = 0.1. The figure also

shows results for tracking multiple people in the same sequence. Here, we tracked

each actor separately without specifically modeling character interactions (such as

contact and occlusion) or segmenting the input images.

Compared to results created by aligning multiple images to a single time-step

and using a discrete tracking approach, our spatio-temporal formulation creates more

accurate results. The discrete tracker also fails to correctly track some sequences

with complex occlusions and fast motions.

Quantitative Evaluation: To evaluate our method quantitatively we recorded

a sequence Sref with the actor walking with increasing speed with a synchronized

camera setup running at 70 frames per second (Fig. 5.6a). We then created an un-

synchronized sequence Sunsync from this scene by temporally subsampling the input

video such that only a single camera image is kept at each time instant (Fig. 5.6b).

The downsampled sequence effectively has each camera recording at ∼ 7 frames per

second, slightly offset to each other. This represents an extreme case, as for all but

the slowest motions, the cameras will see vastly different poses for the actor. Finally,

we also created a synchronized low-speed sequence Slow which contains only every

11th frame for each camera (Fig. 5.6d). All three downsampled sequences contain

the same number of images.

We used the full sequence Sref to create a baseline synchronized tracking results

Tref using the method from [Stoll et al. (2011)]. We then tracked the actor from the

unsynchronized sequence Sunsync with our spatio-temporal approach to generate

a result Tcont. We also generated tracking results by aligning all 11 cameras of

Sunsync to the same time-step (Fig. 5.6c) and using the synchronized tracker to

generate Taligned, and tracked sequence Slow to generate Tlow.

As can be seen in the results video in [Elhayek et al. (2012b)], both Taligned

and Tlow fail to track the sequence correctly until the end. On the other hand, our

spatio-temporal tracking result Tcont successfully tracks the motion of the actor even

when the actor is moving extremely fast towards the end of the sequence. Figure 5.8

shows the per frame joint position error compared to the baseline result Tref for

the spatio-temporal result (red), the aligned discrete tracker (blue), and the low fps

synchronized tracker (green). We used linear interpolation to create parameters for

all frames of the sequence for the two discrete tracking approaches. Our approach

has a slightly higher joint position error in the beginning of the sequence, where the

motion of the actor is slow and aligning all frames to a single time instant is still a

good approximation. However, as soon as the motion of the actor becomes faster,
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(a) (b)

(c) (d)

Figure 5.6: Evaluation sequence: (a) Synchronized baseline sequence. (b) Subsam-
pled unsynchronized sequence. (c) Aligned sequence created from the unsynchro-
nized sequence. (d) Low frame rate sequence.

the discrete tracker’s error increases until it fails to produce correct poses at around

frame 1800 (c.f. results video in [Elhayek et al. (2012b)]).

Inaccurate Timestamps: As accurate timestamps for each image may not be

available when we estimate the synchronization from the video contents, we eval-

uated the influence of noise on the timestamps on tracking accuracy. We added

Gaussian noise with a variance of 1/3rd to the phase of each camera (as the frame

rate of the video is usually accurately determined). As can be seen in Fig. 5.9, the

tracking accuracy of the noisy timestamps (red) does not significantly vary from the

accurate timestamps (green). Our method is stable with respect to the expected

inaccuracy of estimated timestamps.

Polynomial Degree for Local Motion Functions: We investigated the influ-

ence of the degree of the polynomial of the local motion functions on the accuracy

of the tracking result in our quantitative evaluation sequence. As can be seen in
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Figure 5.7: Quantitative evaluation. From top to bottom: Baseline tracking result
Tref , aligned tracking Taligned, subsampled tracking result Tlow and our tracking
result Tcont. Only our spatio-temporal tracking method is able to successfully track
the whole sequence.
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Figure 5.8: Quantitative comparison between our spatio-temporal tracking approach
(red), synchronized tracking with unsynchronized input images (blue), and synchro-
nized tracking with 7fps input (green). The vertical axis shows average joint position
error in cm compared to the baseline result in the respective video frame. All track-
ing approaches use the same number of input images. As the actors motion becomes
faster towards the end of the sequence, only our spatio-temporal approach is able
to track the sequence correctly.

Fig. 5.10, both linear (blue curve) and quadratic (green curve) polynomials produce

similar result. However, in some situations the linear motion estimation may pro-

duce strong inaccuracies (for example around frame 1700). We found that quadratic

polynomials present a good compromise between fitting accuracy and computational

complexity.

5.4 Discussion

We have introduced a spatio-temporal approach to articulated motion tracking from

unsynchronized multi-view video. Unlike previous approaches that rely on synchro-

nized input video, our method makes use of the additional temporal resolution to

successfully track fast moving actors with low frame rate cameras. Our approach

shows that using unsynchronized cameras not only enables us to use lower frame rate

cameras for tracking, but also increases the tracking quality for fast motion as our

quantitative evaluation shows. Despite this simpler setup, by running the cameras

63



5.4 Discussion

0

5

10

1 501 1001 1501 2001 2501

Figure 5.9: Comparing accurate timestamps (green) against inaccurate timestamps
with added noise (red) on our quantitative evaluation sequence. The vertical axis
is the average joint position error in cm with respect to the baseline, the horizontal
axis is the frame of the sequence.
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Figure 5.10: Comparison of linear motion functions (blue) and quadratic motion
functions (green) on our quantitative evaluation sequence. The vertical axis is the
average joint position error in cm with respect to the baseline, the horizontal axis
is the frame of the sequence.
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5. MOTION CAPTURE WITH UNSYNCHRONIZED CAMERAS

purposefully out-of-sync, the continuous tracker reconstructs fast motion at much

higher quality as Fig. 5.8 shows. In practical situations, for example when captur-

ing with camcorders, it will not be possible to control the sub-frame alignment of

the camera shutters. Depending on the alignment the result will have more spatial

accuracy (when nearly synchronized) or more temporal resolution (with unaligned

input images). Our method also enables setting up simpler and cheaper capture

setups, as there is no need anymore for hardware based synchronization and high

frame rate cameras.

In practice, the tracking accuracy of the proposed algorithm decreases with in-

put filmed using less than five cameras. Therefore, in Chapter 7, we propose a

novel marker-less motion capture algorithm which achieves high tracking accuracy

from input filmed with as few as two cameras. Another limitation of the algorithm

proposed in this chapter is that it works only with static cameras which hinders

many practical outdoor motion capture applications where cameras may need to be

moved during capture for practical reasons. Thus, in the Chapter 6, we propose an

extension of this algorithm which allows to capture the skeletal motions of multiple

people even in front of cluttered and non-static backgrounds using a sparse set of

potentially moving cameras in an uncontrolled environment.

As our method is using a simple local optimization approach, it may fail in

complicated cases with many occlusions and few cameras. Although our approach

is often more reliable than the synchronized implementation in [Stoll et al. (2011)],

in our experience, we sometimes get stuck in a local minimum and are not able

to recover. Using more advanced global optimization schemes such as presented

in [Gall et al. (2009)], would enable us to detect and correct these errors. We also

rely on the color of the actor being sufficiently different from the background in

our error function, which could be improved upon by using more advanced color

models for each Gaussian, such as color histograms. Despite these limitations, in

most cases our algorithm successfully tracked even complex motions under severe

occlusions with unsynchronized cameras.

To estimate a globally continuous function representing the motion parameters,

we first construct local polynomials and then blend them using a partition of unity

approach. This leads to a computationally efficient algorithm since the optimization

of each local polynomials can be done independently. However, from a theoretical

perspective, this approach is sub-optimal in the sense that the optimization does

not take advantage of all available observed data (i.e. images). It is future work,

to explore different possibilities of trading the computational complexity and the

optimality of the parameter function in this context.

65



5.4 Discussion

66



Chapter 6

Outdoor Motion Capture with
Moving Cameras

Many computer vision applications require motions to be captured on site (i.e. in

general outdoor environment) with moving cameras. Moreover, in computer graph-

ics, motion capture is a widely used way to animate virtual human characters.

Unfortunately, traditional marker-based motion capture systems are expensive and

cumbersome to use.

Recent years have seen a significant improvement of marker-less skeletal human

motion capture algorithms [Moeslund et al. (2006); Poppe (2007); Sigal et al. (2010)].

Many state-of-the-art methods come close to the performance of marker-based algo-

rithms, but only when recording in highly controlled studio setups, where 1) there

are sufficiently many exactly synchronized high-quality cameras; 2) each camera is

static and scene motion is due to foreground objects only; 3) the background is

not cluttered; 4) lighting is controlled; 5) the main foreground actor is seldomly

occluded.

While relative to marker-based systems, this yields an easier apparatus with a

reduced setup time, the hurdles towards practical application are still large and

the costs are still notable. By being constrained to a controlled studio, marker-

less methods fail to fully play out their advantage of being able to capture scenes

without actively modifying them. A lot of practical computer vision and computer

graphics applications require motions to be captured on site, i.e. the camera system

needs to be brought to the location, because the motion itself cannot be relocated

to a studio. Examples are capturing drivers in cars, motion capture on outdoor

film sets, recordings of street performances, or the reconstruction of athletes in

the field. In such situations, scenes are often cluttered and fore- and backgrounds
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may be dynamic. Further on, placement and number of cameras may be starkly

constrained, cameras can often not be synchronized, and they may (have to) move

during recording for instance in order to follow a moving object. Some methods

succeed in uncontrolled recording scenarios and allow certain camera motion (also

outdoors [Hasler et al. (2009a)]), but have limited accuracy and would fail in case

of 1) cluttered scenes and with unconstrained sparse camera sets; 2) small camera

translation or pure rotational motion; 3) motion blur due to hand-held camera

shaking.

We have introduced, in the previous chapter, a spatio-temporal approach to ar-

ticulated motion tracking from unsynchronized multi-view video. As a third step

toward a new widely applicable human motion capture setup, we aim to work with

handheld cameras in general scenes. We therefore present a method for marker-

less 3D skeletal human motion capture that succeeds in uncontrolled environments

and uses only a sparse, heterogeneous and weakly constrained camera setup. The

algorithm reliably captures even complex 3D skeletal body motion 1) with poten-

tially as little as five cameras (e.g. mobile-phone cameras); 2) with camera setups

that are unsynchronized and of differing makes, resolutions and frame rates; 3) in

cluttered indoor and outdoor scenes where backgrounds are dynamic and the actor

can be occluded; 4) without using specialized auxiliary sensor information, such as

depth images or inertial sensors; 5) with any type of camera motion even including

notable shaking.

The core algorithmic contribution is a new generative skeletal pose tracker that

minimizes a single model-to-image consistency measure simultaneously in the skele-

tal actor poses and the poses of moving cameras (see Section 6.2). We demonstrate

that this strategy is essential to deal with scenes where cameras, foreground, and

background can move and image-based pre-calibration (e.g. via structure-from-

motion (SfM),e.g. [Pollefeys et al. (2004); Thormählen et al. (2008)]), fails. 3D

model and 2D image data compared during consistency measurement are based on

the Sums-of-Gaussian model used previously for indoor tracking with static cameras;

see Chapter 3 and Chapter 5. However, the energy function and the minimization

strategy have been profoundly extended to match this more challenging scenario.

The smooth nature of our energy functional with analytic derivatives enables contin-

uous optimization. It also enables the automatic detection of the occlusion of body

parts either caused by the same person (self-occlusion) or by the other people in the

same scene (Section 6.3). This is properly taken into account in the optimization.

While this is not the first method for outdoor motion capture, to the best of

our knowledge, our algorithm is the first that aims for motion reconstruction with
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6. OUTDOOR MOTION CAPTURE WITH MOVING CAMERAS

moving cameras, unsynchronized video streams in an uncontrolled environment with

uncontrolled cameras motion, and of multiple characters, all at once. In summary,

the algorithm proposed in this chapter augments our algorithm in Chapter 5 which

does not succeed under the aforementioned challenging conditions. The novel algo-

rithmic contributions over previous work, that enable this, are:

1. A new pose fitting energy function extended to estimate each camera’s motion

together with actor pose; see (Section 6.2.2). In particular, the following

extensions were done to the measurement of model-to-image consistency

(a) Support for multi-person/multi-camera tracking

(b) A two-sided similarity term 1

(c) Weighting in HSV color space

(d) Prior on camera motion (smoothness)

2. The pose estimation scheme is using a new and improved occlusion handling.

In our experiments, we show qualitatively and quantitatively against ground truth

that our algorithm can capture even complex and fast body motion in cluttered out-

door scenes, and that it succeeds with a wide range of heterogeneous, unsynchronized

and moving camera systems with varying resolution, also just a few mobile phone

or outdoor action cameras, such as GoPro. We also contribute with a comprehen-

sive evaluation dataset for quantitative comparison. It comprises multi-view video

footage recorded with static and moving cameras, ground truth camera motion data,

as well as reference data from a marker-based motion capture system. This chapter

closely follows [Elhayek et al. (2014a)], where the concepts presented here have been

published.

6.1 Method Overview

Input to our algorithm is a set of video streams of the same scene, yielding a set of

frames I = {I1, . . . , In} obtained from several cameras (camera indices omitted for

readability). These cameras can be of varying make, resolution and frame rate, and

they can move during recording. Video streams are not expected to be temporally

1The concept of symmetric similarity was presented in [Sminchisescu & Telea (2002)]. However,
our novel continuous and differentiable two-sided term is essential in case of moving cameras and
allows for fast tracking.
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synchronized (see Section 7.4) and the global time stamps are explicitly estimated,

as discussed shortly. We assume that intrinsic cameras parameters are known (e.g.

through calibration before recording).

As opposed to studio-based methods, we assume that lighting can vary mildly

during recording, large part of the background can be dynamic, and the tracked

person can be occluded for the duration of a few frames. The output of our algorithm

is a continuous motion function X(t) : R→ Rn that returns an n-dimensional pose

vector for a given time stamp t. It is important to note that X is a short notation

for Xglobal(t), which is defined in (Eq. 5.7). In contrast to our algorithm in Chapter

5, here, n is given as n = 6c+m, where m = 43 is the number of degrees of freedom

of the skeletal model (pose and joint angles, thus describing the pose; Section 3.2

for more details) and c is the number of moving cameras in the scene. The 6

parameters for each moving camera describe translation and rotation. Due to the

ambiguity between camera and performer motion in a single camera view, we can

represent camera motion as an additional rigid transformation to the pose of the

actor in a specific single view. This simplifies the optimization, as camera parameter

optimization can be handled in the same way as actor motion. Note that in our

setting we represent joint parameters as continuous temporal curves, thus they can

be calculated for every sub-frame time instant of the motion (see Section 6.2).

For each tracked actor, the template body model must be shape-adjusted, which

we do in a semi-automatic way from a set of calibration poses prior to motion

recording; see Section 3.2 for details. It could also be done manually in case one has

no control over the footage and actor motion.

For tracking multiple people in a scene, we initialize the pose of each actor

independently. Then, our algorithm estimates a single combined motion function X

that concatenates the motion functions of individual actors. This is different from

our algorithm in Chapter 5 where we run a single-person tracker for each actor.

With this setting, the occlusions caused by different actors would not be taken into

account. However, by estimating a single large motion function, we handle multiple

people tracking exactly in the same way as the self-occlusion (see Section 6.3).

Accordingly, the remainder of this and the next sections focus only on the single

actor case without loss of generality for multiple actors.

Before tracking commences, we first synchronize video streams up to a frame-

level accuracy by using the audio stream [Hasler et al. (2009a)]. We refine this initial

result by our global multi-view image-based synchronization method which yields

frame rates and offsets at sub-frame precision; see Chapter 4 for details.
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Figure 6.1: Left: skeletal representation of a performer. Center: a 3D SoG rep-
resentation approximating the body shape of the performer. Right: image SoG
representation (each box represents one 2D Gaussian G2).

In the beginning, we also expect a small amount of user interaction to obtain an

extrinsic camera calibration Cext for one multi-view frame of each camera at the near-

est time stamps (after temporal alignment). We employ a bundle-adjustment with

manually marked features in the scene background [Hartley & Zisserman (2004b)].

Note that this is only needed for one set of frames.

The core of our algorithm is a new energy minimization approach where a model-

to-image consistency energy functional is jointly optimized with respect to camera

pose and skeletal pose parameters (Section 6.3). The energy functional is based

on the Sums-of-Gaussians scene representation of Chapter 5 which we profoundly

extended to deal with our more general scene conditions, such as moderate appear-

ance variations, occlusion, and dynamic background, as well as the sparse visual

evidence from only few cameras (Section 6.2.2). In this Chapter, we briefly re-

state important concepts from prior work that we build on, but focus on the newly

developed extensions. Employing a space-time optimization strategy is essential

(Section 6.2.1) to deal with the lack of exact frame synchronization, and to be able

to benefit from larger temporal baselines to regularize tracking with few cameras.

With few cameras, occlusions of the actor, even for a short period, can lead to catas-

trophic failure of joint angle and camera optimization (see Section 7.4 for examples).

We explicitly detect occlusions by monitoring the energy variation in time. Once

an occlusion is detected, the corresponding camera is disabled for optimization and
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does not contribute to the energy anymore. In case it is a moving camera, its pose

parameters are re-initialized based on corresponding linearly interpolated parameter

values (Section 6.3).

6.2 Tracking with Moving and Unsynchronized

Cameras

One of the most important aspects of motion tracking with casually captured videos

is that the cameras may move, and accordingly, the camera parameters have to be

estimated for each frame in the video. In existing approaches for this scenario,

estimation of these two sets of parameters is decoupled by pre-estimating camera

parameters (e.g. performing SfM) and subsequently optimizing the pose (of the ac-

tors) given these known cameras. Unfortunately, this strategy cannot be exercised

when the background is cluttered, the camera translation motion is not sufficient

or the videos are blurry due to shaking cameras unless these conditions SfM fail

(see Fig. 6.7 and results video in [Elhayek et al. (2014b)]). Our video streams (e.g.

with as little as five cameras) are sparse and frame capture is not synchronized.

Furthermore, there are many inherent ambiguities in model-image-matching which

aggravate finding an optimal solution: the free motion of the body cannot be de-

coupled from the ego-motion of the cameras. For instance, it is often impossible to

distinguish between an actor moving towards a static camera and a moving camera

approaching a static actor.

A core innovation of our tracking algorithm is the simultaneous optimization of

skeletal pose parameters and the pose parameters of every moving camera. Both

camera and skeletal pose parameters are separately retained, but the effect of chang-

ing one set of parameters could still be compensated by the change of the other.

Capturing the scene with one or more static cameras resolves this ambiguity. How-

ever, when there are no static cameras, the final results can only represent relative

motion to the cameras and will not have a fixed global coordinate space. Our system

uses the body model as common reference point to optimize skeletal pose and the

pose of moving cameras. We are thus not forced to rely on unstable background

features.

Our approach is instantiated as an energy minimization algorithm:

E(Xi) = −Esim(Xi) + λ1ELim(Xi) + λ2ESmooth(Xi), (6.1)
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where Esim(Xi) measures the similarity of model parameter Xi to data S in each

segment Si, as discussed shortly. ELim and ESmooth are prior terms that enforce

limits and smoothness on joint angles and camera poses, respectively. The hyper-

parameters λ1 and λ2 are set to 0.1 and 0.01, respectively (see Section 7.4 for dis-

cussion on tuning hyper-parameters).

The individual components of the energy are detailed in the following. We will

also detail the continuous pose parametrization and specific representation of image

and shape data we employ. Optimizing continuous curves for skeletal and camera

poses is essential since our data are not frame-synchronized and are spatially sparse.

We can stabilize optimization by considering image data from larger temporal base-

lines.

6.2.1 Continuous Parameterization and Scene Representa-
tion

We extend concepts from Chapter 5 and instead of identifying parameter vectors for

each discrete time stamp (corresponding to synchronized frame index), we construct

a continuous, parameter vector-valued motion function X(t) of time t representing

both skeletal and camera pose parameters. In this setting, the similarity between a

specific motion function X and a set of images is evaluated by sampling X at the

time stamp ti of each image Ii ∈ I .

For representing the 3D spatial extent of the body model, as well as the 2D

input images, we employ the Sums-of-Gaussians (SoG) model; see Section 3.2 for

details. Fig. 6.1 shows an example of a smooth (i.e., continuously differentiable

as many times as desired) 3D SoGs representation of human body model and 2D

SoGs representation of input image, respectively. We captured the corresponding

sequence in outdoors scene.

Since estimating a continuous motion function X for a long sequence is com-

putationally intractable, we divide the sequence into overlapping time segments

{S1, . . . ,Sns} (of length 2/30 Section for each, with an overlap interval of 0.6/30

sec) and estimate the local motion functions Xi as quadratic polynomials for each

Si independently. This results in 3×n parameters for each Xi (3 being the number

of parameters for a quadratic polynomial; there is no coupling between different

parameters). A globally smooth motion function X is implicitly reconstructed by

blending the Xi at overlap using partition-of-unity; see Section 5.2.3 for more details.

Accordingly, the variables to be optimized are the coefficients of the polynomial ψi
for each segment i.
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6.2.2 Model-to-image Similarity Term

We now explain the similarity term Esim(Xi) which measures the similarity of the

3D model defined by the motion function Xi to each input image I which belong

to segment Si. This term is an extension of the spatio-temporal similarity term

(Eq. 5.2) needed in Chapter 5. We represent a video frame Ij with time stamp tj as

the 2D SoG K
tj
I and the respective model which is defined by the motion function

Xi(tj) as 3D SoG Km(Xi(tj)). Then, the similarity is calculated by projecting each

3D Gaussian function of Km(Xi(tj)) into the image plane of Ij and measuring the

overlap to all 2D Gaussians of KI(tj).

In contrast to (Eq. 5.2), the positions of each 3D Gaussian with respect to any

camera is a function of both the skeletal pose parameters and the parameters of that

camera which are encoded in X(tj). However, it should be noted that the skeletal

parameters are optimized based on the data of every camera, while the parameters

of each moving camera are optimized based on the data of that camera only (i.e.

by maximizing the similarity between this camera’s 2D SoG and the projected 3D

SoG). Then we can define the similarity term Esim(Xi) of the motion function Xi

as the sum of similarities of Km(Xi(tj)) and KI(tj) for each tj ∈ Si:

Esim(X) =
1

nimg

∑
tj∈S

Esim(Km(Xi(tj)),K
tj
I )

Esim(K
tj
I ,K

tj
I )

, (6.2)

where nimg is the total number of images in the segment Si, Esim(Km(Xi(tj)),K
tj
I )

is the similarity of a 3D SoG and a 2D SoG, which is defined in (Eq. 3.6). Since

every K
tj
I for tj ∈ Si consists of a different number of 2D Gaussians, we normalize

Esim(Km(Xi(tj)),K
tj
I ) by the similarity of K

tj
I with itself. The general similarity

of two 2D SoGs is defined in (Eq. 3.2).

Weighting in HSV color space. As illumination in outdoor scenes can vary

more strongly than in studio setups, we use a new color similarity that is more

resistant to intensity changes. The similarity d for two HSV values a and b is

defined as

d(a,b) = 2ϕ3,1(‖a− b‖W )− 1, (6.3)

where ϕ(·)3,1 : R → [0, 1] is the smooth, compactly supported Wendland func-

tion [Wendland (1995)] and ‖a−b‖2
W := (a−b)>W (a−b) withW = diag([1, 1, 0.2]>),
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Figure 6.2: Two-sided vs. one-sided color similarity term. Left: The one-sided
similarity term d(a,b) = ϕ3,1(‖a − b‖) only adds positive values to the energy if
the color differences ‖a− b‖ are less than a Wendland support of 0.15. Right: The
two-sided similarity term (Eq. 6.3) additionally penalize dissimilar colors.

and diag(v) builds a diagonal matrix consisting of the entries of v. The down-

weighting of the value component (using W ) in the HSV model is decided based on

preliminary experiments: In outdoor scenes, the value component was most severely

affected by changes of illumination (e.g., shading, highlight, and specularity) and

we experimentally determined a factor of 0.2, i.e. 20% to be a good choice.

Two-sided color similarity term. In contrast to the one-sided color sim-

ilarity term used in Chapter 5 where d ≥ 0, the two-sided color similarity term

(Eq. 6.3) can be negative when the two input colors are distinct (see Fig. 6.2). This

is important in case of moving cameras, where each camera has its own pose (i.e.

translation and rotation) parameters which are optimized based on its own data

only (in contrast, the human pose parameters are constrained with data from sev-

eral views). Figure 6.3 shows that with the one-sided similarity term, for a given

skeletal pose and camera parameters, one can erroneously increase the similarity

between the model and the image by moving the camera towards the object. In this

case, the corresponding projected 3D Gaussians become larger and accordingly they

lead to higher similarities in (Eq. 6.2) in general. In contrast, the two-sided term

solves this ambiguity by penalizing the dissimilarity between the projected object

and the background. In addition, the two-sided term is also generally important to

enable reliable tracking with only very few static cameras, as we show later.
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Figure 6.3: Importance of two-sided energy. Tracking an object with two cameras.
Left: locations of cameras with respect to the object and Right: the constant input
image from camera 2 (dark blue circle) overlaid with the projection of the 3D object
(light blue) which is a function of the camera and pose parameters. If we move
camera 2 closer to the object (bottom row), the virtual object is larger than the
input which increase the overlapping between them. This can erroneously increase
the similarity if we do not penalize the dissimilarity with the white background,
which is achieved with the two-sided similarity term (Section 6.2.2).

76



6. OUTDOOR MOTION CAPTURE WITH MOVING CAMERAS

6.2.3 Prior on Camera Motion

As motions of camera and actor are inherently ambiguous (see earlier discussion),

estimation of the camera and pose parameters is inherently ill-posed. During the

optimization, the effect of a change in camera position may be canceled out in

the energy by opposite global pose change of the body. Temporal drifting over

subsequent segments and irrevocable convergence to an erroneous local minimum

could thus easily happen (see Fig. 6.9d for an example).

We approach this problem by enforcing first-order temporal smoothness over the

parameters. This prevents any rapid change in parameters and the above-mentioned

problem can be prevented as our experiments confirm (see Section 7.4):

ESmooth(X) =
ns∑
i=1

∑
j:Sj∩Si 6=∅

‖X(li)−X(lj)‖2, (6.4)

where li is the middle point of a segment Si in time and ns is the number of

segments. Esmooth requests similar values for model parameters at midpoints of

overlapping segments from all camera sources. The other prior term ELim used in

(Eq. 6.1) constrains joint angles to an anatomically plausible range as in Chapter

5.

6.3 Combined Camera and Pose Optimization

We optimize the energy functional (Eq. 6.1) using the conditioned gradient descent

approach presented in [Stoll et al. (2011)]; see Section 3.2 for more details. At the

beginning of a motion sequence, we expect that the body model is shape initialized,

and a rough manual initialization of the pose S0 in which the actor stands is given.

This shape initialization is performed as described in Chapter 5.

Occlusion handling. As explained earlier, detecting and handling the case

that a person is occluded from a camera view is crucial for our method. By design,

the contribution of each camera to the similarity term is clearly separated from the

other cameras (Eq. 6.2) and is smooth over time. This enables occlusion detection

by monitoring the variation of each model Gaussian’s energy component in time.

During the optimization, we inspect the similarities between the projected 3D

Gaussians of the model KM and the 2D image Gaussians of each camera KI : For a

given image SoG KI(k) (corresponding to a camera Ck), the model Gaussian Gi ∈
KM is marked as false-projected when maxGj∈KI(k)

Eij < To for a given threshold To,
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where the similarity Eij is calculated for the pair Ψ(Gi)(Gi ∈ KM) and Gj ∈ KI(k).

when the number of false-projected Gaussians is larger than a threshold Tn, we

decide that an occlusion has occurred in the image Ik. In this case, we exclude this

camera from the optimization, as the occlusion may otherwise negatively influence

the pose estimation of the other cameras. If the occluded camera is non-static, we

also do not optimize the corresponding camera parameters. The pose optimization

is then continued with the remaining cameras, and the parameters of the camera in

which the skeleton is occluded are linearly extrapolated. The parameters To and Tn
were held fixed at 0.6 and 30 during the experiments.

During the occlusion, the extrapolated parameters of the cameras are compared

with the corresponding projected SoGs of the human model (as estimated based on

unoccluded cameras). In this way, the end of the occlusion can be detected (i.e.

when the number of false-projected Gaussians is less than a threshold Tn). In case

the occluded camera is moving, once the occlusion is finished, the camera tracking

starts again with the extrapolated parameters as initialization. This strategy suc-

ceeds in most of our test cases where occlusions are short and camera motion smooth.

In all other cases (e.g. Fig. 6.13), more time-consuming global pose optimization

would be needed after the occlusion ends.

6.4 Experiments

We evaluated our algorithm on seven real world sequences, which we recorded in

an uncontrolled outdoor scenario with varying complexity: The sequences vary in

the numbers and identities of actors to track, the existence and number of moving

objects in the background, and the number of moving and static cameras. Sequences

also differ in the makes, the frame resolutions, and the frame rates of cameras. By

quad-tree decomposition, all images are effectively downsampled to a resolution of

160 × 90 before tracking. Moreover, we recorded two additional sequences in the

studio for marker-based quantitative evaluation of both skeletal motion, as well

as camera motion reconstruction accuracy. Table 7.1 summarizes the specification

of the sequences used in the experiments. Since the cameras are not sub-frame-

level synchronized, it is unlikely that frames from all cameras are available for a

given time stamp. Accordingly, the time complexity can only be measured based

on an average over a time span. Due to the more elaborate energy (in particular

the two-sided term), and a larger parameter space, the runtime of our algorithm

is slightly lower than the approach in Chapter 5. Further, the run-time of our
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6. OUTDOOR MOTION CAPTURE WITH MOVING CAMERAS

Figure 6.4: Examples of multi-person tracking with moving cameras. (Left two
images) two actors, and two moving and three static cameras (Soccer1). (Right two
images) One actor, and three moving and two static cameras (Walk2).

Table 6.1: Specification of the sequences used in the experiments where W is short
for Walk (i.e. W1 is Walk1).

Sequence Soccer1 Soccer2 W1 W2 W3 W4 Run W5 W6

# moving cams. 2 1 1 3 8 2 1 0 3
# static cams. 3 4 4 2 0 6 6 8 5
frame rates 23.8 120 25
camera types mobile-phone (HTC One X) GoPro studio cam.
frame resol. 1280× 720 (original); 160× 90 (operating resol.) 256× 256
# tracked objs. 2 1
# moving bac- 0 9 0
kground objs.

algorithm depends on the number of cameras and actors, and the complexity of

the scene, e.g. the number of Guassians needed in 2D. For a single actor and five

cameras, our algorithm takes around a minute for processing a single segment S

(Section 6.2.1) that contains around two frames captured from each camera. Using

the discrete (non-space-time) optimization algorithm of [Stoll et al. (2011)] (see also

Section 6.4.3) on a similar sequence recorded in studio (i.e. lower scene complexity)

with 8 cameras, our method performs at 13 seconds per frame. Apart from body

model initialization which requires the user to apply a few strokes to background

segment the images of four actor initialization poses (see Section 3.2), tracking is

fully-automatic.

Figures 6.4, 6.5, 6.6, and 6.7 show example poses tracked from sequences Walk1,
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Walk2, Walk4, Run, Soccer1, and Soccer2 (see also the results in the video in [El-

hayek et al. (2014b)]). Our algorithm successfully estimated the pose parameters

of actors as well as the positions of the moving cameras in these sequences. In

particular, our algorithm successfully tracked the two actors in Soccer2 who often

occlude each other (Fig. 6.9) and the actors in highly cluttered scenes (Walk2, Walk4,

and Run each of which contains 9 moving background people). When tracking the

moving camera from the Soccer1 sequence, SfM failed to successfully estimate the

camera motion due to motion blur as shown in Fig. 6.7: Since the hand-held camera

is shaking, motion blur occurred across several frames which causes feature tracking

to fail. In contrast, our method was able to successfully track both camera and

actor pose, even with the challenging background. Only on some isolated frames

with stark occlusion, the arm or head are incorrectly tracked, as expected.

To evaluate whether using moving cameras in addition to static cameras, actually

improves the quality of the pose reconstruction, we tracked sequence Soccer1 once

with only 3 static cameras, and compared the results to the full tracking with 3

static and 2 moving cameras (Fig. 6.8). While moving cameras add unknowns

to the optimization problem, the additional images provide enough information to

increase the tracking accuracy and estimate the camera dynamics.

6.4.1 Evaluation of Algorithmic Design Choices

We qualitatively evaluated the importance of the various components of our algo-

rithm (see Secs. 6.1 and 6.2) on the Soccer2 sequence. Figure 6.9a compares tracking

with our new (non-positive definite) color similarity measure (Eq. 6.3) (top row)

against tracking with the old color measure of [Elhayek et al. (2012a); Stoll et al.

(2011)] (bottom row). The new color measure is crucial for successfully estimating

the motion of moving cameras (see Section 6.2.2).

In outdoor recordings, the observed brightness of the objects and the background

can change. By making our color similarity measure more resistant to changes in

brightness (Fig. 6.9b, top row), tracking becomes more stable compared to the

original brightness-sensitive color measurement (Fig. 6.9b, bottom row). When the

Euclidean distance is used instead (bottom), the color of the body model is not

distinctive enough from the background color as the change of incident illumination

(due to shadows; see results video in [Elhayek et al. (2014b)]) leads to a large

variation in the value component, that causes a tracking error.

Figure 6.9c demonstrates the importance of our occlusion handling. When the

number of cameras is limited, the erroneous contribution of a camera under occlusion
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(a) (b) (c)

Figure 6.5: Qualitative analysis of tracking results. The tracking results are dis-
played as skeletons overlaid over two of the input images. (a) Walk2 : The second
row shows the accurately tracked skeleton in a camera view that is not used by the
algorithm. (b) and (c) Walk1 : The first row shows two frames from a static camera
which captures the motion of another camera. The second row is the view of the
moving camera. The tracked location of the moving camera (white rectangle) is
overlaid on the static camera view. The green and red lines depict x and y axes
of the camera orientation in the image plane. The moving camera location in the
static view is highlighted with the red circles; see also the results video in [Elhayek
et al. (2014b)].

to the similarity term can mislead tracking (bottom). This is avoided by actively

detecting the occlusion and excluding the corresponding camera from similarity

computation (top).

Finally, our first-order smoothness prior (ESmooth; Eq. 6.4) prevents the camera

or pose parameters from drifting quickly to implausible values, as observed in the

second row of Fig. 6.9d (see Section 6.2.3).

6.4.2 Quantitative Evaluation

As it is difficult to obtain ground-truth values for real actor motion in an outdoor

scenario, we performed a quantitative analysis of our tracking algorithm on synthetic
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(a) (b) (c)

Figure 6.6: Examples of tracking. The tracking results are displayed as skeletons
overlaid over the input images in the first row. (a) Soccer2, (b) Walk4, and (c) Run:
The second row shows the tracked skeletons in views that do not correspond to any
camera views

and studio data that were jointly recorded with a multi-view video and marker-based

motion capture system.

Synthetic data. We rendered four sequences containing a single actor with

several combinations of static and moving cameras. The synthetic datasets represent

perfect conditions for our algorithm, i.e. they are free from noise and foreground and

background are clearly separated. This allows us to exactly evaluate the accuracy

of the optimization (Fig. 6.10). The motions of each camera are generated by

combining different translations and rotations around the capture volume.

Visual inspection shows that our algorithm manages to correctly track the skele-

tal and camera poses in all synthetic sequences. As expected, numerical evaluation

indicates that a higher number of moving cameras (from a fixed number of total

cameras) increases the error, since the optimization becomes more difficult (Ta-

ble 6.2). In this particular setup, at least 2 static cameras fix the global position of

the actor accurately. Therefore, decreasing the number of static cameras from 5 to

3 does not affect the skeletal joint position accuracy on an absolute scale, however,

it decreases the moving camera tracking accuracy. In general, one static camera

is not sufficient to localize the absolute coordinates of the actor and the cameras

completely. This leads to an unknown global transformation between our and the
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6. OUTDOOR MOTION CAPTURE WITH MOVING CAMERAS

Figure 6.7: Left: Pose tracking on the Soccer1 sequence viewed from a moving
camera. Right: Tracking of the same camera using SfM. The estimated trajectory
of the camera is displayed as a yellow line which is far from being smooth indicating
the failure.

Figure 6.8: Left: Tracking Soccer1 fails with only 3 static cameras. Right: With 2
additional moving cameras it succeeds.

ground truth coordinate frames which makes the absolute 3D coordinate error not

meaningful. Thus, we use 2D joint position error.

6.4.3 Marker-based Quantitative Evaluation

An additional important contribution is a set of validations on sequences that

were recorded inside a studio with both a multi-view video system and a frame-

synchronized Phase-space marker-based motion capture system. The Phasespace

system uses 2 active LED markers attached to the body of the performing actor in

the center of the studio. The multi-view video system features cameras of 2048×2048

pixel resolution runnig at 25 fps. All images are effectively downsampled to a reso-

83



6.4 Experiments

Table 6.2: Performance of the proposed algorithm for a synthetic scene with varying
number of moving and static cameras. The skeletal pose error is measured on average
over 65 predetermined skeletal joint position and over the entire frame range in the
sequence. The 2D joint position error is measured in a 2D plan of a cameras which
is not included in the optimization.

# Moving cams. 1 1 2 3
# Static cams. 5 3 2 1
Average camera position 12.44 12.96 16.43 24.17 36.98 59.43 60.56
error (cm)
Average camera view 2.88 3.09 2.8 2.62 5.31 5.89 11.37
angle error (degree)
Average skeletal 2D joint 0.5636 0.5430 0.6532 4.4346
position error (pixel)

lution of 256× 256 before tracking. The tests in this section are performed using a

discrete pose optimization algorithm that estimates a discrete set of pose parame-

ters per time step, rather than our space-time optimizer. For a frame-synchronized

video system, this yields better results. Further, this is the only way in which we

can compare against the baseline method of [Stoll et al. (2011)], which also uses

this discrete optimization strategy. In the sequences recorded with this setup, the

person wears normal street clothing, and markers are attached on top. The specifics

of each sequence in the set are explained in the following paragraphs that evaluate

several facets of our new algorithm.

First, we want to demonstrate that several of our extensions of the pose fitting

energy compared to [Stoll et al. (2011)] also lead to improved tracking accuracy over

that baseline method when recording with static cameras only. The first sequence

was recorded with 8 static video cameras and the marker system in studio lighting,

is 150 frames long and shows the actor performing a walking motion. We consider

the marker positions measured with the PhaseSpace system as a ground truth for

evaluating the tracking accuracy. To this end, we need to identify the positions of the

markers w.r.t the skeletal model tracked by our algorithm. We do this by describing

each marker with an offset vector in a local frame of the nearest bone. Each such

offset between a marker and one skeletal joint is estimated based on observing the

offset vector between the marker and the joint on a set of correctly tracked frames,

and keeping the average displacement. First, adding only our weighting in HSV color
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(a) (b) (c) (d)

Figure 6.9: Importance of algorithmic components (Soccer2 ). The results of our
algorithm (top) and alternatives constructed by replacing or removing a certain
component, respectively: (a) the two-sided color similarity (6.3) is replaced by a
one-sided similarity [Elhayek et al. (2012a); Stoll et al. (2011)], (b) the weighting in
HSV color scheme is disabled (i.e., W = I in Eq. 6.3), (c) the occlusion handling is
disabled, (d) the smoothness term in the prior (6.4) is removed, see text for details.

space to the algorithm of [Stoll et al. (2011)] already decreases the average marker

position error from 4.0 cm to 1.9 cm over the baseline method. If, in addition, we

add the two-sided color similarity term (which is essential in case of moving cameras)

we observe a further reduction in error to 1.4 cm. However, extending the energy

from [Stoll et al. (2011)] with the two-sided term alone (i.e. without any weighting

in HSV color space), may still lead to errors in bad lighting conditions (e.g. part

of the actor is in shadow), because it penalizes dissimilar colors. An adaptive color

model would be needed for that which we investigate in future work. This shows

that several of our algorithmic extensions to the baseline fitting energy also benefit

the case of static camera tracking and lead to a notable reduction in tracking error;

see Fig. 6.11 and the results video in [Elhayek et al. (2014b)].

We now further show that even in studio conditions, the static algorithm [Elhayek

et al. (2012a); Stoll et al. (2011)] fails with moving cameras. To confirm this fact

and to evaluate the camera tracking accuracy of our algorithm, we recorded a second

in studio sequence with 3 moving and 5 static cameras. The sequence is 500 frames

long. Our reference for accuracy comparison are the motion capture markers on

the body. Our SfM based tracking of the moving cameras may contain errors, and

thus yield reprojection errors in the moving cameras. Therefore, the 2D positions

85



6.5 Discussion

Figure 6.10: Left: an example frame from the synthetic sequence. Right: tracking
result with estimated locations and orientations of three moving cameras overlaid
on the frame.

of two markers in one moving camera view were annotated manually in a range

of 100 frames as ground truth. We use the 2D distance in the image planes of

that camera between the respective body markers tracked by our algorithm and the

ground truth to assess accuracy. The average error of [Stoll et al. (2011)] is 25.9

pixels which reflects its failure to track this sequence. In contrast, our algorithm

achieves an average of 1.8 pixels as it tracked that sequence much more reliably; see

Fig. 6.12 and results video in [Elhayek et al. (2014b)].

We further tracked the three moving cameras using a SfM algorithm [Thormählen

et al. (2008)] and landmarks in the studio background. It failed to track two of the

three cameras because their motion consist of only rotation and small translation.

This further shows the power of our algorithm which works with any type of motion

in the cameras, but also means that we cannot quantitatively compare the tracking

accuracy of these two cameras obtained with our algorithm against ground truth.

We used the correct SfM tracking of the third camera as a ground truth to evaluate

our camera tracking accuracy. The average camera position error is 16.4 (cm) and

the average difference in angle in viewing direction between ground truth and our

tracked solution is 13.4 degrees. This also shows quantitatively that the camera

tracking is of good quality.

6.5 Discussion

This Chapter presents an algorithm for marker-less human motion capture with

moving and unsynchronized cameras that requires only minimal user interaction.
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(a) (b) (c) (d)

Figure 6.11: Quantitative evaluation of algorithmic components (Walk5 ). Tracking
result of (a) [Stoll et al. (2011)]; average error 4.0 (cm). The blue dots correspond
to the markers positions, (b) our weighting in HSV color scheme with [Stoll et al.
(2011)]; average error 1.9 (cm), (c) both weighting in HSV scheme and two-sided
similarity with [Stoll et al. (2011)]; average error 1.4 (cm), (d) the plot of the markers
positions error per frame where the blue, green and red correspond to (a), (b) and
(c); respectively.

Unlike existing approaches for skeletal tracking with moving cameras, our algorithm

does not require any additional hardware and succeeds on even highly dynamic and

cluttered scenes and for a more general range of camera motion where feature-based

camera calibration fails. Furthermore, our algorithm enables accurate full-body

outdoor motion tracking of one or several actors who perform non-trivial motion.

This is made possible by a new energy functional that simultaneously models camera

and skeletal pose parameters in a space-temporally consistent way based on the

appearance of tracked actors. We demonstrated the starkly improved performance

and application range of our algorithm relative to a baseline method it originated

from both quantitatively and qualitatively in an extensive set of experiments. In

this context we further contribute with one of the first evaluation datasets for video-

based pose tracking with moving cameras that features ground truth marker-based

pose data, as well as ground truth motion data of non-stationary cameras. We

believe that our technique is a step towards bridging the gap between complex and

expensive capture studios and unconstrained outdoor motion capture, such as on-

set tracking, which is essential in many computer graphics and computer vision

applications.

As the estimation of the camera motion parameters is based only on a small

sample of the 3D space (i.e., the position and pose of the actor), resulting cam-

era paths can be less accurate then with SfM approaches. The uncertainty is large

in the camera’s viewing direction (and becomes more pronounced with large focal
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Figure 6.12: Comparison with [Stoll et al. (2011)] on a moving and static cameras
sequence (Walk 6 ). Four sample frames of the tracking result from one moving
camera view. Top: [Stoll et al. (2011)]; average error 25.9 (pixel). Bottom: Our
algorithm; average error 1.8 (pixel).
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Figure 6.13: Failure cases. Left: Moving camera does not recover after a long
occlusion. Right: Inaccurate arms tracking because of the motion blur.

lengths), as small changes in the distance of the camera to the performer have only

little influence on the appearance of the model. However, our quantitative evalu-

ation shows that the obtained accuracy is still good under these more challenging

conditions. Also, our method successfully tracks both camera and human motion

in scenes where traditional SfM methods would fail as demonstrated in the results

video in [Elhayek et al. (2014b)] and the quantitative experiments reported earlier.

For some scenes, we could include image features as additional evidences into our

energy function to increase the stability of the tracking.

Our algorithm requires the tuning of four hyper-parameters: λ1 and λ2 for con-

trolling the contribution of the prior on the final energy and To and Tn for occlusion

detection. We chose their values through experiments and kept them fixed for all

results.

Although our algorithm produced reasonable tracking results even in challenging

environments, failure cases remain. Figure 6.13 exemplifies specific directions where

future improvement is desired: Our occlusion handling strategy relies on the linear

extrapolation of camera motions during the occlusion. This may fail when the

camera motion is highly nonlinear, which is likely for long occlusions as shown in

Fig. 6.13 left. For this case, a more expensive global optimization could be exercised

for recovering from the occlusion. Figure 6.13 right shows an example of tracking

failure (in the left arm) due to strong motion blur.

In the future, synergies between motion deblurring and tracking shall be ex-
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plored. Occlusion of body parts in many camera views can lead to tracking errors.

Solutions to this problem deserve further investigation. Our occlusion detection

scheme for cameras can also be used in detecting skeletal pose tracking failures

(Section 6.3): When there is more than one camera undergoing occlusion, this in-

dicates a likely skeletal pose error, and a global pose optimization, such as particle

filtering, could be initiated to recover from it.

In practice, the tracking accuracy of the algorithm proposed in this chapter

decreases with input filmed using less than five cameras. Therefore, in Chapter

7, we propose a novel marker-less motion capture algorithm which achieves high

tacking accuracy from input filmed with as few as two cameras.
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Chapter 7

Motion Capture with a Low
Number of Cameras

In Chapter 5, we have demonstrated that marker-less skeletal motion tracking is

also feasible in a less controlled studio setting; i.e. with unsynchronized cameras.

Moreover, we have presented in Chapter 6 a method for capturing the skeletal mo-

tions of humans using a sparse set of potentially moving cameras in an uncontrolled

outdoor environment in front of more general backgrounds where foreground seg-

mentation is hard. Commonly these methods rely on a kinematic skeleton model

with attached shape proxies, and they track the motion by optimizing an alignment

metric between model and images in terms of the joint angles. Formulating and

optimizing this usually highly non-convex energy is difficult. Global optimization

of the pose is computationally expensive, and thus local methods are often used for

efficiency, at the price of risking convergence to a wrong pose. With a sufficiently

high number of cameras (≥ 8), however, efficient high accuracy marker-less tracking

is feasible with local pose optimizers. Unfortunately, this strategy starts to break

badly if only 2− 3 cameras are available, even when recording simple scenes inside

a studio.

In a separate strand of work, researchers developed learning-based discriminative

methods for body part detection in a single image. Since part detection alone is

often unreliable, it is often combined with higher-level graphical models, such as

pictorial structures [Andriluka et al. (2009)], to improve robustness of 2D part or

joint localization. Recently, these 2D pose estimation methods were extended to the

multi-view case, yielding 3D joint positions from a set of images taken at the same

time step [Belagiannis et al. (2014)]. Detection-based pose estimation can compute

joint locations from a low number of images taken under very general conditions.
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However, accuracy of estimated joint locations is comparably low, mainly due to

the uncertainty in the part detections, and pose computation is far from real-time.

Also, the approaches merely deliver joint positions, not articulated joint angles, and

results on video exhibit notable jitter.

This chapter describes a new method to fuse marker-less skeletal motion track-

ing with body part detections from a convolutional network (ConvNet) for efficient

and accurate marker-less capture of articulated skeleton motion of several subjects

in general scenes, indoors and outdoors, even from input filmed with as few as two

cameras. Through fusion, the individual strengths of either strategy are fruitfully

enforced and individual weaknesses compensated. The core contribution is a new

way to combine evidences from a discriminative ConvNet-based monocular joint

detector [Tompson et al. (2014a)] with a model-based articulated pose estimation

framework [Stoll et al. (2011)]. This is done by a new weighted sampling from a pose

posterior distribution, guided by the articulated skeleton model that employs part

detection likelihoods. This yields likely joint positions in the image with reduced

positional uncertainty, which are used as additional constraints in a pose optimiza-

tion energy. The result is one of the first algorithms to capture temporally stable,

fully articulated joint angles from as little as 2-3 cameras, also of multiple actors in

front of moving backgrounds.

We tested our algorithm on challenging indoor and outdoor sequences filmed

with different video and mobile phone cameras, on which model-based tracking alone

fails. The high accuracy of our method is shown through quantitative comparison

against marker-based motion capture, marker-less tracking with many cameras, and

detection-based 3D pose estimation methods. Our approach can also be applied in

settings where other approaches for pose estimation with a low number of sensors,

that are based on depth cameras [Baak et al. (2011)] or inertial sensors [Pons-Moll

et al. (2011)], are hard or impossible to utilize, e.g. outdoors. The accuracy and

stability of our method is achieved by carefully and cleverly combining all input

information (i.e. 2D detections, the pose of the previous frame, several views, the

3D-model, and camera calibration). For instance, our method provides 1) strategies

to select the correct scale of the ConvNet; 2) strategies to avoid tracking failure by

weighting the final contribution of each estimate and by limiting the search space;

3) a new term which carefully integrates the body part detections from all cameras.

The work presented in this chapter was published in [Elhayek et al. (2015a)].
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Figure 7.1: Overview of our approach: Our pose optimization scheme combines
constraints from an appearance-based 3D model-to-image similarity with ConvNet
joint detection constraints to compute articulated joint angles at each time frame.

7.1 Method Overview

The input to the approach proposed in this chapter are multi-view video sequences

of a scene, yielding n frames I = Ic1, ..., I
c
n for each static and calibrated camera

c ∈ C. Cameras can be of varying types and resolution, but run synchronized at

the same frame rate.

We model each human in the scene with an articulated skeleton, comprising of

24 bones and 25 joints. Joint angles and global pose are parameterized through 48

pose parameters Θ, represented as twists. Later, for 13 of the joints - mostly in

the extremities - ConvNet detection constraints are computed as part of our fused

tracker. In addition, 72 isotropic Gaussian functions are attached to the bones, with

each Gaussian’s position in space (mean) being controlled by the nearest bone. Each

Gaussian is assigned a color, too. This yields an approximate 3D Sum of Gaussians

(SoG) representation of an actor’s shape; refer to Section 3.2.1 for more details.

In parallel, each input image is subdivided into regions of constant color using fast

quad-tree clustering, and to each region a 2D Gaussian is fitted; see Section 3.2.2 for

more details. Before tracking commences, the bone lengths and the Gaussians need

to be initialized to match each tracked actor. Depending on the type of sequence

(recorded by us or not), we employ an automatic initialization scheme by optimizing
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bone lengths, as described in Section 3.2.1. If initialization poses were not captured,

the model is manually initialized on the first frame of multi-view video.

The baseline generative model-based marker-less motion capture approach by

Stoll et al. (2011) and our extensions in this thesis use the aforementioned scene

representation and estimate pose by optimizing a color- and shape-based model-to-

image similarity energy in Θ. This smooth and analytically differentiable energy

can be optimized efficiently, which results in full articulated joint angles at state-of-

the-art accuracy if enough cameras (typically ≥ 8) are available, and if the scene is

reasonably controlled i.e. well-lit and with little lighting variations. These methods

quickly fail, however, if the number of cameras falls below five, and if - in addition

- scenes are recorded outdoors, with stronger appearance changes, with multiple

people in the scene, and with more dynamics and cluttered scene backgrounds.

To make this model-based tracking strategy scale to the latter more challeng-

ing conditions, we propose in this chapter a new way to incorporate into the pose

optimization additional evidence from a machine learning approach for joint local-

ization in images based on ConvNets. ConvNet-based joint detection [Tompson

et al. (2014a)] shows state-of-the-art accuracy for locating joints in single images,

even in challenging and cluttered outdoor scenes. However, computed joint likeli-

hood heat-maps are rather coarse, with notable uncertainty, and many false positive

detections; see Fig. 7.2. Extracting reliable joint position constraints for pose opti-

mization directly from these detections is difficult.

To handle these uncertainties, we propose a model-guided probabilistic approach

that extracts the most likely joint locations in the multi-view images from the un-

certain ConvNet detections. To this end, the pose posterior for the next frame is

approximated by importance sampling with weights from the detection likelihood

in the images. Here, the pose prior is modeled reliably based on articulated motion

extrapolation from the previous time step’s final pose estimate. From the sampled

posterior, the most likely image location for each joint is computed, which is then

incorporated as constraint into the pose optimization energy, see Section 7.3. In

conjunction, this yields a new pose energy to be optimized for each time frame of

multi-view video.

E(Θ) = wcolEcol(Θ) + wBPEBP (Θ)− wlElim(Θ)− waEacc(Θ) (7.1)

where Ecol(Θ) is a color- and shape-based similarity term between the projected

body model and the images (Section 7.2), EBP (Θ) denotes the ConvNet detection
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term (Section 7.3), and wcol and wBP control their weights. Elim(Θ) enforces joint

limits, and Eacc(Θ) is a smoothness term penalizing too strong accelerations [Stoll

et al. (2011)]. The weights wcol = 1, wBP = 5, wl = 0.1 and wa = 0.05 were found

experimentally and are kept constant in all experiments.

This new energy remains to be smooth and analytically differentiable, and can

thus be optimized efficiently using standard gradient ascent method, initialized with

the previous time step’s extrapolated pose. ConvNet detections can be computed

faster too. By optimizing this new energy, we can track fully articulated joint

angles at state-of-the-art accuracy on challenging scenes with as few as two cameras.

The outline of the processing pipeline of the approach proposed in this chapter is

illustrated in Fig. 7.1.

7.2 Appearance-based Similarity Term

The appearance-based similarity term Ecol measures the overlap between a 3D model

and the 2D SoG images for the images of each camera c as defined in (Eq. 3.7).

Therefore, the final appearance similarity term computed over all cameras reads as

follows:

Ecol(Θ) =
∑
c∈C

∑
j∈KIc

min

 ∑
i∈Ψ(Km(Θ,c))

Eij

 , Eii

 , (7.2)

where Eij is the similarity between a pair of Gaussians Bi and Bj given their colors

as defined in (Eq. 3.4). We use the same occlusion approximation of [Stoll et al.

(2011)]. This prevents projected 3D Gaussians from contributing multiple times in

(Eq. 3.2); see Section 3.2 for details.

7.3 ConvNet Detection Term

We employ a ConvNet-based localization approach [Tompson et al. (2014a)] to com-

pute for each of the nprt = 13 joints j in the arms, legs and head a Heat-map image

Hj,c for each camera view c at the current time step. This approach achieves state

of the art results on several public benchmarks and is formulated as a Convolutional

Network [LeCun et al. (1998a)] to infer the location of the 13 joints in monocular

RGB images; please see Section 3.3 for a summary of this approach. A common

problem in discriminative body part detection methods is the separation between
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7.3 ConvNet Detection Term

Figure 7.2: Refinement of the Body Part Detections using the pose posterior. Left:
Overlay of the heat-map for the right ankle joint over the input image. Middle:
sampling from pose posterior around the rough 2D position pinitj,c (black dots). Right:
The final refined location of the body part dj,c (blue dot).

front-back and left-right of the body anatomy because of the different camera po-

sitions. This problem becomes more complicated in case of 3D pose estimation of

multiple humans, given similar body parts of different humans in each view. A

major advantage of the ConvNet detections for 3D human pose estimation is that

they do not suffer from this front/back ambiguity. The detector has been trained

to differentiate left and right limb joints effectively. We attribute this to their high

discriminative capacity, efficient use of shared (high-level) convolutional features,

learned invariance to input image transformations, and large input image context.

We do not explicitly train the ConvNet on frames used in our work, but use a net

pre-trained on the MPII Human Pose Dataset [Andriluka et al. (2014)], which con-

sists of 28,821 training annotations of people in a wide variety of poses and static

scenes. Note that training on our own sequences (or sequences similar to ours) may

increase accuracy even further.

We employ a weighted sampling from a pose posterior guided by the kinematic

model to extract the most likely 2D joint locations dj,c in each image from the

uncertain likelihood maps (Section 7.3.1). These are used as additional constraints

in the pose optimization energy (Section 7.3.2).

7.3.1 Refining Joint Detections

The joint detection likelihoods in Hs
j,c exhibit notable positional uncertainty, false

positives, and close-by multiple detections in multi-person scenes, Fig. 7.3 (Left).
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7. MOTION CAPTURE WITH A LOW NUMBER OF CAMERAS

We therefore propose a new scheme to extract the most likely location dj,c of each

joint in each camera view (and for each tracked person if multiple people are in the

scene), given the history of tracked articulated poses. Our approach is motivated

by weighted sampling from the 3D pose posterior distribution P (D|Θ).

P (Θ|D) ∝ P (D|Θ)P (Θ) . (7.3)

Here, D is short for the image evidence. The likelihood P (D|Θ) is represented by the

ConvNet responses in the image plane. The pose prior P (Θ) is modeled by building

a Gaussian pose distribution with a mean centred around the pose Θt
0 predicted

from the previous time steps, as follows:

Θt
0 = Θt−1 + α(Θt−1 −Θt−2) . (7.4)

where α = 0.5 for all sequences. In practice, we compute for each joint the most

likely location dj,c by weighted sampling from the posterior. Instead of working on

all joints and images simultaneously, we simplify the process, assuming statistical

independence, and thus reduce the number of samples needed by performing the

computation for each image and joint separately. First, an extrapolated projected

mean 2D location of j in c is computed pinitj,c by projecting to joint location in pose Θt
0

into the image. Then we sample N = 250 2D pixel locations p from a 2D-Gaussian

distribution with mean µ = pinitj,c and σ = 20 pixel. This can be considered a per-

joint approximation of the posterior P (Θ) from Eq (7.3), projected into the image.

Fig. 7.2 illustrates this process.

For each sample p we compute a weight w(p)

w(p) =


Hq
j,c(p) Hq

j,c(p) > Hth

0 Hq
j,c(p) ≤ Hth

(7.5)

where we set Hth = 0.25. The final assumed position of the joint dj,c is calculated

as the average location of the weighted pose posterior samples

dj,c =
N∑
i=1

pi ∗ w(pi). (7.6)
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7.4 Experiments and Results

The latter step can be considered as finding the mode of the weighted samples drawn

from the posterior P (Θ|D) using the ConvNet responses as likelihood. As a result,

dj,c is an accurate estimate of the actual 2D position of the body part. Note that

the size of the person in the image may vary significantly over time and across

camera views. To cope with this, the scale q of the heat-map at which detections

are computed best is automatically selected for each camera, joint, and time step as

part of the computation of dj,c. Specifically, q is the scale s at which in a 50 × 50

pixel neighborhood around pinitj,c the highest detection likelihood was found.

In case more than one body part of the same class (e.g. left wrist) are close to

each other in one of the views, for instance if there are multiple actors in the scene

(see Fig 7.3(Right)), the value dj,c can be wrongly found as the middle between the

two detections. Since the heat-map value at dj,c is comparably low in the middle

between two parts, such erroneous detections (e.g. with two nearby people in one

view) can also be filtered out by the above weighting with a minimum threshold.

7.3.2 Detection Term

Our ConvNet joint detection term measures the similarity between a given pose

Θ of our body model and the refined 2D body part locations. Since the body

model pose lies in the 3D space and the refined 2D body part locations are detected

on the image, we first need to project the 3D joint positions defined by Θ into

the respective camera image plane using the projection operator Ψc of camera c.

We incorporate the detected joint locations dj,c into the SoG model-based pose

optimization framework by adding the following term to (Eq. 7.1):

EBP (Θ) =
∑
c∈C

nprt∑
j=1

w(dj,c) exp

(
−‖Ψi(lj(Θ))− dj,c‖2

σ2

)
. (7.7)

Here, w(dj,c) is a weight for a constraint computed as the detection likelihood of the

most likely image location dj,c; i.e. w(dj,c) is the heat-map value at dj,c. lj(Θ) is the

3D joint position of j if the model strikes pose Θ.

7.4 Experiments and Results

We evaluated our algorithm on six real world sequences, which we recorded in an

uncontrolled outdoor scenario with varying complexity. The sequences vary in the

numbers and identities of actors to track, the existence and number of moving objects
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7. MOTION CAPTURE WITH A LOW NUMBER OF CAMERAS

Figure 7.3: Left: Joint detection likelihoods for the right ankle in the heat-maps
Hj,c exhibit notable positional uncertainty, and there are many false positives and
close-by multiple detections. Right: Even though two body parts for the same
class (i.e. lower wrist) are close to each other in the images, our approach is able to
correctly estimate their individual locations.

in the background, and the lighting conditions (i.e. some body parts lit and some

in shadow). Cameras differ in the types (from cell phones to vision cameras), the

frame resolutions, and the frame rates. By quad-tree decomposition, all images are

effectively downsampled to a small resolution used in the generative energy (i.e. blob

frame resolution). For the joint detection computation, the full resolution images are

used and four heat-maps, with different scales for the subject, are generated. Please

note that all cameras are frame synchronized. In particular, the cell phone cameras

and the GoPro cameras are synchronized using the recorded audio up to one frame’s

accuracy. Moreover, we recorded additional sequences in a studio for marker-based

or marker-less quantitative evaluation of skeletal motion tracking. The ground truth

of the Soccer sequence was computed based on manual annotation of the 2D body

part locations in each view. The ground truth of the Marker sequence was acquired

with a marker-based motion capture system and the ground truth of Run1 was
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7.4 Experiments and Results

Figure 7.4: Our ConvNet-based marker-less motion capture algorithm reconstructs
joint angles of multiple people performing complex motions in outdoor settings, such
as in this scene recorded with only three mobile phones: (left) 3D pose overlaid with
one camera view, (right) 3D visualization of captured skeletons.

estimated based on marker-less tracking with a dense setup (i.e. 11 cameras) using

a variant of [Stoll et al. (2011)]. Table 7.1 summarizes the specifications of each

sequence. Apart from body model initialization, which requires the user to apply a

few strokes to background segment the images of four actor poses (see Section 3.2),

tracking is fully-automatic. Further, the run-time of our algorithm depends on the

number of cameras and actors, and the complexity of the scene, e.g. the number

of Guassians needed in 2D. For a single actor and three cameras (e.g. the Walk

sequence from the HumanEva dataset [Sigal et al. (2010)]), our algorithm takes

around 1.186s for processing a single frame.

Qualitative Results Figures 7.4 and 7.5 show example poses tracked from out-

door sequences with our approach. Please see also the video in [Elhayek et al.

(2015b)] for additional results. Our algorithm successfully estimates the pose pa-

rameters of the actors in challenging outdoor sequences with two or three cam-

eras. In particular, our algorithm successfully tracks the two actors in Soccer and

Juggling, who often occlude each other, it tracks the actors in highly cluttered

scenes (Walk2, Run2) - each of which contains many moving people in the back-

ground, and it performs well in a sequence with strong lighting variations (Walk1).

All of these sequences are challenging to previous methods.
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7.4 Experiments and Results

Figure 7.5: Qualitative results: From top to bottom particular frames for the Soccer,
Juggling, Walk2, Run2 and Walk1 sequences recorded with only 2-3 cameras. For
each sequence, from left to right, 3D pose overlaid with the input camera views for
two frames and 3D visualizations of the captured skeletons.
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7. MOTION CAPTURE WITH A LOW NUMBER OF CAMERAS

Table 7.2: Average overlap of the 3D SoG models against an input view (not used
for tracking).

Sequence gen (Gen. term only) disc (Discr. gen+disc Max.
[Stoll et al. (2011)] term only) (Combined energy) overlap

Soccer 43.58 46.83 46.84 47.62
Juggling 58.48 60.72 62.87 *
Marker 49.33 46.99 54.17 60.58
Run1 47.04 52.86 53.23 53.58
Run2 17.93 55.96 55.98 *
Walk1 31.78 54.16 54.77 *
Walk2 34.12 34.96 35.52 *
Kickbox 57.07 58.01 59.32 *

Quantitative Results We evaluated the importance of each term of our combined

energy function and compared our method against state-of-the-art multi-view and

3D body part detection methods. We evaluated the results of three variations of our

approach: gen neglecting the ConvNet detection term (i.e. wBP = 0 in Eq. 7.1),

disc neglecting the Appearance-based Similarity term (i.e. wcol = 0 in Eq. 7.1),

and gen+disc, our full combined energy (i.e. wBP = 5 and wcol = 1). Please note

that gen is similar to applying the generative marker-less motion capture method

proposed by Stoll et al. (2011).

In Table 7.2, we calculated the average overlap of the 3D SoG models against

one additional input view not used for tracking for each sequence. This value is

calculated using the Ecol (Eq. 3.6) considering only the additional camera view. A

higher number indicates that the reconstructed pose (and model) matches better the

input image. As can be seen in Fig. 7.6, even small improvements in the overlap value

translate to great improves in the tracking, e.g. hands and feet. The results in the

table show that our combined method achieves higher accuracy than applying [Stoll

et al. (2011)] or only applying the ConvNet detection term. Please note that Max.

Overlap is the average overlap of the 3D SoG models, defined by the ground truth

model parameters. The method proposed in Stoll et al. (2011) is used as ground

truth for some sequences. However, it failed even with many cameras for outdoor

sequences (marked with * in the table). Fig. 7.6 shows the visual improvements of

our solution. As shown in the images, by combining both energy terms, we are able

to better reconstruct the positions of the hands and feet.
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7.4 Experiments and Results

We also compared the individual components of our approach in terms of the

average 3D joint position reconstruction error over time. Table 7.3 summarizes the

comparison for the sequences that possess ground truth 3D joint positions (obtained

with different methods depending on the sequence). Fig. 7.7(top) shows the plot

of the 3D joint position reconstruction error over time for sequence Marker for

all three variants. Fig. 7.7(bottom) shows visual results for each variant. As seen

in the images, our combined approach (gen+disc) is able to reconstruct the pose

of the subject more accurately. Note that with a small camera setup (only 2-3

cameras), our approach is able to reach a similar level of accuracy achieved by a

dense multi-view approach in controllable indoor scenes.

Figure 7.6: Particular frame for the Juggling sequence. From left to right, com-
parison between gen+disc, disc and gen, respectively. The individual strengths
of both strategies are fruitfully enforced in our combined energy, which allows more
accurate estimation of the positions of hands and feet.

Comparisons We evaluated our approach using the Boxing and Walking sequence

from the HumanEva benchmark [Sigal et al. (2010)] and compared the results against

Sigal et al. (2012), Amin et al. (2013) and Bel (2014). Table 7.4 summarizes the

comparison results. As seen in the table, Amin et al. (2013) shows very low average

error but we also achieve similar results using our hybrid approach, outperforming

the other methods. However, it is also important to consider the motion recon-

struction quality over time and not only the average 3D joint position error. In the

results video in [Elhayek et al. (2015b)], it is shown that our method presents a

better temporal reconstruction when compared to Amin et al. (2013). Our results

are more stable, presenting a good temporal coherent reconstruction over time. In

constrast, [Amin et al. (2013)] shows a considerable amount of jittering and wrong

detections (i.e. jumps) over time.
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7. MOTION CAPTURE WITH A LOW NUMBER OF CAMERAS

Figure 7.7: (top) Plot showing the average 3D joint position reconstruction error for
sequence Marker using 2 input cameras only. (bottom) Visual results for variants
gen+disc, disc and gen, respectively. Note that the correct reconstruction of the
pose (e.g. hands and feet) is only possible with the combined terms in the energy
function (gen+disc).

Figure 7.8 plots the average 3D joint position error for the Box sequence for

both approaches. Note that our approach presents a constant error level, with a

lower variance. We believe that part of this error is coming mostly from a different

initial joint configuration in our approach, i.e. bone lengths and joint locations.

In constrast to Amin et al. (2013), we do not train our model on the HumanEva

dataset. Figure 7.9 shows our skeleton and the ground truth joint positions overlaid

in the input images for all three camera views for the Box and Walk sequences. Note
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7.5 Discussion

that for the error calculation we only use the skeleton joints that exist in HumanEva,

which is less than the total number of joints our standard skeleton contains. In the

figure, the red and green joints are our reconstructed joints, and the blue and pink

joints are the ground truth information. Note that although our joint positions

match the real underlying human skeleton better, our skeleton configuration (i.e.

bone lengths and joint locations) is not the same as in the HumanEva skeleton.

We argue that our increased 3D joint position error value is partly due to a mis-

match between the dimensions of our skeleton and the dimensions of the HumanEva

skeleton up to a constant offset. Also, please note that the marker positions in Hu-

manEva (on the surface of the actor) are not identical to joint positions (inside the

body) which causes an offset anyways. We believe that with this observation and

the high temporal stability of our approach, our results are of higher quality.

7.5 Discussion

In this chapter, we presented a novel and robust marker-less human motion capture

algorithm that tracks articulated joint motion with only 2-3 cameras. By fusing the

2D body part detections, estimated from a ConvNet-based joint detection algorithm,

into a generative model-based tracking algorithm, based on the Sums of Gaussians

framework, our system is able to deliver high tracking accuracy in challenging out-

door environments with only 2-3 cameras. Our method also works successfully when

there is strong background motion (many people moving in the background), when

very strong illumination changes are happening or when the human subject performs

complex motions. By comparing against sequences recorded in controlled environ-

ments or recorded with many cameras, we also demonstrated that our system is able

to achieve state-of-the-art accuracy despite a reduced number of cameras.

However, our method is subject to a few limitations. Currently, we can not track

sequences with moving cameras. Nevertheless, we believe it is feasible to extend this

Table 7.3: Average 3D joint position error [cm].

Sequence Soccer Marker Run1

gen (Gen. term only) 13.93 6.39 13.50
disc (Discr. term only) 3.79 5.69 6.11
gen+disc (Comb. energy) 3.95 3.92 5.84
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7. MOTION CAPTURE WITH A LOW NUMBER OF CAMERAS

Table 7.4: Average 3D joint position error for the HumanEva Walk and Box se-
quences.

Sequence Walk [cm] Box [cm]

Amin et al. (2013) 5.45 4.77
Sigal et al. (2012) 8.97 -
Bel (2014) 6.83 6.27
Our approach 6.65 6.00

approach to work with moving cameras by combining our outdoor motion capture

algorithm in Chapter 6 with our ConvNet detection term (Eq. 7.7). With the current

method motion tracking with a single camera view is not feasible because several

body-parts are allows occluded in each frames. Also, the frame rate of the camera

needs to be adequate to handle the speed of the recorded motion. For example, if

fast motions are captured with a lower frame rate, we might not be able to track

the sequence accurately, as shown in Fig. 7.10 for the Kickbox sequence, recorded

at 23.8fps. However, this is also a common problem with approaches relying on a

dense camera setup. Unlike purely generative methods, our approach is still able to

recover from tracking errors, even with such fast motion, and it can work correctly

with higher frame rate cameras. Our approach works well even for challenging

sequences like the juggling, which contains a cartwheel motion. However, for more

complex motions, it might be necessary to re-train the ConvNet-based method for

improving results.
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7.5 Discussion

Figure 7.8: Plot showing the average 3D joint position error for the Box sequence
from the HumanEva dataset using our approach (green curve) and Amin et al.
(2013) (blue curve).
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7. MOTION CAPTURE WITH A LOW NUMBER OF CAMERAS

Figure 7.9: Differences between our initial skeleton configuration and the HumanEva
skeleton configuration (our ground truth) - Box (left column) and Walk (right col-
umn) sequences - can cause an increase in our 3D average joint position error. In
the figures, the red and green joints are our reconstructions and the blue and pink
joints are the ground truth positions.
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7.5 Discussion

Figure 7.10: Fast motions recorded with a lower frame rate (23.8fps) generate blurred
images, which makes it hard for our method to correctly track the foot with only 3
cameras.
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Chapter 8

Conclusions and Future Work

In this thesis, we proposed novel approaches for generalizing the marker-less human

motion-capture setup. Our algorithms succeed in general scenes with unsynchro-

nized, moving and sparse multi-camera setups. Simplifying the complex and expen-

sive human motion-capture setup opens up the benefits of human motion-capture to

a wide range of industries. To this end, we proposed four algorithms which can be

adopted in many practical applications to achieve similar performance as complex

motion capture studios with a few cheap consumer-grade cameras (e.g. mobile-phone

or GoPro) even in uncontrolled outdoor scenes. We proposed an optical multi-video

synchronization method that achieves subframe accuracy in general scenes in Chap-

ter 4. We introduced a spatio-temporal motion-capture method that works with

unsynchronized cameras in Chapter 5. The proposed algorithm in Chapter 6 allows

motion-capture to be performed with moving cameras, even in front of cluttered

and dynamic backgrounds. Finally, our method in Chapter 7 allows to achieve high

motion-capture accuracy with a low number of cameras.

As a result of the strong relation between the four methods proposed in this the-

sis, we consider them as four consecutive steps toward high-quality human motion-

capture with few unsynchronized handheld cameras. In particular, the method

proposed in Chapter 4 estimates multi-video synchronization parameters while the

method in Chapter 5 uses these parameters to achieve optimal motion-capture accu-

racy with unsynchronized cameras. However, the second method fails with moving

cameras, which is resolved by the method proposed in Chapter 6. Finally, the

method in Chapter 7 works with a low number of cameras, which is a limitation of

the third method.

In Chapter 4 [Elhayek et al. (2012c)], we present a novel algorithm for temporally

synchronizing multiple videos capturing the same dynamic scene. This algorithm
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relies on general image features and it does not require explicitly tracking any specific

object, making it applicable to general scenes with complex motion. To enable this,

we contributed with a robust trajectory filtering and energy minimization framework

based on RANSAC for the multi-camera case. Moreover, we propose a novel strategy

for identifying an informative subset of video pairs which further improves the multi-

camera synchronization performance and prevents the RANSAC algorithm from

being biased by outliers.

In Chapter 5 [Elhayek et al. (2012a)], we present a new spatio-temporal method

for marker-less motion capture. We reconstruct the pose and motion of a character

from a multi-view video sequence without requiring the cameras to be synchronized,

and without aligning captured frames in time. Unlike previous approaches that rely

on synchronized input video, our method makes use of the additional temporal res-

olution to successfully track fast-moving actors with low frame rate cameras. It also

enables setting up simpler and cheaper capture setups, as there is no need anymore

for hardware-based synchronization and high-frame rate cameras. Moreover, by pur-

posefully running cameras unsynchronized, we can even capture very fast motion at

speeds that off-the-shelf cameras provide. However, this algorithm works only for

static cameras inside a motion-capture studio.

In Chapter 6 [Elhayek et al. (2014a)], we present a method for capturing the

skeletal motion of humans using a set of potentially moving cameras in an uncon-

trolled environment. This approach is able to track multiple people even in front

of cluttered and dynamic backgrounds using unsynchronized cameras with varying

image quality and frame rates where feature-based camera calibration, for example

via structure-from-motion (SfM), fails.

In contrast to other outdoor motion-capture methods, this completely relies on

optical information, and does not make use of additional sensor information such as

depth images or inertial sensors. This method needs only minimal user interaction

to accurately track full-body motion of one or several actors who perform non-

trivial motion. We demonstrated the starkly improved performance and application

range of this algorithm relative to the baseline method it originated from, both

quantitatively and qualitatively, in an extensive set of experiments. In this context,

we further contribute with one of the first evaluation datasets for video-based pose

tracking from moving cameras that features ground-truth marker-based pose data,

as well as ground-truth motion data of non-stationary cameras. The main limitation

of this algorithm is that its accuracy decreases with input captured using fewer than

five cameras.
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8. CONCLUSIONS AND FUTURE WORK

In Chapter 7 [Elhayek et al. (2015a)], we presented a novel and robust marker-less

human motion-capture algorithm that tracks articulated joint motion with only 2-3

cameras. By fusing the 2D body part detections, estimated from a ConvNet-based

joint-detection algorithm, into a generative model-based tracking algorithm, based

on the Sums of Gaussians framework, this algorithm is able to deliver high tracking

accuracy in challenging outdoor environments with few cameras. This method also

works successfully when there is strong background motion (many people moving

in the background), when illumination is changing, or when the human subject

performs complex motions. By comparing against sequences recorded in controlled

environments or recorded with many cameras, we also demonstrated that this system

is able to achieve state-of-the-art accuracy despite the reduced number of cameras.

We believe that these four algorithms are a step towards bridging the gap between

complex and expensive capture studios and unconstrained outdoor motion-capture

with simple setups, such as on-set tracking, which is essential in many computer

graphics and computer vision applications. We feel that this advance will signifi-

cantly increase the number of future human motion-capture applications in a wide

range of industries.

As future work, we would like to investigate the use of a single RGB camera

for marker-less human motion-capture. This is is not feasible with our algorithm

in Chapter 7 because several body-parts are allows occluded in each frames. In

the future, we hope to investigate approaches for extending the connectivity of the

ConvNet-based joint detection algorithm in the time domain, to take advantage of

local spatio-temporal information.

A common problem shared by our methods and the methods that rely on a dense

camera setup is the difficulty in handling motion blur, which makes it hard to cor-

rectly track fast motion. Unlike purely generative methods such as the algorithms in

Chapter 5 and 6, the ConvNet-based marker-less motion-capture approach in Chap-

ter 7 is still able to recover from the tracking errors, even with fast motion. However,

to avoid this problem, the frame rate of the camera needs to be adequate to handle

the speed of the recorded motion. For example, if fast motions are captured with

a lower frame rate, it might not be possible to track the sequence accurately, even

with the approach in Chapter 7. Therefore, an interesting field of future research

is to re-train the ConvNet-based method with data which contains motion blur.

Moreover, synergies between motion deblurring and tracking shall be explored. The

ConvNet-based approach in Chapter 7 works well even for challenging sequences.

However, for more complex motions, it might fail. Thus, it may be necessary to

re-train the ConvNet with more data which contains complex motions.
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Currently, the process of estimating an actor-specific model still requires user

input (i.e. manually segmenting multi-view images of example poses and manually

initializing the pose parameters to roughly correspond to the initial poses). An

interesting field of future research is how to automate this process.

Another area of future work is to find a better solution for the self-occlusion

problem which can mislead the similarity function of the SoG tracker. This happens

when projecting a 3D model onto a 2D image plane where several Gaussians, that

are actually occluded, may be projected onto overlapping 2D positions. By han-

dling the self-occlusions, we mean preventing overlapping projected 3D SoGs from

contributing multiple times in the similarity function. So far, we used the simple

approximation of the occlusion term proposed by Stoll et al. (2011), where we clamp

the similarity to be at most the similarity of the image Gaussian with itself. We are

convinced that it is possible to develop a better strategy for handling self-occlusions.
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