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Prüfer: Univ.-Prof. Dr. P. Biane
Univ.-Prof. Dr. J-Y. Thibon



Abstract

The subject of this thesis is the non-commutative generalization of some probabilistic results
that occur in representation theory. The results of the thesis are divided into three different
parts.
In the first part of the thesis, we classify all unitary easy quantum groups whose intertwiner
spaces are described by non-crossing partitions, and develop the Weingarten calculus on these
quantum groups. As an application of the previous work, we recover the results of Diaconis and
Shahshahani on the unitary group and extend those results to the free unitary group.
In the second part of the thesis, we study the free wreath product. First, we study the free
wreath product with the free symmetric group by giving a description of the intertwiner spaces:
several probabilistic results are deduced from this description. Then, we relate the intertwiner
spaces of a free wreath product with the free product of planar algebras, an object which has
been defined by Bisch and Jones in [46]. This relation allows us to prove the conjecture of Banica
and Bichon.
In the last part of the thesis, we prove that the minimal and the Martin boundaries of a graph
introduced by Gnedin and Olshanski are the same. In order to prove this, we give some precise
estimates on the uniform standard filling of a large ribbon Young diagram. This yields a positive
answer to the conjecture that Bender, Helton and Richmond gave in [18].

Abstrakt

In dieser Dissertation widme ich mich der nicht-kommutativen Verallgemeinerung probabilistis-
cher Ergebnisse aus der Darstellungstheorie. Die Dissertation besteht aus einer Einleitung und
drei Teilen, die jeweils separate Veröffentlichungen darstellen.
In dem ersten Teil der Dissertation wird der Begriff von easy Quantengruppe im unitären Fall
untersucht. Es wird eine Klassifikation aller unitären easy Quantengruppen in dem klassischen
und freien unitären Fall gegeben. Des weiteren werden die probabilistischen Ergebnisse von [14]
auf den unitären Fall ausgedehnt.
In dem zweiten Teil der Dissertation widme ich mich zunächst dem freien Kranzprodukt einer
kompakten Quantengruppe mit der freien symmetrischen Gruppe. Die Darstellungstheorie
solcher Kranzprodukte wird beschrieben, und verschiedene probabilistische Ergebnisse werden
aus dieser Beschreibung gezogen. Dann wird eine Beziehung zwischen freien Kranzprodukten
und planaren Algebren hergestellt, die zu dem Beweis einer Vermutung von Banica und Bichon
führt.
In dem dritten Teil dieser Dissertation wird der Graph Z der Multiplikation der fundamentalen
quasi-symmetrischen Basis untergesucht. Der minimale Rand dieses Graphs wurde schon von
Gnedin und Olshanski identifiziert [42]. Wir beweisen jedoch, dass der minimale Rand und der
Martin-Rand gleich sind. Als Nebenprodukt des Beweises erhalten wir mehrere asymptotische
kombinatorische Ergebnisse bezüglich großer Ribbon-Young-Tableaus.



Résumé

Le sujet de cette thèse est la généralisation non-commutative de résultats probabilistes venant
de la théorie des représentations. Les résultats obtenus se divisent en trois parties distinctes.
Dans la première partie de la thèse, le concept de groupe quantique easy est étendu au cas
unitaire. Tout d’abord, nous donnons une classification de l’ensemble des groupes quantiques
easy unitaires dans le cas libre et classique. Nous étendons ensuite les résultats probabilistes de
[14] au cas unitaire.
La deuxième partie de la thèse est consacrée à une étude du produit en couronne libre. Dans un
premier temps, nous décrivons les entrelaceurs des représentations dans le cas particulier d’un
produit en couronne libre avec le groupe symétrique libre: cette description permet également
d’obtenir plusieurs résultats probabilistes. Dans un deuxième temps, nous établissons un lien
entre le produit en couronne libre et les algèbres planaires: ce lien mène à une preuve d’une
conjecture de Banica et Bichon.
Dans la troisième partie de la thèse, nous étudions un analoque du graphe de Young qui encode
la structure multiplicative des fonctions fondamentales quasi-symétriques. La frontière minimale
de ce graphe a déjà été décrite par Gnedin et Olshanski [42]. Nous prouvons que la frontière
minimale cöıncide avec la frontière de Martin. Au cours de cette preuve, nous montrons plusieurs
résultats combinatoires asymptotiques concernant les diagrammes de Young en ruban.
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Thesis summary

The subject of this thesis is the non-commutative generalization of some probabilistic results
that occur in representation theory. The results of the thesis are divided into three parts, which
are summarized here.

Weingarten calculus and free easy quantum groups Easy quantum groups have been
defined in [15] as a class of orthogonal compact quantum groups whose associated intertwiners
are described by set partitions. This class of compact quantum groups contains important exam-
ples of quantum groups as the classical orthogonal and symmetric groups and their free analogs,
the free orthogonal and free symmetric groups (see [95, 96]). In a second paper [14], it has been
possible to systematically develop the Weingarten calculus on these compact quantum groups
in order to get some probabilistic results: in particular, they recovered the convergence results
of Diaconis and Shahshahani (see [33]) on the orthogonal and symmetric group, and extended
them to the free case. The usual gaussian and Poisson laws are replaced in the free case by the
semicircular and the Marchenko-Pastur laws, their free analogs in free probability theory.
The first part of the thesis is devoted to the generalization of this framework in the unitary
case. Namely the compact quantum groups are not assumed to be orthogonal anymore, but
their intertwiner spaces are still described by set partitions with colors. The classical example
is given by the classical unitary group whose intertwiner spaces are described by permutations
(which can be seen as two-colored pair partitions) through the Schur-Weyl duality. We classify
all unitary easy quantum groups whose intertwiner spaces are described by non-crossing parti-
tions, and develop the Weingarten calculus on these quantum groups. As an application of the
previous work, we recover the results of Diaconis and Shahshahani on the unitary group and
extend those results to the free unitary group.

Free wreath product The free wreath product is a non-commutative analog of the classical
wreath product. The free wreath product is an algebraic construction that produces a new
compact quantum group from a compact quantum group and a non-commutative permutation
group. This construction arises naturally in the study of quantum symmetries of lexicograph-
ical products of graphs. In the classical case, the representation theory of a wreath product is
well-know (see for example [60], Part 1, Annex B) and the Haar measure has a straightforward
expression. It is for example easy to prove that the fundamental character of a wreath product
with the symmetric group Sn converges toward a compound Poisson law as n goes to infinity.
However in the free case, the Haar state doesn’t have any straightforward expression. For in-
stance Banica and Bichon conjectured in [10] that in some cases, the fundamental character of
a free wreath product is distributed as the free multiplicative convolution of the law of the two
initial fundamental characters.
In the second part of the thesis, we study the free wreath product. First, we study the free
wreath product with the free symmetric group by giving a description of the intertwiner spaces:
several probabilistic results are deduced from this description. Then, we relate the intertwiner
spaces of a free wreath product with the free product of planar algebras, an object which has
been defined by Bisch and Jones in [46]. This relation allows us to express the law of the charac-
ter of a free wreath product as a free multiplicative convolution of the initial laws, which proves
the conjecture of Banica and Bichon.



Martin boundary of the Zig-zag lattice The ring QSym of quasi-symmetric functions is
a refinement of the ring of symmetric functions, in the sense that any symmetric function has a
decomposition in terms of quasi-symmetric ones. An important basis of this ring is called the
fundamental basis, and its elements have a monomial expansion similar to the Schur basis of
the ring of symmetric functions: this expansion is indexed by semi-standard filling of ribbon
Young diagrams for the fundamental basis of QSym and by semi-standard filling of Young
diagram for the Schur basis of Sym. The multiplication structure of the Schur basis is encoded
by an important graph which is called the Young graph and denoted by Y. This graph has
many applications in the representation theory of the infinite group S∞ and in the probabilistic
behavior of some discrete processes. It has been intensively studied by Thoma, Vershik and
Kerov in [85, 86, 47]. In particular they identified the minimal and Martin boundaries of Y,
and proved that the two coincide. The analog of Y for the fundamental basis of QSym is the
graph Z of Zigzag diagrams. This lattice has been deeply studied by Gnedin and Olshanski
who identified in [42] its minimal boundary. They conjectured that the minimal and Martin
boundaries also coincide on Z.
In the last part of the thesis, we prove that the minimal and the Martin boundaries of Z are
the same. In order to prove this, we give some precise estimates on the uniform standard filling
of a large ribbon Young diagram: we prove that in a uniform filling, the fillings of distant cells
become independent in a certain sense. This yields a positive answer to the conjecture that
Bender, Helton and Richmond gave in [18].



Résumé de la thèse

Le sujet de cette thèse est la généralisation non-commutative de résultats probabilistes venant
de la théorie des représentations. Les résultats obtenus se divisent en trois parties qui sont
résumées ici.

Groupes quantiques easy et calcul de Weingarten: La théorie des représentations de
certains groupes et groupes quantiques orthogonaux compacts mettent en jeu un même objet
combinatoire, les partitions d’ensembles finis. Ceci est le cas pour le groupe orthogonal et le
groupe symétrique, ainsi que pour le groupe orthogonal libre et le groupe symétrique libre:
ces deux derniers sont des groupes quantiques qui ont été introduits par Wang [95, 96] comme
version non-commutative de leurs homologues classiques. Dans [15], Banica et Speicher ont
généralisé ces exemples en définissant les groupes quantiques easy. Il y a dans cette classe deux
situations extrêmes: celle où le groupe quantique est un groupe classique et celle où la théorie
des représentations du groupe est décrite par des partitions non-croisées. Dans ce dernier cas, le
groupe quantique est dit libre. La classification de tous les groupes quantiques easy dans le cas
classique et libre a été initiée par Banica et Speicher, puis complétée par Weber [15, 97]. Dans
un troisième temps, Raum et Weber [71] ont réussi à classifier l’ensemble des groupes quantiques
easy.
Pour un tel groupe quantique, le calcul de Weingarten [28] donne un moyen efficace de calculer
les intégrales par rapport à la mesure de Haar sur le groupe quantique. Avec l’aide du calcul de
Weingarten, Banica, Curran et Speicher [14] ont pu obtenir plusieurs resultats probabilistes dans
le cas des groupes quantiques easy libres ou classiques: par exemple, ils ont étendu à l’ensemble
de ces groupes quantiques les théorèmes asymptotiques de Diaconis et Shahshahani [33] sur les
traces des groupes orthogonaux et symétriques.
Dans la première partie de la thèse, le concept de groupe quantique easy est étendu au cas
unitaire. Tout d’abord, nous donnons une classification de l’ensemble des groupes quantiques
easy unitaires dans le cas libre et classique. Nous étendons ensuite les résultats probabilistes de
[14] au cas unitaire.

Produit en couronne libre: Le produit en couronne libre est une construction algébrique
dûe à Bichon [21] qui associe un groupe quantique compact à un sous-groupe quantique du
groupe symétrique libre pour créer un nouveau groupe quantique, d’une manière analogue au
produit en couronne classique. Alors que la mesure de Haar d’un produit en couronne classique
a une expression simple en fonction des mesures de Haar des groupes initiaux, il n’y a dans le
cas libre aucun moyen d’obtenir une formulation explicite de l’état de Haar. Banica et Bichon
ont conjecturé dans [10] que la loi du caractère fondamental d’un produit en couronne libre est
dans certains cas la convolution multiplicative libre des lois de caractère des groupes quantiques
initiaux.
La deuxième partie de la thèse est consacrée à une étude plus approfondie du produit en couronne
libre. Dans un premier temps, nous décrivons les entrelaceurs des représentations dans le cas
particulier d’un produit en couronne libre avec le groupe symétrique libre: cette description
permet également d’obtenir plusieurs résultats probabilistes. Dans un deuxième temps, nous
établissons un lien entre le produit en couronne libre et les algèbres planaires: ce lien mène à
une preuve de la conjecture de Banica et Bichon précitée.

Frontière de Martin du graph Z: Le graphe de Young est un graphe qui encode la structure
multiplicative de l’anneau des fonctions symétriques dans la base de Schur [85, 86, 47]. Cet



anneau, également défini comme l’anneau commutatif universel engendré par un nombre infini
et denombrable de variables, joue un rôle important dans la théorie des représentations du
groupe symétrique et du groupe unitaire. En retirant la condition de commutativité dans cet
anneau, on obtient un nouvel anneau non-commutatif qui a été introduit [41] comme l’anneau
des fonctions symétriques non-commutatives. Un résultat fondamental est qu’on peut associer
à cet anneau non-commutatif un anneau commutatif, l’anneau des fonctions quasi-symétriques,
qui présente un structure combinatoire similaire à celle de l’anneau des fonctions symétriques.
L’anneau des fonctions quasi-symétriques possède ainsi une base semblable à la base de Schur,
la base des fonctions fondamentales quasi-symétriques.
Dans la troisième partie de la thèse, nous étudions un analoque du graphe de Young qui encode
la structure multiplicative de la base des fonctions fondamentales. La frontière minimale de ce
graphe a déjà été décrite par Gnedin et Olshanski [42]. Nous prouvons que la frontière minimale
cöıncide avec la frontière de Martin. Au cours de cette preuve, nous montrons plusieurs résultats
combinatoires asymptotiques concernant les diagrammes de Young en ruban.



Zusammenfassung der Dissertation

In dieser Dissertation widme ich mich der nicht-kommutativen Verallgemeinerung probabilistis-
cher Ergebnisse aus der Darstellungstheorie. Die Dissertation besteht aus einer Einleitung und
drei Teilen, die jeweils separate Veröffentlichungen darstellen.

Easy Quantengruppen und Weingarten-Kalkül: In mehreren Fällen besitzen orthogonale
Gruppen und Quantengruppen eine ähnliche Darstellungstheorie, deren kombinatorische Struk-
tur mit Hilfe von mengentheoretischen Partitionen beschrieben wird: dies gilt zum Beispiel
für die symmetrische Gruppe und die orthogonale Gruppe sowie für die freie symmetrische
Quantengruppe und die freie orthogonale Quantengruppe, wobei letztere als nicht-kommutative
Verallgemeinerung von ersteren von Wang [95, 96] definiert wurden. In [15] wurden easy Quan-
tengruppen von Banica und Speicher zur Systematisierung dieses Phänomens eingeführt. Im
Rahmen der easy Quantengruppen gibt es zwei extreme Situationen: diejenige, in der die easy
Quantengruppe eine klassische Gruppe ist und diejenige, in der die Darstellungstheorie der easy
Quantengruppe mit Hilfe von nicht-kreuzenden Partitionen beschrieben wird. In letzterem Fall
wird die easy Quantengruppe frei genannt. Die Klassifikation aller klassischen und aller freien
Quantengruppen wurde von Banica, Speicher und Weber[15, 97] erreicht und später für alle easy
Quantengruppen von Raum und Weber [71] vollendet.
Für eine easy Quantengruppe existiert eine effiziente Methode, die Weingarten-Kalkül genannt
wird [28], um Integrale bezüglich des Haarmaßes zu berechen. Mit dem Weingarten-Kalkül kon-
nten Banica, Curran und Speicher [14] mehrere probabilistische Ergebnisse im Rahmen der easy
Quantengruppen erlangen: insbesondere wurde der Grenzwertsatz von Diaconis und Shahsha-
hani [33] bezüglich der Verteilung des fundamentalen Charakters der symmetrischen und or-
thogonalen Gruppen auf alle klassischen und freien easy Quantengruppen ausgedehnt.
In dem ersten Teil der Dissertation wird der Begriff von easy Quantengruppe im unitären Fall
untersucht. Es wird eine Klassifikation aller unitären easy Quantengruppen in dem klassischen
und freien unitären Fall gegeben. Des weiteren werden die probabilistischen Ergebnisse von [14]
auf den unitären Fall ausgedehnt.

Freies Kranzprodukt: Das freie Kranzprodukt ist eine von Bichon [21] eingeführte nicht-
kommutative Version des klassichen Kranzprodukts, mit Hilfe dessen eine neue Quantengruppe
aus einer kompakten Quantengruppe und einer Untergruppe der freien symmetrischen Quan-
tenruppe erzeugt wird. Während das Haarmaß für ein klassisches Kranzprodukt eine einfache
Gestalt hat, gibt es für das Haarmaß eines freien Kranzprodukts keine explizite Formulierung.
Banica und Bichon [10] stellten jedoch die Vermutung auf, dass die Verteilung des fundamen-
talen Charakters eines freien Kranzprodukts in vielen Fällen die multiplikative freie Faltung der
Verteilungen der beiden originären Charaktere ist.
In dem zweiten Teil der Dissertation widme ich mich zunächst dem freien Kranzprodukt einer
kompakten Quantengruppe mit der freien symmetrischen Gruppe. Die Darstellungstheorie
solcher Kranzprodukte wird beschrieben, und verschiedene probabilistische Ergebnisse werden
aus dieser Beschreibung gezogen. Dann wird eine Beziehung zwischen freien Kranzprodukten
und planaren Algebren hergestellt, die zu dem Beweis der Vermutung von Banica und Bichon
führt.

Martin-Rand des Graphs Z: Der Young-Graph Y beschreibt die multiplikative Struktur
des Rings der symmetrischen Funktionen in der sogenannten Schur-Basis [85, 86, 47]. Dieser



Ring ist der universelle kommutative Ring mit abzählbar unendlich vielen Variablen, der eine
große Rolle in der Darstellungstheorie der symmetrischen und unitären Gruppen spielt. Wenn
man die Kommutativität der Variablen wegfallen lässt, erhält man einen neuen Ring, der der
Ring der nicht-kommutativen symmetrischen Funktionen genannt wird [41]. Der Punkt ist,
dass man daraus trotzdem einen kommutativen Ring erzeugen kann, der ähnlich dem Ring
der symmetrischen Funktionen ähnlich ist. Insbesondere gibt es in diesem neuen Ring ein
Gegenstück der Schur-Basis, das die fundamentale quasi-symmetrische Basis genannt wird.
In dem dritten Teil dieser Dissertation wird der Graph Z der Multiplikation dieser fundamentalen
quasi-symmetrischen Basis untergesucht. Der minimale Rand dieses Graphs wurde schon von
Gnedin und Olshanski identifiziert [42]. Wir beweisen jedoch, dass der minimale Rand und der
Martin-Rand gleich sind. Als Nebenprodukt des Beweises erhalten wir mehrere asymptotische
kombinatorische Ergebnisse bezüglich großer Ribbon-Young-Tableaus.
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Chapter 1

Partitions and free probability

This chapter is an introduction to set partitions, a class of objects that underlies the combina-
torics of free probability. We set the notations, explain how set partitions are transformed into
linear morphisms, and describe their role in free probability.

1.1 Set partitions

1.1.1 Definition and notations

Definition of a set partition:

Definition 1.1. Let n, r ≥ 1. A set partition of n with r parts is a set p of subsets B1, . . . , Br
of J1;nK such that

⋃r
i=1Bi = {1, . . . , n} and for 1 ≤ i < j ≤ r, Bi ∩Bj = ∅.

A set Bi in the definition above is called a block of p. A block of cardinal one is called a
singleton and a block of cardinal 2 is called a pair. When no confusion is possible, a set partition
of n with r parts is simply called a partition of n. The set of all set partitions of n is denoted by
P (n) and the number of blocks of a partition p is denoted by b(p). P (0) denotes the empty set.
We write i ∼p j if and only if i and j are in a same block of p. This is an equivalence relation
on {1, . . . , n}. Assigning to each equivalence relation the set of its equivalence classes yields a
bijection between equivalence relations of {1, . . . , n} and set partitions of n.
A set partition is depicted by drawing the integers 1 to n on a row, and the blocks as lines between
them. Figure 1.1 is an example of such a drawing for n = 8 and p = {{1, 3, 4}, {2, 7}, {5, 8}, {6}}.

1 2 3 4 5 6 7 8

Figure 1.1: Partition {{1, 3, 4}, {2, 7}, {5, 8}, {6}} with 4 blocks.

We distinguish several subsets of Pn:

• The set P2(n) of pair partitions: these are partitions such that all blocks are pairs.

• The set NC(n) of non-crossing partitions: these are the partitions p of n such that if
1 ≤ i < j < k < l ≤ n and i ∼p k and j ∼p l, then j ∼p k. This means that we can draw
p such that the blocks do not cross each other. For example {{1, 2, 5}, {3, 4}, {6, 8}, {7}}
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1 2 3 4 5 6 7 8

Figure 1.2: Pair partition {{1, 5}, {2, 4}, {6, 8}, {3, 7}} with 4 blocks.

is a non-crossing partition:

1 2 3 4 5 6 7 8

Figure 1.3: Non-crossing partition {{1, 2, 5}, {3, 4}, {6, 8}, {7}} with 4 blocks

• The set NC2(n) of non-crossing pair partitions: NC2(n) is the set NC(n) ∩ P2(n).

1 2 3 4 5 6 7 8

Figure 1.4: Non-crossing pair partition {{1, 6}, {2, 3}, {4, 5}, {7, 8}} with 4 blocks

The lattice of set partitions Let p, q be two partitions of n, One says that p refines q
(denoted by p ≤ q) if any block of p is contained in a block of q. ≤ yields a partial order on the
set P (n) (resp. NC(n)). One can check that for p, q ∈ P (n) (resp. NC(n)), there always exist
a unique supremum p ∨ q and infimum p ∧ q of p and q in P (n) (resp. NC(n)), yielding that
(P (n),≤) and (NC(n),≤) are actually lattices.
Note that NC(n) is a subset of P (n) but not a sublattice, since two elements of NC(n) may
have a supremum in P (n) that differs from the one in NC(n). For example {{1, 3}, {2}, {4}}
and {{1}, {3}, {2, 4}} are both in NC(n); their supremum in NC(n) is {{1, 2, 3, 4}} whereas
their supremum in P (n) is {{1, 3}, {2, 4}}. However, for all p, q ∈ NC(n), p ∧ q is again in
NC(n). To distinguish both lattice, we write ∧P ,∨P for the supremum in P (n) and ∧NC ,∨NC
for the one in NC(n) (the subscripts are omitted when there is no confusion).

Two colored set partitions Let S be a denumerable set. A S−coloring of J1, rK is a map
c : J1, rK→ S. A S−colored partition p of r is a partition p̃ of P (r) together with a coloring c of
J1, rK. The partition p̃ is called the uncolored version of p. The set of S-colored partitions with
a particular coloring is denoted by P (c) or P (c(1), . . . , c(r)). We replace P by P2, NC or NC2

to emphasize the shape of the partitions.
A two-colored partition p of n is a S−partition with S = {◦, •}, a set of cardinal 2. The integer
n is thus fixed by the definition of c, and is also denoted by |c|. A two-colored partition corre-
sponds to a coloring of the extreme points of the blocks of p̃ with elements of {◦, •}. We denote
by P ◦•(n) (resp. P ◦•2 (n), NC◦•(n), NC◦•2 (n)) the set of two-colored partitions (resp. pair par-
titions, non-crossing partitions, non-crossing pair partitions). For each map c : J1;nK → {◦, •},
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P ◦•(c) denotes the set of two-colored partitions such that the coloring is given by the map c
(and the same for the three other kinds of partitions).

1.1.2 Two-level partitions

Definition 1.2. A two-level partition is a set partition p of n with a distinguished integer
l ∈ J0;nK. The integers lower than l are called the upper points and the integers greater than
l + 1 the lower points.

For k, l ≥ 0, the set of two-level set partitions of k+ l with k upper points and l lower points
is denoted by P (k, l) (and by P ◦•(k, l) when the partition is colored). The subset of non-crossing
two-level partitions (resp. two-level pairing, non-crossing two-level pairings) is denoted NC(k, l)
(resp. P2(k, l), NC2(k, l)) or NC◦•(k, l) (resp. P ◦•2 (k, l), NC◦•2 (k, l)) depending on whether they
are considered colored or not. When no confusion is possible, a two-level set partition is simply
called a partition. For c1 : J1; kK→ {◦, •} and c2 : Jk+ 1; k+ lK→ {◦, •}, we denote by P (c1, c2)
(resp. NC(c1, c2)) the set of two-level partitions in P (k, l) such that the coloring of the upper
points is given by c1 and the one of the lower points by c2.
A two-level set partition is drawn with two rows of integers, in such a way that the numbering
is cyclic:

8 7 6 5 4

321

Figure 1.5: Two-level partition in P (3, 5) with block structure {{5, 6, 8}, {2, 7}, {1, 4}, {3}}

The integers are omitted when they do not play any role.
Note that the lattice structure on P (n) (resp. NC(n)) extends to the case of two-level partitions
P (k, l) (resp. NC(k, l)). In the latter case, the lattice structure is the same as the one of
P (k + l), forgetting the role of lower and upper points. In the case of colored partitions, the
same identification is made to also give a lattice structure to the set P ◦•(c) for each c : J1, k+lK→
{◦, •}.

Operations on two-level colored partitions Several operations can be performed on two-
level colored partitions. The easiest is to give a pictorial description of each of these operations.

• The tensor product of two partitions p ∈ P ◦•(k, l) and q ∈ P ◦•(k′, l′) is the partition
p ⊗ q ∈ P ◦•(k + k′, l + l′) obtained by horizontal concatenation (writing p and q side by
side). The first k points of the k + k′ upper points are connected by p to the first l of the
l + l′ lower points, and the remaining k′ upper points are connected to the remaining l′

lower points by q.

• The horizontal reflection of a partition p ∈ P ◦•(k, l) is given by the reflection of p through
the horizontal axis. We also call it the involution of the partition p and denote it by
p∗ := Rh(p).

• The vertical reflection of a partition p ∈ P ◦•(k, l) is given by the reflectionRv(p) ∈ P ◦•(k, l)
of p through the vertical axis.
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◦ • ◦ ◦ •

◦•• ⊗
◦ •

• • ◦

=

◦ • ◦ ◦ •

◦••

◦ •

• • ◦

Figure 1.6: Tensor product of two partitions

◦ •

• • ◦
∗

=

◦ •

• • ◦

Figure 1.7: Horizontal reflexion of a partition

• The composition of two partitions q ∈ P ◦•(k, l) and p ∈ P ◦•(l,m) is the partition pq ∈
P ◦•(k,m) obtained by vertical concatenation (writing p below q): First connect k upper
points by q to l middle points and then connect these middle points to m lower points by
p. This yields two kinds of objects : a partition, connecting k upper points with m lower
points, and a certain number rl(p, q) of blocks containing only middle points. The latter
blocks and all the middle points l are removed. Note that we can compose two partitions
q ∈ P ◦•(k, l) and p ∈ P ◦•(l′,m) only if

(i) the numbers l and l′ coincide,

(ii) the colorings match, i.e. the color of the j-th lower point of q coincides with the color
of the j-th upper point of p, for all 1 ≤ j ≤ l.

◦ • ◦ ◦ •

◦••
×

◦ •

• • ◦

=

◦ • ◦ ◦ •

◦ •

Figure 1.8: Composition of two partitions

• The inversion of colors of a partition p ∈ P ◦•(k, l) is given by the partition Rc(p) ∈
P ◦•(k, l) with same uncolored partition as p, but with all the colors inverted.

• The verticolor reflection of a partition p is given by p̃ := RvRc(p).

• The rotation of a partition: Let p ∈ P ◦•(k, l) be a partition connecting k upper points
with l lower points. Shifting the very left upper point to the left of the lower points and
inverting its color gives rise to a partition in P ◦•(k − 1, l + 1), a rotated version of p.
Note that the point still belongs to the same block after rotation. We may also rotate
the leftmost lower point to the very left of the upper line (again inverting its color), and
we may as well rotate in the right hand side of the lines. In particular, for a partition
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RvRc

◦ • ◦ ◦ •

◦••

=

◦ • • ◦ •

◦ ◦ •

Figure 1.9: Verticolor reflection of a partition

p ∈ P ◦•(0, l), we may rotate the very left point to the very right and vice versa. Such a
rotation on one line does not change the colors of the points.

Here is a list of basic two-colored partitions that play an important role in Part II.

• The two identity partitions ◦
◦
, •
•
∈ P ◦•(1, 1) connects one upper point with one lower

point of the same color. Note that •
◦

and ◦
•

are not identity partitions.

• The bicolored pair partitions ◦• , •◦ ∈ P ◦•(0, 2) connect two lower points of different col-

ors. We also have their horizontally reflected versions ◦• , •◦ ∈ P ◦•(2, 0). The unicolored

pair partitions are •• , ◦◦ ∈ P ◦•(0, 2) and •• , ◦◦ ∈ P ◦•(2, 0).

• The singleton partitions ↑◦ , ↑• ∈ P ◦•(0, 1) consist of a single lower point respectively.

Their reflected versions are denoted by ↓
◦
, ↓
•
∈ P ◦•(1, 0).

• We also have four block partitions like ◦•◦• , ◦◦•• ∈ P ◦•(0, 4) and
◦•
◦• ,

•◦
◦• ∈ P ◦•(2, 2).

• All preceding examples are partitions consisting of a single block. The crossing partition

��AA
◦•
•◦ ∈ P ◦•(2, 2) however consists of two blocks. It connects a white upper left point to a

white lower right point, as well as a black upper right point to a black lower left point; we

also have other colorings like ��AA
•◦
◦• or ��AA

◦◦
◦◦ . These partitions are not in NC◦•(2, 2).

Category of partitions A collection C of subsets C(ε, ε′) ⊆ P ◦•(ε, ε′) (indexed by all the
words ε, ε′ in {◦, •}) is a category of partitions, if it is closed under the tensor product, the

composition and the involution, and if it contains the bicolored pair partitions •◦ and ◦• as

well as the identity partitions ◦
◦

and •
•

. We say that C ⊆ C′ if for any pair of words ε, ε′ in
{◦, •}, C(ε) ⊆ C(ε′) in the set-theoretic sense.
An easy check yields that the set of all partitions P ◦•, the set of all pair partitions P ◦•2 (i.e.
all blocks have length two), the set of all non-crossing partitions NC◦•, and the set of all non-
crossing pair partitions NC◦•2 form each of them a category of partition. Similarly let P ◦•2,altenating

(resp. NC◦•2,alternating) be the set of pair partitions (resp. non-crossing pair partitions) with pairs
having endpoints of opposite colors if these endpoints are on the same level and endpoints of
same color if they are on different levels. Then P ◦•2,altenating and NC◦•2,alternating are also categories
of partitions. We have moreover the relation :

P ◦•2,altenating ( P ◦•2 ( P ◦•

∪ ∪ ∪
NC◦•2,alternating ( NC◦•2 ( NC◦•

(1.1.1)
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1.1.3 Contraction of tensor products

Kernel of a sequence of integers Let ~i = (i1, . . . , in) be a sequence of integers. This
sequence defines an equivalence relation on J1, nK by saying that r ∼~i s if and only if ir = is. The
set partition associated to the relation ∼~i through the bijection given in Section 1.1.1 is denoted

ker(~i). If~i = (i1, . . . , ik),~j = (j1, . . . , jl) are two sequences of integers of respective length k and l,
we can similarly define a set partition ker(~i,~j) in P (k, l) by the same construction: this is the two-
level partition (ker(j1, . . . , jl, ik, . . . , j1), l). Note that we reversed the order of the indices i for
convenience in later computations. If we specifiy a coloring ε : J1, kK→ {◦, •}, ε′ : J1, lK→ {◦, •},
we can assume that this partition is in P (ε, ε′). Here is an example of such a construction:

3 1 3 3 7

217

Figure 1.10: The partition ker((7, 1, 2), (3, 1, 3, 3, 7))

Given a sequence of integers of length n and a partition p ∈ P (n), we set δp(~i) = 1 if p ≤ ker(~i)
and δp(~i) = 0 otherwise. Similarly if p ∈ P (k, l) and ~i,~j are sequences of integers of respective
length k and l, we set δp(~i,~j) = 1 if p ≤ ker(~i,~j) and δp(~i,~j) = 0 otherwise.

The maps Tp’s: Let V ◦, V • be two Hilbert spaces of dimension n, and let (e◦i )1≤i≤n, (e•i )1≤i≤n
be respectively an orthonormal basis of V ◦ and V •. For any word ε = ε1 . . . εr in {◦, •}, the
scalar product 〈, 〉 on these Hilbert spaces is extended to a scalar product on the tensor product
V ε = V ε1 ⊗ · · · ⊗ V εr by saying that the basis {eε1i1 ⊗ · · · ⊗ e

εr
ir
}1≤i1,...,ir≤n is othonormal.

For each partition p ∈ P ◦•(ε, ε′), one can define a map Tp : V ε → V ε′ by the relation

〈Tp(ei1 ⊗ · · · ⊗ eik), ej1 ⊗ · · · ⊗ ejk′ 〉 = δp(~i,~j).

If p is considered without colors, the same definition holds by considering tensor products of a
unique vector space V of dimension n.
With this definition of the maps T ′ps, the operations on two-level partitions defined in Paragraph
1.1.2 transpose to the usual operations on linear maps between Hilbert spaces as follows:

• Tp ⊗ Tq = Tp⊗q .

• Tp ◦ Tq = nrl(p,q)Tpq.

• T ∗p = TRh(p).

Some linear maps can be easily expressed by the maps T ′ps. For example T
◦
◦ and T

•
• are

respectively the identity map on V ◦ and V •, T
◦◦

and T
••

are the scalar products on V ◦ and V •.

1.2 Free independence and set partitions

1.2.1 Non-commutative probability spaces and freeness

The free independence is a phenomenon arising in the study of non-commutative random vari-
ables. The latter are a generalization of probabilty spaces in the framework of non-commutative
algebras.
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Definition 1.3. A non-commutative probability space (A,ϕ) is a unital ∗−algebra A with a
linear functional ϕ, such that ϕ(1A) = 1.

ϕ is called the expectation on A and is usually a trace (namely ϕ(ab) = ϕ(ba) for a, b ∈ A).
The joint law of a1, . . . , ar ∈ A is defined as the expectation map

ϕa1,...,ar :

{
C < X1, . . . , Xr > −→ C

Xi1 . . . Xip 7→ ϕ(ai1 . . . aip
.

Example 1.4. There are two basic examples of noncommutative probability spaces:

• If (Ω,P) is a classical probability space, then the algebra L∞−(Ω) =
⋃
p≥1 L

p(Ω) of mea-
surable functions having all moments finite is a noncommutative probability space, and the
linear functional is given by the expectation E with respect to P.

• Let (Ω,P) be a classical probability space and consider the algebra Mn ⊗ L∞−(Ω). This
algebra is again a noncommutative probability space with expectation given by the map
A 7→ E( 1

n Tr(A)).

When A is a C∗−algebra and a is a normal element of A (i.e aa∗ = a∗a), the spectral
theorem yields that a is an actual random variable on its spectrum, with moments given by
{ϕ(ak(a∗)k

′
)}k,k′≥0}. The law of a is denoted by µa.

If two commuting random variables a, b are independent, the knowledge of the respective laws
of a and of b suffices to compute the expectation of any polynomial in a and b.
The concept of freeness is the analog of the independence of classical random variables in the
setting of highly non-commutative variables. It has been introduced by Voiculescu around 1983
(see [90], see also [93] for an introduction to the subject).

Definition 1.5. Let (A,ϕ) be a non-commutative probability space and A1, . . . , Ar be subalgebras
of A. A1, . . . , Ar are called free (or freely independent) if for any sequence (a1, . . . , ap) with
ai ∈ Aki, ki 6= ki+1 for 1 ≤ i ≤ p− 1 and ϕ(ai) = 0 for 1 ≤ i ≤ p, the relation

ϕ(a1 . . . ap) = 0

holds. The variables x1, . . . xr are called freely independent if the algebras respectively generated
by x1, . . . , xr are free.

In particular if a1, . . . , ar are free, the data {ϕ(ani )}1≤i≤r,n≥1 suffices to characterize the joint
law of (a1, . . . , ar).

Example 1.6. Originally introduced to study free products of C∗−algebra and free group factors,
free probability has drawn hudge interests when it has been discovered by Voiculescu in [92] that
free probability encodes the limit law of large matrices with independent entries.

If (A,ϕ) is C∗−algebra and a1, a2 are two free self-adjoint elements of A, then a1 + a2 is
again self-adjoint. We denote by µa1 � µa2 the law of a1 + a2, which depends only on µa1 and

µa2 by the remark above. If a2 ≥ 0, a
1/2
2 a1a

1/2
2 is again a self-adjoint element, and we denote by

µa1 � µa2 the law of a
1/2
2 a1a

1/2
2 . If ϕ is tracial and a1 is also positive, µa1 � µa2 is also equal to

a
1/2
1 a2a

1/2
1 .
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1.2.2 Classical and free cumulants

In the classical case, the computation of the additive convolution of two independent random
variables is greatly simplified by the use of the Fourier transform. In the free case, an anologuous
method exists with the so-called R-transform introduced by Voiculescu in [91]. However the
R-transform is a complicated object, mainly because it involves using the inverse of analytic
functions with respect to the composition.
In [77], Speicher introduced a combinatorial method to compute the sum of two free random
variables. It is based on the notion of free cumulants, a non-commutative analog of cumulants
in classical probability. We present both classical and free cumulants at the same time, since
they will both be used in following chapters.
Let {fi}i≥1 be a family of multilinear functionals on A such that fi is i−multilinear (namely
fi : A⊗i → C). For π a partition of r and a1, . . . , ar elements of A, fπ denotes the r−multilinear
map defined by

fπ(a1, . . . , ar) =
∏

B={i1,...,is}∈π

fs(ai1 , . . . , ais).

For i ≥ 1 and a ∈ A, we denote by fi(a) the quantity fi(a, . . . , a). The expectation ϕ yields
such a family of multilinear maps {mi}i≥1 with the relation mi(a1, . . . , ai) = ϕ(a1 . . . ai); the
r−th moment of a is mr(a).

Definition 1.7. The classical (resp. free) cumulants of (A,ϕ) is the unique family of multilinear
maps {ci}i≥1 (resp. {ki}i≥1) such that

mr =
∑

π∈P (r)

cπ, (resp. mr =
∑

π∈NC(r)

kπ).

cr(a) (resp. kr(a)) is called the r−th cumulant (resp. r−th free cumulant) of a.

The existence and unicity of such families is easily proved by recurrence on r. The relation in
the definition is also known as the moment-cumulant formula. By this formula, the knowledge
of {ki(a)} is equivalent to the knowledge of the law of a in (A,ϕ), and the same holds with
classical cumulants.
Thanks to the poset structure on the set of partitions and the set of non-crossing partitions,
there exists a direct formula to express the cumulants in terms of moments. In a finite poset
(G,≤), the Moebius function µG : G × G → R is defined as the unique function satisfying∑

g′≤h≤g µG(g′, h) = δg,g′ for g′ ≤ g and µG(h, g) = 0 if h 6≤ g. Let µP and µNC denote
respectively the Moebius function on the poset of partitions and non-crossing partitions. The
following result is due to Speicher ([77]) in the non-commutative case.

Theorem 1.8. The cumulants and free cumulants have the following expression :

cr =
∑

π∈P (r)

µP (π,1r)mπ, kr =
∑

π∈NC(r)

µNC(π,1r)mπ.

In both case the Moebius function is given by an explicit formula. Let π ≤ σ in P (r) (resp.
NC(r)). One can easily show that the interval [π, σ] is isomorphic as a poset to P (k1)×· · ·×Pkn)
(resp. NC(k1)× · · · ×NC(kn)) for some positive integers k1, . . . , kn. Then

µP (π, σ) =
∏

1≤i≤n
(−1)ki−1(ki − 1)!
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for P (r), and

µNC(π, σ) =
∏

1≤i≤n
(−1)ki−1Cki−1

in the non-crossing case. The formula in the non-crossing case has also been proved by Speicher
in [77].
The important property of cumulants (resp. free cumulants) is that they characterize indepen-
dence (resp. free independence). The free part of the following result comes from [77]:

Theorem 1.9. Let a1, . . . , ar be r elements of A. a1, . . . , ar are independent (resp. free) if and
only if cn(ai(1), . . . , ai(n)) (resp. kn(a(i1), . . . , a(in))) vanishes for any non-constant function
i : J1, nK→ J1, rK.

Therefore if a1 and a2 are free then we have the simple relation kr(a1 +a2) = kr(a1)+kr(a2)
for all r ≥ 1. A same formula involving free cumulants exists to compute the law µa1 � µa2 (see
[66]).
In the classical setting several distributions arising as universal limit distributions have very
simple expression in terms of cumulants:

• The standard Gaussian variableN , with density dN (x) = 1√
2π
e−

x2

2 , has cumulants c2(N) =

1 and ci(N) = 0 for i 6= 2. This distribution appears as the limit distribution of X1+···+Xn√
n

when n→ +∞ and (Xi)i≥1 is a family of i.i.d centered random variables of variance 1.
A standard complex gaussian variable Z is defined as Z = 1√

2
(X + iY ), with X and Y

two independent standard gaussian variables. All cumulants of Z vanish except c2(Z,Z∗)
and c2(Z∗, Z) which are equal to 1.

• The Poisson variable P , with distribution P(P = n) = e−1

n! , has cumulants ci(P ) = 1 for
all i ≥ 1. This distribution is the limit distribution of Y n

1 + · · ·+ Y n
n as n goes to infinity,

where (Y j
i )1≤i≤j is a family of independent variables, Y j

i being a Bernoulli variable with
law n−1

n δ0 + 1
nδ1.

• The compound Poisson variable Pµ with original probability measure µ is defined by the

formula Pµ =
∑P

i=1 Zi, where P is a Poisson variable and (Zi)i≥1 is a sequence of i.i.d
µ−distributed random variables (also independent from P ). The cumulants of Pµ are
ci(Pµ) = mi(µ) for i ≥ 1. This distribution is the limit distribution of Z1Y

n
1 + · · ·+ZnY

n
n

as n goes to infinity, where (Y j
i )1≤i≤j is distributed as before and independent from (Zi)i≥1.

In the free case, the same phenomenon arises (see [66] for a detailed exposition of each case):

• The semi-circular variable s, having density ds(x) = 1
2π1|x|≤2

√
4− x2, has free cumulants

k2(s) = 1 and ki(s) = 0 for i 6= 2. This distribution is the the limit distribution of
X1+···+Xn√

n
when n → +∞ and (Xi)i≥1 is a family of free identically distributed centered

random variables of variance 1.
A standard circular variable c is defined by c = 1√

2
(s1 + is2), s1 and s2 being two free

standard semi-circular variables. All the free cumulants of c vanish except k2(c, c∗) and
k2(c∗, c) that are equal to one.

• The free Poisson variable p, with density dp(x) = 1
πx10≤x≤4

√
4− (2− x)2 has free cumu-

lants ki(p) = 1 for all i ≥ 1. This distribution is the limit distribution of Y n
1 + · · · + Y n

n

as n goes to infinity, where (Y j
i )1≤i≤j is a family of free independent variables, Y j

i being
a Bernoulli variable with law n−1

n δ0 + 1
nδ1.
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• The free compound Poisson variable pµ with original probability measure µ is defined

as the limit distribution of Z1Y
n

1 + · · · + ZnY
n
n as n goes to infinity, where (Y j

i )1≤i≤j is
as before and (Zi)i≥1 is a free family of µ−distributed random variables such that Zi is

classicaly independent from Y j
i for all j ≥ i. The i−th free cumulant of pµ is the i−th

moment of µ.

There is an obvious similarity between the three classical examples and the free ones. This
correspondance has lead to a systematic bijection, the Bercovici-Pata bijection, between distri-
butions arising as a limit of sums of independent variables and the ones arising as limits of sum
of free variables (see [19]).
The cumulant description of the aforementioned distributions and Theorem 1.9 yield interesting
combinatorial formulae for some joint moments of free variables. Let us state for example the
following result that will be used in Chapter 5:

Proposition 1.10. Let c1, . . . , ck be k free standard circular elements, and write c−i = c∗i . Then
for j1, . . . , jr ∈ {−k, . . . ,−1, 1, . . . k},

mr(cj1 , . . . , cjr) = #{p ∈ NC2(j1, . . . , jr)|∀{b1, b2} ∈ p, jb1 = −jb2}.

Proof. By the moment cumulant formula,

mr(cj1 , . . . , cjr) =
∑

π∈NC(j1,...,jr)

kπ(cj1 , . . . , cjr).

Since (ci)1≤i≤k is a free family and for each i ≥ 1, only k2(ci, c
∗
i ) and k2(c∗i , ci) are non-zero, the

result follows.
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Chapter 2

Probabilistic aspects of
representation theory: the unitary
group

In this chapter we briefly review how the representation theory of the unitary group Un leads
to interesting probabilistic results. This chapter is mainly intended for probabilists having no
backgrounds on representation theory, and serves as a motivation for the non-commutative
results in the following chapter. The first section presents the framework of compact groups
and their associated probability space, and introduces the representation theory of the unitary
group. The irreducible representations of Un are indexed by symmetric functions; the theory of
these functions is quickly reviewed in the second section. The third section is devoted to the full
description of the representations of the unitary group and to the description of the Schur-Weyl
duality. The fourth section introduces the Weingarten calculus and the fifth section gives some
applications of this method. Finally, generalization to other groups are discussed in Section 6.

2.1 Compact groups as probability spaces

This section follows the book [26], and the reader should refer to this reference for omitted
proofs.

2.1.1 Compact group and Haar measure

Definition 2.1. A compact group G is a group that is also a compact topological space, with
the property that the maps (g1, g2) 7→ g1g2 from G × G to G and g 7→ g−1 from G to G are
continuous maps.

In the definition above, G×G is considered with the product topology.

Example 2.2. The group U of complex numbers of modulus 1 with the topology inherited from
C is a compact group.
More generally, the unitary group Un consisting of matrices U in Mn(C) which satisfy UU∗ =
Idn is a compact group; the same is true for any closed subgroup of Un.

The main feature of a compact group G is the existence of an invariant probability measure
on the topological space G:
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Theorem 2.3. Let G be a compact group. There exists a unique regular probability measure
∫
G

on G such that for any measurable set X ⊆ G and any g ∈ G,∫
G
g.X =

∫
G
X.g =

∫
G
X

This probability measure is called the Haar measure.

In the statement above, g.X (resp. X.g) denotes the set {gx, x ∈ X} (resp. {xg, x ∈ X}).
For G = U, the Haar measure is simply the Lebesgue measure on the circle.

Remark 2.4. If G is only assumed to be locally compact, there still exists a unique regu-
lar measure (up to a constant multiple) being invariant by left translation . However this
measure is not necessarily invariant by right translation. Consider for example the group

G =

{(
y x
0 1

)
|x, y ∈ R, y > 0

}
, with the left invariant measure µL given by dµL = y−2dxdy

and the right invariant measure µR given by dµR = y−1dxdy. A locally compact group such that
left and rignt invariant translations coincide is called unimodular.

Any compact group is thus a natural probability space with the Haar measure. Since it is
also a topological space, it carries a canonical class of measurable functions with respect to

∫
G,

namely the algebra C(G,C) of continuous complex functions on G. If f ∈ C(G,C), we denote
by f̄ the complex conjugate of this function. With this conjugation, C(G,C) is a commutative
∗−algebra.

2.1.2 Representations of a compact group

In most cases, the Haar measure doesn’t have any straightforward expression and therefore the
computation of the law of any element of C(G,C) may become cumbersome. Fortunately, the
representations theory helps to better understand these random variables.

Definition 2.5. A representation (V, ρ) of G is the data of a vector space V and a continuous
morphism of groups ρ : G→ Gl(V ).
A subspace W ⊆ V is called invariant if for all g ∈ G, ρ(g)(W ) ⊆ W , and v ∈ V is called
a fixed point if ρ(g)v = v for all g ∈ V . A representation V is said irreductible if V is finite
dimensional and has no invariant subspace apart from {0} and V .
An intertwiner operator from (V, ρ) to (V ′, ρ′) is a linear map T : V → V ′ such that, for any
g ∈ G, ρ′(g) ◦ T = T ◦ ρ(g). The space of morphisms between (V, ρ) and (V ′, ρ′)is denoted
MorG(ρ, ρ′).
Two representations (V, ρ) and (V ′, ρ′) are isomorph if there is an invertible map T in MorG(ρ, ρ′).

From now on we will only consider finite dimensional representations and denote by d(ρ) the
dimension of the vector space V of a representation (V, ρ).
Given two representations (V, ρ) and (V ′, ρ′) of G, we can construct the direct sum representation
ρ⊕ ρ′ on V ⊕W (resp. the tensor product representation ρ⊗ ρ′ on V ⊗W ) by taking the direct
sum of the maps ρ and ρ′ (resp. tensor product of the maps ρ and ρ′):

ρ⊕ ρ′(g) = ρ(g)⊕ ρ′(g) ∈ Gl(V ⊕W ), ρ⊗ ρ′(g) = ρ(g)⊗ ρ′(g) ∈ Gl(V ⊗W ).

Finally if (V, ρ) is a representation of G, we can define the dual representation ρ∗ on the dual
V ∗ of V by

ρ∗(f)(v) = f(ρ(g−1)v),

where f ∈ V ∗ and v is any vector in V .

14



Example 2.6. As an example of the previous constructions, let (V, ρ) be a representation of G.
It yields a representation ρ̃ of G on End(V ) defined by

ρ̃(f)(v) = ρ(g)[f(ρ(g−1)v)],

with f ∈ End(V ) and v ∈ V . It is possible to prove that, as a representations of G, End(V )
is isomorphic to V ⊗ V ∗. Moreover the set of fixed points of End(V ) under the action of G is
precisely the space of intertwiners MorG(ρ, ρ′).

Let (V, ρ) be a finite dimensional representation of G. Any scalar product 〈〈., .〉〉 on V defines
an average scalar product 〈., .〉G on V by the formula :

〈v1, v2〉ρ =

∫
G
〈〈ρ(g)v1, ρ(g)v2〉〉dg,

where v1, v2 ∈ V .
The invariance of the Haar measure implies that 〈., .〉ρ is G−invariant, namely

〈ρ(g)v1, ρ(g)v2〉ρ = 〈v1, v2〉ρ.

With the latter scalar product we can prove that the irreducible representations are the building
block of the representation theory of G :

Proposition 2.7. Let (V, ρ) be a finite dimensional representation of G. Then V is the direct
sum of irreducible representations of G.

Noticing that the eigenspaces and the image of an intertwiner are invariant subspaces yields
the description of the intertwiner space between irreducible representations :

Lemma 2.8 (Schur Lemma). Let (V, ρ), (V ′, ρ) be two irreducible representations, and T ∈
Mor(ρ, ρ′). Then T is either 0 or an isomorphism.
If (V, ρ) is an irreducible representation and f ∈ Mor(ρ, ρ), then there exists a scalar λ ∈ C such
that f = λId.

2.1.3 Matrix coefficients

The goal is now to construct a family of random variables which is dense in C(G,C) and whose
law with respect to the Haar measure could be theoretically computed. This family is a class of
particular continuous functions based on the G−invariant scalar products 〈., .〉ρ.

Definition 2.9. A matrix coefficient on G is a function ϕ on G of the form

ϕ(g) = 〈ρ(g)v1, v2〉ρ,

with (V, ρ) a representation of G and v1, v2 ∈ V .

The name of these functions is clear if we consider an orthonormal basis (e1, . . . , ed) of V
with respect to the scalar product 〈., .〉G. With respect to this basis, the representation ρ is

ρ : g 7→

ρ11(g) . . . ρ1d(g)
...

...
ρd1(g) . . . ρdd(g)


with ρij(g) = 〈ρ(g)ej , ei〉ρ = Tr(ρ(g)Eji), where Eijek = δjkei. From now on, each representa-
tion (V, ρ) is considered with a particular choice of orthonormal basis (ei)1≤i≤d(ρ) with respect to
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an invariant scalar product on V : in this way a canonical set of matrix coefficients {ρij}1≤i,j≤d(ρ)

is associated to each representation (V, ρ).
Since we have defined a representation (V, ρ) as a continuous map G → Gl(V ), any matrix
coefficient on G is continuous.
Considering direct sums, dual and tensor products of representations shows that the sum, the
conjugate and the product of matrix coefficients are again matrix coefficients. The trivial rep-
resentation g 7→ 1 yields the unit element of C(G,C). Therefore the vector space A of matrix
coefficients on G is a unital ∗−subalgebra of C(G,C). Since any representation of G is a di-
rect sum of irreducible representation, a basis of A is given by the set of matrix coefficients
I = {ρij}ρ irreductible

1≤i,j≤d(ρ)

.

It is possible to construct intertwiners from (V, ρ) to (V ′, ρ′) by averaging on G matrix coeffi-
cients coming from these two representations. A careful study of these intertwiners yields the
first following important result:

Theorem 2.10 (Schur orthogonality relations, [26] Thm 2.3, Thm 2.4). Let (V, ρ) and (V ′, ρ′)
be two non-isomorphic irreducible representations. Then the matrix coefficients are orthogonal
with respect to the Haar measure. Namely for 1 ≤ i, j ≤ d(ρ) and 1 ≤ k, l ≤ d(ρ′),∫

G
ρij(g)ρ′kl(g)dg = 0.

If (V, ρ) and (V ′, ρ′) are isomorphic irreducible representations, we can identify their basis and
in this case ∫

G
ρij(g)ρkl(g)dg =

1

d(ρ)
δikδjl.

Therefore the matrix coefficients of irreducible representations yield an orthonormal basis of
A with respect to the Haar measure on G:

A =
⊕

(V,ρ) irred.

⊕
1≤i,j≤d(ρ)

Cρij .

The subspace
⊕

1≤i,j≤d(ρ)Cρij is denoted by Wρ.
The second important Theorem is that the algebra A is dense in C(G,C):

Theorem 2.11 (Peter-Weyl Theorem, Thm 4.1 in [26]). The matrix coefficients are dense
in C(G,C). In particular I is an orthonormal basis of L2(G), the space of square-integrable
functions on G.

The proof of this Theorem is a bit evolved in the general case. However, if G is already
described as a subgroup of Gln(C), the proof of the density is a straightforward consequence of
Stone-Weierstrass Theorem.

Example 2.12. Let us apply these results to the unit circle U. In this case, since the group is
commutative, an irreducible representation (V, ρ) of U is one dimensional and thus it is just a
group homomorphism ρ : U → C×. Since ρ has to be continuous, there exists n ∈ Z such that
ρ = en, where en(z) = zn for all z ∈ U. Reciprocally any function of this type is indeed an
irreducible representation of U.
From Example 2.2, the Haar measure on U is just the Lebesgue measure on the unit circle.
Therefore by the content of this paragraph, the set of functions {en}n∈Z is an othonormal basis
of L2(U) with respect to the Lebesgue measure on the circle: the decomposition of any continuous
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function in this basis is exactly the usual Fourier expansion.
Thus the constructions made in this paragraph are a generalization of the usual Fourier expansion
on the circle to a general non-commutative compact group.

To sum up, any compact group G comes naturally with a probability measure
∫
G, and a

particular set I of random variables that form an orthonormal basis of L2(G,
∫
G). To fully

describe this probability space, we need to know the joint law of these random variables. This
is equivalent to knowing the expansion of products of matrix coefficients in the basis I. A
theoretical answer to this problem will be given in Section 2.4 with the Weingarten formula.
The concrete computations are hard to achieve. A smaller space of continuous functions, the
space of class functions, is easier to handle and still give interesting informations on the compact
group.

2.1.4 Characters and the unitary group

Definition 2.13. Let (V, ρ) be a representation of G. The character of ρ is the function

χρ(g) = Tr(ρ(g)).

The character is said irreducible if it is the character of an irreducible representation.
A virtual character is a function of the form χ1 − χ2 with χ1 and χ2 characters.

Since the direct sum and tensor product of representations are again representations, the
set of characters is stable by addition and multiplication. Since the character of the trivial
representation is the constant unit function, the set of virtual characters forms therefore a ring
Cl(G).
Note moreover that since the trace is invariant by conjugation,

χ(hgh−1) = Tr(ρ(hgh−1)) = Tr(ρ(h)ρ(g)ρ(h)−1) = Tr(ρ(g))

with g, h ∈ G. Thus by linear extension of this relation, Cl(G) is a ring of functions which
are constant on conjugacy classes of G. A function f on G such that f(hgh−1) = f(g) for all
g, h ∈ G is called a class function. Actually the vector space CCl(G) spanned by the characters
is dense in the space of class functions in L2(G) (see [26], Thm 2.6).
Theorem 2.10 yields the following straightforward result :

Proposition 2.14. Let (V, ρ), (V ′, ρ) be two representations of G. Then∫
G
χρ(g)χρ′(g)dg = dim Mor(ρ, ρ′).

If ρ, ρ′ are irreducible representations,∫
G
χρ(g)χρ′(g)dg =

{
1 if (V, ρ) ' (V ′, ρ′)
0 if (V, ρ) 6' (V ′, ρ′)

.

In particular the set of irreducible characters is a basis of Cl(G).

Therefore the set of irreducible characters forms a basis of the L2−space of class functions.
To compute the moments of a character with respect to the Haar measure amounts to decompose
tensor products of the representation of this character into irreducible ones.
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Example 2.15. Let (V, ρ) be a representation of Un and U ∈ Un. Since U is a unitary matrix,
it is thus diagonalizable in an orthonormal basis and there exists P ∈ Un and ∆ a diagonal
matrix with modulus one coefficients such that U = P∆P−1.
Since χρ is a class function and U is diagonalizable, χρ(U) = χρ(P∆P−1) = χρ(∆). Therefore
the value of the character on U only depends on the eigenvalues of U .
If σ ∈ Sn is a permutation, the matrix W (σ) = (δiσ(j))1≤i,j≤n is in Un, and

W (σ)

λ1

. . .

λn

W (σ)−1 =

λσ−1(1)

. . .

λσ−1
n

 .

Since χρ(W (σ)∆W (σ)−1) = χρ(∆), the value of the character on U is a symmetric function of
the eigenvalues of U .

The previous example shows that the theory of symmetric functions plays a role in the study
of characters of the unitary group.

2.2 Symmetric functions

In this section we briefly review the basics of symmetric functions. Most of the results come
from [60], and the reader should refer to this book for complete proofs.

2.2.1 Young diagrams

Definition 2.16. Let n ≥ 1. A partition λ of n, also written λ ` n, is a finite decreasing
sequence of integers (λ1 ≥ λ2 ≥ λr > 0) such that

∑
λi = n. The length of λ is the length of

the sequence of non-zero integers.

The set of partitions of n is denoted Yn. For each partition λ, mk(λ) denotes the num-
ber of elements equal to k in (λ1 ≥ λ2 ≥ · · · ≥ λr). With this notation λ is also written
λ = 1m1(λ) . . . nmn(λ).
A partition is pictorially represented by a Young diagram, which is an array of n cells with λ1

cells on the first row, λ2 cels on the second and so on. The Young diagram of the partition
(7, 4, 2, 1) is drawn in Figure 2.1.

Figure 2.1: Young diagram of (7, 4, 2, 1).

Definition 2.17. A partial order is defined on Yn by saying that λ ≤ µ if and only if l(λ) ≥ l(µ)
and

λ1 ≤ µ1, λ1 + λ2 ≤ µ1 + µ2, ..., λ1 + · · ·+ λl(µ) ≤ µ1 + · · ·+ µl(µ).

The transpose λt of a partition λ is defined as the partition corresponding to the symmetry
of the Young diagram of λ through the diagonal axis. For example the transpose of (7, 4, 2, 1)
is the partition (4, 3, 2, 2, 1, 1, 1), as suggests the following picture :
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Figure 2.2: Young diagram of (7, 4, 2, 1) and its transpose.

A Young tableau T is the assignment of a positive integer to each cell of a Young diagram λ. λ is
then refered as the shape of T . For {xi}i≥1 an infinite set of commutating variables, a monomial
xT is assigned to each Young tableau T with the formula xT = xnumber of 1 in T

1 xnumber of 2 in T
2 . . . .

Since the Young diagram has a finite number of cells, the aforementioned product is finite. The
next figure is an example of such correspondance:

4 4 1 7 10 6 11
7 5 4 1
8 6
6

Figure 2.3: Young tableau T of shape (7, 4, 2, 1) giving xT = x2
1x

3
4x5x

3
6x

2
7x8x10x11.

2.2.2 Symmetric functions

Definition 2.18. A symmetric function f is a polynomial in n variables x1, . . . , xn such that
for all permutation σ ∈ Sn, f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn).
A rational symmetric function g is a polynomial in n variables x1, . . . , xn and their inverse
x−1

1 , . . . , x−1
n such that g(xσ(1), . . . , xσ(n)) = g(x1, . . . , xn).

We denote by Λn (resp. Λ±n ) the ring of symmetric functions (resp. rational symmetric
functions) in n variables with integer coefficients in the basis of monomials. This is a graded
ring with the grading given by the degree of an homogeneous polynomial.
Let en be the monomial x1 . . . xn. Since any rational symmetric function has a monomial of
lowest degree, any rational symmetric function g is equal to 1

emn
f , with f a symmetric function.

Therefore we will only consider symmetric functions in this subsection.
A straightforward basis of Λn is the so-called monomial basis, whose elements are indexed by
partition λ with l(λ) ≤ n. The monomial symmetric polynomial mλ is defined as the sum of
xλ11 xλ22 . . . xλnn (where we set λr+1 = · · · = λn = 0) and all the different monomials obtained from
xλ11 xλ22 . . . xλnn by permuting the indices in the variables {xi}1≤i≤n. For example

m(3,1,1)(x1, x2, x3) = x3
1x2x3 + x1x

3
2x3 + x1x2x

2
3.

Besides this basis, there exist three bases which can be constructed with Young tableaux:

• Let RT (λ) denote the set of tableaux of shape λ such that the integers are weakly increasing
along the rows, and define

hλ(x1, . . . , xn) =
∑

T∈RT (λ)

xT .

These functions are called homogeneous symmetric polynomials.
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• Let CT (λ) denote the set of tableaux of shape λ such that the integers are strictly increas-
ing along the columns, and define

ẽλ(x1, . . . , xn) =
∑

T∈CT (λ)

xT .

The functions eλ = ẽλt are called the elementary symmetric polynomials.

• Let SSY T (λ) denote the set of tableaux of shape λ such that the integers are weakly
increasing along the rows and stricly increasing along the colums; such tableau is called a
semi-standard Young tableau. Define

sλ(x1, . . . , xn) =
∑

T∈SSY T (λ)

xT .

These functions are called Schur polynomials. These are the most important polynomials
in the study of the representations of Un.

The sets {hλ}l(λ)≤n, {ẽλ}l(λ)≤n,{sλ}l(λ)≤n are all bases of Λn. In the case of the elementary and
Schur polynomials this result is straightforward: indeed after ordering the bases with respect to
the order ≤ on partitions (as defined in 2.17), the transition matrix between {mλ} and {ẽλ} (or
sλ) is upper-triangular with 1 on the diagonal. Complete proofs and complement can be found
in [60], Part I, Ch 6.
From the list of bases above, eλ = eλ1 . . . eλr . Thus, since {eλt}l(λt)≤n is a basis of Λn, Λn can
be identified with the free commutative ring Z[e1, . . . , en], with er being the polynomial

er(x1, . . . , xn) =
∑

i1<···<ir

xi1 . . . xir .

A fifth family of symmetric functions arises by considering power sums. Namely let pk =∑
1≤i≤n x

k
i and pλ = pλ1 . . . pλr . Although the set {pλ}l(λ)≤n is not a basis of Λn, it is still a

basis of Q⊗ Λn.

2.2.3 Hall inner product

Projective limit The map Φn : Λn → Λn−1 defined by Φn(ei) =

{
ei if i 6= n
0 if i = n

is a surjective

homomorphism of graded algebra from Λn to Λn−1. We can thus define the projective limit
Λ = lim

←
Λn.

Λ can be seen as the algebra of symmetric polynomials in an infinite denumerable set of variables
{x1, . . . , xn, . . . }, with the grading given by the degree of homogeneous polynomials. For example
the monomial symmetric polynomial m(3,1,1) is defined as

m(3,1,1)({x1, . . . , xn, . . . }) =
∑

i1,i2,i3 distinct

x3
i1xi2xi3 .

The bases given for Λn are also bases of Λ if we drop the restriction l(λ) ≤ n on the partitions
indexing elements of the bases.
An important result is that the coefficients of any expansion of an element in Λn in one of the
bases we gave before is constant for n large enough. Therefore any algebraic result obtained
in Λ on a finite set of elements can be considered as also true in Λn for n large enough. For
example, if we write mλmµ =

∑
l(ν)≤n a

ν
λµ(n) the expansion of mλmµ in the basis {mλ}l(λ)≤n of

Λn, the coefficients aνλµ(n) are independent of n as soon as n ≥ l(λ) + l(µ).
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Hall inner product We introduce here the Hall inner product in Λ. Note that the same
construction and results exist for Λn.

Definition 2.19. The Hall inner product 〈., .〉 is the bilinear form on Λ defined by its value on
the basis {mλ} and {hλ} as

〈mλ, hµ〉 = δλµ.

This bilinear form is naturally extended to Q⊗ Λ.

This bilinear form is actually an inner product, as we will see in Example 2.21.
It is possible to characterize dual bases with respect to this product. If {xi}, {yi} are two
denumerable infinite sets of variables, the basis {mλ} and {hλ} are related by the Cauchy
formula ∏ 1

1− xiyj
=
∑
λ

mλ({xi})hλ({yi}).

The Cauchy formula implies that if f is a symmetric function, then 〈
∏ 1

1−xiyi , f({xi})〉 = f({yi}).
The latter equality yields a proof of the following fact:

Proposition 2.20. Two bases {fλ} and {gλ} consisting of homogeneous polynomials are dual
with respect to 〈., .〉 if and only if∑

λ

fλ({xi})gλ({yi}) =
∏ 1

1− xiyj
.

Let us apply this proposition to the power sums basis.

Example 2.21. If we set zλ =
∏
mk!

∏
kmk (recall that mk is the number of parts of λ equal

to k), then

∑
λ

1

zλ
pλ({xi})pλ({yi}) =

∑
r

∑
λ,l(λ)=r

1∏
mk(λ)!

∑
a1,...,ar
b1,...,br

∏
(
(xajybj )

λj

λj
)

=
∑
r

1

r!
(−
∑
i,j

log(1− xiyj))r

= exp(−
∑
i,j

log(1− xiyj))) =
∏
i,j

1

1− xiyj

Therefore from the last proposition, the dual basis of {pλ} is {zλpλ}. This implies that

〈pλ, pµ〉 = δλ,µzλ.

In particular 〈., .〉 is positive definite and symmetric.

An important result is that the Schur basis is an orthonormal basis of Λ: namely 〈sλ, sµ〉 =
δλµ. The proof is done in [60], Part I, Ch. 4. By a linear algebraic argument, an inner product
on Λ has at most one orthonormal basis, up multiplication by ±1. The Schur basis is therefore
the unique orthonormal basis of Λ, and the unique graded basis such that∏

i,j

1

1− xiyj
=
∑
λ

sλ({xi})sλ({yi}).
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2.3 Representation theory of the unitary group and probabili-
tistic applications

It is now possible to describe the ring of virtual characters Cl(Un). This description gives a way
to compute moments of characters with respect to the Haar measure: some important results
obtained by Diaconis and Shahshahani in [33] are given in example of this machinery.

2.3.1 Irreducible representations of Un

The content of this subsection comes from [26] Ch. 35 and 38.

Rational and polynomial representations The unitary group Un has a fundamental rep-
resentation given by its canonical embedding in Gln(C). Denote by (uij)1≤i,j≤n the matrix
coefficients of this representation. A representation (V, ρ) of Un is said rational (resp. polyno-
mial) if the matrix coefficients of ρ are rational (resp. polynomial) expressions of the uij . In the
next paragraph we will classify all rational and polynomial representation of Un.
In any case the character of a continuous representation of Un is a rational function of the eigen-
values. Indeed let (V, ρ) be a continuous representation of Un and consider its restriction to the

n−torus Tn =


e

iϑ1

. . .

eiϑN


. This yields a continuous representation (V, ρ̃) of Tn. Since

Tn is the commutative product of n different copies of U, V decomposes in dim(V ) vectors vi, each
of them being a one-dimensional continuous representation of Tn. Each one-dimensional contin-
uous representation of Tn has the form ρ̃(eiϑ1 , . . . , eiϑn) = ei(k1ϑ1+···+knϑn) with k1, . . . , kn ∈ Z;
therefore the character χρ̃(e

iϑ1 , . . . , eiϑn) is a rational function of eiϑ1 , . . . , eiϑn with non-negative
integer coefficient in front of each monomial. But we have seen in Example 2.15 that for U ∈ Un,
χρ(U) is equal to χρ(∆), with ∆ ∈ Tn being a diagonal matrix such that U = P∆P−1. Thus if
(V, ρ) is a continuous representation of Un, χρ(U) is the evaluation of an element of Λ±n on the
eigenvalues of U . From now on the characters of Un are thus identified with elements of Λ±n ,
and the ring of virtual characters with a subring of Λ±n .

Examples of rational representations We review here some basic examples of rational
representations, with the identification of the associated character as an element of Λ±n . Recall
that in order to identify the character, it suffices to consider the restriction of the representation
to the n−torus Tn. In the sequel, (v1, . . . , vn) denotes the canonical basis of Cn, and for each
unitary matrix U , u = {u1, . . . , un} denote its eigenvalues.

• The fundamental representation: this is the identity map on Un(C). Therefore the char-
acter is just the symmetric function

∑
ui = m1(u) = e1(u).

• The determinant: the determinant det : Un → C is a group homomorphism, and thus
a represenation. By the relation between determinant and eigenvalues of a matrix, the
associated character is the elementary symmetric function en(u1, . . . , un) = u1 . . . un.

• One can generalize the previous representation by considering powers of the determinant:
for m ∈ Z the map detm : U 7→ (det(U))m is again a group homomorphism, and the
associated character is the symmetric function emn .
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• The m−fold exterior representation: let 1 ≤ m ≤ n and let
∧mCn be the m−fold exterior

product of Cn. The latter is the quotient of the tensor product (Cn)⊗m by the relations
vi1 ⊗ · · · ⊗ vim = 0 if ij = ik for some j 6= k. A basis of

∧mCn is given by {vi1 ∧ · · · ∧
vim}i1<i2<···<im . The map (U, vi1 ∧· · ·∧vim) 7→ U(vi1)∧· · ·∧U(vim) gives a representation
of Un on

∧mCn. Considering the restriction to Tn yields that the associated character is
exactly the elementary symmetric function em.

Note that all these representations are polynomial, except for detm with m < 0.
Moreover, taking tensor products of the last example with different positive values of m yields
that any symmetric function of the form ek11 . . . eknn with k1, . . . , kr > 0 are characters of some
polynomial representations. Since Λn = Z[e1, . . . , en], taking direct sums of these representa-
tions shows that any element of Λn corresponds to a virtual character.
From Section 2.2, any rational symmetric function is of the form e−mn f with f ∈ Λn, and thus
Cl(Un) ' Λ±n .

Is there a continuous representation of Un which is not rational ? It seems not clear
whether there exists a continuous representation that is not rational. For example Gln(C)
has continuous non rational representations: consider for instance the group homomorphism
G = (gij)1≤i,j≤n 7→ Ḡ = (ḡij)1≤i,j≤n. However in the case of the unitary group the answer is
negative: we have seen that the character of any continuous representation corresponds to an
element of Λ±n . But since, from the previous paragraph, Λ±n is already spanned by characters of
rational representations, any continuous representation is actually rational.

Irreducible characters of Un It remains to find which elements of Λ±n correspond to irre-
ducible characters.
Since the representations detm are all one-dimensional, the functions emn correspond to irre-
ducible characters. Therefore let us consider only the polynomial representations. The irre-
ducible characters can be directly obtained thanks to the Hall inner product on Λn. Consider
the graded algebra C[uij ] =

⊕
d≥0C[uij ]d of polynomials in the variables uij , with C[uij ]d being

the subspace of homogeneous polynomials of degree d.
Since the set {uij}1≤i,j≤n is a set of matrix coefficients of the fundamental representation, C[uij ]
is a subalgebra of the algebra A of matrix coefficients of Un. Recall that

A =
⊕

(V,ρ) irred.

Wρ,

with Wρ =
⊕

1≤i,j≤d(ρ)Cρij . Since ρij(g) = 〈ρ(g)ei, ej〉, Un × Un acts on Wρ as

((h, h′).ρij)(g) = 〈ρ(g)(ρ(h)ei), ρ(h−1)ej〉.

This shows that as a representation of Un×Un, Wρ ' Vρ⊗V ∗ρ . It is an easy computation to check
that Vρ ⊗ V ∗ρ is an irreducible representation of Un ×Un. Therefore the Un ×Un representation
A has a decomposition into irreducible Un × Un representations

A '
⊕

(V,ρ) irred.

Vρ ⊗ V ∗ρ .

Since C[uij ]d is invariant under the action of Un×Un, it has a unique decomposition into Un×Un
irreducible representations. The polynomial form of these representations yields that

C[uij ] =
⊕

(V,ρ) poly. irred.

Wρ '=
⊕

(V,ρ) poly. irred.

Vρ ⊗ V ∗ρ .
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Looking at the trace of the action of (

x1

. . .

xn

 ,

y
−1
1

. . .

y−1
n

) on both sides of the

equaliyy above yields ∏
1≤i,j≤n

1

1− xiyj
=

∑
λ,l(λ)≤n

fλ(x1, . . . , xn)fλ(y1, . . . , yn).

Remark 2.22. There is obviously a convergence problem here, since the xi, yi have modulus
one as eigenvalues of Un. However this equality between functions should be considered as an
equality between each homogeneous component, and the value of the whole serie doesn’t play any
role.

From Section 2.2.3 we deduce that, with the appropriate labelling, fλ = sλ. This yields the
following result:

Theorem 2.23. The ring of virtual characters of Un is isomorphic to Λ±n , and the basis of
irreducible characters is given by the set {e−mn sλ} m≥0

l(λ)≤n
.

The algebra CClpol(Un) of polynomial characters is isomorphic to C ⊗ Λn, and the basis of
irreducible polynomial characters is given by the Schur basis.
Through the isomorphism Φ : CClpol(Un) 7→ C ⊗ Λn the L2−scalar product with respect to the
Haar measure on Un yields the Hall inner product on Λn.

2.3.2 Probabilistic applications

The random variables χλ Let us label by λ the irreducible representation whose character
is given by sλ through the map Φ in Theorem 2.23, and denote by χλ the associated charac-
ter. Then for n distinct partitions λ1, . . . , λr, the joint law of (χλ1 , . . . , χλr) can be explicitly
computed. Indeed the product formula on the Schur basis in Λn is given by the Littlewood-
Richardson coefficients {cνλµ} as

sλsµ =
∑
l(ν)≤n

cνλµsnu. (2.3.1)

These coefficients have a combinatorial nature (see [60], Ch.9), which allows to algorithmically
compute them. Let us write Mλ = (cνλµ)µν the matrix of the multiplication by sλ in the basis
{sµ}l(µ)≤n. Then for m1, . . . ,mr, n1, . . . , nr > 0,∫

Un

(
(χm1
λ1
. . . χmrλr )(χn1

λ1
. . . χnrλr )

)
=
(
Mm1

λ1
. . .Mmr

λr
(M t

λr)
nr . . . (M t

λ1)n1
)

(0)(0)
,

where (0) is the empty partition corresponding to the constant function 1. However, the
Littlewood-Richardson coefficients are hard to compute and the previous formula is difficult
to deal with.

Diaconis-Shahshahani results Other kinds of formulae can occur by expanding characters
in different bases and evaluating the Hall inner product in these bases. Let us look at the power
sum basis, and write Xi = Tr(U i) for i ≥ 1. Diagonalizing U shows that the random variable
Xk correspond to the power sum pk through the map Φ. Therefore if a1, . . . , ar, b1, . . . , br ≥ 0,∫

Un

(Xa1
1 . . . Xar

r )
(
Xb1

1 . . . Xpr
r

)
= 〈pµ, pν〉Λn .
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with µ = 1a1 . . . rar and ν = 1b1 . . . rbr . For n ≥ (
∑
aii)∨ (

∑
bii), the expansion of pµ, pν in the

Schur basis is independent of n, and thus the evaluation of the Hall inner product on pµ and pν
is the same in Λn and Λ for n large enough. Therefore in this case, from the computation of the
Hall inner product for the power sum basis in Section 2.2.3,∫

Un

(Xa1
1 . . . Xar

r )
(
Xb1

1 . . . Xpr
r

)
= δµνzµ.

Since zµ =
∏
iaiai!, this yields for n ≥ (

∑
iai) ∨ (i

∑
bi)∫

Un

(Xa1
1 . . . Xar

r )
(
Xb1

1 . . . Xpr
r

)
=
∏∫

Un

Xai
i X

bi
i ,

with
∫
Un
Xai
i X

bi
i = δaibii

aiai!.
The latter are exactly the moments of a symmetric Gaussian complex variable with mean 0 and
variance i (see 1.2.2). This is the content of the following Theorem of Diaconis and Shahshahani:

Theorem 2.24 ([33]). As n goes to +∞, the random vector (Tr(U i))i≥1 converges in moments
to a family of independent symmetric complex gaussian variables (Zi)i≥1, such that Zi has mean
0 and variance i.

By using the representation theory of the symmetric group Sn, Diaconis and Evans also com-
puted in [32] the value of the variance of Tr(U i) for all n ≥ 1 and found that

∫
Un

Tr(U i)Tr(U j) =
δij(i ∧ n). This allowed them to extend this convergence to all symmetric functions having cer-
tain Fourier expansions. They could also prove that the convergence of these random variables
is stronger than the convergence in moments.

Concrete realization of the Hall inner product The Hall inner product, abstractly defined
on the bases {mλ, hλ} of Λn, can be concretely defined as the inner product of a L2−space.
Indeed, the Haar measure on Un yields a probability measure on the torus Tn (identified with
[0, 2π]n) as the pushforwards measure through the map sending U to its eigenvalues. Some care
is needed because of the ordering of the eigenvalues, but eventually this yields the existence of
a measure dm on Tn, invariant under the action of Sn, such that for µ, ν with l(µ), l(ν) ≤ n,∫

Tn

sµ(eiϑ1 , . . . , eiϑn)sν(eiϑ1 , . . . , eiϑn)dm(ϑ1, . . . , ϑm) = δµν .

The density of the measure dm with respect to the Lebesgue measure can be explicitly computed
with the Weyl integration formula (see [98]):

Theorem 2.25. The density of dm with respect to the Lebesgue measure is given by

dm(ϑ1, . . . , ϑn) =
1

(2π)nn!

∏
j<k

|eiϑkeiϑj |2.

2.4 Weingarten calculus for Un

In the last section we have used representation theory to obtained probabilistic results on class
functions. The goal is to extend this approach to any element of C(Un,C). This has been done
by Collins in [28], and more generally by Collins and Sniady in [29]. The content of this section
comes mainly from [29]. This section is particularly exhaustive, since the generalization of the
Weingarten formula to quantum groups is the main motivation of the first part of this thesis.
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We have seen that the algebra of polynomial matrix coefficients is exactly C[uij ]. From Section
2.3.1, rational representations of Un are tensor products of polynomial representations with a
one dimensional representation of the form det−m = (det)m for m ≥ 0. Since det ∈ C[uij ], the
algebra of matrix coefficients is therefore C([uij , ūij ].
The main goal is to compute the integral

I~i,~i′,~j,~j′ =

∫
Un

ui1j1 . . . uidjd ūi′1j′1 . . . ūi′d′j
′
d′

(2.4.1)

for~i,~j ∈ J1;nKd and ~i′, ~j′ ∈ J1;nKd′ . Note that we can always assume that d = d′, since otherwise
by invariance of the Haar measure by a scalar rotation,∫

Un

ui1j1 . . . uinjn ūi′1j′1 . . . ūi′d′j
′
d′

=

∫
Un

(zui1j1) . . . (zuinjn)(z̄ūi′1j′1) . . . (z̄ūi′
d′j
′
d′

)

=zd−d
′
∫
Un

ui1j1 . . . uinjn ūi′1j′1 . . . ūi′d′j
′
d′

= 0.

2.4.1 The method

Weingarten calculus is based on the following observation: if G is a compact group and (V, ρ) is
a representation of G, then pρ : v 7→

∫
G ρ(g)vdg is the orthonal projection (with respect to the

invariant scalar product) on the vector space of fixed points of (V, ρ). The latter is a consequence
of the invariance of the Haar measure by left multiplication and of Theorem 2.10.
The idea is thus to consider the integral (2.4.1) as the average of an endomorphism of (Cn)⊗d

with respect to the action of Un on End((Cn)⊗d). From the previous phenomenon, this average
is a fixed point of End((Cn)⊗d), and thus an intertwiner of the representation of Un on (Cn)⊗d.
Relating intertwiners of (Cn)⊗d with a particular action of the symmetric group Sd gives then a
combinatorial formula for the integral (2.4.1).

Expressing integrals as elements of MorUn((Cn)⊗d) Let us denote by Eij the matrix
(δriδsj)1≤r,s≤n in Mn(C) (the latter is identified with End(Cn) through the action on the canon-

ical basis). Then Ej1j′1 ⊗ · · · ⊗ Ejdj′d ∈ End((Cn)⊗d). Un acts on (Cn)⊗d by the d−fold tensor

product of the fundamental representation; thus as in Example 2.6, Un acts on End((Cn)⊗d) by
conjugation. For U ∈ Un,

UEj1j′1U
∗ ⊗ · · · ⊗ UEjdj′dU

∗ = Mj1j′1
⊗ · · · ⊗Mjdj

′
d
,

with Mjrj′r being the matrix U1jr Ū1j′r . . . U1jr Ūnj′r
...

. . .

Unjr Ū1j′r Unjr Ūnj′r

 .

Thus Tr(Mjrj′rEi′rir) = Uirjr Ūi′rj′r and

Tr((Mj1j′1
⊗ · · · ⊗Mjdj

′
d
)(Ei′1i1 ⊗ · · · ⊗ Ei′did)) = Ui1j1 . . . UidjdŪi′1j′1 . . . Ūi′dj

′
d
.

Integrating with respect to the Haar measure yields

I~i,~i′,~j,~j′ = Tr((

∫
UEj1j′1U

∗ ⊗ · · · ⊗ UEjdj′dU
∗dU)(Ei′1i1 ⊗ · · · ⊗ Ei′did)).
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To emphasize the geometric aspect of the right hand-side, this equality can be written as

I~i,~i′,~j,~j′ = 〈pEnd((Cn)⊗d)(Ej1j′1 ⊗ · · · ⊗ Ejdj′d), Ei1i′1 ⊗ · · · ⊗ Eidi′d)〉,

with 〈, 〉 being the invariant scalar product (A,B) 7→ Tr(AB∗) in End((Cn)⊗d). Since pEnd((Cn)⊗d)

is a projector, the latter quantity is the same as 〈pEnd((Cn)⊗d)(Ej1j′1⊗· · ·⊗Ejdj′d), pEnd((Cn)⊗d)(Ei1i′1⊗
· · ·⊗E′idid)〉. From Example 2.6, the space of fixed points of End((Cn)⊗d) is exactly MorUn((Cn)⊗d, (Cn)⊗d).

Therefore evaluating the above scalar product requires a good description of MorUn((Cn)⊗d, (Cn)⊗d).

2.4.2 Schur-Weyl duality

Let Sd denote the symmetric group of order d. Sd is a finite group with cardinal d!. By a
result of Young (see [60] Part I, Ch. 7), the irreducible representations of Sd are indexed by
the integer partitions of d. The irreducible representation corresponding to λ is also called the
Specht module of the partition λ and denoted by Sλ.
The representation theory of Sd has a very rich combinatorial structure. Looking at the repre-
sentations of Sd for several d yields in particular a link between the theory of representation of
Sd and symmetric functions :

Theorem 2.26 (Frobenius character formula, [60] p.114). Let µ ` d and ν ` d be two partitions.
The value of the irreducible character of Sµ on a permutation σ with cycle decomposition ν is

χµ(σ) = 〈sµ, pν〉, (2.4.2)

where the scalar product on the right hand side is the Hall inner product on Λ.

Sd acts also on (Cn)⊗d by permuting the entries of the tensor product. Namely for σ ∈ Sd,
the representation ((Cn)⊗d, w) is defined by

w(σ)(v1 ⊗ · · · ⊗ vd) = vσ−1(1) ⊗ · · · ⊗ vσ−1(d).

This action commutes with the action of Un on each component of the tensor product and thus
w(σ) ∈ MorUn((Cn)⊗d, (Cn)⊗d). Moreover

〈Ej1j′1 ⊗ · · · ⊗ Ejdj′d , w(σ)〉 = δj1σ(j′1) . . . δjdσ(j′d).

Therefore we know a particular subset of MorUn((Cn)⊗d, (Cn)⊗d), namely the set {w(σ)}σ∈Sd , for
which the scalar product with Ej1j′1 ⊗· · ·⊗Ejdj′d is particularly simple. The question is to know
whether the knowledge of all these scalar products is enough to reconstruct pEnd((Cn)⊗d)(Ej1j′1 ⊗
· · ·⊗Ejdj′d). The answer is positive if {w(σ)}σ∈Sd spans the vector space MorUn((Cn)⊗d, (Cn)⊗d).
This is exactly the content of the Schur Weyl duality.

Theorem 2.27 (Schur-Weyl duality, [26], Ch.36). As a Un×Sd-representation, (Cn)⊗d decom-
poses as

(Cn)⊗d =
⊕

λ,l(λ)≤n

Vλ ⊗ Sλ.

In particular, the action w of Sd yields a surjective map

w : C[Sd]→ MorUn((Cn)⊗d, (Cn)⊗d)

which restricts to an isomorphism

w̃ =
⊕

λ,l(λ)≤n

Md(λ)(C)→ MorUn((Cn)⊗d, (Cn)⊗d),

where CSd is identified with
⊕

λ`dMd(λ)(C) as a semi-simple algebra.
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The decomposition of CSd as a direct sum of matrix algebras indexed by irreducible repre-
sentations of Sd is the content of Artin-Wedderburn’s Theorem (see [74], Section 1.10).
We will give here a proof of Theorem 2.27 based on the Frobenius character formula. Note
however that its apparent simplicity is misleading, since the Frobenius character formula is a
nontrivial result.

Proof. The action of Sd and Un commutes, yielding an action ϕ of Sd × Un on (Cn)⊗d. We can
thus decompose (Cn)⊗d =

⊕
ρ irred. of Un

Vρ ⊗Wρ, where Vρ the irreducible representation of Un
with character sρ and Wρ a representation of Sd.
Moreover one can prove (see [57], Section 2) that if µ = (µ1 ≥ · · · ≥ µr) is the cycle decomposi-
tion of σ and eiϑ1 , . . . , eiϑn are the eigenvalues of U ∈ Un, then

χϕ(σ, U) = Tr(Uµ1) Tr(Uµ2) . . .Tr(Uµr) = pµ(eiϑ1 , . . . , eiϑn). (2.4.3)

For example if σ is just the cycle [1, . . . , d],

χϕ(σ, U) =
∑

1≤i1,...,id≤n
(Uei2 ⊗ · · · ⊗ Ueid ⊗ Uei1 , ei1 ⊗ · · · ⊗ eid)

=
∑

1≤i1,...,id≤n
Ui1i2 . . . Uin−1inUini1 = Tr(Ud).

Since χϕ(σ, U) =
∑

(V,ρ) irred of Un
sρ(U)χWρ(σ) and the Schur functions {sρ}l(ρ)≤n form an or-

thonormal basis of the class functions in L2(Un,
∫
Un

),

χWρ(σ) =

∫
Un

χϕ(σ, U)sρ(U)dU.

Therefore χWρ(σ) =
∫
Un
pµ(U)sρ(U)dU = 〈pµ, sρ〉Λn . Since l(ρ) ≤ n, 〈pµ, sρ〉Λn = 〈pµ, sρ〉Λ.

Thus by the Frobenius character formula (2.4.2), χWρ(σ) = χρ and Wρ ' Sρ, the Specht module
of the partition ρ.

To summurize, the purpose is to evaluate the scalar product 〈pEnd((Cn)⊗d(A), pEnd((Cn)⊗d)(B)〉,
with A,B two elements of End((Cn)⊗d). To each element A, one can associate the function
fA on Sd defined by fA(σ) = 〈A,w(σ)〉; by the Schur-Weyl duality, the intertwiner space
of (Cn)⊗d is spanned by {w(σ)}σ∈Sd and thus the data of fA and fB is enough to compute
〈pEnd((Cd)⊗d(A), pEnd((Cn)⊗d)(B)〉. The matter is therefore to relate exactly 〈pEnd((Cd)⊗d(A), pEnd((Cn)⊗d)(B)〉
to (fA, fB)L2(Sd).

2.4.3 Convolution algebra

Convolution algebra Let G be a compact group. We have seen in Section 2 that L2(G,
∫
G) =⊕

(V,ρ irred)

⊕
1≤i,j≤d(ρ) ρij .

Let (V, ρ) be an irreducible representation. We identify End(V ) with Md(ρ)(C) through the
particular orthogonal basis (e1, . . . , ed(ρ)) chosen in Section 2.1.3. Thus there is a linear map
Φρ : Md(ρ)(C) → L2(G,

∫
G) sending Eij to d(ρ)ρij , and this linear map is an isomorphism

onto the vector space Cρ of matrix coefficients of the irreducible representation ρ. Φρ maps
A ∈Md(ρ)(C) to

g 7→ d(ρ) Tr(ρ(g)A∗).

However Md(ρ)(C) has a richer structure given by the matrix multiplication, and by isomorphism
this structure transposes to the vector space

⊕
1≤i,j≤d(ρ) ρij .
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Definition 2.28. The convolution algebra on G is the ∗−algebra (C(G,C), ∗), with the product
∗ given by

f1 ∗ f2(g) =

∫
G
f1(h)f2(h−1g)dh.

The involution f∗ is given by
f∗(g) = f̄(g−1).

There exists a state ε on this algebra which is defined by the formula f 7→ f(e), where e is the
unit in G.

Note in particular that ε(f1 ∗ f∗2 ) =
∫
G f1(h)f̄2(h)dh = 〈f1, f2〉L2(G,

∫
G).

By Schur orthogonality’s Theorem, if (ei) (resp. (fi)) is the chosen basis of (V, ρ) (resp. (V ′, ρ′)),

Φρ(E
ρ
ij)Φρ′(E

ρ′

kl) = d(ρ)d(ρ′)ρij ∗ ρ′kl(g) =d(ρ)d(ρ′)

∫
G
〈ρ(h)ej , ei〉〈ρ′(h−1g)fl, fk〉dh

=d(ρ)d(ρ′)

∫
G
〈ρ(h)ej , ei〉〈ρ′(h)fk, ρ(g)fl〉dh

=d(ρ)δρρ′δklρil = Φρ(E
ρ
ijE

ρ
kl).

Since Φρ(E
∗
ij) = Φρ(Eji) = d(ρ)ρji and ρji = 〈ρ(g)ei, ej〉 = 〈ρ(g−1)ej , ei〉 yields also Φρ(E

∗
ij) =

Φρ(Eij)
∗, Φρ is a ∗−algebra isomorphism. With this isomorphism, the scalar product given by

the trace on Md(ρ)(C) gives the scalar product 1
d(ρ)〈., .〉 on Cρ.

Fourier transform of a representation Let (W,ϑ) be a finite dimensional representation
of G, and let Aϑ be the matrix algebra generated by {ϑ(g)}g∈G. Since W is finite dimensional,
W =

⊕
(V,ρ) irred V

⊕rρ '
⊕

(V,ρ)Crρ ⊗ V , with
∑
rρ < ∞. Since G doesn’t act on the left of

each tensor product, A ∈ Aϑ has the form

A =
⊕

(V,ρ) irred

IdCrρ ⊗Aρ, (2.4.4)

with Aρ ∈Md(ρ)(C).

Definition 2.29. The Fourier transform of A ∈ End(W ) is the function fA ∈ C(G,C) defined
by

fA(g) = Tr(ϑ(g)A∗).

Since on W '
⊕

(V,ρ) irred.Crρ ⊗ V , ϑ(g) has the form ϑ(g) =
⊕

(V,ρ) irred. Idrρ ⊗ ρ(g), for
A ∈ Aϑ

fA(g) =
∑

(V,ρ) irred.

rρ Tr(A∗ρρ(g)) =
∑
(V,ρ)

rρ
d(ρ)

Φ(Aρ),

where A has been decomposed as in (2.4.4).
Let B ∈ Aϑ be another operator with the expansion B =

⊕
(V,ρ) irred IdCrρ ⊗ Bρ. Then on one

hand,

Tr(AB∗) =
∑
(V,ρ)

rρ Tr(AρB
∗
ρ) =

∑
(V,ρ)

rρ
d(ρ)
〈Φ(Aρ),Φ(Bρ)〉,

and on the other hand in C(G,C),

〈fA, fB〉L2(G) =
∑
(V,ρ)

(
rρ
d(ρ)

)2〈Φ(Aρ),Φ(Bρ)〉.
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Thus if we denote by Pϑ the operator multiplying each element of Cρ by d(ρ)
r(ρ) , then

Tr(AB∗) = 〈PϑfA, fB〉 = (Pϑ ∗ fA ∗ f∗B)(e).

Characters in the convolution algebra Since Pϑ is diagonal on each space Cρ, it lies in
the center of (C(G,C), ∗). Note that for g, g′ ∈ G;

f(gg′) =

∫
G
δg−1(h)f(h−1g′)dh = (δg−1 ∗ f)(g′)

and

(f ∗ δg−1)(g′) =

∫
G
f(h)δg−1(h−1g′)dh = f(g′g).

Thus a function f lies in the center Z of (C(G,C), ∗) if and only if for all g, g′ ∈ G, f(gg′) =
f(g′g). This means that the center of the convolution algebra coincides with the space of class
functions, and has a basis consisting in the irreducible characters {χρ}ρ irred.
Moreover if ρ is an irreductible representation, then by the Schur orthogonality’s Theorem,

χρ ∗ ρ′ij(g) =
1

d(ρ)
δρ,ρ′ρ

′
ij .

Thanks to this formula, we can express the operator Pϑ above as :

Pϑ =
∑

(V,ρ) irred

d(ρ)2

rρ
χρ.

Weingarten Calculus for Un Let Wg denotes the function P(Cn)⊗d . Applying the result of

the last paragraph to the representations of Sd on (Cn)⊗d in order to compute 〈pEnd((Cn)⊗d)(Ej1j′1⊗
· · · ⊗ Ejdj′d), Ei′1i1 ⊗ · · · ⊗ Ei′did)〉 yields

I~i,~i′,~j,~j′ =〈pEnd((Cn)⊗d)(Ej1j′1 ⊗ · · · ⊗ Ejdj′d), pEnd((Cn)⊗d)(Ei1i′1 ⊗ · · · ⊗ Eidi′d))〉

=(Wg ∗ fEj1j′1⊗···⊗Ejdj′d
∗ f∗Ei1i′1⊗···⊗Eidi′d

)(e)

Computing the last product in the convolution algebra gives the Weingarten formula obtained
by Collins in[28]:

Theorem 2.30.

I~i,~i′,~j,~j′ =
∑
σ,τ∈Sd

δj1σ(j′1) . . . δjdσ(j′d)δi1τ(i′1) . . . δidτ(j′d)Wg(στ−1).

with Wg(σ) = 1
(d!)2

∑
λ`d,l(λ)≤n

d(λ)2

dimVλ
χλ(σ).

2.5 Application of the Weingarten calculus

We review here some applications of the Weingarten calculus. The main motivation of [28] for
developing the Weingarten calculus was to compute the coefficients of the so-called Itzykson-
Zuber integrals (z,X, Y ) 7→

∫
Un

exp(nzTr(XUY U∗)dU . However we will only give results con-
cerning asymptotic freeness and second order freeness, since the latter involve free probability.
One should refer to [28] for more details on the asymptotic expansion of the Itzykson-Zuber
integrals.
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2.5.1 Asymptotic of the Weingarten function and pair partitions

All the results of this section rely on the asymptotic value of the Weingarten function. Suppose

from now on that n ≥ d. In this case, Wg(σ) =
∑

λ`d
d(λ)2

dimVλ
χλ(σ) and Wg is precisely the

inverse of the character χ(Cn)⊗d in the convolution algebra Sd. Applying expression (2.4.3) to
σ × Id yields

χ(Cn)⊗d = nc(σ),

where c(σ) is the number of cycles of σ. Since χ(Cn)⊗d is polynomial in n, it is expected that
Wg is rational in n. Actually, Collins proved in [28] that

Wg(σ) =
∑
k≥0

ak(σ)n−k−(2d−c(σ)),

and that

a0(σ) = (d!)2
∏
µi

lµi−1(−1)µi−1,

where µ is the partition coming from the cycle decomposition of σ and lk = (2k)!
k!(k+1)! is the k−th

Catalan number. There exists also a combinatorial description of the other coefficients ak.
A simpler proof for the expression of a0, based on Biane’s algebra (see [20]), has been given by
Collins and Sniady in [29]. Note in particular that the expression of a0 is a particular value of
the Moebius function of the lattice of non-crossing partitions (see Section 1.2.2).
The higher order term in the expansion is given by the value of Wg on the identity, with
Wg(σ) = (d!)2n−dδeσ(1 + O(n−1)). An independent proof of this first order expansion can be
given using a scalar product on CSd.
Let (., .) be the scalar product defined on CSd by the formula (σ, τ) = nc(σ

−1τ) and let Gnd be
the scalar product matrix ((σ, τ))σ,τ∈Sd . With these notations (Gnd)στ = χ(Cn)⊗d(σ

−1τ). Thus

if we set G−1
nd = (aσ(τ))σ,τ∈Sd , then the functions aτ have to satisfy the relation∑

µ

aσ(µ)χ(Cn)⊗d(µ
−1τ) = δστ .

In the convolution algebra of Sd, this means that aσ ∗χ(Cn)⊗d = 1
d!δσ. Therefore aσ = 1

d!δσ ∗Wg
and

(G−1
nd )στ = aσ(τ) =

1

d!

∑
h

1

d!
δσ(h)Wg(h−1τ) =

1

(d!)2
Wg(σ−1τ).

Thus (G−1
nd )στ = 1

(d!)2
Wg(σ−1τ). On the other hand since c(στ−1) < d for στ−1 6= e, Gnd =

nd(Id + o(n−1)). Inverting Gnd in the latter first order expansion yields (G−1
nd ) = n−d(Id +

o(n−1)), which gives the first order expansion of the Weingarten formula.
The method using the Gram-Schmidt matrix of the scalar product on the intertwiner spaces of
Un will be generalized to a large class of quantum groups in Chapter 5.

2.5.2 Asymptotic freeness of unitary invariant random matrices

Second order freeness A second-order probability space intends to capture both expecta-
tions and fluctuations of non-commutative random variables. Second-order probability spaces
and second-order freeness have been introduced by Mingo and Speicher in [64] to express the flu-
cutations of large random matrices. Unless specified otherwise, all the content of this subsection
comes from [64].

31



Definition 2.31. A second-order probability space is the data of a probability space (A,ϕ) with
a bilinear functional ϕ̃ : A×A→ C which is tracial in both arguments and such that ϕ̃(.,1A) =
ϕ̃(1A, .) = 0.

The natural construction of a second order probability space is made by considering an
algebra A together with a linear map ϑ : A→ L∞−(Ω) sending 1A to the constant function 1Ω,
and such that ϑ(a∗) = ϑ(a). Then (A, ϑ) yields a second-order probability space with the maps
ϕ, ϕ̃ defined by

ϕ(a) = E(ϑ(a)), ϕ̃(a, b) = Cov(ϑ(a), ϑ(b)).

Note that ϑ does not need to be an algebra homomorphism. Actually if ϑ is an algebra homo-
morphism, the map ϕ̃ doesn’t give further information than ϕ, since in this case

Cov(ϑ(a), ϑ(b)) = E(ϑ(ab))− E(ϑ(a))E(ϑ(b)) = ϕ(ab)− ϕ(a)ϕ(b).

Example 2.32. Let A = Mn⊗L∞−(Ω). The trace maps any random matrix to a random vari-
able, and therefore from the discussion above,

(
A,E( 1

n Tr(.)),Cov( 1
n Tr(.), 1

n Tr(.))
)

is a second-
order probability space.

Definition 2.33. Let (A,ϕ, ϕ̃) be a second-order probability space and A1, . . . , Ar be subalgebras
of A. A1, . . . , Ar are called second-order free if they are free and if for all centered elements
a1, . . . , ap, b1, . . . bp′ with ai ∈ Aki , bj ∈ Ak′j , ki 6= ki+1, k

′
j 6= k′j+1, kp 6= k1 and k′p′ 6= k′1,

• if p = p′ = 1 and k1 6= k′1, ϕ̃(a1, b1) = 0.

• otherwise

ϕ̃(a1 . . . ap, bp′ . . . b1) = δpp′

p−1∑
i=0

ϕ(a1b1+i) . . . ϕ(apbp+i),

where the indices are understood modulo p.

As for freeness, second order freeness allows to recover ϕ̃ from the value of ϕ and ϕ̃ on each
subalgebra Ai.

Second-order limit distribution Let {An}n≥1 be a family of unital ∗−algebras and let
{ϑn}n≥1 be a family of linear maps ϑn : An → L∞−(Ω,C) with ϑn(a∗) = ϑn(a) for any a ∈ An.
A sequence ((an1 , . . . , a

n
p ))n≥1 of p−tuples (an1 , . . . , a

n
p ) in An has a second-order limit distribution

(ϕ, ϕ̃) if and only if

• the family
(
ϑn(P (an1 , . . . , a

n
p ))
)
P∈C<Xi>1≤i≤p

converges in moment to a family of complex

gaussian variables (ϑ(P ))P∈C<Xi>1≤i≤p
. The expectation of ϑ(P ) is given by a functional

ϕ : C < Xi >→ C and covariances are given by a bilinear functional ϕ̃ : C < Xi > ×C <
Xi >−→ C.

• the space C < X1, . . . , Xp > with the functional ϕ and ϕ̃ is a second-order probability
space.

Note that C < X1, . . . , Xp > denotes here the ∗−algebra of noncommutative polynomials in
Xi, X

∗
i . We will write X∗i = X−1

i in the sequel.

Example 2.34. To illustrate the meaning of a second-order limit distribution, let us consider the
convergence result of Diaconis and Shahshahani in Theorem 2.24. Let C[Un] be the unital algebra
of polynomials in U(n), with U(n) being a unitary matrix chosen randomly according to the Haar
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measure on Un, and let ϑn : C[Un] → L∞−(Un,
∫
Un

) define by ϑn(B) = Tr(B) − n−1
n E(Tr(B)).

Then from Theorem 2.24, U(n) has a second-order limit distribution (C[X], ϕ, ϕ̃) with ϕ(Xi) = 0
and ϕ̃(Xi, Xj) = δi(−j)i.

Definition 2.35. Let {An}n≥1 be a family of unital algebras and let {ϑn} be a family of linear
maps ϑn : An 7→ L∞−(Ω,C). A couple of sequences ((an1 , . . . , a

n
p ), (b1, . . . , b

n
q ))n≥1 is asymptoti-

cally second order free if and only if the sequence of p+ q elements ((an1 , . . . , a
n
p , b1, . . . , b

n
q ))n≥1

has a second order limit distribution (C < X1, . . . , Xp, Y1, . . . , Yq >,ϕ, ϕ̃) such that C < Xi >
and C < Yi > are second order free in (C < X1, . . . , Xp, Y1, . . . , Yq >,ϕ, ϕ̃).

Second order freeness for random matrices The two following theorems are two striking
applications of the asymptotic computation of the Weingarten formula. The first one is directly
based on the evalutation of integrals of type (2.4.1) with the Weingarten calculus :

Theorem 2.36. [[63],[62]] For each n ≥ 1 let Un(1), . . . , Un(p) be p independent Haar-distributed
unitary matrices of dimension n. Let An = C[Un(1), Un(1), . . . , Un(p), Un(p)] with ϑn = Tr(.)−
n−1
n

∫
Tr(.).

Then the family (Un(1), Un(1), . . . , Un(p), Un(p)) is asymptotically second order free and the
second order distribution (C[Xi], ϕ, ϕ̃) (resp. C[Yi]) of each Un(i) (resp. Un(i)) is given by

ϕ(Xk
i ) = 0, ϕ̃(Xk

i , X
k′
i ) = δk,−k′k.

A generalization of this result is given for the free unitary group in Chapter 5.
The second theorem should be seen as a generalization of the asymptotic freeness result of
Voiculescu on independent random matrices in [92]. We consider here (An, ϑn) as the ∗−algebra
of random matrices with the ∗−linear map ϑn = Tr(.)− n−1

n E(Tr(.)). An n−dimensional random
matrix A is said unitarily invariant if the law of A is the same as the law of UAU∗ for all U ∈ Un.

Theorem 2.37. [[63]] Let ([A1
n, . . . , A

p
n])n≥1 and ([B1

n, . . . , B
q
n])n≥1 be two sequences of random

matrices, each of them having a second order limit distribution. Suppose moreover that the
entries of [A1

n, . . . , A
p
n] are independent to the ones of [B1

n, . . . , B
q
n], and that the law of each Bi

n

is unitarily invariant.
Then ([A1

n, . . . , A
p
n])n≥1 and ([B1

n, . . . , B
q
n])n≥1 are asymptotically second order free.

The Weingarten calculs is the cornerstone of the proof. Indeed, since the law of eachBi
n is uni-

tarily invariant, any expectation of products of Bi
n results in elements of MorUn((Cn)⊗d, (Cn)⊗d).

Therefore computing expectations of traces of products of these matrices with the ones of
[A1

n, . . . , A
p
n] yields projections on the space of intertwiners, and thus the use of the machin-

ery of Section 5.

2.6 Generalization to other groups: the Tannaka-Krein duality

We have seen that the computation of an integral with respect to the Haar measure was done
through the following procedure :

1. Relate the integral to the scalar product of the projection of two operators on the space
of intertwiners of the group.

2. Find a spanning set of the space of intertwiners, on which orthogonal projections have a
straightforward expression.
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3. Use the properties of the space of intertwiners to recover the scalar product from the
orthogonal projections on each element of the spanning set.

Although the first step is a straightforward, the second and the third ones depend heavily on
the group and may not be possible. Fortunately there exist some groups for which the second
and third steps are still feasible. This will lead to define a category of groups whose intertwiners
have a nice combinatorial description (see Section 3.2 and [15]). This combinatorial description
is greatly simplified by the rich structure underlying the intertwiner spaces. This structure is
given by the Tannaka-Krein duality.

2.6.1 Tannaka-Krein duality for compact matrix group

The Tannaka-Krein duality describes the operations which exist on intertwiner spaces, and estab-
lish a bijection between compact groups and collections of spaces stable under these operations.
We will only give the result in the case of a matrix compact group but a similar result exists for
general compact groups.
Let G ⊆ Un be a compact subgroup of Un. There exists a natural family or representations
of G, indexed by words in {◦, •}. Namely let (V ◦, ρ◦) be the fundamental representation of G
given by the identity morphism ρ◦ : G → Un and let (V •, ρ•) be its dual representation given
by the morphism ρ•((gij)1≤i,j≤n) = (ḡij)≤i,j≤n. Note that as vector spaces, V ◦ ' V • ' Cn. Let
(ei)1≤i≤n be a basis of V ◦ which is orthogonal with respect to the invariant scalar product. The
dual basis in V • is denoted by (ēi)1≤i≤n and the pairing between both bases is denoted by 〈., .〉.
Note that 〈., .〉 is an intertwiner from V ◦ ⊗ V • to the trivial representation V ∅ ' C.
Taking tensor products of these two representations yields the existence, for any finite word
ε = ε1 . . . , εr in {◦, •}, of a representation (V ε, ρε) with

V ε = V ε1 ⊗ · · · ⊗ V εr , ρε = ρε1 ⊗ · · · ⊗ ρεr .

Let us denote by MorG(ε, ε
′
) the vector space of intertwiners from (V ε, ρε) to (V ε′ , ρε

′
). Thus

for any G ⊆ Un, MorG(ε, ε′) is a vector subspace of L(V ε, V ε′), the space of linear maps from
V ε to V ε′ .

Remark 2.38. The collection of vector spaces {MorG(ε, ε′)} satisfies several properties :

• IdV ◦ ∈ Mor(◦, ◦), IdV • ∈ Mor(•, •), 〈., .〉 ∈ Mor(◦•, ∅), 〈., .〉 ∈ Mor(•◦, ∅).

• If T1 ∈ Mor(ε1, ε2), T2 ∈ Mor(ε2, ε3), then T2 ◦ T1 ∈ Mor(ε1, ε3).

• If T1 ∈ Mor(ε1, ε3), T2 ∈ Mor(ε2, ε4), then T1 ⊗ T2 ∈ Mor(ε1ε2, ε3ε4).

• If T ∈ Mor(ε1, ε2), T ∗ ∈ Mor(ε2, ε1).

Of course, since the functions on a compact group form a commutative algebra,

T : ei ⊗ ej 7→ ej ⊗ ei is in Mor(◦◦, ◦◦). (2.6.1)

All these properties are straightforward deductions of Section 1.2.

Example 2.39. For Un, the space of intertwiners MorUn(ε1, ε2) is exactly the vector space
spanned by all Tp for p ∈ P2,alternating(ε1, ε2) (as defined in Section 1.1.3). If ε = ε′ = ◦d.
Each allowed pair partition is encoding a permutation of Sd. In particular the scalar product
on permutations considered in Section 5.1 is the scalar product between the maps Tp for p in
P2,alternating(◦d, ◦d).
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The striking fact is that the collection {MorG(ε, ε′)}ε,ε′ completely characterizes G: this is
the content of Tannaka’s Theorem. Note that the actual statement of the following Theorem is
a bit more evolved (refer to [81] for an exact statement):

Theorem 2.40 ([81]). G can be reconstructed from the data of {MorG(ε, ε′)}ε,ε′. In particular
{MorG(ε, ε′)}ε,ε′ completely characterizes G.

Krein’s Theorem gives an answer to the dual question: to find all collections of vector spaces
{H(ε, ε′)} being the collection of intertwiners of any compact subgroup of Un. Of course such
a collection has to satisfy the conditions (2.38). Krein’s Theorem asserts that these conditions
are enough:

Theorem 2.41 ([51]). Let {H(ε, ε′)} be a collection of vector spaces such that H(ε, ε′) ⊆
L(V ε, V ε′). If {H(ε, ε′)} fulfills the four conditions (2.38) and the commutativity relation (2.6.1),
then there exists a compact subgroup G of Un such that for all ε, ε′,

H(ε, ε′) = MorG(ε, ε′).

By Tannaka’s Theorem, the compact group G coming from Krein’s Theorem is uniquely
determined by {H(ε, ε′)}.

2.6.2 Other groups with intertwiners described by set partition

In this thesis we are mainly interested in groups (and later quantum groups) whose associated
intertwiner spaces are spanned by maps Tp’s as in the case of Un.

Compact classical groups The orthogonal group On is the group of matrices O ∈ Gln(R)
such that OOt = Id, and the symplectic group Spn is the group of matrices T ∈ U2n such that

TJT t = J , with J =

(
0 Idn
−Idn 0

)
.

In both cases, the fundamental representation and the dual ones are isomorphic: the isomor-
phisms are given by the map Id in the orthogonal case and by the map J in the symplectic
case. Therefore it is enough to specify the description of the intertwiner spaces MorG(ε, ε′) in
the case ε = ◦k and ε′ = ◦k′ . Let us simply denote these vector spaces by MorG(k, k′).
The intertwiners of the compact classical groups On and Spn are also described by pair parti-
tions. Refer to Section 1.1.3 for the definition of the maps T ′ps for a given set partition and a
Hilbert space V . In the case of On,

MorOn(k, k′) = 〈Tp〉p∈P2(k,k′).

Moreover {Tp}p∈P2(k,k′)} is a basis of MorOn(k, k′) for n ≥ k + k′. A same result holds for
Spn, but it is necessary to adapt the maps Tp’s to the non-degenerate bilinear form given by
J . Using this description of the interwiners, it has been shown by Diaconis and Shahshahani in
[33] that the random vectors (Tr(Okn))k≥1 and (Tr(T kn ))k≥1 converge in moments respectively to
a gaussian vector (ok)k≥1 and (tk)k≥1, with covariance matrices E(okok′) = E(tktk′) = δkk′k and
expectations E(ok) = δk even and E(tk) = −δk even.
In [29], Collins and Sniady used the Weingarten calculus to compute the Haar integral of arbi-
trary polynomials in the coefficients of the fundamental and dual representations of these two
groups. In particular the same results as in Section 5 exist in the orthogonal and symplectic
case.
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Symmetric group A permutation σn of Sn can be embedded into On by considering its
permutation action on the vector space Cn: this action simply permutes the elements of the
canonical basis (ei)1≤i≤n. This yields a representation (v(σ)ij)1≤i,j≤n of Sn called the funda-
mental representation. Thus Sn can be seen as a compact matrix group through this fundamental
representation v.
As for the orthogonal group, the fundamental representation is isomorphic to the dual repre-
sentation, and therefore it is enough to describe the interwiner spaces for ε = ◦k, ε′ = ◦k′ . The
description is once again achieved by using the maps {Tp} for general partitions. Indeed the
spaces of intertwiners are MorSn(k, k′) = 〈Tp〉p∈P (k,k′), and the set {Tp}p∈P (k,k′) is a basis of
MorSn(k, k′) for n ≥ k + k′ (see [44]). If n ≤ k + k′, a basis is given by restricting to the set
{Tp} where p is a partition having less than n blocks.
Diaconis ans Shahshahani proved in [33] the convergence in moments of the random vector
(Tr(σkn))k≥1 toward a vector of independent random variables (sk)k≥1, sk having a Poisson
distribution with parameter 1

k . Their proof of the result doesn’t use the description of the inter-
twiner spaces. A proof involving this description has been done by Banica, Curran and Speicher
in [14].
As it was already said in Section 4.2, symmetric functions play also an important role in the
representation theory of Sn. Indeed irreducible representations Sν of Sn are indexed by Young
diagrams ν with n cells. Note first that there is a natural inclusion Sl×Sm ⊆ Sn for l+m = n.
Therefore an irreducible representation ρ of Sn is not necessarily an irreducible representation
of Sl × Sm and the decomposition of ρ into irreducible representations of Sl × Sm is given by
the multiplicative structure of the ring of symmetric functions in the Schur basis: namely if
λ ` l, µ ` m and ν ` n, there is a decomposition

Sν =
⊕
λ`l
µ`m

(Sλ ⊗ Sµ)
⊕
cνλµ ,

where cνλµ are the Littlewood-Richardson coefficients (see (2.3.1) and [60], Part I, Ch.9 for their
precise definition).
The Weingarten calculus for the symmetric group is not as much developed as the one for the
classical Lie groups. We have seen in Section 5 that the precision of the Weingarten calculus
is given by the ability to invert a Gram-Schmidt matrix. In the unitary case, this was greatly
simplified by the Schur-Weyl duality and the well-known representation theory of the different
symmetric groups Sk, for k ≥ 1. The same method applies also to the orthogonal and symplectic
case. However in the symmetric case, the Schur-Weyl theory involves another family of algebras,
namely the partition algebras Pk(n) for n, k ≥ 1. The understanding of the algebraic properties
of this family is recent (see the work of Halverson and Ram in [44] for example), and therefore
the Weingarten calculus has still not been fully achieved in this setting.

Wreath product with Sn Let G be a classical group and n ≥ 1. Then Sn acts on Gn by the
automorphisms

s : σ ∈ Sn 7→ s(σ).(g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)). (∗)

Definition 2.42. The wreath product between G and Sn, denoted G o Sn, is the semi-direct
product of Gn and Sn, where Sn acts on Gn by the action (∗). In other words,

G o Sn = {((g1, . . . , gn), σ), gi ∈ G, σ ∈ Sn},

with the product

((g1, . . . , gn), σ) · ((g′1, . . . , g′n), µ) = ((g1g
′
σ−1(1), . . . , gng

′
σ−1(n)), σµ).
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If G is a matrix compact group, there is an equivalent way to define G o Sn. Namely let
(ukl(g))1≤k,l≤p be the fundamental representation of G. Then G o Sn can be defined as the sub-

group of Un×p consisting of the matrices

{
(vij(σ)ukl(gi))1≤i,j≤n

1≤k,l≤p

}
for σ ∈ Sn and g1, . . . , gn ∈ G.

If G is a compact group, G o Sn is compact as well and thus there exists a Haar measure on
G o Sn. It is easy to see that G o Sn is isomorphic to G × · · · × G × Sn as a measure space and
that the Haar measure on G o Sn is given by dλGoSn =

⊗
i dgi ⊗ dσ, where dg denotes the Haar

measure on G and dσ the normalized counting measure on Sn.
Let G ⊆ Um. In this case G o Sn ⊆ Un ⊗Um, and by the Tannaka-Krein duality, the description
of G o Sn is completely given by the data of MorGoSn(ε, ε′) for all words ε, ε′ in {◦, •}. Actu-
ally it is a straightforward computation to express MorGoSn(ε, ε′) in terms of MorSn(ε, ε′) and
{MorG(ε, ε′}ε,ε′ : an element of MorGoSn(ε, ε′) is given by a partition p ∈ P (ε, ε′) together with
an element of MorG(εB, ε

′
B) for each block B of p, εB and ε′B being respectively the restriction

of ε and ε′ to the elements in B (see Chapter 6 for more details on the subject).
As consequence, we get the convergence in law of Tr(uGoSn) toward a compound Poisson distri-
bution with initial law Tr(uG).
Note that the irreducible representations of G oSn are described by generalization of Schur func-
tions. Refer to [60], Part I, Appendix B for an exposition in the case of a wreath product G oSn
with G a finite group.

Remark 2.43. For two sets X,Y denote by F(X,Y ) the set of maps from X to Y . The wreath
product is a more general construction than the one presented here. Let G be a group. For any
set X and group F acting on X, the wreath product G oX F is the set F(X,G) × F with the
product ? defined as follows: for h, h′ ∈ F(X,G) and f, f ′ ∈ F , (h, f) ? (h′, f ′) = (h̃, ff ′), where
for x ∈ X,

h̃(x) = h(x)h′(f−1(x)),

with the product on the right hand side being done in G.
In Chapter 6, we will study this more general wreath product for G a compact group, X a finite
set and F a permutation group of X. In this case the construction is exactly the same as in the
case of the symmetric group, and G oX F is compact.
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Chapter 3

Compact quantum group

In this chapter we introduce the notion of compact matrix quantum group and give the non-
commutative version of the results of last chapter. This lead to an overview of the results
obtained in the thesis.

3.1 Noncommutative spaces and quantum groups

3.1.1 What is a compact quantum group ?

Non-commutative spaces The notion of quantum groups fits into the more general frame-
work of noncommutative spaces. The starting idea is that most properties of a classical object,
like a topological or a measurable space, can be seen through the algebra of functions on this
object. Thus by a considering noncommutative generalization of these algebras, it is possible to
define noncommutative analogs to the classical objects.

Example 3.1 (Historical example). The most trivial example is the one of complex functions
on a unique point. Classically this space is just C, with multiplication given by the canonical
one on C. The noncommutative generalization is obtained by replacing C by the algebra Mn(C)
of n−dimensional matrices. This is exactly what Heisenberg, Born and Jordan (see [24]) did
when replacing the orbital position x and momentum p of an electron by two matrices X and P
(which were infinite dimensional in this case).
This example can be transposes to the case of C-valued functions on r points. In this case the
algebra Cr with the pointwise multiplication turns into a matrix algebra

⊕r
i=1Mni(C). Note that

the classical algebra Cr coincides with the center of
⊕r

i=1Mni(C).

In the previous example there is no particular interest in defining topological or measurable
noncommutative spaces, since the classical space is a finite set. The correct approach to the
definition of functions on a noncommutative topological space is the one of C∗−algebras:

Definition 3.2. A C∗−algebra A is a ∗−algebra over C with a norm ‖.‖ such that

• A is complete with respect to ‖.‖.

• for all x, y ∈ A, (xy)∗ = y∗x∗.

• for all x, y ∈ A, ‖xy‖ ≤ ‖x‖‖y‖ and ‖x∗x‖ = ‖x‖2.

.
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This definition is the most natural one for two reasons. First, the algebra of complex func-
tions on a locally compact Hausdorff space, considered with the ‖.‖∞−norm, is a commutative
C∗−algebra. Actually any commutative C∗−algebra is of this form:

Theorem 3.3 (Gelfand’s Theorem). Let A be a commutative C∗−algebra. There exists a locally
compact Hausdorff space X such that A is isomorphic to C0(X), the algebra of complex functions
on X vanishing at infinity.
If A is unital, then X is compact.

Secondly, if A is finite dimensional, we recover the construction made in Example 3.1:

Theorem 3.4 (Artin-Wedderdurn’s Theorem). Let A be a finite dimensional C∗−algebra. Then
there exist r > 0 and n1, . . . , nr > 0 such that

A '
r⊕
i=1

Mni(C).

If X,Y are compact spaces, a continuous map ϕ from X to Y yields a C∗−morphism Φ :
C(Y ) → C(X) defined by Φ(f)(x) = f(ϕ(x)). If ϕ is an injective map (resp. surjective,
bijective), then Φ is a surjective map (resp. injective, resp. invertible). Therefore C∗−morphisms
encode continuous maps between non-commutative topological spaces.

Remark 3.5 (Where are the points in a noncommutative space ?). Even if the right way to
see a noncommutative space is to consider the functions defined on it, it is still possible to
recover a topological space from a general C∗−algebra. If A is commutative, we have seen that
A isomorphic to C0(X) for a locally compact Hausdorff space X. In this case one can show that
any irreducible (continuous) representation of A is of the form evx : a 7→ a(x) for an element
x ∈ X.
Similarly if A is a general C∗−algebra, we define the spectrum Spec(A) as the set of equivalence
classes of continuous representations of the C∗−algebra. It is possible to define a topology on
Spec(A) such that in the commutative case, Spec(C0(X)) ' X. In Example 3.1, this yields as
expected that Spec(A) is a discrete space with r elements. Therefore formally, evaluating a ∈ A
on x ∈ Spec(A) is taking the image of a in the irreducible representation x.
This point of view is however often limited, since in many cases, Spec(A) is just a point.

It is also possible to define noncommutative measurable spaces. This yields the notion of
von Neumann algebra, which won’t be explained here (refer to [80]).

Compact quantum group Following the dual approach to the study of spaces, we want to
translate the axioms of a compact group G at the level of the continous functions on G, in order
to construct noncommutative analogs.
If (X, •) is a compact Hausdorff space with a continuous semigroup structure • : X ×X → X,
the algebra of continuous functions on X inherits an additionnal structure. Namely it is possible
to define the map

∆ :

{
C(X) −→ C(X ×X)
f 7→ (x, x′) 7→ f(x • x′) .

By Arzela-Ascoli Theorem, C(X × X) ' C(X) ⊗ C(X) (where C(X) ⊗ C(X) is the norm
completion of the algebraic tensor product). Since (fg)(x•x′) = f(x•x′)g(x•x′) and f̄(x•x′) =
f(x • x′), ∆ is a ∗−homomorphism from C(X) to C(X)⊗ C(X). Moreover the associativity of
the product on X yields the relation:

(∆⊗ Id) ◦∆(f))(x1, x2, x3) = ∆(f)((x1 • x2), x3) = f((x1 • x2) • x3))

= f(x1 • (x2 • x3)) = (Id⊗∆) ◦∆(f)(x1, x2, x3).
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A map ∆ satisfying the relation (Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆ is called coassociative.
Let us consider the maps ϕ : (x, x′) 7→ (x • x′, x′) and ϕ′ : (x, x′) 7→ (x, x • x′). If X is a group,
these maps are homeomorphisms of topological spaces. By duality ϕ and ϕ′ yield on C(X) ⊗
C(X) the maps Φ(f, g) = ∆(f)(1⊗ g) and Φ′(f, g) = (f ⊗ 1)∆(g). Since ϕ and ϕ′ are injective,
Φ and Φ′ are surjective maps, and therefore {(f ⊗ 1)∆(g)}f,g∈C(X) and {∆(f)(1 ⊗ g)}f,g∈C(X)

are dense in C(X)⊗ C(X).
Reciprocally, if these sets are dense, this means that the maps Φ,Φ′ are surjective, and thus the
maps ϕ,ϕ′ are injective. But this is equivalent to the left and right cancellation property for
the compact semigroup X, and therefore X is actually a group.
The C∗−algebra C(G) of functions on a compact group G is therefore a commutative unital
C∗−algebra with an associative coproduct ∆ : C(G) → C(G) ⊗ C(G), and such that the sets
{(f ⊗ 1)∆(g)}f,g∈C(G) and {∆(f)(1⊗ g)}f,g∈C(G) are dense in C(G)⊗C(G). This motivates the
following definition, which has been introduced by Woronowicz:

Definition 3.6 (Woronowicz,[99]). A compact quantum group is a unital C∗−algebra A with a
coassociative C∗−morphism ∆ : A→ A⊗A such that ∆(A)(1⊗A) = (A⊗ 1)∆(A) = A⊗A.

The C∗−algebra is often denoted C(G) to emphasize its quantum group nature, even if there
is no concrete underlying space G.
(C(H),∆′) is a quantum subgroup of (C(G),∆) if there is a sujective C∗−morphism Φ : C(G)→
C(H) such that (Φ⊗Φ)∆ = ∆′Φ. If Φ is an isomorphism, then H and G are called isomorphic.
As for C∗−algebras, a commutative compact quantum group is a classical group in the following
sense :

Proposition 3.7. Let A be a compact quantum group. If A is commutative, then there exists a
compact group G such that A ' C(G).

3.1.2 Representation theory

In this subsection we will introduce the representation theory of a compact quantum group for
finite dimensional representations. The content of this subsection comes from [99].

Haar state Since the purpose is to extend probabilistic results from the classical group to
the quantum case, one need a natural probability space on compact quantum groups. In the
classical setting, this probability space was given by the Haar measure

∫
G. This probability

measure is the unique to satisfy the relations
∫
G f(gh)dg =

∫
G f(hg)dg =

∫
G f(g)dg for all

continuous functions f on G; equivalently, for any regular probability measure µ on G and any
function f ∈ C(G,C),

∫
G×G f(gh)dgdµ(h) =

∫
G×G f(hg)dgdµ(h) =

∫
G f(g)dg.

By the Riesz representation theorem, there is a bijection between regular signed finite measures
on G and bounded linear functionals on C(G,C). This bijection restricts to a bijection between
regular probability measures µ on G and positive linear functionals l on C(G,C) such that
l(1) = 1. Positiveness means that l(f) ≥ 0 is f ≥ 0 on G; such positive linear functional l with
l(1) = 1 is called a state on C(G,C). If we use the dual approach of the last subsection, the
Haar measure corresponds to the unique state

∫
G on C(G,C) satisfying the relations :

(h⊗ l)∆ = (l ⊗ h)∆ = h, (3.1.1)

for any other state l on C(G,C).
In the quantum framework, we don’t have access to the space but only to the functions defined
on it. Therefore we can not define measures, but only states: a state ω on a unital C∗−algebra
A is a linear functional which is positive, in the sense that ω(aa∗) ≥ 0 for any a ∈ A, and such

40



that ω(1) = 1.
One of the major results deduced from the axioms of a compact quantum group C(G) is the
existence of a state on C(G) satisfying the relations (3.1.1).

Theorem 3.8 ([99]). Let C(G) be a compact quantum group. There exists a unique state h on
C(G) such that for any bounded linear functional ϕ on C(G),

(h⊗ ϕ)∆ = (ϕ⊗ h)∆ = h.

Therefore as in the classical case, a compact quantum group becomes naturally a noncom-
mutative probability space with the Haar state h. We will mainly be interested in the behavior
of elements of C(G) with respect to this Haar state. The example of Un showed us that the
representation theory of the group plays an important role in the computation of expectations
with respect to this Haar state. Fortunately it is also possible to build a representation theory
of a compact quantum group, and this representation theory is approximately the same as in
the classical case.

Finite dimensional representations A finite-dimensional representation of a classical com-
pact group is a finite-dimensional vector space V together with a continuous map ρ : G 7→
End(V ), such that ρ(gg′) = ρ(g)ρ(g′) for all g, g′ ∈ G and ρ(e) = IdV . If the dimension of V is
n, the space of functions from G to End(V ) is isomorphic to the space End(V )⊗C(G,C); thus
the previous definition is equivalent to the data of a vector space V together with an element ρ
in End(V )⊗ C(G,C) satisfying

(Id⊗∆) ◦ ρ = ρ12ρ13,

where (a⊗ b)12 = a⊗ b⊗ 1C(G) and (a⊗ b)13 = a⊗ 1C(G) ⊗ b.
Applying ρ to a vector v ∈ V yields an element in V ⊗C(G,C), and the image of a subspace W
of V is a subspace of V ⊗ C(G,C).
This yields the following definition in the quantum case :

Definition 3.9. Let (C(G),∆) be a compact quantum group. A finite dimensional representation
of C(G) is a finite-dimensional vector space V with an element α ∈ End(V )⊗ C(G) such that

(α⊗ Id) ◦ α = (Id⊗∆) ◦ α,

as maps from V to V ⊗ C(G)⊗ C(G).
An intertwiner from (V, α) to (V ′, α′) is a linear map T : V → V ′ such that

α′ ◦ T = (T ⊗ Id) ◦ α.

The vector space of intertwiners from (V, α) to (V ′, α′) is denoted MorG(α, α′).

Since V is finite dimensional, we can express α in a basis (ei)1≤i≤n of V . This yields a matrix
(uij)1≤i,j≤ in Mn(C(G)) such that

∆(uij) =
n∑
k=1

uik ⊗ ukj .

Reciprocally any matrix in Mn(C(G)) satisfiying the above relations yields a finite dimensional
representation of C(G).
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We can take tensor products, direct sums and dual of finite dimensional representations (uij)1≤i,j≤n
and (vkl)1≤k,l≤m by considering the following usual operations on Mn(C(G)),Mm(C(G)):

u⊗ v = (uijvkl) 1≤i,j≤n
1≤k,l≤m

∈Mmn(C(G)), u⊕ v =

(
u 0
0 v

)
∈Mn+m(C(G))

and ū = (u∗ij)1≤i,j≤n.
The representation is called non-degenerate if (uij)1≤i,j≤n is invertible in Mn(C(G)), and two
representations are said equivalent if there is an invertible intertwiner from one to the other.
As in the classical case, an invariant subspace of (V, α) is a subspace W ⊆ V such that α(W ) ⊆
W⊗C(G) and a fixed vector is a an element v of V such that α(v) = v⊗1C(G). A representation
(V, α) is called irreducible if there is no invariant subspace except {0} and V .
Thanks to the Haar state, if (V, α) is non-degenerate, it is still possible to defined a scalar
product (., .) on V which is invariant with respect to α: namely (., .) satisfies

(α(ei), α(ek)) =
∑

(ej , el)⊗ ujiu∗lk = (ei, ek)⊗ 1.

To obtain this scalar product it suffices to take any scalar product 〈., .〉 on V , and to average
〈., .〉 with respect to the Haar state:

(ei, ek) =
∑
〈ej , el〉 ⊗ h(ujiu

∗
kl).

Therefore any non-degenerate representation (V, α) has a basis B such that the matrix u of α in
B verifies uu∗ = u∗u = Id, where (u∗)ij = u∗ji. Such a matrix is called unitary. The main differ-
ence with the classical case is that the conjugate matrix defined by ūij = u∗ij is not necessarily
unitary as well. However we can show that the representation associated to ū has good prop-
erties, namely: it is non-degenerate (resp. irreducible) if u is non-degenerate (resp.irreducible)
and the representation associated to ū doesn’t depend, up to equivalence of representations,
to the choice of a matrix u for (V, α). A compact quantum group such that for any unitary
representation u, ū is also unitary, is called a compact quantum group of Kac type.

Matrix quantum group We have seen in Chapter 2 that the situation is much simpler when
the group is already described as a subgroup of Un for some integer n ≥ 1. In particular the
Peter-Weyl Theorem, which is a deep result in the general case, has a much simpler proof in
this case.

Definition 3.10. A compact matrix quantum group is a triple (A, (uij)1≤i,j≤n) such that :

• A is a C∗−algebra.

• The ∗−algebra generated by {uij}1≤i,j≤n is dense in A.

• The map Φ : uij 7→
∑
uik ⊗ uij extends to a C∗−homorphism from A to A⊗A.

• The matrices u = (uij)1≤i,j≤n and ū = (u∗ij)1≤i,j≤n are invertible in Mn(A).

u can always be chosen unitary, up to equivalence of representations. Since ū is non-
degenerate, there exists a matrix F ∈ Gln(C) such that FūF−1 = (ut)−1 (F is the matrix
encoding the invariant scalar product on the representation of ū).
One can prove that a matrix compact quantum group is actually a compact quantum group.
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Therefore a compact matrix quantum group is just a compact quantum group (C(G),∆) with a
particular representation u = (ui,j)1≤i,j≤n whose coeffficients generate all the C∗−algera C(G).
A compact matrix quantum group is of Kac type if F can be chosen equal to the identity. In
this case we have

u∗u = uu∗ = ūut = utū = Id.

Remark 3.11. This definition is very convenient to define new compact matrix quantum group.
Namely it suffices to specify relations among abstract variables {uij , u∗ij}1≤i,j≤n that are com-
patible with the coproduct defined above, and then to construct the universal C∗−algebra having
these relations.
An important example is given by the free unitary quantum group U+

n , introduced by Wang in
[95]. The C∗−algebra is the universal C∗− algebra generated by n2 elements u = (uij)1≤i,j≤n
satisfying the relations u∗u = uu∗ = ūut = utū = Id. Since any other compact matrix quantum
group of Kac type has also to fulfill these relations, U+

n can be seen as the biggest compact matrix
quantum group of Kac type of dimension n.
If we add the commutation relations uijukl = ukluij for all 1 ≤ i, j, k, l ≤ n, the resulting
C∗−algebra is commutative and corresponds therefore to a compact matrix group. Actually this
group is Un, the unitary group of dimension n.

3.1.3 Tannaka-Krein Duality

We will present here the Tannaka-Krein duality in the framework of compact quantum groups.
This duality extends the Tannaka-Krein duality of Chapter 2 to compact quantum groups.

Peter-Weyl Theorem and Schur’s orthogonality Theorem The similarity in the repre-
sentation theory of the classical and the quantum groups extend to the two majors Theorem
of the first section of Chapter 2. Let C(G) be a compact quantum group. A matrix coefficient
of C(G) is an element uij ∈ C(G) coming from a finite-dimensional representation of G. The
vector subspace of matrix coefficients of C(G) is a ∗−algebra for the same reasons as in the
classical case. This ∗−algebra is denoted by C(G)0.

Theorem 3.12. Let C(G) be a compact quantum group. The ∗−algebra C(G)0 is dense in
C(G).

The Schur’s orthogonality Theorem is in the quantum case is analogous to the one in the
classical case. However one needs to modify a bit the orthogonality relations, because the dual
of a unitary representation is not necessarily also unitary.
Let {(uαij)1≤i,j≤d(α)}α irred be the set of equivalence classes of irreducible representations (written
in an orthonormal basis with respect to the invariant scalar product). We have seen that for
each irreducible representation uα, the dual representation ūα is not necessarily unitary but
always nondegenerate, and therefore there exists Fα ∈Md(α)(C) such that Fα(uα)t(Fα)−1ūα =
IdMn(C(G)).
Let L2(C(G), h) be the completion of C(G) with respect to the scalar product (a, b) 7→ h(ab∗).

Theorem 3.13 (Schur’s orthogonality Theorem). The set {(uαij)1≤i,j≤d(α)}α irred forms a basis

of L2(C(G), h), and for α, β irreducible representations, 1 ≤ i, j ≤ d(α) and 1 ≤ k, l ≤ d(β),

h((uβip)
∗uαjq) = δαβδpq

(Qα)ji
Dα

,
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with Qα, Dα only depending on Fα. Similarly

h(uβjq(u
α
ip)
∗) = δαβδij

(Q−1
α )pq
Dα

.

If G is of Kac type, h((uβip)
∗uαjq) = δαβδpqδij

1
d(α) and the Haar state is a trace:

h(xy) = h(yx) for all x, y ∈ C(G, h).

In particular in the case of a compact quantum group of Kac type, the situation is very close
to the one of classical compact groups.

Tannaka-Krein duality In the last part of the previous chapter, it has been shown that a
classical compact group is essentially the same as a collection of vector spaces of linear maps
stable under certain operations and that most of the properties of the group could be seen on
this collection of spaces. The similarity between classical compact groups and compact quan-
tum groups continues here, since the same kind of alternative description exists for a compact
quantum group.
The natural framework to describe the representation theory of a compact quantum group is the
one of concrete monoidal W ∗−category with dual. We won’t introduce the basics of category
theory here and an interested reader should refer to [59] to get precise statements and theoretical
explanation of the formalism introduced here. The definition is given from an abstract point
of view, but keeping in mind the representations of a compact quantum group makes it more
concrete.

Definition 3.14 ([100]). A concrete monoidal W ∗−category (or CMW ∗−category) C is a
monoid R together with a family of finite dimensional Hilbert spaces {Hr}r∈R such that Hr⊗Hs =
Hrs ((Hr⊗Hs)⊗Ht is canonically identified with Hr⊗ (Hs⊗Ht)), and a family of vector spaces
Mor(r, s) ⊆ L(Hr, Hs) with the following properties :

• IdHr ∈ Mor(r, r)

• If T ∈ Mor(r, r′) and T ′ ∈ Mor(r′, r′′) then T ′T ∈ Mor(r, r′′).

• If T ∈ Mor(r, r′) then T ∗ ∈ Mor(r′, r).

• If T ∈ Mor(r, r′′) and T ′ ∈ Mor(r′, r(3)) then T ⊗ T ′ ∈ Mor(rr′, r′′r(3)).

• He = C

C is called complete if moreover

• For any r ∈ R and Hilbert space H such that there exists a unitary operator V : Hr → H,
H = Hs for some s ∈ R, and V ∈ Mor(r, s).

• For any projector p ∈ Mor(r, r), there exists s ∈ R such that Hs = pHr and the embedding
i : Hs → Hr is in Mor(s, r).

• For any r, r′, there exists s ∈ R such that Hr ⊕ Hr′ = Hs and the canonical inclusion
Hr → Hs and Hr′ → Hs are respectively in Mor(r, s) and Mor(r′, s).

Example 3.15 ([100]). The set of finite dimensional representations of a compact quantum
group (C(G),∆) together with the spaces of intertwiners between them is a complete CMW ∗−category
denoted RepG. Moreover H is a quantum subgroup of G if and only if RepG is a subcategory
of RepH.
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Note that we didn’t formalize the fact that the dual of a finite dimensional representation is
equivalent to a unitary representation. In the context of CMW ∗−category, this is equivalent to
the following definition :

Definition 3.16. Let r ∈ R and Hr the associated Hilbert space with basis 〈ei〉1≤i≤n. r has
a complex conjugate r̄ ∈ R if there is an invertible antilinear map j : Hr → Hr̄ such that∑
ei ⊗ j(ei) ∈ Mor(e, rr̄) and

∑
j−1(ei)⊗ ei ∈ Mor(e, r̄r).

A CMW ∗−category such that any r has a complex conjugate r̄ is called a CMW ∗−category
with conjugates.

For example, a finite dimensional representation uα of a compact quantum group has a dual
ūα, and the map j is given by the matrix Fα as constructed in Paragraph 3.1.3.
In the classical case, it was easy to compare the categories of representations of two compact
groups G and G′ since we only considered matrix compact groups of fixed dimension. Thus
we just had to compare the intertwiner spaces MorG(ε, ε′) and MorG′(ε, ε

′) for all ε, ε′. In the
broader case of CMW ∗−category, we still have to be able to compare these objects. This leads
to the following definition:

Definition 3.17. Let C = (R, {Hr}r∈R, {Mor(r, r′)}r,r′∈R) and C′ = (S, {Ks}s∈S , {Mor(s, s′)}s,s′∈S)
be two CMW ∗−categories.
C and C′ are unitarily monoidally equivalent if there is a monoid morphism F : R 7→ S and for
each r, r′ a vector space isomorphism F : Mor(r, r′)→ Mor(F(r),F(r′)) such that :

• for all s ∈ S, there exists r ∈ R such that Mor(F(r), s) contains a unitary operator.

• F respects the operations on C and C′: namely if T ∈ Mor(r, r′), T ′ ∈ Mor(r′, r′′), T ′′ ∈
Mor(r′′, r(3)), then F(T ∗) = F(T )∗,F(T ′T ) = F(T ′)F(T ) and F(T⊗T ′′) = F(T )⊗F(T ′).

C and C′ are unitarily isomorphic if they are unitarily monoidally equivalent, and moreover there
exists for each r ∈ R a unitary operator Fr : Hr → KF(r) such that:

• F (rr′) = F (r)⊗ F (r′).

• If T ∈ Mor(r, r′), F (r′) ◦ T = F(T ) ◦ F (r).

This means that two CMW ∗−categories are unitarily monoidally equivalent if they have
the same structure (composition, tensor products, decomposition into simple pieces,...), but
the concrete realization on Hilbert spaces are different; they are unitarily isomorphic if even
the realization of these structure on Hilbert spaces is the same. In the latter case the two
CMW ∗−categories should be considered as being the same object.
We can now state the Tannaka-Krein duality in the compact quantum group case. This duality
has been discovered and proved by Woronowicz in [100].

Theorem 3.18 (Tannaka-Krein’s Duality). Let C be a complete CMW ∗−category with con-
jugate. There exists a compact quantum group (C(G),∆) such that C is unitarily isomorphic
to RepG. Moreover if (C(H),∆′) is another compact quantum group such that C is unitarily
isomorphic to RepH, then H is isomorphic to G.

There exist compact quantum group whose categories of representations are unitarily monoidally
equivalent but not unitarily isomorphic. In the latter case the representations are still similar,
and for example two compact quantum groups with unitarily monoidally equivalent categories
of representations have isomorphic fusion rings.
In the case of a matrix compact quantum group of Kac type, the situtation is much simpler.
Let n ≥ 1. We are using here the notations of Section 2.6.1.
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Theorem 3.19 (Tannaka-Krein’s duality in the matrix case). Let {H(ε, ε′)} be a collection of
vector spaces such that H(ε, ε′) ⊆ L(V ε, V ε′). If {H(ε, ε′)} fulfills the four conditions (2.38),
then there exists a compact subgroup (C(G),∆) of U+

n such that for all ε, ε′,

H(ε, ε′) = MorG(ε, ε′).

Moreover the matrix compact quantum group is uniquely determined by the data of {H(ε, ε′)}.
Example 3.20. By the stability results 1.1.3 of Chapter 1, for each category of partition C and
n ≥ 1, the maps Tp’s give a collection of vector spaces {Cn(ε, ε′)} that fulfills the four conditions
(2.38). Therefore for each catergory of partition C and n ≥ 1, there is a quantum subgroup of
U+
n whose representation theory is encoded by C.

3.2 Unitary easy quantum groups

3.2.1 Easy quantum groups

Free versions of the classical groups and their associated categories of representa-
tion We have seen in Chapter 2, Section 6 that we could associate categories of partition to
certain classical groups. This correspondance is summarized by the following list :

Un P ◦•2,alternating

On P ◦•2

Sn P ◦•

Figure 3.1: Correspondance between classical groups and categories of partitions through the
map p 7→ Tp

Note that the size n of the group is reflected through the map p 7→ Tp by the choice of the dimen-
sion of V ◦ and V • (which is theoretically speaking a concrete realization of the corresponding
category of partition).
The relation Sn ⊆ On ⊆ Un corresponds to the inverse relation P ◦•2,alternating ⊆ P ◦•2 ⊆ P ◦•, as it
was predicted in Example 3.15. In Chapter 1, we have seen the existence of non-crossing analogs
NC◦•, NC◦•2 , NC◦•2,alternating of these categories of partitions. By Example 3.20, each category of

partition C yields a subgroup of U+
n for each n ≥ 1. Actually the quantum groups corresponding

to the three categories of non-crossing partitions aforementioned have already been introduced
by Wang in [95] and [96], and the correspondance with categories of partitions has been proved
by Banica in [3],[5] and [4]. In each case the construction is done by using Remark 3.11:

• NC◦•2,alternating corresponds to the free unitary group itself U+
n .

• NC◦•2 corresponds to the free orthogonal group O+
n . This quantum group is the quantum

subgroup of U+
n defined by the relation u∗ij = uij . This is the biggest compact matrix

quantum group (C(G), (uij)1≤i,j≤n) such that all the u′ijs are self-adjoint.

• NC◦• corresponds to the free symmetric group S+
n . This quantum group is the quantum

subgroup of O+
n defined by the relation

∑
j uij =

∑
i uij = 1 and uijuik = δjkuij for all

1 ≤ i, j, k ≤ n.

If we add the relations uijukl = ukluij for all 1 ≤ i, j, k, l ≤ n, U+
n , O

+
n and S+

n become respec-
tively Un, On, Sn. Thus we have the following inclusion relations:

S+
n ( O+

n ( U+
n

∪ ∪ ∪
Sn ( On ( Un
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Definition of easy quantum groups The diagram above is the starting point to define the
class of unitary easy quantum groups. This class has been first introduced in the orthogonal
case by Speicher and Banica in [15], and then extended to the unitary case in an unpublished
article of Banica, Curran and Speicher ([83]).

Definition 3.21. A compact matrix quantum group G with Sn ⊆ G ⊆ U+
n is called easy, if

there is a category of partitions C ⊆ P ◦• such that for every words ε and ε′ in {◦, •}, the space
of intertwiners MorG(ε, ε′) is spanned by all linear maps Tp where p is in C◦•(ε, ε′). An easy
quantum group G is called orthogonal easy quantum group, if G ⊆ O+

n .

Refer to Chapter 1, Section 1 for the definition of the map Tp for p a two-colored partition.

As we will see in Chapter 4, an easy quantum group is orthogonal if and only if ◦◦ belongs to
the associated category of partitions.

Example 3.22. Let us consider the set H of all partition p ∈ P ◦• such that each block of p has
an even number of elements. H is a category of partitions. This category corresponds to the
hyperoctahedral group Hn = Z2 o Sn. This is a subgroup of On, and C(Hn) is defined by taking
the quotient of C(On) by the relations uijuik = ujiuki = 0 for all 1 ≤ i, j, k ≤ n with j 6= k.
Once again, we can define the same with non-crossing partitions, yielding the free hyperoctahedral
quantum group introduced by [11]. This quantum group is the subgroup of O+

n defined by imposing
the same relations as above.

The natural question is to find all the compact matrix quantum groups that are easy; this
question is equivalent to the classification of all categories of partitions. From a probabilistic
point of view, an answer to this question is interesting because for such quantum groups, we
expect that the Weingarten calculus may have simpler combinatorial expressions, as this is the
case in Chapter 2 for the classical groups. There exists also a method to study the representation
theory of easy quantum groups, see [40].
The classification of all orthogonal easy quantum groups has been done in a serie of papers
[15],[97],[71]. In this classification, there are two particularly simple cases: the case where the
easy quantum group is a classical group and the case where the category of partitions associated
to the quantum group is a category of non-crossing partitions. The classification in these both
cases has been done in [15, 97]. In-between the situation is much harder to handle with, since
there is an uncountable set of such easy quantum groups (see [71]); we should stress nonetheless
that the situation becomes simple again when restricting to easy quantum groups between On
and O+

n . In the latter case there is only one such quantum group, namely the half-liberated
orthogonal group O∗n (see [15]).

3.2.2 Free easy quantum groups

Following the last comment, we focus particularly on the easy quantum groups described by
non-crossing partitions:

Definition 3.23. A free easy quantum group is an easy quantum group Gn such that the
corresponding category of partitions C is a subcategory of NC◦• (or equivalently S+

n ⊆ Gn).

The terminology goes back to Wang’s papers [95, 96]; see also [11] or [39]. For example the
three quantum groups S+

n , O
+
n and U+

n are all free easy quantum groups. Several other free easy
quantum groups have already been discovered.
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The orthogonal case As we said before the classification of all free easy quantum groups has
been done in the orthogonal case by Banica, Speicher and Weber in [15, 97].

Proposition 3.24. Let Gn be an orthogonal free easy quantum group. Then Gn coincides with
one of the following quantum groups.

• O+
n : uij = u∗ij, u orthogonal, i.e.

∑
k uikujk =

∑
k ukiukj = δij.

• H+
n : uij = u∗ij, u orthogonal, uikujk = ukiukj = 0 if i 6= j.

• S′+n : uij = u∗ij, u orthogonal, uikujk = ukiukj = 0 if i 6= j,
∑

k uik =
∑

k ukj for all i, j.

• S+
n : uij = u∗ij = u2

ij, u orthogonal,
∑

k uik =
∑

k ukj = 1 for all i, j.

• B#+
n : uij = u∗ij, u orthogonal,

∑
k uik =

∑
k ukj for all i, j.

• B′+n : uij = u∗ij, u orthogonal, r :=
∑

k uik =
∑

k ukj for all i, j, uijr = ruij.

• B+
n : uij = u∗ij, u orthogonal,

∑
k uik =

∑
k ukj = 1 for all i, j.

Note that the quantum groups B+
n , B#+

n (with a different notation) and S′+n appeared first
in [15], and B′+n was discovered in [97].
Moreover the category of partitions of each of these quantum groups can be explicitly described.
For example B#, the category of partitions associated to B#+

n , is the category of non-crossing
partitions whose blocks are only pairs and singleton, and such that there is an even number of
singletons between two elements of a same pair. We won’t describe all of these categories, since
a more general result will be given in Chapter 4.

Banica and Vergnioux’s quantum reflection groups Hs+
n The quantum reflection groups

Hs+
n were first defined by Banica and Vergnioux in [16] and studied by Banica, Belinschi, Cap-

itaine and Collins in [9].

Definition 3.25. Given n, s ∈ N, the quantum reflection group Hs+
n is given by the universal

C∗-algebra generated by elements uij, 1 ≤ i, j ≤ n subject to the conditions:

• u = (uij) and ū = (u∗ij) are unitaries

• all uij are partial isometries (i.e. uiju
∗
ijuij = uij) and the projections u∗ijuij and uiju

∗
ij

coincide

• usij = uiju
∗
ij

We define H∞+
n by omitting the third of the above conditions.

Note that H1+
n = S+

n and H2+
n = H+

n . Furthermore, Hs+
n = Ẑs o∗ S+

n where o∗ denotes
Bichon’s free wreath product [21] and Zs is shorthand for the cyclic group Z/sZ. Moreover, the
quotient of the above C∗-algebras by the commutator ideal yields C(Hs

n), where Hs
n = Zs o Sn.

The quantum reflection groups have also been studied in [16] , [9] and [55].

Proposition 3.26. Let s ∈ N ∪ {∞}. The quantum reflection group Hs+
n is easy and the

corresponding category of partition is Hs,s, the category of non-crossing partitions such that
each block has the same number of black and white points modulo s.

This serie of quantum groups will be further studied in Chapter 5 and 6, since they are also
free wreath products.
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Banica, Bichon, Capitaine and Collins’s H#,+ The quantum group H#,+ has been de-
fined in [9] as an auxiliary object.

Definition 3.27. The quantum group H#,+ is given by the universal C∗-algebra generated by
uij such that u and ū are unitaries and:

uiku
∗
jk = ukiu

∗
kj = u∗ikujk = u∗kiukj = 0, whenever i 6= j.

It has been proven in [8] that

H#,+

is free easy with category H#, the category of non-crossing partitions with blocks having an
even number of elements with alternating colors.

3.2.3 Overview of the results

Let us review the results that are obtained in Part II. The results of Part II are from a joint
work with Moritz Weber.

Classification of free easy quantum groups The first result is a classification of all free
easy quantum groups. This classification is done in two steps. The first step is the classification
of all the categories of non-crossing two-colored partitions, which can be summarized as follows
:

Theorem 3.28 (Ch.3, Th.4.41 and Th.4.42). There exist five denumerable families of categories
of two-colored non-crossing two-colored partitions :

• U

• Ok for d ∈ 2N

• H# and Hd,k for d|k, k ≥ 2.

• Br,d,k for d|k, k ≥ 1 and r ∈ {∗, 0, d/2} (r = d/2 is possible only if d is even).

• Sd,k for d|k, k ≥ 1.

In each case these categories have a combinatorial description.
In a second step we identify the compact quantum groups that corresponds to each of these
categories of partitions. This identification is greatly simplified by the fact that a lot of free
easy quantum groups have already been identified. The essential tool of the remaining part
of this identification is the introduction of two algebraic operations, the tensor and the free
complexifications denoted respectively ×̃ and ∗̃) by Zd. The tensor complexification has been
already considered in an unpublished draft [83], and the free complexification with Z has been
first introduced in [8]. This yields the following classification :

Theorem 3.29 (Ch.3, Th. 4.57). For each n ≥ 1, the following correspondance holds between
categories of partitions and unitary easy quantum groups:

1. the category U corresponds to the free unitary quantum group U+
n . the category Ok corre-

sponds to O+
n ×̃Zk.

2. the category Hk,d corresponds to (Zd o∗ S+
n )×̃Zk. Zd o∗ S+

n is also denoted Hd,+
n and has

been introduced by Banica and Vergnioux in [16].
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3. the category H# corresponds to H+#
n = H+

n ∗̃Z2.

4. the category Bk,d,∗ (resp Bk,d,0), corresponds to (C+
n ∗̃Zd)×̃Zk) (reps. (B+

n ∗̃Zd)×̃Zk)).

5. the category Bk,d,d/2 corresponds to C̃+,d
n ×̃Zk.

6. the category Sk,d corresponds to (S+
n ∗̃Zd)×̃Zk).

As a corollary, we obtain also all the unitary easy quantum groups that are classical groups
(see Ch.3, Th 4.61).

Weingarten calculus on free easy quantum groups We have seen in Chapter 2, Section
3 that for un the fundamental representation of Un, the family (Tr(ukn)k≥1) converges in law
toward a family of independent complex gaussian variables (uk)k≥1 such that uk has variance k;
since this result holds also for On and Sn with different limit distributions, it is expected that
the result can be generalized to all easy quantum groups. In [14], Banica, Curran and Speicher
proved that the same phenomenon holds for orthogonal free easy quantum groups, with limit
distributions involving free semicircular and free Poisson distributions.
In Chapter 5, we will extend this result to all free easy quantum groups. The main tool is the
Weingarten formula, which takes a simpler expression for easy quantum groups. In the second
part of Chapter 5, we prove that the second-order freeness for the unitary group (see Chapter 2,
Th.2.36) has a natural analog in the free case: namely the family of traces of arbitrary reduced
products of u, ut, ū, u∗ converges in distribution to a family of circular variables.

3.3 Noncommutative permutations and free wreath product

The free wreath product is an algebraic construction that generalizes the usual wreath product
between permutation groups and compact groups. It has been introduced by Bichon in [21] as
a way to encode the quantum symmetries of a finite product of graphs.

3.3.1 Free wreath product

In the classical case, a permutation group is a subgroup of Sn for some n ≥ 1. The natural
extension in the noncommutative case yields the following definition:

Definition 3.30. A non-commutative permutation group F = (C(F ), (vij)1≤i,j≤n) is a quantum
subgroup of S+

n . The non-commutative permutation group F is said irreducible if dim MorF (0, 1) =
1.

From an algebraic point of view, this means that F is a compact matrix quantum group
whose fundamental representation matrix v satisfies at least the following relations:

v∗ij = vij ,
∑
j

vij =
∑
i

vij = 1, vijvik = δjkvij ,

for all 1 ≤ i, j, k ≤ n. From a representation theoretic point of view, Rep(S+
n ) is a subcategory

of Rep(F ), and therefore all the maps Tp with p ∈ NC◦• are also intertwiners of F .
The free wreath product is the generalisation of the construction Chapter 2, Section 6.2.

Definition 3.31 (Bichon). ([21, Definition 2.2]) Let G = (C(G),∆) be a compact quantum
group and F = (C(F ), (vij)1≤i,j≤n) be a non-commutative permutation group. Let νi : C(G) →
C(G)∗n be the canonical inclusion of C(G) as the i−th copie in the free product C(G)∗n, i =
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1, . . . , n.
The free wreath product of G by F is the quotient of the C∗-algebra C(G)∗N ∗ C(F ) by the
two-sided ideal generated by the elements

νk(a)vki − vkiνk(a), 1 ≤ i, k ≤ n, a ∈ C(G).

It is denoted by C(G) ∗w C(F ).

It has been proved in [21] that there exists a coproduct ∆ on C(G) ∗w C(F ) such that
(C(G) ∗w C(F ),∆) is a compact quantum group. This coproduct is defined as

∆(vij) =
n∑
k=1

vik ⊗ vkj ,∀i, j ∈ {1, . . . , n}

and

∆(νi(a)) =
n∑
k=1

νi(a(1))vik ⊗ νk(a(2)),

where ∆G(a) =
∑
a(1) ⊗ a(2) is the value of the coproduct ∆G on a with the Seedler notations.

We denote by G o∗ F the quantum group (C(G) ∗w C(F ),∆).
Suppose thatG is a compact matrix quantum group with fundamental representation (ukl)1≤k,l≤m.
In this case G o∗ F is also a compact matrix quantum group with a fundamental representation
(wij,kl)) 1≤i,j≤n

1≤k,l≤m
defined by wij,kl = viju

i
kl, where uikl denotes the element νi(ukl).

Quantum symmetries of a graph The free wreath product construction is a natural con-
struction when considering quantum symmetries of graphs. Let G be a finite graph with n
vertices {1, . . . , n} and adjacency matrix dG = (dij)1≤i,j≤n. We suppose that G doesn’t have
any loop. A symmetry of G is a permutation σ of {v1, . . . , vn} such that dσ(i)σ(j) = dij for all
1 ≤ i, j ≤ n. The set of symmetries of G forms a subgroup of Sn called the symmetry group of
G and denoted by S(G). From a dual point of view, C(S(G)) = C(Sn)/〈vdG = dGv〉, where v is
the fundamental matrix (vij)1≤i,j≤n of Sn defined in 2.6.2.

Definition 3.32 ([10]). The quantum symmetry group of G is the matrix quantum subgroup
(A(G), (vij)1≤i,j≤n) of (C(S+

n , (uij)1≤i,j≤n) defined as follows: A(G) is the quotient of C(S+
n ) by

the relation ud = du and vij is the image of uij in this quotient.

There is a natural operation on graphs yielding free wreath products on the level of the
quantum symmetry group.

Definition 3.33. Let F ,G be two graphs without loop, with vertices indexed respectively by J1;nK
and J1,mK, and respective adjacency matrices c and d. The lexicographical product G ◦ F is the
graph with vertices indexed by J1,mK× J1, nK, and adjacendy matrix

Dij,kl =

{
dkl if i = j

cij if i 6= j

Figure 3.2 is an example of such construction, with the lexicographical product of a segment
with a square.
By a result of [27], A(G) o∗ A(F) ⊆ A(G ◦ F), with equality if and only if (G,F) respects the
conditions of Sabidussi (see [73] for a description of this conditions). Note that the same result
holds also in the classical case : namely S(G) o S(F) ⊆ S(G ◦ F), with equality if and only if
(G,F) respects the conditions of Sabidussi.
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Figure 3.2: Lexicographical product G ◦ F , with G a segment and F a square.

Free product formulae An important invariant of a quantum permutation group F is the
law of the character χF of the fundamental representation (vij)1≤i,j≤n under the Haar measure.
Since F is a quantum permutation group, F is a subgroup of O+

n and therefore χ is a self-adjoint
element. Thus, although C(F ) is a non-commutative C∗−algebra, χ is a well-defined random
variable on R, whose associated measure is denoted by µ(F ). From the representation theory of
F , the k−th moment ck of F is exactly dim(FixF (k)), where FixF (k) denotes the vector space
of invariant vectors of the k−th tensor power representation v⊗k.
By considering several examples of lexicographical products of graph and extended versions of
this constructions, Banica and Bichon have been lead to the following conjecture in [10]:

Conjecture 3.34. Let F and G be two graphs such that S(F) and S(G) are respectively transitive
on F and G. Then

µ(A(G) o∗ A(F) = µ(A(G)) � µ(A(F)).

Recall that � is the free multiplicative convolution as defined in Section 1.2.1. The condition
that S(F) is transitive on F means that for all i, j ∈ F , there exists σ ∈ S(F) such that σ(i) = j.
Equivalently this means that dim(FixS(F)(1)) = dim(FixA(F)(1)) = 1.
This conjecture comes from the theory of planar algebras and a similar result exists by taking
a free product of certain planar algebras.

3.3.2 Planar algebra

A planar algebra is a collection of vector spaces which is stable under a set of transformations
indexed by planar diagrams. They have been introduced by Jones in [46] in order to give a
diagrammatic approach to the study of subfactors of finite factors.

Planar tangles A planar tangle P of degree k ≥ 0 consists of the following objects:

• A disk D0 of R2, called the outer disk.

• Some disjoint disks D1, . . . , Dn in the interior of D0 which are called the inner disks.

• For each 0 ≤ i ≤ n, a finite subset Si ∈ ∂Di of cardinal 2ki (such that k0 = k) with a
particular element i∗ ∈ Si. The elements of Si are called the distinguished points of Di

and numbered counterclockwise starting from i∗. ki is called the degree of the inner disk
Di.

• A finite set of disjoint smooth curves {γj}1≤j≤r such that each γ̊j lies in the interior of
D0 \

⋃
i≥1Di and such that

⋃
1≤j≤r ∂γj =

⋃
0≤i≤n Si; it is also required that each curve

meets a disk boundary orthogonally, and that its endpoints have opposite (resp. same)
parity if they both belong to inner disks or both belong to the outer disk (resp. one belongs
to an inner disk and the other one to the outer disk).
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• A region of P is a connected component of D0 \ (
⋃
i≥1Di ∪ (

⋃
γj)). Give a chessboard

shading on the regions of P in such a way that the interval components of type (2i+ 1, 2i)
are boundaries of shaded regions.

In the above description, closed curves are allowed among the set {γi}. On each disk, the la-
belling of the distinguished points is fixed by the choice of a particular distinguished point i∗:
this choice is pictorially represented by adding a mark ∗ on the interval component directly
preceeding this point. An example of planar tangle is given in Figure 3.3.

∗

∗
∗

∗

Figure 3.3: Planar tangle of degree 4

Planar tangles can be composed in the following way: suppose that T1 and T2 are tangles of
respective degree k and k′, and that T1 has an interior disk D of degree k′. Plugging T2 inside
D in such way that the marked interval of the exterior disk of T2 coincides with the marked
interval of D, and then erasing the boundary of the exterior disk of T2 (except the distinguished
points of the exterior disk of T2, which become usual points in the resulting picture) yields a
new planar tangle T1 ◦D T2. An example of such a gluing is given in Figure 3.4.

Planar algebra A planar algebra is a family of finite-dimensional vector spaces {Vk}k∈Z>0∪{+,−}
together with an action of the planar tangles. Namely, each planar tangle T of degree k yields
a linear maps Z(T ) :

⊗
D internal
disk of T

VkD → Vk with the compatibility condition

Z(T )(vD1 ⊗ · · · ⊗ Z(S)(vDj )⊗ · · · ⊗ vDr) = Z(T ◦Dj S)(vD1 ⊗ · · · ⊗ vDj ⊗ · · · ⊗ vDr),

∗

∗

∗

∗

=

∗
∗

∗

∗
∗

∗

∗

∗

∗

∗

Figure 3.4: Composition of planar tangles
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for any planar tangles T, S such that the degree of S is the degree of the internal disc Dj of T
and for all vectors vDi ∈ Vki for i 6= j and vDj ∈

⊗
D internal
disk of S

VkD .

The planar algebra structure yields several natural operations on {Vk}. In particular each vector
space Vk becomes an algebra with the action of the planar tangle of Figure 3.5.

∗

∗

∗

Figure 3.5: : Multiplication tangle of degree P6.

Under certain assumptions, each vector space Vk is a semi-simple ∗−algebra and
⋃
Vk is a tower

of algebras with a common trace: such planar algebra is called a subfactor planar algebra (see
[46]). One of the major results on planar algebras relates the dimension of each vector space Vk
of a subfactor planar algebra with the cardinality of some paths on a graph:

Theorem (Jones,[46]). Let P be a subfactor planar algebra. There exists a bipartite graph GP
with root vertex ∗ such that:

dimPk = #{ walk of length 2k on GP starting and ending at ∗}.

The random variable µP whose k−th moment is dimPk is called the spectral measure of the
planar algebra P.

3.3.3 Overview of the results

The main motivation is the proof of Conjecture 3.34. Aiming this proof, we obtained several
results on the intertwiner spaces of a free wreath product.

Free wreath product with S+
n (joint work with François Lemeux) In Chapter 6, we

study the free wreath product of a compact quantum group with the free symmetric group S+
n .

In particular we describe completely the intertwiner spaces in this case, which yields some useful
expressions for the Weingarten matrix of a free wreath product with S+

n . As a byproduct of
these results, an asymptotic formula has been found for the law of the characters of G o∗ S+

n ,
where G is a fixed compact matrix quantum group and n goes to +∞.
Let t ∈ (0, 1] and letG be a matrix compact quantum group of Kac type and dimension r. Denote
by χG the law of the character of its fundamental representation. Let (Go∗S+

n , (wij,kl)1≤i,j≤r,1≤k,l≤n)
be the matrix quantum group G o∗ S+

n with its fundamental representation w. For 1 ≤ s ≤ n,
denote by χw(s) the truncated character χw(s) =

∑
1≤i≤r
1≤k≤s

wii,kk.

Theorem 3.35. With respect to the Haar measure, if s ∼ tn for n going to infinity,

χGo∗S+
n

(s)→ Pt(χG),

where Pt(χG) is the free compound Poisson with parameter t and original law χG.
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Free wreath product and planar algebras (joint work with Jonas Wahl) In Chapter
7, we establish a link between the free wreath product G o∗F of two irreducible non-commutative
permutation groups and the free product of two planar algebras. The free product of two planar
algebras is a construction which has been done by Bisch and Jones in [23], in order to deal
with chains of inclusions of subfactors. In [6], Banica proved that the intertwiner spaces of any
irreducible non-commutative permutation group F is a planar algebra P(V ).
Using the study of the case Go∗S+

n , we prove that the intertwiner spaces of a free wreath product
G o∗ F is the free product of the planar algebras P(F ) and P(G). Using the results of [23], we
deduce a positive (and more general) answer to Conjecture 3.34:

Theorem 3.36 ([10], Conj 3.1). Let F and G be two non-commutative permutation groups such
that dimF Mor(0, 1) = dimG Mor(0, 1) = 1. Then

µ(F o∗ G) = µ(F ) � µ(G),

where µ(G) denotes the law (with respect to the Haar measure) of the character of the funda-
mental representation of a matrix compact quantum group G.

Using a result of Landau from [54] and the link between Boolean and free independence (see
[17]), we also give a combinatorial proof to the fact that the spectral measure of a free product
of irreducible planar algebras is the free multiplicative convolution of the spectral measures of
the initial planar algebras (a result which is already proven in [23]).

3.4 Free fusion rings and non-commutative symmetric functions

We have seen in Chapter 2 that symmetric functions play an important role in the representation
theory of classical easy groups : they encode the fusion rules of Un and On by expressing the
characters in terms of the eigenvalues of the matrices (Chapter 2, Section 3), and they describe
the induction and restriction operations on the irreducible respresentations of Sn (see Chapter
2, Section 6.2).
For free easy guantum groups, the analog of the symmetric functions has not been found yet.
On the other hand, a non-commutative analog of the ring of symmetric functions called NSym
has been introduced in [41]. It appears that the fusion rules of free easy quantum groups share
a common pattern which the multiplicative structure of the ring NSym in a particular basis.

3.4.1 Free fusion ring

The notion of free fusion ring has been introduced by Banica and Vergnioux in [16] to describe
the fusion rules of free hyperoctahedral groups.
Let R be a set with an involution r 7→ r̄ and a product ∗ : R × R → R ∪ {∅}. The involution
and the product are extended to the set F (R) of words in R with the formulae

r1 . . . rk = rk . . . r1,

and
(r1 . . . rk) ∗ (s1 . . . sl) = r1 . . . rk−1(rk ∗ sl)s2 . . . sl,

with the conventrion that rk ? s1 = ∅ implies that (r1 . . . rk) ∗ (s1 . . . sl) = ∅.

Definition 3.37. For (R, ∗,−) has above, the free fusion ring with underlying set (R, ∗,−) is
the algebra whose basis is the words in R with the product

x⊗ y =
∑

x=vz,y=z̄w

vw + v ∗ w. (3.4.1)
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This algebra is denoted F (R, ∗,−).

Most of the free easy quantum groups have fusion rules following a free fusion ring:

• For U+
n , the ring of characters is a free fusion ring with R = Z2, r̄ = 1− r and r ∗ s = ∅.

• For O+
n , the ring of characters is a free fusion ring with R = {1}, 1̄ = 1 and 1 ∗ 1 = ∅.

• For Hs,+
n , the ring of characters is a free fusion ring with R = Zs, r̄ = −r and r ∗s = r+s.

Freslon proved in [38] that the fusion ring of any free easy quantum group whose category of
partitions is stable by removing block is a free fusion ring.
An alternative formula can be used to describe the multiplication in a free fusion ring. Indeed
(3.4.1) is equivalent to the recurrence formula

r1 . . . rn ⊗ s1 . . . sm = r1 . . . rns1 . . . sm + r1 . . . rn−1(rn ∗ s1)s2 . . . sm

+δs1=rnr1 . . . rn−1 ⊗ s2 . . . sm.

The latter formula will be generalized in the last section of Chapter 6 to describe the fusion
rules of general free wreath products with S+

n . With this formula, Lemeux proved in [55] that
a free fusion ring is isomorphic to the free ring Z〈R〉.

3.4.2 Noncommutative symmetric functions

The content of this subsection comes mainly from [84].

The Hopf algebra of symmetric functions In Chapter 2, the ring of symmetric functions
Λ has been defined as the algebra of symmetric polynomials in an infinite number of commuting
variables (X1, . . . , Xn, . . . ). The fundamental theorem of symmetric polynomials yields that Λ
is isomorphic, as a graded algebra, to the graded algebra of polynomials Z[e1, . . . , en, . . . ] with
deg(ei) = i.
It turns out that Λ has the structure of a Hopf algebra. Indeed let (Y1, . . . , Yn, . . . ) be another
infinite family of variables and let P ∈ Λ. Then P ({Xi}, {Yi}) has a decomposition

P ({Xi}, {Yi) =

r∑
i=1

Pi({Xi})P̃i({Yi}),

for some r ≥ 1 and Pi, P̃i ∈ Λ. The formula ∆(P ) =
∑
Pi ⊗ P̃i defines a coproduct ∆ on Λ.

Since (PQ)({Xi}, {Yi}) = P ({Xi}, {Yi})Q({Xi}, {Yi}), this coproduct is an algebra morphism,
turning Λ into an Hopf algebra. The counit ε of Λ is given by ε(ei) = 0, ε(1) = 1 and the
antipode is given by the involutive automorphism ω(ei) = (−1)ihi.
The coproduct takes simple expressions on the basis of elementary functions and power sums,
as we have

∆(en) =

n∑
i=0

ei ⊗ en−i,∆(pn) = 1⊗ pn + pn ⊗ 1.

The Hall inner product defined in Chapter 2, Section 2 plays a particular role in this framework,
since Λ is a self-dual Hopf algebra with respect to this inner product. Namely

〈PQ,R〉 = 〈P ⊗Q,∆R〉, (3.4.2)

for any P,Q,R ∈ Λ, and where 〈., .〉 is canonically extended to the algebraic tensor product Λ⊗Λ.
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Noncommutative symmetric function The ring of non-commutative symmetric functions
NSym is the non-commutative version of Λ obtained by removing the commutation relation on
the e′is.

Definition 3.38. NSym is the graded free ring Z〈S1, . . . , Sn, . . . 〉 with the grading deg(Si) = i
and the comultiplication ∆(Sn) =

∑
Si ⊗ Sn−i.

It is still possible to define an involution ω in such a way that NSym is a Hopf-algebra.
Since the elements Si don’t commute anymore, the basis of NSym is not indexed by integers
partitions but by sequences of integers: a sequence I of integers (i1, . . . , ir) such that

∑
ij = n

is called a composition of n of length r and denoted by I ` n. The set of all composition of n is
denoted by Comp(n). For example {SI}I`n is a basis of the degree n subspace of NSym. The
multiplication structure on SI is given by the simple expression SISJ = SI.J , where I.J is the
concatenation of the sequences I and J .
An other important basis is given by the ribbon Schur functions {RI}. Define a partial order ≤
on Comp(n) by the relation I ≤ J if and only if J = (j1, . . . , jr) and I = (j1 + · · ·+ js1 , js1+1 +
· · · + js1+s2 , . . . , jr−st + · · · + jr), where s ` r. The Moebius function on (Comp(n),≤) is the
function µ(J, I) = δJ≤I(−1)l(I)−l(J), where l(I) is the length of the composition I. The ribbon
Schur function RI is defined in the same way as the free cumulant in Chapter 1:

RI =
∑
J≤I

µ(J, I)SJ .

Equivalently SI =
∑

J≤I RJ . The multiplication in the basis RI is given by the formula
RIRJ = RI.J + RI.J , where (i1, . . . , ir) . (j1, . . . , js) = (i1, . . . , ir−1, ir + j1, j2, . . . , js). Note
in particular that this formula yields that NSym is a free fusion ring without involution.
The commutative quotient of NSym is isomorphic to Λ through the map Si 7→ ei. By this map,
RI is mapped to the ribbon Schur function rI , which is a particular skew Schur function (see
[60], Part I, Ch.5).

Quasi-symmetric functions Unlike the Hopf-algebra of symmetric functions, NSym is not
self-dual and therefore there is no inner product such that the relation 3.4.2 holds. However it is
still possible to construct the dual Hopf-algebra of NSym. For each composition I = (i1, . . . , ir)
define the polynomial MI({Xi}) in the commuting variables {Xi}i≥1 as

MI(X) =
∑

j1<j2<···<jr

xi1j1x
i2
j2
. . . xirjr .

Definition 3.39. The ring generated by the polynomials MI over Z is called the ring of quasi-
symmetric functions. This ring is denoted by QSym.

The product of MJ and MK has a decomposition in {MI} with integers coefficients and thus
{MI} is a basis of QSym. As for the ring of symmetric functions, a coproduct γ is defined on
QSym by decomposing a quasi-symmetric function in the variables {Xi} ∪ {Yi} into a product
of quasi-symmetric functions respectively in the variables {Xi} and in {Yi}. This coproduct
turns QSym into a Hopf algebra which is the dual Hopf algebra of NSym. With the pairing
〈, 〉 : QSym×NSym→ R defined by the formula 〈MI , SJ〉 = δIJ , the following equalities hold:

〈f ⊗ g,∆(P )〉 = 〈fg, P 〉,

〈γ(f), P ⊗Q〉 = 〈f, PQ〉,
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for all f, g ∈ QSym and P,Q ∈ NSym. The definition of the basis {RI} of NSym in terms of
{SI} yields that the dual basis of {RI} is the set of quasi-symmetric function FI with

FI =
∑
J≥I

MJ .

The basis {FI} is called the basis of fundamental quasi-symmetric functions. Each FI has a
decomposition in terms of monomials similar to the decomposition of classical Schur functions
with the semi-standard filling of Young diagram. In the case of FI , the decomposition is described
by the semi-standard filling of ribbon Young diagram :

Figure 3.6: Skew Young tableau associated to the composition I = (3, 2, 4, 1).

3.4.3 Overview of the results

The results obtained in Part IV are somehow independent of Part II and Part III, apart from
the relation with free fusion rings.

NSym as a probability space At the end of Chapter 6, the ring NSym is embedded in the
ring of characters of the free wreath product H+,∞

n . Through this embedding the ribbon Schur
functions are characters of certain irreducible representations of H+,∞

n . Therefore the Haar
measure on H+,∞

n turns the ribbon Schur functions into noncommutative random variables
exactly as in the case of Un with the ring of symmetric functions. The law of the ribbon Schur
functions {R(n)}n≥1 can be described thanks to the fusion rules of H+,∞

n found by Banica and
Vergnioux in [16]. This leads to the following result :

Theorem 3.40. There exists a injective algebra morphism Φ : NSym → Cl(H+,∞
n ). For any

ribbon Schur function RI , Φ(RI) is an irreducible character.
The family of random variables (Φ(R(n)))n≥1 with respect to the Haar measure is distributed as
(szns)n≥1, where s is a semi-circular variable of variance 1 and z is a uniform measure on the
the unit circle and free from s.

The Martin boundary of Zigzag diagrams Since {FI} is a basis of QSym, for any com-
position J the product FJF(1) has a decomposition in the basis {FI}. A combinatorial argument
shows that the coefficients in this decomposition are 0 or 1.
Therefore we can construct a graph whose vertices are the compositions, and such that there is
an edge between I and J if and only if the coefficient of FJ in the product FIF(1) is equal to 1.
This graph is called the graph of Zigzag diagrams, and denoted by Z. It has been deeply studied
by Olshanski and Gnedin, who have identified in [42] the minimal boundary of the graph (see
Chapter 9 for a detailed exposition of the different boundaries of a graph): this boundary is a
measured space which encodes the behavior of directed random walks on the graph.
An analogous graph exists by considering the Schur basis of Sym. This graph, denoted by Y,
has vertices indexed by Young diagrams and edges between sλ and sµ if and only if the co-
efficient of sµ in s(1)sλ is non-zero. This graph has played an important role in the study of
certain irreducible representations of S∞ (see [86]), the group of permutations of N with finite
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support. Through its study it has been shown in [86] that the Poisson boundary of Y coincides
with its Martin boundary. The Martin boundary is a geometrical boundary which comes from
a compactification of the graph Y.
In Chapter 9 we prove an analogous result for Z:

Theorem 3.41. The Martin boundary of Z coincides with its Poisson boundary.

Note that in general the Martin boundary is a subset of the Poisson boundary. The result
of Theorem 3.41 had been conjectured by Olshanski and Gnedin in [42]. In order to prove this
fact, we obtain some estimates on the filling of large ribbon Young diagrams in Chapter 8.
Finally in Chapter 9, Section 7, we establish a link between paths on Y and paths on Z, and
we give a central limit theorem for the shape of the descent pattern of a large permutation.
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Part II

Unitary easy quantum groups
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Chapter 4

Classification of categories of
non-crossing colored partitions

We have seen in Chapter 3 that categories of two-colored partitions yield matrix compact quan-
tum groups whose intertwiners have a simple description : the use of the Weingarten formula
is thus greatly simplified on these particular quantum groups. It is therefore interesting to find
all the possible categories of two colored partitions. This task seems very difficult in the general
case; however, if we assume that the partitions have to be non-crossing, the situation is much
easier.
This chapter is devoted to the classification of all categories of non-crossing two-colored partitions
and to the construction of their associated unitary easy quantum group. The full classification
is given by Theorem 4.41 and 4.42 in Section 7. The list of associated easy quantum group
is given in Theorem 4.57. As a corollary, we also obtain in Section 9 the classification of all
classical easy groups.

4.1 Categories of two-colored partitions and first results

Recall that from Chapter 1, a category of partitions is a collection C of subsets C(k, l) ⊆ P ◦•(k, l)
(for all k, l ∈ N0) is a category of partitions, if it is closed under the tensor product, the compo-

sition and the involution, and if it contains the bicolored pair partitions •◦ and ◦• as well as

the identity partitions ◦
◦

and •
•

.

If C is the smallest category of partitions containing the partitions p1, . . . , pn, we write
C = 〈p1, . . . , pn〉 and say that C is generated by p1, . . . , pn.

Lemma 4.1. Let C ⊆ P ◦• be a category of partitions.

(a) C is closed under rotation and verticolor reflection.

(b) If p ∈ P ◦•(k, l) is a partition in C, we can erase two neighbouring points of p if they have
different (!) colors, i.e. if the j-th and the (j+1)-th of the lower points have inverse colors,
then the partition p′ ∈ P ◦•(k, l − 2) is in C which is obtained from p by first connecting
the blocks to which the j-th and the (j + 1)-th lower points belong respectively, and then
erasing these two points. We may also erase neighbouring points of inverse colors on the
upper line.

(c) Let p1 ⊗ p2 ∈ C. Then p1 ⊗ p̃1 ∈ C and p2 ⊗ p̃2 ∈ C. Note that we do not have p1 ∈ C or
p2 ∈ C in general.
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Proof. (a) Firstly, let p ∈ P ◦•(k, l) be a partition and let the first of the k upper points be black.

Let r ∈ P ◦•(k − 1, k − 1) be the tensor product of the identity partitions ◦
◦

and •
•

with the

same color pattern as the latter k − 1 upper points of p. The composition ( ◦
◦
⊗ p)( •◦ ⊗ r)

yields a partition p′ ∈ P ◦•(k−1, l+1) which conincides with the partition obtained from p when
rotating the first upper points to the row of lower points. See also [15, Lem 2.7]. If now p ∈ C,
then also p′ ∈ C since all partitions we used are in the category. Similarly we prove the other
cases of rotation.

Secondly, if p ∈ P ◦•(k, l) is in C, then also p∗ ∈ P ◦•(l, k) is in C by the definition of a
category. Rotating the k upper points to below and the lower points to the upper line yields p̃,
which is in C.

(b) Compose p with r1 ⊗ •◦ ⊗ r2 or r1 ⊗ ◦• ⊗ r2, where r1 and r2 are suitable tensor

products of the identity partitions ◦
◦

and •
•

.
(c) By (a), we have p̃2⊗ p̃1 ∈ C and thus p1⊗p2⊗ p̃2⊗ p̃1 ∈ C. Using (b), we infer p1⊗ p̃1 ∈ C

and likewise p2 ⊗ p̃2 ∈ C (using rotation).

Tensor product, composition, involution, and the operations of the preceding lemma are
called the category operations.

4.1.1 Special operations on partitions

The category operations may be performed in any category of partitions. Other procedures are
allowed if and only if certain key partitions are contained in the category.

Lemma 4.2. Let C be a category of partitions and let p ∈ P ◦•(0, l) be a partition without upper
points.

(a) If ◦◦ ⊗ •• ∈ C, then C is closed under permutation of colors, i.e. if p ∈ C, then
p′ ∈ C, where p′ is obtained from p by some permutation of the colors of the points (without
changing the strings connecting the points).

(b) If ↑◦ ⊗ ↑• ∈ C, then C is closed under permutation of colors of neighbouring singletons.
Furthermore, we may disconnect any point from a block and turn it into a singleton.

(c) If ◦◦•• ∈ C, then C is closed under permutation of colors of neighbouring points belonging
to the same block. Furthermore, we may connect neighbouring blocks.

(d) If ◦•◦• ∈ C, we have no permutation of colors in general, and we may only connect
neighbouring blocks if they meet at two points with inverse colors.

(e) If ↑ ↑◦◦•• ∈ C, then C is closed under arbitrary positioning of singletons, i.e. if p ∈ C, then
p′ ∈ C, where p′ is obtained from p by shifting blocks of length one to other positions.

(f) If ↑ ↑◦•◦• ∈ C, then we may swap a singleton with a neighbour point of inverse color. This
procedure inverts both colors. In other words, if p = XabY ∈ C where b is a singleton and
a is a point of color inverse to b, then p′ = Xb−1a−1Y ∈ C.

Proof. (a) By rotation, the partitions •
◦
⊗ ◦
•

and ◦
•
⊗ •
◦

are in C. Note that the partitions •
◦

and

◦
•

themselves are not necessarily contained in C. Composing p with partitions r1⊗ ◦
•
⊗ •
◦
⊗ r2
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where the ri are given by suitable tensor products of the identity partitions ◦
◦

and •
•

yields a
transposition of the colors of the points of p.

(b) Using rotation, we infer ↑◦ ⊗ ↑◦ ⊗ ↑• ⊗ ↑• ∈ C. Analoguous to (a), we see that we may

permute the colors of neighbouring singletons. Furthermore, rotations of ↑◦ ⊗ ↑• yield partitions

◦
◦

and •
•

in P ◦•(1, 1) consisting of two disconnected points of the same color. Composing a

partition with suitable tensor products of the identity partitions ◦
◦

, •
•

and the partitions ◦
◦

, •
•

yields a partition where some points are disconnected from their blocks (without changing the
color).

(c) Again, similar to (a), we infer that C is closed under permutation of colors of neighbouring

points belonging to the same block, using ◦◦•• ∈ C. Since we then also have ◦•◦• ∈ C, the

partitions
◦•
◦• ,

•◦
•◦ ,

◦◦
◦◦ and

••
•• are all in C by rotation. Composing with them effects that

some neighbouring blocks are connected.

(d) We argue as in (c), but we may only use
◦•
◦• and

•◦
•◦ .

(e) Check that ↑◦ ◦
◦
↓
◦

, ↑• •
•
↓
•

, ↑◦ •
•
↓
◦

, ↑• ◦
◦
↓
•

etc are in C using rotation and verticolor
reflection.

(f) Use ↑◦ •
◦
↓
•

or ↑• ◦
•
↓
◦

etc.

We formulated the above lemma only for partitions having no upper points, but the state-
ments may be extended to arbitrary partitions p ∈ P ◦•(k, l). We then have to take into account
that the colors are inverted whenever they are rotated from the upper line to the lower line or
the converse.

4.1.2 The non- (or one-) colored case

Let us end this section with a comparison to the case of categories of non-colored partitions,
which were studied in [15] and in other articles and which were completely classified in [71]. For
the classification in the noncrossing case, see [15] and [97]. Recall that there are exactly seven
categories, given by:

〈↑〉 ⊇ 〈 〉 ⊇ 〈↑ ⊗ ↑〉 ⊇ 〈∅〉 = NC2

⊆ ⊆ ⊆

〈↑,uuu〉 = NC ⊇ 〈↑ ⊗ ↑,uuu〉 ⊇ 〈uuu〉

By P (k, l) we denote the set of non-colored partitions where all points have no color. Likewise
we use the notations P for all non-colored partitions and NC for all non-colored noncrossing
partitions. Categories of non-colored partitions are defined like categories of two-colored parti-
tions when forgetting all colors, see for instance [15] or [71]. The key link between non-colored

categories and two-colored categories is given by the partition ◦◦ as may be seen in the next

proposition. Note that •
◦

and ◦
•

are rotated versions of ◦◦ . Composing a partition p with
these partitions, we can change the colors of the points of p to every possible color pattern.

Hence, categories containing ◦◦ are non-colored categories, in this sense.
Let Ψ : P ◦• → P be the map given by forgetting the colors of a two-colored partition. For a

set C ⊆ P , we denote by Ψ−1(C) ⊆ P ◦• its preimage under Ψ.
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Proposition 4.3. (a) Let C ⊆ P be a category of non-colored partitions. Then Ψ−1(C) ⊆ P ◦•

is a category of two-colored partitions containing the unicolored pair partition ◦◦ (or

equivalently •• ).

(b) Let C ⊆ P ◦• be a category of two-colored partitions containing the unicolored pair partition

◦◦ (or equivalently •• ). Then Ψ(C) ⊆ P is a category of non-colored partitions and
Ψ−1(Ψ(C)) = C.

Hence, there is a one-to-one correspondence between categories of non-colored partitions and

categories of two-colored partitions containing ◦◦ .

Proof. (a) It is easy to see from the definition that Ψ−1(C) is a category of partitions. Further-

more, ◦◦ ∈ Ψ−1(C) since Ψ( ◦◦ ) = u ∈ C.
(b) It is easy to see that Ψ(C) is closed under tensor product and involution and that it

contains the pair partition u and the identity partition |. The composition is a bit more subtle.
If p, q ∈ Ψ(C), their composition is in Ψ(C) only if we can lift p and q to partitions in C whose

color patterns allow the composition in P ◦•. But since •
◦

and ◦
•

are in C (by rotation), we can

do so: If p ∈ Ψ(C), there is a partition p0 ∈ C such that Ψ(p0) = p. Composing it wih •
◦

and

◦
•

, we may assume that all points of p0 are white. Now, Ψ(C) is closed under composition since

C is. Similarly, we prove Ψ−1(Ψ(C)) ⊆ C using •
◦

and ◦
•

.

4.2 Dividing the categories into cases

The classification of categories of noncrossing partitions is given by a detailed case study which
we will now prepare.

4.2.1 The cases O, H, S and B

The first division into cases is given by the sizes of blocks. The next lemma is formulated for
arbitrary categories of partitions (not necessarily noncrossing ones).

Lemma 4.4. Let C ⊆ P ◦• be a category of partitions.

(a) If ↑◦ ⊗ ↑• /∈ C, then all blocks of partitions p ∈ C have length at least two.

(b) If ◦•◦• /∈ C, then all blocks of partitions p ∈ C have length at most two.

Proof. (a) Let p ∈ C be a partition containing a block of size one. By rotation and possibly

verticolor reflection, it is of the form ↑◦ ⊗ q, with no upper points. By Lemma 4.1(b) we have

↑◦ ⊗ ↑• ∈ C.
(b) Let p ∈ C be a partition containing a block of size at least three. By rotation, it is of the

form p = aε1X1a
ε2X2a

ε3X3 with no upper points, where the points aεi belong to the same block,
and εi ∈ {1,−1} depending on the color. The subwords X1, X2 and X3 are possibly connected
to the block on the aεi . By verticolor reflection, we infer that the following partition is in C.

p⊗ p̃ = aε1X1a
ε2X2a

ε3X3 ⊗ X̃3b
−ε3X̃2b

−ε2X̃1b
−ε1

By 4.1(b), we obtain that a partition q := aε1X ′1a
ε2a−ε2X̃ ′1a

−ε1 is in C. Note that while the
blocks on aεi and b−εi are not connected in p ⊗ p̃, the points aεi and a−εi are connected in q
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due to the procedure as described in Lemma 4.1(b). Using rotation, we infer that the partion
a−ε1aε1X ′1a

ε2a−ε2X̃ ′1 is in C. Again, tensoring it with its verticolor reflected version and using

Lemma 4.1(b), we obtain a−1aa−1a ∈ C which implies ◦•◦• ∈ C.

Note that unlike in the non-colored case, ↑◦ ⊗ ↑• /∈ C does not imply that all blocks have

even size. Consider for instance 〈 ◦◦◦〉.

Definition 4.5. Let C ⊆ P ◦• be a category of partitions. We say that:

• C is in case O, if ↑◦ ⊗ ↑• /∈ C and ◦•◦• /∈ C.

• C is in case B, if ↑◦ ⊗ ↑• ∈ C and ◦•◦• /∈ C.

• C is in case H, if ↑◦ ⊗ ↑• /∈ C and ◦•◦• ∈ C.

• C is in case S, if ↑◦ ⊗ ↑• ∈ C and ◦•◦• ∈ C.

4.2.2 Global and local colorization

It is convenient to study categories C ⊆ NC◦• case by case according to the above definition.
According to Lemma 4.2(a), we divide each of these cases into two subcases: Those categories

C containing ◦◦ ⊗ •• behave very differently from those not containing this partition.

Definition 4.6. A category of partitions C ⊆ P ◦• is

• globally colorized, if ◦◦ ⊗ •• ∈ C

• and locally colorized if ◦◦ ⊗ •• /∈ C.

By Lemma 4.2, we may permute the colors of the points of partitions in globally colorized
categories. Hence the coloring of partitions turns out to be of a global nature – the difference
between the number of white and black points is the only number that matters for the coloring
of a partition in such categories.

4.2.3 The global parameter k(C)

Studying categories of noncrossing partitions case by case, we will use certain global and local
(color) parameters.

Definition 4.7. Let p ∈ P ◦•.

• Denote by c◦(p) the sum of the number of white points on the lower line of p and the black
points on the upper line.

• Denote by c•(p) the sum of the number of black points on the lower line of p and the white
points on the upper line.

• Define c : P ◦• → Z by c(p) := c◦(p)− c•(p).

We will mainly consider partitions p ∈ P ◦•(0, l) with no upper points. In this case c◦ is
counting the white points whereas c• is counting the black points of a partition. Note that
rotating black points from the upper line to the lower line turns them into white points. In this
sense, c◦ counts black points on the upper line as white points on the lower line.
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Definition 4.8. Let C be a category of partitions. We set k(C) as the minimum of all numbers
c(p) such that c(p) > 0 and p ∈ C, if such a partition exists in C. Otherwise k(C) := 0. The
parameter k(C) is called the degree of reflection of C. It is the global parameter of C.

Note that we always find a partition p in C such that c(p) = 0; take for instance p = •◦ . In
the next lemma, we show that the map c : P ◦• → Z behaves well with respect to the category
operations. In particular, if there exists a partition p ∈ C such that c(p) < 0, then p̃ ∈ C and
c(p̃) = −c(p) > 0.

Lemma 4.9. For the map c : P ◦• → Z the following holds true.

(a) c(p⊗ q) = c(p) + c(q)

(b) c(pq) = c(p) + c(q)

(c) c(p∗) = −c(p)

(d) c(p′) = c(p), if p′ is obtained from p by rotation.

(e) c(p̃) = −c(p)

Proof. From the definition it is clear that (a), (c), (d) and (e) hold. To see the invariance under
composition, let w1 be the number of upper white points of q, and b1 be the number of upper
black points. Let w2 be the number of lower white points of q and likewise b2 for the black
points. Since p and q are composable, the numbers w2 and b2 also count the number of upper
white and upper black points of p, respectively. Finally, let w3 and b3 be the number of lower
white and black points of p respectively. We thus have:

c(q) = c◦(q)− c•(q) = (w2 + b1)− (w1 + b2)

c(p) = (w3 + b2)− (w2 + b3)

c(pq) = (w3 + b1)− (w1 + b3)

This implies c(pq) = c(p) + c(q).

The global parameter k(C) gives rise to a complete description of all possible numbers c(p)
of a category C.

Proposition 4.10. Let C ⊆ P ◦• be a category of partitions and let k := k(C) ∈ N0. Then
c(p) ∈ kZ for all partitions p ∈ C.

Proof. The statement is obvious for k = 0 by definition and Lemma 4.9(e), thus we may assume
k > 0. Let p ∈ C, such that c(p) 6= 0. By Lemma 4.9(e), we may restrict to c(p) > 0. Now,
assume that there is a number m ∈ N0 such that km < c(p) < k(m + 1). By the definition
of k(C), there is a partition q ∈ C such that c(q) = k. Put r := q̃⊗m ⊗ p. Then r ∈ C and
c(r) = −mc(q) + c(p). Hence 0 < c(r) < k which contradicts the definition of k(C).

4.2.4 The local parameters d(C) and KC( •• )

We also have some local parameters. The idea is to determine possible numbers c(p1) of sub-
partitions p1 between two legs of a block of a partition p ∈ C. The situation when these two legs
have the same color behaves quite differently from the case of equally colored legs.

p = . . . ◦ p1 • . . .

. . . . . .

p = . . . ◦ p1 ◦ . . .

. . . . . .
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By rotation, we can reduce it to the following situation.

Definition 4.11. • Let p ∈ NC◦•(0, l) be a partition with no upper points. Assume that p
can be decomposed as p = p1 ⊗ p2. If the first and the last point of p2 belong to the same
block and if p2 has length at least two, we say that p = p1⊗p2 is in nest decomposed form.

• Let NDF ( •◦ ) be the set of all partitions p = p1 ⊗ p2 in nest decomposed form such

that the first point of p2 is white and the last one is black. By NDF C( •◦ ) we denote

the intersection of NDF ( •◦ ) and C ⊆ P ◦•. Likewise we use the notations NDF C( ◦• ),

NDF C( ◦◦ ) and NDF C( •• ) for the three other cases.

• By KC( •◦ ) we denote the set of all numbers c(p1) ∈ Z such that p = p1 ⊗ p2 ∈
NDF C( •◦ ). Likewise we define KC( ◦• ), KC( ◦◦ ) and KC( •• ).

• Let C ⊆ NC◦• be a category of noncrossing partitions. We define the following local

parameter d(C). If KC( •◦ ) contains a number t > 0, we put d(C) as the minimum of
those numbers. Otherwise d(C) := 0.

Example 4.12. (a) The partition ◦◦ ⊗ •• is in NDF ( •• ) with c(p1) = 2, whereas •• ⊗

◦◦ is in NDF ( ◦◦ ) with c(p1) = −2.

(b) The partition p := ◦◦ ⊗ ◦◦ ⊗ ◦◦ is in nest decomposed form, where p1 = ◦◦ ⊗ ◦◦
and p2 = ◦◦ . It is in NDF ( ◦◦ ) with c(p1) = 4. The partition q := ◦◦ ⊗ •• ⊗ ◦◦ is

in NDF ( ◦◦ ) with the decomposition q1 := ◦◦ ⊗ •• and q2 := ◦◦ .

When working on the classfication of noncrossing categories, we will be interested in the

sets KC( •◦ ), KC( ◦• ), KC( ◦◦ ) and KC( •• ) as local parameters. In the remainder of this

subsection, we shall prove that we always have KC( •◦ ) = KC( ◦• ) = dZ for d = d(C) and

KC( ◦◦ ) = −KC( •• ). Thus, the study of these local parameters boils down to knowing d(C)
and KC( •• ). Note that •◦ ⊗ •◦ is in NDF C( •◦ ), hence KC( •◦ ) always contain the zero.

As for KC( •• ) the situation is a bit more complicated – for instance, it could be empty.

Proposition 4.13. Let C ⊆ NC◦• be a category of noncrossing partitions. Then, KC( •◦ ) = dZ
for d = d(C). Furthermore, if k(C) 6= 0, then d(C) 6= 0 and d(C) is a divisor of k(C).

Proof. Let s, t ∈ KC( •◦ ). We only need to show that s + t and −s are in KC( •◦ ). Let

p = p1⊗p2 and q = q1⊗q2 be two partitions in NDF C( •◦ ). Firstly, we have p1⊗q1⊗q2⊗p2 ∈ C
using rotation. Using the pair partition ◦• and composition, we can connect the last point of q2

with the first point of p2. This erases these two points and we obtain a partition p1⊗ q1⊗ r ∈ C
in nest decomposed form such that the first point of r is white and the last one is black. Thus,

c(p1) + c(q1) ∈ KC( •◦ ). Secondly, we have p̃2 ⊗ p̃1 ∈ C, which yields p̃1 ⊗ p̃2 ∈ C by rotation.
Now, this is a partition in nest decomposed form, such that the first point of p̃2 is white and

the last one is black. Thus, −c(p1) = c(p̃1) ∈ KC( •◦ ).

We deduce KC( •◦ ) = dZ using the Euklidean algorithm. Furthermore, note that k(C) ∈
KC( •◦ ), since p ⊗ •◦ ∈ NDF C( •◦ ) for all p ∈ C. Hence, d(C) 6= 0 whenever k(C) 6= 0 and
also k(C) is a multiple of d(C).
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Definition 4.14. By bs we denote the partition in P ◦•(0, s) consisting of a single block of length

s such that all points are white, hence b2 = ◦◦ , b3 = ◦◦◦, etc.

The next lemma is of quite technical nature, but it will be needed in this subsection as well
as in the remainder of this chapter several times.

Lemma 4.15. Let C ⊆ NC◦• be a category of noncrossing partitions.

(a) Let ↑◦ ⊗ ↑• ∈ C. We then have ↑⊗s ↑⊗s

◦ ◦ • • ∈ C for all s ∈ KC( •◦ ), s ≥ 0. Likewise

↑⊗s ↑⊗s

◦ • • ◦ ∈ C for all s ∈ KC( ◦• ), s ≥ 0.

More generally, let q ∈ { ◦◦ , •◦ , ◦• , •• } and let s ∈ KC(q) (not necessarily s ≥ 0).

Then ↑◦
⊗s
aε1 ↑◦

⊗−(s+c(q))

aε2 ∈ C, where aε1 and aε2 form the pair block q. Here, we use

the notation ↑◦
⊗s

= ↑•
⊗−s

for s < 0.

(b) Let ◦◦•• ∈ C and let s ∈ KC(q) for some q ∈ { ◦◦ , •◦ , ◦• , •• }. Then bs ⊗ b̃s ∈ C.
Here b−s = b̃s if s < 0.

(c) Let p ∈ C be a partition such that two neighbouring points have the same color and belong

to the same block. Then ◦◦•• ∈ C or ◦◦ ⊗ •• ∈ C. In particular, if ↑◦ ⊗ ↑• /∈ C and

NDF C( •• ) 6= ∅, then ◦◦•• ∈ C or ◦◦ ⊗ •• ∈ C. The same holds true, if ↑◦ ⊗ ↑• /∈ C
and if C contains a partition p1 ⊗ p2 such that c(p1) 6= 0.

Proof. (a) Let q ∈ { ◦◦ , •◦ , ◦• , •• } and let s ∈ KC(q). Let p = p1 ⊗ p2 be a partition in
NDF C(q) such that c(p1) = s. Using the pair partitions and composing p1 with the rotated

versions ◦
◦

and •
•

of ↑◦ ⊗ ↑• , we may assume p1 = ↑◦
⊗s

. We proceed in the same way for the

points between the first and the last point of p2 and we infer that ↑◦
⊗s
aε1 ↑◦

⊗α
aε2 is in C for

some α ∈ Z. Here aε1 and aε2 form the pair block q. Now, disconnecting these two points using

the partitions ◦
◦

and •
•

again, we deduce ↑◦
⊗s
⊗ ↑◦

⊗α+c(q)

∈ C. Using verticolor reflection and
composition, this implies:

↑◦
⊗s
aε1 ↑◦

⊗α ↑◦
⊗−s ↑◦

⊗−α−c(q)
aε2 ∈ C

Using the pair partitions, we obtain ↑◦
⊗s
aε1 ↑◦

⊗−s−c(q)
aε2 ∈ C.

(b) Let p = p1⊗ p2 ∈ C be a partition in nest decomposed form such that c(p1) = s. Assume
s > 0. Using the pair partitions and Lemma 4.2, we may connect all blocks in p1 and we may
erase all of its black points such that finally bs ⊗ p2 ∈ C. By Lemma 4.1, bs ⊗ b̃s ∈ C; likewise if
s < 0.

(c) Let p ∈ C be a partition of the form p = aaX, where aa are two points of the same color

belonging to the same block. If this block is of size two, we have ◦◦ ⊗ •• ∈ C by Lemma 4.1.

Otherwise, we consider p⊗ p̃ ∈ C and using the pair partition, we infer ◦◦•• ∈ C.
Now, if C contains a partition p1 ⊗ p2 such that c(p1) > 0, we use the pair partition to erase

all black points in p1. We obtain a partition p′1 ⊗ p2 ∈ C such that all points of p′1 are white.

If ↑◦ ⊗ ↑• /∈ C, all blocks in p′1 have size at least two. Since p′1 is noncrossing, we find two
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neighbouring points belonging to the same block. By rotation, this yields a partition p = aaX
as above; likewise for c(p1) < 0.

Finally, if NDF C( •• ) 6= ∅, then there is a p = p1 ⊗ p2 ∈ C in nest decomposed form such
that the first and the last point of p2 are black. If c(p1) = 0, we erase p1 using the pair partitions
and we obtain p2 ∈ C. By rotation, p2 is of the form aaX. If c(p1) 6= 0 we use the argument
above.

In globally colorized categories, the local parameters d(C) and KC( •• ) are trivial. In par-

ticular, we show KC( •◦ ) = KC( ◦• ) and KC( ◦◦ ) = −KC( •• ) in the special case of globally
colored categories.

Lemma 4.16. Let C ⊆ NC◦• be a globally colorized category of noncrossing partitions. The
following holds true.

(a) The sets KC( •◦ ), KC( ◦• ), KC( ◦◦ ) and KC( •• ) coincide and are equal to dZ for
d = d(C).

(b) We have d(C) ∈ {1, 2} with d(C) = 1 if and only if ↑ ↑◦◦•• ∈ C.

Proof. (a) Let p = p1 ⊗ p2 ∈ C be a partition in nest decomposed form. Thus, p2 = aε1Xaε2 ,
where aε1 and aε2 belong to the same block, and X is some subpartition (possibly connected to
aε1 and aε2). Then, the following partition is in C, by composition.

p′ := p1 ⊗ aε1 ◦◦ •• Xaε2

Using permutation of colors, we may change the colors of aε1 and aε2 arbitrarily. Moreover,

KC( •◦ ) = dZ by Proposition 4.13.

(b) By Example 4.12, we have 2 ∈ KC( •• ), which by (a) yields 2 ∈ KC( •◦ ). Thus,

d(C) ∈ {1, 2}. If ↑ ↑◦◦•• ∈ C, then d(C) = 1 by definition. Conversely, let d(C) = 1. We thus find

a partition ↑◦ ⊗ p2 in C. By Lemma 4.1, we deduce ↑◦ ⊗ ↑• ∈ C, which by Lemma 4.15 implies

↑ ↑◦◦•• ∈ C.

We finally prove that our local parameters are given only by d(C) and KC( •• ).

Proposition 4.17. We have KC( •◦ ) = KC( ◦• ) = dZ with d = d(C) for all categories

C ⊆ NC◦•. Furthermore, KC( ◦◦ ) = −KC( •• ).

Proof. Let C ⊆ NC◦• be a category of noncrossing partitions. If p1 ⊗ p2 ∈ C is a partition in
nest decomposed form such that the first and the last point of p2 have the same color, then

p̃1 ⊗ p̃2 is in C proving KC( ◦◦ ) = −KC( •• ). Next, we prove KC( •◦ ) = KC( ◦• ).

Case 1. Let ↑◦ ⊗ ↑• ∈ C. We have ↑⊗s ↑⊗s

◦ ◦ • • ∈ C if and only if ↑⊗s ↑⊗s

◦ • • ◦ ∈ C, using verticolor

reflection and rotation. This proves KC( •◦ ) = KC( ◦• ) using Lemma 4.15.

Case 2. Let ↑◦ ⊗ ↑• /∈ C and let NDF C( •• ) 6= ∅. By Lemma 4.15 we have ◦◦ ⊗ •• ∈ C
or ◦◦•• ∈ C. In the first case, the sets KC( •◦ ) and KC( ◦• ) coincide by Lemma 4.16. In

the second case, we have to show that bs ⊗ b̃s ∈ C implies s ∈ KC( •◦ ) and s ∈ KC( ◦• ). By
Lemma 4.15 this will finish the proof.
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So, let bs⊗ b̃s ∈ C. By rotation, we have (b̃s)
∗⊗ b̃s ∈ C which is a partition in P ◦•(s, s). Now,

compose bs ⊗ b̃s ⊗ ◦• with ◦
◦⊗s
⊗ •
•
⊗ (b̃s)

∗ ⊗ b̃s ⊗ ◦
◦

. This yields bs ⊗ ab̃sa−1 ∈ C, where a

is black and a−1 is white forming the pair block ◦• . Hence s ∈ KC( ◦• ). Similarly, we obtain

bs ⊗ a−1b̃sa ∈ C and s ∈ KC( •◦ ).

Case 3. Let ↑◦ ⊗ ↑• /∈ C and let NDF C( •• ) = ∅. Then also NDF C( ◦◦ ) = ∅. Let
p1 ⊗ p2 ∈ C be a partition in nest decomposed form such that the first and the last point of p2

have inverse colors. Assume c(p1) > 0. Using the pair partitions, we may erase all black points
in p1 and we obtain a partition p′1⊗p2 such that all points in p′1 are white. Since all blocks in p′1

have size at least two by Lemma 4.4, we obtain a partition in NDF C( ◦◦ ) up to rotation which
is a contradiction. Likewise we show that c(p1) cannot be strictly negative. We conclude that

c(p1) is zero and hence KC( •◦ ) = {0} and KC( •◦ ) = {0}. Thus KC( •◦ ) = KC( •◦ ).

4.2.5 Summary of the strategy for the classification

We now have all tools at hand for the classification of categories C ⊆ NC◦• of noncrossing
partitions. The general strategy is as follows.

• We study the cases O,H,S and B (see Definition 4.5) step by step subdividing them again
into the local and the global colorization (see Definition 4.6) respectively.

• In each of these cases we first determine all possible global and local parameters k(C),
d(C) and KC( •• ).

• We then find characteristic sample partitions which somehow represent these param-
eters.

• Next, we isolate sets of partitions M depending on the possible values of the parameters
and we prove M ⊆ 〈p1, . . . , pn〉, where p1, . . . , pn are the sample partitions.

• Finally, we prove that these are all possible categories in the considered case. To do

so, if C has parameters k, d and KC( •• ), we have 〈p1, . . . , pn〉 ⊆ C. On the other hand,
C ⊆M , which proves C = 〈p1, . . . , pn〉 = M .

4.3 Case O

Let us first consider the case O, i.e. the case of categories C ⊆ NC◦• of noncrossing partitions

such that ↑◦ ⊗ ↑• /∈ C and ◦•◦• /∈ C. By Lemma 4.4, C is a subset of the set NC◦•2 of all
noncrossing pair partitions.

4.3.1 Determining the parameters

Proposition 4.18. Let C ⊆ NC◦• be a category of noncrossing partitions in case O.

(a) If C is globally colorized, then d(C) = 2 and k(C) ∈ 2N0.

(b) If C is locally colorized, then d(C) = k(C) = 0 and KC( •• ) = ∅, i.e.:

KC( •◦ ) = KC( ◦• ) = {0}, KC( ◦◦ ) = KC( •• ) = ∅
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Proof. (a) By Lemma 4.16, d(C) = 2 and hence k(C) ∈ 2N0, using Proposition 4.13.
(b) Let p ∈ C be a partition having no upper points. We prove that all blocks connect a

white point with a black point from which the assertion easily follows. Assume that there is a
block V connecting two white points. We choose V such that all blocks nested into it (if there
are any) connect a white point with a black point. Using the pair partitions, we erase all those
blocks and we end up with a partition in C such that two neighbouring points have the same
color and belong to the same block. By Lemma 4.15(c), this is a contradiction.

4.3.2 Finding partitions realizing the parameters

Lemma 4.19. Let C ⊆ NC◦• be a globally colorized category of noncrossing partitions in case

O such that k = k(C) 6= 0. Then ◦◦
⊗ k

2

∈ C.

Proof. We find a partition p ∈ C having no upper points such that c(p) = k, i.e. there are

x + k white points and x black points in p. Now, the partition •◦
⊗ k

2

⊗ p is in C. By Lemma

4.2, we may permute the colors of this partition, and we infer that ◦◦
⊗ k

2

⊗ p′ is in C for some

partition p′ with c(p′) = 0. Using the pair partitions •◦ and ◦• to erase p′, we infer that

◦◦
⊗ k

2

∈ C.

4.3.3 Description of natural categories in case O

The preceding subsection shows that there are natural categories 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉 in case O.

Let us describe these categories and also the “empty category” 〈∅〉 = 〈 •◦ , ◦• 〉. (Recall that

the partitions •◦ and ◦• are always contained in a category and that we omit to write them
down explicitely as generators.)

Proposition 4.20. We have the following natural categories of partitions in case O.

(a) The category Oloc := 〈∅〉 consists of all noncrossing pair partitions such that each block
connects a white point with a black point, when the partition is rotated such that it has no
upper points.

(b) Let k ∈ 2N0. Then Oglob(k) := 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉 coincides with {p ∈ NC◦•2 | c(p) ∈ kZ}.

Here, ◦◦
⊗ k

2

= ∅ if k = 0.

In particular, all these categories are pairwise different.

Proof. (a) We may construct all partitions from the assertion using •◦ , ◦• and the category
operations due to a simple inductive argument. Assume that p has m + 1 blocks. Since p is

noncrossing, it contains at least one block q = •◦ or q = ◦• . Removing q yields a partition
which is in 〈∅〉 by induction hypothesis. Composing this partition with r1 ⊗ q ⊗ r2 where ri are

suitable tensor products of the identity partitions ◦
◦

and •
•

yields the partition p which is hence
in 〈∅〉. Conversely, the set of all noncrossing pair partitions with the block rule of the assertion
forms a category of partitions, hence containing 〈∅〉.

(b) Let p ∈ NC◦•2 (0, l) be a partition with no upper points such that c(p) = km ≥ 0, for some
m ∈ N0. Let p′ ∈ NC◦•2 (0, l) be the partition obtained from p by replacing each unicolored block
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◦◦ or •• by •◦ . Then, p′ is a partition in 〈∅〉 ⊆ 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉 by (a) and c(p′) = 0.

This implies that p′ ⊗ ◦◦
⊗ km

2

is in 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉, too, with c(p′ ⊗ ◦◦
⊗ km

2

) = c(p) by

Lemma 4.9. Hence, permutation of colors yields that p ⊗ •◦
⊗ km

2

is in 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉.

Using the pair partition, we infer p ∈ 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉.
Conversely, the set {p ∈ NC◦•2 | c(p) ∈ kZ} is a category of partitions due to Lemma 4.9

containing ◦◦
⊗ k

2

and ◦◦ ⊗ •• .

4.3.4 Classification in the case O

We are now ready to prove our first classification theorem.

Theorem 4.21. Let C ⊆ NC◦• be a category of noncrossing partitions in case O. Then C
coincides with one of the following categories.

(a) If C is globally colorized, then C = Oglob(k) = 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉 for k = k(C) ∈ 2N0.

(b) If C is locally colorized, then C = Oloc = 〈∅〉.

Proof. (a) By Propositions 4.10 and 4.20, we have that C is contained in 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉.

Conversely, ◦◦ ⊗ •• ∈ C by Definition 4.6 and ◦◦
⊗ k

2

∈ C by Lemma 4.19.
(b) Let C be locally colorized and let p ∈ C be a partition with no upper points. Then,

each block of p connects a white point to a black point, see the proof of Proposition 4.18. By
Proposition 4.20, C is contained in 〈∅〉, hence they coincide.

Remark 4.22. For k = 2, the category 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉 coincides with the non-colored
category of partitions 〈u〉 in the sense of Proposition 4.3.

4.4 Case H

We now turn to the case H, i.e. to categories C ⊆ NC◦• such that ↑◦ ⊗ ↑• /∈ C but ◦•◦• ∈ C.
By Lemma 4.4, no blocks of size one occur in any partition considered in this section. Recall,
that due to Lemma 4.2(d), we may connect neighbouring blocks of partitions in C, if the blocks
meet at two points with inverse colors.

4.4.1 Determining the parameters

Proposition 4.23. Let C ⊆ NC◦• be a category of noncrossing partitions in case H.

(a) If C is globally colorized, then d(C) = 2 and k(C) ∈ 2N0.

(b) If C is locally colorized, then

(i) either KC( •• ) = ∅ and k(C) = d(C) = 0,

(ii) or k(C), d(C) ∈ N0\{1, 2} and KC( •• ) = dZ for d = d(C), i.e. in this case:

KC( •◦ ) = KC( ◦• ) = KC( ◦◦ ) = KC( •• ) = dZ
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Moreover, we have KC( •• ) 6= ∅ if and only if ◦◦•• ∈ C.

Proof. (a) This is analogue to Proposition 4.18.

(b) We first prove that KC( •• ) 6= ∅ holds if and only if ◦◦•• ∈ C. If ◦◦•• ∈ C, then

•◦ ⊗ •◦◦• ∈ C from which we deduce KC( •• ) 6= ∅. Conversely, if KC( •• ) 6= ∅, then

NDF C( •• ) 6= ∅ from which we deduce ◦◦•• ∈ C by Lemma 4.4(c).
Next, we prove that a locally colorized category can only be in the cases (i) or (ii) of the

assertion.

Case 1: KC( •• ) = ∅. Assume d(C) 6= 0. Then there is a partition p = p1⊗p2 ∈ C such that

c(p1) 6= 0, which by Lemma 4.15 implies ◦◦•• ∈ C, a contradiction. Thus, we have d(C) = 0
which implies k(C) = 0 by Proposition 4.13.

Case 1: KC( •• ) 6= ∅. Assume d(C) = 2. We find a partition p = p1 ⊗ p2 ∈ C such that

c(p1) = 2. Using the pair partition, we infer ↑◦ ⊗ ↑◦ ⊗ p2 ∈ C or ◦◦ ⊗ p2 ∈ C. By Lemma

4.1, we have ↑◦ ⊗ ↑• ∈ C or ◦◦ ⊗ •• ∈ C, both is a contradiction. Similarly, d(C) = 1 implies

↑◦ ⊗ p2 ∈ C for some partition p2, and the cases k(C) ∈ {1, 2} can be excluded analoguously
(with p2 = ∅).

It remains to show that KC( •• ) = dZ for d = d(C). Since KC( •• ) 6= ∅, we have ◦◦•• ∈ C.
Thus, for 0 6= s ∈ KC( •◦ ), we infer bs ⊗ b̃s ∈ C by Lemma 4.15. This proves s ∈ KC( •• ).

Moreover, we have 0 ∈ KC( •• ) since a rotated version of bs ⊗ b̃s yields a partition p2 ∈ C such

that the first and the last point are black and belong to the same block. Then •◦ ⊗ p2 is in C
proving 0 ∈ KC( •• ). We conclude KC( •◦ ) ⊆ KC( •• ). Conversely, let 0 6= s ∈ KC( •• ). By
Lemma 4.15, we have bs ⊗ b̃s ∈ C. Like in the proof of Proposition 4.17, we obtain a partition

bs ⊗ ab̃sa−1 ∈ C, where a and a−1 is a pair block •◦ . This proves s ∈ KC( •◦ ) and hence

dZ = KC( •• ).

4.4.2 Finding partitions realizing the parameters

Lemma 4.24. Let C ⊆ NC◦• be a category of noncrossing partitions in case H.

(a) If k = k(C) 6= 0, then bk ∈ C.

(b) If d = d(C) 6= 0, then bd ⊗ b̃d ∈ C.

Proof. (a) By Proposition 4.23, we have ◦◦•• ∈ C as soon as k 6= 0. Let p ∈ C be a partition
with no upper points such that c(p) = k. Using the pair partition, we may assume that p is a
partition on k white points. Using Lemma 4.2, we may connect all its blocks, ending up with
bk ∈ C.

(b) Similar to (a), we deduce bd ⊗ p2 ∈ C from the existence of a partition p1 ⊗ p2 ∈ C with
c(p1) = d. By Lemma 4.1, we have bd ⊗ b̃d ∈ C.

4.4.3 Description of natural categories

Motivated by Lemma 4.24, we want to describe the categories 〈bk, bd⊗ b̃d, ◦•◦• 〉. Note that for

k ≥ 2 or d ≥ 2, we may always construct the partition ◦◦•• inside the category (Lemma 4.15).
Due to Proposition 4.23, this is a natural generator indeed, so we add it in the following lemma

also for the cases k = d = 0 and treat the case 〈 ◦•◦• 〉 separately.
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Proposition 4.25. We have the following natural categories in case H.

(a) The category H′loc := 〈 ◦•◦• 〉 consists of all noncrossing partitions such that each block is
of even length connecting white and black points in an alternating way, when the partition
is rotated such that it has no upper points.

(b) Let k, d ∈ N0\{1} be such that d is a divisor of k, if k 6= 0, and denote b0 := ∅. Denote by
Hloc(k, d) the set of all partitions p ∈ NC◦• such that

(i) all blocks have length at least two,

(ii) c(p) ∈ kZ,

(iii) if p1 ⊗ p2 is any rotated version of p in nest decomposed form, then c(p1) ∈ dZ.

We have Hloc(k, d) ⊆ 〈bk, bd ⊗ b̃d, ◦◦•• , ◦•◦• 〉.

Proof. (a) By Lemma 4.2(d) we may deduce ◦•◦•◦• ∈ 〈 ◦•◦• 〉 from ◦•◦• ⊗ •◦ ∈ 〈 ◦•◦• 〉.
Iteratively, we may construct all one block partitions of even length connecting white and black
points in an alternating way, and using the category operations, we may construct all partitions
of the assertion. Conversely, the set of all noncrossing partitions with the above block rule forms

a category of partitions containing ◦•◦• .

(b) Denote the category 〈bk, bd⊗ b̃d, ◦◦•• , ◦•◦• 〉 by D. Let p ∈ Hloc(k, d). We prove p ∈ D
by induction on the number m of blocks of p. Since D is closed under rotation, we may assume
that p has no upper points. For m = 1, note that ιl ⊗ b⊗tk ∈ D by (a), where ιl ∈ P ◦•(0, 2l)
consists of a single block on 2l points with alternating colors, and t ≥ 0. Using Lemma 4.2(c),
we infer that all one block partitions with c(p) ∈ kZ are in D.

Let m > 1. By rotation and since p is noncrossing, p is of the form p = p1 ⊗ p2 such that
p2 consists only of one block. Since we are in case H, p2 has length at least two and thus p is
in nest decomposed form. Thus c(p1) ∈ dZ and hence also c(p2) = c(p) − c(p1) ∈ dZ. Assume
c(p1) = ds with some s ≥ 0, by verticolor reflection. Let p′1 be the partition obtained from

p1 ⊗ b̃d
⊗s

by connecting all points of b̃d
⊗s

to the last point of p1. Then p′1 is a partition with
m− 1 blocks and c(p′1) = c(p1)− ds = 0. Furthermore, any nest decomposed form q′1 ⊗ q′2 of p′1
yields a nest decomposed form q1⊗ q2 of p such that c(q′1) ∈ c(q1) +dZ ⊆ dZ because c(p2) ∈ dZ
and c(b̃d

⊗s
) ∈ dZ. Hence, p′1 ∈ Hloc(k, d) and by induction hypothesis, p′1 ∈ D. Composing it

with r ⊗ (b̃d
∗
)⊗s ⊗ (b̃d)

⊗s, where r is a suitable tensor product of the identity partitions, yields

p1⊗ b̃d
⊗s ∈ D. Similary b⊗sd ⊗ p2 ∈ D, since the partition p′2 obtained from connecting all blocks

of b⊗sd ⊗p2 is a one block partition with c(p′2) = c(p). We conclude that p1⊗ b̃d
⊗s⊗ b⊗sd ⊗p2 ∈ D

and using the pair partitions, we obtain p = p1 ⊗ p2 ∈ D.

4.4.4 Classification in the case H

Theorem 4.26. Let C ⊆ NC◦• be a category of noncrossing partitions in case H. Then C
coincides with one of the following categories.

(i) If C is globally colorized, then C = Hglob(k) := 〈bk, ◦•◦• , ◦◦ ⊗ •• 〉 for k = k(C) ∈ 2N0.

(ii) If C is locally colorized, and KC( ◦◦ ) = ∅, then C = H′loc = 〈 ◦•◦• 〉. Otherwise, we have

C = 〈bk, bd⊗ b̃d, ◦◦•• , ◦•◦• 〉 for k = k(C) ∈ N0\{1, 2} and d = d(C) ∈ N0\{1, 2}. We use
the notation b0 = ∅.
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Proof. (i) Using Lemma 4.24, we know 〈bk, ◦•◦• , ◦◦ ⊗ •• 〉 ⊆ C. For the converse inclusion, let
p ∈ C. Then, c(p) ∈ kZ by Proposition 4.10. Furthermore, if p1 ⊗ p2 is any rotated version of p
in nest decomposed form, then c(p1) ∈ 2Z by Lemma 4.16 and Proposition 4.23. By Proposition

4.25, we infer p ∈ Hloc(k, 2) ⊆ 〈bk, b2 ⊗ b̃2, ◦◦•• , ◦•◦• 〉. Since b2 ⊗ b̃2 = ◦◦ ⊗ •• , we infer

C = 〈bk, ◦•◦• , ◦◦ ⊗ •• 〉.
(ii) Let C be locally colorized and let k := k(C) and d := d(C).
Case 1. Let KC( •• ) = ∅. Since C is in case H, we have 〈 ◦•◦• 〉 ⊆ C. Conversely, let

p ∈ C be a partition without upper points. Assume that there is a block of p which does not
connect white and black points in an alternating way. Using rotation, we can bring p in nest
decomposed form p = p1 ⊗ p2 such that the first and the last point of p2 have the same color.

This contradicts KC( •• ) = KC( ◦◦ ) = ∅. We conclude that each block of p ∈ C connects
white and black points in an alternating way. Furthermore, they are of even length. Otherwise,
the first and the last point would have the same color, and again we would find an example of

a partition in NDF C( •• ) or in NDF C( ◦◦ ). By Proposition 4.25, we infer p ∈ 〈 ◦•◦• 〉 and

hence C = 〈 ◦•◦• 〉.
Case 2. Let KC( •• ) 6= ∅. Then 〈bk, bd ⊗ b̃d, ◦◦•• , ◦•◦• 〉 ⊆ C by Proposition 4.23 and

Lemma 4.24. Conversely, let p ∈ C. By Lemma 4.10, we have c(p) ∈ kZ. Furthermore, if p′ =
p1 ⊗ p2 is any rotated version of p in nest decomposed form, we have c(p1) ∈ dZ by Proposition

4.23. We thus have p ∈ Hloc(k, d), which by Proposition 4.25 yields p ∈ 〈bk, bd⊗b̃d, ◦◦•• , ◦•◦• 〉.
This shows 〈bk, bd ⊗ b̃d, ◦◦•• , ◦•◦• 〉 = C.

Corollary 4.27. We have Hloc(k, d) = 〈bk, bd ⊗ b̃d, ◦◦•• , ◦•◦• 〉 in Proposition 4.25. In par-
ticular, all these categories are pairwise different.

Proof. In the above theorem, we showed 〈bk, bd⊗ b̃d, ◦◦•• , ◦•◦• 〉 ⊆ C ⊆ Hloc(k, d) whenever C
is a locally colorized category in case H with k = k(C), d = d(C) and KC( •• ) 6= ∅. Together

withHloc(k, d) ⊆ 〈bk, bd⊗b̃d, ◦◦•• , ◦•◦• 〉 of Proposition 4.25, we have equality here. Moreover,
it can easily be seen that the sets Hloc(k, d) are distinct.

Remark 4.28. (a) One can show that the categories 〈bk, ◦•◦• , ◦◦ ⊗ •• 〉 are given by the
set of all partitions p ∈ NC◦• such that c(p) ∈ kZ and all blocks of p have even length.

(b) The non-colored case 〈uuu〉 is obtained from 〈bk, ◦•◦• , ◦◦ ⊗ •• 〉 for k = 2 in the sense
of Proposition 4.3.

4.5 Case S

We now consider the case S, i.e. categories C ⊆ NC◦• such that ◦•◦• and ↑◦ ⊗ ↑• are in C.

4.5.1 Determining the parameters

Proposition 4.29. Let C ⊆ NC◦• be a category of noncrossing partitions in case S.

(a) We always have ↑ ↑◦•◦• ∈ C.

(b) If C is globally colorized, then d(C) = 1 and k(C) ∈ N0. Moreover, ↑ ↑◦◦•• ∈ C.

77



(c) If C is locally colorized, then k(C), d(C) ∈ N0\{1} and KC( •• ) = KC( •◦ ) + 1 = dZ + 1
for d = d(C), i.e.:

KC( •◦ ) = KC( ◦• ) = dZ, KC( •• ) = dZ+ 1, KC( ◦◦ ) = dZ− 1

Moreover, ◦◦•• /∈ C.

Proof. (a) By Lemma 4.2, we may disconnect the white points from ◦•◦• .

(b) By (a) and using color permutation, we have ↑ ↑◦◦•• ∈ C, thus d(C) = 1.

(c) If k(C) = 1, then ↑◦ ∈ C which allows us to erase arbitrary points of partitions in C.
Thus ◦•◦• ∈ C implies ◦◦ ∈ C which is a contradiction to ◦◦ ⊗ •• /∈ C. If d(C) = 1, then

↑ ↑◦◦•• ∈ C by Lemma 4.15(a). Using (a) and Lemma 4.2(e), we infer ↑◦ ⊗ ↑◦ ⊗ •• ∈ C which

implies ◦◦ ⊗ •• ∈ C by Lemma 4.1, a contradiction.

Now, let s ∈ KC( •• ), s > 0. We find a partition p1 ⊗ p2 ∈ C in nest decomposed form such

that the first and the last point of p2 are black, and c(p1) = s. We may assume that p1 = ↑◦
⊗s

using Lemma 4.2(b) and the pair partitions. Swaping one of the white singletons of p1 with the

first point of p2 (by (a) and Lemma 4.2(f)) yields a partition ↑◦
⊗s−1

⊗p′2 ∈ C in nest decomposed

form such that the first and the last point of p′2 have inverse colors. This shows s−1 ∈ KC( •◦ ).

We proceed similarly in the case s < 0 and we deduce KC( •• ) ⊆ KC( •◦ ) + 1. Note that

0 /∈ KC( •• ) by Lemma 4.15(c). Conversely, if s+ 1 ∈ KC( •◦ ) + 1, s ≥ 0, we find a partition

↑◦
⊗s
⊗ p2 ∈ C in nest decomposed form such that the first point of p2 is white and the last point

is black. Then, ↑◦
⊗s
⊗ ↑◦ ⊗ ↑• ⊗p2 ∈ C and using the partition ↑ ↑◦•◦• , we infer s+ 1 ∈ KC( •• ).

We conclude KC( •• ) = KC( •◦ ) + 1 and KC( ◦◦ ) = −KC( •• ) = KC( •◦ )− 1.

Finally, if ◦◦•• ∈ C, then also ◦◦ ⊗ ↑• ⊗ ↑• ∈ C, which implies ◦◦ ⊗ •• ∈ C by Lemma
4.2(b).

4.5.2 Finding partitions realizing the parameters

Lemma 4.30. Let C ⊆ NC◦• be a category in case S.

(a) If k = k(C) 6= 0, then ↑◦
⊗k
∈ C.

(b) If d = d(C) 6= 0, then ↑⊗d ↑⊗d

◦ ◦ • • ∈ C.

Proof. (a) We find a partition p ∈ C such that c(p) = k. Using the pair partition we erase all

black points and using ↑◦ ⊗ ↑• we know ↑◦
⊗k
∈ C by Lemma 4.2.

(b) This follows from Lemma 4.15(a).

4.5.3 Description of natural categories

Proposition 4.31. We have the following natural categories in case S. Let k, d ∈ N0 such that
d is a divisor of k, if k 6= 0. Denote by Sloc(k, d) the set of all partitions p ∈ NC◦• such that

(i) c(p) ∈ kZ,
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(ii) if p1 ⊗ p2 is any rotated version of p in nest decomposed form such that the first and the
last point of p2

. . . have inverse colors, then c(p1) ∈ dZ,

. . . both are black, then c(p1) ∈ dZ+ 1,

. . . both are white, then −c(p1) ∈ dZ+ 1.

We have Sloc(k, d) ⊆ 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦ ⊗ ↑• 〉.

Proof. Denote 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦ ⊗ ↑• 〉 by D and let p ∈ Sloc(k, d). We give a proof by
induction on the number m(p) of those blocks of p which have length greater or equal two. By
rotation, we may always assume that p has no upper points.

Case 1. Let m(p) = 0, i.e. p consists only of singletons. Since c(p) ∈ kZ, we have up to

permutation of the colors (see Lemma 4.2(b)) p = ↑◦
⊗kt
⊗
(
↑◦ ⊗ ↑•

)⊗w
for some number w.

Hence p ∈ D.

Case 2. Let m(p) = 1. Using rotation, p is of the following form:

p = aε1X1a
ε2X2 . . . a

εlXl

Here, the points aεi form a block of length l ≥ 2, and the Xi are some tensor products of the

singletons ↑◦ and ↑• . If now all points aεi had alternating colors, we could first argue that

the partition aε1 . . . aεl is in 〈 ◦•◦• 〉 ⊆ D and then insert the tensor products Xi of singletons

between the legs using ↑◦
⊗k

and ↑⊗d ↑⊗d

◦ ◦ • • . Unfortunately, the alternating coloring is not always
the case. We therefore construct a partition p′ involving some “correction points”. It will be of
the form:

p′ = A′1X
′
1A
′
2X
′
2 . . . A

′
lX
′
l

The construction of p′ is as follows. If aεi and aεi+1 have different colors, then up to permutation

of the colors, Xi is of the form Xi = ↑◦
⊗dti
⊗
(
↑◦ ⊗ ↑•

)⊗wi
for some wi ∈ N0, ti ∈ Z, by condition

(ii) of Sloc(k, d). We put A′i+1 := aεi+1 and X ′i := Xi. On the other hand, if aεi and aεi+1 both are

black, then Xi = ↑◦
⊗dti+1

⊗
(
↑◦ ⊗ ↑•

)⊗wi
up to permutation, and we put A′i+1 := a−εi+1aεi+1 ,

X ′i := Xi ⊗ ↑• , w′i := wi + 1. If aεi and aεi+1 both are white, then X ′i := Xi ⊗ ↑◦ instead.
Finally, we put A′1 := aε1 and X ′l := Xl if aε1 and aεl have inverse colors and A′1 := a−εlaε1 ,

X ′l := Xl ⊗ ↑• or X ′l := Xl ⊗ ↑◦ otherwise.

Now, the partition q1 := A′1A
′
2 . . . A

′
l consists only of one block of even length with alternating

colors, by construction. By Lemma 4.25, it is contained in 〈 ◦•◦• 〉 ⊆ D.

Let q2 be the partition obtained from q1 by inserting subpartitions ( ↑◦ ⊗ ↑• )⊗w
′
i between

A′i and A′i+1, and ( ↑◦ ⊗ ↑• )⊗w
′
l after A′l. Since q2 can be obtained from q1 using the category

operations, we have q2 ∈ D. Moreover, c(p′) = c(p) by construction and c(p) =
∑

i dti ∈ kZ.

Let q3 := ↑◦
⊗c(p)

, hence q2 ⊗ q3 is in D. Since ↑⊗d ↑⊗d

◦ ◦ • • ∈ D, we may use Lemma 4.2 to shift

the partitions ↑◦
⊗dti

(or ↑•
⊗dti

resp.) at the right positions, and we infer p′ ∈ D. Using the pair
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partitions, we finally erase all extra points in p′ together with the “correction singletons” and
we deduce p ∈ D.

Case 3. Let m(p) > 1. By rotation, p can be brought in nest decomposed form p = p1 ⊗ p2

such that m(p2) = 1. Such a decomposition exists since p is noncrossing.
Case 3a. If the first and the last point of p2 have inverse colors, we have c(p1) ∈ dZ by

condition (ii). We may assume c(p1) ≥ 0, i.e. c(p1) = ds for some s ∈ N0. Then, the partition

p′1 := p1 ⊗ ↑•
⊗ds

satisfies c(p′1) = 0 and m(p′1) = m(p1) = m(p) − 1. As conditions (ii) and
(iii) are fulfilled for p′1, we infer p′1 ∈ D by induction hypothesis. By Case 2, we also have

p′2 := ↑◦
⊗ds
⊗ p2 ∈ D, since c(p′2) = c(p2) + c(p1) = c(p) ∈ kZ. Thus, we obtain p′1 ⊗ p′2 ∈ D and

hence p = p1 ⊗ p2 ∈ D using the pair partitions.
Case 3b. On the other hand, if both the first and the last point of p2 are black, we consider

p′1 := p1⊗ ↑• . Furthermore, we consider the partition p′2 obtained from p2 by changing the color
of its first point from black to white and we insert a black singleton to the right of this first
point. Then, p′1⊗ p′2 is a partition in nest decomposed form fulfilling the conditions (i), (ii) and

(iii). By Case 3a, we infer p′1 ⊗ p′2 ∈ D. Since ↑ ↑◦•◦• ∈ D, we may use Lemma 4.2 to infer that

p1 ⊗ ↑• ⊗ ↑◦ ⊗ p2 is in D, which yields p ∈ D. We proceed in the same way, if the first and the
last point of p2 are white.

4.5.4 Classification in the case S

Theorem 4.32. Let C ⊆ NC◦• be a category of noncrossing partitions in case S. Then C
coincides with one of the following categories.

(i) If C is globally colorized, then C = Sglob(k) := 〈 ↑◦
⊗k
, ◦•◦• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 for k =

k(C) ∈ N0.

(ii) If C is locally colorized, then C = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦ ⊗ ↑• 〉 for k = k(C) ∈ N0\{1}
and d = d(C) ∈ N0\{1}.

Proof. (i) By Lemma 4.30, we have ↑◦
⊗k
∈ C for k = k(C). Thus 〈 ↑◦

⊗k
, ◦•◦• , ↑◦ ⊗ ↑• , ◦◦ ⊗

•• 〉 ⊆ C. Conversely, let p ∈ C. Then c(p) ∈ kZ by Proposition 4.10. Furthermore, d = d(C) = 1

by Proposition 4.29, hence p ∈ Sloc(k, 1) ⊆ 〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ◦•◦• , ↑◦ ⊗ ↑• 〉 by Proposition 4.31.

We have 〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ◦•◦• , ↑◦ ⊗ ↑• 〉 = 〈 ↑◦

⊗k
, ◦•◦• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉.

(ii) Let C be locally colorized. Using Lemma 4.30, we infer 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦⊗ ↑• 〉 ⊆ C
for k = k(C) and d = d(C). Conversely, let p ∈ C. Then c(p) ∈ kZ by Proposition 4.10. Let
p1 ⊗ p2 be a rotated version of p in nest decomposed form. If the first and the last point of p2

have inverse colors, then c(p1) ∈ dZ by Proposition 4.13. If the first and the last point of p2

both are black, we have to prove s− 1 ∈ dZ for s := c(p1).
Assume that s > 0. Using the pair partitions and Lemma 4.2, we may assume that p1 is of

the form p1 = ↑◦
⊗s

, hence ↑◦
⊗s
⊗ p2 ∈ C. We have s 6= 0, since otherwise p2 ∈ C and rotation

would yield a partition such that two neighbouring points have the same color and belong to
the same block. By Lemma 4.15(c) and Proposition 4.29 this would lead to a contradiction.

We thus have s ≥ 1. Since ↑ ↑◦•◦• ∈ C by Proposition 4.29, we may shift one of the white
singletons to the right hand side of the first point of p2, which inverts the colors of these two
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points. We infer that the partition ↑◦
⊗s−1

⊗ p′2 is in C, where p′2 is in nest decomposed form
such that the first and the last point have inverse colors. By Proposition 4.13, we thus have
s− 1 ∈ dZ.

As for s < 0, we have ↑•
⊗−s
⊗p2 ∈ C. By composition, we infer that also ↑•

⊗−s
⊗ ↑•⊗ ↑◦⊗p2 ∈

C. Again, shifting the white singleton to the right hand side of the first point of p2 yields

↑•
⊗−s+1

⊗ p′2 ∈ C where the first and the last point of p′2 have inverse colors belonging to the
same block. Thus, −s+ 1 ∈ dZ and hence s− 1 ∈ dZ.

A similar proof shows that s + 1 ∈ dZ if the first and the last point of p2 are white. We

thus have p ∈ Sloc(k, d) and by Proposition 4.31, we deduce p ∈ 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦ ⊗ ↑• 〉.

This shows C = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦ ⊗ ↑• 〉.

Corollary 4.33. We have Sloc(k, d) = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦ ⊗ ↑• 〉 in Proposition 4.31. In
particular, all these categories are pairwise different.

Remark 4.34. The non-colored case 〈↑ ⊗ ↑,uuu〉 is obtained from 〈 ↑◦
⊗k
, ◦•◦• , ↑◦ ⊗ ↑• , ◦◦ ⊗

•• 〉 for k = 2, whereas 〈↑,uuu〉 is the case k = 1 (see Proposition 4.3).

4.6 Case B

Finally, we turn to the case B, i.e. to categories C ⊆ NC◦• such that ◦•◦• /∈ C and ↑◦ ⊗ ↑• ∈ C,
i.e. all blocks of partitions p ∈ C have length at most two (Lemma 4.4). Like in the non-colored
case, this is the most complicated situation, as we can already see when investigating which
parameters can occur.

4.6.1 Determining the parameters

Proposition 4.35. Let C ⊆ NC◦• be a category of noncrossing partitions in case B.

(a) If C is globally colorized, then the cases d(C) = 1 and d(C) = 2 can occur.

(b) If C is locally colorized, then

(i) either KC( •• ) = ∅ and k(C), d(C) ∈ N0,

(ii) or KC( •• ) = dZ + (r + 1) for r := r(C) := min{s ≥ 1 | s ∈ KC( •• )} − 1 and
k(C) ∈ N0\{1}, d = d(C) ∈ N0\{1}. Furthermore, r = 0 or r = d

2 ; and r 6= 1. Thus:

KC( •◦ ) = KC( ◦• ) = dZ, KC( •• ) = dZ+(r+1), KC( ◦◦ ) = dZ− (r+1)

Proof. (a) This follows directly from Lemma 4.16.

(b) Let KC( •• ) 6= ∅. It is clear that k(C) 6= 1, since ↑◦ ∈ C (see Lemma 4.36) would

imply •• ∈ C as KC( •• ) 6= ∅. Next, observe that we have −(s − 2) ∈ KC( •• ) whenever

s ∈ KC( •• ). Indeed, by Lemma 4.15, we have (recall the notation ↑◦
⊗s

= ↑•
⊗−s

, if s < 0):

↑⊗s ↑⊗s−2

◦ • • • ∈ C
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Rotation yields −(s − 2) ∈ KC( •• ). We observe that 0 /∈ KC( •• ) and 2 /∈ KC( •• ), since

otherwise ◦◦ ⊗ •• ∈ C, in contradiction to C being locally colorized. Thus r 6= 1. Moreover,

we deduce that there is always a number s ∈ KC( •• ) such that s ≥ 1, and hence the number
r is well-defined.

Like above, we have the following two partitions in C, the latter one being obtained from the
first one by verticolor reflection and rotation:

↑⊗r+1 ↑⊗r−1

◦ • • • ∈ C and ↑⊗r+1 ↑⊗r−1

◦• ◦◦ ∈ C

Forming the tensor product of these two partitions and composing it with a suitable tensor

product of ◦• and the identity partitions, we infer:

↑⊗2r ↑⊗2r

◦ • • ◦ ∈ C

Thus, 2r ∈ KC( •◦ ) = dZ. Let r 6= 0. Then d 6= 0. We now prove 2r = d. Put r0 := r + 1.
Assume 2r = ds for some s ≥ 2. Then 2d ≤ ds = 2r, hence d < r0. Thus, r′ := r0 − d is a

number 0 < r′ < r0. Using the partition ↑⊗d ↑⊗d

◦ ◦ • • ∈ C (which is in C by Lemma 4.15), we can

shift exactly like in the proof of Lemma 4.2(e) d of the r + 1 white singletons of ↑⊗r+1 ↑⊗r−1

◦ • • •
from the outside of the pair to the inside. This yields a partition showing that r′ ∈ KC( •• ) in
contradiction to the minimality of r0. We conclude 2r = d if r 6= 0.

It remains to show that KC( •• ) = dZ + r0. Let t ∈ Z. Since dt ∈ dZ = KC( •◦ ) and

↑◦
⊗r−1

⊗ ↑•
⊗r−1

∈ C, we have (by Lemma 4.15):

p := ↑⊗dt ↑⊗dt⊗r−1 ⊗r−1

◦ ◦ • •↑ ↑◦ • ∈ C

Furthermore, the following partition is in C since it is a rotated version of ↑
⊗r+1 ↑⊗r−1

◦ • • • :

q := ↑⊗r+1

↓
⊗r−1

◦ •

◦ ◦

Now, composing p with q we may shift r− 1 white singletons from the inside of the pair of p to
the outside, by which their number increases to r + 1 white singletons. Furthermore, the color
of the first point of the pair changes from white to black. We conclude that dt + (r + 1) is in

KC( •• ), which proves dZ+ r0 ⊆ KC( •• ).

Conversely, let r0 > 1. Thus r > 0 and hence d = 2r > 0. Let s ∈ KC( •• ) and assume

s /∈ dZ + r0. We have s + dZ ⊆ KC( •• ), since the partition ↑⊗d ↑⊗d

◦ ◦ • • ∈ C allows us to
shift clusters of d singletons of the same color to arbitrary positions. We may thus assume
r0 < s < r0 + d which implies 0 < s− r0 < d. Like above, we have the following two partitions
in C using verticolor reflection:

↑⊗s ↑⊗s−2

◦ • • • ∈ C and ↑⊗r0−2 ↑⊗r0

◦◦ ◦• ∈ C
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Composing the tensor product of them with ◦• yields s−r0 ∈ KC( •◦ ) = dZ in contradication
to 0 < s− r0 < d.

In the case r0 = 1, we have ↑ ↑◦•◦• ∈ C. If now s ∈ KC( •• ), then s − 1 ∈ KC( •◦ ) = dZ

again by applying ↓
◦
◦
• ↑• to ↑⊗s ↑⊗s−2

◦ • • • .

Finally, if d = 1, then ↑ ↑◦◦•• ∈ C and r = 0 implies ↑ ↑◦•◦• ∈ C. Hence ◦◦ ⊗ •• ∈ C, a
contradiction.

4.6.2 Finding partitions realizing the parameters

Lemma 4.36. Let C ⊆ NC◦• be a category in case B.

(a) If k = k(C) 6= 0, then ↑◦
⊗k
∈ C.

(b) If d = d(C) 6= 0, then ↑⊗d ↑⊗d

◦ ◦ • • ∈ C.

(c) If KC( •• ) 6= ∅ and r(C) = 0, then ↑ ↑◦•◦• ∈ C; if r = r(C) 6= 0, then ↑⊗r+1 ↑⊗r−1

◦ • • • ∈ C.

Proof. (a) Using ↑◦ ⊗ ↑• ∈ C, we may disconnect any points from their blocks. Thus, we may

assume that a partition p ∈ C with c(p) = k is of the form p = ↑◦
⊗k

.

(b)&(c) This is Lemma 4.15(a).

4.6.3 Description of natural categories

Proposition 4.37. We have the following natural categories in case B.

(a) The category 〈 ↑◦ ⊗ ↑• 〉 consists of all noncrossing partitions p ∈ NC◦• such that when p
is rotated to a partition having no upper points

(i) all blocks have size one or two,

(ii) the blocks of size two connect a black point and a white point,

(iii) the number of black singletons and the number of white singletons between two legs of
every pair coincide, and on the global level, too.

(b) Let k, d ∈ N0 be such that d is a divisor of k, if k 6= 0. Let r ∈ {0, d2}\{1}. Denote by
B′loc(k, d, r) the set of all noncrossing partitions p ∈ NC◦• such that

(i) all blocks have size one or two,

(ii) c(p) ∈ kZ,

(iii) if p1 ⊗ p2 is any rotated version of p in nest decomposed form such that the first and
the last point of p2

. . . have inverse colors, then c(p1) ∈ dZ,

. . . both are black, then c(p1) ∈ dZ+ r + 1,

. . . both are white, then −c(p1) ∈ dZ+ r + 1.

We have B′loc(k, d, r) ⊆ 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑
⊗r+1 ↑⊗r−1

◦ • • • , ↑◦ ⊗ ↑• 〉.
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(c) Denote by Bloc(k, d) the set defined as B′loc(k, d, r), but with the additional condition that

all blocks of p of size two are of the form •◦ or ◦• when being rotated to one line. We

then have Bloc(k, d) ⊆ 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑◦ ⊗ ↑• 〉.

Proof. (a) Denote the set of all partitions p ∈ NC◦• with (i), (ii) and (iii) by E . It is easy to see

that E is a category of partitions containing ↑◦ ⊗ ↑• . So, we only need to prove p ∈ 〈 ↑◦ ⊗ ↑• 〉
for all p ∈ E . We do so by induction on the number m of blocks of size two of p. If m = 0, then
p consists of l white singletons and l black singletons, for some l ∈ N. Hence, it is of the form

( ↑◦ ⊗ ↑• )⊗l ∈ 〈 ↑◦ ⊗ ↑• 〉 up to permutation of colors (see also Lemma 4.2). If m = 1, the partition
p is of the form p = XaY a−1 up to rotation, where X and Y are tensor products of singletons

and a and a−1 form a pair block •◦ or ◦• . By assumption, the number of white singletons in

Y and the number of black singletons coincide, hence Y ∈ 〈 ↑◦ ⊗ ↑• 〉 by case m = 0. Likewise

X ∈ 〈 ↑◦ ⊗ ↑• 〉, by the assumption on the global color distribution of the singletons. We infer

p ∈ 〈 ↑◦ ⊗ ↑• 〉.
If m > 1, we can write p = p1⊗p2 in nest decomposed form up to rotation, where p2 consists

of one pair block and some singletons. Then p2 ∈ 〈 ↑◦ ⊗ ↑• 〉 by case m = 1 and p1 ∈ 〈 ↑◦ ⊗ ↑• 〉
by the induction hypothesis. Thus p = p1 ⊗ p2 ∈ 〈 ↑◦ ⊗ ↑• 〉.

(b) Let p ∈ B′loc(k, d, r). Denote the category 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑
⊗r+1 ↑⊗r−1

◦ • • • , ↑◦ ⊗ ↑• 〉 by D.
We prove p ∈ D by induction on the number m of blocks of p of size two.

Case 1. Let m = 0. Up to rotation and permutation of the colors, p is of the form p =

↑◦
⊗ks
⊗ ( ↑◦ ⊗ ↑• )⊗w for some w ≥ 0 and c(p) = ks ∈ kZ. Hence p ∈ 〈 ↑◦

⊗k
, ↑◦ ⊗ ↑• 〉 ⊆ D.

Case 2. Let m = 1. Up to rotation, p is of the form p = p1 ⊗ aε1p0
2a
ε2 where aε1 and aε2

form a pair block, and p1 and p0
2 consist only of singletons respectively.

Case 2a. If the pair on aε1 and aε2 is of the form •◦ or ◦• , then c(p1) ∈ dZ. Consider

p′1 := p1 ⊗ ↑◦
−c(p1)

. Then p′1 ∈ D by Case 1 since c(p′1) = 0. Furthermore, p0
2
′

:= ↑◦
⊗c(p1)

⊗ p0
2

is in D, again by Case 1 because c(p0
2
′
) = c(p1) + c(p0

2) = c(p) ∈ kZ. Therefore, the partition

p1 ⊗ ↑◦
−c(p1)

⊗ aε1 ↑◦
⊗c(p1)

p0
2a
ε2 is in D. Since c(p1) ∈ dZ, we use the partition ↑⊗d ↑⊗d

◦ ◦ • • ∈ D to

shift c(p1) singletons from inside the pair to the outside. Thus, p1⊗ ↑◦
−c(p1)

⊗ ↑◦
⊗c(p1)

⊗aε1p0
2a
ε2 ∈

D from which we infer p ∈ D using the pair partitions.

Case 2b. If the pair on aε1 and aε2 is of the form •• , then c(p1) ∈ dZ + (r + 1). Assume
c(p1) = ds+ r + 1 for some s ≥ 0. Let p′1 be the partition obtained from p1 by removing c(p1)
white singletons. Then p′1 ∈ D by Case 1 since c(p′1) = 0. Furthermore, let p′2 be obtained from

p0
2 ⊗ ↑◦

⊗ds
by adding r − 1 white singletons. Then p′2 ∈ D since c(p′2) = c(p0

2) + ds+ (r − 1) =

c(p) ∈ kZ. Finally, consider the partition p′1⊗ ↑⊗r+1 ↑⊗r−1

◦ • • • composed with p′2 in such a way that

p′2 is placed between the legs of the pair •• . The resulting partition is in D and using ↑⊗d ↑⊗d

◦ ◦ • •
we can shift ds white singletons from inside the pair to the outside. Up to permutation of colors
of the singletons and using the pair partitions, this yields p which is hence in D. We proceed in

a similar way for s < 0 and likewise in the case that aε1 and aε2 form a pair ◦◦ .

Case 3. Let m > 1. Up to rotation, p is in nest decomposed form p = p1 ⊗ p2 such that p2
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contains only one block of size two. Then, p′1 := p1 ⊗ ↑◦
⊗c(p2)

is in D by induction hypothesis,

since c(p′1) = c(p). Likewise p′2 := ↑◦
⊗−c(p2)

⊗ p2 is in D by Case 2. Hence p1 ⊗ ↑◦
⊗c(p2)

⊗
↑◦
⊗−c(p2)

⊗ p2 ∈ D from which we deduce p ∈ D.

(c) Note that in the proof of (b) we used the partition ↑⊗r+1 ↑⊗r−1

◦ • • • only when blocks ◦◦ or

•• where involved. Hence, p ∈ 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑◦ ⊗ ↑• 〉 if all blocks of p of size two are of the

form •◦ or ◦• .

4.6.4 Classification in the case B

Theorem 4.38. Let C ⊆ NC◦• be a category of noncrossing partitions in case B. Then C
coincides with one of the following categories.

(a) If C is globally colorized and

. . . if d(C) = 2, then C = Bglob(k) := 〈 ↑◦
⊗k
, ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 for k = k(C) ∈ 2N0,

. . . if d(C) = 1, then C = B′glob(k) := 〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 for k = k(C) ∈ N0.

(b) If C is locally colorized and

. . . if KC( •• ) = ∅, then C = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑◦ ⊗ ↑• 〉 for k = k(C) and d = d(C) ∈ N0,

. . . if KC( •• ) 6= ∅, then C = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑
⊗r+1 ↑⊗r−1

◦ • • • , ↑◦ ⊗ ↑• 〉 for k = k(C) ∈
N0\{1}, d = d(C) ∈ N0\{1} and r = r(C) = d

2 6= 1 or r(C) = 0.

Proof. (a) If k(C) 6= 0, then ↑◦
⊗k
∈ C by Lemma 4.36. Hence 〈 ↑◦

⊗k
, ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 ⊆ C.

Case 1. Let d(C) = 2. Let p ∈ C be a partition without upper points such that c(p) ≥ 0.
Then c(p) = ks for some s ∈ N0 by Proposition 4.10. The number of points between two legs

of a pair of p is even, because c(p1) ∈ 2Z for all p1 ⊗ p2 ∈ NDF C( •◦ ) by Proposition 4.13.

Consider p′ := p⊗ ↑•
⊗ks

. Let p′′ be the partition obtained from p′ by replacing the colors of the
points by the alternating color pattern white-black-white-black-etc. Then, all pair blocks are

of the form •◦ or ◦• , because there is an even number of points between two legs of a pair.

Thus, p′′ ∈ 〈 ↑◦ ⊗ ↑• 〉 ⊆ 〈 ↑◦
⊗k
, ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 by Proposition 4.37. Using permutation of

colors, we infer p′ ∈ C since c(p′) = c(p′′) = 0. This implies p′⊗ ↑◦
⊗ks
∈ C from which we deduce

p ∈ C using the pair partitions.

Case 2. If d(C) = 1, we have ↑ ↑◦◦•• ∈ C by Lemma 4.16. Hence, 〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ↑◦ ⊗

↑• , ◦◦ ⊗ •• 〉 ⊆ C. Conversely, let p ∈ C. Then c(p) ∈ kZ by Proposition 4.10 and thus

p ∈ B′loc(k, 1, 0) ⊆ 〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ↑ ↑◦•◦• , ↑◦ ⊗ ↑• 〉 by Proposition 4.37. But this category contains

◦◦ ⊗ •• since we may shift the singletons in ↑ ↑◦•◦• arbitrarily, and hence it coincides with

〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉.

(b) Let C be locally colorized. For k = k(C) and d = d(C), we have ↑◦
⊗k
∈ C and ↑⊗d ↑⊗d

◦ ◦ • • ∈ C
by Lemma 4.36.
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Case 1. Let KC( •• ) = ∅. Then 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑◦ ⊗ ↑• 〉 ⊆ C. Conversely, let p ∈ C.
Then c(p) ∈ kZ by Proposition 4.10 and c(p1) ∈ dZ for all p1 ⊗ p2 in nest decomposed form

by Proposition 4.13. Furthermore, all blocks of size two are of the form •◦ or ◦• when

being rotated to one line, since KC( •• ) = KC( ◦◦ ) = ∅. Thus p ∈ Bloc(k, d) which implies

p ∈ 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑◦ ⊗ ↑• 〉 by Proposition 4.37.

Case 2. Let KC( •• ) 6= ∅. Then 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑
⊗r+1 ↑⊗r−1

◦ • • • , ↑◦ ⊗ ↑• 〉 ⊆ C for r as in
Proposition 4.35. Again, we use Proposition 4.37 to finish the proof.

Corollary 4.39. We have B′loc(k, d, r) = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑
⊗r+1 ↑⊗r−1

◦ • • • , ↑◦ ⊗ ↑• 〉 and Bloc(k, d) =

〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑◦ ⊗ ↑• 〉 in Proposition 4.37. In particular, these categories are pairwise differ-
ent.

Remark 4.40. (a) If r 6= 0, then ↑⊗r+1 ↑⊗r−1

◦ • • • ∈ C implies ↑⊗d ↑⊗d

◦ ◦ • • ∈ C, see the proof of
Proposition 4.35.

(b) The non-colored case 〈↑ ⊗ ↑〉 is obtained from 〈 ↑◦
⊗k
, ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 for k = 2, whereas

〈↑〉 is given by k = 1. The category 〈 〉 in turn coincides with 〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ↑◦ ⊗

↑• , ◦◦ ⊗ •• 〉 for the case k = 2 (see Proposition 4.3).

4.7 Main result: Summary of the noncrossing case

We finally classified all categories C ⊆ NC◦• of noncrossing (two-colored) partitions. This
constitutes the main result of our chapter. Here is an overview on the results split into the
globally colorized case and the locally colorized case. For the convenience of the reader we recall
that the definition of a category of partitions may be found in Section 1.1.2, the cases O,H,S
and B are defined in Definition 4.5, globally and locally colorization is given in Definition 4.6,
the partition bk is defined in Definition 4.14 whereas the operation p 7→ p̃ is the map giving
the same partition with inversion of colors, as defined in Section 1.1.2, and the classification
theorems are Theorems 4.21, 4.26, 4.32, and 4.38.

Theorem 4.41. Let C ⊆ NC◦• be a globally colorized category of noncrossing partitions. Then
it coincides with one of the following categories.

Case O: Oglob(k) = 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉 for k ∈ 2N0

Case H: Hglob(k) = 〈bk, ◦•◦• , ◦◦ ⊗ •• 〉 for k ∈ 2N0

Case S: Sglob(k) = 〈 ↑◦
⊗k
, ◦•◦• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 for k ∈ N0

Case B: Bglob(k) = 〈 ↑◦
⊗k
, ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 for k ∈ 2N0

or B′glob(k) = 〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉 for k ∈ N0

86



Theorem 4.42. Let C ⊆ NC◦• be a locally colorized category of noncrossing partitions. Then
it is of the following form:

Case O: Oloc = 〈∅〉

Case H: H′loc = 〈 ◦•◦• 〉

or Hloc(k, d) = 〈bk, bd ⊗ b̃d, ◦◦•• , ◦•◦• 〉 for k, d ∈ N0\{1, 2}, d|k

Case S: Sloc(k, d) = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦ ⊗ ↑• 〉 for k, d ∈ N0\{1}, d|k

Case B: Bloc(k, d) = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑◦ ⊗ ↑• 〉 for k, d ∈ N0, d|k

or B′loc(k, d, r) = 〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑
⊗r+1 ↑⊗r−1

◦ • • • , ↑◦ ⊗ ↑• 〉 for k, d ∈ N0\{1}, r ∈ {0, d2}\{1},
d|k

Here is a graphical overview of all categories of two-colored noncrossing partitions. The
single framed categories are the locally colorized ones whose inclusions are indicated by single
dashed lines (inclusions from top to bottom and from right to left, for fixed parameters k and
d). Constraints for inclusions are marked in brackets. The double framed categories are the
globally colorized ones with inclusion pattern according to the double dahed lines. The locally
colorized categories are contained in the globally colorized ones according to the diagonal chain
lines. In our graphic, we also included a cross marking the areas of the cases B, O, S and H.
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[r = 0]

〈∅〉

〈 ◦•◦• 〉

〈bk, bd ⊗ b̃d, ◦◦•• , ◦•◦• 〉
k, d ∈ N0\{1, 2}

〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑◦ ⊗ ↑• 〉
k, d ∈ N0

〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ↑
⊗r+1 ↑⊗r−1

◦ • • • , ↑◦ ⊗ ↑• 〉
k, d ∈ N0\{1}, r ∈ {0, d

2
}\{1}

〈 ↑◦
⊗k
, ↑

⊗d ↑⊗d

◦ ◦ • • , ◦•◦• , ↑◦ ⊗ ↑• 〉
k, d ∈ N0\{1}

〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• 〉
k ∈ 2N0

〈bk, ◦•◦• , ◦◦ ⊗ •• 〉
k ∈ 2N0

〈 ↑◦
⊗k
, ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉

k ∈ 2N0

〈 ↑◦
⊗k
, ↑ ↑◦◦•• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉

k ∈ N0

〈 ↑◦
⊗k
, ◦•◦• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• 〉

k ∈ N0

bbbbbbbbbbbbbbb
bbbbb

bbbbbbbbbbbbbbb
bbbbb

bbbbbbbbbbbbbbb
bbbbb

bbbbbbbbbbbbbbb
bbbbb

bbbbbbbbbb
bbbbbbbbbb

bbbbbbbbbb
bbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbb

[d = 0]

[d ∈ 2N0]

S
B
H
O

We also give the corresponding graphic in the orthogonal case ( ◦◦ ∈ C), for comparison.

(k = 2) : 〈∅〉

(k = 2) : 〈uuu〉

(k = 2) : 〈↑ ⊗ ↑〉

(k = 1) : 〈↑〉 (k = 2) : 〈 〉

(k = 1) : 〈↑,uuu〉 (k = 2) : 〈↑ ⊗ ↑,uuu〉

S
B
H
O

Remark 4.43. The constraints on the parameters k, d and r in the above theorems can be
understood by the fact that we have the following equalities.

• Hglob(k) = Hloc(k, 2) and Hglob(2m+ 1) = Sglob(2m+ 1)
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• Sglob(k) = Sloc(k, 1) = Hloc(k, 1)

• Bglob(k) = B′loc(k, 2m, 1) and Bglob(2m+ 1) = B′glob(2m+ 1)

• B′glob(k) = B′loc(k, 1, 0) = B′loc(k, 2m+ 1, 1)

4.8 C∗-algebraic relations associated to partitions

We can associate C∗-algebras to categories of partitions by associating relations to partitions.
This is the main step in the direction to defining unitary easy quantum groups.

Definition 4.44. Let p ∈ P ◦•(k, l) and let α = (α1, . . . , αk) and β = (β1, . . . , βl) be multi
indices. We decorate the upper points of p with α and the lower ones with β. If now for every
block of p all of the corresponding indices coincide, we put δp(α, β) := 1; otherwise δp(α, β) := 0.

Definition 4.45. Let n ∈ N and let A be a C∗-algebra generated by n2 elements uij, 1 ≤ i, j ≤ n.
Let p ∈ P ◦•(k, l) be a partition and let r = (r1, . . . , rk) ∈ {◦, •}k be its upper color pattern and
s = (s1, . . . , sl) ∈ {◦, •}l be its lower color pattern. We put u◦ij := uij and u•ij := u∗ij.

We say that the generators uij fulfill the relations R(p), if for all β1, . . . , βl ∈ {1, . . . , n} and
for all i1, . . . , ik ∈ {1, . . . , n}, we have:

n∑
α1,...,αk=1

δp(α, β)ur1α1i1
. . . urkαkik =

n∑
γ1,...,γl=1

δp(i, γ)us1β1γ1 . . . u
sl
βlγl

The left-hand side of the equation is δp(0, β) if k = 0 and analogous for the right-hand side.

Using this definition, we can give a list of relations associated to partitions that appeared
throughout the classification of categories of noncrossing partitions. We denote by u the matrix
u = (uij)1≤i,j≤n, and ū = (u∗ij). Furthermore, rott(p) ∈ P ◦•(t, k) denotes the partitions obtained
from p ∈ P ◦•(0, k + t) by rotating the last t points to the upper line. If we simply write rot(p),
we do not specify which of the points are rotated. It is often more convenient to consider the

relations of a partition in some rotated form rather than of the partition itself. By ◦◦
nest(k)

we

denote the partition obtained from nesting the partition ◦◦ k-times into itself, i.e.:

◦◦
nest(3)

=

◦ ◦ ◦ ◦ ◦ ◦

Note that ◦◦
⊗k
∈ C if and only if ◦◦

nest(k)

∈ C, since •◦
⊗k

and •◦
nest(k)

are in any
category (then use Lemma 4.2(a)). The next relations can directly be derived from Definition
4.45.

R( •◦ ) :
∑
k

uiku
∗
jk = δij , i.e. uu∗ = 1

R( ◦• ) :
∑
k

u∗ikujk = δij , i.e. u∗u = 1
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R( •◦ ) :
∑
k

ukiu
∗
kj = δij , i.e. (ū)∗ū = 1

R( ◦• ) :
∑
k

u∗kiukj = δij , i.e. ū(ū)∗ = 1

R( ��AA
◦◦
◦◦ ) = R( ��AA

••
•• ) : uijukl = ukluij

R( ��AA
◦•
•◦ ) = R( ��AA

•◦
◦• ) : uiju

∗
kl = u∗kluij

R( •
◦

) = R( ◦
•

) = R(rot1( ◦◦ )) : uij = u∗ij , i.e. u = ū

R(rotk( ◦◦
nest(k)

)) : ui1j1 . . . uikjk = u∗i1j1 . . . u
∗
ikjk

R( ◦
•
⊗ •
◦

) = R(rot( ◦◦ ⊗ •• )) : u∗ijukl = uiju
∗
kl

R(rot1( ↑◦⊗ ↑• )) :

(∑
k

ukj

)
=

(∑
l

uil

)

R(rott(
↑◦
⊗s+t

)) :

∑
k1

uk1j1

 . . .

∑
ks

uksjs

 =

∑
l1

u∗i1l1

 . . .

∑
lt

u∗itlt



R( ↑◦
⊗d

) :

∑
k1

uk1j1

 . . .

∑
kd

ukdjd

 = 1

R(
◦•
◦• ) = R(rot2( ◦•◦• )) : ukiu

∗
kj = uiku

∗
jk = 0 if i 6= j

R(
•◦
•◦ ) : u∗kiukj = u∗ikujk = 0 if i 6= j

R(
◦◦
◦◦ ) = R(rot2( ◦◦•• )) : ukiukj = uikujk = 0 if i 6= j

R(rotd(bd⊗b̃d)) :
∑
k

δi1=...=idukj1 . . . ukjd =
∑
l

δj1=...=jdui1l . . . uidl

R(bk) :
∑
l

ui1l . . . uikl = δi1=...=ik

R(rott(bs+t)) : δi1=...=isui1j1 . . . ui1js = δj1=...=jtu
∗
i1j1 . . . u

∗
itj1

R(rotd+1( ↑
⊗d ↑⊗d

◦ ◦ • • )) : uij

∑
k1

uk1j1

 . . .

∑
kd

ukdjd

 =

∑
l1

ui1l1

 . . .

∑
ld

uidld

uij

R(rotr ↑
⊗r+1 ↑⊗r−1

◦ • • • )) : uij

∑
k1

uk1j1

 . . .

∑
kr−1

ukr−1jr−1

 =

∑
l1

ui1l1

 . . .

∑
lr+1

uir+1lr+1

u∗ij
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4.9 Free unitary easy group

4.9.1 Definition of C+
n

In the sequel, the following quantum group will play an important role. It is a kind of a non-
orthogonal version of B+

n . It has been introduced in an unpublished paper of Banica, Curran
and Speicher (see [83]).

Definition 4.46. Let C+
n be the quantum group given by the universal C∗-algebra generated by

uij such that u and ū are unitaries and
∑

k uik =
∑

k ukj = 1 for all i, j.

Again, it can be read off directly from the relations in Section 4.8 that C+
n is free easy with

category Bloc(1, 0).

4.9.2 Free and tensor complexifications with Zd
In [95], Wang proved the existence of a comultiplication on the free product as well as on the
tensor product of the C∗-algebras associated to quantum groups. More precisely, let G and H be
two compact (matrix) quantum groups with comultiplications ∆G resp. ∆H . Let C(G)�C(H)
either be the untail free product C(G) ∗ C(H) of the two C∗-algebras or the maximal tensor
product C(G)⊗maxC(H). Denote by ιC(G) the embedding of C(G) into C(G)�C(H) and likewise
by ιC(G)�C(G) the embedding of C(G)⊗min C(G) into (C(G)�C(H))⊗min (C(G)�C(H)).

Proposition 4.47. Given two compact (matrix) quantum groups G and H, there is always a
comultiplication ∆ on C(G)�C(H) for � ∈ {∗,⊗max} such that:

∆ ◦ ιC(G) = ιC(G)�C(G) ◦∆G and ∆ ◦ ιC(H) = ιC(H)�C(H) ◦∆H

As a consequence, one can define the free product and the direct product of compact matrix
quantum groups. The fundamental corepresentation is then given by the direct sum of these

representations, thus by

(
u 0
0 v

)
, where u and v are the matrices of generators for G resp. H.

We now define another kind of free resp. tensor product of two compact matrix quantum groups.
Recall that for unital C∗-algebras A and B, the maximal tensor product A⊗max B can be seen
as the universal C∗-algebra generated by elements a ∈ A (with the relations of A) and b ∈ B
(with the relations of B) such that all such a and b commute. We thus simply write ab for
elements a⊗ b.

Definition 4.48. Let (G, u) and (H, v) be two compact matrix quantum groups with u of size
n and v of size m.

(a) The glued free product G∗̃H of G and H is given by the C∗-subalgebra C∗(uijvkl, 1 ≤
i, j ≤ n, 1 ≤ k, l ≤ m) ⊆ C(G) ∗ C(H).

(b) The glued direct product G×̃H of G and H is given by the C∗-subalgebra C∗(uijvkl, 1 ≤
i, j ≤ n, 1 ≤ k, l ≤ m) ⊆ C(G)⊗max C(H).

As a simple consequence of Wang’s result, the glued free product and the glued direct product
are again compact matrix quantum groups.

Corollary 4.49. The C∗-subalgebra C∗(uijvkl, 1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m) of C(G)�C(H),
� ∈ {∗,⊗max} admits a comultiplication ∆(uijvkl) = ∆G(uij)∆H(vkl).

Proof. Restriction of the comultiplication ∆ of Proposition 4.47 yields the result.
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To a discrete group Γ, we associate the universal C∗-algebra C∗(Γ) generated by unitaries ug,
g ∈ Γ with uguh = ugh, u∗g = ug−1 . It is well known that the comultiplication ∆(ug) = ug ⊗ ug
turns it into a compact quantum group denoted by Γ̂.

Corollary 4.50. Let Γ be a discrete group generated by a single element g0, and denote by z the
generator ug0 of C∗(Γ). Let (G, u) be a compact matrix quantum group. Then G∗̃Γ̂ and G×̃Γ̂ are
compact matrix quantum groups given by C∗(uijz) in C(G) ∗ C∗(Γ) resp. in C(G) ⊗max C

∗(Γ)
and ∆(uijz) =

∑
k uikz ⊗ ukjz.

Proof. Since Γ is generated by a single element, (C∗(Γ), z) is a compact matrix quantum group
of size 1. Using Corollary 4.49 we obtain the result.

As before, denote by Zd the cyclic group Zd := Z/dZ.

Definition 4.51. Let G be a compact matrix quantum group.

(a) The quantum group G∗̃Ẑd is called the free d-complexification of G and G∗̃Ẑ is called the
free complexification.

(b) The quantum group G×̃Ẑd is called the tensor d-complexification of G and G×̃Ẑ is called
the tensor complexification.

The above definition is a generalization of Banica’s free complexification [8].

——————————————————————-

[8]: H#
N , the free complexified of H+

N , and S#
N , the free complexified of S+

N . These two groups
are free quantum groups corresponding respectively to the categories H# and S0,0.

——————————————————————-

Remark 4.52. The commutative complexification shouldn’t be confused with the traditional
complexification of Lie groups. In our case it is just the commutative counterpart of the free
complexification introduced by Banica in[8]. This commutative complexification also appeared in
the unpublished paper of Banica, Curran and Speicher [83]. Note that for a classical group G,
the commutative d−complexification is just the product of G with Zd.

——————————————————————-

The description of the free quantum groups is done in two steps. We first deal with the local
parameters, and then with the global parameter.

4.9.3 Local colorization

In order to achieve the description of all free quantum groups, we have to describe the meaning
of the local parameters d, r for the cases S, B and H. In the case H, this meaning has been
already interpreted in [16]. The free complexification gives an interpretation in the cases S, and
B for r = 0.

Proposition 4.53. The following correspondance holds between quantum groups and categories
of partitions :

• Sd,d is the category of partitions corresponding to S+,+d, the free d−complexification of
S+.

• Bd,d is the category of partitions corresponding to C+,+d
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• Bd,d,0 is the category of partitions corresponding to B+,+d

Proof. For these three families, the proof follows exactly the same pattern. We sketch the proof
and detail it for the case S, the latter being the one needing more arguments.

1. Let n ≥ 1. We indentify the category of partition Sd,d with its image as linear maps
on tensor products of Cn through the construction of Section 1.1.3. Denote by Gn the
quantum group of dimension n corresponding to the category of partition Sd,d, T the
Woronowicz tensor category associated to the quantum group S+,+d

n . The goal is to prove
that Gn = S+,+d

n .

2. In order to prove that Gn = Sd,+dn , it suffices to prove that on one hand Sd,d ⊆ T
(yielding S+,+d

n ⊆ Gn), and that on the other hand there exist a C∗− morphism sending

the fundamental matrix of S+,+d
n on the one of Gn. The first step is just a verification

that is left to the reader.

3. WriteGn = (vij)1≤i,j≤n, S+,+d
n = (uij)1≤i,j≤n. We shall construct a surjective C∗−homorphism

Φ : C(S+,+d
n )→ C(Gn) sending uijz on vij .

Recall that C(S+,+d
n ) is the C∗−subalgebra of C(S+

n ) ∗ CZd generated by {uijz}1≤i,j≤n.

Since
∑

j vij is independent of i (thank to the partition ↑◦ ↑• ), and (
∑

j vij)
d = 1, there is

a map from C(Zd) to C(Gn) sending z to
∑

i vij . Set s̃ij = vij(
∑

i vij)
−1. The partition

↑ ↑◦•◦• implies that (
∑

i vij)
−1vij = v∗ij(

∑
i vij), and thus

s̃∗ij = (
∑
i

vij)v
∗
ij =(

∑
i

vij)v
∗
ij(
∑
i

vij)(
∑
i

vij)
−1

=vij(
∑
i

vij)
−1 = s̃ij

.

Thus the matrix (s̃ij) is an orthogonal matrix fulfilling the relations∑
s̃ij = 1

The expression of s̃ij together with the fact that if k 6= l, vikv
∗
il = 0 (implied by the

presence of the partition ◦•◦• ) yields

k 6= j ⇒ s̃ij s̃ik = 0.

Due to these relations, there exists a C∗−homomorphism from C(S+
n ) to C(Gn) sending

uij to s̃ij . By the universality property, there exists a C∗−homorphism Φ from C(S+
n )∗CZd

to C(Gn) sending z to
∑
vij and uij to vij(

∑
vij)
−1. This homorphism sends thus uijz to

vij , which concludes the proof.

The proof for B+,+d is the same except that we don’t need to prove the relation k 6= j ⇒
s̃ij s̃ik = 0. The one for C+,+d is the same as the latter except that we don’t have to prove the
self-adjointness of s̃ij .
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4.9.4 The family B+,d,d/2−1

The free unitary group U+
n has been first constructed in [95] as a free 0−complexification of O+

n .
This construction gives also an alternative description of the C∗−algebra underlying C+. Let
O+
n = (oij)1≤i,j≤n be the orthogonal group of dimension n. The following alternative description

of C+ holds:

Proposition 4.54. Let C+
n = (uij)1≤i,j≤n. Let CZd be the group algebra of Z/dZ generated by

the element z, with d ∈ 2N non zero. Then we can write uij = õijz
d/2 with :

• õij is the image of oij through the projection on C(O+
n ) ∗ CZd�〈

∑
j oij = zd/2〉

• C(C+) is defined as the C∗−subalgebra of C(O+) ∗CZd�〈
∑

j oij = zd/2〉 generated by the

elements õijz
d/2

Proof. Note first that as a compact quantum group, C+
n ' U+

n−1 ⊕ 1 : indeed let F ∈ Un
sending en to

∑
ei. Then (vij)1≤i,j≤n = F ∗UF is again a unitary quantum group. Moreover

the condition
∑
uij = 1 translates into the condition vin = vnj = 0 for all i, j < n. Thus C+

n

is a quantum subgroup of F (U+
n−1 ⊕ 1)F ∗. Since the intertwiners of C+

n are also intertwiners
of F (U+

n−1 ⊕ 1)F ∗, we deduce that C+
n = F (U+

n−1 ⊕ 1)F ∗. Moreover the C∗−algebra defined as

C(O+
n − ∗CZd�〈

∑
j oij = z−d/2〉, is isomorph to the C∗−algebra of O+

n−1 ⊕ ε (with ε = zd/2).

Indeed the former is exatcly the C∗−algebra of the compact quantum group B+#
n as described

in [97], and B+#
n has been shown by Raum in [70, Thm 4.1] to be isomorph to O+

n−1⊕ ε. Since,

from a result of Banica, (oijε)1≤i,j≤n−1 is isomorph to U+
n−1, Õ+

n ε ' C+
n .

Let us denote C̃+,d
n the quantum subgroup of C+,+d generated by the matrix (õijz

d/2+1)1≤i,j≤n
(with the same notations we gave in the latter proposition).

Proposition 4.55. If d is even, Bd,d,d/2 is the category of partition corresponding to C̃+,d
n .

Proof. The pattern of the proof is the same as for the free complexification.
Let n ≥ 1. We denote Gn = (vij)1≤i,j≤n) the quantum group of dimension n corresponding
to the category of partition Bd,d,d/2−1 , T the Woronowicz tensor category associated to the
quantum group C̃+,d

n . Note first that Bd,d,d/2−1 ⊆ T , so that C̃+,d
n ⊆ Gn.

Let us show that there exists a C∗−morphism from C(O+
n ) ∗ CZd) to C(Gn) sending oijz

d+1

to vij . Since (
∑

j vij)
d = 1, there exists a C∗−morphism sending z on

∑
j vij . Thank to the

intertwiner ↑◦ ↑• , the sum
∑

j vij is independent from i. Moreover the intertwiner associated

with ↑ ↑◦•◦• implies that

vij(
∑
j

vij)
d/2−1 = (

∑
j

vij)
d/2+1v∗ij

and thus since (
∑

j vij)
d/2−1 = ((

∑
j vij)

d/2+1)∗, vij(
∑

j vij)
d/2−1 is self-adjoint. Let õij =

vij(
∑

j vij)
d/2−1. The matrix (õij)1≤i,j≤n contains self-adjoint elements and∑

i

õij õik =
∑

õjiõki = δjk1.

Thus there exist a C∗−morphism from C(O+
n ) to C(Gn) sending oij to õij . By universal property

there exists a C∗−morphism Φ between C(O+
n ) ∗ CZd extending the two latter morphisms. In

particular we have Φ(oijz
d/2+1) = vij . By construction Φ(

∑
oij − zd/2) = 0, and thus the

morphism factorizes through C(C̃+,d
n ).
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4.9.5 Global colorization

It remains to interpret the global parameter k. For each words r in ◦, •, let c(r) denote the
quantity # ◦ −#•. The following result holds for every matrix compact quantum groups:

Proposition 4.56. Let G = (uij)1≤i,j≤n be a compact matrix quantum group, C(G) = {MorG(r, r′)}r,r′
the set of intertwiners associated to this matrix compact quantum group by the Tannaka-Krein
duality. Then

C(Gd) = {MorG(r, r′)} r,r′

c(r)−c(r′)=0[d]

Proof. Let (uij)1≤i,j≤n be the fundamental matrix of G, and (vij)1≤i,j≤n be the one of Gd. Since
G is a quantum subgroup of Gd, for any word r, r′ in ◦, •,

MorGd(r, r
′) ⊆ MorG(r, r′)

By duality, it suffices to consider only the case r′ = ∅. Let {ei} be a basis of the fundamental
representation u of G. Let X =

∑
λ~ie

r1
i1
⊗ · · · ⊗ ertit be a vector in Mor(u⊗r,1). We note ~i for

the tuple (i1, . . . , ir), and u~i~j for the product ur1i1j1 . . . u
rt
itjt

. Then

u⊗rG (X) =
∑
~i,~j

λ~ie
r1
j1
⊗ · · · ⊗ ertjt ⊗ u~j~i = X ⊗ 1C(G)

And thus
∑
~i λ~iu~j~i = λ~j1C(G). Applying this equality together with the expression vij = uijzd

yields

vr(X) =
∑
~i,~j

λ~ie
r1
j1
⊗ · · · ⊗ ertjt ⊗ u~j~iz

c(r) = X ⊗ zc(r)

Finally X is invariant under the action of Gd if and only if c(r) = 0[d].

Summary of the classification of free quantum groups

We can conclude by summarizing the previous description in the following theorems :

Theorem 4.57. The following correspondance holds between categories of partitions and unitary
easy quantum groups :

1. the category U corresponds to the free unitary quantum group U+.

2. the category Hk,d corresponds to the commutative k−complexification of Zd o S+.

3. the category H# corresponds to the free complexification of H+.

4. the category Bk,d (resp Bk,d,0), corresponds to the commutative k−complexification of the
free d−complexification of C+ (reps. B+).

5. the category Bk,d,d/2 corresponds to the commutative k−complexification of C̃+,d.

6. the category Sk,d corresponds to the commutative k−complexification of the free d−complexification
of S+.

Proof. The free quantum groups corresponding to U ,O,Hd,d,H#,Bd,d,Bd,d,d/2,Bd,d,0 and Sd,d
have been already indetified in previous paragraph. Proposition 4.56 concludes the proof.
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4.10 The group case and unitary easy groups

For general categories C ⊆ P ◦• of two-colored partitions, there are two natural extreme cases.
The first is the one of noncrossing partitions, completely classified in the preceding sections.

The second is the one containing the crossing partitions ��AA
◦◦
◦◦ , ��AA

••
•• , ��AA

◦•
•◦ and ��AA

•◦
◦• , which allow us

to permute the points of a partition in an arbitrary way (without changing their colors). It is
easy to see that one of these four partitions is in a category if and only if all are (by verticolor
reflection and rotation).

Definition 4.58. A category of two colored partitions C is in the group case if one (and hence

all) of the partitions ��AA
◦◦
◦◦ , ��AA

••
•• , ��AA

•◦
◦• and ��AA

◦•
•◦ is in C.

The name ”group case” refers to the situation when a quantum group is associated to a
category of partitions (see Section 3.2). If C is in the group case, the associated quantum group
is in fact a group.

The classification of all categories in the group case follows directly from the classification
of all categories of noncrossing partitions and the following lemma.

Lemma 4.59. Let C and D be categories of two-colored partitions.

(a) Then C ∩ D is again a category of partitions.

(b) Let C be in the group case and put C0 := C ∩NC◦•. Then C = 〈C0, ��AA
◦◦
◦◦ 〉.

Proof. (a) This follows directly from the definition of a category.

(b) Let p ∈ C. Using the four kinds of crossing partitions of Definition 4.58, we may permute
the points of p such that we obtain a noncrossing partition p′. Since this can be done in C, we

have p′ ∈ C0 ⊆ 〈C0, ��AA
◦◦
◦◦ 〉. Thus, we can also reconstruct p in 〈C0, ��AA

◦◦
◦◦ 〉 doing all these operations

backwards, so C ⊆ 〈C0, ��AA
◦◦
◦◦ 〉. We deduce that equality holds.

For each category of partition C, denote by Cc = 〈C, ��AA
◦◦
◦◦ 〉. Thus the latter Lemma says

that any category of partition in the group case is of the form Cc for a category of non-crossing
partition.

Theorem 4.60. The categories in the group case are the following.

• Ogrp,glob(k) = 〈 ◦◦
⊗ k

2

, ◦◦ ⊗ •• , ��AA
◦◦
◦◦ 〉 for k ∈ 2N0

• Ogrp,loc := 〈 ��AA
◦◦
◦◦ 〉

• Hgrp,glob(k) = 〈bk, ◦•◦• , ◦◦ ⊗ •• , ��AA
◦◦
◦◦ 〉 for k ∈ 2N0

• Hgrp,loc(k, d) = 〈bk, bd ⊗ b̃d, ◦◦•• , ◦•◦• , ��AA
◦◦
◦◦ 〉 for k, d ∈ N0\{1, 2}, d|k

• Sgrp,glob(k) = 〈 ↑◦
⊗k
, ◦•◦• , ↑◦ ⊗ ↑• , ◦◦ ⊗ •• , ��AA

◦◦
◦◦ 〉 for k ∈ N0
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• Sgrp,loc(k) = 〈 ↑◦
⊗k
, ◦•◦• , ↑◦ ⊗ ↑• , ��AA

◦◦
◦◦ 〉 for k ∈ N0\{1}

• Bgrp,glob(k) = 〈 ↑◦
⊗k
, ↑◦ ⊗ ↑• , ◦◦ ⊗ •• , ��AA

◦◦
◦◦ 〉 for k ∈ 2N0

• Bgrp,loc(k) = 〈 ↑◦
⊗k
, ↑◦ ⊗ ↑• , ��AA

◦◦
◦◦ 〉 for k ∈ N0

Proof. The crossing partition ��AA
◦◦
◦◦ permutes the points of a partition. Applying this partitions

on the generators of the categories of partitions in Section 4.7 yields that H#
c = H0,0

c . Fur-

thermore for the same reasons, Sd,kc = S̃kc , Bk,dc = Bkc and Bk,d,0c = Bk,d,d/2c = B̃kc . Apart from
these equalities, the commutative image of the categories of noncrossing partitions are different,
yielding the result.

If C is a category containing the crossing partitions ��AA
◦◦
◦◦ and ��AA

◦•
•◦ , then the C∗-algebra asso-

ciated to it is commutative (see the relations in Section 4.8). Hence, the associated quantum
groups are in fact groups. They are listed in the next theorem.

Theorem 4.61. The groups corresponding to the catgories in the group case are the following :

• Uc corresponds to the unitary group Un.

• Okc corresponds to the k−complexification of the orthogonal group On.

• Hk,dc corresponds to the k−complexification of the wreath product Zd o Sn.

• S̃kc corresponds to the k−complexification of the permutation group Sn.

• B̃kc corresponds to the k−complexification of the group

((
On−1 0

0 1

))
.

• Bkc corresponds to the k−complexification of the group

((
Un−1 0

0 1

))
.

Remark 4.62. Note that

((
Un−1 0

0 1

))
' Un−1 and

((
On−1 0

0 1

))
' On−1. The category

are still different because we singled out different fundamental representations of the same group.
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Chapter 5

Stochastics on the free unitary easy
groups

In this chapter we develop the Weingarten calculus for unitary easy quantum groups. This
consists mainly in a rewriting of the classical method of Collins and Sniady (see Chapter 2 and
[28, 29]) for a general unitary easy quantum groups. In the orthogonal case, this has already
been done by Collins and Banica in [12] and by Banica, Curran and Speicher in [14]. As an
application of this generalization, we recover the results of Diaconis and Shahshahani on the
unitary group (see Chapter 2, Section 3 and [33]) and the second order freeness result of Mingo
and Speicher (see Chapter 2, Section 5 and [63]), and extend both result to the free unitary
group.

5.1 Weingarten calculus for easy quantum groups

In this section we introduce the Weingarten calculus for unitary easy quantum group, using the
formalism developed by Banica and Speicher in [15]. Throughout this section n is a fixed positive
integer and (C(G), (uij)1≤i,j≤n) is a unitary easy quantum group, with associated category of
partition C. By Chapter 4, this implies that the vector space FixG(ε) of invariant vectors of V ε

under the action of G is given by 〈Tp〉p∈C(ε), and {Tp}p∈C(ε) is a basis of FixG(ε) if n ≥ |ε|.
Therefore we can express integrals of polynomials in uij , u

∗
ij using the vectors T ′ps, as in Chapter

2. We will start by giving a general formula to emphasize the geometric aspect of the Weingarten
calculus, then we will specify this result to the unitary easy quantum groups. In the following
expression we formally write u◦ij = uij and u•ij = u∗ij :

Proposition 5.1. Let (C(G), (uij)1≤i,j≤n) be a compact matrix quantum group. Let 1 ≤ r and
let ε be a word in ◦, • of length r. Suppose that {fi}1≤i≤s is a basis of FixG(ε). Then for each
couple of sequences 1 ≤ i1, . . . , ir ≤ n, 1 ≤ j1, . . . , jr ≤ n,∫

G
uε1i1j1 . . . u

εr
irjr

= 〈pFixG(ε)(X
ε1
j1
⊗ · · · ⊗Xεr

jr
), Xε1

i1
⊗ · · · ⊗Xεr

ir
〉,

pFixG(ε) being the orthogonal projection on FixG(ε).

Proof. On one hand,

αε(X
ε1
j1
⊗ · · · ⊗Xεr

jr
) =

∑
1≤i1,...,ir≤n

Xi1 ⊗ · · · ⊗Xir ⊗ u
ε1
i1j1

. . . uεrirjr ,
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and thus

(Id⊗
∫
G

)αε(X
ε1
j1
⊗ · · · ⊗Xεr

jr
) =

∑
(

∫
G
uε1i1j1 . . . u

εr
irjr

)Xε1
i1
⊗ · · · ⊗Xεr

ir
. (5.1.1)

On the other hand, V ε decomposes into irreducible representations of C(G) as V ε = FixG(ε) +⊕
ω irred,ω 6=1 V

⊕
nω

ω , and this decomposition is orthogonal. If v ∈ FixG(ε), (Id ⊗
∫
G)αε(v) =

(Id ⊗
∫
G)(v ⊗ 1C(G)) = v. If v ∈ Vω with ω 6= 1, by Schur othogonality (Id ⊗

∫
G)αε(v) = 0.

Thus (Id⊗
∫
G)αε is an othogonal projection onto the vector space FixG(ε).

By (5.1.1),
∫
G u

ε1
i1j1

. . . uεrirjr is the coordinate (i1, . . . , ir) of the orthogonal projection of Xε1
j1
⊗

· · · ⊗Xεr
jr

on FixG(ε).

In order to evaluate 〈pFixG(ε)(X
ε1
j1
⊗· · ·⊗Xεr

jr
), Xε1

i1
⊗· · ·⊗Xεr

ir
〉, a general framework is given

by the Gram-Schmidt orthogonalization:

Proposition 5.2 (Gram-Schmidt orthogonalization). Let (V, 〈., .〉) be a Hilbert space and W a
finite dimensional vector subspace of V . Suppose that (ei)1≤i≤s is a basis of W , and let x, y ∈ V .
The orthogonal projection pW on W is given by the expression:

〈pW (x), y〉 =

s∑
i,j=1

〈x, ei〉〈ej , y〉K−1(i, j),

with K(i, j) = 〈ei, ej〉 the Gram-Schmidt matrix of the basis (ei)1≤i≤s.

Proof. K is the matrix of the scalar product 〈., .〉 in the basis (ei)1≤i≤s. Let Λ = (λi)1≤i≤s
and Ξ = (ξi)1≤i≤s be two vectors of Cs such that x = h1 +

∑
λiei and y = h2 +

∑
µiei with

h1, h2 ⊥W . Then
〈pW (x), y〉 = 〈pW (x), pW (y)〉 = ΛtKΞ.

On the other hand setting Λ̃ = (〈ei, x〉)1≤i≤s and Ξ̃ = (〈ei, y〉)1≤i≤s yields that KΛ = Λ̃ and
KΞ = Ξ̃. Therefore, since K is invertible,

〈pW (x), y〉 = Λ̃tK−1Ξ̃.

The combination of the two previous results gives a general Weingarten formula for compact
matrix quantum groups :

Theorem 5.3 (Weingarten Formula). Let (C(G), (uij)1≤i,j≤n) be a compact matrix quantum
group. Let ε = ε1 . . . εr be a word in ◦, •, and 1 ≤ i1, . . . , ir ≤ n, 1 ≤ j1, . . . , jn ≤ n be two
sequences of integers. Suppose that {fa}1≤a≤s is a basis of FixG(ε); then∫

G
uε1i1j1 . . . u

εr
irjr

=
∑

1≤a,b≤s
〈Xi1 ⊗ · · · ⊗Xir , fb〉〈fa, X

ε1
j1
⊗ · · · ⊗Xjr〉WgG(fa, fb),

where WgG = K−1
G , KG being the Gram-Schmidt matrix KG(fa, fb) = 〈fa, fb〉V ε.

As it was already said in Chapter 2, this Theorem is really useful provided the set (fa)1≤a≤s
has an explicit expression relatively to the basis (Xε1

i1
⊗ · · · ⊗ Xεr

ir
)1≤i1,...,ir≤n and the matrix

WgG can be easily computed - or at least presents good approximations. The first condition
is fulfilled in the case of a unitary easy quantum group, since an explicit basis is given by the
vectors Tp’s:
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Corollary 5.4. Let Gn be a unitary easy quantum group with associated category of partitions
C. With the notations above, if n ≥ |ε| (or n ≥ 4 if C is non-crossing), then∫

Gn

uε1i1j1 . . . u
εr
irjr

=
∑
p,q∈C

p≤ker(~i),q≤ker(~j)

WgGn(p, q),

where WgGn = K−1
Gn

(p, q) with KGn(p, q) = nb(p∨q).

Proof. The condition n ≥ |ε| or n ≥ 4 if C is non-crossing yields that the set {Tp}p∈C(ε) is
a basis of FixG(ε). Since Tp =

∑
p≤ker(~i)

Xi1 ⊗ · · · ⊗ Xir , the scalar product of Theorem 5.3 is

〈Tp, Xi1 ⊗ · · · ⊗Xir〉 = δp≤ker(~i). The corollary is thus a direct application of this Theorem and

the fact that 〈Tp, Tq〉 = nb(p∨q).

The main problem remains the computation of the matrix WgGn . We have seen in Chapter
2 that in the case of Un, the computation of WgUn is already complicated. In the general case
no explicit expression of this matrix has been found for a unitary easy quantum group; however
a first order asymptotic of WgGn allows to get several asymptotic probabilistic results as n goes
to +∞.

Proposition 5.5 ([12]). As n goes to +∞,

WgGn(p, q) = (−1)δp6=qnb(p∨q)−b(p)−b(q)(1 +O(1/n)).

Proof. For n large enough, {Tp} is a basis of FixGn(ε). Let KGn be the Gram-Schmidt matrix of
the basis {Tp}p∈C . From the expression of Tp, KGn(p, q) = nb(p∨q). Since p ≤ p∨q, b(p∨q) ≤ b(p);
for the same reasons, b(p∨q) ≤ b(q) and thus b(p∨q) ≤ b(p)+b(q)

2 . Moreover if p 6= q, the inequality

becomes b(p ∨ q) ≤ b(p)+b(q)
2 − 1/2.

Let ∆ be the diagonal matrix defined by ∆pq = δpqn
b(p). By the previous inequality

(∆−1/2KGn∆−1/2)pq = nb(p∨q)−
b(p)+b(q)

2 = Id+M,

where M = O(1/
√
n). Thus (Id + M)−1 = (Id − M)(1 + O(

√
n)) and K−1

Gn
= ∆−1/2(Id −

M)∆−1/2(1 +O(
√
n)). This yields

(K−1
Gn

)pq = (−1)δp6=qnb(p∨q)−b(p)−b(q)(1 +O(1/
√
n)).

5.2 Diaconis-Shahshahani results in the free case

The first application of the Weingarten calculus is a computation of the asymptotic law of the
family (Tr(uk))k≥1, where u is the fundamental matrix of a free unitary quantum group Gn and
n goes to +∞. For all easy unitary classical groups, this has already been done by Diaconis and
Shahshahani in [33] (see Chapter 2, Section 3), or is a direct consequences of their results. In
the free orthogonal case, this has been done in [14].
Recall that the list of free unitary easy groups is the following (we put the associated category
of partitions in parenthesis) :

• U+
n (U),
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• O+
n ×̃Zk (Ok),

• (Hn o∗ Zd)×̃Zk (Hd,k),

• H# (H#),

• (Bn∗̃Zd)×̃Zk (Bd,k),

• (Cn∗̃Zd)×̃Zk (Bd,k,0),

• C̃dn×̃Zk (Bd,k,d/2)),

• (S+
n ∗̃Zd)×̃Zk (Sd,k)

The reader should refer to Chapter 4 for a detailed description of these quantum groups. We
will prove the following result:

Theorem 5.6. Let (C(Gn), (uij)1≤i,j≤n) be one of the quantum groups above, with category of
partition C. As n goes to +∞, the family (Tr(uk))k≥1 converges in moment with respect to

∫
Gn

to a family of random variables (uk(C))k≥1. The law of (uk(C))k≥1 depends on C and is explicitly
described in Section 2.2.

The proof of the Theorem is achieved in two parts. The first part is a proof of the convergence
in law, which is a generalization of the proof of Theorem 2.5 in [14]. This proof gives also a
combinatorial formula for the moments of the limit law. In the second part, this combinatorial
formula is used to describe the law of the family (uk(C))k≥1.
For k > 0, Tr(uk)∗ = Tr(u−k), and thus the goal is therefore to prove the existence of the
asymptotic moment

mG,k1,...,kr := lim
n→+∞

∫
Tr(uk1) . . .Tr(ukr)εr ,

with k1, . . . , kr non-zero integers. It suffices to only consider the cases without tensor complexifi-
cation: indeed the Haar state on the tensor complexification H×̃Zk is the classical independence
convolution of the Haar state on (H,u) and the one on (Zk, z). The law of Tr((uz)r) can thus
be deduced from the law of Tr(ur) with the equality Tr((uz)r) 'law Tr(ur)⊗ zr.

The asymptotic trace moment formula

We detailed here the generalization of a result of Banica, Curran and Speicher that relates
mG,ε,k1,...,kr with the cardinal of a set of partitions. The result was originally given in the
framework of orthogonal easy group; since the statement and the proof for in unitary case are
identical, so we present only this latter version.
Let r ∈ Z+ and denote by Zr∗ the set of sequences ~j = (j1, . . . , jr) of r non-zero integers. To
each sequence ~j of Zr∗ we associate the following objects:

• A vector ~k = (k1, . . . , kr) of positive integers with ks = |js|. This is the absolute part of ~j.
We set k =

∑
ki.

• A word ε(~j) in {◦, •} of length r by the condition that εs(~j) = ◦ if and only if js > 0.

• A word w(~j) in {◦, •} of length k such that ws(~j) = ◦ if and only if
∑t−1

a=1 ka + 1 ≤ s ≤∑t
a=1 ka and ε(t) = ◦.
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• A permutation γ~j described by the cycle decomposition

γ~j = (1, . . . , k1)ε1(~j)(k1 + 1, . . . , k1 + k2)ε2(~j) . . . (k − kr + 1, . . . , k)εj(
~k),

with the convention that for a cycle τ , τ◦ = τ and τ• = τ−1.

• A two colored partition p~j ∈ P (0, w(~j)) with a ∼p~j b if and only if there exists 1 ≤ t ≤ r

such that
∑t−1

s=1 ks + 1 ≤ a, b ≤
∑t

s=1 ks.From the definition of w(~j) and the one of p~j , the
partition p~j consists in r interval blocks {B1, . . . , Br} such that Bi has cardinal ki and all

elements of Bi have the color εi(~j).

The dependence on ~j of the latter object is omitted when the situation is clear.

Remark 5.7. Any p ∈ P (0, w(~j)) yields a partition p̃ in P (0, ε~j) by considering the set {Bi} of
blocks of p~j with the lexicographical order and the relation Bi ∼p̃ Bj if Bi and Bj are in the same
block of p ∨ p~j. Since p~j is non crossing, p non-crossing implies that p ∨ p~j is also non-crossing
and therefore that p̃ is non-crossing.

For p ∈ P ◦•(k, 0) and σ ∈ Sk, σ(p) denotes the unique partition such that σ(i) ∼σ(p) σ(j) if
and only if i ∼p j, the colors being also permuted by σ. For example γ~j(w~j) = w~j . Moreover we
take the convention that for x ∈ C(G), x◦ = x and x• = x∗.
Theorem 2.5 of [14] extends to the unitary case as follows:

Theorem 5.8. Let G = (uij)1≤i,j≤n be an easy compact group with C its associated category of
partitions, and ~j ∈ Zr∗. With the same notations as before,∫

Tr(uj1) . . . T r(ujr) = #
{
p ∈ C(w~j)|p = γ~j(p)

}
+O(1/

√
n). (5.2.1)

Proof. The proof is a direct computation. Let I =
∫
G Tr(u

j1) . . . T r(ujr). Then

I =
∑

1≤i1,...,ik≤n

∫
G

(ui1i2ui2i3 . . . uik1 i1)ε1 . . . (uik−kr+1ik−kr+2
. . . uikik−kr+1

)εr

=
∑

1≤i1,...,ik≤n

∫
G
uε1i1iγ(1) . . . u

ε1
ik1 iγ(k1)

uε2ik1+1iγ(k1+1)
. . . uεrikiγ(k) .

Applying the Weingarten formula to the latter expression yields

I =
∑

1≤i1,...,ik≤n


∑

p,q∈C(w~j)
ker((ij)1≤j≤k)≤p,ker((iγ(j))1≤j≤k)≤q

WgGn(p, q)


=

∑
1≤i1...,ik≤n

∑
p,q∈C(w~j)

ker((ij)1≤j≤k)≤p∨γ(q)

WgGn(p, q)

=
∑

p,q∈C(w~j)

nb(p∨γ(q))WgGn(p, q),
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and thanks to the asymptotic formula of Proposition 5.5 we get

I =
∑

p,q∈C(w~j)

nb(p∨γ(q))nb(p∨q)−b(p)−b(q)(1 +O(1/
√
n)).

The coefficient nb(p∨γ(q))+b(p∨q)−b(p)−b(q) doesn’t vanish as n goes to +∞ if and only if b(p ∨
γ(q)) + b(p ∨ q) − b(p) − b(q) ≥ 0. But b(p ∨ q) ≤ min(b(p), b(q)) and since b(q) = b(γ(q)),
b(p ∨ γ(q)) ≤ min(b(p), b(q)). Therefore the positivity condition requires b(p ∨ q) = b(p), b(p) =
b(q) = b(γ(q)), and b(p∨ γ(q)) = b(p). The first two equalities yield p = q and then the last two
equalities yield p = γ(p); if the latter conditions are fullfilled then nb(p∨γ(q))+b(p∨q)−b(p)−b(q) = 1.
Therefore,

I = #{p ∈ C(w), p = γ(p)}+O(1/
√
n).

Remark 5.9. Note that the latter Theorem actually yields that for any easy quantum groups,
without any conditions on the crossings, the family (Tr(u),Tr(u2), . . . ) converges in law to a
random vector (u1, u2, . . . ).

The remaining part of the method of [14] to describe the law of (u1, u2, . . . ) doesn’t apply
here, since most of the categories of partitions considered in the present situation are not block
stable (in particular Proposition 3.1 of [14] doesn’t hold anymore). Therefore the goal is to
better understand the set {p ∈ C(w~j), p = γ(p)}. Let us first simplify the condition p = γ(p):

Lemma 5.10. There is an equivalence between the condition p = γ~j(p) and γ~j(p) ≤ p.

Proof. Clearly p = γ(p) yields γ(p) ≤ p. Suppose that γ(p) ≤ p. This means that if γ(i) ∼γ(p)

γ(j), then γ(i) ∼p γ(j). By definition γ(i) ∼γ(p) γ(j) if and only if i ∼p j. Therefore if γ(p) ≤ p,
then i ∼p j yields γ(i) ∼p γ(j). Since the permutation group Sk is finite, there exists d such that
γd = γ−1. Thus iterating the latter implication yields also that if i ∼p j, then γ−1(i) ∼p γ−1(j).
Therefore if i ∼p j, i = γ(γ−1(i)) ∼γ(p) γ(γ−1(j)) = j. Thus p ≤ γ(p), and p = γ(p).

In particular checking that i ∼p j implies γ(i) ∼p γ(j) is sufficient to know whether p = γ(p).
In the free case, we will see that the condition p = γ(p) is very strong.
Let us first define a pairing between two blocks :

Definition 5.11. Let p be a partition of k and B1, B2 be two disjoint intervals of J1, kK corre-
sponding respectively to Ji1, i1 + tK and Ji2− t, i2K with i1 < i2. We say that B1 and B2 are block
paired by p if, for 0 ≤ s ≤ t, the only element of J1, kK linked to i1 + s by p is i2 − s.

The condition i1 < i2 ensures that the pairing is non-crossing. For 1 ≤ u ≤ k, denote by Bu
the blocks of p~j containing u. The rigidity of the condition p = γ~j(p) in the free case appears as
follows:

Lemma 5.12. Let ~j ∈ Zr∗ and let p ∈ NC(w~j). Then γ~j(p) = p if and only if for all 1 ≤ a, b ≤ r
with Ba ∼p̃ Bb, one of the following conditions hold:

• a = b and Ba contains only singletons of p.

• Ba and Bb are contained in a same block of p.

• Ba and Bb are block paired. In this case |Ba| = |Bb| and if Ba has more than three points,
Ba and Bb have opposite colors.
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Proof. Suppose that p = γ(p) and let 1 ≤ a, b ≤ r with Ba ∼p̃ Bb. Thus there exists u ∈ Ba, v ∈
Bb with u ∼p v.

• Suppose that a = b and u is a singleton, u = v. The property p = γ(p) yields that all
elements of the orbit of u under γ are singletons. This orbit is precisely Ba, which proves
the first point.

• Suppose that a = b and u 6= v. We can assume without loss of generality that Ba is
colored ◦, with u < v. Then there exists m ≥ 0 such that v = γm(u). If m = ±1[ka],
iterating γ yields that for all t ≥ 1, γt(u) ∼p γt−1(u) · · · ∼p u and thus Ba is in a same
block of p. Otherwise, p = γ(p) implies γ(u) ∼p γm+1(u). The block Ba is colored ◦ and
m 6∈ {1,−1}, thus u < γ(u) < v, and γm+1(u) is either greater than v or lower than u.
Since p is non-crossing, this requires u ∼p γ(u) or u ∼p γ−1(u). In both cases, iterating
the equality p = γ(p) yields that for all t ≥ 1, γt(u) ∼p γt−1(u) ∼p · · · ∼p γ(u) ∼p u.
Therefore Ba is contained in a block of p.
Suppose that a 6= b and that u, v are in a block of p that contains a third element t, and
let 1 ≤ x ≤ r be such that Bx is the block of p~j containing t. After relabelling if necessary,
we can suppose that u < v < t. If b = x, from the previous paragraph, all elements of Bb
are in a same block of p. The equality p = γ(p) yields that any element of Ba is linked by
p to an element of Bb, and thus Ba and Bb = Bx lie in a same block of p.
Since γ(p) = p, if Ba is a singleton then every element in the orbit Bb of b is connected to
u by p, and the same holds for Bx. Therefore Ba, Bb and Bx are in the same block of p.
Suppose that b 6= x and Ba is not a singleton. The latter conditions imply that γ(u) 6= u
and Bb 6= Bx. The condition γ(p) = p yields that γ(u) has to be connected to an element
v′ of Bb and t′ of Bx. Since any element of Bb is lower than the elements of Bx, v′ < t,
and v < t′. Since p is non-crossing, if u < γ(u), the inequality u < γ(u) < v < t′ yields
that γ(u) ∼p u. For the same reasons, if γ(u) < u, the inequality γ(u) < u < v′ < t yields
γ(u) ∼p u. Thus iterating the equality p = γ(p) yields that for all m ≥ 1, γm(u) ∼p u,
and Ba is contained in a block of p. Once again by the equality γ(p) = p, any element of
Bb or Bx is linked to an element of Ba through p and Ba, Bb, Bx are in a same block of p.

• Suppose that Ba 6= Bb and that u and v are in a pair. We can assume that u < v. Since
γ(p) = p, γm(u) is paired with γm(v). Thus any element of the orbit of u is paired with
an element of the orbit of v, and conversely. Therefore necessarily |Ba| = |Bb| and there
is a bijective map ϕ : Ba → Bb sending an element x of Ba to the unique element y of Bb
such that u ∼p v. Since p is noncrossing, if x1 < x2 in Ba then ϕ(x1) > ϕ(x2). Thus the
map ϕ is decreasing and this shows that there is a unique way to pair elements of Ba with
elements of Bb, which is the block pairing of Ba with Bb. Suppose that Ba has more than
two elements, and let x be the first element of Ba, y the last one of Bb. By the previous
reasoning, x ∼p y and x + 1 ∼p y − 1. Thus if x + 1 = γ(x) then y − 1 = γ(y) and if
x+ 1 = γ−1(x) then y − 1 = γ−1(y). In any case if Ba has more than three elements, the
cycles of γ have opposite direction on Ba and Bb, and therefore Ba and Bb have opposite
colors.

Conversely let p be a partition which satisfies the conditions of the lemma. From Lemma 5.2 it
suffices to prove that for all 1 ≤ u ≤ v ≤ k, u ∼p v implies γ(u) ∼p γ(v). From the conditions
of the Lemma, either Ba contains only singletons or Ba and Bb are in the same block of p or Ba
and Bb are block paired. If Ba contains only singletons, u = v and γ(u) ∼p γ(v). Since Ba is
the orbit of u and Bb the orbit of v, if Ba and Bb are in a same block of p then γ(u) ∼p γ(v).
Suppose that Ba and Bb are block paired and let c be the cardinal of Ba (which is also the
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one of Bb). There exists 1 ≤ i1 ≤ i2 ≤ k and s ≥ 0 such that u = i1 + s, v = i2 − s and
for all 0 ≤ x ≤ c − 1 i1 + x ∼p i2 − x. If c = 1, Ba and Bb are singletons and therefore
γ(u) = u, γ(v) = v and γ(u) ∼p γ(v). If c = 2, whatever the color of Ba is, γ(u) = i1 + (1− s)
and γ(v) = i2 − (1 − s); thus once again γ(u) ∼p γ(v). If c > 3, from the condition of the
Lemma, Ba and Bb have opposite colors. We can assume without loss of generality that Ba is
colored ◦ and Bb is colored •. Thus γ(u) = i1 + s+ 1 and γ(v) = i2− s− 1 (resp. γ(u) = i1 and
γ(v) = i2) if s < c− 1 (resp. s = c− 1). In any case γ(u) ∼p γ(v).

For p a partition, let us denote by Bp,2 the set of blocks of p of cardinal less than 2, and for
each b ∈ Bp,2, let b1 and b2 be respectively the first and second elements of b, with the convention
that b1 = b2 if b is a singleton. For ~j ∈ Zr∗, the set of non-crossing partitions of r with point
coloring c(i) = ji is denoted NC(j1, . . . , jr). Following the latter Lemma, we introduce the
following set of colored partitions :

Definition 5.13. Let r ≥ 1. A tracial partition is a partition in NC(j1, . . . , jr) with an ad-
ditional block coloring ?p : Bp,2 :→ {1, ∗} with the condition that for b ∈ Bp,2, ?(b) = 1 if
min(kb1 , kb2 |) = 1 or if b is a pair with sup(kb1 , kb2) > 2 and jb1 + jb2 6= 0.

The set of tracial partitions in NC(j1, . . . , jr) is denoted P(~j).
For convenience we extend the pair coloring ?p to a coloring of all the blocks by setting ?p(b) = 1
if b is a block not belonging to Bp,2.
We define now a map Φ : P~j → P (w~j) as follows: let p be a tracial partition in P(~j) and let
1 ≤ s ≤ t ≤ r with s ∼p t. If s is a singleton colored ∗, all elements of Bs are singletons of Φ(p).
If s and t are in a pair b of p colored ∗ then Bs is block paired with Bt in Φ(p). In all other
cases, all elements of Bs and Bt are in a same block of Φ(p).

Proposition 5.14. The map Φ is injective and Φ(P~j) = {p ∈ NC(w~j), γ~j(p) = p}. In particu-
lar, if Gn is an easy unitary free group with associated category of partitions C, then for n large
enough

mG(~j) = #Φ−1(C(w~j)).

Proof. Suppose that p, q are two distinct tracial partitions of P~j . Then either p, q have different
block structures, or they have the same block structure and the block colorings differ. Suppose
that they have a different block structure : by symmetry we can assume that there exists
1 ≤ s1 < s2 ≤ r with s1 and s2 in a same block b of p, but s1 6∼q s2. In any case from the
construction of Φ, the first element of Bs1 is linked to the last element of Bs2 through Φ(p) but
not through q. Therefore Φ(p) 6= Φ(q).
Suppose that the block structure of p and q is the same but the block colorings differ. By
symmetry we can assume that there exists a block b = {b1, b2} such that ?p(b) = 1 and ?q(b) = ∗.
But from the definition of Φ this means that all elements of Bb1 are in the same block of Φ(p),
but they are each in distinct blocks of Φ(q). Therefore Φ(p) 6= Φ(q) and Φ is injective.
By construction, Φ(p) verifies the conditions of Lemma 5.12 and thus γ(Φ(p)) = p.
Conversely, if γ(q) = q, q verifies the conditions of Lemma 5.12. We construct p ∈ P~j as follows:
The block structure of p is q̃ ∈ P (ε~j). Recall that the element i of q̃ corresponds to the block
Bi of p~j . Set ji = |Bi| if (ε~j)i = ◦, and ji = −|Bi| if (ε~j)i = •. Let b = {b1 < b2} be a pairing
in q̃ with min(kb1 , kb2) > 1. Since γ(q) = q, Lemma 5.12 yields that either Bb1 and Bb2 are in
a same block of q, or Bb1 and Bb2 are block paired. In the first case , set ?(b) = 1 and in the
second case set ?(b) = ∗ (note that if kb1 > 2 then Lemma 5.12 enforces jb1 = −jb2). Similarly
if i is a singleton of q̃, from Lemma 5.12 either Bi contains only singletons, or it is a block of
q of cardinal greater than 2. In the first case set ?({i}) = ∗ and the other case set ?({i}) = 1.
Set ?(b) = 1 for all other singletons and pair. This gives a tracial partition p ∈ P(~j) such that
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Φ(p) = q.
The last part of the proposition is straightforward.

The law of the family (uk(C)k≥1 is therefore given by the cardinal of Φ−1(C(w~j)) for various

~j.

Description of the law of (uk(C))k≥1

As for the classification of categories in Chapter 4, we shall deal separately with the five cases
U ,O,H,B and S.

Partial partitions Let us first give a combinatorial tool:

Definition 5.15. A partial partition (p, S) of n is a set S = {1 ≤ i1 < · · · < is ≤ n} together
with a partition p of S (identified with J1, sK by the natural order on integers).

This is equivalent to the data of a set {B1, . . . , Br} of disjoint subsets of J1, nK, with S =
⋃
Bi.

The natural order on S yields a canonical bijection between the set of partial permutation
{(p, S)}p∈P (S) and P (s), and thus the order on P (s) gives an order on the set of partial per-
mutations {(p, S)}p∈P (S). (p, S) is called a non-crossing partial partition if p is a non-crossing
partition, view as an element of P (s); two partial partitions (p, S) and (p′, Sc) yield a partition
(p, S) ∨ (p′, Sc) of J1, nK simply by considering the reunion of the set of blocks of p and the one
of p′. If (p, S) is a non-crossing partial partition of S, the Kreweras complement kr(p) of p is
the biggest partial partition (p, Sc) such that p ∨ p′ is non-crossing.

Lemma 5.16. Let (p, S) be a partial partition of n. Then kr(p) is the partial partition with
support Sc defined by

i ∼kr(p) j ⇔ k 6∼(p,S) l, for all k ∈ Ji, jK ∩ S, l ∈ S \ Ji, jK

Proof. Since (p, S) ∨ (kr(p), Sc) is noncrossing the direct implication holds.
Suppose that for all k ∈ Ji, jK ∩ S, l ∈ S \ Ji, jK, k 6∼(p,S) l; if π is any noncrossing partition
of Sc such that (p, S) ∨ (π, Sc) is non crossing, then π̃ obtained from π by the reunion of the
block containing i and the one containing j is again noncrossing, and (p, S) ∨ (π, Sc) is again
noncrossing. Thus by maximality of kr(p), i ∼(kr(p),Sc) j.

We denote by NCp(n) (resp. NCp(~j)) the set of non-crossing partial partitions of n (resp.
non-crossing partition of n with a coloring ~j on J1, nK). The set of non-crossing partial partitions
with support S is denoted NC(S).

Case U There is a unique category of partition in the case U , consisting only in pairings with
endpoints of different colors.

Lemma 5.17. Let ~j ∈ Zr∗. Φ−1(U(w~j)) is isomorphic to the set of non-crossing pairings in
NC2(j1, . . . , jr) such that the endpoints of a pair have opposite colors.

Proof. Let ~j ∈ Zr∗ and p ∈ P~j such that Φ(p) ∈ U(w~j). If there exists a block b of p such that
?(b) = 1, this means that all sets Bi with i ∈ b are in a same block of Φ(p). Since U consists
only in pairings, |

⋃
iBi| =

∑
i∈b ki = 2. Thus either b is a singleton {i} with ki = 2, or b is a

pairing {i1, i2} with ki1 = ki2 = 1. The first case is not possible because both elements of Bi
have the same color, and the second case is possible only if ji1 = −ji2 .
If ?(b) = ∗, b contains two elements i1 and i2 with ki1 = ki2 . But Bi1 and Bi2 are block paired
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through Φ(p). Thus the condition Φ(p) ∈ U(w~j) yields that ji1 = −ji2 (excluding only the case
ji1 = ji2 = ±2).
Finally p has only pairing {i1, i2} between elements of opposite colors, which are colored ∗ if
ki1 ≥ 2 and colored 1 if ki1 = 1.

Thus we can express the law of (u1(U), u2(U), . . . ) as follows :

Proposition 5.18. (u1(U), u2(U), . . . ) is a family of free independent variables, each of them
being a circular variable with mean 0 and variance 1.

Proof. Let (c1, c2, . . . ) be a family of free independent circular variables of variance 1 and mean
0 and set c−i = c∗i . The moment-cumulant formula shows that for ~j ∈ Zr∗, m(cj1 , . . . , cjr) is
exactly the number of non-crossing pairings in NC(j1, . . . , jr) such that the endpoints of each
pair have opposite colors (see also Chapter 1, Prop. 1.10).

Case O Since we only consider the categories without tensor complexification, there is only
one category to study, namely the category O2 of all pairings. This case has already been done
in [14]. We give the proof here for the sake completeness.

Lemma 5.19. Let ~j ∈ Zr∗. Φ−1(O2(w~j)) is isomorphic to the set of non-crossing partitions of
NC(j1, . . . , jr) consisting in pairs b = {i1, i2} with either ji1 = −ji2 or ji1 = ji2 ∈ {−2,−1, 1, 2}
and singletons {i} with ji = ±2.

Proof. Let p ∈ P~j such that Φ(p) ∈ O2(w~j), and let b be a block in p. The same reasoning as
in the U−case shows that if ?p(b) = 1, |

⋃
i∈bBi| = 2. Therefore in this case b is a singleton {i}

with ki = 2 or a pair {i1, i2} with ji1 , ji2 ∈ {−1, 1}.
Any pair {i1, i2} colored ∗ is allowed. For ki1 > 2, a block colored ∗ has endpoints of opposite
colors, which concludes the proof.

Thus (u1, u2, . . . ) is again a family of free (semi-)circular elements, the proof being the same
as in the U-case.

Proposition 5.20. (u1, u2, . . . ) is a family of free variables such that uk is a circular variable
with covariance 1 and mean 0 if k ≥ 3, a semi-circular variable with variance 1 and mean 0 if
k = 1 and a semi-circular variable with variance 1 and mean 1 if k = 2.

Case H Let d ≥ 2. Hd,d consists in non-crossing two-colored partitions such that each block
has the same numbers of black and white points modulo d. H# is the category of non-crossing
partitions whose blocks have an even number of elements with endpoints having alternating
colors.

Lemma 5.21. Let d ≥ 3. Φ−1(Hd,d) is the set of non-crossing partitions of P~j such that blocks
b = {i1, . . . , is} are either pair colored ? with endpoints of opposite colors or block colored 1 with∑s

t=1 jit ≡ 0[d].
If d = 2, the conditions are the same except that any pair colored ∗ is allowed (which adds only
the case where the two endpoints have the color ±2).
Φ−1(H#) is the set of partitions of P~j such that blocks colored 1 have an even number of elements
and have endpoints colored ±1 with alternating signs, and blocks colored ∗ are pairs with opposite
colors.
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Proof. Hd,d is the category of partitions whose blocks have the same number of white and black
points modulo d. Let p ∈ P~j such that Φ(p) ∈ Hd,d(w~j). If b is a singleton of p colored ∗, all
the elements of Bb are singletons in Φ(p), which is impossible since d ≥ 2. If b = {b1, b2} is a
pair colored ∗, Bb1 is block-paired to Bb2 in Φ(p). If jb1 = −jb2 , the pairs between Bb1 and Bb2
have endpoints of different colors and thus verify the condition of H(d, d). If jb1 = jb2 , then
jb1 = jb2 = ±2 and the pairs between Bb1 and Bb2 have endpoints with the same color; this is
possible only if d = 2.
If b = {i1, . . . , is} is a block of p colored 1, then B = Bi1 ∪Bi2 ∪ . . . Bis is a block of Φ(p). The
difference between the number of white and black points in B is exactly

∑s
t=1 jit , thus the latter

quantity has to be zero modulo d in order to have Φ(p) ∈ Hd,d.
Let us consider the category H+ and let p ∈ P~j such that Φ(p) ∈ H#. A block b = {i1, . . . , is}
colored 1 with an endpoint it such that kit ≥ 2 yields in Φ(p) a block with at least two consec-
utive endpoints of the same color; therefore, from the description of H#, a block b of p colored
1 has only endpoints colored ±1, with two consecutive endpoints having opposite colors. Since
any element of b is colored ±1, b yields a block with an even number of elements in Φ(p) if and
only if b has an even number of elements. The description of H# yields that pairs must also
have endpoints with opposite colors. Thus the only blocks colored ∗ allowed are the pairs with
endpoints of opposite color.

The description of {u1(C), u2(C) . . . } is the following:

Proposition 5.22. Let d ≥ 2. (ui(Hd,d))i≥1 has the same joint law as (szis+ ci)i≥1, where :

• (ci)i≥1 is a family of free random variables with c1 = 0, c2 a circular variable (resp. semi-
circular variable) of variance 1 and mean 0 for d ≥ 3 (resp. d = 2) and ci is a circular
variable of variance 1 and mean 0 for i ≥ 3.

• s and z are two free variables, also free from (ci)i≥1, s being a semi-circular variable of
variance 1 and mean 0 and z a uniform variable on the complex d−roots of unity.

(ui(H+))i≥1 is distributed as ui = ci for i ≥ 2, u1 = pz, with ck a family of free circular
variables of variance 1 and mean 0, p a free poisson variable of mean 1, free from {ck}k≥2, and
z a Bernoulli variable of mean 0 and variance 1 free from p and {ck}k≥2.

Proof. Let (vi)i≥1 be a random vector with vi = szis + ci, s, z and (ci)i≥1 being as in the
statement of the proposition. Let (j1, . . . , jr) ∈ Zr∗ and set Yi = szis. The moment cumulant
formula yields

m~v(j1, . . . , jr) =
∑

(p,S)∈NCp(~j)

kp(~c)mkr(p)(~Y ).

From the law of {ci}i≥1, kp(~c) ∈ {0, 1} and kp(~c) is non-zero if and only if (p, S) is a pair partition
with each block {a, b} satisfying ja 6= ±1 and such that ja = −jb or, if d = 2, ja = jb = ±2. Let
us denote by P(S) the set of such partial partitions.
For i1, . . . , it ≥ 1, mr(sz

i1sszi2s . . . szits) = m(zi1s2zi2s2 . . . zits2). Since s2 is a free Poisson
distribution of variance 1, the moment-cumulant formula yields m(zi1s2zi2s2 . . . zits2) = #{p ∈
NC(i1, . . . , it), p is d−balanced}, where p is said d−balanced if each block {x1 < · · · < xq}
satisfies the condition

∏
1≤α≤q z

ixα = 1. The latter condition is equivalent to
∑q

α=1 i
xα = 0[d].
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Thus

m~v(j1, . . . , jr) =
∑

(p,S)∈NCp(~j)

kp(~c)#{π ≤ kr(p), π is d−balanced}

=#{p ∈ P(S), q ∈ NC(Sc)|p ∨ q ∈ NC(~j), q d-balanced}.

The latter set is exactly the set of non-crossing partitions of NC(j1, . . . , jr) with blocks either
colored 1 (the ones coming from (q, Sc)) and being d−balanced, or colored ∗ (the ones coming
from (p, S)) with the endpoints satisfying the conditions of Lemma 5.21.Therefore

m~v(j1, . . . , jr) = m(uj1(Hd,d), . . . , ujr(Hd,d)).

The same proof yields the law of {uk(H)#}k≥1.

Case B In the case B there are three different families, depending on the value of the parameter
r ∈ {∗; 0; d/2}. If p ∈ NC(~j) and b = {i1, i2} is a pair of p, denote by c(b) the sum of colors
between i1 and i2. Namely c(b) =

∑i2−1
s=i1+1 js.

Lemma 5.23. Φ−1(Bd,r(w~j)) is non-empty only if
∑
ji = 0[d]. If

∑
ji = 0[d], Φ−1(Bd,r(w~j))

is the set of partitions p in P(~j) such that:

1. p contains only singletons {i} (which are colored ∗ if ki > 2), pairs colored ∗ or pairs with
endpoints colored ±1.

2. If b is a pair of p with endpoints of opposite colors, c(b) ≡ 0[d].

3. Let r ∈ {0, d/2}. If b is a pair of p with both endpoints colored either 1 or 2 (resp. −1 or
−2), then c(b) ≡ r − 1[d] (resp. c(b) = r + 1[d]). If r 6= 1[d] (in particular d 6∈ {1, 2}),
p has no singleton {i} colored 1 with ki = 2. If d 6∈ {1, 2}, p has no pair {b1, b2} with
jb1 = jb2 = ±2.

4. if r = ∗, all pairs have endpoints of opposite color and p has no singleton {i} with ki = 2.

Recall that since p ∈ P(~j), a pair {b1, b2} colored ∗ has endpoints of the same color only if
kb1 = 2.

Proof. From Chapter 4, Bd,r(w~j) is non-empty only if
∑
w~j(s) =

∑
ji = 0[d]. If Bd,r(w~j) is

non-empty, it consists in partitions q having the following properties:

1. q contains only singletons and pairs.

2. For any pair b of q having endpoints of opposite colors, c(b) ≡ 0[d].

3. If r ∈ {0, d/2}, and b is a pair having black endpoints (resp. white endpoints), c(b) ≡
r + 1[d] (resp. c(b) ≡ r − 1[d]).

4. If r = ∗, any pair of q has endpoints of opposite colors.

Suppose that
∑
ji = 0[d]. We shall characterize the set of partitions p of P~j such that Φ(p)

satisfies condition 1)− 4).
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1. From the definition of Φ, a block b of p yields a block B in Φ(p) having more than three
elements if and only b = {i1, . . . , is} is a block colored 1 such that |

⋃
Bis | > 2. The only

blocks colored 1 with |
⋃
Bis | ≤ 2 are the singleton {i} with ki ≤ 2 and the pairs {b1, b2}

with kb1 = kb2 = 1. Thus condition 1) on Φ(p) is equivalent to the first condition of the
Lemma on p. From now on by a pair {b1, b2} of p, we mean a pair colored 1 if kb1 = 1 and
colored ∗ otherwise: in any case this pair yields a block pairing in Φ(p).

2. An element of p colored ji expands in ki singletons of color εi in Φ(p). Moreover a pair
b = {b1, b2} of p yields a block pairing in Φ(p) : if the endpoints of b have opposite colors,
each pair of the block pairing has also endpoints of opposite colors. Therefore the condition
c(b̃) ≡ 0[d] for all pairs b̃ of the block pairing between Bb1 and Bb2 is equivalent to the
condition c(b) ≡ 0[d].

3. Let r ∈ {0, d/2}. The only blocks of p yielding pairs with endpoints of the same colors in
Φ(p) are the pairs {b1, b2} with jb1 = jb2 ∈ J−2, 2K and the singletons {i} colored 1 (which
implies ki = 2 from the first point).
A pair b = {b1, b2} with jb1 = jb2 = ±2 yields a block pairing in Φ(p) consisting in two
pairs {a1, a2} and {a1 + 1, a2 − 1}. Let us assume without loss of generality that jb1 = 2.
Then a1, a1 + 1, a2 − 1, a2 are colored ◦. Since {a1, a2} is a pair with endpoints colored
◦, the third condition of Bd,r yields that

∑a2−1
i=a1+1w(i) = r − 1[d]. But {a1 + 1, a2 − 1} is

also a pair with endpoints colored ◦. Therefore
∑a2−2

i=a1+2w(i) = r−1[d]. This implies that
wa1+1 +wa2−1 = 0[d]. Since a1 +1 and a2−1 are colored ◦, wa1+1 +wa2−1 = 2. Thus d has

to be equal to 1 or 2. Since
∑a2−2

i=a1+2w(i) =
∑b2−1

i=b1+1 ji, the condition
∑a2−2

i=a1+2w(i) = r[d]
is equivalent to the condition c(b) = r[d].
A singleton {i} colored 1 with ki = 2 yields a pair b̃ = {b1, b1 + 1} with endpoints of the
same color in Φ(p). c(b̃) = 0 means that r + 1 = 0[d] or r − 1 = 0[d]. Since r ∈ {0, d/2},
either d = 1, or r = 1 and d = 2. In these two cases we have also c(b) = 0 = r + 1[d].
In any other cases, b = {b1, b2} has endpoints of the same color if c(b1) = c(b2) = ±1.
Let us assume that c(b1) = 1. Thus b yields a pair b̃ = {a1, a2} in Φ(p) with endpoints
colored ◦. Since

∑a2−1
a1+1w(i) =

∑i=b2−1
i=b1+1 ji, the condition c(b̃) = r − 1[d] is equivalent to

c(b) = r − 1[d].

4. A block b of p yields in Φ(p) pairs having endpoints of different colors if and only if b is
a pair having endpoints of opposite colors: thus if r = ∗, then Φ(p) satisfies the fourth
property of Bd,∗ if and only if all pairs of p have endpoints of opposite colors.

The latter lemma yields the law of {ui(Bd,r)}:

Proposition 5.24. 1. Let r = ∗. The family {ui(Bd,∗)}i≥1 is distributed as ui = ci+zi, with
{ci}i≥1 a family of circular variables of mean 0 and variance 1, and z a variable free from
{ci}i≥1 and distributed uniformly on the d−th roots of unity.

2. Let r = 0, d ≥ 3. The family {ui(Bd,0)}i≥1 is distributed as ui = ci+z
i for i ≥ 2, u1 = c1z,

where {ci}i≥2 is a family of circular variables of mean 0 and variance 1, z is a variable
free from {ci}i≥2 and distributed uniformly on the d−th roots of unity, and c1 is a free
semi-circular variable of variance 1 and mean 0. If d = 2, the distribution is the same
except that u2 = c2z + 1 with c2 a semi-circular variable of variance 1 and mean 0, free
from the other variables.
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3. Let r = d/2 . The family {ui(Bd,d/2)}i≥1 is distributed as ui = ci + zi for i ≥ 2 and
u1 = c1z

d/2+1 + z, with {ci}i≥2 a family of circular variables of mean 0 and variance 1, z
a variable free from {ci}i≥1 and distributed uniformly on the d−th roots of unity, and c1

a free semi-circular variable of mean 0 and variance 1. If d ∈ {1, 2}, the law is the same
except that u2 = c2 + 1, with c2 is a semi-circular variable of mean 1 and variance 1 free
from the other variables.

Proof. Let r ∈ {∗, 0, d/2}, and let {tk}k≥1 be a family of variables with the expected law. Set
t−k = t∗k, c−k = c∗k. Thus we have to prove that the mixed moment m(tj1 , . . . , tjs) is exactly the
number of partitions of P~j satisfying the conditions of Lemma 5.23. On one hand, expanding
the product in tj1 . . . tjs yields:

m(tj1 , . . . , tjs) =
∑

S⊆J1,sK

m(~ω),

where ωi = zji if i 6∈ S and ωi = cji if i ∈ S (or cjiz
r+1 if tji = cjiz

r+1 + zji , zr−1cji if
tji = zr−1cji + zji).
If r = ∗, we formally set r+1 = r−1 = 0. Let us define a sequence ω̃ of length 3s and a coloring
~h of J1, 3sK from ω as follows : for 1 ≤ i ≤ s,

• ω̃(3i− 1) = cji and h(3i− 1) = 0 if i ∈ S, ω̃(3i− 1) = zji and h(3i− 1) = ji else,

• ω̃(3i−2) = zr−1 and h(3i−2) = r−1 if ti = c−1 (or ti = c−2 and d ∈ {1, 2}), ω̃(3i−2) = 1
and h(3i− 2) = 0 else,

• ω̃(3i) = zr+1 and h(3i) = r + 1 if ti = c1 (or ti = c2 and d ∈ {1, 2}), ω̃(3i) = 1 and
h(3i) = 0 else.

Let S̃ be the subset {3i − 1|1 ≤ i ≤ s, ti = cji} of J1, 3sK. Since {ci} and z are free, the
moment-cumulant formula yields

m(~ω) =
∑
(p̃,S̃)

k(p̃,S̃)(ω̃)mkr(p̃,S̃)(ω),

where p̃ is a non-crossing partial partition whose support is S̃. Since S ' S̃, there is a bijection
p 7→ p̃ between partial partitions of J1, sK with support S and partial partitions of J1, 3sK with
support S̃, and thus

m(~ω) =
∑

p∈NC(S)

k(p̃,S̃)(ω̃)mkr(p̃,S̃)(ω).

The elements outside S̃ consist only in powers of z, thus a block B of kr(p̃) yields a moment
1 if

∏
i∈B ω̃(i) = 1 (namely if

∑
i∈B h(i) = 0[d]), and 0 else. Since {ci} is a collection of free

semi-circular or circular variables, k(p̃) ∈ {0, 1} and k(p̃) is zero if p̃ has blocks with more than
three elements or blocks containing different ci. Thus

m(t1, . . . , ts) = #{(p, S)|k(p̃,S̃)(ω̃) = 1,∀B ∈ kr(p̃),
∑
i∈B

hi = 0[d]}.

The condition ∀B ∈ kr(p̃),
∑

i∈B h(i) = 0[d] is equivalent to the condition that
∑
h(i) = 0[d]

and that for any pair b̃ = {b̃1 < b̃2} in p̃, c(b̃) = 0[d]. Moreover

• If b̃1 and b̃2 have opposite colors, then h(b̃1 + 1) = −h(b̃2 − 1)−1. Thus c(b̃) = 0[d] if and
only if

∑
b̃1+1<i<b̃2−1,i∈S̃c h(i) = 0[d].
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• If b̃1 and b̃2 are colored white (resp. black), h(b̃1+1) = r+1 and h(b̃2−1) = 1 (resp. h(b̃1+
1) = 1 and h(b̃2−1) = r−1). Thus c(b̃) = 0[d] is equivalent to

∑
b̃1+1<i<b̃2−1,i∈S̃c h(i) = r−1

if b̃1 and b̃2 are white and to
∑

b̃1+1<i<b̃2−1,i∈S̃c h(i) = r + 1 if b̃1 and b̃2 are black.

It remains to show that
∑

b̃1+1<i<b̃2−1,i∈S̃c h(i) =
∑

b1<i<b2
ji, where {b1, b2} is the pair of p

yielding b̃ in p̃. An element i in Sc colored ji yields in (p̃, S̃) three elements 3i, 3i + 1, 3i + 2
colored respectively 0, ji, 0: so the total contribution is ji. An element i is a singleton of (p, S)
only if ji = ±2 and r = 1, d ∈ {1, 2}. It contributes in p̃ to three elements 3i, 3i + 1, 3i + 2
colored 0, whose sum is exactly ji modulo 1 or 2.
A pair {b1, b2} of (p, S) with endpoints of opposite colors contributes to one pair, and four
singletons, two of them colored 0, and two having opposite colors, yielding a null contribution.
A pair {b1, b2} with endpoints of the same color only occurs if jb1 ∈ {±1,±2} and r ∈ {0, d/2}.
If jb1 > 0, this pair contributes in p̃ to one pair and four singletons, two of them colored 0 and
two of them colored r + 1. Thus the total contribution is 2r + 2; but r ∈ {0, d/2} and thus
2r + 2 = 2[d]. If jb1 =< 0, the same reasoning yields a contribution equal to −2 modulo d. If
jb1 = ±1, this contribution is equal to jb1 + jb2 . If jb1 = ±2, d ∈ {1, 2} and once again the
contribution is equal to jb1 + j2.
To sum up, (p̃, S̃) verifies the conditions if and only if

∑
ji = 0 and (p, S) is such that c(b) = 0[d]

if b is a pair with endpoints of different colors and c(b) = r − 1[d] (resp. c(b) = r + 1[d]) if b is
a pair with white (resp. black) endpoints. Filling (p, S) with singletons on elements of Sc gives
exactly the partitions satisfying the conditions of Lemma 5.23.

Case S The computation for the category Sd is a simpler version of the computation for the
category Bd,r. For (c1, . . . , cr) a sequence of integers (for example an element of Zr∗ or a word in
◦, • with the usual substitution ◦ ↔ 1, • ↔ −1), we set c(s, t) =

∑
s<x<t cx.

Lemma 5.25. Φ−1(Sd(w~j)) is the set of partitions p in P(~j) with:

1. If d ≥ 3, blocks of p colored 1 contain only elements colored ±1 and blocks colored ∗ have
endpoints of opposite colors. If d = 2 the same holds except that all pairs colored ∗ are
allowed.

2. If i1, i2 are two consecutive elements of the same block and have positive (resp. negative)
color, j(i1, i2) ≡ −1[d] (resp. +1). If i1 ∼p i2 and ji1 = −ji2, then j(i1, i2) ≡ 0[d].

Proof. The category Sd(w~j) is the set of non-crossing partitions p having the following property:
for i1 and i2 two consecutive elements of a block, w~j(i1, i2) ≡ 0[d] (resp. w~j(i1, i2) ≡ −1[d], resp.
w~j(i1, i2) ≡ 1[d]) if ε(i1) = −ε(i2) (resp. ε(i1) = ε(i2) = 1, ε(i1) = ε(i2) = −1). If d = 1, this just

means that any non-crossing partition is allowed, and thus Φ−1(S1(w~j)) = Φ−1(NC(~j)) = P(~j).
If d ≥ 2, the same proof as the one of Lemma 5.23 yields the result.

The proof of the law of (ui(Sd))i≥1 is similar to the one of Proposition 5.24, so we only state
the result:

Proposition 5.26. Let d ≥ 3. The family (ui(Sd))i≥1 is distributed as ui = ci + zi for i ≥ 2,
with {ci}i≥2 a family of free circular variables of variance 1 and mean 0 and u1 = pz with p a
free Poisson distribution of mean 1 free from {ci}i≥2 and z a uniform variable on the d−roots
of unity, free from p and {ci}i≥2.
If d = 2, the law is the same as before, except that u2 = c2z + 1 with c2 a semi-circular variable
of variance 1 and mean 0.
If d = 1, for all i ≥ 1, ui = p + ci, with p a free poisson variable of mean 1, {ci}i≥3 a family
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of free circular variables withs mean 0 and variance 1, c2 a semi-circular variable with mean 1
and variance 1 and c1 = 0.

5.3 Second-order freeness for the free unitary group

In [62], Cor. 15, the results of Diaconis and Shahshahani on the unitary group have been
extended to the situation where traces of arbitrary cyclically reduced products of u, ū, ut, u∗ were
considered (see also [69]). We give here a similar result for the free unitary group. The method
used in the present chapter differs from the one of [62] in order to take the non-commutativity
of U+

n into account. However both rely on the Weingarten formula, and the proof of the present
section can be used to recover the results of [62]. In the case of U+

n , the non-commutativity allows
to consider the law of any reduced words in u, ū, ut, u∗, instead of only considering cyclically
reduced words. We present the result in the classical and free case.
To state the result and detail the proof, we shall use the notations introduced by Radulescu in
[69]. Let F2 be the free group with two generators a and b. Any element f of F2 admits a unique
representation as a reduced word f1f2 . . . fr in a, b, a−1 and b−1. f is called cyclically reduced if
fr 6= f−1

1 .
For n ≥ 1, we associate to each f ∈ F2 the variable Xf (n) = Tr(uf1 . . . ufr), where u is the

fundamental matrix of U+
n or Un and ua = u, ua

−1
= u∗, ub = ū, ub

−1
= ut.

With these notations we have a main theorem describing the asymptotice laws of {Xf (n)}f∈F2
for U+

n and Un. From now on, we always assume that elements of F2 are cyclically reduced in
the classical case.

Theorem 5.27. In the free case (resp. classical case), when n tends to infinity, the collection
of variables {Xf (n)} converges in law to a circular (resp. gaussian) system of free (resp. inde-
pendent) variables {X̃f} whose covariance matrix can be explicitly described.

The description of the covariance matrix is given in Proposition 5.36.
Throughout this section, r ≥ 1 is fixed, and we use the convention r + 1 := 1.

5.3.1 Bidiagrams associated to Xf (n)

The proof of Theorem 5.27 relies on some properties of a combinatorial object called bidiagram.
We present here this object and prove some useful combinatorial results.

Bidiagrams Let k ≥ 1. We define an involution i 7→ i on {1, . . . , 2k} by the formula
ī = 2k − i+ 1.
We define pk as the partition of P (k, k) defined by pk = {{i, i}, 1 ≤ i ≤ k} and for 1 ≤ i ≤ k,
we denote by Si the subset {i, i}.

Definition 5.28. Let k ≥ 1. A cyclic partition p of P (k, k) is a two level pair partition such
that i is paired either with i + 1, i − 1, i− 1 or i+ 1, and such that p ∨P pk is the one block
partition {J1, 2kK}.
A tracial diagram D ∈ P (k, k) is a tensor product of cyclic partitions p1 ⊗ · · · ⊗ pr such that
pi ∈ P (ki, ki) with

∑
ki = k.

We write D = p1⊗· · ·⊗pr to emphasize the unique decomposition into cyclic partitions. The
conditions in the definition of a cyclic partition is equivalent to the fact that for any 1 ≤ i ≤ k,
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p links exactly one element of Si with an element of Si+1, where i+ 1 is understood modulo k.
The same definition holds for colored cyclic partitions and colored tracial diagrams. A two-
colored tracial diagram is represented in Figure 5.1.

• • ◦ ◦ • •

◦ ◦ • ◦ ◦ •

Figure 5.1: Tracial diagram consisting in two cyclic partitions

We can now define a bidiagram :

Definition 5.29. Let ε1, ε2 be two words in ◦, •. A bidiagram is the data of a tracial diagram
D ∈ P (ε1, ε2) and two partitions p, q such that p ∈ P (ε1) and q ∈ P (ε2).

A bidiagram is written (p|D|q). An example is shown in Figure 5.2.

• • ◦ ◦ • •

◦ ◦ • ◦ ◦ •

Figure 5.2: Two-colored bidiagram

The natural bijection between P (ε1) and P (ε1, ∅), and between P (ε2) and P (ε2, ∅) identifies
(p, q) with an element of P (ε1, ε2) through the composition pRh(q) (recall the definition of Rh
in Chapter 1). In particular the blocks of b(p|D|q) are defined as the blocks of the partition
D ∨ pRh(q). We denote also by b(p|D|q) the number of blocks of D ∨ pRh(q).

Diagrams coming from {Xf (n)}: A cyclic partition Df , independent of n, is associated to
each variable Xf (n) in the following way :

• Let f ∈ F2. We can write the reduced form of f as

f = x
ε(1)
η(1)x

ε(2)
η(2) . . . x

ε(r)
η(r) =

∏
→
x
ε(i)
η(i),

where r is the length of the reduced word,
∏
→

stands as an ordered product, and xεiηi ∈

{a, b, a−1, b−1} according to the following rule :

η\ε 1 −1

1 a b

−1 b−1 a−1

(5.3.1)
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The fact that the above expression comes from a reduced word of f implies that εiεi+1 +
ηiηi+1 6= −2 for 1 ≤ i ≤ r − 1. If f is cyclically reduced, the same holds for i = r. The
words η(1) . . . η(r) and ε(1) . . . ε(r) are denoted η(f) and ε(f).

• The partition Df in P (ε, ε) is constructed by pairing, for 1 ≤ i ≤ r, exactly one element
of Si with one element of Si+1 with the rule:

η(i+ 1)\η(i) 1 −1

1 (i, i+ 1) (i, i+ 1)

−1 (i, i+ 1) (i, i+ 1)

(5.3.2)

For example the cyclic partition associated to ab2a−2b is drawn in Figure 5.3:

◦ • • • • ◦

◦ • • • • ◦

Figure 5.3: The cyclic partition Dab2a−2b

The rules (5.3.1) and (5.3.2) yield that the partition Df is indeed a cyclic partition. Thus if
f1, . . . , f s ∈ F2, Df1 ⊗ · · · ⊗ Dfs is a tracial diagram. Actually one can prove that any tracial
diagram such that the coloring is the same on each set Si can be written Df1 ⊗ · · · ⊗ Dfs for
some f1, . . . , f s ∈ F2.
We will need some basic facts on tracial diagrams. They are summed up in the following Lemma
:

Lemma 5.30. Let f = f1 . . . fr ∈ F2 and let Df be the associated cyclic partition:

• For 1 ≤ i ≤ r − 1 two consecutive elements i and i+ 1 (or ī and i+ 1) can be paired only
if they have the same color. If f is cyclically reduced, 1 is paired with r (resp. 1 is paired
with r) only if both elements have the same color.

• There is the same number of pairs between elements of {1, . . . , r} and between elements of
{1, . . . , r}.

Proof. • Since f is a reduced word, the rule (5.3.1) yields that for 1 ≤ i ≤ r− 1, η(i)η(i+ 1)
and ε(i)ε(i + 1) are not both equal to −1. Therefore by (5.3.2), this means that two
consecutive points of different colors cannot be paired. If f is cyclically reduced, the same
is truc for i = r and i+ 1 = 1 (or r̄ and 1̄).

• By the rule (5.3.2), i is paired with i+ 1 if and only if η(i+1) = 1 and η(i) = −1, yielding
η(i+ 1)− η(i) = 2; i is paired with i+ 1 if and only if η(i+ 1) = −1 and η(i) = 1, yielding
η(i+ 1)− η(i) = −2. In all other cases, η(i) = η(i+ 1) and thus η(i)− η(i+ 1) = 0. Since∑r

i=1 η(i + 1) − η(i) = 0, the number of pairs inside {1, . . . , r} and inside {1, . . . , r} are
the same.

A pair containing two points of the same row is called an horizontal strip. The other ones
are called vertical strips.
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Bidiagrams with pair partitions Since the intertwiners of U+
n and Un are described by pair

partitions, we will use bidiagrams (p|D|q) with p, q being pairings; as in the previous section,
the use of the Weingarten formula requires bounds on the number of blocks of (p|D|q). Recall
that U (resp. Uclass) denotes the set of non-crossing pairings (resp. pairings) with pairs having
endpoints of opposite colors.

Proposition 5.31. Let f1, . . . , f s ∈ F2 and p, q ∈ Uclass(ε(f1) . . . ε(fs)). Let D = D(f1)⊗· · ·⊗
D(fs) We suppose that p and q are in U if at least one f i is not cyclically reduced. Then

b(p|D|q) ≤ b(p) + b(q)

2
.

In the case of non cyclically reduced terms, the statement needs a preliminary combinatorial
result. From the definition of a bidiagram, a pair of (p|D|q) is a set {b1, b2} in {1, . . . , k, 1̄, . . . , k̄}
such that b1 ∼pRh(q) b2 and b1 ∼D b2. Since partitions Df i are disconnected from each other,
b1 and b2 must be in a same block Df i to fulfill the condition b1 ∼D b2. The notations in the
following Lemma are the same as in 5.31.

Lemma 5.32. Suppose that p, q are in U(ε(f1) . . . ε(fs)). For 1 ≤ i ≤ s, there is at most one
pair ti in D(f i) which is also a block of (p|D|q). If this pair exists, there is a block of (p|D|q)
containing at least 6 elements, among which at least 4 are in D(f i).

Proof. Let 1 ≤ i ≤ s and suppose that such a ti exists in Df i , with endpoints (ai < bi). By a
rotation of all the partitions, we can suppose that i = 1.
Since t1 is a block of (p|D|q), t1 is also block of p or q. By symmetry we can assume that t1 ∈ p
and a1, a2 ∈ {1, . . . , r}. a1 and b1 being in the same row, they are linked by a horizontal edge

in Df1 . Since U = 〈 •◦ , ◦• 〉, the two endpoints have opposite colors; therefore 5.30 yields that
a1 = 1 and b1 = r in D(f1). Thus, since p is non crossing, any pair of p having an endpoint in
{2, r − 1} must have its other endpoint in {2, r − 1}. This implies that Df1 has as many points
of both colors. Let us denote by hu,w (resp. hu,b, hd,w, hd,b) the number of upper white (resp.
upper black, lower white, lower black) points belonging to an horizontal strip of Df1 . Then we
have :

• By 5.30, hu,b + hu,w = hd,w + hd,b.

• By 5.30, since in the upper part all horizontal strips except (a1, b1) link points of the same
color, hu,b and hu,w are odd; in the lower part all horizontal strips link points of the same
color, thus hd,b and hd,w are even.

Suppose that there is a pair t′ = {a, b} in p with a in an horizontal strip {a, a′} and b in a
vertical strip {b, b′}; a′ and b′ cannot be in the same pair of p or q, and thus t′ is in a block of
(p|D|q) with more than 6 elements among which at least 4 elements are in D(f1).
Suppose that there is no pair t ∈ p with one endpoint in an horizontal strip of D(f1), and
the other endpoint in a vertical strip. This means that we must have in the upper row as
many horizontal strips with endpoints colored black and horizontal stips with endpoints colored
white. Thus hu,b = hu,w. Since hu,b + hu,w = hd,w + hd,b, a parity argument yields that either
hd,b > hu,b = hu,w > hd,w, either hd,w > hu,b = hu,w > hd,b. By a color symmetry we can assume
that we are in the first case and hd,b+hu,b > hu,w+hd,w. Since there are as many points of both
colors in Df1 , the number of white points linked by a vertical edge is strictly greater than the
number of black points linked by a vertical edge. This implies that there must be a pair t′ ∈ p
whose endpoints are linked to vertical edges with white lower endpoints. Since these two lower
endpoints have the same color, they cannot be in the same pair of q and each of them are in
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different pairs of q; therefore t′ is in a block of (p|D|q) with more than 6 elements, among which
at least 4 elements are in D(f1).

Let us now prove Proposition 5.31:

Proof. Let li be the length of the reduced word of f i. If one of the pair partitions is crossing,
from the hypothesis of the Proposition, all words are cyclically reduced. Therefore there is no
horizontal strips between points of different colors. Since p is in U or Uclass, each pair of p has
endpoints of opposite colors; thus endpoints of a pair of p cannot be in the same pair of D. In
particular each block of (p|D|q) contains at least two pairs from p or q, and b(p|D|q) ≤ b(p)+b(q)

2 .
From now on we assume that p, q are non-crossing.
By the previous lemma there is at most one block of (p|Df1 ⊗ · · · ⊗ Dfr |q) having two vertices
in each D(f i): denote by Bi(1), . . . , Bi(k) the blocks of (p|Df1 ⊗ · · · ⊗ Dfr |q) having only two
vertices (with Bi(j) lying in Df i(j)). By the same lemma, one can associate to each block Bi(j) a

block B̃i(j) having at least 6 vertices and at least four vertices in Di(j). Some blocks B̃i(j) may

be the same: for 1 ≤ s, t ≤ k, write s ∼ t if B̃i(s) = B̃i(t). This gives a partition A1 q · · · qAl of

{1, 2, . . . , k} and a bijective map ϕ : J1, lK→ {B̃i(j)}1≤i≤k sending s to the block B̃i(j) such that
j ∈ As. By Lemma 5.32, ϕ(s) has at least min(6, 4|A(s)|) elements. Moreover

k∑
j=1

|Bi(j)|+
l∑

j=1

|ϕ(j)| =2k +
∑

j,Aj singleton

|ϕ(j)|+
∑

j,|A(j)|≥2

|ϕ(j)|

≥2k + 6|{j, A(j) singleton}|+
∑

j,|A(j)|≥2

4|A(j)|

≥2k +

2|{j, A(j) singleton}|+ 2
∑

j,|A(j)|≥2

|A(j)|


+ 4|{j, A(j) singleton}|+ 2

∑
j,|A(j)|≥2

|A(j)|

≥4k + 4|{j, A(j) singleton}|+ 4|{j, A(j) ≥ 2}|
≥4(k + l).

On one hand, since p and q are pair partitions, b(p) = b(q) = 1
2(
∑r

i=1 li). On the other hand,

∑
B∈{blocks of (p|Df1⊗···⊗Dfr |q)}

|B| =
r∑
i=1

2li.

But from the previous computation,

∑
B block of

(p|Df1⊗···⊗Dfr |q)

|B| =
k∑
j=1

|Bi(j)|+
l∑

j=1

|ϕ(j)|+
∑

B other block of
(p|Df1⊗···⊗Dfr |q)

|B|

≥4(k + l) + 4|{other block of (p|Df1 ⊗ · · · ⊗ Dfr |q)}|
≥4b(p|Df1 ⊗ · · · ⊗ Dfr |q).
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Therefore

b(p|Df1 ⊗ · · · ⊗ Dfr |q) ≤
1

4

∑
B∈{blocks of (p|Df1⊗···⊗Dfr |q)}

|B|

≤2
∑
li

4
≤ b(p) + b(q)

2
.

5.3.2 Convergence and asymptotic law for {Xf (n)}f∈F2
As in Section 5.2, the proof of Theorem 5.27 is done in two parts. The first part gives a
combinatorial expression of the moments and the second part deduces the law of {Xf (n)}f∈F2
from this expression.

Moments formula for {Xf} Theorem 5.8 can be adapted in the present situation to get the
following result:

Proposition 5.33. Let Gn be either Un or U+
n . Let f1, . . . , f r be elements of F2 such that∑

li ≤ n. We assume that f1, . . . , f r are cyclically reduced if G = Un. Then∫
Gn

Xf1(n) . . . Xfr(n) = Card{p ∈ C|b(p|Df1 ⊗ · · · ⊗Dfr |p) = b(p)}, (5.3.3)

with C = U if Gn = U+
n and C = Uclass if Gn = Un.

Proof. The proof of the proposition follows the proof of Theorem 5.8, with the help of the
previous combinatorial results.
Let 1 ≤ m ≤ r. The definition of Xfm(n) yields:

Xfm(n) =
n∑
j=1

 →∏
1≤t≤lm

u
x
ε(t)
η(t)


jj

=
n∑

j1,...,jli=0

→∏
1≤t≤lm

(
u
x
ε(i)
η(i)

)
jtjt+1

,

with jlm+1 = j1, and η, ε the words associated to fm in Section 5.3.1. From the definition of ux

for x ∈ {a, b, a−1, b−1}, the values of u
x
ε(t)
η(t)

ij depend on {ε(i), η(i)} following the present rule:

η\ε 1 −1

1 (uij) (uij)

−1 (uji) (uji)

If we write u−1
ij = uij and u(ij)−1 = uji, the expression of Xfm(n) becomes :

Xfm(n) =

n∑
j1,...,jlm=0

→∏
1≤t≤lm

u
ε(i)

(jiji+1)η(i)
(with jlm+1 = j1) .

This expression can be translated in terms of diagrams. Indeed, the right term is exactly :

Xfm(n) =
∑

~i,~j∈[1,n]lm ,ker(~i,~j)≥Df

u
ε(1)
i1j1

. . . u
ε(lm)
ilmjlm

.
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A product of different Xfm is just a concatenation of these expressions. With L =
∑r

t=1 lt and
ε the concatenation of the words εfm for 1 ≤ m ≤ r, this yields:

Xf1(n) . . . Xfr(n) =
∑

~i,~j∈[1,n]L

ker(~i,~j)≥Df1⊗···⊗Dfr

u
ε(1)
i1j1

. . . u
ε(L)
iLjL

.

And this sum can be integrated with the Weingarten formula to get for n ≥ L :∫
Xf1(n) . . . Xfr(n) =

∫ ∑
~i,~j∈[1,n]L

ker(~i,~j)≥Df1⊗···⊗Dfr

u
ε(1)
i1j1

. . . u
ε(L)
iLjL

=
∑

~i,~j∈[1,n]L

ker(~i,~j)≥Df1⊗···⊗Dfr

∑
p∈C(ε),p≤ker(~i)

q∈C(ε),q≤ker(~j)

WgGn(p, q)

=
∑

p,q∈C(ε)

∑
~i,~j∈[1,n]L

ker(~i,~j)≥(p|Df1⊗···⊗Dfr |q)

WgGn(p, q)

=
∑

p,q∈C(ε)

nb(p|Df1⊗···⊗Dfr |q)WGn(p, q).

Proposition 5.5 gives an asymptotic formula for WgGn :

WgGn(p, q) = (−1)δp 6=qnb(p∨q)−b(p)−b(q)(1 +O(
1√
n

)).

Applying this to the previous computation yields:∫
Xf1(n) . . . Xfr(n) =

∑
p,q∈C(ε)

(−1)δp,qnb(p|D|q)+b(p∨q)−b(p)−b(q)(1 +O(
1√
n

)). (5.3.4)

Since C ∈ {U ,Uclass}, Proposition 5.31 yields the following inequalities:{
b(p|Df1 ⊗ · · · ⊗ Dfr |q) ≤

b(p)+b(q)
2 ≤ max(b(p), b(q))

b(p ∨ q) ≤ min(b(p), b(q))

In the large n limit, the non-vanishing terms in (5.3.4) are the ones such that b(p|Df1 ⊗ · · · ⊗
Dfr |q) + b(p ∨ q)− b(p)− b(q) ≥ 0. By the previous inequalities, these terms must verify:

b(p) = b(q)
b(p|Df1 ⊗ · · · ⊗ Dfr |q) = b(p)

b(p ∨ q) = b(q)

This implies that p = q and b(p|Df1 ⊗ · · · ⊗ Dfr |p) = b(p). In this case b(p|Df1 ⊗ · · · ⊗ Dfr |q) +
b(p ∨ q)− b(p)− b(q) = 0, which yields the final expression:

lim
n→∞

∫
Xf1(n) . . . Xfr(n) = #{p ∈ C(ε), b(p|Df1 ⊗ · · · ⊗ Dfr |p) = b(p)}.
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Law of the {Xf} It remains to describe the law of {Xf}f∈F2 . Note first that expanding f in

the reduced word f =
∏
→
x
ε(i)
η(i) yields

Xf (n) =

n∑
j1,...,jr=0

∏
→
u
ε(i)

(jiji+1)η(i)
(with jr+1 = j1)

=

n∑
j1,...,jr=0

∏
→
u
ε(r+1−i)
(jr+1−ijr+2−i)η(i)

=

n∑
j1,...,jr=0

∏
→
u
−ε(r+1−i)
(jr+1−ijr+2−i)η(r+1−i)

=

n∑
j1,...,jr=0

∏
→
u
ε̃(i)

(jiji−1)η̃(i)

with η̃(i) = −η(r + 1− i), ε̃(i) = −ε̃(r + 1− i). Therefore for f ∈ F2,

Xf (n) = Xf−1(n).

Following a method already used in [14] we first compute the cumulants of the family {Xf}f∈F2 .
Let us associate to each sequence of words (f1, . . . , f r), with f i having length li, the partition
p~f of P (ε), whose blocks are the sets Ba = {

∑a−1
i=0 li + 1,

∑a−1
i=0 li + la} for 1 ≤ a ≤ r.

Lemma 5.34. Let C ∈ {U ,Uclass}. Let r ≥ 1, f1, . . . , f r ∈ F2 such that f i is cyclically reduced if
C = Uclass. If C = U (resp. C = Uclass) the free cumulant (resp classical cumulant) of (f1, . . . , f r)
is

cr(f
1, . . . , f r) = #{p ∈ C(ε), p ∨ p~f = 1, b(p|Df1 . . .Dfr |p) = b(p)}.

Proof. The proof is essentially an adaptation of the proof of [14] in the context of bidiagrams.
We write the proof in the free case, since the proof in the classical one is exactly the same. For
each tuple ~f = (f1, . . . , fk), let

∫
(f1, . . . , fk) =

∫
Xf1 . . . Xfk , and for σ a partition of {1, . . . , r},

let ∫
σ
(f1, . . . , fk) =

∏
{i1<···<is}∈σ

∫
(f i1 , . . . , f is).

For σ partition of {1, . . . , r}, let σ
p~f be the the partition of P (ε) obtained by linking the r blocks

of p~f according to σ. Since U is block stable, Proposition 5.33 yields

∫
σ
(f1, . . . , f r) = #{p ≤ σp~f , b(p|Df1 . . .Dfr |p) = b(p)}.

Therefore

cr(f
1, . . . , f r) =

∑
σ

µ(σ,1r)

∫
σ
(f1, . . . , f r)

=
∑
σ

µ(σ,1r)#{p ≤ σp~f , b(p|Df1 . . .Dfr |p) = b(p)}

=
∑
p~f≤τ

µ(τ,1L)#{p ≤ τ, b(p|Df1 . . .Dfr |p) = b(p)},
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where we use on the third equality the invariance property of the Moebius function µ. Writing
#{p ≤ τ, b(p|Df1 . . .Dfr |p) = b(p)} as

∑
p≤τ,

b(p|Df1 ...Dfr |p)=b(p)

1 and interverting the sums yields

cr(f
1, . . . , f r) =

∑
b(p|Df1 ...Dfr |p)=b(p)

∑
τ≥p∨p~f

µ(τ,1L)

=
∑

b(p|Df1 ...Dfr |p)=b(p)

δp∨p~f ,1ε

=#{p ∨ p~f = 1ε, b(p|Df1 . . .Dfr |p) = b(p)},

where the second equality uses again the properties of the Moebius function.

The last step is the computation of |{p ∨ p~f = 1, b(p|Df1 . . .Dfr |p) = b(p)}| for arbitrary

f1, . . . , f r. From now on, cr(f
1, . . . , f r) denotes the classical or the free cumulant, depending

on the situation. f1, . . . , f r are assumed cyclically reduced if we are in the classical case. As
in Section 2, the condition b(p|Df1 ⊗ · · · ⊗ Dfr |p) = b(p) yields restrictive properties on p. For

t ∈ Z/laZ, let us denote by xat the element
∑a−1

i=0 li + t of Ba. We have the following result:

Lemma 5.35. Let r ≥ 2. Suppose that p is a pairing such that b(p|Df1 ⊗ · · · ⊗ Dfr |p) = b(p)
and p ∨ p~f = 1ε. Let xat ∈ Ba and xbt′ ∈ Bb such that a 6= b and xat ∼p xbt′. Then la = lb, and

there exists τ ∈ {1,−1} such that for all 1 ≤ h ≤ la, xat+h ∼ xbt′+τh. In particular such p exists
only if r = 2 and cr(f1, . . . , fr) = 0 if r ≥ 3.

To simplify the proof, we use the same notation to denote elements of the partitions in P (ε)
and elements of the upper row of partitions in P (ε, ε).

Proof. Let r ≥ 2, f1, . . . , f r ∈ F2. Let p ∈ C be such that b(p|Df1 . . .Dfr |p) = b(p) and
p ∨ p~f = 1ε. In the classical case, the proof of Proposition 5.31 yields that (p|D|p) has no
block with only two elements. In the free case, this could happen only if these two elements are
extremal in a particular block B of p~f ; in particular since p is non-crossing, any element of B is
also paired to an element of B through p. Since r ≥ 2, this contradicts the fact p ∨ p~f = 1.

Therefore any block of (p|D|p) has at least 4 elements. Since b(p|Df1 . . .Dfr |p) = b(p) = L
2 ,

each block of (p|D|p) has exactly 4 elements. Let t ∈ Z/laZ and t′ ∈ Z/lbZ such that a 6= b
and xat ∼p xbt′ . Thus xat ∼pRh(p) x

b
t′ and xat and xbt′ are in a same block B of (p|D|p). By D,

xat is linked to exactly one element u among {xat−1, x
a
t+1, x

a
t−1, x

a
t−1}. The same is true for xbt′

and one element v among {xbt′−1, x
b
t′+1, x

b
t′−1, x

b
t′−1}. Thus B = {u, v, xat , xbt′} forms a block of

(p|D|p) and u is linked to an element of B through the pairing pRh(p). Since we already have

xat ∼p xbt′ , the only possibility is u ∼pRh(p) v. Doing the same for xat and xbt′ yields that either

xat+1 ∼p xbt′+1 or xat+1 ∼p xat−1.

Let us assume without loss of generality that xat+1 ∼p xbt+1. Doing the same reasoning with
{xat+1, x

b
t+1} yields that either xat+2 ∼p xbt′+2 or xat+2 ∼p xbt′ . But the latter is impossible (except

if la = 2) since xbt′ is already linked to xat through p. Thus xat+2 ∼p xbt′+2. By recursion, for all

1 ≤ h ≤ la, xat+h ∼p xbt′+h and la ≤ lb; by symmetry la = lb.
Therefore any element of Ba is paired to an element of Bb through p, and Ba ∪Bb is a block of
p ∨ p~l. In particular if r > 2, this contradicts the assumption p ∨ p~l = 1ε.

If r ≤ 2, the situation is more evolved. First notice that Xab = Xb−1a−1 , Xba = Xa−1b−1 ,
Xab−1 = Xb−1a, Xa−1b = Xba−1 , Xa = Xb−1 and Xa−1 = Xb; moreover Xf = Xf ′ with f 6= f ′

only in the previous cases. Let us write f ∼ f ′ if Xf = Xf ′ .
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Proposition 5.36. If C = U (resp. C = Uclass), {Xf}f∈F2 is a family of free (resp. independent)
(semi-)circular (resp. gaussian) variables. Let f1, f2 ∈ F2. In the free case, c2(f1, f2) = 0 unless
f2 ∼ f−1

1 , and in this case k(f1, f
−1
1 ) = 1. k(f) = 0 unless f ∼ ab or f ∼ a−1b−1, and in the

latter case k(f) = 1.
In the classical case,

c2(f1, f2) =
∑

1≤k≤r,τ∈{1,−1}

δck,τ (f1)f2=1,

where ck,τ acts on a reduced word x1 . . . xt ∈ F2 as

c(x1 . . . xt) = xk+τxk+2τ . . . xk+tτ .

kf = 0 unless f ∼ ab or f ∼ a−1b−1, where k(f) = 1.

Proof. The first part of the proposition is a straightforward application of Lemma 5.35.

Let f1, f2 ∈ F2 with f1 = xε1η1 . . . x
εr
ηr and f2 = x

ε′1
η′1
. . . x

ε′
r′
η′
r′

. Let p be such that b(p|D(f1) ⊗
D(f2)|p) = b(p) and p~f ∨ p = 1εε′ .
The condition p~f ∨p = 1εε′ means that there exist a ∈ Bf1 , b ∈ Bf2 with a ∼p b. By the previous

Lemma, this implies that r = r′, and there exists a bijection ϕ : {1, . . . , r} → {1, . . . r} such
that i ∼p r + ϕ(i). By the same Lemma, there exist r0 ∈ J0, r − 1K and τ ∈ {−1, 1} such that
ϕ(x) = τx + r0 for all 1 ≤ x ≤ r. Since p is in U or Uclass, i and r + ϕ(i) have opposite colors
and thus ε′(ϕ(i)) = −ε(i). Having each block of (p|Df1⊗Df2 |p) with exactly 4 elements requires
that η′(ϕ(i)) = −η(i) (except if r = 2, in which case the condition is η′(1)η′(2) = η(1)η(2)).

We must now distinguish the classical and the free case.

• In the free case there is only one way to achieve a non-crossing pairing in this way, namely
ϕ0(x) = r + 1 − x. This proves that c2(f1, f2) ≤ 1. From the first part of the proof this
partition occurs if and only if η′(r + 1 − i) = −η(i) and ε′(r + 1 − i) = −ε′(i), which is
equivalent to f1 ∼ f−1

2 .

• In the classical case, any map ϕ could arise. It remains to find which ϕ yields a pairing
with the condition that each block of (p|Df1 ⊗ Df2 |p) has 4 elements. Suppose that ϕ is
given by r0 ∈ J0, r − 1K and τ ∈ {−1, 1}. By the first part of the proof the condition is
satisfied if and only if cr−r0+1,−τ (f1) = f−1

2 . Summing on all r0, τ yields the result.

The same proof yields that c1(f) is non-zero only if the length of f is at most 2 and f ∼ f−1.

Theorem 5.27 is the combination of Proposition 5.33 and Proposition 5.36.

122



Part III

Free wreath product
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Chapter 6

Free wreath product with the free
symmetric group

Introduction

In this chapter, we will consider the case of the free wreath product quantum groups defined
by Bichon in [21]. This product was introduced as the most natural way to build the quantum
automorphism group of the n−times disjoint union of a finite connected graph. The free wreath
product o∗ associates to a compact quantum group G and a compact subgroup F of S+

N a new
compact quantum group G o∗ F. It is constructed as an analogue of the wreath products of
classical groups. An example of this construction was studied by Banica and Vergnioux in
[16], and then by Banica, Belinschi, Capitaine and Collins in [9]: they focused on the free
wreath product of the dual of the cyclic group Z/sZ with S+

N . Banica and Vergnioux obtained
the fusion rules and Banica, Belinschi, Capitaine and Collins obtained interesting probability
results involving free compound Poisson variables.

François Lemeux generalized these results in [55] to the case of a free wreath product between
the dual Γ̂ of a discrete groupe Γ and S+

N . Once again he was able to find the fusion rules of the
quantum group as well as some operator algebraic properties by using certain results of Brannan
on S+

N (see [25]). We investigate here the general problem of the free wreath product of any
compact quantum group of Kac type G with S+

N . In particular we construct the intertwiner
spaces of G o∗ S+

N from the knowledge of the intertwiner spaces of G, (see Theorem 6.16). We
give also an expression of the Haar state of G o∗ S+

N from the Haar state of S+
N . This yields the

equality in law

χuo∗v ∼ χu � χv,

with u being a representation of G, v the fundamental representation of S+
N (with χ denoting

in each case the associated character) and � is the free multiplicative convolution of two non-
commutative variables . This is a positive answer to a special case of a conjecture raised by
Banica and Bichon in [10] (See Subsection 6.4.1).
Using the description of the intertwiner spaces, François Lemeux and Jonas Wahl also obtained
in [94],[56] further interesting results on the von Neumann algebra and C∗−algebras associated to
G o∗ S+

N . The chapter is organised as follows : the first section is dedicated to some preliminaries
and notations. The second section gives some classical results and proofs that provide some
insight into the final general description of the intertwiner spaces for the free wreath products.
The description of the intertwiner spaces for the free wreath products G o∗ S+

N is the main result
of the third section. In the fourth section, we give the probabilistic applications that one can
deduce from the latter description.
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6.1 Preliminaries

In this section, we recall a few facts and results about compact quantum groups and about free
wreath products by the quantum permutation groups S+

N , and we set the notations.
A compact quantum group (see [100]), or Woronowicz-C∗-algebra, is a pair G = (C(G),∆)
where C(G) is a unital separable C∗-algebra and ∆ : C(G) → C(G) ⊗min C(G) is a unital ∗-
homomorphism (i.e. it satisfies the coassociativity relation (id⊗∆)◦∆ = (∆⊗ id)◦∆), and such
that the cancellation property holds (i.e span{∆(a)(b ⊗ 1) : a, b ∈ C(G)} and span{∆(a)(1 ⊗
b) : a, b ∈ C(G)} are norm dense in C(G) ⊗ C(G)). These assumptions allow to prove the
existence and uniqueness of a Haar state h : C(G) → C satisfying the bi-invariance relations
(h ⊗ id) ◦ ∆(·) = h(·)1 = (id⊗h) ◦ ∆(·). In this chapter we will deal with compact quantum
groups of Kac type, which means that their Haar state h is a trace. Let λh : C(G)→ B(L2(G, h))
be the GNS representation associated to the Haar state h of G = (C(G),∆) (also called the left
regular representation). The reduced C∗-algebra associated to G is then defined by Cr(G) =
λh(C(G)) ' C(G)/Ker(λh) and the von Neumann algebra of G by L∞(G) = Cr(G)′′. One can
prove that Cr(G) is again a Woronowicz-C∗-algebra whose Haar state extends to L∞(G). We
will denote simply by ∆ and h the coproduct and Haar state on Cr(G).

An N -dimensional (unitary) correpresentation u = (uij)ij of G is a (unitary) matrix u ∈
MN (C(G)) ' C(G)⊗ B(CN ) such that for all i, j ∈ {1, . . . , N}, one has

∆(uij) =

N∑
k=1

uik ⊗ ukj .

The matrix u = (u∗ij) is called the conjugate of u ∈MN (C(G)) and in general it is not necessarily
unitary (even if u is). However all the compact quantum groups we will deal with are of Kac
type and in this case the conjugate of a unitary correpresentation is also unitary (see [65]) .

An intertwiner between two correpresentations

u ∈MNu(C(G)) and v ∈MNv(C(G))

is a matrix T ∈ MNu,Nv(C) such that v(1 ⊗ T ) = (1 ⊗ T )u. We say that u is equivalent to
v, and we note u ∼ v, if there exists an invertible intertwiner between u and v. We denote
by HomG(u, v) the space of intertwiners between u and v. A correpresentation u is said to be
irreducible if HomG(u, u) = C id. We denote by Irr(G) the set of equivalence classes of irreducible
correpresentations of G.

As a Woronowicz-C∗-algebra, C(G) contains a dense ∗-subalgebra denoted by Pol(G) and
linearly generated by the coefficients of the irreducible correpresentations of G (see [65] for
details on the subject). The coefficients of a G-representation r acting on a Hilbert space Hr are
given by (id⊗ϕ)(r) for some ϕ ∈ B(Hr)

∗. This algebra has a Hopf-∗-algebra structure and in
particular there is a ∗-antiautomorphism κ : Pol(G) → Pol(G) which acts on the coefficients of
an irreducible correpresentation r = (rij) as κ(rij) = r∗ji. This algebra is also dense in L2(G, h).
Since h is faithful on the ∗-algebra Pol(G), one can identify Pol(G) with its image in the GNS-
representation λh(C(G)). We will denote by χr the character of the irreducible correpresentation
r ∈ Irr(G), that is χr = (id⊗Tr)(r).

A fundamental and basic family of examples of compact quantum groups is recalled in the
following definition:

Definition 6.1. ([96]) Let N ≥ 2. S+
N is the compact quantum group (C(S+

N ),∆), where
C(S+

N ) is the universal C∗-algebra generated by N2 elements uij such that the matrix u = (uij)
is unitary and uij = u∗ij = u2

ij ,∀i, j (i.e. u is a magic unitary) and such that the coproduct ∆ is
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given by the usual relations making u a finite dimensional correpresentation of C(S+
N ), that is

∆(uij) =
∑N

k=1 uik ⊗ ukj, ∀i, j ≤ N .

In the cases N = 2, 3, one obtains the usual algebras C(Z2), C(S3). If N ≥ 4, one can find
an infinite dimensional quotient of C(S+

N ) so that C(S+
N ) is not isomorphic to C(SN ), see e.g.

[96], [7].
In [95], Wang defined the free product G = G1∗G2 of compact quantum groups, showed that

G is still a compact quantum group and gave a description of the irreducible correpresentations
of G as alternating tensor products of nontrivial irreducible correpresentations of G1 and G2.
For a correpresentation v of G, denote by v̄ the contragredient correpresentation.

Theorem 6.2. ([95]) Let G1 and G2 be compact quantum groups. Then the set Irr(G) of
irreducible correpresentations of the free product of quantum groups G = G1∗G2 can be identified
with the set of alternating words in Irr(G1) ∗ Irr(G2) and the fusion rules can be recursively
described as follows:

• If the words x, y ∈ Irr(G) end and start in Irr(Gi) and Irr(Gj) respectively with j 6= i
then x ⊗ y is an irreducible correpresentation of G corresponding to the concatenation
xy ∈ Irr(G).

• If x = vz and y = z′w with z, z′ ∈ Irr(Gi), then there is a recurrence formula

x⊗ y =
⊕

16=t⊆z⊗z′
vtw ⊕ δz,z′(v ⊗ w),

where the sum runs over all non-trivial irreducible correpresentations t ∈ Irr(Gi) contained
in z ⊗ z′, with multiplicity.

In this chapter, we are interested in the free wreath product of quantum groups:

Definition 6.3. ([21, Definition 2.2]) Let A be a Woronowicz-C∗-algebra, N ≥ 2 and νi : A→
A∗N be the canonical inclusion of the i-th copy of A in the free product A∗N , i = 1, . . . , N .

The free wreath product of A by C(S+
N ) is the quotient of the C∗-algebra A∗N ∗C(S+

N ) by the
two-sided ideal generated by the elements

νk(a)uki − ukiνk(a), 1 ≤ i, k ≤ N, a ∈ A.

It is denoted by A ∗w C(S+
N ).

In the next result, we use the Sweedler notation ∆A(a) =
∑
a(1) ⊗ a(2) ∈ A⊗A.

Theorem 6.4. ([21, Theorem 2.3]) Let A be a Woronowicz-C∗-algebra, then the free wreath
product A ∗w C(S+

N ) admits a Woronowicz-C∗-algebra structure: if a ∈ A, then

∆(uij) =
N∑
k=1

uik ⊗ ukj ,∀i, j ∈ {1, . . . , N},

∆(νi(a)) =

N∑
k=1

νi(a(1))uik ⊗ νk(a(2)),

ε(uij) = δij , ε(νi(a)) = εA(a), S(uij) = uji, S(νi(a)) =
N∑
k=1

νk(SA(a))uki,

u∗ij = uij , νi(a)∗ = νi(a
∗).

Moreover, if G is a full compact quantum group, then G o∗ S+
N = (A ∗w C(S+

N ),∆) is also a full
compact quantum group.
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Remark 6.5. The homomorphisms νi : A → A∗N ⊆ A ∗w C(S+
N ) are injective and we have

νi = π ◦ ν̄i, where

ν̄i = q ◦ νi : A→ A ∗w C(S+
N ),

q : A∗N ∗ C(S+
N ) → A ∗w C(S+

N ) is the quotient map and π : A ∗w C(S+
N ) = id ∗ ε. Hence the

morphisms ν̄i : A→ A ∗w C(S+
N ) are injective.

Recall that the case of the dual of a discrete group G = Γ̂ is investigated in [55]. In particular,
a description of the irreducible representations is given and several operator algebraic properties
are obtained from this description.

6.2 Classical wreath products by permutation groups.

In this section we provide a probabilistic formula for the moments of the character coming from
certain wreath products of classical groups. This is in particular a hint for the formula in the
free case. Recall that we denote by P(k) the set of all partitions of the set {1, . . . , k}.

Let G be a classical group, n ≥ 1. Then Sn acts on Gn by the automorphisms

s : σ ∈ Sn 7→ s(σ).(g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)). (∗)

Definition 6.6. The wreath product between G and Sn, denoted by G o Sn, is the semi-direct
product of Gn and Sn, where Sn acts on Gn by (∗). In other words,

G o Sn = {((g1, . . . , gn), σ), gi ∈ G, σ ∈ Sn},

with the product

((g1, . . . , gn), σ) · ((g′1, . . . , g′n), µ) = ((g1g
′
σ−1(1), . . . , gng

′
σ−1(n)), σµ).

If G is a compact group, G o Sn is compact as well and thus there exists a Haar measure on
G o Sn. It is easy to see that G o Sn is isomorphic to G × · · · × G × Sn as a measure space and
that the Haar measure on G o Sn is given by dλGoSn =

⊗
i dgi ⊗ dσ, where dg denotes the Haar

measure on G and dσ the normalized counting measure on Sn.
If α : G→ U(V ) is a unitary representation of G, then G o Sn acts on V ⊗n via

αn((g1, . . . , gn), σ)(v1 ⊗ · · · ⊗ vn) := α(g1)(vσ−1(1))⊗ · · · ⊗ α(gn)(vσ−1(n)).

We will use the following notation in the sequel:

Notation 6.7. Let β : G→ U(H) be a unitary representation of a compact group G; then:

• χβ denotes the character of β,

• Fβ is the exponential generating serie of the moments of χβ with respect to the Haar
measure

The purpose of this section is to describe the distribution of χαn under dλGoSn , when α is a
represention of G. We will assume that α(G) ⊆ GLp(R) for some p ≥ 1. In particular χαn is
real. The computations are similar in the complex setting; we just have to deal separately with
the real and imaginary part of χα.
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Notation 6.8. For each partition ν ∈ P(k) with blocks B1, . . . Br and sequence of numbers
(c1, . . . , cn, . . . ) of length greater than k we write

cν = c|B1|c|B2| . . . c|Br|,

with |Bi| being the cardinal of the block Bi.

Proposition 6.9. The exponential serie of the moments of χαn is given by

Fαn(x) =
∑

mαn(k)
xk

k!
,

with
mαn(k) =

∑
ν∈P(k),l(ν)≤n

mα(ν),

where l(π) is the length of a partition π (namely the number of blocks of π).

Proof. Let t = ((g1, . . . , gn), σ) ∈ G o Sn, we have for x > 0 small enough. Writing the action of
t through αn in block matrices yields the following result

Fαn(x) =EGoSn (exp(xTr(αn(t)))) =

∫
GoSn

exp

x ∑
1≤i≤n
σ(i)=i

Tr(α(gi))

∏ dgidσ

=

∫
Sn

∏
i fixed point of σ

(∫
Gi

exp(x× Tr(α(gi)))dgi

)
dσ

=

∫
Sn

∏
i fixed point of σ

Fα(x)dσ

=

∫
Sn

Fα(x)# fixed points of σdσ

=

∫
Sn

exp (log(Fα(x))# fixed points of σ) dσ.

Considering log(Fα(x)) as fixed in the last integral yields the equality

Fαn(x) = FSn(log(Fα(x))), (6.2.1)

where FSn denotes the exponential generating serie of the moments of the fundamental repre-
sentation Sn ↪→Mn(C). Now, we can exploit the general facts that

Fβ(x) =
∑

mβ(k)
xk

k!
(6.2.2)

and

logFβ(x) =
∑

cβ(k)
xk

k!
, (6.2.3)

where (mβ(k))k≥1 are the moments of the law of χβ and (cβ(k))k≥1 are the classical cumulants
of this law. The latter is the only sequence of real numbers satisfying

mβ(k) =
∑

π∈P(k)

cβ(π) (6.2.4)
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for all k ≥ 1. From the left-hand side of (6.2.1) and (6.2.2) we get

Fαn(x) =
∑
k

mαn(k)
xk

k!
,

and from the right-hand of (6.2.1) with (6.2.3) we compute

Fαn(x) =
∑
r

mSn(r)

(∑
cα(u)x

u

u!

)r
r!

=
∑
k

xk

k!

∑
r

mSn(r)

r!

∑
u1×1+···+uk×k=k∑
ui=r

k!
r!∏
ui!

(
cα(1)

1!

)u1
. . .

(
cα(k)

k!

)uk
.

The last equality above being due to the multinomial expansion. Hence, after identifying coef-
ficients we obtain:

mαn(k) =
∑
r

mSn(r)
∑

u1×1+···+uk×k=k∑
ui=r

k!
1

u1! . . . ur!

(
cα(1)

1!

)u1
. . .

(
cα(k)

k!

)uk
. (6.2.5)

We say that a partition p ∈ P(k) is of type (1u1 , . . . , kur), if it is a partition having u1 blocks
of cardinal 1, u2 of cardinal 2 and so on. The number of partitions of {1, . . . , k} of type
(1u1 , . . . , kur) is exactly

k!

u1! . . . uk!

1

1!u1 . . . k!uk
,

(see e.g. page 22 in [60]). Thus summing over every types of partitions in (6.2.5) yields:

mαn(k) =
∑
r

mSn(r)
∑

π∈P(k),l(π)=r

cα(π). (6.2.6)

Using the fact that (see [15], [72])

mSn(r) = #{partitions of {1, . . . , r} having at most n blocks}, (6.2.7)

we can transform (6.2.6) into

mαn(k) =
∑
r

∑
ν≤1r
l(ν)≤n

∑
π≤1k
l(π)=r

cα(π) =
∑
r

∑
π≤1k
l(π)=r

∑
π≤ν≤1k
l(ν)≤n

cα(π)

=
∑
π≤1k

∑
π≤ν≤1k
l(ν)≤n

cα(π) =
∑
ν≤1k
l(ν)≤n

∑
π≤ν

cα(π)

=
∑
ν≤1k
l(ν)≤n

mα(ν).

We can deduce from Proposition6.9 the aymptotic law of χαn when n goes to infinity :
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Corollary 6.10. The following convergence in moments holds:

χαn −→
n→∞

P(χα),

where P(χα) is the compound Poisson law with respect to the parameter 1 and the law α.

Proof. We have

mαn(k) =
∑

ν≤1k,l(ν)≤n

mα(ν)

−→
n→∞

∑
ν≤1k

mα(ν) = mP(χα).

Remark 6.11. In the next section we will describe the intertwiner spaces for a free wreath
product G o∗ S+

N . The result and proofs can be easily adapted to get the same result in the
classical case; one only needs to use all partitions instead of non-crossing ones.

6.3 Intertwiner spaces in G o∗ S+
N

Let G = (C(G), v) be a compact matrix quantum group of Kac type, generated by a unitary
v acting on H. In this section, the C∗-algebras associated with compact quantum groups
are considered in their maximal versions. A generating magic unitary u of the free quantum
permutation group S+

N acting on CN is a matrix (uij)1≤i,j≤N of orthogonal projections of C(S+
N ),

such that the algebra generated by {uij} is dense in C(S+
N ) and such that∑

i

uij =
∑
j

uij = 1, uijuik = δjkuij , uijulj = δiluij .

We recall that the correpresentation

ω := (ωijkl)
1≤k,l≤dG
1≤i,j≤N = (uijv

(i)
kl )i,j,k,l

acting on W := CN ⊗H, is the generating matrix of the free wreath product quantum groups
G o∗ S+

N , see [21].

Let Rep(G) be the set of equivalence classes of unitary finite dimensional (not necessarily
irreducible) correpresentations of G and we denote by Hα = 〈Y α

1 , . . . , Y
α
dα
〉 the representation

space of α, for α ∈ Rep(G). We have a natural family of G o∗ S+
N -representations (see the proof

of Theorem 2.3 in [21]) given by

{r(α) :=
(
uijα

(i)
kl

)
: α ∈ I}. (6.3.1)

Notice that r(α) acts on the vector space CN ⊗ Hα. These correpresentations will be called
basic correpresentations for G o∗ S+

N .

Let {Tp}p∈NC(k,l) be the basis of Hom(u⊗k, u⊗l) for k, l ∈ N. For each partition p =
{B1, . . . , Br}, the blocks of p are ordered by the lexicographical order.

We want to describe the intertwiner spaces between tensor products of basic correpresenta-
tions of G o∗ S+

N . These spaces will be described by linear maps associated with certain non-
crossing partitions and with G-morphisms. Indeed, let [α] := (α1, . . . , αk) and [β] := (β1, . . . , βl)
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be tuples of G-representations such that the points of p are decorated by these correpresenta-
tions. This means that in each block Bi, certain correpresentations αi1, . . . , β

i
1, . . . , are attached

to the upper and lower points respectively. We make the convention that if k = 0, then the
trivial correpresentation decorates the upper part of p ∈ NC(0, l) and an similar convention if
l = 0. The non-crossing partitions describing intertwiners in G o∗ S+

N will also be such that their
blocks are decorated by G-morphisms. To be more precise, let us introduced some notation.

Notation 6.12. Let p ∈ NC(k, l); its blocks are denoted by Bi for 1 ≤ i ≤ r. We will simplify
the notation Bi into B when the context is clear. We denote by:

• B = UB ∪ LB the upper and lower parts of each block B.

• HUB =
⊗

i∈UB H
αi the tensor product of spaces Hαi, and similarly we write HLB =⊗

j∈LB H
βj .

• α(UB) =
⊗

i∈UB αi the tensor product of correpresentations αi and similarly we write
β(LB) =

⊗
j∈LB βj.

Furthermore, we assume that “attached” to each block B there is a G-morphism

SB = α(UB)→ β(LB) ∈ B(HUB , HLB ) (6.3.2)

and we put

S =
⊗
B

SB :
⊗
B

α(UB)→
⊗
B

β(LB) (6.3.3)

with the order on the blocks we gave above. We say that the blocks of p are decorated by
[S] = (S1, . . . , Sr) where r is the number of blocks in p.

Definition 6.13. We say that the partition p decorated by representations [α], [β] is admissible
if ∀B ∈ p,HomG(α(UB);α(LB)) 6= 0.

Therefore, we can consider

Tp ⊗ S ∈ B

(
(CN )⊗k ⊗

⊗
B

HUB ; (CN )⊗l ⊗
r⊗
B

HLB

)
.

Remark 6.14. Notice that if the G-morphisms in B(HUB , HLB ) run over a basis of intertwiners
α(UB)→ β(LB) then the family (Tp ⊗ S)p,S is free.

We shall twist this linear map to obtain a morphism

T̃p ⊗ S ∈ HomGo∗S+
N

(r(α1)⊗ · · · ⊗ r(αk), r(β1)⊗ · · · ⊗ r(βl)).

Notation 6.15. Let p ∈ NC(k, l) be decorated by G-representations [α], [β] and morphisms [S]
as in the above notation. One can consider a unitary tUp acting on vectors xi ∈ CN , yi ∈ Hαi,
i = 1, . . . , k

tUp : (CN ⊗Hα1)⊗ · · · ⊗ (CN ⊗Hαk)→ (CN )⊗k ⊗
⊗
B

HUB ,

k⊗
i=1

(xi ⊗ yi) 7→
k⊗
i=1

xi ⊗
⊗
B

⊗
i′∈UB

yi′
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and a unitary tLp acting on vectors xj ∈ CN , yj ∈ Hβj , j = 1, . . . , l

tLp : (CN ⊗Hβ1)⊗ · · · ⊗ (CN ⊗Hβl)→ (CN )⊗l ⊗
⊗
B

HLB ,

l⊗
j=1

(xj ⊗ yj) 7→
l⊗

j=1

xj ⊗
⊗
B

⊗
j′∈LB

yj′ .

We set

Up,S := (tpL)∗ ◦ (Tp ⊗ S) ◦ tpU
∈ B

(
(CN ⊗Hα1)⊗ · · · ⊗ (CN ⊗Hαk), (CN ⊗Hβ1)⊗ · · · ⊗ (CN ⊗Hβl)

)
.

We can now prove the following result:

Theorem 6.16. Let G = (C(G),∆) be a compact quantum group of Kac type. Let α1, . . . , αk
and β1, . . . , βl be finite dimensional correpresentations in Rep(G). We set [α] = (α1, . . . , αk)
and [β] = (β1, . . . , βl). Then

HomGo∗S+
N

(r(α1)⊗ . . .⊗ r(αk); r(β1)⊗ · · · ⊗ r(βl)) (6.3.4)

= span{Up,S : p ∈ NCG([α], [β]), S as below} (6.3.5)

where Up,S = (tpL)∗ ◦ (Tp ⊗ S) ◦ tpU with

• the isomorphisms tpU , t
p
L defined in Notation 6.15,

• NCG([α], [β]) consists of non-crossing partitions in NC(k, l) decorated with correpresen-
tations [α], [β] on the upper and lower points respectively,

• S =
⊗

B SB :
⊗

B α(UB)→
⊗

B β(LB) as in (6.3.3), where the G-morphisms in B(UB, LB)
which decorate the blocks B ∈ p run over intertwiners in HomG(α(UB), β(LB)).

Proof. We first prove that

Up,S ∈ HomGo∗S+
N

(r(α1)⊗ · · · ⊗ r(αk); r(β1)⊗ · · · ⊗ r(βl)),

which is the inclusion of the right hand space (6.3.5) in the left hand space (6.3.4).

The Frobenius reciprocity for C∗-tensor categories with conjugates provide the following
isomorphisms:

HomGo∗S+
N

(r(α1)⊗ · · · ⊗ r(αk); r(β1)⊗ · · · ⊗ r(βl))

' HomGo∗S+
N

(
1; r(α1)⊗ · · · ⊗ r(αk)⊗ r(β1)⊗ · · · ⊗ r(βl)

)
' HomGo∗S+

N
(1; r(ᾱk)⊗ · · · ⊗ r(ᾱ1)⊗ r(β1)⊗ · · · ⊗ r(βl)) ,

HomG(α1 ⊗ · · · ⊗ αk;β1 ⊗ · · · ⊗ βl) ' HomG(1; ᾱk ⊗ · · · ⊗ ᾱ1 ⊗ β1 ⊗ · · · ⊗ βl).

Hence, it is enough to prove that

tpL(Tp ⊗ ξ) ∈ HomGo∗S+
N

(1; r(α1)⊗ · · · ⊗ r(αk)) (6.3.6)
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for all k ∈ N, p ∈ NC(k) and all fixed vectors

ξ =
⊗
B

ξ(LB) : C→
⊗
B

HLB .

Moreover it is enough to prove (6.3.6) for the one block partition 1k since one can recover
any p ∈ NC by tensor products and compositions of partitions 1k, k ≥ 1 and id.

We now fix (ei)
N
i=1 a basis of CN and (Y α

j )dαj=1 a basis of Hα, for any α ∈ Rep(G). Let us

prove taht t1kL (Tp ⊗ ξ) ∈ HomGo∗S+
N

(1; r(α1)⊗ · · · ⊗ r(αk)) for any

ξ =
∑
[j]

λk[j]Y
α1
j1
⊗ · · · ⊗ Y αk

jk
∈ HomG(1;α1 ⊗ · · · ⊗ αk).

Setting T 1k
ξ := t1kL (Tp ⊗ ξ) yields

T 1k
ξ ≡

∑
i,[j]

λk[j](ei ⊗ Y
α1
j1

)⊗ · · · ⊗ (ei ⊗ Y αk
jk

),

so that

rα1 ⊗ · · · ⊗ rαk(T 1k
ξ ⊗ 1) =

∑
i,[j]

λk[j]
∑
[r],[s]

(es1⊗Y α1
r1 )⊗ · · · ⊗ (esk ⊗ Y

αk
rk

)

⊗
(
us1i(α1)

(s1)
r1j1

. . . uski(αk)
(sk)
rkjk

)
.

But the magic unitary u satisfies for all s, t, usiuti = δstusi,
∑

i usi = 1 and then combining this
with the commuting relations in the free wreath product C(G) ∗w C(S+

N ), we get

rα1 ⊗ · · · ⊗ rαk(T 1k
ξ ⊗ 1) =

∑
[j]

λk[j]
∑
[r],s1

(es1 ⊗ Y α1
r1 )⊗ · · · ⊗ (es1 ⊗ Y αk

rk
) (6.3.7)

⊗
(

(α1)
(s1)
r1j1

. . . (αk)
(s1)
rkjk

1
)

=
∑
s1

∑
[j]

λk[j]
∑
[r]

(es1 ⊗ Y α1
r1 )⊗ · · · ⊗ (es1 ⊗ Y αk

rk
) (6.3.8)

⊗
(

(α1)
(s1)
r1j1

. . . (αk)
(s1)
rkjk

)
. (6.3.9)

(6.3.10)

Now, since

ξ =
∑
[j]

λk[j]Y
α1
j1
⊗ · · · ⊗ Y αk

jk
∈ HomG(1;α1 ⊗ · · · ⊗ αk), (6.3.11)

applying (t1kL )−1 in (6.3.7), using (6.3.11) and then applying t1kL yield

rα1 ⊗ · · · ⊗ rαk(T 1k
ξ1k
⊗ 1) =

∑
[r],s1

λk[r](es1 ⊗ Y
α1
r1 )⊗ · · · ⊗ (es1 ⊗ Y αk

rk
)⊗ 1

= T 1k
ξ ⊗ 1.

This proves that T 1k
ξ ∈ HomGo∗S+

N
(1; r(α1)⊗ · · · ⊗ r(αk)).
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A straightforward computation shows that the collection of G o∗ S+
N -intertwiners spaces

span
{
Up,S : p, S as in (6.3.5)

}
is stable by composition, tensor product and duality. There-

fore this collection of vector spaces defines a rigid monoidal C∗-tensor category T , with objects
indexed by families [α] of G-representations.
If one applies Woronowicz’s Tannaka-Krein duality to this category T , we get a compact matrix
quantum group (H,Ω) generated by a unitary Ω corresponding to r(v) ∈ B(CN ⊗ H) ⊗ C(H)
and a family of correpresentations (Rαi)i∈I such that

HomH(Rα1 ⊗ . . .⊗Rαk ;Rβ1 ⊗ · · · ⊗Rβl)
= span

{
Up,S : p, S as in (6.3.5)

}
,

with p ∈ NC(k, l), S :
⊗

B α(UB)→
⊗

B β(LB), [α] = (α1, . . . , αk), [β] = (β1, . . . , βl).

We proved above that

Up,S ∈ HomGo∗S+
N

(r(α1)⊗ · · · ⊗ r(αk); r(β1)⊗ · · · ⊗ r(βl)).

In particular, there is by universality a (surjective) morphism

π1 : C(H)→ C(G o∗ S+
N ), Ωijkl 7→ ωijkl.

To prove the theorem we shall construct a surjective morphism π2 : C(G o∗ S+
N ) → C(H) such

that

π1 ◦ π2 = id = π2 ◦ π1.

We define the following elements in C(H)

V
(i)
kl :=

∑
j

Ωijkl and Uijk =
∑
l

ΩijklΩ
∗
ijkl. (6.3.12)

We shall prove that the generating relations in C(G o∗ S+
N ) are also satisfied by the elements

V
(i)
kl and Uijk in C(H).

Since the generating matrix v of G is unitary, we get that ξ =
∑

b Yb ⊗ Ȳb is a fixed vector
of v ⊗ v̄ and thus ξ ⊗ ξ ∈ Hom(1; v ⊗ v̄ ⊗ v ⊗ v̄) ' Hom(v; v ⊗ v̄ ⊗ v). Via this isomorphism, we
identify ξ ⊗ ξ with Y 7→

∑
c Yc ⊗ Yc ⊗ Y .

We then have an intertwiner T := tpL(Tp ⊗ ξ ⊗ ξ) ∈ Hom(Ω; Ω⊗ Ω̄⊗ Ω) ⊆ T with

p =


 ,

i.e. with Notation 6.12 and making plain the G-morphisms on the block p,

P =


v

v v̄ v

 ;

corresponding to the linear map

T (Y ⊗ ea) =
∑
c

(ea ⊗ Yc)⊗ (ea ⊗ Yc)⊗ (ea ⊗ Y ).
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We obtain for all a = 1, . . . , N and b = 1, . . . , dG:∑
[i],[k],c

(ei1 ⊗ Yk1)⊗ (ei2 ⊗ Yk2)⊗ (ei3 ⊗ Yk3)⊗ Ωi1ak1c Ω∗i2ak2c Ωi3ak3b

=
∑
i,k,r

(ei ⊗ Yr)⊗ (ei ⊗ Yr)⊗ (ei ⊗ Yk)⊗ Ωiakb

so that for all [i] ∈ {1, . . . , N}3, [k] ∈ {1, . . . , dG}2, a ∈ {1, . . . , N} and b ∈ {1, . . . , dG}:

(∑
c

Ωi1ak1c Ω∗i2ak2c

)
Ωi3ak3b = δi1,i2,i3δk1,k2Ωi3ak3b. (6.3.13)

and taking adjoints:

Ω∗i3ak3b

(∑
c

Ωi2ak2c Ω∗i1ak1c

)
= δi1,i2,i3δk1,k2Ω∗i3ak3b. (6.3.14)

Considering now

P ′ =


v

v v v̄

 ,

we can get the same way, for all [i] ∈ {1, . . . , N}3, [k] ∈ {1, . . . , dG}2, a ∈ {1, . . . , N} and
b ∈ {1, . . . , dG}, using tpL(Tp′ ⊗ ξ ⊗ ξ) ∈ Hom(Ω; Ω⊗ Ω⊗ Ω̄) ⊆ T ,

Ωi3ak3b

(∑
c

Ωi1ak1c Ω∗i2ak2c

)
= δi1,i2,i3δk1,k2Ωi3ak3b, (6.3.15)

and taking adjoints: (∑
c

Ωi2ak2c Ω∗i1ak1c

)
Ω∗i3ak3b = δi1,i2,i3δk1,k2Ω∗i3ak3b. (6.3.16)

We shall obtain from (6.3.13), (6.3.14), (6.3.15), (6.3.16) all the necessary relations in C(H)
to reconstruct the free wreath product G o∗ S+

N .
From these relations, we see in particular that the elements Uijk =

∑
c ΩijkcΩ

∗
ijkc do not

depend on k since

UijkUijk′ =
∑
c,d

ΩijkcΩ
∗
ijkcΩijk′dΩ

∗
ijk′d

=
∑
d

(∑
c

ΩijkcΩ
∗
ijkcΩijk′d

)
Ω∗ijk′d

=
∑
d

Ωijk′dΩ
∗
ijk′d = Uijk′ (by (6.3.13)),

and similarly UijkUijk′ = Uijk, using (6.3.15). We then obtain Uijk = Uijk′ . Let us simply write
Uij := Uijk. Notice that the case k = k′ above shows that Uij is an orthogonal projection (the
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relation U∗ij = Uij is clear). In fact, the matrix (Uij) is a magic unitary, since it is a unitary
whose entries are orthogonal projections.

We now prove that for all i = 1, . . . , N and all εj , ε
′
k ∈ {1, ∗},

HomG

(
vε1 ⊗ · · · ⊗ vεk ; vε

′
1 ⊗ · · · ⊗ vε′l) ⊆ HomHi(V

(i)ε1 ⊗ · · · ⊗ V (i)εk ;V (i)ε′1 ⊗ · · · ⊗ V (i)ε′l

)
,

where Hi is the compact matrix quantum groups whose underlying Woronowicz-C∗-algebra is
generated by the coefficients of V (i). By Frobenius reciprocity, it is enough to prove that any
fixed vector in G is fixed in Hi.

If ξk =
∑

[j] λ[j]Yj1 ⊗ · · · ⊗ Yjk ∈ Hom(1; vε1 ⊗ · · · ⊗ vεk), we have:

∑
[r][j]

λ[j]Yr1 ⊗ · · · ⊗ Yrk ⊗ v
ε1
r1j1

. . . vεkrkjk =
∑
[r]

λ[r]Yr1 ⊗ · · · ⊗ Yrk ⊗ 1,

i.e. ∀[r] ∈ {1, . . . , dG}k, we have the following relations in C(G):

∑
[j]

λ[j]v
ε1
r1j1

. . . vεkrkjk = λ[r]. (6.3.17)

Now, we use the morphism (tpL)∗ ◦ (Tp ⊗ ξk) ∈ T , with p = 1k ∈ NC(k) i.e.

(tpL)∗ ◦ (ξk ⊗ Tp) =
∑
i[j]

λ[j](ei ⊗ Yj1)⊗ · · · ⊗ (ei ⊗ Yjk)

∈ Hom(1; Ωε1 ⊗ · · · ⊗ Ωεk) ⊆ T .

We get

∑
[r][t]

(er1 ⊗ Yt1)⊗ · · · ⊗ (erk ⊗ Ytk)⊗
∑
i[j]

λ[j]Ω
ε1
r1it1j1

. . .Ωεk
rkitkjk

(6.3.18)

=
∑
r[t]

λ[t](er ⊗ Yt1)⊗ · · · ⊗ (er ⊗ Ytk)⊗ 1. (6.3.19)

Notice that the relations (6.3.13), (6.3.14), (6.3.15), (6.3.16) yield for ε = 1, ∗ and all i, j, k, l:

UijΩ
ε
ijkl = Ωε

ijkl = Ωε
ijklUij . (6.3.20)

Then using these commuting relations and the fact that (Uij) is a magic unitary, we get from
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(6.3.18):∑
[r][t]

(er1 ⊗ Yt1)⊗ · · · ⊗ (erk ⊗ Ytk)⊗
∑
i[j]

λ[j]Ω
ε1
r1it1j1

. . .Ωεk
rkitkjk

=
∑
[r][t]

(er1 ⊗ Yt1)⊗ · · · ⊗ (erk ⊗ Ytk)⊗
∑
i[j]

λ[j](Ω
ε1
r1it1j1

Ur1i) . . . (Ω
εk
rkitkjk

Urki)

=
∑
r1[t]

(er1 ⊗ Yt1)⊗ · · · ⊗ (er1 ⊗ Ytk)⊗
∑
i[j]

λ[j](Ω
ε1
r1it1j1

. . .Ωεk
r1itkjk

)(Ur1i . . . Ur1i)

=
∑
r1[t]

(er1 ⊗ Yt1)⊗ · · · ⊗ (er1 ⊗ Ytk)⊗
∑
[i][j]

λ[j](Ω
ε1
r1it1j1

. . .Ωεk
r1itkjk

)(Ur1i1 . . . Ur1ik)

=
∑
r1[t]

(er1 ⊗ Yt1)⊗ · · · ⊗ (er1 ⊗ Ytk)⊗
∑
[i][j]

λ[j](Ω
ε1
r1i1t1j1

Ur1i1) . . . (Ωεk
r1iktkjk

Ur1ik)

=
∑
r1[t]

(er1 ⊗ Yt1)⊗ · · · ⊗ (er1 ⊗ Ytk)⊗
∑
[j]

λ[j]V
(r1)ε1
t1j1

. . . V
(r1)εk
tkjk

.

Hence with (6.3.19), we obtain ∀[t] ∈ {1, . . . , dG}k∑
[j]

λ[j]V
(r1)ε1
t1j1

. . . V
(r1)εk
tkjk

= λ[t],

so that ξk =
∑

[j] λ[j]Yj1 ⊗ · · · ⊗ Yjk ∈ HomHr
(
1;V (r)ε1 ⊗ · · · ⊗ V (r)εk

)
for all r = 1, . . . , N .

Then, we obtain that Rep(G) ⊆ Rep(Hi) ⊆ Rep(H) as full sub-categories. Woronowicz’s
Tannaka-Krein duality theorem then implies that for all i = 1, . . . , N there exists a morphism

πi : C(G)→ C(Hi) ⊆ C(H)

sending v to V (i).

Now, we prove that V
(i)
kl Uij = Ωijkl = UijV

(i)
kl . This follows from (6.3.20):

V
(i)
kl Uij =

∑
J

ΩiJklUij = ΩijklUij = Ωijkl

and similarly

UijV
(i)
kl = Ωijkl.

It follows from what we have proved above that there exist morphisms

• πi : C(G)→ C(Hi) such that πi

(
v

(i)
kl

)
= V

(i)
kl , for all i = 1, . . . , N ,

• πN+1 : C(S+
N )→ C(H) such that πN+1(uij) = Uij .

Thanks to the commuting relations we obtained above, these morphisms induce a morphism

π2 : C(G o∗ S+
N ) → C(H), such that π2

(
v

(i)
kl uij

)
= V

(i)
kl Uij . By construction, we then get

π1 ◦ π2 = id = π2 ◦ π1 and the proof is complete.

Remark 6.17. In the case where G is the dual of a discrete (classical) group G = Γ̂, we
recover the results of [16] and [55]. Indeed, in this case, the irreducible correpresentations of
G = (C∗(Γ),∆) are the one-dimensional group like correpresentations ∆(g) = g ⊗ g, g ∈ Γ, the
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trivial one is the neutral element e and the tensor product of two irreducible correpresentations
is their product in Γ. Any morphism

S[g],[h] : C ' C⊗k → C⊗l ' C, g1 . . . gk → h1 . . . hl

is determined by the image of 1 ∈ C and the tensor products S[g],[h]⊗Tp are scalar multiplication
of the linear maps Tp. The space

Hom
Γ̂o∗S+

N
(r(g1)⊗ · · · ⊗ r(gk); r(h1)⊗ · · · ⊗ r(hl))

is generated by the maps Tp where p ∈ NC(k, l) is an admissible diagram in NC
Γ̂

as in Definition
6.13. In this setting, p is admissible if p ∈ NC(k, l) has the additional rules that if one decorates
the points of p by the elements gi, hj then in each block, the product on top is equal to the product
on bottom in Γ.

In the sequel, we denote by 1G the trivial G-representation and simply by 1 the one of Go∗S+
N .

Corollary 6.18. Let N ≥ 4, then:

1. For all α1, . . . , αk, β1, . . . , βl ∈ Rep(G), we have

dim HomGo∗S+
N

(r(α1)⊗ · · · ⊗ r(αk); r(β1)⊗ · · · ⊗ r(βl))

=
∑

p∈NCG([α],[β])

∏
B∈p

dim HomG(α(UB), β(LB)).

2. If α ∈ Irr(G) is non-equivalent to 1G then r(α) is an irreducible G o∗ S+
N -representation.

3. r(1G) = (uij) = 1⊕ ω(1G) for some ω(1G) ∈ Irr(G o∗ S+
N ).

4. Denoting ω(α) := r(α)	 δα,1G1 then (ω(α))α∈Irr(G) is a family of pairwise non-equivalent

G o∗ S+
N -irreducible correpresentations.

Proof. We use Theorem 6.16 and the independence of the linear maps

Tp ∈ B((CN )⊗k, (CN )⊗l), p ∈ NC(k, l)

for all N ≥ 4. The first assertion follows from this linear independence of the maps Tp. Indeed,
we have

HomGo∗S+
N

(r(α1)⊗ · · · ⊗ r(αk); r(β1)⊗ · · · ⊗ r(βl))

=
⊕

p∈NCG([α],[β])

span
{
Up,S : ∀B,SB ∈ HomG(α(UB), β(LB))

}
and the first assertion follows by computing the dimension of the spaces on each side.

Now we prove simultaneously the last three relations. For α, β ∈ Irr(G), the intertwiner
space

HomGo∗S+
N

(r(α), r(β))

is encoded by the following candidate diagrams:

p1 =

 α

β

 and p2 =

 α

β

 .
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Since α and β are irreducible, we see that p1 is an admissible diagram if and only if α ' β
and p2 is admissible if and only if α ' β ' 1G.

Therefore, if α is not equivalent to β:

dim HomGo∗S+
N

(r(α), r(β)) = 0.

If α ' β are not the trivial correpresentation 1G then the only intertwiner r(α)→ r(β) arises
from p1:

dim HomGo∗S+
N

(r(α), r(α)) = 1.

If α ' β ' 1G, then the diagram p2 also gives rise to an intertwiner Up2,S(1G),(1G) with S : 1G →
1G the trivial inclusion. The independence of T{|} = idCN and T{ } allows to conclude

dim HomGo∗S+
N

(r(1G), r(1G)) = 2.

6.4 Probabilistic aspects of the free wreath product

We provide here some probabilistic consequences of the description of the intertwiner spaces of
Go∗S+

N . In this section we are mainly interested in the non-commutative probability space arising
from the Haar state on C(G o∗ S+

N ) and the behavior of the coefficients of a correpresentation
as random variables in this setting. Since most of the results involve the law of free compound
Poisson laws, we shall recall its definition. We refer to [66] for an introductory course on non-
commutative variables.

6.4.1 Laws of characters

Notation 6.19. In the sequel ε = ε(1) . . . ε(r) denotes a word in {1, ∗} and NC(ε) is the set of
noncrossing partitions with each endpoint i colored with ε(i). For p ∈ NC(ε) and B a block of
p, ε(B) denotes the subword of ε coming from the points in the block B (with the same order as
in p).

Let (A,ϕ) be a noncommutative probability space, X an element of A with ∗−distribution
µX depicted by all of its moments

mX(ε) = ϕ(Xε(1) . . . Xε(r)).

Similarly as in (6.2.4), the free cumulants of X, {kX(ε)}ε is the unique collection of complex
numbers such that the following moment-cumulant formula holds for all ε :

mX(ε) =
∑

p∈NC(ε)

∏
B

kX(ε(B)).

The existence and uniqueness of such a collection is easily proved by induction on the length of
ε [66].

Definition 6.20. The free compound Poisson distribution Pλ(µX) with law µX and parameter
λ > 0 is the ?−distribution defined by its free cumulants

kPλ(µX)(ε) = λmX(ε). (6.4.1)
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In particular, if Y is a random variable following a free compound Poisson distribution with
law µX and parameter 1, then we have the following moment formula :

mY (ε) =
∑

p∈NC(ε)

∏
B

mX(ε(B)).

We refer to [66] for the proof that there exists actually a propability space and a random variable
on it with such a distribution.
The first result is a direct application of the Corollary 6.18. We refer to Definition 6.3.1 for the
definition of the correpresentation r(α).

Proposition 6.21. Let G be a compact quantum group of Kac type, α ∈ Rep(G), n ≥ 4. Then
the law of the character χ(r(α)), with respect to the Haar state h, is a free compound Poisson
with law χ(α) and parameter 1.

Proof. Let ε be a word in {1, ?}. Then the law of a free compound Poisson with law χ(α) and
parameter 1, P(χ(α)) is described by its free cumulants, with the formula (6.4.1):

kP(χ(α))(ε(1) . . . ε(r)) = mχ(α)(ε(1) . . . ε(r).

With the moment-cumulant formula, this is equivalent to the following expression for the mo-
ments of P(χ(α)):

mP(χ(α)) =
∑

p∈NCε

∏
B

mχ(α)(ε(B)).

By the Corollary 6.18 we have

h
(
χ(r(α)ε(1) . . . χn(r(α))ε(r)

)
= dim HomGo∗S+

N
(1; r(α)ε(1) ⊗ · · · ⊗ r(α)ε(r))

=
∑

p∈NCε

∏
B

dim HomG(1, α(LB))

=
∑

p∈NCε

∏
B

mχ(α)(ε(B)).

The second equality is given by Corollay 6.18, and the third one by the definition of α(LB) and
the tensor product structure.

A consequence of this result is a partial answer to the free product conjecture given by
Banica and Bichon (see [10]) : for each compact matrix quantum group (A, v) we denote by
µ(A, v) the law of the character of the fundamental representation with respect to the Haar
measure. A quantum permutation group is a quantum subgroup of S+

N for some N ≥ 0, in the
following sense : it is a compact matrix quantum group (A, v) such that there exists a surjective
C∗−morphism Φ : C(S+

N ) → A sending the elements uij of C(S+
N ) to vij (see [82] for a survey

on the subject).

Corollary 6.22. Let (A, v) be a quantum permutation group, and S+
N = (C(S+

N , u), n ≥ 4.
Then

µ(A o∗ B,w) = µ(A, v) � µ(C(S+
N , u).

Proof. It is a direct consequence of the last proposition and the fact that in the law of a free
compound poisson with law µ is the same as the free multiplicative convolution of µ with the
free Poisson distribution.

The conjecture asserts that this formula still holds when replacing S+
N with certain quantum

subgroups of S+
N . See [10] for more details.
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6.4.2 Weingarten calculus

Let us construct a Weingarten calculus for a free wreath product. Weingarten calculus has been
mainly developped in the framework of compact quantum groups and permutation quantum
groups by Banica and Collins (see [12],[13]). This tool has mainly two advantages : on one hand
it allows us sometimes to get some interesting formulae for the Haar state on the matrix entries
of a correpresentation, and on the other hand it yields some asymptotic results on the joint law
of a finite set of elements when the dimension of the quantum group goes to infinity.

Let us first sum up the pattern of this method coming from [12]: let G = (A, (uij)1≤i,j≤n)
be a matrix compact quantum group acting on V ⊗k = 〈Xi〉⊗k1≤i≤n with the correpresentation
αk, and h the associated Haar measure. We will assume that G is orthogonal to simplify the
notations, although it could be easily generalized to the general Kac type case : that means that
the elements uij are all self-adjoint in A (see [99]). By the property of the Haar state,

(Id⊗ h) ◦ αk(Xi1 ⊗ · · · ⊗Xik) = P (Xi1 ⊗ · · · ⊗Xik),

with P the orthogonal projection of V ⊗k on the invariant subspace of αk. On the other hand,

(Id⊗ h) ◦ αk(Xi1 ⊗ · · · ⊗Xik) =
∑

h(uj1i1 . . . ujkik)(Xj1 ⊗ · · · ⊗Xjk).

We get thus the following expression for the Haar state on uj1i1 . . . ujkik :

h(uj1i1 . . . ujkik) = 〈P (Xi1 ⊗ · · · ⊗Xik), Xj1 ⊗ · · · ⊗Xjk〉.

The right-hand side may be hard to compute. Hopefully the Gram-Schmidt orthogonalisation
process yields a nicer expression if we already know a basis of the invariant subspace Sk of αk.
Let {Sk(i)} be a basis of this subspace, Gk being the Gram-Schmidt matrix of {Sk(i)} defined
by Gk(i, j) = 〈Sk(i), Sk(j)〉 and Wk = G−1

k . A standard computation yields:

h(uj1i1 . . . ujkik) =
∑
i,j

〈Xi1 ⊗ · · · ⊗Xik , Sk(i)〉Wk(i, j)〈Sk(j), Xj1 ⊗ · · · ⊗Xjk〉.

Of course the matrix Wk(i, j) is hard to compute.
Let us see nonetheless what it gives in the case of a free wreath product (Go∗S+

N , (wij,kl)), with
G an orthogonal matrix quantum group. A basis of Sk is given by the vectors Up,S , p ∈ NC(k),
as defined in (6.3.5). The first task is to compute the matrix Wk(i, j). Consider the following
map

tk : (CN ⊗ V )⊗ · · · ⊗ (CN ⊗ V )→ (CN )⊗k ⊗ V ⊗ · · · ⊗ V
k⊗
i=1

(xi ⊗ yi) 7→
k⊗
i=1

xi ⊗
k⊗
i=1

yi.

tk is unitary and and by definition of Up,S ,

tk(U
p,S) = Tp ⊗ S.

Recall that S depends implicitly on p through the definition (6.3.5): the latter is an invariant
vector of the k−tensor product representation of G having the block structure of p. Nevertheless
S is independent of N and in particular we have the expression

〈Up,S , U q,S′〉 =〈tk(Up,S), tk(U
q,S′)〉

=〈Tp, Tq〉〈S, S′〉 = N b(p∨q)〈S, S′〉.
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Remark 6.23. Easy quantum groups form a particular family of compact quantum groups whose
associated intertwiners spaces can be combinatorially described. Namely if G is an easy quantum
group, the invariant subspace of the k−tensor-product representation is spanned by the vectors
Tp, as defined in Section 1.1.3, with p belonging to a subcategory of P(k). See [15], [71] for
more informations on the subject, and [50], [40] and [25] for some applications. In this case, the
scalar product matrix has a simpler form. Indeed if G is an easy quantum group of dimension s
and with category of partition C, then a direct computation yields for α ≤ p, β ≤ q two partitions
in C:

〈Up,α, U q,β〉 = N b(p∨q)sb(α∨β).

The Weingarten formula has also a more combinatorial form since we can write:

h(wi1j1,k1l1 . . . wirjr,krlr) =
∑

α≤ker(~i),β≤ker(~j)

α≤p≤ker(~k),β≤q≤ker(~l)

G−1
k ((p, α), (q, β)),

where ker(~i) is the partition whose blocks are the set of indices on which i has the same value.

The scalar product matrix Gk = (〈Up,S , U q,S′〉)(p,S),(q,S′) is a block matrix, the blocks Gpqk
being indexed by p, q ∈ NC(k). Note that as in [12], one can factorize this matrix as follows:

Gk = ∆
1/2
nk G̃∆

1/2
nk ,

where ∆nk is the diagonal matrix with diagonal coefficients

∆nk((p, S), (p, S)) = N b(p)

and
G̃k((p, S), (q, S′) = N b(p∨q)− b(p)+b(q)

2 〈S, S′〉.

Asymptotically with n going to infitiny, G̃k = Dk(1 + o( 1√
n

)), Dk being the block diagonal
matrix

Dk((p, S), (q, S′)) = δp,q〈S, S′〉.

Finally we can remark that restricted on the subspace Vp0 = V ect((Up0,S)S), the matrix (〈S, S′〉)S,S′
is the tensor product of the Gram-Schmidt matrices of G GG,|Bi|, for each block |Bi| of p0. If
we put all these considerations together, we get that

Wn((p, S), (q, S′)) = δp,qN
−b(p)

⊗
B∈p

W−1
G

 (S, S′)(1 + o(
1√
n

)).

This formula allows to generalize the results in [12] to the free wreath product case. Define the
following partial trace:

Definition 6.24. Let 0 ≤ s ≤ n the partial trace of order s of the matrix w = (wij,kl)1≤i,j≤r,1≤k,l≤n
is

χw(s) =
r∑
i=1

s∑
k=1

wii,kk.

Let t ∈ (0, 1] and let G be a matrix compact quantum group of Kac type and dimen-
sion r. Denote by χG the law of the character of its fundamental representation. Let (G o∗
S+
n , (wij,kl)1≤i,j≤r,1≤k,l≤n) be the matrix quantum group G o∗ S+

n with its fundamental represen-
tation w.
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Theorem 6.25. With respect to the Haar measure, if s ∼ tn for n going to infinity,

χw(s)→ Pt(χG),

where Pt(χG) is the free compound Poisson with parameter t and original law χG.

Proof. A similar computation as in [12], Theorem 5.1 gives∫
(χw(s))k = Tr(G−1

k,nGk,s)

and with the asymptotic form of Gk,n this gives us:

G−1
k,nGk,s = ∆

−1/2
nk D−1

k ∆
−1/2
nk (Id+ o(

1√
n

))∆
1/2
sk Dk∆

1/2
sk (Id+ o(

1√
n

)).

Since Dk is block diagonal and ∆nk,∆sk are diagonal, and equal to the identity on each block,
these three matrices commute, and

Tr(G−1
k,nGk,s) = Tr(∆s/n,k(Id+ o(

1√
n

)))→ Tr(∆t,k).

Since
Tr(∆t,k) =

∑
p∈NC(k)

tb(p) dimVp =
∑

p∈NC(k)

tb(p)
∏
B∈p

m|B|(χG),

T r(∆t,k) is exactly the k−th moment of the law Pt(χG).

Remark 6.26. All the results of this section can be transposed to the classical case. One just has
to substitute classical compound Poisson laws for free compound Poisson laws, and use crossing
partitions instead of non-crossing ones.

6.4.3 Non-commutative symmetric functions as a probability space

We expose in this subsection a relation between the ring of non-commutative symmetric functions
(as defined in Definition 3.38) and the representation theory of the free wreath product U o∗ S+

n

for n ≥ 4. This free wreath product is also the easy quantum group H+,∞
n of Chapter 4 and 5.

This quantum group has been deeply studied by Banica and Verginoux in [16]. In particular,
they found the fusion rules of the irreducible representations:

Theorem 6.27 ([16]). Let n ≥ 4. The irreducible representations of (C(H+,∞
n ), (uij)1≤i,j≤n)

are indexed by finite sequences of integers, with the fusion rules given by the recursive formula

(j1, . . . , jr)⊗ (i1, . . . , ir′) = (j1, . . . , jr, i1, . . . , ir′) + (j1, . . . , jr−1, jr + i1, i2, . . . , ir′)

+δjr+i1=0(j1, . . . , jr−1)⊗ (i2, . . . , ir′),

such that (0) is the trivial representation and for k non zero, (k) is the irreducible representation
given by the matrix (ukij)1≤ij≤n.

This yields the following embedding of NSym in Cl(H+,∞
n ):

Proposition 6.28. The map Φ : NSym −→ Cl(H+,∞
n ) defined by Φ(Sk) =

∑
1≤i≤k u

k
ii is an

embedding of NSym in Cl(H+,∞
n ) such that for any composition I of n,

Φ(RI) = χI ,

where χI is the character of the irreducible representation of H+,∞
n indexed by I in Theorem

6.27.
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This result can be seen as a non-commutative version of Theorem 2.23. The ring of non-
commutative symmetric functions has already been related with the representations of a spe-
cialization at q = 0 of the quantum linear group and the Hecke algebra [52]. Proposition 6.28
gives a semisimple version of this result.

Proof. Since NSym is the free ring generated by the variables Sk, k ≥ 1, there is a morphism
of algebra Φ : NSym −→ Cl(H+,∞

n ) sending Si to χ(k) =
∑

1≤i≤k u
k
ii. We prove by recursion of

the length l of a composition I that Φ(RI) = χ(I). If l = 1, this is true by the definition of I and
the fact that R(k) = Sk for k ≥ 1. Suppose the result true for l − 1 and let I = (i1, . . . , il) be a
composition of length l. On one hand, the product formula on the ribbon Schur basis yields

R(i1,...,il−1)R(il) = R(i1,...,il) +R(i1,...,il−2,il−1+il).

Thus applying the map Φ on both sides and using the induction hypothesis yields

χ(i1,...,il−1)χ(il) = Φ(R(i1,...,il)) + χ(i1,...,il−2,il−1+il).

Since each ij is positive, the fusion rules of Theorem 6.27 give on the left hand side of the latter
equation

χ(i1,...,il−1)χ(il) = χ(i1,...,il−1+il) + χ(i1,...,il).

Therefore, Φ(R(i1,...,il)) = χ(i1,...,il). Since the set {χ(I)}I compositions is a set of characters of
distinct irreducible representations (and thus linearly independent), Φ is injective.

In particular, the Haar state on Cl(H+,∞
n ) yields a scalar product on NSym by the formula

〈F,G〉 = hH+,∞
n

(Φ(F )Φ(G)∗),

and the basis of ribbon Schur functions is an orthonormal basis with respect to this scalar
product.
From now on, NSym is identified with its image in Cl(H+,∞

n ). By this identification, each
variable Si is a random variable with respect to the Haar measure on C(H+,∞

n ). The law of the
random vector (Si)i≥1 can be computed thanks to the description of the intertwiners of U o∗ S+

n

in Section 6.3 (we could also directly use a result of [16], which already gives the description of
the intertwiners of Ẑ o∗ S+

n ).

Proposition 6.29. The family {Si}i≥1 is distributed as (szis)i≥1, where s is a semi-circular
element and z is a uniform variable on the unit circle free from s.

Proof. Let i1, . . . , ir be integers distinct from zero, and write S−i = S∗i for i positive. Then by
the Tannaka-Krein duality,

h(Si1 . . . Sir) = dim MorH+,∞
n

(1, α(i1)⊗ · · · ⊗ α(ir)),

where α(k) is the irreducible representation (ukij)1≤i,j≤n.

By Theorem 6.16 and the fact that the tensor product of the representations zj1 , . . . , zjs of U is
trivial if and only if

∑
1≤m≤s jm = 0,

h(Si1 . . . Sir) = #{π ∈ NC(i1, . . . , ir)|∀B ∈ π,B is balanced},

where as in Chapter 5, NC(i1, . . . , ir) denotes the set of non-crossing partitions with the element
1 ≤ m ≤ r colored with im, and where a block {j1, . . . , js} of a partition in NC(i1, . . . , ir) is
balanced if and only if

∑
1≤m≤s jim = 0. In the proof of Proposition 5.22, it has been proven

that
#{π ∈ NC(i1, . . . , ir)|∀B ∈ π,B is balanced} = m(szi1s, szi2s, . . . , szirs),

with s a semi-circular variable and z a uniform variable on the unit circle free from s.
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Chapter 7

Planar algebra of a free wreath
product

This chapter is devoted to the general description of the intertwiner spaces for the free wreath
product of two free permutation groups. This description leads to the proof of the following
result, which was conjectured by Banica and Bichon in[10]:

Theorem 7.1 ([10], Conj 3.1). Let F and G be two non-commutative permutation groups such
that dimF Mor(0, 1) = dimG Mor(0, 1) = 1. Then

µ(F o∗ G) = µ(F ) � µ(G),

where µ(G) denotes the law (with respect to the Haar measure) of the character of the funda-
mental representation of a matrix compact quantum group G.

The main ingredient in the proof of Theorem7.1 is the notion of free product of planar
algebras, which has been introduced by Bisch and Jones in [23]. Section 1 is an introduction to
the concept of planar algebra; several basic combinatorial results are given on planar tangles,
the main objects in the construction of planar algebras. Section 2 gives an isomorphism between
the intertwiner spaces of a free wreath product and the free product of certain planar algberas.
Section 3 is devoted to the combinatorial proof of a dimension formula which has been found
by Bisch and Jones in an unpublished paper [23]: this result yields the proof of Theorem 7.1
thanks to the isomorphism given in Section 2.

7.1 Planar algebras

As already said in Chapter 3, a planar algebra is a collection (Vk)k≥1 of vector spaces with an
action of planar tangles on thess vector spaces.

7.1.1 Definition of planar tangles

By a diffeomorphism of R2 we mean an orientation preserving diffeormophism defined on a
domain D of R2. In this subsection we define the notion of irreducible planar tangle and we
associate a non-crossing partition to each planar tangle.

Disk and intervals By a disk we mean an open subset of R2 whose boundary is a smooth
Jordan curve.
Let U be the unit circle on R2. For ω ∈ U, we denote by [1, ω[ (resp. [1, ω]) the subset of U

146



whose argument is less (resp. less or equal) to the one of ω (or to 2π if ω = 1). If ω′ ∈ [1, ω[,
[ω′, ω] (resp. ]ω′, ω[) denotes the set [1, ω] \ [1, ω′[ (resp. [1, ω[\[1, ω′]).
Let D be a disk and let ∂D denote its boundary. For each finite subset S ⊆ ∂D of cardinal
k with a distinguished element i∗ ∈ S, there is a canonical bijection from S to J1, kK obtained
by numbering the elements of S counterclockwise, starting at i∗. The element of S which is
numbered i is denoted by iD.
Since ∂D is a Jordan curve, there is an orientation preserving diffeomorphism ϕD mapping ∂D
to the unit circle U. For each couple (i, j) of elements of S with i < j, the set ϕ−1

D (]ϕD(i), ϕD(j)[)
is denoted by (i, j) and called the interval component of ∂D between i and j; the set ϕ−1

D (U \
[ϕD(i), ϕD(j)]) is denoted by (j, i) and called the interval component of ∂D between j and i.
When there is no possible confusion, J1, kK is always identified with Z/(kZ) and thus k+ 1 = 1.
When the bounds of an interval component is not specified, this interval is always assume to be
of type (i, i+ 1) for some i ∈ J1, kK.
By a curve γ, we mean either a Jordan curve or a injective smooth map γ : [0, 1]→ R2. If γ is
a Jordan curve, γ is called a closed curve.

Planar tangle A planar tangle is a particular collection of subsets of R2 which has been
introduced by Jones in [46]. We can see it as a generalization of the two-level noncrossing
partitions of Section 1.1.2 to a kind of multilevel noncrossing partition.

Definition 7.2. A planar tangle P of degree k ≥ 0 consists of the following objects:

• A disk D0 of R2, called the outer disk.

• Some disjoint disks D1, . . . , Dn in the interior of D0 which are called the inner disks.

• For each 0 ≤ i ≤ n, a finite subset Si ∈ ∂Di of cardinal 2ki (such that k0 = k) with a
particular element i∗ ∈ Si. The elements of Si are called the distinguished points of Di

and numbered counterclockwise starting from i∗. ki is called the degree of the inner disk
Di.

• A finite set of disjoint smooth curves {γj}1≤j≤r such that each γ̊j lies in the interior of
D0 \

⋃
i≥1Di and such that

⋃
1≤j≤r ∂γj =

⋃
0≤i≤n Si; it is also required that each curve

meets a disk boundary orthogonally, and that its endpoints have opposite (resp. same)
parity if they both belong to inner disks or both belong to the outer disk (resp. one belongs
to an inner disk and the other one to the outer disk).

• A region of P is a connected component of D0 \ (
⋃
i≥1Di ∪ (

⋃
γj)). Give a chessboard

shading on the regions of P in such a way that the interval components of type (2i+ 1, 2i)
are boundaries of shaded regions.

The skeleton of P , denoted by ΓP , is the set (
⋃
∂Di) ∪ (

⋃
γj).

In the sequel, D0 denotes always the outer disk of a planar tangle. If the degree of P is
0, then P is of degree 0+ (resp. 0−) if the boundary of the outer disk is the boundary of an
unshaded region (resp. shaded). An example of planar tangle with its associated shading is
given in Figure 7.1.

An isotopy of P is the image of P (i.e the family of images of all the given sets in the defini-
tion, such that a region and its image have same shading) by a diffeomorphism, and two planar
tangles P and P ′ are said equivalent if there exists an isotopy ϕ such that ϕ(P ) = P ′. For any
disk D of R2 with a set S of 2k distinguished points on ∂D (numbered counterclockwise from 1
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∗
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∗

Figure 7.1: : Planar tangle of degree 4 with 4 inner disks.

to 2k), there is an isotopy ϕD,S of P such that ϕD,S(∂D0) = ∂D and ϕD,S(iD0) = iD for each
distinguished point of D.
A connected planar tangle is a planar tangle whose regions are simply connected; this implies
that for any inner disk D and any element x ∈ ∂D, there is a path from x to the boundary of the
outer disk which is contained in (

⋃
∂Di) ∪ (

⋃
γj). An irreducible planar tangle is a connected

planar tangle such that each curve has an endpoint being a distinguished point of D0 and the
other one being on an inner disk. An example of connected planar tangle and of an irreducible
planar tangle is given in 7.2.

∗

∗ ∗

∗

∗ ∗

∗

∗

∗ ∗

∗

∗ ∗

∗

∗

∗ ∗

∗

Figure 7.2: : A connected and an irreducible planar tangle.

Composition of planar tangles Let P and P ′ be two planar tangles of respective degree
k and k′, and let D be an inner disk of P . We assume that the degree of D is also k′. Let S
be the set of distinguished points of D and let ϕD,S be an isotopy of P ′ to ∂D respecting the
distinguished points. For each distinguished point i of D, the union of the curve of P and the
one of ϕD,S(P ′) ending at i yields a new smooth curve. Thus, the union of P and ϕD,S(P ′)
with the disk D removed is a new planar tangle which is denoted by P ◦D P ′ and called the
composition of P and P ′ with respect to D. An example of composition the planar tangle of
Figure 7.1 with the second planar tangle of Figure 7.2 is given in Figure 7.3 (only an equivalent
planar tangle is displayed in orther to get a clear picture).
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Figure 7.3: : Composition of two planar tangles.

Note that if D1 and D2 are two distinct inner disks of P and P1 and P2 are two planar tangles
having respectively the same degree as D1 and D2, then (P ◦D1 P1) ◦D2 P2 = (P ◦D2 P2) ◦D1 P1.
If P1, . . . , Ps are distinct planar tangles and Di1 , . . . , Din are distinct inner disks of P such that
degPj = degDij for all 1 ≤ i ≤ s, we denote by P ◦(Di1 ,...,Dis ) (P1, . . . , Ps) the planar tangle
obtained by iterating the composition with respect to the different inner disks.

7.1.2 Non-crossing partition and irreducible planar tangles

Let P be a planar tangle of degree k. ΓP \ ∂D0 is the union of a finite number of connected
components C1, . . . , Cr. For 1 ≤ i ≤ 2k, the distinguished point iD0 of the outer boundary
belongs to the closure of a unique connected component Cf(i). We define an equivalence relation
∼P on J1, 2kK by saying that i ∼P j if and only if fi = fj . We denote by πP the partition
associated to ∼P through the correspondence between partitions and equivalence relations which
has been established in Section 1.1.1.

Lemma 7.3. πP is a non-crossing partition of 2k with even blocks.

Recall that a block is called even if its cardinal is even.

Proof. Suppose that 1 ≤ i < j < k < l ≤ 2k with i ∼P k and j ∼P l. Thus there exist a path
γ1 in ΓP \D0 between i and k and a path γ2 in ΓP \D0 between j and l. Since j ∈ (i, k) and
l ∈ (k, i), γ1 and γ2 intersect. Therefore, the four points are in the same connected component
of ΓP \D0 and i ∼P j ∼P k ∼P l. πP is thus non-crossing.
Since each inner disk has an even number of distinguished points and each curve connects two
distinguished points, a counting argument yields the parity of the size of the blocks.

Reciprocally, a noncrossing partition π of 2k with even blocks yields an irreducible planar
tangle Pπ such that πPπ = π. The construction is done recursively on the number of blocks as
follows:

1. If π is the one block partition, Pπ is the planar tangle with one outer disk D0 of degree
2k, one inner disk D1 of degree 2k, and a curve between the point i of D0 and the point i
of D1.

2. Suppose that Pπ is constructed for all partitions having less than r blocks. Let B = Ji1, i2K
be an interval block of π, and let π′ be the non-crossing partition obtained by removing
this block (and relabelling increasingly the integers). π′ has also even blocks.
Let Pπ,B be the planar tangle consisting of an outer disk D0 of degre 2k and two inner
disks D1 and D2 of respective degree i2−i1 +1 and 2k−(i2−i1 +1), and curves connecting
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• iD0 to iD2 for i < i1.

• iD0 to (i− i1 + 1)D1 for i1 ≤ i ≤ i2 if i1 is odd, and iD0 to (i− i1)D1 for i1 ≤ i ≤ i2 if
i1 is even.

• iD0 to (i− (i2 − i1 + 1)) for i > i2.

Set Pπ = Pπ,B ◦D2 Pπ′ . Note that the resulting planar tangle doesn’t depend on the choice
of the interval block B.

By construction, Pπ is irreducible and πPπ = π. The inner disk of Pπ corresponding to the block
B of π is denoted by DB.
These particular irreducible planar tangles yield a decomposition of connected planar tangles.
Let P be a connected planar tangle. Let B1, . . . , Br be the blocks of πP ordered lexicographically
and let C1, . . . , Cr be the corresponding connected components of P . For 1 ≤ i ≤ r, Pi is defined
as the planar tangle P \ (

⋃
j 6=iCj), where the distinguished points of the outer boundary of P

which are in Bi have been counterclockwise relabelled in such a way that the first odd point
is labelled 1. The planar tangle P1 of the connected planar tangle of Figure 7.2 is depicted in
Figure 7.4.

∗

∗ ∗

∗

∗

Figure 7.4: : First connected component of the first planar tangle of Figure 7.2.

Proposition 7.4. Let P be a connected planar tangle, and set π = πP . Then

P = Pπ ◦DB1
,...,DBr

(P1, . . . , Pr).

Proof. It is possible to draw r disjoint Jordan curves {γi}1≤i≤r such that γi intersects P |Bi|
times, once at each curve of Ci connected to a distinguished point of the outer boundary (or
two times at a curve joining two distinguished points of the outer boundary). The intersection
points are labelled counterclockwise around γi, in such a way that the intersection point with
the curve coming from the first odd point of Bi is labelled 1.
Let Γi be the closed region delimited by γi and set P̃i = (P ∩ Γi) ∪ γi, with the labelling of the
distinguished points of γi given above. Then P̃i is a planar tangle which is an isotopy of Pi.
Figure 7.5 shows a possible choice of Jordan curves for the connected planar tangle of Figure
7.2.

Let P̃ be the planar tangle whose inner disks are {Γi}1≤i≤r, with the distinguished points being
the ones of γi, and whose skeleton is ΓP \ (

⋃
Γ̊i). Then P̃ is equivalent to Pπ and

P̃ ◦Γ1,...,Γr (P̃1, . . . , P̃r) = P.
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∗

γ1

γ2

Figure 7.5: : Jordan curves surrounding the connected components of a planar tangle.

Shaded regions and Kreweras complement We refer to Section 5.2 for the notations on
the Kreweras complement related to partial set partitions. If S is a set of cardinal k, f : J1, kK −→
is a bijective function and π ∈ P (k), then f(π) is the partition of S defined by f(i) ∼f(π) f(j)
if and only if i ∼π j. Let k ≥ 1, and for i ≥ 1, set δ(i) = 1 if i is odd and 0 else. A partial
partition (π̃, S) of 4k is associated to each π ∈ NC(2k) as follows:

• S = {2i− δ(i)}1≤i≤2k.

• π̃ = f(π) where f : J1, 2kK −→ J1, 4kK given by f(i) = 2i− δ(i).

S is the set {1, 4, 5, 8, . . . , 4k − 3, 4k}. Let f̃ be the map from J1, 2kK to J1, 4kK \ S defined by
f̃(i) = 2i− (1− δ(i)).

Definition 7.5. Let π ∈ NC(2k). The nested Kreweras complement of π, denoted by kr′(π), is
the partition of 2k such that f̃(kr′(π)) = kr(π̃, S).

The nested Kreweras complement of the partition {{1, 3, 4}, {2}, {5, 6}} is the partition
{{1, 2}, {3, 4}, {5, 6}}, as shown in Figure 7.6.

1 1′ 2′ 2 3 3′ 4′ 4 5 5′ 6′ 6

Figure 7.6: The partition {{1, 3, 4}, {2}, {5, 6}} and its nested Kreweras complement.

Contratry to the usual Kreweras complement, the nested Kreweras complement is not bijective.
Let π0 (resp π1) be the partition of 2k with block (2i, 2i+ 1) (resp. (2i+ 1, 2i+ 2)).

Lemma 7.6. kr′(π) = kr′(π ∨ π0)

Proof. Since π ≤ (π ∨ π0), kr′(π ∨ π0) ≤ kr′(π).
Suppose that i ∼kr′(π) j. Then 2i − (1 − δ(i)) ∼kr(π̃,Sc) 2j − (1 − δ(j)). By Lemma 5.16, this
implies that for all k ∈ J2i− (1−δ(i)), 2j− (1−δ(j))K∩S, l ∈ S \ J2i− (1−δ(i)), 2j− (1−δ(j))K,
k 6∼π l. If k ∈ J2i − (1 − δ(i)), 2j − (1 − δ(j))K ∩ S and l 6∈ J2i − (1 − δ(i)), 2j − (1 − δ(j))K,
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then l 6= k + 1 and thus k 6∼π0 l; therefore, for all k ∈ J2i − (1 − δ(i)), 2j − (1 − δ(j))K ∩ S,
l ∈ S\J2i−(1−δ(i)), 2j−(1−δ(j))K, k 6∼π∨π0 l. By Lemma 5.16, this implies that i ∼kr′(π∨π0) j:
kr′(π) ≤ kr′(π ∨ π0).

The nested Kreweras complement is involved in the description of planar tangles in the
following way:

Proposition 7.7. Let P be a planar tangle of degree k. i and j are in the same block of kr′(πP )
if and only if iD0 and jD0 are boundary points of the same shaded region.

Proof. Let P be a planar tangle. Relabel i with 2 − δ(i): with this relabelling each interval of
type (4i + 1, 4i + 4) is the boundary interval of a shaded region, and π(P ) becomes a partial
non-crossing partition of 4k with support S. Add two points 4i+ 2 and 4i+ 3 in (4i+ 1, 4i+ 4)
in such a way that 4i+ 2 ∈ (4i+ 1, 4i+ 3). Let ∼ be the relation on Sc defined by i ∼ j if and
only if i and j are boundary points of a same shaded region. Let (π′, Sc) be the partial partition
associated to ∼: π′ is non-crossing since two regions that intersect are the same.
Let π = ((πP , S) ∨ (π′, Sc). Let 1 ≤ i < j < r < s ≤ 4k with i ∼π r and j ∼π s. Since πP
is non-crossing, if i, j, r, s are all in S then i ∼π j ∼π r ∼π s. Assume from now on that they
are not all in S, and suppose without loss of generality that i ∈ Sc. i ∼π r, thus r is also in Sc

and i and r are boundary points of a same shaded region σ. Since j ∈ (i, r) and s ∈ (r, i), any
path on ΓP between j and s would cut σ in two distinct regions: thus if j, s ∈ S, then j 6∼π s.
Therefore, the hypothesis j ∼π s yields that j, s ∈ Sc. π′ being non-crossing, i, j, r, s are in the
same block of π. Finally, πP ∨ π′ is non-crossing and thus π′ ≤ kr′(πP ).
Let π2 be a partial partition with support Sc, such that πP ∨ π2 is non-crossing. Suppose that
i ∼π2 j, with i, j ∈ Sc. Let σi (resp. σj) be the shaded region having i (resp. j) as boundary
point. πP ∨ π2 is non-crossing, thus for all r, s ∈ S such that i ≤ r ≤ j and j ≤ s ≤ i, r 6∼πP s.
Thus, there is no path in ΓP between (i, j) and (j, i), and σi = σj : this yields i ∼π′ j. Therefore,
(π2, S

c) ≤ (π′, Sc) and (π′, Sc) = kr(πP , S).
Let 1 ≤ i, j ≤ 2k. By the two previous paragraphs, i and j are in the same block of kr′(πP ) and
only if 2i− (1− δ(i)) and 2j− (1− δ(j)) are boundary points of a same shaded region. Since the
points 2i− (1− δ(i)) and 2i− δ(i) both belong to the interval (2(i+ δ(i))− 3, 2(i+ δ(i))) (which
is part of the boundary of a shaded region), 2i − (1 − δ(i)) and 2j − (1 − δ(j)) are boundary
points of a same shaded region if and only if 2i− δ(i) and 2j − δ(j) are boundary points of the
same shaded region. Since we had relabelled i by 2− δ(i), this yields the result.

7.1.3 Planar algebra

Let us recall the definition of a planar algebra as given in Section 3.3.2. Planar algebras have
been introduced by Jones in [46] in order to study the structure of subfactors.

Definition 7.8. A planar algebra P is a collection of finite dimensional vector spaces {Pn}n∈N∗∪{−,+}
with dimP+ = dimP− = 1, such that each planar tangle P of order k with n inner disks of
respective order k1, . . . , kn yields a multilinear map:

TP :
⊗

1≤i≤n
Pki −→ Pk

which is compatible with the composition of planar tangles and invariant under isotopy. Namely,
if Q is another tangle of order ki0 for some 1 ≤ i0 ≤ n and ϕ is a diffeomorphism, then

TP ◦ (
⊗
i 6=i0

IdPki ⊗ TQ) = TP◦Di0Q
and Tϕ(P ) = TP ,
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where P ◦i0 Q is the composition of tangles defined in Section 7.1.1 and ϕ(P ) is the isotopy of
P with respect to ϕ.

In particular the compatibility with the composition of tangles yields that if P contains a
close curve γ which delimits a simply connected region σ, TP = δσTP̃ , where P̃ is the planar
tangle P with the curve γ removed, and δσ is a scalar that depends only on the shading of σ.
In the sequel δ1 (resp. δ2) will denote the value of δσ for a shaded (resp. unshaded) region.

Several operations are defined by the action of particular planar tangles :
Each Pn is an algebra with multiplication given by the planar tangle of Figure 7.7.

∗

∗

∗

Figure 7.7: : Multiplication tangle of degree P6.

The is an inclusion of algebras Pn ⊆ Pn+1 with the planar tangle of Figure 7.8.

∗∗

Figure 7.8: : Inclusion tangle from P4 to P6.

There exist two linear functionals TrR and TrL respectively defined by the first and second
planar tangles of Figure 7.9.

∗ ∗∗ ∗ ∗

Figure 7.9: : Right trace tangle and Left trace tangle on P4.

Note that TrL(IdP1) = δ2 and TrR(IdP1) = δ1.

A planar subalgebra of P is a collection of vector subspaces Wn ⊆ Pn which is stable under
the action of the planar tangles. If P is a planar algebra, there is a minimal planar subalgebra
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of P denoted by TL(P) and given by the image of all planar tangles without inner disk.
A morphism Φ between two planar algebras P : {Pn} and Q = {Qn} is a collection of linear
maps Φn : Pn −→ Qn that commute with the action of the planar tangles. Namely TP ◦
(
⊗

Di interior disk of P Φi) = Φk ◦ TP for any planar tangle of order k.

Subfactor planar algebra Two planar tangles P and Q of degree 0+ or 0− are related by a
spherical symmetry if P can be obtained from Q by the composition of a Moebius transforma-
tion and a diffeomorphism. An example of two planar tangles related by a spherical symmetry
is shown in Figure 7.10.

∗

∗

∗

∗ ∗

∗

=⇒

∗

∗

∗

∗ ∗

∗

Figure 7.10: : Two planar tangles related by a spherical symmetry.

A planar algebra is called spherical if the action of a planar tangle P of degree 0+ or 0− is
invariant under spherical symmetries. In such planar algebra, the linear functionals TrL and
TrR are equal and simply denoted by Tr; in particular δ1 = δ2 and Tr is a trace on each algebra
Pn.

The conjugate P ∗ of a planar tangle P is defined as the image of P by any axial symmetry
s, with the rule that the first distinguished point of a disk s(D) is the last distinguished point
of the inital disk D. The conjugate of the planar tangle of Figure 7.1 is drawn in Figure 7.11.

∗

∗

∗

∗

Figure 7.11: : Axial symmetry of the planar tangle of Figure 7.1.

Suppose that there exists an involutive antilinear map ∗ on each vector space Pn. The planar
algebra is called a ∗−planar algebra if TP ∗(v

∗
1 ⊗ · · · ⊗ v∗n) = (TP (v1, . . . , vn))∗ for any v1, . . . , vn
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with vi ∈ Pki .

Definition 7.9. A planar algebra P is called a subfactor planar algebra if P is a spherical
∗−planar algebra such that the bilinear product 〈., .〉 defined on each Pn by the formula 〈x, y〉 =
Tr(y∗x) is an hermitian form.

Subfactor planar algebras have a very rich structure: a complete review of their properties
can be found in [46]. The main result that will be needed in the present chapter is the following:

Theorem 7.10. [Jones,[46]] Let P be a subfactor planar algebra. There exists a bipartite graph
GP with root vertex ∗ such that:

dimPk = #{ walk of length 2k on GP starting and ending at ∗}.

7.2 Intertwiner spaces of a free wreath product

A non-commutative permutation group f is called irreducible if dim(MorF (0, 1)) = 1. This
section is devoted to the description of the intertwiner spaces of the free wreath product of two
irreducible non-commutative permutations groups F and G;

7.2.1 Intertwiner spaces of non-commutative permutation groups

Spin planar algebra As planar tangles are generalization of noncrossing partitions to higher
dimensions, the spin planar algebra is a way to generalize the maps TP ’s (as defined in Section
1.1.2) in order to build multilinear maps. This forms a planar algebra which has been introduced
by Jones in [46]. Some cares are needed in order to define properly a planar algebra that possesses
all the properties of a subfactor planar algebra.
Let V be a d−dimensional Hilbert space with a distinguished orthonormal basis (ei)1≤i≤d. We
denote by Vn the vector space V ⊗n and we set V+ = C, V− = V . For each n ≥ 1, a basis of V ⊗n

is given by {ei1 ⊗ · · · ⊗ ein}1≤i1,...,in≤d. The action of planar tangle will be described on these
bases. Namely let P be a planar tangle of degree k with r inner disks Di, 1 ≤ i ≤ r of respective
degree ki. P defines a map TP from

⊗
Vki to Vk whose expression on the respective bases is the

following:

1. For each 1 ≤ i ≤ r, let e~ji = eji1
⊗ · · · ⊗ ejiki

be a basis element of Vki .

2. Each inner disk Di has ki boundary components which are also the boundary of a shaded
region (each interval (2l− 1, 2l) for 1 ≤ l ≤ ki): label the interval component between the
points 2l − 1 and 2l of Di with the value jil .

3. A function f : {shaded regions of P} → J1; dK is called compatible if the label of the
boundary of an inner disk which is also the boundary of a shaded region σ is equal to
f(σ).

4. A compatible function f yields a labelling of the outer boundary by setting jl = f(σ) if
the interval component (2l − 1, 2l) of D0 is the boundary of the shaded region σ. The
resulting vector ej1 ⊗ · · · ⊗ ejl is denoted by ef .

5. Set

TP (e~j1 ⊗ · · · ⊗ e~jr) =
∑

f compatible

ef .

155



Pictorially, this means that we impose the indices of the tensor products to be the same on the
boundaries of a shaded regions. An example of such condition is given in Figure 7.12.

∗

∗ ∗

∗

∗ ∗

∗

i1

i2

i3

i4

i5

D1

D2

D3

D4

D5

D6

j1
1

j1
2

j3
1

j3
2

j2
1

j4
1
j4
2

j6
1j6

2
j6
3

j5
1

Figure 7.12: : Spin action a planar tangle.

The planar tangle P of Figure 7.12 yields the map TP : V ⊗2⊗V ⊗V ⊗2⊗V ⊗2⊗V ⊗V ⊗3 −→ V ⊗5

defined by

TP

(
(ej12 ⊗ ej12 )⊗ ej21 ⊗ (ej31 ⊗ ej32 )⊗ (ej41 ⊗ ej42 )⊗ ej51 ⊗ (ej61 ⊗ ej62 ⊗ ej63 )

)
=δj11j41j63 δj21j31 δj51j61ej12 ⊗ ej32 ⊗ ej42 ⊗ ej51 ⊗ ej62 .

This action of planar tangles is clearly invariant under isotopy and is compatible with the
composition of tangles. The spin planar algebra is not spherical since δ1 = d and δ2 = 1.
However it is possible to multiply each TP by a scalar µ(P ) in such a way that the resulting
action still yields a planar algebra structure with δ1 = δ2 =

√
d.

Definition 7.11 ([46]). The collection of vector spaces given by Vn = V ⊗n, V− = V, V+ = C,
with the action of a planar tangle P given by µ(P )TP as defined above, is called the spin planar
algebra and denoted by P(V ).

Note that for d > 1, the spin planar algebra is not a planar algebra since dimV− = d > 1.
However the following result of [46] holds:

Lemma 7.12 (Jones, [46]). A planar algebra contained in the spin planar algebra is a spherical
planar algebra.

A planar algebra contained in spin planar algebra is called a spin planar subalgebra.
In particular the spin planar subalgebra TL(V ) ⊆ P(V ) which is given by the image of all planar
tangles without inner disk is a spherical planar algebra. Constructing TP for each of these planar
tangles gives that

TL(V )n = span(Tp, p ∈ NC(n)).

This planar algebra of noncrossing partitions has been introduced and studied by Sunder and
Kodiyalam in [49]. It also yields the first connection between spin planar algebras and intertwiner
spaces of non-commutative permutation groups, since by a result of [5]

TL(V ) = {MorS+
n

(0, n)}n≥1.
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Let n ≥ 1. As explained in Definition 3.30, a non-commutative permutation group of size n is
a quantum subgroup of the free symmetric group S+

n . Therefore by the Tannaka-Krein duality
of 3.15,

For any k, k′ ≥ 1, MorS+
n

(k, k′) ⊆ MorF (k, k′). (7.2.1)

We have seen in last section that the intertwiner spaces of S+
n form a particular planar subalgebra

of the spin planar algebra. The relation (7.2.1) extends to the following result due to Banica in
[6]:

Proposition 7.13 ([6],Sec.5). Let F be a quantum permutation group of size n. If F is irre-
ducible, then {MorF (k, 0)}k≥1 is a sub-planar algebra of the spin planar algebra P(V ), V being
the vector space of the fundamental representation of F .
Moreover any sub-planar algebra of P(V ) is of the form {MorF (k, 0)}k≥1 for an irreducible
quantum permutation group F of size n, and the correspondence is bijective.

We denote by P(F ) the planar algebra associated to the quantum permutation F by the
previous Proposition. Recall that given a compact quantum subgroup G of O+

n , the knowledge
of {MorG(k, 0)}k≥1 is enough to get all the intertwiner spaces MorG(k, l) for 1 ≤ k, l, because of
the isomorphism MorG(k, l) ' MorG(k+ l, 0). Therefore, P(F ) describes all the representations
of F .

7.2.2 Case of a free wreath product

If G and F are two irreducible quantum permutation groups of respective size d and n, then the
free wreath product G o∗F is again a quantum permutation group by the inclusion G o∗F ⊆ S+

dn.
The problem is to relate the intertwiner spaces of G o∗ F with the ones of G and F . As it will be
proven in this subsection, G o∗ F is again irreducible; therefore by Proposition 7.13, the problem
is equivalent to relating P(G o∗ F ) to P(G) and P(F ). This relation involves the free product of
planar algebras, a construction which has been done by Bisch and Jones in [23].

Tensor and free products of planar algebras

Definition 7.14. Let P and Q be two planar algebras. The tensor product planar algebra P⊗Q
is the collection of vector spaces (P ⊗Q)i = Pi ⊗Qi, with the action of any planar tangle given
by the tensor product of the action on each component: Namely for a planar tangle P ,

TP (
⊗
Di

(pi ⊗ qi)) = TP (
⊗
Di

pi)⊗ TP (
⊗
Di

qi),

where pi ∈ Pki and qi ∈ Qki.

If P(V ) and P(W ) are two spin planar algebras respectively associated to the vector spaces
V and W , then P(V ) ⊗ P(W ) is isomorphic to the spin planar algebra P(V ⊗W ), with the
isomorphism V ⊗k ⊗W⊗k ' (V ⊗W )⊗k. The free product of two planar algebras P and Q is a
subplanar algebra of P ⊗Q defined by the image of certains planar tangles.
A pair (P,Q) of planar tangles of degree k is called free if there exists a planar tangle R of
degree 2k and two isotopies ϕ1 and ϕ2, respectively of P and Q, such that:

• ΓR = Γϕ1(P ) ∪ Γϕ2(Q), and the set of distinguished points of R is the image through ϕ1

and ϕ2 of the set of distinguished points of P and Q.

• ϕ1(P \D0(P )) ∩ ϕ2(Q \D0(Q)) = ∅. This means that a connected component of R is the
image of a connected component of either P or Q.
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• The distinguished point numbered i of ∂D0(P ) is sent by ϕ1 to the distinguished point
numbered 2i− δ(i) of ∂D0(R).

• The distinguished point numbered i of ∂D0(Q) is sent by ϕ2 to the distinguished point
numbered 2i− (1− δ(i)).

• A distinduished point of an inner disk coming from P is labelled as in P ; a distinguished
point i of an inner disk coming from Q is labelled i− 1.

The last condition ensure that curves of R have endpoints with correct parities. If P and Q are
connected planar tangles and R exists, then R is unique up to orientation preserving diffeomor-
phism: this planar tangle is called the free composition of P and Q and denoted by P ∗Q. An
example of a free pair of planar tangles, with the resulting free composition, is drawn in Figure
7.13.

∗

∗∗

∗ ∗

∗

∗
∗

∗
∗

∗ ∗

⇐=
∗

∗

∗

=⇒

Figure 7.13: : Free composition of two planar tangles.

Definition 7.15. Let P and Q be two planar algebras. The free product planar algebra P ∗ Q
is the collection of vector subspaces (P ∗ Q)k of (P ⊗ Q)k spanned by the image of the maps
TP ⊗ TQ for all free pairs of planar tangles of degree k.

{P ∗ Q)k}k≥1 is stable under the action of planar tangles:

Lemma 7.16. P ∗ Q is a planar sub-algebra of P ⊗Q.

Proof. It suffices to check the stability on the generating sets of the vector spaces (P ∗Q)k given
in Definition 7.15. Let P be a planar tangle, and for each inner disk Di of P , let vi be an
element of (P ∗Q)ki of the form TPi ⊗TQi((

⊗
Dj(Pi)

vij)⊗ (
⊗

Dj(Qi)
wij) (with (Pi, Qi) free pair).

By composition of actions of planar tangles,

TP (
⊗
Di(P )

vi) =TP◦(D1,...Dn)
(P1, . . . , Pn)(

⊗
Di(P )

⊗
Dj(Pi)

vij)

⊗ TP◦(D1,...Dn)
(Q1, . . . , Qn)(

⊗
Di(P )

⊗
Dj(Qi)

wij).

Thus, it is enough to prove that S = P ◦(D1,...Dn) (P1, . . . , Pn) and T = P ◦(D1,...Dn) (Q1, . . . , Qn)

form a free pair. Let P̃ be the planar tangle of order 2k obtained from P by doubling all the
curves of P and all the distinguished points (in such a way that the tangle still remains planar).
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By this construction, a curve joining the point j of Di to the point j′ of Di′ in P yields in P̃ two
curves: one joining the point 2j−1 of Di to the point 2j′−1 of Di′ and the other one joining the
point 2j of Di to the point 2j′ of Di′ . Since P is a planar tangle, the conditions on the parities
of j and j′ yield that in P̃ , the curves join points labelled 0 or 1 modulo 4 (resp. 2 or 3 mod 4)
to points labelled 0 or 1 modulo 4 (resp. 2 or 3 mod 4). Reciprocally, by removing from P̃ all
the distinguished points labelled 0 and 1 modulo 4 and the curves joining them, we recover the
planar tangle P . The same holds for the distinguished points labelled 2 and 3. Therefore, if we
compose the tangle Pi ∗ Qi inside each disk Di, the resulting tangle is exactly S ∗ T (up to a
relabelling). Thus P̃ ◦D1,...,Dn (P1 ∗Q1, . . . , Pn ∗Qn) = S ∗ T and P ∗ Q is stable by the action
of planar tangles.

There is also a combinatorial way to characterize free pairs of planar tangles.

Lemma 7.17. If (P,Q) is a free pair, then π(P ∗Q) = (πP , S) ∨ (πQ, S
c).

In particular (P,Q) is a free pair if and only if (PπP , PπQ) is a free pair.

Proof. The first statement of the lemma is a direct consequence of the definition of S and the
fact that i ∼P j (resp. i ∼Q j if and only if 2i− δ(i) ∼P∗Q 2j − δ(j) (resp. 2i− (1− δ(i)) ∼P∗Q
2j − (1− δ(j)).
Thus, if (P,Q) is free pair, then Pπ(P∗Q) is exactly the free composition of PπP with PπQ and
(PπP , PπQ) is also a free pair.
Suppose that (PπP , PπQ) is a free pair. There exist P1, . . . , Pr, Q1, . . . , Qr′ such that P =
PπP ◦D1,...,DR(P1, . . . , Pr) andQ = PπQ◦D′1,...,D′r′ (Q1, . . . , Qr′). Therefore, (PπP ∗PπQ)◦D1,...,Dr,D′1,...,D

′
r′

(P1, . . . , Pr, Q1, . . . , Qr′) gives the free composition of P and Q.

Proposition 7.18. Let P and Q be two connected planar tangles. Then (P,Q) is a free pair if
and only if πQ ≤ kr′(πP ). In particular if P, P ′ and Q,Q′ satisfy πP = πP ′ and πQ = πQ′, then
(P,Q) is a free pair if and only if (P ′, Q′) is a free pair.

Proof. If (P,Q) is a free pair, then by the previous Lemma (πP , S) ∨ (πQ, S
c) is non-crossing.

Therefore πQ ≤ kr′(πP ).
If πQ ≤ kr′(πP ), π0 = (πP , S) ∨ (πQ, S

c) is noncrossing with even blocks. Therefore, Pπ0 is a
well-defined planar tangle. Let {Ci} be the connected components of π0 coming from blocks of
(πP , S) and {Di} the ones coming from blocks of (πQ, S

c). Then Pπ0 \
⋃
Ci is an irreducible

planar tangle and π(Pπ0 \
⋃
Ci) = πQ. Thus Pπ0 \

⋃
Ci = PπQ up to a relabelling of the

distinguished points, and similarly Pπ0 \
⋃
Di = PπP up to a relabelling. Therefore, Pπ0 is, up

to a relabelling, the free composition of PπP with PπQ . Thus, (PπP , PπQ) is a free pair and by
the previous lemma, (P,Q) is also a free pair.

Reduced free pair

Definition 7.19. A free pair (P,Q) of planar tangles is called reduced if P and Q are irreducible,
and any region of P ∗Q is bounded by at most one connected component from P and one from
Q.

By a connected component from P (resp. Q) in P ∗Q, we mean the image by ϕ1 (resp. ϕ2)
of a connected component of ΓP \ ∂D0(P ) (resp. ΓQ \ ∂D0(Q)), where ϕ1 and ϕ2 are the maps
involved in the construction of P ∗Q. An example of reduced free pair is given in Figure 7.14.

In the sequel, a distinguished point is called an outer boundary point of a region σ if it is both
a point of the boundary of σ and a distinguished point of the outer disk.
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Figure 7.14: : Example of reduced free pair.

Lemma 7.20. A free pair (P,Q) of degree k is reduced if and only if P and Q are irreducible
and

• For 0 ≤ i ≤ k − 1, {(4i + 2), (4i + 3)} is the set of outer boundary points of a region of
P ∗Q. The same holds true for {4i, (4i+ 1)}.

• The set of outer boundary points of any other region has the form {4i−1, 4i, 4j+1, 4j+2}
for 1 ≤ i, j ≤ k.

Proof. Suppose that (P,Q) is reduced. Let 0 ≤ i ≤ k− 1. 4i+ 2 and 4i+ 3 are two consecutive
points of the outer boundary, thus they are boundary points of a same unshaded region of P ∗Q.
They are both coming from Q and the region having (4i + 2, 4i + 3) as boundary component
has at most one boundary component coming from Q, thus (4i + 2) and (4i + 3) are in the
same connected component. Since Q is irreducible, they are both connected to the same inner
disk: therefore, {(4i+ 2), (4i+ 3)} is the set of outer boundary points of a region of P ∗Q. By
symmetry between P and Q, the same holds true for 4i and (4i+ 1).
Let σ be a region which has no outer boundary interval of the form (4i, 4i+ 1) or (4i+ 2, 4i+ 3).
Since P ∗ Q is irreducible, σ has an outer boundary interval, which is by hypothesis of the
form (4i − 1, 4i) or (4i + 1, 4i + 2) (in particular σ is shaded). Let us assume without loss of
generality that this boundary interval is of the form (4i− 1, 4i), and order counterclockwise the
distinguished points on the boundary of σ. Since 4i − 1 and 4i are not coming from the same
tangle, they are connected to different inner disks. Moreover, the next outer boundary point of
σ after 4i is in the same connected component as 4i, and thus it is of the form 4j + 1 or 4j.
But consecutive boundary points of a connected component have to be of opposite parity (for
example as a consequence to the fact that πP has even blocks); thus the next outer boundary
point of sigma is of the form 4j + 1 for some 0 ≤ j ≤ k. Since σ is not bounded by other
connected component coming from P , the only outer boundary points of σ coming from P are
4i and 4j + 1. Since σ is shaded and (4j + 1) is a boundary point of σ, (4j + 1, 4j + 2) is a
boundary interval of σ and thus 4j + 2 is also a boundary point of σ. Let x be the next outer
boundary point of σ after 4j + 2; by the same arguments, x = 4i′ − 1 for some 1 ≤ i′ ≤ k.
This implies also that 4i′ is an outer boundary point of σ. Since 4i′ comes from P , 4i′ = 4i and
x = 4i− 1. The set of outer boundary points of σ is thus exactly {4i− 1, 4i, 4j + 1, 4j + 2}.
Reciprocally, suppose that P ∗Q satisfies the two conditions of the lemma. By the first condition,
any unshaded region is bounded by only one connected component. If σ is unshaded, then
{4i − 1, 4i, 4j + 1, 4j + 2} is the set of outer boundary points of σ: thus, σ has exactly one
connected component coming from each tangle and (P ∗Q) is reduced.

Recall that π0 (resp. π1) is the pair partition of 2k with blocks {(2i, 2i + 1)} (resp. {2i +
1, , 2I)). The latter Lemma can be rephrased as follows:
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Lemma 7.21. A free pair (P,Q) is reduced if and only if P and Q are irreducible and πP ≥ π0,
πQ = kr′(πP ).

Proof. Let P,Q be two irreducible tangles. It suffices to show that the two conditions of Lemma
7.20 is equivalent to the two conditions πP ≥ π0 and πQ = kr′(πP ). The first condition is
equivalent πP ≥ π0, πQ ≥ π1. The second condition of Lemma 7.20 is equivalent to the condition
: if 4i ∼P∗Q 4j+1 and for all 4i < k < 4j+1, 4j+1 < l < 4i, k 6∼P∗Q l, then 4j+2 ∼P∗Q 4i−1.
By Lemma 5.16 this is equivalent to (πQ, S

c) = kr(πP , S) (which implies also that πQ ≥ π1).

Despite this rigid structure, only considering reduced free pairs is nonetheless enough to
describe free product of planar algebras.

Proposition 7.22. The free planar algebra P ⊗Q is spanned by the images of TP ⊗ TQ for all
reduced free pairs (P,Q).

Proof. It suffices to prove that the image of TP ⊗ TQ with (P,Q) a free pair is contained in the
image of (P ′, Q′) with (P ′, Q′) a reduced free pair.
The image of TP ⊗ TQ is contained in the image of TPπP ⊗ TPπQ by Proposition 7.4 and by

Lemma 7.17 (PπP , PπQ) is again a free pair. We can thus assume that P = Pπ and Q = Pπ′ ,
with the condition π′ ≤ kr′(π).
Suppose that µ ≤ ν are two noncrossing partitions of k. Let B1, . . . , Br be the blocks of ν in
the lexicographical order. Since µ ≤ ν, µ =

∨
(µ|Bi , Bi). Therefore,

Pµ = Pν ◦D1,...,Dr (Pµ|B1
, . . . , Pµ|Br ),

and the image of TPµ is contained in the one of TPν .
Since kr′(π) = kr′(π0 ∨ π), π′ ≤ kr′(π0 ∨ π). π ≤ π ∨ π0 and π′ ≤ kr′(π ∨ π0), thus the image
of TPπ is included in the image of TPπ∨π0 and the image of TPπ′ is included in the image of
TPkr′(π∨π0)

. By Lemma 7.21, (Pπ∨π0 , Pkr′(π0∨π)) is reduced.

Generating subset of a free product of planar algebras Let P and Q be two planar
algebras. We denote by SP(k) (resp. UP(k)) the image in Pk of Sk (resp. Uk), the tangle
without inner disk where 2i − 1 is linked to 2i (resp. 2i is linked to 2i + 1) for all 1 ≤ i ≤ k.
The picture of both tangles is drawn in Figure 7.15 for k = 4.

∗

∗

Figure 7.15: : Tangles S4 and U4.

Proposition 7.23. Let P and Q be two planar algebras. Then P ∗ Q is the subplanar algebra
of P ⊗Q generated by {UP(k)⊗Qk}k≥1 and {Pk ⊗ SQ(k)}k≥1.
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Proof. (Uk, Idk) and (Idk, Sk) are two free pairs of planar tangles, thus for all k ≥ 1, UP(k)⊗Qk
and Pk ⊗ SQ(k) are subspaces of P ∗ Q. In particular the subplanar algebra they generate is
also a subplanar algebra of P ∗ Q.
Reciprocally let (P,Q) be a reduced free pair of degree k. Let us show that there exists a
planar tangle R of degree k with r inner disks Di of respective degree ki, such that P =
RD1,...,Di(X1, . . . , Xr) and Q = RD1,...,Di(X̃1, . . . , Xr), where for each 1 ≤ i ≤ r, (Xi, X̃i) is
either (Uki , Idki) or (Idki , Ski).
Since (P,Q) is a free pair, the free composition P ∗ Q exists; since this pair is reduced, each
inner disk of P ∗Q is only connected to the outer boundary, and, by Lemma 7.20, both elements
of {4i, 4i + 1} (resp. {4i − 2, 4i − 1}) are connected to a same inner disk. Color an inner disk
Di of P ∗Q with 1 if it comes from P and with 2 if it comes from Q. We denote by γi the curve
arriving on the distinguished point i of the outer boundary and by ī the distinguished point of
an inner disk which is connected to i.
We operate the following operation on P ∗ Q: for each interval (4i − 1, 4i), let σ be the region
for which (4i− 1, 4i) is a boundary interval; add a curve γ̃ in this region connecting 4i− 1 to 4i
and erase γ4i−1, γ4i and the distinguished points 4i− 1 and 4i.
The degrees of the inner disks don’t change and this yields a planar tangle R with 2k boundary
points and r inner disks (where r is the sum of the number of inner disks in P and in Q). In the
resulting planar tangle R, an odd point i of the outer boundary is still connected to the point ī
on a disk colored 1, and an even point i of the outer boundary is still connected to the point ī
on a disk colored 2. The construction of the tangle R is shown in Figure 7.16.

∗

∗

∗
∗

∗

( )

( ) ( )

( )

( ) ( )

Figure 7.16: : Construction of the planar tangle R for the reduced free pair of Figure 7.14.

Set Xi = Uki , X̃i = Idki if Di is colored 2, and Xi = Idki , X̃i = Ski if Di is colored 1. Consider
R1 = RD1,...,Dr(X1, . . . , Xr). Each disk of R colored 2 is replaced by a planar tangle without
inner disk, and thus disappears in R1. A disk of R colored 1 is composed with the identity,
and thus remains the same in R1. An odd point 4i + 1 is already connected to 4i+ 1. An
even point 4i + 2 is connected to an odd point 4i+ 2 of a disk D colored 2. Therefore since
D is composed with Uki , 4i+ 2 is connected in R1 by a curve to the following point of D in
the counterclockwise order: since 4i + 2 and 4i + 3 are in the same connected component, the
following point is exactly 4i+ 3. By the modification we made on P ∗ Q, 4i+ 3 is connected
by a curve to the point 4i+ 4. Therefore in R1, 4i+ 2 is connected to 4i. Thus relabelling the
distinguished point 4i+ 2 by 4i+ 4 yields exactly the image of P in P ∗Q. This reconstruction
of P is shown in Figure 7.17.

Likewise R2 = RD1,...,Dr(X̃1, . . . , X̃r) is equal to the image of Q in P ∗Q.
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Figure 7.17: : Reconstruction of P from R.

Remark 7.24. In [54], the free product of two planar algebras P ∗ Q is directly defined as the
subplanar algebra of P ⊗Q generated by {UP(k)⊗Qk}k≥1 and {Pk ⊗ SQ(k)}k≥1.

Free product of spin planar algebras

Let us now consider the free product of two spin planar algebras P(V ) and P(W ); note that
P(V ) ∗ P(W ) ⊆ P(V ) ⊗ P(W ) ' P(V ⊗ W ). Φ = {tk} denotes the isomorphism of planar
algebras P(V )⊗ P(W ) −→ P(V ⊗W ) given by

tk((ei1 ⊗ · · · ⊗ eik)⊗ (fj1 ⊗ · · · ⊗ fjk)) = (ei1 ⊗ fj1)⊗ · · · ⊗ (eik ⊗ fjk)),

where (ei)1≤i≤n is an orthonormal basis of V , (fj)1≤j≤m is an orthonormal basis of W and
1 ≤ i1, . . . , ik ≤ n, 1 ≤ j1, . . . , jk ≤ m.
We will give a more precise description of a free product of spin planar algebras.
Let S0 be the set {2i + 1}0≤i≤k−1 and let f : J1, kK −→ S0 be the function f(i) = 2i + 1. Let
f̃ : J1, kK −→ Sc0 be the function f̃(i) = 2i. For π a noncrossing partition of k, the Kreweras com-
plement Kr(π) of π (see [66]) is the non-crossing partition of NC(k) such that (f̃(Kr(π)), Sc0) =
kr(f(π), S0). The Kreweras complement of the non-crossing partition {{1, 3, 4}, {2}, {5, 6}} is
the partition {{1, 2}, {3}, {4, 6}, {5}}, as shown in Figure 7.18.

1 1′ 2 2′ 3 3′ 4 4′ 5 5′ 6 6′

Figure 7.18: The partition {{1, 3, 4}, {2}, {5, 6}} and its Kreweras complement.

Let V be an n−dimensional vector space with basis (ei)1≤i≤n.

Definition 7.25. Let π be a non-crossing partition of k. For each block B of π, let λB ∈ V ⊗|B|.
The composition of π with {λB}B∈π is the vector T (π, {λB}B∈π) of V ⊗k defined by

T (π, {λB}B∈π) =
∑

1≤i(1)...,i(k)≤n

(
∏
B∈π

B={r1<···<r|B|}

λBi(r1),...,i(r|B|)
)ei(1) ⊗ · · · ⊗ ei(k).

The dual composition of π with {λB}B∈π is the vector T̃ (π, {λB}B∈π) of V ⊗k defined by

T̃ (π, {λB}B∈π) =
∑

1≤i(1),...,i(k)≤n
ker(i)≤Kr′(π)

(
∏
B∈π

B={r1<···<r|B|}

λBi(r1),...,i(r|B|)
)ei(1) ⊗ · · · ⊗ ei(k),

where ker(~i) is as defined in 1.1.3.
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Example 7.26. Let π = {{1, 4, 7}, {2, 3}, {5, 6}}. Thus Kr(π) = {{1, 3}, {2}, {4, 6}, {5}, {7}}.
In this case,

T (π, {λ1,4,7, λ2,3, λ5,6}) =
∑

λ1,4,7
i1,i2,i3

λ2,3
j1,j2

λ5,6
k1,k2

ei1 ⊗ ej1 ⊗ ej2 ⊗ ei2 ⊗ ek1 ⊗ ek2 ⊗ ei3 .

and

T̃ (π, {λ1,4,7, λ2,3, λ5,6}) =
∑

λ1,4,7
i1,i3,i5

λ2,3
i2,i1

λ5,6
i4,i3

ei1 ⊗ ei2 ⊗ ei1 ⊗ ei3 ⊗ ei4 ⊗ ei3 ⊗ ei5 .

We denote by Tπ the linear map from
⊗

B∈π V
⊗|B| to V ⊗k defined by Tπ(

⊗
B∈π λB) =

T (π, {λB}B∈π) and by T̃π the linear map from
⊗

B∈π V
⊗|B| to V ⊗k defined by T̃π(

⊗
B∈π λB) =

T̃ (π, {λB}B∈π). Compositions and dual compositions appear in the action of planar tangles on
spin planar algebras. A partition π of 2k such that π ≥ π1 yields a partition of k denoted by
π/2 and defined by i ∼π/2 j if and only of 2i ∼π 2j. A partition π of 2k such that π ≥ π0 yields
a partition of k also denoted by π/2 and defined by i ∼π/2 j if and only of 2i− 1 ∼π 2j − 1. If

π ≥ π1 (resp. π ≥ π0) and B is a block of π/2, B̃ denotes the block of π containing 2i− 1 and
2i (resp. 2i− 2 and 2i− 1) for each i ∈ B .

Lemma 7.27. If π ≥ π0, Kr(π/2) = kr′(π)/2.

Proof. Suppose that i ∼Kr(π/2) j. For all i < k ≤ j, j < l ≤ i, k 6∼π/2 l, thus for all i < k ≤
j, j < l ≤ i, 2k − 1 6∼π 2l − 1. Since π ≥ π0, for all 2i − 1 < k ≤ 2j − 1, 2j − 1 < l ≤ 2i − 1,
k 6∼π l.
Thus for all 4(i − 1) + 1 < k ≤ 4(j − 1) + 1, 4(j − 1) + 1 < l ≤ 4(i − 1) with k, l ∈ S,
k 6∼(f(π),S) l, where f is the map f(i) = 2i − δ(i) defined in Section 7.1.2: this implies that
4(i− 1) + 2 ∼kr(f(π),S) 4(j − 1) + 2 and thus 2(i− 1) + 1 ∼kr′(π) 2(j − 1) + 1. Since kr′(π) ≥ π1,
2i ∼kr′(π) 2j and i ∼kr′(π)/2 j. Thus Kr(π/2) ≤ kr′(π)/2. The same proof yields the converse
inequality.

Proposition 7.28. Let π be a partition of 2k such that π ≥ π0. The action of the irreducible
planar tangle Pπ on P(V ) is T̃π/2, and the action of Pkr′(π) is TKr(π/2).

Proof. By Proposition 7.7, (2i − 1, 2i) and (2j − 1, 2j) are outer boundary components of the
same shaded region of Pπ if and only if 2i ∼kr′(π) 2j. By Lemma 7.27, this is equivalent to
i ∼Kr(π/2) j. For each block B of Pπ, let DB denote the inner disk of Pπ corresponding to B.
Let us compute TPπ . By the construction of the planar tangle Pπ in Section 7.1.2, if 2i − 1 is
the (2s− 1)−th or 2s−th element of a block B of π then 2i− 1 is linked by a curve to the point
2s− 1 of DB. If i is the s−th element in the block B of π/2, then 2i− 1 is the 2s-th element of
the corresponding block B̃ in π if 1 6∈ B and the (2s − 1)−element of B̃ if 1 ∈ B. In any case,
(2i− 1, 2i) is a boundary interval of the same shaded region as the interval (2s− 1, 2s) of DB̃.
Let f be a function from J1, kK to J1, nK. For each block B = {iB1 , . . . , iB|B|} of π/2, let eB =

ef(iB1 ) ⊗ · · · ⊗ ef(iB|B|)
be the corresponding element of V ⊗|B|. Then by the expression of TPπ in

the spin planar algebra and the above remarks,

TPπ(
⊗
B∈π/2

eB) = δker(f(1),...,f(k))≤Kr(π/2)ef(1) ⊗ · · · ⊗ ef(k).

This is exactly the expression of T̃π/2(
⊗

B∈π/2 eB).

Let us compute TPkr′(π) . Let B be a block of kr′(π). It corresponds to an inner disk DB of

Pkr′(π). Label i the interval (2i−1, 2i) of the boundary of DB, and do the same for the intervals
of D0.
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kr′(π) ≥ π1, thus for all 1 ≤ i ≤ k, the outer distinguished points 2i − 1 and 2i are in the
same connected component of Pkr′(π). Since Pkr′(π) is also irreducible, each shaded region σ has
exactly one boundary component which is an outer interval iσ, and one boundary component
which is an interval jσ of an inner disk DB(σ). Therefore, there are as many shaded region as
outer intervals of type (2i− 1, 2i), and we can identify iσ with i.
Let f be a function from J1, kK to J1, nK. For each block B = {iB1 , . . . , iB|B|} of kr′(π)/2, let

eB = ef(iB1 ) ⊗ · · · ⊗ ef(iB|B|)
be the corresponding element of V ⊗|B|. Then by the spin action of

TPkr′(π) ,

TPkr′(π)(
⊗

B∈kr′(π)

eB) = ef1 ⊗ · · · ⊗ efk ,

and TPkr′(π) = Tkr′(π)/2. Since kr′(π)/2 = Kr(π/2), this gives the second result of the Proposi-
tion.

This yields a simpler description of a free product of spin planar subalgebras:

Corollary 7.29. Let P,Q be two spin planar subalgebras. Then (P ∗ Q)k is spanned by the
union of T̃π(

⊗
B∈π P|B|)⊗ TKr(π)(

⊗
B∈Kr(π)Q|B|) for all π ∈ NC(k).

Proof. By Proposition 7.22 (and its proof), (P ∗Q)k is spanned by the images of (TPπ , TPkr′(π))

for all π ∈ NC(2k) with π ≥ π0. Proposition 7.28 yields the result.

In particular, for P = TL(V ), (P ∗Q)k is spanned by {Tp⊗Tp(Qk)}p∈NC(k), where Tp is the
vector defined from p in Chapter 1. Therefore if Q = P(G) for an irreducible noncommutative
permutation group G, then by Theorem 6.16 P(G o∗ S+

n ) ' TL(V ) ∗ P(G), the isomorphism
being given by the collection of maps Φ = {tk}k≥1 of Section 7.2.2.

Intertwiner spaces of a free wreath product

The following Theorem is the main result of the section: this was originally conjectured by
Banica and Bichon in [10].

Theorem 7.30. Let F and G be two irreducible free permutation groups. Then

P(G o∗ F ) ' P(F ) ∗ P(G),

with the isomorphism Φ given in Section 7.2.2.

Proof. The proof follows the same pattern as the proof of Theorem 6.16. Suppose that F acts on
V and G on W : let (uij)1≤i≤n be the fundamental representation of F and (vkl)1≤k,l≤m the one
of G. Recall that the free wreath product G o∗ F is defined by the fundamental representation
(uijv

i
kl) 1≤i,j≤n

1≤k,l≤m
with the commutation relations uijv

i
kl = vikluij (see 3.3.1).

Step 1 : P(F ) ∗ P(G) is isomorphic through Φ to a spin planar subalgebra of P(V ⊗W ), thus
by Theorem 7.13 there exists an irreducible permutation group H acting on V ⊗W , such that
(P(F ) ∗ P(G))k ' MorH(0, k) for all k ≥ 1, each isomorphism map being given by tk.
Step 2 : Let us prove that P(F )∗P(G) ⊆ P(G o∗F ). Since both are planar algebras, it is enough
to prove that a set of generating elements of P(F ) ∗ P(G) is in P(G o∗ F ). By Proposition 7.23,
a generating set is given by elements of two kinds:

• (T1k ⊗wk) with wk ∈ MorG(0, k). It has been proven in Theorem 6.16 that tk(T1k ⊗wk) ∈
MorGo∗S+

n
(0, k), where tk is the map defined in Section 7.2.2. Since F ⊆ S+

n , Go∗F ⊆ Go∗S+
n

and thus tk(T1k ⊗ wk) ∈ MorGo∗F (0, k).
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• tk(wk⊗T0k) with wk ∈ MorF (0, k). Let us expand wk in the basis of V ⊗k as
∑

1≤i1,...,ik≤n
w~iei1⊗

· · · ⊗ eik . Then

tk(wk ⊗ T0k) =
∑

1≤i1,...,ik≤n
1≤r1,...,rk≤m

w~i(ei1 ⊗ fr1)⊗ · · · ⊗ (eik ⊗ frk).

Since wk ∈ MorF (0, k),
∑
w~iuj1i1 . . . ujkik = w~j . Applying the action of G o∗ F yields (we

use the abbreviated notations e~i = ei1 ⊗ · · · ⊗ eik)

αGo∗F (tk(wk ⊗ T0k)) =
∑
~i,~j
~r,~s

w~itk(e~j ⊗ f~s)⊗ v
j1
s1r1uj1i1 . . . v

jk
skrk

ujkik

=
∑
~i,~j
~s

w~itk(e~j ⊗ f~s)⊗ (
∑
r1

vj1s1r1)uj1i1 . . . (
∑
rk

vjkskrk)ujkik

=
∑
~i,~j
~s

w~itk(e~j ⊗ f~s)⊗ uj1i1 . . . ujkik

=
∑
~j,~s

w~jtk(e~j ⊗ f~s)⊗ 1 = tk(wk ⊗ T0k)⊗ 1,

where the third equality is due to the fact that G is a free permutation group (yielding
the equality

∑
r v

j
sr = 1 for all 1 ≤ j ≤ n, 1 ≤ s ≤ m).

Therefore P(F ) ∗ P(G) ⊆ P(G o∗ F ) and by the Tannaka-Krein duality, G o∗ F is a quantum
subgroup of H.
Step 3 : Let (wijkl)1≤i,j≤n

1≤k,≤m
be the fundamental representation of H. Let us show that H ⊆ G o∗F

by showing that all the relations satisfied by the fundamental representation of G o∗ F are also
satisfied by the fundamental representation of H. Since P(S+

n ) ∗G ⊆ P(F ) ∗P(G) and from the
end of Section 7.2.2 P(S+

n ) ∗ G) = P(G o∗ S+
n ), H ⊆ G o∗ S+

n .
Therefore, all the relations satisfied by the fundamental representation of G o∗ S+

n are also
satisfied by the fundamental representation of H. In particular from the proof of Theorem
6.16, wijkl = ũij ṽ

j
kl for ũij =

∑
l wijkl and ṽikl =

∑
j wijkl. Moreover from the same proof,

ũij ṽ
j
kl = ṽjklũij and there exist a C∗−morphism πn+1 : C(S+

n )→ C(H) defined by πn+1(sij) = ũij
and n C∗−morphisms πi : C(G)→ C(H) defined by πi(vkl) = ṽikl.
Moreover,

∆ũij = ∆(
∑
l

wijkl) =
∑
l,r,s

wirks ⊗ wrjsl

=
∑
r,s

ũirṽ
j
ks ⊗ ũrj(

∑
l

ṽjsl)

=
∑
r

ũir
∑
s

ṽjks ⊗ ũrj =
∑
r

ũir ⊗ ũrj ,

where the second and third equalities are due to the fact that
∑

l v
j
sl =

∑
s v

j
sl = 1. Thus

(ũij)1≤i,j≤n is a representation of the compact quantum group H: let F̃ the C∗−algebra gen-
erated by the representation (ũij)1≤i,j≤n. Let us prove that there is a surjective morphism
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from C(F ) to C(F̃ ) sending uij to ũij . It suffices to show that MorF (0, k) ⊆ MorF̃ (0, k). Let
vk =

∑
~i v~ie~i be in MorF (0, k). Then tk(vk ⊗ 0k) ∈ MorH(0, k). On one hand the action of H

gives: ∑
~i,~j,~r,~s

v~itk(e~j ⊗ f~s)⊗ ũj1i1 ṽ
j1
s1r1 . . . ũjkik ṽ

sk
skrk

=
∑
~i,~j,~s

v~itk(e~j ⊗ f~s)⊗ ũj1i1(
∑
r1

ṽj1s1r1) . . . ũjkik(
∑
rk

ṽskskrk)

=
∑
~i,~j,~s

v~itk(e~j ⊗ f~s)⊗ ũj1i1 . . . ũjkik .

Since tk(vk ⊗ 0k) ∈ MorH(0, k), this implies the equality:∑
~i,~s

v~itk(e~i ⊗ f~s)⊗ 1 =
∑
~i,~j,~s

v~itk(e~j ⊗ f~s)⊗ ũj1i1 . . . ũjkik ,

which yields the equality
∑
~i v~iũj1i1 . . . ũjkik = v~j1. In particular vk ∈ MorF̃ (0, k).

Thus, there is a ∗−morphism Φ0 : C0(F ) −→ C(H) sending uij to ũij and n ∗−morphisms
Φi : C0(G) −→ C(H) sending vkl to ṽikl. Since for all 1 ≤ i ≤ n, ũij ṽ

i
kl = ṽiklũij , there exists a

∗−morphism
Φ : C0(G)∗n ∗ C0(F )�〈uijvikl = vikluij〉 −→ C(H)

sending uijv
i
kl to ũij ṽ

i
kl. Since C0(G)∗n ∗C0(F )�〈uijvikl = vikluij〉 = C0(G o∗ F ) and Φ sends the

fundamental representation of G o∗ F to the one of H, this yields that H ⊆ G o∗ F .
Step 4 : Since G o∗ F ⊆ H from Step 2 and H ⊆ G o∗ F from Step 3, H = G o∗ F and by the
Tannaka-Krein duality ,

P(G o∗ F ) = P(H) = Φ(P(F ) ∗ P(G)).

Theorem 7.30 with Corollary 7.29 yields a description of the intertwiner spaces of a free
wreath product G o∗ F . Namely,

MorGo∗F (0, k) = 〈tk(T̃π(
⊗
B∈π

MorF (0, |B|)⊗ TKr(π)(
⊗

B∈Kr(π)

MorG(0, |B|)〉.

The main problem to deduce the law of χGo∗F is that it is difficult to extract a basis from these
sets. In the next section, we will explain a result of Bisch and Jones that gives the dimension of
each vector space (P ∗ Q)k thanks to the ones of P and Q.

7.3 Free product formula of Bisch and Jones

Each planar algebra P yields a probability measure µ(P) by saying that the k−th moment
µ(P)k of µ(P) is dim(Pk). It will be later clear that this sequence of moments actually defines
a measure. In this section we review the following result of Bisch and Jones ([23]), which yields
the proof of Theorem 7.1:

Theorem 7.31 (Bisch and Jones, [23]). Let P,Q be two planar algebras with µ(P) = µ(Q) = 1.
Then

µ(P ∗ Q) = µ(P) � µ(Q).
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Since the proof the this result still doesn’t exist in the literature, we give a combinatorial
proof of Theorem 7.31 which is based on the computation of the principal graph of a free product
by Landau (see [54]).

Principal graph of a free product

One of the major consequence of the axioms of a subfactor planar algebra is the Theorem 7.10
of Section 7.1.3:

Theorem (Jones, [46]). Let P be a subfactor planar algebra. There exists a bipartite graph GP
with root vertex ∗ such that:

dimPk = #{ walk of length 2k on GP starting and ending at ∗}.

The principal graph of a free product P ∗ Q can be obtained from the principal graph of P
and the one of Q. This has been done by Landau in [54]. We will only give the result when
dimP1 = dimQ1 = 1, since this is the only interesting case in this chapter.
If P is a planar algebra such that dimP1, the root vertex ∗ of GP is linked to only one other
vertex ∗̃ by a unique edge e∗ called the root edge. Let GP and GQ be respectively the principal
graph of P and Q. Let G̃P (resp. G̃Q) be the graph GP with the root vertex and the root edge
removed, and with the new root being ∗̃. We build recursively a graph GP ? GQ and a height
function on edges of GP ? GQ as follows:

1. Let G1 be a copy of GP . The root of GP ? GQ is the root ∗ of G1. For all edges e of G1,
set h(e) = 0.

2. On each vertex at odd distance to ∗, add a copy of G̃Q (that means that we identify the
root of G̃Q with the given vertex). For each edge e newly added, set h(e) = 1.

3. On each vertex added during the previous step which is at even distance to ∗, add a copy
of G̃P . For each edge e belonging to a new copy G of G̃P , set h(e) = h(e′) + 1, where e′ is
any edge not belonging to G and having the root of G as endpoint.

4. On each vertex added during the previous step which is at odd distance to ∗, add a copy
of G̃Q. For each edge e belonging to a new copy G of G̃Q, set h(e) = h(e′) + 1, where e′

is any edge not belonging to G and having the root of G as endpoint.

5. Return to step 3.

By a copy G of a graph X in GP ?GQ, we mean the set of edges and vertices of GP ?GQ which
were added by pasting one graph of type X at one particular vertex: X is called the initial
graph of G. The height of a copy of graph is the height of any edge belonging to this copy of
graph.
Note that each copy of graph is connected to exactly one copy of graph of lower height. Let G
denotes the graph whose set of vertices is the set of copies of graph {G}, and such that there is
an edge between G and G′ if and only both share a vertex. By the previous remark G is tree;
let the only copy of GP be the root of this tree. For G a vertex of G, the subtree TG of G rooted
at G is the subtree of G consisting of vertices whose unique path to the root goes through G.
There exists a map ϕ from the set of edges of GP ?GQ to the set of vertices of G such that ϕ(e)
is the copy of graph G such that e ∈ G.
Landau proved in [54] the following result:

Proposition 7.32 (Landau,[54]). GP ? GQ is the principal graph of P ∗ Q.
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We will describe combinatorially the set of loops γ of length 2k on GP ? GQ which start at
the root. Such a loop is called a rooted loop on GP ? GQ.
Since GP ? GQ is bipartite, the set of rooted loops of length 2k is exactly the set of words
γ = γ1 . . . γ2k in the edges of GP ? GQ of length 2k, such that γ1 and γ2k has the root vertex as
endpoint, and such that for all 1 ≤ i ≤ 2k− 1, γi and γi+1 share a common vertex; in particular
|h(γi+1)−h(γi)| ≤ 1. Moreover each walk γ yields a lazy walk ϕ(γ) of length 2k−1 on G defined
by ϕ(γ)(i) = ϕ(γi) (a lazy walk is a walk that can be stationary).

Lemma 7.33. Let γ be a rooted loop of length 2k on GP ? GQ and let 1 ≤ i ≤ j ≤ 2k. If
h(γi) = h(γj) and for all i ≤ k ≤ j, h(γk) ≥ h(γi), then i and j are in the same copy of graph.

Proof. Let G be the copy of graph containing γi. Since for all i ≤ k ≤ j, h(γk) ≥ h(γi), the lazy
walk ϕ(γ) restricted to Ji, jK is a lazy walk on TG. Since the only vertex of height h(γi) of this
subtree is G itself and h(γj) = h(γi), γj belongs to G.

Each rooted loop γ defines a symmetric relation ∼γ on 2k as follows: for i ≤ j, i ∼γ j if and
only if γi and γj belong to the same copy of graph, and for all i ≤ k ≤ j, h(γk) ≥ h(γj).

Lemma 7.34. ∼γ is an equivalence relation and the associated partition πγ is a non-crossing
partition of 2k.

Proof. The reflexivity is assumed by definition and i ∼γ i for all 1 ≤ i ≤ 2k. Let 1 ≤ i, j, k ≤ 2k
be such that i ∼γ j and j ∼γ k. γi and γj are in the same copy of graph and γj and γk are in the
same copy of graph, thus γi and γk are in the same copy of graph and h(γi) = h(γj) = h(γk).
h(γs) ≥ h(γj) for s ∈ Ji, jK and h(γs) ≥ h(γj) for s ∈ Jj, kK, thus h(γs) ≥ h(γi) for s ∈ Ji, kK.
Therefore, the relation ∼γ is transitive and thus an equivalence relation. Let πγ denote the
associated partition of 2k.
Let 1 ≤ i < j < k < l ≤ 2k be such that i ∼γ k and j ∼γ l. Since i ∼γ k and i ≤ j ≤ k,
h(γj) ≥ h(γk). Since j ∼γ l and j ≤ k ≤ l, h(γk) ≥ h(γl). Therefore h(γk) = h(γj) and for all
j ≤ r ≤ k, h(γr) ≥ h(γk). By Lemma 7.33, j and k are in the same copy of graph. πγ is thus
non-crossing.

We define the value h(B) of a block of πγ as the height of the corresponding copy of graph.
Since two neighbouring blocks correspond to adjacent copies of graph, they must have consecu-
tive value (and thus opposite parity).
Let π be a non-crossing partition. An interval of a block B of π is a maximal interval subset
Ji, jK ⊆ B. In particular i − 1 6∈ B and j + 1 6∈ B. The set of intervals of a block B is ordered
by the lexicographical order; if B has a unique interval, this interval is called a block interval.
Otherwise, the first interval is called the initial interval of B and the last interval is called the
final interval of B. The other ones are called intermediate intervals.

Lemma 7.35. Let γ be a rooted loop of length 2k and let B = {i1 < · · · < ir} be a block of πγ.
Then i1 = 1 if and only if ir = 2k, and if i1 6= 1 then h(i1 − 1) = h(i2 + 1) = h(i1) − 1 and
i1 − 1 ∼γ i2 + 1.

Proof. h(γ1) = h(γ2k) = 0 and for all 1 ≤ i ≤ 2k, h(γi) ≥ 0, thus 1 and 2k are in the same
block.
Let i0 = sup{i < i1, h(i) = h(i1)}. i0 6= i1 − 1 because i0 6∼γ i1. On Ji0 + 1, i1 − 1K, either
h > h(i1) or h < h(i1). Since i0 6∼γ i1, h < h(i1) on Ji0 +1, i1−1K and thus h(i1−1) = h(i1)−1.
Likewise, h(i2 + 1) = h(i2)− 1 = h(i1)− 1.
Moreover on Ji1− 1, i2 + 1K, h ≥ h(i1− 1), thus by Lemma 7.33 i1− 1 and i2 + 1 are in the same
copy of graph and i1 − 1 ∼γ i2 + 1.
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A partition π is called irreducible if 1 ∼π 2k (see [2]). A subpartition of π is a subset A ⊆ π
of blocks of π such that

⋃
B∈AB is an interval.

Lemma 7.36. Let γ be a rooted loop of length 2k. Then πγ and every subpartitions of πγ are
irreducible. The first and last elements of a block having even value are respectively odd and
even. The first and last elements of a block having odd value are respectively even and odd.

Proof. By Lemma 7.35, 1 and 2k are in the same block, thus π is irreducible.
Let π̃ = {Bi}i∈I0 be a strict subpartition of π and set Ji1, i2K =

⋃
i∈I0 Bi. Since π̃ 6= π, i1 6= 1

and i2 6= 2k. Let x = inf{i1 − 1 < i, h(i) = h(i1 − 1)}. On Ji1 − 1, xK, either h > h(i1 − 1) or
h < h(i1−1). By Lemma 7.35, h(i1) > h(i1−1), thus h > h(i1−1) on Ji1−1, xK and i1−1 ∼ x.
Since x 6∈ Ji1, i2K, h(i2) > h(i1 − 1) and thus h(i2) ≥ h(i1). By symmetry, h(i1) ≥ h(i2) and
finally h(i1) = h(i2). Since h > h(i1) − 1 on Ji1, i2K, h ≥ h(i1) on Ji1, i2K: Lemma 7.33 yields
that i1 ∼ i2.
1 is the first element of a block with even value and is odd. Let i > 1 be the first element of a
block B with even value. This means that h(γi) is odd, and thus γi belong to a copy G of G̃P .
Since i is the first element of B, h(i − 1) = h(i) − 1, and thus γi−1 belong to the only copy of
G̃Q with lower height than G: thus the vertex between γi−1 and γi is the root vertex v of G.
Since G is a copy of G̃P , v is at even distance to the root. GP ?GQ being bipartite, i− 1 is also
even and thus i is odd. The same proof holds for the three other cases.

Definition 7.37. A non-crossing partition π is of type ? if π is irreducible, all its subpartitions
are irreducible, all its blocks have an even number of elements, and the first elements of two
neighbouring blocks have opposite parities.
The value h(B) of a block B in π is 0 if B contains 1, 1 if the first element of B is even and 2
if the first element of B is odd and distinct from 1.

Let P?(k) the set of partitions of type ?.

Lemma 7.38. |P?(2k)| = NC(k).

Proof. Let Pk = |P?(2k)|. It suffices to show that Pk =
∑k

i=1 Pi−1Pk−i with P0 = P1 = 1.
We set a partition of P? = qPx depending on the position of the second element x of the block
containing 1. Since the blocks are even, x ∈ {2i|1 ≤ i ≤ k}. Let x0 = 2i0 and π ∈ Px0 . If x0 ≥ 4,
πJ2,x0−1K is again completely irreducible with blocks of even numbers, and the first elements of
two neighbouring blocks of πJ2,x0−1K have opposite parities: thus πJ2,x0−1K ∈ P?(i0 − 1). On the
other a hand since the first point of the first block after x0 is even, x0 + 1 belongs again to the
block containing 1 (and thus 2k): thus likewise if x0 ≤ 2k−2, πJx0+1,2kK ∈ P?(k− i0). Therefore,
there exists a map ϕ : Px −→ P?(k − x/2)× P?(x/2− 1); this map is clearly bijective and thus
|Px| = |P?(k − x/2)| × |P?(x/2− 1)|. Summing on 2 ≤ 2x ≤ 2k yields the result.

Let γ be a rooted loop on GP ? GQ. For B = {i1 < · · · < ir} a block of πγ , we denote γB
the word γi1γi2 . . . γir .

Lemma 7.39. For γ a rooted loop on GP ?GQ and B a block of πγ, γB is a rooted loop on GB,
where GB is the copy of graph containing {γi}i∈B.

Note that GB is well-defined, since all edges of B are in the same copy of graph.

Proof. We have to show that γB defines indeed a walk, and that the first and last vertices of γB
are the root vertex of GB. Let B = Jr1, s1K ∪ Jr2, s2K ∪ · · · ∪ Jrt, stK with ri ≤ si, si < ri+1 − 1.
For ri ≤ j < si, γj and γj+1 are consecutive edges of γB that are also consecutive edges of
γ: therefore, they share a vertex. Let j = si with i < t. Since any subpartition of πγ is
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also irreducible, x = si + 1 and y = ri+1 − 1 are in a same block B′ of π. By Lemma 7.35,
h(B′) = h(B) + 1, and thus the vertex between γsi and γx is the root vertex between GB′

and GB. Likewise, the vertex between γy and γri+1 is the root vertex between GB′ and GB.
Therefore, the final vertex of γsi and the first vertex of γri+1 is the same. γB is thus a walk on
GB.
Since h(r1− 1) = h(r1)− 1, the root vertex between γr1−1 and γr1 is the root vertex of GB. For
the same reason, the root vertex between γst and γst+1 is the root vertex of GB. Thus, γB is a
rooted loop on GB.

This implies in particular that the blocks of π(γ) are even (this could have been proven
directly from Lemma 7.36). The latter result yields also a combinatorial description of the
rooted loops on GP ? GQ.
Let ψG be the canonical bijection sending an edge of the copy of graph G to the same edge in
the initial graph (which is either GP , G̃P or G̃Q, depending on the value of B). ψ−1

G maps an
edge of the initial graph of G to the same edge in G. For each rooted loop γ and block B of πγ ,
let γ̃B denote the image of γB by ψGB .

Proposition 7.40. There is a bijection between rooted loops of length 2k on GP ?GQ and pairs
(π, {ζB}B∈π), where

• π ∈ P?(2k).

• ζB is a reduced loop of length |B| on G̃P (resp. G̃Q, resp. GP) if h(B) = 2 (resp. h(B) = 1,
resp. h(B) = 0).

Proof. Let A be the set of rooted loops of length 2k on GP ? GQ and let B be the set of pairs
(π, {ζB}B∈π) as in the statement of the proposition.
Let Φ : A −→ B be the map defined by Φ(γ) = (πγ , {γ̃B}B∈π). By Lemmas 7.36 and 7.39, this
map is well defined.
Let γ 6= γ′. If πγ 6= πγ′ then Φ(γ) 6= Φ(γ′). Suppose that πγ = πγ′ and let 1 ≤ i ≤ 2k be the
first element such that γi 6= γ′i. Let B be the block containing i. For all t < i, γt = γ′t, thus
GB(γ) = GB(γ′). Thus γB and γ′B are both walks on GB. Since γi 6= γ′i, these walks are distinct
and thus γ̃B 6= γ̃′B: therefore, Φ(γ) 6= Φ(γ′).
Let (π, {ζB}B∈π) be a pair as in the statement of the proposition. We define recursively on each
block a copy of graph GB and a rooted loop γ as follows:

1. Let B0 = {i1 = 1 < · · · < ir = 2k} be the block containing 1. We set GB0 = GP . For
is ∈ B0, we set γis = ψGB0

(ζB0(s)). Since ζB0 is a reduced loop on GP , γB0 is a reduced
loop on GP ? GQ (which is contained in the only copy of GP). Set t = 0.

2. Let B = {i1 < · · · < ir} be the first block neighbouring Bt: note that J1, i1 − 1K ⊆ Bt.
Suppose that h(B) = 1. Then i1 is even and thus the length of γBt∩J1,i1−1K is odd.
Therefore, the walk γBt∩J1,i1−1K ends at a vertex v which is at odd distance from the root,

and thus there exists a copy G of G̃Q whose root is exactly v. This implies that the height
of h(G) is h(i1 − 1) + 1. Let GB = G. For is ∈ B, set γis = ψGB (ζB(s)), h(i) = h(G).
Since by irreducibility i1−1 and ir+1 belongs to a same block of π (which is thus included
in Bt) and since γBt is a rooted loop on GP ? GQ, the final vertex of γi1−1 and the first
vertex of ir + 1 is the same vertex v which is the root of GB. ψGB (ζB) is a rooted loop on
GB, thus the final vertex of γir coincides also with the root v. Therefore γBt∪B is again a
rooted loop on GP ? GQ. Let Bt+1 := Bt ∪B.
Do the same construction (with a copy of G̃P) if h(B) = 2.
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3. Increase t by one and return to Step 2, until t is the number of blocks of π.

By construction γ is a rooted loop on GP?GQ. Let B = {i1 < · · · < ir} and B′ = {j1 < · · · < jr′}
be two blocks of π such that i1 < j1 < jr′ < ir (written B′ ≤ B): in this case the construction
yields that h(GB′) > h(GB).
If i ∼π j, then i and j are in the same copy of graph GB and for all i ≤ k ≤ j h(γk) ≥ h(γi):
this implies i ∼γ j and π ≤ πγ . Suppose that 1 ≤ i < j ≤ 2k are such that i 6∼π j, and let
Bi = {i1 < · · · < ir} (resp. Bj = {j1 < · · · < jr}) be the block of i (resp. j) in π. If γi is in a
different copy of graph than γj , i 6∼γ j. Let us assume that they are in the same copy of graph:
since h(GBi) = h(GBj ), ir < j1. Since π is completely irreducible and i1 6∼π jr′ , πJi1,jr′K is not
a subpartition of π and thus there exist ir < k < j1 and l ∈ J1, 2kK \ Ji1, jr′K such that k ∼π l.
Assume without loss of generality that l ≤ i1 and let B be the block of l and k. Since Bi ≤ B,
h(GB) > h(GBi). Thus h(γl) < h(γi) and i 6∼πγ j. Therefore, π = πγ . Since πγ = π and by
construction γB = ζB for each block B of π, Φ(γ) = (π, {ζB}B∈π). Therefore, Φ is surjective
and bijective.

Free product formula

The proof of Theorem 7.31 relies on the combinatorics of the free multiplicative convolution. We
will first construct a bijection between P? and NC(k) that respect the cardinal of the blocks.
Let p ∈ P?(2k) and let l(p) denote the number of blocks of p. Two blocks B and B′ are said
neighbors if there exists i ∈ B such that i+ 1 or i− 1 belongs to B′.

Lemma 7.41. Let p ∈ P?(2k). If B and B′ are two neighbouring blocks, then either B ≤ B′ or
B′ ≤ B.

Proof. Suppose that B 6≤ B′ and B′ 6≤ B. Let iB and iB′ (resp. fB and fB′) be the first (resp.
last) elements of B and B′. Since B 6≤ B′, B′ 6≤ B and p is non crossing, either fB < iB′ or
fB′ < iB. Suppose without loss of generality that fB < iB′ . Then fB 6= iB′ − 1, since otherwise
pJiB ,fB′K would be a subpartition of p with iB 6∼ fB′ . Therefore B and B′ are not neighbors.

Let p ∈ P?. For B a block of p and i ∈ B, we set h(i) = 0 if h(B) ≡ 0[2] and h(i) = 1
if h(B) ≡ 1[2]. Let fp : J1, 2kK −→ J1, 4kK be the function defined by fp(2i) = 4i − h(i) and
fp(2i−1) = 4i−3+h(i). Since fp(2i) ∈ {4i−1, 4i} and fp(2i−1) ∈ {4i−3, 4i−2}, fp is strictly
increasing and thus (f(p), f(J1, 2kK)) defines a partial partiton of 4k. Complete this partition by
saying that the elements of J1, 4kK\f(J1, 2kK) are singletons: this yields a non-crossing partition
of 4k denoted by p̃.
We define also an involutive map .̄ on J1, 4kK by saying that 4i+ 1 = 4i, 4i+ 2 = 4i+3, 4i+ 3 =
4i+ 2 and 4i = 4i+ 1 for 0 ≤ i ≤ k − 1.

Lemma 7.42. Let 1 ≤ i ≤ k and suppose that 4i− 2 6∼p̃ 4i− 1. Then at least one of them is a
singleton. The same holds for 4i and 4i+ 1.

Proof. Let 1 ≤ i ≤ k. Suppose that 4i− 2 and 4i− 1 are not singletons. Thus 4i− 2 and 4i− 1
are in fp(J1, 2kK). This means that 2i − 1 and 2i are both in a block of p of odd value. Since
two neighbouring blocks have values of opposite parities, 2i − 1 and 2i are in the same block,
and 4i − 2 ∼p̃ 4i − 1. The same holds for 4i and 4i + 1 and 1 ≤ i ≤ k − 1. Since 1 ∼p̃ 4k, the
implication holds also for i = k.

Lemma 7.43. 4i− 2 (resp. 4i+ 1) is a singleton of p̃ and 4i− 1 (resp. 4i) is not a singleton
of p̃ if and only if 2i (resp. 2i+ 1) is the first element of a block of p with value 1 (resp. 2).
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4i− 1 (resp. 4i) is a singleton of p̃ and 4i− 2 (resp. 4i+ 1) is not a singleton of p̃ if and only
if 2i− 1 (resp. 2i) is the last element of a block of p with value 1 (resp. 2).

Proof. p has no singleton, thus f(p) has no singleton. Therefore, 4i − 2 is a singleton of p̃ and
4i − 1 is not if and only if f(2i) = 4i − 1 and f(2i − 1) = 4i − 3. By construction of f , the
latter means that h(2i) ≡ 1, h(2i − 1) ≡ 0, and the elements 2i − 1 and 2i belong to distinct
neighbouring blocks B2i−1 and B2i of p. The two blocks are neighbors and p is non-crossing,
thus B2i−1 is distinct from B2i if and only if either 2i − 1 is the last element of B2i−1 or 2i is
the first of B2i. Since p ∈ P?(2k) the last element of a block of even value is even. Therefore,
2i− 1 is never the last element of B2i−1, and thus B2i and B2i−1 are distinct blocks if and only
if 2i is the first element of B2i.
The proof is the same in the three other cases (note that 4k and 1 are never singleton).

By the definition of f , elements of a block of p of even value are mapped to S and elements of
a block of p of odd value are mapped to Sc. Thus p̃ has the form ((π(p), S)∨(π′(p), Sc)) for some
partitions π(p), π′(p) of 2k. We define Θ(p) as the partition ((π(p) ∨ π0, S) ∨ (π′(p) ∨ π1, S

c)).
By construction Θ(p) is a non-crossing partition of 4k of the form ((π, S) ∨ (π′, Sc)) for some
partition π ≥ π0, π

′ ≥ π1. Let B be a block of p. There exists a unique block ϑp(B) of Θ(p)
such that f(B) ⊆ ϑp(B).

Lemma 7.44. ϑp is an injective map. Moreover |ϑp(B)| = |B|+ 2 if 1 6= B, and |ϑp(B)| = |B|
if 1 ∈ B. For all block B not being in the image of ϑp, |B| = 2.

Proof. Let B̃ be a block of p̃ which is not a singleton. And let us assume that B̃ = f(B) for a
block B of p. By Lemma 7.42, if x ∈ B̃ then either x̄ is a singleton or x̄ ∈ B̃. Therefore, each
block of Θ(p) contains at most one block of p̃ which is not a singleton, and ϑ(p) is injective.
By Lemma 7.43, x ∈ B̃ and x̄ is a singleton if and only if x is the first or last point of B̃ and B̃
doesn’t contain 1. Therefore ϑp(B) = B̃ if 1 ∈ B and ϑp(B) is the union of B̃ and two singletons
if 1 6∈ B: this yields |ϑp(B)| = |B|+ 2 if 1 6∈ B, and |ϑp(B)| = |B| if 1 ∈ B.
Let B be a block not being in the image of ϑp. Then B is a union of singletons of p̃. Since the
blocks of (π0, S) and (π1, S

c) have size 2, |B| = 2.

Lemma 7.45. Let p ∈ P?. Then Θ(p) is of the form ((π, S) ∨ (kr(π), Sc)) for some partition
π ≥ π0 in NC(2k).

Proof. By construction, Θ(p) is of the form ((π, S)∨(π′, Sc)) for some partitions π ≥ π0, π
′ ≥ π1

in NC(2k). Thus π′ ≤ kr′(π). Since π ≥ π0, Lemma7.27 yields kr′(π)/2 = Kr(π/2). The
Kreweras complement Kr(π) of a partition π of k satisfies the relation l(Kr(π)) + l(π) = k + 1
(see [66], Ch. 9). Therefore, l(kr′(π)/2) + l(π/2) = k + 1. Since l(kr′(π/2)) = l(kr′(π)) and
l(π/2) = l(π), l(π) + l(kr′(π)) = k + 1.
On the other hand, |B1|+

∑
B∈p
16∈B
|B| = 2k, thus by Lemma 7.44

∑
B∈p |ϑp(B)| = 2k+2(l(p)−1).

Since all other blocks of Θ(p) have cardinal 2,

l(Θ(p)) = l(p) +
4k − (2k + 2(l(p)− 1))

2
= k + 1.

Therefore, l(π) + l(π′) = k + 1 = l(π) + l(kr′(π)) and l(π′) = l(kr′(π)). Thus, π′ = kr′(π).

Recall that a partition is formally defined as a set of subsets of {1, . . . , k}. The former results
give the desired bijection:
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Proposition 7.46. There exists a bijection Λ : P? → NC(k), and for each p ∈ P? an injective
map λp :−→ Λ(p) ∪ Kr(Λ(p)) such that |λp(B)| = |B|/2 + 1 if 1 6∈ B and |λp(B)| = |B|/2 if
1 ∈ B; moreover if B is not in the image of λp, then B is a singleton.

Proof. Let p and p′ be two distinct partitions of P?(2k). Let 1 ≤ i, j ≤ 2k such that i and j
are in the same block B of p but in distinct blocks Bi and Bj of p′. Therefore, fp(i) and fp(j)
are in the same block of Θ(p). But fp′(i) and fp′(j) are not in the same block of Θ(p′): this
would contradict the injectivity of ϑp′ . Thus Θ(p) 6= Θ(p′). Θ is injective and by Lemma 7.38,
|P?(2k)| = |NC(k)| = |{π ∈ NC(2k), π ≥ π0}|, thus Θ is bijective.
If Θ(p) = ((π, S), (kr′(π), Sc)), set Λ(p) = π/2. For each B ∈ p, set λp(B) = ϑp(B)/2, where B/2
is the image of B ∈ π through the map π −→ π/2. Λ and λp have all the desired properties.

Denote by Mk(G) the number of rooted loops of length 2k on a rooted graph G. If p is
a partition, B1(p) denotes the block of p containing 1. Proposition 7.46 yields the following
formula for the dimension of P ∗ Q.

Lemma 7.47. For all k ≥ 1.

P ∗ Qk =
∑

p∈NC(k)

M|B1|(GP)
∏

B∈p,16∈B
M|B|−1(G̃P)

∏
B∈Kr(p)

M|B|−1(G̃Q). (7.3.1)

Proof. By Proposition 7.40,

P ∗ Qk =
∑

p∈P?(k)

M|B1|/2(GP)
∏

B∈p,h(B)=2

M|B|/2(G̃P)
∏

B∈ph(B)=1

M|B|/2(G̃Q).

Applying the map λp on each block of p and using the results of Proposition 7.46 yield

P ∗ Qk =
∑

p∈P?(k)

M|λp(B1)|(GP)
∏

B∈p,h(B)=2

M|λp(B)|−1(G̃P)
∏

B∈p,h(p)=1

M|λp(B)|−1(G̃Q).

By Proposition 7.46, any other blockB of Λ(p) is a singleton, therefore for such aB, M|B|−1(G) =
M0(G) = 1. Thus, the above formula can be completed as

P ∗ Qk =
∑

p∈P?(k)

M|λp(B1)|(GP)
∏

B∈Λ(p),16∈p

M|B|−1(G̃P)
∏

B∈Kr(p)

M|B|−1(G̃Q).

Summing on Λ(p) instead of p yields the result.

Since the graph G̃(P) is the graph GP without the root vertex, the number of rooted loops
of length 2k on G̃(P) is equal to the number of rooted loops of length 2k + 2 on GP that never
pass through the vertex root (except at the first and last vertex).
If γ is a rooted loop of length 2k on a rooted bipartite graph G, we define an interval partition
Iγ of 2k by saying that i ∼Iγ j if and only if the walk between i and j (i and j excluded) doesn’t
pass through the root: note that the blocks of I are necessarily even. For I an interval partition
of 2k with even blocks, the number of rooted loops γ with Iγ = I is exactly

∏
B∈I M̃|I|/2(G),

where M̃k(G) is the number of rooted loops of length 2k that only pass through the root vertex
at the first and last point. Thus,

Mk(G) =
∑
I∈I(k)

∏
B∈I

M̃|B|(G),
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where I(k) denotes the set of interval partitions of k. Therefore, (M̃k(G))k≥1 is the sequence of
Boolean cumulants associated to (Mk(G)) ≥ k ≥ 1.

Denote by bk(µ) the k−th boolean cumulant of a distribution µ. The formula (7.3.1) is thus

mk(µ(P ∗ Q)) =
∑

p∈NC(k)

m|B1|(µP)
∏

B∈p,16∈B
b|B|(µP)

∏
B∈Kr(p)

b|B|(µQ). (7.3.2)

Let I = (I1, . . . , Ir) be an interval partition with I1 = J1, i1K, . . . , Ir = Jir−1 + 1, kK. The descent
set D(I) of I is the set {i1 + 1, . . . , ir−1 + 1}.

Lemma 7.48. Let I = (I1, . . . , Ir) be an interval partition of k. There is a bijection ϕ from the
set {p ∈ NC(k), D(I) ⊆ B1(p)} to

∏
j NC(|Ij |). such that ϕ preserves the size of the block not

containing 1 and the Kreweras complement in the following sense: if ϕ(p) = (π1, . . . , πr), any
block of πj not containing ij−1 + 1 is a block of π, and

kr(p) = (kr(π1), I1) ∨ (kr(π2), I2) · · · ∨ (kr(πr), Ir).

Proof. Let ϕ(p) = (p|I1 , . . . , p|Ir). ϕ preserves the size of the blocks not containing 1 in the sense
of the statement of the lemma. Let πI be the partition (1|D(I)|+1, D(I)∪{1})∨(0k−|D(I)|−1, J1, kK\
(D(I) ∪ {1})): namely, πI is the partition with only singletons, except one block D(I) ∪ {1}.
We define ϕ−1 by the formula

ϕ−1(π1, . . . , πr) = ((π1, I1) ∨ (π2, I2) · · · ∨ (πr, Ir)) ∨ πI .

Note that ϕ−1((π1, . . . , pir)) is a non-crossing partition such that D(I) ⊆ B1. Since each element
of D(I) ∪ {1} is in a different interval of I, ϕ ◦ ϕ−1 = Id.
Let i and j be in the same block Is of I. Then i ∼ϕ−1◦ϕ(p) j if and only if i ∼pIs j (which
is equivalent to i ∼p j). If i and j are in different blocks, then i ∼ϕ−1◦ϕ(p) j if and only if
i, j ∈ D(I) ∪ {1} ⊆ B1 (which is again equivalent to i ∼p j).
Since D(I) ⊆ B1(p), kr(π) ≤ I, which gives the result.

The proof of Theorem 7.31 is based on the rewriting of Equation (7.3.2) with Lemma 7.48:

Proof of Theorem 7.31. Applying the Boolean moment-cumulant formula tom|B1|(µP) in (7.3.2)
yields

mk(µ(P ∗ Q)) =
∑

p∈NC(k)

∑
I∈I(|B1|)

bI(µP)
∏

B∈p,16∈B
b|B|(µP)

∏
B∈Kr(p)

b|B|(µQ).

Let p be a partition and B1 the block containing 1. Restricting an interval partition to B1 yields
a bijection ψ between interval partitions of k such that D(I) ⊆ B1 and interval partitions of B1.
Moreover if I = (I1, . . . , Ir) is an interval partition such that D(I) ⊆ B1, the blocks of ψ(I) are
exactly the set B1 ∩ Ij for 1 ≤ j ≤ r. Thus

mk(µ(P ∗ Q)) =
∑

p∈NC(k)

∑
I∈I(k),D(I)⊆B1

 ∏
1≤j≤r

b|B1∩Ij |(µP)
∏

B∈p,B 6=B1

b|B|(µP)

 bKr(p)(µQ),

where we use the notation bπ =
∏
B∈π b|B| for π = Kr(p). Inverting the sums and using Lemma
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7.48 yields

mk(µ(P ∗ Q) =
∑
I∈I(k)

I=(I1,...,Ir)

∑
p∈NC(k)
D(I)⊆B1(p)

 ∏
1≤j≤r

b|B1∩Ij |(µP)
∏

B∈p,B 6=B1

b|B∩Ij |(µP)

 bkr(p)(µQ)

=
∑
I∈I(k)

I=(I1,...,Ir)

∑
(p1,...,pr)∈

∏
NC(|Ij |)

∏
1≤j≤r

bpj (µP)bkr(pj)(µQ).

=
∑

I∈I(k)
I=(I1,...,Ir)

)

∏
1≤j≤r

 ∑
p∈NC(|Ij |)

(bp(µP)bkr(p)(µQ

 .

Therefore, the Boolean cumulants of µ(P ∗ Q) are:

bk =
∑

p∈NC(k)

(bp(µP)bkr(p)(µQ)), (7.3.3)

for k ≥ 1.
Let B be the Boolean Bercovici-Pata bijection (see [19]) from Boolean infinite divisible distri-
butions to free infinite divisible distributions. B maps in particular a law µ having Boolean
cumulants (ck)k≥1 to a law ν having free cumulants (ck)k≥1. Equation (7.3.3) together with the
cumulant formula of the free multiplicative convolution (see [66]) yields

B(µ(P ∗ Q)) = B(µP) � B(µQ).

But from [17], B is a semi-group homomorphism with respect to the free multiplicative convo-
lution. Thus, B(µP) � B(µQ) = B(µP � µQ), and applying B−1 yields

µ(P ∗ Q) = µP � µQ.

176



Part IV
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Chapter 8

Combinatorics of large compositions

8.1 Introduction

A descent of a permutation σ of n ∈ N∗ is an integer i such that σ(i) > σ(i + 1). For each
permutation σ, the corresponding descent set D(σ) is the set of all the descents of σ. Since
descents can be located everywhere except on n, a descent set is just a subset of {1, . . . , n− 1}.
Let us call a composition of n the data of n and a subset of {1, . . . , n− 1}. A composition D is
represented by a ribbon Young diagram λD of n cells labelled 1 to n by the following rule : cells
i and i + 1 are neighbors and the cell i + 1 is right to i if i 6∈ D, below i otherwise. Therefore,
the descent set of a permutation σ is D if and only if inserting σ(i) in each cell i of λD yields
a standard ribbon Young tableau. For example, the composition D = {10, (3, 5, 9)} gives the
following ribbon Young diagram:

Figure 8.1: Ribbon Young diagram λD of to the composition D = {10, (3, 5, 9)}

The permutation σ = (3, 5, 8, 4, 7, 1, 6, 9, 10, 2) has the descent set D since the associated filling
of λD yields a ribbon Young tableau, as shown in figure 8.2.

3 5 8
4 7

1 6 9 10
2

Figure 8.2: Standard filling of the composition (3, 2, 4, 1)

The descent statistic of a composition D is the number of standard fillings of the associated
ribbon Young tableau λD (or, equivalently, the number of permutations having D as descent
set). This latter number, denoted by β(D), has been intensively studied in the last decades
(see Viennot [87] and [88] , Niven [67], de Bruijn [31] , ...). Two main questions arose in this
study: the first one is to find the compositions of n having a maximum descent statistic, and
the second one is to find exact or asymptotic formulae for the descent statistic of large com-
positions having a given shape. For example, Niven and de Bruijn proved in [67] and [31] that
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the two compositions of n maximizing the descent statistic are D1(n) = {1, 3, 5, . . . } ∩ [1, n]
and D2(n) = {2, 4, 6, . . . , } ∩ [1, n]: permutations having such descent sets are called alternating
permutations. Désiré André already gave in [1] an asymptotic formula for the number of alter-
nating permutations by showing that β(D1)(n) ∼ 2(2/π)nn! as n goes to infinity.
In order to evaluate the descent statistic of a broad class of compositions, Ehrenborg, Levin
and Readdy formalized in [37] a probabilistic approach to the counting problem, by relating
each permutation of n to a particular simplex of [0, 1]n. Since the Lebesgue measure yields a
probability measure on [0, 1]n, it is possible to use probabilistic tools to get interesting results
on descent statistics. Ehrenborg obtained in [36] an asymptotic formula for the descent statis-
tics of the so-called nearly periodic permutations: the latter consist in permutations having the
same descent pattern repeated several times, with some local perturbations. As for alternating
permutations, the asympotic formula has the shape Kλnn!, with K and λ being some constants
depending on the situation. Using the approach of [37] with functional analysis tools, Bender,
Helton and Richmond extended in [18] the previous results to a broader class of descent sets,
and they found asymptotic formulae of the same shape as before.
The factorial term of the asymptotic formula is easy to understand, since it comes from the car-
dinality of the set of permutations of n elements. However, the term λn seems more mysterious.
In [18], the authors identified in their examples the phenomenon that makes the term λn appear:
namely, if we consider a large uniform random permutation with a fixed descent set, then the
value of σ(1) and σ(n) are nearly independent, which causes a factorization in the asymptotic
counting. Thus, the natural question is to know which compositions induce this phenomenon;
it has been conjectured in [18] that every composition have this property as they become large.
In the present chapter we construct a family of probabilistic models, called sawtooth models,
which extend the probabilistic approach of Ehrenborg, Readdy and Levin. These models are
more general than the ones used in [18], but the combinatorial properties of the large descent
sets appear more clearly in this broader case; thus, we first study these models in their full gen-
erality, before deducing some specific results on descent sets. A main consequence of the latter
work is an affirmative answer to Conjecture 1 on asymptotic independence from Bender, Helton
and Richmond ([18]). We are also able to give by the following intuitive result on compositions:
In the random filling of a composition, the contents of two distant cells are almost independent.
In the next chapter, we will use the results of this chapter to study an analog of the Young
lattice that was introduced by Gnedin and Olshanski in [42].

8.2 Preliminaries and results

8.2.1 Compositions

This paragraph gives definitions and notations concerning compositions.

Definition 8.1. Let n ∈ N. A composition λ of n is a sequence of positive integers (λ1, . . . , λr)
such that

∑
λj = n.

A unique ribbon Young diagram with n cells is associated to each composition: each row
j has λj cells, and the first cell of the row j + 1 is just below the last cell of the row j. For
example the composition of 10, (3, 2, 4, 1) is represented as in figure 8.1. This picture shows
directly the link between Definition 8.1 and the definition we stated in the introduction : a
composition λ = (λ1, . . . , λr) of n yields a subset Dλ of {1, . . . , n − 1}, namely the subset
{λ1, λ1 + λ2, . . . , λ1 + · · ·+ λr−1}. The latter correspondence is clearly bijective.
The size |λ| of a composition is the sum of the λj . When nothing is specified, λ will always be
assumed to have the size n, and n will always denote the size of the composition λ.
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A standard filling of a composition λ of size n is a standard filling of the associated ribbon Young
diagram: this is an assignement of a number between 1 and n for each cell of the composition,
such that every cells have different entries, and the entries are increasing to the right along the
rows and decreasing to the bottom along the columns. An example for the composition of figure
8.1 is shown in figure 8.2.
In particular, reading the tableau from left to right and from top to bottom associates a per-
mutation σ to each standard filling; moreover, the descent set of such a permutation σ, namely
the set of indices i such that σ(i+ 1) < σ(i), is exactly the set

Dλ = {λ1, λ1 + λ2, . . . ,

r−1∑
1

λi}.

There is a bijection between the standard fillings of λ and the permutations of |λ| with descent
set Dλ. For example the filling in figure 8.2 yields the permutation (3, 5, 8, 4, 7, 1, 6, 9, 10, 2).

8.2.2 Result on asymptotic independence

We present here the main results that are proven in the present chapter.

Notation 8.2. Let λ be a composition. Let Σλ denote the set of all permutations with descent
set Dλ. With the uniform counting measure Pλ, it becomes a probability space, and σλ denotes
the random permutation coming from this probability space. As usual |Σλ| is the cardinality of
the set Σλ.

|Σλ| is thus the descent statistic associated to the composition λ.
Denote for each random variable X by µ(X) its law and by dX its density, and write µ⊗ ν for
the independent product of two laws. The goal of the chapter is to prove that distant cells in a
composition have independent entries, namely:

Theorem 8.3. Let ε, r ∈ N. Then there exists k ≥ 0 such that if λ is a composition of n and
0 < i1 < · · · < ir ≤ n are indices with ij+1 − ij ≥ k,

π

(
µ(
σλ(i1)

n
, . . . ,

σλ(ir)

n
), µ(

σ(i1)

n
)⊗ · · · ⊗ µ(

σ(ir)

n
)

)
≤ ε,

with π denoting the Levy-Prokhorov metric on the set of measures of [0, 1]r.

If the variance of σλ(i1)
n and σλ(in)

n remain bounded from below by a positive constant, then

the approximate independence of σλ(i1)
n and σλ(in)

n can be given with a stronger metric than
the Levy-Prokhorov metric. This is the content of Conjecture 1 of [18], which is proven in this
chapter and formulated in Theorem 8.36.

8.2.3 Runs of a composition

Let λ be a composition. We number the cells as we read them, from left to right and from top to
bottom . The cells are identified with integers from 1 to n through this numbering. For example
in the standard filling of figure (8.2), the number 7 is in the cell 5.
We call run any set consisting in all the cells of a given column or row. The set of runs is ordered
with the lexicographical order. In the same example as before the runs are

s1 = (1, 2, 3), s2 = (3, 4), s3 = (4, 5), s4 = (5, 6), s5 = (6, 7, 8, 9), s6 = (9, 10),
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where we put in the parenthesis the cells of each run.
Note that inside each run the cells are ordered by the natural order on integers. We call extreme
cell a cell that is an extremum in a run with respect to this order, and denote by Eλ the set
of extreme cells of λ. Apart from the first and last cells of the composition, each extreme cell
belongs to two consecutive runs. Let Pλ be the set of extreme cells followed by a column, or
preceeded by a row and Vλ the set of extreme cells followed by a row or preceeded by a column.
The elements of Pλ are called peaks and the ones of Vλ valleys. The sets Vλ and Pλ are also
ordered with the natural order:

Pλ = {p1 < · · · < pk}, Vλ = {q1 < · · · < qk′},

with k − 1 ≤ k′ ≤ k + 1.
The first and last cells are always extreme points. A composition is said being of type ++ (resp.
+-,-+,- -) if the first cell is a peak and the last cell is a peak (resp peak-valley, valley-peak,
valley-valley).
Finally, let l(s), the length of a run s, be the cardinality of s, and L(λ), the amplitude of λ, be
the supremum of all lengths l(s).

8.2.4 The coupling method

In this paragraph we introduce a probabilistic tool called the coupling method, and set the
relative notations for the sequel. We refer to [58] for a review on the subject. We will present the
notions in the framework of random variables but we could have done the same with probability
laws as well.

Definition 8.4. Let (E, E) be a probability space and X,Y two random variables on E. A
coupling of (X,Y ) is a random variable (Z1, Z2) on (E × E, E⊗, E) such that

Z1 ∼law X,Z2 ∼law Y.

Such a coupling always exists : it suffices to consider two independent random variables Z1

and Z2 with respective law µX and µY . However, a coupling is often useful precisely when the
resulting random variables Z1 and Z2 are far from being independent. In particular, in this
chapter we are mainly interested in the case where Z1 and Z2 respect a certain order on the set
E. From now on E is a Polish space considered with its Borel σ−algebra E , and / is a partial
order on E such that the graph G = {(x, y), x / y} is E−measurable.

Definition 8.5. Let X,Y be two random variables on E. Y stochastically dominates X (denoted
Y � X) if and only if

P(X ∈ A) ≤ P(Y ∈ A)

for any Borel set A such that

x ∈ A⇒ {y ∈ E, x / y} ⊆ A.

For example if E = R with the canonical order ≤ and σ−algebra B(R), then Y stochastically
dominates X if and only if for all x ∈ R,

P(X ∈ [x,+∞[) ≤ P(Y ∈ [x,+∞[)

or equivalently, if we denote their respective cumulative distribution function by FX(t) and
FY (t):

FY (t) ≤ FX(t) for all t ∈ R.

There are several ways to characterize the stochastic dominance:
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Proposition 8.6. The three following statements are equivalent :

• Y stochastically dominates X

• there exists a coupling (Z1, Z2) of X,Y such that Z1 / Z2 almost surely.

• for any positive measurable bounded function f that is non-decreasing with respect to /,

E(f(X)) ≤ E(f(Y ))

The proof is straightforward and can be found in [58]. This yields the following intuitive
Lemma :

Lemma 8.7. Let (X1, X2, Y1, Y2) be a random variable on E4 such that :

• X1 � Y1 and Y2 � X2,

• (X1, Y1) is independent from (X2, Y2).

Then

P(X1 / X2) ≥ P(Y1 / Y2).

Proof. Let � be the partial order on E × E defined by

(x, y)� (x′, y′)↔ x / x′ and y′ / y.

Since Y1 � X1 and X2 � Y2, there exists a coupling (X̂1, Ŷ1) (resp. (X̂2, Ŷ2)) of X1, Y1 (resp.
X2, Y2) such that almost surely X̂1 / Ŷ1 (resp X̂2 . Ŷ2). The random variables (X̂1, Ŷ1) and
(X̂2, Ŷ2) can be chosen independent one from each other. Since (X1, Y1) and (X2, Y2) are also
independent, this implies that ((X̂1, X̂2), (Ŷ1, Ŷ2)) is a coupling of ((X1, X2), (Y1, Y2)) with almost
surely

(X̂1, X̂2)� (Ŷ1, Ŷ2).

But if Ŷ1 / Ŷ2, then X̂1 / Ŷ1 / Ŷ2 / X̂1 and thus

P(Y1 / Y2) = P(Ŷ1 / Ŷ2) ≤ P(X̂1 / X̂2) = P(X1 / X2).

These results will be concretely applied on Rp, p ≥ 1, and thus we need to define a family of
partial orders on those sets.

Definition 8.8. Let p ≥ 1. The partial order ≤ on Rp is the natural order on R for p = 1, and
for p ≥ 2 if (xi)1≤i≤p, (yi)1≤i≤p ∈ Rp,

(xi)1≤i≤p ≤ (yi)1≤i≤p ⇔ ∀i ∈ [1; p], xi ≤ yi.

For any word ε of length p in {+1,−1} (or simply in {+,−}), the modified partial order ≤ε is
defined as

(xi)1≤i≤p ≤ε (yi)1≤i≤p ⇔ ∀i ∈ [1; p], εixi ≤ εiyi.

The easiest way to check the stochastic dominance is to look at the cumulative distribution
function. The proof of the following Lemma is a direct application of Proposition 8.6.
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Lemma 8.9. Let (Xi)1≤i≤p and (Yi)1≤i≤p be two random variables on (Rp,≤ε). Then (Yi)1≤i≤p
stochastically dominates (Xi)1≤i≤p if and only if for all (ti)1≤i≤p ∈ Rp,

F ε(Xi)(t1, . . . , tp) ≥ F
ε
(Yi)

(t1, . . . , tp),

with F ε(Xi) being the modified cumulative distribution function defined by

F ε(Xi)(t1, . . . , tp) = P((Xi) ≤ε (ti)).

The stochastic dominance in the case (Rp,≤ε) is denoted as (X1, . . . , Xp) �ε (Y1, . . . , Yp). A
consequence of the previous result is that if (Y1, . . . , Yp) stochastically dominates (X1, . . . , Xp),
then for all subsets I = (i1, . . . , ir) of {1, . . . , p}, (Yi1 , . . . , Yir) also stochastically dominates
(Xi1 , . . . , Xir).
Applying Lemma 8.9 to the case p = 2 yields the following Lemma:

Lemma 8.10. Let (U1, V1), (U2, V2) be two random variables on [0, 1] such that U2 and V2 are
independent. Suppose that for all 0 ≤ t ≤ 1,

FV1(t) ≤ FV2(t)

and for all v ∈ [0, 1],
FU1|V1=v(t) ≤ FU2(t).

There exists a coupling ((Z1, Z̃1), (Z2, Z̃2)) of (U1, V1) and (U2, V2) such that almost surely

(Z1, Z̃1) ≥ (Z2, Z̃2).

8.3 Sawtooth model

8.3.1 Definition of the model

In this section we introduce a statistical model of particles in a tube, which is a generalization
of the probabilistic approach of Ehrenborg, Levin and Readdy in [37]. The model consists in
a sequence of particles, each of them moving vertically in an horizontal two-dimensional tube.
Each particle has a repulsive action on the two neighbouring particles, and moreover, the set of
particles splits into two groups: the upper particles and the lower particles. The upper particles
are always above the lower ones. The model is depicted in Figure 8.3.

q1

q2

q3

p1

p2 p3

Figure 8.3: Upper particles {p1, p2, p3} and lower particles {q1, q2, q3} in a tube.

Such a system is called a Sawtooth model in the sequel.

Remark 8.11. If there are k upper-particles, there must be k′ lower particles with k′ ∈ {k −
1, k, k + 1}, depending on the type of the first and the last particles. We define therefore the
type ε(S) of the model S as the word εIεF , with εI = + (resp. εF = +) if the first (resp. last)
particle is an upper one, and εI = − (resp. εF = −) otherwise.
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Unless specified otherwise, the first particle is a lower particle (as in the picture). The
particles are ordered from the left, and following this order the upper particles are written
{p1 < p2 < · · · < pk} and the lower particles {q1 < · · · < qk′}. Since the nature of our results
won’t depend on the type of the model, we will also assume that there are k+ 1 lower particles,
yielding that the last particle is a lower one too.
Denote by xi the position of qi and by yi the position of pi: by a rescaling, we can assume that
xi, yi ∈ [0, 1]. These positions are considered as random, and each configuration of positions
is weighted according to repulsive interactions between neighbouring particles. This yields the
following definition:

Definition 8.12. A Sawtooth model S is the union of two families of random variables {Xi}1≤i≤k+1

and {Yj}1≤j≤k on [0, 1] with the multivariate density

P({Xi = xi, Yj = yj}) =
1

V
∏

1xi≤yi≥xi+1fi(yi − xi)gi(yi − xi+1)
∏

dxi
∏

dyj , (8.3.1)

where {fi, gi}1≤i≤k is a family of increasing positive C1 functions on [0, 1].
The quantity V is called the volume of S and is sometimes denoted by V(S) to avoid confusion.
S is said normalized if

∫
fi =

∫
gi = 1 for 1 ≤ i ≤ k.

The volume has the following expression:

V(S) =

∫
[0,1]2k+1

∏
1xi≤yi≥xi+1fi(yi − xi)gi(yi − xi+1)

∏
dxidyi. (8.3.2)

In particular, an appropriate rescaling of the functions fi, gi can transform any Sawtooth model
into a normalized one, without changing the probability space. Thus, from now on and unless
stated otherwise, the model is assumed normalized. In case we are considering non-normalized
models, we will use the notation fi, gi, etc. for the normalized quantities, and f̃i, g̃i, etc. for the
non-normalized ones.
Aiming the results we stated on compositions, we should answer these questions :

1. As the number of particles goes to infinity, is there some independence between X1 and
Xk+1 ?

2. It is possible to estimate the behavior of a particle Xr by only considering its neighbouring
particles ?

For each subset of particles Ω = (qi1 , . . . , qir , pj1 , . . . , pjr′ ) and measurable event X , denote
by

dΩ|X (xi1 , . . . , xir , yj1 , . . . , yjr′ )

the marginal density of Ω conditioned on X . The subscripts will be dropped when there is no
confusion, and we denote by XI the first variable X1 and XF the last variable Xk+1. Finally,
since the system is fully described by the functions {fi, gj}, we will refer sometimes to a particular
system just by mentioning this set of functions.
The definition of a Sawtooth model yields directly two first results which are given in Lemma
8.13 and Lemma 8.14. The first one stresses the Markovian aspect of a Sawtooth model :

Lemma 8.13. Let S be a Sawtooth model of size k, and 1 ≤ i ≤ k. Let Z be the position of a
particle right to Xi (namely Z = Xj for j > i or Z = Yj for j ≥ i) and X be an event depending
on the positions of particles right to Z. Then for 0 ≤ z ≤ 1,

dXi|Z=z,X = dXi|Z=z.
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Proof. It suffices to prove that the particles left to Z are independent of the particles right to Z
conditionally on the value of Z. This is implied by the form of the density of the model, since
the latter splits between the density of the particles left to Z and the ones right to Z.

The second one is a generalization of Lemma 3-(a) in [18]. :

Lemma 8.14. Let 1 ≤ r ≤ k+1, and let X be an event depending on the position of all particles
except Xr. Then dXr|X (xr) is decreasing in xr.

Proof. Let a be in [0, 1]. By Lemma 8.13,

dXr|X (a) =

∫
[0,1]2

d(Xr|X )|Yr−1=z,Yr+1=z′(a)dYr−1,Yr+1|X (z, z′)dzdz′

=

∫
[0,1]2

dXr|Yr−1=z,Yr+1=z′(a)dYr−1,Yr+1|X (z, z′)dzdz′.

Thus, it is enough to prove the monotonicity in the case of a conditioning on Yr−1 = z, Yr+1 = z′.
In this case

dXr|Yr−1=z,Yr+1=z′(a) = 1z≥a,z′≥a
1

R
(gr−1(z − a)fr(z

′ − a)),

with R a normalizing constant. Since gr−1 and fr are increasing, this concludes the proof.

The same result holds for upper particles, but in this case the density is increasing.

8.3.2 The processes Sλ and Σλ

Let us see how these definitions fit into the framework of compositions. The main idea from [37]
is to consider the set of all permutations with a given descent set Dλ as a probability space.
|Σλ| can indeed be related to the volume of a polytope in [0, 1]n (see for example the survey
of Stanley on alternating permutations, [78]) . For each sequence of distinct elements ~z =
(z1, . . . , zn) in [0, 1], the ranking permutation of ~z is the permutation σ(~z) that assigns to each
j the position of zj in the ordered sequence (zi1 < · · · < zin): namely, σ(~z)(j) = k if and only if
#{1 ≤ i ≤ n|zi ≤ zj} = k.

Proposition 8.15 ([37]). The law of σλ is the law of the ranking permutation for a sequence
of independent uniform variables Z1, . . . , Zn in [0, 1] conditioned on the event

{Zi > Zi+1 if and only if i ∈ Dλ}.

In particular, the following expression of the number of permutations with descent set Dλ holds
:

|Σλ| = n!

∫
[0,1]n

∏
i∈Dλ

1zi≥zi+1

∏
i 6∈Dλ

1zi≤zi+1

∏
dzi,

with zn+1 = 1.

The proof of the latter proposition is straightforward as soon as we remark that the volume
of the polytope {0 ≤ z1, . . . , zn ≤ 1} is exactly 1

n! . The processus {Zi}1≤i≤n in the previous

proposition is denoted by S̃λ. Since the indicator function in the integrand depends on conditions
between neighbouring points, this result can be rephrased in terms of Sawtooth model.
Regrouping the inequalities between elements of the same run of λ yields:

|Σλ| = n!

∫
[0,1]n

1z1≤z2≤···≤zi11zi1≥zi1+1≥···≥zi1+i2 . . .1zn−i2r≤···≤zn
∏

dzi, (8.3.3)
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and by integrating over all the coordinates that do not correspond to extreme cells, we get

|Σλ| =n!

∫
[0,1]n

1x−1 ≤x
+
1 ≥x

−
2 ≤...

1

(l(s1)− 2)!
|x+

1 − x
−
1 |
l(s1)−2

1

(l(s2)− 2)!
|x+

1 − x
−
2 |
l(s2)−2 . . .

1

(l(s2r)− 2)!
|x+
k − x

−
k+1|

l(sk)−2
k∏
i=1

dx+
i

k+1∏
i=1

dx−i .

Let Sλ be the non-normalized Sawtooth model with the non-normalized density functions
{f̃j , g̃j}1≤i≤r such that

f̃j(t) =
1

(l(s2j−1)− 2)!
tl(s2j−1)−2, g̃j(t) =

1

(l(s2j)− 2)!
tl(s2j)−2.

A comparison between the latter expression of |Σλ| and the expression (8.3.2) of the volume of
a Sawtooth model gives

|Σλ| = |λ|!V(Sλ)

To sum up, three processes are constructed from λ. The first one, σλ comes from the uniform
random standard filling of the ribbon Young tableau λ, the second one, S̃λ, comes from the
probabilistic approach of [37], and the third one, Sλ, is obtained from S̃λ by considering only
the extreme particles. They are of course intimately related, even if the first one is discrete
and the second and third ones are continuous. σλ can be recovered from S̃λ by the associated
ranking permutation, and when |λ| goes to infinity σλ(i)

n and Zi are approximately the same :

Lemma 8.16. The following inequality always holds for 0 < A,n ∈ N:

P(max(| σλ(i)

n+ 1
− Zi| >

A√
n+ 2

) ≤ 1

A2

In particular, if the densities of Zi remains bounded by a constant B,

‖FZi − Fσ(i)
n

‖∞ →|λ|→+∞ 0.

Proof. Let us evaluate P(|σλ(i)
n+1 − Zi| >

A
n+2). Condition the event {|σλ(i)

n+1 − Zi| >
A
n+2} on a

particular realization σ of σλ, and suppose that σ(i) = k. In this case, the conditional density
of Zi is :

dZi|σλ=σ(zi) =n!

∫
0≤zσ−1(1)≤···≤zσ−1(k−1)≤zi

∏
1≤σ(j)≤k−1

dzj


∫

zi≤zσ−1(k+1)≤···≤zσ−1(n)≤1

∏
k+1≤σ(j)≤1

dzj


=

n!

(k − 1)!(n− k)!
zk−1
i (1− zi)n−k.

Computing the conditional expectation yields E(Zi|σλ = σ) = k
n+1 and

V ar(Zi|σλ = σ) =

(
k

n+ 1

n+ 1− k
n+ 1

)
1

n+ 2
≤ 1

n+ 2
.
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Thus, by the Chebyshev’s inequality,

PZi|σλ=σ

(
|Zi −

σ(1)

n+ 1
| > A√

n+ 2

)
≤ 1

A2
.

Integrating this inequality on all the disjoint events σ on which Zi can be conditioned yields the
first part of the Lemma.

From now on, let γ̃r denote for r ≥ 2 the function γ̃r(t) = 1
(r−2)! t

r−2, and γr(t) = (r− 1)tr−2

its normalized density function.

8.4 Convex Sawtooth Model

In this section, we study the behavior of the extreme particles for a Sawtooth model respecting a
particular convexity property. The results of this section are much easier to get in the particular
case of the Sawtooth models Sλ of the last section, since the density functions {fi, gi} are
explicitly given. We will use this particular Sawtooth models as examples for our more general
computations.

8.4.1 Log-concave densities

To be able to get some results on the behavior of the particles, it is necessary to impose some
conditions on the density functions {fi, gi}. Actually the condition we need is quite natural from
a physical point of view, since we will require that the repulsive forces in the definition of the
Sawtooth model come from a convex potential : the consequence is that the density functions
should be log-concave. This motivates the following definition :

Definition 8.17. A Sawtooth model is called convex if all the functions (fi, gi)1≤i≤k are log-

concave. This means that for all 1 ≤ i ≤ k,
f ′i(t)
fi(t)

and
g′i(t)
gi(t)

are decreasing.

The main advantage of the log-concavity is that the behavior of the particles becomes mono-
tone in a certain sense.
For 1 ≤ s ≤ k+ 1, let S→Xs (resp. SXs←) denote the Sawtooth model obtained by keeping only
the particles between XI and Xs (resp. between Xs and XF ) and the functions {fi, gi}i≤s (resp.
{fi, gi}i≥s+1). Likewise, let S→Ys (resp. SYs←) denote the Sawtooth model obtained by keeping
only the particles between XI and Ys (resp. between Ys and XF ) and the functions {fi, gj} i≤s

j≤s−1

(resp. {fi, gj}i≥s+1
j≥s

).

In order to emphasize a specific Sawtooth model S, we write XSi to denote the particle Xi in S,
and FXi,S to denote the cumulative distribution function of Xi in S (and the same for Yi).

Proposition 8.18. Let {fi, gi} be a convex Sawtooth model. Then for 1 ≤ s ≤ k, (Xs|Ys = y)
is increasing with y (in terms of stochastic dominance) and (Ys|Xs+1 = x) is increasing with x.
Moreover,

X
S→Xs
s � (Xs|Ys = y), Y

S→Ys
s � (Ys|Xs+1 = x).

Proof. Let 1 ≤ s ≤ k. To prove the first part of the proposition, it is enough to show that for
0 ≤ t ≤ 1, FXs|Ys=y(t) is decreasing in y and FYs|Xs+1=x(t) is decreasing in x.
Let d(x) be the density of Xs in S→Xs . Then by the definition of the probability density of S,
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the density of Xs in S conditioned on the value of Ys is 1x≤y
d(x)fs(y−x)

A , with A a normalizing
constant. Thus, the cumulative distribution function Fy(.) of Xs conditioned on Ys = y is

Fy(t) =

∫ t∧y
0 d(x)fs(y − x)dx∫ y
0 d(x)fs(y − x)dx

.

For t > y it is clear that ∂
∂yFy(t) = 0, and from now on we only consider t ≤ y. Since the

logarithm function is increasing, it is enough to show that ∂
∂y log(Fy(t)) ≤ 0. This derivative is

equal to

∂

∂y
log(Fy(t)) =

∫ t
0 d(x)f ′s(y − x)dx∫ t
0 d(x)fs(y − x)dx

−
∫ y

0 d(x)f ′s(y − x)dx∫ y
0 d(x)fs(y − x)dx

− d(y)fs(0)∫ y
0 d(x)fs(y − x)dx

.

Since (− d(y)fs(0)∫ y
0 d(x)fs(y−x)dx

) ≤ 0, the non-positivity of the remaining part of the sum suffices. Denote

∆ =

∫ t

0
d(x)f ′s(y − x)dx

∫ y

0
d(x)fs(y − x)dx−

∫ y

0
d(x)f ′s(y − x)dx

∫ t

0
d(x)fs(y − x)dx.

Thus, we have to show that ∆ ≤ 0. For t ≤ y,

∆ =

∫ t

0
d(x)f ′s(y − x)dx

(∫ t

0
d(x)fs(y − x)dx+

∫ y

t
d(x)fs(y − x)dx

)
−
(∫ t

0
d(x)f ′s(y − x)dx+

∫ y

t
d(x)f ′s(y − x)dx

)∫ t

0
d(x)fs(y − x)dx

=

∫ t

0
d(x)f ′s(y − x)dx

∫ y

t
d(x)fs(y − x)dx

−
∫ y

t
d(x)f ′s(y − x)dx

∫ t

0
d(x)fs(y − x)dx.

Expressing products of integrals as double integrals yields

∆ =

∫
0≤z1≤t
t≤z2≤y

d(z1)d(z2)f ′s(y − z1)fs(y − z2)dz1dz2

−
∫

0≤z1≤t
t≤z2≤y

d(z1)d(z2)fs(y − z1)f ′s(y − z2)dz1dz2

=

∫
0≤z1≤t
t≤z2≤y

d(z1)d(z2)(f ′s(y − z1)fs(y − z2)− fs(y − z1)f ′s(y − z2))dz1dz2.

Since d(z1)d(z2) is positive and f ′s(t)
fs(t)

is decreasing, ∆ ≤ 0 and the first part of the proposition is
proven.
The second part of the proposition is equivalent to the inequalities

FXs|Ys=y(t) ≥ FXs,S→Xs (t)

and
FYs|Xs+1=x(t) ≤ FYs,S→Ys (t)
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for all 0 ≤ t ≤ 1.
From the first part of the Proposition, it suffices to prove the first inequality only for y = 1.
Since fs is increasing, there exists a measure µ on [0, 1] such that fs(x) =

∫ x
0 dµ(u). Thus,

F1(t) =

∫ t
0 d(x)

(∫ 1−x
0 dµ(u)

)
dx∫ 1

0 d(x)
(∫ 1−x

0 dµ(u)
)
dx

=

∫
[0,1]2 1x≤t,u≤1−xd(x)dµ(u)dx∫

[0,1]2 1u≤1−xd(x)dµ(u)dx
.

The main point is to express the latter quantity as the expectation of a random variable almost
surely greater than

∫ t
0 d(x)dx. Changing the order of the integrals yields

F1(t) =

∫ 1
0

(∫ t∧(1−u)
0 d(x)dx

)
dµ(u)∫ 1

0

(∫ 1−u
0 d(x)dx

)
dµ(u)

=

∫ 1
0

(∫ t∧(1−u)
0

d(x)∫ 1−u
0 d(x)dx

dx

)(∫ 1−u
0 d(x)dx

)
dµ(u)∫ 1

0

(∫ 1−u
0 d(x)dx

)
dµ(u)

.

Let Ũ be a random variable absolutely continuous with respect to µ and having the density

dŨ (u) =

(∫ 1−u
0 d(x)dx

)
dµ(u)∫ 1

0

(∫ 1−u
0 d(x)dx

)
dµ(u)

.

Then

F1(t) = EŨ

∫ t∧(1−Ũ)
0 d(x)dx∫ 1−Ũ

0 d(x)dx

 .

Since for each u ≥ 0 ∫ t∧1−u
0 d(x)dx∫ 1−u
0 d(x)dx

≥
∫ t

0
d(x)dx,

this concludes the proof.
It is exactly the same for FYs|Xs+1=x(t).

Remark 8.19. In the case of a Sawtooth model Sλ, a simpler proof of the monotonicity result
of Proposition 8.18 can be done by induction on the length of the run of λ between x−s and x+

s .
Namely, if the run has length 2,

FXs|Ys=y(t) =

∫ t∧y
0 dXs,Sλ→Xs(x)dx∫ y
0 dXs,Sλ→Xs(x)dx

,

which is decreasing in y. If the run has length r > 2, the expression of the density in the integral
of (8.3.3) yields

FXs|Ys=y(t) =

∫ y
0 FX̃s|Ỹs=y′(t)dỸs,Sλ̃→Ỹs

(y′)dy′∫ y
0 dỸs,Sλ̃→Ỹs

(y′)dy′
,

where λ̃ is the composition λ with the run between x−s and x+
s reduced to r − 1, and X̃s and Ỹs

correspond to the variables x−s and x+
s in Sλ̃. By recurrence hypothesis, FX̃s|Ỹs=y′(t) is decreasing

in y′, and thus,

∫ y
0 FX̃s|Ỹs=y′ (t)dỸs,Sλ̃→Ỹs

(y′)dy′∫ y
0 dỸs,Sλ̃→Ỹs

(y′)dy′
is decreasing in y.
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8.4.2 Alternating pattern of a convex sawtooth model

Proposition 8.18 yields two main features for the model. The first one is an extension of the
previous result.

Proposition 8.20. Let 1 ≤ s, 0 ≤ t ≤ 1. Then for r ≥ s, FXs|Xr=x(t) is decreasing in x
and FXs|Yr=y(t) is decreasing in y. Likewise, FXs|Xr=0(t) is decreasing in r and FXs|Yr=1(t) is
increasing in r.
Moreover,

FXs,S→Xr (t) ≤ FXs|Yr=y(t)

and
FXs,S→Yr (t) ≥ FXs|Xr+1=x(t).

Proof. Let s ≥ 1 and let us prove the monotonicty on x and y by recurrence on r, starting at
s = r. FXs|Xs=x(t) is clearly decreasing in x and from Proposition 8.18, FXs|Ys=y(t) is decreasing
in y. Thus, the initialization is done.
Suppose the result proved until Xr. Then

FXs|Xr+1=x(t) =

∫ 1

0
FXs|Yr=y,Xr+1=x(t)dYr|Xr+1=x(y)dy,

and by an integration by part, since from Lemma 8.13 FXs|Yr=y,Xr+1=x(t) = FXs|Yr=y(t),

FXs|Xr+1=x(t) = FXs|Yr=1(t)−
∫ 1

0

∂

∂y
FXs|Yr=y(t)FYr|Xr+1=x(y)dy.

Thus,
∂

∂x
FXs|Xr+1=x(t) = −

∫ 1

0

∂

∂y
FXs|Yr=y(t)

∂

∂x
FYr|Xr+1=x(y)dy.

By recurrence ∂
∂yFXs|Yr=y(t) is negative and by Proposition 8.18 ∂

∂xFYr|Xr+1=x(y) is negative,

thus ∂
∂xFXs|Xr+1=x(t) is also negative. It is exactly the same for FXs|Yr+1=y(t).

Let r ≥ s. FXs|Xr+1=0(t) =
∫ 1

0 FXs|Xr=x(t)dXr|Xr+1=0(x)dx, thus by Proposition 8.18

FXs|Xr+1=0(t) ≤
∫ 1

0
FXs|Xr=0(t)dXr|Xr+1=0(x)dx ≤ FXs|Xr=0(t).

The same proof holds to show that FXs|Yr=1(t) is increasing in r.
Let us prove the second part of the proposition and let y ∈ [0, 1]. Conditioning Xs on Xr in
S→Xr yields

FXs,S→Xr (t) = E
(
FXs|Xr=X̃r(t)

)
,

with X̃r following the law of qr in S→Xr .
On one hand from the first part of the proposition, FXs|Xr=x(t) is decreasing in x. On the other

hand from Proposition 8.18, X̃r stochastically dominates (Xr|Yr = y). Thus, from Proposition
8.6,

FXs,S→Xr (t) = E
(
FXs|Xr=X̃r(t)

)
≤ FXs|Yr=y(t).

The same pattern proves the second inequality.

There is an immediate consequence of this Proposition on the behavior of FXs,S→Xu (t) with
u ≥ s.
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Corollary 8.21. The following inequalities hold for k ≥ s:

FXs,S→Xs (t) ≤ · · · ≤ FXs,S→Xu (t) ≤ · · · ≤ FXs,S→Yu (t) · · · ≤ FXs,S→Ys (t).

Proof. The previous Proposition yields directly the following inequalities :

FXs,S→Yr (t) ≥ FXs|Yr=1(t) ≥ FXs,S→Xr (t).

Moreover,

FXs,S→Xu+1
(t) =

∫
[0,1]

FXs|Yu=y(t)dYn,S→Xu+1
(y)dy

≥
∫

[0,1]
FXs,S→Xu (t)dYu,S→Xu+1

(y)dy

≥FXs,S→Xu (t),

the first inequality being due to Proposition 8.18. By symmetry between Xu and Yu the general
result holds.

8.4.3 Estimates on the behavior of extreme particles

As a second consequence of Proposition 8.18 we can get a more accurate estimate on the behavior
of the first and last particles of S. In particular, we can achieve a coupling of (XI , XF ) with
two couples of random variables, which only depend on f1 and gn and give some bounds on
(XI , XF ) in the sense of the stochastic domination.
In this paragraph we will not assume that the first and last particles are lower ones, and deal with
model of any type (refer to Remark 8.11 for the definition of the type of a model). Moreover,
to describe the bounding random variables, we introduce two particular transforms Γ+ and Γ−:

Definition 8.22. Let f be a positive function on [0, 1]. Then Γ+(f) and Γ−(f) are the functions
defined on [0, 1] as :

Γ−(f)(t) =

∫ 1
1−t f(u)du∫ 1
0 f(u)du

,

and

Γ+(f)(t) =

∫ t
0 f(u)du∫ 1
0 f(u)du

.

Remark that Γ−(f)(t) (resp. Γ+(f)(t)) is the cumulative distribution function of the random

variable 1− Z (resp. Z), Z being the random variable with density f(x)∫ 1
0 f(x)dx

.

Proposition 8.23. Let S be a convex Sawtooth model of type ε with density functions {fi, gi}1≤i≤k
and at least four particles. There exists a probability space and two couples of random variables
(X+, Y+), (X−, Y−) on it, such that :

• (X−, Y−) �ε (XI , XF ) �ε (X+, Y+).

• X+ and Y+ are independent with distribution function

FX+,Y+(s, t) = Γε1(f1)(s)Γε2(gn)(t).

• X− and Y− are independent with distribution function

FX−,Y−(s, t) =
(

Γε1 ◦ Γε
∗
1(f1)

)
(s)
(

Γε2 ◦ Γε
∗
2(gn)

)
(t).
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with −∗ = + and +∗ = −.

Proof. We assume without loss of generality that each fi, gi is normalized and, since the type of
the Sawtooth model doesn’t change the pattern of the proof, we assume that S is of type −−.
On one hand the conditional law of (XI , XF ) given the value of Y1 = y1, Yk = yk has for
cumulative distribution function :

FXI ,XF |Y1=y1,Yk=yk(t1, t2) =

(∫ t1∧y1
0 f1(y1 − x)dx

)(∫ t2∧yk
0 gk(yk − y)dy

)
(
∫ y1

0 f1(x)dx)(
∫ yk

0 gk(x)dx)

=FXI |Y1=y1(t1)FXF |Yk=yk(t2).

This together with Proposition 8.18 gives the bound

FXI ,XF |Y1=y1,Yk=yk(t1, t2) =FXI |Y1=y1(t1)FXF |Yk=yk(t2)

≥FXI |Y1=1(t1)FXF |Yk=1(t2).

Since

FXI |Y1=1(t1)FXF |Yk=1(t2) = (1− Ff1(1− t1))(1− Fgk(1− t2)) = Γ−(f1)(t1)Γ−(gk)(t2),

this gives the upper part of the stochastic bound.
On the other hand, the density of (Y1, Yk) conditioned on the value of (X2, Xk) is

dY1,Yk|X2=x2,Xk=xk(y1, yk)

=1y1≥x2,yk≥xk

(∫ y1
0 f1(y1 − x)dx

)
g1(y1 − x2)∫ 1

x2

(∫ z
0 f1(z − x)dx

)
g1(z − x2)dz

(∫ yk
0 gk(yk − x)dx

)
fk(yk − xk)∫ 1

xk

(∫ z
0 gk(z − x)dx

)
fk(z − xk)dz

=1y1≥x2,yk≥xk
Ff1(y1)g1(y1 − x2)∫ 1
x2
Ff1(z)g1(z − x2)dz

Fgk(yk)fk(yk − xk)∫ 1
xk
Fgk(z)fk(z − xk)dz

.

Factorizing the latter density yields

dY1,Yk|X2=x2,Xk=xk(y1, yk) = dY1|X2=x2(y1)dYk|Xk=xk(yk).

Let us first consider Y1. Recall that g1 is an increasing C1 function. This means in particular
that

g1(x) =
1

K

∫ x

0
dλ(u),

with λ a probability measure on [0, 1] having eventually a dirac mass at 0 and then a continuous
density function on ]0, 1]. Thus, the density of Y1 conditioned on the value of X2 is

dY1|X2=x2(y1) =
1

A
1y1≥x2Ff1(y1)

∫ y1

x2

dλ(u− x2),

with A a normalizing constant. Let du be the density function defined for 0 ≤ u ≤ 1 by

du(y) =
1

Au
1y≥uFf1(y),
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with Au a normalizing constant depending on u and let Fu(t) be the associated cumulative
distribution function. On one hand

FY1|X2=x2(t) =

∫ t
0 1y1≥x2Ff1(y1)

∫ y1
x2
dλ(u− x2)dy1∫ 1

0 1y1≥x2Ff1(y1)
∫ y1
x2
dλ(u− x2)dy1

=

∫ t
0

∫ 1
x2

1y1≥uFf1(y1)dλ(u− x2)dy1∫ 1
0

∫ 1
x2

1y1≥uFf1(y1)dλ(u− x2)dy1

,

and after changing the order of the integrals, since Fu(1) = 1,

FY1|X2=x2(t) =

∫ 1
x2

(∫ t
0 1y1≥uFf1(y1)dy1

)
dλ(u− x2)∫ 1

x2

(∫ 1
0 1y1≥uFf1(y1)dy1

)
dλ(u− x2)

=

∫ 1
x2
AuFu(t)dλ(u− x2)∫ 1
x2
Audλ(u− x2)

=EŨ (FŨ (t)),

with Ũ a random variable with law dŨ(u) = 1u≥x2
Audλ(u−x2)∫ 1
x2
Audλ(u−x2)

.

On the other hand

Fu(t) = 1t≥u

∫ t
u Ff1(u)du∫ 1
u Ff1(u)du

= 1t≥u
Ff1(t)−Ff1(u)

Ff1(1)−Ff1(u)
,

with Ff1 being the primitive of Ff1 taking the value 0 at 0. This yields

∂

∂u
Fu(t) =

∂

∂u

(
1u≤t

Ff1(t)−Ff1(u)

Ff1(1)−Ff1(u)

)
=1u≤t

∂

∂u

(
(Ff1(t)−Ff1(1))

1

Ff1(1)−Ff1(u)
+ 1

)
=1u≤t (Ff1(t)−Ff1(1))

∂

∂u

(
1

Ff1(1)−Ff1(u)

)
=1u≤t (Ff1(t)−Ff1(1))

Ff1(u)

(Ff1(1)−Ff1(u))2 ≤ 0,

and thus

Fu(t) ≤ F0(t) =
Ff1(t)

Ff1(1)
.

Integrating with respect to Ũ yields

FY1|X2=x2(t) = EŨ
(
FŨ (t)

)
≤ EŨ (F0(t)) ,

and finally, FY1|X2=x2(t) ≤ Ff1 (t)

Ff1 (1) . We can now integrate this inequality to get a bound on the
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cumulative distribution function of XI conditioned on X2 :

FXI |X2=x2(t) =

∫ 1

0
FXI |Y1=y(t)dY1|X2=x2(y)dy

=FXI |Y1=1(t)−
∫ 1

0

∂

∂y
FXI |Y1=y(t)FY1|X2=x2(y)dy

≤FXI |Y1=1(t)−
∫ 1

0

∂

∂y
FXI |Y1=y(t)

Ff1(y)

Ff1(1)
dy

≤
∫ 1

0
FXI |Y1=y(t)

Ff1(y)

Ff1(1)
dy.

Note that the direction of the inequality on the third line is due to the negative sign of
∂
∂yFXI |Y1=y(t). Since

∫ 1

0
FXI |Y1=y(t)

Ff1(y)

Ff1(1)
dy =

∫ 1

0

∫ t∧y
0 f1(y − u)du

Ff1(y)

Ff1(y)

Ff1(1)
dy

=

∫ t

0

∫ 1

u

f1(y − u)

Ff1(1)
dydu

=

∫ t
0 Ff1(1− u)du

Ff1(1)
= Γ−(Ff1)(t),

this yields the inequality
FXI |X2=x2(t) ≤ Γ− ◦ Γ+(f1)(t).

Note that the latter inequality is valid even if the model has only three particles (see the next
Corollary). Finally, since in our case there are at least four particles, XF 6= X2, and thus
FXI |X2=x2,XF=y(t) = FX1|X2=x2(t). Therefore

FXI |XF=y(t) ≤ Γ− ◦ Γ+(f1)(t),

and by averaging on y,
FXI (t) ≤ Γ− ◦ Γ+(f1)(t).

Doing the same with XF gives the bound :

FXF (t) ≤ Γ− ◦ Γ+(gk)(t).

The result follows from Lemma 8.10.

Remark 8.24. The case of a Sawtooth model Sλ illustrates the pattern of the proof in the general
case. Namely, suppose that λ has a first run of length r which is increasing. Then, conditioning
the law of x1 on the value of the first particle after the first peak (which is xr+1 in this case)
yields the formula:

Fx1|xr+1=z(t) =

∫ t
0 (
∫ 1
x∧z(y − x)rdy)dx∫ 1

0 (
∫ 1
x∧z(y − x)rdy)dx

.

Computing the integral in the numerator and in the denominator yields

Fx1|xr+1=z(t) =
[1− (1− t)r]− [zr − ((t ∨ z)− t)r]

1− zr
. (8.4.1)
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By Proposition 8.18, Fx1|xr+1=1(t) ≤ Fx1|xr+1=z(t) ≤ Fx1|xr+1=0(t): therefore, the bounds are
given by the cases z = 1 and z = 0. By Equation (8.4.1), Fx1|xr+1=0(t) = 1 − (1 − t)r =

Γ−Γ+(γ̃r)(t). Suppose that z ≥ t: rewriting the right hand side of (8.4.1) as h(1)−h(zr)
1−zr with

h(x) = x− (x1/r − t) yields

Fx1|xr+1=1(t) = h′(1) = 1− (1− t)r−1 = Γ−(γr)(t).

The proof of Proposition 8.23 is actually a generalization of the proof in the case Sλ.

In particular, as a corollary of Proposition 8.23 (and as a corollary of the proof in the case
k = 2), the following result holds :

Corollary 8.25. Let S be a convex Sawtooth model of type ε with density functions {fi, gi}1≤i≤k
. There exists a couple of random variables (Z(1), Z(2)) such that for y ∈ [0, 1],

• Z(1) �ε(1) (XI |XF = y) �ε(1) Z
(2),

• The cumulative distribution function of Z(2) is :

FZ(2)(t) = Γε(1)(f1)(t).

• The cumulative distribution function of Z(1) is

FZ(1)(t) = Γε(1) ◦ Γε(1)∗(f1)(t).

Proof. For k ≥ 3, the result is deduced from the latter Proposition. In the case k = 2, the proof
is exactly the same as in the latter Proposition, except that we only deal with the left case, and
thus we don’t need anymore the fact that X2 6= XF .

In the case of a composition λ with first run of length R+ 1, the latter corollary yields that
for Sλ:

1− (1− t)R ≤ FXI (t) ≤ 1− (1− t)R+1,

if the first run is increasing, and

tR+1 ≤ FXI (t) ≤ t
R,

if the first run is decreasing.

8.5 The independence theorem in a bounded Sawtooth Model

This section is devoted to the proof of the approximate independence of XI and XF when the
number of particles grows whereas the repulsion forces remain bounded. In this section the
Sawtooth model is assumed normalized.

8.5.1 Decorrelation principle and bounding Lemmas

Definition 8.26. Let A > 0. A Sawtooth model S with density functions {fi, gi} is bounded by
A if

max(‖fi‖[0,1], ‖gi‖[0,1]) ≤ A.

The purpose is to prove the following Theorem :
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Theorem 8.27. Let A > 0. For all ε > 0 there exists NA ≥ 0 such that for any Sawtooth model
S bounded by A and with 2k ≥ NA particles we have :

‖dXI ,XF (x, y)− dXI (x)dXF (y)‖∞ ≤ ε

The pattern of the proof is the following : conditioned on the fact that a particle P - from
now on called a splitting particle - is close to the boundary of the domain, the left part S→P
and the right part S←P of the system are almost not correlated anymore (see Figure 8.4).

q1

q2

q3

q4

p1

p2

p3

x y

'
q1

q3

q4

p1

p2

p3

x y

Figure 8.4: Decorrelation of the process

However, we may still not have independence if the law of XI and XF depends on which particle
splits the system. Thus, we have to find a set of particles that is large enough, so that with
probability close to one an element of this set is close to the boundary, and such that nonetheless
conditioning on having any particle from this set close to the boundary yields the same law on
(XI , XF ).
Let us first begin by bounding the density of (XI , XF ).

Lemma 8.28. Suppose that ‖f1‖∞ ≤ A and let S be a Sawtooth model larger than 2. Then
there exists KA only depending on A such that for any event X depending on {Xi, Yi}i≥2,

‖dXI |X ‖∞ ≤ KA.

More precisely KA = 4A2 fits.

This Lemma was already mentioned in the specific context of compositions in [18]. We
provide here a different proof.

Proof. By Lemma 8.13, it suffices to prove it for a conditioning on {X2 = x2}. From Lemma
8.14, dXI |X2=x2(x) is decreasing in x and thus it is enough to bound dXI |X2=x2(0). We have

dXI |X2=x2(0) =

∫ 1
x2
f1(z)g1(z − x2)dz∫ 1

x2
Ff1(z)g1(z − x2)dz

≤ A
∫ 1
x2
g1(z − x2)dz∫ 1

x2
Ff1(z)g1(z − x2)dz

.

Remark that ∫ 1
x2
g1(z − x2)dz∫ 1

x2
Ff1(z)g1(z − x2)dz

=
1

EZ̃(Ff1(Z̃))
,

with Z̃ being a random variable with density 1z≥x2g1(z− x2). Since ‖F ′f1‖ ≤ A and Ff1(1) = 1,

Ff1(t) ≥ 1/2 on [1−1/(2A)]; moreover, z 7→ g1(z−x2) is increasing, thus P(Z̃ ∈ [1−1/(2A), 1]) ≥
1

2A and by Markov’s inequality EZ̃(Ff1(Z̃)) ≥ 1/4A. Finally,

dXI |X2=x2(0) ≤ 4A2.
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The next step is to get a bound on the first derivative of dXI . This is possible only if g1 is
also bounded by A and the model is large enough.

Lemma 8.29. Suppose that max(‖f1‖∞, ‖g1‖∞) ≤ A and that S is a Sawtooth model with at
least four particles. Then there exists a constant RA only depending on A such that for any
event X depending on {Xi+1, Yi}i≥2,

‖(dXI |X )′‖∞ ≤ RA.

Proof. For exactly the same reasons as in the previous proof, it suffices to bound the derivative
of the density conditioned on X = {Y2 = y2}. The expression of the density probability yields

dXI |Y2=y2(x) =

∫ 1
x f1(y1 − x)dY1|Y2=y2(y1)dy1∫ 1

0

(∫ 1
x f1(y1 − x)dY1|Y2=y2(y1)dy1

)
dx
.

Let ∆ =
∫ 1

0

(∫ 1
x f1(y1 − x)dY1|Y2=y2(y1)dy1

)
dx, which is independent of x. Then

| ∂
∂x
dXI |Y2=y2(x)| = 1

∆
| ∂
∂x

∫ 1

x
f1(y1 − x)dY1|Y2=y2(y1)dy1|

=
1

∆
|
∫ 1

x
(
∂

∂x
f1(y1 − x))dY1|Y2=y2(y1)dy1 − f1(0)dY1,SY2←|Y2=y2(x)|

≤ 1

∆

(
|
∫ 1

x
−(

∂

∂x
f1)(y1 − x)dY1|Y2=y2(y1)dy1|+ |f1(0)dY1|Y2=y2(x)|

)
,

Let us first bound the numerator. By the expression of the density of Y1 conditioned on Y2 = y2,

dY1|Y2=y2(y1) =
Ff1(y1)dY1,SY1←|Y2=y2(y1)

EỸ1(Ff1(Ỹ1))
,

with Ỹ1 having the density dY1,SY1←|Y2=y2 . Since g1 is bounded by A, from Lemma 8.28,

|dY1,SY1←|Y2=y2 | ≤ KA. From Lemma 8.14, dY1,SY1←|Y2=y2(y) is increasing in y, and |F ′f1 | ≤ A,

thus EỸ1(Ff1(Ỹ1)) ≥ 1
4A2 and

|f1(0)dY1,SY2←|Y2=y2(x)| ≤ 4A2K2
A.

Let us bound also the first term of the sum: f1 being increasing, ∂
∂xf1(y1−x) ≤ 0 and we can

thus remove the absolute value in this first term. An other application of Lemma 8.28 yields:∫ 1

x
−(

∂

∂x
f1)(y2 − x)dY1|Y2=y2(y1)dy1 ≤ KA(

∫ 1

x
(
∂

∂x
f1)(y2 − x)dy2)

≤ KA((f1(1− x)− f1(0)) ≤ A×KA.

The numerator is thus bounded by AKA + 4A2K2
A.

Changing the order of the integrals in ∆ yields :

∆ =

∫ 1

0
Ff1(y1)dY1|Y2=y2(y1)dy1.
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Since F ′f1 is bounded by A and Ff1(1) = 1, we can conclude as in the previous proof that

Ff1(t) ≥ 1
2A on [1 − 1/(2A), 1]. Moreover, Y1 is an upper particle, and thus by Lemma 8.14,

dY1|Y2=y2(y1) is increasing in y2. Since
∫

[0,1] dY1|Y2=y2 = 1, this implies that∫ 1

1−1/(2A)
dY1|Y2=y2(y1)dy1 ≥

1

2A
,

and yields ∆ ≥ 1
4A2 . The bounds on the numerator and on ∆ yield :

| ∂
∂x
dXI |Y2=y2(x)| ≤ 4A3(KA + 4AK2

A).

As an application of Lemma 8.29, we can also prove that y 7→ FXI |XF=y(t) is Lipchitz :

Proposition 8.30. Let S be a Sawtooth model with k ≥ 3 lower particles. Suppose that
{f1, g1, fk, gk} are bounded by A > 0. Let RA be the constant of Lemma 8.29 (with RA ≥ 1).
Then on a neighbourhood [0, 1/RA] of 0,

F :

{
[0, 1/RA] → (C([0, 1],R), ‖.‖)

y 7→ FXI |XF=y

is Lipschitz with a Lipschitz constant BA only depending on A.

Proof. It suffices to prove that for x ∈ [0, 1], y 7→ dXI |XF=y(x) is Lipschitz on [0, 1/RA] with a
Lipschitz constant independent of x.
From Lemma 8.14, dXF is decreasing and thus on [1/RA, 1], dXF ≤ dXF (1/RA). From Lemma
8.29, | ∂∂ydXF (y)| ≤ RA and thus on [0, 1/RA], dXF (y) ≤ dXF (1/RA) + RA(1/RA − y). This
implies that∫

[0,1]
dXF (y)dy ≤

∫ 1/RA

0
dXF (1/RA) +RA(1/RA − y)dy +

∫ 1

1/RA

dXF (1/RA)

≤dXF (1/RA) +
1

2RA
.

Since
∫

[0,1] dXF = 1, this implies that dXF (1/RA) ≥ 1 − 1
2RA

, and thus that dXF ≥ 1 − 1
2RA

on

[0, 1/RA].
From Lemma 8.29, ‖ ∂∂ydXF |XI=x‖ ≤ RA. Thus, since ‖f1‖ ≤ A, this yields by applying Lemma
8.28 on dXI ,XF (x, y) = dXF |XI=x(y)dXI (x):

| ∂
∂y
dXI ,XF (x, y)| ≤ KARA.

Thus, on [0, 1/RA],

| ∂
∂y
dXI |XF=y(x)| = 1

dXF (y)
| ∂
∂y
dXI ,XF (x, y)−

dXI ,XF (x, y) ∂∂ydXF (y)

dXF (y)
|

≤ 1

1− 1/(2RA)
(KARA +

RAK
2
A

1− 1/(2RA)
).

Set BA = 1
1−1/(2RA)(KARA +

RAK
2
A

1−1/(2RA)). Then F is BA−Lipschitz on [0, 1/RA].
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8.5.2 Behavior of {Xi} for large models

The purpose of this subsection is to find for a model S a large set of intermediate particles {Xr}
for which one of these particles is close to 0 with high probability and such that FXI |Xr=0 is
essentially the same for all particles of this set.
The first part is a essentially probability computation :

Proposition 8.31. Let η > 0, ε > 0. There exists N0 such that for any model S of size N
larger than N0 + 4 and for any 2 ≤ r ≤ N −N0, yr+N0 ∈ [0, 1],

P(
⋃

r≤i≤r+N0

{Xi < η}|Yr+N0 = yr+N0) ≥ 1− ε.

Proof. Let N0 be an integer to specify later and let S, r be as in the statement of the Proposition.
Let P̃ = P(

⋂
r≤i≤r+N0

{Xi ≥ η}|Yr+N0 = yr+N0).
Let 0 ≤ yr−1, . . . , yr+N0 ≤ 1 and condition (

⋂
r≤i≤r+N0

{Xi ≥ η}|Yr+N0 = yr+N0) on the event⋂
r−1≤i≤r+N0−1{Yi = yi}. We denote by P~y the probability of this conditioned event. By

Lemma 8.13, the random variables {Xi}r≤i≤r+N0 are conditionally independent given the value
of {Yi}r−1≤i≤N0 ; therefore,

P~y =

r+N0∏
i=r

P(Xi ≥ η|Yi−1 = yi−1, Yi = yi).

Moreover, Lemma 8.14 yields that dXi|Yi−1=yi−1,Yi=yi is decreasing: thus, P(Xi ≥ η|Yi−1 =
yi−1, Yi = yi) ≤ (1− η). This yields

P~y ≤ (1− η)N0+1.

Integrating P~y with respect to yr−1, . . . , yN0−1 gives P̃ ≤ (1 − η)N0+1. Let N0 be such that
(1− η)N0+1 ≤ ε. For N ≥ N0,

P(
⋃

r≤i≤r+N0

{Xi < η}|Yr+N0 = yr+N0) ≥ 1− ε.

As said before, it is also necessary that FXI |Xr=0 remains almost constant among this subset
of particles. This is possible for large Sawtooth models, thank to the monotonicity results of
Proposition 8.20 :

Proposition 8.32. Let A, ε > 0, M ∈ N∗. There exists Nε,A,M such that for any Sawtooth
model bounded by A and of size N ≥ Nε,A,M , there exists 1 ≤ r ≤ N − M such that for
r ≤ i, j ≤ r +M ,

‖FXI |Xi=0 − FXI |Xj=0‖∞ ≤ ε.

Proof. Let S be a Sawtooth model bounded by A and of size N .
Denote by Fi the function t 7→ FXI |Xi=0(t) for 2 ≤ i ≤ N . By Lemma 8.28, all the Fi are

KA−Lipschitz. Let K = b2KA
ε c. It suffices to find r ≥ 2 such that for all r ≤ i, j ≤ r +M , and

all 0 ≤ k ≤ K,

|Fi(
k

K
)− Fj(

k

K
)| ≤ ε

3
.

Denote by vi ∈ [0, 1]K+1 the vector (Fi(
k
K ))0≤k≤K and let Nε,A,M = (M + 1)(b3

εc+ 1)K+1. Sup-
pose that N ≥ Nε,A,M . For ~m ∈ J0, b3

εcK
K+1, denote by C~m the hypercube {~x ∈ [0, 1]K+1|∀1 ≤
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i ≤ K + 1,mi
ε
3 ≤ xi < (mi + 1) ε3}. {C~m}~m∈J0,b 3

ε
cKK+1 is a partition of [0, 1]K+1 in (b3

εc+ 1)K+1

subsets. If vi and vj are both in a same C~m, then for all 0 ≤ k ≤ K, |vi(k)− vj(k)| ≤ ε
3 .

Since N ≥ (M + 1)(b3
εc + 1)K+1, Dirichlet’s principle yields the existence of ~m0 ∈ J0, b3

εcK
K+1

such that #({vi}1≤i≤N ∩ C~m0
) ≥ M + 1. Let i0 < · · · < iM be such that for all 0 ≤ j ≤ M ,

vij ∈ C~m0
; in particular, iM ≥ i0 + M . From the previous paragraph, for all 0 ≤ k ≤ K,

|viM (k)− vi0(k)| ≤ ε
3 . By Proposition 8.20, Fi(

k
K ) is decreasing in i; thus, since vi(k) = Fi(

k
K ),

for all i0 ≤ j ≤ iM and all 0 ≤ k ≤ K

vi0(k) ≥ vi(k) ≥ viM (k).

Since i0 +M ≤ iM , this yields ‖vi − vj‖∞ ≤ ε
3 for i0 ≤ i, j ≤ i0 +M .

8.5.3 Proof of Theorem 8.27

Theorem 8.27 is a consequence of the following proposition :

Proposition 8.33. Let A > 0. For all ε > 0, there exists a number NA,ε ≥ 0 such that for any
Sawtooth model S bounded by A and with 2k ≥ NA,ε particles, the following inequality holds:

|FXI |XF=y(t)− FXI (t)| ≤ ε.

for all t, y ∈ [0, 1].

Proof. Set η = inf( 1
RA
, ε
BA

) with RA, BA the constants given respectively by Lemma 8.29 and
Proposition 8.30. Let N0 be the constant given for η and ε by Proposition 8.31. Finally, set
NA,ε = Nε/4,A,N0

+ 4 given by Proposition 8.32.
Let S be a Sawtooth model bounded by A of size larger than NA,ε. Then by Proposition 8.32,
there exists 2 ≤ r ≤ NA,ε − 2−N0 such that for all r ≤ i, j ≤ r +N0,

‖FXI |Xi=0 − FXI |Xj=0‖∞ ≤ ε.

Denote t = r+N0 and let yt ∈ [0, 1]. For r ≤ i ≤ r+N0, set Li = {Xi ≤ η ∩ {∀s > i,Xs > η}}.
Note that Li∩Lj = ∅ for all i 6= j and

⋃
Li = L with L =

⋃
r≤i≤r+N0

{Xi ≤ η}. Moreover, since
Li is (Xs, Ys)s≥i−measurable, by Lemma 8.13, conditioning XI on {Xi = u, Yt = yt} ∩Li is the
same as conditioning XI on {Xi = u}. Thus,

‖FXI |Li,Yt=yt − FXI |Xr=0‖∞ =‖
∫ η

0
(FXI |Xi=u − FXI |Xr=0)dXi|Li,Yt=yt(u)du‖∞

≤
∫ η

0
‖FXI |Xi=u − FXI |Xr=0‖∞dXi|Li,Yt=yt(u)du

≤2ε,

by the choice of η. Recall that if A =
⋃
Ai, with Ai disjoint events, then for any event C,

P(C|A) =
∑

P(C|Ai)P(Ai|A)

In particular, for L =
⋃
i Li this yields

‖FXI |L,Yt=yt − FXI |Xr=0‖ =‖
∑
i

(FXI |Li,Yt=yt − FXI |Xr=0)P(Li|L, Yt = yt)‖∞

≤
∑
i

‖(FXI |Li,Yt=yt − FXI |Xr=0‖∞P(Li|L, Yt = yt)

≤2ε.
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By Proposition 8.31 and the choice of N0, P(L|Yt = yt) ≥ 1− ε, and thus

‖FXI |Yt=yt − FXI |Xr=0‖∞ ≤ 3ε.

By averaging on yt with the density dYt|XF=y we get

‖FXI |XF=y − FXI‖∞ ≤ 4ε.

Let us end the proof of the Theorem 8.27, which consists essentially in a rewriting in terms
of densities of the latter Proposition.

Proof. Let A > 0, ε > 0. Set ε1 =
(ε/K2

A)

4RA
and let S be a Sawtooth model bounded by A of

size larger than NA,ε1 (NA,ε1 being given by Proposition 8.33). Then from Proposition 8.33, for
y ∈ [0, 1],

‖FXI |XF=y − FXI‖∞ ≤
(ε/KA)2

4RA
. (8.5.1)

Moreover, the following result holds for C1−functions on [0, 1]:

Lemma 8.34. Let f, g : [0, 1] → [0, 1] be two C1− functions, such that ‖f ′‖∞, ‖g′‖∞ ≤ M .
Then for ε > 0 small enough, if F,G are two primitives of f, g and

‖F −G‖∞ ≤
ε2

4M
,

then ‖f − g‖∞ ≤ ε.

Proof. This is implied by proving that if f : [0, 1] −→ R verifies ‖f‖∞ ≤ ε2

4M and ‖f ′′‖∞ ≤ M ,
then ‖f ′‖∞ ≤ ε. But the majoration on f ′′ yields that if |f ′(x)| ≥ ε,

max(|
∫ x+ε/M

x
f ′(x)dx|, |

∫ x

x−ε/M
f ′(x)dx|) ≥ ε2

2M
.

Thus,

max(|f(x+ ε/M)|, |f(x)|, |f(x− ε/m)|) ≥ ε2

4M
.

Applying this Lemma to (8.5.1) yields for y ∈ [0, 1],

‖dXI |XF=y − dXi‖∞ ≤ ε/KA.

Finally,

|dXI ,XF (x, y)− dXI (x)dXF (y)| = |dXF (y)‖|dXI |XF=y(x)− dXI (x))| ≤ KA
ε

KA
≤ ε.
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8.6 Application to compositions

Theorem 8.27 can be applied to the framework of compositions :

Corollary 8.35. Let A ≥ 0, ε > 0. There exists n ≥ 0 such that for any composition λ of size
larger than n with every runs bounded by A,

‖dSλ(x, y)− dSλ(x)dSλ(y)‖ < ε

Proof. Each run of λ of length l yields a density function γl in Sλ, and ‖γl‖∞ = l − 1. Thus,
if any run of λ is bounded by A, then all the density functions {fi, gi} in Sλ are bounded by
A− 1. It suffices then to apply Theorem 8.27.

The purpose of this section is to strengthen Corollary 8.35 and to prove the following Theorem
:

Theorem 8.36. Let ε > 0, A ≥ 0. There exists n ≥ 0 such that for any composition λ of size
larger than n with first and last run bounded by A,

‖dSλ(x, y)− dSλ(x)dSλ(y)‖ < ε. (8.6.1)

This Theorem was Conjecture 1 in [18]. The proof of Theorem 8.36 is followed by some
applications.

8.6.1 Effect of a large run on the law of (XI , XF )

From Corollary 8.35, it is enough to prove that the presence of a large run inside the composition
disconnects the behaviors of XI and XF . The main reason for this is the Lemma below: for
each composition λ, denote by λ+ the composition λ with a cell added on the last run, and by
λ− the composition λ with a cell removed on the last run.

Lemma 8.37. Let A > 0 and let λ be a composition with more than three runs and with the
first run smaller than A. If the last run of λ is of size R,

‖dXI ,Sλ − dXI ,Sλ+‖∞ ≤
KA

R− 1
,

where KA is the bound on the density of XI as defined in Lemma 8.28.

Proof. Let us prove it in the case where the first run of λ is increasing and the last run decreasing,
the other cases having the same proof. The expression (8.3.3) yields

d(XI ,XF ),Sλ+ (x, y) =

∫ 1
y d(XI ,XF ),Sλ(x, z)dz∫

[0,1]2

(∫ 1
y d(XI ,XF ),Sλ(x, z)

)
dxdy

.

Thus, by integrating with respect to y and then changing the order of the integrals, this yields

dXI ,Sλ+ (x) =

∫ 1
0

(∫ 1
0 d(XI ,XF ),Sλ(x, z)1y≤zdy

)
dz∫

[0,1]2

(∫ 1
0 d(XI ,XF ),Sλ(x, z)1y≤zdy

)
dxdz

=

∫ 1
0 d(XI ,XF ),Sλ(x, z)zdz∫

[0,1]2 d(XI ,XF ),Sλ(x, z)zdzdx
.
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Factorizing by dXI ,Sλ(x) makes a conditional expectation appear and thus

dXI ,Sλ+ (x) = dXI ,Sλ(x)
ESλ(XF |XI = x)

ESλ(XF )
.

Moreover, Proposition 8.23 yields

FZ1 ≤ FXF |XI=x ≤ FZ2 ,

with FZ1 = Γ−(FγR) and FZ2 = Γ−(γR). Since Γ−(FγR)(t) = 1 − (1 − t)R and Γ−(γR)(t) =
1− (1− t)R−1, by stochastic dominance, applying Proposition 8.6 gives

1

R
≤ ESλ(XF |XI = x) ≤ 1

R− 1
.

Integrating the latter result on x yields 1
R ≤ ESλ(XF ) ≤ 1

R−1 , and thus

R− 1

R
≤ ESλ(XF |XI = x)

ESλ(XF )
≤ R

R− 1
.

This yields

|dXI ,Sλ+ (x)− dXI ,Sλ(x)| ≤ |dSλ(x)| 1

R− 1
≤ KA

R− 1
.

In particular, the previous Lemma can be used to bound the conditional law of the first
particle with respect to the last one. For each composition λ, and any cells i, j ∈ λ, denote by
λ→i (resp λi→, resp λi→j) the composition consisting of the cells of λ from 1 to i (resp. from
i to n, resp. from i to j). Moreover, denote by Rint(λ) the set of all runs of λ except the first
and last ones.

Proposition 8.38. Let A ≥ 0 and λ a composition with first run bounded by A. Then

‖FXI |XF=x − FXI‖∞ ≤
KA

maxs∈Rint(λ) l(s)− 2
.

Proof. Let t ∈ [0, 1]. Let s0 be the run with maximal length R in Rint and let i0 be the rightest
cell of this run. This cell corresponds to a particle Xi or Yi in Sλ. Let us assume without loss
of generality that this particle is a lower one. From Proposition 8.18, FX1|Xr=x(t) is decreasing
in x and thus

|FXI |XF=x(t)− FXI (t)| =|FXI |XF=x(t)−
∫
XF

FXI |XF=x(t)dXF (x)dx|

≤|FXI |XF=0(t)− FXI |XF=1(t)|
≤FXI |XF=0(t)− FXI |Yk=1(t).

Moreover, from Proposition 8.18 and Proposition 8.20,

FXI |XF=0(t) ≤ FXI ,Sλ→Yk(t) ≤ FXI ,Sλ→Yi(t) ≤ FXI |Xi=0,

and

FXI |Yk=1(t) ≥ FXI ,Sλ→Xk(t) ≥ FXI ,Sλ→Xi(t).
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These inequalities imply

|FXI |XF=x(t)− FXI (t)| ≤ FXI |Xi=0(t)− FXI ,Sλ→Xi(t).

From the expression (8.3.3), FXI ,Sλ→Xi(t) = FXI ,Sλ→i0
(t) and FXI |Xi=0(t) = FX1,Sλ−→i0

(t). Thus,

with the previous Lemma, since the last run of λ−→i0 is of size R− 1,

|FXI |XF=x(t)− FXI (t)| ≤ |FXI ,Sλ→i0 (t)− FXI ,Sλ−→i0
(t)| ≤ KA

R− 2
.

8.6.2 Proof of Theorem 8.36

The latter Proposition together with Lemma 8.34 yields Theorem 8.36 in case d′XI remains
bounded. However, the bound of the derivative in Lemma 8.29 requires also a bound on the
second run, and the latter is not assumed in our case. We should thus deal with this case before
getting the general proof. Let us first consider a particular case.

Lemma 8.39. Let λb be the composition with three runs of respective length 2, b and 2, and
db(x, y) = dXI ,|Y2=y(x). Then the following convergence holds:

lim
b→∞

sup
[0,1]2

(db(x, y)− (1− xb)) = 0.

In particular, the asymptotic independence :

lim
b→∞

sup
x,y,y′

(db(x, y)− db(x, y′)) = 0. (8.6.2)

is valid.

Proof. After integrating in (8.3.3) the coordinates of the particles inside the composition :

db(x, y) =
1− xb − (1− y)b + ((x− y) ∧ 0)b

(1− 1/(b+ 1))(1− (1− y)b) + y/(b+ 1)(1− y)b
. (8.6.3)

Let us show that lim
b→∞

db(x, y) − (1 − xb+1) = 0 uniformly in x and y. In the denominator of

(8.6.3), letting b go to +∞ yields

(1− 1

b+ 1
)(1− (1− y)b) + y/(b+ 1)(1− y)b ∼b→∞ 1− (1− y)b,

with the equivalent being uniform in x and y. Indeed

y/(b+ 1)(1− y)b

1− (1− y)b
=

1

b+ 1

(1− y)b∑b−1
k=0(1− y)k

≤ 1

b+ 1
.

Since for x ∈ [0, 1/2], y ∈ [1/2, 1], db(x, y) converges uniformly to 1, it suffices to consider in the
sequel that x ∈ [1/2, 1] and y ∈ [0, 1/2]. Let ∆ be defined as

∆(x, y) =
1− xb − (1− y)b + (x− y)b

1− (1− y)b
− (1− xb)

=(1− xb − (x− y)b

1− (1− y)b
)− (1− xb) =

(x− y)b − (1− y)bxb

1− (1− y)b
.
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A derivative computation shows that ∆(x, y) ≤ 1
b , which proves the uniform convergence. Since

lim
b→∞

‖db(x, y)− (1− xb+1)‖∞,[0,1]2 = 0,

lim
b→∞

sup
y,y′,x

(db(x, y)− db(x, y′)) = 0.

From the latter result can be deduced the asymptotic independence with a large second run
:

Lemma 8.40. Let A, ε > 0. There exist BA ∈ N such that if λ is a composition with at least
three runs, the extreme runs bounded by A and the second run larger than BA, then

‖dXI ,XF − dXIdXF ‖∞ ≤ ε

Proof. Let λ be a composition with first run of length a and second run of length b. From the
definition of the density dXI ,XF in (8.3.3), conditioning the law of XI on the position xP of the
particle P = a+ b yields

dXI |xp=y(x) =

∫ 1
x

(∫ z1∧y
0 (z1 − x)a−2(z1 − z2)b−2dz2

)
dz1

Z
.

Let 2 ≤ a ≤ A. Then

dXI |xp=y(x) =

∫ 1
x (u− x)a−3db(u, y)du

1
a−2

∫ 1
0 u

a−2db(u, y)du

From the first part of Lemma 8.39, |db(u, y)− (1− ub)| →b→∞ 0 uniformly in u and y, and thus

1

a− 2

∫ 1

0
ua−2db(u, y)du→b→∞

1

(a− 2)(a− 1)
,

uniformly in y. Since a is bounded by A, and from the second part of Lemma 8.39,

‖dXI |xp=y − dXI |xp=y′‖∞ ≤ A2 sup
y,y′,x

(db(x, y)− db(x, y′))→ 0

uniformly in y. Thus, for b large enough, ‖dXI |xp=y−dXI |xp=y′‖ < ε/A for all y, y′; then averaging
on the law of xp conditioned on XF = y yields |dXI |XF=y−dXI |XF=y′ | < ε/A for all y, y′. Finally,
this implies that

‖dXI ,XF − dXIdXF ‖∞ ≤ ε.

The proof of Theorem 8.36 is just a gathering of all the previous results :

Proof. Let A, ε > 0. Since the first and last runs are bounded by A, any composition large
enough has at least three runs. Let BA be given by Lemma 8.40, R be the associate constante
given by Lemma 8.29 for BA, and set C = 4KAR

(ε/A)2
. Finally, let n be the integer given by Corollary

8.35 for compositions of runs bounded by C. Suppose that λ is a composition larger than n. By
Lemma 8.40, if the second run is larger than BA, (8.6.1) is verified. Thus, we can suppose that
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the second run is bounded by BA.
If λ has a run larger than C, then from Proposition 8.38,

‖FXI |XF=x − FXI‖∞ ≤
KA

C − 1
≤ (ε/A)2

4R
.

But from Lemma 8.29, d′XI is bounded by R, thus the latter inequality yields with Lemma 8.34
:

‖dXI |XF=y − dXI‖ ≤ ε/A.

And dXI being bounded by A, this yields (8.6.1).
Thus, we can assume that all the runs of λ are bounded by C. Once again by the choice of n
and Corollary 8.35, (8.6.1) is verified.

Note that we actually proved something stronger than Theorem 8.36, namely :

Corollary 8.41. Let A, ε > 0. There exists n0 such that for every composition λ of size larger
than n0 and first run bounded by A, and for all y, y′ ∈ [0, 1],

‖dXI |XF=y − dXI |XF=y′‖ ≤ ε.

8.6.3 Consequences and proof of Theorem 8.3

Here are some interesting consequences of Theorem 8.36. Let us first remove the constraints on
the extreme runs.

Lemma 8.42. Let ε > 0. There exists n ≥ 0 such that for all compositions larger than n with
at least two runs,

sup
(y,y′)∈[0,1]2

(‖FXI |XF=y − FXI |XF=y′‖∞) ≤ ε.

Proof. Let R be the length of the first run of a composition λ. From Proposition 8.23 applied
to Sλ,

1− (1− t)R ≤ FXI |XF=y(t) ≤ 1− (1− t)R−1.

Since sup[0,1](u
R−1 − uR)→R→∞ 0, there exists A such that for any composition with first run

larger than A,

sup
[0,1]2
‖FXI |XF=y − FXI |XF=y′‖∞ ≤ ε.

Applying Corollary 8.41 to A, ε yields that there exists n such that for any composition larger
than n,

sup
[0,1]2
‖FXI |XF=y − FXI |XF=y′‖∞ ≤ ε.

This result can be adapted to show that the law of the first particle depends only on the
neighbouring particles : for any composition λ of size N , and n ≤ N , denote by λ(n) the
composition λ containing only the n first cells.

Proposition 8.43. Let ε > 0. There exists n0 ≥ 1 such that for any n ≥ n0 and any composition
λ of size larger than n with first run smaller than n,

‖FSλXI − F
Sλ(n)
XI

‖∞ ≤ ε.
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The proof consists only in an averaging of the inequality of the previous Lemma.
We will close this chapter by proving Theorem 8.3.
Let λ be a composition and let s = Ji1, i2K be a run of λ. For a cell i in s, the position of i in
s, denoted by ai, is the ratio ai = i−i1

i2−i1 (resp. i2−i
i2−i1 ) if the run is increasing (resp. decreasing).

When a run is large, the behavior of a cell in this run is approximately frozen:

Lemma 8.44. Let ε > 0. There exists Rε > 0 such that for any composition λ of n and
1 ≤ i ≤ n such that i is in a run s of size larger than Rε,

P(|σλ(i)

n
− ai| ≥ ε) ≤ ε,

where ai is the position of i in s as previously defined.

Proof. Let λ be a composition of n, and let 1 ≤ i ≤ n be a cell of λ in a run s of length R.
Let i1 ≤ i2 be the extreme cells of the run s and suppose without loss of generality that s is
increasing. We use the probabilistic model S̃λ of Section 8.3.2. By Lemma 8.16, it suffices to
prove that for R large enough,

P(|Zi − ai| ≥ ε) ≤ ε.

Conditioning Zi1 on the value of Zi1−1 and Zi2 gives the conditional expectation:

E(Zi1 |Zi1−1 = z, Zi2 = z′) =

∫ z∧z′
0 x(z′ − x)R−2dx∫ z∧z′
0 (z′ − x)R−2dx

≤ 1

R
,

where the last bound is given by a computation of the integral. Since the bound is independent
of z and z′, for R large enough P(Zi1 ≥ ε) ≤ ε. Likewise, for R large enough, P(Zi2 ≤ 1−ε) ≤ ε.
This gives the result if i = i1 or i = i2. Suppose that i 6= i1 and i 6= i2.
Conditioned on the value of Zi1 and Zi2 , the law of Zi is

dZi|Zi1=z,Zi2=z′(x) =
1z≤x≤z′(z

′ − x)i2−i−1(x− z)i−i1−1∫ z′
z (z′ − x)i2−i−1(x− z)i−i1−1dx

.

Thus, by a computation, the conditional expectation of Zi − z is

E
(
Zi − z|Zi1 = z, Zi2 = z′

)
= (z′ − z) i− i1

i2 − i1
,

and the conditional variance of Zi − z is

V ar
(
Zi − z|Zi1 = z, Zi2 = z′

)
= (z′ − z)2 i− i1

i2 − i1

(
i− i1 + 1

i2 − i1 + 1
− i− i1
i2 − i1

)
≤ (z′ − z)2 1

R
.

Thus, for R large enough, P(|Zi − (Zi1 + ai(Zi2 − Zi1))| ≥ ε) ≤ ε.
By the first part of the proof, for R large enough P(Zi1 ≥ ε) ≤ ε and P(Zi2 ≤ 1− ε) ≤ ε; thus,
for R large enough,

P(|Zi − ai| ≥ ε) ≤ ε.

We can improve the result of Corollary 8.42 by considering the case of a cell in the middle
of a composition.
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Lemma 8.45. Let ε > 0, R > 0. There exists kR ≥ 1 such that for any composition λ and
1 ≤ j1 < i < j2 ≤ n such that i is in a run bounded by R and |i− j1|, |j2 − i| ≥ kR, then

‖dZi|Zj1=z1,Zj2=z2 − dZi|Zj1=z′1,Zj2=z′2
‖∞ ≤ ε

for all 0 ≤ z1, z2, z
′
1, z
′
2 ≤ 1, where Zi is the random variable corresponding to the particle i in

S̃λ. Likewise,
‖dZi|Zj1=z1 − dZi|Zj1=z′1

‖∞ ≤ ε

and
‖dZi|Zj2=z2 − dZi|Zj2=z′2

‖∞ ≤ ε

for all 0 ≤ z1, z2, z
′
1, z
′
2 ≤ 1.

Proof. We will only prove the first part of the Lemma, since the proof of the second part is a
simpler version of the one of the first part.
Let λ be a composition and let 1 ≤ j1 < i < j2 ≤ n be three cells of λ. By the expression of the
density in (8.3.3),

dZi|Zj1=z1,Zj2=z2(x) =
dXF |XI=z1,Sν1 (x)dXI |XF=z2,Sν2(x)∫ 1

0 dXF |XI=z1,Sν1 (x)dXI |XF=z2,Sν2(x)dx
,

where ν1 = λj1→i and ν2 = λi→j2 . Since i is in a run bounded by R in λ, i is in a run bounded
by R in ν1 and in ν2. Therefore by Corollary 8.41, there exists nε such that if |ν1| ≥ nε and
|ν2| ≥ nε, then

‖dXF |XI=z1,ν1 − dXF |XI=z′1,ν1
‖∞ ≤ ε

and
‖dXI |XF=z2,ν2 − dXI |XF=z′2,ν2

‖∞ ≤ ε,

for all 0 ≤ z1, z2, z
′
1, z
′
2 ≤ 1. Moreover, by Lemma 8.28, dXF |XI=z1,ν1 is bounded by some constant

K only depending on R, and the same holds for dXI |XF=z2,ν2 . Therefore

‖dXF |XI=z1,ν1(x)dXI |XF=z2,ν2(x)− dXF |XI=z′1,ν1
(x)dXI |XF=z′2,ν2

(x)‖∞ ≤ 2Aε

for 0 ≤ z1, z
′
1, z2, z

′
2 ≤ 1. In particular,

|
∫ 1

0
dXF |XI=z1,ν1(x)dXI |XF=z2,ν2(x)− dXF |XI=z′1,ν1

(x)dXI |XF=z′2,ν2
(x)dx| ≤ 2Aε.

Set

Az1,z2 =

∫ 1

0
dXF |XI=z1,ν1(x)dXI |XF=z2,ν2(x)dx,Bz1,z2 = dXF |XI=z1,ν1(x)dXI |XF=z2,ν2(x).

By the above computations,

|Bz1,z2
Az1,z2

−
Bz′1,z′2
Az′1,z′2

| ≤|Bz1,z2
Az1,z2

−
Bz′1,z′2
Az1,z2

|+ |
Bz′1,z′2
Az1,z2

−
Bz′1,z′2
Az′1,z′2

|

≤ 1

Az1,z2
(2Rε) +

Bz′1,z′2
Az1,z2Az′1,z′2

(2Rε).

It remains to show that 1
Az1,z2

and
Bz′1,z

′
2

Az1,z2Az′1,z
′
2

are bounded by a constant only depending on

R. Since i is in a run bounded by R in ν1 and ν2, |Bz1,z2 | is bounded by K2, where K is the
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constant given Lemma 8.28 for a run of size R.
Let us show that Az1,z2 admits a lower bound only depending on R; suppose without loss of
generality that the run of λ containing i is increasing and that i is not an extreme cell. Let R1

be the length of the run containing i in ν1 and let R2 be the length of the run containing i in ν2;
since these both runs are part of the run of i in λ, they are both increasing and R1 +R2 = R+1.
By Corollary 8.25, tR1 ≤ FXF |XI=z1,ν1(t) ≤ tR1−1 and 1 − (1 − t)R2−1 ≤ FXI |XF=z2,ν2(t) ≤ 1 −
(1−t)R2 for 0 ≤ t ≤ 1. By Lemma 8.14, dXF |XI=z1,ν1 is increasing and dXI |XF=z2,ν2 is decreasing,
thus FXF |XI=z1,ν1 is convex and FXI |XF=z2,ν2 is concave. The convexity of FXF |XI=z1,ν1 yields
that

F ′XF |XI=z1,ν1
(t) ≥

FXF |XI=z1,ν1(t)− FXF |XI=z1,ν1(0)

t− 0
≥ tR1−1.

Likewise, the concavity of FXI |XF=z2,ν2 yields that

F ′XI |XF=z2,ν2
(t) ≥

FXI |XF=z2,ν2(1)− FXI |XF=z2,ν2(t)

1− t
≥ (1− t)R2−1.

Therefore,

Az1,z2 ≥
∫ 1

0
xR1−1(1− x)R2−1dx =

(R1 − 1)!(R2 − 1)!

(R1 +R2 − 1)!
≥ 1

(R1 +R2 − 1)!
.

Since R1 +R2 − 1 = R, Az1,z2 ≥ 1
R! . This yields

|Bz1,z2
Az1,z2

−
Bz′1,z′2
Az′1,z′2

| ≤ (2Rε)(R! +K2(R!)2).

Thus, if min(|ν1|, |ν2|) ≥ nε, then

‖dZi|Zj1=z1,Zj2=z2 − dZi|Zj1=z′1,Zj2=z′2
‖∞ ≤ (2Rε)(R! +K2(R!)2),

for all 0 ≤ z1, z2, z
′
1, z
′
2 ≤ 1. Setting kR = nε/(2R(R!+K2(R!)2) gives the appropriate constant for

the statement of the Lemma.

We can now prove Theorem 8.3.

Proof of Theorem 8.3. The proof is done by recurrence on r.
Let r = 2. Let ε > 0 and Rε be the constant from Lemma 8.44. Let λ be a composition of n
and let 1 ≤ i < j ≤ n be two cells of λ. If i and j are both in runs larger than Rε, then by
Lemma 8.44, P(|σλ(i)

n − ai| ≥ ε) ≤ ε and P(|σλ(j)
n − aj | ≥ ε) ≤ ε. Therefore,

π

(
µ

(
σλ(i)

n
,
σλ(j)

n

)
, µ(

σλ(i)

n
)⊗ µ(

σλ(j)

n
)

)
≤ π

(
µ(
σλ(i)

n
,
σλ(j)

n
), δai ⊗ δaj

)
+π

(
δai ⊗ δaj , µ(

σλ(i)

n
)⊗ µ(

σλ(j)

n
)

)
≤ 2ε.

Suppose without loss of generality that i is in a run smaller than Rε. On the one hand, for
0 ≤ t1, t2 ≤ 1,

FZi,Zj (t1, t2)− FZi(t1)FZj (t2) =

∫ t2

0

(∫ t1

0
dZi|Zj=y(x)− dZi(x)dx

)
dZj (y)dy.

On the other end, by Lemma 8.45, there exists k such that if |j − i| ≥ k,

‖dZi|Zj=z − dZi|Zj=z′‖∞ ≤ ε
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for any 0 ≤ z, z′ ≤ 1. Therefore, for |j− i| ≥ k, ‖dZi|Zj=y−dZi‖∞ ≤ ε for 0 ≤ y ≤ 1. This yields

|FZi,Zj (t1, t2)− FZi(t1)FZj (t2)| ≤
∫ t2

0
t1εdZj (y)dy ≤ ε.

In particular,
π (µ(Zi, Zj), µ(Zi)⊗ µ(Zj)) ≤ ε.

Lemma 8.16 concludes the case r = 2.
Suppose that r > 2. Let λ be a composition and let 1 ≤ i1, . . . , ir ≤ n be distinct cells of λ. If
i1, . . . , ir are all in runs larger than Rε, by the same reason as before,

π

(
µ

(
σλ(i1)

n
, . . . ,

σλ(ir)

n

)
, µ(

σλ(i1)

n
)⊗ · · · ⊗ µ(

σλ(ir)

n
)

)
≤ 2ε.

Suppose without loss of generality that ir is in a run bounded by Rε, and let k be the constant
associated to Rε in Lemma 8.45. By recurrence hypothesis, there exists k1 such that if ij−ij−1 ≥
k1 for 2 ≤ j ≤ r − 1, then

π
(
µ(Zi1 , . . . , Zir−1), µ(Zi1 ⊗ · · · ⊗ µ(Zir−1)

)
≤ ε.

On the one hand for ~t ∈ [0, 1]r,

F(Zi)1≤i≤r(
~t)− FZir (tr)F(Zis )s<r((ts)s<r)

=

∫
xs∈[0,ts]

(
dZir |Zis=xs,s<r(xr)− dZir (xr)

)
d(Zis )s<r((xs)s<r)

r∏
s=1

dxs.

By Formula (8.3.3), dZir |Zi1=x1,...Zir−1=xr−1
(xr) = dZir |Zia=xa,Zib=xb(xr), where a and b are such

that ia is the cell of {i1, . . . , ir−1} directly before ir and ib is the cell of {i1, . . . , ir−1} directly
after ir. By Lemma 8.45, if ir − ia ≥ k and ib − ir ≥ k, then

‖dZir |Zia=xa,Zib=xb − dZir ‖∞ ≤ ε.

Thus,

|F(Zis )1≤s≤r(
~t)− FZir (tr)F(Zis )s<r((ti)i<r)| ≤

∫
xs∈[0,ts],s<r

εd(Zis )s<r((xs)s<r)
∏
s<r

dxs ≤ ε,

which yields
π(µ((Zi1 , . . . , Zir), µ(Zir)⊗ µ((Zis)s<r)) ≤ ε.

Finally,

π (µ (Zi1 , . . . , Zir) , µ(Zi1) ⊗ · · · ⊗ µ(Zir)) ≤ π (µ (Zi1 , . . . , Zir) , µ(Zir)⊗ µ((Zis)s<r)

+π (µ(Zir)⊗ µ((Zis)s<r), µ(Zi1)⊗ · · · ⊗ µ(Zir)) ≤ ε+ ε ≤ 2ε.
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Chapter 9

Martin bounday of Z

9.1 Introduction

The lattice Z of zigzag diagrams is a graded graph whose vertices of degree n are labelled by
compositions of n (which can be seen as ribbon Young diagrams). The study of this kind of
lattices drew increasing interests these last decades, due to their interactions with representations
of semi-simple algebras and with discrete random walks. In particular an other example of graded
graph, the Young lattice Y, has been deeply studied by Vershik, Kerov and other authors (see
[47] for a review on the subject), yielding major breakthroughs on the representation theory of
S∞ and on the asymptotic study of certain particle systems. As explained in [42], the lattices
Z and Y are somehow related, since the latter can be seen as a projection of the former.
The connection between the lattice structure and its probabilistic applications is made through
the study of harmonic functions on the associated graph. One of the first tasks is therefore the
characterization of harmonic functions on the lattice ; it is then possible to single out particular
harmonic functions and study the random variables they generate. A general framework for the
representation of harmonic functions on a graph E has been initiated by Martin in [61], with
the concept of Martin boundary ∂ME and minimal boundary ∂Emin: the Martin boundary is a
topological space coming from the graph and allowing to establish a bijection between positive
harmonic functions and measures whose support is included in a particular subset of ∂ME.
The latter subset is precisely the minimal boundary ∂Emin. It is therefore important to know
both ∂ME and ∂Emin to provide a topological and measure theoretic approach to the kernel
representation of harmonic functions (see [34] for an exhaustive review on the subject).
In general ∂Emin is strictly included in ∂ME. However in many cases the two coincide, as it
happens for example for the lattice Y. In this chapter we prove that the two boundaries also
coincide for the lattice Z. The minimal boundary of Z has already been described by Gnedin
and Olshanski in[42], through the so-called oriented paintbox construction, and thus it remains
to prove that any element of the Martin boundary fits in this construction. As an application
we provide a precise link between harmonic measures on Y and harmonic measures on Z: this
link was already exposed in [42], and in the present chapter we explain this relation by mapping
directly paths on Z to paths on Y. Finally we study the behavior of a random path with respect
to the Plancherel measure by providing a Central Limit Theorem.
Section 2 and 3 are devoted to preliminaries : the first gives necessary backgounds on Martin
boundary, and the second describes the graph Z together with its link with compositions. The
results of Gnedin and Olshanski on this graph are given in Section 4. In this section we provide
also the pattern of the proof for the identification of the Martin boundary.
The proof heavily relies on combinatorics of compositions. In particular the Martin kernel of
Z, a two parameters function that characterizes the Martin boundary, is related to standard
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fillings of compositions. Two constructions are needed in order to identify the Martin boundary:
Section 5 deals with the first one, which is the construction of a sequence of random variables
that relates the Martin kernel to the oriented Paintbox construction of Gnedin and Olshanski.
The second one has been done in Chapter 8 and is a general framework that gives combinatorial
estimates on compositions. Some results of Chapter 8 are recalled in Section 6. Section 7 and
8 show the identification of the Martin boundary. Finally Section 9 gives the map between
paths on Z and paths on Y and exposes probabilistic results associated to a particular point
of the Martin boundary, called the Plancherel measure (due to its relations with the Plancherel
measure on the graph Y).
We should stress that, as it has been explained to us by Jean-Yves Thibon, the map between the
paths on the two graphs appears clearly by using the algebra FQSym of Free Quasi-Symmetric
functions; although this algebra won’t be described in this chapter, the interested reader should
refer to the Chapter 3 of [35] for an introduction to FQSym and an explanation from a Hopf
algebraic point of view to the construction we are doing in Section 9.2 of the present chapter.

9.2 Graded graphs and Martin boundary

This section is a discussion that introduces the concept of Martin boundary and motivates its
role in the framework of graded graphs. All these results and proofs can be found in [34].

9.2.1 Graded graphs and random walks

The notations used here are from [79]. A rooted graded graph G is the data of a triple (V, ρ,E)
where :

• V is a denumerable set of vertices with a distinguished element µ0.

• ρ : V → N is a rank function with ρ−1({0}) = {µ0}.

• The adjacency matrix E is a V ×V -matrix with entries in {0, 1}, such that E(µ, ν) is zero
if ρ(ν) 6= ρ(µ) + 1.

We write µ↗ ν if E(µ, ν) = 1. A path on G is sequence of vertices (µ1, . . . , µn, . . . ) of increasing
degree such that for all i ≥ 1, µi ↗ µi+1. For a given graded graph the paths counting function
d : V → N∗ is the function that gives for each vertex µ ∈ G the number of paths between µ0 and
µ. When the endpoints of a path are not specified, the path is considered as an infinite path
starting at the root.
There is a natural way of constructing random walks that respect the structure of the graph
G : such a random walk starts at µ0, and at each step the successor is chosen according to a
transition matrix P , with the condition that P (µ, ν) = 0 if E(µ, ν) = 0 and

∑
ν P (µ, ν) = 1.

Thus each transition matrix P associates to any path λ = (µ0 ↗ µ1 · · · ↗ µn) a weight pλ which
is the probability of the realization of λ, namely

pλ = P(X0 = µ0, X1 = µ1, . . . , Xn = µn) =
1

Z
P (µ0, µ1) . . . P (µn−1, µn).

For some transition matrices P on G, the weight p(λ) only depends on the final vertex of the
path (in this case we write p(λ) = p(µ) for any path λ between µ0 and µ); such a transition
matrix is called a harmonic matrix. In this case, a staightforward computation shows that p,
the associated weight function, must verify

p(µ) =
∑
µ↗ν

p(ν), (9.2.1)
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and conversely, any positive solution p of (9.2.1) such that p(µ0) = 1 yields a harmonic matrix.
This can be interpreted in terms of potential theory.
Let X be a denumerable states space with transition matrix P . Let H(X,P )+ (resp. M(X,P ))
denote the set of positive harmonic functions (resp. positive harmonic measures), which is the
set of functions f : X → R+ satisfying

∑
y P (x, y)f(y) = f(x) (resp.

∑
x f(x)P (x, y) = f(y)).

For each α ∈M(X,P ) let the dual transition matrix P tα be defined by the expression

P tα(x, y) = 1α(x)6=0
α(y)

α(x)
P (y, x),

if x 6= y, and P t(x, x) = 1 −
∑

x 6=y P
t(x, y). Then P tα is indeed a transition matrix on X and

the following maps are well-defined:

Hα :

{
H(X,P )+ → M(X,P tα)

h 7→ (x 7→ 1α(x)>0
1

α(x)h(x))
,

and

Mα :

{
M(X,P ) → H(X,P tα)+

m 7→ (x 7→ α(x)m(x))
.

The two maps are bijective if α > 0 on X.
Let P be a transition matrix on a graded graph G; by a recursive computation there exists a
unique invariant measure αP with respect to P such that αP (µ0) = 1. If Pp is a harmonic

matrix, with p the associated weight function, then P (µ, ν) = 1µ↗ν
p(ν)
p(µ) and αp = d(µ)p(µ).

Thus the dual transition matrix is

P tαp(ν, µ) = 1µ↗ν
d(µ)p(µ)

d(ν)p(ν)

p(ν)

p(µ)
= 1µ↗ν

d(µ)

d(ν)
.

In particular P tαp is independent of p and, by Hαp , any harmonic function of P comes from an

invariant measure of P t. Conversely let α be an invariant measure of P t. Then the dual matrix
(P t)tα is exactly Pα/d, the harmonic matrix associated to the weight function p = α/d. We can
check that the duality yields indeed a bijection between harmonic matrices of G and elements
of M(G, P t) taking the value 1 on µ0.
Thus the problem of finding the harmonic matrices on G is equivalent to the dual problem of
finding harmonic measures with respect to P t. Moreover an answer to the latter problem gives
also by duality all the harmonic functions with respect to a harmonic matrix.
Fortunately a general framework, the Martin entrance boundary, describes exactly the harmonic
measures associated to a transition matrix.

9.2.2 Martin entrance boundary

Let us take a closer look at the Markov chain (G, P t). Let n0 ≥ 1 and ν a vertex of degree
n0. The random walk X = (Xn)n≥0 with transition matrix P t and initial distribution δν goes
backward from ν to µ0 and stops at µ0 at the times n0. Let λ be a path between µ0 and ν;
from the definition of the kernel P t, the probability that X follows the path λ is independent of
λ and is therefore 1

d(ν) .

For µ of degree m ≤ n0, denote by d(µ, ν) the number of paths between µ and ν (and by
extension d(µ, ν) = 0 if the degree of µ is larger than the one of ν). By counting the paths going
from µ0 to ν and passing through µ, the probability that Xn0−m = µ is thus

P(Xn0−m = µ) =
d(µ)d(µ, ν)

d(ν)
.
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In particular setting αν(µ) = d(µ)d(µ,ν)
d(ν) yields a measure αν that is harmonic with respect to P t,

except on the vertex ν. To construct actual harmonic measures, it seems thus natural to look at
the behavior of αν when ν → ∞. Making the latter rigorous requires to specify a convergence
mode for sequences of vertices of increasing degree. Let Kµ(ν) = d(µ,ν)

d(ν) be the Martin kernel of
G, and define on G the metric :

D(ν1, ν2) =
∑
µ

1

2Γ(µ)
|Kµ(ν1)−Kµ(ν2)|,

Γ being any injective function V → N. Identifying ν ∈ V with K.(ν), V is seen through this
metric as a subset of the space of functions from V to [0, 1] with the pointwise convergence
topology. Thus by Tychonoff’s Theorem the completion Ṽ of V with respect to D is a compact
space, and by construction Kµ extends continuously on this completion. Actually the completion
is exactly the set of sequences (νn)n≥1 such that for each µ, Kµ(νn) converges, with two sequences
(ν1
n)n≥1, (ν2

n)n≥1 being identified whenever for each µ, Kµ(ν1
n) and Kµ(ν2

n) have the same limit.
Denote by ∂MG the set Ṽ \ V . The latter is called the Martin entrance boundary of the graded
graph G and is a compact subset of Ṽ . Each element ω = lim

n→∞
νn in ∂MG defines a function on

V by the formula

ω(µ) = limKµ(νn).

The following Theorem is a special case of a Theorem from Doob ([34]).

Theorem 9.1. With the notations above, the two following results hold:

• There exists a Borel subset ∂minG ⊆ ∂MG (called minimal boundary) such that for any
measure α harmonic with respect to P t, there exists a unique measure λα on ∂minG giving
the kernel representation

α(µ) =

∫
∂minG

Kµ(x)dλα(x).

• For any reverse random walk (Xn)n≤0 that respects P t, the path (X0, X−1, . . . ) converges
almost surely to a ∂minG−valued random variable X−∞. Moreover the probability that
(Xn)n≤0 goes through µ is exactly d(µ)E(Kµ(X−∞)).

There exists a more general construction of the Martin boundary from Kunita and Watanabe
in [53], which encompasses the case of discrete random walks as well as more general Markov
processes (including the Brownian motion on a domain). However our situation is much simpler
and the previous Theorem is enough.
To summarize, the Martin entrance boundary gives a topological framework to represent har-
monic measures, whereas the minimal entrance boundary gives the corresponding measure the-
oretic framework. The situation is simpler when the two boundaries coincide. In the case of the
graph Z that we are studying, the minimal entrance boundary was already described by Gnedin
and Olshanski in [42]. The purpose of the present chapter is to extend this desciption to the
Martin entrance boundary by proving that the two boundary coincide.

9.3 The graph Z

This section is devoted to an introduction to the graph Z and its relation with sequences of
permutations. All the results from this section can de found in [42].
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9.3.1 Compositions

Let us first recall the definition of a composition:

Definition 9.2. Let n ∈ N. A composition λ of n, written λ ` n, is a sequence of positive
integers (λ1, . . . , λr) such that

∑
λj = n.

Let Dλ be the subset of [1;n] defined by Dλ = {λ1, λ1 + λ2, . . . ,
∑r−1

1 λi}. Since there is a
bijection between subsets of [1;n− 1] and compositions of n, Dλ is often simply denoted by λ.
To a composition is also associated a unique ribbon Young diagram with n cells: each row j has
λj cells, and the first cell of the row j + 1 is just below the last cell of the row j. For example
the composition (3, 2, 4, 1) of 10 is represented in Figure 9.1.

Figure 9.1: Skew Young tableau associated to the composition λ = (3, 2, 4, 1).

The size n is included in the definition of composition itself, since n is equal to the sum of all
λj . If we want to emphasize the size of a compostion λ, we denote it as |λ|. When nothing is
specified, λ is always assumed to have the size n, and n always denotes the size of the composition
λ.
A standard filling of a composition λ of size n is a standard filling of the associated ribbon Young
diagram: it is the assignement of an integer from 1 to n to each cell of the composition, such
that every cells have different entries, and the entries are increasing to the right along the rows
and decreasing to the bottom along the columns. An example for the composition of Figure 9.1
is shown in Figure 9.2.

3 5 8
4 7

1 6 9 10
2

Figure 9.2: Standard filling of the composition (3, 2, 4, 1).

In particular, reading the tableau from left to right and from top to bottom gives for each
standard filling a permutation σ; moreover the descent set des(σ) of σ, namely the set of indices
i such that σ(i + 1) < σ(i), is exactly the set Dλ. There is a bijection between the standard
fillings of λ and the permutations of |λ| with descent set Dλ. For example the filling in Figure
9.2 yields the permutation (3, 5, 8, 4, 7, 1, 6, 9, 10, 2).

9.3.2 The graph Z

The graded graph Z, which was introduced by Viennot in [89], is defined as follows:

1. The set Zn of vertices of degree n of Z is the set of compositions of n. The vertex of
degree 0 is denoted ∅.

2. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two compositions. There is an edge between
µ and λ if and only if |λ| = |µ|+ 1 and
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• either r = s and for each i except one µi = λi (thus exactly one µi0 is increased by
one)

• either r = s+ 1, and there exists j such that: for k < j, λk = µk, λj +λj+1− 1 = µj ,
and for k > j, λk+1 = µk (namely one µi is split, and one cell is added at the end of
the first piece).

The first four levels of Z are displayed in Figure 9.3.

∅

Z0 Z1 Z2 Z3

Figure 9.3: Vertices of Z of degree 0 to 3.

For a composition λ, let Ωλ be the set of paths between ∅ and λ. It has been shown in [89]
that Ωλ ' {σ ∈ S|λ|, des(σ) = Dλ}. One way to see this is to remark that Ωλ is the set of all
standard fillings of the ribbon diagram associated to λ. Thus these sets have same cardinality
and

d(λ) = |Ωλ| = #{σ ∈ S|λ|, des(σ) = Dλ}.

Let Pλ denote the uniform distribution on Ωλ; from Section 2, this is equivalent to considering
the random walk starting at λ with transition matrix P t. This random walk gives n random
variables σλk , 1 ≤ k ≤ n, each of them being the random path restricted to the vertices of degree
smaller than k.
Since there is a bijection between paths on Z from ∅ to µ and permutations of |µ| with descent set
Dµ, each σλk is a random permutation in Sk, and the law of σλ = σλn is the uniform distribution
on the set of permutations with descent set Dλ. Moreover a counting argument yields that for
σ ∈ Sk with des(σ) = Dµ, under the probability Pλ,

Pλ(σkλ = σ) =
d(µ, λ)

d(λ)
. (9.3.1)

By abuse of notation a finite path starting at ∅ on Z and the corresponding permutation are
both usually denoted by σ. In particular if σ ∈ Ωλ, σk denotes the path after k steps, whereas
σ(i) will denote the image of i by the permutation associated to σ (the same for σ(A) with A a
subset of {1, . . . , n}).
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9.3.3 Arrangement on N

In this paragraph a permutation σ ∈ Sk is written as a word in the alphabet {1, . . . , k}, where
ij = σ(j). For k ≥ 2 and σ = (i1 . . . ik), σ↓ ∈ Sk−1 is defined as the permutation (i1 . . .�k . . . ik).
If σ ∈ Sn, σ↓k denotes the (n−k)−iteration of the ↓-operation : namely all the indices between
k + 1 and n have been erased.
An arrangement of N is a sequence (σ1, . . . , σk, . . . ) such that for all k ≥ 1, σk ∈ Sk, and such
that the following compatibility condition holds :

(σk)↓ = σk−1.

For example the following sequence is the first part of an arrangement :

((1), (21), (231), (2341), (52341), . . . ) .

The set of all arrangements is denoted A. For k ≥ 1, let πk : A → Sk be the map which
consists in the projection of the sequence (σ1, σ2, . . . ) on the k−th element σk. A is considered
with the initial topology with respect to the maps πk, and with the corresponding borelian
σ−algebra. Thus by the Kolmogorov’s extension Theorem, any random variable Π on A is
uniquely determined by the law of its finite-dimensional projections (π1(Π), . . . , πk(Π)).
The result of the previous subsection yields that there is a bijection between infinite paths on
Z and arrangements of N, and from Section 2 this bijection extends to a bijection between
harmonic measures α with respect to P t and random arrangements Π such that

P(π1(Π) = σ1, . . . , πk(Π) = σk) = p(des(σk)),

with p a positive function on Z given by p = α
d . This correspondance is convenient since it

allows to describe the solutions of the problem (9.2.1) in terms of random arrangements.

9.4 Paintbox construction and Minimal boundary

Thanks to the latter correspondance, Gnedin and Olshanski described the minimal entrance
boundary of Z in terms of random arrangements. This description is the purpose of the following
paragraph.

9.4.1 Paintbox construction

The description is based on a topological space consisting in pairs of disjoint open sets of [0, 1] :

Definition 9.3. The topological space U (2) is the space

({(U↑, U↓)|U↑ and U↓ disjoint open sets of ]0, 1[}, d),

with the distance d between (U↑, U↓) and (V↑, V↓) given by

d((U↑, U↓), (V↑, V↓)) = sup(dHaus(U
c
↑ , V

c
↑ ), dHaus(U

c
↓ , V

c
↓ )).

Let M1(U (2)) denote the set of probability measures with respect to the σ−algebra coming
from the above topology.
From the definition of the metric, (U↑(j), U↓(j)))j≥1 converges to (V↑, V↓)) if and only if, for
each ε > 0, all of the following phenomena occur:
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• for j large enough, the number of connected components of size larger than ε in U↑ and
V↑ are the same,

• the boundaries of the connected components of size larger than ε in U↑ converge to the
ones of V↑,

• the same holds by switching ↑ and ↓.

In particular (U↑(j), U↓(j)) converges to (∅, ∅) if and only if the size of the largest components
in U↑(j) and U↓(j) tends to 0. The following important result holds for U (2):

Proposition 9.4 ([42]). U (2) is compact space.

The minimal entrance boundary of Z is described by random arrangements constructed from
elements of U (2).

Definition 9.5. Let U = (U↑, U↓) be fixed, (X1, . . . , Xk, . . . ) a sequence of [0, 1]. For each k ≥ 1,
σU (X1, . . . , Xk) ∈ Sk is defined by the following rule:
(σU (X1, . . . , Xk))

−1 (i) is less than (σU (X1, . . . , Xk))
−1 (j) if and only if one of the three follow-

ing situations arises :

• Xi and Xj are not in the same connected component of U↑ or U↓ and Xi < Xj

• Xi and Xj are in the same connected component of U↑ and i < j

• Xi and Xj are in the same connected component of U↓ and j < i.

The random variable σU (X1, . . . , Xk) defined for an infinite family (X1, . . . , Xk, . . . ) of indepen-
dent uniform variables on [0, 1] is denoted σU (k). The sequence
(σU (1), σU (2), . . . ) is denoted σU .

The construction of σU (X1, . . . , Xk) from (X1, . . . , Xk) and U ∈ U (2) is well-defined and
unique. If U = (∅, ∅), σ(∅,∅)(X1, . . . , Xk) is just the permutation associated to the reordering
(Xi1 < Xi2 < . . .Xik). This permutation is denoted by Std−1(X1, . . . , Xk). For each k, the
random variable σ(∅,∅)(k) has a uniform distribution on Sk.
The next Theorem is due to Gnedin and Olshanski in [42] (based on an important work of Jacka
and Warren in [45]) and identifies U (2) with the minimal entrance boundary of the graded graph
Z :

Theorem 9.6. Each random variable σU defines a random arrangement A that comes from a
harmonic probability measure on (Z, P t), and there is an isomorphism :

Φ : M1(U (2)) −→M1(∂minZ)

which restricts to a bijective map p : U (2) −→ ∂minZ mapping δ(U↑,U↓) to σ(U↑,U↓).

In particular for each k ≥ 1 and σ ∈ Sk, P(σU (k) = σ) only depends on the descent set µ of
σ and is thus denoted by pU (µ).

9.4.2 Martin entrance boundary of Z

The question is to know if ∂minZ = ∂MZ. The problem is summed up in Conjecture 45 of [42].
To each composition λ of n is associated an element Uλ = (U↑(λ), U↓(λ)) of U (2) as follows : for
each s ≤ n− 1 set Is = [ s−1

n−1 ,
s

n−1 ], and define

U↑(λ) = int(
⋃

i 6∈des(λ)

Is), U↓(λ) = int(
⋃

i∈des(λ)

Is),

with int denoting the interior of a set. Then the conjecture states the following :
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Conjecture 9.7. a) A sequence (λn)n≥1 is in ∂MZ if and only if Uλn converges in U (2).

b) Uλn →U(2) (U↑, U↓) is equivalent to Kµ(λn)→ p(U↑,U↓)(µ) for all µ ∈ Z.

c) The Martin boundary of the graph Z actually coincides with its minimal boundary : ∂MZ =
U (2)

Actually, the only difficult part is to prove the first implication of b):

(Uλn →U(2) (U↑, U↓)) =⇒ (∀µ ∈ Z,Kµ(λn)→ p(U↑,U↓)(µ)). (9.4.1)

Indeed suppose that the latter is true :

Proof. a) Let ω = (λn)n≥1 be in ∂MZ. Since U (2) is compact, proving the convergence of Uλn
in U (2) is the same as proving that every convergent subsequences of Uλn have the same
limit. Let (λϕ(n))n≥1 and (λϕ′(n))n≥1 be such that

Uλϕ(n) → (U1
↑ , U

2
↓ ), Uλϕ′(n) → (U2

↑ , U
2
↓ )

Then by (9.4.1), for all µ ∈ Z, ω(µ) = pU1
↑ ,U

1
↓
(µ) and ω(µ) = pU2

↑ ,U
2
↓
(µ). Since p : U (2) →

∂minZ is injective, necessarily (U1
↑ , U

1
↓ ) = (U2

↑ , U
2
↓ ). This shows that Uλn converges.

Conversely if Uλn converges in U (2), the assumption (9.4.1) implies directly that (λn) ∈
∂MZ.

b) The direct implication is exactly (9.4.1); for the converse implication, the convergence of
Kµ(λn) for all µ ∈ Z implies that (λn)n≥1 ∈ ∂MZ. Thus from a), Uλn converges in U (2).
By injectivity of p, Uλn converges to (U↑, U↓).

c) This is the summary of 1) and 2).

The following sections are devoted to the proof of the implication (9.4.1), which implies
Conjecture 9.7 :

Theorem 9.8. Let λn be a sequence of compositions such that λn ` n. If Uλn converges to
(U↑, U↓), then for all µ ∈ Z,

Kµ(λn)→ p(U↑,U↓)(µ).

The result of Theorem 9.8 roughly means that, for k fixed and λ a large composition such
that Uλ is close to (U↑, U↓), the restriction to {1, . . . , k} of the uniform random filling λ yields
a random variable on Sk close to the Paintbox construction σ(U↑,U↓)(k). Since the Paintbox
construction involves for each integer 1 ≤ i ≤ k an independent uniform random variable on
[0, 1], we will also create in Section 5 a random variable ξλi which mimicks the position of i in
the uniform random filling of λ. The proof of Theorem 9.8 consists then essentially in proving
that the family (ξλi )1≤i≤k becomes a family of independent uniform random variables on [0, 1]
when λ becomes large. The latter convergence implies that the permutation σλ is close to σUλ .
The fact that Uλ is approximately (U↑, U↓) will conclude the proof.

Note that there are two kinds of limit involved in the proof: the limit of the law of (ξλni )1≤i≤k
and the topological limit of Uλn . In order to finalize the proof, we need a final result showing
that the order of the limits does not matter. Since the proof of the latter fact is straightforward
but lengthy, it is postponed to the Appendix.
The convergence to the family of independent uniform random variables is not clear and ex-
plained in Sections 7 and 8. The proof uses the results of Chapter 8, which deal with combina-
torics of large compositions and which are summarized in Section 6.
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9.5 The familiy (ξλi )i≥1

Some definitions on compositions are needed before defining the family (ξλi )i≥1.

9.5.1 Combinatorics of compositions

Let λ be a composition of n with its associated descent set Dλ = (λ1, λ1+λ2, . . . , λ1+· · ·+λr−1).
An integer i ∈ [1;n] is a peak of λ if i ∈ Dλ ∪ {n} and i − 1 6∈ Dλ, and i ∈ [1;n] is a valley if
i 6∈ Dλ and i − 1 ∈ Dλ ∪ {0}. This definition makes sense if we consider any standard filling σ
of λ : σ(i) is a local maximum (resp. minimum) of σ = σ(1) . . . σ(n) if and only if i is a peak
(resp. valley) of λ. Let V denote the set of valleys, P the set of peaks, and E = V ∪ P the set
of extreme cells.
A run s of λ is an interval [a; b] of [1;n] such that a, b are consecutive integers of E . A run
[a; b] is called descending if a ∈ P and ascending if a ∈ V . The runs are ordered by the
lower endpoint of the corresponding interval, and this yields a total ordered set S = {si}1≤i≤t.
Each element si of S corresponds to an interval [ai; ai+1], with a1 = 1 and at+1 = n. In
particular two consecutive runs si and si+1 overlap on ai+1. The length of a run si is defined
as the value li = ai+1 − ai. For example if λ = (3, 2, 4, 1), V = {1, 4, 6, 10}, P = {3, 5, 9} and
S = {[1; 3], [3; 4], [4; 5], [5, 6], [6; 9], [9, 10]}.
For any cell i of λ, the slope of i, s(i) = [x(i); y(i)], is defined as the maximum subinterval of
[1;n] that contains i and no other peak or valley. In the previous example, s(7) = [7; 8] and
s(6) = [6; 8].

9.5.2 Definition of (ξλi )i≥1

Let (Xi(p, q)) i≥1
{p,q}⊆Q

be a family of independent variables such that Xi(p, q) follows the uniform

law on [p, q].

Definition 9.9. Let λ be a composition of n, σ ∈ Ωλ. The averaged coordinate of i with respect
to σ is the random variable defined by ξi(σ) = 0 if i > n, and

ξi(σ) = Xi(
x(σ−1(i))− 1

n
,
y(σ−1(i))

n
),

for 1 ≤ i ≤ n.
For σλ chosen uniformly among Ωλ, ξi(σλ) is denoted ξλi . ξλ(k) denotes the vector (ξλ1 , . . . , ξ

λ
k )

and ξλ(n) is simply written ξλ.

Basically constructing ξλi means that we sample a uniformly random standard filling σλ of λ,
we look at the cell containing i with respect to this filling, and then sample a random variable
uniformly distributed on the rescaled slope of this cell. The advantage is that the knowledge of
ξλ(k) is enough to reconstruct σλk . This reconstruction needs a slightly modified version of Uλ:

Definition 9.10. The run paintbox Ũλ associated to λ is an element of U (2) consisting in the
following open subsets:

• Ũ↑(λ) =
⋃
ai∈V ]ai−1

n , ai+1−1
n [

• Ũ↓(λ) =
⋃
ai∈P ]ai−1

n , ai+1−1
n [

with ai+1 = n+ 1 if ai = n.

The run paintbox Ũλ becomes close to Uλ when n goes to infinity:
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Lemma 9.11. Let λ be a composition of n. With respect to the distance on U (2),

d(Uλ, Ũλ) ≤ 1

n
.

Proof. The definition of Uλ yields the following open sets:

U↑(λ) =
⋃

ai∈V,ai 6=n
]
ai − 1

n− 1
,
ai+1 − 1

n− 1
[,

and

U↓(λ) =
⋃

ai∈P,ai 6=n
]
ai − 1

n− 1
,
ai+1 − 1

n− 1
[.

Let us show that U↑(λ)c is included in the 1
n−inflation of Ũ↑(λ)c and conversely (the proof for

U↓(λ)c and Ũ↓(λ)c is the same). The 1
n−inflation of U↑(λ)c is

U↑(λ)c,1/n =

 ⋃
ai∈P,ai 6=n

[(
ai − 1

n− 1
− 1

n
) ∨ 0, (

ai+1 − 1

n− 1
+

1

n
) ∧ 1]

 ∪ [0,
1

n
] ∪ [1− 1

n
, 1].

On the other hand

Ũ↑(λ)c =

 ⋃
ai∈P

[
ai − 1

n
,
ai+1 − 1

n
]

 ∪ {0} ∪ {1}.
Suppose that ai 6= n. Then for all 1 ≤ k ≤ n− 1, k

n−1 −
1
n ≤

k
n ≤

k
n−1 + 1

n , thus

[
ai − 1

n
,
ai+1 − 1

n
] ⊆ [(

ai − 1

n− 1
− 1

n
) ∨ 0, (

ai+1 − 1

n− 1
+

1

n
) ∧ 1] ⊆ U↑(λ)c,1/n.

If ai = n, [ai−1
n , ai+1−1

n ] = [1− 1/n, 1] ⊆ U↑(λ)c,1/n. Finally Ũ↑(λ)c ⊆ U↑(λ)c,1/n.

For the converse inclusion the 1
n−inflation of Ũ↑(λ)c is

Ũ↑(λ)c,1/n =

 ⋃
ai∈P

[(
ai − 1

n
− 1

n
) ∨ 0, (

ai+1 − 1

n
+

1

n
) ∧ 1]

 ∪ [0,
1

n
] ∪ [1− 1

n
, 1],

and

U↑(λ)c =

 ⋃
ai∈P,ai 6=n

[
ai − 1

n− 1
,
ai+1 − 1

n− 1
]

 ∪ {0} ∪ {1}.
Since for 1 ≤ k ≤ n− 1, k

n −
1
n ≤

k
n−1 ≤

k
n + 1

n , for each ai 6= n,

[
ai − 1

n− 1
,
ai+1 − 1

n− 1
] ⊆ [(

ai − 1

n
− 1

n
) ∨ 0, (

ai+1 − 1

n
+

1

n
) ∧ 1],

and therefore U↑(λ)c ⊆ Ũ↑(λ)c,1/n.
Doing the same for U↓(λ) and Ũ↓(λ) concludes the proof.

The previous Lemma implies that for any sequence (λn)n≥1 with |λn| → ∞, the convergence
of Uλn is equivalent to the convergence of Ũλn , and both have the same limit. The advantage
is that the knowledge of ξλk and Ũλn is enough to recover σλk . Recall that σŨλ((ξi(σ))1≤i≤k) is

the paintbox construction relative to the tuple (ξi(σ))1≤i≤k and the paintbox Ũλ as defined in
subsection 9.4.1.
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Proposition 9.12. For each 1 ≤ k ≤ n, σ ∈ Ωλ,

σŨλ((ξi(σ))1≤i≤k) = σ↓k.

In particular the random variables σλk and σŨλ(ξλ(k)) have the same law.

Proof. It is enough to prove it for k = n. Denote ξi(σ) = ξi and ξ = (ξi(σ))1≤i≤n. It is equivalent
to prove that for 1 ≤ i, j ≤ n,(

σŨλ(ξ)
)−1

(i) <
(
σŨλ(ξ)

)−1
(j)⇔ σ−1

λ (i) < σ−1
λ (j).

Let 1 ≤ i < j ≤ n. Then σ−1
λ (i) < σ−1

λ (j) implies that i is left to j in the associated filling of λ.
This is possible in one of the two following situations :

1. s(i) and s(j) are disjoint and s(i) is left to s(j). In this case ξi and ξj are not in the same
interval component of Ũλ and ξi is in an interval component left to the one of ξj . By the
run Paintbox construction, (

σŨλ(ξ)
)−1

(i) <
(
σŨλ(ξ)

)−1
(j).

2. s(i) and s(j) overlap. This implies that i and j are in a same run s = [ai; ai+1] of λ. Let
Is =]ai−1

n , ai+1−1
n [. Since i < j and σ−1

λ (i) < σ−1
λ (j), the run s has to be an ascending one

and thus ai ∈ V and ai+1 ∈ P . In particular σ−1
λ (i) cannot be a peak, and σ−1

λ (j) cannot
be a valley. Thus ξi is either in an interval component left to Is, either in Is. For similar
reasons, ξj is either in an interval component right to Is, either in s. This implies that if

ξi or ξj is not in Is,
(
σŨλ(ξ)

)−1
(i) <

(
σŨλ(ξ)

)−1
(j). But if ξi and ξj are both in Is, since

the latter is in Ũ↑(λ), the same inequality holds.

Finally, in any case,

σ−1
λ (i) < σ−1

λ (j) =⇒
(
σŨλ(ξ)

)−1
(i) <

(
σŨλ(ξ)

)−1
(j).

The pattern is exactly the same to prove that

σ−1
λ (i) > σ−1

λ (j) =⇒
(
σŨλ(ξ)

)−1
(i) >

(
σŨλ(ξ)

)−1
(j),

yielding the first part of the Proposition. This first part implies clearly the second one.

It is also possible to recover exactly the position of {1, . . . , k} in the filling σ of λ from
(ξi(σ))1≤i≤k :

Lemma 9.13. Let σ, σ′ be two permutations of Ωλ. If (σ−1(1), . . . , σ−1(k)) is not equal to
(σ′−1(1), . . . , σ′−1(k)), then (ξ1(σ), . . . , ξk(σ)) and (ξ1(σ′), . . . , ξk(σ

′)) have disjoint supports.

Proof. The proof is done by recurrence on k ≥ 1. Let k = 1. 1 has to be located in a valley of
λ. If σ−1(1) 6= σ′−1(1), 1 is located in a different valley in σ and σ′. Thus the slopes of σ−1(1)
and σ′−1(1) are disjoint, and ξ1(σ) and ξ1(σ) have disjoint supports.
Let k > 1. Suppose that (σ−1(1), . . . , σ−1(k)) 6= (σ′−1(1), . . . , σ′−1(k)). By recurrence hypoth-
esis, if (σ−1(1), . . . , σ−1(k − 1)) is not equal to (σ′−1(1), . . . , σ′−1(k − 1)), (ξ1(σ), . . . , ξk−1(σ))
and (ξ1(σ′), . . . , ξk−1(σ′)) have disjoint supports. This yields also that (ξ1(σ), . . . , ξk(σ)) and
(ξ1(σ′), . . . , ξk(σ

′)) have disjoint supports.
Thus let us assume that (σ−1(1), . . . , σ−1(k− 1)) = (σ′−1(1), . . . , σ′−1(k− 1)). This implies that
σ−1(k) 6= σ′−1(k); since the position of {1, . . . , k − 1} is the same in the fillings σ and σ′ of λ,
the cell containing k in σ is in a different run than the cell containing k in σ′. Therefore their
slopes are disjoint, and (ξ1(σ), . . . , ξk(σ)) and (ξ1(σ′), . . . , ξk(σ

′)) have disjoint supports.
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This section ends by a convergence result. Although this result is crucial for the proof of
Theorem 9.4.1, its proof is rather technical and has been postponed to the Appendix.

Proposition 9.14. Let Un be a sequence of U (2) and ((Xn(i))i≥1)n≥1 a sequence of random in-
finite vectors on [0, 1]. Let (X0(1), . . . , X0(n), . . . ) be a random infinite vector on [0, 1]. Suppose
that each finite dimensional marginal law of any of these random vectors admits a density with
respect to the Lebesgue measure. If Un → U ∈ U (2) and for each k ≥ 1, Xn

k = (Xn(1), . . . , Xn(k))
converges in law to X0

k = (X0(1), . . . , X0(k)), then for each k ≥ 1,

σUn(Xn
k ) −→law σU (X0

k).

9.6 Combinatorics of large compositions

The purpose of this section is to introduce the background material to prove that the family
(ξλu)1≤u≤k converges in law to a family of independent uniform random variables on [0, 1]. Since
ξλu depends uniquely on the runs in which u is located in a random filling σλ of λ, it is necessary
to evaluate the probability for u to be located in a particular run s of λ. For a composition λ
and i ∈ λ a fixed cell, denote by λ≤i (resp. λ≥i, λ<i, λ>i) the composition λ restricted to cells
left (resp. right, res. strictly left, resp. strictly right) to i. Recall that d(λ) denotes the number
of standard fillings of the ribbon Young diagram associated to λ.
Let us focus here on the location of 1 in σλ. Since 1 is necessary a local minimum in any filling
of λ, it has to be located in a valley v ∈ V . For a fixed valley v of λ, the cardinal of standard
fillings of λ such that 1 is located in v is exactly the number of possibilities to fill in the part of
λ left of v, with any subset S of cardinal |λ<v| of [2, n], and to fill in independently the part of
λ right to v with the complementary subset of S in [2, n]. Thus

Pσλ(1 ∈ v) =
(|λ| − 1)!

|λ<v|!|λ>v|!
d(λ>v)d(λ<v)

d(λ)
. (9.6.1)

The problem is therefore essentially to relate d(λ>v)d(λ<v) to d(λ).

9.6.1 Probabilistic approach to descent combinatorics

Ehrenborg, Levin and Readdy (see [37]) formalized in the context of descent sets an old relation
between permutations of n and polytopes in [0, 1]n. Namely since the volume of the set
Rσ = {xσ(1) < · · · < xσ(n)} is exactly 1

n! , it is possible to determine probabilistic quantities
on Sn by integrating certain functions that are constant on each region Rσ. The appropriate
functions for descent sets were found in [37], yielding some new estimates as in [36] and [18].
The model of Ehrenborg, Levin and Readdy is exposed in this paragraph, but in a modified
way to focus only on the set of extreme cells E (as defined in the paragraph 5.1). This yields
the following framework : let λ be a composition of n ≥ 2 with set of extreme cells E = {a1 =
1, a2, . . . , ar = n}. Suppose for example that the first cell is a valley (namely a1 ∈ V ) and denote
by sj the run between aj and aj+1, with lj its length. To each λ is associated the couple of
random variable (Xλ, Yλ) on [0, 1]2 with density

dXλ,Yλ(x1, xr) =
1

Vλ

∫
[0,1]r−2

∏
1x2i−1<x2i>x2i+1

∏
1≤i≤r−1

|xi − xi+1|li−1

(li − 1)!

∏
2≤i≤r−1

dxi. (9.6.2)

If the first cell is a peak (i.e a1 ∈ P ), the inequalities in the expression of the density are reversed.
If λ = �, the expression for the distribution of (X�, Y�) (in the distributional sense) is simply:

dX�,Y�(u, v) = δu=v.
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The latter probabilistic model is related to the combinatorics of descent sets through the equality

d(λ) = |λ|!Vλ, (9.6.3)

whose proof can be found in [37].
The first advantage of this model is that it behaves simply with respect to concatenation of
compositions.

Definition 9.15. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two compositions of m and n.
The concatenated composision λ+ µ is the composition of n+m

λ+ µ = (λ1, . . . , λr + µ1, µ2, . . . , µs),

and the concatenated composition λ− µ is the composition of n+m

λ− µ = (λ1, . . . , λr, µ1, µ2, . . . , µs).

This definition has a simple meaning in terms of associated ribbon Young diagrams: namely
the diagram of λ + µ (resp. λ − µ) is the juxtaposition of the one of λ and the one of µ such
that the last cell of λ is left to (resp. above) the first cell of µ. An application of the section 2
of [37] (see also Lemma 2 in [18]) implies the following expression of the concatenation in the
probabilistic framework :

Proposition 9.16. Let λ, µ be two compositions, ε ∈ {−,+}. Then

Vλεµ = VλVµE(Yλ ≤ε Xµ)

and

dXλεµ,Yλεµ(x, y) =
1

E(Yλ ≤ε Xµ)

∫
[0,1]2

dXλ,Yλ(x, u)1u≤εvdXµ,Yµ(v, y)dudv,

where ≤−=≥ and ≤+=≤, and the couples (Xλ, Yλ) and (Xµ, Yµ) are considered as independent.

The previous Proposition yields a particular case that helps to compute the law of ξλ1 . Denote
by FX the distributive cumulative function of a random variable X.

Corollary 9.17. Let λ be a composition of n and v a valley of λ. Then

Pλ(1 ∈ v) =
1

n

1∫ 1
0 (1− FYλ<v (t))(1− FXλ>v (t))dt

,

with the convention Xλ>n = δ1 and Yλ<1 = δ1.

Proof. Since v is a valley, λ can be written λ<v−�+λ>v. Thus the previous Proposition yields

Vλ<v−�+λ>v = Vλ<vVλ≥vE(Yλ<v ≥ Xλ≥v).

Conditioning the expectation on the value of Xλ≥v gives by independence,

E(Yλ<v ≥ Xλ≥v) =

∫ 1

0
(1− FYλ<v (t))dXλ≥v (t)dt.

On the other hand from the previous Proposition, since Xλ≥v = X�+λ>v ,

dXλ≥v (t) =
1

E(Xλ>v ≥ Y�)

∫
[0,1]3

δ(t, u)1u≤vdXλ>v ,Yλ>v (v, y)dudvdy

=
Vλ>vV�
Vλ≥v

(1− FXλ>v (t)),
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and finally

Vλ<v−�+λ>v = Vλ<vVλ>v
∫ 1

0
(1− FYλ<v (t))(1− FXλ>v (t))dt.

Using the latter result in the equalities (9.6.1) and (9.6.3) yields

Pσλ(1 ∈ v) =
(|λ| − 1)!

|λ<v|!|λ>v|!
d(λ>v)d(λ<v)

d(λ)

=
(|λ| − 1)!

|λ<v|!|λ>v|!
|λ<v|!|λ>v|!
|λ|!

Vλ>vVλ<v
Vλ

=
1

|λ|
Vλ>vVλ<v

Vλ<vVλ>v
∫ 1

0 (1− FYλ<v (t))(1− FXλ>v (t))dt

=
1

|λ|
1∫ 1

0 (1− FYλ<v (t))(1− FXλ>v (t))dt
.

9.6.2 Estimates on (Xλ, Yλ)

The latter corollary shows that the knowledge of FXµ and FYµ for any subcomposition µ of λ
yields estimates on the location of 1 in σλ. The results on the behavior of FXµ , FYµ obtained in
Chapter 8 are summarized in this paragraph, and the reader should refer to this chapter for the
corresponding proofs. The first result is a bound of FXλ depending on the length of the first
run of λ and corresponds to Corollary 2 in Chapter 8 (and the following paragraph):

Proposition 9.18 (Cor.2 Chapter 8). Let λ be a composition with at least two runs, and with
first run of length R. If the first run is increasing, the following inequality holds :

1− (1− t)R ≤ FXλ(t) ≤ 1− (1− t)R+1.

If the first run is decreasing, the inequality is

tR+1 ≤ FXλ(t) ≤ tR.

The same result holds for Yλ after exchanging increasing run and decreasing run. The latter
inequalities are very accurate when R is large, but when the runs remain bounded, the result is
not so useful. It is still possible to show that the distribution of Xλ only depends on the first
cells of the composition. This corresponds to Proposition 11 in Chapter 8.

Proposition 9.19 (Prop. 11,Ch. 8). Let ε > 0. There exists n0 ≥ 1 such that for any n ≥ n0

and any composition λ of size larger than n with first run smaller than n,

‖FXλ≤n − FXλ‖∞ ≤ ε.

In the latter result, n0 depends only on ε, and not on the shape of λ.

9.7 Asymptotic law of ξλ1

This section is devoted to the asymptotic law of ξλ1 .
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9.7.1 Preliminary results

Propositions 9.18 and 9.19 imply that Pλ(1 ∈ v) only depends on the shape of λ around v.

Lemma 9.20. Let ε > 0. There exists nε ∈ N such that for n0 ≥ nε and two compositions
λ ` n and µ ` m with the first run of µ smaller than n0,

1− ε ≤
∫ 1

0 (1− FYλ(t))(1− FXµ(t))dt∫ 1
0 (1− FYλ(t))(1− FXµ≤n0 (t))dt

≤ 1 + ε.

Proof. Let λ, µ be two compositions, with L the size of the last run of λ and R the size of the
first run of µ. Set ε1 = + if the last run of λ is increasing, ε1 = − else, and the same with ε2

and the first run of µ. Let ∆ =
∫ 1

0 (1−FYλ(t))(1−FXµ(t))dt. From Proposition 9.18, integrating
the inequalities yields the following bounds on ∆:

• If ε1 = +, ε2 = +,

1

R+ 2
(1− 1

(R+ 3) . . . (R+ L+ 2)
) ≤ ∆ ≤ 1

R+ 1
(1− 1

(R+ 2) . . . (R+ L+ 2)
),

• if ε1 = −, ε2 = +,
1

L+R+ 3
≤ ∆ ≤ 1

L+R+ 1
,

• if ε1 = +, ε2 = −,

1− 1

R+ 1
− 1

L+ 1
+

1

R+ L+ 1
≤ ∆ ≤ 1− 1

R+ 2
− 1

L+ 2
+

1

L+R+ 3
,

• if ε1 = −, ε2 = −,

1

L+ 2
(1− 1

(L+ 3) . . . (L+R+ 2)
) ≤ ∆ ≤ 1

L+ 1
(1− 1

(L+ 2) . . . (L+R+ 2)
).

The latter bounds are independent of the shape of λ, µ apart from the lengths of the last run
of λ and the first run of µ. Denote by Aε1,ε2L,R each upper bound in the previous list, and Bε1,ε2

L,R

each lower bound. Then as min(L,R)→∞,

Bε1,ε2
L,R

Aε1,ε2L,R

→ 1.

Thus there exists K such that if min(L,R) ≥ K, whatever is the shape of λ, µ outside these
runs and n0 ≥ R,

1− ε ≤
∫ 1

0 (1− FYλ(t))(1− FXµ(t))dt∫ 1
0 (1− FYλ(t))(1− FXµ≤n0 (t))dt

≤ 1 + ε.

From now on, let us assume that the last run of λ and the first run of µ are bounded by K. Set
η = inf ε1,ε2

L,R≤K
Bε1,ε2
L,R . Since L,R ≥ 1, each Bε1,ε2

L,R is strictly positive. The family {Bε1,ε2
L,R } ε1,ε2

L,R≤K
being finite, this yields η > 0.
By Proposition 9.19, there exists nε ≥ 1 such that for n0 ≥ nε and any composition ν of size
n ≥ n0 and first run smaller than n0, FXν≤n0

= FXν + g with ‖g‖∞ ≤ εη. Let n0 ≥ nε and
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suppose that λ ` n, µ ` m with the first run of µ smaller than n0. Then there exists g such that
‖g‖∞ ≤ εη, and FXµ≤n0

= FXµ + g. This implies

∫ 1

0
(1− FYλ(t))(1− FXµ≤n0 (t))dt =

∫ 1

0
(1− FYλ(t))(1− FXµ(t)− g(t))dt

= ∆−
∫ 1

0
g(t)(1− FYλ(t))dt.

Since |
∫ 1

0 g(t)(1− FYλ(t))dt| ≤ εη and ∆ ≥ η,

1− ε ≤

∫ 1
0 (1− FYλ(t))(1− FXµ≤n0 (t))dt

∆
≤ 1 + ε.

A corollary of the previous lemma yields a precise estimate of the probability that 1 is located
in a particular valley v when the length of the slope of v goes to +∞.

Corollary 9.21. Let ε > 0. There exists n0 ≥ 1 such that if λ is a composition, and v ∈ λ is a
valley with slope s(v) = [a; b] of size b− a ≥ n0, then

(1− ε)b− a
n
≤ Pλ(1 ∈ v) ≤ (1 + ε)

b− a
n

.

Proof. Since v is a valley, v belongs to two runs si, si+1. If b − a ≥ 1, then at least one run
containing v is of size larger than 2. Assume without loss of generality that l(si+1) ≥ 2. This
means that the first run of λ>v is increasing. Let ∆ =

∫ 1
0 (1− FYλ<v (t))(1− FXλ>v(t))dt. Let L

denote the length of the last run of λ<v, and R the length of the first run of λ>v.
If l(si) = 1, the last run of λ<v is increasing. Moreover in this case b− a = R. Thus the bounds
on ∆ from the proof of the last Lemma yield

1

b− a+ 2
(1− 1∏L+2

i=3 (b− a+ i)
) ≤ ∆ ≤ 1

b− a+ 1
(1− 1∏L+2

i=2 (b− a+ i)
).

Thus independently from L, there exists n1 such that if l(si) = 1 and b − a ≥ n1, then (1 −
ε)(b− a) ≤ ∆−1 ≤ (1 + ε)(b− a).
If l(si) > 1, the last run of λ<v is decreasing. Then b − a = L + R − 1, and the bounds on ∆
from the proof of the previous Lemma yield

1

b− a+ 2
≤ ∆ ≤ 1

b− a
.

There exists n2 such that if l(si) > 1 and b− a ≥ n2, then (1− ε)(b− a) ≤ ∆−1 ≤ (1 + ε)(b− a).
Set n0 = max(n1, n2), and let n ≥ n0. From Corollary9.17 Pλ(1 ∈ v) = 1

n∆ , and thus

(1− ε)b− a
n
≤ Pλ(1 ∈ v) ≤ (1 + ε)

b− a
n

.

From the bounds {Aε1,ε2R,L , B
ε1,ε2
R,L } on ∆ that were found in the proof of Lemma 9.20, it is also

possible to deduce a bound on the location probability of 1 in σλ:
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Lemma 9.22. Let λ be a composition of n, and a < b be two peaks of λ. Then

Pλ(1 ∈ λ>a,<b) ≤ 3
b− a
n

.

Proof. Since 1 has to be located in a valley of λ,

P(1 ∈ λ>a,<b) =
∑
v∈V
a<v<b

P(1 ∈ v).

From Corollary 9.17, for each v ∈ V ,

P(1 ∈ v) =
1

|λ|
1∫ 1

0 (1− FYλ<v (t))(1− FXλ>v (t))dt
,

Suppose that v ∈ si ∩ si+1. By the bounds on ∆ from the proof of Lemma 9.20,

1∫ 1
0 (1− FYλ<v (t))(1− FXλ>v (t))dt

≤ l(si) + l(si+1) + 3 ≤ 3(l(si) + l(si+1)).

The latter inequality yields

P(1 ∈ λ>a,<b) ≤
3

|λ|
∑
v∈V
a<v<b

l(si) + l(si+1) ≤ 3(b− a)

n
.

9.7.2 Convergence to a uniform distribution

Let us show the convergence in law of ξλ1 . Let π denote the Levy-Prokhorov metric on the set
M1[0, 1] of probability measures on [0, 1].

Proposition 9.23. Let ε > 0. There exists n0 such that for n ≥ n0, λ ` n,

π(ξλ1 ,U([0, 1])) ≤ ε.

Proof. Let ε > 0. Since FU([0,1]) = Id[0,1] is continuous, it is enough to prove that for s ∈ [0, 1]
and for λ large enough,

|P(ξλ1 ∈ [0, s])− s| ≤ ε.

Let 0 < s < 1 and nε be the constant given by Lemma 9.20 for ε. Let λ ` n and let vn denote
the last valley such that the associated slope intersects [0, ns], namely s(vn) ∩ [0, ns] 6= ∅: since
0 < s, such vn always exists for n large enough. Let [an; bn] denote the slope of vn. Thus
an ≤ ns < bn + 1.
If 1 ∈ λ<an , ξλ1 ∈ [0, ann [⊆ [0, s]. Moreover

Pλ(1 ∈ λ<an) =
∑
v∈V
v<an

Pλ(1 ∈ v)

=
∑
v∈V
v<an

1

|λ|
1∫ 1

0 (1− FYλ<v (t))(1− FXλ>v (t))dt
.
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If v < an is a valley, there is necessarily a peak between v and vn, and thus the first run of λ>v
is of size smaller than vn − v. Therefore from Lemma 9.20,

Pλ(1 ∈ λ<an) ≤
∑
v∈V
v<an

1

n

1 + ε∫ 1
0 (1− FYλ<v (t))(1− FXλ>v,<vn+nε

(t))dt

≤(1 + ε)
vn + nε

n
Pλ<vn+nε

(1 ∈ λ<an),

and for the same reasons,

Pλ(1 ∈ λ<an) ≥ (1− ε)vn + nε
n

Pλ<vn+nε
(1 ∈ λ<an).

The proof is now divided into two complementary cases :

• λ is such that an
vn+nε

> 1 − ε : in this case, vn+nε−an
vn+nε

< ε. Thus from Lemma 9.22,
Pλ<vn+nε

(1 ∈ λ≥an) ≤ 3ε. This yields

1− 3ε ≤ Pλ<vn+nε
(1 ∈ λ<an) ≤ 1,

and thus

(1− 3ε)2 vn + nε
n

≤ Pλ(1 ∈ λ<an) ≤ (1 + ε)
vn + nε

n
.

The hypothesis an
vn+nε

> 1− ε yields also

(1− 3ε)2an
n
≤ Pλ(1 ∈ λ<an) ≤ 1 + ε

1− ε
an
n
.

On the other hand by independence between σλ and the family (X1
(p,q))p,q∈Q,

P(1 ∈ vn ∩ ξλ1 ∈ [0, s]) =Pλ(1 ∈ vn)
Leb([0, s] ∩ [(an − 1)/n, bn/n])

(bn − an + 1)/n

=Pλ(1 ∈ vn)(
s− an + 1

bn − an + 1
∧ 1).

From the latter computation and from the bounding Lemma 9.22, P(1 ∈ v ∩ ξλ1 ∈ [0, s]) ≤
3(bn−an)

n . Thus the latter quantity doesn’t become negligible for n large only if at least
one of the two runs si or si+1 surrounding vn tends to infinity when n grows. But in this
case from Corollary 9.21,

P(1 ∈ vn) ∼bn−an→∞ (bn − an)/n.

Therefore in any case:

P(1 ∈ vn ∩ ξλ1 ∈ [0, s]) =n→∞(bn − an)/n
s− an/n

bn/n− an/n
+ o(1)

=n→+∞Leb([an/n, s]) + o(1),

with o(1) being a quantity converging to zero with n, independently of the shape of λ.
Summing the probabilities yields for n large enough

P(ξλ1 ∈ [0, s]) ≤1 + ε

1− ε
Leb([0,

an
n

]) + Leb([
an
n
, s]) + o(1)

≤1 + ε

1− ε
Leb([0, s]) + o(1),
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and for the same reasons

(1− 3ε)2Leb([0, s]) + o(1) ≤ P(ξλ1 ∈ [0, s]).

There exists thus n1 such that for n ≥ n1, if an
vn+nε

> 1− ε,

(1− 3ε)2Leb([0, s])− ε ≤ P(ξλ1 ∈ [0, s]) ≤ 1 + ε

1− ε
Leb([0, s]) + ε.

• λ is such that an
vn+nε

≤ 1− ε : this implies that either vn remains bounded or vn− an goes
to +∞ as n grows.
Suppose that vn remains bounded by K as n grows. In this case by Lemma 9.22, P(1 ∈
λ<vn)→ 0. Thus

P(ξλ1 ∈ [0, s]) = P(1 ∈ v ∩ ξλ1 ∈ [0, s]) + o(1).

Since vn remains bounded by K and bn + 1 > ns, the slope of vn tends to +∞, and
therefore from Corollary 9.21,

P(ξλ1 ∈ [0, s]) =n→+∞ (
bn − an

n
+ o(1))

ns− an
bn − an

= s+ o(1).

Suppose that vn − an goes to +∞. Since nε is a fixed integer and vn − an goes to +∞,
the size of the slope of vn in λ<vn+ε is equivalent to vn + nε − an as n goes to +∞. Thus
from Corollary 9.21,

Pλ<vn+nε
(1 ∈ vn) =n→∞

vn + nε − an
vn + nε

+ o(1).

The same Corollary yields moreover

Pλ(1 ∈ vn) =n→∞
bn − an

n
+ o(1).

From Lemma 9.22, Pλ<vn+nε
(1 ∈ λ>vn,<vn+nε) ≤ 3nε

vn+nε
= o(1) and thus

Pλ<vn+nε
(1 ∈ λ<an) =1− Pλ<vn+nε

(1 ∈ vn)− Pλ<vn+nε
(1 ∈ λ>vn,<vn+nε)

=
an

vn + nε
+ o(1).

Thus

P(ξλ1 ∈ [0, s]) ≤ (1 + ε)
an
n

+
bn − an

n

ns− an
bn − an

+ o(1) ≤ (1 + ε)s+ o(1),

and for the same reasons (1 − ε)s + o(1) ≤ P(ξλ1 ∈ [0, s]). This yields the existence of n2

such that if n ≥ n2 and an
vn+nε

≤ 1− ε,

(1− ε)Leb([0, s])− ε ≤ P(ξλ1 ∈ [0, s]) ≤ (1 + ε)Leb([0, s]) + ε.

By the results from both cases, there exists n0 such that for n ≥ n0, λ ` n,

|P(ξλ1 ∈ [0, s])− s| ≤ ε.
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9.8 Martin boundary of Z
This section is devoted to the proof of Conjecture 9.7, yielding the identification of the Martin
boundary of Z with its minimal boundary.

9.8.1 Generalization of Proposition 9.23

The result of the previous section can be generalized for k ≥ 2:

Proposition 9.24. Let λn be a sequence of compositions of size tending to infinity. Then for
k ≥ 1,

(ξλni )1≤i≤k →law (X1, . . . , Xk),

with (X1, . . . , Xk) a vector of k independent uniform random variables on [0, 1].

Proof. Let us prove by recurrence on k ≥ 1 that for ε > 0, there exists nk ∈ N such that for
n ≥ nk, λ ` n,

π((ξλi )1≤i≤k, (X1, . . . , Xk)) ≤ ε,

π denoting the Levy-Prokhorov metric on [0, 1]k.
The initialization of the recurrence is done by Proposition 9.23. Let k ≥ 2. It suffices to show
that the law ξλk conditioned on (ξλi )1≤i≤k−1 is close to the uniform law on [0, 1] when n becomes
large.
Let s ∈ [0, 1] \Q, ε > 0. Let

Υη = ∩1≤i≤k−1{(x1, . . . , xk−1) ∈ [0, 1]k−1|xi 6∈ [s− η, s+ η]}.

For all η, Leb(∂Υη) = 0 and Leb(lim
η→0

Υη) = 1, thus by the recurrence hypothesis and the

portemanteau theorem, there exists η > 0 such that for λ large enough,

P((ξλi )1≤i≤k−1 ∈ Υη) ≥ 1− ε, (9.8.1)

and
π(((ξλi )1≤i≤k−1|Aη), ((Xi)1≤i≤k−1|Bη)) ≤ ε, (9.8.2)

with Aη = {(ξλi )1≤i≤k−1 ∈ Υη} and Bη = {(Xi)1≤i≤k−1 ∈ Υη}.
Let λ ` n and ~i = (i1, . . . , ik−1) such that P(σ−1

λ (1) = i1, . . . , σ
−1
λ (k − 1) = ik−1) 6= 0. Let us

further assume that ~i satisfies the following condition :

∀1 ≤ j ≤ k − 1, s(ij) 6⊆ [n(s− η), n(s+ η)], (∗)

where s(ij) denotes the slope of ij as defined in Section 9.5.1. Then λ can be decomposed as

λ = λ1 − µ1 + λ2 − · · · − µr + λr+1,

with µi consisting only in cells included in ~i. From the latter construction, each run of λ inter-
sects at most one λi.
Conditioned on X~i = {σ−1

λ (1) = i1, . . . , σ
−1
λ (k − 1) = ik−1}, the random filling of λ consists

in sampling a uniformly random multiset ~R = (R1, . . . , Rr+1) of cardinal (|λ1|, . . . , |λr+1|)
among [k;n], and then independently filling each subcomposition λ1, . . . , λr+1 respectively with
R1, . . . , Rr+1. Since k is the lowest element of [k;n], for v ∈ λi, P(k ∈ v|X~i) 6= 0 if and only if v
is a valley of λi, and if this is the case,

P(k ∈ v|X~i) = P(R1,...,Rr+1)(k ∈ Ri)Pλi(1 ∈ v).
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Let sp = [ap; ap+1] be the run of λ such that s ∈ [
ap−1
n ;

ap+1

n ]. If ij is a peak, necessarily the two
runs overlapping on ij contain only elements lower than j, and thus the slope of ij is smaller
than j. Thus since for all 1 ≤ j ≤ k − 1, s(ij) 6⊆ [n(s − η), n(s + η)], for n large enough, the
peak of sp cannot be in any µi for 1 ≤ i ≤ r. This yields the existence of a unique i0 such that
sp ∩ λi0 6= ∅.
Set λi0 = λ≥a,<b. Since the cells a− 1 and b (if they exist) are in compositions of type µ, their
content is smaller than k − 1 and therefore smaller than the content of the cells of λi0 . Thus a
valley v of λi0 such that the slope sλ(v) of v in λ is not included in λi0 has to be a or b− 1. In

particular if v is a valley of λi0 different from a and b− 1, a rescaling of ξ
λi0
1 yields that

(ξλk |k ∈ v) =law (
a

n
+
b− a
n

ξ
λi0
1 |1 ∈ v).

Thus

Pλ({k ∈ v} ∩ {ξλk ≤ s}|X~i) = P~R(k ∈ Ri0)Pλi0 ({1 ∈ v} ∩ {ξλi01 ∈ [0,
ns− a
b− a

]}).

Suppose that a is a valley of λi0 . This implies that in λ, a is neither a peak nor a valley.
Therefore the slope of a in λi0 is [1, x] for some integer x, and the slope of a in λ is [a− r, a+ x]
for the same x and some integer 1 ≤ r ≤ k − 1. Thus as n goes to infinity, this implies that

π((ξλk |k ∈ a), (
a

n
+
b− a
n

ξ
λi0
1 |1 ∈ a))→n→+∞ 0,

and the rate of convergence only depends on n and k (and is therefore independent of the shape
of λ and the choice of ~i).
The same holds for b− 1. Thus if v = a or b, since |λi0 | = b− a,

Pλ({k ∈ v} ∩ {ξλk ≤ s}|X~i) = P~R(k ∈ Ri0)(Pλi0 ({1 ∈ v} ∩ {ξλi01 ∈ [0,
ns− a
b− a

]}) + o(1)).

Summing the probabilities yields

P({ξλk ∈ [0, s]} ∩ {k ∈ λi0}|X~i) = P~R(k ∈ Ri0)Pλi0 (ξ
λi0
1 ≤ ns− a

b− a
) + o(1).

If i < i0, k ∈ λi implies that ξλk ∈ [0, s]. A standard counting argument shows that

P~R(k ∈ Ri) =
Ri∑
j Rj

,

and thus,

P(ξλk ∈ [0, s]|X~i) =

(∑
i<i0

P~R(k ∈ Ri) + P~R(k ∈ Ri0)Pλi0 (ξ
λi0
1 ∈ [0,

ns− a
Ri0

])

)
+ o(1)

=

(∑
i<i0

Ri
n

+
Ri0
n
Pλi0 (ξ

λi0
1 ∈ [0,

ns− a
Ri0

])

)
+ o(1)

=
a

n
+
Ri0
n
Pλi0 (ξ

λi0
1 ∈ [0,

ns− a
Ri0

]) + o(1).

Either Ri0 remains bounded as n → ∞ and
Ri0
n Pλi0 (ξ

λi0
1 ∈ [0, ns−ab−a ]) → 0, either Ri0 goes to

infinity, and by Proposition 9.23,

Pλi0 (ξ
λi0
1 ∈ [0,

ns− a
b− a

]) =
ns− a
Ri0

+ o(1).

233



Thus in any case,

P(ξλk ∈ [0, s]|X~i) =
a

n
+
Ri0
n

ns− a
Ri0

+ o(1)→ s,

and the convergence is uniform in λ,~i.
Let (xi)1≤i≤k−1 ∈ Υη. If (ξλi )1≤i≤k−1 = (xi)1≤i≤k−1, then (σ−1

λ (1), . . . , σ−1
λ (k − 1)) verifies

the condition (∗). Moreover from Lemma 9.13, (ξλ1 , . . . , ξ
λ
k−1) 7→ (σ−1

λ (1), . . . , σ−1
λ (k − 1)) is

well-defined and
(ξλk |(ξλi )1≤i≤k−1) = (ξλk |σ−1

λ ({1, . . . , k − 1}).

Thus for n going to +∞,

P(ξλk ∈ [0, s]|(ξλi )1≤i≤k−1 = (xi)1≤i≤k−1)→ s,

and the convergence is uniform in (xi)1≤i≤k−1 ∈ Υη.
From the latter convergence and from (9.8.2), for n large enough,

π((ξλi )1≤i≤k|Aη), ((Xi)1≤i≤k|Bη)) ≤ ε.

If ε is small enough, then P(Aη) ≥ 1− ε and P(Bη) ≥ 1− ε imply that

π(((ξλi )1≤i≤k|Aη), (ξλi )1≤i≤k) ≤ 2ε,

and
π(((Xi)1≤i≤k|Bη), (Xi)1≤i≤k) ≤ 2ε.

Thus for n large enough,
π((ξλi )1≤i≤k, (Xi)1≤i≤k) ≤ 5ε.

This concludes the proof of the proposition.

9.8.2 Proof of Theorem 9.8

Proof. Let (λn)n≥1 be a sequence of compositions and U = (U↑, U↓) ∈ U (2) such that λn ` n
and Uλn → U in U (2). By Lemma 9.11, Ũλn → U , with Ũλ the run paintbox defined for λ in
Section 5.
Let µ ∈ Z, µ ` k. Since Kµ(λn) = d(µ,λn)

d(λn) , by equality (9.3.1),

Kµ(λn) = P(σλnk = σ),

σ being any permutation such that des(σ) = µ. By Proposition 9.12,

P(σλnk = σ) = P(σŨλn
((ξλni )1≤i≤k) = σ).

By Proposition 9.24, as n goes to +∞, (ξλni )1≤i≤k converges in law to a sequence (X1, . . . , Xk)
of uniform independent random variables on [0, 1].
Thus since Ũλn → U , by Proposition 9.14

σŨλn
((ξλi )1≤i≤k)→law σU ((X1, . . . , Xk)) = σU .

Therefore
Kµ(λn) = P(σλn = σ)→ p(U↑,U↓)(µ).
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As explained in Section 4, the latter Theorem implies Conjecture 9.7.

Corollary 9.25. Conjecture 9.7 is true and for the graded graph Z,

∂minZ = ∂MZ.

We end this section by showing that the topology on Ẑ = Z ∪ ∂MZ, abstractly constructed
in Section 2.1, can be concretely described in terms of oriented Paintbox construction. From
the work of Gnedin and Olshanski in [42] (Proposition 36), ∂minZ with the induced topology
of Section 2.1 is homeomorphic to U (2). Since from the latter Corollary, ∂minZ = ∂MZ, as
topological spaces

∂MZ = U (2).

It remains to describe the topology of Ẑ = Z ∪ ∂MZ. Let Un ⊆ U (2) be the set of (U↑, U↓) such

that [0, 1] \ U↑ ∪ U↓ ⊆ { k
n−1 , 0 ≤ k ≤ n− 1}. Then Ẑ is characterized as follows:

Corollary 9.26. Let T = [0, 1]× U (2) with the product topology. As topological spaces,

Ẑ ' ({0} × U (2)) ∪
⋃
n≥1

({ 1

n
} × Un) ⊆ T ,

the space on the right being considered with the induced topology from T .

Proof. The bijection Φ is achieved by sending λ ` n to 1
n × Uλ and ω = limλn ∈ ∂MZ to

0× limUλn . Since Ẑ is compact, the only thing to prove is the continuity of the map.
Let xn → ω ∈ Ẑ. If ω ∈ Z, the sequence is stationary and the convergence is straightforward.
Suppose that ω ∈ ∂MZ, and divide xn into two complementary subsequences (xϕ(n)) and (xϕc(n))
such that xϕ(n) ∈ Z and xϕc(n) ∈ ∂MZ.
By Proposition 36 of [42],

Φ(xϕc(n))→ Φ(ω).

By Corollary 9.25, since xϕ(n) →Ẑ w,

Φ(xϕ(n)) = Uxϕ(n) → Φ(ω),

which concludes the proof.

9.9 The Plancherel measure

The purpose of this section is to investigate the Plancherel measure on the graph Z, which is
the point (∅, ∅) of ∂MZ. We first recall the link between Z and the Young graph Y to justify
the name of Plancherel measure. This link was already explained in [42] in terms of associated
algebras of functions, but it seems to us that no direct link on the level of paths was clearly
defined. It is the purpose of the second paragraph to clearly establish this link on the level of
paths.

9.9.1 The graph Y

A partition ρ of n is the data of a decreasing sequence of positive integers (ρ1 ≥ · · · ≥ ρr) such
that

∑
ρi = n. n is called the degree of ρ and is denoted ρ ` n. Let us denote by l(ρ) the length

of the sequence. The set of partitions of n is denoted Yn, and the set of all partitions Y. Y is
ordered by saying that ρ � τ if and only if l(ρ) ≤ l(τ) and for all 1 ≤ i ≤ l(ρ), ρi ≤ τi.
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As for compositions, a Young diagram is associated to each partition by drawing ρ1 cells on
the first row, ρ2 cells on the second row and so on, such that the first cell of the row i + 1 is
just below the first cell of the row i. A standard filling of ρ is a filling of ρ with elements of
{1, . . . , n}, such that the filling is increasing to the right and to the bottom. We denote by Tρ
the set of standard fillings of ρ (also called stantard tableau of shape ρ). Here is an example of
a partition ρ = (7, 4, 2, 1) and a standard filling of the associated diagram.

1 3 4 6 7 10 11
2 5 9 14
8 12
13

Figure 9.4: Young diagram of (7, 4, 2, 1) and an example of standard filling

We say that ρ↗ τ if and only if deg τ = deg ρ+1 and ρ � τ . When T ∈ Tτ is a standard tableau
of shape τ ` n, T↓ is defined as the standard tableau obtained by deleting the cell containing
n. In particular T↓ has a shape ρ such that ρ ↗ τ . Adding an edge from ρ to τ if and only
if ρ ↗ τ transforms Y into a graded graph. The latter graph is a major construction for the
representation theory of the symmetric groups (Sn)n≥1, since the irreducible representations Vτ
of Sn are indexed by elements τ of Yn, and there is a decomposition

Res(Vτ )SnSn−1
=
∑
ρ↗τ

Vρ.

As for the graph Z, the set of paths on Y between the root ∅ and a partition ρ is in bijection
with the set of standard tableaux of shape ρ, and each element of ∂minY yields a random path
on the graph Y (namely an infinite standard tableau). The minimal and Martin boundaries of
Y have been intensively studied (see [76],[48],[85]) and fully described. In particuler the equality
∂minY = ∂MY holds also in this setting, and

∂MY = {(a1 ≥ a2 ≥ · · · ≥ 0), (b1 ≥ b2 ≥ · · · ≥ 0),
∑

aj + bj ≤ 1}.

For each ω ∈ ∂MY, ρω denotes the random path on Y according to the harmonic measure ω.
The next paragraph establishes a link between Y and Z based on the algorithm RSK of Robinson,
Schensted and Knuth. The relation between both graphs has been already established through
the ring of symmetric functions and the one of quasisymmetric functions. The reader should
refer to [42] for a complete review of the subject.

9.9.2 RSK algorithm and the projection Z → Y

Let us first recall the RSK algorithm in the special case of permutations. This algorithm,
initiated by Robinson in [30] and created by Schensted in [75], establishes a bijection between
Sn and pairs of standard tableaux of n of the same shape. Let σ = (σ(1), . . . , σ(n)) ∈ Sn. The
algorithm constructs a pair of standard tableaux from σ as follows :

1. Start with an infinite array A0 = (a0
k,l)k,l≥1 such that each cell is filled with the entry n+1

(namely a0
k,l = n+ 1), and an infinite array B = (bk,l)k,l≥1 such that each cell is empty (B

is called the recording tableau).

2. At each step i, 1 ≤ i ≤ n, the following insertion is done on the array Ai−1:

• Let (1, l1) be the first cell (starting from the left) on the first row of Ai−1 such that
σ(i) ≤ ai−1

1,l1
. Set ai1,l1 = σ(i).
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• Let (2, l2) be the first cell on the second row of Ai−1 such that
ai−1

1,l1
≤ ai−1

2,l2
. Set ai2,l2 = ai−1

1,l1
.

• Continue the process until the step k0 where ai−1
k0,lk0

> n. For k > k0 or k ≤ k0, l 6=
l(k), define aik,l = ai−1

k,l . Return Ai = (Aik,l)k,l≥1. Set bk0,lk0 = i.

3. Let P (σ) be the part of the array An containing entries lower or equal to n, and Q(σ) the
part of the array B consisting in non empty cells.

Then the following Theorem holds ([75], [30]):

Theorem 9.27. The map S : σ 7→ (P (σ), Q(σ)) is a bijection between Sn and pairs of standard
tableaux of n of the same shape. Moreover

(P (σ−1), Q(σ−1)) = (Q(σ), P (σ)).

From now on ρ(σ) denotes the shape of P (σ) (or Q(σ)).
The link between Z and Y resides in the following proposition, mapping paths on Z to paths
on Y.

Proposition 9.28. Let (σk)k≥1 be a path on Z. Then (ρ(σk))k≥1 is a path on Y. Moreover if
σ = (σk)k≥1 is a random path on Z, then ρ(σ) = (ρ(σk))k≥1 is a random path on Y and for
P ∈ Tτ a path on Y between ∅ and τ ` k0,

P((ρ(σ1), . . . , ρ(σk0)) = P ) =
∑
σ∈Sk0
P (σ)=P

P(σk0 = σ).

Proof. Let σ = (i1, . . . , ik−1, n, ik+1, . . . ) ∈ Sn. If suffices to prove that

P (σ↓) = P (σ)↓.

Although the latter equality appears clearly in the algorithm, the proof is easier to write by
using σ−1 : indeed write σ−1 = (j1, . . . , jn−1, k). Since σ↓ = (i1, . . . , ik−1, ik+1, . . . ), (σ↓)

−1 =
(j∗1 , . . . , j

∗
n−1), with j∗l = jl if jl < k and j∗l = jl − 1 if jl > k. All the j∗l (resp jl) are distinct

and thus
std((j∗1 , . . . , j

∗
n−1)) = std((j1, . . . , jn−1)).

Since the Schensted algorithm only depends on the relative values of the entries, the recording
tableaux B of the algorithm for (σ↓)

−1 and σ−1 after n− 1 steps are the same. Therefore

Q((σ↓)
−1) = Q(σ−1)↓.

Thus from Theorem 9.27,

P (σ↓) = Q(σ−1
↓ ) = Q(σ−1)↓ = P (σ)↓.

This yields that ρ(σ↓) ↗ ρ(σ) and for any arrangement (σk)k≥1, the sequence (ρ(σk))k≥1 is a
well-defined path on Y.
In particular if (σk)k≥1 is a random path on Z and P ∈ Tτ , τ ` k0, summing the probabilities
of each path yields

P((ρ(σ1), . . . , ρ(σk0)) = P ) =
∑
α∈Sk0
P (α)=P

Pσk(σk0 = α).
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The important fact is that harmonic measures on Z yield harmonic measures on the graph
Y.

Corollary 9.29. Let σ = (σk)k≥1 be a random arrangement such that P(σk = α) depends only
on Q(α). Then ρ(σ) yields a harmonic measure on Y.
In particular harmonic measures on Z yield harmonic measures on the graph Y.

Proof. From Section 2, a random path ρ = (ρk)k≥1 on Y comes from a harmonic measure if and
only if for any partition τ ` n, and P1, P2 ∈ Tτ ,

P((ρ1, . . . , ρn) = P1) = P((ρ1, . . . , ρn) = P2).

Let σ = (σk)k≥1 be a random arrangement such that P(σk = α) = p(Q(α)), with p a positive
function on standard Young tableaux. From Proposition 9.28, for k0 ≥ 1, τ ` k0 and P ∈ Tτ ,

P((ρ1, . . . , ρk0) = P ) =
∑
α∈Sk0
P (α)=P

P(σk0 = α)

=
∑
α∈Sk0
P (α)=P

p(Q(α)) =
∑
Q∈Tτ

p(Q),

the last equality being due to Theorem 9.27. Thus P((ρ1, . . . , ρk0) = P ) is independent of
P ∈ Tτ .
Let ϕ be a harmonic measure on Z. From Section 3, ϕ yields a random arrangement σ = (σk)k≥1

such that P(σk = α) = p(des(α)), for a particular function p : Z → R+. By a standard
combinatorial result (see [79]), i is a descent of α if and only if i + 1 is in a strictly lower row
than i in Q(α). Thus if Q(α) = Q(α′), then des(α) = des(α′) and P(σk = α) = P(σk = α′).
From the first part of the Corollary, ρ(σ) yields a harmonic measure on Y.

In general, for Q a standard tableau, des(Q) denotes the set of indices i such that i+ 1 is in
a strictly lower row than i. This yields in particular the following equality for λ ∈ Z:

dZ(∅, λ) =
∑
τ∈Y

dY(∅, τ)#{Q ∈ Tτ , des(Q) = Dλ). (9.9.1)

The latter equation yields the law of ρ(σλ), when σλ is chosen uniformly on the set of paths on

Z between ∅ and λ. Let KYτ (ρ) = dY (τ,ρ)
dY (∅,ρ) denote the Martin kernel on Y.

Lemma 9.30. Let λ ` n be a composition and σλ be a uniform random path between ∅ and λ.
Then ρ(σλ) is a random path on Y with law

P(ρ(σλ)(k) = τ) = dY(∅, τ)KYτ (ρλ),

for τ ∈ Yk and ρλ a random element of Yn with law

P(ρλ = ρ) = P(Q(σλ) ∈ Tρ).

Proof. Let us apply the Schensted algorithm to σλ. If P ∈ Tτ , with τ a Young diagram of k
cells (k ≤ n),

P(ρ(σλ)(k) = τ) =
1

dZ(λ)
#{σ ∈ Sn, des(σ) = λ, P (σ↓k) = τ}.
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Equation (9.9.1) transforms the latter expression into

P(ρ(σλ)(k) = τ) =

∑
ρ∈Y #{Q ∈ Tρ, des(Q) = λ)}#{σ,Q(σ) = Q,P (σ↓k) = τ)}∑

ρ∈Y dY(∅, ρ)#{Q ∈ Tρ, des(Q) = λ}

=
∑
ρ∈Y

dY(∅, ρ)#{Q ∈ Tρ, des(Q) = λ}∑
ρ∈Y dY(∅, ρ)#{Q ∈ Tρ, des(Q) = λ}

dY(∅, τ)dY(τ, ρ)

dY(∅, ρ)

=dY(∅, τ)Kτ (ρλ),

with ρλ = ρ(σλ) a random variable on Yn with law

P(ρλ = ρ) =
dY(∅, ρ)#{Q ∈ Tρ, des(Q) = λ}∑
ρ∈Y dY(∅, ρ)#{Q ∈ Tρ, des(Q) = λ}

= P(Q(σλ) ∈ Tρ).

We finally prove that on ∂MZ, ρ restricts to a surjective map p : ∂MZ → ∂MY.

Proposition 9.31. Let U = (U↑, U↓) ∈ ∂MZ. Let (a1 ≥ a2 ≥ · · · ≥ 0) (resp. (b1 ≥ b2 ≥
· · · ≥ 0)) be the lengths of the interval components of U↑ (resp. U↓) in decreasing order. Then
ω(U) = ((a1 ≥ a2 ≥ · · · ≥ 0), ((b1 ≥ b2 ≥ · · · ≥ 0)) ∈ ∂MY and ρ(σU ) = ρω(U). Moreover the
induced map

p : ∂MZ → ∂MY

is surjective.

Proof. Since the Schensted algorithm relates a finite number of permutations to each Young
diagram, the map ρ sending random paths of Z to random paths of Y is clearly continuous
with respect to the topology of convergence in law. Thus it is enough to prove the result on
a dense subset of ∂MZ. Let U = (U↑, U↓) ∈ ∂MZ be such that Ū = [0, 1] and U has a finite
number of interval components. Denote by (a1 ≥ a2 ≥ · · · ≥ an) (resp. (b1 ≥ b2 ≥ · · · ≥ bm))
the lengths of the interval components of U↑ (resp. U↓) in decreasing order, and ωU = ((a1 ≥
a2 ≥ · · · ≥ an), (b1 ≥ b2 ≥ · · · ≥ bm)). Then σU can be approximated by a sequence σλn with
λn ` n, U(λn) → U . By Greene’s Theorem (see [43]) and Lemma 2 of the paper [86] of Kerov
and Vershik, almost surely ρ(σλn) converges in Y ∪ ∂MY to ωU . Thus by identification of the
Martin boundary on Y and Lemma 9.30,

P(ρ(σλn)(k) = τ)→ d(∅, τ)KωU (τ),

for τ ` k.
In particular ρ(σU ) = ρω(U). Since the subset

{U ∈ U (2), Ū = [0, 1], U has a finite number of components}

is dense in U (2), the latter equality holds on U (2).
For any element ω = ((a1 ≥ a2 ≥ · · · ≥ 0), (b1 ≥ b2 ≥ · · · ≥ 0)) ∈ ∂MY, it is possible to find
U ∈ U (2) such that ωU = ω, thus the map

p :

{
∂MZ −→ ∂MY
U 7→ ωU

is surjective.
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9.9.3 Asymptotic of λn under the Plancherel measure

The purpose of this subsection is to explore further the behavior of σ(∅,∅). σ(∅,∅) is called the
Plancherel measure on Z since it is the only element of ∂MZ that yields the Plancherel measure
on Y through the map p of the last paragraph.
In order to describe the descent set of a permutation σ ∈ Sn+1 we introduce the following
notations. Let fσ be the piecewise linear function on [0, n− 1] such that fσ(0) = 0, and

fσ(i)− fσ(i− 1) =

{
−1 if i is a descent of σ
+1 othewise

.

To describe the asymptotic value of fσ for σ following the probability measure p(U↑,U↓) ((U↑, U↓) ∈
U (2)), we define also the following function f(U↑,U↓): it is the unique a.e differentiable function
on [0, 1] such that 

f(U↑,U↓)(0) = 0

f ′(U↑,U↓)(t) = 1 if t ∈ U↑
f ′(U↑,U↓)(t) = −1 if t ∈ U↓
f ′(U↑,U↓)(t) = 0 if t ∈ [0, 1] \ U

.

The map (U↑, U↓) 7→ f(U↑,U↓) is continuous from U (2) to C([0, 1],R), and the following result
holds :

Proposition 9.32. Let U ∈ U (2). Then

(t 7→ 1

n
fσU (n)(nt))→p.s,‖.‖∞ f(U↑,U↓).

The proof is a deduction from Theorem 9.1, since U(σU (n))→U(2) U .
The next step is to get the fluctuations of fσU . Only the case U = (∅, ∅) is done here. The
result consists mainly in a mathematical formalization of the results obtained by Oshanin and
Voituriez from a physical point of view in [68]. The reader should refer to the latter paper for
interesting additional informations on the process fσ∅,∅ .

Theorem 9.33. For σn being uniformly sampled among Sn,

(t 7→ 1√
n
fσn(nt))→ 1√

3
B,

B denoting the Brownian motion on [0, 1].

Proof. Recall from Section 4 that σn can be sampled from a family of independent uniform
random variables (xi)i≥1 on [0, 1] by applying the map std−1 on the sequence (xi)1≤i≤n. Since
σ 7→ σ−1 is a measure preserving map (uniquely for the uniform measure), fσn ∼ fσ−1

n
. The

property noticed by Oshanin and Voituriez is that ((fσ−1
n
, xn))n≥1 is a Markov chain : indeed i is

a descent of σ−1
n if and only if xi > xi+1. Therefore, Des(σ−1

n+1)∩{1, . . . , n−1} = Des(σ−1
n ), and

n ∈ Des(σ−1
n+1) if and only if xn > xn+1. In the sequel fσ−1

n
(i) is denoted by Yi (the subscript n

is dropped, since this depends only on (σn)↓i).
This yields that for R = [r1; r1 + r2] and S = [s1; s1 + s2], with s1 ≥ r1 + r2 + 2, n ≥ s1 + s2, we
have

(#Des(σn) ∩R,#Des(σn) ∩ S)) ∼ X1 ⊗X2,

with X1 ∼ #Des(σr2+1) and X2 ∼ #Des(σs2+1). Moreover the number of permutations of n
with k descents is given by the Eulerian number Ank , and its asymptotic value (see [79]) gives:
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Lemma 9.34. For n going to infinity, and σn uniform on Sn,

1√
n

(#Des− n

2
)→law N (0, 1/12).

The latter Lemma together with the strong Markov property shows that if we write f̃σn(t) =
1√
n
fσn(nt), the marginal distributions of f̃σn converge towards the ones of 1√

3
B. An adequate

bound for ‖fσn‖ is needed to be able to conclude by stantard tightness arguments. We follow
Theorem 8.4 of the book [22] of Billingsley :

Theorem 9.35. Let (Yi)i≥0 be a real random process. Let fn : [0, 1] → R define the linear
interpolation between the points

fn(
i

n
) =

1√
n
Yi.

Suppose that for all ε > 0, there exists λ > 0, n0 ≥ 0 such that for all k ∈ N, n ≥ n0,

P(max
i≤n
|Yk+i − Yk| ≥ λσ

√
n) ≤ ε/λ2.

Then the sequence fn is tight.

The hypothesis of the Theorem is verified through the following Lemma, that mimicks the
situation coming from a usual random walk.

Lemma 9.36. Let Sn = sup[0,n] Yn, a > 0 and b ≤ a− 2. Then

P(Sn ≥ a, Yn ≤ b) ≤ P(Yn ≥ 2a− b− 2),

and FSn(t) ≥ F|Yn|(t) for all t ∈ R.

Proof. In the Markov chain (Yn, xn), T = inf(u ∈ N, Yu = a) is a stopping time. Since {Sn ≥
a} = {T ≤ n}, {Sn ≥ a} ∈ FT and by the strong Markov property,

P(Sn ≥ a, Yn ≤ b) =P((T ≤ n) ∩ (Yn − YT ≤ b− a))

=E(1T≤nP(YT ,xT )(Ỹn−T − Ỹ0 ≤ b− a))

≤E(1T≤nP(YT ,xT )(Ỹn−T − Ỹ1 ≤ b− a+ 1)),

with (Ỹ , x̃i) being an independent random walk starting at (YT , xT ). Since Ỹn−T − Ỹ1 is inde-
pendent of the value Ỹ0 = YT ,

E(1T≤nP(YT ,xT )(Ỹn−T − Ỹ1 ≤ b− a+ 1)) = E(1T≤nP(0,xT )(Ỹn−T − Ỹ1 ≤ b− a+ 1)).

Moreover Ỹn−T − Ỹ1 ∼ −(Ỹn−T − Ỹ1), thus

P(Sn ≥ a, Yn ≤ b) ≤E(1T≤nP(0,xT )(−(Ỹn−T − Ỹ1) ≤ b− a+ 1))

=E(1T≤nP(0,xT )(Ỹn−T ≥ a− (b+ 1) + Ỹ1))

≤E(1T≤nP(0,xT )(Ỹn−T ≥ a− (b+ 1)− 1))

≤P((T ≤ n) ∩ (Yn ≥ 2a− b− 2)) ≤ P(Yn ≥ 2a− b− 2),

the last equality being due to the fact that (Yn ≥ 2a− b− 2) ⊆ (T ≤ n). This yields

P(Sn ≥ a) ≤P((Sn ≥ a) ∩ (Yn ≤ a− 2)) + P((Sn ≥ a) ∩ (Yn ≥ a))

≤P(Yn ≥ a) + P(Yn ≥ a) ≤ P(|Yn| ≥ a),
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the last equality being due to the fact that the law of Yn is symmetric. This yields

FSn(u) ≥ F|Yn|(u).

In particular from the latter Lemma, for ε > 0 and λ such that P(N (0, 1/3) ≥ λ) ≤ ε
4λ2

, and
for n large enough, k ≥ 0,

P(max
i≤n
|Yk+i − Yk| ≥ λ

√
n) ≤2P(|Yk+n − Yk| ≥ λ

√
n)

≤2P(N (0, 1/3) ≥ λ) +
ε

2λ2

≤ ε

λ2
.

And this concludes the proof of the Proposition.

Appendix: convergence result for the Paintbox construction

This appendix is dedicated to the proof of Proposition 9.14. Some notations and two preliminary
results are first given.

9.9.4 Cluster sets

Let k ≥ 1 and A a given set. We define an A−cluster of k as a map f : A → P([1; k]) such
that f(a1) ∩ f(a2) = ∅ for a1 6= a2. The residue of f is the set Rf = [1; k] \

⋃
f(a) and the

support of f is the set Sf of a ∈ A such that f(a) 6= ∅. The degree of f is the minimum of the
cardinals of non-empty sets f(a).The set of A−clusters (resp. A−clusters of degree larger than
s) is denoted Ck(A) (resp Cks (A)). For 1 ≤ s ≤ k, the s−level of the A−cluster f , denoted fs,
is the A−cluster of Cks (A) defined by :

fs(a) =

{
f(a) if |f(a)| ≥ s
∅ else

.

Let ~x = (x1, . . . , xk) be a sequence on a space (Ωk,A⊗k). Then any set J and any collection of
disjoint subsets A = (Aj)j∈J of Ω yields a J−cluster map of k

f~x,A(j) = {i|xi ∈ Aj}.

For U ∈ U (2), denote by U = {Uα}α∈AU the collection of interval components of U↑ ∪ U↓. We
say that α ∈ A+

U (resp. A−U ) if Uα ⊆ U↑ (resp. Uα ⊆ U↓).

Lemma 9.37. Let U = (U↑, U↓) ∈ U (2). For σ ∈ Sk and f ∈ Ck2 (AU ) define the sets

Xσ,f (U) = {~x ∈ [0, 1]k|std−1(~x) = σ} ∩ {(f~x,U )2 = f}.

Then the sets Xσ,f (U) are disjoint open sets and σU is constant on each of these sets. In
particular if Xk = (X(i))1≤i≤k is a random variable with density on [0, 1]k, σU (X1, . . . , Xk) is
((Xσ,f (U))f,σ measurable.
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Proof. Let us write simply Xσ,f instead of Xσ,f (U). Suppose that Xk ∈ Xσ,f ∩ Xσ′,f ′ . Then
std−1(Xk) = σ = σ′. Moreover f = (fXk,U )2 = f ′ and Xσ,f = Xσ′,f ′ . The events Xσ,f are thus
disjoint for distinct pairs (σ, f). They are open from their definition and the fact that U↑, U↓
are open sets.
Each τ ∈ Sk is entirely defined by the set Sτ = {(i, j)|i < j, τ−1(i) ≤ τ−1(j)}. Let σ ∈ Sk.
Then from the Paintbox construction, σ−1

U ({τ})∩{Xk|std−1(Xk) = σ} is precisely the set of Xk

such that by writing f = fXk,U :

• (i, j) ∈ Sσ ∩ Sτ ⇒ ∀a ∈ A−U , {i, j} 6⊆ f(a),

• (i, j) ∈ Sσ \ Sτ ⇒ ∃a ∈ A−U , {i, j} ⊆ f(a),

• (i, j) ∈ Sτ \ Sσ ⇒ ∃a ∈ A+
U , {i, j} ⊆ f(a),

• (i, j) 6∈ Sσ ∪ Sτ ⇒ ∀a ∈ A+
U , {i, j} 6⊆ f(a).

Define by D(σ, τ) the set of A(U)−clusters that respect the above four conditions. Thus

σ−1
U ({τ}) ∩ {Xk|std−1(Xk) = σ} =

⋃
f∈D(σ,τ)

Xσ,f .

Since Xk admits a density function, [0, 1]k \
⋃
{Xk|std−1(Xk) = σ} is a null-set and thus :

σ−1
U ({τ}) =

⋃
σ

⋃
f∈D(σ,τ)

Xσ,f ,

which proves the Lemma.

9.9.5 Convergence in law with conditioning

The pattern of the proof of Proposition 9.14 implies the following question: suppose that A,B
are metric spaces, considered as measure spaces with a given measure on each associated borelian
σ−algebra. Let fn : A → B be a sequence of measurable functions that converges pointwise
almost surely to a continuous function f : A → B. Let (Xn)n≥1 be a sequence of random
variables on A that converges in law to a random variable X. Do we have the convergence in
law fn(Xn)→ f(X) ? The answer is negative in general, but in a very particular case the result
holds.

Lemma 9.38. Let (Xm)m≥1 be a family of measurable spaces of A with the following conditions
:

• lim
m→∞

P(X ∈ Xm) = 1.

• ∀m ≥ 1,P(X ∈ ∂Xm) = 0.

• For all m ≥ 1, fn|Xm → f|Xm uniformly.

Then fn(Xn) converges in law to f(X).

Proof. Let g : B → R be a 1−Lipschitz function bounded by 1. It suffices to show that
E(g ◦ fn(Xn))− E(g ◦ f(X)) −→ 0. For each m ≥ 1, the difference can be bounded by

|E(g ◦ fn(Xn))− E(g ◦ f(X))| ≤
|E(g ◦ fn(Xn))− E(g ◦ fn(Xn)|Xm)|+ |E(g ◦ fn(Xn)|Xm)− E(g ◦ f(Xn)|Xm)|

+|E(g ◦ f(Xn)|Xm)− E(g ◦ f(X)|Xm)|+ |E(g ◦ f(X)|Xm)− E(g ◦ f(X))|.
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Let m be such that P(X ∈ Xm) ≥ 1 − ε. Since P(X ∈ ∂Xm) = 0, by the convergence in law
there exists n0 such that for n ≥ n0, P(Xn ∈ Xm) ≥ 1− 2ε. For n ≥ n0,

E(g ◦ fn(Xn)) = P(Xn ∈ Xm)E(g ◦ fn(Xn)|Xm) + P(Xn 6∈ Xm)E(g ◦ fn(Xn)|X cm).

Since g is bounded by 1 and P(Xn 6∈ Xm) ≤ 2ε,

|E(g ◦ fn(Xn))− E(g ◦ fn(Xn)|Xm)| ≤2ε+ |1− P(Xn ∈ Xm)|
≤4ε.

For the same reasons,

|E(g ◦ f(X)|Xm)− E(g ◦ f(X))| ≤ 2ε.

Let n1 ≥ n0 such that for n ≥ n1, ‖fn|Xm − f|Xm‖ ≤ ε. Since g is 1−Lipschitz, for n ≥ n1,

|E(g ◦ fn(Xn)|Xm)− E(g ◦ f(Xn)|Xm)| ≤ ε.

Since P(X ∈ ∂Xm) = 0, (Xn|Xm) converges in law to (X|Xm) and thus there exists n2 ≥ n1

such that for n ≥ n2,

|E(g ◦ f(Xn)|Xm)− E(g ◦ f(X)|Xm)| ≤ ε.

Therefore for n ≥ n2,

|E(g ◦ fn(Xn))− E(g ◦ f(X))| ≤ 5ε,

which implies the Lemma.

9.9.6 Proof of Proposisition 9.14

Let us recall here the statement of Proposition 9.14:

Proposition. Let Un be a sequence of U (2) and ((Xn(i))i≥1)n≥1 a sequence of random infinite
vectors on [0, 1]. Let (X0(1), . . . , X0(n), . . . ) be a random infinite vector on [0, 1]. Suppose
that each finite dimensional marginal law of any of these random vectors admits a density with
respect to the Lebesgue measure. If Un → U ∈ U (2) and for each k ≥ 1, Xn

k = (Xn(1), . . . , Xn(k))
converges in law to X0

k = (X0(1), . . . , X0(k)), then for each k ≥ 1,

σUn(Xn
k ) −→law σU (X0

k).

Proof. Let k ≥ 1 and set X = X0
k , Xn = Xn

k .
Let A =

⋃
σ∈Sk

f∈Ck2 (AU )

Xf,σ (refer to Lemma 9.37 for the definition of Xf,σ) with the induced

topology from [0, 1]k, and B = Sk with the discrete topology. Then from Lemma 9.37, σU :
A→ B is constant on each connected component Xf,σ of A, thus σU is continuous.

By the definition of the convergence on U (2), for ~X = (X1, . . . , Xk) ∈ A, σUn( ~X) converges to
σU ( ~X).
Since [0, 1]k \A is of Lebesgue measure 0, we can suppose that Xn, X are random variables on
A. It remains to build a sequence of measurable sets Xm that respects the hypothesis of Lemma
9.38.
Let m ≥ 1. For η > 0, define ∆η =

⋃
1≤i,j≤k{(x1, . . . , xk) ∈ [0, 1]k, |xi − xj | ≤ η}. Then

∂[0,1]k∆η ⊆
⋃

1≤i,j≤k{(x1, . . . , xk) ∈ [0, 1]k, |xi−xj | = η}. Since the latter is of Lebesgue measure
0, P(X ∈ ∂[0,1]k∆η) = 0. Since ∆η is decreasing in η and Leb(

⋂
∆η) = 0, there exists ηm1 > 0

such that P(X ∈ ∆ηm1
) ≤ 1

m .
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Denote by U = {Uα =]rα, sα[}α∈A the finite ordered collection of interval components of U↓∪U↑
of size larger than ηm1 . A is a subset of A(U). For η > 0, let

Bη =
⋃
i,α

{(x1, . . . , xk) ∈ [0, 1]k, xi ∈]rα − η, rα + η[∪]sα − η, sα + η[}.

Once again Leb(∂[0,1]kBη) = 0), and since Leb(
⋂
η Bη) = 0, there exists ηm2 such that P(X ∈

Bηm2 ) ≤ 1
m . Let Km = Bηm2 ∪ ∆ηm1

, Xm be the set {~x 6∈ K}. Then P(X ∈ ∂Xm) = 0 and
lim

m→+∞
P(X ∈ Xm) = 1.

Let Xm be fixed, with associated complementary set Km = Bηm2 ∪∆ηm1
. Set ηm = inf(ηm1 , η

m
2 ),

and let nm be such that for n ≥ n0, dU(2)(Un, U) ≤ ηm. Suppose from now on that n ≥ nm.
Since dU(2)(Un, U) ≤ ηm ≤ ηm1 the interval components of Un↓ (resp. Un↑ ) of size larger than ηm1
are in order respecting bijection with those of U↓ (resp. U↑). Denote these interval components
of Un by Un = {Unα =]rnα, s

n
α[}α∈A, with A ⊆ A(Un) . Moreover since dU(2)(Un, U) ≤ ηm ≤ ηm2 ,

|rnα − rα| < ηm2 and |snα − sα| < ηm2 .
Since on Xm, |xi − xj | ≥ η1, if f ∈ Ck2 (A(U)) and S(f) 6⊆ A, then Xσ,f (U) ∩ Xm = ∅. Thus we
can consider that f ∈ Ck2 (A). The same is true for f ∈ Ck2 (A(Un)), S(f) 6⊆ A with (Xσ,f (Un) ∩
A) ∩ Xm.
Let f ∈ Ck2 (A) and suppose that ~x ∈ Xσ,f (U) ∩ Xm. Let α ∈ Sf and suppose that xi ∈ Uα =
]rα, sα[; since ~x ∈ Xm, xi ∈]rα + ηm2 , sα − ηm2 [. But |rnα − rα| < ηm2 and |snα − sα| < ηm2 , thus
xi ∈ Unα . Conversely is α ∈ Sf and xi ∈ Unα , for the same reasons xi ∈ Uα. This shows that
Xσ,f (U) ∩ Xm = Xσ,f (Un) ∩ Xm. This yields that σU |Xσ,f (U) = σUn|Xσ,f (Un). Finally we have
proven that for n ≥ nm, σUn|Xm = σU |Xm , which implies obviously the uniform convergence
σUn|Xm →n→∞ σU |Xm .
The application of Lemma 9.38 concludes the proposition.
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[57] Thierry Lévy. Schur–weyl duality and the heat kernel measure on the unitary group.
Advances in Mathematics, 218(2):537–575, 2008.

[58] Torgny Lindvall. Lectures on the coupling method. Courier Corporation, 2002.

[59] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science
& Business Media, 1978.

[60] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press,
1998.

[61] Robert S Martin. Minimal positive harmonic functions. Transactions of the American
Mathematical Society, 49(1):137–172, 1941.

[62] James A Mingo and Mihai Popa. On the relation between the complex and real second
order free independence. preprint.
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