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Abstract

The subject of this thesis is the non-commutative generalization of some probabilistic results
that occur in representation theory. The results of the thesis are divided into three different
parts.

In the first part of the thesis, we classify all unitary easy quantum groups whose intertwiner
spaces are described by non-crossing partitions, and develop the Weingarten calculus on these
quantum groups. As an application of the previous work, we recover the results of Diaconis and
Shahshahani on the unitary group and extend those results to the free unitary group.

In the second part of the thesis, we study the free wreath product. First, we study the free
wreath product with the free symmetric group by giving a description of the intertwiner spaces:
several probabilistic results are deduced from this description. Then, we relate the intertwiner
spaces of a free wreath product with the free product of planar algebras, an object which has
been defined by Bisch and Jones in [46]. This relation allows us to prove the conjecture of Banica
and Bichon.

In the last part of the thesis, we prove that the minimal and the Martin boundaries of a graph
introduced by Gnedin and Olshanski are the same. In order to prove this, we give some precise
estimates on the uniform standard filling of a large ribbon Young diagram. This yields a positive
answer to the conjecture that Bender, Helton and Richmond gave in [1§].

Abstrakt

In dieser Dissertation widme ich mich der nicht-kommutativen Verallgemeinerung probabilistis-
cher Ergebnisse aus der Darstellungstheorie. Die Dissertation besteht aus einer Einleitung und
drei Teilen, die jeweils separate Veroffentlichungen darstellen.

In dem ersten Teil der Dissertation wird der Begriff von easy Quantengruppe im unitaren Fall
untersucht. Es wird eine Klassifikation aller unitdaren easy Quantengruppen in dem klassischen
und freien unitiren Fall gegeben. Des weiteren werden die probabilistischen Ergebnisse von [14]
auf den unitéren Fall ausgedehnt.

In dem zweiten Teil der Dissertation widme ich mich zunéchst dem freien Kranzprodukt einer
kompakten Quantengruppe mit der freien symmetrischen Gruppe. Die Darstellungstheorie
solcher Kranzprodukte wird beschrieben, und verschiedene probabilistische Ergebnisse werden
aus dieser Beschreibung gezogen. Dann wird eine Beziehung zwischen freien Kranzprodukten
und planaren Algebren hergestellt, die zu dem Beweis einer Vermutung von Banica und Bichon
fiihrt.

In dem dritten Teil dieser Dissertation wird der Graph Z der Multiplikation der fundamentalen
quasi-symmetrischen Basis untergesucht. Der minimale Rand dieses Graphs wurde schon von
Gnedin und Olshanski identifiziert [42]. Wir beweisen jedoch, dass der minimale Rand und der
Martin-Rand gleich sind. Als Nebenprodukt des Beweises erhalten wir mehrere asymptotische
kombinatorische Ergebnisse beziiglich grofler Ribbon-Young-Tableaus.



Résumé

Le sujet de cette these est la généralisation non-commutative de résultats probabilistes venant
de la théorie des représentations. Les résultats obtenus se divisent en trois parties distinctes.
Dans la premiere partie de la these, le concept de groupe quantique easy est étendu au cas
unitaire. Tout d’abord, nous donnons une classification de ’ensemble des groupes quantiques
easy unitaires dans le cas libre et classique. Nous étendons ensuite les résultats probabilistes de
[14] au cas unitaire.

La deuxieme partie de la theése est consacrée a une étude du produit en couronne libre. Dans un
premier temps, nous décrivons les entrelaceurs des représentations dans le cas particulier d’un
produit en couronne libre avec le groupe symétrique libre: cette description permet également
d’obtenir plusieurs résultats probabilistes. Dans un deuxiéme temps, nous établissons un lien
entre le produit en couronne libre et les algebres planaires: ce lien mene a une preuve d’une
conjecture de Banica et Bichon.

Dans la troisieme partie de la these, nous étudions un analoque du graphe de Young qui encode
la structure multiplicative des fonctions fondamentales quasi-symétriques. La frontiere minimale
de ce graphe a déja été décrite par Gnedin et Olshanski [42]. Nous prouvons que la frontiére
minimale coincide avec la frontiere de Martin. Au cours de cette preuve, nous montrons plusieurs
résultats combinatoires asymptotiques concernant les diagrammes de Young en ruban.
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Thesis summary

The subject of this thesis is the non-commutative generalization of some probabilistic results
that occur in representation theory. The results of the thesis are divided into three parts, which
are summarized here.

Weingarten calculus and free easy quantum groups FEasy quantum groups have been
defined in [I5] as a class of orthogonal compact quantum groups whose associated intertwiners
are described by set partitions. This class of compact quantum groups contains important exam-
ples of quantum groups as the classical orthogonal and symmetric groups and their free analogs,
the free orthogonal and free symmetric groups (see [95, 06]). In a second paper [14], it has been
possible to systematically develop the Weingarten calculus on these compact quantum groups
in order to get some probabilistic results: in particular, they recovered the convergence results
of Diaconis and Shahshahani (see [33]) on the orthogonal and symmetric group, and extended
them to the free case. The usual gaussian and Poisson laws are replaced in the free case by the
semicircular and the Marchenko-Pastur laws, their free analogs in free probability theory.

The first part of the thesis is devoted to the generalization of this framework in the unitary
case. Namely the compact quantum groups are not assumed to be orthogonal anymore, but
their intertwiner spaces are still described by set partitions with colors. The classical example
is given by the classical unitary group whose intertwiner spaces are described by permutations
(which can be seen as two-colored pair partitions) through the Schur-Weyl duality. We classify
all unitary easy quantum groups whose intertwiner spaces are described by non-crossing parti-
tions, and develop the Weingarten calculus on these quantum groups. As an application of the
previous work, we recover the results of Diaconis and Shahshahani on the unitary group and
extend those results to the free unitary group.

Free wreath product The free wreath product is a non-commutative analog of the classical
wreath product. The free wreath product is an algebraic construction that produces a new
compact quantum group from a compact quantum group and a non-commutative permutation
group. This construction arises naturally in the study of quantum symmetries of lexicograph-
ical products of graphs. In the classical case, the representation theory of a wreath product is
well-know (see for example [60], Part 1, Annex B) and the Haar measure has a straightforward
expression. It is for example easy to prove that the fundamental character of a wreath product
with the symmetric group .S,, converges toward a compound Poisson law as n goes to infinity.
However in the free case, the Haar state doesn’t have any straightforward expression. For in-
stance Banica and Bichon conjectured in [I0] that in some cases, the fundamental character of
a free wreath product is distributed as the free multiplicative convolution of the law of the two
initial fundamental characters.

In the second part of the thesis, we study the free wreath product. First, we study the free
wreath product with the free symmetric group by giving a description of the intertwiner spaces:
several probabilistic results are deduced from this description. Then, we relate the intertwiner
spaces of a free wreath product with the free product of planar algebras, an object which has
been defined by Bisch and Jones in [46]. This relation allows us to express the law of the charac-
ter of a free wreath product as a free multiplicative convolution of the initial laws, which proves
the conjecture of Banica and Bichon.



Martin boundary of the Zig-zag lattice The ring Q.Sym of quasi-symmetric functions is
a refinement of the ring of symmetric functions, in the sense that any symmetric function has a
decomposition in terms of quasi-symmetric ones. An important basis of this ring is called the
fundamental basis, and its elements have a monomial expansion similar to the Schur basis of
the ring of symmetric functions: this expansion is indexed by semi-standard filling of ribbon
Young diagrams for the fundamental basis of QSym and by semi-standard filling of Young
diagram for the Schur basis of Sym. The multiplication structure of the Schur basis is encoded
by an important graph which is called the Young graph and denoted by ). This graph has
many applications in the representation theory of the infinite group S and in the probabilistic
behavior of some discrete processes. It has been intensively studied by Thoma, Vershik and
Kerov in [85] 86, 47]. In particular they identified the minimal and Martin boundaries of Y,
and proved that the two coincide. The analog of ) for the fundamental basis of QSym is the
graph Z of Zigzag diagrams. This lattice has been deeply studied by Gnedin and Olshanski
who identified in [42] its minimal boundary. They conjectured that the minimal and Martin
boundaries also coincide on Z.

In the last part of the thesis, we prove that the minimal and the Martin boundaries of Z are
the same. In order to prove this, we give some precise estimates on the uniform standard filling
of a large ribbon Young diagram: we prove that in a uniform filling, the fillings of distant cells
become independent in a certain sense. This yields a positive answer to the conjecture that
Bender, Helton and Richmond gave in [I§].



Résumé de la these

Le sujet de cette these est la généralisation non-commutative de résultats probabilistes venant
de la théorie des représentations. Les résultats obtenus se divisent en trois parties qui sont
résumées ici.

Groupes quantiques easy et calcul de Weingarten: La théorie des représentations de
certains groupes et groupes quantiques orthogonaux compacts mettent en jeu un méme objet
combinatoire, les partitions d’ensembles finis. Ceci est le cas pour le groupe orthogonal et le
groupe symétrique, ainsi que pour le groupe orthogonal libre et le groupe symétrique libre:
ces deux derniers sont des groupes quantiques qui ont été introduits par Wang [95, [96] comme
version non-commutative de leurs homologues classiques. Dans [I5], Banica et Speicher ont
généralisé ces exemples en définissant les groupes quantiques easy. Il y a dans cette classe deux
situations extrémes: celle ou le groupe quantique est un groupe classique et celle ou la théorie
des représentations du groupe est décrite par des partitions non-croisées. Dans ce dernier cas, le
groupe quantique est dit libre. La classification de tous les groupes quantiques easy dans le cas
classique et libre a été initiée par Banica et Speicher, puis complétée par Weber [15], [07]. Dans
un troisieme temps, Raum et Weber [71] ont réussi a classifier ’ensemble des groupes quantiques
easy.

Pour un tel groupe quantique, le calcul de Weingarten [28] donne un moyen efficace de calculer
les intégrales par rapport a la mesure de Haar sur le groupe quantique. Avec ’aide du calcul de
Weingarten, Banica, Curran et Speicher [14] ont pu obtenir plusieurs resultats probabilistes dans
le cas des groupes quantiques easy libres ou classiques: par exemple, ils ont étendu a I’ensemble
de ces groupes quantiques les théorémes asymptotiques de Diaconis et Shahshahani [33] sur les
traces des groupes orthogonaux et symétriques.

Dans la premiere partie de la these, le concept de groupe quantique easy est étendu au cas
unitaire. Tout d’abord, nous donnons une classification de ’ensemble des groupes quantiques
easy unitaires dans le cas libre et classique. Nous étendons ensuite les résultats probabilistes de
[14] au cas unitaire.

Produit en couronne libre: Le produit en couronne libre est une construction algébrique
die & Bichon [2I] qui associe un groupe quantique compact & un sous-groupe quantique du
groupe symétrique libre pour créer un nouveau groupe quantique, d’'une maniere analogue au
produit en couronne classique. Alors que la mesure de Haar d’un produit en couronne classique
a une expression simple en fonction des mesures de Haar des groupes initiaux, il n’y a dans le
cas libre aucun moyen d’obtenir une formulation explicite de 1’état de Haar. Banica et Bichon
ont conjecturé dans [10] que la loi du caractere fondamental d’un produit en couronne libre est
dans certains cas la convolution multiplicative libre des lois de caractere des groupes quantiques
initiaux.

La deuxieme partie de la these est consacrée a une étude plus approfondie du produit en couronne
libre. Dans un premier temps, nous décrivons les entrelaceurs des représentations dans le cas
particulier d’un produit en couronne libre avec le groupe symétrique libre: cette description
permet également d’obtenir plusieurs résultats probabilistes. Dans un deuxiéme temps, nous
établissons un lien entre le produit en couronne libre et les algebres planaires: ce lien mene a
une preuve de la conjecture de Banica et Bichon précitée.

Frontiere de Martin du graph Z: Le graphe de Young est un graphe qui encode la structure
multiplicative de ’anneau des fonctions symétriques dans la base de Schur [85, [86, [47]. Cet



anneau, également défini comme ’anneau commutatif universel engendré par un nombre infini
et denombrable de variables, joue un role important dans la théorie des représentations du
groupe symétrique et du groupe unitaire. En retirant la condition de commutativité dans cet
anneau, on obtient un nouvel anneau non-commutatif qui a été introduit [41] comme l’anneau
des fonctions symétriques non-commutatives. Un résultat fondamental est qu’on peut associer
a cet anneau non-commutatif un anneau commutatif, 'anneau des fonctions quasi-symétriques,
qui présente un structure combinatoire similaire & celle de ’anneau des fonctions symétriques.
L’anneau des fonctions quasi-symétriques possede ainsi une base semblable a la base de Schur,
la base des fonctions fondamentales quasi-symétriques.

Dans la troisieme partie de la these, nous étudions un analoque du graphe de Young qui encode
la structure multiplicative de la base des fonctions fondamentales. La frontiere minimale de ce
graphe a déja été décrite par Gnedin et Olshanski [42]. Nous prouvons que la frontiére minimale
coincide avec la frontiere de Martin. Au cours de cette preuve, nous montrons plusieurs résultats
combinatoires asymptotiques concernant les diagrammes de Young en ruban.



Zusammenfassung der Dissertation

In dieser Dissertation widme ich mich der nicht-kommutativen Verallgemeinerung probabilistis-
cher Ergebnisse aus der Darstellungstheorie. Die Dissertation besteht aus einer Einleitung und
drei Teilen, die jeweils separate Veroffentlichungen darstellen.

Easy Quantengruppen und Weingarten-Kalkiil: In mehreren Fillen besitzen orthogonale
Gruppen und Quantengruppen eine dhnliche Darstellungstheorie, deren kombinatorische Struk-
tur mit Hilfe von mengentheoretischen Partitionen beschrieben wird: dies gilt zum Beispiel
fur die symmetrische Gruppe und die orthogonale Gruppe sowie fiir die freie symmetrische
Quantengruppe und die freie orthogonale Quantengruppe, wobei letztere als nicht-kommutative
Verallgemeinerung von ersteren von Wang [95] [96] definiert wurden. In [I5] wurden easy Quan-
tengruppen von Banica und Speicher zur Systematisierung dieses Phanomens eingefiihrt. Im
Rahmen der easy Quantengruppen gibt es zwei extreme Situationen: diejenige, in der die easy
Quantengruppe eine klassische Gruppe ist und diejenige, in der die Darstellungstheorie der easy
Quantengruppe mit Hilfe von nicht-kreuzenden Partitionen beschrieben wird. In letzterem Fall
wird die easy Quantengruppe frei genannt. Die Klassifikation aller klassischen und aller freien
Quantengruppen wurde von Banica, Speicher und Weber[15, 97] erreicht und spéter fiir alle easy
Quantengruppen von Raum und Weber [71] vollendet.

Fiir eine easy Quantengruppe existiert eine effiziente Methode, die Weingarten-Kalkiil genannt
wird [28], um Integrale beziiglich des Haarmafles zu berechen. Mit dem Weingarten-Kalkiil kon-
nten Banica, Curran und Speicher [I4] mehrere probabilistische Ergebnisse im Rahmen der easy
Quantengruppen erlangen: insbesondere wurde der Grenzwertsatz von Diaconis und Shahsha-
hani [33] beziiglich der Verteilung des fundamentalen Charakters der symmetrischen und or-
thogonalen Gruppen auf alle klassischen und freien easy Quantengruppen ausgedehnt.

In dem ersten Teil der Dissertation wird der Begriff von easy Quantengruppe im unitaren Fall
untersucht. Es wird eine Klassifikation aller unitaren easy Quantengruppen in dem klassischen
und freien unitéren Fall gegeben. Des weiteren werden die probabilistischen Ergebnisse von [14]
auf den unitaren Fall ausgedehnt.

Freies Kranzprodukt: Das freie Kranzprodukt ist eine von Bichon [21] eingefiihrte nicht-
kommutative Version des klassichen Kranzprodukts, mit Hilfe dessen eine neue Quantengruppe
aus einer kompakten Quantengruppe und einer Untergruppe der freien symmetrischen Quan-
tenruppe erzeugt wird. Wahrend das Haarmaf} fiir ein klassisches Kranzprodukt eine einfache
Gestalt hat, gibt es fiir das Haarmaf} eines freien Kranzprodukts keine explizite Formulierung.
Banica und Bichon [I0] stellten jedoch die Vermutung auf, dass die Verteilung des fundamen-
talen Charakters eines freien Kranzprodukts in vielen Fallen die multiplikative freie Faltung der
Verteilungen der beiden origindren Charaktere ist.

In dem zweiten Teil der Dissertation widme ich mich zunéchst dem freien Kranzprodukt einer
kompakten Quantengruppe mit der freien symmetrischen Gruppe. Die Darstellungstheorie
solcher Kranzprodukte wird beschrieben, und verschiedene probabilistische Ergebnisse werden
aus dieser Beschreibung gezogen. Dann wird eine Beziehung zwischen freien Kranzprodukten
und planaren Algebren hergestellt, die zu dem Beweis der Vermutung von Banica und Bichon
fihrt.

Martin-Rand des Graphs Z: Der Young-Graph ) beschreibt die multiplikative Struktur
des Rings der symmetrischen Funktionen in der sogenannten Schur-Basis [85] [86l, 47]. Dieser



Ring ist der universelle kommutative Ring mit abzahlbar unendlich vielen Variablen, der eine
grofe Rolle in der Darstellungstheorie der symmetrischen und unitdren Gruppen spielt. Wenn
man die Kommutativitdt der Variablen wegfallen ldsst, erhélt man einen neuen Ring, der der
Ring der nicht-kommutativen symmetrischen Funktionen genannt wird [41]. Der Punkt ist,
dass man daraus trotzdem einen kommutativen Ring erzeugen kann, der &hnlich dem Ring
der symmetrischen Funktionen &hnlich ist. Insbesondere gibt es in diesem neuen Ring ein
Gegenstiick der Schur-Basis, das die fundamentale quasi-symmetrische Basis genannt wird.

In dem dritten Teil dieser Dissertation wird der Graph Z der Multiplikation dieser fundamentalen
quasi-symmetrischen Basis untergesucht. Der minimale Rand dieses Graphs wurde schon von
Gnedin und Olshanski identifiziert [42]. Wir beweisen jedoch, dass der minimale Rand und der
Martin-Rand gleich sind. Als Nebenprodukt des Beweises erhalten wir mehrere asymptotische
kombinatorische Ergebnisse beziiglich grofler Ribbon-Young-Tableaus.
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Chapter 1

Partitions and free probability

This chapter is an introduction to set partitions, a class of objects that underlies the combina-
torics of free probability. We set the notations, explain how set partitions are transformed into
linear morphisms, and describe their role in free probability.

1.1 Set partitions

1.1.1 Definition and notations

Definition of a set partition:

Definition 1.1. Let n,r > 1. A set partition of n with r parts is a set p of subsets By,..., B,
of [1;n] such that \J;_y B; ={1,...,n} and for 1 <i < j <r, BiNB; =0.

A set B; in the definition above is called a block of p. A block of cardinal one is called a
singleton and a block of cardinal 2 is called a pair. When no confusion is possible, a set partition
of n with r parts is simply called a partition of n. The set of all set partitions of n is denoted by
P(n) and the number of blocks of a partition p is denoted by b(p). P(0) denotes the empty set.
We write i ~, j if and only if < and j are in a same block of p. This is an equivalence relation
on {1,...,n}. Assigning to each equivalence relation the set of its equivalence classes yields a
bijection between equivalence relations of {1,...,n} and set partitions of n.

A set partition is depicted by drawing the integers 1 to n on a row, and the blocks as lines between
them. Figure[L.1]is an example of such a drawing for n = 8 and p = {{1, 3,4}, {2, 7}, {5, 8}, {6} }.

| M |

1 2 3 4 ) 6 7 8

Figure 1.1: Partition {{1, 3,4}, {2, 7}, {5,8},{6}} with 4 blocks.

We distinguish several subsets of P,:

e The set P»(n) of pair partitions: these are partitions such that all blocks are pairs.

e The set NC(n) of non-crossing partitions: these are the partitions p of n such that if
1<i<j<k<l<nandi~,kandjn~,l, then j ~, k. This means that we can draw
p such that the blocks do not cross each other. For example {{1,2,5},{3,4},{6,8},{7}}
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Figure 1.2: Pair partition {{1,5},{2,4},{6,8},{3,7}} with 4 blocks.

is a non-crossing partition:

\ [ ]

1 2 3 4 )

Figure 1.3: Non-crossing partition {{1,2,5},{3,4},{6,8},{7}} with 4 blocks

e The set NC5(n) of non-crossing pair partitions: NCs(n) is the set NC(n) N Pa(n).

11

1 2 3 4 5 6 7 8

Figure 1.4: Non-crossing pair partition {{1,6},{2,3},{4,5},{7,8}} with 4 blocks

The lattice of set partitions Let p,q be two partitions of n, One says that p refines ¢
(denoted by p < ¢) if any block of p is contained in a block of ¢q. < yields a partial order on the
set P(n) (resp. NC(n)). One can check that for p,q € P(n) (resp. NC(n)), there always exist
a unique supremum p V ¢ and infimum p A ¢ of p and ¢ in P(n) (resp. NC(n)), yielding that
(P(n), <) and (NC(n), <) are actually lattices.

Note that NC(n) is a subset of P(n) but not a sublattice, since two elements of NC'(n) may
have a supremum in P(n) that differs from the one in NC(n). For example {{1,3},{2},{4}}
and {{1},{3},{2,4}} are both in NC(n); their supremum in NC(n) is {{1,2,3,4}} whereas
their supremum in P(n) is {{1,3},{2,4}}. However, for all p,q € NC(n), p A q is again in
NC(n). To distinguish both lattice, we write Ap,Vp for the supremum in P(n) and Ayc, Ve
for the one in NC(n) (the subscripts are omitted when there is no confusion).

Two colored set partitions Let S be a denumerable set. A S—coloring of [1,r] is a map
c:[1,r] = S. A S—colored partition p of r is a partition p of P(r) together with a coloring ¢ of
[1,7]. The partition p is called the uncolored version of p. The set of S-colored partitions with
a particular coloring is denoted by P(c) or P(c(1),...,c(r)). We replace P by Po, NC or NCy
to emphasize the shape of the partitions.

A two-colored partition p of n is a S—partition with S = {0, e}, a set of cardinal 2. The integer
n is thus fixed by the definition of ¢, and is also denoted by |c|. A two-colored partition corre-
sponds to a coloring of the extreme points of the blocks of p with elements of {0, e}. We denote
by P°*(n) (resp. P5*(n), NC°*(n), NC5®(n)) the set of two-colored partitions (resp. pair par-
titions, non-crossing partitions, non-crossing pair partitions). For each map c: [1;n] — {o, e},
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P°*(c) denotes the set of two-colored partitions such that the coloring is given by the map ¢
(and the same for the three other kinds of partitions).

1.1.2 Two-level partitions

Definition 1.2. A two-level partition is a set partition p of n with a distinguished integer
[ € [0;n]. The integers lower than | are called the upper points and the integers greater than
I+ 1 the lower points.

For k,1 > 0, the set of two-level set partitions of k4 [ with k£ upper points and [ lower points
is denoted by P(k,[) (and by P°®(k,l) when the partition is colored). The subset of non-crossing
two-level partitions (resp. two-level pairing, non-crossing two-level pairings) is denoted NC'(k, 1)
(resp. Pa(k,l), NCa(k,l)) or NC°*(k,l) (resp. Ps*(k,l), NC5®*(k,l)) depending on whether they
are considered colored or not. When no confusion is possible, a two-level set partition is simply
called a partition. For ¢; : [1;k] — {o,e} and co : [k 4+ 1;k+ 1] — {o, e}, we denote by P(c1, c2)
(resp. NC'(c1,c¢2)) the set of two-level partitions in P(k,[) such that the coloring of the upper
points is given by ¢; and the one of the lower points by cs.

A two-level set partition is drawn with two rows of integers, in such a way that the numbering
is cyclic:

Figure 1.5: Two-level partition in P(3,5) with block structure {{5,6,8},{2,7},{1,4},{3}}

The integers are omitted when they do not play any role.

Note that the lattice structure on P(n) (resp. NC(n)) extends to the case of two-level partitions
P(k,l) (resp. NC(k,l)). In the latter case, the lattice structure is the same as the one of
P(k + 1), forgetting the role of lower and upper points. In the case of colored partitions, the
same identification is made to also give a lattice structure to the set P°®(c) for each ¢ : [1, k+I] —

{o, e}.

Operations on two-level colored partitions Several operations can be performed on two-
level colored partitions. The easiest is to give a pictorial description of each of these operations.

e The tensor product of two partitions p € P°*(k,l) and ¢ € P°*(k,l') is the partition
p®q € P°*(k+ k' 1+ 1) obtained by horizontal concatenation (writing p and ¢ side by
side). The first k points of the k 4+ k' upper points are connected by p to the first { of the
[ + I’ lower points, and the remaining k' upper points are connected to the remaining [’
lower points by q.

e The horizontal reflection of a partition p € P°®(k, 1) is given by the reflection of p through
the horizontal axis. We also call it the involution of the partition p and denote it by

p* = Ru(p).

e The vertical reflection of a partition p € P°*(k, ) is given by the reflection R, (p) € P°*(k,1)
of p through the vertical axis.



| = 1 | LQO
—— | ©® %Q
H | I ﬁ |
- =T | —:

Figure 1.6: Tensor product of two partitions

1

[ ]
h
[ ] o

*

L

Figure 1.7: Horizontal reflexion of a partition

(e}

The composition of two partitions ¢ € P°*(k,l) and p € P°*(l,m) is the partition pg €
P°*(k,m) obtained by vertical concatenation (writing p below ¢): First connect k upper
points by ¢ to | middle points and then connect these middle points to m lower points by
p. This yields two kinds of objects : a partition, connecting k upper points with m lower
points, and a certain number 7l(p, q) of blocks containing only middle points. The latter
blocks and all the middle points [ are removed. Note that we can compose two partitions
q € P°*(k,l) and p € P°*(I',;m) only if

(i) the numbers [ and I’ coincide,

(ii) the colorings match, i.e. the color of the j-th lower point of ¢ coincides with the color
of the j-th upper point of p, for all 1 < j <.

[ J [ ] O o [ ] O [ ]
| = ! “ _ u |
| |
= T 1 — [N . E—
O [} o o [ ] [ ] [ ] o o [} O o [ ]

Figure 1.8: Composition of two partitions

The inversion of colors of a partition p € P°*(k,l) is given by the partition R.(p) €
P°*(k,1) with same uncolored partition as p, but with all the colors inverted.

The verticolor reflection of a partition p is given by p := R, R.(p).

The rotation of a partition: Let p € P°*(k,l) be a partition connecting k upper points
with [ lower points. Shifting the very left upper point to the left of the lower points and
inverting its color gives rise to a partition in P°®(k — 1,1 4 1), a rotated version of p.
Note that the point still belongs to the same block after rotation. We may also rotate
the leftmost lower point to the very left of the upper line (again inverting its color), and
we may as well rotate in the right hand side of the lines. In particular, for a partition

6



RoR. = | |=

(o]
[
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o:
[ ]
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o —
[ ]
o
[

Figure 1.9: Verticolor reflection of a partition

p € P°*(0,1), we may rotate the very left point to the very right and vice versa. Such a
rotation on one line does not change the colors of the points.

Here is a list of basic two-colored partitions that play an important role in Part II.

e The two identity partitions i, I € P°*(1,1) connects one upper point with one lower

point of the same color. Note that i and I are not identity partitions.

e The bicolored pair partitions &1, £& € P°*(0,2) connect two lower points of different col-

ors. We also have their horizontally reflected versions €7, 7% € P°*(2,0). The unicolored

pair partitions are §¢, &4 € P°*(0,2) and %%, U7 € P°*(2,0).

e The singleton partitions E, I € P°*(0,1) consist of a single lower point respectively.

o) [ ]
Their reflected versions are denoted by |, | € P°*(1,0).

e We also have four block partitions like [31d, £béé € P°*(0,4) and ?g—"{, H € P°*(2,2).
e All preceding examples are partitions consisting of a single block. The crossing partition

X € P°*(2,2) however consists of two blocks. It connects a white upper left point to a
white lower right point, as well as a black upper right point to a black lower left point; we

also have other colorings like X or X These partitions are not in NC°*(2,2).

Category of partitions A collection C of subsets C(e,&’) C P°*(e,€’) (indexed by all the
words ,&" in {o,e}) is a category of partitions, if it is closed under the tensor product, the

composition and the involution, and if it contains the bicolored pair partitions [ and §J as

well as the identity partitions i and I We say that C C C’ if for any pair of words ¢, in
{o,e}, C(e) C C(¢') in the set-theoretic sense.

An easy check yields that the set of all partitions P°®, the set of all pair partitions P5® (i.e.
all blocks have length two), the set of all non-crossing partitions NC°®, and the set of all non-
crossing pair partitions NC3* form each of them a category of partition. Similarly let P3¢ ting

(resp. N g;ltemating) be the set of pair partitions (resp. non-crossing pair partitions) with pairs

having endpoints of opposite colors if these endpoints are on the same level and endpoints of

same color if they are on different levels. Then P;;ltenating and N C’i’altemating are also categories
of partitions. We have moreover the relation :
P;,;ltenating g PZO. —»C«— pee
U U U (1.1.1)
g,.alternating g NCS. g NC**



1.1.3 Contraction of tensor products

Kernel of a sequence of integers Let i = (i1,...,1,) be a sequence of integers. This
sequence defines an equivalence relation on [1, n] by saying that r ~= s if and only if i, = i5. The
set partition associated to the relation ~> through the bijection given in Section is denoted

ker(f). Ifi = (i1, .y i), j= (J1,-.-,J1) are two sequences of integers of respective length k and [,
we can similarly define a set partition ker(i, 7) in P(k, 1) by the same construction: this is the two-
level partition (ker(ji,...,Ji, ik, -..,71),1). Note that we reversed the order of the indices i for

convenience in later computations. If we specifiy a coloring € : [1,k] — {o,e},&" : [1,1] — {o, e},
we can assume that this partition is in P(e,e’). Here is an example of such a construction:

71 2
|

[ — [ H

3 1 3 3 71

Figure 1.10: The partition ker((7,1,2),(3,1,3,3,7))

Given a sequence of integers of length n and a partition p € P(n), we set 6p(;) =1lifp< ker(f)
and 0,(:7) = 0 otherwise. Similarly if p € P(k,l) and ¢, j are sequences of integers of respective

—

length & and [, we set 6,(7,) = 1 if p < ker(7,7) and 6,(7,j) = 0 otherwise.

The maps T},’s:  Let V°, V*® be two Hilbert spaces of dimension n, and let (€f)1<i<n, (€])1<i<n
be respectively an orthonormal basis of V° and V°®. For any word ¢ = €1...g, in {o, e}, the
scalar product (,) on these Hilbert spaces is extended to a scalar product on the tensor product
VeE=Ve ®...® Ve by saying that the basis {ez1 R - ® 6?:}152‘1,..‘,1'471 is othonormal.

For each partition p € P°*(e,¢’), one can define a map T), : V& — Ve by the relation

- —

<Tp(€i1 X & eik)7ej1 K Q ejy) = 5p(i7j)'

If p is considered without colors, the same definition holds by considering tensor products of a
unique vector space V of dimension n.

With this definition of the maps 7T’ Igs, the operations on two-level partitions defined in Paragraph
transpose to the usual operations on linear maps between Hilbert spaces as follows:

[ ] Tp®Tq:Tp®q .
o T,0T, =n"POT,,.

° T; = TR}L(p).

Some linear maps can be easily expressed by the maps Tés. For example Ts and Ty are
respectively the identity map on V° and V*, T';, and T'; are the scalar products on V° and V*.

1.2 Free independence and set partitions

1.2.1 Non-commutative probability spaces and freeness

The free independence is a phenomenon arising in the study of non-commutative random vari-
ables. The latter are a generalization of probabilty spaces in the framework of non-commutative
algebras.



Definition 1.3. A non-commutative probability space (A, ) is a unital x—algebra A with a
linear functional ¢, such that p(14) = 1.

¢ is called the expectation on A and is usually a trace (namely p(ab) = ¢(ba) for a,b € A).

The joint law of a1,...,a, € A is defined as the expectation map
.{(C<X1,...,X7»> — C
Yay,...ar X ... Xz'p — (p(G,Z'l -Gy,

Example 1.4. There are two basic examples of noncommutative probability spaces:

o If (,P) is a classical probability space, then the algebra L~ (2) = U, LP(Q) of mea-
surable functions having all moments finite is a noncommutative probability space, and the
linear functional is given by the expectation E with respect to P.

o Let (Q,P) be a classical probability space and consider the algebra M, ® L~ (). This
algebra is again a noncommutative probability space with expectation given by the map
A E(2 Tr(A)).

When A is a C*—algebra and a is a normal element of A (i.e aa® = a*a), the spectral
theorem yields that a is an actual random variable on its spectrum, with moments given by
{o(a*(a*)*)}rars0}. The law of a is denoted by .

If two commuting random variables a, b are independent, the knowledge of the respective laws
of a and of b suffices to compute the expectation of any polynomial in ¢ and b.

The concept of freeness is the analog of the independence of classical random variables in the
setting of highly non-commutative variables. It has been introduced by Voiculescu around 1983
(see [90], see also [93] for an introduction to the subject).

Definition 1.5. Let (A, ¢) be a non-commutative probability space and Ay, ..., A, be subalgebras
of A. Aq,..., A, are called free (or freely independent) if for any sequence (ai,...,a,) with
a; € Ag,, ki # kig1 for 1 <i<p—1 and p(a;) =0 for 1 <i < p, the relation

holds. The variables x1,...x, are called freely independent if the algebras respectively generated
by x1,...,x, are free.

In particular if ay, ..., a, are free, the data {¢(al’) }1<i<rn>1 suffices to characterize the joint
law of (ai,...,a,).

Example 1.6. Originally introduced to study free products of C*—algebra and free group factors,
free probability has drawn hudge interests when it has been discovered by Voiculescu in [92] that
free probability encodes the limit law of large matrices with independent entries.

If (A, ) is C*—algebra and aj,as are two free self-adjoint elements of A, then a; + ag is
again self-adjoint. We denote by p4, B p4, the law of a1 + a2, which depends only on p,, and

lay, by the remark above. If ag > 0, aé/ 2a1a§/ % is again a self-adjoint element, and we denote by

tay X pig, the law of aé/ 2a1a;/ 2 If ¢ is tracial and a; is also positive, pq, X pq, is also equal to
/2 172

ay’ “azay’”.



1.2.2 Classical and free cumulants

In the classical case, the computation of the additive convolution of two independent random
variables is greatly simplified by the use of the Fourier transform. In the free case, an anologuous
method exists with the so-called R-transform introduced by Voiculescu in [91]. However the
R-transform is a complicated object, mainly because it involves using the inverse of analytic
functions with respect to the composition.
In [77], Speicher introduced a combinatorial method to compute the sum of two free random
variables. It is based on the notion of free cumulants, a non-commutative analog of cumulants
in classical probability. We present both classical and free cumulants at the same time, since
they will both be used in following chapters.
Let {fi}i>1 be a family of multilinear functionals on A such that f; is i—multilinear (namely
fi : A®Y — C). For 7 a partition of r and ay, ..., a, elements of A, f, denotes the r—multilinear
map defined by

fx(ar, ... a;) = H fs(aiy, .. ai,).

B={i1,...,i5}€ﬂ'

For i > 1 and a € A, we denote by f;(a) the quantity fi(a,...,a). The expectation ¢ yields
such a family of multilinear maps {m;};>1 with the relation m;(ai,...,a;) = ¢(a; ...a;); the
r—th moment of a is m,(a).

Definition 1.7. The classical (resp. free) cumulants of (A, ) is the unique family of multilinear
maps {c;}i>1 (resp. {ki}i>1) such that

m, = Z Cr, (Tesp. my = Z kr).

weP(r) TeNC(r)

cr(a) (resp. ky(a)) is called the r—th cumulant (resp. r—th free cumulant) of a.

The existence and unicity of such families is easily proved by recurrence on r. The relation in

the definition is also known as the moment-cumulant formula. By this formula, the knowledge
of {ki(a)} is equivalent to the knowledge of the law of a in (A4, ¢), and the same holds with
classical cumulants.
Thanks to the poset structure on the set of partitions and the set of non-crossing partitions,
there exists a direct formula to express the cumulants in terms of moments. In a finite poset
(G, <), the Moebius function pg : G x G — R is defined as the unique function satisfying
Y g<h<gMc(g'sh) = dg4 for ¢ < g and pg(h,g) = 0if h £ g. Let pp and punc denote
respectively the Moebius function on the poset of partitions and non-crossing partitions. The
following result is due to Speicher ([77]) in the non-commutative case.

Theorem 1.8. The cumulants and free cumulants have the following expression :

Cr = Z /,LP(ﬂ', 1r)m7r> k, = Z /,LNc'(TI', 17’)m71"
meP(r) TeNC(r)

In both case the Moebius function is given by an explicit formula. Let 7 < o in P(r) (resp.
NC(r)). One can easily show that the interval [, o] is isomorphic as a poset to P (k1) x---X Py, )
(resp. NC (k1) x -+- x NC(ky,)) for some positive integers ki, ..., k,. Then

pp(m0) = T (~15 10— 1)1

1<i<n

10



for P(r), and
/‘NC(ﬂvo-) = H (_1)ki_1cki—1

1<i<n

in the non-crossing case. The formula in the non-crossing case has also been proved by Speicher
in [77].

The important property of cumulants (resp. free cumulants) is that they characterize indepen-
dence (resp. free independence). The free part of the following result comes from [77]:

Theorem 1.9. Let aq,...,a, be r elements of A. a1, ...,a, are independent (resp. free) if and
only if cn(aiy, .-+, ain)) (resp. kn(a(ir),...,a(in))) vanishes for any non-constant function
i:[1,n] — [1,r].

Therefore if a; and ay are free then we have the simple relation k(a1 +a2) = kr(a1) + k- (a2)
for all > 1. A same formula involving free cumulants exists to compute the law pq, X pq, (see
[66]).

In the classical setting several distributions arising as universal limit distributions have very
simple expression in terms of cumulants:

22
e The standard Gaussian variable N, with density dy(z) = \/%677, has cumulants co(N) =

1 and ¢;(N) = 0 for i # 2. This distribution appears as the limit distribution of X1+7\/5X"

when n — 400 and (X;);>1 is a family of i.i.d centered random variables of variance 1.
A standard complex gaussian variable Z is defined as Z = %(X + 1Y), with X and Y
two independent standard gaussian variables. All cumulants of Z vanish except cao(Z, Z*)

and co(Z*, Z) which are equal to 1.

e The Poisson variable P, with distribution P(P = n) = en;!l, has cumulants ¢;(P) = 1 for
all 4 > 1. This distribution is the limit distribution of Y{" +--- 4+ Y¥,* as n goes to infinity,
where (Y/)1<i<; is a family of independent variables, Y7 being a Bernoulli variable with
law nT_l(So + %(51

e The compound Poisson variable P, with original probability measure 1 is defined by the
formula P, = Ef: 1 Zi, where P is a Poisson variable and (Z;);>1 is a sequence of i.i.d
p—distributed random variables (also independent from P). The cumulants of P, are
¢i(Py) = m;(p) for @ > 1. This distribution is the limit distribution of Z1Y* +- .-+ Z,Y,}
as n goes to infinity, where (YZJ )1<i<; is distributed as before and independent from (Z;);>1.

In the free case, the same phenomenon arises (see [66] for a detailed exposition of each case):

e The semi-circular variable s, having density ds(x) = %1@52 V4 — 22, has free cumulants
ka(s) = 1 and k;(s) = 0 for ¢ # 2. This distribution is the the limit distribution of
% when n — 400 and (X;);>1 is a family of free identically distributed centered
random variables of variance 1.

A standard circular variable ¢ is defined by ¢ = %(51 + is2), s1 and sg being two free
standard semi-circular variables. All the free cumulants of ¢ vanish except ka(c,c*) and

ka(c*,c) that are equal to one.

e The free Poisson variable p, with density d,(z) = =1p<z<41/4 — (2 — 2)? has free cumu-
lants k;(p) = 1 for all i > 1. This distribution is the limit distribution of Y{* 4---- 4 Y,"
as n goes to infinity, where (Y;)i<;<; is a family of free independent variables, Y7 being
a Bernoulli variable with law ”7—150 + %51.

11



e The free compound Poisson variable p, with original probability measure p is defined
as the limit distribution of Z1Y{" + .-+ Z,Y;" as n goes to infinity, where (YZJ Ji<i<j is
as before and (Z;);>1 is a free family of p—distributed random variables such that Z; is
classicaly independent from Yij for all j > ¢. The i—th free cumulant of p, is the i—th
moment of u.

There is an obvious similarity between the three classical examples and the free ones. This
correspondance has lead to a systematic bijection, the Bercovici-Pata bijection, between distri-
butions arising as a limit of sums of independent variables and the ones arising as limits of sum
of free variables (see [19]).

The cumulant description of the aforementioned distributions and Theorem [I.9]yield interesting
combinatorial formulae for some joint moments of free variables. Let us state for example the
following result that will be used in Chapter 5:

Proposition 1.10. Letci, ..., c; be k free standard circular elements, and write c_; = c¢;. Then
forji,....gr€{=k,...,—1,1,.. .k},

mr(cju .. ')er) = #{p S NOQ(.jla cee 7j7‘)|v{b17b2} € pvjb1 = _jbz}'

Proof. By the moment cumulant formula,

mr(le,...,CjT) = Z kﬂ(cj17"'7cj7')'

WeNc(jlr“:j’l‘)

Since (¢;)1<i<k is a free family and for each i > 1, only ka(c;, ¢f) and ka(c], ¢;) are non-zero, the
result follows. O
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Chapter 2

Probabilistic aspects of
representation theory: the unitary

group

In this chapter we briefly review how the representation theory of the unitary group U, leads
to interesting probabilistic results. This chapter is mainly intended for probabilists having no
backgrounds on representation theory, and serves as a motivation for the non-commutative
results in the following chapter. The first section presents the framework of compact groups
and their associated probability space, and introduces the representation theory of the unitary
group. The irreducible representations of U, are indexed by symmetric functions; the theory of
these functions is quickly reviewed in the second section. The third section is devoted to the full
description of the representations of the unitary group and to the description of the Schur-Weyl
duality. The fourth section introduces the Weingarten calculus and the fifth section gives some
applications of this method. Finally, generalization to other groups are discussed in Section 6.

2.1 Compact groups as probability spaces

This section follows the book [26], and the reader should refer to this reference for omitted
proofs.

2.1.1 Compact group and Haar measure

Definition 2.1. A compact group G is a group that is also a compact topological space, with
the property that the maps (g1,92) — g1g2 from G x G to G and g + g~' from G to G are
continuous maps.

In the definition above, G x G is considered with the product topology.

Example 2.2. The group U of complex numbers of modulus 1 with the topology inherited from
C is a compact group.

More generally, the unitary group U, consisting of matrices U in M, (C) which satisfy UU* =
1d,, is a compact group; the same is true for any closed subgroup of U,.

The main feature of a compact group G is the existence of an invariant probability measure
on the topological space G:

13



Theorem 2.3. Let G be a compact group. There exists a unique reqular probability measure fG
on G such that for any measurable set X C G and any g € G,

/Gg.X—/GX.g—/GX

This probability measure is called the Haar measure.

In the statement above, g.X (resp. X.g) denotes the set {gx,z € X} (resp. {zg,z € X}).
For G = U, the Haar measure is simply the Lebesgue measure on the circle.

Remark 2.4. If G is only assumed to be locally compact, there still exists a unique requ-
lar measure (up to a constant multiple) being invariant by left translation . However this
measure is not necessarily invariant by right translation. Consider for example the group
G = {<g T) |,y € R,y > O}, with the left invariant measure puy, given by duy, = y~2dxdy
and the right invariant measure ug given by dug = vy~ *dxdy. A locally compact group such that
left and rignt invariant translations coincide is called unimodular.

Any compact group is thus a natural probability space with the Haar measure. Since it is
also a topological space, it carries a canonical class of measurable functions with respect to fG,
namely the algebra C (G, C) of continuous complex functions on G. If f € C(G,C), we denote
by f the complex conjugate of this function. With this conjugation, C(G,C) is a commutative
x—algebra.

2.1.2 Representations of a compact group

In most cases, the Haar measure doesn’t have any straightforward expression and therefore the
computation of the law of any element of C(G,C) may become cumbersome. Fortunately, the
representations theory helps to better understand these random variables.

Definition 2.5. A representation (V,p) of G is the data of a vector space V' and a continuous
morphism of groups p: G — GI(V).

A subspace W C 'V is called invariant if for all g € G, p(g)(W) C W, and v € V is called
a fized point if p(g)v = v for all g € V. A representation V is said irreductible if V is finite
dimensional and has no invariant subspace apart from {0} and V.

An intertwiner operator from (V,p) to (V',p') is a linear map T : V — V' such that, for any
g € G, p(g)oT = Top(g). The space of morphisms between (V,p) and (V',p')is denoted
Morg(p, p).

Two representations (V, p) and (V', p') are isomorph if there is an invertible map T in Morg(p, p').

From now on we will only consider finite dimensional representations and denote by d(p) the
dimension of the vector space V of a representation (V, p).
Given two representations (V, p) and (V', p’) of G, we can construct the direct sum representation
p@®p on VEW (resp. the tensor product representation p® p’ on V ® W) by taking the direct
sum of the maps p and p’ (resp. tensor product of the maps p and p'):

p®p(9)=plg)@p'(9) e GUV &W),p®p'(9) = plg) @ p'(g) € GV @ W).

Finally if (V,p) is a representation of GG, we can define the dual representation p* on the dual
V* of V by

p*(f)(w) = f(p(g~")v),

where f € V* and v is any vector in V.

14



Example 2.6. As an example of the previous constructions, let (V, p) be a representation of G.
It yields a representation p of G on End(V') defined by

p() (@) = p(@)f (plg™ )],

with f € End(V) and v € V. It is possible to prove that, as a representations of G, End(V)
is isomorphic to V@ V*. Moreover the set of fized points of End(V') under the action of G is
precisely the space of intertwiners Morg(p, p').

Let (V, p) be a finite dimensional representation of G. Any scalar product ((.,.)) on V defines
an average scalar product (.,.)¢ on V by the formula :

(01, 02), = /G (plg)on, plg)v2))dg.

where vy, v9 € V.
The invariance of the Haar measure implies that (.,.), is G—invariant, namely

(p(g)v1, p(g)v2)p = (v1,v2)p

With the latter scalar product we can prove that the irreducible representations are the building
block of the representation theory of G :

Proposition 2.7. Let (V,p) be a finite dimensional representation of G. Then V is the direct
sum of irreducible representations of G.

Noticing that the eigenspaces and the image of an intertwiner are invariant subspaces yields
the description of the intertwiner space between irreducible representations :

Lemma 2.8 (Schur Lemma). Let (V,p),(V',p) be two irreducible representations, and T €
Mor(p, p'). Then T is either 0 or an isomorphism.

If (V, p) is an irreducible representation and f € Mor(p, p), then there exists a scalar A € C such
that f = M\d.

2.1.3 Matrix coefficients

The goal is now to construct a family of random variables which is dense in C(G, C) and whose
law with respect to the Haar measure could be theoretically computed. This family is a class of
particular continuous functions based on the G —invariant scalar products (., .),.

Definition 2.9. A matriz coefficient on G is a function @ on G of the form

v(g9) = (p(g)v1, v2)p,
with (V, p) a representation of G and vi,ve € V.

The name of these functions is clear if we consider an orthonormal basis (eq,...,eq) of V
with respect to the scalar product (.,.)g. With respect to this basis, the representation p is

pui(g) - pra(g)
p:g— :
Pd1 (g) S Pdd(g)

with pi;(g) = (p(9)ej, ei)p = Tr(p(g)Eji), where Ejje, = djre;. From now on, each representa-
tion (V p) is considered with a particular choice of orthonormal basis (€;)1<j<q(,) With respect to
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an invariant scalar product on V: in this way a canonical set of matrix coefficients { Pz‘j}lgi,jgd( 0)
is associated to each representation (V) p).

Since we have defined a representation (V,p) as a continuous map G — GI(V), any matrix
coefficient on G is continuous.

Considering direct sums, dual and tensor products of representations shows that the sum, the
conjugate and the product of matrix coefficients are again matrix coefficients. The trivial rep-
resentation g — 1 yields the unit element of C'(G,C). Therefore the vector space A of matrix
coefficients on G is a unital x—subalgebra of C'(G,C). Since any representation of G is a di-
rect sum of irreducible representation, a basis of A is given by the set of matrix coefficients

I= {pij}p irreductible-
1<4,5<d(p)

It is possible to construct intertwiners from (V,p) to (V’,p’) by averaging on G matrix coeffi-
cients coming from these two representations. A careful study of these intertwiners yields the
first following important result:

Theorem 2.10 (Schur orthogonality relations, [26] Thm 2.3, Thm 2.4). Let (V,p) and (V' p)
be two non-isomorphic irreducible representations. Then the matriz coefficients are orthogonal
with respect to the Haar measure. Namely for 1 <i,j <d(p) and 1 < k,l < d(p'),

/ pij(9)p(9)dg = 0.
G

If (V,p) and (V',p") are isomorphic irreducible representations, we can identify their basis and

i this case )
pij(9)pri(9)dg = ——dirdji-
[ pstaontads = 2o,

Therefore the matrix coefficients of irreducible representations yield an orthonormal basis of
A with respect to the Haar measure on G:

A= @B D Cpy

(V,p) irred. 1<4,5<d(p)

The subspace €, <ij<d(p) Cpij is denoted by W,,.
The second important Theorem is that the algebra A is dense in C(G, C):

Theorem 2.11 (Peter-Weyl Theorem, Thm 4.1 in [26]). The matriz coefficients are dense
in C(G,C). In particular T is an orthonormal basis of L*(G), the space of square-integrable
functions on G.

The proof of this Theorem is a bit evolved in the general case. However, if G is already
described as a subgroup of Gl,,(C), the proof of the density is a straightforward consequence of
Stone-Weierstrass Theorem.

Example 2.12. Let us apply these results to the unit circle U. In this case, since the group is
commutative, an irreducible representation (V,p) of U is one dimensional and thus it is just a
group homomorphism p : U — C*. Since p has to be continuous, there exists n € Z such that
p = ey, where ey(z) = 2" for all z € U. Reciprocally any function of this type is indeed an
irreductible representation of U.

From FExample the Haar measure on U is just the Lebesgue measure on the unit circle.
Therefore by the content of this paragraph, the set of functions {ey}nez is an othonormal basis
of L?(U) with respect to the Lebesgue measure on the circle: the decomposition of any continuous
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function in this basis is exactly the usual Fourier expansion.
Thus the constructions made in this paragraph are a generalization of the usual Fourier expansion
on the circle to a general non-commutative compact group.

To sum up, any compact group GG comes naturally with a probability measure fG, and a
particular set Z of random variables that form an orthonormal basis of L?(G, fG) To fully
describe this probability space, we need to know the joint law of these random variables. This
is equivalent to knowing the expansion of products of matrix coefficients in the basis Z. A
theoretical answer to this problem will be given in Section with the Weingarten formula.
The concrete computations are hard to achieve. A smaller space of continuous functions, the
space of class functions, is easier to handle and still give interesting informations on the compact
group.

2.1.4 Characters and the unitary group

Definition 2.13. Let (V,p) be a representation of G. The character of p is the function

Xp(9) = Tr(p(9)).

The character is said irreducible if it is the character of an irreducible representation.
A wirtual character is a function of the form x1 — x2 with x1 and x2 characters.

Since the direct sum and tensor product of representations are again representations, the
set of characters is stable by addition and multiplication. Since the character of the trivial
representation is the constant unit function, the set of virtual characters forms therefore a ring
Cl(G).

Note moreover that since the trace is invariant by conjugation,

x(hgh™') = Tr(p(hgh™")) = Tr(p(h)p(g)p(h)~") = Tr(p(g))

with g,h € G. Thus by linear extension of this relation, CI(G) is a ring of functions which
are constant on conjugacy classes of G. A function f on G such that f(hgh™') = f(g) for all
g,h € G is called a class function. Actually the vector space CCI(G) spanned by the characters
is dense in the space of class functions in L*(G) (see [26], Thm 2.6).

Theorem yields the following straightforward result :

Proposition 2.14. Let (V,p), (V' p) be two representations of G. Then

/G Xp(9)xp (9)dg = dim Mor(p, p').

If p,p’ are irreducible representations,

(1 G Wi~ ()
/GX,O(Q)X/J’(g)dg = {0 if (V, p) o (V’,p/) .

In particular the set of irreducible characters is a basis of Cl(G).

Therefore the set of irreducible characters forms a basis of the L?—space of class functions.
To compute the moments of a character with respect to the Haar measure amounts to decompose
tensor products of the representation of this character into irreducible ones.
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Example 2.15. Let (V,p) be a representation of U, and U € U,,. Since U is a unitary matriz,
it is thus diagonalizable in an orthonormal basis and there exists P € U, and A a diagonal
matriz with modulus one coefficients such that U = PAP™L.

Since x, is a class function and U is diagonalizable, x,(U) = x,(PAP™1) = x,(A). Therefore
the value of the character on U only depends on the eigenvalues of U.

If o0 € Sy, is a permutation, the matriz W (o) = (0i5(j))1<i j<n 8 i Uy, and

A1 )\0'*1(1)
W (o) W(o)™ = .
A, A1

n

Since x,(W (o) AW (0)71) = x,(A), the value of the character on U is a symmetric function of
the eigenvalues of U.

The previous example shows that the theory of symmetric functions plays a role in the study
of characters of the unitary group.

2.2 Symmetric functions

In this section we briefly review the basics of symmetric functions. Most of the results come
from [60], and the reader should refer to this book for complete proofs.

2.2.1 Young diagrams

Definition 2.16. Let n > 1. A partition XA of n, also written A F n, is a finite decreasing
sequence of integers (A1 > Ao > A\, > 0) such that > \; = n. The length of X is the length of
the sequence of mon-zero integers.

The set of partitions of n is denoted ). For each partition A, my(A) denotes the num-
ber of elements equal to k& in (Ay > Ao > --- > \.). With this notation A is also written
A= 1m0 g,

A partition is pictorially represented by a Young diagram, which is an array of n cells with \;
cells on the first row, Ao cels on the second and so on. The Young diagram of the partition
(7,4,2,1) is drawn in Figure

Figure 2.1: Young diagram of (7,4,2,1).

Definition 2.17. A partial order is defined on Y, by saying that A < p if and only if I(\) > I(n)
and
A < pn, A A2 < gt gy A Ny St )

The transpose A of a partition X is defined as the partition corresponding to the symmetry
of the Young diagram of A through the diagonal axis. For example the transpose of (7,4,2,1)
is the partition (4,3,2,2,1,1,1), as suggests the following picture :
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Figure 2.2: Young diagram of (7,4,2,1) and its transpose.

A Young tableau T is the assignment of a positive integer to each cell of a Young diagram \. ) is
then refered as the shape of T'. For {x;};>1 an infinite set of commutating variables, a monomial
2T is assigned to each Young tableau T with the formula 27 = xlfumber of LinT gumber of 2in T

Since the Young diagram has a finite number of cells, the aforementioned product is finite. The

next figure is an example of such correspondance:

41710611
5041
6

‘CDOO\I»P

Figure 2.3: Young tableau T of shape (7,4,2,1) giving 27 = 2223zs2322w8710211.

2.2.2 Symmetric functions

Definition 2.18. A symmetric function f is a polynomial in n variables x1,...,x, such that
for all permutation o € Sy, f(To), - Tom)) = f(T1,. .., Tn).

A rational symmetric function g is a polynomial in n variables x1,...,x, and their inverse
xfl, oo, w b such that 9(To(1ys s Tomy) = (X1, -, Tn).

We denote by A, (resp. Af) the ring of symmetric functions (resp. rational symmetric
functions) in n variables with integer coefficients in the basis of monomials. This is a graded
ring with the grading given by the degree of an homogeneous polynomial.

Let e, be the monomial x; ...x,. Since any rational symmetric function has a monomial of

lowest degree, any rational symmetric function ¢ is equal to - f, with f a symmetric function.

Therefore we will only consider symmetric functions in this Subsection

A straightforward basis of A, is the so-called monomial basis, whose elements are indexed by

partition A with [(A) < n. The monomial symmetric polynomial m) is defined as the sum of
}\ é\\Q o) (where we set A\p11 = -+~ = A\, = 0) and all the different monomials obtained from

G A )‘ by permuting the 1ndlces in the variables {z; }1<i<n. For example

3 3 2
m(3,1,1)($1, T2, T3) = T|T2T3 + T1THT3 + T1T2T3.
Besides this basis, there exist three bases which can be constructed with Young tableaux:

e Let RT'(\) denote the set of tableaux of shape A such that the integers are weakly increasing
along the rows, and define

ha(zi,...,xpn) = Z zT

TERT(X)

These functions are called homogeneous symmetric polynomials.
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e Let CT(\) denote the set of tableaux of shape A such that the integers are strictly increas-
ing along the columns, and define

é,\(xl,...,a;n): Z xT.

TeCT(N)
The functions ey = €,: are called the elementary symmetric polynomials.

e Let SSYT(A) denote the set of tableaux of shape A such that the integers are weakly
increasing along the rows and stricly increasing along the colums; such tableau is called a
semi-standard Young tableau. Define

sax(x1, ... xn) = Z i

TeSSYT())

These functions are called Schur polynomials. These are the most important polynomials
in the study of the representations of U,.

The sets {hx}in)<ns {€x}ia)<n 18A}i(\)<n are all bases of A,,. In the case of the elementary and
Schur polynomials this result is straightforward: indeed after ordering the bases with respect to
the order < on partitions (as defined in[2.17), the transition matrix between {m,} and {€,} (or
sy) is upper-triangular with 1 on the diagonal. Complete proofs and complement can be found
in [60], Part I, Ch 6.

From the list of bases above, ey = ey, ...ey,.. Thus, since {e)\t}l()\t)gn is a basis of A,, A, can
be identified with the free commutative ring Zles, . .., e,], with e, being the polynomial

er(T1,. .., xn) = Z Tiy - T,

11 <<ty

A fifth family of symmetric functions arises by considering power sums. Namely let p, =
D i<i<n a¥ and py = py, ...py,. Although the set {pr};n)<n is not a basis of Ay, it is still a
basis of Q ® A,,.

2.2.3 Hall inner product

RS
Projective limit The map ®,, : A,, — A,,_1 defined by ®,,(e;) = %Z ifz f Z is a surjective
homomorphism of graded algebra from A, to A,—;. We can thus define the projective limit
A =1limA,.

(_
A can be seen as the algebra of symmetric polynomials in an infinite denumerable set of variables
{z1,...,&pn, ...}, with the grading given by the degree of homogeneous polynomials. For example

the monomial symmetric polynomial m(3,171) is defined as

mea) ({2, T, ) = Z $§1$i2$i3-
i1,i2,13 distinct

The bases given for A,, are also bases of A if we drop the restriction /(A) < n on the partitions
indexing elements of the bases.

An important result is that the coefficients of any expansion of an element in A, in one of the
bases we gave before is constant for n large enough. Therefore any algebraic result obtained
in A on a finite set of elements can be considered as also true in A,, for n large enough. For
example, if we write mymy, = 3, <, a5, (n) the expansion of mymy, in the basis {mx};(»)<, of
Ay, the coefficients af, (n) are independent of n as soon as n > I(A) +I(u).
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Hall inner product We introduce here the Hall inner product in A. Note that the same
construction and results exist for A,,.

Definition 2.19. The Hall inner product (.,.) is the bilinear form on A defined by its value on
the basis {myx} and {hy} as
<m)\,hu> = 5/\N'

This bilinear form is naturally extended to Q ® A.

This bilinear form is actually an inner product, as we will see in Example
It is possible to characterize dual bases with respect to this product. If {x;},{y;} are two
denumerable infinite sets of variables, the basis {my)} and {h,} are related by the Cauchy

formula
11 1_1963/ =Y ma({z ) ({u}).
1JJ 3

The Cauchy formula implies that if f is a symmetric function, then (]| ﬁiyi’ f{zi}) = f{wi}).
The latter equality yields a proof of the following fact:

Proposition 2.20. Two bases {f\} and {gr} consisting of homogeneous polynomials are dual
with respect to (.,.) if and only if

1
1— 2y,

> Hzhateh) =11
A

Let us apply this proposition to the power sums basis.

Example 2.21. If we set zy = [[mg! [[ K™ (recall that my, is the number of parts of A equal
to k), then

3 1px({1‘z} ISCUREDS Z H Z I xajyb

A LEPWION 'a1, Ha

lav'r

_ Z %(_ Z log(1 — z;y5))"
r i,J
=exp(— Zlog(l —aiy;))) = H :
2%

i.j 1= @iy,

Therefore from the last proposition, the dual basis of {px} is {zxpr}. This implies that

(DX, Pp) = Ox 2
In particular (.,.) is positive definite and symmetric.

An important result is that the Schur basis is an orthonormal basis of A: namely (sy,s,) =
dxu- The proof is done in [60], Part I, Ch. 4. By a linear algebraic argument, an inner product
on A has at most one orthonormal basis, up multiplication by +1. The Schur basis is therefore
the unique orthonormal basis of A, and the unique graded basis such that

H = ZSA {zi})sx({yi})-

1 — 2y,
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2.3 Representation theory of the unitary group and probabili-
tistic applications

It is now possible to describe the ring of virtual characters C1(U,,). This description gives a way
to compute moments of characters with respect to the Haar measure: some important results
obtained by Diaconis and Shahshahani in [33] are given in example of this machinery.

2.3.1 Irreducible representations of U,

The content of this subsection comes from [26] Ch. 35 and 38.

Rational and polynomial representations The unitary group U, has a fundamental rep-
resentation given by its canonical embedding in Gl,(C). Denote by (u;j)i<ij<n the matrix
coefficients of this representation. A representation (V,p) of U, is said rational (resp. polyno-
mial) if the matrix coefficients of p are rational (resp. polynomial) expressions of the u;;. In the
next paragraph we will classify all rational and polynomial representation of U,.
In any case the character of a continuous representation of U, is a rational function of the eigen-
values. Indeed let (V, p) be a continuous representation of U,, and consider its restriction to the
eiﬂl
n—torus T, = . . This yields a continuous representation (V, p) of T,,. Since
eiﬂN
T, is the commutative product of n different copies of U, V' decomposes in dim (V') vectors v;, each
of them being a one-dimensional continuous representation of 7T;,. Each one-dimensional contin-
uous representation of T}, has the form p(e™r, ..., eWn) = eilkdrt+hbntn) with ki, ... k, € Z;
therefore the character Xﬁ(ewl, eee em") is a rational function of €1, ... e® with non-negative
integer coeflicient in front of each monomial. But we have seen in Example that for U € U,,
xp(U) is equal to x,(A), with A € T, being a diagonal matrix such that U = PAP~!. Thus if
(V, p) is a continuous representation of Uy, x,(U) is the evaluation of an element of A on the
eigenvalues of U. From now on the characters of U, are thus identified with elements of A,
and the ring of virtual characters with a subring of A*.

Examples of rational representations We review here some basic examples of rational
representations, with the identification of the associated character as an element of A . Recall
that in order to identify the character, it suffices to consider the restriction of the representation
to the n—torus T),. In the sequel, (vy,...,v,) denotes the canonical basis of C", and for each
unitary matrix U, u = {uy,...,u,} denote its eigenvalues.

e The fundamental representation: this is the identity map on U, (C). Therefore the char-
acter is just the symmetric function Y u; = mi(u) = ej(u).

e The determinant: the determinant det : U, — C is a group homomorphism, and thus
a represenation. By the relation between determinant and eigenvalues of a matrix, the
associated character is the elementary symmetric function e, (w1, ..., uy) = uq ... Uy.

e One can generalize the previous representation by considering powers of the determinant:
for m € Z the map det™ : U — (det(U))™ is again a group homomorphism, and the
associated character is the symmetric function e]'.
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e The m—fold exterior representation: let 1 < m < n and let /\m C"™ be the m—fold exterior
product of C™. The latter is the quotient of the tensor product (C")®™ by the relations
Vi, ® - @, = 0if i; = i for some j # k. A basis of A™C" is given by {v;, A--- A
Vi Yiy<ig<o<inm - The map (U, vy, A---Av;, ) — Ulviy ) A--- AU (v;,) gives a representation
of U, on A" C". Considering the restriction to T;, yields that the associated character is
exactly the elementary symmetric function e,.

Note that all these representations are polynomial, except for det” with m < 0.

Moreover, taking tensor products of the last example with different positive values of m yields
that any symmetric function of the form e]fl ...eFn with ki,..., k. > 0 are characters of some
polynomial representations. Since A,, = Zley,...,e,], taking direct sums of these representa-
tions shows that any element of A,, corresponds to a virtual character.

From Section any rational symmetric function is of the form e,™ f with f € A,,, and thus

Cl(U,) ~ AF.

Is there a continuous representation of U, which is not rational ? It seems not clear
whether there exists a continuous representation that is not rational. For example GI,(C)
has continuous non rational representations: consider for instance the group homomorphism
G = (9ij)1<ij<n — G = (Gij)i<i,j<n- However in the case of the unitary group the answer is
negative: we have seen that the character of any continuous representation corresponds to an
element of Af. But since, from the previous paragraph, A is already spanned by characters of
rational representations, any continuous representation is actually rational.

Irreducible characters of U,, It remains to find which elements of A correspond to irre-
ducible characters.

Since the representations det™ are all one-dimensional, the functions €]’ correspond to irre-
ducible characters. Therefore let us consider only the polynomial representations. The irre-
ducible characters can be directly obtained thanks to the Hall inner product on A,. Consider
the graded algebra Clu;;] = @~ Cluij]q of polynomials in the variables u;j, with Clu;;]q being
the subspace of homogeneous polynomials of degree d.

Since the set {u;j}1<i j<n is a set of matrix coefficients of the fundamental representation, Clu;;]
is a subalgebra of the algebra A of matrix coefficients of U,,. Recall that

A= P W,
(V,p) irred.

with W, = @1§i,j§d(p) Cpij. Since p;ij(g) = (p(g)es, ej), Up x Uy, acts on W, as

(A, 1')-piz)(9) = (p(9)(p(R)ei), p(h™)ey).

This shows that as a representation of U, x Uy, W, =~ V,®@V 7. It is an easy computation to check
that V, ® VI is an irreducible representation of Uy, X Up,. Therefore the U, x U, representation
A has a decomposition into irreducible U,, x U, representations

A~ & v,ev;.
(V,p) irred.

Since Clujj;]q is invariant under the action of Uy, x Uy, it has a unique decomposition into U,, x U,
irreducible representations. The polynomial form of these representations yields that

(C[’U,Z]] = @ Wp = @ Vp ® Vp*.

(V,p) poly. irred. (V,p) poly. irred.
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—1
x1 U1

Looking at the trace of the action of ( , ) on both sides of the

—1
In Yn

equaliyy above yields

H #: Z f)\(l'l’...,-’L'n)f/\(yla---ayn)'

1—xy;
1<i,j<n iYj AN <n

Remark 2.22. There is obviously a convergence problem here, since the x;,vy; have modulus
one as eigenvalues of U,. However this equality between functions should be considered as an
equality between each homogeneous component, and the value of the whole serie doesn’t play any
role.

From Section we deduce that, with the appropriate labelling, fy = s). This yields the
following result:

Theorem 2.23. The ring of virtual characters of U, is isomorphic to A, and the basis of

n -’
irreducible characters is given by the set {e,;;""sx} m>0 -
I(N)<n
The algebra CClyo (Up) of polynomial characters is isomorphic to C ® Ay, and the basis of
irreducible polynomial characters is given by the Schur basis.
Through the isomorphism ® : CClyy(Uy) — C ® A,, the L?—scalar product with respect to the

Haar measure on U, yields the Hall inner product on A,,.

2.3.2 Probabilistic applications

The random variables x, Let us label by A the irreducible representation whose character
is given by sy through the map ® in Theorem [2.23] and denote by x) the associated charac-
ter. Then for n distinct partitions A',... A", the joint law of (),1,...,xar) can be explicitly
computed. Indeed the product formula on the Schur basis in A,, is given by the Littlewood-
Richardson coefficients {c§,} as

S\Sy = Z CK“Snu- (2.3.1)
l(v)<n

These coefficients have a combinatorial nature (see [60], Ch.9), which allows to algorithmically
compute them. Let us write M, = (CKM) w the matrix of the multiplication by sy in the basis
{suti(uy<n- Then for my,...,my,n1,...,n. >0,

where (0) is the empty partition corresponding to the constant function 1. However, the
Littlewood-Richardson coefficients are hard to compute and the previous formula is difficult
to deal with.

Diaconis-Shahshahani results Other kinds of formulae can occur by expanding characters
in different bases and evaluating the Hall inner product in these bases. Let us look at the power
sum basis, and write X; = Tr(U?) for 4 > 1. Diagonalizing U shows that the random variable
X} correspond to the power sum pg through the map ®. Therefore if aq,...,a,,b1,...,b, >0,

/ (X9 X (X7 X)) = (o

n
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with g =19 ...7% and v = 1% .. .rbr. For n > (3 ;i) V (3 bii), the expansion of p,, p, in the
Schur basis is independent of n, and thus the evaluation of the Hall inner product on p, and p,
is the same in A,, and A for n large enough. Therefore in this case, from the computation of the
Hall inner product for the power sum basis in Section [2.2.3

/ (X0 ... X%) (Xfl ...Xf?T) = S

n

Since z, = [[i%a;!, this yields for n > (3 ia;) V (i) b;)
(X, xon) (X0, xPr) = / X0 xh
J st () <T1

with [;; XOXP = 6,,,i%a,!.
The latter are exactly the moments of a symmetric Gaussian complex variable with mean 0 and
variance 7 (see(l.2.2)). This is the content of the following Theorem of Diaconis and Shahshahani:

Theorem 2.24 ([33]). Asn goes to +o0, the random vector (Tr(U?));>1 converges in moments
to a family of independent symmetric complex gaussian variables (Z;)i>1, such that Z; has mean
0 and variance 1.

By using the representation theory of the symmetric group .S, Diaconis and Evans also com-
puted in [32] the value of the variance of Tr(U?) for all n > 1 and found that Ju, Tr(UH)Tr(U7) =
9;5(1 A n). This allowed them to extend this convergence to all symmetric functions having cer-
tain Fourier expansions. They could also prove that the convergence of these random variables
is stronger than the convergence in moments.

Concrete realization of the Hall inner product The Hall inner product, abstractly defined
on the bases {my,hy} of A,, can be concretely defined as the inner product of a L?—space.
Indeed, the Haar measure on U, yields a probability measure on the torus T, (identified with
[0,27]™) as the pushforwards measure through the map sending U to its eigenvalues. Some care
is needed because of the ordering of the eigenvalues, but eventually this yields the existence of
a measure dm on T, invariant under the action of Sy, such that for u,v with I(u),l(v) < n,

/ (€1, e s, (e, et ) dm (D, ..., ) = O
The density of the measure dm with respect to the Lebesgue measure can be explicitly computed
with the Weyl integration formula (see [98]):
Theorem 2.25. The density of dm with respect to the Lebesgue measure is given by

1 i 00
dm(ﬁl, N 71971) = W H ’6 ﬁke 19]‘2.
i<k

2.4 Weingarten calculus for U,

In the last section we have used representation theory to obtained probabilistic results on class
functions. The goal is to extend this approach to any element of C'(U,,C). This has been done
by Collins in [28], and more generally by Collins and Sniady in [29]. The content of this section
comes mainly from [29]. This section is particularly exhaustive, since the generalization of the
Weingarten formula to quantum groups is the main motivation of the first part of this thesis.
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We have seen that the algebra of polynomial matrix coefficients is exactly Clu;;]. From Section
2.3.1] rational representations of U, are tensor products of polynomial representations with a
one dimensional representation of the form det™™ = (det)™ for m > 0. Since det € Cluy;], the
algebra of matrix coefficients is therefore C([u;;, ;).

The main goal is to compute the integral

Lagy = /U Winjy -+ Wigjg iy -+ Uit g1, (2.4.1)
n

fori,j € [1;n]? and il ]7 € [1; n]]d/. Note that we can always assume that d = d’, since otherwise
by invariance of the Haar measure by a scalar rotation,

iy, = [ ) i) G G )
Un, Un

2.4.1 The method

Weingarten calculus is based on the following observation: if G is a compact group and (V p) is
a representation of G, then p, : v — fG p(g)vdg is the orthonal projection (with respect to the
invariant scalar product) on the vector space of fixed points of (V, p). The latter is a consequence
of the invariance of the Haar measure by left multiplication and of Theorem [2.10

The idea is thus to consider the integral as the average of an endomorphism of (C")®¢
with respect to the action of U, on End((C")®?). From the previous phenomenon, this average
is a fixed point of End((C™)®%), and thus an intertwiner of the representation of U, on (C™")®¢
Relating intertwiners of ((C”)®d with a particular action of the symmetric group Sy gives then a
combinatorial formula for the integral .

Expressing integrals as elements of Mory, ((C")®?) Let us denote by E;; the matrix
(0ri0s5)1<rs<n in My (C) (the latter is identified with End(C™) through the action on the canon-
ical basis). Then Ej jy @ -+ ® Ej ;1 € End((C™)®%). U, acts on (C")®? by the d—fold tensor
product of the fundamental representation; thus as in Example U,, acts on End((C")®%) by

conjugation. For U € U,,
UEle{ Ur@---® UE U* = Jlj Q- Q® dejfi’
with Mj ;. being the matrix
Urj,Urjy -+ U Ungy
Thus Tr(M;, j Eyi.) = Ui, j, Uy jr and

Tr((MjU{ Q- ® M]dj )(Ez’zl @ Ez’ zd)) = Uiljl .. Uld]dU

igdy

Q_\

LAl
1J1

Integrating with respect to the Haar measure yields
I;; 35 —TT((/UE]‘U{U* (SR ®UE /U*ClU)( i i1 ®‘-'®Ei£iid)).
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To emphasize the geometric aspect of the right hand-side, this equality can be written as
L7 5.5 = Penaeme) (Bjyjg @ - @ Ejyj), Biyig @ - @ By )),

with (,) being the invariant scalar product (4, B) — Tr(AB*) in End((C")®%). Since PEnd((Cr)®d)
is a projector, the latter quantity is the same as (pgyq((cnyed) (£, ®- - ®E]d]d) PEnd((cmyedy (B ®
@K ;). From Example the space of fixed points of End((C")®?) is exactly Mory, ((C™)®4, (C™)®%).
Therefore evaluating the above scalar product requires a good description of Mory, ((C™)®4, (C™)®9).

2.4.2 Schur-Weyl duality

Let Sy denote the symmetric group of order d. Sy is a finite group with cardinal d!. By a
result of Young (see [60] Part I, Ch. 7), the irreducible representations of S, are indexed by
the integer partitions of d. The irreducible representation corresponding to A is also called the
Specht module of the partition A and denoted by S.

The representation theory of Sy has a very rich combinatorial structure. Looking at the repre-
sentations of Sy for several d yields in particular a link between the theory of representation of
Sy and symmetric functions :

Theorem 2.26 (Frobenius character formula, [60] p.114). Let u+ d and v F d be two partitions.
The value of the irreducible character of S, on a permutation o with cycle decomposition v is

Xu(0) = (S, Pv), (2.4.2)
where the scalar product on the right hand side is the Hall inner product on A.

Sy acts also on (C")®¢ by permuting the entries of the tensor product. Namely for o € Sy,
the representation ((C")®9,w) is defined by

w(o) (V1 @+ ®Va) = Vy-1(1) @+ ® Vg-1(g).-

This action commutes with the action of U,, on each component of the tensor product and thus
w(o) € Mory, ((C™)®4, (C™)®9). Moreover

<Ej1ji ® - ®Ejdj ,w(o)) = 5]10(11) 5jd0(j;)'

Therefore we know a particular subset of MorU ((C)®d (C™)®9), namely the set {w(o)}oes,, for
which the scalar product with £}, 78 QF; o, is particularly simple. The question is to know
whether the knowledge of all these scalar products is enough to reconstruct pg,q(cnyed) (Ej, i ®

J
+®@Ej,; ). The answer is positive if {w(c) }ses, spans the vector space Morg, ((C™)®4 (C™)24),

This is exactly the content of the Schur Weyl duality.

Theorem 2.27 (Schur-Weyl duality, [26], Ch.36). As a U, x Si-representation, ((C”)®d decom-

poses as
@ Vy® Sh.
MO <n

In particular, the action w of S yields a surjective map
w : C[Sy) — Mory, ((C™)®4, (C™)®)
which restricts to an isomorphism

W= @ My()(C) = Moy, ((C™)®?, (C™)®4),
M(N)<n

where CSy is identified with .3 Ma(x)(C) as a semi-simple algebra.
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The decomposition of CSy as a direct sum of matrix algebras indexed by irreducible repre-
sentations of Sy is the content of Artin-Wedderburn’s Theorem (see [74], Section 1.10).
We will give here a proof of Theorem based on the Frobenius character formula. Note
however that its apparent simplicity is misleading, since the Frobenius character formula is a
nontrivial result.

Proof. The action of Sg and U,, commutes, yielding an action ¢ of Sy x U, on ((C”)®d. We can
thus decompose (C*)®? = D, irred. of v, Vo ® Wy, where V,, the irreducible representation of Uy,
with character s, and W, a representation of Sg.

Moreover one can prove (see [57], Section 2) that if 4 = (u1 > -+ > ) is the cycle decomposi-

tion of o and €1, ..., e are the eigenvalues of U € U,,, then
Xo(o,U) = Te(UM) Te(UF2) ... Te(UPr) = pu(e™, ... ). (2.4.3)
For example if o is just the cycle [1,...,d],
Xelo,U)= Y (Uei,®---®@Ue;, @Ue;,€;, @ D e;)
1<iy,..ig<n
= Z Ui1i2 cee Uin—linUinil = TI‘(Ud).
1<iy,yig<n

Since X¢(0,U) = 3_(v.p) iwred of U, So(U)xw, (o) and the Schur functions {s,};(,)<, form an or-
thonormal basis of the class functions in L?(Uy,, fUn)’

W @) = [ xo( 05T
Therefore xw,(0) = Jy; pu(0)5p @)U = (0 5p)an. Since 1(p) < 1, (B Sp)an = (B 5,4
Thus by the Frobenius character formula (2.4.2)), xw, (o) = x, and W, ~ S, the Specht module
of the partition p.
O

To summurize, the purpose is to evaluate the scalar product (pgnq((cnyed(A), PEnd((cr)y2d)(B)),
with A, B two elements of End((C")®9). To each element A, one can associate the function
fa on Sy defined by fa(o) = (A,w(0)); by the Schur-Weyl duality, the intertwiner space
of (C")®? is spanned by {w(c)}ses, and thus the data of f4 and fp is enough to compute
(PEnd((ct)@e(A); PEnd((cr)2e)(B)). The matter is therefore to relate exactly (pgna((cayed(4); Pna(cmyedy (B))
to (fa, fB)r2(s4)-

2.4.3 Convolution algebra

Convolution algebra Let G be a compact group. We have seen in Section 2 that L?(G, /. G) =
@(V,p irred) @19’,;5:1(,;) Pij-

Let (V,p) be an irreducible representation. We identify End(V') with Mg(,)(C) through the
particular orthogonal basis (e, ..., ed(p)) chosen in Section 2.1.3} Thus there is a linear map
P, : My,)(C) — L?(G, Jo) sending Ej; to d(p)ps, and this linear map is an isomorphism
onto the vector space C), of matrix coefficients of the irreducible representation p. ®, maps
Ae Md(p)((C) to

g~ d(p) Tr(p(g)A").

However My, (C) has a richer structure given by the matrix multiplication, and by isomorphism
this structure transposes to the vector space @1<i, j<d(p) Pij-
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Definition 2.28. The convolution algebra on G is the x—algebra (C(G, C), ), with the product
* given by

fie fale) = [ Fi0) a0 )
The involution f* is given by B
f9)=Flg™).
There exists a state € on this algebra which is defined by the formula f — f(e), where e is the
unit in G.

Note in particular that e(f1 = f3) = [, fi(h)f2(h)dh = (f1, f2>L2(G,fG)'
By Schur orthogonality’s Theorem, if (e;) (resp. (f;)) is the chosen basis of (V, p) (resp. (V' p')),

©,(EL) @y (Ef) = d(p)d(p)pij * plulg) =d(p)d(p) /G (p(h)ej, ex)(p' (™) fi, fi)dh

—d(p)d(p) /G (p(h)es, e () Fir p(g) Fi)dh
:d(p)épp’(sklpil = (I)p(Eijlgl)'

Since ©,(E};) = @,(Eji) = d(p)pji and pji = (p(g)ei ej) = (p(g~1)ej, ;) yields also ®,(E};) =
®,(Eij)*, ®, is a x—algebra isomorphism. With this isomorphism, the scalar product given by
the trace on Mg, (C) gives the scalar product ﬁ(., .y on Cp.

Fourier transform of a representation Let (W,¥) be a finite dimensional representation
of G, and let Ay be the matrix algebra generated by {¥(g)}4eq. Since W is finite dimensional,
W = @(Vw) ired VTP ®(V,p) C» ®V, with Y 7, < co. Since G doesn’t act on the left of
each tensor product, A € Ay has the form

A= P Idev @ A4, (2.4.4)
(V,p) irred

with A, € My, (C).

Definition 2.29. The Fourier transform of A € End(W) is the function f4 € C(G,C) defined
by
fa(g) = Tr(9(g)AY).
Since on W = @y, ) irrea. €' @ V, U(g) has the form 9(g) = D(v) irred. Ldr, @ p(g), for
Aec Ay r
fale)= D rpTr(Ap(9) = iy 20
(Vip) irred. (Vip)

where A has been decomposed as in ([2.4.4)).

Let B € Ay be another operator with the expansion B = ®(V, 0 Idcr» ® B,. Then on one

hand irred
and,
Te(AB*) = Y r, Te(A,B;}) = %@(Amwp»,
(Vop) (Vi) TP
and on the other hand in C(G,C),
(Fa fB)12(c) = 2(%)%@%)@(3@»

(Vip)
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Thus if we denote by Py the operator multiplying each element of C, by fgz g, then
Tr(AB*) = (Pyfa, fB) = (Py = fa* f5)(e).

Characters in the convolution algebra Since Py is diagonal on each space C), it lies in
the center of (C(G,C), x). Note that for g,¢" € G;

fl9g') = /G 5,-1(h) F(h~1g)dh = (6,1 * )(g)

and

(f+8,1)(g) = /G F(1)6,-1(h g ydh = £(d'g).

Thus a function f lies in the center Z of (C(G,C),x) if and only if for all g,¢' € G, f(99') =
f(g'g). This means that the center of the convolution algebra coincides with the space of class
functions, and has a basis consisting in the irreducible characters {x,}, irred-

Moreover if p is an irreductible representation, then by the Schur orthogonality’s Theorem,

1
Xp * Péj (9) = m(;p,p’p/ij'

Thanks to this formula, we can express the operator Py above as :

P— Y d(rp)QXp.

(V,p) irred  *

Weingarten Calculus for U, Let Wg denotes the function Pcnyea. Applying the result of
the last paragraph to the representations of Sy on (C")®? in order to compute (PEnd((cmyee) (B, ®

@ Ej ), By ® -+ @ Eyy,)) yields

Lo 55 <pEnd((<Cn)®d)(Ej1j; ® - @ Ej 51 )s PEnd((cnyed) (Biyiy ® - ® Ejyir)))
:(Wg*fE 7 &0, fE i ® 08, )(6)
Computing the last product in the convolution algebra gives the Weingarten formula obtained
by Collins in[28]:
Theorem 2.30.
1
Lago= D Oiol) - SaotipOinr(@) - Siar(yWolor™).
o,TESy
d(N)2

with Wg(0) = iz Loxeai<n s XA(0)-

2.5 Application of the Weingarten calculus

We review here some applications of the Weingarten calculus. The main motivation of [28] for
developing the Weingarten calculus was to compute the coefficients of the so-called Itzykson-
Zuber integrals (z, X,Y) — fUn exp(nz Tr(XUYU*)dU. However we will only give results con-
cerning asymptotic freeness and second order freeness, since the latter involve free probability.
One should refer to [28] for more details on the asymptotic expansion of the Itzykson-Zuber
integrals.
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2.5.1 Asymptotic of the Weingarten function and pair partitions

All the results of this section rely on the asymptotic value of the Weingarten function. Suppose
from now on that n > d. In this case, Wg(o) = Z/\Fd dlmVA X,\(a) and Wy is precisely the
inverse of the character X(cnyea in the convolution algebra Sq. Applying expression (2.4.3)) to
o x Id yields

X(cmea = n,

where ¢(0) is the number of cycles of . Since X(cryed is polynomial in n, it is expected that
W g is rational in n. Actually, Collins proved in [2§] that

Z ax(o ~(2d—c(0)).

k>0

and that

o) = (d)* [ lur(~
Hi

where p is the partition coming from the cycle decomposition of ¢ and I, = % is the k—th
Catalan number. There exists also a combinatorial description of the other coefficients ay,.

A simpler proof for the expression of ag, based on Biane’s algebra (see [20]), has been given by
Collins and Sniady in [29]. Note in particular that the expression of ag is a particular value of
the Moebius function of the lattice of non-crossing partitions (see Section .

The higher order term in the expansion is given by the value of Wg on the identity, with
Wg(o) = (d")?n"%es (1 4+ O(n~')). An independent proof of this first order expansion can be
given using a scalar product on CSy.

Let (.,.) be the scalar product defined on CSy by the formula (o,7) = n® '™ and let Gpq be
the scalar product matrix ((0,7))sres,. With these notations (Gna)or = X (cnysd (0™ 17). Thus

if we set G 7 = (a(7))ores,, then the functions a, have to satisfy the relation

Zag X(cnyea(n™'7) = 0or.

In the convolution algebra of Sq, this means that aq * x(cnyed = %50. Therefore a, = %50 *Wg
and

(Grd)or = ao(T dlz 0o (Wg(h™'7) = —=sWy(o™'7).

(d')

Thus (G, 1)or = ﬁWg(a 17). On the other hand since c¢(o77!) < d for o771 # e, Gpg =
n(Id + o(n™')). Inverting G,q in the latter first order expansion yields (G, ;) = n~%(Id +
o(n™1)), which gives the first order expansion of the Weingarten formula.

The method using the Gram-Schmidt matrix of the scalar product on the intertwiner spaces of

U,, will be generalized to a large class of quantum groups in Chapter 5.

2.5.2 Asymptotic freeness of unitary invariant random matrices

Second order freeness A second-order probability space intends to capture both expecta-
tions and fluctuations of non-commutative random variables. Second-order probability spaces
and second-order freeness have been introduced by Mingo and Speicher in [64] to express the flu-
cutations of large random matrices. Unless specified otherwise, all the content of this subsection
comes from [64].
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Definition 2.31. A second-order probability space is the data of a probability space (A, ) with
a bilinear functional @ : A x A — C which is tracial in both arguments and such that $(.,14) =
&(14,.)=0.

The natural construction of a second order probability space is made by considering an
algebra A together with a linear map ¥ : A — L7 (Q2) sending 14 to the constant function 1q,

and such that ¥(a*) = ¥(a). Then (A, ¥}) yields a second-order probability space with the maps
©, @ defined by

p(a) = E(9(a)), #(a,b) = Cov(d(a),I(b)).

Note that ¢ does not need to be an algebra homomorphism. Actually if 9 is an algebra homo-
morphism, the map ¢ doesn’t give further information than ¢, since in this case

Cov(¥(a), V(b)) = E(I(ad)) — E(9(a) ) E(I(b)) = ¢(ab) — ¢ (a)p(b).

Example 2.32. Let A = M,, ® L~ (). The trace maps any random matriz to a random vari-
able, and therefore from the discussion above, (A, E(: Tr(.)), Cov(L Tr(.), L Tr(.))) is a second-
order probability space.

Definition 2.33. Let (A, ¢, p) be a second-order probability space and A1, ..., A, be subalgebras

of A. Ai,..., A, are called second-order free if they are free and if for all centered elements
ay, .. .,ap,bl, . ..bp/ with a; € Akiabj S Ak;’ k; 75 kiy1, 3 75 k;’—i-l’ k:p 75 k1 and k?;/ #* kll,

e ifp=p =1 and k1 # Kk}, ¢(a1,b1) =0.

e otherwise
p—1
Pay...ap, by ...b1) = Opy Z o(arbiyi) ... p(apbpyi),
1=0
where the indices are understood modulo p.

As for freeness, second order freeness allows to recover ¢ from the value of ¢ and ¢ on each
subalgebra A;.

Second-order limit distribution Let {A4,},>1 be a family of unital x—algebras and let
{Un}n>1 be a family of linear maps ¥, : A, — L>7 (2, C) with 9, (a*) = ¥,,(a) for any a € A,,.
A sequence ((af,...,ay))n>1 of p—tuples (af,...,ay) in A, has a second-order limit distribution
(¢, @) if and only if

e the family (ﬁn(P(a’f, cee ag)))PeC<Xi>1§i§p converges in moment to a family of complex
gaussian variables (9(P)) pece X;>1<i<,” The expectation of Y(P) is given by a functional
¢ : C < X; >— C and covariances are given by a bilinear functional ¢ : C < X; > xC <

X, >— C.

e the space C < Xy,...,X, > with the functional ¢ and ¢ is a second-order probability
space.

Note that C < Xy,..., X}, > denotes here the *—algebra of noncommutative polynomials in
X;, X}. We will write X} = X, ! in the sequel.

(2

Example 2.34. To illustrate the meaning of a second-order limit distribution, let us consider the
convergence result of Diaconis and Shahshahani in Theorem|(2.24]. Let C[U,| be the unital algebra
of polynomials in U(n), with U(n) being a unitary matrixz chosen randomly according to the Haar
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measure on Uy, and let ¥, (C[U | = L ( Un,fU define by 9,(B) = Tr(B) — Tl (Tr(B)).
Then from Theorem-, ) has a second-order limit distribution (C[X], ¢, @) with p(X?) = 0
and §(X*, X7) = 6;_;i.

Definition 2.35. Let {Ay,}n>1 be a family of unital algebras and let {Vy,} be a family of linear
maps Un : Ay — L7 (,C). A couple of sequences ((af,...,ap), (b1,.. .,bg))n>1 s asymptoti-
cally second order free if and only if the sequence of p + q elements ((af,. .., s b, .. ,bq))n>1
has a second order limit distribution (C < Xy,..., X, Y1,...,Y, >, ¢,¢) such that C < X; >

and C <Y; > are second order free in (C < Xl,...,Xp,Yl,...,Y >, 0,0).

Second order freeness for random matrices The two following theorems are two striking
applications of the asymptotic computation of the Weingarten formula. The first one is directly
based on the evalutation of integrals of type (2 with the Weingarten calculus :

Theorem 2.36. [[63],[62]] For eachn > 1 let Up(1),...,U,(p) be p independent Haar-distributed
unitary matrices of dimension n. Let A, = C[U,(1),U,(1),...,Un(p), Upn(p)] with ¥, = Tr(.) —
oL [T ().

Then the family (U,(1),Un(1),...,Un(p),Un(p)) is asymptotically second order free and the
second order distribution (C[X;],p, @) (resp. C[Y;]) of each Uy(i) (resp. Uy(i)) is given by

SO(sz) =0, @(szszk/) = 5k,*k’k'

A generalization of this result is given for the free unitary group in Chapter 5.
The second theorem should be seen as a generalization of the asymptotic freeness result of
Voiculescu on independent random matrices in [92]. We consider here (A, J,,) as the x—algebra
of random matrices with the *—linear map ¥, = Tr(.)— 21E(Tr(.)). An n—dimensional random
matrix A is said unitarily invariant if the law of A is the same as the law of UAU* for all U € U,,.

Theorem 2.37. [[63]] Let ([AL,..., AN])n>1 and ([B},. .., Bi])n>1 be two sequences of random
matrices, each of them having a second order limit distribution. Suppose moreover that the
entries of [AL, ..., Ab] are independent to the ones of [B}, ..., B], and that the law of each B,
18 unitarily invariant.

Then ([AL,..., Ab])n>1 and ([BL, ..., Bi])n>1 are asymptotically second order free.

The Weingarten calculs is the cornerstone of the proof. Indeed, since the law of each BY, is uni-
tarily invariant, any expectation of products of B, results in elements of Mory;, ((C?)®4, (C™)®%).
Therefore computing expectations of traces of products of these matrices with the ones of
[AL,... Ab] yields projections on the space of intertwiners, and thus the use of the machin-
ery of Section 5.

2.6 Generalization to other groups: the Tannaka-Krein duality

We have seen that the computation of an integral with respect to the Haar measure was done
through the following procedure :

1. Relate the integral to the scalar product of the projection of two operators on the space
of intertwiners of the group.

2. Find a spanning set of the space of intertwiners, on which orthogonal projections have a
straightforward expression.
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3. Use the properties of the space of intertwiners to recover the scalar product from the
orthogonal projections on each element of the spanning set.

Although the first step is a straightforward, the second and the third ones depend heavily on
the group and may not be possible. Fortunately there exist some groups for which the second
and third steps are still feasible. This will lead to define a category of groups whose intertwiners
have a nice combinatorial description (see Section and [I5]). This combinatorial description
is greatly simplified by the rich structure underlying the intertwiner spaces. This structure is
given by the Tannaka-Krein duality.

2.6.1 Tannaka-Krein duality for compact matrix group

The Tannaka-Krein duality describes the operations which exist on intertwiner spaces, and estab-
lish a bijection between compact groups and collections of spaces stable under these operations.
We will only give the result in the case of a matrix compact group but a similar result exists for
general compact groups.

Let G C U, be a compact subgroup of U,. There exists a natural family or representations
of G, indexed by words in {o,e}. Namely let (V°, p°) be the fundamental representation of G
given by the identity morphism p° : G — U, and let (V*,p®) be its dual representation given
by the morphism p°®((g:j)1<i,j<n) = (ij)<i,j<n- Note that as vector spaces, V° ~ V*® ~ C". Let
(ei)1<i<n be a basis of V° which is orthogonal with respect to the invariant scalar product. The
dual basis in V* is denoted by (€;)1<i<n and the pairing between both bases is denoted by (.,.).
Note that (.,.) is an intertwiner from V° ® V* to the trivial representation V? ~ C.

Taking tensor products of these two representations yields the existence, for any finite word
g=¢1...,& in {o, e}, of a representation (V¢, p?) with

V€:V81®...®V6T’pezp£1®...®par'

Let us denote by Morg(e,e’) the vector space of intertwiners from (V¢, pf) to (V< pf'). Thus
for any G C U, Morg(e, ') is a vector subspace of L(V¢, VEI), the space of linear maps from
Ve to Ve

Remark 2.38. The collection of vector spaces {Morg(e,e’)} satisfies several properties :

e Idyo. € Mor(o,0),Idye € Mor(e,e), (.,.) € Mor(ce,0),(.,.) € Mor(eo, ).

e If Ty € Mor(ey,e3), Ty € Mor(eg,e3), then Ty o Ty € Mor(eq,€3).

o [fT) € Mor(ey,e3),Ta € Mor(eg,e4), then Ty @ Ty € Mor(e1e2,€3¢4).

e IfT € Mor(ey,e3), T* € Mor(eg,e1).

Of course, since the functions on a compact group form a commutative algebra,

T:e;®ejrej®e;isin Mor(oo,00). (2.6.1)

All these properties are straightforward deductions of Section 1.2.

Example 2.39. For U,, the space of intertwiners Mory, (e1,e2) is exactly the vector space
spanned by all T, for p € P gpternating(€1,€2) (as defined in Section . Ife = ¢ = o,
Each allowed pair partition is encoding a permutation of Sq. In particular the scalar product
on permutations considered in Section 5.1 is the scalar product between the maps T, for p in

d d
P2,alte7"nating(o , O )
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The striking fact is that the collection {Morg(e,€’)}e o completely characterizes G: this is
the content of Tannaka’s Theorem. Note that the actual statement of the following Theorem is
a bit more evolved (refer to [81] for an exact statement):

Theorem 2.40 ([81]). G can be reconstructed from the data of {Morg(e,€’)}cor. In particular
{Morg(e,e’)}e s completely characterizes G.

Krein’s Theorem gives an answer to the dual question: to find all collections of vector spaces
{H(e,&")} being the collection of intertwiners of any compact subgroup of U,. Of course such
a collection has to satisfy the conditions (2.38). Krein’s Theorem asserts that these conditions
are enough:

Theorem 2.41 ([51]). Let {H(e,&')} be a collection of vector spaces such that H(e,e') C
L(VE,VE). If {H(e, &)} fulfills the four conditions (2.38) and the commutativity relation (2.6.1),

then there exists a compact subgroup G of U,, such that for all €,¢’,
H(g,&") = Morg(e, €').

By Tannaka’s Theorem, the compact group G coming from Krein’s Theorem is uniquely
determined by {H (e,¢’)}.

2.6.2 Other groups with intertwiners described by set partition

In this thesis we are mainly interested in groups (and later quantum groups) whose associated
intertwiner spaces are spanned by maps 7T),’s as in the case of U,.

Compact classical groups The orthogonal group O,, is the group of matrices O € GIl,(R)
such that OO! = Id, and the symplectic group Sp, is the group of matrices T' € Us,, such that
TJT! = J, with J = (—?dn Ig")

In both cases, the fundamental representation and the dual ones are isomorphic: the isomor-
phisms are given by the map Id in the orthogonal case and by the map J in the symplectic
case. Therefore it is enough to specify the description of the intertwiner spaces Morg(e,€’) in
the case € = of and ¢ = o', Let us simply denote these vector spaces by Morg(k, k).

The intertwiners of the compact classical groups O,, and Sp, are also described by pair parti-
tions. Refer to Section for the definition of the maps T, Igs for a given set partition and a
Hilbert space V. In the case of O,,,

Moro,, (kv k,) = <Tp>p€P2(kJ€')’

Moreover {Tp},cp,(ki)} 18 a basis of Morg, (k, k') for n > k 4+ k'. A same result holds for
Spn, but it is necessary to adapt the maps T},’s to the non-degenerate bilinear form given by
J. Using this description of the interwiners, it has been shown by Diaconis and Shahshahani in
[33] that the random vectors (Tr(OF))g>1 and (Tr(TF))x>1 converge in moments respectively to
a gaussian vector (og)g>1 and (tx)r>1, with covariance matrices E(ogox) = E(tyty) = Opik and
expectations E(og) = 0k even and E(tx) = —0k even-

In [29], Collins and Sniady used the Weingarten calculus to compute the Haar integral of arbi-
trary polynomials in the coefficients of the fundamental and dual representations of these two
groups. In particular the same results as in Section 5 exist in the orthogonal and symplectic
case.
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Symmetric group A permutation o, of S, can be embedded into O, by considering its
permutation action on the vector space C™: this action simply permutes the elements of the
canonical basis (e;)1<i<n. This yields a representation (v(0)ij)1<ij<n of Sy, called the funda-
mental representation. Thus S, can be seen as a compact matrix group through this fundamental
representation v.

As for the orthogonal group, the fundamental representation is isomorphic to the dual repre-
sentation, and therefore it is enough to describe the interwiner spaces for e = of, ¢/ = o*’. The
description is once again achieved by using the maps {7} for general partitions. Indeed the
spaces of intertwiners are Morg, (k, k") = (Tp)pepk, iy, and the set {1} pcp(ri) is a basis of
Morg, (k, k') for n > k + k' (see [44]). If n < k + Kk, a basis is given by restricting to the set
{T,} where p is a partition having less than n blocks.

Diaconis ans Shahshahani proved in [33] the convergence in moments of the random vector
(Tr(ck))k>1 toward a vector of independent random variables (sg)r>1, sx having a Poisson
distribution with parameter % Their proof of the result doesn’t use the description of the inter-
twiner spaces. A proof involving this description has been done by Banica, Curran and Speicher
in [14].

As it was already said in Section 4.2, symmetric functions play also an important role in the
representation theory of .S,,. Indeed irreducible representations S, of S, are indexed by Young
diagrams v with n cells. Note first that there is a natural inclusion S; x S,,, C S, for [ +m = n.
Therefore an irreducible representation p of .S, is not necessarily an irreducible representation
of S; x Sy, and the decomposition of p into irreducible representations of S; x .S, is given by
the multiplicative structure of the ring of symmetric functions in the Schur basis: namely if
A1l pwEm and v F n, there is a decomposition

Sy = @(S)\ ® S,u)@cx“a

AHL
ukFm

where c§ , are the Littlewood-Richardson coefficients (see and [60], Part I, Ch.9 for their
precise definition).

The Weingarten calculus for the symmetric group is not as much developed as the one for the
classical Lie groups. We have seen in Section 5 that the precision of the Weingarten calculus
is given by the ability to invert a Gram-Schmidt matrix. In the unitary case, this was greatly
simplified by the Schur-Weyl duality and the well-known representation theory of the different
symmetric groups Sk, for £ > 1. The same method applies also to the orthogonal and symplectic
case. However in the symmetric case, the Schur-Weyl theory involves another family of algebras,
namely the partition algebras Py (n) for n,k > 1. The understanding of the algebraic properties
of this family is recent (see the work of Halverson and Ram in [44] for example), and therefore
the Weingarten calculus has still not been fully achieved in this setting.

Wreath product with S,, Let G be a classical group and n > 1. Then S,, acts on G" by the
automorphisms

5:0€ Sy 5(0)(g1,-,9n) = (Go1(1)5+ -+ > Go1(n))- (%)
Definition 2.42. The wreath product between G and S,, denoted G 1Sy, is the semi-direct
product of G™ and Sy, where Sy, acts on G™ by the action . In other words,

GZS = {((917"'7.971)70-)792' S G,U S S’I’L}7
with the product

((g15---9n),0) - (915 9n), 1) = ((9195-1(1)> - - > InTo—1(n))> )
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If G is a matrix compact group, there is an equivalent way to define G .5,. Namely let
(uk1(g))1<k,<p be the fundamental representation of G. Then G S, can be defined as the sub-

group of Uy, consisting of the matrices {(vij(a)ukl(gi))lgi,jgn} foro € S, and ¢1,...,9, € G.
1<k,i<p
If G is a compact group, G ! S, is compact as well and thus there exists a Haar measure on

G S,,. It is easy to see that G .S, is isomorphic to G X --- X G X S, as a measure space and
that the Haar measure on G5, is given by dAgs, = &), dg; ® do, where dy denotes the Haar
measure on G and do the normalized counting measure on S,,.

Let G C U,,. In this case G5, C U, ® Uy,, and by the Tannaka-Krein duality, the description
of G1 .S, is completely given by the data of Morgs, (¢,¢’) for all words e,&’ in {o,e}. Actu-
ally it is a straightforward computation to express Morgs, (¢,€') in terms of Morg, (¢,¢’) and
{Morg(e,e'}e e an element of Morgs, (€,¢’) is given by a partition p € P(e,&’) together with
an element of Morg(ep,e) for each block B of p, ep and €5 being respectively the restriction
of € and €’ to the elements in B (see Chapter 6 for more details on the subject).

As consequence, we get the convergence in law of Tr(ugs,) toward a compound Poisson distri-
bution with initial law Tr(ug).

Note that the irreducible representations of G5, are described by generalization of Schur func-
tions. Refer to [60], Part I, Appendix B for an exposition in the case of a wreath product G.S,,
with G a finite group.

Remark 2.43. For two sets X, Y denote by F(X,Y) the set of maps from X toY. The wreath
product is a more general construction than the one presented here. Let G be a group. For any
set X and group F acting on X, the wreath product G1x F is the set F(X,G) x F with the
product  defined as follows: for h,h' € F(X, Q) and f,f € F, (h, ) (K, f') = (h, ff), where
forx e X, )
h(z) = h(z)l' (f~(x)),
with the product on the right hand side being done in G.
In Chapter 6, we will study this more general wreath product for G a compact group, X a finite

set and F' a permutation group of X. In this case the construction is exactly the same as in the
case of the symmetric group, and G lx F is compact.
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Chapter 3

Compact quantum group

In this chapter we introduce the notion of compact matrix quantum group and give the non-
commutative version of the results of last chapter. This lead to an overview of the results
obtained in the thesis.

3.1 Noncommutative spaces and quantum groups

3.1.1 What is a compact quantum group ?

Non-commutative spaces The notion of quantum groups fits into the more general frame-
work of noncommutative spaces. The starting idea is that most properties of a classical object,
like a topological or a measurable space, can be seen through the algebra of functions on this
object. Thus by a considering noncommutative generalization of these algebras, it is possible to
define noncommutative analogs to the classical objects.

Example 3.1 (Historical example). The most trivial example is the one of complex functions
on a unique point. Classically this space is just C, with multiplication given by the canonical
one on C. The noncommutative generalization is obtained by replacing C by the algebra M, (C)
of n—dimensional matrices. This is exactly what Heisenberg, Born and Jordan (see [24]) did
when replacing the orbital position x and momentum p of an electron by two matrices X and P
(which were infinite dimensional in this case).

This example can be transposes to the case of C-valued functions on r points. In this case the
algebra C™ with the pointwise multiplication turns into a matriz algebra @;_, My, (C). Note that
the classical algebra C" coincides with the center of @;_; My, (C).

In the previous example there is no particular interest in defining topological or measurable
noncommutative spaces, since the classical space is a finite set. The correct approach to the
definition of functions on a noncommutative topological space is the one of C*—algebras:

Definition 3.2. A C*—algebra A is a x—algebra over C with a norm ||.| such that
e A is complete with respect to ||.||.
o forallxz,y € A, (xy)* =y*z*.

o forallz,y € A, |zyll < ||=[llyll and |2z = [l=>.
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This definition is the most natural one for two reasons. First, the algebra of complex func-
tions on a locally compact Hausdorff space, considered with the ||.||c—norm, is a commutative
C*—algebra. Actually any commutative C*—algebra is of this form:

Theorem 3.3 (Gelfand’s Theorem). Let A be a commutative C*—algebra. There exists a locally
compact Hausdorff space X such that A is isomorphic to C(X), the algebra of complex functions
on X wvanishing at infinity.

If A is unital, then X is compact.

Secondly, if A is finite dimensional, we recover the construction made in Example

Theorem 3.4 (Artin-Wedderdurn’s Theorem). Let A be a finite dimensional C*—algebra. Then
there exist r > 0 and ny,...,n, > 0 such that

A~ é M,,(C).
i=1

If X,Y are compact spaces, a continuous map ¢ from X to Y yields a C*—morphism & :
C(Y) — C(X) defined by ®(f)(x) = f(p(x)). If ¢ is an injective map (resp. surjective,
bijective), then ® is a surjective map (resp. injective, resp. invertible). Therefore C* —morphisms
encode continuous maps between non-commutative topological spaces.

Remark 3.5 (Where are the points in a noncommutative space 7). Fven if the right way to
see a noncommutative space is to consider the functions defined on it, it is still possible to
recover a topological space from a general C*—algebra. If A is commutative, we have seen that
A isomorphic to CY(X) for a locally compact Hausdorff space X . In this case one can show that
any irreducible (continuous) representation of A is of the form evy : a — a(x) for an element
zeX.

Similarly if A is a general C*—algebra, we define the spectrum Spec(A) as the set of equivalence
classes of continuous representations of the C*—algebra. It is possible to define a topology on
Spec(A) such that in the commutative case, Spec(C°(X)) ~ X. In Example this yields as
expected that Spec(A) is a discrete space with v elements. Therefore formally, evaluating a € A
on x € Spec(A) is taking the image of a in the irreducible representation x.

This point of view is however often limited, since in many cases, Spec(A) is just a point.

It is also possible to define noncommutative measurable spaces. This yields the notion of
von Neumann algebra, which won’t be explained here (refer to [80]).

Compact quantum group Following the dual approach to the study of spaces, we want to
translate the axioms of a compact group G at the level of the continous functions on G, in order
to construct noncommutative analogs.
If (X, e) is a compact Hausdorff space with a continuous semigroup structure e : X x X — X,
the algebra of continuous functions on X inherits an additionnal structure. Namely it is possible
to define the map
cX) — C(X x X)
JANR: .
{ foo= (@) e flzed)
By Arzela-Ascoli Theorem, C(X x X) ~ C(X) ® C(X) (where C(X) ® C(X) is the norm
completion of the algebraic tensor product). Since (fg)(zez’) = f(zez')g(zez’) and f(ze2') =
f(zex’), Ais a x—homomorphism from C(X) to C(X) ® C(X). Moreover the associativity of
the product on X yields the relation:

(A®Id) o A(f))(w1,22,23) = A(f)((z1 @ 22),23) = f((21 ® 22) ® 3))
= f(z1 0 (z20x3)) = (Id® A) o A(f) (21,22, 23).
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A map A satisfying the relation (Id ® A)o A = (A ® Id) o A is called coassociative.

Let us consider the maps ¢ : (z,2) — (zoa’,2') and ¢’ : (x,2) — (z,x e 2’). If X is a group,
these maps are homeomorphisms of topological spaces. By duality ¢ and ¢’ yield on C(X) ®
C(X) the maps ®(f,9) = A(f)(1®g) and ®'(f,g) = (f ® 1)A(g). Since ¢ and ¢’ are injective,
® and @' are surjective maps, and therefore {(f ® 1)A(g)}f4cc(x) and {A(f)(1® g)} . gec(x)
are dense in C'(X) ® C(X).

Reciprocally, if these sets are dense, this means that the maps ®, ®’ are surjective, and thus the
maps ¢, ¢’ are injective. But this is equivalent to the left and right cancellation property for
the compact semigroup X, and therefore X is actually a group.

The C*—algebra C(G) of functions on a compact group G is therefore a commutative unital
C*—algebra with an associative coproduct A : C(G) — C(G) ® C(G), and such that the sets
{(f®1)A(9)} s gec) and {A(f)(1®9)} 1 gec(q) are dense in C(G) ® C(G). This motivates the
following definition, which has been introduced by Woronowicz:

Definition 3.6 (Woronowicz,[99]). A compact quantum group is a unital C*—algebra A with a
coassociative C*—morphism A : A — AR A such that A(A)(1® A) = (AR 1)A(A) = A® A.

The C*—algebra is often denoted C'(G) to emphasize its quantum group nature, even if there
is no concrete underlying space G.
(C(H),A) is a quantum subgroup of (C(G), A) if there is a sujective C*—morphism ® : C(G) —
C(H) such that (® @ ®)A = A’®. If ® is an isomorphism, then H and G are called isomorphic.
As for C*—algebras, a commutative compact quantum group is a classical group in the following
sense :

Proposition 3.7. Let A be a compact quantum group. If A is commutative, then there exists a
compact group G such that A ~ C(G).

3.1.2 Representation theory

In this subsection we will introduce the representation theory of a compact quantum group for
finite dimensional representations. The content of this subsection comes from [99].

Haar state Since the purpose is to extend probabilistic results from the classical group to
the quantum case, one need a natural probability space on compact quantum groups. In the
classical setting, this probability space was given by the Haar measure fG This probability
measure is the unique to satisfy the relations fG (gh)dg = fG (hg)dg = fG g)dg for all
continuous functions f on G; equivalently, for any regular probablhty measure f on G and any
function f € C(G,C), [4yq flgh)dgdu(h) = [4. o [(hg)dgdu(h) = [ f(

By the Riesz representation theorem, there is a bijection between regular 31gned finite measures
on G and bounded linear functionals on C'(G,C). This bijection restricts to a bijection between
regular probability measures p on G and positive linear functionals [ on C(G,C) such that
[(1) = 1. Positiveness means that [(f) > 0is f > 0 on Gj; such positive linear functional | with
[(1) = 1 is called a state on C(G,C). If we use the dual approach of the last subsection, the
Haar measure corresponds to the unique state fG on C(G,C) satisfying the relations :

(h@)A = (1® h)A = h, (3.1.1)

for any other state [ on C(G,C).

In the quantum framework, we don’t have access to the space but only to the functions defined
on it. Therefore we can not define measures, but only states: a state w on a unital C*—algebra
A is a linear functional which is positive, in the sense that w(aa™) > 0 for any a € A, and such
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that w(1) = 1.
One of the major results deduced from the axioms of a compact quantum group C(G) is the
existence of a state on C(G) satisfying the relations (3.1.1)).

Theorem 3.8 ([99]). Let C(G) be a compact quantum group. There exists a unique state h on
C(Q) such that for any bounded linear functional ¢ on C(G),

(h® @)A = (p @ h)A = h.

Therefore as in the classical case, a compact quantum group becomes naturally a noncom-
mutative probability space with the Haar state h. We will mainly be interested in the behavior
of elements of C(G) with respect to this Haar state. The example of U, showed us that the
representation theory of the group plays an important role in the computation of expectations
with respect to this Haar state. Fortunately it is also possible to build a representation theory
of a compact quantum group, and this representation theory is approximately the same as in
the classical case.

Finite dimensional representations A finite-dimensional representation of a classical com-
pact group is a finite-dimensional vector space V together with a continuous map p : G —
End(V), such that p(gg’) = p(g9)p(¢’) for all g,¢' € G and p(e) = Idy. If the dimension of V is
n, the space of functions from G to End(V) is isomorphic to the space End(V) ® C(G, C); thus
the previous definition is equivalent to the data of a vector space V' together with an element p
in End(V) ® C(G, C) satisfying

(Id® A) o p = p1api3,
where (a ® b)12 =a®b® 1o and (a @ b)13 = a ® 1gg) @b
Applying p to a vector v € V yields an element in V' ® C(G, C), and the image of a subspace W
of V' is a subspace of V ® C(G, C).
This yields the following definition in the quantum case :

Definition 3.9. Let (C(G), A) be a compact quantum group. A finite dimensional representation
of C(G) is a finite-dimensional vector space V' with an element o € End(V) ® C(G) such that

(a®Id)oa=(Id® A)oa,

as maps from V to V@ C(G) ® C(G).
An intertwiner from (V,«) to (V',d/) is a linear map T : V — V' such that

o oT =(T®Id)oa.
The vector space of intertwiners from (V,a) to (V',a') is denoted Morg(a, o).

Since V is finite dimensional, we can express « in a basis (e;)1<i<p of V. This yields a matrix
(uij)1§i7j§ in Mn(C(G)) such that

n
A(ugy) = Zuzk & U
k=1

Reciprocally any matrix in M, (C(G)) satisfiying the above relations yields a finite dimensional
representation of C(G).
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We can take tensor products, direct sums and dual of finite dimensional representations (ui;)1<i j<n
and (vg)1<ki<m by considering the following usual operations on M, (C(G)), M (C(G)):

0
u®v = (V) 1<ij<n € Mmn(C(G)),u®v = (g ) € My 1m(C(G))
1<k,1<m v

and u = (ufj)lgiﬂ'gn.

The representation is called non-degenerate if (u;j)1<; j<n is invertible in M, (C(G)), and two
representations are said equivalent if there is an invertible intertwiner from one to the other.
As in the classical case, an invariant subspace of (V, «) is a subspace W C V' such that a(W) C
W ®C(G) and a fixed vector is a an element v of V' such that a(v) = v®1¢(g). A representation
(V, ) is called irreducible if there is no invariant subspace except {0} and V.

Thanks to the Haar state, if (V,«) is non-degenerate, it is still possible to defined a scalar
product (.,.) on V which is invariant with respect to o: namely (.,.) satisfies

(aen), aler) =D (ej, e1) ® ujiufy, = (ei,e1) @ 1.

To obtain this scalar product it suffices to take any scalar product (.,.) on V, and to average
(.,.) with respect to the Haar state:

(eisex) = Z<€j7 er) @ h(ujiug).

Therefore any non-degenerate representation (V, «) has a basis B such that the matrix u of « in
B verifies uu® = u*u = Id, where (u*);; = u};. Such a matrix is called unitary. The main differ-
ence with the classical case is that the conjugate matrix defined by u;; = u;; is not necessarily
unitary as well. However we can show that the representation associated to u has good prop-
erties, namely: it is non-degenerate (resp. irreducible) if u is non-degenerate (resp.irreducible)
and the representation associated to # doesn’t depend, up to equivalence of representations,
to the choice of a matrix u for (V,a). A compact quantum group such that for any unitary
representation wu, « is also unitary, is called a compact quantum group of Kac type.

Matrix quantum group We have seen in Chapter 2 that the situation is much simpler when
the group is already described as a subgroup of U, for some integer n > 1. In particular the
Peter-Weyl Theorem, which is a deep result in the general case, has a much simpler proof in
this case.

Definition 3.10. A compact matriz quantum group is a triple (A, (uij)i<ij<n) such that :
e Ais a C*—algebra.
o The x—algebra generated by {u;j}1<i j<n is dense in A.
o The map ® : u;j — Y wir, ® uj; extends to a C*—homorphism from A to A® A.
o The matrices u = (u;j)1<ij<n and U = (u];)1<ij<n are invertible in My(A).

u can always be chosen unitary, up to equivalence of representations. Since @ is non-
degenerate, there exists a matrix F € GI,(C) such that FuF~! = (u')~! (F is the matrix
encoding the invariant scalar product on the representation of @).

One can prove that a matrix compact quantum group is actually a compact quantum group.
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Therefore a compact matrix quantum group is just a compact quantum group (C(G), A) with a
particular representation u = (u; j)1<i j<n Whose coeffficients generate all the C*—algera C(G).
A compact matrix quantum group is of Kac type if F' can be chosen equal to the identity. In

this case we have
* *

wu = wu* = ' = v'u = Id.
Remark 3.11. This definition is very convenient to define new compact matriz quantum group.
Namely it suffices to specify relations among abstract variables {Uij,u;}}lgi,jgn that are com-
patible with the coproduct defined above, and then to construct the universal C*—algebra having
these relations.
An important example is given by the free unitary quantum group U’ , introduced by Wang in
[95]. The C*—algebra is the universal C*— algebra generated by n* elements u = (uij)1<ij<n
satisfying the relations u*u = vu* = wu! = vt = Id. Since any other compact matriz quantum
group of Kac type has also to fulfill these relations, U,5 can be seen as the biggest compact matriz
quantum group of Kac type of dimension n.
If we add the commutation relations w;juy = uwu; for all 1 < 4,j,k,1 < n, the resulting
C*—algebra is commutative and corresponds therefore to a compact matriz group. Actually this
group is Uy, the unitary group of dimension n.

3.1.3 Tannaka-Krein Duality

We will present here the Tannaka-Krein duality in the framework of compact quantum groups.
This duality extends the Tannaka-Krein duality of Chapter 2 to compact quantum groups.

Peter-Weyl Theorem and Schur’s orthogonality Theorem The similarity in the repre-
sentation theory of the classical and the quantum groups extend to the two majors Theorem
of the first section of Chapter 2. Let C(G) be a compact quantum group. A matrix coefficient
of C(G) is an element u;; € C(G) coming from a finite-dimensional representation of G. The
vector subspace of matrix coefficients of C'(G) is a *—algebra for the same reasons as in the
classical case. This s—algebra is denoted by C(G)o.

Theorem 3.12. Let C(G) be a compact quantum group. The x—algebra C(G)o is dense in
C(G).

The Schur’s orthogonality Theorem is in the quantum case is analogous to the one in the
classical case. However one needs to modify a bit the orthogonality relations, because the dual
of a unitary representation is not necessarily also unitary.

Let {(U%)lgi,jgd(a)}a irred D€ the set of equivalence classes of irreducible representations (written
in an orthonormal basis with respect to the invariant scalar product). We have seen that for
each irreducible representation u®, the dual representation u® is not necessarily unitary but
always nondegenerate, and therefore there exists ' € My(q)(C) such that F*(u®)"(F®)~la® =
Tdym(c(c):-

Let L?(C(G), h) be the completion of C(G) with respect to the scalar product (a,b) > h(ab*).

Theorem 3.13 (Schur’s orthogonality Theorem). The set {(U%)lgi,jgd(a)}a irred forms a basis
of L*(C(G),h), and for a, B irreducible representations, 1 <i,7 < d(a) and 1 < k,1 < d(B),




with Q, Dy, only depending on F<. Similarly

oy Qa'
By (ug,)") = Sy Da)pq-

If G is of Kac type, h((uﬁ,)*ujo-‘q) = (5(1/3(51,(152-]-% and the Haar state is a trace:

h(zy) = h(yx) for all x,y € C(G,h).

In particular in the case of a compact quantum group of Kac type, the situation is very close
to the one of classical compact groups.

Tannaka-Krein duality In the last part of the previous chapter, it has been shown that a
classical compact group is essentially the same as a collection of vector spaces of linear maps
stable under certain operations and that most of the properties of the group could be seen on
this collection of spaces. The similarity between classical compact groups and compact quan-
tum groups continues here, since the same kind of alternative description exists for a compact
quantum group.

The natural framework to describe the representation theory of a compact quantum group is the
one of concrete monoidal W*—category with dual. We won’t introduce the basics of category
theory here and an interested reader should refer to [59] to get precise statements and theoretical
explanation of the formalism introduced here. The definition is given from an abstract point
of view, but keeping in mind the representations of a compact quantum group makes it more
concrete.

Definition 3.14 ([I00]). A concrete monoidal W*—-category (or CMW™*—category) C is a
monoid R together with a family of finite dimensional Hilbert spaces { Hy },cr such that H @ Hg =
H,s ((H,® Hs)® Hy is canonically identified with H, @ (Hs ® Hy) ), and a family of vector spaces
Mor(r,s) C L(H,, Hy) with the following properties :

e Idy. € Mor(r,r)
e If T € Mor(r,r") and T € Mor(r', ") then T'T € Mor(r,r").
e If T € Mor(r,r") then T* € Mor(r/, r).
o IfT e Mor(r,7") and T" € Mor(r’,r®)) then T @ T' € Mor(rr’, r"r(®)).
e H . =C
C is called complete if moreover

o For any r € R and Hilbert space H such that there exists a unitary operator V : H. — H,
H = H; for some s € R, and V &€ Mor(r,s).

e For any projector p € Mor(r, ), there exists s € R such that Hs = pH, and the embedding
i:Hg — H, is in Mor(s,r).

e For any r,7’, there exists s € R such that H, ® H,, = Hy and the canonical inclusion
H, — Hg and H,.» — H; are respectively in Mor(r, s) and Mor(r', s).

Example 3.15 ([I00]). The set of finite dimensional representations of a compact quantum
group (C(QG), A) together with the spaces of intertwiners between them is a complete C MW™*— category
denoted Rep G. Moreover H is a quantum subgroup of G if and only if Rep G is a subcategory

of Rep H.
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Note that we didn’t formalize the fact that the dual of a finite dimensional representation is
equivalent to a unitary representation. In the context of C'MW™*—category, this is equivalent to
the following definition :

Definition 3.16. Let r € R and H, the associated Hilbert space with basis (€;)1<i<n. T has
a complex conjugate T € R if there is an invertible antilinear map j : H, — Hz such that
S e ®j(e;) € Mor(e,r7) and Y. j 71 (e;) ® e; € Mor(e, 7r).

A CMW*—category such that any v has a complex conjugate 7 is called a CMW™*—category
with conjugates.

For example, a finite dimensional representation u® of a compact quantum group has a dual
4%, and the map j is given by the matrix F'* as constructed in Paragraph
In the classical case, it was easy to compare the categories of representations of two compact
groups G and G’ since we only considered matrix compact groups of fixed dimension. Thus
we just had to compare the intertwiner spaces Morg(e,e’) and Morgs(e,¢’) for all €,¢’. In the
broader case of CMW™*—category, we still have to be able to compare these objects. This leads
to the following definition:

Definition 3.17. Let C = (R, {H, }rer, {Mor(r,7") }, 7er) andC' = (S, {Ks}ses, {Mor(s,s') }s ses)
be two C MW ™*—categories.

C and C' are unitarily monoidally equivalent if there is a monoid morphism F : R+ S and for
each r, v’ a vector space isomorphism F : Mor(r,r") — Mor(F(r), F(r')) such that :

e for all s € S, there exists r € R such that Mor(F(r), s) contains a unitary operator.

e F respects the operations on C and C': namely if T € Mor(r,7"),T" € Mor(r',7"),T" €
Mor (", r®)), then F(T*) = F(T)*, F(T'T) = F(T")F(T) and F(TRT") = F(T)2F(T").

C and C' are unitarily isomorphic if they are unitarily monoidally equivalent, and moreover there
exists for each r € R a unitary operator F, : H, — K such that:

o F(rr')=F(r)® F(r').
e If T € Mor(r,r"), F(r')oT = F(T) o F(r).

This means that two CMW™*—categories are unitarily monoidally equivalent if they have
the same structure (composition, tensor products, decomposition into simple pieces,...), but
the concrete realization on Hilbert spaces are different; they are unitarily isomorphic if even
the realization of these structure on Hilbert spaces is the same. In the latter case the two
C MW*—categories should be considered as being the same object.

We can now state the Tannaka-Krein duality in the compact quantum group case. This duality
has been discovered and proved by Woronowicz in [100].

Theorem 3.18 (Tannaka-Krein’s Duality). Let C be a complete CMW™*—category with con-
jugate. There exists a compact quantum group (C(G),A) such that C is unitarily isomorphic
to RepG. Moreover if (C(H),A’) is another compact quantum group such that C is unitarily
isomorphic to Rep H, then H is isomorphic to G.

There exist compact quantum group whose categories of representations are unitarily monoidally
equivalent but not unitarily isomorphic. In the latter case the representations are still similar,
and for example two compact quantum groups with unitarily monoidally equivalent categories
of representations have isomorphic fusion rings.

In the case of a matrix compact quantum group of Kac type, the situtation is much simpler.
Let n > 1. We are using here the notations of Section [2.6.1
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Theorem 3.19 (Tannaka-Krein’s duality in the matrix case). Let {H (e, ")} be a collection of
vector spaces such that H(e,e') C L(VE,VE). If {H(e,&)} fulfills the four conditions (2.38),
then there exists a compact subgroup (C(G),A) of U,S such that for all e,€’,

H(g,e') = Morg(e, €').
Moreover the matriz compact quantum group is uniquely determined by the data of {H (g,€")}.

Example 3.20. By the stability results[1.1.3 of Chapter 1, for each category of partition C and
n > 1, the maps T),’s give a collection of vector spaces {Cp(c,€’)} that fulfills the four conditions
. Therefore for each catergory of partition C and n > 1, there is a quantum subgroup of
U,b whose representation theory is encoded by C.

3.2 Unitary easy quantum groups

3.2.1 Easy quantum groups

Free versions of the classical groups and their associated categories of representa-
tion We have seen in Chapter 2, Section 6 that we could associate categories of partition to
certain classical groups. This correspondance is summarized by the following list :

Un poe

2,alternating
On| P5*
S, poe

Figure 3.1: Correspondance between classical groups and categories of partitions through the
map p — T,

Note that the size n of the group is reflected through the map p — T, by the choice of the dimen-
sion of V° and V* (which is theoretically speaking a concrete realization of the corresponding
category of partition).

The relation S,, € O,, C U, corresponds to the inverse relation P;;ltemating C P* C P°*% asit
was predicted in Example In Chapter 1, we have seen the existence of non-crossing analogs
NC°*,NC3*, N S:zlternating of these categories of partitions. By Example each category of
partition C yields a subgroup of Ul for each n > 1. Actually the quantum groups corresponding
to the three categories of non-crossing partitions aforementioned have already been introduced
by Wang in [95] and [96], and the correspondance with categories of partitions has been proved

by Banica in [3],[5] and [4]. In each case the construction is done by using Remark

o N é’:alt ernating corresponds to the free unitary group itself U, .

e NC5*® corresponds to the free orthogonal group O;F. This quantum group is the quantum
subgroup of U," defined by the relation uj; = u;j. This is the biggest compact matrix
quantum group (C(G), (uij)1<i,j<n) such that all the u;;s are self-adjoint.

e N(C°*® corresponds to the free symmetric group S;". This quantum group is the quantum
subgroup of O, defined by the relation Zj uij = >, uij = 1 and ugjug, = 0jpu4; for all
1<4,5,k <n.

If we add the relations u;jup = ugu;; for all 1 < 4,5, k, 1 < n, U, O/ and S, become respec-
tively U, Op, Sn. Thus we have the following inclusion relations:

Sy ¢ Of ¢ Uy
U U U
Se € O, € U,

= =
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Definition of easy quantum groups The diagram above is the starting point to define the
class of unitary easy quantum groups. This class has been first introduced in the orthogonal
case by Speicher and Banica in [I5], and then extended to the unitary case in an unpublished
article of Banica, Curran and Speicher ([83]).

Definition 3.21. A compact matriz quantum group G with S, C G C U, is called easy, if
there is a category of partitions C C P°® such that for every words e and &' in {o, e}, the space
of intertwiners Morg(e,€’) is spanned by all linear maps T, where p is in C°*(g,e’). An easy
quantum group G is called orthogonal easy quantum group, if G C O;F.

Refer to Chapter 1, Section 1 for the definition of the map 7}, for p a two-colored partition.

As we will see in Chapter 4, an easy quantum group is orthogonal if and only if [l belongs to
the associated category of partitions.

Example 3.22. Let us consider the set H of all partition p € P°® such that each block of p has
an even number of elements. H is a category of partitions. This category corresponds to the
hyperoctahedral group Hy,, = Z31S,. This is a subgroup of Oy, and C(Hy) is defined by taking
the quotient of C(Oy,) by the relations wiju;, = ujiug; =0 for all 1 <1, 5,k <n with j # k.
Once again, we can define the same with non-crossing partitions, yielding the free hyperoctahedral
quantum group introduced by [11]. This quantum group is the subgroup of O, defined by imposing
the same relations as above.

The natural question is to find all the compact matrix quantum groups that are easy; this

question is equivalent to the classification of all categories of partitions. From a probabilistic
point of view, an answer to this question is interesting because for such quantum groups, we
expect that the Weingarten calculus may have simpler combinatorial expressions, as this is the
case in Chapter 2 for the classical groups. There exists also a method to study the representation
theory of easy quantum groups, see [40)].
The classification of all orthogonal easy quantum groups has been done in a serie of papers
[15],[97],[71]. In this classification, there are two particularly simple cases: the case where the
easy quantum group is a classical group and the case where the category of partitions associated
to the quantum group is a category of non-crossing partitions. The classification in these both
cases has been done in [I5, 97]. In-between the situation is much harder to handle with, since
there is an uncountable set of such easy quantum groups (see [71]); we should stress nonetheless
that the situation becomes simple again when restricting to easy quantum groups between O,,
and O;F. In the latter case there is only one such quantum group, namely the half-liberated
orthogonal group O} (see [15]).

3.2.2 Free easy quantum groups

Following the last comment, we focus particularly on the easy quantum groups described by
non-crossing partitions:

Definition 3.23. A free easy quantum group is an easy quantum group G, such that the
corresponding category of partitions C is a subcategory of NC°® (or equivalently S\t C Gy,).

The terminology goes back to Wang’s papers [95], 06]; see also [11] or [39]. For example the
three quantum groups S;7, O;F and U,I are all free easy quantum groups. Several other free easy
quantum groups have already been discovered.
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The orthogonal case As we said before the classification of all free easy quantum groups has
been done in the orthogonal case by Banica, Speicher and Weber in [15] [O7].

Proposition 3.24. Let G, be an orthogonal free easy quantum group. Then G, coincides with
one of the following quantum groups.

o Of: uj = uy;, u orthogonal, i.e. Dok UikWjk = Y p Ukillk; = Ojj.

*

o Hi:wuj= Uy,

u orthogonal, wipuji = upug; = 0 if © # j.
o Sit:u; = u;, w orthogonal, wiuj, = ugiug; =0 if @ F 30 Dok Uik = > Ukj for all i, 7.
*

Situgy = us; ufj, u orthogonal, Y, wi = Y upj = 1 for all i, j.

o BIIt: uij = uj;, u orthogonal, D op Uik = g Uk; for all i, j.

*

o BIt:u; = uj;, w orthogonal, r := Dok Uik = D op Ukj for all i, j, uijr = rug;.

*

.o =
® By uij = ujj,

w orthogonal, >, wi, = > uk; =1 for all i, j.

Note that the quantum groups B;, Bt (with a different notation) and S;F appeared first
in [15], and B was discovered in [97].
Moreover the category of partitions of each of these quantum groups can be explicitly described.
For example B#, the category of partitions associated to B *, is the category of non-crossing
partitions whose blocks are only pairs and singleton, and such that there is an even number of
singletons between two elements of a same pair. We won'’t describe all of these categories, since
a more general result will be given in Chapter 4.

Banica and Vergnioux’s quantum reflection groups H:* The quantum reflection groups
H?* were first defined by Banica and Vergnioux in [16] and studied by Banica, Belinschi, Cap-
itaine and Collins in [9].

Definition 3.25. Given n,s € N, the quantum reflection group H:" is given by the universal
C*-algebra generated by elements u;;, 1 < 1,5 < n subject to the conditions:

o u = (u;;) and u = (uj;) are unitaries

*
ij

*
ij

o all u;j are partial isometries (i.e. wjjulu;; = uij) and the projections uju;; and u,-ju;kj

coincide
S __ ¥
o Ui = ujju;

We define HS°t by omitting the third of the above conditions.

Note that H1T = S and H2* = H;. Furthermore, HS" = Z, 1, S; where 1, denotes
Bichon’s free wreath product [21] and Zj is shorthand for the cyclic group Z/sZ. Moreover, the
quotient of the above C*-algebras by the commutator ideal yields C'(H;), where HS = Zs 1 Sp.
The quantum reflection groups have also been studied in [16] , [9] and [55].

Proposition 3.26. Let s € NU {oo}. The quantum reflection group HE' is easy and the
corresponding category of partition is H®®, the category of non-crossing partitions such that
each block has the same number of black and white points modulo s.

This serie of quantum groups will be further studied in Chapter 5 and 6, since they are also
free wreath products.
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Banica, Bichon, Capitaine and Collins’s H#t The quantum group H#* has been de-
fined in [9] as an auxiliary object.

Definition 3.27. The quantum group H#% is given by the universal C*-algebra generated by
u;j such that u and u are unitaries and:

UikUSy = Uilp,; = Uik = UpUgj = 0, whenever ¢ # j.

It has been proven in [§] that
H#+

is free easy with category H#, the category of non-crossing partitions with blocks having an
even number of elements with alternating colors.

3.2.3 Overview of the results

Let us review the results that are obtained in Part II. The results of Part II are from a joint
work with Moritz Weber.

Classification of free easy quantum groups The first result is a classification of all free
easy quantum groups. This classification is done in two steps. The first step is the classification
of all the categories of non-crossing two-colored partitions, which can be summarized as follows

Theorem 3.28 (Ch.3, Th and Thi4.42)). There ezist five denumerable families of categories
of two-colored non-crossing two-colored partitions :

o U

o OF ford € 2N

o H* and HYF for d|k, k > 2.

o Bk for d|k,k > 1 and r € {*,0,d/2} (r = d/2 is possible only if d is even).
o S for d|k,k > 1.

In each case these categories have a combinatorial description.

In a second step we identify the compact quantum groups that corresponds to each of these
categories of partitions. This identification is greatly simplified by the fact that a lot of free
easy quantum groups have already been identified. The essential tool of the remaining part
of this identification is the introduction of two algebraic operations, the tensor and the free
complexifications denoted respectively x and %) by Zz. The tensor complexification has been
already considered in an unpublished draft [83], and the free complexification with Z has been
first introduced in [8]. This yields the following classification :

Theorem 3.29 (Ch.3, Th. [4.57)). For each n > 1, the following correspondance holds between
categories of partitions and unitary easy quantum groups:

1. the category U corresponds to the free unitary quantum group U;. the category OF corre-
sponds to O} x Zj,.

2. the category H*? corresponds to (Zy Ve S;P)XZy. Za L S is also denoted HE and has
been introduced by Banica and Vergniouz in [16].
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3. the category H¥ corresponds to Hﬁr# = H, %Z.

4. the category B%* (resp B&®0)  corresponds to (C;F%Z4)x Zy,) (reps. (Bf%Z4)%xZy,)).
5. the category B¥%%2 corresponds to C’}f’d%Zk.

6. the category S*4 corresponds to (S;f%Z4)% Zy).

As a corollary, we obtain also all the unitary easy quantum groups that are classical groups

(see Ch.3, Th4.61)).

Weingarten calculus on free easy quantum groups We have seen in Chapter 2, Section
3 that for u, the fundamental representation of Uy, the family (Tr(uf)y>1) converges in law
toward a family of independent complex gaussian variables (uy)x>1 such that uy has variance k;
since this result holds also for O,, and S,, with different limit distributions, it is expected that
the result can be generalized to all easy quantum groups. In [I4], Banica, Curran and Speicher
proved that the same phenomenon holds for orthogonal free easy quantum groups, with limit
distributions involving free semicircular and free Poisson distributions.

In Chapter 5, we will extend this result to all free easy quantum groups. The main tool is the
Weingarten formula, which takes a simpler expression for easy quantum groups. In the second
part of Chapter 5, we prove that the second-order freeness for the unitary group (see Chapter 2,
Th has a natural analog in the free case: namely the family of traces of arbitrary reduced
products of u, u!, %, u* converges in distribution to a family of circular variables.

3.3 Noncommutative permutations and free wreath product

The free wreath product is an algebraic construction that generalizes the usual wreath product
between permutation groups and compact groups. It has been introduced by Bichon in [21] as
a way to encode the quantum symmetries of a finite product of graphs.

3.3.1 Free wreath product

In the classical case, a permutation group is a subgroup of S,, for some n > 1. The natural
extension in the noncommutative case yields the following definition:

Definition 3.30. A non-commutative permutation group F = (C(F), (vij)1<ij<n) @S a quantum
subgroup of S;t. The non-commutative permutation group F is said irreducible if dim Morp(0,1) =
1.

From an algebraic point of view, this means that F' is a compact matrix quantum group
whose fundamental representation matrix v satisfies at least the following relations:

*
vl =i, Y0 = 3 v = 1, 0ivik = 805,
j i

for all 1 <14,j,k < n. From a representation theoretic point of view, Rep(S;") is a subcategory
of Rep(F'), and therefore all the maps T, with p € NC°* are also intertwiners of F'.
The free wreath product is the generalisation of the construction Chapter 2, Section 6.2.

Definition 3.31 (Bichon). ([21, Definition 2.2]) Let G = (C(G),A) be a compact quantum
group and F = (C(F), (vij)i<ij<n) be a non-commutative permutation group. Let v; : C(G) —
C(G)*™ be the canonical inclusion of C(G) as the i—th copie in the free product C(G)*", i =
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1,...,n.
The free wreath product of G by F is the quotient of the C*-algebra C(G)*N x C(F) by the
two-sided ideal generated by the elements

vp(a)vg; — vgivg(a), 1<i,k<n, a€C(G).
It is denoted by C(G) *,, C(F).

It has been proved in [2I] that there exists a coproduct A on C(G) %, C(F') such that
(C(G) #y C(F),A) is a compact quantum group. This coproduct is defined as

n
Alvig) =D vk ® vk, Vi, j € {1,...,n}
k=1

and

3

Avi(a)) = ) _vilaq))vik ® vi(ag)),
k=1
where Ag(a) =3 alV) @ a(? is the value of the coproduct Ag on a with the Seedler notations.
We denote by G 1, F' the quantum group (C(G) *,, C(F), A).
Suppose that G is a compact matrix quantum group with fundamental representation (wg;) 1<k, i<m.-
In this case G i F is also a compact matrix quantum group with a fundamental representation

(wij k1)) 1<ij<n defined by wyjm = vijul,, where u}, denotes the element v;(ug;).
1<k,1<m

Quantum symmetries of a graph The free wreath product construction is a natural con-
struction when considering quantum symmetries of graphs. Let G be a finite graph with n
vertices {1,...,n} and adjacency matrix dg = (d;j)1<ij<n. We suppose that G doesn’t have
any loop. A symmetry of G is a permutation o of {v1,...,v,} such that d,(;),(;) = dij for all
1 <14,5 < n. The set of symmetries of G forms a subgroup of S, called the symmetry group of
G and denoted by S(G). From a dual point of view, C(S(G)) = C(S,)/{vdg = dgv), where v is
the fundamental matrix (v;)i<i j<n of S, defined in m

Definition 3.32 ([I0]). The quantum symmetry group of G is the matriz quantum subgroup
(A(G), (vij)i<ij<n) of (C(S;, (uij)i<ij<n) defined as follows: A(G) is the quotient of C(S;) by

the relation ud = du and v;; is the image of u;; in this quotient.

There is a natural operation on graphs yielding free wreath products on the level of the
quantum symmetry group.

Definition 3.33. Let F,G be two graphs without loop, with vertices indexed respectively by [1;n]
and [1,m], and respective adjacency matrices ¢ and d. The lexicographical product G o F 1is the
graph with vertices indexed by [1,m] x [1,n], and adjacendy matriz

dkl fi=j
Dijw = {Cij if i #J

Figure is an example of such construction, with the lexicographical product of a segment
with a square.
By a result of [27], A(G) \. A(F) C A(G o F), with equality if and only if (G, F) respects the
conditions of Sabidussi (see [73] for a description of this conditions). Note that the same result
holds also in the classical case : namely S(G) ! S(F) C S(G o F), with equality if and only if
(G, F) respects the conditions of Sabidussi.
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Figure 3.2: Lexicographical product G o F, with G a segment and F a square.

Free product formulae An important invariant of a quantum permutation group F'is the
law of the character xr of the fundamental representation (v;;)1<;i j<n under the Haar measure.
Since F is a quantum permutation group, F is a subgroup of O, and therefore  is a self-adjoint
element. Thus, although C(F) is a non-commutative C*—algebra, x is a well-defined random
variable on R, whose associated measure is denoted by u(F'). From the representation theory of
F, the k—th moment ¢ of F is exactly dim(Fixp(k)), where Fixp(k) denotes the vector space
of invariant vectors of the k—th tensor power representation v®*.

By considering several examples of lexicographical products of graph and extended versions of
this constructions, Banica and Bichon have been lead to the following conjecture in [10]:

Conjecture 3.34. Let F and G be two graphs such that S(F) and S(G) are respectively transitive
on F and G. Then
1(A(G) & A(F) = p(A(G)) B u(A(F)).

Recall that X is the free multiplicative convolution as defined in Section The condition
that S(F) is transitive on F means that for all 4, j € F, there exists o € S(F) such that o(i) = j.
Equivalently this means that dim(Fixgz)(1)) = dim(Fix 4z (1)) = 1.

This conjecture comes from the theory of planar algebras and a similar result exists by taking
a free product of certain planar algebras.

3.3.2 Planar algebra

A planar algebra is a collection of vector spaces which is stable under a set of transformations
indexed by planar diagrams. They have been introduced by Jones in [46] in order to give a
diagrammatic approach to the study of subfactors of finite factors.

Planar tangles A planar tangle P of degree k > 0 consists of the following objects:
e A disk Dy of R2, called the outer disk.
e Some disjoint disks D1, ..., D, in the interior of Dy which are called the inner disks.

e For each 0 < ¢ < n, a finite subset S; € dD; of cardinal 2k; (such that ky = k) with a
particular element i, € S;. The elements of S; are called the distinguished points of D;

and numbered counterclockwise starting from i,. k; is called the degree of the inner disk
D;.

e A finite set of disjoint smooth curves {v;}1<j<, such that each ; lies in the interior of
Do \ U1 Di and such that (U, <;<, 07 = Up<;<y, Sis it is also required that each curve
meets a disk boundary orthogonally, and that its endpoints have opposite (resp. same)
parity if they both belong to inner disks or both belong to the outer disk (resp. one belongs
to an inner disk and the other one to the outer disk).
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e A region of P is a connected component of Do \ (U;>; Di U (U~;)). Give a chessboard
shading on the regions of P in such a way that the interval components of type (2i+ 1, 27)
are boundaries of shaded regions.

In the above description, closed curves are allowed among the set {v;}. On each disk, the la-
belling of the distinguished points is fixed by the choice of a particular distinguished point i,:
this choice is pictorially represented by adding a mark % on the interval component directly
preceeding this point. An example of planar tangle is given in Figure |3.3

Figure 3.3: Planar tangle of degree 4

Planar tangles can be composed in the following way: suppose that 71 and 75 are tangles of
respective degree k and &/, and that T} has an interior disk D of degree k’. Plugging T5 inside
D in such way that the marked interval of the exterior disk of T5 coincides with the marked
interval of D, and then erasing the boundary of the exterior disk of T5 (except the distinguished
points of the exterior disk of 75, which become usual points in the resulting picture) yields a
new planar tangle T7 op T5. An example of such a gluing is given in Figure [3.4

Planar algebra A planar algebra is a family of finite-dimensional vector spaces { Vi }rez. ou{+,—}
together with an action of the planar tangles. Namely, each planar tangle T' of degree k yields
a linear maps Z(7T') : Qb internal Vkp — Vi With the compatibility condition

disk of T

Z(T)(vp, ® -+ ® Z(S)(vp;) ®---®@wp,) = Z(T op, S)(vp, ®---Rvp, @--- R vp,),

Figure 3.4: Composition of planar tangles
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for any planar tangles T, S such that the degree of S is the degree of the internal disc D; of T

and for all vectors vp, € Vj, for i # j and vp; € QD internal Vi -
isk o
The planar algebra structure yields several natural operations on {V}}. In particular each vector

space Vi becomes an algebra with the action of the planar tangle of Figure [3.5

Figure 3.5: : Multiplication tangle of degree Pg.

Under certain assumptions, each vector space V} is a semi-simple x—algebra and | J V}, is a tower
of algebras with a common trace: such planar algebra is called a subfactor planar algebra (see
[46]). One of the major results on planar algebras relates the dimension of each vector space Vj
of a subfactor planar algebra with the cardinality of some paths on a graph:

Theorem (Jones,[46]). Let P be a subfactor planar algebra. There exists a bipartite graph Gp
with root vertex * such that:

dim Py, = #{ walk of length 2k on Gp starting and ending at *}.

The random variable pp whose k—th moment is dim Py, is called the spectral measure of the
planar algebra P.

3.3.3 Overview of the results

The main motivation is the proof of Conjecture 3.34] Aiming this proof, we obtained several
results on the intertwiner spaces of a free wreath product.

Free wreath product with S; (joint work with Frangois Lemeux) In Chapter 6, we
study the free wreath product of a compact quantum group with the free symmetric group S, .
In particular we describe completely the intertwiner spaces in this case, which yields some useful
expressions for the Weingarten matrix of a free wreath product with S;". As a byproduct of
these results, an asymptotic formula has been found for the law of the characters of G 1, ST,
where G is a fixed compact matrix quantum group and n goes to 4o0.

Let t € (0, 1] and let G be a matrix compact quantum group of Kac type and dimension r. Denote
by x¢ the law of the character of its fundamental representation. Let (Gt..S;, (wij ki) 1<ij<ri1<ki<n)
be the matrix quantum group G . S;" with its fundamental representation w. For 1 < s < n,

denote by x.(s) the truncated character x.,(s) = > 1<i<r Wij kk-
1<k<s

Theorem 3.35. With respect to the Haar measure, if s ~ tn for n going to infinity,
XGZ*S;{ (3) — Pt(XG):
where Pi(xg) is the free compound Poisson with parameter t and original law Xg.
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Free wreath product and planar algebras (joint work with Jonas Wahl) In Chapter
7, we establish a link between the free wreath product G, F' of two irreducible non-commutative
permutation groups and the free product of two planar algebras. The free product of two planar
algebras is a construction which has been done by Bisch and Jones in [23], in order to deal
with chains of inclusions of subfactors. In [6], Banica proved that the intertwiner spaces of any
irreducible non-commutative permutation group F' is a planar algebra P(V').

Using the study of the case G,.S;", we prove that the intertwiner spaces of a free wreath product
G i F is the free product of the planar algebras P(F') and P(G). Using the results of [23], we
deduce a positive (and more general) answer to Conjecture [3.34}

Theorem 3.36 ([10], Conj 3.1). Let F' and G be two non-commutative permutation groups such
that dimp Mor(0, 1) = dimg Mor(0,1) = 1. Then

p(F % G) = p(F) K p(G),

where (1(G) denotes the law (with respect to the Haar measure) of the character of the funda-
mental representation of a matrix compact quantum group G.

Using a result of Landau from [54] and the link between Boolean and free independence (see
[17]), we also give a combinatorial proof to the fact that the spectral measure of a free product
of irreducible planar algebras is the free multiplicative convolution of the spectral measures of
the initial planar algebras (a result which is already proven in [23]).

3.4 Free fusion rings and non-commutative symmetric functions

We have seen in Chapter 2 that symmetric functions play an important role in the representation
theory of classical easy groups : they encode the fusion rules of U,, and O, by expressing the
characters in terms of the eigenvalues of the matrices (Chapter 2, Section 3), and they describe
the induction and restriction operations on the irreducible respresentations of S,, (see Chapter
2, Section 6.2).

For free easy guantum groups, the analog of the symmetric functions has not been found yet.
On the other hand, a non-commutative analog of the ring of symmetric functions called N .Sym
has been introduced in [41]. It appears that the fusion rules of free easy quantum groups share
a common pattern which the multiplicative structure of the ring NSym in a particular basis.

3.4.1 Free fusion ring

The notion of free fusion ring has been introduced by Banica and Vergnioux in [16] to describe
the fusion rules of free hyperoctahedral groups.

Let R be a set with an involution r — 7 and a product x : R x R — R U {0}. The involution
and the product are extended to the set F(R) of words in R with the formulae

... T, ="T...T1,

and
(T’l...Tk) * (81...81) :7”1...7“1671(77C *81)82...81,

with the conventrion that 7 x s; = () implies that (r1...7rg) * (s1...8) = 0.

Definition 3.37. For (R,x,—) has above, the free fusion ring with underlying set (R,*,—) is
the algebra whose basis is the words in R with the product

TRY = Z VW + v * w. (3.4.1)

T=V2,Yy=ZW
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This algebra is denoted F(R,*,—).
Most of the free easy quantum groups have fusion rules following a free fusion ring:
e For U,', the ring of characters is a free fusion ring with R =Zo, 7 =1 —r and 7 * s = (.
e For O, the ring of characters is a free fusion ring with R = {1}, I=1and 11 = .
e For Hy™", the ring of characters is a free fusion ring with R = Z,, # = —r and r*s = r+s.

Freslon proved in [38] that the fusion ring of any free easy quantum group whose category of
partitions is stable by removing block is a free fusion ring.

An alternative formula can be used to describe the multiplication in a free fusion ring. Indeed
is equivalent to the recurrence formula

T1ee T ® 81 S =T1..TpS1.--Sm+ 71 .Tpo1(Tn % 81)S2...5m

05, =711 - - Tr—1 @ 82. .. S

The latter formula will be generalized in the last section of Chapter 6 to describe the fusion
rules of general free wreath products with S;7. With this formula, Lemeux proved in [55] that
a free fusion ring is isomorphic to the free ring Z(R).

3.4.2 Noncommutative symmetric functions

The content of this subsection comes mainly from [84].

The Hopf algebra of symmetric functions In Chapter 2, the ring of symmetric functions
A has been defined as the algebra of symmetric polynomials in an infinite number of commuting
variables (X1,...,Xp,...). The fundamental theorem of symmetric polynomials yields that A
is isomorphic, as a graded algebra, to the graded algebra of polynomials Z[eq, ..., ey, ...] with
deg(e;) =i.

It turns out that A has the structure of a Hopf algebra. Indeed let (Y7,...,Y,,...) be another
infinite family of variables and let P € A. Then P({X;},{Y;}) has a decomposition

P{{Xi}, {Yi) E:P (XYY,

for some r > 1 and P;, P; € A. The formula A(P) = 3. P; ® P; defines a coproduct A on A.
Since (PQ)({X:}, {Yi}) = P{X:}, {Y:})Q({X:},{Y:}), this coproduct is an algebra morphism,
turning A into an Hopf algebra. The counit € of A is given by &(e;) = 0,¢(1) = 1 and the
antipode is given by the involutive automorphism w(e;) = (—1)%h;.

The coproduct takes simple expressions on the basis of elementary functions and power sums,
as we have

n
n) = Zei®€n—i7A(pn) =1®pn+pn®1.

The Hall inner product defined in Chapter 2, Section 2 plays a particular role in this framework,
since A is a self-dual Hopf algebra with respect to this inner product. Namely

(PQ,R) = (P®Q,AR), (3.4.2)

for any P, @, R € A, and where (., .) is canonically extended to the algebraic tensor product A®A.

56



Noncommutative symmetric function The ring of non-commutative symmetric functions
NSym is the non-commutative version of A obtained by removing the commutation relation on
the e]s.

Definition 3.38. NSym is the graded free ring Z(S1,...,Sn,...) with the grading deg(S;) =i
and the comultiplication A(Sy) = > 5; ® Sp—i.

It is still possible to define an involution w in such a way that NSym is a Hopf-algebra.

Since the elements S; don’t commute anymore, the basis of NSym is not indexed by integers
partitions but by sequences of integers: a sequence I of integers (i1,...,%,) such that ) i; =n
is called a composition of n of length r and denoted by I F n. The set of all composition of n is
denoted by Comp(n). For example {S7} -, is a basis of the degree n subspace of NSym. The
multiplication structure on Sy is given by the simple expression S;S; = Sy 7, where I.J is the
concatenation of the sequences I and J.
An other important basis is given by the ribbon Schur functions { R;}. Define a partial order <
on Comp(n) by the relation I < J if and only if J = (j1,...,4r) and I = (j1 + - + Jsy» Js1+1 +
o+ Joitsgy ey Jr—s, + -+ + Jr), where s F r. The Moebius function on (Comp(n), <) is the
function u(J, 1) = 8y<7(—1)"D=1)  where I(I) is the length of the composition I. The ribbon
Schur function R is defined in the same way as the free cumulant in Chapter 1:

Rr=Y u(J.1)S,.
J<I

Equivalently S; = ) ;.;Ry. The multiplication in the basis Ry is given by the formula
R;R; = Ry.j + Rpsy, where (il, R ,Z'T) > (jl, .. ,js) = (il, e e, e g1, 02, 7js)- Note
in particular that this formula yields that NSym is a free fusion ring without involution.

The commutative quotient of NSym is isomorphic to A through the map S; — e;. By this map,
Ry is mapped to the ribbon Schur function r;, which is a particular skew Schur function (see
[60], Part I, Ch.5).

Quasi-symmetric functions Unlike the Hopf-algebra of symmetric functions, NSym is not
self-dual and therefore there is no inner product such that the relation holds. However it is
still possible to construct the dual Hopf-algebra of NSym. For each composition I = (iy, ..., i)
define the polynomial M;({X;}) in the commuting variables {X;};>1 as

_ i1 12 i
M;(X) = E Thah T
J1<ja<-<jr

Definition 3.39. The ring generated by the polynomials My over Z is called the ring of quasi-
symmetric functions. This ring is denoted by QSym.

The product of M; and My has a decomposition in { M} with integers coefficients and thus
{M;} is a basis of QSym. As for the ring of symmetric functions, a coproduct v is defined on
QSym by decomposing a quasi-symmetric function in the variables {X;} U {Y;} into a product
of quasi-symmetric functions respectively in the variables {X;} and in {Y;}. This coproduct
turns @QSym into a Hopf algebra which is the dual Hopf algebra of NSym. With the pairing
(,): Q@Sym x NSym — R defined by the formula (M;,S;) = 077, the following equalities hold:

(f®g,A(P) = (fg, P),
(), PeQ) = (f,PQ),
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for all f,g € QSym and P,Q € NSym. The definition of the basis {R;} of NSym in terms of
{Sr} yields that the dual basis of {R} is the set of quasi-symmetric function F7 with

FIZZMJ.

J>I

The basis {F} is called the basis of fundamental quasi-symmetric functions. Each F; has a
decomposition in terms of monomials similar to the decomposition of classical Schur functions
with the semi-standard filling of Young diagram. In the case of F7, the decomposition is described
by the semi-standard filling of ribbon Young diagram :

Figure 3.6: Skew Young tableau associated to the composition I = (3,2,4,1).

3.4.3 Overview of the results

The results obtained in Part IV are somehow independent of Part I1 and Part /11, apart from
the relation with free fusion rings.

NSym as a probability space At the end of Chapter 6, the ring NSym is embedded in the
ring of characters of the free wreath product H;*. Through this embedding the ribbon Schur
functions are characters of certain irreducible representations of H;7"*°. Therefore the Haar
measure on Hﬁ > turns the ribbon Schur functions into noncommutative random variables
exactly as in the case of U,, with the ring of symmetric functions. The law of the ribbon Schur
functions {R(;)}n>1 can be described thanks to the fusion rules of H,"> found by Banica and
Vergnioux in [I6]. This leads to the following result :

Theorem 3.40. There exists a injective algebra morphism ® : NSym — Cl(H{f’OO). For any
ribbon Schur function Ry, ®(Ry) is an irreducible character.

The family of random variables (®(R(y)))n>1 with respect to the Haar measure is distributed as
(s2"s)p>1, where s is a semi-circular variable of variance 1 and z is a uniform measure on the
the unit circle and free from s.

The Martin boundary of Zigzag diagrams Since {F;} is a basis of QSym, for any com-
position J the product F;F{(;) has a decomposition in the basis {Fr}. A combinatorial argument
shows that the coefficients in this decomposition are 0 or 1.

Therefore we can construct a graph whose vertices are the compositions, and such that there is
an edge between I and J if and only if the coefficient of Fy in the product FrF{y) is equal to 1.
This graph is called the graph of Zigzag diagrams, and denoted by Z. It has been deeply studied
by Olshanski and Gnedin, who have identified in [42] the minimal boundary of the graph (see
Chapter 9 for a detailed exposition of the different boundaries of a graph): this boundary is a
measured space which encodes the behavior of directed random walks on the graph.

An analogous graph exists by considering the Schur basis of Sym. This graph, denoted by ),
has vertices indexed by Young diagrams and edges between s, and s, if and only if the co-
efficient of s, in s(1)sy is non-zero. This graph has played an important role in the study of
certain irreducible representations of Sy, (see [80]), the group of permutations of N with finite

58



support. Through its study it has been shown in [86] that the Poisson boundary of ) coincides
with its Martin boundary. The Martin boundary is a geometrical boundary which comes from
a compactification of the graph ).

In Chapter 9 we prove an analogous result for Z:

Theorem 3.41. The Martin boundary of Z coincides with its Poisson boundary.

Note that in general the Martin boundary is a subset of the Poisson boundary. The result
of Theorem had been conjectured by Olshanski and Gnedin in [42]. In order to prove this
fact, we obtain some estimates on the filling of large ribbon Young diagrams in Chapter 8.
Finally in Chapter 9, Section 7, we establish a link between paths on ) and paths on Z, and
we give a central limit theorem for the shape of the descent pattern of a large permutation.
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Part 11

Unitary easy quantum groups
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Chapter 4

Classification of categories of
non-crossing colored partitions

We have seen in Chapter 3 that categories of two-colored partitions yield matrix compact quan-
tum groups whose intertwiners have a simple description : the use of the Weingarten formula
is thus greatly simplified on these particular quantum groups. It is therefore interesting to find
all the possible categories of two colored partitions. This task seems very difficult in the general
case; however, if we assume that the partitions have to be non-crossing, the situation is much
easier.

This chapter is devoted to the classification of all categories of non-crossing two-colored partitions
and to the construction of their associated unitary easy quantum group. The full classification
is given by Theorem and in Section 7. The list of associated easy quantum group
is given in Theorem As a corollary, we also obtain in Section 9 the classification of all
classical easy groups.

4.1 Categories of two-colored partitions and first results

Recall that from Chapter 1, a category of partitions is a collection C of subsets C(k,l) C P°*(k,1)
(for all k,1 € Ny) is a category of partitions, if it is closed under the tensor product, the compo-

sition and the involution, and if it contains the bicolored pair partitions [¢ and {l as well as
the identity partitions i and I

If C is the smallest category of partitions containing the partitions pi,...,pn, we write
C = (p1,...,pn) and say that C is generated by p1,...,pn.

Lemma 4.1. Let C C P°® be a category of partitions.
(a) C is closed under rotation and verticolor reflection.

(b) If p € P°*(k,l) is a partition in C, we can erase two neighbouring points of p if they have
different (!) colors, i.e. if the j-th and the (j+1)-th of the lower points have inverse colors,
then the partition p' € P°*(k,l — 2) is in C which is obtained from p by first connecting
the blocks to which the j-th and the (j + 1)-th lower points belong respectively, and then
erasing these two points. We may also erase neighbouring points of inverse colors on the
upper line.

(c) Let py @ po € C. Then py ® p1 € C and pa ® p2 € C. Note that we do not have p; € C or
p2 € C in general.
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Proof. (a) Firstly, let p € P°*(k, 1) be a partition and let the first of the k& upper points be black.
Let r € P°*(k — 1,k — 1) be the tensor product of the identity partitions i and I with the

same color pattern as the latter k& — 1 upper points of p. The composition ( I Rp)(Lé@r)
yields a partition p’ € P°*(k—1,1+1) which conincides with the partition obtained from p when
rotating the first upper points to the row of lower points. See also [15, Lem 2.7]. If now p € C,
then also p’ € C since all partitions we used are in the category. Similarly we prove the other
cases of rotation.

Secondly, if p € P°*(k,l) is in C, then also p* € P°*(l,k) is in C by the definition of a
category. Rotating the k& upper points to below and the lower points to the upper line yields p,
which is in C.

(b) Compose p with r ® 1 @ryorrp ® 19 ® re, where r; and 7y are suitable tensor

products of the identity partitions I and I
(c) By (a), we have pa®p; € C and thus p; ® pa®@p2®@p; € C. Using (b), we infer p; ®p; € C
and likewise p2 ® po € C (using rotation). O

Tensor product, composition, involution, and the operations of the preceding lemma are
called the category operations.
4.1.1 Special operations on partitions

The category operations may be performed in any category of partitions. Other procedures are
allowed if and only if certain key partitions are contained in the category.

Lemma 4.2. Let C be a category of partitions and let p € P°*(0,1) be a partition without upper
points.

(a) If 5L ® && € C, then C is closed under permutation of colors, i.e. if p € C, then
p' € C, where p’ is obtained from p by some permutation of the colors of the points (without
changing the strings connecting the points).

(b) If I ® I € C, then C is closed under permutation of colors of neighbouring singletons.
Furthermore, we may disconnect any point from a block and turn it into a singleton.

(c) If {bee € C, then C is closed under permutation of colors of neighbouring points belonging
to the same block. Furthermore, we may connect neighbouring blocks.

(d) If [{é € C, we have no permutation of colors in general, and we may only connect
neighbouring blocks if they meet at two points with inverse colors.

(e) If gﬂ € C, then C is closed under arbitrary positioning of singletons, i.e. if p € C, then
p' € C, where p’ is obtained from p by shifting blocks of length one to other positions.

(f) If g.@ € C, then we may swap a singleton with a neighbour point of inverse color. This

procedure inverts both colors. In other words, if p = XabY € C where b is a singleton and
a is a point of color inverse to b, then p' = Xb~la~ Y € C.

Proof. (a) By rotation, the partitions E@ I and I@ E are in C. Note that the partitions i and

themselves are not necessarily contained in C. Composing p with partitions 1 ® l ® i Q72
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where the r; are given by suitable tensor products of the identity partitions I and I yields a
transposition of the colors of the points of p.

(b) Using rotation, we infer ;E ® 1 ® I ® I € C. Analoguous to (a), we see that we may

permute the colors of neighbouring singletons. Furthermore, rotations of I ® I yield partitions
? 4
6 and ¢ in P°*(1,1) consisting of two disconnected points of the same color. Composing a

¢
partition with suitable tensor products of the identity partitions i, I and the partitions ¢, ¢

yields a partition where some points are disconnected from their blocks (without changing the
color).
(c) Again, similar to (a), we infer that C is closed under permutation of colors of neighbouring

points belonging to the same block, using SLdé € C. Since we then also have [§le € C, the

partitions }‘{, }‘—i, }‘i and }‘—I are all in C by rotation. Composing with them effects that
some neighbouring blocks are connected.

(d) We argue as in (c), but we may only use }'{ and g

O [ ] O [ ]
(e) Check that g i {, I I 1, g I {, I i J etc are in C using rotation and verticolor
reflection.

(f)UselilorIIietc. O

We formulated the above lemma only for partitions having no upper points, but the state-
ments may be extended to arbitrary partitions p € P°®(k, ). We then have to take into account
that the colors are inverted whenever they are rotated from the upper line to the lower line or
the converse.

4.1.2 The non- (or one-) colored case

Let us end this section with a comparison to the case of categories of non-colored partitions,
which were studied in [I5] and in other articles and which were completely classified in [71]. For
the classification in the noncrossing case, see [I5] and [97]. Recall that there are exactly seven
categories, given by:

M 2 ) ) T ) 0) = NCy
IN IN IN
(hrmm=nNC 2 (te1,mmm) 2 (rmm)

By P(k,1) we denote the set of non-colored partitions where all points have no color. Likewise
we use the notations P for all non-colored partitions and NC for all non-colored noncrossing
partitions. Categories of non-colored partitions are defined like categories of two-colored parti-
tions when forgetting all colors, see for instance [15] or [71]. The key link between non-colored

categories and two-colored categories is given by the partition [l as may be seen in the next
proposition. Note that T and I are rotated versions of [l. Composing a partition p with
these partitions, we can change the colors of the points of p to every possible color pattern.

Hence, categories containing [} are non-colored categories, in this sense.
Let W : P°®* — P be the map given by forgetting the colors of a two-colored partition. For a
set C C P, we denote by ¥~1(C) C P°* its preimage under .
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Proposition 4.3. (a) Let C C P be a category of non-colored partitions. Then ¥~1(C) C P°*
is a category of two-colored partitions containing the unicolored pair partition L} (or

equivalently ¢4 )

(b) Let C C P°® be a category of two-colored partitions containing the unicolored pair partition

58 (or equivalently &4 ). Then ¥(C) C P is a category of non-colored partitions and
L) =cC.
Hence, there is a one-to-one correspondence between categories of non-colored partitions and

categories of two-colored partitions containing L.

Proof. (a) It is easy to see from the definition that ¥=1(C) is a category of partitions. Further-

more, b € U=(C) since U( [L)=rneC.

(b) It is easy to see that W(C) is closed under tensor product and involution and that it
contains the pair partition M and the identity partition |. The composition is a bit more subtle.
If p,q € ¥(C), their composition is in W(C) only if we can lift p and ¢ to partitions in C whose

color patterns allow the composition in P°®. But since T and I are in C (by rotation), we can
do so: If p € W(C), there is a partition py € C such that ¥(py) = p. Composing it wih T and
, we may assume that all points of py are white. Now, ¥(C) is closed under composition since

C is. Similarly, we prove ¥~}(¥(C)) C C using T and I O

4.2 Dividing the categories into cases

The classification of categories of noncrossing partitions is given by a detailed case study which
we will now prepare.

4.2.1 The cases O, H, S and B

The first division into cases is given by the sizes of blocks. The next lemma is formulated for
arbitrary categories of partitions (not necessarily noncrossing ones).

Lemma 4.4. Let C C P°® be a category of partitions.

(a) If i ® I ¢ C, then all blocks of partitions p € C have length at least two.

(b) If $38& ¢ C, then all blocks of partitions p € C have length at most two.

Proof. (a) Let p € C be a partition containing a block of size one. By rotation and possibly
verticolor reflection, it is of the form ]; ® q, with no upper points. By Lemma b) we have
E ® I eC.

(b) Let p € C be a partition containing a block of size at least three. By rotation, it is of the
form p = a®* X142 X9a®3 X3 with no upper points, where the points a** belong to the same block,

and g; € {1, —1} depending on the color. The subwords X;, Xy and X3 are possibly connected
to the block on the a®. By verticolor reflection, we infer that the following partition is in C.

PRP= a' X102 X203 X3 ® ng_€3X2b_€2X1b_€1

By b), we obtain that a partition ¢ := aalX{a”a_E?X{a_el is in C. Note that while the
blocks on af* and b~ % are mot connected in p ® p, the points a* and a~% are connected in g
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due to the procedure as described in Lemma b). Using rotation, we infer that the partion
a"®1a®' X{a®2a"%2 X is in C. Again, tensoring it with its verticolor reflected version and using

Lemma (b), we obtain a~'aa"la € C which implies {§ld € C. O
Note that unlike in the non-colored case, }E ® I ¢ C does not imply that all blocks have

even size. Consider for instance ( [{1).

Definition 4.5. Let C C P°® be a category of partitions. We say that:
e C isin case O, if £® 1¢C and Sébé ¢ C.
e C is in case B, ifg@) i €C and £{Ld ¢C.
e C is in case H, if QE@ I ¢ C and [{lé €C.

e C isin case S, ifg@)IGCand LdLe €C.

4.2.2 Global and local colorization

It is convenient to study categories C C N(C°® case by case according to the above definition.
According to Lemma (a), we divide each of these cases into two subcases: Those categories

C containing [} ® {¢ behave very differently from those not containing this partition.

Definition 4.6. A category of partitions C C P°°® is
e globally colorized, if [l ® é¢ €C

e and locally colorized if [l ® &e¢ ¢C.

By Lemma [£.2] we may permute the colors of the points of partitions in globally colorized
categories. Hence the coloring of partitions turns out to be of a global nature — the difference
between the number of white and black points is the only number that matters for the coloring
of a partition in such categories.

4.2.3 The global parameter £(C)

Studying categories of noncrossing partitions case by case, we will use certain global and local
(color) parameters.

Definition 4.7. Let p € P°°.

e Denote by co(p) the sum of the number of white points on the lower line of p and the black
points on the upper line.

e Denote by ce(p) the sum of the number of black points on the lower line of p and the white
points on the upper line.

e Define c: P°® — 7Z by ¢(p) := co(p) — ce(p).

We will mainly consider partitions p € P°*(0,1) with no upper points. In this case ¢, is
counting the white points whereas ¢, is counting the black points of a partition. Note that
rotating black points from the upper line to the lower line turns them into white points. In this
sense, ¢, counts black points on the upper line as white points on the lower line.
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Definition 4.8. Let C be a category of partitions. We set k(C) as the minimum of all numbers
c(p) such that c¢(p) > 0 and p € C, if such a partition exists in C. Otherwise k(C) := 0. The
parameter k(C) is called the degree of reflection of C. It is the global parameter of C.

Note that we always find a partition p in C such that ¢(p) = 0; take for instance p = 4. In
the next lemma, we show that the map ¢ : P°® — Z behaves well with respect to the category
operations. In particular, if there exists a partition p € C such that ¢(p) < 0, then p € C and

c(p) = —c(p) > 0.
Lemma 4.9. For the map ¢ : P°® — 7 the following holds true.
(a) c(p@ q) = c(p) +clq)
(b) c(pq) = c(p) + c(q)
(p *) —c(p)
(p

'Y =c(p), if ' is obtained from p by rotation.

=
NI
n n

(e) c(p) = —c(p)

Proof. From the definition it is clear that (a), (c), (d) and (e) hold. To see the invariance under
composition, let w; be the number of upper white points of ¢, and b; be the number of upper
black points. Let wg be the number of lower white points of ¢ and likewise by for the black
points. Since p and g are composable, the numbers wy and by also count the number of upper
white and upper black points of p, respectively. Finally, let w3 and b3 be the number of lower
white and black points of p respectively. We thus have:

c(q) = co(q) — ca(q) = (w2 + b1) — (w1 + b2)
(p) (w3 + ba) — (w2 + b3)
( ('LU3 + bl (w1 + bg)

This implies ¢(pq) = c¢(p) + ¢(q). O

The global parameter k(C) gives rise to a complete description of all possible numbers ¢(p)
of a category C.

Proposition 4.10. Let C C P°* be a category of partitions and let k := k(C) € No. Then
c(p) € kZ for all partitions p € C.

Proof. The statement is obvious for £ = 0 by definition and Lemma e), thus we may assume
k > 0. Let p € C, such that c(p) # 0. By Lemma [4.9(e), we may restrict to ¢(p) > 0. Now,
assume that there is a number m € Ny such that km < ¢(p) < k(m + 1). By the definition
of k(C), there is a partition ¢ € C such that ¢(q) = k. Put r := ¢®" ® p. Then r € C and
c(r) = —me(q) + ¢(p). Hence 0 < ¢(r) < k which contradicts the definition of k(C). O

4.2.4 The local parameters d(C) and K¢(§ 1)

We also have some local parameters. The idea is to determine possible numbers ¢(p;) of sub-
partitions p; between two legs of a block of a partition p € C. The situation when these two legs
have the same color behaves quite differently from the case of equally colored legs.

p = o pre P = o p1 9o
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By rotation, we can reduce it to the following situation.

Definition 4.11. o Let p € NC°*(0,1) be a partition with no upper points. Assume that p
can be decomposed as p = p1 ® po. If the first and the last point of pa belong to the same
block and if po has length at least two, we say that p = p1 @ ps is in nest decomposed form.

e Let NDF(L §) be the set of all partitions p = p1 ® pa in nest decomposed form such
that the first point of po is white and the last one is black. By NDFC(g o) we denote
the intersection of NDF ([ §) and C C P°®. Likewise we use the notations NDFC(§ 1),
NDFC(§ 1) and NDFC({ {) for the three other cases.

) we denote the set of all numbers c(p1) € 7Z such that p = p; ® pa €

e By Kc(g
5 Q). Likewise we define K¢(§ 1), K¢(§ 1) and K¢({ ).

NDF¢(

o— o

e Let C C NC®® be a category of noncrossing partitions. We define the following local
parameter d(C). If K¢(L &) contains a number t > 0, we put d(C) as the minimum of
those numbers. Otherwise d(C) := 0.

Example 4.12. (a) The partition [} ® ¢¢ isin NDF({§ ) with ¢(p1) = 2, whereas §¢ ®
5l isin NDF({ §) with ¢(p1) = —2.

(b) The partition p:= [l ® [l ® [l is in nest decomposed form, where p; = [} @ [}
and py = S, Ttisin NDF({ }) with ¢(p1) = 4. The partition g := [, @ ¢ ® b4 is
in NDF(§ L) with the decomposition ¢; := [} ® & and g2 := .

When working on the classfication of noncrossing categories, we will be interested in the
sets KC(L 3), K(& 1), K¢(L 1) and K€(§ §) as local parameters. In the remainder of this
subsection, we shall prove that we always have K¢({ §) = K¢(¢§ ) = dZ for d = d(C) and
KC(§ 1) =—KC(§ 1). Thus, the study of these local parameters boils down to knowing d(C)
and K¢({ §). Note that §3 ® ¢ isin NDFC(L {), hence KC([ §) always contain the zero.

As for K¢({ §) the situation is a bit more complicated — for instance, it could be empty.

Proposition 4.13. Let C C NC°® be a category of noncrossing partitions. Then, K¢(§ §) = dZ
for d =d(C). Furthermore, if k(C) # 0, then d(C) # 0 and d(C) is a divisor of k(C).

Proof. Let s,t € K¢(J 3). We only need to show that s + ¢ and —s are in K¢(J §). Let
p=p1®p2 and ¢ = q1 ® o be two partitions in NDFC([ ). Firstly, we have p; ®q1 @2 ®ps € C

using rotation. Using the pair partition ¢$ and composition, we can connect the last point of ¢o
with the first point of ps. This erases these two points and we obtain a partition p1 @ g1 @ r € C
in nest decomposed form such that the first point of r is white and the last one is black. Thus,

c(p1) + c(qr) € KC(§ §). Secondly, we have py ® p1 € C, which yields p; ® p2 € C by rotation.
Now, this is a partition in nest decomposed form, such that the first point of po is white and

the last one is black. Thus, —c(p1) = c(p1) € K¢(§ 3).
We deduce K¢(§ §) = dZ using the Euklidean algorithm. Furthermore, note that k(C) €

KC(L 3), since p® & € NDFC(S ) for all p € C. Hence, d(C) # 0 whenever k(C) # 0 and
also k(C) is a multiple of d(C). O
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Definition 4.14. By bs we denote the partition in P°*(0, s) consisting of a single block of length

s such that all points are white, hence by = L1, bg = [I1, ete.

The next lemma is of quite technical nature, but it will be needed in this subsection as well
as in the remainder of this chapter several times.

Lemma 4.15. Let C C NC®*® be a category of noncrossing partitions.

(a) Let l ® I € C. We then have 5538 € C for all s € KC(Ld), s > 0. Likewise

fs. I®So € C forall s € KC(£ &), s >0.

More genemlly, let qe{l 853,838,838} and let s € K¢(q) (not necessarily s > 0).
—(s+c(q))
Then g at T a®? € C, where a®* and a®2 form the pair block q. Here, we use
®S ®—s
the notation I = i for s < Q0.

(b) Let Llae € C and let s € KC(q) for some g € {§ 3,5 8,8 8,8 1. Then b, ® b, € C.
Here b_s = bs if s < 0.

(¢) Let p € C be a partition such that two neighbouring points have the same color and belong
to the same block. Then [l&é € C or [l @ §& € C. In particular, if i@ I ¢ C and

NDFC({ §) #0, then [II4 €C or §L ® §3 € C. The same holds true, if £® I ¢C
and if C contains a partition p1 ® py such that c(py) # 0.

Proof. (a) Let ¢ € {§ 4,0 &, & &, & ¢} and let s € K€(q). Let p = p; ® p2 be a partition in

NDFC¢(q) such that ¢(p;) = s. Using the pair partitions and composing p; with the rotated
Q 4 ®s

versions 4 and ¢ of i ® i, we may assume p; = g . We proceed in the same way for the
Xs «@
points between the first and the last point of po and we infer that E at i a®? is in C for

some « € Z. Here a®* and a®? form the pair block ¢q. Now, disconnecting these two points using
. ®a+c(q)
the partitions ¢ and ¢ again, we deduce I ® i € C. Using verticolor reflection and

composition, this implies:

®s

boad

®a , ®—s , ®—a—c(q)

i g a? eC

s ®—s—c(q)
Using the pair partitions, we obtain I a®! 1; a®? e C.
(b) Let p = p1 ® p2 € C be a partition in nest decomposed form such that ¢(p;) = s. Assume
s > 0. Using the pair partitions and Lemma [4.2] we may connect all blocks in p; and we may
erase all of its black points such that finally b ® p2 € C. By Lemma u by ® by € C; likewise if
5 < 0.
(c) Let p € C be a partition of the form p = aa X, where aa are two points of the same color

belonging to the same block. If this block is of size two, we have [l ® & € C by Lemma

Otherwise, we consider p ® p € C and using the pair partition, we infer [[Id € C.
Now, if C contains a partition p; ® pa such that ¢(p1) > 0, we use the pair partition to erase
all black points in p;. We obtain a partition pj ® ps € C such that all points of p} are white.

If I ® 1 ¢ C, all blocks in p| have size at least two. Since p} is noncrossing, we find two
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neighbouring points belonging to the same block. By rotation, this yields a partition p = aaX
as above; likewise for ¢(p1) < 0.

Finally, if NDFC(§ &) # 0, then there is a p = p; ® pa € C in nest decomposed form such
that the first and the last point of py are black. If ¢(p;) = 0, we erase p; using the pair partitions

and we obtain ps € C. By rotation, py is of the form aaX. If ¢(p1) # 0 we use the argument
above. O

In globally colorized categories, the local parameters d(C) and K¢({ §) are trivial. In par-
ticular, we show K€(§ 3) = K€(& 1) and K¢(J 1) = —KC€(§ {) in the special case of globally

colored categories.

Lemma 4.16. Let C C NC®® be a globally colorized category of noncrossing partitions. The
following holds true.

(a) The sets K€(§ 1), K€(& ), KC(§ L) and KC(§ 1) coincide and are equal to dZ for
d=d(C).

(b) We have d(C) € {1,2} with d(C) = 1 if and only if $L30 €C.

Proof. (a) Let p = p1 ® pa € C be a partition in nest decomposed form. Thus, ps = a®* Xa®2,
where a®! and a®2 belong to the same block, and X is some subpartition (possibly connected to
a® and a®?). Then, the following partition is in C, by composition.

pi=pr@a?t [ $dXa™

Using permutation of colors, we may change the colors of a®' and a®? arbitrarily. Moreover,

KC(L 3) = dZ by Proposition 4.13

(b) By Example [4.12] we have 2 € K¢({ ), which by (a) yields 2 € K€(J 3). Thus,

d(C) € {1,2}. If gﬂ € C, then d(C’l by definition. Conversely, let d(C) = 1. We thus find
4.

a partition i ® p2 in C. By Lemma [4.1] we deduce I ® ﬁ € C, which by Lemma |4.15| implies
10id ec. O

We finally prove that our local parameters are given only by d(C) and K€(§ 3).

Proposition 4.17. We have K¢(§ 1) = K¢(§ 1) = dZ with d = d(C) for all categories
C C NC°*. Furthermore, K¢(§ 1) = —K°(§ ).

Proof. Let C C NC®® be a category of noncrossing partitions. If p; ® po € C is a partition in
nest decomposed form such that the first and the last point of ps have the same color, then

p1 ® pa is in C proving K¢(J 1) = —K¢({ §). Next, we prove K¢({ ) = KC(§ 2).

Case 1. Let I ® I € C. We have fsm € C if and only if f:I’WSO € C, using verticolor
reflection and rotation. This proves K¢(& ) = K¢(§ 1) using Lemma [4.15
Case 2. Let g ® I ¢ C and let NDFC({ {) # 0. By Lemma }.15| we have [l @ [l €C
or [T3¢ € C. In the first case, the sets K€(§ 1) and K€(¢ 1) coincide by Lemma [4.16/ In

the second case, we have to show that by ® bs € C implies s € KC¢(L d) and s € K€(§ ). By
Lemma this will finish the proof.
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So, let by ® b, € C. By rotation, we have (bs)* @by € C which is a partition in P°*(s, s). Now,

®s
compose by ® by @ J b with i ® I ® (I;S)* ® bs ® I This yields bs ® absa! € C, where a
is black and @' is white forming the pair block ¢J. Hence s € K¢({ 1). Similarly, we obtain
by ®a 'bsa e Cand s e KC(§ ).

Case 3. Let I ® I ¢ C and let NDFC({ ) = 0. Then also NDFC([ 1) = 0. Let
p1 ® po € C be a partition in nest decomposed form such that the first and the last point of po
have inverse colors. Assume c(p;) > 0. Using the pair partitions, we may erase all black points
in p; and we obtain a partition p’]-&;DQ such that all points in p) are white. Since all blocks in pj

have size at least two by Lemma we obtain a partition in NDFC([ 1) up to rotation which
is a contradiction. Likewise we show that ¢(p1) cannot be strictly negative. We conclude that

¢(p1) is zero and hence K€(f ¢) = {0} and K¢(§ {) = {0}. Thus K¢({ {) = K°({ ). O

4.2.5 Summary of the strategy for the classification

We now have all tools at hand for the classification of categories C C NC°® of noncrossing
partitions. The general strategy is as follows.

e We study the cases O, H,S and B (see Definition [4.5)) step by step subdividing them again
into the local and the global colorization (see Definition respectively.

e In each of these cases we first determine all possible global and local parameters k(C),
d(C) and KC(§ J).

e We then find characteristic sample partitions which somehow represent these param-
eters.

e Next, we isolate sets of partitions M depending on the possible values of the parameters
and we prove M C (pi,...,pn), where p1,...,p, are the sample partitions.

e Finally, we prove that these are all possible categories in the considered case. To do

so, if C has parameters k, d and K¢({ {), we have (p1,...,p,) € C. On the other hand,
C C M, which proves C = (p1,...,pn) = M.

4.3 Case O

Let us first consider the case O, i.e. the case of cateiories C C NC®*® of noncrossing partitions

such that I ® I ¢ C and [¢le ¢ C. By Lemma 4.4, C is a subset of the set NC5® of all
noncrossing pair partitions.

4.3.1 Determining the parameters

Proposition 4.18. Let C C NC®® be a category of noncrossing partitions in case O.

(a) If C is globally colorized, then d(C) =2 and k(C) € 2Ny.
(b) If C is locally colorized, then d(C) = k(C) =0 and K¢({ &) =0, i.e.

E°(b o) =K =10}, K (EH=K(d=0



Proof. (a) By Lemma d(C) = 2 and hence k(C) € 2Ny, using Proposition

(b) Let p € C be a partition having no upper points. We prove that all blocks connect a
white point with a black point from which the assertion easily follows. Assume that there is a
block V' connecting two white points. We choose V' such that all blocks nested into it (if there
are any) connect a white point with a black point. Using the pair partitions, we erase all those
blocks and we end up with a partition in C such that two neighbouring points have the same
color and belong to the same block. By Lemma [4.15(c), this is a contradiction. O

4.3.2 Finding partitions realizing the parameters

Lemma 4.19. Let C C NC®® be a globally colorized category of noncrossing partitions in case
k

O such that k = k(C) #0. Then § ~ €C.

Proof. We find a partition p € C having no upper points such that c¢(p) = k, i.e. there are
ok
x + k white points and x black points in p. Now, the partition [¢ ’ ® p is in C. By Lemma

. we may permute the colors of this partition, and we infer that [J ® p’ is in C for some

partition p’ with ¢(p’) = 0. Using the pair partitions ¢ and ¢/ to erase p/, we infer that
o}
Iy ec. O

4.3.3 Description of natural categories in case O

®
The preceding subsection shows that there are natural categories ( [§ ), [ ® &) in case O.

[MIE

[exe)
Let us describe these categories and also the “empty category” (0) = ( Je, ¢&). (Recall that

the partitions [ and §J are always contained in a category and that we omit to write them
down explicitely as generators.)

Proposition 4.20. We have the following natural categories of partitions in case O.

(a) The category O := (D) consists of all noncrossing pair partitions such that each block
connects a white point with a black point, when the partition is rotated such that it has no
upper points.

®3
(b) Letk € 2Ng. Then Ogion(k) == ( {4, 6 ® ¢e) coincides with {p € NCS* | ¢(p) € kZ}.

®
Here, & =0ifk=0.

NI

In particular, all these categories are pairwise different.

Proof. (a) We may construct all partitions from the assertion using ¢, & and the category
operations due to a simple inductive argument. Assume that p has m + 1 blocks. Since p is

noncrossing, it contains at least one block ¢ = [ or ¢ = (. Removing ¢ yields a partition
which is in () by induction hypothesis. Composing this partition with r; ® ¢ ® ro where r; are

suitable tensor products of the identity partitions i and I yields the partition p which is hence
in (0). Conversely, the set of all noncrossing pair partitions with the block rule of the assertion
forms a category of partitions, hence containing (().

(b) Let p € NC5°(0,1) be a partition with no upper points such that ¢(p) = km > 0, for some
m € Ny. Let p’ € NC3S*(0,1) be the partition obtained from p by replacing each unicolored block
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§dor §& by L&. Then, p; is a partitionkin @y c (L5, Id @ &&) by (a) and ¢(p’) = 0.
®km ®k

b
This implies that p’ ® [ isin (b4 7, 8L ® &), too, with c(p/ @ [} ) ) = ¢(p) by

Lemma 4.9, Hence, permutation of colors yields that p ® [ isin (L 7, 50 @ &&).
k

Using the pair partition, we infer p € { [} 2, To® &&).
Conversely, the set {p € NCS* | c(p) € kZ} is a category of partitions due to Lemma
k

. . 2
containing [l and [l ® {4. =

4.3.4 Classification in the case O
We are now ready to prove our first classification theorem.

Theorem 4.21. Let C € NC®® be a category of noncrossing partitions in case O. Then C
coincides with one of the following categories.

Rk
(a) If C is globally colorized, then C = Ogiop(k) = ( £} 2, o @ &&) for k=k(C) € 2Np.

(b) If C is locally colorized, then C = Oy = (D).

®
Proof. (a) By Propositions 4.10| and 4.20] we have that C is contained in ( [ ), [d ® &d).

k

Conversely, [l ® &§é& €C by Deﬁnition\@‘ and JJ ‘ec by Lemma |4.19
(b) Let C be locally colorized and let p € C be a partition with no upper points. Then,
each block of p connects a white point to a black point, see the proof of Proposition [£.18] By
Proposition C is contained in (@), hence they coincide. O

ME

®
Remark 4.22. For k = 2, the category ( b ~, 0b ® &) coincides with the non-colored

category of partitions (M) in the sense of Proposition .

[MIES

4.4 Case H

We now turn to the case H, i.e. to categories C C NC°® such that g ® ﬁ ¢ Cbut [{Lé €C.
By Lemma 4.4} no blocks of size one occur in any partition considered in this section. Recall,
that due to Lemma (d), we may connect neighbouring blocks of partitions in C, if the blocks
meet at two points with inverse colors.

4.4.1 Determining the parameters
Proposition 4.23. Let C C NC®® be a category of noncrossing partitions in case H.
(a) If C is globally colorized, then d(C) =2 and k(C) € 2Ny.
(b) If C is locally colorized, then
(i) either K¢(§ §) =0 and k(C) = d(C) = 0,
(ii) or k(C),d(C) € No\{1,2} and K¢(§ &) = dZ for d = d(C), i.e. in this case:
K°(5 Q) =KU(§ ) =K (L H) =K (& 3)=dz
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Moreover, we have K¢(§ §) # 0 if and only if [JId € C.
Proof. (a) This is analogue to Proposition [4.18]
(b) We first prove that K¢(§ 1) # 0 holds if and only if [I3 € C. If [J{4 € C, then
bo ® §88L € C from which we deduce K¢(§ &) # 0. Conversely, if K¢(§ 3) # 0, then

NDFC(§ 1) # 0 from which we deduce [I3é € C by Lemma (c)
Next, we prove that a locally colorized category can only be in the cases (i) or (ii) of the
assertion.

Case 1: K¢({ ) = 0. Assume d(C) # 0. Then there is a partition p = p; ® py € C such that

¢(p1) # 0, which by Lemma [4.15| implies {lée € C, a contradiction. Thus, we have d(C) = 0
which implies k(C) = 0 by Proposition [4.13]

Case 1: K¢(§ ) # 0. Assume d(C) = 2. We find a partition p = p; ® p» € C such that
c(p1) = 2. Using the pair partition, we infer g ® g ®@ps € Cor (L ®@py € C. By Lemma
we have g ® i eCor [l ® §& €C, both is a contradiction. Similarly, d(C) = 1 implies

ZE ® po € C for some partition pe, and the cases k(C) € {1,2} can be excluded analoguously
(with pe = 0).

It remains to show that K€(§ ¢) = dZ for d = d(C). Since K¢({ &) # 0, we have [IJd € C.
Thus, for 0 # s € K¢({ ), we infer by ® by € C by Lemma [4.15, This proves s € K¢(§ 3).
Moreover, we have 0 € K€(§ §) since a rotated version of b, ® b, yields a partition py € C such
that the first and the last point are black and belong to the same block. Then [¢ ® ps isin C

proving 0 € K¢(§ 1). We conclude KC(L $) € KC(J $). Conversely, let 0 # s € KC(§ 1). By
Lemma, we have by ® bs € C. Like in the proof of Proposition we obtain a partition

bs ® absa™! € C, where a and a~! is a pair block [J. This proves s € K°({ 3) and hence
dZ = KC(§ ). O

4.4.2 Finding partitions realizing the parameters

Lemma 4.24. Let C C NC°®® be a category of noncrossing partitions in case H.
(a) If k = k(C) # 0, then by € C.
(b) If d = d(C) # 0, then bqg @ by € C.

Proof. (a) By Proposition [4.23] we have [lé¢ € C as soon as k # 0. Let p € C be a partition
with no upper points such that ¢(p) = k. Using the pair partition, we may assume that p is a
partition on k white points. Using Lemma [4.2] we may connect all its blocks, ending up with
b, € C.

(b) Similar to (a), we deduce by ® p2 € C from the existence of a partition p; ® ps € C with
¢(p1) = d. By Lemma we have by ® by € C. O

4.4.3 Description of natural categories

Motivated by Lemma [4.24) we want to describe the categories (by, by ® by, §38¢). Note that for

k > 2 or d > 2, we may always construct the partition (e inside the category (Lemma |4.15)).
Due to Proposition this is a natural generator indeed, so we add it in the following lemma

also for the cases k = d = 0 and treat the case ( [{1é) separately.

75



Proposition 4.25. We have the following natural categories in case H.

(a) The category H'ioe := ( §&de) consists of all noncrossing partitions such that each block is
of even length connecting white and black points in an alternating way, when the partition
is rotated such that it has no upper points.

(b) Let k,d € No\{1} be such that d is a divisor of k, if k # 0, and denote by := (). Denote by
Hioc(k, d) the set of all partitions p € NC°® such that

(i) all blocks have length at least two,

(ii) c(p) € KZ,
(iii) if p1 ® pa is any rotated version of p in nest decomposed form, then c(p1) € dZ.

We have Hioe(k,d) C (b, ba @ b, e, bede)-

Proof. (a) By Lemma (d) we may deduce [&bebe € ( béde) from (3L ® L& € (Léde)-
Iteratively, we may construct all one block partitions of even length connecting white and black
points in an alternating way, and using the category operations, we may construct all partitions
of the assertion. Conversely, the set of all noncrossing partitions with the above block rule forms
a category of partitions containing J&l¢.

(b) Denote the category (by, by @ba, 5534, $38e) by D. Let p € Hioe(k, d). We prove p € D
by induction on the number m of blocks of p. Since D is closed under rotation, we may assume
that p has no upper points. For m = 1, note that ¢ ® bft € D by (a), where ¢; € P°*(0,2l)
consists of a single block on 2 points with alternating colors, and ¢ > 0. Using Lemma [4.2{c),
we infer that all one block partitions with ¢(p) € kZ are in D.

Let m > 1. By rotation and since p is noncrossing, p is of the form p = p; ® py such that
p2 consists only of one block. Since we are in case H, ps has length at least two and thus p is
in nest decomposed form. Thus ¢(p;1) € dZ and hence also ¢(p2) = ¢(p) — c¢(p1) € dZ. Assume
¢(p1) = ds with some s > 0, by verticolor reflection. Let p} be the partition obtained from
p1 ® l;d®s by connecting all points of b~d®8 to the last point of p;. Then p} is a partition with
m — 1 blocks and ¢(p}) = ¢(p1) — ds = 0. Furthermore, any nest decomposed form ¢} ® ¢} of p}
yields a nest decomposed form g1 ® g2 of p such that ¢(q}) € c(q1) +dZ C dZ because c(p2) € dZ
and c(b~d®s) € dZ. Hence, p}| € Hioc(k,d) and by induction hypothesis, pj € D. Composing it
with 7 @ (bg )®* @ (bg)®*, where r is a suitable tensor product of the identity partitions, yields
1R b~d®s € D. Similary b?s ®p2 € D, since the partition p), obtained from connecting all blocks
of b?s ®p2 is a one block partition with ¢(ph) = ¢(p). We conclude that p; ® b~d®s ® b?s ®pa €D
and using the pair partitions, we obtain p = p; ® ps € D. ]

4.4.4 Classification in the case H

Theorem 4.26. Let C C NC®® be a category of noncrossing partitions in case H. Then C
coincides with one of the following categories.

(i) If C is globally colorized, then C = Hgion (k) := (b, bede, &b @ ee) for k=k(C) € 2Ny.

(i) If C is locally colorized, and K€(§ 1) =0, then C = H'ioe = ( §338). Otherwise, we have

C = (br,bg®@bg, 183, §3de) for k = k(C) € No\{1,2} and d = d(C) € No\{1,2}. We use
the notation by = 0.
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Proof. (i) Using Lemmal4.24) we know (b, (ede, &0 ® ee) C C. For the converse inclusion, let
p € C. Then, ¢(p) € kZ by Proposition Furthermore, if p; ® ps is any rotated version of p
in nest decomposed form, then ¢(p;) € 2Z by Lemma and Proposition By Proposition

4.25 we infer p € Hioo(k,2) C (b, ba ® by, 5534, $b4). Since by @ by = L1 ® &4, we infer

C=(bk, bade, 66 ® ee)-

(ii) Let C be locally colorized and let k := k(C) and d := d(C).

Case 1. Let K€(§ 1) = (. Since C is in case H, we have ( [{Td) C C. Conversely, let
p € C be a partition without upper points. Assume that there is a block of p which does not
connect white and black points in an alternating way. Using rotation, we can bring p in nest
decomposed form p = p; ® pg such that the first and the last point of ps have the same color.

This contradicts K€(§ $) = K€(§ 1) = 0. We conclude that each block of p € C connects
white and black points in an alternating way. Furthermore, they are of even length. Otherwise,
the first and the last point would have the same color, and again we would find an example of

a partition in NDFC({§ 1) or in NDFC([ 1). By Proposition |4.25, we infer p € ( [§I3) and

hence C = ( [3de)-

Case 2. Let KC(¢§ &) # 0. Then (b, by ® bg, $13d, L3d84) € C by Proposition 4.23] and
Lemma, Conversely, let p € C. By Lemma we have ¢(p) € kZ. Furthermore, if p’ =
p1 ® po is any rotated version of p in nest decomposed form, we have ¢(p;) € dZ by Proposition

4.23] We thus have p € Hjoc(k, d), which by Proposition 4.25|yields p € (b, bd®l~)d7 384, 644)-
This shows (by, ba @ ba, $5de, dede) = C. =

Corollary 4.27. We have Hioe(k,d) = (by,bg @ bg, L5348, $38) in Proposition |{.25. In par-
ticular, all these categories are pairwise different.

Proof. In the above theorem, we showed (by, bg ® bg, {834, §38d) C C C Hioe(k, d) whenever C
is a locally colorized category in case H with k = k(C), d = d(C) and K€(§ ) # 0. Together

with Hiee(k, d) C (b, bg®ba, §58e, L824 of Proposition 4.25] we have equality here. Moreover,
it can easily be seen that the sets Hjo.(k,d) are distinct. O

Remark 4.28. (a) One can show that the categories (bg, lede, bo @ o) are given by the
set of all partitions p € NC°® such that ¢(p) € kZ and all blocks of p have even length.

(b) The non-colored case (TTT) is obtained from (b, bébe, §& @ &e) for k =2 in the sense
of Proposition [{.3,

4.5 Case S

We now consider the case S, i.e. categories C C NC°® such that [¢be and 1 ® I are in C.

4.5.1 Determining the parameters

Proposition 4.29. Let C C NC°® be a category of noncrossing partitions in case S.

(a) We always have g.@ eC.
(b) If C is globally colorized, then d(C) =1 and k(C) € Ng. Moreover, gm eC.
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(¢) If C is locally colorized, then k(C),d(C) € No\{1} and K¢({ &) = K°(§ ) +1=dZ+1
ford=4d(C), i.e.:

K D=K( Y =dz, K V=dz+1, K(Ed)=dZ-1
Moreover, §l4d ¢ C.

Proof. (a) By Lemma we may disconnect the white points from [{J¢.

(b) By (a) and using color permutation, we have gm € C, thus d(C) = 1.

(c) If k(C) = 1, then £ € C which allows us to erase arbitrary points of partitions in C.
Thus (¢le € C implies [} € C which is a contradiction to ) ® §é& ¢ C. If d(C) = 1, then
gm € C by Lemma [4.15(a). Using (a) and Lemma (e), we infer g ® I ® ¢e € C which
implies {} ® &¢ € C by Lemma a contradiction.

Now, let s € K€(¢§ 1), s > 0. We find a partition p; ® ps € C in nest decomposed form such
®s
that the first and the last point of ps are black, and ¢(p1) = s. We may assume that p; = j;

using Lemma (b) and the pair partitions. Swaping one of the white singletons of p; with the
first point of py (by (a) and Lemma (f)) yields a partition }E®H ®ph € C in nest decomposed
form such that the first and the last point of p), have inverse colors. This shows s —1 € KC([ ).
We proceed similarly in the case s < 0 and we deduce K€(§ ¢) € K¢({ §) + 1. Note that

0¢ KC(§ 1) by Lemma |4.15(c). Conversely, if s +1 € KC(§ 3)+1, s > 0, we find a partition

§E®S ®p2 € C in nest decomposed form such that the first point of ps is white and the last point
is black. Then, I®S ® I ® I ®po € C and using the partition g.@ , we infer s4+1 € K¢(§ 3).
We conclude K¢({ ) = K¢(§ §) +1and K¢(L §) = —-K¢({ &) = K¢(L ¢) — 1.

Finally, if [lée € C, then also [} ® I ® I € C, which implies [l ® §¢ € C by Lemma
4.2(b). O
4.5.2 Finding partitions realizing the parameters

Lemma 4.30. Let C C NC®® be a category in case S.

®k
(a) If k= k(C) #£0, then , €C.
(b) Ifd=d(C) #0, then §L5°8 ec.
Proof. (a) We find a partition p € C such that ¢(p) = k. Using the pair partition we erase all

Rk
black points and using g ® I we know g € C by Lemma
(b) This follows from Lemma [4.15{a). O

4.5.3 Description of natural categories

Proposition 4.31. We have the following natural categories in case S. Let k,d € Ng such that
d is a divisor of k, if k # 0. Denote by Sioc(k, d) the set of all partitions p € NC°® such that

(i) c(p) € KZ,
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(ii) if p1 ® pa is any rotated version of p in nest decomposed form such that the first and the
last point of py
... have inverse colors, then c(p1) € dZ,
... both are black, then c¢(p1) € dZ + 1,
... both are white, then —c(p1) € dZ + 1.

Qk d d
We have S]oc(k,d) g <l\ ) fii—‘@u Cm7 j:;® I>

k
Proof. Denote ( £® , fd(m@d., 5484, g ® 1> by D and let p € Sioc(k,d). We give a proof by
induction on the number m(p) of those blocks of p which have length greater or equal two. By
rotation, we may always assume that p has no upper points.
Case 1. Let m(p) = 0, i.e. p consists only of singletons. Since ¢(p) € kZ, we have up to

Rkt @w
permutation of the colors (see Lemma (b)) p = g ® ( g ® I) for some number w.

Hence p € D.
Case 2. Let m(p) = 1. Using rotation, p is of the following form:

p=a""X1a?X5...a" X

Here, the points a®* form a block of length [ > 2, and the X; are some tensor products of the
singletons I and I If now all points a®* had alternating colors, we could first argue that

the partition a®'...a% is in ( {§be) € D and then insert the tensor products X; of singletons

®k
between the legs using l and fdo I®d. . Unfortunately, the alternating coloring is not always
the case. We therefore construct a partition p’ involving some “correction points”. It will be of
the form:
p = A X]ALX) . AKX
The construction of p’ is as follows. If a® and a®+! have different colors, then up to permutation
®dti Qw;
of the colors, Xj; is of the form X; = g ®< g ® I) for some w; € Ny, t; € Z, by condition
(ii) of Sioc(k, d). We put Aj | := a®+ and X := X;. On the other hand, if a* and a**+! both are
®dt;+1 Qw;

black, then X; = g & ( i ® I) up to permutation, and we put A;_H = g Cfitlgfitl
X! = X;® I, w = w; + 1. If a® and a®+! both are white, then X} := X; ® 1; instead.
Finally, we put A} := o and X] := X if ¢°' and a® have inverse colors and A} := a~%a®",

X=X, ® } or X]:= X;® ] otherwise.
Now, the partition g; := Aj A ... A consists only of one block of even length with alternating

colors, by construction. By Lemma [4.25] it is contained in { [¢be) C D.

Let g2 be the partition obtained from ¢ by inserting subpartitions ( i ® I)®wg between
Aj and Aj_ |, and ( g ® I)®“’f after Aj. Since go can be obtained from ¢; using the category
operations, we have ga € D. Moreover, ¢(p’) = ¢(p) by construction and c(p) = >_. dt; € kZ.

®c(p)

Let g3 := g , hence g2 ® g3 is in D. Since § o § ¢ € D, we may use Lemma to shift
®dt; ®dt;

the partitions g (or I resp.) at the right positions, and we infer p’ € D. Using the pair
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partitions, we finally erase all extra points in p’ together with the “correction singletons” and
we deduce p € D.

Case 3. Let m(p) > 1. By rotation, p can be brought in nest decomposed form p = p; ® py
such that m(p2) = 1. Such a decomposition exists since p is noncrossing.

Case 3a. If the first and the last point of ps have inverse colors, we have ¢(p1) € dZ by

condition (ii). We may assume c(p1) > 0, i.e. ¢(p1) = ds for some s € Ng. Then, the partition
®ds

Pp=p® i satisfies ¢(p]) = 0 and m(p}) = m(p1) = m(p) — 1. As conditions (ii) and

(iii) are fulfilled for p}, we infer pj € D by induction hypothesis. By Case 2, we also have
®ds

ph = g ® pa € D, since c(ph) = ¢(p2) + ¢(p1) = ¢(p) € kZ. Thus, we obtain pj ® p, € D and
hence p = p1 ® p2 € D using the pair partitions.
Case 3b. On the other hand, if both the first and the last point of py are black, we consider

PLi=p® I Furthermore, we consider the partition p, obtained from ps by changing the color
of its first point from black to white and we insert a black singleton to the right of this first
point. Then, p} ® p}, is a partition in nest decomposed form fulfilling the conditions (i), (ii) and

(iii). By Case 3a, we infer pj ® p, € D. Since 343l € D, we may use Lemma |4.2] to infer that

p1 X I ® ;[; ® po is in D, which yields p € D. We proceed in the same way, if the first and the
last point of py are white. O

4.5.4 Classification in the case S

Theorem 4.32. Let C C NC®® be a category of noncrossing partitions in case S. Then C
coincides with one of the following categories.

(i) If C is globally colorized, then C = Sgon(k) := (i , bede s g ® I, 58 @ &&) fork =
k(C) € Np.

(ii) If C is locally colorized, then C = (I®k, fdm, 13ds, I ® I) for k = k(C) € No\{1}
and d = d(C) € No\{1}.

Rk ®k
Proof. (i) By Lemma [4.30, we have 1 € C for k = k(C). Thus <§E , bedd, I ® I Fd®
1

eo) C C. Conversely, let p € C. Then ¢(p) € kZ by Proposition|4.10, Furthermore, d = d(C) =

®k
by Proposition 4.29, hence p € Sioc(k,1) C <;E , gm , $6dd, }E ® I> by Proposition [4.31
Iy Teolyo (1™ 1ol
We have (¢ 3ode s dede, & ® o) =(¢ Jeler & ® o, omo® ﬁ>

(ii) Let C be locally colorized. Using Lemmal4.30, we infer ( i fd I®d., m, L® I cce
for kK = k(C) and d = d(C). Conversely, let p € C. Then c( ) € k:Z by Proposition [£.10] Let
p1 ® pa be a rotated version of p in nest decomposed form. If the first and the last point of po
have inverse colors, then ¢(p1) € dZ by Proposition If the first and the last point of po
both are black, we have to prove s — 1 € dZ for s := ¢(p1).

Assume that s > 0. Using the pair partitions and Lemma we may assume that py is of
®s ®s
the form p; = g , hence g ® p2 € C. We have s # 0, since otherwise po € C and rotation

would yield a partition such that two neighbouring points have the same color and belong to
the same block. By Lemma [4.15|c) and Proposition [£.29] this would lead to a contradiction.

We thus have s > 1. Since g. e € C by Proposition 4.29) we may shift one of the white
singletons to the right hand side of the first point of py, which inverts the colors of these two
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®s—1
points. We infer that the partition ;E ® ph is in C, where p) is in nest decomposed form

such that the first and the last point have inverse colors. By Proposition we thus have
s—1¢edZ.

®—s
As for s < 0, we have I ®p2 € C. By composition, we infer that also I ® I® 1®p2 €

C. Again, shifting the white singleton to the right hand side of the first point of py yields
®—s+1

I ® ph € C where the first and the last point of p/, have inverse colors belonging to the

same block. Thus, —s + 1 € dZ and hence s — 1 € dZ.

A similar proof shows that s + 1 € dZ if the first and the last point of ps are white. We

X—s

®k Qd ®d

thus have p € Sjoc(k, d) and by Proposition |4.31} we deduce p € ( i L 5

L 5in, Te b,

®d| @d

Rk
This shows C = (&, £, L35, @ ). O

®k d d
Corollary 4.33. We have Sjoc(k,d) = ( i , fo ﬁ® o oodd, g ® i> in Proposition |4.31. In
particular, all these categories are pairwise different.

Rk
Remark 4.34. The non-colored case (1 ® 1,7TT1) is obtained from E , $&dd, g ® i, Il ®
i)-

oo for k=2, whereas (1,ITT1) is the case k = 1 (see Proposition

4.6 Case B

Finally, we turn to the case B, i.e. to categories C C NC°® such that [¢le ¢ C and I ® I eC,
i.e. all blocks of partitions p € C have length at most two (Lemma. Like in the non-colored
case, this is the most complicated situation, as we can already see when investigating which
parameters can occur.

4.6.1 Determining the parameters
Proposition 4.35. Let C C NC®® be a category of noncrossing partitions in case .
(a) If C is globally colorized, then the cases d(C) =1 and d(C) = 2 can occur.

(b) If C is locally colorized, then

=dZ+ (r+1) forr :=r(C) :=min{s > 1| s K(§ &}~ 1 and

)
{1}, d =d(C) € No\{1}. Furthermore, r =0 orr=%; and r # 1. Thus:

KL §) =K ) =dz, K(§3=dz+(r+1), KL 1) =dzZ—(r+1)

Proof. (a) This follows directly from Lemma
(b) Let KC€(§ 1) # 0. It is clear that k(C) # 1, since ) € C (see Lemma {.36) would
imply §& € C as K¢(§ 1) # 0. Next, observe that we have —(s — 2) € K¢(§ {) whenever

R—s

s€ KC(§ 3). Indeed, by Lemma |4.15, we have (recall the notation I = I ,if s < 0):

fs’fnfz‘ ce




Rotation yields —(s —2) € K€(¢ o). We observe that 0 ¢ KC(§ §) and 2 ¢ K¢({ ), since
otherwise [l ® {¢& € C, in contradiction to C being locally colorized. Thus r # 1. Moreover,

we deduce that there is always a number s € K C(I o) such that s > 1, and hence the number
r is well-defined.

Like above, we have the following two partitions in C, the latter one being obtained from the
first one by verticolor reflection and rotation:

§708 eec and T U5 ec

(e]

Forming the tensor product of these two partitions and composing it with a suitable tensor

product of $7 and the identity partitions, we infer:

(¢]

Thus, 2r € K¢(§ 1) = dZ. Let r # 0. Then d # 0. We now prove 2r = d. Put rq := r + 1.
Assume 2r = ds for some s > 2. Then 2d < ds = 2r, hence d < rg. Thus, ' := rg —d is a

number 0 < 7’ < rg. Using the partition fdo I®d. € C (which is in C by Lemma {4.15)), we can

shift exactly like in the proof of Lemma (e) d of the r + 1 white singletons of & 43 o

from the outside of the pair to the inside. This yields a partition showing that 7/ € K¢(§ 1) in
contradiction to the minimality of ro. We conclude 2r = d if r # 0.
It remains to show that KC(§ 1) = dZ + ro. Let t € Z. Since dt € dZ = K¢(J §) and

Q@r—1 ®r—1
® I € C, we have (by Lemma [4.15):

!

®dt RKr—1 Kr—1 Rdt
p = g og I I o €C

®r+1

Furthermore, the following partition is in C since it is a rotated version of J o

ed o

Now, composing p with ¢ we may shift r — 1 white singletons from the inside of the pair of p to
the outside, by which their number increases to r 4+ 1 white singletons. Furthermore, the color
of the first point of the pair changes from white to black. We conclude that dt 4+ (r + 1) is in

KC({ 1), which proves dZ + 1o € KC(§ ).

Conversely, let 79 > 1. Thus r > 0 and hence d = 2r > 0. Let s € K¢({ o) and assume
s ¢ dZ 4+ ro. We have s +dZ C KC({§ 1), since the partition f)dé I®d. € C allows us to
shift clusters of d singletons of the same color to arbitrary positions. We may thus assume

ro < 8 < 1o + d which implies 0 < s — rg < d. Like above, we have the following two partitions
in C using verticolor reflection:

fs ’I@ST‘ eC and of”ﬂ OI®T0 eC
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Composing the tensor product of them with %5 yields s —rg € K¢({ §) = dZ in contradication
to0<s—rg <d.

In the case g = 1, we have g.@ €C. Ifnow s € KC(§ 1), then s —1 € K¢(L }) = dZ

again by applying | & 3 to £5£7).

Finally, if d = 1, then 308l € ¢ and r = 0 implies §43) € C. Hence {1 ® {1 €€, a
contradiction. O

4.6.2 Finding partitions realizing the parameters

Lemma 4.36. Let C C NC°® be a category in case B.

Rk
(a) If k= k(C) #£0, then } €C.

(b) If d = d(C) # 0, then fdi?‘@d. e C.

(c) FKC(§ 1) #0 and r(C) =0, then 343l eciifr=r@)#0, then & 748 4 ec.

Proof. (a) Using 1; ® I € C, we may disconnect any points from their blocks. Thus, we may

®k
assume that a partition p € C with ¢(p) = k is of the form p = I .

(b)&(c) This is Lemma [4.15(a). O

4.6.3 Description of natural categories

Proposition 4.37. We have the following natural categories in case B.

(a) The category Z ® I> consists of all noncrossing partitions p € NC°® such that when p
is rotated to a partition having no upper points
(i) all blocks have size one or two,
(ii) the blocks of size two connect a black point and a white point,
(iii) the number of black singletons and the number of white singletons between two legs of

every pair coincide, and on the global level, too.

(b) Let k,d € Ng be such that d is a divisor of k, if k # 0. Let r € {0, %}\{1} Denote by
B'\oc(k,d,r) the set of all noncrossing partitions p € NC°® such that

(i) all blocks have size one or two,
(ii) c(p) € kZ,
(11i) if p1 @ po is any rotated version of p in nest decomposed form such that the first and
the last point of ps
... have inverse colors, then c(p1) € dZ,
... both are black, then c(p1) € dZ +r +1,
... both are white, then —c(p1) € dZ +r + 1.

®k Qd! ®d

We h(l'Ue Blloc(ka d,'l“) g < /(]D\ 9 g (LI—‘Ov g®r+10 I®T7107 /CE ® I>
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(c) Denote by Bioe(k, d) the set defined as B'1oc(k,d, ), but with the additional condition that

all blocks of p of size two are of the form L& or &L when being rotated to one line. We
®k d d
then have Bio(k,d) € (5§38, S @ 1.

Proof. (a) Denote the set of all partitions p € NC°® with (i), (ii) and (iii) by £. It is easy to see

that &€ is a category of partitions containing g ® I So, we only need to prove p € ( E ® I>
for all p € £. We do so by induction on the number m of blocks of size two of p. If m = 0, then
p consists of [ white singletons and [ black singletons, for some [ € N. Hence, it is of the form
( g ® I)®l € ( g ® I} up to permutation of colors (see also Lemma. If m = 1, the partition
p is of the form p = XaYa™! up to rotation, where X and Y are tensor products of singletons

and a and a~! form a pair block [¢ or {J. By assumption, the number of white singletons in
Y and the number of black singletons coincide, hence Y € ( I ® i> by case m = 0. Likewise
X € { g ® I>, by the assumption on the global color distribution of the singletons. We infer
pe(de i)

If m > 1, we can write p = p; ® p2 in nest decomposed form up to rotation, where po consists
of one pair block and some singletons. Then py € ( g ® 1> by case m = 1 and p; € g & I>
by the induction hypothesis. Thus p =p; @ p2 € (|} 5 ® T).

(b) Let p € B'1oc(k,d,r). Denote the category ( ) ®d - fTH I ® I ) by D.
We prove p € D by induction on the number m of blocks of P of size two.

Case 1. Let m = 0. Up to rotation and permutation of the colors, p is of the form p =
Rks

@k
1; ®(1§® I)®w for some w > 0 and c(p) = ks € kZ. Hence p € <I , l@ I}QD.
Case 2. Let m = 1. Up to rotation, p is of the form p = p; ® a®1pYa®> where a°! and a®?
form a pair block, and p; and p9 consist only of singletons respectively.

Case 2a. If the pair on @' and a2 is of the form [¢ or &L, then ¢(p1) € dZ. Consider
, T_C(pl) . ) , of T®C(P1) 0
P =p1® & . Then p} € D by Case 1 since ¢(p}) = 0. Furthermore, py = | ® Py

is in D, again by Case 1 because c(pgl) = c(p1) + c(pY) = c(p) € kZ. Therefore, the partition

—c(p1) (p1) d d
P1® T ® a! T pya? is in D. Since ¢(p1) € dZ, we use the partition f i® e €D to
c(p1) ®c(p1)
shift ¢(p1) singletons from inside the pair to the outside. Thus, p1® { T ® i ®a1pYa? €

D from which we infer p € D using the pair partitions.

Case 2b. If the pair on a°! and a2 is of the form {4, then ¢(p1) € dZ + (r +1). Assume
¢(p1) = ds+r+1 for some s > 0. Let p} be the partition obtained from p; by removing ¢(p1)

white singletons. Then p} € D by Case 1 since ¢(p}) = 0. Furthermore, let p}, be obtained from
®ds
Py ® I by adding r — 1 white singletons. Then p}, € D since c(ph) = c¢(p9) +ds + (r — 1) =

¢(p) € kZ. Finally, consider the partition pj ® fTH. I®T71. composed with p}, in such a way that

Pl is placed between the legs of the pair ¢ ¢. The resulting partition is in D and using £
we can shift ds white singletons from inside the pair to the outside. Up to permutation of colors
of the singletons and using the pair partitions, this yields p which is hence in D. We proceed in
a similar way for s < 0 and likewise in the case that a°* and a2 form a pair [J.

Case 3. Let m > 1. Up to rotation, p is in nest decomposed form p = p; ® ps such that po

84



®c(p2)
contains only one block of size two. Then, p} :=p; ® T is in D by induction hypothesis,
) ®c(p2)

® (pz
since ¢(p}) = ¢(p). Likewise p) := i ® ps is in D by Case 2. Hence py ® } ®

®—c(p2)
I ® po € D from which we deduce p € D.

(c) Note that in the proof of (b) we used the partition $0 8L only when blocks [3 or

&d ®d

o ¢ Where involved. Hence, p € ( l 348 e g ® I) if all blocks of p of size two are of the

form [¢ or §J. O
4.6.4 Classification in the case B

Theorem 4.38. Let C C NC®® be a category of moncrossing partitions in case B. Then C
coincides with one of the following categories.

(a) If C is globally colorized and
®
Lifd(€) =2, then C =B (k)= (§ . T@ {, §3 @ §) fork=k(C) € 2,

®k
Cifd(C) =1, thenC = Baop(k) := (L, 3031, T, @ §3) fork = k(C) € N,.
(b) If C is locally colorized and

®k &d ®d

Cif KO8 ) =10, thenC:(/r , £(Li—‘., T® T)fork,‘:k:((:') and d = d(C) € Ny,
Cif KC(§ ) # 0, then C = 1 ®d’—l T T L@ ) for k= k(0) €
No\{1}, d = d(C) € No\{1} cmdr—r( ) =4 7é1 07"7'((3) 0.

®k
Proof. (a) If k(C) # 0, then I € C by Lemma |4.36{ Hence <I , ]; ® I, Il® fe) CC.

Case 1. Let d(C) = 2. Let p € C be a partition without upper points such that ¢(p) > 0.
Then ¢(p) = ks for some s € Ny by Proposition The number of points between two legs

of a pair of p is even, because c(p1) € 2Z for all p; ® po € NDFC( 1) by Proposition |4.13
®Rks
Consider p’ :=p® I . Let p” be the partition obtained from p’ by replacing the colors of the

points by the alternating color pattern white-black-white-black-etc. Then, all pair blocks are

of the form [ or U, because there is an even number of points between two legs of a pair.

ok
Thus, p” € ( 1 ® I) - <£ , l ® I, I8 ® &§&) by Proposition [4.37, Using permutation of
®ks
colors, we infer p’ € C since ¢(p’) = ¢(p”) = 0. This implies p’ ® g € C from which we deduce

p € C using the pair partitions.
®k

Case 2. If d(C) = 1, we have 308l € ¢ by Lemma [4.16| Hence, </£ , 301l g ®

I, 5o ® &e) € C. Conversely, let p € C. Then ¢(p) € kZ by Proposition [4.10| and thus

ok
p € Boc(k,1,0) C ( E , gm , g.@ , g ® I) by Proposition |4.37, But this category contains

5 (k§§ ¢ ¢ since we may shift the singletons in g.@ arbitrarily, and hence it coincides with
®
(1,80l Te 1. ne G0,

®k &Qd &d
(b) Let C be locally colorized. For k = k(C) and d = d(C), wehave § €Cand §¢§ s €C
by Lemma
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ok {3 1
Case 1. Let K¢(§ 1) = 0. Then (/CE g 0, ® T) C C. Conversely, let p € C.

Then c¢(p) € kZ by Proposition and c(pl) € dZ for all p1 ® po in nest decomposed form
by Proposition 4.13, Furthermore, all blocks of size two are of the form [ or ¢l when
being rotated to one line, since K¢(§ ¢) = K¢(L ) = 0. Thus p € Bye(k,d) which implies

pe(g , 50 e e £® I) by Proposition 4.37

®k d| d r+1 r—1
Case 2. Let K¢({ &) # 0. Then(g ,g®o®.,g®+ ° ®I C C for r as in

Proposition Again, we use Proposition [£.37] to finish the proof. O
®k d r+1 —1
Corollary 4.39. We have B'oc(k,d,r) = { \ , f ) I®d ® ' ® I l ) and Bioe(k,d) =

- T & T in Proposition |4.37. In particular, these categories are pairwise differ-

ent.

Remark 4.40. (a) If r # 0, then fTH. I®r71. € C implies fdo I®d. € C, see the proof of
Proposition [{.35

Rk
(b) The non-colored case (T ® 1) is obtained from ( 1 , I@ I, 53 ® &e) for k=2, whereas

Rk
(1) is given by k = 1. The category (1 [11) in turn coincides with <i , gm, g ®
I, 5d® &) for the case k =2 (see Proposition

4.7 Main result: Summary of the noncrossing case

We finally classified all categories C C NC°® of noncrossing (two-colored) partitions. This
constitutes the main result of our chapter. Here is an overview on the results split into the
globally colorized case and the locally colorized case. For the convenience of the reader we recall
that the definition of a category of partitions may be found in Section [I.1.2] the cases O, H,S
and B are defined in Definition globally and locally colorization is given in Definition
the partition by is defined in Definition whereas the operation p — p is the map giving
the same partition with inversion of colors, as defined in Section and the classification

theorems are Theorems [4.21] [£.26] [4.32] and [4.38]

Theorem 4.41. Let C C NC®® be a globally colorized category of noncrossing partitions. Then
it coincides with one of the following categories.

Case O: Ogion(k) = (b . §& @ &) for k € 2Ny

Case H: Hglob(k;) = <bk’ (WOO; O[_(}) ® n> fOT’ k € 2Ny

Case S: Sgon(k) = (5, 8313, d@ 1, §d @ §3) fork €N
Case B: Bglob(k):<]; , ;E® I, 5o ® &e) for k € 2Ny

or B/glob(k‘):<g , 5434 g@ 1, Ll ® &&) for ke Ny
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Theorem 4.42. Let C C NC®® be a locally colorized category of noncrossing partitions. Then
it 1s of the following form:

Case O: Oy = (0)
Case H: H'ioc = ( Léde)

or Hioe(kyd) = (br,ba @ ba, §538, $&8e) for k,d € No\{1,2}, d|k

k d Xd
Case 8¢ Seolbyd) = (172 ELEY, G0, Lo 1) for k,d € No\{1}, dlk

®k d d
Case B: Boo(k,d) = (1 | fm, Y@ 3 for k,d e Ny, dik

or Broo(kydr) = (3 ELE0, €080 19 3 for kd e NV(1Y, ¢ € {0, 4013,
d|k

Here is a graphical overview of all categories of two-colored noncrossing partitions. The
single framed categories are the locally colorized ones whose inclusions are indicated by single
dashed lines (inclusions from top to bottom and from right to left, for fixed parameters k and
d). Constraints for inclusions are marked in brackets. The double framed categories are the
globally colorized ones with inclusion pattern according to the double dahed lines. The locally
colorized categories are contained in the globally colorized ones according to the diagonal chain
lines. In our graphic, we also included a cross marking the areas of the cases B, O, S and H.
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(@] (@] @ O [ ]
fyk,del\lo '
[d=0]
®k ::::::::::::::: ®§
(1 1ol e 8 ; (517, e &)

k € 2Ng ' k € 2Ng

< g®k) g®dﬁh f*““ 1®T711|7 l ® I>

yk,d € No\{1},r € {0, £}\{1}

®k :[r:O] ;
(3 80t Te d fle &) ; I
k € Ng ' "
o . B|O .
' S|H "
®k o e
(3, 8188, 5. e d) : (L358)
k,dENO\{l} o
| (bksba © bay 55de s E8La)
&k, d € No\{1,2}
d € 2Np]
®k - - - - - - - =z
(3, 0. 1el, e §d) (b, 8303, 50 ® §3)
k € Ng k € 2Ng

(k=2): (a1 (k=2):(0)

(k=1):(1,mm) (k=2): @ 1,mm) k=2 ()

Remark 4.43. The constraints on the parameters k, d and r in the above theorems can be
understood by the fact that we have the following equalities.

b Hglob(k) = Hloc(ka 2) and ,Hglob(2m + 1) = Sglob(Qm + 1)
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b glob(k) = Sloc(ky 1) = Hloc(ka 1)
° glob(k) = B/loc(ka 2?7’L, 1) and Bglob(2m + 1) = B’glob(2m + 1)

° B/glob(k) = Blloc(k‘, 1, 0) = B/loc(k‘, 2m + 1, 1)

4.8 (C*-algebraic relations associated to partitions

We can associate C*-algebras to categories of partitions by associating relations to partitions.
This is the main step in the direction to defining unitary easy quantum groups.

Definition 4.44. Let p € P°*(k,l) and let « = (a1,...,ax) and = (P1,...,0;) be multi
indices. We decorate the upper points of p with o and the lower ones with B. If now for every
block of p all of the corresponding indices coincide, we put éy(c, B) := 1; otherwise §,(a, 5) := 0.

Definition 4.45. Letn € N and let A be a C*-algebra generated by n® elements u;;, 1 < 14,5 < n.
Let p € P°*(k,l) be a partition and let v = (r1,...,7%) € {o, 8}* be its upper color pattern and
5= (s1,...,5) € {o, e} be its lower color pattern. We put ug; = u;; and u;j = uj]

We say that the generators u;; fulfill the relations R(p), if for all p1,...,6 € {1,...,n} and

for alliy,... i € {1,...,n}, we have:

n
Z 6P(a7 6)“2111‘1 e ugi;lk; = Z 5p(i’ ’7)u211’71 T ugll’ﬂ

agy..,ap=1 V1o V1=1
The left-hand side of the equation is 6,(0,3) if k = 0 and analogous for the right-hand side.

Using this definition, we can give a list of relations associated to partitions that appeared
throughout the classification of categories of noncrossing partitions. We denote by u the matrix
u = (u5)1<ij<n, and @ = (uj;). Furthermore, rot;(p) € P°*(t, k) denotes the partitions obtained
from p € P°*(0,k + t) by rotating the last ¢ points to the upper line. If we simply write rot(p),

we do not specify which of the points are rotated. It is often more convenient to consider the
nest(k)

relations of a partition in some rotated form rather than of the partition itself. By [} we

denote the partition obtained from nesting the partition [} k-times into itself, i.e.:

nest(3)
S lﬂl

Rk nest(k) Rk nest(k)
Note that S8 € C if and only if [} € C,since [§ and [§ are in any
category (then use Lemma [1.2(a)). The next relations can directly be derived from Definition
4,40

R(5e): Zuzkujk = 0j;, l.e. wu* =1
k

R( n)) : Zu;kkujk = 51']'7 le. Wru=1
k
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o}

) : Zuklu;;] = (5,‘]‘, i.e. (ﬁ)*ﬂ =1
k

®
O

LT) Zukzuk] = 0y, ie. u(u) =1

R( X) = R( X) D Ui UL = Ukl Ui
R( X) = R( X) DUy = Uy Uij
R( T) = R( I) = R(rot1( 6d)) tuiy = uj;, ie. u=1a

nest (k)

R(roty( 5 ) : Wiygy -+ - Wiggy, = urljl ce u;kk]k

R(1® 1) = Rrot( 500 §3)) : uljus = wiguly

R(rots ( g® I)) : <Z Uk:j) = (Z Uil)
k

l

R(53) = Rlrots( ST8)) : upiuy = wiay = 0 if i #
RO+ ujyung = ulguge = 0 i i 4
R(55) = R(rvota( 5553)) : kit = stz = 0 if i #
R(rota(by®ba)) Z(s”, migUkjy - Uy = D O =gty - - Uiy
l
R(by) : Zuhl ce Uy = Oy ==,
l

. . . . . . . _— . . * *
R(roty(bstt)) : 0iy=..=iyWirjy - - - Wiy j, = Ojy == Uiy gy -+ - Uiy iy

R(rotg1( fdcli—‘@do)) - Uij (Z uk1j1) (Z uk‘djd) = (Z uilll) (Z uidld) Uij
k1 kq l1 la

R(ot, 08 DU (Zukm) (Z ukrljrl) = (Z Uilll) . (Z uwlzr“) Ugj
kr—1 I

r+1
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4.9 Free unitary easy group

4.9.1 Definition of Cf

In the sequel, the following quantum group will play an important role. It is a kind of a non-
orthogonal version of B;. It has been introduced in an unpublished paper of Banica, Curran
and Speicher (see [83]).

Definition 4.46. Let C;I be the quantum group given by the universal C*-algebra generated by
ui; such that w and 4 are unitaries and ) ) wyp = Y uk; = 1 for all i, 7.

Again, it can be read off directly from the relations in Section that C, is free easy with
category Bioe(1,0).

4.9.2 Free and tensor complexifications with Z,

In [95], Wang proved the existence of a comultiplication on the free product as well as on the
tensor product of the C*-algebras associated to quantum groups. More precisely, let G and H be
two compact (matrix) quantum groups with comultiplications Ag resp. Ay. Let C(G)OC(H)
either be the untail free product C(G) * C(H) of the two C*-algebras or the maximal tensor
product C(G)®maxC (H ). Denote by () the embedding of C(G) into C(G)C(H ) and likewise
by to@)oc(e) the embedding of C(G) ®@min C(G) into (C(G)OC(H)) ®min (C(G)OC(H)).

Proposition 4.47. Given two compact (matrix) quantum groups G and H, there is always a
comultiplication A on C(G)OC(H) for O € {*, ®max} such that:

Aoige) = teoce ©Ac  and Ao igy = tomnoH) © An

As a consequence, one can define the free product and the direct product of compact matrix
quantum groups. The fundamental corepresentation is then given by the direct sum of these

. 0 .
representations, thus by (g v)’ where u and v are the matrices of generators for G resp. H.

We now define another kind of free resp. tensor product of two compact matrix quantum groups.
Recall that for unital C*-algebras A and B, the maximal tensor product A ®@max B can be seen
as the universal C*-algebra generated by elements a € A (with the relations of A) and b € B
(with the relations of B) such that all such a and b commute. We thus simply write ab for
elements a ® b.

Definition 4.48. Let (G,u) and (H,v) be two compact matrix quantum groups with u of size
n and v of size m.

(a) The glued free product GxH of G and H is given by the C*-subalgebra C*(uijvy, 1
i,7<n,1<k,l<m)CC(G)*«C(H).

IN

(b) The glued direct product GXH of G and H is given by the C*-subalgebra C*(u;jvg, 1
i,j S n, 1 S k,l S m) g C(G) ®max C(H)

IN

As a simple consequence of Wang’s result, the glued free product and the glued direct product
are again compact matrix quantum groups.

Corollary 4.49. The C*-subalgebra C*(u;jvg,1 < 4,5 < n,1 < k,l < m) of C(G)OC(H),
O € {*, ®max} admits a comultiplication A(u;jvg) = Ag(wij) A (vgr).

Proof. Restriction of the comultiplication A of Proposition [4.47] yields the result. O
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To a discrete group I', we associate the universal C*-algebra C*(I') generated by unitaries u,,

g € I' with ugup = ugn, uy = ug-1. It is well known that the comultiplication A(ug) = uy ® u,

turns it into a compact quantum group denoted by T.

Corollary 4.50. Let T’ be a discrete group generated by a single element go, and denote by z the
generator ug, of C*(I'). Let (G,u) be a compact matriz quantum group. Then GiD and GXT are
compact matriz quantum groups given by C*(u;;z) in C(G) * C*(T) resp. in C(G) @max C*(T)
and A(uijz) = YL UikZ @ Upj2.

Proof. Since T is generated by a single element, (C*(T'), z) is a compact matrix quantum group
of size 1. Using Corollary we obtain the result. O

As before, denote by Zg the cyclic group Zg := Z/dZ.
Definition 4.51. Let G be a compact matriz quantum group.

(a) The quantum group G%Z 1s called the free d-complexification of G and G3Z is called the
free complexification.

(b) The quantum group G QZ 1s called the tensor d-complexification of G and G %7 is called
the tensor complexification.

The above definition is a generalization of Banica’s free complexification [g].

: , the free complexified o , an , the free complexified o . These two groups
8): H}, the f lexified of Hy;, and S%, the f lexified of S;. These two group
are free quantum groups corresponding respectively to the categories H# and S%0.

Remark 4.52. The commutative complezification shouldn’t be confused with the traditional
complexification of Lie groups. In our case it is just the commutative counterpart of the free
complezification introduced by Banica in[8]. This commutative complexification also appeared in
the unpublished paper of Banica, Curran and Speicher [83]. Note that for a classical group G,
the commutative d—complexification is just the product of G with Zg.

The description of the free quantum groups is done in two steps. We first deal with the local
parameters, and then with the global parameter.
4.9.3 Local colorization

In order to achieve the description of all free quantum groups, we have to describe the meaning
of the local parameters d,r for the cases S, B and H. In the case H, this meaning has been
already interpreted in [16]. The free complexification gives an interpretation in the cases S, and
B for r = 0.

Proposition 4.53. The following correspondance holds between quantum groups and categories
of partitions :

o S4 s the category of partitions corresponding to ST, the free d—complexification of
St.

o B%4 s the category of partitions corresponding to CH 1
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o B0 s the category of partitions corresponding to B¢

Proof. For these three families, the proof follows exactly the same pattern. We sketch the proof
and detail it for the case S, the latter being the one needing more arguments.

1. Let n > 1. We indentify the category of partition S%? with its image as linear maps
on tensor products of C" through the construction of Section [I.1.3] Denote by G,, the
quantum group of dimension n corresponding to the category of partition S*?, T the
Woronowicz tensor category associated to the quantum group S, 4 The goal is to prove
that G, = S,

2. In order to prove that G, = Sg’+d, it suffices to prove that on one hand S*¢ C T
(yielding St G,), and that on the other hand there exist a C*— morphism sending
the fundamental matrix of Sy on the one of Gy. The first step is just a verification
that is left to the reader.

3. Write Gy, = (vij)1<i,j<n, St = (uij)1<i,j<n- Weshall construct a surjective C* —homorphism
®: C(ST T = C(G) sending uijZ on vjj.
Recall that C(S; ") is the C*—subalgebra of C(S;}) * CZ4 generated by {uijz}i<ij<n-

Since ), v;; is independent of i (thank to the partition I T ;and (3, ’u”) =1, there is
a map from C(Zq) to C(Gy) sending z to ), vij. Set §;; = v,](zl vm) . The partition

$m implies that (3. vi;) " vy = v (Y. v4;), and thus
AR J 1 )

—1
Z”w Z“w Vij Z“U Z”U
—UU E Uzy = gij

Thus the matrix (5;;) is an orthogonal matrix fulfilling the relations

D=1
The expression of §;; together with the fact that if k # [, vyv); = 0 (implied by the

presence of the partition [{l¢) yields
k 75] = §ij<§ik = 0.

Due to these relations, there exists a C*—homomorphism from C(S;") to C(G,,) sending
u;j to $;;. By the universality property, there exists a C*—homorphism ® from C(S;7)«CZg
to C(Gp) sending z to Y v;; and u;; to v;;(3 vi;)~ L. This homorphism sends thus u;;z to
v;j, which concludes the proof.

The proof for BT is the same except that we don’t need to prove the relation k # j =
5;j8i, = 0. The one for CH1d is the same as the latter except that we don’t have to prove the
self-adjointness of 5;;. O
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4.9.4 The family BH®d4/2-1

The free unitary group U, has been first constructed in [95] as a free 0—complexification of O;F.
This construction gives also an alternative description of the C*—algebra underlying CT. Let

O;F = (0ij)1<i j<n be the orthogonal group of dimension n. The following alternative description

of Ct holds:

Proposition 4.54. Let C;F = (uij)1<ij<n. Let CZ4 be the group algebra of Z/dZ generated by
the element z, with d € 2N non zero. Then we can write u;; = 5¢jzd/2 with :

® 0;; is the image of 0;j through the projection on C(O;}) * (CZd/(Zj 0ij = 24/2)

o C(C™) is defined as the C*—subalgebra of C(O)xCZy,/ (3, 0ij = 2%2) generated by the

elements 0;; 24/2

Proof. Note first that as a compact quantum group, C, ~ U;;l @1 : indeed let F € U,
sending e, to > e;. Then (vjj)i<ij<n = F*UF is again a unitary quantum group. Moreover
the condition ) u;; = 1 translates into the condition vy, = vy; = 0 for all ¢,j < n. Thus Cr
is a quantum subgroup of F(U ; @ 1)F*. Since the intertwiners of C, are also intertwiners
of F(U,” , ®1)F*, we deduce that C;} = F(U,” ; @ 1)F*. Moreover the C*—algebra defined as
C(O} — *CZq,/ (325015 = 2 ~4/2) "is isomorph to the C*—algebra of O | @ ¢ (with ¢ = 2%/?).
Indeed the former is exatcly the C*—algebra of the compact quantum group By T as described
in [97], and B, * has been shown by Raum in [70, Thm 4.1] to be isomorph to O | @e. Since,
from a result of Banica, (0;j€)1<; j<n—1 is isomorph to U, |, Oie ~ Cit.

n—

O]

Let us denote Cyi*? the quantum subgroup of C % generated by the matrix (6172 V) 1<i j<n
(with the same notations we gave in the latter proposition).

Proposition 4.55. If d is even, B*%%/2 s the category of partition corresponding to i,

Proof. The pattern of the proof is the same as for the free complexification.

Let n > 1. We denote G,, = (vij)1gi,j§n) the quantum group of dimension n corresponding
to the category of partition B*®4/2=1" T the Woronowicz tensor category associated to the
quantum group ;74 Note first that Bddd/2-1 C T, so that C;hd C Gy.

Let us show that there exists a C*—morphism from C(O;}) * CZy) to C(G,) sending 0;;2%+*
to v;;. Since (ZJ vij)d = 1, there exists a C*—morphism sending z on Zj vi;. Thank to the

intertwiner I i, the sum ) ; Vij is independent from . Moreover the intertwiner associated

vij va )4/2-1 ZU )U/2H1

and thus since (3_; v )1 = ((Z] ) 2L, vij(zj vi;)¥%71 is self-adjoint. Let 6;; =

vii (D25 v;;)%?~1. The matrix (6;;)1<i j<n contains self-adjoint elements and
Zaijéik = 25]'@'51%' = 05 1.
i

Thus there exist a C*—morphism from C(O;}) to C(G,,) sending o0;; to 0;;. By universal property
there exists a C*—morphism ® between C(O;") x CZ4 extending the two latter morphisms. In
particular we have ®(0;;2%?T1) = v;;. By construction ®(3 0;; — 2%/2) = 0, and thus the
morphism factorizes through C(Cyi*%). O

with ${30 implies that
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4.9.5 Global colorization

It remains to interpret the global parameter k. For each words r in o, e, let ¢(r) denote the
quantity # o —#te. The following result holds for every matrix compact quantum groups:

Proposition 4.56. Let G = (uj)1<i j<n be a compact matriz quantum group, C(G) = {Morg(r,") },

the set of intertwiners associated to this matriz compact quantum group by the Tannaka-Krein
duality. Then

C(Gd) = {MorG(T) T,)} rr
e(r)—c(r')=01[d]

Proof. Let (uij)1<i j<n be the fundamental matrix of G, and (v;;)1<i j<n be the one of G4, Since
G is a quantum subgroup of G¢, for any word r,r’ in o, e,

Morga(r,r’") € Morg(r, ')

By duality, it suffices to consider only the case ' = (). Let {e;} be a basis of the fundamental
representation u of G. Let X = " Aeei’ ® --- @ ;" be a vector in Mor(u®",1). We note 4 for

711

the tuple (iy,...,%,), and ug for the product ugl; - .upty . Then

ug (X) = _Neji @ 0 Sup = X @ 1o
ij

And thus Z?)‘?uﬁ = )\510(0). Applying this equality together with the expression v;; = u;j24
yields

v (X) = Z el @ ®el® uﬁzc(r) = X ® 2"
ij

Finally X is invariant under the action of G¢ if and only if ¢(r) = 0]d]. O

Summary of the classification of free quantum groups

We can conclude by summarizing the previous description in the following theorems :

Theorem 4.57. The following correspondance holds between categories of partitions and unitary
easy quantum groups :

1. the category U corresponds to the free unitary quantum group U™T.
2. the category H* corresponds to the commutative k—complexification of Z41S™.
3. the category H¥ corresponds to the free complezification of HY.

4. the category BX? (resp B¥4Y), corresponds to the commutative k—complexification of the
free d—complezification of Ct (reps. BT ).

5. the category BF%4/2 corresponds to the commutative k— complezification of CH2.

6. the category S*¢ corresponds to the commutative k— complexification of the free d— complexification

of ST.

Proof. The free quantum groups corresponding to U, O, HE® H# Bhd phdd/2 Bdd0 4,4 Sdd
have been already indetified in previous paragraph. Proposition concludes the proof. [
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4.10 The group case and unitary easy groups

For general categories C C P°® of two-colored partitions, there are two natural extreme cases.
The first is the one of noncrossing partitions, completely classified in the preceding sections.

The second is the one containing the crossing partitions X, X , X and X, which allow us
to permute the points of a partition in an arbitrary way (without changing their colors). It is
easy to see that one of these four partitions is in a category if and only if all are (by verticolor
reflection and rotation).

Definition 4.58. A category of two colored partitions C is in the group case if one (and hence

all) of the partitions X, X, X and X is in C.

The name ”"group case” refers to the situation when a quantum group is associated to a
category of partitions (see Section . If C is in the group case, the associated quantum group
is in fact a group.

The classification of all categories in the group case follows directly from the classification
of all categories of noncrossing partitions and the following lemma.

Lemma 4.59. Let C and D be categories of two-colored partitions.

(a) Then CND is again a category of partitions.

(b) Let C be in the group case and put Co :==C N NC°®. Then C = (Cy, X>

Proof. (a) This follows directly from the definition of a category.
(b) Let p € C. Using the four kinds of crossing partitions of Definition we may permute
the points of p such that we obtain a noncrossing partition p’. Since this can be done in C, we

have p’ € Cy C (Co, X) Thus, we can also reconstruct p in (Co, X> doing all these operations
backwards, so C C (Cy, X ). We deduce that equality holds. O
For each category of partition C, denote by C. = (C, X) Thus the latter Lemma says

that any category of partition in the group case is of the form C. for a category of non-crossing
partition.

Theorem 4.60. The categories in the group case are the following.

Ogrpglob(k) = (&5, 56 @ aa, X> for k € 2Ny
Ogrp,loc = ( X>

o Han gon(8) = (o 5353, 53 ® 53, 20) for k € 2No

ngp,loc(kad) = <bk,bd ® Bd? m, ma X> fOT kad € NO\{172}’ d|k

Rk
o Sgpaon(®)=(1 L QN, 1ol e R,Xworkem
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¢ Semioe®) = (17, TR Lo 1. &) fork e vA(Y)
¢ Bapaon))=(1 1o, e i, X>forke2No

L4 grp,loc(k):<l ) g® I: X>f07"k€N0

Proof. The crossing partition X permutes the points of a partition. Applying this partitions
on the generators of the categories of partitions in Section yields that HY = HOY. Fur
thermore for the same reasons, Sél’k = Sf, Bf’d = Bf and Bﬁ’d’o = Bé’d’d/z = lg’f Apart from
these equalities, the commutative image of the categories of noncrossing partitions are different,
yielding the result. O

If C is a category containing the crossing partitions X and X, then the C*-algebra asso-
ciated to it is commutative (see the relations in Section [4.8)). Hence, the associated quantum
groups are in fact groups. They are listed in the next theorem.

Theorem 4.61. The groups corresponding to the catgories in the group case are the following :
e U, corresponds to the unitary group Uy,.
e OF corresponds to the k—complexification of the orthogonal group O,,.

o corresponds to the k—complezification of the wreath product Z31.5,.

Sf corresponds to the k—complexification of the permutation group Sy.

B(’f corresponds to the k—complexification of the group <<O'6_1 (1)>>

e BF corresponds to the k—complexification of the group <<U76_1 (1)>>

Remark 4.62. Note that <(U%1 ?)) ~ U,_1 and <<O%1 ?)) ~ Op_1. The category

are still different because we singled out different fundamental representations of the same group.
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Chapter 5

Stochastics on the free unitary easy
groups

In this chapter we develop the Weingarten calculus for unitary easy quantum groups. This
consists mainly in a rewriting of the classical method of Collins and Sniady (see Chapter 2 and
[28] 29]) for a general unitary easy quantum groups. In the orthogonal case, this has already
been done by Collins and Banica in [12] and by Banica, Curran and Speicher in [14]. As an
application of this generalization, we recover the results of Diaconis and Shahshahani on the
unitary group (see Chapter 2, Section 3 and [33]) and the second order freeness result of Mingo
and Speicher (see Chapter 2, Section 5 and [63]), and extend both result to the free unitary

group.

5.1 Weingarten calculus for easy quantum groups

In this section we introduce the Weingarten calculus for unitary easy quantum group, using the
formalism developed by Banica and Speicher in [15]. Throughout this section n is a fixed positive
integer and (C(G), (uij)i<ij<n) IS a unitary easy quantum group, with associated category of
partition C. By Chapter 4, this implies that the vector space Fixg(¢) of invariant vectors of V¢
under the action of G is given by (T))pec(e), and {Tp}yec(e) is a basis of Fixg(e) if n > |e|.
Therefore we can express integrals of polynomials in w;j, u;; using the vectors 7T, 1,73’ as in Chapter
2. We will start by giving a general formula to emphasize the geometric aspect of the Weingarten
calculus, then we will specify this result to the unitary easy quantum groups. In the following
expression we formally write uy; = u;; and uf; = u;;:

Proposition 5.1. Let (C(G), (uij)i<ij<n) be a compact matriz quantum group. Let 1 < r and
let € be a word in o,e of length r. Suppose that {fi}1<i<s is a basis of Fixg(e). Then for each
couple of sequences 1 <iq,...,0 <n,1 < ji,...,J- <n,

st = raa (X5 -+ 0 X2, X5 @ 9 X,

i1j1 """ Ve
PFixg(c) being the orthogonal projection on Fixg(e).
Proof. On one hand,

ae(XGl @@ XjT) = Z X ®--®@X;, @ug' ...ouf

1151 " Tiedr?
1<iy,..,ir<n

98



and thus
(Id®/G)Oza(X;»11 ®--®X:") :Z(/ uils g )X @ @ X (5.1.1)

On the other hand, V* decomposes into irreducible representations of C(G) as V¢ = FiXG( )+

D, ired ng VWGBM’ and this decomposition is orthogonal. If v € Fixg(e), (Id ® [,) ozg v)

(ld® fG v® 1C(G)) =wv. If v € V,, with w # 1, by Schur othogonality (Id ® fG as(v) =

Thus (Id® fG ozg is an othogonal projection onto the vector space Fixg(¢).

By -, fG 2131 ij is the coordinate (i1, ...,4,) of the orthogonal projection of X;ll ®
- ® X" on Fixg(e )

0.

O]

In order to evaluate (prixg () (Xj ®@ - @ X;7), Xj!' ®---@X[7), a general framework is given
by the Gram-Schmidt orthogonalization:

Proposition 5.2 (Gram-Schmidt orthogonalization). Let (V,(.,.)) be a Hilbert space and W a
finite dimensional vector subspace of V. Suppose that (e;)1<i<s is a basis of W, and let x,y € V.
The orthogonal projection py on W is given by the expression:

s

(pw(@),y) = D (x, ei)lej y) K 1(i, ),

i5=1
with K(i,7) = (ei, ej) the Gram-Schmidt matriz of the basis (€;)1<i<s-
Proof. K is the matrix of the scalar product (.,.) in the basis (e;)1<i<s. Let A = (Ai)i<i<s

and E = (&)1<i<s be two vectors of C® such that © = h; + > A\ie; and y = ha + > pie; with
hl, hg L W. Then

(pw (x),y) = (pw (), pw (y)) = A'KE.
On the other hand setting A = ((e;,z))1<i<s and = = ((e;,y))1<i<s yields that KA = A and

K= = =. Therefore, since K is invertible,
(pw(x),y) = A KIS,
O

The combination of the two previous results gives a general Weingarten formula for compact
matrix quantum groups :

Theorem 5.3 (Weingarten Formula). Let (C(G), (uij)i<ij<n) be a compact matriz quantum
group. Let € = e1...€, be a word in o,e, and 1 < i1,...,% < n, 1 < j1,...,7n < n be two
sequences of integers. Suppose that { f,}1<a<s is a basis of Fixg(e); then

/Guls'llh"'uf:jrz Z <X - ®Xlrvfb><favX€1 "'®Xjr>WgG(fa7fb)a

1<a,b<s
where Wgg = K&l, K¢ being the Gram-Schmidt matriz Kg(fa, fv) = (fas fo)ve-

As it was already said in Chapter 2, this Theorem is really useful provided the set (f5)i1<a<s
has an explicit expression relatively to the basis (X Q- ® Xf;)lgil,,,_%gn and the matrix
Wga can be easily computed - or at least presents good approximations. The first condition
is fulfilled in the case of a unitary easy quantum group, since an explicit basis is given by the
vectors T,’s:
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Corollary 5.4. Let G, be a unitary easy quantum group with associated category of partitions
C. With the notations above, if n > |e| (or n > 4 if C is non-crossing), then

p,q€C
p<ker(z),g<ker(j)

where Wgg, = Kai (p,q) with K¢, (p,q) = nb(Pva)

Proof. The condition n > [e[ or n > 4 if C is non-crossing yields that the set {T}}pcc(c) is

a basis of Fixg(e). Since T, = > X; ®---® X;,, the scalar product of Theorem [5.3] is
p<ker(i)

(Tp, Xiy ® - @ X;,) =9 <ker(): The corollary is thus a direct application of this Theorem and

the fact that (T}, T,) = nb®Vo), O

The main problem remains the computation of the matrix Wgg, . We have seen in Chapter
2 that in the case of U,, the computation of Wgqy, is already complicated. In the general case
no explicit expression of this matrix has been found for a unitary easy quantum group; however
a first order asymptotic of Wy, allows to get several asymptotic probabilistic results as n goes
to +o0.

Proposition 5.5 ([12]). As n goes to +oo,
W6, (p,) = (—1)reneY0 4040 (14 O(1 /)

Proof. For n large enough, {7},} is a basis of Fixg,, (¢). Let K¢, be the Gram-Schmidt matrix of
the basis {1} }pec. From the expression of T),, K¢, (p, q) = nb(®Va)  Since p < pVq, b(pVq) < b(p);
for the same reasons, b(pVq) < b(q) and thus b(pVgq) < M. Moreover if p # q, the inequality
becomes b(p V q) < M —1/2.

Let A be the diagonal matrix defined by A,, = 5pqnb(p). By the previous inequality

(A2 Kq, A7), = nbova) S gy g,

where M = O(1/y/n). Thus (Id + M)™' = (Id — M)(1 + O(y/n)) and K;' = A™V2(Id —
M)A~Y2(1 4 O(y/n)). This yields

(Kgl)pg = (—1)%p2ant VO (1 1+ O(1//m)).

5.2 Diaconis-Shahshahani results in the free case

The first application of the Weingarten calculus is a computation of the asymptotic law of the
family (Tr(u¥))s>1, where u is the fundamental matrix of a free unitary quantum group G,, and
n goes to +oo. For all easy unitary classical groups, this has already been done by Diaconis and
Shahshahani in [33] (see Chapter 2, Section 3), or is a direct consequences of their results. In
the free orthogonal case, this has been done in [14].

Recall that the list of free unitary easy groups is the following (we put the associated category
of partitions in parenthesis) :

o Uy U),
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[ ]
Q
+
X
N

>
Q
=

o (Hyl Zg)XZy (HEF),
o H7 (H7),
o (Bn*Zd);(Zk (Bd’k)

(Cni¥Zg) X Zy (B4R,

i), (B4,

o (S;;Zd);(Zk (Sd’k)

The reader should refer to Chapter 4 for a detailed description of these quantum groups. We
will prove the following result:

Theorem 5.6. Let (C(Gy), (uij)i<ij<n) be one of the quantum groups above, with category of
partition C. As n goes to +0o, the family (Tr(u*))g>1 converges in moment with respect to fGn
to a family of random variables (ug(C))g>1. The law of (ur(C))r>1 depends on C and is explicitly
described in Section 2.2.

The proof of the Theorem is achieved in two parts. The first part is a proof of the convergence
in law, which is a generalization of the proof of Theorem 2.5 in [14]. This proof gives also a
combinatorial formula for the moments of the limit law. In the second part, this combinatorial
formula is used to describe the law of the family (u(C))g>1.
For k > 0, Tr(u*)* = Tr(u~"), and thus the goal is therefore to prove the existence of the
asymptotic moment

= i Tr(uf) ... Tr(ub)e
MG ky,...kr n_ljfoo r(u"™) r(ut)®,
with k1, ..., k. non-zero integers. It suffices to only consider the cases without tensor complexifi-

cation: indeed the Haar state on the tensor complexification H xZ;, is the classical independence
convolution of the Haar state on (H,u) and the one on (Zg, z). The law of Tr((uz)") can thus
be deduced from the law of Tr(u") with the equality Tr((uz)") ~qw Tr(u") ® 2".

The asymptotic trace moment formula

We detailed here the generalization of a result of Banica, Curran and Speicher that relates
MG k... k. With the cardinal of a set of partitions. The result was originally given in the
framework of orthogonal easy group; since the statement and the proof for in unitary case are
identical, so we present only this latter version.

Let r € Z, and denote by Z’ the set of sequences j = (J1,--.,7r) of 7 non-zero integers. To
each sequence j of 7, we associate the following objects:

e A vector k = (k1,..., k) of positive integers with ks = |js|. This is the absolute part of j.
We set k= > k;.

-, -,

e A word £(y) in {o, e} of length r by the condition that e5(y) = o if and only if j5 > 0.

-, -,

e A word w(j) in {o, e} of length &k such that w4(5) = o if and only if S0 L ks +1 < s <
S kg and g(t) = o.
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e A permutation V3 described by the cycle decomposition

i = e k)T D+ 1, b+ k)20 (k= ke 1, k)P,

with the convention that for a cycle 7, 7° = 7 and 7° = 771,

e A two colored partition p; € P(0, w(7)) with a ~p. b if and only if there exists 1 <t <r

such that 22;11 ks +1<a,b<>'_, ks.From the definition of w(j) and the one of pj, the
partition Py consists in r interval blocks {Bj, ..., B,} such that B; has cardinal k; and all

elements of B; have the color &(5).

The dependence on ; of the latter object is omitted when the situation is clear.

Remark 5.7. Any p € P(0,w(})) yields a partition p in P(0, 63‘) by considering the set {B;} of
blocks ofp]f with the lexicographical order and the relation B; ~5 Bj if B; and Bj are in the same
block of p Vv p;. Since p7 1§ mon crossing, p non-crossing implies that p Vpy 1§ also non-crossing
and therefore that p is non-crossing.

For p € P°*(k,0) and o € Sk, o(p) denotes the unique partition such that o(i) ~, ¢ o(j) if
and only if ¢ ~, j, the colors being also permuted by o. For example 'y;(wj) = wy. Moreover we
take the convention that for x € C(G), z° = x and z°* = z*.

Theorem 2.5 of [14] extends to the unitary case as follows:

Theorem 5.8. Let G = (u;j)1<ij<n be an easy compact group with C its associated category of
partitions, and j € Z,,. With the same notations as before,

/Tr(ujl) LTy = # {p € Clw;)lp = vj(p)} +0(1/Vn). (5.2.1)

Proof. The proof is a direct computation. Let I = [, Tr(u/')...Tr(u’"). Then

_ €1 . . .. Er
I= § / Usjyio Wigig - ulklll) e (U"Lk—kr+1lk—kq«+2 e U’Zklk—kr-ﬁ-l)

1<i1,..,ix <n
= g out us? R T
“’v(l) Zkl by (k) Ty +10y (kg +1) Ukly(k)

1<i1,.., i, <n

Applying the Weingarten formula to the latter expression yields

= Yy > Wya, (p, q)

1<in,...,ig<n p,qeC(wy)
ker((i5)1<j<k)<pker((iy(j))1<j<k)<q

= > > Wya,(p,q)

1<iy.ip<n p,q€C(wy)
ker((ij)1<j<k)<pVY(q)

Z MDD W g, (p, q),
q€C(wy)
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and thanks to the asymptotic formula of Proposition we get

I= Z nb@V1(@) b (Ve =) =b(a) (1 4 O(1/+/n)).
P,q€C(wy)

The coefficient nb®VV(@)+bEVa)=b(p)=b(a) doesn’t vanish as n goes to +oo if and only if b(p V
v(q)) + b(p V q) — b(p) — b(g) = 0. But b(p vV q) < min(b(p),b(g)) and since b(g) = b(v(q)),
b(pV v(q)) < min(b(p),b(q)). Therefore the positivity condition requires b(p V q) = b(p), b(p) =
b(q) = b(v(q)), and b(pV v(q)) = b(p). The first two equalities yield p = ¢ and then the last two
equalities yield p = ~(p); if the latter conditions are fullfilled then nt®V¥(2)+b(pVa)=b(p)=bla) — 1
Therefore,

I=#{peC(w),p=n(p)}+01/Vn).
O

Remark 5.9. Note that the latter Theorem actually yields that for any easy quantum groups,
without any conditions on the crossings, the family (Tr(u), Tr(u?),...) converges in law to a
random vector (uy,us,...).

The remaining part of the method of [14] to describe the law of (uj,us,...) doesn’t apply
here, since most of the categories of partitions considered in the present situation are not block
stable (in particular Proposition 3.1 of [14] doesn’t hold anymore). Therefore the goal is to
better understand the set {p € C (wz),p = v(p)}. Let us first simplify the condition p = v(p):

Lemma 5.10. There is an equivalence between the condition p = ’y;(p) and ’yjf(p) <p.

Proof. Clearly p = «(p) yields v(p) < p. Suppose that v(p) < p. This means that if y(i) ~.
v(j), then (i) ~, v(j). By definition (i) ~ ) 7(j) if and only if i ~;, j. Therefore if v(p) < p,
then i ~, j yields v(i) ~, v(j). Since the permutation group Sy is finite, there exists d such that
v? = 471 Thus iterating the latter implication yields also that if i ~, 7, then v~ 1(i) ~, vy71(j).

Therefore if i ~p, j, i = (77 1(i)) ~y) ¥(v1(5)) = j. Thus p < ~(p), and p = v(p). O

In particular checking that i ~,, j implies (7) ~, v(j) is sufficient to know whether p = ~y(p).
In the free case, we will see that the condition p = (p) is very strong.
Let us first define a pairing between two blocks :

Definition 5.11. Let p be a partition of k and By, By be two disjoint intervals of [1,k] corre-
sponding respectively to [i1,i1 +t] and [ia —t,i2] with iy < i2. We say that By and By are block
paired by p if, for 0 < s <'t, the only element of [1,k] linked to i1 + s by p is ia — s.

The condition i; < i3 ensures that the pairing is non-crossing. For 1 < u < k, denote by B,
the blocks of Py containing u. The rigidity of the condition p = 7;-(]9) in the free case appears as
follows:

Lemma 5.12. Let j € Z" and let p € NC(w;.). Then fy;.(p) =pif and only if for all1 < a,b < r
with B, ~5 By, one of the following conditions hold:

e a =b and B, contains only singletons of p.
e B, and By are contained in a same block of p.

e B, and By are block paired. In this case |B,| = |By| and if B, has more than three points,
B, and By have opposite colors.
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Proof. Suppose that p = y(p) and let 1 < a,b < r with B, ~3 By. Thus there exists u € By, v €
By with u ~ v.

e Suppose that a = b and w is a singleton, u = v. The property p = (p) yields that all
elements of the orbit of v under  are singletons. This orbit is precisely B,, which proves
the first point.

e Suppose that a = b and v # v. We can assume without loss of generality that B, is
colored o, with u < v. Then there exists m > 0 such that v = y™(u). If m = £1[k,],
iterating 7 yields that for all t > 1, y(u) ~, ¥7(u) -+ ~, u and thus B, is in a same
block of p. Otherwise, p = ~(p) implies y(u) ~, ¥™ 1 (u). The block B, is colored o and
m ¢ {1,—1}, thus u < y(u) < v, and y™!(u) is either greater than v or lower than .
Since p is non-crossing, this requires u ~, v(u) or u ~, v~ }(u). In both cases, iterating
the equality p = v(p) yields that for all ¢ > 1, v (u) ~, Y7L (u) ~p -+ ~p y(u) ~p u.
Therefore B, is contained in a block of p.

Suppose that a # b and that u,v are in a block of p that contains a third element ¢, and
let 1 <z < r be such that B, is the block of Py containing t. After relabelling if necessary,
we can suppose that u < v < t. If b = z, from the previous paragraph, all elements of B
are in a same block of p. The equality p = 7(p) yields that any element of B, is linked by
p to an element of By, and thus B, and By = B, lie in a same block of p.

Since v(p) = p, if B, is a singleton then every element in the orbit By of b is connected to
u by p, and the same holds for B,. Therefore B,, By and B, are in the same block of p.
Suppose that b # x and B, is not a singleton. The latter conditions imply that y(u) # u
and By # B,. The condition v(p) = p yields that «(u) has to be connected to an element
v’ of By and t' of B,. Since any element of By is lower than the elements of B,, v' < t,
and v < t. Since p is non-crossing, if u < y(u), the inequality u < y(u) < v < t yields
that v(u) ~p u. For the same reasons, if v(u) < u, the inequality vy(u) < u < v’ < t yields
v(u) ~p u. Thus iterating the equality p = v(p) yields that for all m > 1, v"(u) ~, u,
and B, is contained in a block of p. Once again by the equality v(p) = p, any element of
By or B, is linked to an element of B, through p and B,, By, B; are in a same block of p.

e Suppose that B, # By and that u and v are in a pair. We can assume that u < v. Since
~v(p) = p, Y™ (u) is paired with 4™ (v). Thus any element of the orbit of u is paired with
an element of the orbit of v, and conversely. Therefore necessarily |B,| = |Bp| and there
is a bijective map ¢ : B, — Bj sending an element x of B, to the unique element y of By
such that u ~, v. Since p is noncrossing, if z1 < 22 in B, then ¢(z1) > ¢(x2). Thus the
map ¢ is decreasing and this shows that there is a unique way to pair elements of B, with
elements of By, which is the block pairing of B, with By. Suppose that B, has more than
two elements, and let x be the first element of B,, y the last one of B,. By the previous
reasoning, z ~, y and z +1 ~, y — 1. Thus if x + 1 = y(x) then y — 1 = y(y) and if
r+1=~"1(z) then y — 1 =" 1(y). In any case if B, has more than three elements, the
cycles of v have opposite direction on B, and By, and therefore B, and By have opposite
colors.

Conversely let p be a partition which satisfies the conditions of the lemma. From Lemma it
suffices to prove that for all 1 <u < v <k, u ~p, v implies y(u) ~p v(v). From the conditions
of the Lemma, either B, contains only singletons or B, and By are in the same block of p or B,
and By, are block paired. If B, contains only singletons, v = v and y(u) ~, y(v). Since B, is
the orbit of u and By, the orbit of v, if B, and By, are in a same block of p then v (u) ~p, v(v).

Suppose that B, and B are block paired and let ¢ be the cardinal of B, (which is also the
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one of By). There exists 1 < i3 < i9 < k and s > 0 such that u = i1 + s, v = i — s and
forall0 <oz <c—14 +x ~pia—ax Ifc=1 B, and B, are singletons and therefore
v(u) = u,y(v) = v and y(u) ~p v(v). If ¢ = 2, whatever the color of By is, y(u) = i1 + (1 — s)
and y(v) = i2 — (1 — s); thus once again y(u) ~p, y(v). If ¢ > 3, from the condition of the
Lemma, B, and B have opposite colors. We can assume without loss of generality that B, is
colored o and By, is colored e. Thus y(u) =41 + s+ 1 and y(v) =iy — s —1 (resp. y(u) = i; and
v(v) =i2) if s <c—1 (resp. s =c—1). In any case y(u) ~, v(v). O

For p a partition, let us denote by B, 2 the set of blocks of p of cardinal less than 2, and for
each b € By 2, let by and by be respectively the first and second elements of b, with the convention
that by = by if b is a singleton. For j € Z”, the set of non-crossing partitions of r with point
coloring ¢(i) = j; is denoted NC(ji,...,Jr). Following the latter Lemma, we introduce the
following set of colored partitions :

Definition 5.13. Let » > 1. A tracial partition is a partition in NC(j1,...,Jr) with an ad-
ditional block coloring x, : Bpo — {1,*} with the condition that for b € Bpa, x(b) = 1 if
min(ky, , kp,|) = 1 or if b is a pair with sup(ky,, kp,) > 2 and jp, + jb, # 0.

The set of tracial partitions in NC(j1, ..., ) is denoted P(7).
For convenience we extend the pair coloring *, to a coloring of all the blocks by setting ,(b) = 1
if b is a block not belonging to B, 2.
We define now a map ® : Py — P(w;) as follows: let p be a tracial partition in P(j) and let
1 <s<t<rwiths~,t Ifsis a singleton colored *, all elements of B, are singletons of ®(p).
If s and t are in a pair b of p colored * then By is block paired with B, in ®(p). In all other
cases, all elements of By and B; are in a same block of ®(p).
Proposition 5.14. The map ® is injective and ®(P;) = {p € NC(w3),75(p) = p}. In particu-
lar, if Gy, is an easy unitary free group with associated category of partitions C, then for n large
enough

ma(j) = #& 7 (C(w;)).

Proof. Suppose that p, ¢ are two distinct tracial partitions of 735. Then either p, g have different
block structures, or they have the same block structure and the block colorings differ. Suppose
that they have a different block structure : by symmetry we can assume that there exists
1 < 51 < s < r with s; and s in a same block b of p, but s1 %, so. In any case from the
construction of ®, the first element of Bs, is linked to the last element of By, through ®(p) but
not through q. Therefore ®(p) # ®(q).

Suppose that the block structure of p and ¢ is the same but the block colorings differ. By
symmetry we can assume that there exists a block b = {b1, b} such that x,(b) = 1 and *,4(b) = *.
But from the definition of ® this means that all elements of By, are in the same block of ®(p),
but they are each in distinct blocks of ®(g). Therefore ®(p) # ®(¢) and P is injective.

By construction, ®(p) verifies the conditions of Lemma and thus v(®(p)) = p.

Conversely, if v(q) = g, g verifies the conditions of Lemma We construct p € 73; as follows:
The block structure of p is ¢ € P(e=). Recall that the element i of ¢ corresponds to the block
B of p7. Set ji = |Bi| if (¢7)i = o, and j; = —[B;| if (e7); = o. Let b = {b1 < bz} be a pairing
in ¢ with min(ky,, ks,) > 1. Since 7(q¢) = ¢, Lemma yields that either Bj, and By, are in
a same block of ¢, or By, and By, are block paired. In the first case , set x(b) = 1 and in the
second case set x(b) = * (note that if k5, > 2 then Lemma enforces jy, = —Jp,). Similarly
if ¢ is a singleton of ¢, from Lemma [5.12] either B; contains only singletons, or it is a block of
q of cardinal greater than 2. In the first case set x({i}) = * and the other case set x({i}) = 1.

-,

Set x(b) = 1 for all other singletons and pair. This gives a tracial partition p € P(7) such that
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®(p) = q.
The last part of the proposition is straightforward. ]

The law of the family (uy(C)x>1 is therefore given by the cardinal of ®~1(C (w;.)) for various
j.

Description of the law of (u;(C))g>1

As for the classification of categories in Chapter 4, we shall deal separately with the five cases
U,O,H,B and S.

Partial partitions Let us first give a combinatorial tool:

Definition 5.15. A partial partition (p,S) of nis a set S = {1 <i; < --- <is < n} together
with a partition p of S (identified with [1,s] by the natural order on integers).

This is equivalent to the data of aset {B, ..., B,} of disjoint subsets of [1,n], with S = | B;.
The natural order on S yields a canonical bijection between the set of partial permutation
{(p,S)}pep(s) and P(s), and thus the order on P(s) gives an order on the set of partial per-
mutations {(p, S)},ep(s). (p,S) is called a non-crossing partial partition if p is a non-crossing
partition, view as an element of P(s); two partial partitions (p, S) and (p/, S¢) yield a partition
(p,S)V (p/, 5 of [1,n] simply by considering the reunion of the set of blocks of p and the one
of p'. If (p,S) is a non-crossing partial partition of S, the Kreweras complement kr(p) of p is
the biggest partial partition (p, S¢) such that p V p’ is non-crossing.

Lemma 5.16. Let (p,S) be a partial partition of n. Then kr(p) is the partial partition with
support S¢ defined by

iNkr(p) jek 7L(p,S) I, for all k € [[Z,]]] NS, lesS\ [[Z,]]]

Proof. Since (p,S) V (kr(p), S¢) is noncrossing the direct implication holds.

Suppose that for all k € [i,5] NS,1 € S\ [i,j], k #@,) ; if 7 is any noncrossing partition
of S¢ such that (p,S) Vv (m,5¢) is non crossing, then 7 obtained from 7 by the reunion of the
block containing ¢ and the one containing j is again noncrossing, and (p,S) V (mr, S¢) is again
noncrossing. Thus by maximality of kr(p), i ~(xy(p),s¢) J- O

-,

We denote by NCp(n) (resp. NCp(j)) the set of non-crossing partial partitions of n (resp.
non-crossing partition of n with a coloring j on [1,n]). The set of non-crossing partial partitions
with support S is denoted NC(S).

Case Y There is a unique category of partition in the case U, consisting only in pairings with
endpoints of different colors.

Lemma 5.17. Let j € Z7. <I>_1(Z/{(w]v)) is isomorphic to the set of mon-crossing pairings in
NCs(ji, ..., jr) such that the endpoints of a pair have opposite colors.

Proof. Let j € ZT and p € P> such that d(p) € U(w;). If there exists a block b of p such that
*(b) = 1, this means that all sets B; with i € b are in a same block of ®(p). Since U consists
only in pairings, ||J; Bi| = > _;cp ki = 2. Thus either b is a singleton {i} with k; = 2, or b is a
pairing {i1,72} with k;; = k;, = 1. The first case is not possible because both elements of B;
have the same color, and the second case is possible only if j;, = —ji,.

If x(b) = *, b contains two elements i; and ip with k;; = k;,. But B;, and B, are block paired
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through ®(p). Thus the condition ®(p) € U (w;) yields that j;, = —j;, (excluding only the case
Finally p has only pairing {i1,i2} between elements of opposite colors, which are colored * if
ki, > 2 and colored 1 if k;; = 1. O]

Thus we can express the law of (u1(U),uz(U),...) as follows :

Proposition 5.18. (ui(U),us(U),...) is a family of free independent variables, each of them
being a circular variable with mean 0 and variance 1.

Proof. Let (c1,cg,...) be a family of free independent circular variables of variance 1 and mean

0 and set c_; = ¢;. The moment-cumulant formula shows that for jeun, m(cj,,-..,cj.) is
exactly the number of non-crossing pairings in NC(ji, ..., jr) such that the endpoints of each
pair have opposite colors (see also Chapter 1, Prop. [1.10]). ]

Case O Since we only consider the categories without tensor complexification, there is only
one category to study, namely the category O? of all pairings. This case has already been done
n [14]. We give the proof here for the sake completeness.

Lemma 5.19. Let j € 7. CI)_l(OQ(w;)) is isomorphic to the set of non-crossing partitions of
NC(j1,--.,jr) consisting in pairs b = {i1,i2} with either j;, = —ji, or ji, = ji, € {—2,—1,1,2}
and singletons {i} with j; = £2.

Proof. Let p € Pz such that d(p) € OQ(wf), and let b be a block in p. The same reasoning as
in the U —case shows that if x,(b) = 1, [{J;c;, Bi| = 2. Therefore in this case b is a singleton {i}
with k; = 2 or a pair {iy,i2} with j;, 7, € {—1,1}.

Any pair {i1,i2} colored * is allowed. For k;; > 2, a block colored * has endpoints of opposite
colors, which concludes the proof. O

Thus (u1,use,...) is again a family of free (semi-)circular elements, the proof being the same
as in the U-case.

Proposition 5.20. (uj,ug,...) is a family of free variables such that uy is a circular variable
with covariance 1 and mean 0 if k > 3, a semi-circular variable with variance 1 and mean 0 if
k =1 and a semi-circular variable with variance 1 and mean 1 if k = 2.

Case H Let d > 2. H%? consists in non-crossing two-colored partitions such that each block
has the same numbers of black and white points modulo d. H is the category of non-crossing
partitions whose blocks have an even number of elements with endpoints having alternating
colors.

Lemma 5.21. Let d > 3. &~ (H?) is the set of non-crossing partitions of 73;. such that blocks
b= {i1,...,is} are either pair colored * with endpoints of opposite colors or block colored 1 with
S5y = 0ld).

If d = 2, the conditions are the same except that any pair colored  is allowed (which adds only
the case where the two endpoints have the color +2).

O~L(H7) is the set of partitions of 73;. such that blocks colored 1 have an even number of elements
and have endpoints colored £1 with alternating signs, and blocks colored * are pairs with opposite
colors.
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Proof. H% is the category of partitions whose blocks have the same number of white and black
points modulo d. Let p € 775- such that ®(p) € ’Hd’d(w;). If b is a singleton of p colored x*, all
the elements of By, are singletons in ®(p), which is impossible since d > 2. If b = {b1,be} is a
pair colored *, By, is block-paired to By, in ®(p). If j, = —Jp,, the pairs between By, and By,
have endpomts of different colors and thus verify the condition of #H(d,d). If j,, = jp,, then
Jb, = Jb, = £2 and the pairs between By, and By, have endpoints with the same color; this is
possible only if d = 2.

If b= {i1,...,is} is a block of p colored 1, then B = B;, U B;, U... B, is a block of ®(p). The
difference between the number of white and black points in B is exactly Y ;_; ji,, thus the latter
quantity has to be zero modulo d in order to have ®(p) € H%9.

Let us consider the category H' and let p € P; such that ®(p) € H?#. A block b= {i1,...,is}
colored 1 with an endpoint ; such that k;, > 2 yields in ®(p) a block with at least two consec-
utive endpoints of the same color; therefore, from the description of H#, a block b of p colored
1 has only endpoints colored 41, with two consecutive endpoints having opposite colors. Since
any element of b is colored £1, b yields a block with an even number of elements in ®(p) if and
only if b has an even number of elements. The description of H# yields that pairs must also
have endpoints with opposite colors. Thus the only blocks colored * allowed are the pairs with
endpoints of opposite color.

The description of {u;(C),us(C)...} is the following:
Proposition 5.22. Let d > 2. (uj(H%%));>1 has the same joint law as (sz's + ¢;)i>1, where :

e (ci)i>1 is a family of free random variables with ¢y = 0, ¢3 a circular variable (resp. semi-
circular variable) of variance 1 and mean 0 for d > 3 (resp. d = 2) and ¢; is a circular
variable of variance 1 and mean 0 for i > 3.

e s and z are two free variables, also free from (¢;)i>1, s being a semi-circular variable of
variance 1 and mean 0 and z a uniform variable on the complex d—roots of unity.

(wi(H1))i>1 is distributed as w; = ¢; for i > 2, uy = pz, with ¢, a family of free circular
variables of variance 1 and mean 0, p a free poisson variable of mean 1, free from {ci}r>2, and
z a Bernoulli variable of mean 0 and variance 1 free from p and {cy}r>2.

Proof. Let (v;);>1 be a random vector with v; = sz's + ¢;, s,z and (¢;);>1 being as in the
statement of the proposition. Let (ji,...,7,) € Z] and set Y; = sz's. The moment cumulant
formula yields

ma(i, - odr) = Y kp(@mp (V).

(p.S)ENCy(7)

From the law of {¢;}i>1, kp(€) € {0,1} and k,(€) is non-zero if and only if (p, S) is a pair partition
with each block {a, b} satisfying j, # £1 and such that j, = —j, or, if d =2, j, = jp, = +2. Let
us denote by P(S) the set of such partial partitions.

For iq,...,i; > 1, my(sz'ss2%2s...s2%s) = m(211s22%25% ... 2%s?). Since s
distribution of variance 1, the moment-cumulant formula yields m(z1s22%2s%. .. 2%s?) = #{p €
NC(i1,...,1i),p is d—balanced}, where p is said d—balanced if each block {z1 < --- < x4}

satisfies the condition [];,<, z%ea = 1. The latter condition is equivalent to Y ¢_, i% = 0[d].

2 is a free Poisson

a=1
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Thus

mg(jt, ..., jr) = Z ky(€)#{m < kr(p),n is d—balanced}

(p,S)ENCL(5)
=#{p e P(S),qg € NC(S)|pV q € NC(J),q d-balanced}.

The latter set is exactly the set of non-crossing partitions of NC(j1,...,jr) with blocks either
colored 1 (the ones coming from (g, 5¢)) and being d—balanced, or colored * (the ones coming
from (p, S)) with the endpoints satisfying the conditions of Lemma Therefore

mﬁ(jl’ e 7jr) = m(u.jl (Hd7d)7 R 7ujr (Hd7d))

The same proof yields the law of {uy(H)# }r>1. O

Case B In the case B there are three different families, depending on the value of the parameter

r € {*;0;d/2}. If p € NC(j) and b = {i1,42} is a pair of p, denote by ¢(b) the sum of colors

between i; and i2. Namely ¢(b) = Z?:_“lﬂ Js-

Lemma 5.23. <I>_1(Bd’r(w;.)) is non-empty only if Y j; = 0[d]. If Y_ j; = 0[d], <I>_1(Bd”’(w3.))

-,

is the set of partitions p in P(j) such that:

1. p contains only singletons {i} (which are colored x if k; > 2), pairs colored x or pairs with
endpoints colored +1.

2. If b is a pair of p with endpoints of opposite colors, c¢(b) = 0[d].

3. Let r € {0,d/2}. If b is a pair of p with both endpoints colored either 1 or 2 (resp. —1 or
—2), then c(b) = r — 1[d] (resp. ¢(b) = r + 1[d]). If r # 1[d] (in particular d ¢ {1,2}),
p has no singleton {i} colored 1 with k; = 2. If d ¢ {1,2}, p has no pair {by,ba} with
Jby = Jb, = £2.

4. if r = %, all pairs have endpoints of opposite color and p has no singleton {i} with k; = 2.

-,

Recall that since p € P(j), a pair {b1,ba} colored * has endpoints of the same color only if
ky, = 2.

Proof. From Chapter 4, Bd’r(w;) is non-empty only if Zw;(s) = > ji = 0[d]. If Bd’r(w;.) is
non-empty, it consists in partitions ¢ having the following properties:

1. g contains only singletons and pairs.

2. For any pair b of ¢ having endpoints of opposite colors, ¢(b) = 0[d].

3. If r € {0,d/2}, and b is a pair having black endpoints (resp. white endpoints), ¢(b)
r 4 1[d] (resp. ¢(b) =r — 1[d]).

4. If r = %, any pair of ¢ has endpoints of opposite colors.

Suppose that }ji = 0[d]. We shall characterize the set of partitions p of P; such that ®(p)
satisfies condition 1) — 4).
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1. From the definition of ®, a block b of p yields a block B in ®(p) having more than three
elements if and only b = {i1,...,4s} is a block colored 1 such that ||J B;,| > 2. The only
blocks colored 1 with || B;,| < 2 are the singleton {i} with k; < 2 and the pairs {b1, b2}
with kp, = kp, = 1. Thus condition 1) on ®(p) is equivalent to the first condition of the
Lemma on p. From now on by a pair {b1, b2} of p, we mean a pair colored 1 if k3, = 1 and
colored * otherwise: in any case this pair yields a block pairing in ®(p).

2. An element of p colored j; expands in k; singletons of color ¢; in ®(p). Moreover a pair
b = {b1,bs} of p yields a block pairing in ®(p) : if the endpoints of b have opposite colors,
each pair of the block pairing has also endpoints of opposite colors. Therefore the condition

¢(b) = 0[d] for all pairs b of the block pairing between By, and By, is equivalent to the
condition ¢(b) = 0[d].

3. Let r € {0,d/2}. The only blocks of p yielding pairs with endpoints of the same colors in
®(p) are the pairs {b1, ba} with jp, = jp, € [—2,2] and the singletons {i} colored 1 (which
implies k; = 2 from the first point).

A pair b = {by, b2} with jp, = jp, = £2 yields a block pairing in ®(p) consisting in two
pairs {a1, a2} and {a1 + 1,a2 — 1}. Let us assume without loss of generality that j,, = 2.
Then aj,a; + 1,a2 — 1, a9 are colored o. Since {aj,as} is a pair with endpoints colored
o, the third condition of B%" yields that Zfzalﬂ w(i) =r —1[d]. But {a1 + 1,a2 — 1} is
also a pair with endpoints colored o. Therefore > 7> af o w(i) =r—1[d]. This implies that
Way +1 + Way—1 = 0[d]. Since a; + 1 and ag — 1 are colored o, wq, 41 +Way—1 = 2 Thus d has
to be equal to 1 or 2. Since 72 - +2 w(i) = ZZ b 41 Jis the condition Y752 - +2 w(i) = r|d]
is equivalent to the condition c(b) r[d].

A singleton {i} colored 1 with k; = 2 yields a pair b = {b;,b; + 1} with endpoints of the
same color in ®(p). ¢(b) = 0 means that r 4+ 1 = 0[d] or r — 1 = 0[d]. Since r € {0,d/2},
either d =1, or r = 1 and d = 2. In these two cases we have also ¢(b) = 0 = r + 1[d].

In any other cases, b = {b1, b2} has endpoints of the same color if ¢(b1) = c(by) = *1.
Let us assume that ¢(b;) = 1. Thus b yields a pair b = {a1,a2} in ®(p) with endpoints
c?lc))red o. S[lr]lce Zaf_& w(i) = Zz Z?& ji, the condition ¢(b) = r — 1[d] is equivalent to
c(b) =r—1d].

4. A block b of p yields in ®(p) pairs having endpoints of different colors if and only if b is
a pair having endpoints of opposite colors: thus if 7 = %, then ®(p) satisfies the fourth
property of B4* if and only if all pairs of p have endpoints of opposite colors.

O
The latter lemma yields the law of {u;(B%")}:

Proposition 5.24. 1. Letr = *. The family {ui(Bd’*)}izl is distributed as u; = c; + 2, with
{ci}i>1 a family of circular variables of mean 0 and variance 1, and z a variable free from
{ci}i>1 and distributed uniformly on the d—th roots of unity.

2. Letr =0,d > 3. The family {ui(Bd’O)}izl is distributed as u; = c;+2° fori > 2, u; = 12,
where {¢;}i>2 is a family of circular variables of mean 0 and variance 1, z is a variable
free from {c;}i>2 and distributed uniformly on the d—th roots of unity, and ¢y is a free
semi-circular variable of variance 1 and mean 0. If d = 2, the distribution is the same
except that ug = coz + 1 with co a semi-circular variable of variance 1 and mean 0, free
from the other variables.
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3. Let r = d/2 . The family {ui(Bd’d/Q)}izl is distributed as u; = ¢; + 2° for i > 2 and
up = c12Y? 4+ 2, with {ci}i>2 a family of circular variables of mean 0 and variance 1, z
a variable free from {c;}i>1 and distributed uniformly on the d—th roots of unity, and c;
a free semi-circular variable of mean 0 and variance 1. If d € {1,2}, the law is the same
except that ug = co + 1, with co is a semi-circular variable of mean 1 and variance 1 free
from the other variables.

Proof. Let r € {%,0,d/2}, and let {t;}r>1 be a family of variables with the expected law. Set
t_ = ty,c_ = c¢j. Thus we have to prove that the mixed moment m(t;,,...,t;,) is exactly the
number of partitions of 73;. satisfying the conditions of Lemma On one hand, expanding
the product in t;, ...¢;, yields:

m(tju s ’tjs) = Z m(o‘j),

SC[1,s]

where w; = 271 if i ¢ S and w; = ¢j, if i € S (or ¢j,2" T if t;, = ¢;,2" T + 291, 277 Ley, if
t;, = 2" Lej, 4 29).

If r = %, we formally set r+1 = r—1 = 0. Let us define a sequence @ of length 3s and a coloring
h of [1,3s] from w as follows : for 1 <i <,

e ©(3i—1)=cj;, and h(3i — 1) =01if i € S, ©(3i — 1) = 2% and h(3i — 1) = j; else,

e ¥(3i—2)=2"tand h(3i—2) =r—1ift;=c_y (ort; =c_gand d € {1,2}),0(3i—2) =1
and h(3: — 2) = 0 else,

e 0(3i) = 2" and h(3i) = r+11ift; = ¢; (or t; = co and d € {1,2}), ©(3i) = 1 and
h(3i) = 0 else.

Let S be the subset {3i — 1|1 < i < s,t; = ¢;,} of [1,3s]. Since {¢;} and z are free, the
moment-cumulant formula yields

m(@) = D ki 5 (@M .5)(«@),
(,5)
where p is a non-crossing partial partition whose support is S. Since S ~ S, there is a bijection
p + P between partial partitions of [1, s| with support S and partial partitions of [1,3s] with
support S, and thus

m@) = Y k.5 @)y 5.5 (w).
pENC(S)

The elements outside S consist only in powers of z, thus a block B of kr(p) yields a moment
Lif [[;eg@(i) = 1 (namely if > ..z h(i) = 0[d]), and 0 else. Since {c;} is a collection of free
semi-circular or circular variables, k(p) € {0,1} and k(p) is zero if p has blocks with more than
three elements or blocks containing different ¢;. Thus

Mty o t) = #{(p. )k 5)(@) = LYB € kr(5), Y hi = 0[d]}.
i€B
The condition VB € kr(p), Y ;cp h(i) = 0[d] is equivalent to the condition that ) h(i) = 0][d]
and that for any pair b = {b; < by} in p, ¢(b) = 0[d]. Moreover
e If by and by have opposite colors, then h(by + 1) = —h(by — 1), Thus ¢(b) = 0[d] if and
only if 281+1<i<52—1,ie§6 h(i) = 0d].
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o If by and by are colored white (resp. black), h(bi41) = r+1and h(by—1) = 1 (resp. h(by+
1) = Land h(by—1) = r—1). Thus c¢(b) = 0[d] is equivalent to > 35 | _; 5, 1 ;ege M(1) =r—1
if b; and by are white and to 2131+1<z‘<132—1 iege (@) =7+ 1if b; and by are black.

It remains to show that 251+1<i<52_1’i€§6 h(i) = >y, <ich, Ji» Where {b1,ba} is the pair of p
yielding b in p. An element i in S¢ colored j; yields in (p, 5) three elements 37,37 + 1,37 + 2
colored respectively 0, j;,0: so the total contribution is j;. An element i is a singleton of (p, S)
only if j; = £2 and r = 1,d € {1,2}. It contributes in p to three elements 3i,3i + 1,3i + 2
colored 0, whose sum is exactly j; modulo 1 or 2.

A pair {b1,b2} of (p,S) with endpoints of opposite colors contributes to one pair, and four
singletons, two of them colored 0, and two having opposite colors, yielding a null contribution.
A pair {b1, b2} with endpoints of the same color only occurs if j,, € {£1,£2} and r € {0,d/2}.
If j», > 0, this pair contributes in p to one pair and four singletons, two of them colored 0 and
two of them colored r 4+ 1. Thus the total contribution is 2r + 2; but r € {0,d/2} and thus
2r + 2 = 2[d]. If j,, =< 0, the same reasoning yields a contribution equal to —2 modulo d. If
Jb, = 1, this contribution is equal to jp, + jp,- If 73, = £2, d € {1,2} and once again the
contribution is equal to j,, + jo.

To sum up, (p, S) verifies the conditions if and only if 3" j; = 0 and (p, S) is such that ¢(b) = 0[d]
if b is a pair with endpoints of different colors and ¢(b) = r — 1[d] (resp. c(b) = r + 1[d]) if b is
a pair with white (resp. black) endpoints. Filling (p,S) with singletons on elements of S¢ gives
exactly the partitions satisfying the conditions of Lemma [5.23 O

Case S The computation for the category S is a simpler version of the computation for the
category B%". For (c1,...,c,) a sequence of integers (for example an element of Z or a word in

o, e with the usual substitution o <+ 1,e <+ —1), we set c(s,t) = > ., Cz.

Lemma 5.25. <I>*1(Sd(wj~.)) is the set of partitions p in P(7) with:
1. If d > 3, blocks of p colored 1 contain only elements colored +1 and blocks colored * have

endpoints of opposite colors. If d = 2 the same holds except that all pairs colored % are
allowed.

2. If i1,1i9 are two consecutive elements of the same block and have positive (resp. negative)
color, j(i1,i2) = —1[d] (resp. +1). If i1 ~p iz and ji, = —Ji,, then j(iy,i2) = 0[d].

Proof. The category Sd(w;) is the set of non-crossing partitions p having the following property:
for i1 and 4z two consecutive elements of a block, ws(i1, i) = 0[d] (resp. w;(il, i9) = —1[d], resp.
ws(i1,i2) = 1[d]) if £(i1) = —e(iz) (vesp. €(i1) = €(iz) = 1, €(i1) = €(iz) = —1). If d = 1, this just
means that any non-crossing partition is allowed, and thus ®~(S 1(w5)) =3 Y(NC(H)) =P3).
If d > 2, the same proof as the one of Lemma yields the result. O

The proof of the law of (u;(S%));>1 is similar to the one of Proposition so we only state
the result:

Proposition 5.26. Let d > 3. The family (ui(Sd))izl is distributed as u; = ¢; + 2 fori > 2,
with {c;}i>2 a family of free circular variables of variance 1 and mean 0 and uy = pz with p a
free Poisson distribution of mean 1 free from {c;}i>2 and z a uniform variable on the d—roots
of unity, free from p and {c;}i>2.

If d = 2, the law is the same as before, except that uo = coz + 1 with co a semi-circular variable
of variance 1 and mean 0.

If d =1, for allt > 1, u; = p+ ¢;, with p a free poisson variable of mean 1, {c;}i>3 a family
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of free circular variables withs mean 0 and variance 1, co a semi-circular variable with mean 1
and variance 1 and ¢; = 0.

5.3 Second-order freeness for the free unitary group

In [62], Cor. 15, the results of Diaconis and Shahshahani on the unitary group have been
extended to the situation where traces of arbitrary cyclically reduced products of u, @, u’
considered (see also [69]). We give here a similar result for the free unitary group. The method
used in the present chapter differs from the one of [62] in order to take the non-commutativity
of U, into account. However both rely on the Weingarten formula, and the proof of the present
section can be used to recover the results of [62]. In the case of U,I, the non-commutativity allows
to consider the law of any reduced words in w, %, u?, u*, instead of only considering cyclically
reduced words. We present the result in the classical and free case.

To state the result and detail the proof, we shall use the notations introduced by Radulescu in
[69]. Let Fq be the free group with two generators a and b. Any element f of Fy admits a unique
representation as a reduced word fifa... f. in a,b,a”! and b~!. f is called cyclically reduced if

,u* were

fr# I
For n > 1, we associate to each f € Fy the variable X;(n) = Tr(uft...u/"), where u is the
fundamental matrix of U; or U, and u® = u,u® ' = u*,ub = a,u” = u'.

With these notations we have a main theorem describing the asymptotice laws of {X¢(n)} rer,
for U;" and U,. From now on, we always assume that elements of Fy are cyclically reduced in
the classical case.

Theorem 5.27. In the free case (resp. classical case), when n tends to infinity, the collection
of variables {Xy(n)} converges in law to a circular (resp. gaussian) system of free (resp. inde-
pendent) variables {X ¢} whose covariance matriz can be explicitly described.

The description of the covariance matrix is given in Proposition [5.36
Throughout this section, » > 1 is fixed, and we use the convention r + 1 := 1.

5.3.1 Bidiagrams associated to X;(n)

The proof of Theorem relies on some properties of a combinatorial object called bidiagram.
We present here this object and prove some useful combinatorial results.

Bidiagrams Let k > 1. We define an involution ¢ — ¢ on {1,...,2k} by the formula
i=2k—i+1

We define py, as the partition of P(k,k) defined by pr = {{7,i},1 < i < k} and for 1 < i <k,
we denote by S; the subset {i,4}.

Definition 5.28. Let k > 1. A cyclic partition p of P(k,k) is a two level pair partition such
that © is paired either with 1 + 1,7 — 1,2 —1 or i + 1, and such that p Vp pi is the one block
partition {[1,2k]}.

A tracial diagram D € P(k,k) is a tensor product of cyclic partitions p1 ® --- ® p, such that
i € P(ki, kl) with Z k; = k.

We write D = p1 ®- - - ®p, to emphasize the unique decomposition into cyclic partitions. The
conditions in the definition of a cyclic partition is equivalent to the fact that for any 1 <17 < k,
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p links exactly one element of S; with an element of S;;1, where ¢ + 1 is understood modulo k.
The same definition holds for colored cyclic partitions and colored tracial diagrams. A two-
colored tracial diagram is represented in Figure

O o [ ] o O [ J
l \\—/
P
[ ] [ ] [¢] [¢] [ [ ]
Figure 5.1: Tracial diagram consisting in two cyclic partitions

We can now define a bidiagram :

Definition 5.29. Let €1,¢9 be two words in o,e. A bidiagram is the data of a tracial diagram
D € P(e1,e2) and two partitions p,q such that p € P(e1) and q € P(g2).

A bidiagram is written (p|D|q). An example is shown in Figure

I

|
o [ ]

;%

Figure 5.2: Two-colored bidiagram

The natural bijection between P(e1) and P(e1,0), and between P(e2) and P(eq, ) identifies
(p,q) with an element of P(e1,e2) through the composition pRy(q) (recall the definition of Ry,
in Chapter 1). In particular the blocks of b(p|D|q) are defined as the blocks of the partition
DV pRp(q). We denote also by b(p|D|g) the number of blocks of DV pR,(q).

Diagrams coming from {X¢(n)}: A cyclic partition Dy, independent of n, is associated to
each variable Xf(n) in the following way :

e Let f € Fo. We can write the reduced form of f as
_ 2£3) e(r) _ £(4)
1= oo = I #0,
—

where r is the length of the reduced word, [] stands as an ordered product, and Ty €

_>
{a,b,a=1,b71} according to the following rule :
me| 1 | -1
1 | a | b (5.3.1)
1| t]at
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The fact that the above expression comes from a reduced word of f implies that ;6,41 +
nini+1 # —2 for 1 <4 <r —1. If f is cyclically reduced, the same holds for i = r. The
words (1) ...n(r) and (1) ...e(r) are denoted n(f) and e(f).

e The partition Dy in P(e,¢) is constructed by pairing, for 1 < i < r, exactly one element
of S; with one element of S; 1 with the rule:

nGrD\p@H [ 1 | -1
1 (0 +1) | (4,5 +1) (5.3.2)
-1 (i, +1) | (3,3 + 1)

For example the cyclic partition associated to ab?a=2b is drawn in Figure

e} [ ] [ ] [ ] [ ] (¢]

~

Figure 5.3: The cyclic partition Dgp2,-2y

The rules and yield that the partition Dy is indeed a cyclic partition. Thus if
fro . f5 ey, Dsp @ -+ @ Dys is a tracial diagram. Actually one can prove that any tracial
diagram such that the coloring is the same on each set S; can be written Dp1 ® -+ - ® Dys for
some fl,..., f €.

We will need some basic facts on tracial diagrams. They are summed up in the following Lemma

Lemma 5.30. Let f = f1...f. € Fo and let Dy be the associated cyclic partition:

e For1<i<r—1 two consecutive elements i and i+ 1 (ori and i+ 1) can be paired only
if they have the same color. If f is cyclically reduced, 1 is paired with v (resp. 1 is paired
with 7) only if both elements have the same color.

e There is the same number of pairs between elements of {1,...,7} and between elements of
{1,...,7}.

Proof. e Since f is a reduced word, the rule yields that for 1 <i <r—1, n(i)n(i+1)
and (i)e(i + 1) are not both equal to —1. Therefore by (5.3.2)), this means that two
consecutive points of different colors cannot be paired. If f is cyclically reduced, the same
is truc for i =r and i +1 =1 (or 7 and 1).

e By the rule , 7 is paired with i + 1 if and only if n(i +1) = 1 and 7(i) = —1, yielding
n(i+1)— 77(2) = 2; ¢ is paired with ¢+ 1 if and only if n(i +1) = —1 and (i) = 1, yielding
n(i+1) —n(i) = —2. In all other cases, n(i) = n(i + 1) and thus n(i) —n(i +1) = 0. Since

Soi_in(i+ 1) —n(i) = 0, the number of pairs inside {1,...,r} and inside {1,...,7} are
the same.
O

A pair containing two points of the same row is called an horizontal strip. The other ones
are called vertical strips.
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Bidiagrams with pair partitions Since the intertwiners of U, and U,, are described by pair
partitions, we will use bidiagrams (p|D|q) with p, ¢ being pairings; as in the previous section,
the use of the Weingarten formula requires bounds on the number of blocks of (p|D|q). Recall
that U (resp. Ueqss) denotes the set of non-crossing pairings (resp. pairings) with pairs having
endpoints of opposite colors.

Proposition 5.31. Let f!,..., f* € Fy and p,q € Upass(e(f1)...e(f*)). Let D=D(f)®---®
D(f*) We suppose that p and q are in U if at least one f* is not cyclically reduced. Then

b(p) +blg)

b(p|Dlq) < 5

In the case of non cyclically reduced terms, the statement needs a preliminary combinatorial
result. From the definition of a bidiagram, a pair of (p|D|q) is a set {by,bo} in {1,... k,1,... &k}
such that b; ~pRn(q) by and by ~p by. Since partitions Dyi are disconnected from each other,
by and b must be in a same block Dy to fulfill the condition by ~p bz. The notations in the
following Lemma are the same as in [5.31]

Lemma 5.32. Suppose that p,q are in U(e(f')...e(f*)). For 1 <i < s, there is at most one
pair t; in D(f?) which is also a block of (p|D|q). If this pair exists, there is a block of (p|D|q)
containing at least 6 elements, among which at least 4 are in D(f*).

Proof. Let 1 <7 < s and suppose that such a t; exists in D:, with endpoints (a; < b;). By a
rotation of all the partitions, we can suppose that ¢ = 1.

Since t; is a block of (p|D|q), t;1 is also block of p or ¢. By symmetry we can assume that ¢; € p
and aj,a2 € {1,...,7r}. a1 and b; being in the same row, they are linked by a horizontal edge

in Dy1. SinceU = ( bq, ¢d), the two endpoints have opposite colors; therefore|5.30] yields that
a1 = 1 and by = r in D(f'). Thus, since p is non crossing, any pair of p having an endpoint in
{2,7 — 1} must have its other endpoint in {2,7 — 1}. This implies that D1 has as many points
of both colors. Let us denote by hy. (resp. hyp, Adw, hap) the number of upper white (resp.
upper black, lower white, lower black) points belonging to an horizontal strip of Ds1. Then we
have :

e By hup + huw = haw + hap.

e By since in the upper part all horizontal strips except (a1, b1) link points of the same
color, hyp and hy,, are odd; in the lower part all horizontal strips link points of the same
color, thus hgyp and hg,, are even.

Suppose that there is a pair ¢ = {a,b} in p with @ in an horizontal strip {a,a’} and b in a
vertical strip {b,b'}; @’ and b’ cannot be in the same pair of p or ¢, and thus ¢’ is in a block of
(p|Dlq) with more than 6 elements among which at least 4 elements are in D(f1).

Suppose that there is no pair ¢ € p with one endpoint in an horizontal strip of D(f!), and
the other endpoint in a vertical strip. This means that we must have in the upper row as
many horizontal strips with endpoints colored black and horizontal stips with endpoints colored
white. Thus Ay = hyw. Since hyp + huw = haw + hap, a parity argument yields that either
hap > hyp = hyw > haw, €ither g, > hyp = hyw > hqp. By a color symmetry we can assume
that we are in the first case and hgp 4 hyp > hyw 4 haw- Since there are as many points of both
colors in Dy1, the number of white points linked by a vertical edge is strictly greater than the
number of black points linked by a vertical edge. This implies that there must be a pair t’ € p
whose endpoints are linked to vertical edges with white lower endpoints. Since these two lower
endpoints have the same color, they cannot be in the same pair of ¢ and each of them are in
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different pairs of ¢; therefore ¢’ is in a block of (p|D|q) with more than 6 elements, among which

at least 4 elements are in D(f1).
O

Let us now prove Proposition [5.31}

Proof. Let I; be the length of the reduced word of f?. If one of the pair partitions is crossing,
from the hypothesis of the Proposition, all words are cyclically reduced. Therefore there is no
horizontal strips between points of different colors. Since p is in U or U,,ss, €ach pair of p has
endpoints of opposite colors; thus endpoints of a pair of p cannot be in the same pair of D. In
particular each block of (p|D|q) contains at least two pairs from p or ¢, and b(p|D|q) < w.
From now on we assume that p, g are non-crossing.

By the previous lemma there is at most one block of (p|Dj1 ® --- ® Dyr|q) having two vertices
in each D(f*): denote by Bjy,. .., Bj) the blocks of (p|Dj1 & --- @ Dyrlg) having only two
vertices (with B;(;) lying in Dfi(j)). By the same lemma, one can associate to each block B;(;) a
block Bi(j) having at least 6 vertices and at least four vertices in D;(;). Some blocks Bi(j) may
be the same: for 1 < s,t < k, write s ~ t if Bi(s) = Bi(t)- This gives a partition A; IT---IT 4; of
{1,2,...,k} and a bijective map ¢ : [1,{] — {Bi(j)}lgigk sending s to the block Bi(j) such that
j € As. By Lemma[5.32] ¢(s) has at least min(6,4|A(s)|) elements. Moreover

k l
STBigpl D el =2+ Y e+ D ()l
j=1 i=1

j,A; singleton 3,1AG) =2

>2k + 6|{j, A(j) singleton}[ + Y 4[A())|
JIAG) =2

>2k + | 2|{j, A(j) singleton}| +2 Y [A(j)]
JIA(G)1>2

+ 41{j, A(j) singleton}| + 2 Z [A(7)
JAG)[=2
>4k + 41{j, A(j) singleton}| + 4|{j, A(j) > 2}|
>4(k +1).

On one hand, since p and ¢ are pair partitions, b(p) = b(q) = %(Z:Zl l;). On the other hand,

> 1Bl = 2L,
=1

Be{blocks of (p|Df1 ®-®@Dyrlq)}

But from the previous computation,

k l
> 1Bl = IBiy| + D le(i)] + > 1B
B block of 7j=1 j=1 B other block of
(pID;1®®@Dyrlq) (PID;1®®Dyrlq)

>4(k 4 1) + 4[{other block of (p|Dp1 ® -+ @ Dyr|q)}|

>4b(p|Dp @ --- ® Dy g).
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Therefore

1
b(p/Dp @+ ®Dyrlq) <7 > |B|
Be{blocks of (p|'Df1®~--®'Dfr|q)}

S22 blp) +b(e)
=4 T2

5.3.2 Convergence and asymptotic law for {X;(n)}sep,

As in Section the proof of Theorem [5.27] is done in two parts. The first part gives a
combinatorial expression of the moments and the second part deduces the law of {Xf(n)} ser,
from this expression.

Moments formula for {X;} Theorem can be adapted in the present situation to get the
following result:

Proposition 5.33. Let G, be either U, or U}. Let fl,... f" be elements of Fy such that
S l; < n. We assume that f1,..., f" are cyclically reduced if G = U,. Then

; Xspi(n)... Xypr(n) = Card{p € C|b(p|Ds1 @ --- @ Dyr|p) = b(p)}, (5.3.3)

with C =U if G, = U,} and C = Uyass if Gn = Up.

Proof. The proof of the proposition follows the proof of Theorem with the help of the
previous combinatorial results.
Let 1 <m < 7. The definition of X m(n) yields:

n <(t) <(3)

— n —
() - F R ()
JtJt+1

j=1 \1<t<ln jj et =01<tSln

with ji,,+1 = j1, and 7, e the words associated to f™ in Section [5.3.1} From the definition of u®
e(t)
for € {a,b,a=t,b=1}, the values of ufj"(t) depend on {e(i),n(i)} following the present rule:

ne | 1 -1
U] (uig) | (uij)
—1 | (uji) | (u)

If we write ui_jl = wjj and u(;j)-1 = wj;, the expression of Xym(n) becomes :
n — (‘)
o el . . .
Xpm(n) = | Z H u(jiji-i,—l)n(i) (with 77, +1 = J1) -
Ty Ji, =0 1<t<lm

This expression can be translated in terms of diagrams. Indeed, the right term is exactly :

_ E : (1) e(lm)
Xfm (n) - Wiygy e Wiy gy
i,7€[1,n])im ker(7,7)>Dy
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A product of different X ym is just a concatenation of these expressions. With L = "}, l; and
¢ the concatenation of the words efm for 1 < m < r, this yields:

1 L
Xp(n)...Xpr(n) = E ufl(ﬂ)ufiji
i,je1,n]*
ker(?,f)zpfl ®@--@Djr

And this sum can be integrated with the Weingarten formula to get for n > L :

1 L
/Xfl(n)...Xfr(n):/ Z ufl(jl)ufiji

ijetn)t
ker(?j)zpfl ®--@Djr

= > > Wya, (g

ij€[1,n]* peC(e),p<ker(i)

ker(i,7)>D ;1 ®@--®@Dsr q€C(e),q<ker()

= > > Wya, (p,q)

p,q€C(e) ijelmn)k
ker(4,7) > (p|D ;1 ®®Dyr|q)
b(p|D 1 @D sr
= 2 AP, (p,g)
P,q€C(e)

Proposition [5.5] gives an asymptotic formula for Wgg, :
1

WG, (p. @) = (~1)rant VD=5 (1 4 O(
n

))-

Applying this to the previous computation yields:

1

/ Xp(n)... Xp(n)= (—1)%nb(plmqm(pvq)fb(p)fb@)(1+0(%)). (5.3.4)

P,q€C(e)

Since C € {U,Uejqss}, Proposition yields the following inequalities:

b b
< M < max(b(p). b(g))
min(b(p), b(q))

In the large n limit, the non-vanishing terms in (5.3.4) are the ones such that b(p|Dp @ --- ®
Dyrlq) +b(p V q) — b(p) — b(q) > 0. By the previous inequalities, these terms must verify:

b(p) = b(q)
b(p|Djr @ -+~ @ Dyrlq) = b(p)
b(pV q) = b(q)

This implies that p = g and b(p|Djp1 @ --- @ Dyr|p) = b(p). In this case b(p|Dp1 @ --- @ Dyrlq) +
b(pV q) — b(p) — b(q) = 0, which yields the final expression:

{b(pu)fl ® - @ Dyrlq)
b(pVq) <

n—o0

lim /Xf1(n) . Xypr(n) = #{p €C(e),b(p|Dj1 @ --- @ Dyr|p) = b(p)}-
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Law of the {X;} It remains to describe the law of {X¢}cr,. Note first that expanding f in
the reduced word f =[] =% yields
()

= 3 T it =

.]17 7.77‘—0 -
- I > TTw?
(]r+1 iJr42— z n(l) (Jr+1 z]r+2 z 7](T+1 @)
]17 7]7‘_0 - ]17 7]7‘—0 —

> 11 U(J(;_)"”

jlv"'7j7':0 -

with 7(i) = —n(r + 1 —1i), £(i) = —€(r + 1 — 7). Therefore for f € Fo,

Xy(n) = Xp-1(n).

Following a method already used in [14] we first compute the cumulants of the family {X¢} e, .
Let us associate to each sequence of words (f!,..., f"), with fi having length I;, the partition
pfofP() WhoseblocksarethesetsBa—{Z l—l—lz l+l}for1<a<r

Lemma 5.34. Let C € {U, Uyass}- Letr > 1, fL .., f7 € Fy such that f* is cyclically reduced if
C = Uyass. IfC =U (resp. C = Uyqss) the free cumulant (resp classical cumulant) of (f1,..., f")
18

er(fle o [ =#{p € C(e),pVpr=1,b(pDypr ... Dyrlp) = b(p)}.

Proof. The proof is essentially an adaptation of the proof of [I4] in the context of bidiagrams.
We write the proof in the free case, since the proof in the classical one is exactly the same. For
each tuple f = (f1,..., f%),let [(f',.... /") = [Xpn ... Xpr, and for ¢ a partition of {1, ..., 7},

let
JAGEENCE | G (D)

{i1<<is}€o

For o partition of {1,...,r}, let 0’ be the the partition of P(g) obtained by linking the r blocks
of p according to o. Since U is block stable, Proposition W yields

/ (P f7) = #{p < 0", b(p|D1 ... Dy lp) = b(p)}-

Therefore

cr(fla"wa):ZM(U71T)/(f17"'7fT)
= ZM(U, 1)#{p < 0”7, b(p|Dy1 ... Dyr|p) = b(p)}

= Z 7, 10)#{p < 7,b(p|Dy1 ... Dyr|p) = b(p)},

f<T
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where we use on the third equality the invariance property of the Moebius function u. Writing

#{p < 7,0(p|Dsr ... Dyrlp) = b(p)} as > 1 and interverting the sums yields
P,
b(p|Dj1...Dyr [p)=b(p)

e(f . fT) = > > opu(r1y)

b(p|Dy1...Dyr [p)=b(p) T2PVPf

= § : 5prfnlg

b(p|D1...Dyr |p)=b(p)
=#{pVpr=1:0(p|Ds1 ... Dyr|p) = b(p)},
where the second equality uses again the properties of the Moebius function. ]

The last step is the computation of [{p V Py = 1,b(p|Dy1 ... Dyrlp) = b(p)}| for arbitrary
fi. .., f. From now on, c.(f!,..., f") denotes the classical or the free cumulant, depending
on the situation. f',..., f" are assumed cyclically reduced if we are in the classical case. As
in Section 2, the condition b(p|Ds1 @ --- ® Dyr|p) = b(p) yields restrictive properties on p. For
t € Z/I,Z, let us denote by z{ the element Z?:_ol l; +t of B,. We have the following result:

Lemma 5.35. Let r > 2. Suppose that p is a pairing such that b(p|Dp @ --- @ Dyr|p) = b(p)
and p fo =1.. Let z} € B, and a:i’, € By such that a # b and xf ~, xi’,. Then l, = lp, and
there exists T € {1, —1} such that for all 1 < h <, Tl ~ xi’,+Th. In particular such p exists
only if r =2 and ¢ (f1,..., fr) =0 if r > 3.

To simplify the proof, we use the same notation to denote elements of the partitions in P(¢)
and elements of the upper row of partitions in P(e,¢).

Proof. Let r > 2, f',...,f7 € Fy. Let p € C be such that b(p|Ds1 ... Dyrlp) = b(p) and
pVpp= L. In the classical case, the proof of Proposition yields that (p|D|p) has no
block with only two elements. In the free case, this could happen only if these two elements are
extremal in a particular block B of p 7 in particular since p is non-crossing, any element of B is
also paired to an element of B through p. Since r > 2, this contradicts the fact pV p I 1.

Therefore any block of (p|D|p) has at least 4 elements. Since b(p|Dy1...Dyr|p) = b(p) =
each block of (p|D|p) has exactly 4 elements. Let t € Z/l,Z and t' € Z/l,Z such that a # b
and x¢ ~, 2. Thus z¢ ~pRa(p) z? and z¢ and 2, are in a same block B of (p|D|p). By D,

L
2

a e 1; a a a a 3 b
x} is linked to exactly one element u among {xf |,z |, 7 |, 7 ;}. The same is true for x;,

and one element v among {xi’,_l,xi’,ﬂ,xi’,_l,xi’,_l}. Thus B = {u,v,x?,mé’/} forms a block of
(p|D|p) and w is linked to an element of B through the pairing pRy(p). Since we already have
g ~p xi’,, the only possibility is u ~

pRy(p) V- Doing the same for z¢ and xi’, yields that either

b

Tiy1 ~p Ty OF Ty ~p Tf_q.-

Let us assume without loss of generality that z¢,; ~, 2¥, ;. Doing the same reasoning with
{xf, 1,2}, } yields that either af, o ~p 2l , or #f, 5 ~, 2} But the latter is impossible (except
if I, = 2) since a?f:’, is already linked to xj through p. Thus z{,, ~) xi’, 4o+ By recursion, for all
1< h<l,, Tl ~p $I§/+h and [, < lp; by symmetry I, = [.

Therefore any element of B, is paired to an element of By through p, and B, U By, is a block of
pV pp In particular if r > 2, this contradicts the assumption p V pr = 1.. O

If r < 2, the situation is more evolved. First notice that Xy, = Xp-1,-1, Xpe = X -1p-1,
Xap-1 = Xp-14y Xg-1p = Xpg-1, Xo = Xp-1 and X,-1 = Xp; moreover Xy = Xy with f # f
only in the previous cases. Let us write f ~ f"if Xy = X
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Proposition 5.36. IfC =U (resp. C = Ueciass ), { X1} er is a family of free (resp. independent)
(semi-)circular (resp. gaussian) variables. Let fi, fa € Fa. In the free case, ca(f1, f2) = 0 unless
fo ~ ffl, and in this case k‘(fl,ffl) =1. k(f) = 0 unless f ~ab or f ~a~'b~', and in the
latter case k(f) = 1.
In the classical case,
e(fif)= Y, Gargypmn
1<k<r,7e{l,—1}

k.,

where ™7 acts on a reduced word x1...x; € Fy as

(1 ... %) = Tpr Thtor - - - Thttr-
ky=0 unless f ~ab or f ~a b=t where k(f) =1.

Proof. The first part of the proposition is a straightforward application of Lemma |5.35

Let fi,fo € Fo with f1 = 27! .. .2} and fy = xf]} ...x;’,". Let p be such that b(p|D(f1) ®
1 !

D(f2)lp) = b(p) and pzV p = 1cor.

The condition p f~\/ p = 1. means that there exist a € By, ,b € By, with a ~, b. By the previous

Lemma, this implies that » = 7/, and there exists a bijection ¢ : {1,...,r} — {1,...7} such

that i ~, r + ¢(i). By the same Lemma, there exist 79 € [0,r — 1] and 7 € {—1,1} such that

o(z) =T+ 1 for all 1 <z < r. Since p is in U or Ueass, ¢ and 7 + (i) have opposite colors

and thus €’(¢(i)) = —e(i). Having each block of (p|Dy, @ Dy, |p) with exactly 4 elements requires

that 7'(o(i)) = —n(i) (except if r = 2, in which case the condition is n'(1)n/(2) = n(1)n(2)).

We must now distinguish the classical and the free case.

e In the free case there is only one way to achieve a non-crossing pairing in this way, namely
wo(z) = r+ 1 — 2. This proves that ca(f1, f2) < 1. From the first part of the proof this
partition occurs if and only if n/(r +1 — i) = —n(i) and &'(r + 1 — i) = —£'(i), which is
equivalent to f1 ~ fy L

e In the classical case, any map ¢ could arise. It remains to find which ¢ yields a pairing
with the condition that each block of (p|Dy, ® Dy,|p) has 4 elements. Suppose that ¢ is
given by 9 € [0,7 — 1] and 7 € {—1,1}. By the first part of the proof the condition is
satisfied if and only if ¢"~"0FL=T(f)) = fo 1. Summing on all 7o, 7 yields the result.

The same proof yields that ¢1(f) is non-zero only if the length of f is at most 2 and f ~ f~1. O

Theorem [5.27|is the combination of Proposition and Proposition [5.36
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Chapter 6

Free wreath product with the free
symmetric group

Introduction

In this chapter, we will consider the case of the free wreath product quantum groups defined
by Bichon in [2I]. This product was introduced as the most natural way to build the quantum
automorphism group of the n—times disjoint union of a finite connected graph. The free wreath
product 1, associates to a compact quantum group G and a compact subgroup F of S]T, a new
compact quantum group G, F. It is constructed as an analogue of the wreath products of
classical groups. An example of this construction was studied by Banica and Vergnioux in
[16], and then by Banica, Belinschi, Capitaine and Collins in [9]: they focused on the free
wreath product of the dual of the cyclic group Z/sZ with S]'\F,. Banica and Vergnioux obtained
the fusion rules and Banica, Belinschi, Capitaine and Collins obtained interesting probability
results involving free compound Poisson variables.

Frangois Lemeux generalized these results in [55] to the case of a free wreath product between
the dual I of a discrete groupe I and S]J\r,. Once again he was able to find the fusion rules of the
quantum group as well as some operator algebraic properties by using certain results of Brannan
on S, (see [25]). We investigate here the general problem of the free wreath product of any
compact quantum group of Kac type G with S]T,. In particular we construct the intertwiner
spaces of G U S]f, from the knowledge of the intertwiner spaces of G, (see Theorem . We
give also an expression of the Haar state of G i, S]'\F[ from the Haar state of S]'f,. This yields the
equality in law

Xutew ~ Xu X Xo,

with u being a representation of G, v the fundamental representation of S;\L, (with x denoting
in each case the associated character) and X is the free multiplicative convolution of two non-
commutative variables . This is a positive answer to a special case of a conjecture raised by
Banica and Bichon in [10] (See Subsection [6.4.1]).

Using the description of the intertwiner spaces, Frangois Lemeux and Jonas Wahl also obtained
in [94],[56] further interesting results on the von Neumann algebra and C*—algebras associated to
G SX,. The chapter is organised as follows : the first section is dedicated to some preliminaries
and notations. The second section gives some classical results and proofs that provide some
insight into the final general description of the intertwiner spaces for the free wreath products.
The description of the intertwiner spaces for the free wreath products G, 5’7{, is the main result
of the third section. In the fourth section, we give the probabilistic applications that one can
deduce from the latter description.
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6.1 Preliminaries

In this section, we recall a few facts and results about compact quantum groups and about free
wreath products by the quantum permutation groups S3;, and we set the notations.
A compact quantum group (see [100]), or Woronowicz-C*-algebra, is a pair G = (C(G), A)
where C(G) is a unital separable C*-algebra and A : C(G) — C(G) ®@min C(G) is a unital *-
homomorphism (i.e. it satisfies the coassociativity relation (id @ A)o A = (A®id)oA), and such
that the cancellation property holds (i.e span{A(a)(b® 1) : a,b € C(G)} and span{A(a)(1 ®
b) : a,b € C(G)} are norm dense in C(G) ® C(G)). These assumptions allow to prove the
existence and uniqueness of a Haar state h : C'(G) — C satisfying the bi-invariance relations
(h®id) o A(-) = h(-)1 = (id®h) o A(+). In this chapter we will deal with compact quantum
groups of Kac type, which means that their Haar state h is a trace. Let Aj, : C(G) — B(L*(G, h))
be the GNS representation associated to the Haar state h of G = (C(G), A) (also called the left
regular representation). The reduced C*-algebra associated to G is then defined by C,.(G) =
M(C(G)) ~ C(G)/Ker(\y) and the von Neumann algebra of G by L*°(G) = C,(G)”. One can
prove that C,(G) is again a Woronowicz-C*-algebra whose Haar state extends to L>*(G). We
will denote simply by A and h the coproduct and Haar state on C,(G).

An N-dimensional (unitary) correpresentation u = (u;;);; of G is a (unitary) matrix u €
My (C(G)) ~ C(G) ® B(CY) such that for all i,j € {1,..., N}, one has

N
A(uw) = Zulk & Uk -
k=1

The matrix u = (uj;) is called the conjugate of u € My(C(G)) and in general it is not necessarily

unitary (even if u is). However all the compact quantum groups we will deal with are of Kac
type and in this case the conjugate of a unitary correpresentation is also unitary (see [65]) .
An intertwiner between two correpresentations

u € My, (C(G)) and v € My, (C(G))

is a matrix T' € Mn, n,(C) such that v(1® T) = (1 ® T)u. We say that u is equivalent to
v, and we note u ~ v, if there exists an invertible intertwiner between v and v. We denote
by Homg (u,v) the space of intertwiners between u and v. A correpresentation u is said to be
irreducible if Homg (u, u) = Cid. We denote by Irr(G) the set of equivalence classes of irreducible
correpresentations of G.

As a Woronowicz-C*-algebra, C(G) contains a dense #-subalgebra denoted by Pol(G) and
linearly generated by the coefficients of the irreducible correpresentations of G (see [65] for
details on the subject). The coefficients of a G-representation r acting on a Hilbert space H, are
given by (id ®¢)(r) for some ¢ € B(H,)*. This algebra has a Hopf--algebra structure and in
particular there is a *-antiautomorphism & : Pol(G) — Pol(G) which acts on the coefficients of
an irreducible correpresentation r = (r;;) as £(r;;) = rj;. This algebra is also dense in L?*(G,h).
Since h is faithful on the *-algebra Pol(G), one can identify Pol(G) with its image in the GNS-
representation A\, (C(G)). We will denote by x, the character of the irreducible correpresentation
r € Irr(G), that is x, = (Id @Tr)(r).

A fundamental and basic family of examples of compact quantum groups is recalled in the
following definition:

Definition 6.1. ([96]) Let N > 2. S% is the compact quantum group (C(S]J{,),A), where
C(SK,) is the universal C*-algebra generated by N? elements u;; such that the matriz u = (u;;)
is unitary and u;; = ufj = u?j,Vi,j (i.e. w is a magic unitary) and such that the coproduct A is
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given by the usual relations making v a finite dimensional correpresentation of C’(S?\',), that is
Auig) = 3oL, wan @ ugg, Vi, j < N.

In the cases N = 2,3, one obtains the usual algebras C(Z3),C(S3). If N > 4, one can find
an infinite dimensional quotient of C(S};) so that C(S};) is not isomorphic to C(Sy), see e.g.
[96], [7].

In [95], Wang defined the free product G = Gy * G2 of compact quantum groups, showed that
G is still a compact quantum group and gave a description of the irreducible correpresentations
of G as alternating tensor products of nontrivial irreducible correpresentations of G; and Gs.
For a correpresentation v of G, denote by v the contragredient correpresentation.

Theorem 6.2. ([95]) Let G1 and Gy be compact quantum groups. Then the set Irr(G) of
wrreducible correpresentations of the free product of quantum groups G = G1xGo can be identified
with the set of alternating words in Irr(Gy) * Irr(Gz) and the fusion rules can be recursively
described as follows:

o If the words x,y € Irr(G) end and start in Irr(G;) and Irr(Gj ) respectively with j # i
then x ® y s an irreducible correpresentation of G corresponding to the concatenation
zy € Irr(G).

o I[fx=vz and y = Z'w with z,2' € Irr(G;), then there is a recurrence formula
TRY= @ vtw & 0z, (v @ w),
1#4tCz®2’

where the sum runs over all non-trivial irreducible correpresentations t € Irr(G;) contained
in z® 2, with multiplicity.

In this chapter, we are interested in the free wreath product of quantum groups:

Definition 6.3. (|21, Definition 2.2]) Let A be a Woronowicz-C*-algebra, N > 2 and v; : A —
A*N be the canonical inclusion of the i-th copy of A in the free product A*N,i=1,... N.

The free wreath product of A by C(SY;) is the quotient of the C*-algebra A*N « C(S}%) by the
two-sided ideal generated by the elements

vp(a)ug; — ugivg(a), 1<i,k <N, ac€ A
It is denoted by A, C(S5).
In the next result, we use the Sweedler notation Aa(a) =Y a) ®ap) € A® A.

Theorem 6.4. (/21, Theorem 2.3]) Let A be a Woronowicz-C*-algebra, then the free wreath
product A x,, C(S%) admits a Woronowicz-C*-algebra structure: if a € A, then

ui; = uij, vi(a)® = vi(a”®).

Moreover, if G is a full compact quantum group, then G SJJ\F, = (A %y C(S]T,), A) is also a full
compact quantum group.
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Remark 6.5. The homomorphisms v; : A — A*N C A x, C’(S’JJ{,) are injective and we have
v; = m o I, where
U, =qov; :A—>A*wC(SJJ\“,),

q: AN« C(S) = A, C(SY) is the quotient map and 7 : A x,, C(S5;) = id*e. Hence the
morphisms v; 1 A — A x,, C(SY;) are injective.

Recall that the case of the dual of a discrete group G = Tis investigated in [55]. In particular,
a description of the irreducible representations is given and several operator algebraic properties
are obtained from this description.

6.2 Classical wreath products by permutation groups.

In this section we provide a probabilistic formula for the moments of the character coming from
certain wreath products of classical groups. This is in particular a hint for the formula in the
free case. Recall that we denote by P(k) the set of all partitions of the set {1,...,k}.

Let G be a classical group, n > 1. Then S, acts on G™ by the automorphisms

5:0€ 8, 5(0).(g15--,9n) = (Go-1(1) -+ 1 Jo-1(n))- (%)

Definition 6.6. The wreath product between G and S,, denoted by G S,, is the semi-direct
product of G"™ and S,,, where S, acts on G" by . In other words,

G1S,={((91,---,9n),0),9; € G,0 € S, },

with the product

((g1:---29n),0) - ((91s- -2 9n)s 1) = ((9195-1(1ys - - > InGp1(n))> TH)-

If G is a compact group, G ! Sy, is compact as well and thus there exists a Haar measure on
G Sy,. It is easy to see that G S, is isomorphic to G X --- X G X S, as a measure space and
that the Haar measure on G5, is given by dAgs, = &), dg; ® do, where dy denotes the Haar
measure on G and do the normalized counting measure on S,,.
If «: G — U(V) is a unitary representation of G, then G S,, acts on V&" via

" ((g1y -+, 9n), 0) (V1 @ -+ @) 1= a(91)(Ve-1(1) @+ @ a(gn) (Vo—1(n))-
We will use the following notation in the sequel:
Notation 6.7. Let : G — U(H) be a unitary representation of a compact group G; then:
e xp denotes the character of 3,

o Fg is the ewponential generating serie of the moments of xg with respect to the Haar
measure

The purpose of this section is to describe the distribution of x,» under dAgs,, when « is a
represention of G. We will assume that a(G) C GL,(R) for some p > 1. In particular y,» is
real. The computations are similar in the complex setting; we just have to deal separately with
the real and imaginary part of x.
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Notation 6.8. For each partition v € P(k) with blocks Bi,...B, and sequence of numbers
(c1y... Cn,...) of length greater than k we write

Cy = C|B1|C|Bz| “en C|BT\7
with | B;| being the cardinal of the block B;.

Proposition 6.9. The exponential serie of the moments of xan is given by

iUk
Fon(z) = Zma"(k)ya

with

man (k) = Z ma(v),

veP(k),l(v)<n

where l(m) is the length of a partition m (namely the number of blocks of ).

Proof. Let t = ((91,...,9n),0) € GUSy, we have for x > 0 small enough. Writing the action of
t through o in block matrices yields the following result

Fun(2) =Bas, (exp@Tr(a” (1) = | e | o Y Tt | T[dnde
n 1<i<n
o(i)=i

[T (] et tetatanyds, ) do

" ¢ fixed point of o

= 11 Fo(2)do

Sn i fixed point of o

— / Fa (.T)# fixed points of °do
Sh,

:/ exp (log(Fy(x))# fixed points of o) do.
Sn

Considering log(F,(x)) as fixed in the last integral yields the equality

Fon(z) = Fg, (log(Fa(x))), (6.2.1)

where Fg, denotes the exponential generating serie of the moments of the fundamental repre-
sentation S,, — M, (C). Now, we can exploit the general facts that

.’Ek
Fs(z) = Zmﬁ(k)H (6.2.2)
and N
log Fs(z) = Zcﬁ(k)%, (6.2.3)

where (mg(k)),~, are the moments of the law of x5 and (cg(k)),~, are the classical cumulants
of this law. The latter is the only sequence of real numbers satisfying

ma(k) = Y cg(m) (6.2.4)

weP(k)
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for all £ > 1. From the left-hand side of (6.2.1)) and (6.2.2) we get
2k
Fan(fE) = Z’I’I’Lan(kj)ﬁ,
k

and from the right-hand of (6.2.1)) with (6.2.3]) we compute
> ca(u) %)T

Fan(2) = 3 ms, ()12
B xfk mg, (1) 7! ca(1)\™ cal(k)\ "

Sui=r

The last equality above being due to the multinomial expansion. Hence, after identifying coef-
ficients we obtain:

menB)=ms, () 3 M (ﬁ”)(;@) (6.2.5)

wul X 1+-Fug xk=k

=T

We say that a partition p € P(k) is of type (1"*,..., k%), if it is a partition having u; blocks
of cardinal 1, uy of cardinal 2 and so on. The number of partitions of {1,...,k} of type
(1%, ... k") is exactly

k! 1

(see e.g. page 22 in [60]). Thus summing over every types of partitions in (6.2.5) yields:

man(k) =Y mg,(r) > calm). (6.2.6)

weP(k),l(m)=r
Using the fact that (see [15], [72])

mg, (r) = #{partitions of {1,...,r} having at most n blocks}, (6.2.7)
we can transform (6.2.6]) into
man(k) =3 > D calm=3, 3, D calm

r o v<l, w<llg r <l 7<v<ly
l(v)<nl(m)=r l(m)=r l(v)<n

=2 2 =3 ) clm

<l 7<v<ly v<ly v

l(v)<n l(v)<n

= Z Mme (V)

v<1g

l(v)<n

We can deduce from Proposition6.9] the aymptotic law of xo» when n goes to infinity :
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Corollary 6.10. The following convergence in moments holds:

Xon — (on)7

n—o0
where P(xa) is the compound Poisson law with respect to the parameter 1 and the law o.

Proof. We have

O

Remark 6.11. In the next section we will describe the intertwiner spaces for a free wreath
product G S’JJ{,. The result and proofs can be easily adapted to get the same result in the
classical case; one only needs to use all partitions instead of non-crossing ones.

6.3 Intertwiner spaces in G, Sy

Let G = (C(G),v) be a compact matrix quantum group of Kac type, generated by a unitary
v acting on H. In this section, the C*-algebras associated with compact quantum groups
are considered in their maximal versions. A generating magic unitary u of the free quantum
permutation group Sy acting on CV is a matrix (u;j)1<; j<n of orthogonal projections of C(S%),
such that the algebra generated by {u;;} is dense in C(Sy) and such that

> wig =Y uij = 1 gt = Oty wigtiy; = Gigtag,
i J

We recall that the correpresentation

1<k,l<d j
w = (Wijkt)12; j<N = (uij sy )ik
acting on W := CV ® H, is the generating matrix of the free wreath product quantum groups
G . Sy, see [21].
Let Rep(G) be the set of equivalence classes of unitary finite dimensional (not necessarily
irreducible) correpresentations of G and we denote by H® = (Y, ... Y ) the representation

space of «, for a € Rep(G). We have a natural family of G S]J\r,—representations (see the proof
of Theorem 2.3 in [21]) given by

{r(a) = (uija,(jl)) ca €T} (6.3.1)

Notice that 7() acts on the vector space CV @ H®. These correpresentations will be called
basic correpresentations for G o, SX,.

Let {T,},encsy) be the basis of Hom(u®* u®') for k,I € N. For each partition p =
{Bji,..., B}, the blocks of p are ordered by the lexicographical order.

We want to describe the intertwiner spaces between tensor products of basic correpresenta-
tions of G U, SJJ(,. These spaces will be described by linear maps associated with certain non-
crossing partitions and with G-morphisms. Indeed, let [a] := (a1, ...,ax) and [5] := (B1, ..., 51)
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be tuples of G-representations such that the points of p are decorated by these correpresenta-
tions. This means that in each block B;, certain correpresentations oﬁi, R ﬁf, ..., are attached
to the upper and lower points respectively. We make the convention that if & = 0, then the
trivial correpresentation decorates the upper part of p € NC(0,1) and an similar convention if
I = 0. The non-crossing partitions describing intertwiners in G S’JJ{, will also be such that their
blocks are decorated by G-morphisms. To be more precise, let us introduced some notation.

Notation 6.12. Let p € NC(k,1); its blocks are denoted by B; for 1 < i <r. We will simplify
the notation B; into B when the context is clear. We denote by:

e B=UpU Lpg the upper and lower parts of each block B.

o HUs = ®i€UB H% the tensor product of spaces H%, and similarly we write H'B =
®j€L3 HB] .
e a(Up) = ®i€UB a; the tensor product of correpresentations o; and similarly we write

B(Lp) = ®jeLB Bj-

Furthermore, we assume that “attached” to each block B there is a G-morphism
Sp = a(Up) — B(Lp) € B(HYE, HL?) (6.3.2)

and we put

S=)Ss: R aUs) — Q) B(Ls) (6.3.3)
B B B

with the order on the blocks we gave above. We say that the blocks of p are decorated by
[S] = (S1,...,S;) where r is the number of blocks in p.

Definition 6.13. We say that the partition p decorated by representations [a], [5] is admissible
if VB € p, Homg(a(Up); o(Lp)) # 0.

Therefore, we can consider
T
T,®5¢eB ((CN)®k ® Q) Hz; (CV)® @ (X) HLB> .
B B

Remark 6.14. Notice that if the G-morphisms in B(HYB, HVB) run over a basis of intertwiners
a(Up) — B(Lp) then the family (T, ®@ S)p,s is free.
We shall twist this linear map to obtain a morphism

T, 5 € Homg, gt (r(o1) @ -+ @ r(ap), 7(B1) @+ @ ().

Notation 6.15. Let p € NC(k,l) be decorated by G-representations [a], 3] and morphisms [S]
as in the above notation. One can consider a unitary tg acting on vectors x; € CN, y; € H®,
i=1,... .k

U . N o N a N\Qk U
t (CN e H") @ ® (CN @ H) — (CV)®F o R HYZ,
B

k k
Qi ©v) = Q70 Q) & v
=1

i=1 i B i'eUp
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and a unitary tlg acting on vectors x; € cV, Y € HB j=1,...,1

L . N N N\®I L
th(CVeHM) @ ® (CN o HY) - (CV)* o R H"?,
B

l
(zj@y) ~ Q0 Q) vy
j=1

l
= B j'eLp

7j=1

We set
UPs = () o (T, ® S) o ¥,
€ B(((CN®H°‘1)®---® (CN®H°‘k),(CN®H51)®---®((CN®H51)>.
We can now prove the following result:

Theorem 6.16. Let G = (C(G),A) be a compact quantum group of Kac type. Let ay, ..., ax
and Bi,...,0; be finite dimensional correpresentations in Rep(G). We set [a] = (aq,...,ax)

and [,3] = (,31,. . .,,Bl). Then

Homg, ¢+ (r(a1) @...@r(ag);r(Bf1) @---@7(5)) (6.3.4)
= span{UP° : p e NCg([o],[8]), S as below} (6.3.5)
where UPS = ()" o (T, ® S) o 7, with
e the isomorphisms t%,ti defined in Notation

o NCq([a],[B]) consists of non-crossing partitions in NC(k,l) decorated with correpresen-
tations [, [B] on the upper and lower points respectively,

e S=Q®558:QpallUs) = QRpB(Lp) asin (6.3.9), where the G-morphisms in B(Up, Lp)
which decorate the blocks B € p run over intertwiners in Homg(a(Ug), B(Lg)).

Proof. We first prove that
UPS € Homg, g1 (r(an) @~ @ r{an)ir(8) & - & r(B)),

which is the inclusion of the right hand space (6.3.5)) in the left hand space (6.3.4)).
The Frobenius reciprocity for C*-tensor categories with conjugates provide the following
isomorphisms:

Homg, gt (r(an) @ - @r(ap);r(f) ®---@r(6))

~ HomGz*Sﬁ (1;T(a1) Q- @r(ag) @r(f1)®---® T(/Bl))
~ Homg, o+ (1;7(Gk) ® - @r(a) @ r(f) @ @ 7(B)),
Homg(a1 ® -+ ®ap; /1 @ -+ @ f)) ~Homg(L,ap @ - Qa1 @ f1 @ -+ - ® Fy).

Hence, it is enough to prove that

(T, ®€) € Homg, ¢ (Lir(a1) @+ r(a)) (6.3.6)
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for all k € N, p € NC(k) and all fixed vectors
§=QéLp): C— QR H™.
B B

Moreover it is enough to prove (6.3.6)) for the one block partition 1; since one can recover
any p € NC by tensor products and compositions of partitions 1,k > 1 and id.
We now fix (e;)~; a basis of CV and (Yja)?il a basis of H%, for any a € Rep(G). Let us

prove taht ¢1* (T}, ® ) € Homg, ot (1;7(c1) ® - - @ r(ay)) for any
L GLSY

E=Y MV @ @Y™ € Homg(Lion @+ ® ).

Setting Tl’“ = ’“(Tp ® &) yields

T =2 Ale@ V) @ @ (e @ Yib),
i,[4]
so that

Ty ® - @7, (TeF @ 1) =Y A Y (e ®Y5) @+ ® (e, ® V¥
i,[4] [r],[s]

® (usu(al)fq;i T uskl(&k)i?i) ’

But the magic unitary u satisfies for all s, ¢, ugjuy = dgrtisi, > ; usi = 1 and then combining this
with the commuting relations in the free wreath product C(G) *,, C(S5;), we get

Toy ® -+ ® 7oy (Te* @1 Z)\m D (e @Y @+ @ (€5, @ YY) (6.3.7)

[r],s1
@ ()5 (a)1)
_ZZAk D (e, @Y @ @ (65, ®Y,T) (6.3.8)
[r]

® ((011)7("??1 (e (6.3.9)
(6.3.10)

Now, since
€= ZA&Yﬁl ®- @Y™ € Homg(lion ® -+ @ ay), (6.3.11)

applying (tlL’“)_1 in , using (6.3.11]) and then applying tlL’“ yield

Tay @+ ®7"ak(T€11kk ®1)= Z )\ﬁ](esl RYM)® @ (es, ®Y, )@ 1
[7’]751

:T§k®1.

This proves that Tg’“ € HomGl*va(l; r(ar) @ - @ r(ag)).
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A straightforward computation shows that the collection of G i, S]J\“,—intertwiners spaces
span {U”’S :p, S asin } is stable by composition, tensor product and duality. There-
fore this collection of vector spaces defines a rigid monoidal C*-tensor category 7, with objects
indexed by families [a] of G-representations.

If one applies Woronowicz’s Tannaka-Krein duality to this category 7, we get a compact matrix
quantum group (H, ) generated by a unitary 2 corresponding to r(v) € B(CN @ H) @ C(H)
and a family of correpresentations (R, )ier such that

Homp(Ro, @ ... ® Ra,; Rg, @ -+ ® Rg,)
— p,S . ;
—span{U :p, S as in },

with p e NC(k,1), S: @pa(U) = @z L(LB), [a] = (au,...,ar), [B] = (B1,...,5)-
We proved above that

UP* € Homg, g (r(a1) @ -+~ @ r{ag)ir(B1) @ - @ 7(B)).
In particular, there is by universality a (surjective) morphism
71 : C(H) = C(G SX,), Qijkl = Wikl -

To prove the theorem we shall construct a surjective morphism m : C(G . S3;) — C(H) such
that

1 O 9 :id:Trgoﬂ'l.
We define the following elements in C'(H)

Vi = D Qg and Ugr =Y QijraQjpa- (6.3.12)
J l

We shall prove that the generating relations in C(G S]T,) are also satisfied by the elements
V) and Uy, in C(H).

Since the generating matrix v of G is unitary, we get that £ = >, ¥, ® Y}, is a fixed vector
of v® v and thus { ® £ € Hom(1;v ® 0 ® v ® v) ~ Hom(v; v ® v ® v). Via this isomorphism, we
identify ¢ ® € with Y = 3 V. @Y, @Y.

We then have an intertwiner T':= t} (T, ® ¢ ® {) € Hom(Q; Q2 ® Q ® Q) C T with

i.e. with Notation [6.12] and making plain the G-morphisms on the block p,

i

v v v

corresponding to the linear map

T(Y ®eq) = Z(ea RY,)® (e @Y ® (eq @Y.

c
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We obtain for alla=1,..., N and b=1,...,dg:
Z (eil & Yk1) ® (eiQ ® Ykz) ® (eis ® Yk:s) ® Qi1a/€1c Q’);Qak’zc Qi:salf3b
(i), [K],c
= Z(ei ®Y;)® (6 ®Y;) ® (i @ Vi) @ Qiaks

ik,

so that for all [i] € {1,...,N}? [k] € {1,...,dg}*} a€{l,...,N}and be {1,...

<Z Qi akye ;ankgc> Qigaksb = i in,is Oky ko S digaksb-
C

and taking adjoints:

izaksb <§ :Qi20k2c Qi1ak10> - 611,22,236]61,]62(21;3@]@31)'
C

P = HZHﬂ

vov v

we can get the same way, for all [i] € {1,..., N}, [k] € {1,...,dg}? a € {1,
be{l,....dg}, using £ (Ty ® £ ®€) € Hom(, Q@ Q@ Q) C T,

Considering now

*
Q’igak3b (E Qilaklc QigakgC) = 5i1,i2,i35k1,k2 Qisak3b7
C

and taking adjoints:

<Z Qizak2c ilakzlc> Qi3ak3b - 611,l2,135k17k29i3ak‘3b‘
C

dg}:

(6.3.13)

(6.3.14)

..., N} and

(6.3.15)

(6.3.16)

We shall obtain from (6.3.13)), (6.3.14)), (6.3.15)), (6.3.16) all the necessary relations in C'(H)

to reconstruct the free wreath product G 1, S]J{,.

From these relations, we see in particular that the elements U, = ). Qijchfjkc do not

depend on k since

* *
UijUsjir = § Qijre$ 1 ik aS¥ijnra

c,d

-y (z nnn) O
d c

= Qijwaa = Uije (by (6.3.13)),
d

and similarly U;;pU;jrr = Usji, using (6.3.15). We then obtain U;j, = Ujjpr. Let us simply write
Uij := Usji. Notice that the case k = k" above shows that Uj; is an orthogonal projection (the
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relation Ui’} = Uj; is clear). In fact, the matrix (U;;) is a magic unitary, since it is a unitary
whose entries are orthogonal projections.

We now prove that for all i =1,..., N and all ;,¢}, € {1, *},
HomG (/U€1 ® e ® /Usk; U€/1 ® e ® ’Uag) g HomHz (V(Z)sl ® . ® V(’L)Ek’ V(Z)aﬁ ® . o ® V(Z)€2> R

where Hj; is the compact matrix quantum groups whose underlying Woronowicz-C*-algebra is
generated by the coefficients of V(). By Frobenius reciprocity, it is enough to prove that any
fixed vector in G is fixed in H;.

If & = 2o Ay Yo, © - ® Y, € Hom(1;0% @ - - - @ v*), we have:

D ApYn @ @Yy @l oy, ZA[r " n®L
0]

i.e. V[r] € {1,...,dg}*, we have the following relations in C(G):

Z A Vnigy - Vg = Al (6.3.17)
]

Now, we use the morphism (¢} )* o (T, ® &) € T, with p = 1, € NC(k) i.e.

(h)* o (& ®Tp) ZA (e ®Y;)® @ (e; ®Yj,)

€ Hom(l;Q81 ®- Q%) CT.

We get
D Uen ®Ye) @@ (er, ®Y5) @ > Aty -k, (6.3.18)
[r[] ilj]
= Mgle, @Y) @ @ (e, @Yy, ) @ 1. (6.3.19)
r[t]

Notice that the relations (6.3.13)), (6.3.14)), (6.3.15)), (6.3.16]) yield for e = 1, % and all 4, j, k, [

Uii Qi = Ui = Ui (6.3.20)

Then using these commuting relations and the fact that (U;;) is a magic unitary, we get from
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(16.3.18)):

Z(erl ® }/tl) @ (eTk ® mk) ® Z )\[]]Qiiltljl : Q?Z’Ltk_]k

[r][t] i[4]

=) (e, ®Yy)® @ (e, @Yy) @D A0y 5 Urii) - (65, o Upi)
[r][t] i[4]

= (en,®Yy) @ ® (e, @Yy ) ® Y A (L - 05 V(Ui - Upyi)
rilt] ilj)

= Z(em ® Yt1) ® - Q(er ® Y;fk) ® Z )\[]] Qf‘iltljl e ‘Qilfitkjk)(Umil s UTlik)
1] (][]

= (en, ®Y) @+ @ (er, ®Y3,) @ Y A (L, Uniin) - - (8 4 5 Uriiy)
r1[t] (4]4]

=3 e @) @@ (e, @Yy ) ® D A VDT Ly
r1t] 5]

Hence with (6.3.19)), we obtain V[t] € {1,...,dg}*

(r)er ylroen _
D AV Vi = A,
7]

so that & = > 1 Ay Yy, ® - @Y, € Homy, (1; viaig ... V(T)Ek) forallr=1,...,N.
Then, we obtain that Rep(G) C Rep(H;) C Rep(H) as full sub-categories. Woronowicz’s
Tannaka-Krein duality theorem then implies that for all ¢ = 1,..., N there exists a morphism

sending v to V@, ' '
Now, we prove that V.Usj = Quu = Uy V). This follows from (6.3.20)):

Vk(l 2] Z Qkale] - Q'ijle] - Qz]kl
J

and similarly
UiVt = Qg
It follows from what we have proved above that there exist morphisms
e 7;: C(G) — C(H;) such that m; <v,(jl)> = V]ff), foralli=1,...,N,

® TN : C(S]—\i}) — C(H) such that 77N+1(“ij) = UZJ

Thanks to the commuting relations we obtained above, these morphisms induce a morphism
m : C(G . SY) — C(H), such that my (U,Efl)uij> = Vk(;)Uij. By construction, we then get
w1 o mo = id = w9 o 7 and the proof is complete. L]
Remark 6.17. In the case where G is the dual of a discrete (classical) group G = f, we

recover the results of [16] and [55]. Indeed, in this case, the irreducible correpresentations of
G = (C*(T'),A) are the one-dimensional group like correpresentations A(g) = g® g,g € T', the
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trivial one is the neutral element e and the tensor product of two irreducible correpresentations
is their product in I'. Any morphism

S[g],[h] 3C2C®k—>C®l:C,gl...gk—>h1...hl

is determined by the image of 1 € C and the tensor products S
of the linear maps T,,. The space

gl,1n) ®T)p are scalar multiplication

Homg, g+ (r(g1) ® -+ @ r(gr)ir(hn) @ -+~ @ r(h))

is generated by the maps T, where p € NC(k, 1) is an admissible diagram in NCq as in Definition
. In this setting, p is admissible if p € NC(k,l) has the additional rules that if one decorates
the points of p by the elements g;, h; then in each block, the product on top is equal to the product
on bottom in T'.

In the sequel, we denote by 1g the trivial G-representation and simply by 1 the one of GZ*S]'\F,.
Corollary 6.18. Let N > 4, then:

1. For all aq,... 0, B1,..., 0 € Rep(G), we have

dimHomGl*S]t(r(al) Q- @r(og);r(f1) @ @r(F))
— Z H dim Homg (a(Up), B(LB)).

peNCg([a],[8]) BEp

2. If a € Irr(G) is non-equivalent to 1g then r(«a) is an irreducible G U Sy -representation.
3. r(lg) = (uij) = 1® w(lg) for some w(lg) € Irr(G 1 S3).

4. Denoting w(a) := r(a) © 0,151 then (w(a))actr(c) 8 a family of pairwise non-equivalent
G % S]J{,-z'?“reducible correpresentations.

Proof. We use Theorem [6.16| and the independence of the linear maps
T, € B((CY)®F,(CY)®!), p € NO(k, 1)

for all N > 4. The first assertion follows from this linear independence of the maps 7},. Indeed,
we have

Homg, o+ (r(a1) @ - @r(ag);r(B) @ ---@7(5))

= @ span {UP* : VB, Sp € Homg(a(Ug), B(Lg))}
PENCg([al],[8))

and the first assertion follows by computing the dimension of the spaces on each side.
Now we prove simultaneously the last three relations. For a, 8 € Irr(G), the intertwiner
space
HomGZ*S]T] (r(a),r(B))

is encoded by the following candidate diagrams:
e} o
pr=1| ¢ and pp=4q
g g
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Since a and g are irreducible, we see that p; is an admissible diagram if and only if a ~
and po is admissible if and only if o ~ 5 ~ 1.
Therefore, if « is not equivalent to 3:

dim HomGz*SX] (r(a),r(B)) =0.

If a ~ (3 are not the trivial correpresentation 1g then the only intertwiner r(a) — r(3) arises
from p;:
dim HomGz*SJr (r(a),r(a)) =1.

If @ ~ B ~ 1g, then the diagram po also gives rise to an intertwiner U(m(;) (1e) with S : 1g —
lg the trivial inclusion. The independence of Ty} =idc~y and Ty 1 allows to conclude

dim HomGz*Sj{, (r(lg),r(1g)) = 2.

6.4 Probabilistic aspects of the free wreath product

We provide here some probabilistic consequences of the description of the intertwiner spaces of
G S]'f,. In this section we are mainly interested in the non-commutative probability space arising
from the Haar state on C(G 1. Sy) and the behavior of the coefficients of a correpresentation
as random variables in this setting. Since most of the results involve the law of free compound
Poisson laws, we shall recall its definition. We refer to [66] for an introductory course on non-
commutative variables.

6.4.1 Laws of characters

Notation 6.19. In the sequel e = €(1)...e(r) denotes a word in {1,*} and NC(e) is the set of
noncrossing partitions with each endpoint i colored with €(i). For p € NC(g) and B a block of
p, €(B) denotes the subword of € coming from the points in the block B (with the same order as
inp).

Let (A, @) be a noncommutative probability space, X an element of A with x— distribution
px depicted by all of its moments

mx(e) = (XM . x50,

Similarly as in (6.2.4), the free cumulants of X, {kx(¢)}c is the unique collection of complex
numbers such that the following moment-cumulant formula holds for all € :

= 2 Hkx

peENC(e) B

The existence and uniqueness of such a collection is easily proved by induction on the length of

e [60].

Definition 6.20. The free compound Poisson distribution Py(ux) with law pux and parameter
A > 0 s the x—distribution defined by its free cumulants

kPA(MX)(E) = Amx (g). (6.4.1)
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In particular, if Y is a random variable following a free compound Poisson distribution with
law px and parameter 1, then we have the following moment formula :

my(e)= Y [[mx(e(B)).
peENC(e) B
We refer to [66] for the proof that there exists actually a propability space and a random variable
on it with such a distribution.
The first result is a direct application of the Corollary [6.18] We refer to Definition for the
definition of the correpresentation r(«).

Proposition 6.21. Let G be a compact quantum group of Kac type, a € Rep(G), n > 4. Then
the law of the character x(r(«)), with respect to the Haar state h, is a free compound Poisson
with law x(a) and parameter 1.

Proof. Let € be a word in {1,x}. Then the law of a free compound Poisson with law x(«) and
parameter 1, P(x(«)) is described by its free cumulants, with the formula (6.4.1)):

Ep(x(a) (E(1) ... e(r)) = myay(e(1) ... &(r).

With the moment-cumulant formula, this is equivalent to the following expression for the mo-

ments of P(x(«a)):
mpian = Y [[m(EB).
peNC: B

By the Corollary we have
B (x(r(@) ™ .. xa(r(@))7 ) =dim Homg, g (137(a)") @ -+ @r(a)")
= Z HdimHom(g(l, a(Lp))

peNC: B

= Z me(a) (5(3))

peENC: B

The second equality is given by Corollay and the third one by the definition of «(Lp) and
the tensor product structure. O

A consequence of this result is a partial answer to the free product conjecture given by
Banica and Bichon (see [10]) : for each compact matrix quantum group (A4,v) we denote by
w(A,v) the law of the character of the fundamental representation with respect to the Haar
measure. A quantum permutation group is a quantum subgroup of S]f, for some N > 0, in the
following sense : it is a compact matrix quantum group (A, v) such that there exists a surjective
C*—morphism ® : C(S};) — A sending the elements u;; of C(Sy) to v;; (see [82] for a survey
on the subject).

Corollary 6.22. Let (A,v) be a quantum permutation group, and Sy = (C(S¥,u), n > 4.

Then
WAL Byw) = p(A,v) K M(C(S]J\r/’ u).

Proof. 1t is a direct consequence of the last proposition and the fact that in the law of a free
compound poisson with law p is the same as the free multiplicative convolution of u with the
free Poisson distribution. ]

The conjecture asserts that this formula still holds when replacing S;{, with certain quantum
subgroups of Sj;. See [10] for more details.
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6.4.2 'Weingarten calculus

Let us construct a Weingarten calculus for a free wreath product. Weingarten calculus has been
mainly developped in the framework of compact quantum groups and permutation quantum
groups by Banica and Collins (see [12],[13]). This tool has mainly two advantages : on one hand
it allows us sometimes to get some interesting formulae for the Haar state on the matrix entries
of a correpresentation, and on the other hand it yields some asymptotic results on the joint law
of a finite set of elements when the dimension of the quantum group goes to infinity.

Let us first sum up the pattern of this method coming from [12]: let G = (A, (uij)i<i j<n)
be a matrix compact quantum group acting on V®F = (Xi)?fKn with the correpresentation
ay, and h the associated Haar measure. We will assume that G is orthogonal to simplify the
notations, although it could be easily generalized to the general Kac type case : that means that

the elements u;; are all self-adjoint in A (see [99]). By the property of the Haar state,
(Id®h)oap(Xiy, ® - ®X;,) = P(X;, @+ ® X, ),
with P the orthogonal projection of V®* on the invariant subspace of a;. On the other hand,
(Id®@h)oap(Xs, @+ @ Xi) = 3 hjpiy - i) (X, @+ @ Xj,).
We get thus the following expression for the Haar state on wj;, ... uj,:
h(wjyiy - wj,) = (P(Xi, @ @ X5, ), Xj, @ - @ X, ).

The right-hand side may be hard to compute. Hopefully the Gram-Schmidt orthogonalisation
process yields a nicer expression if we already know a basis of the invariant subspace Sk of ay.
Let {Sk(7)} be a basis of this subspace, Gy, being the Gram-Schmidt matrix of {Sk(7)} defined
by Gi(i,§) = (Sk(i), Sk(j)) and Wy, = G;'. A standard computation yields:

h(ujlil : ujklk) = Z<Xl1 Q- XikaSk(i)>Wk(i7j)<Sk(j)an1 ®---®X; )-
V]

Of course the matrix Wy(i, j) is hard to compute.

Let us see nonetheless what it gives in the case of a free wreath product (GZ*SF\L,, (wij k), with
G an orthogonal matrix quantum group. A basis of Sy, is given by the vectors UP%, p € NC(k),
as defined in (6.3.5). The first task is to compute the matrix Wi/(i, 7). Consider the following
map

:(CVV)@- @ CVNeV)> (CY®* Ve -0V
k k k
Q@i @ y:) = Qi ® Qus
i=1 i=1 i=1
t1, is unitary and and by definition of UPS,
t(UPS) =T, ® S.

Recall that S depends implicitly on p through the definition (6.3.5): the latter is an invariant
vector of the k—tensor product representation of G having the block structure of p. Nevertheless
S is independent of NV and in particular we have the expression

(UPS U8y =(t,(UPS), 1 (U?S))
=(T,,, T,)(S, 8"y = N* @V (g g").
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Remark 6.23. Fasy quantum groups form a particular family of compact quantum groups whose
associated intertwiners spaces can be combinatorially described. Namely if G is an easy quantum
group, the invariant subspace of the k—tensor-product representation is spanned by the vectors
Ty, as defined in Section m with p belonging to a subcategory of P(k). See [15)], [71] for
more informations on the subject, and [50], [40] and [25] for some applications. In this case, the
scalar product matriz has a simpler form. Indeed if G is an easy quantum group of dimension s
and with category of partition C, then a direct computation yields for o < p, 8 < q two partitions
inC:
(ure gy = NbPVa) ghlavh)

The Weingarten formula has also a more combinatorial form since we can write:
-1
h(wiljl,k'lll o wirjr,krlr) = Z Gk; ((p7 Oé), (q7 6))7

a<ker(),8<ker(})
a<p<ker(k),B<q<ker(])

—

where ker(i) is the partition whose blocks are the set of indices on which i has the same value.

The scalar product matrix G, = (<Up,57 Uq7sl>)(p’s)7(q7sl) is a block matrix, the blocks qu
being indexed by p,q € NC(k). Note that as in [I2], one can factorize this matrix as follows:

Gr=A2GA2
where A, is the diagonal matrix with diagonal coefficients
Dk ((p, S), (p, S)) = N*®)

and
b(p)+b(q)

Gi((p,S), (g, S') = N*PVO=""577(5 g").

Asymptotically with n going to infitiny, G = Dj(1 + o(ﬁ)), Dy, being the block diagonal
matrix

Dk((pv S)’ (Q7 S/)) = 5P7Q<Sv S/>

Finally we can remark that restricted on the subspace V,,, = Vect((Up,,s)s), the matrix ((S,S"))s.s
is the tensor product of the Gram-Schmidt matrices of G Gg p,|, for each block |B;| of po. If
we put all these considerations together, we get that

Wal(p:5). (0.5) = b V"0 | @W5" | (8.8)(1+0( =)
Bep

This formula allows to generalize the results in [I12] to the free wreath product case. Define the
following partial trace:

Definition 6.24. Let 0 < s < n the partial trace of order s of the matriz w = (’wij,kl)lgi,jgr,lgk,lgn

(2
T S
xX“(s) = Z Z Wi, kk-

i=1 k=1

Let ¢t € (0,1] and let G be a matrix compact quantum group of Kac type and dimen-
sion r. Denote by xg the law of the character of its fundamental representation. Let (G
Sit, (wij ki) 1<ij<ri<ki<n) be the matrix quantum group G, S, with its fundamental represen-
tation w.
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Theorem 6.25. With respect to the Haar measure, if s ~ tn for n going to infinity,

Xw<3> — Pt(XG):
where Pi(xg) is the free compound Poisson with parameter t and original law Xg.

Proof. A similar computation as in [I2], Theorem 5.1 gives

[Oc @) =706 G
and with the asymptotic form of Gy, this gives us:

_ C1/2 1 A 1 1
GnGrs = APDAAT (1 + o(%))A;kaAié?(er 0(%)).

Since Dy, is block diagonal and A, Ag, are diagonal, and equal to the identity on each block,

these three matrices commute, and

Tr(GyLGrs) = Tr(Auyus(Id + o<;ﬁ>>> S Tr(A).

Since
Tr(Ag) = > P dmV,= 3 0 [ mp(xe),
peNC (k) peNC(k) Bep
Tr(Ay) is exactly the k—th moment of the law P(xc). O

Remark 6.26. All the results of this section can be transposed to the classical case. One just has
to substitute classical compound Poisson laws for free compound Poisson laws, and use crossing
partitions instead of non-crossing ones.

6.4.3 Non-commutative symmetric functions as a probability space

We expose in this subsection a relation between the ring of non-commutative symmetric functions
(as defined in Definition and the representation theory of the free wreath product U, S,
for n > 4. This free wreath product is also the easy quantum group H, "> of Chapter 4 and 5.
This quantum group has been deeply studied by Banica and Verginoux in [16]. In particular,
they found the fusion rules of the irreducible representations:

Theorem 6.27 ([16]). Let n > 4. The irreducible representations of (C(H, ™), (uij)1<ij<n)
are indexed by finite sequences of integers, with the fusion rules given by the recursive formula

(j17"'a.j7“) ® (ilw-'aiT’) = (.jla"'v.jraila"wi?“’) + (jlv-'-a.jr—la.jr+ilaiQa“-aiT’)
+0j,4ir=0(J1s - - -, Jr—1) ® (i2, - i),

such that (0) is the trivial representation and for k non zero, (k) is the irreducible representation
given by the matriz (U%)lgijgn-

This yields the following embedding of NSym in CI(H,>):
Proposition 6.28. The map ® : NSym — CI(H,"™) defined by ®(Sy) = do1<i<k uk. is an
embedding of NSym in CZ(H;[’OO) such that for any composition I of n,
O(Ry) = x1,
where xj is the character of the irreducible representation of H;7% indexed by I in Theorem

[6-27
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This result can be seen as a non-commutative version of Theorem [2.23] The ring of non-
commutative symmetric functions has already been related with the representations of a spe-
cialization at ¢ = 0 of the quantum linear group and the Hecke algebra [52]. Proposition
gives a semisimple version of this result.

Proof. Since NSym is the free ring generated by the variables Sk, & > 1, there is a morphism
of algebra ® : NSym — CI(H, ™) sending S; to X(k) = D1<i<k uk.. We prove by recursion of
the length [ of a composition I that ®(R;) = x(y). If I = 1, this is true by the definition of I and
the fact that Ry = Sy for k > 1. Suppose the result true for [ — 1 and let I = (iy,...,4) be a
composition of length [. On one hand, the product formula on the ribbon Schur basis yields

Riiri) By = Binyei) T Bineisovisa+i)-
Thus applying the map ® on both sides and using the induction hypothesis yields

X(ityemiz—1) X (i) = PRy i) T X(in it iz +ir) -
Since each i; is positive, the fusion rules of Theorem @ give on the left hand side of the latter
equation
X(i1yenyiv—1) X (i) = X(i1yomnriv—14i) T X(i1,onnriy) -
Therefore, ®(R(;, . i) = X(i1,...iy)- Since the set {x(1)}1 compositions 18 a set of characters of
distinct irreducible representations (and thus linearly independent), ® is injective. O

In particular, the Haar state on C1 (Hf[ %) yields a scalar product on NSym by the formula
(F,G) = hy+.00 (2(F)2(G)7),

and the basis of ribbon Schur functions is an orthonormal basis with respect to this scalar
product.

From now on, NSym is identified with its image in CI(H,**°). By this identification, each
variable S; is a random variable with respect to the Haar measure on C(H,*>°). The law of the
random vector (S;);>1 can be computed thanks to the description of the intertwiners of U, S,
in Section (we could also directly use a result of [16], which already gives the description of
the intertwiners of Z ¢, S;).

Proposition 6.29. The family {S;}i>1 is distributed as (s2's);>1, where s is a semi-circular
element and z is a uniform variable on the unit circle free from s.

Proof. Let iy,...,1i, be integers distinct from zero, and write S_; = S for i positive. Then by
the Tannaka-Krein duality,

h(Sl ... SzT) = dimMOrH’;l»,oo(17 Oé(il) R ® a(ir)),

where a(k) is the irreducible representation (Ufj)lgi,jgn'
By Theorem and the fact that the tensor product of the representations 271,. .., 2% of U is
trivial if and only if >, . jm =0,

h(Si, ... S:i.) =#{m € NC(i1,...,i,)|VB € 7, B is balanced},
where as in Chapter 5, NC'(iy, .. .,14,) denotes the set of non-crossing partitions with the element
1 < m < r colored with 4,,, and where a block {j1,...,js} of a partition in NC(iy,...,4,) is
balanced if and only if >, -, Jji,, = 0. In the proof of Proposition it has been proven

that
#{r € NC(i1,...,i,)|VB € m, B is balanced} = m(sz"'s, 52%s,...,52"s),

with s a semi-circular variable and z a uniform variable on the unit circle free from s. O
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Chapter 7

Planar algebra of a free wreath
product

This chapter is devoted to the general description of the intertwiner spaces for the free wreath
product of two free permutation groups. This description leads to the proof of the following
result, which was conjectured by Banica and Bichon in[I0]:

Theorem 7.1 ([I0], Conj 3.1). Let F' and G be two non-commutative permutation groups such
that dimp Mor(0, 1) = dimg Mor(0,1) = 1. Then

p(F % G) = p(F) K p(G),

where u(G) denotes the law (with respect to the Haar measure) of the character of the funda-
mental representation of a matriz compact quantum group G.

The main ingredient in the proof of Theorem7.I] is the notion of free product of planar
algebras, which has been introduced by Bisch and Jones in [23]. Section 1 is an introduction to
the concept of planar algebra; several basic combinatorial results are given on planar tangles,
the main objects in the construction of planar algebras. Section 2 gives an isomorphism between
the intertwiner spaces of a free wreath product and the free product of certain planar algberas.
Section 3 is devoted to the combinatorial proof of a dimension formula which has been found
by Bisch and Jones in an unpublished paper [23]: this result yields the proof of Theorem
thanks to the isomorphism given in Section 2.

7.1 Planar algebras

As already said in Chapter 3, a planar algebra is a collection (Vj)r>1 of vector spaces with an
action of planar tangles on thess vector spaces.

7.1.1 Definition of planar tangles

By a diffeomorphism of R? we mean an orientation preserving diffeormophism defined on a
domain D of R2. In this subsection we define the notion of irreducible planar tangle and we
associate a non-crossing partition to each planar tangle.

Disk and intervals By a disk we mean an open subset of R? whose boundary is a smooth
Jordan curve.
Let U be the unit circle on R2. For w € U, we denote by [1,w[ (resp. [1,w]) the subset of U
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whose argument is less (resp. less or equal) to the one of w (or to 27 if w = 1). If ' € [1,w],
[, w] (resp. Jw',w[) denotes the set [1,w] \ [1,w'[ (resp. [1,w[\[1,w]).

Let D be a disk and let 0D denote its boundary. For each finite subset S C 9D of cardinal
k with a distinguished element i, € S, there is a canonical bijection from S to [1, k] obtained
by numbering the elements of S counterclockwise, starting at i,. The element of S which is
numbered ¢ is denoted by ip.

Since dD is a Jordan curve, there is an orientation preserving diffeomorphism ¢p mapping 0D
to the unit circle U. For each couple (4, j) of elements of S with i < 7, the set ¢ },' (Jop (i), op(4)])
is denoted by (i,7) and called the interval component of D between i and j; the set 5, (U \
[¢p (), p(j)]) is denoted by (j,4) and called the interval component of 9D between j and i.
When there is no possible confusion, [1, k] is always identified with Z/(kZ) and thus k+ 1 = 1.
When the bounds of an interval component is not specified, this interval is always assume to be
of type (4,7 + 1) for some i € [1, k].

By a curve v, we mean either a Jordan curve or a injective smooth map v : [0,1] — R2. If v is
a Jordan curve, v is called a closed curve.

Planar tangle A planar tangle is a particular collection of subsets of R? which has been
introduced by Jones in [46]. We can see it as a generalization of the two-level noncrossing
partitions of Section to a kind of multilevel noncrossing partition.

Definition 7.2. A planar tangle P of degree k > 0 consists of the following objects:
o A disk Dy of R?, called the outer disk.
e Some disjoint disks D1, ..., Dy in the interior of Dy which are called the inner disks.

e For each 0 < i < n, a finite subset S; € OD; of cardinal 2k; (such that ko = k) with a
particular element i, € S;. The elements of S; are called the distinguished points of D;

and numbered counterclockwise starting from i.. k; is called the degree of the inner disk
D;.

e A finite set of disjoint smooth curves {v;}1<j<r such that each ; lies in the interior of
Do\ U;>1 Di and such that <<, 07 = Ug<i<pn Sis it is also required that each curve
meets a disk boundary orthogonally, and that its endpoints have opposite (resp. same)
parity if they both belong to inner disks or both belong to the outer disk (resp. one belongs
to an inner disk and the other one to the outer disk).

o A region of P is a connected component of Do \ (U;>1 Di U (U7j)). Give a chessboard
shading on the regions of P in such a way that the interval components of type (2i+ 1, 2i)
are boundaries of shaded regions.

The skeleton of P, denoted by I'P, is the set (|J0D;) U (IJ~;)-

In the sequel, Dy denotes always the outer disk of a planar tangle. If the degree of P is
0, then P is of degree 04 (resp. 0_) if the boundary of the outer disk is the boundary of an
unshaded region (resp. shaded). An example of planar tangle with its associated shading is

given in Figure

An isotopy of P is the image of P (i.e the family of images of all the given sets in the defini-
tion, such that a region and its image have same shading) by a diffeomorphism, and two planar
tangles P and P’ are said equivalent if there exists an isotopy ¢ such that (P) = P’. For any
disk D of R? with a set S of 2k distinguished points on D (numbered counterclockwise from 1
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Figure 7.1: : Planar tangle of degree 4 with 4 inner disks.

to 2k), there is an isotopy ¢p, s of P such that ¢p g(0Dy) = 0D and ¢p s(ip,) = ip for each
distinguished point of D.

A connected planar tangle is a planar tangle whose regions are simply connected; this implies
that for any inner disk D and any element x € 0D, there is a path from z to the boundary of the
outer disk which is contained in (|J0D;) U (lU~;). An irreducible planar tangle is a connected
planar tangle such that each curve has an endpoint being a distinguished point of Dy and the
other one being on an inner disk. An example of connected planar tangle and of an irreducible
planar tangle is given in

Figure 7.2: : A connected and an irreducible planar tangle.

Composition of planar tangles Let P and P’ be two planar tangles of respective degree
k and k', and let D be an inner disk of P. We assume that the degree of D is also k¥’. Let S
be the set of distinguished points of D and let ¢p g be an isotopy of P’ to 0D respecting the
distinguished points. For each distinguished point ¢ of D, the union of the curve of P and the
one of ¢p s(P’) ending at ¢ yields a new smooth curve. Thus, the union of P and ¢p g(P’)
with the disk D removed is a new planar tangle which is denoted by P op P’ and called the
composition of P and P’ with respect to D. An example of composition the planar tangle of
Figure with the second planar tangle of Figure is given in Figure (only an equivalent
planar tangle is displayed in orther to get a clear picture).
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Figure 7.3: : Composition of two planar tangles.

Note that if D1 and Ds are two distinct inner disks of P and P; and P, are two planar tangles
having respectively the same degree as D and Ds, then (Pop, P1)op, P» = (Pop, P»)op, Pi.
It P, ..., P are distinct planar tangles and D;,,...,D;, are distinct inner disks of P such that
deg P; = deg D;; for all 1 < i < s, we denote by P O(D;, 1,Diy) (Py,...,Ps) the planar tangle

s

obtained by iterating the composition with respect to the different inner disks.

7.1.2 Non-crossing partition and irreducible planar tangles

Let P be a planar tangle of degree k. I'P \ 0Dy is the union of a finite number of connected
components C1,...,C,. For 1 < ¢ < 2k, the distinguished point ip, of the outer boundary
belongs to the closure of a unique connected component C'y(;). We define an equivalence relation
~p on [1,2k] by saying that i ~p j if and only if f; = f;. We denote by mp the partition
associated to ~p through the correspondence between partitions and equivalence relations which
has been established in Section [L1.1]

Lemma 7.3. wp is a non-crossing partition of 2k with even blocks.
Recall that a block is called even if its cardinal is even.

Proof. Suppose that 1 <i < j <k <[ <2k with i ~p k and j ~p [. Thus there exist a path
~v1 in I'P\ Dy between i and k and a path 9 in I'P \ Dy between j and [. Since j € (i, k) and
l € (k,i), v1 and o intersect. Therefore, the four points are in the same connected component
of 'P\ Dy and i ~p j ~p k ~p . wp is thus non-crossing.

Since each inner disk has an even number of distinguished points and each curve connects two
distinguished points, a counting argument yields the parity of the size of the blocks. O

Reciprocally, a noncrossing partition m of 2k with even blocks yields an irreducible planar
tangle P such that mp, = 7. The construction is done recursively on the number of blocks as
follows:

1. If 7 is the one block partition, Py is the planar tangle with one outer disk Dy of degree
2k, one inner disk D of degree 2k, and a curve between the point i of Dy and the point i
of D1 .

2. Suppose that Py is constructed for all partitions having less than r blocks. Let B = [[i1, i2]
be an interval block of 7, and let 7’ be the non-crossing partition obtained by removing
this block (and relabelling increasingly the integers). 7' has also even blocks.

Let Pr g be the planar tangle consisting of an outer disk Dy of degre 2k and two inner
disks Dy and D3 of respective degree is —i1 +1 and 2k — (i2 —i1+ 1), and curves connecting
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® ip, to ip, for i < 4.
® ip, to (i —i1+1)p, for iy <i <4y ifd; is odd, and ip, to (i —i1)p, for iy <i <ig if
11 is even.

° iDo to (i— (ig—i1+1)> for i > is.

Set Pr = Py pop, Pr. Note that the resulting planar tangle doesn’t depend on the choice
of the interval block B.

By construction, P is irreducible and mp, = 7. The inner disk of P, corresponding to the block
B of 7 is denoted by Dpg.

These particular irreducible planar tangles yield a decomposition of connected planar tangles.
Let P be a connected planar tangle. Let By, ..., B, be the blocks of mp ordered lexicographically
and let C'1, ..., C, be the corresponding connected components of P. For 1 < i < r, P; is defined
as the planar tangle P\ (| it C;), where the distinguished points of the outer boundary of P
which are in B; have been counterclockwise relabelled in such a way that the first odd point
is labelled 1. The planar tangle P; of the connected planar tangle of Figure is depicted in

Figure [7.4]

Figure 7.4: : First connected component of the first planar tangle of Figure

Proposition 7.4. Let P be a connected planar tangle, and set m = mp. Then
P =Propg .. .Dpg (Pr,...,P).

Proof. 1t is possible to draw r disjoint Jordan curves {7;}i<i<, such that ; intersects P |B;]|
times, once at each curve of C; connected to a distinguished point of the outer boundary (or
two times at a curve joining two distinguished points of the outer boundary). The intersection
points are labelled counterclockwise around +;, in such a way that the intersection point with
the curve coming from the first odd point of B; is labelled 1.

Let T'; be the closed region delimited by v; and set P, = (PNT;)U~;, with the labelling of the
distinguished points of ~; given above. Then P; is a planar tangle which is an isotopy of P;.
Figure shows a possible choice of Jordan curves for the connected planar tangle of Figure

Let P be the planar tangle whose inner disks are {Fi}lgigf, with the distinguished points being
the ones of v;, and whose skeleton is 'P \ (|JI';). Then P is equivalent to P; and

Por, .r, (P1,...,P.) =P.
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Figure 7.5: : Jordan curves surrounding the connected components of a planar tangle.

O

Shaded regions and Kreweras complement We refer to Section [5.2 for the notations on
the Kreweras complement related to partial set partitions. If S'is a set of cardinal k, f : [1, k] —
is a bijective function and 7 € P(k), then f(r) is the partition of S defined by f(i) ~ () f(4)
if and only if i ~; j. Let k > 1, and for ¢ > 1, set §(¢) = 1 if 7 is odd and 0 else. A partial
partition (7,.5) of 4k is associated to each m € NC(2k) as follows:

[ ] S - {27, - 5(1)}1§l§2k
o 7= f(m) where f:[1,2k] — [1,4k] given by f(i) = 2i — d(1).

S is the set {1,4,5,8,...,4k — 3,4k}. Let f be the map from [1,2k] to [1,4k] \ S defined by

f(@) =2i = (1= 0(3)).
Definition 7.5. Let 7 € NC(2k). The nested Kreweras complement of m, denoted by kr!(m), is
the partition of 2k such that f(kr'(w)) = kr(w, S).

The nested Kreweras complement of the partition {{1,3,4},{2},{5,6}} is the partition

{{1,2},{3,4},{5,6}}, as shown in Figure [7.6]

ol

1 1 2/ 2 3 3 4 4 ) 5/ 6’ 6

Figure 7.6: The partition {{1, 3,4}, {2}, {5,6}} and its nested Kreweras complement.

Contratry to the usual Kreweras complement, the nested Kreweras complement is not bijective.
Let 7y (resp 71) be the partition of 2k with block (2i,2i + 1) (resp. (2i + 1,2i + 2)).

Lemma 7.6. kr'(mw) = kr' (7 V mp)

Proof. Since m < (7 V ), kr'(w V mo) < kr'(m).
ey 2j — (1 = 4(j)). By Lemma [5.16] this

Suppose that i ~p(r) g Then 20 — (1 — 3(1)) ~po(s.s |
implies that for all k € [2i—(1—0(4)),27 — (1—0(5))]NS, L € S\ [2i — (1 —6(7)), 25 — (1 —=d(4))],
kel ke [20—(1—-0(4)),2) —(1—0()] NS and I & [2i — (1 —d(¢), 25 — (1 — (5))],
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then [ # k + 1 and thus k £, [; therefore, for all k € [2i — (1 — 6(7)),25 — (1 = d()))] N S,
1€ S\[2i—(1-6(3)),2j —(1—-0(4))], k %nvm . By Lemma(5.16} this implies that i~ (zynr,) J:
kr'(m) < kr'(m V mo). O

The nested Kreweras complement is involved in the description of planar tangles in the
following way:

Proposition 7.7. Let P be a planar tangle of degree k. i and j are in the same block of kr'(np)
if and only if ip, and jp, are boundary points of the same shaded region.

Proof. Let P be a planar tangle. Relabel ¢ with 2 — §(4): with this relabelling each interval of
type (4i + 1,4i 4+ 4) is the boundary interval of a shaded region, and 7 (P) becomes a partial
non-crossing partition of 4k with support S. Add two points 4i + 2 and 4i + 3 in (4i + 1,4i + 4)
in such a way that 4i + 2 € (41 + 1,47 + 3). Let ~ be the relation on S¢ defined by i ~ j if and
only if ¢ and j are boundary points of a same shaded region. Let (7/, 5¢) be the partial partition
associated to ~: 7’ is non-crossing since two regions that intersect are the same.

Let m = ((mp,S) V (7/,5°). Let 1 <i<j<r<s<d4k with i ~; r and j ~r s. Since mp
is non-crossing, if i, 7,7, s are all in S then i ~; j ~; r ~; s. Assume from now on that they
are not all in .S, and suppose without loss of generality that i € S¢. ¢ ~, r, thus r is also in 5¢
and i and r are boundary points of a same shaded region o. Since j € (i,7) and s € (r,4), any
path on I'P between j and s would cut ¢ in two distinct regions: thus if j,s € S, then j 4, s.
Therefore, the hypothesis j ~, s yields that j,s € S¢. 7’ being non-crossing, i, j,r, s are in the
same block of . Finally, 7p V 7’ is non-crossing and thus 7" < kr/(7wp).

Let m be a partial partition with support S such that mp V 7y is non-crossing. Suppose that
i ~r, j, with 4,5 € S¢. Let o; (resp. 0;) be the shaded region having i (resp. j) as boundary
point. mp V my is non-crossing, thus for all 7, s € S such that i <r < jand j <s <14, r g, s.
Thus, there is no path in I'P between (4, j) and (j,), and o; = o;: this yields i ~ j. Therefore,
(7, 5¢) < («’,5¢) and (7', 8¢) = kr(wp,S).

Let 1 <i,j < 2k. By the two previous paragraphs, i and j are in the same block of kr’(7p) and
only if 2i — (1 —6(¢)) and 25 — (1 —d(j)) are boundary points of a same shaded region. Since the
points 2i — (1 —4§(7)) and 2i — §(4) both belong to the interval (2(i + (7)) — 3,2(i +6(¢))) (which
is part of the boundary of a shaded region), 2 — (1 — (7)) and 2j — (1 — 4(j)) are boundary
points of a same shaded region if and only if 2 — (i) and 2j — §(j) are boundary points of the
same shaded region. Since we had relabelled i by 2 — §(4), this yields the result. O

7.1.3 Planar algebra

Let us recall the definition of a planar algebra as given in Section [3.3.2] Planar algebras have
been introduced by Jones in [46] in order to study the structure of subfactors.

Definition 7.8. A planar algebra P is a collection of finite dimensional vector spaces {Pn}neN*U{,7+}
with dimPy = dimP_ = 1, such that each planar tangle P of order k with n inner disks of
respective order ki, ...,k yields a multilinear map:

Tp : ® ,Pkl—>lpk

1<i<n

which is compatible with the composition of planar tangles and invariant under isotopy. Namely,
if Q is another tangle of order k;, for some 1 < iy < n and ¢ is a diffeomorphism, then

Tpo (® Idpki X TQ) = TPODiOQ and T‘P(P) =1Tp,
i#i0
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where P o;, Q) is the composition of tangles defined in Section and ¢(P) is the isotopy of
P with respect to .

In particular the compatibility with the composition of tangles yields that if P contains a
close curve v which delimits a simply connected region o, Tp = .1, where P is the planar
tangle P with the curve v removed, and J, is a scalar that depends only on the shading of o.
In the sequel 0; (resp. d2) will denote the value of ¢, for a shaded (resp. unshaded) region.

Several operations are defined by the action of particular planar tangles :

Each P, is an algebra with multiplication given by the planar tangle of Figure

Figure 7.7: : Multiplication tangle of degree Ps.

The is an inclusion of algebras P,, C P41 with the planar tangle of Figure

Figure 7.8: : Inclusion tangle from P4 to Ps.

There exist two linear functionals Trr and Try respectively defined by the first and second
planar tangles of Figure [7.9

Figure 7.9: : Right trace tangle and Left trace tangle on Py.

Note that TI‘L(Idp1> = (52 and TI‘R(Idpl) = 51.
A planar subalgebra of P is a collection of vector subspaces W,, C P, which is stable under
the action of the planar tangles. If P is a planar algebra, there is a minimal planar subalgebra
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of P denoted by T'L(P) and given by the image of all planar tangles without inner disk.

A morphism ® between two planar algebras P : {P,} and Q = {Q,} is a collection of linear
maps ¢, : P, — Q, that commute with the action of the planar tangles. Namely Tp o
(@D, interior disk of p Pi) = @ o Tp for any planar tangle of order k.

Subfactor planar algebra Two planar tangles P and @ of degree 04 or 0_ are related by a
spherical symmetry if P can be obtained from @ by the composition of a Moebius transforma-
tion and a diffeomorphism. An example of two planar tangles related by a spherical symmetry
is shown in Figure [7.10

Figure 7.10: : Two planar tangles related by a spherical symmetry.

A planar algebra is called spherical if the action of a planar tangle P of degree 04 or O_ is
invariant under spherical symmetries. In such planar algebra, the linear functionals Try and
Trg are equal and simply denoted by Tr; in particular §; = §2 and Tr is a trace on each algebra
Pr.

The conjugate P* of a planar tangle P is defined as the image of P by any axial symmetry
s, with the rule that the first distinguished point of a disk s(D) is the last distinguished point
of the inital disk D. The conjugate of the planar tangle of Figure [7.1] is drawn in Figure [7.11

Figure 7.11: : Axial symmetry of the planar tangle of Figure [7.1

Suppose that there exists an involutive antilinear map * on each vector space P,. The planar
algebra is called a x—planar algebra if Tp«(vf ® --- @ v}) = (Tp(v1,...,vy))* for any vy,..., v,
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with v; € Py,.

Definition 7.9. A planar algebra P is called a subfactor planar algebra if P is a spherical
x—planar algebra such that the bilinear product (.,.) defined on each Py, by the formula (x,y) =
Tr(y*x) is an hermitian form.

Subfactor planar algebras have a very rich structure: a complete review of their properties
can be found in [46]. The main result that will be needed in the present chapter is the following:

Theorem 7.10. [Jones, [{6]] Let P be a subfactor planar algebra. There exists a bipartite graph
Gp with root vertex x such that:

dim Py, = #{ walk of length 2k on Gp starting and ending at *}.

7.2 Intertwiner spaces of a free wreath product

A non-commutative permutation group f is called irreducible if dim(Morg(0,1)) = 1. This
section is devoted to the description of the intertwiner spaces of the free wreath product of two
irreducible non-commutative permutations groups F' and G}

7.2.1 Intertwiner spaces of non-commutative permutation groups

Spin planar algebra As planar tangles are generalization of noncrossing partitions to higher
dimensions, the spin planar algebra is a way to generalize the maps Tp’s (as defined in Section
in order to build multilinear maps. This forms a planar algebra which has been introduced
by Jones in [46]. Some cares are needed in order to define properly a planar algebra that possesses
all the properties of a subfactor planar algebra.

Let V be a d—dimensional Hilbert space with a distinguished orthonormal basis (e;)1<i<q. We
denote by V;, the vector space V®" and we set V, = C,V_ = V. For each n > 1, a basis of V®"
is given by {e;; ® --- ® €;, }1<iy,...in<d- The action of planar tangle will be described on these
bases. Namely let P be a planar tangle of degree k£ with r inner disks D;, 1 < ¢ < r of respective
degree k;. P defines a map Tp from Q) Vi, to Vj, whose expression on the respective bases is the
following:

1. Foreach 1 <14 <7, let ez = eji Q- Qe be a basis element of Vj,.

Tk

(3

2. Each inner disk D; has k; boundary components which are also the boundary of a shaded
region (each interval (21 — 1,21) for 1 <1 < k;): label the interval component between the
points 2/ — 1 and 2l of D; with the value j!.

3. A function f : {shaded regions of P} — [1;d] is called compatible if the label of the
boundary of an inner disk which is also the boundary of a shaded region ¢ is equal to

f(o).

4. A compatible function f yields a labelling of the outer boundary by setting j; = f(o) if
the interval component (20 — 1,20) of Dy is the boundary of the shaded region o. The
resulting vector ej, ® --- ® e;, is denoted by ey.

5. Set

TP(65‘1®"'®63‘T) = Z er.
f compatible
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Pictorially, this means that we impose the indices of the tensor products to be the same on the
boundaries of a shaded regions. An example of such condition is given in Figure

Figure 7.12: : Spin action a planar tangle.

The planar tangle P of Figure yields the map Tp : V2@V V2V2eV Ve — V&3
defined by

Tp (@'; ®ejp) @ep @ (e @ejs) @ (e @ej) ®ejs @ (e @eje ® ej§)>

=0jt5ts8 Ot 0sineit © €3 © €4 @ gy @ ejg-
This action of planar tangles is clearly invariant under isotopy and is compatible with the
composition of tangles. The spin planar algebra is not spherical since 61 = d and §, = 1.
However it is possible to multiply each Tp by a scalar u(P) in such a way that the resulting
action still yields a planar algebra structure with 6; = dy = V/d.

Definition 7.11 ([46]). The collection of vector spaces given by V, = V" V_ =V, V, = C,
with the action of a planar tangle P given by u(P)Tp as defined above, is called the spin planar
algebra and denoted by P(V).

Note that for d > 1, the spin planar algebra is not a planar algebra since dimV_ =d > 1.
However the following result of [46] holds:

Lemma 7.12 (Jones, [46]). A planar algebra contained in the spin planar algebra is a spherical
planar algebra.

A planar algebra contained in spin planar algebra is called a spin planar subalgebra.
In particular the spin planar subalgebra T'L(V') C P (V') which is given by the image of all planar
tangles without inner disk is a spherical planar algebra. Constructing T for each of these planar
tangles gives that

TL(V)y = span(Ty,p € NC(n)).

This planar algebra of noncrossing partitions has been introduced and studied by Sunder and
Kodiyalam in [49]. It also yields the first connection between spin planar algebras and intertwiner
spaces of non-commutative permutation groups, since by a result of [5]

TL(V) = {MOI“S;- (O,n)}nzl.
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Let n > 1. As explained in Definition [3.30] a non-commutative permutation group of size n is
a quantum subgroup of the free symmetric group S;". Therefore by the Tannaka-Krein duality

of [3.19
For any k, k' > 1, Morsf{(k,k’) C Morp(k, k). (7.2.1)

We have seen in last section that the intertwiner spaces of S, form a particular planar subalgebra
of the spin planar algebra. The relation ([7.2.1)) extends to the following result due to Banica in

[6]:

Proposition 7.13 ([6],Sec.5). Let F' be a quantum permutation group of size n. If F is irre-
ducible, then {Morp(k,0)}r>1 is a sub-planar algebra of the spin planar algebra P(V'), V being
the vector space of the fundamental representation of F.

Moreover any sub-planar algebra of P(V') is of the form {Morg(k,0)}r>1 for an irreducible
quantum permutation group F of size n, and the correspondence is bijective.

We denote by P(F) the planar algebra associated to the quantum permutation F' by the
previous Proposition. Recall that given a compact quantum subgroup G of O;, the knowledge
of {Morg(k,0)}x>1 is enough to get all the intertwiner spaces Morg(k, 1) for 1 < k, [, because of
the isomorphism Morg(k, 1) ~ Morg(k +1,0). Therefore, P(F') describes all the representations
of F.

7.2.2 Case of a free wreath product

If G and F' are two irreducible quantum permutation groups of respective size d and n, then the
free wreath product G i, F' is again a quantum permutation group by the inclusion G, F' C S;n.
The problem is to relate the intertwiner spaces of G i, F' with the ones of G and F'. As it will be
proven in this subsection, G}, F' is again irreducible; therefore by Proposition the problem
is equivalent to relating P(G . F) to P(G) and P(F). This relation involves the free product of
planar algebras, a construction which has been done by Bisch and Jones in [23].

Tensor and free products of planar algebras

Definition 7.14. Let P and Q be two planar algebras. The tensor product planar algebra P& Q
is the collection of vector spaces (P ® Q); = P; ® Q;, with the action of any planar tangle given
by the tensor product of the action on each component: Namely for a planar tangle P,

Tr(XR)(pi @ 4:)) = Tr((RQ) pi) @ Tr(R) ),
D D

D;
where p; € Py, and q; € Qy,.

If P(V) and P(W) are two spin planar algebras respectively associated to the vector spaces
V and W, then P(V) ® P(W) is isomorphic to the spin planar algebra P(V ® W), with the
isomorphism V& @ Wk ~ (V @ W)®*, The free product of two planar algebras P and Q is a
subplanar algebra of P ® Q defined by the image of certains planar tangles.
A pair (P,Q) of planar tangles of degree k is called free if there exists a planar tangle R of
degree 2k and two isotopies @1 and g, respectively of P and @, such that:

o 'R =T¢1(P)UTya(Q), and the set of distinguished points of R is the image through ¢
and ¢y of the set of distinguished points of P and Q.

e ©1(P\ Dyo(P))Ne2(Q\ Do(Q)) = 0. This means that a connected component of R is the
image of a connected component of either P or Q.
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e The distinguished point numbered i of Dy(P) is sent by ¢1 to the distinguished point
numbered 2i — (i) of dDy(R).

e The distinguished point numbered i of dDy(Q) is sent by o to the distinguished point
numbered 2i — (1 — §(7)).

e A distinduished point of an inner disk coming from P is labelled as in P; a distinguished
point ¢ of an inner disk coming from @ is labelled ¢ — 1.

The last condition ensure that curves of R have endpoints with correct parities. If P and @ are
connected planar tangles and R exists, then R is unique up to orientation preserving diffeomor-
phism: this planar tangle is called the free composition of P and @) and denoted by P x Q. An
example of a free pair of planar tangles, with the resulting free composition, is drawn in Figure
(.15

Figure 7.13: : Free composition of two planar tangles.

Definition 7.15. Let P and Q be two planar algebras. The free product planar algebra P x Q
is the collection of vector subspaces (P * Q)i of (P ® Q)i spanned by the image of the maps
Tp ®Tq for all free pairs of planar tangles of degree k.

{P % Q) }x>1 is stable under the action of planar tangles:
Lemma 7.16. P x Q is a planar sub-algebra of P ® O.

Proof. 1t suffices to check the stability on the generating sets of the vector spaces (P * Q)j, given
in Definition Let P be a planar tangle, and for each inner disk D; of P, let v; be an
element of (P * Q)y, of the form T, ® TQi((®D]-(Pi) V) ® (®Dj(Qi) w}) (with (P, Q;) free pair).
By composition of actions of planar tangles,

To( Q) i) =Tpop, .y (Pir-- PR Q) vi)
i) Di(P) D;(P))

®TP°(D1,...DH)(Q1’""Qn)( ® ® ’LU;)

D;(P) D;(Q:)

Thus, it is enough to prove that S = Po(p, .p,)(P1,...,Pn) and T = Po(p, p.)(Q1,...,Qn)
form a free pair. Let P be the planar tangle of order 2k obtained from P by doubling all the
curves of P and all the distinguished points (in such a way that the tangle still remains planar).
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By this construction, a curve joining the point j of D; to the point 7/ of Dy in P yields in P two
curves: one joining the point 25 — 1 of D; to the point 25’ — 1 of D, and the other one joining the
point 25 of D; to the point 25’ of D;. Since P is a planar tangle, the conditions on the parities
of j and j/ yield that in P, the curves join points labelled 0 or 1 modulo 4 (resp. 2 or 3 mod 4)
to points labelled 0 or 1 modulo 4 (resp. 2 or 3 mod 4). Reciprocally, by removing from P all
the distinguished points labelled 0 and 1 modulo 4 and the curves joining them, we recover the
planar tangle P. The same holds for the distinguished points labelled 2 and 3. Therefore, if we
compose the tangle P; x Q; inside each disk D;, the resulting tangle is exactly S « T (up to a
relabelling). Thus p opy,Dn (PL*Q1,..., Py xQp) =S +T and P x Q is stable by the action
of planar tangles.

O

There is also a combinatorial way to characterize free pairs of planar tangles.

Lemma 7.17. If (P, Q) is a free pair, then m(P * Q) = (wp,S) V (7, S°).
In particular (P, Q) is a free pair if and only if (Prp, Pry) is a free pair.

Proof. The first statement of the lemma is a direct consequence of the definition of S and the
fact that i ~p j (resp. i ~¢ j if and only if 20 — 6(7) ~p.g 2j — 6(j) (resp. 2i — (1 —6(7)) ~p«Q
2 — (1- 8(j))’

Thus, if (P, Q) is free pair, then Pr(p.q) is exactly the free composition of Py, with Py, and
(Prp, Prg) is also a free pair.

Suppose that (P, Pr,) is a free pair. There exist Pi,..., P, Q1,...,Q such that P =
Prpopy,...pp(Pry. .., Pr)and Q = Pr,opy D/T/(Ql, .o+, Q). Therefore, (Prp*Pry)op, . D, D!

1

(P1,...,P,Q1,...,Q,) gives the free composition of P and Q. O

Proposition 7.18. Let P and Q be two connected planar tangles. Then (P, Q) is a free pair if
and only if 7g < kr'(wp). In particular if P,P" and Q, Q" satisfy mp = wp and mg = m¢y, then
(P, Q) is a free pair if and only if (P',Q’) is a free pair.

Proof. If (P,Q) is a free pair, then by the previous Lemma (7p,S) V (7g, S¢) is non-crossing.
Therefore mg < kr'(mp).

If 7o < kr'(wp), mo = (7p,S) V (mq, S°) is noncrossing with even blocks. Therefore, P, is a
well-defined planar tangle. Let {C;} be the connected components of my coming from blocks of
(mp,S) and {D;} the ones coming from blocks of (mg,S¢). Then Pr, \ |JC; is an irreducible
planar tangle and 7(Pr, \ UCi) = mg. Thus Py, \ UCi = Pr, up to a relabelling of the
distinguished points, and similarly Py, \ U D; = Pr, up to a relabelling. Therefore, Py, is, up
to a relabelling, the free composition of Py, with Pr,. Thus, (Pr,, Pr,) is a free pair and by
the previous lemma, (P, Q) is also a free pair. O

Reduced free pair

Definition 7.19. A free pair (P, Q) of planar tangles is called reduced if P and Q are irreducible,
and any region of P x @ is bounded by at most one connected component from P and one from

Q.

By a connected component from P (resp. @) in P * (), we mean the image by ¢ (resp. ¢2)
of a connected component of I'P\ 0Dy (P) (resp. I'Q \ 0Dy (Q)), where 1 and ¢2 are the maps
involved in the construction of P x (). An example of reduced free pair is given in Figure

In the sequel, a distinguished point is called an outer boundary point of a region o if it is both
a point of the boundary of o and a distinguished point of the outer disk.
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Figure 7.14: : Example of reduced free pair.

Lemma 7.20. A free pair (P,Q) of degree k is reduced if and only if P and Q are irreducible
and

o For0 <i<k-—1, {(4i+2),(4i + 3)} is the set of outer boundary points of a region of
P x@Q. The same holds true for {4i,(4i+1)}.

e The set of outer boundary points of any other region has the form {4i—1,4i,45+ 1,45+ 2}
for1 <i,j <k.

Proof. Suppose that (P, Q) is reduced. Let 0 <1i < k—1. 4i+ 2 and 4i + 3 are two consecutive
points of the outer boundary, thus they are boundary points of a same unshaded region of P* ().
They are both coming from () and the region having (4i + 2,47 + 3) as boundary component
has at most one boundary component coming from @, thus (4i + 2) and (47 + 3) are in the
same connected component. Since () is irreducible, they are both connected to the same inner
disk: therefore, {(4i + 2), (4i + 3)} is the set of outer boundary points of a region of P x Q). By
symmetry between P and @, the same holds true for 4i and (47 + 1).

Let o be a region which has no outer boundary interval of the form (4i,4i4 1) or (4i+2,4i+ 3).
Since P x @ is irreducible, ¢ has an outer boundary interval, which is by hypothesis of the
form (4i — 1,44) or (4i + 1,4i + 2) (in particular o is shaded). Let us assume without loss of
generality that this boundary interval is of the form (4i — 1,44), and order counterclockwise the
distinguished points on the boundary of . Since 4i — 1 and 44 are not coming from the same
tangle, they are connected to different inner disks. Moreover, the next outer boundary point of
o after 44 is in the same connected component as 4¢, and thus it is of the form 45 + 1 or 4j.
But consecutive boundary points of a connected component have to be of opposite parity (for
example as a consequence to the fact that mp has even blocks); thus the next outer boundary
point of sigma is of the form 45 + 1 for some 0 < j < k. Since o is not bounded by other
connected component coming from P, the only outer boundary points of o coming from P are
47 and 4j + 1. Since o is shaded and (4j 4+ 1) is a boundary point of o, (45 + 1,45 + 2) is a
boundary interval of o and thus 45 + 2 is also a boundary point of o. Let x be the next outer
boundary point of o after 45 + 2; by the same arguments, z = 4i' — 1 for some 1 < ¢ < k.
This implies also that 44’ is an outer boundary point of ¢. Since 47’ comes from P, 4i’ = 47 and
x = 4i — 1. The set of outer boundary points of o is thus exactly {4: — 1,44,45 + 1,45 + 2}.
Reciprocally, suppose that P*(Q satisfies the two conditions of the lemma. By the first condition,
any unshaded region is bounded by only one connected component. If o is unshaded, then
{4i — 1,4i,4j + 1,45 + 2} is the set of outer boundary points of o: thus, o has exactly one
connected component coming from each tangle and (P * Q) is reduced. O]

Recall that 7y (resp. 1) is the pair partition of 2k with blocks {(27,2i + 1)} (resp. {2i +
1,,2I)). The latter Lemma can be rephrased as follows:
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Lemma 7.21. A free pair (P, Q) is reduced if and only if P and Q are irreducible and mp > mo,
g = kr'(mp).

Proof. Let P, Q be two irreducible tangles. It suffices to show that the two conditions of Lemma
is equivalent to the two conditions mp > mp and g = kr'(wp). The first condition is
equivalent mp > my, mg > m1. The second condition of Lemmais equivalent to the condition
cifdi ~pyg 4j+1landforalldi <k <4j+1,4j+1 <1 <4i, k peq l, then 4542 ~pyg 4i—1.
By Lemmal[5.16] this is equivalent to (mq, S¢) = kr(mp, S) (which implies also that 7g > m1). O

Despite this rigid structure, only considering reduced free pairs is nonetheless enough to
describe free product of planar algebras.

Proposition 7.22. The free planar algebra P @ Q is spanned by the images of Tp @ Tg for all
reduced free pairs (P, Q).

Proof. 1t suffices to prove that the image of Tp ® Ty with (P, Q) a free pair is contained in the
image of (P’, Q') with (P, Q') a reduced free pair.
The image of Tp ® Ty is contained in the image of T Prp ® TPWQ by Proposition @ and by
Lemma (Prp, Prg) is again a free pair. We can thus assume that P = Pr and Q = Py,
with the condition 7" < kr/(7).
Suppose that ;4 < v are two noncrossing partitions of k. Let Bj,..., B, be the blocks of v in
the lexicographical order. Since p < v, u = \/(yp,, Bi). Therefore,

Py = Py ODs,...,Dy (P

s s P, )

and the image of T'p, is contained in the one of Thp,.

Since kr'(7) = kr'(mo V), #' < kr/(moV 7). m <7V m and 7' < kr'/(7 V mp), thus the image
of Tp, is included in the image of Tp,,, ~and the image of Tp, is included in the image of
Tp,_, () By Lemma [7.21} (Prvrgs Pry(rovr)) 18 reduced. O]
Generating subset of a free product of planar algebras Let P and Q be two planar
algebras. We denote by Sp(k) (resp. Up(k)) the image in Py of Sy (resp. Uy), the tangle
without inner disk where 2i — 1 is linked to 2i (resp. 2i is linked to 2i + 1) for all 1 < i < k.
The picture of both tangles is drawn in Figure for k = 4.

Figure 7.15: : Tangles Sy and Uy.

Proposition 7.23. Let P and Q be two planar algebras. Then P x Q is the subplanar algebra
of P® Q generated by {Up(k) ® Q}i>1 and {Pr @ Sg(k)}k>1-
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Proof. (Uy, Idy) and (Idy, Sk) are two free pairs of planar tangles, thus for all £ > 1, Up(k) ® Qy
and P ® So(k) are subspaces of P x Q. In particular the subplanar algebra they generate is
also a subplanar algebra of P x Q.

Reciprocally let (P,Q) be a reduced free pair of degree k. Let us show that there exists a
planar tangle R of degree k with r inner disks D; of respective degree k;, such that P =
Rp,,. .p,(X1,...,X;) and Q = RDl,...,Di(Xla"'vX’!’)a where for each 1 < ¢ < 7, (Xi,Xi) is
either (Ukz , Idki) or (Idk:i» Sk,)

Since (P, Q) is a free pair, the free composition P x @) exists; since this pair is reduced, each
inner disk of P* (@ is only connected to the outer boundary, and, by Lemma[7.20] both elements
of {4i,4i + 1} (resp. {4i — 2,41 — 1}) are connected to a same inner disk. Color an inner disk
D; of Px@Q with 1 if it comes from P and with 2 if it comes from ). We denote by ~; the curve
arriving on the distinguished point i of the outer boundary and by 4 the distinguished point of
an inner disk which is connected to .

We operate the following operation on P x Q: for each interval (4i — 1,41), let o be the region
for which (4i — 1, 44) is a boundary interval; add a curve 7 in this region connecting 4i — 1 to 44
and erase y4;—1,74; and the distinguished points 4¢ — 1 and 4.

The degrees of the inner disks don’t change and this yields a planar tangle R with 2k boundary
points and r inner disks (where r is the sum of the number of inner disks in P and in @). In the
resulting planar tangle R, an odd point i of the outer boundary is still connected to the point i
on a disk colored 1, and an even point i of the outer boundary is still connected to the point @
on a disk colored 2. The construction of the tangle R is shown in Figure [7.16

Figure 7.16: : Construction of the planar tangle R for the reduced free pair of Figure [7.14

Set X; = Uy, Xi = Idy, if D; is colored 2, and X; = Idki,f(i = Sy, if D; is colored 1. Consider
Ry = Rp,..p,.(X1,...,X,). Each disk of R colored 2 is replaced by a planar tangle without
inner disk, and thus disappears in R;. A disk of R colored 1 is composed with the identity,
and thus remains the same in R;. An odd point 4i + 1 is already connected to 4i + 1. An
even point 4i + 2 is connected to an odd point 4¢ + 2 of a disk D colored 2. Therefore since
D is composed with Uy,, 4t + 2 is connected in Ry by a curve to the following point of D in
the counterclockwise order: since 4i 4+ 2 and 47 4+ 3 are in the same connected component, the
following point is exactly 47 + 3. By the modification we made on P % @, 4¢ + 3 is connected
by a curve to the point 4i + 4. Therefore in Ry, 4i + 2 is connected to 4i. Thus relabelling the
distinguished point 4¢ + 2 by 44 + 4 yields exactly the image of P in P % ). This reconstruction

of P is shown in Figure

Likewise Ry = Rp,... D, (X'l, ..., X;) is equal to the image of @ in P x Q. O
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Figure 7.17: : Reconstruction of P from R.

Remark 7.24. In [5])], the free product of two planar algebras P * Q is directly defined as the
subplanar algebra of P ® Q generated by {Up(k) ® Qi }tr>1 and {Pr @ Sg(k)}r>1-

Free product of spin planar algebras

Let us now consider the free product of two spin planar algebras P(V) and P(W); note that
PV)«PW) CPV)@P(W) ~ PV W). & = {t;} denotes the isomorphism of planar
algebras P(V) @ P(W) — P(V @ W) given by

tk((eil X eik) ® (fjl @ f]k)) = (eil ® fj1) K & (eik ® fjk))?

where (e;)1<i<n is an orthonormal basis of V, (fj)i<j<m is an orthonormal basis of W and
1 §i1,...,ik §R,1 §j1,...,jk; <m.

We will give a more precise description of a free product of spin planar algebras.

Let Sp be the set {2i + 1}o<;<x—1 and let f : [1,k] — Sp be the function f(i) = 2i + 1. Let
f:[1,k] — S be the function f(i) = 2i. For w a noncrossing partition of k, the Kreweras com-
plement Kr(m) of 7 (see [66]) is the non-crossing partition of NC (k) such that (f(Kr(x)), SS) =
kr(f(m),So). The Kreweras complement of the non-crossing partition {{1,3,4},{2},{5,6}} is

the partition {{1,2}, {3},{4,6},{5}}, as shown in Figure
1 2 2/ 4’ 5 5 6 6’

1 3 3 4
Figure 7.18: The partition {{1, 3,4}, {2}, {5,6}} and its Kreweras complement.

Let V' be an n—dimensional vector space with basis (e;)1<i<n.
Definition 7.25. Let 7 be a non-crossing partition of k. For each block B of , let \B e V®IBI,
The composition of © with {\P} ey is the vector T(m,{\P}per) of VX defined by

T %)= Y (T M) ® @ e,
1<i(1)....i(k)<n Bén
B={r1<--<rp}

The dual composition of © with {\B}gey is the vector T(m,{\P}pex) of VE* defined by
T(W? {)‘B}BEW) = Z ( H )‘iBEm),...,i(r‘BD)ei(l) Q- ® €i(k)>

1<i(1),...,i(k)<n Ber
ker(3) <Kr'(m) B={r1<--<rp|}

where ker(7) is as defined in .

163



Example 7.26. Let m = {{1,4,7},{2,3},{5,6}}. Thus Kr(m) = {{1,3},{2},{4,6},{5},{7}}.
In this case,

LAT A28 \B:6)) 14,7 423 156 . ‘ , ,
T(m, {A"5 A2, A0} = E il iy s 0 ]2)\kl kyCir ® €5y @ €j, @ €4, @ ey @ ey ® €4y

and

T(?T, {)‘1’4777 )‘2’37 )‘576} Z )‘z11413715 122311/\154613611 ® €, ¥ €jy @ i3 @ €jy @ €5 X €.

We denote by T the linear map from ®p., VEE to VO defined by Tn(Qpe, Ap) =
T(m,{\B}Bex) and by T} the linear map from Rsex VOBl to V¥ defined by TA@BE” Ap) =
T (m,{A\B}Ber). Compositions and dual compositions appear in the action of planar tangles on
spin planar algebras. A partition 7 of 2k such that = > m; yields a partition of k denoted by
7/2 and defined by i ~ 9 j if and only of 2i ~, 2j. A partition 7 of 2k such that = > mo yields
a partition of £ also denoted by 7/2 and defined by i ~ /, j if and only of 2i — 1 ~; 2j — 1. If
7 > (resp. ™ > m) and B is a block of /2, B denotes the block of 7 containing 2i — 1 and
2i (resp. 2i —2 and 2i — 1) for each i € B .

Lemma 7.27. If 7 > ny, Kr(w/2) = kr'(7)/2.

Proof. Suppose that ¢ ~g,(r/0) j. Forall i <k < j,5 <1<, k ol thus for all t < k <
G <l <i,2k—1+4,2l—1. Sincew > m, forall 2i —1 <k <2j—1,2j —1<1<2{—1,
kot 1.

Thus for all 4(i — 1) +1 < k < 4(j — 1)+ 1, 4G — 1) + 1 < | < 4(i — 1) with k,I € S,
k % (fx),s) I, where f is the map f(i) = 2i — d(i) defined in Section this implies that
4(i = 1) + 2 ~pp(p(m),5) 43 — 1) +2 and thus 2(i — 1) + 1 ~pp(r) 2(5 — 1) 4 1. Since kr'(7) > 7y,
20~y 27 and @~y 2 . Thus Kr(m/2) < kr'(m)/2. The same proof yields the converse
inequality. O

Proposition 7.28. Let 7 be a partition of 2k such that m > mo. The action of the irreducible
planar tangle Py on P(V') is T2, and the action of Py(xy 18 Txr(x/2)-

Proof. By Proposition (2 — 1,2i) and (25 — 1,25) are outer boundary components of the
same shaded region of Py if and only if 2i ~p(r) 2j. By Lemma this is equivalent to
i ~Kr(ns2) J- For each block B of Pr, let Dp denote the inner disk of Pr corresponding to B.

Let us compute Tp.. By the construction of the planar tangle P in Section if 26 — 1 is
the (2s — 1)—th or 2s—th element of a block B of 7 then 2i — 1 is linked by a curve to the point
2s — 1 of Dp. If i is the s—th element in the block B of 7/2, then 2i — 1 is the 2s-th element of
the corresponding block B in 7 if 1 ¢ B and the (2s — 1)—element of B if 1 € B. In any case,
(2i — 1,24) is a boundary interval of the same shaded region as the interval (25 — 1,2s) of D .
Let f be a function from [1,%] to [1,n]. For each block B = {i?,...,i‘%‘} of m/2, let ep =
epBy @ @ ef(l-%‘) be the corresponding element of V®IBl. Then by the expression of Tp_ in

the spin planar algebra and the above remarks,

Tr,( ® €B) = Oker(f(1),.... (k) <Kr(n/2)€f(1) @+ @ €f (k).
Ben/2

This is exactly the expression of T 12(Qpex /o€ B)-
Let us compute Tp,_, o Let B be a block of kr/(m). It corresponds to an inner disk Dp of

Ppyr()- Label i the interval (2i —1,2i) of the boundary of Dp, and do the same for the intervals
of Do.
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kr'(m) > mp, thus for all 1 < ¢ < k, the outer distinguished points 2i — 1 and 2i are in the
same connected component of Py/(ry. Since Py, (r) is also irreducible, each shaded region o has
exactly one boundary component which is an outer interval i,, and one boundary component
which is an interval j, of an inner disk Dp(,). Therefore, there are as many shaded region as
outer intervals of type (2¢ — 1,2i), and we can identify i, with 1.

Let f be a function from [1,k] to [1,n]. For each block B = {i{g,...,iﬁgl} of kr'(m)/2, let

ep = epBy ® - ® ef(ig‘) be the corresponding element of V®ZI. Then by the spin action of

TPkT/<7r) ?

TPkr’(r)( ® ep) = ep @ Qe
Bekr!(m)
and Tp, , = Tpp(x) /2. Since kr'(m)/2 = Kr(m/2), this gives the second result of the Proposi-
tion.

O
This yields a simpler description of a free product of spin planar subalgebras:

Corollary 7.29. Let P, Q be two spin planar subalgebras. Then (P % Q)i is spanned by the
union of Tr(@ per PB|) © Tkr(n) (@ perr(r) Qp|) for all m € NC().

Proof. By Proposition (and its proof), (P * Q) is spanned by the images of (Tp,,Tp, , (Tr))
for all 7 € NC(2k) with m > mp. Proposition yields the result. O

In particular, for P = T'L(V), (P * Q) is spanned by {T), ® T,(Qk) }penc(k), Where T}, is the
vector defined from p in Chapter 1. Therefore if @ = P(G) for an irreducible noncommutative
permutation group G, then by Theorem P(Gw SF) ~ TL(V) x P(G), the isomorphism
being given by the collection of maps ® = {t;}x>1 of Section

Intertwiner spaces of a free wreath product

The following Theorem is the main result of the section: this was originally conjectured by
Banica and Bichon in [I0].

Theorem 7.30. Let F' and G be two irreducible free permutation groups. Then
P(G i F) ~P(F)*xP(G),
with the isomorphism ® given in Section[7.2.3

Proof. The proof follows the same pattern as the proof of Theorem[6.16] Suppose that F' acts on
V and G on W: let (u;j)1<i<n be the fundamental representation of F' and (vii)i<ki<m the one
of GG. Recall that the free wreath product G U, F' is defined by the fundamental representation
(uijv};l) 1<i,j<n With the commutation relations uijv,il = v,iluij (see[3.3.1)).

1<k,I<m

=Pyt >

Step 1: P(F) = P(G) is isomorphic through ® to a spin planar subalgebra of P(V ® W), thus
by Theorem there exists an irreducible permutation group H acting on V ® W, such that
(P(F)*P(Q))r ~Morg(0,k) for all k& > 1, each isomorphism map being given by t.

Step 2: Let us prove that P(F)*P(G) C P(G i F). Since both are planar algebras, it is enough
to prove that a set of generating elements of P(F') « P(G) is in P(G i F'). By Proposition
a generating set is given by elements of two kinds:

o (11, ®wy) with wy € Morg(0, k). It has been proven in Theorem that t5(Th, @uwy) €
Morg, g+ (0, k), where ¢, is the map defined in Section Since F' C S;', Gu.F C GI.S;F
and thus ¢(T1, ® wg) € Morg,, (0, k).
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o t;(wp®To,) with wy € Morp(0, k). Let us expand wy, in the basis of VE* as > wre;; ®
1<iy, i <n

- ®e;,. Then

t(wp®@To,) = > wilen @ fr,) @@ (€5, @ fr,).

1<iy, .. ix<n
1<ry,...,rp<m

Since wy, € Morp(0,k), 3= wyji, - - - tjq, = wy. Applying the action of G 1, F yields (we
use the abbreviated notations e; = ¢;; ® - ® ;)

an*F(tk(wk & TOk Z wﬂtk 6” ® fs) & Uslrlujlu . gkrkujklk

7]
7,8
= E UJ“tk; 8" ® fs E 1)817’1 ujl'Ll e ( E skrk)u]klk
ij "k

g

= Z witk(er ® f3) ® ujiy - - Uy,
7]

—Zw~tk - f5) @1 =ty(wp @ Tp,) ® 1

where the third equality is due to the fact that G is a free permutation group (yielding
the equality > vi, =1forall1<j<n,1<s<m).

Therefore P(F) « P(G) C P(G i F) and by the Tannaka-Krein duality, Gl F' is a quantum

subgroup of H.

Step 3: Let (wzgkl)1<z j<n be the fundamental representation of H. Let us show that H C G,
<k,<m

by showing that all “the relations satisfied by the fundamental representation of G 1, F' are also
satisfied by the fundamental representation of H. Since P(S;)*G C P(F)*P(G) and from the
end of Section [7.2.2| P(S;}) x G) = P(G . S;), H C G 1. S;f.

Therefore, all the relations satisfied by the fundamental representation of G 1. S, are also
satisfied by the fundamental representation of H. In particular from the proof of Theorem
Wijkl = ﬂijﬁil for @;; = >, wijm and 621 = Zj w;jk- Moreover from the same proof,
ﬂijﬁil = ﬁil&i]’ and there exist a C*—morphism 7,41 : C(S;}) = C(H) defined by mp,41(sij) = uij
and n C*—morphisms 7; : C(G) — C(H) defined by m;(vy) = 0.

Moreover,

Aﬂij = A(Z wijk;l) = Z Wirks & Wrjsi
l

lr,s
=D T, @y () T)
78 l
= i Y O @y = ) iy @ g,
T S T
where the second and third equalities are due to the fact that ), vgl = Svil = 1. Thus

(Tij)1<ij<n is a representation of the compact quantum group H: let F the C*—algebra gen-
erated by the representation (@;)i<ij<n. Let us prove that there is a surjective morphism
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from C(F) to C(F) sending u;; to i;;. It suffices to show that Morp(0,k) C Mor (0, k). Let
v = »_7vze; be in Morp(0, k). Then t(vx ® 0x) € Morg(0,%). On one hand the action of H
gives:

E . . ) L TR
U'tk(ej ® fs) ® u]121vslrl e u]klkUSka

ﬂ,j'f’ S
— E . - . T s E 71 E
- Uitk(ej ® f3) ® u]1l1( Uslrl - Uiy, Uskrk
= E U*tk ® fs & u]m e 'LNijik.
7] S

Since g (vr ® 0x) € Morg (0, k), this implies the equality:

Z”*’fk (@ f)®1= ka €7 ® f5) ® Ujyiy - - - Ui
7‘7 S

which yields the equality > 7 v7ily4, - - - 5,4, = v71. In particular vy € Mor (0, k).
Thus, there is a *—morphism ®g : Co(F) — C(H) sending wu;j to u;; and n *—morphisms
®; : Cyp(G) — C(H) sending vy to %, Since for all 1 < i < n, @0, = U%,u;;, there exists a
x—morphism

D C(](G)*n * Co(F)/(UijU;d = U}duij> — C(H)
sending u;jvi, to @;;0%;. Since Co(G)*™ * Co(F),/ (uijvi; = viui;) = Co(G Ul F) and @ sends the
fundamental representation of G i, F' to the one of H, this yields that H C G F

Step 4: Since G i F C H from Step 2 and H C G i, F from Step 3, H = G |, F' and by the
Tannaka-Krein duality ,

PG F)=P(H)=D(P(F)*P(Q)).
O

Theorem with Corollary yields a description of the intertwiner spaces of a free
wreath product G i F'. Namely,

Morcy, #(0, k) = (tx(Tr () Morp(0, |B|) @ Ty ( (X)  Morg(0, | B])).
Ber BeKr(m)

The main problem to deduce the law of xg,, F is that it is difficult to extract a basis from these
sets. In the next section, we will explain a result of Bisch and Jones that gives the dimension of
each vector space (P x Q) thanks to the ones of P and Q.

7.3 Free product formula of Bisch and Jones

Each planar algebra P yields a probability measure p(P) by saying that the k—th moment
w(P)y of u(P) is dim(Py). It will be later clear that this sequence of moments actually defines
a measure. In this section we review the following result of Bisch and Jones ([23]), which yields
the proof of Theorem

Theorem 7.31 (Bisch and Jones, [23]). Let P, Q be two planar algebras with u(P) = u(Q) = 1.
Then

u(P* Q) = pu(P) K pu(Q).
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Since the proof the this result still doesn’t exist in the literature, we give a combinatorial
proof of Theorem |7.31| which is based on the computation of the principal graph of a free product
by Landau (see [54]).

Principal graph of a free product

One of the major consequence of the axioms of a subfactor planar algebra is the Theorem [7.10]
of Section

Theorem (Jones, [40]). Let P be a subfactor planar algebra. There exists a bipartite graph Gp
with root vertex x such that:

dim Py, = #{ walk of length 2k on Gp starting and ending at *}.

The principal graph of a free product P * Q can be obtained from the principal graph of P

and the one of Q. This has been done by Landau in [54]. We will only give the result when
dimP; = dim Q; = 1, since this is the only interesting case in this chapter.
If P is a planar algebra such that dim P, the root vertex x of Gp is linked to only one other
vertex * by a unique edge e, called the root edge. Let Gp and Gg be respectively the principal
graph of P and Q. Let Gp (resp. G~Q) be the graph Gp with the root vertex and the root edge
removed, and with the new root being *. We build recursively a graph Gp x Gg and a height
function on edges of Gp x G as follows:

1. Let G be a copy of Gp. The root of Gp x Gg is the root * of (G;. For all edges e of Gy,
set h(e) = 0.

2. On each vertex at odd distance to *, add a copy of CNJQ (that means that we identify the
root of Gg with the given vertex). For each edge e newly added, set h(e) = 1.

3. OnNeach vertex added during the previous step which is at even distance to *, add a copy
of Gp. For each edge e belonging to a new copy G of Gp, set h(e) = h(e’) + 1, where €' is
any edge not belonging to G and having the root of G as endpoint.

4. On each vertex added during the previous step which is at odd distance to x, add a copy
of Gg. For each edge e belonging to a new copy G of Go, set h(e) = h(e') + 1, where €’
is any edge not belonging to G and having the root of G as endpoint.

5. Return to step 3.

By a copy G of a graph X in Gp x« Gg, we mean the set of edges and vertices of Gp x Gg which
were added by pasting one graph of type X at one particular vertex: X is called the initial
graph of G. The height of a copy of graph is the height of any edge belonging to this copy of
graph.

Note that each copy of graph is connected to exactly one copy of graph of lower height. Let G
denotes the graph whose set of vertices is the set of copies of graph {G}, and such that there is
an edge between G and G’ if and only both share a vertex. By the previous remark G is tree;
let the only copy of Gp be the root of this tree. For G a vertex of G, the subtree Tz of G rooted
at G is the subtree of G consisting of vertices whose unique path to the root goes through G.
There exists a map ¢ from the set of edges of Gp * Gg to the set of vertices of G such that ¢(e)
is the copy of graph G such that e € G.

Landau proved in [54] the following result:

Proposition 7.32 (Landau,[54]). Gp x Gg is the principal graph of P x Q.
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We will describe combinatorially the set of loops v of length 2k on Gp * Gg which start at
the root. Such a loop is called a rooted loop on Gp x Ggo.
Since Gp x Gg is bipartite, the set of rooted loops of length 2k is exactly the set of words
¥ =71...7% in the edges of Gp x G of length 2k, such that v; and v has the root vertex as
endpoint, and such that for all 1 < ¢ < 2k —1, ~; and ~;11 share a common vertex; in particular
|h(vit1) —h(7i)| < 1. Moreover each walk v yields a lazy walk ¢(7) of length 2k —1 on G defined
by ¢(7)(i) = p(vi) (a lazy walk is a walk that can be stationary).

Lemma 7.33. Let v be a rooted loop of length 2k on Gp x Gg and let 1 < i < j < 2k. If
h(~i) = h(y;) and for alli <k < j, h(~) > h(7;), then i and j are in the same copy of graph.

Proof. Let G be the copy of graph containing ~;. Since for all i < k < j, h(yx) > h(7;), the lazy
walk ¢(7) restricted to [i, 7] is a lazy walk on T. Since the only vertex of height h(~;) of this
subtree is G itself and h(vy;) = h(v;), 7; belongs to G. O

Each rooted loop 7y defines a symmetric relation ~.,, on 2k as follows: for i < j, i ~, j if and
only if 7; and ; belong to the same copy of graph, and for all i <k < j, h(yx) > h(v;).

Lemma 7.34. ~, is an equivalence relation and the associated partition . is a non-crossing
partition of 2k.

Proof. The reflexivity is assumed by definition and 7 ~ 7 for all 1 <7 < 2k. Let 1 <14,j,k <2k
be such that ¢ ~, j and j ~, k. ~; and ; are in the same copy of graph and ~; and v, are in the
same copy of graph, thus 7; and ~;, are in the same copy of graph and h(v;) = h(vy;) = h(yk)-
h(vs) > h(vy;) for s € [i,j] and h(vys) > h(y;) for s € [4, k], thus h(vys) > h(y;) for s € [i, k].
Therefore, the relation ~, is transitive and thus an equivalence relation. Let m, denote the
associated partition of 2k.

Let 1 <i < j <k <1< 2k be such that i ~, k and j ~, [. Since i ~y k and 7 < j <k,
h(~;) = h(~vg). Since j ~ L and j < k <1, h(y) > h(v;). Therefore h(~y;) = h(v;) and for all
j<r <k, h(v) > h(vy). By Lemma j and k are in the same copy of graph. m, is thus
non-crossing. O

We define the value h(B) of a block of 7, as the height of the corresponding copy of graph.

Since two neighbouring blocks correspond to adjacent copies of graph, they must have consecu-
tive value (and thus opposite parity).
Let m be a non-crossing partition. An interval of a block B of 7 is a maximal interval subset
[i,4] € B. In particular i — 1 ¢ B and j + 1 ¢ B. The set of intervals of a block B is ordered
by the lexicographical order; if B has a unique interval, this interval is called a block interval.
Otherwise, the first interval is called the initial interval of B and the last interval is called the
final interval of B. The other ones are called intermediate intervals.

Lemma 7.35. Let v be a rooted loop of length 2k and let B = {i1 < --- <'i,} be a block of m..
Then i1 = 1 if and only if i, = 2k, and if iy # 1 then h(iy — 1) = h(is + 1) = h(i;) — 1 and
11— 1 ~ay 10+ 1.

Proof. h(vy1) = h(va) = 0 and for all 1 < ¢ < 2k, h(v;) > 0, thus 1 and 2k are in the same
block.

Let ig = sup{i < i1,h(i) = h(i1)}. io # i1 — 1 because ig %, i1. On [ig + 1,41 — 1], either
h > h(iy) or h < h(i1). Since ig %y i1, h < h(i1) on [ig+1,4; — 1] and thus h(iy —1) = h(i;) — 1.
Likewise, h(iz + 1) = (i) — 1 = h(i1) — 1.

Moreover on [iy — 1,42 + 1], h > h(i; — 1), thus by Lemmai1 —1 and i3+ 1 are in the same
copy of graph and i; — 1 ~ iz + 1. O
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A partition 7 is called irreducible if 1 ~ 2k (see [2]). A subpartition of 7 is a subset A C 7
of blocks of 7 such that |Jzc 4 B is an interval.

Lemma 7.36. Let v be a rooted loop of length 2k. Then m, and every subpartitions of m, are
wrreducible. The first and last elements of a block having even value are respectively odd and
even. The first and last elements of a block having odd value are respectively even and odd.

Proof. By Lemma [7.35] 1 and 2k are in the same block, thus 7 is irreducible.

Let @ = {B;}ic1, be a strict subpartition of 7 and set [i1, 2] = Uiel0 B;. Since  # 7, i1 # 1
and i # 2k. Let x = inf{i; — 1 < i,h(:) = h(i;y —1)}. On [i; — 1,z], either b > h(i; — 1) or
h < h(i; —1). By Lemmal7.35] h(i1) > h(i1 —1), thus b > h(iy —1) on [i; — 1,z] and i1 — 1 ~ z.
Since = & [i1,42], h(iz) > h(iy — 1) and thus h(iz) > h(i1). By symmetry, h(i;) > h(iz) and
finally h(i1) = h(iz). Since h > h(i1) — 1 on [i1,42], h > h(i1) on [i1,i2]: Lemma [7.33] yields
that il ~ i2.

1 is the first element of a block with even value and is odd. Let ¢ > 1 be the first element of a
block B with even value. This means that h(7;) is odd, and thus ; belong to a copy G of Gp.
Since i is the first element of B, h(i — 1) = h(i) — 1, and thus ~;_; belong to the only copy of
@Q with lower height than G: thus the vertex between ~;_1 and ~; is the root vertex v of G.
Since G is a copy of Gp, v is at even distance to the root. Gp * G o being bipartite, ¢ — 1 is also
even and thus ¢ is odd. The same proof holds for the three other cases. O

Definition 7.37. A non-crossing partition 7 is of type x if w is irreducible, all its subpartitions
are irreducible, all its blocks have an even number of elements, and the first elements of two
neighbouring blocks have opposite parities.

The value h(B) of a block B in 7 is 0 if B contains 1, 1 if the first element of B is even and 2
if the first element of B is odd and distinct from 1.

Let P, (k) the set of partitions of type *.
Lemma 7.38. |P,(2k)| = NC(k).

Proof. Let P, = |Py(2k)|. It suffices to show that P, = Zle P_1P,_; with Py = P, = 1.
We set a partition of P, = IIP, depending on the position of the second element z of the block
containing 1. Since the blocks are even, z € {2i|1 <i < k}. Let 29 = 2ip and 7w € Py,. If g > 4,
T[2,20—1] 18 again completely irreducible with blocks of even numbers, and the first elements of
two neighbouring blocks of 73 ;,_1) have opposite parities: thus 73 ,,_1] € P,(ip — 1). On the
other a hand since the first point of the first block after xg is even, xy 4+ 1 belongs again to the
block containing 1 (and thus 2k): thus likewise if 2o < 2k —2, T, 41,2k] € Px(k—1io). Therefore,
there exists a map ¢ : P, — Py(k — x/2) x Py(x/2 — 1); this map is clearly bijective and thus
|Py| = |Pu(k — x/2)| x |Pi(z/2 —1)|. Summing on 2 < 2z < 2k yields the result. O

Let v be a rooted loop on Gp x Gg. For B = {i; < --- < i,} a block of 7, we denote yp
the word ~;,7viy - - - Vi,

Lemma 7.39. For v a rooted loop on GpxGg and B a block of 7, yg is a rooted loop on G,
where G g 1is the copy of graph containing {v;}icB-

Note that Gp is well-defined, since all edges of B are in the same copy of graph.

Proof. We have to show that vp defines indeed a walk, and that the first and last vertices of vp
are the root vertex of Gg. Let B = [ry,s1] U [ra, so] U--- U [re, s¢]] with r; < 84,8 < rip1 — 1.

For r; < j < s;, 7j and 7,41 are consecutive edges of yp that are also consecutive edges of
7: therefore, they share a vertex. Let j = s; with ¢ < ¢. Since any subpartition of m, is
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also irreducible, z = s; + 1 and y = r;;; — 1 are in a same block B’ of 7. By Lemma
h(B") = h(B) + 1, and thus the vertex between ~,, and 7, is the root vertex between Gp/
and Gp. Likewise, the vertex between 7, and +,,,, is the root vertex between Gp and Gp.
Therefore, the final vertex of ~,, and the first vertex of ;. ,, is the same. g is thus a walk on
Gp.

Since h(ry — 1) = h(r1) — 1, the root vertex between ~,, 1 and 7, is the root vertex of Gp. For
the same reason, the root vertex between ~;, and vs,4+1 is the root vertex of Gg. Thus, vp is a
rooted loop on Gp. O

This implies in particular that the blocks of m(v) are even (this could have been proven

directly from Lemma . The latter result yields also a combinatorial description of the
rooted loops on Gp * Gg.
Let ¥ be the canonical bijection sending an edge of the copy of graph G to the same edge in
the initial graph (which is either Gp, Gp or GQ, depending on the value of B). ¢51 maps an
edge of the initial graph of G' to the same edge in G. For each rooted loop v and block B of 7.,
let g denote the image of vg by ¥¢,.

Proposition 7.40. There is a bijection between rooted loops of length 2k on Gp*Gg and pairs
(m,{(B}Bexr), where

o m € P(2k).

e (g is a reduced loop of length |B| on Gp (resp. Gg, resp. Gp) if h(B) = 2 (resp. h(B) =1,
resp. h(B) =0).

Proof. Let A be the set of rooted loops of length 2k on Gp x Gg and let B be the set of pairs
(m,{(B}Bex) as in the statement of the proposition.

Let ® : A — B be the map defined by ®(y) = (7, {8} Ber). By Lemmas and this
map is well defined.

Let v # . If my # mp then ®(v) # ®(v'). Suppose that 7, = m, and let 1 < ¢ < 2k be the
first element such that v; # ;. Let B be the block containing i. For all ¢t < 4, 4 = ~;, thus
GB(7v) = Gp(y'). Thus yp and v} are both walks on Gp. Since 7; # 7, these walks are distinct
and thus p # Al3: therefore, () # ®(v/).

Let (m,{(B}Ber) be a pair as in the statement of the proposition. We define recursively on each
block a copy of graph Gp and a rooted loop « as follows:

1. Let By = {iy =1 < --- < i, = 2k} be the block containing 1. We set Gg, = Gp. For
is € By, we set v;, = wGBO(CBO (s)). Since (p, is a reduced loop on G'p, vp, is a reduced
loop on Gp x Gg (which is contained in the only copy of Gp). Set t = 0.

2. Let B = {i1 < --- < iy} be the first block neighbouring B;: note that [1,i; — 1] C By.
Suppose that h(B) = 1. Then 4; is even and thus the length of yp A ;-1 is odd.
Therefore, the walk vp,q[1,;,—1] ends at a vertex v which is at odd distance from the root,
and thus there exists a copy G of GQ whose root is exactly v. This implies that the height
of h(G) is h(iy —1) + 1. Let Gp = G. For is € B, set v, = ¥a,((B(S)), h(i) = h(G).
Since by irreducibility ¢; — 1 and 4, + 1 belongs to a same block of 7 (which is thus included
in B;) and since 7yp, is a rooted loop on Gp * Gg, the final vertex of +;, 1 and the first
vertex of i, + 1 is the same vertex v which is the root of Gp. g, ((B) is a rooted loop on
G B, thus the final vertex of ~; coincides also with the root v. Therefore vp, p is again a
rooted loop on Gp x Gg. Let Byt := By U B.

Do the same construction (with a copy of Gp) if h(B) = 2.

171



3. Increase t by one and return to Step 2, until ¢ is the number of blocks of .

By construction v is a rooted loop on GpxGg. Let B={i; <--- <i,yand B' = {j1 <--- < jp}
be two blocks of 7w such that i1 < ji < j» < i, (written B’ < B): in this case the construction
yields that h(Gp/) > h(GpB).

If i ~z j, then i and j are in the same copy of graph G and for all i < k < j h(yg) > h(v):
this implies ¢ ~y j and 7 < m,. Suppose that 1 < i < j < 2k are such that i %, j, and let
B; = {i1 <--- <y} (resp. Bj = {j1 <--- < jr}) be the block of ¢ (resp. j) in m. If ; is in a
different copy of graph than v;, 7 %4 j. Let us assume that they are in the same copy of graph:
since h(Gp,) = h(Gp;), ir < ji1. Since 7 is completely irreducible and i1 %z jr, 7, 5, is not
a subpartition of 7 and thus there exist i, < k < j; and [ € [1,2k] \ [é1, j,v] such that k ~ L.
Assume without loss of generality that [ < ¢; and let B be the block of [ and k. Since B; < B,
h(Gp) > h(Gp,;). Thus h(y;) < h(v;) and i ¢tr, j. Therefore, 7 = 7. Since m, = 7 and by
construction vg = (p for each block B of 7, ®(v) = (7, {(B}Ber). Therefore, ® is surjective
and bijective. O

Free product formula

The proof of Theorem [7.3T] relies on the combinatorics of the free multiplicative convolution. We
will first construct a bijection between P, and NC(k) that respect the cardinal of the blocks.
Let p € P,(2k) and let I(p) denote the number of blocks of p. Two blocks B and B’ are said
neighbors if there exists ¢ € B such that ¢ + 1 or 7 — 1 belongs to B’.

Lemma 7.41. Let p € Pi(2k). If B and B’ are two neighbouring blocks, then either B < B’ or
B' < B.

Proof. Suppose that B £ B’ and B’ £ B. Let ig and ip/ (resp. fp and fp/) be the first (resp.
last) elements of B and B’. Since B £ B’, B’ £ B and p is non crossing, either fp < ig/ or
fBr < ip. Suppose without loss of generality that fp < ip. Then fp # i — 1, since otherwise
Plip,f5] Would be a subpartition of p with ip # fpr. Therefore B and B’ are not neighbors.

O

Let p € P,. For B a block of p and i € B, we set h(i) = 0 if h(B) = 0[2] and h(i) = 1
if h(B) = 1[2]. Let f, : [1,2k] — [1,4k] be the function defined by f,(2i) = 4¢ — h(i) and
fp(2i—1) = 4i—3+4h(i). Since f,(2i) € {4i—1,4i} and fp(2¢ —1) € {4i—3,4i—2}, f, is strictly
increasing and thus (f(p), f([1,2k])) defines a partial partiton of 4k. Complete this partition by
saying that the elements of [1,4k]\ f([1, 2k]) are singletons: this yields a non-crossing partition
of 4k denoted by p.

We define also an involutive map ~ on [1,4k] by saying that 4¢ + 1 = 44,4i + 2 = 4i+3,4i + 3 =
4i+2and di=4i+1for 0<i<k—1.

Lemma 7.42. Let 1 <i <k and suppose that 4i — 2 5 4i — 1. Then at least one of them is a
singleton. The same holds for 4i and 4i + 1.

Proof. Let 1 <14 < k. Suppose that 4i — 2 and 4i — 1 are not singletons. Thus 4i — 2 and 47 — 1
are in fy([1,2k]). This means that 2i — 1 and 2i are both in a block of p of odd value. Since
two neighbouring blocks have values of opposite parities, 2i — 1 and 2¢ are in the same block,
and 47 — 2 ~5 4t — 1. The same holds for 47 and 47 + 1 and 1 <7 < k — 1. Since 1 ~; 4k, the
implication holds also for ¢ = k. O

Lemma 7.43. 4i — 2 (resp. 4i+ 1) is a singleton of p and 4i — 1 (resp. 4i) is not a singleton
of p if and only if 2i (resp. 2i + 1) is the first element of a block of p with value 1 (resp. 2).
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4i — 1 (resp. 4i) is a singleton of p and 4i — 2 (resp. 4i + 1) is not a singleton of p if and only
if 20 — 1 (resp. 2i) is the last element of a block of p with value 1 (resp. 2).

Proof. p has no singleton, thus f(p) has no singleton. Therefore, 47 — 2 is a singleton of p and
47 — 1 is not if and only if f(2i) = 4i — 1 and f(2i — 1) = 4 — 3. By construction of f, the
latter means that h(2i) = 1, h(2i — 1) = 0, and the elements 2 — 1 and 2i belong to distinct
neighbouring blocks Bo; 1 and Bo; of p. The two blocks are neighbors and p is non-crossing,
thus Bsg;_1 is distinct from Bsy; if and only if either 2i — 1 is the last element of By;_1 or 2i is
the first of Bg;. Since p € P,(2k) the last element of a block of even value is even. Therefore,
2i — 1 is never the last element of By; 1, and thus By; and Bs; 1 are distinct blocks if and only
if 27 is the first element of Bsy;.

The proof is the same in the three other cases (note that 4k and 1 are never singleton). O

By the definition of f, elements of a block of p of even value are mapped to S and elements of
a block of p of odd value are mapped to S¢. Thus p has the form ((7(p), S)V (7' (p), S¢)) for some
partitions 7(p), 7’ (p) of 2k. We define ©(p) as the partition ((7(p) V 7, S) V (7' (p) V 71, 5°)).
By construction ©(p) is a non-crossing partition of 4k of the form ((, S) Vv (7/,5¢)) for some
partition m > mp, " > m;. Let B be a block of p. There exists a unique block ¥,(B) of ©(p)
such that f(B) C 9,(B).

Lemma 7.44. ¥, is an injective map. Moreover |9,(B)| = |B|+2 if 1 # B, and |9,(B)| = |B|
if 1 € B. For all block B not being in the image of 9,, |B| = 2.

Proof. Let B be a block of j which is not a singleton. And let us assume that B = f(B) for a
block B of p. By Lemma |7 . if z € B then either Z is a singleton or # € B. Therefore, each
block of ©(p) contains at most one block of p which is not a singleton, and ¥(p) is injective.

By Lemma ﬁ re€Band Zis a singleton if and only if 2 is the first or last point of B and B
doesn’t contain 1. Therefore ¥, (B) = Bifle Band »(B) is the union of B and two singletons
if 1 ¢ B: this yields |0,(B)| = |B|+2if 1 ¢ B, and |0,(B)| = |B| if 1 € B.

Let B be a block not being in the image of ¥,. Then B is a union of singletons of p. Since the
blocks of (7, S) and (71, S¢) have size 2, |B| = 2. O

Lemma 7.45. Let p € Pi. Then O(p) is of the form ((w,S) V (kr(w),S¢)) for some partition
m > mg in NC(2k).

Proof. By construction, ©(p) is of the form ((m, S)V (7', S¢)) for some partitions © > mp, 7’ > m;
in NC(2k). Thus 7’ < kr/(w). Since m > 7o, Lemma[7.27] yields kr'(r)/2 = Kr(r/2). The
Kreweras complement Kr(7) of a partition 7 of k satisfies the relation I(Kr (7)) +1(7) =k + 1
(see [66], Ch. 9). Therefore, I(kr'(7)/2) + I(7/2) = k + 1. Since I(kr'(w/2)) = I(kr' (7)) and
U(m/2) = U(m), U(m) + U(kr' (7)) = k+ 1.

On the other hand, | B;| —1—211355 |B| = 2k, thus by Lemma|[7.44| > 5 [0,(B)| = 2k +2(I(p) —1).

Since all other blocks of ©(p) have cardinal 2,

Ak — (2k +2((p) — 1))

=k+1.
5 +

Therefore, I(7) + I(7') =k + 1 =l(7) + l(kr' (7)) and I(x") = l(kr'(7)). Thus, 7’ = kr'(7). O

Recall that a partition is formally defined as a set of subsets of {1,...,k}. The former results
give the desired bijection:
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Proposition 7.46. There exists a bijection A : P, — NC(k), and for each p € P, an injective
map Ap :— A(p) U Kr(A(p)) such that |\,(B)| = |B|/2+ 1 if 1 € B and |\,(B)| = |B|/2 if
1 € B; moreover if B is not in the image of \,, then B is a singleton.

Proof. Let p and p’ be two distinct partitions of Py (2k). Let 1 < 4,5 < 2k such that i and j
are in the same block B of p but in distinct blocks B; and Bj of p’. Therefore, f,(i) and f,(j)
are in the same block of ©(p). But fy(i) and fy(j) are not in the same block of ©(p’): this
would contradict the injectivity of ¥,,. Thus ©(p) # ©(p'). © is injective and by Lemma
|P.(2k)| = INC(k)| = |{m € NC(2k), 7 > mo}|, thus © is bijective.

If0(p) = ((m,S), (kr'(r), 5°)), set A(p) = 7/2. For each B € p, set \,(B) = 9,(B)/2, where B/2
is the image of B € 7 through the map @ — /2. A and A, have all the desired properties. [J

Denote by My(G) the number of rooted loops of length 2k on a rooted graph G. If p is
a partition, Bj(p) denotes the block of p containing 1. Proposition yields the following
formula for the dimension of P * Q.

Lemma 7.47. For all k > 1.

P Qi = Z Mp,|(Gp) H M p_1(Gp) H M|B| 1( (7.3.1)
peENC(K) Bep,1¢B BeKr(p

Proof. By Proposition [7.40]

PxQe= > Mp2Gp) [ Mppr@Gr) [ MszprGo.
pE Py (k) Bep,h(B)=2 Beph(B)=1

Applying the map A, on each block of p and using the results of Proposition yield

PxQr= > Mum)Gr) [ Mae-1Gr) ]I MIAp( B)-1(Go).
pE Py (k) Bep,h(B)=2 Bep,h(p)=

By Proposition any other block B of A(p) is a singleton, therefore for such a B, M|p|_1(G) =
My(G) = 1. Thus, the above formula can be completed as

P Qp = Z My, B.)(GP) H M,p|-1(Gp) H MIBI 1(

pE Py (k) BeA(p),1¢p BeKr(p
Summing on A(p) instead of p yields the result. O]

Since the graph G(P) is the graph Gip without the root vertex, the number of rooted loops

of length 2k on G (P) is equal to the number of rooted loops of length 2k + 2 on Gp that never
pass through the vertex root (except at the first and last vertex).
If ~ is a rooted loop of length 2k on a rooted bipartite graph G, we define an interval partition
L, of 2k by saying that i ~; j if and only if the walk between 7 and j (i and j excluded) doesn’t
pass through the root: note that the blocks of I are necessarily even. For I an interval partition
of 2k with even blocks, the number of rooted loops v with I, = I is exactly [[pc; M|I|/2(G),
where Mk(G) is the number of rooted loops of length 2k that only pass through the root vertex
at the first and last point. Thus,

= > [ Mg@

I€Z(k) BEI
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where Z(k) denotes the set of interval partitions of k. Therefore, (M} (G))r>1 is the sequence of
Boolean cumulants associated to (My(G)) > k > 1.

Denote by by(u) the k—th boolean cumulant of a distribution u. The formula ((7.3.1)) is thus

my((P x Q)) = Z mg,|(1p) H bz (kp) H b\B| Q). (7.3.2)

peENC(k) Bep,1¢B BeKr(p

Let I = (I1,...,1,) be an interval partition with I1 = [1,41],..., I, = [i,—1 + 1, k]. The descent
set D(I) of I is the set {i1 +1,... 4,1 + 1}.

Lemma 7.48. Let I = (I1,...,I) be an interval partition of k. There is a bijection ¢ from the
set {p € NC(k),D(I) C Bi(p)} to [[; NC(|I;|). such that ¢ preserves the size of the block not
containing 1 and the Kreweras complement in the following sense: if o(p) = (7w1,...,m), any
block of mj not containing i;_1 + 1 is a block of m, and

kr(p) = (kr(mi), 1) V (kr(m2),I3) - - - V (kr(m,), I,).

Proof. Let ¢(p) = (p|1,,---,P|1,)- ¢ preserves the size of the blocks not containing 1 in the sense
of the statement of the lemma. Let 7y be the partition (1p(p)1, D(1)U{1}) V(0 (1) -1, [1, K]\
(D(I) U {1})): namely, 7 is the partition with only singletons, except one block D(I) U {1}.
We define ! by the formula

(pfl(ﬂ'l,. . .,TI'T) = ((71'1,]1) V (g, I2) -+ V (FT,IT)) V.

Note that ¢ ~!((71,. .., pi,)) is a non-crossing partition such that D(I) C Bj. Since each element
of D(I) U {1} is in a different interval of I, po o' = Id.

Let ¢ and j be in the same block I of I. Then i ~ -154(,) J if and only if ¢ ~, j (which
is equivalent to ¢ ~, j). If ¢ and j are in different blocks, then ¢ ~ j if and only if
i,j € D(I) U{1} C By (which is again equivalent to i ~p, j).

Since D(I) C By(p), kr(m) < I, which gives the result. O

¢~ lop(p)

The proof of Theorem is based on the rewriting of Equation ([7.3.2]) with Lemma

Proof of Theorem |7.51. Applying the Boolean moment-cumulant formula to m, B1|(MP) in ([7.3.2)
yields
me(uP+Q)= > > biwp) [ vme) ] b\B\ Q).
pENC(k) IEZ(|B1|) Bep,1¢B BeKr(p

Let p be a partition and B; the block containing 1. Restricting an interval partition to B; yields
a bijection 1 between interval partitions of k such that D(I) C B; and interval partitions of Bj.
Moreover if I = (I3,...,1,) is an interval partition such that D(I) C Bj, the blocks of ¢(I) are
exactly the set By N I; for 1 < j < r. Thus

me(u(P* Q)= > Z II bmnniue)  TI bisi(ee) | bxrg) (),
pENC(k) I€L(k),D(I)CB, \1<j<r Bep,B£B;
where we use the notation by = [[ g, bjp| for m = Kr(p). Inverting the sums and using Lemma
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yields

me(u(PxQ) =Y I vmni(er)  TT bisos, (ep) | brrg) (o)
IeZ(k)  peNC(k) 1<5<r Bep,B#B1
I=(I1,....I;) D(I)CBi1(p)

= Z Z H bpj (Mp)bkr(pj)(ug)'

1ETR)  (prypr) T NC(T]) 155
I=(I1,...,Ir)

= Z Z (bp(,up)bk’r(p) (N’Q

IET(k) | 1<<r \peNC(|T)
I:(Ilv"'vlr)

Therefore, the Boolean cumulants of p(P * Q) are:

by = Z (bp(ﬂp)bkr(p) (MQ))? (7'3'3)
peNC/(k)

for k > 1.

Let B be the Boolean Bercovici-Pata bijection (see [19]) from Boolean infinite divisible distri-
butions to free infinite divisible distributions. B maps in particular a law p having Boolean
cumulants (cg)r>1 to a law v having free cumulants (cg)r>1. Equation together with the
cumulant formula of the free multiplicative convolution (see [66]) yields

B(u(P + Q) = B(up) R B(uo)-

But from [17], B is a semi-group homomorphism with respect to the free multiplicative convo-
lution. Thus, B(up) K B(ug) = B(up X o), and applying B! yields

p(P* Q) = pp W pig.
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Chapter 8

Combinatorics of large compositions

8.1 Introduction

A descent of a permutation o of n € N* is an integer ¢ such that o(i) > o(i + 1). For each
permutation o, the corresponding descent set D(c) is the set of all the descents of o. Since
descents can be located everywhere except on n, a descent set is just a subset of {1,...,n —1}.
Let us call a composition of n the data of n and a subset of {1,...,n —1}. A composition D is
represented by a ribbon Young diagram Ap of n cells labelled 1 to n by the following rule : cells
i and 7 + 1 are neighbors and the cell ¢ + 1 is right to ¢ if ¢ € D, below ¢ otherwise. Therefore,
the descent set of a permutation o is D if and only if inserting o (i) in each cell i of A\p yields
a standard ribbon Young tableau. For example, the composition D = {10, (3,5,9)} gives the
following ribbon Young diagram:

Figure 8.1: Ribbon Young diagram Ap of to the composition D = {10, (3,5,9)}

The permutation o = (3,5,8,4,7,1,6,9,10,2) has the descent set D since the associated filling
of Ap yields a ribbon Young tableau, as shown in figure 3.2

13]5]8
4[7
1/6]9]10
2

Figure 8.2: Standard filling of the composition (3,2,4,1)

The descent statistic of a composition D is the number of standard fillings of the associated
ribbon Young tableau Ap (or, equivalently, the number of permutations having D as descent
set). This latter number, denoted by B(D), has been intensively studied in the last decades
(see Viennot [87] and [88] , Niven [67], de Bruijn [31] , ...). Two main questions arose in this
study: the first one is to find the compositions of n having a maximum descent statistic, and
the second one is to find exact or asymptotic formulae for the descent statistic of large com-
positions having a given shape. For example, Niven and de Bruijn proved in [67] and [31] that
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the two compositions of n maximizing the descent statistic are Di(n) = {1,3,5,...} N [1,n]
and Dy(n) = {2,4,6,...,}N[1,n]: permutations having such descent sets are called alternating
permutations. Désiré André already gave in [I] an asymptotic formula for the number of alter-
nating permutations by showing that S(D;)(n) ~ 2(2/7)"n! as n goes to infinity.

In order to evaluate the descent statistic of a broad class of compositions, Ehrenborg, Levin
and Readdy formalized in [37] a probabilistic approach to the counting problem, by relating
each permutation of n to a particular simplex of [0,1]™. Since the Lebesgue measure yields a
probability measure on [0, 1]", it is possible to use probabilistic tools to get interesting results
on descent statistics. Ehrenborg obtained in [36] an asymptotic formula for the descent statis-
tics of the so-called nearly periodic permutations: the latter consist in permutations having the
same descent pattern repeated several times, with some local perturbations. As for alternating
permutations, the asympotic formula has the shape K\"n!, with K and X\ being some constants
depending on the situation. Using the approach of [37] with functional analysis tools, Bender,
Helton and Richmond extended in [I8] the previous results to a broader class of descent sets,
and they found asymptotic formulae of the same shape as before.

The factorial term of the asymptotic formula is easy to understand, since it comes from the car-
dinality of the set of permutations of n elements. However, the term A" seems more mysterious.
In [18], the authors identified in their examples the phenomenon that makes the term A" appear:
namely, if we consider a large uniform random permutation with a fixed descent set, then the
value of (1) and o(n) are nearly independent, which causes a factorization in the asymptotic
counting. Thus, the natural question is to know which compositions induce this phenomenon;
it has been conjectured in [I§] that every composition have this property as they become large.
In the present chapter we construct a family of probabilistic models, called sawtooth models,
which extend the probabilistic approach of Ehrenborg, Readdy and Levin. These models are
more general than the ones used in [I§], but the combinatorial properties of the large descent
sets appear more clearly in this broader case; thus, we first study these models in their full gen-
erality, before deducing some specific results on descent sets. A main consequence of the latter
work is an affirmative answer to Conjecture 1 on asymptotic independence from Bender, Helton
and Richmond ([I8]). We are also able to give by the following intuitive result on compositions:
In the random filling of a composition, the contents of two distant cells are almost independent.
In the next chapter, we will use the results of this chapter to study an analog of the Young
lattice that was introduced by Gnedin and Olshanski in [42].

8.2 Preliminaries and results

8.2.1 Compositions

This paragraph gives definitions and notations concerning compositions.

Definition 8.1. Let n € N. A composition A of n is a sequence of positive integers (A1, ..., \)
such that Y \j = n.

A unique ribbon Young diagram with n cells is associated to each composition: each row
j has A; cells, and the first cell of the row j 4 1 is just below the last cell of the row j. For
example the composition of 10, (3,2,4,1) is represented as in figure This picture shows
directly the link between Definition and the definition we stated in the introduction : a
composition A = (Ag,...,\;) of n yields a subset D) of {1,...,n — 1}, namely the subset
{A, A1+ A2,.. ., A1+ -+ Ar—1}. The latter correspondence is clearly bijective.
The size |A| of a composition is the sum of the A;. When nothing is specified, A will always be
assumed to have the size n, and n will always denote the size of the composition .

180



A standard filling of a composition A of size n is a standard filling of the associated ribbon Young
diagram: this is an assignement of a number between 1 and n for each cell of the composition,
such that every cells have different entries, and the entries are increasing to the right along the
rows and decreasing to the bottom along the columns. An example for the composition of figure
is shown in figure [8.2

In particular, reading the tableau from left to right and from top to bottom associates a per-
mutation o to each standard filling; moreover, the descent set of such a permutation o, namely
the set of indices ¢ such that o(i + 1) < o (i), is exactly the set

r—1
D)\ = {)‘17)\1 +)‘2aaz>\l}
1

There is a bijection between the standard fillings of A and the permutations of |\| with descent
set D). For example the filling in figure yields the permutation (3,5,8,4,7,1,6,9,10,2).

8.2.2 Result on asymptotic independence
We present here the main results that are proven in the present chapter.

Notation 8.2. Let A be a composition. Let ¥y denote the set of all permutations with descent
set Dy. With the uniform counting measure Py, it becomes a probability space, and o) denotes
the random permutation coming from this probability space. As usual |3y| is the cardinality of
the set Xy.

|X[ is thus the descent statistic associated to the composition .
Denote for each random variable X by u(X) its law and by dx its density, and write p ® v for
the independent product of two laws. The goal of the chapter is to prove that distant cells in a
composition have independent entries, namely:

Theorem 8.3. Let ¢,r € N. Then there exists k > 0 such that if \ is a composition of n and
0<ip <--- <1, <n areindices with ij11 —1; > k,

" <”(UAS1) 2l i)y e u(a(”)>> <e,

n n n

with ™ denoting the Levy-Prokhorov metric on the set of measures of [0, 1]".

‘”Sl) 920n) remain bounded from below by a positive constant, then

the approximate independence of % and % can be given with a stronger metric than
the Levy-Prokhorov metric. This is the content of Conjecture 1 of [18], which is proven in this

chapter and formulated in Theorem [3.36

and

If the variance of

8.2.3 Runs of a composition

Let A\ be a composition. We number the cells as we read them, from left to right and from top to
bottom . The cells are identified with integers from 1 to n through this numbering. For example
in the standard filling of figure , the number 7 is in the cell 5.

We call run any set consisting in all the cells of a given column or row. The set of runs is ordered
with the lexicographical order. In the same example as before the runs are

s1=1(1,2,3),82 = (3,4),83 = (4,5),84 = (5,6),s5 = (6,7,8,9), s6 = (9, 10),
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where we put in the parenthesis the cells of each run.

Note that inside each run the cells are ordered by the natural order on integers. We call extreme
cell a cell that is an extremum in a run with respect to this order, and denote by &) the set
of extreme cells of A\. Apart from the first and last cells of the composition, each extreme cell
belongs to two consecutive runs. Let Py be the set of extreme cells followed by a column, or
preceeded by a row and V) the set of extreme cells followed by a row or preceeded by a column.
The elements of Py are called peaks and the ones of V) valleys. The sets V) and P, are also
ordered with the natural order:

Po={p < ---<pet,Wi={a1 < - <aqw},

with s —1 <K <k+1.

The first and last cells are always extreme points. A composition is said being of type ++ (resp.
+-,-+,- -) if the first cell is a peak and the last cell is a peak (resp peak-valley, valley-peak,
valley-valley).

Finally, let I(s), the length of a run s, be the cardinality of s, and L()), the amplitude of A, be
the supremum of all lengths I(s).

8.2.4 The coupling method

In this paragraph we introduce a probabilistic tool called the coupling method, and set the
relative notations for the sequel. We refer to [58] for a review on the subject. We will present the
notions in the framework of random variables but we could have done the same with probability
laws as well.

Definition 8.4. Let (E,E) be a probability space and X,Y two random wvariables on E. A
coupling of (X,Y) is a random variable (Z1,Z3) on (E x E,E®,E) such that

Zl ~law X7 Z2 ~law Y.

Such a coupling always exists : it suffices to consider two independent random variables Z;
and Zs with respective law px and py. However, a coupling is often useful precisely when the
resulting random variables Z; and Zy are far from being independent. In particular, in this
chapter we are mainly interested in the case where Z; and Zs respect a certain order on the set
FE. From now on F is a Polish space considered with its Borel c—algebra £, and < is a partial
order on FE such that the graph G = {(z,y),x <y} is £€—measurable.

Definition 8.5. Let X, Y be two random variables on E. Y stochastically dominates X (denoted
Y = X) if and only if
P(X € A) <P(Y € A)

for any Borel set A such that
reA={yeEzay} C A

For example if £ = R with the canonical order < and o—algebra B(R), then Y stochastically
dominates X if and only if for all x € R,

P(X € [z,+o0]) <P(Y € [z, +0])

or equivalently, if we denote their respective cumulative distribution function by Fx(¢) and
Fy (t):
Fy(t) < Fx(t) for all t € R.

There are several ways to characterize the stochastic dominance:
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Proposition 8.6. The three following statements are equivalent :
o Y stochastically dominates X
e there exists a coupling (Z1,Z3) of X, Y such that Z1 <4 Zy almost surely.

o for any positive measurable bounded function f that is non-decreasing with respect to <,
E(f(X)) <E(f(Y))

The proof is straightforward and can be found in [58]. This yields the following intuitive
Lemma :

Lemma 8.7. Let (X1, X2,Y1,Y2) be a random variable on E* such that :
e X1 XY and Vs =X Xo,
e (X1,Y1) is independent from (Xo,Ys).

Then
P(Xl < XQ) > P(Yl < YQ)

Proof. Let < be the partial order on E x E defined by
(,y) < (2',y) < z<2’ and 3/ Qy.

Since Y7 = X7 and Xy = Y3, there exists a coupling (Xl,f/l) (resp. (Xg,f@)) of X1,Y7 (resp.
X5,Y3) such that almost surely X; <Yy (resp X > Y3). The random variables (X;,Y7) and
(X3, Ys) can be chosen independent one from each other. Since (X1,Y7) and (X3, Ys) are also
independent, this implies that (X1, X3), (Y1, Y2)) is a coupling of (X1, X3), (Y1, Y2)) with almost
surely

(X1, X2) < (11, Y2).

But if Yl <1Y2, then Xl <1Yl 4)72 <1X1 and thus
P(Y; < Ys) = P(Y; < Ys) < P(X; 9 Xp) = P(X; < X5).
O

These results will be concretely applied on RP, p > 1, and thus we need to define a family of
partial orders on those sets.

Definition 8.8. Let p > 1. The partial order < on RP is the natural order on R for p =1, and
forp > 2 if (z:)1<i<p, (Yi)1<i<p € R?,

(zi)1<i<p < (Wi1<i<p & Vi € [L;p], 25 < ;.

For any word € of length p in {+1,—1} (or simply in {+,—}), the modified partial order <. is
defined as
(xi)1<i<p <e (Yi)1<i<p © Vi € [1;p],ei7; < €Y;.

The easiest way to check the stochastic dominance is to look at the cumulative distribution
function. The proof of the following Lemma is a direct application of Proposition
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Lemma 8.9. Let (X;)1<i<p and (Yi)i1<i<p be two random variables on (RP, <.). Then (Y;)1<i<p
stochastically dominates (X;)1<i<p if and only if for all (t;)i1<i<p € RP,

F(EXi)(tlw'wtp) > F(ayl)(tl, . 'atp)7

with F(EXi) being the modified cumulative distribution function defined by

(b ty) = B((X)) <e (1),

The stochastic dominance in the case (R?, <.) is denoted as (X1,...,X,) = (Y1,...,Y)). A
consequence of the previous result is that if (Y7,...,Y)) stochastically dominates (X1,...,X,),
then for all subsets I = (iy,...,4,) of {1,...,p}, (Yi,...,Y:. ) also stochastically dominates
(Xipy- X))

Applying Lemma to the case p = 2 yields the following Lemma:

Lemma 8.10. Let (U, Vi), (Uz, Va) be two random variables on [0, 1] such that Uy and Va are
independent. Suppose that for all 0 <t <1,

FVI (t) < FV2 (t)

and for all v € [0,1],
FUl\V1:v(t) < Fy, (t)

There exists a coupling ((Z1,21),(Z2, Z2)) of (U1, V1) and (U, Va) such that almost surely
(21, 21) = (Za, Za).

8.3 Sawtooth model

8.3.1 Definition of the model

In this section we introduce a statistical model of particles in a tube, which is a generalization
of the probabilistic approach of Ehrenborg, Levin and Readdy in [37]. The model consists in
a sequence of particles, each of them moving vertically in an horizontal two-dimensional tube.
Each particle has a repulsive action on the two neighbouring particles, and moreover, the set of
particles splits into two groups: the upper particles and the lower particles. The upper particles
are always above the lower ones. The model is depicted in Figure 8.3

Figure 8.3: Upper particles {p1, p2, ps} and lower particles {q1, ¢2,¢3} in a tube.

Such a system is called a Sawtooth model in the sequel.

Remark 8.11. If there are k upper-particles, there must be k' lower particles with k' € {k —
1,k,k + 1}, depending on the type of the first and the last particles. We define therefore the
type £(S) of the model S as the word erep, with ey = + (resp. ep = +) if the first (resp. last)
particle is an upper one, and e = — (resp. ep = —) otherwise.
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Unless specified otherwise, the first particle is a lower particle (as in the picture). The

particles are ordered from the left, and following this order the upper particles are written
{p1 < p2 < .-+ < px} and the lower particles {q1 < --- < g }. Since the nature of our results
won’t depend on the type of the model, we will also assume that there are k£ + 1 lower particles,
yielding that the last particle is a lower one too.
Denote by x; the position of ¢; and by y; the position of p;: by a rescaling, we can assume that
xi,y; € [0,1]. These positions are considered as random, and each configuration of positions
is weighted according to repulsive interactions between neighbouring particles. This yields the
following definition:

Definition 8.12. A Sawtooth model S is the union of two families of random variables {X; }1<i<k+1
and {Yjh<j<k on [0, 1] with the multivariate density

1
P{Xi =, Y =y}) = [ ei<vizei ity = 2)gi(ye — wivr) [ [ dai [ [ dyy, (8:3.1)

where { fi, gi}1<i<k s a family of increasing positive C1 functions on [0, 1].
The quantity V is called the volume of S and is sometimes denoted by V(S) to avoid confusion.
S is said normalized if [ fi = [gi=1 for 1 <i<k.

The volume has the following expression:
9= /[0 1]2k+1 H Vo< >a; 0 JilYi — i) 9i(yi — Tit1) H dz;dy;. (8.3.2)

In particular, an appropriate rescaling of the functions f;, g; can transform any Sawtooth model
into a normalized one, without changing the probability space. Thus, from now on and unless
stated otherwise, the model is assumed normalized. In case we are considering non-normalized
models, we will use the notation f;, g;, etc. for the normalized quantities, and fi, gi, etc. for the
non-normalized ones.

Aiming the results we stated on compositions, we should answer these questions :

1. As the number of particles goes to infinity, is there some independence between Xy and
Xpy1

2. It is possible to estimate the behavior of a particle X, by only considering its neighbouring
particles ?

For each subset of particles Q@ = (giy, ..., i, Pjrs--- ,pjr,) and measurable event X', denote
by
dQ|X(xi17 sy Lips Yjpy e e 7yjr/)

the marginal density of €2 conditioned on X. The subscripts will be dropped when there is no
confusion, and we denote by X the first variable X; and Xr the last variable X311. Finally,
since the system is fully described by the functions { f;, g; }, we will refer sometimes to a particular
system just by mentioning this set of functions.

The definition of a Sawtooth model yields directly two first results which are given in Lemma
and Lemma The first one stresses the Markovian aspect of a Sawtooth model :

Lemma 8.13. Let S be a Sawtooth model of size k, and 1 < ¢ < k. Let Z be the position of a
particle right to X; (namely Z = X for j > i or Z =Yj for j > i) and X be an event depending
on the positions of particles right to Z. Then for 0 < z <1,
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Proof. Tt suffices to prove that the particles left to Z are independent of the particles right to Z
conditionally on the value of Z. This is implied by the form of the density of the model, since
the latter splits between the density of the particles left to Z and the ones right to Z. O

The second one is a generalization of Lemma 3-(a) in [I§]. :

Lemma 8.14. Let1 <r < k+1, and let X be an event depending on the position of all particles
except X,. Then dx, | x(v,) is decreasing in x;.

Proof. Let a be in [0,1]. By Lemma
er‘X(a) = /[‘ 2 d(Xr|X)\Yr—1=Z,Yr+1=Z/(a’)dYr—l,Ym-llX(zﬂ ZI)dZdZ,
0,1

/ /
= /[0 ; dx, 1V 1=2Y, == (@)dy. |y, 2 (2,2 )dzdz".
1

Thus, it is enough to prove the monotonicity in the case of a conditioningon Y, 1 = 2,Y,11 = 2/
In this case

1
dXT|YT,1:z,YT+1:z’(a) = 122&,2’2&R(gr—1(2 - a)fT’(Z/ - a))?

with R a normalizing constant. Since g, and f, are increasing, this concludes the proof. [

The same result holds for upper particles, but in this case the density is increasing.

8.3.2 The processes S, and X,

Let us see how these definitions fit into the framework of compositions. The main idea from [37]
is to consider the set of all permutations with a given descent set D) as a probability space.
|X| can indeed be related to the volume of a polytope in [0,1]" (see for example the survey
of Stanley on alternating permutations, [78]) . For each sequence of distinct elements Z' =
(21, .., 2pn) in [0, 1], the ranking permutation of Z'is the permutation o (%) that assigns to each
Jj the position of z; in the ordered sequence (z;; < --- < z;,): namely, 0(2)(j) = k if and only if
#{1 <i<nlz <z} =k.

Proposition 8.15 ([37]). The law of oy is the law of the ranking permutation for a sequence
of independent uniform variables Z1, ..., Z, in [0,1] conditioned on the event

{Z; > Ziy1 if and only if i € D)}.
In particular, the following expression of the number of permutations with descent set Dy holds

‘2)\‘ = n'/[Ol]” H 1Zi22i+1 H 1Zi§2i+1 Hdziv

1€D)y €Dy
with zpy1 = 1.
The proof of the latter proposition is straightforward as soon as we remark that the volume
of the polytope {0 < z1,...,2, < 1} is exactly % The processus {Z;}1<i<n in the previous
proposition is denoted by §). Since the indicator function in the integrand depends on conditions

between neighbouring points, this result can be rephrased in terms of Sawtooth model.
Regrouping the inequalities between elements of the same run of A yields:

‘EA‘ = n!/[o | 121SZ2S"'SZ¢1 1Zi1 22412 2 i g 1zn—i2T§"'§Zn H dz;, (8'3'3)
71 n
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and by integrating over all the coordinates that do not correspond to extreme cells, we get
N :nv/ 1 . ;Wr_x—‘l(sl)%
Joap Sz QG =l T
k+1

1 S
W|$ $k+1‘ k 2Hd[E+HdLC .

Let Sy be the non-normalized Sawtooth model with the non-normalized density functions
{fj,3;}1<i<r such that

) 1 !
PO @y (2) =)

A comparison between the latter expression of |¥,| and the expression (8.3.2) of the volume of
a Sawtooth model gives

tl(32j,1)—27gj(t> — tl(SQj)_Q

2] = [A[V(Sy)

To sum up, three processes are constructed from A. The first one, oy comes from the uniform
random standard filling of the ribbon Young tableau A, the second one, Sy, comes from the
probabilistic approach of [37], and the third one, Sy, is obtained from Sy by considering only
the extreme particles. They are of course intimately related, even if the first one is discrete
and the second and third ones are continuous. o) can be recovered from S \ by the associated
ranking permutation, and when |\| goes to infinity ~ A(z) and Z; are approximately the same :

Lemma 8.16. The following inequality always holds for 0 < A,n € N:

ox(1 A 1
P(ma"('nii v e LD

In particular, if the densities of Z; remains bounded by a constant B,

1Fz; — Fot [loo —|A1=+00 O-

Proof. Let us evaluate P(| n+(1 Zi| > n+2) Condition the event {|‘ZLA+(11 Zi| > n+2} on a
particular realization o of o), and suppose that o(i) = k. In this case, the conditional density

of Z; is :

dz,joy=o(2i) =n! / H dz;
0S2-1(1) S S2—10-1) S5 1<0(j)<k—1

/Z. H dzj

iS201 (1) S S0 1 ) S 1<o ()<

n! _ e
B

Computing the conditional expectation yields E(Z;|oy = 0) = niﬂ and

ko n+1-k 1 1
Var(Zijloy =0) = < .
ar(Zilox =) <n+1 n+1 >n+2_n+2
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Thus, by the Chebyshev’s inequality,

o(1 A 1

> —_.
n+1’ vn+2/) — A2

Integrating this inequality on all the disjoint events ¢ on which Z; can be conditioned yields the
first part of the Lemma. O

From now on, let 4, denote for r > 2 the function 7, (t) = ﬁtrﬂ, and v,.(t) = (r —1)t"2
its normalized density function.

8.4 Convex Sawtooth Model

In this section, we study the behavior of the extreme particles for a Sawtooth model respecting a
particular convexity property. The results of this section are much easier to get in the particular
case of the Sawtooth models Sy of the last section, since the density functions {f;, g;} are
explicitly given. We will use this particular Sawtooth models as examples for our more general
computations.

8.4.1 Log-concave densities

To be able to get some results on the behavior of the particles, it is necessary to impose some
conditions on the density functions { fi, ¢;}. Actually the condition we need is quite natural from
a physical point of view, since we will require that the repulsive forces in the definition of the
Sawtooth model come from a convex potential : the consequence is that the density functions
should be log-concave. This motivates the following definition :

Definition 8.17. A Sawtooth model is called convex if all the functions (fi,gi)1<i<k are log-

, . JHO) g;(t)
concave. This means that for all 1 <i <k, 10 and 0]

are decreasing.

The main advantage of the log-concavity is that the behavior of the particles becomes mono-
tone in a certain sense.
For 1 <s<k+1,let S, x, (resp. Sx,. ) denote the Sawtooth model obtained by keeping only
the particles between X and X, (resp. between X and Xp) and the functions { f;, gi }i<s (resp.
{fi,9i}i>s+1). Likewise, let S_,y, (resp. Sy, ) denote the Sawtooth model obtained by keeping

only the particles between X; and Y; (resp. between Y and Xr) and the functions {f;, g;} i<s
j<s—1

(resp. {fi,gj}izs+1)-
Jj=>s

In order to emphasize a specific Sawtooth model S, we write X;S to denote the particle X; in S,
and F'x, s to denote the cumulative distribution function of X; in S (and the same for Y;).

Proposition 8.18. Let {fi,g;} be a convex Sawtooth model. Then for 1 < s <k, (Xs|Ys =)
is increasing with y (in terms of stochastic dominance) and (Ys| X541 = x) is increasing with x.
Moreover,

Sox. Soy,
X5 X = (XSD/S = y)aYS ¥ = (}/S‘Xs—&—l = {L’)

Proof. Let 1 < s < k. To prove the first part of the proposition, it is enough to show that for

0 <t <1, Fx,|y,—y(t) is decreasing in y and Fy,|x,, ,—,(t) is decreasing in z.

Let d(z) be the density of X in S_,x,. Then by the definition of the probability density of S,
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the density of X in S conditioned on the value of Y is 1x§yw, with A a normalizing

constant. Thus, the cumulative distribution function Fy(.) of X, conditioned on Yy =y is

S (@) fuly — @)de
foy d(z) fs(y — x)dz .

Fy ()

For t > y it is clear that %Fy(t) = 0, and from now on we only consider ¢ < y. Since the

logarithm function is increasing, it is enough to show that 8% log(Fy(t)) < 0. This derivative is
equal to

9 _ hd@)fily —)de [ d(@)fi(y — @)de d(y) £5(0)

dy toB(F(e)) Jyd(@) fs(y —x)dz  Jg d(@)fs(y — z)da Y d(@) fo(y — 2)da

d(y) fs(0)

Since (— 1730y f, (y-a)ds

) < 0, the non-positivity of the remaining part of the sum suffices. Denote

a=[a@it - [ d@its -0t [ @ -0 [ dw) st
Thus, we have to show that A < 0. For ¢ < y,
a= [ awsis-ar ([ st - i+ [ awsiy - a)
([ awsity o+ [Maw sty - i) [ do) sty - ey
- [ty - de [ da) oty ~ a1
- [fi@iw -0 [ sty - i

Expressing products of integrals as double integrals yields

A= 0<z1<t d(21)d(22) fo(y — 21) fs(y — 22)dz1dz
t<z29<y
B /)§21St d(Zl)d(Zg)fs(y - Zl)f;(y - ZQ)dzleQ
t<zo<y
= hyerrct d(z1)d(22)(fi(y — z1) fs(y — 22) — fs(y — 21) foy — 22))dz1ds.

Since d(z1)d(z2) is positive and }E 8 is decreasing, A < 0 and the first part of the proposition is
proven.

The second part of the proposition is equivalent to the inequalities

FXS‘Ys:y(t) 2 FX.SySA»XS (t)

and
FYS|X5+1:a}(t) < FYS7’S~>YS (t)
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forall 0 <t <1.
From the first part of the Proposition, it suffices to prove the first inequality only for y = 1.
Since fs is increasing, there exists a measure p on [0, 1] such that fs(z fo dp(u). Thus,

Jy () (3™ () e [ o Locyuer—sd(@)dpu(u)de

F = =
) Jyd@) (Jo " dp(w) do - Joue Lusi—ed(@)dp(u)dz

The main point is to express the latter quantity as the expectation of a random variable almost
surely greater than fo x)dz. Changing the order of the integrals yields

fo ( A=) gy )da:) dpu(u ) fo ( tA(1-u) M%dm) ( 0 d(x)dx) dp(u)
fo ( daz) dp(u) fo ( da:) dp(u) .

Fi(t) =

Let U be a random variable absolutely continuous with respect to 4 and having the density

( 01‘“d< )dz) du(u)
(R @) dut)

Then

tA(l—U)d d

Fi(t) = Eg | - — (z)da
o d(z)dz

Since for each u > 0

fg/\l_ud(m)dx t Ve
folfud(a?)da: Z/0 d(w)dz,

this concludes the proof.
It is exactly the same for Fy,|x, —.(). O

Remark 8.19. In the case of a Sawtooth model Sy, a simpler proof of the monotonicity result
of Proposition can be done by induction on the length of the run of \ between x; and z7 .
Namely, if the run has length 2,

Jo " dx, sy x,(x)dz
I5 dx.s\x,(x)dx

Fx,ly,=y(t) =

which is decreasing in y. If the run has length r > 2, the expression of the density in the integral

of B:33) yields

/

foy X|Ye=y/ )df/s,s;af/s(y/)dy

F t
Xalva=y(t) = fo YS,SRH?S(y/)dy/

I

where X is the composition X with the run between x; and x§ reduced tor —1, and X, and Y,
correspond to the variables x; and xf in S5. By recurrence hypothesis, F. R |Vemy (t) is decreasing
I8 Fx 5=y Dy, s v, ()Y’

. ’
mn and thus
y ’ ) fo?! df/s,'ss\—*ffs (y’)dy’

1s decreasing in y.
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8.4.2 Alternating pattern of a convex sawtooth model

Proposition yields two main features for the model. The first one is an extension of the
previous result.

Proposition 8.20. Let 1 < s, 0 <t < 1. Then for r > s, FXS|XT:x(t) 1s decreasing in x
and F,|y,—,(t) is decreasing in y. Likewise, Fx |x,—o(t) is decreasing in r and Fx |y, (t) is
increasing in .

Moreover,

and
FXS:S—>Y»,» (t) Z FXS|X7'+1:93(t)'

Proof. Let s > 1 and let us prove the monotonicty on x and y by recurrence on r, starting at
s =r. Fx,|x,=2(t) is clearly decreasing in x and from Proposition Fx,|y,—y(t) is decreasing
in y. Thus, the initialization is done.

Suppose the result proved until X,. Then

1
R /0 Fx ey X —a (D, 1, e (9,

and by an integration by part, since from Lemma Fx v,y X, 1=2(t) = Fx, |y, =y (t),

Lo
Fx 1 x,=2(t) = Fx,|y,=1(t) —/0 @FXS|YT=y(t)FYT\X,.H:w(y)d?/‘

Thus,
0 0

1o
—F —(t) = — —F —y(t)=—F - dy.
o XS\XT_H—:):( ) /0 By XS|YT—y( )8:5 YT|Xr+1—x<y) Y
By recurrence a%FXSIYT:y(t) is negative and by Proposition a%Fm X,41=2(y) is negative,
thus %FX5|XT+1:w(t) is also negative. It is exactly the same for Fx |y, ,—,(t).
Let r > s. Fx,|x,,,—0(t) = fol Fx,x,=2(t)dx,|x,,,=0(%)dz, thus by Proposition

1
Fx,x,=0(t) < / Fyx,1x,=0(t)dx,|x, 1—0(x)dx < Fx |x,—0(t).
0

The same proof holds to show that Fx |y,—(t) is increasing in 7.
Let us prove the second part of the proposition and let y € [0,1]. Conditioning X, on X, in
S x, yields

s, ) = E (Fy 5,5, ()

with X, following the law of ¢, in S_, X, -
On one hand from the first part of the proposition, Fix |x,—,(t) is decreasing in z. On the other

hand from Proposition X, stochastically dominates (X,|Y; = y). Thus, from Proposition
8.6}

Fx. 50, (1) =B (Fy, x5, () < Fx,rimy (8).
The same pattern proves the second inequality. O

There is an immediate consequence of this Proposition on the behavior of Fix_ s . (t) with
u > s.
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Corollary 8.21. The following inequalities hold for k > s:

FX&S%XS (t) g e S FXS,SHXH (t) g e S FX57S~>Yu (t) e S FXS)‘s*)YS (t)

Proof. The previous Proposition yields directly the following inequalities :

FXsySHYT (t) Z FXs|Yr:1(t) Z FXSAS‘*)XT (t)

Moreover,

Fx,s.x,,, (1) = /[0 . Fx v,=y()dy, s x, ., (¥)dy

2 /[‘0 1} FXS7S—>XU (t)dYU7‘S—>Xu+1 (y)dy

ZFX&SHXM (t)7

the first inequality being due to Proposition By symmetry between X, and Y,, the general
result holds. O

8.4.3 Estimates on the behavior of extreme particles

As a second consequence of Proposition [8.18|we can get a more accurate estimate on the behavior
of the first and last particles of S. In particular, we can achieve a coupling of (X7, Xr) with
two couples of random variables, which only depend on f; and ¢, and give some bounds on
(X7, XF) in the sense of the stochastic domination.

In this paragraph we will not assume that the first and last particles are lower ones, and deal with
model of any type (refer to Remark for the definition of the type of a model). Moreover,
to describe the bounding random variables, we introduce two particular transforms I'" and I'":

Definition 8.22. Let f be a positive function on [0,1]. Then T (f) and T~ (f) are the functions
defined on [0,1] as :

_ f11—t fu)du

I~ t) =
() T f
and .
P () = B0
Jo f(w)du
Remark that T~ (f)(t) (resp. T (f)(t)) is the cumulative distribution function of the random
variable 1 — Z (resp. Z), Z being the random variable with density I J; ((g;))dx.

Proposition 8.23. Let S be a convex Sawtooth model of type € with density functions { fi, gi }1<i<k
and at least four particles. There exists a probability space and two couples of random variables
(X4, Yy), (X, Y_) onit, such that :

o (X_,Yl) = (X1, XF) =6 (X4, Y5).
e X and Yy are independent with distribution function

Fx v, (s,8) = T2 (1) ()T (gn) ().
e X_ andY_ are independent with distribution function

Fx_y_(s:8) = (T% o T(11)) (5) (T 0 T%(g0) ) (1).

192



with —* = + and +* = —.

Proof. We assume without loss of generality that each f;, g; is normalized and, since the type of
the Sawtooth model doesn’t change the pattern of the proof, we assume that S is of type ——.

On one hand the conditional law of (X, Xr) given the value of Y1 = y1,Yy = yr has for
cumulative distribution function :

(M it = @) (5 gl — 9)dy)
Fxr etz i (1, 12) = (& fr(@)da)(f7* gr(a)dx)

=Fx,|vi=y (1) Fxp|vi=y, (t2)-

This together with Proposition [8.18| gives the bound

FXI,XF\Y1=y1,Yk=yk (t1,t2) :FXI|Y1:3/1 (tl)FXF|Yk=yk (t2)
>Fx vi=1(t1) Fx ppyi=1(t2)-

Since

Fxvi=1(t) Fxpy=1(t2) = (1 = Fiy (1 = 11))(1 = Fg (1 = t2)) = T~ (f1) (1)1 (gk) (t2),

this gives the upper part of the stochastic bound.
On the other hand, the density of (Y7, Y})) conditioned on the value of (X2, X}) is

le,Yk|X2:x2,Xk:mk (yla yk:)

1 (&' frlyr — @)dx) gi(yr —x2)  (J7" ge(yn — x)dx) frlyr — z1)
—LYy12T2, Yk >Tr 1

fm (fg fi(z — x)dz) g1(z — @2)dz f;k (Jg gr(z — 2)dz) fi(z — xp)dz
N N Fy, (y1)g1(y1 — 22) Fo. (i) fr(yr — 1) '
PERIEE L B (2)g1(2 — wa)dz [ Fy, (2) filz — wp)dz

=1

Factorizing the latter density yields

le,Yk\Xzzzg,sza:k (Y1, ux) = dyl\xgzm (yl)dYk|Xk:xk (Yk)-

Let us first consider Y;. Recall that g; is an increasing C' function. This means in particular
that

1 x
= — dA
nia) = 1 | arw)
with A a probability measure on [0, 1] having eventually a dirac mass at 0 and then a continuous
density function on |0, 1]. Thus, the density of Y; conditioned on the value of X is
1 v
dy; | Xo=a, (Y1) = Aluze: L (v1) dA(u — x2),
2

with A a normalizing constant. Let d, be the density function defined for 0 < u <1 by

1

du(y) = IlyzuFf1 (y)a
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with A, a normalizing constant depending on u and let Fy(t) be the associated cumulative
distribution function. On one hand

I8 Ly Fry (1) 2 dAN(u — w2)dyn
fol y1>zzFf1 (v1) fyl d\(u — x2)dyy
b S Ly suFyp, (y1)dA (u — 22)dy,

I Ly uFr (y)dA (u — 22)dys

Fyl\XFa:g (t) =

and after changing the order of the integrals, since F, (1) = 1,

S (e gz, () ) dA(u — 2)
I <f0 ni>uFp yl)dy1> d\(u — x2)
_fm Ay Fy(t)d\(u — x2)

B fgclz Ayd\(u — x2)

=Eg (Fg (1)),

FY1|X2:Z‘2 (t) -

with U a random variable with law dU (1) = Ly> g, —oud2=r2)
f Ayd\(u—1y)
On the other hand

. [ Fr(wd Fr(t) = Fp, (u)
Fult) = 1t>uf Ffl(u)d a 1t2u]:f1(1) - ]:fl(u)’

with Fp, being the primitive of Fy, taking the value 0 at 0. This yields

9o _9 Fp, (8) = Fp (u)
aut ) =5, (1“<tff1<1> fh(“))
0

—1u<ta <(]:f1(t) ‘Ffl(

+
=Llu<t (Fp (1) = Fp (1)) ou <.7:f1(1) i~7:f1 (U)>
0

—_
~—
~—

and thus

Integrating with respect to U yields

FYlIXzzxz(t) = EU (FU(t)) < EU (FO(t)) s

and finally, Fy,|x,—, (t) < ];; L ((?) We can now integrate this inequality to get a bound on the
1
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cumulative distribution function of X; conditioned on X5 :
1
Fx 1 xy=z (1) :/0 Fx1vi=y () dy, | xo=2, (¥)dy

1
15)
=Fx,|v;=1(t) /0 %FX,\ley(f)FY1|X2:zQ(y)dy

1 F
SFX1|Y1:1(t)_/O %FXI\ley(t) fl(y)dy

J A
1
Fr(y)
< F ()= dy.
_/0 XI\Yl_y( )]:fl(l) Y

Note that the direction of the inequality on the third line is due to the negative sign of
o .
%FXI|Y1 =y (t) Slnce

t/\y

1
Ff _u)du Ff( )
F _ L d —/ L d
/o Xalvi=y(?) Fr) Ff1 Fr (1) Y

_ fl(y—u) "
_A u ]:fl(l) dyd

:fg Fp (1 —u)du
]:f1(1)

= Fi(Ffl)(t)v

this yields the inequality
Fx;|xp=a, (t) ST 7 0 TT(f1)(1).

Note that the latter inequality is valid even if the model has only three particles (see the next
Corollary). Finally, since in our case there are at least four particles, Xr # Xo, and thus

FX[|X2:x2,Xp:y(t) = FX1|X2:3:2 (t) Therefore
Fx 1xp=y(t) STT o TT(f1)(1),
and by averaging on y,
Py, (t) < T~ o T*(f1)(1).
Doing the same with X gives the bound :

Fx,(t) <T7 o™ (gx)(t).
The result follows from Lemma [R.10l O

Remark 8.24. The case of a Sawtooth model Sy, illustrates the pattern of the proof in the general
case. Namely, suppose that X\ has a first run of length r which is increasing. Then, conditioning
the law of x1 on the value of the first particle after the first peak (which is x,+1 in this case)
yields the formula:

1 r
T S Unnely — @) dy)da
Computing the integral in the numerator and in the denominator yields

L-A-8)T-["~((tVz)-1)T]

1—2zr

Fyllay1=2(t) = (8.4.1)
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By Proposition Folzr=1(t) < Fyljgyi1=2(t) < Fyjla,.1—0(t): therefore, the bounds are

given by the cases z = 1 and z = 0. By Equation (8.4.1), Fy |z, ,—0o(t) = 1 — (1 —1)" =

LT (3:)(t). Suppose that z > t: rewriting the right hand side of (8.4.1) as % with

h(z) =z — (27 — t) yields
Fxl‘xr.t,q:l(t) - h‘/(l) =1- (1 - t)r_l - F_<7T)(t>
The proof of Proposition|8.28 is actually a generalization of the proof in the case S.

In particular, as a corollary of Proposition (and as a corollary of the proof in the case
k = 2), the following result holds :

Corollary 8.25. Let S be a convex Sawtooth model of type € with density functions { fi, gi }1<i<k
. There ezists a couple of random variables (Z), Z?)) such that for y € [0,1],

o ZW =) (X1|XF =y) 2.0) 2,

o The cumulative distribution function of Z? is :
Fe(t) = T*W (1) ().

o The cumulative distribution function of Z() is

Fyo (t) =T¢W o =W (f1)(¢).

Proof. For k > 3, the result is deduced from the latter Proposition. In the case k = 2, the proof
is exactly the same as in the latter Proposition, except that we only deal with the left case, and
thus we don’t need anymore the fact that Xo # Xp. O

In the case of a composition A with first run of length R + 1, the latter corollary yields that
for Sy:
1= (1=t < Fx,(t) <1— (1=,

if the first run is increasing, and

if the first run is decreasing.

8.5 The independence theorem in a bounded Sawtooth Model

This section is devoted to the proof of the approximate independence of X; and Xy when the
number of particles grows whereas the repulsion forces remain bounded. In this section the
Sawtooth model is assumed normalized.

8.5.1 Decorrelation principle and bounding Lemmas

Definition 8.26. Let A > 0. A Sawtooth model S with density functions {f;, gi} is bounded by
Aif

max(|| filljo,1 lgilljo,]) < A

The purpose is to prove the following Theorem :
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Theorem 8.27. Let A > 0. For all € > 0 there exists Ng > 0 such that for any Sawtooth model
S bounded by A and with 2k > N4 particles we have :

||dX1,XF(zay) - dXI(x)dXF(y)Hoo <e

The pattern of the proof is the following : conditioned on the fact that a particle P - from
now on called a splitting particle - is close to the boundary of the domain, the left part S, p
and the right part S, p of the system are almost not correlated anymore (see Figure [8.4]).

Figure 8.4: Decorrelation of the process

However, we may still not have independence if the law of X; and X depends on which particle
splits the system. Thus, we have to find a set of particles that is large enough, so that with
probability close to one an element of this set is close to the boundary, and such that nonetheless
conditioning on having any particle from this set close to the boundary yields the same law on
(X1, XF).

Let us first begin by bounding the density of (X, Xr).

Lemma 8.28. Suppose that || fillec < A and let S be a Sawtooth model larger than 2. Then
there exists K4 only depending on A such that for any event X depending on {X;,Y;}i>2,

ldx; xllc < Ka.
More precisely K4 = 4A? fits.

This Lemma was already mentioned in the specific context of compositions in [I8]. We
provide here a different proof.

Proof. By Lemma it suffices to prove it for a conditioning on {Xs = x2}. From Lemma
dx | Xy=z, () is decreasing in z and thus it is enough to bound dy,|x,—4,(0). We have

_Juh@aG =)t [ 9 -z

dx;|Xy=2,(0) = < .
e fajlg Fy (2)g1(2 — w2)dz fle Fy (2)g1(z — x2)dz

Remark that .
oy 91(2 — 22)d2 B 1

Joy Fr(D)n(z —a)dz By (F(2))
with Z being a random variable with density 1,>,91(z — x2). Since [l = Aand Fy (1) =1,
Fy (t) > 1/2 on [1—1/(2A)]; moreover, z — g1(z—x2) is increasing, thus P(Z € [1-1/(24),1]) >
5+ and by Markov’s inequality E;(Fy,(Z)) > 1/4A. Finally,

dX[‘X2:$2 (0) < 4A2
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The next step is to get a bound on the first derivative of dx,. This is possible only if g; is
also bounded by A and the model is large enough.

Lemma 8.29. Suppose that max(||fillco, ||91]lcc) < A and that S is a Sawtooth model with at
least four particles. Then there exists a constant R4 only depending on A such that for any
event X depending on {Xiy1,Y:}i>2,

1(dx,x) loo < Ra.

Proof. For exactly the same reasons as in the previous proof, it suffices to bound the derivative
of the density conditioned on X = {Ys = y2}. The expression of the density probability yields

f hiy lele yz( 1)dy1 ‘
fo (f Ay dY1|Y2 y2( 1)dy1> dx

dXI|Y2:y2( T) =

Let A = fol (le fiyr — z)dy; |vy—ys (yl)dyl) dx, which is independent of z. Then

9
’8 dx, Ya=ys / J1(y1 — z)dy; |vy—y, (y1)dy1 |
|/ f1 Y1 — @))dy,|vy=y, W1)dy1 — f1(0)dy; s, vo=y, (2)]
1
<3 (1]~ 100 = )iyl + O] ).

Let us first bound the numerator. By the expression of the density of Y7 conditioned on Yy = o,

Ffl (yl)dY1,8y1<;|Y2=y2 (yl)

)

dyl [Yo=y2 (yl ) =

with Y7 having the density dy17SY1<_|y2:y2. Since g1 is bounded by A, from Lemma

‘dY178Y1<—|Y2 | < Ka. From Lemma dy; Sy, Vo= (y) is increasing in y, and |F} | < A,
thus Ey, (Fy, (V1)) >

7) A2 and

|1(0)dyy sy, |va=ys (@)] < 4A%K?.

Let us bound also the first term of the sum: f; being increasing, %fl (y1 —x) < 0 and we can
thus remove the absolute value in this first term. An other application of Lemma yields:

1 1
/x —(ai,fl)(yz — 2)dy; |yy=y, (y1)dy1 < KA(/x (aifl)(w — x)dys)
< Ka((i(l—x) = f1(0)) < A x Ka.

The numerator is thus bounded by AK4 + 4A2Ki.
Changing the order of the integrals in A yields :

1
AZ/O Fr (y1)dyy | vo—y, (Y1) dy1 .-
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Since F }1 is bounded by A and Fy (1) = 1, we can conclude as in the previous proof that
Fy (t) > 55 on [L — 1/(24),1]. Moreover, Y; is an upper particle, and thus by Lemma
dy |va—y, (y1) is increasing in yo. Since f[o 1 dy,|ys=y, = 1, this implies that

1
1
d — dy; > —
/1_1/(2A) Yl\Yg—yg(yl) Y1 = 1

and yields A > ﬁ. The bounds on the numerator and on A yield :

0

|%dXI|Y2:y2 (z)] < 4A4%(K4 + 4AK3).

As an application of Lemma we can also prove that y — Fy |x,—,(t) is Lipchitz :

Proposition 8.30. Let S be a Sawtooth model with k > 3 lower particles. Suppose that
{f1,91, fr, g} are bounded by A > 0. Let Ry be the constant of Lemma[8.29 (with Ry > 1).
Then on a neighbourhood [0,1/R 4] of 0,

. [0’ 1/RA] - (C([O’ 1]7R)7H'H)
7 { Y = Fxi|xp=y

is Lipschitz with a Lipschitz constant Ba only depending on A.

Proof. Tt suffices to prove that for x € [0,1], y = dx,|x,—,(®) is Lipschitz on [0,1/R4] with a
Lipschitz constant independent of x.

From Lemma dx, is decreasing and thus on [1/Ra, 1], dx, < dx,(1/Ra). From Lemma
8.29 |5dxy(y)| < Ra and thus on [0,1/Ra], dx,(y) < dx,(1/Ra) + Ra(1/Ra — y). This
implies that

1/Ra 1
/ dx, (y)dy < / dx, (1/Ra) + Ra(1/Ra — y)dy + / dx, (1/R4)
[0,1} 0 I/RA

1

< _—
<dx,(1/Ra) + SR,

Since f[o,l] dx, =1, this implies that dx,(1/R4) > 1 — ﬁ, and thus that dx, > 1 — ﬁ on
[O’ 1/RA]

From Lemma ”a%dXF\XIZwH < R4. Thus, since || f1|| < A, this yields by applying Lemma
on dx,, xp T,y) = dXFIXI:’E(y)dX[ (z):

d
’@dxlyXF<$7y)| < KaRa.
Thus, on [0,1/Ra4],
d 1,9 dx; xp (2,9) &dx ()
’%dXI‘XF:y(x)| _m|@dXI7XF (z,y) — dXF(y) |
1 RAK?,
<———(K — ).
11— 1/(2RA)( ARa+ 1T 1/(2RA))
Set By = W(KARA + %). Then F is B4—Lipschitz on [0,1/R4]. O
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8.5.2 Behavior of {X;} for large models

The purpose of this subsection is to find for a model S a large set of intermediate particles { X, }
for which one of these particles is close to 0 with high probability and such that Fx, x,—¢ is
essentially the same for all particles of this set.

The first part is a essentially probability computation :

Proposition 8.31. Let n > 0, > 0. There exists Ng such that for any model S of size N
larger than No + 4 and for any 2 <r < N — Ny, yr+n, € [0,1],

IP)( U {Xl < 77}|}/T+N0 = y?“JrNo) >1-—e.
r<i<r+Np

Proof. Let Ny be an integer to specify later and let S, r be as in the statement of the Proposition.

Let P = P(ﬂrgingrNo{Xi = nHYrNo = Ur4o)-

Let 0 < yp—1,...,Yr+N, < 1 and condition (ﬂr§i§r+No{Xi > nHYr+N, = Yrtn,) on the event
(r—1<i<rin,—11Yi = yi}. We denote by Py the probability of this conditioned event. By
Lemrﬁa the random variables {X;},<;<,+n, are conditionally independent given the value
of {Yi}r_1<i<n,; therefore,

r+No
Py= ] P(Xi = nlYii1 =yi1, Y = ).
i=r
Moreover, Lemma yields that dx,y, ,—y, ,v,i—y is decreasing: thus, P(X; > n|Y;—1 =
Yi-1,Yi = yi) < (1 —mn). This yields

Py < (1—n)™*

Integrating Py with respect to y,_1,...,yn,—1 gives P < (1 —n)Notl. Let Ny be such that
(1 —n)No+l <&, For N > Ny,

P( U {Xl < 77}|}/;“+N0 = yT+N0) >1l-—e
r<i<r+Ny

O

As said before, it is also necessary that Fx,|x,—o remains almost constant among this subset
of particles. This is possible for large Sawtooth models, thank to the monotonicity results of
Proposition |3.20] :

Proposition 8.32. Let A,e > 0, M € N*. There exists N. o nr such that for any Sawtooth
model bounded by A and of size N > N am, there exists 1 < r < N — M such that for
r<ij<r+4+M,

1 EFx;1x=0 — Fix;ix,=0llc < €.

Proof. Let S be a Sawtooth model bounded by A and of size N.
Denote by F; the function ¢ +— Fx | x,—(t) for 2 < i < N. By Lemma all the F; are
K 4—Lipschitz. Let K = L%J It suffices to find r > 2 such that for all » < i,j <r + M, and

all0 < k< K,
k k €
Fi(—) - Fj(=) < -.
()~ Bl < 5

Denote by v; € [0, 1]5F1 the vector (Fj(£))o<k<x and let Neapr = (M +1)(| 2]+ 1)K+ Sup-
pose that N > N. 4. For m € [0, |2]]5+1, denote by Cy the hypercube {Z € [0, 1]X+1|v1 <

200



i< K4+1,mig <o < (mi+1)5} {Calae, 341 18 a partition of [0, 1]5F in ([ 2] 4 1)K*!
subsets. If v; and v; are both in a same Cy, then for all 0 <k <K, |vi(k) —vi(k)] < 5.
Since N > (M +1)(|2] 4+ 1)%+1, Dirichlet’s prmmple yields the existence of mg € [0, L%J]]KH

such that #({viti<i<nv N Cmy) > M + 1. Let iy < --- < ip be such that for all 0
vi; € Cpoi in particular, ip; > i9 + M. From the previous paragraph, for all 0
|viy, (k) — vi (k)| < 5. By Proposition F,(%) is decreasing in ¢; thus, since v;(k) = FA%
forallig <j<ipyandall 0 < k< K

Vi (k) > vi(k) > viy, (k).

Since ig + M < iy, this yields [[v; — vjljcc < § forig <i4,j < ig+ M. O

8.5.3 Proof of Theorem [8.27]

Theorem is a consequence of the following proposition :

Proposition 8.33. Let A > 0. For all € > 0, there exists a number Na. > 0 such that for any
Sawtooth model S bounded by A and with 2k > N4 particles, the following inequality holds:

’FX1|XF=y(t) - FXI(t)’ <e.
for all t,y € [0,1].

Proof. Set n = mf( e BE ) with R4, B4 the constants given respectively by Lemma and
Proposition [8.30] Let No be the constant glven for n and e by Proposition [8.31] Finally, set
Nae = Ngja.an, + 4 given by Proposition

Let S be a Sawtooth model bounded by A of size larger than N4 .. Then by Proposition
there exists 2 <r < Ny, — 2 — Np such that for all » < 4,5 <r + Np,

1 Fx;1x=0 — Fix;ix,=0llc < €.

Denote t = r + Ny and let y; € [0,1]. For r <i <r+ Ny, set L; = {X; <nnN{Vs >i, Xs > n}}.
Note that L; N Lj = for all i # j and (J L; = L with L = U, ;<. n,{Xi < n}. Moreover, since
L; is (X, Ys)s>i—measurable, by Lemma conditioning X; on {X; = u,Y; = y:} N L; is the
same as conditioning X; on {X; = u}. Thus,

n
||FX1|L1',Yt:yt - FXI|X7-:0H°° =|l /0 (FXI|Xi:u - FXI\XT-:O)dXﬂLth:yt (w)dul[o

n
< /0 1P, s — Fxyp,—olloodos 1, 13y ()

<2e

Y

by the choice of 1. Recall that if A =] A;, with A; disjoint events, then for any event C,
P(ClA) =) P(C|A:)P(A;]A)
In particular, for L = |J, L; this yields

1 Fx 10, yi=y — Fxpx,=oll =l Z(FxllLi,Yt:yt — Fx1x,=0)P(Li| L, Yy = yt) [l oo

i

< Z I(Fx 1L, vi=y: — Fxy1x=0llocP(Li| L, Ye = yt)
7

<2e.
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By Proposition and the choice of Ny, P(L|Y; = 3;) > 1 — ¢, and thus
1%, vimye = Fxypx=olloo < 32
By averaging on y; with the density dyt| Xp=y We get
1F'%, 1 xp=y — Fx;lloo < 4e.

O]

Let us end the proof of the Theorem [8.27], which consists essentially in a rewriting in terms
of densities of the latter Proposition.

K2
Proof. Let A > 0,e > 0. Set g1 = (Z/RAA) and let S be a Sawtooth model bounded by A of

size larger than N4 ., (Na., being given by Proposition 8.33]). Then from Proposition for
y €10,1],

(e/Ka)?

—. 8.5.1
1R, (8.5.1)

1%, 1 xp=y — Fx;lloo <

Moreover, the following result holds for C!—functions on [0, 1]:

Lemma 8.34. Let f,g : [0,1] — [0,1] be two C'— functions, such that ||f'|co|lg[|cc < M.
Then for e > 0 small enough, if F,G are two primitives of f,g and

82

F— <=
H G||0074M,

then ||f — glloo < e.

Proof. This is implied by proving that if f : [0,1] — R verifies || f|loco < % and || f"]|co < M,
then || f'||co < e. But the majoration on f” yields that if |f'(x)| > e,

xte/M x g2
max(| [ el | [ flope = S
T z—e/M 2
Thus,
2
5
max(|(z + /M), F@) 1@~ <fm)) 2 57
]
Applying this Lemma to (8.5.1) yields for y € [0, 1],
||dX1|XF:y —dx, e <e/Ka.
Finally,
5
dx, xp(2,y) — dx; (@)dx . (Y)| = |dxp (W) ||dx) | xp=y (@) — dx, (@) < KAK—A <e.
]
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8.6 Application to compositions

Theorem can be applied to the framework of compositions :

Corollary 8.35. Let A > 0, > 0. There exists n > 0 such that for any composition A of size
larger than n with every runs bounded by A,

lds, (z,y) — ds, (x)ds, (y)|| < €

Proof. Each run of A of length [ yields a density function 7; in Sy, and ||y||cc = ! — 1. Thus,
if any run of A is bounded by A, then all the density functions {f;, ¢g;} in Sy are bounded by
A — 1. It suffices then to apply Theorem O

The purpose of this section is to strengthen Corollary and to prove the following Theorem

Theorem 8.36. Let ¢ > 0, A > 0. There exists n > 0 such that for any composition A of size
larger than n with first and last run bounded by A,

s, (2, y) — ds, (x)ds, (y)]| < e (8.6.1)
This Theorem was Conjecture 1 in [I8]. The proof of Theorem is followed by some
applications.
8.6.1 Effect of a large run on the law of (X, Xr)

From Corollary [8.35] it is enough to prove that the presence of a large run inside the composition
disconnects the behaviors of X; and Xr. The main reason for this is the Lemma below: for
each composition A, denote by \* the composition A with a cell added on the last run, and by
A~ the composition A with a cell removed on the last run.

Lemma 8.37. Let A > 0 and let A be a composition with more than three runs and with the
first run smaller than A. If the last run of X is of size R,

K4
”dXI:SA - dXI,SA-s- Hoo < ﬁ,

where K 4 is the bound on the density of X; as defined in Lemma [8.28

Proof. Let us prove it in the case where the first run of X is increasing and the last run decreasing,
the other cases having the same proof. The expression (8.3.3) yields

fyl d(lexF),S/\ (:L’, Z)dz
1 .
f[071]2 (fy d(XI,XF),gA (a:,z)) dzdy

Thus, by integrating with respect to y and then changing the order of the integrals, this yields

dix;,xp).5,4 (T,Y) =

fol <f01 (X1,XF)S\ (m,Z)lygzdy) dz
f[O 1]2 <f0 X[,XF S €, Z)]-ygzdy) dl'dZ

(
fol d(x;,xp),8, (T, 2)zdz
‘f[o 1]2 d X17XF S)\( ;Z)Zdzd.')j

dXI»S)\-‘r (.’E)
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Factorizing by dx, s, (x) makes a conditional expectation appear and thus

Es, (Xp| X =2x)
ESA (XF)

dX175,\+ (‘T) =dx,,s, (z)

Moreover, Proposition yields

FZ1 < FXF‘Xlzﬂf < FZ27
with Fz, = I'"(F,,) and Fz, = ['"(yg). Since I~ (F,,)(t) = 1 — (1 — )% and I'~(yg)(t) =
1 — (1 — )1 by stochastic dominance, applying Proposition gives

1 1
E < ESA(XF’XI = l’) < j

=y

Integrating the latter result on z yields % <Es, (XF) < ﬁ, and thus

R—1 _Es(Xp[X;=2) _ R
R ~ Es(Xp) ~R-1

This yields
1 Ky

1.8, () — dxy 5, (2)] < s, () 7 < s

O

In particular, the previous Lemma can be used to bound the conditional law of the first
particle with respect to the last one. For each composition A, and any cells 7, j € A, denote by
A (resp A, resp Ai;) the composition consisting of the cells of X from 1 to ¢ (resp. from
i to n, resp. from i to j). Moreover, denote by R;,:(\) the set of all runs of A except the first
and last ones.

Proposition 8.38. Let A > 0 and A a composition with first run bounded by A. Then

Ky
maxcr o 1(5) — 2

||FX]|XF:$ - FX[HOO S

Proof. Let t € [0,1]. Let sp be the run with maximal length R in R;,; and let iy be the rightest
cell of this run. This cell corresponds to a particle X; or Y; in §). Let us assume without loss
of generality that this particle is a lower one. From Proposition Fx,|x,=2(t) is decreasing
in z and thus

|Fx | xp=a(t) — Fx, (t)

Py, x e () — /X Fu, ixpes (D) dxp (2)dz]

F
<|Fx;1xp=0(t) = Fx;|x=1(1)]
SFXI‘XFZO(t) - FX[|Yk=1(t)'

Moreover, from Proposition [8.18 and Proposition [8.20]
Fx ixp=0(t) < Fx; 5,5y, (1) < Fx;.85,-v:(t) < Fx;|x,=0;

and
FXI|Yk:1(t) > FXI73A—>X1¢ (t) > FXI73)\—>X1' (t)
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These inequalities imply
‘FleXF::c(t) - FXI (t)‘ < FXI|Xi:0<t) - FXLS/\_>X1' (t)
From the expression (8.3.3)), Fix, s,-x,(t) = FXLS)\_H-O (t) and Fy, x,—0(t) = Fx,s _ (t). Thus,

—iQ

with the previous Lemma, since the last run of A\~,; is of size R — 1,

Ky
[ Fxpixp=e(t) = Fx, (0] < [Fxps, () = Fxys - (O] < 5=
*>’LO

8.6.2 Proof of Theorem [8.36]

The latter Proposition together with Lemma W yields Theorem in case d/XI remains
bounded. However, the bound of the derivative in Lemma [8.29| requires also a bound on the
second run, and the latter is not assumed in our case. We should thus deal with this case before
getting the general proof. Let us first consider a particular case.

Lemma 8.39. Let \y be the composition with three runs of respective length 2, b and 2, and
dp(2,y) = dx, |v,—y(x). Then the following convergence holds:

lim sup (dp(z,y) — (1 — 2b)) = 0.

b—o0 [071]2
In particular, the asymptotic independence :

lim sup (dp(z,y) — dp(x,y’)) = 0. (8.6.2)

b—o0 x’y7y/

1s valid.

Proof. After integrating in the coordinates of the particles inside the composition :
1-a2"— (1 -9+ ((z —y) A0)"
1-1/0+1))A - 1=y +y/b+ 1)1 -y
Let us show that blirgo dy(z,y) — (1 — 2b*1) = 0 uniformly in x and y. In the denominator of

(8.6.3)), letting b go to 400 yields

(1= )= (=) + 5/ B+ (1 =)~ 1= (1= 1),

dy(z,y) = (8.6.3)

with the equivalent being uniform in x and y. Indeed

y/0+DA-y® 1 (Q-y® 1

I—(1—y)P  b+1yb i gk b+l

Since for x € [0,1/2],y € [1/2,1], dp(z,y) converges uniformly to 1, it suffices to consider in the
sequel that x € [1/2,1] and y € [0,1/2]. Let A be defined as

L—a®—(1—y)’+ (z—y)

Awy) = -
P G Ok _(—y)’ - (1 -y’
B T R A e (e
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A derivative computation shows that A(z,y) < %, which proves the uniform convergence. Since
Tim [ (z,9) ~ (1~ 7)) oo o2 =0,

lim sup (dp(z,y) — dp(z,y")) = 0.

b—oo %y/7$
O

From the latter result can be deduced the asymptotic independence with a large second run

Lemma 8.40. Let A, > 0. There exist By € N such that if \ is a composition with at least
three runs, the extreme runs bounded by A and the second run larger than Ba, then

ldx; xr — dx,dxplloo <€

Proof. Let A be a composition with first run of length a and second run of length b. From the
definition of the density dx, x, in (8.3.3), conditioning the law of X; on the position zp of the
particle P = a + b yields
I (fozlAy(Z1 — )" (21 - ZQ)””sz) dz
dX1|zp=y(‘r) = Z

Let 2 < a < A. Then
S (u = )23 dy (u, y)du
ﬁ fol us=2dy(u, y)du

From the first part of Lemma |dp (1, ) — (1 —u’)| —p_s00 O uniformly in u and y, and thus

dX[‘:Bp:y(x) =

1
a—2

1
(a—2)(a—1)"

uniformly in y. Since a is bounded by A, and from the second part of Lemma [8:39]

1
/wﬁ&mmméﬁm
0

HdXI\:vp:y - dXI\xp:y’Hoo < A? Sulp (db(xvy) - db(x7y/)) =0
y7y 7'7:

uniformly in y. Thus, for b large enough, ||dx,|o,—y —dx,|z,—y || < €/A for all y,y; then averaging
on the law of x;, conditioned on Xr = y yields |dx,|x,—y —dx,|x,=y| < /A for all y,y'. Finally,
this implies that

”dXLXF - dXIdXFHOO <e.

The proof of Theorem [8.36]is just a gathering of all the previous results :

Proof. Let A,e > 0. Since the first and last runs are bounded by A, any composition large
enough has at least three runs. Let B4 be given by Lemma R be the associate constante

given by Lemma|8.29|for By, and set C' = %. Finally, let n be the integer given by Corollary

for compositions of runs bounded by C. Suppose that A is a composition larger than n. By
Lemma if the second run is larger than By, (8.6.1)) is verified. Thus, we can suppose that
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the second run is bounded by B4.
If X has a run larger than C, then from Proposition [8.38

Ka _ (e/4)°
HFX1|Xp:z_FXIHOOSC_1 < AR

But from Lemma d, is bounded by R, thus the latter inequality yields with Lemma W

HdXI\szy - dXIH S 8/‘A

And dx, being bounded by A, this yields (8.6.1).
Thus, we can assume that all the runs of A are bounded by C. Once again by the choice of n

and Corollary (8.6.1)) is verified. O

Note that we actually proved something stronger than Theorem [8.36] namely :

Corollary 8.41. Let A,c > 0. There exists ng such that for every composition A of size larger
than no and first run bounded by A, and for all y,y' € [0,1],

”dX1|XF:y - dX1|XF:y’H <e.

8.6.3 Consequences and proof of Theorem 8.3

Here are some interesting consequences of Theorem Let us first remove the constraints on
the extreme runs.

Lemma 8.42. Let € > 0. There exists n > 0 such that for all compositions larger than n with
at least two runs,
sup  ([[Fx; | xp=y — Fx | xp=y'lloc) < €
(y.y)€l0,1]?
Proof. Let R be the length of the first run of a composition A. From Proposition applied
to S)\,
1- (1 - t)R < FX1|XF=y(t) <1- (1 - t)Ril'

Since supjo,1) (ufi=! —u®) =R . 0, there exists A such that for any composition with first run

larger than A,

sup || Fx, xp=y — x| xp=y loc < €.
[0,1]2

Applying Corollary to A, e yields that there exists n such that for any composition larger
than n,

sup || Fx,; | xp=y — x| xp=y loo < €.
[0,1]2

O]

This result can be adapted to show that the law of the first particle depends only on the
neighbouring particles : for any composition A of size N, and n < N, denote by A(n) the
composition A\ containing only the n first cells.

Proposition 8.43. Lete > 0. There exists ng > 1 such that for any n > ng and any composition
A of size larger than n with first run smaller than n,

S Sx(n
HFX}\ _FX/]\( Moo <e.
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The proof consists only in an averaging of the inequality of the previous Lemma.
We will close this chapter by proving Theorem
Let A be a composition and let s = [[i1,i2] be a run of \. For a cell i in s, the position of ¢ in
s, denoted by a;, is the ratio a; = ZZ;_Z;I (resp. :;%Zl) if the run is increasing (resp. decreasing).
When a run is large, the behavior of a cell in this run is approximately frozen:

Lemma 8.44. Let € > 0. There exists R. > 0 such that for any composition A of n and
1 <1i <n such that i is in a run s of size larger than R.,

P(|0A(i)

—ai’25)§€a

where a; is the position of i in s as previously defined.

Proof. Let A be a composition of n, and let 1 < ¢ < n be a cell of X in a run s of length R.
Let i1 < i9 be the extreme cells of the run s and suppose without loss of generality that s is
increasing. We use the probabilistic model Sy of Section m By Lemma it suffices to
prove that for R large enough,

P(|Z¢ — (LZ'| > 5) <e.

Conditioning Z;, on the value of Z;, 1 and Z;, gives the conditional expectation:

22 I\ R-2g )
E(Z'M’Z’Ll—l = Z7Z’i2 — Z/) — 0 -’B(Z ﬂj) €T <1

J (2 = o) B2de T R

where the last bound is given by a computation of the integral. Since the bound is independent
of z and 2/, for R large enough P(Z;, > ¢) < e. Likewise, for R large enough, P(Z;, <1—¢) <e.
This gives the result if i = iy or i = i5. Suppose that i # i1 and i # 5.

Conditioned on the value of Z;, and Z;,, the law of Z; is

1z§x§zl(z/ _ :L‘)iz—i—l(l, _ z)i—il—l
!

[7 (2 = a)ie=i=Y(z — z)i=0—1dx '

dZi|Zi1:z,Zi2 :Z, ($) =

Thus, by a computation, the conditional expectation of Z; — z is

1—1

E(ZZ- —z2|Zi, = 2,24, = z/) = (¢ - z)i2 e

and the conditional variance of Z; — z is

1 — 1 11—t + 1 L — 11 1
Var (Z; — 2| Zi, = 2, Zi, = 2') = (' — 2)? B < (s — 2L
ar( i — 2|2, = 2,2, z) (' = 2) sl S e < (2 —2) 7

Thus, for R large enough, P(|Z; — (Z;, + ai(Zi, — Z;)))| > €) < e.
By the first part of the proof, for R large enough P(Z;, > ¢) < e and P(Z;, <1 —¢) < ¢; thus,
for R large enough,

P(|Z; —ai| >¢) < ¢

O]

We can improve the result of Corollary by considering the case of a cell in the middle
of a composition.
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Lemma 8.45. Let € > 0,R > 0. There exists kr > 1 such that for any composition A and
1 <j1 <i<ja<n such that i is in a run bounded by R and |i — j1],|j2 — | > kg, then

||dZi‘Zj1:,21,Zj2:ZQ - dZi|Zj1:zi,Zj2:zé”OO S €
for all 0 < z1, 29,21, 25 < 1, where Z; is the random variable corresponding to the particle i in
Sy. Likewise,
and
||dZi‘Zj2:ZQ - dZ¢|Zj2=Zé”OO <e
for all 0 < 21,29, 21,25 < 1.
Proof. We will only prove the first part of the Lemma, since the proof of the second part is a

simpler version of the one of the first part.
Let A be a composition and let 1 < j; < ¢ < js < n be three cells of \. By the expression of the

density in ({8.3.3)),

dXF\X1=21,5u1 (x>dX1|XF=Z2,5V2 (DL')

)

dz,12; ==,2;, =2 (T) = =3
R 2 Jo dxpxi=21.8., (0)dx; | X pmzy S0m (T)d

where 11 = A\, ; and vo = \;j,. Since i is in a run bounded by R in A, 7 is in a run bounded
by R in v; and in v,. Therefore by Corollary there exists n. such that if |v1| > n. and
|va| > ne, then

HdXF|X1:zl,V1 - dXF|X1:zi,l/1 HOO <e
and

||dXI|XF:22,l/2 - dX1|XF=zé,I/2||OO < g,
for all 0 < 21, 22, 21, 25 < 1. Moreover, by Lemma|8.28} dx, |x, =, ,, is bounded by some constant
K only depending on R, and the same holds for dy,|x,—z,.,- Therefore

||dXF|X]=z1,I/1 (x)dX”XF:Zz,Vz (‘T) - dXF‘XIZZi,l/l (x)dX[‘XF:Zé,VQ (x)HOO S 2A€

for 0 < z1, 21, 29, 25 < 1. In particular,
1
|/[) dXF|X[:Z1,I/1 (:B)dXI‘XF:ZQ,VQ(:L‘) - pr‘X]:Zi,IA (x)dXﬂXF:Zé,l/z (l’)dl" < 2Ae.
Set

1
AZLZQ = A dXF|X[=Zl,I/1 (x)dXI‘XF:ZQJ/Q (x>dm7 321722 = dXF|X[=Z1,l/1 (x)dXﬂXF:ZQ,I/Q (x)

By the above computations,

|le,22 - Bz{,zé’ <|BZ1722 _ Bzi,zé | + |Bzi,zé _ Bzi,zé|
AZ1,22 Azi,zé B AZ1,22 Azl,zz AZ1,Z2 Az{,zé
2] ,2}
<7 (2Re) + ﬁ(st).
21,22 21,224727,%29

/ /!
21179

It remains to show that ﬁ and are bounded by a constant only depending on

21,22 14zll,z/2

R. Since ¢ is in a run bounded by R in v and vs, |B,, ,| is bounded by K?, where K is the
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constant given Lemma, for a run of size R.

Let us show that A, ., admits a lower bound only depending on R; suppose without loss of
generality that the run of A containing i is increasing and that ¢ is not an extreme cell. Let R
be the length of the run containing ¢ in v and let Ro be the length of the run containing i in vy;
since these both runs are part of the run of ¢ in A, they are both increasing and R; + Re = R+ 1.
By Corollary 7 thh < FXF\X1=Z1,V1 (t) < =1 and 1 — (1 - t)R271 < FX[\XF=Z2,V2 (t) <1-
(1—t)F2 for0 < ¢t < 1. By Lemma dxX | X ;=2 1, 18 Increasing and dx;|x =z, ., i decreasing,
thus Fx,|x,=z ., i convex and Fy, | x,—., ,, 1S concave. The convexity of Fix | x,—., ., yields

that
FXF|XI:ZLV1 (t) - FXF|XI:ZLV1 (O)

; R;—1
FXF‘X[:zl,Vl (t) e t _ 0 Z t 1 .
Likewise, the concavity of F | x,—., ., yields that
F (1) = F _ t
F)lfllszzz,yg(t) > X1|Xp=22, 2( i_ . X1|XF 2271/2( ) > (1— t)RQ*l,
Therefore,
1
Ry — DI(Ry — 1)! 1
Az1,22 2/ fl?Rlil(l —x)RQ*ldx — ( 1 ) ( 2 ) >
0

(Ri+Ry—1)! — (Ri+Ry—1)
Since Ri + Ry —1=R, A;, ., > ﬁ. This yields

B Bz’ A
22 - S < 0Re) (R + K3(RY?),
21,22 2]

!
1:%2

Thus, if min(|v1], |v2]) > ne, then
2,12, =21,2,,=22 — Q2,1 2,, =1 2,,==4 o0 < (2Re)(R! + K*(R!)?),

for all 0 < 21, 29, 21, 25 < 1. Setting kr = Ne/(2R(R+K2(R)?) &ives the appropriate constant for
the statement of the Lemma. O

We can now prove Theorem

Proof of Theorem [8.3. The proof is done by recurrence on .

Let r = 2. Let ¢ > 0 and R. be the constant from Lemma Let A be a composition of n
and let 1 <i < j < n be two cells of A\. If i and j are both in runs larger than R, then by
Lemmam7 IP(]U*T(” —a;| >¢) <eand IP’(]GAT(]) —aj| > ¢) < e. Therefore,

- <M (UA i)’ U/\(j)> ’M(UATEZ')) ®M(‘7>\(j))) < <M(U>\(i)’ A(j))’éai © 5aj>

Q

n n n n n

A 7’)) ®M(U>\(]))) < %e.

n n

Q

+7 <5ai 029 5aj7:u’(

Suppose without loss of generality that ¢ is in a run smaller than R.. On the one hand, for
0<t,t2 <1,

to t1
Fy,.z,(t1,t2) — Fr,(t1)Fz, (t2) = / ( A1z, () — dz, (:L‘)d:r> dz, (y)dy.
0 0
On the other end, by Lemma there exists k such that if |j — | > k,
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for any 0 < z,2" < 1. Therefore, for [j —i| > k, ||dz,z,=y — dz;|cc < € for 0 <y < 1. This yields

to
|Fz,,2;(t1,t2) — Fz,(t1)Fz, (t2)] < / tiedz; (y)dy < e.
0
In particular,
T (1(Zi, Z5), 1(Zi) @ w(Z;)) < e.

Lemma [R.16] concludes the case r = 2.
Suppose that » > 2. Let A be a composition and let 1 < iq,...,%. < n be distinct cells of . If

i1,...,% are all in runs larger than R., by the same reason as before
ox(2 ox(2 ox(2 ox(2

W(M( )\(l)w"? )\(T)>a,u( )\(1))®®M( )\(T))>§25'
n n n n

Suppose without loss of generality that ¢, is in a run bounded by R., and let k be the constant
associated to R in Lemma By recurrence hypothesis, there exists kq such that if i; —i;_1 >
ki for 2 < j <7 —1, then

T (M(Zin R Zi'r—l)’ M(Zh Q& M(Zir—l)) < €.

On the one hand for £ € [0,1]",
F(Zi)lgigr (5 - FZiT (t””)F(Zis)s<r((t5)5<"")

:/ 0] (dZi7.|Zi5:l’s7S<7“(mT) - dZir ($r)) d(ZiS)s<r(($S)s<7‘) H dz,.
TsE s

s=1

By Formula ({8.3.3)), Az,.|Z;, =a1,. Ziy -1 =27 () = dZiT|Zia:xa7Zib:mb (z,), where a and b are such

that i, is the cell of {il, ... ip—1} directly before i, and iy is the cell of {i1,...,4,—1} directly
after i,. By Lemma [8 1f iy —iq > k and iy — i, > k, then

Hde‘T|Zia=$a,Z' - dZir HOO S e

i, =Tb

Thus,
FZicoer ) = Fa, (60 Fiz, >s<r((ti)i<r)|§/ 0c ed(z,)e (x)s<r) [ [ ds <,
Ts€ s],s<r s<r

which yields
T(1(Ziys - -5 Zi )y i Zi) @ pl(Ziy)s<r)) < €
Finally,

(W (Ziyy s Ziy) s i Ziy) @+ @ u(Zi,) < 7w (Ziys -5 Zi)  1(Zi,) @ u((Zig ) s<r)
+1 (1(Zi,) @ u((Zi,)s<r), i(Ziy) @ -+ - @ u(Z;,)) < e+¢e < 2e.
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Chapter 9

Martin bounday of Z

9.1 Introduction

The lattice Z of zigzag diagrams is a graded graph whose vertices of degree n are labelled by
compositions of n (which can be seen as ribbon Young diagrams). The study of this kind of
lattices drew increasing interests these last decades, due to their interactions with representations
of semi-simple algebras and with discrete random walks. In particular an other example of graded
graph, the Young lattice ), has been deeply studied by Vershik, Kerov and other authors (see
[47] for a review on the subject), yielding major breakthroughs on the representation theory of
Soo and on the asymptotic study of certain particle systems. As explained in [42], the lattices
Z and ) are somehow related, since the latter can be seen as a projection of the former.

The connection between the lattice structure and its probabilistic applications is made through
the study of harmonic functions on the associated graph. One of the first tasks is therefore the
characterization of harmonic functions on the lattice ; it is then possible to single out particular
harmonic functions and study the random variables they generate. A general framework for the
representation of harmonic functions on a graph E has been initiated by Martin in [61], with
the concept of Martin boundary dj; F and minimal boundary 0FEy,,: the Martin boundary is a
topological space coming from the graph and allowing to establish a bijection between positive
harmonic functions and measures whose support is included in a particular subset of Oy F.
The latter subset is precisely the minimal boundary dFn,. It is therefore important to know
both Oy F and OFyi, to provide a topological and measure theoretic approach to the kernel
representation of harmonic functions (see [34] for an exhaustive review on the subject).

In general 0F,, is strictly included in 0j;E. However in many cases the two coincide, as it
happens for example for the lattice ). In this chapter we prove that the two boundaries also
coincide for the lattice Z. The minimal boundary of Z has already been described by Gnedin
and Olshanski in[42], through the so-called oriented paintbox construction, and thus it remains
to prove that any element of the Martin boundary fits in this construction. As an application
we provide a precise link between harmonic measures on ) and harmonic measures on Z: this
link was already exposed in [42], and in the present chapter we explain this relation by mapping
directly paths on Z to paths on ). Finally we study the behavior of a random path with respect
to the Plancherel measure by providing a Central Limit Theorem.

Section 2 and 3 are devoted to preliminaries : the first gives necessary backgounds on Martin
boundary, and the second describes the graph Z together with its link with compositions. The
results of Gnedin and Olshanski on this graph are given in Section 4. In this section we provide
also the pattern of the proof for the identification of the Martin boundary.

The proof heavily relies on combinatorics of compositions. In particular the Martin kernel of
Z, a two parameters function that characterizes the Martin boundary, is related to standard
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fillings of compositions. Two constructions are needed in order to identify the Martin boundary:
Section 5 deals with the first one, which is the construction of a sequence of random variables
that relates the Martin kernel to the oriented Paintbox construction of Gnedin and Olshanski.
The second one has been done in Chapter 8 and is a general framework that gives combinatorial
estimates on compositions. Some results of Chapter 8 are recalled in Section 6. Section 7 and
8 show the identification of the Martin boundary. Finally Section 9 gives the map between
paths on Z and paths on ) and exposes probabilistic results associated to a particular point
of the Martin boundary, called the Plancherel measure (due to its relations with the Plancherel
measure on the graph ).

We should stress that, as it has been explained to us by Jean-Yves Thibon, the map between the
paths on the two graphs appears clearly by using the algebra FQSym of Free Quasi-Symmetric
functions; although this algebra won’t be described in this chapter, the interested reader should
refer to the Chapter 3 of [35] for an introduction to FQSym and an explanation from a Hopf
algebraic point of view to the construction we are doing in Section 9.2 of the present chapter.

9.2 Graded graphs and Martin boundary

This section is a discussion that introduces the concept of Martin boundary and motivates its
role in the framework of graded graphs. All these results and proofs can be found in [34].

9.2.1 Graded graphs and random walks

The notations used here are from [79]. A rooted graded graph G is the data of a triple (V, p, E)
where :

e V is a denumerable set of vertices with a distinguished element .
e p:V — Nis a rank function with p=*({0}) = {uo}-

e The adjacency matrix E is a V' x V-matrix with entries in {0, 1}, such that E(u,v) is zero
if p(v) # p(p) + 1.

We write u /v if E(u,v) = 1. A path on G is sequence of vertices (u1,. .., fin, ... ) of increasing
degree such that for all ¢ > 1, pu; * p;41. For a given graded graph the paths counting function
d :V — N* is the function that gives for each vertex pu € G the number of paths between pg and
1. When the endpoints of a path are not specified, the path is considered as an infinite path
starting at the root.

There is a natural way of constructing random walks that respect the structure of the graph
G : such a random walk starts at pg, and at each step the successor is chosen according to a
transition matrix P, with the condition that P(u,v) =0if E(u,v) =0and ), P(p,v) = 1.
Thus each transition matrix P associates to any path A = (ug 1 -+ pn) a weight py which
is the probability of the realization of A, namely

1
pa=P(Xo = po, X1 =p1,..., Xpn = pin) = EP(MOJM) oo P(pn—1, pin)-

For some transition matrices P on G, the weight p(A) only depends on the final vertex of the
path (in this case we write p(A) = p(u) for any path A between pg and p); such a transition
matrix is called a harmonic matrix. In this case, a staightforward computation shows that p,
the associated weight function, must verify

p() =3 p(w), (9.2.1)
w/v
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and conversely, any positive solution p of such that p(pg) = 1 yields a harmonic matrix.
This can be interpreted in terms of potential theory.

Let X be a denumerable states space with transition matrix P. Let H(X, P)* (resp. M (X, P))
denote the set of positive harmonic functions (resp. positive harmonic measures), which is the
set of functions f : X — R satisfying >y Plx.y) f(y) = f(z) (vesp. >, f(2)P(z,y) = f(v)).
For each o € M(X, P) let the dual transition matrix P! be defined by the expression

a(y)

a(m)P(y,ﬁ),

Pl(z,y) = Lag)0

if z # y, and Pl(z,x) =1 — Dty P'(x,y). Then P! is indeed a transition matrix on X and
the following maps are well-defined:

[(H(X,P)" — M(X,P.)
a { h = (z— 1a($)>oﬁm)h($)) ’
and
(M(X,P) —  H(X,PH)t
M, : { m = (= alx)m(x))

The two maps are bijective if @« > 0 on X.

Let P be a transition matrix on a graded graph G; by a recursive computation there exists a
unique invariant measure ap with respect to P such that ap(ug) = 1. If P, is a harmonic
matrix, with p the associated weight function, then P(u,v) = 1#/1/% and o, = d(p)p(p).
Thus the dual transition matrix is

d(p)p(p) p(v) d(p)

L _ p\w) _ e
Fo, (1) = 1 o d(v)p(v) p(p) L d(v)’

In particular Pcflp is independent of p and, by H,,, any harmonic function of P comes from an
invariant measure of Pt. Conversely let o be an invariant measure of P!. Then the dual matrix
(Pt is exactly P, /d> the harmonic matrix associated to the weight function p = a/d. We can
check that the duality yields indeed a bijection between harmonic matrices of G and elements
of M(G, P!) taking the value 1 on py.

Thus the problem of finding the harmonic matrices on G is equivalent to the dual problem of
finding harmonic measures with respect to Pt. Moreover an answer to the latter problem gives
also by duality all the harmonic functions with respect to a harmonic matrix.

Fortunately a general framework, the Martin entrance boundary, describes exactly the harmonic
measures associated to a transition matrix.

9.2.2 Martin entrance boundary

Let us take a closer look at the Markov chain (G, P!). Let ng > 1 and v a vertex of degree
no. The random walk X = (X,,),>0 with transition matrix P’ and initial distribution 4, goes
backward from v to pg and stops at pg at the times ng. Let A be a path between pg and v;
from the definition of the kernel P!, the probability that X follows the path ) is independent of

. 1
A and is therefore F Ok

For p of degree m < ng, denote by d(u,v) the number of paths between p and v (and by
extension d(u,v) = 0 if the degree of y is larger than the one of v). By counting the paths going
from pp to v and passing through p, the probability that X,,,_,, = u is thus

d(p)d(ps,v).

P(Xno—m = /'L) = d(V)
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In particular setting a, () = % yields a measure o, that is harmonic with respect to P!,

except on the vertex v. To construct actual harmonic measures, it seems thus natural to look at
the behavior of a, when v — co. Making the latter rigorous requires to specify a convergence
mode for sequences of vertices of increasing degree. Let K,(v) = dflf;l;) be the Martin kernel of
G, and define on G the metric :

1
D(v1,vp) = Z W\Ku(m) — Ku(2),
m

I" being any injective function V' — N. Identifying v € V with K (v), V is seen through this
metric as a subset of the space of functions from V to [0,1] with the pointwise convergence
topology. Thus by Tychonoff’s Theorem the completion V of V with respect to D is a compact
space, and by construction K, extends continuously on this completion. Actually the completion
is exactly the set of sequences (v, )n>1 such that for each p, K,,(vy,) converges, with two sequences
(v))n>1, (V2)n>1 being identified whenever for each pu, K,(v}) and K, (v2) have the same limit.
Denote by dy/G the set V \ V. The latter is called the Martin entrance boundary of the graded
graph G and is a compact subset of V. Each element w = nh_}rrgo Vp, in O G defines a function on

V by the formula
w(p) = lim K, (v,).

The following Theorem is a special case of a Theorem from Doob ([34]).
Theorem 9.1. With the notations above, the two following results hold:

e There exists a Borel subset OninG C OpmG (called minimal boundary) such that for any
measure o harmonic with respect to Pt, there exists a unique measure Ao 0on OminG giving
the kernel representation

o= [ Kyxdra)

e For any reverse random walk (X,)n<o that respects P, the path (X9, X_1,...) converges
almost surely to a OminG—valued random wvariable X_o. Moreover the probability that
(Xn)n<o goes through p is exactly d(p)E(K,(X_)).

There exists a more general construction of the Martin boundary from Kunita and Watanabe

in [53], which encompasses the case of discrete random walks as well as more general Markov
processes (including the Brownian motion on a domain). However our situation is much simpler
and the previous Theorem is enough.
To summarize, the Martin entrance boundary gives a topological framework to represent har-
monic measures, whereas the minimal entrance boundary gives the corresponding measure the-
oretic framework. The situation is simpler when the two boundaries coincide. In the case of the
graph Z that we are studying, the minimal entrance boundary was already described by Gnedin
and Olshanski in [42]. The purpose of the present chapter is to extend this desciption to the
Martin entrance boundary by proving that the two boundary coincide.

9.3 The graph Z

This section is devoted to an introduction to the graph Z and its relation with sequences of
permutations. All the results from this section can de found in [42].
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9.3.1 Compositions

Let us first recall the definition of a composition:

Definition 9.2. Let n € N. A composition A of n, written A b n, is a sequence of positive
integers (Ai,...,A\r) such that > \j =n.

Let D)y be the subset of [1;n] defined by Dy = {A1, A1 + Ag, .. .,Z’fl Ai}. Since there is a
bijection between subsets of [1;n — 1] and compositions of n, D) is often simply denoted by .
To a composition is also associated a unique ribbon Young diagram with n cells: each row j has
Aj cells, and the first cell of the row j + 1 is just below the last cell of the row j. For example
the composition (3,2,4,1) of 10 is represented in Figure

Figure 9.1: Skew Young tableau associated to the composition A = (3,2,4,1).

The size n is included in the definition of composition itself, since n is equal to the sum of all
Aj. If we want to emphasize the size of a compostion A, we denote it as |A|. When nothing is
specified, X is always assumed to have the size n, and n always denotes the size of the composition
A

A standard filling of a composition A of size n is a standard filling of the associated ribbon Young
diagram: it is the assignement of an integer from 1 to n to each cell of the composition, such
that every cells have different entries, and the entries are increasing to the right along the rows
and decreasing to the bottom along the columns. An example for the composition of Figure[9.1
is shown in Figure 9.2

13]5]8

116]9]10
2

Figure 9.2: Standard filling of the composition (3,2,4,1).

In particular, reading the tableau from left to right and from top to bottom gives for each
standard filling a permutation o; moreover the descent set des(o) of o, namely the set of indices
i such that o(i + 1) < o(i), is exactly the set D). There is a bijection between the standard
fillings of A and the permutations of |\| with descent set D). For example the filling in Figure
[9.2] yields the permutation (3,5,8,4,7,1,6,9,10,2).

9.3.2 The graph Z
The graded graph Z, which was introduced by Viennot in [89], is defined as follows:

1. The set Z, of vertices of degree n of Z is the set of compositions of n. The vertex of
degree 0 is denoted 0.

2. Let A= (\1,...,Ar) and g = (u1, ..., 1s) be two compositions. There is an edge between
p and X if and only if |A\| = |u| + 1 and
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e cither 7 = s and for each i except one p; = A; (thus exactly one p;, is increased by
one)

e cither r = s+ 1, and there exists j such that: for & < j, A\ = g, A\j +Aj41 —1 = pj,
and for k > j, A\py1 = px (namely one p; is split, and one cell is added at the end of
the first piece).

The first four levels of Z are displayed in Figure [9.3

:

29 Z Zy Z3
Figure 9.3: Vertices of Z of degree 0 to 3.

For a composition A, let Q) be the set of paths between () and \. It has been shown in []9]
that Q) ~ {0 € 5),des(o) = Dy}. One way to see this is to remark that 2 is the set of all
standard fillings of the ribbon diagram associated to A. Thus these sets have same cardinality
and

d(A) =[] = #{o € S}y, des(0) = Dy}

Let Py denote the uniform distribution on €2y; from Section 2, this is equivalent to considering
the random walk starting at A\ with transition matrix P!. This random walk gives n random
variables a,i‘, 1 < k < n, each of them being the random path restricted to the vertices of degree
smaller than k.

Since there is a bijection between paths on Z from ) to p and permutations of |u| with descent set
D, each ag‘ is a random permutation in Sy, and the law of o) = ;) is the uniform distribution
on the set of permutations with descent set D). Moreover a counting argument yields that for
o € 6, with des(o) = D,,, under the probability Py,

Py(o} =0) = (9.3.1)

By abuse of notation a finite path starting at ) on Z and the corresponding permutation are
both usually denoted by o. In particular if o € 2y, o, denotes the path after k steps, whereas
o (1) will denote the image of i by the permutation associated to o (the same for o(A) with A a
subset of {1,...,n}).
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9.3.3 Arrangement on N

In this paragraph a permutation o € &y is written as a word in the alphabet {1,...,k}, where
i; =0(j). For k>2and o = (i1...i), 0 € S_1 is defined as the permutation (i ...K...ix).
If o € &,,, o), denotes the (n — k)—iteration of the |-operation : namely all the indices between
k + 1 and n have been erased.

An arrangement of N is a sequence (071, ...,0%,...) such that for all £ > 1, o, € &, and such
that the following compatibility condition holds :

(0k)) = Op—1-
For example the following sequence is the first part of an arrangement :
((1),(21),(231),(2341), (52341),...).

The set of all arrangements is denoted A. For k > 1, let 7 : A — &j be the map which
consists in the projection of the sequence (o1, 09,...) on the k—th element . A is considered
with the initial topology with respect to the maps 7, and with the corresponding borelian
o—algebra. Thus by the Kolmogorov’s extension Theorem, any random variable IT on A is
uniquely determined by the law of its finite-dimensional projections (7 (II), . .., mx(II)).

The result of the previous subsection yields that there is a bijection between infinite paths on
Z and arrangements of N, and from Section 2 this bijection extends to a bijection between
harmonic measures a with respect to P! and random arrangements II such that

P(m(IT) = o1, ..., m(Il) = ox) = p(des(ow)),

with p a positive function on Z given by p = 7. This correspondance is convenient since it

allows to describe the solutions of the problem (9.2.1)) in terms of random arrangements.

9.4 Paintbox construction and Minimal boundary

Thanks to the latter correspondance, Gnedin and Olshanski described the minimal entrance
boundary of Z in terms of random arrangements. This description is the purpose of the following
paragraph.

9.4.1 Paintbox construction

The description is based on a topological space consisting in pairs of disjoint open sets of [0, 1] :

Definition 9.3. The topological space U2 is the space
(U, U))|Us and Uy disjoint open sets of 10,1[}, d),
with the distance d between (Uy,U)) and (V4,V)) given by
AU T}, (Vi V2)) = sup(ditans (U, VE), ditans(UF. VE)).

Let My (U (2)) denote the set of probability measures with respect to the o—algebra coming
from the above topology.
From the definition of the metric, (Uy(j),U;(j)))j>1 converges to (V4,V))) if and only if, for
each € > 0, all of the following phenomena occur:
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e for j large enough, the number of connected components of size larger than ¢ in Uy and
V; are the same,

e the boundaries of the connected components of size larger than ¢ in Uy converge to the
ones of Vj,

e the same holds by switching 1 and |.

In particular (Uy(j),U;(j)) converges to (0,0) if and only if the size of the largest components
in Up(4) and U, (j) tends to 0. The following important result holds for ¢/(%):

Proposition 9.4 ([42]). U3 is compact space.

The minimal entrance boundary of Z is described by random arrangements constructed from
elements of U2,

Definition 9.5. Let U = (Uy,U)) be fized, (X1,..., Xk, ...) a sequence of [0,1]. For each k > 1,
ou(Xi,...,Xg) € 6 is defined by the following rule:

(cu(X1,..., Xp) "t () is less than (oy (X1, ..., Xk) " (4) if and only if one of the three follow-
1ng situations arises :

e X; and X; are not in the same connected component of Uy or U and X; < X
o X; and X; are in the same connected component of Uy and 1 < j

e X; and X; are in the same connected component of U and j < 1.

The random variable oy (X1, ..., Xk) defined for an infinite family (X1, ..., Xg,...) of indepen-
dent uniform variables on [0, 1] is denoted oy (k). The sequence
(ov(1),00(2),...) is denoted oy .

The construction of op(Xy,...,Xx) from (X1,...,X;) and U € UP is well-defined and
unique. If U = (0,0), o(pg)(X1,...,Xg) is just the permutation associated to the reordering
(Xi, < X;, < ...X;,). This permutation is denoted by Std~'(Xy,..., X}). For each k, the
random variable oy g)(k) has a uniform distribution on &.

The next Theorem is due to Gnedin and Olshanski in [42] (based on an important work of Jacka
and Warren in [45]) and identifies 2/(?) with the minimal entrance boundary of the graded graph

Z .
Theorem 9.6. Fach random variable oy defines a random arrangement A that comes from a
harmonic probability measure on (Z, P'), and there is an isomorphism :
D : Ml(u(2)) — Ml(aminz)
which restricts to a bijective map p : UP) — OpinZ mapping 6(UT7UJ,) to o, )

In particular for each k > 1 and o € &, P(oy (k) = o) only depends on the descent set p of
o and is thus denoted by py(u).

9.4.2 DMartin entrance boundary of Z

The question is to know if Opin 2 = OarZ. The problem is summed up in Conjecture 45 of [42].
To each composition A of n is associated an element Uy = (Up(\), U (M) of U?) as follows : for

each s <n—1set I, = [2=}, 2] and define

U(N) =int( |J L), U0 =int( |J 1),

iZdes(N) i€des(X)

with int denoting the interior of a set. Then the conjecture states the following :
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Conjecture 9.7. a) A sequence (A\y)n>1 is in O Z if and only if Uy, converges in U,
b) Uy, =y (U, U)) is equivalent to K, (An) — p,u,)(#) for all p € Z.

c) The Martin boundary of the graph Z actually coincides with its minimal boundary : Oy 2 =
U2

Actually, the only difficult part is to prove the first implication of b):
(Un, =y (Ur,U))) = (Ve € Z,Ku(M) = pw,u,) (1) (9.4.1)
Indeed suppose that the latter is true :

Proof.  a) Let w = (A\y)n>1 bein 0y 2. Since U@ is compact, proving the convergence of Ui,
in U®? is the same as proving that every convergent subsequences of U,, have the same
limit. Let (Ay(n))n>1 and (Ay(n))n>1 be such that

Uiy = (U3, U7), U,y — (UF,UR)

p(n)

Then by (9-41), for all 1 € Z, w(p) = py1 (1) and w(p) = pyz y2(p). Since p - UG —
OminZ 18 injective, necessarily (UTl, U f) = (UTQ, Uf) This shows that Uy, converges.
Conversely if Uy, converges in U (2)| the assumption ([9.4.1)) implies directly that (\,) €
o Z.

b) The direct implication is exactly (9.4.1); for the converse implication, the convergence of
K, (\y) for all 4 € Z implies that (A\,)n>1 € Oy Z. Thus from a), Uy, converges in U2,
By injectivity of p, Uy, converges to (Uy,Uy).

¢) This is the summary of 1) and 2).
U

The following sections are devoted to the proof of the implication (9.4.1), which implies
Conjecture [0.7] :

Theorem 9.8. Let A\, be a sequence of compositions such that A\, & n. If Uy, converges to
(Uy,U,), then for all p € Z,
KH()\n) — PUy,Uy) (:U’)

The result of Theorem [9.8| roughly means that, for k fixed and X a large composition such
that Uy is close to (Uy,U)), the restriction to {1,...,k} of the uniform random filling A yields
a random variable on & close to the Paintbox construction oy, y,)(k). Since the Paintbox
construction involves for each integer 1 < ¢ < k an independent uniform random variable on
[0, 1], we will also create in Section 5 a random variable 5;‘ which mimicks the position of ¢ in
the uniform random filling of A. The proof of Theorem consists then essentially in proving
that the family (£3);<;< becomes a family of independent uniform random variables on [0, 1]
when A becomes large. The latter convergence implies that the permutation o) is close to oy, .
The fact that Uy is approximately (Us, U;) will conclude the proof.

Note that there are two kinds of limit involved in the proof: the limit of the law of (fi)\”)lgigk
and the topological limit of Uy,. In order to finalize the proof, we need a final result showing
that the order of the limits does not matter. Since the proof of the latter fact is straightforward
but lengthy, it is postponed to the Appendix.

The convergence to the family of independent uniform random variables is not clear and ex-
plained in Sections 7 and 8. The proof uses the results of Chapter 8, which deal with combina-
torics of large compositions and which are summarized in Section 6.
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9.5 The familiy (£);>1

Some definitions on compositions are needed before defining the family (£});>1.

9.5.1 Combinatorics of compositions

Let A be a composition of n with its associated descent set Dy = (A1, A1+ Ao, ..., A1+ -+ A_1).
An integer i € [1;n] is a peak of A if i € DyU{n} and i — 1 ¢ D), and i € [1;n] is a valley if
i ¢ Dy and ¢t — 1 € Dy U{0}. This definition makes sense if we consider any standard filling o
of A : o(7) is a local maximum (resp. minimum) of o = o(1)...o(n) if and only if i is a peak
(resp. valley) of A. Let V denote the set of valleys, P the set of peaks, and £ = V U P the set
of extreme cells.

A run s of A is an interval [a;b] of [1;n] such that a,b are consecutive integers of £. A run
[a;b] is called descending if a € P and ascending if a € V. The runs are ordered by the
lower endpoint of the corresponding interval, and this yields a total ordered set S = {s;}1<i<¢.
Each element s; of S corresponds to an interval [a;;a;11], with a1 = 1 and a;4+1 = n. In
particular two consecutive runs s; and s;4+1 overlap on a;y1. The length of a run s; is defined
as the value l; = a;41 — a;. For example if A = (3,2,4,1), V = {1,4,6,10}, P = {3,5,9} and
S = {[1; 3]7 [3; 4]7 [4§ 5]’ [5’ 6]’ [6; 9], [97 10]}'

For any cell 7 of A, the slope of i, s(i) = [z(4);y(4)], is defined as the maximum subinterval of
[1;n] that contains ¢ and no other peak or valley. In the previous example, s(7) = [7;8] and
5(6) = [6;8].

9.5.2 Definition of (£});>1

(]

Let (X*(p,q)) i>1 be a family of independent variables such that X*(p, q) follows the uniform

{r.a}CQ
law on [p, ql.

Definition 9.9. Let A be a composition of n, 0 € Q. The averaged coordinate of i with respect
to o is the random variable defined by (o) =0 if i > n, and

z(o™1(3)) — o @
o) — (PO ) 1 e )

n n

for1<i<mn.
For oy chosen uniformly among Qy, (o)) is denoted &}. € (k) denotes the vector (&7, .. ,fi‘)
and £)(n) is simply written &

Basically constructing 5{\ means that we sample a uniformly random standard filling o of A,
we look at the cell containing ¢ with respect to this filling, and then sample a random variable
uniformly distributed on the rescaled slope of this cell. The advantage is that the knowledge of
€M (k) is enough to reconstruct ag‘. This reconstruction needs a slightly modified version of Uj:

Definition 9.10. The run paintbox Uy associated to X is an element of U consisting in the
following open subsets:

o Uy(\) = Up,ep)@t, 4l

o U(N) = Uy, eplet, 2=l

with a;+1 =n+1 if a; = n.

The run paintbox Uy becomes close to Uy when n goes to infinity:
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Lemma 9.11. Let \ be a composition of n. With respect to the distance on U2,
- 1
d(U)\, U)\) < —.
n

Proof. The definition of Uy yields the following open sets:

ai—l 073 -1
= U 1T L

a;€V,a;#n

and
a; — 1 Ai+1 — 1

o= U 1

a;€P,a;#n

[.

n—1" n-—1

Let us show that U;(\)¢ is included in the 2 —inflation of U+(A\)¢ and conversely (the proof for
U, (M) and U|(\)¢ is the same). The 1 _inflation of Uy(N)© is

—1 1 aig1 —1 1 1 1
AL/ — G- - Sl )AL S O 1)
Up(A) a‘epl J;m“”l VO ()AL U0, UL - ]

On the other hand

o= | U 1% ) ugopu .

n
a;EP
Supposethatai#n.Thenforalllgkzgn—l,%—%§%§%+%,thus
ai—l ai+1—1 ai—l 1 ai+1—1 1 el/n
, C ——)VO,(———— 4+ =) A1 C UM\
[H L (M - w0, (RS ) A1 ()

If a; = n, (%1 %070 — (1 1 /p, 1] C Uy(N)>Y/". Finally Up(\)© C Up(N)H™
For the converse inclusion the £ —inflation of Ur(N)© is

~ \ed/n a;—1 1 a1 —1 1 1 1
G = [ U= = Vo —+ ) A1) | U0, Ul - 1],

and

ai—l ai+1—1

ve={ U | L) uforu i,

a;€P,a;#n n—1
Since for 1 <k <n-—1, %—%g%g%—l—%,foreachai;ﬁn,
ai—l ai+1—1 ai—l 1 aH_l—l 1
- ——)VO,(—+ —) A1
1 o I = VO (— —+ ) Al
and therefore Uyp(A\)¢ C UT()\)C{/”.
Doing the same for U} () and U (\) concludes the proof. O

The previous Lemma implies that for any sequence (\,)n>1 with |A,| = oo, the convergence
of Uy, is equivalent to the convergence of Uy, , and both have the same limit. The advantage
is that the knowledge of & and U, is enough to recover o}. Recall that og, (&i(0))1<i<k) is

the paintbox construction relative to the tuple (£;(0))1<i<r and the paintbox U, as defined in

subsection [0.4.11
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Proposition 9.12. For each 1 <k <n, g € Q,,

og, (&i(0))1<i<k) = ok
In particular the random variables o*k and o, (§>‘( )) have the same law.

Proof. Tt is enough to prove it for & = n. Denote §;(0) = & and £ = (&(0))1<i<n- It is equivalent
to prove that for 1 <i,5 <mn,
-1

(06,©) " ) < (06,©) " ()& 0320) <03 ().

Let 1 <i< j<n. Then 0;1(2') < 0’;1(]') implies that 7 is left to j in the associated filling of A.
This is possible in one of the two following situations :

1. 5(i) and 5(j) are disjoint and (i) is left to 5(j). In this case § and §; are not in the same
interval component of Uy and §; is in an interval component left to the one of £;. By the
run Paintbox construction,

—1

(06,©) " (@) < (05,0) " ).

2. 5(i) and s(j) overlap. This implies that ¢ and j are in a same run s = [a;;a;+1] of A. Let
I, =]zl aol=] %1717 Gince i < j and oy 1(i) < 05 1(4), the run s has to be an ascending one
and thus a; € V and a;41 € P. In particular o, ' (i) cannot be a peak, and o} ' (j) cannot
be a valley. Thus &; is either in an interval component left to I, either in I;. For similar

reasons, ; is either in an interval component right to I, either in 4. This implies that if

-1 -1
& or & is not in I, (O'U/\ (5)) (1) < (Uf& (f)) (7). But if § and &; are both in I, since
the latter is in Up()), the same inequality holds.

Finally, in any case,
1/ 1/ -1 -1
o310 <03 6) = (06,©) () < (00,8) ().
The pattern is exactly the same to prove that
-1

oy (i) > o 1 (j) = (aUA(f))_l (i) > (UUA(@) (),

yielding the first part of the Proposition. This first part implies clearly the second one. O
It is also possible to recover exactly the position of {1,...,k} in the filling o of A from
(&i(o))<i<k

Lemma 9.13. Let 0,0 be two permutations of Q. If (67(1),...,071(k)) is not equal to
(' 1(1),...,0" Y (k)), then (&1(0),...,&(0)) and (&1(0),. .., &x(d")) have disjoint supports.

Proof. The proof is done by recurrence on k > 1. Let kK = 1. 1 has to be located in a valley of
A If 071(1) # ¢'~1(1), 1 is located in a different valley in ¢ and ¢’. Thus the slopes of ¢ ~!(1)
and ¢'~1(1) are disjoint, and &1 (o) and & (o) have disjoint supports.
Let k > 1. Suppose that (c=1(1),...,071(k)) # (¢'71(1),...,0"~1(k)). By recurrence hypoth-
esis, if (c71(1),...,07 (k — 1)) is not equal to (o/~1(1),...,0" 1 (k = 1)), (&1(0),...,&k—1(0))
and (&1(0”),...,&k—1(0")) have disjoint supports. This yields also that (£(0),...,&(o)) and
(&1(0”),...,&k(0")) have disjoint supports.
Thus let us assume that (o =1(1),...,0 7 (k—1)) = (¢/~!(1),...,0 "1 (k—1)). This implies that
~1(k) # o'~1(k); since the position of {1,...,k — 1} is the same in the fillings o and o’ of \,
the cell containing k in o is in a different run than the cell containing k in ¢’. Therefore their
slopes are disjoint, and (£1(0),...,&k(0)) and (&1(0”),...,&(0")) have disjoint supports. O
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This section ends by a convergence result. Although this result is crucial for the proof of
Theorem [9.4.1] its proof is rather technical and has been postponed to the Appendix.

Proposition 9.14. Let U, be a sequence of U and ((X™(1))i>1)n>1 a sequence of random in-
finite vectors on [0,1]. Let (X°(1),...,X%~n),...) be a random infinite vector on [0,1]. Suppose
that each finite dimensional marginal law of any of these random vectors admits a density with
respect to the Lebesgue measure. If U, — U € U?) and for each k > 1, X' = (X™(1),..., X"(k))
converges in law to X? = (X°(1),...,X°(k)), then for each k > 1,

oU, (XE) —*1aw o0 (XR).

9.6 Combinatorics of large compositions

The purpose of this section is to introduce the background material to prove that the family
(€))1<u<k converges in law to a family of independent uniform random variables on [0, 1]. Since
¢} depends uniquely on the runs in which u is located in a random filling oy of A, it is necessary
to evaluate the probability for u to be located in a particular run s of A. For a composition A
and ¢ € A a fixed cell, denote by A<; (resp. A>i, Aci, As;) the composition A restricted to cells
left (resp. right, res. strictly left, resp. strictly right) to i. Recall that d(\) denotes the number
of standard fillings of the ribbon Young diagram associated to A.

Let us focus here on the location of 1 in ). Since 1 is necessary a local minimum in any filling
of )\, it has to be located in a valley v € V. For a fixed valley v of A, the cardinal of standard
fillings of A such that 1 is located in v is exactly the number of possibilities to fill in the part of
A left of v, with any subset S of cardinal [A,| of [2,n], and to fill in independently the part of
A right to v with the complementary subset of S in [2,n]. Thus

A= dOs)dO)
Pl €)= R doy)

The problem is therefore essentially to relate d(Asy)d(A<y) to d(N).

(9.6.1)

9.6.1 Probabilistic approach to descent combinatorics

Ehrenborg, Levin and Readdy (see [37]) formalized in the context of descent sets an old relation
between permutations of n and polytopes in [0,1]". Namely since the volume of the set

Ry = {zo0) < -+ < xa(n)} is exactly %, it is possible to determine probabilistic quantities
on &, by integrating certain functions that are constant on each region R,. The appropriate
functions for descent sets were found in [37], yielding some new estimates as in [36] and [18].
The model of Ehrenborg, Levin and Readdy is exposed in this paragraph, but in a modified
way to focus only on the set of extreme cells £ (as defined in the paragraph 5.1). This yields
the following framework : let A be a composition of n > 2 with set of extreme cells £ = {a; =
1,a9,...,a, = n}. Suppose for example that the first cell is a valley (namely a; € V') and denote
by s; the run between a; and a;i1, with [; its length. To each X is associated the couple of
random variable (Xy,Y)) on [0, 1]? with density

1 |IL’Z — LUH_l’li_l
dX/\,YA (xlyxr) - 7}\ /[0 1]T_2 H 1z2i_1<1‘21>a727;+1 H W H dxz (962)

1<i<r—1 2<i<r—1

If the first cell is a peak (i.e a1 € P), the inequalities in the expression of the density are reversed.
If A\ =0, the expression for the distribution of (X, Y5) (in the distributional sense) is simply:

dxg,vy (U, v) = Ou=y.
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The latter probabilistic model is related to the combinatorics of descent sets through the equality
d(N) = |A|!Wy, (9.6.3)

whose proof can be found in [37].
The first advantage of this model is that it behaves simply with respect to concatenation of
compositions.

Definition 9.15. Let A = (A1,...,\) and p = (p1,...,pus) be two compositions of m and n.
The concatenated composision X+ p is the composition of n+m

A= (M, Ar i1, s ),

and the concatenated composition A — p is the composition of n +m

A== (A1, ey Apy U1y 42y« - oy fhs)-

This definition has a simple meaning in terms of associated ribbon Young diagrams: namely
the diagram of A + u (resp. A\ — p) is the juxtaposition of the one of A and the one of u such
that the last cell of A is left to (resp. above) the first cell of u. An application of the section 2
of [37] (see also Lemma 2 in [I8]) implies the following expression of the concatenation in the
probabilistic framework :

Proposition 9.16. Let A\, i be two compositions, € € {—,+}. Then
V)\E# = V)\VHE(Y,\ <e X“)

and
1

B (09) = gy 2 %)

/[0 ” dx,,v; (T, ) 1u§EUdXH7YH (v, y)dudv,

where <_=> and <;=<, and the couples (Xx,Yy) and (X,,Y),) are considered as independent.

The previous Proposition yields a particular case that helps to compute the law of ff. Denote
by Fx the distributive cumulative function of a random variable X.

Corollary 9.17. Let A be a composition of n and v a valley of A. Then

1 1
P T T R )1 - )

with the convention Xy, = 1 and Y\_, = 01.

Proof. Since v is a valley, A can be written A., — [+ As,. Thus the previous Proposition yields

VA<U_D+>\>U = V>\<UV>\ZUE(Y)\<U > szu)'

Conditioning the expectation on the value of X_  gives by independence,

1
B(Yi., = Xo,) = [ (1= Py (0)dx, (i
0 >
On the other hand from the previous Proposition, since Xy, = Xgya.,,

1
dy, ()=——o—
XAZU( ) E(X)\>,U Z YD)

Vi, Vo
:ﬁ(l - Fx,_, (1)),

/[0 13 d(t,u) 1u§vdX>\>U Yio, (v, y)dudvdy
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and finally

1
14@{Hbv=V&J@M/X1—Fn@a»u—fxbgoMt
0

Using the latter result in the equalities (9.6.1)) and (9.6.3]) yields
(A =1D! dAsv)d(A<w)

Pl e =Rl dy)
(A =D DA YA, Y,
_|)\<v|!|)\>v|! |Al! )%\
_i V)‘>vv)\<v
AVa_ Vs, fo (L= Fy,_ (6)(1 = Fx,_ (t))dt
1 1

TN By @) - Fx, (0)dt

9.6.2 Estimates on (X),Y))

The latter corollary shows that the knowledge of Fx, and Fy, for any subcomposition u of A
yields estimates on the location of 1 in o). The results on the behavior of Fx,, Fy, obtained in
Chapter 8 are summarized in this paragraph, and the reader should refer to this chapter for the
corresponding proofs. The first result is a bound of Fx, depending on the length of the first
run of A and corresponds to Corollary 2 in Chapter 8 (and the following paragraph):

Proposition 9.18 (Cor.2 Chapter 8). Let A be a composition with at least two runs, and with
first run of length R. If the first run is increasing, the following inequality holds :

1—-(1-t)R<Fx,(t) <1—(1—t)ftt
If the first run is decreasing, the inequality is
tBHL < Py (t) <t

The same result holds for Y after exchanging increasing run and decreasing run. The latter
inequalities are very accurate when R is large, but when the runs remain bounded, the result is
not so useful. It is still possible to show that the distribution of X only depends on the first
cells of the composition. This corresponds to Proposition 11 in Chapter 8.

Proposition 9.19 (Prop. 11,Ch. 8). Let ¢ > 0. There exists ng > 1 such that for any n > ng
and any composition X of size larger than n with first run smaller than n,

HFX)\Sn - FXAHOO <e.

In the latter result, ng depends only on e, and not on the shape of A.

9.7 Asymptotic law of &}

This section is devoted to the asymptotic law of 5{‘.

226



9.7.1 Preliminary results
Propositions and imply that Py(1 € v) only depends on the shape of A around v.

Lemma 9.20. Let € > 0. There exists n. € N such that for ng > n. and two compositions
A n and p = m with the first run of u smaller than ng,

B S X O [t SO
S R0 B0 P, @)

1—¢

Proof. Let A, i be two compositions, with L the size of the last run of A and R the size of the
first run of p. Set €1 = + if the last run of A is increasing, e; = — else, and the same with &9
and the first run of p. Let A = fol(l — Fy, (t))(1—Fx,(t))dt. From Proposition integrating
the inequalities yields the following bounds on A:

L4 If51:+,52:+,
1 1 1 1

o' T myy) . ®rE12) S R RrY . (RH I+

);

4 if812_562:+7
_ < <7,
L+R+3~ ~ L+R+1

o ifeg = 4,890 = —

- I N 1 <A<l I N 1
R+1 L+1 R+L+1- " — R+2 L+2 L+R+73
.ifé‘l:—,é‘gz—
1 1 1 1
1— <A< 1-— )
L+2( (L+3)...(L+R+2))_ _L+1( (L+2)...(L+R+2))

The latter bounds are independent of the shape of A, u apart from the lengths of the last run
of X and the first run of u. Denote by Ael}? each upper bound in the previous list, and le’52
each lower bound. Then as min(L, R) — oo,

€1,€2
Brr

e — 1.
L.R

Thus there exists K such that if min(L, R) > K, whatever is the shape of A, u outside these
runs and ng > R,

- fo — Fy, (t))(1 — Fx, (t))dt <lte
Jo (L= Py, () (1 = Fx,_, (1))dt

From now on, let us assume that the last run of A and the first run of y are bounded by K. Set
n = inf 511{,52 le}% . Since L, R > 1, each Bilkz is strictly positive. The family {Bil}{ } 5112,52
L,R<K <

1—¢

being ﬁmte this yields n > 0.

By Proposition [0.19] there exists n. > 1 such that for ng > n. and any composition v of size

n > ng and first run smaller than ng, Fx,_ = Fx, + g with [|gl < en. Let ng > n. and
=nQ
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suppose that A - n, u = m with the first run of u smaller than ng. Then there exists g such that
9lloo < en, and Fx,_ = Fx, +g. This implies
=nQ

1
[ = B~ B @)= [0 @) - F ) - g0

1
= A~ | g1~ Fy,(t)dt.
0

Since | [} g(t)(1 — Fy, (t))dt| < en and A > 1,

Jo (1= P (0)(1 = Fx,_(1))dt

1_e<
£= A

<l+e.

O]

A corollary of the previous lemma yields a precise estimate of the probability that 1 is located
in a particular valley v when the length of the slope of v goes to +o0.

Corollary 9.21. Let € > 0. There exists ng > 1 such that if A is a composition, and v € X is a
valley with slope s(v) = [a;b] of size b— a > ng, then

b—a b—a
1-— < Py(1 < (1 .
(o) <Pylen) S (1+e)

Proof. Since v is a valley, v belongs to two runs s;, s;41. If b —a > 1, then at least one run
containing v is of size larger than 2. Assume without loss of generality that [(s;y+1) > 2. This
means that the first run of A5, is increasing. Let A = fol(l — Fy,_, (0)(1 = Fx,_,(t))dt. Let L
denote the length of the last run of A.,, and R the length of the first run of As,.

If I(s;) = 1, the last run of A, is increasing. Moreover in this case b —a = R. Thus the bounds
on A from the proof of the last Lemma yield

1 1 1 1

1-— <AL ———(1-— .
a2 TR —ar)) S bmar 1 ety

Thus independently from L, there exists n; such that if {(s;) = 1 and b — a > nq, then (1 —
e)b—a) <A< (1+¢)(b—a)

If I(s;) > 1, the last run of A, is decreasing. Then b —a = L + R — 1, and the bounds on A
from the proof of the previous Lemma yield

1
<AL .
b—a+2~ T b-—a

There exists ny such that if I(s;) > 1 and b—a > ng, then (1 —¢g)(b—a) < A~ < (1+¢)(b—a).
Set ng = max(ni,n2), and let n > ng. From Corollar PA(1 € v) = L, and thus

b—a b—a
— < < .
(1—¢) - <Py(1ew)<(l+¢) -

O

From the bounds {A‘}1 T Bal’az} on A that were found in the proof of Lemma it is also
possible to deduce a bound on the location probability of 1 in oy:
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Lemma 9.22. Let \ be a composition of n, and a < b be two peaks of \. Then

b—a

PA(L € Ao c) < 3

Proof. Since 1 has to be located in a valley of A,

P(1€Asqep) = Y P(lew).

veV
a<v<b

From Corollary for each v € V,

1

P(1 €v) = o - Fy,_ (t))(1 - Fx,_, (t))dt’

Suppose that v € s; N s;11. By the bounds on A from the proof of Lemma [9.20
1
i
fo (1- FY,\<U ()1 - FXA>U (t))dt

The latter inequality yields

<U(si) + U(sit1) +3 < 3(1(si) + U(si41))-

3(b—
P(1 € Asq <p) Z 1(s5) + U(si41) < ( a)

veV
a<v<b

9.7.2 Convergence to a uniform distribution

Let us show the convergence in law of 5%. Let 7 denote the Levy-Prokhorov metric on the set
M0, 1] of probability measures on [0, 1].

Proposition 9.23. Let € > 0. There exists ng such that for n > ng, AFn,

m(&,U([0,1])) <.

Proof. Let € > 0. Since Fy((o,1)) = Idjo] is continuous, it is enough to prove that for s € [0, 1]
and for A large enough,

P& € [0,8]) — s <e.

Let 0 < s < 1 and n. be the constant given by Lemma for €. Let A F n and let v, denote
the last valley such that the associated slope intersects [0, ns|, namely s(v™) N [0, ns] # 0: since
0 < s, such v, always exists for n large enough. Let [a,;b,] denote the slope of v,. Thus
an <ns < b, + 1.

If 1 € Acq,,, & € [0, 22[C [0, s]. Moreover

Py(1 € Acq,) = Zmlev

veV
v<an

1
1%;/' Al Jo (1= Fy_, () (1 = Fx,_ ()t

v<an
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If v < a, is a valley, there is necessarily a peak between v and v,, and thus the first run of A5,
is of size smaller than v,, — v. Therefore from Lemma [9.20

1 1+4+¢
PA(1 € Aca,) < Y~
veV " f() (1 o FYA<U (t))(l - FX>‘>v,<vn+ns (t))dt
v<an
-+
<1+ Ep, (1€ Ay,

and for the same reasons,

Un + Ne

P)\(l € )\<Cbn) Z (1 - 8) ]P))\<7Jn+n5(1 € A<CL’rL)'

The proof is now divided into two complementary cases :

e )\ is such that —%— > 1 — ¢ : in this case, “t%—9n « ¢ Thus from Lemma

vn+n Un+ne

Py., .. (1 € Asq,) < 3e. This yields

1-3e <Py, . (1€A0,) <1,

and thus n n
Up N Up + 1N
(1-3e)2 2= <Py\(1 €Xey,) < (1 +6)2—=.
n
The hypothesis vn‘fﬁns > 1 — ¢ yields also
a l+ea
1-36)2 2 <Py\(1€Aey,) < —.
(1=3¢)" = <Pa(l € Aca,)) < 7

On the other hand by independence between o) and the family (X (lp q))p,qGQa

Leb([0, s] N [(an, — 1)/n, by, /n])

P(1 € v, N & € [0,5]) =Pa(1 € vy) (bn — an + 1)/

s—ap+1
=Py(1 € —— A1)
A Un)(bn—an+1 )
From the latter computation and from the bounding Lemma P(1levné €0,s]) <

W. Thus the latter quantity doesn’t become negligible for n large only if at least

one of the two runs s; or s;41 surrounding v, tends to infinity when n grows. But in this

case from Corollary
P(1 € vp) ~p,—an—00 (b — an)/n.
Therefore in any case:

_s—an/n
bn/n - an/n
=n—tooLleb(lan/n, s]) + o(1),

P(1 € v, N & €10,5]) =no0(bn — an)/n +o(1)

with o(1) being a quantity converging to zero with n, independently of the shape of .
Summing the probabilities yields for n large enough

P(E} € [0,5]) <o Leb(0, 1) + Leb([ 22, 5]) + o(1)

1 tiLeb([O, s]) +o(1),

<
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and for the same reasons
(1 —32)?Leb([0, s]) + o(1) < P(&} € [0, 3]).

There exists thus nq such that for n > nq, if Uncf’ﬁne >1—c¢,

(1 — 36 Leb((0,5]) — < P&} € [0,5]) < 1=

— 6Leb([O, s]) +e.

A is such that Uncf’ﬁne < 1—¢: this implies that either v, remains bounded or v,, — a,, goes
to +00 as n grows.
Suppose that v, remains bounded by K as n grows. In this case by Lemma P(1 €

)\<U'n) — 0. Thus

P(& € [0,8]) =P(1 € vN &} € [0,5]) + o(1).

Since v, remains bounded by K and b, + 1 > ns, the slope of v, tends to 400, and
therefore from Corollary

P(E) € [0, 5]) Zns e (207

— = s+ o(1).

Suppose that v, — a, goes to +00. Since n. is a fixed integer and v, — a, goes to +oo,
the size of the slope of v, in A<y, +¢ is equivalent to vy, + n. — a, as n goes to +00. Thus

from Corollary

Un + Ne — ap,

IP))\<'Un+nE (1 € vn) —n—o0 o+ n + O(].)
n S
The same Corollary yields moreover
by, — an,
]P)A(l € Un) —n—o00 + 0(1)

From Lemma Py, . (1€ Aspy <vptn.) < vf_’f_;g = o(1) and thus

]P)/\<vn+ng (1 S )\<an) :1 - ]P))\<U7L+Tlg(1 € U”) - IP))‘<U7L+TL5(1 € )\>'Un7<7)'n+ne)
= o(1).
Up, + Ne

Thus
b, —anns — ay

P(E} € [0,5]) < (1+s)%"+ +o(1) < (1+¢)s+o(1),

n b, —ap
and for the same reasons (1 —¢)s + o(1) < P(£7 € [0, s]). This yields the existence of ng

. an N
such that if n > ng and P <1-—g¢g,

(1 —e)Leb([0, s]) — e <P(&3 €[0,5]) < (1 +e)Leb([0, s]) + &.

By the results from both cases, there exists ng such that for n > ng, A F n,

IP(&) € [0,s]) — 5| <e.
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9.8 Martin boundary of Z

This section is devoted to the proof of Conjecture yielding the identification of the Martin
boundary of Z with its minimal boundary.

9.8.1 Generalization of Proposition [9.23
The result of the previous section can be generalized for k > 2:

Proposition 9.24. Let A\, be a sequence of compositions of size tending to infinity. Then for
k>1,
(EM ) 1<ick —taw (X1, -+, X3),
with (X1, ..., Xg) a vector of k independent uniform random variables on [0, 1].
Proof. Let us prove by recurrence on k > 1 that for € > 0, there exists ny € N such that for

n>ng, AFn,
T((EM1<ich: (X1, ..., Xi)) <&,

7 denoting the Levy-Prokhorov metric on [0, 1]¥.
The initialization of the recurrence is done by Proposition Let £ > 2. It suffices to show
that the law 52‘ conditioned on (£3')1<;<k_1 is close to the uniform law on [0, 1] when n becomes

large.
Let s € [0,1] \ Q,e > 0. Let

Yy = M<ichi{(@1, ... 25-1) € (0,1 Yy & [s —n, 5+ 1]}

For all 7, Leb(0Y,) = 0 and Leb(lin%] T,) = 1, thus by the recurrence hypothesis and the
n—

portemanteau theorem, there exists n > 0 such that for A large enough,
P((EM)1<ick-1 € Ty) = 1 — ¢, (9.8.1)
and
T(((EM1<i<k—114n), (Xi)1<i<k—1|By)) < e, (9.8.2)

with A’Z = {(gz)\llﬁl k—1 € TW} and Bn = {(Xi)lgigk—l S Tn}
Let A - n and i = (i1,...,4,—1) such that P(o} *(1) = i1,...,05 (k — 1) = ix_1) # 0. Let us
further assume that 7 satisfies the following condition :

(

V1< j<k—15(i;) £ [n(s —n),n(s +n)l, (%)
where s(i;) denotes the slope of i; as defined in Section [9.5.1f Then A can be decomposed as
A=A —p1+ Ay — =y + Mg,

with u; consisting only in cells included in i. From the latter construction, each run of A inter-
sects at most one \;.

Conditioned on &> = {o3'(1) = d1,...,00 (k — 1) = ix_1}, the random filling of \ consists
in sampling a uniformly random multiset B = (Ry,..., Ry41) of cardinal (JA1],.... | Arp1])
among [k;n|, and then independently filling each subcomposition A1, ..., A,y respectively with
Ri,...,Ryy1. Since k is the lowest element of [k;n], for v € A;, P(k € v|&7) # 0 if and only if v
is a valley of \;, and if this is the case,

]P)(k? € 'U|X;) = P(Rl,---,RrJrl)(k € RZ)P)\Z(l € ’U).
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Let s, = [ap; apy1] be the run of A such that s € [a”T_l, %] If i; is a peak, necessarily the two
runs overlapping on 7; contain only elements lower than j, and thus the slope of 7; is smaller
than j. Thus since for all 1 < j < k —1, s(i;) € [n(s —n),n(s +n)], for n large enough, the
peak of s, cannot be in any p; for 1 < ¢ < r. This yields the existence of a unique ig such that
sp N Aiy # 0.

Set Ajy = A>q,<p. Since the cells a — 1 and b (if they exist) are in compositions of type p, their
content is smaller than k£ — 1 and therefore smaller than the content of the cells of A;,. Thus a
valley v of \;, such that the slope s)(v) of v in A is not included in A;, has to be a or b — 1. In

particular if v is a valley of \;, different from @ and b — 1, a rescaling of §i\i° yields that

a b—a

(&?lk € V) =law (ﬁ +

&9 € w).

Thus

PA({k € v} N{&) < }1) = Pa(k € Rig)Pa,, ({1 € v} {1 € [0, 5—"1}).

Suppose that a is a valley of A;,. This implies that in X, a is neither a peak nor a valley.
Therefore the slope of a in A, is [1, z] for some integer z, and the slope of a in A is [a — 7, a + ]
for the same x and some integer 1 < r < k — 1. Thus as n goes to infinity, this implies that

a b—a

m(&1k € ), (5 + =61 € ) oo 0,

and the rate of convergence only depends on n and k (and is therefore independent of the shape
of A and the choice of 7).
The same holds for b — 1. Thus if v = a or b, since |[\,| =b—a

PA({k € v} N{&) < s}¥) = Pyl € Rip)(Br,, ({1 € v} N{E™ € [0, 7—]}) +o(1).

Summing the probabilities yields

Ai ns —a

P({& € [0, 5]} N {k € Aig HA) = Ps(k € Rip)Py, (6,7

If i < ig, k € \; implies that 5,;\ € [0, s]. A standard counting argument shows that
R;

Pk € R) = =—,
r Zj R;
and thus,
Ai ns —a
P(&) € [0, ]| ) = (ZP (k € Ri) +Py(k € By )Ba, (6 € [0, ])) +o(1)
1<10 *0
Xi ns —a
:( 0@°em1?10+dn
<10 10
=24 Tup @%em”“wb+dn
Tnp Mol " Ri, '
Either R;, LPy, (fi\io € [0, 5=2]) — 0, either R;, goes to
infinity, and by Proposition [9.23
Ai ns —a ns —a
P, el = 1).
o (67 € 0.5 = Bt o)
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Thus in any case,
a Riyns—a

P(&) € [0, 8]|X) = —+ +0(1) — s,

n Rio

and the convergence is uniform in A, 7.

Let (zi)1<i<k-1 € YTy If (EM1<ick-1 = (zi)i<i<k—1, then (o} (1),...,
-3

the condition 1’ Moreover from Lemma [9.13] (£,...,&) ;) — (o' (1),...

well-defined and
(1 1<ich—1) = (ERlox ({1, ... k = 1}).

Thus for n going to 400,
P(& € [0, 8][(EM)1<ich—1 = (i) 1<i<k—1) = 5,

and the convergence is uniform in (z;)1<i<x—1 € Ty.
From the latter convergence and from (9.8.2), for n large enough,

(6 )1<i<kl An), (Xi)1<i<k|By)) < e

If € is small enough, then P(A,) > 1 —¢ and P(B,)) > 1 — ¢ imply that

(&) 1<i<k|An), (E)1<i<k) < 2e,

and
m(((Xi)1<i<k|Bn)s (Xi)1<i<k) < 2e.

Thus for n large enough,
(€M 1<i<h (Xi)1<i<k) < be.

This concludes the proof of the proposition.

9.8.2 Proof of Theorem [9.8|

oy (k — 1)) verifies
Loy (k- 1)) is

Proof. Let (An)n>1 be a sequence of compositions and U = (Uy,U)) € U@ such that A\, - n
and Uy, — U in U3, By Lemma Uy, — U, with Uy the run paintbox defined for A in

Section 5.

Let p € Z, pk k. Since K,(\,) = dc(l‘(ﬁ’\n')b), by equality (9.3.1)),

Ku,(\n) = P(O']i\” =0),
o being any permutation such that des(o) = u. By Proposition

P(op" = o) = Plog, ((§")i<i<k) = 0).

By Proposition as n goes to +oo, (5;‘")1§i§k converges in law to a sequence (X7, ...

of uniform independent random variables on [0, 1].
Thus since Uy, — U, by Proposition

UUM((fiA)lgigk) —taw ov (X1, ..., X3)) = op.

Therefore
Ku(An) =Ploy, = 0) = pw,v,) (1)

234

7Xk:)



As explained in Section 4, the latter Theorem implies Conjecture

Corollary 9.25. Conjecture[9.7 is true and for the graded graph Z,
OminZ = Oy Z.

We end this section by showing that the topology on Z=ZU0yZ , abstractly constructed
in Section 2.1, can be concretely described in terms of oriented Paintbox construction. From
the work of Gnedin and Olshanski in [42] (Proposition 36), OninZ with the induced topology
of Section 2.1 is homeomorphic to ). Since from the latter Corollary, dminZ = Oy Z, as
topological spaces

o Z =U?.

It remains to describe the topology of Z=ZU0yZ. Let U, CUD be the set of (Uy,Uy) such
that [0,1] \ Uy UU, C {-£-,0 <k < n —1}. Then Z is characterized as follows:

n—1>

Corollary 9.26. Let T = [0,1] x UD) with the product topology. As topological spaces,

Z~ ({0} xuPyu U({%} xUn) C T,

n>1
the space on the right being considered with the induced topology from T .

Proof. The bijection ® is achieved by sending A F n to % x Uy and w = lim A, € 9y Z to
0 x lim U},,. Since Zis compact, the only thing to prove is the continuity of the map.
Let 2, —» w € Z. If w € Z, the sequence is stationary and the convergence is straightforward.
Suppose that w € 9y Z, and divide x;, into two complementary subsequences (¥ ,(,)) and (T ,e(,))
such that z,,) € Z and z,e(,) € O 2.
By Proposition 36 of [42],

‘I’(.’L‘cpc(n)) — <I>(w).

By Corollary since () — 5 W,

which concludes the proof. O

9.9 The Plancherel measure

The purpose of this section is to investigate the Plancherel measure on the graph Z, which is
the point (0,0) of dyrZ. We first recall the link between Z and the Young graph Y to justify
the name of Plancherel measure. This link was already explained in [42] in terms of associated
algebras of functions, but it seems to us that no direct link on the level of paths was clearly
defined. It is the purpose of the second paragraph to clearly establish this link on the level of
paths.

9.9.1 The graph )

A partition p of n is the data of a decreasing sequence of positive integers (p; > -+ > p,) such
that ) p; = n. nis called the degree of p and is denoted p F n. Let us denote by I(p) the length
of the sequence. The set of partitions of n is denoted ), and the set of all partitions ). ) is
ordered by saying that p < 7 if and only if [(p) < I(7) and for all 1 <i <I(p), p; < 7;.

235



As for compositions, a Young diagram is associated to each partition by drawing p; cells on
the first row, po2 cells on the second row and so on, such that the first cell of the row ¢ + 1 is
just below the first cell of the row ¢. A standard filling of p is a filling of p with elements of
{1,...,n}, such that the filling is increasing to the right and to the bottom. We denote by T,
the set of standard fillings of p (also called stantard tableau of shape p). Here is an example of
a partition p = (7,4,2,1) and a standard filling of the associated diagram.

1[3]4]6]7]1011]
259114
812

—_

3

Figure 9.4: Young diagram of (7,4,2,1) and an example of standard filling

We say that p ' 7 if and only if deg7 = degp+1 and p < 7. When T € T is a standard tableau
of shape 7 = n, T} is defined as the standard tableau obtained by deleting the cell containing
n. In particular 7| has a shape p such that p 7. Adding an edge from p to 7 if and only
if p /7 transforms ) into a graded graph. The latter graph is a major construction for the
representation theory of the symmetric groups (&,,),>1, since the irreducible representations V-
of &,, are indexed by elements 7 of ),, and there is a decomposition

Res(VT)g;1 - Z V,.
p/T

As for the graph Z, the set of paths on ) between the root () and a partition p is in bijection
with the set of standard tableaux of shape p, and each element of Opnin) yields a random path
on the graph ) (namely an infinite standard tableau). The minimal and Martin boundaries of
Y have been intensively studied (see [76],[48],[85]) and fully described. In particuler the equality
Ominy = OpY holds also in this setting, and

oY ={(ar>a3>--->0),(b1 > by >--->0),> aj+b; <1}.

For each w € 0y, p., denotes the random path on ) according to the harmonic measure w.
The next paragraph establishes a link between ) and Z based on the algorithm RSK of Robinson,
Schensted and Knuth. The relation between both graphs has been already established through
the ring of symmetric functions and the one of quasisymmetric functions. The reader should
refer to [42] for a complete review of the subject.

9.9.2 RSK algorithm and the projection Z — Y

Let us first recall the RSK algorithm in the special case of permutations. This algorithm,
initiated by Robinson in [30] and created by Schensted in [75], establishes a bijection between
S, and pairs of standard tableaux of n of the same shape. Let o = (o(1),...,0(n)) € &,. The
algorithm constructs a pair of standard tableaux from o as follows :

1. Start with an infinite array A° = (a%}l) k,>1 such that each cell is filled with the entry n+1
(namely a%l =n+1), and an infinite array B = (by )k, >1 such that each cell is empty (B
is called the recording tableau).

2. At each step i, 1 < i < n, the following insertion is done on the array A*~!:
e Let (1,11) be the first cell (starting from the left) on the first row of A*~! such that

o(i) < alflll Set ali,h =o(i).
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e Let (2,12) be the first cell on the second row of A1 such that
azl_ll < aé‘ll. Set aél = azl_ll.
301 302 302 501

e Continue the process until the step kg where ag%k >n. For k > kg or k < ko,l #
kg

I(k), define a;;c,l = a};ll. Return A* = (A',L;J)k,lzl. Set kaJkO =1.

3. Let P(0) be the part of the array A™ containing entries lower or equal to n, and Q(o) the
part of the array B consisting in non empty cells.

Then the following Theorem holds ([75], [30]):

Theorem 9.27. The map S : 0 — (P(0),Q(0)) is a bijection between &, and pairs of standard
tableauz of n of the same shape. Moreover

(P(e™),Q(071) = (Q(o), P(0)).

From now on p(o) denotes the shape of P(o) (or Q(o)).
The link between Z and ) resides in the following proposition, mapping paths on Z to paths
on .

Proposition 9.28. Let (01)r>1 be a path on Z. Then (p(og))k>1 i a path on Y. Moreover if
o = (ok)k>1 s a random path on Z, then p(c) = (p(ok))k>1 s a random path on Y and for
P c T, a path on Y between O and T+ ko,

P((p(01), .-, plok,)) = P) = Y Plox, =0).

O'G@ko
P(o)=P

Proof. Let 0 = (i1,...,1p-1,n,1k41,-..) € Sy,. If suffices to prove that
P(o,) = P(o),-

Although the latter equality appears clearly in the algorithm, the proof is easier to write by
using 071 ¢ indeed write 071 = (j1,...,4n—1,k). Since o = (i1,...,0k—1,0kt+1,.-.), (0)) 71 =
(5, -5 dpq), with jf = g1 if ji < k and j = j; — 1 if j; > k. All the j/ (resp j;) are distinct
and thus

std((J1, - -+ Jn—1)) = std((j, - -, jn-1))-
Since the Schensted algorithm only depends on the relative values of the entries, the recording
tableaux B of the algorithm for (0)~" and o~! after n — 1 steps are the same. Therefore

Qo) ) =Q(c™ ).
Thus from Theorem [9.27

P(o)) = Qo) = Q(o7"), = P(o),.

This yields that p(o))  p(o) and for any arrangement (oj)x>1, the sequence (p(oy))r>1 is a
well-defined path on ).

In particular if (o} )x>1 is a random path on Z and P € T, 7 F ko, summing the probabilities
of each path yields

P((p(o1);---,plon,)) = P) = Z Pﬂk(ako = a).

aEGkO
P(a)=P
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The important fact is that harmonic measures on Z yield harmonic measures on the graph

V.

Corollary 9.29. Let 0 = (0y)k>1 be a random arrangement such that P(oy, = o) depends only
on Q(«). Then p(o) yields a harmonic measure on ).
In particular harmonic measures on Z yield harmonic measures on the graph ).

Proof. From Section 2, a random path p = (pi)r>1 on Y comes from a harmonic measure if and
only if for any partition 7 - n, and P;, Py € T,

P((P177Pn) :Pl) :P((plaapn> :PQ)

Let 0 = (0k)r>1 be a random arrangement such that P(o; = o) = p(Q(«)), with p a positive
function on standard Young tableaux. From Proposition [9.28 for kg > 1,7+ kg and P € T,

]P)((pla---apko):P): Z P(O‘]%:OZ)

CYGGkO
P(a)=P

= Y wQ) = Y @),
aGGkO QeT-
P(a)=P

the last equality being due to Theorem Thus P((p1,...,pr,) = P) is independent of
PeT..

Let ¢ be a harmonic measure on Z. From Section 3, ¢ yields a random arrangement o = (0%)x>1
such that P(or, = a) = p(des(a)), for a particular function p : £ — R*. By a standard
combinatorial result (see [79]), 7 is a descent of « if and only if ¢ 4+ 1 is in a strictly lower row
than ¢ in Q(«). Thus if Q(a) = Q(), then des(a) = des(a’) and P(op = a) = P(oy, = o).
From the first part of the Corollary, p(o) yields a harmonic measure on ). O

In general, for @ a standard tableau, des(Q) denotes the set of indices i such that i+ 1 is in
a strictly lower row than i. This yields in particular the following equality for A € Z:

dz(0,)) = dy(0,7)#{Q € Tr,des(Q) = D»). (9.9.1)
TEY

The latter equation yields the law of p(oy), when o) is chosen uniformly on the set of paths on
Z between () and \. Let KY(p) = % denote the Martin kernel on ).

Lemma 9.30. Let A F n be a composition and oy be a uniform random path between ) and ).
Then p(oy) is a random path on Y with law

P(p(ox) (k) = ) = dy(0,7) KX (py),
for T € Vi and px a random element of Y, with law
P(px = p) =P(Q(oxr) € Tp).

Proof. Let us apply the Schensted algorithm to o). If P € T, with 7 a Young diagram of k
cells (k <n),

P(p(ox)(k) = T) = dgl(A)#{U € &y, des(0) =\, P(oy) = 7}
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Equation (9.9.1)) transforms the latter expression into

2pey #{Q € Tp, des(Q) = M) }#{0,Q(0) = Q, P(ox) = 7)}
Zpey dy(@,p)#{@ € Tp’des(Q) = )‘}
dy(0,p)#{Q € T,,des(Q) = A} dy(0,7)dy(T,p)
o ey (0, 0)#HQ € Ty des(Q) = A} dy(0, p)

:dy(w, T)Kq—(p)\),

P(p(or) (k) = 7) =

with py = p(o) a random variable on ),, with law

dy (0, p)#{Q € T,,des(Q) = \}

P(px = p) = > ey dy (0, p)#{Q € T, des(Q) = A}

=P(Q(or) € T)).

We finally prove that on Oy Z, p restricts to a surjective map p: 0y Z — ).

Proposition 9.31. Let U = (Uy,U}) € Oy Z. Let (a1 > ag > --- > 0) (resp. (b1 > by >
-+ >0)) be the lengths of the interval components of Uy (resp. U} ) in decreasing order. Then
wlU) = (a1 >2az>--2>0),((b1 2b2>--->0)) € Y and p(oy) = pu()- Moreover the
induced map

p:O0uZ — Oy

18 surjective.

Proof. Since the Schensted algorithm relates a finite number of permutations to each Young
diagram, the map p sending random paths of Z to random paths of ) is clearly continuous
with respect to the topology of convergence in law. Thus it is enough to prove the result on
a dense subset of 9y Z. Let U = (Up,U}) € Oy Z be such that U = [0,1] and U has a finite
number of interval components. Denote by (a1 > a2 > -+ > ay) (resp. (b > be > -+ > by,))
the lengths of the interval components of Uy (resp. U}) in decreasing order, and wy = ((a1 >
ag > -+ > ap),(by > by > --- > by)). Then oy can be approximated by a sequence oy, with
An F 1, U(N,) = U. By Greene’s Theorem (see [43]) and Lemma 2 of the paper [86] of Kerov
and Vershik, almost surely p(oy,) converges in ) U 0y to wy. Thus by identification of the
Martin boundary on ) and Lemma [9.30

P(p(ox,) (k) = 7) = d(0, 7) Koy (1),

for 7 - k.
In particular p(oy) = p(rr). Since the subset

{U e U =10,1],U has a finite number of components}

is dense in U@, the latter equality holds on 2.
For any element w = ((a1 > ag > -+- > 0),(by > by > --- > 0)) € Iy, it is possible to find
U € UP such that wy = w, thus the map

. BMZ — 8My
p: U = wy

is surjective. ]
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9.9.3 Asymptotic of A\, under the Plancherel measure

The purpose of this subsection is to explore further the behavior of o(gg). o) is called the
Plancherel measure on Z since it is the only element of 95y Z that yields the Plancherel measure
on Y through the map p of the last paragraph.

In order to describe the descent set of a permutation ¢ € &,41 we introduce the following
notations. Let f, be the piecewise linear function on [0, n — 1] such that f,(0) =0, and

—1 if 7 is a descent of o
+1 othewise

foli) = 1ot - 1) = {

To describe the asymptotic value of f for o following the probability measure p, v,) (U, Uy) €
U®@)), we define also the following function fwsuy): 1t is the unique a.e differentiable function
on [0, 1] such that
fwv)(0)=0
f(/UT:UL) (t)=1 itt e Uy
f(/UT,UU(t) =-1 ifte?U,
Floy® =0 iftel01]\U

The map (Ut,U}) — fw, v, is continuous from U to €([0,1],R), and the following result
holds :

Proposition 9.32. Let U € U?. Then

1
(t = —foum) () =psllee fUr0)):

The proof is a deduction from Theorem since U(oy(n)) =@ U.
The next step is to get the fluctuations of fy,. Ounly the case U = (0,0) is done here. The
result consists mainly in a mathematical formalization of the results obtained by Oshanin and
Voituriez from a physical point of view in [68]. The reader should refer to the latter paper for
interesting additional informations on the process fq, ;.

Theorem 9.33. For o, being uniformly sampled among &,

(t - in o (n)) = B,

vn V3

B denoting the Brownian motion on [0, 1].

Proof. Recall from Section 4 that o, can be sampled from a family of independent uniform
random variables (x;);>1 on [0, 1] by applying the map std~! on the sequence (7;)1<;<n. Since
o + o~ is a measure preserving map (uniquely for the uniform measure), f, ~ fo_gl. The
property noticed by Oshanin and Voituriez is that ((f,-1,%n))n>1 is a Markov chain : indeed ¢ is
a descent of o, if and only if z; > x;11. Therefore, Des(a;il) N{l,...,n—1} = Des(o,,!), and
n e Des(a;%l) if and only if z;, > x5 11. In the sequel f -1(i) is denoted by Y; (the subscript n
is dropped, since this depends only on (oy,);).

This yields that for R = [r1;71 + 2] and S = [s1;51 + s2], with s1 > r1 + 19+ 2, n > s1 + s2, We
have

(#Des(oy,) N R, #Des(o,) N S)) ~ X7 ® Xo,

with X1 ~ #Des(oy,+1) and Xy ~ #Des(0s,+1). Moreover the number of permutations of n
with k descents is given by the Eulerian number A}, and its asymptotic value (see [79]) gives:
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Lemma 9.34. For n going to infinity, and o, uniform on S,
1

N4D

The latter Lemma together with the strong Markov property shows that if we write fgn( ) =

L = fo,(nt), the marginal distributions of fs,, converge towards the ones of \}B An adequate

(#Des — n

2) —law N(O, 1/12).

bound for || f5, || is needed to be able to conclude by stantard tightness arguments. We follow
Theorem 8.4 of the book [22] of Billingsley :

Theorem 9.35. Let (Yi)i>o be a real random process. Let f, : [0,1] — R define the linear
interpolation between the points

Suppose that for all € > 0, there exists A > 0,19 > 0 such that for all k € N,n > ng,
P(max Yy — Vi > Aov/n) < /2.

Then the sequence f, is tight.

The hypothesis of the Theorem is verified through the following Lemma, that mimicks the
situation coming from a usual random walk.

Lemma 9.36. Let Sy, = supjg ) Yn,a >0 and b < a —2. Then
P(S, >a,Y, <b) <P(Y, >2a—b-2),
and Fs, (t) > Fly,|(t) for allt € R.

Proof. In the Markov chain (Y,,z,), T = inf(u € N,Y,, = a) is a stopping time. Since {5, >
a} ={T < n}, {S, > a} € Fr and by the strong Markov property,

P(Sp > a,Y, <b) =P(T <n)N (Y, —Yr <b—a))
:]E(lTSnP(YT,zT) (Y/nfT - Y/b <b-— a))
<E(1r<nP vy up) (Yar — Y1 < b —a+ 1)),

with (}7, Z;) being an independent random walk starting at (Yr,xr). Since Y,_r — Y; is inde-
pendent of the value Yy = Yy,

E(1r<nPyyop) (Yoo = Y1 <b—a+1)) = E(lr<pP (o p) (Yoor — Y1 < b—a + 1)).

Moreover Y, _p — Y; ~ —(f/n_T - }71), thus

P(Sn > a,Y, <b) <E(17<nPoup)(— ( T T—Y1)<b—a—|—1))
=E(17<nP(00p)(Yn-1 > a— (b+1) + Y1)
<E(1r<nPoup) (Yaer > a— (b+1) — 1))
<P((T < n)N (Yo > 2a—b—2)) < P(Yy > 2a—b—2),

the last equality being due to the fact that (Y, > 2a — b —2) C (7" < n). This yields

P(S, > a) <P((Sp > a) N (Yy < a—2)) +B((Sp > a) N Yy > a))
<P(Y, > a) + P(Y, > a) < P(|Y,] > a),
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the last equality being due to the fact that the law of Y,, is symmetric. This yields

Fg,(u) = Fly, (u).

O]

In particular from the latter Lemma, for ¢ > 0 and A such that P(NV(0,1/3) > \) < ;5z, and
for n large enough, k£ > 0,

P(max [V = Yi| > AV/n) <2P(|Viyn — Yi| > Av/n)

<OP(N(0,1/3) > ))
g%.

L £
2)2
And this concludes the proof of the Proposition. O

Appendix: convergence result for the Paintbox construction

This appendix is dedicated to the proof of Proposition Some notations and two preliminary
results are first given.

9.9.4 Cluster sets

Let £k > 1 and A a given set. We define an A—cluster of k as a map f : A — P([1;k]) such
that f(a1) N f(az2) = 0 for a; # as. The residue of f is the set Ry = [1;k] \ | f(a) and the
support of f is the set Sy of a € A such that f(a) # (). The degree of f is the minimum of the
cardinals of non-empty sets f(a).The set of A—clusters (resp. A—clusters of degree larger than
s) is denoted C*(A) (resp C¥(A)). For 1 < s < k, the s—level of the A—cluster f, denoted f*,
is the A—cluster of C¥(A) defined by :

ol — {f(a) if f(a)] > s

0 else

Let & = (x1,...,7;) be a sequence on a space (2%, A%¥). Then any set .J and any collection of
disjoint subsets A = (A;j) ey of Q yields a J—cluster map of k

fz.4(9) = {ilzi € A}

For U € U?), denote by U = {U,}aca, the collection of interval components of Uy U U;. We
say that a € Ag (resp. Ap) if Uy C Uy (resp. Uy C UY).

Lemma 9.37. Let U = (Uy,U)) € UP). For o € &, and f € CY(Ay) define the sets

Xop(U) = {& € [0,1]"|std () = o} N {(fzw)* = [}
Then the sets X, ¢(U) are disjoint open sets and oy is constant on each of these sets. In
particular if Xj, = (X(i))1<i<k s a random variable with density on [0,1]%, opy(X1,..., Xg) is

(Xo,£(U)) t0 measurable.
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Proof. Let us write simply X,  instead of X, ;(U). Suppose that X} € X, ;N Xy . Then
std™1(Xy) = 0 = o’. Moreover f = (fx,u)?> = f" and X, s = X,/ pr. The events X, ; are thus
disjoint for distinct pairs (o, f). They are open from their definition and the fact that Uy, U,
are open sets.

Each 7 € &}, is entirely defined by the set S, = {(i,7)|i < 7,7 1(i) < 771(j)}. Let 0 € &.
Then from the Paintbox construction, o, ({7}) N {Xy|std"' (X)) = o} is precisely the set of X}
such that by writing f = fx, u:

j§) € So NSy = Va € Ay, {i,j} € f(a),
1 ESU\ST:HGEA(;7{27]}QJC
(i,j) € Sz \ So = Ja € AL, {i,j} C f
e (i,j) €S, US, = Vac Af,{i,j} € f(a).

Define by D(o,7) the set of A(U)—clusters that respect the above four conditions. Thus

o ({rH) N {Xplstd ' (X)) =0} = | Xo.
feD(o,7)

(7j a

o (i,
o (i (a),
o (i (a),

)
)
)
)

Since X}, admits a density function, [0,1]¥ \ J{Xz|std "' (X}) = o} is a null-set and thus :
o't =U U Xor
9 feD(oT)

which proves the Lemma. O

9.9.5 Convergence in law with conditioning

The pattern of the proof of Proposition implies the following question: suppose that A, B
are metric spaces, considered as measure spaces with a given measure on each associated borelian
o—algebra. Let f, : A — B be a sequence of measurable functions that converges pointwise
almost surely to a continuous function f : A — B. Let (X,),>1 be a sequence of random
variables on A that converges in law to a random variable X. Do we have the convergence in
law f,(X,) — f(X) ? The answer is negative in general, but in a very particular case the result
holds.

Lemma 9.38. Let (X)m>1 be a family of measurable spaces of A with the following conditions

e lim P(X € X,,)=1.

m—0o0
o Vm > 1,P(X € 04&,;,) =0.
e forallm > 1, fox,, — fla, uniformly.
Then fn,(X,) converges in law to f(X).

Proof. Let ¢ : B — R be a 1—Lipschitz function bounded by 1. It suffices to show that
E(go fn(Xy,)) —E(go f(X)) — 0. For each m > 1, the difference can be bounded by

[E(g o fn(Xy)) —E(go f(X))] <
[E(g o fn(Xn)) —E(g o fu(Xn)|Xm)| + [E(g o fu(Xn)[Xm) — E(g o f(X5)|Xm)]
+E(g o f(Xn)|Xm) — E(g o f(X)|Xm)| + [E(g o f(X)|Xm) — E(g o f(X))].
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Let m be such that P(X € &,,) > 1 —e. Since P(X € 0&,,) = 0, by the convergence in law
there exists ng such that for n > ng, P(X,, € &) > 1 — 2e. For n > ny,

E(go fn(Xn)) = P(Xy € Xn)E(g 0 fo(Xn)|Xn) + P(Xn & Xn)E(g 0 fr(Xn)|X5,)
Since g is bounded by 1 and P(X,, € X,,,) < 2¢,

[E(g o fn(Xn)) — E(g 0 fr(Xn)|Xm)| <26 +[1 = P(X, € App)|
<4e.

For the same reasons,
[E(g o f(X)[Xm) —E(go f(X))| < 2e.

Let n1 > ng such that for n > nq, anle — f|XmH < e. Since g is 1—Lipschitz, for n > n,
IE(g o fn(Xn)|Xm) —E(g o f(Xn)|Xn)| <e.

Since P(X € 0&,,) = 0, (X,|X,) converges in law to (X|A,,) and thus there exists ny > ng
such that for n > ns,

’E(g o f(XnﬂXm) - E(g © f(X)’Xm)’ <e.
Therefore for n > ns,
[E(g o fn(Xn)) —E(go f(X))| < 5e,

which implies the Lemma. O

9.9.6 Proof of Proposisition [9.14

Let us recall here the statement of Proposition

Proposition. Let U, be a sequence of U and ((X"(i))i>1)n>1 @ sequence of random infinite
vectors on [0,1]. Let (X°(1),...,X%n),...) be a random infinite vector on [0,1]. Suppose
that each finite dimensional marginal law of any of these random vectors admits a density with
respect to the Lebesque measure. IfU, — U € U?) and for each k > 1, X = (X"(1),..., X"(k))
converges in law to X2 = (X°(1),...,X°(k)), then for each k > 1,

OU, (Xl?) —law JU(XIS)

Proof. Let k> 1 and set X = X,g, X, =X

Let A = J ses, Xjo (vefer to Lemma [9.37| for the definition of Xy ,) with the induced
feCs(Av)

topology from [0,1]*, and B = &, with the discrete topology. Then from Lemma oy :

A — B is constant on each connected component Xy, of A, thus oy is continuous.

By the definition of the convergence on U for X = (Xy,...,Xp) € A, oy, (X) converges to
oy (X).

Since [0,1]% \ A is of Lebesgue measure 0, we can suppose that X,,, X are random variables on
A. Tt remains to build a sequence of measurable sets X, that respects the hypothesis of Lemma
9.0

Let m > 1. For n > 0, define A = U, j<p{(z1,...,2%) € [0, 1%, |z; — x;] < n}. Then
o+ 8y € U< <l @1y 2k) €0, 1]¥, |z; —x;| = n}. Since the latter is of Lebesgue measure
0, P(X € 9 »Ay) = 0. Since A, is decreasing in 7 and Leb(()A,) = 0, there exists n{" > 0
such that P(X € Aym) < L
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Denote by U = {Uqy =]7a, Sa|}ac4 the finite ordered collection of interval components of Uy UU;
of size larger than n{". A is a subset of A(U). For n > 0, let

B, = U{(mh ) €0, 1]k7$i €lra = n,7a +0[Ulsa — 10, 50 +nl}-
1,0

Once again Leb(0)y v By) = 0), and since Leb([), B,) = 0, there exists 55" such that P(X €
Byp) < . Let Kp, = Byp U Aym, Xy, be the set {# ¢ K}. Then P(X € 8X,,) = 0 and
lim P(X € X,,) =1.

m—-+00

Let &, be fixed, with associated complementary set K., = Byp U Aym. Set 1y, = inf(n]", ng"),
and let n,, be such that for n > ng, dy2) (Un,U) < 0y,. Suppose from now on that n > n,.
Since dy ) (Up, U) < mm < nf" the interval components of U]' (resp. U[') of size larger than 77"
are in order respecting bijection with those of U (resp. U;). Denote these interval components
of U™ by Up, = {U} =]y, spltaca, with A C A(U,) . Moreover since dy ) (Un,U) < nm < 137,
72— 70l <t and |52 — sa] < 75"

Since on Xy, |z; — x| > m, if f € C5(A(U)) and S(f) € A, then X, ¢(U) N X,, = 0. Thus we
can consider that f € C5(A). The same is true for f € C5(A(Uy)), S(f) € A with (X, ¢(Uy,) N
AN AX,.

Let f € C§(A) and suppose that & € X, ¢(U) N Xp,. Let o € Sy and suppose that z; € U, =
ITa, Sal; since T € Xy, i €]ra + 15", 5q — 5[ But [rll — ro| < 75" and |s) — sq| < n5*, thus
x; € U}. Conversely is a € Sy and z; € U}, for the same reasons x; € U,. This shows that
Xof(U) N X = Xo ¢(Un) N Xpp. This yields that oy|x, ;@) = ov,|x, ;v,)- Finally we have
proven that for n > np, oy, |x,, = ovjx,,, which implies obviously the uniform convergence
OUn| X 7n—00 OU| X, -

The application of Lemma, [9.38| concludes the proposition. ]
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