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Abstract

This thesis deals with reachability analysis of linear hybrid systems. Special importance
is given to the treatment of the necessary geometrical operations.

In the first part, we introduce a new representation class for convex polyhedra, the
symbolic orthogonal projections (sops). A sop encodes a polyhedron as an orthogonal
projection of a higher-dimensional polyhedron. This representation is treated purely
symbolically, in the sense that the actual computation of the projection is avoided. We
show that fundamental geometrical operations, like affine transformations, intersections,
Minkowski sums, and convex hulls, can be performed by block matrix operations on the
representation. Compared to traditional representations, like half-space representations,
vertex representations, or representations by support functions, this is a unique feature
of sops. Linear programming helps us to evaluate sops.

In the second part, we investigate the application of sops in reachability analysis of
hybrid systems. It turns out that sops are well-suited for the discrete computations.
Thereupon, we demonstrate also the applicability of sops for the continuous compu-
tation of reachability analysis. By a subtle parallel computation of a precise sop-based
representation and a simplified representation, we tackle the problem of monotonic grow-
ing sizes of the sops. Additionally, we present experimental results which also show that
sops allow an efficient and accurate computation of the reachable states.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Erreichbarkeitsanalyse linearer hybrider
Systeme, wobei wir besonderen Wert auf die Betrachtung der notwendigen geometrischen
Operationen legen.

Im ersten Teil führen wir eine neue Darstellungsklasse für konvexe Polyeder ein:
die symbolischen Orthogonalprojektionen (Sops). Basierend auf der Idee, einen Poly-
eder rein symbolisch als Orthogonalprojektion eines höherdimensionalen Polyeders zu
beschreiben, zeigen wir, wie sich viele geometrische Operationen – u.a. affine Abbil-
dungen, Schnitte, Minkowski-Summen und konvexe Hüllen – als einfache Blockmatrix-
Operationen darstellen lassen. Diese Eigenschaft ist ein Alleinstellungsmerkmal der Sops
gegenüber herkömmlichen Darstellungen wie der Halbraum-, der Vertexdarstellung oder
der Repräsentation durch Supportfunktionen. Zudem lassen sich Sops durch lineare Op-
timierungen auswerten.

Im zweiten Teil setzen wir Sops zur Berechnung der erreichbaren Zustände hybrider
Systeme ein. Die diskreten Zustandsübergänge lassen sich exakt durch Sops darstellen.
Danach zeigen wir, dass sich Sops auch zur Berechnung der kontinuierlichen Entwicklung
des hybriden Systems eignen. Durch paralleles Berechnen einer präzisen, sop-basierten
Darstellung sowie einer vereinfachten Darstellung lösen wir das Problem der stetigen
Zunahme der Darstellungsgröße der Sops. Zudem zeigen wir auch anhand von expe-
rimentellen Ergebnissen, dass sich Sops zur effizienten und präzisen Berechnung der
erreichbaren Zustände eignen.
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1. Introduction

1.1. Structure of the Thesis

This thesis consists of two parts. The first part deals with convex polyhedra and could
be read independently. The second part deals with the reachability analysis of hybrid
systems and uses methods which heavily depend on the geometrical insights gained in
the first part. Both subjects, convex polyhedra and hybrid systems, have been studied
intensively in several works. Convex polyhedra have already been analyzed in the ancient
world: Euclid investigated the Platonic solids circa 300 BC (Heath, 1956). The study of
hybrid systems evolved in recent times. Therefore, the chosen arrangement reflects the
history of both subjects. However, to provide a better motivation, we will tell the story
the other way round in this introduction.

1.2. Reachability Analysis of Hybrid Systems

The goal of this section is to introduce the reachability analysis of hybrid systems.
A hybrid system describes the behavior of a cyber-physical system evolving according
to continuous and discrete laws. For example, a simple hybrid system can describe
the movement of a mass point according to Newton’s continuous laws of motion, until
it hits a wall where it is instantaneously reflected by the discrete law of an elastic
collision. We shall give a mathematical definition of a hybrid system that subsumes the
classical definition of hybrid automata as it has been given by Alur et al. (1993). To
emphasize the continuous behavior of a hybrid system, our definition of a hybrid system
is split into two parts. Firstly, we define continuous dynamical systems whose behavior
is purely continuous. Then we define hybrid systems as systems consisting of continuous
dynamical systems that are connected by discrete transitions.

1.2.1. Continuous Dynamical System

Definition 1.1 (Mathematical Model of a Continuous Dynamical System)
A continuous dynamical system C is a tuple

C = (Var ,Flow)

consisting of the following components:

• The finite set Var of variables of the system with |Var | = d. We assume that for
each variable there exists an injective mapping ι from the set of its values to R.
Hence, after fixing an ordering of the variables, every valuation over Var can be
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1. Introduction

uniquely represented as a point x ∈ Rd where the ith component of x represents
the value of the ith variable. Every valuation over Var is called a state of the
continuous dynamical system. The set of all states is called the state space of C,
denoted by S(C). For simplicity we shall refer to any x ∈ Rd as a state of the
continuous dynamical system. Accordingly, we will often identify S(C) with Rd.

• The evolution of C over time is described by the relation Flow . Flow assigns
continuous changes to the states. We assume that continuous changes can be
represented by differentials, i. e., by providing the linear part of the change at each
state. Furthermore, we assume that ι uniquely maps the linear part to Rd.
Hence, Flow is formally described as a subset of Rd×Rd where each pair (y,x) of
Flow encodes a state x and the differential y dt. A function y(t) describes a valid
evolution of C if for each t in the domain of y it holds that (ẏ(t),y(t)) ∈ Flow .

The system exhibits only those states for which a differential exists. Hence, C
admits only states that are located in the invariant I, which is defined by

I = {x | ∃ẋ: (ẋ,x) ∈ Flow} . �

Useful instruments to describe the evolution of a continuous dynamical systems are
trajectories.

Definition 1.2 (Trajectory of a Continuous Dynamical System)
Let C be a continuous dynamical system and x0 be a state of C. A trajectory y = y(t)
is a function y : [0, T ]→ S(C) such that for each t ∈ [0, T ] the derivative ẏ(t) exists and
(ẏ(t),y(t)) ∈ Flow .

The notion y(t,x0) shall denote a trajectory y(t) for which y(0) = x0 holds. In this
case we call x0 the initial state of y. �

Note that we consider time-invariant continuous dynamical systems only: Flow does
not change over time and, hence, for any T and any trajectory y of the continuous
dynamical system C it holds that y′(t) = y(t + T ) is also a valid trajectory of C. An
autonomous continuous dynamical system C is a continuous dynamical system where
Flow satisfies the additional requirement that (y,x) ∈ Flow and (y′,x) ∈ Flow implies
y = y′ for all x, y, y′. With other words, Flow is given as the set {(f(x),x)} where
f : Rd → Rd is a vector field. A useful criterion for the existence of trajectories is the
Peano existence theorem, which ensures the existence of solutions of the initial value
problem

ẋ = f(x), x(0) = x0

if the vector field f is continuous. Moreover, if the vector field f is also Lipschitz con-
tinuous, i. e., there exists a real constant L ≥ 0 such that for all x1 and x2 it holds
||f(x1)− f(x2)|| ≤ L ||x1 − x2|| for a norm ||·||, then the Picard-Lindelöf theorem en-
sures the uniqueness of the solution of the initial value problem. For the Peano existence
theorem and the Picard-Lindelöf theorem see e. g. Heuser (1995).

2



1.2. Reachability Analysis of Hybrid Systems

The reason for the rather general definition of the Flow -relation is to capture also
the so-called non-autonomous systems. These are systems that admit non-deterministic
external input functions u(t) such that Flow is characterized by the differential equation

ẋ = f(x) + u.

Here, the non-determinism of the input functions u(t) carries over to the continuous
dynamical system.

1.2.2. Linear Systems

There are various different mathematical description of the system’s behavior that are
embraced by the definition of continuous dynamical systems. In this thesis we restrict
our attention to linear systems.

Definition 1.3 (Linear System)
A linear system is a continuous dynamical system where the continuous flow of each
mode is specified by a linear differential equation of the form

ẋ(t) = Ax(t) + u(t), x(t) ∈ I, u(t) ∈ U for all t. �

Example 1.4 (Approach Velocity Controller)
As an example for a linear system we discuss the following model of an approach velocity
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Figure 1.1.: Behavior of the AVC

controller (AVC). We consider two cars on a single lane. Both cars have distance d.
The approach velocity controller controls the velocity v of the following car in order to
establish a desired distance ddes = 50 to the leading car, which has velocity va. The
evolution of the distance depends on the velocities of the two cars only and is given by
ḋ = va − v. The velocity of the leading car evolves according to a non-deterministic
input function that can take values between −0.5 and 0.5, and we postulate that va

3



1. Introduction

can only take values in the interval [0, 20]. Finally, the control law for v is specified as
v̇ = 0.29(va − v) + 0.01(d − ddes). Additionally, we explicitly model the time t. Hence,
Flow is the set of all tuples (v̇a, v̇, ḋ, ṫ, va, v, d, t) satisfying the relation

ḋ = va − v, v̇ = 0.29(va − v) + 0.01(d− ddes), ṫ = 1,

−0.5 ≤ v̇a ≤ 0.5, 0 ≤ va ≤ 20.

Figure 1.1 shows the evolution of v over time t for the initial values v = va = 20 and
d = 450. The left figure shows a sample trajectory generated by SpaceEx (Frehse et al.,
2011). The right figure shows the area in which every sample trajectory must lie, and
has been generated by SoapBox. �

1.2.3. Hybrid System

Continuous dynamical systems allow continuous changes of the variables only; a hybrid
system allows both, continuous updates, also called flows, and discrete updates of the
variables, which are called jumps.

Definition 1.5 (Mathematical Model of a Hybrid System)
A hybrid system H is a tuple

H = (Var ,Mod ,Trans)

consisting of the following components:

• Var is a finite set of variables of the hybrid system with |Var | = d. As for the
continuous dynamical systems, we assume that each valuation of the variables
corresponds to a point x ∈ Rd.

• Mod is a finite set of modes of the system. Each mode is a continuous dynamical
system. The variables of each mode form a subset of Var , and its Flow relation de-
scribes the continuous evolution of these variables. We assume there is an injective
mapping Mod → N that specifies the modes by natural numbers.

• A state of the system consists of a valuation of the variables and an additional value
for the mode. Hence, each state is uniquely determined by the pair (x,m) ∈ Rd×N,
and we will often identify the state space S(H) with Rd × N.

• The instantaneous jumps of the system are described by the relation Trans. Trans
relates the states before an instantaneous jump with the states after the jump.
Hence, Trans is formally described as a subset of (Rd ×N)× (Rd ×N). Any tuple
τ = (x,m,x′,m′) ∈ Trans signifies that the state (x,m) may instantaneously jump
to the state (x′,m′). �

Due to the instantaneous jumps in H, a formal definition of trajectories is slightly
more elaborate.

4



1.2. Reachability Analysis of Hybrid Systems

Definition 1.6 (Trajectory of a Hybrid System)
Let H be a hybrid system. A trajectory of H is a sequence (yn,xn,mn, Tn)n=0,...N that
satisfies the following conditions

(i) for each n = 0 . . . N the function yn(t) : [0, Tn] → S(mn) is a trajectory of the
mode mn with the initial state xn,

(ii) for each n = 1 . . . N the initial state xn of the trajectory yn is related to the end
state of the preceding trajectory by Trans, formally:

(yn−1(Tn−1),mn−1,xn,mn) ∈ Trans.

We call (x0,m0) the initial state of y(t). �

1.2.4. Linear Hybrid Systems

In practice discrete transitions are often specified by a finite number of guarded as-
signments: Given a source mode m and a target mode m′, a guarded assignment
γ = (G,m, f ,m′) specifies a subset G ⊆ S(m), called the guard, and an assignment
f : G → S(m′), called the update function, that assigns states in S(m′) to the states of
G. Hence, a discrete transition τ = (x,m,x′,m′) is defined by the guarded assignment
γ if and only if x ∈ G and x′ = f(x). If we further restrict f to be an affine function,
this finally yields a linear hybrid system, which is the main object of investigation in the
second part of this thesis.

Definition 1.7 (Linear Hybrid System)
A linear hybrid system is a hybrid system where

(i) the continuous flow of each mode is specified by a linear differential equation of
the form

ẋ(t) = Ax(t) + u(t), x(t) ∈ I, u(t) ∈ U for all t,

(ii) the discrete transitions are specified as guarded assignments of the form γ =
(G,m, f ,m′), and the update function f is an affine mapping. �

Example 1.8 (Bouncing Ball)
The bouncing ball model is a well-known example of a hybrid system. We consider a
point mass, the ball, at height x and velocity v. The ball is exposed to the gravitational
force v̇ = −g where g is the acceleration due to gravity. When the ball encounters the
ground, located at height x = 0, it is instantaneously repulsed due to a partial inelastic
collision v′ = −crv where v′ is the velocity after the collision, v is the velocity before the
collision, and cr ∈ [0, 1] is the constant coefficient of restitution.

The continuous behavior is modeled as the dynamical system C = ({x, v, t},Flow)
where Flow is defined as follows: (ẋ, v̇, ṫ, x, v, t) ∈ Flow if and only if

ẋ = v, v̇ = −g, ṫ = 1,

x ≥ 0.

5



1. Introduction

ẋ = v

v̇ = −g
ṫ = 1

x ≥ 0

x ≤ 0

v ≤ 0

v′ = −crv

Figure 1.2.: Hybrid System Model of a Bouncing Ball

The invariant x ≥ 0 reflects the fact that the ball cannot penetrate the ground. Addi-
tionally, we explicitly model the time t.

The hybrid system is given by H = ({x, v, t}, {C},Trans) where Trans is defined by
the guarded assignment γ = ({x ≤ 0, v ≤ 0}, C, f : v 7→ −crv, C), see also Figure 1.2. �

1.2.5. Reachability Analysis

Given a hybrid system H and a designated set Init of initial states, the main goal of
reachability analysis is to compute the reachable states of H from Init : We would like
to compute all states that are located on any trajectory emanating from an initial state
x0 in Init . Reachability analysis is an important technique for the safety analysis of
hybrid systems, e. g. to verify that certain states can or cannot be reached. The states
for which we want to decide the reachability are often called bad states, and the set of
all bad states is called Unsafe. The question whether Unsafe is reachable from Init is
known as the reachability problem for hybrid systems, and it is known to be undecidable
in general (Alur et al., 1995; Henzinger et al., 1995).

The basic idea of reachability analysis is to compute the set of reachable states by a
fix-point iteration. The computation starts with the initial states and subsequently adds
those states that are reachable by a discrete transition or by a continuous evolution until
all added states are already contained in the collection. A similar approach is to start
with the bad states and to subsequently add the continuous and discrete preimages until
either an initial state or a fix-point is reached. The continuous and discrete preimages
of a state (x,m) consist of all states from which (x,m) is reachable via a continuous
evolution or a discrete transition, respectively. Both approaches can be used for safety
analysis. The latter approach is called backward reachability analysis, and to avoid
any possibility of confusion, the former is sometimes attributed as forward reachability
analysis. This thesis deals with forward reachability analysis, backward reachability is
addressed only marginally.

The fix-point computation is an algorithmic realization of the following mathematical
construction: Let us define two post operators, postd and postc. Both operators map
from S(H) to Pow(S(H)). The discrete post operator postd(x,m) is defined as

postd : (x,m) 7→ {(x′,m′) | (x,m,x′,m′) ∈ Trans} ,

6
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and the continuous post operator postc(x,m) is defined as

postc : (x,m) 7→
{(x′,m) |x′ = y(t,x) for a trajectory y : [0, T ]→ S(m) and t ∈ [0, T ]} .

We extend postc and postd to operate on sets of states by

postc(X) =
⋃

(x,m)∈X

postc(x,m), postd(X) =
⋃

(x,m)∈X

postd(x,m).

Let R0 be the set of initial states, let

Rk+1 = Rk ∪ postd(Rk) ∪ postc(Rk), (1.1)

and let R∞ =
⋃
k∈N Rk. Then R∞ is the set of all reachable states of H. R∞ is

the least set that includes R0 and that is closed under the discrete and continuous
post operator. Successful termination of the fix-point computation means that there
is some K for which the sequence already stabilizes, i. e., RK = RK+1 = · · · = R∞.
Termination of the computation cannot be guaranteed in general, and this is one factor
which contributes to the undecidability of the reachability problem of hybrid systems.
Notwithstanding this principal limitation, the iterative approach allows us to gain useful
information on the behavior of a system. For example, when Unsafe is reachable, i. e.,
Unsafe ∩R∞ 6= ∅, then there exists a least index K for which Unsafe ∩RK 6= ∅ holds.
Hence, the fix-point computation provides a semi-decision procedure for the reachability
problem. Furthermore, even a fix-point iteration of bounded depth may give satisfactory
insights into the system’s evolution for a bounded period.

Alas, there are several restrictions in practice which prevent an efficient computation
of the sets Rk. The reachability analysis has to deal with infinitely many different
states. Clearly, such an amount of states cannot be handled explicitly. Hence, we
have to find a suitable symbolic representation of the set of states. Ideally, a symbolic
state representation is (i) capable to specify a wide range of sets of states, (ii) allows
us to express various set operations, like postd, postc, intersections, or unions, and
(iii) has efficient procedures to decide properties like emptiness or subset relations. Yet,
a symbolic state representation that satisfies all these requirements has not been found.

1.3. Polyhedra

Current approaches in the area of reachability analysis investigate different symbolic
state representations and restrict the class of admissible hybrid system (Girard, 2005;
Chen et al., 2013; Frehse et al., 2011) such that at least over-approximations of postc,
postd, and other set operations can be computed efficiently. We follow the lead and
restrict our attention to polyhedral set representations.

Closed convex polyhedral sets, we shall use the term polyhedra, are a useful data
structure to describe the linear inequality relations of the state variables of a system.
Together with convexity preserving manipulations, like affine transformations, convex

7



1. Introduction

hull, Minkowski sum, and intersections, they often form the theoretical basis of system
analysis, as is evident in program verification (Cousot and Halbwachs, 1978), hybrid
model checking (Le Guernic and Girard, 2009; Hagemann, 2014a), or motion planing.
In practice, system analysis hinges on an efficient computational realization of polyhedra-
based algorithms.

1.3.1. H-Polyhedra and V-Polyhedra

In the literature typically two different representation of closed convex polyhedra are
introduced, the H-representation, where a polyhedron P is given as an intersection of
finitely many closed half-spaces

P = P (A,a) = {x |Ax ≤ a} ,

and the V-representation, where P is given as the Minkowski sum

P = cone(U) + conv(V)

of cone(U) and conv(V), which are sets generated by conical and convex combinations
of vectors from the finite sets U and V. Under the assumption that the respective rep-
resentation does not contain any redundant information, the H-representation specifies
the facets of the polyhedron and the set U specifies all rays and V all vertices of the
polyhedron. According to the given representation, we call a polyhedron either an H-
or a V-polyhedron. The Minkowski-Weyl Theorem states that both representations are
theoretically equivalent. But, unfortunately, the representations differ algorithmically
(Ziegler, 1995): While the V-representation of the convex hull or the Minkowski sum of
V-polyhedra is easy to compute, the enumeration of the facets is NP-hard for the convex
hull and the Minkowski sum of H-polyhedra; and the contrary relation holds for the
intersection, see Table 1.1. The problem of converting between both representations is
known as the vertex enumeration and facet enumeration problem, respectively, and its
complexity is still open (Boros et al., 2011; Khachiyan et al., 2008). Note that, since
the output size of geometrical operations, including conversions, can clearly be exponen-
tial in the input size1, we typically measure the complexity in terms of output-sensitive
algorithms in this area.

In their seminal article, Cousot and Halbwachs (1978) discussed the computation of
linear relations among variables of a program and used both kinds of polyhedral repre-
sentation. They faced the problem of diverging algorithmic performance of geometrical
manipulations in the different representations. Finally, they propose the usage of both
representations since “it appears that it is difficult to simplify one representation with-
out knowing the other one and neither can be used efficiently without simpli[fi]cations”.
Nowadays, the usage of specialized polyhedral libraries is quite common in the field of
program analysis (Sankaranarayanan et al., 2006). Internally, these libraries can utilize
the V- or the H-representation, and the appropriate representation is chosen accordingly
to the requested manipulation. The conversion algorithm between both representations

1 This effect is known as vertex explosion or facet explosion, respectively.
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is based on the double description method invented by Motzkin et al. (1953), see e. g.
Bagnara et al. (2002). Still, these polyhedral libraries suffer from the complexity in time
and space of the conversion algorithm (Sankaranarayanan et al., 2006).

1.3.2. Simplified Operations and Alternative Representation Classes

Another approach is the usage of simplified manipulations instead of the exact geomet-
rical operation, e. g. using the weak join or the inversion join instead of the convex hull,
see e. g. Sankaranarayanan et al. (2006). Clearly, this approach is accompanied by a loss
of exactness.

Especially in the field of reachability analysis of hybrid automata, the usage of alterna-
tive representations has been investigated, for which at least some geometrical operations
behave nicely. For example, Girard (2005) proposes the usage of zonotopes, which al-
low a very efficient computation of Minkowski sums and are an adequate data-structure
to cope with linear systems whose dynamics are subject to bounded disturbances or
inputs. It turns out that alternative data-structures are highly specialized for certain
manipulations while other operations become extremely hard or even impossible, e. g. the
intersection of zonotopes is in general not a zonotope. Typically, the usage of specialized
representations is accompanied with strong restrictions on the eligible shapes.

1.3.3. Support Functions

Le Guernic and Girard (2009) propose a reachability analysis based on template poly-
hedra and support functions. Support functions can be seen as generalizations of linear
programs. For a – not necessarily convex – set S ⊆ Rd and a direction n ∈ Rd the value
of the support function is defined as

hS(n) = sup
x∈S

nTx.

If S is a closed convex polyhedron, i. e., S = P(A,a), then the value hS(n) coincides
with the optimal value of the linear program

maximize nTx subject to Ax ≤ a.

Support functions behave nicely under most geometrical operations: In detail, for any
two compact convex sets P and Q in Rd the following easily computable equations hold
(Rockafellar and Wets, 1998):

• for any (d× d)-transformation matrix M the support function of the transformed
set MP is given by

hMP(n) = hP(MTn),

• the support function of the Minkowski sum is given by

hP+Q(n) = hP(n) + hQ(n),

9
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• and the support function of the convex hull is given by

hconv(P∪Q) = max(hP(n), hQ(n)).

Contrariwise, the support function of the intersection is not easily computable:

hP∩Q(n) = inf
m∈Rd

hP(n−m) + hQ(m).

1.3.4. Template Polyhedra

Template polyhedra are H-polyhedra of the form P (Afix,a) with a fixed representation
matrix Afix and varying constant terms a. They play an important role in system
analysis (Sankaranarayanan et al., 2008) since for many manipulations they are capable
to render the exact extension of the resulting state sets in the directions given by some
fixed template matrix Afix: Given the support function hS of some set S ∈ Rd and the
(m× d) matrix Afix, we easily obtain a closed convex over-approximation P (Afix,aS) of
S by setting

aS =


hS(n1)
hS(n2)

...
hS(nm)

 ,

where the row vector nTi are the rows of the matrix Afix. For example, it follows that

P (Afix,a1) ∩P (Afix,a2) = P (Afix,min(a1,a2))

and

conv(P (Afix,a1) ∪P (Afix,a2)) ⊆ P (Afix,max(a1,a2)) .

Moreover, if all coefficients of a1 and a2 are tight upper bounds for the extension of the
sets in the directions given by Afix, then all coefficients of min(a1,a2) and max(a1,a2)
are also tight upper bounds for the extension of the resulting set in the given directions.

1.3.5. Symbolic Orthogonal Projections

We will propose a new polyhedral representation, the symbolic orthogonal projections
(sops). A sop encodes a polyhedron as an orthogonal projection of a higher dimen-
sional H-polyhedron. Fundamental geometrical operations, like affine transformations,
intersections, Minkowski sums, and convex hulls, can be performed by block matrix
operations on the representation. Due to the underlying H-representation, linear pro-
gramming helps us to evaluate sops.
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1.3.6. Overview on Different Representations

The following table provides an overview on the hardness of performing linear trans-
formations, Minkowski sums, closed convex hulls2, intersections, and deciding subset
relations on polyhedra in the respective representation. The tick indicates computabil-
ity in (weakly) polynomial time. Otherwise, the enumeration problem is either NP-hard
or its complexity is unknown, see Tiwary (2008).

Representation M(·) ·+ · clconv(·∪·) · ∩ · · ⊆ ·
V-representation X X X NP-hard X
H-representation Xa NP-hard NP-hard X X
support function Xb X X − −
sop X X X X −

afor automorphism, bfor endomorphism

Table 1.1.: Hardness Results for Selected Operations on Different Representations

1.3.7. Linear Hybrid Systems with Polyhedral Set Representation

At the end of this introduction, we eventually return to hybrid systems and fix the
symbolic state representation as it shall be presented in the second part of this thesis.
We will discuss the reachability analysis of linear hybrid systems with polyhedral set
representation:

Definition 1.9 (Linear Hybrid System with Polyhedral Set Representation)
A linear hybrid system with polyhedral set representation is a linear hybrid system where

(i) the continuous flow of each mode is specified by a linear differential equation of
the form

ẋ(t) = Ax(t) + u(t), x(t) ∈ I, u(t) ∈ U for all t,

and I and U are given as polyhedra,

(ii) the discrete transitions are specified as guarded assignments of the form γ =
(G,m, f ,m′), the update function f is an affine mapping, and the guard G is
a polyhedron. �

To make reachability analysis accessible to practical computations, we shall only deal
with finite sets of symbolic states, where a symbolic state (X,m) is a pair of a polyhedron
X and a mode m. Accordingly, the sets Init and Unsafe shall be given as finite sets of
symbolic states.

2 Note that the convex hull of two closed sets is not necessarily closed, see also Example 3.23, and
cannot be represented as a closed polyhedron. Hence, we have to restrict our investigation to the
closed convex hull.
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2. Theory of Systems of Linear Inequalities

This chapter is a compilation of important theorems of the theory of systems of linear
inequalities. Proofs and additional material can be found in almost any textbook on
convex polyhedra, e. g. Ziegler (1995), or linear programming, e. g. Matoušek and Gärtner
(2007); Schrijver (1986).

Convention. All results of this chapter are valid in any vector space Kd over an ordered
field of finite dimension d. Matrices are denoted by upper case letters and vectors by
bold lower case letters. A column vector whose coefficients are all zero is denoted by
0, transposed vectors or matrices are denoted by the superscript T . The dimensions of
objects are often not specified if the concrete value is not important. Nevertheless, a
notation like Ax implicitly implies that the number of columns of the matrix A agrees
with dimension of the column vector x.

2.1. Solving Systems of Linear Inequalities

The Fourier-Motzkin elimination procedure is a method for solving system of linear
inequalities similar to Gaussian elimination.

Theorem 2.1 (Fourier-Motzkin Elimination)
Let Ax ≤ a be a system over d ≥ 1 variables and m non-strict inequalities. Then there
exists a system A′x′ ≤ a′ over d− 1 variables such that

(i) Ax ≤ a has a solution if and only if A′x′ ≤ a′ has a solution,

(ii) the system A′x′ ≤ a′ may have as many as bm2

4 c inequalities,

(iii) there exists an algorithm which generates the system A′x ≤ a′ from the system
Ax ≤ a. �

From a geometrical perspective, the Fourier-Motzkin elimination procedure computes
the orthogonal projection of the polyhedron P(A,a) ⊆ Kd onto Kd−1.

Fourier-Motzkin elimination can be applied to verify the solvability of a system of
linear inequalities: We use Fourier-Motzkin elimination to successively eliminate the
variables x of the system Ax ≤ a until we obtain an equisatisfiable system without
variables, i. e., a system that consists of inequalities over constants only. Clearly, the
solvability of such a system can be read off immediately. Moreover, in case of solvability,
any solution x of the system Ax ≤ a can be found by a backward substitution through
the successively emerged systems of linear inequalities.

We should note that there also exists a variant of the Fourier-Motzkin elimination
procedure for systems with mixed strict and non-strict inequalities.
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2.2. Farkas’ Lemma

Theorem 2.2 (Motzkin’s Transposition Theorem)
For any system

Ax ≤ a, Bx < b (2.1)

of strict and non-strict linear inequalities the following conditions are equivalent:

1. there exists a solution x of Ax ≤ a, Bx < b,

2. for all u ≥ 0 and v ≥ 0 it holds that

a) if ATu +BTv = 0, then aTu + bTv ≥ 0 and

b) if ATu +BTv = 0 and v 6= 0, then aTu + bTv > 0. �

As a direct consequence of the Transposition Theorem, we obtain Farkas’ Lemma.

Theorem 2.3 (Farkas’ Lemma)
For any system Ax ≤ a of linear inequalities exactly one of the following alternatives
holds:

1. there exists some x such that Ax ≤ a,

2. there exists some u ≥ 0 with ATu = 0 and aTu < 0. �

2.3. Linear Programs

Definition 2.4 (Linear Program)
Let Ax ≤ a be a system of non-strict linear inequalities over Kd. Further, let n ∈ Kd.
A linear program (in canonical form) is the task:

maximize nTx subject to Ax ≤ a. (2.2)

�

We shall note that any minimizing or maximizing task over a system of non-strict
inequalities and arbitrary equalities can be transformed by simple equivalent transfor-
mations to the canonical form (2.2) of a linear program. Hence, we call all these variants
a linear program.

The following wording is often used in the context of linear programs. Given a linear
program (2.2), any vector x satisfying the system Ax ≤ a is called a feasible solution.
If at least one feasible solution exists, then the linear program is said to be feasible.
Otherwise, if the linear program has no feasible solution, it is infeasible. An optimal
solution x∗ is a feasible solution that fulfills the maximality (minimality) condition.
Then nTx∗ is the optimal value of the linear program. A feasible linear program does
not necessarily have an optimal value. In this case the linear program is unbounded.
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Theoretically, a linear program can be solved by Fourier-Motzkin elimination. But,
due to enormous growth of the number of linear inequalities in every elimination step,
Fourier-Motzkin elimination is in practice not suitable for solving linear programs.
There exist matured algorithms, like the simplex method, proposed by Dantzig in 1947
(Dantzig, 1991), or interior point methods that are capable to solve linear programs with
large systems of linear inequalities in reasonable time.

Definition 2.5 (Dual Linear Program)
Let

maximize nTx subject to Ax ≤ a (P)

be a linear program. We call (P) the primal linear program and associate the primal
linear program with the dual linear program

minimize uTa subject to ATu = n, u ≥ 0. (D)

�

To familiarize us with an important proof technique of the upcoming chapter, we prove
the next small lemma.

Lemma 2.6 (The Dual of (D) is Equivalent to (P))
Given a primal linear program (P) and its dual linear program (D) as above, then the
dual of (D) is equivalent to the primal linear program. �

Proof. Let I be the unit matrix. The following are equivalent transformations of (D).

minimize uTa subject to ATu = n, u ≥ 0

⇐⇒ minimize uTa subject to

 AT

−AT
−I

u ≤

 n
−n

0


⇐⇒ maximize uT (−a) subject to

 AT

−AT
−I

u ≤

 n
−n

0

 . (2.3)

Dualizing the linear program (2.3) yields

minimize nTx− nTy subject to Ax−Ay − z = −a, x ≥ 0, y ≥ 0, z ≥ 0

⇐⇒ minimize −nT (y − x) subject to A(y − x) ≤ a, x ≥ 0, y ≥ 0

⇐⇒ maximize nTw subject to Aw ≤ a,

where the last equivalence is exactly the linear program (P). �

The following theorems establish some properties of the pair of a primal linear program
(P) and its dual linear program (D).
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Theorem 2.7 (Weak Duality Theorem)
For each feasible solution x of the primal linear program (P) and each feasible solution
u of its dual linear program (D) we have

nTx ≤ aTu. �

Theorem 2.8 (Strong Duality Theorem)
For the primal linear program (P) and its dual linear program (D) exactly one of the
following four possibilities hold

1. neither (P) nor (D) have a feasible solution,

2. (P) is unbounded and (D) is infeasible,

3. (P) is infeasible and (D) is unbounded

4. (P) and (D) are feasible, and for each optimal solution x of (P) and each optimal
solution u of (D) we have

nTx = aTu. �
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Im großen Garten der Geometrie kann sich jeder
nach seinem Geschmack einen Strauß pflücken.

In the big garden that is geometry everyone may
pick a bouquet to his liking.

David Hilbert, 1862-1943

We introduce a novel representation for polyhedral sets, which we call symbolic or-
thogonal projections, or sops, for short. Sops can be realized in any vector space Kd

over an ordered field K. A sop encodes a polyhedron as an orthogonal projection of a
higher-dimensional H-polyhedron. The idea is to treat the projection and the higher-
dimensional polyhedron symbolically rather than to compute an H-representation of the
polyhedron itself that is described by the sop. We show that this representation allows
an efficient computation of various geometrical operations. In fact, many operations
like the convex hull or the Minkowski sum can be performed by simple block matrix
operations. Hence, the complexity of these operations is far better than the negative
complexity results for H- and V-polyhedra. Due to the underlying H-polyhedron, linear
programs can be used to evaluate sops. This allows an efficient computation of support
functions and over-approximations in terms of template polyhedra. Beyond this, we will
also show how linear programming can be used to improve these over-approximations
by adding additional supporting half-spaces, or even better, by adding facet-defining
half-spaces. On the other hand, we shall also discuss a drawback of this representation,
the lack of an efficient method to decide the subset relation of sops.

Parts of this chapter have been published as Hagemann (2014b). Most proofs have
undergone substantial simplifications since they were first published.

Convention. For convenience we will use a block matrix notation. The unit matrix is
denoted by I, the zero matrix by O, and an empty matrix having either zero rows or
columns is denoted by ∅. A column vector whose coefficients are all zero is denoted by 0,
and a column vector whose coefficient are all one by 1. The concrete number of columns
and rows should become clear from the context.

The following convention for support functions is useful to handle infeasibility, un-
boundedness, and optimality uniformly: The notation hP(n) = ∞ indicates that P is
unbounded in direction n, and hP(n) = −∞ indicates that P is empty.

Definition 3.1 (Symbolic Orthogonal Projection)
Let A be an (m × d) matrix, L an (m × k) matrix, and a be a column vector with m
coefficients. A symbolic orthogonal projection, or sop, for short, P (A,L,a) is the triple
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(A,L,a) together with its intended geometrical interpretation

P =
{
x ∈ Kd

∣∣ ∃z ∈ Kk: Ax + Lz ≤ a
}

.

P is a polyhedron in Kd, and we shall write P = P (A,L,a) to denote that the polyhedron
P is the interpretation of the symbolic orthogonal projection P (A,L,a). In other words,
P = P (A,L,a) is the image of the higher-dimensional H-polyhedron

P ((A L) ,a) =

{(
x
z

)
∈ Kd+k

∣∣∣∣Ax + Lz ≤ a

}
under the orthogonal projection

projd : Kd+k → Kd,

(
x
z

)
7→ x. �

Sops have interesting properties which make them useful in the context of system
analysis. The entire chapter is devoted to derive various properties of sops. We start
with the following obvious proposition.

Proposition 3.2 (Emptiness)
A sop P (A,L,a) is empty if and only if the preimage P ((A L) ,a) is empty. �

3.1. Conversions

The following propositions show that H- and V-representations may easily be converted
to symbolic orthogonal projections.

Proposition 3.3 (Converting H-Representation to Sop)
Let P (A,a) be an H-polyhedron. Then P (A, ∅,a) is a symbolic orthogonal projection
and the identity P (A,a) = P (A, ∅,a) holds. �

Proof. Obvious. �

Proposition 3.4 (Converting V-Representation to Sop)
Let P = cone(U) + conv(V) be a V-polyhedron and let U and V be matrices whose
columns are the elements of U and V, respectively. The polyhedron P is defined as the
set

P =
{
x ∈ Kd

∣∣∃p ≥ 0, q ≥ 0: 1Tq = 1, Up + V q = x
}

. (3.1)

Then

P = P





−I
I

O
O

0T

0T

 ,



U V
−U −V
−I O
O −I

0T 1T

0T −1T

 ,



0
0
0
0
1
−1



 . �
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Proof. By carefully rewriting (3.1). �

On the other hand, the conversion of a symbolic orthogonal projection back to an H-
representation may be done with Fourier-Motzkin elimination (Theorem 2.1). This op-
eration is expensive since for each eliminated variable the number of inequalities roughly
gets squared. Thus, we should avoid this operation whenever possible. Moreover, since
the sop-based representation encompasses the H-representation, conversion of a sop to
a V-polyhedron is at least as hard as generating all vertices and extreme rays of an
H-polyhedron (Khachiyan et al., 2008).

3.2. Support Function and Template Polyhedra

The following proposition shows that the value of the support function of a sop can be
computed by means of linear programming.

Proposition 3.5 (Support Function)
Let P = P (A,L,a) be a sop. Then for any n the identity

hP(A,L,a)(n) = hP((A L),a)

((
n
0

))
holds. Hence, the value of the support function hP(n) is given by the linear program

maximize nTx subject to Ax + Lz ≤ a. (3.2)

Moreover, let
(
x0

z0

)
be an optimal solution of the linear program (3.2). Then the orthog-

onal projection x0 = projd
((

x0

z0

))
is an optimal vector of the sop P (A,L,a). �

Proof. Obvious.

Support functions are useful for computing over-approximations in terms of template
polyhedra.

Definition 3.6 (Vector Valued Support Function)
Let P = P (A,L,a) be a sop in Kd and Afix be an (m× d) matrix. We denote the rows
of Afix by the row vectors nT1 , . . . , nTm and define

hP(Afix) =


hP(n1)
hP(n2)

...
hP(nm)

 . �

As a first application we note the following criterion.

Proposition 3.7 (Boundedness of Sops)
Let P = P (A,L,a) be a non-empty sop in Kd and Afix be a matrix of d + 1 affinely
independent row vectors nT1 , . . . , nTd+1, (i. e., n1 − nd+1, . . . , nd − nd+1 are linearly
independent). Let a = hP(Afix). If all coefficients of a are in K, i. e., none is equal to
∞, then P is a polytope. Otherwise, P is unbounded. �
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Proof. Let P′ = P(Afix,a). Clearly, P′ is an over-approximation of P. If every coefficient
of a is bounded, then P′ is a d-simplex and, hence, bounded in every direction. Then
P must also be bounded in every direction. On the other hand, if P is bounded, then
every coefficient of a is bounded. �

In general a sop and an over-approximating template polyhedron will have none or only
a few facets in common since the normal vectors of the facets of a template polyhedron
are fixed by the template matrix. In Section 3.12 we will see how linear programming
allows us to extract additional facet-defining half-spaces of a sop.

3.3. Duality and the Polar

The dual linear program to (3.2) is

minimize aTu subject to u ≥ 0, ATu = n, LTu = 0. (3.3)

By Strong Duality (Theorem 2.8) we have aTu ≥ hP(n) for any feasible solution of
(3.3), and, if P is bounded in direction n, then at least one feasible solution u ≥ 0 with
ATu = n, LTu = 0 and aTu = hp(n) exists.

As a first application of the duality of linear programs we show the following proposi-
tion that allows us to represent polars in terms of symbolic orthogonal projections. The
polar of set P is defined as the set

P∗ =
{
n
∣∣nTx ≤ 1 for all x ∈ P

}
.

Building the polar is a dual operation for polyhedra containing the origin. Indeed, if P
is a closed convex set and 0 ∈ P, then P∗∗ = P, see Rockafellar and Wets (1998).

Proposition 3.8 (Polar)
Let P = P (A,L,a) be a sop. Then the following equation holds:

P∗ = P





I
−I
O
O
O

0T

,


−AT
AT

LT

−LT
−I
aT

,


0
0
0
0
0
1



 . (3.4)

�

Proof. The proposition follows from the following identities:

P∗ =
{
n
∣∣nTx ≤ 1 for all x ∈ P

}
= {n |hP(n) ≤ 1}

=
{
n
∣∣∃u ≥ 0: ATu = n, LTu = 0, aTu ≤ 1

}
=
{
n
∣∣∃u: In−ATu = 0, LTu = 0, u ≥ 0, aTu ≤ 1

}
.

Finally, rewriting the equalities as pairs of inequalities yields (3.4). �
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3.4. Intersection, Minkowski Sum, and Translation

Proposition 3.9 (Intersection)
Let P1 = P (A1, L1,a1) and P2 = P (A2, L2,a2) be two sops. Then the following
equation holds:

P1 ∩P2 = P

((
A1

A2

)
,

(
L1 O
O L2

)
,

(
a1

a2

))
. �

Proof. The proposition follows immediately from the equivalences:

x ∈ P1 ∩P2 ⇐⇒ x ∈ P1 and x ∈ P2

⇐⇒ ∃z1, z2: A1x + L1z1 ≤ a1, A2x + L2z2 ≤ a2. �

Proposition 3.10 (Minkowski Sum)
Let P1 = P (A1, L1,a1) and P2 = P (A2, L2,a2) be two sops. Then the following
equation holds:

P1 + P2 = P

((
A1

O

)
,

(
−A1 L1 O
A2 O L2

)
,

(
a1

a2

))
,

where P1 + P2 denotes the Minkowski sum of P1 and P2. �

Proof. The proposition follows from the equivalences:

x ∈ P1 + P2 ⇐⇒ ∃x1 ∈ P1 ∃x2 ∈ P2: x = x1 + x2 ⇐⇒ ∃x2 ∈ P2: x− x2 ∈ P1

⇐⇒ ∃x2,y1,y2: A1x−A1x2 + L1y1 ≤ a1, A2x2 + L2y2 ≤ a2. �

The translation of a polyhedron by some vector v is a special case of the Minkowski
sum.
Proposition 3.11 (Translation)
Let P = P(A,L,a) be a sop and let v a vector. Then for the translation P + v the
identity P(A,L,a +Av) = P + v holds. �

Proof. The proposition follows from the equivalences:

x ∈ P + v⇐⇒ ∃x1 ∈ P: x = x1 + v⇐⇒ x− v ∈ P

⇐⇒ ∃z1: Ax + Lz1 ≤ a +Av. �

Another special case is given in the following proposition.

Proposition 3.12 (Extrusion)
Let P = P (A,L,a) be a sop, v be a vector, and [t0, t1] be an interval with t0 ∈
K ∪ {−∞}, t1 ∈ K ∪ {∞} and t0 ≤ t1. Then the sop representing the extrusion of P
along {tv | t ∈ [t0, t1]}, i. e., P +

⋃
t∈[t0,t1] tv, is given by the following equation

P +
⋃

t∈[t0,t1]

tv = P

 A
0T

0T

 ,

 L −Av
0T −1
0T 1

 ,

 a
−t0
t1

 ,

where we may omit the last or the second last row of the sop representation if t1 = ∞
or t0 = −∞, respectively. �
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3. Symbolic Orthogonal Projections

Proof. The equation follows immediately from the equivalences:

x ∈ P +
⋃

t∈[t0,t1]

tv⇐⇒ ∃y, z ∃t ∈ [t0, t1]: Ay + Lz ≤ a, x = y + tv

⇐⇒ ∃z, t: Ax− tAv + Lz ≤ a,−t ≤ −t0, t ≤ t1. �

3.5. Linear and Affine Transformations

We begin with the most general proposition, which is inspired by Bastoul (2004).

Proposition 3.13 (Affine Mapping)
Let P1 = P (A1, L1,a1) be a sop in Kd. Further, let M ∈ Kl×d be the transformation

matrix and v ∈ Kl be the translation vector of the affine mapping f(x) = Mx+v. Then

f(P1) = MP1 + v = P

 Il
−Il

O

 ,

−M O
M O
A1 L1

 ,

 v
−v
a1

 .

The sop-based representation of MP1 + v has l additional columns and 2l additional
rows compared to the representation of P1. �

Proof. The set identity immediately follows from the equivalences:

x ∈ f(P1)⇐⇒ ∃y: y ∈ P1, x = My + v⇐⇒ ∃y, z: A1y + L1z ≤ a1, Ilx = My + v. �

The preimage of an affine mapping is a simple operation.1

Proposition 3.14 (Preimage under Affine Mappings)
Let P1 = P (A1, L1,a1) be a sop in Kl. Further, let M ∈ Kl×d be the representation

matrix, and v ∈ Kl be the translation vector of the affine mapping f(x) = Mx + v.
Then the sop representing the preimage f−1(P1) = {x ∈ Kd | ∃y ∈ P1: Mx + v = y} is
given by the following equation

f−1(P1) = P (A1M,L1,a1 −A1v) . �

Proof. The equation follows immediately from the following equivalences.

x ∈ f−1(P1)⇐⇒ ∃y ∈ P1: y = Mx + v⇐⇒ ∃y, z: A1y + L1z ≤ a1, y = Mx + v

⇐⇒ ∃z: A1Mx + L1z ≤ a1 −A1v⇐⇒ x ∈ P (A1M,L1,a1 −A1v) . �

1 It is a well-known fact that the preimage computation of affine mappings on H-polyhedra does not
involve quantifier elimination. For example, the model-checker FOMC exploits this fact via backward
model-checking. I would like to thank Uwe Waldmann who pointed out that this property should
carry over to sops.
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In the following we describe how an arbitrary linear mapping can be decomposed
into special mappings for which compact sop-representations exist. The decomposi-
tion method leads to smaller representation sizes in general. Any linear mapping f is
uniquely determined by its transformation matrix M ∈ Kl×d, i. e., f(x) = Mx. The next
proposition shows that any linear transformation can be written as a composition of the
following three types of linear mappings, where the (n×n)-identity matrix is denoted by
In: (i) automorphisms, having invertible transformation matrices; (ii) orthogonal projec-
tions projr,d having (r× d)-matrices of the form (Ir O); and (iii) elementary embeddings

embedl,r having (l × r)-matrices of the form
(

Ir
O

)
.

Proposition 3.15 (Decomposition of Linear Mappings)
Every transformation matrix M ∈ Kl×d can be written as the product M = S−1EPT−1

where S ∈ Kl×l and T ∈ Kd×d are invertible, E ∈ Kl×r is the matrix of an elementary
embedding, and P ∈ Kr×d is the matrix of an orthogonal projection for some r with
0 ≤ r ≤ min(d, l). �

Proof. We transform M into row echelon form and then into column echelon form by
multiplying first with an invertible matrix S from the left and then multiplying with an
invertible matrix T from the right, yielding

SMT =

(
Ir O
O O

)
=

(
Ir
O

)
(Ir O) = EP . �

Proposition 3.16 (Bijective Linear Mapping)
Let P1 = P (A1, L1,a1) be a sop in Kd and T an invertible (d×d)-transformation matrix
of a linear mapping. Then

TP1 = P
(
A1T

−1, L1,a1

)
.

The representation of TP1 has as many rows and columns as the representation of P1.�

Proof. The set identity immediately follows from the equivalences:

x ∈ TP1 ⇐⇒ T−1x ∈ P1 ⇐⇒ ∃z: A1T
−1x + L1z ≤ a1

⇐⇒ x ∈ P
(
A1T

−1, L1,a1

)
. �

Proposition 3.17 (Orthogonal Projection)
Let P1 = P (A1, L1,a1) be a sop in Kd and projr,d an orthogonal projection with 0 ≤
r ≤ d. Then

projr,d(P1) = P (A,L,a1)

where the matrix equality (A L) = (A1 L1) holds and A has r columns. The repre-
sentation of projr,d(P1) has as many rows and columns as the representation of P1. �
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Proof. Obviously, P (A1, L1,a) ∈ Kd and P (A,L,a) ∈ Kk are both orthogonal projec-
tions of the same polyhedron Q = P ((A1 L1) ,a), only the dimension of the codomain
differs. It does not matter whether we project Q in two steps first onto Kd and then
project the result onto Kk, or project Q in one step onto Kk, as we easily see by looking
at the matrix product of the corresponding projection matrices. �

Proposition 3.18 (Elementary Embedding)
Let P1 = P (A1, L1,a1) be a sop in Kr and embedl,r an elementary embedding with
l ≥ r. Then

embedl,r(P1) = P

A1 O
O Il−r
O −Il−r

,
L1

O
O

,
a1

0
0

 . (3.5)

The representation of embedl,r(P1) has l− r additional columns and 2(l− r) additional
rows compared to the representation of P1 �

Proof. The set identity (3.5) immediately follows from the equivalences:(
x

y

)
∈ embedl,r(P1)⇐⇒ ∃z: A1x + L1z ≤ a1, y = 0

⇐⇒ ∃z:

A1 O
O Il−r
O −Il−r

(x
y

)
+

L1

O
O

 z ≤

a1

0
0

 . �

The elementary embedding is strongly related to cylindrification.

Proposition 3.19 (Cylindrification)
Let P1 = P (A1, L1,a1) be a sop in Kr. Further, for l ≥ r let cyll,r(P1) be the cylindri-

fication of P1 in Kl, i. e., the set

cyll,r(P1) = P1 ×Kl−r =

{(
x
z

) ∣∣∣∣x ∈ P1, z ∈ Kl−r
}
.

Then

cyll,r(P1) = P ((A1 O) , L1,a1) . (3.6)

�

Proof. The set identity (3.6) immediately follows from the equivalences:

x ∈ P1, z ∈ Kl−d ⇐⇒ ∃y: (A1 O)

(
x
z

)
+ L1y ≤ a⇐⇒

(
x

z

)
∈ cyll,r(P1). �

Finally, let us shortly discuss the two different methods to compute the image of a
sop under the affine mapping Mx + v with M ∈ Kl×d and v ∈ Kl. The direct method
of Proposition 3.13 allows us to represent the image by simple block operations without
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additional computations and leads to a growth of the representation by l columns and 2l
rows. The decomposition method involves additional computations, which are Gaussian
elimination and matrix products, and the representation grows by l − r columns and
2(l−r) rows where r with 0 ≤ r ≤ min(d, l) is uniquely determined by the decomposition
of M . Which method we should prefer is not clear in general and might depend on the
context. The direct method has been found recently, and our experiences are mostly
based on the decomposition method.

3.6. Scaling

We discuss a special case of a linear mapping, the mapping λ : P→ λP for λ ∈ K, i. e.,
scaling of polyhedra. For the special case of polytopes, this operation can be expressed
as a manipulation of the vector a in the sop-representation P (A,L,a). It turns out that
polyhedra and polytopes behave slightly differently under this manipulation.

The recession cone of a polyhedron P is the set

rec(P) = {x | ∀y ∈ P, λ ≥ 0: y + λx ∈ P} ,

which is the set of all directions in that P is not bounded. If P is bounded in each
direction, i. e., P is a polyhedron, then rec(P) = {0}. Moreover, let P = P(A,a) be an
H-representation and P = cone(U)+conv(V) be a V-representation. Then the identities
rec(P) = P(A,0) and rec(P) = cone(U) hold, see Ziegler (1995).

Lemma 3.20 (Separation)
Let P = P (A,L,a) be a sop and z some point with z 6∈ P. Then there exists some
u0 ≥ 0 such that the half-space H(n, c) with n = ATu0, c = aTu0 separates z and P:

nT z > c and ∀x ∈ P: nTx ≤ c. �

Proof. If z is not in P, then the following system of linear inequalities has no solution.

Ax + Lz ≤ a, Ix ≤ z, −Ix ≤ −z

Hence, by Farkas’ Lemma there exist u0 ≥ 0, u1 ≥ 0, and u2 ≥ 0 with

ATu0 + ITu1 − ITu2 = 0

LTu0 = 0

aTu0 + zTu1 − zTu2 < 0.

We set u2 − u1 = n, aTu0 = c and obtain

ATu0 = n, LTu0 = 0, c < nT z.

On the other hand, for any u ≥ 0 with LTu = 0 and any x, y with Ax+Ly ≤ a we have
uTAx ≤ uTa. Hence, also for u0, with n = ATu0 and c = aTu0 as above, we obtain
nTx ≤ c for all x ∈ P. �
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Proposition 3.21 (Non-negative Scaling and Recession Cone)
Let P1 = P (A1, L1,a1) be a sop and λ ≥ 0. Then for λ > 0 the identity

λP1 = P (A1, L1, λa)

and for λ = 0 the identity

rec(P1) = P (A1, L1, λa)

holds. If P1 is a polytope, i. e., bounded in every direction, then we may forgo the case
distinction and obtain the identity λP1 = P(A1, L1, λa1) for any λ ≥ 0. �

Proof. Let λ > 0. Then the following equivalences hold.

x ∈ λP1 ⇐⇒ ∃y, z: A1y + L1z ≤ a1, x = λy⇐⇒ ∃y, z: A1λy + L1λz ≤ λa1,x = λy

⇐⇒ ∃z′: A1x + L1z
′ ≤ λa1 ⇐⇒ x ∈ P(A1, L1, λa1).

Let λ = 0. Assume, x ∈ P (A1, L1,0). Then there exists some z with A1x + L1z ≤ 0
and, moreover, for all λ′ ≥ 0 the inequality

A1λ
′x + L1λ

′z ≤ 0 (3.7)

holds. We want to show x ∈ rec(P1). Therefore, let y ∈ P1. Then there exists some z′

with A1y + L1z
′ ≤ a1. Using (3.7) we obtain A1(λ′x + y) + L1(λ′z + z′) ≤ a1. Hence,

y + λ′x ∈ P1 for all λ′ ≥ 0, and we have shown x ∈ rec(P1). On the other hand, if
x ∈ rec(P1), then we have to show that x ∈ P(A1, L1,0). Suppose, x 6∈ P(A1, L1,0).
According to the previous lemma, there exists some u0 ≥ 0 with n = ATu0, and c =
0Tu0 = 0 such that P (A1, L1,0) ⊆ H(n, 0) and nTx > 0. Since x ∈ rec(P1), for all
y ∈ P1 and λ′ ≥ 0 we have y + λ′x ∈ P(A1, L1,a1), i. e., there exists some z with
A1λ

′x + A1y + L1z ≤ a1. We multiply by u0 and obtain λ′nTx + nTy ≤ uTa1. Since
nTx > 0 and λ′ may be chosen arbitrary large, this yields a contradiction. Hence,
x ∈ P(A1, L1,0). �

Proposition 3.22 (Negative Scaling)
Let P1 = P (A1, L1,a1) be a sop and λ < 0. Then the identity

λP1 = P (−A1, L1,−λa)

holds. �

Proof. The proposition follows from the following equivalences:

x ∈ λP1 ⇐⇒ −x ∈ −λP1 ⇐⇒ ∃z: −A1x + L1z ≤ −λa1. �
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3.7. Towards the Convex Hull

As motivation for the next section, we discuss the following construction describing the
convex hull of a polyhedron P and the origin 0. Let P = P (A,L,a) be a sop, and let
P1 =

⋃
t∈[0,1] tP. Then P1 is the convex hull of the point 0 and P. From the previous

section we learnt that tP can be written as the sop P (A,L, ta) if t > 0 or if t ≥ 0 and
P is a polytope. Now, let P2 =

⋃
t∈[0,1] P (A,L, ta). It is not hard to see that P2 can

be represented by the sop

P2 = P

 A
0T

0T

 ,

 L −a
0T 1
0T −1

 ,

0
1
0

 .

Hence, for polytopes it is possible to express the set conv({0} ∪P) as a sop.

We shall discuss the case where P is unbounded. Let us look at the following example.

Example 3.23 (The Convex Hull of Polyhedra is Not Necessarily Closed)
Let P be the unbounded line P = {

(
x
1

)
|x ∈ K} ⊂ K2. Then conv({0} ∪ P) is the set

P1 =
{(

x
y

) ∣∣x ∈ K, 0 < y ≤ 1
}
∪
{(

0
0

)}
. This set is convex but not closed. A set that

is not closed can neither be described as an H-polyhedron, nor as a projection of an
H-polyhedron.

Now, let us look at representations in terms of sops. P can be represented as the sop
P (A,L,a) with A =

(
0 1
0 −1

)
, L = ∅, and a =

(
1
−1

)
. The set P2 =

⋃
t∈[0,1] P (A,L, ta) is

given by

P2 = P

 A
0T

0T

 ,

−a
1
−1

 ,

0
1
0


=

{(
x

y

) ∣∣∣∣ y = λ, 0 ≤ λ ≤ 1

}
=

{(
x

y

) ∣∣∣∣ 0 ≤ y ≤ 1

}
.

0

P

Interestingly, this is the smallest closed set containing the convex hull of {0} ∪P. �

The example shows that, while the convex hull of polyhedra cannot be represented as
a sop in general, it might be possible to represent at least their closed convex hull as a
sop. To see that this is actually always possible, we need some more theoretical insight,
which shall be provided in the next sections.

3.8. Half-Space Cones

The normal vector n and the coefficient c of the half-space representation H(n, c) =
{x |nTx ≤ c} form the vector

(
n
c

)
∈ Kd+1. For any closed convex set S this allow us to
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define the set

C =

{(
n

c

) ∣∣∣∣S ⊆ H(n, c)

}
that contains all vectors

(
n
c

)
which represent an including half-space of S. It is an

easy observation that C is closed under conical combinations. The set C is called the
subsumption cone of S (Lassez, 1990). On the other hand, it is well-known that any
closed convex set S is given as the intersection of all including closed half-spaces. We are
observing a mutual dependency between the closed convex set S and the subsumption
cone C:

S =
⋂

H(n,c)∈C

H(n, c) and C =

{(
n

c

) ∣∣∣∣S ⊆ H(n, c)

}
. (3.8)

We can exploit the interdependence in different directions:

(i) Assume, the closed convex set S is given explicitly, for example as anH-polyhedron.
Then (3.8) yields a definition of the subsumption cone C.

(ii) Or, we assume that C is given explicitly. Then (3.8) yields a definition of S.

Let us analyze the second case: Since C defines the set S via (3.8), we may say that
C represents S. Furthermore, even if C is not the subsumption cone of S, it may still
represent S: Assume, C is a finite sets of vectors of the form

(
ni
ci

)
, i = 1, . . . ,m. Then S

is a closed convex polyhedron. Actually, this is nothing else than an alternative way of
writing

S = P (A,a) with A =


nT1
nT2

...
nTm

 and a =


c1

c2
...

cm

 .

Instead of finite sets, this section deals with conical sets C which represent polyhedral
sets S. For simplicity, we use the notation H(n, c) ∈ C to indicate that we identify
H(n, c) with the vector

(
n
c

)
∈ C in the following.

Definition 3.24 (Half-Space Cone)
Let P be a polyhedron in Kd. Any conical set C ∈ Kd+1 with the following properties

(i) for all H(n, c) ∈ C it holds that P is a subset of H(n, c),

(ii) for all supporting half-spaces H(n, c) of P it holds that H(n, c) ∈ C,

(iii) if P is empty, then H(0,−1) ∈ C,

is called a half-space cone of P. �
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Clearly, the subsumption cone of P is a half-space cone of P. Since the empty set is
subset of any set, every half-space cone of P is a subset of the subsumption cone of P,
even for an empty polyhedron P. The following proposition and its corollary illustrate
how half-space cones help us to characterize polyhedra.

Proposition 3.25 (Representation)
Let P be a polyhedron and C be a half-space cone of P. Then the following equivalence
holds:

x ∈ P if and only if x ∈ H(n, c) for all H(n, c) ∈ C. �

Proof. Assume x ∈ P. Every half-space H(n, c) ∈ C includes P by definition. Hence,
x ∈ H(n, c) for all H(n, c) ∈ C.

Conversely, suppose x ∈ H for all half-spaces H ∈ C, but x 6∈ P. Suppose P is empty,
then H(0,−1) ∈ C by definition, and we have the contradiction x ∈ H(0,−1). Hence,
P is not empty. Since every non-empty polyhedron can be represented as a non-empty
intersection of finitely many half-spaces, there must be a half-space H0 = H(n0, c0) such
that P ⊆ H0 and x 6∈ H0. Sharpening c0 to the optimal value hP(n0) only decreases the
value of c0. Therefore, the relations P ⊆ H(n0, hP(n0)) and x 6∈ H(n0, hP(n0)) still hold
for the supporting half-space H(n0, hP(n0)). But, by definition, H(n0, hP(n0)) ∈ C,
which is a contradiction to the supposition x ∈ H for all H ∈ C. �

Corollary 3.26 (Equality)
Let P and Q be two polyhedra, and let C be a half-space cone of P. If C is also a
half-space cone of Q, then P = Q. �

Proof. Let C be a half-space cone of P and Q. Then we have the following equivalences:

x ∈ P⇐⇒ x ∈ H(n, c) for all H(n, c) ∈ C⇐⇒ x ∈ Q. �

There is a purely syntactical construction on the H-representation that yields half-
space cones.

Definition 3.27 (Cone of Implied Half-Spaces)
Let P = P(A,a) be an H-polyhedron. Then

C(A,a) =

{(
n

c

) ∣∣∣∣ ∃u ≥ 0: n = ATu, c = aTu

}
,

is called the cone of implied half-spaces of P. �

Proposition 3.28 (Cone of Implied Half-Spaces is a Half-Space Cone)
Let P = P(A,a) be an H-polyhedron in Kd and C(A,a) ∈ Kd+1 its cone of implied
half-spaces. Then C(A,a) is a half-space cone of P. �

Proof. At first we note that the cone C(A,a) is generated by the rows of the matrix
(A a). We have to show that the conditions (i), (ii), and (iii) of Definition 3.24 hold.
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(i) Let H(n, c) ∈ C(A,a). Then there exists some u ≥ 0 with n = ATu and c = aTu.
For every x ∈ P, i. e., Ax ≤ a, it follows uTAx ≤ uTa, i. e., nTx ≤ c. Hence,
P ⊆ H(n, c).

(ii) If H(n, c) is a supporting half-space of P, then c = hP(n). The value hP(n) is given
by the optimal value of the linear program

maximize nTx subject to Ax ≤ a.

By Strong Duality (Theorem 2.8), the dual linear program

minimize aTu subject to ATu = n, u ≥ 0

has also an optimal solution ũ with ũ ≥ 0, n = AT ũ and c = aT ũ. Hence,
H(n, c) ∈ C(A,a).

(iii) Suppose, P is empty. Then Ax ≤ a has no solution and, by Farkas’ Lemma
(Theorem 2.3), there exists some u ≥ 0 with ATu = 0 and aTu < 0. Hence, there
is some positive factor λ such that for u′ = λu the relations u′ ≥ 0, ATu′ = 0, and
aTu′ = −1 hold. That is, H(0,−1) ∈ C(A,a). �

While two different H-representations P (A,a) and P (A′,a′) of a polyhedron P de-
scribe exactly the same set of points in Kd, the cones C(A,a) and C(A′,a′) may be
different sets in Kd+1. At least, C(A,a) and C(A′,a′) are both subsets of the unique
subsumption cone of P. We discuss the completion of a cone of implied half-spaces, a
simple modification of the H-representation, which yields the subsumption cone. First,
we define the notion of completeness.

Definition 3.29 (Completeness)
Let C be a half-space cone of a polyhedron P. We call C complete if H(0, 1) ∈ C.
Additionally, we call any H-polyhedron P (A,a) complete if its cone of implied half-
spaces C(A,a) is complete. �

Hence, P (A,a) is complete if and only if there exists some u ≥ 0 with ATu = 0 and
aTu = 1. With other words, the completeness of P (A,a) only depends on the augmented
matrix (A a).

Complete half-space cones have an important property that will help us in the upcom-
ing proofs. In order to show that a certain half-space H(n, c) is in a complete half-space
cone C, it suffices to find some H(n, c′) ∈ C with c′ ≤ c: Let c− c′ = µ. Since H(0, 1)
is in the cone C, it holds that H(n, c) = H(n, c′+µ) = H(n, c′) +µH(0, 1) is also in C.

Proposition 3.30 (Complete Half-Space Cones are Subsumption Cones)
Let P be a non-empty polyhedron. A complete half-space cone of P is a subsumption
cone of P. �

Proof. Let C be a complete half-space cone of a non-empty polyhedron P. Further, let
H(n, c) be a half-space with P ⊆ H(n, c). We have to show that H(n, c) ∈ C. Since
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3.8. Half-Space Cones

C is a half-space cone, it contains at least the supporting half-space H(n, hP(n)) where
hP(n) ≤ c. Either hP(n) = c and we are done, or hP(n) < c. C is complete and contains
H(0, 1). Then there exists a conical combination H(n, hP(n))+λH(0, 1) = H(n, c) with
λ > 0. C is closed under conical combinations and, hence, H(n, hP(n)) ∈ C. �

Note that the preceding proposition only holds for non-empty polyhedra. In case of an
empty polyhedron P ∈ Kd, the subsumption cone is equal to the set Kd × K. Further
below we will introduce the normal cones which help to deal with empty polyhedra.

The cone of implied half-spaces is complete for a large subclass of polyhedra. This
subclass includes all bounded polyhedra in Kd, d ≥ 1.

Proposition 3.31 (Polyhedra with Complete Cones)
Let P(A,a) be a H-polyhedron and C(A,a) its cone of implied half-spaces. If for at

least one n ∈ Kd the inequality

∞ > hP(n) > −hP(−n) > −∞

holds, then C(A,a) is complete. �

Proof. Let n be given as in the proposition. The values of hP(n) and hP(−n) are given
by the optimal solutions u1 and u2 of the (dual) linear programs

minimize aTu subject to ATu = n, u ≥ 0,

and

minimize aTu subject to ATu = −n, u ≥ 0,

respectively. Now, for the conical combination u0 = u1 + u2 it holds ATu0 = ATu1 +
ATu2 = n − n = 0 and aTu0 = aTu1 + aTu2 = hP(n) + hP(−n) > 0. Finally, scaling
with a positive factor yields

(
0
1

)
∈ C(A,a). �

The following example shows that a polyhedron does not need to be complete in
general.

Example 3.32
Let P = P(1, 1) be the H-polyhedron which corresponds to the set {x |x ≤ 1} ⊂ K. The
cone of implied half-spaces is the set

C(A,a) = cone

(
1

1

)
. (3.9)

The half-space H(1, 2) = {x |x ≤ 2} is an including half-space, but it is obviously not a
half-space in C(A,a). �

The completeness of a polyhedron P(A,a) is easily checked by linear programming:
For any polyhedron P(A,a) the linear program

maximize 0 subject to ATu = 0, aTu = 1, u ≥ 0
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3. Symbolic Orthogonal Projections

is feasible if and only if P(A,a) is complete. Now, if P(A,a) is not complete, we may
complete it by adding the redundant linear inequality 0Tx ≤ 1:2

Proposition 3.33 (Completion)
Let P(A,a) an H-representation of a polyhedron P and let B =

(
A
0T

)
, b =

(
a
1

)
. Then

P = P(A,a) = P(B,b) and P(B,b) is complete. �

Proof. Obvious. �

3.9. Half-Space Cones of Symbolic Orthogonal Projections

In the preceding section, we have defined half-space cones ofH-polyhedra. A certain sub-
class, the cones of implied half-spaces, was easily constructed from the H-representation
of polyhedra. Now, we exploit the underlying H-representation of sops and construct
cones of implied half-spaces of sops in a similar way.

Proposition 3.34 (Implied Half-Space Cone)
Let P = P(A,L,a) ∈ Kd be a symbolic orthogonal projection of the H-polyhedron

Q = P((A L) ,a) in Kd+k. Then

C(A,L,a) =

{(
n

c

) ∣∣∣∣ ∃u ≥ 0: n = ATu,0 = LTu, c = aTu

}
.

is a half-space cone of P, and we call C(A,L,a) the cone of implied half-spaces of P. �

Proof. From Definition 3.1 and Proposition 3.28 immediately follows that

C ((A L) ,a) =


 n

m
c

∣∣∣∣∣∣∃u ≥ 0: n = ATu, m = LTu, c = aTu


is the cone of implied half-spaces of Q. The set C(A,L,a) can be interpreted as a
restriction of the cone C ((A L) ,a) where we limit the choice of u to LTu = 0. This
set is again a cone: If u1 ≥ 0, LTu1 = 0 and u2 ≥ 0, LTu2 = 0, then for λ1 ≥ 0 and
λ2 ≥ 0 we have λ1u1 + λ2u2 ≥ 0 and LT (λ1u1 + λ2u2) = 0. It remains to show that
conditions (i), (ii), and (iii) of Definition 3.24 hold for C(A,L,a).

(i) Let H(n, c) ∈ C(A,L,a). Then there exists some u ≥ 0 with ATu = n, LTu = 0,
and aTu = c. We have to show that H(n, c) is an including half-space of P(A,L,a).
For this purpose, let x ∈ P. Then there exists some z such that

(
x
z

)
∈ Q or,

equivalently, Ax + Lz ≤ a. It follows uTAx + uTLz ≤ uTa and, since uTL = 0T ,
also uTAx ≤ uTa, which is equivalent to nTx ≤ c, and, hence, x ∈ H(n, c).

2 I would like to thank Ernst Althaus who pointed me to the idea of adding the trivial constraint
0Tx ≤ 1 at an early stage of the development of the sops.
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3.9. Half-Space Cones of Symbolic Orthogonal Projections

(ii) We have to show that any supporting half-space H(n, c), c = hP(n), of P is in
C(A,L,a). We use the equality c = hP(n) = hQ

(
n
0

)
. The supporting half-space

H(
(
n
0

)
, c) is in C((A L) ,a). That is, there exists some u ≥ 0 with ATu = n,

LTu = 0, and aTu = c. Hence, H(n, c) ∈ C(A,L,a).

(iii) We have to show that P is empty if and only if H(0,−1) ∈ C(A,L,a). Suppose, P is
empty. Then Q is also empty, and there is some u such that ATu = 0, LTu = 0, and
aTu = −1. Hence, H(0,−1) ∈ C(A,L,a). Conversely, if H(0,−1) ∈ C(A,L,a)
then (0,0,−1)T ∈ C ((A L) ,a). Hence, Q is empty. The orthogonal projection
P of an empty set is empty again. �

The previous proposition extends the one-to-one relation between P ((A L) ,a) and
C ((A L) ,a) to an one-to-one relation between P(A,L,a) and C(A,L,a). The notion
of completeness of a half-space cone also carries over. P (A,L,a) and C (A,L,a), re-
spectively, are complete if and only if H(0, 1) ∈ C (A,L,a). This justifies the following
definition:

Definition 3.35 (Completeness)
The sop P (A,L,a) is complete if and only if there exists some u ≥ 0 with 0 = ATu,
0 = LTu, and 1 = aTu. �

As before, any sop can be completed by adding the redundant row (0T ,0T , 1) to its
representation (A,L,a).3

Most proofs of the next section are based on the following proposition.

Proposition 3.36 (Equality)
Let P(A,L,a) be a symbolic orthogonal projection in Kd and Q a polyhedron in Kd.
Then P(A,L,a) = Q if and only if the following conditions hold:

(i) for all H ∈ C(A,L,a) it holds that Q ⊆ H,

(ii) for every supporting half-space H of Q it holds that H ∈ C(A,L,a),

(iii) if Q = ∅ then H(0,−1) ∈ C(A,L,a). �

Proof. Let C(A,L,a) be a half-space cone of P(A,L,a). Conditions (i)-(iii) are ex-
actly the conditions of Definition 3.24 that show that C(A,L,a) is a half-spaces cone
of Q. Clearly, if P(A,L,a) = Q, then conditions (i)-(iii) follow. On the other hand, if
conditions (i)-(iii) hold, then Corollary 3.26 establishes the equality. �

Finally, we define the normal cone4 of a sop. The normal cone is an auxiliary con-
struction that will help us to deal with empty polyhedra.

3 One can show that any sop P which represents a full-dimensional polytope in Kd with d ≥ 1 is
complete, see Proposition 3.31.

4 Usually, the term normal cone is used with a slightly different meaning, see e. g. the usage in Ziegler
(1995).
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3. Symbolic Orthogonal Projections

Definition 3.37 (Normal Cone)
Let P = P (A,L,a) be a sop. Then the set

N(A,L) =
{
n
∣∣ ∃u ≥ 0: n = ATu,0 = LTu

}
is called the normal cone of the polyhedron P. �

Clearly, for any sop P (A,L,a) ⊆ Kd the set N(A,L) is a cone. It can be regarded as
the orthogonal projection of C(A,L,a) ⊆ Kd+1 onto the first d components. Note that
the normal cone N(A,L) is empty if and only if A is an empty matrix. Otherwise, it
always contains 0. Hence, even sops representing the empty set have a normal cone. If
P (A,L,a) ⊆ Kd is a polytope, i. e., bounded in every direction, then N(A,L) = Kd.

Lemma 3.38
Let P = P (A,L,a) be an empty but complete sop. Further, let C(A,L,a) its cone
of implied half-spaces and N(A,L) be the normal cone of P. Then C(A,L,a) is not
necessarily the subsumption cone of P, i. e., not all implied half-spaces of P are contained
in C(A,L,a). But at least for any n ∈ N(A,L) and any c we have H(n, c) ∈ C(A,L,a).�

Proof. An empty set has no supporting half-spaces. Hence, it suffices that C(A,L,a)
contains the half-space H(0,−1) to represent an empty set and H(0, 1) to be complete.

If the normal cone contains any further normal vectors n 6= 0, i. e., there exists some
u ≥ 0 with ATu = n and LTu = 0, then we can combine any half-space H(n, c) from
H(n,aTu) by adding a multiple either of H(0, 1) or H(0,−1). �

3.10. Convex Hull

We show that symbolic orthogonal projections allow an efficient representation of the
closed convex hull.

Definition 3.39 (Closed Convex Hull)
Let P1 and P2 two sets. Then clconv(P1 ∪ P2) is the smallest closed convex set that
contains P1 and P2. �

Note that this definition implies P1 ⊆ clconv(P1 ∪ ∅) = clconv(∅ ∪P1) for any set P1.

Proposition 3.40 (Closed Convex Hull)
Let P1 = P (A1, L1,a1) and P2 = P (A2, L2,a2) be two complete sops. Further, let

A =

(
A1

O

)
, L =

(
A1 L1 O a1

−A2 O L2 −a2

)
, and a =

(
a1

0

)
.

Then the following properties hold:

• clconv(P1 ∪P2) ⊆ P (A,L,a), and P (A,L,a) is complete.

• If neither P1 nor P2 is empty, then P (A,L,a) = clconv(P1 ∪P2).
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3.10. Convex Hull

• Otherwise, the following equation holds for the support function of P:

hP(n) =

{
hclconv(P1∪P2)(n) if n ∈ N(A1, L1) ∩N(A2, L2)

∞ otherwise.
�

Proof. The proof is based on the equality criteria in Proposition 3.36.

(i) In order to establish the relation clconv(P1 ∪ P2) ⊆ P (A,L,a), we have to show
that for all H ∈ C(A,L,a) it holds that clconv(P1 ∪ P2) ⊆ H. Any half-space
H = H(n, c) ∈ C(A,L,a) is given by some u ≥ 0 with

0 = LTu, n = ATu, and c = aTu.

After appropriately partitioning u =
(
u1

u2

)
, u1 ≥ 0, u2 ≥ 0, the former system is

equivalent to

0 = LT1 u1, n = AT1 u1, c = aT1 u1,

0 = LT2 u2, n = AT2 u1, c = aT2 u2.
(3.10)

System (3.10) shows that H(n, c) ∈ C(A1, L1,a1) and H(n, c) ∈ C(A2, L2,a2).
That is, P1 ⊆ H, P2 ⊆ H, and, hence, clconv(P1 ∪P2) ⊆ H. In addition, since P1

and P2 are complete, there is some u1 ≥ 0 and u2 ≥ 0 with AT1 u1 = 0, LT1 u1 = 0,
aT1 u1 = 1, and AT2 u2 = 0, LT2 u2 = 0, aT2 u2 = 1. Let u =

(
u1

u2

)
, then ATu = 0,

LTu = 0, and aTu = 1. Hence, P (A,L,a) is complete.

(ii) Instead of showing that every supporting half-space is in C(A,L,a), we show the
more comprehensive property that every including half-space is in C(A,L,a). Let
H(n, c) be a half-space that includes clconv(P1 ∪ P2). Then P1 ⊆ H(n, c) and
P2 ⊆ H(n, c). Firstly, we discuss the case that neither P1 nor P2 are empty.
Since P1 and P2 are complete, there is some u1 ≥ 0, LT1 u1 = 0 and u2 ≥ 0,
LT2 u2 = 0 such that n = AT1 u1 = AT2 u2 and c = aT1 u1 = aT2 u2. Thus, for
u =

(
u1

u2

)
we have u ≥ 0, LTu = 0, ATu = n and aTu = c, which is equivalent

to H(n, c) ∈ C(A,L,a). Secondly, we have to discuss the case that at least one of
the polyhedra P1 or P2 is empty. Nevertheless, both sops are complete. For those
n that are in N(A1, L1) ∩ N(A2, L2) there is some u1 ≥ 0, LT1 u1 = 0 and some
u2 ≥ 0, LT2 u2 = 0 with n = AT1 u1 = AT2 u2 and c = aT1 u1 = aT2 u2. Thus, for
u =

(
u1

u2

)
we have u ≥ 0, LTu = 0, ATu = n and aTu = c, which is equivalent to

H(n, c) ∈ C(A,L,a). In all other cases, i. e., n 6∈ N(A1, L1) or n 6∈ N(A2, L2), the
system

AT1 u1 = n, AT2 u2 = n

LT1 u1 = 0, LT2 u2 = 0

u1 ≥ 0, u2 ≥ 0
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3. Symbolic Orthogonal Projections

is infeasible. Hence, the dual linear program of the support function hP(A,L,a)(n),

minimize aT1 u1 subject to AT1 u1 = n

AT1 u1 −AT2 u2 = 0

LT1 u1 = 0

LT2 u2 = 0

aT1 u1 − aT2 u2 = 0

u1 ≥ 0,u2 ≥ 0,

is infeasible. In turn, the primal linear program is unbounded, hP(A,L,a)(n) =∞.

(iii) The convex hull is empty if and only if P1 and P2 are empty, i. e., there is some
u1 ≥ 0 and u2 ≥ 0 with AT1 u1 = 0, LT1 u1 = 0, aT1 u1 = −1, and AT2 u2 = 0,
LT2 u2 = 0, aT2 u2 = −1. Let u =

(
u1

u2

)
, then ATu = 0, LTu = 0, and aTu = −1. �

Since the previous proposition is not very reader friendly, we explicitly state the main
result for the closed convex hull of non-empty polyhedra as the following corollary.

Corollary 3.41 (Closed Convex Hull)
Let P1 = P (A1, L1,a1) and P2 = P (A2, L2,a2) be two complete non-empty sops.
Further, let

A =

(
A1

O

)
, L =

(
A1 L1 O a1

−A2 O L2 −a2

)
, and a =

(
a1

0

)
.

Then P (A,L,a) = clconv(P1 ∪P2). �

Proposition 3.42 (Convex Hull with Origin)
Let P1 = P (A1, L1,a1) be a complete sop and C(P1) = clconv({0} ∪ P1). Then the
following equation holds:

C(P1) = P

((
A1

0T

)
,

(
L1 −a1

0T 1

)
,

(
0
1

))
. �

Proof. The proof is based on the equality criteria in Proposition 3.36. Let

A =

(
A1

0T

)
, L =

(
L1 −a1

0T 1

)
, and a =

(
0
1

)
.

(i) We have to show that for all H(n, c) ∈ C(A,L,a) the relation C(P1) ⊆ H(n, c)
holds. Let H(n, c) ∈ C(A,L,a). Then there is some u ≥ 0 with 0 = LTu, n = ATu,
and c = aTu. After partitioning u = ( u1

λ ) with u1 ≥ 0 and λ ≥ 0, we obtain the
following linear inequalities: 0 = LT1 u1, 0 = −aT1 u1 + λ, n = AT1 u1, and c = λ. It
follows aT1 u1 = c and H(n, c) ∈ C(A1, L1,a1). Hence, P1 ⊆ H(n, c). Additionally,
since c = λ and λ ≥ 0, we have nT0 ≤ c, i. e., the half-space H(n, c) also includes
{0}, which finally shows C(P1) ⊆ H(n, c).
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(ii) Instead of showing that every supporting half-space of C(P1) is in C(A,L,a), we
show the more comprehensive property that every including half-space of C(P1)
is in C(A,L,a). Let H(n, c) be an including half-space of C(P1). Then H(n, c)
is an including half-space of P1 which also contains {0}. Thus, there exists some
u1 ≥ 0 with n = AT1 u1, 0 = LT1 u1, c = aT1 u1, and, since H(n, c) also contains
0, c ≥ 0. Setting u = ( u1

c ) yields n = ATu, 0 = LTu, and c = aTu, i. e.,
H(n, c) ∈ C(A,L,a).

(iii) The set C(P1) is not empty since it contains at least 0. �

Proposition 3.43 (Conical Hull)
Let P1 = P (A1, L1,a1) be a complete sop. Then the conical hull of P1, cone(P1), can
be represented as a sop according to the following identity:

cone(P1) = P (A1, (L1 −a1) ,0) . �

Proof. The proof is based on the equality criteria in Proposition 3.36. Let

A = A1, L = (L1 −a1) , and a = 0.

All half-spaces in the half-space cone C(A,L,a) have the form H(n, 0): Let H(n, c) ∈
C(A,L,a). Then there is some u ≥ 0 with 0 = LTu, n = ATu, and c = aTu. Since
a = 0, we have aTu = c = 0 for any u.

(i) We have to show that for all H(n, 0) ∈ C(A,L,0) = C(A,L,a) the relation
cone(P1) ⊆ H(n, 0) holds. Let H(n, 0) ∈ C(A,L,0). Then there is some u ≥ 0
with 0 = LTu and n = ATu. Substituting A1 for A and (L1 −a1) for L yields
the following linear inequalities: 0 = LT1 u, −aT1 u = 0, and n = AT1 u. It follows
H(n, 0) ∈ C(A1, L1,a1). Hence, for all x ∈ P1 we have nTx ≤ 0. Furthermore, for
any x ∈ P1 and any µ ≥ 0 we have nTµx ≤ 0. Hence, cone(P1) ⊆ H(n, 0).

(ii) Let H(n, c) be a supporting half-space of cone(P1). That is, there is some x ∈
cone(P1) such that nTx = c holds. Additionally, for any µ ≥ 0 the inequality
nTµx ≤ c has to hold. An easy consideration shows that these constraints force
c = 0. Hence, there exists some u ≥ 0 with AT1 u = n, LT1 u = 0, and aT1 u = 0. It
follows LTu = 0 and, hence, H(n, 0) ∈ C(A,L,0).

(iii) The set cone(P1) is not empty since it contains at least 0. �

3.11. Simple Flow Operations

The following two propositions are useful for the pre- and postimage computation of
linear systems with constant derivatives. Although the naming of the proposition antic-
ipates their later use, they can be understood as purely geometrical operations without
deeper knowledge of the pre- and postimage computation of linear systems.
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Proposition 3.44 (Postimage under Constant Derivatives)
Let P1 = P (A1, L1,a1) and P2 = P (A2, L2,a2) be sops. Additionally, let P2 be a
polytope, i. e., bounded in every direction. Further, let [t0, t1] be an interval with t0 ≥ 0,
t1 ∈ K ∪ {∞} and t0 ≤ t1. Then the sop representing P1 +

⋃
t∈[t0,t1] tP2 is given by the

following equation

P1 +
⋃

t∈[t0,t1]

tP2 = P



A1

O
0T

0T

 ,


−A1 L1 O 0
A2 O L2 −a2

0T 0T 0T −1
0T 0T 0T 1

 ,


a1

0
−t0
t1


 , (3.11)

where we may omit the second last row if t0 = 0 and P2 is complete, and omit the
last row if t1 = ∞. We call P1 +

⋃
t∈[t0,t1] tP2 the postimage of P1 under the constant

derivatives P2. �

Proof. For any x we have x ∈ P1 +
⋃
t∈[t0,t1] tP2 if and only if there exists x1 ∈ P1,

t ∈ [t0, t1], and x2 ∈ tP2 with x = x1 + x2, or, equivalently, if and only if there exists
some t ∈ [t0, t1] and x2 ∈ tP2 such that x − x2 ∈ P1. Since P2 is a polytope, we use
Proposition 3.21 and obtain the characterization x ∈ P1 +

⋃
t∈[t0,t1] tP2 if and only if

the following system of linear inequalities has a solution for (x2, z1, z2, t):

A1x −A1x2 +L1z1 ≤ a1

A2x2 +L2z2 −ta2 ≤ 0
−t ≤ −t0
t ≤ t1.

The sop in (3.11) exactly encodes this system. Clearly, for t1 = ∞ the last row may
be omitted. It remains to show that the second last row may be omitted if t0 = 0
and P2 is complete. Let t0 = 0 and P2 be complete. Then there is some u ≥ 0 with
AT2 u = 0, LT2 u = 0, aT2 u = 1. Hence, −taT2 u is positive for any t < 0. That is,
A2x2 + L2z2 − ta2 ≤ 0 has no solution for t < 0. Hence, the second last row may be
omitted. �

Proposition 3.45 (Preimage under Constant Derivatives)
Let P1 = P (A1, L1,a1) and P2 = P (A2, L2,a2) be sops. Additionally, let P2 be a
polytope, i. e., bounded in every direction. Further, let [t0, t1] be an interval with t0 ≥ 0,
t1 ∈ K ∪ {∞} and t0 ≤ t1. Then the preimage of P1 under the constant derivatives P2

is the set

P1 −
⋃

t∈[t0,t1]

tP2 = P1 +
⋃

t∈[t0,t1]

−tP2. �

Proof. The postimage of a set P1 under the constant derivatives P2 can be written as
the set

{x | ∃y ∈ P1∃v ∈ P2∃t ∈ [t0, t1]: x = y + tv} .
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The preimage of a set P1 under the constant derivatives P2 is then the set

{x | ∃y ∈ P1∃v ∈ P2∃t ∈ [t0, t1]: y = x + tv}

⇐⇒{x | ∃y ∈ P1∃v ∈ P2∃t ∈ [t0, t1]: x = y − tv} = P1 −
⋃

t∈[t0,t1]

tP2

⇐⇒{x | ∃y ∈ P1∃v ∈ −P2∃t ∈ [t0, t1]: x = y + tv} = P1 +
⋃

t∈[t0,t1]

−tP2. �

3.12. Linear Programming and Sops

Sops profit from the underlying H-representation, e. g., we may solve linear programs
to test for emptiness, to find separating half-spaces, or to find relative interior points.
Additionally, we may switch from the primal system of linear inequalities to its dual. The
combination of projections and linear programming is not new, e. g. in Benoy et al. (2005)
the authors propose a technique which computes the convex hull from a projection using
linear programming. In this section we shall make use of these techniques. Eventually,
we present two methods which take a sop P and a point r which is not in the interior of
P and return a supporting half-space H of P. The half-space H either contains r, then
r is a boundary point of P, or separates r from P. These methods are then extended to
an interpolation method that allows us to improve existing over-approximations. The
needed geometrical concepts are shortly introduced in the following. A comprehensive
introduction can be found in Ziegler (1995).

Proposition 3.46 (Strictly Separating Hyperplane/Half-Space)
Let P1 = P (A1, L1,a1) and P2 = P (A2, L2,a2) be two sops in Kd. The following
statements are mutually exclusive.

1. There exists some common point x with x ∈ P1 and x ∈ P2.

2. There exists u ≥ 0,v ≥ 0 with AT1 u+AT2 v = 0, LT1 u = LT2 v = 0, and aT1 u+aT2 v =
−1. Let H be the half-space H(AT1 u,aT1 u) ⊆ Kd. Then P1 ⊆ H1 and H1∩P2 = ∅,
i. e., H strictly separates P1 and P2. �

Proof. The intersection P1 ∩P2 is given by the sop P

((
A1

A2

)
,

(
L1 O
O L2

)
,

(
a1

a2

))
, and

it is not empty if and only if

A1x + L1z1 ≤ a1,

A2x + L2z2 ≤ a2
(3.12)

has a solution (x, z1, z2). According to Farkas’ Lemma (Theorem 2.3) either the system
(3.12) has a solution, or there exist vectors u ≥ 0, v ≥ 0 with

AT1 u +AT2 v = 0,

LT1 u = 0, LT2 v = 0,

aT1 u + aT2 v < 0.

(3.13)
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Assume, such vectors u and v exist with aT1 u + aT2 v = ε < 0. Then u′ = −1
εu and

v′ = −1
εv is a solution of

AT1 u +AT2 v = 0,

LT1 u = 0, LT2 v = 0,

aT1 u + aT2 v = −1.

(3.14)

Clearly, any solution of (3.14) is also a solution of (3.13). Hence, the systems (3.12)
and (3.14) are mutually exclusive. For the case P1 ∩ P2 = ∅ it remains to show that
H = H(AT1 u,aT1 u) is a separating half-space. Firstly, we note that H(AT1 u,aT1 u) ∈
C(A1, L1,a1) and H(AT2 v,aT2 v) ∈ C(A2, L2,a2). Hence P1 ⊆ H(AT1 u,aT1 u) and P2 ⊆
H(AT2 v,aT2 v). Suppose, there is some x such that x ∈ P2 and x ∈ H. Then vTA2x ≤
vTa2 has to hold. Transforming the inequality yields −vTA2x ≥ −vTa2 > −1− vTa2.
Using (3.14) yields uTA1 > uTa1, which is a contradiction to x ∈ H. �

Let P = P (A,a) be an H-polyhedron. The points of P are those vectors x that
satisfy the system Ax ≤ a. A point x of P is an interior point if there exists a ball
Bε = {x | |x| ≤ ε} with ε > 0 such that x + Bε ⊆ P. Only full-dimensional polyhedra
have interior points. However, any polyhedron P = P (A,a) is full-dimensional relatively
to its affine hull aff(P). Hence, we call a point x of P a relative interior point relatively
to aff(P) if there exists a ball Bε with ε > 0 such that (x + Bε) ∩ aff(P) ⊆ P. A
facet-defining half-space H of P is a half-space H = {x |nTx ≤ b}, P ⊆ H, such that
P ∩ {x |nTx = b} has a relative interior point relatively to aff(P) ∩ {x |nTx = b}.

The topological concept of a relative interior point can equivalently be defined on the
system Ax ≤ a of the polyhedron P = P (A,a). Every solution x of the system of
strict linear inequalities Ax < a is an interior point of P. If nTx ≤ b is an inequality
of the system Ax ≤ a, and if all solutions x of the system Ax ≤ a satisfy nTx = b,
then nTx = b is called an implicit equality of the system. For any set I of row indices
of Ax ≤ a we denote the corresponding subsystem by AIx ≤ aI . The linear equalities
representing the affine hull are given as linear combinations of the implicit equalities of
the system Ax ≤ a and vice versa. Let I be the set of indices of the implicit equalities
in Ax ≤ a and S be the set of the remaining indices. Each solution x of the system
AIx = aI , ASx < aS is a relative interior point of P.

Relative interior points and implicit equalities can be found by means of linear pro-
gramming. The following proposition is adapted for the usage with sops and can be
found in Fukuda (2011).

Proposition 3.47 (Interior Point)
Let P = P (A,L,a) be a sop and I a (possibly empty) subset of the row indices of the
implicit equalities of the system Ax+Lz ≤ a. Further, let S be the set of all row indices
that are not in I. Then the linear program

maximize λ subject to AIx + LIz = aI ,

ASx + LSz + 1λ ≤ aS ,

−λ ≤ 0, λ ≤ 1

(3.15)
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is either infeasible and P is empty, or an optimal solution exists. Let (x0, z0, λ0) be an
optimal solution of the linear program and (u0,v0, µ0, ν0) be the optimal solution of the
dual linear program

minimize aTI u + aTSv + ν subject to ATI u +ATSv = 0,

LTI u + LTSv = 0,

1Tv − µ+ ν = 1,

v ≥ 0, µ ≥ 0, ν ≥ 0.

(3.16)

If λ > 0, then x0 is a relative interior point of P. In the case λ = 0, some of the inequali-
ties in ASx+LSz ≤ as are implicit inequalities. Removing their row indices from S and
adding them to I provides an equivalent system where additional implicit inequalities
are indexed by I. Repeated solving of the linear programs eventually provides (i) the
complete set I of the row indices of all implicit inequalities and (ii) a relative interior
point. �

Proof. Assume P is not empty, i. e., there is some x0 and z0 such that AIx0 +LIz0 = aI
and ASx0 +LSz0 ≤ aS holds. Then (x0, z0, 0) is clearly a feasible solution of the primal
linear program. On the other hand, let (x0, z0, λ0) be a feasible solution of the primal
linear program. Then AIx0 +LIz0 = aI and ASx0 +LSz0 ≤ aS−1λ0 ≤ aS hold. Hence,
x0 in P and P is not empty.

For the remainder of the proof we assume that the linear program is feasible. The
primal linear program is bounded by the constraint 0 ≤ λ ≤ 1. Hence, by Strong Duality
(Theorem 2.8), both, the primal and the dual linear program, have an optimal solution
(x0, z0, λ0) and (u0,v0, µ0, ν0) with aTI u0 + aTSv0 + ν0 = λ0.

In the case λ0 > 0, the point x0 is obviously a relative interior point.
In the case λ0 = 0, it is important to note that any

(
x
z

)
with AIx + LIz = aI and

ASx +LSz ≤ aS is an optimal solution of the primal linear program. Hence, if we show
that for an optimal solution of the primal linear program some additional inequalities
are tight, they must be tight for any x ∈ P. Firstly, we show v0 6= 0. To this end,
suppose v0 = 0. Since (x0, z0, 0) is a solution of the primal linear program, the equality
aI = AIx0 + LIz0, and, hence,

uT0 aI = uT0 AIx0 + uT0 LIz0 (3.17)

holds. Substituting v0 = 0 in the dual linear program yields

ATI u0 = 0, (3.18)

LTI u0 = 0, (3.19)

ν0 = 1 + µ0,

and for the objective function

aTI u0 + 1 + µ0 = 0. (3.20)
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Substituting (3.18) and (3.19) in (3.17) yields uT0 aI = 0. Together with (3.20) this yields
a contradiction. Hence, at least one of the coefficients of v0 is positive. Now, Strong
Duality yields

u0

v0

µ0

ν0


T 

aI
aS

0
1

 =


0
0
1
0


T x0

z0

0

 =


u0

v0

µ0

ν0


T 

AI LI 0
AS LS 1
0T 0T −1
0T 0T 1


x0

z0

0

 ,

uT0 (aI −AIx0 − LIz0) + vT0 (aS −ASx0 − LSz0) + ν0 = 0. (3.21)

Since (x0, z0, 0) and (u0,v0, µ0, ν0) are feasible solutions, we have aI −AIx0−LIz0 = 0
and aS − ASx0 − LSz0 ≥ 0. Hence, uT0 (aI − AIx0 − LIz0) = 0 and vT0 (aS − ASx0 −
LSz0) ≥ 0. Using (3.21) we obtain vT0 (aS − ASx0 − LSz0) = 0 and ν0 = 0. Let
J be the set of indices where v0 is positive. We already know that J 6= ∅. Since
vT0 (aS −ASx0 −LSz0) = 0 has to hold, every inequality Ajx0 +Ljz0 ≤ aj , j ∈ J , must
be an implicit equality. �

We present the first method that allows to find a supporting half-space of a sop P
containing the origin in the direction of the point r.

Proposition 3.48 (Ray Shooting)
Let P = P (A,L,a) be a non-empty and complete sop that contains the origin 0 as
relative interior point. Then the following linear program is feasible for any vector r:

maximize rTATu subject to LTu = 0, aTu = 1, u ≥ 0. (3.22)

�

Let λ0 = rTATu0 ∈ K∪{±∞} be the optimal value of the linear program. Then exactly
one of the following statements holds:

(st1) The linear program is unbounded and r 6∈ aff(P).

(st2) The optimal value λ0 equals zero, r ∈ aff(P), and P is unbounded in direction r.

(st3) The optimal value λ0 is positive, r ∈ aff(P), and P is bounded in direction r.

Additionally, in case (st3) also the following statement holds:

(st3’) Let n = ATu0 and H = H(n, 1) be a half-space. Then 1
λ0

r is a boundary point

of P and H is a supporting half-space of P in 1
λ0

r.

We need the following small lemma to prove the proposition.

Lemma 3.49
Let S1 = {s1, . . . , sn} and S2 = {t1, . . . , tn} be two sets of statements. Further, let the
statements in each group be mutually exclusive and exhaustive, i. e., in every possible
interpretation exactly one of the statements in S1 and S2 is true. Assume, we have
shown the implications si ⇒ ti for i = 1, . . . , n. Then S3 = {s1 ∧ t1, . . . , sn ∧ tn} is again
a set of mutually exclusive and exhaustive statements. �
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Proof. (Proof of the lemma) Assume, we have already shown the implications si ⇒ ti
for i = 1, . . . , n. Since S1 and S2 are exhaustive, exactly one statement of each set has
to hold, i. e., there exists some j = 1, . . . , n and some k = 1, . . . , n such that sj and tk
hold. Assume, k 6= j. The statement sj implies tj . Hence, tj and tk hold, which is
a contradiction to the the mutual exclusiveness of S2. Hence, k = j, i. e., the set S3

consists of mutually exclusive and exhaustive statements. �

Proof. (Proof of the proposition) We split the statements (st1)-(st3) into the following
sub-statements:

(s1) λ0 unbounded,

(s2) λ0 = 0,

(s3) λ0 > 0,

(t1) r 6∈ aff(P),

(t2) r ∈ aff(P), P is unbounded in direction r,

(t3) r ∈ aff(P), P is bounded in direction r.

We define the following sets of statements:

S1 = {(s1), (s2), (s3)} and S2 = {(t1), (t2), (t3)} .

Clearly, for any polyhedron P and any vector r the statements in S2 are mutually
exclusive and exhaustive. We show that S1 is also a set of mutually exclusive and
exhaustive statements: The linear program is always feasible since P is complete, i. e.,
there exists some u ≥ 0 with ATu = 0, LTu = 0, and aTu = 1. It follows rTATu =
rT0 ≥ 0. Hence, the optimal value of the linear program cannot be negative, i. e., S1

consists of mutually exclusive and exhaustive statements.
In the following, we will make use of the dual linear program of (3.22).

minimize µ subject to Lz + µa ≥ Ar. (3.23)

We prove the implication (s1) ⇒ (t1) by contraposition. Assume, r ∈ aff(P). Since
0 ∈ P, there exists some λ > 0 such that λr ∈ P, i. e., there exists some z such that
Aλr + Lz ≤ a. Hence, there also exists some z′ with Ar − Lz′ ≤ 1

λa. The tuple (z′, 1
λ)

forms a solution of the dual linear program (3.23), which is hence feasible. The feasibility
of the dual linear program implies that the primal linear system (3.22) is not unbounded.

We prove the implication (s2)⇒ (t2) and (s3)⇒ (t3). Firstly, we note that a ≥ 0 has
to hold since 0 ∈ P. Let either (s2) or (s3) hold, i. e., rTATu0 ≥ 0. That is, the linear
program (3.22) has an optimal solution u0 with the optimal value λ0 = rTATu0. For any
pair (u0,

(
z0
µ0

)
) of optimal solutions of the linear program (3.22) and of the dual linear

program (3.23) Strong Duality (Theorem 2.8) yields µ0 = rTATu0 = λ0. Transforming
the linear inequalities of (3.23) yields

(A L)

(
r

−z0

)
≤ µ0a. (3.24)

Recall that a ≥ 0. If the optimal value µ0 is equal to zero, then (3.24) holds for all
multiple ν

(
r
−z0

)
with 0 ≤ ν, and, hence, {νr | 0 ≤ ν} ⊆ P, i. e., P is unbounded in
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direction r. Hence, (s2)⇒ (t2). Otherwise, the optimal value µ0 is positive and we may
multiply both sides of (3.24) with 1

µ0
and obtain 1

µ0
r ∈ P. For any feasible solution of

the primal linear program aTu0 = 1 holds. Now, set n = ATu0. Then H = H(n, 1) is
in the cone C(A,L,a) and, hence, an including half-space of P. Furthermore, nT 1

λ0
r =

1
rTATu0

rTATu0 = 1, hence 1
λ0

r ∈ H. That is, P is bounded in direction r, H is a

supporting hyperplane of P, and 1
λ0

r is a boundary point of P, which shows (s3)⇒ (t3)
and (s3) ⇒ (st3’).

Finally, application of the previous lemma finishes the proof. �

Hence, for any given ray r we find the maximal length λ = 1
rTATu0

such that λr is on
the boundary of P, and we obtain a supporting half-space of P in λr. If λr is a relative
interior point of a facet, – which is most likely the case if r was chosen randomly – then
ray shooting returns a facet-defining half-space.

In any case, it is possible to test whether the resulting half-space H is face-defining:
Let d be the dimension of the affine hull of the sop P and H= be the bounding hyperplane
of H. Then H is a facet-defining half-space if and only if aff(P∩H=) has the dimension
d−1. In practice, we have to solve several linear programs, which makes this test costly.

We present a second method that allows to find a supporting half-space of a sop
P (A,L,a). The idea is to change the vector a by adding a multiple of the vector 1 until
some given point r is on the boundary of P (A,L,a− 1λ).

Proposition 3.50 (Face Bloating)
Let P = P (A,L,a) be a sop in Kd and r be a point in Kd which is not in the interior
of P. Then the linear program

maximize λ subject to Lz + 1λ ≤ a−Ar (3.25)

is always feasible and has an optimal solution λ0 if and only if P 6= Kd. Let λ0 be the
optimal value of the primal linear program and u0 be an optimal solution of the dual
linear program

minimize (a−Ar)Tu subject to LTu = 0, 1Tu = 1, u ≥ 0. (3.26)

Further, let n = ATu0 and c = aTu0. Then exactly one of the following statements
holds:

(1) λ0 = 0, r is a boundary point of P, and H(n, c) is a supporting half-space of P in r.

(2) λ0 < 0, r is not in P, and H(n, hP(n)) is a supporting half-space which separates r
and P. �

Proof. We show that (3.25) is always feasible: Let z = 0 and λ be the minimal coefficient
of the vector a−Ar. Then (z, λ) is a feasible solution of (3.25). Hence, (3.25) is either
unbounded or has an optimal solution. The former case is equivalent to the infeasibility
of (3.26), i. e., LTu = 0, 1Tu = 1, u ≥ 0 is infeasible. Equivalently, LTu = 0, u ≥ 0 if
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and only if u = 0. This is again equivalent to the infeasibility of the dual linear program
of the support function hP(n) for n 6= 0, see (3.3), i. e., hP(n) =∞ for any n 6= 0, which
finally establishes P = Kd if and only if (3.25) is unbounded.

Let λ0 be the optimal value of (3.25) and u0 be the optimal solution of (3.26). It is
easy to see that r is a boundary point of P (A,L,a− 1λ0). The half-space H(ATu0, (a−
1λ0)Tu0) is an including half-space of P (A,L,a− 1λ0). Furthermore, by Strong Du-
ality we have uT0 1λ0 = λ0 = uT0 (a − Ar) = uT0 a − uT0 Ar and, hence, r is a point of
{x |uT0 Ax = (a− 1λ0)Tu0}, i. e., r is a common boundary point of P (A,L,a− 1λ0)
and the supporting half-space H(ATu, (a− 1λ0)Tu). Let n = ATu0 and c = aTu0.

For λ0 = 0 the point r is a common boundary point of P and its supporting half-space
H(n, c).

For λ0 < 0 the point r is not in P. The half-space H(n, c) is an implied half-space.
Hence, hP(n) ≤ c and H(n, hP(n)) is a supporting half-space. Additionally, nT r =
c− λ0 > c ≥ hP(n) holds, i. e., H(n, hP(n)) separates P and r. �

In case (2) we have to solve an additional linear program to obtain the supporting
half-space. The following example shows that this additional linear program is indeed
needed.

Example 3.51
Let P = P (A,L,a) be a sop in K2 and r be a point in K2 with

A =


1 0
−1 0

0 1
0 −1
1 1

 , L = ∅, a =


1
1
1
1
3

 , and r =

(
2
2

)
.

The optimal value of the primal linear program (3.25) is λ0, and the optimal solution of
the dual linear program (3.26) is u0, with

λ0 = −1, u0 =


0
0
0
0
1

 .

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

r

P(A,L,a)

P(A,L,a+1)

H

�

Hence, n = ATu0 =

(
1
1

)
and c = aTu0 = 3. But, hP(n) = 2 < c. The last row of
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P (A,L,a), which defines the half-space H

((
1
1

)
, 3

)
, is redundant for P, but not for

the polyhedron P (A,L,a + 1), for which r is a boundary point.

We conjecture that for a non-redundant H-polyhedron one could use the half-space
H(n, c) instead of H(n, hP(n)) in Item (2). Moreover, we conjecture that in this case
H(n, c) is a facet-defining half-space of P if and only if r is a relative interior point of
a facet of P(A,L,a − 1λ0), which is likely the case for randomly chosen points r 6∈ P.
Unfortunately, these conjectures do not seem to be generalizable to sops.

3.13. Interpolation

A sop P and an over-approximating template polyhedron P′ have, in general, none
or only a few facet-defining half-spaces in common. We may use Proposition 3.48 or
Proposition 3.50 to find additional supporting half-spaces of P and add them to P′

yielding a better over-approximation P′′ of P. We call P′′ an interpolation of P and P′.
Given a sop P and a boundary point r of an over-approximating H-polyhedron P′,

ray shooting and face bloating provide a supporting half-space that either contains r,
i. e., r is also a boundary point of P, or separates r from P. Note that for ray shooting
we have to ensure that (i) the origin 0 is a relative interior point of P and (ii) r ∈ aff(P).
This can be done with help of Proposition 3.47: Let x0 a relative interior point of P.
Translating P and P′ by −x0 ensures conditions (i). Additionally, Proposition 3.47 also
provides all implicit equalities of P. This allows us to compute the affine hull of P and
helps us to ensure condition (ii).

We use the following simple interpolation strategy, where the polyhedron P is given
as a sop, and P′ and P′′ are H-polyhedra: If we decide to use the ray shooting method,
we initialize P′′ = P (B,b) as the affine hull of P. Otherwise, let B and b be empty.
Now, for an arbitrary inequality of P′ we check whether it is face-defining in P′ ∩ P′′.
If not, it is removed from P′. Otherwise, we choose r as a relative interior point of the
defined facet, and apply either ray shooting or face bloating on P and r. The resulting
half-space is then added to the representation of P′′. We proceed with any inequality of
P′ as before until all inequalities of P′ are removed.

We observed that usage of the ray shooting method seems to provide better results,
but may sometimes fail due to numerical issues. In this respect the face bloating method
is more robust.

More sophisticated interpolation heuristics are possible but beyond the scope of this
thesis.

3.14. Problem of Deciding the Subset Relation

We should address an open issue: Up to now, there is – to my best knowledge – no
efficient method to decide subset relations for sops, and it is questionable whether effi-
cient methods exists. Nevertheless, for any closed convex set for that a support func-
tion is available we can decide whether this set is the subset of an H-polyhedron: Let
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P1 = P (A1,a1) be an H-polyhedron and P2 be a closed convex set with support func-
tion hP2 , e. g. a sop of the form P2 = P (A2, L2,a2). Then P2 ⊆ P1 if and only if
hP2(A1) ≤ a1.
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Reachability Analysis of Linear
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4. Reachability Analysis of Linear Hybrid
Systems

Zwei Seelen wohnen, ach! in meiner Brust, . . .

Two souls, alas! reside within my breast, . . .

Johann Wolfgang von Goethe: Faust, 1808

The goal of this part is to describe and discuss the computational aspects of the
reachability analysis of hybrid systems. We shall argue why sops are a suitable data
structure for reachability analysis and present the reachable set computation as it is
implemented in our prototype, a tool called SoapBox. While the chapter at hand
mainly discusses the discrete transitions of a hybrid system and provides first impressions
how computations can profit from the usage of sops, the usefulness of sops will entirely
become clear in the upcoming chapters.

A hybrid system H describes the discrete and continuous evolution of a system. Typ-
ically, we observe the evolution of H with respect to additionally designated sets, which
may include

• Init , the set of initial states,

• Unsafe, a set of states which we want to prove to be unreachable or reachable.

4.1. Interplay of the Discrete and Continuous Post Operator

Recall from the introduction that this thesis deals with the reachability analysis of linear
hybrid system with polyhedral set representation. Let us, for a moment, restrict our
attention to the discrete transitions. The discrete transitions of a linear hybrid system
are given as guarded assignments of the form

γ = (G,m, f ,m′) (4.1)

consisting of a polyhedral guard G together with an affine transformation f(x) = Mx+v.
If we now stipulate that Init is also given as a union of polyhedra, then the computation
of the discrete postimage, postd, can be done efficiently by the usage of sops: We define
a symbolic state to be a pair (P,m) of a polyhedron P ⊆ Rd and a mode m ∈ Mod .
Then the postimage of the symbolic state (P,m) under the guarded assignment (4.1) is
the symbolic state

(M(P ∩G) + v,m′). (4.2)
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In the first part of this thesis, we have learnt that sops can be used for an exact and
efficient representation of P and M(P∩G)+v, see Proposition 3.9 and Proposition 3.13
on page 24. Note that, compared to H-polyhedra, V-polyhedra, and support functions,
this is a unique feature of sops, see Table 1.1 on page 11.1

The discrete post operation, postd, comprises the individual application of guarded
assignments to symbolic states: Let Trans = {γ1, . . . , γg} be the set of guarded assign-
ments, where each transition is of the form γi = (Gi,mi, fi,m

′
i) with fi(x) = Mix + vi.

Then the discrete postimage of a symbolic state is given as

postd(P,m) =
⋃

i=1,...,g; mi=m

(Mi(P ∩Gi) + vi,m
′
i). (4.3)

In analogy to the discrete postimage computation, we shall derive a variant of the
continuous postimage computation which is compatible with the symbolic state repre-
sentation. That is, the result of postc(P,m) shall be a disjunction of symbolic states,

postc(P,m) =
⋃
i=I

(Pi,m). (4.4)

For the continuous postimage computation it is important to note that only those
states (x,m) in postc(P,m) may jump – and, hence, have a discrete postimage – for
which a guarded assignment of the form γ = (G,m, f ,m′) with x ∈ G exists. Hence,
if we additionally stipulate that Unsafe is specified by guarded transitions whose target
mode is a designated mode u, then it is sufficient that postc(P,m) returns those reachable
states that are located in a mode-specific guard, leading to Algorithm 1.

Algorithm 1 has the following properties:

• Any trajectory of the hybrid system starts with a continuous flow. This com-
mitment has only mild consequences: Only states (x,m) which initially satisfy a
mode-specific guard have a non-trivial discrete postimage. On the other hand, the
continuous postimage contains every state (x,m) that initially satisfies a mode-
specific guard and also satisfies the invariant of the mode. Hence, only those states
of Init are lost that do not fulfill the invariant of the associated mode. The ques-
tion whether this restriction meets the expectation on the semantic of an invariant
more adequately could be a matter of dispute.

• Looking at the discrete and continuous postimage computation (Lines 5-12) and
their definitions (4.3), (4.4), a potential drawback of the chosen polyhedral state
set representation becomes apparent. The number of generated symbolic states by
the post-operators may explode after several applications.

1 More precisely, it is the postimage computation which cannot be computed efficiently on H-polyhedra.
Analogous to Proposition 3.14 the preimage computation ofH-polyhedra can be done efficiently. Thus,
a discrete backward reachability analysis – computing the preimages of Unsafe until Init is hit or a
fix-point is reached – can be realized on H-polyhedra.
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Algorithm 1 Reachability Algorithm for a Hybrid System

Input: A disjunction of symbolic states R0 representing the initial states, a designated
mode u representing Unsafe

Output: true if Unsafe is not reachable, false otherwise
1: k ← 0
2: repeat
3: Ck+1 ← ∅;
4: Rk+1 ← ∅;
5: /* continuous postimage computation */
6: for each (P,m) ∈ Rk do
7: Ck+1 ← Ck+1 ∪ postc(P,m);
8: end for;
9: /* discrete postimage computation */

10: for each (P,m) ∈ Ck+1 do
11: Rk+1 ← Rk+1 ∪ postd(P,m);
12: end for;
13: /* check for intersections with Unsafe */
14: for each (P,m) ∈ Rk+1 do
15: if m = u then
16: output “Unsafe is reachable!”;
17: return false;
18: end if
19: end for;
20: k ← k + 1;
21: until Rk+1 ⊆

⋃
i=1,...,k Ri;

22: return true;

• There is no known efficient algorithm for the fix-point check in Line 21 for sops. The
fix-point computation needs an efficient method to decide subset relations.2 We
already mentioned that sops have this defect in common with support functions.

We shall discuss some ideas which may help us to overcome the problems mentioned
in the last two items. The obvious idea is to ignore the potential state set explosion
and let the user provide a maximal depth of iteration, leading to bounded reachability
analysis. This approach has been taken for our prototypical implementation SoapBox
and has the advantage that we maintain a maximum of exactness. This approach could
easily be extended by methods which try to avoid the state set explosion by heuristi-
cally compacting several states into a single symbolic state using the closed convex hull
operation. Such heuristics are beyond the topic of this thesis.

Another possible resort is the usage of alternative intermediate state set representa-
tions. For example, SpaceEx uses template polyhedra as an intermediate representa-

2 Actually, to perform the fix-point check in Line 21 we have to decide whether a convex set is the
subset of a union of convex sets.
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4. Reachability Analysis of Linear Hybrid Systems

Algorithm 2 Reachability Algorithm for a Hybrid System with Incomplete postc

Input: A disjunction of symbolic states R0 representing the initial states, a designated
mode u representing Unsafe

Output: true if Unsafe is not reachable, false otherwise
1: k ← 0
2: S0 ← ∅
3: repeat
4: Ck+1 ← ∅;
5: Rk+1 ← Sk;
6: Sk+1 ← ∅;
7: /* continuous postimage computation */
8: for each (P,m) ∈ Rk do
9: (Ck+1,Sk+1)← (Ck+1,Sk+1) ∪ postc(P,m);

10: end for;
11: /* discrete postimage computation */
12: for each (P,m) ∈ Ck+1 do
13: Rk+1 ← Rk+1 ∪ postd(P,m);
14: end for;
15: /* check for intersections with Unsafe */
16: for each (P,m) ∈ Rk+1 do
17: if m = u then
18: output “Unsafe is reachable!”;
19: return false;
20: end if
21: end for;
22: k ← k + 1;
23: until Rk+1 ⊆

⋃
i=1,...,k Ri;

24: return true;

tion. For template polyhedra and, more general, for H-polyhedra one can efficiently
decide subset relations. Since sops have support functions, we also may use template
polyhedra or the more precise interpolations between sops and template polyhedra to
overcome the subset problem similarly. Actually, the course of the thesis will show that
coupling of sops, support functions, and template polyhedra is benefiting.

In the following chapter, we will discuss the continuous postimage computation. The
proposed algorithm will be bounded as it computes the reachable states up to a given
time bound. Hence, we may deal with an incomplete continuous postimage operator
postc(P,m) that returns the pair (

⋃
i∈I(Pi,m), (P′,m)) consisting of (i) a union of

symbolic states (Pi,m) that are reachable by letting an arbitrary amount of time elapse3,
i. e., it returns the reachable states within some time interval [0, t], possibly restricted to
the mode-specific guards, (ii) a symbolic state (P′,m) that represents the reachable state

3 We have to specify a fixed positive lower bound to ensure progress.
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exactly at the instant of time t. Algorithm 2 states a variant of the reachability algorithm
that can cope with the incomplete continuous post operator. It extends Algorithm 1 by
a special treatment of (P′,m) which ensures that the continuous postimage computation
is resumed correctly.
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5. Reachability Analysis of Linear Systems

Linear systems can be classified in various ways, for example, whether they have constant
derivatives only, whether they allow bounded input functions or not, or whether they
have invariants or not. Depending on the classification we present different sop-based
methods for the reachable set computation.

The trajectories of a linear system are highly related to the solutions of a linear
differential equation with bounded input functions. We show that for simple linear
systems with constant derivatives it suffices to compute a bundle of affine solutions.
The bundle can be described exactly by a single sop.

The reachable set computation for general systems results in considerable expendi-
tures. The computation is done in a step-wise manner. We start with an initial flow
segment that contains the reachable states within a small time interval of length δ.
In each step the segment is moved forward in time by δ time units. In doing so, the
influences of bounded inputs and the invariant have to be incorporated, leading to a
monotonic growth of the sops assembling these influences. While the assembly can be
done efficiently, any evaluation of the accrued sops by means of linear programs gets
increasingly harder. By combining the purely sop-based algorithm with a well-known
algorithm based on support functions (LGG-algorithm, Le Guernic and Girard (2009)),
we obtain a fast and precise reachability algorithm.

The reader should be familiar with the theory of solving linear differential equations
as it could be found in Heuser (1995). Parts of this chapter have been published as
Hagemann (2014a).

Convention. The set of reachable states of a linear system is not convex in general.
For a better distinction we denote the exact set of reachable states by the symbol R.
Over-approximations of R are denoted by the regular symbol R.

5.1. Variants of Linear Systems

5.1.1. Non-autonomous Linear System

The linear differential equation with constant coefficients

ẋ(t) = Ax(t) + u(t) where u(t) ∈ U for all t ≥ 0 (5.1)

defines a non-autonomous linear system. Any measurable function u with u(t) ∈ U
for all t ≥ 0 is called an admissible input function. Note that we assume that U is
convex and bounded in every direction, not least to avoid discussions about the meaning
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5. Reachability Analysis of Linear Systems

of arbitrary large derivatives. The class of all admissible input functions is denoted by
AdmInp(U). For any initial state x0, any instant of time t ≥ 0, and any admissible
input function u the system (5.1) has the unique solution

yA(t,x0,u) = etAx0 + etA
∫ t

0
e−τAu(τ) dτ . (5.2)

The solution yA(t,x0,u) describes – as a function over time – a trajectory, which
emanates from the initial state x0 at t = 0 and evolves accordingly to the input function
u and the dynamics given by (5.1). Any state z = yA(t,x0,u) is said to be reachable
from x0 at time t under the input function u. The set of reachable states of (5.1) from
a set of initial states X0 at a certain instant of time t ≥ 0 under all admissible inputs is
given by

RA,Ut (X0) =
{
z
∣∣ ∃x0 ∈ X0, ∃u ∈ AdmInp(U): z = yA(t,x0,u)

}
.

We will often omit the superscripts A and A,U when it is clear which system is meant
or the given statement is of general significance.

The set R(X0) of the reachable states from X0 at any time t ≥ 0 and the set
R[t1,t2](X0) of the reachable states of (5.1) from X0 within the time interval [t1, t2]
are defined as follows:

R(X0) =
⋃
t≥0

Rt(X0), R[t1,t2](X0) =
⋃

t∈[t1,t2]

Rt(X0).

5.1.2. Autonomous Linear System

A linear system that has no inputs, i. e., U = {0}, is called an autonomous linear sys-
tem. An autonomous system evolves accordingly to the homogeneous linear differential
equation

ẋ(t) = Ax(t), (5.3)

and has for any initial state x0 ∈ X0 and t ≥ 0 the solution

y(t,x0) = y(t,x0,0) = etAx0. (5.4)

The reachable states of an autonomous linear system are given by

RAt (X0) =
{
z
∣∣∃x0 ∈ X0: z = etAx0

}
=

⋃
x0∈X0

etAx0.
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5.1.3. Superposition Principle

For linear systems without invariants the superposition principle allows us to compute
the solution y(t,x0,u) of a non-autonomous system as the sum of the solution y(t,x0) =
etAx0 of the related autonomous system (5.3) and the particular solution y(t,0,u) =
etA
∫ t

0 e−τAu(τ) dτ of the non-autonomous system (5.1). It enables us to decompose the
set of reachable states into the following Minkowski sum:

RA,U(X0) = RA(X0) +RA,U({0}). (5.5)

The first summand RA(X0) is the set of reachable states of the related autonomous sys-
tem. The latter summand RA,U({0}), which accounts for the influences of all admissible
input functions, is independent of the choice of X0.

5.1.4. Non-autonomous Linear System with Invariant

An invariant I restricts the set of reachable states. Only those states z are reachable
from x0 for which a trajectory y(t,x0,u) of the unrestricted system exists such that

(i) x0 is the initial state of y, and z is a reachable state of y, i. e.,

x0 = y(0,x0,u), z = y(t0,x0,u) for some t0 ≥ 0,

(ii) y(t,x0,u) ∈ I for all intermediate instants of time 0 ≤ t ≤ t0.

The dynamic of a non-autonomous system with invariant I is given by the linear
differential equation

ẋ(t) = Ax(t) + u(t) where u(t) ∈ U and x(t) ∈ I for all t ≥ 0. (5.6)

Any valid solution of (5.6) is given by

yI(t,x0,u) =

{
y(t,x0,u) if y(λ,x0,u) ∈ I for all 0 ≤ λ ≤ t

∅ otherwise

where y(t,x0,u) is a solution of the unrestricted system. The set of reachable states of
a linear system with invariant I is defined as

RI(X0) =

{
z

∣∣∣∣ ∃x0 ∈ X0, ∃u(t) ∈ AdmInp(U), ∃t ≥ 0: z = y(t,x0,u)

and ∀0 ≤ λ ≤ t: y(λ,x0,u) ∈ I

}
.

Challenges of restricted systems are that we have to consider all intermediate solutions
to ascertain the validity of a trajectory of the restricted system, and that the validity of
the superposition principle may be broken by the invariant.
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5.1.5. Autonomous Systems with Constant Derivatives

Computing the reachable states of an autonomous system with constant derivatives is
simple. The derivative is fixed to a constant:

ẋ(t) = c where c is constant. (5.7)

For any initial state x0 and any instant of time the unrestricted system (5.7) has the
solution

y(t,x0) = x0 + tc.

The restricted system (5.7) under the invariant I has the solution

yI(t,x0,u) =

{
x0 + tc if x0 + λc ∈ I for all 0 ≤ λ ≤ t

∅ otherwise.

Hence, the reachable states are given by

R(X0) = {z | ∃x0 ∈ X0, ∃t ≥ 0: z = x0 + tc} = X0 +
⋃
t≥0

tc and

RI(X0) = {z | ∃x0 ∈ X0, ∃t ≥ 0: z = x0 + tc and ∀0 ≤ λ ≤ t: x0 + λc ∈ I} .

(5.8)

If the sets X0 and I are given as Boolean combinations of linear expression over the
state variables. Then application of quantifier elimination of linear arithmetic to R(X0)
and RI results in Boolean combination of linear expression over the state variables again.

Assume, I is convex. Since {x0 + λc | 0 ≤ λ ≤ t} is a line segment, all intermediate
points are located in I provided that the starting and end point are in I. Hence, RI(X0)
is obtained from R(X0) by the intersection:

RI(X0) = R(X0) ∩ I =

(
X0 +

⋃
t≥0

tc

)
∩ I.

If X0 and I are given as polyhedra, then each of the sets R(X0) and RI(X0) may be
represented exactly as single sops, see Proposition 3.12 on page 23.

Proposition 5.1 (Continuous Post Operator)
Let H = (Var ,Mod ,Trans) be a linear hybrid system with polyhedral state set represen-
tation. Further, let m ∈ Mod be a mode encoding an autonomous system with constant
derivatives ẋ = c and invariant I. Then the exact continuous postimage of any symbolic
state (P,m) is given by

postc(P,m) =

(
P +

⋃
t≥0

tc

)
∩ I. �
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5.1.6. Non-autonomous Systems with Constant Derivatives

We discuss the reachable set computation for a non-autonomous system with constant
derivatives

ẋ(t) = c + u(t) where c is constant and u(t) ∈ U′ for all t ≥ 0.

As a start, we note that setting U = c + U′ yields the equivalent formulation

ẋ(t) = u(t) where u(t) ∈ U for all t ≥ 0. (5.9)

For any initial state x0 and any instant of time the unrestricted system (5.9) has the
solution

y(t,x0,u) = x0 +

∫ t

0
u(τ) dτ .

The solution of the restricted system (5.9) under the invariant I is given by

yI(t,x0,u) =

{
x0 +

∫ t
0 u(τ) dτ if x0 +

∫ λ
0 u(τ) dτ ∈ I for all 0 ≤ λ ≤ t

∅ otherwise.

The reachable states are given by

R(X0) =
{
z
∣∣∃x0 ∈ X0, ∃u ∈ AdmInp(U),∃t ≥ 0: z = x0 +

∫ t
0 u(τ) dτ

}
and

RI(X0) =

{
z

∣∣∣∣∣ ∃x0 ∈ X0, ∃u ∈ AdmInp(U), ∃t ≥ 0: z = x0 +
∫ t

0 u(τ) dτ

and ∀0 ≤ λ ≤ t: x0 +
∫ λ

0 u(τ) dτ ∈ I

}
.

At first glance, these sets have a more complicated structure than the reachable sets of
the autonomous system. In addition, quantifier elimination of linear arithmetic seems
not to be applicable, since u ∈ AdmInp(U) is not linear in general. Though, the next
proposition reveals the simple structure of R(X0).

Proposition 5.2 (Non-Autonomous Systems with Constant Derivatives)
(i) Any reachable state of the unrestricted non-autonomous system (5.9) is reachable

under a constant input function. In fact, the reachable states of the unrestricted
system (5.9) are given as

R(X0) = X0 +
⋃
t≥0

tU. (5.10)

(ii) Let I be a convex set and X0 ⊆ I. Then any reachable state of the system (5.9)
with invariant I is reachable under a constant input function. The reachable states
are given as

RI(X0) = R(X0) ∩ I =

(
X0 +

⋃
t≥0

tU

)
∩ I. �
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Proof. (i) We prove equality (5.10): For any initial state x0 ∈ X0, any admissible input
function u, any instant of time t ≥ 0, and any vector n the following relations hold:

nTy(t,x0,u) = nTx0 + nT
∫ t

0
u(τ) dτ = nTx0 +

∫ t

0
nTu(τ) dτ

≤ nTx0 +

∫ t

0
sup
u∈U

nTu dτ = nTx0 + sup
u∈tU

nTu.

(5.11)

Hence, y(t,x0,u) ∈ X0 +
⋃
t≥0 tU and R(X0) ⊆ X0 +

⋃
t≥0 tU.

In order to fully establish (5.10), we note that any state z ∈ X0 +
⋃
t≥0 tU can be

written as z = x0 + tu0 for suitable x0 ∈ X0, u0 ∈ U and t ≥ 0. Hence, z is reachable
under the constant input function u0, i. e., z = y(t,x0,u0).

We have shown that any reachable state of the restricted system is in X0 +
⋃
t≥0 tU

and, vice versa, that any state in X0 +
⋃
t≥0 tU is reachable under a constant input

function.
(ii) Alas, the property that any reachable state is reachable under a constant input

function does not carry over to systems with invariants. Because of the invariant, a state
z might not be reachable by a affine function but it may be reachable by some trajectory
which bends inside the invariant. Fortunately, in case of a convex invariant I, the line
segment from x0 to z = yI(t,x0,u) is also contained in I. Hence, like in the unrestricted
case, any reachable state is reachable under a constant input function, and RI(X0) is
obtained by the intersection:

RI(X0) = R(X0) ∩ I. �

Hence, we have

R(X0) = {z | ∃x0 ∈ X0, ∃u ∈ U,∃t ≥ 0: z = x0 + tu} ,

R(X0) ∩ I = {z | ∃x0 ∈ X0, ∃u ∈ U,∃t ≥ 0: z = x0 + tu and ∀0 ≤ λ ≤ t: x0 + λu ∈ I}
(5.12)

If the sets X0 and I are given as Boolean combinations of linear expression over the state
variables and I is additionally convex, we may use a trick of Alur et al. (1996) which
helps us to get rid of the non-linear expressions tu and λu in (5.12)1, see also Damm
et al. (2012).

If X0, U and I are given as a polyhedron, then each of the sets R(X0) and RI(X0)
may be represented exactly as single sops, see Proposition 3.44 on page 40.

Proposition 5.3 (Continuous Post Operator)
Let H = (Var ,Mod ,Trans) be a linear hybrid system with polyhedral state set repre-
sentation. Further, let m ∈ Mod be a mode encoding a non-autonomous system with
derivatives ẋ ∈ U and invariant I. Then the continuous postimage of any symbolic state
(P,m) is given by

postc(P,m) =

(
P +

⋃
t≥0

tU

)
∩ I. �

1 The trick is related to the scaling of sops in Section 3.6 on page 27. As for sops, one has to be careful
if the trick is applied to unbounded polyhedral sets.
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5.2. Time Discretization of Linear Systems

In this section we return to the general case of linear systems. While the reachable states
of a system with constant derivatives can be computed exactly, this is no longer possible
for general linear systems. It turns out that, for a fixed time step δ > 0, there is an
exact recurrence relation which relates the reachable states R[(k+1)δ,(k+2)δ](X0) to the
reachable statesR[kδ,(k+1)δ](X0) andRδ({0}). Since the recurrence relation only involves
linear mappings and Minkowski sums, it may easily expressed in terms of sops. The
recurrence relation shifts the computational work to the initial sets, i. e., the identification
of R[0,δ](X0) and Rδ({0}).

In addition to the spatial decomposition of the solution that is based on the super-
position principle, we will derive a recurrence relation which is based on a temporal
decomposition of the solutions. The matrix exponential2 obeys the exponentiation iden-
tity

e(t1+t2)A = et1Aet2A.

Hence, the solution y(δ + kδ,x0) of an autonomous linear system can be decomposed
into

y(δ + kδ,x0) = e(δ+kδ)Ax0 = eδAekδAx0 = eδAy(kδ,x0).

Therefore, the reachable states from x0 at the time instants kδ, k = 0, 1, 2, . . . , can be
computed by repeated application of the matrix exponential eδA, yielding

y(0,x0) = x0, y(δ,x0) = eδAx0, y(2δ,x0) = eδA(eδAx0), . . .

The next three lemmata yield a time discretization of R(X0) as a union of segments
R[kδ,(k+1)δ](X0), k = 0, 1, 2 . . . , over time intervals of equal length δ > 0. Lemma 5.4
and the first item of Lemma 5.5 are taken from Chutinan (1999) and slightly extended
to non-constant input functions. Lemma 5.6 is widely used by several authors (Girard,
2005; Le Guernic, 2009; Althoff et al., 2010; Frehse et al., 2011).

Lemma 5.4 (Temporal Decomposition I)
Let x0 be an initial state, u an admissible input function, and t an instant of time. Then
for h ≥ 0 the following equation holds:

y(t+ h,x0,u) = etAy(h,x0,u) + etA
∫ t

0
e−τAu(τ + h) dτ . �

2 Note that we do not address the problem of computing the matrix exponential

eδA =

∞∑
k=0

δkAk

k!

in this thesis. There are two problems in this context. First of all, the matrix exponential eδA of
a rational matrix A has – in general – transcendental coefficients and, hence, it is impossible to
represent the coefficients as floating point or rational numbers exactly. Secondly, due to catastrophic
cancellation even the computation of an approximation of matrix exponential might be hard. A good
survey on the computation of an approximation may be found in Moler and Van Loan (2003).
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Proof.

y(t+ h,x0,u) = e(t+h)Ax0 + e(t+h)A

∫ t+h

0
e−τAu(τ) dτ

= e(t+h)Ax0 + e(t+h)A

∫ h

0
e−τAu(τ) dτ + e(t+h)A

∫ t+h

h
e−τAu(τ) dτ

= etA
(

ehAx0 + ehA
∫ h

0
e−τAu(τ) dτ

)
+ etA

∫ t+h

h
e−(τ−h)Au(τ) dτ

= etAy(h,x0,u) + etA
∫ t

0
e−τAu(τ + h) dτ . �

Lemma 5.5 (Temporal Decomposition II)
For any time step δ ≥ 0 and any integer k ≥ 0 the following equalities hold:

(i) R[t,t+δ](X0) = etAR[0,δ](X0) +Rt({0}),

(ii) R(k+1)δ({0}) = eδARkδ({0}) +Rδ({0}). �

Proof. (i) Any state z is reachable from X0 in the time interval [t, t + δ] if and only if
there exists an initial state x0 ∈ X0, an admissible input function u, and an instant of
time h ∈ [0, δ] such that z = y(t+ h,x0,u). By Lemma 5.4 we have the equality

z = etAy(h,x0,u) + etA
∫ t

0
e−τAu(τ + h) dτ ,

where u(t+ h) is an admissible input function if and only if u(t) is an admissible input
function. Hence,

z ∈ R[t,t+δ](X0)⇐⇒ z ∈ etAR[0,δ](X0) +Rt({0}).

(ii) A state z is reachable from {0} at time (k+1)δ if and only if there exists an admissible
input function u such that z = y((k + 1)δ,0,u). By Lemma 5.4 we have the equality

z = eδAy(kδ,0,u) + eδA
∫ δ

0
e−τAu(τ + kδ) dτ ,

where u(t+ kδ) is an admissible input function if and only if u(t) is an admissible input
function. Hence,

z ∈ R(k+1)δ({0})⇐⇒ z ∈ eδARkδ({0}) +Rδ({0}). �

Lemma 5.6 (Time Discretization of the Set of Reachable States)
For all integers k ≥ 0 and any time steps δ ≥ 0 the following recurrence relation on the
segments R[k,(k+1)](X0) holds:

R[(k+1)δ,(k+2)δ](X0) = eδAR[kδ,(k+1)δ](X0) +Rδ({0}). �
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Proof.

R[(k+1)δ,(k+2)δ](X0) = e(k+1)δAR[0,δ](X0) +R(k+1)δ({0}) (by Lemma 5.5 (i))

= e(k+1)δAR[0,δ](X0) + eδARkδ({0}) +Rδ({0}) (by Lemma 5.5 (ii))

= eδA(ekδAR[0,δ](X0) +Rkδ({0})) +Rδ({0})
= eδAR[kδ,(k+1)δ](X0) +Rδ({0}). (by Lemma 5.5 (i))

�

The set R[0,δ](X0) contains all reachable states of the non-autonomous system from
X0 within the time interval [0, δ], and the set Rδ({0}) accounts for the influences of all
admissible input functions u ∈ AdmInp(U) at the instant of time δ. Given the initial
segment R0 = R[0,δ](X0), the set V = Rδ({0}), and the matrix exponential eδA, the
time discretization lemma enables us to recursively compute the reachable states up to
any instant of time t = kδ, k ≥ 0:

Rk+1 = eδARk + V.

In practice, we will not apply the recurrence relation to the exact initial sets R[0,δ](X0)
and Rδ({0}), but we apply it to bloated and convexified over-approximations of these
sets, i. e.,

clconv(R[0,δ](X0)) ⊆ R0 and clconv(Rδ({0})) ⊆ V.

All subsequent segments Rk, k > 0, are computed according to the exact recurrence
relation. Therefore, beside the initial bloating, no further approximations are made
during the reachable set computation. In particular, the reachable set computation
provides a wrapping-free over-approximation of R[0,kδ](X0) (Le Guernic, 2009) if we

have the matrix exponential eδA at hand.3

5.2.1. Incorporating the Invariant

We would like to respect the influences of the invariant I. Hence, we modify the recursive
computation of the reachable states as follows

Rk+1 = (eδARk + V) ∩ I. (5.13)

This discretization has been proposed and discussed by Le Guernic (2009) and Le Guer-
nic and Girard (2009). Since support functions allow insufficient handling of intersections
only, the authors propose further over-approximations of (5.13). The probably coarsest
over-approximation of (5.13) may be found in Frehse et al. (2011) where the influence
of the invariant is ignored almost completely. In fact, the following recurrence relation
is used:

Rk+1 =

{
∅ if (eδARk + V) ∩ I = ∅,
eδARk + V else.

3 See footnote 2 for the computation of the matrix exponential.
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5. Reachability Analysis of Linear Systems

The figure shows artifacts of the time discretization (5.13). The spiral is a valid trajectory
of some system without invariant. The initial segment of the trajectory is R0. The actual
set of reachable states of the corresponding system with invariant I consists of the initial
segment of the trajectory until the invariant is left for the first time. The colored segments
show the computed reachable sets according to the time discretization (5.13) respecting
the invariant I.

Figure 5.1.: Artifacts of the Time Discretization with Invariants

Alas, even if we use the discretization (5.13) without further over-approximation, the
discretization is not exact: The invariant is only applied at certain instants of time,
namely at time δ, 2δ, 3δ, . . . . Within the intermediate time instants, the influence of
the invariant is ignored, which may result in an over-approximation. Even not connected
trajectories could occur as artifacts of the discretization, as Figure 5.1 shows.

5.2.2. Initial Bloating

In this section we shall discuss how to compute convex over-approximations R0 of
R[0,δ](X0) and V of Rδ({0}). There are several ways to compute such over-approx-
imations, varying from the conservative over-approximation as given by Girard (2005)4

to an accurate bloating of the convex hull clconv(X0 ∪ eδAX0) as proposed by Chutinan
and Krogh (1998).

The novel method given below is inspired by a method proposed by Le Guernic (2009),
which has been slightly improved and implemented in SpaceEx, see Frehse et al. (2011).
The bloating method of Le Guernic is not applicable in our context, since we are dealing
with polyhedral sets only, while Le Guernic’s method involves piecewise quadratic func-
tions to describe the support function of the bloated sets. Although we made no effort
to give a precise comparison of both bloating methods, we expect the support function-

4 Let ||·|| be a norm and let �(α) denotes the ball of radius α corresponding to ||·||. Then the conservative
over-approximations Rδ({0}) ⊆ �(βδ) and R[0,δ](X0) ⊆ clconv(X0 ∪ eδAX0) + �(αδ + βδ) with

βδ = eδ||A||−1

||A|| supu∈U ||u|| and αδ = (eδ||A|| − 1− δ ||A||) supx0∈X0
||x0|| hold.
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based method to provide better results in general. However, since sops also have support
functions, the following bloating procedure may also be applied to reachability analysis
using support functions. A detailed comparison of both bloating methods is considered
as future work.

We use the decomposition (5.5),

R[0,δ](X0) =
⋃

t∈[0,δ]

etAX0 +R[0,δ]({0})

and over-approximate both summands separately. They are added afterwards to obtain
an over-approximation of the reachable states of the non-autonomous system.

Let ei the standard basis vector ei = (0 . . . 0 1 0 . . . 0)
T

, whose only non-zero
coefficient is at the ith place. For the following let �(X) be the symmetric interval hull
of X, defined as

�(X) = [−z1, z1]× · · · × [−zd, zd] where zi = max

(∣∣∣ inf
x∈X

eTi x
∣∣∣ , ∣∣∣∣sup

x∈X
eTi x

∣∣∣∣) .

Further, let |x| and |A| be the vector and the matrix where all coefficients are replaced
by their absolute values. Hence, for any vector x, matrices A and B we have (i) x ≤ |x|,
(ii) |A+B| ≤ |A| + |B|, and (iii) |Ax| ≤ |A| |x|. We define the abbreviation JeδAXK =
�
(
eδ|A|(�(X))

)
and obtain an over-approximation of etAX0 by the next small lemma.

Lemma 5.7
For all t ∈ [0, δ] the set inclusion etAX ⊆ JeδAXK holds. �

Proof. Let y = etAx for some x ∈ X and t ∈ [0, δ]. Then

y ≤ |y| =
∣∣etAx

∣∣ ≤ ∣∣etA∣∣ |x| ≤ et|A| |x| ≤ eδ|A| |x| . �

The next lemma is based on a Taylor approximation of mth order and an over-approx-
imation of the Lagrange form of the remainder.

Lemma 5.8
For any m ≥ 0 and any t ∈ [0, δ] the following set inclusions hold:

etAX0 ⊆
m∑
k=0

tk

k!
AkX0 +

tm+1

(m+ 1)!
Am+1JeδAX0K, (5.14)

Rt({0}) ⊆
m∑
k=0

tk+1

(k + 1)!
AkU +

tm+2

(m+ 2)!
Am+1JeδAUK. (5.15)

�

Proof. We show (5.14). For all x0 ∈ X0 and all n ∈ Rd the following Taylor approxima-
tion with Lagrange remainder holds:

nT etAx0 =

m∑
k=0

tk

k!
nTAkx0 +

tm+1

(m+ 1)!
nTAm+1eτAx0 where τ ∈ [0, t).
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Using the notation of support functions and Lemma 5.7 yields

nT etAx0 ≤
m∑
k=0

tk

k!
hAk(X0)(n) +

tm+1

(m+ 1)!
hAm+1JeδAX0K(n).

Hence, etAX0 ⊆
∑m

k=0
tk

k!A
kX0 + tm+1

(m+1)!A
m+1JeδAX0K. In order to show (5.15), we use

the identity

Rt({0}) =

{∫ t

0
e(t−τ)Au(τ) dτ

∣∣∣∣u ∈ AdmInp(U)

}
.

Let t ∈ [0, δ] and u be an admissible input function. We set x =
∫ t

0 e(t−τ)Au(τ) dτ . For
all n ∈ Rd it holds

nTx = nT
∫ t

0
e(t−τ)Au(τ) dτ =

∫ t

0
nT e(t−τ)Au(τ) dτ ≤

∫ t

0
sup
u∈U

nT e(t−τ)Au dτ.

By Taylor approximation with Lagrange remainder we obtain a function ξ(t) with τ ≤
ξ(t) ≤ t and

nTx ≤
∫ t

0
sup
u∈U

(
m∑
k=0

(t− τ)k

k!
nTAku +

(t− τ)m+1

(m+ 1)!
nTAm+1e(ξ(t)−τ)Au

)
dτ

≤
∫ t

0

m∑
k=0

(t− τ)k

k!
sup
u∈U

nTAku +
(t− τ)m+1

(m+ 1)!
sup
u∈U

nTAm+1e(ξ(t)−τ)Au dτ

=

∫ t

0

m∑
k=0

(t− τ)k

k!
sup
u∈U

nTAku dτ

+

∫ t

0

(t− τ)m+1

(m+ 1)!
sup
u∈U

nTAm+1e(ξ(t)−τ)Au dτ

=
m∑
k=0

∫ t

0

(t− τ)k

k!
sup

u′∈AkU
nTu′ dτ

+

∫ t

0

(t− τ)m+1

(m+ 1)!
sup

u′∈e(ξ(t)−τ)AU

nTAm+1u′ dτ.

We use the notation of support functions and rewrite to

nTx ≤
m∑
k=0

∫ t

0

(t− τ)k

k!
hAkU(n) dτ

+

∫ t

0

(t− τ)m+1

(m+ 1)!
he(ξ(t)−τ)AU((Am+1)Tn) dτ.
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Since ξ(t)− τ ∈ [0, t− τ ] ⊆ [0, δ] holds, we may eliminate the reference to ξ(t)− τ using
Lemma 5.7, etAX ⊆ JeδAXK for all t ∈ [0, δ]:

nTx ≤
m∑
k=0

∫ t

0

(t− τ)k

k!
hAkU(n) dτ +

∫ t

0

(t− τ)m+1

(m+ 1)!
hJeδAUK((A

m+1)Tn) dτ

=
m∑
k=0

∫ t

0

(t− τ)k

k!
hAkU(n) dτ +

∫ t

0

(t− τ)m+1

(m+ 1)!
hAm+1JeδAUK(n) dτ

=
m∑
k=0

tk+1

(k + 1)!
hAkU(n) +

tm+2

(m+ 2)!
hAm+1JeδAUK(n),

for all x =
∫ t

0 e(t−τ)Au(τ). Hence,

sup
x∈Rt({0})

nTx = hRt({0})(n)

≤
m∑
k=0

tk+1

(k + 1)!
hAkU(n) +

tm+2

(m+ 2)!
hAm+1JeδAUK(n)

and

Rt({0}) ⊆
m∑
k=0

tk+1

(k + 1)!
AkU +

tm+2

(m+ 2)!
Am+1JeδAUK. �

For t = δ, (5.15) already provides an over-approximation of Rδ({0}). We choose
m = 0 and obtain the first-order approximation

Rδ({0}) ⊆ δAkU + t2

2 AJe
δAUK = V.

We use that for any x, k ≥ 0, and t ∈ [0, δ] the term tk

k!A
kx may be written as the

convex combination (1−λ)0+λ δ
k

k!A
kx with λ = tk

δk
, and hence, as stipulated, 0 ≤ λ ≤ 1.

We introduce the notion C(X) = clconv({0}∪X) and obtain a first-order approximations
of
⋃
t∈[0,δ] etAX0 and

⋃
t∈[0,δ]Rt({0}) as stated in the following lemma.

Lemma 5.9
The following set inclusions hold⋃

t∈[0,δ]

etAX0 ⊆ X0 +C(δAX0) +C
(
δ2

2 A
2JeδAX0K

)
,

⋃
t∈[0,δ]

Rt({0}) ⊆ C(δU) +C
(
δ2

2 AJe
δAUK

)
. �

The first inclusion provides an over-approximation of the reachable states of the au-
tonomous system in forward direction. We may also compute an over-approximation in
backward direction starting from eδAX0. Finally, we obtain the proposition:
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5. Reachability Analysis of Linear Systems

Proposition 5.10 (Over-Approximation of R[0,δ](X0))

Let X1 = eδAX0. Then the following set inclusion holds:

R[0,δ](X0) ⊆
( (

X0 +C(δAX0) +C( δ
2

2 A
2JeδAX0K)

)
∩
(
X1 +C(−δAX1) +C( δ

2

2 (−A)2Je−δAX1K)
) )

+C(δU) +C( δ
2

2 AJe
δAUK) = R0. �

5.3. Reachability Algorithm for Linear Systems with Invariants
(Algorithm 3)

Having extensively discussed the various aspects of the step-wise reachable set computa-
tion, it is now time to state an algorithm which computes the output of the continuous
post operator postc(P,m). Algorithm 3 computes the reachable states of a linear sys-
tem, and it is a variant of the algorithms presented in Le Guernic (2009); Le Guernic
and Girard (2009). If we modify the algorithm in such a way that it additionally re-
turns the last segment Rk+1 when the postimage computation was unfinished, we obtain
an incomplete postimage computation which perfectly fits the needs of Algorithm 2, a
reachability algorithm for hybrid systems. The inputs of the algorithm are the first flow

Algorithm 3 Reachability Algorithm for a Linear System (SOP)

Input: a time step δ > 0, the matrix A of the linear differential equation, an in-
variant I, the set G of guards, an over-approximation R0 ⊆ I of R[0,δ](X0), an
over-approximation V of Rδ({0}), and an integer N = b tδ c.

Output: A collection of over-approximations of intersections of R[0,t](X0) and the
guards in G.

1: for k ← 0, . . . , N do
2: if Rk = ∅ then break;
3: for each guard Gj ∈ G do
4: if Rk ∩Gj 6= ∅ then collect the intersection Rk ∩Gj;
5: end for;
6: Rk+1 ← (eδARk + V) ∩ I ;
7: end for;
8: return collected intersections with the guards;

segment R0, the set V – both obtained by the initial bloating procedure –, the invariant
I, and the set G = {G1, . . . ,Gg} of guards. The computation of the next flow segment
in Line 6 is based on the discretization for linear systems with invariants (5.13). In
Lines 3-5 the intersections of the current flow segment with the guards are computed
and collected. Yet, we did not specify how the actual collection is performed. There are
several possibilities varying from returning each single intersection, which potentially
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leads to a multiplication of the symbolic state sets, or returning the convex hull of all
intersections. We have implemented a collection strategy where the convex hull is built
from all intersections of an individual guard traversal.

The following observations were made on an implementation of Algorithm 3.

1. The algorithm provides a new degree of exactness. The sources of inexactness
are the computation of the matrix exponential eδA, over-approximations due to
the initial bloating procedure, possible artifacts due to the invariant (Line 6), and
over-approximations in the collection step (Line 4). In practice, we also have to
care for numerical issues due to the usage of floats.

2. The main drawback of a pure sop-based approach is the monotonic growth of
the representation matrices of the involved sops. While the assembly of huge sops
(Line 6) can be done efficiently, the evaluation of such sops gets increasingly harder
(Line 2 and Line 4). Based on our experiences we assess the following parts of the
reachability analysis in order of increasing influence on the growth of the sops:

a) The initial bloating procedure has the mildest influence on the growth, since
it is only applied once for each symbolic state.

b) The intersection with the invariant can be efficiently combined with a redun-
dancy removal to avoid unneeded growth.

c) While the implemented collection strategy keeps the number of symbolic
states small, the representation matrices of such collections can be quite large.

d) The Minkowski sum in Line 6 has the highest influence: A non-trivial set V
(V 6= {0}) leads to a linear growth of the representation matrices.

5.4. Le Guernic and Girard’s Reachability Algorithm
(Algorithm 4)

Compared in run-time, our prototypical implementation of Algorithm 3 is clearly behind
the reachability algorithm of Le Guernic and Girard (2009). Algorithm 4 restates their
algorithm in our context. The algorithm is based on a clever combination of support
functions and template polyhedra and profits from the weaker handling of the invariant.
In fact, the influence of the invariant only accounts for the current flow segment and is not
carried over to the next flow segment. This leads to an efficient computation of the next
flow segment in Lines 7–9 where the invariant is completely ignored. The influences of the
bounded input are accumulated in the sequence (sk), and, instead of updating the state
set R0, only an updated template matrix Tk+1 is computed; based on the fact that the
optimal values of the two linear programs “maximize nTx subject to x ∈ ekδAR0” and
“maximize (nT ekδA)x subject to x ∈ R0” agree. The template polyhedron P(T0,bk+1)
is an over-approximation of the current flow segment and its computation can be done in
constant time.5 The quality of the over-approximation highly depends on the template

5 This is a more practical observation than a theoretical result. Although there exists an algorithm which
solves rational linear programs of fixed dimension and m constraints in O(m) elementary arithmetic
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Algorithm 4 Reachability Algorithm for a Linear System (LGG)

Input: δ, A, I, G, R0, V, N as specified in Algorithm 3 and an additional template
polyhedron P(T0,b0) over-approximating R0.

Output: A collection of over-approximations of intersections of R[0,t](X0) and the
guards in G.

1: s0 ← 0;
2: for k ← 0, . . . , N do
3: if P(T0,bk) ∩ I = ∅ then break;
4: for each guard Gj ∈ G do
5: if P(T0,bk) ∩ I ∩Gj 6= ∅ then collect the intersection P(T0,bk) ∩ I ∩Gj;
6: end for;
7: sk+1 ← sk + hV(Tk);
8: Tk+1 ← Tke

δA;
9: bk ← hR0(Tk+1) + sk+1;

10: end for;
11: return collected intersections with the guards;

matrix T0. In order to improve the handling of the invariant, the facet normals of the
invariant should be added to the template directions (Frehse et al., 2011).

5.5. Comparison of Algorithm 3 and Algorithm 4
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Figure 5.2.: Comparison of Algorithm 3 and 4

Figure 5.2 shows the first intersection of a bouncing ball with the guard (the floor).

operations on numbers of polynomial size, the complexity of linear programs is usually given by
a polynomial bound which also depends on the maximum bit size of the coefficients, see Schrijver
(1986).
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The model description can be found in Section 6.1.1. We use the time step δ = 0.02.
The outer slices show the intersections computed by Algorithm 4 using a rectangular
template matrix. Each inner slice shows a tight rectangular over-approximation of the
sops computed by Algorithm 3. Their representation matrices reach a size of about
3500 rows and 2000 columns with 9000 non-zero coefficients. The convex hull of all
intersections has a size of 82652 rows, 46999 columns and 283006 non-zero coefficients.

Due to the proper handling of guard intersections and influences of invariants, the
sop-based reachable set computation according to Algorithm 3 provides tighter over-
approximations than the support function-based reachable set computation according
to Algorithm 4. The increased precision comes along with a considerable growth of the
representation size of the sops.

5.6. Combining Algorithm 3 and Algorithm 4 (Algorithm 5)

Algorithm 5 Reachability Algorithm for a Linear System (SOP + LGG)

Input: A, I, G, R0, V, N as specified in Algorithm 3 and an additional template
polyhedron P(T0,b0) over-approximating R0.

Output: A collection of over-approximations of intersections of R[0,t](X0) and the
guards in G.

1: s0 ← 0;
2: for k ← 0, . . . , N do
3: if P(T0,bk) ∩ I = ∅ then break;
4: for each guard Gj ∈ G do
5: if P(T0,bk) ∩ I ∩Gj 6= ∅ then collect the intersection Rk ∩Gj;
6: end for;
7: sk+1 ← sk + hV(Tk);
8: Tk+1 ← Tke

δA;
9: bk+1 ← hR0(Tk+1) + sk+1;

10: Rk+1 ← eδARk + V;
11: for each constraint ci of I do
12: if ci is not redundant in P(T0,bk+1) then Rk+1 ← Rk+1 ∩ ci;
13: end for;
14: end for;
15: return collected intersections with the guards;

Algorithm 5 is a combination of Algorithm 3 and Algorithm 4. While it preserves
the exactness of the sop-based algorithm, all involved linear programs have a constant
number of variables and constraints (Lines 3, 5, and 12). Also, the assembly of the sop
in Line 10 and Line 12 can be done in constant time. Lines 10–13 are an equivalent
replacement for the assignment Rk+1 ← (eδARk +V)∩ I with an additional redundancy
removal, see also Item 2b in Section 5.3.
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5.6.1. Fighting the Monotonic Growth by Interpolation

In practice we observe a similar behavior to Algorithm 4: The step computation of
Algorithm 5 is done in constant time since the computational burden is shifted to the
LGG-part. But the size of the sops still grows monotonically. While this growth can be
handled during the collection and following discrete updates, latest in the next contin-
uous iteration, when the discrete postimage of a symbolic state is passed to Algorithm
5 again, the enormous size of the sop has an effect: All involved linear programs of
Algorithm 5 have to be solved over systems of linear inequalities of enormous size.6

To overcome this problem, we use the ray shooting-based interpolation as described in
Section 3.12. In every step, we have two representations of the current flow segment:
the template polyhedron P(T0,bk) ∩ I and the set Rk represented by a sop. Hence, we
may compute an interpolating H-polyhedron Q with Rk ⊆ Q ⊆ P(T0,bk) ∩ I. This
interpolating polyhedron is a tight over-approximation of Rk and is at least as good
as the template polyhedron computed by the LGG-algorithm 4. Replacing Rk by the
interpolating polyhedron still yields results which are at least as good as the results we
would achieve by the pure LGG-algorithm. In our prototype SoapBox7, the interpo-
lation and replacement of Rk is applied after interpolate after step computations.
The interpolation can be disabled by setting interpolate after = 0.

We use a similar strategy to confine the growth of the collected intersections. Instead
of building the convex hull of an arbitrary sequence, we apply the convex hull and the
template hull on at most max conv hull consecutive elements of the sequence. Then
we compute the interpolation between the template hull and the convex hull. The
resulting interpolations form a new sequence for which we proceed as before. We iterate
this process until only one element remains. Again, this interpolation strategy can be
disabled. The resulting set is at least as good as the result one would achieve with
template polyhedra only.

5.6.2. The Impact of Empty Intersections

It may happen that some collected intersections Rk ∩Gj are empty since we only check
the feasibility of the over-approximation P(T0,bK)∩ I∩Gj . Joining these intersections
using the convex hull operation could lead to huge over-approximations, see the closed
convex hull construction in Proposition 3.40 on page 36. To avoid this, we have to per-
form a feasibility check for each of the intersections, or we have to ensure that the normal
cones of the sets agree. If the input sets R0 and V are bounded and no redundancy
removal has been applied, then the normal cone of each of the intersections Rk ∩Gj is
equal to the state space, even if the Rk ∩Gj is empty. Hence, an additional feasibility
check for the intersections is not necessarily needed. Since our interpolation strategy
builds the convex hull of at most max conv hull consecutive elements and interpolation
reveals the emptiness of the interpolated sops, it could be interesting to experiment with
delayed or disabled feasibility checks during the assembly of the intersections.

6 Actually, the enormous size of the sops already effects the initial bloating procedure.
7 SoapBox is available under https://vhome.offis.de/willemh/soapbox/
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6. SoapBox and Experimental Results

The reachability algorithms for linear systems, Algorithm 3, Algorithm 4, and Algo-
rithm 5, together with the embracing reachability algorithm for hybrid systems, Algo-
rithm 2, have been implemented in our prototype SoapBox. In this chapter we outline
some additional features of SoapBox and provide experimental results.

SoapBox was originally implemented in Matlab using the Matlab-interface of
Gurobi Optimizer 5.61 for the linear programming tasks. Currently, the data-struc-
tures and algorithms of SoapBox are re-implemented in C++ with the aim to achieve
a tighter interface to Gurobi and to provide an efficient library supporting various op-
erations on sops, including the reachable set computation for linear systems. SoapBox
has been successfully applied in the case study Damm et al. (2014a,b).

Parts of the given results have been published as Hagemann (2014a). Since then, the
benchmark results for SoapBox have substantially improved due to the partial C++-
implementation. The current results are reported below.

6.1. Experimental Results

To assess the differences between the combined Algorithm 5 (SOP) and the purely sup-
port function-based Algorithm 4 (LGG) we consider different examples. Since SpaceEx
likewise implements the LGG-algorithm, we also compare our prototypical implementa-
tion against the productive implementation in SpaceEx, where we used the SpaceEx
Virtual Machine Server v0.9.8b for the comparison. We turn our attention to the reach-
able set computation and provide graphical presentations of the computed reachable
states. All computations were bounded in several respects:

(i) We restricted the number of continuous steps in each flow computation (local
time horizon in SpaceEx). Due to the nature of our experiments, we were able
to choose the bounds sufficiently large such that all continuous flow computation
terminated correctly before exceeding the given bound.2

(ii) We restricted the number of iterations (max. iterations in SpaceEx), which is
the maximal number of cycles of Algorithm 2. The bound was chosen sufficiently
large such that the computation terminated correctly.

1 http://www.gurobi.com
2 Both tools, SoapBox and SpaceEx, display warnings if the continuous flow computation exceeds the

given bound. Hence, we are able to verify this claim by inspecting the output.
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(iii) The AVC experiment and the colliding pendula experiment were restricted by
explicitly modeling the time t with initial value t = 0 and invariant t ≤ T , where
T is the bound on simulation time.

If not stated otherwise, we used a rectangular template matrix (box-option in SpaceEx)
for the computations. We solely used ray shooting-based interpolation in Algorithm 5.

6.1.1. Bouncing Ball

For our benchmarks we have chosen a simple model of a bouncing ball. The variable x
represents the current height of the ball over the floor, which is located at x = 0, and
v represents the current velocity of the ball. The dynamics of the model are given by
ẋ = v, v̇ = −1± 0.05, and ṫ = 1. The ball bounces as soon as it reaches the floor which
is modeled by the invariant x ≥ 0 and the transition v ← −3

4v, guarded by x ≤ 0 and
v ≤ 0. The initial states are given by the interval hull of 10 ≤ x ≤ 10.2, 0 ≤ v ≤ 0.2,
and t = 0.
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0

2

4

6

8

10

t

x

Figure 6.1.: Comparison of Algorithm 5 and SpaceEx

Throughout all computations the sop-specific configuration parameters were set as fol-
lows: interpolate after = 20 and max conv hull = 4. Figure 6.1 shows the reachable
positions x over time t for 6 iterations. The left hand side diagram shows the reachable
states computed by Algorithm 5 and the right hand side diagram shows the reachable
states computed by the LGG-algorithm3. Notice the different scalings of both figures.
We observe a precise reproduction of the reachable states by Algorithm 5, while the
reachable states computed by Algorithm 4 only describe a coarse over-approximation.
Actually, the reachable states computed by Algorithm 5 lie within the time interval
[0, 35], while the reachable states computed by the LGG-algorithm extend to nearly
t ∈ [0, 90] due to the poor handling of intersections and invariants. Hence, the LGG-
algorithm has to perform much more flow-segment computations.

3 The figure actually shows the SpaceEx output. The output of Algorithm 4 looks quite the same, but
we think it is more impressive to compare with SpaceEx here.
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Figure 6.2.: Run-Time Comparison of Algorithm 5 (SOP), Algorithm 4 (LGG), and
SpaceEx (SPX)

The computational effort due to the additional flow-segment computations is also
reflected in the benchmarks. Figure 6.2 shows the run-times in seconds for different
time steps δ and different numbers of iterations. Note that the time-axis and the δ-axis
use a logarithmic scale. We make the following observations:

• The run-times are located on nearly flat surfaces in the logarithmic scale, indicating
a relationship of the form log(t) = −α log(δ) + βi+ γ between the run-time t, the
step-width δ and the number of iterations i. The parameters α, β and γ depend
on the chosen algorithm. Hence, for all three algorithms we obtain a relationship
of the form t = aδ−αbi where a,b, and α are parameters specific to the algorithm.

For a fixed number of iterations we obtain a relationship of the form t = a′δ−α,
and a relationship of the form t = a′′bi for a fixed choice of δ. While the latter
relationship is clearly a model-specific property, we speculate that the relationship
t = a′δ−α is a property specific to the algorithms.

• The run-times of our implementation of the LGG-algorithm and of SpaceEx are
located on nearly parallel surfaces. The run-times differ by the factor 4.66 with
standard deviation of 0.97. Since most of the computational time is spent in the
continuous step computation, this indicates that our implementation is a faithful
re-implementation of the LGG-algorithm.
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6. SoapBox and Experimental Results

• A comparison of our implementation of the LGG-algorithm 4 and the combined
Algorithm 5 shows that Algorithm 5 outperforms Algorithm 4 despite the compu-
tational overhead for an increasing number of iterations, which can be explained
by the coarse over-approximation of the reachable states by the LGG-algorithm.

6.1.2. Colliding Pendula

In order to assess the precision of SoapBox, we have chosen a simple model of two
colliding pendula. Both pendula are described by mass points m1 = 1.0 and m2 = 1.4
that are fixed on the same anchor point with rods of length l = 1. φ1 and φ2 are the
angular displacements of the respective pendulum with derivatives φ̇1 = ω1 and φ̇2 = ω2.
We assume that always φ2 ≤ φ1 holds. The bobs collide by the law of elastic collision if
φ1 ≤ φ2 and ω1 < ω2,4 see Figure 6.3.

φ̇1 = ω1

ω̇1 = −g
l φ1

φ̇2 = ω2

ω̇2 = −g
l φ2

φ2 ≤ φ1

φ1 ≤ φ2

ω1 < ω2

ω′1 = m1−m2
m1+m2

ω1 + 2 m2
m1+m2ω2

ω′2 = 2 m1
m1+m2

ω1 + m2−m1
m1+m2ω2

Figure 6.3.: Colliding Pendula
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Figure 6.4.: Reachable States of Colliding Pendula (SoapBox)

We are interested in the reachable states, where we have chosen the initial values
0.009 ≤ φ ≤ 0.01, ω1 = 0, φ2 = 0, and 0.199 ≤ ω2 ≤ 0.2. Figure 6.4 shows the

4 See the following section for the usage of strict inequalities.

80



6.1. Experimental Results

Figure 6.5.: Reachable States of Colliding Pendula (SpaceEx)

output of SoapBox for the simulation time 0 ≤ t ≤ 120. The parameter were set as
follows: δ = 0.01, max conv hull = 4 and interpolate after = 20. Figure 6.5 shows
the reachable states computed by SpaceEx, where we have chosen the STC-scenario, an
improved LGG-algorithm. Here, only the output of the first 51 iterations is shown, which
suffices to see the catastrophic effects of the weak handling of invariants and guards in
a scenario that is mainly based on the usage of support functions.

6.1.3. Approach Velocity Controller

The AVC controls the velocity v of a following car in order to establish the desired
distance ddes to the leading car, which has velocity va. The current distance of the cars
is given by the variable d. The dynamics are

ḋ = va − v, v̇ = 0.29(va − v) + 0.01(d− ddes), ṫ = 1,

−0.5 ≤ v̇a ≤ 0.5, 0 ≤ va ≤ 20. (6.1)

The inequalities (6.1) restrict the allowed velocity of the leading car: While the differ-
ential inclusion allows some restricted change of the velocity, the invariant restricts the
velocity to a bounded interval. Initially, both cars have a velocity of 20ms and a distance
of 450m. By the invariant, the leader is not allowed to drive backward or exceed some
maximal velocity.
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Figure 6.6.: Comparison of Algorithm 5 and SpaceEx

Clearly, one should expect that this behavior carries over to the following car, i. e.,
that the velocity of the follower is asymptotically bounded by an interval. Figure 6.6
shows the reachable states computed by Algorithm 5 on the left and the reachable states
computed by SpaceEx on the right. A comparison of both figures shows that SpaceEx
is not able to establish any bound on the velocity of the follower while Algorithm 5 shows
the desired behavior. For both algorithm we used the time step parameter δ = 0.5, and
for Algorithm 5 we used interpolate after = 40.

(a) 32 directions (52.1s) (b) 64 directions (147.8s)

Figure 6.7.: Bouncing Ball revisited, SpaceEx (LGG)

6.1.4. Role of Template Directions

We explicitly note that, by increasing the number of directions, the LGG-algorithm
computes much better over-approximations than it has been shown in Figure 6.1 on the
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6.1. Experimental Results

right-hand side. Indeed, Figure 6.7 shows the reachable states computed by SpaceEx
using 32 and 64 uniformly distributed directions.5 Increasing the number of directions
has also an impact on the run-times. While the computation took 15 seconds for the
box template, the run-time increased to 52 seconds for 32 directions and increased to
148 seconds for 64 directions (SpaceEx Virtual Machine Server v0.9.8c).

(a) octagonal template (0.6s) (b) 64 directions (2.5s)

(c) 128 directions (7.5s) (d) 256 directions (19.7s)

Figure 6.8.: AVC revisited, SpaceEx (LGG)

Roughly, one should expect that increasing the number of template directions also
increases the quality of the LGG-algorithm. Figure 6.8 shows that this idea might be
misleading. While the octagonal template (corresponding to 32 directions) yields a good
over-approximation of the reachable states, an increased number of directions does not

5 For all those beady-eyed readers who compare Figure 6.7 with the SoapBox output in Figure 6.1 and
wonder whether SpaceEx eventually computes a more precise over-approximation than SoapBox,
please note that in Figure 6.1 we used a rectangular template for the output while in Figure 6.7 all 32
and 64 directions were used for the output. This is an issue of the output, not of the actual computed
state sets.
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necessarily increase the precision of the over-approximation. Interestingly, the octagonal
template provides good results. So far, it is not clear why this template fits the dynamic
of the example so well. Possibly, the reason could be buried in the fact that octagonal
templates allow to assess linear inequalities relation of the form va − v, a form of linear
expression which also occurs in the linear differential equation of the model.

6.2. Additional Features of SoapBox

6.2.1. Support for Safe Sets

In addition to the designated state sets Init and Unsafe, SoapBox supports safe sets.
A safe set Safe is a set of states for which the evolution is already known or not of
interest. Hence, we may stop reachability analysis for trajectories which have entered
Safe. For example, Safe could include all initial states for which it is known that none
of its trajectories will ever reach Unsafe. Note, that any subset of a safe set is again a
safe set.

Safe has to be treated differently to guard sets. In order to prove that all trajectories
emanating from the initial states have entered a safe set, it suffices to show that the
current flow segment is a subset of Safe. While there is no known efficient method to
decide the subset relation between two sops in general, the special case where Safe is
given as an H-polyhedron is efficiently decidable for H-polyhedra, see Section 3.14.

The support for safe sets has been introduced in the context of the case study Damm
et al. (2014a,b), where safe sets were computed by Stabhyli, a tool for stability verifi-
cation of non-linear hybrid systems (Möhlmann and Theel, 2013), as follows: Stabhyli
generates a mode specific Lyapunov function V (·) which assigns a value to any state of
the mode. A level set for a level l ≥ 0 is the set LV,l = {x |V (x) ≤ s}. Since the values
of a Lyapunov function along any trajectory do not increase, any purely continuous tra-
jectories starting in a level set will not leave the level set. However, the trajectory could
still enter Unsafe or leave the current mode due to a discrete transition if the trajectory
hits its guard. Now, let s be a value which is less than the value of the Lyapunov function
of any state in Unsafe or any state in a mode specific discrete transition guard. Then
LV,s is a mode specific safe set, and any polyhedral subset of LV,s can be used as a safe
set for SoapBox.

6.2.2. Support for Guards with Strict Inequalities

We have added a proper handling of strict inequalities to SoapBox: A transition involv-
ing a strict guard nTx < c is disabled as long as the current flow segment P does not con-
tain a witness point x that satisfies the strict guard. Otherwise, the transition is enabled
and treated like a non-strict inequality, which results in a closed over-approximation of
the actual intersection. The support for strict inequalities is useful for hybridization
of modes whose dynamics are given by non-linear differential equations (Damm et al.,
2014a).
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7. Discussion and Outlook

7.1. Discussion

7.1.1. High Dimensional Reachability Analysis

The presented models have only a few variables. What do we have to expect for systems
with more variables, say, hundreds of variables? First of all, the idea of the symbolic
orthogonal projections is to introduce additional variables. Dealing with hundreds of
variables is a primary feature of sops. The sops evolving during the reachability com-
putations are indeed high dimensional. But we have learned that, after some point, the
representation size becomes too large to be handled efficiently by linear programming.
We introduced the notion of interpolation which allows us to shrink the representation
size. Some experiments indicate that the presented heuristic for the interpolation might
be a problem in higher dimensions since interpolation generates too many new facets,
each accompanied by a large linear program. Possible resorts are:

• use interpolation after fewer steps,

• restrict the number of generated facets in the interpolation,

• generate no additional facets at all, instead fall back to the over-approximating
template polyhedra of the sop. This method still respects the influence of the
invariant.

Note that each of the suggested method still produces more precise results than the
LGG-algorithm.

7.1.2. Backward Reachability

I mainly discussed forward reachability analysis by computing postimages. Nevertheless,
several aspects of backward reachability analysis had been discussed at times. The pre-
sented postimage operations may either easily be reversed or a corresponding preimage
operation was stated explicitly. Hence, the reader should be in the position to compile
algorithms for a backward reachability analysis with little effort.

7.1.3. Numerical Issues

I should not conceal that my approach is subject to several numerical issues. First of all,
the computation of the matrix exponential is an issue. I already addressed this problem
in footnote 2 on page 65.
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Due to the usage of floats, I encountered several other numerical issues. Since basic
operations on sops consist of concatenations of matrices only and, hence, are unprob-
lematic from a numerical point of view, numerical issues emerge mainly from the solver
for the linear programs. During an early stage of the development of SoapBox, I used
GLPK1 as solver for the linear programming tasks. A major problem was the re-usage
of the optimal solution of a linear program as input for another linear program. If some
coefficients of the optimal solutions were sufficiently small, say, less than 1e−15, this led
to catastrophic results. The obvious, but certainly improper, resort was to substitute
small values by 0. The situation improved substantial after changing to Gurobi.

SoapBox uses the decomposition method to decompose the affine transformations of
the discrete updates. The decomposed transformation matrices are computed a priori
using a build-in Matlab algorithm which produces the row echelon form. So far, I did
not encounter numerical problems with this approach, however it could be interesting
to use the direct method as given in Proposition 3.13.

Aside from a few constants, which describe the lower bound from where on we regard
a number as positive, the current version of SoapBox does not use any workaround for
numerical issues, which results in a clean implementation.

7.2. Outlook

There are several starting point for further research related to the theory of sops. Some
research is of interest per se, while other research is motivated by application.

• The block structure of sops appeals to investigate decomposition algorithms in the
domain of linear programming like the Dantzig-Wolfe decomposition.

• It would also be interesting to extend the theory of sops such that it can cope with
strict inequalities. I have already extended the theory of sops by a proper handling
of equalities, at least for those operations which are implemented in SoapBox.
This extension has been quite straightforward. Linear programming tasks over sops
with strict inequalities can be handled using the fact that a system A1x+L1z ≤ a1,
A2x + L2z < a2 of strict and non-strict linear inequalities is feasible if and only if
the linear program

maximize λ subject to A1x + L1z ≤ a1, A2x + L2z + 1λ ≤ a2, 0 ≤ λ ≤ 1

has a positive optimal value λ > 0.

• It would be interesting to apply sops also in other areas of system analysis, espe-
cially in the area of program analysis. In my opinion there are two main problems:
the lack of an efficient method to decide the subset relation of sops and the lack of
a widening (or extrapolation) operator for sops. While there is little hope to find
an efficient decision procedure for the subset relation of sops in general, it could

1 https://www.gnu.org/software/glpk/
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be worth to inspect the relationship of the structure of sops before and after ap-
plication of a geometrical operation to find at least a decision procedure for some
special cases. For the second problem there is also little hope to find an equivalent
sop-based formulation of the standard widening operator since this widening oper-
ator is bound too much to the H-representation of a polyhedron2. Nevertheless, it
could be worth to look for some extrapolation operators, for example the operation
that takes two polyhedra P and Q as an input and returns a polyhedron whose
facets are all those facets of the closed convex hull that have at least a common
point with P, see Henzinger et al. (2001). While it is possible to compute at least
the support function of this operation for arbitrary sops, I have not yet found any
way to encode this operation as a sop.

However, the decision procedure for the subset relation and the widening operator
can be realized forH-polyhedra. If we are willing to accept the over-approximations
due to template polyhedra and interpolation, we could integrate sops into existing
system analysis tools that are based on polyhedra.

Also in the context of reachability analysis there are a lot of starting points for further
research.

• The main motivation for my research in reachability analysis is to extend the sym-
bolic mode-checker FOMC by a continuous preimage computation for linear sys-
tems. FOMC uses LinAIGs as a non-convex intermediate representation (Damm
et al., 2012). By the key work of my colleagues in the FOMC team and, last but
not least, by this thesis, the aim is sufficiently achieved from a theoretical perspec-
tive. It remains to re-implement the prototypical algorithms of SoapBox into a
callable library, followed by an experimental evaluation phase.

• In order to deal with non-linear dynamics we have already experimented with
hybridizations and bracketing systems. In this respect it also turns out that sops
can be useful for pre-analysis of hybrid systems.

• How can we cope with the potential symbolic state set explosion? Certainly by
joining several sops into a single sop, preferably using the convex hull operation.
Usually, this results in over-approximations of the state set. Bemporad et al.
(2001) provide an exact algorithm which checks whether the union of H-polyhedra
is convex and, hence, agrees with their convex hull. It would be interesting to have
such an algorithm for sops. For the imprecise case, it would be nice to have some
heuristics which help us to minimize the artifacts.

2 To be more precise, the computation of the standard widening operator POQ is mainly bound to
the H-representation of the left argument. Hence, it could be worth to investigate whether it can be
computed when the right argument is a sop.
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8. Conclusion

I introduced a novel representation class for polyhedra, the symbolic orthogonal projec-
tions (sops), and provided a first insight into the theory of sops. Various geometrical
operations can be performed efficiently and exactly on sops. Together with linear pro-
gramming, sops provide a powerful framework for system analysis as it had been typified
for the reachability analysis of linear hybrid systems.

I presented a reachability algorithm where all polyhedral operations are performed
exactly (Algorithm 3). Due to the monotonic growth of the representation size, this
algorithm is not suitable for practical applications. After combining Algorithm 3 with
the LGG-algorithm, we achieved an efficient reachability algorithm (Algorithm 5). In
order to show the applicability, accuracy, and efficiency of the resulting algorithm, I
implemented the algorithms in a tool called SoapBox and provided experimental results.

The experiments indicate that Algorithm 5 allows a precise reachable set computation.
Especially, if the invariant plays an important role, it is possible to discover the proper
behavior of a system, where support function-based methods fail (AVC experiment). In
the bouncing ball experiment and the colliding pendula experiment, we have seen that
support function-based methods initially provide good insight into the behavior of a
system, but suddenly end up in catastrophic over-approximations after certain iterations,
while Algorithm 5 still provide accurate results. Moreover, a more precise reachable
set computation can have positive effects on the run-time of the algorithm. Actually,
the benchmarks of the bouncing ball experiment indicate that the inherently slower
but precise Algorithm 5 overtakes the LGG-algorithm for a sufficiently high number of
iterations.
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