
A Deep Exploration of the Complexity
Border of Strategic Voting Problems

Yongjie Yang

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken

2015

Tag des Kolloquiums 2. November 2015

Dekan Prof. Dr. Markus Bläser

Saarland University

Saarbrücken, Germany

Vorsitzender des Prüfungsausschusses Prof. Dr. Hans-Peter Lenhof

Berichterstatter Prof. Dr. Jiong Guo

Prof. Dr. Raimund Seidel

Prof. Dr. Piotr Faliszewski

Akademischer Beisitzer Dr. Asad Sayeed

Zusammenfassung

Abstimmungen werden auf verschiedene Gebiete angewendet. Leider kann es bei

einer Abstimmung einzelne Teilnehmer geben, die Vorteile daraus ziehen, die Wahl

durch strategisches Verhalten zu manipulieren. Eine Möglichkeit diesem Problem

zu begegnen ist es, die Berechnungskomplexität als Hindernis gegen strategisches

Verhalten zu nutzen. Die Annahme ist, dass falls es NP-schwer ist, um strategisches

Verhalten erfolgreich anzuwenden, der strategisch Handelnde vielleicht den Plan aufgibt

die Abstimmung zu attackieren.

Diese Arbeit befasst sich mit strategischem Vorgehen in eingeschränkten Ab-

stimmungen in dem Sinne, dass die vorgegebenen Abstimmungen kombinatorischen

Einschränkungen unterliegen. Ziel ist es herauszufinden, wie sich die Komplexität des

strategischen Handelns von dem sehr eingeschränkten zu dem generellen Fall ändert.

Kapitel 1 gibt einen Überblick zu der Arbeit.

Kapitel 2 diskutiert die Verhaltenskontrolle in ,,k -peaked” Abstimmungen. Ins-

besondere wird die Komplexität der Verhaltenskontrolle unter r -Approval, Condorcet,

Copeland und Maximin Abstimmunssystemen studiert. k -peaked Abstimmungen

verallgemeinern ,,single-peaked” Abstimmungen in der Art, dass höchstens k -Peaks in

jeder Abstimmung auftauchen.

Kapitel 3 diskutiert die gleichen Probleme wie Kapitel 2, jedoch in Abstimmungen

mit beschränkter single-peaked Breite. Intuitiv knnen, in einer Abstimmung mit single-

peaked Breite k die Kandidaten gruppiert werden, wobei die Größe jeder Gruppe

durch begrenzt ist k , und für jede Gruppe alle Wähler die gleiche Präferenz über

alle Kandidaten in dieser Gruppe haben, im Vergleich zu Kandidaten, die nicht der

Gruppe zugehören. Darüberhinaus, falls man jede Gruppe als ein Kandidat betrachtet,

dann ist die Abstimmung single-peaked.

Kapitel 4 beschäftigt sich mit Bestechungsproblemen mittels Abstandsein-

schränkungen. In diesem Szenario darf ein korrumpierter Wähler eine neue Stimme

abgeben die nahe an der Originalstimme liegen muss. In dieser Arbeit werden die bekan-

nte Hamming-Distanz und die Kendall-Tau-Distanz verwendet um die Ähnlichkeit zu

messen.

ii

In Kapitel 5 betrachten wir Abstimmungen, die in einem Wettbewerb durchgeführt

werden. Dabei sind die Kandidaten als Knoten in einem gerichteten Graphen dargestellt,

wo eine Kante von einem Knoten a nach einem Knoten b die Bedeutung ,,a schlägt b”.

In diesem Zusammenhang heißt es, dass mehr Wähler für a als für b gestimmt haben.

Die Gewinner werden in wohldefinierten Wettbewerbsverfahren ermittelt, z.B., Landau-

Menge, Bank-Menge, usw. Besonderer Schwerpunkt liegt auf den Problemen bei der

Ermittlung möglicher Gewinner. Die Fragestellung dabei ist, ob eine Untermenge von

Knoten (Kandidaten) durch Hinzufügen oder Umkehren der Kanten in der Landau-

Menge (Bank-Menge) hinzugefgt werden kann .

In Kapitel 6 werden gewichtete und ungewichtete Borda-Manipulationsprobleme

betrachtet. Insbesondere leiten wir kombinatorische Algorithmen ab für den Fall einer

erheblich eingeschränkten Kandidatenmenge und für den Fall einer eingeschränkten

Menge von Maniupulatoren.

Kapitel 7 fasst die Ergebnisse zusammen und liefert Anhaltspunkte für weitere

zukünftige Fragestellungen.

Preface

Voting has found applications in a variety of areas. Unfortunately, in a voting

activity there may exist strategic individuals who have incentives to attack the election

by performing some strategic behavior. One possible way to address this issue is to

use computational complexity as a barrier against the strategic behavior. The point

is that if it is NP-hard to successfully perform a strategic behavior, the strategic

individuals may give up their plan of attacking the election.

This thesis is concerned with strategic behavior in restricted elections, in the sense

that the given elections are subject to some combinatorial restrictions. The goal is to

find out how the complexity of the strategic behavior changes from the very restricted

case to the general case.

In Chapter 1, we provide an overview of this thesis.

Chapter 2 is devoted to discussing control behavior in k -peaked elections. In

particular, the complexity of control behavior for r -Approval, Condorcet, Copelandα

and Maximin is studied. k -peaked elections generalize single-peaked elections in the

way that at most k peaks occur in each vote.

Chapter 3 is devoted to discussing the same problems as studied in Chapter 2,

but in elections with bounded single-peaked width. Intuitively, in an election with

single-peaked width k , the candidates can be grouped together, where the size of each

group is bounded by k , and for each group, every voter has the same preferences over

all candidates in this group compared to candidates not in the group. Moreover, if

considering each group as a candidate, the election is single-peaked.

Chapter 4 is concerned with bribery problems with distance restrictions. In this

scenario, every bribed voter can recast a new vote which needs to be as close as to

its original vote. In this thesis, we adopt the prominent Hamming distance and the

Kendall-Tau distance to measure the closeness.

In Chapter 5, we study elections which are performed on tournaments. In this

scenario the candidates are represented by vertices, and there is an arc from a vertex

a to a vertex b if a beats b in a pairwise comparison. Here, “a beats b” means that

there are more voters who prefer a to b. The winners are selected according to some

iv

well-defined tournament solutions, e.g, Uncovered set, Banks set, etc. We focus on the

possible winner(s) problems with respect to the Uncovered set and the Banks set. The

input is a partial tournament and a vertex subset of the partial tournament, and the

question is whether the given subset of vertices (candidates) can be included in the

Uncovered set (Banks set) by adding/reversing some arcs.

In Chapter 6, we study the weighted and unweighted Borda manipulation problems.

In particular, we derive combinatorial algorithms for both the case where the number

of candidates is considerably small, and the case where the number of manipulators is

considerably small.

Chapter 7 summarizes our results and provides some directions for future research.

Acknowledgments

It is a great pleasure to express my heartfelt thanks to all the people who have

supported and helped me over the past four years.

My first special thanks goes to my supervisor Prof. Jiong Guo. I thank him for

giving me the opportunity to work in his “Efficient Algorithms for Hard Problems”

group which consists of many talented researchers like Matthias Mnich, Ondřej Suchý,

Peng Sun and Yash Raj Shrestha. I also thank Prof. Jiong Guo for bringing me to

the avenue of Computational Social Choice.

I thank my colleague Yash Raj Shrestha who shared the same office with me in

the past four years. We are more like brothers other than colleagues. Besides sharing

the office, we share happiness and sadness. I thank Matthias Mnich, Ondřej Suchý and

Peng Sun for their helpful discussions. I also thank many excellent researchers from

MPI (Max-Planck-Institut für Informatik) for their insightful discussions. Especially, I

thank Geevarghese Philip and Kunal Dutta for the discussion of many interesting graph

problems, and Marek Košta for the discussion of several kernelization algorithms.

I thank my master supervisors Prof. Jianxin Wang in Central South University

and Prof. Jianer Chen in Texas A&M University. I thank their recommendation for

my PhD study in Prof. Jiong Guo’s group. I also thank them for bringing me to

the Parameterized Complexity Theory, from where I learnt many algorithm design

techniques. These techniques have been proved very useful in exploring many problems

studied in this thesis.

My PhD study was supported by CSC (China Scholarship Council), DFG

(Deutsche Forschungsgemeinschaft) and MMCI (Cluster of Excellence “Multimodal

Computing and Interaction”). I am thankful for their support.

I thank the anonymous reviewers of the publications that are incorporated in this

thesis for their constructive comments.

I thank my wife Fang Xu. She made a lot of sacrifices in order to be with me. I

appreciate everything that she has done for me. I thank my little sweetie daughter

Emily Xinyan Yang whose birth made my life different.

vi

I thank my parents, my grandparents, my brother and my sister for their encour-

agements and supports.

Finally, I thank the readers of this thesis for their interest in my work.

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 A Small Map . 2

1.2 Problem Statement . 7

1.2.1 Voting Systems . 7

1.2.2 Strategic Behavior . 10

1.3 Toolkit . 14

1.3.1 Classical Complexity . 15

1.3.2 Parameterized Complexity . 17

1.3.3 Lenstra’s ILP Theorem . 19

1.3.4 Dynamic Programming . 20

1.4 Structure of this Thesis . 20

2 Control in Multi-Peaked Elections 23

2.1 Introduction . 24

2.1.1 Motivation . 24

2.1.2 Preliminaries . 25

2.2 r -Approval Control . 26

2.2.1 2-Peaked Elections . 29

2.2.2 3-Peaked Elections . 39

2.3 Condorcet, Copeland and Maximin Control 42

2.3.1 3-Peaked Elections . 42

2.3.2 4-Peaked Elections . 50

2.4 Conclusion . 58

3 Control in Elections with Bounded Single-Peaked Width 59

3.1 Introduction . 60

3.2 Condorcet and Weak Condorcet Control 64

3.3 Copeland Control . 67

3.4 Maximin Control . 78

3.5 A General Framework . 86

3.6 Conclusion . 89

3.6.1 Single-Crossing Width . 89

3.6.2 Euclidean Elections . 91

4 Bribery with Restricted Distances 95

4.1 Introduction . 96

4.1.1 Motivation . 96

viii Contents

4.1.2 Preliminaries . 97

4.2 Kendall-Tau Distance Restricted Bribery 102

4.3 Hamming Distance Restricted Bribery 118

4.4 Conclusion . 126

5 Possible Winners in Partial Tournaments 129

5.1 Introduction . 130

5.1.1 Motivation . 131

5.1.2 Preliminaries . 132

5.1.3 Related Works . 134

5.2 Uncovered Set in Partial Tournaments 135

5.3 Banks Set in Partial Tournaments . 139

5.4 Conclusion . 144

6 Combinatorial Algorithms for Borda Manipulation 145

6.1 Introduction . 146

6.1.1 Preliminaries . 147

6.1.2 Related Works . 148

6.2 Algorithm for Weighted Borda Manipulation 149

6.3 Algorithm for Unweighted Borda Manipulation 152

6.4 Conclusion . 159

7 Conclusion and Outlook 161

7.1 Summary of Results . 162

7.2 Further Research Directions . 163

7.2.1 Practical FPT Algorithms . 164

7.2.2 Experimental Studies . 164

7.2.3 Approximation Algorithms . 165

7.2.4 Surveys to Read . 165

Bibliography 167

List of Tables

2.1 A summary of results of Chapter 2 28

2.2 A summary of results of Chapter 2 43

2.3 Comparisons for DCAV-Maximin-UNI in 3-peaked elections 44

2.4 Comparisons for DCAV-Copeland0-NON in 3-peaked elections 47

2.5 Comparisons for CCDV-Maximin-UNI and DCDV-Maximin-NON in

4-peaked elections . 52

2.6 Comparisons for CCDV-Maximin-NON and DCDV-Maximin-UNI in

4-peaked elections . 54

2.7 Comparisons for CCDV-Copelandα-UNI, CCDV-Copelandα-NON and

DCDV-Copelandα-NON in 4-peaked elections 55

2.8 Comparisons for DCDV-Copelandα-UNI in 4-peaked elections 57

3.1 A summary of results of Chapter 3 61

3.2 Complexity of Copelandα control in elections with bounded single-

peaked width . 68

3.3 Complexity of Maximin control in elections with bounded single-peaked

width . 79

4.1 A summary of results of Chapter 4 101

4.2 Comparisons for C-KT(3)-Condorcet-UNI 109

4.3 Comparisons for C-KT(3)-Copelandα-UNI 111

4.4 Comparisons for C-KT(3)-Copelandα-NON 113

4.5 Comparisons for D-KT(4)-Maximin-NON 117

4.6 Comparisons for D-KT(4)-Maximin-UNI 118

4.7 Comparisons for C-HAM(2)-Copelandα-UNI 121

4.8 Comparisons for C-HAM(2)-Copelandα-NON 123

4.9 Comparisons for D-HAM(2)-Maximin-NON 125

4.10 Comparisons for D-HAM(2)-Maximin-UNI 126

5.1 A summary of results of Chapter 5 132

6.1 A summary of results of Chapter 6 149

List of Figures

1.1 A small map of COMSOC . 4

1.2 Condorcet paradox . 10

1.3 Organization of the thesis . 21

2.1 A single-peaked election . 24

2.2 A 2-peaked vote . 26

2.3 Two 2-peaked votes represented by 2-discrete intervals 30

2.4 Dynamic table for CCAV-r -Approval in 2-peaked elections 31

2.5 A property of graphs with maximum degree 3 37

2.6 An unregistered vote in theNP-hardness reduction for DCAV-Maximin-

UNI in 3-peaked elections . 45

2.7 W [1]-hardness reduction for DCAV-Copeland0-UNI in 3-peaked elections 48

2.8 Dummy candidates in the W[1]-hardness reduction for DCAV-

Copelandα-UNI in 3-peaked elections 49

2.9 Intersection of two 2-intervals . 51

2.10 A Claim in the W [1]-hardness reductions for CCDV-Maximin-UNI and

DCDV-Maximin-NON in 4-peaked elections 53

3.1 An illustration of median group . 63

3.2 A single-crossing election . 90

3.3 Extension of our results to 2-dimension Euclidean elections 92

3.4 Extension of our results to 3-dimension Euclidean elections 92

4.1 Promoting a candidate . 100

4.2 Degrading a candidate . 100

5.1 W [2]-hardness reduction for Pwu-Add 138

5.2 W [2]-hardness reduction for Tw . 141

5.3 W [1]-hardness reduction for Tw-Indegree 142

6.1 A reduction from UM-Borda to FMM 157

1
Introduction

Voting plays an important role in our daily life. You may have been involved in the following

situations several times: deciding where to have a picnic; when should an exam to be

held; who deserves to be the new leader; which brand of computer should you buy for your

company. In all these situations, you are making collective decisions with other people

involved. After the final decision is made, some people are happy with the result while

others are not. If the result is predicable, the unhappy guys would have incentive to change

the result to make themselves better off, perhaps by acting some strategic behavior. To

achieve their goal, they need to figure out in a reasonable time how to act a strategic

behavior to make themselves better off. Computational Social Choice (COMSOC) is

concerned with this interesting topic of exploring the computation cost of performing a

successful strategic behavior.

2 1. Introduction

1.1 A Small Map

Life is full of making decisions: when to sell your stocks, where to hold your birthday

party, how to get to school, with whom should you collaborate. In many real-world

settings, however, making a decision is not only the business of yourself. For instance,

making the decision of who is qualified as the president of a country involves all citizens

who have the right to vote. In this situation, a collective decision is needed. With

the rapid development of social media, people are more and more frequently involved

in scenarios where collective decisions are needed to be done. Moreover, apart from

arising in human communities, collective decision making also arises in many scenarios

where no human being directly participates. For instance, in a multiagent system a

collective decision would be made by a set of agents which might be robots, computers

or something else.

One common and natural way to make a collective decision is by means of voting.

In a voting activity, every voter casts his (for simplicity, we take the gender “male” for

voters throughout this thesis) vote (or ballot) according to his preference over a given

set of potential decisions (candidates), and then a designed voting rule works on the

votes to make the final decision. Generally, different voting rules would lead to different

results, while a good voting rule should be helpful in maximizing the benefits of the

whole community involved. However, even we have a good voting rule in hand, there

is no guarantee to get the expected result. One reason is the existence of strategic

individuals who have incentive to change the result by acting some strategic behavior.

To check this, take a look at the following example.

A community is going to select a new leader from candidates A and B.

Suppose that there are 10 community members and everyone is asked to

give his vote to either A or B according to which candidate is preferred

by himself. The candidate who gets the majority votes wins. Suppose

further that 6 community members would give their votes to A, and 4

community members would give their votes to B. Then, A will be the

winner. However, if the candidate B knows this information in advance,

he can make himself the winner by carrying out the following strategy:

persuade another candidate C who is very similar to A to compete with

him and A. The similarity between A and C implies that every community

member who prefers A to B also prefers C to B, and who prefers B to

A also prefers B to C. Then in this case, it might be that 3 community

members give their votes to A, 3 community members give their votes to

C, and 4 community members give their votes to B, resulting in B to be

the winner.

1.1. A Small Map 3

Due to the above discussion, a natural question arises: is there a strategy-proof

voting rule? That is, a voting rule under which no one can change the result by

performing a strategic behavior. The answer is “Yes”: just consider the voting rule

which always selects a fixed candidate as the winner, no matter what or how the

voters vote. Nevertheless, a pertinent answer to this question is “no”. This is because

that all these voting rules which are strategy-proof cannot be reasonable voting rules

(voting rules that satisfy a set of desirable criteria). In fact, there have been several

impossibility theorems established in the middle of the last century, which state that

under any reasonable voting rule the winners can be changed by performing a certain

strategic behavior, say, misreporting true preferences (see e.g., [134, 135, 202, 225] for

further details). Since the establishment of those impossibility theorems, the question

of how to prevent voting from being attacked by means of strategic behavior had

tantalized researchers for many years. A prominent answer to this question was given

by Bartholdi, Tovey and Trick in the early 1990s [154, 155, 156, 157]. To address

this issue of preventing voting from being attacked, they adopted the complexity as a

barrier against strategic behavior. The point is that if performing a successful strategic

behavior is NP-hard, the strategic individuals may give up attacking the voting.

Their work also sparked researchers to model more strategic behavior occurring in the

real-world settings, such as the swap bribery by Elkind, Faliszewski and Slinko [98],

the model of destructive control by Hemaspaandra, Hemaspaandra and Rothe [146],

and the coalition weighted manipulation by Conitzer, Sandholm and Lang [68], to

name a few. The efforts of the researchers finally foster the birth of the emerging

area—Computational Social Choice (COMSOC).

Over the last decade, COMSOC has witnessed a significant development with more

and more researchers joining the community. Moreover, quite a few papers are published

in AI (stands for artificial intelligence) top conferences (e.g., AAAI, AAMAS, IJCAI,

ECAI) and AI journals (e.g., Artificial Intelligence, Journal of Artificial Intelligence

Research) every year. On the one hand, COMSOC fosters the development of many

other research areas such as multiagent systems, political elections, recommendation

systems, machine learning etc., due to its importance and practicability in these

areas [209, 211, 212, 213, 229, 245]. On the other hand, COMSOC has independent

interest on its own right. In the following, we first briefly introduce several hot topics

in COMSOC. For each topic, we list a number of remarkable papers for the interested

readers to get further details. See also Figure 1.1 for a small map of COMSOC. We

hope that this brief introduction is helpful for readers who are getting ready to embark

on related researches to quickly get the landscape of COMSOC. Then, we give a brief

introduction to the problems studied in this thesis.

Since the conducted work of Bartholdi, Tovey and Trick [154, 155, 156, 157],

COMSOC has been attracting an astonishing amount of attention from the theoretical

computer science, artificial intelligence and social choice theory communities. Nowa-

days, COMSOC has been dominated by the following research directions: designing

algorithms for voting problems, analyzing the complexity of voting problems, proposing

4 1. Introduction

Theoretical Computer Science & Social Choice Theory & Artificial Intelligence

COMSOC

Complexity

Parameterized Classical

Algorithm Design

Approximation Randomized Heuristic Exact

General Elections Special Elections

Winner Determination Necessary/Possible Winner Strategic Behavior

Control Bribery Manipulation

New Models Mathematic Criteria

Voting Systems

Figure 1.1: This is a small map of COMSOC showing research topics that have been
receiving or will probably receive a considerable amount of attention of researchers. Hot
topics that have been extensively studied by researchers are represented by plain arcs and
dark arcs. The dashed arcs mean that the corresponding topics have not been extensively
studied so far as this thesis is written, but are prominent topics for future research from our
perspective. The lines of research that this thesis follows are represented by dark arcs.

new voting models and characterizing voting systems with mathematic criteria. The

development of these directions also fosters each other.

Designing algorithms for voting problems lies in the core of COMSOC. On the

one hand, faster algorithms are needed to solve many voting problems. For instance, a

central question in a voting system is how to calculate the winners as fast as possible.

On the other hand, algorithms can tell us, in another way different from the way that

complexity theory does, whether a strategic voting problem is really hard to solve in

real-world applications. For instance, even though the Borda manipulation problem has

been proved NP-hard [26, 75], Davies et al. [73] derived several heuristic algorithms

for the problem, and showed that these algorithms perform quite well in elections that

are created randomly. The algorithms designed for voting problems include non-exact

algorithms, such as approximation algorithms, randomized algorithms and heuristic

algorithms, as well as exact algorithms and parameterized algorithmsi. See Figure 1.1

for an illustration. In spite of the importance of algorithm design for voting problems,

many lines of research have not been extensively investigated, as indicated by the

dashed arcs in Figure 1.1. But since COMSOC is still in its developing period, this

does not indicate that these topics are not important. Conversely, we believe that

iIn fact, a parameterized algorithm can also output exact solutions. However, parameterized
complexity puts strong emphasize on parameters. Another reason we distinguish between parame-
terized algorithms and exact algorithms is that parameterized complexity has been commonly
recognized as an independent research area.

1.1. A Small Map 5

these currently less-studied lines of research will attract a considerable amount of

attention in the near future. The reasons are as follows. Randomized algorithms

for voting problems have not attracted much attention since in many cases people

desire to get determined results. However, as the proposal of many randomized voting

systems very recently (see, e.g., [11, 13, 14, 217]), designing randomized algorithms

for related voting problems will be of particular importance. Non-exact algorithms

on special elections might also receive attention in the future due to the emerging

of many hardness results of voting problems in special elections (see, e.g., [252, 253]

the work wherein is part of the thesis, and [111]). For some other representative

work on these research directions, we refer to [54, 57, 58, 74, 176, 248, 257, 258] for

approximation algorithms, [72, 73, 143, 176, 181, 240] for heuristic algorithms, and

[23, 79, 121, 163, 199, 241] for parameterized algorithms.

Analyzing complexity of voting problems is another hot topic in COMSOC. In this

direction, researchers focus on the classical complexity of voting problems, where the

main task is to prove whether the voting problem in hand is NP-hard or polynomial-

time solvable, as well as the parameterized complexity of voting problems, where the

main task is to prove whether the voting problem in hand isW-hard or FPT . One aim

of this line of research is to provide worst-case based evidence of the hardness of voting

problems, such as election control, manipulation and bribery. The classical complexity

of voting problems has been prevalent in the last decade, while the parameterized

complexity counterpart has received a considerable amount of attention recently. For

some representative work on this topic, we refer to [10, 79, 84, 99, 108, 109, 110, 112,

118, 184, 185, 199].

Proposing new voting models, such as new voting systems or new models of

strategic voting behavior, is also an active topic in COMSOC. New voting models

naturally emerge as new observations on real-world applications arise. For instance,

based on the observation that in many real-world settings of partition of voters, one

wants the two parts of the partition to be of (almost) equal size, or is partitioning into

more than two parts, or has groups of actors who must be placed in the same part

of the partition, Erdélyi, Hemaspaandra and Hemaspaandra [100] recently proposed

several voter partition models which better capture many real-world applications. Some

recently proposed voting models can be also found in [37, 63, 100, 141, 166, 207].

Characterizing voting systems with mathematic criteria has been a long studied

topic in social choice theory. This line of research aims at providing useful guideline

for people who desire to arise a voting. Some voting systems are better than others

in a specific situation, according to the mathematic criteria that the voting systems

hold. This line of research also provides critical properties of voting systems, which

are useful in deriving algorithms or analyzing complexity of voting problems. We

refer to [124, 204, 222, 255] for some representative early work, and refer to [9, 41,

96, 127, 141, 151, 227, 231, 247] for recent developments of this line of research. In

particular, we refer to Figure 9.3 in [231] and Table 9.2 in [227] for summaries of many

6 1. Introduction

well-studied mathematic criteria of single-winner voting systems, and refer to Table 1

in [96] for a summary of some recently proposed mathematic criteria of multiwinner

voting systems.

The voting problems that have been extensively studied in the literature include

winner determination problem, possible/necessary winner problem and strategic behav-

ior such as manipulation, control and bribery. These problems have been extensively

studied in general elections (the domain of the preferences of the voters is not restricted)

since the seminal work of Bartholdi, Tovey and Trick [154, 155, 156, 157]. Recently,

voting problems in special elections (the domain of the preferences of the voters is

restricted in some way) have attracted a considerable attention, see, e.g., [111, 113, 188].

Winner determination is intrinsic in voting: each voting ends up with a set of winners

(or a single winner) being elected. Hardness of winner determination of a voting

system impedes the practical applications of the voting system. Fortunately, only

few of common voting systems are NP-hard to determine the winners. Among them

are the Dodgson voting system [118, 156, 145], the Kemeny voting system [147, 156]

and the Young voting system [221]. The possible winner and the necessary winner

problems were initialized by Konczak and Lang [170] in 2005. Both problems arise in

the scenario where the information (normally refers to the information of votes) of the

election is incomplete. The possible winners are then defined as all candidates that win

an election which is extended from the given incomplete election, while the necessary

winners are defined as all candidates that win every full extension of the given election.

We refer to [170] for further details on the possible winner and the necessary winner

problems. The manipulation problem is studied as early as the social choice theory.

However, algorithmic and complexity analysis of manipulation problems were first

studied by Bartholdi, Tovey and Trick [154] in 1989. In the manipulation problem, a

set of voters (manipulators) who have not cast their votes yet attempt to change the

winners by casting their votes in some way. The control problems were also introduced

by Bartholdi, Tovey and Trick [157] in 1992, where an external agent (a strategic

individual) wants to change the winners by modifying the vote set or the candidate

set. In particular, Bartholdi, Tovey and Trick [157] considered the modification opera-

tions vote/candidate deletion/addition/partition. Later, several other modification

operations were also studied by researchers [110, 112, 146]. We defer further detailed

discussion on control to the next section. The study of the bribery problems was

initialized by Faliszewski, Hemaspaandra and Hemaspaandra [107] in 2006. Many

variants of the bribery problems studied in [107] were proposed and extensively studied

by researchers [50, 98, 106, 108, 190]. In general, the bribery problems are concerned

with how an external agent changes the winners by bribing the voters. A bribed voter

need to recast his vote in the external agent’s favor.

This thesis is devoted to making a contribution to this emerging area by exploring

the complexity of strategic voting problems in some prominent voting systems. In

particular, this thesis is concerned with strategic voting problems in a restricted way,

in the sense that the given voting profiles satisfy some combinatorial properties. This

1.2. Problem Statement 7

study of restricted strategic voting problems is motivated by the observation that

in many real-world settings the voters may cast their votes based on some common

principles, which in turn leads to a voting profile that satisfies several combinatorial

properties. For example, imagine a voting where residents who live on the same

street are asked to vote for the location of a supermarket. If the votes cast by the

voters are represented by linear orders over the candidates (potential locations of the

supermarket), it is natural that every voter would rank the candidate which is nearest

to his residence in the highest position. Moreover, the farther the other candidate

located away from this ideal candidate, the lower it is ranked. The consequence of the

above setting is an election that fits into the category of single-peaked domain, which

has been extensively studied in the literature [34, 44, 60, 103, 111, 113, 129, 178, 232].

The lines of research that this thesis follows are depicted in Figure 1.1. A detailed

description of the structure of this thesis is given in Section 1.4. Before that, in the

following sections, we give definitions and notations that will be used throughout this

thesis, as well as a brief introduction to the technique toolkit that we adopt to study

the voting problems in this thesis.

1.2 Problem Statement

1.2.1 Voting Systems

In this chapter we shall formally introduce the definitions and notations on voting

systems that will serve us throughout this thesis. We may introduce some additional

notations in the latter chapters, on an ad hoc basis.

Multiset. A multiset S = {s1, s2, ..., s|S|} is a generalization of a set where

objects of S are allowed to appear more than one time in S, that is, si = sj is allowed

for i 6= j. An element of S is one copy of some object. We use s ∈+ S to denote that

s is an element of S. The cardinality of S denoted by |S| is the number of elements

contained in S. For two multisets A and B, we use A] B to denote the multiset

containing all elements in A and B. Moreover, we use A ∪--- B to denote the multiset

containing for each object s, max{0, n1 − n2} copies of s, where n1 and n2 are the

numbers of copies of s in A and B, respectively. A multiset B is a submultiset of a

multiset A if for every object s that occurs n times in B, A contains at least n copies

of s. We use B v A to denote that B is a submultiset of A.

Example. Consider multisets A = {1, 1, 1, 2, 3, 3, 4} and B = {1, 2, 3}. Then we

have

8 1. Introduction

• The cardinalities of A and B are |A| = 7, |B| = 3, respectively;

• A]B = {1, 1, 1, 1, 2, 2, 3, 3, 3, 4};

• A ∪--- B = {1, 1, 3, 4}; and

• B v A.

Voting System. A voting system can be specified by a set C of candidates , a mul-

tisetii ΠV = (πv1 , πv2 , ..., πvn) of votes cast by a corresponding set V = {v1, v2, . . . , vn}
of voters (πvi is cast by vi), and a voting correspondence ϕiii which maps the election

E = (C,ΠV ,V) to a nonempty set of candidates ϕ(E), the winners. For simplicity,

we often discard V from the above notation for election E when ΠV is sufficient to

determine the winners (we will discuss a weighted voting scenario in Chapter 6, where

each voter has a positive weight which is indispensable to determine the winners. In

this case, we retain V in the notation. This is the only case we do so throughout

this thesis). If there is only one winner, we call it a unique winner; otherwise we call

them co-winners. Moreover, each vote πv ∈+ ΠV is defined as a linear order over the

candidates. Throughout this thesis, we interchangeably use the terms “vote” and

“voter”. The linear order of a vote is also called the preference of the vote over the

candidates. For convenience, we use �v to denote the preference of the vote cast by

the voter v. Therefore, for a voter v who prefers the candidate a to b to c, the vote will

be written as πv : a �v b �v c. We say that the voter v casts vote πv with preference

a �v b �v c. In context where �v is clearly known to be whose preference, we drop

v from �v. In many places in this thesis (especially in Sections 2 and 3), for ease

of exposition, we also use curve braces with candidates listed inside to represent the

preferences of the voters. For instance, πv = (a, b, c, d) is saying that the preference of

the vote πv cast by the voter v is a � b � c � d.

A candidate c is preferred to another candidate c′ by a vote πv if c �v c′. We also

say that c is ranked above c′ in the vote. The position of a candidate c in a vote πv,

denoted as pos�v(c) (or simply posv(c)), is defined as |{c′ | c′ �v c}|+ 1, the number

of candidates that are ranked above c in the vote plus one.

For a vote πv and a subset C ⊆ C, let πv(C) denote the partial vote of πv restricted

to C, such that in πv(C) every two distinct candidates in C preserve the same order

as in πv. For example, for a vote πv with preference a � b � c � d � e, the partial

vote πv({b, d, e}) over the candidates b, d, e has preference b � d � e. For a multiset Π

iiIn some literature, the votes are enclosed in a list other than a multiset. The reason for using
multiset is twofold. On the one hand, from the mathematic point of view, multiset allows us to
use operations generalized from the set theory. On the other hand, all the voting correspondences
considered in this thesis are anonymous, which means that the winners do not change if we change
the order of the voters; thus, we do not need the terminology “list” to emphasize the order of the
voters.

iiiA similar concept is voting rule which maps an election to a single candidate. A voting correspon-
dence can be modified to a voting rule by using a tie-breaking method.

1.2. Problem Statement 9

of votes and a subset C ⊆ C, let Π(C) be the multiset of votes obtained from Π by

replacing each π ∈+ Π by π(C).

For two candidates c and c′ in an election E = (C,ΠV), let NE(c, c′) denote the

number of votes which prefer c to c′. We drop the index E when it is clear from

context. If NE(c, c′) > NE(c′, c), we say c beats c′ by NE(c, c′) in E ; otherwise if

NE(c, c′) = NE(c′, c) we say c ties c′ in E .

Voting Correspondences. We mainly study the following voting correspon-

dences in this thesis.

• Positional scoring correspondences. Every candidate gets a specific score from

each vote according to the position of the candidate in the vote. More specifically,

a positional scoring voting correspondence is defined by a scoring vector ~λ =

〈λ1, λ2, ..., λm〉 with λ1 ≥ λ2 ≥, ...,≥ λm, where m is the number of candidates

and each λi is a real number. The candidate ranked in the i-th position in a vote

gets λi points from this vote. The winners are the candidates with the highest

score. Following are some well-known positional scoring correspondences.

Name Scoring Vectors

Borda 〈m− 1,m− 2, ..., 0〉
r -Approval 〈1, ..., 1, 0, ..., 0〉 with exactly r many 1’s.

Plurality 〈1, 0, 0, ..., 0〉
Veto 〈1, 1, ..., 1, 0〉

• Condorcetiv. A candidate in an election is a Condorcet winner if it beats every

other candidate in the election. A candidate in an election is a weak Condorcet

winner if it ties or beats every other candidate in the election. Note that an

election may not have a Condorcet winner or a weak Condorcet winner. See

Figure 1.2 for an example. However, if an election has a Condorcet winner, the

Condorcet winner is unique.

• Maximin. The maximin score of a candidate c in an election E with candidate

set C is defined as minc′∈C\{c}NE(c, c′). The winners are the candidates with the

highest Maximin score.

• Copelandα. Each candidate is compared with every other candidate. In each

comparison, the one which beats its rival gets one point and its rival gets zero

points. If they are tied, both get α points. The winners are the candidates

ivStrictly speaking, Condorcet is not a voting correspondence since there could be no Condorcet
winner or weak Condorcet winner in an election. Nevertheless, the concept of Condorcet winner
and weak Condorcet winner plays significant role in many common voting correspondences, such
as Kemeny, Young and Dodgson voting correspondences [22]. Moreover, complexity of making a
given distinguished candidate (not) a Condorcet winner (weak Condorcet winner) by performing
some strategic behavior has been widely studied in the literature. We list it here since we shall also
study the complexity of strategic behavior with respect to Condorcet winner and weak Condorcet
winner.

10 1. Introduction

a

c b

a � b � c
b � c � a
c � a � b

Figure 1.2: An election with three candidates a, b, c and three votes with preferences shown
on the right side of the figure. The comparison between every two candidates is shown on
the left-hand. An arc from a candidate c to another candidate c′ means that c beats c′. It is
clear that this election contains neither a Condorcet winner nor a weak Condorcet winner.

with the highest score. We remark that Copeland0.5 is commonly referred to as

Copeland, and Copeland1, developed by the thirteenth-century mystic Llull, is

referred to Llull voting in the literature [112].

For readers who are interested in voting correspondences, we refer to [231] for an

excellent summary. Moreover, we refer to [179, 234] for two further auxiliary references

for voting correspondences, where economic and political aspects of many voting

correspondences are discussed with concrete examples.

1.2.2 Strategic Behavior

In this section, we introduce the strategic voting problems which will be studied in this

thesis. We do not give all definitions and notations which will be used or studied in

this thesis since listing all these definitions and notations is cumbersome and will tax

the reader. Instead, we choose problems which we believe to be significant for readers

to grasp the main idea of strategic voting problems quickly. Further definitions and

notations concerning concrete problems are given in Chapters 2-6, on an ad hoc basis.

We refer to [22] for a comprehensive survey for other strategic voting problems which

are not considered in this thesis but have been also widely studied in the literature.

1.2.2.1 Control

Election control models the scenario where there is an external agent (e.g., the chairman

of a committee) who attempts to influence the result of the election by doing some

tricks. There would be two goals that the external agent wants to reach. One goal

is to make a given distinguished candidate win the election. The other goal is to

make the given distinguished candidate lose the election. The former case is called a

constructive control and the latter case is called a destructive control. Moreover, the

tricks involved in a control attack include adding some new, unregistered votes to the

1.2. Problem Statement 11

registered votes, deleting votes from the registered votes, adding new candidates to

the election or deleting candidates from the election. The complexity of constructive

control problems were first studied by Bartholdi, Tovey and Trick [157] in 1992, and

the complexity of destructive control problems were first studied by Hemaspaandra,

Hemaspaandra and Rothe [146] in 2007. In the following, we give the formal definitions

of the control problems.

Problem definitions. Let ϕ be a designed voting correspondence. We first define

the constructive control problems. The destructive counterpart is defined analogously.

In all strategic voting problems studied in this thesis, we distinguish between the

unique-winner model and the nonunique-winner model. In the unique-winner model of

constructive control, we are asked to make a given distinguished candidate the unique

winner (with the assumption that the distinguished candidate is not the unique winner

in advance). However, in the nonunique-winner model of constructive control, we

are only asked to make the distinguished candidate a winner (with the assumption

that the distinguished candidate is not a winner in advance), in the sense that the

distinguished candidate is the unique winner or one of the co-winners in the final

election (obtained from the original election by performing a certain control behavior).

The unique-winner model is indicated by “UNI” and the nonunique-winner model is

indicated by “NON”.

Constructive Control by Adding Votes under ϕ (CCAV-ϕ-UNI/NON)

Input: An election E = (C ∪ {p},ΠV), where p is the distinguished candidate who

is not the unique winner/a winner in E , a multiset ΠT of unregistered votes and

an integer 0 ≤ R ≤ |ΠT |.
Question: Are there at most R votes ΠT ′ in ΠT such that p is the unique winner/a

winner in the election E ′ = (C ∪ {p},ΠV]ΠT ′) under the voting correspondence ϕ?

Constructive Control by Deleting Votes under ϕ (CCDV-ϕ-UNI/NON)

Input: An election E = (C ∪ {p},ΠV), where p is the distinguished candidate who

is not the unique winner/a winner in E , and an integer 0 ≤ R ≤ |ΠV |.

Question: Are there at most R votes ΠT in ΠV such that p is the unique winner/a

winner in the election E ′ = (C ∪{p},ΠV ∪--- ΠT) under the voting correspondence ϕ?

12 1. Introduction

Constructive Control by Deleting Candidates under ϕ (CCDC-ϕ-UNI/NON)

Input: An election E = (C ∪ {p},ΠV), where p is the distinguished candidate who

is not the unique winner/a winner in E , and an integer 0 ≤ R ≤ |C|.

Question: Are there at most R candidates C ⊆ C such that p is the unique winner/a

winner in the election E ′ = ((C ∪ {p}) \ C,ΠV((C ∪ {p}) \ C)) under the voting

correspondence ϕ?

Constructive Control by Adding Candidates under ϕ (CCAC-ϕ-UNI/NON)

Input: An election (C ∪ D ∪ {p},ΠV), where p is the distinguished candidate who

is not the unique winner/a winner in E = (C ∪ {p},ΠV(C ∪ {p})), and an integer

0 ≤ R ≤ |D|.

Question: Are there at most R candidates D ⊆ D such that p is the unique

winner/a winner in the election E ′ = ((C ∪D ∪ {p}),ΠV(C ∪D ∪ {p})) under the

voting correspondence ϕ?

The destructive control problems are defined in the similar way with two differences.

First, instead of making the distinguished candidate p the unique winner/a winner,

the destructive control is to prevent the distinguished candidate from being the unique

winner/a winner (corresponding to the unique-winner model/nonunique-winner model).

Second, instead of assuming the distinguished candidate is not the unique winner/a

winner in the given election E , we assume that the distinguished candidate is the

unique winner/a winner in E in the destructive control problems.

Even though Condorcet is not regarded as a voting correspondence in most of

the literature (since there could exist no Condorcet winner), we still define the same

problems as above for Condorcet. In particular, in the unique-winner model, the

objective is to make the distinguished candidate the Condorcet winner or not the

Condorcet winner, depending on whether the constructive control or the destructive

control is discussed. On the other hand, in the nonunique-winner model, the objective is

to make the distinguished candidate a weak Condorcet winner or not a weak Condorcet

winner, depending on whether the constructive control or the destructive control is

discussed. The study of Condorcet control can be dated back to the work of Bartholdi,

Tovey and Trick [157].

We study control problems in Chapters 2 and 3. Concretely, we study control

problems in multi-peaked elections in Chapter 2 and control problems in elections

with bounded single-peaked width in Chapter 3. In particular, we consider r -Approval,

Plurality, Condorcet, Copelandα for every 0 ≤ α ≤ 1 and Maximin voting correspon-

dences. We defer the definitions of single-peaked elections and multi-peaked elections

to Chapter 2 and defer the definition of single-peaked width to Chapter 3.

1.2. Problem Statement 13

1.2.2.2 Bribery

The bribery problem is concerned with the question whether a given distinguished

candidate can become the unique winner/a winner (unique-winner model of constructive

bribery/nonunique-winner model of constructive bribery), or not the unique winner/a

winner (unique-winner model of destructive bribery/ nonunique-winner model of

destructive bribery) by bribing a limited number of voters. Here, if a voter is bribed,

the vote cast by the voter will be replaced with a new vote recast by the voter.

The bribery problem and many of its variants were first studied by Faliszewski,

Hemaspaandra and Hemaspaandra [107]. Formal definitions are as follows.

Constructive Bribery under ϕ (CB-ϕ-UNI/NON)

Input: An election E = (C ∪ {p},ΠV), where p is the distinguished candidate who

is not the unique winner/a winner in E , and an integer 0 ≤ R ≤ |ΠV |.

Question: Can we replace at most R votes ΠT in ΠV with |ΠT | many new votes ΠT ′

such that p is the unique winner/a winner in the election E ′ = (C ∪ {p},ΠV ∪--- ΠT]
ΠT ′) under the voting correspondence ϕ?

Destructive Bribery under ϕ (DB-ϕ-UNI/NON)

Input: An election E = (C ∪ {p},ΠV), where p is the distinguished candidate who

is the unique winner/a winner in E , and an integer 0 ≤ R ≤ |ΠV |.

Question: Can we replace at most R votes ΠT in ΠV with |ΠT | many new votes

ΠT ′ such that p is not the unique winner/a winner in the election E ′ = (C ∪
{p},ΠV ∪--- ΠT] ΠT ′) under the voting correspondence ϕ?

Bribery problems are studied in Chapter 4. In particular, we study distance

restricted bribery problems which differ from the traditional bribery problems as

discussed above in that each voter can only be bribed to recast a new vote which is

similar to the original one. To this end, we adopt the Hamming distance and the

Kendall-Tau distance to measure the similarity between two votes. We defer the formal

definitions of the Hamming distance and the Kendall-Tau distance to Chapter 4.

1.2.2.3 Manipulation

In the manipulation problem, we are given an election and a set of voters who have

not cast their votes yet. These voters who have not cast their votes form a coalition

14 1. Introduction

and attempt to change the result of the election. Due to this reason, they are given

the name manipulators. The manipulation problem asks whether the manipulators

can cast their votes in some way so that a given distinguished candidate becomes the

unique winner/a winner after adding their votes to the election.

Manipulation under ϕ (CM-ϕ-UNI/NON)

Input: An election E = (C ∪ {p},ΠV), where p is the distinguished candidate who

is not the unique winner/a winner in E , and a set of manipulators.

Question: Can the manipulators cast their votes in a way so that p becomes the

unique winner/a winner after adding their votes to the election?

In some literature, the above problem is called Constructive Manipulation, where

“Constructive” takes the same meaning as in the control and bribery problems. The

Destructive Manipulation is also studied in the literature [68]. In this thesis, we study

only the constructive manipulation since the destructive counterpart of the problems

studied in this thesis straightforwardly turned out to be polynomial-time solvable.

In this thesis, the manipulation problem is studied in Chapter 6. We will also

study weighted manipulation problem in Chapter 6. We defer further details on

weighted voting to Chapter 6.

1.2.2.4 Possible Winner(s)

In many practical settings, we might not be able to access or get the full information

of an election. The possible winner(s) problem is concerned with the question of which

candidate(s) should be the winner(s) in the situation where only partial information of

the election is provided. The principle is to extend the given partial election in some

way, and examine winner(s) in the extended election. In Chapter 5, we will study

possible winner(s) problem in partial tournaments under several prominent tournament

solutions. We defer further notations and definitions to Chapter 5.

1.3 Toolkit

In this section, we briefly introduce classical complexity, parameterized complexity,

Lenstra’s theorem on integer linear programming, and dynamic programming.

1.3. Toolkit 15

1.3.1 Classical Complexity

In this section, we give a brief introduction to the classical complexity. Insightful

discussion is not the focus of this thesis. Instead, we refer the interested readers to

the textbook of Arora and Barak [4], or the textbook of Garey and Johnson [131] for

a comprehensive understanding of computational complexity theory. For readers who

want to quickly improve their intuitive ability to assess complexity, we refer to the

survey by Tovey [236]. Readers who have been familiar with the concepts of P , NP
and NP-hard can safely skip to the next section.

Generally, computational complexity measures how efficiently problems can be

solved, and classifies the problems into complexity classes, such as P (polynomial-time

solvable) and NP-hard (nondeterministic polynomial-time hard) etc., accordingly. We

need the concept of Turing machine to define the complexity classes.

A Turing machine works on a tape associated with a head which can read, write,

and shift to left or to right. Turing machine can powerfully illustrate in a mathematic

way how human beings solve real-world problems. The basic idea is to encode the

instances of the problem in hand into strings, which are then written in the tape of

a Turing machine. Then, the Turing machine imitates the procedure of how human

beings deal with the instance by reading, writing the tape, shifting its head to the left

or the right, or remaining its head unmoved. In a formal way, a Turing machine is

defined by a 7-tuple M = (Q,Γ, b,
∑
, δ,H, F), where

• Q is a finite, non-empty set of states.

• Γ is a finite, non-empty set of the tape symbols.

• b ∈ Γ is the blank symbol.

• ∑ ⊆ Γ \ {b} is the set of input symbols.

• H consists of an initial state q0 and a halt state q1.

• F ⊆ Q is the set of accepting states.

• δ : Q \ F × Γ → Q × Γ × {L,R,N} is a partial function called the transition

function, where L is left shift, R is right shift, and N means remaining the head

unmoved.

In a formal way, a problem is defined as a language L ⊆∑∗. Given an instance of

a problem L, a Turing machine deals with the instance in the following way. First, the

instance is written in the tape with the head pointing at the beginning of the instance

and the state being set as the initial state q0. Then, the head reads, writes or shifts

according to the partial function δ. If the machine finally stops at an accepting state,

16 1. Introduction

we say that the Turing machine accepts the instance; otherwise if it stops at a state

other than any of the accepting states, we say it rejects the instance.

Now we are ready to define the complexity class P. A problem L is polynomial-

time solvable if there exists a Turing machine such that for every instance I ∈ L the

Turing machine accepts I in a polynomial number of steps in the size of I, and for

every instance I ′ 6∈ L the Turing machine rejects I ′ in a polynomial number of steps

in the size of I ′. Here, each step means either a writing operation, reading operation

or shifting operation of the head. The complexity class P includes all the problems

which are solvable in polynomial time. The polynomial-time solvable problems are

regarded as tractable by convention.

In real-world applications, people are often confronted with problems which

seem not solvable in polynomial time. Many of these problems are related to the

complexity classNP , which stands for nondeterministic polynomial-time solvable. Here,

“nondeterministic” refers to nondeterministic Turing machine which is different from the

above defined Turing machine (which we call deterministic Turing machine afterward) in

the partial function δ. Concretely, in the definition of nondeterministic Turing machine,

the partial function is replaced with a state relation δ′ ⊆ (Q\F×Γ)×(Q×Γ×{L,R,N}).
Therefore, given a current state of the machine and the symbol the head reads at

the moment, the next step is not determined—each a ∈ Q \ F × Γ may be mapped

to more than one element in Q × Γ × {L,R,N}. A problem L is nondeterministic

polynomial-time solvable, if there exists a nondeterministic Turing machine NTM such

that for every instance I ∈ L, NTM can accept I in a polynomial number of steps

in the size of I, and for every instance I ′ 6∈ L, NTM can reject I ′ in a polynomial

number of steps in the size of I ′. According to the above definitions, we have that

P ⊆ NP .

Now we come to introduce the complexity classNP-hard. Basically, every problem

in NP-hard is at least as hard as every problem in NP. This is conveyed by the

many-one reduction [4].

Definition 1.1 ([4]). A problem Q is many-one reducible to another problem Q′,

denoted by Q ≤m Q′, if for every instance x of Q there is a polynomial-time algorithm

which takes x as input and returns an instance y of Q′ as output. Moreover, the

instance x is equivalent to the instance y, in the sense that x is a yes-instance of Q if

and only if y is a yes-instance of Q′.

The complexity class NP-hard includes all the problems to which every problem

in NP is many-one reducible. By convention, if a problem is in NP-hard, we simply

say that the problem is NP-hard. The NP-hard problems are regarded as intractable

since they cannot be solved in polynomial time unless P = NP which is widely

believed not the case [4]. Another important complexity class is NP-complete which

is defined as the intersection of NP-hard and NP .

1.3. Toolkit 17

NP-complete = NP-hard ∩NP

We refer to http://www.nada.kth.se/~viggo/problemlist/compendium.html

maintained by Crescenzi and Kann, and http://cgi.csc.liv.ac.uk/~ped/

teachadmin/COMP202/annotated_np.html maintained by Dunne for two lists of NP-

hard problems that are well-studied in diverse areas.

1.3.2 Parameterized Complexity

In the following, we briefly introduce the parameterized complexity. For a comprehen-

sive understanding of parameterized complexity, we refer to the textbook of Downey

and Fellows [88] and the textbook of Niedermeier [203]. Readers who are familiar with

parameterized complexity can safely skip to the next section.

As we have seen in the previous section, there exist problems which cannot be

solved in polynomial time unless P = NP. Here, the computational complexity is

measured with respect to the whole input size. However, many problems are companied

with several parameters which can significantly affect the computational complexity

of the problem but are ignored in the classical complexity analysis. Parameterized

complexity compensates this negligence by dealing with problems in two dimensions:

a main part and a parameter. In essence, how a parameter affects the complexity of

the problem is the main concern of parameterized complexity.

Parameterized complexity was firstly systematically studied by Downey and

Fellows [87] (see [88] for the second version of this textbook released in 2013). In a

formal way, a parameterized problem is a language in Σ∗ × Σ∗, where Σ is a finite

alphabet. The first component is called the main part of the problem while the second

component is called the parameter which normally is a positive integer. Parameterized

problems have the following main hierarchy:

FPT ⊆ W [1] ⊆ W [2] ⊆, ...,⊆ XP
where FPT includes all parameterized problems which admit O(f(κ) · |I|O(1))-time

algorithms, while XP includes all parameterized problems which admit O(f(κ) · |I|g(κ))-

time algorithms. Here, I is the main part of the instance, κ is the parameter, and f

and g are computable functions depending only on κ. There are also parameterized

problems beyond XP. For example, the κ-colorable problem which is to determine

whether an undirected graph admits a proper κ-coloring of the vertices has no algorithm

of the form O(f(κ) · |I|g(κ)), unless P = NP [89]. These problems fall into the class

of so-called paraNP-hard introduced by Flum and Grohe [125]. In a formal way,

http://www.nada.kth.se/~viggo/problemlist/compendium.html
http://cgi.csc.liv.ac.uk/~ped/teachadmin/COMP202/annotated_np.html
http://cgi.csc.liv.ac.uk/~ped/teachadmin/COMP202/annotated_np.html

18 1. Introduction

paraNP-hard includes all the parameterized problems that are NP-hard for every

fixed value of κ above some threshold K. Finally, classes between FPT and XP are

defined based on FPT -reductions.

Definition 1.2. Given two parameterized problems Q and Q′, an FPT -reduction

from Q to Q′ is an algorithm that takes as input an instance (I, κ) of Q and outputs

an instance (I ′, κ′) of Q′ such that

(1) the algorithm runs in f(κ) · |I|O(1) time, where f is a computable function;

(2) (I, κ) ∈ Q if and only if (I ′, κ′) ∈ Q′; and

(3) κ′ ≤ g(κ), where g is a computable function.

A problem is W[i]-hard if all problems in W[i] can be FPT -reducible to the

problem. From the practical point of view, W[1] is the basic class of parameterized

problems which unlikely admit FPT -algorithms.

Kernelization is a main technique to derive FPT -algorithms. The formal definition

of kernelization is as follows.

Definition 1.3. A kernelization for a parameterized problem Q is a polynomial-time

algorithm that reduces a given instance (I, κ) of Q to a new instance (I ′, κ′) of Q such

that

(1) (I, κ) is a yes-instance if and only if (I ′, κ′) is a yes-instance;

(2) κ′ ≤ κ; and

(3) |I ′| ≤ f(κ), where f is a computable function.

The new instance (I ′, κ′) is called the problem kernel, and the function f(κ) is

the kernel size. Moreover, if f is a polynomial function, we call (I ′, κ′) a polynomial

kernel. Intuitively, a kernelization shrinks the original instance to a new equivalent

and size-bounded instance. It is folklore that a parameterized problem is FPT if and

only if it has a kernelization (See Theorem 1.39 in [125] or Proposition 7.2 in [203] for

formal proofs). For more background on kernelization, we refer to [29, 120, 142]. We

refer to [59] by Cesati, and [76] by Haan and Szeider for compendiums of parameterized

problems.

Kernelization has been widely used to solve real-world problems [1, 62, 128, 159].

For the purpose of using kernelization in practice, one desires to have a kernel as

small as possible. Unfortunately, many FPT problems are not likely to admit even a

polynomial kernel. Polynomial parameter reduction (or polynomial time and parameter

transformations), introduced by Bodlaender, Thomassé and Yeo [33], is a commonly

used method to show the non-existence of polynomial kernels for FPT problems.

1.3. Toolkit 19

Definition 1.4. A parameterized problem Q is polynomial parameter reducible to a

parameterized problem Q′, if there exists a polynomial-time algorithm with an instance

(I, κ) of Q as input, where κ is the parameter, and with an instance (I ′, κ′) of Q′ as

output such that

(1) (I, κ) ∈ Q if and only if (I ′, κ′) ∈ Q′; and

(2) κ′ ≤ Poly(κ), where Poly(κ) is a polynomial function in κ.

To use polynomial parameter reduction to show the non-existence of polynomial

kernel of an FPT problems, we need the following lemma.

Lemma 1.1. ([33, 83]) Let Q and Q′ be two parameterized problems and Q̃ and Q̃′ be

the unparameterized versions of Q and Q′, respectively. Suppose that Q̃ is NP-hard

and Q̃′ is in NP. Moreover, Q is polynomial parameter reducible to Q′. Then, if Q′

has a polynomial kernel, then Q has a polynomial kernel.

The above lemma will be used in Chapter 5 to show the non-existence of polynomial

kernel of a possible winner problem on partial tournaments. We refer to [30, 32, 149,

150, 172] and Chapter 13 of [88] for representative literature on lower bounds for

kernelization, where one can find many concrete problems that are showed to have no

polynomial kernels using Lemma 1.1, as well as many other approaches to establish

lower bounds for FPT problems.

1.3.3 Lenstra’s ILP Theorem

Integer linear programming (ILP for short) is a very powerful technique to tackle major

combinatorial optimization problems, see, e.g., [3, 169, 210, 244], due to the remarkable

power of modern ILP solvers. However, the ILP problem is NP-hard [131, 133, 162].

On the way exploring this fundamental NP-hard problem, Lenstra [177] derived a

polynomial-time algorithm for ILP instances with constant number of variables. The

algorithm was later improved by Kannan [161], and then further improved by Frank

and Tardos [126]. In fact, from the perspective of parameterized complexity, all their

algorithms are FPT -algorithms with respect to the number of variables. Due to this

fact, all the parameterized problems which can be FPT -reducible to ILP with respect

to the number of variables are FPT (see e.g., [112, 119, 122] for some examples).

Many FPT -reductions from parameterized problems to ILPs had been established

long before the parameterized complexity was systematically introduced. Nevertheless,

the ILP technique had not been widely used for classifying parameterized problems

until the work of Niedermeier [203]. We refer to [186] (Section 2.8) for an interesting

discussion on the ILP problem in parameterized complexity. The following theorem is

a summary of the work by Lenstra, Kannan and Frank [126, 177, 161].

20 1. Introduction

Theorem 1.1. ILP can be solved using O(v2.5v+o(v) × L) arithmetic operations and

space polynomial in L. Here L is the number of bits in the input and v the number of

variables in ILP.

Theorem 1.1 will be used in Chapter 3 to show the fixed-parameter tractability of

several control problems in elections with bounded single-peaked width.

1.3.4 Dynamic Programming

Dynamic programming as a general algorithm design technique has been widely used

to solve combinatorial optimization problems (see, e.g., [2, 25, 55, 206, 224, 256]. The

basic idea of dynamic programming is iteratively break down the given instance of

the problem in question into a reasonable number of subinstances, in such a way that

we can use optimal solutions to smaller subinstances to give us optimal solutions to

larger subinstances. In particular, the solutions to smaller subinstances are stored

in a dynamic table in order to avoid repeat calculation. We refer to [90, 230] for a

comprehensive and vivid introduction to dynamic programming.

In this thesis, we will use the dynamic programming technique to derive a

polynomial-time algorithm for several control problems in 2-peaked elections in Chap-

ter 2, and two exponential time algorithms for the Borda manipulation problems in

Chapter 6.

1.4 Structure of this Thesis

This thesis is concerned with (parameterized) complexity of strategic voting problems

in elections under natural restrictions. The remainder of this thesis is divided into 5

chapters, each is concerned with a specific topic. See Figure 1.3 for an overview.

In Chapters 2 and 3, we study (parameterized) complexity of control problems

in generalized single-peaked elections. In particular, Chapter 2 is concerned with

control by adding/deleting votes/candidates in k -peaked elections for r -Approval,

Condorcet, Maximin and Copelandα for every 0 ≤ α ≤ 1. Our results concerning this

topic are summarized in Tables 2.1 and 2.2. Chapter 3 is concerned with control by

adding/deleting votes in elections with bounded single-peaked width for Condorcet,

Maximin and Copelandα for every 0 ≤ α ≤ 1. Our main results in this chapter

are summarized in Table 3.1 and Theorem 3.9. Chapters 2 and 3 are based on the

papers [252, 253, 254].

1.4. Structure of this Thesis 21

C
O

M
S
O

C

C
o
m

p
le

x
it

y

P
a
ra

m
e
te

ri
ze

d
C

la
ss

ic
a
l

A
lg

o
ri

th
m

D
e
si

g
n

A
p
p
ro

x
im

at
io

n
R

an
d
om

iz
ed

H
eu

ri
st

ic
E

x
a
ct

G
e
n

e
ra

l
E

le
ct

io
n
s

S
p

e
ci

a
l

E
le

ct
io

n
s

W
in

n
er

D
et

er
m

in
at

io
n

P
o
ss

ib
le

W
in

n
e
r

N
ec

es
sa

ry
/

C
o
n
tr

o
l

B
ri

b
e
ry

M
a
n
ip

u
la

ti
o
n

N
ew

M
o
d
el

s
M

at
h
em

at
ic

C
ri

te
ri

a

V
ot

in
g

S
y
st

em
s

C
h

a
p

te
rs

5
2

3
4

6

T
a
b

le
s

5
.1

2
.1

2
.2

3
.1

4
.1

6
.1

P
u
b
li
ca

ti
o
n
s

[2
51

]
[2

52
]

[2
54

]
[2

53
]

[2
50

]

F
ig
u
re

1
.3
:

O
rg

a
n
iz

a
ti

o
n

o
f

th
e

th
es

is
.

R
ed

a
rc

s
in

d
ic

a
te

th
e

co
m

p
le

x
it

y
w

o
rk

a
n
d

g
re

en
a
rc

s
in

d
ic

a
te

th
e

a
lg

o
ri

th
m

ic
w

o
rk

.
A

rc
s

w
it

h
b

o
th

co
lo

rs
in

d
ic

at
e

b
o
th

co
m

p
le

x
it

y
a
n

d
a
lg

o
ri

th
m

ic
w

or
k
.

22 1. Introduction

In Chapter 4, we study the distance restricted bribery problem which differs from

the traditional bribery problem in the way that the bribed voter can recast a vote

which needs to be as close as to its original vote. We adopt the Hamming distance and

the Kendall-Tau distance to measure the similarity of different votes. In particular,

we investigated the problem for Borda, Condorcet, Maximin and Copelandα for all

0 ≤ α ≤ 1. Our results of this chapter are summarized in Table 4.1.

In Chapter 5, we study several possible winner(s) problems on partial tournaments

related to Uncovered set and Banks set. Our results concerning this topic is summarized

in Table 5.1. This chapter is based on the paper [251].

In Chapter 6, we study exact combinatorial algorithms for both weighted and

unweighted Borda manipulation problems. Our main results are summarized in

Table 6.1. This chapter is based on the paper [250].

In Chapter 7, we summarize our results and discuss several directions for future

research.

2
Control in Multi-Peaked

Elections
Imagine again the scenario discussed in the previous section where the residents living on

the same street are asked to vote for the location of a supermarket among a set of potential

candidates. Every voter prefers the candidate which is closest to his residence, and the

farther the other candidate located away from his ideal candidate, the less it is preferred.

The story in this section differs from the above one in the way that we allow voters to

have more than one house on the street, or have relatives who also live on the same street.

Therefore, in this story, when we visit the candidates from one side to another side, the

preferences of the voters may repeatedly increase and decrease, leading to a multi-peaked

voting profile.

24 2. Control in Multi-Peaked Elections

2.1 Introduction

In this section, we mainly study control problems in multi-peaked elections. In

particular, we are interested in exploring the complexity of control problems in k -

peaked elections, where k is a small constant.

2.1.1 Motivation

Voting is a common method for preference aggregation and collective decision-making,

and has applications in political elections, multi-agent systems, web spam reduction,

pattern recognition etc [92, 93, 160, 187]. Unfortunately, by Arrow’s impossibility

theorem [5], there is no voting system which satisfies a certain set of desirable criteria

(see [5] for the details) when more than two candidates are involved. One possible way

to bypass Arrow’s impossibility theorem is to restrict the domain of the preferences,

for instance, the single-peaked domain introduced by Black [28]. Intuitively, in a

single-peaked election, one can order the candidates from left to right such that every

voter’s preference increases first and then decreases after some point as the candidates

are considered from left to right. See Figure 2.1 for an example.

a c b d e
5

4

3

2

1

An order of the candidates

p
os
it
io
n
s
of

ca
n
d
id
at
es

peak peakpeak
Figure 2.1: A single-peaked election
with five candidates a, b, c, d, e and
three votes with preferences b �u
d �u e �u c �u a, d �v b �v c �v
a �v e and a �w c �w b �w d �w e,
respectively. The preferences �u, �v
and �w are illustrated by the dark
line, the gray line, and the dotted
line, respectively.

Recently, the complexity of various voting problems in single-peaked elections

has been attracting attention of many researchers from both theoretical computer

science and social choice communities [44, 103, 113, 129, 237]. It turned out that many

voting problems being NP-hard in general become polynomial-time solvable when

restricted to single-peaked elections [44, 113]. However, most elections in practice are

not purely single-peaked, which motivates researchers to study more general models of

elections. We refer readers to [51, 71, 78, 101, 111] for some variants or generalizations

of single-peaked elections.

2.1. Introduction 25

In this section, we consider a natural generalization of single-peaked elections,

where more than one peak may occur in each vote. We call this generalization k -

peaked elections (or multi-peaked elections if the number of peaks is not specified).

This generalization might be relevant for many real-world applications. For example,

imagine again the scenario that the residents living on the same street are asked to

vote for the location of a supermarket among a set of potential candidates on the same

street. Moreover, every resident may owe more than one house, or have relatives who

also live on the same street. It is a natural assumption that every voter prefers the

candidates which are closest to his residences or his relative’s residences, and the farther

the other candidates located away from his ideal candidates, the less they are preferred.

In this case, when we visit the candidates from one side to another side along the street,

the preferences of the voters may repeatedly increase and decrease. Nevertheless, the

preference of a voter increases (or decreases) at most the number of times that is

equal to the number of houses the voter and his relatives owe. k -peaked elections with

k being a small constant may also arise in the scenario where the initial election is

single-peaked but some voters are bribed to rank some specific candidates higher in

order to get some extra benefits (e.t., money, permission, etc.) from the bribers. In

addition, multi-peaked elections also play an important role in politics [69, 93]. We

refer to the work of Egan [93] for a detailed discussion of how and when multi-peaked

political elections arise in real-world political settings. Very recently, 2-peaked domain

of preference was also studied in the context of facility location problem [123].

In this chapter, we mainly study control problems for r -Approval, Condorcet,

Copelandα for every 0 ≤ α ≤ 1 and Maximin in k -peaked elections. We first study

r -Approval in Section 2.2, and then we study the other three voting correspondences in

Section 2.3. We put the last three voting correspondences into one section due to the

following reasons. First, unlike r -Approval, the other three voting correspondences are

pairwise comparison based voting correspondences. Moreover, they are all Condorcet-

consistent. Finally, the techniques used for showing hardness of the control problems

under these voting correspondences are similar.

2.1.2 Preliminaries

Apart from the definitions in the Section 1, we need the following notations and

definitions to investigate the problems in this section.

Single-peaked/k -peaked elections. An election (C,ΠV) is single-peaked if

there is a linear order L of C such that for every vote with preference �v in ΠV and

every three candidates a, b, c ∈ C with a L b L c or c L b L a, c �v b implies b �v a,

where a L b means a is ordered before b in L. The candidate ranked in the first

position of �v is the peak of �v with respect to L.

26 2. Control in Multi-Peaked Elections

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
10
9
8
7
6
5
4
3
2
1

A 2-harmonious order L

p
os
it
io
n
s
in
π
v

peak
peak

Figure 2.2: This figure shows a 2-peaked
vote πv = (c3, c4, c7, c6, c8, c9, c5, c2, c10, c1)
with respect to the 2-harmonious order
L = (c1, c2, . . . , c10). Here, L is partitioned
into L1 and L2 with L1 = (c1, c2, c3, c4, c5) and
L2 = (c6, c7, c8, c9, c10). Clearly, πv(C(L1)) and
πv(C(L2)) are single-peaked with respect to L1

with peak c3 and L2 with peak c7, respectively.

For an order L = (c1, c2, . . . , cm) of C and a vote πv, we say πv is k -peaked with

respect to L, if there is a k ′-partition L1 = (c1, c2, ..., ci), L2 = (ci+1, ci+2, ..., ci+j), . . . ,

Lk ′ = (ck, ck+1, ..., cm) of L such that k ′ ≤ k and πv(C(Lx)) is single-peaked with

respect to Lx for all 1 ≤ x ≤ k ′, where C(Lx) is the set of candidates appearing in Lx.

See Figure 2.2 for an example.

An election is k -peaked if there is an order L of C such that every vote in the

election is k -peaked with respect to L. Here L is called a k -harmonious order.

Problem declaration. We study constructive/destructive control by

adding/deleting votes/candidates. These problems in the general case have been

defined in Section 1.2.2. In this section, we study these problems in k -peaked elections.

However, these problems in this section differ from that in the general case (see

Section 1.2.2) in the way that the input elections are required to be k -peaked elections.

In particular, in the control by adding votes, the election with both the registered

votes and unregistered votes has to be k -peaked, according to a common k -harmonious

order. In the control by adding candidates, the election with candidate set C ∪ D ∪ {p}
(see Section 1.2.2) has to be k -peaked. Furthermore, we assume that a k -harmonious

order is given alone with the given k -peaked election. This assumption is based on

the observation that in many real-world applications, the harmonious order is known

in advance. This is actually one of the reasons why domain restricted elections arise

in practice. For example, in real-world single-peaked political elections, the voters are

thought to agree upon that the candidates are ordered on a common known left-right

dimension. See [28] for related discussion.

2.2 r -Approval Control

This section considers the complexity of r -Approval control in k -peaked elections.

We begin with a short discussion of two famous voting correspondences related to

r -Approval. Many of our results apply to these voting correspondences as well.

2.2. r -Approval Control 27

Approval voting is one of the most famous voting systems and has been extensively

studied both in theory and in practice [18, 36, 199]. In an Approval voting, we are given

a set C of candidates and a set V of voters . Each voter approves or disapproves every

candidate c ∈ C. The system selects a candidate who is approved by the most voters

as a winner. A prominent variant of Approval voting is the sincere-strategy preference-

based Approval voting (SP-AV for short), proposed by Brams and Sanver [39]. In

an SP-AV election, each voter provides both a linear order of the candidates and a

subset C of candidates such that the candidates are approved according to C, and the

“admissible” and “sincere” properties should be fulfilled. In particular, the “admissible”

property requires that the candidate ranked in the first position must be approved

and the candidate ranked in the last position must be disapproved, and the “sincere”

property requires that if a candidate c is approved then all the candidates ranked

above c must be approved (see [39, 102] for more details). Many of our results apply

to Approval voting and SP-AV.

In the following, we consider only constructive control. Hemaspaandra, Hemas-

paandra and Rothe [146] proved that the control problems by adding/deleting votes for

Approval voting are NP-hard. The proofs can be adapted to show the NP-hardness

of control by adding/deleting votes in SP-AV [102]. Lin [180] proved that control

by adding votes in 4-Approval and control by deleting votes in 3-Approval are both

NP-hard, while control by adding votes in 3-Approval and control by deleting votes

in 2-Approval are polynomial-time solvable. As for the control by modification of

candidates, Approval voting turned out to be immunei to control by adding candidates

and polynomial-time solvable for control by deleting candidates [146]. However, the

control problems by adding/deleting candidates are NP-hard for r -Approval, even

when degenerated to 1-Approval [157]. The NP-hardness also holds for control by

adding/deleting candidates in SP-AV [102]. Recently, control problem in Approval

voting and r -Approval voting have also been considered in single-peaked elections.

Faliszewski et al. [113] proved that the control problems by adding/deleting votes

in Approval are polynomial-time solvable in single-peaked electionsii. Moreover, the

control problems by adding/deleting candidates for 1-Approval are polynomial-time

solvable in single-peaked elections [113].

Motivated by the NP-hardness in the general case and the polynomial-time

solvability in the single-peaked case, we study the complexity of control problems for

r -Approval voting in k -peaked elections with respect to various values of k , aiming at

exploring the complexity border for these control problems. Faliszewski, Hemaspaandra

and Hemaspaandra [111] studied a nearly single-peaked model which is called Swoon-

SP and can be considered as a special case of 2-peaked elections. They proved that

the control problems by adding/deleting candidates for 1-Approval are NP-hard when

iA voting system is immune to a control behavior if one cannot make a candidate who is not a
winner become a final winner by imposing the strategic behavior on the election.

iiIn [113], for the approval voting, an election is single-peaked if there is an order of the candidates
such that each voter’s approved candidates are contiguous within the order.

28 2. Control in Multi-Peaked Elections

k -
p
ea

ke
d

el
ec

ti
on

s

k
=

1

k
=

2

k
≥

3

k
=
dm
/2
e

C
C

A
V

P
♠

r
is

no
t

a
co

ns
ta

nt
:

N
P

-h
,
T

hm
.
2.

2

r
≤

3
: P
♦

r
≤

3
: P
♦

r
is

a
co

ns
ta

nt
:

r
≥

4:
N
P

-h
,
T

hm
.

2.
4

r
≥

4:
N
P-

h
♦

P
,
T

hm
.

2.
1

C
C

D
V

P
♠

r
≤

2
: P
♦

r
≤

2
: P
♦

r
≤

2:
P
♦

r
≥

3:
N
P

-h
,
T

hm
.

2.
3

r
≥

3:
N
P

-h
,
T

hm
.

2.
3

r
≥

3:
N
P-

h
♦

C
C

A
C

P
♠

r
=

1:
N
P-

h
4

r
=

1:
N
P-

h
4

r
=

1
: N
P-

h
♣

C
C

D
C

P
♠

r
=

1:
N
P-

h
4

r
=

1:
W

[1
]-
h

,
T

hm
.

2.
5

r
=

1
: N
P-

h
♣

Table 2.1: A summary of the complexity of r -Approval control problems. Our new results
are in bold. In this table, “NP-h” stands for NP-hard and “P” stands for polynomial-time
solvable. Moreover, “Thm. #” means that the result follows from Theorem # in this chapter.
Note that general elections are k -peaked elections with k = dm/2e, where m denotes the
number of candidates. All results apply to the unique-winner and the nonunique-winner
models. Moreover, all our NP-hardness results apply to both Approval voting and SP-AV.
However, there are no “r ” in both cases. Moreover, the W [1]-hardness result apply to SP-AV
as well. Results marked by ♦ are from [180], by ♣ from [157], by ♠ from [113] and by 4
from [111].

2.2. r -Approval Control 29

restricted to Swoon-SP elections, implying the NP-hardness of these problems in

2-peaked elections. We complement their results by studying the adding/deleting votes

case. In particular, we show that, control by adding votes in r -Approval with r being a

constant is polynomial-time solvable in 2-peaked elections, but NP-hard in k -peaked

elections for k ≥ 3. Meanwhile, if r is not a constant, then control by adding votes

in r -Approval in 2-peaked elections becomes NP-hard. Moreover, the deleting votes

case turns out to be NP-hard for k -peaked elections with k ≥ 2, even for r being a

constant.

In addition, we present a W-hardness result for r -Approval control in 3-peaked

elections. Liu et al. [183] proved that control by adding votes in Approval voting is

W[1]-hard and control by deleting votes in Approval voting is W[2]-hard, with the

numbers of added and deleted votes as parameters, respectively. In addition, they

proved that control by adding candidates in 1-Approval isW [2]-hard, with the number

of added candidates as the parameter. Betzler and Uhlmann [27] complemented

the results in [183] by proving that control by deleting candidates in 1-Approval is

W[2]-hard, with the number of deleted candidates as the parameter. We extend the

above results to k -peaked elections by showing that control by deleting candidates in

1-Approval in 3-peaked elections is W [1]-hard with the number of deleted candidates

as the parameter. All our findings in this Section are summarized in Table 2.1.

2.2.1 2-Peaked Elections

In this section, we study control problems for r -Approval in 2-peaked elections. We

begin with some polynomial-time solvability results.

Theorem 2.1. Both CCAV-r -Approval-UNI and CCAV-r -Approval-NON in 2-peaked

elections are polynomial-time solvable for every constant r .

Proof. We prove Theorem 2.1 by giving a polynomial-time algorithm based on dynamic

programming. We first consider CCAV-r -Approval-UNI.

Let ((C ∪ {p}, ΠV), ΠT , L, R) be an instance of CCAV-r -Approval-UNI in 2-

peaked elections. For a candidate c ∈ C, let ←−c (1) be the candidate lying immediately

before c in L and ←−c (i) be the candidate lying immediately before ←−c (i − 1) in

L. Similarly, we use −→c (1) and −→c (i) to denote the candidates lying immediately

after c and −→c (i − 1), respectively. For example, if L = (a, b, c, d, e, f, g, h), then−→
d (1) = e,

−→
d (4) = h,

←−
d (1) = c and

←−
d (3) = a.

For a vote πv, let 1(v) denote the set of candidates who get 1 point and 0(v)

denote the set of candidates who get 0 points, from πv. For a candidate c, let SCΠV (c)

30 2. Control in Multi-Peaked Elections

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

peak

peak

πv

I1v I2v

peak

πupeak

Iu

Figure 2.3: This figure shows two votes
πv = (c3, c4, c7, c6, c8, c9, c5, c2, c10, c1)
and πu = (c7, c6, c5, c8, c9, c10, c1, c4, c3, c2).
Each vote gives one point to its top
four ranked candidates. 1(v) is rep-
resented by a 2-discrete interval
{I1
v = (c3, c4), I2

v = (c6, c7)} and 1(u)
is represented by a 1-discrete interval
{Iu = (c5, c6, c7, c8)}.

(or simply SCV(c) if it is clear from the context) be the total score of c from ΠV , that

is, SCΠV (c) = |{πv ∈+ ΠV | c ∈ 1(v)}|.

Given an order A = (a1, a2, . . . , an), a discrete interval I over A is a consecutive

sub-order (ai, ai+1, . . . , ai+j) of A. We denote the first element ai (ai is also referred

to as the left endpoint of I) by l(I) and the last element ai+j (ai+j is also referred

to as the right endpoint of I) by r(I). We also use A(l(I), r(I)) to denote I. Let

S(I) denote the set of elements appearing in I and set |I| = |S(I)|. For example,

for a discrete interval I = A(3, 6) over the order A = (2, 5, 3, 10, 4, 6, 0), S(I) is

{3, 4, 6, 10}. A b-discrete interval over an order A is a collection of b disjoint discrete

intervals over A, where “disjoint” means no element in A appears in more than one

discrete interval. For a b-discrete interval I, let S(I) =
⋃
I∈I S(I).

We have the following observation (a similar observation on Approval voting in

single-peaked elections is given in [113]).

Observation 2.1. For each k -peaked election (C,ΠV) associated with a k -harmonious

order L over C, and each vote πv ∈+ ΠV , there is a b-discrete interval I over L such

that 0 < b ≤ k and 1(v) = S(I).

By Observation 2.1, for every vote πv in a 2-peaked election associated with L as

a 2-harmonious order, 1(v) can be represented by a 2-discrete interval or a 1-discrete

interval over L. See Figure 2.3 for an example.

We first derive a polynomial-time algorithm for CCAV-4-Approval-UNI in 2-

peaked elections. It is easy to generalize the algorithm to CCAV-r -Approval-UNI in

r -peaked elections with r being a constant. The following observation is trivial.

Observation 2.2. Every yes-instance of CCAV-r -Approval has a solution where each

added vote approves the distinguished candidate p.

Due to Observation 2.2, we can safely assume that for each πv ∈+ ΠT , p ∈ 1(v).

By Observation 2.1, for every vote πv ∈+ ΠT , 1(v) can be represented by a 2-discrete

interval Iv = {Ip
v , I

p
v} or a 1-discrete interval Iv = {Ip

v} with p ∈ S(I
p
v). Let Π be

the multiset of all votes πv ∈+ ΠT where 1(v) is represented by a 1-discrete interval

2.2. r -Approval Control 31

over L. We say two votes have the same type if they approve exactly the same

candidates (For instance, the two votes with preferences a � b � c � d � e � f

and c � d � b � a � e � f in 4-Approval have the same type, since both votes

approve exactly the same candidates a, b, c, d). Since every voter approves exactly four

candidates, votes in Π have at most four different types:

(1) votes approving ←−p (3),←−p (2),←−p (1), p;

(2) votes approving ←−p (2),←−p (1), p,−→p (1);

(3) votes approving ←−p (1), p,−→p (1),−→p (2); and

(4) votes approving p,−→p (1),−→p (2),−→p (3).

We then can enumerate all possibilities of how many votes in the solution are

from each of the four types of votes in Π. This reduces the original instance to at

most R 4 subinstances. Thus, in the following, we assume that every vote in ΠT is

represented by a 2-discrete interval. Let
−→
Π T = (πv1 , πv2 , ..., πv|T |) be an order of ΠT

such that r(I
p
vi) = r(I

p
vj) or r(I

p
vi) L r(Ip

vj) for all 1 ≤ i < j ≤ |ΠT |.

Our dynamic programming algorithm uses a binary dynamic table

DT (i, j, s, s1, s2, s3, s4, s5, s6, si,1, si,2, si,3),

where we set DT (i, j, s, s1, s2, s3, s4, s5, s6, si,1, si,2, si,3) = 1 if there is a submultiset

ΠT ′ v {πv1 , πv2 , . . . , πvi} satisfying

(1) |ΠT ′ | = j;

(2) πvi ∈+ ΠT ′ ;

(3) max{SCV∪T ′(c) | c ∈ C} = s;

(4) SCV∪T ′(ct) = st for all 1 ≤ t ≤ 6, where c3 = ←−p (1), c2 = ←−p (2), c1 =
←−p (3), c4 = −→p (1), c5 = −→p (2) and c6 = −→p (3); and

(5) SCV∪T ′(ci,t) = si,t for all t ∈ {1, 2, 3}, where ci,1 = r(I
p
vi), ci,2 = ←−ci,1(1) and

ci,3 =←−ci,1(2). (See Figure 2.4 for an illustration of (4) and (5)).

pci,1

si,2

ci,2

si,3

ci,3

si,1 s3

c3

s2

c2

s1

c1

s4

c4

s5

c5

s6

c6

I
p̄
vi I

p
vi

L

Figure 2.4: Illustration of (4) and (5) in the definition of the dynamic table DT .

32 2. Control in Multi-Peaked Elections

It is easy to see that the given instance is a yes-instance if there is a

DT (n,R ′, s, s1, s2, . . . , s6, sn,1, sn,2, sn,3) = 1 for some n ≤ |ΠT |, R ′ ≤ R , s ≤
SCV(p) + R ′− 1 and s′ ≤ s for all s′ ∈ {s1, s2, ..., s6, sn,1, sn,2, sn,3}. Therefore, to solve

the problem we need to calculate the values of DT (i, j, s, s1, s2, . . . , s6, si,1, si,2, si,3)

for all 1 ≤ j ≤ R , j ≤ i ≤ |ΠT |, 1 ≤ s ≤ SCV(p) + R − 1 and s′ ≤ s for all

s′ ∈ {s1, s2, ..., s6, si,1, si,2, si,3}. Thus, we have at most |ΠT | · R · (|ΠV |+ R)10 entries

to calculate.

We use the following iterative recurrence to update the table.

DT (i, j, s, s1, s2, . . . , s6, si,1, si,2, si,3) = 1, if at least one of the following cases

applies:

Case 1. ∃DT (i1, j − 1, s, s′1, s
′
2, . . . , s

′
6, s
′
i1,1
, s′i1,2, s

′
i1,3

) = 1 such that conditions

(1)-(4) hold.

Case 2. ∃s′ ∈ {s1, s2, ..., s6, si,1, si,2, si,3} with s′ = s and

∃DT (i1, j − 1, s− 1, s′1, s
′
2, . . . , s

′
6, s
′
i1,1
, s′i1,2, s

′
i1,3

) = 1

such that conditions (1)-(4) hold.

The four conditions are:

(1) j − 1 ≤ i1 ≤ i− 1;

(2) st = s′t + SC{vi}(ct) for all 1 ≤ t ≤ 6;

(3) si,t = s′i1,t1 + SC{vi}(ci,t) for all ci,t = ci1,t1 ; and

(4) si,t = SCV∪{vi}(ci,t) for all ci,t ∈ A, where

A = {r(I p̄
vi

),
←−−−
r(I p̄

vi
)(1),

←−−−
r(I p̄

vi
)(2)} \ {r(I p̄

vi1
),
←−−−
r(I p̄

vi1
)(1),

←−−−
r(I p̄

vi1
)(2)}.

The above algorithm can be adapted to solve the nonunique-winner model CCAV-

r -Approval-NON: replacing all appearances of “SCV(p)+R −1” in the above description

with “SCV(p) + R ”.

The algorithm can be easily generalized to every r ≥ 4 by using a bigger but

still polynomial-sized dynamic table. In particular, for each fixed r , we need a

3r -dimension dynamic table DT (i, j, s, s1, ..., s2(r−1), si,1, ..., si,r−1), where i, j, s take

the same meanings as in the above algorithm, s1, ..., s2(r−1) maintain the scores of the

2(r − 1) candidates around the distinguished candidate p (precisely, we maintain the

scores of the r − 1 candidates immediately lying on the left side of p, and the scores

of the r − 1 candidates immediately lying on the right side of p in the 2-harmonious

order. If there are less than r − 1 candidates lying on one side of p, we reduce the

dimension of the dynamic table accordingly), and si,1, ..., si,r−1 maintain the scores of

2.2. r -Approval Control 33

the candidate r(I
p
vi) and the r − 2 candidates immediately lying on the left side of

r(I
p
vi) in the 2-harmonious order.

Recall that both CCAV-r -Approval-UNI and CCAV-r -Approval-NON are NP-

hard in general for every constant r ≥ 4 but polynomial-time solvable when restricted to

single-peaked elections [113]. Theorem 2.1 shows that the polynomial-time solvability

of CCAV-r -Approval-UNI/NON remains when extending from single-peaked elections

to 2-peaked elections, for r being a constant. This bound is tight as indicated by the

following theorem. More precisely, if r is not a constant, CCAV-r -Approval-UNI/NON

becomes NP-hard in 2-peaked elections, in contrast to the polynomial-time solvability

in the single-peaked case [113].

Theorem 2.2. Both CCAV-r -Approval-UNI and CCAV-r -Approval-NON are NP-

hard in 2-peaked elections if r is not a constant.

Proof. We prove Theorem 2.2 by a reduction from a variant of Independent Set

which is NP-hard [164].

Let () denote an empty order containing no element. For a linear order

A = (a1, a2, . . . , an), over the set {a1, a2, ..., an}, let A[ai, aj] (resp. A(ai, aj], A[ai, aj)

and A(ai, aj)) with i ≤ j be the sub-order (ai, ai+1, . . . , aj) (resp. (ai+1, ai+2, . . . , aj)

if i < j and () if i = j, (ai, ai+1, . . . , aj−1) if i < j and () if i = j,

and (ai+1, ai+2, . . . , aj−1) if i < j − 1 and () if j ≥ i ≥ j − 1), and let

A[aj, ai] (resp. A[aj, ai), A(aj, ai] and A(aj, ai)) be the reversed order of A[ai, aj]

(resp. A(ai, aj], A[ai, aj) and A(ai, aj)). For two linear orders A = (a1, a2, ..., an)

and B = (b1, b2, ..., bm) with A ∩ B = ∅, denote by (A,B) the linear order

(a1, a2, ..., an, b1, b2, ..., bm). Let [n] be the set {1, 2, ..., n}.

A Variant of Independent Set (Vis)

Input: A multiset T = {T1, T2, ..., Tn} where each Ti ∈+ T is a set of

discrete intervals over the linear order (1, 2, ..., 12n). Moreover, |Ti| ≤ 3

and each discrete interval in Ti is of size 4.

Question: Is there a set S ⊆ ⋃
T∈+T T of discrete intervals such that

|S| = n, |S ∩ Ti| = 1 for every Ti ∈+ T and no two discrete intervals in S

intersect?

We first prove the NP-hardness of CCAV-r -Approval-UNI. Given an instance

F = (T = {T1, T2, . . . , Tn}) of Vis, we construct an instance E = ((C ∪
{p}, ΠV), ΠT , L, R = n) for CCAV-r -Approval-UNI in 2-peaked elections with r
being not a constant as follows.

Let I =
⋃
T∈+T T . For each discrete interval I ∈ I, let l(I) be its left endpoint

and r(I) be its right endpoint. Let Γ be the set of all elements appearing in some

34 2. Control in Multi-Peaked Elections

discrete interval of I, i.e., Γ = {S(I) | I ∈ I}. Let ~Γ = (x1, x2, . . . , x|Γ|) be an order

of Γ where xi < xi+1 for all i ∈ [|Γ| − 1].

Candidates: We create three kinds of candidates C, D and E:

(1) C = Γ, that is, for each xi ∈ Γ, we create a candidate;

(2) D contains exactly 2n− 1 candidates d1, d2, . . . , dn, . . . , d2n−1;

(3) E contains exactly (n + 3) · (|C| + |D| − 1) dummy candidates

x′1, x
′
2 , ..., x

′
|C|·(n+3), d

′
1, d

′
2 , ..., d′(n+3)·(|D|−1) which will never be winners. The dis-

tinguished candidate is dn, that is, p = dn. Moreover, r = n+ 4.

2-Harmonious Order: L = (~Γ, ~D, ~E) where ~D = (d1, d2, ..., d2n−1) and ~E =

(x′1, ..., x
′
|C|·(n+3), d

′
1, ..., d

′
(n+3)·(|D|−1))

Registered Votes ΠV : We create the following registered votes:

(1) for each xi ∈ C, create n− 2 votes defined as

(xi,L[x′(n+3)i−n−2, x
′
i(n+3)],L(xi, x1],L(xi, x

′
(n+3)i−n−2),L(x′i(n+3), d

′
(|D|−1)·(n+3)]);

(2) for each di ∈ D where i ∈ [n− 1], create n− (i+ 1) votes defined as

(di,L[d′(n+3)i−n−2, d
′
i(n+3)],L(di, x1],L(di, d

′
(n+3)i−n−2),L(d′i(n+3), d

′
(|D|−1)·(n+3)]);

(3) for each di ∈ D where i ∈ {n+ 1, n+ 2, . . . , 2n− 1}, create i− (n+ 1) votes

which is defined as

(di,L[d′(n+3)i−2n−5, d
′
(i−1)·(n+3)],L(di, x1],L(di, d

′
(n+3)i−2n−5),L(d′(i−1)·(n+3), d

′
(|D|−1)·(n+3)]).

Unregistered Votes ΠT : For each Iij ∈ Ti ∈+ T ,

create a corresponding unregistered vote which is defined as

(L[l(Iij), r(Iij)],L[di, d
′
(|D|−1)·(n+3)],L(l(Iij), x1],L(r(Iij), di−1]). Clearly, this

vote approves exactly all four candidates lying between l(Iij) and r(Iij) (including

l(Iij) and r(Iij)) in L and all candidates lying between di and di+n−1 (including di
and di+n−1) in L. Thus, every unregistered vote approves dn.

It is clear that all votes are 2-peaked with respect to L. Due to the construction,

it is easy to see that SCV(c) = n− 2 for all c ∈ C, SCV(di) = n− i− 1 for all di ∈ D
with i ∈ [n− 1], SCV(di) = i−n− 1 for all di ∈ D with i ∈ {n+ 1, n+ 2, . . . , 2n− 1},
and SCV(c) ≤ n− 2 for all c ∈ E and SCV(dn) = 0.

⇒: Suppose that F is a yes-instance and let S be a solution for F . Let ~S =

(I1, I2, . . . , In) be an order of S where Ii = S ∩ Ti for all i ∈ [n]. Then, we can make

dn the unique winner by adding votes from ΠT according to S. More specifically,

for each Ii ∈ S we select its corresponding vote constructed as above and add it to

the registered votes. Clearly, the final score of dn is n. Due to the construction, no

two added votes which correspond to two different intervals Ii and Ij, respectively,

approve a common candidate from C. Thus, after adding these votes to the registered

2.2. r -Approval Control 35

votes, no candidate in C has a higher score than that of dn. To analyze the score

of dj ∈ D with j ∈ [n− 1], we observe that for any i > j the vote corresponding to

Ii does not approve dj. Since SCV(dj) = n − j − 1 and |S ∩ Ti| = 1 for all i ∈ [j],

we know that the final score of dj is less than n. Similarly, to analyze the score of

dj ∈ D with j ∈ {n+ 1, n+ 2, . . . , 2n− 1}, we observe that for any i ≤ j−n the vote

corresponding to Ii does not approve dj . Since SCV(dj) = j−n−1 and |S∩Ti| = 1 for

all i ∈ {j−n+ 1, j−n+ 2, ..., n}, we know that the final score of dj is less than n. The

final score of each c ∈ E is clearly less than n− 2 since no unregistered vote approves

c. Summarize the above analysis, we conclude that the distinguished candidate dn
becomes the unique winner after adding the selected votes to the registered votes.

⇐: Suppose that E is a yes-instance and ΠS is a multiset of votes chosen from

ΠT which makes dn the unique winner in the election (C ∪ D ∪ E, ΠV] ΠS). It is

easy to verify that |ΠS| = n, since otherwise, at least one of C would be a winner;

thus, the final score of dn is n and every c ∈ C can get at most one point from ΠS.

Therefore, no two votes in ΠS approve a common candidate of C, implying that ΠS

must be a set. Let P1, P2, . . . , Pn be a partition of ΠT where Pi contains all votes

corresponding to the intervals of Ti ∈+ T . Clearly, Pi is a set. We claim here that

|ΠS ∩ Pi| = 1 for every i ∈ [n]. Suppose this is not true, then there must be a certain

Pi with |ΠS ∩ Pi| ≥ 2. Let S1 = ΠS ∩ Pi (thus, |S1| ≥ 2), S2 = {πv ∈ ΠS ∩ Pi′ | i′ < i}
and S3 = {πv ∈ ΠS ∩Pi′ | i′ > i}. It is clear that |S1|+ |S2|+ |S3| = n. Since all votes

in S1 approve both di and di+n−1, all votes in S2 approve di but do not approve di+n−1,

and all votes in S3 approve di+n−1 but do not approve di, then,

SCV]S(di) + SCV]S(di+n−1)

= SCV(di) + |S1|+ |S2|+ SCV(di+n−1) + |S1|+ |S3|

= n− i− 1 + |S1|+ |S2|+ i− 2 + |S1|+ |S3|

= 2n− 3 + |S1|

≥ 2n− 1

Thus, at least one of di and di+n−1 has final score at least n, contradicting that dn
is the unique winner. The claim is true. It is now easy to see that the set of discrete

intervals corresponding to the votes in ΠS forms a solution for F .

The NP-hardness reduction for CCAV-r -Approval-NON is the same as for CCAV-

r -Approval-UNI with the difference in the construction of the registered votes. In

particular, we need to construct the registered votes so that the score of each candidate

in C ∪D is exactly one point greater than that in the above construction. This can

be done easily:

(1) for each xi ∈ C, create n− 1 votes defined as

36 2. Control in Multi-Peaked Elections

(xi,L[x′(n+3)i−n−2, x
′
i(n+3)],L(xi, x1],L(xi, x

′
(n+3)i−n−2),L(x′i(n+3), d

′
(|D|−1)·(n+3)]);

(2) for each di ∈ D where i ∈ [n− 1], create n− i votes defined as

(di,L[d′(n+3)i−n−2, d
′
i(n+3)],L(di, x1],L(di, d

′
(n+3)i−n−2),L(d′i(n+3), d

′
(|D|−1)·(n+3)]);

(3) for each di ∈ D where i ∈ {n+ 1, n+ 2, . . . , 2n− 1}, create i− n votes which

is defined as

(di,L[d′(n+3)i−2n−5, d
′
(i−1)·(n+3)],L(di, x1],L(di, d

′
(n+3)i−2n−5),L(d′(i−1)·(n+3), d

′
(|D|−1)·(n+3)]).

The control problem by deleting votes for r -Approval is polynomial-time solvable

in single-peaked elections for even non-constant r [113]. The following theorem shows

that by increasing the number of peaks only by one, this problem becomes NP-hard.

Theorem 2.3. Both CCDV-r -Approval-UNI and CCDV-r -Approval-NON in 2-peaked

elections are NP-hard for every constant r ≥ 3.

Proof. We first prove that CCDV-3-Approval-UNI in 2-peaked elections is NP-hard by

a reduction from Vertex Cover on bounded degree-3 graphs which is NP-hard [130].

Then, we will show that the proof applies to CCDV-r -Approval-UNI for r ≥ 4 with a

slight modification.

An undirected graph is a tuple G = (V,E) where V is the set of vertices and E is

the set of edges. We also use V (G) to denote the vertex set of G. For a vertex u ∈ V ,

NG(u) denotes the set of its neighbors in G, that is, NG(u) = {w | (w, u) ∈ E}. The

degree of a vertex u is the number of its neighbors. A graph is a bounded degree-3

graph if it contains at least one degree-3 vertex but no vertex having degree greater

than 3. A vertex cover for a graph G = (V,E) is a subset S ⊆ V such that every edge

in E has at least one of its endpoints in S.

Vertex Cover on Bounded Degree-3 Graphs (VC3)

Input: A bounded degree-3 graph G = (V, E) and a positive integer κ.

Question: Does G have a vertex cover of size at most κ?

To prove the NP-hardness of CCDV-r -Approval-UNI in 2-peaked elections, we

first introduce a property for bounded degree-3 graphs. This property may be of

independent interest since many graph problems are NP-hard when restricted to

graphs with bounded degree 3.

An interval over the real line is a closed set [a, b] = {x ∈ R | a ≤ x ≤ b} where

a and b are real numbers. An interval is trivial if a = b; otherwise, it is called a

non-trivial interval. For an interval I = [a, b], denote by l(I) and r(I) its left-point a

and right-point b, respectively. The endpoints of an interval are refereed to its left-point

and right-point. A b-interval is a set of b intervals over the real line. The endpoints

2.2. r -Approval Control 37

of a b-interval are the union of the endpoints of the intervals included in it. A graph

G = (V, E) is a b-interval graph if there is a set TG of b-intervals and a bijection

f : V → TG such that for every u,w ∈ V , (u, w) ∈ E if and only if f(u) and f(w)

intersect. Here, TG is called a b-interval representation of G. For simplicity, we use

Iu = {I1
u, I

2
u, ..., I

b
u} to denote f(u), where each I iu is an interval. For two real numbers

a and b with a ≤ b, we define (a, b) = {x ∈ R | a < x < b}.

The following lemma states that every bounded degree-3 graph has a 2-interval

representation such that (1) every vertex is represented by a 2-interval with one interval

is trivial; and (2) every two 2-intervals can only intersect at the endpoints.

Lemma 2.1. For every bounded degree-3 graph G there is a 2-interval representation

for G such that for every u ∈ V (G), Iu = {I1
u, I

2
u} satisfies one of the following:

1. I1
u = [x1, x1], I

2
u = [x2, x3], x1 < x2 < x3 and @u′ ∈ V (G) \ {u} such that

r(I(u′)) ∈ (x2, x3) or l(I(u′)) ∈ (x2, x3);

2. I1
u = [x1, x2], I

2
u = [x3, x3], x1 < x2 < x3 and @u′ ∈ V (G) \ {u} such that

r(I(u′)) ∈ (x1, x2) or l(I(u′)) ∈ (x1, x2),

for each I(u′) ∈ {I1
u′ , I

2
u′}. Moreover, such a 2-interval representation can be found in

polynomial time. See Figure 2.5 for an example.

We defer the proof of Lemma to [252].

u3

u1
u2

u4

u1

u2 u3 u4

Figure 2.5: The figure on the left-side illustrates a 2-interval representation of the graph
on the right-side. Here, the 2-intervals from up to down represent the vertices u1, u2, u3 and
u4, respectively.

We now show the reduction. Let F = (G, κ) be an instance of VC3 and I(G)

be a 2-interval representation of G satisfying all conditions in Lemma 2.1. For

every Iu = {I1
u, I

2
u}, let D(u) be the endpoints of I1

u and I2
u (due to Lemma 2.1,

|D(u)| = 3 for all u ∈ V (G)), and let Γ =
⋃
u∈V (G) D(u). Let ~Γ = (x1, x2, . . . , x|Γ|)

be the order of Γ with xi < xi+1 for all i ∈ [|Γ| − 1]. We construct an instance

E = ((C ∪ {p}, ΠV), R = κ, L) of CCDV-3-Approval-UNI in 2-peaked elections as

follows.

Candidates: C = Γ∪{p, c1, c2, c3, c4} with c1, c2, c3, c4 being dummy candidates

which would never be winners.

2-Harmonious Order: L = (~Γ, p, c1, c2, c3, c4).

38 2. Control in Multi-Peaked Elections

Votes: There are two types of votes: votes disapproving p and votes approving p.

There are |V (G)| votes of the first type each of which corresponds to an Iu in I(G) for

u ∈ V (G). More specifically, for every Iu, let (xi, xj, xk) be the order of D(u) with xi <

xj < xk, then we create a vote πu = (xi, xj, xk,L(xi, x1],L(xi, xj),L(xj, xk),L(xk, c4]).

Thus, πu approves D(u). Due to Lemma 2.1, either xi or xk lies consecutively with

xj in L, that is, one of xi =←−xj (1) and xk = −→xj (1) must hold, which implies that all

votes of the first type are 2-peaked with respect to L. There are only two votes of

the second type: (p, c1, c2, c3, c4,L(p, x1]) and (p, c3, c4, c1, c2,L(p, x1]). It is clear that

these two votes are 2-peaked with respect to L.

In the following, we prove that F is a yes-instance if and only if E is a yes-instance.

(⇒:) Suppose that F is a yes-instance and S is a vertex cover of size at most κ of

G. Then, we delete all votes in {πu | u ∈ S}. After deleting these votes, no two votes

of the first type approve a common candidate in C, since otherwise, V (G) \ S could

not be an independent set, contradicting the fact that S is a vertex cover. Thus, after

deleting these votes all candidates except for the distinguished candidate p have only

one point. Since p has two points, p is the unique winner.

(⇐:) Suppose that E is a yes-instance. Observe that every yes-instance of CCDV-

3-Approval (both in general elections and in the 2-peaked elections) has a solution

containing only votes which do not approve p. Let ΠS be such a solution of size at

most κ, and E ′ be the election obtained from E by deleting all votes in ΠS. Due to

the above discussion, p has two points in E ′. Since p is the unique winner in E ′, every

other candidate can have at most one point in E ′, which implies that no two votes

of the first type approve a common candidate in C in E ′, further implying that the

vertices corresponding to the votes in ΠS form a vertex cover of size at most κ for G.

In order to prove that CCDV-r -Approval-UNI in 2-peaked elections is NP-hard

for any constant r ≥ 4, we need to modify the above reduction slightly. First,

we add some dummy candidates. More specifically, there are r − 3 dummy can-

didates Xi = {x1
i , x

2
i , ..., x

r−3
i } with the order (x1

i , x
2
i , ..., x

r−3
i) between xi ∈ Γ and

xi+1 ∈ Γ in the 2-harmonious order L, whenever there is a u ∈ V (G) such that

[xi, xi+1] ∈ Iu. Besides, we have 2r − 6 dummy candidates c5, c6, ..., c2r−2 lying after

c4 in L, with the order (c5, c6, ..., c2r−2). Thus, there are (r − 3) · |V (G)| + 2r − 6

new dummy candidates in total. We change the first type of votes as follows: for

every u ∈ V (G) with Iu = {[xi, xi+1], [xj, xj]} (resp. Iu = {[xi, xi], [xj, xj+1]}),
we create a vote defined as (L[xi, xi+1], xj,L(xi, x1],L(xi+1, xj),L(xj, c2r−2])

(resp. (xi,L[xj, xj+1],L(xi, x1],L(xi, xj),L(xj+1, c2r−2])). As for the second

type of votes, we have still two votes defined as (L[p, c2r−2],L(p, x1]) and

(p,L[cr , c2r−2],L[c1, cr),L(p, x1]), respectively. Then, with the same argument, we

can show that CCDV-r -Approval-UNI in 2-peaked elections is NP-hard for any r ≥ 4.

To prove the NP-hardness of CCDV-r -Approval-NON in 2-peaked elections for

every r ≥ 3, we adapt the above reductions in the following way: we create only the

2.2. r -Approval Control 39

first vote in the second type of votes (so that the score of the distinguished candidate

is one in the given election) and remaining all the other parts unchanged.

2.2.2 3-Peaked Elections

In Section 2.2.1, we proved that control by adding votes in r -Approval is polynomial-

time solvable when restricted to 2-peaked elections and r being a constant. In this

section, we show that the tractability of the problem does not hold when extended to

3-peaked elections.

Theorem 2.4. Both CCAV-r -Approval-UNI and CCAV-r -Approval-NON in 3-peaked

elections are NP-hard for every constant r ≥ 4.

Proof. We first prove the NP-hardness of CCAV-4-Approval-UNI in 3-peaked elections

by a reduction from Independent Set on bounded degree-3 graphs which is NP-

hard [130]. An independent set in a graph G = (V,E) is a subset S ⊆ V such that

every edge in E has at most one of its endpoints in S.

Independent Set on Bounded Degree-3 graphs (IS3)

Input: A bounded degree-3 graph G = (V,E) and a positive integer κ.

Question: Does G have an independent set containing exactly κ vertices?

For an instance F = (G, κ) of IS3, let I(G) be a 2-interval representation of G

which satisfies all conditions in Lemma 2.1. Let D(u),Γ and ~Γ be defined as in the

proof for Theorem 2.3. We construct an instance E = ((C ∪ {p}, ΠV), ΠT , L, R = κ)

of CCAV-4-Approval-UNI in 3-peaked elections as follows.

Candidates: C = Γ ∪ {p, c1, c2, c3}.

3-Harmonious Order: L = (~Γ, p, c1, c2, c3).

Registered Votes ΠV : The role of registered votes is to guarantee that all

candidates of Γ have the same score κ − 2. To this end, we first create κ − 2 votes

defined as (L[xi, xi+3],L(xi, x1],L(xi+3, c3]) for every i = 1, 5, . . . , 4b|Γ|/4c− 3. Then,

we create some further votes according to |Γ|.

Case 1. |Γ| ≡ 0 mod 4. We create no further vote.

Case 2. |Γ| ≡ 1 mod 4. We create additional κ − 2 votes defined as

(x|Γ|,L[c1, c3],L(x|Γ|, x1], p).

Case 3. |Γ| ≡ 2 mod 4. We create additional κ − 2 votes defined as

(x|Γ|−1, x|Γ|, c1, c2,L(x|Γ|−1, x1], p, c3).

40 2. Control in Multi-Peaked Elections

Case 4. |Γ| ≡ 3 mod 4. We create additional κ − 2 votes defined as

(L[x|Γ|−2, x|Γ|], c1,L(x|Γ|−2, x1], p, c2, c3).

Unregistered Votes ΠT : For each u ∈ V (G), let (xi, xj, xk) be

the order of D(u) with xi < xj < xk. We create a vote πu =

(xi, xj, xk, p,L(xi, x1],L(xi, xj),L(xj, xk),L(xk, p),L(p, c3]). Due to Lemma 2.1, ei-

ther xi or xk lies consecutively with xj in L; thus, all these unregistered votes have 3

peaks xα, xβ and p where {xα, xβ} ⊆ {xi, xj, xk} ({xα, xβ} depends on whether xj
lies consecutively with xi or with xk), with respect to L.

In the following, we prove that F is a yes-instance if and only if E is a yes-instance.

It is easy to see that, in the election with registered votes, SCV(x) = κ − 2 for all

x ∈ C \ {p, c1, c2, c3}, SCV(p) = 0 and SCV(c) ≤ κ− 2 for all c ∈ {c1, c2, c3}.

(⇒:) Suppose that F is a yes-instance and S is an independent set of size κ. Then

we add all votes corresponding to S, that is, all votes in {πu | u ∈ S}, to the registered

votes. Since S is an independent set, no two added votes approve a common candidate

except p; thus, each candidate except p has a final score at most κ − 1. Since each

added vote approves p, it follows that p has a final score of κ points, implying that p
becomes the unique winner after adding all votes corresponding to S to the registered

votes.

(⇐:) Suppose that E is a yes-instance and ΠS is a solution. Let E ′ be the final

election obtained from E by adding all the unregistered votes in ΠS to the registered

votes. Clearly, p has a score of κ points in E ′. Since p is the unique winner in E ′, for

every c ∈ C \ {p}, there is at most one vote in ΠS approving c. Thus, no two votes

in ΠS approve a common candidate except p. Due to the construction, the vertices

corresponding to the votes in ΠS must form an independent set.

The proof applies to CCAV-r -Approval-UNI in 3-peaked elections for any constant

r ≥ 5 by a similar modification as discussed in the proof of Theorem 2.3.

To prove CCAV-r -Approval-NON in 3-peaked elections for every r ≥ 4, we adapt

the above reductions. In particular, we adapt the above reductions so that every

candidate in Γ has the same score κ− 1 other than κ− 2. This can be done easily:

replace all appearances of “κ− 2” with “κ− 1”, and all appearances of “κ− 1” with

“κ” in the above reductions.

Now we discuss control by modifying candidates. Faliszewski, Hemaspaandra and

Hemaspaandra [111] proved that control by deleting candidates in 1-Approval is NP-

hard when restricted to Swoon-SP elections, for both the unique-winner model and the

nonunique-winner model. Since Swoop-SP elections are a subset of 2-peaked elections,

CCDC-1-Approval-UNI and CCDC-1-Approval-NON in k -peaked elections with k ≥ 2

are NP-hard. We strengthen this result by proving that both CCDC-1-Approval-UNI

and CCDC-1-Approval-NON in 3-peaked elections are W [1]-hard with the number of

deleted candidates as the parameter.

2.2. r -Approval Control 41

Theorem 2.5. Both CCDC-1-Approval-UNI and CCDC-1-Approval-NON are W [1]-

hard in 3-peaked elections, with respect to the number of deleted candidates.

Proof. We prove the theorem by FPT -reductions from Independent Set which

is W[1]-hard [87]. For a linear order ~A = (a1, a2, ..., an) over A = {a1, a2, ..., an}
and a subset B ⊆ A, denote by ~A \ B the linear order of A \ B obtained from
~A by deleting all elements in B. We first consider CCDC-1-Approval-UNI. For an

instance F = (G = (V,E), κ) of Independent Set we construct an instance E of

CCDC-1-Approval-UNI as follows.

Candidates: V ∪ {p, a, a1, a2, ..., aκ, b, b1, b2, ..., bκ}.

3-Harmonious Order: Let
−→
V = (c1, c2, ..., cn) be an (arbitrary

but fixed) order of V . Then, the 3-harmonious order L is given by

(bκ, bκ−1, ..., b1, b, p, a, a1, a2, ..., aκ, c1, c2, ..., cn).

Votes: There are seven types of votes.

(1) 2|E| − 1 votes defined as (L[a, cn],L[p, bκ]);

(2) 2|E| votes defined as (L[p, cn],L[b, bκ]);

(3) 2|E|+ κ− 1 votes defined as (L[b, bκ],L[p, cn]);

(4) for each edge {ci, cj} ∈ E(G) with i < j, create one vote defined as

(ci, cj,L[a, aκ],L[p, bκ],
−→
V \ {ci, cj});

(5) for each vertex ci, create one vote defined as (ci,L[p, aκ],L[b, bκ],
−→
V \ {ci})

and one vote defined as (ci,L[a, aκ],L[p, bκ],
−→
V \ {ci});

(6) κ+ 1 votes defined as (L[a1, cn],L[a, bκ]); and

(7) one vote defined as (L[b1, bκ],L[b, cn]).

It is easy to verify that all constructed votes are 3-peaked with respect to L.

Number of Added Candidates: R = κ.

(⇐:) It is easy to verify that F is a yes-instance implies E is a yes-instance: for

every independent set S of size κ, deleting the candidates S from the election clearly

make the distinguished candidate p become the unique winner.

(⇒:) Suppose that E is a yes-instance and S ′ is a solution with |S ′| ≤ κ. We

first observe that b 6∈ S ′. This observation is true, since otherwise, all candidates

in {b1, b2, ..., bκ} must be deleted, contradicting that |S ′| ≤ κ. The same argument

applies to the candidate a. However, in order to make p have a strictly higher score

than that of b, exactly κ candidates from V must be deleted so that p can get extra κ

points from the constructed votes of type (5). Since |S ′| ≤ κ, S ′ must be a subset of V .

Moreover, no two candidates c1, c2 ∈ S ′ are adjacent to each other in the graph G, since

42 2. Control in Multi-Peaked Elections

otherwise, the candidate a would get at least one extra point from the constructed

votes of type (4), and p cannot be the unique winner. Thus, S ′ forms an independent

set of size κ of G.

CCDC-1-Approval-NON in 3-peaked elections can be proved W[1]-hard by an

FPT -reduction obtained from the above reduction by creating one less vote of the

second type. That is, we create one less vote defined as (L[p, cn],L[b, bκ]).

2.3 Condorcet, Copeland and Maximin Control

In this section, we study the parameterized complexity of the control problems in 3,4-

peaked elections under Condorcet, Copelandα for every 0 ≤ α ≤ 1 and Maximin voting

correspondences. Recall that in the general case both the constructive control and the

destructive control by adding/deleting votes for Maximin and Copelandα for every

0 ≤ α ≤ 1 are NP-hard [110, 112]. Concerning Condorcet, the constructive control

by adding/deleting votes is NP-hard while the destructive control by adding/deleing

votes is polynomial-time solvable [157]. From the parameterized complexity point of

view, Liu and Zhu [184] proved that both the constructive control and the destructive

control by adding/deleting votes for Maximin are W [1]-hard in the general case, with

respect to the number of added/deleted votes. Moreover, Liu et al. [183] proved that

the constructive control by adding/deleting votes for Condorcet is W[1]-hard in the

general case, with respect to the number of added/deleted votes. However, their

reductions do not apply to 3,4-peaked elections. In this section, we complement their

results by proving a cluster of W[1]-hardness results for the control problems under

Condorcet, Maximin and Copelandα for every 0 ≤ α ≤ 1 in 3,4-peaked elections. Our

strategies to show these W [1]-hardness results in 3,4-peaked elections are technically

completely different from the ones used in [183, 184]. Our main results are summarized

in Table 2.2.

2.3.1 3-Peaked Elections

This section is devoted to the parameterized complexity of control problems in 3-

peaked elections under Maximin, Condorcet and Copelandα for every 0 ≤ α ≤ 1. We

first examine the Maximin voting. It has been proved that both constructive and

destructive control by adding votes are NP-hard for Maximin in general [110]. The

following theorem shows that both NP-hardness hold even in 3-peaked elections. In

fact, from the parameterized complexity point of view, we prove that both problems

are W [1]-hard with respect to the number of added votes.

2.3. Condorcet, Copeland and Maximin Control 43

nu
m

be
r

of
pe

ak
s

k

E
vi

de
nc

e
fo

r

k
=

1

k
=

3

k
≥

4

fo
r

al
l

C
C

D
C

C
C

D
C

A
V

D
V

A
V

D
V

A
V

D
V

A
V

D
V

k
=

3

k
=

4

C
on

do
rc

et

P
W

[1
]-
h

P

W
[1

]-
h

P
T

hm
2.

8
T

hm
2.

11

M
ax

im
in

W
[1

]-
h

W
[1

]-
h

W
[1

]-
h

T
hm

2.
6

T
hm

2.
9

C
op

el
an

d
α

W
[1

]-
h

W
[1

]-
h

W
[1

]-
h

T
hm

2.
7

T
hm

2.
10

Table 2.2: A summary of (parameterized) complexity of control problems under Condorcet,
Maximin and Copelandα in k -peaked elections. Here, “W[1]-h” stands for W[1]-hard and
“P” stands for polynomial-time solvable. Our results are in bold. Moreover, the results for
Copelandα apply to all 0 ≤ α ≤ 1. The W [1]-hardness results are with respect to the number
of added votes for the control by adding votes, and with respect to the number of deleted
votes for the control by deleting votes. Note that when k = m/2 + 1, k -peaked elections
are general elections, where m is the number of candidates. The polynomial-time solvability
results in single-peaked elections (1-peaked elections) are from [44]. The polynomial-time
solvability of the destructive control by adding/deleting votes for Condorcet is from [157].

44 2. Control in Multi-Peaked Elections

Theorem 2.6. DCAV-Maximin-UNI, DCAV-Maximin-NON, CCAV-Maximin-UNI

and CCAV-Maximin-NON in 3-peaked elections are all W [1]-hard with respect to the

number of added votes.

Proof. We first prove theW [1]-hardness for DCAV-Maximin-UNI in 3-peaked elections

by an FPT -reduction from Independent Set on 2-interval graphs which is W[1]-

hard [117]. For a given instance F = (I = (I1, I2, ..., In), κ) of the Independent Set

problem on 2-interval graphs, we construct an instance E for DCAV-Maximin-UNI in

3-peaked elections as follows. We denote by I1
i and I2

i the two intervals of Ii. Let D(Ii)

be the endpoints of Ii, and let Γ = ∪i∈[n]D(Ii). Moreover, let ~Γ = (x1, x2, ..., x|Γ|) be

the order of Γ with xi < xi+1 for all i ∈ [|Γ| − 1].

Candidates: C = Γ ∪ {p, q} where q is the distinguished candidate. Concretely,

for each x ∈ Γ, we create a candidate. For ease of exposition, we still use x to denote

the candidate corresponding to the endpoint x.

3-Harmonious Order: L = (q , ~Γ, p).

Registered Votes: We create 3κ− 1 registered votes in total. Concretely, we

create 2κ − 1 registered votes defined as L[q , p], and κ registered votes defined as

(p,L[q , x|Γ|]). The comparisons between every two candidates, based on the registered

votes, are summarized in Table 2.3.

p q xj(i < j) xj(i > j)

p - κ κ

q 2κ− 1 - 3κ− 1

xi 2κ− 1 0 3κ− 1 0

Table 2.3: Comparisons between every two candidates in the W[1]-hardness reduction for
DCAV-Maximin-UNI in Theorem 2.6. Each entry with row indicated by candidate c and
column indicated by candidate c′ is N(c, c′), the number of registered votes ranking c above
c′. Here, the value of N(·) is based on the registered votes.

Unregistered Votes: The unregistered votes are created according to the

intervals in F . Precisely, for every 2-interval Ii = {I1
i , I

2
i }, we create an unregistered

vote. Let xα and xβ with xα ≤ xβ denote the left endpoint and the right endpoint of

I1
i respectively, and xγ and xδ with xγ ≤ xδ denote the left endpoint and the right

endpoint of I2
i respectively. Without loss of generality, assume that I2

i is on the right

side of I1
i , that is xβ < xγ . The unregistered vote πIi corresponding to Ii is defined as

(L[xα, xβ],L[xγ, xδ], p,L[xα−1, x1],L[xβ+1, xγ−1],L[xδ+1, x|Γ|], q). See Figure 2.6 for an

illustration.

Number of Added Votes: R = κ.

2.3. Condorcet, Copeland and Maximin Control 45

P
re
fe
re
n
ce

q x1 xα−1 xα xβ xβ+1 xγ−1 xγ xδ xδ+1 x|Γ| p

Figure 2.6: An illustration of an unregistered vote corresponding to a 2-interval in the
NP-hardness reduction for DCAV-Maximin-UNI in 3-peaked elections in Theorem 2.6.

Now we come to show the correctness of the reduction. First observe that q is the

current winner with Maximin score 2κ− 1. Moreover, the Maximin score of q cannot

increase by adding unregistered votes to registered votes, since q is ranked below every

other candidate in every unregistered vote; and thus, q will have a Maximin score

2κ− 1 in the final election. Furthermore, every xi ∈ Γ cannot have a no less Maximin

score than that of q by adding at most κ votes. This is because N(xi, q) = 0 with

respect to the registered votes; and thus, the maximum Maximin score of every xi is

at most κ in the final election. Therefore, the only candidate which has chance to

have a no less score than q in the final election is the candidate p.

(⇒:) Suppose that F has an independent set S of size κ. We claim that q is

no longer the unique winner after adding all unregistered votes corresponding to S

to the registered votes. Let ΠS = {πI | I ∈ S} be the set of the unregistered votes

corresponding to S. Let E ′ be the final election obtained from E by adding all the

votes in ΠS to the registered votes. Due to the construction of the unregistered votes

and the fact that S is an independent set, we have that for every xi ∈ Γ there is at

most one vote in ΠS which ranks xi above p. This implies that NE ′(p, xi) ≥ 2κ − 1.

Moreover, since p is ranked above q in every unregistered vote, NE ′(p, q) = 2κ. It is

now easy to see q is no longer the unique winner.

(⇐:) Suppose that q is not the unique winner after adding at most κ unregistered

votes to the registered votes. Let ΠS be the unregistered votes added to the registered

votes. Due to the above discussion, we know that p has a no less Maximin score than

that of q in the final election. Since q has a Maximin score 2κ− 1 in the final election,

for every candidate xi there has to be at least κ− 1 votes in ΠS which rank p above

xi. Due to the construction of the unregistered votes, this happens only if there is an

independent set of size κ in F .

The proof for DCAV-Maximin-NON is similar to the proof for DCAV-Maximin-

UNI with the difference that in the construction we have one less registered vote

46 2. Control in Multi-Peaked Elections

defined as L[q , p].

To prove the CCAV-Maximin-NON, we adopt exactly the same construction as

for DCAV-Maximin-UNI but with p being the distinguished candidate. The reduction

applies to CCAV-Maximin-NON since under the construction, p is the only candidate

who has chance to replace q as the winner by adding at most κ unregistered votes, as

discussed above.

To prove the CCAV-Maximin-UNI, we need to adopt the construction for DCAV-

Maximin-NON and set p as the distinguished winner. The reason why the reduction

works here is the same as for CCAV-Maximin-NON.

Now we examine Copeland control in 3-peaked elections. Both constructive and

destructive control by adding votes are NP-hard for Copelandα for every 0 ≤ α ≤ 1

in general [112]. Same as the complexity we have proved for Maximin, we show that

both problems are indeed W[1]-hard even in 3-peaked elections, with respect to the

number of added votes.

Theorem 2.7. DCAV-Copelandα-UNI, DCAV-Copelandα-NON, CCAV-Copelandα-

UNI and CCAV-Copelandα-NON in 3-peaked elections are all W[1]-hard for every

0 ≤ α ≤ 1, with respect to the number of added votes.

Proof. We first show the proof for DCAV-Copeland0-NON in 3-peaked elections from

an FPT -reduction from the Independent Set problem on 2-interval graphs which is

W [1]-hard [117]. Given an instance F = (I = (I1, I2, ..., In), κ) of the Independent

Set problem on 2-interval graphs, we construct an instance E for DCAV-Copeland0-

NON in 3-peaked elections as follows. The notations I1
i , I

2
i , D(Ii),Γ and ~Γ hereinafter

are defined in the same way as in the proof of Theorem 2.6.

Candidates: C = Γ ∪ {p, q , y} where q is the distinguished candidate.

3-Harmonious Order: L = (q , ~Γ, p, y).

Registered Votes: We create 3κ− 3 registered votes in total. Concretely, we

create 2κ− 3 registered votes defined as (q , y,L[x1, p]), and κ registered votes defined

as (p, q , y,L[x1, x|Γ|]). It is easy to verify that q is a Copeland0 winner (precisely, q is

the current unique winner). The comparisons between every two candidates, base on

the registered votes, are summarized in Table 2.4.

Unregistered Votes: The unregistered votes are created according to the

intervals in F . Precisely, for every 2-interval Ii = {I1
i , I

2
i }, we create an unregistered

vote. Let xα and xβ with xα ≤ xβ denote the left endpoint and the right endpoint of

I1
i respectively, and xγ and xδ with xγ ≤ xδ denote the left endpoint and the right

endpoint of I2
i respectively. Without loss of generality, assume that I2

i is on the right

side of I1
i , that is xβ < xγ . The unregistered vote πIi corresponding to Ii is defined as

(L[xα, xβ],L[xγ, xδ], p, y,L[xα−1, x1],L[xβ+1, xγ−1],L[xδ+1, x|Γ|], q).

2.3. Condorcet, Copeland and Maximin Control 47

p q xj(i < j) xj(i > j) y

p - κ κ

q 2κ− 3 - 3κ− 3

xi 2κ− 3 0 3κ− 3 0

y 2κ− 3 0 3κ− 3 -

Table 2.4: Comparisons between every two candidates in the W[1]-hardness reduction for
DCAV-Copeland0-NON in Theorem 2.7. Each entry with row indicated by candidate c and
column indicated by candidate c′ is N(c, c′), the number of registered votes ranking c above
c′. Here, the value of N(c, c′) is based on the registered votes.

Number of Added Votes: R = κ.

Now we prove the correctness.

(⇒:) Suppose that F has an independent set S of size κ. Consider the election

E ′ obtained from E by adding all the unregistered votes in ΠS = {πI | I ∈ S}
corresponding to S to the registered votes. We have in total 4κ− 3 votes in E ′. Since

p is ranked above q and y in every unregistered vote, p beats both q and y in E ′. Due

to the construction of the unregistered votes and the fact that S is an independent

set, for every xi ∈ Γ there is at most one unregistered vote in ΠS which ranks xi
above p. Therefore, NE ′(p, xi) ≥ 2κ− 1, implying that p beats every candidate xi ∈ Γ.

Summary all above, p beats every other candidate in E ′, implying that q is no longer

a Copeland0 winner.

(⇐:) Suppose that ΠS is the multiset of unregistered votes added to the registered

votes which makes q no longer a Copeland0 winner. Here, the index S is the set of

2-intervals corresponding to ΠS in F . Let E ′ be the final election obtained from E by

adding all votes in ΠS to the registered votes. We first illustrate that the candidate p
is the only one which has chance to have a no less Copeland0 score than that of q in

E ′. Observe first that the comparisons between the candidates y and q , and between

every candidate xi and q cannot be changed by adding at most κ unregistered votes.

Therefore, the candidate q beats y and every xi in E ′. In this case, in order to prevent

q from being a Copeland0 winner, q has to be beaten by p in E ′, since otherwise, q
would beat every other candidate and thus remains the winner (actually remains as

the Condorcet winner). However, once q is beaten by p in E ′, y is also beaten by p in

E ′. Hence, y has no chance to have a strictly greater Copeland0 score than that of q .

Analogously, every xi ∈ Γ cannot have a strictly greater Copeland0 score than that of

q since every xi is beaten by y and q in E ′. Therefore, the only candidate which has

chance to have a no less score than that of q is the candidate p. Since q beats every

candidate except p, in order to make p have a no less score than that of q , p has to

beat every other candidate. This happens only if ΠS contains κ unregistered votes,

48 2. Control in Multi-Peaked Elections

x1 x3 x7 x8x2 x4 x6x5 Figure 2.7: An illustration of the restriction in the
W[1]-hardness reduction for DCAV-Copeland0-UNI
in Theorem 2.7. Once two 2-intervals intersect, they
intersect at more than one point.

and moreover, for every candidate xi there is at most one vote in ΠS ranking xi above

p. The latter condition directly implies that S, the set of 2-intervals corresponding to

the votes in ΠS, is an independent set, and the former condition implies that |S| = κ.

The proof for DCAV-Copeland0-NON is finished.

The above reduction does not apply to DCAV-Copeland0-UNI directly, since, in

this case, q could also become not a unique-winner when there is no independent set

of size κ for F . To check this, consider the situation where p is beaten by some x ∈ Γ

(but p beats every other candidate in Γ) in the final election. This can happen when

we add two unregistered votes corresponding to two 2-intervals which intersect only at

x to the election. In this situation, p beats every other candidate except x and q beats

every other candidate except p, implying that q is no longer a unique winner. In order

to prove the hardness of DCAV-Copeland0-UNI, we need to restrict the 2-intervals in

F in such a way that once two 2-intervals intersect, they do not intersect at only one

point, but in a non-trivial interval. See Figure 2.7 for an illustration. This restriction

does not change the W [1]-hardness of the Independent Set problem on 2-interval

graphs [117]. Under this restriction, once two unregistered votes corresponding to

two 2-intervals that intersect are added to the registered votes, p will be beaten by at

least two candidates in Γ, implying that p cannot prevent q from being the unique

Copeland0 winner if there is no independent set of size κ for F . Remaining other

parts of the proof the same as for DCAV-Copeland0-NON, the W[1]-hardness for

DCAV-Copeland0-UNI follows.

Now we move to the hardness of CCAV-Copeland0-UNI. The reduction is exactly

the same as for DCAV-Copeland0-NON with only the difference that we set p as the

distinguished candidate. We have argued in the proof for DCAV-Copeland0-NON that

if F is a yes-instance, p can be made the Copeland0 unique-winner in the final election.

Our argument for the other direction is also the same as for DCAV-Copeland0-NON.

Actually, the argument can be simpler here since we do not need to argue that y

and every x ∈ Γ have no chance to be the final winner, since we have set p as the

distinguished candidate.

The proof for CCAV-Copeland0-NON is exactly the same as for DCAV-Copeland0-

UNI with only the difference that p is the distinguished candidate. On the one

hand, if there is an independent set of size κ, we can make p a winner by adding the

unregistered votes corresponding to the independent set. On the other hand, if there

is no independent set of size κ, there must be at least two candidates in Γ, which

are ranked above p simultaneously in two unregistered votes that are added to the

registered votes, implying that p cannot be a winner in the final election. To check the

2.3. Condorcet, Copeland and Maximin Control 49

latter argument, one should first observe that we cannot make p a winner by adding

at most κ− 1 unregistered votes: if this is the case, there must be no less than two

candidates from Γ which beat or tie p; however, q beats every other candidate except

p (if adding less than κ− 2 unregistered votes, q will beat every other candidate).

x1 x3 x7 x8x2 x4 x6x5

d 1
1−αe many candidates d 1

1−αe d 1
1−αe

Figure 2.8: An illustration of the dummy candidates in the W[1]-hardness reduction for
DCAV-Copelandα-UNI in Theorem 2.7. The figure on the left side shows two 2-intervals
(the black one above and the gray one below) which intersect in a non-trivial interval [x2, x3].
Moreover, there is no other 2-interval whose endpoint is in [x2, x3]. We create exactly d 1

1−αe
dummy candidates between x2 and x3 (including x2 and x3). The figure on the right side
shows four 2-intervals, with only one interval of each 2-intervals is showed. There are d 1

1−αe
candidates corresponding to the intersection (this is a minimal intersection since no other
2-interval has any of its endpoints in this intersection) of the second 2-interval and the fourth
2-interval, and d 1

1−αe candidates corresponding to the intersection (a minimal intersection)
of the first 2-interval and the third 2-interval.

Now we come to Copelandα control for every 0 < α < 1. In the following, let α

be a fixed real number with 0 < α < 1. We first consider DCAV-Copelandα-UNI. The

W [1]-hardness reduction is adapted from that for DCAV-Copeland0-UNI by creating

polynomially many dummy candidates. The role of these dummy candidates is to

enlarge the score gap between p and q to a certain extent, when two unregistered

votes corresponding to two intersected 2-intervals are added to the registered votes;

hence guarantees that q would be still the unique winner when a multiset of at most

κ unregistered votes corresponding to a non independent set are added. To this end,

we also adopt the same restriction on 2-intervals here as for DCAV-Copeland0-UNI:

every two 2-intervals either do not intersect or they intersect in a non-trivial interval.

Precisely, we create these dummy candidates in a way so that any intersection of

two 2-intervals corresponds to no less than d 1
1−αe such dummy candidates. To this

end, we do the following. We call an intersection [x1, x2] with x1 < x2 of two 2-

intervals a minimal intersection if there is no other 2-interval which has at least one

of its endpoints in [x1, x2]. Clearly, given a 2-interval representation of an instance

of Independent Set on 2-interval graphs, all minimal intersections can be found

in polynomial time. Apart from creating all the candidates as in the reduction for

DCAV-Copeland0-UNI, we create, for each minimal intersection [x1, x2], a set of d 1
1−αe

dummy candidates which lie in distinguished places in [x1, x2]. See Figure 2.8 for an

illustration. This construction ensures that p can prevent q from being the unique

winner only if p beats every other candidate in the final election. The observation

is that if p ties or be beaten by some candidate x ∈ Γ, then p also ties or be beaten

50 2. Control in Multi-Peaked Elections

by no less than d 1
1−α − 1e other candidates. The amount d 1

1−αe is enough to make

p have a strictly less score than that of q ; and hence cannot prevent q from being

the unique winner. However, p beats every other candidate if and only if there is

an independent set of size κ for F , implying the correctness of the reduction. The

proofs for other three problems DCAV-Copelandα-NON, CCAV-Copelandα-UNI and

CCAV-Copelandα-NON are adapted from DCAV-Copeland0-NON, CCAV-Copeland0-

UNI and CCAV-Copeland0-NON, respectively. The constructions are analogous to

the above reduction.

Finally we consider Copeland1. The reductions for the four problems DCAV-

Copeland1-UNI, DCAV-Copeland1-NON, CCAV-Copeland1-UNI, CCAV-Copeland1-

NON are adapted from DCAV-Copeland0-UNI, DCAV-Copeland0-NON, CCAV-

Copeland0-UNI, CCAV-Copeland0-NON, respectively. Precisely, each reduction is

different from the corresponding one in the way that we set R = κ − 1. Moreover,

instead of searching for an independent set of size κ, we search for an independent set

of size κ− 1.

Now we come to Condorcet. The following theorem summarizes our findings for

constructive control by adding votes for Condorcet in 3-peaked elections. Recall that

in general, the constructive control by adding votes for Condorcet is NP-hard, while

the destructive control by adding votes is polynomial-time solvable [157].

Theorem 2.8. CCAV-Condorcet-UNI and CCAV-Condorcet-NON in 3-peaked elec-

tions are W [1]-hard with respect to the number of added votes.

Proof. The proof for CCAV-Condorcet-UNI is exactly the same as for CCAV-

Copeland0-UNI. The proof for CCAV-Condorcet-NON is similar to the one for CCAV-

Condorcet-UNI with the difference that we create one more registered vote defined as

(q , y,L[x1, p]).

2.3.2 4-Peaked Elections

In the previous sections, we have discussed control by adding votes in 3-peaked

elections. In this section, we consider control by deleting votes in 4-peaked elections

for Condorcet, Copelandα for every 0 ≤ α ≤ 1 and Maximin. We first examine the

Maximin voting. It is known that both constructive and destructive control by deleting

votes are NP-hard for Maximin in general [110]. The following theorem shows both

problems are W[1]-hard even in 4-peaked elections, with respect to the number of

added votes.

2.3. Condorcet, Copeland and Maximin Control 51

Theorem 2.9. CCDV-Maximin-UNI, CCDV-Maximin-NON, DCDV-Maximin-UNI

and DCDV-Maximin-NON are W[1]-hard in 4-peaked elections, with respect to the

number of deleted votes.

Proof. Our FPT -reductions are again from Independent Set on 2-interval graphs

which is W[1]-hard [117]. Moreover, we adopt another restriction on the 2-intervals

(different from the one in the proof of Theorem 2.7). For two 2-intervals I and J , we say

I covers J if J ⊆ I. See Figure 2.9 for an illustration. We restrict the given instance

of Independent Set on 2-interval graphs in a way so that there is no 2-interval

which is covered by another 2-interval. This does not change the W [1]-hardness of the

problem [117].

(a) (b) (c)

Figure 2.9: This figure shows three different ways of how a red 2-interval covers a blue
2-interval. The two 2-intervals are draw on different levels for the sake of clarity. However,
they are actually both defined on the real line.

Let F = (I = (I1, I2, ..., In), κ) be a given instance of Independent Set on

2-interval graphs. The following construction applies to both CCDV-Maximin-UNI and

DCDV-Maximin-NON. We will discuss the construction for the other two problems

later. Hereby, I1
i , I

2
i , D(Ii),Γ = ∪iD(Ii) and ~Γ = (x1, x2, ..., x|Γ|) are defined in the

same way as in the proof of Theorem 2.6.

Candidates: C = Γ∪{p, q , x0}, where p is the distinguished candidate in CCDV-

Maximin-UNI, while q is the distinguished candidate in DCDV-Maximin-NON.

4-Harmonious Order: L = (q , x0, ~Γ, p).

Votes: We create 4n − κ + 2 votes in total. Concretely, we first create the

following 2n− κ+ 2 votes (number of votes: votes represented by linear orders).

n : (L[x0, p], q)

n− κ : (L[p, x0], q)

2 : (p, q ,L[x0, x|Γ|])

Then, for every 2-interval Ii = {I1
i , I

2
i } of F , we create two votes πI1i and πI2i as

follows. Let xα and xβ with xα ≤ xβ denote the left endpoint and the right endpoint

of I1
i , respectively, and xγ and xδ with xγ ≤ xδ denote the left endpoint and the right

endpoint of I2
i , respectively. Without loss of generality, assume that I2

i is on the right

side of I1
i , that is xβ < xγ. The two votes corresponding to Ii are defined as follows.

πI1i = (L[q , xα−1],L(xβ, xγ),L(xδ, p],L[xα, xβ],L[xγ, xδ]);

52 2. Control in Multi-Peaked Elections

πI2i = (q ,L[xα, xβ],L[xγ, xδ], p,L[x0, xα−1],L(xβ, xγ),L(xδ, x|Γ|]).

It is easy to check that πI1i has three peaks q , xβ, xδ, and πI2i has four peaks

q , xα, xγ, p. In the following, let Π1 = {πI1i | i = 1, 2, ..., n} and Π2 = {πI2i | i =

1, 2, ..., n}.

Number of Deleted Votes: R = κ.

We denote by E the above constructed election instance. The comparisons between

every two candidates are shown in Table 2.5.

p q xj(j > i) xj(j < i)

p - 2n− κ+ 2 2n− κ+ 2

q 2n - 2n+ 2

xi 2n 2n− κ × ×

Table 2.5: Comparisons between every two candidates for the W [1]-hardness reductions for
CCDV-Maximin-UNI and DCDV-Maximin-NON in Theorem 2.9. The comparisons between
xi and xj are marked with × since they cannot be exactly determined. However, they do
not play any role in the correctness argument. What is important for xi is the comparison
between xi and q , which implies that the final Maximin score of every xi can be at most
2n− κ.

It is clear that q has the maximum Maximin score 2n and is thus the unique

Maximin winner. We now show the correctness for the CCDV-Maximin-UNI.

(⇒:) Suppose that F has an independent set S of size κ. We claim that we can

make p the unique Maximin winner by deleting votes corresponding to S in Π1. Let

ΠS = {πI1 | I ∈ S} be the set of the votes corresponding to S in Π1, and let E ′ be the

final election obtained from E by deleting all votes in ΠS. Since S is an independent

set, we have that for every xi ∈ Γ there is at most one vote in ΠS which ranks p above

xi. This implies that NE ′(p, xi) ≥ 2n − κ + 1 for every xi ∈ Γ. Moreover, since q is

ranked above p in every vote in ΠS, NE ′(p, q) = 2n − κ + 2 and NE ′(q , p) = 2n − κ.

Therefore, the Maximin score of p is at least 2n− κ+ 1 while the Maximin score of q
is at most 2n− κ. Finally, since q is ranked above every xi ∈ Γ in every vote in ΠS,

we have that NE ′(xi, q) = 2n− κ, implying that every xi has a Maximin score at most

2n− κ. Summary all above, we know that p is the unique winner with Maximin score

at least 2n− κ+ 1 in the final election.

(⇐:) Suppose that E is a yes-instance. Let ΠS be a solution of E , and E ′ be

the final election obtained from E by deleting all votes in ΠS. Observe first that ΠS

contains no vote which ranks p above q , since otherwise, NE ′(p, q) ≤ 2n− κ+ 1 and

NE ′(q , p) ≥ 2n− κ+ 1, contradicting with the fact that p is the unique winner in E ′.
Since we can delete at most κ votes and the Maximin score of q is 2n in the original

2.3. Condorcet, Copeland and Maximin Control 53

election E , the final Maximin score of q is at least 2n− κ. Since p is the unique winner

in the final election E ′, the Maximin score of p is at least 2n− κ+ 1 in E ′. Therefore,

for every xi ∈ Γ there is at most one vote in ΠS which ranks p above xi. Due to the

fact, we have the following claim.

Claim. ΠS contains no vote in Π2.

(Proof of the Claim.) We prove the claim by contradiction. Suppose that

πI2i ∈ ΠS ∩Π2 is a vote corresponding to a 2-interval Ii. Let A be the set of candidates

which lie in the 2-interval Ii. Due to the construction, all the candidates in Γ \ A
are ranked below p. Let Ij be another 2-interval which corresponds to another vote

πIuj 6= πI2i (observe that ΠS contains at least two votes, since otherwise q would have a

too large Maximin score). Let B be the set of candidates which lie in the 2-interval

Ij. Due to the restriction of the instance, we know that B \ A 6= ∅. Therefore, u 6= 1,

since otherwise, both πIuj and πI2i rank p above every candidate in B \ A. However, it

also cannot be the case that u = 2, since otherwise, both πIuj and πI2i rank p above the

candidate x0
iii. See Figure 2.10 for an illustration.

q x0 xt p q x0 xt p
Figure 2.10: An illustration of the Claim in the proof of Theorem 2.9. Here, t = |Γ| In both
the left-hand figure and the right-hand figure. Most comparisons among the candidates in Γ
are not explicitly showed. Moreover, the figure on the left side shows the case that u = 1,
and the figure on the right side shows the case that u = 2. In either case, the candidates lie
in the green interval are ranked below p in the two votes corresponding to the red 2-interval
and the blue 2-interval.

Due to the above claim, we know that ΠS ⊆ Π1. Let S be the set of 2-intervals

corresponding to ΠS. Since for every xi ∈ Γ there is at most one vote in ΠS which

ranks p above xi, there is no two 2-intervals in S which intersect, implying that F has

an independent set of size κ.

To check that the same reduction applies to DCDV-Maximin-NON, observe

first that no xi ∈ Γ can have a higher Maximin score than that of q in the final

election: since NE ′(xi, q) = 2n− κ,NE ′(q , p) = 2n and we can delete at most κ votes,

every xi would have a Maximin score at most 2n− κ and q would have a Maximin

score at least 2n − κ in the final election. Due to the above analysis, p is the only

candidate which can prevent q from being a winner. This turns the problem into

exactly CCDV-Maximin-UNI. The above argument for CCDV-Maximin-UNI then

works.
iiiThe dummy candidate x0 can be deleted from the construction without destroying the correctness.

However, the introducing of x0 simplifies the exposition of the proof.

54 2. Control in Multi-Peaked Elections

p q xj(j > i) xj(j < i)

p - 2n− κ+ 1 2n− κ+ 1

q 2n - 2n+ 1

xi 2n 2n− κ × ×

Table 2.6: Comparisons between every two candidates in the W[1]-hardness reductions for
CCDV-Maximin-NON and DCDV-Maximin-UNI in Theorem 2.9. The comparisons between
xi and xj are marked with × since they cannot be exactly determined. However, they do
not play any role in the correctness argument. What is important for xi is the comparison
between xi and q , which implies that the final Maximin score of every xi can be at most
2n− κ.

Now we discuss the reductions for CCDV-Maximin-NON and DCDV-Maximin-

UNI. Analogously, we adopt the same reduction as discussed above for CCDV-Maximin-

UNI, with only the difference that we create only one vote defined as (p, q ,L[x0, x|Γ|]),

other than two. Moreover, in CCDV-Maximin-NON we set p as the distinguished

candidate, while in DCDV-Maximin-UNI we set q as the distinguished candidate. The

comparisons between every two candidates are shown in Table 2.6. The correctness

argument for CCDV-Maximin-NON and DCDV-Maximin-UNI is similar to that for

CCDV-Maximin-UNI and DCDV-Maximin-NON, respectively. The difference is that

for CCDV-Maximin-NON and DCDV-Maximin-UNI, we argue that p can have a no

less Maximin score than that of q by deleting at most κ votes if and only if there is an

independent set of size κ, other than requiring p to have a strictly higher Maximin

score than that of q in the final election as for CCDV-Maximin-UNI and DCDV-

Maximin-NON. This difference is accurately reflected in the one less creation of the

vote defined as (p, q ,L[x0, x|Γ|]).

Now we study Copelandα control by deleting votes in 4-peaked elections. Recall

that in general, both the constructive control and the destructive control by deleting

votes for Copelandα are NP-hard, for every 0 ≤ α ≤ 1 [112]. Our results concerning

the same problems in 4-peaked elections are summarized in the following theorem.

Theorem 2.10. CCDV-Copelandα-UNI, CCDV-Copelandα-NON and DCDV-

Copelandα-UNI and DCDV-Copelandα-NON for every 0 ≤ α ≤ 1 are W[1]-hard

in 4-peaked elections, with respect to the number of deleted votes.

Proof. Our reductions are again from the Independent Set problem on 2-interval

graphs. Moreover, we adopt the restriction on 2-intervals as in the proof of Theorem 2.7

that every two 2-intervals either do not intersect or intersect at more than one

point. This does not change the W [1]-hardness of the problem [117]. Given instance

F = (I = (I1, I2, ..., In), κ) of the Independent Set problem on 2-interval graphs,

we construct instances E for the problems stated in Theorem 2.10 as follows. We first

2.3. Condorcet, Copeland and Maximin Control 55

consider CCDV-Copelandα-UNI, CCDV-Copelandα-NON and DCDV-Copelandα-NON.

Hereby, I1
i , I

2
i , D(Ii),Γ = ∪i∈[n]Ii and ~Γ = (x1, x2, ..., x|Γ|) are defined in the same way

as in the proof of Theorem 2.6.

Candidates: C = Γ ∪ {p, q}.

4-Harmonious Order: L = (q , ~Γ, p).

Votes: We create 4n− κ+ 1 votes in total. Precisely, we first create 2n− κ+ 1

votes as follows (number of votes: votes represented by linear orders).

n− 1 : (L[x1, p], q)

n− κ+ 2 : (p,L[q , x|Γ|])

Then, for every 2-interval Ii = {I1
i = [xα, xβ], I2

i = [xγ, xδ]} of F we create two

votes. Without loss of generality, assume that I2
i is on the right side of I1

i , that is

xβ < xγ. The two votes corresponding to Ii are defined as follows.

πI1i = (L[q , xα−1],L(xβ, xγ),L(xδ, p],L[xα, xβ],L[xγ, xδ]);

πI2i = (q ,L[xα, xβ],L[xγ, xδ], p,L[x1, xα−1],L(xβ, xγ),L(xδ, x|Γ|]).

In the following, let Π1 = {πI1i | i = 1, 2, ..., n} and Π2 = {πI2i | i = 1, 2, ..., n}. It

is easy to verify that all votes have at most 4 peaks with respect to the 4-harmonious

order L.

Number of Deleted Votes: R = κ.

The comparisons between every two candidates are shown in Table 2.7.

p q xj(j > i) xj(j < i)

p - 2n− κ+ 1 2n− κ+ 2

q 2n - 3n− κ+ 2

xi 2n− 1 n− 1 × ×

Table 2.7: Comparisons between every two candidates in the W[1]-hardness reductions
for CCDV-Copelandα-UNI, CCDV-Copelandα-NON and DCDV-Copelandα-NON in Theo-
rem 2.10. The comparisons between xi and xj cannot be exactly determined. However, their
comparisons do not paly any role in the correctness argument.

Now we prove the correctness for CCDV-Copelandα-UNI.

(⇒:) Suppose that F has an independent set S of size κ. We claim that we can

make p the unique Copelandα winner by deleting votes corresponding to S in Π1. Let

ΠS = {πI1 | I ∈ S} be the set of the votes corresponding to S in Π1, and let E ′ be the

final election obtained from E by deleting all votes in ΠS. Since S is an independent

set, we have that for every xi ∈ Γ there is at most one vote in ΠS which ranks p

56 2. Control in Multi-Peaked Elections

above xi. This implies that NE ′(p, xi) ≥ 2n − κ + 1 for every xi ∈ Γ, and hence, p
beats every xi ∈ Γ in E ′. Moreover, since q is ranked above p in every vote in ΠS,

NE ′(p, q) = 2n− κ+ 1. Therefore, p beats q in E ′. Summary all above, we know that

p beats every other candidate in E ′; and thus, p is the unique Copelandα winner (more

precisely, p is the Condorcet winner in E ′).

(⇐:) Suppose that E is a yes-instance. Let ΠS be a solution of E , and E ′ be the

final election obtained from E by deleting all votes in ΠS. Clearly, E ′ contains at least

4n− 2κ+ 1 votes. Since NE ′(q , xi) ≥ NE(q , xi)− κ = 3n− 2κ+ 2 and κ ≤ n, we know

that q beats every candidate xi ∈ Γ in the final election. Since p is the unique winner

in E ′, we know that ΠS contains no vote which ranks p above q (otherwise, q would

also beat p, contradicting with the fact that p is the unique winner in E ′). Moreover,

we know that p beats every candidate xi ∈ Γ in E ′. Since the final election contains at

least 4n− 2κ+ 1 votes and NE(p, xi) = 2n− κ+ 2, p beats every xi ∈ Γ in the final

election if there is at most one vote in ΠS which ranks p above xi. Due to the fact, we

have the following claim.

Claim. ΠS contains no vote in Π2.

The correctness of the above claim follows from the proof of the Claim in the proof

of Theorem 2.9. Due to the above claim, we know that ΠS ⊆ Π1. Let S be the set of

2-intervals corresponding to ΠS. Since for every xi ∈ Γ there is at most one vote in ΠS

which ranks p above xi, there is no two 2-intervals in S which intersect, implying that

F has an independent set of size κ. This finishes the proof for CCDV-Copelandα-UNI.

Now we argue why the same reduction applies to CCDV-Copelandα-NON. We

have showed above that if there is an independent set of size κ, we can make p a (unique)

winner. It remains to show the other direction. We begin with two observations. First,

observe that we have to delete exactly κ votes to make p a winner, since otherwise,

q would beat every other candidate. Second, observe that q beats every candidate

xi ∈ Γ in the final election no matter which κ votes are deleted (this observation has

been discussed above). Then, recall that every two 2-interval either do not intersect or

they intersect at more than one point. Therefore, if we delete two votes which rank p
above some candidate xi, there must be another candidate xj 6= xi which are ranked

below p in both of the two votes. This implies that p beats every candidate in xi ∈ Γ

in the final election (otherwise, p would be beaten by at least two candidates in Γ,

contradicting with the fact that p is a winner in E ′). However, p beats every candidate

in Γ only if there is an independent set of size κ for F as discussed above. This finishes

the proof for CCDV-Copelandα-NON.

To check that the same reduction applies to DCDV-Copelandα-NON, observe

first that no xi ∈ Γ can have a higher Copelandα score than that of q in the final

election—every xi is beaten by q in the final election. Due to this, p is the only

candidate which can prevent q from being a winner. This turns the problem into

exactly CCDV-Copelandα-UNI. The argument for CCDV-Copelandα-UNI then works.

2.3. Condorcet, Copeland and Maximin Control 57

p q q′ xj(j > i) xj(j < i)

p - 2n− κ+ 1 2n− κ+ 1 2n− κ+ 2

q 2n - 4n− κ+ 1 3n− κ+ 2

q′ 2n 0 - 3n− κ+ 2

xi 2n− 1 n− 1 n− 1 × ×

Table 2.8: Comparisons between every two candidates in the W[1]-hardness reduction for
DCDV-Copelandα-UNI in Theorem 2.10. The comparisons between xi and xj cannot be
exactly determined. However, their comparisons do not paly any role in the correctness
argument.

Now we consider DCDV-Copelandα-UNI. The reduction is similar to the above

one with the difference that we create one more dummy candidate q′ which lies

immediately on the right side of q in the 4-harmonious order. That is, the candidate

set is Γ ∪ {p, q , q′} with q being the distinguished candidate, and the 4-harmonious

order is (q , q′, ~Γ, p). The role of the dummy candidate q′ is to guarantee that, in the

final election, every candidate in Γ is beaten by both q and q′; and thus, exclude the

possibility that some xi would have a higher score than that of q in the final election.

To achieve this goal, we rank q′ immediately after q in every vote and remains the

order of other candidates unchanged. Precisely, we create the following votes.

n− 1 : (L[x1, p], q , q′)

n− κ+ 2 : (p,L[q , x|Γ|])

Besides, for every 2-interval Ii = {I1
i = [xαx,β], I2

i = [xγ, xδ]} with xβ < xγ, we

create two votes as follows.

(L[q , q′, xα−1],L(xβ, xγ),L(xδ, p],L[xα, xβ],L[xγ, xδ]);

(q , q′,L[xα, xβ],L[xγ, xδ], p,L[x1, xα−1],L(xβ, xγ),L(xδ, x|Γ|]).

The comparisons between every two candidates are shown in Table 2.8.

We have discussed that if there is an independent set of size κ, the candidate p can

prevent q from being the unique winner by deleting κ votes. For the other direction,

observe first that no candidate xi ∈ Γ can have a higher score than that of q since

every xi is beaten by both q and q′ in the final election. Clearly, q′ also cannot prevent

q from being the unique winner since every vote ranks q above q′. Therefore, the only

candidate which can prevent q from being the unique winner is p, and moreover, this

happens only if p beats every candidate in Γ. The remaining argument is the same as

for CCDV-Copelandα-UNI.

58 2. Control in Multi-Peaked Elections

The last problems we consider are constructive control by deleting votes for

Condorcet in 4-peaked elections. Recall that the constructive control by deleting votes

for Condorcet is NP-hard in general, while destructive control by deleting votes is

polynomial-time solvable [157].

Theorem 2.11. CCDV-Condorcet-UNI and CCDV-Condorcet-NON are W [1]-hard in

4-peaked elections with respect to the number of deleted votes.

Proof. The proof for CCDV-Condorcet-UNI is exactly the same as for CCDV-

Copelandα-UNI, and the proof for CCDV-Condorcet-NON is exactly the same as

for CCDV-Copelandα-UNI in Theorem 2.10.

2.4 Conclusion

In this section, we have studied k -peaked elections which generalize the single-peaked

elections by allowing at most k -peaks in each vote. We derived a dichotomy of the

complexity of control problems for r -Approval voting in k -peaked elections with respect

to k . Several of our results apply to approval voting and SP-AV as well. Furthermore,

we have studied control problems for Maximin, Copelandα for every 0 ≤ α ≤ 1 and

Condorcet from the parameterized complexity point of view. We proved that, except

the destructive control by adding/deleting votes for Condorcet which is polynomial-

time solvable in general, the constructive/destructive control by adding/deleting votes

for all these three voting systems are W[1]-hard in k -peaked elections with k = 3, 4,

with respect to the number of added/deleted votes. In particular, control by adding

votes turned out to be W [1]-hard in 3-peaked elections, while control by deleting votes

turned out to be W[1]-hard in 4-peaked elections. All our results apply to both the

unique-winner model and the nonunique-winner model. Our results are summarized

in Tables 2.1 and 2.2.

Several challenging and intriguing questions remain open. Among them are the

complexity of control by adding votes in 2-peaked elections and control by deleting

votes in 2,3-peaked elections. See Table 2.2 for further details. It is well-known that

determining whether an election is single-peaked is polynomial-time solvable [81, 103,

158]. However, we do not know whether the polynomial-time solvability holds in

checking whether an election is 2-peaked elections. More generally, we do not know

the complexity of checking whether an election is k -peaked with k being a constant.

3
Control in Elections with

Bounded Single-Peaked Width
The concept of single-peaked width provides another prominent approach to generalize

single-peaked elections. It can arise in the settings where the candidates are divided into

groups, with each including the candidates which are similar each other. The similarity of

the candidates in the same group leads to the fact that every voter ranks them together.

Therefore, in these settings, preferences of voters over the candidates can be determined in

two steps. First, voters present their preferences over the groups. Then, the voters present

their preferences over all the candidates in every group. Elections with single-peaked with

k are the elections where each group contains at most k candidates, and moreover, the

preferences over the groups are single-peaked with respect to a harmonious order over the

groups. In this chapter, we study control problems in elections with bounded single-peaked

width.

60 3. Control in Elections with Bounded Single-Peaked Width

3.1 Introduction

In this chapter, we mainly study control problems in elections with bounded single-

peaked width. Intuitively, in an election with single-peaked width k , the candidates

can be grouped together, where the size of each group is bounded by k , and for each

group, every voter has the same preferences over all candidates in this group compared

to candidates not in the group. Moreover, if considering each group as a candidate,

the election is single-peaked. Clearly, single-peaked elections have a width equal to

one. Cornaz, Galand and Spanjaard [70] first introduced single-peaked width into the

complexity study of voting problemsi. In particular, they considered a multi-winner

determination problem (the proportional representation problem) and proved that

this problem is FPT with respect to single-peaked width. Later, Cornaz, Galand and

Spanjaard [71] showed that the Kemeny winner determination is FPT with respect

to single-peaked width.

In this chapter, we study three concrete voting correspondences, namely, (weak)

Condorcet, Copelandα for every 0 ≤ α ≤ 1, and Maximin. Recall that in the

general case, the following problems are all NP-hard: the constructive control by

adding/deleting votes for Condorcet [157], the constructive/destructive control by

adding/deleting votes for Copelandα for every 0 ≤ α ≤ 1 [112], and the construc-

tive/destrutive control by adding/deleting votes for Maximin [110]. Our results are

summarized as follows. Concerning the constructive control problems, we achieved

NP-hardness for Copelandα with 0 ≤ α < 1 even with single-peaked width k = 2,

while for Copeland1 and Maximin, we show polynomial-time solvability with k = 2 but

NP-hardness with k = 3. In contrast, the constructive control problems for (weak)

Condorcet turn out to be polynomial-time solvable for every fixed k . More precisely,

we prove that for (weak) Condorcet, the constructive control problems are FPT with

respect to single-peaked width. In the destructive control case, both Copelandα for all

0 ≤ α ≤ 1 and Maximin behave in the same way, that is, for both correspondences, the

destructive control problems are FPT with respect to single-peaked width, implying

polynomial-time solvability with every fixed k . Note that the destructive control

problems for (weak) Condorcet are polynomial-time solvable, even in general (i.e., with

unbounded k) [157]. Our results concerning the above problems are summarized in

Table 3.1.

In addition to these concrete voting correspondences, we provide a general char-

acterization for a broad class of voting correspondences to identify the ones for which

the control problems are FPT with respect to single-peaked width. The considered

class contains all correspondences passing the Smith-IIA criterion. The Smith set in

iCornaz, Galand and Spanjaard defined in [70] the single-peaked width as k − 1, the size of the
maximum group minors one.

3.1. Introduction 61

S
in

gl
e-

P
ea

ke
d

W
id

th
k

E
v
id

en
ce

k
=

1
k

=
2

k
=

3
k

:
p
ar

am
et

er
k

=
m

fo
r

al
l

C
C

D
C

C
C

D
C

C
C

D
C

C
C

D
C

A
V

/D
V

A
V

/D
V

A
V

/D
V

A
V

/D
V

A
V

/D
V

A
V

/D
V

A
V

/D
V

A
V

/D
V

C
on

d
or

ce
t

F
P
T

F
P
T

(P
)
N
P

-h
P

T
h
eo

re
m

3.
1

M
ax

im
in

N
P

-h
N
P

-h
F
P
T

N
P

-h
T

h
eo

re
m

s
3.

6,
3.

7,
3.

8

C
op

el
an

d
1

P
N
P

-h
N
P

-h
F
P
T

N
P

-h
T

h
eo

re
m

s
3.

3,
3.

4,
3.

5

C
op

el
an

d
α

N
P

-h
N
P

-h
N
P

-h
F
P
T

N
P

-h
T

h
eo

re
m

s
3.

2,
3.

5
0
≤
α
<

1

T
a
b
le

3
.1
:

A
su

m
m

ar
y

of
re

su
lt

s
of

co
n
tr

ol
p

ro
b
le

m
s

u
n

d
er

C
on

d
or

ce
t,

M
ax

im
in

an
d

C
op

el
an

d
α

in
el

ec
ti

on
s

w
it

h
si

n
gl

e-
p

ea
ke

d
w

id
th

k
.

H
er

e,
“N
P

-h
”

st
an

d
s

fo
r
N
P

-h
ar

d
an

d
“P

”
st

an
d
s

fo
r

p
ol

y
n
om

ia
l-

ti
m

e
so

lv
ab

le
.

A
ll

re
su

lt
s

sh
ow

n
h
er

e
fo

r
k

=
2,

3
an

d
fo

r
k

b
ei

n
g

a
p
ar

am
et

er
ar

e
ou

r
re

su
lt

s.
M

or
eo

ve
r,

al
l

th
e

re
su

lt
s

co
rr

es
p

on
d
in

g
to

th
e

ar
ea

in
gr

ay
ar

e
p

ol
y
n
om

ia
l-

ti
m

e
so

lv
ab

il
it

y
re

su
lt

s.
N

ot
e

th
at

k
=

1
is

th
e

si
n
gl

e-
p

ea
ke

d
ca

se
a
n

d
k

=
m

is
th

e
g
en

er
a
l

ca
se

,
w

h
er

e
m

is
th

e
n
u

m
b

er
o
f

ca
n

d
id

a
te

s.
T

h
e

p
o
ly

n
o
m

ia
l-

ti
m

e
so

lv
a
b

il
it

y
re

su
lt

s
in

si
n

g
le

-p
ea

k
ed

el
ec

ti
o
n

s
(1

-p
ea

ke
d

el
ec

ti
on

s)
ar

e
fr

om
[4

4]
.

T
h
e

p
ol

y
n
om

ia
l-

ti
m

e
so

lv
ab

il
it

y
of

th
e

d
es

tr
u
ct

iv
e

co
n
tr

ol
b
y

ad
d
in

g/
d
el

et
in

g
vo

te
s

fo
r

C
on

d
or

ce
t

is
fr

om
[1

5
7
].

T
h

e
N
P

-h
ar

d
n

es
s

re
su

lt
s

fo
r

k
=
m

a
re

fr
o
m

[1
10

,
1
12

,
15

7]
.

W
e

re
m

ar
k

th
at

th
e

d
efi

n
it

io
n

of
si

n
g
le

-p
ea

ke
d

w
id

th
in

[7
0]

is
eq

u
a
l

to
k
−

1.

62 3. Control in Elections with Bounded Single-Peaked Width

an election is a subset S of candidates with minimum size, such that every candidate

in S is preferred by more voters than every candidate outside S. Clearly, every election

has a unique Smith set. A voting correspondence passes the Smith-IIA criterion (“IIA”

stands for “independence of irrelevant alternatives”), if deleting any candidate outside

the Smith set does not change the winners. Several voting correspondences have

been found passing the Smith-IIA criterion, for instance, Ranked pairs, Schulze’s,

and Kemeny. The characterization considers elections with odd number of votes and

states that, if a control problem for a correspondence in the above class is FPT with

the number of candidates as parameter, then the same holds for the single-peaked

width being the parameter. This characterization applies to both constructive and

destructive cases. We remark that all our results in this chapter apply to both the

unique-winner and the nonunique-winner models.

The following definitions and notations are essential for presenting this chapter.

A voting correspondence is said to be weakCondorcet-consistent, if on every input

that has at least one weak Condorcet winner, the winners, according to the voting

correspondence, are exactly the set of weak Condorcet winners [44].

Single-Peaked Width. A subset C ⊆ C is called an intervalii if all candidates in

C are ranked contiguously in every vote. For example, for the election with candidates

{a, b, c, d, e} and votes with preferences {a �1 b �1 c �1 d �1 e, d �2 c �2 b �2 e �2

a, a �3 e �3 b �3 d �3 c}, {b, c, d} is an interval. Contracting an interval C is the

operation that first adds a new candidate c′ to the election such that C ∪ {c′} forms a

new interval and the preference between any two candidates of C in each vote preserves

the same as before, and then deletes all candidates in C. For example, after contracting

the interval {b, c, d} in the above example, we get the new election with candidates

a, c′, e and votes with preferences {a �1 c′ �1 e, c′ �2 e �2 a, a �3 e �3 c′},
where c′ is the newly introduced candidate. Intuitively, contracting is to assign a new

candidate to an interval which can represent the interval properly in the sense that

the information of the preference between every candidate in the interval and every

candidate outside the interval is preserved.

Let P = (C1, C2, ..., Cω) be an ordered partition of C with each Ci being an

interval. We say P is a single-peaked partition if contracting all intervals in P results

in a single-peaked election with the harmonious order (c1, c2, ..., cω), where each ci is

the new candidate introduced for the interval Ci. We say a vote has its peak at Ci
with respect to P if the interval Ci is ranked above every other interval in the vote.

iiThe term “interval” used in this chapter is different from that of previous chapter. The term
“interval” used in this chapter follows from the latest paper concerning single-peaked width by
Cornaz, Galand and Spanjaard [71] who first introduced the concept of single-peaked width in
the context of computational social choice. In an earlier paper by the same authors [70], they also
implicitly used the term “cluster”. The term “interval” here is also equal to “clone set” studied
by Tideman [235]. Besides, it is also related to the notion of component on profile studied by
Laffond [173].

3.1. Introduction 63

The width of P is defined as max1≤i≤ω{|Ci|}. The single-peaked width of an election is

the minimum width among all its single-peaked partitions.

Median Group: Let P = (C1, C2, ..., Cω) be a single-peaked partition of the

election (C,ΠV), and let (π1, π2, ..., πn) be an order of ΠV such that for i < j the peak

of πi does not lie on the right-side of the peak of πj in P . The set of all intervals

lying between the peak Ci of πdn/2e and the peak Cj of πbn/2+1c, together with Ci and

Cj, denoted by G[Ci, Cj], is called the median group. Furthermore, Ci is called the

left boundary of the median group and Cj is the right boundary of the median group.

If there is only one interval in the median group, we call it a median interval. See

Figure 3.1 for an example.

C1 C2 C3 C4 C5 C6 C7

7
6
5
4
3
2
1

Single-peaked partition

peakpeak

Median group

Figure 3.1: An illustration of median
group. There are two votes, where the first
vote has preference C2 � C1 � C3, ...,�
C7 over the intervals, and the second vote
has the preference C4 � C3 � C5 � C6 �
C2 � C1 � C7. The peak C2 of the first
vote is on the left side of the peak C4 of
the second vote.

This chapter studies control by adding/deleting votes for Condorcet, Maximin

and Copelandα for every 0 ≤ α ≤ 1 as in Chapter 2, but with the input elections

having bounded single-peaked width. Moreover, we assume that optimal single-peaked

partitions is given alone with the input elections. This assumption is sound since

searching for an optimal single-peaked partition can be done in polynomial time [71].

In addition, we do not create new votes throughout handling the problems (we only

add/delete votes/canddiates which are given in advance). We remark that in the

(constructive/destructive) control by adding votes, the single-peaked partition is based

on the registered votes union the unregistered votes. Therefore, both the registered

votes and the unregistered votes have single-peaked width at most k with respect to

the given single-peaked partition.

All NP-hardness reductions in this paper are from the following NP-hard prob-

lem [131].

Exact 3 Set Cover (X3C)

Input: A universal set U = {c1, c2, ..., c3κ} and a collection S of 3-subsets

of U .

Question: Is there an S ′ ⊆ S such that |S ′| = κ and each ci ∈ U appears

in exactly one set of S ′?

64 3. Control in Elections with Bounded Single-Peaked Width

3.2 Condorcet and Weak Condorcet Control

The constructive control by adding/deleting votes for (weak) Condorcet is NP-hard

in the general case [157] but turned out to be polynomial-time solvable when re-

stricted to single-peaked elections [44]. On the other hand, the destructive control

by adding/deleting votes is polynomial-time solvable even in the general case [157].

In this section, we study constructive control by adding/deleting votes in Condorcet

and weak Condorcet, restricted to elections with bounded single-peaked width. We

prove that both problems are polynomial-time solvable if the single-peaked width is a

constant. From the perspective of the parameterized complexity, our results indeed

show that these problems are FPT . The following observations are useful.

Observation 3.1. Every two candidates from different intervals in the median group

are tied.

Proof. Let (C1, C2, ..., Cω) be the single-peaked partition and G[Cl, Cr] be the median

group. Let Ci and Cj be two arbitrary intervals in G[Cl, Cr] with i < j, and c ∈
Ci, c

′ ∈ Cj be two candidates. Due to the definition of median group, all votes with

peaks at Cl or on the left-side of Cl (let Πl
V denote the multiset of these votes) prefer

c to c′, and all votes with peaks at Cr or on the right-side of Cr (let Πr
V denote the

multiset of these votes) prefer c′ to c. Moreover, the size of Πl
V is equal to the size of

Πr
V . Therefore, c ties c′.

Observation 3.2. Every weak Condorcet winner is from the median group.

Proof. This observation is correct since every candidate which is not in the median

group is beaten by at least one candidate in the median group. More precisely, suppose

that c is a candidate contained in an interval lying on the right-side (resp. left-side) of

the median group, then every candidate in Cr (resp. Cl) beats c, where Cl and Cr are

the left boundary and the right boundary of the median group, respectively.

Observation 3.3. If an election E has a Condorcet winner, then the median group

contains exactly one interval.

Proof. Suppose that the median group G contains more than one interval. Due to

Observation 3.1, every candidate in the median group ties at least one candidate

in a different interval in the median group, and thus, the Condorcet winner cannot

exist.

3.2. Condorcet and Weak Condorcet Control 65

In the following, “modifiable” votes refer to the registered votes in the case of

control by deleting votes, and refer to the unregistered votes in the case of control by

adding votes. For two subsets of candidates C and C ′ with C ⊆ C ′, we say two votes

with preferences �1 and �2, respectively, are consistent with respect to C and C ′ if

they have the same preference over all candidates in C, and for every two candidates

c ∈ C and c′ ∈ C ′ \ C, c �1 c
′ if and only if c �2 c

′.

Theorem 3.1. CCAV-Condorcet-UNI, CCAV-Condorcet-NON, CCDV-Condorcet-

UNI and CCDV-NON are FPT with respect to single-peaked width.

Proof. We first consider CCAV-Condorcet-UNI. Let ΠV1 be the multiset of registered

votes and ΠV2 be the multiset of the unregistered votes. Let Cp be the interval

containing the distinguished candidate p. Let k be the single-peaked width of the

given election. Due to Observation 3.3, to make p the Condorcet winner we need to

make the interval Cp the median interval and to make p beat all the other candidates

in Cp. To this end, we first divide the modifiable votes (in this case the modifiable

votes are unregistered votes) ΠV2 into three multisets: X containing the votes with

peaks on the left-side of Cp with respect to the single-peaked partition, Y the votes

with peaks on the right-side of Cp, and Z the votes with peaks at Cp. Then, we further

divide each of these three multisets into at most 2k−1 submultisets, each containing the

votes which are pairwise consistent with respect to {p} and Cp. By assigning to each

subset a variable (indicating how many votes from this subset are in the solution), the

election instance is reduced to an ILP instance which can be solved in FPT time based

on Lenstra’s theorem [177]. See Section 1.3.3 for a detailed discussion of Lenstra’s

theorem [177].

Let x̄, ȳ and z̄ be the numbers of votes in ΠV1 with peaks on the left-side of Cp

with respect to the single-peaked partition, with peaks on the right-side of Cp, and with

peaks at Cp, respectively. We will use xβ, yβ and zβ to denote the variables assigned

to the subsets of X, Y and Z, respectively, where β is a subset of Cp \ {p}. Here, for

each β, xβ (yβ, zβ) is assigned to the submultiset of X (Y, Z), which contains votes

ranking every candidate of β above p and ranking every candidate not in β below p.

Firstly, the ILP instance has the following constraints:

(1) x̄+
∑
β

xβ < ȳ + z̄ +
∑
β

yβ +
∑
β

zβ

(2) ȳ +
∑
β

yβ < x̄+ z̄ +
∑
β

xβ +
∑
β

zβ

(3)
∑
β

(xβ + yβ + zβ) ≤ R

Here, (1) and (2) together are to ensure that Cp is the unique interval in the

median group. In particular, (1) implies that there are less than half votes having

their peaks on the left side of Cp in the final election, and (2) implies that there are

66 3. Control in Elections with Bounded Single-Peaked Width

less than half votes having their peaks on the right side of Cp in the final election.

Moreover, (3) states that at most R votes are added. Then, for every c ∈ Cp \ {p},
there is a constraint:

N(p, c) +
∑
c6∈β

(xβ + yβ + zβ)−N(c, p)−
∑
c∈β

(xβ + yβ + zβ) > 0

where N(.) is based on the registered votes ΠV1 .

These inequalities ensure that p beats every candidate in Cp \ {p}. Since we

formulate the control problems as decision problems, there is no optimization function

in the ILP.

Now we consider CCAV-Condorcet-NON, that is, the problem to determine

whether we can make the distinguished candidate a weak Condorcet winner by adding

limited votes. Due to Observations 3.1 and 3.2, to make the distinguished candidate

p a weak Condorcet winner, we have to make the interval Cp be included in the

median group and to make p the weak Condorcet winner among the candidates in Cp.

Therefore, we can use similar ILP technique as for CCAV-Condorcet-UNI to solve this

problem. Precisely, the constraints for CCAV-Condorcet-NON are the same as that

for CCAV-Condorcet-UNI with only the difference that the last constraint is replaced

by the following one.

N(p, c) +
∑
c6∈β

(xβ + yβ + zβ)−N(c, p)−
∑
c∈β

(xβ + yβ + zβ) ≥ 0

Now we consider the control by deleting votes. We first consider CCDV-Condorcet-

UNI. Let E be the given election. The modifiable votes are divided and assigned with

variables in the same way as discussed in the case of CCAV-Condorcet-UNI. Let x̄, ȳ

and z̄ be the numbers of votes in E with peaks on the left-side of Cp with respect to

the single-peaked partition, with peaks on the right-side of Cp, and with peaks at Cp,

respectively. The constraints are as follows.

(1) x̄+
∑
β

xβ < ȳ + z̄ +
∑
β

yβ +
∑
β

zβ

(2) ȳ +
∑
β

yβ < x̄+ z̄ +
∑
β

xβ +
∑
β

zβ

(3)
∑
β

(xβ + yβ + zβ) ≤ R

(4) For every c ∈ Cp \ {p},

NE(p, c)−
∑
c 6∈β

(xβ + yβ + zβ)−NE(c, p) +
∑
c∈β

(xβ + yβ + zβ) > 0

3.3. Copeland Control 67

Finally, we come to CCDV-Condorcet-NON. We use the similar method here to

solve the problem. Precisely, the constraints for CCDV-Condorcet-NON are the same

as that for CCDV-Condorcet-UNI with only the difference that the last constraint is

replaced by the following one.

NE(p, c)−
∑
c 6∈β

(xβ + yβ + zβ)−NE(c, p) +
∑
c∈β

(xβ + yβ + zβ) ≥ 0

Due to Theorem 3.1, we can directly get the following result for the Young winner

determination problem which is PNP|| -complete in general [221]. In an Young election,

each candidate c has a Young score defined as the minimum number of votes to be

deleted to make c the Condorcet winner. A Young winner is a candidate with the least

Young score. The Young winner determination problem can be reduced to the problem

of deciding whether a distinguished candidate can be made a Condorcet winner by

deleting R votes, equivalent to the problem control by deleting votes for Condorcet.

Corollary 3.1. Young winner determination is FPT with respect to single-peaked

width.

3.3 Copeland Control

In this section, we study control problems for Copelandα for every 0 ≤ α ≤ 1. Our

results are summarized in Table 3.2. In particular, we prove that both the constructive

control by adding votes and the constructive control by deleting votes are NP-hard

for Copelandα for every 0 ≤ α < 1 but polynomial-time solvable for Copeland1,

when restricted to elections with single-peaked width 2. Moreover, we prove that

the same problems become NP-hard for Copeland1 when restricted to elections with

single-peaked width 3. In the contrast, the destructive control by adding/deleting

votes for Copelandα for all 0 ≤ α ≤ 1 turns out to be FPT . Recall that the

problems constructive/destructive control by adding/deleting votes are all NP-hard

for Copelandα for all 0 ≤ α ≤ 1 [112].

Theorem 3.2. CCAV-Copelandα-UNI, CCAV-Copelandα-NON, CCDV-Copelandα-

UNI, CCDV-Copelandα-NON are NP-hard in elections with single-peaked with 2, for

every 0 ≤ α ≤ 1.

Proof. We first consider CCAV-Copelandα-UNI. Let F = (U = {c1, c2, ..., c3κ}, S) be

an instance of X3C. We construct an instance E for CCAV-Copelandα-UNI in elections

with single-peaked width 2 as follows.

68 3. Control in Elections with Bounded Single-Peaked Width

Single-peaked width k

k = 2 k = 3 k : parameter

CCAV NP-hard: 0 ≤ α < 1
NP-hard: 0 ≤ α ≤ 1

CCDV P : α = 1

DCAV
P FPT

DCDV

Table 3.2: Complexity of constructive/destructive control by adding/deleting votes in
Copelandα. Here, “P” stands for polynomial-time solvable. All results apply to both the
unique-winner and the nonunique-winner models.

Candidates: There are in total 6κ + 2 candidates. More specifically, for each

cx ∈ U we create two corresponding candidates c′x and c′′x which form an interval

denoted by I(cx) in the election. In addition, we have two candidates p and p′ which

form an interval I(p). The distinguished candidate is p.

Single-Peaked Partition: (I(p), I(c1), I(c2), ..., I(c3κ)).

Registered Votes: There are κ − 1 registered votes defined as c′3κ � c′′3κ �
c′3κ−1 � c′′3κ−1 �, ...,� p′ � p. In addition, there is one vote defined as c′′3κ � c′3κ �
c′′3κ−1 � c′3κ−1 �, ...,� p � p′. Clearly, with the registered votes, p has Copelandα score

0, p′ has Copelandα score 1, each c′x has Copelandα score 2x + 1, and each c′′x has

Copelandα score 2x.

Unregistered Votes: The unregistered votes are created according to S. More

precisely, for each s = {ci, cj, ck} ∈ S, we create a vote πs with preference �s as follows.

The peak of the vote πv is at the interval I(p) and p �s p′. For every two candidates

a ∈ I(cx) and b ∈ I(cy) with x < y, we have a �s b. Finally, in each interval I(cx), we

set c′x �s c′′x if x ∈ {i, j, k} and c′′x �s c′x otherwise.

Number of Added Votes: R = κ.

In the following, we show that F has an exact 3-set cover if and only if we can

add at most R = κ unregistered votes to make p the unique winner.

(⇒:) Let S ′ be an exact 3-set cover of F . We claim that adding all votes

corresponding to S ′, that is, the votes ΠV ′ = {πs | s ∈ S ′} (πv has preference �s), will

make p the unique winner. Let E ′ be the election obtained from E by adding all the

votes in ΠV ′ to the registered votes. It is clear that p beats p′ in E ′. Since there are

exactly κ votes with peaks at I(p) and exactly κ votes with peaks at I(c3κ) in E ′, every

two candidates which are in different intervals are tied. Therefore, p has Copelandα

score 6α ·κ+ 1 and p′ has Copelandα score 6α ·κ in E ′. We now analyze the Copelandα

score of other candidates in E ′. Let c′x and c′′x be the two candidates in an interval

3.3. Copeland Control 69

I(cx) with 1 ≤ x ≤ 3κ. Since S ′ is an exact 3-set cover, due to the construction, there

is exactly one vote in ΠV ′ which prefers c′x to c′′x; thus there are exactly κ− 1 votes in

ΠV ′ which prefer c′′x to c′x. Together with the registered votes, c′x ties c′′x in the final

election E ′. Since each of c′x and c′′x ties all other candidates as stated above, the final

Copelandα score of c′x and c′′x are both α · (6κ+ 1). Since α < 1, p is the unique winner

in E ′.

(⇐:) Let ΠV ′ be a solution of E and S ′ be the subset of S corresponding to ΠV ′ ,

that is, S ′ = {s | πs ∈ ΠV ′}. Let E ′ be the final election obtained from E by adding

all votes in ΠV ′ to the registered votes. It is easy to see that ΠV ′ contains exactly κ

votes, since otherwise, one of c′3κ and c′′3κ would beat all the other candidates and thus

be a winner in E ′. Moreover, since all unregistered votes have their peaks at I(p),

every two candidates from different intervals are tied in the final election E ′. Since all

unregistered votes prefer p to p′, the Copelandα score of p is 6α · κ+ 1 in E ′. Since p is

the unique winner in E ′, c′x ties c′′x for all 1 ≤ x ≤ 3κ (otherwise, at least one of c′x and

c′′x would have a Copelandα score 6α · κ+ 1, contradicting that p is the unique winner

in E ′). Then, according to the construction, for each cx there is exactly one vote in

ΠV ′ preferring c′x to c′′x. This implies that S ′ contains exactly one subset containing cx;

thus, S ′ forms an exact 3-set cover of F .

The NP-hardness proof for CCAV-Copelandα-NON can be derived from the

above reduction by deleting the candidate p′ in E .

Now, we consider CCDV-Copelandα-UNI. Let F = (U = {c1, c2, ..., c3κ}, S) be an

instance of X3C. For each c ∈ U , let o(c) be the number of sets in S which contain

c, and let ō(c) be the number of sets in S which do not contain c. We assume that

ō(c) ≥ κ− 1 for all c ∈ U . This assumption does not change the complexity of X3C,

since any instance which does not satisfy the requirement must be a no-instance.

We construct an instance E for CCDV-Copelandα-UNI restricted to elections with

single-peaked width 2 as follows. The candidate set and the single-peaked partition

are the same as for CCAV-Copelandα-UNI.

Votes: There are in total 2|S| − κ votes with |S| − κ votes having peaks at I(p)

and all the other |S| votes (corresponding to S) having peaks at I(c3κ). The central

idea is to construct the votes such that all deleted votes are from the ones with peaks

at I(c3κ) whenever E is a yes-instance. Furthermore, after deleting these votes, every

two candidates c′x and c′′x in I(cx) are tied (x = 1, 2, ..., 3κ). Note that deleting one

vote with peaks at I(p) will make one of c′3κ and c′′3κ a winner. Recall that, if more

than half of the votes have peaks at I(c3κ), then each of c′3κ and c′′3κ beats all other

candidates. Thus, we delete only votes with peaks at I(c3κ).

We first create votes corresponding to S. For each s = (ci, cj, ck) ∈ S, we create a

vote πs with preference �s. The peak of the vote πs is at I(c3κ) and the preference of

the vote between p and p′ is p �s p′. Thus, for every two candidates a ∈ I(cx) and

b ∈ I(cy) with x < y, we have that b �s a. Moreover, for each I(cx) with 1 ≤ x ≤ 3κ,

70 3. Control in Elections with Bounded Single-Peaked Width

we set c′x �s c′′x if x ∈ {i, j, k} and c′′x �s c′x otherwise. Thus, there are |o(cx)| votes

with preferences c′x � c′′x and |ō(cx)| votes with preferences c′′x � c′x now.

We now construct the votes with peaks at I(p). There are in total |S| − κ such

votes each preferring p to p′. Our goal then is to create the votes such that for each

I(cx) with 1 ≤ x ≤ 3κ, there are |o(cx)| − 1 votes with preferences c′′x � c′x and

ō(cx)− κ+ 1 votes with preferences c′x � c′′x. To this end, we do the following: for each

cx with 1 ≤ x ≤ 3κ, we set c′x � c′′x in arbitrary |o(cx)| − 1 votes, and in all others

(in total |S| − κ− |o(cx)|+ 1 = |ō(cx)| − κ+ 1) we set c′′x � c′x. Since all these votes

have their peaks at I(p), the preference between every two candidates a ∈ I(cx) and

b ∈ I(cy) with x < y is a � b.

Number of Deleted Votes: R = κ.

In the following, we prove that F is a yes-instance if and only if E is a yes-instance.

(⇒:) Suppose that F is a yes-instance and S ′ is an exact 3-set cover. We claim that

deleting all votes corresponding to S ′, that is, all votes in ΠV ′ = {πs | s ∈ S ′} makes

p the unique winner. Since after deleting all votes in ΠV ′ , the number of votes with

peaks at I(p) is equal to that of votes with peaks at I(c3κ), and there is no vote with

peak between I(p) and I(c3κ), every two candidates from different intervals are tied.

Moreover, for each c′x with 1 ≤ x ≤ 3κ, there are exactly |ō(cx)| − κ+ 1 + |o(cx)| − 1 =

|S| − κ votes (exactly half of the remaining votes) preferring c′x to c′′x after deleting all

votes in ΠV ′ . Thus, c′x ties c′′x for all 1 ≤ x ≤ 3κ. Thus, every candidate except p has a

Copelandα score α · (6κ + 1). Since p is preferred to p′ by all votes, the Copelandα

score of p is 6α · κ+ 1. Since α < 1, p becomes the unique winner.

(⇐:) Suppose that E is a yes-instance and ΠV ′ is a solution. Let S ′ = {s | πs ∈ ΠV ′}.
We claim that S ′ is an exact 3-set cover for F . Clearly, ΠV ′ contains exactly κ votes

and all have peaks at I(c3κ), since otherwise, there will be more votes with peaks

at I(c3κ) than these votes with peaks at I(p), resulting in one of c′3κ and c′′3κ being

a winner. Therefore, after deleting all votes in ΠV ′ , every two candidates from two

different intervals are tied. Moreover, since p becomes the unique winner in the final

election, c′x must tie c′′x for all 1 ≤ x ≤ 3κ. Therefore, for each cx with 1 ≤ x ≤ 3κ,

there is exactly one vote in ΠV ′ having the preference c′x � c′′x. This vote corresponds

to an s ∈ S ′ containing cx, implying that S ′ must be an exact 3-set cover of F .

The proof for CCDV-Copelandα-NON can be derived from the above reduction

by deleting the candidate p′.

In the following, we study the control problems for Copeland1. We first consider

elections with single-peaked width 2. Observe that every election with single-peaked

width 2 contains at least one weak Condorcet winner. More precisely, each interval

in the median group contains at least one weak Condorcet winner. Note that every

candidate in the median group beats or ties every candidate not in the median

3.3. Copeland Control 71

group. Furthermore, since Copeland1 is weakCondorcet-consistent and the problems

constructive control by adding/deleting votes are polynomial-time solvable for (weak)

Condorcet when restricted to elections with single-peaked width 2, as implied by

Theorem 3.1, the problems constructive control by adding/deleting votes for Copeland1

are polynomial-time solvable in elections with single-peaked width 2. This result is

summarized in Theorem 3.3. We remark that Copelandα for every 0 ≤ α < 1 is not

weakCondorcet-consistent even when restricted to single-peaked elections [44], and

thus, the following theorem does not apply to 0 ≤ α < 1.

Theorem 3.3. CCAV-Copeland1-UNI, CCAV-Copeland1-NON, CCDV-Copeland1-

UNI and CCDV-Copeland1-NON are polynomial-time solvable in elections with single-

peaked width 2.

Now we consider the problems restricted to elections with single-peaked width 3.

In contrast to the polynomial-time solvability as stated in Theorem 3.3, we show that

the constructive control problems become NP-hard in elections with single-peaked

width 3. We remark that, even though Copeland1 is weakCondorcet-consistent, the

argument for Theorem 3.3 does not hold in this case since there may not be a weak

Condorcet winner in elections with single-peaked width 3.

Theorem 3.4. CCAV-Copeland1-UNI, CCAV-Copeland1-NON, CCDV-Copeland1-

UNI and CCDV-Copeland1-NON are NP-hard in elections with single-peaked width 3.

Proof. We prove the theorem by reductions from X3C. We start with the reduction

for CCAV-Copeland1-UNI.

Let F = (U = {c1, c2, ..., c3κ}, S) be an instance of X3C. We assume that κ ≡
0 mod 6. This assumption does not change the hardness of X3C: if κ 6≡ 0 mod 6, we can

add some dummy elements to U , and add some 3-subsets to S which form an exact 3-set

cover of the dummy elements. We construct an instance E for CCAV-Copeland1-UNI

restricted to elections with single-peaked width 3 as follows.

Candidates: There are 9κ + 3 candidates in total. More specifically, for each

cx ∈ U we create three candidates c1
x, c

2
x and c3

x which form an interval denoted by

I(cx). In addition, we have three candidates p, p′ and p′′ which form an interval I(p).

The distinguished candidate is p.

Single-Peaked Partition: (I(p), I(c1), I(c2), ..., I(c3κ)).

Registered Votes: There are 7
3
κ registered votes. In particular, we have

(1) 5
6
κ votes with preference

c1
3κ � c2

3κ � c3
3κ � c1

3κ−1 � c2
3κ−1 � c3

3κ−1 �, ...,� p � p′ � p′′

72 3. Control in Elections with Bounded Single-Peaked Width

(2) 5
6
κ votes with preference

c2
3κ � c3

3κ � c1
3κ � c2

3κ−1 � c3
3κ−1 � c1

3κ−1 �, ...,� p � p′ � p′′

(3) 2
3
κ votes with preference

p � p′ � p′′ � c3
1 � c1

1 � c2
1 �, ...,� c3

3κ � c1
3κ � c2

3κ

Clearly, with the registered votes, p has Copeland1 score 2, p′ has Copeland1

score 1, p′′ has Copeland1 score 0, and each cγx with 1 ≤ x ≤ 3κ and γ = 1, 2, 3 has

Copeland1 score 3x+ 1.

Unregistered Votes: We create the unregistered votes according to S. Precisely,

for each s = {ci, cj, ck} ∈ S, we create a vote πs with preference �s as follows: the

peak of the vote is at I(p) and p �s p′ �s p′′. For every two candidates a ∈ I(cx)

and b ∈ I(cy) with x < y, we have a �s b. Finally, in each interval I(cx), we set

c2
x �s c3

x �s c1
x if x ∈ {i, j, k} and set c3

x �s c1
x �s c2

x otherwise.

Number of Added Votes: R = κ.

In the following, we show that F has an exact 3-set cover if and only if we can

add at most κ unregistered votes to make p the unique winner.

(⇒:) Let S ′ be an exact 3-set cover of F . We claim that adding all unregistered

votes corresponding to S ′, that is, the votes in ΠV ′ = {πs | s ∈ S ′}, will make p
the unique winner. Let E ′ be the final election obtained from E by adding all votes

in ΠV ′ to the registered votes. It is clear that p beats p′ and p′′ in E ′. Since there

are exactly 5
3
κ votes with peaks at I(p) and exactly 5

3
κ votes with peaks at I(c3κ)

in E ′, every two candidates from different intervals are tied. Thus, p has Copeland1

score 9α · κ+ 2, p′ has Copeland1 score 9α · κ+ 1 and p′′ has Copeland1 score 9α · κ
in E ′. We now analyze the Copeland1 scores of other candidates in E ′. Due to the

construction and the fact that S ′ is an exact 3-set cover, for each cx there is exactly

one vote in ΠV ′ with preference c2
x � c3

x � c1
x and exactly κ − 1 votes in ΠV ′ with

preference c3
x � c1

x � c2
x. Together with the registered votes, where there are 5

6
κ votes

with preference c1
x � c2

x � c3
x,

5
6
κ votes with preference c2

x � c3
x � c1

x and 2
3
κ votes with

preference c3
x � c1

3 � c2
x, we know that for each cx, c

1
x beats c2

x, c
2
x beats c3

x and c3
x

beats c1
x in E ′. As discussed above, each of c1

x, c
2
x and c3

x ties any other candidate in E ′,
thus, the Copeland1 scores of c1

x, c
2
x and c3

x are all 9α · κ+ 1, for every 1 ≤ x ≤ 3κ. It

is clear now that p becomes the unique winner in E ′.

(⇐:) Let ΠV ′ be a solution of E and S ′ be the subset of S corresponding to ΠV ′ ,

that is, S ′ = {s | πs ∈ ΠV ′}. Let E ′ be the final election obtained from E by adding all

votes in ΠV ′ to the registered votes. It is easy to see that ΠV ′ contains exactly κ votes,

since otherwise, each candidate in I(c3κ) would beat every other candidate not in

I(c3κ), and thus at least one of them is a winner in E ′. Moreover, since all unregistered

3.3. Copeland Control 73

votes have their peaks at I(p), every two candidates from different intervals are tied

in the final election E ′. Therefore, p has Copeland1 score 9α · κ + 2. Since p is the

unique winner in the final election E ′, for every cx with 1 ≤ x ≤ 3κ, every candidate in

I(cx) must be beaten by at least one other candidate which is also in I(cx). Therefore,

for every cx ∈ U there is at least one vote πs in ΠV ′ with preference c2
x �s c3

x �s c1
x

(Assume this is not true. Due to the construction, there will be in total 5
6
κ votes

with preference c1
x � c2

x � c3
x,

5
6
κ votes with preference c2

x � c3
x � c1

x and 5
3
κ votes

with preference c3
x � c1

x � c2
x, implying c3

x beats c1
x and ties c2

x, contradicting with

the fact that there is at least one candidate in I(cx) which beats c3
x.). The vote πs

corresponds to an s ∈ S ′ with cx ∈ s. Since U contains exactly 3κ elements and due to

the construction every unregistered vote gives exactly three different cx with preference

c2
x � c3

x � c1
x, the union of such subsets s (that is S ′) forms an exact 3-set cover of F .

The NP-hardness reduction for CCAV-Copeland1-NON can be modified from

the above construction by deleting the candidate p′′ from the election.

In the following, we show the NP-hardness for CCDV-Copeland1-UNI from X3C.

For each c ∈ U , let o(c) be the number of sets in S which contain c, and let ō(c) be the

number of sets in S which do not contain c. We assume that o(c) ≥ 3 and ō(c) ≥ κ− 1

for all c ∈ U and |S| ≥ κ + 2. For a given instance F = (U = {c1, c2, ..., c3κ}, S) of

X3C, we construct an instance E for CCDV-Copeland1-UNI restricted to elections with

single-peaked width 3 as follows. The candidate set and the single-peaked partition

are the same as for CCAV-Copeland1-UNI.

Votes: There are 2|S| − κ votes in total. Precisely, we create |S| − κ votes with

peaks at I(p), and |S| votes (corresponding to S) with peaks at I(c3κ). The central

idea is to construct the votes in such way that all deleted votes have peaks at I(c3κ)

whenever E is a yes-instance. Furthermore, after deleting these votes, each candidate

except p, is beaten by at least another candidate which is from the same interval.

We first create the votes corresponding to S. For each s = {ci, cj, ck} ∈ S,

we create a vote πs with preference �s. The peak of the vote πs is at I(c3κ) and

p �s p′ �s p′′. For every two candidates a ∈ I(cx) and b ∈ I(cy) with x < y, we have

that b �s a. With regard to the preference in each I(cx) with 1 ≤ x ≤ 3κ, we set

c2
x �s c3

x �s c1
x if x ∈ {i, j, k} and set c3

x �s c1
x �s c2

x otherwise. Thus, there are in total

o(cx) votes with preference c2
x � c3

x � c1
x and ō(cx) votes with preference c3

x � c1
x � c2

x.

We now construct the votes with peaks at I(p). There are |S| − κ such votes in

total, all of which prefer p to p′ to p′′. Since all these votes have their peaks at I(p),

the preference between every two candidates a ∈ I(cx) and b ∈ (cy) with x < y is

a � b. Concerning the preference in each interval I(cx), we set c1
x � c2

x � c3
x in 1

2
· o(cx)

arbitrary votes. In the remaining votes, we set c2
x � c3

x � c1
x in ō(cx)− κ many of them

and set c3
x � c1

x � c2
x in the rest. Clearly, |S| − κ− 1

2
· o(cx)− ō(cx) + κ = 1

2
· o(cx).

74 3. Control in Elections with Bounded Single-Peaked Width

In summary, for each cx, there are in total 1
2
· o(cx) votes with preference c1

x �
c2
x � c3

x, |S| − κ votes with preference c2
x � c3

x � c1
x and 1

2
· o(cx) + ō(cx) votes with

preference c3
x � c1

x � c2
x. Moreover, all votes prefer p to p′ to p′′.

Number of Deleted Votes: R = κ

Now we come to the correctness.

(⇒:) Suppose that F is a yes-instance and S ′ is an exact 3-set cover. We claim

that deleting all votes corresponding to S ′, that is, all votes in ΠV ′ = {πs | s ∈ S ′},
makes p the unique winner. Let E ′ be the final election obtained from E by deleting

all votes in ΠV ′ . Since in the final election E ′ the number of votes with peaks at I(p)

is equal to the number of votes with peaks at I(c3κ), and there is no vote with peak

between I(p) and I(c3κ), any two candidates from different intervals are tied. Moreover,

for each cx with 1 ≤ x ≤ 3κ, c1
x beats c2

x, c
2
x beats c3

x and c3
x beats c1

x in E ′ (to see this,

observe that NE ′(c1
x, c

2
x)−NE ′(c2

x, c
1
x) = 2, NE ′(c2

x, c
3
x)−NE ′(c3

x, c
2
x) = o(cx)− 2 > 0 and

NE ′(c3
x, c

1
x)−NE ′(c1

x, c
3
x) = |S|+ ō(cx)− 2κ > 0). Thus, each candidate except p has

Copeland1 score at most 9α · κ+ 1 in E ′ (p′′ has Copeland1 score 9α · κ in E ′). Since p
is preferred to p′ and p′′ by all votes, p has Copeland1 score 9α · κ+ 2 in E ′, implying

that p is the unique winner.

(⇐:) Suppose that E is a yes-instance and ΠV ′ is a solution. Let E ′ be the final

election obtained from E by deleting all votes in ΠV ′ . Observe first that all votes in

ΠV ′ must have their peak at I(c3κ), since otherwise, at least one of I(c3κ) would be

a winner. Let S ′ = {s | πs ∈ ΠV ′}. We claim that S ′ is an exact 3-set cover of F .

Clearly, ΠV ′ contains exactly κ votes with peaks at I(c3κ), since otherwise, there would

be more votes with peaks at I(c3κ) than votes with peaks at I(p) in E ′, resulting in at

least one of c1
3κ, c

2
3κ and c3

3κ being a winner in E ′. Therefore, after deleting all votes in

ΠV ′ , every two candidates from two different intervals must be tied. Moreover, since

p is the unique winner in the final election E ′, every candidate in an interval I(cx)

must be beaten by at least one candidate from the interval I(cx) in E ′. Therefore,

for every cx ∈ U , there is at least one vote, corresponding to an s ∈ S ′ containing cx,

in ΠV ′ having the preference c2
x � c3

x � c1
x (since otherwise, there would be in total

1
2
|o(cx)| votes with preference c1

x � c2
x � c3

x, |S| − κ votes with preference c2
x � c3

x � c1
x

and 1
2
|o(cx)|+ |ō(cx)| − κ votes with preference c3

x � c1
x � c2

x in E ′, implying that c2
x

beats c3
x and ties c1

x). Since U contains exactly 3κ elements and each vote in ΠV ′ gives

exactly three different cx with preference c2
x � c3

x � c1
x, S

′ must be an exact 3-set cover

of F .

The proof for CCDV-Copeland1-NON can be modified from the construction for

CCDV-Copeland1-UNI by deleting the candidate p′.

Now, we discuss destructive control by adding/deleting votes for Copelandα.

In contrast to the NP-hardness of constructive control by adding/deleting votes in

Copelandα for every 0 ≤ α ≤ 1 when restricted to elections with single-peaked width 3,

3.3. Copeland Control 75

we show that the destructive counterparts can be solved in polynomial time, if the

single-peaked width is bounded by a constant. More precisely, from the parameterized

complexity perspective, we prove that destructive control by adding/deleting votes for

Copelandα with 0 ≤ α ≤ 1 are FPT with respect to single-peaked width. Recall that

all these problems are NP-hard in the general case [112].

To present the FPT -algorithm, we first introduce the following lemmas. Intu-

itively, the first lemma states that the closer a candidate outside the median group to

the boundary of the median group is, the greater the Copelandα score it has.

Lemma 3.1. Let G[Cl, Cr] be the median group of an election with respect to the

single-peaked partition (C1, C2, ..., Cω). Let a1 ∈ Cz1 , a2 ∈ Cz2 , b1 ∈ Cx1 , b2 ∈ Cx2 be

four candidates with z2 < z1 ≤ l ≤ r ≤ x1 < x2. Then, for every 0 ≤ α ≤ 1, the

Copelandα score of b1 is strictly greater than that of b2, and the Copelandα score of a1

is strictly greater than that of a2.

Proof. Due to symmetry, we need only to prove the claim for b1 and b2. Recall that in

a Copelandα election, every candidate c is compared with every other candidate. In

each comparison, the candidate c gets 1 point if it beats its rival, and gets α point

if it ties with its rival, otherwise, it gets 0 points. Let C1 be the set of candidates

contained in the intervals on the right-side of Cx1 . Clearly, b2 ∈ C1. Moreover, b1 beats

every candidate b′ in C1, since all votes with peaks at Cr or on the left-side of Cr,

which amount to more than half of the votes, prefer b1 to b′. Thus, even b2 also beats

every candidate in C1 \ {b2}, the candidates in C1 contribute one more point to b1 than

to b2. Now consider the candidates in C2 = C \ (C1 ∪ Cx1). These candidates are in

intervals on the left-side of Cx1 . Due to the definitions of single-peaked election and

single-peaked partition, for every candidate c ∈ C2, every vote which prefers b2 to c

also prefers b1 to c. Thus, if b2 beats (resp. ties) a candidate c ∈ C2, so does b1 (resp.

b1 beats c or ties c). Thus, the candidates in C2 contribute to b1 at least as the same

points as to b2. Since every candidate in Cx1 beats b2, the lemma follows.

Due to Lemma 3.1, we know that for every candidate c which is not in the median

group, there exists at least one candidate who has a strictly greater Copelandα score

than that of c. This implies the following lemma.

Lemma 3.2. All Copelandα winners, for all 0 ≤ α ≤ 1, are in the median group.

The correctness of the following lemma follows from the fact that the candidates

in every interval are ranked together by every vote.

Lemma 3.3. For every two intervals Cx and Cy. If a candidate in Cx beats a candidate

in Cy, then every candidate in Cx beats every candidate in Cy.

The following lemma is also useful.

76 3. Control in Elections with Bounded Single-Peaked Width

Lemma 3.4. Let E = {C,ΠV} be an election with single-peaked partition P =

(C1, C2, ..., Cω). Let G[Cl, Cr] be the median group. Let Cz1 , Cz2 , Cx1 , Cx2 be four

intervals with z2 < z1 < l ≤ r < x1 < x2. Let Cy be an arbitrary interval in the median

group. If every candidate in Cy beats every candidates in Cz1, then every candidate in

Cy beats every candidate in Cz2. Symmetrically, if every candidate in Cy beats every

candidates in Cx1, then every candidate in Cy beats every candidate in Cx2.

Proof. Due to symmetry, we only need to prove the lemma for Cz1 , Cz2 . Let c be a

candidate in Cy and c′ be a candidate in Cz1 . Since all of the half votes with peaks on

the right-side of Cl prefer c to c′, and all votes with peaks at Cz1 or on the left-side of

Cz1 prefer c′ to c, c beats c′ if and only if there is at least one vote, with peak between

Cr and Cz1 , which prefers c to c′. Due to the definition of single-peaked partition, such

a vote must also prefer c to every candidate in Cz2 . Therefore, if c beats c′, c must

also beats every candidate in Cz2 . Due to Lemma 3.3, the lemma is proved.

Recall that every candidate in the median group beats or ties with every candidate

not in the median group. Lemma 3.3 and Lemma 3.4 together imply that for every

candidate c in some interval in the median group, there are two integers 1 ≤ z ≤ l

and r ≤ x ≤ ω such that c beats all candidates in ∪i∈[1,z]∪[x,ω]Ci and ties with all the

remaining candidates that are not in the median group.

Theorem 3.5. DCAV-Copelandα-UNI, DCAV-Copelandα-NON, DCDV-Copelandα-

UNI and DCDV-Copelandα-NON are FPT with respect to single-peaked width, for

every 0 ≤ α ≤ 1

Proof. Let P = (C1, C2, ..., Cω) be the single-peaked partition, and k be the single-

peaked width. We derive FPT -algorithms for the problems stated in the theorem.

Recall that a Copelandα winner must be included in the median group according to

Lemma 3.2. Thus, to make p not a winner, there are two possibilities:

(1) make p outside the median group; or

(2) make p inside the median group but simultaneously make another candidate

in the median group have a Copelandα score higher (nonunique-winner model) or no

less (unique-winner model) than that of p.

Our algorithms firstly consider the former case. Thus, for all the problems stated

in the theorem, we first calculate the minimum number β of votes to be added or

deleted to make p outside the median group. Clearly, this can be done in polynomial-

time. Moreover, if β ≤ R , we are done. However, if it turns out that β > R , then

we cannot make p outside the median group by modifying at most R votes. In this

case, we consider the latter case of making p in the median group. Precisely, we do

the following.

3.3. Copeland Control 77

First, we enumerate all possible candidates p′ which can prevent p from being the

winner by modifying at most R votes. Then, for each p′, we enumerate all possible

median groups G[Cl, Cr] which can appear by modifying at most R votes; clearly

G[Cl, Cr] must contain the interval Ci containing p and the interval Cj containing

p′. Next, we enumerate all possible combinations of four integers χl, χr, φl, φr with

χl, φl < l and χr, φr > r. Here χl (resp. χr) indicates the right-most interval on the

left-side (resp. the left-most interval on the right-side) of the median group in which

all candidates are beaten by p. Due to Lemma 3.4, p also beats every candidate in the

interval on the left-side (resp. right-side) of Cχl (resp. Cχr). The two integers φl and

φr indicate the similar meaning but with respect to p′. Finally, we consider all possible

partitions (C1
i , C

α
i , C

0
i) of Ci \ {p}, and all possible partitions (C1

j , C
α
j , C

0
j) of Cj \ {p′}

such that |C1
i |+ α(|Cα

i |+ |Cj|) + score(p) ≤ |C1
j |+ α(|Cα

j |+ |Ci|) + score(p′) (for the

unique-winner case) or |C1
i |+α(|Cα

i |+|Cj|)+score(p) < |C1
j |+α(|Cα

j |+|Ci|)+score(p′)

(for the nonunique-winner case). Here, score(p) and score(p′) are the Copelandα scores

of p and p′ contributed by the candidates outside the median group. These scores can

be calculated in polynomial time for fixed values of χl, χr, φl, φr, due to Lemma 3.4.

Moreover, C1
i , C

α
i , C

0
i (resp. C1

j , C
α
j , C

0
j) are the sets of prospective candidates in Ci

(resp. Cj) that p (resp. p′) beats, ties and be beaten in the final election, respectively.

Clearly, if both p and p′ are in the median group, p′ has a higher score (resp. a no less

score) than that of p if and only if |C1
i |+ α(|Cα

i |+ |Cj|) + score(p) < |C1
j |+ α(|Cα

j |+
|Ci|)+score(p′) (resp. |C1

i |+α(|Cα
i |+|Cj|)+score(p) ≤ |C1

j |+α(|Cα
j |+|Ci|)+score(p′).

This is due to the fact that every two candidates from different intervals in the median

group are tied.

The above enumeration results in at most m5 ×
(
ω
2

)
× 32k−2 subinstances, where

m is the number of candidates, ω is the number of intervals, and k is the single-peaked

width. Concretely, in each subinstance, we have, in addition to the original input, also

a candidate p′, two intervals Cl and Cr with l ≤ i, j ≤ r (note: p ∈ Ci, p′ ∈ Cj), four

integers χl, χr, φl, φr, a partition (C1
i , C

α
i , C

0
i) of Ci \ {p} and a partition (C1

j , C
α
j , C

0
j)

of Cj \ {p′}. We are asked to add/delete at most R votes such that

(1) the median group is G[Cl, Cr];

(2) p beats all candidates in C1
i ∪ Cχl ∪ Cχr , ties all candidates in Cα

i and be

beaten by all candidates in C0
i ; and

(3) p′ beats all candidates in C1
j ∪ Cφl ∪ Cφr , ties all candidates in Cα

j and be

beaten by all candidates in C0
j .

Clearly, the first condition can be easily checked in polynomial time. Thus, all such

subinstances which we cannot make G[Cl, Cr] the median group by adding/deleting at

most R votes are discarded immediately. We focus on the remaining subinstances. To

solve them, we reduce each subinstance to an ILP instance with bounded number of

variables (bounded by a function of the parameter k). For this purpose, we divide the

modifiable votes into several parts. Recall that modifiable votes refer to unregistered

78 3. Control in Elections with Bounded Single-Peaked Width

votes in the case of control by adding votes, but refer to registered votes in the case of

control by deleting votes. In control by adding votes, we divide the modifiable votes

into two parts: votes with peaks on the left-side of Cl+1; and votes with peaks on the

right-side of Cr−1. Moreover, we distinguish between two cases: l 6= r and l = r. For

control by deleting votes, however, we divide the modifiable votes into three parts:

votes with peaks on the left-side of Ci, votes with peaks at Ci and votes with peaks

on the right-side of Ci. Then, for both the former case and the latter case, each part

is further divided in to many subparts each containing all votes which are consistent

with respect to {p, p′} and Ci∪Cj ∪{a1, a2, b1, b2}, where a1, a2, b1, b2 are any arbitrary

candidates from Cχl , Cχr , Cφl , Cφr , respectively. According to Lemma 3.3, if p (resp. p′)

beats a1 and a2 (resp. b1 and b2), then p (resp. p′) beats every candidate in Cχl ∪ Cχr
(resp. Cφl ∪ Cφr).

There are at most 2× 2× 32k +2 = 36× 9k subparts for control by adding votes

and at most 54× 9k subparts for control by deleting votes. By assigning each subpart

a variable, we reduce the problems to ILP’s with bounded number of variables, which

can be solved in FPT -time with respect to k . Here, each variable specifies how many

votes from the corresponding subpart are in the solution. The constrictions should

serve the three conditions stated above.

3.4 Maximin Control

In this section, we focus on control problems for Maximin. It is known that con-

structive/destructive control by adding/deleting votes are for Maximin NP-hard in

the general case [110]. Moreover, all these problems are W[1]-hard with respect to

the number of added/deleted votes as the parameter in the general case [184]. Our

main results of this section are summarized in Table 3.3. Even though Maximin

and Copeland1 are two different voting correspondences, our results show that the

complexity of the control problems studied in this section for Maximin behave in the

same way as Copeland1.

The next theorem follows from the facts that

(1) Maximin is weakCondorcet-consistent [44];

(2) there is at least one weak Condorcet winner in every election with single-peaked

width 2; and

(3) the constructive control by adding/deleting votes for (weak) Condorcet are

polynomial-time solvable in elections with single-peaked width 2 (implied by Theo-

rem 3.2).

3.4. Maximin Control 79

Single-peaked width k

k = 2 k = 3 k : parameter

CCAV
P NP-hard

CCDV

DCAV
P FPT

DCDV

Table 3.3: Complexity of the contructive/destructive control by adding/deleting votes for
Maximin. All results shown in the table apply to both the unique-winner model and the
nonunique-winner model. Here, “P” stands for polynomial-time solvable.

Theorem 3.6. CCAV-Maximin-UNI, CCAV-Maximin-NON, CCDV-Maximin-UNI

and CCDV-Maximin-NON are polynomial-time solvable in elections with single-peaked

width 2.

Then, we consider elections with single-peaked width 3. The following theorem

shows that the polynomial-time solvability for these constructive control problems do

not hold any more in elections with single-peaked width 3.

Theorem 3.7. CCAV-Maximin-UNI, CCAV-Maximin-NON, CCDV-Maximin-UNI

and CCDV-Maximin-NON are NP-hard in elections with single-peaked width 3.

Proof. We first consider CCAV-Maximin-UNI. Given an instance F = (U =

{c1, c2, ..., c3κ}, S) of X3C, we construct an instance E of CCAV-Maximin-UNI as

follows.

Candidates: For each cx ∈ U , we create three candidates c1
x, c

2
x, c

3
x which form

an interval denoted by I(cx). In addition, we have three candidates p, p′ and p′′ which

form an interval denoted by I(p). The distinguished candidate is p.

Single-Peaked Partition: (I(p), I(c1), I(c2), ..., I(c3κ)).

Registered Votes: Let η be an integer with η ≥ 3κ and η ≡ 0 mod 3. We create

2η + 1 registered votes. Precisely, we have

(1) 2
3
· η − κ+ 1 votes defined as

p � p′ � p′′ � c1
1 � c2

1 � c3
1 �, ...,� c1

3κ � c2
3κ � c3

3κ

(2) κ votes defined as

p′ � p � p′′ � c1
1 � c2

1 � c3
1 �, ...,� c1

3κ � c2
3κ � c3

3κ

80 3. Control in Elections with Bounded Single-Peaked Width

(3) 1
3
η votes defined as

p′ � p′′ � p � c2
1 � c3

1 � c1
1 �, ...,� c2

3κ � c3
3κ � c1

3κ

(4) 1
3
η votes defined as

c2
3κ � c3

3κ � c1
3κ �, ..., c2

1 � c3
1 � c1

1 � p′ � p′′ � p

(5) 2
3
η votes defined as

c3
3κ � c1

3κ � c2
3κ �, ..., c3

1 � c1
1 � c2

1 � p′′ � p � p′

It is easy to verify that p′ is the current unique winner.

Unregistered Votes: For each s = {ci, cj, ck} ∈ S, we create a vote πs with

preference�s and with peak at I(p). Moreover, in the interval I(p), we set p �s p′ �s p′′.
For every I(cx), we set c2

x �s c3
x �s c1

x if x ∈ {i, j, k}, and set c1
x �s c2

x �s c3
x otherwise.

Number of Added Votes: R = κ.

In the following, we prove that F is a yes-instance if and only if E is a yes-instance.

(⇒:) Let S ′ be a solution of F . We claim that the set of unregistered votes

corresponding to S ′, that is, ΠV ′ = {πs | s ∈ S ′} form a solution for E . Since S ′ is

an exact 3-set cover, for each I(cx), there is exactly one vote in ΠV ′ with preference

c2
x � c3

x � c1
x and exactly κ − 1 votes with preference c1

x � c2
x � c3

x. Then, it is

easy to calculate that, after adding all votes in ΠV ′ to the registered votes, c1
x has

the highest Maximin score 2
3
η + κ among all candidates in I(cx) for all 0 ≤ x ≤ 3κ.

Moreover, since all unregistered votes prefer p to p′ to p′′, p has the highest Maximin

score 2
3
η+ κ+ 1 among all candidates in I(p), which is also the highest Maximin score

among all candidates in the final election. Hence, p becomes the unique winner.

(⇐:) Let ΠV ′ be a solution of E , and let E ′ be the final election obtained from

E by adding all votes in ΠV ′ to the registered votes. We claim that the subset S ′

corresponding to ΠV ′ , that is S ′ = {s | πs ∈+ ΠV ′}, is an exact 3-set cover of F .

We first observe that ΠV ′ contains exactly κ votes, since otherwise, p′ would have a

Maximin score no less than that of p in E ′. Since all unregistered votes prefer p to p′ to

p′′, p has a final Maximin score 2
3
η+κ+1 in E ′. Therefore, for every cx ∈ U , there is at

least one vote πs in ΠV ′ with preference c2
x �s c3

x �s c1
x, since otherwise, c1

x would have

a Maximin score no less than that of p in E ′. Since U contains exactly 3κ elements and

every unregistered vote have for three different cx preference c2
x � c3

x � c1
x, S

′ must be

an exact 3-set cover.

The reduction for the CCAV-Maximin-NON is the same as the above reduction

with only the difference that we create one less registered vote of the first type.

3.4. Maximin Control 81

Now we study CCDV-Maximin-UNI. Our reduction is again from X3C. However,

in this case, we assume that each element ci ∈ U occurs in exactly three different

3-subsets of S. Therefore, we have that |S| = 3κ. Let F = (U = {c1, c2, ..., c3κ}, S) be

an instance of X3C, we construct an instance E of CCDV-Maximin-UNI as follows.

Candidates: For each cx ∈ U , we create three candidates c1
x, c

2
x, c

3
x which form

an interval denoted by I(cx). In addition, we have the distinguished candidate p which

forms an interval denoted by I(p) = {p}.

Single-Peaked Partition: (I(p), I(c1), I(c2), ..., I(c3κ)).

Votes: We create in total 2|S| − κ votes with |S| of them having peak at the

interval I(c3κ) and |S| − κ having peak at the interval I(p). In particular, we create

the following votes with peak at the interval I(p).

(1) 2 votes defined as

p � c1
1 � c2

1 � c3
1 �, ...,� c1

3κ � c2
3κ � c3

3κ

(2) |S| − κ− 3 votes defined as

p � c2
1 � c1

1 � c3
1 �, ...,� c2

3κ � c1
3κ � c3

3κ

(3) 1 vote defined as

p � c3
1 � c1

1 � c2
1 �, ...,� c3

3κ � c1
3κ � c2

3κ

The votes with peak at the interval I(c3κ) correspond to the subsets in S. In

particular, for each s = {ci, cj, ck} ⊆ S, we create a vote πs with preference �s. Since

the peak of the vote is at I(c3κ), for every two candidates a ∈ I(cx) and b ∈ I(cy) with

x < y, we have that b �s a. Moreover, p is ranked in the last. With regard to the

preference in each I(cx) for every 1 ≤ x ≤ 3κ, we set c2
x � c3

x � c1
x if x ∈ {i, j, k} and

set c3
x � c1

x � c2
x otherwise.

In summary, for each cx, there are in total 2 votes with preference c1
x � c2

x � c3
x,

|S| − κ− 3 votes with preference c2
x � c1

x � c3
x, 3 votes with preference c2

x � c3
x � c1

x

and |S| − 2 votes with preference c3
x � c1

x � c2
x. The comparisons between candidates

in the same interval I(cx) are summarized as follows.

• NE(c1
x, c

2
x) = |S| and NE(c1

x, c
3
x) = |S| − κ− 1.

• NE(c2
x, c

1
x) = |S| − κ and NE(c2

x, c
3
x) = |S| − κ+ 2.

• NE(c3
x, c

1
x) = |S|+ 1 and NE(c3

x, c
2
x) = |S| − 2.

82 3. Control in Elections with Bounded Single-Peaked Width

Now it is easy to verify that c3
3κ is the current winner.

Number of Deleted Votes: R = κ.

In the following, we prove the correctness of the reduction.

(⇒:) Suppose that F is a yes-instance and S ′ is an exact 3-set cover. We claim

that deleting all votes corresponding to S ′, that is, all votes in ΠV ′ = {πs | s ∈ S ′},
makes p the unique winner. Let E ′ be the final election obtained from E by deleting

all votes in ΠV ′ . Since in the final election E ′ the number of votes with peaks at I(p)

is equal to the number of votes with peaks at I(c3κ), and there is no vote with peak

between I(p) and I(c3κ), any two candidates from different intervals are tied, that is

NE ′(a, b) = NE ′(b, a) = |S| − κ, for every two candidates a, b who come from different

intervals. Moreover, since S ′ is an exact 3-set cover, for each cx there is exactly one

s ∈ S ′ with c ∈ S ′, which corresponds to a vote in ΠV ′ with preference c2
x � c3

x � c1
x,

and exactly κ− 1 many 3-subsets s ∈ S ′ with c 6∈ s, which correspond to exactly κ

votes in ΠV ′ with preference c3
x � c1

x � c2
x. According to this, for each candidates in

each I(cx) we have the following facts.

• NE ′(c1
x, c

2
x) = |S| − κ+ 1 and NE ′(c1

x, c
3
x) = |S| − κ− 1.

• NE ′(c2
x, c

1
x) = |S| − κ− 1 and NE ′(c2

x, c
3
x) = |S| − κ+ 1.

• NE ′(c3
x, c

1
x) = |S| − κ+ 1 and NE ′(c3

x, c
2
x) = |S| − κ− 1.

Therefore, all candidate except p have Maximin score |S| − κ − 1 in the final

election E ′. Since none of the |S| − κ votes with peak at I(p) is deleted, we know that

the Maximin score of p is |S| − κ, and thus, p becomes the unique winner in the final

election.

(⇐:) Suppose that E is a yes-instance and ΠV ′ is a solution. Let E ′ be the final

election obtained from E by deleting all votes in ΠV ′ . Observe first that none of the

votes in ΠV ′ has peak at I(p), since otherwise, c3
3κ would be a winner. Therefore, the

votes that are deleted must from the votes corresponding to the 3-subsets in S. Let

S ′ = {s | πs ∈ ΠV ′}. We claim that S ′ is an exact 3-set cover of F . Clearly, ΠV ′

contains exactly κ votes with peaks at I(c3κ), since otherwise, either c2
3κ or c3

3κ would

be a winner in E ′. Therefore, after deleting all votes in ΠV ′ , every two candidates from

two different intervals must be tied, that is NE ′(a, b) = NE ′(b, a) = |S| − κ, for every

two candidates a, b who come from different intervals. Moreover, the Maximin score of

p is |S| − κ. Since p is the unique winner in E ′, for every cx ∈ U and the candidate c2
x,

there must be at least one vote πs in ΠV ′ which prefers c2
x to c1

x (this is due to that

NE(c2
x, c

1
x) = |S| − κ). Due to the construction, such a vote corresponds to an s ∈ S

with cx ∈ s. Since |S ′| = κ, each s ∈ S ′ is a 3-subset of U and |U | = 3κ, S ′ must be

an exact 3-set cover of F .

The proof for CCDV-Maximin-NON can be modified from the construction for

CCDV-Maximin-UNI by creating one less vote defined as

3.4. Maximin Control 83

p � c1
1 � c2

1 � c3
1 �, ...,� c1

3κ � c2
3κ � c3

3κ.

By doing so, the Maximin score of p will be |S| − κ− 1 in the final election. The

correctness argument is similar to the one for CCDV-Maximin-UNI.

From the parameterized point of view, the above theorem implies that the con-

structive/destructive control by adding/deleting votes for Maximin are beyond XP
when we take the single-peaked width as the parameter.

Now we study the destructive control problems for Maximin. Before proceeding

further, we introduce some properties of Maximin elections with bounded single-peaked

width. These properties are also helpful in understanding the behavior of the Maximin

correspondence. The first property is formally stated in Lemma 3.5. In an informal way,

it states that for each candidate c, the closer another candidate c′ lies to c according

to the single-peaked partition, the less is the number of voters who prefer c to c′. For

a positive integer n, let [n] be the set {1, 2, ..., n}.

Lemma 3.5. Let (C1, C2, ..., Cω) be the single-peaked partition of a given election and

c be a candidate in a certain interval Ci. Then, N(c, b1) ≤ N(c, b2) for all b1 ∈ Cx1
and b2 ∈ Cx2 with i < x1 < x2 ≤ ω, and N(c, a1) ≤ N(c, a2) for all a1 ∈ Cz1 and

a2 ∈ Cz2 with 1 ≤ z2 < z1 < i.

Proof. We first prove the first part of the claim. Let b1 and b2 be the two candidates

as stated in the lemma. For all j ∈ [ω], we denote the multiset of votes with peaks

at Cj or on the right-side of Cj by Vrj , and denote the multiset of votes with peaks

at Cj or on the left-side of Cj by V lj. It is obvious that all votes in V li prefer c to

b1 to b2 and all votes in Vrx1 prefer b1 to c. Let Vc�b1i,x1
be the multiset of votes with

peaks between Ci and Cx1 and prefer c to b1. Thus, N(c, b1) = |V li |+ |Vc�b1i,x1
|. Due to

the definition of single-peaked partition, all votes in Vc�b1i,x1
prefer c to b2. Therefore,

N(c, b2) ≥ |V li |+ |Vc�b1i,x1
| = N(c, b1).

Due to symmetry, the second part is also correct.

Recall that the Maximin score of a candidate c is equal to N(c, c′) where c′ achieves

the minimum value of N(c, ·). Let c be a candidate from a certain interval Ci. Let

MIN(c) be the set of candidates that achieve the minimum value of N(c, ·); hence,

we have that Maximin(c) = N(c, c′) for every c′ ∈ MIN(c), where Maximin(c)

is the Maximin score of the candidate c. According to Lemma 3.5, we have that

(Ci−1∪Ci∪Ci+1)∩MIN(c) 6= ∅. Therefore, to determine the Maximin score of c, it is

sufficient to consider the election restricted to Ci−1 ∪ Ci ∪ Ci+1 whose size is bounded

by 3k , where k is the single-peaked width. In the following, we introduce another

property which helps to improve the upper bound.

84 3. Control in Elections with Bounded Single-Peaked Width

Lemma 3.6. Let c be a candidate and C ′ be an interval with c 6∈ C ′. Then, N(c, a) =

N(c, b) for every two candidates a, b ∈ C ′.

Proof. Since C ′ is an interval, all votes rank the candidates in C ′ contiguously. There-

fore, each vote either prefers c to all candidates in C ′ or prefers all candidates in C ′ to

c, implying that for every two candidates a, b ∈ C ′, N(c, a) = N(c, b).

According to Lemmas 3.5 and 3.6, the Maximin score of a candidate c is determined

by all candidates in the interval including c, together with any two arbitrary candidates

from the two neighbor intervals of the interval including c, one from each. With

Lemmas 3.5 and 3.6, we arrive at the following lemma.

Lemma 3.7. Let E be an election with single-peaked partition P = (C1, C2, ..., Cω)

and c be a candidate in an interval Ci. Then the Maximin score of c in E , denoted by

MaximinE(c), is

MaximinE(c) = MaximinE|Ci∪{a,b}(c)

Here, a and b are any two arbitrary candidates in Ci−1 and Ci+1, respectively (only b

appears if i = 1 and only a appears if i = ω).

Now we are ready to show the some FPT results.

Theorem 3.8. DCAV-Maximin-UNI, DCAV-Maximin-NON, DCDV-Maximin-UNI

and DCDV-Maximin-NON are FPT with respect to single-peaked width.

Proof. Let P = (C1, C2, ..., Cω) be the single-peaked partition. Based on Lemma 3.7,

we derive FPT -algorithms for the problems stated in the theorem as follows. Let’s

consider the nonunique-winner model first. Let m be the number of candidates.

To make the distinguished candidate p not a winner, we need to make at least one

other candidate p′ have a higher Maximin score than that of p. The algorithms firstly

enumerate all such candidates p′. This results in at most m subinstances, each seeks for

at most R votes addition/deletion to make p′ have a higher Maximin score than that

of p. Let Ci and Cj be the intervals which contain p and p′, respectively. Note that

Ci and Cj could be the same interval. Due to Lemma 3.7, we can limit our attention

to the election restricted to Ci ∪ Cj ∪ {ai, bi, aj, bj}, where az, bz with z ∈ {i, j} are

any two arbitrary candidates in the intervals Cz−1 and Cz+1, respectively. Then, we

can use ILP to solve the problem in FPT -time. To this end, we further enumerate

all possible candidates p̄ ∈ Ci ∪ {ai, bi} \ {p} and p̄′ ∈ Cj ∪ {aj, bj} \ {p′} which are

the prospective candidates that achieve the minimum values of N(p, ·) and N(p′, ·),
respectively. Then we divide the modifiable votes (recall that the modifiable votes refer

to the unregistered votes in the adding votes case, and refer to all votes in the given

3.4. Maximin Control 85

election in the deleting votes case) into at most (2k + 4)! parts each containing all

votes with the same preference over the candidates Ci ∪ Cj ∪ {ai, bi, aj, bj}. Each part

then is assigned a variable x�, where the index � indicates the preference of all votes

in this part over all candidates in Ci ∪ Cj ∪ {ai, bi, aj, bj} . For DCAV-Maximin-NON,

the ILP is subject to the following constraints.

(1) for all c ∈ Ci ∪ {ai, bi} \ {p}∑
p�c

x� +N(p, c)−
∑
p�p̄

x� −N(p, p̄) ≥ 0

(2) for all c ∈ Cj ∪ {aj, bj} \ {p′}∑
p′�c

x� +N(p′, c)−
∑
p′�p̄′

x� −N(p′, p̄′) ≥ 0

(3) In addition, we have the following two restrictions.
∑
�
x� ≤ R∑

p′�p̄′
x� +N(p′, p̄′)−

∑
p�p̄

x� −N(p, p̄) > 0

In all above three constraints, the value of N(, ·,) is counted solely based on the

registered votes. Moreover, (1) is to ensure that p̄ is the candidate in Ci ∪ {ai, bi} that

achieves the minimum value of NE ′(p, ·) in the final election E ′; (2) is to ensure that p̄′

is the candidate in Cj ∪ {aj, bj} that achieves the minimum value of NE ′(p′, ·) in the

final election E ′; and (3) is to ensure that we add at most R votes and the Maximin

score of p′ is strictly greater than that of p in the final election.

For DCDV-Maximin-NON, the ILP subjects to the following constraints.

(1) for all c ∈ Ci ∪ {ai, bi} \ {p}

N(p, c)−
∑
p�c

x� −N(p, p̄) +
∑
p�p̄

x� ≥ 0

(2) for all c ∈ Cj ∪ {aj, bj} \ {p′}

N(p′, c)−
∑
p′�c

x� −N(p′, p̄′) +
∑
p′�p̄′

x� ≥ 0

86 3. Control in Elections with Bounded Single-Peaked Width

(3) In addition, we have the following two restrictions.
∑
�
x� ≤ R

N(p′, p̄′)−
∑
p′�p̄′

x� −N(p, p̄) +
∑
p�p̄

x� > 0

Notice that in DCDV-Maximin-NON, we have only one multiset of votes. The

value of N(, ·,) is based on all the given votes.

The algorithms for DCAV-Maximin-UNI and DCDV-Maximin-UNI are similar to

DCAV-Maximin-NON and DCDV-Maximin-NON, respectively, with only the difference

that, in both cases, the last inequations are indicated by ≥ other than >.

3.5 A General Framework

In this section, we consider elections containing an odd number of votes. Elections

with an odd number of votes have been studied in different context [44, 113, 201, 233].

In such elections, there is no tie, while comparing two candidates. In addition, several

theorems have been achieved for such elections, for example, see page 5 for May’s

theorem, page 234 for Sen’s theorem and page 239 for Black’s theorem in [233].

Especially, the Black’s theorem implies that the Condorcet winner always exists in

single-peaked elections with odd number of votes. Moreover it must be the top

candidate of the median vote. The following lemma implies that with the odd-votes

elections, the Smith set must be included in the median interval. Observe that if the

number of votes is odd, the median group contains exactly one interval.

Lemma 3.8. For every election with the median group containing only one interval,

the median interval is a superset of the Smith set.

Proof. To check the correctness of the lemma, observe that every candidate in the

median interval beats every other candidate not in the median interval.

Our main contribution of this section is a general theorem which can be used to

derive FPT results for the constructive/destructive control by adding/deleting votes

problems in odd-votes elections, that is, adding/deleting votes resulting in elections

with odd number of votes.

3.5. A General Framework 87

Theorem 3.9. For an odd-votes election with a voting correspondence passing the

Smith-IIA criterion, if a constructive/destructive control by adding/deleting votes

problem is FPT with the number of candidates as parameter, then the same problem

is also FPT with single-peaked width as parameter. This claim holds for both the

unique-winner and the nonunique-winner models.

Proof. We first consider the constructive control. Since there are odd number of votes

in the final election, the median group contains only one interval (the median interval).

Due to Lemma 3.8, all voting correspondences passing the Smith-IIA criterion always

select winners from the median interval. Thus, to solve the problems stated in the

theorem, we have two objectives. One is to make the interval Ci containing the

distinguished candidate p the median interval. The other objective is then to make

p a winner. By the Smith-IIA criterion, we can focus on the election restricted to

Ci, once the first objective has been reached. These observations motivate us to

propose a general reduction rule, which significantly shrinks the size of the candidate

set. The main idea of the reduction rule is to replace the “irrelevant candidates” by

only two candidates x and y, where {x} will be an interval and be placed on the

left-side of Ci, and {y} will also be an interval and be placed on the right-side of Ci
in the single-peaked partition P . The role of the two candidates is to preserve the

information of the peaks of all votes. More precisely, the reduction rule replaces each

vote with a new vote containing only the candidates Ci ∪ {x, y}. In particular, if a

vote has its peak on the left-side (resp. right-side) of Ci, the new vote will have its

peak at {x} (resp. {y}). If the vote has its peak at Ci, the new vote will also have its

peak at Ci. In all three cases, the new vote preserves the preference of the original one

over the candidates in Ci. A formal description of the reduction rule is as follows.

Reduction Rule. Let P = (C1, C2, ..., Ci, ..., Cω) be a single-peaked partition of the

given election E . We do the following operations (for control by adding votes, the

operations should be implemented on both the registered votes and the unregistered

votes) to get a new election E ′.

1. Add two new intervals C0 = {x} and Cω+1 = {y} such that C0 is in the leftmost

position of P and Cω+1 is in the rightmost position of P ;

2. Replace each vote with preference � whose peak is on the left-side (resp. right-

side) of Ci with a new vote with preference �′ such that x �′ Ci �′ y (resp.

y �′ Ci �′ x), where for every two candidates a, b ∈ Ci it holds that a �′ b if

and only if a � b;

3. Replace each vote with preference � whose peak is at Ci with a new vote with

preference �′ such that (� (Ci)) �′ x �′ y, where for every two candidates

a, b ∈ Ci it holds that a �′ b if and only if a � b; and

4. Delete all intervals except Ci, C0 and Cω+1.

88 3. Control in Elections with Bounded Single-Peaked Width

It is clear that the single-peaked width of the resulting election E ′ is bounded by

k . After applying the reduction rule, each instance contains at most k + 2 candidates.

If a control problem can be solved in O(f(m) · |E|O(1)) time for m being the number of

candidates, then it admits an O(f(k) · |E|O(1))-time algorithm as well. The correctness

of Theorem 3.9 follows.

Now we discuss the destructive case. In this case, we first check whether we can

make the distinguished candidate p not in the median interval by adding/deleting

at most R votes. This can be done in polynomial time. If we can do so, the given

instance is a yes-instance, and we are done. Otherwise, p will be in the median interval.

In this case, we can use the above Reduction Rule to reduce the size of the candidates

to k +2. Clearly, if a control problem can be solved in O(f(m) · |E|O(1)) time for m

being the number of candidates, then it admits an O(f(k) · |E|O(1))-time algorithm as

well.

Theorem 3.9 requires that the voting correspondence must pass the Smith-IIA

criterion and the considered problems must be FPT with respect to the number of

candidates as the parameter. At first glance, it seems that the conditions, especially

the second one, are very restrictive. However, we show several voting correspondences

which satisfy both conditions.

The following voting correspondences pass the Smith-IIA criterion [227]: Ranked

Pairs, Schulze’s, Copelandα for every 0 ≤ α ≤ 1, Condorcet, Kemeny, and Slater’s. One

can modify a voting correspondence ϕ which does not pass the Smith-IIA criterion to

a new one passing the Smith-IIA criterion by restricting the election to the candidates

in the Smith set. We use ϕ-Smith to denote the new correspondence.

Faliszewski et al. [112] showed that Copelandα satisfy the second condition.

In addition, Hemaspaandra, Lavaee and Menton [148] showed both Ranked pairs

and Schulze’s correspondences satisfy the second condition. Xia[246] and Yang[249]

independently prove that many common voting correspondences, including all the

above ones and many others, satisfy the second condition. Due to these, we have the

following corollary.

Corollary 3.2. In an odd-votes election, the constructive/desctructive control by

adding/deleting votes problem for both the unique-winner and the nonunique-winner

models are FPT with single-peaked width as parameter for the following voting cor-

respondences: Ranked Pairs, Schulze’s, Copelandα, Kemeny, Slater’s, and ϕ-Smith,

where ϕ can be many voting correspondences such as a positional scoring correspon-

dence, Bucklin’s, Maximin, Nanson’s or Baldwin’s.

We remark that Theorem 3.9 can be extended to control by partition of votes

problems. The definition of the problems can be found in [112].

3.6. Conclusion 89

3.6 Conclusion

In this chapter, we have studied the (parameterized) complexity of control problems in

elections with bounded single-peaked width under the prominent Condorcet, Maximin

and Copelandα voting correspondences. Our main results are summarized in Table 3.1

and Theorem 3.9. In particular, we proved that, with respect to the parameter single-

peaked width, the constructive/destructive control by adding/deleting votes under

Condorcet, and the destructive control by adding/deleting votes under Maximin and

Copelandα for every 0 ≤ α ≤ 1 are FPT . Moreover, we derived a general framework

for identifying FPT control problems under voting correspondences passing the Smith-

IIA criterion. In contrast to the FPT -solvability of the destructive control problems,

we proved that the constructive control by adding/deleting votes for both Copelandα

and Maximin become NP-hard even in elections with a small constant single-peaked

width, implying that these problems cannot be FPT with respect to single-peaked

width. In particular, the constructive control by adding/deleting votes for Maximin

and Copelandα for every 0 ≤ α ≤ 1 become NP-hard in elections with single-peaked

width 3. In elections with single-peaked 2, the constructive control by adding/deleting

votes problems are polynomial-time solvable for both Maximin and Copeland1, while

remains NP-hard for Copelandα for every 0 ≤ α < 1.

Apart from elections with bounded single-peaked width, many of our results apply

to other restricted elections. In the flowing, we discuss these restricted elections.

3.6.1 Single-Crossing Width

Single-crossing domain was first studied by Mirrelees [198] and Roberts [218]. It has

been widely studied due to its importance in the area of income redistribution, coalition

formation, local public goods and stratification, etc [7, 8, 52, 77, 94]. Intuitively, An

election is single-crossing if there is an order of the voters such that for every pair of

candidates there is a demarcation line such that all voters in each side have the same

preference over these two candidates. The formal definition is as follows.

Single-Crossing. An election E = (C,ΠV) is a single-crossing election if there is

an order L = (π1, π2, ..., πn) of the votes ΠV so that for every pair of candidates a, b

there is an x ∈ [n] so that

(1) all votes πi with i ≤ x have the same preference over a and b; and

(2) all votes πi with i > x have the same preferences over a and b.

90 3. Control in Elections with Bounded Single-Peaked Width

�1 �2 �3 �4 �5 �6 �7

1 3 4 4 4 5 5

2 4 3 5 5 4 4

3 5 5 3 3 3 3

4 1 1 1 1 2 2

5 2 2 2 2 1 1

Figure 3.2: An example of a single-crossing election with five candidates {1, 2, 3, 4, 5}
and seven votes with preferences �1,�2, ...,�7, respectively. The left vertical line is the
demarcation for the pair {3, 5}. We can see that all the voters on the left-side of this line
prefer 3 to 5 while all the voters on the right-side of the line prefer 5 to 3. The right vertical
line is the demarcation for the pair {1, 2} and the pair {4, 5}.

An example of a single-crossing election is shown in Figure 3.2.

Single-Crossing Width. The single-crossing width of an election is defined in a

similar way as of single-peaked width. Precisely, the single-crossing width of an election

is the minimum integer k so that the candidates can be grouped into intervals of size at

most k each. Moreover, if we contract every interval the election is single-crossing.

Recently, strategic voting problems in single-crossing elections and elections with

bounded single-crossing width were studied [71, 188]. We remark that all our NP-

hardness results in this chapter apply to elections with small constant single-crossing

width.

Theorem 3.10. CCAV-ϕ-UNI, CCAV-ϕ-NON, CCDV-ϕ-UNI and CCDV-ϕ-NON are

NP-hard in elections with single-crossing width 3, for ϕ being Maximin and Copelandα

for every 0 ≤ α ≤ 1. Moreover, CCAV-Copelandα-UNI, CCAV-Copelandα-NON,

CCDV-Copelandα-UNI and CCDV-Copelandα-NON for every 0 ≤ α < 1 are NP-hard

in elections with single-crossing width 2.

Proof. Check that in all the NP-hardness reductions in this chapter, we create only

two types of votes: the votes with peaks at the left-most interval and the votes with

peak at the right-most interval. After contracting all intervals, the elections constructed

in the reductions are clearly single-crossing.

Magiera and Faliszewski [188] studied control problems in single-crossing elec-

tions recently. They proved that constructive/destructive control by adding/deleting

votes/candidates are polynomial-time solvable for Plurality (1-Approval) and Condorcet

in single-crossing elections. The above theorem complements their results.

3.6. Conclusion 91

In fact, our reductions apply to further restricted domain: elections with bounded

single-peaked and single-crossing width. Elections that is both single-peaked and

single-crossing (SPSC for short) has been recently studied by Elkind, Faliszewski and

Skowron [95]. The SPSC width of an election is defined as the minimum integer k so

that the candidates can be grouped into intervals, and moreover, if all the intervals

are contracted, the election is an SPSC election. Since the NP-hardness reductions

of the control problems studied in this chapter apply to both elections with bounded

single-peaked width and elections with bounded single-crossing width simultaneously,

the reductions also apply to elections with bounded SPSC width.

3.6.2 Euclidean Elections

Euclidean domain is another well studied restriction on preferences. In this scenario,

both the voters and candidates are mapped to points in a d-dimension Euclidean

space. Moreover, each voter ranks the candidates according to the Euclidean distances

between the candidates and himself. In particular, a candidate with small Euclidean

distance to the voter is ranked higher than a candidate with great Euclidean distance.

It is easy to check that 1-dimension Euclidean elections are SPSC elections [140].

According to this fact, the complexity of strategic voting problems in single-peaked

elections directly apply to 1-dimension Euclidean elections (see [44, 111, 113] for the

results in single-peaked elections). Recently, Elkind, Faliszewski and Skowron [95]

showed that 1-dimension Euclidean domain is a proper subset of SPSC domain by

showing a voting profile which is SPSC but not 1-dimension Euclidean election.

We mark that many of our results apply to d-dimension Euclidean elections. In

the following, we assume that every voter ranks the candidates which have the same

Euclidean distance to himself in his own favor.

Theorem 3.11. CCAV-Copelandα-UNI, CCAV-Copelandα-NON, CCDV-Copelandα-

UNI and CCDV-Copelandα-NON for every 0 ≤ α < 1 are NP-hard in d-dimension

Euclidean elections for every d ≥ 2.

Proof. To check this theorem, recall that in the reduction for CCAV-Copelandα-

UNI, CCAV-Copelandα-NON, CCDV-Copelandα-UNI and CCDV-Copelandα-NON

(in Theorem 3.2), we created only two types of votes: votes with peaks on the left-most

interval and votes with peaks at the right-most interval. Furthermore, each interval

contains only two candidates. Therefore, we can map the votes and candidates in

2-dimension Euclidean space, as shown in Figure 3.3.

Several of our results also apply to 3-dimension Euclidean elections.

92 3. Control in Elections with Bounded Single-Peaked Width

Votes A I(p) I(c1) I(c3κ)

Candidates

Votes B

Figure 3.3: An illustration of how to extend the results in Theorem 3.2 to 2-dimension
Euclidean elections. Here, “Votes A” are all the votes that have peak at the left-most interval
(that is, I(p)), and “Votes B” are all the votes that have peak at the right-most interval (that
is, I(c3κ)). The order of the votes within “Votes A” and “Votes B” is arbitrary. Moreover,
every vote has the same Euclidean distance to both candidates in each interval. Clearly,
every vote in “Votes A” ranks the interval I(p) in the highest position, and ranks every I(ci)
above I(cj) for all 1 ≤ i < j ≤ 3κ. Furthermore, every vote in “Votes B” ranks the interval
I(c3κ) in the highest position, and ranks every I(ci) above I(cj) for all 3κ ≥ i > j ≥ 1.

x

yz

I(p) I(c1) I(c3κ)

Votes A Votes B

Candidates

Figure 3.4: An illustration of how to extend the results in Theorems 3.4 and 3.7 to the
3-dimension Euclidean elections. Here, “Votes A” are all the votes that have peak at the
left-most interval (that is, I(p)), and “Votes B” are all the votes that have peak at the
right-most interval (that is, I(c3κ)). The orders of the votes within “Votes A” and “Votes
B” are arbitrary. All three candidates in the same interval are mapped on a plain which
is perpendicular to the x-axis. Moreover, they are mapped to three vertices which form
a equilateral triangle. Therefore, all three candidates in the same interval have the same
distance to every vote. Clearly, every vote in “Votes A” ranks the interval I(p) in the highest
position, and ranks every I(ci) above I(cj) for all 1 ≤ i < j ≤ 3κ. Furthermore, every vote
in “Votes B” ranks the interval I(c3κ) in the highest position, and ranks every I(ci) above
I(cj) for all 3κ ≥ i > j ≥ 1.

Theorem 3.12. CCAV-Copelandα-UNI, CCAV-Copelandα-NON, CCDV-Copelandα-

UNI, CCDV-Copelandα-NON for every 0 ≤ α ≤ 1, CCAV-Maximin-UNI, CCAV-

Maximin-NON, CCDV-Maximin-UNI and CCDV-Maximin-NON are NP-hard in

3.6. Conclusion 93

d-dimension Euclidean elections for every d ≥ 3.

Proof. The NP-hardness for Copelandα is from the reductions in Theorem 3.4, and the

NP-hardness for Maximin is from the reductions in Theorem 3.7. Figure 3.4 depicted

how we map the voters and candidates so that the reductions in Theorems 3.4 and 3.7

can apply to the d-dimension Euclidean elections.

We remark in the last that Theorems 3.11 and 3.12 rely on the assumption that

ties are allowed, in the sense that for a voter there might be more than one candidate

which has the same Euclidean distance to himself. Moreover, ties are broken in the

voter’s favor. It is interesting to investigate whether those NP-hardness results stated

in Theorems 3.11 and 3.12 still hold if we discard these two assumptions.

4
Bribery with Restricted

Distances
Bribery is another type of strategic behavior that has been widely studied in COMSOC. In

this setting, an external agent distributes valuable resources (e.g., money, gifts, shopping

cards, politic promises, etc.) to voters, and in return to ask them to recast their votes in his

favor. For the external agent who wants to bribe the voters, the complexity of determining

whether he can reach his goal (e.g., making a given distinguished candidate win or lose

an election) by distributing a limited number of resources is of particular importance. In

many real-world settings, the voters who are bribed do not want to deviate too far from

their original opinions. We take this natural assumption into account in the study of the

bribery problem. In order to measure the similarities between different votes, we adopt

several prominent distance concepts such as the Hamming distance and the Kendall-Tau

distance.

96 4. Bribery with Restricted Distances

4.1 Introduction

This chapter is dedicated to the complexity of the distance restricted bribery problems

under several prominent voting systems.

4.1.1 Motivation

We have studied control behavior in previous chapters where an external agent has

incentives to influence the result of a given election by adding or deleting votes or

candidates. In addition to the control settings, there also exist other circumstances

where an external agent may alter some of the already submitted votes, or the votes

that the voters intend to submit. One example scenario is when a candidate can

attempt to change the voter’s preferences by running a campaign, which may be

targeted at a particular group of voters or in more extreme case where this strategy

involves paying voters to change their votes, or bribing election officials to get access

to already submitted votes in order to modify them.

In this chapter, we study the model in which an external agent attempts in

switching the voter’s preferences in his own favor. The external agent’s capacity is

bounded by a budget constraint. We observe that, while the voter is willing to recast

a new vote persuaded by an external agent, he may nevertheless prefer to submit a

preference that deviates as little as possible from his true preference. Indeed, if voting

is public, he may be worried that switching his preference completely may harm his

reputation, yet he will not be caught out if his final preference is sufficiently similar to

his true preference. We call this model distance restricted bribery. Analogous to the

control problems, we distinguish between the constructive case and the destructive case,

the unique-winner model and the nonunique-winner model. To quantify the amount of

deviation of the new recast vote and the original vote of a bribed voter, we use two

distance measures. Particularly, we consider what is arguably the most prominent

distances on votes, namely, the Hamming distance (see, e.g., [38, 97, 171, 175, 195] for

interesting discussions of Hamming distance in the context of voting) and Kendall-Tau

distance (see,. e.g., [17, 23, 24, 40] for interesting discussions on Kendall-Tau distance).

The definitions of these two distances are in Section 4.1.2. We obtain a broad range of

results showing that the complexity of bribery depends closely on the settings. Our

results are summarized in Table 4.1.

Related Works. Our model is clearly related to the bribery problems which have

been widely studied in COMSOC. Faliszewski, Hemaspaandra and Hemaspaandra [107]

introduced the bribery problem, where is to decide whether a distinguished candidate

4.1. Introduction 97

can become a winner (constructive) or be prevented from being a winner (destructive)

by recasting at most R (a given integer) votes. In their paper, they also considered

the $bribery where each voter has a price to change its vote. Later Faliszewski [106]

proposed a new notion of bribery, which he called nonuniform bribery where a voter’s

price may depend on the nature of changes she is asked to implement. A similar

notion called mictrobribery was considered in [112]. Elkind, Faliszewski and Slinko [98]

introduced the framework of swap bribery where the briber can ask a voter to perform

a sequence of swaps; each swap changes the relative order of two candidates that

are currently adjacent in this voter’s preference list. Moreover, each swap may have

a different price; and the price of a bribery is the sum of the prices of all swaps

that it involves. In the same paper [98], the authors also studied the shift bribery

problem, which is a restricted variant of swap bribery. In particular, in the shift bribery

problem, only swaps involving the distinguished candidate are allowed. Parameterized

complexity studies of the swap bribery problem and the shift bribery problem can be

found in [50, 84]. Recently, Pini, Rossi and Venable [208] investigated the complexity

of bribery in voting with soft constraints, where each candidate is an element of

the Cartesian product of the domains of some variables, and agents express their

preferences over the candidate via soft constraints. Mattei et al. [190] studied the

complexity of bribery in CP-nets.

Our study is highly related to Obraztsova and Elkind’s work [205] where a

manipulator aims to make a distinguished candidate win or loss the election by casting

an untruthful vote. Here, the untruthful vote should be as close as to the truthful vote

of the manipulator. They examined this problem for several voting correspondences

with the adoption of three prominent distances, namely, the KT-distance, the footrule

distance, and the maximum displacement distance. Our model differs from theirs in

the following aspects. First, in our settings, at most R voters might be bribed, however,

they considered only one such voter. Second, their problems ask the manipulator to

cast an untruthful vote which is as close as possible to the truthful vote. However, we

mainly focus on the settings where the bribed voters must cast their votes which have

a small constant discrepancy from their original votes.

4.1.2 Preliminaries

In this section, we introduce the distance measurements and formal definitions of the

problems concerned in this chapter.

Distance. A distance on a space X is a mapping D : X ×X 7→ R such that:

(1) D(v, u) ≥ 0 for every two v, u ∈ X;

(2) D(v, u) = 0 if and only if v = u;

98 4. Bribery with Restricted Distances

(3) D(v, u) = D(u, v) for every v, u ∈ X; and

(4) D(v, u) +D(u,w) ≥ D(v, w) for every three v, u, w ∈ X.

This chapter mainly focuses on distances over votes, i.e., mappings of the form

D : L(C)× L(C) 7→ R, where L(C) is the set of all linear orders over the candidates

in C.

Hamming distance. The Hamming distance, named after Richard Hamming,

is initially defined on strings [144]. In particular, the Hamming distance between two

strings of equal length is the number of positions at which the corresponding symbols

are different. For example, the Hamming distance between the string “a 1 b b” and

the string “a b 1 b” is two since there are two positions (the second and the third

positions) where the symbols are different. In the context of Hamming distance in

this chapter, we regard each vote as a string with each element being (the name of) a

candidate. For example, the vote with preference a � b � c � d will be considered

as the string “a b c d”. Hence, the Hamming distance between every two votes with

preferences �1,�2, denoted as DHAM(�1,�2), is the Hamming distance between the

two strings from the two votes, respectively. In fact, votes (linear orders) over a fixed

set of candidates C can be also considered as permutations over C. Hamming distance

on permutations has been widely studied in the literature [193, 226]. We remark that

any two different permutations (and thus votes defined as linear orders) has Hamming

distance at least two.

Kendall-Tau distance (KT-distance for short). The KT-distance was coined by

Maurice Kendall [165]. In particular, it counts the number of pairwise disagreements

between two linear orders (votes). In a formal way, the KT-distance between two

linear orders �1 and �2 over a set C is defined as follows.

DKT (�1,�2) = |{(a, b)|a, b ∈ C, a �1 b and b �2 a}|

Equivalently, the KT-distance between two linear orders can be defined as the

minimum number of swaps of adjacent candidates needed to transform one into the

other [22]. In addition, the KT-distance also turns out to be equal to the number

of exchanges needed in a bubble sort (see [6] for an introduction to bubble sort) to

convert one full ranking to the other [104]. Due to this fact, the KT-distance is also

referred to as bubble-sort distance in the literature [35, 61, 104, 105].

Problem Definitions. We mainly study the following problems under different

voting correspondences. In the following, let τ be a voting correspondence and “DIST”

a distance function. In this chapter, “DIST” can be KT-distance and Hamming

distance. For two votes with preferences �1,�2 and a distance “DIST”, we say these

two votes are DIST(d)-close if DDIST (�1,�2) ≤ d .

4.1. Introduction 99

Constructive Distance Restricted Bribery under τ (C-DIST(d)-τ -UNI/NON)

Input: An election (C ∪ {p},ΠV), and two integers R ≥ 0 and d ≥ 0. Here, p is

not the unique winner/a winner under the voting correspondence τ .

Question: Is it possible to make p the unique winner/a winner by replacing

(recasting) at most R votes, under the voting correspondence τ? Here, a vote can

only be replaced with a DIST(d)-close vote.

Destructive Distance Restricted Bribery under τ (D-DIST(d)-τ -UNI/NON)

Input: An election (C ∪ {p},ΠV), and two integers R ≥ 0 and d ≥ 0. Here, p is

the unique winner/a winner under the voting rule τ .

Question: Is it possible to prevent p from being the unique winner/a winner by

replacing (recasting) at most R votes, under the voting correspondence τ? Here, a

vote can only be replaced with a DIST(d)-close vote.

We give either polynomial-time algorithms or NP-hardness reductions for the

above problems. Our hardness proofs in this chapter are reduced from the Xd C

problem which is defined as follows.

Exact d -Set Cover (Xd C)

Input: A universal set U = {c1, c2, ..., cd ·κ} and a collection S =

{s1, s2, ..., sm} of d -subsets of U .

Question: Is there an S ′ ⊆ S such that |S ′| = κ and each ci ∈ U appears

in exactly one set of S ′?

It is clear that when d = 3, we get the X3C problem. In the following, we show

the NP-hardness of the Xd C problem for every d ≥ 4.

Lemma 4.1. Xd C is NP-hard for every constant d ≥ 3.

Proof. It is well known that the X3C problem is NP-hard [138]. In the following, we

show how to reduce from X(d − 1)C to Xd C to prove the NP-hardness of Xd C for

every d ≥ 4.

Let (U, S) be an instance of X(d − 1)C, where U = {c1, c2, ..., c(d−1)·κ} is the

universal set and S = {s1, s2, ..., sm} is the collection of (d − 1)-subsets of U . We

construct an instance (U ′, S ′) of Xd C as follows.

Let W = {1, 2, ..., κ}. Then, we set the universal set of Xd C as U ′ = U ∪W .

Now we construct the subsets in S ′. In particular, for each si ∈ S and each j ∈ W , we

create a d -subset sji = si ∪ {j} in S ′. Therefore, we have in total |S| · κ subsets in S ′.

100 4. Bribery with Restricted Distances

Now we show the correctness. Suppose that S̄ is an exact set cover of the instance

(U,X). Let (si1 , si2 , ..., siκ) be any arbitrary but fixed order of S̄. Then it is easy to see

that S̄ ′ = {sjij | j = 1, 2, ..., κ} is an exact d -set cover of (U ′, S ′). The other direction

is analogous.

Since X3C isNP-hard, we can conclude that Xd C isNP-hard for every d ≥ 3.

A different NP-hardness reduction for the X4C problem can be found in [20, 21].

In particular, the reduction in [20, 21] implies that the X4C problem remains NP-hard

even when every element from the universal set occurs in exactly three subsets in the

collection. Recall that under the same restriction, the X3C problem is also NP-hard.

Moreover, in both problems under this restriction, we have that |S| = 3κ.

The two words “promote” and “degrade” are often used inNP-hardness reductions

and description of polynomial-time algorithms with specific meanings in this chapter.

In particular, for a vote π and a candidate c, promoting the candidate c by ` positions

means recast the vote π as follows. First, rank c in the (posπ(c)− `)-th position. Then,

rank every candidate c′ with posπ(c) > posπ(c′) ≥ posπ(c)− ` in the (posπ(c′) + 1)-th

position. Finally, rank all the remaining candidates in their original positions. See

Figure 4.1 for an example.

a b c d e f� � � � � a e b c d f� � � � �

Figure 4.1: This figure shows how to recast a vote by promoting the candidate e by three
positions. The left-hand is the preference of the original vote and the right-hand is the recast
vote after promoting e by three positions.

Degrading the candidate c by ` positions means recast the vote π as follows.

First, rank c in the (posπ(c) + `)-th position of π. Then, rank every candidate c′ with

posπ(c) < posπ(c′) ≤ posπ(c) + ` in the (posπ(c′)− 1)-th position. Finally, rank all the

remaining candidates in their original positions. See Figure 4.2 for an example.

a b c d e f� � � � � a c d b e f� � � � �

Figure 4.2: This figure shows how to recast a vote by degrading the candidate b by two
positions. The left-hand is the preference of the original vote and the right-hand is the recast
vote after degrading b by two positions.

It is easy to see that the recast vote obtained from the original vote by promoting

or degrading a candidate by ` positions has KT-distance ` from the original vote.

4.1. Introduction 101

G
en

er
al

K
T

-d
is

ta
n
ce

H
am

m
in

g
d
is

ta
n
ce

C
on

st
D

es
t

C
on

st
ru

ct
iv

e
D

es
tr

u
ct

iv
e

C
on

st
ru

ct
iv

e
D

es
tr

u
ct

iv
e

d
=

1,
2

d
=

3
d
≥

4
d

=
1

d
=

2
d

=
3

d
≥

4
d

=
2

d
=

2
d
≥

3

B
or

d
a

N
P

-h
♦

P
N
P

-h
P

P
P

P
P

P
C

on
d
or

ce
t
N
P

-h
♣

P
♣

P
N
P

-h
P

P
P

P
N
P

-h
P

P
M

ax
im

in
N
P

-h
♣
N
P

-h
♣

N
P

-h
P

N
P

-h
N
P

-h
N
P

-h

C
op

el
an

d
α

N
P

-h
♥
N
P

-h
♥

N
P

-h
N
P

-h
N
P

-h
N
P

-h
0
≤
α
≤

1
U

N
I:

d
≥

5

T
a
b
le

4
.1
:

A
su

m
m

a
ry

o
f

th
e

co
m

p
le

x
it

y
o
f

th
e

b
ri

b
er

y
p

ro
b
le

m
s.

H
er

e,
th

e
g
en

er
a
l

ca
se

re
fe

rs
to

th
e

b
ri

b
er

y
p

ro
b

le
m

st
u

d
ie

d
in

[1
0
7]

.
In

p
a
rt

ic
u

la
r,

in
th

e
g
en

er
a
l

se
tt

in
g

ea
ch

b
ri

b
ed

v
o
te

r
ca

n
re

ca
st

a
n

ew
v
o
te

w
it

h
o
u

t
th

e
d

is
ta

n
ce

re
st

ri
ct

io
n

.
T

h
e

a
b

b
re

v
ia

ti
o
n

“
C

o
n
st

”
re

fe
rs

to
“C

on
st

ru
ct

iv
e”

an
d

“D
es

t”
re

fe
rs

to
“D

es
tr

u
ct

iv
e”

.
M

or
eo

ve
r,

“d
”

is
th

e
d
is

ta
n
ce

u
p
p

er
b

ou
n
d
.

F
u
rt

h
er

m
or

e,
“P

”
st

an
d
s

fo
r

“p
ol

y
n
om

ia
l-

ti
m

e
so

lv
ab

le
”

an
d

“N
P

-h
”

st
an

d
s

fo
r

“N
P

-h
ar

d
”.

T
h
e

re
su

lt
s

fo
r

C
op

el
an

d
α

ap
p
ly

to
ev

er
y

0
≤
α
≤

1.
A

ll
re

su
lt

s
sh

ow
n

in
th

is
ta

b
le

ap
p
ly

to
b

ot
h

th
e

u
n
iq

u
e-

w
in

n
er

m
o
d
el

an
d

th
e

n
on

u
n
iq

u
e-

w
in

n
er

m
o
d
el

.
T

h
e
N
P

-h
ar

d
n
es

s
of

th
e

d
es

tr
u
ct

iv
e

b
ri

b
er

y
fo

r
C

op
el

an
d
α

u
n
d
er

th
e

u
n
iq

u
e-

w
in

n
er

m
o
d

el
o
n

ly
h

o
ld

s
fo

r
K

T
-d

is
ta

n
ce

u
p

p
er

b
o
u

n
d

d
w

it
h

d
≥

5
.

T
h

e
co

m
p

le
x
it

y
o
f

th
e

p
ro

b
le

m
s

w
h

o
se

d
is

ta
n

ce
b

o
u

n
d

d
is

n
o
t

sh
ow

ed
in

th
e

ta
b
le

re
m

ai
n

op
en

.
N

ot
ic

e
th

at
ev

er
y

tw
o

d
iff

er
en

t
vo

te
s

h
as

H
am

m
in

g
d
is

ta
n
ce

at
le

as
t

2.
T

h
e

re
su

lt
m

ar
ke

d
b
y
♦

is
fr

om
[5

4]
,

b
y
♣

fr
om

[1
10

],
an

d
b
y
♥

fr
om

[1
12

].
A

ll
re

su
lt

s
fo

r
K

T
-d

is
ta

n
ce

an
d

H
am

m
in

g
d
is

ta
n

ce
ar

e
ou

r
n

ew
re

su
lt

s.

102 4. Bribery with Restricted Distances

4.2 Kendall-Tau Distance Restricted Bribery

In this section, we investigate the bribery problem with KT-distance restrictions. In

the following, we summarize our results in several theorems. We begin with some

polynomial-time solvability results.

Theorem 4.1. All the following problems are polynomial-time solvable: C-KT(d)-

Condorcet-UNI, C-KT(d)-Condorcet-NON for d = 1, 2, D-KT(d)-Borda-UNI,

D-KT(d)-Borda-NON for every possible d , D-KT(d)-Condorcet-UNI, D-KT(d)-

Condorcet-NON for every possible d , D-KT(1)-Maximin-UNI and D-KT(1)-Maximin-

NON.

Proof. We prove this theorem by deriving polynomial-time algorithms for the problems

stated in the theorem. For simplicity, the following algorithms are based on the unique-

winner model. The algorithms for the nonunique-winner model can be easily adapted

from the algorithms for the unique-winner model. In the following, let E = (C∪{p},ΠV)

be the given election, where p is the distinguished candidate. Moreover, let m be the

number of candidates and n the number of votes, that is, m = |C ∪ {p}| and n = |ΠV |.

C-KT(d)-Condorcet-UNI for d = 1, 2. The C-KT(1)-Condorcet-UNI can be

easily solved with the following greedy algorithm: for each candidate c which is not

beaten by p, recast up to R votes (we also adjust the value of R as R := R − x, where

x is the number of votes that are recast for c) which rank c immediately above p by

swapping p and c until p beats c. If p becomes the Condorcet winner after doing so,

return “Yes”; otherwise, return “No”. To solve C-KT(2)-Condorcet-UNI, we reduce

the problem to the Simple b-Edge Cover of Multigraphs problem which is

polynomial-time solvable [180]. The definition of the problem is as follows.

Simple b-Edge Cover of Multigraphs

Input: An undirected multigraph G = (U,E) where U is the set of vertices

and E is the set of edges, a function f : U → Z+ and a positive integer κ.

Question: Does there exist a subset of at most κ edges E ′ ⊆ E such that

every vertex u ∈ U is incidents to at least f(u) edges in E ′?

Now we show how to reduce C-KT(2)-Condorcet-UNI to the Simple b-Edge

Cover of Multigraphs problem. For each candidate c which is not beaten by p,

we create a vertex. For simplicity, we still use c to denote the vertex corresponding

to the candidate c. We define ←−p v for a vote πv where p is not ranked in the top as

follows: if p is not ranked in the top 2 positions in πv, then ←−p v is the set containing

the two candidates which are ranked immediately above p in πv; if p is ranked in

the second-highest position in πv, then ←−p v is the set containing the candidate that

4.2. Kendall-Tau Distance Restricted Bribery 103

ranked in the highest position in πv. For example, for a vote πv with preference

a � b � c � p � d,←−p v = {b, c}, while for a vote πu with preference a � p � c � b � d,
←−p u = {a}. The edges are created according to the votes.

Precisely, for each vote πv with |←−p v| = 2, if both candidates of ←−p v = {c, c′} are

not beaten by p, we create an edge between c and c′. On the other hand, if only one of
←−p v is not beaten by p, we introduce a new degree-1 vertex adjacent to the vertex in
←−p v that is not beaten by p. For each vote πv with |←−p v| = 1, if the candidate in ←−p v is

not beaten by p, we introduce a new degree-1 vertex adjacent to the candidate in ←−p v.

Now we come to the capacities of the vertices. Each vertex corresponding to a

candidate c has a capacity f(c) = (N(c, p)−N(p, c))/2+1 whenever N(c, p)−N(p, c) ≡
0 mod 2, and has a capacity f(c) = (N(c, p) + 1−N(p, c))/2 otherwise. Moreover,

each newly introduced degree-1 vertex has capacity 0. The value of the capacity f(c)

indicates the minimum number of votes which rank c to p, that are needed to be

replaced with votes which rank p above c in order to make p beat c.

Now we get an instance of the Simple b-Edge Cover of Multigraphs

problem which is solvable in polynomial time [180]. Moreover, given a solution E ′

of Simple b-Edge Cover of Multigraphs, we can get a solution for C-KT(2)-

Condorcet in polynomial time. In particular, we recast the votes according to the

edges in E ′: if there is an edge (c, c′) ∈ E ′ where none of {c, c′} is a newly introduced

degree-1 vertex, then we recast the corresponding vote by promoting p by two positions;

if there is an edge (c, c′) ∈ E ′ where one of {c, c′} is a newly introduced degree-1 vertex,

we recast the corresponding vote by promoting p by one position.

D-KT(d)-Condorcet. The algorithm first guesses a candidate p′ which is not

beaten by p in the final election. This leads to at most m subinstances, each determining

whether we can replace at most R votes with R many KT(d)-close new votes so that

p′ is not beaten by p. Now we focus on solving each subinstance. Observe first that we

will not replace any vote which has ranked p′ above p. Moreover, due to the distance

restriction, for a vote that ranks p above p′, if there are more than d − 1 candidates

ranked between them, we will not replace this vote. Let A be the multiset of the votes

which rank p above p′, and where there are no more than d − 1 candidates ranked

between them. Let n′ = |A|. If min{R , n′}+N(p′, p) ≥ n
2
, we terminate the algorithm

and return “Yes”, since we can get a solution by the following way: arbitrarily choose

min{R , n′} votes in A and replace each of them with a new vote obtained from the

original vote by promoting p′ to the position immediately above p. On the other hand,

if min{R , n′}+N(p′, p) < n
2
, we cannot make p′ beat or tie p by replacing at most R

votes; and thus, in this case we discard the current subinstance and proceed to the

next one. If none of the subinstances leads to a “Yes” answer, then return “No”.

D-KT(1)-Maximin: The algorithm first carries out a polynomial number of

guesses. In particular, the algorithm guesses a candidate p′ which prevents p from

being the unique winner, an integer s which plays the role as an upper bound of the

104 4. Bribery with Restricted Distances

Maximin score of p in the final election and a lower bound of the Maximin score of p′

in the final election, and a candidate q with N(p, q) ≤ s in the final election. These

lead to at most m2× n subinstances where m is the number of candidates and n is the

number of votes. To make it clear, we give the formal definition of the subproblem.

Sub-D-KT(1)-Maximin

Input: An election E = {C ∪ {p, p′, q},ΠV}, and two integers s and R .

Question: Is there a submultiset ΠT v ΠV of votes such that

(1) ΠT contains at most R votes; and

(2) we can replace every vote πv ∈ ΠT with a new vote obtained from πv by

swapping two consecutively ranked candidates so that N(p, q) ≤ s in the

final election, and the Maximin score of p′ is at least s in the final election?

Now we focus on solving the subproblem. Let Πp be the multiset of votes which

rank p immediately above q. Let A = {c ∈ C | NE(p′, c) < s}. For each c ∈ A, let

Πc v ΠV ∪--- Πp be the multiset of votes that rank c immediately above p′. Clearly,

for every two candidates c, c′ ∈ A, Πc ∩ Πc′ = ∅. Moreover, for every c ∈ A, let

f(c) = s − NE(p′, c). The algorithm works as follows. For each c ∈ A, arbitrarily

choose min{f(c), |Πc|} votes in Πc, and replace each of them with a new vote obtained

from the original vote by swapping c and p′; then, set f(c) := f(c)−min{f(c), |Πc|}
and R := R − min{f(c), |Πc|}. If R < 0 after doing so, we cannot make p′ have a

Maximin score at least s by replaying at most R votes; and thus, the algorithm returns

“No”. Otherwise, let B = {c ∈ A | f(c) > 0}. Then, for each c ∈ B, let Π̄c be the

multiset of votes in Πp that rank c immediately above p′. If |Π̄c| < f(c), the given

instance is a no-instance (since we cannot make p′ have a Maximin score at least s

in the final election); and thus, we return “No”. Otherwise, we arbitrarily choose

min{f(c), |Π̄c|} votes in Π̄c, and

(1) replace each of them with a new vote obtained from the original vote by

swapping c and p′;

(2) remove them from the multiset Πp; and

(3) set R := R −min{f(c), |Π̄c|}.

Again, if R < 0 after doing so, we return “No”. Otherwise, if min{|Πp|,R } <
NE(p, q)− s, the given instance is a no-instance, and we return “No”. Otherwise, we

return “Yes” since we can get a solution by replacing arbitrary NE(p, q)− s votes in

Πp by new votes obtained from the original votes by swapping p and q.

D-KT(d)-Borda. The algorithm first guesses a candidate p′ which prevents p
from being the unique winner. This leads to at most m subinstances, each determining

whether we can make p′ have a no less score than that of p by replacing at most R
votes with R many KT(d)-close new votes. We focus on the subinstances. It is clear

that for any vote, promoting p′ by one position has the same effect as degrading p by

4.2. Kendall-Tau Distance Restricted Bribery 105

one position, in the sense that both cases increase the score gap between p′ and p by

one. Therefore, the algorithm can choose up to R specific votes and replace them with

new votes which are obtained from the original votes by promoting p′ or degrading

p by a total number of at most d positions. Precisely, we first order the votes πv
according to the non-increasing order of posv(p

′)− posv(p). Then, we choose the first

R votes. Then, for every πv of the chosen votes, we replace it with a KT(d)-close

vote obtained from πv by promoting p′ by h = min{d , posv(p′) − 1} positions, and

degrade p by min{d − h,m− posv(p)} positions. After all these replacements, if p is

no longer the unique winner, then we return “Yes”. Otherwise, we discard the current

subinstance and proceed to the next one. If none of the subinstances leads to a “Yes”

answer, we terminate the algorithm and return “No”. The above algorithm applies to

every natural integer d .

Now we discuss the NP-hardness results. We first investigate the constructive

distance restricted bribery for Borda. We have seen from the above theorem that the

destructive counterpart turned out to be polynomial-time solvable for every possible

values of d . The following theorem shows, however, that the constructive distance

restricted bribery for Borda is NP-hard even when the distance is bounded by a small

constant. Before proceeding further, we define some notations which will be used in

this chapter.

For an order X = (x1, x2, ..., xi) over the set {x1, x2, ..., xi}, we denote by
←−
X the

reverse order of X, that is,
←−
X = (xi, ..., x2, x1). For a subset Y ⊆ {x1, x2, ..., xi}, X \Y

is the order obtained from X by deleting all the elements in Y . For example, for

X = (1, 4, 3, 8, 5) and Y = {4, 8}, X \ Y = (1, 3, 5).

For two candidate subsets X and Y and a vote with preference �, X � Y means

that every candidate in X is ranked above every candidate in Y in the vote.

Theorem 4.2. C-KT (d)-Borda-UNI and C-KT (d)-Borda-NON are NP-hard, for

every d ≥ 3.

Proof. We first consider C-KT(3)-Borda-NON. The reduction is from X3C. Given an

instance F = (U = {c1, c2, ..., c3κ}, S = {s1, s2, ..., sm}) of X3C, we create an instance

E for C-KT(3)-Borda-NON as follows.

Candidates: For each c ∈ U , we create a corresponding candidate. For con-

venience, we still use c to denote the corresponding candidate. We create 6m − 6

dummy candidates Y = {y1, y2, ..., y6m−6} each of which has considerably less Borda

score than that of any other candidate not in Y . For ease of exposition, we divide the

dummy candidates into subsets Z1, Z2, ..., Zm. To be precise, for each i = 1, 2, ...,m−2,

Zi = {y6i−5, y6i−4, y6i−3, y6i−2, y6i−1, y6i}. Moreover, Zm−1 = {y6m−11, y6m−10, y6m−9}
and Zm = {y6m−8, y6m−7, y6m−6}. Finally, we create a distinguished candidate p. In

summary, the candidate set is U ∪ {p} ∪ Y , where Y = ∪i=1,2,...,mZi.

106 4. Bribery with Restricted Distances

Votes: We create 2m + 2 votes in total. In the following, we do not distin-

guish between the terms “set” and “order”. Thus, U is also considered as an order

(c1, c2, ..., c3κ), and every s = {xi, xj, xk} ∈ S is considered as an order (xi, xj, xk) with

i < j < k. In the following votes, the candidates in each Zi are ranked arbitrarily.

For each sj ∈ S with j = 1, 2, ...,m− 2, we create two votes as follows (notation

of the vote: preference of the vote).

πsj : sj � p � Zj � U \ sj � Y \ Zj

π′sj :
←−−−
U \ sj � Zj � p � ←−sj � Y \ Zj

Note that with the above 2(m− 2) votes, all candidates in U ∪ {p} have the same

Borda score. The following four votes are created according to the last two 3-subsets

sm−1, sm ∈ S.

πsm−1 : sm−1 � p � Zm ∪ Zm−1 � U \ sm−1 � Y \ (Zm ∪ Zm−1)

π′sm−1
:
←−−−−−
U \ sm−1 � Zm−1 � p � Zm � ←−−sm−1 � Y \ (Zm ∪ Zm−1)

πsm : sm � p � Zm ∪ Zm−1 � U \ sm � Y \ (Zm ∪ Zm−1)

π′sm :
←−−−−
U \ sm � Zm−1 � p � Zm � ←−sm � Y \ (Zm ∪ Zm−1)

With the above two votes and the previously created 2(m− 2) votes, p has exactly

6 more points than every candidate c ∈ U .

Finally, we have two votes defined as follows.

U � Zm � p � Y \ Zm
←−
U � Zm � p � Y \ Zm
With all the 2m+ 2 votes created as above, p has exactly 3κ+ 1 less points than

every candidate c ∈ U .

Number of Replaced Votes: R = κ

In the following, let A = {π′sj | sj ∈ S} and B the set of the last two created

votes. Now we discuss the correctness of the reduction. Let’s first check the score gap

between every two candidates. As discussed above, in the election, all candidates in

U have the same Borda score. Moreover, p has exactly 3κ+ 1 less points than every

c ∈ U . Finally, every dummy candidate y has a considerably smaller Borda score than

every other nondummy candidate.

(⇒:) Suppose that F is a yes-instance and S ′ is an exact 3-set cover. Let

ΠS′ = {πsj | sj ∈ S ′} be the multiset of the votes of the first type corresponding to

S ′. Every vote in ΠS′ ranks the three candidates corresponding to a 3-subset sj above

p in πsj . Consider the election E ′ obtained from the original election E by replacing

each πsj ∈+ ΠS′ with a vote obtained from πsj by promoting p to the highest position.

4.2. Kendall-Tau Distance Restricted Bribery 107

Precisely, for each πsj ∈ ΠS′ defined as sj � p � Zj � U \ sj � Y \ Zj, we replace

it with a vote defined as p � sj � Zj � U \ sj � Y \ Zj. Clearly, each replacement

increases the score of p by 3, and decreases the score of every candidate in sj by 1.

Since there are exactly κ votes in ΠS′ , the score of p is finally increased by 3κ. Since

S ′ is an exact 3-set cover, for every c ∈ U , there is only one vote in ΠS′ which ranks

c above p. Therefore, all replacements decrease the score of each candidate in U by

1. Since p has exactly 3κ+ 1 less points than every candidate c ∈ U in the original

election E , p has exactly the same score as every candidate c ∈ U in the final election

E ′. Therefore, p becomes a winner in E ′.

(⇐:) Suppose that E is a yes-instance and ΠS′ is the multiset of votes which are

replaced. We assume that ΠS′ does not contain any vote in A∪B. This assumption is

sound due to the following lemma.

Lemma 4.2. If E is a yes-instance, there must be a solution wherein no vote in A∪B
is replaced.

Proof. We prove the claim by showing that it is always better to replace a vote not

in A ∪B than to replace a vote in A ∪B. Suppose that π is a vote in A ∪B that is

replaced. Observe that promoting p is always better than degrading candidates in U ,

since promoting p by one position decreases the score gap between every candidate in

U and p by one, while degrading some candidate c ∈ U by one position only decreases

the score gap between c and p by one (sometimes even increases the score gap between

some other candidate c′ ∈ U and p). Moreover, the amount of points that can be

decreased in the score gap between every candidate in U and p by promoting p in π,

can be also achieved by promoting p in any vote that is not in A ∪B. In fact, since

in every vote in A ∪B there is at least three dummy candidates ranked below some

candidates in U but ranked above p, replacing votes which are not in A∪B can always

do better: replacing a vote πs 6∈ A ∪ B with preference cx � cy � cz � p... (where

s = {cx, cy, cz}) with a vote with preference p � cx � cy � cz... does not only decrease

the score gap between every candidate in U \ s and p by 3, but better yet, decreases

the score gap between every candidate in s and p by 4.

Due to the above analysis, we assume that ΠS′ contains only the votes in {πsj |
sj ∈ S}, where S is the collection of 3-subsets in F . Let S ′ = {sj | πsj ∈ ΠS′} be

the subcollection corresponding to ΠS′ . First observe that for any vote πs ∈ ΠS′ ,

promoting p by three positions is always better than any other combinations: by doing

so, the score gap between every candidate in U and p is decreased by at least 3 (for

candidates in s, the score gaps decrease by 4). Therefore, we can assume that in the

solution, every vote in ΠS′ is replaced with a new vote obtained from the original vote

by promoting p by three positions. Since p has 3κ+ 1 less points than every candidate

in U in the original election E , and we can replace at most κ votes, every candidate in

U must be degraded by one position at least once. This implies that for every c ∈ U ,

108 4. Bribery with Restricted Distances

there must be a vote πs ∈ ΠS′ with c ∈ s, further implying that S ′ is an exact 3-set

cover of F .

Now we consider C-KT(3)-Borda-UNI. The reduction is similar to the above one

for C-KT(3)-NON, with the difference in the last created vote. Precisely, we remove

the last vote created in the reduction for C-KT(3)-UNI, and instead, we create a vote

defined as follows.

U � Zm ∪ {y6m−12} � p � Y \ Zm ∪ {y6m−12}.

By ranking the candidate y6m−12 between Zm and p, the score gap between every

candidate in U and p decreases to 3κ, one point less than that in the reduction for

C-KT(3)-Borda-NON. This ensures the correctness.

The NP-hardness of C-KT(d)-Borda-UNI and C-KT(d)-Borda-NON for every

d ≥ 4 can be proved via reductions from Xd C which is NP-hard as shown in

Lemma 4.1. The reductions are analogous to C-KT(3)-Borda-UNI and C-KT(3)-

Borda-NON, respectively (in both reductions, we need to add further 2(d − 3) dummy

candidates to each Zi).

Now we come to Condorcet. The C-KT(d)-Condorcet problem is related to

Dodgson voting. The Dodgson correspondence was introduced by Charles Lutwidge

Dodgson who is better known as Lewis Carroll [80]. In this setting, each candidate

has a Dodgson score which is defined as the minimum number of swaps of adjacent

candidates needed to make the candidate the Condorcet winner. Calculating the

Dodgson score of a candidate is proved NP-hard [145]. Recall that the KT-distance

between two votes is equal to the minimum number of swaps of adjacent candidates

needed to transform one into the other. Therefore, if a candidate can become the

Condorcet winner by recasting at most R votes with respect to KT-distance upper

bound d , then the Dodgson score of the candidate is at most R · d . In Theorem 4.1,

we have shown that both C-KT(1)-Condorcet and C-KT(2)-Condorcet are polynomial-

time solvable. In the following, we show that the polynomial-time solvability does not

hold for C-KT(d)-Condorcet for every d ≥ 3. Recall that in the general case, the

constructive bribery for Condorcet is NP-hard [110, 112].

In the following, we assume that in both the X3C problem and the X4C problem,

each element ci in the universal set occurs in exactly three subsets of the collection

S. This assumption does not change the NP-hardness of both problems [20, 21, 138].

Note that under this assumption, we have n = 3κ in both the X3C problem and the

X4C problem.

Theorem 4.3. C-KT (d)-Condorcet-UNI and C-KT (d)-Condorcet-NON are NP-hard

for every d ≥ 3.

4.2. Kendall-Tau Distance Restricted Bribery 109

p cj y1 y2 y3

p - 3κ− 3 3κ

ci 3κ− 2 · · · 6κ− 5

y1 3κ− 5 0 - 3κ− 5

y2 3κ− 5 0 0 - 3κ− 5

y3 3κ− 5 0 0 0 -

Table 4.2: Comparisons between every two candidates in the NP-hardness reduction for
C-KT(3)-Condorcet-UNI in Theorem 4.3. There are 6κ− 5 votes in total. Entries with ’· · · ’
signifies that the comparison does no affect the correctness of the reduction.

Proof. We first consider C-KT(3)-Condorcet-UNI. The reduction is from the X3C

problem. Given an instance F = (U = {c1, c2, ..., c3κ}, S = {s1, s2, ..., s3κ) of X3C, we

create an instance E for C-KT(3)-Condorcet-UNI as follows:

Candidates: For each c ∈ U , we create a corresponding candidate. For simplicity,

we still use the same notation c to denote this candidate. In addition, we have a

distinguished candidate p and three dummy candidates Y = {y1, y2, y3}.

Votes: For each s = {ci, cj, ck} ∈ S, we create a vote πs defined as s � p �
U \ s � Y . Here, the candidates in s, in U \ s and in Y are ranked according to

the increasing order of the indices. In addition, we create 3κ − 5 votes defined as

U � Y � p. Here, the candidates in U and in Y are ranked according to the increasing

order of the indices. In total, we have 6κ− 5 votes.

Number of Replaced Votes: R = κ.

Now we discuss the correctness. First observe that c1 is the current Condorcet

winner, and no candidate in Y can become the Condorcet winner by replacing at most

κ votes with respect to the distance restriction. The comparisons between every two

candidates are shown in Table 4.2.

(⇒:) Suppose that F is a yes-instance and S ′ is an exact 3-set cover. Let

ΠS′ = {πsj | sj ∈ S ′} be the multiset of votes corresponding to S ′. Consider replacing

each vote πs ∈ ΠS′ by another vote which is obtained from πs by promoting p to the

highest position, that is, replacing each vote πs ∈ ΠS′ defined as s � p � U \ s � Y

with a vote defined as p � s � U \ s � Y . Since s is a 3-subset, the KT-distance

between the original vote and the new vote is 3. Since S ′ is an exact 3-set cover, for

every c ∈ U there is exactly one vote in ΠS′ which ranks c above p (and p is ranked

above c after the replacement). Therefore, after κ replacements as discussed above,

for every c ∈ U , there are exactly 3κ− 2 votes ranking p above c, implying that p is

the Condorcet winner in the final election.

110 4. Bribery with Restricted Distances

(⇐:) Suppose that E is a yes-instance and ΠS′ is the multiset of votes which are

replaced. Since |Y | = 3 and each vote can be replaced only with a vote which has

KT-distance at most 3 from it, replacing any of the last 3κ− 5 votes does not help

improving the wining status of p (In other words, replacing a vote in the last 3κ− 5

vote is not helpful for p to beat any candidate in U , since the dummy candidates

in Y are ranked between U and p; and thus, according to the distance restriction, p
cannot be ranked above any candidate in U via a replacement of a vote in the last

3κ − 5 votes.). Therefore, we know that ΠS′ contains only the votes corresponding

to S. Let S ′ = {s ∈ S | πs ∈ ΠS′} be the subcollection of S corresponding to S ′. In

order to make p the Condorcet winner, for every c ∈ U there must be at least one vote,

corresponding to some s with c ∈ s, which is replaced with a vote ranking p above c.

This implies that S ′ is an exact 3-set cover of F .

The above reduction directly applies to C-KT(3)-Condorcet-NON. This is because

that we created an odd number of votes in the above reduction; and thus, ties do

not occur in comparison between every two candidates, implying that the Condorcet

winner and the weak Condorcet winner coincide.

The NP-hardness of C-KT(4)-Condorcet-UNI and C-KT(4)-Condorcet-NON can

be proved via reductions from X4C (exact 4-set cover) which is NP-hard [20, 21]. The

reductions are analogous to C-KT(3)-Condorcet-UNI and C-KT(3)-Condorcet-NON,

respectively (in reductions for C-KT(4)-Condorcet-UNI and C-KT(4)-Condorcet-NON,

we need to create one more dummy candidate y4 and add it to Y).

The NP-hardness of C-KT(d)-Condorcet-UNI and C-KT(d)-Condorcet-NON for

every d ≥ 5 is implied by the NP-hardness reduction in Theorem 3.2 in [112].

Now we come to Copelandα.

Theorem 4.4. C-KT(d)-Copelandα-UNI and C-KT(d)-Copelandα-NON, D-KT(d)-

Copelandα-NON for every d ≥ 3, and D-KT(d)-Copelandα-UNI for every d ≥ 5 are

NP-hard for every 0 ≤ α ≤ 1.

Proof. We first consider C-KT(3)-Copelandα-UNI. The reduction is from the X3C

problem with the restriction that every element of the universal set occurs in exactly

three subsets in the collection. For an instance F = (U = {c1, c2, ..., c3κ}, S =

{s1, s2, ..., s3κ}) of X3C where each ci ∈ U occurs in exactly three 3-subsets of S, we

create an instance E for C-KT(3)-Copelandα-UNI as follows.

Candidates: We have |U |+ 8 candidates in total. In particular, for each ci ∈ U ,

we create a candidate. For simplicity, we still use ci to denote this candidate. In

addition, we have 8 candidates p, y, Z = {z1, z2, z3} and Z ′ = {z′1, z′2, z′3}, where p is

the distinguished candidate.

Votes: Let n = |S| = 3κ. We create 2n+ 1 votes in total. In particular, for each

s = {ci, cj, ck} ∈ S, we create one vote πs defined as y � Z ′ � s � p � U \ s � Z.

4.2. Kendall-Tau Distance Restricted Bribery 111

Here, the candidates in Z,Z ′, s, U \ s are ranked according to the increasing order

of the indices, respectively. In addition, we create n − 2 votes each defined as

U � Z � p � y � Z ′. Finally, we create 3 votes each defined as p � y � Z ′ � U � Z.

In the above n + 1 votes, the candidates in U,Z and Z ′ are ranked according to

the increasing order of the indices. It is easy to verify that the candidate y is the

current (unique) winner. The comparisons between every two candidates are shown in

Table 4.3.

Number of Replaced Votes: R = κ.

p y ci zi z′i

p - n+ 1 n n+ 3 n+ 1

y n - n+ 3 n+ 3 2n+ 1

ci n+ 1 n− 2 ... 2n+ 1 n− 2

zi n− 2 n− 2 0 ... n− 2

z′i n 0 n+ 3 n+ 3 ...

Table 4.3: The comparisons between every two candidates in the NP-hardness reduction
for C-KT(3)-Copelandα-UNI in Theorem 4.4. The distinguished candidate is p. The current
winner is y. The comparisons corresponding to entries filled with “...” mean that the
comparisons do not play any role in the correctness argument.

Now we prove that F is a yes-instance if and only if E is a yes-instance.

(⇒:) Suppose that F is a yes-instance and S ′ is an exact 3-set cover. Let

ΠS′ = {πs | s ∈ S ′} be the set of votes corresponding to S ′. Consider the election after

replacing all the votes in ΠS′ in the following way: each vote πs ∈ ΠS′ with s ∈ S ′ is

replaced with a vote defined as y � Z ′ � p � s � X \ s � Z. Clearly, the KT-distance

between these two votes is 3. Since S ′ is an exact 3-set cover, for each ci ∈ U there

is exactly one vote πs ∈ ΠS′ with ci ∈ s. Due to the construction, ci is ranked above

p in πs, while ranked below p in the new vote which replaces πs. Therefore, after κ

replacements as discussed above, for every ci ∈ U there are n+ 1 votes which rank p
above ci, implying that p beats every candidate ci ∈ U , further implying that p is the

unique Copelandα winner (holds for every 0 ≤ α ≤ 1).

(⇐:) Suppose that E is a yes-instance and ΠS′ is the multiset of votes which are

replaced. Let E ′ be the final election obtained form E by replacing the votes in ΠS′

with κ many new votes (we discuss later what are the new votes). Observe that the

candidate y beats every other candidate except p in E . A deeper observation is that y

still beats those candidates in the final election E ′.

Lemma 4.3. The candidate y beats all the candidates in U ∪ Z ∪ Z ′ in E ′.

112 4. Bribery with Restricted Distances

Proof. Clearly, y beats every candidate in Z ′ in the final election E ′ since all votes

rank y above Z ′. Now we consider the candidates in U ∪ Z. Observe first that every

vote in E either ranks y above all candidates in U ∪ Z, or ranks all candidates in

U ∪ Z above y. Moreover, the votes that rank y above all candidates in U ∪ Z are

those that corresponding to S, and the last three created votes. However, in these

votes, the candidates in Z ′ (|Z ′| = 3) are ranked between y and every candidate in

U ∪ Z; thus, we cannot replace a vote which ranks y above a candidate a ∈ U ∪ Z by

a 3-KT-close vote which, however, ranks a above y. Therefore, the votes which rank

y above a candidate a ∈ U ∪ Z will still rank y above a in the final election E ′. The

lemma follows.

Due to the above lemma and the fact that p is the unique winner in the final

election E ′, we know that p beats every other candidate in E ′. Observe that in the

original election E , p is beaten by every candidate in U . Then, due to the distance

restriction, ΠS′ must be from the votes corresponding to S. Let S ′ = {s | πs ∈ ΠS′}
be the subcollection of 3-subsets corresponding to ΠS′ . Since p beats all candidates in

U in the final election E ′ and we can replace at most R = κ votes, for each ci there

must be a vote πs ∈ ΠS′ with ci ∈ s, which is replaced with a new vote obtained from

πs by promoting p by three positions. Since |S| = 3κ, it follows that S ′ must be an

exact 3-set cover.

The above reduction applies to D-KT(3)-Copelandα-NON if we set y as the

distinguished candidate. To check the correctness, observe that the candidate p is

the only candidate which can have a higher score than that of y by replacing at most

κ votes with κ many KT(3)-close votes: due to Lemma 4.3, a candidate which has

a higher score than that of y in the final election has to beat every other candidate.

Since y beats every candidate in U ∪ Z ∪ Z ′ in the final election (due to Lemma 4.3),

no candidate in U ∪ Z ∪ Z ′ can have a higher score than that of y in the final election.

Now we consider C-KT(3)-Copelandα-NON. The above reduction does not apply

here since in C-KT(3)-Copelandα-NON, p does not need to beat every other candidate

in the final election to become a winner (p could also become a winner even there is

no exact 3-set cover). In order to overcome this situation, we introduce a new dummy

candidate y′ which beats p, but is beaten by y in the original election. To this end, we

adopt the votes constructed as above together with the newly introduced candidate

y′. In particular, we rank y′ immediately after y in all the votes corresponding to S

and all the followed n− 2 votes. Moreover, we rank y′ above p in all the three votes

created in the last. The comparisons between every two candidates are summarized in

Table 4.4. Provided with the above votes, we have the following lemma.

Lemma 4.4. If p is a winner in the final election, then p is beaten by y′ in the final

election.

4.2. Kendall-Tau Distance Restricted Bribery 113

p y y′ ci zi z′i

p - n+ 1 n− 2 n n+ 3 n+ 1

y n - 2n− 2 n+ 3 n+ 3 2n+ 1

y′ n+ 3 3 - n+ 3 n+ 3 2n+ 1

ci n+ 1 n− 2 n− 2 - 2n+ 1 n− 2

zi n− 2 n− 2 n− 2 0 - n− 2

z′i n 0 0 n+ 3 n+ 3 -

Table 4.4: The comparisons between every two candidates in the NP-hardness reduction
for C-KT(3)-Copelandα-NON in Theorem 4.4. The distinguished candidate is p. The current
winners are y and y′.

Proof. We prove the lemma by contradiction. Suppose that p becomes a winner, but

is not beaten by y′ in the final election. Then, we have to replace the last three votes

with three new votes obtained from the original votes by swapping the positions of y′

and p. Therefore, at most κ− 3 votes corresponding to S can be replaced, implying

that p would be beaten by at least 9 candidates in U in the final election, contradicting

that p is a winner in the final election.

Due to the above lemma, to make p a winner, p has to beat every candidate in U

in the final election. Then, we can use the argument for C-KT(3)-Copelandα-UNI to

check the correctness of the reduction.

The NP-hardness of C-KT(4)-Copelandα-UNI, C-KT(4)-Copelandα-NON and

D-KT(4)-Copelandα-NON can be proved via reductions from the X4C problem which

is NP-hard [20, 21]. The reductions are analogous to C-KT(3)-Copelandα-UNI,

C-KT(3)-Copelandα-NON, and D-KT(3)-Copelandα-NON, respectively.

The NP-hardness of C-KT(d)-Copelandα-UNI, C-KT(d)-Copelandα-NON, D-

KT(d)-Copelandα-NON and D-KT(d)-Copelandα-UNI for every d ≥ 5 is implied by

the NP-hardness reduction in Theorem 3.2 in [112].

We have just examined the NP-hardness of C-KT(d)-Copelandα-UNI, C-KT(d)-

Copelandα-NON and D-KT(d)-Copelandα-NON for every d ≥ 3, and D-KT(d)-

Copelandα-UNI for every d ≥ 5, but left the complexity of D-KT(d)-Copelandα-UNI

for d = 3, 4 unexamined. We cannot simply adopt the reductions for C-KT(3)-

Copelandα-NON and C-KT(4)-Copelandα-NON to prove the NP-hardness of D-

KT(4)-Copelandα-UNI and D-KT(4)-Copelandα-UNI, since both candidates y and y′

win the election, and thus, no candidate is valid to be the distinguished candidate.

114 4. Bribery with Restricted Distances

Now we investigate the complexity of the distance restricted bribery problem

for Maximin. Before proceeding further, we examine a special kind of Maximin

voting profiles. These profiles will be useful in many of the NP-hardness reductions

concerning Maximin voting. In particular, these voting profiles contain votes which

cyclicly rank the candidates so that the Maximin score of every candidate is at most

dn/me, where n is the number of votes and m is the number of candidates. See the

example below.

Example: Three cyclic voting profiles with four candidates a, b, c, d.

1 : a � b � c � d

1 : b � c � d � a

1 : c � d � a � b

1 : d � a � b � c

2 : a � b � c � d

2 : b � c � d � a

2 : c � d � a � b

2 : d � a � b � c

k : a � b � c � d

k : b � c � d � a

k − 1 : c � d � a � b

k − 1 : d � a � b � c

Profile 1 Profile 2 Profile 3

The voting profile 1 contains four votes which cyclicly rank the candidates with

each candidate being ranked in the first position once. It is easy to see that every

candidate has Maximin score one in the voting profile 1. In particular, Min(a) =

{d},Min(b) = {a},Min(c) = {b} and Min(d) = {c}, where for a candidate q

Min(q) = {q′ ∈ C | ∀(q′′ ∈ C)[N(q, q′) ≤ N(q, q′′)]}

is the set of candidates that achieves the minimum value of N(q, ·). That is, for every

candidate q, Min(q) is exactly the candidate which is ranked in the last position in

the vote where q is ranked in the first position. This rule applies to the voting profile 2

and the voting profile 3. The voting profile 2 is obtained from the voting profile 1 by

adding another copy of voting profile 1; thus every candidate is ranked in the first

position twice. It is easy to see that every candidate has Maximin score two in the

voting profile 2. Voting profile 3 contains n = 4k − 2 votes that cyclicly rank the

candidate so that every candidate is either ranked in the first position k times or k− 1

times. It is easy to check that every candidate has Maximin score k = dn
4
e = d4k−2

4
e.

Every cyclic voting profile, as the ones discussed above, with m candidates has

at most m different votes, corresponding to m linear orders over the candidates. We

call these m linear orders the rotate orders of the cyclic voting profile containing m

candidates.

Theorem 4.5. D-KT(d)-Maximin-UNI, D-KT(d)-Maximin-NON, C-KT(d)-

Maximin-UNI and C-KT(d)-Maximin-NON are NP-hard for every d ≥ 4.

4.2. Kendall-Tau Distance Restricted Bribery 115

Proof. We first examine D-KT(4)-Maximin-NON. We prove its NP-hardness

by a reduction from the X3C problem. Given an instance F = (U =

{c1, c2, ..., c3κ}, S = {x1, s2, ..., sn}) of X3C, we create an instance E for D-KT(4)-

Maximin-NON as follows. We assume that every ci occurs in exactly three subsets in

S, and thus, n = 3κ.

Candidates: The candidate set is U ∪ {p, q}, where q is the distinguished

candidate.

Votes: We create 2n− 5 votes in total. We first create n votes corresponding to

S. In particular, for each si ∈ S, we create one vote πsi defined as q � s̃i � p � Ũ \ si,
where s̃i and Ũ \ si are specific orders over si and U \ si, respectively, that are defined

as follows. Let Πcyclic be a list of 3κ linear orders over U that rank the candidates in

U cyclicly with respect to the rotate order (c1, c2, ..., c3κ), as discussed above. Let �i
be the i-th linear order in Πcyclic. Then, �i is defined as

ci �i ci+1 �i, ...,�i c3κ �i c1 �i c2 �i, ...,�i ci−1.

Then, s̃i and Ũ \ si are defined as the linear order �i restricted to si and U \ si,
respectively. That is, for every two candidates a, b ∈ si (resp. a, b ∈ U \ si), the vote

πsi has preference a � b if and only if a �i b.

In addition to the above votes corresponding to S, we create n − 2κ + 1 votes

defined as U � p � q . Finally, we have κ− 3 votes defined as q � U � p, and κ− 3

votes defined as U � p � q . Moreover, the election restricted to U of the last n− 5

votes rank the candidates in U cyclicly with respect to the rotate order (c1, c2, ..., c3κ).

The comparisons between every two candidates are shown in Table 4.5. An example

of the construction is shown below.

Example. Let U = {c1, c2, c3, c4, c5, c6, c7, c8, c9} and S =

{s1, s2, s3, s4, s5, s6, s7, s8, s9}, where s1 = {c1, c2, c8}, s2 = {c1, c3, c5}, s3 =

{c1, c2, c9}, s4 = {c2, c5, c7}, s5 = {c3, c4, c9}, s6 = {c4, c5, c6}, s7 = {c3, c4, c7}, s8 =

{c6, c7, c8}, s9 = {c6, c8, c9}. We have that κ = 3 and n = 9.

The votes corresponding to S are defined as follows.

πs1 : q � c1 � c2 � c8 � p � c3 � c4 � c5 � c6 � c7 � c9

πs2 : q � c3 � c5 � c1 � p � c2 � c4 � c6 � c7 � c8 � c9

πs3 : q � c9 � c1 � c2 � p � c3 � c4 � c5 � c6 � c7 � c8

πs4 : q � c5 � c7 � c2 � p � c4 � c6 � c8 � c9 � c1 � c3

πs5 : q � c9 � c3 � c4 � p � c5 � c6 � c7 � c8 � c1 � c2

πs6 : q � c6 � c4 � c5 � p � c7 � c8 � c9 � c1 � c2 � c3

116 4. Bribery with Restricted Distances

πs7 : q � c7 � c3 � c4 � p � c8 � c9 � c1 � c2 � c5 � c6

πs8 : q � c8 � c6 � c7 � p � c9 � c1 � c2 � c3 � c4 � c5

πs9 : q � c9 � c6 � c8 � p � c1 � c2 � c3 � c4 � c5 � c7

The remaining n− 5 = 4 votes are defined as follows.

c1 � c2 � c3 � c4 � c5 � c6 � c7 � c8 � c9 � p � q

c2 � c3 � c4 � c5 � c6 � c7 � c8 � c9 � c1 � p � q

c3 � c4 � c5 � c6 � c7 � c8 � c9 � c1 � c2 � p � q

c4 � c5 � c6 � c7 � c8 � c9 � c1 � c2 � c3 � p � q

In the above election, each candidate ci has Maximin score at most 5. In fact,

this holds for every candidate in U in the constructed E .

Lemma 4.5. Every candidate in U has Maximin score at most 5 in E.

Proof. Due to the definition of Maximin, the Maximin score of a candidate in an

election is no greater than the Maximin score of the candidate in a restricted election

to a subset of candidates including the candidate. Therefore, to prove the lemma, it is

sufficient to consider the election restricted to U . Let ci be any arbitrary candidate

in U . We consider the comparison between ci and ci−1 for every i = 1, 2, ..., 3κ (we

assume that c0 = c3κ). It is easy to see that in the last n− 5 = 3κ− 5 votes, there is

at most one vote that ranks ci above ci−1. Now we consider the votes corresponding to

S. Let Πcyclic be the list of the 3κ linear orders over U as discussed above. In Πcyclic,

there is only one vote which ranks ci above ci−1. Let sx, sy, sz be the 3 subsets in S

that contain ci. Due to the construction of the votes, in the three votes corresponding

to {sx, sy, sz}, the candidate ci is ranked in the top three positions. This gives three

additional votes that potentially rank ci above ci−1. Therefore, there are at most 4

votes which rank ci above ci−1 in the n = 3κ votes corresponding to S. Putting all

together, we know that there are at most 5 votes in total that rank ci above ci−1,

implying that the Maximin score of ci is at most 5. Since ci is arbitrarily chosen, the

lemma follows.

Number of Replaced Votes: R = κ.

Now we prove the correctness of the reduction.

(⇒:) Suppose that F is a yes-instance and S ′ is an exact 3-set cover. Let

ΠS′ = {πs | s ∈ S ′} be the set of votes corresponding to S ′. Consider the final election

obtained from E by replacing the votes in ΠS′ . In particular, each vote πs is replaced

with a vote obtained from πs by promoting p to the first position, that is, the vote

defined as p � q � s � U \s. It is easy to verify that in the final election p has Maximin

4.2. Kendall-Tau Distance Restricted Bribery 117

q p cj

q - n+ κ− 3 n+ κ− 3

p n− κ− 2 - n− 3

ci n− κ− 2 n− 2 ≤ 5

Table 4.5: Comparisons between every two candidates in the NP-hardness reduction for
D-KT(4)-Maximin-NON in Theorem 4.5. The comparisons between ci and cj with i 6= j
should be read as follows: “for every candidate ci ∈ U , there exists one candidate cj ∈ U
such that NE(ci, cj) ≤ 5”.

score n − 2 (Min(p) = U ∪ {q}) and q has Maximin score n − 3 (Min(q) = {p}),
implying that q is no longer a winner.

(⇐:) Suppose that E is a yes-instance. As shown in Lemma 4.5, every candidate

in U has Maximin score at most 5. Given that κ is not a constant and n = 3κ, we

know that no candidate in U can have a higher score than that of q by replacing at

most κ votes. Therefore, p is the only candidate which can prevent q from being a

winner. This means that in the final election, p has a higher score than that of q .

Since NE(q , c) = n+ κ− 3 for every candidate c ∈ U ∪ {p}, the Maximin score of q in

the final election must be at least n− 3. Hence, the Maximin score of p in the final

election must be at least n − 2. Since NE(p, q) = n − κ − 2, there must be κ votes

ranking q above p that are replaced with κ new votes ranking p above q . Moreover,

these new votes should be KT(4)-close to their corresponding original votes. Due to

these, we know that the replaced votes must be from the votes corresponding to S.

Let ΠS′ be the replaced votes and S ′ = {s | πs ∈ ΠS′} be the subcollection of 3-subsets

corresponding to ΠS′ . Since for every candidate c ∈ U we have that NE(p, c) = n− 3,

there must be at least one vote ranking p above c that is replaced with a new vote

ranking c above p. Moreover, the new vote should be KT(4)-close to the original vote.

This can only be achieved by replacing a vote πs with c ∈ s with a vote defined as

p � q � s � U \ s. Hence, for every c ∈ U there is at least one vote πs ∈ ΠS′ with

c ∈ s. Since ΠS′ has κ votes and |U | = 3κ, S ′ must be an exact 3-set cover.

Now we consider D-KT(4)-Maximin-UNI. The reduction for D-KT(4)-Maximin-

UNI is similar to the above reduction with the difference that we create one more

vote defined as q � U � p, and create one more vote defined as U � p � q . The

comparisons between every two candidates are shown in Table 4.6.

The reductions for C-KT(4)-Maximin-UNI and C-KT(4)-Maximin-NON are simi-

lar to that for D-KT(4)-Maximin-NON and D-KT(4)-Maximin-UNI, respectively, with

only the difference that in both cases we set p as the distinguished candidate.

TheNP-hardness of D-KT(d)-Maximin-UNI, D-KT(d)-Maximin-NON, C-KT(d)-

Maximin-UNI and C-KT(d)-Maximin-NON for every d ≥ 5 is implied by the NP-

118 4. Bribery with Restricted Distances

q p cj

q - n+ κ− 2 n+ κ− 2

p n− κ+ 1 - n− 3

ci n− κ+ 3 n ≤ 5

Table 4.6: Comparison between every two candidates in the NP-hardness reduction for
D-KT(4)-Maximin-UNI in Theorem 4.5. The comparison between ci and cj with i 6= j should
be read as follows: “for every candidate ci ∈ U , there exists one candidate cj ∈ U such that
NE(ci, cj) ≤ 5”.

hardness reduction in Theorem 4.6 in [110].

4.3 Hamming Distance Restricted Bribery

In this section, we study bribery problems with Hamming distance restrictions. We

begin with several polynomial-time solvability results.

Theorem 4.6. D-HAM(d)-Condorcet-UNI, D-HAM(d)-Condorcet-NON, D-HAM(d)-

Borda-UNI, and D-HAM(d)-Borda-NON are all polynomial-time solvable, for every

possible integer d .

Proof. We prove the theorem by deriving polynomial-time algorithms for the problems

stated in the above theorem. We only describe the algorithms for the unique-winner

model in detail. The algorithms for the nonunique-winner model are similar. In

the following, let R be the number of votes that can be replaced, and let p be the

distinguished candidate.

D-HAM(d)-Condorcet. We first consider D-HAM(2)-Condorcet. The algo-

rithm first guesses a candidate p′ which is not beaten by p in the final election. This

leads to at most m subinstances, each asking whether we can make p′ not be beaten

by p by replacing at most R votes with R many HAM(2)-close votes. To solve each

subinstance, we need only to arbitrarily choose up to R votes which rank p above p′,

and replace each of them with a new vote obtained from the original vote by swapping

p and p′. After this, if p′ is not beaten by p, the subinstance is a yes-subinstance, and

thus, we return “Yes”; otherwise, the subinstance is a no-subinstance, and thus, we

discard the subinstance and proceed to the next one. If there is no subinstance that

leads to a “Yes” answer, we return “No”. The above algorithm directly applies to

D-HAM(d)-Condorcet for every possible d ≥ 2.

4.3. Hamming Distance Restricted Bribery 119

D-HAM(2)-Borda. The algorithm first guesses a candidate p′ which prevents p
from being the unique-winner in the final election. This leads to at most m subinstances,

each asking whether we can make p′ have an equal or greater Borda score than that

of p by replacing at most R votes with R many HAM(2)-close votes. To solve each

subinstance, we order the votes πv according to the nonincreasing order of

max{posv(p′)− 1,m− posv(p), 2 · (posv(p′)− posv(p))}.

Here, posv(c) is the position of the candidate c in the vote πv and m is the number of

candidates. Let Π be the multiset of the first R votes according to this order. Then,

we replace every vote in Π in the following way. For each πv ∈ Π, if posv(p
′) − 1 ≥

m−posv(p) and posv(p
′)−1 ≥ 2 · (posv(p′)−posv(p)), then replace πv with a new vote

obtained from πv by swapping p′ and the first ranked candidate in πv; otherwise, if

m− posv(p) ≥ posv(p
′)− 1 and m− posv(p) ≥ 2 · (posv(p′)− posv(p)), replace πv with

a vote obtained from πv by swapping p and the last ranked candidate in πv; finally,

if 2 · (posv(p′) − posv(p)) ≥ posv(p
′) − 1 and 2 · (posv(p′) − posv(p)) ≥ m − posv(p),

replace πv with a vote obtained from the original vote by swapping p and p′. After

doing this for every vote in Π, if p′ has an equal or greater Borda score than that

of p, the subinstance is a yes-subinstance, and thus, we return “Yes”; otherwise, the

subinstance is a no-subinstance, and thus, we discard this subinstance and proceed to

the next one. If there is no subinstance that leads to a “Yes” answer, we return “No”.

D-HAM(3)-Borda. The algorithm carries out at most m guesses as in the above

algorithm for D-HAM(2)-Borda. Now we restrict our attention to the subinstances.

We divide the votes into two multisubsets Π1 and Π2, where Π1 includes all votes

that rank p above p′, and Π2 includes all votes that rank p′ above p. Then, we

maintain two Stacks S1 and S2 to store the votes in Π1 and Π2, respectivelyi. Precisely,

for each i = 1, 2, the votes πv in Πi are inserted into Si one by one, according to

the nondecreasing order of max{pos(p′) − 1,m − pos(p)} (therefore, a vote πu with

minimum max{posu(p′)−1,m−posu(p)} is at the button and a vote πu with maximin

max{posu(p′)−1,m−posu(p)} is at the top of the stack). Then, we call Algorithm 4.1

to deal with the subinstances. Clearly, the given instance of D-HAM(3)-Borda is a

yes-instance if and only if at least one of the subinstance is a yes-subinstance.

D-HAM(4)-Borda. Similar to the above algorithms for Borda, the algorithm for

D-HAM(4)-Borda first carries out at most m guesses, leading to at most m subinstances.

Now we restrict our attention to these subinstances. For each subinstance, we divide

the votes into two multisubsets Π1 and Π2, where Π1 includes all the votes that rank p
above p′ and Π2 includes all the votes that rank p′ above p. Then, we order the votes in

Π1 according to the nonincreasing order of pos(p′)− pos(p). Then, we choose the first

iA stack is a collection of objects that are inserted and removed according to the last-in, first-out
(LIFO) principle [139]. The function pop() removes and returns the top element from the stack,
and the function top() returns the top element of the stack, without removing it. We refer
to Chapter 6 of [139] or Chapter 3 of [192] for further discussions on stacks.

120 4. Bribery with Restricted Distances

Algorithm 4.1: A procedure to deal with subinstances in the algorithm for D-HAM(3)-
Borda.

1 while R > 0 do
2 Let πv = S1.top();
3 Let πu = S2.top();
4 Let a = max{2 · posv(p′)− posv(p)− 1,m+ posv(p

′)− 2posv(p)};
5 Let b = max{posu(p′)− 1,m− posu(p)};
6 if a ≥ b then
7 S1.pop();
8 if 2 · posv(p′)− posv(p)− 1 ≥ m+ posv(p

′)− 2posv(p) then
9 replace πv with a vote obtained from πv by first swapping p and p′, and

then swapping p′ and the first ranked candidate;

10 else
11 replace πv with a vote obtained from πv by first swapping p and p′, and

then swapping p and the last ranked candidate;
12 end

13 else
14 S2.pop();
15 if posu(p

′)− 1 ≥ m− posu(p) then
16 replace πu with a vote obtained from πu by swapping p′ and the first

ranked candidate;

17 else
18 replace πu with a vote obtained from πu by swapping p and the last ranked

candidate;

19 end

20 end
21 R := R − 1;

22 end
23 if p′ has a no less Borda score than that of p then
24 Return “Yes”;
25 else
26 Return “No”;
27 end

up to R votes, and replace each of them with a vote obtained from the original vote

by swapping p′ and the first ranked candidate, and swapping p and the last ranked

candidate. After doing so, if p′ has a no less score than that of p, we return “Yes”.

Otherwise, if p′ has a less score than that of p, we distinguish between two cases. If

|Π1| ≥ R , we return “No” immediately. In the case that |Π1| < R , we order the votes

in Π2 according to the nondecreasing order of pos(p)− pos(p′). Then, we choose the

first R − |Π1| votes, and replace each of them with a vote obtained from the original

vote by swapping p′ and the first ranked candidate, and swapping p with the last

ranked candidate. After doing this, if p′ has a no less score than that of p, we return

“Yes”; otherwise, return we discard the current considered subinstance and proceed to

4.3. Hamming Distance Restricted Bribery 121

the next one. If no subinstance leads to a “Yes” answer, we return “No”.

D-HAM(d)-Borda. The algorithm for D-HAM(d)-Borda with d > 4 is exactly

the same as for D-HAM(4)-Borda.

Now we show our hardness results. We begin with the distance restricted bribery

problem for Copelandα. All NP-hardness in this section is reduced from the X3C

problem. In the following, we assume that in the X3C problem, each element ci in the

universal set occurs in exactly three subsets of the collection S. This assumption does

not change the NP-hardness of the problem [138]. Note that under this assumption,

we have that the size of the collection is |S| = 3κ.

Theorem 4.7. C-HAM(2)-Copelandα-UNI, C-HAM(2)-Copelandα-NON, D-HAM(2)-

Copelandα-UNI and D-HAM(2)-Copelandα-NON are NP-hard for every 0 ≤ α ≤ 1.

Proof. We first consider C-HAM(2)-Copelandα-UNI. Given an instance F = (U =

{c1, c2, ..., c3κ}, S = {s1, s2, ..., s3κ}) of X3C, we create an instance E for C-HAM(2)-

Copelandα-UNI as follows.

Candidates: We create 3κ+2 candidates in total. In particular, for each element

ci ∈ U , we create one candidate. For convenience, we still use ci to denote the candidate

corresponding to ci. In addition, we have two candidates p and q with p being the

distinguished candidate.

Votes: For each s ∈ S, we create a vote πs defined as q � U \ s � p � s. In

addition, we create κ − 1 votes defined as p � q � U , and two votes defined as

U � p � q . In total, we have 4κ + 1 votes. The comparisons between every two

candidates are summarized in Table 4.7. It is easy to verify the candidate q beats

every other candidate; and thus, q is the current unique winner.

Number of Replaced Votes: R = κ.

q p cj

q - 3κ 4κ− 1

p κ+ 1 - κ+ 2

ci 2 3κ− 1 · · ·

Table 4.7: Comparisons between every two candidates in the NP-hardness reduction for
C-HAM(2)-Copelandα-UNI in Theorem 4.7. The comparisons between ci and cj for i 6= j do
not play any role in the correctness argument.

Now we prove that F is a yes-instance if and only if E is a yes-instance.

(⇒:) Suppose that F is a yes-instance and S ′ is an exact 3-set cover. Let

ΠS′ = {πs | s ∈ S ′} be the set of votes corresponding to S ′. Consider the final

122 4. Bribery with Restricted Distances

election E ′ obtained from E by replacing every vote πs with a vote obtained from πs
by swapping p and q . More precisely, each πs ∈ ΠS′ defined as q � U \ s � p � s is

replaced with the vote defined as p � U \ s � q � s. Clearly, the Hamming distance

between these two votes is two. Moreover, we have that NE ′(p, q) = 2κ+ 1. Now we

consider the comparison between p and every ci ∈ U . Since S ′ is an exact 3-set cover,

for every ci there are exactly κ− 1 votes πs ∈ ΠS′ with ci 6∈ s. All these votes rank ci
above p in E . However, these votes are replaced with κ− 1 votes which rank p above

ci as discussed above, in the final election E ′. Therefore, for every ci ∈ U , there are

(κ+ 2) + (κ− 1) = 2κ+ 1 votes which rank p above ci, implying that p beats every

ci ∈ U in E ′. Summary all above, p becomes the unique winner in E ′.

(⇐:) Suppose that E is a yes-instance. Let E ′ be the final election obtained from

E by replacing at most κ votes. Since NE(q , ci) = 4κ− 1, we know that q beats every

candidate ci ∈ U in the final election E ′. Due to this, we know that q is beaten by p
in E ′, since otherwise, q would beat every other candidate in the final election E ′, and

thus, remains the unique winner. Moreover, since p is the unique winner in E ′, p must

beat every other candidate in the final election E ′. Since NE(p, q) = κ+ 1, in order to

make p beat q , there has to be κ votes ranking q above p that are replaced by κ new

votes ranking p above q . Due to this, we know that the replaced votes are from the

votes corresponding to S, since any other vote has already ranked p above q . Let ΠS′

be the replaced votes, and Let S ′ = {s | πs ∈ ΠS′} be the subcollection of 3-subsets

corresponding to ΠS′ . As discussed above, p beats every candidate ci ∈ U in E ′. Since

NE(p, ci) = κ+ 2, for every ci ∈ U , there must be at least κ− 1 votes in ΠS′ ranking

ci above p that are replaced by κ− 1 votes ranking p above ci. This happens only if

S ′ is an exact 3-set cover.

Now we consider C-HAM(2)-Copelandα-NON. The reduction is adapted from the

above one for C-HAM(2)-Copelandα-UNI by introducing another dummy candidate y

which beats p but is beaten by q in both the original election and the final election.

This ensures that p can become a winner only if p beats every candidate in U .

Precisely, we create the following votes. For each s ∈ S, we create a vote πs defined as

q � U \ s � y � p � s. In addition, we create κ− 1 votes defined as p � q � U � y,

and two votes defined as U � y � p � q . The comparisons between every two

candidates are summarized in Table 4.8.

Now we consider D-HAM(2)-Copelandα-UNI and D-HAM(2)-Copelandα-NON.

The reduction for D-HAM(2)-Copelandα-NON is the same as for C-HAM(2)-Copelandα-

UNI with only the difference that we set q as the distinguished candidate. The

correctness argument relies on the fact that no candidate in U can have a higher

score than that of q by replacing at most κ votes (since NE(ci, q) = 2). The reduction

for D-HAM(2)-Copelandα-UNI is similar to the one for C-HAM(2)-Copelandα-NON.

The differences are as follows. First, we set q as the distinguished candidate in the

reduction for D-HAM(2)-Copelandα-UNI. Second, we rank the candidates in U in a

cyclic way (as in the proof for D-KT(4)-Maximin-NON in Theorem 4.5) so that for

4.3. Hamming Distance Restricted Bribery 123

q p cj y

q - 3κ 4κ− 1 4κ− 1

p κ+ 1 - κ+ 2 κ− 1

ci 2 3κ− 1 · · · 4κ+ 1

y 2 3κ+ 2 0 -

Table 4.8: Comparison between every two candidates in the NP-hardness reduction for
C-HAM(2)-Copelandα-NON in Theorem 4.7. The comparisons between ci and cj for i 6= j
do not play any role in the correctness argument.

every candidate ci ∈ U there exists another candidate cj ∈ U with NE(ci, cj) ≤ Ω,

where Ω is a small constant (in fact, Ω ≤ 5). See below for an example. By doing so,

every candidate ci ∈ U is beaten by at least two candidates (q and some cj ∈ U with

NE(ci, cj) ≤ Ω) in the final election E ′. This ensures that the only candidate which

can prevent q from being the unique winner is p. Then, the correctness follows from

the argument for C-HAM(2)-Copelandα-NON.

Example. Let U = {c1, c2, c3, c4, c5, c6, c7, c8, c9} and S =

{s1, s2, s3, s4, s5, s6, s7, s8, s9}, where s1 = {c1, c2, c8}, s2 = {c1, c3, c5}, s3 =

{c1, c2, c9}, s4 = {c2, c5, c7}, s5 = {c3, c4, c9}, s6 = {c4, c5, c6}, s7 = {c3, c4, c7}, s8 =

{c6, c7, c8}, s9 = {c6, c8, c9}.

The votes corresponding to S are as follows.

πs1 : q � c3 � c4 � c5 � c6 � c7 � c9 � y � p � c1 � c2 � c8

πs2 : q � c2 � c4 � c6 � c7 � c8 � c9 � y � p � c3 � c5 � c1

πs3 : q � c3 � c4 � c5 � c6 � c7 � c8 � y � p � c9 � c1 � c2

πs4 : q � c4 � c6 � c8 � c9 � c1 � c3 � y � p � c5 � c7 � c2

πs5 : q � c5 � c6 � c7 � c8 � c1 � c2 � y � p � c9 � c3 � c4

πs6 : q � c7 � c8 � c9 � c1 � c2 � c3 � y � p � c6 � c4 � c5

πs7 : q � c8 � c9 � c1 � c2 � c5 � c6 � y � p � c7 � c3 � c4

πs8 : q � c9 � c1 � c2 � c3 � c4 � c5 � y � p � c8 � c6 � c7

πs9 : q � c1 � c2 � c3 � c4 � c5 � c7 � y � p � c9 � c6 � c8

The following κ− 1 = 2 votes are as follows.

p � q � c1 � c2 � c3 � c4 � c5 � c6 � c7 � c8 � c9 � y

p � q � c2 � c3 � c4 � c5 � c6 � c7 � c8 � c9 � c1 � y

124 4. Bribery with Restricted Distances

The final two votes are as follows.

c3 � c4 � c5 � c6 � c7 � c8 � c9 � c1 � c2 � y � p � q

c4 � c5 � c6 � c7 � c8 � c9 � c1 � c2 � c3 � y � p � q

Now we study Condorcet.

Theorem 4.8. C-HAM(2)-Condorcet-UNI and C-HAM(2)-Condorcet-NON are NP-

hard.

Proof. The reductions for both problems are exactly the same as for C-HAM(2)-

Copelandα-UNI in Theorem 4.7.

Finally, we consider Maximin. The following theorem summarizes our results.

Theorem 4.9. D-HAM(2)-Maximin-UNI, D-HAM(2)-Maximin-NON, C-HAM(2)-

Maximin-UNI and C-HAM(2)-Maximin-NON are NP-hard.

Proof. We first consider D-HAM(2)-Maximin-NON. We show the NP-hardness via a

reduction from a variant of Hitting Set problem which is also NP-hard.

Square Hitting Set

Input: A universal set X = {x1, x2, ..., xn} and a collection S =

{s1, s2, ..., sm} of κ-subsets of X.

Question: Is there a subset X ′ ⊆ X of size κ which hits each κ-subset in

S, that is X ′ ∩ si 6= ∅ for every si ∈ S?

The NP-hardness of Square Hitting Set can be reduced from the NP-hard

problem 3-Hitting Set [131]: for each 3-subset introduce κ − 3 new elements to

this 3-subset. Each of these new elements occurs in exactly one 3-subset (of original

instance). We assume that each element x ∈ X occurs in at most 3 subsets in S. This

does not change the NP-hardness of the problem, since the 3-Hitting Set problem

remains NP-hard when each element of the universal set occurs in at most 3 subsets

of the collection.

Given an instance F = (X,S, κ) of Square Hitting Set, we construct an

instance E for D-HAM(2)-Maximin-NON as follows.

Candidates: We have m+ 2 candidates S ∪ {p, q}, where p is the distinguished

candidate.

Votes: For an x ∈ X, let A(x) be the set of κ-subsets in S which contain x,

that is, A(x) = {s ∈ S | x ∈ s}. We create the votes as follows. For each x ∈ X, we

create a vote πx defined as p � A(x) � q � S \ A(x). In addition, we have n− 2κ+ 1

4.3. Hamming Distance Restricted Bribery 125

votes each defined as S � q � p. Therefore, we have 2n− 2κ+ 1 votes in total. We

remark that among all these votes, we cyclicly changing the order of candidates in S,

as discussed in the proof for D-KT(4)-Maximin-NON in Theorem 4.5, so that each

candidate in S has Maximin score at most d2n−2κ+1
n+2

e + 3 ≤ 5, which is extremely

smaller than the Maximin score of p and q ; and thus, none of the candidates in S
can be a winner. The comparisons between every two candidates are summarized in

Table 4.9. Clearly, p is the current winner.

q p sj

q - n− 2κ+ 1 n− κ
p n - n

si n− κ+ 1 n− 2κ+ 1 5

Table 4.9: Comparisons between every two candidates in the NP-hardness reduction for
D-HAM(2)-Maximin-NON in Theorem 4.9.

Number of Replaced Votes: R = κ.

Now we prove the correctness.

(⇒:) Suppose that F is a yes-instance and X ′ is a hitting set of size κ. Let

ΠX′ = {πx | x ∈ X ′} be the votes corresponding to X ′. Let E ′ be the final election

obtained from E by replacing every vote πx ∈ ΠX′ with a new vote defined as

q � A(x) � p � S \A(x). It is easy to verify that NE ′(p, q) = n−κ; thus, the Maximin

score of p is at most n − κ. Now let’s calculate the Maximin score of q in the final

election E ′. Clearly, NE ′(q , p) = n− κ+ 1. It remains to examine NE ′(q , si) for every

si ∈ S. Since X ′ is a hitting set, for every si there must be at least one x ∈ X ′ with

si ∈ A(x). Therefore, for every si ∈ S, there is at least one vote in ΠX′ ranking si
above q that is replaced with a vote ranking q above si, in the final election E ′. It

follows that NE ′(q , si) ≥ n− κ+ 1 for all si ∈ S. Clearly, p is no longer a winner in

the final election E ′.

(⇐:) Suppose that E is a yes-instance. Let E ′ be the final election wherein p is no

longer a winner. Observe that no candidate si ∈ S can have a higher score than that

of p in E ′, since the candidates in S are ranked cyclicly so that each of them has only a

constant Maximin score. This leaves only the possibility that q has a higher score than

that of p in E ′. Since p has Maximin score n in E , we know that the Maximin score of

p in E ′ is at least n− κ (since we can replace at most κ votes); therefore, the Maximin

score of q in E ′ must be at least n− κ+ 1. Since NE(q , p) = n− 2κ+ 1, there must be

κ votes ranking p above q in E that are replaced with κ votes ranking q above p in

the final election E ′. Due to this, we know that all replaced votes are from the votes

corresponding to X. Let ΠX′ be the replaced votes and X ′ = {x ∈ X | πx ∈ ΠX′}
be the subsets corresponding to ΠX′ . Since NE(q , si) = n− κ for all si ∈ S, we know

126 4. Bribery with Restricted Distances

that for every si ∈ S there must be at least one vote πx ∈ ΠX′ with si ∈ A(x) that is

replaced with a vote that ranks q above si. This happens only if X ′ is a hitting set.

The reduction for D-HAM(2)-Maximin-UNI is similar to the above reduction for

D-HAM(2)-Maximin-NON with the following differences. First, we twist the Square

Hitting Set problem a bit. In particular, we require that every s ∈ S is a (κ+ 1)-

subset of X other than a κ-subset as in the Square Hitting Set problem defined

above (the question is still to determine whether there is a hitting set of size κ). This

does not change the complexity (the hardness can be reduced from the 3-Hitting set

problem, with similar method as for Square Hitting Set discussed above). Second,

we create one less vote defined as S � q � p. All the remaining parts remain the same.

The comparisons between every two candidates are summarized in Table 4.10.

q p sj

q - n− 2κ n− κ− 1

p n - n

si n− κ+ 1 n− 2κ ≤ 5

Table 4.10: Comparisons between every two candidates in the NP-hardness reduction for
D-HAM(2)-Maximin-UNI in Theorem 4.9. The comparisons between ci and cj with i 6= j do
not play any role in the correctness argument.

Now we consider the constructive case. The reductions for C-HAM(2)-Maximin-

UNI is the same as for D-HAM(2)-Maximin-NON with the only difference that we set

q as the distinguished candidate. The reduction for C-HAM(2)-Maximin-NON is the

same as for D-HAM(2)-Maximin-UNI with the only difference that we set q as the

distinguished candidate.

4.4 Conclusion

We have studied the complexity of distance restricted bribery problem which differs

from the traditional bribery problem in the sense that the bribed voters only recast

new votes which are “close” to their original votes. In particular, we adopted the

Hamming distance and the KT-distance to measure the closeness between two votes

(linear orders). Our results are summarized in Table 4.1.

There remain several open problems as shown in Table 4.1. Another possible

revenue of research would be to explore these problems from the parameterized

complexity viewpoint. Furthermore, exploring the same problems with respect to

4.4. Conclusion 127

further distance measurements (see [92, 97, 165] for several distance measurements on

linear orders) is also an interesting direction for future research.

5
Possible Winners in Partial

Tournaments
Partial tournaments play a significant role in many areas linked to our daily life. For

example, in the group stage of the World Cup matches, every pair of the four teams in the

same group play against each other. In each match, the winner gets 3 points and the loser

gets 0 points. If they tie, both get 1 point. Equivalently, we can say that the winner gets

2 points, the loser −1 point, and both get 0 points if they tie. The two teams with the

highest and the second highest scores are qualified to compete in the second stage and

the remaining two teams are knocked out. This procedure can be represented by a partial

tournament: if team A wins in the compete with team B, introduce an arc from A to B

and label the arc with (2,−1), meaning that A gets 2 points and B gets −1 point in the

match between A and B. The score of a team is the sum of the first components of the

labels to the arcs leaving from the team, plus the sum of the second components of the

labels to the arcs arriving at the team.

130 5. Possible Winners in Partial Tournaments

5.1 Introduction

A tournament can be expressed as a directed graph where between every pair of vertices

there is exactly one arc (for readers who are unfamiliar with directed graphs and

tournaments, we refer to the textbook by Bang-Jensen and Gutin [15]). Tournaments

play a significant role in voting systems due to their nice expression ability in many

winner determination problems. For example, tournaments can perfectly illustrate the

Condorcet winner determination problem (when the number of voters is odd, or more

generally when there is no tie in comparisons between every two candidates): create a

vertex for each candidate and add an arc (v, u) from the vertex v to the vertex u if

more than half of the voters prefer v to u. Then, the Condorcet winner is the candidate

who has an arc to every other candidate. Several other winner determination methods

are also based on tournaments, such as Banks, Slater, and Schwartz winners [48, 153].

However, in practical settings, we might not be able to access the full information of

an election to build the tournament. For example, the number of candidates is too

huge to give a full preference at once, or consider an online voting where in each time

only part of the votes is submitted. We refer to [170] for more detailed discussion.

In these cases, a partial tournament may be a useful tool, and thus, the problems of

deciding which candidates have positive possibility to win the election should be of

particular importance (A partial tournament is a tournament with some arcs missing).

Partial tournaments also appear in settings where ties occur in pairwise comparisons

between candidates. For example, we have an election to select the Condorcet winner.

If the number of voters is even, then, it is possible that for two candidates v and u,

exactly half of the voters prefer v to u and the others prefer u to v.

Tournament solutions have wide applications in decision-making problems and in

social choice area, and have received considerable attention recently [19, 42, 43, 46, 91,

200, 228]. Precisely, a tournament solution maps a tournament to a non-empty set of

vertices in the tournament. We refer to Chapter 3 of [47] for a survey of tournament

solutions. Banks set and Uncovered set are two of the most important tournament

solutions which have been extensively studied from the viewpoints of game theory,

economics, computational complexity, etc [45, 91, 132, 197]. Banks set is named by its

introducer Banks [16]. Given a tournament, a candidate (a vertex in the tournament)

v is a Banks winner, if there is a maximal transitive subtournament with v being the

0-indegree vertex. Here, “transitive” means that for every three vertices v, u, w in a

tournament D, the existence of arcs (v, u) and (u,w) in D implies that (v, w) is in

D. The Banks set then contains all Banks winners. Clearly, if the Condorcet winner

exists, then the Banks set contains exactly the Condorcet winner. The Uncovered set

of a tournament is a maximal subset C of candidates such that no candidate outside

C dominates a candidate in C. Here, a candidate v dominates a candidate u if all

out-neighbors of u are also out-neighbors of v. Thus, an Uncovered set includes exactly

5.1. Introduction 131

all vertices each of which can reach any other vertex in no more than two steps (a

precise definition is in Section 5.1.2). The vertices in an Uncovered set are called

kings from the viewpoint of graph theory. It is well-known that every tournament

contains at least one king [174]. Moreover, if the Condorcet winner exists, then the

Uncovered set contains only the Condorcet winner. It is a folklore that Banks set is

a subset of Uncovered set [115]. Nevertheless, Uncovered set has some advantages

compared with Banks set. For example, determining whether a candidate is a Banks

winner is NP-hard [242], while computing the Uncovered set is solvable in polynomial

time [153]. Selecting the elements from the Uncovered set as the winners of the given

tournament has been independently suggested by Fishburn [124] and Miller [196].

5.1.1 Motivation

In this chapter, we study some parameterized problems related to Uncovered set and

Banks set on partial tournaments. We first study the possible winners of Uncovered set

problem [12]: given a partial tournament and a subset X of vertices, we are seeking for

a completion of D such that all vertices in X become kings, or equivalently, all vertices

in X are in the Uncovered set. For convenience, in the following we use the terminology

“kings” instead of “Uncovered set”. We study the problem with the size of X as the

parameter. The motivation is based on the observation that in practical settings,

one is mostly interested in making few vertices, which correspond to candidates, to

become winners. We prove that this problem is in XP; thus, when the size of X is

bounded by a constant, it can be solved in polynomial time. In addition, we study

two variants of the problem where we are asked to make all vertices of X kings by

modifying few number of arcs. We study two kinds of modifications: adding arcs and

reversing arcs. In the “adding arcs” case we are allowed to add at most R arcs to the

partial tournament, while in the “reversing arcs” case we are allowed to reverse at

most R arcs in the partial tournament. For both problems, R is the parameter. These

two parameterized variants could illustrate a bribery strategic behavior. For example,

consider a politician in a political election who wants to make one of his accomplices

win the election. Then, the arc reversal and arc addition problems illustrate the case

where the politician has limited money and to bribe voters to change the pairwise

compared relationship between every two candidates needs a cost. We prove that,

somewhat surprisingly, both variants are W[2]-hard, even when X contains only a

single vertex. Furthermore, our W[2]-hardness proof for the “reversing arcs” case

applies to the special case where the input is a tournament and X contains only a

single vertex. These results imply that the problems of finding the minimum number

of arcs which are needed to add (resp. to reverse) to make all vertices of X kings

are beyond XP, when consider the size of X as the parameter. Finally, we study a

possible winner problem related to Banks set on partial tournaments, where we are

132 5. Possible Winners in Partial Tournaments

Problems Parameterized Complexity Evidence

Pwu XP Thm. 5.1

Pwu-Add W [2]-h even when |X| = 1 Thm. 5.2

Pwu-Reverse W [2]-h even on tournaments and with |X| = 1 Thm. 5.3

Tw W [2]-h Thm. 5.4

Tw-Indegree W [1]-h Thm. 5.5

Tw-Outdegree FPT but no polynomial kernel unless PH =
∑3
P Thm. 5.6

Table 5.1: A summary of our results concerning possible winner(s) problems in partial
tournaments. Here, “W[2]-h” stands for “W[2]-hard” and “W[1]-h” stands for “W[1]-hard”.
Moreover, “Thm. #” means that the corresponding result is from Theorem #. The precise
definitions of the problems can be found in Section 5.1.2.

given a partial tournament D and a distinguished vertex p, and asked whether D has a

maximal transitive subtournament with p being the 0-indegree vertex. This problem is

a natural generalization of Banks winner to partial tournaments. Here we study three

parameterizations. The first parameter we study is the size of the subtournament we

are looking for. We prove that this parameter leads to a W [2]-hardness result. Then,

we study the parameter defined as the number of candidates who defeat p. We show

that the problem is W[1]-hard with respect to this parameter. Finally, we consider

the Copeland0 score of p (the number of candidates defeated by p) as the parameter.

Different from the previous results, we show that the problem with the Copeland0

score of p as the parameter is FPT . However, we prove that the problem does not

have a polynomial kernel unless the polynomial hierarchy collapses to the third level.

Our main results of this chapter are summarized in Table 5.1.

5.1.2 Preliminaries

A directed graph D is a pair (V,A) where V is the set of vertices and A is the set

of arcs. An arc from a vertex v to a vertex u is denoted by (v, u). We say v is

the tail of (v, u) and u is the head of (v, u). For simplicity, we also use A(D) and

V (D) to denote the set of arcs and the set of vertices of D, respectively. For a

vertex v, we use N−D(v) and N+
D(v) to denote the set of its in-neighbors and the set

of its out-neighbors in D, respectively, that is, N−D(v) = {u | (u, v) ∈ A(D)} and

N+
D(v) = {u | (v, u) ∈ A(D)}. We drop the index D if it is clear from context. The

5.1. Introduction 133

in-degree and out-degree of v, denoted by d−(v) and d+(v), are the sizes of N−(v)

and N+(v), respectively. Meanwhile, we say that v is a d−(v)-indegree vertex or a

d+(v)-outdegree vertex. The subgraph induced by a subset S ⊆ V (D), denoted by

D[S], is D[S] = (S, {(u, v) | u ∈ S, v ∈ S, (u, v) ∈ A(D)}).

A partial tournament is a directed graph such that |{(v, u), (u, v)} ∩ A(D)| ≤ 1

for all v, u ∈ V and (v, v) 6∈ A(D) for all v ∈ V . If there is no arc between two

vertices v and u in D, then we call (v, u) and (u, v) missing arcs. A tournament is a

partial tournament without missing arcs. A tournament D is a completion of a partial

tournament D′ if V (D) = V (D′) and A(D′) ⊆ A(D).

A tournament D is transitive if there is an order (v1, v2, ..., vn) of V (D) such that

there is no arc (vj, vi) with j > i (or, equivalently, for every three vertices v, u, w,

(v, u) ∈ A(D) and (u,w) ∈ A(D) implies (v, w) ∈ A(D)). Clearly, there is a unique

0-indegree vertex in every transitive tournament. For a partial tournament and a

subset S ⊆ V (D), we say D[S] is a maximal transitive subtournament of D if D[S]

induces a transitive tournament and no other vertices outside S can be added to S to

form a bigger induced transitive tournament.

For two vertices v and u, we say v can reach u if (v, u) ∈ A(D) or there is a

w ∈ V (D) \ {v, u} with (v, w) ∈ A(D) and (w, u) ∈ A(D). In the former case we say

v reaches u directly, while in the latter case we say that v reaches u by (or through) w.

A king in a directed graph is a vertex which can reach all other vertices. For a subset

X ⊆ V (D) and a vertex v ∈ V (D), v is a serf with respect to X if v can be reached by

all vertices in X \ {v}.

In the following, when we say “adding an arc”, we mean to add an arc between two

vertices which have no arc between them in advance. Thus, adding an arc to a partial

tournament still results in a partial tournament. Reversing an arc (v, u) ∈ A(D) is

the operation that firstly deletes (v, u) from D, and then adds a new arc (u, v) to D.

The parameterized problems studied in this chapter are defined as follows.

Possible Winners of Uncovered Set (Pwu)

Input: A partial tournament D = (V,A) and a subset X ⊆ V .

Parameter: |X|.

Question: Is there a completion of D such that all vertices in X are kings?

134 5. Possible Winners in Partial Tournaments

Pwu-Add (resp. Pwu-Reverse)

Input: A partial tournament D = (V,A) and a subset X ⊆ V .

Parameter: A positive integer R .

Question: Can we add (resp. reverse) at most R arcs such that all vertices in X

are kings?

Transitive Winner on Partial Tournaments (Tw)

Input: A partial tournament D = (V,A) and a vertex p ∈ V .

Parameter: A positive integer R .

Question: Is there a subset S ⊆ V of size R such that D[S] is a maximal transitive

tournament with p being the 0-indegree vertex?

Tw-Indegree (resp. Tw-Outdegree)

Input: A partial tournament D = (V,A) and a vertex p ∈ V .

Parameter: |N−(p)| (resp. |N+(p)|).

Question: Is there a subset S ⊆ V such that D[S] is a maximal transitive tourna-

ment with p being the 0-indegree vertex?

5.1.3 Related Works

Aziz et al. [12] studied possible and necessary winner(s) problems in partial tour-

naments for diverse tournament solution concepts. They mainly considered three

topics: deciding whether a given candidate is a possible (resp. a necessary) winner,

and deciding whether a given subset of candidates equals the set of winners in some

completion. For the possible winners of Uncovered set (Pwu)i defined as above, they

proved that this problem is NP-hard by a reduction from the satisfiability problem

(SAT). In contrast, the problems of deciding whether a given candidate is a possible

winner or a necessary winner for Uncovered set are both polynomial-time solvable [12].

Moreover, computing the Uncovered set of a partial tournament is polynomial-time

solvable [153].

As for the problems related to Banks set, in spite of the polynomial-time solvability

of computing a Banks winner, deciding whether a distinguished candidate is a Banks

iThe authors use PSWUC to denote the problem in [12].

5.2. Uncovered Set in Partial Tournaments 135

winner is NP-hard [152, 242]. The latter problem is also related to the Dual

Directed Feedback Vertex Set (Dual-Dfvs) problem [215]. In Directed

Feedback Vertex Set (Dfvs) [215], we are given a directed graph D and a positive

integer parameter κ, and asked to decide whether there is a subset of vertices of size κ

whose removal results in a directed graph without a cycle. In Dual-Dfvs, we are

given a directed graph and a positive integer parameter κ, and asked whether there is

a subgraph of size κ containing no cycle. Dfvs has been proved FPT [65] over a long

time of studying. In particular, when restricted to tournament, Dfvs has an O(κ3)

kernel [82]. By a dichotomy theorem from [216], Dual-Dfvs is W [1]-hard. However,

when restricted to tournaments this problem is FPT [215]. It is well-known that a

tournament contains no cycle if and only if it is transitive. These problems are also

related to Slater set problems, where the main task is to reverse minimum number

of arcs so that a given tournament become transitive. We refer to [153] for detailed

complexity results about problems on Slater set.

5.2 Uncovered Set in Partial Tournaments

It is easy to see that all problems except Pwu defined above are in XP : try all

possibilities of selecting a subset of size R in V (D), A(D) or {(v, u) | (v, u) 6∈ A(D)},
where R is the parameter of the corresponding problem. All these algorithms run in

O(|D|2R) time, where |D| is the size of the given partial tournament and R is the

related parameter.

In the following, we show that Pwu is also in XP .

Theorem 5.1. Pwu is in XP.

Proof. We prove the theorem by giving an XP-algorithm. The following lemma is

useful. Let E = (D = (V,A), X) be an instance of Pwu.

Lemma 5.1. Let v ∈ X be a serf with respect to X in D and E ′ = (D′ = (V,A′), X)

be a new instance with A′ = A ∪ {(v, u) | {(v, u), (u, v)} ∩ A = ∅, u ∈ V \X}, then E
is a yes-instance if and only if E ′ is a yes-instance.

Proof. It is clear that if E ′ is a yes-instance, then E must be a yes-instance. To prove

the other direction, note that adding an arc from some vertex u ∈ V \X to v is to

make v reachable by some vertex w ∈ X \ {v} through u. However, since v is already

a serf with respect to X, such an arc addition is then unnecessary. However, adding

the arc (v, u) for u ∈ V \X to the partial tournament would make v reach further

vertices.

136 5. Possible Winners in Partial Tournaments

Our algorithm first tries all possibilities of completions of D[X]. Clearly, there

can be at most 2|X|·(|X|−1)/2 such possibilities. In each of the completions, there may

have some pairs (u,w) with (u,w) ∈ A(D[X]) such that w does not reach u. For

all these pairs, we further try all possibilities of making w reach u by some vertex

v ∈ V \ X (thus, there are at most |V \ X| possibilities for each pair, and in total

at most |V \X||X|·(|X|−1)/2 possibilities for all pairs), by adding one or two new arcs

between {w, u} and v. Meanwhile, if there is no chance to make w reach u, then

we give up the possibility. Clearly, if the given instance is a yes-instance, then at

least one of the possibilities leads to a “Yes” answer. We have in total at most

2|X|·(|X|−1)/2 · |V \X||X|·(|X|−1)/2 possibilities to check. Now, in each case, D[X] induces

a tournament and every vertex v ∈ X is a serf with respect to X. Then, due to

Lemma 5.1, we can safely add all missing arcs between X and V \X with tails in X

and heads in V \X. It remains to add arcs between vertices in V \X to make the

vertices in X kings. For convenience, let’s give a formal definition of the remaining

part first.

PWU

Input: A partial tournament D = (V,A) and a subset X ⊆ V such that

D[X] induces a tournament, every vertex v ∈ X is a serf with respect

to X in D and there is no missing arcs between X and V \ X, that is,

{(v, u), (u, v)} ∩ A 6= ∅ for all v ∈ X and all u ∈ V \X.

Question: Is there a completion of D such that all vertices in X are kings?

In the following, we prove that PWU is solvable in polynomial time. We begin

with a useful observation.

Observation. Let v and u be two vertices in V \X with missing arcs between them.

If there is a vertex x ∈ X such that x can reach v directly but x cannot reach u, then

every yes-instance has a solution containing the arc (v, u).

The observation is correct. The reasons are as follows. First observe that adding

an arc (v′, u′) between v′, u′ ∈ V \X to the partial tournament is to make some vertex

w ∈ X reach u′ by v′. Since x cannot reach u, all vertices in X which can directly

reach u must also directly reach x. Therefore, no vertex in X needs an arc from u to

v to reach v; since all such vertices have already reached v by x. Thus, adding (v, u)

is the optimal choice.

Based on the above observation, we can solve PWU in polynomial time with

Algorithm 5.1.

In summary, Pwu is in XP ; since there are at most 2|X|·(|X|−1)/2 ·|V \X||X|·(|X|−1)/2

instances of PWU and PWU can be solved in polynomial time.

5.2. Uncovered Set in Partial Tournaments 137

Algorithm 5.1: A polynomial-time algorithm for PWU

1 forall the vertices x ∈ X do
2 Let Vx = {v ∈ V \X | (x, v) ∈ A(D)} be the set of vertices that x can reach

directly;
3 Let

Vx̄ = {v ∈ V \X | (v, x) ∈ A(D), @y ∈ V with (x, y) ∈ A(D) and (y, v) ∈ A(D)}
be the set of vertices that x cannot reach;

4 if Vx = ∅ and Vx̄ 6= ∅ then
5 Return “No”;
6 else
7 forall the v ∈ Vx and u ∈ Vx̄ with {(v, u), (u, v)} ∩ A(D) = ∅ do
8 Add (v, u) to D;
9 end

10 end

11 end
12 Return “Yes” if all vertices in X are kings and return “No” otherwise;

With the above theorem, we can trivially get the following result.

Corollary 5.1. Pwu is polynomial-time solvable if the size of the given subset X is

bounded by a constant.

Now we study the problems of deciding whether we can make all vertices of X

kings by adding (resp. reversing) at most R arcs. In particular, we prove that both

Pwu-Add and Pwu-Reverse are W [2]-hard even when X contains only one single

vertex. Furthermore, our W [2]-hardness proof for Pwu-Reverse applies to the case

that the input is a tournament and X contains only one single vertex. These results

imply that the problem of finding the minimum number of arcs which are needed to

add to the given partial tournament (resp. to reverse in the given (partial) tournament)

to make all vertices of X kings is beyond XP , in the case that |X| is the parameter.

Theorem 5.2. Pwu-Add is W [2]-hard even when |X| = 1.

Proof. We prove the theorem by an FPT -reduction from the Set Cover problem

which is W [2]-hard (Theorem 13.29 of [203]).

Set Cover

Input: A base set S = {s1, s2, ..., sn} and a collection C of subsets of S,

C = {c1, c2, ..., cm}, ci ⊆ S for 1 ≤ i ≤ m, and
⋃

1≤i≤m ci = S.

Parameter: A positive integer κ

Question: Is there a subset C ′ ⊆ C of size at most κ which covers all

elements in S, that is,
⋃
c∈C′ c = S?

138 5. Possible Winners in Partial Tournaments

C

S

X

c

s s′

x

y

s ∈ c s′ 6∈ c

to all C

from all S
from all S

Figure 5.1: Illustration of
the W[2]-hardness reduction for
Pwu-Add in Theorem 5.2. Here,
D[S] and D[C] are made com-
plete arbitrarily. The thick arcs
labeled with “from all S” mean
that there is an arc (s, x) and
an arc (s, y) for all s ∈ S. The
thick arc labeled with “to all C”
means that there is an arc (y, c)
for all c ∈ C. Finally, there is
an arc (c, s) if s ∈ c and an arc
(s, c) otherwise, for every c ∈ C
and s ∈ S.

Given an instance E = (S,C, κ) of Set Cover, we construct an instance E ′ =

(D = (V,A), X,R) of Pwu-Add as follows.

The partial tournament D contains n + m vertices one to one labeled by the

elements in S ∪ C together with further two vertices {x, y}. We further use S and C

to denote the sets of vertices labeled by the elements in S and C, respectively. For

each c ∈ C, there is an arc (y, c) ∈ A(D). For each s ∈ S, there is an arc (s, x) ∈ A(D)

and an arc (s, y) ∈ A(D). For each pair {s, c} where s ∈ S and c ∈ C, there is an arc

(c, s) ∈ A(D) if s ∈ c, and an arc (s, c) ∈ A(D) otherwise. In addition, there is an arc

(x, y) ∈ A(D). Finally, we add arbitrary arcs in D[S] and D[C] to make both D[S]

and D[C] complete. We set X = {x} and R = κ. See Figure 5.1 for an illustration.

Due to the construction, a vertex c ∈ C can reach a vertex s ∈ S only if c covers

s, that is, s ∈ c. Meanwhile, x can reach every vertex in C by y but cannot reach

any vertex in S. In order to make x a king, we must add some arcs from x to C to

make x reach all vertices in S. We prove that E is a yes-instance if and only if E ′ is a

yes-instance.

(⇒:) Suppose that E is a yes-instance. Let C ′ be a solution of E . Then, it is easy

to verify that we can make x a king by adding arcs (x, c) in D for all c ∈ C ′; thus, E ′
is a yes-instance.

(⇐:) Suppose that E ′ is a yes-instance and B is a solution for E ′. Let C ′ = {c |
(x, c) ∈ B} (Due to the construction, we have that C ′ ⊆ C). We claim that C ′ is a

solution for E : the only way to make x reach a vertex s ∈ S is to add an arc from x to

some vertex c ∈ C with s ∈ c. Since x is a king after adding all arcs in B to E , x can

reach every s ∈ S by at least one vertex c ∈ C ′ with s ∈ c, implying C ′ is a set cover

for E .

Now we study the parameterized complexity of the problem of determining whether

we can make a certain set of vertices kings by reversing at most R arcs.

5.3. Banks Set in Partial Tournaments 139

Theorem 5.3. Pwu-Reverse is W[2]-hard, even when the input is a tournament

and X contains only a single vertex.

Proof. We prove the theorem by an FPT -reduction from Dominating Set on

Tournaments which is W [2]-hard [86].

Dominating Set on Tournaments (Dst)

Input: A tournament T .

Parameter: A positive integer κ.

Question: Does T have a dominating set of size at most κ? Here, a

dominating set C for a tournament T is a subset of the vertices of T such

that every vertex outside C has at least one of its in-neighbors in C.

Given an instance E = (T, κ) of Dst, we construct an instance E ′ = (T ′, X =

{x},R = κ) for Pwu-Reverse as follows. T ′ contains a copy of T , which is denoted

by T̄ , together with a further vertex x to which there is an arc from every vertex in T̄ ,

that is, (v̄, x) ∈ A(T ′) for all v̄ ∈ V (T̄). We use v̄ to refer to the copy of the vertex

v ∈ V (T). This complete the construction.

It is easy to verify that if T has a dominating set C of size at most κ, then

reversing the arcs {(v̄, x) | v ∈ C} makes x a king. To check the other direction, first

observe that if E ′ is a yes-instance, then there is a solution such that all reversed

arcs are between x and V (T̄). The observation is correct since each reversal of an

arc (v̄, ū) with v̄, ū ∈ V (T̄) can be replaced by a reversal of the arc (v̄, x) to form a

new solution. Now suppose that E ′ is a yes-instance and B is a solution (represented

by a set containing all reversed arcs) containing only arcs between x and V (T̄). Let

T ′′ be the tournament obtained from T ′ by reversing all arcs in B. We claim that

C = {v | (v̄, x) ∈ B} is a dominating set of T (the size of C is clearly at most κ). To

this end, we need to show that, in the tournament T , every vertex which is not in C

has at least one of its in-neighbors in C. Let u be any arbitrary vertex in V (T) \ C.

Due to the construction, there is an arc (ū, x) in T ′′. Since x is a king in T ′′, we know

that x reaches ū by some vertex v̄ with (x, v̄) ∈ T ′′. Due to the construction, (x, v̄)

is in T ′′ only if (v̄, x) is in B, or equivalently, v ∈ C. Since (v̄, ū) ∈ A(T̄) and T̄ is a

copy of T , (v, u) ∈ A(T). Therefore, we can conclude that every vertex u outside C

has at least one vertex v ∈ C with (v, u) ∈ A(T), which completes the proof.

5.3 Banks Set in Partial Tournaments

In this section, we study problems of deciding whether a distinguished vertex p is

contained in a maximal transitive subtournament with p being the 0-indegree vertex.

140 5. Possible Winners in Partial Tournaments

We first prove that Tw is W [2]-hard by an FPT -reduction from the Multicolored

Set Cover problem.

κ-Multicolored Set Cover, (κ-Msc)

Input: A base set S = {s1, s2, ..., sn} and a collection C = {c1, c2, ..., cm} of

subsets of S, where each ci ∈ C has a color from {1, 2, ..., κ}, and moreover,⋃
1≤i≤m ci = S.

Parameter: κ

Question: Is there a subset C ′ ⊆ C such that C ′ includes exactly one

from the same colored subsets and C ′ covers all elements of S, that is,⋃
c∈C′ c = S? We call such a C ′ a κ-multicolored set cover.

Lemma 5.2. κ-Msc is W [2]-hard.

Proof. We prove the theorem by an FPT -reduction from Set Cover. Given an

instance E = (S,C, κ) of Set Cover, we construct a collection C by taking κ copies

c1, c2, ..., cκ of each c ∈ C, and then color each ci with color i ∈ {1, 2, ..., κ}. The

constructed instance for κ-Msc is E ′ = (S,C, κ). It is straightforward to verify that E
has a set cover of size κ if and only if E ′ has a multicolored set cover of size κ.

With the W [2]-hardness of κ-Msc we now prove the W [2]-hardness of Tw.

Theorem 5.4. Tw is W [2]-hard.

Proof. We prove the theorem by an FPT -reduction from κ-Msc. Given an instance

E = (C, S, κ) of κ-Msc where C is the colorful collection, S is the base set and κ is

the parameter, we construct an instance E ′ = (D = (V,A), p,R) of Tw as follows. Let

Ci be the collection of subsets in C colored by i ∈ {1, 2, ..., κ}.

The partial tournament D contains n + m vertices one to one labeled by the

elements in S ∪ C together with the distinguished vertex p. We further use S and C

to denote the sets of vertices labeled by the elements in S and C, respectively. For

every s ∈ S and c ∈ C, there is an arc from c to s if s ∈ c and an arc from s to c

otherwise. In addition, there is an arc from s to p for all s ∈ S and an arc from p to c

for all c ∈ C. Finally, there is an arc (c, c′) for all c ∈ Ci and c′ ∈ Cj with i < j. The

parameter is R = κ+ 1. See Figure 5.2 for an illustration. We now prove that E is a

yes-instance if and only if E ′ is a yes-instance.

(⇒:) Suppose that E is a yes-instance. Let C ′ be a solution of E . Clearly, C ′∪{p}
induces a transitive tournament with p being the 0-indegree vertex. Due to the

construction, for each vertex s ∈ S, C ′ contains at least one of its in-neighbors; thus,

no vertex in S can be added to C ′ ∪ {p} to make a bigger transitive tournament (since

otherwise, there would be a triangle), implying that C ′ ∪ {p} is maximal in D.

5.3. Banks Set in Partial Tournaments 141

C

S

C1 C2 Cκ

s 6∈ c s ∈ c p

from all S

to all C

Figure 5.2: Illustration of the W[2]-hardness reduction for Tw in Theorem 5.4.

(⇐:) Suppose that E ′ is a yes-instance. Let B ∪ {p} be a solution of E ′ which

induces a maximal transitive tournament with p being the 0-indegree vertex. Clearly,

B ⊆ C. Due to the maximality of D[B ∪ {p}], N−(s) ∩B 6= ∅ for all s ∈ S, implying

that at least one subset in B covers s; thus, B must be a set cover of E . Due to the

construction, there is no arc in D[Ci] for all i ∈ {1, 2, ..., κ}; thus, exactly one from

each Ci can be in B. Therefore, B must be a κ-multicolored set cover for D.

In the following, we study two further parameterizations of the problem of finding

a Banks winner in a partial tournament. First, we study the parameter |N−(p)|, that

is, the number of candidates who beat p in a pairwise comparison. We show that this

problem is W [1]-hard.

Theorem 5.5. Tw-Indegree is W [1]-hard.

Proof. We prove the theorem by an FPT -reduction from κ-Multicolored Clique

which is W[1]-hard [117]. A clique Q (resp. An independent set I) of a graph G is a

subset of V (G) such that there is an (resp. no) edge between every pair of vertices in

Q (resp. I).

κ-Multicolored Clique

Input: A vertex-colored undirected graph G = (V,E), where each vertex

has a color from {1, 2, ..., κ}.
Parameter: κ.

Question: Does G have a clique including vertices of all κ colors?

Let E = (G, κ) be an instance of κ-Multicolored Clique. Let Vi be the

set of all vertices in G with color i. Due to the definition of the κ–Multicolored

142 5. Possible Winners in Partial Tournaments

Clique, we can safely assume that each Vi form an independent set of the graph

G [117]. We construct an instance E ′ = (D = (N−(p) ∪N+(p) ∪ {p}, A), p, |N−(p)|)
for Tw-Indegree from E as follows.

We create the vertices as follows. For each v ∈ V (G) we create a vertex in D. For

ease of exposition, we still use v to denote this vertex in D. In addition, for each color

in i ∈ {1, 2, ..., κ}, we create a vertex ci. Therefore, together with the distinguished

candidate p, we have in total |V (G)|+ κ+ 1 vertices. The arcs are created as follows.

For each v ∈ V (D), we create an arc (p, v). For each vertex ci, we create an arc (ci, p).

Therefore, we have that N+(p) = V (D) and N−(p) = {c1, c2, ..., cκ}. In addition, for

each ci, there is an arc (v, ci) for all v ∈ Vi and an arc (ci, v) for all v ∈ Vj with j 6= i.

Finally, we create some arcs between Vi and Vj for i 6= j. Precisely, for two vertices

v ∈ Vi and u ∈ Vj with 1 ≤ i < j ≤ κ, there is an arc (v, u) in D if there is an edge

between v and u in G. See Figure 5.3 for an illustration. In the following, we prove

that E is a yes-instance if and only if E ′ is a yes-instance.

V (G)

Colors

V1 V2 Vi Vκ

v

u
{v, u} ∈ E(G)

c1 c2 ci ct

p

Figure 5.3: Illustration of the W [1]-hardness reduction for Tw-Indegree in Theorem 5.5.

(⇒:) Suppose that E is a yes-instance and Q is a clique including all κ colors,

that is {u, v} ∈ E for all u, v ∈ Q and |Q ∩ Vi| = 1 for all 1 ≤ i ≤ κ. Due to the

construction, Q induces a transitive tournament in D. Moreover, the induced transitive

tournament is maximal in D[N+(p)] since there is no arc in D[Vi] for all 1 ≤ i ≤ κ.

Since Q ∩ Vi 6= ∅ and Vi = N−(ci) for all 1 ≤ i ≤ κ, every ci has an in-neighbor in Q;

thus, D[Q ∪ {p}] is a maximal transitive tournament in D with p being the 0-indegree

vertex.

(⇐:) Suppose that E ′ is a yes-instance and Q ∪ {p} induces a maximal transitive

tournament in D with p being the 0-indegree vertex. Due to the construction, Q

induces a clique in G. Since there is no arc in each D[Vi] for all 1 ≤ i ≤ κ, there can

be at most one vertex of Vi in Q. Due to the maximality of D[Q ∪ {p}], for every Vi
(1 ≤ i ≤ κ), at least one vertex of Vi must be in Q (since otherwise, ci can be added

to D[Q ∪ {p}] to form a bigger transitive subtournament). In summary, we conclude

that Q is a clique of G including all colors.

The last parameter we study is |N+(p)|, that is, the Copeland0 score of p.

5.3. Banks Set in Partial Tournaments 143

Theorem 5.6. Tw-Outdegree is FPT .

The proof for Theorem 5.6 is straightforward: if there is a solution, it must be

totally included in N+(p) ∪ {p}. Thus, the problem can be solved by enumerating

all 2|N
+(p)| subsets of N+(p), and checking whether at least one of them together

with p forms a maximal transitive tournament with p being the 0-indegree vertex.

The algorithm implies a 2|N
+(p)|-size vertex-kernel: if the input partial tournament D

contains at most 2|N
+(p)| vertices then we are done; otherwise, solve the problem in

polynomial time (note that 2|N
+(p)| ≤ |V (D)|) and return a trivial yes-instance or a

trivial no-instance according to the output of the algorithm. A kernel of exponential

size is far from satisfactory and thus a natural question arias: can the kernel be

improved greatly? The following theorem answers the question negatively.

Theorem 5.7. Tw-Outdegree does not admit a polynomial kernel unless the

polynomial hierarchy collapses to the third level (PH =
∑3
P).

Proof. We prove the theorem via polynomial parameter reduction technique as dis-

cussed in Section 1.3.2. Recall that in order to show the non-existence of a polynomial

kernel for a specific problem Q, it suffices to derive a polynomial parameter reduction

from a parameterized problem which does not have a polynomial kernel (under some

assumption which is unlikely to happen) to Q (see Lemma 1.1).

In fact, the reduction from κ-Msc to Tw in the proof of Theorem 5.4 has already

implied that Tw-Outdegree does not admit a polynomial kernel. This is because

that the κ-Msc with parameter |C|, the size of the collection of subsets, is FPT but

does not admit a polynomial kernel, unless the polynomial hierarchy collapses to the

third level. Formally, the following problem is FPT but does not admit a polynomial

kernel unless the polynomial hierarchy collapses to the third level.

κ-Multicolored Set Cover-|C|, (κ-Msc-|C|)
Input: A base set S = {s1, s2, ..., sn} and a collection C = {c1, c2, ..., cm} of

subsets of S, where each ci ∈ C has a color from {1, 2, ..., κ}, and moreover,⋃
1≤i≤m ci = S.

Parameter: |C|
Question: Is there a subset C ′ ⊆ C such that C ′ includes exactly one from

the same colored subsets and C ′ covers all elements of S?

Lemma 5.3. [83] κ-Msc-|C| has no polynomial kernel unless the polynomial hierarchy

collapses to the third level.

The following lemma directly follows from the proof of Theorem 5.4.

Lemma 5.4. |C|-Msc is polynomial parameter reducible to Tw-Outdegree.

Theorem 5.7 directly follows from Lemmas 1.1, 5.3 and 5.4.

144 5. Possible Winners in Partial Tournaments

5.4 Conclusion

In this chapter, we have studied some possible winner(s) problems related to Uncovered

set and Banks set on partial tournaments, from the viewpoint of parameterized com-

plexity. We have showed some XP results, W-hardness results as well as FPT results

along with a kernelization lower bound. Our results are summarized in Table 5.1.

There remains one intriguing open problem for further research: is Pwu FPT ?

6
Combinatorial Algorithms for

Borda Manipulation
Manipulation is another widely studied strategic behavior. In this setting, we are given a

set of candidates, a set of votes, a distinguished candidate and a set of voters who have

not cast their votes yet. The problem is whether these voters can cast their votes in a way

so that the given distinguished candidate wins the election. This chapter is concerned with

manipulation in Borda voting.

146 6. Combinatorial Algorithms for Borda Manipulation

6.1 Introduction

This chapter is devoted to deriving combinatorial algorithms for the Borda manipulation

problems. In the manipulation problem, we are given an election consisting of a set of

candidates and a multiset of votes cast by a set of voters, a distinguished candidate

and a set of voters who have not cast their votes yet. These voters who have not cast

their votes are called manipulators. The question is whether the manipulators can cast

their votes, referred to as manipulative votes, in a way so that the given distinguished

candidate wins the election. In the weighted manipulation problem, each vote (or

voter) is associated with a positive integer weight w. Moreover, a vote with weight

w is regarded as w individual votes each with weight 1. Therefore, the unweighted

manipulation is a special case of the weighted manipulation with each vote having

weight 1.

Both the weighted and the unweighted Borda manipulation problems are NP-

hard [26, 68, 75]. In particular, the unweighted Borda manipulation is NP-hard even

when there are only two manipulators and three non-manipulative votes [26, 75] (but

the number of candidates is part of the input), and the weighted Borda manipulation is

NP-hard even when there are only three candidates (but the number of manipulators

is part of the input) [68]. By enumerating all possibilities, the unweighted Borda

manipulation problem can be solved in O(m!t) time [26], where m is the number of

candidates and t is the number of manipulators. Betzler, Niedermeier and Woeginger

posed an open question in [26] whether the unweighted Borda manipulation with two

manipulators can be solved in single-exponential time with respect to the number of

candidates. Recall that a problem is solvable in single-exponential time with respect

to some parameter κ if there exists an algorithm solving it in time 2O(κ) · |I|O(1), where

I is the input. Deriving or improving single-exponential algorithms for intractable

combinatorial optimization problems is of particular importance and has received a

considerable attention recently [24, 31, 85, 167, 168, 194]. Many single-exponential

algorithms have been proved practical for instances of moderate sizes. A prominent

example is the Vertex Cover problem which starts from an O∗(2κκ2κ+2)-timei

algorithm [56], and then, after many rounds of improvement, it turns out that this

problem admits a single-exponential algorithm of running time O∗(1.2738κ) [64] which

has been shown very efficient for κ up to 400 [62, 116]. Here, κ denotes the size of the

vertex cover. We refer to [62, 116, 243] for further discussions on this issue.

In this chapter, we answer the question asked in [26] affirmatively by deriving

combinatorial algorithms for both the weighted and unweighted Borda manipulation

problems. Our algorithms remain single-exponential even for the weighted manipulation

problem, with respect to the number of manipulators or the number of candidates

iO∗() is the O() notation with suppressed factors polynomial in the size of the input.

6.1. Introduction 147

whenever one of these two parameters is bounded by a constant. Therefore, we not only

answer the open question in [26], but also answer several more general questions.

6.1.1 Preliminaries

In this chapter, we use bijections to denote votes. Formally, a vote in this chapter

will be represented by a bijection πv : C → [|C|], where [n] denotes the set {1, 2, ..., n}.
The value of πv(c) for a candidate c is the number of candidates ranked below c plus

one. For example, a vote with preference a � b � c is represented by a bijection π

with π(a) = 3, π(b) = 2 and π(c) = 1. Notice that for a candidate c and a vote π with

π(c) = i, the position of the candidate c in the vote π is m− j + 1, where m is the

number of candidates.

In the following, let m denote the number of candidates. The Borda correspondence

(see also Section 1.2.1) can be defined by a vector 〈m − 1,m − 2, ..., 0〉. Each voter

contributes m− 1 points to his most preferred candidate, m− 2 to his second preferred

candidates, and so on. The candidates who have the highest total score are the winners.

In the weighted Borda system, each voter v is associated with a positive integer weight

f(v) and contributes f(v) · (m−1) points to his most preferred candidate, f(v) · (m−2)

to his second preferred candidate, and so on. Accordingly, candidate having the highest

total score win the election. Therefore, the unweighted Borda system is a special case

of the weighted Borda system with f(v) = 1 for every voter v.

For a candidate c and a voter v, we use BSCv(c) to denote the Borda score of c

contributed by v, that is, BSCv(c) = f(v) · (πv(c)− 1). Let BSCV(c) denote the total

score of c contributed by voters in V , that is, BSCV(c) =
∑

v∈V BSCv(c).

In the settings of manipulation, we have, in addition to V, a set V ′ of voters

which are called manipulators. The manipulators form a coalition and desire to

coordinate their votes to make a distinguished candidate win the new election with

votes in ΠV] ΠV ′ , where ΠV ′ is the multiset of votes cast by the manipulators. As

in the previous chapters, we distinguish between the unique-winner model and the

nonunique-winner model. However, for simplicity, our algorithms are mainly described

for the unique-winner model in this chapter. All algorithms in this chapter can be

easily adapted to the nonunique-winner model. The formal definitions of the problems

studied in this chapter are as follows.

148 6. Combinatorial Algorithms for Borda Manipulation

Unweighted Borda Manipulation (UM-Borda)

Input: An election (C ∪ {p},ΠV ,V) where p is not the unique winner, and a set V ′
of t manipulators.

Question: Can the manipulators cast their votes in a way so that p becomes the

unique winner in the election (C ∪ {p},ΠV] ΠV ′), where ΠV ′ with |ΠV ′| = t is the

multiset of votes cast by the manipulators?

Weighted Borda Manipulation (WM-Borda)

Input: A weighted election (C ∪ {p},ΠV ,V , f1 : V → N) where p is not the unique

winner, a set V ′ of t manipulators and a weight function f2 : V ′ → N.

Question: Can the manipulators cast their votes ΠV ′ in a way so that p is the

unique winner in the weighted election (C ∪ {p},ΠV]ΠV ′ ,V ∪ V ′, f : V ∪ V ′ → N),

where f(v) = f1(v) if v ∈ V and f(v) = f2(v) otherwise, and ΠV ′ with |ΠV ′ | = t is

the multiset of votes cast by the manipulators?

6.1.2 Related Works

As one of the most prominent voting systems, complexity of strategic behavior for

Borda has been intensively studied. It is known that many types of bribery and control

behavior for Borda are NP-hard [54, 98, 99, 223]. For manipulation, WM-Borda is

NP-hard even when the election contains only three candidates [68]. Bartholdi, Tovey

and Trick [156] showed that both UM-Borda and WM-Borda are polynomial-time

solvable if there is only one manipulator. The complexity of UM-Borda in the case

of more than one manipulator remained open for many years, until very recently

it was proved NP-hard even when there are only two manipulators and three non-

manipulators [26, 75]. Heuristic and approximation algorithms for UM-Borda have

been studied in the literature [73, 75, 258]. It is worth mentioning that Zuckerman,

Procaccia and Rosenschein [258] proposed an approximation algorithm for UW-Borda

which can output a success manipulation with t+ 1 manipulators whenever the given

instance has a success manipulation with t manipulators. By applying the integer

linear programming (ILP) technique, UM-Borda can be solved exactly with a very high

computational complexity O∗(m!O(m!)) [26], where m is the number of candidates. Prior

to the work of this thesis, no purely combinatorial exact algorithm is known for UM-

Borda and WM-Borda (except the very brute force one which checks all possibilities).

In particular, Betzler, Niedermeier and Woeginger [26] posed as an open problem

6.2. Algorithm for Weighted Borda Manipulation 149

whether UM-Borda can be solved exactly with a running time single-exponentially

depending on m in the case of two manipulators.

We propose two algorithms solving WM-Borda and UM-Borda in O∗((m · 2m)t+1)

time and O∗(
(
t+m−1

t

)
·(t+1)m) time, respectively, where t is the number of manipulators

and m is the number of candidates. Both algorithms rely on dynamic programming

techniques. Our results imply that both WM-Borda and UM-Borda can be solved

in time single exponentially on m in the case of constant number of manipulators.

In particular, for t = 2, we have an algorithm with running time O∗(3m) for UM-

Borda, affirmatively answering the open question in [26]. In fact, when either m or

t is a constant, our algorithms are single-exponential algorithms. See Table 6.1 for

a summary of our results concerning combinatorial algorithms for UM-Borda and

WM-Borda. In addition to combinatorial algorithms, we improve the running time of

the ILP-based algorithm for UM-Borda to O∗(29m2 logm).

WM-Borda UM-Borda

m and t are not constants O∗((m · 2m)t+1) O∗(
(
t+m−1

t

)
· (t+ 1)m)

m is a constant O∗(at) Poly(t)

t is a constant O∗(bm) O∗(cm)

Table 6.1: Running time of the combinatorial algorithms for the weighted and unweighted
Borda manipulation problems. Here, m and t are the number of candidates and the number
of manipulators, respectively. Moreover, a, b, c are constants, and Poly(t) is a polynomial
function in t.

6.2 Algorithm for Weighted Borda Manipulation

In this section, we present an exact combinatorial algorithm for WM-Borda. The

following observation is clearly true.

Observation 6.1. Every yes-instance of WM-Borda has a solution where the distin-

guished candidate p is ranked in the top in every manipulative vote.

Let ((C ∪ {p},ΠV ,V , f1),V ′, f2, t) be the given instance. Due to Observation 6.1,

there must be a solution ΠV ′ with BSCV∪V ′(p) = BSCV(p) +
∑

v′∈V ′ f(v′) · |C| if the

given instance is a yes-instance. Therefore, to make p the unique winner, BSCV ′(c) ≤

150 6. Combinatorial Algorithms for Borda Manipulation

g(c) should hold for all c ∈ C, where g(c) = BSCV(p)+
∑

v′∈V ′ f(v′) · |C|−BSCV(c)−1.

The value of g(c) is called the capacity of c. Meanwhile, if in the given instance there is

a candidate c with g(c) < 0, then the given instance must be a no-instance. Therefore,

in the following, we assume that the given instance contains no candidate c with

g(c) < 0. Based on these, we can reformulate WM-Borda as follows:

Reformulation of WM-Borda

Input: A set C of candidates, a capacity function g : C → N, and a multiset

F = {f1, f2, ..., ft} of non-negative integers.

Question: Is there a multiset Π = {π1, π2, ..., πt} of bijections mapping from C to

[|C|] such that
∑t

i=1 fi · (πi(c)− 1) ≤ g(c) holds for all c ∈ C?

Here, the bijection πi corresponds to the vote cast by the i-th manipulator and

fi ∈+ F corresponds to the weight of the i-th manipulator (suppose that a fixed order

over the manipulators is given). Notice that in the Reformulation of WM-Borda, we

do not have the distinguished candidate p. But we have taken the final Borda score of

the distinguished candidate p into account in the above reformulation. This is reflected

by the capacity function g.

Our algorithm is based on a dynamic programming method which is associated

with a boolean dynamic table defined as DT (C,Z1, Z2, ..., Zt), where C ⊆ C is a

subset of candidates, Zi ⊆ [|C|] and |C| = |Zi| for all i ∈ [t]. Here, each Zi encodes

the positions that are occupied by the candidates of C in the vote cast by the i-th

manipulator. In particular, a z ∈ Zi corresponds to the (|C| − z + 1)-th position of

the i-th manipulative vote. The entry DT (C,Z1, Z2, ..., Zt) = 1 means that there is a

multiset Π = {π1, π2, ..., πt} of bijections mapping from C to [|C|] such that for each

i ∈ [t],
⋃
c∈C{πi(c)} = Zi, and moreover, for every candidate c ∈ C, c is “safe” under Π.

Here, we say a candidate c is safe under Π, if
∑t

i=1 fi · (πi(c)− 1) ≤ g(c). Intuitively,

DT (C,Z1, Z2, ..., Zt) = 1 means that we can place all candidates of C in the positions

encoded by Zi for all i ∈ [t] without exceeding the capacity of any c ∈ C. Clearly,

a given instance is a yes-instance if and only if DT (C, Z1 = [|C|], Z2 = [|C|], ..., Zt =

[|C|]) = 1. A formal description of the algorithm is shown in Algorithm 6.1.

Theorem 6.1. WM-Borda is solvable in O∗((m · 2m)t+1) time, where m is the number

of candidates.

Proof. We consider Algorithm 6.1 for WM-Borda. Let C be the set of candidates

and m = |C| be the number of candidates. In the Initialization, we check whether∑t
i=1 fi · (zi − 1) ≤ g(c) for each candidate c ∈ C and each encoded position zi ∈ [m]

for each i ∈ [t]. Since there are m many candidates and m many positions to

be considered for each zi, the running time of the Initialization is bounded by

O∗(mt+1). In the Updating, we compute DT (C,Z1, Z2, ..., Zt) for all C ⊆ C and

6.2. Algorithm for Weighted Borda Manipulation 151

Algorithm 6.1: An exact combinatorial algorithm for WM-Borda.

Input : An instance (C, g, F) of the Reformulation of WM-Borda.
Output : “Yes” if the given instance a yes-instance, and “No” otherwise.

/* Initialization */

1 forall the c ∈ C and z1, z2, ..., zt ∈ [|C|] do

2 if
∑t

i=1 fi · (zi − 1) ≤ g(c) then
3 DT ({c}, {z1}, {z2}, ..., {zt}) := 1;
4 else
5 DT ({c}, {z1}, {z2}, ..., {zt}) := 0;
6 end

7 end
/* Updating DT (C,Z1, Z2, ..., Zt) */

8 forall the ` = 2 to |C| do
9 forall the C ⊆ C and all Zi ⊆ [|C|] for every i = 1, 2, ..., |C| with |C| = |Zi| = `

do
10 if ∃c ∈ C and ∃zi ∈ Zi for all i ∈ [t] such that

DT (C \ {c}, Z1 \ {z1}, Z2 \ {z2}, ..., Zt \ {zt}) = 1 and
DT ({c}, {z1}, {z2}, ..., {zt}) = 1 then

11 DT (C,Z1, Z2, ..., Zt) := 1;
12 else
13 DT (C,Z1, Z2, ..., Zt) := 0;
14 end

15 end

16 end
17 if DT (C, Z1 = [|C|], Z2 = [|C|], ..., Zt = [|C|]) = 1 then
18 Return “Yes”;
19 else
20 Return “No”;
21 end

all Z1 ⊆ [m], Z2 ⊆ [m], ..., Zt ⊆ [m] with |C| = |Z1| = |Z2| = ... = |Zt| = `,

where 2 ≤ ` ≤ m. To compute each of them, we consider all possibilities of

c ∈ C and z1 ∈ Z1, z2 ∈ Z2, ..., zt ∈ Zt. For each possibility, we further check whether

DT (C \ {c}, Z1 \ {z1}, Z2\{z2}, ..., Zt\{zt}) = 1 and DT ({c}, {z1}, {z2}, ..., {zt}) = 1.

Since there are at most mt+1 such possibilities, and there are at most 2(t+1)m entries

needed to be computed, we arrive at the total running time of O∗((m · 2m)t+1).

To check the correctness, recall that DT (C,Z1, Z2, ..., Zt) = 1 means we can

place all candidates of C in the positions encoded by Zi for all i ∈ [t] without

exceeding the capacity of any c ∈ C. According to this, DT (C,Z1, Z2, ..., Zt) is equal

to 1 whenever there exist c ∈ C and zi ∈ Zi for all i ∈ [t] such that DT (C \ {c}, Z1 \
{z1}, Z2\{z2}, ..., Zt\{zt}) = 1 and DT ({c}, {z1}, {z2}, ..., {zt}) = 1. This corresponds

exactly to the recurrence for updating the dynamic table. In the Initialization, we set

DT ({c}, {z1}, {z2}, ..., {zt}) to 1 if
∑t

i=1 fi · (zi − 1) ≤ g(c) which means that we can

152 6. Combinatorial Algorithms for Borda Manipulation

place c in the positions encoded by z1, z2, ..., zt in π1, π2, ..., πt, respectively, without

exceeding the capacity of c. Thus, each value of DT ({c}, {z1}, {z2}, ..., {zt}) follows

the meaning of what we defined for the dynamic table. Finally, it is obvious that

a given WM-Borda instance is a yes-instance if and only if DT (C, Z1 = [m], Z2 =

[m], ..., Zt = [m]) = 1.

Algorithm 6.1 applies to the nonunique-winner model. However, in the nonunique-

winner model, we require that
∑t

i=1 fi · (πi(c)− 1) ≤ g(c) + 1 holds for all c ∈ C.
Therefore, we need to replace Line 2 in Algorithm 6.1 with the following line.

if
∑t

i=1 fi · (zi − 1) ≤ g(c) + 1 then

Betzler, Niedermeier and Woeginger [26] posed as an open question whether

UM-Borda in case of two manipulators can be solved in single-exponential time with

respect to the number of candidates. By Theorem 6.1, we can answer this question

affirmatively.

Corollary 6.1. WM-Borda (UM-Borda is a special case of WM-Borda) in case of

two manipulators can be solved in O∗(8m) time, where m is the number of candidates.

In fact, Theorem 6.1 implies a more general result: WM-Borda is solvable in

single-exponential time with respect to m if t is a constant, and with respect to t

if m is a constant, where m and t are the number of candidates and the number of

manipulators, respectively.

6.3 Algorithm for Unweighted Borda Manipulation

In this section, we study the UM-Borda problem. Recall that UM-Borda is a special

case of WM-Borda where all voters have the same unit weight. The specialization

offers us an simper way to calculate Borda scores of candidates. In particular, in the

unweighted Borda system, when compute BSCV ′(c) for a candidate c, it is irrelevant

which manipulators placed c in the j-th positions. The decisive factor is the number

of manipulators placing c in the j-th positions. This leads to the following approach

where we firstly reduce UM-Borda to a matrix problem and then solve this matrix

problem by a dynamic programming algorithm, resulting in a better running time

than that in Section 6.2. Firstly, the matrix problem is defined as follows.

6.3. Algorithm for Unweighted Borda Manipulation 153

Filling Magic Matrix (FMM)

Input: A multiset g = {g1 , g2 , ..., gm} of non-negative integers and an

integer t > 0.

Question: Is there an m×m matrix M with non-negative integers such

that:

(1) ∀i ∈ [m],
∑m

j=1 (j − 1) ·M [i][j] ≤ gi;

(2) ∀i ∈ [m],
∑m

j=1M [i][j] = t; and

(3) ∀j ∈ [m],
∑m

i=1M [i][j] = t?

Using matrix to solve the manipulation problem has also been considered by

Davies et al. [75]. In this paper, the authors used an n by m relaxed manipulation

matrix to devise several heuristic algorithms for the unweighted manipulation problem

under Borda, Baldwin’s and Nanson’s voting correspondences, where n denotes the

number of voters and m the number of candidates. The entry A[i, j] defined in their

matrix A is the score that the i-th voter gives to the j-th candidate (the scores might

need to be adjusted to get a final solution to the manipulation instance. See [75] for

further details). Therefore, each entry is an integer between 0 to m−1. Our mechanism

differs from theirs in several aspects. First, our matrix has both m rows and m columns.

Moreover, each row corresponds to a candidate and each column corresponds to a

position. The entry M [i, j] is defined as the number of manipulators that rank the i-th

candidate in the (m− j + 1)-th position. Therefore, each entry is an integer between

0 and t, where t is the number of manipulators. Second, their algorithms are heuristic

algorithms, while ours are exact algorithms. Third, our method can be easily adapted

to reduce Borda manipulation instances to ILP instances with m2 variables (we discuss

in detail later), however their method seems difficult to reduce Borda manipulation

instances to ILP instances with the number of variables bounded by a function of m.

In the following, we present an algorithm for FMM. The algorithm is based on

a dynamic programming method associated with a boolean dynamic table DT (`, T),

where ` ∈ [m] and T = {Tj ∈ N | j ∈ [m], Tj ≤ t} is a multiset of non-negative integers.

The entry DT (`, T) = 1 means that there is an m×m matrix M such that:

(1)
∑m

j=1M [i][j] = t for all i ∈ [`];

(2)
∑m

j=1(j − 1) ·M [i][j] ≤ gi for all i ∈ [`]; and

(3)
∑l

i=1 M [i][j] = Tj for all j ∈ [m].

It is clear that a given instance of FMM is a yes-instance if and only if

DT (m,T[m]) = 1, where T[m] is the multiset containing m copies of t. The algo-

rithm for solving FMM is described in Algorithm 6.2.

Lemma 6.1. FMM is solvable in O∗(
(
t+m−1

t

)
· (t+ 1)m) time.

154 6. Combinatorial Algorithms for Borda Manipulation

Algorithm 6.2: A dynamic algorithm for FMM.

Input : An instance (g = {g1 , g2 , ..., gm}, t) of FMM.
Output : “Yes” if the given instance is a yes-instance, and “No” otherwise.

/* Initialization */

1 forall the possible multisets T = {Tj ∈ N | j ∈ [m], Tj ≤ t} with
∑m

j=1 Tj = t do

2 if
∑m

j=1 (j − 1) · Tj ≤ g1 then

3 DT (1, T) = 1
4 else
5 DT (1, T) = 0;
6 end

7 end
/* Updating DT (`, T) */

8 forall the ` = 2 to m do
9 forall the possible multisets T = {Tj ∈ N | j ∈ [m], Tj ≤ t} do

10 forall the possible multisets T ′ = {T ′j ∈ N | j ∈ [m], T ′j ≤ Tj} with∑m
j=1 T

′
j = t do

11 Let T − T ′ = {T1 − T ′1, T2 − T ′2, ..., Tm − T ′m};
12 if DT (`− 1, T − T ′) = 1 and

∑m
j=1 (j − 1) · T ′j ≤ g

`
then

13 DT (`, T) := 1;
14 else
15 DT (`, T) := 0;
16 end

17 end

18 end

19 end
20 if DT (m,T[m]) = 1 then
21 Return “Yes”;
22 else
23 Return “No”;
24 end

Proof. In the initialization, we consider all possible multisets T = {Tj ∈ N | j ∈
[m], Tj ≤ t} with

∑m
j=1 Tj = t. Since T has at most

(
t+m−1

t

)
possibilities (according

to
∑m

j=1 Tj = t), the running time of the initialization is bounded by O∗(
(
t+m−1

t

)
). In

the updating procedure, we use a loop indicated by a variable ` with 2 ≤ ` ≤ m to

update DT (`, T). In each loop we compute the values of the entries DT (`, T) for all

multisets T = {Tj ∈ N | j ∈ [m], Tj ≤ t}. To compute each of the entries, we check

whether there is a multiset T ′ = {T ′1, T ′2, ..., T ′m} with
∑j=m

j=1 T
′
j = t and T ′j ≤ Tj for

every j ∈ [m], such that DT (` − 1, T − T ′) = 1 and
∑m

j=1 (j − 1) · T ′j ≤ g
`
. Since

there are at most
(
t+m−1

t

)
possible multisets T ′, the time to compute each DT (`, T) is

bounded by O∗(
(
t+m−1

t

)
). Since T has at most (t+ 1)m possibilities, there are at most

(t+ 1)m entries needed to be computed in each loop, implying a whole running time of

O∗(
(
t+m−1

t

)
· (t+ 1)m) for the updating procedure. In conclusion, the whole running

6.3. Algorithm for Unweighted Borda Manipulation 155

time of the algorithm is O∗(
(
t+m−1

t

)
· (t+ 1)m).

To check the correctness, recall that for each ` ∈ [m] and T = {Tj ∈ N | j ∈
[m], Tj ≤ t}, DT (`, T) = 1 means that there is an m×m matrix M such that:

(1)
∑m

j=1 M [i][j] = t for all i ∈ [`];

(2)
∑m

j=1(j − 1) ·M [i][j] ≤ gi for all i ∈ [`]; and

(3)
∑`

i=1 M [i][j] = Tj for all j ∈ [m].

Thus, DT (`, T) = 1 if and only if there is at least one T ′ = {T ′j ∈ N | j ∈ [m], T ′j ≤
Tj} with

∑m
j=1 T

′
j = t such that DT (` − 1, T − T ′) = 1 and

∑m
j=1 (j − 1) · T ′j ≤ g

`
.

This corresponds to the updating procedure. In the initialization, we compute the

value of DT (1, T) for all possible multisets T = {Tj ∈ N | j ∈ [m], Tj ≤ t}. We set

DT (1, T) to 1 whenever
∑m

j=1 Tj = t and
∑m

j=1 (j − 1) · Tj ≤ g1 . Thus, we can set

M [1][j] = Tj to make sure that the three required conditions in our definition for

the dynamic table hold. Finally, it is obvious that the given instance of FMM is a

yes-instance if and only if DT (m,T[m]) = 1 where T[m] is the multiset containing m

copies of t. The theorem follows.

We now come to show how to solve UM-Borda via FMM. A partial vote is a partial

injection π : C ∪ {p} → [|C ∪ {p}|] which maps a subset C ⊆ C ∪ {p} to [|C ∪ {p}|]
such that for any two distinct a1, a2 ∈ C, π(a1) 6= π(a2). Here, C is the domain and

{π(a) | a ∈ C} is the codomain of π. A position not in the codomain is called a free

position. For simplicity, we define π(c) = −1 for c 6∈ C.

Lemma 6.2. UM-Borda can be reduced to FMM in polynomial time.

Proof. Let F = ((C ∪ {p},ΠV ,V),V ′, t) be an instance of UM-Borda. By Observa-

tion 6.1, we know that if F is a yes-instance there must be a solution ΠV ′ such that each

manipulator ranks p in the top. We assume that BSCV(p) + t · |C| −BSCV(c)− 1 ≥ 0

for all c ∈ C as discussed in Section 6.2. Let (c1, c2, ..., c|C|) be any arbitrary order of

C. We construct an instance F ′ = (t, g) of FMM, where g = {g1, g2, ..., g|C|} such that

gi = BSCV(p) + t · |C| −BSCV(ci)− 1 for all i ∈ [|C|]. It is clear that the construction

takes polynomial time. In the following, we prove that F is a yes-instance if and only

if F ′ is a yes-instance.

(⇒:) Given a solution ΠV ′ of F , we can get a solution for F ′ by setting M [i][j] =

|{π ∈+ ΠV ′ | π(ci) = j}|, where {π ∈+ ΠV ′ | π(ci) = j} is the multiset containing all

votes π ∈+ ΠV ′ with π(ci) = j. By the above construction, the correctness of M is

easy to verify.

(⇐:) Let a |C| × |C| matrix M be a solution of F ′ = (t, g = {g1, g2, ..., g|C|}).
Then, a solution for F , where there are exactly M [i][j] manipulators who rank ci
in the (|C| − j + 2)-th positions (notice that we have in total |C| + 1 candidates),

156 6. Combinatorial Algorithms for Borda Manipulation

can be constructed by the polynomial-time algorithm described in Algorithm 6.3.

For simplicity, for a candidate ci and an integer j with 1 ≤ j ≤ |C|, ci j means

that there are less than M [i][j] manipulators who have already placed ci in the

(|C| − j + 2)-th positions. For two partial votes π and π′ and two candidates c and c′,

(π, c)↔ (π′, c′) means to switch the position of c in π and the position of c′ in π′, that

is, if π(c) = j, π′(c′) = j′, then, after (π, c)↔ (π′, c′), we get π(c′) = j, π′(c) = j′.

Algorithm 6.3: Algorithm for reducing from UM-Borda to FMM.

Input : A solution M (an m by m matrix) of an instance
F ′ = (g = {g1, g2, ..., gm}, t) of FMM, where F ′ is constructed from a given
instance F = ((C ∪ {p},ΠV ,V),V ′, t) of UM-Borda as described in the
beginning of the proof to Lemma 6.2.

Output : A solution ΠV ′ of F .

1 Initialize ΠV ′ = {π1, π2, ..., πt} of partial votes such that each partial vote has empty
domain;

2 forall the z ∈ [t] do
3 πz(p) := |C|+ 1;

4 end
5 forall the j̄ = |C| to 1 do
6 while ∃πz where the (|C| − j̄ + 2)-th position is free do
7 Let ci be any candidate with ci j̄;
8 if πz(ci) = −1 then
9 πz(ci) := j̄;

10 else
11 Let j′ = πz(ci) and let πz′ be a vote with πz′(ci) = −1;
12 if the (|C| − j̄ + 2)-th position of πz′ is free then
13 πz′(ci) := j̄
14 else
15 while ∃j′′ > j̄ with π−1

z (j′′) = π−1
z′ (j′) do

16 (πz, π
−1
z (j′))↔ (πz′ , π

−1
z′ (j′));

17 j′ := j′′;
18 end
19 (πz, π

−1
z (j′))↔ (πz′ , π

−1
z′ (j′));

20 πz(ci) := j̄;

21 end

22 end

23 end

24 end
25 Return ΠV ′ ;

Since
∑|C|

i=1M [i][j̄] = t and there are exactly t manipulators, there must be a

candidate ci with ci j̄ whenever there is a vote whose (|C| − j̄ + 2)-th position is

free, which guarantees the soundness of Line 7 in Algorithm 6.3. Similarly, there must

be a πz′ with πz′(ci) = −1 in Line 11, since, otherwise,
∑|C|

j=1M [i][j] > t, contradicting

6.3. Algorithm for Unweighted Borda Manipulation 157

that the given instance of FMM is a yes-instance. After the switches in the while

loop in Lines 15-18, and Line 19, both πz and πz′ must fulfill the following property:

no candidate is placed in two different positions in either vote. See Figure 6.1 for an

example of the while loop in Lines 15-18.

Obviously, such a constructed ΠV ′ is a solution for UM-Borda: for each candidate

ci ∈ C, we have

BSCV ′(ci) =

|C|∑
j=1

(j − 1) ·M [i][j] ≤ gi = BSCV(p) + t · |C| −BSCV(ci)− 1

To analyze the running time of the algorithm, we need the following lemma.

Lemma 6.3. The while loop in Lines 15-18 in Algorithm 6.3 takes polynomial time.

Proof. To prove the lemma, we construct an auxiliary bipartite graph B with Cz′
as the left-hand vertices and Cz as the right-hand vertices, where Cz′ and Cz are the

sets of candidates which have been ranked in πz′ and πz in some k-th positions for

k ≤ |C| − j̄ + 2, respectively. Two vertices are adjacent if and only if they represent

the same candidate (as the vertices linked by a gray line in Figure 6.1) or they were

placed in the same (but not identical) positions (as the vertices linked by a dark

line in Figure 6.1). We observe that the constructed auxiliary graph has maximum

degree two. Since Cz′ \ Cz is not empty, there is a simple path P = (ca1 , ca2 , ..., cax)

with ca1 = ci and cax ∈ Cz′ \ Cz. It is clear that each execution of the while loop

corresponds to the following switch procedure: switch the positions of ak and ak+1 for

a k ∈ {1, 3, ..., x− 1} (since ca1 = ci ∈ Cz and cax ∈ Cz′ , we have that x is even). The

lemma follows from the fact that the length of the simple path is bounded by 2|C|.

c5 c1 c7 ci c4

j̄j′j′′

c2 c7 c3 c1 c4 c5

πz

πz′

c5 c7 c3 c1 c4 ci

j̄

c2 c1 c7 ci c4 c5

πz

πz′

Figure 6.1: An illustration of the proof of Lemma 6.3. The left-hand shows the status of πz
and πz′ before the switches. Due to the algorithm, the positions of every pair of candidates
linked by the dark lines are switched. The gray lines here are to show that π−1

z (j′′) = π−1
z′ (j′),

as in the precondition of the while loop in Lines 15-18 in Algorithm 6.3. The right-hand
shows the status after these switches.

158 6. Combinatorial Algorithms for Borda Manipulation

We now analyze the whole running time of Algorithm 6.3. The algorithm has four

loops in total. The for loop in Lines 2-4 clearly takes polynomial time. The following

for loop in Lines 5-24 loops exactly |C| times. Moreover, the for loop contains the

while loop in Lines 6-23. The while loop in Lines 6-23 loops at most t times since

each execute of a loop fixes a (|C| − j̄ + 2)-th free position for some πz where j̄ is the

loop indicator for the second for loop, and we have at most t different πz. Therefore,

to show that the algorithm takes polynomial time, it remains to show that each execute

of the while loop in Lines 6-23 takes polynomial time. This is true since the most

time-consuming step in this while loop is the while loop in Lines 15-18, which, due

to Lemma 6.3, takes polynomial time. Summery all above, the running time of the

algorithm is polynomially in t and |C|.

Due to Lemmas 6.1 and 6.2, we have the following theorem.

Theorem 6.2. UM-Borda can be solved in O∗(
(
t+m−1

t

)
· (t + 1)m) time, where m is

the number of candidates and t is the number of manipulators.

Proof. Given an instance of UM-Borda, we reduce it to an instance of FMM, as

described in Lemma 6.2. Then, we solve the instance of FMM with Algorithm 6.2.

Finally, we construct a solution of the given instance of UM-Borda from the solution

returned from Algorithm 6.2, as described in Lemma 6.2. According to Lemma 6.1,

Algorithm 6.2 runs in O∗(
(
t+m−1

t

)
· (t+ 1)m). Since it takes polynomial time to reduce

from UM-Borda to FMM, the theorem follows.

We remark that if the number of manipulators is bounded by a constant, the

algorithm described in the proof of Theorem 6.2 runs in O∗((t+1)m) time. In particular,

for t = 2, the algorithm runs in O∗(3m) time.

Next we show that FMM can be solved by an integer linear programming (ILP)

based algorithm. The ILP contains m2 variables xij for i, j ∈ [m], and is subject to

the following restrictions



m∑
i=1

xij = t for all j ∈ [m]

m∑
j=1

xij = t for all i ∈ [m]

m∑
j=1

(j − 1) · xij ≤ gi for all i ∈ [m]

xij ≥ 0 for all i, j ∈ [m]

where t ∈ N, the number of the manipulators, and g = {g1 , g2 , . . . , gm} with gi ∈ N for

all i ∈ [m], the multiset of the capacities of the candidates, are input.

6.4. Conclusion 159

H. W. Lenstra [177] proposed an O∗(ζO(ζ))-time algorithm for solving ILP with ζ

variables. The running time was then improved by R. Kannan [161], and Frank and

Tardos [126] (see Lemma 1.1).

Due to Lemmas 6.2 and 1.1, we have the following theorem.

Theorem 6.3. UM-Borda admits an algorithm with running time O∗(25(m2+o(m2)) logm),

where m is the number of candidates.

6.4 Conclusion

We have studied exact combinatorial algorithms for Borda manipulation problems.

In particular, we proposed two exact combinatorial algorithms with running times

O∗((m·2m)t+1) and O∗(
(
t+m−1

t

)
·(t+1)m) for weighted Borda manipulation (WM-Borda)

and unweighted Borda manipulation (UM-Borda), respectively, where t is the number

of manipulators and m is the number of candidates in the given election. Observe

that if t is bounded by a constant, UM-Borda can be solved in O∗((t+ 1)m) time. Our

results answer an open question posed by Betzler, Niedermeier and Woeginger [26]

affirmatively. In addition, we presented an integer linear programming based FPT -

algorithm with running time O∗(25(m2+o(m2)) logm) for UM-Borda. We remark that all

our algorithms can be adapted to solve the weighted and unweighted manipulation

problems for all (positional) scoring voting systems.

One future direction would be to improve the presented combinatorial algorithms.

As showed in this chapter and in [26], UM-Borda is FPT with respect to the number

m of candidates. In this paper, we proposed an algorithm for UM-Borda with running

time O∗(
(
t+m−1

t

)
· (t + 1)m). In particular, if the number of the manipulators is a

constant, the algorithm is single-exponential in the number of candidates. A challenging

task is to investigate whether there is a single-exponential algorithm for UM-Borda

when the number of manipulators is not a constant.

7
Conclusion and Outlook

162 7. Conclusion and Outlook

This thesis investigated the (parameterized) complexity of strategic voting prob-

lems in restricted settings. In the following two sections, we first summarize our results

and then discuss some directions for future research.

7.1 Summary of Results

This thesis mainly investigated the (parameterized) complexity of control, bribery and

manipulation in elections under natural restrictions. In addition, this thesis explored

the parameterized complexity of a number of possible winner(s) problems on partial

tournaments with respect to several natural parameters.

In Chapters 2 and 3, we studied the (parameterized) complexity of control problems

in generalized single-peaked elections. In particular, we studied control problems for

r -Approval, Condorcet, Maximin and Copelandα for every 0 ≤ α ≤ 1 in k -peaked

elections in Chapter 2. We proved that all the NP-hardness of these control problems

in the general case still hold even in 3, 4-peaked elections. However, in 2-peaked

elections, several NP-hardness in general turned out to be polynomial-time solvable.

See Tables 2.1 and 2.2 for summaries of our results regarding these problems. In

Chapter 3, we studied the (parameterized) complexity of control problems in elections

with bounded single-peaked width for Condorcet, Maximin and Copelandα for every

0 ≤ α ≤ 1. We proved that for the constructive control by adding/deleting votes, all

the NP-hardness in general still hold even in elections with single-peaked width 3.

However, for the destructive case, all the NP-hardness results turned out to be FPT
with respect to single-peaked width, implying the polynomial-time solvability of these

problems in elections with constant single-peaked width. Furthermore, we derived a

framework for identifying FPT control problems with respect to the single-peaked

width. See Table 3.1 for a summary of our results regarding this topic. Many of our

NP-hardness reductions apply to other restricted elections, such as elections with

bounded single-crossing width and d-Euclidean elections. See Section 3.6 for detailed

discussions.

In Chapter 4, we studied the distance restricted bribery problem for Condorcet,

Maximin and Copelandα for every 0 ≤ α ≤ 1. In the bribery problem, each voter

may be bribed to recast his vote in any arbitrary way [108]. In the distance restricted

bribery problem, each voter can recast a new vote which, however, has to be as close as

to his original vote. We adopted the Hamming distance and the Kendall-Tau distance

to measure the similarity of two votes. Our results show that the distance restricted

bribery problem is generally NP-hard even when the distance is bounded by a small

constant. See Table 4.1 for a summary of our results regarding this topic.

7.2. Further Research Directions 163

In Chapter 5, we studied several possible winner(s) problems on partial tourna-

ments. In this scenario the candidates are represented by vertices. Moreover, there

is an arc from a vertex a to a vertex b if a beats b. Here, a “beats” b means that

there are more voters who prefer a to b. The winners are selected according to some

well-defined tournament solutions, e.g, Uncovered set, Banks set, etc. In particular, we

focused on the possible winner problems with respect to Uncovered set and Banks set.

For Uncovered set, the question is whether a given subset of vertices (candidates) can

be included in the Uncovered set by adding/reversing some arcs to the given partial

tournament. In particular, we studied three parameters: the size of the given subset

of vertices, the number of arcs that are allowed to be reversed and the number of arcs

that are allowed to add. For Banks set, the question is whether a given distinguished

vertex (candidate) is a 0-indegree vertex in some maximal transitive subtournament.

In particular, we studied three parameters: the size of the maximal transitive sub-

tournament, the number of the in-neighbors of the distinguished candidate, and the

number of the out-neighbors of the distinguished candidate. For problems considered

in this chapter, we proposed FPT results, W-hardness results and XP results. See

Table 5.1 for a summary of our results regarding this topic.

In Chapter 6, we studied exact combinatorial algorithms for both weighted and

unweighted Borda manipulation problems. In particular, we proposed two exact

combinatorial algorithms with running times O∗((m ·2m)t+1) and O∗(
(
t+m−1

t

)
· (t+1)m)

for weighted Borda manipulation (WM-Borda) and unweighted Borda manipulation

(UM-Borda), respectively, where t is the number of manipulators and m is the number

of candidates. Observe that if t is bounded by a constant, UM-Borda can be solved in

O∗((t+ 1)m) time. Our results answer an open problem posed by Betzler, Niedermeier

and Woeginger [26] affirmatively: UM-Borda with two manipulators can be solved

in single-exponential time with respect to the number of candidates. Moreover, we

proposed an integer linear program formulation for UM-Borda with m2 variables. As

a consequence of our formulation and the FPT algorithm for ILP devised by Frank

and Tardos [126], UM-Borda can be solved in O∗(25(m2+o(m2)) logm) time. Our results

are summarized in Table 6.1 and Theorem 6.3.

7.2 Further Research Directions

For open questions and remarks concerning the specific problems investigated in this

thesis, we refer to the respective conclusion section of each chapter. More specifically,

questions regarding control problems in k -peaked elections can be found in Section 2.4,

regarding control problems in elections with bounded single-peaked width, bounded

single-crossing width, Euclidean elections can be found in Section 3.6, regarding the

distance restricted bribery problem can be found in Section 4.4, regarding the possible

164 7. Conclusion and Outlook

winners problems can be found in Section 5.4, and regarding manipulation problems

can be found in Section 6.4. In the following, we discuss more prominent directions

for future research.

7.2.1 Practical FPT Algorithms

Parameterized complexity of voting problems has been widely studied in COMSOC,

and many voting problems have been proved to be FPT (see e.g., [23, 25, 84, 154,

246, 249]). Nevertheless, most of the FPT -algorithms are based on ILP formulations,

and thus are far from practical. In this thesis, we derived such FPT -algorithms

for destructive control problems in elections with bounded single-peaked width for

Condorcet, Copelandα for every 0 ≤ α ≤ 1 and Maximin, with respect to single-peaked

width. It is intriguing to investigate practically efficient FPT -algorithms for these

problems. Furthermore, deriving explicit kernels for these problems is also another

challenging task.

7.2.2 Experimental Studies

To date, most of the work in COMSOC focused on the worst-case analysis of voting

problems. Recently, this purely worst-case analysis, which ignores real-world settings,

was criticized by researchers. See [67, 114, 191, 214, 239] for detailed discussions.

In this direction, two things are expected to be done. The first thing is to examine

the hard voting problems (NP-hard or W-hard) with algorithms that run on real-

world data. Some representative work can be found in [73, 189, 219, 238]. Concerning

hard problems studied in this thesis, it is interesting to study heuristic algorithms

for these problems and examine the performance of these algorithms with real-world

data, in order to investigate how hard it is to solve these problems in practice. We

refer to [191] for information on a site that gathers real-world preference data that is

open to researchers. Another method to examine whether a certain voting problem is

hard to solve in practice is to encode the voting problem into constraint satisfactory

problems (CSPs for short). There has been many advanced CSP solvers for researchers

to use such as CPLEX. See [136] for further discussions on CSP solvers.

The second thing is to examine the feasibility of strategic behavior in elections

that are subject to some prominent distributions, through the lens of probability

theory. For example, Procaccia and Rosenschein [214] introduced the concept of

junta distributions (generally speaking, these are distributions over the elections that

satisfy several constraints) and proved that if a (heuristic) algorithm often solve

7.2. Further Research Directions 165

the manipulation problem when the instances are distributed according to a junta

distribution, it would also often solve the manipulation problem when the instances

are distributed according to many other plausible distributions. Another recent related

work can be found in [137]. It is interesting to investigate the feasibility of strategic

behavior in elections with bounded single-peaked width or bounded single-crossing

width where the subelections restricted to the intervals are subject to some distributions,

such as junta distributions.

7.2.3 Approximation Algorithms

Approximation algorithms lie in the central of computer science. Designing approx-

imation algorithms for voting problems has long been studied (see e.g., [23, 53, 73,

143, 176, 181, 240, 241]). However, approximation algorithms for voting problems

in restricted elections have been less investigated so far. It is interesting to study

approximation algorithms for problems studied in this thesis, such as control problems

in 2,3-peaked elections or in elections with constant single-peaked width or constant

single-crossing width.

7.2.4 Surveys to Read

Finally, we refer to several representative surveys on computational social choice for

more open problems and research directions: [22, 49, 66, 182, 220].

Bibliography

[1] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters,

and C. T. Symons. Kernelization algorithms for the vertex cover problem: Theory

and experiments. In ALENEX/ANALC, pages 62–69, 2004. Cited on page 18

[2] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM., 42(4):844–856, 1995.

Cited on page 20

[3] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Generic ILP versus spe-

cialized 0-1 ILP: An update. In ICCAD, pages 450–457, 2002. Cited on page 19

[4] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, 2009. Cited on pages 15 and 16

[5] K. J. Arrow. A difficulty in the concept of social welfare. J. Polit. Econ.,

58(4):328–346, 1950. Cited on page 24

[6] O. L. Astrachan. Bubble sort: An archaeological algorithmic analysis. In

SIGCSE, pages 1–5, 2003. Cited on page 98

[7] S. Athey. Single crossing properties and the existence of pure strategy equilib-

ria in games of incomplete information. Econometrica., 69(4):861–889, 2001.

Cited on page 89

[8] S. Athey. Monotone comparative statics under uncertainty. Q. J. Econ.,

117(1):187–223, 2 2002. Cited on page 89

[9] H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. Justified

representation in approval-based committee voting. In AAAI, pages 784–790,

2015. Cited on page 5

[10] H. Aziz, S. Gaspers, J. Gudmundsson, S. Mackenzie, N. Mattei, and T. Walsh.

Computational aspects of multi-winner approval voting. In AAMAS, pages

107–115, 2015. Cited on page 5

[11] H. Aziz, S. Gaspers, N. Mattei, S. Mackenzie, N. Narodytska, and T. Walsh.

Manipulating the probabilistic serial rule. In AAMAS, pages 1451–1459, 2015.

Cited on page 5

[12] H. Aziz, P. Harrenstein, M. Brill, J. Lang, F. A. Fischer, and H. G. Seedig.

Possible and necessary winners of partial tournaments. In AAMAS, pages

585–592, 2012. Cited on pages 131 and 134

[13] H. Aziz, S. Mackenzie, L. Xia, and C. Ye. Ex post efficiency of random assign-

ments. In AAMAS, pages 1639–1640, 2015. Cited on page 5

168 Bibliography

[14] H. Aziz and P. Stursberg. A generalization of probabilistic serial to randomized

social choice. In AAAI, pages 559–565, 2014. Cited on page 5

[15] J. Bang-Jensen and G. Gutin. Digraphs – Theory, Algorithms and Applications.

Springer-Verlag, London, 2008. 2nd Edition. Cited on page 130

[16] J. S. Banks. Sophisticated voting outcomes and agenda control. Soc. Choice.

Welfare., 1(4):295–306, 1985. Cited on page 130

[17] M. S. Bansal and D. Fernàndez-Baca. Computing distances between partial

rankings. Inf. Process. Lett., 109(4):238–241, 2009. Cited on page 96

[18] D. Baumeister, G. Erdélyi, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.

Computational Aspects of Approval Voting, chapter 10, pages 199–251. Handbook

on Approval Voting. Springer Berlin Heidelberg, 2010. Cited on page 27

[19] R. Berghammer, A. Rusinowska, and M. de Swart. Computing tournament

solutions using relation algebra and relview. Eur. J. Oper. Res., 226(3):636–645,

2013. Cited on page 130

[20] R. Berghammer and H. Schnoor. Relation-algebraic and tool-

supported control of Condorcet voting. CoRR, abs/1304.7244, 2013.

Cited on pages 100, 108, 110, and 113

[21] R. Berghammer and H. Schnoor. Control of Condorcet voting: Complex-

ity and a relation-algebraic approach. In AAMAS, pages 1365–1366, 2014.

Cited on pages 100, 108, 110, and 113

[22] N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. Studies in com-

putational aspects of voting – a parameterized complexity perspective. In

The Multivariate Algorithmic Revolution and Beyond, pages 318–363, 2012.

Cited on pages 9, 10, 98, and 165

[23] N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond. Fixed-

parameter algorithms for Kemeny rankings. Theor. Comput. Sci., 410(45):4554–

4570, 2009. Cited on pages 5, 96, 164, and 165

[24] N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond. How

similarity helps to efficiently compute Kemeny rankings. In AAMAS (1), pages

657–664, 2009. Cited on pages 96 and 146

[25] N. Betzler, J. Guo, and R. Niedermeier. Parameterized computational com-

plexity of Dodgson and Young elections. Inf. Comput., 208(2):165–177, 2010.

Cited on pages 20 and 164

[26] N. Betzler, R. Niedermeier, and G. J. Woeginger. Unweighted coalitional ma-

nipulation under the Borda rule is NP-hard. In IJCAI, pages 55–60, 2011.

Cited on pages 4, 146, 147, 148, 149, 152, 159, and 163

Bibliography 169

[27] N. Betzler and J. Uhlmann. Parameterized complexity of candidate control in

elections and related digraph problems. Theor. Comput. Sci., 410(52):5425–5442,

2009. Cited on page 29

[28] D. Black. On the rationable of group decition-making. J. Polit. Econ., 56:23–34,

1948. Cited on pages 24 and 26

[29] H. L. Bodlaender. Kernelization: New upper and lower bound techniques. In

IWPEC, pages 17–37, 2009. Cited on page 18

[30] H. L. Bodlaender. Lower bounds for kernelization. In IPEC, pages 1–14, 2014.

Cited on page 19

[31] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single ex-

ponential time algorithms for connectivity problems parameterized by treewidth.

In ICALP, pages 196–207, 2013. Cited on page 146

[32] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernelization lower

bounds by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014.

Cited on page 19

[33] H. L. Bodlaender, S. Thomassé, and A. Yeo. Analysis of data reduction: Trans-

formations give evidence for non-existence of polynomial kernels. Technical

report, Institute of Information and Computing Sciences, Utrecht University,

Netherlands, 2008. Cited on pages 18 and 19

[34] A. G. Bonifacio. Bribe-proof reallocation with single-peaked preferences. Soc.

Choice. Welfare., 44(3):617–638, 2015. Cited on page 7

[35] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas. Link analysis

ranking: Algorithms, theory, and experiments. ACM Trans. Internet Techn.,

5(1):231–297, 2005. Cited on page 98

[36] S. J. Brams and P. C. Fishburn. Approval voting. AM Polit. Sci. Rev., 72(3):831–

847, 1978. Cited on page 27

[37] S. J. Brams and D. M. Kilgour. Satisfaction Approval voting. In Rudolf Fara,

Dennis Leech, and Maurice Salles, editors, Voting Power and Procedures, Studies

in Choice and Welfare, pages 323–346. Springer International Publishing, 2014.

Cited on page 5

[38] S. J. Brams, D. M. Kilgour, and M. R. Sanver. A minimax procedure for electing

committees. Public. Choice., 132(3-4):401–420, 2007. Cited on page 96

[39] S. J. Brams and M. R. Sanver. Critical strategies under Approval voting: Who

gets ruled in and ruled out. Elect. Stud., 25(2):287–305, 2006. Cited on page 27

170 Bibliography

[40] F. J. Brandenburg, A. Gleißner, and A. Hofmeier. Comparing and aggregating

partial orders with Kendall-Tau distances. Discrete Math., Alg. and Appl., 5(2),

2013. Cited on page 96

[41] F. Brandt. Some remarks on Dodgson’s voting rule. Math. Log. Q., 55(4):460–463,

2009. Cited on page 5

[42] F. Brandt, M. Brill, F. A. Fischer, and P. Harrenstein. Minimal retentive sets in

tournaments. Soc. Choice. Welfare., 42(3):551–574, 2014. Cited on page 130

[43] F. Brandt, M. Brill, and P. Harrenstein. Extending tournament solutions. In

AAAI, pages 580–586, 2014. Cited on page 130

[44] F. Brandt, M. Brill, E. Hemaspaandra, and L. A. Hemaspaan-

dra. Bypassing combinatorial protections: Polynomial-time algo-

rithms for single-peaked electorates. In AAAI, pages 715–722, 2010.

Cited on pages 7, 24, 43, 61, 62, 64, 71, 78, 86, and 91

[45] F. Brandt, M. Brill, and H. G. Seedig. On the fixed-parameter tractability

of composition-consistent tournament solutions. In IJCAI, pages 85–90, 2011.

Cited on page 130

[46] F. Brandt, M. Chudnovsky, I. Kim, G. Liu, S. Norin, A. Scott, P. Seymour,

and S. Thomassé. A counterexample to a conjecture of Schwartz. Soc. Choice.

Welfare., 40(3):739–743, 2013. Cited on page 130

[47] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, editors. Hand-

book of Computational Social Choice. Cambridge University Press, 2015.

Cited on page 130

[48] F. Brandt, F. A. Fischer, and P. Harrenstein. The computational complexity of

choice sets. Math. Log. Q., 55(4):444–459, 2009. Cited on page 130

[49] R. Bredereck, J. Chen, P. Faliszewski, J. Guo, R. Niedermeier, and G. Woeg-

inger. Parameterized algorithmics for computational social choice: Nine re-

search challenges. Tsinghua Science and Technology, 19(4):358–373, 2014.

Cited on page 165

[50] R. Bredereck, J. Chen, P. Faliszewski, A. Nichterlein, and R. Niedermeier. Prices

matter for the parameterized complexity of shift bribery. In AAAI, pages

1398–1404, 2014. Cited on pages 6 and 97

[51] R. Bredereck, J. Chen, and G. J. Woeginger. Are there any nicely structured

preference profiles nearby? In IJCAI, pages 62–68, 2013. Cited on page 24

[52] R. Bredereck, J. Chen, and G. J. Woeginger. A characterization of the single-

crossing domain. Soc. Choice. Welfare., 41(4):989–997, 2013. Cited on page 89

Bibliography 171

[53] E. Brelsford. Approximation and elections. Master’s thesis, Rochester Institute

of Technology, Rochester, USA, 2007. Cited on page 165

[54] E. Brelsford, P. Faliszewski, E. Hemaspaandra, H. Schnoor, and I. Schnoor.

Approximability of manipulating elections. In AAAI, pages 44–49, 2008.

Cited on pages 5, 101, and 148

[55] L. Bulteau, F. Hüffner, C. Komusiewicz, and R. Niedermeier. Multivariate

algorithmics for NP-hard string problems. Bulletin of the EATCS, 114, 2014.

Cited on page 20

[56] J. F. Buss and J. Goldsmith. Nondeterminism within P. SIAM J. Comput.,

22(3):560–572, 1993. Cited on page 146

[57] J. Byrka and K. Sornat. PTAS for Minimax Approval voting. In WINE, pages

203–217, 2014. Cited on page 5

[58] I. Caragiannis, J. A. Covey, M. Feldman, C. M. Homan, C. Kaklamanis,

N. Karanikolas, A. D. Procaccia, and J. S. Rosenschein. On the approximability

of Dodgson and Young elections. Artif. Intell., 187:31–51, 2012. Cited on page 5

[59] M. Cesati. Compendium of parameterized problems.

http://cesati.sprg.uniroma2.it/research/compendium/. Cited on page 18

[60] S. Chatterji, A. Sen, and H. Zeng. A characterization of single-peaked preferences

via random social choice functions. Theoretical Economics, 2015. to appear.

Cited on page 7

[61] E. Chávez, K. Figueroa, and G. Navarro. Effective proximity retrieval by ordering

permutations. IEEE Trans. Pattern Anal. Mach. Intell., 30(9):1647–1658, 2008.

Cited on page 98

[62] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon. Solving

large FPT problems on coarse-grained parallel machines. J. Comput. Syst. Sci.,

67(4):691–706, 2003. Cited on pages 18 and 146

[63] J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. Combinatorial voter

control in elections. In MFCS, pages 153–164, 2014. Cited on page 5

[64] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theor.

Comput. Sci., 411(40-42):3736–3756, 2010. Cited on page 146

[65] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm

for the directed feedback vertex set problem. In STOC, pages 177–186, 2008.

Cited on page 135

[66] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to com-

putational social choice. In SOFSEM (1), pages 51–69, 2007. Cited on page 165

172 Bibliography

[67] V. Conitzer and T. Sandholm. Nonexistence of voting rules that are usually

hard to manipulate. In AAAI, pages 627–634, 2006. Cited on page 164

[68] V. Conitzer, T. Sandholm, and J. Lang. When are elections with

few candidates hard to manipulate? J. ACM., 54(3):1–33, 2007.

Cited on pages 3, 14, 146, and 148

[69] R. D. Cooter. The Strategic Constitution. Princeton University Press, 2002.

Cited on page 25

[70] D. Cornaz, L. Galand, and O. Spanjaard. Bounded single-peaked

width and proportional representation. In ECAI, pages 270–275, 2012.

Cited on pages 60, 61, and 62

[71] D. Cornaz, L. Galand, and O. Spanjaard. Kemeny elections with bounded

single-peaked or single-crossing width. In IJCAI, pages 76–82, 2013.

Cited on pages 24, 60, 62, 63, and 90

[72] A. J. Davenport and J. Kalagnanam. A computational study of the Kemeny rule

for preference aggregation. In AAAI, pages 697–702, 2004. Cited on page 5

[73] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh. An empiri-

cal study of Borda manipulation. In COMSOC, pages 91–102, 2010.

http://arxiv.org/abs/1007.5104. Cited on pages 4, 5, 148, 164, and 165

[74] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh. Complexity of and algo-

rithms for Borda manipulation. In AAAI, pages 657–662, 2011. Cited on page 5

[75] J. Davies, G. Katsirelos, N. Narodytska, T. Walsh, and L. Xia. Complexity of

and algorithms for the manipulation of Borda, Nanson’s and Baldwin’s voting

rules. Artif. Intell., 217:20–42, 2014. Cited on pages 4, 146, 148, and 153

[76] R. de Haan and S. Szeider. Compendium of parameterized problems at higher

levels of the polynomial hierarchy. ECCC., 21:143, 2014. Cited on page 18

[77] C. Dellarocas. Strategic manipulation of internet opinion forums: Implica-

tions for consumers and firms. Manage. Sci., 52(10):1577–1593, 10 2006.

Cited on page 89

[78] G. Demange. Single-peaked orders on a tree. Math. Soc. Sci., 3(3):389–396,

1983. Cited on page 24

[79] P. Dey, N. Misra, and Y. Narahari. Kernelization complexity of possible winner

and coalitional manipulation problems in voting. In AAMAS, pages 87–96, 2015.

Cited on page 5

[80] C. L. Dodgson. A Method for Taking Votes on More than Two Issues. Clarendon

Press, 1876. Cited on page 108

Bibliography 173

[81] J. P. Doignon and J. C. Falmagne. A polynomial time algorithm for unidimen-

sional unfolding representations. J. Algorithms., 16(2):218–233, March 1994.

Cited on page 58

[82] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-parameter

tractability results for feedback set problems in tournaments. J. Discrete Algo-

rithms., 8(1):76–86, 2010. Cited on page 135

[83] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and

IDs. In ICALP (1), pages 378–389, 2009. Cited on pages 19 and 143

[84] B. Dorn and I. Schlotter. Multivariate complexity analysis of swap bribery.

Algorithmica., 64(1):126–151, 2012. Cited on pages 5, 97, and 164

[85] F. Dorn, F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Beyond

bidimensionality: Parameterized subexponential algorithms on directed graphs.

Inf. Comput., 233:60–70, 2013. Cited on page 146

[86] R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In

Feasible Mathematics II, pages 219–244, 1995. Cited on page 139

[87] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

Cited on pages 17 and 41

[88] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013. Cited on pages 17 and 19

[89] R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A

framework for systematically confronting computational intractability. In Con-

temporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to

the Future, pages 49–99. Springer, 1999. Cited on page 17

[90] S. Dreyfus. Richard Bellman on the birth of dynamic programming. Oper. Res.,

50(1), 2002. Cited on page 20

[91] J. Duggan. Uncovered sets. Soc. Choice. Welfare., 41(3):489–535, 2013.

Cited on page 130

[92] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods

for the web. In WWW, pages 613–622, 2001. Cited on pages 24 and 127

[93] P. J. Egan. Do something politics and double-peaked policy preferences. J.

Polit., 76(2):333–349, 2014. Cited on pages 24 and 25

[94] E. Elkind, P. Faliszewski, M. Lackner, and S. Obraztsova. The complexity of

recognizing incomplete single-crossing preferences. In AAAI, pages 865–871,

2015. Cited on page 89

[95] E. Elkind, P. Faliszewski, and P. Skowron. A characterization of the single-peaked

single-crossing domain. In AAAI, pages 654–660, 2014. Cited on page 91

174 Bibliography

[96] E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. Properties of multiwinner

voting rules. In AAMAS, pages 53–60, 2014. Cited on pages 5 and 6

[97] E. Elkind, P. Faliszewski, and A. Slinko. Distance rationalization of voting rules.

Soc. Choice. Welfare., 45(2):345–377, 2015. Cited on pages 96 and 127

[98] E. Elkind, P. Faliszewski, and A. M. Slinko. Swap bribery. In SAGT, pages

299–310, 2009. Cited on pages 3, 6, 97, and 148

[99] E. Elkind, P. Faliszewski, and A. M. Slinko. Cloning in elections: Find-

ing the possible winners. J. Artif. Intell. Res. (JAIR), 42:529–573, 2011.

Cited on pages 5 and 148

[100] G. Erdélyi, E. Hemaspaandra, and L. A. Hemaspaandra. More natural models of

electoral control by partition. In Arxiv, 2014. http://arxiv.org/pdf/1410.2652.pdf.

Cited on page 5

[101] G. Erdélyi, M. Lackner, and A. Pfandler. Computational aspects of nearly

single-peaked electorates. In AAAI, pages 283–289, 2013. Cited on page 24

[102] G. Erdélyi, M. Nowak, and J. Rothe. Sincere-strategy preference-based Approval

voting fully resists constructive control and broadly resists destructive control.

Math. Log. Q., 55(4):425–443, 2009. Cited on page 27

[103] B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and its com-

plexity. In ECAI, pages 366–370, 2008. Cited on pages 7, 24, and 58

[104] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing and

aggregating rankings with ties. In PODS, pages 47–58, 2004. Cited on page 98

[105] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In SODA, pages

28–36, 2003. Cited on page 98

[106] P. Faliszewski. Nonuniform bribery. In AAMAS (3), pages 1569–1572, 2008.

Cited on pages 6 and 97

[107] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. The

complexity of bribery in elections. In AAAI, pages 641–646, 2006.

Cited on pages 6, 13, 96, and 101

[108] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. How hard

is bribery in elections? J. Artif. Intell. Res. (JAIR), 35:485–532, 2009.

Cited on pages 5, 6, and 162

[109] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. Using complexity

to protect elections. Commun. ACM., 53(11):74–82, 2010. Cited on page 5

[110] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. Multimode con-

trol attacks on elections. J. Artif. Intell. Res. (JAIR), 40:305–351, 2011.

Cited on pages 5, 6, 42, 50, 60, 61, 78, 101, 108, and 118

Bibliography 175

[111] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. The complexity of

manipulative attacks in nearly single-peaked electorates. Artif. Intell., 207:69–99,

2014. Cited on pages 5, 6, 7, 24, 27, 28, 40, and 91

[112] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.

Llull and Copeland voting computationally resist bribery and con-

structive control. J. Artif. Intell. Res. (JAIR), 35:275–341, 2009.

Cited on pages 5, 6, 10, 19, 42, 46, 54, 60, 61, 67, 75, 88, 97, 101, 108, 110, and 113

[113] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. The

shield that never was: Societies with single-peaked preferences are more

open to manipulation and control. Inf. Comput., 209(2):89–107, 2011.

Cited on pages 6, 7, 24, 27, 28, 30, 33, 36, 86, and 91

[114] P. Faliszewski and A. D. Procaccia. AI’s war on manipulation: Are we winning?

AI. MAG., 31(4):53–64, 2010. Cited on page 164

[115] S. L. Feld, B. Grofman, R. Hartly, M. Kilgour, and N. Miller. The uncovered set

in spatial voting games. Theor. Decis., 23(2):129–155, 1987. Cited on page 131

[116] M. R. Fellows. Parameterized complexity: The main ideas and connections

to practical computing. Electr. Notes Theor. Comput. Sci., 61:1–19, 2002.

Cited on page 146

[117] M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the parame-

terized complexity of multiple-interval graph problems. Theor. Comput. Sci.,

410(1):53–61, 2009. Cited on pages 44, 46, 48, 51, 54, 141, and 142

[118] M. R. Fellows, B. M. P. Jansen, D. Lokshtanov, F. A. Rosamond, and S. Saurabh.

Determining the winner of a Dodgson election is hard. In FSTTCS, pages 459–468,

2010. Cited on pages 5 and 6

[119] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh.

Graph layout problems parameterized by vertex cover. In ISSAC, pages 294–305,

2008. Cited on page 19

[120] Q. Feng, Q. Zhou, W. Li, and J. Wang. Kernelization in parameterized com-

putation: A survey. Tsinghua Science and Technology, 19(4):338–345, 2014.

Cited on page 18

[121] H. Fernau, F. V. Fomin, D. Lokshtanov, M. Mnich, G. Philip, and S. Saurabh.

Social choice meets graph drawing: How to get subexponential time algorithms

for ranking and drawing problems. Tsinghua Science and Technology, 19(4):374–

386, 8 2014. Cited on page 5

176 Bibliography

[122] J. Fiala, P. A. Golovach, and J. Kratochv́ıl. Parameterized complexity of coloring

problems: Treewidth versus vertex cover. Theor. Comput. Sci., 412(23):2513–

2523, 2011. Cited on page 19

[123] A. Filos-Ratsikas, M. Li, J. Zhang, and Q. Zhang. Facility location with double-

peaked preferences. In AAAI, pages 893–899, 2015. Cited on page 25

[124] P. C. Fishburn. Condorcet social choice functions. SIAM J. Appl Math., 33(3):469–

489, 1977. Cited on pages 5 and 131

[125] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical

Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006. Cited on pages 17 and 18

[126] A. Frank and É. Tardos. An application of simultaneous diophantine ap-

proximaiton in combinatorial optimazation. Combinatorica., 7(1):49–65, 1987.

Cited on pages 19, 159, and 163

[127] R. Freeman, M. Brill, and V. Conitzer. On the axiomatic characterization of

runoff voting rules. In AAAI, pages 675–681, 2014. Cited on page 5

[128] T. Gagie and S. Puglisi. Searching and indexing genomic databases via ker-

nelization. Frontiers in Bioengineering and Biotechnology, 3(12):1–4, 2015.

Cited on page 18

[129] S. Gailmard, J. W. Patty, and E. M. Penn. Arrow’s theorem on single-peaked

domains. In E. Aragonès, C. Beviá, H. Llavador, and N. Schofield, editors,

The Political Economy of Democoracy, pages 235–342. Fundación BBVA, 2009.

Cited on pages 7 and 24

[130] M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is NP-

complete. SIAM J. Appl Math., 32(4):826–834, 1977. Cited on pages 36 and 39

[131] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

Cited on pages 15, 19, 63, and 124

[132] S. Gaspers and M. Mnich. Feedback vertex sets in tournaments. J. Graph Theor.,

72(1):72–89, 2013. Cited on page 130

[133] J. Gathen and M. Sieveking. A bound on solutions of linear integer equahties

and inequahties. Pro Amer. Math. Soc., 72(1):155–158, 1978. Cited on page 19

[134] J. Geanakoplos. Three brief proofs of Arrow’s impossibility theorem. Econ.

Theory., 26(1):211–215, 2005. Cited on page 3

[135] A. Gibbard. Manipulation of voting schemes: A general result. Econometrica.,

41(4):587–601, 1973. Cited on page 3

Bibliography 177

[136] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver. Discrete.

Appl. Math., 155(12):1549 – 1561, 2007. Cited on page 164

[137] J. Goldsmith, J. Lang, N. Mattei, and P. Perny. Voting with rank dependent

scoring rules. In AAAI, pages 698–704, 2014. Cited on page 165

[138] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance.

Theor. Comput. Sci., 38:293–306, 1985. Cited on pages 99, 108, and 121

[139] M. T. Goodrich, R. Tamassia, and M. H. Goldwasser. Data Structures and

Algorithms in Java. Wiley, 6 edition, 2014. Cited on page 119

[140] J. M. Grandmont. Intermediate preferences and the Majority rule. Econometrica.,

46(2):317–30, March 1978. Cited on page 91

[141] B. Gulko and S. Leung. Maximin safety: When failing to lose is preferable to

trying to win. Arxiv, 2015. Cited on page 5

[142] J. Guo and R. Niedermeier. Invitation to data reduction and problem kerneliza-

tion. SIGACT News, 38(1):31–45, 2007. Cited on page 18

[143] F. Gurski and M. Roos. Binary linear programming solutions and non-

approximability for control problems in voting systems. Discrete. Appl. Math.,

162:391–398, 2014. Cited on pages 5 and 165

[144] R. W. Hamming. Error detecting and error correcting codes. AT & T. Tech. J.,

26(2):147–160, 1950. Cited on page 98

[145] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson

elections: Lewis Carroll’s 1876 voting system is complete for parallel access to

NP. J. ACM., 44(6):806–825, 1997. Cited on pages 6 and 108

[146] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Anyone but him: The

complexity of precluding an alternative. Artif. Intell., 171(5-6):255–285, 2007.

Cited on pages 3, 6, 11, and 27

[147] E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny

elections. Theor. Comput. Sci., 349(3):382–391, 2005. Cited on page 6

[148] L. A. Hemaspaandra, R. Lavaee, and C. Menton. Schulze and ranked-pairs voting

are fixed-parameter tractable to bribe, manipulate, and control. In AAMAS,

pages 1345–1346, 2013. Cited on page 88

[149] D. Hermelin, S. Kratsch, K. Soltys, M. Wahlström, and X. Wu. A completeness

theory for polynomial (Turing) kernelization. In IPEC, pages 202–215, 2013.

Cited on page 19

[150] D. Hermelin and X. Wu. Weak compositions and their applications to polynomial

lower bounds for kernelization. In SODA, pages 104–113, 2012. Cited on page 19

178 Bibliography

[151] L. Hoots and R. C. Powers. Anonymous and positively responsive aggregation

rules. Math. Soc. Sci., 77:9–14, 2015. Cited on page 5

[152] O. Hudry. A note on “Banks winners in tournaments are difficult to recognize” by

G. J. Woeginger. Soc. Choice. Welfare., 23(1):113–114, 2004. Cited on page 135

[153] O. Hudry. A survey on the complexity of tournament solutions. Math. Soc. Sci.,

57(3):292–303, 2009. Cited on pages 130, 131, 134, and 135

[154] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. Voting schemes for which it

can be difficult to tell who won the election. Soc. Choice. Welfare., 6(2):157–165,

1989. Cited on pages 3, 6, and 164

[155] J. J. Bartholdi III and J. B. Orlin. Single transferable vote resists strategic

voting. Soc. Choice. Welfare., 8(4):341–354, 1991. Cited on pages 3 and 6

[156] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. The computational diffi-

culty of manipulating an election. Soc. Choice. Welfare., 6(3):227–241, 1989.

Cited on pages 3, 6, and 148

[157] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. How hard is it

to control an election? Math. Comput. Model., 16(8-9):27–40, 1992.

Cited on pages 3, 6, 11, 12, 27, 28, 42, 43, 50, 58, 60, 61, and 64

[158] J. J. Bartholdi III and M. A. Trick. Stable matching with preferences derived from

a psychological model. Oper. Res. Lett., 5(4):165–169, 1986. Cited on page 58

[159] R. Jacob, T. Lieber, and M. Mnich. Treewidth computation and kerneliza-

tion in the parallel external memory model. In TCS, pages 78–89, 2014.

Cited on page 18

[160] M. Kalech, S. Kraus, G. A. Kaminka, and C. V. Goldman. Practical voting

rules with partial information. Auton. Agent. Multi-AG., 22:151–182, 2011.

Cited on page 24

[161] R. Kannan. Minkowski’s convex body theory and integer programming. Math.

Oper. Res., 12:415–440, 1987. Cited on pages 19 and 159

[162] R. M. Karp. Reducibility among combinatorial problems. In Complexity of

Computer Computations, pages 85–103, 1972. Cited on page 19

[163] M. Karpinski and W. Schudy. Faster algorithms for feedback arc set tournament,

Kemeny rank aggregation and betweenness tournament. In ISAAC (1), pages

3–14, 2010. Cited on page 5

[164] J. M. Keil. On the complexity of scheduling tasks with discrete starting times.

Oper. Res. Lett., 12(5):293–295, 1992. Cited on page 33

[165] M. G. Kendall. A new measure of rank correlation. Biometrika., 30(1/2):pp.

81–93, 1938. Cited on pages 98 and 127

Bibliography 179

[166] D. M. Kilgour and E. Marshall. Approval balloting for fixed-size committees. In

D. S. Felsenthal and M. Machover, editors, Electoral Systems, Studies in Choice

and Welfare, pages 305–326. Springer Berlin Heidelberg, 2012. Cited on page 5

[167] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sikdar.

Linear kernels and single-exponential algorithms via protrusion decompositions.

In ICALP, pages 613–624, 2013. Cited on page 146

[168] E. J. Kim, C. Paul, and G. Philip. A single-exponential FPT algorithm

for the k4-minor cover problem. J. Comput. Syst. Sci., 81(1):186–207, 2015.

Cited on page 146

[169] C. L. Kingsford, B. Chazelle, and M. Singh. Solving and analyzing side-chain

positioning problems using linear and integer programming. Bioinformatics.,

21(7):1028–1039, 2005. Cited on page 19

[170] K. Konczak and J. Lang. Voting procedures with incomplete preferences. In

M-PREF, 2005. Cited on pages 6 and 130

[171] S. Konieczny, J. Lang, and P. Marquis. DA2 merging operators. Artif. Intell.,

157(1-2):49–79, 2004. Cited on page 96

[172] S. Kratsch. Recent developments in kernelization: A survey. Bulletin of the

EATCS, 113:58–97, 2014. Cited on page 19

[173] G. Laffond, J. Lain, and J. F. Laslier. Composition-consistent tournament

solutions and social choice functions. Soc. Choice. Welfare., 13(1):75–93, 1996.

Cited on page 62

[174] H. Landau. On dominance relations and the structure of animal societies III.

the condition for score structure. B. Math. Biophys., 15(2):143–148, 1953.

Cited on page 131

[175] J. Lang, G. Pigozzi, M. Slavkovik, and L. van der Torre. Judgment aggregation

rules based on minimization. In TARK, pages 238–246, 2011. Cited on page 96

[176] R. LeGrand, E. Markakis, and A. Mehta. Some results on approximating the

minimax solution in Approval voting. In AAMAS, pages 1193–1195, 2007.

Cited on pages 5 and 165

[177] H. W. Lenstra. Integer programming with a fixed number of variables. Math.

Oper. Res, 8(4):538–548, 1983. Cited on pages 19, 65, and 159

[178] D. Lepelley. Condorcet efficiency of positional voting rules with single-peaked

preferences. Economic Design, 1(1):289–299, 1994. Cited on page 7

[179] J. Levin and B. Nalebuff. An introduction to vote-counting schemes. J. Econ.

Perspect., 9(1):3–26, 1995. Cited on page 10

180 Bibliography

[180] A. P. Lin. The complexity of manipulating k-Approval elections. In

ICAART (2), pages 212–218, 2011. http://arxiv.org/abs/1005.4159.

Cited on pages 27, 28, 102, and 103

[181] A. P. Lin. Solving Hard Problems in Election Systems. PhD thesis, Rochester

Institute of Technology, 2012. Cited on pages 5 and 165

[182] C. Lindner and J. Rothe. Fixed-parameter tractability and parameterized com-

plexity, applied to problems from computational social choice. In Mathematical

Programming Glossary, 2008. Cited on page 165

[183] H. Liu, H. Feng, D. Zhu, and J. Luan. Parameterized computational complexity of

control problems in voting systems. Theor. Comput. Sci., 410(27-29):2746–2753,

2009. Cited on pages 29 and 42

[184] H. Liu and D. Zhu. Parameterized complexity of control problems in Maximin elec-

tion. Inf. Process. Lett., 110(10):383–388, 2010. Cited on pages 5, 42, and 78

[185] H. Liu and D. Zhu. Parameterized complexity of control by voter selection in

Maximin, Copeland, Borda, Bucklin, and Approval election systems. Theor.

Comput. Sci., 498:115–123, 2013. Cited on page 5

[186] D. Lokshtanov. New Methods in Parameterized Algorithms and Complexity. PhD

thesis, University of Bergen, 2009. Cited on page 19

[187] A. Lumini and L. Nanni. Detector of image orientation based on Borda count.

Pattern. Recongn. Lett., 27(3):180–186, 2006. Cited on page 24

[188] K. Magiera and P. Faliszewski. How hard is control in single-crossing elections?

In ECAI, pages 579–584, 2014. Cited on pages 6 and 90

[189] A. Mao, A. D. Procaccia, and Y. Chen. Better human computation through

principled voting. In AAAI, 2013. Cited on page 164

[190] N. Mattei, M. Silvia Pini, F. Rossi, and K. B. Venable. Bribery in voting with cp-

nets. Ann. Math. Artif. Intell., 68(1-3):135–160, 2013. Cited on pages 6 and 97

[191] N. Mattei and T. Walsh. Preflib: A library for preferences http:

//www.preflib.org. In ADT, pages 259–270, 2013. Cited on page 164

[192] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox.

Springer, 2008. Cited on page 119

[193] P. Merz and B. Freisleben. Fitness landscape analysis and memetic algorithms

for the quadratic assignment problem. IEEE. T. Evolut. Comput., 4(4):337–352,

2000. Cited on page 98

[194] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm

for most lattice problems based on voronoi cell computations. SIAM J. Comput.,

42(3):1364–1391, 2013. Cited on page 146

Bibliography 181

[195] M. K. Miller and D. N. Osherson. Methods for distance-based judgment aggre-

gation. Soc. Choice. Welfare., pages 575–601, 2009. Cited on page 96

[196] N. R. Miller. A new solution set for tournaments and majority voting: Further

graph-theoretical approaches to the theory of voting. AM. J. Polit. Sci., 24(1):68–

96, 1980. Cited on page 131

[197] N. R. Miller, B. Grofman, and S. L. Feld. The structure of the Banks set. Public.

Choice., 66:243–251, 1990. Cited on page 130

[198] J. A. Mirrlees. An exploration in the theory of optimum income taxation. Rev.

Econ. Stud., 38(114):175–208, 1971. Cited on page 89

[199] N. Misra, A. Nabeel, and H. Singh. On the parameterized complexity of Minimax

Approval voting. In AAMAS, pages 97–105, 2015. Cited on pages 5 and 27

[200] M. Mnich, Y. R. Shrestha, and Y. Yang. When does Schwartz Conjecture hold?

In IJCAI, pages 603–609, 2015. Cited on page 130

[201] H. Moulin. On strategy-proofness and single peakedness. Public. Choice.,

35(4):437–455, 1980. Cited on page 86

[202] E. Muller and M. Satterthwaite. The equivalence of strong positive association

and strategy-proofness. J. Econ. Theory., 14:412–418, 1977. Cited on page 3

[203] R. Niedermeier. Invitation to Fixed-parameter Algorithms. Oxford University

Press Inc, 2006. Cited on pages 17, 18, 19, and 137

[204] S. Nitzan and A. Rubinstein. A further characterization of Borda ranking method.

Public. Choice., 36(1):183–158, 1981. Cited on page 5

[205] S. Obraztsova and E. Elkind. Optimal manipulation of voting rules. In AAMAS,

pages 619–626, 2012. Cited on page 97

[206] Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline search using dynamic

programming. IEEE T. Pattern. Anal., 7(2):139–154, 1985. Cited on page 20

[207] T. Perek, P. Faliszewski, M. Silvia Pini, and F. Rossi. The complexity of losing

voters. In AAMAS, pages 407–414, 2013. Cited on page 5

[208] M. S. Pini, F. Rossi, and K. B. Venable. Bribery in voting with soft constraints.

In AAAI, 2013. Cited on page 97

[209] J. Pitt, L. Kamara, M. J. Sergot, and A. Artikis. Voting in multi-agent systems.

Comput. J., 49(2):156–170, 2006. Cited on page 3

[210] S. Polyakovskiy, R. Berghammer, and F. Neumann. Solving hard control prob-

lems in voting systems via integer programming. CoRR, abs/1408.5987, 2014.

Cited on page 19

182 Bibliography

[211] G. Popescu. Adaptive voting algorithms for group and social recommender

systems. In HCI, pages 378–382, 2013. Cited on page 3

[212] G. Popescu. Designing a voting mechanism in the GroupFun music recommender

system. In HCI, pages 383–386, 2013. Cited on page 3

[213] G. Popescu. Group recommender systems as a voting problem. In HCI (26),

pages 412–421, 2013. Cited on page 3

[214] A. D. Procaccia and J. S. Rosenschein. Junta distributions and the average-case

complexity of manipulating elections. J. Artif. Intell. Res. (JAIR), 28:157–181,

2007. Cited on page 164

[215] V. Raman and S. Saurabh. Parameterized algorithms for feedback set problems

and their duals in tournaments. Theor. Comput. Sci., 351(3):446–458, 2006.

Cited on page 135

[216] V. Raman and S. Sikdar. Parameterized complexity of the induced sub-

graph problem in directed graphs. Inf. Process. Lett., 104(3):79–85, 2007.

Cited on page 135

[217] R. L. Rivest and E. Shen. An optimal single-winner preferential voting system

based on game theory. In COMSOC, pages 399–410, 2010. Cited on page 5

[218] K. W. S. Roberts. Voting over income tax schedules. J. Public. Econ., 8(3):329–

340, 1977. Cited on page 89

[219] J. Rothe and L. Schend. Control complexity in Bucklin, Fallback, and Plu-

rality voting: An experimental approach. In SEA, pages 356–368, 2012.

http://arxiv.org/pdf/1203.3967.pdf. Cited on page 164

[220] J. Rothe and L. Schend. Challenges to complexity shields that are supposed to

protect elections against manipulation and control: A survey. Ann. Math. Artif.

Intell., 68(1-3):161–193, 2013. Cited on page 165

[221] J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner

problem for Young elections. Theory. Comput. Syst., 36(4):375–386, 2003.

Cited on pages 6 and 67

[222] A. Rubinstein. Ranking the participants in a tournament. J. Soc. Ind. Appl.

Math, 38(1):108–111, 1980. Cited on page 5

[223] N. F. Russell. Complexity of control of Borda count elections. Master’s thesis,

Rochester Institute of Technology, 2007. Cited on page 148

[224] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for

spoken word recognition. IEEE Trans. Acoustics, Speech and Signal Processing.,

26(1):43–49, Feb 1978. Cited on page 20

Bibliography 183

[225] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and

correspondence theorems for voting procedures and social welfare functions. J.

Econ. Theory., 10(2):187–216, 1975. Cited on page 3

[226] T. Schiavinotto and T. Stützle. A review of metrics on permutations for search

landscape analysis. Computers & OR, 34(10):3143–3153, 2007. Cited on page 98

[227] M. Schulze. A new monotonic, clone-independent, reversal sym-

metric, and Condorcet-consistent single-winner election method. Soc.

Choice. Welfare., 36(2):267–303, 2011. http://mschulze.9mail.de/schulze1.pdf.

Cited on pages 5 and 88

[228] A. Scott and M. Fey. The minimal covering set in large tournaments. Soc.

Choice. Welfare., 38(1):1–9, 2012. Cited on page 130

[229] Y. Shoham and K. Leyton-Brown. Multiagent Systems - Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, 2009.

Cited on page 3

[230] S. S. Skiena. Dynamic programming. In The Algorithm Design Manual, pages

273–315. Springer London, 2008. Cited on page 20

[231] W. D. Smith. Descriptions of single-winner voting systems. http://m-

schulze.9mail.de/votedesc.pdf, 2006. Cited on pages 5 and 10

[232] Y. Sprumon. The division problem with single-peaked preferences: A charac-

terization of the uniform allocation rule. Econometrica, 59(2):509–519, 1991.

Cited on page 7

[233] A. D. Taylor and A. M. Pacelli. Mathematics and Politics. Springer New York,

2008. Cited on page 86

[234] P. A. Taylor. Election systems 101. http://home.earthlink.net/ pe-

ter.a.taylor/swuusi.pdf, 2004. Cited on page 10

[235] T. N. Tideman. Independence of clones as a criterion for voting rules. Soc.

Choice. Welfare., 4(3):185–206, 1987. Cited on page 62

[236] C. A. Tovey. Tutorial on computational complexity. Interfaces., 32(3):30–61,

2002. Cited on page 15

[237] T. Walsh. Uncertainty in preference elicitation and aggregation. In AAAI, pages

3–8, 2007. Cited on page 24

[238] T. Walsh. An empirical study of the manipulability of single transferable voting.

In ECAI, pages 257–262, 2010. Cited on page 164

[239] T. Walsh. Is computational complexity a barrier to manipulation? Ann. Math.

Artif. Intell., 62(1-2):7–26, 2011. Cited on page 164

184 Bibliography

[240] T. Walsh. Where are the hard manipulation problems? J. Artif. Intell. Res.

(JAIR), 42:1–29, 2011. Cited on pages 5 and 165

[241] J. Wang, M. Yang, J. Guo, Q. Feng, and J. Chen. Parameterized complexity of

control and bribery for d-Approval elections. In COCOA, pages 260–271, 2013.

Cited on pages 5 and 165

[242] G. J. Woeginger. Banks winners in tournaments are difficult to recognize. Soc.

Choice. Welfare., 20(3):523–528, 2003. Cited on pages 131 and 135

[243] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In G. Rinaldi

M. Jünger, G. Reinelt, editor, Combinatorial Optimization–Eureka, You Shrink!,

volume 2570 of Lecture Notes in Computer Science, pages 185–207. Springer

Berlin Heidelberg, 2003. Cited on page 146

[244] T. H. Wu, A. Davoodi, and J. T. Linderoth. GRIP: Global routing via integer

programming. IEEE. T. Comput. AID. D., 30(1):72–84, 2011. Cited on page 19

[245] L. Xia. Designing social choice mechanisms using machine learning. In AAMAS,

pages 471–474, 2013. Cited on page 3

[246] L. Xia. Fixed-parameter tractability of integer generalized scoring rules. In

AAMAS, pages 1599–1600, 2014. Cited on pages 88 and 164

[247] L. Xia and V. Conitzer. Finite local consistency characterizes generalized scoring

rules. In Craig Boutilier, editor, IJCAI, pages 336–341, 2009. Cited on page 5

[248] L. Xia, V. Conitzer, and A. D. Procaccia. A scheduling approach to coalitional

manipulation. In EC, pages 275–284, 2010. Cited on page 5

[249] Y. Yang. Election attacks with few candidates. In ECAI, pages 1131–1132, 2014.

Cited on pages 88 and 164

[250] Y. Yang and J. Guo. Exact algorithms for weighted and unweighted

Borda manipulation problems. In AAMAS, pages 1327–1328, 2013.

http://arxiv.org/abs/1304.3145. Cited on pages 21 and 22

[251] Y. Yang and J. Guo. Possible winner problems on partial tournaments: A

parameterized study. In ADT, pages 425–439, 2013. Cited on pages 21 and 22

[252] Y. Yang and J. Guo. The control complexity of r-Approval: from the

single-peaked case to the general case. In AAMAS, pages 621–628, 2014.

Cited on pages 5, 20, 21, and 37

[253] Y. Yang and J. Guo. Controlling elections with bounded single-peaked width.

In AAMAS, pages 629–636, 2014. Cited on pages 5, 20, and 21

[254] Y. Yang and J. Guo. How hard is control in multi-peaked elections: A parame-

terized study. In AAMAS, pages 1729–1730, 2015. Cited on pages 20 and 21

Bibliography 185

[255] H. P. Young and A. Levenglick. A consistent extension of Condorcet’s election

principle. SIAM. J. Appl. Math., 35(2):285–300, 9 1978. Cited on page 5

[256] K. Zhang, M. Deng, T. Chen, M. S. Waterman, and F. Sun. A dynamic

programming algorithm for haplotype block partitioning. Proceedings of the

National Academy of Sciences, 99(11):7335–7339, 2002. Cited on page 20

[257] M. Zuckerman, O. Lev, and J. S. Rosenschein. An algorithm for the coali-

tional manipulation problem under Maximin. In AAMAS, pages 845–852, 2011.

Cited on page 5

[258] M. Zuckerman, A. D. Procaccia, and J. S. Rosenschein. Algorithms for

the coalitional manipulation problem. Artif. Intell., 173(2):392–412, 2009.

Cited on pages 5 and 148

	List of Tables
	List of Figures
	Introduction
	A Small Map
	Problem Statement
	Voting Systems
	Strategic Behavior

	Toolkit
	Classical Complexity
	Parameterized Complexity
	Lenstra's ILP Theorem
	Dynamic Programming

	Structure of this Thesis

	Control in Multi-Peaked Elections
	Introduction
	Motivation
	Preliminaries

	r-Approval Control
	2-Peaked Elections
	3-Peaked Elections

	Condorcet, Copeland and Maximin Control
	3-Peaked Elections
	4-Peaked Elections

	Conclusion

	Control in Elections with Bounded Single-Peaked Width
	Introduction
	Condorcet and Weak Condorcet Control
	Copeland Control
	Maximin Control
	A General Framework
	Conclusion
	Single-Crossing Width
	Euclidean Elections

	Bribery with Restricted Distances
	Introduction
	Motivation
	Preliminaries

	Kendall-Tau Distance Restricted Bribery
	Hamming Distance Restricted Bribery
	Conclusion

	Possible Winners in Partial Tournaments
	Introduction
	Motivation
	Preliminaries
	Related Works

	Uncovered Set in Partial Tournaments
	Banks Set in Partial Tournaments
	Conclusion

	Combinatorial Algorithms for Borda Manipulation
	Introduction
	Preliminaries
	Related Works

	Algorithm for Weighted Borda Manipulation
	Algorithm for Unweighted Borda Manipulation
	Conclusion

	Conclusion and Outlook
	Summary of Results
	Further Research Directions
	Practical FPT Algorithms
	Experimental Studies
	Approximation Algorithms
	Surveys to Read

	Bibliography

