
Resolution-based methods for linear
temporal reasoning

Martin Suda

g
o

al

1 234 56 78 1
5

2
2

91
0

1
1

1
2

1
3

1
4

1
6

2
1

2
3

2
9

3
0

3
1

1
7

1
8

1
9

2
0

2
4

3
2

3
3

3
9

4
0

4
1

2
5

2
6

2
7

2
8

3
4

4
2

4
3

4
9

5
0

5
1

3
5

3
6

3
7

3
8

4
4

5
2

5
3

5
5

5
6

5
8

6
1

6
4

6
5

7
1

7
2

7
3

9
1

9
3

1
8

0

1
8

9

1
9

8

1
9

9

2
3

5

2
4

4

2
5

2

2
5

3

4
8

9

5
1

4

5
3

9

5
4

0

6
0

1

6
2

6

6
5

0

6
5

1

4
5

4
6

4
7

4
8

5
4

5
7

5
9

6
2

6
6

6
7

7
0

7
4

7
5

7
6

7
7

8
0

8
3

8
4

8
9

9
2

9
4

9
5

9
6

1
0

2

1
0

5

1
0

8

1
0

9

1
1

6

1
1

8

1
1

9

1
3

3

1
3

6

1
3

9

1
4

0

1
4

8

1
5

0

1
5

2

1
5

3

1
5

8

1
6

1

1
7

2

1
7

4

1
7

6

1
7

7

1
8

1

1
9

0

2
0

0

2
0

1

2
1

7

2
1

9

2
2

0

2
2

3

2
2

6

2
2

9

2
3

0

2
3

6

2
4

5

2
5

4

2
5

5

2
7

1

2
7

8

2
8

5

2
8

6

2
9

9

3
0

2

3
0

5

3
0

6

3
1

9

3
2

6

3
3

3

3
3

4

3
7

7

3
7

9

3
8

1

3
8

2

3
9

3

3
9

5

3
9

7

3
9

8

4
9

0

5
1

5

5
4

1

5
4

2

5
8

9

5
9

2

5
9

5

5
9

6

6
0

2

6
2

7

6
5

2

6
5

3

6
0

6
3

6
8

6
9

5
4

5
7

7
8

8
1

8
5

8
6

9
0

9
7

9
9

1
0

0

1
0

3

1
0

6

1
1

0

1
1

1

1
1

4

1
1

7

1
2

0

9
5

1
2

1

1
2

5

1
2

7

1
2

9

1
3

0

1
3

4

1
3

7

1
4

1

1
4

2

1
4

5

1
4

6

1
4

9

1
5

1

1
5

4

1
5

5

1
5

6

1
5

9

1
6

2

1
6

3

1
6

8

1
6

9

1
7

0

1
7

1

1
7

3

1
7

5

1
7

8

1
7

9

1
8

2

1
9

1

2
0

2

2
0

3

2
1

6

2
1

8

2
2

1

2
2

2

2
2

4

2
2

7

2
3

1

2
3

2

2
3

7

2
4

6

2
5

6

2
5

7

2
7

2

2
7

9

2
8

7

2
8

8

3
0

0

3
0

3

3
0

7

3
0

8

3
1

1

3
1

3

3
1

5

3
1

6

3
2

0

3
2

7

3
3

5

3
3

6

3
4

9

3
5

1

3
5

3

3
5

4

3
5

7

3
5

9

3
6

1

3
6

2

3
6

9

3
7

1

3
7

3

3
7

4

3
7

8

3
8

0

3
8

3

3
8

4

3
8

9

3
9

0

3
9

1

3
9

2

3
9

4

3
9

6

3
9

9

4
0

0

4
0

1

4
0

9

4
1

7

4
1

8

4
3

3

4
3

4

4
3

5

4
3

6

4
3

7

4
4

5

4
5

3

4
5

4

4
9

1

5
1

6

5
4

3

5
4

4

5
9

0

5
9

3

5
9

7

5
9

8

6
0

3

6
2

8

6
5

4

6
5

5

7
9

8
2

8
7

8
8

9
8

1
0

1

1
0

4

1
0

7

1
1

2

1
1

3

1
1

5

1
2

2

1
2

3

1
2

4

1
2

6

1
2

8

1
3

1

1
3

2

1
3

5

1
3

8

1
4

3

1
4

4

1
4

7

1
2

5

1
2

7

1
2

9

1
3

0

1
5

7

1
6

0

1
6

4

1
6

5

1
6

6

1
6

7

1
4

9

1
5

1

1
5

4

1
5

5

1
5

6

1
5

9

1
6

2

1
6

3

1
8

3

1
9

2

2
0

4

2
0

5

1
7

3

1
7

5

1
7

8

1
7

9

2
2

5

2
2

8

2
3

3

2
3

4

2
3

8

2
4

7

2
5

8

2
5

9

2
7

3

2
8

0

2
8

9

2
9

0

3
0

1

3
0

4

3
0

9

3
1

0

3
1

2

3
1

4

3
1

7

3
1

8

3
2

1

3
2

8

3
3

7

3
3

8

3
5

0

3
5

2

3
5

5

3
5

6

3
5

8

3
6

0

3
6

3

3
6

4

3
6

5

3
6

6

3
6

7

3
6

8

3
7

0

3
7

2

3
7

5

3
7

6

2
2

4

2
2

7

2
3

1

2
3

2

3
8

5

3
8

6

3
8

7

3
8

8

3
7

8

3
8

0

3
8

3

3
8

4

3
0

0

3
0

3

3
0

7

3
0

8

4
0

2

4
1

0

4
1

9

4
2

0

3
9

4

3
9

6

3
9

9

4
0

0

4
0

1

4
0

9

4
1

7

4
1

8

4
3

8

4
4

6

4
5

5

4
5

6

4
3

7

4
4

5

4
5

3

4
5

4

4
9

2

5
1

7

5
4

5

5
4

6

5
9

1

5
9

4

5
9

9

6
0

0

6
0

4

6
2

9

6
5

6

6
5

7

7
9

8
2

8
7

8
8

9
8

1
0

1

1
0

4

1
0

7

1
1

2

1
1

3

1
1

5

1
2

2

1
2

3

1
2

4

1
2

6

1
2

8

1
3

1

1
3

2

1
3

5

1
3

8

1
4

3

1
4

4

1
4

7

1
2

5

1
2

7

1
2

9

1
3

0

1
5

7

1
6

0

1
6

4

1
6

5

1
6

6

1
6

7

1
8

4

1
9

3

2
0

6

2
0

7

1
5

6

1
5

9

1
6

2

1
6

3

1
8

3

1
9

2

2
0

4

2
0

5

2
3

9

2
4

8

2
6

0

2
6

1

2
7

4

2
8

1

2
9

1

2
9

2

2
3

8

2
4

7

2
5

8

2
5

9

2
7

3

2
8

0

2
8

9

2
9

0

3
2

2

3
2

9

3
3

9

3
4

0

3
1

2

3
1

4

3
1

7

3
1

8

3
2

1

3
2

8

3
3

7

3
3

8

3
5

0

3
5

2

3
5

5

3
5

6

3
5

8

3
6

0

3
6

3

3
6

4

3
6

5

3
6

6

3
6

7

3
6

8

3
7

0

3
7

2

3
7

5

3
7

6

2
2

4

2
2

7

2
3

1

2
3

2

3
8

5

3
8

6

3
8

7

3
8

8

4
0

3

4
1

1

4
2

1

4
2

2

3
0

0

3
0

3

3
0

7

3
0

8

4
0

2

4
1

0

4
1

9

4
2

0

4
3

9

4
4

7

4
5

7

4
5

8

4
6

9

4
7

0

4
7

1

4
7

2

4
3

8

4
4

6

4
5

5

4
5

6

4
7

3

4
7

4

4
7

5

4
7

6

4
7

7

4
7

9

4
8

1

4
8

2

4
9

3

5
1

8

5
4

7

5
4

8

4
9

2

5
1

7

5
4

5

5
4

6

6
0

5

6
3

0

6
5

8

6
5

9

7
9

8
2

8
7

8
8

9
8

1
0

1

1
0

4

1
0

7

1
1

2

1
1

3

1
1

5

1
2

2

1
2

3

1
2

4

1
2

6

1
2

8

1
3

1

1
3

2

1
3

5

1
3

8

1
4

3

1
4

4

1
4

7

1
8

5

1
9

4

2
0

8

2
0

9

1
5

7

1
6

0

1
6

4

1
6

5

1
6

6

1
6

7

1
8

4

1
9

3

2
0

6

2
0

7

2
4

0

2
4

9

2
6

2

2
6

3

2
7

5

2
8

2

2
9

3

2
9

4

2
3

9

2
4

8

2
6

0

2
6

1

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

2
7

3

2
8

0

2
8

9

2
9

0

3
2

2

3
2

9

3
3

9

3
4

0

3
1

2

3
1

4

3
1

7

3
1

8

3
2

1

3
2

8

3
3

7

3
3

8

3
5

0

3
5

2

3
5

5

3
5

6

3
5

8

3
6

0

3
6

3

3
6

4

3
6

5

3
6

6

3
6

7

3
6

8

3
7

0

3
7

2

3
7

5

3
7

6

4
0

4

4
1

2

4
2

3

4
2

4

3
8

5

3
8

6

3
8

7

3
8

8

4
0

3

4
1

1

4
2

1

4
2

2

4
4

0

4
4

8

4
5

9

4
6

0

4
0

2

4
1

0

4
1

9

4
2

0

4
3

9

4
4

7

4
5

7

4
5

8

4
6

9

4
7

0

4
7

1

4
7

2

4
3

8

4
4

6

4
5

5

4
5

6

4
7

8

4
8

0

4
8

3

4
8

4

4
7

3

4
7

4

4
7

5

4
7

6

4
7

7

4
7

9

4
8

1

4
8

2

4
8

5

4
8

6

4
8

7

4
8

8

4
9

4

5
1

9

5
4

9

5
5

0

4
9

3

5
1

8

5
4

7

5
4

8

6
0

6

6
3

1

6
6

0

6
6

1

7
9

8
2

8
7

8
8

9
8

1
0

1

1
0

4

1
0

7

1
1

2

1
1

3

1
1

5

1
2

2

1
2

3

1
2

4

1
8

6

1
9

5

2
1

0

2
1

1

1
3

5

1
3

8

1
4

3

1
4

4

1
4

7

1
8

5

1
9

4

2
0

8

2
0

9

2
4

1

2
5

0

2
6

4

2
6

5

1
6

6

1
6

7

2
7

6

2
8

3

2
9

5

2
9

6

2
4

0

2
4

9

2
6

2

2
6

3

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

2
7

3

2
8

0

2
8

9

2
9

0

3
2

2

3
2

9

3
3

9

3
4

0

3
1

2

3
1

4

3
1

7

3
1

8

3
2

1

3
2

8

3
3

7

3
3

8

3
5

0

3
5

2

3
5

5

3
5

6

3
5

8

3
6

0

3
6

3

3
6

4

4
0

5

4
1

3

4
2

5

4
2

6

3
7

0

3
7

2

3
7

5

3
7

6

4
0

4

4
1

2

4
2

3

4
2

4

4
4

1

4
4

9

4
6

1

4
6

2

4
0

3

4
1

1

4
2

1

4
2

2

4
4

0

4
4

8

4
5

9

4
6

0

4
0

2

4
1

0

4
1

9

4
2

0

4
3

9

4
4

7

4
5

7

4
5

8

4
6

9

4
7

0

4
7

1

4
7

2

4
3

8

4
4

6

4
5

5

4
5

6

4
7

8

4
8

0

4
8

3

4
8

4

4
7

3

4
7

4

4
7

5

4
7

6

4
7

7

4
7

9

4
8

1

4
8

2

4
8

5

4
8

6

4
8

7

4
8

8

4
9

5

5
2

0

5
5

1

5
5

2

4
9

4

5
1

9

5
4

9

5
5

0

6
0

7

6
3

2

6
6

2

6
6

3

7
9

8
2

8
7

8
8

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

1
1

5

1
2

2

1
2

3

1
2

4

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

1
6

6

1
6

7

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

2
7

3

2
8

0

2
8

9

2
9

0

3
2

2

3
2

9

3
3

9

3
4

0

3
1

2

3
1

4

3
1

7

3
1

8

3
2

1

3
2

8

3
3

7

3
3

8

4
0

6

4
1

4

4
2

7

4
2

8

3
5

8

3
6

0

3
6

3

3
6

4

4
0

5

4
1

3

4
2

5

4
2

6

4
4

2

4
5

0

4
6

3

4
6

4

4
0

4

4
1

2

4
2

3

4
2

4

4
4

1

4
4

9

4
6

1

4
6

2

4
0

3

4
1

1

4
2

1

4
2

2

4
4

0

4
4

8

4
5

9

4
6

0

4
0

2

4
1

0

4
1

9

4
2

0

4
3

9

4
4

7

4
5

7

4
5

8

4
6

9

4
7

0

4
7

1

4
7

2

4
3

8

4
4

6

4
5

5

4
5

6

4
7

8

4
8

0

4
8

3

4
8

4

4
7

3

4
7

4

4
7

5

4
7

6

4
7

7

4
7

9

4
8

1

4
8

2

4
8

5

4
8

6

4
8

7

4
8

8

4
9

6

5
2

1

5
5

3

5
5

4

4
9

5

5
2

0

5
5

1

5
5

2

6
0

8

6
3

3

6
6

4

6
6

5

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

2
7

3

2
8

0

2
8

9

2
9

0

3
2

2

3
2

9

3
3

9

3
4

0

4
0

7

4
1

5

4
2

9

4
3

0

3
2

1

3
2

8

3
3

7

3
3

8

4
0

6

4
1

4

4
2

7

4
2

8

4
4

3

4
5

1

4
6

5

4
6

6

4
0

5

4
1

3

4
2

5

4
2

6

4
4

2

4
5

0

4
6

3

4
6

4

4
0

4

4
1

2

4
2

3

4
2

4

4
4

1

4
4

9

4
6

1

4
6

2

4
0

3

4
1

1

4
2

1

4
2

2

4
4

0

4
4

8

4
5

9

4
6

0

4
0

2

4
1

0

4
1

9

4
2

0

4
3

9

4
4

7

4
5

7

4
5

8

4
6

9

4
7

0

4
7

1

4
7

2

4
3

8

4
4

6

4
5

5

4
5

6

4
7

8

4
8

0

4
8

3

4
8

4

4
7

3

4
7

4

4
7

5

4
7

6

4
9

7

5
2

2

5
5

5

5
5

6

4
8

5

4
8

6

4
8

7

4
8

8

4
9

6

5
2

1

5
5

3

5
5

4

6
0

9

6
3

4

6
6

6

6
6

7

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

4
0

8

4
1

6

4
3

1

4
3

2

3
2

2

3
2

9

3
3

9

3
4

0

4
0

7

4
1

5

4
2

9

4
3

0

4
4

4

4
5

2

4
6

7

4
6

8

4
0

6

4
1

4

4
2

7

4
2

8

4
4

3

4
5

1

4
6

5

4
6

6

4
0

5

4
1

3

4
2

5

4
2

6

4
4

2

4
5

0

4
6

3

4
6

4

4
0

4

4
1

2

4
2

3

4
2

4

4
4

1

4
4

9

4
6

1

4
6

2

4
0

3

4
1

1

4
2

1

4
2

2

4
4

0

4
4

8

4
5

9

4
6

0

4
0

2

4
1

0

4
1

9

4
2

0

4
3

9

4
4

7

4
5

7

4
5

8

4
6

9

4
7

0

4
7

1

4
7

2

4
3

8

4
4

6

4
5

5

4
5

6

4
9

8

5
2

3

5
5

7

5
5

8

4
7

3

4
7

4

4
7

5

4
7

6

4
9

7

5
2

2

5
5

5

5
5

6

6
1

0

6
3

5

6
6

8

6
6

9

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

4
0

8

4
1

6

4
3

1

4
3

2

3
2

2

3
2

9

3
3

9

3
4

0

4
0

7

4
1

5

4
2

9

4
3

0

4
4

4

4
5

2

4
6

7

4
6

8

4
0

6

4
1

4

4
2

7

4
2

8

4
4

3

4
5

1

4
6

5

4
6

6

4
0

5

4
1

3

4
2

5

4
2

6

4
4

2

4
5

0

4
6

3

4
6

4

4
0

4

4
1

2

4
2

3

4
2

4

4
4

1

4
4

9

4
6

1

4
6

2

4
0

3

4
1

1

4
2

1

4
2

2

4
4

0

4
4

8

4
5

9

4
6

0

4
0

2

4
1

0

4
1

9

4
2

0

4
3

9

4
4

7

4
5

7

4
5

8

4
9

9

5
2

4

5
5

9

5
6

0

4
3

8

4
4

6

4
5

5

4
5

6

4
9

8

5
2

3

5
5

7

5
5

8

6
1

1

6
3

6

6
7

0

6
7

1

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

4
0

8

4
1

6

4
3

1

4
3

2

3
2

2

3
2

9

3
3

9

3
4

0

4
0

7

4
1

5

4
2

9

4
3

0

4
4

4

4
5

2

4
6

7

4
6

8

4
0

6

4
1

4

4
2

7

4
2

8

4
4

3

4
5

1

4
6

5

4
6

6

4
0

5

4
1

3

4
2

5

4
2

6

4
4

2

4
5

0

4
6

3

4
6

4

4
0

4

4
1

2

4
2

3

4
2

4

4
4

1

4
4

9

4
6

1

4
6

2

4
0

3

4
1

1

4
2

1

4
2

2

4
4

0

4
4

8

4
5

9

4
6

0

5
0

0

5
2

5

5
6

1

5
6

2

4
3

9

4
4

7

4
5

7

4
5

8

4
9

9

5
2

4

5
5

9

5
6

0

6
1

2

6
3

7

6
7

2

6
7

3

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

4
0

8

4
1

6

4
3

1

4
3

2

3
2

2

3
2

9

3
3

9

3
4

0

4
0

7

4
1

5

4
2

9

4
3

0

4
4

4

4
5

2

4
6

7

4
6

8

4
0

6

4
1

4

4
2

7

4
2

8

4
4

3

4
5

1

4
6

5

4
6

6

4
0

5

4
1

3

4
2

5

4
2

6

4
4

2

4
5

0

4
6

3

4
6

4

4
0

4

4
1

2

4
2

3

4
2

4

4
4

1

4
4

9

4
6

1

4
6

2

5
0

1

5
2

6

5
6

3

5
6

4

4
4

0

4
4

8

4
5

9

4
6

0

5
0

0

5
2

5

5
6

1

5
6

2

6
1

3

6
3

8

6
7

4

6
7

5

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

4
0

8

4
1

6

4
3

1

4
3

2

3
2

2

3
2

9

3
3

9

3
4

0

4
0

7

4
1

5

4
2

9

4
3

0

4
4

4

4
5

2

4
6

7

4
6

8

4
0

6

4
1

4

4
2

7

4
2

8

4
4

3

4
5

1

4
6

5

4
6

6

4
0

5

4
1

3

4
2

5

4
2

6

4
4

2

4
5

0

4
6

3

4
6

4

5
0

2

5
2

7

5
6

5

5
6

6

4
4

1

4
4

9

4
6

1

4
6

2

5
0

1

5
2

6

5
6

3

5
6

4

6
1

4

6
3

9

6
7

6

6
7

7

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

4
0

8

4
1

6

4
3

1

4
3

2

3
2

2

3
2

9

3
3

9

3
4

0

4
0

7

4
1

5

4
2

9

4
3

0

4
4

4

4
5

2

4
6

7

4
6

8

4
0

6

4
1

4

4
2

7

4
2

8

4
4

3

4
5

1

4
6

5

4
6

6

5
0

3

5
2

8

5
6

7

5
6

8

4
4

2

4
5

0

4
6

3

4
6

4

5
0

2

5
2

7

5
6

5

5
6

6

6
1

5

6
4

0

6
7

8

6
7

9

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

4
0

8

4
1

6

4
3

1

4
3

2

3
2

2

3
2

9

3
3

9

3
4

0

4
0

7

4
1

5

4
2

9

4
3

0

4
4

4

4
5

2

4
6

7

4
6

8

5
0

4

5
2

9

5
6

9

5
7

0

4
4

3

4
5

1

4
6

5

4
6

6

5
0

3

5
2

8

5
6

7

5
6

8

6
1

6

6
4

1

6
8

0

6
8

1

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

4
0

8

4
1

6

4
3

1

4
3

2

3
2

2

3
2

9

3
3

9

3
4

0

5
0

5

5
3

0

5
7

1

5
7

2

4
4

4

4
5

2

4
6

7

4
6

8

5
0

4

5
2

9

5
6

9

5
7

0

6
1

7

6
4

2

6
8

2

6
8

3

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

2
7

4

2
8

1

2
9

1

2
9

2

3
2

3

3
3

0

3
4

1

3
4

2

5
0

6

5
3

1

5
7

3

5
7

4

3
2

2

3
2

9

3
3

9

3
4

0

5
0

5

5
3

0

5
7

1

5
7

2

6
1

8

6
4

3

6
8

4

6
8

5

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

2
7

5

2
8

2

2
9

3

2
9

4

3
2

4

3
3

1

3
4

3

3
4

4

5
0

7

5
3

2

5
7

5

5
7

6

3
2

3

3
3

0

3
4

1

3
4

2

5
0

6

5
3

1

5
7

3

5
7

4

6
1

9

6
4

4

6
8

6

6
8

7

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

2
7

6

2
8

3

2
9

5

2
9

6

3
2

5

3
3

2

3
4

5

3
4

6

5
0

8

5
3

3

5
7

7

5
7

8

3
2

4

3
3

1

3
4

3

3
4

4

5
0

7

5
3

2

5
7

5

5
7

6

6
2

0

6
4

5

6
8

8

6
8

9

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

2
7

7

2
8

4

2
9

7

2
9

8

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

5
0

9

5
3

4

5
7

9

5
8

0

3
2

5

3
3

2

3
4

5

3
4

6

5
0

8

5
3

3

5
7

7

5
7

8

6
2

1

6
4

6

6
9

0

6
9

1

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

1
8

6

1
9

5

2
1

0

2
1

1

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

5
1

0

5
3

5

5
8

1

5
8

2

2
4

1

2
5

0

2
6

4

2
6

5

3
4

7

3
4

8

5
0

9

5
3

4

5
7

9

5
8

0

6
2

2

6
4

7

6
9

2

6
9

3

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

1
8

7

1
9

6

2
1

2

2
1

3

2
4

3

2
6

8

2
6

9

2
7

0

5
1

1

5
3

6

5
8

3

5
8

4

2
4

2

2
5

1

2
6

6

2
6

7

1
4

7

5
1

0

5
3

5

5
8

1

5
8

2

6
2

3

6
4

8

6
9

4

6
9

5

3
4

7

3
4

8

1
8

8

1
9

7

2
1

4

2
1

5

9
8

1
0

1

5
1

2

5
3

7

5
8

5

5
8

6

2
4

3

2
6

8

2
6

9

2
7

0

5
1

1

5
3

6

5
8

3

5
8

4

6
2

4

6
4

9

6
9

6

6
9

7

1
4

7

5
1

3

5
3

8

5
8

7

5
8

8

9
8

1
0

1

5
1

2

5
3

7

5
8

5

5
8

6

6
2

5

6
9

8

5
1

3

5
3

8

5
8

7

5
8

8

9
8

Thesis for obtaining the title of Doctor of Engineering
of the Faculties of Natural Sciences and Technology

of Saarland University
to be awarded jointly with

the Faculty of Mathematics and Physics
of Charles University in Prague

Saarbrücken
December, 2014

ii

Date of the colloquium: October 16, 2015
Dean of the faculty: Prof. Dr. Markus Bläser
Examination board:

– Chair: Prof. Dr. Gert Smolka
– Reviewers: Prof. Dr. Roman Barták

Prof. Dr. Armin Biere
Prof. Dr. Jörg Hoffmann
Prof. Dr. Christoph Weidenbach

– Scientific assistant: Dr. Uwe Waldmann

iii

Abstract

The aim of this thesis is to explore the potential of resolution-based methods for linear
temporal reasoning. On the abstract level, this means to develop new algorithms for au-
tomated reasoning about properties of systems which evolve in time. More concretely, we
will: 1) show how to adapt the superposition framework to proving theorems in propo-
sitional Linear Temporal Logic (LTL), 2) use a connection between superposition and
the CDCL calculus of modern SAT solvers to come up with an efficient LTL prover, 3)
specialize the previous to reachability properties and discover a close connection to Prop-
erty Directed Reachability (PDR), an algorithm recently developed for model checking of
hardware circuits, 4) further improve PDR by providing a new technique for enhancing
clause propagation phase of the algorithm, and 5) adapt PDR to automated planning
by replacing the SAT solver inside with a planning-specific procedure.

We implemented the proposed ideas and provide experimental results which demon-
strate their practical potential on representative benchmark sets. Our system LS4 is
shown to be the strongest LTL prover currently publicly available. The mentioned en-
hancement of PDR substantially improves the performance of our implementation of the
algorithm for hardware model checking in the multi-property setting. It is expected that
other implementations would benefit from it in an analogous way. Finally, our planner
PDRplan has been compared with the state-of-the-art planners on the benchmarks from
the International Planning Competition with very promising results.

v

Zusammenfassung

Das Ziel dieser Doktorarbeit ist es, das Potential resolutionsbasierter Methoden zur lin-
earer, temporaler Beweisführung zu untersuchen. Von einem abstrakten Gesichtspunkt
aus gesehen bedeutet dies, neue Algorithmen über die Eigenschaften von sich zeitlich
entwicklenden Systemen im Bereich des automatischen Theorembeweisens zu entwick-
eln. Konkreter gesagt werden wir 1) aufzeigen, wie sich das Rahmenprogramm der
Superposition so anpassen lässt, damit es Theoreme in propositionaler Linear Temporal
Logic (LTL) beweist, 2) eine Verbindung zwischen der Superposition und dem CDCL-
Kalkül moderner SAT-Solver nutzen, um mit einem effizienten LTL-Prover aufzuwarten,
3) das Vorangegangene auf Erreichbarkeitseigenschaften spezialisieren, und eine starke
Verbindung zu der Property Directed Reachability (PDR), einem jüngst eintwickeltem
Model-Checking-Algorithmus für Hardware-Schaltkreise, aufzudecken, 4) PDR durch die
Einführung neuer Technik verbessern, die die Clause-Propagation-Phase des Algorith-
mus beschleunigt, und 5) PDR für das automatisierte Planen anpassen, indem wir den
inneren SAT-Solver durch eine planungsspezifische Prozedur ersetzen.

Wir haben die vorgeschlagenen Ideen implementiert, und es werden experimentelle
Ergebnisse angegeben, die das praktische Potential dieser Ideen auf repräsentativen
Benchmarks aufzeigt. Es hat sich herausgestellt, dass unser System LS4 der stärkste
öffentlich zugängliche LTL-Prover ist. Die erwähnte Erweiterung von PDR verbessern
die Leistungsfähigkeit unserer Implementierung des Hardware-Model-Checking-Algorith-
mus substantiell im Bereich der Multi-Property-Einstellungen. Wir erwarten, dass an-
dere Implementierungen in ähnlicher Weise profitieren würden. Schließlich haben wir viel
versprechende Ergebnisse durch den Vergleich unser Planer PDRplan mit anderen state-
of-the-art Planer auf den Benchmarks der International Planning Competition erzielt.

vii

Shrnut́ı

Ćılem této práce je prozkoumat potenciál metod založených na rezoluci pro uvažováńı
s lineárńım časem. To na abstraktńı rovině znamená navrhnout nové algoritmy pro
automatické uvažovańı o vlastnostech systémů, které se vyv́ıj́ı v čase. Konkrétně v této
práci ukážeme, 1) jak adaptovat superpozičńı metodu pro dokazováńı vět ve výrokové
lineárńı temporálńı logice (LTL), 2) jak využ́ıt př́ıbuznost mezi superpozićı a kalkulem
CDCL z moderńıch SAT-solver̊u pro navržeńı nového LTL dokazovače, 3) jak tento
specializovat pro problém dosažitelnosti a objevit tak bĺızkou souvislost s algoritmem
Property Directed Reachability (PDR), v nedávné době vyvinutém pro model checking
hardwarových obvod̊u, 4) jak dále vylepšit PDR novou technikou pro urychleńı fáze
propagace klauzuĺı, 5) jak PDR adaptovat pro problém automatického plánováńı t́ım,
že se SAT-solver v algoritmu nahrad́ı procedurou specifickou pro plánovaćı vstupy.

Navržené myšlenky byly implementovány a práce obsahuje výsledky experiment̊u,
které na reprezentativńıch množinách benchmark̊u prokazuj́ı jejich praktický potenciál.
Náš systém LS4 se ukázal býti jedńım z nejsilněǰśıch veřejně dostupných LTL doka-
zovač̊u. Zmı́něné vylepšeńı algoritmu PDR podstatně zvyšuje výkon naš́ı implementace
při verifikaci hardware v multi-property módu. Dá se předpokládat, že ostatńı imple-
mentace mohou z nové techniky benefitovat podobným zp̊usobem. V neposledńı řadě
náš plánovač PDRplan uspěšně obstál při porovnáńı s nejmoderněǰśımi plánovači na
benchmarćıch z mezinárodńı plánovaćı soutěže IPC.

ix

Acknowledgements

I was given the opportunity to work on this thesis under a joint supervision provided by
the Saarland University, Germany and the Charles University in Prague, Czech Republic.
I am grateful to these institutions for enabling and supporting such an arrangement from
which I greatly benefited.

My greatest thanks go to my doctoral advisers Christoph Weidenbach, Petr Štěpánek
and Roman Barták for accepting me as their student. It was their constant support,
patient guidance and invaluable advice which made this work possible.

I would also like to thank my colleagues from the Automation of Logic group for
creating a very friendly and inspiring work environment during my stays in Saarbrücken.
Special thanks go to Arnaud Fietzke, Willem Hagemann, Matthias Horbach, Marek
Košta, Evgeny Kruglov, Tianxiang Lu, Viorica Sofronie-Stokkermans, Thomas Sturm,
Ching Hoo Tang, Uwe Waldmann, Daniel Wand and Patrick Wischnewski.

Moreover, I want to thank the anonymous reviewers of the publications underlying this
thesis for their valuable input, Ullrich Hustadt and Viktor Schuppan for answering all
my questions about LTL theorem proving, Armin Biere and Aaron Bradley for sharing
their ideas on SAT-based unbounded model checking, Jörg Hoffmann and Jussi Rintanen
for their quick replies to my planning related questions, and Tomáš Balyo for providing
me with the SASE encoding tool.

I also want to thank Armin Biere and Jörg Hoffmann for kindly agreeing to review
this thesis.

This work has been partly supported by Microsoft Research through its PhD Schol-
arship Programme. I am grateful for their financial support.

Finally, I would like to thank my family and friends for encouraging me in my endeavor
and for providing pleasant distractions from logic when they became necessary.

xi

Contents

1 Introduction 1
1.1 Theorem proving in linear temporal logic 1

1.2 Verification of hardware circuits . 2

1.3 Automated planning . 3

1.4 Resolution-based reasoning . 5

1.5 The temporal challenge . 6

1.6 Main contributions and thesis overview . 7

2 Labeled superposition for LTL 11
2.1 Introduction . 11

2.2 Preliminaries . 13

2.2.1 Resolution-based theorem proving in propositional logic 13

2.2.2 Linear temporal logic . 16

2.3 Labeled superposition . 22

2.3.1 Labeled clauses . 22

2.3.2 Calculus LPSup . 26

2.3.3 Saturating labeled clause sets . 30

2.3.4 Completeness and model building 38

2.4 Semantic and syntactic aspects . 43

2.4.1 TST as a symbolic description of a Büchi automaton 43

2.4.2 Semantic graphs for labeled clause sets 45

2.4.3 On uniqueness of saturations . 51

2.5 Related work . 56

2.5.1 Approaches to LTL satisfiability checking: an overview 56

2.5.2 Comparison with Clausal Temporal Resolution 58

2.5.3 Experimental comparison . 61

2.6 Conclusion . 67

3 LTL proving with partial model guidance 69
3.1 Introduction . 69

3.2 SAT solving under assumptions . 73

3.2.1 Solving by parts . 74

3.2.2 Tracking dependencies with markers 75

3.3 The algorithm LS4 . 76

3.3.1 Global variables and invariants . 76

3.3.2 Pseudocode . 80

xiii

Contents

3.3.3 Correctness . 88

3.3.4 Termination . 90

3.4 Practical experience . 92

3.4.1 Implementation . 92

3.4.2 Experimental evaluation . 93

3.5 Discussion and related work . 99

3.5.1 Semantic graphs and the relation to LPSup 99

3.5.2 Two other solvers relying on SAT 100

3.5.3 Recent advances in hardware model checking 101

3.6 Conclusion . 104

4 Variable and clause elimination for LTL 105
4.1 Introduction . 105

4.2 Theory . 106

4.2.1 Variable and clause elimination in SAT 106

4.2.2 Adapting the mechanism of labeled clauses 107

4.2.3 Elimination in LTL . 112

4.3 Implementation and experiment . 116

4.3.1 Variable and clause elimination via Minisat 116

4.3.2 An experiment . 118

4.4 Discussion and related work . 122

4.5 Conclusion . 123

5 Reachability, model checking, and triggered clause pushing for PDR 125
5.1 Introduction . 125

5.2 Specializing LS4 to reachability . 127

5.2.1 Formalizing reachability . 127

5.2.2 The Reach algorithm . 128

5.2.3 Related work . 134

5.3 Towards Property Directed Reachability 138

5.3.1 Monotone layers . 138

5.3.2 Three enhancements . 141

5.3.3 Pseudocode and correctness . 144

5.3.4 PDR – related work . 148

5.4 Triggered clause pushing . 149

5.4.1 Witnesses for failed push attempts 150

5.4.2 Implementing triggered clause pushing via subsumption 150

5.5 Practical part . 152

5.5.1 Experimental setup . 153

5.5.2 Incremental evaluation . 154

5.5.3 Tabular view and the preferable search direction 164

5.5.4 Comparison with other publicly available implementations 166

5.6 Conclusion . 168

xiv

Contents

6 Property directed reachability in automated planning 171
6.1 Introduction . 171
6.2 The planning problem and encodings . 173

6.2.1 Propositional STRIPS planning . 173
6.2.2 Two simple encodings . 174

6.3 PDR without a SAT solver . 175
6.3.1 Planning-specific path extensions 175
6.3.2 Inductive reason minimization in procedure extend 181
6.3.3 Replacing the remaining SAT-solver calls 183
6.3.4 Reversing the search direction . 184
6.3.5 Further improvements . 187

6.4 Experiments . 189
6.4.1 The setup . 192
6.4.2 PDRplan v.s. standard PDR plus encodings 193
6.4.3 Tuning PDRplan . 196
6.4.4 Improving PDRplan . 198
6.4.5 Comparing to other planners . 200
6.4.6 Plan quality . 201
6.4.7 Anytime PDR and optimal planning 203
6.4.8 Detecting unsatisfiable problems 204
6.4.9 Summary . 206

6.5 Related work: Graphplan . 207
6.6 Discussion: A closer look at two domains 209
6.7 Conclusion . 212

7 Conclusion 213

Bibliography 217

Index 231

xv

List of Figures

1.1 A simple circuit and its interpretation . 3

1.2 A simple planning scenario and an example operator 4

2.1 Recursive definition of LTL semantics . 17

2.2 SNF transformation . 18

2.3 A TST and a (K,L)-model . 24

2.4 Inference rules of LPSup . 27

2.5 Reduction rules of LPSup . 30

2.6 Locality of LPSup with respect to layer indexes 32

2.7 Büchi automaton represented by a TST 45

2.8 Interactions between labels during LPSup inferences 46

2.9 Ordered Resolution, Temporal Shift, and the semantic graph 48

2.10 Semantics of empty labeled clauses . 50

2.11 Semantics of Leap . 51

2.12 Proof of the uniqueness of saturations . 53

3.1 Illustrating blocks in LS4 . 72

3.2 Alignment between the partial model, clauses and blocks in LS4 79

3.3 Comparison of LS4 and the other LTL solvers – all instances 96

3.4 Comparison of LS4 and the other LTL solvers – satisfiable instances . . . 96

3.5 Comparison of LS4 and the other LTL solvers – unsatisfiable instances . . 97

3.6 Comparing state space exploration of LS4 and k-Liveness 102

4.1 Clause overlap not reflected by LPSup . 108

4.2 The effect of elimination on the running time of LS4 and TRP++ 119

5.1 Alignment between the constructed path and the clause sets in Reach. . . 131

5.2 Layers, obligations and rescheduling . 146

5.3 Data structures in PDR with triggered clause pushing 151

5.4 Performance of Reach – all instances . 155

5.5 Performance of Reach – separately SAT and UNS 155

5.6 Making the layers in Reach monotone – all instances 157

5.7 Making the layers in Reach monotone – separately SAT and UNS 157

5.8 Adding obligation rescheduling – all instances 158

5.9 Adding obligation rescheduling – separately SAT and UNS 158

5.10 Adding clause propagation – all instances 159

5.11 Adding clause propagation – separately SAT and UNS 159

xvii

List of Figures

5.12 Adding explicit minimization – all instances 160
5.13 Adding explicit minimization – separately SAT and UNS 160
5.14 Extending to inductive minimization – all instances 161
5.15 Extending to inductive minimization – separately SAT and UNS 161
5.16 Enhancing with triggered clause pushing – all instances 163
5.17 Enhancing with triggered clause pushing – separately SAT and UNS . . . 163
5.18 Comparing with other implementations – all instances 167
5.19 Comparing with other implementations – separately SAT and UNS 167

6.1 Comparing PDRplan to minireachIC3 combined with encodings 195
6.2 Tuning PDRplan . 197
6.3 Improving PDRplan . 199
6.4 Comparing PDRplan1.1 to other planners 200
6.5 Comparing the planners with respect to plan quality 203

xviii

List of Tables

2.1 Clause alignment between CTR and LPSup 59
2.2 Example run of LPSup and CTR on the explicit cycles problem 64
2.3 Experimental comparison of LPSup and CTR 66

3.1 Comparing superposition-based model building with CDCL 70
3.2 Example execution of LS4 . 87
3.3 Comparison of LS4 and the other LTL solvers – by formula families . . . 98
3.4 Correspondence between marked (LS4) and labeled (LPSup) clauses . . . 99

4.1 Example labeled clauses translated to first-order logic 112
4.2 The effect of elimination on the performance of LS4 and TRP++ 120

5.1 Incremental evaluation summary – forward direction 165
5.2 Incremental evaluation summary – backward direction 165

6.1 Improving PDRplan . 199
6.2 Comparing PDRplan1.1 to other planners 202
6.3 Unsatisfiable benchmarks – domain-by-domain coverage results 205

xix

List of Algorithms

2.1 Layer-by-layer saturation with LPSup . 33
2.2 Deciding LTL satisfiability with LPSup 36
2.3 LTL model building . 41

3.1 LS4 – Auxiliary procedures I . 81
3.2 LS4 – Main loop . 83
3.3 LS4 – Auxiliary procedures II . 85

5.1 The Reach algorithm . 129
5.2 Bounded Model Checking of Symbolic Transition Systems 134
5.3 Interpolation without proofs . 138
5.4 Inductive reason minimization . 143
5.5 Property Directed Reachability (IC3) . 145

6.1 Procedure extend . 180
6.2 Stage three of extend – inductive version 182
6.3 Algorithm PDRplan . 185
6.4 Stage one of extend+ . 190
6.5 Algorithm PDRplan1.1 . 191

xxi

1 Introduction

In this thesis, we explore the potential of resolution-based reasoning methods for auto-
matically establishing properties of systems which evolve in time. Working within the
automation of logic tradition, our main aim is to develop and analyze new algorithms for
automated reasoning and to establish experimentally whether they can be successfully
applied in practice. We will find relevant applications for our algorithms successively in
three independent but closely related fields: theorem proving in linear temporal logic,
verification of hardware circuits, and automated planning. The corresponding reasoning
tasks share a common notion of time, which is modeled as a discrete linear sequence of
time moments. They also share a formalism for representing the individual moments,
namely propositional logic. It is this second property which will allow us to approach the
tasks using resolution, a well understood rule of logical inference suitable for automation.
It is the temporal aspect of the mentioned tasks, on the other hand, which will pose the
main challenge.

This chapter first provides an overview of the three mentioned fields: theorem proving
in linear temporal logic (Section 1.1), verification of hardware circuits (Section 1.2) and
automated planning (Section 1.3) and of the corresponding reasoning tasks. It then
reviews the resolution technology that we will use to approach these tasks (Section 1.4)
and elaborates on the inherent challenges connected with reasoning about time and on
our strategy to overcoming them (Section 1.5). The chapter ends with an outline of the
main contributions of this thesis (Section 1.6).

1.1 Theorem proving in linear temporal logic

Linear-time temporal logic (LTL) is a modal logic designed for specifying temporal re-
lations between events which occur over time. Originally conceived by Kamp (1968)
to formally capture temporal relationships expressible in natural language, LTL was
introduced into computer science by Pnueli (1977) as a specification language for reac-
tive systems, i.e. systems with non-terminating computations. Nowadays, LTL is well
established and widely used in practice.

LTL extends classical propositional logic by introducing temporal operators which
specify the way in which a formula ϕ should be interpreted with respect to the flow
of time. For example, the formula ♦ϕ stands for “ϕ holds eventually in the future”,
�ϕ means “ϕ holds always in the future”, and ©ϕ expresses that “ϕ holds at the next
moment of time”. Time is considered to be a linear discrete sequence of time moments
represented by propositional valuations, informally also called worlds. Such a potentially
infinite sequence forms an LTL interpretation. To prove an LTL formula ϕ means to
establish that it is valid, i.e., that all LTL interpretations actually make ϕ true. For

1

1 Introduction

example, the LTL formula �ψ → ©ψ is valid (a theorem), whereas the LTL formula
©ψ → �ψ is not, but is satisfiable, i.e., there is an LTL interpretation in which it is true.
Similarly to classical logic, one can prove an LTL formula ϕ by showing that it does not
have a counter-example, i.e. that its negation ¬ϕ is not satisfiable. By this duality, LTL
proving and satisfiability checking are essentially two sides of the same coin.

The traditional use of LTL lies in formal verification of reactive systems where the logic
serves as a specification language for expressing the system’s desired behavior. Such a
specification is subsequently checked against a model of the system during the process of
model checking (Clarke et al., 2001). More recently, the importance of LTL satisfiability
checking and thus also theorem proving is becoming recognized (Rozier and Vardi, 2010;
Schuppan and Darmawan, 2011). This is, for instance, essential for assuring quality
of formal specifications (Pill et al., 2006). In more detail, because specifications are
ultimately written by humans they may contain bugs. A priori excluding specifications
which are either valid or unsatisfiable represents a useful sanity check, because in the
former case the specification would be trivially satisfied by any system and in the latter
by none. Another motivation comes from the fact that satisfiability is a precondition
for realizability and thus a satisfiability checking procedure can be useful in debugging
specifications for system synthesis (Jobstmann and Bloem, 2006).

In this thesis, we approach the problem of LTL theorem proving by building on the
work of Fisher (1991) who showed how to transform any LTL formula into a certain
clausal normal form. The normal form reduces the formula complexity in terms of
temporal operator nestings and so removes one of the obstacles on the way to applying
resolution-based methods for automated reasoning in LTL.

1.2 Verification of hardware circuits

With the growing reliance on hardware technology in our lives, ranging from the use
of personal computers and mobile phones to areas such as traffic control and medicine,
where human life is directly affected, the importance of the correct behavior of the
used devices is becoming more than obvious. Formal verification provides methods to
rigorously establish that a designed circuit meets its specification, thus greatly helping
to increase our confidence in the correctness of the final device.

In this work, we focus on a particular phase in the design process in which the de-
signed circuit obtains a representation referred to as gate-level netlist, an abstraction not
unrelated to that of the Boolean circuit from theoretical computer science. Moreover,
we will be interested in verifying sequential circuits, which in addition to logic gates for
computing Boolean functions also employ state-holding elements called latches. Sequen-
tial circuits compute in cycles and in each cycle externally supplied inputs together with
the old values stored in the latches participate in producing the circuit’s output and the
new values to be stored.1 Simply put, sequential circuits have memory.

Let us have a look at Figure 1.1 for a small example. The figure depicts a simple

1More precisely, this describes the behavior of a sequential circuit of a synchronous type. There are
also asynchronous circuits in which the state can change at any time in response to changing inputs.

2

1.3 Automated planning

i

l l′

oAND

XOR

o← l ∧ i

l′ ← l ⊕ i

Figure 1.1: A simple circuit (left) and its imperative interpretation (right).

circuit storing a single bit of memory (latch l). If during a particular cycle the value of
the input bit i is zero, the stored value is preserved (l′ = l). If the value of the input is
one, the stored value is read (output o = l) and at the same time toggled l′ = ¬l. This
follows from the inner working of the two employed gates, the AND gate computing
logical conjunction (∧) and the XOR gate computing the exclusive or operation (⊕).
The semantics of a latch is to take the value l′ computed at the end of one cycle and
pass it back as l for the computation of the following cycle. This defines the discrete
flow of time in the context of the circuit’s computation.

One verifies a sequential circuit with respect to a property expressing its correct behav-
ior. In the most common setting called the verification of invariance properties, which
we will consider in this work, the property is a propositional formula ϕ over variables
corresponding to the latches. Formula ϕ specifies an invariant of the circuit which must
be satisfied in all the states reachable from a fixed initial state. Dually, the invariant is
violated if there is a computation of the circuit starting from the initial state, processing
in cycles a particular sequence of inputs and ending in a state where ϕ does not hold.
Such a state is usually called a bad state.

Sequential verification is a computationally hard problem. An intuition about this
can be drawn by realizing that the size of the circuit’s state space is exponential in the
number of its latches. Moreover, exponentially many states may need to be traversed on
the potential path from an initial state to a bad state. One way to combat this well known
state explosion problem is to avoid explicit enumeration of the states and instead use and
manipulate symbolic representation of whole sets of states. This approach was pioneered
by McMillan (1993) who used Binary Decision Diagrams as such a representation.

By adapting the resolution-based methods to the problem of verification of invariance
properties, we will naturally arrive in this work to a symbolic algorithm where the
representation of sets of states is based on clausal propositional logic.

1.3 Automated planning

Automated planning is a classical discipline of artificial intelligence (Russell and Norvig,
2010; Ghallab et al., 2004). Operating with a given formal, high-level description of a
world, its fundamental task is to look for a sequence of actions that lead to achieving a
specified goal. Depending on the modeled scenario, the goal-achieving sequence, or sim-
ply the plan, may describe anything from a route for a space rover collecting samples on
a remote planet, instructions for the preparation of a complex chemical from individual

3

1 Introduction

a b

c

a

b

c

Operator unstack(X,Y)

pre : clear (X), on(X,Y), arm-empty

add : holding(X), clear(Y)

del : clear (X), on(X,Y), arm-empty

Figure 1.2: The initial and goal configurations of simple planning scenario (left) and
an example operator (right).

simpler compounds, to a set of trajectories for conveyors loading crates in a warehouse.
This generality is enabled by the expressiveness of the language used for describing the
input task, which is traditionally based on first-order logic.

Figure 1.2 depicts an example situation from the emblematic blocks world planning
domain. The task in the domain is to plan the instructions of a robotic arm to rearrange
stacks of blocks. The domain description consists of a set of predicates for defining
the state of the world (here, on(X,Y), clear(X), etc.) and a set of operators defining
the possible transformations (here, unstack(X,Y), stack(X,Y), . . .). An instance of a
planning task in the domain is then specified by supplying a set of concrete objects (in
our example, we have blocks a, b and c) and their initial and goal configurations (for
instance, the facts on(c, a), clear(c), and arm-empty are part of the definition of the
initial configuration, whereas on(a, b) and on(b, c) would be part of the goal).

Operators are parametrized schemas for describing concrete actions. That means that
an action is obtained by substituting concrete objects for the operator’s parameters. In
our example, we for instance obtain the action unstack(c, a) by substituting c for X and
a for Y in operator unstack(X,Y). This action is applicable in the initial configuration,
because all its three preconditions (pre): clear(c), on(c, a) and arm-empty are satisfied
there. When this action is applied, we arrive to a new configuration by adding (add) facts
that are supposed to additionally hold (here holding(c) and clear(a)) and by deleting
(del) facts that now cease to hold (here the same three that were required as precon-
ditions). Such a transition from one configuration to the next via action application is
what defines a single time step within the planning semantics.

The blocks world domain is a very simple one and a specialized algorithm for efficiently
solving tasks in this domain can easily be devised. The key asset of automated planning,
however, lies in that it is domain independent. It aims to provide methods for uniformly
solving tasks in any domain that can be described by its language. That is what makes
automated planning versatile, but also challenging. Another interesting perspective
on domain independence is to view the planning formalism as a high-level declarative
programming language decoupling the problem from its solution (Hoffmann, 2011).

Thanks to the connection of the standard planning formalism to first-order logic, some
of the historically first approaches to automated planning formulated the task as first-
order theorem proving (Green, 1969; McCarthy and Hayes, 1969). The later discovery
of Kautz and Selman (1992), who proposed to restate the same problem in terms of
propositional satisfiability, founded a new powerful approach to planning, which is still

4

1.4 Resolution-based reasoning

actively studied today. This planning as satisfiability paradigm shows how to encode a
planning task into “propositional logic plus linear time” and will provide the necessary
bridge to planning for the resolution-based methods developed in this thesis.

1.4 Resolution-based reasoning

In this work, we will encounter resolution in two main forms. Explicitly, as an inference
rule in the context of saturation-based theorem proving, and implicitly, as a proof system
underlying the computation of most of the modern propositional satisfiability (SAT)
solvers. As will become eventually apparent, these two forms are, in fact, closely related.

Resolution and saturation

The history of resolution as a logical rule is at least as old as the history of the automated
theorem proving research field. One of the first appearances of resolution can be found
in the work of Davis and Putnam (1960), who used the principle within their theorem
proving procedure for eliminating ground atomic formulas. Subsequently, Robinson
(1965) showed how to use unification to lift resolution from ground formulas to formulas
with variables and established saturation-based theorem proving with resolution as the
main inference rule as one of the most successful approaches to automatically proving
theorems in first-order logic.

Resolution operates on a formula in clause normal form which consists of a conjunctive
set of clauses, each clause being a disjunction of literals. From two clauses C ∨ a and
D∨¬a containing complementary literals a and ¬a, respectively, the resolution inference
rule (or, more precisely, a propositional version thereof) allows one to derive a resolvent
C ∨D. Such an inference is typically summarized as

I C ∨ a D ∨ ¬a
C ∨D .

Resolution forms the basis of a refutationally complete calculus, which means that from
any unsatisfiable set of clauses one can derive an obvious contradiction in the form of
the empty clause by a finite number of resolution inferences.2

Saturation is a process of performing all available inferences in a systematic way until
the empty clause is derived, or a set closed under the inferences and not containing the
empty clause is obtained which signifies that the original formula was satisfiable. Because
saturation typically produces a large number of clauses, techniques for controlling and
restricting the process are of great practical importance.

One of the most important achievements in this area was the development of the
superposition calculus (Bachmair and Ganzinger, 1990, 1994) and an associated set of
saturation strategies which 1) allow a restriction of considered inferences to only those
satisfying certain ordering constraints on the participating literals, 2) introduce a pow-
erful notion of abstract redundancy to justify active removal of clauses that provably

2Combined with the explicit or implicit use of the factoring rule, which takes care of contracting multiple
occurrences of the same literal in a clause to just a single occurrence.

5

1 Introduction

cannot contribute to the derivation of the empty clause, 3) still guarantee overall com-
pleteness. While the ideas of superposition were originally conceived in the context of
first-order theorem proving with equality, they can be restated and successfully applied
already on the level of propositional logic (Bachmair and Ganzinger, 2001).

Resolution and SAT solving

By revising the already mentioned procedure of Davis and Putnam (1960) and replacing
the explicit application of resolution by a splitting rule for case analysis, Davis et al.
(1962) introduced an algorithm nowadays known as the DPLL procedure and started an
extremely successful field of practical propositional satisfiability (SAT) checking.

DPLL is best described as a backtrack search in the space of partial truth assignments,
supported by a unit propagation rule for early detection of conflicts. The power of
modern SAT solvers still originates from DPLL, but is extended further by the use
of efficient data structures and clever branching heuristics (Moskewicz et al., 2001),
non-chronological backtracking with conflict driven clause learning (Marques-Silva and
Sakallah, 1999) and many other techniques (see, e.g., Biere et al., 2009).

Although procedurally DPLL and its extensions are very different from saturation, the
corresponding procedures can still be seen to implicitly generate a resolution proof of
the input formula. Results of this form are not always easy to derive, but are important,
for instance, for establishing the proof theoretic strength of the individual extensions
(Beame et al., 2004; Pipatsrisawat and Darwiche, 2009).

In this thesis, we will exploit a particularly fine-grained connection (Weidenbach)
between CDCL, a version of DPLL enhanced with the conflict driven clause learning
technique, and the superposition framework (Bachmair and Ganzinger, 2001). The con-
nection, in particular, relates unit propagation and clause learning to the concept of a
productive clause from the completeness proof of superposition. We will be able to use
this connection to transfer a proof method first developed in the saturation setting and
to come up with an efficient SAT-based LTL prover.

1.5 The temporal challenge

Although resolution is a well established method for automated reasoning in general, the
temporal dimension of the problems studied in this work represents an extra challenge.
On an abstract level, this challenge manifests itself in at least two forms depending on
whether we primarily focus on satisfiability or unsatisfiability detection.3

From the perspective of satisfiability detection, we deal with the challenge of large
models. As mentioned before, a path from an initial state to a bad state of a circuit
can be exponential in the size of the task description and a similar observation holds for
planning tasks. Models in LTL are formally even infinite sequences and although they
can be represented finitely, one still faces a potential exponential blowup.

3All the algorithms presented in this work are decision procedures in the sense that they always termi-
nate and correctly report the satisfiability status of the input task. Nevertheless, separate aspects in
their design concerning either only satisfiable or only unsatisfiable inputs can be recognized.

6

1.6 Main contributions and thesis overview

From the perspective of unsatisfiability detection, we face a challenge of the discovery
of an inductive argument. Indeed, it seems that a form of induction is always needed
to make the step from partial results of the form ”a short path does not exists” to the
ultimate claim ”no path (of any length) exists”. The option to exhaust each of the
exponentially many path lengths separately does not seem to lead to a feasible solution.

Our general approach to overcoming the respective challenges rests: 1) on assigning
time indexes to signature symbols to deal with the challenge of large models and 2) on
a proof repetition detection and replaying technique to deal with the challenge of the
discovery of an inductive argument.

Concerning the former, we take inspiration in the way time is encoded in the planning
as satisfiability paradigm (Kautz and Selman, 1996) or, equivalently, in the related
bounded model checking approach (Biere et al., 1999) known from verification. This
solution needs to be complemented by an additional idea in the case of LTL, where we
formally need infinitely many indexes to describe the whole model. We devise a way to
use labels in the spirit of (Lev-Ami et al., 2007) to finitely represent clauses over the
obtained infinite signature to overcome this obstacle.

Concerning the latter, we will design our proof repetition detection and replaying
technique in a similar way to how the melting rule for loop detection proposed by Horbach
and Weidenbach (2009) is used for inductive reasoning in the context of superposition
for fixed domains (Horbach and Weidenbach, 2008). This is, however, only a high-level
analogy since the details of the respective studied problems are considerably different.

1.6 Main contributions and thesis overview

The content of this thesis is structured into five main chapters. In the first three chapters
(Chapters 2–4), we deal with LTL theorem proving, in the fourth (Chapter 5) we move
our attention to the verification of hardware circuits and in the final chapter (Chapter 6)
we consider automated planning. We develop and analyze several new algorithms, ex-
perimentally evaluate their performance, and put them into the context of related work
within the respective research fields.

Although the observation that the problems studied in this work are closely related
is not new, we bring it to a much more explicit level by devising a single representation
for the corresponding reasoning tasks. This allows us to approach the problems in a
uniform way using resolution and thus to demonstrate how close the problems can be
put together and the corresponding tasks aligned on the right level of abstraction. It
also paves the way for further exchange of ideas between the research fields. As such, it
can be considered one of the main contribution of this thesis.

On a more fine-grained level, the five main chapters of this thesis contain the following
contributions.

• In Chapter 2, we develop LPSup, a new calculus for proving theorems in LTL and
use it as a basis for a new decision procedure for the logic. The main idea is to treat
temporal formulas as infinite sets of purely propositional clauses over an extended
signature in which symbols are indexed by time moments and to represent these

7

1 Introduction

infinite sets by finite sets of labeled propositional clauses. This new representation
naturally leads to the replacement of a complex temporal resolution rule, suggested
by an existing resolution calculus for LTL, by a fine grained repetition check of
finitely saturated labeled clause sets followed by a simple inference.

Our completeness argument is based on the standard model building idea from
superposition. It inherently justifies ordering restrictions, redundancy elimination
and effective partial model building. The last property can be directly used to
effectively generate counter-examples to non-valid LTL conjectures out of saturated
labeled clause sets in a straightforward way.

We study the computations of LPSup further by interpreting the logic-based, sym-
bolic operations of the calculus on the semantic level of explicit valuations. This
perspective later allows us to reveal interesting connections to related approaches
and to identify the strengths and potential weaknesses of our method.

The material of this chapter is a revised and extended version of previously pub-
lished work (Suda and Weidenbach, 2012b,c).

• Building on the understanding acquired in the previous chapter, we approach in
Chapter 3 the problem of LTL theorem proving from a different angle. We aban-
don the saturation paradigm and design a new decision procedure based on the
observation that LPSup can build partial models on the fly. We show how to use
these models to drastically restrict the selection of inferences and thus to effectively
guide the proof search.

Relying on the previously mentioned connection between conflict driven clause
learning and superposition, we implement the model guidance idea within the
SAT solving framework. In more detail, we design our new decision procedure,
which we call LS4, by using an efficient SAT solver as a subroutine. A non-trivial
bookkeeping is needed, however, to maintain the correspondence with the labeled
clauses of LPSup, a prerequisite for the discovery of full LTL models as well as for
the detection of overall unsatisfiability.

We prove that LS4 is correct and terminating.4 On an extensive set of LTL bench-
marks, we experimentally demonstrate that our implementation of LS4 is one of
the strongest available LTL provers. In a detailed comparison with related work
we then attempt to discover the key aspects behind LS4’s success.

This chapter is based on an earlier publication (Suda and Weidenbach, 2012a), but
has been thoroughly revised and notably extended.

• In Chapter 4, we study preprocessing techniques for clause normal forms of LTL
formulas. For that purpose, we further extend the mechanism of labeled clauses
introduced in Chapter 2, which here allows us to faithfully lift simplification ideas

4Algorithms are presented throughout this thesis in the form of abstract programs. Therefore, they are
not formally verified, e.g., as it is done in a dynamic logic or Hoare triple framework for computer
programs. Instead, the key insights and invariants leading to the algorithms are formally shown on
a mathematical level.

8

1.6 Main contributions and thesis overview

from SAT to LTL. We demonstrate this by adapting variable and clause elimi-
nation, an effective preprocessing technique used by modern SAT solvers. Our
experiments confirm that even in the temporal setting substantial reductions in
formula size and subsequent decrease of solver runtime can be achieved.

The results of this chapter have been published in (Suda, 2013d,a).

• Chapter 5 returns to the model guidance idea. We first show how to specialize
LS4, the algorithm previously developed for proving theorems in LTL, to decide
(non-)reachability in symbolically represented transition systems. The obtained al-
gorithm Reach can be immediately used to verify invariance (and safety) properties
of hardware circuits.

We then proceed to place the new algorithm within the context of related work
from the verification area. The fact that Reach builds on the SAT-solver technology
and, more specifically, the form of the logical formula it indirectly evaluates make
the algorithm related to the bounded model checking method of Biere et al. (1999).
On the other hand, the ability of Reach to efficiently detect unsatisfiable instances
can be attributed to the distinctive way, in which the algorithm generates and
utilizes interpolants (McMillan, 2003).

Ultimately, we find Reach closely related to Property Directed Reachability (PDR),
also known as IC3, an algorithm recently introduced by Bradley (2011). We show
how to transform Reach into PDR by a small change in the core of the algorithm
and by the addition of three independent enhancements. This allows us to view
PDR from the new perspective of the model guidance idea.

We continue by proposing triggered clause pushing, an additional improvement
of PDR, namely of the clause propagation phase of the algorithm. The idea is
to collect models computed by the SAT solver during clause propagation and use
them as witnesses for why the respective clauses could not be pushed forward.
Witnesses are then used as a pre-filter on the subsequent push operations making
them cheaper on average.

The chapter is closed by a detailed experimental evaluation of Reach, of the several
extensions of the algorithm leading to PDR, and of PDR improved by triggered
clause pushing. We examine the relative utility of the individual improvements
and its dependance on other conditions, such as the chosen search direction and
the satisfiability status of the input problem.

• Given the exceptional success of PDR in hardware model checking, a natural ques-
tion arises whether the algorithm could be adapted and applied in the related field
of automated planning. In Chapter 6, we give a positive answer to this question.

First, we notice that the commonly used encodings from the planning as satis-
fiability paradigm (Kautz and Selman, 1992) can be easily modified to yield an
input for PDR. However, we also discover a non-obvious alternative to such a di-
rect combination. We show that the SAT solver inside PDR can be replaced by

9

1 Introduction

a planning-specific procedure implementing the same interface. This SAT-solver-
free variant of the algorithm is not only more efficient, but also offers additional
insights and opportunities for further improvements.

We confirm this claim empirically in the experimental part of Chapter 6. Then we
compare our implementation of the proposed version of PDR to the state-of-the-
art planners and find it highly competitive, solving the most problems on several
benchmark domains. Moreover, in a separate set of experiments, we also evaluate
PDR with respect to the quality of produced plans, the detection of unsatisfiable
planning problems, and in the context of optimal planning.

The material of the chapter has been published in (Suda, 2014a).

The thesis ends with a concluding Chapter 7, where we provide a unifying perspective on
the presented results, summarize the lessons learned and suggests directions for future
research.

Setting aside Chapter 4, which only depends on Chapter 2, each of the remaining pre-
sented chapters depends on its predecessor as we transfer ideas between two subsequent
approaches or transfer an approach from one field and adapt it to the next.

During our exposition, we introduce new terminology as needed throughout the whole
text. The reader may refer to the index provided at the end of this text to quickly look
up and recall definitions of all the introduced notions.

10

2 Labeled superposition for LTL

2.1 Introduction

Linear temporal logic is an extension of classical propositional logic for reasoning about
time. The increased expressiveness of its language is naturally reflected by the higher
complexity of the associated reasoning task. Indeed, while theorem proving is coNP-
complete for propositional formulas, it is PSPACE-complete for the formulas of LTL
(Sistla and Clarke, 1985). Nevertheless, a viable strategy for developing a reasoning
method for LTL is to start with a well understood approach from the classical setting,
such as resolution, and attempt to extend it to deal with the temporal aspects charac-
terizing LTL. Our aim in this chapter is to follow this strategy and to extend to LTL
the reasoning framework of Bachmair and Ganzinger (2001) while striving to preserve
its properties which are desirable for automation.

First attempts to use clausal resolution to attack the decision problem for LTL are due
to Cavalli and del Cerro (1984) and Venkatesh (1985). The most recent resolution-based
approach is the Clausal Temporal Resolution calculus (CTR) of Fisher et al. (2001). It
relies on a satisfiability preserving clausal translation of LTL formulas, which removes
all but a core set of temporal operators and reduces certain unnecessary nestings. Clas-
sical propositional resolution is adapted to cope with “local” temporal reasoning within
neighboring worlds, while an additional ”global” inference rule called temporal resolution
is introduced to deal with so called eventuality clauses. The temporal resolution rule
is quite complex. It requires a search for certain combinations of clauses that together
form a loop, i.e. imply that certain sets of worlds must be discarded from consideration,
because an eventuality clause would be unsatisfied forever within them. This search
requires specialized algorithms (Dixon, 1996) and the applicability of the rule must be
verified via an additional proof task. Finally, the conclusion of the rule needs to be
transformed back into the clause form.

In this chapter, we present a new resolution-based calculus for LTL called labeled
superposition (denoted LPSup). It builds on a refinement (Degtyarev et al., 2002) of
the above clause normal form and introduces a notion of a labeled clause in the spirit
of (Lev-Ami et al., 2007). In our case, a label encodes the temporal context of a clause
while the remaining standard part is kept purely propositional. Labels allow us to
conceptually reduce LTL satisfiability to a set of purely propositional problems and
thus to lift propositional reasoning to deal with LTL. Although the equality predicate
is not present in LTL, the principles of superposition are fundamental to our calculus.
Our completeness result is based on a model generation approach with an inherent
redundancy concept based on a total well-founded ordering on the propositional atoms.

LPSup is turned into a decision procedure by a straightforward proof strategy which

11

2 Labeled superposition for LTL

interleaves finite saturation of certain labeled clauses with a simple Leap inference. This
replaces the complex temporal resolution rule suggested by the previous work. Further
advantages of our calculus include:

• its inference rules are restricted by an ordering which is known to reduce the search
space considerably,

• the completeness proof justifies an abstract redundancy notion that enables strong
reductions,

• if a contradiction cannot be derived, a temporal model can be extracted from the
final saturated clause set in a straightforward way.

The rest of this chapter consists of the following parts with the following additional
contributions. In the preliminaries (Section 2.2), we formally set up the notation and
review the needed concepts. We add one final step to the adopted normal form trans-
formation of LTL formulas and introduce the notion of a Temporal Satisfiability Task
(TST) for the final product. A TST clearly separates the temporal aspect of the given
satisfiability problem from the propositional basis and represents a canonical input for
our decision procedure.

The next part deals with the development of LPSup. We introduce labeled clauses
and their semantics in Section 2.3.1, present the inference and reduction rules of LPSup
and prove their soundness in Section 2.3.2, show how to turn the calculus into a decision
procedure in Section 2.3.3, and, finally, formulate and prove the completeness theorem
for LPSup in Section 2.3.4. The last section also presents a model building procedure
for extracting counter-examples to unprovable formulas.

The third part (Section 2.4) is devoted to a deeper analysis of LPSup and the compu-
tation of the corresponding decision procedure. First, we show that the input TST can
be understood as a concise, symbolic description of a certain Büchi automaton. Inspired
by this observation, we then give a new graph-based semantics to labeled clause sets and
interpret the individual logical operations of the calculus as updates of an associated
graph. Finally, we prove a theorem describing a similar connection for the saturation
process as a whole.

The above results are important for understanding the relation of LPSup to other
approaches to LTL satisfiability, which is the topic of the last part of this chapter (Sec-
tion 2.5). After a general survey of the main known methods, we focus on analyzing the
connection to the closest relative, the already mentioned calculus CTR by Fisher et al.
(2001). We show how to align the syntax of the two calculi, compare the corresponding
computations and their worst case complexity guarantees and report on an experiment
with a prototype implementation of both methods.

The material of this chapter is a revised and extended version of previously published
work (Suda and Weidenbach, 2012b,c).

12

2.2 Preliminaries

2.2 Preliminaries

2.2.1 Resolution-based theorem proving in propositional logic

The purpose of this section is to recall the basic terminology concerning propositional
logic and refutational theorem proving. After reviewing the syntax and semantics of the
logic, we briefly explain in abstract terms the theorem proving methodology. We then
present PSup, a propositional calculus based on the ideas of superposition (Bachmair
and Ganzinger, 2001). Although superposition in the narrow sense denotes a calculus for
first-order logic with equality (Bachmair and Ganzinger, 1990, 1994), in a broad sense it
is seen as a particular technology for devising efficient calculi. In the case of PSup, the
ideas of superposition are used to justify ordering constraints on inferences, to provide
a powerful redundancy concept, and to show completeness of the calculus in a highly
constructive way.

Propositional syntax and semantics

Propositional logic formulas are built over a propositional signature Σ of propositional
variables using the connectives negation ¬, conjunction ∧, and disjunction ∨. Thus,
any variable p ∈ Σ is a formula (we call such a formula atomic or simply an atom), and
when ϕ and ψ are formulas then so are ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ. We treat the connectives
implication → and equivalence ≡ as abbreviations: the formula ϕ→ ψ stands for (¬ϕ∨ψ)
and the formula ϕ ≡ ψ abbreviates (ϕ→ ψ) ∧ (ψ → ϕ).

The set of variables occurring in a formula ϕ is denoted Vars(ϕ).

A literal is a propositional variable p or its negation ¬p. In the former case, the literal
is called positive and in the latter negative. A complement ∼l of a literal l is defined as
¬p if l = p for a variable p ∈ Σ, and as p if l = ¬p. A propositional clause is a finite
set of literals understood as their disjunction. Under this convention, we usually write
C ∨D for the clause C ∪D. The empty clause is denoted ⊥ and represents falsity. A
clause is called a tautology, if it contains both a literal and its complement. A clause C
is said to subsume another clause D, if C ⊆ D. A set of clauses is interpreted as the
conjunction of its elements.

We base the semantics of propositional logic on the notion of a valuation, which is
a mapping V : Σ → {0,1} from the signature Σ to the set of truth values {0,1}.
Alternatively, we sometimes use the term interpretation, to refer to the set of those
atoms I ⊆ Σ that are assumed to be true. Valuations are characteristic functions of
interpretations (by setting V (p) = 1 if and only if p ∈ I) and thus the two notions are
equivalent. We will use interpretations in place of valuations when it is convenient.

The satisfiability relation V |= ϕ between a valuation V and a formula ϕ is defined
in the usual way. A formula ϕ is satisfiable if there is a valuation V such that V |= ϕ.
Such a valuation V is called a model of ϕ. A formula ϕ is semantically entailed by a set
of formulas Ψ, written Ψ |= ϕ, if every valuation V that satisfies all the formulas from
Ψ also satisfies ϕ. A formula ϕ is called valid, written |= ϕ, if every valuation V satisfies
ϕ. Note that a formula ϕ is valid if and only if ¬ϕ is not satisfiable.

13

2 Labeled superposition for LTL

Refutational theorem proving

In refutational theorem proving we attempt to prove a given formula ϕ, i.e. to show that
ϕ valid, by refuting satisfiability of its negation ¬ϕ. If ¬ϕ is satisfiable, the corresponding
model represents a counter-example to validity of the original formula ϕ.

As a first step to showing that ¬ϕ does not have a model we transform the negated for-
mula into a normal form. In propositional logic we rely on the Conjunctive Normal Form
(CNF), which consists of a conjunction of disjunctions of literals. Any propositional
formula (¬)ϕ can be transformed in linear time (Tseitin, 1983) into an equisatisfiable
formula N in CNF. Using our conventions we treat a formula in CNF simply as a set of
clauses.

Given a set of clauses N , we then employ a calculus to derive new clauses from those
of N . Formally, a calculus consists of a set inference rules, which are tuples of the form

I C1 . . . Cn

D
,

where the clauses Ci are called the premises of the rule and the clause D its conclusion.
If all the premises Ci of an inference are present in the set N we derive the conclusion
D and add it to N . Inference rules are required to be sound, which means that the
premises entail the conclusion:

C1, . . . , Cn |= D.

A calculus is sound if it consists of sound inference rules only. The ultimate goal of the
proving process is to derive the empty clause ⊥, which is unsatisfiable. It then follows
from soundness that the original clause set N is unsatisfiable as well, and so the original
formula ϕ is shown to be valid.

In practice, it is important to complement the addition of newly derived clauses by re-
moval of clauses that can be shown redundant for deriving the empty clause. A reduction
rule is a tuple

R C1 . . . Cn

D1 . . . Dm
,

with premises Ci and conclusions Dj . A reduction rule can be applied if its premises are
present in the current clause set N , in which case these premises Ci are deleted from
N and replaced by the conclusions Dj . A reduction is sound if each of its conclusion is
entailed by the set of its premises.

We turn a calculus into a theorem proving algorithm by choosing a particular satura-
tion strategy, a rule which at any point selects an inference or a reduction to be applied
next. The strategy should be fair which intuitively means that no opportunity to add
a conclusion of an inference is postponed indefinitely (please consult the work of Bach-
mair and Ganzinger, 2001, for a formal treatment of fairness). Under such conditions
the saturation process eventually derives sufficiently many clauses for us to determine
satisfiability of the original clause set. A typical completeness result for a calculus states
that any saturated clause set which does not contain the empty clause has a model. A
concrete example of a complete calculus is presented next.

14

2.2 Preliminaries

Propositional superposition calculus PSup

Here we present the propositional superposition calculus PSup, our adaption of the ideas
of Bachmair and Ganzinger (2001). Because in our setting we treat clauses as sets of
literals (as opposed to multisets) we can afford to simplify the exposition in several
places. In particular, we do not have to explicitly introduce any kind of factoring.

The calculus PSup is parametrized by a strict well-founded ordering < on the symbols
of the signature Σ.1 There is a standard way of extending this ordering to literals over Σ
by making each negative literal slightly larger than its positive complement. This means
that p < ¬p for every p ∈ Σ, but for every p, q ∈ Σ we have ¬p < q whenever p < q. We
say that a literal l is maximal in a clause C if there is no l0 ∈ C such that l < l0. The
ordering < on literals is further extended to an ordering <c on (finite) clauses, called
the clause extension of <. We define

C <c D if and only if C 6= D and ∀lC ∈ (C \D)∃lD ∈ (D \ C) such that lC < lD.

If an ordering < is total (respectively, well-founded) so is its clause extension.
There is a single2 inference rule in PSup, called Ordered Resolution. It is described

by the tuple

I C ∨ a D ∨ ¬a
C ∨D ,

where the atom a is maximal in C and its complement ¬a is maximal in D. The
resolution rule is easily seen to be sound. The fact that it can be restricted to maximal
literals in each clause greatly helps to keep the space of derivations manageable.

Possible reductions for PSup include Tautology deletion

R C ∨ l ∨ ∼l
,

where ∼l is the complement of the literal l, and Subsumption

R C D

C
,

where the clause C strictly subsumes D. Tautology deletion and Subsumption are just
example instances of the following abstract redundancy notion.

Definition 2.1. A clause C is redundant with respect to a set of clauses N , if there are
clauses C1, . . . , Cn ∈ N such that for every i = 1, . . . , n, Ci <

c C, and C1, . . . , Cn |= C.

The advantage of abstract redundancy is that new reductions can be easily introduced
to the calculus. As long as they fall under Definition 2.1, the completeness argument for
the calculus does not need to be changed.

The purpose of the saturation process (see Bachmair and Ganzinger, 2001, Section 4)
is to derive enough clauses to make satisfiability of the clause set obvious. This happens
either when the empty clause is derived or when we “exhaust all possibilities”.

1When we want to stress this fact, we write PSup< to denote the concrete version of the calculus.
2Strictly speaking, this is a single inference rule schema with many concrete instances: one instance

for every choice of the clauses C and D, and the atom a satisfying respective the side conditions.

15

2 Labeled superposition for LTL

Definition 2.2. A set of standard clauses N is saturated up to redundancy (with respect
to PSup), if for every PSup inference with non-redundant (with respect to N) premises
in N its conclusion is either redundant with respect to N or contained in N .

The key to completeness of PSup is the following model building operator which
recursively constructs an interpretation for a given set of clauses N .

Definition 2.3 (Model Operator). Let <c be a clause extension of literal ordering <
and let N be a set of clauses. For a clause C ∈ N we define by a well-founded recursion
over <c a propositional interpretation I<c

(C) and a clause set εC as follows. We set
I<c

(C) =
⋃

D<cC εD and if the clause C

• is of the form C0 ∨ a, where the atom a is the maximal literal in C, and

• is false in I<c
(C),

then we say the clause produces the atom a and set εC = {a}; otherwise εC = ∅. Such a
clause C is called productive. Finally, we define I<c

(N) =
⋃

C∈N εC .

Theorem 2.1 (Bachmair and Ganzinger, 2001). Let N be a set of clauses that is sat-
urated up to redundancy with respect to PSup< and does not contain the empty clause.
Then N is satisfiable, in fact, I<c

(N) |= N .

Proof (sketch). The proof works by reducing counterexamples (formally, by induction
over <c). Let us assume, for a contradiction, that I<c

(N) 6|= N and pick D as the
smallest clause in N such that I<c

(N) 6|= D. Because N does not contain the empty
clause, D is of the form D0 ∨ l with l being its maximal literal. The literal l cannot be
positive, because then the clause D would have produced l into I<c

(N). Thus D is of
the form D0∨¬a and there must be another clause C of the form C0∨a which produced
a, making ¬a false in I<c

(N). The clauses C and D are premises of Ordered Resolution
inference with a conclusion C0 ∨D0. The conclusion is smaller than D and necessarily
false in I<c

(N). As such, it cannot be contained in N (D is the smallest clause in N
false in I<c

(N)), but it also cannot be redundant with respect to N (in that case there
would be even a smaller clause E ∈ N false in I<c

(N)). A contradiction.

2.2.2 Linear temporal logic

This section covers the necessary preliminaries for theorem proving in Linear Temporal
Logic (LTL). After introducing the syntax and semantics of the logic, we describe the
Separated Normal Form (SNF) of LTL formulas (Fisher, 1991), which is a clause normal
form particularly suited for resolution-based theorem proving. We then use the tech-
niques by Degtyarev et al. (2002) to further refine SNF and obtain our own input format
called Temporal Satisfiability Task (TST). TSTs employ “priming notation” borrowed
from the verification literature to clearly separate the temporal aspects of the given
satisfiability problem from the propositional background.

To keep our exposition self-contained we present a streamlined version of the SNF
transformation adopted from Fisher et al. (2001) as well as a compilation of the refine-
ments by Degtyarev et al. (2002). Because these are not needed for the understanding

16

2.2 Preliminaries

V, i |= p iff Vi |= p,
V, i |= ¬ϕ iff not V, i |= ϕ,
V, i |= ϕ ∧ ψ iff V, i |= ϕ and V, i |= ψ,
V, i |= ϕ ∨ ψ iff V, i |= ϕ or V, i |= ψ,
V, i |=©ϕ iff V, i+ 1 |= ϕ,
V, i |= �ϕ iff for all j ≥ i, V, j |= ϕ,
V, i |= ♦ϕ iff there exists j ≥ i such that V, j |= ϕ,
V, i |= ϕUψ iff there exists j ≥ i such that V, j |= ψ

and V, k |= ϕ for every k, i ≤ k < j,
V, i |= ϕRψ iff for all j ≥ i, V, j |= ψ or,

there exists j ≥ i with V, j |= ϕ and for all k, i ≤ k ≤ j, V, k |= ψ.

Figure 2.1: Recursive definition of LTL semantics.

of the further developments, the impatient reader may jump directly to the descrip-
tion of the priming notation on page 21 and continue to the definition of a TST, which
constitutes the sole entry point of the subsequent theory.

LTL syntax and semantics

The language of LTL is an extension of the propositional language with temporal op-
erators. The most commonly used are Next ©, Always �, Eventually ♦, Until U, and
Release R. Formally, let Σ = {p, q, . . .} be a (finite) signature of propositional variables,
then the set of LTL formulas is defined inductively as follows:

• any p ∈ Σ is a formula,

• if ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ,

• if ϕ and ψ are formulas, then so are ©ϕ, �ϕ, ♦ϕ, ϕUψ, and ϕRψ.

In LTL we model time as an infinite discrete sequence of time points isomorphic to the
set of natural numbers N. An LTL interpretation is a sequence V = (Vi)i∈N where each
Vi is a propositional valuation Vi : Σ→ {0,1}. The truth relation V, i |= ϕ between an
interpretation V, time index i ∈ N, and a formula ϕ is defined recursively according to
the rules given in Figure 2.1. An LTL interpretation V is a model of an LTL formula ϕ
if V, 0 |= ϕ. A formula ϕ is called satisfiable if it has a model, and is called valid if every
LTL interpretation V is a model of ϕ.

Separated normal form

Formulas in the Separated Normal Form (SNF) are conjunctions of temporal clauses,
each temporal clause assuming one of the following forms:

• an initial clause:
∨

j kj ,

• a step clause: �(
∨

j kj ∨
∨

j©lj),

17

2 Labeled superposition for LTL

(1) τ [�(¬x ∨ l)] −→ �(¬x ∨ l), if l is a literal,

(2) τ [�(¬x ∨ (ϕ ∧ ψ))] −→ τ [�(¬x ∨ ϕ)] ∧ τ [�(¬x ∨ ψ)],

(3) τ [�(¬x ∨ (ϕ ∨ ψ))] −→ �(¬x ∨ u ∨ v) ∧ τ [�(¬u ∨ ϕ)] ∧ τ [�(¬v ∨ ψ)],

(4) τ [�(¬x ∨©ϕ)] −→ �(¬x ∨©u) ∧ τ [�(¬u ∨ ϕ)],

(5) τ [�(¬x ∨�ϕ)] −→ �(¬x ∨ u) ∧�(¬u ∨©u) ∧ τ [�(¬u ∨ ϕ)],

(6) τ [�(¬x ∨ ♦ϕ)] −→ �(¬x ∨ ♦u) ∧ τ [�(¬u ∨ ϕ)],

(7) τ [�(¬x ∨ (ϕUψ)] −→ �(¬x ∨ ♦v) ∧�(¬x ∨ v ∨ w) ∧�(¬w ∨ u)∧
�(¬w ∨©v ∨©w) ∧ τ [�(¬u ∨ ϕ)] ∧ τ [�(¬v ∨ ψ)],

(8) τ [�(¬x ∨ (ϕRψ)] −→ �(¬x ∨ w) ∧�(¬w ∨ v) ∧�(¬w ∨ u ∨©w)∧
τ [�(¬u ∨ ϕ)] ∧ τ [�(¬v ∨ ψ)].

Figure 2.2: The rules of SNF transformation. Fresh variables are typeset with overline.

• an eventuality clause: �(
∨

j kj ∨ ♦l),
where kj , lj , and l stand for literals, i.e. propositional variables or their negation.

SNF of a given LTL formula is obtained by applying transformations that 1) introduce
new variables as names for complex subformulas, 2) replace complex temporal operators
by their fixpoint definitions, and 3) apply classical style rewrite operations to attain the
overall structure of a conjunction of the disjunctive temporal clauses. The transformation
preserves satisfiability of the input formula and it is ensured that the result does not
grow in size by more than a linear factor (Fisher et al., 2001).

We start the SNF transformation by turning the given formula into Negation Normal
Form (NNF), which is a form in which the negation sign only occurs in front of proposi-
tional variables in the leaves of the formula tree. This can be achieved by an operation
that “pushes negations downwards” with the help of De Morgan’s laws and temporal
equivalences ¬©ϕ ≡ ©¬ϕ, ¬�ϕ ≡ ♦¬ϕ, ¬♦ϕ ≡ �¬ϕ, ¬(ϕUψ) ≡ (¬ϕ)R(¬ψ), and
¬(ϕRψ) ≡ (¬ϕ)U(¬ψ). Finally, multiple negations are absorbed with the help of the
classical equivalence ¬¬ϕ ≡ ϕ.

The actual transformation is performed with the help of operator τ defined in Fig-
ure 2.2. The operator recursively reduces any formula of the form �(¬x ∨ ϕ) into the
final SNF. During the process we may need to introduce fresh variables, i.e., variables
that did not previously occur in the formula. These variables are typeset with overline.
They serve two different purposes. Some of them stand as names for subformulas, as,
e.g., in the case of the rule (3) for disjunction. They may also play a role of “trackers”
that influence the value of other variables not just in the current time point, but also in
those to follow. This is how the semantics of, e.g., the Always operator � is encoded in
rule (5). The overall translation is triggered by the following rule

ϕ −→ i ∧ τ [�(¬i ∨ ϕ)],

where the formula ϕ is assumed to be already in NNF and i is a fresh variable.

Example 2.1. We work out an example by Fisher et al. (2001) to demonstrate the trans-
lation procedure. Assume we would like to prove the formula (♦p∧�(p→©p))→ ♦�p.

18

2.2 Preliminaries

In refutational theorem proving we proceed by negating the formula and trying to show
the negation to be unsatisfiable. By taking the negation into NNF (and translating away
the implication symbol) we obtain

(♦p ∧�(¬p ∨©p)) ∧�♦¬p,

which is consequently translated into a conjunction of the following clauses:

i, By the initial rule.

�(¬i ∨ ♦u1), The first conjunct by rule (6),
�(¬u1 ∨ p), terminates by rule 1.

�(¬i ∨ u2), The second conjunct by rule (5),
�(¬u2 ∨©u2), . . .
�(¬u2 ∨ u3 ∨ v3), inside which there is a disjunction (rule 3),
�(¬u3 ∨ ¬p), the first argument is a literal (rule 1),
�(¬v3 ∨©u4), the second goes by rule (4)
�(¬u4 ∨ p), and terminates by rule (1).

�(¬i ∨ u5), The third conjunct by rule (5),
�(¬u5 ∨©u5), . . .
�(¬u5 ∨ ♦u6), inside which we apply rule (6),
�(¬u6 ∨ ¬p). and terminate by rule (1).

Simplifying the eventuality clauses

As part of the transformation of a general LTL formula into the desired final form, the
TST, we need two further refinement steps of the intermediate SNF, which focus on
eventuality clauses. In particular, we use the techniques of Degtyarev et al. (2002) to

1. turn conditional eventuality clauses into unconditional ones (of the form �♦l), and

2. reduce the potentially multiple (unconditional) eventuality clauses into just one
eventuality clause.

Here we present our own compilation of these two refinements, merging them into a
single transformation step, and provide an informal argument of its correctness.

Assume that an SNF of a formula contains n (in general) conditional eventuality
clauses

�(Ci ∨ ♦li)
for i = 1, . . . , n, where Ci, the condition part, is a disjunction of literals. We remove
these clauses and replace them with a single unconditional eventuality clause

�♦m (2.1)

together with the following five step clauses for every i = 1, . . . , n :

�(Ci ∨ li ∨ ti), (2.2)

19

2 Labeled superposition for LTL

�(¬ti ∨©li ∨©ti), (2.3)

�(si ∨ ¬ti ∨©¬si), (2.4)

�(¬si ∨ ¬m), (2.5)

�(si ∨©¬m), (2.6)

where again the overlined variables are meant to be fresh to the formula.

The idea behind the correctness of the transformation is as follows. If the condition
¬Ci is satisfied at the current time point and the respective eventuality li is not satisfied
at the same time point we start “tracking” the eventuality with the help of the new
variable ti (clause 2.2). The tracking variable ti is forced to stay true also in the future
time points until the eventuality li is finally satisfied (clause 2.3). When looking from
the other side we see that the unconditional eventuality (clause 2.1) will infinitely often
ensure that all the variables si are false at one time point (clause 2.5) and true at the
previous time point (clause 2.6). Thus in the intervals between the time points where
m holds, there will always be two consecutive time points where si changes from false
to true. But this cannot happen if we are tracking that particular eventuality at that
time (clause 2.4). To sum up, for each of the original eventualities we have a guarantee
that in every interval between time points where m holds the eventuality was either not
triggered at all (¬Ci was false in the whole interval) or the eventuality was triggered and
subsequently satisfied in that interval.

We have just argued that the transformation for obtaining one unconditional even-
tuality clause preserves satisfiability of the formula and it is also easy to see that the
formula does not grow in size more than by a linear factor. The interested reader can
consult the paper by Degtyarev et al. (2002) for a formal proof.

Example 2.2. Our previous example contained two conditional eventuality clauses �(¬i∨
♦u1) and �(¬u5 ∨ ♦u6). We may replace these by the following set of clauses to obtain
an equisatisfiable problem with just one unconditional eventuality clause:

�♦m,

�(¬i ∨ u1 ∨ t1),

�(¬t1 ∨©u1 ∨©t1),

�(s1 ∨ ¬t1 ∨©¬s1),

�(¬s1 ∨ ¬m),

�(s1 ∨©¬m),

�(¬u5 ∨ u6 ∨ t2),

�(¬t2 ∨©u6 ∨©t2),

�(s2 ∨ ¬t2 ∨©¬s2),

�(¬s2 ∨ ¬m),

�(s2 ∨©¬m).

20

2.2 Preliminaries

Priming notation

Priming notation is a simple conceptual tool that allows us to use purely propositional
formulas to talk about several neighboring time points. Instead of using the temporal
operator Next ©, we introduce “primed” copies of the basic signature. While the vari-
ables from Σ = {p, q, . . .} are reserved to describe the “current” time point, we use the
variables from the first copy Σ′ = {p′, q′, . . .} to describe the time point one step in the
future and similarly Σ′′ = {p′′, q′′, . . .} for two steps ahead, etc. Multiple primes may be
shortened by parenthesized integers: e.g., p′′′ denotes the same symbol as p(3).

The convention can be extended from symbols and signatures to propositional formu-
las: by ϕ′ we mean the formula obtained from ϕ by adding one prime to each occurrence
of a variable in ϕ. Similarly, if V is a valuation over Σ we write V ′ for the valuation
over Σ′ such that V ′(p′) = V (p) for every p ∈ Σ. If V1 and V2 are two valuations over
Σ, we let [V1, V2] denote the joint valuation V1 ∪ (V2)′ : Σ ∪ Σ′ → {0,1}. That means,
more explicitly

[V1, V2](x) =

{
V1(p) if x = p ∈ Σ,

V2(p) if x = p′ ∈ Σ′.

Such a valuation is needed to evaluate clauses over the joint signature Σ ∪ Σ′.

Temporal satisfiability tasks

Once we have transformed an LTL formula into an SNF with just one unconditional
eventuality clause the final step in obtaining a Temporal Satisfiability Task (TST) is
just a simple syntactic manipulation. Notice that we deliberately depart from the LTL
syntax and instead use purely propositional clauses and the priming notation. The
intended temporal semantics is, however, preserved (see below).

Definition 2.4. A Temporal Satisfiability Tasks (TST) is a quadruple T = (Σ, I, T,G)
such that

• Σ is a finite propositional signature,

• I is a set of initial clauses Ci over the signature Σ,

• T is a set of step clauses Ct ∨ (Dt)
′ over the joint signature Σ ∪ Σ′,

• G is a set of goal clauses Cg over the signature Σ.

The initial and step clauses are directly translated from SNF. The goal clauses all
together express the single eventuality obtained in the previous transformation step.
This generalization (from a single unit goal clause that we could obtain) is for free and
appears to make the definition more elegant. Intuitively, a TST stands for the LTL
formula (∧

I

Ci

)
∧�

(∧
T

(Ct ∨©Dt)

)
∧�♦

(∧
G

Cg

)
,

which directly translates to the following formal definition.

21

2 Labeled superposition for LTL

Definition 2.5. An interpretation V = (Vi)i∈N is a model of T = (Σ, I, T,G) if

• for every Ci ∈ I, V0 |= Ci,

• for every i ∈ N and every Ct ∨ (Dt)
′ ∈ T , [Vi, Vi+1] |= Ct ∨ (Dt)

′, and

• there are infinitely many indexes j such that for every Cg ∈ G, Vj |= Cg.

A TST T is satisfiable if it has a model.

Example 2.3. We will use the following valid LTL formula as a running example that
will guide us through the whole theorem proving process presented in this chapter:

�((a→ b)→©b)→ ♦�(a ∨ b).

The formula is chosen in such a way that its negation, which we will try to refute, can
be easily transformed3 into an SNF �(a∨©b)∧�(¬b∨©b)∧�♦(¬a∧¬b), which gives
us the following TST T = ({a, b}, ∅, {a ∨ b′,¬b ∨ b′}, {¬a,¬b}).

2.3 Labeled superposition

2.3.1 Labeled clauses

In this preparatory section we develop the notion of labeled clauses which will serve as
syntactic objects manipulated by our calculus for LTL satisfiability. We first show that
satisfiability of a TST can be restated as a hypothetical disjunction of infinitely many
purely propositional satisfiability problems over an infinite signature. Labels are then
introduced to finitely represent and control clauses within these problems, abbreviating
entire clause sets. Thus labeled clauses provide a means for effectively transferring
reasoning techniques from the propositional level to that of LTL.

Conservative strengthening of the notion of satisfiability

It is a known fact that when considering satisfiability of LTL formulas attention can be
restricted to ultimately periodic (Sistla and Clarke, 1985) interpretations. These start
with a particular finite sequence of valuations and then repeat another finite sequence
of valuations forever. This observation motivates the following definition, which is one
of the key ingredients of our approach.

Definition 2.6. Let K ∈ N, and L ∈ N+ = N \ {0} be given. An LTL interpretation
V = (Vi)i∈N is a (K,L)-model of a TST T = (Σ, I, T,G) if

• for every C ∈ I, V0 |= C,

• for every i ∈ N and every C ∈ T , [Vi, Vi+1] |= C,

3We do not attempt to follow the general SNF transformation presented previously, which would intro-
duce additional variables and clauses and the example would become too complex for our purposes.

22

2.3 Labeled superposition

• for every i ∈ N and every C ∈ G, V(K+i·L) |= C.

We will call the pair (K,L) of natural numbers K ∈ N and L ∈ N+ a rank of a model.

Satisfiability within a (K,L)-model for some values of K and L is identical to the
standard semantics (Definition 2.5) except for the third point. The original condition
on the goal clauses to be satisfied at infinitely many indexes is now strengthened and
we require that these indexes form an arithmetic progression with K as the initial term
and L the common difference. As the following lemma shows this additional restriction
does not change the notion of satisfiability.

Lemma 2.1. Every satisfiable TST T = (Σ, I, T,G) has a (K,L)-model.

Proof. Let V = (Vi)i∈N be an LTL interpretation such that V |= T . There are only
finitely many different valuations over Σ, so only finitely many that satisfy all the clauses
C ∈ G. Therefore at least one of them has to appear infinitely often in (Vi)i∈N. Let
K ∈ N be an index such that VK is such a valuation and let L be the smallest number
in N+ such that VK = VK+L. We now define a new LTL interpretation W = (Wi)i∈N by
setting

• Wi = Vi for every i ≤ K,

• Wi = VK+(i−K) mod L for any i > K.

It is straightforward to verify that W is a (K,L)-model of T .

The interpretation W constructed in the proof of the previous lemma is, in fact, an
ultimately periodic model of Sistla and Clarke (1985), i.e., from a certain time point the
respective valuations repeat periodically. The notion of a (K,L)-model is more general
as it only requires that the goal clauses be satisfied at periodically recurring indexes.

Reduction to pure propositional logic

For a particular choice of K and L, the existence of a (K,L)-model can be reduced to an
infinite but purely propositional problem over the infinite signature Σ∗ =

⋃
i∈N Σ(i). We

devise such a reduction in two steps. First, we realize that LTL interpretations naturally
correspond to propositional valuations over Σ∗.

Lemma 2.2. There is a bijection between LTL interpretations over Σ and propositional
valuations over Σ∗.

Proof. For any given LTL interpretation V = (Vi)i∈N there is a unique valuation V ∗ over
Σ∗ defined by the equation

V ∗(p(i)) = Vi(p)

for every i ∈ N and every p ∈ Σ. This mapping is obviously surjective.

23

2 Labeled superposition for LTL

Σ Σ′ Σ(2) Σ(3) Σ(4) Σ(5)

Ci ∈ I

Ct ∨ (Dt)
′ ∈ T

Cg ∈ G

K K + L

. . .

. . .

Figure 2.3: Schematic presentation of the potentially infinite set of clauses that is
satisfiable if and only if a TST T = (Σ, I, T,G) has a (K,L)-model with K = 2 and
L = 3. The axis represents the infinite signature Σ∗, the gray bars stand for individual
copies of the initial, step, and goal clauses, respectively.

In the second step, we simply restate Definition 2.6 in propositional logic. For a given
TST T = (Σ, I, T,G) we “copy” the clauses from I, T , and G and “shift them in time”
using the priming notation. We obtain a (in general infinite) set of propositional clauses
consisting of:

• the set of initial clauses I = {C(0) | C ∈ I},

• together with {C(i) | C ∈ T, i ∈ N},

• and with {C(K+i·L) | C ∈ G, i ∈ N},

This set of clauses is satisfiable if and only if T has a (K,L)-model. See Figure 2.3 for
an illustration of the situation.

The idea of lifting

We have now reduced LTL satisfiability of a TST T to infinitely many (for every pair
of K and L) infinite propositional problems over Σ∗. We proceed by assigning labels
to the clauses of T such that a labeled clause represents up to infinitely many standard
clauses over Σ∗. Then an inference performed between labeled clauses corresponds to
infinitely many inferences on the level of Σ∗. This is similar to the idea of “lifting” from
first-order theorem proving where clauses with variables represent up to infinitely many
ground instances. Here, however, we deal with the additional dimension of performing
infinitely many reasoning tasks on the “ground level” in parallel, one for each pair (K,L).

Definition 2.7. A label is a pair (b, k) where b is either ∗ or 0, and k is either ∗ or an
element of N. A labeled clause is a pair C = (b, k) ||C consisting of a label (b, k) and a
standard clause over Σ ∪ Σ′.

Semantics of labels is given via a map to certain sets of time indexes.

Definition 2.8. Let a rank (K,L) be given. We define a set R(K,L)(b, k) of indexes
represented by the label (b, k) as the set of all t ∈ N such that

• (b 6= ∗ ⇒ t = 0) and

24

2.3 Labeled superposition

• (k 6= ∗ ⇒ ∃s ∈ N . t+ k = K + s · L).

A standard clause of the form C(t) is said to be represented by the labeled clause (b, k) ||C
in (K,L) if t ∈ R(K,L)(b, k).

The two label components stand for two independent conditions on the time indexes to
which the clause relates. The first label component b relates the clause to the beginning
of time and the second component relates the clause to the indexes of the form K+ i ·L,
where the goal should be satisfied. In both cases, ∗ stands for a “don’t care” value, so
if b or k equals ∗, the respective condition is trivially satisfied by any index.

New label values are computed from old ones using certain operations when labeled
clauses interact in inferences, as detailed in the next section. When, initially, a labeled
clause set is constructed from a TST (see Definition 2.9 below) three particular label
values are used. Further values arise as results of applying the mentioned operations,
and the full generality of labels reflects an entire “closure” of the three initial values
under these operations.

Definition 2.9. Given a TST T = (Σ, I, T,G), the starting labeled clause set NT for T
is defined to contain

• labeled clauses of the form (0, ∗) ||C for every C ∈ I,

• labeled clauses of the form (∗, ∗) ||C for every C ∈ T , and

• labeled clauses of the form (∗, 0) ||C for every C ∈ G.

It is easy to check that for any particular choice of K and L the standard clauses over
Σ∗ represented by the labeled clauses from the starting labeled clause set NT form the
purely propositional problem that encodes the existence of a (K,L)-model of T .

Example 2.4. Our example TST T = ({a, b}, ∅, {a∨b′,¬b∨b′}, {¬a,¬b}) contains among
others the single literal goal clause ¬a. In the starting labeled clause set NT this goal
clause becomes (∗, 0) || ¬a. If we now, for example, fix the same rank (2, 3) as in Fig-
ure 2.3, our labeled clause will in that rank represent all the standard clauses (¬a)(t)

with t ∈ R(2,3)(∗, 0) = {2, 5, 8, . . . }.

Satisfiability of labeled clause sets

Given a set of labeled clauses N let us by N(K,L) denote the set of all standard clauses
represented in (K,L) by a labeled clause in N :

N(K,L) = {C(t) | labeled clause (b, k) ||C ∈ N and t ∈ R(K,L)(b, k)}.
Definition 2.10. A set of labeled clauses N is called (K,L)-satisfiable if there is a
valuation V ∗ : Σ∗ → {0,1} which (propositionally) satisfies N(K,L). The set N is called
satisfiable if it is (K,L)-satisfiable for some rank (K,L).

We summarize the current development of our theory in the following lemma.

Lemma 2.3. Let T be a TST and NT its starting labeled clause set. Then T is satisfiable
if and only if NT is. More precisely, for any rank (K,L) the starting labeled clause set
NT is (K,L)-satisfiable if and only if T has a (K,L)-model.

25

2 Labeled superposition for LTL

2.3.2 Calculus LPSup

In this section we present our calculus for labeled clauses LPSup. We continue building
on the idea that labeled clauses represent standard clauses from the “ground level” of
deciding the existence of (K,L)-models, and show how to “lift” the operation of PSup,
a sound and complete calculus for the ground proof tasks, and abbreviate it into a single
saturation process on the level of labeled clauses.

We make sure the new calculus retains the valuable features of its originator including
ordering restrictions for inferences and an abstract redundancy criterion for justifying
concrete reductions. We show that the inference rules of the new calculus are sound and
that the proposed reductions are instances of the new redundancy criterion. The com-
pleteness result for LPSup is postponed till Section 2.3.4, because it relies on properties
of saturated clause sets, which we develop in Section 2.3.3.

Ordering and label merge

The calculus LPSup and the corresponding version of PSup which it lifts from the
ground level are parametrized by a common ordering on the infinite signature Σ∗, which
is uniformly derived from a given ordering on Σ.

Definition 2.11. Given an ordering< over Σ, its temporal extension over Σ∗ =
⋃

i∈N Σ(i),
denoted again by <, is defined by

p(i) < q(j) if and only if i < j, or i = j and p < q.

For the rest of the presentation we fix an ordering < over Σ along with its temporal
extension. We use the standard extension of this ordering to compare literals in clauses
(recall Section 2.2.1).

Example 2.5. Assume the signature Σ = {a, b} is totally ordered by a < b. Then Σ∗

is totally ordered by the corresponding temporal extension as a(0) < b(0) < a(1) <
b(1) < a(2) < . . . and the corresponding standard extension orders the literals over Σ∗ as
a(0) < ¬a(0) < b(0) < ¬b(0) < a(1) < ¬a(1) < b(1) < ¬b(1) < a(2) < . . .

When two labeled clauses participate in an inference the label of the conclusion is
computed by the following operation from the labels of the premises.

Definition 2.12. The merge of two labels (b1, k1) and (b2, k2) is the label (b, k) defined
imperatively as follows:

• if b1 = ∗ and b2 = ∗ then b← ∗ else b← 0,

• if k1 = ∗ then k ← k2 else if k2 = ∗ then k ← k1 else if k1 = k2 then k ← k1.

In the case when k1, k2 ∈ N and k1 6= k2, the merge operation is undefined.

This idea behind label merge is that the labeled premises only interact when they
represent standard clauses that interact on the ground level. Moreover, the resulting
labeled conclusion represents exactly all the conclusions of the corresponding inferences
from the ground level.

26

2.3 Labeled superposition

Ordered Resolution:

I (b1, k1) ||C ∨ a (b2, k2) ||D ∨ ¬a
(b, k) ||C ∨D ,

where the atom a is maximal in C, its complement ¬a is maximal in D,
and the merge of labels (b1, k1) and (b2, k2) is defined and equal to (b, k).

Temporal Shift:

I (∗, k) ||C
(∗, k′) || (C)′

,

where C is a clause over Σ, and

• k = ∗ and k′ = ∗, or

• k ∈ N and k′ = k + 1.

Leap:

I {(b, u+ i · v) ||C}i∈N derivable from the current clause set N

(b, u− v) ||C ,

where u ≥ v > 0 are integers and C an arbitrary standard clause
(see the main text for details concerning the derivability condition).

Figure 2.4: Inference rules of LPSup.

Lemma 2.4. Let (b, k) be the merge of the labels (b1, k1) and (b2, k2), and (K,L) any
rank. Then

R(K,L)(b, k) = R(K,L)(b1, k1) ∩R(K,L)(b2, k2).

Proof. The proof is straightforward from the definitions. We check by case analysis that

(b1 6= ∗ ⇒ t = 0) and (b2 6= ∗ ⇒ t = 0)

is equivalent to (b 6= ∗ ⇒ t = 0), and also that

(k1 6= ∗ ⇒ ∃s ∈ N . t+ k = K + s · L) and (k2 6= ∗ ⇒ ∃s ∈ N . t+ k = K + s · L)

is equivalent to (k 6= ∗ ⇒ ∃s ∈ N . t + k = K + s · L), under the condition that
(k1 = ∗ or k2 = ∗ or k1 = k2).

Inference rules and their soundness

The inference rules of LPSup are presented in Figure 2.4. While the Ordered Resolution
rule constitutes a labeled analogue of the corresponding rule of PSup, Temporal Shift and
Leap are “structural” in nature. We will show that these two latter rules only modify
the syntactic form of the clauses, but the underlying set of the represented standard
clauses remains the same.

27

2 Labeled superposition for LTL

It is important to note that each of the LPSup inference rules preserves the fact that
the standard parts of the involved labeled clauses span only the signature Σ ∪ Σ′. This
follows, in particular, from the restriction on the premise of the Temporal Shift inference
to involve clauses with literals only over the signature Σ.

Example 2.6. The starting labeled clause set NT of our running example contains among
others also clauses (∗, ∗) || a ∨ b′ and (∗, 0) || ¬b. We can apply Temporal Shift to the
second clause to obtain (∗, 1) || ¬b′. Now b′ is the only literal over Σ′ in the first clause
and therefore maximal. So the first clause and the newly derived one can participate in
Ordered Resolution inference with a conclusion (∗, 1) || a.

Further explanation is needed for the Leap rule. It is stated as an inference with
infinitely many premises and so we only require their potential derivability from the
current clause set N . The appeal to infinity is just a useful mathematical abstraction.
When we discuss the saturation with LPSup in Section 2.3.3, we will show how to employ
repetition detection and deduction replaying to make the Leap inference effective.

Soundness of the Ordered Resolution rule is derived from the same property of the
corresponding PSup inference, as captured by the following lemma.

Lemma 2.5. Let (K,L) be a rank. Any standard clause represented in (K,L) by the con-
clusion of the Ordered Resolution inference of LPSup can be derived by the corresponding
PSup inference from some standard clauses represented in (K,L) by the premises of the
inference.

Proof. Let (C ∨ D)(t) be a standard clause represented in (K,L) by the conclusion
(b, k) ||C∨D of the Ordered Resolution inference of LPSup with premises (b1, k1) ||C∨a
and (b2, k2) ||D ∨ ¬a. This means that t ∈ R(K,L)(b, k) and thus, by Lemma 2.4, also

t ∈ R(K,L)(b1, k1) and t ∈ R(K,L)(b2, k2). Consider the standard clauses (C ∨ a)(t) and

(D ∨ ¬a)(t) represented in (K,L) by the respective labeled premises. If follows from
Definition 2.11 that the atom a(t) is maximal in C(t) and its complement (¬a)(t) is
maximal in D(t). Thus the clauses (C ∨ a)(t) and (D ∨ ¬a)(t) are valid premises of the
Ordered Resolution inference of PSup with the conclusion (C ∨D)(t).

As already indicated, the Temporal Shift and Leap inferences are sound, because they
do not introduce any new clauses to the ground level. The next two lemmas formalize
this observation.

Lemma 2.6. Let (K,L) be a rank. Any standard clause represented in (K,L) by a
conclusion of a Temporal Shift inference is represented in (K,L) by its premise.

Proof. Let (C ′)(t) be a standard clause represented in (K,L) by a conclusion (∗, k′) || (C)′

of Temporal Shift inference. This means that t ∈ R(K,L)(∗, k′). We either have k = ∗ and

k′ = ∗ or k ∈ N and k′ = k+1. In any case t+1 ∈ R(K,L)(∗, k), and thus C(t+1) = (C ′)(t)

is represented in (K,L) by the premise (∗, k) ||C of the inference.

Lemma 2.7. Let (K,L) be a rank. Any standard clause represented in (K,L) by a
conclusion of a Leap inference is represented in (K,L) by one of its premises.

28

2.3 Labeled superposition

Proof. Let C(t) be a standard clause represented in (K,L) by a conclusion (b, u− v) ||C
of a Leap inference. This means we have t ∈ R(K,L)(b, u − v). We need to show that

t ∈ ⋃i∈NR(K,L)(b, u+i ·v) and thus C(t) is represented in (K,L) by one of the inference’s
premises. This is equivalent to showing that whenever

t+ (u− v) = K + s1 · L

for some s1 ∈ N, we can find i, s2 ∈ N such that

t+ (u+ i · v) = K + s2 · L.

This can be achieved by setting i = L− 1 and s2 = s1 + v.

Theorem 2.2 (Soundness of LPSup). Let N be a set of labeled clauses and (b, k) ||C
a labeled clause derivable from N by LPSup. Then for any rank (K,L) and any t ∈
R(K,L)(b, k) the standard clause C(t) is derivable from N(K,L) by PSup. Moreover, if an
empty labeled clause (b, k) || ⊥ is derivable from N by LPSup such that R(K,L)(b, k) 6= ∅,
then N is not (K,L)-satisfiable.

Proof. The first part is proved by induction on the length of the derivation, using Lem-
mas 2.5, 2.6, and 2.7. The second part then follows from the soundness of PSup.

Notice that in LPSup the fact that an empty labeled clause (b, k) || ⊥ is derived does
not necessarily mean that the whole clause set is unsatisfiable. It only rules out those
(K,L)-models for which R(K,L)(b, k) is non-empty. This motivates the following notion,
which will be later used for the formulation of the completeness result.

Definition 2.13. An empty labeled clause (b, k) || ⊥ is called conditional if b = 0 and
k ∈ N, and unconditional otherwise. A set of labeled clauses N is obviously contradictory
if it contains an unconditional empty clause or if (0, k) || ⊥ is in N for every k ∈ N.

Lemma 2.8. Any obviously contradictory set of a labeled clauses is unsatisfiable.

Redundancy and reductions

Abstract redundancy for LPSup lifts the corresponding notion (see Definition 2.1 on
page 15) from the ground level to the level of labeled clauses.

Definition 2.14. A labeled clause (b, k) ||C is redundant with respect to a set of labeled
clauses N , if for any rank (K,L) every standard clause represented by (b, k) ||C in (K,L)
is redundant with respect to N(K,L).

We present two example reductions for LPSup in Figure 2.5. These are the labeled
analogues of the tautology deletion and clause subsumption, respectively. To prove that
they satisfy the above redundancy criterion, we need to show in both cases that the
clause missing in the conclusion of the reduction is redundant in the presence of the
remaining premises. This is trivial for Tautology deletion and covered by the following
lemma for Subsumption.

29

2 Labeled superposition for LTL

Tautology deletion:

R (b, k) ||C ∨ l ∨ ∼l
,

where the literal ∼l is the complement of l.

Subsumption:

R (b1, k1) ||C (b2, k2) ||D
(b1, k1) ||C ,

where C is a strict subset of D and
the merge of labels (b1, k1) and (b2, k2) is defined and equal to (b2, k2).

Figure 2.5: Possible reduction rules of LPSup.

Lemma 2.9. Let (b1, k1) ||C and (b2, k2) ||D be the premises of the Subsumption reduc-
tion, i.e., C is a subset of D and the merge of labels (b1, k1) and (b2, k2) is defined and
equal to (b2, k2). Then (b2, k2) ||D is redundant with respect to {(b1, k1) ||C}.

Proof. Let (K,L) be a rank and let D(t) be a standard clause represented in (K,L)
by (b2, k2) ||D. This means that t ∈ R(K,L)(b2, k2) and, because the merge of labels
(b1, k1) and (b2, k2) is defined and equal to (b2, k2), we obtain from Lemma 2.4 that
R(K,L)(b2, k2) ⊆ R(K,L)(b1, k1), and therefore t ∈ R(K,L)(b1, k1). Thus the standard

clause C(t) is represented in (K,L) by (b1, k1) ||C. Because C is a strict subset of D, we
obtain that C(t) <c D(t) and that C(t) |= D(t).

The power of abstract redundancy lies in the modularity with which further new
reduction rules can be introduced to the calculus. As long as they fit into the framework
prescribed by Definition 2.14, they are guaranteed to preserve completeness (to be shown
in Section 2.3.4) and its underlying proof need not be revised in any way.

2.3.3 Saturating labeled clause sets

In this section we explain how to turn the calculus LPSup into an effective decision
procedure for LTL. We propose a particular saturation strategy and show that, although
LPSup derivations can be potentially infinite, the strategy always derives in finitely many
steps enough information to reveal whether the given clause set is satisfiable or not.

Because we use proof theoretic arguments in this section, which are “fragile” in com-
parison to the “static view” represented by the abstract redundancy concept, we will
only show how to prove our result for one concrete set of reductions, namely those of
Figure 2.5. Adapting the proof to accommodate further reductions, however, should be
a straightforward task.

30

2.3 Labeled superposition

Motivation: a non-terminating derivation with a cycle

Example 2.7. Recall our running example with the starting labeled clause set NT for
the TST T , from which we derived the labeled clause (∗, 1) || ¬b′ by the Temporal Shift
inference. Ordered Resolution between this clause and the clause (∗, ∗) || ¬b ∨ b′ yields
(∗, 1) || ¬b to which Temporal Shift is again applicable, yielding (∗, 2) || ¬b′. We see
that the clause we started with differs from the last one only in the label where the
second component k got increased by one. The whole sequence of inferences can now be
repeated, allowing us to eventually derive labeled clauses (∗, k) || ¬b and (∗, k) || ¬b′ for
every k ∈ N+.

The example demonstrates how the Temporal Shift inference may cause non-termina-
tion when the second label component k of the generated clauses increases one by one. It
also suggests, however, that from a certain point the derived clauses do not add any new
information and the inferences essentially repeat in cycles. Detecting these repetitions
and finitely representing the potentially infinite clause sets is the key idea for obtaining
a termination result for our calculus.

Layer-by-layer saturation and repetition detection

For any set of labeled clauses N we define a decomposition of N into layers by grouping
together clauses with the same second label component k.

Definition 2.15. Let N be a set of labeled clauses. For any k ∈ {∗} ∪ N the k-layer
of N is defined to contain exactly those labeled clauses from N which are of the form
(b, k) ||C. The symbol k is called the index of the layer.

Two sets of labeled clauses L1 and L2, in particular, two layers, are said to be equal
up to reindexing if for every labeled clause (b, k1) ||C ∈ L1 there is a labeled clause
(b, k2) ||C ∈ L2 for some k2, and, symmetrically, for every labeled clause (b, k2) ||C ∈ L2

there is a labeled clause (b, k1) ||C ∈ L1 for some k1.

Lemma 2.10. There is only finitely many different labeled clauses with a common second
label component k and therefore only finitely many different layers up to reindexing.

Proof. There are c = 2 · 42|Σ| different labeled clauses with a common second label
component k in general. When tautologies are not counted the number is 2 · 32|Σ|: each
of the 2|Σ| atoms of Σ∪Σ′ is either present positively, negatively, or missing in the clause
and there are two possible values, ∗ and 0, for the first label component b.

In any case, the number of different layers up to reindexing is 2c.

By a layer-by-layer saturation we denote a process of systematically performing in-
ferences and reductions of LPSup (excluding the Leap inference, which we incorporate
later) such that clauses from low index layers are considered before those of high index.
It follows from the list of observations presented in Figure 2.6 that each individual layer,
starting from the ∗-layer and continuing with k = 0, 1, . . ., can be finitely saturated.
Moreover, once we are done processing the clauses with labels of the form (b, k) for a
particular k ∈ N, the k-layer (and also all the preceding ones) will remain constant for

31

2 Labeled superposition for LTL

(1) If all the premises of Ordered Resolution or Temporal Shift inference belong to the
∗-layer, so does the conclusion of the inference.

(2) If a premise of Ordered Resolution inference belongs to the k-layer for k ∈ N, so
does the inference’s conclusion.

(3) If a premise of Temporal Shift inference belongs to the k-layer for k ∈ N, the infer-
ence’s conclusion belongs to the layer with index (k + 1).

(4) If a subsuming labeled clause belongs to the k-layer for k ∈ N then so does the
subsumed clause.

Figure 2.6: Observations capturing the locality of LPSup with respect to layer indexes.

rest of the process. Lemma 2.10 then implies that after finitely many steps we are bound
to obtain two saturated layers of different indexes that are equal up to reindexing.

A detailed pseudocode for layer-by-layer saturation is presented in Algorithm 2.1. Fol-
lowing a standard saturation scheme (Weidenbach, 2001) we maintain two sets of clauses:
WorkedOff and Usable. The former contains clauses which have already participated on
inferences and reductions with each other, the latter contains clauses yet to be processed.
Initially, WorkedOff is empty and Usable equals the given clause set N (lines 1 and 2).
In each iteration of the main loop a clause C is selected and removed from Usable (line
5). If C cannot be shown redundant with respect to WorkedOff (line 6) all Ordered
Resolution inferences between C and a clause in WorkedOff as well as the potential
Temporal Shift inference with C as its premise are performed and their conclusions are
collected in the set Derived (line 12). The derived clauses then enrich the Usable set
(line 13) and the clause C enters WorkedOff , potentially removing some of the already
present clauses by subsumption (line 14). Notice that layer-by-layer saturation does not
check for empty clauses to treat them in a special way. Detecting (un)satisfiability is left
for the main procedure (to be described later) to which layer-by-layer saturation works
as a subroutine.

The ordering used to prioritize clauses for selection (line 5) extends the natural order
on N to treat ∗ as the smallest element. That is what makes the algorithm proceed
in a layer-by-layer fashion. An attempt to detect repetition (lines 8–11) is performed
each time a clause from a new layer is picked and so the preceding layers are known to
be saturated already. There is also the possibility that all clauses are processed before
repetition occurs. Such a case is formally treated as a repetition of two consecutive
empty layers (lines 15–20). In any case, the algorithm returns the saturated clauses of
WorkedOff together with two numbers, offset and period, which indicate the position of
the repetition.

Lemma 2.11. Algorithm 2.1 returns a set of labeled clauses M and numbers offset o ∈ N
and period p ∈ N+ such that

• the o-layer of M is equal to the (o+ p)-layer of M up to reindexing,

32

2.3 Labeled superposition

Algorithm 2.1 Layer-by-layer saturation with LPSup

Input:
A set of labeled clauses N

Output:
A set of labeled clauses M derived from N in a layer-by-layer fashion
together with an offset o ∈ N and a period p ∈ N+

1: WorkedOff ← ∅
2: Usable ← N
3: kL ← ∗ /* The value k of the last processed clause */

4: while Usable 6= ∅ do
5: pop a labeled clause C = (b, k) ||C from Usable with minimal k

6: if C is a tautology or subsumed by a clause in WorkedOff then
7: continue

8: if k > kL then /* Entering new layer */
9: if the o-layer and the kL-layer of WorkedOff are equal up to reindexing

for some natural number 0 ≤ o < kL then

10: return WorkedOff , offset o, and period (kL − o)
11: kL ← k

12: Derived ← OrderedResolution(C,WorkedOff) ∪ TemporalShift(C)
13: Usable ← Usable ∪Derived
14: WorkedOff ← {D ∈WorkedOff | D not subsumed by C} ∪ {C}

15: /* Saturated finitely, the repeating layers will be empty */
16: if kL = ∗ then
17: o← 0
18: else
19: o← kL + 1

20: return WorkedOff , offset o, and period 1

33

2 Labeled superposition for LTL

• the clause set is saturated by LPSup without Leap, except, possibly, for Temporal
Shift inferences with premises in the layer (o+ p),

• the layers with index larger than (o+ p) are empty.

Example 2.8. In our running example, the ∗-layer and 0-layer are already saturated.
Further layers that we obtain are

{(∗, 1) || ¬a′, (∗, 1) || ¬b′, (∗, 1) || a, (∗, 1) || ¬b},

{(∗, 2) || a′, (∗, 2) || ¬b′, (∗, 2) || a, (∗, 2) || ¬b},

{(∗, 3) || a′, (∗, 3) || ¬b′, (∗, 3) || a, (∗, 3) || ¬b}.

Because the 3-layer is equal to the 2-layer (up to reindexing), layer-by-layer saturation
terminates with offset 2 and period 1.

Replaying deductions

When repetition is detected and the layer-by-layer saturation terminates, the returned
clause set contains enough information for us to know how the process would continue.

Definition 2.16. Let M be a set of clauses returned by Algorithm 2.1 together with
offset o ∈ N and period p ∈ N+. The infinite extension of M is the unique set of labeled
clauses M∗ such that

• for every k = ∗, 0, . . . , o the k-layer of M∗ is equal to the k-layer of M , and

• for every i ∈ N+ the (o + i)-layer of M∗ is equal to the (o + i mod p)-layer of M
up to reindexing.

We claim that the infinite extension of M is fully saturated by LPSup without Leap.
This can be shown by a deduction replaying technique. The key observation is that
the two employed inference rules as well as the two reduction rules are “invariant under
transfer from one layer to another”. For example, if there was a Temporal Shift inference
with a premise (b, o) ||C in the o-layer and a conclusion (b, o+1) || (C)′ in the (o+1)-layer,
there is also a Temporal Shift inference with a premise (b, o+ p) ||C in the (o+ p)-layer
and a conclusion (b, o+p+1) || (C)′ to go into the layer with index (o+p+1). Analogous
observation holds for Ordered Resolution and the two reductions.

Moreover, a clause from a k-layer for k ∈ N can only be derived as either

• a conclusion of a Temporal Shift inference with the premise in the (k − 1)-layer,

• or a conclusion of an Ordered Resolution inference where at least one of the
premises is in the k-layer and the other possibly comes from the ∗-layer.

34

2.3 Labeled superposition

Thus, the (o+ p+ 1)-layer of M∗ can be obtained (from the clauses in the (o+ p)-layer
and the ∗-layer) by replaying the corresponding deductions that were used during layer-
by-layer saturation to obtain the (o+ 1)-layer of M (from the clauses in the o-layer and
the ∗-layer). This follows from the fact that the o-layer and (o+ p)-layer of M are equal
up to reindexing. Now the argument can be inductively generalized to a (o+p+ i)-layer
of M∗ for any i ∈ N by replaying the deductions used during layer-by-layer saturation
of the (o+ i mod p)-layer of M .

Remark 2.1. The above observation implies that once the ∗-layer is saturated and fixed,
the form of the k-layer for k > 0 is fully determined by the premises of the Temporal
Shift inference in the (k− 1)-layer, i.e., the clauses of the form (∗, k− 1) ||C where C is
only over the signature Σ. This means that it is sufficient to consider only these, shiftable
clauses when performing the repetition check in Algorithm 2.1. For the sake of simplicity,
we do not incorporate this practical optimization into our theoretical presentation.

The decision procedure

The overall decision procedure for LTL satisfiability based on LPSup uses layer-by-layer
saturation as a subroutine. Each time we obtain a clause set M saturated in a layer-by-
layer fashion we reason about its infinite extension M∗ in order to

• check whether M∗ is obviously contradictory (see Definition 2.13), in which case
we report unsatisfiability,

• find premises for Leap inferences (see Figure 2.4), such that M can be enriched
with their conclusions.

Although these operations formally involve the infinite set M∗, we show that they can
be implemented just by referring to its finite representation M .

Pseudocode of the procedure is presented in Algorithm 2.2. The given formula ϕ is
first transformed into a TST T , which in turn gives rise to a starting labeled clause set
N1 (lines 1 and 2). Recall that these transformations, described in Section 2.2.2 and
Section 2.3.1, respectively, preserve satisfiability of the given formula. The procedure
then runs in a loop (starting on line 3). The purpose of the loop is to 1) saturate the
current clause set N1 in a layer-by-layer fashion (line 4) producing a clause set N2, 2)
test whether N∗2 is obviously contradictory (line 5), which means the given formula ϕ is
unsatisfiable, and 3) enrich the clause set N2 with conclusions of Leap inferences with
premises in N∗2 (lines 7 and 8). If the addition of the Leap conclusions is non-trivial and
new clauses have been added (line 9) the loop needs to be run again. In the opposite
case, sufficiently many inferences have been performed to allow us to conclude that the
given formula ϕ is satisfiable (line 12).

A remark is in order concerning how the Leap inference is handled (line 7). Given a
clause (b, k) ||C from the “periodic part” of N2, i.e., with k satisfying o ≤ k < o + p,
its corresponding copies (b, k + i · p) ||C for i ∈ N are elements of N∗2 and so there
can be a Leap inference with these clauses as premises and with a conclusion C =
(b, k − p) ||C, provided k − p ≥ 0. Once this conclusion is added, there can be another

35

2 Labeled superposition for LTL

Algorithm 2.2 Deciding LTL satisfiability with LPSup

Input:
An LTL formula ϕ

Output:
Satisfiability status of ϕ: either SAT or UNSAT

1: T ← a TST obtained from ϕ
2: N1 ← a starting labeled clause set for T
3: loop
4: N2 ← layer-by-layer saturation of N1 with offset o and period p

5: if (b, k) || ⊥ is in N2 and (b = ∗ or k = ∗), or
(0, k) || ⊥ is in N2 for every 0 ≤ k < o+ p then

6: return UNSAT /* N∗2 is obviously contradictory */

7: Leaped ← {(b, k − j · p) ||C | for o ≤ k < o+ p, (b, k) ||C ∈ N2, j = 1, . . . , bk/pc}
8: N3 ← N2 ∪ {C ∈ Leaped | C not subsumed by a clause in N2}
9: if N2 6= N3 then /* There was a non-trivial addition by Leap */

10: N1 ← N3

11: else
12: return SAT /* N2 saturated till repetition with respect to LPSup */

Leap inference with premises formed by the new clause C together with the former
premises (b, k+ i ·p) ||C and with a new conclusion (b, k−2p) ||C. Iteratively, we obtain
the general form of all the conclusions: (b, k − j · p) ||C for every j = 1, . . . , bk/pc.
Example 2.9. In our example, the infinite extension of the layer-by-layer saturation
contains the premises {(∗, 1 + i) || a}i∈N of a Leap inference with conclusion (∗, 0) || a.
This clause together with the already present (∗, 0) || ¬a yields the empty clause (∗, 0) || ⊥
by Ordered Resolution. This terminates the overall procedure, because the empty clause
is unconditional and, therefore, the overall set becomes obviously contradictory.

Correctness

Because Algorithm 2.2 combines the initial satisfiability preserving transformations with
saturation via the sound calculus LPSup, it correctly reports unsatisfiability when it
computes an obviously contradictory clause set. Correctness of the satisfiable case relies
on the completeness theorem for LPSup, which we present in the next section. The
interface point to the completeness theorem is substantiated by the following definition.

Definition 2.17. A set of labeled clausesN is saturated (up to redundancy) till repetition
with respect to LPSup, if there are numbers offset o ∈ N and period p ∈ N+ such that

(1) the o-layer of N is equal to the (o+ p)-layer of N up to reindexing,

36

2.3 Labeled superposition

(2) the conclusion of every Ordered Resolution inference with non-redundant (with re-
spect to N) premises in N is either redundant with respect to N or contained in
N ,

(3) for every Temporal Shift inference with non-redundant (with respect to N) premise
(∗, k) ||C in N such that k = ∗ or k < o+ p, its conclusion is contained in N ,

(4) for every non-redundant (with respect to N) labeled clause (b, k) ||C in N such that
o ≤ k < o+ p and for every j = 1, . . . , bk/pc the conclusions (b, k − j · p) ||C of the
Leap inference are contained in N .

The definition refers to the abstract redundancy notion (Definition 2.14) which is in
our case instantiated within the Tautology deletion and Subsumption reductions. It is
easy to establish with the help of Lemma 2.11 that when Algorithm 2.2 returns SAT the
set N2 is indeed saturated till repetition and, therefore, has a (K,L)-model according
to the completeness theorem (see page 38). To conclude that the algorithm is correct,
we just need to verify that this model of the final value of the pseudocode variable N2

is also a model of the initial value of N1.
The non-trivial step of the argument lies with the call to layer-by-layer saturation.

Notice that Algorithm 2.1 returns as soon as repetition is detected without waiting for
all the clauses from the input clause set N to be processed. This is not a problem during
the first call, when the input is a starting labeled clause set and so it only contains clauses
from the ∗-layer and the 0-layer, which all need to be processed before repetition can be
detected. During the later calls, however, there can be clauses from the input clause set
N of layers with an index greater than the new value of o+ p, which are therefore still
waiting to be processed when repetition occurs. With appeal to the deduction replaying
argument used before we claim that these clauses can be safely ignored, because they
could be re-derived in the same way as in the last call of the layer-by-layer saturation
and are, therefore, logically entailed by the clauses of the lower index layers, which have
been considered.

Remark 2.2. If follows from the above that we could always call layer-by-layer saturation
with only the clauses of the ∗-layer and the 0-layer of the input clause set N , because the
higher index layer clauses are logically entailed by these. We have chosen our current
presentation, because it provides an opportunity for a more efficient implementation.
Indeed, with a suitable bookkeeping between the calls each subsequent call of layer-by-
layer saturation can only focus on inferences and reductions that have not been performed
before, namely on those affecting the conclusions of the last Leap inferences.

Termination

We have already argued that the layer-by-layer saturation always terminates. Although
the values of offset o and period p associated with N2 may change from one loop iter-
ation to another, the index of the repeating layer (o + p) is each time bounded by the
constant 2c, which represents the number of different layers not equal up to reindexing
(see Lemma 2.10) and which depends only on the size of the signature Σ.

37

2 Labeled superposition for LTL

To show the overall termination of Algorithm 2.2 we need to put a bound on the
number of iterations of the loop. The key observation is that there can be only as many
non-trivial additions (to any particular layer) by the Leap inference (line 8) as there
is different labeled clauses with a common second label component, i.e., as many as c
from Lemma 2.10: Any clause added to a particular layer either by the Leap inference
or during layer-by-layer saturation, either stays in the layer till the end or is subsumed
by another clause, in which case it cannot be reinserted (since the subsumption relation
is transitive). Therefore, there can be at most c iterations of the loop.

2.3.4 Completeness and model building

In this section we prove the completeness theorem for LPSup. We show that any set of
labeled clauses which is saturated up to redundancy till repetition with respect to LPSup
(Definition 2.17) represents in a particularly chosen rank (K,L) a set of standard clauses
saturated up to redundancy with respect to PSup (Definition 2.2). This way, we lift the
standard completeness of PSup to the level of labeled clauses.

We also discuss the possibility of constructing models of satisfiable sets of labeled
clauses. We describe how to utilize the model operator of PSup to process the potentially
infinite set of standard clauses represented by a set of labeled clauses. For satisfiable
sets saturated by LPSup this gives us a straightforward “backtrack-free” model building
procedure.

The section ends with an extensive example which demonstrates the layer-by-layer
saturation process described previously as well as the subsequent model building.

Completeness theorem

Before we prove our main result, we need a simple lemma about Leap inferences from
the “periodic part” of infinite extensions (Definition 2.16).

Lemma 2.12. Let N be a set of labeled clauses saturated till repetition with offset o
and period p, let N∗ be the infinite extension of N , and let (b, k) ||C be a non-redundant
clause in N∗ such that k ≥ o. Then the clauses (b, k − j · p) ||C are in N∗ for every
j = 1, . . . , bk/pc.

Proof. If k ≥ o + p, the conclusion for j = 1 follows from Definition 2.16 and the rest
from this very lemma with k replaced by k−p (formally, this is an inductive argument).
If k < o+ p the conclusion follows from Definition 2.17 item (4).

Theorem 2.3 (Completeness of LPSup). Let N be a set of labeled clauses saturated till
repetition with offset o and period p and N∗ its infinite extension that is not obviously
contradictory. Let K be the smallest natural number such that (0,K) || ⊥ is not in N∗

and let L be the smallest multiple of p that is not smaller than o. Then the set N∗(K,L)

does not contain the (standard) empty clause and is saturated up to redundancy with
respect to PSup.

38

2.3 Labeled superposition

Proof. First note that since N∗ is not obviously contradictory, the number K is well-
defined. Moreover, if N∗ contains an empty labeled clause, it must be of the form
(0, k) || ⊥ with k 6= K. Such a clause can only represent the (standard) empty clause in
(K,L) if the equation

0 + k = K + s · L
has a solution for some s ∈ N. But k = K is already ruled out and if we had k = K+s ·L
for some s ∈ N+, then, because L is a multiple of p not smaller than o and because an
empty clause is never redundant, the labeled clause (0,K) || ⊥ would have to be in N∗ by
Lemma 2.12, which is impossible. Therefore, N∗(K,L) does not contain the empty clause.

To show that N∗(K,L) is saturated up to redundancy with respect to PSup, let us take
an Ordered Resolution inference of PSup with premises C ∨ a and D ∨ ¬a in N∗(K,L)
that are non-redundant with respect to N∗(K,L). Recall that for such premises the atom
a is maximal in C and its complement ¬a is maximal in D. We claim that the labeled
clauses from N∗ that represent these premises in (K,L) can be chosen in such a way
that they form premises of Ordered Resolution inference of LPSup. In more detail, we
claim that there is a labeled clause (b1, k1) ||C1∨a1 in N∗ that represents C∨a in (K,L)
and a labeled clauses (b2, k2) ||D2 ∨ ¬a2 in N∗ that represents D ∨ ¬a in (K,L) such
that

(i) a1 is maximal in C1 and ¬a2 is maximal in D2,

(ii) a1 is identical to a2 (this is not obvious as we could also have, e.g., (a1)′ = a2),

(iii) the merge of (b1, k1) and (b2, k2) is defined and equal to some (b, k).

Because the clauses C ∨ a and D ∨ ¬a are non-redundant with respect to N∗(K,L), the

labeled clauses (b1, k1) ||C1∨a1 and (b2, k2) ||D2∨¬a2 are non-redundant with respect to
N∗. It follows from Definition 2.17 item (2) that the labeled conclusion (b, k) ||C1 ∨D2

is either redundant with respect to N∗ or contained in N∗. By Lemma 2.4 the labeled
conclusion represents the standard conclusion C∨D in (K,L), which is, therefore, either
redundant with respect to N∗(K,L) or contained in N∗(K,L). Thus, to finish the proof, we

just need to verify the above claim and, in particular, check the items (i)–(iii).
The ordering constraints of item (i) follow immediately from the corresponding prop-

erty of the represented standard clauses, because we assume both PSup and LPSup to
be parametrized by the same fixed literal ordering < (see Definition 2.11).

To find the right labeled clauses for representing the premises of the PSup inference,
such that they satisfy items (ii) and (iii), we will rely on the fact that the set N is
saturated till repetition. Assume that the labeled clause (b1, k1) ||C1 ∨ a1 represents
C ∨ a and the labeled clause (b2, k2) ||D2 ∨ ¬a2 represents D ∨ ¬a. This means there
are t1 ∈ R(K,L)(b1, k1) and t2 ∈ R(K,L)(b2, k2) such that (a1)(t1) = (A2)(t2) = a. Because
all labeled clauses are over the signature Σ ∪ Σ′, if the atom a1 is not identical to a2,
it must be the case that a1 ∈ Σ and (a1)′ equals a2 ∈ Σ′, or symmetrically with a1

and a2 exchanged. Let us focus without loss of generality on the first case. We must
have t1 = t2 + 1 > 0 and, therefore, b1 = ∗. Moreover, because the atom a1 is maximal
in C1, the whole clause C1 ∨ a1 is necessarily only over the signature Σ. This means

39

2 Labeled superposition for LTL

the labeled clause (b1, k1) ||C1 ∨ a1 is a valid premise of the Temporal Shift inference.
It follows from Definition 2.17 item (3) that the conclusion (∗, k′1) || (C1 ∨ a1)′ of this
inference is contained in N∗. The conclusion represents the same clause C ∨ a in (K,L)
as the premise by Lemma 2.6 and satisfies item (ii) above. We can, therefore, replace the
labeled clause (b1, k1) ||C1∨a1 by (∗, k′1) || (C1∨a1)′, or, in other words, assume that item
(ii) is already satisfied by the labeled clauses (b1, k1) ||C1 ∨ a1 and (b2, k2) ||D2 ∨ ¬a2.

Let us finally focus on item (iii). The only case when the merge operation is not
defined for labels (b1, k1) and (b2, k2) is when k1, k2 ∈ N and k1 6= k2. Because we
assume item (ii) already holds, we have that the indexes t1 and t2 are equal, their
common value lies in R(K,L)(b1, k1) ∩ R(K,L)(b2, k2), and, therefore, L divides k1 − k2.
Assuming without loss of generality that k1 > k2, this implies that k1 ≥ o (since L ≥ o)
and so by Lemma 2.12 there is a labeled clause (b1, k2) ||C1 ∨ a1 in N∗ (since p divides
L), which also represents the clause C ∨ a in (K,L) by Lemma 2.7. Thus, by replacing
the labeled clause (b1, k1) ||C1 ∨ a1 by (b1, k2) ||C1 ∨ a1 we obtain labeled clauses for
representing the premises of the PSup inference that satisfy both items (ii) and (iii).

Model building

We obtain as a corollary of the above theorem and the completeness of PSup (Theo-
rem 2.1) that the standard clause set N∗(K,L) is satisfiable. In fact, we know that

I<c
(N∗(K,L)) |= N∗(K,L),

where I<c
is the model operator (see Definition 2.3) corresponding to the clause ex-

tension <c of the ordering < on literals over Σ∗ =
⋃

i∈N Σ(i). To turn this observation
into an algorithm we just need to generate the clauses from N∗(K,L) in increasing or-
der and incrementally build a partial interpretation I, collecting the atoms whose truth
value has already been decided. This interpretation I (over the signature Σ∗) naturally
corresponds to an LTL interpretation V = (Vi)i∈N, i.e., to a sequence of propositional
valuations over Σ (see Lemma 2.2). Because there is only finitely many possible valu-
ations over Σ, we are eventually bound to detect a repetition Vi = Vj between some of
the already completed valuations Vi. At this point we stop the construction and output
an ultimately periodic interpretation, which is a model4 of N .

The pseudocode of the model building procedure is detailed in Algorithm 2.3. It
iterates over the time indexes i in increasing order (line 3) and each time collects the
(finite) set of those “instances of clauses in N∗”, i.e., of those standard clauses over Σ∗

represented in (K,L) by some clause in N∗, which are relevant for the current index i,
i.e., contain a literal over Σ(i) (lines 5–8). Note that because the set N is saturated by
Leap we only need to pick the labeled clauses from N and not from its infinite extension
N∗. Also, because the set N is saturated by Temporal Shift, once i > 0, we only need
to focus on clauses that contain a primed literal (see line 8).

4To be more precise, the corresponding (via Lemma 2.2) valuation V ∗ : Σ∗ → {0,1} witnesses (K,L)-
satisfiability of N (see Definition 2.10) for K equal to the length of the initial segment and L to the
period of the ultimately periodic interpretation.

40

2.3 Labeled superposition

Algorithm 2.3 LTL model building

Input:
A set of labeled clauses N saturated till repetition
such that N∗ is not obviously contradictory

Output:
An ultimately periodic LTL interpretation V = (Vi)i∈N such that V |= N

1: compute the rank (K,L) as in the completeness theorem
2: I ← ∅ /* Set of atoms over Σ∗, working as a partial interpretation */

3: for i← 0, 1, . . . do
4: /* Collect clauses relevant for the current index i */
5: if i = 0 then
6: R ← {C(i) | (b, k) ||C ∈ N,C over Σ, i ∈ R(K,L)(b, k)}
7: else
8: R ← {C(i−1) | (b, k) ||C ∈ N,C has a primed literal, (i− 1) ∈ R(K,L)(b, k)}

9: /* Build the next valuation Vi */
10: foreach p ∈ Σ ordered by < do
11: if there is (C ∨ p(i)) ∈ R such that

p(i) is maximal in C and C is false in I then

12: I ← I ∪ {p(i)}
13: Vi ← λp ∈ Σ . if p(i) ∈ I then 1 else 0

14: /* Check for repetition */
15: if i ≥ K and Vi = Vj from some j < K + b(i−K)/Lc · L then
16: return λn ∈ N . if n ≤ j then Vn else Vj+(n−j) mod (i−j)

41

2 Labeled superposition for LTL

The Σ(i)-part of the interpretation I is then built following the definition of the stan-
dard model operator (lines 10–12). We use the lambda notation to describe the cor-
responding valuation Vi (line 13). Finally, the repetition check of valuations (line 15)
makes sure that between the indexes j and i, which mark the repetition, there is at
least one index of the form K + s ·L, where the goal clauses are satisfied. The resulting
ultimately periodic interpretation is again defined using the lambda notation (line 16).

Example

Let Σ = {a, b} be a signature ordered by a < b and let us consider the following set of
labeled clauses N

1: (0, ∗) || ¬a
2: (∗, 0) || a
3: (∗, ∗) || ¬a ∨ b ∨ a′
4: (∗, ∗) || a ∨ ¬a′ ∨ ¬b′
5: (∗, ∗) || ¬b ∨ ¬a′ ∨ ¬b′
6: (∗, ∗) || ¬a ∨ b ∨ b′
7: (∗, ∗) || ¬a ∨ ¬a′ ∨ b′

We first saturate the ∗-layer of N . Ordered Resolution inferences between the pairs of
clauses (4,6), (4,7), and (5,6) lead to tautologies. The last remaining pair (5,7) yields
the following clause.

8: (∗, ∗) || ¬a ∨ ¬b ∨ ¬a′ OR(5,7)

Because the conclusion of the Ordered Resolution inference for the pair (3,8) is a tau-
tology, the ∗-layer is now saturated. The layer-by-layer saturation proceeds as follows.

9: (0, 0) || ⊥ OR(1,2)
10: (∗, 1) || a′ TS(2)
11: (∗, 1) || ¬a ∨ ¬b OR(8,10)
12: (∗, 2) || ¬a′ ∨ ¬b′ TS(11)
13: (∗, 2) || ¬a ∨ b ∨ ¬a′ OR(6,12)
14: (∗, 2) || ¬a ∨ ¬a′ OR(7,12), subsumes 13
15: (∗, 2) || ¬a ∨ b OR(3,14)
16: (∗, 3) || ¬a′ ∨ b′ TS(15)
17: (∗, 3) || a ∨ ¬a′ OR(4,16)
18: (∗, 3) || ¬b ∨ ¬a′ OR(5,16)

Because both the possible Ordered Resolution inferences for the pairs (3,17) and (3,18)
yield a tautology, layer-by-layer saturation terminates by exhausting the set of Usable
clauses. We make use of Remark 2.1 and only focus on shiftable clauses when looking for
layer repetition. Recall that these are clauses of the form (∗, k) ||C where C is over Σ.
There is no shiftable clause in the 3-layer and, obviously, neither in the empty 4-layer,
so we report offset o = 3 and period p = 1.

42

2.4 Semantic and syntactic aspects

Because we saturated our clause set finitely, no Leap inference is needed: the set is
automatically saturated till repetition. The set is also not obviously contradictory. We
learn from the completeness theorem that we should look for a (K,L)-model with K = 1
and L = 3.

Below we trace the run of the model building Algorithm 2.3. We show the values of
selected variables as they change during the individual iterations. For the variable R
we use one additional obvious optimization, which is not mentioned in the pseudocode:
we only collect those clauses that are currently false in I and their maximal literal is
positive, because only such clauses can later produce a literal into I.

iteration i relevant clauses R additions to I computed Vi
0 ∅ ∅ {a 7→ 0, b 7→ 0}
1 {a′} {a′} {a 7→ 1, b 7→ 0}

2
{¬a′ ∨ b′ ∨ a(2), ¬a′ ∨ b′ ∨ b(2), {a(2), b(2)} {a 7→ 1, b 7→ 1}¬a′ ∨ ¬a(2) ∨ b(2), ¬a(2) ∨ b(2)}

3 {¬a(2) ∨ ¬a(3) ∨ b(3)} {b(3)} {a 7→ 0, b 7→ 1}
4 {a(4)} {a(4)} {a 7→ 1, b 7→ 0}

We see repetition is detected after iteration 4 with V4 = V1. The resulting ultimately
periodic interpretation V, which is a model of N , starts with a singleton initial segment
V0 and then infinitely repeats the sequence V1, V2, V3.

2.4 Semantic and syntactic aspects

We have just seen that LPSup is a complete calculus and that it can be turned into a
decision procedure for LTL. In this section, we try to give more meaning to what this
procedure internally computes, which will later help us relating it to other approaches.

In more detail, we first explain how a TST can be seen as a symbolic description of a
Büchi automaton. We then elaborate this result, which is also of independent interest, to
give a new semantic perspective to the operation of LPSup. In particular, we introduce
a notion of a semantic graph, a graph theoretic analogue of the Büchi automaton. We
define the meaning of labeled clauses in terms of the graph and explain how the graph
changes during the saturation process. Finally, we study under what conditions does
semantic equivalence on the graph side correspond to syntactic equality of sets of labeled
clauses. This result is essential for understanding the semantics of repetition detection
during layer-by-layer saturation.

2.4.1 TST as a symbolic description of a Büchi automaton

Büchi automata are an extension of finite automata for handling infinite inputs. For-
mally, a Büchi automaton is a tuple A = (Q,QI , δ, QG), where Q is a finite set of states,
QI ⊆ Q is the set of initial states, δ ⊆ Q × Q is the transition relation, QG ⊆ Q is the
set of accepting states. A run of A is an infinite sequence q0q1 . . . of states such that

43

2 Labeled superposition for LTL

q0 ∈ QI and (qi, qi+1) ∈ δ for every i ∈ N. A run is accepting it there are infinitely many
indexes j such that qj ∈ QG.

So far, we have just captured internal computation of the automaton. To enable
processing of inputs, we fix an input domain D and equip a Büchi automaton A with a
labeling function l : Q→ 2D which assigns a subset of D to every state of A. This way
we obtain a labeled Büchi automaton (A,D, l). Such an automaton accepts an infinite
sequence d0d1 . . . of elements of D if there is an accepting run q0q1 . . . of the automaton
A such that di ∈ l(qi) for every i ∈ N.

Here we are, in particular, interested in automata over the input domain D = 2Σ

of all the propositional valuations over the signature Σ. These automata process as
an input an infinite sequence of elements of 2Σ, in other words, they process an LTL
interpretation. It is well known (Vardi and Wolper, 1994) that for any LTL formula ϕ
there is a Büchi automaton Aϕ recognizing models of ϕ, i.e. an automaton which accepts
exactly those LTL interpretations V = (Vi)i∈N that are models of ϕ. The size of such
an automaton, i.e. the number of its states, is bounded by 2O(|ϕ|), where |ϕ| denotes the
size of the formula.

Interestingly, we can interpret a TST T = (Σ, I, T,G) as a symbolic representation
of such an automaton and our normal form transformation, which turns a general LTL
formula to an SNF and further to TST (Section 2.2.2), as an alternative way of obtaining
a Büchi automaton for the formula. The states of the represented automaton are formed
by the set Q = 2Σ, i.e. the set of all valuations over Σ, its transition function

δ = {(V1, V2) | [V1, V2] |=
∧
T

(Ct ∨ (Dt)
′)}

contains those pairs of valuations that satisfy the step clauses, and its initial and accept-
ing sets are defined as QI = {V | V |= ∧I Ci} and QG = {V | V |= ∧GCg}, respectively.
It is easy to check that the models of T are exactly the accepting runs of this automaton
when we label each state by a singleton set containing only itself: l(q) = {q} ⊆ 2Σ.

If we want to obtain models of the original formula ϕ, which are interpretations
only over the original formula’s signature Σ0 ⊆ Σ, it is sufficient to abstract away
the value of the auxiliary variables that were introduced during the transformation (i.e.,
the variables from Σ \Σ0). Formally, the labeling function then computes a restriction:
l(q) = {q � Σ0}.

Recall how we argued that our normal form transformation does not increase the size
of the formula by more than a linear factor, and thus, in particular, |Σ| = O(|ϕ|). This
means, that it is only the just described last step, when the symbolically represented
automaton is made explicit which incurs the inherent exponential blowup.

Example 2.10. Recall the TST T = ({a, b}, ∅, {a∨b′,¬b∨b′}, {¬a,¬b}) from our running
example. The corresponding Büchi automaton represented by T is depicted in Figure 2.7.

Remark 2.3. The described transformation that turns a TST into an explicit automaton
has a corresponding inverse-like mapping, which can be useful for constructing exam-
ple TSTs with specific semantic properties. The mapping takes an automaton A and
produces a TST TA such that TA symbolically describes A.

44

2.4 Semantic and syntactic aspects

b b

b b

QG

q10 = {a 7→ 1, b 7→ 0}q00 = {a 7→ 0, b 7→ 0}

q01 = {a 7→ 0, b 7→ 1} q11 = {a 7→ 1, b 7→ 1}

Figure 2.7: Büchi automaton represented by a TST from the running example. The
dots stand for the states of the automaton, arrows for its transition relation. The set of
its initial states QI comprises all the four states of the automaton (not visualized) and
the accepting set QG equals the singleton set {q00}.

Given a Büchi automaton A = (Q,QI , δ, QG) let us assume5 that its set of states Q
is of size 2n such that we can identify6 Q with the set 2Σ of valuations over a signature
Σ of size n. The constructed TST TA has Σ for its signature. Its initial, step, and goal
clause sets are defined, respectively, using the following complementation trick:

IA = {CV | V ∈ 2Σ V 6∈ QI},
TA = {C[V1,V2] | V1, V2 ∈ 2Σ (V1, V2) 6∈ δ},
GA = {CV | V ∈ 2Σ V 6∈ QG},

where the clause CV for a valuation V ∈ 2Σ is the unique clause over Σ such that V is the
only valuation over Σ that makes it false, or explicitly: CV = {l literal over Σ | V 6|= l}.

We see that the size of TA can be bounded by a polynomial in the number of states
of A.7 This means it is exponential in the size of the signature Σ. Although the clause
sets can typically be simplified and reduced, we cannot hope for a substantially better
encoding in the worst case due to combinatorial reasons (counting argument).

Example 2.11. When we transform the automaton A from the Figure 2.7 back into a
TST, we obtain TA = ({a, b}, IA, TA, GA), where IA = ∅, GA = {¬a∨b, a∨¬b,¬a∨¬b}),
and the set of step clauses TA consists of the following six elements:

a ∨ b ∨ a′ ∨ b′, a ∨ b ∨ ¬a′ ∨ b′, a ∨ ¬b ∨ a′ ∨ b′,
a ∨ ¬b ∨ ¬a′ ∨ b′, ¬a ∨ ¬b ∨ a′ ∨ b′, ¬a ∨ ¬b ∨ ¬a′ ∨ b′.

2.4.2 Semantic graphs for labeled clause sets

It is instructive keep following the above correspondence between a TST and its au-
tomaton after the TST has been transformed into a set of labeled clauses. We gain new
insights by observing the operation of LPSup through the lenses of this new semantics.

5We can always pad Q to the nearest power of 2 by adding isolated states.
6Formally, we are fixing a bijection between Q and 2Σ.
7The dominant term is the size of TA, which can contain up to (2n)2 clauses, each of size 2n.

45

2 Labeled superposition for LTL

(∗, ∗)

(0, ∗) (∗, 0) (∗, 1)

TSOR

OR OR
TS TS

. . .

(0, 0) (0, 1)

OR OR

Figure 2.8: Interactions between labels during Ordered Resolution (OR) and Temporal
Shift (TS) inferences. Arrows point from the labels of the inference’s premises to the
label of its conclusion. Three dots denote a potential continuation of the diagram.

For this purpose we gradually develop the notion of a semantic graph for a set of
labeled clauses.8 We analyze soundness of the individual inference rules of LPSup from
this perspective, in which we interpret a model as an infinite path through the graph
satisfying an analogy of the Büchi acceptance condition. As an interesting by-product,
we explain the meaning of the different empty labeled clauses of LPSup. This will provide
us with a classification of different ways in which a TST can be unsatisfiable.

Although the motivation for introducing semantic graphs is different, they are related
to behavior graphs of Degtyarev et al. (2002) used in the completeness proof of Clausal
Temporal Resolution (Fisher et al., 2001).

The semantic graph

Let us start by introducing two simple concepts which will help us streamline the subse-
quent exposition. By a (b, k)-clause we mean any labeled clause C of the form (b, k) ||C.
A labeled clause C is called simple, if its standard part C is only over the signature Σ.

The semantic graph for a set of labeled clauses N is a directed graph with the set
of vertexes identified with 2Σ, i.e. the set of all valuations over the basic signature Σ,
and with the edge relation EN ⊆ 2Σ × 2Σ containing exactly those pairs of vertexes that
satisfy the (∗, ∗)-clauses of N :

EN = {(V1, V2) | [V1, V2] |= C for every (∗, ∗) ||C ∈ N}.

We will now gradually extend the notion of the semantic graph with additional com-
ponents as we go along. The plan is to start by looking at the (∗, ∗)-clauses and consider
the other label types one by one only after we have understood the meaning of the cur-
rently considered subset. We do this in a way that respects the interactions between the
labels (as shown in Figure 2.8) such that the considered subset of label types is always
closed under Ordered Resolution and Temporal Shift. Initially, we do not consider the
Leap inference, the meaning which is explained as the last step.

8For convenience, we switch from automata theoretic to graph theoretic terminology.

46

2.4 Semantic and syntactic aspects

Ordered Resolution and the (∗, ∗)-clauses

First note that Ordered Resolution inferences of LPSup on (∗, ∗)-clauses directly cor-
respond to Ordered Resolution inferences of PSup on their respective standard parts.
This allows us use results about PSup to infer properties of sets of labeled clauses.

Performing an Ordered Resolution inference on (∗, ∗)-clauses of N (and adding the
respective conclusion to N) does not change the edge relation EN of the semantic graph,
because the inference is sound. Saturation by Ordered Resolution, however, derives
enough information to decide which vertexes have successors and which do not.

We define the set of source vertexes SN ⊆ 2Σ of the semantic graph as

SN = {V | V |= C for every simple (∗, ∗) ||C ∈ N}.
It follows from this definition that the set SN of source vertexes changes, namely shrinks,
only when a new simple (∗, ∗)-clause is derived from non-simple parents. The following
lemma characterizes the final value of SN obtained by saturation.

Lemma 2.13. When N is saturated by Ordered Resolution, the set SN consists exactly
of those vertexes of the semantic graph that have out-degree at least one:

SN = {V1 | ∃V2 such that (V1, V2) ∈ EN}.
Proof (idea). When a pair of vertexes forms an edge (V1, V2) ∈ EN , the first vertex
V1 necessarily satisfies the simple (∗, ∗)-clauses of N by definition. For the opposite
inclusion, i.e. the claim

∀V1 ∈ SN ∃V2 such that (V1, V2) ∈ EN ,
we require that N be saturated by Ordered Resolution. The argument relies on the
completeness of PSup (Theorem 2.1) and on the fact that in our literal ordering any
literal over Σ is smaller than a literal over Σ′. Here are its main ingredients.

• We work with a set N (∗,∗) consisting of the standard parts of the (∗, ∗)-clauses of
N , which we assume to be saturated up to redundancy (with respect to PSup).
We aim at using the model operator (Definition 2.3) to find the required edge.

• Given V1 ∈ SN we enrich N (∗,∗) by all the unit clauses (clauses with just one literal)
true in V1:

M = N (∗,∗) ∪ {l literal over Σ | V1 |= l}.

• The key observation is that the set M is also saturated up to redundancy. Indeed,
consider an Ordered Resolution inference between one of the added literals l and
a clause (C ∨∼l) ∈ N (∗,∗). Because ∼l is maximal in C, the clause C is only over
Σ. It must be subsumed (and therefore redundant) by some of the other added
literals, because otherwise C would be false in V1.

• By the completeness theorem we obtain a model I<c
(M) of M which is necessarily

of the form [V1, V2] for some vertex V2 thanks to the presence of the added literals.

47

2 Labeled superposition for LTL

b b b

SN1

b b b b

SN2

b b b b

SN3

b b b b

SN4

bTS
=⇒ OR

=⇒ TS
=⇒

Figure 2.9: Progressive changes of the semantic graph caused by alternate saturation by
the Temporal Shift (TS) and Ordered Resolution (OR) inferences. Temporal Shift effec-
tively deletes edges to vertexes with out-degree zero, Ordered Resolution then computes
the new set of source vertexes. No edge leaves SN in the fixpoint.

Adding the Temporal Shift inference

The effect of a Temporal Shift inference on the semantic graph can be described as
follows. We take a property C of the source vertexes in the form of a simple clause
(∗, ∗) ||C and assert it to also hold for the edges’ targets by deriving (∗, ∗) || (C)′. This
way we effectively delete edges to vertexes with out-degree zero, i.e. to vertexes without
an outgoing edge. Note that such vertexes cannot lie on an infinite path through the
semantic graph and, therefore, can be safely discarded.

The fact that the labeled clause set N has been saturated by both Ordered Resolution
and Temporal Shift means that the above operation has been run to a fixpoint and every
“target vertex” is also a source vertex:

EN ⊆ SN × SN .

See Figure 2.9 for an illustration.

What if there is no source vertex in the semantic graph of the final saturated labeled
clause set N? It follows from completeness of PSup that N must in that case contain the
empty clause (∗, ∗) || ⊥. This means, from a dynamic perspective, that the empty clause
(∗, ∗) || ⊥ is derivable from N if and only if the semantic graph for N does not contain
a cycle (or a self-loop). In this sense, LPSup on the (∗, ∗)-fragment decides existence of
cycles in the represented semantic graph.

Adding the (0, ∗)-clauses

Recall that the (0, ∗)-clauses of a starting labeled clause set directly correspond to the
initial clauses of a TST (Definition 2.9). As such they are necessarily simple and this
property is preserved during inferences of LPSup. Also note that new (0, ∗)-clauses
arise as conclusions of Ordered Resolution inference either between two (0, ∗)-clauses
or between a (0, ∗)-clause and a (∗, ∗)-clause (see Figure 2.8). Therefore, it is natural
to consider the (∗, ∗)-clauses implicitly present when formalizing what the (0, ∗)-clauses
represent.

We define the initial vertexes IN ⊆ 2Σ of the semantic graph for N as

IN = SN ∩ {V | V |= C for every (0, ∗) ||C ∈ N}.

The initial vertexes are those source vertexes that satisfy the (0, ∗)-clauses.

48

2.4 Semantic and syntactic aspects

It follows from soundness of Ordered Resolution that IN does not change during
inferences unless SN does.9 After SN stabilizes, i.e. the (∗, ∗)-clauses become saturated,
the set of initial vertexes IN may become empty. In that case we eventually derive the
empty clause (0, ∗) || ⊥ thanks to completeness. In fact, the empty clause (0, ∗) || ⊥ is
derivable from N if and only if there is no cycle reachable from an initial vertex in the
semantic graph for N .

Adding the (∗, 0)-clauses

In a complete analogy to the previous case we define the goal vertexes GN of the semantic
graph for N as the subset of those source vertexes that satisfy the (∗, 0)-clauses:

GN = SN ∩ {V | V |= C for every (∗, 0) ||C ∈ N}.
We again rely on the fact that the respective labeled clauses, here the (∗, 0)-clauses, are
always simple: both those from the starting clause set and the derived ones.

We see, in analogy with the case of the initial vertexes, that when the (∗, ∗)-clauses are
saturated, the set of goal vertexes does not change during inferences and the emptiness
of GN is equivalent to derivability of the empty clause (∗, 0) || ⊥. Its presence indicates
that there is no goal vertex that can reach a cycle, i.e. a goal vertex lying on an infinite
path through the semantic graph.

Unlike the case of (0, ∗)-clauses, Temporal Shift inference is applicable to the (always
simple) (∗, 0)-clauses and yields a (∗, 1)-clause as its conclusion. Similarly, a simple
(∗, 1)-clause gives rise to a (∗, 2)-clause, etc. (again recall Figure 2.8). This suggests we
define for any k ∈ N the set of goal vertexes of order k as

GkN = SN ∩ {V | V |= C for every simple (∗, k) ||C ∈ N}.
Then the above introduced notion of the set of goal vertexes GN is just a short name for
G0
N , the set of goal vertexes of order 0.
The same technique we used before to reason about the source vertexes (the proof of

Lemma 2.13) can now be applied to deduce that for a saturated set of labeled clauses N
the goal vertexes of order k + 1 are exactly those vertexes that can reach a goal vertex
of order k in one step:

Gk+1
N = {V1 | ∃V2 ∈ GkN such that (V1, V2) ∈ EN}.

This is perhaps the single most interesting observation of this section. It shows that by
employing Ordered Resolution (and Temporal Shift) we effectively compute the preimage
operation on the symbolically represented sets of vertexes.

By induction on k we obtain that the goal vertexes of order k are exactly those vertexes
that can reach a goal vertex (of order 0) in k steps. This means that an empty clause
of the form (∗, k) || ⊥ signals a situation when there is no vertex that can reach a goal
vertex in k steps and an empty clause of the form (0, k) || ⊥ means that there is no
initial vertex that can reach a goal vertex in k steps. See Figure 2.10 for two illustrative
examples.

9Note that the Temporal Shift inference does not apply here, because (0, ∗)-clauses are not shiftable.

49

2 Labeled superposition for LTL

bb

G0
N1

(∗, 1) || ⊥

bb

IN2

(0, k) || ⊥

Gk
N2

Figure 2.10: Semantic graphs of two labeled clause sets N1 and N2. In the first case,
there is no goal vertex of order 1 and so the empty clause (∗, 1) || ⊥ can be derived. In
the second case, the set of goal vertexes of order k is non-empty for every k, in fact all
the sets GkN2

are equal, but none of these intersects with the set of initial vertexes IN2 ,
and so the empty clauses (0, k) || ⊥ are derivable for any k.

Adding the Leap inference

We have just seen that LPSup without the Leap inference analyzes single-time reacha-
bility in the semantic graph for N . It gradually answers the question: Is there a path
in the semantic graph from an initial vertex to a goal vertex? Only when the Leap
inference is added to the calculus the investigated question changes to reaching a goal
vertex infinitely many times.

Recall that in order to apply the Leap inference we saturate the clause set in a layer-
by-layer fashion and look for a repetition in our derivation (as detailed in Section 2.3.3).
In particular, we look for numbers offset o ∈ N and period p ∈ N+ such that the o-layer
and (o+p)-layer of N are equal up to reindexing. Thus on the semantic side a necessary
condition for the Leap inference to apply (we will later discuss under what conditions it
is also sufficient) is when the set of goal vertexes of order o and o+ p are equal.

Let us now study the effect of the Leap inference. We look at the “bulk” manifestation
of the inference as used in Algorithm 2.2 (line 7), where full sets of clauses are copied
from high index layers to strengthen low index layers. For simplicity, we only focus
on the 0-layer of the clause set and so, correspondingly, to what happens to the goal
vertexes GN (of order zero). We obtain the following assignment as the semantic effect
of the Leap inference:

GN ← GN ∩ GrN , (2.7)

where r is the only multiple of p in the range o ≤ r < o+ p.
Soundness of Leap in terms of the semantic graph is the observation that the inference

never deletes goal vertexes that lie on a cycle. Because only a vertex on a cycle can be
reached infinitely many times, Leap never precludes a potential model path. A formal
proof of this claim could go along the following lines.

Because of the detected repetition, we know that all the sets Gr+i·p
N for i ∈ N are equal.

Let us take a vertex V ∈ GN that lies on a cycle of length l ∈ N+ in the semantic graph
for N . For such a vertex we necessarily have V ∈ Gj·lN for every j ∈ N. Because r is a

multiple of p we may choose i, j ∈ N such that r+ i ·p = j · l. This shows that V ∈ Gr+i·p
N

and therefore V ∈ GrN . We conclude that the vertex V remains in GN after performing
the Leap inference, which effectively executes the assignment (2.7).

50

2.4 Semantic and syntactic aspects

bbbb

GN1 = {a, c}

a b c d
bbbb

a b c d

GN2 = {b, d}

Figure 2.11: Demonstrating the Leap inference mechanics. The first example, with
clause set N1, is unsatisfiable. Its goal vertex sets are GN1 = G0

N1
= {a, c},G1

N1
=

{b},G2
N1

= {a, b}, and then repetition occurs with G3
N1

= {a, b}. In a first round, the
Leap inference effectively deletes the vertex c from GN1 as it sets GN ′1 ← GN1∩G2

N1
. After

resaturation we obtain GN ′1 = G0
N ′1

= {a}, and G1
N ′1

= ∅. The second example, with the

clause set N2, demonstrates that the Leap inferences does not necessarily delete every
vertex that does not lie on a cycle. We obtain GN2 = G0

N2
= {b, d},G1

N2
= {a, c}, and

G2
N2

= {b, d}. Leap (with period 2) does not change the set of goal vertexes here.

Let us note that a single Leap inference does not suffice to detect and remove all the
vertexes of the semantic graph that do not lie on a cycle. Moreover, not all vertexes
that do not lie on a cycle are removed. Figure 2.11 showcases the respective situations.

2.4.3 On uniqueness of saturations

When two layers of clauses are equal up to reindexing the corresponding sets of goal
vertexes (of respective orders) are necessarily also equal. We would like to establish
under what conditions does also the opposite implication hold, i.e., when can we expect
to obtain syntactically equal representations of semantically equivalent sets of vertexes.

Similarly to Section 2.3.3 the argument we provide here is proof theoretic and focuses
solely on Ordered Resolution as the inference (Temporal Shift is handled explicitly) and
on Tautology Deletion and Subsumption as reductions. The proof would need to be
reexamined and revised should additional reductions be added to LPSup.

Saturation is a non-deterministic process during which we are required to perform
certain inferences and allowed to perform certain reductions. Here we will insist that
even reductions are performed exhaustively, meaning that no opportunity remains for
performing a reduction in the final saturated set. Obviously, we cannot expect to obtain
syntactically equal sets of clauses if we on one side, e.g., perform a certain subsumption
and on the other side leave the corresponding subsumed clause in place.

Formulating a theorem

We assume a fixed ordering < on Σ for constraining Ordered Resolution inferences. Let
N be set of (∗, ∗)-clause that is saturated by LPSup. Further, let N1, N2 be two sets of
simple (∗, k)-clauses such that Gk(N∪N1) = Gk(N∪N2). For i = 1, 2, let N ′i denote the set of

51

2 Labeled superposition for LTL

corresponding shifted versions of clauses of Ni, i.e.,

N ′i = {(∗, k + 1) || (C)′ | (∗, k) ||C ∈ Ni},
and let N∗i denote a set of (∗, k+1)-clauses obtained from (N∪N ′i) by exhaustive satura-
tion by the Ordered Resolution inference and the Tautology Deletion and Subsumption
reductions. Finally, let N∗i be the subset of simple clauses from N∗i . Our claim is that
despite the potentially different syntactic representations N1 and N2 of the same set
of goal vertexes of order k and despite the non-determinism involved in the saturation
process, the sets N∗1 and N∗2 are necessarily equal.

Derivability relation as a rewrite system

We split the proof of our theorem into two parts. In this first, preparatory part, we
explain how to model LPSup derivations as a rewrite system (see, e.g., Baader and
Nipkow, 1998, for an overview) and use the rewriting theory to obtain a normalization
result for saturations, which will later on help us to focus on derivations of a particular
shape. We structure this first part into several steps.

First, we define the derivability relation on sets of clauses. Two sets N1, N2 are in the
relation, written N1BN2, if the set N2 can be obtained from N1 by adding a conclusion
of the Ordered Resolution inference with premises in N1, by deleting a tautology in
N1, or by deleting a clause from N1 subsumed by another (different) clause in N1.
We can fix the details of the definition in such a way that the derivability relation B
be terminating. This is achieved by stipulating, without the loss of generality, that
tautologies and subsumed (or present) clauses cannot be (re-)derived.

Next, we show that the derivability relation is confluent. This means that for any sets
N1, N2, N3 such that N1 B∗ N2 and N1 B∗ N3, where B∗ is the reflexive and transitive
closure of B, there is a set N4 such that N2 B∗ N4 and N3 B∗ N4. By Newman’s lemma
(Newman, 1942) and relying on the fact that our relation is terminating, it is sufficient
to show only local confluence, a property which requires that for any sets N1, N2, N3

such that N1 B N2 and N1 B N3, there is N4 with N2 B∗ N4 and N3 B∗ N4. This is
done by case analysis over the possible ways in which the sets N2 and N3 can be derived
(for local confluence in one step) from N1. As an example, we present here the most
interesting case, the combination of Ordered Resolution and subsumption, leaving the
other cases to the reader.

We work on the level of PSup relying on the obvious correspondence to LPSup. Let
us assume that the set N2 is derived from N1 by adding the conclusion C∨D of Ordered
Resolution inference with premises C ∨ a and D ∨ ¬a. Moreover, assume that N3 arises
from N1 by deleting the premise C ∨ a. (Note that we can choose C ∨ a over D ∨ ¬a
without loss of generality. Also note that when the deleted clause is not equal to one
of the two premises, the case becomes trivial.) The premise C ∨ a was deleted in N3,
because it is subsumed by a clause C1 ⊂ (C ∨ a). We consider two subcases:

• C1 ⊂ C. Then we set N4 = N3 and arrive from N2 to N4 in two subsumption
steps using C1 ⊂ (C ∨ a) to delete the said premise and C1 ⊂ (C ∨ D) to delete
the previously added conclusion.

52

2.4 Semantic and syntactic aspects

Σ Σ′

N

N ′
i

∗
k + 1

N

N0
i

∗
k + 1

N

N∗
i

∗
k + 1

N

N0
i

∗
k + 1

N

N∗
i

∗
k + 1

N1
i

N∗
iN∗

i

Σ Σ′

Σ Σ′

N

N ′
i

∗
k + 1

N

N∗
i

∗
k + 1 N∗

i

Figure 2.12: Illustrating the proof of the uniqueness of saturations.

• C1 is of the form C0 ∨ a and C0 ⊂ C. Because the literal a must be maximal in
C ∨ a, we know it is also maximal in C0 ∨ a. Thus there is an Ordered Resolution
inference with C0 ∨ a and D ∨ ¬a as premises. We define N4 as N3 with the
conclusion C0∨D of this inference added. We arrive from N2 to N4 in three steps.
First, we repeat the step by which N3 was derived from N1, i.e., we delete C ∨ a,
which is subsumed by C1. Then we repeat the above Ordered Resolution inference
and add C0 ∨D to the set, and, finally, we delete the old conclusion C ∨D as it is
now subsumed by C0 ∨D.

When a rewriting system is both confluent and terminating it is called convergent. In
a convergent rewriting system every object has a unique normal form. For our case of
the derivability relation B this means that for every set of clauses N1 there is a unique
set N2 such that 1) N1 B∗ N2 and 2) there is no N3 for which N2 BN3. Informally, the
final result of the saturation process does not depend on the order in which inferences
and reductions are performed. We will slightly generalize this result for our main proof.

Definition 2.18. Let N1, N2 be two sets of clauses. We say that N1 subsumes N2, if
for every C ∈ N2 there is C0 ∈ N1 such that C0 subsumes C. We say that N1 and N2

are subsumption equivalent, if N1 subsumes N2 and N2 subsumes N1.

Lemma 2.14. Subsumption equivalent sets of clauses have identical normal form.

Proof. Let the sets N2 and N3 be subsumption equivalent. Set N1 = (N2 ∪ N3) and
check that N1 B∗ N2 and N1 B∗ N3.

Proof tree analysis

Let us now focus back on the theorem about uniqueness of saturations. We start with a
set N of (∗, ∗)-clause that is saturated by LPSup and two sets N1, N2 of simple (∗, k)-
clauses such that Gk(N∪N1) = Gk(N∪N2). We then, for i = 1, 2, separately saturate (N ∪N ′i)

53

2 Labeled superposition for LTL

to obtain (N ∪N∗i), where N ′i contains the shifted versions of clauses from Ni, and N∗i
denotes the (∗, k+1)-part of the saturated set (the set of (∗, ∗)-clauses N does not change
anymore). We want to study the sets N∗i of simple clauses from N∗i . See Figure 2.12 on
the left.

Because we now know that the result of saturation is unique, we can assume that
the derivation (N ∪N ′i)B∗ (N ∪N∗i) is of a particular shape. We imagine a saturation
strategy that first performs all the resolutions and only then deletes all the tautologies
and subsumed clauses. This way we split the saturation into two parts

(N ∪N ′i)B∗ (N ∪N0
i)B∗ (N ∪N∗i),

where the first part (N ∪N ′i)B∗ (N ∪N0
i) consist of additions only and the second part

(N ∪N0
i)B∗ (N ∪N∗i) consist only of deletions. This is illustrated in Figure 2.12 in the

middle column.

We now analyze parent-child relations between the clauses of N0
i . We say that a clause

C is a parent of a clause D (and D is a child of C) if C is a premise and D the conclusion
of Ordered Resolution inference in our derivation. Note that some clauses from N0

i have
only one parent in N0

i , the other parent being a (∗, ∗)-clause from N . Clauses from N0
i

without any parent are those from the starting set N ′i ⊆ N0
i .

Of special interest to us are simple (∗, k + 1)-clauses of N0
i that do not have a simple

parent. Let us denote their set N1
i . Note that if a premise of Ordered Resolution is

simple, then so is the other premise and the conclusion. This means that (N ∪N1
i) B∗

(N ∪ N∗i), i.e., the set N1
i already contains all the clauses needed to derive the simple

(∗, k + 1)-clauses N∗i we are interested in (as indicated in Figure 2.12 on the right).

Our current plan is to show that the sets N1
1 and N1

2 are subsumption equivalent and
from that to conclude that the sets N∗1 and N∗2 are equal. In what follows we assume
the literals of every labeled clause D to be separated, as in D = (b, k) ||Dl ∨ (Du)′, into
a lower, non-primed part Dl and upper, primed part (Du)′, where where Dl and Du are
standard clauses over Σ.

Let us consider a clause C ∈ N1
1 and let us follow the parent links from C to construct

the whole proof tree for C with C as its root and some subsets M ⊆ N and M ′1 ⊆ N ′1
forming the leaves. We now observe that:

• The set of upper parts of clauses from M and M ′1 is unsatisfiable. Indeed, if we
just “forget” the lower parts of the clauses in the proof tree for C, we obtain a
proof of the empty clause.

• If we, on the other hand, track these lower parts of the clauses in the proof tree
for C, we realize they are being collected to constitute the standard part of C.
Specifically, the simple labeled clause C is necessarily of the form (∗, k + 1) ||C,
where

C =
∨
{Dl | (∗, ∗) ||Dl ∨ (Dh)′ ∈M}.

The clauses from M ′1 do not directly influence the form of C, because their lower
parts are empty.

54

2.4 Semantic and syntactic aspects

We now use the assumption that Gk(N∪N1) = Gk(N∪N2) to discover a clause C0 ∈ N1
2 that

subsumes C. The details follow.

• The assumption Gk(N∪N1) = Gk(N∪N2) means that the sets (N ∪N1) and (N ∪N2) are

logically equivalent, where N stands for the simple (∗, ∗)-clauses from N . To focus
on the main idea, let us first formulate our result for the case when the equivalence
holds already between N1 and N2.

• Then, since the upper parts of clauses from (M ∪M ′1) are unsatisfiable, so are
the upper parts of clauses from (M ∪N ′2): we first strengthen (M ∪M ′1) to (M ∪
N ′1), which preserves unsatisfiability, and than exchange N ′1 with N ′2 using our
equivalence.

• Because the set of the upper parts of the clauses (M ∪ N ′2) is unsatisfiable, by
completeness of PSup the empty clause can be derived from the set. In analogy
to what we have seen above, there is a corresponding proof tree from the clauses
(M ∪N ′2) as leaves. The root of the tree is formed by a clause C0 = (∗, k+ 1) ||C0,
where

C0 =
∨
{Dl | (∗, ∗) ||Dl ∨ (Dh)′ ∈M0},

and where M0 is the subset those clauses of M that were actually used in the
derivation of the empty clause. From M0 ⊆M it follows that C0 ⊆ C and we are
done.

• In the general case, where we assume equivalence of (N ∪ N1) and (N ∪ N2), we

can only obtain unsatisfiability of (M ∪N ′ ∪N ′2) instead of (M ∪N ′2), where

N
′
= {(∗, ∗) || (C)′ | (∗, ∗) ||C ∈ N}

is the set of shifted versions of clauses from N . If a clause D ∈ N ′ is not in N ,
it must be subsumed by another clause D0 ∈ N , because we assume N to be
saturated by LPSup and so, in particular, by Temporal Shift. This means each
of the additional assumptions from N

′
(or its stronger version) is available for the

derivation of the empty clause. Moreover, these additional assumptions cannot
influence the form of the clause C0, because their lower parts are empty.

We have just shown that the set N1
1 is subsumed by N1

2 . Because the argument is
symmetrical, we obtain that sets N1

1 and N1
2 are subsumption equivalent, and so the

sets N∗1 and N∗2 are equal. This concludes the proof.

Final remarks

As a corollary of our theorem we obtain that under the suitable conditions imposed
on the saturation process the exact syntactic form of the derived layers is uniquely
determined by their semantics, i.e., by the set of goal vertexes the layer represents. The
only layer which can have a “non-compatible” syntactic form is the 0-layer, which our
decision procedure obtains as an input.

55

2 Labeled superposition for LTL

Example 2.12. We close this section with an example showing that subsumption is im-
portant for the proof of our theorem to go through. The following three (∗, ∗)-clauses

(∗, ∗) || a ∨ ¬a′,
(∗, ∗) || a ∨ b ∨ b′,
(∗, ∗) || a ∨ ¬b ∨ ¬b′

are saturated by LPSup (we may assume that a < b in the ordering). If we now use the
following (redundant) representation of the 0-layer

(∗, 0) || a ∨ ¬b (∗, 0) || a

and altogether refrain from applying subsumption, the subsequent saturation will gen-
erate the following simple clauses in the 1-layer and 2-layer:

(∗, 1) || a ∨ b (∗, 1) || a
(∗, 2) || a ∨ ¬b (∗, 2) || a

We see that without subsumption the “syntactic period” of the saturation is 2 while the
“semantic period” is just 1.

2.5 Related work

2.5.1 Approaches to LTL satisfiability checking: an overview

There are three basic approaches to checking satisfiability of LTL formulas: one is based
on automata theory, one uses semantic tableaux, and, finally, there are the resolution-
based methods. This section provides a quick overview of the methods less related
to LPSup before we present a detailed comparison with the closest relative, Clausal
Temporal Resolution (Fisher et al., 2001).

Automata and model checking

Vardi and Wolper (1986, 1994) were the first to describe a translation from LTL into
Büchi automata. Satisfiability of the translated formula corresponds to non-emptiness
of the language accepted by the automaton and can be efficiently checked by analyzing
the underlying graph structure (Courcoubetis et al., 1992). Because the size of the
automaton is exponential in the size of the formula, generating its states in an on-
demand fashion (Gerth et al., 1995) is of practical importance. In the unsatisfiable case,
however, all the reachable states need to be visited.

An appealing alternative to such an explicit, enumerative approach, is to use Binary
Decision Diagrams (Bryant, 1986) to represent whole sets of states at once and analyze
the state space symbolically (Burch et al., 1992). In the context of LTL, one typically
uses the translation described by Clarke et al. (1997) and the analysis algorithm of
Emerson and Lei (1986). We have shown in Section 2.4 that our normal form, TST, also

56

2.5 Related work

represents a Büchi automaton in a symbolic way (although the core data structure is a set
of propositional clauses instead of a BDD) and that the saturation process corresponds
to the analysis of the underlying semantic graph. It would be interesting to further
follow and investigate this connection between the two approaches.

It needs to be noted that the primary interest of all the mentioned automata based
work is on verification of systems with non-terminating computations. There the LTL
formula plays the role of a specification of the system and the task is to verify that the
system complies with the specification. The verification process is then usually referred
to as model checking (Clarke et al., 2001). As explained by Rozier and Vardi (2010),
LTL satisfiability checking can, however, be easily reduced to LTL model checking. One
just needs to check the given LTL formula against a universal model, i.e. a model that
admits all possible computations. This observation makes the model checking approach
directly related to our work.

Tableaux methods

Semantic tableaux pioneered by Beth (1955) represent a well established method for
deriving decision procedures for various logics. A tableau calculus consists of a collection
of rules which specify how to break down the given formula into its constituent parts.
The rules are used to systematically generate subcases until an elementary contradiction
is reached. If the process runs out of options without discovering the contradiction, the
final tableau can be analyzed to yield a model of the original formula.

The early publications on tableaux-based calculi for LTL (Gough, 1984; Wolper, 1985)
describe a decision procedure which proceeds in two phases: first, the procedure creates a
pre-model for the given formula by applying the tableaux rules, then, in the second phase,
the procedure checks whether the pre-model satisfies all the eventuality sub-formulas.
In contrast, a later work of Schwendimann (1998) presents a one-phase tableau calcu-
lus, which checks for the fulfillment of the eventuality formulas locally and on-the-fly.
Recently, (Gaintzarain et al., 2008) proposed a tableaux calculus in which the handling
of the eventualities is fully transferred to the syntax level. The method remembers the
formula context whenever a fulfillment of an eventuality is postponed and then asserts
the negation of the context to ensure progress. The authors argue that this feature
makes their approach especially suited for completely automatic theorem proving. The
practical relevance of this claim, however, still waits to be established.

Despite the differences in the initial viewpoint as well is in the theory employed, a
closer look reveals that operationally the automata theoretic approach and the tableaux
method for LTL satisfiability are closely related. Indeed, Gerth et al. (1995) already
present their contribution as “a tableau-based algorithm”. This connection should be
always kept in mind as it allows for a transfer of ideas between the two approaches.

Resolution

Following the rise of interest in LTL in the mid-eighties several resolution-based methods
for LTL satisfiability were proposed. These include the non-clausal approach of Abadi

57

2 Labeled superposition for LTL

and Manna (1985) and the works of (Cavalli and del Cerro, 1984) and (Venkatesh, 1985).
The methods differ in the subset of the language considered, in the normal form used,
as well as in suitability for mechanization.

In the next section we thoroughly compare LPSup with Clausal Temporal Resolution
(CTR) introduced by (Fisher, 1991). This is the single most developed approach pre-
ceding our work, with a robust implementation of the corresponding decision procedure
available (Hustadt and Konev, 2003). CTR has been also been extended to a fragment
of first-order linear temporal logic (Degtyarev et al., 2006). A detailed overview of the
early resolution-based methods listed above can be found the in main reference on CTR
(Fisher et al., 2001).

2.5.2 Comparison with Clausal Temporal Resolution

In this section we show that operationally there is a close connection between LPSup and
the Clausal Temporal Resolution (CTR) of Fisher et al. (2001). From this perspective,
our formalism of labeled clauses can be seen as a new way to derive completeness of CTR
that justifies the use of ordering restrictions and redundancy elimination in a transparent
way. This has not been achieved yet in full by previous work: Hustadt et al. (2005)
provide a proof theoretic argument, but only for the use of ordering restrictions, Konev
et al. (2005) sketch the idea how to justify tautology removal and subsumption, but do
not consider the abstract redundancy notion in the style of Bachmair and Ganzinger
(2001), which we provide.

Moreover, there is also a correspondence between our layer-by-layer saturation followed
by the application of the Leap inference and the BFS-Loop search of CTR as described by
Gago et al. (2002); see also Ludwig and Hustadt (2009a). Apart from being interesting
in its own right, this view sheds new light on explaining BFS-Loop search, as it gives
meaning to the intermediate clauses generated in the process, and we thus do not need
to take the detour through the DNF representation of Dixon (1996, 1998). Even here,
the idea of labels clearly separates logical content of the clauses from the meta-logical
one (c.f. the ad hoc marker literal of Gago et al., 2002).

Despite these similarities between LPSup and CTR, the calculi are by no means iden-
tical. As discussed before, a temporal model can be extracted in a straightforward way
from a satisfiable set of labeled clauses saturated by LPSup. This does not hold for CTR,
where a more complex procedure, which simulates the model construction of Bachmair
and Ganzinger (2001) only locally, needs to be applied (Ludwig and Hustadt, 2009b).
In particular, because saturation by CTR does not give the model building procedure
any guidance towards satisfying the goal clauses, the procedure needs to try out at every
time point in a fair way all the possible orderings on the signature (in the worse case)
to make sure the goal is eventually reached. As each change of the ordering calls for a
subsequent re-saturation of the clause set in question (so that the local model construc-
tion still works), it obviously diminishes the positive effect orderings in general have on
reducing the search space.

Finally note that since we eventually rely on propositional superposition, we can also
take into account the explicit use of partial models to further guide the search for a proof

58

2.5 Related work

Table 2.1: Clause alignment between CTR and LPSup. la, lb, and lc denote literals.

name CTR LPSup

initial start→ ∨
a la (0, ∗) || ∨a la

step
∧

b lb →©
∨

c lc (∗, ∗) || ∨b lb ∨
∨

c l
′
c

or saturation. The idea is to build a partial model based on the ordering on propositional
literals. Then it can be shown that resolution can be restricted to premises where one
is false and the other true in the partial model (Bachmair and Ganzinger, 1990). This
superposition approach on propositional clauses is closely related to the state-of-the-art
CDCL algorithm for propositional logic (Marques-Silva et al., 2009). The missing bit is
to “lift” this setting to our labeled clauses. We explore this idea in Chapter 3.

Aligning the syntax

The calculus CTR operates on temporal clauses of the Separated Normal Form (SNF)
(see Section 2.2.2). The classical exposition (Fisher et al., 2001) adopts implicative
notation for the temporal clauses and introduces a special temporal constant start
interpreted to indicate the initial time point.

Recall that there are three kinds temporal clauses in SNF: initial, step, and eventuality
clauses. The initial and step clauses used by CTR correspond to labeled counterparts
of LPSup in a straightforward way (see Figure 2.1). While CTR in general works with
several eventuality clauses of the form

�

(∧
b∈B

kb → ♦l
)
, (2.8)

LPSup uses the ideas of Degtyarev et al. (2002) to obtain a problem with only a single
eventuality that is unconditional (with the set of the antecedent literals B being empty).
On the other hand, LPSup relaxes the requirement that the eventuality be represented by
a single literal l. Instead, the eventuality is described by a whole set of the (∗, 0)-clauses,
understood conjunctively:

�♦

 ∧
(∗,0) ||C

C

 .

Note that the technique of Degtyarev et al. (2002) allows us to obtain a formulation
of a problem that contains only a single unconditional eventuality in a form of a single
literal. That is an “intersection” format directly accessible to both LPSup and CTR.

Comparing deductions

There are two step resolution rules in CTR (Fisher et al., 2001) dealing with initial and
step clauses, respectively. When equipped with ordering constraints (Hustadt et al.,

59

2 Labeled superposition for LTL

2005) these can be seen to be equivalent to the Ordered Resolution inference of LPSup
acting on the corresponding labeled clauses. Similarly, the upper half of the following
clause conversion rule of CTR

R φ→©false

true→©¬φ
start→ ¬φ

can be matched by the Temporal Shift inference. The other half of the rule, which turns
the step clause with unsatisfiable succedent into an initial clause is not needed in LPSup,
where the assumption is kept instead and allowed to interact with initial clauses directly
(by relying on merge of the respective labels).

Let us now compare how the two calculi deal with eventualities. The inference in CTR
dedicated to this purpose is called temporal resolution. It combines several step clauses
into groups (so called merged-SNF clauses) and resolves those against one eventuality
clause. There is a nontrivial side condition to be verified that amounts to proving that
the step clauses involved form a so called loop, meaning that they together conditionally
imply that the eventuality may become false forever. As a last step, the inference’s
conclusion, which is not a temporal clause in general, must be translated into SNF after
it is derived.

Several methods have been proposed how to actually implement temporal resolution
(Dixon, 1996). Here we focus on breadth first search for the loop as described by Gago
et al. (2002). The idea is to perform the loop search by iteratively applying step resolu-
tion inferences to certain clauses and to organize the individual iterations by enriching
the participating clauses with a special marking literal (see also Ludwig and Hustadt,
2009a). The marking literals are numbered by the iteration index. This helps to sepa-
rate the clauses of the individual iterations and allows for their reuse in subsequent loop
searches for the same eventuality literal.

Interestingly, we can map this form of loop search to the layer-by-layer saturation
process of LPSup. We identify the marker literal with the label (∗, k), i.e. the label of
the clauses associated with the goal, and interpret k as the iteration index. There is,
however, a small but important difference in how the clauses with a new value of the
index k are created. In LPSup they arise as conclusions of the Temporal Shift inference

I (∗, k) ||C
(∗, k + 1) || (C)′

.

The corresponding inference of CTR, when adopted to our notation, becomes

I (∗, k) ||C
(∗, k + 1) || (C ∨ l)′ , (2.9)

where l is the respective eventuality literal from (2.8). Weakening the derived clause
by l′ is not sound with respect to the semantics based on (K,L)-models, but can be
interpreted and justified with the help of semantic graphs.

As explained in Section 2.4.2, in LPSup the (∗, k)-clauses of a given clause set can
be seen to represent a set of those vertexes of the semantic graph that can reach a goal

60

2.5 Related work

vertex in exactly k steps. As an effect of the added eventuality literal in (2.9) above, the
corresponding (∗, k)-clauses in CTR represent the vertexes that can reach a goal vertex
in at most k steps. Intuitively, the goal vertexes of order zero are effectively reinserted
to the computed preimage after each iteration. As a side-effect, the sequence of the
represented vertex sets grows monotonically with respect to the subset relation.

In LPSup, layer-by-layer saturation ends when a repetition is detected. We then
invoke the Leap inference and potentially derive additional (∗, k)-clauses. Analogously,
a successful repetition check concludes the loop search in CTR. There, the new clauses
collected by an equivalent of Leap obtain the status of simple step clauses, i.e., they
effectively become (∗, ∗)-clauses. These clauses stand for a fixpoint result of the iterative
loop search and represent the set of those vertexes that can reach a goal vertex in any
number of steps. It is therefore sound to assert these clauses to hold universally, because
only the vertexes they represent can be part of any potential model path.

Remark 2.4. Because, unlike in LPSup, the sequence of vertexes represented during loop
search by the respective clause sets grows monotonically, we can for CTR derive a better
theoretical bound on the maximal number of iterations before repetition occurs. Indeed,
under similar conditions on the saturation process as those of Section 2.4.3, there is at
most |2Σ| iterations for CTR, because each iteration must include at least one new vertex
unless it stabilizes. On the other hand, our current best bound for LPSup derives from
2|2

Σ| – the number of all subsets of the set of vertexes 2Σ.

On the other hand, the inconspicuous addition of the eventuality literal seems to have
a negative effect on the performance of CTR in practice, because it means that more
inferences typically need to be performed before the computation proceeds from one
layer to the next. We explore this phenomenon empirically in the next section.

2.5.3 Experimental comparison

We implemented a simple prototype of both LPSup and CTR in order to compare
the two calculi on non-trivial input problems. In this section we briefly introduce the
implementation, describe our problem set, which consists of both adopted and newly
devised formula families, and report on the results of our experiment. The prototype as
well as the test problems are publicly available (Suda, 2012b).

Implementation

Our prototype, written in SWI-Prolog, is a straightforward implementation of the sat-
isfiability checking procedure of Algorithm 2.2, using layer-by-layer saturation (Algo-
rithm 2.1) as its main subroutine. It takes for an input an LTL formula in SNF and
normalizes it further (following the simplification described in Section 2.2.2) to an SNF
with a single unconditional eventuality clause consisting of a single literal. Such a for-
mula constitutes a valid input for CTR and, at the same time, can be treated as a TST
to be handled by LPSup.

Building on the observations of Section 2.5.2 we interpret CTR (with the BFS loop-
search in the style of Gago et al., 2002) in the framework of labeled clauses of LPSup and

61

2 Labeled superposition for LTL

so a large part of the code is shared by the two calculi. The differences that distinguish
LPSup from CTR in our implementation can be summarized as follows:

• CTR does not have (0, k)-clauses. A modified version of the merge operation blocks
for CTR inferences between initial clauses and the clauses derived from the goal.

• For CTR we modify the Temporal Shift inference (a.k.a. clause conversion rule)
for (∗, k)-clauses such that the conclusion is additionally extended by the unique
eventuality literal.

• In CTR the layer-by-layer saturation always finishes by detecting a repetition with
period p = 1. This is checked at runtime by an assertion.

• Finally, the conclusion of the Leap inference takes the form of (∗, 0)-clauses in the
case of LPSup (see Remark 2.2) and the form of (∗, ∗)-clauses for CTR.

Adopted formulas

We adopted two formula families from a previous paper on LTL satisfiability (Hustadt
and Schmidt, 2002). They are referred to as C1

n and C2
n and parametrized by a natural

number n ∈ N. Both families originally consist of a certain pattern of temporal clauses
together with a set of essentially standard clauses that encode a random k-SAT problem.
Because the tested calculi treat initial and step clauses identically, we decided to drop
the random part and only compare how effectively they deal with the temporal aspects
of the formulas. This way we obtained the following two families of temporal formulas:

C1
n = �(¬p1 ∨ ♦p2) ∧�(¬p2 ∨ ♦p3) ∧ · · · ∧�(¬pn ∨ ♦p1),

C2
n = r1 ∧ (¬r1 ∨ q1) ∧ (¬r1 ∨ ¬qn)∧
�(¬rn ∨©r1) ∧�(¬rn−1 ∨©rn) ∧ · · · ∧�(¬r1 ∨©r2)∧
�(¬rn ∨©¬qn) ∧�(¬rn−1 ∨©¬qn) ∧ · · · ∧�(¬r1 ∨©¬qn)∧
�(¬q1 ∨ ♦s2) ∧�(¬s2 ∨ q2 ∨©qn ∨ · · · ∨©q3)∧
...

�(¬qn−1 ∨ ♦sn) ∧�(¬sn ∨ qn)

Note that while C1
n are trivially satisfiable, C2

n is unsatisfiable.

New formulas

In addition to the above, we also tested the calculi on formulas from two new families,
specifically constructed to highlight the respective strengths and weaknesses of LPSup
and CTR. They are both based on the idea of putting together several independent
“cycles”, and are both parametrized by lists of integers that correspond to the cycles’

62

2.5 Related work

lengths. The cycles, however, play different conceptual roles in each family, and the
resulting problems are, in fact, very different.

Explicit cycles problem In the explicit cycles problem E(l1,...,lk) there are k “syntactic”
cycles composed of variables connected by implications. For any i = 1, . . . , k, cycle i
consists of variables pi1, . . . , p

i
li

together with the step clauses

�(¬pi1 ∨©pi2), �(¬pi2 ∨©pi3), . . . , �(¬pili−1 ∨©pili), �(¬pili ∨©p
i
1).

Additionally, for each cycle there is also a step clause �(©¬pi1 ∨ ©¬g), where g is
an independent “goal” variable. Finally, the cycles are “connected together” by the
eventuality clause �♦g. In total, the explicit cycles problem E(l1,...,lk) consists of 1 +k+
l1 + · · ·+ lk temporal clauses and the corresponding signature contains 1 + l1 + · · ·+ lk
variables. The problem is satisfiable.

The explicit cycles problem is designed in such a way that LPSup processes the indi-
vidual cycles independently from each other and derives only unit clauses during layer-
by-layer saturation. In CTR, on the other hand, the addition of the goal literal triggers
an interaction between the cycles and the calculus derives clauses of increasing size which
mix literals from different cycles.

Example 2.13. The behavior of the two calculi on problem E(2,3) is demonstrated in
Table 2.2. We formulate the problem using variables a, b and c, d, e for the respective
cycles and reserve variable g for the goal. This means we start with the following set of
labeled clauses

(∗, ∗) || ¬a ∨ b′, (∗, ∗) || ¬c ∨ d′, (∗, 0) || g,
(∗, ∗) || ¬b ∨ a′, (∗, ∗) || ¬d ∨ e′,

(∗, ∗) || ¬e ∨ c′,
(∗, ∗) || ¬a′ ∨ ¬g′, (∗, ∗) || ¬c′ ∨ ¬g′.

We assume that g is the largest symbol in the used ordering, which makes the (∗, ∗)-
clauses already saturated. Table 2.2 shows the standard parts of the simple (∗, k)-clauses
derived by the respective calculi during layer-by-layer saturation process.10 To capture
more details of the process, there are two columns displayed for CTR. The first column
shows the simple (∗, k)-clauses as they are generated, before repeated literals are factored
out and subsumption is applied. The resulting reduced clause set is displayed in the other
column. We see that repetition occurs with layer 7 for both calculi. In the case of LPSup,
layer 7 is equal to layer 1, for CTR it is equal to layer 6.

Given an explicit cycles problem E(l1,...,lk) let m = LCMk
i=1 li be the least common

multiple of the cycles’ lengths. It can be shown that for both LPSup and CTR repetition
occurs when saturating layer of index m+ 1. As Example 2.13 suggests, however, in the
case of CTR the saturation process is much more expensive both with respect to the
size and the number of involved clauses.

10To save space, we omit the 0-layer, which contains for both calculi just the goal clause (∗, 0) || g.

63

2 Labeled superposition for LTL

Table 2.2: Simple (∗, k)-clauses generated by LPSup and CTR on E(2,3).

Layer index k LPSup CTR generated CTR reduced

1
¬b
¬e

¬b
¬e

¬b
¬e

2
¬a
¬d

¬a ∨ ¬b
¬a ∨ ¬e
¬d ∨ ¬b
¬d ∨ ¬e

¬a ∨ ¬b
¬a ∨ ¬e
¬b ∨ ¬d
¬d ∨ ¬e

3
¬b
¬c

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬b ∨ ¬d ∨ ¬b
¬b ∨ ¬d ∨ ¬e
¬a ∨ ¬c ∨ ¬b
¬a ∨ ¬c ∨ ¬e
¬c ∨ ¬d ∨ ¬b
¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬b ∨ ¬d
¬a ∨ ¬c ∨ ¬e
¬c ∨ ¬d ∨ ¬e

4
¬a
¬e

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬a ∨ ¬c ∨ ¬b
¬a ∨ ¬c ∨ ¬e
¬b ∨ ¬e ∨ ¬d ∨ ¬b
¬b ∨ ¬e ∨ ¬d ∨ ¬e
¬e ∨ ¬c ∨ ¬d ∨ ¬b
¬e ∨ ¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬a ∨ ¬c ∨ ¬e
¬b ∨ ¬d ∨ ¬e
¬c ∨ ¬d ∨ ¬e

5
¬b
¬d

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬b ∨ ¬e ∨ ¬d ∨ ¬b
¬b ∨ ¬e ∨ ¬d ∨ ¬e
¬a ∨ ¬c ∨ ¬d ∨ ¬b
¬a ∨ ¬c ∨ ¬d ∨ ¬e
¬e ∨ ¬c ∨ ¬d ∨ ¬b
¬e ∨ ¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬b ∨ ¬d ∨ ¬e
¬c ∨ ¬d ∨ ¬e

6
¬a
¬c

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬a ∨ ¬c ∨ ¬d ∨ ¬b
¬a ∨ ¬c ∨ ¬d ∨ ¬e
¬e ∨ ¬c ∨ ¬d ∨ ¬b
¬e ∨ ¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬c ∨ ¬d ∨ ¬e

7
¬b
¬e

¬b ∨ ¬a ∨ ¬b
¬b ∨ ¬a ∨ ¬e
¬e ∨ ¬c ∨ ¬d ∨ ¬b
¬e ∨ ¬c ∨ ¬d ∨ ¬e

¬a ∨ ¬b
¬c ∨ ¬d ∨ ¬e

64

2.5 Related work

Implicit cycles problem In the implicit cycles problem the cycles emerge on the con-
ceptual level of semantics: the problem is constructed using the ideas of Remark 2.3
such that its corresponding semantic graph has a particular shape.

We define the problem I(l1,...,lk) only when the sum of the cycles’ lengths l =
∑k

i=1 li
is equal to a power of two, i.e., l = 2n for some n. We then construct the problem
over a signature Σ of size n. The clauses of I(l1,...,lk) are selected in such way that
the semantic graph of the problem consists of a disjoint union of k (oriented) cycles of
lengths l1, . . . , lk, respectively, there is exactly one goal vertex on each cycle, and, finally,
every vertex of the graph is an initial vertex. As discussed in Remark 2.3 the number of
clauses needed to construct such a problem can be polynomially bounded in 2n, i.e. in
the number of vertexes of the graph. The problem is satisfiable.

The idea behind the implicit cycles problem is to force the layer-by-layer saturation of
LPSup to explore many layers before a repetition can be detected. Using the results of
Section 2.4.2 we can show that LPSup needs at least m iterations, where m = LCMk

i=1 li
is again the least common multiple of the cycles’ lengths. In CTR, on the other hand,
the number of iterations before a repetition can be detected is proportional to the length
of the longest cycle only.

Remark 2.5. Let us consider the problem I(1,2,...,k), where the cycles’ lengths are formed
by the first k positive integers.11 It follows from the prime number theorem (Weisstein,
2013) that the least common multiple m = LCMk

i=1 i grows asymptotically as ek(1+o(1))

when k → ∞. Because the number of vertexes of the corresponding semantic graph
grows quadratically in k, this number k is of order

√
2n, where n is the size of the

signature Σ needed to express such a problem. Thus the number of iterations before
LPSup detects a repetition on I(1,2,...,k) is of order e

√
2n , i.e. doubly exponential in n

(cf. Remark 2.4). This, however, does not (yet) imply doubly exponential lower bound
on the complexity of LPSup, because we are currently only able to describe the input
problem using exponentially many clauses in n.

Experimental results

In our experiment we compared our prototype implementations of LPSup and CTR on
several instances of the formula families described above. Additionally, we also supplied
the test problems to the the temporal prover TRP++ (Hustadt and Konev, 2003)12,
which also implements the CTR calculus, to provide evidence that our experimental
results are not biased. We used the default mode (no extra options) for running TRP++
and collected the information on the number of generated and subsumed clauses from
the output which the prover by default provides.

For a variable ordering for restricting resolution inferences in the prototype we ex-
perimentally selected an ordering that gave good results for both calculi on the tested
examples.13 The variable ordering used by TRP++ was determined automatically by

11To make the sum
∑k

i=1 li equal to a power of two, we use additional cycles of length one as a padding.
12We used version 2.1 available at http://www.csc.liv.ac.uk/~konev/software/trp++/.
13We optimized the order of groups of variables, where one group was formed by all the variables of

the input formula and several other groups contained different kinds of auxiliary variables introduced

65

http://www.csc.liv.ac.uk/~konev/software/trp++/

2 Labeled superposition for LTL

Table 2.3: Experimental comparison of our prototype implementations of LPSup and
CTR and the LTL prover TRP++. The number of clauses in the input (size) and the
number of derived and subsumed clauses for each prover are reported.

LPSup CTR TRP++
problem size derived subsumed derived subsumed derived subsumed

C1
10 56 53 100 174 110 363 300

C1
15 81 78 145 334 240 688 595

C1
20 106 103 190 544 420 1113 990

C2
3 22 442 324 984 909 1146 968

C2
4 30 1937 1612 5298 5047 3560 3053

C2
5 38 6287 5635 18724 18134 7925 6922

E(2,3) 8 23 4 131 78 177 77

E(2,3,4) 13 52 6 1061 595 1597 627

I(3,5) 62 406 368 203 194 86 160

I(3,5,8) 253 8010 7356 1087 1145 390 745

the prover.

The results of the experiment are summarized in Table 2.3. For each system and input
problem the table shows the number of derived and subsumed clauses. We decided not
to report on running times as our aim here is to compare the calculi rather than the
implementations. We believe that the number of considered clauses provides a good
measure of the amount of data that needs to be processed by any saturation-based
implementation of the respective calculus, which is, moreover, independent on the choice
programming language or the use of particular data structures.

We can see that LPSup consistently needs to generate fewer clauses than CTR to draw
its conclusion on both C1

n and C2
n problems. The behavior on the explicit and implicit

cycles problems corresponds to our expectations based on the theoretical analysis. While
the explicit cycles are trivial for LPSup, they require considerable amount of computation
before the results of obtained by CTR. This trend is reversed on the implicit cycles, where
LPSup performs worse than CTR.

Although the inferior performance of CTR on C1
n and C2

n could possibly be stemming
from the translation to single eventuality formulation of the problems (while heuristics for
efficiently treating the individual eventualities separately can be imagined), the other two
families I(l1,...,lk) and E(l1,...,lk) contain single eventuality from the outset. Only further
tests on examples from practice may reveal which of the two phenomena exemplified by
the families I(l1,...,lk) and E(l1,...,lk), respectively, have a higher impact on practical utility.

during the translation of multiple eventualities into a single unconditional one.

66

2.6 Conclusion

2.6 Conclusion

In this chapter we have presented LPSup, a new resolution-based calculus for Linear
Temporal Logic (LTL). The main idea behind LPSup is to interpret an LTL formula
as a set of purely propositional problems over an infinite signature and to use labeled
clauses to finitely represent reasoning within these problems. This enables us to lift
PSup, a well understood calculus for propositional logic to the temporal setting and
to formally transfer its favorable features such as ordering restrictions on inferences
and abstract redundancy concept along the way to LPSup. We described a saturation
decision procedure based on LPSup and explained how it can be extended to build
models for satisfiable inputs in a straightforward way.

We uncovered a connection between our formula normal form and Büchi automata
which lead us to propose an alternative semantics for the operation of LPSup. In the
light of this semantics, the saturation process can be seen as a symbolic computation of
the preimage operation on sets of graph vertexes represented in CNF. This observation,
in addition to being of independent interest, allows us to easily expose the relation of
LPSup to other approaches to LTL satisfiability checking.

Finally, we studied the relation between LPSup and its closest relative, the Clausal
Temporal Resolution (CTR) calculus by Fisher et al. (2001). Although the underlying
principles behind the two calculi are different, the ensuing procedures can be almost
aligned on the computational level. Theoretical analysis favors CTR, whose worst case
complexity is better than that of LPSup by an exponential factor. On the other hand,
our experiments indicate that in practice, LPSup is able to outperform CTR on many
examples. Moreover, unlike LPSup, CTR cannot be easily extended to perform model
construction.

67

3 LTL proving with partial model guidance

3.1 Introduction

In this chapter we describe a new algorithm for LTL satisfiability checking. We call
the algorithm LS4 as a pseudo-acronym for Labeled Superposition for LTL with partial
model guidance. As the name suggests, LS4 can be seen as a continuation and extension
of our work on the LPSup calculus developed in Chapter 2. The main difference is that
instead of relying on saturation, LS4 constructs a partial model on the fly and uses it
to effectively guide the selection of inferences. As we will show, this idea leads to a very
successful algorithm both for finding full LTL models and for showing unsatisfiability.

Let us start our exposition here by explaining partial model guidance in more detail.

Partial model guidance

In Chapter 2 we have presented a simple algorithm (Algorithm 2.3 in Section 2.3.4) for
building models of sets of labeled clauses saturated by LPSup. The algorithm concep-
tually reduces the labeled clause input to a set of purely propositional clauses over an
infinite signature and then employes the standard model operator for propositional logic
(Definition 2.3).

It considers individual propositional variables in a prescribed order and incrementally
constructs a partial valuation V , which eventually becomes the desired model. In each
step the considered variable p is set to true if and only if there is a productive clause for
p, i.e. a clause C ∨ p such that all its literals except for p are already assigned a value
in V and the value makes them false: V 6|= C. In this situation, setting p to true is the
“last chance” for the clause to become satisfied in the constructed valuation.

Because the propositional clause set is saturated and does not contain the empty clause
(as follows from Theorem 2.3), the algorithm cannot reach a “conflict”, which means it
cannot arrive to a situation in which setting p to true because of a productive clause
C ∨ p would make another clause D ∨ ¬p inevitably false in the constructed valuation.
This is what the completeness theorem for PSup (Theorem 2.1) tells us. In other words,
for a saturated set of clauses the model construction is backtrack free.

However, saturation is an expensive process and may compute more than what is
actually needed. The proof of Theorem 2.1 gives us a hint on what resolution inferences
are the essential ones for deriving the potential empty clause. They involve a productive
clause C∨p and a clause D∨¬p false in the currently constructed valuation V , as in the
imagined conflict situation above. When we resolve these two clauses on the variable p
we obtain a conclusion C∨D, which is smaller than the two premises and necessarily also
false in V . Thus such an inference reduces the conflict to a smaller clause. By resetting

69

3 LTL proving with partial model guidance

Table 3.1: Comparing superposition-based model building with CDCL

model operator CDCL

variable ordering fixed beforehand dynamic; based on heuristics
variable polarity defaults to 0 based on heuristics
implied assignments productive clause forces 1 via unit propagation
resolution inferences reduce the minimal false clause derive the learned clause
reductions based on abstract redundancy (pre/in-processing)

V to a state before the truth status of C ∨ D would be determined, we may discover
that this new clause now becomes productive and a subsequent update of V will make
it true. In the opposite case (if the last unassigned literal of C ∨D is not positive), the
conflict cascades further.

The just outlined principle for selecting inferences guided by the current partial val-
uation is the key idea behind LS4. It drives the algorithm forward to build the partial
valuation greedily and only to perform an inference when addressing an immediate con-
flict. The overhead connected with maintaining the valuation is by far compensated by
that fact that we do not need to fully saturate the given clause set.

SAT solver inside

Instead of directly building our algorithm on the above model guidance idea, we exploit
a connection (Weidenbach) between the propositional model operator and the Con-
flict Driven Clause Learning (CDCL) algorithm for propositional satisfiability checking
(Marques-Silva et al., 2009). Weidenbach shows that CDCL, an algorithm which powers
the current state-of-the-art SAT solvers, is closely related to the superposition model
building framework. This means that we can obtain the benefits of model guidance by
employing a modern CDCL SAT solver as an underlying inference engine.

The CDCL algorithm advances the well known DPLL procedure for propositional
satisfiability (Davis et al., 1962) by a non-chronological backtracking scheme based on
conflict analysis and clause learning (Marques-Silva and Sakallah, 1999; Bayardo and
Schrag, 1997). The algorithm constructs a partial valuation V by alternating between
deciding a value for a unassigned variable and exhaustively applying the unit propagation
rule. Unit propagation extends the partial valuation further by setting an unassigned
literal l to true whenever there is a clause C ∨ l such that V 6|= C. A conflict arises
when this process reaches a point where a clause D has all literals assigned to false.
By analyzing the conflict and the propagations which lead to it, the algorithm can
derive a clause summarizing which decisions contributed to the conflict. The clause is
then learned and the algorithm backtracks the partial assignment to a state where the
conflict inducing decision can be repaired. Interestingly, the clause learning procedure
can be defined by a sequence of resolution inferences between the conflict clause and the
clauses that triggered the relevant propagations (Beame et al., 2004).

We can now say a little more about the relation between the superposition model

70

3.1 Introduction

operator and CDCL (see also Table 3.1). Both approaches incrementally construct
a partial valuation. While the model operator follows a fixed ordering for assigning
values to variables and prefers setting them to false unless there is a productive clause,
CDCL is more flexible both in the order of assigning the variables and in choosing
their polarity and typically relies in this respect on heuristics. On the other hand,
a closer look reveals that the definition of a productive clause follows from the same
principle as the unit propagation rule. Moreover, the way conflicts are dealt with and
new clauses derived is essentially equivalent in both approaches. It applies the resolution
inference to the conflict clause and backtracks the partial model to a point where the
conflicting assignment can be revised. Lastly, we note that CDCL per se does not employ
any reductions. However, redundant clauses are typically removed during independent
preprocessing (e.g., Eén and Biere, 2005) or in-processing (Järvisalo et al., 2012) stages.

In what follows, we will describe LS4 as an algorithm that uses a CDCL SAT solver
as a subroutine. We will, however, draw on the connection to the model operator to
strengthen our intuition on what the computation means from the perspective of LPSup.

Step-by-step construction

LS4 attempts to show satisfiability of a given Temporal Satisfiability Task (TST) by iter-
atively constructing a partial model until a full, ultimately periodic model is discovered.
The partial model is a finite sequence of valuations over the basic signature Σ, which
we informally refer to as worlds. In each iteration, the algorithm prepares and poses a
query to the underlying SAT solver, to find out whether the current partial model can
be extended by one more world. If the query is satisfiable, a new world is extracted from
the satisfying assignment and the partial model is extended. In the opposite case, a new
clause is learned from the solver and the last world of the partial model is removed. LS4
backtracks over the last world, because that world (by construction) does not satisfy the
new clause, which must hold (again by construction) at that particular position in the
final model. In the following iteration, the new clause will help to guide the extension
of the updated partial model in the right direction.

We see that LS4 manipulates the partial model with a granularity corresponding to
individual worlds. This is achieved by forming the query for the SAT solver over the
joint signature Σ∪Σ′. The algorithm uses the lower part of the signature to encode the
current last world, it supplies the step clauses to the query to relate the last world to the
potential new world, and asserts all additional constraints on the new world as clauses
over the primed variables. Thus, in the satisfiable case, the new world is to be extracted
from the Σ′-part of the satisfying assignment.

The current last world is encoded into the query using a mechanism of solving under
assumptions. This is a natural extension of the standard interface provided by any SAT
solver based on the CDCL algorithm and has been first introduced by Eén and Sörensson
(2003a) in their solver Minisat. Assumptions are literals supplied as additional one-time
constraints to the solving function. If a model is found, it is required to satisfy these
literals. Additionally, in the unsatisfiable case the solver is able to return a subset of
those assumptions that were actually used for showing the inconsistency. The new clause

71

3 LTL proving with partial model guidance

I G G G

block 0 block 1 block 2
. . .

Figure 3.1: Illustrating blocks in LS4: The first world of block 0 satisfies the initial
clauses I, the last world of every block satisfies the goal clauses G. The grayed part
represents the current partial model.

to be learned by LS4 is computed by collecting negations of the used assumptions. As
such, the new clause is automatically false in the current last world and so backtracking
follows.

By relying on the mechanism of assumptions, the model guidance paradigm is effec-
tively split onto two levels. It is applied by CDCL on the level of individual variables
within each call to the SAT solver and by LS4 itself on the level of whole worlds between
the individual calls. The mechanism of assumptions connects the two levels seamlessly,
preserving the overall efficiency, but allowing LS4 to treat the inner workings of the SAT
solver in a black-box manner, such that only the clauses learned on the “macroscopic”
level of worlds need to be explicitly registered and processed by the algorithm.

Dealing with the goal clauses

To construct a full model for the given TST, LS4 needs to ensure that the goal clauses
are satisfied infinitely many times. Unlike Algorithm 2.3, which relies on a previous
saturation and picks a rank (K,L) in advance using the completeness theorem of LPSup
(Theorem 2.3), LS4 does not have any prior information about the indexes were the goal
clauses could be satisfied in the final model. Instead of explicitly looking for a rank and
constructing a (K,L)-model, the strategy of LS4 is to greedily assume that every new
world along the model sequence could be a goal world, i.e. a world that satisfies the goal
clauses, and to update this assumption only when it leads to a conflict.

In more detail, we imagine that the model sequence constructed by LS4 is separated
into consecutive blocks of worlds, such that the last world of every block is meant to
be a goal world (see Figure 3.1). When the partial model grows to the end of the last
block, LS4 allocates a new block of length one and places it at the end of the sequence.
This means that it creates a new requirement for satisfying the goal clauses positioned
at the immediate next index. When, on the other hand, the current configuration of
blocks becomes inconsistent, the algorithm extends the last block by adding one more
world to it, thus changing the distance between the last block’s goal world and the other
goal worlds. This is the smallest update to the configuration of blocks that can help to
dismiss the inconsistency.

Detecting unsatisfiability

Most of the clauses LS4 learns from unsuccessful extensions of the partial model corre-
spond to labeled clauses of LPSup. As will be explained in detail in Section 3.2, LS4
relies on so called marker literals to track dependencies between the learned clauses. For

72

3.2 SAT solving under assumptions

instance, a clause depending on the goal clauses corresponds to a (∗, k)-clause of LPSup.
The exact value of k follows in LS4 implicitly from the distance between the index where
the clause is learned and the respective goal world.

Inconsistencies are manifested as empty clauses. Like in LPSup, there are several kinds
of empty clauses and while deriving an unconditional empty clause immediately signals
unsatisfiability of the input, a conditional empty clause only implies inconsistency of
the current assumption about the configuration the goal worlds and blocks. As already
explained, the latter case triggers update of the configuration and the model construction
is resumed. What must ensured, however, is that the algorithm does not keep deriving
conditional empty clauses indefinitely when the input is unsatisfiable.

To prevent this from happening, LS4 follows the same strategy as LPSup. It organizes
the equivalent of (∗, k)-clauses into layers and checks for a repetition whenever a new
layer clause is derived. Depending on the situation, detected repetition may either
already signal overall unsatisfiability, or it at least triggers the Leap inference. Leaped
clauses globally strengthen the goal formula which forces a backtrack of the partial model
from an unpromising part of the search space and ensures overall progress.

Chapter overview

In the following sections we describe the workings of LS4 in full detail. First we explain
how to use the mechanism of SAT solving under assumptions to build models in a step-
by-step fashion (Section 3.2.1) and how to utilize so called marker literals for tracking
dependencies in derivations (Section 3.2.2). We then start the actual presentation of
LS4 by declaring the global variables and stating the main invariants maintained by the
algorithm (Section 3.3.1). We proceed by giving a detailed pseudocode (Section 3.3.2)
and close by correctness (Section 3.3.3) and termination (Section 3.3.4) proofs. The
latter proof implicitly entails a doubly-exponential worse case running time estimate for
the algorithm.

We have implemented LS4 (Section 3.4.1) and compared it to alternative approaches
to LTL satisfiability on a large set of benchmarks. Our experiments show (Section 3.4.2)
that our implementation of LS4 is one of the strongest LTL satisfiability checker cur-
rently available. We close the chapter by discussing the relation of LS4 to saturation
with LPSup (Section 3.5.1), to other SAT-based LTL checkers (Section 3.5.2), and to
algorithms recently developed for model checking hardware circuits (Section 3.5.3).

This chapter is based on our earlier publication (Suda and Weidenbach, 2012a), but
has been thoroughly revised and notably extended.

3.2 SAT solving under assumptions

Assumptions are literals supplied to a SAT solver along with the standard input and
they are meant to further constrain the search to only those models that satisfy them.
Given a CNF formula N and a set of assumptions A the solver then decides satisfiability
of the conjunction A ∧ N . In the satisfiable case, we obtain as the expected result a
satisfying assignment of the given formula A∧N , i.e. a valuation V over the introduced

73

3 LTL proving with partial model guidance

variables such that V |= A∧N . In the opposite case, however, the SAT solver is able to
return more than just the unsatisfiability claim. It returns a subset of those assumptions
A0 ⊆ A that were actually used to show the inconsistency.

The support for solving under assumptions can be easily incorporated into the CDCL
algorithm (Eén and Sörensson, 2003a). The assumptions are treated as artificial deci-
sions performed at the beginning of the propagation process. These decisions cannot
be backtracked over and the standard conflict resolution mechanism is responsible for
collecting the used subset A0 in the case of an inconsistency.

In this section we describe two different applications of the mechanism of solving under
assumptions which are employed in LS4. First, we explain how to build models by parts,
in a step-by-step fashion. LS4 uses this idea to construct the partial model of a TST by
extension steps which concern one world at a time.

Then we show how to employ the so called marker literals to track dependencies in
derivations without the need of proof recording. We define the abstraction of marked
clauses to be used in the pseudocode of LS4. Marked clauses are an equivalent of labeled
clauses of LPSup implemented within the SAT-solving framework.

New terminology and notation

Above, we have treated the set of assumption literals A in the formula context as a
conjunction of its elements. Let us extend our conventions to properly accommodate
this concept. In accord with the verification terminology, we will denote a conjunctive set
of literals as a cube. Syntactically, cubes do not differ from clauses, whose interpretation
is disjunctive. The distinction will, however, always be clear from the context. By
complementing a cube A one obtains a clause ∼A = {∼l | l ∈ A} and also vice versa.

3.2.1 Solving by parts

Imagine we are given a CNF formula N = A ∧ T ∧ (B)′ over a joint signature Σ ∪ Σ′,
such that the clauses in A and B are only over the signature Σ. We know that formula
A alone is satisfiable and we have found a valuation V : Σ → {0,1} that satisfies it:
V |= A. We ask ourselves a question. Can V be extended to a full valuation over Σ∪Σ′

that satisfies the whole formula N? In other words, is there a valuation W : Σ→ {0,1}
such that [V,W] |= N? We can answer this question using solving under assumptions.

Let us denote by Lits(V) the following encoding of the valuation V into a cube of
assumptions:

Lits(V) = {l | l is a literal over Σ and V |= l}.
We can now look for the valuation that would extend V and satisfy the whole formula
N by posing the query

SAT ?[Lits(V) ∧ T ∧ (B)′].

If the query is satisfiable, the satisfying assignment will be of the form [V,W] for some
W , because the assumptions Lits(V) admit only one possible value for the unprimed
variables. In the unsatisfiable case, we obtain a sub-cube A0 ⊆ Lits(V) of assumptions
that were sufficient for detecting the inconsistency.

74

3.2 SAT solving under assumptions

By complementing the literals from the assumption sub-cube, we can construct a
clause C which captures in logical terms the discrepancy between the valuation V and
the formula T ∧ (B)′. We call it an explaining clause for the failed extension attempt
and write

C = ∼A0 = {∼l | l ∈ A0}.
On the one hand, we have, by definition, that V 6|= C. On the other hand, because the
SAT solver has shown that the formula A0 ∧ T ∧ (B)′ is unsatisfiable, we see that

T ∧ (B)′ |= C.

In other words, only those models of A that additionally satisfy the explaining clause C
can be possibly extended to a full model of the formula N .

LS4 is based on the idea of building models by parts and learning explaining clauses
from failed extension attempts. Intuitively, the amount of information that an explaining
clause carries is inversely proportional to its size. While a clause mentioning every literal
over Σ only excludes the model V itself from future considerations, shorter clauses tend
to generalize the situation and help to also exclude other, in some sense similar models.
Typically, the SAT solver returns a subset with a reasonable generalizing power.1

3.2.2 Tracking dependencies with markers

Assume we have an unsatisfiable CNF formula built up as a conjunction of several
independent parts:

N = N1 ∧ . . . ∧Nk.

We would like to know which of the constituentsNi truly contribute to the unsatisfiability
of the whole formula N . This is a form of an unsatisfiable core extraction problem and
can be solved with the help of marker literals (Achá et al., 2010).

We allocate new variables v1, . . . , vk, which do not appear in the formula N , and
extend the clauses of the constituent sets by marker literals as follows:

Ni = {¬vi ∨ C | C ∈ Ni}.

Solving the original formula N is equivalent to solving a conjunction of the extended
clauses

N1 ∧ . . . ∧Nk

under a set of assumptions A = {v1, . . . , vk}. If we receive from the SAT solver a subset
A0 ⊆ A of those assumption that were actually needed to derive contradiction from the
given formula, we learn that the possibly weaker conjunction∧

vi∈A0

Ni

is already unsatisfiable.

1There are techniques for explicitly minimizing the size of the set of used assumptions and thus the
size of the explaining clause. However, we do not consider them in this chapter.

75

3 LTL proving with partial model guidance

The abstraction of marked clauses

Marker literals are used in LS4 to track dependencies between the learned clauses and
the different parts of the input TST. To simplify the pseudocode of the algorithm we
introduce the following abstraction of marked clauses.

Formally, a marked clause Cm is a pair consisting of a standard clause C and a finite,
possibly empty, set of markers m. We use sans-serif symbols like I,T,G, . . . to denote sets
of marked clauses. In logical expressions, the meaning of a marked clause Cm is identical
to the meaning of the clause C. However, we adopt a convention that a call to a SAT
solver automatically collects markers of all the supplied marked clauses, allocates new
variables for marker literals and silently inserts assumptions about the marker literals
as describe above. The explaining clause returned in the unsatisfiable case is a marked
clause, whose markers correspond to the used assumptions. The explaining clause can
be non-empty, if there were additional assumptions explicitly supplied to the solver.

Example 3.1. In the above situation with the conjunctive formula N = N1 ∧ . . . ∧ Nk,
the individual conjuncts can be encoded as sets of marked clauses

Ni = {C{i} | C ∈ Ni},

where we mark each clause in Ni by the index i itself. Because we assume the conjunction
N to be unsatisfiable, the query

SAT?[N1 ∧ . . . ∧ Nk]

must return an explaining empty clause of form ⊥m for some m ⊆ {1, . . . , k}. Then the
formula ∧

i∈m
Ni

is the unsatisfiable core of N automatically extracted by the SAT solver.

3.3 The algorithm LS4

3.3.1 Global variables and invariants

In this section we declare the global variables of LS4 and state the algorithm’s main
invariants. We assume we are given a temporal satisfiability task T = (Σ, I, T,G) to
serve as an input of the algorithm. To simplify our subsequent analysis, we make sure
that the input TST T and its constituent parts are considered read-only by LS4 and
thus maintain only one value throughout the run of the algorithm.

Marking the input clauses

The individual sets I, T , and G of initial, step, and goal clauses, respectively, do not
directly enter the computation, but are first preprocessed and equipped with markers

76

3.3 The algorithm LS4

for tracking proof dependencies. We mark the initial clauses with a single marker ◦ and
denote the resulting set I:

I← {C{◦} | C ∈ I}.
We split the set of step clauses T into two subsets, based on whether the respective
clauses are or are not simple, i.e. only over the basic signature Σ. The simple step
clauses are called universal clauses and go into set U, and the remaining “proper” step
clauses form the set T. We mark both kind of step clauses with an empty set of markers.

U← {C∅ | C ∈ T, C simple},
T← {C∅ | C ∈ T, C not simple},

We also declare a variable G for storing the goal clauses. Variable G is just an interme-
diate repository and does not directly participate on forming queries to the SAT solver.
That is why we use a dummy marker “ ” for the clauses in G:

G← {C{ } | C ∈ G}.

While the sets I and T remain constant during the run of the algorithm, LS4 adds new
universal clauses into U when learning from (certain) unsuccessful extensions and new
goal clauses into G during the Leap inference. Clause are, however, never deleted from
the sets, which means their logical strength is non-decreasing during the run.

This monotonicity property of the values of I, T, U and G with respect to time helps
to simplify reasoning about LS4. For instance, as we later show, when LS4 learns a new
universal clause C∅, the clause satisfies

T ∧ (U)′ |= C∅, (3.1)

with respect to the original value of U. Thanks to monotonicity, relation (3.1) also holds
after C∅ is added to U and, in general, from that point on. We will rely on monotonicity
when proving correctness of LS4.

The partial model

Our algorithm stores the partial model it has built so far in the variable V. Mathe-
matically, V is a finite sequence (Vi)0≤i<|V| of valuations Vi : Σ→ {0,1} over the given
signature Σ. We denote by |V| the length of the sequence and also use this expression
for indexing. For example, V|V|−1 stands for the current last valuation in the sequence.
Initially, the partial model is empty. There are operations add and remove for adding
an element to the end and removing an element from the end of the sequence.

The configuration of blocks

The configuration of blocks in LS4 determines the current set of time points where the
goal clauses are supposed to be satisfied. The algorithm maintains a finite set B of
currently allocated blocks and assigns to each block b ∈ B the following two numbers:

77

3 LTL proving with partial model guidance

• the block’s size sb ∈ N+ and

• the index of the block’s goal clauses ib ∈ N.

The indexes are unique across blocks, which means that they impose a natural ordering.
This allows us to treat B also as a finite sequence B = (bj)0≤j<|B|, where

ibj < ibj+1

for every 0 ≤ j < |B|. The indexes and sizes of the blocks are related by the following
two equations:

ib0 = sb0 − 1,

ibj = sbj + ibj−1
,

where the second equation holds for every 0 < j < |B|. LS4 initializes the configuration
of blocks B to contain just one block b of size sb = 1, positioned at index ib = 0.

Associated layers

LS4 collects clauses derived (transitively) from the goal clauses within so called layers.
Each block b ∈ B is associated with two sequences of sets of marked clauses, the proper
layers Lb

i or simply layers, and the dirty layers Db
i . For convenience of notation, the

index i formally ranges over the whole set of integers Z. However, during computation
only finitely many of these sets are non empty and, in particular, Lb

i and Db
i are always

empty for i < 0.
Each layer Lb

i is a set of clauses marked by a single marker, the block b itself. For each
block b, LS4 maintains that the layer Lb

0 contains exactly the goal clauses marked with
the marker b:

Lb
0 = {C{b} | C{ } ∈ G}. (3.2)

To preserve (3.2), the layer Lb
0 is updated after each Leap inference. The layers Lb

i for
i > 0 are initialized empty and the algorithm gradually adds clauses to these layers when
learning from (certain) unsuccessful extensions.

Semantically, the proper layers satisfy the following two properties

G |= Lb
0, (3.3)

T ∧ (U ∧ Lb
i)
′ |= Lb

i+1. (3.4)

We call (3.3) and (3.4) the initial and progress layer property, respectively. While the
initial property is an immediate consequence of (3.2), the progress property depends on
the learning process and we will justify it in full later on. Similarly to I, T, U and G the
values of layers change only monotonically during the run of the algorithm.2

A dirty layer Db
i contains clauses marked not only by b, but also by some other blocks.

Those other blocks always have an index smaller than b. Formally, every element of Db
i is

2Unless a block is deleted, in which case its layers are destroyed.

78

3.3 The algorithm LS4

Lb20

Lb10

Lb00

I

b0

b1

b2

sb0

ib0 ib1

sb1

Lb01Lb02

Lb11
. . .

Lb21Lb22Lb23Lb24
. . .

sb2

ib2

T

T

T

T

T

0 1 2 3 4 5 6

B

V V0 V1 V2

U U U U U . . .UU

T

T . . .T

F_

Figure 3.2: Alignment between the clauses of the given TST T , the partial model V,
and the blocks B in LS4. The goal clauses G reside within Lb

0 of every block b ∈ B,
marked by the respective block. The dirty layers Db

i follow the same pattern as Lb
i and

are not shown. LS4 will next attempt to compute valuation V3. If the attempt fails and
the derived conflict clause depends on both b1 and b2, it will be inserted into Db2

4 .

a marked clause Cm such that 1) m ⊆ B, 2) b ∈ m, 3) |m| > 1, and 4) maxb′∈m ib′ = ib.
Dirty layers of a new block start empty and get populated when new clauses are learned.

The semantics of dirty layers is more complex than that of the proper layers as it also
depends on the current configuration of blocks. Because the dirty layers only serve to
guide the search of the partial model, but do not directly influence the correctness of
LS4, we refrain from explicitly formulating their semantics at this point.

In Figure 3.2, a more elaborate version of Figure 3.1 from the introduction, we can see
the intended alignment between the configuration of blocks B, the partial model V, and
the sets of marked clauses operated by LS4. The figure shows that the indexes of layers
are meant to be interpreted in reversed order to those of the individual valuations of the
partial model V. This means that a step from Vi to Vi+1 in the model corresponds to a
step from Lb

j+1 to Lb
j in the layers. This interpretation reflects the flow of information

inside LS4: either the partial model gets extended from Vi to Vi+1 or the model is
backtracked and a new clause derived from Lb

j is learned and added to Lb
j+1.

Two key invariants

We close this section by stating two invariants, which will later help us show that LS4
is correct. The first invariant relates the constructed partial model to the input TST.

Invariant 3.1. Let T = (Σ, I, T,G) be the input TST, V = (Vi)0≤i<|V| the partial model,
and B the current configuration of blocks at any moment during the run of LS4. Then

1. V0 |= I, provided V is not empty,

2. [Vi, Vi+1] |= T for every 0 ≤ i < |V| − 1, and

79

3 LTL proving with partial model guidance

3. Vib |= G for every b ∈ B for which ib < |V|.

Invariant 3.1 expresses the standard requirements on any model of a TST restricted
in range to the currently constructed part of V. Notice how the configuration of blocks
B dictates (item 3) at what indexes are the goal clauses are supposed to be satisfied.

The second invariant captures a relation between the marked clauses maintained by
LS4 and an arbitrary (hypothetical) model of the given TST T . Essentially, it claims
that the learned clauses are logically entailed (in their respective contexts) and, therefore,
LS4 never discards a potential model by learning them.

Invariant 3.2. Let T = (Σ, I, T,G) be the input TST, B a configuration of blocks, and
I, T, U, G, Lb

i , and Db
i the values of the respective global variables of LS4 at any moment

during the run of the algorithm. Moreover, let W = (Wi)i∈N be any model of T . Then

1. W0 |= I,

2. [Wi,Wi+1] |= T for every i ∈ N,

3. Wi |= U for every i ∈ N,

4. Wi |= C for every C{b} ∈ Lb
j and every i ∈ N such that Wi+j |= G, and

5. Wi |= C for every C{b1,...,bk} ∈ Db
j and every i ∈ N such that Wi+j+(ibl−ib) |= G for

l = 1, . . . , k.

Items 1 and 2 follow trivially from how LS4 initializes the sets I and T and from the
fact that the sets are never modified. Item 3 expresses soundness of learning universal
clauses and can be easily derived from relation (3.1). Item 4 states that any clause C{b}

from a layer Lb
j is bound to hold j steps before the set of goal clauses G in any model. This

follows (by induction on j) from the layer properties (3.3) and (3.4) relying on item 3
and on monotonicity. Analogically, we learn from item 5 that any clause C{b1,...,bk} ∈ Db

j

must hold at an appropriate distance to a set of indexes at which the goal clauses hold,
where the respective indexes correspond to the involved blocks b1, . . . , bk. Item 5 is not
needed for showing correctness of LS4 and is mentioned here only for completeness.

3.3.2 Pseudocode

This section presents a detailed pseudocode of LS4 and describes the workings of the
algorithm. The code is split into three parts. Algorithm 3.1 defines a procedure for
initializing the global variables and another one for creating new blocks, Algorithm 3.2
contains the main body of LS4, i.e. the overall iterative construction of the partial model,
and, finally, Algorithm 3.3 provides two additional auxiliary procedures, one for updating
the configuration of blocks and the other implementing the Leap inference. The section
ends with a demonstration run of LS4 on a simple example.

80

3.3 The algorithm LS4

Initialization

Before LS4 enters the main loop, it calls the procedure InitializeGlobalVariables
(Algorithm 3.1 lines 1–7), which sets the initial values for the global variables I, T, U and
G by copying and appropriately marking the clauses of the input TST as described in the
previous section. The procedure also resets the partial model V to an empty sequence
and initializes the configuration of blocks B to contain exactly one block, positioned at
index 0. The latter is achieved by a call to procedure NewBlock (Algorithm 3.1 lines
8–14), which, in general, allocates a new block b to a given index i and initializes the
associated layers Lb

j and Db
j to empty sets for every j ∈ Z. An exception is the layer Lb

0,
which receives the goal clauses from the set G marked by b itself.

Algorithm 3.1 LS4 – Auxiliary procedures I

1: procedure InitializeGlobalVariables(TST T = (Σ, I, T,G))
2: I← {C{◦} | C ∈ I} /* Initial clauses marked by ◦ */
3: U← {C∅ | C ∈ T,C is simple} /* Universal clauses; only over Σ */
4: T← {C∅ | C ∈ T,C is not simple} /* Proper step clauses; spanning Σ ∪ Σ′ */
5: G← {C{ } | C ∈ G} /* Goal clauses with a dummy marker */
6: V ← ∅ /* The partial model is initially empty */
7: B ← ∅, NewBlock(0) /* Start with one block of size 1 */

8: procedure NewBlock(index i ∈ N)
9: add new block b to the end of B

10: ib ← i /* Index of b’s goal time point */
11: sb ← 1 /* Size of b */
12: Lb

0 ← {C{b} | C{ } ∈ G} /* Lb
0 contains goal clauses marked by b */

13: foreach j ∈ Z : j 6= 0⇒ Lb
j ← ∅ /* Remaining layers are empty */

14: foreach j ∈ Z : Db
j ← ∅ /* All dirty layers are empty */

Main loop overview

Every iteration of the main loop of LS4 (see Algorithm 3.2) attempts to extend the
partial model V by one more world, i.e. by one more valuation over the basic signature
Σ. This is done by formulating a query formula and calling a SAT solver. If the query
formula is satisfiable, the extension succeeds and a new valuation V is extracted from
the satisfying assignment and added to V. If, on the other hand, the query formula is
unsatisfiable, the extension fails and the solver returns a explaining clause. The clause
is analyzed and learned to guide future extension attempts.

The extension query

A query formula is formed and the SAT solver is called on line 3 of the pseudocode.
There are two versions of the query depending on whether the current partial model

81

3 LTL proving with partial model guidance

is empty or not. They both refer to a formula “macro” Fi defined to collect all the
clauses that the new valuation should satisfy based on its index i and on the current
configuration of blocks:

Fi = U ∧
(∧

b∈B
Lb

(ib−i)

)
∧
(∧

b∈B
Db

(ib−i)

)
.

In the previously mentioned Figure 3.2, the collected clauses Fi occupy the same column.
The first version of the query, called the initial query, is formed when the partial model
V is currently empty. The query consists of the initial clauses I in conjunction with the
formula F0 and reflects LS4’s current requirement on the first valuation V0 of the partial
model:

(I ∧ F0)′. (3.5)

The query uses priming to align with the second version: in both versions the query is
formed over the joint signature Σ ∪ Σ′ and we want to extract the new valuation from
the Σ′-part of the satisfying assignment.

We call the second version of the query proper extension query . It consists of three
parts and is formed when the length |V| of the partial model is greater than zero. It
encodes the current last valuation V|V|−1 into an assumption cube over Σ. It supplies
the step clauses T to express the desired relation between V|V|−1 and the expected new
valuation. And, finally, it expresses the constraints on the new valuation via the formula
F|V|:

Lits(V|V|−1) ∧ T ∧ (F|V|)
′. (3.6)

Observe that |V| is the index the new valuation will obtain if it is successfully constructed
and inserted into the partial model.

Successful extension

When the query formula is satisfiable and the extension succeeds, we execute the follow-
ing steps (see lines 4–11 in Algorithm 3.2). First, we extract the new valuation V from
the Σ′-part of the satisfying assignment. Then, we perform a model repetition check to
test whether a valuation identical to V does already appear in the partial model V. If
this is indeed the case and V equals Vi for some 0 ≤ i < |V| and if, moreover, there is a
block b ∈ B such that

i ≤ ib < |V| (3.7)

we terminate the computation reporting that the given TST T is satisfiable. In this
situation, we can complete V to an ultimately periodic model of T (see line 7). We must
insist on the existence of the block b whose index ib satisfies (3.7) to make sure that
the repeating part of the ultimately periodic model, which will consist of the valuations
Vi, Vi+1, . . . , V|V|−1, contains at least one valuation that satisfies the goal clauses. In our

case, this will be the valuation Vib , which satisfies Lb
0 and therefore G.

The model repetition check is succeeded by a new block check (lines 8–10). As the
partial model grows during the computation, LS4 ensures that there is at least one block

82

3.3 The algorithm LS4

Algorithm 3.2 LS4 – Main loop

Input:
A TST T = (Σ, I, T,G)

Output:
An ultimately periodic model V of T , or a guarantee that none exists

1: InitializeGlobalVariables(T)

2: loop
3: if |V| = 0 and SAT?[(I ∧ F0)′] or

|V| > 0 and SAT?[Lits(V|V|−1) ∧ T ∧ (F|V|)
′] then

4: V ← valuation extracted from the Σ′-part of the satisfying assignment
5: /* Model repetition check */
6: if ∃ i ∈ N, b ∈ B such that Vi = V and i ≤ ib < |V| then
7: return λj ∈ N . if j < i then Vj else Vi+(j−i) mod (|V|−i)

8: /* New block check */
9: if |V| = maxb∈B ib then /* Just completed the last block */

10: NewBlock(|V|+ 1)

11: add V to the end of V /* |V| increased by 1 */
12: else /* Unsuccessful extension */
13: Cm ← the explaining marked clause from unsuccessful extension
14: if C = ⊥ then /* Empty clause */
15: if m = ∅ or m = {◦} or m = {b} for some b ∈ B then
16: return UNSAT /* “Unconditional” empty clause derived */
17: else
18: ExtendLastInvolvedBlock(m)

19: else /* A non-empty clause (over Σ); cannot be marked with ◦ */
20: remove V|V|−1 from V /* |V| decreased by 1 */
21: if m = ∅ then /* A new universal clause */
22: add Cm to U
23: else if m is of the form {b} then /* Depends only on one block */
24: add Cm to Lb

(ib−|V|)
25: /* Layer repetition check */
26: if b = b|B|−1 and Lb

i = Lb
j for some 0 < i < j ≤ sb then

27: if B = {b} then /* Repetition in the first and only block */
28: return UNSAT /* Enough empty clauses derivable */
29: else /* There is more than one block */
30: Leap(b, i, j − i)
31: else /* Depends on several blocks: |m| > 1 */
32: b∗ ← argmaxb∈m ib /* The last involved block */
33: add Cm to Db∗

(ib∗−|V|)

83

3 LTL proving with partial model guidance

b with its index “in front of” the last valuation V|V|−1 so that the extensions are always
“guided” towards satisfying the goal clauses in some future valuation. Formally, the
algorithm maintains the condition

|V| ≤ ib|B|−1
. (3.8)

This is done by allocating a new block whenever the size of the partial model |V| equals
the index of the last block ib|B|−1

and the condition (3.8) would otherwise be violated
after the addition of the new valuation to V. The index of the new block is the smallest
possible, namely |V|+ 1.

The final step of successful extension is to actually add the new valuation V to V
(line 11). Note that the addition also implicitly increments the value of |V|. This should
be taken into account especially when interpreting the usage of |V| as an index.

By examining the extension queries from the perspective of Invariant 3.1, it is straight-
forward to establish that the invariant is preserved when a new valuation is added to V
as a result of a successful extension.

Unsuccessful extension

An unsuccessful extension (Algorithm 3.2 lines 13–33) occurs when the query formula
is unsatisfiable. In such a case, the SAT solver returns a marked explaining clause Cm.
Subsequent execution of LS4 depends on whether the explaining clause is empty or not.

The algorithm first analyzes the case when the explaining clause is empty (lines 14–
18). If the set of involved markers m is either empty, equals the singleton set {◦} or the
singleton set {b} for a block b ∈ B, LS4 terminates with result UNSAT. Intuitively, this
corresponds to an unconditional empty labeled clause being derived by LPSup (recall
Definition 2.13) and it means that the input TST T cannot have model.3 We will justify
this formally in the next section.

If, on the other hand, the set of involved markers m is more complex (and contains
both the initial clause marker ◦ and a block marker, or two different block markers),
the derived empty clause does not entail unsatisfiability of T . Instead, it only signals
that the current configuration of blocks cannot yield a model and must be updated
accordingly. To this end LS4 calls the procedure ExtendLastInvolvedBlock (Algo-
rithm 3.3 lines 1–5), which

1. extracts from the set of markers m the last block b∗ involved in the conflict,

2. discards all the blocks whose index lies further away than ib∗ ,

3. extends b∗ by increasing the index ib∗ and the size sb∗ by one, and

4. clears all the dirty layers of b∗.

Deleting the far blocks (item 2) as well as clearing the dirty layers of b∗ (item 4) is a
simple way to ensure that all the dirty layers which depend on the block b∗’s old position
ib∗ will be removed. This is needed to maintain Invariant 3.2 item 5.

3The clauses, in this case, would be, respectively, (∗, ∗) || ⊥, (0, ∗) || ⊥, and (∗, k) || ⊥ for k = |V|−1− ib.

84

3.3 The algorithm LS4

Algorithm 3.3 LS4 – Auxiliary procedures II

1: procedure ExtendLastInvolvedBlock(marker m)
2: b∗ ← argmaxb∈(m∩B) ib /* The last involved block */
3: remove {b ∈ B | ib > ib∗} from (the end of) B /* Delete blocks further away */
4: ib∗ ← ib∗ + 1, sb∗ ← sb∗ + 1 /* Extend the last involved block */
5: foreach i ∈ Z : Db∗

i ← ∅ /* Discard clauses depending on b∗ and its old index */

6: procedure Leap(block b, offset o ∈ N, period p ∈ N+)
7: /* Assuming b is the last block, but not the first */
8: /* Moreover, o+ p ≤ sb and Lb

o = Lb
o+p */

9: r ← p · do/pe /* The only multiple of p such that o ≤ r < o+ p */
10: L← {C{ } | C{b} ∈ Lb

r} /* Clauses to leap; with a dummy marker */
11: remove b from (the end of) B /* Deletes also every Lb

j and Db
j */

12: G← G ∪ L /* Strengthen the goal formula . . . */
13: foreach b′ ∈ B : Lb′

0 ← Lb′
0 ∪ {C{b

′} | C{ } ∈ L} /* . . . and the existing blocks */
14: b∗ ← b|B|−1 /* The new last block */
15: remove {Vi | i ≥ ib∗} from (the end of) V /* Backtrack the partial model */

Let us now consider the part of the code which handles the case of a non-empty
explaining clause Cm (lines 20–33). To derive a non-empty clause, the solver must have
been supplied with explicit assumptions. This means that the unsatisfiable query was
necessarily a proper extension query (3.6) and we have |V| > 0 and are dealing with an
extension of an existing valuation V|V|−1. It also means that the set of markers m does
not contain the initial marker ◦ and thus m ⊆ B.

LS4 first backtracks and removes the valuation V = V|V|−1 from the partial model
V (line 20), which decreases the value of |V| by one. Then it proceeds to learning the
explaining clause Cm. Depending on the involved markers m, the clause is either added

• to the set of universal clauses U in the case the set m is empty (line 22),

• to the proper layer Lb
(ib−|V|) of the respective block in the case of a singleton set

m = {b} (line 24), and

• to the dirty layer Db∗

(ib∗−|V|)
of the last involved block b∗ in the case of more than

one involved block (line 33).

The general relation (recall Section 3.2) between the explaining clause and the proper
extension query can be expressed as

T ∧ (U ∧
∧
b∈m

Lb
(ib−i) ∧

∧
b∈m

Db
(ib−i))

′ |= Cm, (3.9)

where i = |V| is the orignal length of the partial model before backtracking. Notice,
however, that (3.9) simplifies to

T ∧ (U ∧ Lb
(ib−i))

′ |= C{b}, (3.10)

85

3 LTL proving with partial model guidance

when there is only one marker involved, i.e. when m = {b}, and further to

T ∧ (U)′ |= C∅, (3.11)

when the set of involved markers m is empty. Recall that relation (3.11) has already been
mentioned as the key to showing that learning universal clauses is sound (Invariant 3.2
item 3) and also notice that (3.10) entails the progress layer property (3.4) from which
the soundness of proper layers (Invariant 3.2 item 4) follows. Similarly, one can use (3.9)
to infer the analogous property of dirty layers (Invariant 3.2 item 5).

If the explaining clause involves only one block b and this block is the current last
block, i.e. b = b|B|−1, LS4 executes a layer repetition check (lines 26–30). The purpose
of the check is to look for two layers of the block b that have distinct indexes but are
equal as sets of clauses: Lb

i = Lb
j for some 0 < i < j ≤ sb. In analogy to the calculus

LPSup, the layer repetition check is a key to detecting unsatisfiability and to initiating
the Leap inference.

Unsatisfiability is reported, if the block b is currently the only allocated block (line 27).
This corresponds in LPSup to the case when the conditional empty clauses (0, k) || ⊥
are derivable for every k ∈ N. Also in LS4, unsatisfiability is formally shown using a
derivation replaying argument (see the next section).

If there is more than one block currently allocated, i.e. |B| > 1, the Leap inference
is executed via a call to the Leap procedure (Algorithm 3.3 lines 6–15). Similarly to
LPSup, the algorithm first identifies an offset o ∈ N and period p ∈ N+ of the repetition
(in our formulation o = i and p = j − i), it then computes an index r of the layer to
leap as the only multiple of p in the range o, o + 1, . . . , o + p − 1 (line 9), and finally
uses the clauses from layer Lb

r to strengthen the set of goal clauses G (marked by the
dummy marker) and the layers Lb′

0 for every block b′ ∈ B \{b} (marked by the respective
block b′ itself, as usual). The last block b is removed from B and the partial model V
is backtracked to such a state that the next iteration of the main loop will attempt to
construct a valuation for the index ib∗ , where b∗ is the new last block after the removal
of b from B. Formal analysis of the Leap inference is postponed to the next section.

Example execution

Let us demonstrate execution of LS4 on a simple example defined by the following
unsatisfiable TST over a two element signature

T = ({a, b}, {a ∨ ¬b}, {¬a ∨ a′,¬b ∨ a′}, {¬a, b}).

The execution is presented in Table 3.2. Each line in the table represent an event in the
run of the algorithm, which is either a call to the SAT solver or to one of the auxiliary
procedures. Corresponding updates to the global variables are given in the rightmost
column. The example uses natural numbers to represent blocks (B ⊂ N), which removes
one level of indirection from index expressions. Because the set of universal clauses U
remains empty during the whole execution, it was omitted from the query formulas.

After necessary initialization, LS4 learns that the initial clauses and the goal clauses
cannot be satisfied together (id 1). The algorithm then succeeds in satisfying the goal

86

3.3 The algorithm LS4

Table 3.2: Example execution of LS4.

id call update

InitializeGlobalVariables I← {(a ∨ ¬b){◦}}, G← {(¬a){ }, (b){ }},
U← ∅, T← {(¬a ∨ a′)∅, (¬b ∨ a′)∅},
V ← ∅, B ← ∅,
add 0 to B, i0 ← 0, s0 ← 1,

L0
0 ← {(¬a){0}, (b){0}}, other layers empty

1 SAT ?[(I ∧ L0
0)′] false derived ⊥{◦,0}

ExtendLastInvolvedBlock i0 = 1, s0 = 2
2 SAT ?[(I ∧ L0

1)′] true add V0 = {a 7→ 0, b 7→ 0} to V
3 SAT ?[Lits(V0) ∧ T ∧ (L0

0)′] true add V1 = {a 7→ 0, b 7→ 1} to V
NewBlock add 1 to B, i1 = 2, s1 = 1,

L1
0 = {(¬a){1}, (b){1}}, other layers empty

4 SAT?[Lits(V1) ∧ T ∧ (L1
0)′] false add {¬b}{1} to L1

1,
remove V1 from V

5 SAT ?[Lits(V0) ∧ T ∧ (L0
0 ∧ L1

1)′] false derived ⊥{0,1}
ExtendLastInvolvedBlock i1 = 3, s1 = 2

6 SAT ?[Lits(V0) ∧ T ∧ (L0
0 ∧ L1

2)′] true add V1 = {a 7→ 0, b 7→ 1} to V
7 SAT ?[Lits(V1) ∧ T ∧ (L1

1)′] true add V2 = {a 7→ 1, b 7→ 0} to V
8 SAT ?[Lits(V2) ∧ T ∧ (L1

0)′] false add {¬a}{1} to L1
1,

remove V2 from V
9 SAT ?[Lits(V1) ∧ T ∧ (L1

1)′] false add {¬b}{1} to L1
2

10 SAT ?[Lits(V0) ∧ T ∧ (L0
0 ∧ L1

2)′] false derived ⊥{0,1}
ExtendLastInvolvedBlock i1 = 4, s1 = 3

11 SAT ?[Lits(V0) ∧ T ∧ (L0
0 ∧ L1

3)′] true add V1 = {a 7→ 0, b 7→ 1} to V
12 SAT ?[Lits(V1) ∧ T ∧ (L1

2)′] true add V2 = {a 7→ 1, b 7→ 0} to V
13 SAT ?[Lits(V2) ∧ T ∧ (L1

1)′] false add {¬a}{1} to L1
2, layers repeat: L1

1 = L1
2

Leap remove 1 from B,

add {¬b}{0} and {¬a}{0} to L0
0,

remove V2 and V1 from V
14 SAT?[Lits(V0) ∧ T ∧ (L0

0)′] false derived ⊥{0}, return UNSAT

87

3 LTL proving with partial model guidance

clauses at index i0 = 1, after which it allocates a second block (id 3). Satisfying the goal
clauses for a second time is, however, impossible, because the only goal vertex in the
semantic graph for T (recall Section 2.4.2), namely V = {a 7→ 0, b 7→ 1}, does not lie on
a cycle. LS4 recognizes this situation by detecting a repetition in layers of the second
block (id 13). A subsequent Leap inference makes the set of goal clauses inconsistent,
which is immediately detected in the next call to the solver (id 14).

3.3.3 Correctness

In this section we argue that LS4 is correct, meaning that the algorithm only returns
UNSAT when the given TST T does not have a model, and that the algorithm only
returns an ultimately periodic interpretation V when this interpretation is indeed a
model of T . Together with a termination proof, which we provide in the next section,
this will show that LS4 is a decision procedure for TSTs and thus for LTL.

Our strategy to proving the correctness is the following. First, we analyze layer rep-
etitions of LS4 and define infinitely repeating layers, a semantic version of derivation
replaying argument from LPSup. We then use this concept in two places: 1) to prove
soundness of the Leap inference and 2) to justify the case of “conditional” empty clauses
in the main theorem.

All the line numbers below refer to the pseudocode of the main loop (Algorithm 3.2).

Layer repetitions

When LS4 detects a repetition of layers (line 26) we know there is a block b ∈ B and
indexes 0 < i < j ≤ sb such that Lb

i = Lb
j . We define the following sequence of (marked)

clauses Lk, called the infinitely repeating layers derived from the repetition Lb
i = Lb

j in
block b, by setting

Lk =

{
Lb
k for 0 ≤ k < i,

Lb
i+(k−i) mod (j−i) for k ≥ i.

It is straightforward to check that the infinitely repeating layers Lk satisfy the initial
and progress layer properties (3.3) and (3.4), and, therefore, the following analogy of
Invariant 3.2 item 4 holds for the infinitely repeating layers.

Lemma 3.1. Let W = (Wl)l∈N be any model of the input TST T and let Lk be the
infinitely repeating layers derived from a repetition. Then for every k, l ∈ N

if Wk+l |= G then Wl |= Lk.

Soundness of Leap

Although LS4 does not explicitly attempt to construct a (K,L)-model (see Defini-
tion 2.6), it relies on the (K,L)-model semantics to justify soundness of Leap. The
Leap inference may remove some standard models from consideration, but guarantees
to preserve the existence of at least one (K,L)-model.

88

3.3 The algorithm LS4

Lemma 3.2. Let T = (Σ, I, T,G) be the input TST of LS4. Assume the algorithm has
just detected a layer repetition Lb

i = Lb
j for a block b ∈ B and indexes 0 < i < j ≤

sb. Let o = i and p = (j − i) be the offset and period passed to the Leap procedure.
Furthermore, let r = p · do/pe be the only multiple of p such that o ≤ r < o + p and let
G+ = {C | C{ } ∈ G} and H = {C | C{b} ∈ Lb

r}. If the TST T + = (Σ, I, T,G+) is
satisfiable then so is the TST T ++ = (Σ, I, T,G+ ∪H).

Proof. Let us assume that the TST T + is satisfiable. By Lemma 2.1 (page 23) it must
have a (K,L)-model W = (Wk)k∈N for some K ∈ N and L ∈ N+. In such a model

WK+l·L |= G+ (3.12)

for every l ∈ N. We will prove the lemma by showing that at the indexes of the form
K + l · L the model W, in fact, also satisfies the formula H.

Let K+ l ·L for l ∈ N be such an index. We consider the following linear Diophantine
equation

l′ · L = r + k′ · p, (3.13)

which must have a solution pair l′, k′ ∈ N, because r is a multiple of p. It follows from
(3.12) that WK+(l+l′)·L |= G+ or, equivalently, W(K+l·L)+l′·L |= G. By Lemma 3.1, we
obtain

WK+l·L |= Ll′·L,

where Lk is the sequence of the infinitely repeating layers derived from our repetition.
Now Ll′·L = Lr+k′·p by (3.13) and Lr+k′·p = Lr = Lb

r by the definition of the infinitely
repeating layers. Therefore, WK+l·L |= H, since the sets Lb

r and H contain the same
clauses up to the markers.

Correctness theorem

Below we prove the main theorem of this section. When justifying correctness in the
unsatisfiable case, the presented contradictions depend on the values of U and G at the
moment when they are detected. We implicitly rely on the soundness of learning univer-
sal clauses (Invariant 3.2 item 3) and the soundness of the Leap inference (Lemma 3.2)
to relate these contradictions back to the original input TST T .

Theorem 3.1. LS4 only returns UNSAT when the input TST T does not have a model,
and it only returns an ultimately periodic interpretation W when W is a model of T .

Proof. Let us first consider the case when LS4 returns an ultimately periodic interpre-
tation. This happens when the model repetition check (line 6) succeeds and there is an
index i and a block b ∈ B such that i ≤ ib < |V| and Vi = V . Recall that V is the
just extracted valuation to be added to V after a successful extension. The ultimately
periodic interpretation W = (Wj)j∈N to be returned is defined (see also line 7) by

Wj =

{
Vj for 0 ≤ j < i,

Vi+(j−i) mod (|V|−i) for i ≤ j.

89

3 LTL proving with partial model guidance

It follows from Invariant 3.1 that W is indeed a model of T . In particular, the goal
clauses G are satisfied at every index of the form ib + j · (|V| − i) for j ∈ N.

When LS4 returns UNSAT on line 16, it means it has just derived an empty clause
⊥m from an unsuccessful extension. Depending on the set of markers m and on the kind
of the extension query, which could have been either the initial query (3.5) or the proper
extension query (3.6), there are the following entailments to consider:

• U |= ⊥∅ or T ∧ (U)′ |= ⊥∅,

• I ∧ U |= ⊥{◦}, or

• U ∧ Lb
i |= ⊥{b} or T ∧ (U ∧ Lb

i)
′ |= ⊥{b} for some i ∈ N and b ∈ B.

The first two options imply contradiction in the set of universal clauses, the third op-
tion the same between the initial and universal clauses, and with the last two options
the contradiction arises i (or i + 1) steps before the goal clauses can be satisfied (see
Invariant 3.2 item 4). We can see that the input TST T cannot have a model in any of
the listed cases.

When LS4 returns UNSAT on line 28, it has just detected a repetition in the first
block (line 27), which means that B = {b} and Lb

i = Lb
j for some indexes 0 < i < j ≤ sb.

Previously, there must have been (sb − 1) moments during the run of the algorithm
when the block b was extended. Because b is the first block, the extensions happened as
a result of deriving the empty explaining clause ⊥{◦,b} from an unsuccessful extension,
which means that the conjunction

I ∧ U ∧ Lb
l , (3.14)

was (and remained thanks to monotonicity) unsatisfiable for every 0 ≤ l < sb.
Let us now recall the sequence Lk of infinitely repeating layers derived from our repe-

tition. It is easy to see that every Lk for k ∈ N is equal to some Lb
l for 0 ≤ l < sb. This

implies there cannot be a model of the input TST T . Indeed, suppose otherwise. Let
W = (Wl)l∈N be such a model and let k ∈ N be the first index at which the goal clauses
G are satisfied in W:

Wk |= G.

It follows by Lemma 3.1 that W0 |= Lk in that model and so W0 |= Lb
l for some 0 ≤ l < sb.

But this in not possible, because (3.14) is unsatisfiable. A contradiction.

3.3.4 Termination

In this section we demonstrate that any computation of LS4 terminates. We do this by
stating and proving four lemmas and putting them together in a final theorem, which
provides an upper bound on the running time.

Central to our proof is an idea of a “proper strengthening” of a clause set. Because
LS4 uses a SAT solver, deriving and learning a new clause always means that the current
partial model must be changed and can never again assume the same form. We use this
idea directly in the proof of Lemma 3.5 and in a much more subtle way in Lemma 3.6,
which deals with the Leap inference and its role in the termination argument.

90

3.3 The algorithm LS4

Unless explicitly stated otherwise, the line numbers below refer to the pseudocode of
the main loop of LS4 (Algorithm 3.2).

Lemma 3.3. The number of active blocks |B| is bounded by 2|Σ| during the run of LS4.

Proof. Let B be a configuration of blocks and let b = b|B|−1 be the current last block.

Every time a new block is about to be created (line 9) the new valuation V satisfies Lb
0

and therefore G. At that moment, LS4 also registers |B|−1 other valuations satisfying G,
namely the valuations Vib′ for b′ ∈ B \{b}. By inspecting the model repetition condition
(line 6) at the moments when these valuations were generated, we can observe that they
are all distinct. Thus, |B| ≤ 2|Σ| since there are altogether at most as many valuations
over Σ, let alone valuations satisfying G.

Lemma 3.4. Let B be a configuration of blocks and b = b|B|−1 the last block. The size

of the last block sb is bounded by 2c, where c = 3|Σ| denotes the number of different
non-tautological clauses over the signature Σ.

Proof. Every block b is created with Lb
i = ∅ for every i ∈ N+ and whenever b is extended,

its layers Lb
1, . . . , L

b
sb

are necessarily non-empty, because the marker b could otherwise not
be involved in the proof of the respective empty clause. Therefore, continual extensions
of the block b must be interleaved by additions of new clauses to the layers Lb

i and thus
also by layer repetition checks (line 26). But there is at most 2c different sets of clauses
over the signature Σ and so a repetition is bound to occur before sb exceeds 2c.

The following lemma estimates the maximal number of iterations of the main loop for
an unchanging configuration of blocks B. Note that the three mentioned procedures are
the only points where a configuration gets modified.

Lemma 3.5. Let B be a configuration of blocks and let b = b|B|−1 be the last block. LS4

performs at most O(ib · 2|Σ|) iterations of the main loop before updating B by calling the
procedures NewBlock, ExtendLastInvolvedBlock or Leap.

Proof. Unless NewBlock is called, the length |V| of the partial valuation cannot exceed
the index of the last block ib. Thus, the number of successful extensions minus the
number of unsuccessful extensions is at any moment bounded by ib +1. Moreover, every
unsuccessful extension properly strengthens either the set U or a layer Lb′

j or a dirty layer

Db′
j for some block b′ ∈ B and j ∈ N, which means that the removed valuation V|V|−1

(see line 20) cannot be later generated again at that particular index.

Lemma 3.6. Each invocation of the Leap inference properly strengthens the set of goal
clauses G. Therefore, LS4 performs at most O(2|Σ|) invocations of the Leap inference.

Proof. Let B be a configuration of blocks, let b = b|B|−1 be the last block that is not
a first block, and let b1 = b|B|−2 be the second last block. Furthermore, let V be the
valuation that LS4 added to V just after the block b was created (see lines 9–11). At
that moment, which we denote m1, we have V |= Lb1

0 and so V |= G.

91

3 LTL proving with partial model guidance

Let us consider a later moment m3 when the Leap inference is invoked (line 30) for b
as the last block. At that moment, there are numbers 0 < i < j ≤ sb such that Lb

i = Lb
j .

The Leap procedure (Algorithm 3.3) computes an index r in the range i ≤ r < j and
globally strengthens G by the clauses from Lb

r . To complete the proof we show that
V 6|= Lb

r and thus, after the strengthening, V 6|= G.

We consider a moment m2, between m1 and m3, when the size sb of the block b was
equal to r and the block b was to be extended because of an empty clause (line 18).
By deriving the empty clause, LS4 has proven that the configuration of blocks B \ {b}
with an additional requirement that Lb

r be satisfied at index ib1 = ib − r does not allow
any partial model. Yet, at moment m1, there was a partial model V with V as the
last valuation at index ib1 that complied with the configuration B \ {b} except for the
additional requirement. Therefore, V cannot satisfy Lb

r . This holds already for the value
of Lb

r at moment m2, and so all the more for the value at moment m3 after potential
strengthenings of Lb

r that could happen in between.

Theorem 3.2. For any input TST T = (Σ, I, T,G) LS4 terminates. Its running time
is at most doubly-exponential in the size of the signature Σ.

Proof. By Lemmas 3.3 and 3.4, there is at most d = 2|Σ| · 23|Σ| different configurations
of blocks that the algorithm can consider. Also, d is a bound on the maximal value
of the last block’s index ib. Thus, by Lemma 3.5, LS4 can spend at most O(d · 2|Σ|)
iterations of the main loop in one configuration. By treating each configuration B as a
sequence (ib0 , . . . , ib|B|−1

) and ordering the sequences lexicographically, we can observe
that LS4 always transitions to a strictly larger configuration during calls to NewBlock
and ExtendLastInvolvedBlock. This means a configuration cannot be reconsidered
unless Leap is called. But by Lemma 3.6, there can be at most 2|Σ| calls to Leap. The
time spent during one iteration of the main loop is dominated by the call to the SAT
solver and can be bounded by O(2|Σ|). In total, we obtain

O(d2 · (2|Σ|)3) = 22O(|Σ|)

as our bound on the running time of LS4.

Although a doubly-exponential theoretical upper bound on the running time of an
algorithm may seem discouraging, we demonstrate in the next section that the practical
performance of LS4 is actually quite good.

3.4 Practical experience

3.4.1 Implementation

We implemented LS4 using Minisat (Eén and Sörensson, 2003a) version 2.2 as the un-
derlying SAT solver. In this section we describe our implementation, focusing on how it
utilizes an incremental interface which Minisat provides.

92

3.4 Practical experience

Incremental SAT solving

The incremental interface of Minisat (Eén and Sörensson, 2003b) allows allocating new
variables and adding new clauses between individual solver calls. Although the option
to explicitly delete clauses is not available, a similar effect can be achieved via marking.
We can selectively deactivate a set of clauses marked by a marker literal ¬v by omitting
the corresponding assumption v from the particular call. Permanent deletion can be
emulated by adding the unit clause {¬v}, which will subsume the respective marked
clauses. From that moment on, however, the marking variable v cannot be reused.

Our implementation of LS4 relies on the incremental interface of Minisat to minimize
copying of clauses. We allocate as many instances of the solver as there are currently
considered indexes of the partial model (more precisely, the number is equal to the sum
of the sizes of the currently allocated blocks) and assign each solver to handling calls
corresponding to a particular index. In this setup, each new explaining clause needs only
to be inserted into one solver. Another advantage is that clauses learned internally by
the CDCL algorithm are preserved and get reused between the calls.

Clause deletion is only needed when extending blocks. In particular, we need to delete
clauses that correspond to the dirty layers of the extended block and to move clauses
that correspond to the proper layers of that block. The latter can be partially achieved
by instead moving the corresponding solvers and assigning a new solver for handling the
index of the gap thus created. Thus, for example, when the extended block is the first
block, we need to deactivate the initial clauses in the originally first solver, which will
next be replaced by the new solver for handling calls at index 0.

Design choices

We have implemented an abstraction layer on top of the Minisat code to encapsulate
the marking mechanism and the above described clause deactivation and deletion. We
use the vector container for storing the partial model and the standard set container
to represent layers. A simple linear scan realizes both the model repetition check and
the layer repetition check. We compute hash signatures of valuations and use them as a
pre-filter in the model repetition check. We found out that most of the overall running
time is typically spent inside individual calls to Minisat and therefore did not attempt
any further optimizations of the checks.

Our implementation, including the marking abstraction layer, comprises little less
then 1K lines of C++ code. The implementation is publicly available (Suda, 2012a).

3.4.2 Experimental evaluation

In 2011, Schuppan and Darmawan (2011) performed a comprehensive experimental eval-
uation of off-the-self satisfiability solvers for LTL. They collected an extensive set of
benchmarks and identified mature tools within each of the three main approaches to
LTL satisfiability: 1) reduction to model checking, 2) tableaux methods, and 3) resolu-
tion. We evaluated LS4 on the mentioned benchmark set and compared its performance

93

3 LTL proving with partial model guidance

to the most successful solvers from each category. In this section we report on our
experiment.

Solvers

Here we list the solvers that we selected for our evaluation. For each solver we choose
one or two configurations of command line options (typeset in teletype) which yielded
the best results on the used benchmark set.

• NuSMV (Cimatti et al., 2002) is a symbolic model checker implementing sev-
eral techniques. In our experiments, we used the following two configurations of
NuSMV version 2.5.4. Configuration NuSMV-BDD performs symbolic model check-
ing of LTL using fixed point computation with BDDs (Clarke et al., 1997). We
enabled forward computation of reachable states and dynamic variable reordering.
Configuration NuSMV-BMC performs incremental simple bounded model checking
(Heljanko et al., 2005) using Minisat as a SAT solver. The configuration uses a
completeness check and so it can detect unsatisfiable inputs.

• PLTL (Goré, 2012) is an Ocaml implementation of two tableau-based algorithms
for LTL checking by Florian Widmann. The first, which we will denote PTLT-tree,
is based on the “one-pass” method outlined by Schwendimann (1998). The second,
PTLT-graph, is an LTL version of the “on-the-fly” algorithm proposed by Goré and
Widmann (2009).

• TRP++ (Konev, 2012) is a temporal resolution prover by Hustadt and Konev
(2003). It implements a saturation strategy within the framework of the CTR
calculus (Fisher et al., 2001). We used TRP++ version 2.1 in the default mode
(to be denoted TRP++).

• STRP (Williams and Konev, 2013) is a recently developed LTL prover based on
the simplified temporal resolution calculus (Degtyarev et al., 2002). It reduces
the search for premises in the calculus to the minimal unsatisfiable subsets (MUS)
extraction problem and uses external tools for solving it. The configuration STRP

which we used in our experiment delegates the extraction to the tool shd.

Remark 3.1. We did not include our implementation of the LPSup saturating decision
procedure (Section 2.5.3) in this experiment. Since it is just a prototype, which was
not optimized for speed in any way, it would probably end up last in the comparison.
A proper experimental comparison of LPSup and CTR in the saturating setting would
require a new implementation comparable in engineering discipline to TRP++ and as
such is left for future work. However, in Section 3.5 we provide further theoretical
insights concerning the saturation approach on the one hand and model guidance on the
other.

94

3.4 Practical experience

Benchmarks, normal form transformations, and the experimental setup

The set of benchmarks collected by Schuppan and Darmawan (2011) consists of a total
of 3723 problems from various sources (mostly previous papers on LTL satisfiability) and
of various flavors (application, crafted, random), and represents the most comprehensive
collection of LTL problems we are aware of. The set is available online4 and contains
several syntactic variations of each problem. The variations correspond to individual
input formats supported by the respective solvers.

The provers TRP++ and STRP require that the input LTL formula be first trans-
formed into SNF before the main algorithm can be started. We used the translator5

tool provided with TRP++ to transform the formulas. Because translator performs
some non-trivial simplifications, it can take substantial time on larger inputs. (In some
cases, it did not even terminate within our time limit.) For fairness of the comparison,
we decided to include the time spent within translator into the overall run time of
TRP++ and STRP reported below.

We created a simple tool TST-translate for transforming the input into TST as
required by LS4. The tool is written in SWI-prolog and implements the linear time
algorithm described in Section 2.2.2. Similarly to the case of translator, the run time
of TST-translate is included in the reported performance of LS4. In what follows, we
denote by LS4 the configuration combining the two programs.

We performed our experiments on servers with 3.16 GHz Intel Xeon CPU, 16 GB RAM,
running Debian 6.0. We measured the run time by a simple Python script harness. The
measurement precision was 0.1 seconds.

Results

We ran LS4 and all the other selected solvers on each of the 3723 problems with a time
limit of 300 seconds per problem. Figure 3.3 plots the number of problems solved within
a given time. We can see that LS4 solves the most problems out of all the solvers and
does so very fast. Indeed, LS4 solves 3461 problems when given just one second per
problem. This is more than what the runner-up, NuSMV-BDD, achieves within the full
limit of 300 seconds per problem.

The perspective of Figure 3.3 attributes similar performance to the related solvers
within the pairs NuSMV-BDD and NuSMV-BMC, STRP and TRP++, and PLTL-graph and
PLTL-tree, respectively. In each of the pairs, the first solver solves eventually more
problems than the second, but the final difference is small and the crossover point lies
further than the 50-seconds-per-problem mark. This is probably most interesting in the
case of the closely related tableau-based algorithms PLTL-graph and PLTL-tree, where
we see that the theoretically superior PLTL-graph, which is only of singly exponential
worst case complexity, eventually beats the initially faster PLTL-tree, whose worst case
complexity is doubly exponential.

4http://www.schuppan.de/viktor/atva11/
5http://cgi.csc.liv.ac.uk/~konev/software/trp++/translator/

95

http://www.schuppan.de/viktor/atva11/
http://cgi.csc.liv.ac.uk/~konev/software/trp++/translator/

3 LTL proving with partial model guidance

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 0 50 100 150 200 250 300

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

LS4
NuSMV-BDD
NuSMV-BMC

PTLT-tree
PTLT-graph

TRP++
STRP

Figure 3.3: Comparison of LS4 and the other LTL solvers – I. Showing the number of
problems out of the whole benchmark set that were solved within a given time limit.

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 0 50 100 150 200 250 300

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

LS4
NuSMV-BDD
NuSMV-BMC

PTLT-tree
PTLT-graph

TRP++
STRP

Figure 3.4: Comparison of LS4 and the other LTL solvers – II. Showing the number of
satisfiable problems solved within a given time limit.

96

3.4 Practical experience

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

LS4
NuSMV-BDD
NuSMV-BMC

PTLT-tree
PTLT-graph

TRP++
STRP

Figure 3.5: Comparison of LS4 and the other LTL solvers – III. Showing the number
of unsatisfiable problems solved within a given time limit.

The performance plot of Figure 3.3 is decomposed between the satisfiable and unsat-
isfiable problems in Figure 3.4 and Figure 3.5, respectively. Most satisfiable problems,
namely 3059, are solved by NuSMV-BMC, which is closely followed by LS4 with 3056 solved
problems. In this satisfiable category, the tableau solvers PLTL-graph and PLTL-tree

perform better than the resolution-based provers STRP and TRP++. This trend is reversed,
however, in the unsatisfiable category, where TRP++ solves 523 and STRP 501 problems,
which places the provers on the second and third place, just behind LS4 with 554 solved
unsatisfiable problems.

The benchmark set that we used can be split into several problem families of various
sources and characteristics (see Schuppan and Darmawan, 2011). In Table 3.3, we show
the number of problems solved within 300 seconds grouped by the individual problem
families. We see that no solver dominates across all the families and some solvers are
complementary in their strengths and weaknesses. Nevertheless, if we count the number
of families on which a particular solver achieves the best performance, we can identify
LS4 and NuSMV-BDD as the most successful solvers, each being able to perform best on
12 families in total. The second best is TRP++, excelling on 11 problem families.

Overall, we believe that our results provide sufficient evidence that LS4 is a strong
algorithm and its implementation, LS4, a successful tool for checking LTL satisfiability.

97

3 LTL proving with partial model guidance

T
a
b

le
3
.3

:
C

om
p

arin
g

L
S

4
an

d
th

e
o
th

er
L
T

L
solvers.

S
h

ow
in

g
th

e
n
u

m
b

er
of

p
rob

lem
s

solved
w

ith
300

secon
d

s
grou

p
ed

b
y

form
u

la
fa

m
ilies.

T
h

e
b

est
resu

lts
for

ea
ch

fam
ily

are
ty

p
eset

in
b

old
.

fa
m

ily
size

L
S
4

N
u
S
M
V
-
B
D
D

N
u
S
M
V
-
B
M
C

P
T
L
T
-
t
r
e
e

P
T
L
T
-
g
r
a
p
h

T
R
P
+
+

S
T
R
P

a
c
a
c
i
a
d
e
m
o
-
v
2
2

10
1
0

1
0

1
0

1
0

1
0

1
0

1
0

a
c
a
c
i
a
d
e
m
o
-
v
3

36
3
6

3
6

3
6

29
31

3
6

33
a
c
a
c
i
a
e
x
a
m
p
l
e

25
2
5

2
5

2
5

2
5

2
5

2
5

2
5

a
l
a
s
k
a
l
i
f
t

13
6

117
1
3
6

112
40

44
32

28
a
l
a
s
k
a
s
z
y
m
a
n
s
k
i

4
4

4
4

4
4

4
4

a
n
z
u
a
m
b
a

51
4
7

9
45

35
35

12
3

a
n
z
u
g
e
n
b
u
f

60
4
6

33
4
9

26
28

17
3

f
o
r
o
b
o
t
s

3
9

3
9

3
9

21
1

16
3
9

3
9

r
o
z
i
e
r
c
o
u
n
t
e
r

76
3
4

47
14

34
62

7
6

34
r
o
z
i
e
r
f
o
r
m
u
l
a
s

2
0
00

2
0
0
0

2
0
0
0

1991
1993

1997
1787

1866
r
o
z
i
e
r
p
a
t
t
e
r
n

24
4

2
4
4

182
2
4
4

2
4
4

2
4
4

227
225

s
c
h
u
p
p
a
n
O
1
f
o
r
m
u
l
a

27
2
7

22
2
7

10
10

2
7

2
7

s
c
h
u
p
p
a
n
O
2
f
o
r
m
u
l
a

27
9

1
4

2
9

9
6

9
s
c
h
u
p
p
a
n
p
h
l
t
l

18
5

9
4

4
3

5
5

t
r
p
N
5
x

240
2
4
0

2
4
0

231
226

2
4
0

2
4
0

2
4
0

t
r
p
N
5
y

140
1
4
0

1
4
0

94
94

94
1
4
0

1
4
0

t
r
p
N
1
2
x

400
397

256
342

223
173

4
0
0

4
0
0

t
r
p
N
1
2
y

190
1
9
0

1
9
0

123
123

123
1
9
0

1
9
0

t
o
t
a
l

3
7
23

36
1
0

3392
3374

3130
3148

3273
3281

98

3.5 Discussion and related work

Table 3.4: Correspondence between marked (LS4) and labeled (LPSup) clauses.

LS4 I U T Lb
k Db

k

LPSup (0, ∗) (∗, ∗) (∗, ∗) (∗, k) —

3.5 Discussion and related work

3.5.1 Semantic graphs and the relation to LPSup

In Section 2.4 of the previous chapter, we explained that a TST of a given LTL formula ϕ
can be seen as a symbolic representation of the Büchi automaton for recognizing models
of ϕ. We defined the semantic graph, a graph theoretic equivalent of the automaton,
and argued that the saturation-based decision procedure of LPSup essentially computes
the preimage operation on the sets of graph vertexes represented by the involved layer
clauses. Let us now try to understand the workings of LS4 from this perspective.

The approach of LS4 can be characterized as a hybrid between explicit and symbolic
exploration of the semantic graph. The partial model built by LS4 corresponds to an
explicit path through the graph. Like an explicit search algorithm, LS4 constructs the
path starting from a concrete initial vertex and always extending it vertex by vertex in the
direction of the goal vertexes. However, the information about unsuccessful extensions
or, in other words, about the already explored but unpromising parts of the graph, is
given a symbolic representation within the learned clauses.

Let us return to the already mentioned correspondence between the marked clauses
learned by LS4 and the labeled clauses of LPSup. As shown in Table 3.4, the correspon-
dence is almost one to one. The only marked clauses that do not have a labeled clause
equivalent are the clauses of the dirty layers Db

k, which depend on two or more different
copies of the goal clauses. Each new clause learned by LS4 belongs to one of the sets U,
Lb
k or Db

k and is always simple, i.e. just over the basic signature Σ. This is a consequence
of the way the mechanism of solving under assumptions is employed in passing the last
valuation of the partial model into the extension query. Non-simple marked clauses are
only learned internally by the CDCD algorithm inside the individual SAT solvers. They
are, however, not explicitly registered by LS4 itself.

The correspondence between the marked clauses of the proper layers Lb
k and (∗, k)-

clauses of LPSup allows us to justify correctness of LS4 in the unsatisfiable case using
essentially the same derivation replaying argument as in LPSup (see Section 3.3.3). An
interesting difference is that while the layer-by-layer saturation of LPSup is exhaustive,
designed to derive all the possible (non-redundant ordered) resolvents, LS4 selectively
learns only those layer clauses which show that a particular reachable vertex cannot be
extended towards the goal. From the semantic perspective, we can say that the preimage
computation performed by the layer-by-layer saturation of LPSup is precise, whereas the
corresponding operation on the side of LS4 only over-approximates the true preimage.
LS4 only learns enough information to repair the last wrong choice, but does not spend
time discovering properties of the preimage that may never be needed.

99

3 LTL proving with partial model guidance

3.5.2 Two other solvers relying on SAT

In Section 3.4.2 we experimentally evaluated LS4 and six other LTL satisfiability solvers.
Similarly to LS4, two other tools, STRP and NuSMV-BMC, internally rely on the SAT-solving
technology, although each of them in a different way. It is interesting to compare and
contrast these approaches from a theoretical perspective.

STRP

STRP is a saturation prover based on the simplified temporal resolution calculus (Degt-
yarev et al., 2002). This calculus essentially reformulates Clausal Temporal Resolution
(CTR) (Fisher et al., 2001) on an abstract level with multi-premise “macro” inference
rules and purely classical side conditions. The main idea behind STRP is to reduce the
search for premises in the calculus to the minimal unsatisfiable subsets (MUS) extraction
problem (Marques-Silva, 2012). Solving this problem is then delegated to an external
tool, which eventually relies on a SAT solver.

If we abstract away the differences between LPSup and CTR (see Section 2.5.2),
which indirectly carry over to LS4 and STRP, respectively, it can be said that the
two latter systems have the opportunity to derive the same clauses. As mentioned,
new clauses learned by LS4 are always simple and the same holds for the conclusions
of the macro-inferences of the simplified temporal resolution in STRP. The saturation
paradigm, however, forces STRP to derive all the possible conclusions that follow from
the current clause set, while LS4 only learns a new clause to record the reason of an
unsuccessful extension.

This is again the difference between the exhaustive and selective approach to clause
generation. It gives LS4 a huge advantage in the satisfiable case, where STRP needs to
finish generating all the implied clauses, while LS4 only derives enough of them to be
guided to a model. However, even in the unsatisfiable case, there are typically many
implied clauses which do not contribute to the final contradiction. LS4 may be able to
ignore these altogether, whereas STRP can only avoid generating them, if the ultimate
empty clause is derived first.

Bounded Model Checking (BMC)

Compared to STRP, the use of a SAT solver in the Bounded Model Checking (Biere
et al., 1999) algorithm, like the one implemented inside NuSMV-BMC, is much more direct.
Given an LTL formula ϕ, BMC encodes the existence of a model for ϕ of size k into a
propositional formula F k

ϕ , which is then passed to the SAT solver. If the formula F k
ϕ is

satisfiable, the algorithm terminates successfully and a model of ϕ is recovered from the
satisfying assignment. In the opposite case, BMC increases the bound k on the model
size and starts again from the beginning.

The encoding of BMC relies basically on the same principles as our normal form
transformation. We can identify building blocks similar to the formulas I, T and G of
a TST and the main part of the encoding F k

ϕ expresses that the model of size k must

100

3.5 Discussion and related work

start in a world satisfying I and respect the transition relation represented by T :

I ∧ T (0) ∧ T (1) ∧ . . . ∧ T (k−2).

Additionally, the chain of worlds is forced to form a loop, meaning that the last world
Wk−1 is equal to one of the preceding worlds Wl. Finally, the goal condition G is required
to hold in one of the worlds of the repeating part of the loop, between Wl and Wk−1.

We can see that from the point of view of finding models, LS4 is very similar to BMC.
The main difference is that in LS4 the formula expressing model existence is constructed
in a step-by-step fashion and the model is built one world at a time. Moreover, LS4 does
not decide in advance the size of the model nor the exact shape of the loop. Indeed,
it relies on the model repetition check without imposing any explicit condition for the
repetition to occur. As our experimental results indicate this passive approach is sur-
prisingly successful in practice. Although BMC solved the most satisfiable problems of
the tested solvers, LS4 ended very close on the second place (see Figure 3.4, page 96).6

Bounded model checking per se does not offer an efficient way for recognizing un-
satisfiable formulas. The implementation NuSMV-BMC (Heljanko et al., 2005) performs
a separate completeness check after each iteration. The idea is to combine those parts
of F k

ϕ which actually do not depend on k with a simple path condition that forces the
involved worlds to be distinct. If such a formula is unsatisfiable, there can be no models
larger than the already considered size k and the algorithm terminates with UNSAT.7

There is not much similarity between the completeness check of BMC and the way un-
satisfiable instances are handled by LS4. It is easy to construct LTL formulas for which
the completeness check is satisfiable for large values of k, but which will be easily rec-
ognized as unsatisfiable by LS4. This could explain why LS4 performed so much better
than NuSMV-BMC on unsatisfiable problems in our experiments (cf. Figure 3.5, page 97).

3.5.3 Recent advances in hardware model checking

In 2010, Aaron Bradley proposed a new SAT-based algorithm for checking safety prop-
erties of finite state systems (Bradley, 2011). The algorithm, called Property Directed
Reachability (PDR), also known as IC3, has been shown to perform remarkably well in
practice and was given the title of the “most important contribution to bit-level formal
verification in almost a decade” (Eén et al., 2011). Recently, two new algorithms for
checking liveness, an equivalent of our TST (un)satisfiability, have been developed, each
building on the success of PDR and using it as a subroutine.

In Chapter 5, we will specialize LS4 to (single time) reachability8 and will obtain an
algorithm very similar to PDR. It is, therefore, appropriate to briefly compare LS4 to
those two liveness checking algorithms. The reader may want to return to this section
after the relation of LS4 and PDR has been presented in full detail in Section 5.3.

6It should be noted that, unlike LS4, NuSMV-BMC guarantees to find models of minimal size.
7This is an LTL analogue of the k-induction method, originally proposed by Sheeran et al. (2000).
8Instead of looking for an infinite path with infinitely many goal worlds, reachability is concerned

about the existence of just a finite path from an initial world to a goal world. Specializing LS4 to
reachability essentially corresponds to limiting its computation to the first block.

101

3 LTL proving with partial model guidance

I G
G

G . . .

I

G
G2

G3 . . .

LS4

k-LIVENESS

Figure 3.6: Comparing state space exploration of LS4 and k-Liveness. Constructed
paths grow along the arrows, guiding layers (denoted by ovals) in the opposite direction.

Fair

The less related of the two algorithms is Fair by Bradley et al. (2011). It uses a
SAT solver to iteratively pick a selection of worlds, called a skeleton, and attempts to
connect these worlds by paths using reachability queries delegated to PDR. A successfully
connected skeleton represents a witness for satisfiability of the given problem: an initial
world connected to a loop with a goal world on it. A failure to connect two worlds of
a skeleton leads to a discovery a new wall in the state space, such that new skeletons
must lie entirely on one side of the wall. Walls are extracted from clausal reachability
information maintained by PDR, an almost exact equivalent of LS4’s layers.

The algorithm that counts

The idea behind the k-Liveness algorithm by Claessen and Sörensson (2012) is to reduce
liveness checking to safety checking (i.e., reachability). This has already been proposed
previously in a form of a one-time encoding (see Biere et al., 2002), but in k-Liveness,
the reduction is incremental.

To show that the given problem is unsatisfiable, the algorithm counts and bounds
the number of times the goal condition G can be satisfied along an infinite path that
starts in an initial world. If the goal condition cannot be reached even once, the given
problem is obviously unsatisfiable and k-Liveness terminates. Otherwise it constructs
a strengthened condition G2, which expresses that the goal G should be satisfied twice in
a row, and runs the safety check again. In general, if the given problem is unsatisfiable,
the goal cannot be satisfied more than k times for some k ∈ N and the algorithm will
terminate after failing to reach a world that satisfies Gk+1. In the setting of verifying
hardware circuits considered by Claessen and Sörensson (2012), the transformation from
condition Gi to Gi+1 can be realized by adding a simple one bit memory element to the
circuit.

The algorithm relies on PDR for answering the reachability queries. While in LS4,
we construct the model path from an initial world towards the goal, in PDR the default
direction is reversed. This means that the equivalent of LS4’s layers in PDR encode

102

3.5 Discussion and related work

over-approximation of the image of the set of initial worlds, as opposed to the preimage
of the goal worlds as in LS4 (see Figure 3.6). This has an important consequence for
k-Liveness. Because these “layers” do not depend on the goal conditions Gi, they can
be shared and reused for guidance by the individual reachability queries. This was shown
to be a key to a good performance of the algorithm.

Performance comparison estimate

In order to obtain a rough comparison of the relative performance of LS4, Fair, and k-
Liveness, we have extended LS4 to parse circuits in the AIGER format (Biere, 2012) of
the Hardware Model Checking Competition (HWMCC) and to translate the correspond-
ing liveness problems to equisatisfiable TST’s. Using the same time limit of 900 seconds
per problem as in the competition, we then ran the extended LS4 on the 118 problems
of HWMCC 2012 (Biere et al., 2012). The results we obtained can be summarized as
follows.

If LS4 participated in the competition, it could have9 placed third with 66 problems
solved (44 satisfiable and 19 unsatisfiable) just after the system iimc2011, which imple-
ments Fair and solved 70 problems (27 satisfiable and 43 unsatisfiable), and the winner
TIP, which implements k-Liveness and solved 92 problems (46 satisfiable and 46 unsat-
isfiable). There are, however, several reasons why this is only a fair comparison of the
implementations rather than of the algorithms themselves.

• k-Liveness is not suitable for recognizing satisfiable instances, therefore, it was
complemented in TIP by a Bounded Model Checker running in lock-step.

• Both iimc2011 and TIP employ circuit specific preprocessing of the input, while
our extension of LS4 relies only on a straightforward encoding followed by variable
and clause elimination (see also Chapter 4).

• Unlike LS4, both Fair in iimc2011 and k-Liveness in TIP incorporate special
heuristic techniques for efficiently dealing with problems involving counters.10

About 10 of the unsatisfiable problems were solved thanks to this technique by
each of the systems (see Claessen and Sörensson, 2012, Fig. 9).

For a better estimate of LS4’s potential as a liveness model checking algorithm, a full-
fledged implementation including the mentioned techniques would be needed. This is
left as a future work.

9Actually, our hardware configuration is stronger than the one used in the competition (3.16 GHz CPU
and 16 GB RAM versus 2.6 GHz CPU and 8 GB RAM), but because all the problems solved by LS4
were solved before the 300 second mark, this should not make a difference.

10Look for “skeleton-independent proofs” (in Bradley et al., 2011, Section III-E) and for “stabilizing
constraints” (in Claessen and Sörensson, 2012, Section IV).

103

3 LTL proving with partial model guidance

3.6 Conclusion

We have presented LS4, a new algorithm for LTL satisfiability. Building on the calculus
LPSup and, in particular, on its ability to construct (partial) models on the fly, LS4
departs from the saturation paradigm and instead employes a modern SAT solver to
efficiently drive the search and select inferences. This gives rise to a hybrid between
explicit and symbolic exploration of the space of potential models.

LS4 was shown to perform remarkably well in practice, staying on par with or even
improving over the state-of-the-art LTL satisfiability checkers. In particular, the model
guidance approach clearly outperforms saturation. This is more evident on the satisfiable
instances, where an explicit model is typically discovered long before a full saturation of
the clause set can confirm satisfiability indirectly. But a performance gain can also be
observed on the unsatisfiable problems. Its likely explanation is the lazy nature in which
LS4 derives clauses from failed attempts of model extension thus only focusing on the
relevant reasons for unsatisfiability.

104

4 Variable and clause elimination for LTL

4.1 Introduction

When developing practically useful tools for satisfiability checking of formulas in a par-
ticular logic, one is on a constant lookout for techniques that would improve performance
and help to fight the typically high inherent computational complexity of the decision
problem. One possibility for speeding up such a tool lies in simplifying the input formula
before the actual decision method is started.

In the context of resolution-based methods for LTL, where the given formula is first
translated into a clausal normal form, simplification means reducing the number of
clauses and variables while preserving satisfiability of the formula. Such a preprocessing
step may have a significant positive impact on the subsequent running time.

In this chapter we take inspiration from the SAT community where a technique called
variable and clause elimination (Eén and Biere, 2005) has been shown to be particularly
effective. It combines exhaustive application of the resolution rule over selected variables
with subsumption and other reductions. Our main contribution lies in showing that
variable and clause elimination can be adapted from SAT to the setting of LTL.

Preprocessing and normal forms

It was observed by Eén and Biere (2005) that work on preprocessing techniques can be
seen as a viable alternative to optimizing normal form transformation procedures. Let
us recall the SNF transformation presented in Figure 2.2 (Section 2.2.2) and consider
the LTL formula

¬p ∨�p. (4.1)

In order to produce an equisatisfiable SNF, our transformation will introduce several
new variables and eventually end up with the following set of temporal clauses

i, �(¬i ∨ u ∨ v), �(¬u ∨ ¬p), �(¬v ∨ w), �(¬w ∨©w), �(¬w ∨ p).

With variable and clause elimination for LTL, as described in this chapter, we will be
able to reduce this set to

¬p ∨ w, �(¬w ∨©w), �(¬w ∨ p), (4.2)

and, if we also eliminate the original variable p, further to just the single clause

�(¬w ∨©w). (4.3)

105

4 Variable and clause elimination for LTL

By enlarging the set of rules of Figure 2.2 and introducing additional side conditions, it
would be possible to optimize the transformation such that it directly produces (4.2) as
the SNF of (4.1). We believe that investing the effort into a general purpose preprocessing
is more worthwhile. For one thing, it is applicable even when we are not in control of the
normal form transformation and obtain the input already in SNF. Moreover, it typically
allows us to reduce the input further, as shown by our example and its final form (4.3).

Strategy and chapter overview

We start our exposition by reviewing propositional variable and clause elimination in
Section 4.2.1. To lift the technique from SAT to LTL, we reuse the idea of labels and
labeled clauses (recall Section 2.3.1). Because the labels we introduced in Chapter 2 are
not sufficiently expressive to justify the lift of variable elimination, we extend them by
a third component and correspondingly update the semantics and operations on labels
(Section 4.2.2). The intuitive explanation is that we need a correspondence between
labeled resolution and the represented propositional resolution that is not only sound,
as was sufficient in the case of LPSup, but also complete, in the sense that every propo-
sitional resolution is lifted by some labeled resolution.

We develop the actual variable and clause elimination for labeled clauses in Sec-
tion 4.2.3. Interestingly, we will be able show that when the elimination is completed,
clauses with non-trivial third label component can be removed from the resulting set
without affecting satisfiability. This means that the third label component, although an
important part of the theoretical argument, does not need to be explicitly realized in an
actual implementation.

As a proof of concept, we implemented (a restricted version of) variable and clause
elimination for LTL, building on top of the simplification capabilities of the SAT solver
Minisat (Section 4.3.1). We then experimentally evaluated the effect of the preprocessing
on the performance of resolution-based LTL provers LS4 and TRP++ (Section 4.3.2).
Our results confirm that even in the temporal setting substantial reductions in formula
size and subsequent decrease of running time can be achieved.

The results of this chapter have been published in (Suda, 2013d,a).

4.2 Theory

4.2.1 Variable and clause elimination in SAT

By variable and clause elimination we understand the preprocessing technique described
by Eén and Biere (2005) for simplifying propositional SAT problems. It consists of
a combination of a controlled version of variable elimination and subsumption-based
reductions for strengthening and removing clauses, as described below. These two are
alternated in a saturation loop until no further immediate improvement is possible.

106

4.2 Theory

Propositional variable elimination

Propositional variable elimination was originally proposed by Davis and Putnam (1960)
under the name “Rule for Eliminating Atomic Formulas”. It relies on performing the
standard (unordered) resolution inference for every possible pair of clauses that mention
a given variable and replacing these clauses by the obtained resolvents.

Given two (standard) clauses C = p∨C0 and D = ¬p∨D0, their propositional resolvent
over the variable p, denoted C ⊗p D, is defined as C0 ∨D0. Now, given a propositional
problem in CNF consisting of a set of clauses N and a variable p, one separates N into
three disjoint subsets N = Np ∪N¬p ∪N0 of clauses. The first set, Np, is a set of clauses
containing the variable p positively, the clauses from N¬p contain p negatively, and N0 is
a set of clauses without variable p. A new clause set N is obtained as (Np⊗pN¬p)∪N0,
where

Np ⊗p N¬p = {C ⊗p D | C ∈ Np, D ∈ N¬p}.
The variable p does not occur in the set N and the set is satisfiable if and only if N is.

The obtained set N may contain tautological clauses, which are redundant and should
be removed. Then the sizes of N and N are compared. In general, eliminating a single
variable may incur a quadratic blowup of the number of clauses in the set. An elimination
step is only considered an improvement and should be committed to when the size of N
is not greater than that of N (possibly up to an additive1 constant).

Subsumption-based reductions

By subsumption we here mean the standard reduction which allows us to remove a clause
D from the clause set N in the presence of another clause C ∈ N such that C ⊆ D.
Eén and Biere (2005) also propose to employ self-subsuming resolution, a resolution
inference in which the conclusion subsumes one of the premises. In our notation we
write self-subsuming resolution as

R C ∨ p D ∨ ¬p
C ∨ p D

,

under the condition that C ⊆ D. Effectively, the clause D ∨ ¬p is getting strengthened
to D in the presence of the clause C ∨ p.

It is advantageous to alternate variable elimination attempts with application of sub-
sumption and self-subsuming resolution. That is because removing a subsumed clause
may turn elimination of a particular variable into an improvement and, on the other
hand, new clauses generated during elimination may be subject to subsumption. For a
detailed description on how to organize and efficiently implement this process we refer
the reader to Eén and Biere (2005).

4.2.2 Adapting the mechanism of labeled clauses

In this section we adapt the mechanism of labeled clauses introduced in Chapter 2 to
prepare for transferring variable and clause elimination to LTL. We aim at reusing the

1To ensure that the size of the clause set does not grow more than linearly in the number of eliminations.

107

4 Variable and clause elimination for LTL

0 K

L L L

. . .
b

t
k1

k2

Figure 4.1: Imagine two labeled clauses C1 = (∗, k1) || p∨C1 and C2 = (∗, k2) || ¬p∨C2.
Given a rank (K,L) such that L divides k2−k1, the clauses C1 and C2 represent standard
clauses (p ∨ C1)(t) and (¬p ∨ C2)(t), resp., which can be resolved on the variable p(t).

idea of lifting and employing labeled clauses to finitely represent the elimination process
happening on the “ground level” of the signature Σ∗.

Unfortunately, labeled clauses used by LPSup are not sufficiently expressive to allow
for lifting of every possible resolution inference. This may be a little surprising given
that LPSup is a complete calculus. The phenomenon is illustrated in Figure 4.1. It
concerns pairs of labeled clauses with distinct second label components k1, k2 ∈ N, for
which the merge operation is not defined. We fix the situation by extending the label
by one additional component and capture the neglected overlap by defining the merge
operation on labels for all possible inputs.

We also change the role of temporal shift: from a standalone inference to a prefix
operation which precedes resolution. We do this to avoid generating the intermediate
clauses, which were harmless from the perspective of the calculus LPSup, but are unde-
sirable during variable and clause elimination process, whose sole purpose is to reduce
the size of the given clause set.

Extended labeled clauses

In order to record all the necessary information about a clause we extend the Defini-
tion 2.7 of a label by one new label component (the domains of the first and second
label component are preserved) and allow the standard part C of the labeled clause to
contain literals with arbitrary many primes.

Definition 4.1. An extended label is a triple (b, k, l) ∈ {∗, 0} × ({∗} ∪ N) × N. An
extended labeled clause is pair C = (b, k, l) ||C, where (b, k, l) is an extended label and C
is a standard clause over Σ∗ =

⋃
i∈N Σ(i). We will omit the qualifier “extended” whenever

confusion cannot arise.

The additional label component imposes an additional independent condition on the
semantics of the label. If the condition is satisfied, the label’s semantics reduces to the
original Definition 2.8. In the opposite case, the label does not represent any index.

Definition 4.2. Given a rank (K,L), the set R(K,L)(b, k, l) of indexes represented by
the extended label (b, k, l) is defined as

R(K,L)(b, k, l) =

{
R(K,L)(b, k) if L divides l,

∅ otherwise,

108

4.2 Theory

where R(K,L)(b, k) is the set of indexes represented by the label (b, k). A standard clause

C(t) is represented by the labeled clause (b, k, l) ||C in (K,L) if t ∈ R(K,L)(b, k, l).

Because the natural number zero is divisible by any natural number, when the third
label component l equals zero, the corresponding divisibility condition from the above
definition is trivially satisfied independently of the value of the rank (K,L). Thus when
extending the notion of the starting labeled clause set (Definition 2.9) we uniformly
supply the additional label component with value l = 0 to preserve the original semantics.

Definition 4.3. The extended starting labeled clause set NT for a TST T = (Σ, I, T,G)
consists of the extended labeled clauses of the form

• (0, ∗, 0) ||C for every C ∈ I,

• (∗, ∗, 0) ||C for every C ∈ T , and

• (∗, 0, 0) ||C for every C ∈ G.

The definition of (K,L)-satisfiability and satisfiability of sets of labeled clauses (Def-
inition 2.10) as well as Lemma 2.3 on the satisfiability of labeled clause sets carry over
to extended labeled clauses in a straightforward way.

New label merge

The merge operation on extended labels takes care of the previously undefined case
(recall Definition 2.12) and the corresponding divisibility condition under which the
overlap of indexes occurs (see Figure 4.1) is recorded via the third label component.

Definition 4.4. The merge of labels (b1, k1, l1) and (b2, k2, l2) is a label (b, k, l) defined
imperatively as follows:

• if b1 = ∗ then b← b2 else if b2 = ∗ then b← b1 else b← 0,

• if k1 = ∗ then k ← k2 else if k2 = ∗ then k ← k1 else k ← min(k1, k2),

• if k1 = ∗ or k2 = ∗ then l← gcd(l1, l2) else l← gcd(l1, l2, |k1 − k2|),
where gcd stands for the greatest common divisor operation and gcd(0, 0) = 0.

Example 4.1. Merge of (∗, 2, 0) and (∗, 5, 0) is (∗, 2, 3): we compute the minimum of
the second components k and the greatest common divisor of their difference and of the
original values of the third components l. Merge of (∗, 2, 3) and (∗, 2, 3) is (∗, 2, 3); merge
is, in fact, an idempotent operation. Merge of (∗, 2, 3) and (∗, ∗, 0) is (∗, 2, 3); merge has,
in fact, a neutral element (∗, ∗, 0). Merge of (∗, 2, 3) and (0, 1, 4) is (0, 1, 1).

Lemma 2.4 asserts that the merge operation on (non-extended) labels corresponds to
the intersection operation on the represented sets of indexes. The definition of the merge
operation on extended labels is designed in a such way that an analogue of this lemma
still holds. Extension of the proof needs to take into account the added label component
and relies, in particular, on the equivalence

L divides l1 and L divides l2 if and only if L divides gcd(l1, l2).

109

4 Variable and clause elimination for LTL

Lemma 4.1. Let (b, k, l) be the merge of labels (b1, k1, l1) and (b2, k2, l2). Then for any
rank (K,L)

R(K,L)(b, k, l) = R(K,L)(b1, k1, l1) ∩R(K,L)(b2, k2, l2).

Temporal shift and labeled resolution

The intuitive role of temporal shift is to align one labeled clause with another such that
the variable over which we subsequently plan to resolve the two clauses occurs in both
of them under the same number of primes. In Chapter 2 we introduced temporal shift
as a standalone inference. Here we instead package it together with resolution to avoid
generating the intermediate clauses.

We define the temporal shift operation on extended labeled clauses by the following
two equations

TS ((∗, ∗, l) ||C) = (∗, ∗, l) || (C)′, (4.4)

TS ((∗, k, l) ||C) = (∗, k + 1, l) || (C)′. (4.5)

Note that the operation is undefined for labeled clauses with the first component b = 0,
because these only represent standard clauses fixed to the first time index.

Soundness of temporal shift operation is the statement that all the standard clauses
represented by the right hand side of (4.4) and (4.5) are also represented by the respective
left hand sides in any (K,L).2 The soundness is shown analogously to the corresponding
property of the LPSup inference (Lemma 2.6).

We now move to defining the (unordered) labeled resolution operation. Because we al-
low arbitrarily many primes in extended labeled clauses, the operation in general involves
iterated application of temporal shift.

Definition 4.5. Let C1 = (b1, k1, l1) || p(i) ∨ C1 and C2 = (b2, k2, l2) || ¬p(j) ∨ C2 be two
extended labeled clauses. Their labeled resolvent over the variable p, denoted C1 ⊗p C2,
is computed as follows:

1. If i = j then C1 ⊗p C2 equals the labeled clause (b, k, l) ||C1 ∨ C2 where (b, k, l) is
the merge of the labels (b1, k1, l1) and (b2, k2, l2).

2. If i < j and b1 = ∗ then C1⊗p C2 equals TS j−i(C1)⊗p C2, where TSn stands for the
n-fold application of the temporal shift operation. This reduces the computation
to the previous case.

3. If i > j and b2 = ∗ then C1 ⊗p C2 equals C1 ⊗p TS i−j(C2); analogously to case 2.

4. If either i < j and b1 = 0 or i > j and b2 = 0 then the resolvent is undefined.

Strictly speaking, the resolvent C1 ⊗p C2 does not depend just on the variable p, but
more specifically on the occurrences of the literals p(i) and ¬p(j) in the respective clauses.

2The converse does not hold. For instance, the labeled clause (∗, ∗, 0) || p′ = TS((∗, ∗, 0) || p) does not
represent the standard clause p(0) in any (K,L), although the original clause (∗, ∗, 0) || p does.

110

4.2 Theory

We will, however, only use Definition 4.5 in situations where there is just one occurrence
of a literal mentioning the variable p (possibly primed) in each of the two clauses, and
therefore, confusion will not arise.

Example 4.2. Let two labeled clauses (∗, 0, 0) || ¬p ∨ q and (∗, 0, 0) || r ∨ p′ be given.
They cannot directly (as in case 1 above) generate a labeled resolvent, although in
(K,L) = (0, 1) there are (for every t) standard clauses ¬p(t+1) ∨ q(t+1) and r(t) ∨ p(t+1)

represented, respectively, by the two labeled clauses, which resolve on p(t+1). The first
labeled clause first needs to be shifted to (∗, 1, 0) || ¬p′∨ q′ (case 2), and the clauses then
resolve on p′ and a labeled resolvent (∗, 0, 1) || r ∨ q′ is obtained.

In analogy to soundness of the Ordered Resolution Inference of LPSup (Lemma 2.5)
we have a lemma stating soundness of the labeled resolution operation.

Lemma 4.2. Let (K,L) be a rank. Any standard clause represented in (K,L) by the
labeled resolvent C1 ⊗p C2 of clauses C1 and C2 is a propositional resolvent over some
“instance” p(i) of the variable p of clauses represented in (K,L) by C1 and C2, respectively.

Proof. Follows from soundness of temporal shift and from Lemma 4.1.

More interestingly, labeled resolution operation is also designed to be complete, i.e. to
lift every possible propositional resolution from the “ground level”.

Lemma 4.3. Let C1 = (b1, k1, l1) || p(i) ∨ C1 and C2 = (b2, k2, l2) || ¬p(j) ∨ C2 be two
labeled clauses and let (K,L) be a rank. If there are numbers n, t1, t2 ∈ N such that
n = i+ t1 = j + t2 and the clauses p(n) ∨ (C1)(t1) and ¬p(n) ∨ (C2)(t2) are represented in
(K,L) by C1 and C2, respectively, then the labeled resolvent C = C1 ⊗p C2 is defined and
the propositional resolvent (C1)(t1) ∨ (C2)(t2) over p(n) is represented in (K,L) by C.

Proof. The labeled resolvent is only undefined when the corresponding temporal shift
operation would be undefined. Let us (without loss of generality) focus on one of the
symmetrical cases when this happens and assume that i < j and b1 = 0. Because b1 = 0
we must have t1 = 0, but then i + t1 = i < j ≤ j + t2 for any t2 ∈ N, and so there can
be no n = i+ t1 = j + t2. In other words, whenever there are numbers n, t1, t2 ∈ N such
that n = i+ t1 = j+ t2 and the clauses p(n)∨ (C1)(t1) and ¬p(n)∨ (C2)(t2) are represented
in (K,L) by C1 and C2, respectively, then the labeled resolvent C = C1 ⊗p C2 is defined.

To prove the second part of the lemma, we focus on case 2 of Definition 4.5. The
remaining cases are simpler (case 1) or analogous (case 3). We, therefore, assume that
i < j and b1 = ∗. The clause TS j−i(C1) must be of the form (b1, k

′
1, l1) || p(j) ∨ (C1)(j−i),

where either k′1 = k1 = ∗ or k′1 = k1 + (j − i). Either way, by Definition 4.2 (and,
indirectly, by Definition 2.8)

t1 ∈ R(K,L)(b1, k1, l1) implies t2 = t1 − (j − i) ∈ R(K,L)(b1, k
′
1, l1).

Thus, by Lemma 4.1 t2 ∈ R(K,L)(b, k, l), where (b, k, l) is the merge of labels (b1, k
′
1, l1)

and (b2, k2, l2), i.e. the label of the labeled resolvent C1 ⊗p C2 = C. Thus C, which is of
the form (b, k, l) || (C1)(j−i) ∨ C2, in (K,L) represents

((C1)(j−i) ∨ C2)(t2) = (C1)(j−i)+t2 ∨ (C2)(t2) = (C1)(t1) ∨ (C2)(t2).

111

4 Variable and clause elimination for LTL

Table 4.1: Example labeled clauses translated to first-order logic

labeled clause first-order clause

(1) (0, ∗, 0) || ¬p ∨ q ¬p(0) ∨ q(0)
(2) (∗, ∗, 0) || p′ ∨ r′ ∀X. p(s(X)) ∨ r(s(X))
(3) (∗, ∗, 0) || ¬r ∨ q ∀Y. ¬r(Y) ∨ q(Y)

Remark 4.1. The way we package the temporal shift operation with resolution is rem-
iniscent to the use of most general unifiers in first-order theorem proving. Indeed, we
can understand temporal shift as a form substitution on time indexes.

There is a straightforward encoding of LTL formulas and, in particular, of TSTs into
first-order logic. The encoding models time by first-order variables understood to range
over the natural numbers. On the syntax level, we have the constant 0 for the initial
time point and the successor function s for modeling the single step from the current
time point X to the next s(X). Also, each signature symbol p ∈ Σ is translated to a
monadic predicate p(X), parametrized by the time point where it is supposed to hold.
Table 4.1 shows three labeled clauses translated this way.

In the light of this translation, the fact that temporal shift cannot be applied to initial
clauses corresponds to non-unifiability of the constant 0 with any term starting with
the successor function s: that is the reason why clauses (1) and (2) in Table 4.1 cannot
be unified and resolved on p. The successful use of temporal shift corresponds to a
substitution: we can substitute Y 7→ s(X) to unify clauses (2) and (3) of Table 4.1
and resolve them. Lemma 4.3 effectively states that the substitutions corresponding to
temporal shift operation employed in Definition 4.5 are, in fact, most general unifiers.

4.2.3 Elimination in LTL

In this section we describe how to eliminate variables and clauses in LTL. To lift the
corresponding technique from the propositional level, we rely on the presented connection
between extended labeled clauses on the one side and the standard clauses over the
infinite signature Σ∗ on the other. For inherent expressibility reasons not every variable
can be eliminated from a set of extended labeled clauses. We will discus the restrictions
under which eliminating a particular variable is feasible and practical.

When the elimination process is complete, some of the obtained clauses may carry
extended labels with non-zero third label component. Such clauses are undesirable,
because a subsequent decision procedure (e.g. a one based on LPSup) would not be
able to deal with them. We prove a theorem showing that these labeled clauses can be
removed from the set while preserving satisfiability. This means that extended labels
provide a useful tool for theoretically justifying the correctness of our approach, but
from the algorithmic perspective they can be dispensed with.

112

4.2 Theory

Lifting variable elimination

Our strategy for eliminating a single variable p from the basic signature Σ is to use
extended labeled clauses to lift propositional elimination steps of all the variable’s “in-
stances” p, p′, p(2), . . . from the “ground level” of the signature Σ∗. To be able to represent
the result after elimination, all these instances need to be eliminated from the ground
level uniformly, in one step. This seems to be a difficult task when the given set of
labeled clauses contains a clause that mentions the variable p in two different time con-
texts, like, for example, in ¬p∨ q ∨ p′. In this case the individual eliminations cannot be
done independently from each other and we rule the case out from further considerations.

Remark 4.2. There are some interesting subcases where eliminating such a variable
would, in theory, be possible and would yield useful results. Consider a clause set
containing the following three labeled clauses

(0, ∗, 0) || p, (∗, ∗, 0) || ¬p ∨ p′, (∗, ∗, 0) || ¬p ∨ r,
from which p can be “semantically”eliminated and one obtains a single clause (∗, ∗, 0) || r.
On the other hand, eliminating p from a clause set containing

(0, ∗, 0) || p, (∗, ∗, 0) || ¬p ∨ ¬p′, (∗, ∗, 0) || p ∨ p′, (∗, ∗, 0) || ¬p ∨ a,
should give us a formula whose models V = (Vi)i∈N satisfy the condition

(i mod 2 = 0⇒ Vi |= a),

which is a property known (Wolper, 1983) not to be expressible by an LTL formula over
the single variable a.

Let us now, therefore, assume that we are given a set of labeled clauses N , perhaps
a starting labeled clause set for a TST T , and a variable p ∈ Σ such that no clause
in N contains more than one possibly primed occurrence of p. We separate N into
Np ∪N¬p ∪N0, a subset containing p positively (possibly primed), a subset containing p
negatively (possibly primed), and a subset not containing p at all. A new set of labeled
clauses N is constructed as (Np ⊗p N¬p) ∪N0, where

Np ⊗p N¬p = {C1 ⊗p C2 | C1 ∈ Np, C2 ∈ N¬p}
stands for the set of all the labeled resolvents (Definition 4.5) over the variable p between
labeled clauses from Np and N¬p, respectively.

Example 4.3. Let us assume that a set N contains the following labeled clauses

(0, ∗, 0) || p ∨ q ∨ r, (4.6)

(0, ∗, 0) || ¬p ∨ ¬r, (4.7)

(∗, ∗, 0) || r ∨ ¬p′, (4.8)

(∗, 0, 0) || ¬p ∨ q, (4.9)

and these are the only labeled clauses of N mentioning the variable p. Then eliminating p
from N means removing the above labeled clauses and replacing them by all the possible
labeled resolvents over p. Notice that, actually,

113

4 Variable and clause elimination for LTL

• the tautology (4.6)⊗p (4.7) = (0, ∗, 0) || q ∨ r ∨ ¬r can be immediately dropped,

• and (4.6)⊗p (4.8) is undefined, because temporal shift does not apply to (4.6).

Thus we replace in N the above four clauses by the only nontrivial resolvent (4.6) ⊗p

(4.9) = (0, 0, 0) || q ∨ r.
We now show that variable elimination preserves satisfiability of the given clause set.

Theorem 4.1. Let N = Np ∪ N¬p ∪ N0 and N = (Np ⊗p N¬p) ∪ N0 be sets of labeled
clauses as described above. Then N is (K,L)-satisfiable if and only if N is.

Proof. Let us first assume that N is (K,L)-satisfiable. This means there is a valuation
V : Σ∗ → {0,1} such that V |= N(K,L). In order to show that N is (K,L)-satisfiable,

we construct a new valuation V : (Σ)∗ → {0,1}, where Σ = Σ \ {p} is the reduced basic
signature. Similarly to the propositional case, we do this by simply forgetting the value
of eliminated variable’s instances:

V (q(i)) = V (q(i))

for every q ∈ Σ and every i ∈ N. Now we need to show that V |= N (K,L).

Because the variable p does not occur in the clauses of N0, we have directly that
V |= (N0)(K,L). Let us now take a clause E ∈ (Np ⊗p N¬p)(K,L). By Lemma 4.2, E

must be of the form C ∨ D for some p(i) ∨ C ∈ (Np)(K,L) and ¬p(i) ∨ D ∈ (N¬p)(K,L).
Because these two clauses are true in V by assumption, their resolvent E is true in V
by soundness of propositional resolution. Because the variable p does not occur in E,
the clause is also true in V .

To show the opposite direction let us assume that the set N is (K,L)-satisfiable, i.e.,
that there is a valuation V : (Σ)∗ → {0,1} such that V |= N (K,L). We extend V to a
valuation V over Σ∗ by defining for every i ∈ N

V (p(i)) = 1 if and only if there is a clause p(i) ∨ C ∈ (Np)(K,L) such that V 6|= C.

Note that the definition is correct, because by our restriction on variable elimination no
instance of p occurs in the clause C above. Next we show that V |= N(K,L).

The fact that V |= (N0)(K,L) follows again trivially from the assumption. Also, from

the way we extended V to V , we have V |= (Np)(K,L). Let us prove by contradiction

that also V |= (N¬p)(K,L). Assume there is a clause ¬p(i) ∨D ∈ (N¬p)(K,L) false in V .

This means V (p(i)) = 1 and, therefore, there is another clause p(i) ∨C ∈ (Np)(K,L) such

that C is false in V . We must have that the propositional resolvent C ∨D is false in V .
But by Lemma 4.3, we have C ∨D ∈ (Np ⊗p N¬p)(K,L). A contradiction.

Apart from the previously explained restriction, there is another limitation on practical
variable elimination. Consider a clause set containing the following two labeled clauses:

(∗, ∗, 0) || ¬x ∨ p′ and (∗, ∗, 0) || ¬p ∨ y′.

114

4.2 Theory

Eliminating p from the set would yield (possibly among other clauses) the labeled clause
(∗, ∗, 0) || ¬x∨y′′. This could be a useful simplification in some contexts, but notice that
it got us outside SNF and TSTs, because y now occurs doubly primed.

Although we normally avoid eliminating variables like p above, there is, nevertheless,
an advantage in knowing that such a step has a proper meaning and can be performed.
If the problematic resolvent could be, for instance, shown redundant in the clause set
(e.g. by subsumption), it would be sound to remove it and the desired syntactic simplicity
of the clause set would be preserved.

Eliminating labeled clauses by subsumption

Let us now turn to reductions and in particular to showing how to extend subsumption3

to work with (extended) labels. Unlike in Chapter 2, where we relied on an abstract re-
dundancy concept, here we directly lift propositional subsumption: any standard clause
represented by the subsumed labeled clause must be subsumed by a standard clause
represented by the subsuming labeled clause. This is achieved by the following:

Definition 4.6. We say that a labeled clause (b1, k1, l1) ||C subsumes a labeled clause
(b2, k2, l2) ||D, if C subsumes D and the merge of the labels (b1, k1, l1) and (b2, k2, l2) is
equal to (b2, k2, l2).

In analogy to resolution, the subsumption relation on labeled clauses can be made
stronger if we allow the subsuming clause (but not the subsumed one) to be potentially
shifted in time. For example, the clause (∗, ∗, 0) || q subsumes (∗, 1, 0) || p∨q′ in this sense.
On the other hand, the clause (∗, ∗, 0) || q′ cannot subsume (∗, ∗, 0) || p∨ q, because there
is a standard clause represented by the latter, namely (p ∨ q)(0) = p ∨ q, which is not
subsumed by any standard clause represented by the former.

The following theorem states soundness of labeled clause elimination by subsumption.

Theorem 4.2. Let N and Ñ be sets of labeled clauses, such that Ñ ⊆ N and for every
D ∈ N \ Ñ there exists C ∈ Ñ such that C subsumes D. Then N is (K,L)-satisfiable if
and only if Ñ is.

Elimination of “exotic” labels

We know that only the clauses labeled by (0, ∗, 0), (∗, ∗, 0) and (∗, 0, 0), which are the
labels used in the definition of the starting labeled clause set, directly correspond to
initial, step and goal clauses of a TST, respectively. When clauses with other labels arise
during elimination, the subsequent procedure for deciding satisfiability of the resulting
set needs to know how to deal with them. Interestingly, according to the theorem below,
we may drop several kinds of labeled clauses just after they are created without affecting
satisfiability of the clause set.

We will need a simple lemma, which follows directly from the definitions.

3A labeled version of self-subsuming resolution can be derived by combining labeled resolution and
subsumption in a straightforward way.

115

4 Variable and clause elimination for LTL

Lemma 4.4. Let (K,L) be an arbitrary rank, i ∈ N, and j ∈ N+. Then (K+ i ·L, j ·L)
is a rank and for any label (b, k, l) we have R(K+i·L,j·L)(b, k, l) ⊆ R(K,L)(b, k, l).

Theorem 4.3. Let N be a finite set of labeled clauses and let N− be a subset of N
obtained be removing all the clauses with a label (b, k, l) such that either (b = 0 and
k 6= ∗) or (l 6= 0). Then N− is satisfiable if and only if N is.

Proof. One implication is trivial since N− ⊆ N . For the other implication, we need
an auxiliary definition. We say that a label (b, k, l) is relevant for a rank (K,L) if
R(K,L)(b, k, l) 6= ∅. Let us now assume that N− is (K0, L0)-satisfiable, i.e. that there is
a valuation V such that V |= (N−)(K0,L0). We may choose K1 of the form K0 + i · L0

and L1 of the form j · L0 large enough such that none of the removed clauses, i.e. none
of the clauses from N \N−, is relevant for the rank (K1, L1). This is possible, because
a clause with a label satisfying (b = 0 and k 6= ∗) is only relevant for a rank (K,L) if
k = K+ s ·L for some s ∈ N, and a clause with a label satisfying (l 6= 0) is only relevant
for a rank (K,L) when L divides l. If we now write

N(K1,L1) = (N \N−)(K1,L1) ∪ (N−)(K1,L1),

we can observe that (N \ N−)(K1,L1) = ∅ by the choice of (K1, L1) and (N−)(K1,L1) ⊆
(N−)(K0,L0) by Lemma 4.4. Therefore, V |= N(K1,L1) and soN is (K1, L1)-satisfiable.

Example 4.4. Deriving an empty labeled clause during elimination does not immediately
imply that the current clause set is unsatisfiable. For instance, the label of the empty
clause (∗, 0, 2) || ⊥ is only relevant for (K,L) when L divides 2 and thus the current
clause set may still be (K,L)-satisfiable for L > 2. Moreover, thanks to Lemma 4.4
we can always avoid dealing with the problematic ranks for which the empty clause is
relevant by “typecasting” a potential model to a higher rank.

After filtering a clause set with the help of Theorem 4.3, it will only contain clauses
with the familiar labels of the starting labeled clause set and possibly also clauses labeled
by (∗, k, 0), k ∈ N. These do not pose any further complications, because they arise
naturally in our calculus LPSup for LTL satisfiability.

4.3 Implementation and experiment

4.3.1 Variable and clause elimination via Minisat

For our evaluation of the effectiveness of variable and clause elimination in LTL, we
adapted the preprocessing capabilities of Minisat (Eén and Sörensson, 2003a) version
2.2. We decided to keep Minisat’s main simplification loop, which efficiently combines
propositional variable elimination with subsumption and self-subsuming resolution, re-
lying on a fine-tuned heuristics for deciding which variables to eliminate and in what
order. To realize LTL elimination by this procedure, we emulated labels by extending
the respective clauses with marker literals as detailed below. Although this does not ex-
ploit the full potential of variable and clause elimination with labeled clauses, we already
obtained encouraging results with this setup.

116

4.3 Implementation and experiment

Marking and freezing

We have seen in Chapter 3 how to use marker literals for tracking dependencies between
clauses derived by a SAT solver. Here we show how to employ the same technique for
emulating labels during variable and clause elimination in Minisat.

To prepare for simplification of a TST T = (Σ, I, T,G), we allocate variables for the
joint signature Σ∪Σ′ and two extra variables i and g for marking. The following clauses
are then inserted into the solver:

• (C)′ ∨ i for every initial clause C ∈ I,

• (C)′ for every simple step clause C ∈ T , i.e. a clause only over Σ,

• C ∨ (D)′ ∨ ¬i for every non-simple, or proper, step clause C ∨ (D)′ ∈ T , and

• (C)′ ∨ g for every goal clause C ∈ G.

Note that all the simple clause are shifted to the signature Σ′, where all the elimination
steps will happen. By marking the shifted initial clauses with i and the proper step
clauses with the complement ¬i we ensure that these, incompatibly aligned, clauses will
not generate an unsound resolvent: any resolvent between a clause (C)′ ∨ i and a clause
D ∨ ¬i over a variable from Σ′ will be recognized as a tautology (containing both i and
¬i) and therefore discarded.

We keep Minisat from eliminating the marker variables themselves by “freezing” them.
The interface of Minisat allows the user to freeze selected variables, which means the
solver will not attempt to eliminate them. To ensure that the simplification of the TST
T is sound, we freeze the marker variables i and g and also all the lower part variables
of proper step clauses both in their Σ and Σ′ versions:⋃

C∨(D)′∈T, (D)′ 6=∅

var(C) ∪ var(C ′).

Intuitively, this protects the “ground level overlap” between I(0) and T (0) and also be-
tween every T (i) and T (i+1) from being disrupted by the simplification. A formal proof
based on the ideas of the previous section is left to the reader.

Simplified clause set

After the simplification procedure is run, we retrieve the resulting clauses from Minisat
and separate them back into sets I, T , and G, based on the present marker literals.
Clauses marked with just i belong to I, those marked with just g belong to G, and clauses
without a marker belong to T (all of these need to be shifted back to the signature Σ).
Also clauses marked with ¬i belong to T (but do not get shifted back). There can also
be clauses marked with both i and g, which correspond to clauses with label (0, 0, 0) and
can be discarded based on Theorem 4.3, and clauses marked with both ¬i and g which
should be treated as (∗, 1, 0)-clauses or, equivalently, as (∗, 1)-clauses of LPSup.

117

4 Variable and clause elimination for LTL

Remark 4.3. In the experiment we present below, we needed to extract simplified clause
sets compatible with SNF, to be passed as an input to the temporal prover TRP++.
For that purpose, we additionally froze the goal clause variable (there was always only
one goal clause consisting of a single variable in the experiment) and so neither the
(0, 0, 0)-clauses nor the (∗, 1, 0)-clauses were ever generated.

Related work

The simplification process we just described is similar in spirit to a method proposed
by Kupferschmid et al. (2011) for simplifying inputs used in bounded model checking.
Kupferschmid et al. define “Don’t Touch” variables which correspond to the variables
frozen in our approach. However, they perform elimination separately on the (equivalent
of the) sets I, T , and G. By using the marking literals and, in particular, the comple-
mentary markers i and ¬i for marking the initial and proper step clauses, respectively,
we can implement the elimination by a single invocation of the simplification loop.

4.3.2 An experiment

We adopted a very similar experimental setup as in Chapter 3. We took all the 3723
LTL formulas of the benchmark set collected by Schuppan and Darmawan (2011) and
used the same machines with 3.16 GHz Intel Xeon CPU, 16 GB RAM and Debian 6.0.

The testing proceeded in three stages. First, all the benchmarks were translated by our
tool, TST-translate, from LTL into TSTs. TST-translate is a straightforward SWI-
Prolog implementation of the the linear time algorithm described in Section 2.2.2. This
means, the output it produces contains a single single-literal goal clause and thus can be
treated both as a TST and as a formula in SNF. Second, we applied our Minisat-based
elimination tool and obtained a set of simplified TSTs. Finally, we ran two resolution-
based LTL provers, namely LS4 (see Section 3.4.1) and TRP++ (Hustadt and Konev,
2003) version 2.1, on both the original and simplified TSTs to measure the effect of the
simplification on prover running time. Performing the experiments on two independent
implementations should allow us to draw more general conclusion about the effects of
variable and clause elimination.

Elimination statistics

For each input TST, we recorded the number of variables and clauses that we were able
to eliminate in the second stage. We distinguish variables from the original formula and
auxiliary variables that were introduced by TST-translate during the transformation
in stage one. In total, 39% of the variables (7% original, 32% auxiliary) and 32% of the
clauses were eliminated.

The numbers vary greatly over individual families of the benchmark set. For example,
the family schuppan phltl allowed for almost no simplification: only 3% of the variables
(just auxiliary), and 2% of the clauses could be removed. On the other hand, 99% of
the variables (almost all of them original) and 98% of the clauses were removed on the
family schuppan O1formula. While the former extreme can be explained by a concise

118

4.3 Implementation and experiment

 3500

 3520

 3540

 3560

 3580

 3600

 3620

 3640

 0 50 100 150 200 250 300

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

LS4 original
LS4 simplified

 2200

 2250

 2300

 2350

 2400

 2450

 2500

 2550

 2600

 2650

 0 50 100 150 200 250 300

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

TRP++ original
TRP++ simplified

Figure 4.2: Comparing the number of problems solved, simplified and original, within
a given time limit. Showing the data for LS4 (on the left) and TRP++ (on the right).

and already almost clausal structure of the original formulas from schuppan phltl, the
latter follows from the fact that most of the variables in schuppan O1formula occur in
just one polarity, i.e., are pure. Eliminating a pure variable amounts to a removal of all
the clauses in which the variable appears.4

We observed that the time required to simplify a particular TST was negligible for
most of the inputs, with maximum of 0.3s for the largest instance.

Introducing the main results

The results of the third stage, in which we measured the effect of simplification on the
performance of the two selected provers, are summarized in Table 4.2 (and at the same
time represented graphically in Figure 4.2). The table compares the number of original
and simplified problems solved by LS4 and TRP++, respectively, within the time limit
of 300 seconds. It also shows the accumulated times spent during the solution attempts.
Note that unsolved problems contribute 300.0s to the accumulated time and the solved
ones at least 0.1s due to our measurement technique. The data are grouped by formula
families and the last line of the table gives summary totals.

The effect of simplification

We can see from the summary line (and also from Figure 4.2) that both LS4 and TRP++
clearly benefit from the simplification, both in the number of solved instances and the
overall running time. In detail, LS4 solved 22 extra problems thanks to the simplification

4If p is a pure variable (literal) then N¬p is empty and so Np ⊗p N¬p is empty as well.

119

4 Variable and clause elimination for LTL

Table 4.2: Performance of LS4 and TRP++ on original (o) and simplified (s) problems.

family size
LS4 TRP++

solved time solved time

acacia demo-v22 10
o 10 1.0s 10 1.7s
s 10 1.0s 10 1.1s

acacia demo-v3 36
o 36 3.6s 36 10.2s
s 36 3.6s 36 3.8s

acacia example 25
o 25 2.5s 25 27.4s
s 25 2.5s 25 6.4s

alaska lift 136
o 117 6601.6s 6 39108.3s
s 135 879.5s 8 38714.5s

alaska szymanski 4
o 4 0.4s 3 314.9s
s 4 0.4s 4 3.0s

anzu amba 51
o 47 1432.8s 0 15300.0s
s 48 1231.5s 0 15300.0s

anzu genbuf 60
o 46 4314.6s 0 18000.0s
s 46 4240.1s 0 18000.0s

forobots 39
o 39 4.2s 39 1198.8s
s 39 3.9s 39 194.2s

rozier counter 76
o 34 13040.1s 49 8247.4s
s 34 13018.8s 49 8315.3s

rozier formulas 2000
o 2000 200.0s 1771 85462.0s
s 2000 200.0s 1830 66845.9s

rozier pattern 244
o 244 67.7s 243 2584.3s
s 244 48.1s 241 1759.9s

schuppan O1formula 27
o 27 2.7s 27 2.7s
s 27 2.7s 27 2.7s

schuppan O2formula 27
o 9 5401.5s 6 6493.8s
s 9 5401.2s 7 6157.3s

schuppan phltl 18
o 5 3928.2s 3 4693.3s
s 5 3916.5s 3 4581.0s

trp N5x 240
o 240 24.5s 154 27066.8s
s 240 24.3s 155 26424.4s

trp N5y 140
o 140 14.3s 0 42000.0s
s 140 14.0s 0 42000.0s

trp N12x 400
o 397 1723.4s 210 62978.4s
s 400 657.6s 204 64713.9s

trp N12y 190
o 190 2477.1s 0 57000.0s
s 190 1514.6s 0 57000.0s

total 3723
o 3610 39240.2s 2582 370490.0s
s 3632 31160.3s 2638 350023.4s

120

4.3 Implementation and experiment

(all of them satisfiable) and the accumulated time for processing the whole set was
reduced by 20%. TRP++ solved 80 extra problems (72 satisfiable and 8 unsatisfiable),
but also lost 24 problems5 (10 satisfiable and 14 unsatisfiable), gaining 56 problems
overall. The accumulated time was improved by more than 5 hours for TRP++, which
means approximately by 5%.

Notice that on many of the families the performance of LS4 was already perfect (all
of acacia, alaska szymanski, rozier formulas, and schuppan O1formula) or almost
perfect (forobots, trp N5x, trp N5y) before the simplification (recall that each prob-
lem adds at least 0.1s to the accumulated time). Some (scalable) families, on the
other hand, seem to be inherently difficult for LS4 (anzu genbuf, rozier counter,
schuppan O2formula, and schuppan phltl). This left the “gray zone” where improve-
ment is possible relatively small. LS4 solved more problems from families alaska lift

and trp N12x and substantially improved time also on rozier pattern and trp N12y.

The results are more fluctuating for TRP++. There was a huge improvement in the
running time on all the acacia families and on forobots, but the time deteriorated
on rozier counter and trp N12x. More problems were solved from both alaskas,
rozier formulas, schuppan O2formula, and trp N5x. Problems were, however, lost
from rozier pattern and trp N12x.

Relation to the previous experiment

Let us now comment on the relation of the presented results for the original problems
to the experiment performed in Chapter 3 (Table 3.3), which used the same set of
benchmarks, the same time limit and also evaluated both LS4 and TRP++. In the
experiment of Chapter 3, each prover relied on its own tool for translating the input
formula into the required normal form: LS4 used TST-translate and TRP++ used
translator6. Moreover, the translation time was counted into the overall running time.
Here, the translation was done beforehand by TST-translate and both provers then ran
on the same input TSTs. We can see that this did not change the number of problems
solved by LS4, which shows that the running time of TST-translate itself is negligible.

On the other hand, the overall performance of TRP++ was considerably impaired
by exchanging translator with TST-translate. As an extreme example, notice that
TRP++ was not able to solve any problems from the families anzu amba, anzu genbuf,
trp N5y, and trp N12y as translated by TST-translate. We attribute this to the fact
that these problems originally contain many eventualities, which TST-translate merges
into one. Apparently, this puts an extra load on TRP++, which the prover cannot deal
with efficiently. There is, however, also an example in the opposite direction. The
performance of TRP++ improved on the family rozier pattern, which contains 17
formulas on which translator ran out of memory in the experiment of Chapter 3.

5We currently do not have a better explanation for this phenomenon than that a seemingly innocuous
change in the presentation of the problem caused by the elimination, like, e.g., the order in which
variables appear in the input, steered TRP++ to a different part of the search space. These effects
are common in theorem proving in general.

6http://cgi.csc.liv.ac.uk/~konev/software/trp++/translator/

121

http://cgi.csc.liv.ac.uk/~konev/software/trp++/translator/

4 Variable and clause elimination for LTL

These observations indicate that in the case of TRP++, we can currently only inter-
pret the positive effects of elimination in relative rather than in absolute terms, because
the penalty we pay for transforming the problems to contain just one eventuality, a pre-
condition of our simplification method in its current form, is too high in general. We
expect that an alternative elimination procedure that would not merge the eventuali-
ties would give TRP++ a similar boost without incurring the corresponding penalty.
Implementing such a procedure is left as a future work.

Conclusion

To conclude, the results of our evaluation demonstrate that variable and clause elimina-
tion represents a useful preprocessing technique of TSTs. Simplifying a clause set not
only removes redundancies introduced by a previous, potentially sub-optimal normal
form transformation (when auxiliary variables get eliminated), but usually reduces the
input even further. This ultimately decreases the time needed to solve the problem.
Further improvements are expected from an independent implementation that would
harness the full potential of the mechanism of labels.

4.4 Discussion and related work

We are not aware of any related work directly focusing on simplifying clause normal
forms for LTL. Some interesting connections, however, can be drawn with the help of
the observations made in Section 2.4.1, which shows that a TST can be viewed as a
symbolic representation of a Büchi automaton. For instance, Gerth et al. (1995) in
their classical paper construct an automaton accepting the models of an LTL formula
ϕ such that its states are identified with sets of ϕ’s subformulas. A closer look reveals
an immediate connection between these subformulas and the variables introduced to
represent them in the SNF for ϕ. The paper also suggests several improvements of the
basic algorithm. For instance, it is advocated that subformulas of the form µ1 ∧µ2 need
not be stored, because the individual conjuncts µ1 and µ2 will be later added as well
and they already imply the conjunction as a whole. We can restate this on the symbolic
level as an observation that a variable introduced to represent a conjunctive subformula
can always be eliminated. Such a claim is easy to verify.

We believe this connection deserves further exploration, as one could possibly use it
to bring some of the numerous techniques for optimizing explicit automata construction
(see, e.g., Rozier and Vardi, 2010, for an overview) to the symbolic level. Note, however,
that the main application of the explicit automata construction approach lies in model
checking and so the resulting automaton is required to be equivalent to the original
formula. On the other hand, our clausal symbolic approach is meant for satisfiability
testing only and so more general satisfiability preserving transformations are allowed. An
elimination of a variable from the original signature of the formula ϕ, or the “forgetting
step” justified by Theorem 4.3, are examples of transformations that do not have a
counterpart on the automata side.

122

4.5 Conclusion

While the explicit notion of a symbolic representation of a Büchi automaton via a
clause normal form has received relatively little attention7 so far, symbolic approaches
to LTL model checking and satisfiability based on Binary Decision Diagrams are well
known (Clarke et al., 1997). Again, it seems possible that some optimization techniques
could be shared between the two approaches. For instance, the various BDD encodings
recently studied by Rozier and Vardi (2011), could correspond to different ways of turning
a formula into a TST. Finally, an inspiration could also be taken from the techniques
for translating LTL formulas into logical circuits (Claessen et al., 2013).

4.5 Conclusion

We have shown that variable and clause elimination, a practically successful preprocess-
ing technique for propositional SAT problems, can be adapted to the setting of linear
temporal logic. For that purpose we have utilized the mechanism of labeled clauses, a
method for interpreting an LTL formula as finitely represented infinite sets of standard
propositional clauses. The ideas were implemented and tested on a comprehensive set
of benchmarks with encouraging results. In particular, variable and clause elimination
has been shown to significantly improve subsequent runtime of resolution-based provers
LS4 and TRP++.

We would like to stress here that labeled clauses provide a general method for trans-
ferring resolution-based reasoning from SAT to LTL. It is therefore plausible that other
preprocessing techniques, like, for example, the blocked clause elimination (Järvisalo
et al., 2010), can be adapted along the same lines. Exploring this possibility will be one
of the directions for future work.

7A correspondence between SNF and Büchi automata has been shown by Bolotov et al. (2002). The
relevant theorem of the paper, however, does not establish an equivalence between models of the
formula and accepting runs of the automaton. Its value for translating techniques between the
symbolic and explicit approaches is, therefore, limited.

123

5 Reachability, model checking, and
triggered clause pushing for PDR

5.1 Introduction

While studying satisfiability of LTL formulas in the previous chapters, we have learned
that the problem translates on the semantic side to finding an infinite sequence of worlds
which reaches a certain set of goal worlds infinitely many times. From this chapter on,
we shift our attention to the conceptually simpler notion of (single time) reachability,
where the task is to look for a finite sequence which reaches a goal world once.

Reachability is a canonical problem studied in formal verification under the name
model checking of invariance properties (Clarke et al., 2001; Baier and Katoen, 2008).
Given a system to be verified, an invariance property ϕ holds in the system if it is
satisfied by every state of the system that is reachable from an initial state. A state
that does not satisfy the invariance property is a called a bad state. Thus the property
ϕ holds in the system if and only if there is no bad state reachable from an initial state.

Sometimes one also talks in this context about model checking of safety properties.
While an invariance property can be decided locally in a state, safety properties are prop-
erties of computations. Informally, they are characterized by expressing that “something
bad will never happen”. This means that each violation of a safety property can be rec-
ognized already from a finite prefix of a potentially infinite computation. Although
checking safety is more general than checking invariance, the former can be reduced to
the latter by known techniques (see, e.g. Kupferman and Vardi, 2001).

Roadmap and contributions

In this chapter we take the model-guidance idea we previously developed in the context
of LTL-satisfiability checking and show how to specialize it and apply it to reachability.
Our aim is to explore its practical utility for model checking of invariance properties and
to relate the obtained algorithm to other known approaches for solving the problem.
The chapter consists of four main parts.

In the first part (Section 5.2), we formalize reachability for systems which can be
symbolically represented using propositional logic. This is an immediate adaptation of
the setting we have been using in the previous chapters. Such systems have finitely
many states, but their number can be exponential in the size of the representation. We
then specialize LS4, our algorithm for LTL-satisfiability checking, to dealing with the
reachability task. We call the obtained algorithm Reach. In the first approximation,
Reach can be understood as LS4 without Leap restricted to computations in the first

125

5 Reachability, model checking, and triggered clause pushing for PDR

block. In reality, however, one needs to be more careful to take into consideration the so
called finite path semantics: a new complication which arises because of finite paths that
cannot be extended to infinite ones. We close the first part by comparing and contrasting
Reach with related work, primarily with bounded model checking (Biere et al., 1999)
and interpolation-based model checking (McMillan, 2003).

The second part (Section 5.3) focuses on relating Reach to one of the most successful
recent advancements in the field, an algorithm called Property Directed Reachability
(PDR) but also known as IC3 (Bradley, 2011; Eén et al., 2011).1 Although derived from
different initial perspectives, namely the model guidance idea in the case of Reach and
the notion of a relatively inductive clause (Bradley and Manna, 2007) in the case of PDR,
we observe that the cores of the two algorithms are, in fact, very similar. We pinpoint
the main difference as a slight change in the treatment of the layers. When this change
is applied to Reach, all one needs to do to obtain PDR is to add three independent
enhancements on top of the altered core. We describe all these transformation steps in
detail, present PDR in full along with a standalone proof of its correctness and close the
section by a review of some recent attempts to improve the algorithm further.

In the third part (Section 5.4), we propose triggered clause pushing, our own improve-
ment of PDR. We focus on clause propagation phase of the algorithm, one of the three
enhancements mentioned above. The aim of propagation is to “push” clauses from one
layer to the next, by which PDR primarily speeds up the occurrence of layer repetition,
i.e. the termination condition for unsatisfiable inputs. An attempt to push a clause is
successful if the SAT solver confirms a certain formula to be unsatisfiable. In the op-
posite case, the solver computes a model, which is normally thrown away. We propose
to keep the model instead and use it as a witness for why the push attempt failed. Be-
cause the next pushing of the same clause can only succeed after the witness has been
subsumed by a generated layer clause, we may save time by keeping the witnesses and
avoiding futile push attempts. Moreover, with triggered clause pushing we can afford
to keep clauses pushed as far as possible at all times, which potentially leads to earlier
detection of layer repetition.

We have implemented Reach, PDR, and PDR with triggered clause pushing and cou-
pled them with a parser for And-Inverter Graphs, a canonical representation of hardware
model checking problems (Biere, 2012). In the fourth part (Section 5.5), we report on
experimental evaluation of the obtained tools on invariance property benchmarks of the
Hardware Model Checking Competition (HWMCC) (Biere et al., 2012). We compare
the strengths of the two basic algorithms, establish the effect of the three independent
enhancements, which mainly distinguish PDR from Reach, and, finally, evaluate the
merits of the triggered clause pushing technique.

In the concluding Section 5.6, we wrap up and propose directions for future work.

1IC3 is the name Aaron Bradley, the originator of the algorithm, gave to the first implementation
(Bradley, 2011). The more descriptive name Property Directed Reachability, which we will mostly
prefer here, was coined by Eén et al. (2011).

126

5.2 Specializing LS4 to reachability

5.2 Specializing LS4 to reachability

5.2.1 Formalizing reachability

The conceptual transition from LTL satisfiability, as embodied by our notion of Temporal
Satisfiability Task, to single time reachability amounts to a simple change. Instead of
requiring the goal formula to be satisfied infinitely many times along an infinite sequence
of valuations, with reachability we only focus on the existence of a finite sequence such
that the goal is satisfied by its last element.

Below we formalize reachability by introducing the notion of a Symbolic Transition
System (STS). Syntactically, an STS does not differ from a TST. We choose the new
name to stress that the intended semantics is now (single time) reachability and to bring
the terminology closer to that of verification.

Symbolic transition systems

Definition 5.1. A Symbolic Transition System (STS) is a tuple S = (Σ, I, G, T), where
Σ is a finite propositional signature, I, called the initial formula, and G, the goal formula,
are sets of clauses over Σ, and T , the transition formula, is a set of clauses over Σ ∪Σ′.

An STS S symbolically represents an explicit transition system TS = (S, SI , SG, RT),
which we describe next. We emphasize that the symbolic representation can be expo-
nentially more succinct than the explicit system.2 The system TS consists of

• the set of states3 S, identified with the set of all valuations over Σ:

S = {s | s : Σ→ {0,1}},

• a subset SI ⊆ S of the initial states, which are states that satisfy the initial formula:

SI = {s ∈ S | s |= I},

• a subset SG ⊆ S of the goal states, which are states that satisfy the goal formula:

SG = {s ∈ S | s |= G},

• and the transition relation RT ⊆ S × S of pairs of states (also called transitions)
which jointly satisfy the transition formula:

RT = {(s, t) | s, t ∈ S and [s, t′] |= T}.

A path in TS is a finite sequence s0, . . . , sn of states such that (sj , sj+1) ∈ RT for every
j = 0, . . . n−1. We will be interested in the existence of paths connecting an initial state
with a goal state.

2The explicit system is an analogue of the semantic graph introduced in Section 2.4.2.
3We will prefer using the term “state” instead of “world” from now on.

127

5 Reachability, model checking, and triggered clause pushing for PDR

Definition 5.2. An STS S is satisfiable if there is a path s0, . . . , sn in TS such that
s0 ∈ SI and sn ∈ SG. We call such a path a witnessing path for S.

Remark 5.1. It is useful to notice that the definition of an STS is symmetrical in the
following sense. Given an STS S = (Σ, I, G, T) an inverted STS is defined as S−1 =
(Σ, G, I, T−1), where T−1 is obtained from T by simultaneously removing primes from all
the occurrences of primed variables and adding primes to all the occurrences of originally
unprimed variables. This corresponds, on the explicit side, to exchanging the initial and
goal states and inverting the direction of all the transitions. Therefore, an STS S is
satisfiable if and only S−1 is. Moreover, a witnessing path for S can be recovered from
a witnessing path for S−1 (also vice versa) by reading the sequence backwards.

Although the STS S and S−1 are equisatisfiable they may be of a different degree of
difficulty for solving by a particular algorithm. As a simple example, consider an STS
S = ({a, b}, I, G, T), where I = {a}, G = {b}, and T = {¬a∨b′}. When starting from an
initial state of S one necessarily reaches a goal state in one step (without any guidance),
this does not hold for the initial state s = {a 7→ 0, b 7→ 1} of S−1 in which one can stay
“looping”, since [s, s′] |= T−1. We will explore the practical impact of search direction,
implicitly defined by using either S or S−1, in our experimental evaluation in Section 5.5.

5.2.2 The Reach algorithm

In this section we introduce Reach, a specialization of LS4 to reachability. The new
semantics allows us to simplify the algorithm in several places. First of all, since we
are looking for a finite path, the whole computation happens within the first block. We
thus only need one set of the proper layers and the dirty layers can be dispensed with
completely. When the constructed path grows to the end of the first block, the algorithm
terminates with the result SAT.

Secondly, since the goal is supposed to be reached only once, we can get rid of the Leap
inference. Indeed, removing Leap from LPSup is almost all that is needed to turn the
calculus into one that decides reachability. A special treatment is required, however, for
dealing with witnessing paths that cannot be extended to infinite paths. As we explain
in detail below, this aspect of the finite path semantics complicates the way in which
universal clauses are handled.

Pseudocode

Given an STS S = (Σ, I, G, T), the algorithm Reach (Algorithm 5.1) decides whether
there exists a witnessing path for S. Let us first have a look at the global variables of
the algorithm and their initialization (lines 1–7).

Similarly to LS4, Reach relies on the marking abstraction (recall Section 3.2.2) to
track dependencies between derived clauses. It maintains a set I of the initial clauses
marked by the initial marker ◦ and a set T of the transition clauses marked by the empty
set of markers. Notice that Reach does not separately treat the simple transition clauses,
which in LS4 initialize the set of universal clauses U. As detailed later on, in order to
respect the finite path semantics, when Reach derives a new universal clause, i.e. a clause

128

5.2 Specializing LS4 to reachability

Algorithm 5.1 Reach

Input:
An STS S = (Σ, I, G, T)

Output:
A witnessing path for S or a guarantee that none exists

1: I← {C{◦} | C ∈ I} /* Initial clauses marked by ◦ */
2: T← {C∅ | C ∈ T} /* Transition clauses marked by an empty set of markers */
3: foreach j ≥ 0 : Uj ← ∅ /* Universal clause layers */
4: L0 ← {C{•} | C ∈ G} /* Goal clauses marked by • go to layer 0 */
5: foreach j > 0 : Lj ← ∅ /* All other proper layers start empty */
6: k = 0 /* The current index for the goal state */
7: V ← ∅ /* The constructed path is initially empty */
8:

9: loop
10: if |V| = 0 and SAT?[(I ∧ F0)′] or

|V| > 0 and SAT?[Lits(V|V|−1) ∧ T ∧ (F|V|)
′] then

11: V ← valuation extracted from the Σ′-part of the satisfying assignment
12: add V to the end of V /* |V| increased by 1 */
13: if |V| > k then /* Completed the full path */
14: return V
15: else /* Unsuccessful extension */
16: Cm ← explaining marked clause from the unsuccessful extension
17: if C = ⊥ then /* Empty clause */
18: if m = ∅ or m = {◦} or m = {•} then
19: return UNSAT /* “Unconditional” empty clause derived */
20: else /* Necessarily m = {◦, •} and |V| = 0 */
21: k ← k + 1

22: else /* A non-empty clause (over Σ); cannot be marked with ◦ */
23: remove V|V|−1 from V /* |V| decreased by 1 */
24: if m = ∅ then
25: add Cm to U(k−|V|) /* A new universal clause */
26: else /* Depends on the goal: m = {•} */
27: add Cm to L(k−|V|) /* A new proper layer clause */
28: /* Layer repetition check */
29: if Li = Lj for some 0 < i < j ≤ k then
30: return UNSAT /* Enough empty clauses derivable */

129

5 Reachability, model checking, and triggered clause pushing for PDR

marked by the empty set of markers, this clause is put into one of the universal layers
Ui. These sets of clauses are all initially empty.4

Since there is only one block to consider in Reach, there is only one set of proper
layers Li. Clauses in these layers are marked by a goal marker •. The layers Li for
i > 0 are initially empty and the layer L0 is initialized to contain the goal clauses. The
configuration of the block is represented by a single number k, which denotes the current
index at which the goal clauses are to be satisfied. The goal index k is initialized to
0. Finally, there is a variable V, which stores a sequence of valuations. The variable
represents the currently constructed path and is initialized by an empty sequence.

The main loop of Reach (lines 9–30) is a straightforward simplification of its equivalent
in LS4 (cf. Algorithm 3.2 on page 83). The loop is driven by an adaptation of the two
extension queries (line 11), which look identical to the initial and proper extension
queries of LS4, but differ internally due to a new definition of the formula “macro” Fi.
As detailed below (see equations (5.1) and (5.2)), the Fi’s now take into account the
finite path semantics and the new way of dealing with universal clauses. However, the
intuition is the same as in LS4. The “macro” Fi collects those clauses that must be
satisfied by the i-th member Vi of the of the currently constructed path V.

In Reach, there is no need for a model repetition check nor for a new block check: as
soon as the constructed path reaches the goal state, the computation terminates with the
SAT result (line 14). Also the branch of the unsuccessful path extension (lines 15–30) is
simpler than in LS4, because the dirty layers and the Leap inference are missing and a
block extension of the only block amounts to a simple increment of the index k (line 21).
The parts of the code dedicated to detecting unsatisfiability, i.e. the derivation of an
“unconditional” empty clause (line 18) and the layer repetition check (line 29), are both
immediate adaptations from LS4. The only interesting difference is thus the handling of
the universal clauses.

Universal clauses under the finite path semantics

Example 5.1. Let us consider an STS S = (Σ, I, G, T) with Σ = {p, q}, I = {¬q},
G = {¬p, q}, and T = {p}. This STS is satisfiable as witnessed, for example, by the
path

V = {p 7→ 1, q 7→ 0}, {p 7→ 0, q 7→ 1}.

Notice that although the transition clause p spans only the signature Σ, it cannot
be treated universally, because the algorithm would then immediately obtain a conflict
with the goal formula G, which contains the clause ¬p.5 But even if p is initially put
into the set of proper transition clauses T, as actually done by Reach, the algorithm
may still derive the clause in a universal context, for instance, as the explaining clause
p∅ corresponding to the unsuccessful extension of the initial state {p 7→ 0, q 7→ 0}.

4As in the presentation of LS4, we introduce universal layers Ui (and also the proper layers Li) as
infinite sequences of clauses. This notational abstraction cannot sabotage computability, since only
finitely many of the mentioned sets are non-empty at any moment during the computation.

5This would correspond to deriving the unconditional empty clause (∗, 0) || ⊥ of LPSup.

130

5.2 Specializing LS4 to reachability

L0

I

k = 3

L1L2

T

0 1 2 3

V V0 V1

U0

T

TS

F_

U0U0U0

U2

U3

L3

U1U1U1

U2

Figure 5.1: Alignment between the constructed path and the clause sets in Reach.

We see that in order to prevent Reach from classifying the STS S as unsatisfiable, the
universal clauses must be treated in a more refined way than in LS4.

The solution adopted by Reach is the following. Similarly to the proper layers, the
algorithm maintains the universal layers and populates them based on the “distance” of
the currently derived clause to the index of the goal (line 25). By storing the universal
clauses in the layers Ui, the algorithm keeps track of the number of “unfoldings” of
the transition formula that were needed to derive the particular clause. It is not sound
to assert a universal clause closer to the goal than where it was derived, because that
would correspond to reasoning about path segments that extend beyond the goal index
k. However, as a useful optimization, we can assert the clause further away from the
goal. These considerations are reflected in the definition of the formula “macro” Fi.

Formally, we could define the macro as the following conjunction:

Fi = L(k−i) ∧ U(k−i), (5.1)

and only use each universal clause for guidance at the respective index at which it was
derived. The more efficient approach, which still makes use of universality in a sound
way, is to define the macro as

Fi = L(k−i) ∧
∧

0≤j≤k−i
Uj . (5.2)

The corresponding alignment between the involved clauses and the constructed path is
depicted in Figure 5.1. We can see how clauses from the universal layer Uj contribute to
the formula Fi whenever j ≤ k − i. Thus in the shown configuration with k = 3, when
extending the current path V of length |V| = 2 the new valuation is required to satisfy
the formula F2 = L1 ∧ U1 ∧ U0.

The soundness of our approach is formally captured by the following lemma.

131

5 Reachability, model checking, and triggered clause pushing for PDR

Lemma 5.1. Let S = (Σ, I, G, T) be an STS given as an input to Reach and let Ui be
the values of universal layers at any moment during the run of the algorithm. Moreover,
let s0, . . . , sn be a witnessing path for S. Then for any 0 ≤ i ≤ n

si |=
∧

0≤j≤n−i
Uj . (5.3)

Proof. We prove the lemma by induction along the run of the algorithm. Because the
universal layers are initialized as empty, the statement trivially holds at the beginning
of the run of the algorithm.

Now let us assume that the statement holds just before an addition of a new universal
clause C∅ to a universal layer Ul+1 for some 0 ≤ l < n in order to show it will also
hold afterwards. This clause C∅, being an explaining clause corresponding to the proper
extension query marked by an empty set of markers, satisfies

T ∧

 ∧
0≤j≤l

Uj

′ |= C∅. (5.4)

To prove that (5.3) holds after the insertion it is sufficient to show that si |= C∅ for
every 0 ≤ i ≤ n − l − 1. Let us pick such an i and consider the states si and si+1.
They naturally satisfy [si, s

′
i+1] |= T and, by the induction hypothesis, si+1 |=

∧
0≤j≤l Uj

because l ≤ n− i− 1. It follows from (5.4) that si |= C∅.

Correctness and termination of Reach

The correctness and termination proofs for Reach can be obtained by reviewing and
simplifying the corresponding results for LS4. We focus here on explaining what needs to
be changed in order to accommodate the finite path semantics and the ensuing different
treatment of universal clauses. Affected is the correctness proof in the unsatisfiable case.

Similarly to how we used entailment (5.4) to prove Lemma 5.1 about universal clauses,
one can use

T ∧

Ll ∧
∧

0≤j≤l
Uj

′ |= C{•}, (5.5)

a property satisfied by any proper layer clause C{•} derived into Ll+1, to prove a similar
lemma expressing soundness of the layer clauses:

Lemma 5.2. Let S = (Σ, I, G, T) be an STS given as an input to Reach and let Ui and
Li be the values of the universal and proper layers at any moment during the run of the
algorithm. Moreover, let s0, . . . , sn be a witnessing path for S. Then for any 0 ≤ i ≤ n

si |= Ln−i. (5.6)

132

5.2 Specializing LS4 to reachability

These two lemmas, in fact analogues of items 3 and 4 of Invariant 3.2 of LS4 (see
page 80), together essentially tell us that any state s lying l steps from the last state
on a witnessing path for S necessarily satisfies all the clauses from U0, . . . ,Ul and Ll.
Equipped by this knowledge, it is straightforward to prove that:

1. When Reach derives the empty clause ⊥{◦,•} and is about to increment the goal
index k (line 21), it has just shown that there is no witnessing path of length k.

2. When the algorithm derives one of the unconditional empty clauses ⊥∅, ⊥{◦} or
⊥{•} (line 18) and the distance of the current last state of the constructed path to
the goal index is d = k − |V|, it has just shown that, respectively,

• there is no path in the transition system of length L ≥ d,

• there is no path starting in an initial state of length L ≥ d,6

• there is no path ending in a goal state of length L ≥ d.

Let us by iteration i denote the period of the run of Reach during which the goal index
k equals i. The algorithm starts with iteration 0 and transitions from one iteration to
the next when the goal index is incremented on line 21. When an unconditional empty
clause is derived in iteration k, the algorithm has already shown during the previous
iterations that there are no witnessing paths of length 0, . . . , k− 1 (item 1.) and now we
also know that there is no witnessing path of length L ≥ d (item 2.). Since d ≤ k, we
conclude that there is no witnessing path of any length. This shows correctness of the
algorithm in the “unconditional” empty clause case (UNSAT on line 19).

Also the treatment of the case of repeating layers (UNSAT on line 30) is analogous, if
not identical, to how its dealt with in LS4 (Theorem 3.1). Assume the algorithm detects
repeating layers Li = Lj for some 0 < i < j ≤ k. We construct the infinitely repeating
layers Ll by defining

Ll =

{
Ll for 0 ≤ l < i,

Li+(l−i) mod (j−i) for l ≥ i,
(5.7)

and show, using the “derivation replaying argument”, that an analogy of Lemma 5.2
holds for the infinitely repeating layers Ll in place of Ll and for every l ∈ N. This is the
place where the new definition of the universal clauses is reflected. But notice that as we
move from small indexes l to those greater than j while proving (5.7) by “replaying” the
entailment (5.5) there, we need the validity of

∧
0≤j≤l′ Uj for some i ≤ l′ < j to justify

each step while already a stronger
∧

0≤j≤l Uj is available by Lemma 5.1. We conclude
the proof by using the infinitely repeating layers to “progress” the already established
non-existence of witnessing paths of lengths 0, . . . , k− 1 towards arbitrary length l ≥ k.

6This case, in fact, can only occur when |V| = 0 (and thus d = k), because only then does the set of
initial clauses I participate on the extension query.

133

5 Reachability, model checking, and triggered clause pushing for PDR

5.2.3 Related work

In this section we focus on approaches most closely related to Reach, in particular, on
Bounded Model Checking (BMC) and Interpolation-based Model Checking (IMC). Be-
fore the advent of modern SAT solvers, the state of the art relied on representations
based on BDDs (Bryant, 1986) to symbolically analyze systems (McMillan, 1993). Al-
though this method still complements the more recent approaches in modern checkers,
it is less related to our work and will not be mentioned here anymore. We also postpone
discussing the connection to PDR (Bradley, 2011), which will be the main topic of the
next section.

Bounded Model Checking

The relation between LS4 and BMC (Biere et al., 1999), which we discussed in Sec-
tion 3.5.2 in the context of LTL satisfiability, becomes even more apparent when the two
approaches are specialized to reachability.

Let us have a look at Algorithm 5.2. Given an STS S BMC works by iteratively
constructing a sequence of formulas which encode the existence of a witnessing path for
S of increasing lengths. The formulas are successively supplied to a SAT solver and
when a satisfiable one is detected a witnessing path is recovered from the corresponding
satisfying assignment.

Algorithm 5.2 Bounded Model Checking of Symbolic Transition Systems

Input:
An STS S = (Σ, I, G, T)

Output:
A witnessing path for S

1: for k ← 0, 1, . . . do
2: if SAT?[I(0) ∧∧k−1

j=0 T
(j) ∧G(k)] then

3: extract the satisfying assignment in the form [s
(0)
0 , . . . , s

(k)
k]

4: return s0, . . . , sk

As we can see, in its pure form BMC is only concerned with finding witnessing paths,
not with showing their non-existence. Traditional approaches to making BMC complete
(see Biere, 2009, Section 4) attempt to (automatically) establish an upper bound on the
length of the longest witnessing path. This bound, called the completeness threshold,
could be as simple as the size of the state space 2|Σ|, but only more refined estimates can
be useful in practice. Examples are the recurrence diameter (Kroening and Strichman,
2003), which is the length of longest simple path (a path with no repeating states) in the
transition system, and the forward and backward recurrence radii, which correspond to
the longest simple paths starting in an initial state or ending in a goal state, respectively.

One particular complete approach, which can be seen as establishing the backward
recurrence radius, is known under the name temporal induction (Sheeran et al., 2000).

134

5.2 Specializing LS4 to reachability

There the SAT queries expressing the existence of a witnessing path of length k:

I(0) ∧
∧

0≤j<k

T (j) ∧G(k) (5.8)

are interleaved with queries for the existence of a simple path ending in a goal state: ∧
0≤i<j≤k

∨
p∈Σ

¬(p(i) ↔ p(j))

 ∧ ∧
0≤j<k

T (j) ∧G(k).

Unsatisfiability of the latter query for a particular value of k, conditioned on unsatisfia-
bility of the former query for all the previous values of k, implies there is no witnessing
path for the system of any length. Because most of the clauses can be shared between
the queries, temporal induction naturally benefits from incremental SAT solving (Eén
and Sörensson, 2003b).

It is easy to see that Reach, in fact, analyzes that same sequence of formulas as
BMC. Our algorithm essentially cuts the formula (5.8) into pieces corresponding to the
consecutive time moments (or, equivalently, to the individual shifted copies of the basic
signature Σ) and relies on the mechanism of solving by parts (recall Section 3.2.1) to
solve the formula as a whole. By imposing a fixed order on how the satisfying assignment
can be constructed, namely by “growing it” from an initial state towards the goal, Reach
potentially loses some of the efficiency in comparison to the unrestricted SAT solver in
BMC. On the other hand, the extra control over the explaining clauses, which necessarily
span only one copy of the basic signature Σ (in comparison to arbitrary clauses the CDCL
algorithm learns internally in BMC), allow Reach to realize the repetition detection,
which makes the algorithm complete in the UNSAT case.

Actually, the idea of repetition detection has recently been studied right in the context
of BMC. Fuhrmann and Hoory (2009) propose to analyze the proof that the formula
(5.8) is unsatisfiable and look for so called ∆-invariant cuts. The presence of such a cut
in the proof implies that there are no witnessing paths of length k + ∆, k + 2∆, etc.
The authors also present a proof manipulation algorithm that rearranges the proof by
the natural temporal order to expose cuts that would otherwise not be detected. The
method, however, remains incomplete as there is no guarantee that the SAT solver will
generate a proof of the required form. Note that the Reach algorithm does not require
explicit proof generation from the SAT-solver side and achieves completeness through
controlled clause generation.

Another interesting reference in this context is the work of Stoffel and Kunz (1997)
who propose a method for sequential equivalence checking based on circuit unwinding
combined with learning certain transformations for establishing observable equivalence
over k-steps. Although the connection to Reach cannot be traced so far as in the case
of the previously mentioned approach, the authors face the same task of detecting rep-
etitions, here within the transformation sets, upon which the argument can be run for
arbitrary large values of k and thus a true equivalence is shown.

We would like to close the list of similarities in the context of BMC by mentioning the
work of Strichman (2001), whose method of internal constraints replication resembles

135

5 Reachability, model checking, and triggered clause pushing for PDR

our treatment of universal clauses. Constraint replication means to actively copy learned
clauses within the SAT solver between individual time frames. To justify soundness of
copying a learned clause C to a frame, say, i steps in the future, one ensures that the
original formula’s clauses D1, . . . , Dn from which C was (transitively) derived are in

(5.8) also present in their shifted incarnation D
(i)
1 , . . . , D

(i)
n . A sufficient condition for

this is that D1, . . . , Dn are already part of
∧

0≤j<k−i T
(j). There is also a symmetrical

case for copying “into the past” (with a negative value of i). This latter case is the one
implicitly realized within Reach by our treatment of universal clauses. Strichman (2001)
implements the replicability check by propagating certain tags along with the learned
clauses – one can recognize the idea of labels in disguise.

Interpolation-based Model Checking

Let us state the propositional version of Craig’s interpolation theorem (Criag, 1957) in
the form typically used in verification. For any two propositional formulas A and B for
which the conjunction A ∧B is unsatisfiable there exists a formula P over the common
variables of A and B (i.e., Vars(P) ⊆ Vars(A) ∩ Vars(B)) called the interpolant of A
and B such that A |= P and P ∧B is unsatisfiable.

In the seminal work on Interpolation-based Model Checking (IMC), McMillan (2003)
showed that such an interpolant can be efficiently extracted from any resolution proof of
unsatisfiability of the conjunction A ∧ B (see also Kraj́ıcek, 1997; Pudlák, 1997). IMC
uses this idea to extend the BMC framework into an approximate reachability analysis
procedure with a completeness guarantee.

Imagine we decompose the BMC query formula (5.8) into A and B as follows:

A = I ∧ T, B =
∧

0<j<k

T (j) ∧G(k). (5.9)

Then the corresponding interpolant P is a formula over the primed signature Σ′ satisfying
I ∧ T |= P while making the conjunction P ∧ B unsatisfiable. In other words, P over-
approximates the set of states reachable in one step from an initial state, but is at the
same time strong enough to guarantee that no P -state can reach the goal in k− 1 steps.

McMillan (2003) uses decomposition (5.9) to define a monotone operator Fk on propo-
sitional formulas where what we have just described is essentially the evaluation of Fk

on the formula I. To evaluate Fk(X) on a general input X one just replaces I by X in
the definition of the formula A above. And to ensure that the operator is monotone one
takes (P (−1) ∨X) as its final result.7

The overall IMC procedure attempts to obtain a fixed point of Fk on the initial formula
I. It computes Fk(I),Fk(Fk(I)), . . . until one of the examined formulas is revealed to
be satisfiable (and thus does not provide an interpolant) or the sequence stabilizes on
the fixed point. The former case means that the over-approximation was too coarse for
proving unreachability and the procedure needs to be restarted with an increased value
of k (in hope for better precision). Notice, however, that if satisfiability is discovered

7 By P (−1) we mean that the interpolant P is reinterpreted over the variables of the basic signature Σ.

136

5.2 Specializing LS4 to reachability

during the computation of Fk(I) we know there is a witnessing path for the input STS
and the procedure will terminate.

In the latter case, the obtained fixed point F satisfies I → F , F ∧ T → F ′, and no
F -state can reach the goal in k − 1 steps. Thus F allows us to conclude that the given
STS S is unsatisfiable. McMillan (2003) proved that for an unsatisfiable STS the later
case is bound to occur at the latest with k equal to the backward radius of the system
(the maximal length of a shortest path from any state to a goal state).

We will now explain that similarly to IMC, Reach also computes interpolants. Recall
the formula “macros” Fi defined by equation (5.2) on page 131, which guide the path
construction in Reach. It is easy to see that when the algorithm discovers that there
is no witnessing path of length k by deriving the empty clause ⊥{◦,•} (line 21) then for
every 0 ≤ i ≤ k the formula (Fi)

(i) is an interpolant for the pair

Ai =
∧

i≤j<k

T (j) ∧G(k), Bi = I ∧
∧

0<j<i

T (j).

In particular, for P = (Fk−1)(k−1) we have T (k−1) ∧G(k) |= P and I ∧∧0<j<k−1 T
(j) ∧P

is unsatisfiable. Thus the set of P -states over-approximates the one step preimage of the
set of goal states and, at the same time, no P -state is reachable from an initial state in
k−1 steps. We see that the roles of the formulas Ai and Bi with respect to the time flow
are exchanged. To get a prefect correspondence with IMC it would be enough, however,
to run Reach on the inverted STS S−1 or, in other words, to change the algorithm to
construct the path backwards from a goal state towards the initial states.

McMillan’s (2003) convergence argument for IMC translates to Reach in the following
form. For an unsatisfiable STS, when the index k becomes larger than the forward radius
l of the system, the algorithm will no longer update the “low index” layers Lj (and Uj)
for 0 < j ≤ k − l. Thus in analogy to IMC, which still needs to wait for the fixed point
to be reached even when k is already as large as the backward radius, Reach needs to
wait for the repetition to occur within the layers. Once the index k exceeds the value
of l, however, convergence is in some sense already guaranteed. A similar observation
holds also for the PDR algorithm (Bradley, 2011), the topic of the next section.

Reach differs from IMC substantially in the way the interpolants are derived. Inter-
polation-based model checking relies on the extraction and subsequent processing of
resolution proofs generated by the SAT solver. Although this is relatively easy to imple-
ment in the CDCL setting (Zhang and Malik, 2003), there is some performance penalty
connected with the necessary bookkeeping and not all SAT solvers support the feature.
Moreover, the extracted interpolants tend to be highly redundant (McMillan, 2003) and
typically need to be simplified afterwards. In contrast, all we need for our method from
the SAT solver is the mechanism for solving under assumptions (Section 3.2) and the
invariants obtained are already in CNF and contain very little redundancy. Note that
each new clause derived into a particular layer properly strengthens it.

The essence of interpolation in Reach can be cast as an algorithm for obtaining inter-
polants for a general formula pair A,B. Algorithm 5.3 showcases its pseudocode.

This “interpolation without proofs” paradigm has already been described by other
researchers (Chockler et al., 2012). We believe it could also be applied in a more general

137

5 Reachability, model checking, and triggered clause pushing for PDR

Algorithm 5.3 Interpolation without proofs

Input:
Propositional formulas A and B

Output:
A CNF interpolant P of A and B, unless the conjunction A ∧B is satisfiable

1: P ← ∅
2: while SAT?[B ∧ P] do
3: V ← the corresponding satisfying assignment restricted to Vars(A) ∩Vars(B)
4: if not SAT ?[Lits(V) ∧A] then
5: C ← the corresponding explaining clause
6: add C to P /* Note that Vars(C) ⊆ Vars(A) ∩Vars(B) */
7: else
8: return “A ∧B is SAT” /* Obtain the satisfying assignment if necessary. */

9: return P

setting than purely propositional, such as Satisfiability Modulo Theories (Nieuwenhuis
et al., 2006).

5.3 Towards Property Directed Reachability

Property Directed Reachability (PDR), also known as IC3, is a recently proposed algo-
rithm for deciding reachability in symbolically represented transition systems (Bradley,
2011; Eén et al., 2011). Since its discovery in 2010, it has already established itself as
one of the strongest model checking algorithms used in hardware verification.

In this section, we show that our algorithm Reach and PDR are closely related. In
fact, we explain how to transform Reach into PDR in several simple steps. This provides
a new perspective on the famous algorithm by relating it to the model guidance idea.
A perspective that should be novel to those only familiar with the standard exposition,
which primarily builds on a notion of inductiveness (Bradley and Manna, 2007).

Another advantage of discretizing the transition from Reach to PDR is that one can
then separately measure the effect of each step on the practical performance of the trans-
formed algorithm. We will report on exactly that experiment later on, in Section 5.5.
Here we provide a detailed presentation of the transformation (Sections 5.3.1 and 5.3.2),
the final pseudocode of PDR together with a proof of its correctness (Section 5.3.3) and
we also comment on the work related to the algorithm (Section 5.3.4).

5.3.1 Monotone layers

The main difference between Reach and PDR, which is also the only difference in the
core of the algorithms, is an extra condition that PDR imposes on the layers. PDR re-
quires that its layers are monotone or, more precisely, linearly ordered by set inclusion.

138

5.3 Towards Property Directed Reachability

While this immediately entails a theoretical improvement of the algorithm’s time com-
plexity upper bound, namely from doubly to singly exponential, its observed practical
performance, as we later show, actually deteriorates. The monotone layers, however,
subsequently motivate and enable three independent enhancements of the algorithm,
whose practical benefits are significant. In this sense, PDR can be understood as Reach
enhanced.

We will now set out to show how to keep the layers monotone by just a slight change
in the usual update of the layers that happens after an unsuccessful extension. To keep
our exposition simple and also to conform with the standard presentation of PDR, we
will only consider a single sequence of sets of clauses L0, L1, . . . (corresponding to the
proper layers of Reach). Thus we will here ignore the possibility of using the dependency
tracking technique for the discovery of universal clauses. Omitting this optimization does
not influence correctness of the algorithms in any way.8

Unsuccessful extensions in Reach and PDR

Let us recapitulate (taking into account the simplified treatment of layers) that the
extension query for a state s lying in a position i steps from the goal asks whether there
is a successor of s with respect to the transition formula T that satisfies the clauses of
layer Li−1. Formally, the query is expressed by the formula

SAT ?[Lits(s) ∧ T ∧ (Li−1)′]. (5.10)

An unsuccessful extension occurs when no such successor exists and the formula (5.10)
is unsatisfiable. In that case, we expect our SAT solver to return a sub-cube r ⊆ Lits(s)
of those assumptions Lits(s) that were actually used in the unsatisfiability proof. Let us
give this cube r a name and call it a reason for the unsuccessful extension. This notion
will become useful mainly later on. As we know from Section 3.2.1, by complementing
the reason cube we obtain a corresponding explaining clause C = ∼r = {∼l | l ∈ r}. It
follows that this clause is a property of the preimage (with respect to T) of set of states
represented by Li−1:

T ∧ (Li−1)′ |= C (5.11)

and that the state s fails to satisfy the clause: s 6|= C.
Now, in Reach we insert the explaining clause C into layer Li and backtrack over the

state s to look for a different state that additionally satisfies C. The main difference in
PDR is that we insert the new clause into all the layers L0, . . . , Li. This is all that is
needed to ensure monotonicity. However, to maintain overall correctness of the algorithm
we must additionally require that the explaining clause C does not rule out any goal state
or, in symbols, that G⇒ C. We will discuss in detail how to satisfy this weaker-than-goal
requirement after formally stating PDR’s main invariants.

8Two further remarks are in order. First, with the monotonicity condition imposed in PDR there is no
need to organize the universal clauses in separate layers (like in Reach) and we can store them just
in one universal set U (cf. the set F∞ in the presentation of Eén et al., 2011, Section IV). Second,
although dependency tracking is not explicitly shown in Pseudocode 5.5, our implementation of PDR
does use the technique and so its effects are reflected in the reported experiments.

139

5 Reachability, model checking, and triggered clause pushing for PDR

Layer invariants in PDR

At any moment during the run of the algorithm the layers in PDR satisfy the following
three properties:

1) L0 is equivalent to G,

2) Lj+1 ⊆ Lj and thus Lj ⇒ Lj+1 for any j ≥ 0,

3) (Lj)
′ ∧ T ⇒ Lj+1 for any j ≥ 0.

Invariant 1) generalizes a similar claim from Reach, where L0 is initialized by the goal
clauses G and then remains constant during the whole subsequent computation. Since
PDR inserts explaining clauses even to L0, it relies on the mentioned weaker-than-goal
requirement (details still further below) to keep 1) valid.

Invariant 2) is the discussed monotonicity of layers, which distinguishes PDR from
Reach. It is satisfied at the beginning of the algorithm’s run, because PDR initializes
all the layers except L0 to be empty, and it is also preserved when a new explaining
clause is derived, as the algorithm inserts the clause to all the layers L0, . . . , Li for some
i. Notice that it follows from monotonicity that when a layer repetition occurs in PDR,
it must be between two neighboring layers, i.e., Lj = Lj+1 for some j.

Finally, invariant 3), which PDR shares with Reach, informally states that the layer
Lj+1 over-approximates the preimage (with respect to T) of layer Lj . The key to showing
preservation of invariant 3) is property (5.11) of explaining clauses. The preservation
is immediate in Reach, where the new explaining clauses C is added just to Li. In
PDR, where the clause is added to L0, . . . , Li, we combine the same argument with
monotonicity of layers (in particular, we use the fact that Lj ⇒ Li whenever j < i) to
justify preservation also for j < i− 1.

Explaining clauses weaker than the goal

As we have seen, preservation of invariant 1) requires that every derived explaining
clause C satisfies G⇒ C or, in other words, C must be weaker than the goal formula G.
Here we show that this requirement can always be met, although we may be forced to
weaken the explaining clause a bit, which goes against the heuristic of preferring short
explaining clauses for their better generalizing power.

Notice that the algorithm never attempts to extend a goal state (because reaching the
goal is a reason for termination) and thus we always have s |= ¬G when extending a state
s. This means that there is always an explaining clause weaker than the goal, namely the
clause obtained by complementing the maximal reason r = Lits(s). Typically, however,
much smaller clauses are available.

There is a simple way to satisfy the weaker-than-goal requirement in practice, which
can be employed whenever we work with a goal formula G expressed in the form of a
set of unit clauses.9 We can then scan the explaining clause C looking for a literal l ∈ C
such that the unit clause {l} is in G. If we find such a literal, the weaker-than-goal

9This is assumption holds, for instance, when a logical circuit is encoded into an STS in a standard

140

5.3 Towards Property Directed Reachability

requirement is already met: because G ⇒ l, the presence of l in C ensures that the
clause is weaker than G. If we do not find it, there must still be at least one literal l
with {l} ∈ G such that ∼l 6∈ C (otherwise s |= G). In this case, we weaken C by adding
a single such literal l into it to satisfy the weaker-than-goal requirement.

Our approach for dealing with the situation of a goal formula G in its general clausal
form is to reduce it to the above case by translating the given STS S = (Σ, I, G, T). The
idea of the translation, inspired by the technique of Gago et al. (2002) for implementing
loop search in CTR (recall Section 2.5.2), is to represent the formula G by a single unit
goal clause g (where g is a fresh variable) and add a set of defining clauses into the
“universal part” of the STS to express the desired relation between g and G. In detail,
we define the transformed STS as S∗ = (Σ ∪ {g}, I ∪H, {{g}}, T ∪ (H)′), where

H = {¬g ∨ C | C ∈ G}

functions as the definition of the original goal formula G. We insert H both to the new
initial formula (to properly constrain a potential witnessing paths of length 0) and put
the primed version (H)′ to the transition formula (to constrain all the longer paths). It
is straightforward to verify that the STS S and S∗ are equisatisfiable.

5.3.2 Three enhancements

Having modified Reach to use monotone layers, we are still short of three individual
enhancements before the algorithm is turned into full-fledged PDR. We first explain
obligation rescheduling, by which the algorithm generalizes Reach’s strict backtracking
scheme of dealing with the partial model path.

Obligation rescheduling

Recall that the computation of Reach can be separated into iterations such that during
iteration k the algorithm tries to construct a witnessing path of length k while it has
already shown in the previous iterations that there are no witnessing paths of lengths
0, 1, . . . , k−1. In PDR, we separate the individual states Vi of the currently constructed
path V = (Vi)0≤i<|V| into so called obligations, where an obligation corresponding to the
state Vi during iteration k is the ordered pair (Vi, k− i) and k− i can be understood as
an estimate on the distance of the state Vi towards the goal. This simple reindexing is
an essential step towards the following observation.

When the extension query fails for a state s from an obligation (s, j), we do not need to
immediately discard the state (as we do in Reach), but we can retry it later at positions
j + 1, j + 2, . . ., which are further from the goal. This obligation rescheduling technique
allows the algorithm to discover witnessing paths of a length greater than the current
iteration k. Intuitively, this helps to boost the performance of the algorithm in the
satisfiable case as it can then avoid completing a potentially computationally expensive

way and then inverted (see Remark 5.1). Then the initial formula I describes the negated invariance
property and the goal formula G is a conjunction of unit clauses that initializes the latches. This is
the most common encoding setup of circuits in PDR, as it typically yields the best results.

141

5 Reachability, model checking, and triggered clause pushing for PDR

proof that a short path does not exist. Obligation rescheduling incurs no overhead and
can be turned off if a witnessing path of guaranteed minimal length is required.

Clause propagation

While obligation rescheduling could be added already to Reach, the second enhancement,
clause propagation, relies in an essential way on the monotonicity of layers maintained
by PDR. Recall that with monotone layers the layer repetition always occurs between
two neighboring layers Li and Li+1 for some i. Clause propagation can be understood
as a way of bringing about layer repetition sooner by actively copying clauses from Li

to Li+1 whenever this preserves invariant 3), which states that Li+1 over-approximate
the preimage of Li. In detail, one checks for every C ∈ Li \ Li+1 by a call to the SAT
solver whether

(Li)
′ ∧ T ⇒ C.

If the implication holds, the clause C can be ”pushed forward” and added to Li+1.10

This makes the two layers ”more equal” by reducing the size of Li \ Li+1.
We note that making the layers stronger has a positive effect also on the performance

on satisfiable problems, because the strengthened layers subsequently provide for a better
guidance towards the goal.

Small explaining clauses

When the extension query fails in Reach, the algorithm relies on the SAT solving under
assumptions technique (Section 3.2) to obtain an explaining clause and enrich one of
the layers. The explaining clause should ideally be as small as possible to generalize the
most from the current failure and guide well during future extensions. So far, we have
been relying on the SAT solver to provide a small explaining clause by itself. It turns out
that one can typically remove further literals afterwards and thus improve performance.
Let us first explain a simple version of an explicit minimization technique, which could
already be added into Reach, before moving to a more advanced “inductive” version,
which relies on monotone layers and is thus PDR-specific.

Recall the general form of a extension query for a state s, transition formula T and a
layer Li−1:

SAT ?[Lits(s) ∧ T ∧ (Li−1)′].

In the unsatisfiable case, we obtain a reason cube r ⊆ Lits(s) for the unsuccessful
extension and compute the corresponding explaining clause C as a complement of r.
The reason r returned by a SAT solver can typically be further reduced, which results in
a smaller explaining clause. We can explicitly minimize r by trying to remove literals one
by one. If the respective query remains unsatisfiable we leave the literal out. Otherwise
we put it back. In a number of steps proportional to |r| we obtain a final reason set
r∗ ⊆ r minimal with respect to subset relation such that the query

SAT?[r∗ ∧ T ∧ (Li−1)′],

10Because C is already present in layers L0, . . . , Li, adding it to Li+1 preserves invariant 2).

142

5.3 Towards Property Directed Reachability

is unsatisfiable. The order in which the literals are tried out influences the final result
and may be subject to heuristical tuning. Although reason minimization is an expensive
operation (we need one extra SAT-solver call per literal), it pays off on average and, as
experiments show, it is an important ingredient for solving hard problems.

Inductive reason minimization, a more powerful version of the above, relies on the
specific way in which the layers are updated in PDR. Since after a reason r is computed
we are in the next step going to strengthen the layers L0, . . . , Li (and, in particular, the
layer Li−1) with the explaining clause C = ∼r, we may already assume C to hold “on
the primed side” when minimizing r. This means, we can use the stronger query

SAT?[r ∧ T ∧ (Li−1 ∧ ∼r)′].
Having r on both sides of the transition breaks monotonicity of the minimization process:
as r gets weaker, ∼r gets stronger. Satisfiable query may become unsatisfiable again
when more literals are removed from r. This makes the task of finding subset-minimal
“inductive reason” computationally difficult (Bradley and Manna, 2007).

Algorithm 5.4 Inductive reason minimization:

Input:
A set of clauses L and a cube r such that
the formulas r ∧ T ∧ (L)′ and r ∧G are unsatisfiable

Output:
Minimized inductive reason r∗ ⊆ r, i.e., a cube r∗ such that
the formulas r∗ ∧ T ∧ (L ∧ ∼r∗)′ and r∗ ∧G are unsatisfiable

1: r0 ← r
2: loop
3: foreach l ∈ r do /* Check each literal of r once */
4: if there is l0 ∈ (r0 \ {l}) such that {∼l0} ∈ G then /* Can try removing l */
5: r0 ← (r0 \ {l})
6: if SAT ?[r0 ∧ T ∧ (L ∧ ∼r0)′] then
7: r0 ← (r0 ∪ {l}) /* Put the literal back */

8: if r = r0 then /* No removal in the last iteration */
9: return r

10: r ← r0

In Algorithm 5.4, we present a simple version of inductive reason minimization with
no minimality guarantee, which was, however, successfully applied in hardware model
checking (Eén et al., 2011). To ensure the the weaker-than-goal requirement for the final
explaining clause, the procedure assumes that the goal formula G is in the form of a set
of unit clauses. It then keeps G ∧ r0 unsatisfiable, which is equivalent to maintaining
G ⇒ C for the corresponding explaining clause C = ∼r0. Given the non-monotone
flavor of inductive minimization it makes sense to retry all the literals once a single
literal has been successfully removed. That is why the procedure employes the outer
loop to continue minimizing till a true “fixed point” is reached.

143

5 Reachability, model checking, and triggered clause pushing for PDR

5.3.3 Pseudocode and correctness

Let us now have a look at the pseudocode of PDR (Algorithm 5.5). The algorithm is
presented in full, with both obligation rescheduling and clause propagation techniques.
However, inductive reason minimization is only implicitly assumed to be called by the
pseudocode.

To better understand the connection of PDR to Reach the following should be noted.

• As stated before, we do not explicitly consider dependency tracking in this exposi-
tion and thus only work with the sequence of proper layers L0, L1, . . . The proper
layers are initialized as in Reach (line 1), but no marking is employed.

• To bring the pseudocode closer to the standard presentation (Eén et al., 2011),
iterations of the algorithm are driven explicitly by a for-cycle (line 2) and the initial
and proper extension queries have been set apart (lines 4 and 11, respectively).
This is just an equivalent way of presenting the same overall control flow.

• Each individual iteration consist of a path construction phase (lines 4–20) and a
clause propagation phase (lines 23–30). The former corresponds to the computation
within the main loop of Reach, while the latter captures the clause propagation
enhancement, which is unique to PDR.

• The decisive difference between Reach and PDR, which causes the layers of the
latter to be monotonically ordered by inclusion, happens during the path construc-
tion phase when the new explaining clause C is added to all the layers L0, . . . , Li

(line 16) and not just to Li.

• Layer repetition check appears in PDR in the clause propagation phase (line 29)
and is thus executed only once per iteration. This does not seem to affect perfor-
mance either negatively or positively.11

• Instead of maintaining the constructed path as an explicit sequence of states (recall
variable V from Reach), a set Q is introduced to store obligations. Had it not been
for obligation rescheduling (imagine lines 19 and 20 removed), the content of the
container Q would faithfully correspond to the partial path stored in V by Reach.12

However, with obligation rescheduling active, PDR works in general on more than
one path at once and the set Q functions as a priority queue.

To get a better idea of how obligation rescheduling works, let us have a look at a small
example. In Figure 5.2, PDR is in the middle of the path construction phase of iteration
2. The algorithm is attempting to extend the obligation (t, 1) and to reach a goal state

11In any case, our implementation of PDR tests for layer repetition also after each addition of an
explaining clause. Thus the experimental comparison was not biased by this change.

12As already noted, state Vi would correspond to obligation (Vi, k− i) during iteration k. One can verify
this by checking that there would always be at most one obligation stored in Q with a particular
index j and that the set {j | ∃(s, j) ∈ Q} of indexes of obligation stored in Q would at any moment
be equal to an interval of indexes {k, k − 1, . . . , i} for some index i.

144

5.3 Towards Property Directed Reachability

Algorithm 5.5 PDR

Input:
A symbolic transition system S = (Σ, I, G, T)

Output:
A witnessing path for S or a guarantee that no path exists

1: L0 ← G; foreach j > 0 : Lj ← ∅ /* Initialize the layers */
2: for k = 0, 1, . . . do
3: /* Path construction: */
4: while SAT ?[I ∧ Lk] do
5: extract state s from the model
6: Q ← {(s, k)}
7: while Q not empty do
8: pop some (s, i) from Q with minimal i
9: if i = 0 then

10: return WITNESSING PATH FOUND
11: if SAT ?[Lits(s) ∧ T ∧ (Li−1)′] then
12: extract a successor state t from the model
13: Q ← Q ∪ {(s, i), (t, i− 1)}
14: else
15: compute a (small) explaining clause C such that G⇒ C
16: foreach 0 ≤ j ≤ i : Lj ← Lj ∪ {C}
17:

18: /* Obligation rescheduling: */
19: if i < k then
20: Q ← Q ∪ {(s, i+ 1)}
21:

22: /* Clause propagation: */
23: for i = 1, . . . , k + 1 do
24: foreach C ∈ Li−1 \ Li do
25: /* Clause push check */
26: if not SAT?[∼C ∧ T ∧ (Li−1)′] then
27: Li ← Li ∪ {C}
28: /* Layer repetition check */
29: if Li−1 = Li then
30: return NO PATH POSSIBLE

145

5 Reachability, model checking, and triggered clause pushing for PDR

G

L1L2
I

(s, 2)
b

L0

b
b

(t, 1)
?

G

L1L2
I

(s, 2)
b

L0

b
b

(t, 2)
r

Figure 5.2: Layers, obligations and rescheduling.

in one step (left). When the attempt fails (right), PDR generalizes from t, obtains a
reason r, and learns a new explaining clause C = ∼r to strengthen the layers L1 and L0.
Notice how the obligation is rescheduled to (t, 2) and PDR can now attempt to extend
it and satisfy the new L1 in one step. Without rescheduling, PDR would forget t and
would go back to extending (s, 2) instead.

Remark 5.2. When popping obligations from the set Q (line 8) we make sure we select
among those estimated closest to the goal. This is necessary for ensuring termination
of the algorithm (see below). Otherwise, however, we are free to choose any obligation
with the minimal index i. Two prominent strategies for resolving this “don’t-care”
non-determinism are

• to select the most recently added obligation first, which we call the stack strategy,

• to select the least recently added obligation first, the queue strategy.

In the above example, continuing to work on (t, 2) corresponds to the stack strategy,
while going back to (s, 2) corresponds the queue strategy. Even in the latter case,
however, (t, 2) remains stored in Q and will be considered before the end of the iteration
2 (unless a full witnessing path is discovered first).

The stack strategy prefers exploring longer paths before short ones, while the queue
strategy does the opposite. Eén et al. (2011) report a small performance gain with the
stack strategy on hardware model checking benchmarks. We used the stack strategy as
the default in our experiments.

Correctness and termination

Although the correctness and termination result for PDR follows essentially from the
same ideas as in Reach, it is worthwhile presenting its proof in full. There is a new
complication to be dealt with stemming from the generalized treatment of paths sepa-
rated into obligations. Another interesting point to focus on is a better theoretical upper
bound on PDR’s running time enabled by the monotonicity of layers.

In Section 5.3.1, we have stated three main invariants satisfied by the layers in PDR
and sketched why they are preserved during algorithm’s run. Now we add a simple
observation and derive an auxiliary lemma, before stating and proving the main result.

146

5.3 Towards Property Directed Reachability

Observation 5.1. When the path construction phase of iteration k finishes there is no
initial state satisfying Lk.

The observation follows from the fact that the query on line 4 must be unsatisfiable
for the path construction to finish.

Lemma 5.3. When PDR creates (either on line 6 or on line 13) a new obligation (s, i)
then s |= Li. Moreover, s 6|= Lj for any j < i. This latter property is maintained through-
out the run of the algorithm and, in particular, holds also after obligation rescheduling
(line 20).

Proof. First note that it is sufficient to show the second part only for j = i− 1 and then
use invariant 2). Also note that during the run of PDR clauses are only added to and
never removed from the layers. This means it is sufficient to focus on the moments when
a new obligation is created: if s 6|= Lj when the obligation (s, i) is created, this must
also hold later, after the layer Lj has been strengthened by addition of new clauses.

Let us now consider iteration k. When creating a new obligation (s, k) on line 6, we
have s |= Lk by construction and s 6|= Lk−1 by Observation 5.1. When creating a new
obligation (t, i−1) on line 13, we assume that its parent (s, i) already satisfies our lemma
and, in particular, that s 6|= Li−1. We now have t |= Li−1, again by construction, and if
i > 1 we infer t 6|= Li−2 from our assumption about s and from invariant 3). Finally, an
obligation (s, i) is only rescheduled to (s, i+ 1) after the addition of an explaining clause
C = ∼r into Li for some reason r ⊆ Lits(s). This means that s 6|= Li at the time of the
rescheduling.

Lemma 5.3 captures the intuition that a state s of an obligation (s, i) is always at
least i steps from reaching the goal.

Theorem 5.1 (Bradley, 2011). Given an STS S = (Σ, I, G, T) the algorithm terminates
and returns a witnessing path for S if and only if S is satisfiable.

Proof. It is easy to see that if PDR returns a path (line 10) it is a witnessing path for
S.13 Indeed, for every considered obligation (s, i) the state s is reachable from an initial
state and when i = 0 the state s satisfies L0, which is equivalent to G by invariant 1).

If PDR terminates claiming that no witnessing path exists (line 30) the path con-
struction phase of iteration k has finished and there is an index 0 ≤ j ≤ k such that
Lj = Lj+1. By combining invariants 1)–3) and the detected equality we obtain G⇒ Lj

and (Lj)
′ ∧ T ⇒ Lj . This together with Observation 5.1 rules out the existence of a

witnessing path of any length.
To address termination we first show that the path construction phase of iteration

k cannot run indefinitely. Recall that PDR always selects for extension an obligation
with minimal index i (line 8). Thus it follows from Lemma 5.3 that after a successful

13Strictly speaking, line 10 of our pseudocode only reports on the existence of a witnessing path. To be
able to recover the path one extends the structure of an obligation to store a pointer to its parent,
i.e. to the obligation from which it was derived. A witnessing path can be then read (in reverse order)
by following these pointers from the last obligation (s, 0).

147

5 Reachability, model checking, and triggered clause pushing for PDR

extension of obligation (s, i) the new extracted state t is not equal to any other state
previously considered during iteration k (t is currently the only state that satisfies Li−1).
On the other hand, after an unsuccessful extension of obligation (s, i) the addition of
the new clause C to the layer Li ensures that s 6|= Li anymore (recall that C = ∼r for
some r ⊆ Lits(s)). This means there cannot be more than k · 2|Σ| repetitions of the
“Q-processing” while-loop (line 7) and more than 2|Σ| repetitions of the outer while-loop
of path construction (line 4).

We are left to bound the maximal number of iterations of PDR. By invariant 2) the
sets of states represented by the individual layers are ordered by inclusion and after the
clause propagation phase of iteration k finishes the first k+1 of these sets are necessarily
distinct. Thus there cannot be more than 2|Σ| iterations before PDR terminates.

5.3.4 PDR – related work

Let us close this section by providing an overview of the work related to PDR. This should
mainly serve as a guidepost for anyone interesting in further study of the algorithm.

IC3/PDR invented

Although the official seminal publication on PDR (Bradley, 2011) dates back to 2011,
historians will discover that the idea was published already in March 2010 (Bradley,
2010). Bradley’s way of arriving to the algorithm was to take the already existing
method for learning clauses by inductive generalization from states (Bradley and Manna,
2007) and provide for it a context relative to which the generalizations could not fail.
This context took the form of clausal k-step reachability over-approximations, which we
decided to call layers in our presentation.

Although the work of Lu et al. (2005) did not serve as an inspiration for the author
of PDR (Bradley, 2012), the SAT-based model checking algorithm described there bears
several similarities to PDR. One can, for instance, recognize analogues of obligation
rescheduling, clause minimization or lifting of states (see below). However, the algorithm
by Lu et al. (2005) does not operate with layers and so its search is only guided towards
the unexplored part of the search space, but not directly to the goal.

Lifting states

Apart from coining the name “property directed reachability”, the main contribution of
the paper by Eén et al. (2011) is a method for improving the algorithm’s performance by
lifting states. The idea is to identify cases when it can be efficiently shown that not only
the currently discovered state s but all the states satisfying a particular cube x ⊆ Lits(s)
are reachable and to use x instead of s within the new obligation (essentially preparing
to reason about all those represented states at once). The payoff comes when learning
from a failure to extend the obligation, because minimization (already the implicit one
within the SAT solver) then starts from x, which is a potentially much smaller set of
assumptions than the full Lits(s).

148

5.4 Triggered clause pushing

Eén et al. (2011) propose to use ternary simulation for obtaining x. There is also a
different method described by Chockler et al. (2011), which requires only one additional
SAT-solver call (and that call only performs unit propagation). However, both methods
essentially rely on the input being in a circuit form,14 and thus do not seem to generalize
to STS. That is why we did not consider lifting of states in our experiments.

Extensions, generalizations and further improvements

Further followup work on PDR can be classified into three main groups. First, extensions
to checking more complex properties such as liveness checking (Bradley et al., 2011) or
CTL model checking (Hassan et al., 2012). Second, generalizations beyond the domain of
finite state systems, for instance, to handle theories within the context of SMT (Cimatti
and Griggio, 2012) or nonlinear fixed-point operators (Hoder and Bjørner, 2012).

Last but not least, research continues on how to improve the performance of the
algorithm itself. Hassan et al. (2013) present a new method for enhancing the power of
inductive minimization by focusing on and learning from states which hinder the actual
minimization attempt (so called counter-examples to generalization). The “SAT Modulo
SAT” approach proposed by Bayless et al. (2013), on the other hand, explores the idea
of allowing unit propagation to ”cross the boundaries” of the individual SAT-solver calls,
as if there was an unrolling of the transition relation. This leads to a faster discovery of
conflicts (essentially, of unsuccessful extensions) and improves the success rate of PDR
both for satisfiable and unsatisfiable inputs.

Our own proposed improvement of the algorithm is the topic of the next section.

5.4 Triggered clause pushing

There are two main reasons for why the clause propagation phase (recall Algorithm 5.5,
lines 23–30) is an important part of PDR. First, as pushing clauses reduces the difference
between two neighboring layers, it speeds up the convergence of the algorithm towards
a successful layer repetition check (on unsatisfiable problems). Second, it generally
strengthens the layers, which then provide better guidance for the path construction.15

Clause propagation is, however, also quite costly, requiring one SAT-solver call per layer
clause.

In this section, we describe a new method for speeding up propagation. We notice that
during each failed attempt to push a clause the SAT solver computes a model, which is
normally thrown away. We propose to keep the model instead and use it as a witness for
why the respective clause could not be pushed forward. It only makes sense to recheck
a particular clause for pushing when its witnessing model falsifies a newly added clause.

14And the search direction being from the goal (more precisely, from the set of bad states, i.e. states
violating the given property) towards an initial state.

15Clause propagation of iteration k is also an opportunity to insert clauses into the till then empty layer
Lk+1 before the start of iteration k + 1. Sometimes, thanks to pushed clauses, iterations pass off
without actually entering the path construction loop.

149

5 Reachability, model checking, and triggered clause pushing for PDR

Because this test can be implemented via subsumption, we obtain an effective necessary
condition which allows us to often skip the expensive SAT-solver call.

After explaining the idea of witnesses in full detail (Section 5.4.1), we describe a scheme
in which subsumption is not only used to prune layers (as already proposed by Bradley,
2011), but also to trigger obligation rescheduling and, more importantly, clause pushing
(Section 5.4.2). Because utilization of witnesses makes the pushing cheap, it allows us to
essentially merge the clause propagation phase with path construction. Thus all clauses
can be pushed as far as possible at all times, which makes the guidance more precise
and allows for earlier discovery of layer repetitions.

Experimental evaluation of triggered clause pushing is part of Section 5.5.

5.4.1 Witnesses for failed push attempts

Consider a clause C ∈ Li \Li+1 that could not be pushed forward. This means the query
on line 26 Algorithm 5.5 returned SAT. We may now inspect the model computed by the
SAT solver and extract a state wC which satisfies Li−1 and to which there is a transition
from a state satisfying ∼C. Notice that as long as wC remains to satisfy Li−1 during
the potential strengthenings of the layer, the query in question cannot become UNSAT.
The state wC , therefore, represents a witness for why C cannot be pushed forward from
Li−1 to Li.

But how do we efficiently recognize whether wC still satisfies Li−1 after a new clause
D has been added to the layer? The answer is: via subsumption! It is only when

D ⊆ ∼Lits(wC)

that wC ceases to be a witness, because it does not satisfy the strengthened Li−1. When
this happens we may directly retry the pushing query of line 26 and either discover a
new witness or finally push the clause C to Li.

It may seem expensive to perform the subsumption test against every witness whenever
a new clause is derived. Note, however, that efficient implementations of PDR already
use subsumption routinely to test each new clause against all other clauses (as detailed
below) and that by also considering the witnesses, one per each clause, the overhead is at
most doubled. Moreover, in our proposed scheme the subsumption check is only applied
within the context of those layers where the new clause itself is known to be sufficiently
strong. This typically helps to further reduce this cost.

5.4.2 Implementing triggered clause pushing via subsumption

It has been observed that PDR often derives a clause C to be inserted into layer Li while
Li already contains a weaker clause D ⊇ C. Bradley (2011) proposes to remove such
clauses during propagation; the implementation described by Eén et al. (2011) is more
eager and clears layers via subsumption each time a new clause is derived. Removing
subsumed clauses pays off, because they do not contribute to better guidance and only

150

5.4 Triggered clause pushing

∆0: clauses

O0: obligations (∗, 0)

R0: push requests

W0: witnesses

b

b

∆1: clauses

O1: obligations (∗, 1)

R1: push requests

W1: witnesses

b

b

b

b

b

b
b

b

b
b

Figure 5.3: Organizing the data structures of PDR with triggered clause pushing. A
bi-directional link is maintained between a clause and its witness or its push request.

make the layers unnecessarily large.16

Once subsumption is implemented for reducing layers it can also be used for pruning
obligations. By construction, an explaining clause C learned from an unsuccessful ex-
tension of an obligation (s, i) satisfies C ⊆ ∼Lits(s). But the clause may also subsume
other obligations (t, i) currently on Q. These can be directly rescheduled to index i+ 1,
each saving us one SAT-solver call.

Now we describe a new way to organize the data structures of PDR such that 1)
subsumption by newly derived clauses can be used to prune layers and obligations, 2)
clause pushing triggered by subsuming a witness is integrated into the path construction
phase to keep clauses pushed as far as possible at all times. This will require three main
updates of the algorithm’s data structures.

First, to avoid duplicating clauses we use the delta encoding of layers proposed by Eén
et al. (2011). A delta layer ∆i consist of clauses appearing last in Li. Thus ∆i = Li\Li+1

and Li =
⋃

j≥i ∆j . Next, for each layer clause C, we either associate it with its witness
wC or store a push request for it, which means it will need to be considered for pushing.
Finally, instead of using the priority queue Q, we explicitly separate obligations into sets
Oi based on their index. The whole situation is depicted in Figure 5.3.

The algorithm now works as follows. It picks the smallest index i such that there is
either an obligation in Oi or a request in Ri. If both sets are non empty, obligations are
picked first.17 Handling an obligation corresponds to asking the query from line 11 in
Algorithm 5.5 and either creates a new obligation or derives a new clause to be added
to ∆i. Similarly, handling a push request corresponds to the query of line 26 and either
generates a new witness, which is stored to Wi, or pushes the clause from ∆i to ∆i+1.
In both cases a new clause may be added to a layer, which is where subsumption comes
into play.

When a clause C is added into ∆i we put a push request for it into Ri and then

16Although a subsumed clause could potentially be pushed to a higher layer than the subsuming clause
and become useful there, implementations prefer to keep the layers small and get rid of the subsumed
clause immediately.

17Because by learning from an unsuccessful extension of an obligation from Oi we may further strengthen
Li. Then we consider the requests from Ri. If a clause is successfully pushed to Li+1 it may subsume
obligations waiting in Oi+1.

151

5 Reachability, model checking, and triggered clause pushing for PDR

do the following: 1) we remove all the clauses from ∆i subsumed by C (along with
their witnesses or associated push requests), 2) we remove the subsumed witnesses from
Wi and insert push requests for the respective clauses into Ri, 3) we reschedule the
subsumed obligations from Oi to Oi+1. If the clause C was pushed to ∆i from ∆i−1, we
are done. If, on the other hand, C was derived from an unsuccessful extension, it formally
strengthened all L0, . . . , Li. We therefore continue towards lower indexes performing 1)
and 2)18 for j = i− 1, i− 2, . . . A key observation is that the iteration can be stopped as
soon as the clause C is itself subsumed by some clause D from ∆j . Since layers of low
index are stronger than those further on, the iteration typically terminates way before
reaching j = 0. This way a lot of time spent on futile subsumption tests can be saved.

Two notes on related work

Eén et al. (2011) use subsumption to tests whether an obligation has a chance of get-
ting successfully extended, just before attempting the corresponding SAT call (look for
method isBlocked). We perform the same check, but already when the potential sub-
suming clause gets derived. The advantage of our approach is that an obligation is
only tested against new clauses and not those that were already in the layers when the
obligation was created and for which the test must fail by construction.

To mitigate the quadratic cost (in the number of performed iterations) of clause prop-
agation, Bayless et al. (2013) propose, as one of their improvements of PDR, to only
start propagating clauses from the index of the least delta layer which received a new
clause during the last path construction phase. As the authors admit, this modification
may lead to a loss of PDR’s convergence guarantees. Our approach is similar in spirit,
but does not have the corresponding drawback. We save time by only reattempting to
push clauses which lost their witnesses, but never fail to discover all of them, because
we only stop our search when the new clause is itself subsumed.

5.5 Practical part

In this section, we present results of an experimental evaluation of the previously de-
scribed algorithms for deciding reachability performed on hardware model checking
benchmarks. We start from an implementation of Reach as a baseline model checking
tool and progressively transform it into PDR, following the individual steps detailed in
Section 5.3. Each tool obtained in succession (or a configuration of a tool), is compared
to its predecessor to demonstrate the effect of the change on practical performance. The
sequence is closed by PDR enhanced with the triggered clause pushing technique.

18The sets Oj of obligations are empty for j < i at this point so there is now no work to be done
regarding 3).

152

5.5 Practical part

5.5.1 Experimental setup

Input problems, encoding, and search directions

As input problems we collected and merged the safety (invariance) property benchmarks
from the Hardware Model Checking Competition (HWMCC) of years 2007–2012 (Biere
et al., 2012). This yielded 1161 problems altogether.

Each input problem describes a hardware circuits together with a corresponding prop-
erty in the AIGER format (Biere, 2012), which our tools internally translate to STS.
We rely on the standard Plaisted-Greenbaum encoding (Plaisted and Greenbaum, 1986)
and map the initial state of the given circuit to the initial formula I and the negation
of the tested property to the goal formula G of the STS.

This gives rise to a search direction we refer to as forward, in which the explicit path is
effectively constructed from the initial state of the circuit towards a potential violation
of the property. We also tested the tools in the opposite, backward direction, achieved
by inverting the obtained STS (recall Remark 5.1). Note that our backward direction is
the one in which PDR is traditionally presented.

Implementation

The implemented tools share a common front-end consisting of a parsing and encoding
module followed by a variable elimination procedure for simplifying the obtained STS.
The simplification is closely related to the method described in Chapter 4, but adapted
to reachability.

Similarly to LS4, our reachability checking tools rely on Minisat (Eén and Sörensson,
2003a) version 2.2 as the underlying SAT solver. Also here, we allocate as many SAT-
solver instances as there are currently considered indexes of the constructed path. This
means there are k instances of the solver during iteration k and the i-th instance is
assigned to dealing with queries corresponding to layer Li. Although this approach goes
against the initial selling point of PDR that the transition relation need not be “unrolled”
(Bradley, 2011), it has the advantage that the low index solvers are not polluted by the
weaker19 clauses derived further on. Other recent implementations of PDR adopt this
approach as well (Bayless et al., 2013).

The source code of the tested tools is publicly available (Suda, 2013e).

Testing environment

As with our previous experiments, the computations were run on servers with 3.16 GHz
Intel Xeon CPU, 16 GB RAM, running Debian 6.0. In accord with the setup of HWMCC,
each tool was given the time of 900 seconds per problem. However, we did not impose
any explicit memory limit.

19The clauses are weaker in the monotone setup of PDR. In Reach, their logical strength compared to
the clauses of higher index layers is in general arbitrary.

153

5 Reachability, model checking, and triggered clause pushing for PDR

5.5.2 Incremental evaluation

Let us first review the performance of the individual tested tools visualized as a function
of the number of solved problems within a given time limit. For each tool, we present
separate data for the forward (FWD) and backward (BWD) directions. We always
provide a summarizing plot and also a decomposition of the data for satisfiable (SAT)
and unsatisfiable (UNS) problems. Starting with a plot for Reach, the performance of
each subsequent tool is visualized along with the data of its predecessor to highlight the
impact of the respective change.

We present the data, in succession, for:

1) the Reach algorithm, as described in Section 5.2.2 (Algorithm 5.1),

2) Reach with monotone layers, denoted Monot, which satisfies the layer invariants of
PDR, but is not enhanced in any other way (see Section 5.3.1),

3) Monot implementing obligation rescheduling,

4) Monot implementing obligation rescheduling and clause propagation,

5) the same as above, additionally enhanced by explicit reason minimization,

6) the same as above, but employing inductive reason minimization instead,20

7) the above, which is a full-fledged PDR, extended by triggered clause pushing (Sec-
tion 5.4).

Although some of the above steps are independent from each other (e.g., non-inductive
minimization could be tried already as an extension of Reach), others can only be intro-
duced in a specific order (e.g., clause propagation relies on the layers being monotone).
We decided to present the experiment as a sequence of extensions mainly to keep the
number of the performed tests manageable. This means, however, that in the cases
where two extensions could be introduced in a different order (like obligation reschedul-
ing and clause propagation) we have to tacitly assume that their effects are sufficiently
independent when drawing general conclusions about the respective techniques per se.

Reach

The performance of Reach can be examined in Figures 5.4 and 5.5 on page 155. To
demonstrate the benefit of reusing a universal clause at indexes different from the one
where it was derived (recall Section 5.2.2), there are two versions plotted in the backward
direction: Reach u0 corresponds to defining the formula “macro” Fi as in (5.1, page
131), whereas Reach u1 represents the more refined version of (5.2, page 131), which
reuses universal clauses. There is no distinction made in the forward direction, because
the transition relation naturally arising from encoding circuits is left-total and so the
algorithm can never derive a universal clause on circuits in the forward direction.

20For details on enhancements leading to 3)–6) please refer to Section 5.3.2 and Algorithm 5.5.

154

5.5 Practical part

 450

 500

 550

 600

 650

 700

 0 100 200 300 400 500 600 700 800 900

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

Reach u* FWD
Reach u0 BWD
Reach u1 BWD

Figure 5.4: Performance of Reach – all instances.

 250

 260

 270

 280

 290

 300

 310

 320

 330

 340

 0 150 300 450 600 750 900

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

Reach u* FWD
Reach u0 BWD
Reach u1 BWD

 250

 260

 270

 280

 290

 300

 310

 320

 330

 340

 0 150 300 450 600 750 900

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

Reach u* FWD
Reach u0 BWD
Reach u1 BWD

Figure 5.5: Performance of Reach – separately SAT and UNS instances.

155

5 Reachability, model checking, and triggered clause pushing for PDR

We can see that Reach is generally more successful in the forward direction. In the
backward direction, reusing universal clauses (u1) substantially helps for recognizing
unsatisfiable instances, but has no significant effect with satisfiable ones.21 In the next
experiment, we will only show the performance of Reach with reusing universal clauses.

Making the layers monotone

Figures 5.6 and 5.7 on page 157 compare the performance of Reach to Monot, the version
of the algorithm with monotone layers. We can see that on the whole, the change makes
the performance worse both in the forward direction (where it drops significantly) and in
the backward direction (where the deterioration is less severe). With this development,
the backward direction becomes preferable to the forward with respect to the total
number of problems solved.

The split by satisfiability reveals that the forward direction is mainly impaired on
unsatisfiable instances, whereas the the backward direction on the satisfiable ones. The
performance in the backward direction even improves on the unsatisfiable instances to
approximately match the corresponding performance of Reach in the forward direction.
We believe that a theoretical justification of these observations, which currently eludes
us, could be helpful in obtaining a deeper understanding of the success of PDR itself.

Adding obligation rescheduling and clause propagation

The effect of adding obligation rescheduling (a switch from r0 to r1) and clause propa-
gation (a switch from p0 to p1) to Monot is visualized in Figures 5.8 and 5.9 on page 158
and Figures 5.10 and 5.11 on page 159, respectively. The global view shows that both
techniques are beneficial and improve performance both in the forward and backward
direction. We can also notice that clause propagation provides for almost twice as large
a gain in the number of additional problems solved than obligation rescheduling. Such
an observation, however, depends largely on the used problem set and should not be
therefore emphasized too much.

More interesting are, perhaps, the separate views by satisfiability status. They show
that obligation rescheduling helps only on satisfiable instances (and more so in the for-
ward direction), whereas on unsatisfiable ones it actually slightly impairs performance.
Complementarily, the positive effect of clause propagation is only slight for satisfiable
problems (almost negligible in the forward direction), but quite huge for unsatisfiable
ones. These observations are in accord with our theoretical understanding of the tech-
niques. Rescheduling helps the algorithm to solve more satisfiable problems, because
with the technique the algorithm does not need to focus on providing minimal length
witnessing paths. Propagation, on the other hand, mainly speeds up the discovery of
repetitions in the unsatisfiable case by reducing the size of the set difference between
neighboring layers.

21There does not seem to be an obvious explanation for this phenomenon.

156

5.5 Practical part

 400

 450

 500

 550

 600

 650

 700

 0 100 200 300 400 500 600 700 800 900

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

Reach FWD
Monot FWD
Reach BWD
Monot BWD

Figure 5.6: Making the layers in Reach monotone – all instances.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 150 300 450 600 750 900

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

Reach FWD
Monot FWD
Reach BWD
Monot BWD

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 150 300 450 600 750 900

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

Reach FWD
Monot FWD
Reach BWD
Monot BWD

Figure 5.7: Making the layers in Reach monotone – separately SAT and UNS.

157

5 Reachability, model checking, and triggered clause pushing for PDR

 400

 450

 500

 550

 600

 650

 0 100 200 300 400 500 600 700 800 900

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

Monot r0 FWD
Monot r1 FWD
Monot r0 BWD
Monot r1 BWD

Figure 5.8: Adding obligation rescheduling – all instances.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 0 150 300 450 600 750 900

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

Monot r0 FWD
Monot r1 FWD
Monot r0 BWD
Monot r1 BWD

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 0 150 300 450 600 750 900

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

Monot r0 FWD
Monot r1 FWD
Monot r0 BWD
Monot r1 BWD

Figure 5.9: Adding obligation rescheduling – separately SAT and UNS.

158

5.5 Practical part

 450

 500

 550

 600

 650

 700

 0 100 200 300 400 500 600 700 800 900

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

Monot r1p0 FWD
Monot r1p1 FWD
Monot r1p0 BWD
Monot r1p1 BWD

Figure 5.10: Adding clause propagation – all instances.

 100

 150

 200

 250

 300

 350

 400

 450

 0 150 300 450 600 750 900

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

Monot r1p0 FWD
Monot r1p1 FWD
Monot r1p0 BWD
Monot r1p1 BWD

 100

 150

 200

 250

 300

 350

 400

 450

 0 150 300 450 600 750 900

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

Monot r1p0 FWD
Monot r1p1 FWD
Monot r1p0 BWD
Monot r1p1 BWD

Figure 5.11: Adding clause propagation – separately SAT and UNS.

159

5 Reachability, model checking, and triggered clause pushing for PDR

 500

 550

 600

 650

 700

 750

 800

 850

 0 100 200 300 400 500 600 700 800 900

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m0 FWD
PDR m1 FWD
PDR m0 BWD
PDR m1 BWD

Figure 5.12: Adding explicit minimization – all instances.

 150

 200

 250

 300

 350

 400

 450

 500

 0 150 300 450 600 750 900

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m0 FWD
PDR m1 FWD
PDR m0 BWD
PDR m1 BWD

 150

 200

 250

 300

 350

 400

 450

 500

 0 150 300 450 600 750 900

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m0 FWD
PDR m1 FWD
PDR m0 BWD
PDR m1 BWD

Figure 5.13: Adding explicit minimization – separately SAT and UNS.

160

5.5 Practical part

 650

 700

 750

 800

 850

 900

 0 100 200 300 400 500 600 700 800 900

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m1 FWD
PDR m2 FWD
PDR m1 BWD
PDR m2 BWD

Figure 5.14: Extending to inductive minimization – all instances.

 250

 300

 350

 400

 450

 500

 550

 0 150 300 450 600 750 900

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m1 FWD
PDR m2 FWD
PDR m1 BWD
PDR m2 BWD

 250

 300

 350

 400

 450

 500

 550

 0 150 300 450 600 750 900

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m1 FWD
PDR m2 FWD
PDR m1 BWD
PDR m2 BWD

Figure 5.15: Extending to inductive minimization – separately SAT and UNS.

161

5 Reachability, model checking, and triggered clause pushing for PDR

Minimization in PDR

Let us now have a look at pages 160 and 161 (Figures 5.12–5.15), to evaluate the effect
of reason minimization. For simplicity, the figures refer to Monot r1p1, i.e. the last
configuration of the previous comparison, by a shorter name PDR m0. Adding explicit
minimization is then denoted by a switch to m1 and a further transition to inductive
minimization (in the sense of Algorithm 5.4) by a switch to m2.

We can observe that adding explicit minimization has the greatest positive effect on
the performance of the algorithm we have seen so far. There are more than 130 additional
problems solved within the 900 seconds time limit both in the forward and backward
direction. The improvement is by a larger margin coming from the unsatisfiable part of
the instances, but is significant also on the satisfiable ones (especially in the backward
direction).

On the theoretical basis, we have already argued that minimization helps to generalize
the information learned from unsuccessful extensions and that shorter explaining clauses
provide for better guidance to the goal. A possible explanation for the improvement on
unsatisfiable instances is that by removing literals not truly relevant to the failure of an
extension, the learned clauses contain less “noise” and so a repetition check, which in
the end relies on precise syntactic equality between layers, is likely to occur sooner.

The effect of switching to inductive version of minimization (page 161) is less sig-
nificant than the introduction of minimization as such, but we can still observe an
additional improvement, mostly in the backward direction and on unsatisfiable prob-
lems (the improvement in the forward direction on satisfiable instances is, on the other
hand, insignificant). This confirms that the importance of deriving short clauses is so
large that it pays off to invest a non-trivial amount of time to it. Recall that without
minimization the algorithm is spending one SAT-solver call per extension. With explicit
minimization up to |Σ|-many calls may be needed and potentially even more with the
inductive version. Yet the last version is the most successful on our benchmark set.

Triggered clause pushing

The last step in our sequence of extensions is the addition of triggered clause pushing
to PDR, visualized in Figures 5.16 and 5.17 on page 163. Standard PDR (PDR m2

from the previous comparison) is here denoted PDRmi to stress that it is the version of
the algorithm with inductive minimization. Switching an extra specifier from t0 to t1

signifies the addition of the new technique.

We can see from the figures that although triggered clause pushing slightly helps in
the forward direction, it actually impairs performance in the backward direction. The
improvement in the forward direction happens on the unsatisfiable instances, where the
performance in the backward direction stagnates. The deterioration in the backward
direction stems, on the other hand, from the satisfiable part, on which, symmetrically,
the forward direction does not seem affected.

These observations suggest that the potential benefits of triggered clause pushing in
the backward direction are in general outweighed by the computational cost connected

162

5.5 Practical part

 650

 700

 750

 800

 850

 900

 0 100 200 300 400 500 600 700 800 900

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

PDRmi t0 FWD
PDRmi t1 FWD
PDRmi t0 BWD
PDRmi t1 BWD

Figure 5.16: Enhancing with triggered clause pushing – all instances.

 250

 300

 350

 400

 450

 500

 550

 0 150 300 450 600 750 900

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

PDRmi t0 FWD
PDRmi t1 FWD
PDRmi t0 BWD
PDRmi t1 BWD

 250

 300

 350

 400

 450

 500

 550

 0 150 300 450 600 750 900

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

PDRmi t0 FWD
PDRmi t1 FWD
PDRmi t0 BWD
PDRmi t1 BWD

Figure 5.17: Enhancing with triggered clause pushing – separately SAT and UNS.

163

5 Reachability, model checking, and triggered clause pushing for PDR

with maintaining witnesses.22 Because the deterioration of performance is not dramatic,
however, the technique could still be useful in contexts where propagation dominates in
the solution times. We explore one such context below.

Interlude: triggered clause pushing for multi-property checking

Because triggered clause pushing did not turn out to bring the expected benefit on
standard single-property benchmarks, we decided to test the technique for solving multi-
property problems using shared clause layers. A multi-property benchmark contains a
description of a circuit together with a collection of properties to be decided about the
circuit. If we pick a single property and solve it with PDR in the backward direction, the
generated layer clauses depend only on the initial state and the transition relation of the
circuit and can be reused when attempting to solve the next property in the collection.
Sharing the layers typically helps but can hurt, for a particular property, if there is
too much irrelevant information. In particular, propagation times dominate (Bradley,
2014b). Triggered clause pushing should be able to address this problem, because it
allows the algorithm to avoid lots of futile push attempts.

We implemented a simple extension of PDR for solving multi-property problems using
shared clause layers. In order to avoid spending too much time on a particular difficult
property from a collection, our tool switches between all the (yet unsolved) properties
in a simple round robin fashion. In each new round, an attempt to solve a particular
property is given twice as much resources to continue solving as in the previous round,
and the attempt is interrupted when it runs out of the resources. The resource controlled
is the number of unsuccessful extensions. When we interrupt an attempt, we remember
the index of the last completed iteration to restart from there in the next round, but
discard all the generated obligations, which, unlike the layers, cannot be shared. We
implemented two versions of this tool, one based on standard PDR and the other based
on PDR enhanced with triggered clause pushing.

We tested the tool on the 76 multi-property benchmarks from HWMCC 2012 (Biere
et al., 2012). These problems contain 81082 properties in total, which gives us an average
of 1066 properties per problem, but the actual median is only 30. When giving the tool
900 second per problem, the version based on standard PDR was able to decide 6286
properties in total, while the version enhanced with triggered clause pushing decided
7981 properties. This constitutes an improvement by almost 27 percent.

5.5.3 Tabular view and the preferable search direction

We complement our incremental evaluation of the transformation from Reach to PDR
(and beyond) by presenting a summarizing view on our experimental data in a tabular
form. Tables 5.1 and 5.2 show the number of problems solved by each of the tested tools

22In a previous version of our experiments, in which our implementation of PDR did not incorporate
inductive minimization, a positive effect of triggered clause pushing occurred even in the backward
direction on the same set of benchmarks. This indicates that the individual extensions tested in this
section are not fully independent.

164

5.5 Practical part

Table 5.1: Incremental evaluation summary – forward direction.

tool total delta gained lost

Reach 654 (323, 331)
Monot 545 (308, 237) -109 (-15, -94) 13 (2, 11) 122 (17, 105)
Monot r1 574 (342, 232) 29 (34, -5) 41 (36, 5) 12 (2, 10)
Monot r1p1 671 (344, 327) 97 (2, 95) 98 (3, 95) 1 (1, 0)
PDR m1 802 (354, 448) 131 (10, 121) 146 (17, 129) 15 (7, 8)
PDR m2 816 (355, 461) 14 (1, 13) 26 (3, 23) 12 (2, 10)
PDRmi t1 823 (355, 468) 7 (0, 7) 17 (1, 16) 10 (1, 9)

Table 5.2: Incremental evaluation summary – backward direction.

tool total delta gained lost

Reach 576 (296, 280)
Reach u1 603 (297, 306) 27 (1, 26) 29 (2, 27) 2 (1, 1)
Monot 587 (255, 332) -16 (-42, 26) 35 (2, 33) 51 (44, 7)
Monot r1 606 (278, 328) 19 (23, -4) 33 (29, 4) 14 (6, 8)
Monot r1p1 696 (290, 406) 90 (12, 78) 93 (14, 79) 3 (2, 1)
PDR m1 830 (331, 499) 134 (41, 93) 143 (43, 100) 9 (2, 7)
PDR m2 874 (340, 534) 44 (9, 35) 49 (11, 38) 5 (2, 3)
PDRmi t1 870 (336, 534) -4 (-4, 0) 9 (1, 8) 13 (5, 8)

165

5 Reachability, model checking, and triggered clause pushing for PDR

within 900 seconds in the forward direction and in the backward direction, respectively.
The tables show the overall performance of each tool (total) and the difference between
the performance of two successive tools (delta). The difference is also decomposed into
additionally solved problems (gained) and problems only solved by the previous tool in
the sequence (lost). Moreover, each mentioned field has its value additionally separated
into one for satisfiable and one for unsatisfiable instances (in brackets, in this order).

An interesting observation following from the tables is that none of the presented
improvements is unambiguous across the whole problem set: with the single exception
of Monot r1p1 in the forward direction, which does not lose a single unsatisfiable problem
with respect to its predecessor Monot r1, all the remaining “lost” fields are invariably
non-zero. This may teach us that the concept of hard and easy problems is quite elusive
and that, in general, there are only hard and easy problems with respect to a given tool.

By comparing the corresponding fields between the two tables, we can also establish
which of the search directions is more successful for each tool. We observe that while
in Reach the preferable search direction was forward, with the transition to Monot the
backward direction became more successful and remained so the whole way to the full-
fledged PDR. However, when focusing only on satisfiable problems the forward direction
consistently dominates the backward direction throughout the whole development of the
algorithm.

So which of the search directions should be preferred in general? The answer is that
search in both direction should be combined in order to solve the most problems. For
instance, PDR m2 solves 816 problems in the forward direction and 874 in the backward
direction in 900 seconds. Obviously, the number of problems solved in at least one
direction in 900 seconds is higher, namely 931 problems.23 But even with the time
limit reduced to 450 seconds, to simulate a setup when the two searches would be
run in sequence, the number of problems solved in at least one direction is still 915,
i.e. more than in either of the directions alone even with the full 900 second time limit.
This observation is in accord with the prevailing trend in the design of modern model
checkers – the most successful tools employ portfolios of several algorithms and multiple
variations of a single algorithm (Biere et al., 2012).

5.5.4 Comparison with other publicly available implementations

We close the practical part of this chapter by a final set of plots in which we compare
our tool to three other publicly available implementations of PDR. This should serve
to establish the quality of our tool, but also to provide an estimate of the potential
of the more recent improvements of PDR suggested by related work, as mentioned in
Section 5.3.4.

In particular, we compare our tool in the configuration PDR m2 to the following
implementations:

• Bradley’s first implementation, which participated in HWMCC 2010. The tool,
denoted here IC3 2010, is described in the original paper on PDR (Bradley, 2011)

23This number was obtained separately and cannot be deduced from the tables.

166

5.5 Practical part

 700

 750

 800

 850

 900

 950

 0 100 200 300 400 500 600 700 800 900

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m2 BWD
IC3 2010

IC3ref
smspdr

Figure 5.18: Comparing with other implementations – all instances.

 250

 300

 350

 400

 450

 500

 550

 600

 0 150 300 450 600 750 900

S
A

T
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m2 BWD
IC3 2010

IC3ref
smspdr

 250

 300

 350

 400

 450

 500

 550

 600

 0 150 300 450 600 750 900

U
N

S
 p

ro
b
le

m
s
 s

o
lv

e
d

time (seconds)

PDR m2 BWD
IC3 2010

IC3ref
smspdr

Figure 5.19: Comparing with other implementations – separately SAT and UNS.

167

5 Reachability, model checking, and triggered clause pushing for PDR

and is available from the author’s web-page (Bradley, 2013).

• A more recent implementation from the same author, suggested as a reference
meant to be used as a starting point for tuning and experimenting (Bradley, 2014a).

We denote the tool IC3ref. It implements lifting of states using the approach
proposed by Chockler et al. (2011) and exploits counter-examples to generalization
(Hassan et al., 2012).

• Finally, an implementation accompanying the paper by (Bayless et al., 2013) on
the “SAT Modulo SAT” idea. The tool is called smspdr (Bayless, 2013) and
additionally implements lifting of states via ternary simulation (Eén et al., 2011).

None of the mentioned tools implement circuit specific preprocessing of the input, which
makes our comparison reasonably fair.

The results of the comparison are shown in Figures 5.18 and 5.19 on page 167. Note
that unlike PDR m2, all the other tools support only one search direction, which cor-
responds to BWD, the direction shown for our tool. This limitation cannot be easily
overcome with IC3ref and smspdr, because the states lifting technique they implement
is circuit-specific and only works in this direction.

We can see that the performance of PDR m2 is comparable to that of IC3 2010, or
even slightly better on the SAT instances. However, our tool lags behind IC3ref and
smspdr. This is most likely due to the extra techniques mentioned above, which these
tools introduce on top of standard version of the algorithm.

5.6 Conclusion

In this chapter, we studied the reachability problem in transition systems that have
a symbolical representation based on propositional logic. First, we defined an STS,
which serves as a canonical description of such a problem. Then we have shown how to
adapt LS4, our algorithm for LTL satisfiability from Chapter 3, to decide reachability
for an STS. Algorithm Reach thus obtained is very similar to the famous PDR algorithm
(Bradley, 2011), also known as IC3. In fact, we have shown that Reach can be turned
into PDR by one simple change in the interpretation of layers, which renders the layers
monotone with respect to set inclusion, and three independent enhancements: obligation
rescheduling, clause propagation and minimization. This provides a new perspective on
PDR, relating it to the model guidance idea. Furthermore, we have proposed triggered
clause pushing, an additional improvement of the clause propagation phase of PDR.

An important class of problems that can be formulated as reachability in STS arises
in sequential verification of hardware circuits. We used the safety property benchmarks
from the Hardware Model Checking Competition (Biere et al., 2012) to experimentally
evaluate: 1) our algorithm Reach, 2) the effect of the transformation steps that lead
from Reach to PDR, and also 3) triggered clause pushing added on top of PDR. Our
experiment has shown that although the step of making layers monotone in Reach slightly
impairs performance of the algorithm, the three subsequent enhancements, some of which

168

5.6 Conclusion

essentially rely on monotone layers, make up for the loss and, moreover, improve the
performance further. Our own proposed improvement, triggered clause pushing, did
not help the algorithm to solve more problems in the standard single-property setting,
but substantially improved performance of a PDR-based multi-property solver in which
clause layers are shared and faster propagation becomes of higher importance for the
overall success rate.

Future work

After having isolated the individual steps needed to transform Reach into PDR and
having established their respective positive effect on practical performance, we can ask
to what extent could these ideas be adapted to the context of LTL-satisfiability checking
and used to improve the performance of LS4. While the adaptation seems straight-
forward for explicit minimization and obligation rescheduling, clause propagation and
inductive minimization substantially rely on monotone layers and as such cannot be
directly translated to LS4. It is an interesting research question whether the model
construction in LS4 could be guided by, at least partially, monotone layers and whether
the algorithm could thus benefit from all the discussed improvements.

Another interesting direction for future work is to try using PDR with triggered clause
pushing inside the k-Liveness algorithm by Claessen and Sörensson (2012). k-Liveness
relies on sharing layers between its individual reachability queries and could thus benefit
from faster clause propagation provided by triggered clause pushing, similarly to our
extension of PDR for solving multi-property problems.

169

6 Property directed reachability in
automated planning

6.1 Introduction

The basic task in automated planning is the following. Given an initial state, a goal
condition on states, and a set of available actions, which can be used to turn one state
into another, decide whether there is a sequence of actions, simply called a plan, which
consecutively turns the initial state to a state satisfying the goal condition. It is well
known that this task ultimately leads to the reachability problem in a (succinctly rep-
resented) transition system. One may therefore ask to what extent one could adapt
and successfully apply to this task PDR (Bradley, 2011; Eén et al., 2011), the new and
promising algorithm discovered in the related field of model checking (see Chapter 5).
The current chapter sets out to answer this question.

A well established approach to automated planning is called planning as satisfiability
(Kautz and Selman, 1992). It is based on the idea to formulate and encode the existence
of a plan of a particular fixed length as a propositional formula and then iteratively check
formulas corresponding to increasing plan lengths for satisfiability using a SAT solver.
This is essentially the same idea as in Bounded Model Checking (recall Section 5.2.3).

A lot of research in planning as satisfiability focuses on devising and improving encod-
ing schemes, i.e. the concrete translations from a planning problem to the formulas (see,
e.g., Kautz et al., 1996; Rintanen et al., 2006; Huang et al., 2012). Similarly to BMC,
these formulas tend to have a specific structure consisting of parts describing, respec-
tively, the initial state, the goal condition, and the appropriate number of steps through
the transition relation. By observing that these parts naturally correspond to the initial,
goal and transition formulas of an STS, we can already give an affirmative preliminary
answer to our question: one can solve a planning problem by using an encoding scheme
to translate it to an STS and then applying PDR to it.

The main contribution of this chapter, however, is a discovery of a less direct but
arguably a more rewarding approach. We show that for a specific planning formalism
called the STRIPS planning one can replace the SAT solver inside PDR and implement
both the extension query and (under some mild assumptions) also the clause pushing
query by a planning-specific procedure. Although this does not affect the complexity of
the overall algorithm, it is surprising to learn that the procedure itself runs in polynomial
time. We show that the procedure is correct by relating it to a certain simple encoding.
This suggests that the same complexity guarantee could be obtained for a SAT solver
running on the same encoding and with a specific way of driving its search. However,
the mere fact that the encoding would need to be explicitly generated would most likely

171

6 Property directed reachability in automated planning

make a difference in practice. As another reward for devising the procedure we gain
additional insights and ideas for further improvements that go beyond what could be
achieved with the SAT-based version.

Relating PDR to the main planning approaches

How does PDR relate to the traditional approaches studied in automated planning?
As already mentioned, planning as satisfiability closely resembles BMC and thus the
connection between BMC and PDR (via Reach), which we have studied previously,
manifests itself here in an analogous way.

What should perhaps be stressed is that in the standard planning as satisfiability
approach the algorithm always discovers a plan of minimal length (with respect to the
number of steps through the encoded transition relation), because the formulas corre-
sponding to increasing plan lengths are tried one by one until the first satisfiable formula
is found. In scenarios where such optimality is not required (so called satisficing plan-
ning), PDR could have an advantage thanks to its obligation rescheduling technique,
which allows the algorithm to discover a plan of a certain length while a potentially
expensive proof that no shorter plan exists is still waiting to be completed. A similar
effect can be achieved in the planning as satisfiability approach by running several SAT
solvers in parallel or interleaved (Rintanen, 2004). Such a modification, however, re-
quires a non-trivial engineering effort and the resulting system contains parameters that
need to be tuned for the problem at hand. In contrast, rescheduling in PDR can be
realized literally just by adding one line to the code the algorithm. When this line is
disabled, PDR resorts to the more expensive search for an optimal length plan.

Another distinguishing feature of PDR in comparison to planning as satisfiability is
the inherent ability of the algorithm to detect unsatisfiable inputs, i.e. to show that no
plan of any length can exists. We return to the topic of detecting unsatisfiable planning
problems in Section 6.4.8.

PDR can also be naturally compared to heuristic search planning (Bonet and Geffner,
2001), the currently prevailing and most studied approach to automated planning. Also
in heuristic search planning, the algorithm operates with a set of explicit states – typically
those reachable from the initial state. The idea is to use a heuristic to estimate the
distance of each state to the goal and to always select the state with the lowest estimate,
i.e. the one which currently appears to be the closest to the goal, for the next expansion.
One can see that a similar role is played in PDR by the layers. It follows from the
invariants of the algorithm that when a state s does not satisfy the clauses of a layer
Lk it must lie at least k steps from the goal. Thus the layers implicitly represent an
admissible heuristic, a heuristic which never overestimates the true distance to the goal.
But while a heuristic value of a particular state is normally computed only once and it
remains constant during the search for a plan, the layers in PDR are refined continually.
The refinement happens on demand, driven by the states encountered during the search.

172

6.2 The planning problem and encodings

Chapter overview

We begin our exposition in Section 6.2 by introducing the STRIPS planning formalism
and showing on an example of two simple encodings how to translate a STRIPS planning
problem into STS. This is all one needs to know to start planning with the standard
PDR.

The planning specific version of PDR, which does not rely on a SAT solver, is devel-
oped in Section 6.3. After explaining how to deal with both the extension query (in-
cluding inductive minimization) and the clause pushing query, we discuss the possibility
of inverting the search direction in STRIPS planning. Last but not least, we propose
several improvements of PDR, some of which are only possible in the SAT-solver-free
perspective.

We implemented the proposed idea in a new planner PDRplan. In Section 6.4 we
experimentally confirm that it is more efficient than the standard PDR combined with
encodings. We also evaluate the practical impact of various improvements and com-
pare the most successful configuration of PDRplan to the state-of-the-art planners with
encouraging results.

Section 6.5 returns to related work and uncovers a perhaps surprising connection be-
tween PDR and the Graphplan algorithm of Blum and Furst (1997). Finally, Section 6.6
uses examples of the behavior of PDR on two classical planning domains to discuss pos-
sibilities for future extensions of the algorithm and Section 6.7 concludes.

The material of the chapter has been published in (Suda, 2014a).

6.2 The planning problem and encodings

6.2.1 Propositional STRIPS planning

Our focus in this chapter will be on planning problems described in the STRIPS planning
formalism. Similarly to states of symbolic transition systems, states in STRIPS planning
are identified with propositional valuations. The propositional variables encoding the
state are in this context called state variables and we denote their set by X.

An action a is determined by a tuple a = (prea, eff a), where prea, called the pre-
condition set, and eff a, the effect set, are cubes over X, i.e. consistent conjunctive sets
of literals. An action a is applicable in a state s if s |= prea. If this is the case then
applying the action a in s results in a successor state t = apply(s, a), which is the unique
state that satisfies eff a and for every p ∈ X not occurring in eff a it has t(p) = s(p). A
degenerate action with empty precondition and effect sets is called the noop action. It
is applicable in any state s and the corresponding successor is identical to the original
state: apply(s,noop) = s.

A STRIPS planning problem is a tuple P = (X, sI , g,A), where X is the set of state
variables, sI the initial state, g the goal condition in the form of a cube over X, and A
a set of actions. A plan for P is a finite sequence a1, . . . , ak of actions from A such that
there are states s0, . . . , sk satisfying the following conditions:

• s0 = sI ,

173

6 Property directed reachability in automated planning

• aj is applicable in sj−1 for j = 1, . . . , k,

• sj = apply(sj−1, aj) for j = 1, . . . , k,

• and sk |= g.

Notice that the empty sequence λ is a plan for P if and only if sI |= g.

6.2.2 Two simple encodings

The various encoding schemes proposed in the planning literature can be characterized
based on how many actions they allow to be applied in one step. If an encoding scheme
uses a so called sequential plan semantics, one step in the transition relation corresponds
to exactly one action application. Parallel plan semantics allow multiple actions to be
applied in one step. This leads to a more compact representation and potentially faster
discovery of plans. Additional conditions on the parallel actions need to be imposed,
however, to guarantee that a true sequential plan can be recovered in the end (see
Rintanen et al., 2006, for more details).

Here we present two encodings of a STRIPS planning problem P = (X, sI , g,A) into
an STS. They are perhaps the simplest representatives of encoding schemes with the
sequential and parallel plan semantics, respectively. We will later refer to them in our
theoretical considerations and in the experiments.

The symbolic transition systems Sseq
P and Spar

P corresponding to the two encodings
share several building blocks. Let the signature Σ consist of the state variables X in
union with a set of fresh auxiliary variables A = {pa | a ∈ A} used for encoding applied
actions. Further, let us identify the initial formula I with the cube Lits(sI) and define
the goal formula G by reinterpreting the goal condition g, which is formally a cube, as a
set of unit clauses G = {{l} | l ∈ g}. The action mechanics is in both encodings captured
by the following action precondition axioms AP and action effect axioms AE :

AP = {¬pa ∨ l | a ∈ A, l ∈ prea}, AE = {¬pa ∨ l′ | a ∈ A, l ∈ eff a}.

The encodings differ in how they formalize the “preserving” part of actions’ semantics.

The sequential encoding Sseq
P relies on the so called classical frame axioms CF (Mc-

Carthy and Hayes, 1969) complemented by the single at-least-one axiom alo =
∨

a∈A pa:

CF = {¬pa ∨ l ∨ ∼l′ | a ∈ A, l literal over X such that l 6∈ eff a and ∼l 6∈ eff a}.

Putting these together, we obtain Sseq
P = (Σ, I, G, T seq), where T seq = AP ∧AE ∧CF ∧

alo. Note that the at-least-one axiom is needed, because without it a transition into an
arbitrary state would be possible from a state where no action is applied, i.e. a state in
which pa is false for every a ∈ A. On the other hand, the classical frame axioms ensure
that if two actions are applied together in a state their effects must be identical. Thus
when extracting a (sequential) plan from a witnessing path for Sseq

P we can arbitrarily
choose in each step any action a ∈ A such that pa is true in the corresponding state.

174

6.3 PDR without a SAT solver

The parallel encoding Spar
P uses the following explanatory frame axioms EF (Haas,

1987)

EF = {l ∨ ∼l′ ∨∨a∈A l∈eff a
pa | l literal over X},

in combination with the so called conflict exclusion axioms CE

CE = {¬pa ∨ ¬pb | a, b ∈ A, a 6= b, and the actions a and b are conflicting},

where two actions are considered conflicting if one’s precondition is inconsistent with
the other’s effect, i.e. if there is a literal l over X such that

either l ∈ prea and ∼l ∈ eff b, or l ∈ preb and ∼l ∈ eff a.

In sum, we define Spar
P = (Σ, I, G, T par) where T par = AP ∧ AE ∧ EF ∧ CE . In this

encoding two actions can be applied in parallel if they have consistent effects (action effect
axioms) and one action does not destroy a precondition of the other (conflict exclusion
axioms). When recovering a sequential plan, such parallel actions can be serialized in
any order.

Please consult the work of Ghallab et al. (2004, Chapter 7.4) for further details.

6.3 PDR without a SAT solver

Although it is possible to encode a STRIPS planning problem into an STS and use a
general implementation of PDR to solve it, a more efficient approach can be adopted.
The approach relies on an observation that the work normally delegated in PDR to the
SAT solver can in the case of planning with the sequential plan semantics be instead
implemented directly by a planning-specific procedure. Not only do we gain with this
procedure a polynomial time guarantee for the response of each extension query, but the
ensuing perspective also enables us to devise new improvements of the overall algorithm.

The SAT solver is employed in several places within PDR. We will start by focusing
on its primary role which lies in extending the current path by one step. In Section 6.3.1
we develop procedure extend to replace the SAT solver in path extension queries. A
separate Section 6.3.2 is then devoted to discussing inductive reason minimization in
the planning context. In Section 6.3.3 we deal with replacing the remaining SAT-solver
calls. We show how to efficiently implement clause pushing for positive STRIPS planning
problems, a subclass of STRIPS problems that is typically used in practice. We then
discuss the possibility of reversing the default search direction of PDR in Section 6.3.4
and, finally, we propose several improvements of the algorithm in Section 6.3.5.

6.3.1 Planning-specific path extensions

Let us recall the interface for path extensions, which is normally implemented in PDR
by a call to a SAT solver (also recall Section 5.3). Given a state s and a set of clauses
L, decide whether there exists a state t, a successor of s with respect to the transition
relation T , such that t satisfies L. In the positive case, which we refer to as a successful

175

6 Property directed reachability in automated planning

extension, return such a t. In the negative case, when no such a successor exists, compute
a reason r for the failure in the form of a preferably small subset of the literals defining
s, such that no state satisfying r has a successor that would satisfy L. We remark that
the set L stands for some of the layers Li considered during the run of PDR; we drop
the index i here as it is irrelevant to the current presentation.

Let us assume a STRIPS planning problem P = (X, sI , g,A) is given. We now grad-
ually work towards a planning-specific implementation of the above interface within the
procedure extend(s, L). Our central idea is to emulate the mechanics of the sequential
encoding Sseq

P . This makes the implementation particularly straightforward from the
perspective of successful extensions. Given a state s, we can simply iterate over all the
actions a ∈ A, generate a successor ta = apply(s, a) whenever a is applicable in s, and
check for each ta whether it satisfies the clauses of L. If such a successor is found, it is
returned and the procedure terminates. Such an iteration is clearly affordable from the
complexity point of view. In fact, it is very similar in spirit to what all explicit state
planners need to do: they enumerate successor states and evaluate their heuristic value.

The non-trivial part of the extend procedure deals with computing a small reason
in the case of an unsuccessful extension. We conceptually simplify the problem by first
separately collecting a set of reasons Ra for every action a ∈ A and then computing the
overall reason r as a union

r =
⋃
a∈A

ra (6.1)

of reason contributions ra ∈ Ra selected in a way that minimizes the size of the union.
The idea is that each ra ∈ Ra is a distinct reason for why the action a cannot be
applied in s to produce a successor state t that would satisfy all the clauses from L. The
union (6.1) then justifies why there is no such a successor state via any action a ∈ A
whatsoever.

In the rest of this section, we first explain how the individual reasons ra ∈ Ra for
an action a ∈ A are derived from the action’s failed preconditions and from those
clauses of L which the respective successor state fails to satisfy. We then show how this
reason collecting process can be in practice sped up by employing certain subsumption
concepts. Finally, we present our approach to obtaining a small overall reason r, along
with a detailed pseudocode of the extend procedure and a proof of its correctness.

Remark 6.1. We know from Section 5.3.1 of the previous chapter that in order to ensure
correctness of PDR each explaining clause C derived from an unsuccessful extension must
satisfy the weaker-than-goal condition: G⇒ C. Here, in the context of STRIPS planning
and with our preference to talking about reasons rather than about the corresponding
explaining clauses, the condition can be restated as the unsatisfiability of r ∧ g.

The condition can be in planning automatically satisfied if we add the noop action
into the problem’s action set. Such an addition does not affect the existence or the
length of the shortest witnessing path, but it has the effect of making the represented
transition relation reflexive by adding self-loops to every state. This causes each set of
states to be included in its own preimage, and, as a result, we then necessarily have r∧L
unsatisfiable and our condition follows since g ⇒ L always holds in PDR.

176

6.3 PDR without a SAT solver

Procedure extend includes the noop action in the action set to ensure the weaker-
than-goal condition.

Reasons for individual actions

We construct the set of reasons Ra for a particular action a as follows. First we check
whether the action a is applicable in the given state s. If not then there is a precondition
literal l ∈ prea false in s. The complement of each such literal represents a singleton
reason {∼l} ⊆ Lits(s) which we add to Ra. Clearly, as long as a state satisfies ∼l there
is no way a can be used to produce a successor state, let alone one that would satisfy L.

Next, we compute the successor state ta = apply(s, a). Strictly speaking, ta cannot
be regarded as a true successor if a is not applicable in s. Nevertheless, ta is useful even
then for computing further reasons, namely reasons corresponding to clauses of L that
are false in ta. These are either clauses that were already false in s and a failed to make
them true or clauses that became false due to an effect of a. For each such clause C we
add to Ra a reason rC consisting of negations of literals l ∈ C. As an optimization, we
only include those negated literals which were not made false by an effect of a. Since
the other literals will always be false after a is applied due to its effects, as long as s
satisfies rC , the successor ta cannot satisfy C. Summarizing formally, this is the final
set of reasons we obtain:

Ra = {{∼l} | l ∈ prea and s 6|= l} ∪ {rC | C ∈ L and ta 6|= C},

where rC = {∼l | l ∈ C and ∼l 6∈ eff a}. It is easy to check that rC ⊆ Lits(s) as
required. Notice that the set Ra is empty if an only if the action a is applicable in s and
the successor ta satisfies all the clauses from L.

Example 6.1. Starting from a state s = {o 7→ 0, p 7→ 0, q 7→ 0, r 7→ 0}, let us compute
the reasons for an action a = (prea, eff a) with prea = {¬p, q} and eff a = {o,¬r} with
respect to the clause set L = {o∨q, p∨r}. Because the precondition q is not satisfied in s,
one reason is {¬q}. Next we compute ta = apply(s, a) = {o 7→ 1, p 7→ 0, q 7→ 0, r 7→ 0}.
The first clause, o∨ q is satisfied in ta and so does not give rise to a reason. The second
clause, p ∨ r, however, is false in ta. The reason corresponding to the second clause is
{¬p}. The other negated literal, ¬r, is not part of the reason, because it was explicitly
set to false by an effect of a. The final reason set Ra we obtain is thus {{¬p}, {¬q}}.
Notice that both the computed reasons are subsets of Lits(s) = {¬o,¬p,¬q,¬r}.

Correctness of the reason set construction is captured by the following lemma.

Lemma 6.1. Let ra ∈ Ra be any reason for an action a ∈ A∪ {noop} as defined above.
Then

ra ∧AP ∧AE ∧ CF ∧ (L)′ |= ¬pa,
where AP, AE and CF are, respectively, the action precondition, the action effect and
the classical frame axioms used in the transition formula T seq of the sequential encoding
Sseq
P .

177

6 Property directed reachability in automated planning

Proof. Let us first assume that ra = {∼l} is a reason derived from a failed precondition
literal l ∈ prea. There is an action precondition axiom ¬pa ∨ l ∈ AP from which the
conclusion ¬pa follows by a single resolution inference with the unit assumption ∼l.

The other possibility is that ra = {∼l | l ∈ C and ∼l 6∈ eff a} for some clause C ∈ L
false in the successor state ta. There must be an action effect axiom ¬pa ∨∼l′ ∈ AE for
every literal l ∈ C such that ∼l ∈ eff a and also a classical frame axiom ¬pa∨l∨∼l′ ∈ CF
for every literal l ∈ C such that ∼l 6∈ eff a (if the literal l was in eff a the clause C would
be satisfied in ta). By resolving these axioms on the respective primed literals ∼l′ with
the primed version C ′ ∈ (L)′ of the clause C we obtain a clause ¬pa∨

∨
l∈ra ∼l from which

the final unit clause ¬pa can be derived by resolution with the available assumptions
from ra.

Reason Subsumption

Before we describe how to compute the overall reason r from the actions’ contributions
Ra, let us note that there are two useful notions of subsumption both between individual
reasons and between reason sets, which can be used to simplify the reason sets before
the computation is started. The subsumption between individual reasons inside one
particular Ra is simply the subset relation. It does not make sense to keep both r1 and
r2 inside Ra if r1 ⊆ r2. Keeping the smaller r1 is sufficient, because whenever we would
decide to pick r2 as the reason for a inside the union (6.1), switching to r1 instead could
only make the result smaller. In practice, we only check for this kind of subsumption
between the unit reasons of failed preconditions and the reasons from the false clauses.1

This can be implemented by simply ignoring those false clauses that would have been
true if the action was applicable.

Dually to the above, we can discard the whole reason set Ra of an action a if there is
another action b with reason set Rb such that

∀rb ∈ Rb ∃ra ∈ Ra ra ⊆ rb.

Here we remove the reason set Ra, which is in some sense more lean, because for any
contribution rb ∈ Rb there is a choice for ra ∈ Ra which would be dominated by rb in
the final union r. For efficiency reasons, we only exploit this trick in our implementation
with respect to one particular action in the role of the “subsuming” action b, namely
the noop action. As mentioned before, we include the noop action to the action set
to ensure PDR’s correctness. Its reason set Rnoop consists of reasons corresponding to
those clauses from L which are false in s.2 If an action a does not make any of these
clauses true in its corresponding successor state, its reason set Ra will be subsumed in
the described sense by Rnoop and can be skipped.

1This is sufficient, because PDR keeps layers L subsumption reduced and so the reasons for false clauses
are subsumption reduced automatically.

2PDR only calls extend(s, L) when s 6|= L, so there is always at least one such clause.

178

6.3 PDR without a SAT solver

Computing the overall reason

Computing the overall reason r amounts to selecting for every a a particular reason
ra ∈ Ra such that union (6.1) is as small as possible. Stated in this general form we are
facing an optimization version of an NP-complete problem. In fact, it is easily seen to
be a dual of the Maximum Subset Intersection problem shown NP-complete by Clifford
and Popa (2011). We therefore do not attempt to find an optimal solution for it and
contend ourselves with a reasonable approximation instead.

We order the reason sets Ra according to their size |Ra| and traverse them from
smaller to larger ones. The idea is to deal with the more constrained cases first before
moving on to those where we have more freedom. During the traversal, we maintain an
unfinished union r0 which is initialized as the empty set ∅. Then each reason set Ra is
considered in turn and we pick from each a reason ra ∈ Ra that minimizes the size of
r0 ∪ ra and update the set r0 accordingly to describe the union of those reasons selected
so far. Although this greedy pass through the action sets does not guarantee that the
final value of r0 is minimal, it already gives satisfactory results.

To improve the quality of the reason set even further, we then minimize r0 with respect
to the subset relation by explicitly trying to remove individual literals and checking
whether the result is still a valid overall reason. This is a direct adaptation of the explicit
reason minimization procedure employed in the original PDR. In detail, we iteratively
pick a literal l ∈ r0 and check for every action a whether there is a reason ra ∈ Ra such
that ra ⊆ (r0 \ {l}). If this is indeed the case, r0 can be shrunk to (r0 \ {l}), otherwise
we continue with the old r0 and try another literal instead. When all the literals have
been tried out, we obtain the final result r.

Pseudocode and correctness

The code of the procedure extend(s, L) is detailed in Algorithm 6.1. The corresponding
reason construction proceeds in three stages. In the first stage we collect reasons from
the individual actions, constructing the sets Ra. This is performed during the same
iteration through the action set which establishes whether a successor state t satisfying
L exists. It either terminates by discovering such a t or computes a non-empty set Ra for
every action a. The first stage also includes the subsumption-based filtering of reasons,
both within a particular action’s reason set and between the reason sets of the noop
action and one other action. In the second stage, the above described simple greedy
pass through the sets Ra computes an initial overall reason, which is then explicitly
minimized in stage three.

Correctness of the extend procedure in the positive case as well as the fact that for any
returned reason r we have r ⊆ Lits(s) are easy to establish. The remaining argument is
captured by the following lemma.

Lemma 6.2. Let r be a cube returned by the procedure extend(s, L). Then the formula

r ∧ T seq ∧ (L)′ (6.2)

is unsatisfiable, where T seq is the transition formula of the sequential encoding Sseq
P .

179

6 Property directed reachability in automated planning

Algorithm 6.1 Procedure extend(s, L):

Input:
State s; a set of clauses L such that s 6|= L

Output:
Either state t, a successor of s such that t |= L
or a reason r ⊆ Lits(s) such that no state satisfying r has a successor satisfying L

1: /* Stage one: look for the successor state and prepare the reason sets */
2: Ls ← {C ∈ L | s 6|= C} /* Clauses false in s */
3: Rnoop ← {∼C | C ∈ Ls} /* The reasons for the noop action */
4: assert Rnoop 6= ∅ /* Follows from the contract with the caller */
5: R ← {Rnoop} /* The set of reason sets collected so far */
6:

7: foreach a ∈ A do
8: pres

a ← {l ∈ prea | s 6|= l} /* Preconditions false in s */
9: t← apply(s, (∅, eff a)) /* Ignore the preconditions and apply the effects of a */

10: Lt ← {C ∈ L | t 6|= C} /* Clauses false in t */
11: if pres

a = ∅ and Lt = ∅ then
12: return t /* Successful extension: returning a successor */
13: else if Ls ⊆ Lt then
14: pass /* Do nothing: the reason set would be subsumed by Rnoop */
15: else
16: Lt

0 ← {C ∈ Lt | C ∩ pres
a = ∅} /* False clauses with a non-subsumed reason */

17: Ra ← {{∼l} | l ∈ pres
a} ∪ {{∼l | l ∈ C and ∼l 6∈ eff a} | C ∈ Lt

0}
18: R ← R∪ {Ra} /* Record the reason set */

19: /* Stage two: compute an overall reason */
20: r ← ∅
21: foreach Ra ∈ R ordered by |Ra| from small to large do
22: pick ra ∈ Ra such that |r ∪ ra| is minimal
23: r ← r ∪ ra

24: /* Stage three (optional): minimize the reason */
25: foreach l ∈ r do
26: if for every Ra ∈ R there is ra ∈ Ra such that ra ⊆ (r \ {l}) then
27: r ← (r \ {l})

28: return r /* Unsuccessful extension: returning a (subset minimal) reason cube */

180

6.3 PDR without a SAT solver

Proof. We first observe that for every action a ∈ A ∪ {noop} there is a reason ra such
that r =

⋃
a∈A∪{noop} ra. For those actions a for which Ra ∈ R this reason is initially

picked during stage two (line 22) and possibly later changed to the reason ra for which
ra ⊆ (r\{l}) during stage three (line 26). For those actions whose reason set is subsumed
by Rnoop (line 14) we can formally pick the same reason as for noop.

Since ra ⊆ r for every action a ∈ A ∪ {noop}, we can use Lemma 6.1 to infer that
formula (6.2) entails the unit clause ¬pa for every a ∈ A ∪ {noop}. But because for-
mula (6.2) also trivially entails the at-least-one axiom alo =

∨
a∈A∪{noop} pa, it must be

unsatisfiable.

It is easy to see that the procedure extend(s, L) runs in time polynomial in |X|,
the number of state variables, |A|, the number of actions of the planning problem, and
|L|, the size of the given clause set. This is mainly enabled by the fact that extend

emulates the sequential encoding Sseq
P and the individual actions can be in the first

stage considered independently.3

A similar complexity guarantee seems to be achievable within a general-purpose SAT
solver when supplied with the same encoding and configured to prefer branching on
the action variables A and setting them first to true. However, the inherent overhead
connected with explicitly generating all the corresponding axioms and storing them in
memory will be probably noticeable in practice. Moreover, the reason set subsumption
optimization does not have a counterpart in a general-purpose solver.

6.3.2 Inductive reason minimization in procedure extend

Inductive minimization is based on the idea that when checking whether a particular
literal l can be removed from the final reason r we can assume that the clause C = ∼r0

corresponding to the reduced reason r0 = (r\{l}) is already present in the set of clauses L
(recall the general description in Section 5.3.2). We can perform inductive minimization
within the extend procedure by speculating for each action a whether we would be able
to satisfy the additional clause C by applying a. Only if the answer is positive do we
need to look for a “proper” reason ra ∈ Ra.

The idea is demonstrated in Algorithm 6.2, which should be regarded as a replacement
for stage three of the original extend procedure. Notice that we no longer consider the
noop action to be part of the action set4 and thus we need to explicitly check that there
remains at least one literal incompatible with the goal condition g (line 4). There can
still be actions, however, whose reason set has been subsumed by Rnoop and for these we
look for a reason in Rnoop (line 11) whenever they fail to pass the inductiveness check
(line 7). To avoid confusion we remark that the continue and break commands refer
to the inner-most cycle, which iterates over actions (line 6). Finally, we note that the

3When devising an analogous procedure for a parallel plan semantics, one would in general need to
consider every subset of actions that can be applied together. This seems to make a polynomial time
solution much more difficult, if not hopeless. However, see Section 6.5 for an interesting connection.

4The noop action trivially passes the inductiveness check, because it can never make any clause true.

181

6 Property directed reachability in automated planning

Algorithm 6.2 Stage three of extend(s, L); inductive version:

1: r0 ← r
2: loop
3: foreach l ∈ r do /* Check each literal of r once */
4: if there is l0 ∈ (r0 \ {l}) such that ∼l0 ∈ g then /* Can try removing l */
5: r0 ← (r0 \ {l})
6: foreach a ∈ A do
7: if for every l0 ∈ eff a : ∼l0 6∈ r0 then
8: continue /* a passed by the inductive argument */

9: if Ra ∈ R and there is ra ∈ R such that ra ⊆ r0 then
10: continue /* a passed; it has its own small reason */

11: if Ra 6∈ R and there is ra ∈ Rnoop such that ra ⊆ r0 then
12: continue /* Ra was subsumed by Rnoop which has a small reason */

13:

14: /* Action a says: “Literal l cannot be removed” */
15: r0 ← (r0 ∪ {l}) /* Put the literal back */
16: break
17: if r = r0 then /* No removal in the last iteration */
18: return r
19: r ← r0

presence of a small reason in Rnoop depends only on the current value of r0 and so the
corresponding check could be precomputed outside the inner cycle.

Example 6.2. Recall Example 6.1, in which the action a = ({¬p, q}, {o,¬r}) failed in the
state s = {o 7→ 0, p 7→ 0, q 7→ 0, r 7→ 0} to provide a successor state that would satisfy
the clauses from L = {o∨ q, p∨ r} and so we computed a reason set Ra = {{¬p}, {¬q}}.
Assume that apart from a the action set A contains just one other action, namely
b = ({¬r}, {p}), for which we obtain a reason set Rb = {{¬o,¬q}}. The overall reason
after stage two is thus necessarily r = {¬o,¬q}. Assuming that the goal condition of the
given problem is g = {o, p, q, r}, inductive minimization of the reason r could proceed
as follows.

First we try the reason r0 = {¬o}. Since o ∈ eff a we cannot use the inductive argument
for the action a and also no proper reason ra ∈ Ra has the property that ra ⊆ r0. Thus
the literal ¬q cannot be removed from r. Next we try the reason r0 = {¬q}. Since
neither the action a nor b contain the literal q in their effect sets, the smaller reason is
justified inductively for both actions and the overall reason r is reduced to {¬q}. We
cannot minimize r further, because there has to remain at least one literal l0 ∈ r such
that ∼l ∈ g.

Looking from the perspective of the final learned clause C = ∼r we observe that
inductive minimization allows us (as in the example above) to remove from C every
literal that cannot be made true by any action of the action set A. Although this may
seem like a powerful (global) criterion, it is effectively made redundant in practice by

182

6.3 PDR without a SAT solver

the so called relaxed reachability analysis (see Hoffmann and Nebel, 2001, Section 4.3),
a standard preprocessing step which, before the actual search is started, removes from
the problem all such unattainable variables as well as all actions that mention them in
their precondition sets. Non-trivial invocations of inductive minimization were actually
quite rare in our experiments.

6.3.3 Replacing the remaining SAT-solver calls

Beside the query for extending states, there are two other points in the formulation of
PDR (recall Algorithm 5.5 on page 145) where a SAT-solver call is employed. It is used
to pick initial states at the beginning of the path construction phase (line 4) and is
also central to verifying the condition for pushing clauses during the clause propagation
phase (line 26). In planning, we can easily do without a SAT solver in the first case,
because there is only one initial state to be picked, namely the state sI , and we just
need to verify that sI satisfies the clauses of Lk before the path construction phase of
iteration k can be started.

We have basically two options how to deal with the second case. Since clause pushing
is not needed for ensuring correctness of PDR, we can simply leave the operation out.
As we later show in our experiments, this does not significantly affect the performance
on planning benchmarks, which are typically satisfiable. As a second option, we propose
to restrict the planning formalism such that the query corresponding to a push check of
a clause C, i.e.,

SAT ?[∼C ∧ T ∧ (L)′], (6.3)

can be decided in polynomial time.5

We say that a STRIPS planning problem is positive if the precondition set of every
action and the goal condition of the problem consist of positive literals only.6 It is easy
to see that when running on a positive STRIPS problem, PDR only deals with positive
clauses. The unit clauses of layer L0, which describe the goal, are positive by assumption
and all the learned clauses are transitively built only from the goal literals and from the
action precondition literals. This observation allows us to reduce query (6.3) to the
evaluation of “the positive part of the interface for path extensions”:

Lemma 6.3. Let P = (X, sI , g,A) be a positive STRIPS planning problem and T seq

the transition formula of the sequential encoding Sseq
P . Further, let L be a set of positive

clauses over X, C a positive clause over X, and sC : X → {0,1} a state defined for
every p ∈ X by

sC(p) =

{
0 if p ∈ C,
1 otherwise.

5In our current setting, there does not seem to be a general polynomial solution. In fact, even in the
degenerate case of T encoding a transition by the single noop action and C being the empty clause,
the query (6.3) boils down to satisfiability of L and its evaluation is thus an NP-complete problem.

6Most of the standard planning benchmarks are positive STRIPS. Moreover, there is a well-known
reduction (Gazen and Knoblock, 1997) that turns a general STRIPS problem into a positive one. The
reduction introduces a new variable p∗ for every variable p that occurs negatively in a precondition
or in the goal and updates the actions to always force p∗ to have the opposite value to that of p.

183

6 Property directed reachability in automated planning

Then the formula
FC = ∼C ∧ T seq ∧ (L)′

is satisfiable if and only if there is an action a ∈ A such that

sC |= prea and apply(sC , a) |= L.

Proof. Let us first assume that there is an action a ∈ A applicable in sC such that the
successor state t = apply(sC , a) satisfies the clauses from L. Notice that Vars(FC) =
X ∪ A ∪ X ′, where A = {pa | a ∈ A} is the set of variables used for encoding applied
actions. We define the following valuation αa : A→ {0,1}:

αa = {pa 7→ 1} ∪ {pb 7→ 0 | b ∈ A, b 6= a}.

It is easy to verify that the joint valuation (sC ∪ αa ∪ t′) satisfies FC .
For the opposite direction, let us assume that a valuation V : X ∪ A ∪ X ′ → {0,1}

satisfies the formula FC . We fix an action a ∈ A such that V (pa) = 1. Such an action
must exist, because V satisfies the at-least-one axiom alo =

∨
a∈A pa, which is part of

T seq . By restricting V , first, to the state variablesX, and, second, to the primed variables
X ′, we extract, respectively, a state s = V � X and a state t such that t′ = V � X ′. The
axioms of T seq ensure that the action a is applicable in s and that t = apply(s, a).

We now notice that s |= ∼C, which means that s(p) = 0 for every p ∈ C. Thus if
there is a difference between the states s and sC it is only because of variables p 6∈ C for
which s(p) = 0 and sC(p) = 1. But this means, for one thing, that since the action a is
applicable in s, it must also be applicable in sC (preconditions are positive) and, for the
other, since t |= L, the successor state tC = apply(sC , a) corresponding to sC must also
satisfy the clauses from L (the implication ∀p ∈ X : s(p) = 1⇒ sC(p) = 1 is preserved
by the transition and becomes ∀p ∈ X : t(p) = 1 ⇒ tC(p) = 1, and the clauses from L
are positive by assumption).

A version of PDR specialized to positive STRIPS planning is shown in Algorithm 6.3.
The calls to a SAT solver of the original formulation (Algorithm 5.5 on page 145) were
replaced, respectively, by a simple entailment check (line 5), a call to the extend proce-
dure (line 11), and by an enumeration of the successor states of the state sC as defined
in Lemma 6.3 (line 26).

6.3.4 Reversing the search direction

It has been mentioned that the original formulation of PDR is based on the opposite
search direction than the one adopted in this thesis and that it extends the paths from a
goal state backwards towards the initial state. We would like to test the algorithm with
both directions to see which one is more favorable in practice.

One possibility to achieve this is to provide PDR with an inverted version of the input,
where the initial and goal states have been swapped and the transition relation “turned
around”. This is straightforward to do when the input is an STS (recall Remark 5.1), as
is the case with the general version of PDR. The situation is more complicated with the

184

6.3 PDR without a SAT solver

Algorithm 6.3 PDRplan(X, sI , g,A):

Input:
A positive STRIPS planning problem P = (X, sI , g,A)

Output:
A plan for P or a guarantee that no plan exists

1: L0 ← {{p} | p ∈ g} /* The goal cube treated as a set of unit clauses */
2: foreach j > 0 : Lj ← ∅
3: for k = 0, 1, . . . do
4: /* Path construction: */
5: if sI |= Lk then
6: Q ← {(sI , k)}
7: while Q not empty do
8: pop some (s, i) from Q with minimal i
9: if i = 0 then

10: return PLAN FOUND
11: if extend(s, Li−1) returns a successor state t then
12: Q ← Q ∪ {(t, i− 1), (s, i)}
13: else
14: extend returned a reason r ⊆ Lits(s)
15: foreach 0 ≤ j ≤ i : Lj ← Lj ∪ {∼r}
16:

17: /* Obligation rescheduling: */
18: if i < k then
19: Q ← Q ∪ {(s, i+ 1)}
20:

21: /* Clause propagation: */
22: for i = 1, . . . , k + 1 do
23: foreach C ∈ Li−1 \ Li do
24: /* Clause push check */
25: sC ← {p 7→ 0 | p ∈ C} ∪ {p 7→ 1 | p ∈ (X \ C)}
26: if for every a ∈ A : sC 6|= prea or apply(sC , a) 6|= Li−1 then
27: Li ← Li ∪ {C}
28: /* Convergence check */
29: if Li−1 = Li then
30: return NO PLAN POSSIBLE

185

6 Property directed reachability in automated planning

SAT-solver-free version, which directly takes a STRIPS planning problem as an input.
Indeed, it seems the extend procedure substantially relies on the forward direction.

Interestingly, there exists a transformation for inverting STRIPS planning problems.
It was first described by Massey (1999) in his dissertation. We present here a more
streamlined version due to Pettersson (2005) which relies on the problem being positive.
Let us start by introducing an alternative representation of positive STRIPS planning
problems, which makes the description of the transformation particularly straightfor-
ward. A positive STRIPS planning problem in the subset representation is given by
a tuple P = (X, i, g,A), where i, g ⊆ X are the initial and goal conditions, respec-
tively, and every action a ∈ A is encoded by a triple a = (prea, adda, dela), consisting
of a precondition set, an add set and a delete set, which are subsets of X such that
prea ∩ adda = ∅ and adda ∩ dela = ∅. The subset representation differs from the one
presented in Section 6.2 by encoding the initial state by the set of those variables that
are true in it:

sI(p) = 1 if and only if p ∈ i,

and by splitting action’s effects into positive and negative ones:

eff a = adda ∪ {¬p | p ∈ dela}.

The goal condition g and precondition sets prea remain intact, but now may be under-
stood as subsets of X since the problem is positive. It should be clear that the subset
representation and the one of Section 6.2 are equivalent.

Now, for an action a = (prea, adda, dela) an inverted action a−1 is formed by ex-
changing the precondition and delete set: a−1 = (dela, adda, prea). For a set of actions
A the set of inverted actions is A−1 = {a−1 | a ∈ A}. Given a planning problem
P = (X, i, g,A) in the subset representation, the inverted problem P−1 is obtained by
exchanging the initial and goal conditions while taking their complements with respect
to X and using the inverted action set:

P−1 = (X, (X \ g), (X \ i),A−1).

The original problem and its inverted version are related in the following sense:

Theorem 6.1. The sequence of actions a0, a1, . . . , ak is a plan for the planning problem
P if and only if the sequence a−1

k , a−1
k−1, . . . , a

−1
0 is a plan for P−1.

This means that performing forward search (also called progression) in P is equivalent
to performing backward search (regression) in P−1 and vice versa. Notice that, a priori,
there is no computational overhead incurred by the transformation: the inverted problem
has the same number of actions as well as the same set of state variables X and so the
representation of states is of the same size. A proof of Theorem 6.1 along with further
intuition behind the transformation and its theoretical and practical implications are
described by Suda (2013b).

186

6.3 PDR without a SAT solver

6.3.5 Further improvements

We describe three additional modifications of PDR that aim to make the algorithm
more efficient in practice. While the first is a planning-specific improvement of the
extend procedure, the other two focus on how obligations are handled by the overall
algorithm. In Section 6.4 we experimentally evaluate the effect of these modifications on
solving planning problems. We present the pseudocode of all these three improvements
together, at the end of this section.

Lazy False Clause Computation

One way to speed up the extend procedure in practice is a technique we named lazy
false clause computation. It is based on the following two observations:

• Ls, the set of clauses false in the state s, is typically only a small subset of L, the
set of all the clauses the successor state should satisfy,

• only a small fraction of the available actions makes any of the clauses of Ls true
in their respective successor.

The idea is to avoid the relatively expensive computation of the set of clauses false in
the successor t, i.e. the computation of the set Lt on line 10 (Algorithm 6.1), and instead
first only look at the truth value of the clauses from Ls. (Notice that Ls is precomputed
before we start iterating over the actions.) Only if we find an action a such that all
its preconditions are satisfied in s and it makes all the clauses from Ls true in the
respective successor t, we classify the action as promising and go back to computing the
full Lt. Thus, with non-promising actions we save computational time. We may pay
for it a little on the side of the quality of the reason set, because for them we only use
Ls,t = {C ∈ Ls | t 6|= C} instead of the full Lt for computing the reasons. On the other
hand, with promising actions a complete test is necessary to distinguish a true successor
t satisfying all of L from an action that “repairs” everything which was false in s, but
“breaks” something else instead.

Sidestepping

Sidestepping is a technique we propose to make PDR more active in early exploration
of promising paths. It partially circumvents the limitation stemming from the fact the
extend procedure emulates the sequential encoding Sseq

P .

Imagine we want to extend an obligation (s, i), i.e. to find a successor of s that would
satisfy Li−1, and there are two clauses C1, C2 ∈ Li−1 false in s. Let us think of the two
clauses as of two independent subgoals to be achieved. There are two actions a1 and a2

applicable in s. Action a1 makes C1 true in the successor state and a2 makes C2 true,
but no action can make both the clauses true in one step. This means the extension
cannot be successful and PDR will learn a new clause C = C1 ∨ C2 (or a superset
thereof). The clause C expresses the fact that in order to reach a state satisfying Li−1

in one step, at least one of the two clauses C1, C2 must be satisfied beforehand. This

187

6 Property directed reachability in automated planning

could be an important ingredient to showing that no path of length k can reach the
goal, helping the algorithm eventually advance to the next iteration. However, because
in planning we are usually more interested in actually finding plans than showing their
non-existence, deriving the clause C could represent unnecessary extra work. The idea
behind sidestepping is to make the extend procedure succeed more often, even if that
does not mean directly advancing into the next layer. In our example, we return the
successor state t = apply(s, a1) with an additional flag informing the caller that the new
obligation should have index i and not the usual i − 1. We are effectively sidestepping
from (s, i) to (t, i). In the next round the obligation (t, i) will be picked and successfully
(provided the actions a1 and a2 do not interfere) extended into (u, i− 1) via the action
a2. This way we end up with a state satisfying Li−1 almost as if we executed the two
actions a1 and a2 in parallel.

Let us now present the sidestepping technique in more detail. In order for an action
a and its respective successor ta = apply(s, a) to qualify for a sidestep during extension
of an obligation (s, i) the following conditions must to be met:

1) a is applicable in s,

2) ta improves over s with respect to the set of satisfied Li−1 clauses:

Lta
i−1 = {C ∈ Li−1 | ta 6|= C} ⊂ Ls

i−1 = {C ∈ Li−1 | s 6|= C},

3) ta satisfies all the Li clauses.

Notice that we require the improvement to be strict (condition 2). This ensures that
sidestepping does not compromise termination. We also make sure that the new state
stays within Li (condition 3) – an improvement in one respect should not be payed for
by an overall deterioration.

If there is no action that qualifies for a sidestep, we compute and return a reason set
as usual. Otherwise, we choose among them an action a for which the size of Lta

i−1 is

the smallest. The case when |Lta
i−1| = 0 corresponds to a regular successful extension

and a new obligation (ta, i− 1) will be stored in the set Q. If |Lta
i−1| > 0, we store (ta, i)

instead, which means that we perform a sidestep.

After sidestepping both the old obligation (s, i) and the new (ta, i) occupy the same
index in Q. It is important that we prioritize the latter over the former for picking (e.g.,
even if we otherwise want to use queue tie-breaking strategy; see Remark 5.2), by which
we prevent the algorithm from sidestepping in the same way more than once.7

Notice that sidestepping is an extension of PDR that relies on a modification of the
planning-specific extend procedure. As such it does not have an immediate counterpart
in the original algorithm, where path extensions are delegated to a SAT solver.

7By the time (s, i) is reconsidered we must have had an unsuccessful extension of (ta, i), which means
Li got in the meantime strengthened and ta no longer satisfies it.

188

6.4 Experiments

Keeping obligations between iterations

Let us return to obligation rescheduling (lines 18 and 19 of Algorithm 6.3) to discuss
one additional aspect of this feature. Notice that we reschedule an obligation (s, i) only
if i < k so that the new obligation (s, i + 1) is never positioned further from the goal
than k steps during iteration k. Obligations of the form (s, k) are simply forgotten which
ensures that the path construction phase eventually terminates. A viable alternative to
this strategy is to reschedule these obligations on the queue Q with index k+ 1, but set
them into a “dormant state” and return to them only during the next iteration. This
can be understood as effectively enlarging the set of initial states for the next iteration
so that it includes all the states reached so far.

This modification is quite simple to implement and seems to go well with the spirit
of obligation rescheduling itself. It has recently been also described by Bayless et al.
(2013). A potential disadvantage of the modification could be the increased memory
consumption, since all the states ever encountered during the run must be stored by the
algorithm. Its utility may, therefore, depend on the application domain.

Pseudocode of the improvements

Algorithm 6.4 displays stage one of procedure extend+, an enhancement of the extend

procedure by the lazy false clause computation technique and with a support for sidestep-
ping. Stage two of extend+ is meant to be supplemented from the same stage of the
original extend procedure (Algorithm 6.1) and stage three may employ inductive mini-
mization (Algorithm 6.2).

Algorithm 6.5 realizes sidestepping with the help of the extend+ procedure. Moreover,
it incorporates the technique for keeping obligations between iterations. The clause
propagation phase is identical to the one already presented in Algorithm 6.3.

6.4 Experiments

In this section we report on a series of experiments aimed to establish the practical
relevance of PDR for automated planning. We first compare the standard version of the
algorithm combined with encodings to the SAT-solver-free variant of PDR proposed in
this chapter. The latter is implemented in our new planner PDRplan. Next, we measure
the influence of the individual “enhancements” which make up full-fledged PDR (recall
Section 5.3.2) as well as of the various improvements proposed in Section 6.3.5 on the
performance of PDRplan. The most successful configuration of PDRplan is then com-
pared to other planners, including state-of-the-art representatives of the heuristic search
planning and planning as satisfiability paradigms. Finally, we also assess PDRplan from
the perspective of plan quality, finding optimal length plans and detecting unsatisfiable
planning problems.

189

6 Property directed reachability in automated planning

Algorithm 6.4 Stage one of extend+(s, i):

Input:
Obligation (s, i), i.e. a state s and an index i, such that s 6|= Li−1

Output:
Either an obligation (t, i− 1) where t is a successor of s and t |= Li−1, or
an obligation (t, i) where t is a successor of s, t |= Li and
t satisfies strictly more clauses from Li−1 than s, or
an inductive reason r ⊆ Lits(s)

1: Ls ← {C ∈ Li−1 | s 6|= C} /* Clauses false in s */
2: Rnoop ← {∼C | C ∈ Ls} /* The reasons for the noop action */
3: assert Rnoop 6= ∅ /* Follows from the contract with the caller */
4: R ← {Rnoop} /* The set of reason sets collected so far */
5: aside ← noop /* Current best candidate for sidestepping (noop as a dummy) */
6: xside ← |Ls| /* Score of the current best candidate */
7:

8: foreach a ∈ A do
9: pres

a ← {l ∈ prea | s 6|= l} /* Preconditions false in s */
10: t← apply(s, (∅, eff a)) /* Ignore the preconditions and apply the effects of a */
11: Ls,t ← {C ∈ Ls | t 6|= C} /* The lazy approach: clauses false both in s and t */
12: if Ls,t = Ls then /* No improvement over s */
13: continue /* Do nothing: the reason set would be subsumed by Rnoop */

14:

15: if pres
a = ∅ and |Ls,t| < xside then /* The action is promising . . . */

16: Lt ← {C ∈ Li−1 | t 6|= C} /* . . . we must compute the full Lt */
17: if Lt = ∅ then
18: return (t, i− 1) /* Successful extension: returning a true successor */

19: if Lt = Ls,t and t |= Li then /* No false clauses besides those from Ls,t */
20: aside ← a
21: xside ← |Ls,t|
22: else
23: Lt ← Ls,t /* Save time by using Ls,t instead of the full Lt below */

24:

25: Lt
0 ← {C ∈ Lt | C ∩ pres

a = ∅} /* False clauses with a non-subsumed reason */
26: Ra ← {{∼l} | l ∈ pres

a} ∪ {{∼l | l ∈ C and ∼l 6∈ eff a} | C ∈ Lt
0}

27: R ← R∪ {Ra} /* Record the reason set */

28:

29: if xside < |Ls| then
30: assert aside 6= noop
31: return (apply(s, aside), i) /* Successfully sidestepping with the best candidate */

32: /* Continue with stage two of Algorithm 6.1 and stage three of Algorithm 6.2 */

190

6.4 Experiments

Algorithm 6.5 PDRplan1.1(X, sI , G,A):

Input:
A positive STRIPS planning problem P = (X, sI , g,A)

Output:
A plan for P or a guarantee that no plan exists

1: L0 ← {{p} | p ∈ g} /* The goal cube treated as a set of unit clauses */
2: foreach j > 0 : Lj ← ∅
3: Q← {(sI , 0)}
4: for k = 0, 1, . . . do
5: /* Path construction: */
6: while there is (s, i) in Q with i ≤ k do
7: pop some (s, i) from Q with minimal i
8: if s 6|= Li then
9: Q← Q ∪ (s, i+ 1)

10: else if i = 0 then
11: return PLAN FOUND
12: else if extend+(s, i) returns an obligation (t, j) then
13: assert j = i− 1 or j = i /* Either a regular extension or a sidestep */
14: Q ← Q ∪ {(s, i), (t, j)}
15: else
16: extend+ returned a reason r ⊆ Lits(s)
17: foreach 0 ≤ j ≤ i : Lj ← Lj ∪ {∼r}
18:

19: /* Obligation rescheduling: */
20: Q ← Q∪ {(s, i+ 1)} /* Keep obligations with i+ 1 > k till next iteration */

21:

22: /* Clause propagation: */
23: for i = 1, . . . , k + 1 do
24: foreach C ∈ Li−1 \ Li do
25: /* Clause push check */
26: sC ← {p 7→ 0 | p ∈ C} ∪ {p 7→ 1 | p ∈ (X \ C)}
27: if for every a ∈ A : sC 6|= prea or apply(sC , a) 6|= Li−1 then
28: Li ← Li ∪ {C}
29: /* Convergence check */
30: if Li−1 = Li then
31: return NO PLAN POSSIBLE

191

6 Property directed reachability in automated planning

6.4.1 The setup

As before, we performed the experiments on machines with 3.16 GHz Intel Xeon CPU,
16 GB RAM, running Debian 6.0. Let us stress that although multiple cores are available
on each machine, all the planners used only one core and we made sure that there was no
other busy process running concurrently that would compete with a planner for memory,
etc. The main measured resource was computation time. We used a time limit of 180
seconds per problem instance for most of the runs, but increased it to 1800 seconds for
the main comparison.

To increase the level of confidence towards the correctness of our implementation all
the generated plans were subsequently checked by the latest version of plan validator
VAL (Howey et al., 2004). No discrepancies were found during the experiments reported
in this chapter.

We tested the planners on the STRIPS8 benchmarks of the International Planning
Competition (IPC) of years 1998–2011 (IPC, 2013). The benchmarks are grouped to-
gether into benchmark domains of various planning scenarios. We used all the available
STRIPS domains except the following:

• 1998-MOVIE, where it turned out to be technically difficult to validate the plans.9

Note that the domain is, in fact, trivial to solve.

• 2000-SCHEDULE, which is originally an ADL domain. The competition archive
contains also a STRIPS version, but accompanied by a note saying that this version
later proved to be problematic and was dropped from the competition.

• 2002-ROVERS, the problems of which are included in the set 2006-ROVERS.

• 2002-SATELLITE and 2011-TIDYBOT, which make use of actions with negative
preconditions, a feature not supported by our parser.

Altogether, we collected 1561 problems in 49 domains (see Table 6.2 on page 202 for
a detailed list). The 2008 and 2011 competition benchmarks specify action costs. We
modified the respective files to remove this feature, which is not supported by PDRplan.

We implemented PDR with the extend procedure as described in Section 6.3 in the
PDRplan system. The code of PDRplan (approximately 2K lines of C++) is built
on top of a PDDL parser and a grounder adopted from SatPlan 2006 (Kautz et al.,
2006). We modified the parser to successfully process the large problems of the more
recent IPC domains. The source code of PDRplan is publicly available on our web page
(Suda, 2014b), which also contains all the other material relevant for reproducing the
experiments.

8The richer ADL formalism is currently not supported by PDRplan.
9The parser we adopted for PDRplan removes vacuous arguments of operators from the resulting

actions’ names. The validator VAL then complains about the resulting plans.

192

6.4 Experiments

6.4.2 PDRplan v.s. standard PDR plus encodings

The main purpose of the first experiment was to compare PDRplan and its planning-
specific implementation of the extend procedure to a composition of the general PDR,
which uses a SAT solver to answer the one-step reachability queries, with various en-
codings of planning into an STS. We also wanted to establish which of the two possible
search directions in PDR is more favorable for discovering plans.

We took our implementation of PDR previously developed as a model checking tool
for hardware circuits as described in Chapter 5. We will here refer to the tool as
minireachIC3.10 We extended minireachIC3 such that it is able to read a description
of an STS. We designed a new input format for that purpose, which we call DIMSPEC
(Suda, 2013c). It is a simple modification of the well-known DIMACS CNF format used
by most SAT solvers extended to define the individual clause sets of an STS.

We coupled minireachIC3 with four encoders of planning into an STS. The first two
encoders, seq and par, are our implementations of the two simple encoding Sseq

P and
Spar
P , respectively (recall Section 6.2.2). The third encoder is a version of the planner

Mp (Rintanen, 2012) modified to output the encoded instance in the form of an STS
and quit before starting the actual solving process. Mp uses the ∃-step parallel encoding
scheme of Rintanen et al. (2006). Finally, the fourth encoder implements the SASE
encoding scheme introduced by Huang et al. (2012). The particular implementation we
used derives from the FreeLunch planning library (Balyo et al., 2012).

In order to obtain a fair comparison we used a basic version of PDRplan configured
in a way that most resembles the workings of minireachIC3. The configuration follows
the planning-specific version of the overall algorithm (Algorithm 6.3) and relies on the
extend procedure (Algorithm 6.1) with the minimization phase of the reason computa-
tion (stage three) enhanced by induction (Algorithm 6.2). The additional improvements
of Section 6.3.5 were disabled for this experiment.

We compared the systems in both search directions. In accord with the terminology of
previous chapter, the forward direction here means that PDR constructs the path from
the initial state towards the goal. The opposite, backward direction is the one preferred
by the original exposition of PDR used in model-checking. To start minireachIC3 in
the backward direction we inverted the encoded STS, to reverse the search direction of
PDRplan we inverted the planning problem (as explained in Section 6.3.4).11

Adding invariants

An invariant of a transition system is a property of the initial state preserved by all
transitions. In planning, one typically considers invariants in the form of binary clauses
(Rintanen, 1998), which can be computed by a simple fixpoint algorithm (Rintanen,
2008a). Adding the invariant clauses into an encoding is known to speed up plan search
in the planning as satisfiability paradigm.

10In detail, minireachIC3 refers to the final version of the tool, with triggered clause pushing.
11One could also experiment with encodings of the inverted problems. We leave this for future work.

193

6 Property directed reachability in automated planning

We noticed that the performance of PDRplan in the backward direction can also be
enhanced with the help of invariants. When PDR is run in the backward direction, it
is sound to strengthen every layer by the binary clauses of a precomputed invariant.
These clauses then help to guide the path construction towards the initial state. Adding
invariants in the forward direction does not make sense for PDRplan, because all the
generated states are reachable from the initial state and, therefore, satisfy the invariant
automatically.12

We used the same invariant generation algorithm as in PDRplan to also enhance
the encodings seq and par for the run of minireachIC3. It turned out that in case
minireachIC3 invariants slightly help even in the forward direction.13 We note that
binary clause invariants are also explicitly included in the Mp encoding and implicitly
present in the SASE encoding, which relies on the SAS+ planning formalism (Bäckström
and Nebel, 1995) to which a STRIPS problem is converted with the help of invariants
(Helmert, 2009).

Detecting auxiliary transition variables

It is essential for a good performance of minireachIC3 combined with encodings that
the algorithm does not make decisions prematurely.

Example 6.3. Consider a run of the algorithm in the forward direction with the encoding
Sseq
P . Because in this encoding the action variables A occur in the unprimed part of the

transition clauses T seq , any given state s, being a valuation over Σ = X ∪ A, already
stores the information about the action that will be applied next and, therefore, fully
determines the value of the state variables X ′ of its successor. As a result, contrary to
the intuition, the evaluation of the extension query

SAT?[Lits(s) ∧ T seq ∧ (L)′]

does not boil down to choosing an action applicable in the state (s � X) of the original
planning task, such that the successor state would satisfy the clauses of L, but instead
involves choosing an action to be applied in the already determined successor such that
the successor (as a valuation over X ′) and the chosen action (as a valuation over A′)
together satisfy the clauses from (L)′, which, in general, span the whole signature Σ′.
We can see that, in some sense, all the decisions are made one step too early.

We observed a marked improvement in the performance of minireachIC3 combined
with encodings when we extended the tool with a preprocessing step that detects aux-
iliary transition variables in the unprimed part of the transition clauses and re-encodes

12In theory, there is a corresponding notion of a backward invariant, a property of the goal states
preserved by traversing the transitions backwards. Symmetrically, backward invariants could be
used to enhance the performance of forward PDR. In practice, however, while standard invariants
are typically very useful, there is rarely a non-trivial binary clause backward invariant in the planning
benchmarks.

13This can be explained by observing that the SAT solver does not necessarily construct the successor
state by first choosing an action (or a set of actions, in the case of par), which would then fully
determine the successor. When it starts by deciding on the state variables of the successor, invariants
become useful.

194

6.4 Experiments

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 10 100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

minireachIC3(seq)
minireachIC3(par)
minireachIC3(Mp)
minireachIC3(SASE)
PDRplan+i
PDRplan

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 10 100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

minireachIC3(seq)
minireachIC3(par)
minireachIC3(SASE)
minireachIC3(Mp)
PDRplan

Figure 6.1: Comparing PDRplan to minireachIC3 combined with encodings. Number
of problems solved within the given time limit is shown, separately for the backward
direction (left) and the forward direction (right).

them into the primed part in order to avoid committing to decisions prematurely as
demonstrated in the example above. Formally, given an STS S = (Σ, I, G, T), auxiliary
transition variables Aux are those variables of Σ that do not appear in I or G and, when
primed, are not shared by T and T ′. This means that

Aux ′ = Σ′ \ (Vars(I ′) ∪Vars(G′) ∪ (Vars(T) ∩Vars(T ′))).

The action variables A of the Sseq
P encoding are an example of auxiliary transition vari-

ables. For every transition clause C ∈ T , the preprocessing step identifies literals l ∈ C
such that Vars(l) ∈ Aux and turns each such l into l′. The soundness of the transfor-
mation is easy to establish.

Results of the experiment

The results of the first experiment can be found in Figure 6.1. There are several observa-
tions to be made. The forward direction is generally more successful than the backward.
Within the time limit of 180 seconds, each of the five systems solves more problems
in the forward direction than in the backward direction. We see that in the backward
direction, invariants help to improve the performance of PDRplan. Nevertheless, within
that direction minireachIC3 combined with the Mp encoding is more successful. The
most successful system is PDRplan in the forward direction. It solves 8.6 percent more
problems than the second best system, minireachIC3 combined with the Mp encoding
in the forward direction. Although we do not consider these results as a definitive answer

195

6 Property directed reachability in automated planning

to the “PDRplan vs. encodings” question,14 we decided to only focus on PDRplan in
the forward direction for (most of) the subsequent experiments.

The overall trends captured by Figure 6.1 are most of the time respected when the
comparison is performed on level of individual problem domains (comparing the number
of problems solved in 180 seconds), nevertheless there are some notable exceptions worth
mentioning.

• On the LOGISTICS domain PDRplan behaves better in the backward direction
and without invariants. The best system on this domain, however, is minireachIC3
with Mp encoding in the forward direction.

• The relatively difficult 2011-BARMAN domain is almost fully solved (19 out of
20 problems) by PDRplan in the backward direction with invariants. The second
best system on this domain is minireachIC3 with par encoding in the backward
direction with only 7 problems solved.

• The following are among the domains where PDRplan is not the best system: 1998-
MYSTERY (minireachIC3 with SASE and Mp encodings in the forward direction
both solve 5 problems more), 2004-PHILOSOPHERS (18 more problems solved
by minireachIC3 both with par and Mp encodings in the forward direction), and
2011-VISITALL (minireachIC3 with Mp encoding solves 4 more problems).

• There are several domains where minireachIC3 with Mp encoding is better in
the backward direction than in the forward direction. The difference is most pro-
nounced on 2006-OPENSTACKS, and 2011-FLOORTILE.

The observation of the last point is in accord with how the Mp encoding is used
with the Mp planner itself. What Rintanen (2012) describes is effectively a depth-first
backward chaining planning algorithm inside the SAT-solving framework. This can be
seen to be very close to backward PDR when coupled with the same encoding. We
hypothesize that the suitability of the Mp encoding for the backward direction of search
emerges also with PDR.

6.4.3 Tuning PDRplan

In the second experiment (see Figure 6.2) we focused on several features of the standard
PDR and tried to established their importance for solving planning problems. We used
PDRplan in the forward direction and 180 seconds time limit. We measured the effect
of each feature separately with the reference configuration denoted as default. This is
the same configuration as the one used in the previous experiment.

Explicit (inductive) reason minimization

By explicit minimization we mean the optional stage three of the reason computation in
the extend procedure, which can be enhanced by induction as described in Section 6.3.2.

14For instance, replacing Minisat in minireachIC3 by a more recent and more efficient SAT solver could
change the picture to a certain degree.

196

6.4 Experiments

 600

 700

 800

 900

 1000

 1100

 1200

 1 10 100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

ind_off
min_off
default

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1 10 100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

cp_off
queue
default

Figure 6.2: Tuning PDRplan. The effect of explicit (inductive) reason minimization
(left), and clause propagation and the queue tie-breaking strategy (right).

In Figure 6.2 (left) we compare the performance of the default configuration, which re-
lies on the inductive version of reason minimization (Algorithm 6.2), to configuration
ind off, which does not use induction and implements minimization as described in Algo-
rithm 6.1, and to configuration min off, which skips the optional stage three altogether.

We can see that while the positive effect of explicit minimization is slight but consistent
along the time axis, induction only starts to pay off on the global scale when the time
limit exceeds 100 seconds. At the 180 seconds mark the ind off configuration solved 1.0
percent fewer and the min off configuration 2.4 percent fewer problems than default.

Per domain view reveals that induction is especially important for the success on
2000-BLOCKS, 2004-PHILOSOPHERS, and 2008-CYBER-SECURITY. On domains
such as 2002-ZENOTRAVEL or 2008-TRANSPORT it is better to turn minimization
off completely, and there are also domains, such as 1998-MYSTERY or 2006-TRUCKS,
where it pays off to minimize, but not inductively. In the last two categories, however,
the difference is never by more than a problem or two per domain and thus it could be
potentially equalized within a higher time limit.

Interestingly, out of the total of 1561 problems, the execution of default and ind off
diverged only on 145 problems.15 This means that on most of the problems induction
does not help to minimize reasons beyond what can be achieved with non-inductive
minimization. To give another statistics, we note that over the whole problem set during
a call to the extend procedure inductive minimization removes 1.49 literals and computes
a reason with 50.60 literals on average. The non-inductive minimization in min off
removes 1.44 literals and generates a reason with 51.22 literals on average.

15By either generating a different number of obligations before a successful termination or differing in
whether they successfully terminated at all before the 180 seconds mark.

197

6 Property directed reachability in automated planning

Clause propagation

In Figure 6.2 (right) we can compare the default configuration to a configuration in
which clause propagation has been turned off (cp off). We see that clause propagation
slows PDRplan slightly down without any clear benefit before the 180 seconds mark.
Although a later independent experiment with a 1800 second time limit showed that
clause propagation can be useful on planning problems, it is questionable whether the
effect justifies the relatively high effort connected with implementing the technique.16

A closer look reveals that only on 28 percent of the tested problems a clause was
successfully pushed forward during the 180 seconds bounded runs. This may seem to be
in contrast with the experience from hardware model checking where clause propagation
plays a key role. Its main effect there, however, lies in speeding up the occurrence of layer
repetition on the unsatisfiable problems. Since more than 99 percent of our planning
benchmarks are satisfiable, this role of clause propagation cannot be demonstrated. In
fact, these results are in accord with those obtained with PDR on satisfiable hardware
benchmarks in the forward direction (recall Figure 5.11 on page 159).

Stack vs. queue tie-breaking

Here we evaluate the effect of the strategy for breaking ties during popping obligations
from the set Q (recall Remark 5.2). The stack strategy used in the default configuration
is compared to the curve of the queue strategy in Figure 6.2 (right). The queue strategy
solves about 5.9 percent fewer problems in total. However, there are 18 problems solved
by the queue strategy only (and 85 problems solved only by the stack strategy). The
most interesting observations on the per domain scope are probably

• 59 problems (out of 60) from the 2000-BLOCKS domain solved by the stack strat-
egy compared to only 36 solved by the queue strategy, and

• 2 problems (out of 20) from the 2011-BARMAN domain solved by the queue
strategy compared to 0 problems solved by the stack strategy.

Preferring to explore longer paths before short ones has the unpleasant side effect that
also the plans discovered by the stack strategy tend to be longer. Measured over the
1055 problems solved by both strategies, the plans generated by the stack strategy are
on average 24 percent longer.

A more detailed discussion on the topic of plan quality is postponed till Section 6.4.6.

6.4.4 Improving PDRplan

The purpose of the third experiment was to evaluate the three improvements proposed
in Section 6.3.5. These were successively: 1) lazy false clause computation (lfcc), 2) the
sidestepping technique (side), and 3) keeping obligations between iterations (keep). Fig-
ure 6.3 displays the effect of progressively enabling the three techniques in the presented

16In the final comparison to other planners (see Section 6.4.5) clause propagation is responsible for 6
additional problems scored by PDRplan.

198

6.4 Experiments

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1 10 100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

1 = default
2 = 1 + lfcc
3 = 2 + side
4 = 3 + keep

Figure 6.3: Improving PDRplan. The default configuration is progressively extended
by turning on three different techniques.

Table 6.1: Number of problems solved within 180 seconds (total). The difference (delta)
between two successive configurations decomposed into additionally solved problems
(gained) and problems only solved without an improvement (lost).

configuration total delta gained lost

1 = default 1145 – – –
2 = 1 + lfcc 1180 35 55 20
3 = 2 + side 1195 15 67 52
4 = 3 + keep 1212 17 42 25

order. We see that to varying degrees each technique represents an improvement and
each successive configuration solves more problems.

A different perspective is provided by Table 6.1 which also reveals how many problems
were uniquely solved by only one of the two successive configurations. It shows that none
of the improvements are unambiguous across the whole problem set and that there are
exceptions to the prevailing trends.

These can be best highlighted on the level of individual domains. For instance, the
number of solved problems drops on 2000-BLOCKS and 2008-CYBER-SECURITY with
lazy false clause computation (configuration 2), but it is improved again by the subse-
quently enabled techniques. Sidestepping (configuration 3) makes the performance worse
on 2002-DRIVERLOG, 2004-SATELLITE, or 2008-CYBER-SECURITY. On the other
hand, the technique represents a huge improvement on 2004-OPTICAL-TELEGRAPH
domain (from 2 to all 14 problems solved) and on 2004-PHILOSOPHERS (from 11

199

6 Property directed reachability in automated planning

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1 10 100 1000

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

FF
LAMA-2011

Mp
PDRplan1.1

Figure 6.4: Comparing the final version of PDRplan to other planners. Showing the
number of problems solved within the given time limit.

to all 29 problems solved). Finally, keeping the obligations (configuration 4) is detri-
mental to the performance on the 2011-FLOORTILE domain (the number of solved
problems drops from 19 to 13), but the technique, for example, helps to “recover” the
2008-CYBER-SECURITY problems that were “lost” due to sidestepping.

6.4.5 Comparing to other planners

We compared the improved PDRplan – the configuration 4 from the previous experiment
denoted here PDRplan1.1 – to the following planners:

• The planner FF (Hoffmann and Nebel, 2001) as a baseline representative of heuris-
tic search (Bonet and Geffner, 2001) planners. We used version 2.3, but enhanced
its input module to make it cope with the large problems of the more recent IPC
domains. The default parameters for FF have been used.

• The planner Fast Downward (Helmert, 2006), the current state-of-the-art heuristic
search planner. We used the configuration LAMA-2011 (Richter and Westphal,
2010), the winner of the satisficing track of IPC 2011.17

• The Mp planner (Rintanen, 2012), probably the current best representative of the
planning as satisfiability approach (Kautz and Selman, 1996). We used version
0.99999 with default parameters.

17The winner of the latest IPC 2014, a followup event to IPC 2011, was a portfolio system IBaCoP
relying on LAMA-2011 as one of its underlying planners (IPC, 2014).

200

6.4 Experiments

For this experiment the time limit was increased to 1800 seconds.

The overall performance of the planners can be seen in Figure 6.4. The planner FF
has a very fast startup and solves the most problems (952) within one second. However,
FF is the worst of the planners to make use of the additional time and solves the fewest
problems (1247) in total. On the opposite side stands LAMA-2011 with the slowest
startup (566 problems within one second), but with the best total (1437). PDRplan1.1
and Mp are close to each other in performance both at the beginning – PDRplan1.1 solves
741 and Mp 790 problems within one second – and at the end – in total PDRplan1.1
solves 1333 problems gaining a slight edge over Mp with 1310 problems solved.

Table 6.2 shows a domain-by-domain decomposition of the results. We can see that
there are several domains where PDRplan1.1 solved the most problems of the four plan-
ners: the 2000-BLOCKS, 2002-FREECELL, 2004-PIPESWORLD-NOTANKAGE, and
2006-TRUCKS domains. The domains 2004-PHILOSOPHERS, 2006-PATHWAYS, and
2006-STORAGE were completely solved by only PDRplan1.1 and Mp. On the other
hand, a comparatively poor performance of PDRplan1.1 can be observed on the 1998-
LOGISTICS and 1998-MPRIME domains, and also on the 2011-PARKING (shared with
FF) and 2008+2011-SOKOBAN (shared with Mp) domains.

6.4.6 Plan quality

IPC 2008 (Helmert et al., 2008) introduced a criterion for measuring planner performance
which takes into account the quality of the obtained plans. For every problem solved,
a planner aggregates a score computed as the ratio c∗/c, where c is the cost18 of the
returned plan and c∗ the cost of the best known plan (either a plan computed beforehand
by the competition organizers or the best plan found by any of the participating systems).
When viewing the results of the previous experiment through the lenses of this criterion,
one discovers that PDRplan1.1 drops from the second place to the last.

We reviewed all the previously discussed features and improvements and discovered
that the configuration of PDRplan1.1 is not the best possible with respect to plan quality.
In particular, by switching to the queue tie-breaking strategy (we denote the respective
configuration PDRplan1.1+queue) the aggregated score of the planner improves. A
slight improvement can also be observed when the lazy false clause computation is turned
off in PDRplan1.1. Interestingly, doing both changes at once does not bring a combined
benefit.19

Figure 6.5 shows the aggregated scores for the runs of the previous experiment together
with a run of PDRplan1.1+queue.20 Although PDRplan1.1+queue solves only 1263
problems in 1800 seconds (compared to 1333 solved by PDRplan1.1), it aggregates a
score of 1141.1 points while PDRplan1.1 only reaches 1041.4. This means the former

18As mentioned before, we did not consider action costs in our experiments, so a cost of a plan is simply
equal to its length.

19It seems that the already “carefully advancing” PDRplan1.1+queue benefits from the speed provided
by lazy false clause computation, whereas with the stack strategy it helps to wait for the more precise
reasons (having lfcc turned off) that will not allow the planner to search too deep too often.

20The reference values for the best known cost c∗ were collected just from the runs in the figure.

201

6 Property directed reachability in automated planning

Table 6.2: Number of problems solved within 1800 seconds, grouped by domain. We
highlighted those entries where PDRplan1.1 solves the most problems or shares the first
place with one other planner. To save space the entries of IPC 2008 domains recurring
later in IPC 2011 are merged with the respective entries of IPC 2011.

size PDRplan1.1 FF LAMA-2011 Mp
1998-GRID 5 5 5 5 5
1998-GRIPPER 20 20 20 20 20
1998-LOGISTICS 35 18 35 35 32
1998-MPRIME 35 25 34 35 34
1998-MYSTERY 30 19 18 23 19
2000-BLOCKS 60 60 48 55 46
2000-ELEVATOR 150 150 150 150 150
2000-LOGISTICS 36 36 36 36 36
2000-FREECELL 60 57 60 60 44
2002-DEPOTS 22 21 21 22 22
2002-DRIVERLOG 20 18 18 20 20
2002-ZENOTRAVEL 19 19 19 19 19
2002-FREECELL 20 20 19 19 15
2004-AIRPORT 50 40 38 33 49
2004-PIPESWORLD-NOTANKAGE 50 45 32 44 42
2004-PIPESWORLD-TANKAGE 50 37 17 42 38
2004-OPTICAL-TELEGRAPH 14 14 14 14 14
2004-PHILOSOPHERS 29 29 14 13 29
2004-PSR 50 50 42 50 50
2004-SATELLITE 36 28 34 36 35
2006-OPENSTACKS 30 30 30 30 19
2006-PATHWAYS 30 30 20 29 30
2006-PIPESWORLD 50 32 21 40 25
2006-ROVERS 40 39 40 40 40
2006-STORAGE 30 30 18 19 30
2006-TPP 30 30 28 30 30
2006-TRUCKS 30 27 12 15 19
2008-CYBER-SECURITY 30 30 4 30 30
2011-BARMAN 20 6 0 20 8
2008+2011-ELEVATORS 50 40 50 50 50
2011-FLOORTILE 20 14 10 6 20
2011-NOMYSTERY 20 14 7 10 19
2008+2011-OPENSTACKS 50 49 50 50 18
2008+2011-PARCPRINTER 50 50 50 50 50
2011-PARKING 20 8 7 20 20
2008+2011-PEGSOL 50 50 50 50 50
2008+2011-SCANALYZER 50 46 44 50 48
2008+2011-SOKOBAN 50 11 40 48 9
2008+2011-TRANSPORT 50 27 38 49 26
2011-VISITALL 20 9 4 20 0
2008+2011-WOODWORKING 50 50 50 50 50
TOTAL 1561 1333 1247 1437 1310

202

6.4 Experiments

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1 10 100 1000

a
g
g
re

g
a
te

d
 s

c
o
re

time (seconds)

FF
LAMA-2011

Mp
PDRplan1.1

PDRplan1.1+queue

Figure 6.5: Comparing the planners with respect to plan quality. Showing the score
aggregated by each planner within the given time limit.

configuration catches up with Mp, which aggregates 1102.7 points.

We note that these statistics should be taken with a grain of salt, because they only
provide a “plan quality view” on the satisficing runs of the planners. None of the systems
was explicitly attempting to find short plans or making use of the fact that the time
limit is 1800 seconds. Moreover, even in such a setting the plan quality can typically
be improved afterwards by a post-processing of the discovered plans (Balyo and Chrpa,
2014). We later incorporated the polynomial Action Elimination algorithm (Nakhost and
Müller, 2010) as a plan post-processor into PDRplan1.1 and we were able to improve its
aggregated score by 7.0 percent. A more thorough investigation of the quality of plans
produced by PDRplan, as well as by PDR in general, is left for future work.

6.4.7 Anytime PDR and optimal planning

Recall that PDR can be adjusted to perform optimal planning by turning off the obli-
gation rescheduling technique (and sidestepping).21 Alternatively, we can modify PDR
to continue the computation after a first plan is found, but afterwards only reschedule
obligations that can be part of an improving plan.22 This “anytime version” of PDR
progressively reports on better and better solutions until finally terminating with a guar-
antee that the last reported plan is an optimal one. This happens when it reaches an

21PDR then looks for minimal length witnessing paths with respect to the encoded transition relation T .
Using an encoding with sequential plan semantics (as implicitly done by PDRplan) ensures optimizing
the number of actions of the resulting plan.

22Formally, we keep an obligation (s, i) if the length of the path from the initial state sI to s plus the
value of the index i does not exceed the length of the best plan found so far.

203

6 Property directed reachability in automated planning

iteration i equaling the length of the best discovered plan.

In this experiment, we focused on optimal planning with respect to the sequential
plan semantics.23 We compared the performance of the anytime version of PDRplan1.1
(counting only solutions provably shown to be optimal) to BJOLP (Domshlak et al.,
2011), an optimizing version of Fast Downward, and to an optimizing configuration of
Mp.24 Ordering the planners by the number of problems optimally solved within 1800
seconds we obtain:

1. BJOLP with 668 problems solved,

2. PDRplan1.1-anytime with 360 problems solved, and

3. optimizing Mp with 325 problems solved.

This order is preserved on the level of individual domains, except for several domains
where Mp does not end up last. Mp solves optimally the most problems from 1998-
MYSTERY, 2000-BLOCKS, 2008-CYBER-SECURITY, and also from 1998-MPRIME.
The margin is exceptionally pronounced on the last domain, where Mp solves 32 out of
35 problems, while BJOLP solves 21 and PDRplan1.1-anytime only 20 problems.

6.4.8 Detecting unsatisfiable problems

Although the main focus of the planning community, as reflected by the International
Planning Competition, has traditionally been on satisfiable problems only, more recently,
the importance of detecting unsatisfiable instances is getting recognized and addressed
(Bäckström et al., 2013; Hoffmann et al., 2014). According to the experience from
hardware model checking, PDR should be particularly strong at detecting unsatisfiable
instances. In our last experiment, we tried to established whether this also holds in
planning.

As the test problems, we used a collection by Hoffmann et al. (2014) consisting of
8 domains and a total of 183 unsatisfiable benchmarks. Table 6.3 shows domain-by-
domain coverage results (for a time limit of 1800 seconds) of the following configurations
of PDR:

• PDRplan, in the same configuration as in the first experiment (Section 6.4.2), both
in the forward (fwd) and backward (bwd) direction.

• minireachIC3 combined with the par encoding (with invariants), also in both
directions (fwd, bwd), and, in the backward direction, also with the inductive
minimization replaced by the non-inductive version (noind), and, independently,
with the clause propagation turned off (nocp).

23This choice ruled out systems like SatPlan (Kautz et al., 2006) or SASE (Huang et al., 2012) from the
comparison, because they only optimize with respect to the parallel plan semantics.

24It uses a sequential encoding (option -P 0), does not skip any horizon length (option -S 1), and
evaluates a single horizon length at a time (option -A 1).

204

6.4 Experiments

Table 6.3: Unsatisfiable benchmarks. Number of problems solved within 1800 seconds,
grouped by domain. Best scores per domain are typeset in bold.

size
PDRplan minireachIC3 with par M&S
fwd bwd fwd bwd noind nocp blind cf1 cf2

3UNSAT 25 10 10 11 15 11 5 15 15 15
Bottleneck 30 19 24 25 23 20 22 10 10 21
Mystery 9 4 9 9 9 9 9 2 9 6
UnsNoMystery 25 12 11 3 13 13 6 0 25 25
UnsPegsol 24 14 8 14 8 8 4 24 24 24
UnsRovers 25 11 11 11 20 15 12 0 17 9
UnsTiles 20 0 0 0 0 0 0 10 10 10
UnsTPP 25 5 6 4 6 3 3 5 9 9

Total 183 75 79 66 94 79 61 66 119 119

In addition, Table 6.3 also contains entries adopted from the work of Hoffmann et al.
(2014). These belong to the Fast Downward planner equipped with three different heuris-
tics:

• Configuration blind uses a heuristic which returns 0 on goal states and 1 elsewhere
– it essentially proves unsatisfiability by enumerating all the reachable states.

• Configuration cf1 and cf2 each use a version of a merge-and-shrink (M&S) heuris-
tic (Helmert et al., 2007), specifically adapted for detecting unsatisfiable problems
(Hoffmann et al., 2014). These were the two best performing configurations in the
experiment of Hoffmann et al. (2014).

We note that Hoffmann et al. (2014) also used a time limit of 1800 seconds, but ran
their experiment on 2.20 GHz Intel E5-2660 machines with a 4 GB memory limit. This
means that the last three configurations could be potentially solve more problems in our
setup.

Results of the experiment

When comparing the various configurations of PDR, we can see that the backward
direction is generally more successful than the forward, although not consistently across
all the domains. Interestingly, minireachIC3 with the par encoding in the backward
direction solves more problems than PDRplan. In fact, a preliminary test with a lower
time limit showed that on these benchmarks this configuration is the strongest of all
those considered in our first experiment (Section 6.4.2). Finally, we can also see that
both induction and clause propagation are consistently helpful for solving unsatisfiable
problems.

PDR does not come out as a winner from the comparison to the heuristic approach
of Hoffmann et al. (2014), although it is able to solve the most problems on four do-
mains. On two other domains, however, PDR is even dominated by blind search, i.e. by a

205

6 Property directed reachability in automated planning

simple state space enumeration. It seems that more benchmarks will be needed to estab-
lish which of the two approaches is generally more successful at detecting unsatisfiable
planning problems.

Performance on UnsTiles

PDR is particularly bad at “enumerating states” when there is little possibility to gen-
eralize from the encountered ones. This is manifested most clearly on the UnsTiles
domain, from which PDR could not solve a single problem within the given time limit.
The domain represents the well known sliding puzzle and contains 10 problems with 8
tiles in a 3× 3 grid and 10 problems with 11 tiles in a 3× 4 rectangular grid.25 We ran
PDRplan in the forward direction to the end on the one of the smaller, 3× 3 instances.
It took about a day to complete, processed 701704 obligations and terminated when all
the clauses from layer 11, in total 181440 clauses, where pushed to layer 12 during the
clause propagation phase of iteration 11.

Notice that 181440 = 9!/2 is half the size of the state space. By the classical result
of Johnson and Story (1879), the state space of the sliding puzzle decomposes into
exactly two connected components depending on the value of a certain parity function
defined on the states. Unsatisfiable instances are those where the parity of the initial
state and the goal state are different. Because the state space consists of just of two
components, on a unsatisfiable instance PDR must converge (with the repeating layer)
to a CNF description of the component containing the goal state. As we can see, this
description is as large (in the number of clauses) as the component itself (in the number
of states), and thus on the sliding puzzle PDR does not benefit at all from the symbolic
representation via CNF.

6.4.9 Summary

Let us summarize the empirical findings obtained in this section. We state them as
general claims while keeping in mind that they are, in fact, derived from the performance
on two particular benchmark sets: the main set of 1561 mostly satisfiable IPC problems
and the set of 183 unsatisfiable problems used in the last experiment.

• When planning with PDR it pays off to look for a plan from the initial state
towards the goal and not vice versa. In other words, progression is preferable to
regression in PDR. This holds even when invariants are employed, which help to
improve the performance of regression considerably.

Unsatisfiable instances, however, are typically better detected via regression.

• On satisfiable problems the SAT-solver-free variant of PDR with planning-specific
extend procedure (as described in Section 6.3) is generally more successful than
the standard version of the algorithm combined with various encodings.

25Most famous is the 15 tiles puzzle on a 4× 4 grid (Wikipedia, 2014).

206

6.5 Related work: Graphplan

• Neither clause propagation nor inductive minimization, two techniques which are
normally deemed essential for the performance of PDR, are very helpful on satis-
fiable planning problems. The techniques are, however, useful for detecting unsat-
isfiability.

• There are various ways of tuning PDR and improving its performance for planning.
We tried to identify a configuration of the algorithm that would be most successful
in our setup and later used it in PDRplan for a comparison with other planners. For
all the techniques that turned out to be an improvement on average, however, there
were exceptions in the form of individual problems or domains were performance
degraded. These represent an interesting opportunity for future investigations (see
Section 6.6 for more details).26

• When compared to other planners PDRplan shows respectable performance. In
fact, its performance is comparable to or even slightly better than that of the plan-
ner Mp, a state-of-the-art representative of the planning as satisfiability approach.
It also solves the most problems of all the tested planners on several domains.
Although PDRplan does not reach the score of LAMA-2011, the presented results
are quite encouraging, especially given that PDR is a relatively young algorithm
with a potential for further improvements (again, see also Section 6.6).

• When plan quality is more important than just the number of problems solved, it
pays off to switch from the stack to the queue tie-breaking strategy in PDR. Such
a configuration is then able to keep up with and improve upon the performance of
Mp with respect to the plan quality metric based on aggregated score.

Another option for improving plan quality is to employ a post-processing step
which attempts to remove redundant actions from the generated plan (Balyo and
Chrpa, 2014).

• PDR can be easily modified to look for increasingly better solutions when given
sufficient time and to eventually terminate with an optimality guarantee (with
respect to plan length). Although LAMA-2011 is much more successful in finding
optimal plans, the fact the PDRplan’s “natural” encoding follows the sequential
plan semantics could be the reason why PDRplan scores higher than Mp in this
respect.

6.5 Related work: Graphplan

We have argued in the introductory section of this chapter that PDR is an algorithm
closely related to the planning as satisfiability approach, although with the planning-
specific implementation of the extend procedure no explicit encoding is present. We also

26On the one hand, by looking at the problems where a particular technique leads to a poor performance,
we can identify its weak points and attempt to improve the technique. On the other hand, instead of
relying on an overall best configuration, we can also try to decide, prior to running the algorithm itself,
on a promising set of enabled features for a given problem based on the problem’s characteristics.

207

6 Property directed reachability in automated planning

highlighted the connection to heuristic search planning, with the direct correspondence
on the side of explicitly explored reachable states and a little more subtle one on the
side of the guiding layers, which can be seen as a continually refined admissible heuristic
estimator. What we would like to discuss here is a perhaps surprising relation of PDR
to the well-known Graphplan planning algorithm by Blum and Furst (1997).

The main data structure of Graphplan is a planning graph, a layered structure for
compressed representation of reachability information about the given problem. The
individual layers of the graph over-approximate the set of states reachable by a given
number of sets of parallel actions and are computed incrementally by propagation of
so called exclusion relations between actions and state variables. The planning graph
is searched for a plan by a backward-chaining strategy, starting from the goal set and
regressing it, in the sense of the parallel plan semantics, to subgoals that do not violate
the exclusions of the respective layer. Candidate (sub)goal sets shown not to lead to a
plan within a specific number of steps are memoized to avoid repeating the same work
in the future.

As already shown by Rintanen (2008b) the exclusion relations of the planning graph
are equivalent to binary clause representation of k-step reachability information. This
means they could be represented inside PDR as binary clauses in the respective layers.
We claim additionally that also the memoized goal sets could be stored as layer clauses
at the respective position: the clause being simply the negation of the conjunctive de-
scription of the goal set. With these two observations in mind, we can state that

Graphplan is essentially a version of PDR with a specific implementation of
the extend procedure based on the parallel plan semantics.

This correspondence allows us to highlight some other differences between the two algo-
rithms beyond the preferred semantics of the emulated encoding.

• While the planning graph is built systematically by Graphplan and search for a
plan is only started (resumed) when a full new layer has been computed, in PDR
the layer construction is lazy, being triggered by unsuccessful path extensions.

Goal set memoization in Graphplan, however, follows the same lazy pattern.

• Graphplan does not attempt to reduce the size of a memoized goal set, so, apart
from the binary clauses, it only deals with long clauses representing the negation
of the goal set. Notice that this would in PDR correspond to returning the full
reason set Lits(s) after an unsuccessful extension of the state s.

A subset memoization has later been proposed by Long and Fox (1999), which
corresponds to finding smaller reason sets.

• Graphplan searches for a plan in the backward direction. In PDR, the direction
can be changed, but forward is more successful.27

27Changing the search direction in Graphplan by running in on an inverted problem (see Section 6.3.4)
is possible, but would likely lead to fewer problems solved. This is related to the already mentioned
observation that there are very few problems with non-trivial backward invariants in the benchmark
set.

208

6.6 Discussion: A closer look at two domains

• There is no equivalent to obligation rescheduling in Graphplan and so the algorithm
always searches for optimal plans (with respect to the parallel plan semantics).

The wavefront heuristic described by Long and Fox (1999) in their enhancement of
Graphplan, however, seems to overcome this limitation, similarly to rescheduling.

The realization that PDR is related to Graphplan made us curious about the differ-
ences of the two algorithms in practice. We set up a small experiment where we com-
pared PDR to a mature implementation of Graphplan within the planner IPP (Koehler,
1999). In order to bring PDR as close as possible to what Graphplan does, we repre-
sented it by minireachIC3 combined with the simple parallel encoding Spar

P (see Sec-
tion 6.2.2) enhanced by the binary clause invariant (as explained in Section 6.4.2). We
ran minireachIC3 in the backward direction and with obligation rescheduling turned
off, so, similarly to IPP, it was looking for optimal plans. When measuring the number
of problems solved (out of the main problem set described in Section 6.4) within 180
seconds, we obtained 466 solved by IPP and 484 by our configuration of minireachIC3.
It should be noted that IPP erroneously reports UNSAT for most of the problems from
the PARCPRINTER and WOODWORKING domains and we counted this as failures.
Because minireachIC3, on the other hand, solves most of the problems from these do-
mains, its score should be lowered by 94 problems to obtain a “fair” comparison on the
problem set which excludes these two domains.

Notice that the performance of IPP with 466 solved problems is quite low compared to
the best configuration of PDRplan1.1, which solves 1212 problems within 180 seconds.
This raises the question whether Graphplan could be improved by enhancing it with the
obligation rescheduling trick. We were able to confirm this experimentally. A relatively
straightforward modification of IPP which retries a candidate goal set at time t+1 after
it has failed at time t was able to solve 676 problems.28 Thus obligation rescheduling
can be seen as an answer to the long standing question posed in the last remark of the
original Graphplan paper by Blum and Furst (1997), i.e., as a way to trade plan quality
for speed.

6.6 Discussion: A closer look at two domains

The fact that PDR maintains its reachability information organized in layers and uses
the simple language of propositional clauses (CNF) to express the corresponding con-
straints often allows us to obtain additional insights on how the algorithm traverses the
search space by inspecting the layers generated for concrete problems. This is especially
rewarding in cases where PDR seems to be struggling with a relatively simple problem,
as it often leads to a discovery of ideas for future improvements. In this section we take
a closer look at the behavior of PDR on two simple domains. We conjecture that the
algorithm could be improved by employing a more expressive constraint formalism than
CNF.

28Also the performance of the corresponding configuration of minireachIC3 goes up from the mentioned
484 to 733 solved problems within 180 seconds when obligation rescheduling is turned on.

209

6 Property directed reachability in automated planning

1998-LOGISTICS

The task in the LOGISTICS domain is to transport packages between locations. Loca-
tions belong to cities and within a city trucks may be used to move packages with the
help of the load-truck, drive-truck, and unload-truck actions. Additionally, some of the
locations are designated as airports and airplanes may be used to transport packages
between airports possibly across cities via the load-airplane, fly-airplane, and unload-
airplane actions.

Although the LOGISTICS domain is generally considered to be a simple one, Table 6.2
(page 202) reveals relatively poor performance of PDRplan on LOGISTICS problems.
Here are two of our initial findings from the inspection of the layer clauses generated by
PDR, which shed some light on what is going on “under the hood”.

• PDR often generates very long clauses.

Because there are typically many distinct (although similar) ways to achieve a
subgoal and all of them need to be taken into account, large reason sets are com-
puted and subsequently long explaining clauses derived. For example, if a package
needs to be transported from one city to another, any of the available airplanes
can potentially be used for that purpose. We often encounter derived clauses like

subg ∨ at(apn1, apt) ∨ at(apn2, apt) ∨ . . . ∨ at(apnn, apt) (6.4)

expressing that if the subgoal subg has not been reached yet, at least one of the
available airplanes apni need to be present at the airport apt .

• PDR generates many similar clauses.

Even if an action has more than one precondition false in the current state, at most
one of these preconditions is reflected in the computed reason of an unsuccessful
extension. Thus with many actions available for achieving a subgoal, sometimes
many clauses are needed as PDR tries to find the right achieving action and satisfy
all its preconditions.

In addition to the above clause (6.4) we could see PDR subsequently derive the
following clauses in the same layer:

subg ∨ in(obj , apn1) ∨ at(apn2, apt) ∨ . . . ∨ at(apnn, apt),

subg ∨ at(apn1, apt) ∨ in(obj , apn2) ∨ . . . ∨ at(apnn, apt),

. . .

subg ∨ at(apn1, apt) ∨ at(apn2, apt) ∨ . . . ∨ in(obj , apnn).

(6.5)

Note that although the pattern indicates n different clauses, there are in the
worst case 2n clauses potentially derivable with the “arbitrary” choice between
at(apni, apt) and in(obj , apni) for every i.

Although we have so far described PDR as an algorithm based on propositional logic,
we believe it could be generalized to take advantage of first-order constraints. Consider

210

6.6 Discussion: A closer look at two domains

the clause (6.4) above. An equivalent first-order version (aware of the type airplane)
would read

subg ∨ ∃Apn ∈ airplane . at(Apn, apt),

which is much more succinct.29 Moreover, it could potentially be derived by just ana-
lyzing the action schemes unload -airplane(Obj ,Apn,Loc), . . . , etc., instead of iterating
through the much larger set of instantiated actions. Working out the missing details is
an interesting direction for future research. An inspiration could be found in the work
of Ranise (2013), whose setting of security policy analysis is very close to automated
planning.

Another independent direction for enhancing the expressive power of the used con-
straints could be the introduction of “conjunctive literals”. Notice that the set of clauses
(6.5) is, in fact, subsumed by a single generalized clause

subg ∨
n∨

i=1

in(obj , apni) ∧ at(apni, apt),

where we allow conjunctions in place of single literals. In this envisioned generalization
of PDR, such conjunctions would naturally come from the precondition sets of actions,
and their use could help with solving, e.g., the LOGISTICS problems more efficiently.
Of course, there are again details that would need to be worked out.

1998-GRIPPER

GRIPPER is a very simple domain which models a robot with two grippers trying to
move balls from one room to another. This domain is fully solved by PDRplan in the
default configuration. In fact, although the individual problems differ in size, PDRplan
is able (thanks to obligation rescheduling) to solve all of them during iteration 3 of the
main loop.30 The reason for this seems to be the virtual independence of the individual
goals, which can be considered one be one by PDR. We conjecture that the algorithm
solves problems from the GRIPPER domain in polynomial time.

Despite the simplicity, GRIPPER is known to be difficult to solve optimally by heuris-
tic search planners (see Helmert and Röger, 2008). This also holds for PDR, which
exhibits exponential behavior when attempting to find a minimal length plan, i.e., when
run with obligation rescheduling (and sidestepping) turned off. To demonstrate the rea-
son, let us abstract and simplify GRIPPER a bit more and consider a domain in which
the task is to achieve n independent goals from the set {g1, . . . , gn}, such that achieving
a particular goal is trivial, but the individual goals can only be achieved one by one.

On such a domain, PDR will eventually need to express via layer Li that at least
(n − i) goals should already be achieved. Such a “counting” constraint has inherently
large clausal description. Namely, the set Li takes the form∧

gj0 ∨ . . . ∨ gji ,
29Symbols starting with an uppercase letter, like Apn, stand for first-order variables.
30Other domains fully solved by PDRplan during a particular fixed iteration are 2002-ZENOTRAVEL

(iteration 3), 2004-PHILOSOPHERS (iteration 6), and 2006,2008,2011-OPENSTACKS (iteration 4).

211

6 Property directed reachability in automated planning

where the conjunction ranges over all (i + 1)-element subsets {j0, . . . , ji} of {1, . . . , n}.
The size of the layer Li is, therefore, proportional to the binomial coefficient

(
n

i+1

)
, which,

in particular, means that the size of the layer Lbn/2c grows exponentially with n.
As already suggested by Helmert and Röger (2008) this phenomenon could be over-

come by exploiting symmetries (Fox and Long, 1999) inherently present in the problem.
This could be particularly rewarding in PDR, where the layer clauses (although derived
as a response to unsuccessful extensions of arbitrary reachable states) logically depend
only on the goal condition G, where the symmetries typically reside. Thus unlike Fox
and Long (1999), who define symmetric objects to be those which are indistinguishable
from one another in terms of their initial and goal configuration, one could with PDR
use a stronger notion of symmetry derived from the goal condition only.

6.7 Conclusion

In this chapter we have examined PDR, a novel algorithm for analyzing reachability
in symbolic transition systems, from the perspective of automated planning. Our main
contribution lies in recognizing that a part of the algorithm’s work normally delegated
to a SAT solver can, in the context of planning, be implemented directly by a polyno-
mial time procedure. We have experimentally confirmed that this modification, as well
as several other proposed improvements, boost the performance of PDR on planning
benchmarks. Our implementation of the algorithm called PDRplan was able to compete
respectably with state-of-the-art planners, solving most problems on several domains.

Despite the already promising results, there is still room for further development.
One direction is work on extending PDRplan towards richer planning formalisms. For
example, we believe the extend procedure can be enhanced to cope with conditional
effects of actions in a straightforward way. Efficiently dealing with action costs or domain
axioms could turn out to be more difficult. Another promising direction is the idea to
generalize PDR to a more expressive constraint language than CNF. While it is clear
that stronger constraints imply better guidance towards the goal, devising an efficient
method for combining new constraints from old ones is obviously a challenging task. It
seems, however, that this “departure beyond the propositional clausal level” could have
a simpler solution inside the planning-specific framework of the extend procedure than
it, perhaps, has within the context of general purpose constraint solvers.

212

7 Conclusion

In this thesis, we have studied the following three main problems: 1) proving theorems
in linear temporal logic, 2) verification of invariance (and safety) properties of hardware
circuits, and 3) the problem of classical STRIPS planning. Although the problems come
from different research fields, they are closely related. As we have shown, when properly
encoded and normalized, these problems can be given a common simple representation
based on clausal propositional logic. We initially referred to the representation as the
temporal satisfiability task (TST) and later adopted the term symbolic transition system
(STS) for the same syntactic object. This was to stress the change of the intended task
from a one based on the Büchi condition to single time reachability. On the semantic
side, the representation describes a graph-like structure – called the semantic graph or
the state transition system – where traversing an edge corresponds to a single time step
and each of the problems can be restated as a search for a certain finite or infinite path
through this graph. In this sense, the problems can be jointly characterized as falling
into the category of linear temporal reasoning.

When made explicit, the semantic graph may become exponentially larger than its
symbolic description. Our strategy for avoiding this immediate blow-up was to employ
logic, namely the resolution rule, to only manipulate the symbolic description and learn
about the properties of the graph indirectly. Resolution emerged in several forms in
this work. Ordered resolution constitutes the main inference rule of our calculus LPSup
for LTL theorem proving. Resolution guided by a partial model, as formalized within
the conflict driven clause learning paradigm, lies beyond the success of modern SAT
solvers and we employed the idea in the design of our efficient LTL-proving algorithm
LS4. Exhaustive resolution served us as a means for eliminating variables and clauses
in LTL normal forms and thus provided a basis for a useful simplification procedure.
We continued to rely on the SAT-solving technology and thus on resolution when we
adapted LS4 to deciding single time reachability and obtained the algorithm Reach.
Finally, although the main result of the previous chapter showed that in the context of
STRIPS planning the SAT solver within the PDR algorithm can be replaced by a more
efficient planning-specific procedure for computing the single step reachability queries,
resolution was still indirectly employed to justify the replacement.

There is a close connection between the resolution rule on the syntax level and the
elimination of an existential quantifier on the level of semantics. We could see this most
clearly in Chapter 4 when dealing with variable elimination. From the perspective of
satisfiability checking all variables of a formula are implicitly existentially quantified and
to exhaustively resolve over a variable p is a way to obtain an equisatisfiable form in

213

7 Conclusion

which p does not occur any more:

∃p (Np ∪N¬p ∪N0) ≡ (Np ⊗p N¬p) ∪N0,

thus eliminating the existential quantifier ∃p. In the context of the semantic graph, we
relied on the same principle and used resolution to compute the pre-image operation
on a set of represented vertexes. To set up ordered resolution this way, the trick is to
make the primed symbols Σ′ corresponding to the target vertexes larger than the basic
symbols Σ, which correspond to the source vertexes. Then the set of clauses from which
the primed symbols have been resolved away represents those vertexes for which there
exists a successor in the graph. We achieved a similar effect in the model guidance
setting. By passing to the SAT solver a concrete source vertex encoded as a set of
assumptions, one derives a new property of the pre-image in the form of a learned clause
whenever no corresponding successor vertex can be found. The main difference between
the saturation approach with ordered resolution and the model guidance setting is that
the pre-image obtained in the first case is precise, whereas in the second case we only
work with a continually refined over-approximation.

The reasoning power of the resolution rule in the semantic graph is inherently local,
allowing us to directly derive only the relation between neighboring vertexes. One needs
an additional global principle to decide a reachability problem in full, in particular to be
able to infer from a series of bounded results of the form “there exists no path of length
l” for concrete values l = 0, . . . , n that there is no path of any length. In this thesis,
we found this additional principle in the repetition detection and derivation replaying
argument. We showed that upon the detection of a specific repeating part in a bounded
resolution proof, one can establish the ultimate non-reachability by induction. The key
observation was that the piece of the proof between the repeating parts can be replicated
arbitrary many times, giving us the potential to generate non-existence proofs for paths
of any length. It seems that the need for an inductive argument is inherent, as similar
global rules are present in all the related complete approaches we have studied.

Along with the theoretical work, we presented in this thesis a series of experiments
whose aim was to evaluate the practical performance of the developed algorithms and
to compare them to related approaches. Interpreting the results of such experiments
can be tricky, because the individual algorithms and their implementations often have
complementary strengths and weaknesses which, for example, makes picking a single
winner difficult. We may, however, also use the results to identify interesting trends
in the behavior of a particular algorithm which can trigger further development of the
corresponding theory. An example can be found by looking at some of the common
patterns in the behavior of PDR on the hardware benchmarks and in planning. If we
compare the results of Chapters 5 and 6, we can, for instance, see that in both cases
the forward direction of the search is on average more successful for discovering satis-
fiable benchmarks, whereas the unsatisfiable ones are better detected in the backward
direction. Properly understanding this phenomenon and explaining it theoretically could
represent an interesting direction for future research.

Another program for extending the work presented in this thesis would be to change
the symbolic representation of the semantic graph and replace the propositional logic

214

foundation by a more expressive formalism. The most obvious candidate for such a
formalism is first-order logic, possibly with equality, or its fragments. The corresponding
problems that could be encoded into such generalized representation include proving
theorems in first-order linear temporal logic or software model checking and have already
been studied; to a certain degree in the first case (Degtyarev et al., 2006) and quite
extensively in the second (see Jhala and Majumdar, 2009, for a survey). One needs to be
aware that the greater expressibility is payed for by higher computational complexity of
the corresponding problems or even their undecidability (Szalas and Holenderski, 1988).
Nevertheless, the fact that our methods rely on resolution and indeed superposition, for
which the lifting from the propositional basis to the first-order level is well understood
(Bachmair and Ganzinger, 2001; Nieuwenhuis and Rubio, 2001), suggests that their
generalization to the more expressive setting is possible, at least in some restricted
form. Particularly promising for the extension appears to be, for instance, the decidable
Bernays-Schönfinkel fragment of first-order logic.

215

Bibliography

Mart́ın Abadi and Zohar Manna. Nonclausal temporal deduction. In Rohit Parikh,
editor, Logic of Programs, volume 193 of Lecture Notes in Computer Science, pages
1–15. Springer, 1985. ISBN 3-540-15648-8.

Roberto Javier Aśın Achá, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-
Carbonell. Practical algorithms for unsatisfiability proof and core generation in SAT
solvers. AI Commun., 23(2-3):145–157, 2010.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, 1998. ISBN 978-0-521-45520-6.

Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with
simplification. In Mark E. Stickel, editor, CADE, volume 449 of Lecture Notes in
Computer Science, pages 427–441. Springer, 1990. ISBN 3-540-52885-7.

Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. J. Log. Comput., 4(3):217–247, 1994.

Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 19–99.
Elsevier and MIT Press, 2001. ISBN 0-444-50813-9, 0-262-18223-8.

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11:625–656, 1995.

Christer Bäckström, Peter Jonsson, and Simon St̊ahlberg. Fast detection of unsolvable
planning instances using local consistency. In Malte Helmert and Gabriele Röger,
editors, SOCS. AAAI Press, 2013. ISBN 978-1-57735-584-7.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
ISBN 978-0-262-02649-9.

Tomas Balyo, Vojtech Bardiovsky, Filip Dvorak, and Dan Toropila. Freelunch planning
library, 2012. Available at http://ktiml.mff.cuni.cz/freelunch/.

Tomáš Balyo and Lukáš Chrpa. Eliminating all redundant actions from plans using SAT
and MaxSAT. In ICAPS 2014 Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS), 2014.

Roberto J. Bayardo and Robert Schrag. Using CSP look-back techniques to solve
real-world SAT instances. In Benjamin Kuipers and Bonnie L. Webber, editors,
AAAI/IAAI, pages 203–208. AAAI Press / The MIT Press, 1997. ISBN 0-262-51095-2.

217

http://ktiml.mff.cuni.cz/freelunch/

Bibliography

Sam Bayless. Implementation of PDR using “SAT modulo SAT”. Web site, https:

//bitbucket.org/sambayless/smspdr, accessed 9/11/2013, 2013.

Sam Bayless, Celina G. Val, Thomas Ball, Holger H. Hoos, and Alan J. Hu. Efficient
modular SAT solving for IC3. In FMCAD, pages 149–156. IEEE, 2013.

Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR), 22:319–351,
2004.

Evert W. Beth. Semantic entailment and formal derivability. Koninklijke Nederlandse
Akademie van Wentenschappen, Proceedings of the Section of Sciences, 18:309–342,
1955.

Armin Biere. Bounded model checking. In Biere et al. (2009), pages 457–481. ISBN
978-1-58603-929-5.

Armin Biere. AIGER. Web site, http://fmv.jku.at/aiger/, accessed January, 2012.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In Rance Cleaveland, editor, TACAS, volume 1579
of Lecture Notes in Computer Science, pages 193–207. Springer, 1999. ISBN 3-540-
65703-7.

Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking.
Electr. Notes Theor. Comput. Sci., 66(2):160–177, 2002.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, 2009.
IOS Press. ISBN 978-1-58603-929-5.

Armin Biere, Keijo Heljanko, Martina Seidl, and Siert Wieringa. Hardware model check-
ing competition 2012. Web site, http://fmv.jku.at/hwmcc12/, accessed 1/12/2013,
2012.

Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artif.
Intell., 90(1-2):281–300, 1997.

Alexander Bolotov, Michael Fisher, and Clare Dixon. On the relationship between ω-
automata and temporal logic normal forms. J. Log. Comput., 12(4):561–581, 2002.

Blai Bonet and Hector Geffner. Planning as heuristic search. Artif. Intell., 129(1-2):
5–33, 2001.

Aaron Bradley. Presonal communication, 2012.

Aaron Bradley. Implementation of IC3. Web site, http://ecee.colorado.edu/

~bradleya/ic3/, accessed 9/11/2013, 2013.

218

https://bitbucket.org/sambayless/smspdr
https://bitbucket.org/sambayless/smspdr
http://fmv.jku.at/aiger/
http://fmv.jku.at/hwmcc12/
http://ecee.colorado.edu/~bradleya/ic3/
http://ecee.colorado.edu/~bradleya/ic3/

Bibliography

Aaron Bradley. Reference implementation of IC3. Web site, https://github.com/

arbrad/IC3ref, accessed 11/5/2014, 2014a.

Aaron Bradley. Presonal communication, 2014b.

Aaron R. Bradley. k-step relative inductive generalization. CoRR, abs/1003.3649, 2010.

Aaron R. Bradley. SAT-based model checking without unrolling. In Ranjit Jhala and
David A. Schmidt, editors, VMCAI, volume 6538 of Lecture Notes in Computer Sci-
ence, pages 70–87. Springer, 2011. ISBN 978-3-642-18274-7.

Aaron R. Bradley and Zohar Manna. Checking safety by inductive generalization of
counterexamples to induction. In FMCAD, pages 173–180. IEEE Computer Society,
2007.

Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An incremental ap-
proach to model checking progress properties. In Per Bjesse and Anna Slobodová,
editors, FMCAD, pages 144–153. FMCAD Inc., 2011. ISBN 978-0-9835678-1-3.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers, 35(8):677–691, 1986.

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. Inf. Comput., 98(2):
142–170, 1992.

Ana R. Cavalli and Luis Fariñas del Cerro. A decision method for linear temporal
logic. In Robert E. Shostak, editor, CADE, volume 170 of Lecture Notes in Computer
Science, pages 113–127. Springer, 1984. ISBN 3-540-96022-8.

Hana Chockler, Alexander Ivrii, Arie Matsliah, Shiri Moran, and Ziv Nevo. Incremental
formal verification of hardware. In Per Bjesse and Anna Slobodová, editors, FMCAD,
pages 135–143. FMCAD Inc., 2011. ISBN 978-0-9835678-1-3.

Hana Chockler, Alexander Ivrii, and Arie Matsliah. Computing interpolants without
proofs. In Armin Biere, Amir Nahir, and Tanja E. J. Vos, editors, Haifa Verification
Conference, volume 7857 of Lecture Notes in Computer Science, pages 72–85. Springer,
2012. ISBN 978-3-642-39610-6.

Alessandro Cimatti and Alberto Griggio. Software model checking via IC3. In P. Mad-
husudan and Sanjit A. Seshia, editors, CAV, volume 7358 of Lecture Notes in Com-
puter Science, pages 277–293. Springer, 2012. ISBN 978-3-642-31423-0.

Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An
opensource tool for symbolic model checking. In Ed Brinksma and Kim Guldstrand
Larsen, editors, CAV, volume 2404 of Lecture Notes in Computer Science, pages 359–
364. Springer, 2002. ISBN 3-540-43997-8. Software available at http://nusmv.fbk.

eu/.

219

https://github.com/arbrad/IC3ref
https://github.com/arbrad/IC3ref
http://nusmv.fbk.eu/
http://nusmv.fbk.eu/

Bibliography

Koen Claessen and Niklas Sörensson. A liveness checking algorithm that counts. In
Gianpiero Cabodi and Satnam Singh, editors, FMCAD, pages 52–59. IEEE, 2012.

Koen Claessen, Niklas Eén, and Baruch Sterin. A circuit approach to LTL model check-
ing. In FMCAD, pages 53–60. IEEE, 2013.

Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another look at LTL
model checking. Formal Methods in System Design, 10(1):47–71, 1997.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press,
2001. ISBN 978-0-262-03270-4.

Raphaël Clifford and Alexandru Popa. Maximum subset intersection. Inf. Process. Lett.,
111(7):323–325, 2011.

Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal Methods in
System Design, 1(2/3):275–288, 1992.

Willam Criag. Linear reasoning: A new form of the Herbrand-Gentzen theorem. J.
Symb. Log., 22(3):250–268, 1957.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J.
ACM, 7(3):201–215, 1960.

Martin Davis, George Logemann, and Donald W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

Anatoli Degtyarev, Michael Fisher, and Boris Konev. A simplified clausal resolution
procedure for propositional linear-time temporal logic. In Uwe Egly and Christian G.
Fermüller, editors, TABLEAUX, volume 2381 of Lecture Notes in Computer Science,
pages 85–99. Springer, 2002. ISBN 3-540-43929-3.

Anatoli Degtyarev, Michael Fisher, and Boris Konev. Monodic temporal resolution.
ACM Trans. Comput. Log., 7(1):108–150, 2006.

Clare Dixon. Search strategies for resolution in temporal logics. In Michael A. McRob-
bie and John K. Slaney, editors, CADE, volume 1104 of Lecture Notes in Computer
Science, pages 673–687. Springer, 1996. ISBN 3-540-61511-3.

Clare Dixon. Temporal resolution using a breadth-first search algorithm. Ann. Math.
Artif. Intell., 22(1-2):87–115, 1998.

Carmel Domshlak, Malte Helmert, Erez Karpas, Emil Keyder, Silvia Richter, Gabriele
Röger, Jendrik Seipp, and Matthias Westphal. BJOLP: The big joint optimal land-
marks planner. In Seventh International Planning Competition (IPC 2011), Deter-
ministic Part, pages 91–95, 2011.

220

Bibliography

Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In Fahiem Bacchus and Toby Walsh, editors, SAT, volume 3569 of Lecture
Notes in Computer Science, pages 61–75. Springer, 2005. ISBN 3-540-26276-8.

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003a. ISBN 3-540-20851-8. Software available at
http://minisat.se/.

Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving.
Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003b.

Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient implementation of
property directed reachability. In Per Bjesse and Anna Slobodová, editors, FMCAD,
pages 125–134. FMCAD Inc., 2011. ISBN 978-0-9835678-1-3.

E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of the
propositional µ-calculus (extended abstract). In LICS, pages 267–278. IEEE Computer
Society, 1986.

Michael Fisher. A resolution method for temporal logic. In John Mylopoulos and Ray-
mond Reiter, editors, IJCAI, pages 99–104. Morgan Kaufmann, 1991. ISBN 1-55860-
160-0.

Michael Fisher, Clare Dixon, and Martin Peim. Clausal temporal resolution. ACM
Trans. Comput. Log., 2(1):12–56, 2001.

Maria Fox and Derek Long. The detection and exploitation of symmetry in planning
problems. In Thomas Dean, editor, IJCAI, pages 956–961. Morgan Kaufmann, 1999.
ISBN 1-55860-613-0.

Oded Fuhrmann and Shlomo Hoory. On extending bounded proofs to inductive proofs.
In Ahmed Bouajjani and Oded Maler, editors, CAV, volume 5643 of Lecture Notes in
Computer Science, pages 278–290. Springer, 2009. ISBN 978-3-642-02657-7.

M. Carmen Fernández Gago, Michael Fisher, and Clare Dixon. Algorithms for guiding
clausal temporal resolution. In Matthias Jarke, Jana Koehler, and Gerhard Lake-
meyer, editors, KI, volume 2479 of Lecture Notes in Computer Science, pages 235–252.
Springer, 2002. ISBN 3-540-44185-9.

Joxe Gaintzarain, Montserrat Hermo, Paqui Lucio, and Marisa Navarro. Systematic
semantic tableaux for PLTL. Electr. Notes Theor. Comput. Sci., 206:59–73, 2008.

B. Cenk Gazen and Craig A. Knoblock. Combining the expressivity of UCPOP with
the efficiency of Graphplan. In Sam Steel and Rachid Alami, editors, ECP, volume
1348 of Lecture Notes in Computer Science, pages 221–233. Springer, 1997. ISBN
3-540-63912-8.

221

http://minisat.se/

Bibliography

Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly auto-
matic verification of linear temporal logic. In Piotr Dembinski and Marek Sredniawa,
editors, PSTV, volume 38 of IFIP Conference Proceedings, pages 3–18. Chapman &
Hall, 1995. ISBN 0-412-71620-8.

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning – theory and
practice. Elsevier, 2004. ISBN 978-1-55860-856-6.

Rajeev Goré. Various theorem provers for PLTL-satisfiability. Web site, http://users.
cecs.anu.edu.au/~rpg/PLTLProvers/, accessed January, 2012.

Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based decision pro-
cedure for PDL-satisfiability. In Renate A. Schmidt, editor, CADE, volume 5663 of
Lecture Notes in Computer Science, pages 437–452. Springer, 2009. ISBN 978-3-642-
02958-5.

Graham D. Gough. Decision procedures for temporal logic. Master’s thesis, Department
of Computer Science, University of Manchester, October 1984. Also: University of
Manchester, Department of Computer Science, Technical Report UMCS-89-10-1.

C. Cordell Green. Application of theorem proving to problem solving. In Donald E.
Walker and Lewis M. Norton, editors, IJCAI, pages 219–240. William Kaufmann,
1969. ISBN 0-934613-21-4.

Andrew R. Haas. The case for domain-specific frame axioms. In The Frame Problem in
Artificial Intelligence, Proceedings of the 1987 Workshop on Reasoning about Action.
Morgan Kaufmann, 1987.

Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Incremental, inductive CTL model
checking. In P. Madhusudan and Sanjit A. Seshia, editors, CAV, volume 7358 of
Lecture Notes in Computer Science, pages 532–547. Springer, 2012. ISBN 978-3-642-
31423-0.

Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Better generalization in IC3. In
FMCAD, pages 157–164. IEEE, 2013.

Keijo Heljanko, Tommi A. Junttila, and Timo Latvala. Incremental and complete
bounded model checking for full PLTL. In Kousha Etessami and Sriram K. Raja-
mani, editors, CAV, volume 3576 of Lecture Notes in Computer Science, pages 98–111.
Springer, 2005. ISBN 3-540-27231-3.

Malte Helmert. The Fast Downward planning system. J. Artif. Intell. Res. (JAIR), 26:
191–246, 2006.

Malte Helmert. Concise finite-domain representations for PDDL planning tasks. Artif.
Intell., 173(5–6):503–535, 2009.

222

http://users.cecs.anu.edu.au/~rpg/PLTLProvers/
http://users.cecs.anu.edu.au/~rpg/PLTLProvers/

Bibliography

Malte Helmert and Gabriele Röger. How good is almost perfect? In Dieter Fox and
Carla P. Gomes, editors, AAAI, pages 944–949. AAAI Press, 2008. ISBN 978-1-57735-
368-3.

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics for
optimal sequential planning. In Mark S. Boddy, Maria Fox, and Sylvie Thiébaux,
editors, ICAPS, pages 176–183. AAAI, 2007. ISBN 978-1-57735-344-7.

Malte Helmert, Minh Do, and Ioannis Refanidis. IPC 2008, deterministic part, 2008.
Web site, http://ipc.informatik.uni-freiburg.de.

Krystof Hoder and Nikolaj Bjørner. Generalized property directed reachability. In
Alessandro Cimatti and Roberto Sebastiani, editors, SAT, volume 7317 of Lecture
Notes in Computer Science, pages 157–171. Springer, 2012. ISBN 978-3-642-31611-1.

Jörg Hoffmann. Everything you always wanted to know about planning - (but were
afraid to ask). In Joscha Bach and Stefan Edelkamp, editors, KI 2011: Advances
in Artificial Intelligence, 34th Annual German Conference on AI, Berlin, Germany,
October 4-7,2011. Proceedings, volume 7006 of Lecture Notes in Computer Science,
pages 1–13. Springer, 2011. ISBN 978-3-642-24454-4.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. J. Artif. Intell. Res. (JAIR), 14:253–302, 2001.

Jörg Hoffmann, Peter Kissmann, and Álvaro Torralba. “Distance”? Who cares? Tai-
loring Merge-and-Shrink heuristics to detect unsolvability. In Torsten Schaub, Ger-
hard Friedrich, and Barry O’Sullivan, editors, ECAI 2014, volume 263 of Frontiers
in Artificial Intelligence and Applications, pages 441–446. IOS Press, 2014. ISBN
978-1-61499-418-3.

Matthias Horbach and Christoph Weidenbach. Superposition for fixed domains. In
Michael Kaminski and Simone Martini, editors, Computer Science Logic, 22nd In-
ternational Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro,
Italy, September 16-19, 2008. Proceedings, volume 5213 of Lecture Notes in Computer
Science, pages 293–307. Springer, 2008. ISBN 978-3-540-87530-7.

Matthias Horbach and Christoph Weidenbach. Deciding the inductive validity of ∀∃∗
queries. In Erich Grädel and Reinhard Kahle, editors, Computer Science Logic, 23rd
international Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coim-
bra, Portugal, September 7-11, 2009. Proceedings, volume 5771 of Lecture Notes in
Computer Science, pages 332–347. Springer, 2009. ISBN 978-3-642-04026-9.

Richard Howey, Derek Long, and Maria Fox. VAL: Automatic plan validation, con-
tinuous effects and mixed initiative planning using PDDL. In ICTAI, pages 294–
301. IEEE Computer Society, 2004. ISBN 0-7695-2236-X. Software available at
http://www.plg.inf.uc3m.es/ipc2011-deterministic/Resources.

223

http://ipc.informatik.uni-freiburg.de
http://www.plg.inf.uc3m.es/ipc2011-deterministic/Resources

Bibliography

Ruoyun Huang, Yixin Chen, and Weixiong Zhang. SAS+ planning as satisfiability. J.
Artif. Intell. Res. (JAIR), 43:293–328, 2012.

Ullrich Hustadt and Boris Konev. TRP++2.0: A temporal resolution prover. In Franz
Baader, editor, CADE, volume 2741 of Lecture Notes in Computer Science, pages
274–278. Springer, 2003. ISBN 3-540-40559-3.

Ullrich Hustadt and Renate A. Schmidt. Scientific benchmarking with temporal logic
decision procedures. In Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuinness,
and Mary-Anne Williams, editors, KR, pages 533–546. Morgan Kaufmann, 2002. ISBN
1-55860-554-1.

Ullrich Hustadt, Boris Konev, and Renate A. Schmidt. Deciding monodic fragments by
temporal resolution. In Robert Nieuwenhuis, editor, CADE, volume 3632 of Lecture
Notes in Computer Science, pages 204–218. Springer, 2005. ISBN 3-540-28005-7.

IPC. International planning competition. Web site, http://ipc.icaps-conference.
org/, accessed 1/5/2013, 2013.

IPC. International planning competition 2014 results page. Web site, http://helios.
hud.ac.uk/scommv/IPC-14/resDoc.html, accessed 06/12/2014, 2014.

Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In Javier
Esparza and Rupak Majumdar, editors, TACAS, volume 6015 of Lecture Notes in
Computer Science, pages 129–144. Springer, 2010. ISBN 978-3-642-12001-5.

Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard Gram-
lich, Dale Miller, and Uli Sattler, editors, IJCAR, volume 7364 of Lecture Notes in
Computer Science, pages 355–370. Springer, 2012. ISBN 978-3-642-31364-6.

Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput. Surv., 41
(4), 2009.

Barbara Jobstmann and Roderick Bloem. Optimizations for LTL synthesis. In Formal
Methods in Computer-Aided Design, 6th International Conference, FMCAD 2006,
San Jose, California, USA, November 12-16, 2006, Proceedings, pages 117–124. IEEE
Computer Society, 2006. ISBN 0-7695-2707-8.

Wm. Woolsey Johnson and William E. Story. Notes on the “15” puzzle. American
Journal of Mathematics, 2(4):397–404, 1879. ISSN 00029327.

Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California, Los Angeles, Calif., 1968.

Henry Kautz, Bart Selman, and Jörg Hoffmann. SatPlan: Planning as satisfiability. In
Working Notes of the 5th International Planning Competition, Cumbria, UK, 2006.
Software available at http://www.cs.rochester.edu/~kautz/satplan/.

224

http://ipc.icaps-conference.org/
http://ipc.icaps-conference.org/
http://helios.hud.ac.uk/scommv/IPC-14/resDoc.html
http://helios.hud.ac.uk/scommv/IPC-14/resDoc.html
http://www.cs.rochester.edu/~kautz/satplan/

Bibliography

Henry A. Kautz and Bart Selman. Planning as satisfiability. In ECAI, pages 359–363,
1992.

Henry A. Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic
and stochastic search. In William J. Clancey and Daniel S. Weld, editors, AAAI/IAAI,
Vol. 2, pages 1194–1201. AAAI Press / The MIT Press, 1996. ISBN ISBN 0-262-51091-
X.

Henry A. Kautz, David A. McAllester, and Bart Selman. Encoding plans in propositional
logic. In Luigia Carlucci Aiello, Jon Doyle, and Stuart C. Shapiro, editors, KR, pages
374–384. Morgan Kaufmann, 1996. ISBN 1-55860-421-9.

Jana Koehler. IPP - A Planning System for ADL and Resource-Constrained Planning
Problems. Habiliation thesis, University of Freiburg, 1999.

Boris Konev. TRP++ : Temporal resolution prover. Web site, http://cgi.csc.liv.
ac.uk/~konev/software/trp++/, accessed January, 2012.

Boris Konev, Anatoli Degtyarev, Clare Dixon, Michael Fisher, and Ullrich Hustadt.
Mechanising first-order temporal resolution. Inf. Comput., 199(1-2):55–86, 2005.

Jan Kraj́ıcek. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997.

Daniel Kroening and Ofer Strichman. Efficient computation of recurrence diameters.
In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and Supratik Mukhopadhyay,
editors, VMCAI, volume 2575 of Lecture Notes in Computer Science, pages 298–309.
Springer, 2003. ISBN 3-540-00348-7.

Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314, 2001.

Stefan Kupferschmid, Matthew D. T. Lewis, Tobias Schubert, and Bernd Becker. Incre-
mental preprocessing methods for use in BMC. Formal Methods in System Design, 39
(2):185–204, 2011.

Tal Lev-Ami, Christoph Weidenbach, Thomas W. Reps, and Mooly Sagiv. Labelled
clauses. In Frank Pfenning, editor, CADE, volume 4603 of Lecture Notes in Computer
Science, pages 311–327. Springer, 2007. ISBN 978-3-540-73594-6.

Derek Long and Maria Fox. Efficient implementation of the plan graph in STAN. J.
Artif. Intell. Res. (JAIR), 10:87–115, 1999.

Feng Lu, Madhu K. Iyer, Ganapathy Parthasarathy, Li-C. Wang, Kwang-Ting Cheng,
and Kuang-Chien Chen. An efficient sequential SAT solver with improved search
strategies. In DATE, pages 1102–1107. IEEE Computer Society, 2005. ISBN 0-7695-
2288-2.

225

http://cgi.csc.liv.ac.uk/~konev/software/trp++/
http://cgi.csc.liv.ac.uk/~konev/software/trp++/

Bibliography

Michel Ludwig and Ullrich Hustadt. Fair derivations in monodic temporal reasoning.
In Renate A. Schmidt, editor, CADE, volume 5663 of Lecture Notes in Computer
Science, pages 261–276. Springer, 2009a. ISBN 978-3-642-02958-5.

Michel Ludwig and Ullrich Hustadt. Resolution-based model construction for PLTL. In
Carsten Lutz and Jean-François Raskin, editors, TIME, pages 73–80. IEEE Computer
Society, 2009b. ISBN 978-0-7695-3727-6.

João Marques-Silva. Computing minimally unsatisfiable subformulas: State of the art
and future directions. Multiple-Valued Logic and Soft Computing, 19(1-3):163–183,
2012.

João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

João P. Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning
SAT solvers. In Biere et al. (2009), pages 131–153. ISBN 978-1-58603-929-5.

Bart Massey. Directions In Planning: Understanding The Flow Of Time In Planning.
PhD thesis, University of Oregon, 1999.

John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4,
pages 463–502. Edinburgh University Press, 1969. reprinted in McC90.

Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993. ISBN 978-0-7923-9380-1.

Kenneth L. McMillan. Interpolation and SAT-based model checking. In Warren A. Hunt
Jr. and Fabio Somenzi, editors, CAV, volume 2725 of Lecture Notes in Computer
Science, pages 1–13. Springer, 2003. ISBN 3-540-40524-0.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages
530–535. ACM, 2001. ISBN 1-58113-297-2.

Hootan Nakhost and Martin Müller. Action elimination and plan neighborhood graph
search: Two algorithms for plan improvement. In Ronen I. Brafman, Hector Geffner,
Jörg Hoffmann, and Henry A. Kautz, editors, ICAPS, pages 121–128. AAAI, 2010.

M. H. A. Newman. On theories with a combinatorial definition of “equivalence”. Annals
of Mathematics, 43(2):223–243, 1942.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning
(in 2 volumes), pages 371–443. Elsevier and MIT Press, 2001. ISBN 0-444-50813-9,
0-262-18223-8.

226

Bibliography

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT mod-
ulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). J. ACM, 53(6):937–977, 2006.

Mats Petter Pettersson. Reversed planning graphs for relevance heuristics in AI planning.
In Planning, Scheduling and Constraint Satisfaction: From Theory to Practice, volume
117 of Frontiers in Artificial Intelligence and Applications, pages 29–38. IOS Press,
2005.

Ingo Pill, Simone Semprini, Roberto Cavada, Marco Roveri, Roderick Bloem, and
Alessandro Cimatti. Formal analysis of hardware requirements. In Ellen Sentovich,
editor, Proceedings of the 43rd Design Automation Conference, DAC 2006, San Fran-
cisco, CA, USA, July 24-28, 2006, pages 821–826. ACM, 2006. ISBN 1-59593-381-6.

Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers
with restarts. In Ian P. Gent, editor, Principles and Practice of Constraint Program-
ming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal, September
20-24, 2009, Proceedings, volume 5732 of Lecture Notes in Computer Science, pages
654–668. Springer, 2009. ISBN 978-3-642-04243-0.

David A. Plaisted and Steven Greenbaum. A structure-preserving clause form transla-
tion. J. Symb. Comput., 2(3):293–304, 1986.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer
Society, 1977.

Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log., 62(3):981–998, 1997.

Silvio Ranise. Symbolic backward reachability with effectively propositional logic - ap-
plications to security policy analysis. Formal Methods in System Design, 42(1):24–45,
2013.

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime
planning with landmarks. J. Artif. Intell. Res. (JAIR), 39:127–177, 2010.

Jussi Rintanen. A planning algorithm not based on directional search. In Anthony G.
Cohn, Lenhart K. Schubert, and Stuart C. Shapiro, editors, KR, pages 617–625. Mor-
gan Kaufmann, 1998.

Jussi Rintanen. Evaluation strategies for planning as satisfiability. In Ramon López
de Mántaras and Lorenza Saitta, editors, ECAI, pages 682–687. IOS Press, 2004.
ISBN 1-58603-452-9.

Jussi Rintanen. Regression for classical and nondeterministic planning. In Malik Ghal-
lab, Constantine D. Spyropoulos, Nikos Fakotakis, and Nikolaos M. Avouris, editors,
ECAI, volume 178 of Frontiers in Artificial Intelligence and Applications, pages 568–
572. IOS Press, 2008a. ISBN 978-1-58603-891-5.

227

Bibliography

Jussi Rintanen. Planning graphs and propositional clause-learning. In Gerhard Brewka
and Jérôme Lang, editors, KR, pages 535–543. AAAI Press, 2008b. ISBN 978-1-57735-
384-3.

Jussi Rintanen. Planning as satisfiability: Heuristics. Artif. Intell., 193:45–86, 2012.

Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability: parallel
plans and algorithms for plan search. Artif. Intell., 170(12-13):1031–1080, 2006.

John Alan Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12(1):23–41, 1965.

Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking. STTT, 12(2):123–137,
2010.

Kristin Y. Rozier and Moshe Y. Vardi. A multi-encoding approach for LTL symbolic
satisfiability checking. In Michael Butler and Wolfram Schulte, editors, FM, volume
6664 of Lecture Notes in Computer Science, pages 417–431. Springer, 2011. ISBN
978-3-642-21436-3.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education, 2010. ISBN 978-0-13-207148-2.

Viktor Schuppan and Luthfi Darmawan. Evaluating LTL satisfiability solvers. In Tev-
fik Bultan and Pao-Ann Hsiung, editors, ATVA, volume 6996 of Lecture Notes in
Computer Science, pages 397–413. Springer, 2011. ISBN 978-3-642-24371-4.

Stefan Schwendimann. A new one-pass tableau calculus for PLTL. In Harrie C. M.
de Swart, editor, TABLEAUX, volume 1397 of Lecture Notes in Computer Science,
pages 277–292. Springer, 1998. ISBN 3-540-64406-7.

Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety properties using
induction and a SAT-solver. In Warren A. Hunt Jr. and Steven D. Johnson, editors,
FMCAD, volume 1954 of Lecture Notes in Computer Science, pages 108–125. Springer,
2000. ISBN 3-540-41219-0.

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

Dominik Stoffel and Wolfgang Kunz. Record & play: a structural fixed point iteration
for sequential circuit verification. In ICCAD, pages 394–399, 1997.

Ofer Strichman. Pruning techniques for the SAT-based bounded model checking prob-
lem. In Tiziana Margaria and Thomas F. Melham, editors, CHARME, volume 2144 of
Lecture Notes in Computer Science, pages 58–70. Springer, 2001. ISBN 3-540-42541-1.

Martin Suda. LS4: A PLTL-prover based on labelled superposition with partial model
guidance. Web site, http://www.mpi-inf.mpg.de/~suda/ls4.html, 2012a.

228

http://www.mpi-inf.mpg.de/~suda/ls4.html

Bibliography

Martin Suda. Labelled superposition for PLTL. Web site, http://people.mpi-inf.
mpg.de/~suda/supLTL.html, 2012b.

Martin Suda. Variable and clause elimination for LTL satisfiability checking. CoRR,
abs/1306.5539, 2013a.

Martin Suda. Duality in STRIPS planning. CoRR, abs/1304.0897, 2013b.

Martin Suda. DIMSPEC, a format for specifying symbolic transition systems. Web site,
http://www.mpi-inf.mpg.de/~suda/DIMSPEC.html, 2013c.

Martin Suda. Variable and clause elimination for LTL satisfiability checking. In Marek
Košta and Thomas Sturm, editors, MACIS 2013 Nanning, China, pages 60–74, 2013d.

Martin Suda. minireachIC3, a minisat-based implementation of PDR. Web site, https:
//github.com/quickbeam123/minireachIC3, 2013e.

Martin Suda. Property directed reachability for automated planning. J. Artif. Intell.
Res. (JAIR), 50:265–319, 2014a.

Martin Suda. Property directed reachability for automated planning. Web site, http:
//www.mpi-inf.mpg.de/~suda/PDRplan.html, 2014b.

Martin Suda and Christoph Weidenbach. A PLTL-prover based on labelled superposition
with partial model guidance. In Bernhard Gramlich, Dale Miller, and Uli Sattler,
editors, IJCAR, volume 7364 of Lecture Notes in Computer Science, pages 537–543.
Springer, 2012a. ISBN 978-3-642-31364-6.

Martin Suda and Christoph Weidenbach. Labelled superposition for PLTL. In Niko-
laj Bjørner and Andrei Voronkov, editors, LPAR, volume 7180 of Lecture Notes in
Computer Science, pages 391–405. Springer, 2012b. ISBN 978-3-642-28716-9.

Martin Suda and Christoph Weidenbach. Labelled superposition for PLTL. Research Re-
port MPI-I-2012-RG1-001, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg
85, 66123 Saarbrücken, Germany, January 2012c.

Andrzej Szalas and Leszek Holenderski. Incompleteness of first-order temporal logic with
until. Theor. Comput. Sci., 57:317–325, 1988.

G.S. Tseitin. On the complexity of derivation in propositional calculus. In Jörg H.
Siekmann and Graham Wrightson, editors, Automation of Reasoning, Symbolic Com-
putation, pages 466–483. Springer Berlin Heidelberg, 1983. ISBN 978-3-642-81957-5.

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In LICS, pages 332–344. IEEE Computer
Society, 1986.

Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Com-
put., 115(1):1–37, 1994.

229

http://people.mpi-inf.mpg.de/~suda/supLTL.html
http://people.mpi-inf.mpg.de/~suda/supLTL.html
http://www.mpi-inf.mpg.de/~suda/DIMSPEC.html
https://github.com/quickbeam123/minireachIC3
https://github.com/quickbeam123/minireachIC3
http://www.mpi-inf.mpg.de/~suda/PDRplan.html
http://www.mpi-inf.mpg.de/~suda/PDRplan.html

Bibliography

G. Venkatesh. A decision method for temporal logic based on resolution. In S. N.
Maheshwari, editor, FSTTCS, volume 206 of Lecture Notes in Computer Science,
pages 272–289. Springer, 1985. ISBN 3-540-16042-6.

Christoph Weidenbach. Automated Reasoning – The Art of Generic Problem Solving.
Unpublished.

Christoph Weidenbach. Combining superposition, sorts and splitting. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages
1965–2013. Elsevier and MIT Press, 2001. ISBN 0-444-50813-9, 0-262-18223-8.

Eric W. Weisstein. Least common multiple. From MathWorld—A Wolfram Web Re-
source, 2013. URL http://mathworld.wolfram.com/LeastCommonMultiple.html.
Last visited on 19/11/2013.

Wikipedia. 15 puzzle — wikipedia, the free encyclopedia. Web site, http://en.

wikipedia.org/wiki/15_puzzle, accessed 19/05/2014, 2014.

Richard Williams and Boris Konev. Propositional temporal proving with reductions to
a SAT problem. In Maria Paola Bonacina, editor, CADE, volume 7898 of Lecture
Notes in Computer Science, pages 421–435. Springer, 2013. ISBN 978-3-642-38573-5.
Software available at http://cgi.csc.liv.ac.uk/~rmw/STRP.html.

Pierre Wolper. Temporal logic can be more expressive. Information and Control, 56
(1/2):72–99, 1983.

Pierre Wolper. The tableau method for temporal logic: An overview. Logique et Analyse,
28:119–136, 1985.

Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In DATE, pages
10880–10885. IEEE Computer Society, 2003. ISBN 0-7695-1870-2.

230

http://mathworld.wolfram.com/LeastCommonMultiple.html
http://en.wikipedia.org/wiki/15_puzzle
http://en.wikipedia.org/wiki/15_puzzle
http://cgi.csc.liv.ac.uk/~rmw/STRP.html

Index

Symbols

(K,L)-model . 23
(K,L)-satisfiable . 26
(b, k)-clause . 46
<c . 15
C ⊗p D . 107
NT . 25
N(K,L) .25
R(K,L)(b, k) .25
[V1, V2] . 21
N . 17
N+ . 23
′ (prime) . 21
⊥ . 13
• . 130
◦ . 77
∼l .13
Lits(V) . 74
©, �, ♦, U, R . 17
¬, ∧, ∨, →, ≡ . 13
Vars(ϕ) . 13
k-layer . 31

A

action effect axioms 172
action precondition axioms 172
action, STRIPS . 171
applicable, action 171
at-least-one axioms 172
atom, atomic formula.13
auxiliary transition variables 192

B

backward, search direction.153, 191

bad state .125

blocks, LS4 . 72, 77

C

classical frame axioms 172

clause extension of an ordering 15

clause propagation, PDR 142, 144

clause, propositional 13

CNF . 14

complement, literal 13

conditional empty clause 29

conflict exclusion axioms 173

conflicting actions 173

Conjunctive Normal Form 14

cube . 74

D

derivation replaying argument . . . 34, 88,
133

E

effect set, STRIPS 171

equal up to reindexing.31

explaining clause . 75

explanatory frame axioms 173

explicit cycles problem 62

explicit minimization, PDR 142

extended labeled clause 108

F

finite path semantics 128

forward, search direction 153, 191

231

Index

G

goal clauses, TST 21
goal formula, STS 127
goal vertexes, semantic graph. 49

I

implicit cycles problem 63
index. .17
index, layer. .31
inductive minimization, PDR.143
infinite extension . 34
infinitely repeating layers 88
initial clauses, TST.21
initial extension query 82
initial formula, STS 127
initial vertexes, semantic graph 48
interpretation, propositional 13
invariance . 125
inverted problem, STRIPS 184
inverted STS . 128
iteration, PDR . 144
iteration, Reach . 133

L

label . 24
label, extended . 108
labeled clause . 24
layer repetition check 86
layer-by-layer saturation 31
layers, LPSup . 31
layers, LS4 . 78
lazy false clause computation 185
Leap procedure, LS4 85
Leap, LPSup inference 28
literal, propositional 13
LPSup calculus .27
LTL interpretation 17

M

marked clause . 76
maximal literal . 15
merge operation, extended labels . . . 109

merge operation, labels 26
model repetition check 82
model, for a TST. 22
model, LTL . 17
model, propositional13
monotone layers, PDR 138
monotonicity property 77

N

Negation Normal Form 18
new block check . 82
NNF . 18
noop action . 171

O

obligation rescheduling, PDR. 141
obligation, PDR. 141
obviously contradictory clause set . . . 29
offset . 36
Ordered Resolution, LPSup inference 28
Ordered Resolution, PSup inference . 15

P

parallel plan semantics 172
path . 127
path construction phase, PDR.144
period . 36
plan. .171
positive problem, STRIPS 181
precondition set, STRIPS 171
priming notation . 21
productive clause . 16
progress layer property 78
proper extension query 82
proper layers, Reach.130
PSup calculus . 15

Q

queue strategy, PDR 146

R

rank, of a (K,L)-model23

232

Index

reason, for unsuccessful extension. . .139
redundancy, LPSup 29
redundancy, PSup 15
represented, by a labeled clause.25
resolvent, propositional 107

S

safety . 125
satisfiable, LTL formula 17
satisfiable, propositional formula.13
satisfiable, set of labeled clauses 26
satisfiable, STS. .128
satisfying assignment 73
saturated till repetition, LPSup.36
saturated up to redundancy, PSup . . . 16
search direction . 128
self-subsuming resolution 107
semantic graph . 46
Separated Normal Form 17
sequential plan semantics172
shiftable clause . 35
signature, propositional.13
simple labeled clause 46
SNF. .17
source vertexes, semantic graph.47
stack strategy, PDR 146
starting labeled clause set 25
state variables, STRIPS 171
state, STS . 127
step clauses, TST 21
STRIPS planning problem 171
STS. 127
subset representation, STRIPS 184
Subsumption, LPSup reduction 30
Subsumption, PSup reduction 15
subsumption, labeled clauses 115
subsumption, propositional clauses . . 13
successful extension 174
successor state . 171
Symbolic Transition System 127

T

tautology. .13

Tautology deletion, LPSup reduction 30
Tautology deletion, PSup reduction. .15
temporal clauses . 17
temporal extension of an ordering . . . 26
temporal resolution 11, 60
Temporal Satisfiability Task 21
Temporal Shift, LPSup inference 28
time point .17
transition formula, STS 127
TST . 21

U

ultimately periodic model 23
unconditional empty clause 29
universal clauses, LS4 77
universal layers, Reach 130
universal model . 57
(un)successful extension 174

V

valuation, propositional 13
variable, propositional 13

W

weaker-than-goal requirement 139
witnessing path . 128
world . 1, 71

233

	Introduction
	Theorem proving in linear temporal logic
	Verification of hardware circuits
	Automated planning
	Resolution-based reasoning
	The temporal challenge
	Main contributions and thesis overview

	Labeled superposition for LTL
	Introduction
	Preliminaries
	Resolution-based theorem proving in propositional logic
	Linear temporal logic

	Labeled superposition
	Labeled clauses
	Calculus LPSup
	Saturating labeled clause sets
	Completeness and model building

	Semantic and syntactic aspects
	TST as a symbolic description of a Büchi automaton
	Semantic graphs for labeled clause sets
	On uniqueness of saturations

	Related work
	Approaches to LTL satisfiability checking: an overview
	Comparison with Clausal Temporal Resolution
	Experimental comparison

	Conclusion

	LTL proving with partial model guidance
	Introduction
	SAT solving under assumptions
	Solving by parts
	Tracking dependencies with markers

	The algorithm LS4
	Global variables and invariants
	Pseudocode
	Correctness
	Termination

	Practical experience
	Implementation
	Experimental evaluation

	Discussion and related work
	Semantic graphs and the relation to LPSup
	Two other solvers relying on SAT
	Recent advances in hardware model checking

	Conclusion

	Variable and clause elimination for LTL
	Introduction
	Theory
	Variable and clause elimination in SAT
	Adapting the mechanism of labeled clauses
	Elimination in LTL

	Implementation and experiment
	Variable and clause elimination via Minisat
	An experiment

	Discussion and related work
	Conclusion

	Reachability, model checking, and triggered clause pushing for PDR
	Introduction
	Specializing LS4 to reachability
	Formalizing reachability
	The Reach algorithm
	Related work

	Towards Property Directed Reachability
	Monotone layers
	Three enhancements
	Pseudocode and correctness
	PDR – related work

	Triggered clause pushing
	Witnesses for failed push attempts
	Implementing triggered clause pushing via subsumption

	Practical part
	Experimental setup
	Incremental evaluation
	Tabular view and the preferable search direction
	Comparison with other publicly available implementations

	Conclusion

	Property directed reachability in automated planning
	Introduction
	The planning problem and encodings
	Propositional STRIPS planning
	Two simple encodings

	PDR without a SAT solver
	Planning-specific path extensions
	Inductive reason minimization in procedure extend
	Replacing the remaining SAT-solver calls
	Reversing the search direction
	Further improvements

	Experiments
	The setup
	PDRplan v.s. standard PDR plus encodings
	Tuning PDRplan
	Improving PDRplan
	Comparing to other planners
	Plan quality
	Anytime PDR and optimal planning
	Detecting unsatisfiable problems
	Summary

	Related work: Graphplan
	Discussion: A closer look at two domains
	Conclusion

	Conclusion
	Bibliography
	Index

