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Zusammenfassung

In dieser Arbeit wird Tomographie unter Nutzung von Rastertransmissions-
elektronenmikroskopen (STEM) mit begrenzter Tiefenschärfe untersucht. Wir
schlagen ein neues Aufnahmeschema für die High-Angle Annular Dark-Field
(HAADF) Tomographie vor: Die kombinierte Kipp- und Fokusserie (CTFS).
In diesem Schema wird drei-dimensionale (3D) Information gewonnen, indem
eine Probe mechanisch gedreht wird. Für jede Richtung wird eine Serie von
Bildern mit unterschiedlicher Fokustiefe aufgenommen.

Wir stellen die STEM-Transformation vor, eine Verallgemeinerung der
bekannten Strahl-Transformation (Röntgen-Transformation) für parallele
Strahlen. Die STEM-Transformation berücksichtigt die konvergente Form des
Elektronenstrahls in aberrationskorrigierten STEM. Die Abbildung wird ana-
lytisch untersucht und es wird gezeigt, dass es sich (1) um eine lineare Faltung
handelt sowie (2) um einen selbstadjungierten Operator.

Wir stellen einen iterativens Algorithmus für die tomographischen Rekon-
struktion von CTFS Daten vor. Der Algorithmus nutzt die Kaczmarz Methode
um das System Ax = b approximativ im Sinne der kleinsten Quadrate zu lösen.
Hierbei sind b die Bilder, x das gesuchte Tomogramm und A die sogenannte
Systemmatrix. Da A für eine explizite, selbst dünn besetzte, Speicherung
zu groß ist, wird die Matrix implizit ausgedrückt. Dies geschieht durch eine
Vorwärts- und eine Rückprojektion. Die Vorwärtsprojektion nutzt eine Im-
plementierung der STEM-Transformation auf Basis von stochastischem Ray-
tracing. Es werden zwei unterschiedliche Rückprojektionen definiert, ”paar-
weise” und ”nicht paarweise”. Die nicht paarweise Rückprojektion nutzt einen
heuristischen Gewichtungsfaktor, wohingegen die paarweise Version auf einer
numerischen Approximation der adjungierten STEM-Transformation basiert.
Diese Implementierung nutzt im Fourier-Raum vorberechnete Faltungsopera-
tionen und lineare Interpolation.

Eine experimentelle Evaluierung des Algorithmus zeigt, dass die kom-
binierte Kipp- und Fokusserie die Artefakte ”axiale Verlängerung” sig-
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nifikant reduziert, d.h. sie führt bei gleichem Drehbereich zu einer isotroperen
Auflösung als Verfahren auf Basis einer reinen Kipp- oder reinen Fokusserie.
Die paarweise Rückprojektion weist ein drastisch schnelleres Konvergenzver-
halten auf als die nicht paarweise Version.

Zum Abschluss wird das Softwarepaket ”Ettention” präsentiert, das eine
große Bandbreite tomographischer Rekonstruktionsprobleme mittels iterativer
Verfahren löst. Es wird gezeigt, wie die scheinbar widersprüchlichen An-
forderungen ”Erweiterbarkeit”, ”Modularität” und ”Performanz” gleichzeitig
erfüllt werden können, indem ein Werkzeugkasten mit Bausteinen für itera-
tive Rekonstruktionsverfahren zur Verfügung gestellt wird. Diese Bausteine
können schnell zu applikationsspezifischen Rekonstruktionsalgorithmen kom-
biniert werden.
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Abstract

In this thesis, we investigate tomography using scanning transmission electron
microscopy (STEM) with limited depth of field. A combined tilt- and focal
series (CTFS) is proposed as a new recording scheme for high-angle annular
dark-field STEM tomography. Hereby, three-dimensional (3D) data is acquired
by mechanically tilting the specimen and at each tilt direction recording a series
of images with different focal depth (focal series).

The STEM transform is introduced as a generalization of the well-known
ray transform for parallel illumination that considers the convergent shape
of an electron beam in aberration corrected STEM. The STEM transform is
investigated analytically and it is shown that it is (1) a linear convolution and
(2) self-adjoint.

We introduce an iterative algorithm to solve the problem of tomographic
reconstruction for data recorded with this new scheme. The algorithm uses
the Kaczmarz method to solve the system Ax = b in a least-squares sense,
where b is the data, x the searched-for tomogram, and A is the so-called
system matrix. As the system matrix is too large for an explicit, even sparse,
representation, A is expressed implicitly by means of a forward and a back pro-
jection. The forward projection used in this thesis is an implementation of the
STEM transform based in stochastic ray-tracing. Two different back projec-
tions are proposed. The first is based on a heuristic weighting factor and called
“unmatched”. The second method is based on an numeric approximation of
the adjoint STEM transform and called “matched”. The implementation uses
precomputed convolution operations and linear interpolation to achieve high
computational efficiency.

By experimental evaluation of the algorithm we show that the method
significantly reduces the artifacts known as axial elongation, i.e. leads to a
more isotropic resolution than pure tilt series based approaches at the same
tilt range as well as pure focal series methods. Furthermore, the matched back
projection converges drastically faster than the unmatched version.
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Finally, the “Ettention” software package is introduced as a platform to
implement a wide range of tomographic reconstruction problems. It is shown
how the seemingly contradictory requirements “extensibility”, “modularity”
and “performance” can be achieved at the same time by providing a tool-
box of building blocks, which can quickly be assembled to application specific
reconstruction algorithms.
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Chapter 1

Introduction

1.1 Background and Motivation

Tomographic reconstruction, sometimes called “image reconstruction from pro-
jections”, is the problem to reconstruct an image function from transmission
data obtained by illuminating an object with radiation from many directions.
The problem is of enormous practical relevance and has numerous applications
in fields such as computed tomography in medical imaging and material sci-
ence, three-dimensional (3D) electron microscopy, meteorology and geology to
name but a few. The different applications require the use of different types
of radiation. Images have been recorded with X-Ray radiation of different
spectra, electron radiation, and even optical light.

Of particular interest for this thesis is the imaging using scanning trans-
mission electron microscopy (STEM) with a high angle annular dark field
(HAADF) detector. In this microscopy mode, a focused electron beam is
scanned over the specimen and the image is formed sequentially, pixel-by-
pixel. The STEM imaging mode is a transmissive mode, i.e. the detector is on
the opposite side of the specimen as seen from the electron source such that
radiation has to pass through the specimen in order to generate a signal. The
detector consists of an annular ring with a high inner and outer cutoff radius.
This way, only those electrons contribute to the detector signal that are scat-
tered more than a minimal scattering angle. This setup gives rise to atomic
number contrast (Z-contrast), i.e. the intensity of the signal is a function of
the atomic numbers of the sample volume that interacted with the beam.
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Figure 1.1: Ray diagrams for imaging in a) the conventional transmission electron
microscope (CTEM) with charge-coupled device (CCD) detector and b) the scanning
transmission electron microscope (STEM) with annular dark field (ADF) detector.

Because there is no objective lens between the specimen and the detector
(Figure 1.1), the imaging mode is particularly suitable for imaging thick spec-
imen, i.e. samples with a thickness of 1 µm and higher. On the other hand,
because of the nature of Z-contrast, the specimen must either consist of or be
stained with heavy atoms, because light elements give insufficient contrast.

As with all electron microscopes, the primary output of HAADF-STEM
imaging is a two-dimensional (2D) image of the specimen, i.e. one projection.
In order to retrieve the 3D shape of the object, computational methods are
applied to combine multiple 2D images into one 3D volume. Several approaches
exist as explained below but the most commonly used method is tilt series
based tomography. Hereby, the specimen is rotated and images are taken
from different directions. Tomographic reconstruction algorithms are used to
compute a 3D volume from the projections. Interestingly, this operation is the
inverse operation of volume rendering, where a 2D image is generated from a
volumetric object. Therefore, one possible view is to consider tomography as
an inverse rendering problem.

Either way, the tilt range strongly influences the resolution of the 3D re-
constructions. Therefore, one would ideally acquire tilted images covering the
entire angular range of ±90°. However, in practice, the maximum tilt range is
usually only about ±60-78° due to mechanical limitations of specimen holders
and because the effective thickness of the specimen as seen by the electron beam
increases as the section is tilted (Figure 1.2). The tomographic reconstruction
then suffers from missing information and limited resolution on account of
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Figure 1.2: a) The principle of tomographic reconstruction. A specimen is rotated
in a transmission microscope and projections are taken from several directions. The
projections are then computationally combined to reconstruct the volume. b) Con-
nection between the missing wedge problem and the specimen thickness. As the
specimen is tilted by an angle β, the thickness “as seen by the electron beam” in-
creases by 1/ cosβ. Therefore, some projection directions are not available for the
tomographic reconstruction.

this “incomplete projection set”. Depending of the used recording scheme,
the missing region has the shape of a “missing wedge” (single-tilt), “missing
pyramid” (double tilt) or “missing cone” (conical tilt). Independent of the
used recording scheme, tilt series based methods are typically recorded with
the best parallel illumination possible to reach a high depth of field (DOF)
and avoid blurring of the image.

Some techniques avoid tilting altogether. In aberration-corrected STEM,
the electron beam is convergent with a focal depth of typically a few nanome-
ters. This is a side-effect of the spherical aberration correctors and required
to reach the lowest possible spot size of the electron beam. At the same time,
the convergent electron beam leads to images with a limited DOF. This allows
a completely different approach to tomography. A focal series can be used to
obtain 3D STEM information. Hereby, axial information is retrieved from a
stack of images with different focal values and the 3D data set is deconvolved
to remove the blurring artifacts resulting of the limited DOF.

In both cases, tilt- and focal series tomography, the resolution suffers from
anisotropic artifacts, called “axial elongation” (Figure 1.3). This means that
the resolution is lower in axial direction than in lateral direction and objects
appear blurred in beam direction. Because the blurring severely hinders the
interpretation of 3D images, axial elongation is considered one of two main
limiting factors of 3D electron microscopy. The other limiting factor is the low
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Figure 1.3: a) The dominating artifacts of focal series tomography is an elongation
in the axial direction. This elongation corresponds to the depth of field of the mi-
croscope. b) In the case of a tilt series with parallel illumination, the missing wedge
is clearly visible. A star-like structure of elongated streaks indicate the individual
projection directions. Axial elongation is also present but less dominant than in the
case of a focal series.

signal-to-noise ratio (SNR) that is a result of electron dose restriction.

In this thesis, the combination of tilt- and focal series is proposed as a
method to improve on the issue of axial elongation. The objectives addressed
in this thesis include:

◾ How can the tomographic reconstruction problem be solved for data
recorded with a combined tilt- and focal series (CTFS)?

◾ To what extent can the incorporation of a focal series provide additional
resolution in axial direction over the information contained in a tilt series
alone? More specifically: Is there a statement comparable to the Fourier
slice theorem that applies to a combined tilt- and focal series?

◾ What are the implications for the theory of tomographic reconstruction
when considering images that are recorded with limited depth of field?

◾ What are practical aspects of combined tilt- and focal tomography? How
should a software architecture be designed to handle this kind of data?
And finally: What are the limits for the practical applicability?

13



1.2 Related Work

In the following chapter, previous approaches to 3D STEM microscopy are
presented. Hereby, we first present work on the different variations of the ac-
quisition schemes tilt series and focal series. The more exotic approaches “Big
Bang” tomography and Ptychography are briefly presented for completeness.
After discussing methods to acquire data, we give an overview of methods
to process this data, i.e. to tomographic reconstruction. Hereby, we restrict
ourselves to approaches directly relevant to this thesis, which are iterative
methods for tomographic reconstruction of data acquired with some variation
of a tilt series.

1.2.1 Tilt Series Tomography

The primary method currently used for studying the 3D organization of the
cellular ultrastructure is tilt-series transmission electron microscope (TEM)
(Hoenger & McIntosh, 2009; Kourkoutis, Plitzko, & Baumeister, 2012). A 3D
volume is reconstructed from images recorded at several projections obtained
by mechanically tilting the sample stage. The resolution is in the range of
2-20nm, thereby filling a critical length scale between the atomic resolution
of X-Ray crystallography (Smyth & Martin, 2000) and single particle electron
tomography (Frank, 2006), high-resolution confocal light microscopy (Hell,
2007) (200 nm), and X-Ray microscopy (Meyer-Ilse et al., 2001) (50 nm).

The most commonly used recording scheme is single-tilt tomography. In
this scheme, the specimen is rotated around a single axis that is perpendicular
to the beam direction. The tilting takes place in constant increments over an
angular range. However, the tilt range strongly influences the resolution of
the 3D reconstructions (Koster et al., 1997; Fernandez, 2012) and is usually
restricted to about ±70° as explained before. The tomographic reconstruction
then suffers from missing information and limited resolution on account of this
so-called “missing wedge” (Figure 1.4a). A quantitative relationship between
the absence of certain frequency components and the missing wedge is detailed
later in Section 2.2, Equation 2.6.

Tilt Series Alignment

One issue with tilt series based tomography is the misalignment of tilt series
because of mechanical imprecisions in the stage rotation. Here, misalignment
means that besides the intended rotational movement around the tilt axis, the

14



sample stage undergoes additional, random movements such as lateral trans-
lations, magnification changes, and rotations around different axis. Alignment
errors are typically addressed by first computationally estimating the error
and then re-projecting the individual images of a tilt series to form a fully
aligned stack. Alternatively, the projection parameters related to each image
could be stored and considered in the reconstruction algorithm. Either way,
the computationally hard task is to estimate the alignment errors.

The task of alignment can be simplified by introducing a dispersion of
markers such as gold nanoparticles into the specimen (Pennycook & Nellist,
2011, p. 364). The movement of these particles in each projection can be
tracked, and misalignments can be determined by least-squares tracking of
fiducial with comparison to a reference projection (Berriman, Bryan, Freeman,
& Leonard, 1984; Lawrence, 1984; Olins et al., 1983). The basic method has
been improved incrementally, for example by more selective marker detection
algorithms based on second-order derivatives (Cao, Takaoka, Zhang, & Nishi,
2011), Markov random fields (Amat et al., 2008) and most recently using
optical flow methods (Abrishami et al., 2015).

In situations where the use of markers is prohibited for reasons in the
sample preparation or because the resulting artifacts are undesirable, marker-
less methods can be used. The most common approach is to detect features,
“landmarks” in the images and use those positions as markers (Winkler &
Taylor, 2006; Sorzano et al., 2009).

The computational task of tilt series alignment is remarkably closely related
to the problem known as “bundle adjustment” in the computer vision commu-
nity that refers to the alignment of camera systems from several photographs.
As drastic advancements have recently been reported in this community (e.g.
Jian, Balcan, & Dellaert, 2012), it might be worthwhile to investigate if meth-
ods recently introduces in the computer vision community can be transfered
to electron tomography.

Alternative Tilt Geometries

As mentioned before, one of the two main limiting factors of electron tomog-
raphy is axial elongation. A number of different solutions have been explored
as explained in the following. The missing wedge can be reduced to a miss-
ing pyramid using double-tilt tomography (Penczek, Marko, Buttle, & Frank,
1995; Mastronarde, 1997). In this recording scheme, two separate tilt series
are recorded with both tilt series in perpendicular direction. Thus, if the beam
direction is the z direction, a double-tilt series can be realized by first rotating
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Figure 1.4: Comparison of the different tilt geometries. a) Single tilt results in a
“missing wedge”. b) In the double-tilt geometry, the missing wedge is reduced to a
“missing pyramid”. c) In conical tilt geometry, the missing region has the shape of
a double cone. Figure adapted from (Lanzavecchia et al., 2005).

from ±70° around the x-axis and then by ±70° around the y-axis to generate a
single dataset (Figure 1.4b).

Another recording scheme is conical tomography (Lanzavecchia et al.,
2005). Hereby, the specimen is first rotated by a fixed angle around an axis in
the lateral plane. The tilt series is then generated by successively tilting around
the beam axis. Figure 1.4c depicts the principle. In this recording scheme, the
missing wedge is reduced to a missing cone, leading to an isotropic resolution
in the xy plane. The scheme is therefore particularly beneficial for the study
of thin structures such as channels, receptors, and transporters in biological
membranes.

Impact of Sample Thickness

The impact of missing vertical information is more severe for imaging samples
thicker than several mean free path lengths for electron scattering, typically a
few hundreds of nanometers for biological samples. Beyond that, the resolution
of TEM tomography is reduced by electron-matter interactions. Firstly, (mul-
tiple) elastic scattering events lead to an angular broadening of the electron
beam, especially in areas behind high-density objects. Secondly, inelastic scat-
tering spreads the energy spectrum of the electron beam leading to chromatic
blurring of the TEM objective lens (Reimer, 1998). Chromatic blurring in thick
biological samples can be reduced by introducing energy filtering (Koster et
al., 1997) or chromatic aberration correction (Baudoin, Jerome, Kübel, & de
Jonge, 2013).
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1.2.2 Focal Series Tomography

Avoiding tilting altogether is also possible. By recording of focal series to
obtain 3D STEM information (Behan, Cosgriff, Kirkland, & Nellist, 2009;
Borisevich, Lupini, & Pennycook, 2006; de Jonge, Sougrat, Northan, & Pen-
nycook, 2010; Dukes, Ramachandra, Baudoin, Gray Jerome, & de Jonge, 2011;
Frigo, Levine, & Zaluzec, 2002). Hereby, axial information is retrieved from a
stack of images with different focal values. The feasibility of focal series STEM
tomography is tightly coupled to the development of spherical aberration cor-
rection (Krivanek, Dellby, & Lupini, 1999), as the corrections allow a strongly
limited depth of field as a side effect. The 3D data set is deconvolved to remove
the blurring effect of the limited DOF (Ramachandra & de Jonge, 2012). But
the focal series data suffers from a vertically elongated point spread function,
and the vertical resolution is even further reduced by shadowing effects below
strongly scattering objects (Behan et al., 2009; de Jonge et al., 2010).

1.2.3 Exotic Sources of Three Dimensional Resolution

“Big Bang” Tomography

The method called “Big Bang” tomography (Van Dyck, Jinschek, & Chen,
2012) is a 2.5D reconstruction scheme that works on individual projections.
The method is capable of reconstructing the positions of individual atoms of
very thin foils such as single-layer and double-layer graphene with precision
of several picometer. The first step of the method is reconstructing the exit
wave, i.e. generating amplitude and phase images in separate channels of the
projection. This can be achieved using focal series reconstruction (Coene,
Thust, Op de Beeck, & Van Dyck, 1996; Hsieh, Chen, Kai, & Kirkland, 2004),
off-axis holography (Lehmann & Lichte, 2002), or phase plates (Van Dyck,
2010).

Atom positions are now reconstructed one by one where the xy-positions
are treated separately from the z-positions. The methods assumes that the
specimen foil is thin enough that the individual atoms are clearly separated in
a projection perpendicular to the foil extent. Atom positions in xy-direction
are reconstructed by 2D fitting of an ideal lattice.

In order to reconstruct z-positions, the local area around the projection of
each atom is separated and transfered to Fourier space. The phase difference
to the unscattered wave is determined per Fourier component, and plotted over
spatial frequency. This diagram named “hubble plot” originates in astrophysics
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and is responsible for the name of the tomographic method. By exploiting a
linear relationship between phase difference and the distance to the origin of the
unscattered wave, the z-positions of the individual atoms can be reconstructed.

Ptychography

The basic idea of ptychography (Hüe, Rodenburg, Maiden, Sweeney, & Midg-
ley, 2010; Hüe, Rodenburg, Maiden, & Midgley, 2011) is to remove the need
for an objective lens from the image formation process and replace the optics
by diffraction imaging and software (Humphry, Kraus, Hurst, Maiden, & Ro-
denburg, 2012). The experimental setup uses a STEM microscope together
with a charge-coupled device (CCD) detector. The electron beam is moved
out of focus such that a small patch of the specimen is illuminated. The CCD
detector is placed in the near field of the beam and the resulting refraction
pattern is recorded. By scanning the electron beam in relatively large steps
over the specimen, a sequence of diffraction patterns is recorded, each repre-
senting a different patch of the specimen. The first step of the reconstruction
algorithm is to solve for the phase of the diffraction pattern scattered by the
object (Nellist, McCallum, & Rodenburg, 1995). The reconstructed wave is
then propagated to the specimen, which at this stage is modeled as a plane
(Humphry et al., 2012). The plane model of the specimen can be replaced
by a multi-slice model such that axial resolution can be generated (Maiden,
Humphry, & Rodenburg, 2012). However, the study was conducted using an
optical microscope and to the author’s knowledge, 3D STEM ptychography
has not yet been demonstrated successfully.

1.2.4 Reconstruction Methods

A large number of iterative methods exists to solve the reconstruction problem
for data acquired by tilt series electron microscopy. The first iterative method
proposed was the algebraic reconstruction technique (ART) (Gordon, Bender,
& Herman, 1970). ART is a sequential implementation of the Kaczmarz al-
gorithm (Kaczmarz, 1937) assuming a line model for the forward projection
and pixel basis functions. Subsequently, proposed algorithms include sequen-
tial iterative reconstruction technique (SIRT) (Gilbert, 1972a), which is an
implementation of the Landweber iteration (Landweber, 1951) and simulta-
neous algebraic reconstruction technique (SART) (Andersen & Kak, 1984),
which is a block iterative version of ART and makes the Kaczmarz algorithm
accessible for parallel implementations. All those algorithms are regularization
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algorithms in the sense that they converge to the minimum of the L2-norm of
the residual (Gordon et al., 1970; Norton, 1985; Jiang & Wang, 2003).

The algorithms mentioned above follow a common scheme and differ mainly
in their update strategy as follows. In ART, the solution is refined pixel-by-
pixel, i.e. the forward projection of one pixel is computed and the volume
is corrected with the according back projection before moving to the next
pixel, which makes the method a row-action algorithm. In SIRT, the forward
projection of all projections are computed before correcting the volume. In
SART, forward projections are computed for one projection direction at a time.
This scheme was formalized in (Censor, 1990) by the introduction of variable
block algebraic reconstruction techniques as a common group of algorithms.
Convergence of variable block algorithms can be proven with relatively few
assumptions of the system matrix (Jiang & Wang, 2003; Wang, Zheng, &
Member, 2007; Yan, 2010), leading to robust proofs that are often applicable
even after a slight modification of the algorithm.

Much effort has been spent on efficient implementations of the methods
on different hardware platforms. Most relevant for this thesis is work with a
focus on implementations on graphics processing unit (GPU). A first study
using the CUDA environment was presented by (Scherl, Keck, Kowarschik, &
Hornegger, 2007), more thorough performance measurements were done subse-
quently in (Castano Diez, Mueller, & Frangakis, 2007; Keck, Hofmann, Scherl,
Kowarschik, & Hornegger, 2009; W. Xu et al., 2010). An investigation of low-
level accelerations techniques and their impact on reconstruction performance
was presented in (Palenstijn, Batenburg, & Sijbers, 2011). A different imple-
mentation approach using sparse matrix algebra was proposed in (Vazquez,
Garzon, & Fernandez, 2011). Opposed to the belief that highest reconstruc-
tion performance requires the use of GPU, in (Agulleiro & Fernandez, 2011),
an optimized implementation using single instruction multiple data (SIMD)
instructions on multi-core central processing units (CPUs) was presented and
it was claimed that this approach outperforms GPUs implementations.

While improvements on the implementation can lead to faster reconstruc-
tion times, higher image quality, and resolution requires modification of the
reconstruction algorithm, typically by improving the assumptions on the for-
ward projection. A typical assumption is that the images acquired from the
microscope are subject to Gaussian noise. With the very tight restrictions on
electron dose for many biological specimen, this assumption might not be very
accurate. Therefore, the maximum likelihood method is based on the assump-
tion that the noise in the images is Poisson noise, not Gaussian. The method
was introduced in (Dempster, Laird, & Rubin, 1977) and implemented in the
field of electron tomography in (Coene et al., 1996).
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A rather trivial assumption often used for X-ray tomography that is usually
invalid for electron tomography, is that the object function is zero outside the
reconstruction volume, i.e. that the sample fits entirely into the illuminated
area of the microscope. For reasons in the sample preparation, most electron
tomography samples have the shape of thin foils and thus are better approx-
imated by an infinite slab relative to the illuminated region. This leads to
artifacts in the outer regions of the tomogram, unless corrected by the method
“long object compensation” (W. Xu et al., 2010).

A large potential for improved methods lies in a more physically accurate
modeling of the image formation and radiation propagation. Important exam-
ples of this research direction include correction for the contrast transfer func-
tion for off-focus phase contrast imaging in TEM (Penczek, Zhu, & Schröder,
1997; Voortman, Stallinga, Schoenmakers, van Vliet, & Rieger, 2011) and a
correction for Bragg scattering (Venkatakrishnan, Drummy, De Graef, Sim-
mons, & Bouman, 2013).

An entirely different research direction is changing the regularization, i.e.
not searching the minimum of the L2-norm of the residual but a solution
that is optimal under a different norm. The idea of total variation minimiza-
tion (TVM) in compressed sensing (L. I. Rudin, Osher, & Fatemi, 1992) in
the context of tomography was first proposed in (Donoho, 2006) and further
investigates in (Goris, Van den Broek, Batenburg, Heidari Mezerji, & Bals,
2012). A combination of maximum likelihood methods and TVM was pro-
posed in (Yan & Vese, 2011). The TVM approaches generally aim to optimize
the L1-norm instead of the L2-norm, thus changing the regularization of the
problem. TVM approaches find solutions that have sparse gradients, i.e. ex-
hibit regions with constant intensity values and sharp edges, which is often the
case particularly for samples from the material sciences.

For reasons of completeness, direct inversion methods such as convolu-
tion back projection (Bracewell & Riddle, 1967; Ramachandran & Lakshmi-
narayanan, 1971; Gilbert, 1972b) and weighted back projection (e.g. Raderma-
cher, 1992) should be mentioned as well. Those methods are based on the idea
of expressing the imaging process as a mathematical transform. The transform
is inverted analytically and the inverse transform is computed using numerical
methods. Direct inversion methods have enormous importance in the field of
medical X-Ray CT because of their high computational efficiency. However,
they tend to perform poorly under conditions typically encountered in electron
tomography, such as low SNR and incomplete projection set (Gordon et al.,
1970). Furthermore, it is not obvious how the STEM transform (Section 2.4.2)
can be incorporated in a direct inversion method. Therefore, this algorithmic
direction is considered out of scope for the purpose of this thesis.

20



Figure 1.5: Schematic overview of the CTFS recording scheme. The specimen was
rotated in relatively large tilt increments over the possible tilt range but for every tilt
direction, a through-focal series was recorded. Figure from (Dahmen et al., 2014a).

In summary, several approaches exist to aquire 3D information at the nano-
scale. In tilt series based transmission electron microscopy, the specimen is
rotated mechanically and images are acquired from different directions, typi-
cally using parallel illumination. Iterative reconstruction algorithms are used
to reconstruct the tomogram. Alternatively, a focal series can be used to gen-
erate 3D information from images with limited depth of field. In this case, a
deconvolution is used to remove the blurring of those parts of the specimen
that are out of focus. However, both approaches suffer from severe axial elon-
gation artifacts. In the case of the tilt series, they originate from the missing
projection set. In the case of focal series tomography, the depth of field is
still several orders of magnitude too large to achieve isotropic resolution in all
dimensions.

1.3 Own Contributions

The CTFS as a new recording scheme for STEM imaging was introduced
(Dahmen et al., 2014a, 2014b, 2014c). In this technique, the specimen is
rotated in relatively large tilt increments over the possible tilt range but for
every tilt direction, a through-focal series is recorded (Figure 1.5). The main
contributions of this work are:

◾ The CTFS as a new recoding scheme for the image acquisition.
◾ A new method for axial alignment of confocal STEM images.
◾ The tilt- focal algebraic reconstruction technique (TF-ART) as a new

algorithm for tomographic reconstruction of STEM images.
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One drawback of the method was that experimental results showed slow
convergence that required ≈ 120 iterations to reach optimal reconstruction
results. This stands in contrast to known results from SART reconstructions
of pure tilt-series dataset, that typically converge after only 3-5 iterations. This
huge difference raises both theoretic and practical concerns about the choice
of the system matrix and possible improvements. Therefore, a different back
projection operator with better theoretic justification was therefore derived
analytically and implemented (Dahmen, Kohr, de Jonge, & Slusallek, 2015).
It was shown experimentally that this new back projection drastically improves
the convergence characteristics of the method. Main contributions include:

◾ The formalization of the STEM-transform as a linear operator on func-
tions defined on R3.

◾ Proof that the STEM transform is a linear convolution, self-adjoint and
a generalization of the ray transform.

◾ A new reconstruction method based on the adjoint STEM transform with
drastically improved convergence characteristics.

Besides the large number of existing software packages for electron tomog-
raphy, it was perceived that all existing implementations fail to solve some of
the fundamental requirements from an architectural point of view. Therefore, a
new software package for tomographic reconstruction was therefore presented
(Dahmen, Marsalek, et al., 2015). The software is called “Ettention”. The
work addresses the issues by creating a general set of high-performance GPU
primitives, building blocks, for quickly assembling situation-specific advanced
iterative reconstruction algorithms.

1.4 Thesis Structure

This document is structured as follows: after an introduction in Chapter 1, the
thesis starts with a theoretic part in Chapter 2. Here, the STEM transform is
introduced as a linear operator. It is shown that the STEM transform is a linear
convolution and a generalization of the ray transform for parallel illumination
that considers imaging with a limited DOF. The Fourier transform of this
operator is considered, which can be interpreted geometrically in a somewhat
surprising way. Additionally, the adjoint operator of the STEM transform is
derived by showing that the operator is self-adjoint.

In Chapter 3, we present an iterative algorithm for solving the tomographic
reconstruction problem for combined tilt- and focal series. The algorithm uses
an implementation of the STEM transform based on stochastic ray tracing as
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a forward model. As a back projection, two different methods are implemented
and compared. The first method, called “unmatched” back projection is based
on a heuristic weighting factor while the second method, called “matched” back
projection uses an efficient implementation of the adjoint operator derived
in Chapter 2. The method is evaluated on experimental data and we show
that the axial elongation artifacts can indeed be improved significantly. We
compare convergence performance of both back projections experimentally and
it is shown that the matched back projection converges drastically faster than
the unmatched back projection.

In Chapter 4, we propose a software architecture for the problem “image
reconstruction from projections” in a more general context. A toolbox of build-
ing blocks for iterative reconstruction algorithms is presented that separates
most of the technical aspects of efficient programming on parallel architectures
from the problem domain. It is shown how the toolbox can be used to imple-
ment the method presented in Chapter 3, but also how it can be generalized
and applied to a wide range of different tomographic reconstruction problems.
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Chapter 2

Theory

2.1 Definition of the Term “Resolution”

The resolution of the human eye is defined as the smallest possible distance
at which two points are still distinguishable. The unaided human eye has
a resolution of about 0.2 mm (Russ, 2006). In the context of microscopes,
the resolution (or resolving power) of a microscope is defined as the closest
distance two points can have and still be distinguishable using the microscope,
assuming ideal conditions.

2.1.1 Resolution Limit by the Rayleigh Criterion

When a wave passes through an opening in a barrier, such as an aperture in
a lens, it is diffracted by the edges of the aperture. Even a perfectly shaped
lens will be limited in its resolving power by this diffraction. A high quality
optical lens is referred to as a diffraction-limited lens. Any further effort to
improve the quality of the lens surface will not improve its resolution (Born &
Wolf, 1997).

The Rayleigh criterion (Figure 2.1) for visible light microscopes states that
the smallest distance that can be resolved, σ, is given by

σ = 0.61λ

µ sinγ
= 0.61λ

NA
≈ 0.61λ (2.1)

In this equation, µ is the refractive index of the viewing medium and γ is
the semi-angle of collection of the magnifying lens. µ sinγ = NA is called the
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Figure 2.1: The Rayleigh criterion: Two points are regarded as just resolved when
the principal diffraction maximum of one image coincides with the first minimum of
the other.

numeric aperture and is a property of the microscope (≈ 0.1-1.4 for optical
microscopes). The Rayleigh criterion translates from visible light microscopy
to electron microscopes, where the numeric aperture is approximately one
(Williams & Carter, 2009). As a result, the upper limit for the achievable
resolution is roughly half the wavelength.

Visible light has a wavelength of 400-700 nm, effectively limiting the res-
olution of visible light microscopes to approximately 250 nm (Abbe, 2004).
Approaches to achieve resolutions better than this using optical light exists,
and are referred to as super resolution microscopy (Leung & Chou, 2011).

A different approach is using a particle with magnitudes smaller wave-
length. The wavelength of an electron depends on its energy and is given
by

λ = h
p
= h

m0eU
(2.2)

where m0 is the resting mass of the electron, e is the electric charge, and U
is the voltage used for the acceleration. It is noticeable here that the speed
of an electron is a function of the total potential difference alone and does
not depend on the geometric setup of the accelerating aparatus within wide
tolerances.

With typical acceleration voltages between 80 kV and 300 kV , electron
wavelength lies between 2.4 pm and 4.4 pm giving a maximal spacial resolution
of 1.2 pm to 2.2 pm. This limit is not reached by far (Krivanek et al., 1999;
Haider, Uhlemann, & Zach, 2000; Bleloch & Lupini, 2004) for technical reasons
such as chromatic aberrations and spherical aberrations which are beyond the
scope of this thesis.
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2.1.2 Resolution Limit by Nyquist-Shannon Theorem

The Nyquist-Shannon theorem states, that if a function p(x) of space, the
signal, contains no spacial frequencies higher than B, i.e. the Rayleigh criterion
holds. This means p(x) it is completely determined by giving its values at a
series of points spaced dsampling apart, where

dsampling =
1

2B
(2.3)

A microscope is considered with a sensor pixel size of dpixel and an overall
magnification of M . By inserting in Equation 2.3 one obtains an upper limit
for the spacial frequency which is completely determined.

Bmax =
M

2dpixel
(2.4)

For STEM microscopes, the pixel size is determined by the accuracy of
the deflector coils that scan the electron beam over the sample, such that the
sampling distance can be chosen almost arbitrarily.

However, the lateral resolution is limited not only by the sampling dis-
tance of the microscope, but also by the highest frequency the microscope can
transmit. The signal can generally be described as the specimen function, con-
voluted by a function called the point spread function (PSF) that describes
the imaging characteristics of the microscope and basically corresponds to the
shape of the electron beam. Imaging an hypothetical, infinitesimal small ob-
ject would generate an image of the PSF, hence the name. The convolution
of two band limited functions contains no frequencies that are not present in
both functions. Mathematically, this can easily be understood by remember-
ing that the convolution corresponds to a multiplication in Fourier space. As
a consequence, choosing a sampling distance smaller than the size of the PSF
does not result in an additional gain of information, only in excessive sampling
of a band limited functions.

2.1.3 The Full-Width-at-Half-Maximum Criterion

One common method to evaluate resolution is to experimentally determine the
PSF. To do so, an image of an approximate point like object, for example a
very small nanoparticle, is recorded. Hereby it is crucial to select an object
that is known in advance to be smaller than the PSF. The intensity is recorded
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along a line through the center of that object. The full-width-at-half-maximum
(FWHM) resolution is defined as the width of the peak at the value between
the background intensity level and the signal maximum (Figure 2.2).

Figure 2.2: Definition of the full-width-at-half-maximum resolution. An approxi-
mate point-like object is imaged and an intensity plot is created through the center
of the image. The signal background level is determined as well as the maximum
peak. The peak diameter is then measured at the half-maximum between the two
values.

2.1.4 Contrast and Electron Statistics

In the above considerations, it is stated that a sensor samples a signal, without
further considering the physical nature of that signal. The exact physical
properties (such as mass density or atomic number) of the specimen that relate
to the signal depend on the imaging mode. However, in the context of STEM,
it is always correct to state that the signal corresponds to the probability of an
incident electron reaching (positive signal) or not reaching (negative signal) the
detector pixel. So the signal is a function g(u) that relates a spatial position
to a probability. When it is said that the signal g(u) is sampled, the detector
records samples of this probability variable. Hereby, each electron works as a
binary sample which takes values one in case the electron reached the detector
or value zero in case it did not reached the detector (Figure 2.3). In the case of
the conventional transmission electron microscope (CTEM), where an entire
image is recorded simultaneously, the situation is slightly more complicated
because an electron that is scattered and thus misses an detector element
might hit the element of a different pixel.
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Figure 2.3: The signal is the probability of any electron reaching the detector, ex-
pressed as function of location. When the signal is sampled, the detector measures
the pixel value counting how many of a given number of electrons reached the de-
tector during the dwell time of a pixel.

Still, the sampling obviously gives the correct signal value in the limit. But
assuming the pixel is exposed to a finite number of electrons N , the estimate
is correct only within a certain tolerance which is given by

SE = 1

2
√
N
. (2.5)

This formula implies that the precision of the estimate can be increased
arbitrarily by increasing N , i.e. spending more electron dose per pixel. On the
other hand, if a fixed electron dose is assumed, increasing the spacial resolution
by using smaller detector elements also decreases N . Assuming the presence
of frequencies beyond the Nyquist frequency, dividing the pixels distance dpixel
by a factor of two will improve the resolution by a factor of two as well.
Because the detector element receives electrons proportional to its area (not
edge length), the number of primary electrons per pixel is divided by a factor
of four and the standard error of the pixel gray value is doubled.

To summarize, STEM images are subject to noise, which in this context is
a fundamental consequence of imaging with a limited number of electrons per
pixel. Improved noise can be traded for decreased resolution by down sampling
the image using standard image processing methods. Improving the product of
noise and resolution, however, is limited by the acceptable electron dose, which
depends on factors such as the type and preparation procedure of the specimen,
the intended application, and the acceleration voltage and is a fundamental
limiting factor to electron tomography. For this thesis, this implies that all
following considerations are made under the assumption that the image signal
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suffers from a low SNR and that this noise translates to imaging errors in the
tomograms.

2.1.5 Resolution in Three Dimensions: Isotropy and
Axial Elongation

So far, resolution has been considered in 2D only. Hereby, the orientation of
the two dimensions is arbitrarily interchangeable because the imaging process
can freely be rotated around the axis given by the beam direction. This implies
that there is no principal anisotropic component in 2D images from electron mi-
croscopes. When considering resolution in 3D, this situation changes because
the third direction is always resolved by means of tomographic reconstruc-
tion, as opposed to the scanning of the electron beam. As a consequence, the
tomogram has two interchangeable lateral dimension and one fundamentally
different, axial direction. So 3D volumes do have an anisotropic component
for principal reasons and the axial direction typically has lower resolution than
the lateral directions.

In order to quantify the loss of resolution in axial direction, a measure based
on the FWHM is typically used. A line of arbitrary direction in the lateral
plane is considered through the center of a small nanoparticle and the FWHM
in lateral direction is measured as explained in Section 2.1.3. A second line in
axial direction through the center of the same nanoparticle is used to measure
the FWHM in axial direction. The axial elongation factor exz is defined as the
ratio of the two resolution values. For perfect isotropic resolution, exz equals
one.

The axial elongation factor can be generalized to the concept of an angle
dependent elongation factor eγ if the second resolution value is measured not
in axial direction but in an arbitrary direction that forms an angle γ with the
beam direction. The angle dependent elongation factor is one for γ = π/2 by
definition and equals exz for γ = 0. By plotting eγ over γ, the loss of resolution
in different directions can be characterized.

2.2 The Ray Transform for Parallel Illumina-

tion

In the context of tilt series electron tomography, the computational problem
of generating 3D information, i.e. information in the axial direction is called
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“tomographic reconstruction”. In the following, an overview of the continuous
formulation of the tomographic reconstruction problem is given, roughly fol-
lowing the presentation in (Natterer & Wübbeling, 2001). Here, the volume
is modeled as a function f(x) ∶ R3 → R that maps points in space to a density
value and similarly, the images are represented as a function g(x) ∶ R2 → R
that map points in the signal space to gray values. The imaging process is
modeled as a transform P that integrates h over straight lines.

Each line is represented by a direction θ ∈ S2 and a point u ∈ θ⊥ on the
plane perpendicular to θ as {u+ tθ ∶ t ∈ R}. Then the ray transform for parallel
illumination (sometimes called X-Ray transform for historic reasons) Pθ can
be defined as

Pθf(u) = ∫
R
f(u + tθ)dt, u ∈ θ⊥. (2.6)

In the slightly different 2D case, i.e. when a 2D image is reconstructed
from one-dimensional (1D) projections, the ray transform equals the famous
Radon transform except for notation. However, the case of particular interest
for this thesis is 3D tomography, i.e. the reconstruction of a 3D volume from
2D projections, so the representation in Equation 2.6 will be used.

The most important result that is directly based on this representation is
the 3D version of the Fourier slice theorem, which is given by

F((Pθf)(ξ)) = (2π)1/2F(f(ξ)). (2.7)

for ξ ⊥ θ. The theorem states that the Fourier transform of a projection
contains the frequencies in the plane gθ through the origin and orthogonal
to the projection direction θ (Figure 2.4). A proof of the theorem along with
additional properties of the ray transform for parallel illumination can be found
in (Natterer & Wübbeling, 2001), Chapter 2.2.

2.3 Tomographic Reconstruction Methods

In the continuous formulation, reconstruction algorithms, i.e. algorithms to
solve the tomographic reconstruction problem, approximate a solution to the
system

[Akf](u) = gk(u), k = 1, . . . ,K. (2.8)
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Figure 2.4: Schematic representation of the Fourier slice theorem. a) An object
function f(u) is projected in direction θ resulting in the image function gθ. b) The
Fourier transform of gθ corresponds to a single slice in Fourier space, orthogonal to
θ.

The tomogram is modeled by an unknown function f ∶ R3 → R which
relates a position u ∈ R3 in the sample to a density value f(u). Likewise,
the images from the microscope are represented by functions gk ∶ R2 → R
relating a pixel coordinate in the images to a gray value or an intensity. Note,
however, that in the CTFS acquisition scheme, each gk consists of a stack
of images, i.e. comprises a 3D function. Nevertheless, the structure of the
reconstruction scheme remains the same. The imaging process is modeled
by a collection of linear operators Ak establishing a mathematical connection
between a tomogram f and the corresponding projection data gk, i.e. a model
for the physics of image formation.

For processing on a computer, a discrete representation of f and gk is
required. This discretization is reached by decomposing these functions ac-
cording to

f(u) ≈
N

∑
i=1

ai(u)Xi and gk(u) ≈
M

∑
j=1

bj(u)Bk,j (2.9)

with respect to basis functions ai and bj (Figure 2.5). Typical choices
are pixel functions, piecewise linear functions or “blobs” (Marabini, Herman,
& Carazo, 1998). Hereby, the choice of basis has a different motivation for
the voxel of the reconstruction volume and the pixels in the images. For
the volume, it is difficult to define how ”ideal“ basis functions should look
like, and the basis can be chosen under mathematical considerations to find a
good discrete approximation of the objective function f . Typical choices are
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pixel functions for their ease of implementation or blobs for their band-limiting
properties. The choice of basis functions for the image pixels however is tightly
coupled to the physical nature of the detector. This is the case because the
image is acquired from discrete measurements in the first place so the ideal
basis functions is the one that perfectly reflects the properties of the detector
element. In the case of STEM imaging, the ideal basis is the δ-function, as
typically one pixel corresponds to exactly one beam position. In the case that
subpixel scanning is used, i.e. the beam is scanned over the area of the pixel
during the pixel dwell time, the basis function should be replaced by a pixel
function.

Figure 2.5: An overview of possible choices for the basis functions. a) Pixel (piece-
wise constant) basis functions. b) Piecewise linear basis functions. c) δ-function. d)
Gaussian. e) Blobs.

The decomposition mentioned above turns Equation 2.8 into the linear
system

AkX = Bk, (2.10)

where the discrete representation of the observed data in the k’th image
is Bk and X stands for the discretization of the tomogram. The matrix Ak is
therefore the discrete representation of the linear operator Ak in the chosen
bases ai and bj.
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In the same sense, the adjoint operator A∗k, often called back projection
and defined by

⟨Akf, gk⟩ = ⟨f, A∗kgk⟩, (2.11)

is represented by the transposed matrix ATk , i.e. the transposed matrix
is the backprojector consistent with the forward operator Ak and the choice
of bases. The exact meaning of Equation 2.11 in terms of square-integrable
functions will be clarified in Section 2.4.5.

Kaczmarz algorithm is an iterative scheme consisting of an inner iteration
cycling through all images in the dataset and an outer iteration which simply
stands for a repetition of the inner loop. Starting with an initial guess f = f (0)
(often f (0) = 0), the k’th step in the inner loop, corresponding to image k,
reads as

f ← f +ΛA∗k(AkA∗k)−1(gk −Akf) (2.12)

or, in the discrete formulation

X ←X +ΛATk (AkATk )−1(Bk −AkX). (2.13)

These formulas can be interpreted as follows: first, the current guess (f
or X) is projected forward and subtracted from the actual data (gk or Bk),
resulting in the so-called residual. In an intermediate step, the inverse of AkA∗k
or AkATk , respectively, is applied to the residual. Finally, the intermediate
result is projected back via A∗k or ATk , yielding the update to be added to the
current guess. The factor Λ ∈ (0,2) acts as a relaxation parameter. Once all
data in the dataset have been processed, the inner iteration starts over, and
the outer iteration number is raised by one. The iteration continues until some
termination criterion is met, typically for a fixed number of iterations or until
the residual error drops below some user defined threshold.

A projection-backprojection pair that implicitly defines the matrices Ak
and the corresponding transposes ATk is an essential component of the algo-
rithm. The projection should model the imaging geometry and the physics of
the imaging process as accurately as possible, while according to the Kaczmarz
algorithm, the back projection should be the adjoint of this operator since it
represents the last step of the update computation in Equation 2.12. However,
as shown by (Zeng & Gullberg, 2000) for the matrix formulation, differing
back projections are also possible. If a back projection is not the adjoint of
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the projection, the pair is called “unmatched”. Convergence in a least-squares
sense (yet to a different solution than for the matched pair) can be proven also
in the case of an unmatched projection-backprojection pair assuming certain
conditions on the back projection (Zeng & Gullberg, 2000).

2.4 The STEM Forward Projection

In the design of tomographic reconstruction algorithms for the field of electron
tomography, a typical assumption is that the intensity of a pixel in a projection
represents the integral along the line to that pixel. This corresponds to the
classical ray transform for parallel illumination as presented in Equation 2.6.
The line integral of the volume can be efficiently computed using ray-casting
(Levoy, 1990). For each pixel in the forward projection, the ray through that
pixel is generated and the volume is sampled at uniform intervals along that
ray. Alternatively, conservative line drawing algorithms like a 3D version of
Bresenham algorithm (Bresenham, 1965) can be used to compute the exact
integral value along the ray. The line model of the electron beam is accurate
for the approximately parallel illumination in TEM tomography, or for STEM
tomography with a small beam convergence angle leading to a large DOF with
respect to the sample thickness and assuming δ-functions for the image basis.
For other image basis functions, the pixel footprint needs to be sampled using
several rays.

2.4.1 Double Cone Model of the Electron Beam

However, in aberration corrected STEM the electron beam is convergent with
a focal depth of typically a few nanometers (Lupini & de Jonge, 2011) as a
side effect of spherical aberration correction and the line model of the forward
projection is no longer a good approximation. For this reason, once should also
take convergence of the electron beam into account (Dahmen et al., 2014a).
The probe shape in the forward projection used a model consisting of a double
cone, as am idealized model for the PSF. Any lateral cut through this double
cone results in a circular disc. In this model, the value of a pixel in the
projection equaled the volume integral of the gray values of the voxels inside the
double cone, weighted by the local current density. We assume that the probe
current is homogeneous within each disc and zero outside. As a consequence,
the local current density changes with the reciprocal of the disc area, i.e. is
larger close to the focus plane. The beam model is called the STEM transform
and can be parametrized as shown in Figure 2.6.
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Figure 2.6: Parametrization of the STEM transform. Positions inside the volume
are identified by coordinates u ∶= (x, y, z). α is the beam opening semi-angle, β
the tilt angle. The unit vector θ denotes the beam direction, the scalar f the focal
length, defined as the distance in direction of θ from the tilt axis to the focal plane
θ⊥. v̄ ∈ θ⊥ is a vector perpendicular to θ, such that the vertex v of the double cone
can be expressed as v = fθ + v̄. Figure adapted from (Dahmen, Kohr, et al., 2015).

2.4.2 The STEM Transform as a Linear Operator

In the following, the STEM forward projection is expressed as a linear oper-
ator on functions defined on R3. This representation is useful to derive the
corresponding back projection and to investigate analytical properties of the
model. In order to simplify notation, all expressions are written without coor-
dinates and are given from the perspective of a fixed specimen and a rotating
probe. The experimentally natural perspective of rotating sample and fixed
probe can be obtained by applying the geometry transformation u ↦ Rθu to
integrals, where Rθ is the rotation matrix given in Equation 2.16.

A double cone with an opening semi-angle of α ∈ (0, π/2), its vertex at the
origin, and the z-axis as rotational symmetry axis can be parametrized as the
set

Cα = {u = (ū, z) ∈ R3 ∣ ∣ū∣ < ∣z∣ tanα}. (2.14)

In order to ensure constant electron flux inside the double cone, a weighting
factor w is introduced such that the non-rotated probe function or PSF can be
written as:

p(u) = w(z) ⋅
⎧⎪⎪⎨⎪⎪⎩

1 if u ∈ Cα
0 else.

(2.15)
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Here, the weight w(z) ∶= (π ∣z∣2 tan2α)−1 accounts for constant electron
flux in that it divides by the area of the lateral cut through the double cone
at distance ∣z∣ from the focal point, this cut being a disc of radius ∣z∣ tanα.
The underlying physical approximation is that no electrons are absorbed in
the specimen.

To model a projection along the direction vector θ, the symmetry axis is
changed to θ by multiplication with a rotation matrix Rθ that rotates ez to
θ. For instance, in single-axis tilting by an angle β around the y-axis, θ and
Rθ can be explicitly written as

θ = (sinβ,0, cosβ), Rθ =
⎛
⎜
⎝

cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎞
⎟
⎠
. (2.16)

Rotating the whole set Cα results in the rotated double cone

C ′

α = {u′ = Rθu ∣u ∈ Cα}. (2.17)

In analogy to the decomposition of a vector u = (ū, z) into a component z
along ez and a perpendicular vector ū, a rotated vector u′ is decomposed into
a component s ∈ R along θ and a perpendicular vector η by writing

u′ = sθ + η, θ ⋅ η = 0, (2.18)

where “⋅” stands for the usual dot product on R3. Thus, the rotated cone
can be written as

C ′

α = {(u′ = sθ + η) ∈ R3 ∣ ∣η∣ < ∣s∣ tanα}. (2.19)

The value gθ(0) of a projection of the density distribution f along θ with
focal point v = 0 is then equal to the integral value

gθ(0) = [Aθf](0) = ∫
C′α
w(s) f(u′)du′, (2.20)

Finally, in order to place the focal point at v ∈ R3 instead of 0, the set C ′

α

is shifted by v, or equivalently, the volume function f is shifted by replacing
its argument with u′ ↦ v +u′. This leads to
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gθ(v) = [Aθf](v) = ∫
C′α
w(s) f(v +u′)du′

= ∫
C′α
w(s) f(v −u′)du′,

(2.21)

where the last equality holds since the weight w and the integration domain
C ′

α are invariant under the variable sign change u′ ↦ −u′. In consequence, the
forward projection can be expressed as the convolution integral

[Aθf](v) = ∫
R3
pθ(u′)f(v −u′)du′ = [pθ ∗ f](v), (2.22)

with the rotated PSF

pθ(u′) = pθ(sθ + η) = w(s) ⋅
⎧⎪⎪⎨⎪⎪⎩

1 if u′ ∈ C ′

α

0 else.
(2.23)

Furthermore, in order to analyze the relationship between available projec-
tion data gθ and the searched-for density function f , it is important to specify
at which positions v ∈ R3 the sample can be scanned, i.e. at which locations
the focal spot can be placed for one fixed tilt angle. Usually, the focal length,
i.e. the focal spot position along the beam, is kept fixed, and only a lateral
movement of the beam relative to the sample is performed. In our geometry,
this would result in the focal spot v varying over a 2D plane

θ⊥ = {v ∈ R3 ∣v ⋅ θ = 0} (2.24)

perpendicular to the beam direction θ. However, in the CTFS acquisition
scheme as discussed in this thesis, a complete focal series is recorded at each tilt
angle, such that the projection data for one tilt angle is a stack of 2D images,
i.e. a 3D data volume. In other words, the projection gθ corresponding to such
a focal series is a 3D function gθ ∶ R3 → R defined by the convolution

gθ(v) = [Aθf](v) = [pθ ∗ f](v), v ∈ R3. (2.25)

The linear convolution operator Aθ called STEM transform thus models
the acquisition of a focal series for a fixed beam direction θ.
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2.4.3 Relation to the Parallel Ray Transform

In the following, we investigate the relationship between the STEM transform
and the well-known ray transform for parallel illumination. The volume inte-
gral over the double cone as in Equation 2.21 can be expressed as an integral
over the collection of lines constituting the cone. These lines are parametrized
as follows. For simplicity, the case θ = ez is considered first.

The double cone Cα is intersected with the 2D plane {(ū, d) ∣ ū ∈ R2} lying
at a distance d > 0 from the origin. This intersection results in a circular disc
of radius d tanα. Every point in this disc uniquely determines a line through
the vertex of the double cone, i.e. the integral over Cα can be parametrized
as an integral over the circular disc {ū ∈ R2 ∣ ∣ū∣ < d tanα} (see Appendix for
details), leading to

[Aezf](v) =
1

πd2 tan2α ∫∣ū∣<d tanα

d√
∣ū∣2 + d2

[Pω(ū)f](v)dū, (2.26)

where ω(ū) = (ū, d)/
√

∣ū∣2 + d2 is the direction vector associated with the
line through the point (ū, d), and Pω is the ray transform (Equation 2.2) with
direction ω instead of θ. For an arbitrary beam direction θ, this formula
generalizes to

[Aθf](v) =
1

πd2 tan2α ∫ η∈θ⊥
∣η∣<d tanα

d√
d2 + ∣η∣2

[Pω(η)f](v)dη (2.27)

with ω(η) = (dθ + η)/
√
d2 + ∣η∣2. Thus, since the preceding factor

(πd2 tan2α)−1 is the reciprocal of the area of the integration domain, the STEM
transform is a (weighted) mean value integral of the ray transforms [Pωf](v)
over all directions ω inside the double cone.

Geometrically, it is intuitive to assume that for α → 0, the STEM transform
should approach the ray transform since the double cone shape of the beam
approximates an “infinitely narrow” ray for vanishing opening angle. Indeed,
with the help of an integral mean value argument (see Appendix), one can
show that
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lim
α→0

1

πd2 tan2α ∫ η∈θ⊥
∣η∣<d tanα

d√
d2 + ∣η∣2

[Pω(η)f](v)dη = [Pθf](v). (2.28)

This demonstrates that the double cone model with the chosen weight
w(s) is a generalization of the parallel ray model in the sense that the latter
is contained as the special case α → 0.

2.4.4 The Fourier Transform of the STEM Transform

In tomographic applications with parallel illumination, the Fourier slice the-
orem (Equation 2.7) states that the Fourier transform of a projection, that
is the Fourier transform of one image in the dataset, contains exactly those
3D spatial frequencies of the searched-for volumetric function which lie on
a rotated 2D plane whose normal vector corresponds to the projection axis.
With this formula, it became possible to derive an inversion formula for the
ray transform by “filling the Fourier space with planes” and by determining
the correct weight to account for non-uniform sampling of the Fourier space.
For the STEM transform Aθ, a similar result can be derived. Using again the
decomposition of a vector ξ′ ∈ R3 as

ξ′ = σθ + ζ, ζ ⋅ θ = 0 (2.29)

into a component σ ∈ R along θ and a perpendicular vector ζ (see also
Equation 2.18), the 3D Fourier transform of a projection gθ = Aθf can be
expressed as

ĝθ(ξ′) = f̂(ξ′) ⋅
4

∣ζ∣ tanα

⎧⎪⎪⎨⎪⎪⎩

√
1 − σ2

∣ζ∣2 tan2 α
if ∣σ∣ < ∣ζ∣ tanα

0 else,
(2.30)

as shown in (Intaraprasonk, Xin, & Muller, 2008, Equation 27). This for-
mula can be interpreted in a way similar to the classical Fourier slice theorem.
The Fourier transform of Aθf is non-zero inside the set where the factor of the
right-hand side of Equation 2.30 is non-zero. This factor is positive in the set

Ĉα = {ξ′ = σθ + ζ ∈ R3 ∣ ∣σ∣ < ∣ζ∣ tanα} = R3 ∖C ′

π/2−α, (2.31)
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Figure 2.7: Geometric interpretation of the Fourier slice theorem for the STEM
transform in Fourier space. a) The frequencies covered by one projection correspond
to the shape of a double wedge of opening semi-angle α. b) If the tilt increment
is chosen as ∆β = 2α, neighboring wedges overlap in a non-trivial shape (red).
c) When considering a cross section through the origin and perpendicular to the
tilt axis, the wedges seem to seamlessly cover the entire frequency space. d) A
cross section shifted along the tilt axis reveals a complex-shaped region in frequency
space that contains information from more than one tilt direction. e) A cross section
even further along the tilt axis towards highest frequencies exposes that the region
containing information from both tilt directions expands towards higher frequencies.
Figure from (Dahmen, Kohr, et al., 2015).

with the double cone C ′

π/2−α
defined as in Equation 2.19 with π/2−α instead

of α. This complementary double cone is formed by rotating a double wedge
with opening semi-angle α around the symmetry axis θ (Figure 2.7a). This
result implies that f̂ and thus f can be recovered from a finite number of
projections since R3 can be completely covered by a finite number of sets
Ĉα with different directions θ, provided that data for all such directions is
available, i.e. that the full angular range can be measured.

This situation can be interpreted as follows. If the tilt increment is cho-
sen as ∆β = 2α, neighboring wedges touch in the orthogonal plane such that
the entire frequency space is covered. In regions far from the symmetry cen-
ter (lowest frequencies) of the double wedge, neighboring wedges overlap in
a complex shape as shown in Figure 2.7b. This means that certain spatial
frequencies are contained in more than one projection, which indicates that
reconstructions may reveal an anisotropy of spatial resolution. However, as
suggested by (Intaraprasonk et al., 2008), the double cone model can be in-
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accurate especially for high frequencies, a limitation which can be overcome
by calculating the beam intensity distribution based on aberrations instead of
merely approximating its shape. Another implication is that in the develop-
ment of a direct inversion method for a CTFS, the weights of frequencies that
are contained in more than one projection would need to be considered. These
issues connected to spatial frequency distribution in the data go beyond the
scope of this thesis but are worth investigating further in the future.

2.4.5 The Adjoint of the STEM Transform

As mentioned before, the back projection should be an operator that is the
mathematical adjoint of the operator modeling the forward projection. In the
case of square-integrable functions as applied in the current setting, the adjoint
A∗θ is defined by the relation

∫
R3

[Aθf](v) g(v)dv = ∫
R3
f(u) [A∗θg](u)du (2.32)

which needs to be true for any two volumetric functions f and g. This
relation corresponds to the scalar product identity in Equation 2.11 since the
scalar product of two square-integrable functions f1 and f2 is given by the
integral

⟨f1, f2⟩ = ∫
R3
f1(u) f2(u)du. (2.33)

The definition Equation 2.22 of the STEM transform is inserted into Equa-
tion 2.32. Using that pθ(v −u) = pθ(u − v), one can calculate

∫
R3

[pθ ∗ f](v) g(v)dv = ∫
R3
∫
R3
pθ(v −u)f(u) g(v)dudv

= ∫
R3
∫
R3
pθ(u − v)g(v)dv f(u)du

= ∫
R3

[pθ ∗ g](u) f(u)du, (2.34)

such that the adjoint can be identified as

A∗θg = pθ ∗ g = Aθg. (2.35)
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In other words, the STEM transform is self-adjoint. In order to interpret
this result, one must keep in mind that the STEM transform is defined in such
a way that it maps a volume to a focal stack, not an individual image. In
mathematical terms, both the searched-for tomogram f and one projection gθ
are volumetric functions, i.e. functions R3 → R, and the back projection acts
exactly like the forward transform, namely as a convolution with pθ.

There is, however, a practical difference between forward and backward
projections, which is explained in the following, starting with the case θ = ez.
The adjoint A∗ez applied to a data stack gez can be rewritten as

A∗ezgez(u) = ∫R3
p(v) gez(u − v)dv

= ∫
Cα
w(vz) gez(u − v)dv

= ∫
R
w(vz)∫

∣v̄∣<∣vz ∣ tanα
gez(u − v)dv̄ dvz

= ∫
R
w(vz)∫

∣v̄∣<∣vz ∣ tanα
gez((ū − v̄, z − vz))dv̄ dvz, (2.36)

where 3D vectors are written as u = (ū, z) and v = (v̄, vz). The integral
over Cα has been decomposed into an integral with respect to vz along the
z-axis and an integral over a disc with radius ∣z∣ tanα.

In practice, the projection gez is not a continuous function but approxi-
mated by a stack of discrete 2D arrays, where each 3D point can be identified
with an individual position of the focal spot. Thus, the local coordinate system
of the projection stack consists of the beam direction ez and two unit vectors
in the xy-plane. Now, for one fixed value vz in the outer integral in Equation
2.36, the inner 3D convolution integral

∫
∣v̄∣<∣vz ∣ tanα

gez((ū − v̄, z − vz))dv̄ (2.37)

is restricted to a single image in the stack since the symmetry axis of Cα
corresponds to ez, one axis of the local coordinate system of the data. In
other words, the domain of integration lies entirely in a single image from the
stack, which corresponds to one focal length. This fact is advantageous from a
computational perspective since this 3D convolution and the integration along
ez can be treated separately.

Furthermore, the same principle of corresponding axes is true for any beam
direction θ, so the previously mentioned separation is possible for all focal
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series in the dataset. In this general case, the inner convolution integral reads
as

∫ η∈θ⊥
∣µ∣<∣t∣ tanα

gθ((s − t)θ + (η −µ))dµ (2.38)

for the decompositions v′ = tθ+µ of the integration variable and u′ = tθ+η
of the evaluation point. Written in coordinates, this integral can be expressed
as

∫
∣v̄′∣<∣v′z ∣ tanα

gθ(ū′ − v̄′, z′ − v′z)dv̄′ (2.39)

This correspondence of axes does, however, not hold in the forward trans-
form because the coordinate system of the tomogram f is fixed, which means
that the 3D convolution integral is not restricted to one horizontal slice of the
volume but involves several slices, dependent on the size and angle of the disc
over which is integrated. Therefore, it can be expected that the forward pro-
jection is more expensive to compute numerically than the back projection, a
behavior which clearly shows itself in the numerical tests (Section 3.4.1).

Conclusions on the Theory

The STEM transform was introduced in order to consider the convergent shape
of the electron beam in aberration corrected STEM. The line model of the
electron beam was replaced by a double-cone. The operator was investigated
analytically and a number of properties are shown. The STEM transform is
a generalization of the X-Ray transform for parallel illumination and contains
the latter as the special case α → 0. Most notably, the STEM transform is
self-adjoint, a theoretic result that can be exploited to implement efficient so-
lutions to the tomographic reconstruction problem as detailled in the following
chapter.
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Chapter 3

Implementation and Evaluation

In this chapter, the CTFS is introduced as a new recording scheme for HAADF-
STEM tomography. 3D information is acquired by mechanically tilting the
specimen, and recording a through-focal series at each tilt direction. The tilt
focal algebraic reconstruction technique (TF-ART) is introduced as a new algo-
rithm to reconstruct tomograms from such CTFS. The feasibility of both, the
image aquisition scheme and the reconstruction algorithm are demonstrated
following the publications (Dahmen et al., 2014a; Dahmen, Kohr, et al., 2015)
by presenting a workflow consisting of image aquisition, lateral alignment, axial
alignment, and tomographic reconstruction (Figure 3.1).

Figure 3.1: The entire workflow implemented for this thesis, consisting of image
acquisition, lateral and axial alignment, and tomographic reconstruction.

3.1 Alignment

The first practical issue to be solved was that a TEM tilt-series needs to be
aligned to correct for stage shifts occurring during tilting. This alignment
is also required in pure tilt series recorded with parallel illumination and a
large number of methods have been proposed for this problem (Section 1.2.1).
However, these methods could not be directly applied to the case with a focal
series for each tilt angle. It was observed that the alignment was sufficient
within each focal stack but the image positions shifted as the tilt angle was
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changed. This observation is a consequence of the fact that the stage tilt
is realized mechanically and thus subject to mechanical imprecisions while
the focus change is realized via the magnetic lenses, i.e. does not involve any
mechanical movements at all. The problem, however, was that occuring shifts
did not only consist of a lateral (x′y′) shift but also of an axial shift. It was thus
unknown how the indices of different frames of the focal series corresponded
to the focus positions f , and it was not possible to find this relation with the
existing algorithm. Therefore, two alignments were performed. First, the affine
transforms for all images in the series were determined to bring the different
projections into a common coordinate system, i.e. lateral alignment. Second,
the parameters f0 and ∆f of the spatial positions of the focus planes needed
to be found, i.e. axial alignment.

3.1.1 Lateral Alignment

For lateral alignment, the following procedure was used. The intensities for
each pixel (x′y′) of the focal series were averaged, forming a vertical projection
for the image stack of each focal series. The vertical projections were then
combined into an image stack representing a conventional tilt-series. Next,
the algorithm computed the affine transformations for the alignment using a
standard method (Kremer, Mastronarde, & McIntosh, 1996). The determined
transformations per tilt angle were applied to each image in that focal series.
This method was possible because the focal series at each tilt angle did not
contain noticeable lateral shifts in themselves. For cases with a significant
lateral shift within a series, an additional alignment step could be added before
the projection.

3.1.2 Axial Alignment

In the following, the procedure for axial alignment is described. The goal of the
axial alignment was to find the relation between the index i of the image in the
stack, the corresponding vertical focus positions of the first image f0, and the
focal distance between consecutive images ∆f . This was achieved by search-
ing first for nanoparticles in images corresponding to adjacent tilt directions
(nanoparticle chain detection). Once the position of a certain nanoparticle
was known in more than one image, its 3D position was estimated by means
of triangulation. Finally, the algorithm detected which image in the stack was
closest to focus for that nanoparticle and correlated the focus position to the
3D position of the nanoparticle, assuming that ∆f is constant. The method
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is the first method for the axial alignment of STEM tilt series and as such a
major contribution of this thesis. In the following, the method is described in
detail.

3.1.3 Particle Chain Detection

A procedure for axial alignment was developed based on the automated identi-
fication of nanoparticles with high contrast in the images. First, the tilt-focal
data was averaged into a tilt-series as described above. A high-pass filter with
a 10 pixel cutoff was applied (ImageJ). After this, the stack was opened in To-
moJ, using the normalization setting “Electron Tomo”. Background removal
was performed with a rolling ball radius of 15 pixel and smoothing enabled.
Next, chains of objects were generated with a method described in detail else-
where (Sorzano et al., 2009).

In short, nanoparticles were detected by searching for local maxima in
an image. Those nanoparticles were then searched for in adjacent images
in the tilt-series. The search was performed by predicting the nanoparticle
position using affine transformations based on the tilt angle difference and
consecutive local optimization of the correlation index. If the correlation index
was greater than a given threshold, the regions in the two adjacent images
were accepted to represent the same nanoparticle. A so-called particle-chain
was thus generated from the local positions of the nanoparticle in consecutive
images. A set of chains was generated aiming to track as many different
nanoparticles as possible.

The particle-chain generation was performed in the software TomoJ using
the following settings: algorithm = “critical points – local maxima”, number
of seeds = 20, number of best points to keep in each image = 40, length of
landmark chain = 11, patch size in pixel = 14, minima neighborhood radius
= 8, fiducial markers = yes. The found nanoparticle positions in the images
were exported for further processing.

3.1.4 Nanoparticle Position Triangulation

Next, the algorithm estimated the 3D position of an individual nanoparticle
by triangulation. It selected two images in which the 2D positions of the same
nanoparticle were known. Based on both known lateral positions and the tilt
angle, 3D lines were created by assigning an origin and a direction. The line
origin was the nanoparticle position in the image plane while the line direction
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was the tilt direction associated with that image, assuming parallel rays.

In the ideal case of perfect alignment, the two lines corresponding to the
same nanoparticle would intersect in the center of that nanoparticle. In prac-
tice, the lines did not intersect due to alignment errors. Therefore, the line
segment of closest distance between them was calculated. The midpoint of
this segment provided an estimate of the 3D position of the nanoparticle, rel-
ative to the tilt axis. The length of the segment was considered as a measure
of the alignment error. The above procedure was repeated for all possible
line-pairs of the same particle-chain. The midpoints were then averaged to
obtain the most precise position estimate. The procedure was applied to all
particle-chains, each giving the 3D position of a different nanoparticle.

3.1.5 Estimation of Focal Values

Our algorithm computed the parameters for the axial alignment. For a given
tilt direction, the software considered all 1,516 determined nanoparticle center
positions using the 2D (x′y′) position of the nanoparticle from the particle-
chain. For each position, it searched all frames in the focal series, applying
a low-pass-filter with a radius of 2 pixels in the lateral direction to suppress
noise. The image i with the highest intensity at the pixel x′y′ was defined as
the best focus for this nanoparticle. The corresponding index was called ifocus
(Figure 3.2a).

This procedure was repeated for all known nanoparticles and the algorithm
created (in principle) a plot displaying the axial distance of the nanoparticle to
the tilt axis z′ against ifocus (Figure 3.2b). Hereby, z′ is obtained by rotating
the 3D position xyz of the particle with respect to the current tilt direction.
A linear trend was fitted through the plot using linear least squares regression.
Since the data was recorded with identical focus steps between the images
in a focal series, the slope of the trend gave the relative distance between
consecutive focus positions ∆f , while the intersection with the f -axis gave the
focus position of the first image with respect to the tilt axis f0. The operation
was repeated per tilt direction, so the software computed one value for f0 and
∆f for every image stack.

3.2 Tomographic Reconstruction

In the following section, tilt- focal algebraic reconstruction technique
(TF-ART) is presented, a new method of volume reconstruction applicable
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Figure 3.2: Estimation of focal positions for axial alignment. a) Plot of the pixel
intensity of an individual nanoparticle versus the focus index i as a measure of the
focus index where the nanoparticle was best in focus ifocus. b) Plot of the vertical
position z′ versus ifocus for all nanoparticles. A fitted linear trend is also shown.
The slope of this trend equals ∆f . The intersection with the f -axis gave the location
of the first image plane f0. Figure from (Dahmen et al., 2014a).

to a combined tilt- and focal series (CTFS). TF-ART is a generalization of
the block iterative algorithm family (Censor, 1990) and is defined by a for-
ward projection that implements the double cone model of the electron beam,
an (unmatched) back projection based on a heuristic weighting factor and a
special update loop as explained below. Figure 3.3b depicts the algorithm as
a block diagram.

After the presentation of TF-ART, an alternative, matched backprojection
operator is presented, which is the adjoint of the forward projection. Using
the matched operator and changing from the block-iterative update scheme to
a SART-type algorithm, it a second variation of the algorithm is presented.
Contrary to TF-ART, the algorithm based on the matched backprojeciton is
an instance of Kaczmarz algorithm family.

3.2.1 Forward Projection

The forward projection operator (STEM transform) can be expressed as a con-
volution, i.e. the value of a point in the projection is the convolution of the
volume function and function modelling the probe shape. Thus, the computa-
tional task for the forward projection is to compute a weighted integral of the
volume function, where the weighting factors correspond to the factors of the
double cone in the STEM transfrom (Section 2.4, Equation 2.23).

In order to compute this volume integral, the algorithm used a Monte-
Carlo technique, approximating the volume integral with multiple individual
line integrals. The lines were chosen such that they formed a specific sampling
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Figure 3.3: The overall reconstruction algorithm. a) Visualization of the dataflow.
Starting from an initial reconstruction volume, residuals are generated by a forward
projection and per-pixel subtraction from a measured projection. The volume is
then corrected using a back projection operator. b) The nesting of the reconstruction
loops. Operations that are implemented as kernels on the GPU are marked as light
gray. All virtual projections from one direction are generated before a correction is
applied to the volume. Figure from (Dahmen et al., 2014a).

pattern as described below. Each line integral was computed using GPU-based
volume ray-casting (Engel, Hadwiger, Kniss, Rezk-Salama, & Weiskopf, 2006;
Rodriguez et al., 2013). The integrals of the individual lines were then averaged
to estimate the volume integral of the double cone. Figure 3.4a depicts this
principle. The sampling method was inspired by the way the focal depth of
optical camera systems is simulated using Whitted-Style ray tracing (Whitted,
1980).

An alternative approach would have been to implement the integration us-
ing a modified 3D Bresenham (Bresenham, 1965) algorithm for conservative
line drawing. Conservative in this context means that the algorithm iterates
over all voxels that have a distance to the line below a given threshold, thereby
extending the line to a cylinder. In computer graphics, the Bresenham algo-
rithm is typically used to draw lines with a given thickness. By replacing the
fixed radius with a radius that is a linear function of the ray distance, the
algorithm can be modified to iterate over double cones instead of cylinders.
The Bresenham implementation has the advantage of avoiding sampling er-
rors and can be more efficient than the Monte-Carlo technique if a very high
precision of the integral computation is needed. However, the method has the
drawback that it iterates the voxel contributing to the double-cone, but as
such does not present a way to compute the weights inside the voxel. The
weights are typically assumed to be constant within the voxels, which makes
the computation trivial but can be problematic in the important area close to
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Figure 3.4: Implementation of the forward projection operator. a) The electron
beam is modeled as a double cone. The intensity of a pixel is computed by integrating
the gray-values of the volume inside the double cone. Hereby, it is approximated
using several rays, which are then integrated using ray-casting and averaged. b) In
the Stratified Sampling scheme, a grid is placed over the circle which represents a
horizontal slice through the volume. In every cell of the grid, one sample (white dot)
is placed at pseudo-random position. Samples outside the disc are rejected (black
dots). Figure from (Dahmen et al., 2014a).

the focus point of the double-cone. Ironically, the straight-forward solution to
this problem is to better approximate the weights using stochastic sampling,
thereby re-introducing all issues of the Monte-Carlo technique.

Stratified Rejection Sampling

As a method to randomly place the individual lines in the double cone while
maintaining roughly uniform sampling over the domain, “stratified sampling”
(Cook, 1986) was used. Each line was specified by two points. The first point
was the focus point of the double cone. In order to specify the second point
a horizontal cut through the cone was considered specifying a circular disc. A
2D grid was placed over this disc and within each grid cell one point was placed
at a pseudo-random location. If the point happened to be outside the disc,
the sample was rejected and the corresponding line was not considered during
integration. The method is called “rejection sampling” (Robert & Casella,
2005) and is frequently used together with ray-casting. Figure 3.4 depicts the
principle.
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Figure 3.5: The per-pixel-error of a forward projection plotted over the number of
rays per pixel that was used to approximate the double cone. Figure from (Dahmen
et al., 2014a).

In summary, a forward projected image was generated by stepping through
all pixels of the projection. For every pixel, the probe was approximated
by a double cone according to known tilt angle and focal position. Inside this
double cone, the volume integral of the voxel gray values, weighted by the local
current density of the beam (because rays converged), was computed. The
computation was performed by a cone tracing implementation based on ray
casting and stratified rejection sampling. The resulting projection corresponds
to a single slice of the focal series, assuming a simplified PSF and the absence
of aberrations, alignment issues, noise, and drift.

Influence of Sample Count on the Precision of the Forward Projec-
tion

The implementation of the STEM transform used in the forward projection
relied on stochastic ray tracing to compute the volume integral in the double
cone. In order to determine the required number of rays per pixel for the
forward projection, it was tested experimentally how quickly the computational
error dropped as the number of rays used to approximate the double cone was
increased (convergence rate). Figure 3.5 shows a plot of the mean pixel error
as percentage of the maximum intensity over the number of rays per pixel.

In order to determine the per pixel error, a ground truth image was gen-
erated using a very high sample count (100.000 samples per pixel). It was
confirmed that at this high sampling, adding further samples did lead to no
difference in the result within computation precision and the ground truth
image was used as reference to measure the sampling error of the forward pro-
jection. In the case that 25 rays per pixel were used to approximate the double
cone, the remaining mean error was 0.28% of the maximum intensity. This
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pixel error had no measurable impact on the overall reconstruction quality so
25 rays per pixel were thus used for all reconstructions.

3.2.2 Unmatched Back Projection Based on Heuristic
Weighting Factor

The volume reconstruction algorithm also needs a back projection. For the first
proof-of-concept study (Dahmen et al., 2014a), it was not possible to use the
matched back projection, because the adjoint of the projection was initially not
known. Instead, the effect of the PSF was corrected with a heuristic weighting
method. The method is based on the idea that an individual projection image
should only influence that part of the volume where the image is best in focus
(Figure 3.6).

The back projection described in the following section corrects the volume
for an individual residual image, corresponding to one tilt direction and one
focal value. This is different from the definition of the STEM transform op-
erator (Section 2.4.2), where one application of the transform corresponds to
the variation of the focus over the entire volume, i.e. one stack of images. In
order to correct the volume for one tilt direction (one full application of the
operator), the back projection was executed consecutively for every focal value.

An individual application of the back projection was implemented by loop-
ing over all voxels in the relevant reconstruction volume. The center of each
voxel was projected to the image plane of the projection by multiplication with
the 4x4 matrix representing the parallel projection corresponding to the tilt
angle. Bilinear interpolation was used to look up the residual value at the
projected pixel position. The voxel was then corrected with the residual value,
modified by a weighting factor described below.

This method is functionally equivalent to looping over the residuals pixel-
by-pixel and projecting the pixel value to the reconstruction volume using
ray-casting. However, the voxel-by-voxel approach maps better to current
GPU hardware because it avoids scattered memory-write operations and syn-
chronization issues and thus results in higher performance. A more detailed
discussion of the topic is given elsewhere (W. Xu et al., 2010).

The back projection was limited to that part of the volume where the
corresponding projection contains the most information, i.e. information that
has not been blurred by integrating one cone. We achieved this by introducing
a heuristic weighting factor Γ.
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Figure 3.6: The weighting factor used in the back projection operator. The regular-
ization factor Γ(u) is expressed as a function of the position u in the volume. Γ(u)
equals one exactly inside the focal plane and drops linearly to the previous and next
focal plane. Figure from (Dahmen, Kohr, et al., 2015).

Γ(u,β) ∶= λ ⋅ {
0 if∥z′ − fi∥ > ∆f

1 − ∥z
′
−fi∥

∆f else
(3.1)

Here, Γ(u,β) is a function of the position u ∶= (x, y, z) of the center of
the voxel that is currently being corrected, and the tilt direction. z′ is the
perpendicular distance from the lateral plane containing the point u to the tilt
axis and given by z′ = cosβz − sinβx, so z′ depends on the tilt direction. λ
is the relaxation parameter typically used in algebraic reconstruction methods
(Gordon et al., 1970). λ = 0.3 is used for all experiments.

The idea behind the formula for Γ(u,β) is that information from a focal
plane should only influence the region of the volume close to the focal plane.
Between the individual planes, linear interpolation is used to achieve a smooth
transition. Figure 3.6 is a schematic representation of this weighting scheme.
z′ − fi is the axial distance from a voxel center to the focal plane i. The
regularization factor Γ is zero everywhere except in a slice of thickness ∆f on
both sides of the current focal plane, so an individual application of the back
projection operator only corrects a slice of thickness 2∆f , the remainder of
the volume remains unchanged. In order to correct all voxels in the volume,
the back projection is executed once for every residual image from one tilt
direction as determined by the reconstruction loop. After the execution of a
tilt direction, every voxel in the volume was changed twice, once for each of
the two focal planes closest to the voxel, resulting in a linear interpolation
between the two relevant residual values for each voxel.
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3.2.3 Matched Back Projection Based on Adjoint
Transform

The unmatched back projection described in the previous section results in
good reconstruction results, but showed slow convergence behavior. In a sec-
ond study (Dahmen, Kohr, et al., 2015), the correctly matched adjoint of the
STEM transform was therefore derived analytically and evaluated experimen-
tally. A detailed derivation of the adjoint has been given in Section 2.4.5 and
results in the representation:

A∗θh2 = pθ ∗ h2 = Aθh2. (3.2)

In other words, the STEM transform is self-adjoint. With this results on
the adjoint of the STEM transform, it is possible to implement the matched
back projection corresponding to the forward model. In the following, details
on a software implementation of this operator are given. The implementation
exploits the fact that the STEM transform can be written as a linear convolu-
tion of the images and the double cone that models the electron beam (Figure
3.7). In the following sections, we describe how a combination of prefiltered
images and linear interpolation is used to achieve an efficient implementation
of the operator.

Figure 3.7: Geometry of the back projection. a) The center of each voxel (x, y, z) is
projected along θ on the image plane at pixel coordinates (x′, y′). b) The residual is
convolved with a separate kernel for each voxel. The kernel corresponds to a lateral
cut through the electron beam, at the position of the voxel. Figure from (Dahmen,
Kohr, et al., 2015).

One application of the back projection, corresponding to the correction
with respect to an individual slice of the projections, i.e. one value of z′, is im-
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plemented by a parallel loop over all voxels in the reconstruction volume. As
for the unmatched back projection, the implementation operates on individual
slices, not full 3D projections as discussed in Section 3.2.4. The gray value
of each voxel is corrected by the addition of a correction term, computed as
follows. The center of each voxel is rotated according to the current tilt direc-
tion. The correction term is equal to the value of the convolved residual image
at position u′ = (x′, y′), corresponding to the coordinates of the rotated voxel
center (Figure 3.7a). The value of this pixel in the residual image resulted from
the convolution with a specific kernel that has the shape of a perpendicular cut
through the double cone Cα of the beam model (i.e. a circle) at the distance
z′ − v′z of the voxel being corrected from the current focal plane (Figure 3.7b).
Thus, the convolution kernel is different for every voxel and given by

I(x′, y′) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if
√
x′2 + y′2 > r

1

πr2
else,

(3.3)

where r = ∣z′ − v′z ∣ tanα. It has intensity zero outside the circle by defini-
tion. Inside the circle, the intensity was chosen according to the normalization
criterion, such that the pixel values did add up to one and the total intensity
of the residual was preserved after the convolution.

The radius of this convolution kernel can be as much as 43 pixels in the
areas of the volume farthest from the focal plane, assuming a volume thick-
ness of 1024 voxels and a beam opening angle of α = 42 mrad. Computing the
convolution for every voxel separately is therefore prohibitively slow. In order
to overcome this problem, the residual image is pre-filtered for a suitable set
of radius values r ∈ {r0, . . . , rn} as explained below and stored in memory. Lin-
ear interpolation is then used to approximate values between the two nearest
pre-filtering values of ri.

In order to compute the pre-filtered residual images, the residual is first
transfered to Fourier space by means of a 2D Fast Fourier transform (FFT).
The library clAmdFFT (AMD, 2013) is used to achieve this efficiently on the
GPU. The filter kernel is then generated for each radius ri and also transfered
to Fourier space. The convolution is computed by means of a complex multi-
plication, and the result is transfered back to real space by means of an inverse
FFT, again using the same library. In order to compute the pre-filtered resid-
ual at N different radius values, the algorithm needs to perform 2N + 1 2D
FFT computations. Computational cost for the generation of the filter kernel
and the complex multiply can be neglected in comparison to the cost of the
FFT, and the resulting filtering step shows feasible performance.
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Figure 3.8: The intensity of the center of an arbitrary nanoparticle as a function
of the prefilter radius. The function is sampled at positions of exponential distance
(vertical lines) and linear interpolation is used between the sample positions. The
linear approximation of the function is shown in gray. Figure from (Dahmen, Kohr,
et al., 2015).

Sampling positions {r0, . . . , rn} are chosen such that the error introduced
by the interpolation has little influence on the reconstruction results. The radii
were determined experimentally by computing the pre-filtered residuals for one
residual image in very small steps (∆r = 0.1). The center of one nanoparticle
was selected, and the intensity of this pixel was plotted as a function of the
prefilter radius r, as shown in Figure 3.8. As can be seen, the intensity exhibits
relatively rapid changes for small radius, but shows almost linear behavior for
larger values of r. The sampling positions {r0, . . . , rn} were therefore chosen
using an exponential pattern ri ∶= 2(i−1). This way, the first sample is generated
for r = 0.5, which corresponds to a filter kernel consisting of a single pixel, i.e.
no blur. The largest required radius was r = 64, so a total of 8 images had to
be calculated.

3.2.4 Update Loop

The TF-ART algorithm loops over all tilt directions in pseudo random order.
For each direction, it steps through all focus positions sequentially. The resid-
ual images for all focus positions of one tilt direction are computed and stored
on a stack. Then, the volume is corrected for all residuals of this direction by
iterative execution of the back projection before moving to the next direction.
In this scheme, one iteration of the algorithm refers to processing the images
from all directions and all focus values once. One update block (in the sense
of block iterative algorithms (Censor, 1990)) refers to the execution of the
forward and back projection for all images from one direction.
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This scheme is chosen because for technical reasons the implementation of
the back projection corresponds to the processing of an individual image (i.e.
one focus value), while the theoretic definition of the back projection operator
considers the processing of an entire image stack (i.e. one variation of the focus
over all possible values). By sequentially processing all images of one direction
inside one update block, we achieve that one update block equals one execution
of the STEM transform operator. The back projection for an individual image
only influences a slice of thickness ∆f around the focal plane, so every voxel is
corrected twice (once each for the two images with their focal planes closest to
the voxel). The weighting factors of the two correction sum to one such that
the desired amount of correction for the back projection operator is achieved.

The matched back projection, however, does not feature a heuristic weight-
ing factor, so every voxel is corrected by every residual with weight Λ as in
Equation 2.13. In order to avoid over-correction that would lead to oscillation
and ultimately divergence, one could normalize the correction weight by the
block size (i.e. correct only by Λ/n, where n is the number of focal lengths per
direction). This method works but leads to very slow convergence rates. In
the case of the matched back projection, the block-iterative scheme was there-
fore abandoned when working with the matched back projection in favor of a
SART- type algorithm where the residual for only one focal length is computed
before the back projection is executed for this residual image.

3.3 Evaluation and Results

The concept CTFS and both reconstruction algorithms were evaluated by ap-
plying the method to an exemplary sample. The study consisted of the prepa-
ration of a sample, aquisition of the images, alignment, tomographic recon-
struction, and analysis of the reachable resolution, particularly of the effect
of the missing wedge on the axial elongation factor. The sample was cho-
sen primarily by the specimen thickness. In order to demonstrate the effect
of the CTFS and particularly the advantageous properties of HAADF STEM
imaging, a sample was selected that was too thick for reasonable imaging in
CTEM. On the other hand, the thickness was limited to a range where beam
blurring due to multipe scattering does not yet have relevant impact on the
beam shape. Those two conditions restrict the sample thickness to about 500
nm to 2 µm, so a whole human cell was choosen as a sample. The staining
with gold markers was required to achieve sufficient contrast in the HAADF
imaging mode. Other than this, the sample had no relevance for this study and
was chosen because it was available from previous work (Baudoin, Jinschek,
Boothroyd, Dunin-Borkowski, & de Jonge, 2013).

57



3.3.1 Sample Preparation

Macrophages derived from monocytes (THP-1 cells, American Type Culture
Collection) were grown directly on electron transparent silicon nitride TEM
windows supported by silicon microchips (Ring, Peckys, Dukes, Baudoin, &
de Jonge, 2011). The growth occurred in phorbol-12-myristate-13-acetate sup-
plemented medium (Jerome, Cox, Griffin, & Ullery, 2008). Native low-density
lipoprotein (LDL) was conjugated to 16± 3nm or 7± 1nm gold nanoparticles.
Cell samples were incubated with 16nm LDL-gold for the first day and with
7nm LDL-gold for the second day (Baudoin, Jerome, et al., 2013). The incu-
bation took place at 37° C in 1% fetal bovine serum medium with an equivalent
concentration of 8µg/mL LDL. To prepare the samples for electron microscopy,
the cells were rinsed with phosphate buffer saline, fixed with glutaraldehyde
2.5% in 0.1 molar sodium cacodylate buffer / 0.05% CaCl2, post-fixed with an
ultra-low concentration (0.001%) of osmium tetroxide, gradually dehydrated
with ethanol, and finally critical point dried with liquid carbon dioxide. To
increase resistance to electron beam damage, a layer of about 20nm of carbon
was evaporated on the samples (Dukes et al., 2011). The carbon was applied
using an electron beam evaporator with a base pressure of 5± 10 − 7 torr for
45 minutes. Additional staining with e.g. lead was avoided to be able to image
through the entire cell.

3.3.2 Data Acquisition

STEM images were recorded at 300 kV with a transmission electron microscope
equipped with a probe corrector for spherical aberrations (Titan 80-300, FEI,
Hillsboro, OR, USA). Images were acquired at 160,000× magnification. The
objective aperture semi-angle was 49.1mrad. The focal-series consisted of 41
images separated by 50nm in axial direction, of which the 20 images in the
middle vertical range were selected for further processing as the first and last
images were entirely out of focus. Images of 512 × 512 pixels were recorded
with an acquisition time of 12µs per pixel. The tilt-series were recorded with
specimen tilts ranging from ±40° at 5° increments (higher tilt angles were
not possible because the edges of the microchip masked the cell at higher
tilt angles). A script (written in Java) controlled the FEI microscope for an
automated acquisition of the focal series. After changing the tilt angle, the
region of interest was realigned, and the probe was refocused. Figure 3.9 shows
two images of the exemplary specimen. The fact that for every tilt direction
about 40 images were recorded implies an increase in the overall electron dose.
However, this increase is partially compensated by the fact that a larger tilt
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Figure 3.9: Projections of the original CTFS high annular dark field STEM data
(input). The sample was a whole mount macrophage cell containing gold nanopar-
ticles of two different sizes distributed in clusters throughout its volume. a) and b)
Two different images of a CTFS. Both show nanoparticles at the tilt direction -40°

at different focal positions. The white arrows indicate the sections of the images
that are in focus. Figure from (Dahmen et al., 2014a).

increment can be used compared to a conventional tilt-series. It would also be
possible to record a fewer number of images per focal series than acquired in
this study, which should be further investigated.

3.3.3 Evaluation of Alignment

The CTFS was aligned in lateral direction using a standard method to a pre-
cision of ≈ 1 pixel. Hereafter, the alignment in axial direction was performed
using the newly developed procedure involving particle chains (Section 3.1).
In total, 134 particle-chains were generated, containing a total of 1,516 known
2D particle positions. For every tilt direction, about 160 (standard deviation
s = 14) different 2D nanoparticle positions were known, which allowed the
procedure later to reach the required precision in axial alignment.

The 2D nanoparticle positions were used to determine the focal parameters
f0 and ∆f by fitting a linear trend (Subsection 3.1.5). Hereby, ∆f was con-
sidered constant across tilt directions. However, the fitting of the linear trend
did not reach the same measure of confidence for all tilt directions on account
of the difference in vertical separation of the nanoparticles, i.e. at higher tilt
angles, the nanoparticles as seen from the electron beam were spread out more
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than at lower tilt angles, leading to a more accurate estimate of ∆f . Thus, for
the purpose of estimating ∆f , only the 11 directions with the highest measure
of confidence were considered, which were the directions with the highest tilt
angles. By combining those values, a mean value of ∆f = 60nm(s = 3nm)
was calculated. This value differs significantly (p < 6.6 ⋅10−6) from the nominal
value of ∆f = 50nm that was expected from the microscope control. The
reasons for this discrepancy are likely specific to the exact type of microscope.
The computed value for ∆f was used in all reconstructions.

In addition to the focal distance, the value of f0 had to be calculated inde-
pendently per tilt direction. The precision of the measurement of f0 was quan-
tified by calculating s of the constant coefficient of the linear fit using statistical
standard methods. For f0, a standard deviation of s = 18nm was calculated,
which corresponds to a precision of ±37nm assuming a 95% confidence level.
Because the electron beam had an opening semi-angle of a = 41mrad, this
axial alignment error corresponded to a blurring with a radius of 1.5nm (0.7
pixel) which was considered to have no observable impact on the reconstruction
quality. The alignment procedure relies on the presence of gold nanoparticles
but fiducial gold markers, commonly used for STEM or TEM tomography
(Lawrence, 1992), should work as well.

3.3.4 Evaluation of Unmatched Back Projection

In order to evaluate the TF-ART reconstruction, we compared the results
with a conventional tomographic SART reconstruction of a STEM tilt-series
of a similar sample (Baudoin, Jerome, et al., 2013) containing nanoparticles of
similar but slightly smaller sizes (5 and 14nm) and recorded using a smaller
pixel size of 0.67nm than the 2.3nm used here.

When comparing a CTFS to a conventional tilt-series, the choice of the
beam convergence semi-angle is a crucial issue. STEM tilt-series are best
recorded with a very small beam opening semi-angle such as 2mrad as pro-
posed in (Hohmann-Marriott et al., 2009). This is the case because the limited
DOF resulting from a larger beam opening semi-angle cannot be compensated
and would lead to geometric blurring. On the other hand, in a CTFS, infor-
mation from different focal planes is used to enhance the tomogram. Con-
sequently, a large beam opening semi-angle is favorable. Tomograms were
thus compared that were recorded under conditions chosen for the respective
method, i.e. 2mrad were used for the tilt-series and compared it to a CTFS
recorded with 41mrad (≈ 2.4°) beam opening semi-angle. For the comparison,
a tilt-series was recorded of a dataset of whole cells containing LDL coated

60



Figure 3.10: Intermediate results of the back projection operator. a) Intermediate
tomogram after all residuals from one tilt direction were processed. The focal planes
are displayed as white lines. b) Intermediate tomogram after the processing of a
second direction. The white arrow marks the location of a nano-particle. Figure
from (Dahmen et al., 2014a).

gold nanoparticles (Baudoin, Jerome, et al., 2013). The sample was imaged
with STEM with a tilt range of 76° (−38° to +38° ) in 4° tilt increments and
reconstructed using SART. This reference tomogram is shown in Figure 3.11b.

Figure 3.10a shows the intermediate volume after all images of one tilt direc-
tion were processed. After only one direction, nanoparticles were reconstructed
as elongated streaks in the tilt direction. The focal planes were perpendicular
to the tilt direction and are shown as white lines in the image. Information
exactly in one focal plane was identical to the image in the input stack cor-
responding to this plane. Between the focal planes, linear interpolation was
used. After two iterations had been processed (Figure 3.10b), the positions of
the nanoparticles started to show as intersections of the streaks.

The reconstruction was performed using 120 iterations of TF-ART. The
resulting tomogram is shown in Figure 3.11a, the white arrow marks the po-
sition of the same nanoparticle in all three directions. The gold nanoparticles
are clearly visible against the background, and their spherical shape is recon-
structed accurately considering the limited tilt range, i.e. as somewhat oval
shapes as seen from yz or xz projection. Examination of the xz slice shows
some additional artifacts, especially a star-like structure in the direction of
the maximum tilt directions. Figure 3.12 shows a perspective rendering of the
tomogram, with a contrast transfer function applied for coloration.
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Figure 3.11: Comparison of the results of the reconstructions of the combined tilt-
focal series STEM data with the reconstruction of a STEM tilt series. a) Tomogram
of the TF-ART reconstruction from a combined tilt-focus series. b) Tomogram of
the SART reconstruction from a STEM tilt series of a similar sample. The white
arrows mark the same nanoparticle in each of the views. Figure from (Dahmen et
al., 2014a).

Figure 3.12: Perspective rendering of the tomogram of the TF-ART reconstruction
with contrast transfer function for coloration. Figure from (Dahmen et al., 2014a).
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Axial Resolution

One main issue with tilt-series based tomograms that was improved is axial
elongation, i.e. the effect that tomograms have a lower resolution in the axial
direction than in the lateral direction. This effect is typically quantified by
the axial elongation factor (eyz) (Section 2.1.5). For the tilt-series, a value of
eyz = 2.8± 0.5 was measured. For the CTFS, measurement gave eyz = 2.0± 0.5.
This corresponds to an improvement of about 29% and is statistically clearly
significant (p < 7.0 ⋅ 10−4). The result constitutes a major improvement on one
of the two most relevant restrictions in electron tomography compared to a tilt
series reconstruction. The measurement for a tilt-series differs from literature
which reports eyz = 2.5 (Baudoin, Jerome, et al., 2013). This difference could
be attributed to the fact that in the literature one of the smallest particles was
selected manually while here we selected a total of 17 nanoparticles randomly
for computing the mean. However, even when comparing to the value reported
in the literature, this combined tilt- and focal series still results in an improved
axial elongation of 20%.

Directional Dependence of Elongation Factor

After the very promising results on the axial elongation factor, we wanted
to exclude the possibility that the tomogram exhibits lowest resolution in a
direction other than the axial direction as a result of the limited number of
tilt directions. The angle-dependent elongation factor exγ was measured as
explained in Section 2.1.5. A plot of exγ over γ is shown in Figure 3.13. It
can be seen that the tilt-series has a larger elongation factor than the CTFS
around the axial direction (90°), which is in line with the earlier measurements
of axial elongation factor. The elongation factor was up to 1.27 times larger
for a CTFS between 110° and 135° direction. This effect was present only on
one side (the opposite range of 45° to 80° did not suffer from this effect), so it is
presumably the result of an alignment error. We concluded that as expected,
the tomogram has lowest resolution in axial direction as a result of the missing
wedge, but the effect is better than in the case of a tilt series.

Frequency Domain

To further evaluate the information obtained from the CTFS, two xz slices
of the tomograms of the CTFS, and of the tilt series were transferred into
the frequency domain (Fourier transform). In the case of the tilt series (Fig-
ure 3.14a), sharp streaks are present corresponding to the tilt directions. The
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Figure 3.13: Analysis of the gain of information in vertical direction. Plot shows
the direction dependent elongation factor (exγ) over the angle to the lateral plane,
compared between the CTFS, and the tilt series. Figure from (Dahmen et al.,
2014a).

“missing wedge” effect is also clearly visible, and the vertical direction con-
tains hardly any signal components. The information obtained in the vertical
direction is thus very limited.

In the case of the CTFS (Figure 3.14b), the streaks corresponding to the
tilt directions are less pronounced and spread over an angular region equal to
the beam-opening angle, so additional information is present between the tilt
directions. Note that the streaks in the tilt-series would be less pronounced
for a dataset containing more tilt planes with a smaller tilt angle spacing. The
missing wedge is still visible for the combined tilt- and focal series but in the
central vertical region low spatial frequency signal components are now present
(white arrow). Thus, the CTFS results in additional information in the axial
direction compared to a pure tilt series, which can be observed in real space
as a reduction of the axial elongation.

3.3.5 Evaluation of Matched Back Projection

The reconstruction method with the matched back projection was evaluated
and compared to the reconstruction with unmatched back projection with
respect to (1) the influence on the quality of the tomogram and (2) the speed
of the algorithm. The reconstruction quality was measured in terms of FWHM
resolution, the SNR, and the axial elongation factor.

The reconstruction performance was evaluated by measuring the rate of
convergence, i.e. the error as a function of the number of iterations. Execu-
tion times in ms are also provided for one exemplary hardware platform and
tomogram resolution in order to allow an assessment of the performance for
practical applications.
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Figure 3.14: a) Frequency domain (Fourier Transform) of a xz slice of the tilt series.
b) Frequency spectrum of a xz slice of the CTFS. The white lines mark the border
of the missing wedge (±40°). Figure from (Dahmen et al., 2014a).

Two different error measures were used. The residual root means square
error (RMSE) is defined as the root of the mean square values of per-pixel dif-
ference between virtual projection and measured projection. Residual RMSE
can be measured without knowledge of a ground truth tomogram and can
therefore be applied to experimental data. The ground truth RMSE is defined
as the root of the mean square values of the voxel-by-voxel difference between
a reconstructed tomogram and a known ground truth. This error measure is
generally more expressive than residual RMSE but can obviously be measured
only for reconstructions from phantom data.

The evaluation was, therefore, performed on two datasets, one experimental
described above and one with phantom data. The phantom dataset consisted of
eight clusters of 64 spherical particles, each of 18.4 nm diameter. The particles
had a density of 16 gray scale units on a homogeneous background of density 1
gray scale unit. The clusters and the particles inside the clusters were placed
at random positions. Synthetic images were generated using the combined
tilt- and focal scheme and the STEM forward projection model without the
simulation of imaging errors such as misalignment or aberrations. Gaussian
noise with a standard deviation of 25 was added to the images.
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3.3.6 Results on Experimental Data

Reconstructing the experimental dataset using the matched operator, the it-
erative reconstruction algorithm reached a residual RMSE of ≈ 1950 after a
single iteration, i.e. after the images from all directions and all focal values were
processed once. After two iterations, the method reached a residual RMSE of
≈ 1394, which was better than the RMSE of ≈ 1770 reached with the un-
matched back projection after the full 120 iterations (Figure 3.11). Thus, the
matched back projection resulted in a speed-up factor of about 60 to reach the
same RMSE level. The reconstruction with matched back projection reached
a minimum RMSE of ≈ 1214 after 20 iterations, after which it showed semi-
convergent behaviour (Elfving, Hansen, & Nikazad, 2014), i.e. the error started
to grow again.

Figure 3.15: Convergence rate of the matched and unmatched back projections on
experimental data. The matched operator reaches an optimum value of ≈ 1214 after
20 iterations. The unmatched operator reaches a value of ≈ 1766 after 120 iterations
but the error is still marginally descending at that point. Figure from (Dahmen,
Kohr, et al., 2015).

For the reconstruction with the unmatched back projection, the lateral
FWHM was 9.4±2.4 nm, and the axial elongation factor was 2.2±0.5. For the
reconstruction with the matched back projection, the lateral FWHM was 9.9±
2.5 nm and the axial elongation factor was 2.3±0.4. Thus, the reconstructions
with the matched back projection showed marginally lower FWHM resolution.

In addition to measuring FWHM, the intensity profile of a lateral cut
through the center of a nanoparticle was considered (Figure 3.16a). The
matched back projection showed a maximum intensity in the center of the
nanoparticle of 686 gray scale units (unmatched: 1270). Thus, the matched
back projection exhibited ≈ 45% lower maximal intensities. On the other hand,
the signal exhibited a much lower artifact level. In order to quantify the level
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or artifacts present in both reconstructions, a lateral profile through an empty
part of the tomogram was considered (Figure 3.16b). The matched back pro-
jection showed an artifact level of 23.0 ± 12.9 gray scale units (unmatched:
72.7± 62.1). By putting the maximum signal intensity in relation to the back-
ground noise, a SNR of 29.8 was computed (unmatched: 17.7), so the matched
back projection generated tomograms with clearly improved SNR.

Figure 3.16: a) Profile of a lateral cut through a nanoparticle. b) Profile of a
lateral cut through an empty part of the tomogram (artifacts only). Results with
the matched back projection are represented by the continous line, results with
the unmatched back projection are represented by the dashed line. Figure from
(Dahmen, Kohr, et al., 2015).

Individual slices of the tomograms are presented in Figure 3.17 for visual
inspection. As can be seen, the tomogram generated with the matched back
projection looks smoother and exhibits less artifacts. The tomogram generated
with the unmatched back projection looks sharper, but also noisier and with
stronger artifacts.

3.3.7 Results on Phantom Data

In order to provide the rate of convergence of the ground truth RMSE, ex-
periments were performed on phantom data. The unmatched back projection
operator found a solution with ground truth RMSE of ≈ 7.3 after 30 iterations,
while the matched operator reached a minimal ground truth RMSE of ≈ 7.4
after 10 iterations (Figure 3.18).

Individual slices of the reconstructions with both matched and unmatched
back projection are shown in Figure 3.19. The results support the conclu-
sion that reconstructions with the matched back projection result in smoother
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Figure 3.17: Individual slices of the reconstructions from experimental data. a)
Reconstruction with the matched back projection. b) Reconstruction with the un-
matched back projection. The matched reconstruction seems to give smoother re-
sults, while the unmatched back projection seems to result in sharper, but noisier
images with more artifacts. The dashed lines show the position of the profiles used
to determine background artifact intensity (Figure 3.16b). Figure from (Dahmen,
Kohr, et al., 2015).

Figure 3.18: Convergence experiment on phantom data. The convergence was mea-
sured as RMSE relative to the ground truth. The arrows indicate minimal values.
Figure from (Dahmen, Kohr, et al., 2015).
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Figure 3.19: Individual slices of the reconstructions from phantom data. a) Recon-
struction with the matched back projection b) Reconstruction with the unmatched
back projection. Figure from (Dahmen, Kohr, et al., 2015). The reconstruction
with the matched back projection results in smoother solutions with less artifacts.
The reconstruction with the unmatched back projection results in slightly sharper
looking solutions, but also noisier and with more artifacts.

tomograms with less artifacts. As observed on experimental data, reconstruc-
tions with the unmatched back projection look sharper but also noisier and
with more artifacts.

3.4 Discussion of the Reconstruction Algo-

rithm

3.4.1 Computational Cost per Iteration

In Section 3.3.6, a performance comparison of matched and unmatched back
projection was given in terms of the rate of convergence, i.e. the remaining
error or residual norms was investigated as a function of the number of itera-
tions. This raises the question of the computational cost of a single interation.
However, the total cost of the reconstruction algorithm is strongly dominated
by the cost of the forward projection, which takes about 8 − 20 times longer
than the back projection (≈ 960 ms on a Tesla C2075). It is therefore justified
to discuss reconstruction performance mainly in terms of number of iterations.
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In the following, we will nevertheless discuss the difference in computational
cost for the execution of the back projection itself for completeness.

The matched back projection is considerably more costly to evaluate in
comparison to the unmatched back projection. This is due to the fact that (1)
the matched back projection has to compute additional convolution operations
for the pre-filtering of residuals and (2) the unmatched back projection does
not change every voxel in a single iteration and therefore requires access to
less memory. Concrete execution times depend on the used hardware and the
size of the reconstruction volume, in particular whether it fits entirely into
the GPU memory or has to be processed sequentially in chunks. On a Nvidia
Tesla C2075, a single execution of the matched back projection to a volume
resolution of 5123 voxels took ≈ 120 ms, while an execution of the unmatched
back projection took ≈ 50 ms.

The implementations of both matched and unmatched back projection were
not fully optimized. The matched back projection could be optimized by
using a faster implementation of the convolution operation switching between
implementations in real space and in Fourier space depending on the size of the
PSF and a hardware-specific threshold. The unmatched back projection could
be optimized by implementing a spatial subdivision scheme and restricting
the execution of the kernel to those parts of the volume that have non-zero
correction.

3.4.2 Classification of the TF-ART Algorithm

In order to understand properties of the reconstruction algorithm TF-ART,
it is of interest to classify the algorithm with respect to existing classification
schemes. More specifically, if we can show that TF-ART is the instance of
an algorithm class that has been investigated in related work, we could gain
knowledge about all proven properties of the class by “inheritance”.

However, the TF-ART algorithm is an instance of the variable block ART
algorithmic scheme (Censor, 1990), generalized to feature an unmatched pro-
jection / back projection pair as discussed in (Zeng & Gullberg, 2000). It can
be expressed in the form:

X ←X + λ
m

∑
k=1

wkA
T
back(B −AforwardX) (3.4)

Hereby, X is the volume, Bk are the pixels in all of the measured pro-
jections, Aforward is the matrix expressing the forward projector, Aback is the
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matrix expressing the back projector. In this notation, which is adapted from
the original paper on Variable Block ART (Censor, 1990), wi are weights that
control at which granularity and in which order the measured projections are
processed, not to be confused with the discrete approximation of the basis
functions. In the case of TF-ART, wi are chosen such that they form the
update loop described in Section 3.2.4. For the special case Aforward = Aback,
i.e. in the case of an matched projection / back projection pair, the algorithm
falls in the class Variable Block ART and all existing knowledge on that class
applies. This includes the proof of convergence (Wang et al., 2007; Qu, Wang,
& Jiang, 2009; Yan, 2010), an understanding of the incremental convergence of
spatial frequencies (Norton, 1985), and the semi-convergence behavior under
noisy conditions (Elfving et al., 2014) among others.

However, the implication of the generalization to an unmatched projec-
tion/back projection pair implies that existing knowledge on the algorithm
classes Variable Block ART (Censor, 1990) does not apply without further
effort to TF-ART. Intuitively it seems likely that TF-ART converges to the
optimum of the L2 norm as well, but a proof depends on properties of the back
projection as discussed in (Zeng & Gullberg, 2000).

3.4.3 Influence of the Matched Back Projection

The adjoint back projection resulted in a drastically increased rate of conver-
gence. On experimental data, the convergence rate was about 60 times faster
then with the unmatched back projection. The choice of the back projection
had an impact on the solution, i.e. a different solution was found depending on
which back projection was used. The solution found by the unmatched back
projection looked sharper but also noisier and with more artifacts. The solu-
tion from the adjoint back projection looked smoother but less sharp. When
measuring resolution and axial elongation factor using the FWHM metric, both
solutions reached the same values within measurement precision, so a prefer-
ence for one solution or the other is likely to depend on a given application.

3.4.4 Conclusions of Experimental Evaluation

In conclusion, tomograms generated with the CTFS recording scheme show
clear and relevant improvement in the axial elongation factor, compared to to-
mograms generated from a pure tilt series. Thus, we demonstrate that record-
ing scheme improves on one of the two most important types of artifacts that
currently limit STEM tomography.
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Two different back projection operators were investigated. Compared to
the unmatched back projection, the main advantage of the matched back pro-
jection is a drastically improved convergence rate. On experimental data, the
convergence rate is about 60 times higher compared to the unmatched back
projection, which brings the reconstruction times to regions that are feasi-
ble for practical application. Also, the reconstruction from the matched back
projection is overall smoother and exhibits a better SNR.
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Chapter 4

Software Architecture

4.1 Existing Software Packages

A large number of both open source and commercial software packages for
tomographic reconstruction in electron microscopy already exists. In terms of
the research of this thesis, this raised the question if the proposed methods
should be implemented as extension to an existing software package or if an
own, new package should be implemented.

In the following, an overview of existing open source and commerical soft-
ware packages for electron tomography is given. Next, key requirements are
identified and matched against the existing implementations. It is argued
that all existing packages fail to fullfill some of the requirements from the ar-
chitecture point of view and a novel software package, called “Ettention” is
presented.

4.1.1 Open Source Packages

The package IMOD (Kremer et al., 1996) is a comprehensive and established
package for electron tomography processing and reconstruction, providing the
weighted back projection algorithm and SIRT. IMOD provides mature CPU
and cluster parallelization options, offering a framework for running generic
parallel processes. Support for GPU processing using CUDA has been added
more recently. IMOD is designed as a set of command-line utilities that are
optionally connected through a Java-based user interface into pre-defined work-
flows. Even though it is possible to extend IMOD with additional reconstruc-
tion techniques, re-use of the existing code is not straightforward. This is
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especially true for the GPU-based reconstruction algorithms, which are de-
signed as monolithic CUDA kernels.

The ASTRA toolbox (Aarle, van der Maar, Batenburg, & Sijbers, 2008)
uses the MATLAB environment to provide GPU based algorithms for 2D and
3D tomography. It supports a fan and parallel beam geometry for 2D, and a
parallel and cone beam geometry for 3D. GPU implementations are available
for SIRT, Conjugate Gradient for Least Square and Feldkamp-Davis-Kress al-
gorithm, among others. A number of methods incorporating prior knowledge
are also implemented, for example the FISTA algorithm (Beck & Teboulle,
2009) for total variation minimization and the discrete algebraic reconstruc-
tion technique (DART) algorithm (Batenburg & Sijbers, 2007) for discrete
tomography. Similarly to Ettention, ASTRA provides direct access to GPU-
accelerated forward projection and back projection operations allowing their
easy integration into algorithms implemented in MATLAB. The main short-
coming of the ASTRA toolbox from the point of view of this thesis is the
coupling with the MATLAB environment, which severely limits the usability
as a generic library and the possibility to interface with 3rd party software.

The software package TomoJ (Messaoudii, Boudier, Sanchez Sorzano, &
Marco, 2007) is implemented as a plug-in to ImageJ, a widespread image
processing tool implemented in Java. TomoJ provides functionality for the
preprocessing, alignment, and tomographic reconstruction of electron tomog-
raphy tilt series. The main advantage of the software is the integration in
ImageJ with its powerful and well-structured application programming inter-
face (API). Disadvantages are low performance and memory management
limitations because of the use of the Java virtual machine as well as the lack
of GPU support.

A strongly integrated approach to electron tomography is taken by the
software EM3D (Ress, Harlow, Marshall, & McMahan, 2004). The software
provides standard support for alignment and reconstruction of electron tomog-
raphy tilt series. Additionally, it features advanced functions for segmentation,
iso-surface extraction, and rendering of tomograms.

The Tomo3D package (Agulleiro, Garzon, Garcia, & Fernandez, 2010) takes
a different approach of accelerating iterative reconstruction techniques. They
exploit the parallelism on x86 architectures by distribting the executing to
different cores and simultaneously making use of single instruction multiple
data (SIMD) parallelism on the instruction level. The packages implements
weighted back projection and SIRT and claims to reach performance compa-
rable to highly optimized GPU implementations.
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PROTOMO (Agulleiro & Fernandez, 2011; Winkler, 2007) is a software
package design specifically for electron tomography. It focuses on a marker-
free alignment and variable-weight weighted-back projection reconstruction.
Similar to most other packages in this area, it lacks any GPU support and is
built as a monolithic software.

The software package OpenMBIR introduces a unique iterative reconstruc-
tion algorithm with a forward model that includes a compensation for Bragg
scattering (Venkatakrishnan et al., 2013).

UCSF Tomography (Zheng et al., 2007) was originally a software pack-
age for tilt-series collection, which made use of sample movement prediction
avoiding the need for additional focusing and tracking. Recently it has been ex-
tended with real-time alignment and reconstruction with the goal of providing
an immediate feedback during the data collection rather than highest-possible
quality reconstruction. The real-time automatic operation is achieved by em-
ploying marker-free alignment and sequential cluster-based weighted back pro-
jection reconstruction.

Several package with focus on averaging techniques like sub-tomogram av-
eraging and single-particle averaging also provide tomogram reconstruction
capabilities as by-features. Examples include EMAN2 (Ludtke, Baldwin, &
Chiu, 1999; Tang et al., 2007), SPIDER (Shaikh et al., 2008), RELION
(Scheres, 2012), Bsoft (Heymann, Cardone, Winkler, & Steven, 2008), and
PyTom (Hrabe et al., 2012).

4.1.2 Commercial Packages

Apart from open-source and research-based software packages, there are only
a few commercial tools. IMAGIC (van Heel & Keegstra, 1981) is a general
purpose, interactive image analysis software package written in FORTRAN 77.
It is mainly applied in the field of high resolution biological electron microscopy.
Advanced techniques are available for the analysis of images of single particles,
including pattern recognition. The main current 3D reconstruction algorithm
in this software is the exact filter back projection algorithm (van Heel, Harauz,
Orlova, Schmidt, & Schatz, 1996).

Inspect3D (Schoenmakers, Perquin, Fliervoet, Voorhout, & Schirmacher,
2005) is an integrated software package for acquisition, alignment, reconstruc-
tion, and visualization of electron tomography data. Its key feature with re-
spect to this thesis is the highly-optimized GPU SIRT technique. In general
the package has a solid GPU parallelization base. It primarily targets electron
microscopy end-users without exposing any of the GPU code blocks.
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4.2 Requirements: Extensibility, Modularity,

and Performance

The basic iterative reconstruction methods approximately solve the linear sys-
tem Ax = b, where x is the searched for tomogram, b is the images from the
microscope and A the system matrix modeling the imaging process. The sys-
tem is both ill-posed and under determined because of imaging errors such as
alignment problems, aberrations and noise. As a consequence, model based
approaches, a-priori information and regularization techniques are key to high
quality reconstruction. By their definition, these techniques are difficult to de-
sign in a general way and have to be tuned to the specific application scenarios
and conditions. We identify three key requirements for an electron tomography
software package:

◾ Extensibility The software must be extensible with respect to different
image acquisition schemes, microscope geometries, file formats and re-
construction algorithms. Likely extensions also include different choices
of volume basis functions, regularization methods and different means to
incorporate prior knowledge.

◾ Modularity The software should be modular in the sense that orthog-
onal features can be recombined as easily as possible. For example, once
a new reconstruction algorithm is implemented, it should work with any
microscope setup, any input file format, and ideally with any choice of
volume basis functions.

◾ Performance The software should deliver good performance with re-
spect to two different aspects. Obviously, reconstruction times should
be low for the convenience of the user. Equally important however is
he scalability to high resolution data, i.e. the software must be capable
to process high projection and volume resolutions within an acceptable
time frame.

By comparing those requirements to the existing packages, one easily sees
that most packages excel at an individual requirement, but no single package
matches all three simultaneously. For example, the IMOD software delivers
highly optimized performance for high resolution volumes, but does not feature
the required level of modularity. The ASTRA toolbox, on the other hand, is
highly extensible and modular, but restricted to low resolution data.

Therefore, a new software package, called “Ettention” is proposed. Etten-
tion consists of a set of building blocks than can be adapted and combined
to application specific iterative reconstruction methods. In this respect, the
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ideas behind Ettention are similar to the concepts driving the design of the
ASTRA toolbox with the difference, that Ettention additionally aims for im-
mediate usability by microscopy end-users by providing GPU support for high
resolution data.

4.3 The Ettention Architecture

4.3.1 Overview

In order to support a large variety of different high performance comput-
ing (HPC) hardware architectures, the OpenCL API (Khronos Group, 2007)
was used as an abstraction layer. While this solves the primary problem (i.e.
the system can run on different hardware architectures) the OpenCL program-
ming model still exposes a number of technical properties, such as the need
to very explicitly handle parallelism and memory management. Those needs
are addressed by a hierarchy of abstraction levels as explained in the following
(Figure 4.1).

At the lowest, most technical level are primitive operations such as volume
ray tracing operations. The next layer are kernel classes that contain an indi-
vidual OpenCL Kernel and a C++ class that wraps the kernel and serves as
an interface to the kernel. A call to the “execute” method of the kernel class
corresponds 1:1 to an execution of the kernel on the HPC device.

However, because the reconstruction volume does not necessarily fit into
HPC device memory, many operations include data transfer of parts of the
volume, processing by consecutive kernel executions and accumulation of re-
sults. These aspects are handled on the next abstraction layer, the operator
level. Operators are self-contained concerning memory management and par-
allelism. Simple operators contain exactly one kernel class and use consecutive
executions of this kernel to perform their function. The most important simple
operators are the generic projection and back projection operators. They can
be combined with different forward and back projection kernels to support a
variety of projection geometries and basis functions. Complex operators recur-
sively combine other operators to implement functionality. The most impor-
tant complex operators are reconstruction algorithms such as a generic block
iterative algorithm and the special cases SART operator and SIRT operator.

Apart from the performance critical parts that are implemented on the
HPC device, Ettention is implemented in C++ and runs on the CPU. The
C++ part also contains a plug-in interface, such that the software can be
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Figure 4.1: The hierarchical view of the HPC part of the Ettention architecture
consists of four layers: primitive operations such as volume ray tracing are imple-
mented as OpenCL includes. Kernel classes wrap exactly one OpenCL and serve as
interface to this kernel. Simple operators are are self-contained concerning memory
management as they perform data transfer to HPC memory as required. Composed
operators hierarchically combine other operators.

extended in almost every aspect by writing plug-ins. The interface for plug-ins
allows to instantiate the following concepts:

◾ reconstruction algorithms
◾ forward projections
◾ back projections
◾ file formats (input and output)
◾ data access schemes
◾ microscope and projection geometries

In summary, Ettention is implemented as a modular set of HPC building
blocks. The individual blocks form a hierarchy of abstraction, such that the
technical aspects of memory management and parallelism are hidden in the
lower layers. At the higher level of abstraction, objects called “operators” can
be used without regard of the HPC aspect. The system can be extended via
plug-ins in almost every part, and the combination of extension often works
out of the box.
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4.3.2 Plug-in Concept and Binaries from Kernel Files

Ettention is structured in a central library that can be extended by plug-ins
that are loaded at runtime via dynamic linking. This helps for separating
the source code into manageable units and allows the framework to be used
by developers from organizations with different requirements regarding their
licensing terms. Particularly, it offers the possibility to provide closed-source,
commercial plug-ins to the open source Ettention framework. In order to build
self-contained binary files and allow closed source developers a minimal level of
protection on their compute kernel code, Ettention implements a mechanism
to link compute kernels into the executable binary. As the kernel source code is
automatically embedded as a string constant at build time, obfuscation could
trivially be integrated into the build process, if required.

4.3.3 Memory Management

A typical reconstruction volume has a size between 5123 and 40962 × 1024
voxels, at typically 16 or 32 bit floating point precision for gray values. This
implies a memory requirement of 512 mega bytes (MB) to several giga bytes
(GB) for the volume alone so it cannot be assumed that the volume fits into
the limited HPC memory, and out-of-core mechanisms for GPU need to be
applied in those cases. As a consequence, a reconstruction operation such as
a forward projection does not map 1:1 to the execution of a HPC compute
kernel.

One approach is to reduce the 3D reconstruction problem to a series of 2D
reconstructions, i.e. slice both the volume and the projection along a plane per-
pendicular to the tilt axis and reconstruct a slice at a time. While providing
clear advantages in terms of simplicity and reconstruction performance, the
method has the obvious disadvantage of restricting projection directions. For
Ettention, we decided not to take this approach and allow arbitrary projec-
tion directions and geometries. This enables use-cases such as laminography
(Maisl, Porsch, & Schorr, 2010), STEM tomography with convergent beams
(Dahmen et al., 2014a), cone-beam tomography (Mueller, Yagel, & Wheller,
1999), or in the future tomography from unaligned stacks with arbitrary pro-
jection matrices.

As a consequence, most operations involve sequential processing of the
volume including consecutive upload of parts of the volume to the GPU, exe-
cution of a kernel that operates on a subvolume, and accumulation of results.
Those operations are performed transparently inside the individual building
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blocks, so the memory management aspect of GPU programming is hidden
when developing using Ettention. The handling of GPU memory management
is performed using a template called “GPUMapped<>”, which represents the
notion of an object (such as a reconstruction volume, image, or projection
matrix) that is required both on the CPU and the GPU. The template links
the CPU object to a configurable GPU representation, such as a float buffer
(16 or 32 bit precision) or a GPU image (1D, 2D, or 3D layout; 16 or 32 bit
precision). By tracking the up-to-date status of the different representations,
the system can figure out when data transfer to device memory or back is
required.

4.3.4 Parallelism

One core concept when programming a system that heavily relies on the GPU
is the need to explicitly handle parallelism and synchronization of concurrent
results on HPC devices. While reconstruction algorithms exhibit a high degree
of parallelism at the lower levels, the high-level formulation of the algorithms
are basically sequential. Ettention addresses this situation by introducing al-
gorithmic building blocks that operate on problem domain objects, such as
volumes and projection images. The building blocks are implemented in a
parallel way and are self-contained concerning memory management and syn-
chronization in the sense that they keep track of memory status and perform
data transfer to and from GPU as required. They can be recombined to for-
mulate reconstruction algorithms in a sequential way using operations such as
image loading, forward projection, or back projection.

However, using predefined building blocks is not sufficient for most inno-
vative applications. Introducing novel building blocks for new compute tasks
will require dealing with platform specific aspects at some point. However,
most building blocks required for reconstruction algorithms fall in either of
the three categories forward projection, back projection, or image manipu-
lation. They differ mainly in the innermost loop, for example by a custom
regularization method, new volume basis functions, or custom projection ge-
ometry. Because those features are implemented one abstraction level below
the per-pixel or per-voxel level that exposes the parallelism, the concepts can
easily be expressed in a way that is agnostic to parallelism.

However, having function calls in the innermost loops would be pro-
hibitively expensive and therefore not exposed by HPC devices at all. Instead,
Ettention solves this by injecting statements in the OpenCL source code via
macros. This way, custom regularization functions or new basis functions are
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inlined and optimized by the kernel compiler and therefore do not impact
performance.

4.4 Individual Building Blocks

In the following, the most important algorithmic building blocks are presented.
We follow a bottom up approach starting with the primitives and moving to
concepts of successively higher levels of abstraction.

Grid Traversal

A ray traversal for uniform grids is provided as a fundamental operation to
most forward projection operations. The ray traversal is based on a 3D ver-
sion of the digital differential analyzer (DDA) (Watt, Allan, 2000) algorithm
but uses floating point operations instead of the fixed point arithmetic of the
original implementation for better performance on HPC devices. This module
is mainly used to implement forward projections.

A separate version of the ray traversal exists that introduces the notion of a
ray thickness, such that it iterates over all voxels within a given distance to the
ray. The version is implemented using a modified 3D Bresenham (Bresenham,
1965) algorithm. It is used for tracing rays through volumes assuming basis
functions that span more than one voxel, i.e. blobs (Marabini et al., 1998;
Bilbao-Castro et al., 2009).

Forward Projection

Forward projection operations are provided as self-contained building blocks
for reconstruction algorithms. Versions are provided for parallel projection
such as applicable to TEM tomography and for perspective projections, usable
for X-Ray computed tomography (CT). A version assuming parallel projection
but limited depth of field is provided for use with aberration corrected STEM.
The forward projection is implemented pixel-by-pixel and based on the grid
traversal routines. The forward projections are provided in variations for voxel
and blob basis functions, using the ray traversal routines based on DDA or
Bresenham as explained above.

81



Figure 4.2: A block diagram of the SART algorithm as an example for an iterative
reconstruction algorithm implemented using the building blocks in Ettention. CPU
code objects including data flow are shown on the left side (green), GPU kernels
on the right side (blue). Some operators like the residual computation correspond
1:1 with calls to GPU kernels, while the forward and back projection operators,
that work on volumes, require more than one call to the corresponding kernel. A
hierarchical mapping, where one operator uses several different kernels is also pos-
sible and shown on the example of the forward operator, which uses several calls
to the forward kernel and an successive, optional call to the long object compen-
sation. Most input or output slots of the building blocks are implemented using
the GPUMapped<> template, so the operator can either take CPU data input, or
it can take a buffer that already lies in GPU memory space. An example for this is
the virtual projection input for the difference kernel, which already is on the GPU,
so the system transparently figures out that a copy is not required. Figure from
(Dahmen, Marsalek, et al., 2015).
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Back Projection

Building blocks for back projection operation correct a volume by projecting
each voxel back onto an image plane and adjusting the voxel intensity using a
customizable regularization function applied to the residual. The operation is
implemented in a voxel-by-voxel way in order to avoid no synchronization issues
for writing updates to the volume. This results in much higher performance
than a pixel-by-pixel implementation using ray traversal. A discussion of the
topic can be found in (F. Xu & Mueller, 2005).

Because the projection geometry is provided as a general 4x4 matrix, the
operation can be used with a large variety of microscope geometries. Pre-
configured building blocks are provided for unregularized parallel and perspec-
tive back projection and several regularization schemes, for example for use in
STEM tomography (Dahmen et al., 2014a).

Image Processing Operations for Residuals and 2D Projections

Several building blocks are provided that operate on individual images. Be-
cause Ettention assumes several individual projections to fit into GPU mem-
ory, the per-image operations can directly be mapped to one execution of an
OpenCL kernel. Per image operations include the computation of residuals
(implemented as a per-pixel difference computation) and long object com-
pensation (W. Xu et al., 2010), real and complex multiplication, and several
statistics functions such as minimum, maximum, and mean pixel intensity, and
mean root square computation.

Data Input/Output of Multi-Dimensional Data

Ettention provides support to load the most common data formats for image
stacks, such as the mrc format, multi-slice tiff, or an image sequence in a
directory. The term image stack hereby refers to a 1D array of 2D images.

In some use cases, a 1D array of images is insufficient. For example in the
case of a CTFS, the input consists of one image per tilt direction and focal
positions, resulting in a 2D array of images. Ettention therefore introduces
the concept of a “hyperstack”, that consists of an n-dimensional array of 2D
images. Images in a hyperstack are referenced using n-tupel of integers as
indices.
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The reconstruction algorithms generally work on such hyperstacks. This
way, the only part of the algorithm that depends of the dimensionality of
the input is the projection ordering, called ProjectionSetIterator in Ettention
terminology. For example, the multi-level access scheme (Guan & Gordon,
1994) for single-tilt tomography assumes a 1D stack. But given a suitable way
to iterate, a reconstruction algorithm can operate on input of any number of
dimensions.

Generally, in Ettention, it is assumed that individual images fit into mem-
ory, but not necessarily the entire stack. As a consequence, iterative techniques
might require loading input images several times from disk. In Ettention, the
loading of images from files is therefore implemented via an interface called
“datasource” that allows random access to individual images (instead of a de-
serializer or stream operator). An in-memory representation of a hyperstack
is missing intentionally, instead the API provides a caching datasource, which
will keep a configurable number of images in memory using a least-recently-
used strategy, and load missing parts of the stack as required.

Fast Fourier Transform, Convolution, Deconvolution

A very useful basic operation is the transfer of images from real space to fre-
quency space and back by means of a Fast Fourier transform (FFT). On the
OpenCL platform, the clAmdFFT library provides a highly optimized FFT
implementation. However, due to its very flexible and technical interface,
integrating clAmdFFT into a given application is tedious. Ettention encap-
sulating the library as a read-to-use building block that operates directly on
GPUMapped<> images.

One application of the FFT is the intermediate output of buffers for de-
bugging purposes. Any buffer can be configured to be written to disc at con-
figurable points in the algorithm (per iteration, per projection, or per kernel
execution). The output can be performed either in real space or in frequency
space, which is useful during algorithm design and debugging.

Another application of the FFT is the implementation of convolution and
deconvolution operations. For filter kernels with a diameter above a hardware
specific threshold (20 − 60 pixels on most GPU platforms), those operations
are most efficiently implemented as FFT, followed by a complex multiplica-
tion (convolution) or multiplication by the inverse (deconvolution), and a sec-
ond FFT to come back to real space. A deconvolution is required as compo-
nent of many reconstruction algorithms, such as weighted back projection and
TF-ART (Dahmen et al., 2014a).
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Reconstruction Algorithm Abstraction

With the building blocks described above, one can now easily implement novel
reconstruction algorithms. Because most of the technical issues of HPC pro-
gramming are hidden by the reconstruction building blocks, the algorithms
themselves can be implemented in a language that clearly reveals the algorith-
mic idea. The reconstruction algorithms work on interfaces such as generic
forward projection or generic back projection. Therefore, the individual build-
ing blocks can be exchanged. This allows a large variety of combinations and
is key to the requirement “Modularity” that was claimed in the introduction.

Ettention provides a generic block iterative reconstruction operator
(Censor, 1990). This operator allows to configure the block size and works
with arbitrary forward- and back projection operators, potentially provided
via plug-ins. In this framework, the well-known algorithms SART and SIRT
can be realized by initializing the block iterative operator with a parallel for-
ward and unregularized back projection and a block size of one (SART) or
equal to the number of projections (SIRT). Different schemes can be imple-
mented via plug-ins.

4.5 Interfacing with Other Software

Ettention was designed as a library that can be linked into various applica-
tions. It also provides a command line interface for manual usage. Therefore,
two basic scenarios exist to interface Ettention with other software. One can
either link the library as a dependency into a system like a graphical user in-
terface program or web server. Required steps for adaptations such as passing
of parameters or parsing of input file formats unknown to ettention can be
implemented in the application in this case.

Alternatively, one can use the command line tool to integrate Ettention
into a larger system and implement the required glue code as a plug-in to Et-
tention. The later approach can be used for the integration into programming
environments that do not easily allow linking with C++ libraries, such as the
Java environment.

One example for such an integration is the eTomo package by IMOD.
eTomo is basically a front end written in Java providing easy access to the
separate algorithmic steps, that are each implemented as individual executa-
bles. The algorithms are called with a set of parameters stored in config files,
with “tilt.com” being the basic one used for all operations.

85



The adapter to incorporate Ettention into IMOD consists of two compo-
nents. An abstract window toolkit panel provides a user interface to set all
necessary parameters. It is provided as a jar file for Java and integrated into
the eTomo front end. When the reconstruction action is selected, it generates
a parameter file “ettention.com” and calls the Ettention command line tool.
Additionally, an Ettention plug-in provides a parser for the handling of the
.com files. Upon execution, the program parses two files, “tilt.com” and “et-
tention.com”, reads the input files, performs the reconstruction and generates
the output tomogram in the IMOD compatible mrc format.

4.6 Results

4.6.1 Evaluation Methods

The Ettention software package was evaluated experimentally on a dataset of
human anti-HIV-1 gp120 antibody IgG1-b12. The motivation for choosing this
particular dataset was that for reasons of comparability between implementa-
tions, a public available dataset from the Electron Microscopy Pilot Image
Archive (Patwardhan et al., 2012, 2014) should be selected. At the time of
publication, EMPIAR-10009 was the only dataset of the database that showed
a structure in the native environment, as opposed to isolated particles.

The input dataset (EMPIAR-10009) consists of a single axis tilt series of
51 images, each of which has a resolution of 20482 pixel. The tilt series was
recorded with parallel electron tomography using a saxon scheme over the
tilt range of ±60° in 3° increments. Additional information on the sample
preparation and image acquisition is given elsewhere (Diebolder et al., 2014).

Tomograms were reconstructed using the IMOD implementations of back
projection and SIRT and the Ettention implementations of SART as well as
SIRT. Tomographic reconstructions were performed with two different output
resolutions to investigate the in-core case and the out-of-core case separately.
A tomogram resolution of 20482 × 1024 was selected for the out-of-core case
and 10242 × 512 for the in-core case.

4.6.2 Reconstruction Quality

As a baseline, the EMPIAR-10009 dataset was reconstructed using the IMOD
package (Figure 4.3). Both back projection and 10 iterations of SIRT recon-
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Figure 4.3: Tomographic reconstructions performed using IMOD. a) Back projection
reconstruction. b) SIRT 10 iterations. The dashed lines in the xy plane indicate the
relative positions of the yz and xz plane. Contrast was scaled for optimal display.
Figure from (Dahmen et al., 2014a).

structions were performed. As was expected for a dataset with low SNR and
limited tilt range, the SIRT reconstruction showed better contrast and revealed
more details (Figure 4.3).

The same dataset was reconstructed using the Ettention software pack-
age. The reconstruction was performed using 10 iterations of SIRT (Figure
4.4a) and 3 iterations of SART (Figure 4.4b). As can be seen, the SART re-
construction reveals more details than the weighted back projection (WBP)
reconstruction performed using IMOD, but looks noisier than the SIRT recon-
structions performed with IMOD or Ettention. Compared to the IMOD SIRT,
the SIRT reconstructions with Ettention seem to yield slightly smoother results
that reveal more details, particularly in the yz plane. However, the Ettention
reconstruction contains a low-frequency, dark region that is not present in the
IMOD reconstruction. So Ettention generates a notably different reconstruc-
tion result than IMOD, even if both software systems use the SIRT algorithm.
Reasons for this might include (1) the higher precision for the volume represen-
tation in Ettention, and (2) the fact that IMOD uses an additional weighting
filter (Wolf, Lubk, & Lichte, 2014) that is not part of the original SIRT im-
plementation. A quantitative comparison depends on the figure of merit, and
therefore on the intended use of the tomogram, i.e. if the data should be used
for segmentation, automated analysis, or single particle averaging methods.
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Figure 4.4: Tomographic reconstructions performed using Ettention. a) Reconstruc-
tion using 10 iterations of SIRT. b) Reconstruction using 3 iterations of SART. The
dashed lines in the xy plane indicate the relative positions of the yz and xz plane.
Contrast was scaled for optimal display. Figure from (Dahmen et al., 2014a).

4.6.3 Performance

Test Hardware

The performance measurements were performed on a number of different hard-
ware platforms. A Nvidia Tesla C2075 with 6 GB memory represented a typical
GPU workstation setup. A two CPU System with Intel Xeon X5560 and 48 GB
memory represented a high-end CPU setup and an Intel Xeon Phi 31S1P with
8 GB memory was included to represent a non-GPU HPC platform.

Total Reconstruction Times

All reconstructions were tested on the EMPIAR-10009 dataset. The recon-
structions were executed twice, once from a projection resolution of 20482

pixels to an output resolution of 20482 × 1024 voxel (2K case) and once from
a reduced projection resolution of 10242 pixels to a tomogram resolution of
10242 × 512 (1K case). All execution times are given per iteration in seconds
(Table 4.1).
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Table 4.1: Reconstruction times per iteration in seconds on different hardware plat-
forms.

SIRT SART

1K 2K 1K 2K

Tesla C2075 21 s 159 s 26 s 630 s

2 Xeon X5560 415 s - 376 s -

Xeon Phi 31S1P 171 s - 246 s -

As expected, the GPU platform shows reasonable performance, particularly
in the in-core (1K) case while the CPU platform is outperformed due to inferior
floating point compute power. The Xeon Phi performs better than the Xeon
but does not reach the performance of the Tesla card. In the 2K (out-of-core)
case, the SIRT implementation outperformed SART because the volume has
to be transferred via the PCI bus less often as a result of the larger block
size. However, when comparing the execution times of SART and SIRT, one
has to keep in mind that the SART algorithm typically shows a higher rate of
convergence, so longer runtime per iteration can potentially be compensated
by using less iterations. Execution times for the 2K case on the Xeon and
Xeon Phi architecture were too high to be measured in reasonable times.

Performance Analysis on Nvidia Tesla Platform

The performance on the Nvidia Tesla platform was further analyzed in more
detail (Table 4.2). Forward- and back projection operator were measured sep-
arately, while the long object compensation and residual computation kernels
were summed as “other kernels” as their runtime is marginal. In the 1K case,
every kernel was executed 51 times, once per projection. In the 2K case, the
volume was processed in 8 chunks, consequently each kernel had to be executed
408 times.

All data transfer times via the peripheral component interconnect (PCI)
bus were measured separately for both directions (host-to-device and device-to-
host). The volume was represented using a 3D GPU texture for the forward
projection and using a float buffer for the back projection, because Nvidia
platforms do not support write operations to 3D texture (missing support for
cl khr 3d image writes). As a consequence, the volume had to be recoded on
the GPU when switching from back projection to forward projection, which
is listed separately as well. The last data row “Non-HPC processing” lists
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Table 4.2: Detailed analysis of the execution time on the NVidia Tesla hardware.

SIRT SART

1K 2K 1K 2K

Forward projection 4.7 s 36.47 s 4.7 s 36.5 s

Back projection 12.3 s 97.82 s 12.3 s 97.6 s

Other kernel 0.02 s 0.073 s 0.02 s 0.07 s

Data transfer to GPU 1.0 s 6.48 s 0.74 s 224 s

Data transfer from GPU 0.31 s 2.5 s 0.52 s 212 s

Encoding as GPU texture 0.12 s 0.94 s 6.0 s 48.0 s

Non-HPC processing 2.5 s 14.7 s 1.8 s 10.1 s

Total iteration time 21 s 159 s 26 s 630 s

the difference between total iteration time and the sum of all OpenCL time
measurements and collectively accounts for the time spent in C++ code on
the CPU including system calls for disc input/output operations, host memory
management, and so on.

As can be seen, in the 1K case SIRT and SART show comparable and
reasonable performance. The difference can be explained by the additional
time for encoding as GPU texture, which occurs because the SART algorithm
switches between forward and back projection more often and thus has to per-
form additional encoding operations to store the volume into texture memory.

In the 2K case, the SIRT algorithm takes a factor of ≈ 7 longer than in
the 1K case. Considering that the volume has 8 times more voxel and the
projections 4 times more pixel, this is actually quite good. The performance
of the SART algorithm on the other hand drops drastically. This can be
explained by the fact that because the volume is processed in chunks, it has
to be transferred via the PCI bus once per update block (Censor, 1990) of the
algorithm. This means, the SART algorithm transfers the volume once per
projection over the bus, while the SIRT algorithm performs the transfer only
once per iteration. The corresponding data transfer times are clearly visible
in the data (“Data transfer to GPU” and “Data transfer from GPU”) and
dominate the total execution time of the reconstruction.

90



Table 4.3: Detailed analysis of the execution time on the Intel Xeon Phi hardware.

SIRT SART

Forward projection 28 s 52 s

Back projection 128 s 128 s

Data transfer 4.8 s 3.7 s

Total iteration time 171 s 246 s

Performance Analysis on Xeon Phi Platform

A detailed performance analysis on the Xeon Phi platform (Table 4.3) showed
that the run time is dominated by the cost for the back projection. A bottle-
neck analysis using Intel VTune Amplifier XE 2015 (update1) revealed a high
cycles per instruction rate (Intel Corp., 2014a) of 9.4 for the back projection
and a very high latency impact (Intel Corp., 2014a) of 294 units. The source
for those issues could be tracked to the access of the volume representation
in device memory in the correction step. As this memory access has already
close to optimal layout (consecutive access in work group dimension zero), this
results remains inconclusive to some degree.

The data transfer times via PCI bus were also about a factor of ≈ 2 longer
than on the Nvidia platform, even though the same data representation was
used (16 bit half-float). This might be an indication that there are some is-
sues with the used driver version and operating system combination (Windows
server 2012 R2 and Xeon Phi driver version 3.4.32131.0 date 8/26/2014).

4.7 Discussion of the Software Architecture

Compared to existing software packages for tomographic reconstruction in elec-
tron microscopy, Ettention fills a gap between IMOD and the ASTRA toolbox.
For algorithmic research without the need for immediate application to high
resolution data, using the ASTRA toolbox can be recommended because of
the powerful MATLAB language binding and because the limitation to the in-
core case, i.e. to small reconstruction volumes, is not relevant. For microscopy
experimentalists who require well established reconstruction algorithms, using
IMOD is likely the best choice because of its highly-optimized reconstruction
performance on high-resolution data. For projects that require both, algo-
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rithmic innovation and immediate application to high-resolution experimental
data, the Ettention software package should be considered, as it delivers rea-
sonable (though not optimal) performance even on high resolution data and
exposes a rich and well-structured API that allows efficient implementation of
algorithmic innovations.

The performance of block iterative reconstruction methods on HPC plat-
forms needs to be discussed separately for two cases. In the in-core case, it can
be assumed that the reconstruction volume fits entirely in device memory. In
this case, reconstruction performance is limited mainly by memory bandwidth
to device memory (on GPU architectures), or computational power (on CPU
architectures). In the Ettention framework, memory management is handled
entirely transparent for the in-core case and it is justified for the application
developer to ignore those aspects during algorithm design.

In the out-of-core case, the reconstruction volume does not fit into device
memory. Memory management is still handled transparently in this case, but
the volume has to be transferred via the PCI bus to the device, which be-
comes the factor limiting performance. Per update block in the reconstruction
scheme, the transfer is required two times from host to device (once for forward
and back projections each) and once back from device to host (for the result of
the back projections). As a consequence, iterative schemes with large blocks
(like SIRT) will result in lower runtime per iteration than schemes with small
blocks (like SART), as the latter require to transfer the volume more often.
The algorithmic approach to optimize in this situation would be to balance
convergence rate against data transfer and choose an optimal block size. At
this point, the approach of ignoring hardware specific aspects entirely when
developing algorithms reaches its limits.

A different solution is to technically optimize for bus bandwidth. Potential
techniques here include the asynchronous transfer of volume data to and from
device memory parallel to computations. Additionally, reducing the precision
of gray values from 32 bit floating point to 16 bit half float is already supported
by Ettention via configuration and reduces the bandwidth requirement by 50%,
but results in reduced reconstruction quality in some cases.

Limiting the bus bandwidth by data compression can additionally help to
maximize transfer. Compressed data can either be deflated on the HPC device
for each chunk, or a suitable compression scheme can be used that allows
efficient random access, i.e. supports working directly on compressed data.
The later typically reaches lower compression rates but has the additional
advantage that HPC caches benefit from data compression as well.
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Techniques in the direction of data compression have been investigated
in the field of compressed direct volume rendering (Rodriguez et al., 2013)
and could be applied to tomography in those cases where the compressed data
scheme still allows changing volume values. From a software architecture point
of view those approaches raise the question how the proposed techniques can
be incorporated in a transparent way, i.e. without complicating the code of
reconstruction algorithms based on the framework. This should be addressed
in future work.

As expected, performance in x86 architectures is sufficient for tests runs
with low resolution but for high resolution reconstructions HPC platforms
should be used. Note that this statement refers to OpenCL code and a different
result might be achieved by a native implementation with platform specific
optimizations, such as specialized SIMD CPU code (Agulleiro & Fernandez,
2011).

A special case is the performance measurement on the Intel Xeon Phi plat-
form. While it was made sure that the basic performance optimization rules for
the platform (Intel Corp., 2014b) were not violated, no major design changes
were made to Ettention in order to optimize for the Xeon Phi. Despite close
to optimal memory access patterns, the performance on this platform was re-
stricted by the memory bandwidth to device memory. The main optimization
direction in the future will therefore be a more compact volume representation.
Further investigations seem justified in this regard.

As mentioned before, the main motivation for the Ettention framework
is to provide researchers a development platform for the rapid prototyping
of new reconstruction algorithms while at the same time allowing reasonable
performance as well as integration in existing standard software at the same
time. In order to facilitate this platform approach, Ettention is released under
a GNU Lesser General Public License (LPGL) and can be downloaded freely
from www.ettention.org. Ettention can be extended using the plug-in approach
described in Section 4.3.2, and plug-ins can have arbitrary licensing models,
i.e. it is allowed that third parties write closed source Ettention plug-ins under
commercial licenses.
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Chapter 5

Conclusions

In this thesis, tomography using STEM with limited depth of field was inves-
tigated. In the beginning of this thesis (Section 1.1), a number of research
questions were stated. In the following, answers to those questions are pre-
sented as the concluding statements of the thesis.

What are the implications for the theory of tomographic reconstruc-
tion when considering images that are recorded with limited depth
of field (DOF)?

The “STEM transform” is introduced as a new forward projection model that
takes the limited DOF of aberration corrected STEM into account. It extends
the ray model of the electron beam to a double cone, such that the convergent
nature of the electron probe in aberration corrected STEM is considered. The
operator is investigated analytically and it is shown that it is (1) a linear
convolution, (2) a generalization of the ray transform for parallel illumination
that contains the latter as the special case α → 0. A central contribution is
the insight that (3) the STEM transform is self-adjoint.

How can the tomographic reconstruction problem be solved for data
recorded with a CTFS?

Based in the theoretic model of the STEM transform, we introduce an iterative
reconstruction algorithm based on Kaczmarz method. The algorithm uses a
software implementation of the STEM transform as a forward projection. The
implementation is based on a cone tracing implementation using stochastic ray
tracing and stratified rejection sampling. Two different back projections are
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implemented and investigated. The first one, called “unmatched” is based in a
heuristic weighting factor. The second back projection is called “matched”. It
uses the theoretic result that the STEM transform is self-adjoint. An efficient
implementation of the adjoint operator is presented based on precomputed
convolution operations and linear interpolation.

It is shown experimentally that the CTFS leads to a significant reduction
of the blurring artifacts called “axial elongation” and thus to a more truth-
full representation of the 3D shape of objects compared to a tilt series. The
matched back projection results in a convergence rate that was ≈ 60 times
higher than observed with the unmatched back projection and comparable a
SART reconstruction of tilt series data.

Is there a statement comparable to the Fourier slice theorem that
applies to a combined tilt- and focal series?

The Fourier transform of the STEM transform was computed analytically else-
where (Intaraprasonk et al., 2008, Equation 27). It covers a region in Frequency
space that corresponds to all but a double cone of opening angle π −α, where
α is the opening angle of the electron beam. This has interesting implications,
as the STEM transform allows to cover the entire frequency space with a finite
number of projections. Furthermore, the double cones overlap in the regions
corresponding to the highest frequencies.

How should a software architecture be designed to handle data
recorded with a CTFS?

We identified three key requirements for a software architecture for iterative
tomographic reconstruction algorithms: Extensibility, Modularity, and Perfor-
mance. The software package Ettention is presented to address these demands
for a wide range of tomographic reconstruction problems, including the re-
construction of CTFS data. The software consists of building blocks, which
can quickly be assembled to application specific tomographic reconstruction
algorithms.

The software package can be extended in almost every aspect using plug-
ins. The Ettention framework hides the technically challenging aspects of HPC
programming by providing an abstraction layer above memory management
and parallelism, enabling the formulation of reconstruction algorithms in a
domain-specific language. The system provides a set of building blocks, called
operators, that can freely be combined to form new reconstruction algorithms
in a modular way.
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Ettention provides feasible performance for a wide range of HPC plat-
forms and allows for the integration of reconstructions into existing software
solutions. We propose Ettention as a platform for algorithmic research in sit-
uations that require both rapid prototyping of algorithms and application of
the new methods to experimental high-resolution data sets, respectively the
integration in existing software systems.

With answers to those questions, the CTFS has the potential to become a
standard method in STEM tomography, at least for specimen of a thickness
range around 1 µm. However, the research presented in thesis is but a first
step to a complete understanding of the CTFS and more questions arise as
explained in the next Chapter.
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Chapter 6

Future Work

6.1 Applicability and Electron Dose Restric-

tions

The method CTFS has so far been demonstrated on one experimental sample,
consisting of gold-stained biological tissue in the thickness range of 1 µm. The
method resulted in improved axial elongation, but at increased computational
cost and increased electron dose. While for many applications trading almost
arbitrary amounts of computational effort to increase the resolution is accept-
able, the increased electron dose is a fundamental concern for dose sensitive,
biological specimen.

In the introduced image acquisition scheme, for every tilt direction, a focal
series of 20 images was recorded, increasing expose by the same factor. This
additional electron dose was partially compensated by an increased tilt incre-
ment. The specimen was rotated in increments of 5° instead of the typical 1°

steps of a conventional tilt series, reducing the expose by a factor of 5. Still,
assuming a constant electron dose per image, the scheme increases the electron
dose by a factor of 4. In order to compensate this, images could be recorded at
a reduces electron dose, necessarily resulting in noisier images and a decreased
SNR. However, it is currently unclear how the noise in the input projections
of a CTFS influences the noise in the reconstructed tomogram, compared to
the same process in a conventional tilt series. In other words, there is the
hypothesis that increased noise in the input projections is averaged over the
increased number of images in a tilt- and focal series and results in the same
SNR in the final tomogram as could be expected from a tilt series of the same
total electron dose. This hypothesis remains to be examined theoretically and
experimentally.
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6.2 Regularization and A-priori Information

The method TF-ART, introduced in (Dahmen et al., 2014a), is a typical iter-
ative reconstruction technique derived from Kaczmarz method. In the version
with the matched back projection, it is known that it converges to the min-
imum of the L2-norm of the residual. However, the recording scheme CTFS
can be combined with a wide range of a a-priori and regularization techniques.
Expectation maximization (Dempster et al., 1977) and total variation mini-
mization (Yan & Vese, 2011) could be used in combination with a CTFS to
exploit the assumption of a sparse gradient, which might work well for the
case of gold nanoparticles. Similarly, the method DART (Batenburg & Si-
jbers, 2007) could be used to exploit the assumption that the sample consists
of relatively few, known materials. Generally it can be said that the CTFS
acquisition scheme can be combined almost arbitrarily with a-priori or reg-
ularization techniques, which opens a wide field of research as none of these
combinations have been investigated so far.

6.3 Towards Beam Blurring Correction

The STEM transform presented in this thesis uses a double cone as a model for
the electron beam. While this model represents a clear improvement over the
line model typically used in tomographic reconstruction, it is still drastically
simplified compared to models of the STEM probe shape (Lupini & de Jonge,
2011; Demers, Ramachandra, Drouin, & de Jonge, 2012) and electron behav-
ior used for purposes other than tomographic reconstruction. One example for
such a context is the numeric simulation of the imaging process of STEM mi-
croscopes, implemented in the CASINO software (Drouin et al., 2007; Demers
et al., 2011). The software uses a Monte-Carlo approach to simulate electron
trajectories described by discrete elastic scattering events. The inelastic events
are either approximated by a mean energy loss model (Joy & Luo, 1989) or
alternatively a hybrid model for the inelastic scattering is used where plasmon
and binary electron-electron scattering events are treated as discrete events.
Either way, the elastic scattering angle is determined from a random num-
ber and from tabulated cross section values from the ELSE-PA cross section
software (Salvat, Jablonski, & Powell, 2005). As the physical model used in
the CASINO software has been experimentally shown the be very accurate
(Demers et al., 2011; Poirier-Demers, Demers, Drouin, & de Jonge, 2011), one
could argue that an ideal reconstruction algorithm should use the same model
for the forward projection.
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However, there are two obstacles on the way towards this seemingly
straight-forward approach. First, the execution of a forward projection based
on a low-level physical simulation as realized in the CASINO software is pro-
hibitively slow for an iterative reconstruction algorithm that typically needs to
execute thousands or tens of thousands forward projections to find a solution.
This situation might very well be overcome by carefully optimizing the imple-
mentation using approximations, pruning computations that are not relevant
for a given detector (for example electrons below a given threshold of kinetic
energy can be discarded if an energy filter is simulated) and careful technical
optimization for a target HPC platform.

The second obstacle is more fundamental in nature. The more complex
model of the electron beam mentioned before considers electron-matter inter-
actions. This means, in this model the electron beam shape is a function of
the specimen, which is described not only by its density but also by its atomic
number for every point in space. In the case of a simulation of the imaging
process, those values are freely available as the specimen is entered manually
via a computer aided design file or comparable. In the case of a tomographic
reconstruction, the specimen function is the searched for solution, i.e. not avail-
able by definition. For further considerations, let the spectroscopic specimen
function hS be fined as

hS(u) ∶= (h,hZ)(u). (6.1)

Hereby, h is the specimen density function as used before and hZ ∶ R4 → R
is a function that relates a point in space to a spectrum, i.e. maps a point u
and an energy loss ∆E to an intensity. As the beam blurring corrected probe
shape is a function of the spectroscopic specimen function, any implementation
of beam blurring corrected tomography will also have to solve the problem of
spectroscopic tomography, i.e. solving for hS.

Spectroscopic Tomography

In the context of STEM microscopy, spectroscopic images bS can be acquired
using electron energy loss spectroscopy (EELS) (Egerton, 2009; Varela et al.,
2009) or energy-dispersive X-Ray spectroscopy (EDX) (Goldstein et al., 2003).
Both methods have some appeal, because both EELS and EDX signals can be
recorded in addition to HAADF-STEM signals with no addition electron dose.
Tomographic reconstruction of EELS images assuming a line model for the
electron beam can be achieved using the SIRT implementation presented in
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IMOD and sparse spectrum representations acquired using principal compo-
nent analysis (Jarausch, Thomas, Leonard, Twesten, & Booth, 2009; Yedra
et al., 2012). Tomography using STEM-EDX has been presented (Kotula,
Brewer, Michael, & Giannuzzi, 2007; Lepinay, Lorut, Pantel, & Epicier, 2013)
using basically the same algorithmic approach. Either of the two approaches
can could be used as basis for an iterative beam blurring correction as explained
in the next section.

Iterative Beam Blurring Correction

Assuming the presence of discrete spectroscopic images bS, one can now imag-
ine an iterative reconstruction algorithm with beam blurring correction. The
density function hS is replaced by its discrete approximation xS using some
basis functions. The algorithm solves the problem ASxS = bS where AS is the
matrix representation of the probe function using successively better approxi-
mations ĀS of AS. Starting from an initial guess x0

S of the specimen, the probe
is approximated assuming the current specimen guess as:

ĀnS ∶= AS(xn−1
S ) (6.2)

such that the nth approximation of the specimen can be computed by solv-
ing

ĀnSx
n
S = bS (6.3)

for xnS. It seems intuitively quite possible that this method converges to xS,
thereby solving the spectroscopic reconstruction problem and simultaneously
providing a means for beam blurring correction. However, the functions AS(x)
is quite complex as it involves the electron beam simulation described above.
Actually proving that the proposed method converges within any reasonable
metric will therefore likely be challenging.
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FWHM Full-width-at-half-maximum
GB Gigabyte
GPU Graphics processing unit
HAADF High angle annular dark field
HPC High performance computing
MB Megabyte
mrad Miliradians
ms Miliseconds
nm Nanometer
PCI Peripheral component interconnect
PSF Point spread function
RMSE Root means square error
s Seconds
SART Simultaneous algebraic reconstruction technique
SIMD Single instruction multiple data
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SIRT Sequential iterative reconstruction technique
SNR Signal-to-noise ratio
STEM Scanning transmission electron microscopy
TEM Transmission electron microscope
TF-ART Tilt-focal algebraic reconstruction technique
TVM Total variation minimization
WBP Weighted back projection
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List of Symbols

Overview of symbols and notations used in this thesis. Rs: Real space, Fs: Fourier space. Table
from (Dahmen, Kohr, et al., 2015).

domain semantic symbol remark

vectors (Rs) coordinates in volume u u = (x, y, z),
rotated: u′ = (x′, y′, z′)

focal spot position v vertex of the double cone

first two components of u ū

beam axis θ unit length (∣θ∣ = 1)

other direction in cone ω unit length

perpendicular vector η such that u′ = sθ + η
scalars (Rs) disc radius r usually r = ∣z′∣ tanα

vectors (Fs) spatial frequency ξ rotated: ξ′

first two components of ξ ξ̄

perpendicular vector ζ such that ξ′ = σθ + ζ
scalars (Fs) frequency along θ σ

angles beam opening semi-angle α

tilt angle β tilt around y-axis

functions searched-for tomogram f(u) Fourier transform: f̂(ξ)
probe function (PSF) p(u) rotated: pθ(u′), Fourier

transform: p̂(ξ)
focal stack (data volume) gθ(v) projection direction: θ

gk(v) denotes gθ(v) for θ = θk
operators forward projection operator Aθ linear convolution

back projection operator A∗θ adjoint of Aθ
coefficients searched-for tomogram X discrete approx. of f(u)

focal stack Bk discrete approx. of gk(v)
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Appendix

Derivation of the Relationship Between the

STEM Transform and the Parallel Ray Trans-

form

This derivation relates to the actual computation of the transform in that it
rephrases the operator as a collection of line integrals parametrized by points
in a disc perpendicular to θ at a fixed distance d > 0 from the origin. One
starts by rewriting the integral

∫
C′α
F (u′)du′ = ∫ η∈θ⊥

∣η∣<d tanα

∫
R
F (sω(η)) τ(s,η)dsdη (A.1)

for a general function F ∶ R3 → R with an appropriate weight τ and the
direction vector

ω(η) = dθ + η√
d2 + ∣η∣2

. (A.2)

This means that for any point 0 ≠ u′ ∈ C ′

α, one determines the correspond-
ing η ∈ θ⊥ such that ω(η) = u′/ ∣u′∣, i.e. u′ and dθ+η lie on the same line. For
simplicity, the case θ = ez is considered first. One determines a vector (p̄, d)
which is collinear with u. Such a vector is given by

p̄ = d

uz
ū (A.3)

since u = uz
d (p̄, d). Setting t = uz/d, this defines a mapping

u = Γ(p̄, t) = (tp̄, td). (A.4)
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Its Jacobi matrix of derivatives is given by

DΓ(p̄, t) =
⎛
⎜
⎝

t 0 p1

0 t p2

0 0 d

⎞
⎟
⎠
, (A.5)

such that the functional determinant in the integral reparametrization is

det DΓ(p̄, t) = t2d. (A.6)

Now the left-hand side of (A.1) for θ = ez can be rewritten as

∫
Cα
F (u)du = ∫ p̄∈R2

∣p̄∣<d tanα

∫
R
F (Γ(p̄, t)) t2ddtdp̄ (A.7)

= ∫ p̄∈R2

∣p̄∣<d tanα

∫
R
F (t(p̄, d)) t2ddtdp̄. (A.8)

Finally, by normalizing the vector (p̄, d) in the argument of F with the

reparametrization t = s/
√
d2 + ∣p̄∣2, one acquires

∫
Cα
F (u)du = ∫ p̄∈R2

∣p̄∣<d tanα

∫
R
F (sω(p̄)) s2d (d2 + ∣p̄∣2)−3/2 dsdp̄. (A.9)

The result for general θ can be accomplished by rotation, resulting in

∫
C′α
F (u′)du′ = ∫ η∈θ⊥

∣η∣<d tanα

∫
R
F (sω(η)) s2d (d2 + ∣η∣2)−3/2 dsdη. (A.10)

To relate this to the STEM transform, one inserts F (u′) = pθ(u′) f(v−u′),
which yields

[Aθf](v) = ∫
C′α
pθ(u′) f(v −u′)du′ (A.11)

= ∫ η∈θ⊥
∣η∣<d tanα

∫
R
pθ(sω(η)) f(v − sω(η)) s2d (d2 + ∣η∣2)−3/2 dsdη.

(A.12)
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The value of pθ at sω(η) equals the value of the weight function w at the
component of sω(η) along θ, see the definition Equation 2.23 of pθ. This

component is given by sd/
√
d2 + ∣η∣2, and in consequence,

pθ(sω(η)) = d2 + ∣η∣2

π tan2αd2s2
. (A.13)

This yields

[Aθf](v) =
1

π tan2αd ∫ η∈θ⊥
∣η∣<d tanα

(d2 + ∣η∣2)−1/2 ∫
R
f(v − sω(η))dsdη. (A.14)

The inner integral can be read as a ray transform

∫
R
f(v − sω(η))ds = ∫

R
f(sω(η) + v)ds = [Pω(η)f](v). (A.15)

Finally, the STEM transform can be rewritten as

[Aθf](v) =
1

πd2 tan2α ∫ η∈θ⊥
∣η∣<d tanα

d√
d2 + ∣η∣2

[Pω(η)f](v). (A.16)

To compute the value of the transform in the limit α → 0, the Lebesgue
mean value theorem (W. Rudin, 1987) can be applied which states that the
mean value integral over balls BR with radii R > 0 centered at zero converges
to the function value at zero,

lim
R→0

1

∣BR∣ ∫BR
ψ(η)dη = ψ(0), (A.17)

provided that ψ is locally integrable. If f is square-integrable and does not
extend infinitely along the beam, i.e. if the intersection of C ′

α with the support
of f is a bounded set, this assumption holds true for the function

ψ(η) = d√
d2 + ∣η∣2

[Pω(η)f](v), (A.18)

and using the fact that πd2 tan2α is the area of the integration set yields

lim
α→0

1

πd2 tan2α ∫ η∈θ⊥
∣η∣<d tanα

d√
d2 + ∣η∣2

[Pω(η)f](v) = [Pω(0)f](v) = [Pθf](v).

(A.19)
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