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Abstract
High-throughput biological datasets are the basis for most modern basic research in the
fields of genomics, systems biology, and disease diagnostics. Currently, one sample can
contain thousands of measurements in some datasets. The omnipresence of such huge
datasets created the urgent need for efficient and robust computational approaches to
handle and analyze such database and to identify informative associations.

This thesis deals with different types of large scale datasets and aims to identify with high
confidence underlying biological associations. Our computational approach consists of four
core parts. In the first part, we analyzed amino acid datasets of membrane transporters from
different organisms for the purpose of transferring functional annotations of the transporters
across species. Here, we mapped the experimentally validated functions of one protein
to another one from a different organism based on their sequence similarity. Sequence
similarity results in this work were combinations of similarity decisions of several tools
(BLAST, HMMER, MEME). Initially, we defined confidence thresholds and which we then
applied for predictions. We found that, up to certain thresholds, membrane transporters
sharing high sequence similarity have similar functions or transporting mechanisms even if
they exist in different organisms.

Our second computational approach was designed to deal with expression and methy-
lation datasets. We found that expression and methylation datasets often suffer from
outliers at gene or sample levels. Performing analyses before dealing with outliers might
lead to misleading results. Thus, we present an approach that includes several outlier
detection algorithms for detecting sample and gene outliers in expression/methylation
datasets. As some outlier algorithms report at least one outlier value even if there is none,
we first defined the margin of allowed outlier observations. We tested how many outlier
observations are needed to ruin a perfect co-expression and then fixed that threshold for
the rest of analyses. Additionally, in this work we considered the distribution underlying
the gene expression/methylation before outlier detection. However, outliers might carry
useful information. Therefore, we labelled only extreme outliers for removal and marked
those possibly carrying useful information for further analysis.

In the next step, we used published expression and methylation datasets from GEO
to analyse and confirm possible tumor markers for HCC, liver diseases, and breast cancer.
These were later validated in the wetlab through our collaboration with the group of Prof.
Kiemer in pharmacy. In addition to their possible roles in the change of survival rates, we
also tested the role of several possible markers in tumor initiation and progression.

The final part of this thesis dealt with large scale exon expression, methylation, and
chromatin modification datasets for 11 different developmental stages from the Human
Epigenome Atlas. Our aim in this genome wide analysis was to identify cases of differential
exon usage in different dataset. Our findings suggested a set of strong associations of
epigenetic modifications and alternative splicing especially in early human developmental
stages.

In summary, the combination of the approaches presented in this thesis may advance
the current stages of tumor marker identification. Membrane transporters play key roles in
cancer progression. Once their function is defined with the help of similar transporters in
other organisms, one may compare their expression and methylation profiles in normal and
tumor tissues. The expression/methylation datasets should be cleared first from outliers.
Once a tumor marker is defined or confirmed, further analysis is suggested especially for
possible different splice variants.
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Kurzfassung
Biologische Datensätze aus Hochdurchsatzverfahren sind meist die Basis zeitgemäßer Grund-
lagenforschung in Genomik, Systembiologie und Krankheitsdiagnstik. Eine Probe kann in
manchen Datensätzen momentan tausende Messungen umfassen. Die Allgegenwärtigkeit
solch enormer Datenmengen brachte den dringenden Bedarf an effizienten und robusten
computergestützten Ansätzen mit sich, die diese Daten verarbeiten und analysieren können
und die informative Assoziationen ermitteln.

Diese Arbeit beschäftigt sich mit unterschiedlichen Arten von umfangreichen Datensätzen
und beabsichtigt zu Grunde liegende biologische Zusammenhänge mit hoher Zuverlässigkeit
zu erkennen. Unsere Methodik besteht aus vier Kernteilen. Im ersten Teil analysierten
wir Aminosäure-Daten von Transporterproteinen aus verschiedenen Organismen um funk-
tionelle Annotierungen der Membranproteine speziesübergreifend transferieren zu können.
In unserem Fall bildeten wir anhand der Sequenzähnlichkeit die experimentell validierte
Funktionen eines Proteins auf ein anderes aus einem anderen Organismus ab. Die Sequen-
zähnlichkeit in dieser Studie war eine Kombination aus Ähnlichkeitsmaßen verschiedener
Softwarewerkzeuge (BLAST, HMMER, MEME). Zuerst definierten wir Vertrauensgren-
zwerte (für besagte Werkzeuge) die wir dann für die Vorhersage anwendeten. Wir fanden
heraus, dass Membrantransporter mit hoher Sequenzähnlichkeit bis zu gewissen Schwellen-
werten sogar dann ähnliche Funktionen oder Transportmechanismen haben wenn sie aus
unterschiedlichen Organismen stammen.

Unser zweiter rechnergestützter Ansatz wurde entworfen um Expressions- und Methylierungs-
daten zu handhaben. Wir sahen, dass diese Daten oft durch Ausreißer auf Gen- oder
Probenebene in Mitleidenschaften gezogen werden. Das Durchführen von Untersuchungen
vor einer Bereinigung dieser Ausreißer kann irreführende Ergebnisse zur Folge haben. Daher
bieten wir eine Methode die mehrere Ausreißererkennungsalgorithmen beinhaltet um Proben-
und Gensonderfälle in Expressions-/Methylierungsdatensätzen zu erkennen. Da einige Aus-
reißererkennungsmethoden auch dann zumindest einen Ausreißer melden wenn eigentlich
keiner vorhanden ist, legten wir zuerst einen Grenzwert für erlaubte Ausnahmefälle fest.
Wir prüften wie viele Ausreißerbeobachtungen benötigt wurden um perfekte Koexpression
zunichte zu machen und setzten diesen Grenzwert dann für die verbleibende Analyse fest.
Zusätzlich haben wir in dieser Arbeit die Verteilung von Genexprimierung/Methylierung
vor der Ausreißererkennung bedacht. Dennoch könnten Ausreißer dienliche Information
mit sich bringen. Daher markierten wir nur extreme Ausreißer explizit zur Entfernung
und solche, die für weitere Untersuchungen potentiell nützliche Information beinhalteten,
markierten wir gesondert.

Im nächsten Schritt nutzten wir publizierte Expressions- und Methylierungsdaten-
sätze von GEO um mögliche Tumormarker für HCC, Leberkrankheiten und Brustkrebs
zu analysieren und zu bestätigen. Diese wurden später durch unsere pharmazeutischen
Kollaborationspartner der Gruppe von Prof. Kiemer im Labor validiert. Zusätzlich zu ihren
eventuellen Rollen in der Veränderung von Überlebensraten haben wir auch die Funktion
mehrerer möglicher Marker bezüglich Tumorinitiierung- und progression untersucht.

Der letzte Teil dieser Arbeit befasste sich mit umfangreichen Datensätzen für Exon-
expression, Methylierung und Chromatinmodifikationen über 11 verschiedenen Entwick-
lungsstadien aus dem Human Epigenome Atlas. In dieser genomweiten Untersuchung
war es unser Ziel Fälle von veränderter Exonnutzung in verschiedenen Datensätzen zu
finden. Unsere Resultate legen insbesondere in frühen menschlichen Entwicklungsstadien
einige gewichtige Zusammenhänge zwischen epigenetischen Modifikationen und alternativem
Spleißen nahe.
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Zusammenfassend lässt sich sagen, dass die Kombination der hier präsentierten Ansätze
gegenwärtige Stufen der Tumormarkererkennung beschleunigen/verbessern könnte. Mem-
brantransporter haben Schlüsselrollen in der Krebsprogression inne. Sobald ihre Funktion
mit der Hilfe ähnlicher Transporter in anderen Lebewesen aufgeklärt ist, könnte man ihre
Expressions- und Methylierungsverläufe in gesundem und in Tumorgewebe vergleichen.
Die Expressions/Methylierungsdaten sollten hierbei erst von Aureißern bereinigt werden.
Sobald ein Tumormarker definiert oder bestätigt ist, ist weitere Untersuchung insbesondere
im Hinblick auf verschiedene Spleißvarianten angeraten.
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Chapter 1

Introduction
The invention of microscopes in the 17th century was a big step forward to uncover

the mystery of what are the basic components of the tissues of living organisms. Scientists
were able to see cells with clear membranes for the first time. In the 19th century, scientists
like Moritz Traube wondered how permeable cell membranes are. The cell membrane has
been a research target ever since. Although genomics is considered a new research field,
first DNA was isolated by Friedrich Miescher in 1869 from white blood cells. The first
genome sequence was then determined around 100 years later by Fred Sanger and his team.
Epigenetics on the other hand appeared first as a side research field linked to evolution
studies early in the 20th century. However, it underwent many principal changes till the
1950s. The definitions of modern epigenetics appeared early in 1990s by Riggs, Herrings,
and others. Currently, genomics and epigenetics have become standard methods in modern
cancer research where membrane transporters are reported to play key roles in cancer
initiation and progression.

1.1 Central Dogma of Molecular Biology

The blue print for organisms is passed from one generation to the next one through
the hereditary material called deoxyribonucleic acid (DNA). DNA is sometimes called the
"book of life" because it is normally presented as a huge list of characters referring to the
specific sequence of DNA nucleotide base units that are transcribed and translated later
into cellular components. For example, human DNA is about 3.3 x 109 bases long. The
DNA language is complex although the alphabet is really simple. DNA bases are usually
represented by a 4-letter alphabet {A,G,C,T} with reference to the nucleotides Adenine,
Cytosine, Guanine, and Thymine. Additionally, DNA typically consists of two strands
where each base is in contact with another base in the other strand according to a standard
set of pairing relationships {(A-T),(C-G)}.

DNA does not perform much by itself but its coding subsets are copied consistently from
its major set into another cellular object called messenger ribonucleic acid (mRNA). The
copying process is called transcription and the copied subsets are called genes. In eukaryotic
cells, the transcription process is completed in the nucleus and then the mRNA exported
to the cytoplasm. Most genes carry the code needed to produce proteins at certain times
and locations and thus are called coding genes. Later, each three DNA nucleotide bases in
the gene code are decoded -using a cytoplasmic component called ribosome- into an amino
acid in a process called translation. The ribosome synthesizes a chain of connected amino
acids which is later called a protein. Like in DNA, proteins are presented for simplicity as
a set of characters but with an alphabet containing 20 characters referring to the common
20 amino acids. The two-step process of transcription and translation is called the central
dogma of molecular biology which is the fundamental basis of gene expression (Figure 1.1).

Gene expression is an important aspect of current genomics due to its sensitive response
to clinical conditions, toxic agents, or even in time dependent manner during certain
biological processes showing up/down regulation states. Previously, expression analysis was
performed in a low-throughput fashion where researchers used northern blotting to analyse
one gene at a time or western blotting to analyse one protein at a time. High throughput
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Chapter 1. Introduction

Figure 1.1: Central dogma of molecular biology

technologies started in the early 1990ies by the invention of DNA microarrays nowadays allow
to evaluate the expression of thousands of genes at the same time. Since around two decades,
gene expression analysis through microarrays has been widely used to identify significant
biomarkers for genetic epidemiology [9], to assist the characterization of neurological diseases
like Alzheimer’s [10], and to open new means for diagnosis and therapeutic interventions
for cancer research [11]. The basic idea behind this technology is that the quantification
of the mRNA transcripts found can be considered as an approximation for the level of
expression of the genes they present. For this purpose, gene probes are hybridized with dye-
recognized RNAs on a chip using a separate chamber for each probe. Later, the microarray
is illuminated with a laser light causing the labelled molecules to emit fluorescence in
proportion corresponding to their abundance. This fluorescence is captured creating an
image which is converted later into numbers according to the emitting intensities.

Microarrays are nowadays considered quite affordable and easy to use but they suffer
from a fundamental design bias as they only return results for the regions of the design
probes. In contrast, the recently invented technology of RNA-seq covers practically all
aspects of the transcriptome without any previous knowledge about it allowing the discovery
of novel non-coding transcripts, for example. The basic idea is to use the next generation
sequencing capabilities to reveal the identity and abundance of most RNAs in a cell [12].
The major disadvantage of RNA-seq is that it is currently more expensive compared to
microarrays and thus the microarray technology remains popular.

Regardless of the technology used, gene expression data are normally presented as an
array of numerical values where rows correspond to genes and columns correspond to samples.
The next standard analysis is to compare gene expression under several conditions like in
normal and disease tissues. Computational methods aid the gene expression analysis by
providing methods for background correction and normalizing expression as pre-processing
steps [13][14], methods and tests to identify differentially expressed genes [15][16], methods
to cluster genes according to conditions, or methods for dataset evaluation or testing for
possible experimental errors.

1.2 Epigenetic Modifications

Cells in multicellular eukaryotic organisms contain more or less identical copies of DNA
although they perform different functions and grow in different ways. The main reason
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for this lies in a finely tuned transcriptional program and chromatin organization so that
only genes with needed functions in that cell are "on" (expressed) and the others are "off".
Some genes are "on" in different cell types as they code for proteins performing general
functions needed in such cell types. Moreover, eukaryotic genes might be alternatively
spliced so that different parts of it are translated into different proteins in different cells
types. Cellular heritable changes not accombined with DNA sequence changes are called
"epigenetic changes" and are said to play roles in regulating gene expression [17]. An
epigenetic event refers to the structural adaptation of chromosomal regions to register,
signal or perpetuate altered activity states [18]. Epigenetic changes occur frequently during
normal development but may also have severe consequences. DNA methylation, for example,
might alter gene expression in critical cell phases like division or differentiation and thus
results in permanent changes. Methylation errors may have severe consequences including
diseases. Along the same side, diseases might additionally employ methylation to inactivate
genes coding for disease suppressors like in cancer. One example is for this illustrated in
figure 1.2.

Figure 1.2: In normal cells, the repeat-rich region on the left is hypermethylated whereas the
transcribed tumor suppressor gene on the right is hypomethylated. In tumor cells, the methylation
is flipped in both regions causing genomic instability and a repression of the tumor suppressor gene.
Figure taken from [1]

In mammals and plants, DNA methylation involves the addition of a methyl group
on the DNA base cytosine(C). In contrast, bacterial genomes are mostly methylated at
adenines. DNA methylation of promoter regions is generally considered as one of the
regulation mechanisms associated with gene transcriptional repression. Actively transcribed
genes often show a considerable amount of body methylation in their central regions.
Furthermore, DNA methylation is required for mammalian development, X inactivation,
and genomic imprinting [19]. In the human genome, DNA methylation is mostly restricted
to the cytosines followed by DNA base guanine (G) which are called the CpG dinucleotides.
DNA regions with high CpG frequency are called CpG islands and they occur frequently in
the region that initiates the gene transcription called promoter.

Next generation sequencing is nowadays preferred in DNA methylation analysis over
the probe based microarray platforms [20] where possible cross hybridisation forbids the
use of any repetitive fraction of genomes in microarrays. This is not the case in NGS-based
approaches where the material is directly sequenced and not interrogated by hybridisation
[21].
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Similar to the gene expression datasets, DNA methylation is provided in datasets of genes
where the methylation intensity of each CpG position is presented on a scale from 0 to 1 where
0 means no methylation and 1 means full methylation of this position. The methylation
effect is related to the location where it is detected. Therefore, it is standard to provide
the exact DNA position for methylation incidents. Several algorithms and software tools
were created to aid the methylation analysis starting from the detection of the methylation
boundaries, normalizing methylation datasets, checking the differential methylation and
statistical significance of methylated regions, and correlating the methylation to gene
expression of altered cellular processes like pathways.

Another epigenetic change are the histone modifications. Histones are proteins around
which DNA is packed. They might change the binding affinity of specific DNA regions [22]
and thus alter the expression of genes in their area [23].

In this thesis, epigenetic modifications have been analyzed in chapters 5 and 6.

1.3 Cellular Differentiation and Carcinogenesis

The structure of a mammalian organism contains many specialized cell types like bones
and muscles in human. Cell types are practically identical genetically although they differ in
appearance and function. In human, the simple fertilized egg (zygote) gives rise during cell
division to about 200 different cell types that form the complex tissues of the human body.
Unspecialised primal cells are called stem cells. The process by which a less specialized
cell type changes into a more specialized one is called cell differentiation. Stem cells differ
according to their differential potential. The most primal type is the totipotent cell formed
by the fusion of an egg and a sperm cell that can differentiate into all basic embryonic
and the extra-embryonic cell types. Pluripotent cells are descendents of totipotent cells.
They can differentiate into cells of any of the three germ layers. Multipotent cells have a
narrower differentiation ability. They can produce only cells of related families like the
hematopoietic stem cell differentiating into red or white blood cells or other blood cells.
The cells with least differential potency are called unipotent because they can produce only
one cell type 1.3.

Cellular differentiation analysis is frequently accombined with analysis of epigenetic
factors as they play a key role in cell fate determination [24][25]. Some epigenetic modifica-
tion might be harmful leading to an uncontrolled cell division producing cancer cells, for
example, especially if changes cause inactivation of tumor suppressor genes. This process is
called carcinogenesis or oncogenesis.

The relationship between oncogenesis and genetic and epigenetic markers is heavily
targeted by computational methods since the last decade. This analysis often incorporates
up/down regulated pathways due to the changes in activation of the participating compo-
nents [26]. For this purpose, a variety of computational approaches were used incorporating
methods like gene set enrichment, singular value decomposition, and several parametric
and non-parametric statistical tests.

1.4 Tumor Markers

Tumor cells or normal cells responding to tumor might produce substances that can be
mapped to the current conditions of the cancer. Such substances are called tumor markers
and they are mostly proteins found in urine, blood, stool, or certain tissues of the cancer
patients. Before accepting the markers for clinical use, they must show high sensitivity and
specificity for cancer and fulfill certain criteria [27].
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Figure 1.3: Potencies of the stem cells. Figure from [2]

The development of microarrays and the modern sequencing techniques facilitated
the discovery of tumor marker genes/proteins. In this work, we tried to validate IMP2
and HAMP genes and their protein products as possible tumor markers using expression
analysis and wet-lab work by our collaborators in pharmacy. Although IMP2 was originally
identified as an autoantigen in HCC patients, the functional impact of IMP2 on cancer
initiation was not described yet in detail sofar. Hepcidine, the protein encoded by the
HAMP gene, is strongly correlated with liver diseases. However, its role in HCC is quite
unclear.

1.5 Membrane Transporters

Cells import needed compounds and get rid of waste by dealing with the surrounding
environment via their biological membrane. Also, membrane-bounded organelles like nucleus
and mitochondria exchange compounds in a similar way through their membrane. Transport
is essential for every living cell. The research on membrane proteins especially integral
transmembrane proteins that span the libid bilayer has undergone an explosive growth
in scientific discovery in the last years due to the large-scale genome sequencing projects.
Additionally, membrane transporters are a promising target for structural prediction aiming
at understanding the molecular mechanisms of fundamental transport processes. When
the first atomistic crystal structures of some transporters were revealed, the amount of
computational methods specialized in transporter analysis grew rapidly. Additionally,
transporters play an important role in cancer analysis. For example, tumor cells exhibit
elevated levels of glucose uptake and thus show high expression levels of glucose transporters
[28]. Additionally, several transporters have been identified as tumor markers based on
changes in their methylation levels [29].

The cell membrane has a hydrophobic nature which prevents hydrophilic substrates
and ions from penetration into cells or organelles. However, membrane transporter proteins
facilitate such transport and also move molecules against their electrochemical (concentration
and electrical) gradients. On the other hand, small uncharged molecules often can passively
diffuse though the bilayer membrane.
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Membrane proteins either adhere/penetrate the membrane temporarily like peripheral
proteins or span it permanently like integral ones (see figure 1.4). Integral proteins might
span the whole membrane and are thus called transmembrane proteins or span it partially
and are then called monotopic proteins. Transmembrane proteins are labelled alpha helical
or beta-barrels depending on the structure of the spanning part. If peripheral proteins
penetrate one side of the membrane they can be considered monotopic.

Figure 1.4: Fluid Mosaic Model of the membrane

Considering the transport direction and the amount of transported molecules, trans-
porters might be labelled “Uniporters”, “Symporters”, or “Antiporters” (see figure 1.5).
Uniporters move one solute from one side of the membrane to the other. However, if this
co-transport process happens in the same direction then it is performed by a symporter
like the glucose-Na+ symporters frequently found in the kidneys. If the second solute is
transferred in the other direction then it is performed by an antiporter like the Na+-Ca2+

exchanger importing Na+ and removing Ca2+ from the cells.

Figure 1.5: Types of transport against the electrochemical gradient. Figure from [3]

However, experimental screening of transporters to determine their function or trans-
porting mechanism is time consuming, costly, and requires sophisticated skills. Therefore,
computational methods may make an important contribution by identifying promising
candidates for further experimental testing.

In 2003, the International Union of Biochemistry and Molecular Biology (IUBMB)
adopted the Transporter Classification (TC) system to categorize transporters [30]. Several
databases are based on this classification system such as TCDB [31] and TransportDB [32].
Many databases provide the TC classification as side information such as the Aramemnon
database [33]. The TC system hierarchically classifies transporters into classes, subclasses,
superfamilies, and families based on their phylogeny, substrate specificity, hydropathy

6



Chapter 1. Introduction

and transmembrane topology information. For example, the sugar porter (SP) Family
2.A.1.1 belongs to class 2 of Electrochemical Potential-driven Transporters, to the 2.A
subclass of Porters (Uniporters, Symporters, Antiporters), and to the 2.A.1 Major Facilitator
Superfamily (MFS).

1.6 Goals of this Work

The main goal of this thesis is to help elucidating biological mechanisms by statistical
analysis of high-throughput datasets. Membrane transporters play critical roles for cell
metabolism by regulating the absorption, distribution, and also the excretion of drugs
within the human body. The general goal of chapter 3 is to setup a computational
workflow to functionally classify membrane transporters and suggest possible roles of them
or some of their splice variants in cancer oncogenesis. As it is costly and time consuming
to experimentally define the members of the different functional families, we present a
method to computationally classify transporters into their functional families based on text
(sequence) similarity and common text pattern (motif) searches.

In the next step, we analyzed expression and methylation profiles of specific membrane
transporters in cancer and normal datasets. However, datasets frequently suffer from outlier
samples or values that have a severe effect on the proposed correlation or distribution fitting
analysis. Therefore, the aim of the method presented in chapter 4 is to filter outliers from
expression and methylation datasets before further analysis is performed. This approach
was initially implemented in R and later a python tool with GUI was created as the master
thesis work of Taner Arslan.

In Chapter 5, we present the results from five projects based on expression, methylation,
and aCGH datasets for various tumor types. This project was performed in collaboration
with Dr. Sonja Kessler from the group of Prof. Alexandra Kiemer. We analyzed several
cancer types and focused the analysis on several sets of genes of interest to the Kiemer
group.

In the final project (Chapter 6), we performed a genome-wide analysis of differential
exon usage across human developmental stages and how epigenetic modifications are linked
to this. This project considered all defined human genes including membrane transporters.

1.7 Publications Resulting From this Thesis

All results chapters of this thesis are based on manuscripts that are either published,
submitted, or ready for submission as follows:

• Chapter 3: Barghash A, & Helms V (2013). Transferring functional annotations of
membrane transporters on the basis of sequence similarity and sequence motifs. BMC
bioinformatics, 14, 343.

• Chapter 4: Barghash A, Arslan T, and Helms, V. A robust approach to detect outlier
samples or genes from expression and methylation datasets. (Submitted)

• Chapter 5 section 1: Kessler SM, Laggai S, Barghash A, Schultheiss C, Lederer E, Artl
M, Helms V, Haybaeck J, Kiemer A (2015). IMP2/p62 induces genomic instability
and an aggressive hepatocellular carcinoma phenotype. Cell Death and Disease. (Just
accepted)

– Chapter 5 section 2: Kessler, SM, Laggai S, Kiemer A, Barghash A, & Helms V
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(2015). Hepatic hepcidin expression is decreased in cirrhosis and HCC. Journal
of hepatology, 4, 977-979.

– chapter 5 section 3: Barghash A, Helms V, & Kessler SM (2015). Overexpression
of IGF2 mRNA-Binding Protein 2 (IMP2/p62) as a feature of basal-like breast
cancer correlates with short survival. Scandinavian journal of immunology, 82,
142–143,

– chapter 5 section 4: Kessler, SM, Laggai S, Barghash A, Helms V, & Kiemer A
(2014). Lipid Metabolism Signatures in NASH-Associated HCC—Letter. Cancer
research, 74, 2903-2904.

– chapter 5 section 5: Kessler SM, Simon Y, Gemperlein K, Gianmoena K, Cadenas
C, Zimmer V, Pokorny J, Barghash A, Helms V, van Rooijen N, Bohle RM,
Lammert F, Hengstler JG, Müller R, Haybaeck J, & Kiemer AK (2014). Fatty
acid elongation in non-alcoholic steatohepatitis and hepatocellular carcinoma.
International journal of molecular sciences, 15, 5762-5773.

• Chapter 6: Shanak S, Barghash A, & Helms V. Cross-talk between intragenic epige-
netic modifications and exon usage across developmental stages of human cells. (In
preparation for submission)
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Chapter 2

Fundamentals and Technical Background
In this chapter, we present the computational methods and technical background

necessary to understand the bioinformatics contributions presented in this thesis.

2.1 Sequence Analysis

Sequence similarity searches are commonly used as the first analysis of newly deter-
mined sequences as sequence similarity provides a hint for functional similarity [34]. For
example, that most metagenomic sequences share high similarity with protein sequences in
current protein databases. A sequence can be mapped (aligned) to sequence families using
computational approaches if they share significant similarities. Such tools might perform
either local searches like BLAST [35] and HMMER3 [36], GLocal searches like HMMER2,
or global searches like FASTA [37]. It is also known that sequence families might share
particular sequence motifs like the case of transmembranes verified motifs [38]. Such motifs
can be computationally predicted using tools like MEME [39].

2.1.1 BLAST

The Basic Local Alignment Search Tool (BLAST) is probably the most widely-used
bioinformatics tool world-wide (more than 55000 citations to the original publication).
BLAST searches for local similarity regions between DNA or protein sequences. The basic
idea in sequence alignment is to align a query sequence against another sequence taken
from a sequence database (subject sequence) and calculate the statistical significance of
the matching. In protein sequences, the matching score is determined, for example, by the
blosum62 substitution matrix. All matches with a score exceeding a certain threshold are
reported.

BLAST starts by indexing segments of certain size (words) in the query string. Then,
each word from the query sequence is aligned against the words from the subject sequences
searching for the maximal segment pair MSP. Then, the segment is extended to forward
and backward words or toward the next found segment. Later, the extended segment is
matched and the score is calculated. This process is repeated as long as the alignment
score is increasing and stops when it drops off. Segment pairs whose scores can not be
improved by extension or trimming are called high-scoring segment pairs or MSPs. The
final statistical significance is reported as expected values indicating the number of times
an alignment with an equal or better score than the BLAST alignment can occur based on
this database by chance [40].

In brief, given a set of probabilities for the occurrence of individual residues and a set
of scores for aligning pairs of residues, the Karlin-Altschul theory provides two parameters
λ and K for evaluating the statistical significance of MSP scores. The parameters K and
lambda can be thought of simply as natural scales for the search space size and the scoring
system, respectively. When two random sequences of lengths m and n are compared, the
probability (P -value) of finding a segment pair with a score greater than or equal to S is
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given by the equation:

P = 1− e−E

where the E -value is given by E = Kmne−λS
(2.1)

So, it is expected that the E -values decrease exponentially with the match score. Also,
doubling the length of the sequences that are compared would find a double amount of the
MSPs resulting in a higher E -value.

In database searches, the E -value is normalized according to the residual size of the
database as a last step [41]. If the sequence with length n belongs to a database with total
length N in residues, then the E -value for aligning against the n sequence is multiplied by
N /n before it is presented to the user.

2.1.2 HMMER

Profile hidden Markov models have provided important assistance to the field of sequence
database homology search. Markov models describe memoryless processes where the next
state is independent from all previous states except the direct predecessor. Profiles in
alignment projects can be considered as set templates or position-specific alignments for
sequence families. Hidden Markov models employ a set of hidden states that cannot
be observed. They are broadly used in different areas of sequence based bioinformatics.
For example, they can with high success match a sequence to another from a sequence
database. Once the model λ is created with fixed hidden states (Q={q1,q2,..,qn}) and
defined probabilities for transitions and output cases (B={b1,b2,..,bn}), then it is possible
to calculate how probable is the occurrence of any sequence in the space of hidden states
(S=(s1s2s4s1s3 ...)) and what are the possible transitions through it.

Pr[B ∧Q] = Pr[B | Q] · Pr[Q] (2.2)

A profile HMM model for sets of sequence alignments considers each column as a hidden
state that was produced from hidden state. The standard profile HMM has a deletion and
an insertion state at each basic state [42]. The model might start and end with dummy
states (Figure 2.1). In the past, profile HMM methods were not as wide spread like BLAST

Figure 2.1: A simple profile HMM example. Figure taken from [4]

due to the high computational expense of their software implementations which were slower
than BLAST by about 100-fold [43]. Therefore, in current versions of tools based on
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profile HMM, acceleration algorithms like the multiple segment Viterbi and sparse rescaling
methods are incorporated. With such improvements, HMMER3 became substantially more
sensitive and 100-to 1000-fold faster than its preceding version HMMER2 and as fast as
BLAST.

The fundamental role of the Viterbi algorithm is to calculate the dynamic programming
(DP) matrices for the states of matches, insertions, and deletions [44]. Each element of the
DP matrices depends on the value of the previous element as the core principle in HMM.
The resulting DP matrices help to find the most probable sequence of hidden states which is
called the Viterbi path. This path describes the existing event (match, insertion, deletion).
The final result presented to the user is normalized according to the number of found hits.

2.1.3 MEME

In sequence bioinformatics, motifs are pieces of DNA or protein sequence that occur
in different DNA or proteins sequences suggesting a possible biological significance. For
example, a similar subsequence in the promoters of several genes that appear to be co-
regulated might give a hint to a common transcription factor binding there.

Motifs can basically occur in any part of the sequence, at the beginning of one sequence
and elsewhere in other sequences. In other words, motif searches need to consider every
position from the beginning till the position (sequence length-motif length+1) searching
for a subset of special properties with undefined length. Those are the basic properties of
the probabilistic model called mixture model where the parameters are unknown with no
observed data. Expectation Maximization (EM) is a family of algorithms used for learning
such probabilistic models which involve a hidden state. In our case, we used the popular
MEME tool [39] for motif searches.

The MEME suite is one of the most widely used tools to discover novel, non-overlapping,
approximately matching, and ungapped motifs in a set of unaligned DNA, RNA, or protein
sequences using the EM algorithm. The core parts of this method are the calculation of
two matrices termed P and Z. Here Pck is the probability of character c to be in position
k of the set of sequences and Zij is the probability that the motif starts at position j
in sequence i as motifs might start in different positions in different sequences. When
searching for a motif with certain length W initially, the start P should be calculated
from the sequence set and Z should be estimated from it in the process called expectation
(E-step). In the maximization step (M-step), P is re-estimated from Z. This process is
repeated until the change in P is below some given threshold (ε). An additional requirement
is the probability of characters outside of the motif window which is normally called the
background probability (Pc0). When Pc0 is not provided, it is considered 1/4 for every
character in the 4-character DNA alphabet and 1/20 in the 20-character protein alphabet.

For a hypothetical starting position of the motif:

Pr[Xi | Zij = 1, P ] =

j−1∏
k=1

Pck,0

j+W−1∏
k=j

Pck,k−j+1

L∏
k=j+W

Pck,0 (2.3)

Where:
Xi: is the ith sequence
Zij : is 1 if the motif starts at position j in sequence i, and 0 otherwise
Ck: is the character at position k in sequence i. In the E-step, once the P matrix has
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been calculated for the sequence set, the Z matrix is estimated using the equation:

Z
(t)
ij =

Pr[Xi | Zij = 1, P (t)]Pr[Zij = 1]
L−W+1∑
k=1

Pr[Xi | Zik = 1, P (t)]Pr[Zik = 1]

(2.4)

It is assumed that it is equally likely that the motif can start in any position. Therefore
Pr [Zij=1] and Pr [Zik=1] are discarded from the fraction. Later, the Z matrix rows are
normalized so that

∑
Zij = 1. Next in the M-step, P is re-estimated from the Z matrix

using this equation:

P
(t+1)
ck =

nc,k + dc,k∑
b

(nb,k + db,k) (2.5)

nck =


∑
i

∑
{j|Xi,j+k−1=c}

Zij k > 0

nc −
W∑
j=1

nc,j k=0

Where:
d : is a pseudo count
nc: represents how many times this character is found in the dataset

MEME uses the EM algorithm to search for motifs starting at any point allowing
multiple motifs to be learned. The predicted motifs are presented as matrix of probabilities.
Additionally, sequences can be searched for MEME motifs using another software from the
meme package called MAST [45]

2.2 Analysis of Gene Expression Data

In chapter 1 we explained the fundamentals of gene expression and the technologies
used. Gene expression data is commonly provided as an array X of n × m numeric values
where n and m correspond to the number of genes and experiments, respectively. Different
experiments can be provided for different conditions, patients, tissues, or cell lines. Several
pre-processing steps should be applied before the core computational analysis starts. First,
poorly expressed genes or genes with constant expression should be filtered out. Genes with
missing values can be removed or filled with random numbers. Next, background correction
methods are often used to remove possible noise or processing effects. Then, the dataset
should be normalized so that unwanted variation is reduced by the normalizing means.
RMA and quantile are widely used techniques for dataset normalization since the last
decade [46]. Logarithmic transformation is also suggested especially log base 2. It treats up
and down regulation equally and uses a continuous mapping space [47]. In this thesis, we
either used data that was already RMA-normalized or we applied quantile normalization
with the bioconductor packages.

The core statistical analysis can be classified into two major groups of methods: i)
methods to find differentially expressed genes, and ii) methods that classify the functional
dependency of genes. Methods of the first type aim at identifying genes consistently
expressed at different levels under different conditions like healthy and disease. Such a task
can be accomplished using classical statistical tests like the ordinary t-test, for example
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[48], or the Welch’s t-test comparing different-sized samples with unequal variances.

tj =
X1 −X2

sX1−X2

Where:

sX1−X2
=

√
s21
n1

+
s22
n2

(2.6)

and s2 is the unbiased estimator of the variance and n is the number of participants.
Additionally at the gene level, a test of co-expression is often requested because genes
with similar expression behaviours might have similar functions or participate in the same
biological processes. The most commonly used metric to measure the similarity in expression
profiles is the Pearson correlation coefficient (PCC)[47].

PCC =

n∑
i=1

(ai − a)× (bi − b)√
n∑
i=1

(ai − a)2 ×
√

n∑
i=1

(bi − b)2
(2.7)

Where:
ai, bj are the expression values of genes A,B respectively
a, b represent the sample means for the genes
n is the number of samples

The second type of methods aim at identifying common expression patterns to map
them later to certain conditions. For example, at the sample level, clustering methods are
often applied to group samples of similar conditions or to incorporate new samples from
other datasets. Non-hierarchical clustering like the k-means algorithm are less often used
as they require pre-knowledge about the dataset. Hierarchical clustering is frequently used
with all of its sub-types; Single, Complete, and Average.

Single: Distance of the two most similar instances
dist(cx, cy) = min{dist(a, b) | a ∈ cx b ∈ cy}

Complete: Distance of two least similar instances
dist(cx, cy) = max{dist(a, b) | a ∈ cx b ∈ cy}

Average: Average distance
dist(cx, cy) = avg{dist(a, b) | a ∈ cx b ∈ cy}

(2.8)

Along the same side, for a group of genes, the gene ontology enrichment analysis is
widely used. For sets of co-expressed genes, for example, algorithms like tango [49] or
the bioconductor package GOSim identify the enriched GO terms giving a hint at the
co-expression.

2.3 Analysis of DNA Methylation Data

In principle, most of the methods used to analyse gene expression datasets can also be
used in methylation analysis. However, several new computational methods were created to
aid specifically the analysis of DNA methylation data [50]. Particular motifs have been used
to predict the methylation status in some DNA sequences [17]. Several studies searched for
methylation resistant and methylation prone motifs surrounding apparently methylated
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CpGs [51][17] using MEME [39] or pattern searching algorithm. Along the same lines, a
tool was presented recently (CpGIMethPred) which employs support vector machines to
predict the methylation status in order to speed-up the genome-wide methylation profiling
[52].

On the other hand, differential methylation is also an important target of many com-
putational approaches. Bump hunter for example, is a widely used bioconductor package
that identifies differentially methylated regions while removing batch effects and labelling
regions of statistical uncertainty [53]. Recently, a new computational pipeline (MOABS)
was introduced for the analysis of bisulfite sequencing data including the detection of
differential methylation [54]. In R-Cran, RnBeads is a newly introduced package developed
by the Lengauer and Walter groups for comprehensive analysis of DNA methylation [55].

2.4 Outlier Detection Methods

An outlier is an observation which deviates so much from the other observations as
to arouse suspicions that it was generated by a different mechanism [Hawkins 1980]. In
expression and methylation datasets, outliers can occur at the gene or sample levels. Several
studies pointed to the existence and effect of outliers in expression datasets [56][57][58]. By
design, outlier samples can result from mislabelling if the dataset contains more than one
class like the case of cancer-normal datasets. Outlier values at the gene level might result
from experimental or pre-processing errors.

Hierarchical clustering described in section 2.2 can be used to search for outlier samples.
Samples not clustered along with other samples under the same conditions might be pure
outliers or might correspond to an extreme biological behaviour. Once the clusters are
formed, the Silhouette algorithm is used to validate them. This algorithm calculates the
average dissimilarity a(i) between each point and all other points within the same cluster.
So it is a label for how well point i is assigned to its own cluster. Smaller value means
better assignment. Then the average dissimilarity between this point and another class
is calculated by averaging the distance between this point and all points in that class. If
b(i) is the lowest average dissimilarity of i to some other cluster which i is not a member
of, then this cluster is considered the closest neighbouring cluster. A negative value for
Silhouette clustering S(i) implies a bad clustering as this point might fit better in the
neighbouring cluster.

S(i) =
b(i)− a(i)

max(a(i), b(i))
(2.9)

To search for outliers at the gene level, several methods can be used. However, some methods
require pre-knowledge about the expression/methylation distribution. For example, the
generalized extreme studentized deviate (GESD) algorithm is a powerful algorithm for
outlier detection only in data approximately following a normal distribution. Therefore,
normality tests like Shapiro test should be first used to test the expression/methylation
body. In case it does not follow a normal distribution, methods like MAD or boxplot can
be used.

GESD

The generalized extreme studentized deviate (GESD) algorithm can be used to detect
outliers in data that follow an approximately normal distribution [59]. Studentization is the
process of dividing the first degree statistics calculated from the sample by the standard
deviation of the sample. Basically, this algorithm assumes that there are r outliers in the
dataset and detects them one after the other. In each run, the outlier point is the one that
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maximizes the test statistic Ri.

Ri =
Maxi | xi − µ |

σ
(2.10)

This process is repeated until all r outliers are defined. The number of outliers is determined
by finding the count of points fulfilling the condition Ri > λi. Here, λ is the point to
determine whether to reject the null hypothesis (critical value) calculated for all points
using the percentage points of the t distribution.

λi =
(n− i)tp,n−i−1√

(n− i− 1 + t2p,n−i−1)(n− i− 1)
(2.11)

Simulation studies indicated that for datasets with more than 25 points the critical value
estimation is very accurate but it is reasonably accurate for datasets with at least 15 points
[59]. It is also reported that the algorithm will detect one outlier even if the data has none.

MAD

The Median Absolute Deviation (MAD) is a robust measure of statistical dispersion.
This method has no pre-condition about the data distribution such as GESD. It starts by
calculating the absolute value of the deviations of all points from the sample median. Then
it calculates the median of the result and labels as outliers the most extreme points away
from the new median.

MADi = mediani(| Xi-medianj(Xj) |) (2.12)

Boxplot

This initiative algorithm is very popular for conveying the location and variabilities of
different datasets. However, based on the type of boxplot used, this algorithm can also be
used to detect outliers. The box symbol is basically drawn using the median and the upper
and lower data quartiles. The upper and lower whiskers are drawn differently depending on
the boxplot type used. They might be drawn at the largest and the smallest point. In that
case, no outliers will be assigned. However, in other types they are drawn according the
the quartiles or specific standard deviations from the median and the points outside the
whiskers are considered outliers.

2.5 Analysis of aCGH Data

Array Comparative Genomic Hybridization (aCGH) is a microarray-based quantitative
measure of DNA copy number alterations that can be mapped directly to position and
sequence. Tumors might cause severe genetic and epigenetic changes resulting in altered
levels of gene expression and thus causing possible modifications to cell growth and survival.
These changes might appear as gains/losses in some commonly observed genomic locations
in several cancer types. Changes in DNA copy number might have a direct effect on the
transcriptional activity of some genes mapped to the altered regions. Therefore, the analysis
of DNA copy numbers might be a keypoint toward understanding the major effects caused
by diseases like cancer. In Tumor-Normal analysis, the tumor DNA is normally labeled by
cy3 and the reference normal DNA is labeled by cy5. To block repetitive sequences, both
DNAs are combined with Cot-1 DNA. Then they are denatured and hybridized onto an
array containing genomic clones. Then digital images are captured for all fluorescent dyes.
The images are later used to calculate the fluoresence intensity for all array targets. To
point to the relative DNA copy number between the two hybridized specimen for a certain
locus, the ratio of the test to the reference intensities is calculated.
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Figure 2.2: Schematic representation of array CGH. Figure taken from [5]

Many algorithms were developed recently to help analyzing aCGH Datasets. Some
methods are clone-based and using HMMs to scan through all clones searching for possible
gains/losses [5]. However, other algorithms search for segments of gains or losses and not
for the individual clones [60].

In this thesis, aCGH data was analyzed in chapter 5.1.
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Chapter 3

Transferring Functional Annotations
of Membrane Transporters on the Ba-
sis of Sequence Similarity and Sequence
Motifs

This chapter is based on the following publication:
Barghash A, & Helms V (2013). Transferring functional annotations of membrane trans-
porters on the basis of sequence similarity and sequence motifs. BMC bioinformatics, 14,
343

I conceived this study with Prof. Helms. For this work, I wrote scripts, compiled
data-sets, and performed the data analysis. Later we both analyzed the data and jointly
wrote the manuscript.

3.1 Abstract

Membrane transporters catalyze the transport of small solute molecules across biological
barriers such as lipid bilayer membranes. Experimental identification of the transported
substrates is very tedious. Once a particular transport mechanism has been identified in
one organism, it is thus highly desirable to transfer this information to related transporter
sequences in different organisms based on bioinformatics evidence.

Here, we present a thorough benchmark at which level of sequence identity membrane
transporters from Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana
belong to the same families of the Transporter Classification (TC) system, and at what
level these membrane transporters mediate the transport of the same substrate. We found
that two membrane transporter sequences from different organisms that are aligned with
normalized BLAST expectation value better than E-value 1e−8 are highly likely to belong
to the same TC family (F-measure around 90%). Enriched sequence motifs identified by
MEME at thresholds below 1e−12 support accurate classification into TC families for about
two thirds of the sequences (F−measure 80% and higher). For the comparison of transported
substrates, we focused on the four largest substrate classes of amino acids, sugars, metal
ions, and phosphate. At similar identity thresholds, the nature of the transported substrates
was more divergent (F−measure 40 − 75% at the same thresholds) than the TC family
membership.

We suggest an acceptable threshold of 1e−8 for BLAST and HMMER where at least
three quarters of the sequences are classified according to the TC system with a reasonably
high accuracy. Researchers who wish to apply these thresholds in their studies should
multiply these thresholds by the size of the database they search against. Our findings
should be useful to those who wish to transfer transporter functional annotations across
species.
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3.2 Background

Prokaryotic and eukaryotic genomes each encode for hundreds of membrane transporter
proteins that play essential roles for the cellular import and export of ions and small
molecules. Furthermore, transporters mediate signal transduction processes catalyzing
the export and uptake of signaling molecules. Therefore, the functional classification of
membrane transporters is an important task. The available experimental knowledge about
transporter function has been compiled in databases such as TCDB [31], TransportDB [32],
SGD [61], and Aramemnon [33]. In these databases, the functional classification is normally
done according to the hierarchical transporter classification (TC) system [30] adopted by
the International Union of Biochemistry and Molecular Biology (IUBMB).

The TC system categorizes transporter sequences according to their class, subclass,
(super) family, and subfamily on the basis of functional or phylogenetic information that
is based on sequence similarity. An example for this classification would be the PTS
Glucose-Glucoside (Glc) super family 4.A.1 that belongs to class ‘4’ group translocators and
subclass ‘A’ phosphate transfer-driven group translocators. Subfamilies might correspond
to transported substrates. A particular transporter sequence in such a family is identified
by an extra digit to the right as e.g. 4.A.1.1.1.

A very important detail about each membrane transporter is of course the nature
of its transported substrate molecule(s). As an alternative to the TC system, one may
also classify transporters into different sets according to their substrates. It is presently
unclear how such a substrate-based classification compares with the TC classification
system. For example, the Aramemnon database lists members of five different TC families
as phosphate transporters in Arabidopsis thaliana. In fact, many databases ignore the
fourth digit (subfamily) of the TC system that normally refers to the main substrate.
Schaadt and Helms have recently reported that membrane transporters from Arabidopsis
thaliana that either transport amino acids, oligopeptides, phosphate, or sugar molecules
can be distinguished from each other based on their amino acid composition [62, 63].

An important research question for membrane biology is whether two membrane trans-
porters in organisms X and Y that show a certain sequence similarity will have the same
function or not. Previous computational work in this area classified transporters using
sequence homology and motif searches [64, 65], amino acid composition [66], and substrate
specificity [62]. Interestingly, no study has so far critically analyzed the reliability margins
of the individual features. In the general context of protein function, the Pfam repository of
protein families has become a quasi-standard. Pfam employs so-called gathering thresholds
that are manually curated, family-specific, bit score thresholds that are chosen by Pfam
curators at the time a family is built. The threshold used recently corresponds roughly to
‘safe’ E-value thresholds of ∼10−2[67]. In the TC system, the standard used for establishing
homology between two proteins is 9 standard deviations (SDs). This corresponds to a
probability of 10−19 that the degree of similarity observed arose by chance [68]. Chen and
colleagues have recently assessed the performance of different orthology detection strategies
for eukaryotic genomes [69].

Here, we have selected the three important model systems Escherichia coli (in the
following abbreviated as Ec), Saccharomyces cerevisiae (Sc), and Arabidopsis thaliana (At)
that belong arguably to the best characterized species in terms of transport processes.
Analyzing homolog databases we found that Sc and At have more homologs compared
to pairs (Sc, Ec) and (Ec, At) what reflects the smaller phylogenetic distance between
Sc and At. According to the InParanoid database [70], 7173 out of the 26207 At genes
(27.4%) have homologs in Sc and 2921 out of the 5884 Sc genes (49.6%) have homologs in
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At. For comparison, 933 Sc genes (15.8%) have homologs in Ec and 822 out of 4149 Ec
genes (19.8%) have homologs in Sc. Finally, only 2778 At genes (10.6%) have homologs in
Ec and 1168 Ec genes (28.1%) have homologs in At. Along the same lines, the Arabidopsis
sequencing project revealed that a much higher percentage of the proteins in the 12 major
functional subsets of the At genome had a BLASTP match with E < 10−30 to a protein
from Sc (17−50)% than to a protein from Ec (5-32)% [71].

We used three different approaches to transfer transporter functional annotation between
the three organisms by relating the level of sequence identity to the functional similarity
between the three studied organisms. In this study, we will term this comparison “functional
classification”. For this, we used the approaches BLAST that generates alignments that
optimize a measure of local similarity [35], HMMER that searches for sequence homologs
and performs protein sequence alignment using probabilistic methods [36], and MEME that
performs motif discovery in protein sequences on the basis of expectation maximization
[39]. So far there seem to be no accepted fixed thresholds for the prediction scores of the
three tools. Therefore, different studies tend to use their own suitable set of thresholds
[11-13,19-21]. Our study establishes a set of thresholds under which the transporter function
can safely be transferred between the three model organisms.

3.3 Methods

3.3.1 Overview of the Data

In the training part of this work, we used three sets of membrane transporter sequences
from Ec (155), Sc (177), and At (158). In each case, we require that the transporter has been
classified in the TC system and that TC/substrate annotations are based on experimental
evidence. The sequences and annotations were retrieved from the databases TransportDB
[32], SGD [61] and Aramemnon [33], respectively. From TransportDB we downloaded 354
sequences of Ec transporters. Among them, 157 have experimentally confirmed annotations
about substrate and transporter class. Sc transporters were extracted from a list of 6752
ORFs downloaded from SGD. 900 transporters existed in verified ORFs among which 788
had a non-hypothetical function. Only 178 transporters had a clear TC family membership
which was obtained by BLASTing SGD extracted transporters against the Sc TransportDB
by requiring an E-value of 0.0 and a sequence identity of 100%. In Aramemnon, we used
the keywords ‘transport’ and ‘carrier’ to download 616 transporter sequences from which
159 non-putatives with clear TC classification were extracted. Thereafter, we constructed
subsets according to the TC system and according to substrates for later analysis. Obviously,
matching a sequence correctly to a particular TC subfamily based on sequence similarity is
only possible if this TC subfamily originally contains at least two members (if we take one
out for testing, there is at least still one left). Thus, we considered only TC classes with
more than one member. Additionally, we also downloaded functional descriptions from
the Pfam database [72] for the transporters in the three organisms to assist the substrate
information extracted from the individual databases. If substrate information from Pfam
conflicted with the original substrate information, the Pfam information was discarded.

The transporters of the three organisms are annotated to 53 (Ec), 29 (At), and 34
(Sc) different TC families. Subclass 2.A (including uniporters, symporters, andantiporters)
and subclass 3.A (P-P-bond-hydrolysis-driven transporters) were the most common TC
subclasses. In Sc and At, the Major Facilitator Superfamily 2.A.1 accounts for nearly 40%
of all transporters while in Ec it is the second largest family after the ATP-binding Cassette
(ABC) Superfamily 3.A.1. Shared TC families belong mostly to TC classes Electrochemical
Potential Driven Transporters (class 2) and the Primary Active Transporters (class 3).
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For the testing part, we created four datasets of experimentally annotated human
transporters (Hs). Sugar, amino acid, and metal transporter sets were extracted from the
ChEMBL database [73]. Experimentally validated phosphate transporters were obtained
from Uniprot [74]. We note that the set of metal transporters contains several proteins that
transport several extra substrates besides the metal ion as well.

3.3.2 Prediction Tools

In this work we used the classification approach shown in figure 3.1 (not included in the
publication) to transfer the membrane functional annotations of transporters between the
organisms Saccharomyces cerevisiae (Sc), Escherichia coli (Ec), and Arabidopsis Thaliana
(At) on the basis of sequence homology.

Figure 3.1: A schematic flow diagram of the introduced transporter classification approach

The statistical significance of the sequence similarity between an input sequence and
sequences in the input set was determined using the well-known tools BLAST [35] and
HMMER [36]. The MEME program suite [39] version 4.6.0 was used to identify enriched
sequence motifs in sets of transporter sequences from one organism belonging to the same
TC family or that transport the same substrate. Later, the MAST program from the
MEME suite provided a score when statistically significant motifs were identified in the
sequences from the other organisms. Additionally, we used the tool ggsearch36 from the
FASTA suite [37] to test whether sequences transporting the same substrate express not
only local but also global sequence similarity.

First, we used NCBI BLAST version 2.2.23 and HMMER version 3.0 for pairwise
comparisons of all 90 Ec transporters against the 84 At transporters that belong to 14
shared TC families. In the MEME analysis, we used only common At and Ec TC families
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with two or more members i.e. 71 Ec transporters and 77 At transporters belonging to 7
TC families. Next, we aligned the 98 Ec transporters belonging to 18 TC families against
131 Sc transporters. Ec and Sc shared 14 TC families that could be searched by MEME
involving 87 transporters from Ec and 127 from Sc. Finally, we used BLAST and HMMER
to compare 157 Sc transporters from 23 TC families against 141 At transporters. At and
Sc shared 12 TC families involving 130 transporters from At and 120 from Sc. Repeatedly,
we used sequences from different organisms but belonging to the same TC families as inputs
and test sets for the classifiers to test the quality of the prediction. For identifying enriched
sequence motifs with MEME, the sequences must be grouped into families that are likely to
share motifs. Here, we used MEME to determine up to 3 motifs in each shared TC family
between each pair of organisms; 7 such TC families for (At-Ec), 14 for (Sc-Ec), and 12
for (At-Sc). BLAST E-values were normalized by the number of residues in the searched
database (see Results section). HMMER E-values were normalized by the number of hits.

In order to identify reliability thresholds at which functional information can be safely
transferred between organisms, we tested thresholds (10−20, 10−16, 10−12, 10−8 and 10−4)
for the E-values and evaluated prediction accordingly. We calculated the accuracy measures
precision (positive predictive value), recall (sensitivity) and F-measure (equations 3.1, 3.2,
3.3) at each threshold to evaluate the prediction performance (Tables 3.3, 3.4, 3.5, 3.6, 3.7
and 3.8).

Precision =
tp

tp+ fp
(3.1)

Recall =
tp

tp+ fn
(3.2)

F −measure = 2× Precision×Recall
Precision+Recall (3.3)

Precision emphasizes the role of unexpected results whereas recall emphasizes the role
of missing classification points. F-measure is a suitable accuracy measure considering
precision and recall as we want precision and recall to be evenly weighted. High precision
points at a strong prediction boundary while members of other classes rarely match the
current class. High recall points at strong similarity within the class members as they rarely
match members of other classes. For an actual TC or substrate class, a false negative is a
membrane transporter from the class that is predicted to belong to another class, while a
false positive is membrane transporter from another class that is predicted to belong to the
current class. An example confusion matrix is illustrated in Table 3.1.

Predicted class

3.A.1 Other class

Actual Class 3.A.1 TP FN
Other classes FP TN

Table 3.1: A confusion matrix corresponding to our method of calculating accuracy measures for
the TC and substrate classifications. TPs are members of the actual class correctly classified to the
same class from the other organism; Members are considered FNs if they were classified to another
class. FPs are members of the other classes that were predicted to belong to the actual. TNs are
members of other classes predicted to belong to other classes.

3.4 Results and Discussion

In this work, we perform functional classification of transporter TC families and of
transported substrate molecule using datasets from three model organisms. Our aim is
to provide a simple guideline to biologists who wish to get a quick information whether
available functional information about a transporter in species X may be transferred to
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another transporter sequence identified e.g. by BLAST search in species Y. Table 3.2
provides an overview over the main data sets used in this work.

Ec At Sc

Number of transporters with TC family annotated 156 158 177
Number of transporters with substrate annotation 155 158 848
Number of transporters with TC family and substrate annotation 155 158 177
Metal transporters 10 13 22
Phosphate transporters 5 19 6
Sugar transporters 27 47 24
Amino acid transporters 30 16 27

Table 3.2: Membrane transporters with experimental annotation downloaded from TransportDB,
Aramemnon and SGD for Ec, At and Sc, respectively. Only transporters with annotated TC and
substrate families were considered in this work.

Figure 3.2 lists common TC families between the three organisms and the distribution
of transporters among them.

Figure 3.2: Common Ec, At, and Sc TC families with member counts. Most families belong to
the Electrochemical Potential Driven Transporters (class 2) and the Primary Active Transporters
TC classes (class 3). Shared TC families in the searched organism with more than 2 members were
used for MEME motif analysis.

Beside the TC analysis, we also created substrate families of transporters that are
annotated to transport the same substrate. For each organism, we collected four large
groups of transporters that have been experimentally shown to catalyze the transport of
either metal ions, phosphates, sugars, or amino acids. Metal ion transporters account for
about 25% of the complete substrate dataset in each organism. Sc contains twice as many
metal ion transporters as Ec and At [75]. This can possibly be related with the existence
of metallothionein proteins in yeast that function as a metal storage [76]. At contains three
times as many phosphate transporters as Ec and four times as many as in Sc. This is
probably due to the essential role of phosphate regulating the At root system [77, 78, 79].
Sugar transporters in At even account for 50% of the complete substrate dataset which is
twice as many as in Ec and Sc. One possible explanation for this is that plants need sugar
to complete photosynthesis [80]. Ec and Sc contain twice as many amino acid transporters
as At. Figure 3.3 provides an overview to which TC families the members of the created
substrate families belong. We noticed that the transporters for these four substrates are
spread over many different TC families.

3.4.1 Matching TC families

In this work, we used BLAST for aligning all transporter sequences of one organism
against their TC analogues in the two other organisms. Then, we calculated the accuracy
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Figure 3.3: Distribution of metal, phosphate, sugar, and amino acid transporters among the
different TC families in the three organisms; Ec (squares), At (triangles) and Sc (ovals). The size
of the symbols indicates the number of members of this class

measures precision, recall, and F-measure (eq. 3.1–3.3) for various E-value thresholds.
BLAST multiplies the significance of a hit by the total number of residues in the database.
Thus, to make the obtained results independent from the size of the searched database we
divided the E-values by the size of the DB that we were BLASTing against. In this way
E-values from searches against different TC sets or substrates sets are comparable to each
other. In the following, we will term the normalized BLAST results "normalized E-values".
As an example, we BLASTed Sc transporter YDR342C either against the At dataset (23,567
residues) or against the non-redundant (nr) database of 2011 with 3,877,139,759 residues.
Among the matching sequences, we identified the Arabidopsis transporter At3g19940 in
both BLAST runs with an E-value of 1058 when searching against the At dataset and 1053

when matching against nr. This difference of reported E-values matches the ratio of the
database sizes.

On the other hand, when computing the accuracy measures, we multiplied the results
by the member count of each family and then averaged over all TC families considered in
order to account for the different member count of each family, see Table 3.3. The last
row shows the percentage of transporters that remained unclassified at the given threshold.
These are transporters from one organism belonging to the shared TC families that do not
share sequence identity better than the given E-value to any transporter in the shared TC
family from the other organism.

At the strictest threshold of 1e-20, the assignment of TC family has very high confidence
but more than 80% of the sequences cannot be assigned for the Ec-At comparison and about
half in the Ec-Sc and Sc-At comparisons. When the threshold is made more permissive,
the number of correct predictions increased with few false predictions. We found that
the precision and recall increased until 1e-8 but at threshold 1e-4 the number of false
predictions increased. As expected, the unclassified percentage decreased as the thresholds
were made more permissive. Based on this comparison, a rather permissive normalized
BLAST threshold of 1e-8 is very acceptable but 1e-4 can still be considered with caution.
When using the absolute identity scores of the alignment instead of the extracted E-values,
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Ec – At Ec – Sc Sc – At
1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4

Precision [%] 83.3 84.4 86.7 90 60.3 78.6 79.6 79.6 87.8 64.1 84.7 85.4 97.5 97.5 54.1
Recall [%] 83.3 84.4 86.7 90 76.2 78.6 79.6 79.6 87.8 65.1 84.7 85.4 97.5 97.5 62.9
F-measure[%] 83.3 84.4 86.7 90 64.7 78.6 79.6 79.6 87.8 63.6 84.7 85.4 97.5 97.5 55.2
Unclassified [%] 82.2 52.2 37.8 25.6 0 56.1 44.9 40.8 29.6 0 48.4 43.3 35 19.1 0

Table 3.3: Accuracy measures of the BLAST prediction results for finding homologous transporter
pairs in the Ec-At, Ec-Sc, and Sc-At comparison that belong to the same TC family for various
E-value thresholds. The results were normalized by the size of the reference database (see text).
Both precision and recall have a peak at thresholds 1e-12 or 1e-8 but showed lower accuracies under
other thresholds. The unclassified percentage decreases as the thresholds’ values increase.

the results were untrustworthy. The TC family prediction of Ec transporters based on
Sc transporters annotated more sequences than the prediction based on At transporters
at the strictest thresholds. Additionally, the Sc-At analysis resulted in a higher accuracy
compared to the Ec-At analysis.

We then applied HMMER to the same datasets as for BLAST and calculated the
accuracy measures and the unclassified percentage in the same way. Table 3.4 shows the
results obtained with HMMER. For the purpose of normalization, the results were divided
by the number of found hits in the database that was searched against. Overall, the results
are similar to those obtained with BLAST. However, HMMER results are slightly more
accurate at loose thresholds and cover a wider annotation fraction at the strictest thresholds
with few more false positives. The number of correctly predicted TC family members at the
medium-strong thresholds of 1e-16 and 1e-8 is always equal or higher than with BLAST.
HMMER also missed fewer points (false negatives) compared to BLAST. This is clearly
reflected by the higher recall value calculated most of the times. It should be re-emphasized
that the E-values are computed by the three programs used here in different ways and are,
thus, not directly comparable. Also, we have applied different normalization procedures - as
suggested by the developers - to normalize the results to per-residue or per-sequence levels.

Ec – At Ec – Sc Sc – At
1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4

Precision [%] 73.3 85.6 86.7 90 90.8 78.6 78.6 81.6 86.7 92.9 84.7 85.4 85.4 97.5 93.7
Recall [%] 73.3 85.6 86.7 90 92.1 78.6 78.6 81.6 86.7 92.9 84.7 85.4 85.4 97.5 96
F-measure[%] 73.3 85.6 86.7 90 91.4 78.6 78.6 81.6 86.7 92.9 84.7 85.4 85.4 97.5 94.7
Unclassified [%] 76.7 52.2 40 33.3 17.8 21.4 21.4 18.4 13.3 7.1 15.3 14.6 14.6 2.5 2.5

Table 3.4: HMMER prediction results (sequence E-values) under the given E-value confidence
thresholds. The results were normalized by the size of the reference database (see text). HMMER
gave a better accuracy under loose thresholds compared to BLAST.

Table 3.4. HMMER results for homology between TC families from the three organ-
isms The decisions by HMMER appear similar to BLAST between the three organisms.
Apparently, HMMER attained slightly higher precision for almost all thresholds compared
to BLAST especially at loose thresholds. Additionally, in the Ec-Sc and the Sc-At analysis,
HMMER made predictions for a larger fraction of the test set with a noticeably higher
recall for thresholds till 1e-8 compared to BLAST. For threshold 1e-4, HMMER predicted
a slightly smaller fraction of the test set compared to BLAST but HMMER reported much
higher prediction accuracy. Hence, we suggest an acceptable HMMER threshold of 1e-4.

The enriched sequence motifs identified by MEME in sequences from one organism
were subsequently searched in test sets of sequences from the other two organisms using
the MAST program [45] from the MEME suite. Table 3.5 illustrates the results based on
using motif searches for family classification of transporters. As can be expected, motif
based searches performed better in families with many members such as 2.A.1. For loose
thresholds, motif based classification showed lower precision compared to HMMER and
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BLAST but a comparable precision at the strictest thresholds of 1e-20 and 1e-16 as in
Ec-Sc and Sc-At analysis. We suggest that motif based methods may be used beneficially in
combination with other methods to support transporter classification. At looser thresholds
than 1e-8, motif-based searches seem to lead to unreliable results and should be used with
high caution.

Ec – At Ec – Sc Sc – At
1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4

Precision [%] 45.1 90.1 90.1 68.7 15.8 83.9 83.9 79.1 33.5 13.2 94.2 99.2 100 57.3 9.6
Recall [%] 45.1 90.1 90.1 89.1 51.9 83.9 83.9 83.9 65.3 25.8 94.2 99.2 100 79.3 36.6
F-measure[%] 45.1 90.1 90.1 76.4 21.6 83.9 83.9 81.3 42.6 16.2 94.2 99.2 100 64.3 13
Unclassified [%] 87.3 80.3 45.1 4.2 0 47.1 46 34.5 1.1 0 51.7 40 28.3 4.2 0

Table 3.5: MAST results searching for motifs predicted by MEME in the Sc and At test sets.
Despite the fact that all sequences were classified, prediction accuracy is generally low at loose
thresholds and at the strictest threshold in the Ec-At analysis.

3.4.2 Matching Substrates Families

In a second step, we used the same three methods to test whether annotations about
the transported substrate can be transferred from one organism to the other. For this, we
created four subsets of metal ions transporters, phosphate transporters, sugar transporters,
and amino acid transporters. These are the four largest known substrate families and
comprised 72 Ec transporters, 95 At transporters, and 79 Sc transporters, see Table 3.2.

As shown in Table 3.6, the results were markedly different from the TC family results.
Despite the fact that BLAST reported acceptable prediction precision in the Ec-At and
the Sc-At analysis, the program missed classification of many transporters. We noticed
that sequences tend to match sequences from their TC families in other substrate families,
rather than their analogues in the same substrate family. Thus, the precision for substrate
classification is generally lower than for the TC classification, in particular for the Ec-Sc
comparison. For instance, the metal transporter (YMR301C) from Sc was falsely matched
to about one third of all Ec transporters in the four substrate families irrespective of their
substrates since they belong to the same TC family (3.A.1).

Ec – At Ec – Sc Sc – At
1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4

Precision [%] 71.6 72.9 66.1 56.8 37.8 57.7 44.1 38.5 39.3 34.9 95.5 79.8 69.9 62.2 37
Recall [%] 93.1 93.1 93.8 90.8 55.6 85.2 84.6 82.7 75.6 51.5 100 100 100 100 100
F-measure[%] 78.9 80.5 71.5 61.3 42.3 64.3 50.6 43.2 43.6 35.7 97.2 87 79 73.6 52.1
Unclassified [%] 90.3 86.1 79.2 72.2 8.3 65.3 56.9 52.8 51.4 1.4 45.7 44.3 37.1 27.1 1.4

Table 3.6: BLAST prediction results for the four created substrate families of metal ion, phosphate,
sugar and amino acid transporters. The results were normalized by the size of the reference database
(see text). Unlike the TC family prediction, a smaller fraction of transporters was correctly classified
and many were misclassified.

Table 3.7 presents the HMMER prediction results for substrate families from the three
organisms. Compared to BLAST, HMMER reported higher prediction accuracy in the Ec-Sc
analysis but slightly lower prediction accuracy in Ec-At analysis at the strict thresholds
such as in the TC comparisons. In fact, BLAST classified a slightly larger fraction of the
test sets than HMMER in almost all runs. HMMER was also affected by transporters
tending to match their TC family members in other substrate families rather than their
homologues in the same substrate families.

Table 3.8 shows MAST search results for MEME motifs from different substrate families.
MEME gave weak predictions in all runs but in the Sc-At analysis. However, recall in the
medium strict thresholds 1e-16 and 1e-8 in the Ec-Sc analysis is generally acceptable but
accompanied with many misclassifications. In the Ec-At analysis the prediction accuracy
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Ec – At Ec – Sc Sc – At
1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4

Precision [%] 51.4 58.3 69.1 66.0 57.7 85.2 77.0 72.7 71.3 70.3 99.3 90.4 76.3 71.7 59.9
Recall [%] 51.4 58.3 100.0 93.5 88.7 83.8 82.4 82.3 78.4 74.6 96.2 95.3 93.4 90.1 86.0
F-measure[%] 51.4 58.3 75.9 70.3 61.9 81.9 75.5 73.3 71.1 69.0 97.2 91.4 78.6 75.4 68.2
Unclassified [%] 93.1 88.9 83.3 79.2 65.3 69.4 61.1 55.6 51.4 47.2 45.7 44.3 41.4 34.3 17.1

Table 3.7: HMMER prediction results for substrate families. The results were normalized by the
size of the reference database (see text). HMMER gave a slightly higher prediction accuracy than
BLAST in the Ec-Sc analysis.

was generally low. Here, even the strict threshold of 1e-20 is unreliable because it gave
wrong assignments of substrates in two out of three analyses.

Ec – At Ec – Sc Sc – At
1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4

Precision [%] 37.5 37.5 52.8 39.8 25.0 34.7 56.3 52.2 34.9 25.1 82.9 81.5 49.4 30.2 25.0
Recall [%] 37.5 37.5 73.2 48.7 44.2 41.7 81.5 85.5 50.4 40.3 96.7 93.0 79.7 39.3 31.7
F-measure[%] 37.5 37.5 61.3 43.8 30.1 37.9 58.5 60.2 40.9 29.4 87.7 85.9 58.8 30.3 27.3
Unclassified [%] 95.8 94.4 80.6 9.7 0.0 90.3 75.0 59.7 9.7 0.0 68.7 55.3 52.0 0.0 0.0

Table 3.8: MAST results searching for up to 3 motifs predicted by MEME in each substrate family
from Sc and At. Most members of the substrate families were correctly classified for threshold
(1e-4) but only with a very low accuracy.

Surprisingly, 22 Sc sugar transporters were correctly classified from 3 motifs predicted
by MEME in the At sugar substrate family. To the best of our knowledge, none of the
three motifs have been annotated so far in databases such as [38]. Table 3.9 lists the regular
expressions of these three motifs. The motifs were found around positions 420, 150, and
300 of the protein sequences, respectively.

Approximate
position Regular expressions
420 F[AS][WI][GS][WM]GP[LVI][GP]W[LVI][VI]PSEIFPL[ER][IL]R[SGA]A[GA][QG][SA][IL]A[VA][SAL]VN[WM][IFV]F[TNS]F[IL][IV][AGT]Q[SAT]FLS[ML]L[CE][AH]
150 F[LFI]IG[AS][LI][LV][MN][AG]FAPNVA[MV]LI[IV]GR[LI]L[LA]G[FI]G[VI]G[FL][AG][NS][QM]A[VA]P[VL]Y[IL][SA]E[IM][AS]PAKIRG[AG]
300 [GA][VI]G[LI][QP]F[FL]QQ[LF][TS]GIN[AV][VI][ML][FY]Y[AS]P[VT][IL]F[QK][TK]AGF

Table 3.9: Regular expressions of the three motifs predicted in At sugar transporters that lead to
correct predictions of 22 Sc sugar transporters at the second-strictest threshold of 1e-16.

3.4.3 Application of Established Thresholds to Human Datasets

Next, we tested these thresholds on four Hs datasets. In comparison to the three model
organisms, these datasets are likely much less complete. We used the three tools to align
the Hs transporters using a set of transporters from At and Sc and to align Ec transporters
using Hs transporters. The results are in line with the comparisons of the three model
organisms. When using BLAST and HMMER, only a small fraction was annotated at
strict thresholds but more were classified at more permissive thresholds. Using HMMER,
about 50% of the transporters remain not annotated even at the loosest threshold of 1e-4
whereas using BLAST many more were annotated but with a very low prediction accuracy.
The reason is that the Hs phosphate and metal transporters were not annotated using the
At and Sc sets and even did not help in annotating the Ec transporters. However, sugar
and amino acid transporters were mostly correctly annotated. Most annotations of Hs
transporters were based on matching (Hs, Sc) pairs. In motif searches, two thirds of the
Hs transporters were annotated at the threshold of 1e-16 but none were annotated at the
strictest threshold of 1e-20, see Table 3.10. The complete results of matching (Hs, At) and
(Ec, Hs) are listed in Appendix table A1.

Additionally, we studied the pairwise global similarity of all organism pairs using the
program ggsearch from the FASTA program suite. The results were generally similar to
BLAST and HMMER results with a slightly lower accuracy at the loose thresholds and
even lower accuracy at the stricter thresholds. Results are listed in Appendix table A2.
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BLAST HMMER MEME
1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4

Precision [%] 66.7 66.7 62.1 59.2 38.6 66.7 66.7 66.7 66.5 65.1 0 66.7 66.7 37.6 25
Recall [%] 66.7 66.7 66.7 66.7 55.4 66.7 66.7 66.7 66.7 64.3 0 66.7 66.7 31.3 34.1
F-measure[%] 66.7 66.7 64.1 62.1 45.1 66.7 66.7 66.7 66.6 64.7 0 66.7 66.7 34.1 27.4
Unclassified [%] 66.7 60 60 60 6.7 66.7 66.7 60 60 53.3 100 33.3 33.3 0 0

Table 3.10: Hs transporters were better annotated using Sc transporters compared to At. The
results were corrected for the size of the reference database (see text). About half of the transporters
remained unannotated in the HMMER runs. Two thirds of the human transporters were annotated
using MEME at the threshold of 1e-16.

3.4.4 Prediction of TC Families in Substrate Families

Comparison of the two preceding sections shows that substrate families have less
sequence similarity on average compared to TC families. Now, we tested the combination
of both properties, see Figure 3.4. We performed this comparison in a systematic way. For
this, we named the extracted families in the form “substrate family_TC family”. The four
substrate families (amino acids, sugars, phosphates, metals) belong to 19 TC families in
Ec, 13 in At and 14 in Sc. 7 families substrate-TC are shared between Ec and At, 7 also
are shared between Ec and Sc and 11 are shared between Sc and At. Some TC families
belong to many different substrate families like the family 3.A.1 that contains members of
4 Ec substrate families. We used BLAST to analyze the affiliation of test sequences toward
their TC or substrate families. Here, only the best match of each substrate_TC family is
considered. The heatmap in Figure 3.4 shows the tendency of Sc sequences to match their
analogues from At TC or substrate families. Some Sc transporters matched strongly (black
rectangles) their actual substrate_TC families from At like sugar_2.A.1, phosphate_2.A.1
and metal_2.A.55. However, most sequences from shared TC families had weaker matches
to their TC families rather than their substrate families. Similar results were obtained in
the Ec-At and Ec-Sc comparison, see Appendix figure A1 and Appendix figure A2. Thus,
we suggest that it is beneficial to apply substrate information as a pre-filter for transporter
TC family classification. On the other hand, transporters that transport the same substrate
but belong to different TC families generally do not share noticeable sequence similarity.
TC information can be the stand alone feature used to classify transporters but a little
tuning by substrate information elevates the prediction accuracy. Misclassification will
occur in the small substrate_TC families not in the big TC families.

3.4.5 Limitations and Implications

In some way, our analysis presented here is a bit “circular” since we employ tools to
identify sequence pairs belonging to the same TC categories while the TC classification
itself was established in part based on phylogenetic analysis that is again based on sequence
similarity. However, in a practical use case it is far simpler to run a BLAST or FASTA
analysis than to establish a complicated phylogeny. Hence, our results reflect to what extent
simple sequence similarity captures the structure of the more elaborate TC classification.

When comparing the results of the four methods (BLAST, FASTA, HMMER3, MEME),
the reader should not forget that different strategies are employed by each of the methods
to derive E-values for the reported results. Hence, the results of different methods are not
directly comparable.

Note that datasets to be used for motif discovery are typically cleaned up for sequence
redundancy e.g. using BLASTCLUST with a 25% sequence identity threshold [81]. Here,
we did not do this because this would significantly decrease the number of families in the
TC dataset that can be used for analysis. Hence, the MEME analysis partially rediscovered
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Figure 3.4: BLAST homology search of 69 Sc transporters against 84 At transporters from 4
substrate families (amino acids, sugars,phosphates, metals) and 13 TC families (Sc) and 12 TC
families (At). The grey scale follows a logarithmic scheme where white means no match better than
normalized E <1e-04 and black means the best matches better than E <1e-20. Families generally
match their substrate_TC families. However, they may also match TC families from different
substrate_TC families

sequence similarities.

This work suggests that the current TC system adopted by IUBMB is a more robust
classification feature compared to substrate classification. It is quite likely that phylogenetic
inference is a more sensitive indicator of homology than simple sequence similarity or
identity. Thus, it appears worthwhile to test the performance of phylogeny-based methods
to relate the substrate specificities of membrane transporters.

When trying to completely block the transport of a certain substrate across a particular
membrane of an organism it is hard to rely only on the TC information because one
substrate can be transported by several transporters from different TC families. One
possible explanation in fact is that transporters assigned to different sequence families
might actually share a similar 3D structure and the structural similarity might provide
an indication about the evolution of the transporter function. Such studies require more
sensitive search methods like AlignMe [82].

3.5 Conclusions

We observed that classifying membrane transporters according to TC families gives
more accurate results than classifying them according to substrate families. At the strictest
threshold of 1e-20 for normalized E-values, predictions based on BLAST and HMMER
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result generally in high precision, but a huge fraction of the data remains unclassified. We
suggest an acceptable threshold of 1e−8 for both programs where at least three quarters
of the sequences are classified with a reasonably high accuracy. Researchers who wish to
apply these thresholds in their studies should multiply these thresholds by the size of the
database they search against. On the other hand, MEME showed unsatisfactory behavior
for thresholds below 1e-8. Prediction of TC families split from substrate families showed
satisfactory results implying that the application of substrate information as a pre-filter
would improve the prediction results. The analysis and suggested thresholds in this study
should be useful to those who wish to transfer transporter functional annotations across
species without having to build a new phylogeny such as for the TC system. With respect
to substrate annotation, the findings of this work may be combined with those of Schaadt
et al. [62] who established amino acid composition for substrate annotation of transporters,
and with the work of Saier MH Jr. [83].
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Chapter 4

A Robust Approach to Detect Outlier
Samples or Genes in Expression and
Methylation datasets

This chapter is based on the manuscript:
Barghash A, Arslan T, and Helms, V. A robust approach to detect outlier samples or genes
from expression and methylation datasets

that has been submitted to the journal of BMC bioinformatics.

I conceived this study with Prof. Volkhard Helms. I wrote scripts, compiled data-
sets, and performed the data analysis. We both analyzed the data and jointly wrote the
manuscript. Taner Arslan created the GUI outlier detection tool in python.

Abstract

Expression and methylation datasets are standard genomic techniques and an increasing
number of computational methods are implemented to aid in analyzing the huge and
complex amount of generated data. Such datasets often contain a sizeable fraction of
outliers that cause misleading results in downstream analysis. Some outliers should be
filtered out before starting any analysis while some others must be labeled as they might
carry interesting information.

Here, we present a comprehensive approach to detect sample and gene outliers in
expression or methylation datasets. We show that the core algorithms detected with high
accuracy most outliers that were artificially introduced by us. Sample outliers detected
by hierarchical clustering are validated by the Silhouette coefficient. At the gene level, we
consider the underlying distribution of a gene expression/methylation dataset and choose
a suitable detection algorithm accordingly. The GESD, Boxplot, and MAD algorithms
detected with f-measure of at least 83% the simulated outlier genes in non-intersected
distributions. We used this approach to detect outliers in publicly available datasets from
the TCGA and GEO portals where we found many outliers. However, we frequently found
that some functionally similar outliers have outlier observations in common samples. As
such cases may be of special interest, they are labeled for further investigations. The
presented approach is available as a standalone python tool with GUI via GitHub using
this link: https://github.com/TanerArslan/outlier-detection

We suggest that expression and methylation datasets should be checked for outlier points
before proceeding with any further analysis. We suggest that 2 outlier observations are
enough to label an outlier gene as they are enough to ruin a perfect co-expression. Outliers
might also carry useful information and thus functionally similar outliers should be labeled
for further investigation. Extremely intersected datasets should be searched for outliers
with caution. Our findings should be useful for those using expression or methylation
datasets in their research.
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4.1 Background

Monitoring gene expression can aid in cancer classification [84] and in identifying
clinically-relevant tumor subgroups [85].Additionally, profiling of gene expression is one
key approach for finding new biomarkers and therapeutic targets for different cancer types
[86]. Several data portals such as the Gene Expression Omnibus (GEO) [87] and The
Cancer Genome Atlas (TCGA) now provide convenient access to thousands of normalized
expression datasets for most cancer types. However, automatic processing of these data is
complicated due to the occasional appearance of outlier samples or outlier genes in such
large datasets. In simple words, an outlier is an observation that deviates "too much" from
other observations.

Detecting outliers might be important either because the outlier observations are of
interest themselves or because they might contaminate the downstream statistical analysis.
In the field of gene expression, an outlier can be an abnormal sample that deviates
significantly from the other samples in its class. One common reason for this is mislabeling,
where accidently a sample of one class might be falsely assigned to another one. Mislabeled
samples might then reduce the distinction between true dataset classes. On the other hand,
an outlier might also be a gene with abnormal expression values in one or more samples
from the same class. In the case of cancer, this may reflect that this patient or his/her
disease is a special case. Hence, it is important to identify outliers in expression datasets
and, depending on the type of analysis to be performed, to consider whether this data
should be removed [5]. Recently, several methods have been proposed for outlier detection
in microarray data that used, for example, principle component analysis and estimation
of Mahlanobis distances [56], a hybrid evolutionary algorithm [57], cross validation of an
SVM classifier [88], a Gene Tissue Index [89], or the OASIS methods [90]. Some studies
predicted outliers for the sake of filtering while others predicted them for further analysis.
To the best of our knowledge, no approach so far detects sample as well as gene outliers
with a set of suitable filters to validate the detection.

In this chapter, we propose and test a simple approach that combines multiple established
methods to detect outlier samples or genes in expression and methylation datasets. Average
hierarchical clustering is used to detect outlier samples and the clustering is later validated
using the Silhouette coefficient. To detect outlier genes we use the three algorithms
GESD [59], Boxplot, and MAD [91]. We note that, some outlier genes might carry useful
information behind the outlier observations. For this, we introduce functional similarity of
abnormal genes as an additional filter for outlier genes. Semantic similarity is analyzed
using tool GOSemSim [92]. If genes show outlier expression and share high functional
similarity with other detected outliers, they are kept for further analysis.

4.2 Methods

Here, we introduce a hybrid technique based on established algorithms to detect outlier
samples and genes in expression datasets. Samples are denoted as outliers if they deviate
more than a certain threshold in Euclidean distance from other samples in the same
class (tumor/normal). The threshold is not fixed but dataset-dependent. To find outlier
samples, we used average hierarchical clustering based on Euclidean distance (AHC-ED).
Subsequently, we use the Silhouette measurement to validate the quality of the clustering.
On the other hand, genes are labeled as outliers if their reported expression values contain
outlier observations that pass a suggested threshold and if they share no significant functional
similarity with other detected outlier genes. If the expression of one gene follows a normal
distribution, we use the Generalized Extreme Studentized Deviate algorithm (GESD) (see
chapter 2.4) [59]. If the gene expression data does not follow a normal distribution, then
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we apply the two distribution-free algorithms Boxplot and Median Absolute Deviations
about the median (MAD) [91]. We additionally test functional similarity within outlier
genes using GOSemSim [92]. If such gene pairs are found, we check whether their outlier
observations are detected in common samples. Functionally dissimilar outlier genes are
later marked for removal. The pipeline is illustrated in Figure 4.1.

Figure 4.1: Entity relationship model for the outlier detection approach

4.2.1 Datasets

To test the hybrid approach just introduced, we generated four simulated expression
datasets with known outliers at the gene and sample levels. Additionally, we tested
the workflow on a public colon cancer dataset with known outliers published by [93].
Subsequently, we applied our approach to predict outliers in public datasets of colon cancer,
glioblastoma multiforme (GBM), ovarian cancer (OV), and liver cancer obtained from The
Cancer Genome Atlas (TCGA) and the Gene omnibus (GEO) databases.

Data with Known Outliers

Initially, we generated four simulated datasets with known outlier samples or genes
in a scenario that resembles a typical cancer dataset. Each dataset contains two clearly
distinguishable classes of samples. Thus outlier samples either do not match the majority of
samples in either of the two classes or are simply mislabeled. On a different manner, a gene
is considered an outlier if it presents a clear uneven simulated behavior within either class.
In the literature, the overall shape of the distribution of gene expression levels is typically
not explicitly mentioned. Several studies apply tests for normality to check whether the
data follows a Gaussian distribution [94] [95] [96]. We speculated that in rare cases, the
distribution of gene expression might also follow a Poisson distribution. Thus, we created
two simulated datasets that obey either a Gaussian distribution or a Poisson distribution.
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The simulated datasets contained 100 samples distributed equally to two classes and
1000 genes each. The first 50 samples belonged to class 1 (C1) and the other 50 to class
2 (C2). The form of the first two datasets (SD1/2) is the same and they were both used
for identification of sample outliers. At first, the first 900 rows are drawn from the same
distribution for both classes but the remaining 100 were drawn from different distributions.
In SD1, 900 rows were drawn from the normal distribution N(0,22) (see equation 4.1 with
µ = 0 and σ = 2) but the remaining 100 were drawn either from N(10,12) or N(20,12) for
samples of classes C1 and C2, respectively.

N(µ, σ) =
1

σ
√

2π
e−(x−µ)

2/2σ2
(4.1)

In SD2, the first 900 rows were drawn from the same distribution like in SD1 but the
remaining 100 were drawn from distributions N(10,22) and N(15,12) for samples of classes
C1 and C2, respectively. SD2 represents clearly overlapping classes. Later, samples 10,
15, and 20 from class 1 were switched with samples 60, 65, and 70 from class 2 as a set
of mislabeled samples in both datasets. Additionally, the last sample from each class was
replaced by one drawn either from N(25,12) or N(30,12) in classes 1 and 2, respectively, to
create clear outlier samples ( see Figure 4.2).

Figure 4.2: Datasets of simulated gene expression. Different gray levels represent different classes.
Outlier cases are in black. SD1/2 (left) has two known outliers and 3 known switched samples.
SD3/4 (right) Contain 50 outlier each. SD1-3 follow Gaussian distributions while SD4 follows a
Poisson distribution

The third and fourth datasets (SD3, SD4) were used for identification of outlier genes.
Each had 50 known outlier genes with outlier values at the same positions in classes C1 and
C2. In SD3, the 950 non-outlier genes were filled from Gaussian distributions N(0,22) and
N(15,32) for classes C1 and C2, respectively. Regarding the outlier genes, 45 points followed
the class rules and the other five were drawn from N(12,12) and N(2,12) for classes 1 and 2,
respectively. To overcome the randomness in the created distributions, we generated 100
arrays in the form of SD3 and passed them later to the outlier detection algorithms. All

34



Chapter 4. A Robust Approach to Detect Outlier Samples or Genes in Expression and
Methylation datasets

normal distributions for non-outlier points were controlled by Shapiro tests with p-value
threshold of 0.9. The 950 non-outlier genes in SD4 were filled from a Poisson distribution
with λ equal to 2 or 3 for classes 1 and 2, respectively. To simulate outliers in the remaining
50 genes, we filled 45 out of 50 points in each gene with values from the class distribution
like before but the remaining five points were filled from Poisson distributions with λ equal
to 3 or 0.5 for classes 1 and 2, respectively. Here, we used minimum chi-square estimation
[97] to fit the generated distributions and accepted those with an upper p-value threshold of
0.0001. As a further test on an experimental dataset, we considered an extensively studied
experimental dataset with documented outlier samples in colon cancer [93]. This dataset
has 22 normal and 40 tumor samples. Several classification algorithms were previously
applied to this dataset and suggested many outliers and misclassified samples between
tumor and normal [56] [88]. Overall, nine samples can be considered as confirmed outliers
(T2, T30, T33, T36, T37, N8, N12, N34, N36) and were used here to test our outlier
detection approach.

Application to Public Datasets

After validating the workflow shown in Figure 4.1 on the test datasets with known
outliers, we applied this hybrid technique to detect unknown outliers in public cancer
datasets downloaded from TCGA for colon, GBM, and OV cancers and from GEO for liver
cancer (Table 4.1). In GEO, a sample description is included in the main dataset page
which is not the case with TCGA. In TCGA datasets, normal and tumor samples can be
distinguished by their barcodes. The barcode has several parts separated by hyphens. The
third part -with two digit number and a character- describes the sample. Numbers from
0-9 label cancer samples while numbers from 11-19 label normal samples.

Dataset Raw
data type

Normal
samples

Tumor
samples

Download
data

#
Genes

#
Genes obeying

normal distribution
COAD

Expression Agilent 7 143 08.Feb.2013 11687 5971

GBM
expression Agilent 10 594 04.Apr.2013 17430 2820

OV
expression Agilent 7 591 07.Apr.2013 17436 4112

Liver
expression
(GSE14520)

Affymetrix 239 247 01.July.2013 12701 N:1144
T:1791

COAD
Methylation

Illumina Infinium
HumanMethylation27 0 129 28.Apr.2013 11633 1082

GBM
Methylation

Illumina Infinium
HumanMethylation27 0 294 28.Apr.2013 10256 98

OV
Methylation

Illumina Infinium
HumanMethylation27 8 597 28.Apr.2013 7876 14

Table 4.1: Dataset description.

4.2.2 Detection Algorithms

To detect outlier samples, we cluster samples using the average hierarchical clustering
based on Euclidean distance. Subsequently, we use the Silhouette measurement as a measure
of the quality of clustering. Based on the clustering vector and the set of distances, the
algorithm calculates the average dissimilarity of a point to its current class a(i) and the
lowest dissimilarity of the point to other classes b(i). The combination of dissimilarity
according to equation 4.2 measures how well elements fit into their clusters. S(i) ranges
between (-1,1) where 1 indicates a better fit to the current cluster and -1 means that the
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point actually belongs to the other class or a so called neighboring cluster.

Silhouette clustering S(i) =
b(i)− a(i)

max(a(i), b(i))
(4.2)

The Silhouette coefficient for the objects of one cluster is defined as the arithmetic mean
of the Silhouette values of all objects.

To detect outliers at the gene level, we use the 3 algorithms GESD, Boxplot, and MAD.
GESD was developed to detect one or more outliers in a dataset assuming that the body of
its data points comes from a normal distribution [59]. Precisely, this algorithm calculates
the deviation from the mean for every point (see equation 4.3),

R(i) =
Maxi | xi − µ |

SD
(4.3)

and then removes the point with the maximum deviation at each iteration. This process
is repeated until all outliers that fulfill the condition Ri>λi are identified where λ is the
critical value calculated for all points using the percentage points of the t distribution (see
equation 4.4).

λi =
(n− i)tp,n−i−1√

(n− i− 1 + t2p,n−i−1)(n− i+ 1)
(4.4)

GESD and its predecessor ESD will always mark at least one data point as outlier [59]
ven when there are in fact no outliers present. Therefore, using GESD to detect outliers in
microarray data must be accompanied with a threshold of outlier allowance where a certain
amount of outliers are detected before marking a gene as an outlier. The GESD method is
said to perform best for datasets with more than 25 points [59]. Additionally, the algorithm
requires the suspected amount of outliers as an input. The default in this work is half of
the tested size.

Besides GESD, we additionally use the well-known Boxplot method which is also
a non-parametric algorithm but can detect outliers without pre-assumption about the
underlying statistical distribution. Boxplot calculates five key points for plotting; two
extremes (whiskers), upper and lower hinges (quartiles), and the median. Data points
outside the hinges are labeled as possible outliers. As the quartiles and whiskers are not
distribution-driven (related), Boxplot normally suggests many points as outliers and thus
datasets might extremely shrink [98]. Therefore, we use this algorithm for gene expression
data sets that failed the normality test and we suggest an allowed margin of outliers.
The last algorithm we apply is the MAD algorithm. This algorithm does not rely on the
variance or standard deviation and thus it assumes no special statistical distribution of
the data similar to Boxplot. Here, first the raw median for each gene is calculated over all
samples. Then the median absolute deviation (MAD2) of data points from the raw median
is calculated as in equation 2.12 where data points with maximum MAD are labeled as
possible outliers.

MADi = median(| Xi −medianj(Xj)) (4.5)

Hereafter, in this manuscript, we will label as outliers those genes with at least two
outlier values (see below). We will use the GESD algorithm only if the gene expression
follows a normal distribution and expression data is available from at least 25 samples. For
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other genes we use MAD and Boxplot to detect outliers and we accept decisions if they
match for at least 2 of the outlier observations.

The analysis in this work was completed in R-cran mainly using the parody package.
To make it publicly available, The master student Taner Arslan implemented the same
workflow as a GUI Python tool for outlier detection under my supervision. This tool offers
special implementations of the algorithms mentioned in this work and some other features.
AHC-ED followed by Silhouette are used to identify outliers at the sample level while
GESD, Modified z-score (MAD) [99], adjusted Boxplot [100], and the median rule [101] are
used at the gene level. Once the outliers are detected, the tool offers to group outliers on
the basis of their co-expression, functional similarity, or their KEGG pathway participation.
The user is asked almost at every step to input his confidence thresholds. The tool provides
dataset statistics, detection statistics, and outlier similarity statistics while allowing the
user to export the findings at the different stages. Related figures are generated and saved
to the disk automatically where needed. The tool is available at GitHub via the link:
https://github.com/TanerArslan/outlier-detection

4.3 Results

As a start we illustrate the effect of two outlier data points on co-expression analysis.

4.3.1 Effect of Two Introduced Outlier Points

Co-expression analysis is important for suggesting functional gene-gene interactions.
Thus, one may wonder how many outliers are needed to ruin a known co-expression. To
test this, we randomly picked one gene each from the 4 public cancer expression datasets
studied in this work and introduced two outliers to it. Then we compared the correlation of
expression between its raw expression and its modified one. The magnitude of their deviation
from the mean was measured in multiples of the standard deviation (SD). Perturbations
ranged from 2SD to 12SD. Figure 4.3 illustrates the effect on genes with different numbers
of samples.

Figure 4.3 illustrates that introducing only 2 outlier data points with 2 standard
deviations from the mean in samples with 143 to 594 data points decreases the auto-
correlation of the data from 1 to 0.76-0.94 depending on the size of the dataset. Hence,
already few undetected outliers may have a large effect on the biological interpretation of
the data. Based on this result, and knowing that some outlier detection algorithms have
a marginal error of one outlier, we consider in the following genes as outlier genes if they
have at least 2 outlier values.

4.3.2 Detecting Outliers in Data with Known Outliers

Next, we tested the outlier detection approach illustrated in Figure 4.1 using four
datasets of simulated expression. SDS1/2 were generated to have two classes to simulate
cancer and normal classes. Each class contained a pure outlier sample and three mislabeled
samples. In SDS3/4, 50 outliers were distributed among the two classes with five outlier
points out of 50 in each class.

Detecting Known Outlier Samples in Simulated Datasets

Here, we first tested the sensitivity of the clustering algorithms using simulated expression
data. The first 900 rows in the two classes were filled from the same distribution and the
remaining 100 rows were filled from different distributions for the two classes. The outlier
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Figure 4.3: Effect of two introduced outlier points on co-expression analysis of a gene with itself.
The x-axis illustrates the magnitude of perturbations applied as multiples of standard deviations
(SD)

sample detection module successfully classified samples into the two main classes even when
only 10% of these rows are different between classes C1 and C2. Additionally, the module
detected the two pure outlier samples and labeled them as a third class away from the
other two. Finally, the module successfully managed to detect the mislabeled samples 10,
15, 20 from the first class and 60, 65, 70 from the second class and mapped them to the
correct classes.

Then, we tested the quality of clustering using the Silhouette method. We found that
the two clusters are well separated with an average distance of 0.36 within the SDS1 clusters
and 0.14 in SDS2 with semi-nested classes, see Figure 4.4.

Figure 4.4: Silhouette validation of the AHC-ED clustering of SDS1. The average distance of
0.36 indicates that AHC-ED succeeded in clustering SDS1

Since this first test was very satisfactory, we then tested the stability boundaries of this
detection method. First, we varied the proportion of the SDS1 dataset that is being filled
from the same distributions. Here we performed 3 runs filling 950, 975, or 990 rows from
the raw distribution and filling the remaining rows from the class specific distributions
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as before. Then we clustered the samples using AHC-ED and tested the clustering using
Silhouette coefficients. In all runs, AHC-ED successfully clustered the samples pointing to
the outliers and to the mislabeled ones. Silhouette confirmed the clustering result but with
a continuously decreasing average width S(i) of 0.23, 0.14, and 0.07 on average.

As a final test, we filled the differing parts from distributions that have a larger overlap:
N(0, 12) as raw distribution and N(8, 12) and N(9, 12) for classes C1 and C2, respectively.
Again we tested the four class proportions (900/100, 950/50, 975/25, 990/10) as in the first
analysis. Now, Silhouette did not validate the clustering up from the second run, returning
negative S(i) width, because of mislabeled samples. Generally, the average Silhouette width
was lower than in the first test.

Detecting Known Outlier Genes in Simulated Datasets

For testing the outlier gene detection module, we used the three algorithms GESD,
MAD, and Boxplot to identify simulated outliers in 100 generated datasets in the form of
SDS3. Each outlier gene was modeled to have 5 known outlier values out of 50 points. We
observed that the GESD algorithm was able to detect at least four out of five outlier values
in 46 out of 50 outlier genes on average. In contrast, MAD and Boxplot on average detected
four out of five outlier points in only 33 and 34 genes, respectively, and some outlier points
of the other outlier genes. On average, 31 outlier genes were commonly detected by all
algorithms as listed in Table 4.2.

GSED Boxplot MAD
GESD 46±
Boxplot 33± 34±
MAD 33± 31± 33±

Table 4.2: Average of commonly detected outliers by GESD, Boxplot, and MAD algorithms in 100
simulated datasets of the SDS3 form. An outlier is considered as correctly detected if four out of
five outlier values are detected from the other 50. DS3/4 have in total 50 outlier genes out of 1000.

To test the stability of the detection module, we then performed 3 runs filling the
dataset with more intersected distributions each time. In each run we created 100 datasets
with 50 outliers each and calculated the average detection of the different algorithms. We
found that the GESD detection was more stable than Boxplot and MAD but still failed in
the last case showing strong overlap. Table 4.3 lists the distributions used in each run and
the detection results.

Approximate Intersection Class Distributions Outlier
distribution

Detection
Result

1SD C1: N(0,22)
C2: N(5,12)

C1: N(10,22)
C2: N(11,12)

GESD: 45±
Boxplot: 37±
MAD: 36±

2SD C1: N(0,22)
C2: N(5,12)

C1: N(8,22)
C2: N(10,12)

GESD: 30±
Boxplot: 18±
MAD: 17±

3SD C1: N(0,22)
C2: N(5,12)

C1: N(6,22)
C2: N(9,12)

GESD: 10±
Boxplot: 4±
MAD: 4±

Table 4.3: Lists of all distributions used in different runs to create simulated expression datasets.

In the datasets following a normal distribution, all three algorithms detected the outliers
with good accuracy unless the distributions overlapped to a major extent. To describe the
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accuracy, we calculated precision 3.1, recall 3.2 and f−measure 3.3 accuracy measures. As
explained by [102], accuracy measures in prediction and classification approaches emphasize
the role of unexpected predictions (precision) or the role of missing predictions (recall).
Along the same side, F−measure is frequently calculated to merge the precision and recall
decisions. In this sense, we consider the known outliers correctly predicted by the algorithms
as “True positives (TP)” and the missed known outliers as “False negatives (FN)”. Hence,
recall for the first runs of the disjoint distributions was calculated as 90%, 74%, and 72%
for the GESD, Boxplot, and MAD results, respectively. On the other hand, the algorithms
detected at most one additional outlier observation in non−outlier genes (which we did
not introduce). Such cases could be considered “False positives (FP)”. However, no gene
contains two such outlier observations which suggest perfect precision. The F−measure
calculated for GESD, Boxplot, and MAD was 94%, 85%, and 83%, respectively.

However, the algorithm detected only few outliers in SDS4 following a Poisson distri-
bution what is rarely the case in gene expression datasets. In that case, GESD detected
on average 46% of the outlier points in 16 out of 50 genes and failed to detect any outlier
point in the rest. MAD detected 46% of the outlier points in only 3 out of the 50 outlier
genes. Boxplot detected only 23% of the outlier points in only 6 out of the 50 outlier genes.
This indicates that the algorithms are most robust to detect outliers in expression datasets
following more or less a normal distribution.

We now summarize the main decisions taken when establishing the workflow of Figure
4.1 that is implemented in the provided software package. Even in apparently “well behaved”
distributed normal distributions, all algorithms detected some less significant outliers (on
average one for each gene). More of such insignificant outlier values can be found in real
datasets (data not shown). Therefore, we suggest that only genes with at least two outlier
observations should be labeled as outliers. We experienced in our analysis that GESD
is powerful in detecting outliers in data sets following Gaussian distribution. We also
found that Boxplot is a quite restrictive algorithm and places many points outside of the
whiskers. Therefore we suggest to implement the GESD decision in data following a normal
distribution (Shapiro test p-value >0.1) and accept the decision of Boxplot and MAD for
other genes only if they match the positions of at least two outlier observations.

Detect Outlier Samples in Public Datasets with Known Outliers

Next, we tested the outlier sample detection module using a public dataset for colon
cancer with known outlier samples in normal and tumor classes [93]. Normal and tumor
classes were treated separately. Average hierarchical clustering found 8 out of the 9 reported
outlier samples and placed them on the far left in the dendrograms, see Figure 4.5.

4.3.3 Detect Outliers in Public Data Sources

Then, we applied the established workflow to detect outliers in datasets from the public
sources TCGA and GEO. At the gene level we checked the normality using Shapiro test
as a precondition. Genes with outlier behavior might actually carry useful information
behind the outlier values. Therefore, as a last filter, we tested whether the genes with
outlier behavior belong to a functional group by analyzing Gene Ontology (GO) annotations
using the package GOSemSim [92]. We postulate that if two or more outlier genes show a
certain degree of functional similarity and have outlier points in the same samples, then
the causative outlier behavior of this functional group might be interesting to analyze
and thus genes should not be discarded right away. Hence, we first needed to establish a
cut-off threshold for meaningful semantic similarity. To this aim, we computed the semantic
similarity between all pairs of around 11000 human genes, see Figure 4.6. Based on the
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Figure 4.5: Average hierarchical clustering based on Euclidean distances of a public colon cancer
dataset with known outliers marked by asterisks

data shown, we suggest that 0.85 is a reasonable cut-off threshold for meaningful functional
similarity.

Detection of Outliers in TCGA Datasets

In the colon dataset, AHC-ED clustered the normal samples into one cluster distanced
away from most tumor sub-clusters without detecting any clear outlier or mislabeled samples,
see Figure 4.7.

The Silhouette coefficient validated this clustering with an overall average width of 0.22
(Figure 4.8). As TCGA datasets sofar contain only few normal samples for most cancer
types, we analyzed only the tumor samples for outlier genes.

The gene expression of TCGA datasets frequently followed a normal distribution. Among
these genes, GESD detected only four outlier genes with at least 2 outlier values (EIF3G,
GLUD1, GSG1L, STARD6). The results of MAD and Boxplot on these genes mostly
supported the GESD findings. Among the non-Gaussian genes, Boxplot detected 1692 and
MAD detected 1840 outliers. 1586 genes had common outlier observations in at least two
samples reported by Boxplot and MAD. Interestingly, 1163 of these outlier genes were also
detected by GESD applied to the non-Gaussian expression. When searching for functionally
similar outliers using GOSemSim, we found that 400 outlier genes show high pairwise
functional similarity to other outliers among these 400 genes.

In the GBM dataset, AHC-ED grouped the normal samples as one of the outer clusters
like for the colon dataset. Additionally, several tumor samples were clustered away from the
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Figure 4.6: Histogram of semantic similarity between all pairs of 11000 genes. 85% of all gene
pairs have functional similarity of 0.85 or less according to GOSemSim. Those pairs with larger
values than 0.85 are considered as functionally similar here

Figure 4.7: Detected clusters in public colon cancer dataset from TCGA. All 7 normal samples
with barcode 11A were clustered together on the left side of the dendrogram away from tumor
samples with barcode 01A

core clusters and thus they can be labeled as outliers (Data not shown). Overall clustering
was validated using Silhouette with overall an average width of 0.22 (Figure 4.9). Here we
suggest that further downstream analysis will be slightly improved after removing these
outlier samples.

At the gene level, the expression values of 2820 out of 17430 genes followed a Gaussian
distribution according to Shapiro test and GESD detected 6 outlier genes among these
(C6orf151, DOCK2, EIF2S2, NPR2, PLEKHA8, SH3GL1). Among the genes with non-
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Figure 4.8: Silhouette validation of clustering the TCGA COAD dataset

Figure 4.9: Silhouette validation of the GBM dataset clustering.

Gaussian body, Boxplot and MAD detected 6788 and 7130 outlier genes, respectively. Both
algorithms detected that 6671 outliers had at least two outlier points in common samples.
Additionally, the detection of 5032 of these genes was supported by GESD. 2325 of the
6671 outlier genes shared high functional similarities and outlier observations in at least
two common samples.

In the OV dataset, normal samples were clustered together but not on the outer sides.
For tumor samples, clustering resulted in many small clusters which indicates weak relations
between the samples (Data not shown). Silhouette validated this clustering with average
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widths of 0.47 and 0.05 in normal and tumor samples, respectively (Figure 4.10). The
removal of the outermost 10 samples improved the clustering only slightly.

Figure 4.10: Silhouette validation of the OV dataset clustering

At the gene level, the expression of 4112 out of 17436 genes follows a Gaussian distri-
bution. GESD found 8 outlier genes among the non-Gaussian ones. Boxplot and MAD
found 5757 and 6067 outlier genes, respectively, of which 5659 have outlier observations in
common samples. GESD supported the detection of 786 of the outlier genes. 1665 outliers
shared high functional similarity and outlier observations in common samples.

Detect outliers in GEO Datasets

NCBI GEO provides more cancer related datasets than TCGA. Also, GEO datasets
normally contain a balanced amount of normal samples. Here we applied our hybrid
approach to a liver cancer dataset with 486 samples; 239 normal and 247 tumor. Normally,
samples were mostly clustered into one core cluster. However, clustering tumor samples
presented at least two clear tumor clusters as shown in Figure 4.11.

Silhouette validated these findings with an average width of 0.4 for normal and 0.03 for
tumor samples (Figure 4.12). Here, we suggest removing only the outliers among normal
samples clustered outside the core cluster. Also, for this case, we suggest that performing
further analysis to tumor clusters separately might achieve clearer results. In this dataset
where only 14% of the genes had a Gaussian expression body, we found many outlier genes
in this dataset as listed in table 4.4. Boxplot and MAD matched at least 2 outlier positions
in 7742 and 6128 outlier genes in normal and tumor samples, respectively. We found 4541
outliers in common between normal and tumor samples. However, 4716 and 3208 outlier
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Figure 4.11: Hierarchical clustering of the GEO liver cancer dataset. Sample names are replaced
by N for normal and T for tumor

genes shared high functional similarity in normal and tumor samples and they had outlier
observations commonly in at least 2 samples.

GSED Boxplot MAD
GESD 7 2 0
Boxplot 6215 7846 4636
MAD 6668 8174 5071

Table 4.4: Statistics of outlier detection in GEO HCC dataset.
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Figure 4.12: Silhouette validation of the clustering on the GEO liver cancer dataset

4.3.4 Detecting Outliers in Methylation Datasets

Finally, we tested the outlier detection approach to identify outliers in 3 methylation
datasets downloaded from TCGA for colon, GBM, and OV cancers. Only the OV dataset
had normal and tumor samples. Out of these, only the normal samples were clustered
together as validated by Silhouette (Figure 4.13).

Figure 4.13: Silhouette validation of clustering OV methylation dataset

At the gene level, fewer genes had a Gaussian methylation body compared to expression
datasets. However, most outliers found shared high functional similarity with other detected
outlier genes and thus were not removed except the case of outliers detected by MAD
in the COAD dataset. Interestingly, we noticed that the 3 algorithms matched at least
two outlier positions in most of the detected outliers although only few had a Gaussian
body. Additionally, at least 50% of the commonly detected outliers shared high functional
similarity. The fraction of outliers detected and returned by the three algorithms is shown
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in Figure 4.14.

Figure 4.14: Percentage of detected and returned outliers -due to functional similarity and
common positions- in the TCGA methylation datasets COAD, GBM and OV. The left column in
each group refers to the detected and the right column refers to the returned.

4.4 Discussion

Here, we presented a new robust strategy for detecting outlier samples and genes from
gene expression and methylation datasets. As outliers might carry useful information we
set filters to remove only the extreme outliers while labeling interesting outliers for further
analysis. We presented two modules for outlier detection working at the sample and gene
levels. The outlier sample detection module consists of AHC-ED to define outlier samples
and the Silhouette coefficient to validate the clustering. In the outlier gene detection module
we observed that the underlying distributions of the expression or methylation play a key
role in the detection process. The underlying distributions are frequently Gaussian und
thus the GESD algorithm would fit for detecting outliers. This module includes two other
methods (Boxplot, MAD) that detect outliers regardless of the underlying distribution
found.

To validate this approach, we created several expression simulated datasets with intro-
duced sample and gene outliers and searched them using the proposed methods. Simulation
datasets were filled either from disjoint or intersected distributions. AHC-ED clustered
successfully samples into two classes even in the case where less than 10% of the class
rows were generated from two disjoint distributions while the rest came from the same
distribution. On the other hand, the more intersected the classes are the less they can
be distinguished on the basis of clustering dendrograms. AHC-ED successfully clustered
samples filled from intersected distributions but with a less strong Silhouette validation
compared to the completely disjoint ones. In simulated datasets, we also introduced 3 mis-
labeled samples and the clustering mapped them to their original classes. Two additionally
introduced pure outlier samples were successfully clustered far most from other classes.
Later we tested the outlier sample detection module using one colon cancer public dataset
that has a set of known outlier samples. Here the module detected 8 out of the 9 known
outlier samples.
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We used a similar method to test the outlier gene detection module. We created
expression simulated datasets and introduced outlier points for a set of genes. The datasets
were filled from several normal distributions. The GSED algorithm detected 90% of the
outliers coming from disjoint distributions where Boxplot and MAD detected around 70%.
On the other hand, the three algorithms performed less well when the outliers were drawn
from a distribution intersecting with the original distribution.

The amount of outlier observations defining an outlier gene remains an open question.
In this work we found that two outlier observations can ruin a known co-expression and thus
was used as a threshold. Once the outliers are defined, we tested how functionally similar
they can be. It is an interesting research topic to study functionally similar outliers that
have outlier observations in the same samples. Therefore, outliers fulfilling these conditions
were not removed but labeled for further analysis.

This approach was used later to detect outliers in expression and methylation datasets
downloaded from public sources TCGA and GEO.

In this approach, it is not possible to automate the removal of sample outliers as it is
impossible to fix a threshold for the cuts. The tool generates a dendrogram for the basic
clustering and lets the user decide what the tool shall remove.

In summary, we have demonstrated the dramatic effect how a few outlier points may
contaminate gene expression or methylation data for further downstream analysis. We make
available a convienient tool that implemented established algorithms for detecting outliers.
We presented a clear workflow that chooses the most appropriate algorithms depending on
the form of the data and on the type of analysis to be presented.
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Chapter 5

p62, Hepcidine, and ELOVL6 as Possi-
ble Tumor Markers in NASH, Hepato-
cellular Carcinoma, or Breast Cancer

This chapter presents the results published in two full papers and three letters

• Section 5.1: Kessler SM, Laggai S, Barghash A, Schultheiss C, Lederer E, Artl M,
Helms V, Haybaeck J, Kiemer A (2015). IMP2/p62 induces genomic instability and
an aggressive hepatocellular carcinoma phenotype. Cell Death and Disease.

• Section 5.2: Kessler, SM, Laggai S, Kiemer A, Barghash A, & Helms V (2015).
Hepatic hepcidin expression is decreased in cirrhosis and HCC. Journal of hepatology,
4, 977-979.

• Section 5.3: Barghash A, Helms V, & Kessler SM (2015). Overexpression of IGF2
mRNA-Binding Protein 2 (IMP2/p62) as a feature of basal-like breast cancer correlates
with short survival. Scandinavian journal of immunology,82,142–143,

• Section 5.4: Kessle, SM, Laggai S, Barghash A, Helms V, & Kiemer A (2014). Lipid
Metabolism Signatures in NASH-Associated HCC—Letter. Cancer research, 74,
2903-2904.

• Section 5.5: Kessler SM, Simon Y, Gemperlein K, Gianmoena K, Cadenas C, Zimmer
V, Pokorny J, Barghash A, Helms V, van Rooijen N, Bohle RM, Lammert F, Hengstler
JG, Müller R, Haybaeck J, & Kiemer AK (2014). Fatty acid elongation in non-alcoholic
steatohepatitis and hepatocellular carcinoma. International journal of molecular
sciences, 15, 5762-5773.

resulting from collaboration projects with Dr. Sonja Kessler from the group of Prof.
Alexandra Kiemer. For the bioinformatics part, we used the approach displayed in figure
5.1 or some parts of it to analyze complete datasets or parts related to genes of interest
for different cancer types. The first section and the letter in the second section show a
comprehensive analysis of the IMP2 roles in Hepatocellular carcinoma (HCC) and breast
cancer while the letter in third section concentrates on the roles of hepcidine in HCC and
liver diseases. The letter in the fourth section and the manuscript in the fifth section discuss
the correlations between ELOVL6 expression and liver diseases.
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Figure 5.1: Schematic approach used used to process data from tumor samples
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5.1 IMP2/p62 Induces Genomic Instability and an Aggres-
sive Hepatocellular Carcinoma Phenotype

Abstract Hepatocellular carcinoma (HCC) represents the second leading cause of
cancer−related deaths and commonly develops in inflammatory environments. The IGF2
mRNA binding protein IMP2−2/IGF2BP2−2/p62 was originally identified as an au-
toantigen in hepatocellular carcinoma (HCC). Aim of this study was to investigate a
potential pathophysiological role of p62 in hepatocarcinogenesis. Human HCC tissue
showed overexpression of IMP2, which strongly correlated with the fetal markers AFP and
DLK1/Pref−1/FA−1, and was particularly elevated in tumors with stem−like features and
hypervascularization. Molecular classification of IMP2 overexpressing tumors revealed an
aggressive phenotype. Livers of mice overexpressing the IMP2 splice variant p62 highly
expressed the stem cell marker DLK1 and secreted DLK1 into blood. p62 was oncogenic:
diethylnitrosamine (DEN)−treated p62 transgenic mice exhibited a higher tumor incidence
and multiplicity than wild−types. Tumors of transgenics showed a more aggressive and
stem−like phenotype and displayed more oncogenic chromosomal aberrations determined
by aCGH analysis. DEN−treated p62 transgenic mice exhibited distinct signs of inflamma-
tion, such as inflammatory cytokine expression and oxidative stress markers, i.e. TBARS
levels. Reactive oxygen species (ROS) production was elevated in HepG2 cells, which either
overexpressed p62 or were treated with DLK1. p62 induced this ROS production by a
DLK1−dependent induction and activation of the small Rho−GTPase RAC1, activating
NADPH oxidase and being overexpressed in human HCC. Our data indicate that p62/IMP2
promotes hepatocarcinogenesis by an amplification of inflammation.

5.1.1 Introduction

Hepatocellular carcinoma (HCC) is the second leading cause of cancer related death [103].
In most cases HCC develops based on an inflammatory etiology, namely chronic hepatitis
provoked by either viruses, or alcoholic, and non−alcoholic steatohepatitis. Elevated
reactive oxygen species (ROS) generation represents a hallmark of inflammation and
promotes carcinogenesis [104]. The insulin−like growth factor 2 (IGF2) mRNA binding
protein p62/IMP2−2/IGF2BP2−2 represents a shortened splice variant of IMP2, but
harboring the identical mRNA binding domain [105]. Although p62 was originally identified
as an autoantigen in an HCC patient [106], a functional impact of p62 or IMP2 on
hepatocarcinogenesis has not been described as yet. Still, other members of the IMP family,
i.e. IMP1 and IMP3, were reported to promote HCC [107][108] and other tumors [109][110].
p62 transgenic mice expressing the transgene exclusively in the liver develop steatosis
[111][112] and are more prone to develop steatohepatitis [113]. The animals express elevated
levels of the imprinted genes H19 and Igf2 [112], suggesting an effect of p62 on a specific
cluster of imprinted genes [114]. IGF2 displays a key regulator in mammalian growth
through metabolic and growth−promoting effects. While p62 was recently reported to exert
its lipogenic actions via IGF2 [111], its anti−apoptotic actions are independent of IGF2
[6]. Also IMP2 was suggested to promote HCC cell survival[115]. Employing transgenic
animals and hepatoma cells we here show that p62 induces an aggressive HCC phenotype,
which is linked to inflammatory and oxidant actions of p62. Analyses of publicly available
human HCC gene expression data further support p62 as a marker of human HCC with
poor prognosis.

5.1.2 Materials and Methods

The experiments described below were carried out in the Kiemer group. They have
been added here for completeness.
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Animals

All animal procedures were performed in accordance with the local animal welfare
committee. Mice were kept under controlled conditions regarding temperature, humidity,
12 h day/night rhythm, and food access. p62 transgenic mice expressing the transgene
exclusively in the liver were established as previously described [112]. For the short−term
experiment p62 transgenic (p62 tg) mice and matched wild−type (wt) littermates were
treated with 100 mg/kg BW DEN i.p. at the age of 2.5 or 5 weeks and sacrifized 48 h
later [116][117]. For tumor induction p62 transgenic mice and wild−type littermates were
injected with 5 mg/kg BW at the age of 2 weeks. In long−term experiments mice were
sacrifized at an age of 6 and 8 months modelling an early (tumor initiation) and late (tumor
progression) tumor stage, respectively [118]. Metastases were investigated in animals older
than 10 months (metastatic phase; wt:n=21, tg:n=18).

Real−time Quantitative Polymerase Chain Reaction

Experiments and quantification were performed as described in detail previously [111].

ELISA

Serum levels of IL6 (#m6000b, R&D Systems), TNFα (#mta00b, R&D Systems), and
DLK1 (#CSB−EL006945MO, Cusabio Biotech) were performed by ELISA according to
manufacturers’ instructions.

Immunohistochemistry (IHC)

Primary antibodies used were specific to glutamine synthetase (GS), Golgi membrane
protein 73 (Gp73), β−catenin, and p62 [6]. Samples were examined by two independent
investigators blinded to experimental conditions.

Western Blot

Western blot analysis of p62 protein levels was performed according to [6].

Quantification of Thiobarbituric Acid Reactive Substances

(TBARS) Products of lipid peroxidation were measured as previously described [119].

Cell Culture

Knockdown and overexpression experiments for p62 in HepG2 were performed as
previously described[6]. p62 sense and antisense constructs are available at Addgene
(#42174, #42175). Recombinant DLK1 was used for treatement (#1144−PR−025, R&D
Systems).

Caspase-3-like activity assay

Caspase-3-like activity assay was perfomed as previously described [6]. The extraction
buffer was slightly modified: 25 mM HEPES pH 7.5, 5 mM MgCl2, 1 mM EGTA, pepstatin,
leupeptin, aprotinin (1 µg/ml each).
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ROS Assay

ROS assay was performed as previously described [120]. HepG2 cells were loaded with
either 20 µM 2’,7’−dichlorodihydrofluorescein diacetate (DCF−DA) alone or with the
RAC1 inhibitor NSC23766 (#2161/10, R&D Systems) in PBS 60 minutes prior to DLK1
treatment for 48 h after transfection and 50 minutes before measurement, respectively.
Combined DLK1 and NSC32766 treatment was done for 5 min. DLK1/H2O2 (positive
control) treatment over time (5−30 min) was performed in quintuplicates. Combined DLK1
and NSC23766 treatment was done for 5 min.

RAC1 pulldown−assay

Activated RAC1 levels were measured by pulldown assay as previously described [120].
The affinity precipitation assay detects binding of active RAC1 to a fusion protein consisting
of the RAC1 target p21−activated kinase 1 and glutathione S−transferase (GST). GST-
PBD was expressed in Escherichia coli, purified, and bound to glutathione Sepharose
beads (#17-0756-01, GE Healthcare Life Sciences, Germany). For RAC1 pull−down assays
HepG2 cells were treated with 1 µg/ml recombinant DLK1 (#1144-PR-025, R&D Systems,
Germany), cells were washed with ice-cold PBS, and lysed with PBD-buffer

(
Tris pH 8.0

25 mM, DTT 1 mM, MgCl2 20mM, NaCl 100 mM, EDTA 0.5 mM, Triton X-100 1%,
Aproptinin 0.1%, Leupeptin 0.1%, and PMSF 0.1%

)
. As a positive control one sample was

lysed with GTPγ S−PBD−buffer
(
Tris pH 8.0 25 mM, DTT 1 mM, MgCl2 5 mM, NaCl

100 mM, EDTA 1 mM, Triton X−100 1%, Aprotinin 0.1%, Leupeptin 0.1%, and PMSF
0.1%

)
. After scraping cells off, cells were incubated for complete lysis for 15 min at 4 ◦C

under vigorous shaking. The positive control was incubated for 10 min with GTPγS (10
mM), leading to an exchange of RAC−GDP to RAC−GTP which was stopped by adding
MgCl2 (1 M). After centrifugation the supernatants of cell lysates and and positive control
were incubated with 30 µl GST−PBD−beads for 2 h at 4 ◦C under vigorous shaking. After
centrifugation and one wash step with PBD−/GTPγS−PBD−buffer, the pellet was frozen
at −80 ◦C.

Pull−down supernatants and pellets with loading buffer were boiled for 10 min. Sub-
sequently, the samples were separated by SDS–PAGE on 12% gels and transferred onto
Immobilon−FLPVDF membranes (Rockland, Gilbertsville, PA, USA). The membranes
were blocked and incubated with primary antibody overnight at 4 ◦C, followed by incubation
with IRDye conjugated secondary antibody. After washing, blots were scanned with an
Odyssey Infrared Imaging System and signal intensities were determined using the Odyssey
software.

aCGH analysis

Paraffin−embedded liver tumors were micro−dissected and hybridized against three
month−old wild−type liver tissues. Labeling was performed following the BioPrime aCGH
Genomic Labeling Module protocol (Invitrogen). The samples were hybridized on an 8x60k
CGH Array under the conditions of the Agilent protocol (Version 7.2). The arrays were
analyzed with an Agilent DNA Microarray Scanner G2505C and the extraction software
Agilent Feature Extraction 11.0.1.1. All data analysis described below was performed by
the author of this thesis. The data were analyzed by the statistical software R Bioconductor
packages aCGH [121] and CGHcall [60]. In order to compute the similarity of aberrations in
the primary tumor and the corresponding metastasis permutation tests were used to calculate
the pair−wise statistical significance similar to the method described in [122]. Aberrations
were labelled using the bioconductor package aCGH with standard log ratio threshold of
0.25 [121]. The number of matching positions was calculated in the two samples. The
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aberration positions of the sample containing fewer aberrations were randomly re−ordered,
matched to a random set of aberration positions of the other sample, and the new number
of matching positions (ri) was calculated. This step was repeated n=100,000 times and
the number of times r, which showed a higher number of matching aberrations of the
randomly reshuffled samples compared to the original samples was counted as r = sum
(ri> o). The p−value for the statistical significance of matching positions of gains or
losses was estimated as p=r/n. Locations of aberrations specifically observed in the p62
transgenic animals were detected by Golden Helix software: analysis was done using SNP
& Variation Suite v8. These loci were compared to the aberrant loci of human HCC
samples on www.progenetix.org. GOSim was used to identify enriched Gene Ontology
terms [123]. The mutation data were obtained from the Sanger Institute COSMIC web
site, http://www.sanger.ac.uk/cosmic. Additionally, the CGHcall package [60] was used to
search for significant alterations. CGHcall employs DNAcopy methods [124] to normalize
and smoothen the data and defines equal copy number segments for further analysis.

Human GEO datasets

For differential gene expression between tumor (n=247) and non−tumor (n=239) samples
the log2 of an RMA normalized dataset (GSE14520) [125] of an AffymetrixGeneChip
HG−U133A 2.0 was analyzed. Similarly, differential gene expression was analysed in
dataset GSE5975 between positive (n=95) and negative (n=143) EpCAM samples and
in dataset GSE20238 between vascular invasive (n=45) and non−invasive (n=34) HCC
samples. Outlier data points were removed using part of the methodology described in
chapter 4. Differential expression analysis was based on the Kolmogorov–Smirnov test.
Pearson correlation was applied to detect correlations between genes of interest.

Identification of common molecular HCC subclasses

Complete hierarchical clustering of dataset GSE14520 [125] was performed using the
marker genes presented by Hoshida et al. and Chiang et al [7] [8]. The cluster dendograms
are provided below Fig. A3, A4. To test the affiliation of genes with HCC subtypes, the
signal−noise−ratio (SNR) was calculated for each marker gene as described in [7][126].

Methylation analysis using a TCGA dataset

TCGA analysis of DNA methylation in HCC was performed using an Illumina Infinium
Human Methylation 450 platform. The dataset contains 50 normal and 109 tumor samples.
We considered methylation only in the promoter regions (defined within 2,000 bp from the
transcription start site provided in the EPD promoter DB [127]. Averages were considered
for regions covered by multiple probes.

Statistical analysis

Data analysis and statistics of experimental data were performed using Origin software
(OriginPro 8.1G; OriginLabs). All data are displayed either as columns with mean values ±
SD or as individual values and boxplots ± interquartile range with mean and median. Statis-
tical differences were estimated by independent two−sample t−test or Wilcoxon−rank−sum
test depending on normal distribution, which was tested by the Shapiro−Wilk method,
or Fisher−exact−test for categorical data. Normally distributed data comparing multiple
groups were analyzed by ANOVA combined with Bonferroni posthoc test. All tests are
two−sided and differences were considered statistically significant when p values were less
than 0.05.
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5.1.3 Results

p62 expression correlates with the stem cell marker DLK1 and promotes hepatocarcino-
genesis We investigated IMP2 expression in a large patient cohort (GSE14520) of almost
250 predominantly HBV−positive HCC cases. IMP2 was distinctly overexpressed in tumor
(Figures 5.2) compared to normal tissue.

Figure 5.2: Expression analysis of IMP2 in human HCC tumor (n=247) and normal liver (n=239)
samples (GSE14520)

IMP2 strongly correlated with α−fetoprotein (AFP) as a marker of poor prognosis
(R2=0.63; p<2.2e−16), which was also differentially expressed compared to normal tissue
(p<2.2e−16). p62 was previously shown to induce the expression of the imprinted gene
IGF2 [112][6]. Another gene of the same imprinted gene cluster [114], DLK1, represents a
marker of hepatic stem cells [128]. DLK1 was significantly overexpressed (p=1.3e−7) (figure
5.2(right)) and its promoter was hypomethylated (p=1.3e−13) (Figure 5.3) in human tumor
tissue compared to normal samples. Additionally, its expression is strongly correlated with
IMP2 (R2=0.548; p<2.2e−16) and AFP (R2=0.535; p<2.2e−16).

Figure 5.3: DLK1 promoter methylation in human HCC tumor (n=109) and normal liver (n=50)
samples (TCGA)

In order to connect IMP2, AFP, and DLK1 overexpression to already known molecular
subsets of HCC [129] we performed hierarchical clustering of dataset GSE14520 according
to the marker genes identified by Hoshida et al. for three HCC subtypes in mouse [7] and
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by Chiang et al. for 5 HCC subtypes in human (Appendix Figures A3,A4) [8]. Subsequent
signal−to−noise ratio (SNR) analysis revealed that IMP2, DLK1, and AFP show similar
expression patterns as marker genes of class 1, in which 84% of A3 and 65% of A4 marker
genes were found. Class 2 can be described by subclass S3 presented by Hoshida et al. (see
Fig. 5.4(left)).Clustering by Chiang’s marker genes resulted in three major classes (Fig.
A4). Here, class 1, which included IMP2, DLK1, and AFP, was well related to Chiang’s
proliferation class. Class 2a can be described by elevated CTNNB1, Interferon, and Poly7
subclasses. Class 2b, however, was not related to any of Chiang’s subclasses (Fig. 5.4
(right)).

Figure 5.4: Heatmaps of clustering analysis according to Hoshida’s (left) and Chiang’s (right)
HCC subsets

A causal link of DLK1 expression to IMP2 was given by the fact that DLK1 mRNA
and protein were increased in livers overexpressing the IMP2 splice variant p62 compared
to wild−types (Figures 5.5).

Figure 5.5: Left: DLK1 mRNA levels in livers of untreated animals 5 weeks of age: wild-type
(wt) (n=14), p62 transgenic (p62 tg) (n=15). Error bars show the interquartile range
Right: Representative immunohistochemical staining for DLK1 in untreated 5 week-old mice. Scale
bars: 50 µm

Interestingly, also secreted DLK1 was elevated in serum of p62 transgenic animals
(Figure 5.6). As p62 induced the stem cell marker DLK1 we aimed to investigate the role of
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p62 in hepatocarcinogenesis employing the DEN model. Both tumor incidence and tumor
multiplicity were increased in DEN−treated p62 transgenic animals during the early and
late stage of tumor development (Figure 5.7).

Figure 5.6: Serum DLK1 protein levels in 5 week-old wt (n=22) and p62 tg (n=22) mice. Error
bars show the interquartile range

Figure 5.7: Tumor incidence (left) and tumor multiplicity (right) in early stage (6 months: wt:
n=20; p62 tg: n=20) (tumor initiation) and late stage (8 months: wt: n=20; p62 tg: n=20) (tumor
progression) of DEN-treated mice. Error bars show the interquartile range

After 48 h of DEN treatment, which models early liver cell damage [117], p62 transgenic
mice revealed a more pronounced inflammatory response as shown by increased lobular
lymphocytic as well as granulocytic infiltrations (Figure 5.8) and by elevated serum levels
of the inflammatory cytokines IL6 and TNFα (Figure 5.9). Neither AST nor ALT levels
were different in p62 transgenic animals compared to DEN−treated wild−type mice. Still,
apoptosis was reduced in DEN-treated p62 transgenic animals (Figure 5.10)
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Figure 5.8: Histological scoring of HE stainings and representative picture for lobular lymphocytic
and granulocytic infiltrations 48 h after DEN application. Arrows denote mixed lymphocytic and
granulocytic infiltrations. Scale bar: 50 µm

Figure 5.9: Serum protein levels of IL6 (left) and TNFα (right) of 5 week-old wt (n=22) and p62
tg (n=7) mice 48 h after DEN application. Error bars show the interquartile range

Figure 5.10: Caspase-3-like activity in DEN-treated 5 week-old wt (n=9) and p62 tg (n=8) mice
48 h after DEN injection normalized to untreated wt

58



Chapter 5. p62, Hepcidine, and ELOVL6 as Possible Tumor Markers in NASH,
Hepatocellular Carcinoma, or Breast Cancer

Tumors of p62 transgenic mice show a more aggressive phenotype
In order to characterize the DEN−induced tumors, paraffin sections were stained for the
tumor markers Golgi membrane protein 73 (Gp73) and glutamine synthetase (GS). All
wild−type tumors were Gp73 positive, whereas in transgenics only 70.31% were Gp73
positive. Interestingly, while none of the wild−type tumors stained positive for GS, 29.69%
of p62−tumors were GS positive and half of them were positive for both markers (Figure
5.11).

Figure 5.11: Representative HE and immunostainings against Golgi membrane protein 73 (Gp73)
and glutamine synthetase (GS) in wt and p62 tg mice in late stage tumors

GS positivity is regarded as a marker of β−catenin activation [130], which can be
regulated by activation of the canonical wingless−int (WNT) pathway. Concordantly,
β−catenin staining confirmed its activation by nuclear and cytoplasmatic localization in
tumor tissue, while normal tissue showed a membranous pattern (Figure 5.12).

Figure 5.12: Representative β-catenin immunostaining in adjacent normal and tumor tissue of
livers bearing GS-positive tumors. Scale bars: 50 µm (left), inset (right): 20 µm

WNT10B, a canonical WNT pathway member, which is highly expressed in fetal, but
shut down in adult liver, was increased in p62 transgenic animals (Figure 5.13). Tumors of
transgenic animals were more mitotically active (p=0.0477) by irregular mitosis (Figure
5.14) and were rather pleomorphic (0% in wt versus 15.6% in tg, p=0.014). mRNA levels
of the pro-proliferation growth factor igf2 tended to be increased in p62 transgenic animals
(figure 5.15). CK19−positive oval cell compartments were solely observed in tumors of
transgenics (Figure 5.16).
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Figure 5.13: WNT10B mRNA levels in wt (n=18) and p62 tg (n=18) in the late tumor stage.
Error bars show the interquartile range

Figure 5.14: Arrows show irregular mitosis in representative HE stainings in tumors of p62 tg
mice. Scale bars: 20 µm.
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Figure 5.15: Igf2 mRNA levels in wt (n=18) and p62 tg (n=18) in the late tumor stage. Error
bars show the interquartile range

Figure 5.16: Representative HE and corresponding oval cell marker CK19 immunostaining in p62
tg tumors. Scale bars: 50 µm

Concordantly, human HCCs positive for the oval cell marker EpCAM exhibited higher
expression levels of IMP2 compared to EpCAM−negative HCCs in an HBV−positive HCC
cohort (238 samples; GSE5975) (Figure 5.17). Vascular invasion as well as lung metastases
developed in both wild−type as well as in transgenic animals(Figure 5.18).
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Figure 5.17: IMP2 expression in human HCCs grouped into EpCAM-positive and -negative
tumors (238 samples; GSE5975)

Figure 5.18: Representative HE sections showing vascular invasion (upper panel, scale bar: 50
µm) and lung metastases (lower panel, original magnification: 40x). Arrows designate metastatic
foci

Analysis of a GEO dataset of 226 predominantly viral hepatitis related HCC cases
(GSE20238) categorized by the presence or absence of vascular invasion revealed increased
IMP2 expression in patients with vascular invasion (Figure 5.19). Murine lung metastases
showed the same staining pattern for the HCC markers GS and Gp73 as the primary liver
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tumors of wild−type and p62 transgenic mice (Figure 5.20).

Figure 5.19: IMP2 expression in human HCCs grouped into tumors positive or negative regarding
vascular invasion (91 samples; GSE20238)

Figure 5.20: Representative HE and Gp73 and GS IHC of primary liver tumor and lung metastasis
in wt (n=21) and p62 tg (n=18) mice in the metastatic phase

In the metastatic phase also some wild−type tumors showed positive GS staining (data
not shown). aCGH analysis confirmed clonality of primary tumors and both intrahepatic
(p < 10−5) as well as lung metastases (p < 10−5) (Figure 5.21).
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Figure 5.21: Representative aCGH plots of primary HCC and corresponding intrahepatic metas-
tasis (left) and of primary HCC and corresponding lung metastasis (right) of p62 transgenic
mice

p62 transgenic mice are more susceptible to chromosomal aberrations
aCGH analysis (Figure 5.22) revealed increased alterations in tumors of transgenic (lower
panel) compared to wild-type animals (upper panel). Significant gains were only observed in
transgenic tumors and significant losses were stronger in transgenic compared to wild−type
tumors (Figure 5.23). Some loci only showed aberrations in p62 transgenic mice. Gene
Ontology analysis revealed that the affected loci harbour genes, which are involved in
growth, proliferation, negative apoptosis signalling, and angiogenesis. Interestingly, the
distal mouse 15B3.1−C region, amplified only in p62 transgenics and corresponding to the
human distal chromosome 8q23.1−23.3, is the second most frequently amplified region in
human HCC: array−CGH results from 848 HCC samples show an amplification in about
45% of cases (www.progenetix.net). This region comprises genes commonly mutated in
cancer.

Figure 5.22: Frequency plot of fractions gained or lost along the genome of primary tumors in wt
(n=4; upper panel) and p62 tg (n=4; lower panel) mice in the late tumor stage
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Figure 5.23: Most significant alterations in primary tumors of wt (top) and p62 tg (bottom)
animals during the late tumor stage. Shown are percentages of gains and losses for individual
altered segments obtained with the CGHcall package

Tumor-promoting DLK1 drives RAC1−induced ROS formation
We sought to identify the reason for p62−induced increased genomic instability and found
significantly elevated levels of TBARS as indicators of oxidant stress in p62 transgenic
animals after short−term treatment with DEN (Figure 5.24).

Figure 5.24: Hepatic TBARS levels in wt (n=5) and p62 tg (n=5) livers of untreated (co) and 48
h DEN-treated (DEN) animals (wt:n=8; tg:n=9). Error bars show the interquartile range
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ROS are important inducers of DNA damage and chromosomal instability [104]. NADPH
oxidase represents an ROS−generating enzyme complex that contributes to DEN−induced
carcinogenesis [131]. NADPH oxidase is activated by the small GTPase RAC1 [120] and
DLK1 was previously shown to induce RAC1 [132]. We observed increased levels of both
Dlk1 and Rac1 mRNA in p62 transgenic livers and a strong correlation between each other
(Pearson R2=0.56, p=0.015) (Figures 5.21-bottom, 5.22, 5.23-top). The secreted form of
DLK1 was elevated in p62 transgenic mice (Figure 5.26).

Figure 5.25: DLK1 (top left) and RAC1 (top right) mRNA expression as well as correlation
of both (bottom) was investigated after 8 months (wt: n=18; tg:n=18). Error bars show the
interquartile range

Figure 5.26: Secreted DLK1 protein serum levels were measured by ELISA. Error bars show the
interquartile range

In order to test the causal effect of p62 and DLK1 on RAC1, in vitro experiments
were performed. DLK1 treatment increased RAC1 mRNA levels as well as activated RAC1
protein as detected by pull−down assay in HepG2 cells (Figure 5.27).
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Figure 5.27: Levels of RAC1 mRNA presented as mean +/- sem (top) and activated RAC1
protein levels determined by pulldown assay (bottom) in HepG2 cells after treatment with 1 µg/ml
DLK1 protein (n=3 in duplicate). Bottom: Representative pull-down assay with activated RAC1
(aRAC1) and total RAC1 (tRAC1) is shown. X-fold signal intensities of 5 min treatment with
DLK1 were normalized to untreated control (co)

Furthermore, DLK1 treatment increased ROS levels, which was completely abrogated by
pre−incubation with the RAC1 inhibitor NSC23766 (Figure 5.28). Also p62 overexpression
increased RAC1 expression (Figure 5.29). Vice versa, knockdown of p62 led to decreased
RAC1 mRNA levels (Figure 5.29). ROS levels were elevated after p62 overexpression by
9.46± 1.24% (p=0.045) 48 h after transfection, which was abrogated by the RAC1 inhibitor
(p=0.0046). Finally, the human HCC cohort, which showed differential expression of IMP2
and DLK1 (Figure 5.2), significantly overexpressed RAC1 (Figure 5.30) (p<2.2e−16). SNR
analysis revealed RAC1 overexpression in class 1, which was characterized by IGF2BP2,
AFP, and DLK1 overexpression (Fig. 5.4-left).

Figure 5.28: ROS levels: representative experiment (quintuplicates) of HepG2 cells treated with
0.5 or 1 µg/ml DLK1 or H2O2 as positive control for 0-30 min (upper part). Data are normalized
to untreated HepG2 cells. ROS levels in HepG2 cells treated with either DLK1 or RAC1 inhibitor
NSC23766 alone or in combination (lower part). Untreated HepG2 cells served as control. H2O2-
induced ROS formation was set to 100% (n=2, quintuplicate). Data are presented as mean +/−
sem.
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Figure 5.29: RAC1 expression in HepG2 cells overexpressing (top) p62-sense plasmid (p62)
compared to antisense-plasmid (co-v), untreated control (co), and siRNA knockdown (bottom) of
p62 (si p62) compared to random siRNA (si co) (n=3 triplicate/quadruplicate). Data show mean
+/− sem. Western blot knockdown/overexpression control was densitometrically quantified (n=4
triplicate/quadruplicate; upper part)

Figure 5.30: RAC1 expression in human HCC (GSE14520) normalized to the mean of normal
samples
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5.1.4 Discussion

The IMP p62 was originally identified as a tumor−associated auto−antigen with
auto−antibodies against p62 detected in HCC patients [106] and in several other types
of cancer [133][134]. Interestingly, despite several investigations of p62 autoantibodies
as a potential tumor marker and a recently suggested resistance of IMP2 knockout mice
towards malignancy [135], functional implications of the p62 protein in carcinogenesis are
widely unknown. Our analysis of a large homogenous human HCC cohort with about
250 viral HCC samples showed strongly increased expression of IMP2 in the majority of
HCC patients. These data are supported by other reports suggesting elevated levels of
p62 in HCC tissue in rather small patient cohorts[111][136]. According to the classification
performed in this study, overexpression of AFP and IGF2, both correlating with IMP2
expression in HCC (present findings and [111]) marks Hoshida’s S2 class of aggressive HCC
[137]. Positivity of the stem cell surface antigen EpCAM and vascular invasion, which we
observed to be linked to IMP2 overexpression, was used as a classification system by others
[138][139]. In fact, EpCAM expression is associated with early recurrence and short survival
time [140].

Regarding the classification from Boyault et al., IMP2 overexpressing samples probably
belong to the G1 subset, which is characterized by an increased expression of AFP and
the imprinted gene products IGF2, and H19 [141]. p62 transgenic mice were shown to
overexpress both imprinted genes [112]. Finally, IMP2 overexpressing samples match the
molecular pattern of Cairo’s aggressive hepatoblastoma, in which AFP, Krt19, and EpCAM
are elevated. In the same study the authors provide data from Myc−induced murine tumors
highly expressing DLK1, IGF2, and AFP [142].

Interestingly, we observed a correlation of IMP2 expression with the oval/stem cell
marker DLK1 [128]. DLK1 was previously shown to correspond with poor survival in HCC
[143]. Oval cells share phenotypic markers with embryonic hepatoblasts, in which DLK1 is
also highly expressed [144]. The cytoplasmatic appearance of DLK1 in p62 transgenic mice
reveals a fetal phenotype (Figure 4H) as previously reported for HCC and hepatoblastoma
tissue [145].

Secreted DLK1, suggested as a serum marker for hepatoblastoma [146], was elevated in
sera of p62 transgenic mice. Secreted DLK1 was suggested to have paracrine functions,
i.e. inducing the secretion of inflammatory cytokines, such as TNFα and IL6 in monocytes
and adipocytes [147]. Recently, p62 expression was shown to promote liver disease by
amplifying inflammatory processes [111][113][116][119][148]. HCC mostly develops within
an inflammatory environment, such as viral hepatitis, ASH, and NASH, and inflammatory
mediators promote hepatocarcinogenesis [117]. We here present a transgenic mouse model,
which develops HCC out of an inflammatory state involving elevated IL6 and TNFα
production. We observed an early onset and an accelerated progression of HCC in p62
transgenic mice.

There are two different models using the carcinogen DEN to induce liver tumors. DEN
is either given as a single dose by itself or in combination with the tumor−promoting
agent phenobarbital to induce tumors with β−catenin mutations, which are linked to GS
positivity [130]. Interestingly, employing p62 transgenic mice, we observed GS−positive
tumors in the DEN model without using phenobarbital. The expression of DLK1 is closely
linked to WNT10B , a member of the canonical WNT pathway, leading to β−catenin
accumulation in the cytoplasm and the nucleus, which can be altered by DLK1 [149]. Both
elevated WNT10B and cytoplasmatic/nuclear localization can be found in p62 transgenic
tumors.
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In tumors positive for the stem cell marker EpCAM, co−expression of DLK1 and AFP
was defined by poor prognosis [150]. Tumors of p62 transgenic livers were more susceptible
to chromosomal aberrations than tumors of wild−type animals and showed more pronounced
alterations. Increasing levels of chromosomal instability correlate with progression of HCC,
suggesting that marked genomic instability characterizes more advanced stages of the
disease. The homologue of human 8q23, amplified specifically in p62 transgenic animals, is
frequently gained in human HCC tissues [151]. Interestingly, amplification of the homologue
of human chromosome 3q, which was gained in p62 transgenic tumors, is correlated with
advanced−stage disease in cervical carcinomas [152]. The losses specifically observed in
p62 transgenics on the homologues of human chromosomes 9q33.3−34.3, 11q23.1−24.1,
16q42.13−42.2, and 21q22.11−3 were reported to be deleted in different types of cancer
including HCC [153][154].

Genomic instability can be induced through ROS production [104]. A major ROS−generating
enzyme complex, the NADPH oxidase, is activated by the small GTPase RAC1 [120]. We
found RAC1 to be highly overexpressed in a large proportion of HCC tissues. RAC1 itself
has been described to play a role in HCC [155] and might act at least partly via ROS
production [156]. Also Ras−induced ROS production and DNA damage has been linked
to RAC1 activation [157]. Our data functionally link the aggressive and de−differentiated
phenotype of the tumors in p62 transgenic livers to DLK1−facilitated induction of RAC1.
The stem cell marker and paracrine factor DLK1 was previously reported to induce RAC1
activation in 3T3−L1 cells [132]. We here report that DLK1−induced RAC1 activation
leads to elevated ROS levels (Figure 5.31).

Figure 5.31: Overview of p62-promoted DLK1-RAC1-induced genomic instability. DLK1 overex-
pressing cells with stem-cell-like features secrete DLK1 protein, which activates RAC1 in a paracrine
fashion, in turn leading to ROS generation via NADPH oxidase. Elevated ROS levels finally result
in genomic instability

We suggest that the DLK1/RAC1−induced increase in ROS is the cause of chromosomal
instability [104], which in turn leads to more undifferentiated tumors [158]. Interestingly,
RAC1 activation was shown to drive proliferation of intestinal stem cells [159] and targeting
RAC1 suppresses cancer cell viability [160], cancer stem cell activities [161], and metastasis
[162]. Wang and colleagues reported that RAC GTPase−activating protein 1 is associated
with early recurrence in HCC [163].
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Taken together, our in vivo, in vitro, and in silico analyses show that IMP2/p62 plays an
important role in HCC initiation and progression and characterizes human HCC prognosis.
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5.2 Overexpression of IGF2 mRNA-Binding Protein 2 (IMP2/p62)
as a Feature of Basal-like Breast Cancer Correlates with
Short Survival

Recent evidence suggested that autoantibodies against IMP2/p62 may be useful serum
biomarkers for early-stage breast cancer screening and diagnosis [164]. The study by Liu
et al. [164] elegantly demonstrated that the frequency of autoantibodies against IMP2
and IMP2 expression itself is significantly increased in breast tumour tissues compared to
normal tissues. An autoimmune response to IMP2/p62 is also known for other tumours,
for example colon carcinoma and hepatocellular carcinoma (HCC) [133][165]. To test the
relevance of IMP2 expression for prognosis in breast cancer, we analysed a large human
Gene Omnibus (GEO) data set (GSE42568 [166]). Interestingly, high IMP2 expression
correlated with short survival (Fig. 5.32). Therefore, IMP2 expression could serve not only
as a diagnostic but also as a prognostic biomarker. It is well known that there are different

Figure 5.32: Kaplan–Meier survival plot referring to "low" and "high" IMP2 expression levels in
data set GSE42568 (n = 104). High expression are those samples with IMP2 expression higher
than 5, and low expression smaller than 5, respectively

classes of human breast tumours, which are characterized by different molecular patterns
[167]. Luminal cancers are the most common subtype. The basal-like subtype, which mostly
corresponds to the triple-negative subtype, stands for about 20% of breast cancer cases
with a shorter survival than the luminal subtype [168]. To test whether IMP2 expression
might be a feature of a specific breast cancer subtype, we analysed an additional human
data set, which provided subtype-classified samples (GDS1329 [169]). IMP2 was especially
elevated in tissues of basal-like cancer compared to the luminal or apocrine subtype (5.33).
The overexpression of IMP2 was confirmed in another set of basal-like breast cancer tissues
(GDS2250 [170]) compared to non-basal-like samples and normal tissues (Fig. 5.34). All
data sets analyzed in this work are RMA-normalized and downloaded from Gene Omnibus
(GEO). Statistical significance was determined by Kolmogorov–Smirnov test. In conclusion,
detection of IMP2/p62 expression in breast cancer presented by Liu and colleagues [164]
might even be of prognostic relevance as already reported for HCC [6]. Furthermore,
the high expression of IMP2 in the basal-like breast cancer subtype might lead to new
individualized therapeutics.
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Figure 5.33: IMP2 expression in basal-like breast cancer tissues compared to luminal and apocrine
in data set GDS1329

Figure 5.34: IMP2 expression in basal-like breast cancer tissues compared to non-basal-like and
normal tissue in data set GDS2250
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5.3 Hepatic Hepcidin Expression is Decreased in Cirrhosis
and HCC

Recent evidence showed the protective role of the iron homeostasis regulator hepcidin
(Hamp) in iron overload-related liver diseases [171]. The study by Lunova et al. elegantly
demonstrated that the knockdown of hepcidin promotes hepatic inflammation and fibrogen-
esis after feeding mice an iron-rich diet [171]. It is well known that perturbations of the
iron metabolism, as it is the case in hemochromatosis, can lead to hepatocellular carcinoma
(HCC). HCC represents the second most common cancer related death worldwide and
displays also the end-stage of liver diseases related to chronic viral or non-viral hepatitis.
As hepcidin deficient mice were more prone to develop fibrosis [171], which is itself a
risk factor for HCC, deregulation of Hamp might also play a role in the progression of
chronic liver disease to HCC development. Also alcohol intake, another risk factor for HCC
development, lowers hepatic Hamp expression in a murine model of alcoholic steatohepatitis
[172]. Regarding HCC, low Hamp levels have been reported in late stage murine and rat
tumors [173][174]. As this downregulation might display a late, secondary, rather than
an initial effect of carcinogenesis, we aimed at deciphering whether Hamp expression is
already decreased in early hepatocarcinogenesis. We observed that mice treated with the
carcinogen diethylnitrosamine (DEN), to induce hepatocarcinogenesis, showed decreased
hepatic Hamp expression already in an early stage of tumor development (Fig. 5.35).

Figure 5.35: Hepatic Hamp expression in non-tumorous murine liver tissue, 6 months after
intraperitoneal injection of 5 mg/kg BW diethylnitrosamine (DEN) at the age of 2 weeks, compared
to untreated control (co). Data are presented as individual values and box plots with median (-)
and mean (Small box) of untreated control (co, n = 8) and DEN-treated (DEN, n = 11) animals.
p-values from MannWhitney U test

Hamp expression was also reduced in tumor tissues, compared to matched adjacent
normal liver tissues, in a later stage of murine tumorigenesis (Fig. 5.36). Hamp expression
was normalised to 18s expression in figures 5.35 and 5.36. To test the relevance of the
observed decreased hepcidin in rodent HCC for human disease, we analyzed a large human
Gene Omnibus (GEO) dataset (GSE14520 [125]), mostly consisting of hepatitis B virus
(HBV)-related HCC samples.

Several datasets were downloaded from Gene Omnibus (GEO) to analysze the Hamp
expression. The statistical significance was determined by MannWhitney U test (Figure
5.35), paired sample t test (Figure 5.36), subsequent to confirmation of normal distribution,
or Kolmogorov-Smirnov test (Figures 5.37, 5.38, 5.39). Hamp expression was strongly
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Figure 5.36: Hamp expression in adjacent non-tumorous murine liver tissues and matched tumor
tissues (n = 6), 8 months after DEN injection as described in 5.35

decreased in the majority of tumors compared to normal liver samples (Fig. 5.37). This is
in line with results from a small HCC cohort with mixed etiology [175].

Figure 5.37: Gene expression of Hamp in human dataset GSE14520 (adjacent non-tumor samples
n = 247, tumor samples n = 239)

Interestingly, serum hepcidin levels were shown to be decreased in patients with chronic
hepatitis C [176]. To test for hepatic hepcidin expression in cirrhosis, we analysed two
additional datasets containing cirrhotic liver samples. Cirrhotic tissues showed lower Hamp
expression compared to healthy liver samples in an HBV-related cohort (Fig. 5.38) as well
as in HCV-infected patients (Fig. 5.39)

Furthermore, Hamp mRNA levels were even lower in tumor tissue (Fig. 5.38 and 5.39).
Interestingly, hepatitis C virus (HCV) has been described to suppress hepcidin expression
via generation of reactive oxygen species [177].
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Figure 5.38: Gene expression of Hamp in human dataset GSE25097 (healthy samples n = 6,
cirrhotic samples n = 40, adjacent non-tumor samples 243, tumor samples n = 268)

Figure 5.39: Gene expression of Hamp in human dataset GSE14323 (healthy samples n = 19,
cirrhotic samples n = 41, adjacent cirrhotic non-tumor samples n = 17, tumor samples n = 47)

With HBV also inducing oxidant stress, this might also be true for HBV. Furthermore,
Hamp expression can be transcriptionally activated by the tumor suppressor p53 [178]. As

76



Chapter 5. p62, Hepcidine, and ELOVL6 as Possible Tumor Markers in NASH,
Hepatocellular Carcinoma, or Breast Cancer

p53 is frequently suppressed in HCC [179], downregulation of hepcidin might be linked
to p53 suppression. In conclusion, these findings in the DEN mouse model and three
human HCC cohorts strongly support a role of hepcidin deficiency not only as a model
for iron-related liver disease, but also for other liver diseases leading to HCC. Therefore,
hepcidin knockout mice presented by Lunova and colleagues [171] might be an interesting
model to study progression of various liver diseases towards HCC.
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5.4 Lipid Metabolism Signatures in NASH-Associated HCC

An article published recently in Cancer Research elegantly performed lipidomic and gene
expression analyses in a murine model of nonalcoholic steatohepatitis (NASH)–associated
hepatocellular carcinoma (HCC) and compared the findings with serum samples from
patients with fibrosis and HCC [180].

The study reports that the expression of the C18 fatty acid producing elongase (ELOVL6 )
is elevated in a mouse NASH model. The animals also exhibited elevated oleic acid (18:1n9)
and vaccenic acid (18:1n7) abundance in livers and serum. Thereby, the study supports
findings about increased hepatic ELOVL6 expression in other models of NASH, such as a
fructose feeding model [181] and low-density lipoprotein receptor (LDLR) knockout animals
fed on a Western-type diet [182]. In line with these findings, a causal role forELOVL6 in the
development of NASH was published recently in a comprehensive work using overexpression
and knockdown strategies [183].

HCC represents a rare but important complication of NASH [184]. The study by Muir
and colleagues reports an increased expression of ELOVL6 not only in murine NASH but
also in murine NASH–associated HCC. Because lipidomic analyses of sera of 15 patients
with HCC showed a higher prevalence of the C18 vaccenic acid (18:1n7) than serum of
patients with cirrhosis, the authors suggested elevated ELOVL6 expression in human HCC.
Although they observed lower levels of the more abundant linoleic acid (18:2n6) and they
do not show any data onELOVL6 expression in patients with HCC, they propose ELOVL6
as a pharmacologic target for patients predisposed to HCC.

We investigated differential ELOVL6 gene expression between HCC (n = 247) and
nontumor (n = 239) samples of a Gene Expression Omnibus dataset (GSE14520; see Fig.
5.40). Interestingly, in contrast to Muir and colleagues, our results from this large dataset
revealed significantly decreased levels ofELOVL6gene expression in the majority of human
liver tumors compared with nontumorous tissue. We also observed a decreased expression
of ELOVL6 in the widely accepted murine diethylnitrosamine (DEN) HCC model (see Fig.
5.41; ref. [184]).

Figure 5.40: mRNA levels of ELOVL6 in 247 human HCC samples relative to the mean of
239 nontumor liver tissue (µnormal). Samples of dataset GSE14520 [log2 (expression) values
from GEO after Robust Multi-array Average normalization] were mapped to hgu133a.db using
bioconductor. Significance values: P = 3.8E¯11, Kolmogorov–Smirnov test; P = 6.7E¯11, t test;
5.1E¯11, Mann–Whitney U test
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Figure 5.41: Wild-type mice were treated with the carcinogen DEN at the age of 2 weeks. Livers
were analyzed after 24 weeks to assess the tumor initiation state. Analyses in the tumor progression
stadium were done after 36 weeks. Elovl6 mRNA expression as determined by real-time reverse
transcriptase PCR with n = 8–18 per group. Data were normalized to 18S. Statistical differences
compared with untreated animals of the same age (ctrl.) were calculated by Mann–Whitney U test

Taken together, different recent reports from the literature suggest a pathophysiologic
role for ELOVL6 in steatohepatitis. Still, a role for ELOVL6 in HCC is as yet elusive and our
data show ELOVL6 expression to be reduced in a common murine non-NASH–associated
HCC model as well as in a large proportion of patients with HCC. In our opinion, the data
available on ELOVL6 in HCC do not justify proposing ELOVL6 as a therapeutic target in
either prevention or treatment of HCC.
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5.5 Fatty Acid Elongation in Non-Alcoholic Steatohepatitis
and Hepatocellular Carcinoma

5.5.1 Abstract

Non-alcoholic steatohepatitis (NASH) represents a risk factor for the development of
hepatocellular carcinoma (HCC) and is characterized by quantitative and qualitative changes
in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported
to promote both hepatic lipid accumulation and inflammation we aimed to investigate
whether a frequently used mouse NASH model reflects this clinically relevant feature and
whether C16 to C18 elongation can be observed in HCC development. Feeding mice a
methionine and choline deficient diet to model NASH not only increased total hepatic fatty
acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed
in a model of simple steatosis (ob/ob mice). Depletion of Kupffer cells abrogated both
quantitative and qualitative methionine-and-choline deficient (MCD)-induced alterations in
hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by
diethylnitrosamine-induced carcinogenesis (48 h) increased hepatic lipids and the C18/C16
ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC
showed an elevated expression of the elongase ELOVL6, which is responsible for the
elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an
altered fatty acid pattern in the progression of NASH-related liver disease.

5.5.2 Introduction

Non-alcoholic fatty liver disease (NAFLD) is regarded as the most common liver disorder
[185]. Although NAFLD is often an asymptomatic disease and therefore difficult to detect,
the prevalence appears to be around 20%–35% of the adult population in Western countries
[186][187][188]. NAFLD/NASH (non-alcoholic steatohepatitis) strongly correlates with
characteristics of the metabolic syndrome, such as obesity and diabetes mellitus, and
NAFLD/NASH [189][190][191]. Liver pathogenesis of NAFLD is widely believed to start
with simple steatosis, which is characterized by excessive lipid accumulation [186][192]. The
progression from simple steatosis to NASH is mediated by the release of inflammatory
cytokines [193] and can result in hepatic cirrhosis and finally in hepatocellular carcinoma
(HCC) [194]. Due to this inflammatory environment 4% to 27% of individuals with
NASH and cirrhosis [195] develop HCC. There is increasing evidence that in steatosis
besides the total amount of accumulated lipids the composition of lipids has an impact
on pathophysiology [196][197]. In fact, human NAFLD is characterized by numerous
changes in hepatic lipid composition and free fatty acid ratios [198][199]. Viral hepatitis
has also been described to lead to strongly altered hepatic lipid content and composition
[200][201][202][203]. In HCC a decreased stearic acid (C18:0) to oleic acid (C18:1) ratio
compared to normal tissue has been reported, suggesting the importance of desaturation in
HCC development [204]. Regarding changes in hepatic fatty acid pattern it is important
to note that the ELOVL fatty acid elongase 6 (ELOVL6), which catalyzes the elongation
of C16 to C18 fatty acids [205], has been shown to promote NASH [183][180]. A role
ofELOVL6 in murine NASH-related HCC has recently been suggested, but still remains
unclear in human NASH-associated HCC [180]. The aims of our study were to investigate
the occurrence of fatty acid elongation in lipid metabolism in different NAFLD mouse
models and to elucidate its relevance in human NASH and NASH-associated HCC
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5.5.3 Experimental Section

Animals

All animal procedures were performed in accordance with the local animal welfare com-
mittee (#13/2009, 09/06/2009; #34/2010, 15/11/2010; Landesamt für Soziales, Gesundheit
und Verbraucherschutz Saarland). Mice were kept under stable conditions regarding tem-
perature, humidity, food delivery, and 12 h day/night rhythm. At the age of 3 weeks
mice (DBA2/Bl6/J background) were fed either a methionine-choline deficient (MCD) or a
methionine-choline supplemented control (crtl) diet for 3 weeks. Intraperitoneal clodronate
or empty liposome injections [206] were started two days prior to MCD or control diet
and repeated every five days to ensure Kupffer cell depletion. Leptin deficient mice ob/ob
(Bl6:Cg-Lepob/J) and lean control mice (ob/+) were obtained from Charles River and
sacrificed at an age of 10 weeks. DEN treatment of mice (DBA2/Bl6/J background) on
regular chow was performed by a single intraperitoneal injection of 100 mg/kg body weight
at the age of 2.5 weeks. Mice were sacrificed 48 h after DEN injection. Animals of all
experimental groups were sacrificed in a non-fasted state.

Human Liver Tissue

Paraffin-embedded liver samples from randomly selected pseudonymized HCC patients
who underwent liver resection at the Saarland University Medical Center between 2005
and 2010 were obtained as described previously [6]. The study protocol was approved by
the local Ethics Committee (#47/07). Samples had a mixed etiology including NASH,
alcoholic liver disease, viral hepatitis, hemochromatosis, porphyria, and cryptogenic [6].

Fatty Acid Measurement by Gas Chromatography-Mass Spectrometry (GC-
MS)

Murine liver samples were lyophilized and analyzed according to Bode et al. [207].
In short, lyophilized samples were dissolved in a mixture of 500 µL methanol/toluene/-
sulfuric acid (50:50:2, v/v/v) and incubated at 55 ◦C overnight. Subsequently, 400 µL
of a 0.5 M NH4CO3, 2 M KCl solution were added and samples were centrifuged. The
organic phase was transferred into a new glass vial, derivatized with 25 µL N-methyl-N-
(trimethylsilyl)trifluoroacetamide at 37 ◦C for 1 h. Fatty acid separation was performed on
an Agilent 6890N gas chromatograph coupled to an Agilent 5973N mass selective detector
and equipped with a non-polar J&WDB-5HT capillary column (Agilent Technologies,
Böblingen, Germany). The column temperature was kept at 130 ◦C for 2.5 min, increased
to 240 ◦C at a rate of 5 ◦C/min, and then ramped to 300 ◦C at 30 ◦C/min, and held at 300
◦C for 5 min. Helium was used as the carrier gas at a flow rate of 1 mL/min. The mass
selective detector was operated in scan mode, average spectra were acquired in the m/z
range of 40–700 m/z and were recorded at a scan speed of 2.24 scans/s. Scan control, data
acquisition, and processing were performed by MSD ChemStation (Agilent Technologies,
Böblingen, Germany) and AMDIS software based on the fragmentation patterns and re-
tention time, in comparison with the reference standards Supelco 37 Component FAME
Mix (Sigma-Aldrich, Taufkirchen, Germany), and NIST 08 library. Methyl-nonadecanoate
(74208, Sigma-Aldrich, Taufkirchen, Germany) was used as an internal standard. The
method detects both free and bound fatty acids.

Histochemistry and Immunohistochemistry

Hematoxylin-eosin staining of paraffin-embedded tissues was performed as previously
reported [113][112]. Immunohistochemical F4/80 detection was achieved using the Vectas-
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tain Peroxidase Elite ABC kit/DAB with anti-F4/80 antibody (AbD Serotec, Puchheim,
Germany) 1:1000 overnight at 4 ◦C. Epitopes were demasked with citrate buffer pH 6.0 for
10 min in a waterbath at 95 ◦C.

Analysis of the Public Gene Omnibus (GEO) Datasets

Datasets GSE48452 and GSE37031 [208][209] normalized using log2-RMA and log2-
GCRMA respectively, were downloaded from Gene omnibus (GEO) [210]. Dataset GSE48452
with samples from different stages of NAFLD contained 18 NASH and 14 steatosis samples
while dataset GSE37031 included 8 NASH and 7 control samples. The statistical significance
was determined by Kolmogorov-Smirnov test.

Statistical Analysis

Results are expressed as means ± SEM. The statistical significance was determined
by independent two-sample t-test. Expression data of human tissues were analyzed using
Mann-Whitney U tests. The results were considered as statistically significant when p
value was less than 0.05.

5.5.4 Results and Discussion

Fatty Acid Elongation in Murine Non-Alcoholic Steatohepatitis (NASH) Is
Kupffer Cell Dependent

Fatty acid elongation plays a role in murine and human NASH development [183][180].
Feeding mice a methionine-choline deficient diet (MCD) led to increased total fatty acid and
cholesterol levels and profound inflammation (Figure 5.42A,B). Having a closer look at the
composition of the fatty acids, we observed that the chain length of fatty acids was different in
MCD-fed livers compared to tissues from a control diet: NASH livers exhibited an increased
ratio of C18 to C16 fatty acids (Figure 5.42B). Increased ELOVL6 mRNA expression has
been observed in NASH animal models, such as low-density lipoprotein receptor knockout
animals fed a western type diet [180] or a fructose diet [211]. In order to study whether this
increased fatty acid elongation from C16 to C18 could also be observed in simple steatosis
we investigated the well-established leptin-deficiency (ob/ob) mouse model [211][212]. As
expected, livers of ob/ob mice showed excessive hepatic lipid accumulation compared to
lean controls (Figure 5.42C,D). However, no distinct inflammation was observed and the
ratio of C18 to C16 fatty acids was not changed compared to wild-type animals (Figure
5.42D). Adipose tissue of ob/ob mice is known to show inflammation [213]. Concordantly,
adipose tissue macrophages of ob/ob mice exhibit increased ELOVL6 mRNA expression
[214]. Another study reported increased hepatic ELOVL6 expression in older ob/ob mice,
whereby some of the animals were in a fasted condition [215]. The study does not contain
any information on fatty acid composition.

Leroux et al. reported that lipid storage by Kupffer cells correlates with a pro-
inflammatory phenotype in NASH [216]. In order to clarify whether the altered fatty
acid elongation in murine NASH is due to co-existing inflammation, we depleted Kupffer
cells by clodronate liposomes. This intervention is known to attenuate inflammatory and
metabolic events in the MCD model [217]. In line with these findings we observed a strong
decrease of hepatic lipid accumulation after Kupffer cell depletion (Figure 5.43A,B). Besides
hepatocytes also macrophages are known to express ELOVL6 [214], which was shown to be
relevant for lipid storage [218]. After Kupffer cell depletion the MCD-induced changes in
C18 to C16 fatty acids and cholesterol were completely abrogated (Figure 5.43A,B). Kupffer
cell depletion was confirmed by immunohistochemical F4/80 staining (Figure 5.43A).
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Figure 5.42: Non-alcoholic steatohepatitis (NASH), but not non-alcoholic fatty liver disease
(NAFLD), is accompanied by elevation of C18 over C16. (A) Representative liver sections stained
with hematoxylin-eosin (HE) from animals fed with either a methionine-choline deficient (MCD)
or a control (crtl) diet for 3 weeks (original magnification 200×). Arrows denote inflammatory
foci; (B) Sum of all hepatic fatty acids, hepatic cholesterol, and ratio of hepatic C18/C16 fatty
acids of MCD fed animals compared to ctrl were analyzed by GC-MS (gas chromatography-mass
spectrometry) (n = 9–10); and (C,D) Representative HE-stained liver sections (C), hepatic fatty
acids as well as hepatic cholesterol, and ratio of hepatic C18/C16 fatty acids (D) of ob/+ and ob/ob
mice (n = 8)

Role of Fatty Acid Elongation in NASH-Related Hepatocellular Carcinoma
(HCC) and Human NASH

To further investigate the role of fatty acid elongation in hepatocarcinogenesis, we
used short-term (48 h) treatment with the carcinogen diethylnitrosamine (DEN) to model
early inflammatory events associated with hepatocarcinogenesis [219][117]. In fact, we
histologically observed inflammatory foci in the livers exposed to DEN (Figure 5.44A). Little
is known about increased lipid accumulation after DEN treatment: Histologically detected
hepatic lipid deposition by DEN was reported in fish (Oryzias lapites) [220][221]. Changes
in the lipid composition have been reported for cancerous tissues compared to normal
tissue in DEN-induced hepatocarcinogenesis [222][223][224], but not in the precancerous
short-term protocol. We observed that inflammatory events were paralleled by distinct
metabolic alterations similar to the murine NASH model: fatty acids, cholesterol levels, and
the C18/C16 ratio were elevated upon 48 h DEN treatment (Figure 5.44B). This short-term
model might therefore resemble NASH-related hepatocarcinogenesis. In later stages of
DEN-induced carcinogenesis and during tumor progression we observed that fatty acid
elongation was rather repressed [118]. This can be explained by the fact that the long-term
DEN model predominantly acts via genotoxic effects of the carcinogen and therefore no
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Figure 5.43: Kupffer cell depletion abrogated elevation of C18 over C16. (A) Representative
liver sections immunohistologically stained against F4/80 as Kupffer cell marker from animals fed
with the respective diet for 3 weeks with simultaneous administration of clodronate (clo) or empty
(sham) liposomes (original magnification 200×); and (B,C) Increase of the sum of all hepatic fatty
acids, hepatic cholesterol (B), and ratio of hepatic C18/C16 fatty acids (C) of MCD fed animals
treated with clodronate (clo) or empty (sham) liposomes compared to ctrl analyzed by GC-MS (n
= 9–10)

NASH-related HCCs are induced.

In order to study the relevance of increased fatty acid elongation in human NASH and
human NASH-related HCC, we analyzed the hepatic mRNA expression of the enzyme
ELOVL6, which is responsible for the elongation of C16 fatty acids. We observed increased
levels of ELOVL6 in NASH versus steatosis samples (GSE48452 [208]) (Figure 5.44C) as
well as in NASH compared to healthy control tissues (GSE37031 [209]) (Figure 5.44D).
Interestingly, expression of ELOVL6 was also altered in NASH-associated HCCs compared
to HCC tissues of mixed etiology (Figure 5.44E): human NASH-related HCCs express
increased levels of ELOVL6, indicating fatty acid elongation to play a critical role in this
particular HCC subtype.

5.5.5 Conclusions

In the present study, we identified that NASH-induced fatty acid elongation is an
inflammation-associated pathophysiological step in liver disease. Furthermore, the fatty
acid elongase ELOVL6 is elevated in human NASH and NASH-related HCC.
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Figure 5.44: (A) Representative liver sections stained with HE from animals treated with
DEN (DEN) compared to untreated control (crtl) (original magnification 200×). Arrows denote
inflammatory foci; (B) Sum of all fatty acids, hepatic cholesterol, and ratio of C18/C16 fatty acids
of DEN treated animals compared to untreated control (ctrl) are displayed (n = 6–15); (C,D)
Expression of ELOVL6 in human NASH (n = 18) compared to steatosis (n = 14) (GSE48452)
(n.s. = not statistically significant) (C) as well as healthy control samples (n = 8 for NASH; n = 7
for control; GSE37031) (D); and (E) ELOVL6 mRNA expression in human NASH-related HCC
samples (NASH-HCC) (n = 6) compared to HCC with mixed etiology (mixed HCC) (n = 26) [6].
Expression of tumor tissues was normalized to matched normal liver tissue (matched control)
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Chapter 6

Cross-talk Between Intragenic Epige-
netic Modifications and Exon Usage
Across Developmental Stages of Hu-
man Cells

The results of this chapter were jointly obtained by Dr. Siba Shanak and the author. My
contribution was late normalization and preparing data in tables, calculation of Correlation
and production of most figures. The main contribution of Dr. Shanak was data retrieval,
establishing early calculations and data preprocessing, calculation of read count on the exon
level, annotating genes according to exon count and early normalization stages. Results
were jointly analyzed with Prof. Volkhard Helms.

6.1 Abstract

Differential exon usage has been reported to affect the large majority of genes in
mammalian genomes. It has been shown that different splice forms sometimes have distinctly
different protein function. Epigenetics is well associated with alternative splicing in the gene
body, but the connection between differential exon usage and the distinct developmental
stages has not been addressed so far. Here, we present an analysis of the Human Epigenome
Atlas (version 8) to connect the differential usage of exons in various developmental stages of
human cells/tissues to differential epigenetic modifications at the exon level. We found that
the differential incidence of protein isoforms across developmental stages is often associated
with changes in histone marks as well as changes in DNA methylation in the gene body or
the promoter region. Many of the genes that are differentially regulated at the exon level
were found to be associated with development and metabolism.

6.2 Introduction

Differential exon usage is reported to occur in 90-95% of all human multi-exon genes
[225][226]. Different splice variants of a gene may lead to different protein products that
exert different functions. As a result, differential exon usage leads to a strong expansion of
the eukaryotic proteome [227]. An example for this is the well-known Nanog gene; where
alternative splicing results in two variants of the Nanog protein with different capabilities
for self-renewal and pluripotency in embryonic stem (ES) cells [228]. An alternative
scenario takes place when genes coding for different proteins occupy the same position on a
chromosome. In such cases, differential exon usage even controls the expression of different
proteins. A well-characterized example for this case are the overlapping imprinted genes
PEG3/ZIM2 that are exclusively expressed from the paternal allele [229][230]. Gamazon
et al showed that 90% of human genes are so far known to undergo alternative splicing
[231]. However, the notion of alternative splicing across tissues should not be considered
as an exclusive either/or mechanism. Thanks to recent advances in RNA-Seq technology
[232], it is now possible to study the expression of genes at the level of single exons. The
granulity of exon usage can thus be increased from the basic classification of a one-or-none
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expression per gene (alternative splicing) to fine-tuned quantitative read counts that can
be accounted for per individual exon.

A recent study reported that differential exon usage in primates shows more profound
differences across species than on the intra-species level. It was targeted at adult tissues
(brain, cerebellum, heart, kidney, and liver), and did not analyze the effect of differential
usage of exons in terms of organismal development [233]. The state of the art next-generation
sequencing (NGS) studies emphasize to examine the link of alternative splicing, through
differential exon usage, to development and to epigenetic modifications. Furthermore, there
is also a strong connection established in literature between development and epigenetic
modifications (see figure 6.1).

Figure 6.1: The triad of ‘Alternative Splicing- Epigenetic Chromatin Modifications- Development’.
We reviewed the connections established per each two of the three and found that only few studies
have addressed this triangle

Over the past five years, relating alternative splicing events with epigenetic modifications
has become a very active research field. Zhou et al. studied the relationship between
alternative splicing and histone marks [234]. Another study by Schwartz et al. addressed
the interplay between chromatin structure and the exon-intron architecture. They showed
that histone modifications within the gene body are more pronounced in exon regions than
in intron regions, and thus may serve to define the exon-intron boundaries [235]. Alternative
splicing plays a fundamental role in development; where it affects organ morphogenesis,
stem cell differentiation as well as neuronal development [236]. The relationship between
alternative splicing and development has been an active research field since the early 1980s
[237][238] [239][240] [241][242]

For more than a decade, it has been understandable that development is under the
control of epigenetic modifications. One form of epigenetic modifications, DNA methylation,
affects gene expression via inhibition of transcription factor binding or by recruiting histone
modifiers that induce DNA supercoiling. Histone modifications, through methyl or acetyl
marks, is another epigenetic modifications known to impact development [243]. These
modifications play crucial role in the mitotic memory of human cells during development.
Recent studies highlighted chromatin-based and DNA-based changes accompanying the
erasure, reprogramming and the reacquisition of pluripotency in model mammalian organ-
isms. Paternal genome in the zygote is modelled differently to the maternal genome, with
hyperacetylation and hypomethylation that makes the paternal genome prone to excessive
remodeling. This asymmetry is perceived up to the 4-cell stage. In this respect, DNA
demethylation occurs until the blastocyst stage, while chromatin protects some maternal
genes against this event until the implantation stage [244]

The notion of splicing was thought to work by transcribing either the full (constitutive)
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genes or the alternatively spliced forms. Until recently, the relation between exon usage and
transcript abundance has been scarcely analyzed. To our knowledge, there has been so far
no attempt to study the relationship between differential usage of exons and various types of
epigenetic modifications at the exon level and to connect this with different developmental
stages of human. This is precisely the aim of this study. Based on data for human
development across different stages from the Human Epigenome Atlas [245] [246] [247] [248],
we show a correlation between differential exon usage and several epigenetic modifications at
the exon/intron/promoter level, namely DNA methylation and several histone marks. The
correlation is significant for both the constitutive genes and for gene clusters. Furthermore,
we could associate the occurrence of differential exon usage with functional annotations
that, indeed, often relate to regulation of signaling and developmental processes.

6.3 Methods

6.3.1 Datasets Used

Data for this study was retrieved from the Human Epigenome Atlas (up to release
8) that is part of the Roadmap Epigenomics project [245] [246] [247] [248]. Table 6.1
introduces the assays and the epigenetic modifications analyzed in our study. The aim of
this study was to find the link between the differential usage of exons at the expression
level and that for specific epigenetic marks.

Table 6.1: assays used in this study to evaluate the levels of expression, chromatin organization
and DNA methylation in the human genome during different developmental stages.

Expression Chromatin organization DNA methylation

mRNA-Seq
siRNA-Seq

ChIP-Seq Input
DNAse hypersensitivity
H3K27ac/H3K27me3
H3K36me3
K3K4me1/H3K4me3
H3K9ac/H3K9me3

Bisulfite-Seq/RRBS
MeDIPS-Seq

We further aimed to know how this correlates to different stages of human development.
Thus, we only studied sample types for which release 8 provided complete data sets
according to table 6.1. These stages included stem cells, early developmental stages,
induced differentiated cells, fetus, and adult tissues. Figure 6.2 lists the studied tissues.

We downloaded the human UCSC hg19 reference genome, retrieved the exons of each
gene, and prepared them in a temporary annotation file. To account for possible ambiguity,
each gene should only be mapped to one genomic region. As a result, we dropped a small
set of 100 genes spanning more than one genomic region from our analysis. Furthermore,
we clustered genes that mapped to the same genomic region into one gene cluster to prevent
redundancy in mapping, see figure 6.3. Following the strategy of Anders et al, we sorted
the group of exons belonging to the genes of one gene cluster, and extracted the unique
exons [249]. If any two exons from different genes mapped to the same genomic region, we
rearranged them and assigned them to a new non-overlapping classification of exons that
mapped to the same region, see figure 6.3 for illustration. After that, we mapped introns
and promoters accordingly. We defined the promoter region as the region between -2000 bp
upstream of the transcriptional start site and 0 bp of the gene/gene cluster region.

For data processing of the ChIP-Seq assays, we called the peaks associated with the
reads in the retrieved bed files. To this aim, we used ChIP-Seq Input assay to check for the
background effect. Peak calling of the different histone marks was performed using MACS
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Figure 6.2: The 14 different tissues that were investigated in this study belong to the three
different main developmental stages

Figure 6.3: A schematic representation of the exon architecture of three exemplary genes that
show partial overlap. The virtual gene cluster shown in the bottom row consists of shorter exons
2-7 in order to resolve the overlapping issue. Also shown is how Exon 6 is assigned to resolve a
conflict of the overlapping Gene 2:Intron 1 and Gene 3:Exon 1 case. See the main text for further
explanation

zhang2008model.
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6.3.2 Data Normalization

In order to account for putative technical noise in the data and to check for differential
read usage, we performed pair-wise comparisons of the reads in different tissues. To this
aim, we modeled read counts using regression analysis to detect noise in tissues in a pairwise
manner.

The peak calls in ChIP-Seq data were normalized using MAnorm, where linear regression
analysis is performed [250]. Normalization of MeDIP-Seq data was done with the MeDIPS
Bioconductor Package that uses negative binomial regression [251]. The methylation
datasets from the bisulfite-seq and RRBS datasets were normalized using the Biocondutor
package methylKit [252]. For each basepair position, logistic regression was applied to check
for differential methylation per base. These results were processed to obtain the mean
methylation ratio per exon. To normalize the mRNA and smRNA data, we first obtained
the transcript and exon abundance. We generated SAM files from the supplier’s BED files
via BedTools and SamTools [253][254] and sorted the SAM files lexicographically. Read
counts of genes and exons were prepared from the SAM files using the HTSeq package [255]
and used as an input for the Bioconductor DEXSeq package [249] to reduce noise in the
data.

Data annotation for the normalized ChIP-Seq and methylation data was performed
using BedTools [253]. Expression data were already annotated by the HTSeq package [255].
After that, we mapped the whole set of normalized reads, including the read numbers
for expression, the different histone marks, and the methylation status for each exon in a
gene/gene cluster per tissue into a final table per read type. The table consisted of one
read value per tissue per exon. If for a read type different read numbers mapped to the
same exon, we averaged them. After that, we normalized all read numbers for a single gene
to a final range of log values between -1 to +1.

6.3.3 Differential Usage of Exons

Differential usage of exons was analyzed using the strategy described in figure 6.4. We
aimed at identifying genes for which differential usage of their exons across developmental
stages in terms of exon expression is associated with clear differences in epigentic marks. To
achieve this, we followed two different strategies to examine correlations between different
epigenetic marks (at the exon level) and the expression levels of exons. Both marks needed
to map to the same exon, to a directly adjacent intron, or to the promoter region for the
genes/gene clusters that we defined.

The first strategy checks for anticorrelations in read counts on the gene level. We
calculated these anticorrelations for exons that belong to a single gene/gene cluster in a
pair-wise manner between tissues. With this, we wished to identify differential changes of
exon usage (for both expression and epigenetic modifications) at the tissue level. To this
aim, we explored all genes with ≥ 4 exons in all possible pairwise combinations among the
14 tissues studied here. We set the threshold of the Pearson correlation coefficient (PCC)
to a tight bound of ≤ -0.7. We followed this strategy for read counts of mRNA, different
histone marks, DNAse hypersensitivity, siRNA, or methylation levels. Additionally, we
applied the same strategy to examine anticorrelations on the intron level. This test yielded
lists of genes with anticorrelated levels of exon expression and one or more of the associated
epigenetic marks, or epi-spliced genes (see supplementary material and figure 6.5 for details).
Furthermore, if the anticorrelation of expression coincided with both anticorrelations in
histone marks and methylation, this was documented as well.
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Figure 6.4: A schema for the pipeline of studying the gene- and exon- levels of differential exon
usage across developmental stages and correlating this to the differential epigenetic marks. See
main text for further explanation

Figure 6.5: An example of anticorrelations

The second strategy identified changes of the read number on the exon level in all
possible genes across developmental stages. The results were then correlated with the
changes in read counts for the different epigenetic marks described above. With this strategy,
we aimed to understand the possible functional association with a single epigenetic mark
and expression and at the exon level. We set the Pearson correlation coefficient to a tight
bound with an absolute value of at least 0.7.

After that, we checked for the enrichment in GO terms using the GOSim package [123].
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We examined functional similarity in two sets of genes. The first set included genes that
were identified in the same pairwise tissue comparison. For this analysis, we only considered
tissue pairs that have at least 10 genes that are both differentially expressed and show
differential epigenetic marks between those two tissues. In the second set, we grouped the
genes that showed correlated changes of expression for a single exon and one epigenetic
modification across tissues.

For completeness, we also analyzed positive correlations in read counts on the gene
level. To identify cases of constitutive gene expression, we calculated these correlations for
exons in a single gene/gene cluster in a pair-wise manner between tissues. As before, we
explored all genes in all possible combinations of the 14 tissues we studied. Again, we set
the threshold of Pearson correlation coefficient (PCC) to a tight bound of ≥ 0.7.

6.4 Results and Discussion

We wanted to check for the differential usage of exons across developmental stages. We
also correlated this to the differential changes in read count at the exon level for the different
epigenetic marks and through development. This latter analysis was performed for several
histone marks as well as DNA methylation levels. To this aim, each type of differential
changes (i.e., expression, DNA methylation, histone binding) was estimated alone then the
several marks linked to expression. Our analysis considered 7960 constitutive genes and
14668 gene clusters. Figure 6.6 shows results on the gene level for the number of genes/gene
clusters with differential exon usage that was negatively correlated with epigenetic marks
between each pair of tissues (PCC < -0.7, see methods for definition of differential exon
usage and for the definition of gene clusters). Figure 6.6-a shows the dissimilarity of exon
expression. The largest differences were found between trophoblast cultured cells and
mesendoderm cultured cells, as well as iPS passage 19 (dark blue). Differences between later
developmental stages were rather small in comparison. Figure 6.6-b shows the dissimilarity
of DNA methylation for all genes. Notably, trophoblast cultured cells were the least similar
to all other tissues. A seemingly peculiar similarity was found between fetal brain and all
other tissues as well as for the two breast tissues (straight light grey bars). This could be
traced back to the fact that very few genes showed differential methylation of their exons
for these three tissues.

Figure 6.6-c shows the dissimilarity of H3K36me3 as an example of the respective
histone analysis. H3K36me3 was selected for this because it showed the largest number of
histone marks in the gene body, as has been reported before [256]. In contrast to Figures
Figure 6.6-(a,b), rather balanced differences were found between all tissues.

Figure 6.6−d shows the results from an integrated analysis, where the set of genes
showing differential exon usage (measured by expression, see Fig. Figure 6.6-a) was
intersected with the set of genes showing either anticorrelation (PCC ≤ -0.7) in DNA
methylation (Fig. Figure 6.6-b) or in histone marks (Figure 6.6-c and other histone marks
that are not shown). We will refer to such genes as “epi-spliced” genes. Dissimilarity was
measured as the ratio of genes in the intersection set over the max number of intersections
in all studied tissues. Clearly, trophoblast cells were the most different from all other tissues.
Two different passages of iPS cells showed very similar combined expression/epigenetic
marks, whereas ESCs are more distant to the iPS cells. Fetal brain and adult brain also
showed similarity. As expected, we found that mesendoderm cultured cells and trophoblast
cultured cells exhibited large differences in their epi-spliced genes. Based on the data from
figure 6.6−d, we generated a cluster dendogram by average-linkage hierarchical clustering.
Trophoblast cells showed by far the largest dissimilarity to all other tissues (note that figure
6.7 shows the logarithm of the distance). As expected, breast tissues showed high similarity
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Figure 6.6: Heatmaps of the number of the resulting pairwise negative correlations for (a)
expression data, (b) methylation data, (c) histone modifications, here H3K36me3, (d) the above
mentioned union

in terms of associations with epigenetic marks. This was also the case for some of the brain
tissues, various stem cell−like stages, and for the two passages of the iPS cells.

Figure 6.7: Hierarchical clustering for the set of genes that were analyzed in figure 6.7-d

For a better representation, we selected mutual negative correlations in the pairwise
tissue comparisons with at least 10 epi-spliced genes (see Chapter 6.4.3). Within the
constitutive genes, we found a total of 1529 epi-spliced genes. From this list, only 81
genes/gene clusters showed common modulation at the level of histone modification and
methylation at the same time.

Next, we wished to understand the functional effect a single epigenetic mark can promote
on the expression of a single exon, i.e. on the exon level. To this aim, we further investigated
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the list of exons where changes in expression were associated with changes in any of the
epigenetic marks across the studied developmental stages. We only considered epigenetic
changes in the gene body of the same exon or in the promoter. Such changes can help
assign an effect of a single histone mark, methylation state or siRNA regulation to human
development by investigating crucial genes/gene clusters which are convolute with a single
epigenetic modification. Table 6.2 lists the number of exons showing high correlations (r
≥ 0.7) between an epigenetic modification and expression as well as the number of genes
containing these exons. We did not account for putative exons that can be both positively
and negatively associated with the same epigenetic mark, but only identified those showing
either one of the two trends. However, the same gene can contain exons that are either
positively or negatively associated with the same epigenetic mark.

Table 6.2: Number of exons/genes with significant correlation of exon-level expression and an
epigenetic mark.

Epigenetic
modification

Chromatin
accessibility H3K27ac H3K27me3 H3K36me3 H3K4me1

Exon 2673 9081 568 3990 2267
Gene 725 452 187 1416 886

Epigenetic
modification H3K4me3 H3K9ac H3K9me3 Methylation siRNA

Exon 3519 319 121 318 0
Gene 942 145 44 122 0

6.4.1 Functional Classification of Epi-spliced Genes

We wished to classify our ‘epi-spliced’ genes into groups based on their functional
similarity. Based on the result of the correlation analysis, we identified enriched GO terms
for the resulting gene sets, both on the gene and exon levels. In doing so, we ignored the
fact that different splice variants of a gene may sometimes promote very different functions
[257].

To reach our aim of the functional classification of the ‘epi-spliced’ genes, we first
analyzed the results for the negative associations on the gene level in a pair-wise manner,
and considered enriched gene groups in terms of pair-wise tissue allocation. We aimed to
identify the possible interplay between DNA methylation and the several histone marks in
terms of regulation of ‘differential exon usage’. For this, we identified genes where changes of
both a histone mark and DNA methylation state coincide significantly with differential exon
usage for the same gene. Such cases were exclusively found for combinations between the
trophoblast cultured cells, mesendoderm cultured cells and induced pluripotent stem cells.
GO terms associated with epi-spliced genes in those stages were associated with chromatin
organization, (e.g.; the introduction of the heterochromatin and telomere structuring;
growth of the ovarian follicle, oocyte, etc; transport processes of organic and inorganic
molecules;) with metabolism; with transcriptional/translational and post translational
regulation (e.g., K48- or K63-linked deubiquitination) and with homeostasis by regulation
of embryonic hormones, interferons and Rac GTPase gene. The Rac protein has a role in
growth and epithelial tissue differentiation and also a well established role in cancer. One
further enriched GO term was H3K4 methylation.

We wanted to check whether differential changes in expression levels (namely differential
exon usage) correlate with a single epigenetic mark. We thus analyzed GO terms for
groups of genes with differential exon usage showing significant common changes of either
histone marks or the DNA methylation state. We wished to categorize the GO terms at
the tissue-level. We therefore grouped genes according to the differential pairwise tissue
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allocation. The majority of significant intersections in histone modifications show early in
development. Apart from the trophoblast cultured cells, the mesendoderm cells and the
iPS cells, we also found significant changes between the trophoblast cultured cells and any
of mesenchymal stem cells, the H1 embryonic stem cells, and the brain germinal matrix.
iPS cells also display significant differences from the H1-derived mesenchymal stem cells.
Apparently, using different passages (passage 6 and passage 19) of iPS- cells results in
significant differences.

To understand the impact of ‘episplicing’ at the level of tissues, we grouped the GO
terms into seven broad functional categories, see figure 6.8, namely development, DNA and
chromatin organization, regulation of transcription and translation, signaling pathways,
metabolism, regulation, and others.

Figure 6.8: Frequency of Gene Ontology terms belonging to epi-spliced genes to seven according to
seven manually defined biological categories. Epi-spliced genes are those showing a common negative
correlation on the expression/epigenetic modification level across pair-wise tissue comparisons

Epi-spliced genes were overrepresented in developmental processes associated with the
following tissues: blood vessels, chondrocytes, cytotoxic T cell, keratinocyte, oogenesis,
organelle assembly, and several others. The biological processes related to chromatin
organization that involve epi-spliced genes include processes associated with M-phase of the
cell cycle, and several preparatory processes of the G1/S/G2 phases of the cell cycle. The
category of transcription and translation involved many regulatory processes at the level of
transcription, translation and post-translational modifications. The identified metabolic
processes were associated with sugar metabolism, e.g., fructose 6-phosphate and fructose 1,6-
phosphate metabolism, with phosphate metabolism, fatty acid metabolism, growth factors
production, etc. The category of regulation included Ras GTPase activity, neuron migration,
keratinocytes migration, and several others. As for signaling cascades, this category
included for instance the regulation of the MAPK cascade, bone morphogenic protein
(BMP) signaling, signal transduction, involving Rac and Rho proteins and nerve growth
factor receptor signaling pathways, as well as SMAD proteins. Rac and Rho proteins belong
to the Ras family and regulate important cellular processes as cytoskeleton remodelling, gene
expression, cell proliferation and organelle development [258],[259]. SMADs are involved in
TGF-β signalling from the cell membrane to the nucleus [260].

6.4.2 Linking Epi-spliced Genes to Particular Epigenetic Modifications

We then aimed at understanding the functional association at the exon level of a single
epigenetic mark with exon expression. This helps identify the biological significance of a
single epigenetic mark at the exon level. We accordingly identified GO terms of epi-spliced
genes that were significantly linked to individual epigenetic modifications. This grouping
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was based on significant correlations at the single exon level across developmental stages.
We used the same functional cataloguing of GO terms used at the tissue-level. Figure 6.9
illustrates the set of biological processes and their modulation via epigenetic signals. Overall,
more GO terms were associated with differential histone marks than with differential DNA
methylation. Additionally, H3K36me3 showed the strongest association with regulation
processes related to transcription/translation/post-translational modification, chromatin
modeling, and development. Whereas several histone modifications showed strong effects
on genes of the given biological categories, others exhibited weak correlations in the same
context, namely H3K9me3 and H3K27me3. Table S2 lists the set of GO terms that are
enriched for each studied epigenetic modification.

Figure 6.9: The numbers of selected GO terms belonging to genes showing differential regulation
of the exon level for different types of epigenetic modifications

Association of epi-splicing with developmental stages In the epi-spliced genes under
microscope, we wished to investigate intensely the functional GO terms correlated with
development. GO terms associated with development and growth were enriched in genes
that showed correlation between exon usage and DNA methylation, see Figure 6.9. The most
pronounced developmental effects related to DNA methylation were associated with nervous
system development. Interestingly, we observed that genes for which high methylation
levels of their exons were correlated with their expression had an important effect on
DNA conformation, what is a well-known effect documented from experiments [261]. We
also noticed that differential methylation was associated with crucial regulatory processes,
including the regulation of protein phosphatase 2B, GTP catabolism, and Rho protein
signal transduction. Next, we examined the biological processes enriched in epi-spliced
genes that are associated with DNAse hypersensitivity. In this context, we found that this
assay targets genes enriched with GO terms of open/closed chromatin organization. A
striking example for this effect is the H3K4 histone methylation level.

Next, we studied epi-spliced genes showing histone modifications at the exon level
across several developmental stages and analyzed GO terms enriched in these genes. The
inhibitory/activating marks of H3K4 methylation/tri-methylation are associated on the
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developmental level with notochord regression, neuron projection regeneration and several
morphogenetic processes. We also found that these histone modifications are associated with
female pregnancy and hippo signaling pathways that are prominent in the regulation of cell
proliferation and apoptosis [262]. Hippo signaling also serves the organisms to stop growth
at a specific point, thus aiding in size control [263]. H3K4 methylation/tri-methylation have
a relevant effect on the levels of two proteins that act as a heterodimer, namely TLR1 and
TLR2 that have roles in immune response [264]. Differential H3K4 methylation correlated
to exon usage is associated with the signaling cascade of the oncogene smoothened protein,
with the bone morphogenic protein signaling cascade, with cascades including the SMAD
protein and the transforming growth factor proteins, and with the nerve growth factor
signaling cascade, including the well known BDNF protein that is also controlled through
DNA methylation [265],[266]. In terms of post-translational modifications, we found that
these histone modifications also control the phosphoprotein phosphatase activity.

With respect to modifications of H3K9 associated with differential exon usage at the
developmental level, we found that H3K9 acetylation is strongly connected to DNA and
chromatin organization, cell cycle events, bone morphogenesis and differentiation, and with
post-translational modifications, including for example Hsp90 chaperon acetylation. H3K9
tri-methylation, on the other hand, is mainly associated with nervous system development.
Acetylation of H3K27 is directly associated with GO terms related to histone acetylation,
suggesting a possible negative/positive feedback effect. It is also associated with the
developmental control on the level of embryonic heart muscles and with processes related
to chromatin organization. On the other hand, H3K27 trimethylation is associated with
nervous system development and platelet-derived growth factor (PDGF) receptor signaling
pathways. Lastly, we found that H3K36 trimethylation is associated with DNA replication
and repair, chromatin organization, cell cycle events (e.g. G2/M phase checkpoints and
mitotic cell division), regulation of transcription, and several developmental stages. We
found that H3K36 trimethylation also modulates signaling cascades together with H3K4
methylation.

The biological processes just discussed only involved associations of epi-spliced genes
and individual or several synchronously changing epigenetic marks. Next, we selected
several groups of genes known previously to have direct or indirect associations with one or
several epigenetic modifications. We wished to know whether these genes are epi-spliced.
The identified categories included several imprinted genes, chromatin remodelers, protein
kinases, and transcription factors and cofactors. We performed this analysis for epi-genes
both on the gene level in pairwise tissue comparisons (Table S3) and on the exon level
across developmental stages (Table S4). As an example of the imprinted genes, we found
that four different paternally expressed genes vary their exon usage in a common manner
due to a synchronous change of histone modifications and DNA methylation between
mesendoderm cultured cells and trophoblast cultured cells. These genes are PEG3/ZIM2
and SNRPN/SNURF that are all known to undergo alternative splicing [229][230][267].
Another exciting example of a chromatin remodeler gene that varies the expression of its
isomers in the same manner and in the same tissues is DNMT3L methyltransferase that is
well known to recruit chromatin remodelers, especially histone deacetylases [268][269]. This
enzyme is also known to have crucial roles in early developmental stages, especially in the
establishment of imprints together with de novo methyltransferases [270]. A splice variant
has been introduced for this gene in Ref-Seq genes, 2012.

Furthermore, and for the heretofore-mentioned gene categories, e.g., imprinted genes and
chromatin remodelers, we explored the list of genes for which exon expression is associated
with a specific epigenetic mark, i.e. at the exon level. Interestingly, exon expression of a few
imprinted genes changes across developmental stages, and this expression was modulated by
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several epigenetic marks. For example, the maternally expressed gene SLC22A18 changed its
expression according to the padding at the chromatin structure and is modulated by H3K4
mono-methylation. This gene has been linked to alternative splicing events before [271].
Transcription factors are another example for genes with documented modulation at the
exon level. Here, we found two well-known transcription factors, ZFP42 and NANOG, that
regulate pluripotency and differentiation in the embryonic stem cells [272]. For example,
we found that ZFP42, on the exon level, changes its chromatin organization (DNAse
hypersensitivity) and is modulated by H3K4 trimethylation. This gene was shown to
undergo changes on the exon level in early development [273][274]. Moreover, we found
that NANOG, a regulating transcription factor of the ZFP42 gene [275] which is also
known to undergo alternative splicing [228], is also modulated by the same epigenetic mark,
H3K4me3, on the exon level.

6.4.3 Positive Correlations

To complete our analysis, we finally searched for common positive correlations in the
expression level of exons across tissues with PCC ≥0.7. We aimed to find possible impact
of constitutive genes on development. Interestingly, we found that such constitutively
expressed genes were not usually ubiquitously expressed across tissues. Additionally and as
expected, coexpression was predominately found for highly similar tissues (lower left half of
figure 6.10-b), thus arguing against an important role of constitutive genes in development.
The two genes that showed the largest number of abundant constitutive expression, CA2
and FOXO4, also showed the highest abundance in alternative splicing. Figure 6.10-(a,b)
shows a comparison of the numbers and allocation of positive and negative correlations of
gene expression. The range of the number of genes in both matrices is similar on average.
However, the anticorrelations involved mostly genes/gene clusters from early developmental
stages. Figures 6.10-(c,d) show the normalized expression of the exons contained in the set
of genes that show anticorrelations and correlations in at least 26 combinations of tissues,
respectively. In general, where changes do occur for exons in the anticorrelated genes, they
do not occur at the level of the full genes. Rather specific exons are responsible for the
variation, and other exons of these genes are more constitutively expressed.

6.4.4 Conclusion

Exon-intron boundaries set by histones/epigenetic marks are not only used to define the
ends of the elements for the mRNA transcript to be expressed. Rather, they can also be
considered as a part of a machinery for regulating and controlling the relative abundance
of the several transcripts or protein isoforms that map to the same chromosomal region
across tissues. This relationship seems to be most prominent in early developmental stages,
and this suggests differential regulation across developmental stages, brought about by the
distinct epi-genes. Additionally, exon-body epigenetic effect is more pronounced than that
of intronic or promoter effects.
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Figure 6.10: Heatmaps for the expression levels and gene numbers in pair-wise tissue correlations
for (a) alternatively spliced genes, (b) constitutively expressed genes, (c) expression levels of
individual exons belonging to 11 selected genes that show strong anticorrelation, and (d) expression
levels of individual exons belonging to 10 selected genes that show strong positive correlation
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Chapter 7

Summary and Outlook
In this work we addressed from various angles how one may suggest genes of certain

functions as tumor markers and then study them at the basic exon level. In the first
case, we concentrated on the function of gene products that have a chance of being tumor
markers. We started from the fact that it is costly and time consuming to study the function
of individual proteins. Therefore, once a protein function is identified, it is desirable to
transfer it to other proteins sharing certain sequence or structural similarity. In chapter
3, we presented a combined approach for transferring functional annotations of certain
proteins (Transporters in this work) between transporters sharing certain sequence similarity
from different species. The accumulative decision was based on decisions from BLAST,
HMMER and MEME. All tools search for sequence similarity but MEME performs motif
searches. We found that up to certain thresholds of E-values, the transporter function can
be transferred to putative transporters from other organisms. Among the three combined
methods, the functional annotations based on MEME results were less reliable than those
based on BLAST and HMMER results.

This approach worked nicely for transporter families created based on phylogeny (TC
families). However, it did not achieve comparable results when applied to families we created
based on substrates being transferred. This gives a hint that phylogenetic inference is a more
sensitive indicator of homology compared to sequence similarity. Apart from TC families,
we suggest that using other sequence analysis methods like Amino acid Composition (AAC)
or even incorporating structure based methods side by side with sequence based methods
might aid in the substrate prediction.

The next component was a preparatory phase before analysing possible marker genes
based on their expression or methylation profiles in normal and tumor samples. As these
datasets frequently suffer from outlier values leading to misleading results, this component
concentrated on detecting such outliers and removing the clear cases. Outliers in such
datasets can be samples or genes with some outlier expression/ methylation values. To
detect outlier samples we used hierarchical clustering. At the gene level, we checked first
whether the expression/methylation of the gene follows a normal distribution. If this is
the case, we applied the GSED algorithm. For other genes we applied boxplot and MAD
algorithms. Moreover, it is reported that some algorithms might label one outlier even
if none exists. Here, aroused the need for establishing an outlier margin where a gene is
labeled as outlier only if it has expression/methylation outlier values exceeding certain
threshold. We found that 2 outlier observations might ruin a perfect co-expression and thus
used 2 as the outlier margin.

Some outlier genes appeared to carry interesting details behind this outlier behaviour.
Therefore, we tested for semantic similarity between outliers and kept groups of functionally
similar outliers for further analysis. Only pure non similar outliers where labelled for
removal. Although the whole analysis was completed in R-cran, Taner Arslan developed
a GUI python stand alone tool for outlier detection under the supurvision of the thesis
author.

The next step in this field would be to test this outlier detection approach on other

101



Chapter 7. Summary and Outlook

datasets for example MicroRNA expression datasets. We also suggest that testing for the
commonly found distributions in different types of datasets would be beneficial for detecting
outliers. For instance, normal distribution was common in expression datasets but not that
common in methylation datasets that we analyzed.

The third component was the core one for suggesting and analyzing new tumor marker
genes. Our research was mainly focused on hepatocellular carcinoma (HCC) as it is the
second most common cancer related death worldwide. Additionally, it might be the end-
stage of untreated liver diseases like hepatitis. Generally, we incorporated expression and
methylation analysis with the wet-lab testing by our collaborators to analyze the behaviour
of the tumor marker.

For example, our analysis suggests that IMP2 plays an important role in initiating HCC
and also in its progression. One hint was that it had increased expression in the majority of
HCC patients. IMP2 had a similar behaviour in one of the breast cancer subtypes. IMP2
expression was elevated in tissues of basal-like cancer compared to the luminal or apocrine
subtypes.

On the other hand, the gene Hamp had a different behaviour because its expression was
reduced in tumor tissues compared to adjacent normal liver tissues. We found that Hamp
expression is low in liver disease samples (chronic hepatitis C and cirrhosis) compared to
healthy liver samples. Along the same side, our analysis showed that the expression levels
of ELOVL6 are significantly decreased in the majority of human liver tumors compared
to nontumorous tissues. However, ELOVL6 expression is elevated in human NASH and
NASH-related HCC samples. The next step here would be to map the suggested marker
genes to other cancer types to get a broader overview.

In the last component, we presented an approach to study certain genes at the basic level
of their exons. Although we presented a genome wide study, this approach of course can be
used for a set of genes of interest (the tumor marker genes for example). Differential exon
usage helps to express several proteins from the same genomic location via the mechanism
of alternative splicing. In this work we showed that epigenetic modifications are strongly
associated with alternative splicing especially for genes that are essential for development.
The next step here would be to establish exon usage relations based on exon expression
and epigenetic modifications.

In summary, the work presented in this thesis led to transferring functional annotations
of specific proteins across species. Such proteins might be options for advanced tumor
markers. As tumor markers are often identified according to their expression/ methylation
profiles, this work insisted on cleaning the needed datasets from outliers before analysis.
Once the markers are identified and validated in the lab, the rest of this work presents a
method for intensive analysis of the differential exon usage of the genes of interest.
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Appendix
A.1 Supplementary Data for Chapter 3

BLAST HMMER MEME
1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4 1e-20 1e-16 1e-12 1e-8 1e-4

Ec-Hs

Precision 79.2 73.2 75.4 75.7 35.1 65.3 70.8 75.4 75.4 68.2 79.2 79.2 65.3 42.0 25.0
Recall 79.2 79.2 79.2 75.7 58.8 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 63.4 39.8
F-measure 79.2 76.0 77.2 75.7 43.5 70.8 74.5 77.2 77.2 73.2 79.2 79.2 70.8 45.0 29.1
Unclassified 87.5 86.1 80.6 77.8 30.6 91.7 88.9 80.6 80.6 76.4 94.4 94.4 91.7 44.4 0.0

Hs-At

Precision 66.7 63.8 57.6 56.7 13.8 66.7 66.7 66.7 63.8 57.6 66.7 66.7 57.6 26.1 25.0
Recall 66.7 66.7 66.7 66.7 100.0 66.7 66.7 66.7 66.7 66.7 66.7 66.7 43.3 25.5 33.5
F-measure 66.7 65.1 60.8 60.0 24.2 66.7 66.7 66.7 65.1 60.8 66.7 66.7 45.2 25.3 27.3
Unclassified 66.7 63.3 60.0 60.0 0.0 66.7 66.7 63.3 60.0 60.0 70.0 70.0 63.3 0.0 0.0

Table A1: Complete annotation results of the pairs (Hs, At) and (Ec, Hs).

Ec-Hs Sc-At Ec-At
1e-16 1e-8 1e-4 1e-3 1e-2 1e-16 1e-8 1e-4 1e-3 1e-2 1e-16 1e-8 1e-4 1e-3 1e-2

Precision[%] 75.4 72.2 67.7 57.9 41.8 69.3 41.1 25.5 22.2 19.8 63.6 64.8 45.7 33.0 31.6
Recall[%] 79.2 79.2 72.8 66.2 60.3 100.0 100.0 100.0 100.0 100.0 86.9 83.7 73.0 58.0 51.6
F-measure[%] 77.2 75.4 70.1 59.8 48.5 79.0 57.0 40.2 35.9 32.7 69.5 69.5 46.0 37.2 33.9
Unclassified[%] 72.6 66.5 53.8 49.9 34.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ec-Sc Hs-At Hs-Sc
1e-16 1e-8 1e-4 1e-3 1e-2 1e-16 1e-8 1e-4 1e-3 1e-2 1e-16 1e-8 1e-4 1e-3 1e-2

Precision[%] 63.0 57.5 39.9 36.4 32.0 56.7 33.0 16.6 15.5 15.6 56.7 43.3 29.6 26.2 24.7
Recall[%] 93.1 81.3 59.5 53.1 45.4 66.7 66.7 93.3 93.3 100.0 66.7 63.8 39.4 37.6 33.2
F-measure[%] 73.4 62.1 43.0 37.1 32.6 60.0 43.8 27.8 26.5 26.8 60.0 51.5 31.3 28.6 26.3
Unclassified 0.0 0.0 0.0 0.0 0.0 60.0 53.3 23.3 10.0 3.3 60.0 60.0 23.3 13.3 3.3

Table A2: Results of FASTA global searches.
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Figure A1: Heatmap of BLASTing Ec substrate-TC families against At families

Figure A2: Heatmap of BLASTing Ec substrate-TC families against Sc families
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