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Abstract

Knowledge bases have become key assets for search and analytics over large
document corpora. They are used in applications ranging from highly spe-
cialized tasks in bioinformatics to general purpose search engines. The large
amount of structured knowledge they contain calls for effective summarization
and ranking methods.

The goal of this dissertation is to develop methods for automatic summarization
of entities in knowledge bases, which also involves augmenting them with
information about the importance of particular facts on entities of interest. We
make two main contributions.

First, we develop a method to generate a summary of information about an
entity using the type information contained in a knowledge base. We call
such a summary a semantic snippet. Our method relies on having importance
information about types, which is external to the knowledge base. We show
that such information can be obtained using human computing methods, such
as Amazon Mechanical Turk, or extracted from the edit history of encyclopedic
articles in Wikipedia.

Our second contribution is linking facts to their occurrences in supplementary
documents. Information retrieval on text uses the frequency of terms in a docu-
ment to judge their importance. Such an approach, while natural, is difficult
for facts extracted from text. This is because information extraction is only
concerned with finding any occurrence of a fact. To overcome this limitation we
propose linking known facts with all their occurrences in a process we call fact
spotting. We develop two solutions to this problem and evaluate them on a real
world corpus of biographical documents.
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Kurzfassung

Wissensbasen zählen zu den wichtigsten Bausteinen für die Suche und Analyse in
großen Dokumentkorpora. Sie werden sowohl für hoch spezialisierte Aufgaben
der Bioinformatik als auch in Suchmaschinen verwendet. Die große Menge
an strukturiertem Wissen, die sie enthalten, fordert effektive Methoden des
Zusammenfassens und Ordnens.

Das Ziel dieser Arbeit ist es, Methoden für die automatische Zusammenfas-
sung von Entitäten in Wissensbasen zu entwickeln; dies beinhaltet auch die
Bestimmung wichtiger Fakten einer Entität. Dazu leistet diese Arbeit zwei
Beiträge.

Erstens entwickeln wir ein Verfahren zur Zusammenfassung der Informationen
über eine Entität unter Verwendung der Typinformationen, die in Wissensbasen
zur Verfügung stehen. Wir nennen eine solche Zusammenfassung ein Semantic
Snippet. Unser Verfahren benötigt hierfür zusätzliche externe Informationen
über die Wichtigkeit von Typen. Wir zeigen, dass solche Informationen durch
Methoden des Human Computing, zum Beispiel mit Hilfe von Amazon Me-
chanical Turk, oder aus der Evolution enzyklopädischer Artikel in Wikipedia
gewonnen werden können.

Der zweite Beitrag der Arbeit ist eine Methode zur Verknüpfung von Fakten mit
ihren Vorkommen in ergänzenden Dokumenten. Bei der Informationsgewin-
nung aus Texten wird die Häufigkeit der Wörter in einem Dokument verwendet,
um ihre Wichtigkeit zu beurteilen. Ein solcher Ansatz erscheint natürlich, ist
aber nicht ohne weiteres möglich für den Fall von aus Text extrahierten Fakten.
Dies liegt daran, dass die Informationsextraktion auf die Suche nach einem
Vorkommen eines Fakts fokussiert ist. Um dieser Einschränkung entgegen-
zuwirken, schlagen wir einen Prozess vor, der bekannte Fakten mit all ihren
Vorkommen verknüpft. Diesen Prozess nennen wir fact spotting. Zwei Methoden
für diesen Ansatz werden in der Arbeit entwickelt und auf einem Korpus von
biographischen Dokumenten evaluiert.
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Summary

Knowledge bases have become key assets in information retrieval, natural
language processing, question answering, and many other areas that require
processing information at the level of facts, entities, and concepts. Recent
progress in information extraction led to very large knowledge bases that often
make it possible to satisfy a user’s information need without going to any
source documents. This poses a challenge if the knowledge base contains both
interesting and important information as well as trivial and insignificant, which
often is the case. What is needed are methods to decide which information is
crucial and which is secondary if not irrelevant. This dissertation contributes to
effective summarization and ranking in knowledge bases for two aspects:

• Semantic Snippets. The first problem that we study is summarizing the
available information about a given entity. Knowledge bases contain many
facts about entities. Although a person can quickly browse a set of facts
about a single entity, this becomes impossible if we are given more of
them. This problem arises often in the context of semantic search engines:
given a query they tend to either provide just identifiers of the entities,
which may not be enough for the user, or overwhelm him or her with
all facts they know about each entity. What is needed are snippets that
are in the middle ground, that is, provide crucial information, but avoid
overloading the user with all known facts.

Particularly useful information about entities is contained in the type
system of the knowledge base. For example, YAGO knows 38 types of
Albert Einstein; in case of Freebase every fact, such as David_Beckham
–/SPORTS/PRO_ATHLETE/SPORTS_PLAYED_PROFESSIONALLY→ Football, im-
plies that the entity has a certain type, such as Athlete. Moreover any
fact, e.g. (. . . ) –WON→ Nobel_Prize, can be can be viewed as a type,
e.g. Nobel_Laureate. We therefore base our snippets on types.

We propose a set of features that a good, type-based summary should
have. The summary should be concise, so that it can be read quickly
or displayed in limited space; types that are included should denote
important properties of the entity, and not trivial or exotic information;
the selected types should have the right granularity, that is, cannot be
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too general or very specific to a small set of entities; finally, the summary
should consist of a diverse set of types.

We develop two methods for obtaining a type-based summary. The first
views the types of an entity as a directed acyclic graph with the types as
nodes which are connected by the subClassOf relation. The semantics of
the subClassOf relation makes the graph transitively closed. Since any
type implies all of its supertypes, the summary forms an independent
set of nodes in such a graph; that is, no two nodes of the summary are
connected by a directed edge. In order to select a summary we assign
costs and weights to nodes and select an independent set of vertices with
the highest weight subject to a cost constraint. Our second summarization
methods views types as sets of entities that they contain. In order to make
the summary diverse, we prefer families of types with small intersection.
At the same time we also prefer large types (with many entities) to avoid
exotic types that do not carry important meaning.

Our summarization methods also use information external to the knowl-
edge base. We do this in order to avoid selecting types which are mean-
ingless or exotic. We show different methods of assessing the usefulness
of a type for summarization. Due to their small number, types high in the
hierarchy of the subClassOf relation can be effectively judged by crowd-
sourcing the problem to a human computing platform such as Amazon
Mechanical Turk. For the leaf types we can utilize the edit history of
Wikipedia articles. We assume that the types which are most important
with respect to an entity are added as Wikicategories of its articles before
the less important ones.

Our summarization algorithms were implemented in our YAGO ontology
browser. The work was published as a demonstration paper [130] in
the World Wide Web Conference.

• Fact Spotting. The second problem studied in this thesis is finding facts
known to a knowledge base in new documents. Given a set F of facts
about an entity and a document d, we want to find a set of facts F ′ ⊆ F
that occur in d. We will refer to this problem, which can be thought of as
the reverse of information extraction, as fact spotting.

Fact spotting can be used to gather statistics about the frequency of fact
occurrences in a corpus of documents. This finds application in problems
where we need to know how important different facts are. For example,
we can treat fact frequency as a proxy for importance, similarly to how
frequency statistics is used in information retrieval. Using fact spotting
to mine importance of facts links this problem to our semantic snippets,
which required as an input similar information on the importance of types.

Fact spotting is useful for more applications than statistics gathering.
Provenance information in knowledge bases is limited to documents from
which the facts can be extracted. If we are able to augment knowledge
bases with fact occurrences in supplementary documents, we can improve
applications that rely on fact provenance, including automatic truthfulness
assessment and semantic search engines that operate on facts.

We develop two methods of fact spotting. The first uses a high quality
relational paraphrase dictionary to find fact occurrences with high preci-
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sion. To improve recall we then speculatively output facts for which we
have partial evidence of presence and whose related facts were found in
the document. Our second fact spotting method turns this idea around.
First, we aggressively find a large set of candidate facts, and then prune
them based on consistency constraints. Our constraints include natural
rules on how named entities are disambiguated and a special constraint
that exploits relations between knowledge base facts. For instance, if
a document mentions the year of an event (e.g. actor winning an Academy
Award), then it will also provide information about the event (e.g. movie,
category). Such relations between facts can often be obtained from the
knowledge base structure, for example, from compound facts in Freebase
or the SPOTLX fact representation in YAGO 2.

Our evaluation on biographical documents that were manually annotated
with the ground truth facts shows that fact spotting can achieve both high
precision and high recall. The work on fact spotting was published in
refereed workshop papers [131, 129].





Zusammenfassung

Wissensbasen zählen zu den wichtigsten Bausteinen für Information Retrieval,
automatische Sprachverarbeitung, automatisches Beantworten von Fragen,
sowie viele andere Bereichen, die die Verarbeitung von Informationen auf der
Ebene der Fakten, Entitäten und Konzepte erfordern. Wissensbasen ermöglichen
es, dem Informationsbedarf des Nutzers nachzukommen ohne auf Quelldoku-
mente zurückgreifen zu müssen. Die dadurch entstehende Herausforderung ist,
dass Wissensbasen oft sowohl interessante und wichtige Informationen als auch
triviale und unbedeutende Fakten enthalten. Was wir brauchen, sind Methoden,
um zu entscheiden, welche Informationen von entscheidender Bedeutung sind
und welche weggelassen werden können. Diese Dissertation trägt zur effektiven
Zusammenfassung und zum Ordnen in Wissensbasen neue Methoden zu zwei
Aspekten bei:

• Semantic Snippets. Das erste Problem, mit dem sich diese Arbeit befasst,
ist das Zusammenfassen verfügbarer Informationen über eine Entität. Wis-
sensbasen enthalten viele Fakten über Entitäten. Ein Nutzer kann schnell
durch einen Satz von Fakten über eine Entität navigieren, jedoch wird
diese Aufgabe unmöglich, wenn mehrere Entitäten auf einmal betrachtet
werden. Dieses Problem tritt häufig in Zusammenhang mit semantischen
Suchmaschinen auf. Diese neigen dazu für eine Anfrage entweder nur
die Kennungen der Entitäten zu liefern, was oft nicht ausreichend für den
Nutzer ist, oder überschwemmen den Nutzer mit allen Fakten, die sie über
jede Entität kennen. Was man braucht, sind Snippets, die einen Mittelweg
darstellen. Sie liefern wichtige Informationen, ohne dabei den Benutzer
mit bekannten Fakten zu überlasten.

Das Typsystem von Wissensbasen erhält eine besonders nützliche Art von
Informationen über Entitäten. YAGO kennt zum Beispiel 38 Typen von Al-
bert Einstein; im Fall von Freebase beinhaltet jeder Fakt, wie beispielsweise
David_Beckham –/SPORTS/PRO_ATHLETE/SPORTS_PLAYED_PROFESSIONAL-
LY→ Football, einen bestimmten Typ, wie Athlete. Jeder Fakt, z. B. (. . . )
–WON→ Nobel_Prize, kann zudem als Typ betrachtet werden, z.B. No-
bel_Laureate. Deshalb bilden Typen die Basis unserer Snippets.

Wir schlagen Eigenschaften vor, die eine gute typbasierte Zusammenfas-
sung haben soll. Die Zusammenfassung sollte kurz sein, so dass sie schnell
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gelesen werden kann oder in begrenztem Raum angezeigt werden kann;
Typen in der Zusammenfassung sollen wichtige Eigenschaften der En-
tität beschreiben, nicht aber triviale oder exotische Informationen; Typen
sollten die richtige Granularität haben, also nicht zu allgemein oder zu
spezifisch sein; zudem soll eine Zusammenfassung aus einer vielfältigen
Menge von Typen bestehen.

Wir entwickeln zwei Verfahren zum Erzeugen einer typbasierten Zusam-
menfassung. Beim ersten werden die Typen einer Entität als gerichteter
azyklischer Graph betrachtet. Die Typen sind hierbei die Knoten, die
durch die subClassOf Beziehung verbunden sind. Die Semantik der sub-
ClassOf Beziehung macht den Graph transitiv geschlossen. Da jeder Typ
alle seine Supertypen impliziert, bildet die Zusammenfassung eine un-
abhängige Menge von Knoten in einem solchen Graph. Das heißt, keine
zwei Knoten der Zusammenfassung sind durch eine gerichtete Kante ver-
bunden. Um eine Zusammenfassung auszusuchen, weisen wir den Knoten
Kosten und Gewichte zu und wählen eine Knotenmenge mit höchstem
Gewicht vorbehaltlich der Kosteneinschränkung. Unser zweites Zusam-
menfassungverfahren betrachtet Typen als Mengen von Entitäten, die sie
enthalten. Um die Vielfalt der Zusammenfassung sicherzustellen, bevorzu-
gen wir die Mengen der Typen mit kleiner Schnittmenge. Gleichzeitig
ziehen wir auch große Mengen mit vielen Entitäten vor, um exotische
Typen, die keine wichtige Bedeutung tragen, zu vermeiden.

Unsere Zusammenfassungsverfahren nutzen auch Informationen, die
außerhalb der Wissensbasis liegen. Wir tun dies, um die Ausgabe von
bedeutungslosen oder exotischen Typen zu vermeiden. Wir präsentieren
verschiedene Methoden zur Beurteilung der Wichtigkeit eines Typs für die
Zusammenfassung. Die Typen weit oben in der Hierarchie der subClassOf-
Beziehung können, aufgrund ihrer geringen Anzahl, durch Crowdsourcing
des Problems mittels einer Human Computing Platform, wie zum Beispiel
Amazon Mechanical Turk, beurteilt werden. Für Typen unten in der Hi-
erarchie, die Blätter des Graphen, können wir die Editierhistorie von
Wikipedia nutzen. Wir gehen davon aus, dass die wichtigsten Typen einer
Entität als Wikipedia-Kategorien des jeweiligen Artikels der Entität vor
den weniger wichtigen aufgenommen werden.

Unsere Zusammenfassungverfahren wurden im YAGO Ontologie Browser
implementiert. Die Arbeit wurde als Demonstration [130] in der World
Wide Web Conference veröffentlicht.

• Fact Spotting. Das zweite in dieser Dissertation untersuchte Problem ist
die Suche nach der Wissensbasis bekannten Fakten in neuen Dokumenten.
Gegeben eine Menge F von Fakten über eine Entität und ein Dokument d,
wollen wir eine Menge F ′ ⊆ F von Fakten, die in d auftreten, finden. Wir
nennen dieses Problem, das als Umkehrung der Informationsgewinnung
betrachtet werden kann, Fact Spotting (Faktenerkennung).

Fact Spotting kann für das Sammeln von Statistiken über die Häufigkeit
von Fakten in einem Korpus von Dokumenten verwendet werden. Dies
findet Anwendung bei Problemen, die Informationen über die Wichtigkeit
verschiedener Fakten verlangen. Beispielsweise können wir die Häu-
figkeit der Fakten als Maß für die Wichtigkeit betrachten, ähnlich wie
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Häufigkeitsstatistiken im Information Retrieval verwendet werden. Der
Gebrauch des Fact Spotting zur Entdeckung der Wichtigkeit von Fakten
verbindet dieses Problem mit unseren Semantic Snippets, die als Eingabe
solche Informationen über die Wichtigkeit von Typen benötigen.

Fact Spotting hat weitere nützliche Anwendungen. Herkunftsinformatio-
nen in Wissensbasen sind beschränkt auf Dokumente, aus denen die Fak-
ten ursprünglich extrahiert wurden. Sind wir in der Lage, Wissensbasen
mit den Faktenvorkommen in zusätzlichen Dokumenten zu ergänzen, kön-
nen wir Anwendungen, die sich auf die Herkunft der Fakten verlassen,
verbessern, insbesondere automatische Wahrhaftigkeitsbewertung sowie
semantische Suchmaschinen, die auf Fakten arbeiten.

Wir entwickeln zwei Methoden zum Fact Spotting. Die erste verwen-
det ein hochwertiges Wörterbuch von relationalen Umschreibungen, um
Faktvorkommen mit hoher Präzision zu finden. Um die Trefferquote zu
verbessern, werden vermutliche Fakten ausgegeben, wenn unvollständige
Hinweise auf deren Vorkommen existieren und verwandte Fakten im
Dokument gefunden wurden. Unsere zweite Fact Spotting-Methode kehrt
diese Idee um: zuerst werden viele mögliche Fakten gefunden und dann,
basierend auf Konsistenzbedingungen, reduziert. Unsere Konsistenzbedin-
gungen umfassen Regeln für die Disambiguierung von Entitäten und für
Abhängigkeiten zwischen Wissensbasisfakten. Wenn beispielsweise ein
Dokument das Jahr eines Ereignisses erwähnt (z.B. Schauspieler gewinnt
einen Oscar), dann wird es auch Informationen über das Ereignis selbst
(z.B. Film, Kategorie) erwähnen. Eine solche Beziehung zwischen Fakten
kann oft von der Wissensbasis extrahiert werden, beispielsweise aus der
Verbindung zwischen Fakten in Freebase oder der SPOTLX Struktur in
YAGO 2.

Unsere Auswertung auf einem Korpus von biographischen Dokumenten
mit manuell annotierten Fakten zeigt, dass Fact Spotting sowohl eine hohe
Genauigkeit als auch eine hohe Trefferquote erreichen kann. Die Arbeit
über Fact Spotting wurde in begutachteten Workshop-Artikeln [131, 129]
veröffentlicht.
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CHAPTER 1
Introduction

1.1 Motivation

We live in the age of abundance of data. The size of the World Wide Web is
immense: already in July 2008 Google reported that its search engine found
more than 1 trillion unique URLs [5]. In addition to that, we are also gaining
access to huge repositories of scientific publications, newspaper archives, and
databases covering topics from protein interactions to movies. This impressive
amount of data can be useful only if we are able to find knowledge that we are
looking for. The first step in this direction was made by search engines operating
on text. While highly useful, they only operate on surface representation
and cannot genuinely understand the documents. In order to achieve further
progress we need to equip computers with knowledge, so that they can link
pieces of information scattered over multiple sources.

Initial efforts in building knowledge bases (also called knowledge graphs or
ontologies) were manual. The field of artificial intelligence developed Cyc [78]
by manually encoding facts and rules about the world. Another important
example of a manually created knowledge base is WordNet [48], which con-
tains linguistic information about English words and their senses. While such
manually created knowledge bases can be large and highly useful, progress in
information extraction (IE) allowed automatic creation of even larger knowl-
edge bases, such as YAGO [118], DBpedia [8], or Freebase [19]. Knowledge
bases are increasingly used by major search engines: Google’s Knowledge Graph
and Bing’s Satori allow the search engines to answer many information needs
directly, without having to read source documents.

With the wealth of data comes the old problem of navigating it. Therefore,
our first aim in this thesis is to develop a method for summarizing structured
information from knowledge bases. A big challenge in summarization is deciding
which information is important. The connections in a knowledge base alone
cannot tell us what is noticeable and salient to an entity and what is not. We
therefore require external sources of informativeness of types and facts. For
types such a resource could be compiled manually with Amazon Mechanical
Turk or obtained automatically from their occurrence in a text corpus or the edit
history of Wikipedia articles.

1



2 CHAPTER 1. INTRODUCTION

To obtain the same information for facts, we can use statistics about their
occurrences in a document corpus. This poses a challenge, however, because
the only occurrences of facts that we know are those which were found by
information extraction systems. This is limited to textual locations that are easy
to extract, discarding all those occurrences that are redundant or too difficult
for IE due to their complexity. To bridge this gap we propose the problem of fact
spotting which is linking known facts to their occurrences in new documents.
The task has many application beyond statistics gathering; they include KB
curation, truthfulness assessment, and document analytics at the semantic level.

1.2 Approach

Summarization of information in knowledge bases is particularly important in
semantic search engines, which provide users with a list of entities satisfying a
query. Such a list should be accompanied by short descriptions of each entity.
It is undesirable that the search engine only provides names of the entities or
overwhelms the user with all known facts. What we need instead are short
descriptions of entities, which we call semantic snippets. In order to generate
a snippet we must select a set of important facts about an entity. The kind of
information known to the knowledge base that lends itself particularly well
to generating snippets are entity types. Our approach is based on selecting
a small set of types of an entity. To this end we identify desirable properties
of a snippet and the types it should consist of. We propose two methods of
generating semantic snippets: one uses the SUBCLASSOF relation on types to
avoid redundancy; the other views types as sets of entities they contain and
uses an intersection based algorithm to find the best snippet. We also show
how informativeness of types can be obtained from resources external to the
knowledge base.

To solve the problem of fact spotting we propose two algorithms that identify
occurrences of known facts. The input to our system is a document, a selected
entity, and a set of facts about it. We use dictionaries of entity aliases and para-
phrases of relations to aggressively identify occurrences of the facts, aiming for
both high precision and high recall. Our methods make use of the dependencies
between facts to speculatively find facts in the presence of incomplete evidence,
and to prune incorrect matches if inconsistencies are found. We evaluate our
approaches on a set of biographical documents of varying style and length. Our
experiments include the application of fact spotting to knowledge base curation,
comparison to an information extraction system OLLIE, and evaluating how well
it performs in the task of named entity disambiguation, which is a subproblem
of fact spotting.

1.3 Thesis Contribution

The main contributions of the thesis are:

• Semantic Snippets. The first contribution of the thesis is the method for
summarizing information about entities using their types. We recognize
the properties that a good summary should have and develop algorithms



1.4. THESIS OUTLINE 3

for the generation of such summaries. Our summarization methods were
incorporated in an Ontology Browser and published as a demo paper:

• Tomasz Tylenda, Mauro Sozio, Gerhard Weikum. Einstein: physicist
or vegetarian? summarizing semantic type graphs for knowledge dis-
covery. 20th International Conference on World Wide Web (WWW).
2011.

• Fact Spotting. The second contribution of the thesis is a method for
linking facts in a knowledge base to textual documents — the problem
which we call fact spotting. Knowledge bases can store information about
provenance of facts, which describes how and from where the facts were
extracted. Our method augments it with fact occurrences in supplemen-
tary documents, which were not considered in the process of building
the knowledge base. Such links are useful for many applications which
include statistics gathering, truthfulness analysis, or text analytics at fact
level. Our work on fact spotting has been published in the following
workshop papers:

• Tomasz Tylenda, Yafang Wang, Gerhard Weikum. Spotting Facts in the
Wild. Workshop on Automatic Creation and Curation of Knowledge
Bases (WACCK). 2014.

• Tomasz Tylenda, Sarath Kumar Kondreddi, Gerhard Weikum. Spot-
ting Knowledge Base Facts in Web Texts. Workshop on Automatic
Construction of Knowledge Bases (AKBC). 2014.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 describes the re-
lated work, including knowledge bases, information extraction systems, truth
finding, semantic search, summarization, and named entity disambiguation.
Chapter 3 describes the summarization problem for knowledge bases. It presents
the summarization task, discusses desirable properties of semantic summaries,
and introduces two summarization methods. The structure of the knowledge
base alone cannot tell us which properties of entities are salient and should be
included in the summary. Therefore in Chapter 4 we describe Mechanical Turk
experiments on informativeness of types, and discuss how the Wikipedia edit
history can be used to mine the importance of categories. Chapter 5 describes
the work on fact spotting, which is the reverse of information extraction: given
a document and a set of facts we determine whether the facts are mentioned in
the document. Chapter 6 concludes the thesis and presents possible directions
for future research.





CHAPTER 2
Related Work

In this chapter we review the works which form the background for this thesis
or are related to our contributions. We start with a discussion of knowledge
bases (KBs). Many of them are constructed automatically, which makes them
inherently connected with information extraction systems (IE), which are also
discussed here. Large scale knowledge bases need effective systems for summa-
rization and exploration, which we discuss as well. The problem of sumarization
has been studied in different contexts, including information retrieval, visualiza-
tion, knowledge management, etc. We also present problems related to our fact
spotting task: named entity disambiguation, which can be solved jointly with
fact spotting; question answering, which can be solved using similar method-
ology; and truth finding and knowledge base curation which are downstream
applications that can benefit from fact spotting.

2.1 Knowledge Bases

Knowledge bases appeared in the fields of artificial intelligence and computa-
tional linguistics. The seminal work in the field is Cyc [78]. Cyc is a system that
tries to codify common sense knowledge to provide a critical mass of knowledge
needed for natural language processing and artificial intelligence applications.
It was created by manually encoding assertions in a logical language. One of
the aims of the project was to allow automatic harvesting of additional knowl-
edge. A system that automatically learns new facts was demonstrated in [89]. It
generates search engine queries to find values of unknown attributes of entities,
extracts them, and finally verifies whether they are true and consistent with
already known facts.

WordNet [48, 97] is a widely used lexical database of the English language,
which can be thought of as a machine readable dictionary. It connects words
with their meanings called synsets. WordNet knows about synonymy (multiple
words have the same meaning) and polysemy (one word has more than one
meaning). It contains morphological data, for example, derivational and inflec-
tional forms of words. Synsets are connected by links indicating hypernymy
(super-concept, e.g. maple and tree), meronymy (part of), etc. The links between
sub- and super- concepts form a taxonomy, which was used as the foundation
of the type system in YAGO [118, 119].

5
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Manually created knowledge bases appeared also in biomedical applications.
For instance, the Gene Ontology [7] was created to unify the knowledge about
genomes of eukaryotes, that has been rapidly growing in recent years. Unified
Medical Language System (UMLS) [18] is a database of terminology created to
enhance access to biomedical literature, for example, by listing all synonymous
names of proteins.

YAGO. YAGO [118, 119] is an automatically created knowledge base. The
logical model of YAGO is based on RDFS. Facts are subject-predicate-object
triples associated with fact identifiers. Reification allows expressing n-ary facts
and general properties of relations. YAGO extracts facts from semi-structured
parts of Wikipedia: categories and infoboxes. Although Wikipedia categories
form a directed acyclic graph, not all of them are proper types and not all links
correspond to subclass relationship. Categories describe concepts (e.g. physi-
cists), relations (e.g. people born in Ulm), topics (e.g. physics), and are also
used for administrative purposes (e.g. articles needing cleanup). YAGO uses the
first kind to identify which pages refer to entities; they are recognized using
a heuristics that conceptual categories appear in plural. Categories which de-
scribe relations are used to extract facts by matching them to a set of predefined
patterns (e.g. Rivers in Germany yields instances of LOCATEDIN). YAGO does
not try to clean up the category hierarchy into a true taxonomy, instead it lever-
ages the WordNet taxonomy by mapping categories to WordNet synsets. The
mapping algorithm compares modifiers and the headword in the category name
with words known to WordNet, and when the mapping is still ambiguous uses
the most common synset as the target. TYPE relations connect entities in YAGO
to types. Types are linked by SUBCLASSOF and form a directed acyclic graph.
Attributes of common Wikipedia infoboxes are manually mapped to relations
and provide an important source of facts. The mapping takes into account
infobox types, e.g. length in the context of a car means size and length of a song
means duration. Infobox types are also used to obtain types of entities. YAGO
uses WordNet and Wikipedia redirects to mine surface forms of entities, which
are available as the MEANS relation. Provenance of facts is stored in FOUNDIN

and EXTRACTEDBY relations indicating the origin of facts and the method used
to extract them. To ensure high quality YAGO employs type checking. Sampling
based evaluation showed accuracy of about 95%, with many errors originating
not from the extraction process, but from incorrect statements in the source
documents.

YAGO 2 [64] extends the original system by incorporating three additional
kinds of information. First, many facts are naturally associated with time; for
example, heads of states change and YAGO 2 knows time period when they are
in office. YAGO 2 assigns temporal dimension to facts and entities to capture
such information. Second, many entities and facts, such as music festivals
or battles, can be assigned a location. Facts are therefore given a geographic
component with data coming from GeoNames database (www.geonames.org).
Third, entities are associated with keywords collected from sources such as
anchor text in Wikipedia links. Together these three kinds of data are used to
build 6-tuple representation of data, coined SPOTLX (SPO + Time, Location,
and ConteXt).

www.geonames.org
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The most recent update to YAGO is YAGO 3 [86], which extends the original
system into a multilingual knowledge base.

Freebase. Bollacker, et al. developed Freebase [19]. Knowledge bases are tra-
ditionally centrally managed. On the other hand, Wikipedia contains semistruc-
tured data, which is collaboratively edited. Freebase tries to merge both worlds
by offering a collaboratively edited structured repository of knowledge. To make
this possible, Freebase includes a scalable tuple store which supports versioning.
The data can be queried with the Metaweb Query Language, MQL for short
(Metaweb Technologies is the company which originally developed Freebase).
The type system of Freebase is more lenient than those of other knowledge
bases, which is a desirable feature in a collaboratively edited resource (e.g. con-
flicting types are allowed since they can arise from different views of users).
More details about Freebase and how it models knowledge are provided in
Section 5.2.

Following the acquisition of Metaweb Technologies by Google, Freebase became
one of the data source in Google Knowledge Graph [116]. The Freebase team
announced in December 2014 that the project will be closed and the existing
data transferred to Wikidata project (www.wikidata.org).

DBpedia. DBpedia [8] is another example of a widely used knowledge base.
Its aim is to support collaborative grass-roots effort in building the Semantic
Web by providing a rich and diverse corpus of data. To this end DBpedia
makes three contributions: an information extraction framework working on
Wikipedia, a large RDF dataset, and a set of software tools to integrate the data
in applications. While Wikipedia is edited as text using the MediaWiki markup
language, some data is stored in relational databases to facilitate generation of
HTML pages. DBpedia extracts this data and information included in infoboxes
of important types. The entities are assigned identifiers based on their names in
the English edition of Wikipedia. The dataset can be accessed using Linked Data
conventions where URIs can be dereferenced over http protocol to retrieve
the RDF description about an entity. DBpedia can also be queried in SPARQL,
or downloaded in a serialized form. The data is interlinked to multiple other
data sets, including US census, DBLP, MusicBrainz, WordNet, Cyc, etc. The
software provided by the project facilitates embedding the data into Web pages,
searching it, and using it in applications.

Taxonomizing Wikipedia. The data contained in Wikipedia is domain inde-
pendent, up-to-date, and multilingual, which makes it a perfect candidate for
extracting structured knowledge. Ponzetto and Strube [109] use it to derive
a large-scale taxonomy. Their method uses multiple heuristics to identify the
taxonomic part of the Wikipedia category network. They include methods based
on the syntactic structure of the category labels and connectivity in the network.

Other Notable KBs. Menta [92] is a multilingual knowledge base, including
both entities and classes, built from all language editions of Wikipedia. Babel-
Net [105] is a multilingual knowledge base constructed from Wikipedia and
WordNet, and enriched by applying machine translation techniques to provide

www.wikidata.org
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lexicalizations for all languages. Never-Ending Language Learner (NELL) [100]
is a system which builds a knowledge base in an iterative fashion by extracting
new statements from Web pages and integrating them with an existing, previ-
ously learned facts. Probase [137] a large, general-purpose taxonomy focusing
on isA relation, which takes the probabilistic approach to representing knowl-
edge. Wikidata (www.wikidata.org) is a free (as in freedom), collaboratively
edited knowledge base operated by Wikimedia Foundation.

2.2 Information Extraction

Information Extraction (IE) is the process of isolating machine readable facts
from content that was originally created for human reading. For an overview of
IE see tutorials [12, 121]. In the following section we present an overview of IE
systems and problems related to IE, such as relations discovery and extraction
of relational paraphrases.

2.2.1 Fact Extraction

DIPRE. In one of the early works on Information Extraction Brin [20] presents
DIPRE – Dual Iterative Pattern Relation Expansion. DIPRE is an iterative algo-
rithm which is applied to extracting the book-author relation from Web pages.
It starts with a small set of seed instances of the relation, extracts new patterns,
and then uses them to collect new instances. While generating patterns from
occurrences is in general difficult, DIPRE uses a set of simple heuristics to gener-
ate good patterns, for example, pattern lengths are limited, and author names
and book titles must match predefined regular expressions. Pattern specificity
is measured in order to combat too general patterns. On the other hand too
specific patterns are not a problem, since they just lead to no extraction at all. In
the experiments a set of 5 books (from which only two produced any patterns)
led to over 15000 extractions.

Snowball. Agichtein and Gravano’s Snowball [1] improves over DIPRE, by
introducing a novel way of generating pattern. Confidence of patterns and
extracted relation instances are evaluated and low-confidence data is dropped.
Additionally a named entity tagger is employed in pattern matching. Experi-
ments, in which company-location pairs are extracted from a corpus of Web
pages, show that Snowball achieves better recall than DIPRE at similar precision
level.

TextRunner. Banko et al. [9] propose Open Information Extraction paradigm
(Open IE). The aim is to allow building systems that allow processing data
at Web scale, extracting all possible relational triples, and doing this without
any user involvement. This contrast with previous approaches that required
hand crafted patterns and obtained triples for limited number of relations.
Open IE was implemented in TextRunner system and later improved in follow
up works [10, 11].

OLLIE. OLLIE [90] is an Open Information Extraction system that addresses
two weaknesses of earlier works: it is able to extract relations expressed not

www.wikidata.org
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only by verbs, but also by other parts of speech, and it considers context
of extraction, so that beliefs and conditions do not contribute to erroneous
extractions. OLLIE learns a set of patterns for extracting relations and their
arguments and applies them to dependency parsed text. The process starts with
the seed set of 110000 ReVerb [44] extractions (to ensure quality they must
be extracted at least twice, and the arguments must be proper nouns). Seed
tuples are used to retrieve sentences from the ClueWeb corpus. Ideally, the
retrieved sentences would express the same relations as seed tuples, but this
in not always the case. To reduce errors, content words from seed tuples must
be connected by short dependency paths in retrieved sentences. It is important
that not only arguments, but also relations from seed tuples are matched to
retrieved sentences, because multiple relations can hold between two entities.
In the next step OLLIE learns patterns for extracting relations by comparing
relations in seed tuples with dependency paths in retrieved sentences. Learned
patterns can be purely syntactic or contain semantic and lexical constraints.
Care is taken to avoid patterns that would match paths containing words which
modify their meaning, e.g. X considered Y as a coach does not imply (Y, is coach
of, X), because the word considered changes the meaning of the phrase. OLLIE’s
extractions can be augmented with clausal modifiers, when they depend on a
condition, e.g. If he wins five key states, Romney will be elected President. Similarly,
extractions in the context of words such as believe are tagged with Attributed
To field. Experimental evaluation shows that OLLIE improves recall at similar
precision level to earlier ReVerb and WOEparse systems.

Canonicalizing Open KBs. Open information extraction yields triples in
which the arguments and relations are not linked to semantic identifiers,
whereas “closed IE” techniques output triples with arguments resolved to canon-
ical names. Galárraga et al. [53] study bridging the gap between the two by
canonicalizing entities and relations in the output of an open IE system. The
first step is to cluster noun phrases. It is assumed that a single name within
a document (e.g. Obama) always refers to the same entity (either Barack or
Michelle). Each mention consists of a noun phrase, url of the document where it
was found, and a set of relation-value pairs associated with the phrase referred
to as attributes (e.g. 〈was born in,Honolulu〉). Multiple similarity functions are
defined for such mentions; they include Jaccard similarity on tokens in mentions,
IDF-weighted overlap, Jaro-Winkler string similarity, URL- and attribute-based
functions, as well as combinations of them. The similarity functions are used
in a hierarchical agglomeration clustering modified for improved efficiency on
large data sets. Selection of the canonical name for a cluster of noun phrases
is done simply by highest frequency. The idea for clustering verbal phrases
is to first learn rules for equivalence of the phrases and then to enforce tran-
sitivity. Two verbal phrases are considered equivalent if between them there
is subsumption (@) in both direction, e.g. was born in @ ’s birthplace is and
’s birthplace is @ was born in. Subsumption rules are in turn learned by mining
them from the data. Finally, relation clusters are mapped to Freebase relations
in a similar process of finding equivalence between verbal phrases and Freebase
relations.
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iPopulator. iPopulator [76] is an information extraction system for automatic
population of missing Wikipedia infobox values. It automatically analyzes the
structure of infobox attributes, e.g. the number of employees in a company in-
fobox can be a number followed by an optional number, such as 5538 or 92000
(2008). iPopulator automatically creates training data by labeling Wikipedia
pages with known attribute values. Subsequently, conditional random field
(CRF) models are trained for extraction of attributes. The models are automati-
cally evaluated and the good ones, as measured by precision, are kept. Data
is extracted only from the beginnings of articles. The experiments compare
iPopulator against Kylin and K2 systems [134, 133].

Kok and Domingos [72] extract general, high-level concepts and relations from
triples extracted by TextRunner [9]. Their system uses Markov logic to perform
simultaneous clustering of objects and relations. StatSnowball [145] is an
information extraction system used in an entity search engine EntityCube [43].
Mooney and Bunescu [101] apply machine learning techniques (Relational
Markov Network) to information extraction. Experimentation includes various
domains: the system extracts facts about protein interactions, books, job of-
fers, and resumes. Minz et al. [99] use vast amount of data available in KBs
to automatically label training data for information extraction, which is the
paradigm known as distant supervision. First, entity pairs from Freebase are
marked in a document corpus, then a multiclass logistic regression classifier is
trained to do extractions. Features include words, POS tags, and labels assigned
by a dependency parser. Negative examples are generated from random entity
pairs. Distant supervision suffers from occurrence of incorrect relation patterns.
Multiple methods have been proposed to reduce this problem, for a survey
see [113]. Carlson et al. [27] use semi-supervised approach (some labeled
points and lots of unlabeled data) to simultaneously learn categories and rela-
tions. Judiciously chosen constraints on extracted data ensure that an iterative
information extraction algorithm does not exhibit topic drift. Omnivore [23] is
a system that performs model independent extraction. Most extractors, while
they are not tied to a specific topic, are not model independent, e.g. TextRunner
extracts triples from natural language text. At the same time some data is more
often represented in tabular form (e.g. GDP) and other in natural language
(biographies). To overcome this problem, Omnivore runs multiple, domain
independent extractors in parallel and aggregates their results. Koch et al. [71]
showed that relation extraction can be improved by using both named entity
linking and co-reference resolution for argument identification and making the
system type aware.

2.2.2 Beyond Triple Extraction

Temporal Ordering of Relations. Talukdar et al. [124] explore the problem
of finding a typical order of relations. While the problem of temporal scoping
aims to assign a time interval to facts, e.g. Bill Clinton presidentOf US (1993–
2001), the goal of temporal ordering is to mine typical constraints between
relations, e.g. a person must be born before he or she becomes a president,
or a director must make a movie before he or she is awarded a prize for that
movie.

The proposed approach is based on a conjecture that the narrative order of
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facts (i.e. order of occurrence in a document) is correlated enough with typical
temporal order to serve as a signal for learning the latter. The input to the
system is a set of relations to be ordered, a set of facts, and a corpus of
documents. YAGO2 and Wikipedia were used in the experiments. In the first
phase the system learns which verbs can be used to express given relations.
Next, the relative order of verbs is collected. The verbs are considered to express
simultaneous events if they occur in the same sentence, or one is considered to
express earlier event than the other if they occur in different sentences.

A graph with verbs and relations is built, where verbs are connected with
relations they express and other verbs based on the co-occurrence in documents.
Finally a label propagation algorithm is used to infer the before and simultaneous
constrains on relations, based on before and simultaneous relations on verbs and
their association with the relations they express.

The experiment show that averaging over large set of documents is beneficial,
and that the system is useful for the related task of temporal scoping of facts.

Relation Discovery. Hasegawa et al. [60] propose a method for discovering
arbitrary relations among named entities in a large text corpus. Applications of
the problem include summarization and question answering. The relations are
defined broadly and can mean affiliation, role, location, etc. The main advantage
of the described approach is that it does not need initial seeds, and hence is
not limited to a predefined list of relations. The paper describes a system based
on context clustering. It works in the following steps:1) named entity tagging,
2) extracting pairs with context, 3) calculating similarity, 4) clustering, and
5) labeling. The named entity tagger must annotate the output with classes.
Fine grained annotations are beneficial, e.g. breaking ORGANIZATION into
COMPANY, MILITARY and GOVERNMENT allows detecting more relation types.
Context, which is extracted, are the words between two entities. They are
normalized by stemming. Contexts are extracted only if the entity pair was
found in the corpus more than some threshold number of times. All contexts
(all intervening words) from all occurrences of a pair of entities are merged
into a bag-of-words. This representation is used to calculate cosine similarities
between pairs of entities. The clustering step employs these similarities in
complete linkage hierarchical clustering. In the labeling step most common
words occurring in the contexts are assigned as labels to clusters. The system
was evaluated on one year of the New York Times corpus. The relations from
PERSON-GPE (geo-political entity) and COMPANY-COMPANY domains were
manually labeled. The authors report that relations in COMPANY-COMPANY
domain were more difficult due to presence of multiple similar relations. The
context length was restricted to 5 words only, which helps avoid noise. The
authors hypothesize that the outer context, that is parts of the sentence before
the first entity or after the second one, may contain useful information for
discovering relations, but it would also amplify problems with noise. The labels
for relations which were evaluated contain both verbs (e.g. acquire) and nouns
(e.g. president).

PATTY. Nakashole, et al. present PATTY [104] – a large database of textual
patterns expressing relations connected by subsumption relation. The pattern
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extraction process starts by dependency parsing a corpus of text. Subsequently,
named entities are detected and disambiguated. Textual patterns are extracted
when a sentence contains two entities. The patterns consist of words on the
shortest path connecting two entities in the dependency graph obtained by
parsing. SOL patterns in PATTY consist of syntactic (S), ontological (O) and
lexical (L) features. They contain:1) words, 2) POS-tags, which are placeholders
for words of the right part-of-speech, 3) * sign, denoting any sequence of
words and 4) <type>, which is a placeholder for an entity of type <type>.
For example, a pattern <person>’s [adj] voice * <song> matches “Amy
Winehouse’s soft voice in «Rehab»”. The set of entity pairs which support the
pattern contains the pair (Amy Winehouse, Rehab).

Patterns can be generalized in many ways, but it is not clear which of them yield
meaningful results. PATTY generates all possible generalizations of a pattern
and keeps only those which do not change the set of entity pairs supporting
the pattern (soft constraint is used for robustness). Patterns can subsume other
patterns, for example, the pattern <politician> was governor of <state>
subsumes <politician> politician from <state>. Patty mines such sub-
sumptions and constructs a taxonomy of patterns (non-transitive DAG).

Experimental evaluation was performed on New York Times and Wikipedia text
corpora. Two type systems were used, one from YAGO2 and the other from
Freebase. It was observed, that more fine-grained and ontologically clean types
from YAGO2 yield better patterns than the types from Freebase. Experimental
evaluation shows both high precision of patterns and pattern subsumptions, as
well as high recall of relations.

Other works studying the problem of mining relational paraphrases include [102,
58].

WebTables. WebTables [25] is a very large corpus of tables extracted from the
documents crawled by Google. The tables are filtered so that only those which
contain data (as opposed to, for example, table used for layout) remain. Special
indexing and ranking techniques are developed to allow retrieval of data from
the table corpus.

2.3 Summarization, Exploration, and Search in Knowledge
Bases

2.3.1 Summarization for Knowledge Management

The works by Zhang, Penin and Cheng [143, 108, 31] consider the problem of
generating a small domain summary for the purpose of ontology retrieval. If
a user has a specific task which requires formalizing knowledge, for example
describing wine, an already existing ontology can be reused. The systems tackle
the task of finding a good existing ontology, which includes snippet generation.
We describe these works in details below.

Ontology summarization. Zhang et al. [143] proposed a system for summa-
rizing ontologies. When engineers look for an existing ontology which can be
reused, a specialized search engine provides them with many results which
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have to be quickly evaluated. Judging usefulness of existing ontologies requires
generating appropriate summaries.

The authors identify two desirable properties of a summary of an ontology:
first, it should be concise and indicative, which translates to constraints on its
size and relevance of included statements; second, it should be coherent and
extensive, which means lack of redundancy and good coverage of summarized
statements.

The summarization algorithm operates on RDF sentences, which are sets of
RDF triples connected by blank nodes. Blank nodes provide context which is
necessary to understand RDF statements and therefore RDF sentences cannot
be meaningfully broken down any further. RDF sentences can be connected
by sequential and coordinate links, if they share subjects, predicates or objects.
The kind of link depends on the parts of the RDF sentences which are shared.

The sentences in the RDF sentence graph are ranked with various vertex cen-
trality measures, such as in- and out-degree, shortest path centrality, PageRank,
HITS, and their variants. The final summary of an ontology is generated by
re-ranking the sentences in a fashion similar to the Maximal Marginal Rele-
vance introduced in [26]. This final step was introduced to ensure coherent and
not-redundant summary. The measures of both properties use the notion of
sequential and coordinate links introduced earlier.

The work was extended in the follow-up [108], which studies the same problem
of generating snippets of an ontology. It also operates on RDF sentences created
by linking triples through blank nodes. One of the contributions of the work
is the measure of similarity on RDF sentences, which is used to group related
sentences into RDF topics. The system presents the snippets as text using
a natural language generation component.

In a follow-up on [143] Cheng et al. describe [31] an ontology summarization
system. The system uses a novel method of computing salience of RDF sentences,
which is combined with query relevance and summary cohesion metrics. The
final summary optimizes a linear combination of goodness measures:

Goodness(o, S,Q) := (1− α− β) Salience(o, S)
+ α Relevance(S,Q)
+ β Cohesion(S),

where o is the ontology, S the summary and Q the query. In order to calculate
salience of RDF sentences, a sentence-term bipartite graph is built, where each
RDF sentence is connected to a term it describes, then a variant of PageRank
is run on the graph. Salience of a summary is the sum of PageRanks of its
constituents: Salience(o, S) :=

∑
s∈S PR(s). Relevance of the summary with

respect to a query is measured by keyword overlap between sentences s and
the query. The score for the whole summary is again the sum of scores of its
elements:

Relevance(S,Q) :=
∑
s∈S

TextSim(s,Q) =
∑
s∈S

|KWSet(s) ∩Q|
|KWSet(s)| .
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Finally the cohesion is measured by overlap of terms described by RDF sentences.
Let Desc(s) be the set of terms described by the sentence s, then

Cohesion(S) :=
∑

si,sj∈S s.t. si 6=sj

|Desc(si) ∩ Desc(sj)|.

The system was integrated into Falcons Ontology Search [30].

2.3.2 Entity Summarization

Diversity in Graphical Entity Summarisation. Sydow et al. [122] study the
role of diversity in graphical entity summarisation (GES) in entity-relationship
(ER) graphs. In the running example, nodes in the graph represent actors,
movies, and directors, and the edges relations between them. Multiple edges
are allowed, for example a person may direct and star in the same movie. Edges
can have weights which reflect their importance or other qualities, such as
novelty or credibility.

ER graphs can be explored by means of structured queries in SPARQL, but
for users unfamiliar with the schema, domain, or SPARQL language keywords
queries can be better. The most basic unstructured query on ER graph is: what
are the most important facts about a given entity? Summarization can hence
be viewed as query answering or information retrieval. Summarization on the
graph is also related to text summarization. The advent of modern mobile
devices with small screens calls for more work on presentation of structured
information when space is at premium (we are given some presentation budget).

Yet another view on summarization in ER graphs is by analogy to text IR – entity
corresponds to a query, ER graph to a document corpus and summary to the
result set. Diversity in the result set is analogous to high coverage of different
edge labels.

The focus of the work is on diversification in GES. Diversification helps when
the user intent is unknown, e.g. summary of Tom Cruise should contain both
facts from the private life (birth date, spouse) and professional life (films he
acted in).

Formally, the graphical entity summarization is stated as follows, given an ER
graph D, node q, and budget k, find a connected subgraph S of D containing q
and at most k edges. Two algorithms are presented: diversity-oblivious PRECIS
and diversity-aware DIVERSUM. Weights on edges are treated as an external
input. Facts in ER graphs constitute edges. The most important facts about an
entity are topologically closest, but there may be many of them. PRECIS simply
selects k edges that are closest to q (the distance is defined as the inverse of
the weight). In the experiments on a data set extracted from IMDB (movie
domain) and the query Tom Cruise the algorithm selects only edges labeled
actedIn, which is clearly not optimal. DIVERSUM restricts repetitions of labels
in the selected subgraph. The graph is divided into zones, such that ith zone
is i hops away from the query node q. Starting from the zone nearest to q the
algorithm iterates over label in order of decreasing frequency and adds edges
with minimum distance to the query node. A label can occur at most once
within each zone.
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Experiments were performed on a dataset extracted from IMDB (www.imdb.com)
and YAGO. Witness counts from [42] were used as edge weights. Some relations
and incorrect facts were pruned. Both algorithms were run on 20 selected actors
with budget k = 7 and k = 12. Gold-standard summaries were prepared using
Wikipedia infoboxes. Evaluation takes into account semantics of relations and
dependencies among them, e.g. if a summary contains a fact with actedIn
relation then it is counted as “hit” towards isA actor. The two presented
algorithms were compared against the gold-standard summaries as well as
against each other with help from human judges. Experiments show that the
diversity-aware approach outperforms the diversity-oblivious algorithm.

AGNES. Sobczak et al. [117] developed AGNES – a visualization algorithm
for entity summaries. The input to the algorithm is a small summary graph, for
instance, output from DIVERSUM [122]. The algorithm automatically computes
a layout which fulfills several desirable properties: 1) summarized node is in
the center of the layout, 2) other nodes are placed evenly around it, 3) nodes
close to the central node topologically, are also placed close to it, 4) multiple
edges and long textual labels are supported, 5) overlap of graph elements and
labels is avoided. The work was motivated by deficiencies of other general
layout algorithms, which in particular did not allow selection of a central node
and were unable to handle long node and edge labels.

AGNES starts by calculating a spanning tree of the graph rooted in the central
node. The tree is traversed in-order and natural numbers are assigned to non-
central nodes. The numbers determine the angle of the node position in radial
coordinates. The radius is calculated based on the distance of a node from the
root and the size of a subtree rooted at it. Thus the layout of the spanning tree
resembles a spider’s net. Finally, the remaining edges of the graph are added to
the tree.

Experiments performed on a crowdsourcing platform show that humans favor
AGNES over a general graph layout tool Gephi (gephi.org).

Templates for Summarization. Li et al. [81] studied the problem of auto-
matic generation of templates for entity summaries. Their method was applied
to mine sentence templates from introductions of Wikipedia articles, which
usually contain a short summary of the whole article. The method exploits the
fact that sentences used in articles are similar within categories, for example,
articles about physicists contain sentences about their alma mater, awards, con-
tributions, etc. Sample templates for physicist include ENT made contributions to
?, ENT is noted for ?, ENT won the ? award. Such human readable sentence pat-
terns contain placeholders for the entity and one or more arguments. Templates
are grouped by topics, for instance, the first two sample templates express the
same fact.

The templates are generated in two steps. Aspects (entity types, e.g. univer-
sity that a person graduated from) are assigned to words in summaries, then
frequent patterns are mined to obtain the templates. The key insight in aspect
identification is that the words in summaries belong to four categories:1) stop
words, 2) words specific to a category of entities, 3) words associated with
an aspect and 4) document (entity) specific. An LDA-based method is used to

www.imdb.com
gephi.org
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assign each word to one of the categories. Subsequently, sentences in summaries
are parsed, frequent subtrees are mined from the parse trees, and converted
to patterns. Additional steps ensure that the patterns contain placeholders for
entities and arguments and do not contain document specific words (i.e. words
specific to a particular entity).

2.3.3 Search and Exploration

Falcons. Cheng et al. [30] developed Falcons – a search engine and browser
for Semantic Web. The system crawled 7 millions documents containing more
than 250 millions RDF statements. Its functionality includes keyword search
for concepts and objects (entities), searching for ontologies, and ontology
recommendation. Search results for entities are not limited to a list of names,
but also include a short summary consisting of statements where it occurs.

The functionality of Falcons is build on the foundation of virtual documents. A
virtual document is created for each entity, it contains its names as well as the
names of neighboring nodes. The virtual documents allow leveraging existing
information retrieval techniques to provide search and ranking on RDF data.

Tabulator. Tabulator developed by Berners-Lee et al. [15] is a generic (not tied
to any particular domain) browser for linked RDF data on the Web. The user can
navigate data along predicates in a web of concepts. Tabulator recognizes two
modes of interaction with data: exploration mode resembles how we use WWW,
the user follows links to discover new nodes; analysis mode resembles money
management applications, which focus on sorting and visualizing data whose
structure is known. While the RDF data is a graph, Tabulator presents it as a tree.
This contrasts with other systems that use point and arrow representation,
which, while intuitive, is not space efficient. Additional views emphasize
specific RDF properties, e.g. map view presents geographical locations on a map,
calendar shows data in a calendar, etc. Tabulator automatically dereferences
URIs to recursively collect additional data. Some inference is performed, for
example, on owl:sameAs predicate, but this is limited by the necessity to keep the
performance acceptable (interactive), since the system runs in a web browser
on the client side. Tabulator was extended to also support write access to the
Semantic Web [16].

CATE. Tuan et al. developed CATE [127] – a system for context aware presen-
tation of entities. CATE shows entities on a time line augmented with other
related entities and events. For example Carl Friedrich Gauss is presented with
other mathematicians (e.g. Legendre, Riemann) and historical events, which
happened during his life (e.g. French Revolution). The notion of context in
CATE is defined as an object with three attributes: time, location and topic.
Contexts of an entity are obtained from its Wikipedia categories which match
certain patterns, e.g. 18th_century_mathematicians matches time 18th century
and topic mathematics. The data used in the systems is divided into three parts:
YAGO knowledge base, text of Wikipedia pages about entities, and a set of
images retrieved for the entities. The central part of CATE is a set of language
model based methods devised to rank entities with respect to contexts, and
contexts with respect to entities.
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BANKS. BANKS (Browsing ANd Keyword Searching) [17] was designed to let
users unfamiliar with query languages or schema use keyword queries to search
information in relational databases. A database is modeled as a graph with
tuples as nodes and foreign-primary key relations as edges. Query terms are
matched with attribute names and values . The answer to a query is a rooted
tree with a directed path from the root to each node selected by a keyword.
BANKS ranks the answers based on the connection between the tuples and their
importance measured by a method similar to PageRank.

MING. Kasneci et al. [67] consider the problem of mining informative entity
relationship subgraphs. Given a large graph, a set of k (≥ 2) query nodes, and
a budget b, the task is to find a subgraph with at most b nodes, which captures
the connection between query nodes. For example, given the knowledge base
YAGO [119] and two physicist, Einstein and Planck, find the connection be-
tween them. The paper proposes a method to measure informativeness of nodes
and edges in the graph and an algorithm to extract a subgraph connecting
the query nodes. It is argued that the link structure alone is not sufficient to
capture the informativeness in the graph, since it only represents a fraction
of the world. Therefore the authors resort to statistics obtained from a text
corpus to measure informativeness. Informativeness is obtained for entities
as well as for the edges. The edges represent endorsements, which propagate
importance from one entity to the other. In general it is not symmetric and
therefore edges are assigned different weights in both directions. MING runs
a PageRank-style algorithm on the entity relationship graph to propagate in-
formativeness. The informativeness of entities, obtained from the corpus, is
used as the probability of randomly jumping to the entity. After assigning the
informativeness, a subgraph connecting the query nodes is extracted. First
a recall-oriented pruning is performed to reduce the size of the graph. Then the
STAR algorithm [68] is run to obtain a tree connecting the query nodes. Nodes
of the tree are labeled + and nodes of degree 1 (which do not connect anything)
are labeled -. Labels are propagated based on the connection to already labeled
nodes. The final connecting subgraph is extracted from the nodes labeled +.
Experimental evaluation on a data set extracted from YAGO shows that MING
is superior to baseline CEPS [126].

Ranking queries on RDF graphs. Elbassuoni et al. [42] consider the problem
of ranking results for queries on RDF/ER graphs. Such graphs can be explored
using SPARQL queries, which may require result ranking, relaxation of queries
if there are too few results (for instance if the graph does not exactly match the
query), and support for keywords in the queries.

The work exploits the fact that RDF graphs are often extracted from semi- and
unstructured websites. RDF triples are augmented with witness counts, which
are the number of times a triple was seen in the corpus from which the data
originated. Additionally, the witness count is multiplied by the confidence of
extraction. Triples are also associated with keywords, which also have witness
count.

Queries are sets of triple pattern containing variables; they can optionally
contain keywords, e.g. Woody Allen produced ?x {murder lover}. Woody
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Allen directed ?x is a query for movies directed and produced by Woody
Allen where murder and lover are the theme.

Relaxation is performed by replacing constants with variables and dropping
keywords. Queries are ranked using language model developed for RDF graphs.
In contrast to traditional IR, there are no documents, every subgraph with the
right structure is a potential answer; another difference is the vocabulary gap:
query contains variables whereas answers contain constants.

ROXXI. The problem of finding SPO facts in documents has been studied in
the demonstration proposal by Elbassuoni, et al. [41]. The motivation is to
allow users who browse knowledge bases, through a graphical browser, keyword
search, or with SPARQL, to see the original documents which provided the facts
to the knowledge base. This lets users judge the correctness of the facts and
learn additional information which was not extracted.

Interaction with ROXXI start when the user submits an entity or SPARQL query
to retrieve facts. The facts, which may or may not form a connected graph, are
presented in a graphical form together with other neighboring facts from the
knowledge base and documents which support them. Documents supporting
the facts are ranked using a novel method based on statistical language models.
They are presented with query dependent snippets that the system generates.
When the user selects a document, occurrences of facts are highlighted. The sys-
tem takes advantage of the metadata in the knowledge base. It is required that
the extractor saves not only extracted facts, but also patterns used, documents
where the facts occurred, and their positions within documents.

Ranking heterogeneous entities. Zaragoza [142] et al. propose the problem
of ranking many entities of different types with respect to an ad-hoc query. For
example, a search engine can present to a user a heterogeneous set of results
consisting of documents as well as people, countries, dates, etc. The study
uses an annotated Wikipedia corpus as a source of entities. Given a query their
system retrieves a set of 500 passages from Wikipedia. The entities contained
in these passages are to be ranked. The real relevance of entities is provided
by human judges for 50 queries. The baseline for ranking of entities is the
maximum score of the passages that the entity was extracted from. The study
considers two more complex methods of ranking. First the authors describe
methods which use bipartite graph of passages and entities extracted from them.
The simple degree of an entity in such a graph performs better than the baseline.
The results can be further improved if the relative frequencies of entity types
are considered. For example country names are popular entities and therefore
they have high degrees in entity-passage graph. This degree can be discounted
by overall frequency of the entity type (country) in the corpus. The second class
of entity ranking methods considers correlations between Web search results
for an entity and the original query.

Facetedpedia. Li et al. propose [79] Facetedpedia – a faceted retrieval inter-
face for Wikipedia. The system takes a query, e.g. “us action film”, obtains
a ranked list of Wikipedia pages from an external search engine, and builds
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facets for browsing them, e.g. by actors or companies. The interface of Faceted-
pedia is query dependent and generated dynamically from Wikipedia categories.
This contrasts with prior works which focused on relational tuples and objects
with available scheme, where dimensions of retrieved objects are known upfront
and faceted interface could be precomputed.

The articles retrieved by the query are called target articles, and the articles they
link to are called attribute articles, for examples, an article about a movie can
link to the actors who played in it. The relation between a target article p and
an attribute article p′ is denoted by p′ ← p. A facet is a rooted and connected
subgraph of the Wikipedia category hierarchy. In a safe reaching facet each
category leads (through an attribute article) to a target article (no dangling
categories without any pages). A faceted interface is a set of safe reaching
facets. Navigational path is a path in a facet that ends on a target article
c1 → . . . → ck ⇒ p′ ← p. Faceted interface discovery problem is to find the
“best” interface for a set of pages returned by the query. The challenges include
defining a good function for the quality of a faceted interface and finding it
efficiently (it is query dependent, so it has to be interactive).

To navigate a faceted interface the user selects categories in facets, usually in
top-down fashion starting at the root and then selecting one of its children. The
user can also alternate between different facets. Selected categories form a con-
junctive query which narrows down the original set of retrieved documents. The
cost of a path c1 → . . .→ ck ⇒ p′ ← p is log |{p : p′ ← p}|+

∑
k log fanout(ck)

where fanout of a category is the number of its direct subcategories and at-
tribute articles. The cost of a facet is defined as the average cost of reaching
a target article through a path from the root plus a penalty for unreachable
articles. The best k-facet interface is usually not the cheapest k facets. Users can
jump between facets during navigation, and enumerating all possible choices is
unfeasible. In general, facets should not overlap much, this is captured with
average pairwise similarity of a k-facet interface. The similarity is defined as
a variant of Jaccard coefficient.

Facetedpedia searches the space of possible facets in three stages: 1) A subgraph
of Wikipedia categories which lead to target articles is extracted. They are
called relevant category hierarchy (RCH). 2) Top-n facets in RCH with lowest
navigational cost are found. The recursive algorithm avoids enumerating all
facets. 3) A k-facet interface is found from the set of top-n facets from the
previous step.

S3K. S3K developed by Metzger et al. [94] is a system for semantic-aware
retrieval of documents. The input to the system is a query in textual form
or a set of RDF triples. S3K system works in three stages. First, a document
corpus is pre-processed with an information extraction tool which finds facts in
documents (witnesses). When the system receives the query it translates it to
a set of RDF statements. Finally, witness documents are retrieved and ranked.
Two possible user intentions are recognized: 1) verifying whether the statement
is true, and 2) learning more details about the statement. Documents which
satisfy the first intention are called persuasive, and those which satisfy the
second are called on topic. The ranking model also takes into account the
reputation of the source document, as calculated by PageRank and clarity of
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statements in text, for example, a phrase was born in expresses unambiguously
a fact, whereas ’s home country can have other meanings (spent childhood there,
etc.).

S3K uses two dictionaries, one with a set of possible names of entities, and
another one with phrases indicating relations. Since the information extraction
was not the main contribution it is not discussed in detail and treated as a black
box. Document ranking is based on statistical language models and operates on
the statement level, i.e. documents are ranked with respect to RDF statements,
not words. Smoothing is used to avoid overfitting and account for missing
query statements. The probability of generating a statement from a document
takes into account, that that a relation can be expressed by many patterns
with different confidences. The system was evaluated on a part of ClueWeb09
corpus. The baseline system was Apache Lucene with statement queries treated
as standard keyword queries.

Le Monde. Huet et al. [65] link the knowledge base YAGO with an archive of
the French newspaper Le Monde spanning years 1944 – 1986. Such connection
allows understanding trends in the data in a way that would not be possible
with word frequencies alone (for study of a large corpus with word frequencies
see [95]). For example, semantic data about entities allows calculating what
fraction of politicians mentioned are female.

Madhavan et al. [85] consider the problem of integrating structured data into
a Web search engine. Challenges include integrating data coming from multiple
sources into a large repository and harvesting data from deep web, for example,
from web forms that allow querying databases of local services, businesses,
schedules, etc.

The extraction graph created by TextRunner is an approximation of the real
entity-relationship graph (names are not canonical). Cafarella et al. [24] study
how it can be used to answer relational queries.

Anyanwu et al. [6] propose SemRank, a method for ranking complex relation-
ship search results.

2.4 Results Diversification in Information Retrieval

Results diversification in information retrieval is a solution to two common
problems. First, some queries are ambiguous, for example the query jaguar can
mean a car, an animal, or a model of a guitar. Ideally, when the interpretation is
not known, search results for such queries should contain a mix of documents
for all interpretations (the other solution could be to personalize results based
on the most likely interpretation). Second, large text corpora can contain
duplicates and near duplicates, which may all be relevant to a query, but the
result of a search should still contain each document at most once.

Maximal Marginal Relevance. In one of the seminal works on diversity in
search Carbonell and Goldstein [26] present a method of combining query
relevance with novelty in text retrieval and summarization. While retrieval by
relevance alone is often appropriate, it is not the case in presence of multiple
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relevant documents which are redundant. The proposed method utilizes a linear
combination of relevance and novelty, coined maximal marginal relevance
(MMR). MMR is defined as

MMR := arg max
Di∈R\S

[
λSim1(Di, Q)− (1− λ) max

Dj∈S
Sim2(Di, Dj)

]
where Q is the query, R the set of retrieved documents and S the set of already
selected documents from R. λ is selectable by the user; small values are useful
for exploration of the results, larger values can be used to drill down a particular
topic (with possibly reformulated query). A study with 5 users demonstrated
that MMR is superior to text retrieval based on relevance alone.

MMR can also be applied to text summarization, where the problem of redun-
dancy is even more important, especially in multi-document summarization.
In the experiments with MMR summarizer documents are segmented into sen-
tences. Sentences which are most relevant to the query are retrieved, re-ranked
with MMR and top-k of them presented in the original document order.

Diversity for ambiguous queries. Agrawal et al. [2] study the problem of
diversifying search results when the query is ambiguous, e.g. “Flash” can be
technology used in the Web, an adventure hero, or a village. A query classifier
is used to obtain a probability distribution of intended categories of a query.
The objective is to minimize the probability that among top-k results the user
will not find any relevant. The crucial property of such objective function is
that once we have a document which is good for category ci it is better to add
documents relevant for other categories, than keep adding documents relevant
for ci.

Probabilistic Model for Fewer Relevant Documents. Chen and Karger [33]
show that diversity in information retrieval is a natural consequence of opti-
mizing a particular model of user information need. The probability ranking
principle (PRP), that is retrieving documents in descending order of relevance
probability, is optimal when the goal is to return as many relevant documents
as possible. Alternative goals are possible, for example the system may be
optimized for returning any relevant documents. Some queries, for instance
“trojan horse”, have many possible interpretations, under the PRP the most
common interpretation is considered and others skipped. The work proposes
a new success metric – k-call at n. It is one if at least k of top-n retrieval results
are relevant and zero otherwise. Since optimizing the metric directly leads to
an NP-hard problem, a greedy algorithm is proposed. In case of k = 1 it leads
to an iterative algorithm, where ith document is chosen to maximize the proba-
bility of relevance (like in PRP), but under the assumption that all document
retrieved so far (1 to i−1) are irrelevant. This can be seen as negative relevance
feedback. The side effect is increased diversity of the results, for instance, all
meanings of “trojan horse” are considered.

Ambiguity, redundancy, and evaluation metrics. Modeling relevance in
presence of ambiguous queries and redundant documents is the subject of
the work by Clarke et al. [35]. Evaluation metrics, such as NDCG, do not con-
sider ambiguity and redundancy. For example, retrieving a set of identical,
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relevant documents would yield perfect NDCG, but would not be preferred by
a user. The work models user’s information need as a set of information nuggets,
which may be, for example, questions that a retrieved document answers. Docu-
ment also contain nuggets and are deemed relevant if they contain at least one
nugget from the user’s information need. The article introduces an evaluation
measure based on NDCG, coined αNDCG. The new measure captures novelty
(avoiding redundancy) and diversity (resolving ambiguity) in search results. In
one of the experiments αNDCG shows that pseudo-relevance feedback decreases
the diversity of search results, which had been suggested by earlier works. Such
effect could not be measured with regular NDCG and other diversity oblivious
measures.

2.5 Truth Finding

Truth finding systems automatically decide whether a given fact is true or not.
While the problem is often ambitiously motivated with challenging tasks, such
as deciding whether the statement Obama is a Muslim is true or false, the
applications of truth finding systems are more utilitarian and common. For
example, they can be used to decide whether an information extraction system
made a mistake. Design of truth finding systems depends on assumptions about
the origin and nature of true and false facts. For example, one may assume that
in case of attributes, true values are similar to each other, but may be slightly
different due to abbreviations, this holds for instance in case of lists of authors
of books. Examples of works about truth finding include [84, 55, 140, 106, 39,
82, 83]. Below we describe some of the systems in more details.

Linguistic Features for Truth Finding. Nakashole and Mitchel [103] present
a truth finding system which exploits linguistic features to assess reliability
of a fact source. The underlying assumption, verified by Mechanical Turk
experiments, is that true facts are expressed in neutral language, whereas
subjective language often indicates that the statements are doubtful. The
approach uses subjectivity and bias lexicons to asses reliability of fact sources.

T-verifier. The system developed by Li et al. [84] takes as an input a statement
and using Web search decides whether it is true. In case it is false, a truthful
version of the statement is provided. The focus are factual statements, which can
be verified, as opposed to opinions. It is assumed that true versions of statements
exist in the Web and are more prevalent than their false counterparts. A user
submits to the system a doubtful statement, such as “Barack Obama is a Muslim”,
consisting of a topic unit (Barack Obama), and a marked doubt unit (Muslim).
In the first stage, T-verifier submits the topic unit as a query to a search engine
and considers all terms from the result pages as candidates for alternative units,
which could substitute the doubt unit in the statement (e.g. Christian). The
alternatives are subsequently ranked and the top-5 results are passed to the
next part of the system. The goal of ranking is to find alternatives, which have
the same topic as the doubt unit, but a different value, and are close in terms
of type/sense. The last requirement ensures that “Christian” is considered an
alternative to “Muslim”, but “president” is not. In order to rank alternatives
the authors propose several features based on occurrence of terms in search
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results, which capture how relevant they are with respect to the statement topic
and their similarity to the doubt unit. The final score is a linear combination of
features with coefficients obtained by running a genetic algorithm. The authors
showed that the top-5 results from the first stage are highly likely to contain
the correct alternative to the doubt unit (or the doubt unit itself, if it is correct).
The second stage of T-verifier re-ranks the output of the first stage. For each
of the-5 results a query is submitted to a search engine. The results are used
to build features for re-ranking. Some features from the first step are reused,
but they are calculated for the new query containing an alternative statement.
Other features include number of relevant pages retrieved and domains where
the statements occur, for instance, edu and gov are considered trustworthy. In
the second stage rankings by different features are combined with standard
Borda and Condorcet algorithms. Since rankers have different and measurable
accuracy, weighted versions of Borda and Condorcet are proposed as well. The
evaluation uses the data from TREC-8 and TREC-9 Question Answering track.

Corroborating Information. Galland, et al. [55] investigated reconciling
conflicting information from disagreeing sources. A real-world example of
this problem is retrieving professional contact information of a person, when
outdated information is available alongside the current data. Their model
assumes a set F = {f1, . . . , fn} of facts and a set V = {V1, . . . , Vm} of views
over facts. Views are partial functions from F to {T, F}. Since normally sources
state only positive facts, the negative facts are introduced through functional
dependence. For instance, if a source states that “Paris is the capital of France”,
then it implicitly says that Lyon is not. Facts are assumed to have some logical
value in the real world W . With each view the model associates its reliability,
that is how much it agrees with real world, and its ignorance which captures
how many facts do not have a value in the model. Facts are assigned a parameter
which describes how difficult they are to get right. The goal of the work is to
estimate the logical values of facts in the real world, the reliability of views,
and optionally the difficulty of facts. To this end, the authors developed three
algorithms that iteratively estimate the reliability of views and truthfulness of
facts. The quality of predictions made by the system was evaluated on synthetic
and real world data sets. Two real world data sets are extensively discussed.
The first comes from an online betting system Hubdub. It contains 357 question
in the domain of sports. The total of 3051 statements were made by 437 users.
The other data set is a general knowledge quiz of 17 questions with 4 – 14
possible answers for each question. The quiz was tried by 601 people, who were
allowed to skip some questions. The results of experiments show that proposed
algorithms are able to beat the baseline algorithm based on voting or counting
facts. The baseline has nevertheless performed reasonably well.

TruthFinder. Yin, et al. [140] developed TruthFinder – an algorithm for discov-
ering true facts from multiple sources. The authors argue, that trustworthiness
of information, which has been shown to be an important problem for users,
is not captured by ranking algorithms such as HITS or PageRank. The relation
between truthfulness of pages and facts is recursive: correct facts come from
trustworthy pages, and trustworthiness of websites can judged from the facts
they contain. Additionally, facts support other similar facts. For instance a facts
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J. Widom wrote book B supports a similar facts Jennifer Widom wrote book B. The
computational model proposed by the article rest on the following assumptions:
(i) there is usually one true value of a fact, (ii) the true fact has similar repre-
sentations on different pages, (iii) false facts are not similar, (iv) if a website
provides true facts for many objects, it will also provide true facts for other
objects. The TruthFinder algorithm iteratively estimates confidences of facts
and websites until convergence. The confidence of a website has a very simple
model – it is just the average of confidences of the facts it contains. The corre-
sponding formula for facts is more involved. It is developed in the following
steps: (i) a simple model of fact probabilities when pages are independent and
there is no dependency among facts is proposed, (ii) a correction for influence
between facts is added, (iii) another correction handles dependence among
websites (due to fact copying), (iv) another correction is needed to improve
the behavior of algorithm, when a fact is in conflict with another fact from a
trustworthy website. The experiments were performed on a dataset of computer
science books and authors extracted from online bookshops. It contains 1265
books with an average of 5.4 different author sets per book. 100 books were
randomly sampled and their real author sets were verified by a human. The
baseline for TruthFinder is voting. The accuracy of algorithms was measured
with methods designed for the problem. They cover cases when a name is
abbreviated or a middle name is missing and assign them lower score than for a
full name. The results of the experiments show that TruthFinder is better than
voting, and than data from the largest bookshop – Barnes&Noble. Additionally,
it is shown that ranking of bookshops with TruthFinder captures accuracy of
their catalogues better than their ranking in Google (with the query bookstore).

2.6 Named Entity Disambiguation

Named entity disambiguation, also known as named entity linking, is the
problem of linking mentions in a document to canonical named entities, for
example, to their Wikipedia IDs or knowledge base IDs. There is a broad
range of work in this subject; for a recent survey see [115]. The systems by
Bunescu and Pasca [22] and Cucerzan [36] disambiguate named entities by
exploiting the contextual information extracted from Wikipedia. TAGME system
by Ferragina et al. [49] focuses on disambiguating entities in short and poorly
composed documents, such as tweets and news. A more general problem
is Wikification [96, 98, 74, 111, 32], which is also linking mentions to their
canonical identifiers, but the mentions are not limited to named entities, and
can be common nouns such as “musician”.

Below we describe a state-of-the-art system, AIDA, which is of particular interest
to us, since its core algorithm, based on finding a coherent set of entity-to-
mention assignments, is related to our optimization step in fact spotting (see
Section 5.5). We also compare to AIDA the performance of the named entity
disambiguation subtask in fact spotting.

AIDA. AIDA [63, 141] is a system for named entity disambiguation. Input to
AIDA is an arbitrary text, which can include HTML markup, tables, etc. The
disambiguation methods relies on two key insights:
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1. Context similarity. Context of a mention is related to the mentioned
entity. If a name, such as Kashmir, is ambiguous, the context of a mention
should be compared against canonical documents about possible matching
entities (for instance, the Wikipedia pages about the region Kashmir and
the song Kashmir) to disambiguate it. This method is known to work well
for long documents.

2. Coherence. Entities mentioned in a document are related to each other.
Joint disambiguation can exploit this coherence. This observation im-
proves disambiguation in presence of many entities.

These key insights are combined with prior probability of a surface string
meaning an entity, that is, its popularity. It is estimated using the number of
times a name is used as a link to the entity page in Wikipedia. Entity mentions
are detected either by Stanford NER tagger [51] or given as an input (for
example, tagged manually). AIDA builds a graph of entities and mentions.
Mentions are connected to entities from YAGO with edges, whose weights
indicate the similarity of the mention context and the entity context. To this
end, for each entity a set of keywords is collected, which are compared against
mention context to yield similarity. The comparison can use weighted word
overlap, KL divergence, or any other measure. Entities are also linked and the
edge weight indicates the coherence, that is the likelihood that they appear
together. It is measured by counting incoming links in Wikipedia shared among
the entities. The graph is reduced in a greedy fashion by dropping entity nodes
with the lowest weight until each mention is assigned one entity.

2.7 Question Answering

The problem of question answering has been tackled by many systems. One of
the most prominent examples is IBM Watson [50]. The work which we consider
closely related to our fact spotting (Chapter 5) is DEANNA by Yahya et al. [138].
It translates questions to SPARQL queries by mapping phrases in the question
to semantic resources, such as entities, classes, and relations. We describe the
system in more details below. KB-supported question answering was also studied
in [14]. Fader et al. [46] developed a system for question answering over a noisy
collection of tuples extracted from the Web. Open QA [45] answers queries
using a combination of automatically extracted and curated knowledge bases.
A particular subproblem of question answering, which is related to our fact
spotting problem, is answer validation [112]. Answer validation is the process
of deciding whether a text snippet supports an answer to a question, which can
be used to select the best answer to a question from a set of candidates.

DEANNA. Yahya, et al. [138] developed DEANNA – a system for translating
natural language questions to SPARQL queries. The system takes as the input
a question, e.g. "Which female actor played in Casablanca and is married to
a writer who was born in Rome?", maps the natural language to semantic
resources and generates a query, which can then be answered by SPARQL
engine operating on RDF data. The problem is motivated by difficulty of writing
queries, which have to operate on complex datasets such as Linked Open Data,
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where even advanced users may not know canonical names of entities and
relations of interest.

While in general natural language and formal query languages allow complex
operations such as aggregations, negations, and comparisons, DEANNA limits
the scope of the problem to select-project-join queries. The main challenge is
mapping ambiguous phrases of natural language to semantic resources: entities,
classes and relations. The underlying knowledge base used in the experiments
is YAGO [64] linked with IMDB data.

DEANNA translates questions to SPARQL as follows:

1. Phrase detection and mapping Token sequences from the inputs are
linked to (possibly) many semantic items (entities, classes, and relations).
Sequences may overlap, e.g. both is married to and its subsequence
married will be linked with the same relation. Entity detection utilizes
YAGO’s means relation; relations are detected using a custom approach
based on ReVerb [44]. A special null phrase captures relations expressed
without any tokens, e.g. Australian movie.

2. Q-unit generation. Phrases are linked together into so-called q-units,
based on the output from dependency parser. Q-units are raw represen-
tation of dependencies between phrases. They are essentially triples of
phrases.

3. Joint disambiguation. In this step phrases linked through q-units are
mapped to semantic items by means of integer linear programming (ILP).
Use of ILP allows encoding complex constraints on the mapping. Typical
run-times of this step are a few seconds.

4. Query generation. The graph of phrases and semantic items together
with labels introduced in the disambiguation step is translated to SPARQL
queries, e.g. semantic node writer becomes a statement ?x type writer.

While DEANNA is a question answering system, the challenge it solves is mostly
a complex disambiguation problem. The system therefore closely resembles
named entity disambiguation (NED) frameworks such as AIDA. Similarity in-
cludes building a graph of phrases and semantic items (or mentions and entities
in AIDA), employing coherence function on entities, and reducing the mapping
graph in the ILP (or removing edges in AIDA).



CHAPTER 3
Entity Summarization

The Web and, in particular, knowledge-sharing communities such as Wikipedia
contain a huge amount of information encompassing disparate and diverse fields.
Knowledge bases such as DBpedia or YAGO represent the data in a concise and
more structured way bearing the potential of bringing database tools to Web
Search. The wealth of data, however, poses the challenge of how to retrieve
important and valuable information, which is often intertwined with trivial and
less important details. This calls for an efficient and automatic summarization
method.

In this chapter, we consider the novel problem of summarizing the information
related to a given entity, like a person or an organization. To this end, we utilize
the rich type graph that knowledge bases provide for each entity, and define the
problem of selecting the best cost-restricted subset of types as summary with
good coverage of salient properties. We also implemented a browser, which
allows exploring the knowledge base in a simple and intuitive manner, and
includes a demonstration of our summarization methods.

3.1 Introduction

3.1.1 Motivation

Knowledge-sharing communities such as Wikipedia represent a huge and sur-
prisingly reliable source of information in a wide variety of fields. Knowledge
bases such as DBpedia [8], YAGO [118, 119, 64, 86], or Freebase [19] are
a concise, formal representation of (specific pieces from) such encyclopedic
sources. To open up ways of using structured query languages for knowledge
discovery, effective techniques for querying have been developed. They include
augmenting queries with keywords, query reformulation to improve recall, di-
versification, and efficient algorithms for top-k processing [40]. By extracting
or tagging entities and their attributes in Web pages and linking them to corre-
sponding facts in a background knowledge base, this can be further leveraged
for semantic search on the Web.

Search engines for structured knowledge (in knowledge bases or gathered from
the live Web), such as Entity Cube [43], Google Squared, Wolfram Alpha [132],
sig.ma [128], NAGA [69], or Broccoli [13] tend to either give very brief answers,

27
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Figure 3.1: Google Squared features the same and fairly generic attributes for
all entities in the results set.

merely listing entity names, or overwhelm the user with the full set of facts that
they find in their underlying repositories. For example, when you ask for "Swiss
people", some of the above engines merely return a list of names. The user can
click on each name to see more facts about the person, including Web pages
that contain the entity, but this is a tedious way for knowledge discovery. Other
engines show all – often hundreds of – facts about all Swiss people that DBpedia,
Freebase, and other linked-data sources offer; this is a cognitive overload for
most users. What we need instead is a kind of semantic snippet per result entity,
highlighting the most salient facts about each but avoiding trivial or exotic
information. For example, for the Swiss-people result Albert Einstein, we may
want to see a compact summary saying that he was a scientist, won the Nobel
Prize, was born in Germany (but grew up in Switzerland), graduated at the
University of Zurich, and later was a professor at Humboldt University and even
later at Princeton.

Google Squared (Fig. 3.1) does return attribute-structured records as answers
to keyword queries – an adequate result granularity. However, the attributes are
the same for each entity in the result set. For the Swiss-people query, Einstein
is treated the same way as Roger Federer (a Tennis player): the presented
attributes are fairly generic properties like birth date, birth place, death date,
and death place. Another technique of tackling the problem of describing
entities is to retrieve textual passages from the original source used to build the
knowledge base [127, 41, 13], but these may not always be available.

3.1.2 Problem Statement

Explicit knowledge bases have very rich type systems, partly inferred from
Wikipedia categories, the WordNet taxonomy, and other sources of this kind.
For example, YAGO knows 38 semantic classes to which Einstein belongs.
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Additionally, the semantics of type relation augments the set of types of an
entity with all the supertypes, e.g. a physicist has also the type scientist and person
(see Fig. 3.3 for a detailed example). In case of the entity Albert Einstein the
38 types have more than 50 superclasses in the YAGO type system. Judiciously
choosing a small subset of these could return more or less the ideal summary
outlined above. Note that type/category names can often be viewed as encoding
attribute values, such as class NobelPrizeWinners denoting the fact HASWON→
NobelPrize. Conversely, we can see groups of entities with the same value for
some interesting attribute as a semantic type/class, such as BORNIN→ Germany
defining the type peopleBornInGermany. Because of this duality, we restrict
our approach for generating semantic snippets to selecting appropriate types
from the rich repertoire available in the knowledge base.

In most search- and exploration-related situations, a good summary of an entity
would contain between three and around ten properties. These could then
be refined by explicit user interactions on specific subtype dimensions when
needed. However, Yago and DBpedia have an order-of-magnitude larger number
of types/classes to choose from. This is illustrated by the type graph for Ronald
Reagan, as shown in a Yago browsing tool in Fig. 3.2. Note that the type graph
of an entity is usually not a tree, but forms a directed acyclic graph (DAG), with
subtype-supertype edges and a generic root type entity. For example, the type
mayor has two supertypes: politician and civil authority, which converge
in person.

The problem addressed in this chapter is the following: given the type DAG of
an entity and the desired number of output types, select the most informative
types. These types will then constitute a semantic snippet for semantic search
results.

3.2 Design Considerations

In this section we first give a short description of how knowledge bases are
organized and in particular how YAGO, which is the one we use for our purpose,
represents facts. We then identify the properties of good type-based summaries.

3.2.1 The Knowledge Base

YAGO contains facts extracted from semi-structured parts of Wikipedia (in-
foboxes and categories) and WordNet [48]. A small excerpt is presented in
Table 3.1. The named objects in YAGO can be classified into entities which repre-
sent persons, locations, organizations, etc., e.g. Albert Einstein and Univer-
sity of Zurich and types which form a categorization of entities, e.g. physi-
cist and Swiss physicists.

In the task of summarization we are particularly interested in the relations type
and subClassOf. The former is defined between entities and types, and the
latter between types. Using the type and subClassOf relations we can build
a direct acyclic graph representing all types of an entity. Fig. 3.4 presents such
a DAG for Aimé Argand. The subClassOf relation is transitive (a → b ∧ b →
c⇒ a→ c), but for clarity we do not show transitive edges in type DAGs.
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Figure 3.3: Direct acyclic graph (DAG) of types (entity: Max von Forckenbeck).
Shaded nodes were extracted from Wikipedia, unshaded nodes are implied
by subClass relation. Rectangular nodes come from Wikipedia, rounded from
WordNet. Edges show the subClass relation.

Subject Predicate Object

Albert Einstein bornIn Ulm
Albert Einstein bornOnDate 1879-03-14
Albert Einstein graduatedFrom University of Zurich
Albert Einstein hasAcademicAdvisor Alfred Kleiner
Albert Einstein type Swiss physicists
Swiss physicists subClassOf physicist
physicist subClassOf scientist
Wilhelm C. Röntgen graduatedFrom University of Zurich
. . . . . . . . .

Table 3.1: An excerpt from YAGO. Our summarization methods use type and
subClassOf relations.
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Figure 3.4: Type DAG for Aimé Argand. Rectangular nodes correspond to the
Wikipedia categories and oval nodes correspond to WordNet synsets. Some
nodes were removed for clarity.

3.2.2 Objectives of Summarization

We compiled the following list of desirable properties that any good summary
should have.

Conciseness. A good summary should not be too long. Depending on how the
summary is shown to the user, we consider two different measures of its size.
If the types in the summary are presented in a list with each item occupying
a single line, then we assign a unit cost to every type and enforce a simple
cardinality constraint on the number of types that may be selected. If the types
are presented as a list separated with commas and the total space occupied by
such a list should be limited, then the cost of each type is defined to be equal to
its length in characters.

Importance. There are types which carry valuable information about an en-
tity, e.g. the type physicist is crucial when we talk about Albert Einstein.
On the contrary, other types describe non-salient facts (left-handed person,
vegetarian). Since our summaries are meant to provide users with the most
significant facts, our method should favor the former kind of types. If instead
we were generating trivia rather than summaries, it would make sense to prefer
non-salient types.

Granularity. General types, which describe large categories of entities, e.g. per-
son or location should not be included in the summary. Similarly, too specific
types which describe a very small number of entities, e.g. 19th century physi-
cist born in Zug should not be included either.

Diversity. A summary should cover all aspects of an entity, e.g. {member of
the parliament, prime minister} is worse than {politician, physicist},
because it focuses only on one aspect (political career) of the described entity.

A natural summarization method could serve the user with the top-ranked types
according to some appropriate weighting function. Such a summary Si for
a given budget of i nodes would be a monotonic function in the sense of set
inclusion, i.e. it would hold that i ≤ j =⇒ Si ⊆ Sj . However, we argue
that this method would not deliver any good solution, as illustrated by the
following example. Consider the task of summarizing the type graph in Fig. 3.4,
while having only a limited budget on the number of types that can be selected.
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Symbol Meaning

T all types of an entity
σ ∈ T a type
S ⊆ T summary
k budget (types or characters)
D = 〈T,E〉 type DAG, (a→ b ∧ b→ c⇒ a→ c )
w : T → R+ weights of nodes (how good they are)
c : T → R+ costs of nodes (1 or length)
e : σ entity e has type σ

Table 3.2: Summary of notation.

Summaries that we find to be the best for cardinalities 1 to 3 are:

S1 = {scientist},
S2 = {scientist, inventor},
S3 = {inventor, physicist, chemist}.

If the budget is only one type, we prefer to use the more informative scientist
rather than too general person. When the budget is increased to two types,
we expand the summary with the type inventor. However, when our budget
consists of three types it is better to substitute scientist with physicist and
chemist. In our example it is impossible to extend S2 without introducing
redundancy, since any type logically implies all its supertypes (e.g. if an entity is
a physicist then it also has types scientist and person). In general, when
the budget is increased we do not just add more types, but choose different
types or split the ones which have already been selected (scientist is split into
physicist and chemist). Hence, simply returning the top-ranked types to the
user would not give satisfactory results.

3.3 Summarization Methods

We propose two methods of generating type-based summaries. The first treats
a type as a set of entities; a summary is built by finding a set of general types
which are dissimilar. The second proposed method views types of an entity as
a directed acyclic graph and finds the maximum weighted set of vertices subject
to a redundancy avoidance constraint.

A crucial pre-processing step in the summarization is establishing the quality
of available types. In order to allow tuning the specificity of types used in
the summary we devised a PageRank-based method of weighting types. The
second problem arising in our setting are types with missing qualifications.
For example, YAGO knows the type citizen, which by itself is meaningless as
opposed to a qualified version, such as citizen of Germany. We show how
this problem can be alleviated by using simple frequency-based method. Quality
and importance of types are also the subject of Chapter 4.

The requirement that a summary is small is captured by two possible constraints:

1. it has not more than k types (nodes),
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Figure 3.5: Distribution of type lengths (in characters) in YAGO. Modes of the
distributions are 7 and 18.

2. the total length of all types in the summary is not more than k characters.

We will write c(t) for the cost of including the type t in the summary. In our first
model all types are given the same cost equal to 1, in the second case, the cost of
a type is equal to its length in characters. This models the scenarios where types
are displayed one per line or in a comma separated list, as discussed before.
Fig. 3.5 presents distributions of type name lengths in YAGO. Summary of the
notation is presented in Table 3.2.

3.3.1 Intersection-based Method

The first method for summarization simply treats a type as the set of all entities
that it describes. For example, physicist will correspond to the set of all physicists
known to the knowledge base. We write e : σ if the entity e has type σ. The
principle behind our summarization approach is the following problem: a user
is given a summary and the task to guess the entity. We assume that the user
knows all possible entities and their respective types, as well as the subClassOf
relation. The probability that he guesses correctly is

Pr[correct|σ1, . . . , σk] = 1
|{e|e : σ1 ∧ . . . ∧ e : σk}|

.

That is, 1 divided by the number of entities that can have the given summary.
For instance, if the summary is {president of the US, member of the Republican
Party}, then the probability is 1 divided by the number of the presidents from
the Republican Party. Stating our goal in such way leads to the following
optimization problem:

min
S⊆T

|
⋂
S| (3.1)

s.t.
∑
σ∈S

c(σ) ≤ k

where the types are treated as sets of entities that they describe. We will refer
to the summarization method based on the above problem as Min. Intersection.
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DB CA

Figure 3.6: Summarization with types as sets: Jaccard coefficient is minimized
by {A,D}, but we prefer {B,C} (the budget is two sets).

Solutions to (3.1) often contain peculiar types with a small number of members.
In order to overcome this issue, we require additionally that the summary
should not only have a small intersection, but it should also consist of large sets.
We could solve this problem directly, by imposing a constraint on the size of
sets:

min
S⊆T

|
⋂
S| (3.2)

s.t.
∑
σ∈S

c(σ) ≤ k

|σ| ≥ n ∀σ ∈ S

We can go further and filter sets not only by their size, but also based on the
user’s knowledge, that is we allow small sets if we know that the user knows
them, such an approach would yield personalized summaries. Clearly, every
algorithm that solves (3.1), can be applied to (3.2) after pruning the types,
which violate the constraint on size.

To avoid choosing the parameter n for the cut-off we can incorporate type sizes
in the objective function by minimizing the Jaccard coefficient instead of the
intersection:

min
S⊆T

|
⋂
S|

|
⋃
S|

(3.3)

s.t.
∑
σ∈S

c(σ) ≤ k

Minimization of the Jaccard coefficient can, however, lead to an imbalanced
solution as shown in Fig 3.6. Including a small and a large set in the solution
leads to small intersection, due to presence of the small set, and large union,
due to the large set. We solve this problem by modifying the Jaccard coefficient
in a way, which prefers balanced set sizes. Instead of using the union in the
denominator, we choose the size of the smallest (that is, the most specific) type
in the solution, thereby constraining all sets in the solution to be general. The
final formulation of our problem is as follows:

min
S⊆T

|
⋂
S|

minσ∈S |σ|
(3.4)

s.t.
∑
σ∈S

c(σ) ≤ k

In this way given an entity with the type set T we choose subset S of T , such
that: i) its intersection is small, and ii) the types are of medium cardinality.
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The first property gives us the diversity of the summary, e.g. if a person is
both a musician and scientist, we will choose types which describe each aspect
of their career. The second one ensures that the types we choose are not too
general (e.g. person) or too specific (e.g. German quantum physicist). We
will refer to to the summarization method based on (3.4) as Mod. Jaccard.

We solve the minimum intersection problem (3.1) with the greedy algorithm
presented in Alg. 1. We build the solution by accumulating sets which remove
most elements per cost unit from the current intersection I. The optimal set at
each step of the greedy algorithm is selected in line 9. We make sure that we do
not add redundant sets to the solution by testing in line 12 if the set removes
at least one element from the intersection. To solve the Mod. Jaccard problem
we iterate over cardinalities of available types s ∈ {|T | : T ∈ U} and solve the
Min. Intersection on U restricted to sets of size at least s. We present the full
algorithm in Alg. 2.

Algorithm 1: Greedy algorithm for the minimum intersection problem.
Data: U – family of sets, b – budget, c(·) – cost function

1 Proc MinIntersection(U ,c,b)
2 begin
3 Solution := ∅
4 I :=

⋃
U

5 cost := 0
6 U := {S ∈ U : cost+ c(S) ≤ b}
7 while U 6= ∅ do
99 T := arg maxS∈U |I\S|c(S)

10 U := U \ {T}
1212 if I \ T 6= ∅ then
13 Solution := Solution ∪ {T}
14 cost := cost+ c(T )
15 I := I ∩ T
16 end
17 U := {S ∈ U : cost+ c(S) ≤ b}
18 end
19 return Solution
20 end

3.3.2 Graph-based Method

Our second formulation of the summarization task casts it as an optimization
problem on a graph. We work with graphs such as Fig. 3.4 and Fig. 3.3. First,
we assign to types positive weights w : T → R+, which reflect how well they
describe the summarized entity (good nodes have high values). Then we select
a maximum set of vertices that does not exceed the budget allocated for the
summary and whose elements are not redundant.
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Algorithm 2: Algorithm for the Mod. Jaccard problem.
Data: U – family of sets, b – budget, c(·) – cost function

1 Proc ModJaccard(U ,c,b)
2 begin
3 Solution := null
4 objective := −∞
5 for s ∈ {|T | : T ∈ U} do
6 Us := {T ∈ U : |T | ≥ s}
7 MI := MinIntersection(Us,c, b)
8 if |MI|/s < objective then
9 objective := |MI|/s

10 Solution := MI

11 end
12 end
13 return Solution
14 end

Type Weights

It is reasonable to assume the following about types on a directed path in
a graph: the weights first increase until they reach the maximum for the path
and then decrease. This corresponds to going from very specific types to the
best one and then to too general ones, e.g. quantum physicist → physicist
→ scientist → person.

In order to find appropriate weights for types, we exploit the fact that the
entities in YAGO were extracted from Wikipedia and therefore we can easily
obtain the lengths of their main articles (in bytes). We use the average article
length as a proxy for importance of a type. This works well for types which are
equivalent to categories in Wikipedia. YAGO contains also types that originate
from WordNet (see Fig. 3.3). However, since almost all leaf types of entities
are derived from Wikicategories, we can easily propagate the weights along the
subClassOf edges to the internal WordNet types. We compiled the following
list of properties, which describe how the weights should be propagated in the
type DAG:

1. The types low in the hierarchy should have large weights as they are more
precise. Abstract types should be assigned low weights.

2. If a type has multiple children (in a type DAG of a single entity) its
weight should be amplified, e.g. in Fig. 3.4 the weight of scientist should
be boosted, because it has two children, which shows that it is more
important for the entity.

3. A single parameter should control the trade-off between choosing types
low and high in the hierarchy,

To satisfy the above desiderata we developed a weight propagation method,
which is based on a random walk on the type DAG. The walk starts at a leaf with
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probability proportional to the average length of its Wikipedia articles (denoted
by awl(·)). At each node we i) either restart the walk (jump to a leaf) with
probability α (or 1 in sink nodes), ii) or, with probability (1 − α), we follow
one of the outgoing links of the node. Since at the sink nodes we cannot follow
outgoing links, the probability of jump is 1. The probability that we are in node
v is

P (v) = Pjump(v)
(
α
∑

w not a sink

P (w) +
∑
w sink

P (w)
)

+ (1− α)
∑

w∈children(v)

P (w)
outdeg(w)

where

Pjump(v) =
{
awl(v)/

∑
w awl(w) if v is a leaf node,

0 otherwise.

In this way, weights are propagated along directed paths in the graph and are
amplified where two or more paths converge.

Note that the weights of the Wikicategories are calculated independently of the
entities they describe; Nobel laureates in Literature has equal weights for
Ernest Hemingway and Winston Churchill, who is better known as a British
Prime Minister, but also received a Nobel Prize for Literature. Our propagation
method will however give more weight to internal nodes of the type DAG, if
they have many descendants. For example, Albert Einstein will have a large sub-
tree of types rooted in scientist, which contains types such as theoretical
physicist and cosmologist. Therefore, the weights of the internal nodes in
the graph are not independent of the entity, which is a desirable property.

In addition to finding too general, too specific, or unimportant types we also
need to recognize types which lack an argument, e.g. citizen versus citizen
of Germany, or member versus member of the European Union. The problem
was already discussed in [75], but their results are applicable mostly to the
Japanese language. In our system we use a simple frequency-based method
to find types with missing arguments. We calculated the total number of
occurrences of the noun, and the number of occurrences with an argument
pattern like: <noun> of, ’s <noun>, (his|her|their|its) <noun> in a 5-gram
corpus generated from ClueWeb09 collection (provided by Ralf Schenkel).
The ratio of the two values is used to decide whether an argument is needed.
If a type requires an argument it is removed from the type DAG in the pre-
processing step before running summarization on an entity.

Finally, YAGO provides a list of types which are considered very abstract. Such
types are located close to the root of the type hierarchy and divide it into broad
categories such as living thing, object, and so on. We simple remove them
from the type DAG in pre-processing.

Optimization Problem

Our graph-based formulation of summarization problem is based on the max-
imum independent set problem. Given a graph G = 〈V,E〉 a set of vertices
U ⊆ V is independent (also called stable) if and only if no two vertices from
U are connected by an edge, i.e. ∀u, v ∈ U : (u, v) /∈ E ∧ (v, u) /∈ E. The
problem can be generalized to maximum weight independent set (MWIS) by
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Figure 3.7: Type summarization with k-MWIS. Shaded nodes represent optimal
summaries of size 3 and 2.

assigning weights w(·) to the vertices in the graph. The maximum independent
set problem is NP-hard [56].

Relation subClassOf has transitive semantics, therefore we assume below that
the type DAG is transitive (a→ b∧ b→ c⇒ a→ c). Since a type always implies
all its supertypes, a summary should not contain a pair consisting of a type and
its supertype, therefore it must be an independent set in the transitive type DAG.
YAGO stores the type DAGs without the transitive closure. An independent pair
of vertices in a transitive graph, corresponds to a pair of vertices which are not
connected by a directed path in the transitively reduced graph.

An optimal summary will have a maximal weight among all summaries obeying
the constraints on the size. An example is presented in Fig. 3.7. Formally, we
solve the following optimization problem:

max
S⊆T

∑
σ∈S

w(σ) (3.5)

s.t.
∑
σ∈S

c(σ) ≤ k

S is independent

Nodes are assigned weights as described in the earlier paragraphs. The summa-
rization algorithm chooses a subset of types of an entity, such that: i) the cost of
the set is smaller than the budget, ii) the sum of weights is maximized, iii) no
two types are connected by a directed path. The last requirement ensures that
we do not choose redundant types, e.g. quantum physicist and scientist.
The optimization problem itself does not have any tunable parameters, but the
weighting method that we used has one parameter which governs the balance
between general and specific types. Hence we are able to tune the method to
our preferences.

We were neither able to prove NP-completeness of above problem, nor give
a polynomial time algorithm to solve it. In general the maximum weighted
independent set problem (MWIS) is NP-complete. Our graphs are however
transitive and therefore MWIS can be solved in polynomial time [57]. The algo-
rithm cannot however be applied to the problem with the cardinality constraint
(|S| ≤ k). On the other hand, if all weights and costs are equal, the problem
stays in P (take k vertices from the solution to MWIS). Furthermore, if the costs
are uniform and the constraint on cardinality is transformed into a penalty term
and added to the objective function, we obtain an instance of MWIS problem,
which is again solvable in polynomial time. Yet another possibility is to restrict
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the class of graphs to transitive ∩ cographs, which can be characterized by
absence of induced P4

1. The problem can be solved then in polynomial time,
using modular decomposition of graphs. The restriction is however too strong –
there can be type graphs which contain induced P4.

Our implementation solves the problem exactly using JaCoP [73] constraint
programming library. We discuss the software architecture in Section 3.5.

3.4 Ontology Browser

To demonstrate our approach to summarization and exploration of knowledge
bases we developed a browser for YAGO. The browser is entity- and type-centric,
that is, the user browses entities one at time and the types are in the center of the
interaction. We present the entity relation graph in a standard user interface tree
view, which offers intuitive navigation, easily expands and collapses parts of the
graph, and uses little screen space. Finally, we implemented the summarization
algorithms within the browser, which facilitates interactive evaluation of the
summarization algorithms.

3.4.1 Browser Interface

The main window of the browser is shown in Fig. 3.2. In the beginning the user
has to choose an entity by selecting it from a list, entering its unique identifier,
or by using the built-in search box. The application shows the type DAG of
the entity in the center of the screen, its relations in the tree on the left, and
additional information in the bottom.

Relation View

Let us look at the relation view in the example (Fig. 3.2). The top node is the
entity selected by the user. Its direct children are the relations and the next
level contains their arguments, e.g. Ronald Reagan –ACTEDIN→ Beyond the Line
of Duty. The structure is recursive, that is the children of Beyond the Line of
Duty are the relations, which have it as an argument. All entities and values are
show in black. The relations can be red, blue or green. Red relations should be
read top-down, e.g. Ronald Reagan –ACTEDIN→ Beyond the Line of Duty, blue
relations have the opposite direction, e.g. Lewis Seiler –DIRECTED→ Beyond the
Line of Duty. Green relations describe metafacts (facts about facts). Each fact
in YAGO has a unique identifier, e.g. 400111025: Ronald Reagan –ACTEDIN→
Beyond the Line of Duty. The metafacts use these identifiers to refer to facts they
describe, e.g. 400111025 –FOUNDIN→ en.wikipedia.org/wiki/Ronald_Reagan.

The way in which we present the relations has several advantages over graph
views, similar to the one used for type DAGs. First, it is easy to implement in
various programming environments, since it uses only the standard tree widget.
Moreover, the users find it easier to use familiar user interface elements also
used in other applications than a custom graph view. The second advantage is
that tree views efficiently use screen space and allow the user to easily expand
nodes and collapse non-interesting parts of the graph.

1P4 is a path on 4 vertices: a→ b← c→ d or a← b→ c← d
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The relation view part of our browser is knowledge base agnostic, that is, it does
not make any assumptions about the data. We on require that the representation
has the subject-predicate-object form and the facts are assigned identifiers to
allow meta-facts (facts about facts). Even the fact identifiers and meta-facts
are optional. The interaction with relation view can be easily duplicated with
a different knowledge base.

Contextual Information

In contrast to the relation view, the contextual information presented in the
bottom box of the browser is mostly specific to YAGO. The information presented
is basically a short report about an entity or a type. At the beginning of the
interaction the box displays information about the current entity. This can
be changed by clicking on a type in the center of the browser, or selecting
a different entity, for example in the relation view. Reports about entities
(Fig. 3.8(a)) contain statistics calculated from YAGO, such as the number of
types of the entity, and from external sources, such as the article length in
Wikipedia. We also include the summary of the entity obtained with currently
selected summarization method and debugging information useful for improving
summarization. Contextual information about types (Fig. 3.8(b)) contains
statistics from YAGO, such as the number of subtypes, additional data for
WordNet-derived types, e.g. their definitions, and the lists of sample subtypes
and instances. The contextual information box functions much like a Web
browser, all types and entities presented in blue, underlined font are clickable.
For example, clicking on a sample entity of a type moves the user to the report
about the entity. The chain of visited reports is stored and can be navigated using
the back and forward buttons, exactly like in a Web browser. The architecture of
the browser makes it easy to add new information to the reports.

3.4.2 Summarization

The browser shows the results of summarization of an entity on the type DAG.
The panel on the left controls which summarization algorithm is to be used.
The user can switch between no summarization, the set-based algorithm, and
the graph based algorithm. The interface allows to select a cost model based
on the number of types or their lengths, as well as some additional parameters,
e.g. the trade-off between specific and general types in the second algorithm.
A sample summary is shown in Fig. 3.2. The nodes with the red outline were
selected in the pre-processing phase and passed to the summarization algorithm.
Subsequently, the summarization algorithm chose the summary, which consists
of the red nodes.

In the example in the Fig.3.2 we requested a summary of the length at most
3 types. The filtering stage used in this example allows only the nodes which
are leaves or parents of leaves. The summarization algorithm chose three types:
president, politician and American film actors. Clearly, the summary
includes the most important types – president and politician. It is diverse,
because it mentions that Ronald Reagan was an actor, which is a valuable fact,
as not many politicians are also actors. Additionally, we avoided selecting
uninteresting types like American adoptive parents and too general ones
like leader.
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(a) Entity Context. The report contains basic information about the types of the entity, the length of
its article in Wikipedia, and detailed information about the summary.

(b) Type Context. The report contains statistics related to YAGO, such as the number of subtypes,
WordNet data, such as type definition, and lists of sample subtypes and entities.

Figure 3.8: Contextual Information in the Ontology Browser.
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3.5 Software Architecture

Our ontology browser is implemented in Java programming language, which
allows portability between Linux and Windows environments, as well as running
the application conveniently within Web browser as an applet. The YAGO
knowledge base is stored in PostgreSQL database on a server. The ontology
browser retrieves data from the server only when it is needed. To decrease
communication cost further we cache already retrieved data for future use.

To facilitate easy development of summarization algorithms our Ontology
Browser defines a Java interface that classes providing summarization methods
should implement. The tunable parameters are marked with Java annotations
(form of metadata attached to the code). Our browser analyzes the annotations
at run-time to generate user interface elements that manipulate the parameters
of the summarization method, for example, Cost Model and Type Filter panels
in Fig 3.2 are generated at run-time from the annotations in the code.

The graph-based summarization method is implemented using JaCoP [73]
constraint programming library. Constraint programming frameworks such
as JaCoP, Gecode [123], finite domain solver in GNU Prolog [38], and others
offer a high level language for expressing complex combinatorial problems
and solving them in an efficient way. An alternative is to use integer linear
programming (ILP) and translate the constraints into numeric inequalities.
See [21] for practical examples of encoding logical constraints in ILP. Since
our instances of k-MWIS are small the performance was not an issue and
we chose JaCoP for two reasons. First, constraint programming allows us to
model problems using high level constructs such as graph, sets, and logical
formulas, which leads to code both easy to understand and modify. The second
reason is that virtually all Java solvers for integer linear programs, for example
Gurobi [59], interface libraries written in C/C++ and compiled to native
machine code (instead of portable Java bytecode). A notable exception is
the Oj! Algorithms library (ojalgo.org). While such approach leads to better
performance, it makes programs less portable and is a significant obstacle
when developing applets for running within Web browser or servlets hosted
on platforms such as Tomcat (tomcat.apache.org). The fact spotting problem
described in Chapter 5 also resulted in an optimization problem. In order to
develop pure Java system, we shortly tried ILP solver from the Oj! Algorithms
library, and, since our problem could be formulated as a maximum satisfiability,
also the Sat4j library (www.sat4j.org), which is used for library dependency
management in Eclipse. We did not, however, follow this approach, since
the results we obtained did not match Gurobi in terms of speed or quality of
approximate solutions.

3.6 Evaluation

We evaluated our summarization methods on a set of 61 entities known to
YAGO. The set contains entities from different domains such as politicians,
artists, companies, etc. Our summarization methods support two cost models
proposed earlier: uniform cost for all types and variable cost representing space
occupied by a type in the summary, which in our case is just the length of the

ojalgo.org
tomcat.apache.org
www.sat4j.org
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type name in characters. We therefore evaluated our algorithms in two settings:
the total size of the summary can be at most 3 types or 45 characters.

Measures. To measure the quality of the summaries we assessed the following
three aspects, which reflect our desiderata from Section 3.2.2:

1. diversity,

2. importance,

3. granularity.

In order to measure diversity we count the number of non-redundant types.
For example, in the summary physicist, scientist, politician only 2 out of 3 types
are non-redundant, since physicist implies scientist. While redundancy in our
algorithms means that one type is a subclass of the other, in the evaluation
we treat also other closely related types as redundant. For the importance we
report how many types in the summary carry valuable information about the
entity. Finally, to evaluate granularity we count how many types are not too
specific or too general. To make the values comparable across different entities,
we divide them by the total number of types in the summary.

Baseline Methods. We compared our proposed summarization methods against
two baseline approaches. The first natural baseline for summarization is to
order the types by importance and serve the user with top-k most important
types. In this case we use our type weighting based on average article length in
Wikipedia to measure the importance of types. The second baseline approach is
the method based on the minimum intersection (problem 3.1).

Results. The results of our experiments are presented in Table 3.3. We ran the
two baselines described above (Top-k and Min. Intersection) and two proposed
methods: k-MWIS which is the graph-based summarization solving the opti-
mization problem (3.5) and modified Jaccard coefficient (Mod. Jaccard), which
solves (3.4). We report the measures described above – diversity, importance,
and granularity averaged over our test set of 61 entities. Since all of them are
crucial for a good summary we also report their sum (D+I+G). Good granular-
ity of types is to large extent obtained by careful selection of types which are
fed to the summarization algorithm. Therefore we also report the sum of only
the diversity and importance, which takes the pre-processing component out of
the picture.

Our proposed methods compare favorably against the baselines in terms of
the proposed measures. They achieve the two highest combined scores for
both types of budget constraints. The worst performer is the natural Top-k
baseline, which falls short especially in terms of diversity and importance of
types included in the summary. On the other hand the Min. Intersection method,
which is a simplistic version of Mod. Jaccard, achieved the best diversity on
3-type-long summaries. It is also the second best method when we combine
diversity and importance on 45-character summaries.
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Method Div. Imp. Gran. D+I D+I+G #Types

BUDGET = 3 TYPES

k-MWIS 0.91 0.80 0.98 1.71 2.69 2.92
Mod. Jaccard 0.94 0.91 0.89 1.86 2.75 2.85
Min. Intersection 0.96 0.75 0.92 1.70 2.62 1.90
Top-k 0.74 0.79 0.97 1.53 2.49 2.98

BUDGET = 45 CHARACTERS

k-MWIS 0.92 0.76 0.93 1.69 2.62 2.59
Mod. Jaccard 0.96 0.88 0.88 1.84 2.72 3.97
Min. Intersection 0.93 0.85 0.80 1.77 2.58 3.51
Top-k 0.81 0.78 0.93 1.59 2.52 2.45

Table 3.3: Evaluation of summarization algorithms. We report scores for
diversity, importance, and granularity of summaries averaged over a set of
entities.

We also report the number of types in summaries. In case of summaries with
at most 3 types the averages are below 3 for two reasons: for some entities
number of available types is fewer than 3 or the optimization method achieves
the optimum with fewer than 3 types. The latter phenomenon shows particularly
strongly for the Min. Intersection method, which, by choosing 2 exotic types,
can obtain an intersection (3.1) with exactly one entity. The Min. Intersection
and Mod. Jaccard methods use on an average more types when the budget is
constrained in characters. The methods then prefer types derived from WordNet,
which are typically shorter than the Wikicategories in leaves of the type DAGs
(see Fig. 3.5).

Sample summaries obtained by our methods are presented in Table 3.4. They
provide examples for the general results described above. We can see that the
baseline Min. Intersection chooses two exotic types in the summary of Tina
Turner. The other baseline method, Top-k, produces summaries lacking diversity:
in case of Clint Eastwood it focuses on the awards he received and in case of
Donald Knuth chooses a general type laureate as well as its special case. Our
proposed Mod. Jaccard method yields diverse summaries containing informative
types. For example, the summary of John McCain contains information that
he was a prisoner of war, is a senator and a writer. Some of the types in the
summaries may not be sufficiently informative or can even mislead the users.
For example, exile appears in YAGO type graph as a supercategory of expatriate,
when the entity has a category such as Canadian expatriates in Romania. This
can be traced back to YAGO’s extraction algorithms and can be treated as a issue
related to the knowledge base itself, which is hard to fix in a summarization
method.
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Method Entity Summary

BUDGET = 3 TYPES

k-MWIS White Witch Fictional dictators, Fictional immor-
tals, Fictional mass murderers

Mod. Jaccard John McCain prisoner, senator, writer
Min. Intersect. Tina Turner American people of Native Ameri-

can descent, People from Haywood
County Tennessee

Top-k Donald Knuth Computer pioneers, Grace Murray
Hopper Award laureates, laureate

BUDGET = 45 CHARACTERS

k-MWIS Donald Knuth Computer pioneers, Living people,
Typographers

Mod. Jaccard Lars Hirschfeld The Football League players, exile,
goalkeeper

Min. Intersect. Barack Obama lawyer, narrator, senator, writer
Top-k Clint Eastwood Fellini Gold Medalists, Kennedy Cen-

ter honorees

Table 3.4: Sample summaries obtained with the baseline and proposed meth-
ods.



CHAPTER 4
Salience of Types

In Chapter 3 we developed methods for generating type-based summaries of
entities. An important part of the task was assessing the usefulness of types
that were considered for the summary. Possible problems included types being
too specific, too general, missing qualifications (member instead of member of
Parliament), or not being central to the summarized entity (Albert Einstein is
a vegetarian). In this chapter we discuss in more details the problem of such
uninformative types and show how it can be solved in practice. First, we show
our experiment with human computing for assessing usefulness of types, and
then demonstrate how the history of changes in Wikipedia can be utilizes for
obtaining importance of types with respect to an entity.

4.1 Properties of Good Types

The summarization approaches presented in Chapter 3 treat types as nodes in
a graph or sets of entities. They work under the assumption that the types are all
reasonably good candidates for inclusion in the summary of an entity. In practice
this is, however, not always the case. Therefore, we apply a pre-processing step
to filter out types which:

• are too specific, e.g. alumnus of Quarry Bank High School,

• are too abstract, e.g. person,

• have a missing qualification (argument), e.g. advocate instead of advo-
cate of gun control.

In addition to recognizing the above properties, which make types uncondi-
tionally unsuitable for summarization, it is also important to understand which
types are most crucial for an entity, for example, that Albert Einstein is more
a physicist than a vegetarian.

In the previous chapter we used statistics available in a large n-gram corpus
to prune types with missing qualifications (arguments), and used the average
article length to measure the importance of Wikipedia categories and their
equivalent types in YAGO. Here we explore two other ways of assessing whether
types should be included in a summary:

47
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Entity Good Types Bad Types

Al Gore senator, environmentalist alumnus, communicator
Van Morrison guitarist, songwriter creator, person
John McCain politician, aviator ancestor, child
J. R. R. Tolkien writer, military officer peer, professional
Mike Gravel legislator, soldier articulator, holder

Table 4.1: Examples of informative and not informative types found in YAGO.

• outsourcing the problem to a human computing platform, such as Amazon
Mechanical Turk, and

• mining the importance of types from the history of changes in Wikipedia.

The advantage of the first approach is that while the corpus statistics can tell
us that there is no problem with a missing argument, the type may still be
uninformative to a user for other reasons. In case of average article length,
we noticed that some non-crucial types, such as vegetarian or left-handed
person can have long articles. We hypothesize, that this occurs because famous
people are added to all possible categories, whereas not-so-famous ones are
only added to the most important ones.

The types in YAGO come from two sources: WordNet synsets and Wikipedia
categories (see Fig. 3.3). YAGO uses only around 6000 WordNet synsets, which
makes it feasible to evaluate their usefulness on a human computing platform.
The situation is different in case of types derived from Wikipedia; there are
hundreds of thousands of them, so an automatic evaluation is necessary. Addi-
tionally, the problems which we face with those types are different. WordNet
synsets can have missing arguments or be too abstract, which is something
where human judgments are useful, whereas the problem with types low in the
hierarchy is that they may not be very relevant with respect to the summarized
entity.

4.2 Human Computing Method

Table 4.1 presents a sample of 5 well-known entities and their selected WordNet-
based types. For each entity we chose two types which describe them well and
two which would not be be useful in a summary. While it is easy for a human
to evaluate which types are informative and which are not, producing a list of
criteria that could be used to evaluate them automatically is a challenging task.
Our observation that YAGO uses only around 6000 types derived from WordNet,
makes using a human computing a feasible approach to evaluating quality of
such types.

Mechanical Turk

Human computing has become an important technique for addressing various
tasks including evaluation in information retrieval [4], image tagging [3], etc.
The popularity of the approach has drawn attention from industry, which offers
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multiple platforms connecting requesters with people willing to solve tasks in
exchange for monetary compensation. Among the best known are CrowdFlower
and Amazon Mechanical Turk, which we used in our experiments.

Tasks on Amazon Mechanical Turk (MTurk) are small questionnaires consisting
of a description and a set of questions, which can be single-choice, multiple-
choice, or open (textual input). We present a questionnaire used in our ex-
periments in Fig. 4.2. Amazon Mechanical Turk offers three ways of creating
tasks. In the simplest case they can be built using a simple Web interface. For
applications demanding more flexibility a set of more powerful command line
tools is provided; they allow specifying constraints such as “exactly 2 out of 5
checkboxes must be marked.” Finally, it is also possible to develop applications
in a general purpose programming language such as Java or C# with the MTurk
SDK (software development kit). We used the first option since it is easy to use
and we did not need any additional features. In case of questionnaires prepared
with the Web interface requesters prepare a template using special syntax to
mark parts of the text to be substituted. Subsequently, they upload a comma
separated values (CSV) file, which contains the substitutions. The results can
be downloaded from the MTurk web page in a similar CSV file.

Informativeness of Types

Initially, we intended to provide turkers (workers on Amazon Mechanical Turk
platform) with a list of properties which a good type should satisfy and ask them
to assess them according to these criteria. This, however, proved to be quite
difficult. First, it is not straightforward to provide exhaustive, accurate, and
concise criteria for our task. Second, turkers often solve tasks simultaneously
with other activities (e.g., watching television) and they still should be able to
provide valuable output. Therefore, we decided to follow an indirect approach.
Since our types will be basically used to build sentences like <entity> is a
<type>, we asked directly whether such sentences make sense. For each type
we needed a good example, preferable a famous entity known by everyone. The
criterion we used was the length of the Wikipedia page, i.e. for each type we
chose the entity with the longest Wikipedia page.

We performed several rounds of experiments and analyzed the output to find
the best way of asking the question. The final version of our questionnaire
is presented in Fig. 4.2. It includes a short explanation of the purpose of the
experiment, examples of correct solution, the task to be solved, and a field for
feedback. The values which were changed are the sample entity and the type.
For comparison we also present in Fig. 4.1 an earlier version of the questionnaire,
which features a more detailed set of questions.

While we are aiming at dividing types into two categories like in Table 4.1, we
subdivided good types into two additional categories very good and correct, but
not salient. This natural subdivision helps avoid a confusing situation when
examples like Winston Churchill was a painter or Albert Einstein was a vegetarian
are treated in exactly the same way as Albert Enstein was a physicist, which
may seem odd to people solving our tasks. We additionally provide not sure
answer and a field for feedback, which is a standard good practice in human
computing. In order to detect dishonest users who click at random answers, we
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Figure 4.1: Our initial attempt at developing a questionnaire for Amazon
Mechanica Turk. The “Universal Serial Bus” is the full name of the USB –
a common type of connector installed in PC computers (often used for memory
sticks). The turker chose “1” in the first question, “no” in the second and “I
know, that the description is not correct” in the last one.
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Figure 4.2: Mechanical Turk questionnaire used for assessing the quality of
types. The page shown to workers includes a description of the task, sample
types with their evaluation, and the task itself.

assigned each entity-type pair to 5 different turkers. We also used 3 different
sample entities for each type that we evaluate. Together this gives the total of
15 judgments per type. The results of our experiment are presented in Table 4.2.
They are ordered by decreasing ratio of (good + correct-but-not-salient)/total
judgments. The ratio is highest for salient types such as scholar or spiritual
leader and low for acquirer, head, and so on. This shows that human annotators
can successfully distinguish between types that are useful in summaries and
those which are not.

4.3 Method Based on Wikipedia Edit History

The other kind of types whose usefulness for summarization needs to be assessed
are the leaf types in YAGO (e.g. shaded rectangular nodes in Fig. 3.3). The
vast majority of them was derived from Wikipedia categories. In contrast to
a small number of types coming from WordNet, there are hundreds of thousand
possible Wikicategories. Because they were added by editors as additional
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Type Good NotSal. NotGood NotSure Ratio

exile 8 7 1.00
reformer 7 7 1 0.93
composer 5 9 1 0.93
performer 10 3 1 1 0.87
scholar 10 3 2 0.87
spiritual leader 9 4 2 0.87
entertainer 8 5 1 1 0.87
leader 8 5 2 0.87
head of state 6 7 2 0.87
negotiator 5 8 1 1 0.87
serviceman 2 10 1 2 0.80
president 10 1 2 2 0.73
representative 3 8 3 1 0.73
educator 2 9 3 1 0.73
clergyman 8 2 1 4 0.67
associate 4 5 4 2 0.60
intellectual 2 7 3 3 0.60
lawgiver 2 7 3 3 0.60
honoree 1 8 5 1 0.60
traveler 1 8 4 2 0.60
head 1 7 6 1 0.53
militant 3 4 7 1 0.47
recipient 1 6 7 1 0.47
skilled worker 1 6 4 4 0.47
disputant 3 3 4 5 0.40
acquirer 1 4 8 2 0.33
unfortunate 5 9 1 0.33
absentee 3 9 3 0.20

Table 4.2: Type informativeness obtained from Mechanical Turk. Each type
was assigned three sample entities, each such pair was evaluated by 5 turkers,
which gives 15 evaluations per types. The questionnaire we used is presented
in Fig. 4.2. Columns Good, (GoodBut)NotSal(ient), NotGood, NotSure count how
many times each of the answers in question 1 was given. The ratio is (Good +
NotSal.) / 15. The total cost of the experiment was 6.75 USD.

information about the article, they are never too abstract and we do not face the
problem of missing arguments. While in general Wikicategories may not be true
ontological types, for example, Albert Einstein could be in the category physics
or a technical category articles requiring clean-up, those were already pruned by
YAGO extraction algorithms. The problem that we face instead is to determine
how important the leaf types are with respect to the entity. The following
hypothesis is the motivation for using the history of changes in Wikipedia as
a resource for assessing informativeness of types:

Hypothesis: Wikipedia articles initially contain the most important information,
which is later extended with less important details.
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Mileva Maric
2004/09/23 2005/12/17 2007/03/12 2008/06/04 2009/08/28

Serbian Austro−Hungarians

Serbian expatriates in Germany

Serbian expatriates in Switzerland

People from Vojvodina

Einstein family

Einstein Family

Women physicists

ETH Zurich alumni

People from Novi Sad

Serbian mathematicians

People of Vojvodina

Albert Einstein

Vojvodina

Spouses of famous or influential people

Serbian scientists

1948 deaths

1875 births

Figure 4.3: Evolution of the Wikipedia page about Mileva Marić. Some cate-
gories are equivalent and can me merged, for example, Einstein family – Einstein
Family and Vojvodina – People of Vojvodina – People from Vojvodina.

4.3.1 Per Page Taxonomy Development

From the revision history of a page we build a Gantt chart, which shows the
evolution of categories of an entity. The X axis in the chart shows time and
the horizontal bars show when the page was in the category. An example
is presented in Fig. 4.3. If categories are never removed from a page, we
can use our hypothesis directly and rank the importance of categories with
respect to the entity by the lengths of the time intervals in the Gantt chart. This
assumption, however, rarely holds – in the example (Fig. 4.3) we can see that
some categories could be merged. Sometimes it happens because a category was
renamed (e.g. People of Vojvodina = People from Vojvodina), and sometimes
users make the information more precise (e.g. American lawyers 6= New York
lawyers), renaming can also be result of mistakes (accidental changes) or
vandalism. The information about renaming is not stored in Wikipedia, we
only observe that some categories of a page disappear and others are added to
a page.

In order to connect Wikipedia categories which express the same concept, we
use the clustering approach outlined below. Given an entity with the set of
categories {c1, . . . , cn}, we build a graph. The nodes are categories which are
connected by a link if one of the categories can be merged with the other. Finally,
we find all connected components of the graph. We treat all categories within a
component as equivalent. Below we present different methods to obtain links
between pairs of categories.
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Split-and-stem. Changes in categories are often very simple: editors change
the capitalization, dashes to spaces, plural to singular, etc. Categories adjusted
in such a way can be merged as follows:

1. Transform the name to lower case.

2. Split the name on non-alphanumeric characters.

3. Stem the words using Porter stemmer [110].

4. Merge two categories, if the results are the same. We compare the results
as sets of term (i.e. order and repetitions do not matter).

Renaming-consistent edits. Although renaming categories can be a part of
larger change, where multiple categories are renamed and the article text is
improved as well, oftentimes the editors will only rename a single category in
an article. This can be easily spotted when in two subsequent revisions exactly
one category is removed from an article and exactly one is added. We look for
such changes in our dataset and extract pairs of categories that were renamed.
Such changes can be aggregated over all pages in Wikipedia. A sample of
renamed categories mined from edit history is shown in Fig. 4.4.

Clustering allows us to use our hypothesis to rank importance of categories
by the length of time intervals in the Gantt chart, even if they were renamed,
made more specific, etc. We do this by taking for each cluster the union of
time intervals of all its categories and ranking clusters by the length of such
combined intervals. All categories within a cluster are therefore treated as
equally important with respect to the entity.

4.4 Software Architecture

The English Wikipedia with article history can be easily downloaded as a single
large XML file (in recent versions the archive was broken into a few files). It
contains all versions of all pages, including special pages, such as categories.
Revisions of pages are stored without any back references to previous versions
– that is, if a typo is corrected, then a full copy of the page will be stored as
a next revision. As the result, the file is much larger than necessary, but it is
easy to process. For our purposes, we extracted the names of the categories of
each regular (encyclopedic) page in the dump. Additionally, for each revision,
we also have metadata, such as the author, time stamp, length, comment, and
a few other fields. The extraction uses regular expressions on the wiki markup.

We store the revisions in a database table (we used PostgreSQL DBMS), which
contains: id of the revision, id of the page, timestamp, a comment and a flag
indicating whether the revision is minor (this field can be marked by the editor
if the change is not substantial, e.g. fixes a typo), length of the page in bytes,
and the identifier of the author of the revision. For each revision we store the
list of its Wikipedia categories as well.
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Figure 4.4: Category graph for Abraham Lincoln. Edges indicate renaming
mined from the Wikipedia edit history. We show the direction of changes, but it
is irrelevant for our clustering.

Data Cleaning. The data in Wikipedia is noisy for many reasons. The first
step in cleaning process is to drop revisions which were considered vandalism.
We assume that the latest revision was not a vandalism and proceed backwards:

• if a revision is unique, we output it and move the cursor one revision
backwards;

• if it is a copy of another revision (which means that it reverts to it) output
the first occurrence and move the cursor one revision prior to the first
occurrence.

Additionally, we also filter out all revisions shorter than 32 bytes.

Distributed Processing. Since loading the data involves decompressing a sin-
gle XML file, it is hard to parallize. On the other hand analyzing page renaming
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in the large dataset can benefit from distributing the work on a cluster of ma-
chines. We therefore implemented our renaming event extraction on Apache
Pig platform (https://pig.apache.org/). Pig offers a SQL-like environment
for processing the data on Apache Hadoop (https://hadoop.apache.org/)
platform, thereby providing a convenient alternative for designing multiple
MapReduce jobs, which implement standard operations on dataset, such as
filtering and joins. For an overview of MapReduce paradigm we recommend
the book by Lin and Dyer [80].

4.5 Evaluation

Our objective is to obtain a ranking of categories by their importance with
respect to entities, based on our hypothesis that important categories are added
to a Wikipedia page first. To rectify the effect of category renaming we proposed
methods of merging Wikipedia categories which express the same concept
in different ways. Therefore we experimentally evaluate both the quality of
clustering and the quality of the resulting ranking of the categories. To this end
we manually created the ground truth for both clustering and ranking. For each
entity in our test collection we marked which categories are equivalent and
should belong to the same cluster and also ranked their importance. Our ground
truth annotations fulfill a natural constraint that all categories within a cluster
are assigned the same rank. The rankings allow draws between clusters, since
often it is difficult to judge their relative importance.

Our test collection consists of two sets of entities: US presidents and Lithuanian
gods. The first set contains prominent entities with long articles and many
categories including both important ones as well less important details. The
second set contains entities with much shorter articles and few categories,
usually of equal or similar importance. In total our collection contains 18
entities and 356 entity category pairs.

4.5.1 Evaluation Measures

Clustering. Clustering can be evaluated using internal criteria, which consider
only the clustering itself and judge the similarity of items within clusters and
between them. Evaluation using external criteria compares the results against
a known ground truth. In our settings we follow the latter approach. We use
two measure of the quality of clustering: purity and the Rand index. Let N be
the total number of items, C = {ci}Ii=1 be a set of clusters, and G = {gj}Jj=1 be
the ground truth. We define purity as:

purity(C,G) = 1
N

∑
i

max
j
|ci ∩ gj | .

Intuitively, each cluster is assigned to the most common category from the
ground truth, then we calculate the fraction of elements which belong to this
category and average this value over all clusters. Purity is simple to understand,
but it does not penalize too fine grained clustering, in particular, assigning each
item to a singleton cluster will always yield maximal purity equal one.

The Rand index (RI) is another measure of clustering quality, which avoids the
aforementioned problem. We can see clustering as the problem of deciding

https://pig.apache.org/
https://hadoop.apache.org/
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whether two given items belong together or not. The Rand index is then the
fraction of N(N − 1)/2 pairs which are classified correctly:

RI(C,G) = TP + TN

N(N − 1)/2 ,

where TP (true positives) is the number of pairs which are in the same cluster
in C and the ground truth and, similarly, TN (true negatives) is the number
of pairs which are in different clusters. Purity and the Rand index take values
from 0 in the worst case to 1 in the best case. For more details about evaluation
of clustering the reader should consult Chapter 16 in [87].

Ranking. To compare a ranking against the ground truth we use Kendall rank
correlation coefficient

τ = nc − nd
N(N − 1)/2 .

Where nc is the number of pairs of elements which are in the same order in
both rankings (concordant pairs) and nd is the number of pairs which are in
opposite order (discordant pairs). Kendall τ take values from −1 to 1, where
1 corresponds to two identical rankings and −1 to ranking items in opposite
orders. Since our ground truth rankings allow draws, the bounds are tighter in
our evaluation.

4.5.2 Discussion

The results of our experiments are presented in Table 4.3. On the set of
important entities (US presidents) we can see that clustering categories based
on renaming edits yields the best results in term of quality of the resulting
ranking of categories. It outperforms both no clustering and split-and-stem
approach, which actually merges very few categories. The effect is also visible
in terms in the quality of clustering (Rand index). In case of the less prominent
entities (Lithuanian gods) the results are worse in terms of both clustering
(Rand index) and ranking. This is expected, as the categories all have similar
importance.

4.6 Application in Entity Timelines

Entity Timelines [91] is the visualization system for entities and concepts in
a large text corpus developed by Arturas Mazeika with me as a co-author.

Ranking the importance of types with respect to an entity has applications
beyond summarization in knowledge bases. In this section we present the Entity
Timeslines system [91] for efficient visualization of entities and concepts in
a text corpus, which uses the technique based on Wikipedia edit history to rank
types used for grouping entities.

The text visualization community proposed tools to visualize the evolution of
concepts represented by keywords. Since words rather than named entities are
considered, such systems are not naturally able to recognize when the same
entity is referred to by different names, e.g. Michail Sergejevic Gorbachov and
Mikhail Gorbachev. Similarly, related concepts cannot be easily merged, e.g. it is
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(a) Chirac\Schröder (b) Schröder\Chirac

Figure 4.5: Contrasting J. Chirac vs. G. Schröder in Entity Timelines.

not easy to connect Walkman and iPod, which are both portable music players.
In order to overcome these limitations, the proposed system operates at the
entity level and uses the YAGO knowledge base to group similar entities.

Demonstration of the system operates on the collection of The New York Times
articles published between 1987 and 2007. Pre-processing the corpus included
identifying and disambiguating named entities in all articles. Evolution of
entities is visualized as a timeline using the paradigm of stacked areas and river
metaphor. Given a named entity as a query, other entities co-occurring in the
same document are visualized as stacks (polygonal areas). The area of the stack
depicts the frequency of the co-occurring entities over time. Canonicalization of
named entities allows effective comparison and contrasting of two timelines.
The system supports interactions with the visualization and multiple displays
over the data, which include taking union, intersection, difference, etc (Fig. 4.5).

Entity Timelines can group similar items based on their YAGO types. YAGO
offers multiple ways to roll up/drill down hierarchies for almost all entities,
for example, the 19 hierarchies of Mikhail_Gorbachev include the following:
Soviet politician→ politician→ leader→ person→ entity, Russian atheist→
atheist→ disbeliever→ nonreligious person→ person→ entity, Moscow State
University alumni→ alumnus→ scholar→ intellectual→ person→ entity, etc.
Since the timelines consists of multiple named entities, using all hierarchies of
a named entity for grouping would result in a large lattice. Instead, the best
hierarchy is found for each named entity and they are all incorporated into one
(Fig. 4.6).

The best hierarchy is identified in a two-step process. First, we pick types
that correspond to the earliest and most long-lasting categories in the history
of the Wikipedia article about the entity. This step utilizes the information
about importance of types that we extract from article edit history. The system,
however, did not use clustering of the categories. In the second step we carefully
applied an additional filtering using the term frequency scores of nouns and
words of the abstract from the Wikipedia article (content up to the table of
contents). The computed hierarchy is used in semantic drill down/roll up as
well as for filtering.
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entity

person

singer David Bowie

scientist Albert Einstein

politician Mikhail Gorbachev

country
former Soviet Union

EU
Lithuania

Poland

Figure 4.6: Union hierarchies for Lithuania, Poland, Soviet Union, Mikhail
Gorbachev, Albert Einstein, and David Bowie (simplified for clarity).



CHAPTER 5
Fact Spotting

Information extraction techniques are used to automatically create large scale
knowledge bases (KBs). To achieve high precision, they are typically applied
to quality sources, such as Wikipedia, and aim to obtain only high-confidence
occurrences of facts. However, retrieving many additional occurrences of facts
in supplementary sources, such as news, product reviews, or social media, can
benefit applications for assessing the truth of statements, gathering statistics,
contextual enrichment, quality assurance of the KB, and advanced analytics that
combine text sources with structured knowledge.

In this chapter we address the task of retrieving occurrences of known facts
from previously unseen supplementary documents, the problem which we call
fact spotting. Two solutions are presented. The first is based on finding high
confidence facts using relation paraphrase dictionary and then speculatively
guessing presence of facts with partial evidence. The second approach employs
aggressive matching to find mentions of entities and relations in text and builds
a large pool of fact candidates. We then perform joint matching of facts with
consistency constraints across multiple, mutually dependent facts. Finally, we
construct a graph from the fact occurrences and compute a random-walk-based
ranking of spotted facts. We evaluate our approach by spotting Freebase facts
in biographies and news articles from the Web.

5.1 Introduction

5.1.1 Motivation

Information extraction (IE) [28, 34, 52, 114, 90, 120] is the task of isolating
machine-readable facts, usually in subject-predicate-object form, from different
kinds of Internet or enterprise contents originally created for human reading.
Such sources range from structured but schemaless (e.g. Wikipedia infoboxes)
to fully unstructured (e.g. news articles, product reviews, posts in online com-
munities). Owing to the difficulty of the task, IE systems tend to work well only
on certain types of inputs, for example, by tailoring the extraction to Wikipedia
infoboxes or Web sites with highly regular structural patterns. However, facts
are also expressed in many other sources that are not amenable to IE. This
is not a problem if we are only interested in the obtained facts themselves,
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since – depending on the application domain – sources such as Wikipedia may
already have sufficiently good coverage and additional sources are not needed.
There are, however, several scenarios where finding further – ideally many –
supplementary locations of fact occurrences is important.

Truth Finding and KB Curation. Although IE methods have made enormous
advances, errors still arise due to both incorrect extractions and false statements
in source documents. Especially social media may even include intentionally
misleading statements (e.g., “Obama is a muslim”), and even news sources
often have a political bias. Checking the truthfulness of statements is alleviated
and strongly supported by providing it with more sources of evidence [83, 84,
103, 107, 139, 144]. When automatically constructing a KB using IE methods,
this task becomes even more important. In this context, fact assessment is
typically done by human curators or advanced forms of crowdsourcing [125].
The curators’ work is greatly simplified if they see a variety of supplementary
sources that support or contradict the fact in question. This has a big impact on
the cost of KB quality assurance.

Evidence Corroboration for Better IE. Even for the task of IE itself, it is
often beneficial to gather multiple sources of evidence or counter-evidence for
observing an entity or a fact. Supplementary sources are of great value for
corroboration [135, 136].

Statistics Gathering. Many applications need statistics about entities and
relational facts; the bare facts alone are insufficient. These include querying a KB
with search-result ranking (e.g., [69]), and KB exploration such as analyzing
and explaining the relationships between entities of interest (e.g., [47]). The
necessary statistics for these tasks are way more informative and thus lead
to better outputs if they are not limited to the sources from which facts were
originally extracted, but consider also other documents with fact-supporting
evidence or co-occurrences of entities.

Text Analytics with Background Knowledge. Understanding text documents
in terms of entities and relationships can improve applications over enterprise
documents, news articles, and social media. Examples include multi-document
summarization, monitoring collaboratively edited contents such as Wikipedia,
news aggregation, opinion mining on review sites and online communities,
classifying and processing customer requests (e.g., questions or complaints
about services or products), and other kinds of business, market, and media
analytics.

5.1.2 Contribution

We address the fact spotting problem defined as follows.

Definition. Given a document d about an entity s, and a set F of facts about s
(from a KB), find the subset F ′ ⊆ F of facts stated in the document.

Fact Spotting. The contributions of this work are fact spotting methods, which
aim at achieving both high precision and high recall. We do not place any
assumptions on the origin and style of the documents where the facts are
spotted. Our methods are designed to handle difficult inputs where the facts
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of interest are stated using complex natural language, and potentially spread
across multiple sentences connected by pronouns or other co-references.

Key Insights. In order to deal with these difficulties, we exploit dependencies
between facts that follow from their semantics. First, facts about dates and
locations of events are complementary and are typically stated along with the
event they describe. For example, the fact David Beckham –MARRIEDIN→ 1999
will usually accompany David Beckham –MARRIEDTO→ Victoria Beckham. Such
mutually dependent co-facts are readily available in KB’s like YAGO 2 [62]
or Freebase [19]. YAGO 2 explicitly annotates facts with time and location,
whereas Freebase groups related facts together; in such groupings we treat all
facts about dates and numbers as dependent on other facts. Second, there is
a benefit in considering named entity linking and fact spotting together. For
example, the mention “Dirty Harry” is ambiguous and can mean both Dirty
Harry (movie) and Harry Callahan (role). The particular disambiguation that we
choose will help us decide whether a sentence in Clint Eastwood’s biography
fits better the fact Clint Eastwood –PLAYEDIN→ Dirty Harry or Clint Eastwood
–PLAYEDROLE→ Harry Callahan.

Our Approach. We present two solutions to the fact spotting problem. The
first is based on speculative spotting of facts in presence of partial evidence.
We start by finding high confidence facts and then add facts, whose presence
we are not sure of, but their related facts were found. The second method has
three stages. First, we match components of facts against the given text. This
involves matching entities to their mentions using a dictionary of aliases, and
matching relation to their surface representations, typically multi-word phrases
occurring in the document. Our goal at this stage is to compile a large set of
candidate matches that will later be pruned. Performing co-reference resolution
(e.g., for personal pronouns) makes it possible to find facts whose components
are spread across multiple sentences. As our goal is high recall first, we are
willing to accept a relatively high risk of false positives at this stage. The second
stage is jointly matching the components of a fact and also several mutually
dependent facts in the text. Here we prune the candidate set from the previous
step, eliminating many of the false positives. We judiciously model this stage as
an integer linear program (ILP). The solution is a consistent set of facts found
in the document and a disambiguation of mentions to entities. Finally, the third
stage uses random walks with restarts on a specially constructed graph to rank
facts. Our technique takes into account the dependencies between facts. The
output is a list of facts sorted in descending order of confidence that a fact was
spotted correctly.

In the remainder of the chapter we assume that both the subject entity and the
document to be inspected are given. If we are only given the document, we can
heuristically determine the entity by running a named entity disambiguation
system [49, 63, 93, 111, 32] on the document text. Then we choose the most
frequently mentioned entity, possibly in a weighted voting manner, e.g., by
giving entities in titles, heading, or special font higher relevance.

Evaluation. We experimentally evaluated our methods on a set of biographical
documents of varying styles, gathered from different Web sites. Our experi-
ments confirm that considering dependencies between facts and performing fact
spotting and entity linking jointly are beneficial for obtaining good precision
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Figure 5.1: Fact spotting system environment.

and good recall. We also present use-cases that leverage fact spotting for named
entity disambiguation alone and for the task of KB curation.

5.2 Preliminaries

The system environment we are working in is depicted in Fig. 5.1. The input
to the fact spotting component is an entity (or a set of facts about it) and
an arbitrary document. Our methods make use of a knowledge base and
a dictionary of paraphrases to determine which facts occur in the document. The
output, in the form of fact positions or aggregated statistics, can be processed
in downstream applications, including truthfulness analysis, entity/fact-aware
summarization, KB curation, etc.

5.2.1 Freebase Data

We use Freebase (www.freebase.com) as a knowledge base of facts. Freebase
stores data as a graph. Nodes which correspond to entities and classes are
known in Freebase parlance as topics. They represent people (e.g., Bob Dylan),
artistic creations (e.g., Hurricane (song)), classes (e.g., music awards), abstract
concepts (e.g., love), artistic movements (e.g., Impressionism), etc. Topics
can have types assigned to them, e.g., song writer. A type can be thought of
as a container for properties. Types are grouped into domains, e.g., music,
business, medicine, and given identifiers which consist of domain name and
type name, e.g., /business/company. Property names contain the name of
their types, e.g., /business/company/industry. Not all identifiers follow the
/domain/type/property template, for example, /en is the namespace of the
most common topics in English, and /m contains machine readable identifiers.
It is possible that a topic has more than one identifier.

Freebase data can be represented in the following JSON format. A topic consist
of two fields: an id, for example /m/02mjmr for Barack Obama, and property
field. The latter is a mapping from a property name (e.g. /celebrities/-
celebrity/net_worth, /people/person/spouse_s) to a tuple containing val-

www.freebase.com
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uetype, value, and count (number of different values – Freebase properties
are by default multi-valued). The following property types exist: float, int,
bool, datetime, uri, string, key, object and compound. The first six are
literals. Key is an identifier, e.g. Barack Obama can be referred by the machine
id /m/02mjmr or a human readable /en/barack_obama. Object means that the
argument of the property is another topic in Freebase, e.g. books published
by an author. Finally, compound values consist of several fields, e.g. marriage
relation contains the person one is married to, it can also contain a start date,
optional end date, location of the ceremony, type of union etc.

Note that this data model, in JSON, is quite different from the typically used
RDF model of SPO triples. For example, Freebase makes extensive use of nested
values of values (e.g., the object of a triple representing a person winning
an Acedemy Award contains the year and the category of the award). We
deal with this by breaking down composite facts into triples (but we retain the
information which pieces belong together). The details are presented below.

Types in Freebase are described by a schema, which defines the types of prop-
erties. For example properties of a person are listed at www.freebase.com/-
people/person, date of birth has the expected type /type/datetime, gen-
der is an enumeration of type /people/gender, and spouse(s) has type /peo-
ple/marriage which is a mediator type. Mediators are types which connect ob-
jects which are in a complex relation, for example, marriage as discussed above.
Freebase does not have a true type hierarchy, but /freebase/type_hints-
/included_types simulate it, e.g. /book/author includes /people/person
but not all authors are indeed people, some are governments, museums, and so
on [70].

The basic building blocks of facts are simple values and predicate name. A simple
value can have one of the following types: datetime, string, uri, key,
int, float, bool, object. Predicate names occur in two places in facts: as
relations names, e.g., /people/person/date_of_birth, and as attribute names
in compound values, e.g., /people/marriage/from. We will refer to simple
values and predicate names as atoms.

A compound value is a non-empty sequence {〈name, value〉}ki=1 of identifiers
and predicate names. A fact is a triple 〈S, P,O〉 consisting of a subject, predicate
name and object. The subject is is always a simple value of type object, whereas
the object is any simple or compound value.

A compound fact 〈S, P, {〈name, value〉}ki=1〉 can be decomposed into a set of
simple facts: {S, P,< namei, valuei >}ki=1 . For example a fact David_Beckham
spouse { <from, 1999>, <spouse, Victoria_Beckham> } will be decom-
posed into two facts: David_Beckham spouse {<from, 1999>} and Da-
vid_Beckham spouse {<spouse, Victoria_Beckham>} . While in the exam-
ple it is possible to deduce the the original fact, in general the decomposition is
not reversible. If a person is married more than once, we will not be able to tell
which date refers to which spouse.

Decomposing facts simplifies both spotting and evaluation of the results, but
it would throw away precious information about dependencies among values,
which can be used to achieve good results. Therefore, we keep track of atoms
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which were parts of a compound value. In the speculative spotting we will refer
to two atoms as siblings if they occur in the same compound value (this also
applies to attribute names and values).

In the other spotting method we make a distinction between different facts
derived from the same compound. Some facts temporally or geographically
qualify other event-like facts, for example, David_Beckham –MARRIEDIN→ 1999
and David_Beckham –MARRIEDAT→ Lutrellstown_Castle describe the main fact
David_Beckham –MARRIED→ Victoria_Beckham. Our working hypothesis is that,
within any coherent text source, whenever a dependent fact occurs, the main
or central fact is stated in the text as well. The converse is, however, not true:
central facts can occur without dependent facts. Such dependencies between
facts are not specific to Freebase, for example, YAGO 2 groups related facts in
SPOTLX representation.

5.2.2 Entity Aliases

Entities in a KB have unique identifiers, but their mentions in text use various
different names. KBs such as Freebase, YAGO and DBpedia provide such
alias names of their entities. Freebase stores them in /type/object/name and
/common/topic/alias relations. The former is the unique, canonical name,
similar to article titles in Wikipedia (e.g. Victoria Beckham), while the latter
contains alternative names of the entity (e.g. Victoria Caroline Adams, Posh
Spice).

While Freebase may know many possible aliases, it often misses their minor
variations. For example, in one of the biographies of Arnold Schwarzenegger,
University of Wisconsin-Superior is referred to as University of Wisconsin – a name
which is not known to Freebase for this entity. This can be solved by approximate
string matching, which is what we do in the Reverse Extraction method, or by
carefully expanding the set of aliases, which is our approach in the Speculation
method.

To expand the sets of aliases, we drop single words from labels which are longer
than three words. To avoid incorrect matches, we add the constraint that the
new, shorter labels must not be the same as any label of a known entity. For
instance, we expand the set {Patrick Arnold Schwarzenegger} (the son of the
famous bodybuilder) with the derived labels {Patrick Schwarzenegger, Patrick
Arnold}. Our derived set does not include Arnold Schwarzenegger, because this
would clash with the name of another entity (his father). Name clashes still
occur among labels which were not derived; for example, Clint Eastwood is the
name of both the actor and his father.

5.2.3 Relation Patterns

Predicates in a KB denote, in a canonical form, the relations that entities
participate in. For instance, textual phrases such as “married to”, “tied the
knot with” or “had their wedding” are all captured by the Freebase predicate
/PEOPLE/PERSON/MARRIAGE. However, unlike being aware of entity aliases,
none of the major KBs captures the different paraphrases of their relations;
they do not store information that “had their wedding” is synonymous to the
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MARRIAGE relation. In order to find relations in text we need to resort to an
external source of paraphrases. If the set of relations were small, a list of such
phrases could be constructed manually. While this approach could lead to high
precision, it is not scalable and it is also likely to have poor recall. Instead,
we pursued two alternative approaches. In the Speculation method we make
use of PATTY [104], an existing repository of relational paraphrases, and in
the Reverse Extraction method, we generate the paraphrases ourselves using
Freebase relation names and WordNet.

5.3 Speculation

In this section we present our first approach to fact spotting. The method is
based on matching parts of known facts to text. While matching the entities
can be easily achieved using their aliases known to KB, we resort to external
resource to find mentions of relations. Matching all three parts of a subject-
predicate-triple is insufficient for good recall. To alleviate this problem, we
show how to spot facts accurately if only partial evidence was found in text.

Relation Patterns

Spotting the predicate of an 〈s, p, o〉 triple requires that we know which phrases
can be used to express it. For example, occurrence of words like died, death,
in proximity of a city name means that a sentence expresses diedIn and not
bornIn relation. To obtain such phrases we use PATTY [104] (we discuss it in
more details in Chapter 2). PATTY patterns consist of words, part of speech
tags, wildcards and types. For example, a pattern <person>’s [adj] voice *
<song> matches “Amy Winehouse’s soft voice in Rehab”. In our system we use
a simplified form of PATTY patterns. First, we drop the leading and trailing
wildcards such as [[det]]. Then, we filter out the patterns which, after this
step, still contain wildcards. The result is a set of word sequences for relations.
The next step is to eliminate redundancy among patterns to speed up matching
them in documents. For instance, the pattern studied with makes the pattern
who studied with redundant, therefore we drop patterns which are superstrings
of other patterns. Our notion of superstring respects words boundaries, so child
is not a substring of children.

PATTY knows only paraphrases for relations from DBpedia and YAGO; to use
it with our data set we had to map patterns to Freebase relations. Since
the number of relations is not prohibitively large we decided to perform this
step manually. An alternative and feasible approach would be to re-run the
PATTY construction algorithms with Freebase relations. In addition to PATTY,
we also use Freebase relation names to generate patterns. Since all relation
names follow a similar structure, we simply take two trailing parts; for example
/theater/theater_role/play yields theater role and play.

Spotting Algorithm

Our fact spotting method assumes that it is presented with a text document
about a single entity and that all the facts stated in the document are about this
entity. While biographies do contain facts about other entities, they do not pose
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Algorithm 3: Speculative Fact Spotting.

/* Collect atomic parts of facts */
atoms = ∅
for f ∈ facts do

atoms = atoms ∪ atoms(f)
end
/* matches is a mapping from atoms to positions in text */
for a ∈ atoms do

matches[a] = ∅
if a is an object then

for l ∈ getObjectLabels(a) do
matches[a] = matches[a] ∪ occurrences(l, text)

end
else if a is predicate then

for p ∈ pattyPatterns(a) do
matches[a] = matches[a] ∪ occurrences(p, text)

end
else if a is value then

matches[a] = occurrences(a, text)
end

end
/* found is the set of fact in text */
found = ∅
for f ∈ facts do

if predicate and object found in proximity then
found = found ∪ {f}

end
if object and a sibling found in proximity then

found = found ∪ {f}
end

end
return found

a problem, because they are uncommon and different than the facts about the
entity we are interested in. The assumption we make simplifies spotting 〈s, p, o〉
triples to spotting 〈p, o〉 pairs.

For the reasons of efficiency, fact matching is divided into two phases. We
noticed that facts often share their atomic parts, such as relation names and
objects, therefore we first find the matches to atomic objects, and then use them
to find matches of whole facts.

The compound facts are decomposed before spotting, so that our algorithm only
deals with 〈s, p, o〉 triples. We retain, however, information about field names in
facts derived from compound facts, which hence have the 〈s, p, {(attr, value)}〉
form (〈s, p, {attr, value}〉 contains an extra attr field, but we consider it a triple).

The spotting algorithm is presented in Alg. 3. We start by extracting the atoms
from the facts about the current entity. The atoms are the simple values, relation
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Figure 5.2: Overview of the fact spotting pipeline.

names, and compound attribute names. Subsequently, we find the occurrences
of facts in text, and store their locations.

In the simplest case we find the match to the predicate p and the object o, and
if such matches occur close enough in the text, we assume that the 〈s, p, o〉 fact
was found. In our implementation "close enough" means that the beginnings of
matches of the predicate and object have to be less than 200 characters apart.
Oftentimes, it is possible to find an occurrence of the object, but we do not have
a match for relation. In such a case we consider presence of a sibling atom as a
proof that we indeed spotted the fact.

5.4 Reverse Extraction

Speculation method presented in Section 5.3 uses high quality dictionary of
relational paraphrases to find relations in text. This approach yields high quality
facts, but may be limited in recall. The problem is then to augment the set
of found facts with possible true facts that were not found. We do this by
speculatively placing facts in the output, if we find evidence for related facts,
even if the relation is not present (by exploiting sibling objects in compound
facts).

An alternative is to aggressively find a large set of candidate facts to achieve
high recall and then prune false positives for high precision, which is the second
approach that we pursue. In this section we present a method for spotting facts
with high recall and then in Section 5.5 we show how the false positives can
be pruned. In our discussion and experiments we use Freebase as our KB and
apply fact spotting to text-centric Web pages. All our techniques can be easily
carried over to other KBs and other kinds of input sources. The outline of our
approach is shown in Fig. 5.2.

Matching Entities, Dates and Literals

We find mentions of entities and literals in the input text using the name aliases
provided by the KB, and assign weights to these occurrences. The mentions in-
clude Freebase entities (e.g., Arnold_Schwarzenegger), literal strings (e.g., Hasta
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la vista, baby), dates, and numeric values. For simplicity, we will refer to all of
them as entities. Each mention has a unique textual position, l = 〈start, end〉,
which is a pair of offsets in the text. We generate a bag of matches between
entities and mention positions match(e, l) associated with weights we,l.

• First, we perform exact-match lookups of names and aliases provided by
the KB (called entity labels). Freebase provides possible labels for entities
with the predicates /TYPE/OBJECT/NAME and /COMMON/TOPIC/ALIAS.
Exact matches are given weights we,l = 1.0.

• Exact matching misses out on many mentions. For approximate matching,
we identify candidates in the text in two ways. First, we run a Named
Entity Recognizer (NER), essentially a trained CRF [51], from the Stanford
CoreNLP [88] software package. Second, for higher coverage, we also
detect noun phrases using TokensRegex [29], which is a framework that
allows matching text with regular expressions that can operate over tokens
and annotations. For example, “[ { tag : /NN.*/ } ] + [ /of/ ] [ { tag
: /NN.*/ } ] +” matches a sequence of tokens annotated as nouns (NN,
NNP, NNPS, etc.), followed by the word “of” and a sequence of nouns. 1

Matches are weighted by the word overlap between a mention text and
the best fitting label of the entity:

we,l = max
label∈labels(e)

|mention ∩ label|
|mention ∪ label|

.

When calculating the scores we skip non-capitalized stop words.

• Matching dates from Freebase facts directly in text often misses temporal
mentions due to variations in their representations (e.g., 7/4/1999 can
occur as “7th of April, 1999”). Moreover, we observed that aggressive
matching of values produces spurious matches (for instance, “23”, David
Beckham’s jersey number in the LA Galaxy team, could match a part of
a date). In order to limit false positives, we consider only dates and
numbers identified by the Stanford NER tool and assign them the weight
we,l = 1.0.

The above techniques that match mentions with entities do not capture refer-
ences such as pronouns. To resolve co-references, we use the Stanford tool,
which uses the multi-pass sieve and rule-based methods of [77]. For computing
weights of mentions, we propagate the best score to all mentions within a co-
reference chain. In case of our test documents, which are all single entity-centric
biographies, we found that a lightweight heuristic can work equally well: we
match all occurrences of he, his or she, her to the subject entity of the facts (we
choose the most frequent pronoun). The heuristic improves the run time of our
system by avoiding a time-consuming call to the co-reference resolution tool.

For efficiency, we aggregate multiple matches of the same location-entity pairs
and assign them the maximum weight over the matches. At this stage it
is also possible to do additional steps such as match pruning. For instance,

1NN, NNP, NNPS are Penn Treebank part-of-speech annotations for noun (singular or mass),
proper noun (singular), and proper noun (plural) respectively.
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a mention Schwarzenegger at a particular location can have matches to both
Arnold Schwarzenegger and his son Patrick Arnold Schwarzenegger. We can apply
heuristic that a match to a selected central entity “bumps out” other matches.
Similar effect can be achieved by single-sense constraint in our joint fact spotting
later in the pipeline.

Matching Predicates.

Predicates (relations) in Freebase are referenced using human-readable iden-
tifiers, following a /DOMAIN/TYPE/PROPERTY scheme, for instance, /SPORTS-
/PRO_ATHLETE/TEAMS. We could search for the predicate name in the text
directly, but this would miss most relation occurrences. Therefore, for each
predicate p, we build a set Ep of phrases that express the relation by replacing
parts of the predicate string, with related words. In our system, the related
words are defined as neighbors in the WordNet [48] lexical/taxonomic graph:
synonyms, hyponyms, morphosemantic links, derived terms, and glosses. For ex-
ample, phrases such as “sib”, “twin”, “half blood”, “blood relative”, and “brother
or sister” are generated for the predicate /PEOPLE/PERSON/SIBLING. Similarly,
for the predicate /ORGANIZATION/ORGANIZATION_FOUNDER/ORGANIZATION-
_FOUNDED, phrases such as “organization establish”, “organization cofounder”,
“company founder”, “enterprise founder”, and “set up or found” are generated.

Our expansion process is aggressive and can generate the same phrase for
multiple relations. To counter the potential problem of diluting the set of
predicate phrases, we assign idf-based scores, which down-weight ambiguous
expansions:

weight(phrase) = min
term∈phrase

idf(term).

Given a fact 〈s, p, o〉 we find all matches match(ls, s) and match(lo, o) and
enumerate paths between all ls and lo. Here, a path refers to the grammatical
structure of a sentence based on deep parsing (e.g., links between a verb and its
subject, its object or objects, an adverbial modifier, etc.). Our notion of a path
includes the shortest path in the dependency tree augmented with dependents
of its nodes. Since we trace co-references, paths need to be considered only
within a sentence. For robustness we skip stopwords and lemmatize words on
the relevant paths (i.e., normalize plural form or different tenses to singular
and infinitive). A match between the word sequence on a path and a candidate
relation is scored as follows:

sim(p, path) = max
phrase∈Ep

[
weight(phrase) · |phrase ∩ path|

|phrase|

]
.

We assign each fact f = 〈s, p, o〉 the score,

score(f) = max
ls,lo,path

w(s, ls) · w(p, path) · w(o, lo). (5.1)

When the score is non-zero, we consider the fact spotted. For example, the
sentence “Not long after his first son, Brooklyn, was born(...)” matches
the fact David Beckham –/PEOPLE/PERSON/CHILDREN→ Brooklyn Beckham,
since “his” matches the subject through a co-reference, “Brooklyn” overlaps with
a label of Brooklyn Beckam, and the path “his first son” matches the predicate
through our WordNet-based expansions.
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5.5 Optimization

The matching methods in Reverse Extraction are designed to capture as many
mentions of entities and predicates as possible. The output may contain many
false positives, due to the ambiguity of mapping mentions to entities, relations,
and literals. Therefore, in the second step called Optimization, we perform
joint constraint solving to identify a large set of consistent facts subject to
disambiguation and fact dependency constraints.

Consistency Constraints

Disambiguation Constraint on Entities. The sentence Eastwood’s landmark
role in Dirty Harry was critically acclaimed can have two matches: Eastwood
–PLAYEDIN→ Dirty_Harry and Eastwood –PLAYEDROLE→ Harry_Callahan. How-
ever, as a single text position (Dirty Harry) can mean only one entity (either the
movie Dirty_Harry or the character Harry_Callahan) and the movie title being
the better match, only the first fact should be considered spotted.

Dominant Sense Constraint on Mentions. Word sense disambiguation bene-
fits from the assumption that a discourse uses only one sense of a word [54].
For example an ambiguous word plant within a document means either an
industrial plant (e.g., a power plant) or a plant in the biological sense; these
two senses are never mixed using the same word within the same document.
Applying such constraints to our problem helps us avoid spurious matches.
For example, the mention Zidane can mean the famous soccer player Zinedine
Zidane or his wife Véronique, but in a biography of the soccer player his wife
would always be referred to by her first name or by her full name. Such a
constraint should not be applied blindly in every situation. For example, Oscar
in a biography of Woody Allen refers to many distinct awards (Best Picture,
Best Director, etc.). We therefore enforce the outlined single dominant sense
constraint only to selected entities, namely, the topic entities of a document
(e.g., the person whose biography we are looking at). If such an entity, for
example, Zinedine Zidane, is matched to a mention (Zidane), then it is the only
entity that other mentions of Zidane can be disambiguated to. We will call such
entities capturing entities.

It is worth noting that not all identical mentions must be assigned. This is
desirable, because mentions can overlap and we require that overlapping text
positions are assigned to at most one entity. For example, the mention Véronique
Zidane overlaps with Zidane, and we cannot match them to different entities –
therefore this particular sub-mention (Zidane) will remain unmatched, while
other mentions of Zidane will be mapped to Zinedine Zidane.

Dependent-Central Constraint on Facts. The sentence After winning the closely
contested 56th presidential election, Obama assumed office in 2009 can incor-
rectly match Obama –WONAWARDIN→ 2009 known to Freebase. We know,
however, that such a fact requires a related fact Obama –WONAWARD→ No-
bel_Peace_Prize, which is not stated, and therefore we should not output the
fact about winning an award in 2009.

In our experiments we consider dates and numbers in compound facts as depen-
dent on the occurrence of any other fact derived from the same compound facts.
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To recap, the dependent-central constraint disallows spotting the secondary fact
unless we have also spotted the central fact.

ILP Formulation

In order to enforce the constraints described above, we develop an integer
linear program (ILP), which selects a consistent set of facts from the output
of the Reverse Extraction stage (for a practical discussion of encoding various
problems as integer linear programs see the tutorial [21]). We introduce binary
variables ml,e for matches match(l, e) between textual positions and entities (or
dates, values, etc.). The variables are set to 1 if the match is deemed correct and
0 otherwise. Matches have weights wl,e coming from the Reverse Extraction
stage, contributing

∑
l,eml,ewl,e to the objective function in the ILP. To enforce

that overlapping positions cannot be matched to different entities we introduce
the following constraint:

ml,e +ml′,e′ ≤ 1 if e 6= e′ and l overlaps l′

Each position has a mention text.substringAt(location), and some of them
have the same mention. For each mention s and entity e we define a binary
variable ys,e. The variable must be 1 when some position of mention s is
assigned to e. To enforce this we add the constraints

ys,e ≥ xl,e forall positions l of mention s.

To enforce that if a mention is assigned to a capturing entity e, then it cannot
be assigned to another entity e′, we use the following constraints:

ys,e ≤ 1− ys,e′ .

We define two types of fact occurrence variables:

fl1,l2,path for occurrence in a particular position, and

f for occurrence anywhere in the document.

The variables are connected by the logical dependency f ⇐⇒
∨
l1,l2,path fl1,l2,path,

which can be translated to:

f ≥ fl1,l2,path for all l1, l2, path, and

f ≤
∑

l1,l2,path
fl1,l2,path.

Our constraints can “switch off” some of the overlapping positions of entity
matches, so we retain fully matched fact occurrences only if their subject and
object are retained, i.e., fl1,l2,path ⇐⇒ ml1,s ∧ml2,o where f = f(s, p, o), and
path between l1 and l2 matches p. In the ILP this is expressed by the constraints:

fl1,l2,path ≤ ml1,sub,

fl1,l2,path ≤ ml2,obj ,

fl1,l2,path ≥ ml1,sub +ml2,obj − 1.
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We associate such a fact occurrence with the weight of the match between the
path (obtained by deep parsing) and the predicate of the fact (plus subject and
object match weights), so that we preferentially match facts if their predicate
matches the path well. The overall objective function therefore takes the form

max
∑
l,e

ml,e · wl,e +
∑

l1,l2,path
fl1,l2,path · (wpath,p + wl1,s + wl2,o)

The dependency between central and dependent facts fdep =⇒
∨
fcent is

expressed in the ILP as
fdep ≤

∑
fcent.

We use commercial Gurobi software package [59] to solve the ILP.

5.6 Resurrection and Ranking

While the Reverse Extraction stage of our three-phase method aims at high
recall, the Optimization stage prunes the candidate to achieve high precision.
However, the Optimization may sometimes be too stringent and thus lose good
facts. This motivates the third stage of our approach, coined Resurrection. Our
approach to recover low-scoring facts that were dropped by the Optimization
stage is based on the idea that in coherent text facts typically occur together
with semantically highly related “co-facts”.

Co-facts are KB facts which share entities or the relation. If two facts have
subject s in common, we refer to them as subject co-facts, that is 〈s, p, o〉
and 〈s′, p′, o′〉 are subject co-facts if s = s′. For example, f1:DavidBeckham
–PARENT→ TedBeckham and f2:DavidBeckham –PARENT→ SandraBeckham are
subject co-facts as they are about the same subject. Analogously, facts 〈s, p, o〉
and 〈s′, p′, o′〉 are predicate co-facts if p = p′, and object co-facts if o = o′. We
also define subject-object co-facts if s = o′ or s′ = o. Note that facts can be
co-facts in more than one way. In the example above, f1 and f2 are not only
subject co-facts but also predicate co-facts.

Let S be the set of facts found by Reverse Extraction (stage 1) and J ⊆ S be the
set of facts found by the Optimization step (stage 2). The set J ′ of facts which
are reconsidered in the Resurrection step is

J ′ := {f ∈ S \ J : ∃g ∈ J s.t. cofacts(f, g)} ,

that is, the set of facts found by Reverse Extraction that were rejected by
Optimization but at least one of their co-facts was accepted. For example, if Op-
timization accepts DavidBeckham –PLAYEDFOR→ RealMadrid, but rejects David-
Beckham –PLAYEDFOR→ ManchesterUnited and ZinedineZidane –PLAYEDFOR→
RealMadrid, then the Resurrection stage would give the latter two facts a second
chance.

Note that we can make this approach more liberal by reconsidering all of the
subject co-facts, predicate co-facts, and object co-facts, or we can configure the
Resurrection phase more conservative by reconsidering only co-facts of accepted
facts that are co-facts with regard to two of the three roles, e.g., subject co-
fact and predicate co-fact or predicate co-fact and object co-fact in the above
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example. In our experiments in Section 5.7, we configure the Resurrection
phase to compute all co-facts that share their subject and predicate or their
subject and object with an accepted fact.

Ranking

We have not yet stated how exactly these resurrected candidates get a second
chance. One option is to accept all resurrected co-facts. We report on the quality
of this option in our experiments.

An alternative is to treat the resurrected facts as another candidate pool for
further assessment. Obviously, it does not make sense to run another reasoning
algorithm on them; whatever additional criteria we would devise here, could
have been integrated into the Optimization stage already. What we do instead
is to pool the already accepted facts and the resurrected co-facts together and
compute a confidence ranking on them, using PageRank-style methods.

To this end, we construct a graph G(V,E) of spotted facts, with vertex set
V = {J ∪ J ′} and edge set E = {e(f, f ′) | cofacts(f, f ′)}. Thus the vertices
include both the previously accepted facts and their resurrected co-facts. We
initialize each vertex with fact scores from Reverse Extraction as in Eq. 5.1. On
this graph we run random walks with restarts as described below.

We start at a randomly chosen vertex that corresponds to an accepted fact.
We choose outgoing edges uniformly at random and this way follow a path
in the graph. At each vertex reached, we randomly: with probability ε set to
a small value (e.g., 0.1) jump to one of the accepted-fact vertexes and restart
the walk; or with probability 1− ε we continue the current walk. This process
is conceptually repeated many times (but can be computed with the Jacobi
power iteration method), to approximate the stationary visiting probability of all
nodes. This probabilities are the basis for ranking all facts: previously accepted
ones and resurrected co-facts. This is essentially the Personalized PageRank
method [61], applied and tailored to our co-facts graph.

From the final ranking computed this way, we obtain additional facts by setting
a cut-off point and accepting all facts above that rank. One way of choosing
the cut-off position is to pick the lowest-ranked fact that was already accepted
by the Optimization stage and accept all co-facts above. Other criteria are
conceivable. In our experimental evaluation, we report ranking-quality measure
(MAP) on the precision-recall curve that avoid having to choose a cut-off point
at all.

5.7 Evaluation

Our experimental evaluation focuses on qualitative evaluation of the proposed
spotting methods. To this end we present evaluation measuring not only
precision, but more importantly, also recall of individual methods, as well as
comparison against a baseline approach. Since measuring recall involves ground-
truth generation by laboriously listing all possible facts within a document, we
limit this experiment to a sample of biographies derived from the Web. Next, we
perform an experiment to determine the effectiveness of our spotting method
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on real-world KB curation scenario. We test this by extending Freebase with
hand-compiled facts and report spotting results on recent news articles.

Setup. In order to measure the performance of our fact spotting methods we
created a test collection of biographies of famous actors and soccer players. We
started with a set of 233 names of soccer players and actors. Queries following
a pattern <name> biography were submitted to the Bing search engine. In the
results we identified a set of 10 web sites that feature biographies of famous
people, with highly varying styles across sites. We manually inspected them to
make sure that they are not copies of Wikipedia pages or simple lists of facts
without narrative structure. We kept only the results from those web sites and
obtained a set of 848 biographies of 233 entities, about which Freebase knows
20548 compound facts. To remove the HTML markup from the documents
we used BeautifulSoup software2. The 10 web sites, each with the number of
biographies for our collection, are listed in Table 5.3.

To create the ground truth for fact spotting we manually annotated 12 docu-
ments with facts indicating their presence or absence anywhere in the document.
To ensure that our results are not affected by remaining non-essential parts of
their source websites, such as advertising, we manually finished cleaning the
text of documents that required it. In total the 12 documents contained 356
ground truth triple facts (compared to the total 2432 triple facts about our test
entities known to Freebase).

Note that the ground-truth annotation process is not always straightforward.
The documents and Freebase can state the same facts at different detail level.
For example, while a document says “won multiple Academy Awards” Freebase
may list all of them. Only explicitly stated facts were considered for the ground
truth, that is, we did not perform any reasoning. For example, the fact that
somebody won an Academy Award implies that he or she was also nominated,
but we did not mark such facts as present, unless they were stated explicitly.

Measures. The performance of our fact spotting methods is evaluated with
respect to the manually annotated ground truth. Since all facts returned by
fact spotting originate from the knowledge base, they are all correct facts about
the entities, but may not correspond to what is stated in the document. The
two kind of mistakes that our fact spotting methods make are: 1) inclusion of
spurious facts not stated in the document, and 2) missing facts which are stated
in the documents. Therefore, we define precisions as and recall as:

precision = | found ∩ in document |
| found |

,

recall = | found ∩ in document |
| in document |

.

Baseline method. A natural baseline for fact spotting is to only consider the
entities and report the fact as present if both the subject and object are found,
irrespective of the predicate. More formally, if the knowledge base knows
a fact f = 〈s, p, o〉 and we find s and o in the same sentence, then we consider
f found. Such approach is often applied in relation extraction methods to
generate training samples.

2http://www.crummy.com/software/BeautifulSoup/

http://www.crummy.com/software/BeautifulSoup/
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Web domain # Biographies

www.netglimse.com 180
people.famouswhy.com 151
www.biography.com 125
movies.msn.com 100
www.thebiographychannel.co.uk 91
www.footballtop.com 65
www.soccer-fans-info.com 41
www.history-of-soccer.org 40
www.footballteamplayers.com 35
www.biographybase.com 20

Table 5.3: Sources of our biography collection.

5.7.1 Results

The results of our experiments are presented in Tables 5.1 and 5.2. The baseline,
which performs only entity matching, achieves recall of 96.9%. This shows that
our entity matching methods deliver high recall, rarely missing entities stated
in text. Reverse Extraction, which extends the simple baseline by matching
relations to text, improves the precision by 8%. However, a precision of 43.4%
is still low, leaving room for improvement. Optimization produces a large
jump in precision with slight drop in recall, delivering the highest F1 measure
among all proposed methods and baselines. Since we aim at both precision
and recall, we therefore consider it the best method overall. Optimization also
outperforms Speculation method on both precision and recall. Resurrecting
co-facts after Optimization presents a compelling alternative for applications
that require higher recall of spotted facts, as it achieves higher recall compared
to Optimization and second highest F1.

While the speculation method is outperformed by Optimization, it does not rely
on Stanford CoreNLP and Gurobi software, and therefore can be useful when
a lightweight approach is needed. The method is also fairly fast: processing
all 848 biographies (i.e., not just the annotated samples for which we have
ground-truth) took only 134 seconds in total.

Table 5.4 reports mean average precision for the set of facts obtained by ranking
the output of Reverse Extraction and Optimization. Fig. 5.3 shows precision-
recall curves for selected documents. The basis for comparison is the perfor-
mance of the Reverse Extraction with initial scores given by Eq. 5.1. By pruning
incorrect facts in Optimization we improve MAP and are able to improve the
precision-recall curve. The results are further improved by the application of our
PageRank-based ranking. The highest MAP value is obtained by Resurrection
with ranking. In terms of precision-recall curve the precision of the Resurrection
method is close to Optimization, but brings additional recall.

Results per Relation

We performed an experiment to determine the quality of our WordNet based
relation matching method. Table 5.5 presents spotting results aggregated per
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No Ranking With Ranking

Biography R.E. Opt. R.E. Opt. Res.

Arnold Schwarzenegger - msn 0.463 0.441 0.465 0.449 0.535
Clint Eastwood - msn 0.638 0.759 0.737 0.811 0.777
David Beckham - hos 0.482 0.587 0.567 0.632 0.622
David Bbeckham - tbc 0.324 0.383 0.401 0.450 0.447
Elizabeth Taylor - tbc 0.657 0.704 0.664 0.702 0.674
Gianluigi Buffon - hos 0.685 0.657 0.759 0.712 0.712
Jodie Foster - msn 0.406 0.534 0.427 0.543 0.513
Oliver Kahn - hos 0.647 0.740 0.726 0.740 0.740
Pele - bio 0.474 0.437 0.488 0.461 0.450
Pele - hos 0.640 0.418 0.665 0.429 0.429
Woody Allen - tbc 0.500 0.418 0.610 0.519 0.615
Zinedine Zidane - bio 0.533 0.669 0.568 0.706 0.695

MAP 0.538 0.562 0.590 0.596 0.601

Table 5.4: Average precision before/after ranking of Reverse Extraction (R.E.),
Optimization (Opt.), and Resurrection (Res.) results.

relation. Due to the large number of relations present in our dataset, we selected
only those which occur at least 5 times in our ground truth annotations. The
results are ordered by the F1 score of the optimization spotting method. In case
of relations that feature compound objects, such as /PEOPLE/PERSON/SPOUSE_S,
which groups together all information about a marriage, we count each attribute
as a separate relation, e.g. /PEOPLE/PERSON/SPOUSE_S: TO.

The facts which are the easiest to spot are those which contain easy to disam-
biguate objects (name of the spouse, date of birth, titles of movies in which an
actor played). Such facts also contain clearly defined relations which are stated
in the text in a straightforward manner. On the opposite end of the spectrum
are facts with relations like /AWARD/AWARD_NOMINEE/AWARD_NOMINATIONS:-
AWARD, where there is often ambiguity in object names and the relation is stated
in a complex way. Comparison between the Reverse Extraction and Optimiza-
tion shows, that we are able to prune incorrect fact candidates, without much
affecting the correctly identified facts.

5.7.2 Disambiguation Performance

Our Optimization method disambiguates entities on its own within the fact
spotting system instead of using an external component; we are therefore
interested in verifying how well we perform against the state of the art. For
the reason outlined below, our fact spotting technique can improve over some
aspects of NED. Systems, such as AIDA [63] rely on consistency links between
named entities. Several similarity measures based on text, links, and keyphrases
have been studied in literature. Since our aim is to spot entities participating
in facts, our fact spotting uses relations from the facts as natural consistency
links between entities. Therefore, our disambiguation component benefits not
only from analyzing noun phrase mentions, but also from considering relations
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AIDA Spotting A. on FS.

Biography Total fnd. cor. fnd. cor. fnd. cor.

Arnold Schwarzegger 87 52 41 66 52 31 23
Clint Eastwood 94 54 48 68 47 28 27
David Beckham(hos) 106 72 63 72 42 38 30
David Beckham (tbc) 226 184 133 113 69 71 52
Elizabeth Taylor 81 44 26 53 47 16 11
Gianluigi Buffon 51 47 42 24 21 20 18
Jodie Foster 77 40 33 50 40 13 11
Oliver Kahn 48 41 33 18 16 11 9
Pelé (bio) 53 41 25 17 11 5 2
Pelé (hos) 44 30 24 24 22 10 9
Woody Allen 83 61 50 42 23 20 17
Zinedine Zidane 81 72 52 41 34 32 23

Total 1031 738 570 588 424 295 232

Table 5.6: Disambiguation with Fact Spotting vs AIDA. Reported are found and
correctly disambiguated mentions. A. on FS. columns contain the results of
AIDA limited to the mentions that were resolved by FSpot.

in text. For example, in the sentence “David Beckham played for Madrid”
Madrid should be disambiguated to the football club Real Madrid, and not the
city Madrid, but this can be achieved only if the phrase “played for” is taken
into account. Moreover, this allows for flexible entity-entity relatedness scores
depending on the strength of match between the relation and the text (unlike
AIDA where entity-entity relatedness is globally fixed). Disambiguation within
fact spotting can also benefit from consistency constraints on facts, such as our
dependent-central constraints.

Although the objective function in the ILP based joint solving step allows
mapping locations to entities even if they do not participate in any fact, we filter
out such locations as they are likely to be noisy. Our disambiguation involves
resolving dates and literals in conjunction with named entities, which is out
of scope for state-of-the-art NED systems, we therefore do not consider such
disambiguations in the comparison (fact spotting can tell us that a particular
mention of “23” was David Beckham’s jersey number when he played for LA
Galaxy).

We ran AIDA on the collection of biographies and manually assessed correctness
of disambiguated mentions. The results of our evaluation are presented in
Table 5.6. For the total number of mentions we take the union of results found
by both methods. For both AIDA and our fact spotting method (FSpot) we
report the number of mentions found and how many of them were correct. We
also report the performance of AIDA on mentions which were found by FSpot
(shown in the “AIDA on FSpot” column).

The results show that fact spotting performs better than AIDA at locations where
facts are stated. This justifies using our own NED component and also shows
that considering relations between entities as expressed by facts is beneficial
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OLLIE Optimization

Biography Extr. Valid Corr. Spotted Corr.

Arnold Schwarzegger 101 21 6 48 23
Clint Eastwood 134 27 15 55 37
David Beckham(hos) 160 25 11 66 41
David Beckham (tbc) 261 38 15 68 34
Elizabeth Taylor 141 40 22 41 32
Gianluigi Buffon 76 24 14 19 15
Jodie Foster 89 15 8 39 25
Oliver Kahn 57 15 8 20 20
Pelé (bio) 109 17 14 13 8
Pelé (hos) 70 8 6 12 6
Woody Allen 85 4 3 37 14
Zinedine Zidane 80 21 8 29 19

Total 1363 255 130 447 274

Table 5.7: Fact spotting with OLLIE vs Our approach (Optimization method).

to NED. However, AIDA also disambiguates locations that do not participate in
facts, therefore delivering higher recall.

5.7.3 Comparison against Open IE

One could argue that fact spotting can be achieved in a simpler way by first
disambiguating entities with an off-the-shelf NED system and then running
an IE tool to extract facts from the entity-annotated text. In order to evaluate
how many facts can be spotted this way we ran AIDA on the biography dataset
and passed the entity-disambiguated text through the Open Information Extrac-
tion tool OLLIE [90]. OLLIE analyzes sentence parse structures using trained
classifiers to construct meaningful fact triples from the sentence sub-structures
(see Chapter 2 for more information). We manually inspected the output of this
AIDA-OLLIE pipeline on the biography data.

The results, contrasted with our Optimization method, are shown in Table 5.7.
Although OLLIE found a large number of triples, many of these extractions did
not result in valid 〈s, p, o〉 facts, as OLLIE often picked up meaningless phrases
for the predicates. Among the valid triples, only a few were spotted facts from
Freebase. Table 5.7 clearly shows the superiority of the Optimization method
in terms of the number of spotted and correct facts. The experiment therefore
shows that standard IE would be a poor performer in the task of fact spotting.

5.7.4 Fact Spotting for KB Curation

The aim of fact spotting in the use-case of KB curation is to reduce the workload
of the human curator. To this end, our tool should help to confirm or refute facts.
For true facts, this amounts to finding additional evidence. The system retrieves
(e.g., via a search engine) and analyzes supplementary sources about the entity
of choice and finds mentions of the fact of interest. These mentions would then
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Documents / With Mentions / Useful

David Beckham –PLAYSFOR→ Chelsea F.C. 16 10 0
Larry Ellison –CEOOF→ SAP 15 9 7
Steve Jobs –BORNIN→ Cupertino 13 3 0
Steve Jobs –CEOOF→ Google 23 5 3
Oliver Kahn –PLAYSFOR→ Brazil 9 8 2
Charles Manson –MARRIEDTO→ Sharon Tate 22 17 16
John McCain –BORNIN→ Arizona 11 4 0
John McCain –GRADUATEDFROM→ Harvard 1 0 0

Total 110 56 28

Table 5.8: KB curation experiment with made-up facts. We report the number
of sample documents which mention the subject and object in proximity, the
number of documents in the sample in which we found alternative version of
the fact, and how many of them can be used to refute the fact.

be shown to the curator for the final assessment. Note that we can incorporate
a trustworthiness/authority model for sources like newspapers, blogs, users
in review forums, etc. (e.g., [66]). This is orthogonal to fact spotting, and
therefore not considered here.

To understand how fact spotting is useful for false facts, we make the assump-
tion that false facts are in the KB because of incorrect extraction from the
source document or erroneous input by crowdsourcing workers (but not say
an adversary intentionally polluting the KB). For example, the sentence “Larry
Ellison has two children with his third wife Barbara Boothe” may lead to the
incorrect extraction of Larry Ellison –HASCHILD→ Barbara Boothe. In such cases,
the curator would like to compare the source of the (erroneous) fact with other
sources for the same fact or variants of the fact including the correct “version”
of the fact. Therefore, we decompose the fact triple and search for pairs of its
three constituents, to gather a set of supplementary sources. Then we show the
mentions of fact variants spotted in these sources to the curator for his or her
assessment. In the following experiment, we thus evaluate usefulness for the
curator. A mention is useful if it either confirms a fact or refutes it by showing
the true variant of the fact.

The results of the KB curation study are shown in Table 5.8. We started with
a set of made-up facts and a large corpus of about 2 million news document
annotated with entities. From the corpus we retrieved 110 documents which
contain subjects and objects of the facts in textual proximity. The fact spotting
system matched facts in some of the documents. We then manually verified,
whether any of the mentions can be used to refute the fact in doubt. This
refutation requires common sense reasoning from the curator, for example,
inferring that someone does not work for his business competitor from the
sentence “For most of Ellison’s tenure, Oracle has battled with big rivals IBM
and SAP”. On the other hand the fact David Beckham –PLAYSFOR→ Chelsea
should not be rufeted from similar snippet, since football players can play for
multiple clubs during their careers. Our study demonstrates that fact spotting
can be used to reduce the workload on the curator by selecting promising
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Figure 5.4: Query interface of FactScout. The user can choose between Web
search results and locally stored corpus of documents.

mentions of facts for further analysis.

5.8 System Demonstration

To further demonstrate how fact spotting can be used for knowledge base cura-
tion, we developed a system, called FactScout, which spots facts in documents
and presents their locations to the user. The system emulates a typical KB
curator’s workflow and is therefore entity-centric. Fact spotting is performed
on entities of user’s interest, within documents on the Web or in a document
collection. For demonstration purposes, we focus on spotting Freebase facts
about people in biographies, news, and other documents. Users can interactively
query Freebase entities and pick documents of their interest. The system will
then run fact spotting on the text and produce an annotated document with the
spotted facts as the result.

A screenshot of the query interface is shown in Fig. 5.4. A query to the system
consists of a Freebase entity and a document about it. The interface provides
a drop down list populated by Freebase entities. To pick a document relevant
to the chosen entity, users can perform Web search using the interface. Alter-
natively, they can pick a document from a list of biographies provided by the
system. FactScout then spots occurrences of Freebase facts about the entity in
the document (i.e., facts for which the query entity is the subject).

Fig. 5.5 shows fact spotting results page of FactScout. A table lists the spotted
facts, mentions of subject and object entities, and text snippets which match
predicates. The list is sorted by the scores obtained from our PageRank-based
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Figure 5.5: Result visualization in FactScout: spotted facts and highlighted
occurrence of a fact.

ranking model. Hyperlinks to Freebase are provided in case the user needs to
quickly consult the knowledge base. The fact spotting results are also visualized
as annotations on the document. By hovering over a spotted fact, the textual
positions of the subject, predicate, and object are highlighted in the document
text.

5.9 Related Work

The task of fact spotting is fairly new, so there is relatively little work that is
directly related. Most notably is the work of [94] on managing provenance
information for KB facts that are automatically acquired by IE methods. How-
ever, this work focused on “Reverse IE” by considering only sources to which
the IE machinery was applied. Unlike our approach, they did not consider any
supplementary, previously untapped sources. Very recently, Dalvi et al. [37]
investigated how to automatically obtain text sources to generate entity glosses
for the NELL knowledge base. This work is limited to entities, though; it does
not extend to relational facts.

Other technical areas that are somewhat related to the task of fact spotting
are discussed in Chapter 2; they include: Information Extraction (Section 2.2),
truth finding (Section 2.5), question answering (Section 2.7), and named entity
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disambiguation (Section 2.6). None of this work is directly applicable to our
problem setting.

5.10 Conclusion

We believe that fact spotting is a key asset in the larger picture of digital
knowledge management – complementary to information extraction and of
great value to tasks like truth discovery and knowledge base curation. We
developed methods for fact spotting and demonstrated their practical strength
in use-cases with news feeds and Web contents.

Our future work includes looking deeper into such use-cases: leveraging fact
spottings as additional evidence for disambiguating textual statements, and –
beyond this – investigating the role of fact spottings for deeper analytics over
large text corpora with background knowledge bases.



CHAPTER 6
Conclusion

6.1 Thesis Contribution

Current knowledge bases such as DBpedia [8], Freebase [19], and YAGO [118,
64] are constructed by employing automatic information extraction methods on
a variety of structured (e.g., Wikipedia infoboxes, gazetteers) and unstructured
sources (e.g., news, product descriptions). The abundance of data they contain
can be difficult for a human to navigate, especially if salient facts are intertwined
with less important information. In order to make knowledge bases more usable,
we need to judge importance of facts they contain and present them to human
users in a readable form, which is the problem studied in this dissertation.

We presented two methods for generating semantic snippets, which are short
summaries of entities based on their types. The first method selects a maximum
weighted independent set of vertices in a graph of types of the entity subject
to a cost constraint. The structure of the graph guarantees diversity of the
solution and the weighting of the nodes leads to selection of high quality
types. A user selectable parameter governs the trade off between choosing
specialized and abstract types. Our second method views types as sets. To
build a summary of an entity we choose a family of large types (in sense
of cardinality) with small intersection. Such formulation leads to a diverse
summary which avoids small, and therefore exotic and uninformative types.
Since the knowledge base structure alone is often not enough to decide how
useful a type is for a summary, we present methods to assess the salience of
a type using a human computing platform (Amazon Mechanical Turk) and
the edit history of categories in Wikipedia. We implemented a browser for YAGO
knowledge base, which demonstrates our summarization algorithms.

We studied the problem of finding known facts in new documents, which
we call fact spotting. Our original motivation, which links the problem to
summarization in knowledge bases, is to allow gathering statistics about fact
occurrences. The frequency of a fact in a corpus of documents can be used as
a proxy for its importance. However, obtaining such statistics using information
extraction may not be possible, since it focuses only on fact occurrences which
can be extracted with high confidence and omits textual occurrences which
are too difficult, for example, due to complexity of natural language. The fact
spotting problem has multiple other applications that include fact credibility
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analysis (truth finding), lifting analysis of documents to the level of facts,
knowledge base curation, etc.

We proposed two solutions for fact spotting. In the first one we initially find facts
where the subject, object, and predicate are all found, and then speculatively add
facts with partial evidence if related facts were found. The speculative element
is necessary for improving recall, because our predicate spotting method relies
on a paraphrase dictionary with limited coverage. In the second fact spotting
method, we first aggressively find relation occurrences to build a set of fact
candidates. This step is recall oriented and therefore, to improve precision, we
then prune the candidate set in an integer linear program based on dependencies
between facts.

6.2 Outlook and Future Work

The particular problem discussed in the thesis which opens interesting research
directions is fact spotting. We showed that grouping facts together in Freebase
style or augmenting central facts with time and locations in YAGO2 style are
beneficial for linking them back to the text, since the dependent facts cannot
occur without the corresponding main facts. More research is needed to identify
situation where such grouping can be useful and how to exploit it. It would be
also valuable to mine such dependencies automatically (see [124] for the case
of temporal dependencies between facts).

Speculating on spotting a fact when only subject and object are present yields
the path between them as a candidate for a relational paraphrase. This could
benefit relation paraphrase dictionaries.

While current day knowledge bases contain only factual statements, they could
be extended to support any statement or opinion, for example, that a particular
drug causes a side effect according to a health forum user. Open information
extraction system OLLIE already considers such attributions. Spotting such state-
ments could be useful for navigating large corpora such as online communities
or bio-medical research articles.

Since our fact spotting performs named entity disambiguation as a part of joint
constraint solving, it could be extended to a full named entity disambiguation
(NED) system. Such a system would use facts as consistency links between
entities and fall back to an established NED method when they are not available.

We see several future directions for the problem of generating semantic snippets.
First, they could potentially include not only types, but also other available
facts. The importance of facts could be obtained using fact spotting on a large
corpus. Second, our summaries considered only single entities. If we use them
in a semantic search engine, we may want to summarize entities jointly and
take the query into account. So similar structures of the summaries make them
easier to read and they do not repeat information from the query. For example,
if we search for Nobel Prize laureates, then the summary should not contain this
information as it is implied; if we decide to include nationality it should either
appear for all result entities or none. The last issue to consider is personalization.
Our intersection based algorithm was motivated by the problem of guessing
the entity given the summary, where we assumed that all types could be used.
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This is obviously not the case, since some types are exotic or require good
knowledge of the domain. We could model the user as a set of types they know
and use only these. This would both alleviate the problem of exotic types and
help us create personalized summaries, for example, for expert users.
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