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Abstract

Today many companies use an ERP (Enterprise Resource Planning) system
such as the SAP system to run their daily business ranging from financial
issues down to the actual control of a production line. These systems are very
complex from the view of administration of authorizations and include a high
potential for errors. The administrators need support to verify their decisions
on changes in the authorization setup of such systems and also assistance to
implement planned changes error-free.

First-order theorem proving is a reliable and correct method to offer this
support to administrators at work. But it needs on the one hand a corre-
sponding formalization of an SAP ERP system instance in first-order logic,
and on the other hand, a sound and terminating calculus that can deal with
the complexity of such systems. Since first-order logic is well-known to be
undecidable in general, current research deals with the challenge of finding
suitable and decidable sub-classes of first-order logic which are then usable for
the mapping of such systems.

This thesis presents a (general) new decidable first-order clause class, named
BDI (Bounded Depth Increase), which naturally arose from the requirement
to assist administrators at work with real-world authorization structures in
the SAP system and the automatic proof of properties in these systems. The
new class strictly includes known classes such as PVD. The arity of function
and predicate symbols as well as the shape of atoms is not restricted in BDI
as it is for many other classes. Instead the shape of “cycles” in resolution
inferences is restricted such that the depth of generated clauses may increase
but is still finitely bound. This thesis shows that the Hyper-resolution calculus
modulo redundancy elimination terminates on BDI clause sets. Further, it
employs this result to the Ordered Resolution calculus which is also proved to
terminate on BDI, and thus yielding a more efficient decision procedure which
is able to solve real-world SAP authorization instances. The test of conditions
of BDI have been implemented into the state-of-the art theorem prover Spass
in order to be able to detect decidability for any given problem automatically.
The implementation has been applied to the problems of the TPTP Library
in order to detect potential new decidable problems satisfying the BDI class
properties and further to find non-terminating problems “close” to the BDI
class having only a few clauses which are responsible for the undecidability of
the problem.
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Zusammenfassung

Viele Unternehmen verwenden heutzutage ERP (Enterprise Resource Plan-
ning) Systeme wie das SAP System zur Unterstützung des täglichen Geschäfts
angefangen vom Rechnungswesen bis hin zur Steuerung einer Fertigungslinie.
Diese Systeme sind hinsichtlich der Verwaltung von Berechtigungen sehr kom-
plex und besitzen deswegen eine hohe Fehleranfälligkeit. Administratoren
benötigen deswegen sowohl Unterstützung, um ihre Entscheidungen bei Än-
derungen im Berechtigungs-Setup zu verifizieren und auch Hilfe, um geplante
Änderungen an Berechtigungen fehlerfrei umsetzen zu können.

Theorembeweisen in Prädikatenlogik ist eine zuverlässige und korrekte Meth-
ode, um Administratoren die notwendige Unterstützung bei der Arbeit zu bi-
eten. Sie benötigt jedoch auf der einen Seite eine entsprechende Formalisierung
einer SAP ERP System Instanz in Prädikatenlogik, und auf der anderen Seite
einen korrekten und terminierenden Kalkül der mit der Komplexität solcher
Systeme umgehen kann. Da Prädikatenlogik bekanntlicherweise im Allge-
meinen unentscheidbar ist, beschäftigt sich die aktuelle Forschung mit der
Herausforderung, geeignete und entscheidbare Teilklassen der Prädikatenlogik
zu finden, die dann für die Abbildung solche Systeme benutzbar sind.

Diese Arbeit stellt eine (allgemeine) neue entscheidbare Klauselklasse in
Prädikatenlogik mit dem Namen BDI (Bounded Depth Increase) vor, die auf
natürlichem Wege aus der Anforderung zur Unterstützung der Administra-
toren bei der praxisorientierten Arbeit mit Berechtigungsstrukturen im SAP
System und dem automatischen Nachweis von Eigenschaften in solchen Sys-
temen entstand. Die neue Klasse enthält bereits bekannte Klassen wie PVD.
Die Stelligkeit von Funktions- und Prädikatssymbolen wie auch die Gestalt der
Atome ist in BDI nicht beschränkt, wie es bei vielen anderen Klassen der Fall
ist. Stattdessen wird die Gestalt von Zyklen in Resolutionsinferenzen derart
beschränkt, dass die Tiefe von generierten Klauseln zwar ansteigen kann, aber
letztendlich begrenzt ist. Diese Arbeit zeigt, dass der Hyperresolutions-Kalkül
zusammen mit der Eliminierung von Redundanzen auf BDI Klauselmengen
terminiert. Zusätzlich wird das Ergebnis übertragen auf den Kalkül der geord-
neten Resolution, für die ebenfalls die Terminierung auf BDI bewiesen wird
und damit eine effizientere Enscheidungsprozedur liefert, die für praxisorien-
tierte SAP Instanzen anwendbar ist. Der Test der Bedingungen für BDI
wurden im aktuellen Theorembeweiser Spass implementiert, um die Entschei-
dbarkeit für ein beliebiges Problem automatisch feststellen zu können. Die Im-
plementierung wurde auf die aktuelle TPTP-Problem-Bibliothek angewendet,
um neue entscheidbare Probleme zu finden, die den Anforderungen der BDI
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Klasse genügen und weiterhin nicht terminierende “beinahe”-BDI Probleme
zu ermitteln, bei denen nur wenige Klauseln verantwortlich für die Unentschei-
dbarkeit des Problems sind.
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1 Introduction

1.1 Motivation

Computer systems have been invented to help people in many areas of every-
day life. Especially, there are powerful software systems aiming to support
the operation of a business. One typical software of this area is called Enter-
prise Resource Planning (ERP) system. Typically, ERP systems are built to
integrate almost all facets of the business across a company including areas
like finance, planning, manufacturing, sales, or marketing. The broader the
functionality of such a system, the larger the number of users, the greater
the dynamics of a company, the more complex is the administration of the
authorizations. In particular, this applies to the well-known SAP ERP system
(formerly known as SAP R/3) offered by SAP SE1.

The typical scenario of a company using an ERP system like SAP ERP is
depicted in Figure 1.1. When a company decides to use a system like SAP
ERP, it first formulates its business as processes. A typical business process
is the purchase process that is used as a case study in this thesis. It starts
with the creation of a purchase requisition out of the requirement for an asset,
followed by the release of such a requisition, and finally the transformation of
the released requisition into the purchase that is eventually sent to a supplier
who is then responsible for the delivery of the asset. Very often each step of a
process corresponds to a particular role of a company employee. For our exam-
ple, the transformation of the released requisition into a purchase is a typical
buyer activity. On the process layer, the company also decides on regulations
and constraints which are typically called business policies. The development
of processes and the authorization concept is guided by business policies. For
example, a business policy might require that the activity of creating a requisi-
tion and creating a purchase must always be separated, performed by different
persons, and therefore must not be contained in one authorization role. This
is a typical rule out of the Segregation/Separation of Duties (SoD) approach.
Once the processes and authorization concept are defined, the configuration
is implemented into an SAP ERP instance leading to a corresponding process
and authorization setup. The authorization setup exactly defines for a user
whether or not he/she is authorized to execute certain functions in the system.

The initial setup of a new SAP system instance typically requires a so-called

1SAP R©, SAP R© R/1 R©, SAP R© R/2 R©, SAP R© R/3 R©, and SAP NetweaverTMare the trade-
marks or registered trademarks of SAP SE in Germany and in several other countries.
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Figure 1.1: Analysis of authorizations in SAP ERP.

Customizing to meet the business needs of the company. Therefore, two SAP
ERP implementations as used by two different companies will usually never
look the same. The Customizing is mostly carried out by separate companies
whose daily business is to configure all the customizing settings, and to setup
the corresponding authorization concept. Correspondingly, these companies
usually have appropriate routines for these tasks which try to ensure that no
errors occur in the initial setup. However, as soon as the system is productive,
it requires permanent and individual maintenance. Business policies and pro-
cesses are less likely to change and if they change this is not done on a daily
basis but by additional smaller SAP change or introduction projects. However,
for example, changes might be necessary because of changes in the organiza-
tional structure of the company or the employees change. Such changes result
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1.1 Motivation

in changes of the authorizations and, because of the complex structure and
the sheer size of most of today’s SAP systems, it is practically impossible to
guarantee the compliance of the business policies with the process and au-
thorization setup afterwards by hand without the support of rigid tools and
programs. Furthermore, it is non-trivial to set up new authorization roles for
employees following organizational changes in the business without destroying
the overall compliance between the authorization setup and the business poli-
cies. In practice, especially changes to the authorization setup, for example,
caused by organizational changes in a company, cause the most headache to
SAP authorization administrators. Who has currently access or permission to
retrieve or change certain sensitive data? Does the system (still) comply with
the company’s business policies initially and especially after the change? Such
questions are a daily occurrence for SAP system administrators who have to
manage a vast number of users, roles, and authorizations and it’s not trivial
to give correct answers to these critical questions. This is the point where
automatic tools come into play which support the administrators by verifying
their decisions and assisting them to implement planned changes error-free.

A suitable and particularly reliable solution to correctly answer the pre-
vious questions is automatic theorem proving (ATP) and its corresponding
tools. ATP is located in the area of automated reasoning and is used to math-
ematically prove theorems by means of computer programs. One part in this
area – which is used in this thesis – is first-order theorem proving. It is charac-
terized by a restricted logic (in contrast to higher logic) that is still expressive
enough to allow the specification of arbitrary computable problems, often in
a reasonably natural and intuitive way [38]. This formality is the underlying
strength of ATP: There is no ambiguity in the statements of the problem, as it
is often the case when using a natural language such as English. On the other
hand, the problem of validity of formulas in first-order logic is undecidable [9]
but semi-decidable, and a number of sound and complete calculi have been
developed, to enable fully automated systems for the verification of first-order
problems. One of today’s current challenges in ATP is the research to obtain
sound and terminating calculi that are able to deal with first-order formaliza-
tions representing new and complex systems like the SAP ERP system.

In order to use ATP for answering questions and proving correctness proper-
ties in the SAP authorization context, it is necessary to transform the relevant
authorization parts of a given SAP system (instance) into a formalized first-
order logic representation. This transformation is done manually for the busi-
ness policies and the process setup because these parts are rather individual
for each system (indicated by black arrows in Figure 1.1). The formalization of
the remaining part – the authorization setup – is not trivial but automatable
(green arrow in Figure 1.1) and almost the same for all SAP system instances
because of the fixed underlying (authorization) structure. Once the first-order
representation is at hand, verification and questioning tasks can be started by
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1 Introduction

means of an automated theorem prover tool.

1.2 Contribution

The verification of formulas or a set of clauses representing an SAP authoriza-
tion scenario instance by means of automatic theorem proving is only useful
and feasible, if the input (often called “problem”) given to any theorem prover,
i.e., the formulas or set of clauses, is decidable. The satisfiability problem can
be decided for clause sets representing the previously mentioned SAP autho-
rization layer if it exists a known decidable class and the problem satisfies the
conditions of the respective clause class. However, if no such class exists as
in the case for the SAP authorization problems, a characteristics clause class
with a defined structure has to be determined and proved to be terminating.
Termination is ensured if the length (number of literals in a clause) and depth
(maximal depth of a literal in a clause) of newly generated clauses can be
finitely bound [20].

This thesis continues previous work that has been published in my Masters
Thesis [23]. It consists of the analysis of real-word authorization structures as
they occur, e.g., in enterprise relationship systems like the SAP system. From
this work naturally arose the main contribution of this thesis: To determine
the characteristics and common structure on clause sets representing (first-
order) SAP authorization instances which are stated in the form of a general
new first-order clause class named Bounded Depth Increase (BDI).

Usually, the term depth of newly generated clauses by the respective reso-
lution (superposition) strategy does not grow for most of the so far studied
decidable clause classes (for example, [6, 35, 12, 17, 19, 1]). For the new clause
class BDI defined in this thesis, the term structure of clauses belonging to the
class is not restricted at all. Further, predicates may have an arbitrary number
of arguments. An overall bounded term depth is guaranteed by restricting the
form of recursive definitions for predicates that occur in the clause set. For the
BDI class any considered resolvent has a depth of at most 2n where n is the
maximal depth of a clause in the initial set (Theorem 5.11). By requiring that
all variables occurring in a positive literal of a clause also occur in a negative
one of that clause, (positive) Hyper-resolution generates only ground clauses
(Lemma 5.9), implying together the depth bound termination and therefore
decidability of the BDI class (together with Factoring as a reduction rule).
This result is then generalized from Hyper-resolution to Ordered Resolution
to obtain a more efficient decision procedure. The main results, the class def-
inition, termination proof and generalization, have been published in several
forms in [24, 26, 25].

Because the BDI class characteristics have been constructed out of the first-
order representation of SAP authorization instances, these problems clearly
satisfy the BDI class requirements and can be decided by Hyper-resolution
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1.2 Contribution

or even more efficient by Ordered Resolution (together with Factoring as a
reduction rule).

For a better understanding of the BDI properties (Section 5.2), consider
the following BDI clause set

(1) → P (f(a), h(a), a)
(2) P (x, y, z) → Q(x, y, f(g(x))), S(x, y)
(3) Q(x, y, f(z)) → R(f(g(x)), x, h(y))
(4) R(f(g(x)), y, h(z)) → P (x, y, z)
(5) P (a, b, c) →

where clauses are written in implication form. The clauses (2)-(4) recursively
define the predicate P . By resolving clauses (1) and (2) via resolution, the
clause

→ Q(f(a), h(a), f(g(f(a)))), S(f(a), h(a))
is generated causing an overall depth increase by the term f(g(f(a))), the third
argument of Q through the first argument of P . The deeper term is a result
of x occurring at depth 0 in P (x, y, z) in clause (2) and at depth 2 in the third
argument of Q(x, y, f(g(x))). In this case, we require that the third argument
of Q cannot show up by resolving along the cycle (2)-(4) as a first argument
of P . We ensure this by the concept of a watched argument (Definition 5.3).
The terms at watched arguments of an atom are assumed to never increase
during any derivation and argument positions holding terms with increased
variable depth only depend on watched argument positions. For the example,
the argument positions 1, 2 of the predicates Q and P are watched and all
atoms with predicates P , Q, satisfy this requirement (Definition 5.7-(iii)). A
second increase in depth is potentially produced by clause (3), at the first
argument of the R atom, where the clauses (2)-(4) also recursively define R.
This clause does also not eventually generate terms of increasing depth, be-
cause all occurrences of R atoms in the clause set are similar (Definition 2.14),
i.e., they have the same tree shape, and thus can only generate a bounded in-
crease in depth (Definition 5.6). Finally, for the clauses (1), (4), (5) the depth
of occurrences of variables in positive literals is smaller than their respective
depth in negative literals. As a result, positive Hyper-resolution terminates
on the above clause set.

In addition to the decidability result, this thesis describes the implementa-
tion of the BDI criteria into the state-of-the-art automated theorem prover
Spass version 3.8 in order to automatically classify whether a given problem
satisfies the conditions of the new class BDI. For a positive result, the prob-
lem is terminating and decidable. To this end, the version of Spass including
the implementation of the BDI class properties is applied to the problems of
the TPTP Library (Version 6.1.0) [33] in order to detect potentially new decid-
able problems and to find problems “close” to the BDI class having only a few
clauses which are responsible for the overall non-termination of the problem.

5



1 Introduction

1.3 Related Work

The identification of decidable fragments of first-order logic has a long tra-
dition in automated reasoning research. It started with the specification of
decidable quantor prefix classes at the beginning of the 20th century: Bernays-
Schönfinkel, Ramsey, Ackermann, Gödel, Kalmár, Schütte (see [8] for an
overview). After the invention of automated reasoning calculi, in particu-
lar resolution-based calculi, it moved to the identification of decidable clause
classes (e.g., see [6, 35, 12, 17, 19, 1]) which then serve, e.g., as (background)
fragments for effective reasoning on tree automata properties, reachability
problems in security, knowledge representation formalisms, or data structures.

The BDI class presented in this thesis is not included in any known decid-
able clause class. It generalizes the well-known class PVD [12]. The class of
guarded formulas, originally proposed by Andréka et al. [27], was shown to
be decidable through an effectively bounded finite model property. The first
resolution decision procedure for the guarded fragment has been described by
de Nivelle [28]. It has been further studied by Georgieva et al. [14] resulting in
the fragment GF1−, for which Hyper-resolution is a decision procedure. The
class GF1− includes function symbols but does not support non-guarded for-
mulas. For example, a transitivity clause is not included in this fragment but
contained in our class BDI. Further classes that can be decided by resolution
(superposition) without generating clauses with a term depth increase are the
monadic class [6], the class of shallow sort theories [35], or classes related to
tree automata [19].

Another related class is BU [15], which generalizes the set of all clause sets
one can obtain from GF1−, includes function symbols, and is also decidable by
Hyper-resolution. The class definition of BU takes special care of variables, for
example, every non-positive functional clause must contain a covering negative
literal which contains all the variables of the clause. Eventually this limits the
depth of clauses generated by Hyper-resolution. In BDI, we don’t require
such conditions but instead limit the form of recursive definitions.

A completely different way to deal with the problem of termination is the
method proposed by Baumgartner et al. [7]. It reduces model search first to
a sequence of satisfiability problems made of function-free first-order clause
sets, and then applies a theorem prover to the transformed (decidable) prob-
lem. However, this method also comes with several drawbacks. One is that the
transformation is not unsatisfiability preserving unless left-totality is forced.
Consider the following (unsatisfiable) clause set (in implication form) as an
example:

(1) → P (g(x), a)
(2) P (g(b), y) →

Obviously, simple resolution between these two clauses yields the empty clause.
The proposed transformation (without the left-totality) leads to the new clause
set

6



1.3 Related Work

(1′) Ra(z), Rg(x, y) → P (y, z)
(2′) Rb(z), Rg(z, x), P (x, y) →

which is not unsatisfiable anymore. The left-totality for restoring unsatisfiabil-
ity consists of a skolemized version of the axiom ∀x1, . . . , xn∃yRf (x1, . . . , xn, y)
for all function symbols f , which causes an expansion of the signature of the
problem in size of the number of domain elements. In the context of SAP
authorizations with large domains, this would cause a massive increase of the
generation of ground facts during saturation. This obvious problem of scala-
bility towards larger domain sizes is known by the authors and has also been
mentioned as a main area of further research in their paper. A second main
disadvantage is the missing (value) symmetry breaking mechanism for function
symbols of arity greater than one. A constraint satisfaction problem exhibits
value symmetry if permuting the values of a partial solution for the problem
gives another partial solution. For BDI classes, this is not a problem because
there is no transformation applied to a given set of clauses and the termination
is guaranteed mainly by limiting the form of recursive definitions.
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2 Foundations

2.1 Mathematical Foundations

This chapter recalls basic definitions of first-order logic as well as the fun-
damentals of first-order theorem proving which are used in this thesis. The
definitions are basically taken from [36], and [5], and the relations on terms
from [2]. Further, it recaps the definition and properties of graphs.

Definition 2.1 (Natural Numbers)
The set N of natural numbers contains all non-negative integers, i.e., N =
{0, 1, 2, . . .}.

Definition 2.2 (Multisets)
A multiset over a set A is a function M : A → N. Intuitively, M(a) specifies
the number of occurrences of a in M . If M(a) > 0 then a is an element of
M , otherwise M is called empty . Like the empty set, the empty multiset is
denoted by ∅. The union of two multisets M1 and M2 with x ∈ A is defined
by (M1 ∪M2)(x) = M1(x) +M2(x). Analogously, the intersection of M1 and
M2 with x ∈ A is defined by (M1 ∩M2)(x) = min{M1(x),M2(x)}.

Multisets are described by using a set-like notation. For example, {x, x, x}
denotes the multiset M where M(x) = 3 and M(x′) = 0 for all x′ 6= x in A.

Definition 2.3 (Orderings)
A partial ordering � on a set M is a binary relation on M that is

(i) reflexive, i.e. a � a for all a ∈M ,

(ii) antisymmetric, i.e., a � b and b � a implies a = b for all a, b ∈M , and

(iii) transitive, i.e. a � b and b � c implies a � c for all a, b, c ∈M .

A strict partial ordering � on a set M is a binary relation on M that is

(i) irreflexive, i.e., a 6� a for all a ∈M , and

(ii) transitive, i.e., a � b and b � c implies a � c for all a, b, c ∈M .

If = is the identity relation on M and � is a partial ordering on M , then the
relation � defined as � = (�\=) is a strict partial ordering. Conversely, if �
is a strict partial ordering on M , then the relation � defined as � = (� ∪=)
is a partial ordering.

A partial ordering � is total or an ordering on M ′ ⊆ M if a � b or b � a
for all a, b ∈ M ′. A strict partial ordering � is total or a strict ordering on
M ′ ⊆M if a � b or b � a or a = b for all a, b ∈M ′.

9
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Definition 2.4 (Lexicographic and Multiset Orderings)
Let M,N be sets. The multiset extension �mul of a strict partial ordering �
is defined as follows: M �mul N if

(i) M 6= N , and

(ii) for all n ∈ N \M there exists an m ∈M \N with m � n.

The lexicographic extension �lex on tuples of length n of some strict order �
is defined as: (t1, . . . , tn) �lex (s1, . . . , sn) if for some 1 ≤ i ≤ n holds

(i) tj = sj for all 1 ≤ j < i, and

(ii) ti � si.

Definition 2.5 (Minimal and Maximal Elements)
Let � be a strict partial ordering on a set M and let N be a subset of M or
a multiset over M . With respect to � and N , an element a ∈ N is called

• maximal if there is no element b ∈ N with b � a,

• minimal if there is no element b ∈ N with a � b,

• strictly maximal if a is maximal and, if N is a multiset, N(a) = 1,

• strictly minimal if a is minimal and, if N is a multiset, N(a) = 1.

Definition 2.6 (Well-Foundedness)
Let M be a set. A (strict) partial ordering � is called well-founded (Noethe-
rian), if there is no infinite descending chain a0 � a1 � a2 � . . . with
ai ∈M, i ∈ N.

2.2 First-Order Logic

2.2.1 Syntax

This section introduces the syntax of the first-order language without equality
used within this thesis, especially terms, clauses, and formulas. We follow the
notation of [36] and [29].

Terms and Formulas

Definition 2.7 (Signature)
A first-order language is constructed over a Signature Σ = (F ,R) with

(i) F is a non-empty, in general infinite set of function symbols, and

(ii) R is a non-empty, in general infinite set of predicate symbols.

10
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Additionally, every function or predicate symbol has some fixed arity : F ∪R →
N. A function symbol f with arity(f) = 0 is called a constant .

The letters P and Q are typically used as predicate symbols, f, g as function
symbols, and u, v, x, y, z as variables.

Definition 2.8 (Terms)
Let X be an infinite set of variable symbols disjoint from the symbols in the
signature Σ. The set of all terms T (F ,X ) is recursively defined by:

(i) every function symbol c ∈ F with arity zero (constant) is a term,

(ii) every variable x ∈ X is a term, and

(iii) whenever t1, . . . , tn are terms and f ∈ F is a function symbol with
arity(f) = n, then f(t1, . . . , tn) is also a term.

A term not containing any variable is a ground term.

To improve readability, a list t1, . . . , tn of terms is often written as ~t if
the counter variable n is obvious from the context or the concrete value of
the upper bound is not important. Otherwise, in case we explicitly want to
mention that the counter variable runs from 1 to n, we write ~tn. Also, there is
the n-fold application f(. . . (f(t)) . . .) of a unary function symbol f to a term
t for which we write in short fn(t).

Definition 2.9 (Atoms)
Let Σ = (F ,R) be a signature, t1, . . . , tn ∈ T (F ,X ), and P ∈ R is a predicate
symbol with arity(P ) = n. Then, P (~t) is an atom over the signature Σ.

Definition 2.10 (Formulas)
Let Σ be a signature. The set of first-order formulas is inductively defined in
terms of atoms over Σ as follows:

(i) every atom is a formula,

(ii) the two logical constants > and ⊥ (true and false) are formulas,

(iii) if φ1, φ2 are formulas, so are ¬φ1 and φ1 ∧ φ2 and φ1 ∨ φ2, and

(iv) if x ∈ X and φ is a formula, then ∃x.φ and ∀x.φ are formulas.

The formulas occurring in this thesis are written in implication form, Γ→ ∆,
where Γ contains the negative atoms and ∆ the positive atoms. For example,
a formula ∀x.¬φ1 ∧ φ2 is stated as ∀x.φ1 → φ2.

Definition 2.11 (Literals, Clauses)
An atom A or the negation of an atom ¬A is called literal . Disjunctions of
literals are clauses where all variables are implicitly universally quantified.
Clauses are often denoted by their respective multisets of literals where the
multisets are written in usual set notation. Alternatively to the multiset no-
tation of clauses, clauses are written in implication form Γ → ∆ where the
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multiset Γ is called antecedent and the multiset ∆ is called succedent of the
clause. The atoms in Γ denote negative literals while the atoms in ∆ de-
note the positive literals in a clause. A clause is called a unit clause if it
contains only one literal. The empty clause with Γ = ∆ = ∅ is denoted by
�. A clause is Horn if ∆ contains at most one atom. We often abbreviate
disjoint set union with sequencing, e.g., we write Γ → ∆, R(t1, . . . , tn) for
Γ→ ∆\{R(t1, . . . , tn)} ∪ {R(t1, . . . , tn)}.

Definition 2.12 (Variables of Terms and Atoms)
The set of free variables of an atom P , term f is denoted by

(i) vars(P (t1, . . . , tn)) = ∪ivars(ti),

(ii) vars(f(t1, . . . , tn)) = ∪ivars(ti), and

(iii) vars(x) = {x}.
The function naturally extends to literals, clauses and (multi)sets of terms
(literals, clauses).

Definition 2.13 ((Inner) Positions, Length)
A position is a word over the natural numbers. Let f(t1, . . . , tn) be a term.
The set pos(f(t1, . . . , tn)) of positions of a term is recursively defined as:

(i) the empty word ε is a position in any term t and t|ε = t

(ii) if t|p = f(t1, . . . , tn), then p.i is a position in t for all i = 1, . . . , n and
t|p.i = ti.

An alternative notation for t|p = s is t[s]p. The term (atom) obtained from t
by replacing t|p in t with s is denoted by t[p/s] where p ∈ pos(t).

The length of a position p is defined by length(ε) = 0 and length(i.r) =
1 + length(r). The notion of a position can be extended to atoms, literals and
even formulas in the obvious way.

Let p be an arbitrary position of a term s (atom, literal). We call p an inner
position if there exists a position q in s such that q = p.r, r 6= ε.

Definition 2.14 (Similarity)
Let p be an arbitrary position of a term s (respectively, atom or literal). Two
atoms P (t1, . . . , tn) and Q(s1, . . . , sm) are called similar if pos(P (t1, . . . , tn)) =
pos(Q(s1, . . . , sm)) and for all inner positions p we have P (t1, . . . , tn)|p =
Q(s1, . . . , sm)|p, implying P = Q and n = m.

Definition 2.15 (Depth, Occurrences)
The depth of a term is the maximal length of a position in the term, for
example, depth(t) = max({length(π) | π ∈ pos(t)}). The depth of a literal
[¬]P (t1, . . . , tn) is the maximal depth of its terms: depth([¬]P (t1, . . . , tn)) =
max({depth(t1), . . . , depth(tn)}). The depth of a clause is the maximal depth
of its literals, and in the same manner, the depth of a set of literals is the
maximal depth of its literals. Additionally, the function depth is extended to
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variables and clauses (or sequences of literals) such that depth(x,C) returns
the maximal depth of an occurrence of the variable x ∈ vars(C) of a clause C.

Let occ be a function returning the number of occurrences of a term s in a
term t, defined by

occ(s, t) = |{p ∈ pos(t) | t|p = s}|.

Substitutions

Definition 2.16 (Substitutions)
A substitution σ is a mapping from the set of variables X to the set of terms
T (F ,X ) such that xσ 6= x for only finitely many x ∈ X . The domain of a
substitution σ is defined as dom(σ) = {x | xσ 6= x} and the co-domain of σ
as cdom(σ) = {xσ | xσ 6= x}. A ground substitution σ has no variable occur-
rences in its co-domain, i.e., vars(cdom(σ)) = ∅. An injective substitution σ
where cdom(σ) ⊂ X is called a variable renaming .
A substitution σ can be lifted to terms T (F ,X ) by f(t1, . . . , tn) = f(t1σ, . . . , tnσ)
for all f ∈ F with arity n. Likewise, the application of σ to literals and clauses
is defined as:

(i) P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ)

(ii) (¬P (t1, . . . , tn))σ = ¬P (t1σ, . . . , tnσ)

(iii) {A1, . . . , An}σ = {A1σ, . . . , Anσ}
(iv) (Γ→ ∆)σ = Γσ → ∆σ.

Definition 2.17 (Unifiers and Most General Unifiers)
Given two terms (atoms) s, t, a substitution σ is called a unifier for s and t
if sσ = tσ. It is called a most general unifier (mgu) if for any other unifier τ
of s, t there exists a substitution λ with σλ = τ . A substitution σ is called a
matcher from s to t if sσ = t. The notion of an mgu is extended to atoms and
literals in the obvious way. We say that σ is a unifier for a sequence of terms
(atoms, literals) t1, . . . , tn if tiσ = tjσ for all 1 ≤ i, j ≤ n and σ is an mgu if
in addition for any other unifier τ of t1, . . . , tn, there exists a substitution λ
with σλ = τ .

Term and Clause Orderings

Superposition-based calculi typically limit the number of possible inferences
by considering only clauses where the involved literals are maximal. This is
admissible because the eventual proof of the input clauses still remains correct
(model existence problem, [3]), and is realized by using ordering conditions
that are stated on the term level, and which are then extended to literal
occurrences in a clause, and to clauses (see Definition 2.20).

Popular orderings are the Knuth-Bendix ordering (KBO) [22, 10], the lex-
icographic path ordering (LPO) [21], and the recursive path ordering with
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status (RPOS) [10]. In this thesis (and within our usage of the prover Spass),
we use the KBO. For a broader introduction to orderings, consider the book
by Baader and Nipkow [2].

Definition 2.18 (Precedence, Weight)
Let Σ = (F ,R) be a finite signature. The strict partial ordering > on the
symbols in Σ is called a precedence. Let weight : Σ → N be a weight func-
tion. We call a weight function admissible for some precedence if for every
unary function symbol f with weight(f) = 0, the function f is maximal in the
precedence, i.e., f ≥ g for all other function symbols g.

The function weight is extended to a weight function on terms weight :
T (F ,X )→ N as follows:

(i) if t ∈ X then weight(t) = k, where k = min({weight(c) | c ∈ F , arity(c) =
0}), and

(ii) t = f(t1, . . . , tn), then weight(t) = weight(f) +
∑

i weight(ti).

Definition 2.19 (Kuth-Bendix Ordering)
Let s, t ∈ T (F ,X ) be two terms, then t �kbo s if occ(x, t) ≥ occ(x, s) for every
variable x ∈ (vars(t) ∪ vars(s)) and

(i) weight(t) > weight(s), or

(ii) weight(t) = weight(s) and t = f(t1, . . . , tn) and s = g(s1, . . . , sm) and

(2a) f > g in the precedence, or

(2b) f = g and

(2b1) (t1, . . . , tn) �lexkbo (s1, . . . , sm) or

(2b2) (tn, tn−1, . . . , t1) �lexkbo (s1, sm−1, . . . , s1)

If the precedence > is total on Σ then the KBO is total on ground terms
(atoms).

Definition 2.20 (Literal/Clause ordering)
Let � be a (reduction) ordering on terms/atoms. It can be extended to clauses
as follows: Clauses are considered as multisets of occurrences of atoms. The
occurrence of an atom A in the antecedent of a clause is identified with the
multiset {{A,>}}, the occurrence of A in the succedent with {{A}, {>}}. The
constant > is always assumed to be minimal with respect to �. Additionally,
the symbol � is overloaded on literal occurrences to be the twofold multiset
extension of � on terms (atoms) and � on clauses to be the multiset extension
of � on literal occurrences. If � is well-founded (total) on terms (atoms), so
are the multiset extensions on literals and clauses.

Definition 2.21 (Reductive Clause)
A clause Γ→ ∆, A is called reductive for the atom A if the atom A is a strictly
maximal occurrence of an atom in the clause.
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2.2.2 Semantics

Definition 2.22 (Herbrand Interpretation)
A Herbrand interpretation I is a set of ground atoms. A ground atom A is
said to be true in I if A ∈ I. It is called false in I if A /∈ I. The constant
> is true in all interpretations, whereas ⊥ is false in all interpretations. The
logical connectives are interpreted as usual: A conjunction A ∧B is true in I
if both A and B are true in I; a disjunction A ∨ B is true if at least one of
A and B is true; a negated atom ¬A is true in I if A /∈ I. If F is a formula,
the universally quantified formula ∀x.F is true in I if Fσ is true in I for
all substitutions σ that assign x to some ground term, and an existentially
quantified formula ∃x.F is true in I if Fσ is true in I for some substitution
σ that assigns x to some ground term. A ground clause is true in I if at least
one of its literals is true in I.

Definition 2.23 (Model)
An interpretation I is called a model of a formula F if F is true in I and is
written as I |= F . Similarly, for two formulas F1, and F2, F1 |= F2 denotes that
whenever F1 is true in I then also F2 is true in I. An alternative notation
is I |= F2 whenever I |= F1. If C1, . . . , Cn and D are clauses, we write
C1, . . . , Cn |= D if for all Herbrand interpretations I whenever I |= C1, . . . , Cn
then also I |= D. For a set of clauses N , we say I is a model of N , written
I |= N if I |= C for all clauses C ∈ N .

Definition 2.24 (Satisfiability)
Let N be a clause set. N is called satisfiable if there is a Herbrand interpre-
tation I with I |= N . Otherwise, N is called unsatisfiable.

2.3 First-Order Reasoning

First-order theorem proving deals with the problem of showing whether a
given clause (formula) C is a logical consequence of a set of clauses N , written
as N |= C. The proof is usually done the other way around by showing
the inconsistency of the set N ∪ {¬C}. This inconsistency is established by
providing a formal proof of ⊥ from N by means of appropriate calculi which
are described by a collection of inference and reduction rules that determine
how new clauses can be derived from the given clauses.

Let Res�S be the calculus – the inference and reduction rules – used in
this thesis which is presented in detail in the following sections. It uses the
resolution calculus of Bachmair and Ganzinger [5] that is based on general
resolution due to Robinson [31]. The rules are given in a generic way such
that each definition covers several variants of the rule. In particular, the
rules are parameterized by an admissible ordering � on literals and a selection
function S. The admissible ordering is a total (well-founded) strict ordering
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on the ground level for the literals and extended to the non-ground level in
a canonical manner. The selection function assigns to each clause a possibly
empty set of occurrences of negative literals with the effect that all inference
rule applications taking this clause as a parent clause must involve the selected
literals [36]. Note that the selection restriction of negative literals does not
destroy completeness [4].

2.3.1 Inferences

Given the calculus Res�S , one way of altering a given clause set N is to use
inferences with premises in N to derive new clauses. The other way is to
eliminate so-called redundant clauses which is described in Section 2.3.2.

An inference is a relation on clauses where the elements of such a relation
are written as

C1 = Γ1 → ∆1 . . . Cn = Γn → ∆n

D = Γ→ ∆

The clauses C1, . . . , Cn are called the premises, and D the conclusion or re-
solvent of the inference. The conclusion of the inference is eventually added
to the given clause set N . A set of inferences is called an inference system.

The closure of clause sets under the calculus Res�S in this thesis is given by

Res(N) = {C | C is a conclusion of an inference or

reduction rule with premises in N},
Res0(N) = N ,

Resn+1(N) = Res(Resn(N)) ∪ Resn(N) for n ≥ 0, and

Res∗(N) =
⋃
n≥0

Resn(N).

A set of clauses N is called saturated (with respect to the inferences of the
calculus Res) if Res∗(N) ⊆ N . A set N of clauses that has been altered by n
steps of inferences (and reductions) is written as Resn(N). If the exact number
n is not known or not important, the altered set N is referred to as N∗.

This thesis makes use of the following inference rules. The termination
proof of the BDI clause class even computes inferences only using the below
mentioned ordered hyper-resolution rule. As usual the calculus Res is based
on a reduction ordering � that is total on ground terms.

Definition 2.25 ((Ordered) Hyper-Resolution)
The inference

E1, . . . , En → ∆ → ∆i, E
′
i (1 ≤ i ≤ n)

(→ ∆,∆1, . . . ,∆n)σ

where
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(i) σ is the simultaneous mgu of E1, . . . , En, E
′
1, . . . , E

′
n,

(ii) all E′iσ are strictly maximal in (→ ∆i, E
′
i)σ

is called an ordered hyper-resolution inference. If condition (ii) is dropped, the
inference is called a hyper-resolution inference.

Definition 2.26 ((Ordered) Resolution)
The inference

Γ1 → ∆1, E1 E2,Γ2 → ∆2

(Γ1,Γ2 → ∆1,∆2)σ

where

(i) σ is the mgu of E1 and E2,

(ii) no literal in Γ1 is selected,

(iii) E1σ is strictly maximal in (Γ1 → ∆1, E1)σ,

(iv) the atom E2σ is selected or it is maximal in (E2,Γ2 → ∆2)σ, and no
literal in Γ2 is selected

is called an ordered resolution inference. If conditions (iii)-(iv) are replaced by
E2 is selected or no literal is selected in Γ2, the inference is called resolution.

Definition 2.27 ((Ordered) Factoring)
The inferences

Γ→ ∆, E1, E2

(Γ→ ∆, E1)σ

and
Γ, E1, E2 → ∆

(Γ, E1 → ∆)σ

where

(i) σ is the mgu of E1 and E2,

(ii) (E1, E2 occur positively, E1 is maximal and no literal in Γ is selected), or
(E1, E2 occur negatively, E1 is maximal and no literal in Γ is selected or
E1 is selected),

is called ordered factoring right and ordered factoring left , respectively. If
condition (ii) is replaced by (E1, E2 occur positively and no literal in Γ is
selected) or (E1, E2 occur negatively, E1 is selected or no literal in Γ is selected)
the inferences are called factoring right and factoring left , respectively.
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2.3.2 Reductions

Along with using inferences, there is the way of using reductions on a given
clause set N . If clauses in a set N∗ are already implied by smaller clauses
in N∗, they can be eliminated using the reduction rules given below. The
concept of redundancy is used to reduce the number of clauses that need to be
considered as premises for future inference steps. In general, a clause is called
redundant with respect to a set of clauses N , if it follows from clauses in N
that are smaller than C.

Definition 2.28 (Subsumption)
The reduction

Γ1 → ∆1

Γ2 → ∆2

where Γ2σ ⊆ Γ1 and ∆2σ ⊆ ∆1 for some substitution σ is called subsumption.

Definition 2.29 (Condensation)
The reduction

Γ1 → ∆1

Γ2 → ∆2

where Γ2 → ∆2 subsumes Γ1 → ∆1 and Γ2 → ∆2 is derived from Γ1 →
∆1 by instantiation and (exhaustive) application of trivial (duplicate) literal
elimination is called condensation.

For the purpose of this thesis the reduction rules subsumption and condensa-
tion suffice. Nevertheless, the calculus could be enhanced by all simplification
rules which are compatible with the general notion of redundancy.

Now the (ordered) hyper-resolution calculus consists of the rules (ordered)
hyper-resolution, (ordered) factoring, subsumption deletion, and condensa-
tion. The (ordered) resolution calculus consists of the rules (ordered) resolu-
tion, (ordered) factoring, subsumption deletion, and condensation.

Reduction rules are applied exhaustively and before the application of any
inference rule.

2.3.3 Soundness and Completeness

The most important properties of every calculus are soundness and complete-
ness. Soundness means that only inferences can be made that do not change
the semantics of the problem while completeness entails that if a resolvent is
a logical consequence then it can also be derived by the calculus.

The calculus Res�S used in this thesis by Bachmair and Ganzinger is sound
and refutationally complete [5]. The following gives the formal definition:

Definition 2.30
The calculus Res�S is sound and refutationally complete with respect to a set
N of clauses if N |= ⊥ ⇔ ⊥ ∈ N .
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2.4 Graphs

A graph is a representation of a set of objects (vertices), where some of them
have relations with other objects. The relations are represented by graphical
links (edges). The following gives a formal definition of a graph, and is based
on [11, 34].

Definition 2.31
A graph G consists of a set of vertices V and a set of edges E. If each edge in
E is an ordered pair (v, w) of vertices in V , the graph is directed , or, if each
edge in E is an unordered pair {v, w} of vertices in V , the graph is undirected .

In a directed graph, the element v is the tail and the element w is the head
of an edge (v, w) of vertices in V . Alternatively to the notation (v, w), an edge
from v to w is denoted by v → w. A path p : v →∗ w in G is a sequence
of vertices and edges going from v to w. A path p : v → ∗v is called closed .
The length of a path corresponds to the number of edges that the path has.
A cycle is a closed path with length equal or greater than three.

Figure 2.1 depicts a directed graph G with V = {v1, v2, v3, v4, v5, v6} and
E = {(v1, v5), (v1, v3), (v2, v5), (v3, v4), (v4, v6), (v5, v4), (v6, v3)}.

v6

v4

v5 v3

v2 v1

Figure 2.1: Example of a directed graph G = (V,E) with a cycle of length 3
(v3 → v4 → v6 → v3).

Graphs are used in this thesis to represent the dependencies between clauses
and its literals (or predicate symbols) of a given clause set. In order to
speak about recursive definitions of predicates or, alternatively, cycles between
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clauses for a given clause set, the following notion of reachability between pred-
icate symbols of atoms occurring in (possibly different) clauses is established
by means of graphs.

Definition 2.32 (Reachability)
Given a clause set N and its directed graph G with V = R (all predicate
symbols) and edges E = {(P,Q) | C = Γ, P (~x) → ∆, Q(~y)}) for all clauses
C ∈ N with corresponding predicate symbols P,Q.

A predicate Q is reachable from P in one step if it exists an edge (P,Q) in
G. Moreover, a predicate R is reachable from P if (P,R) ∈ E or if it exists a
path P →∗ R.
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During the last decades a lot of mid-size and large companies introduced ERP
(Enterprise Resource Planning) software like the SAP system.

The SAP systems have a long tradition. It started with a financial Account-
ing system named R/1 R© which was then replaced by the SAP R/2 R© system
at the end of the 1970s. The SAP R/2 R© system was in a mainframe based
business application software suite that was very successful in the 1980s and
early 1990s. In 1992, with the introduction of distributed client-server com-
puting, SAP brought out a client-server based version, called SAP R/3 R©.
It’s new architecture was compatible with multiple platforms and operating
systems and allowed SAP to gain a lot of new customers. The current ver-
sion SAP ERP 6.0 (formerly mySAP ERP 2005) differs from R/3 R© in the
way that it builds on SAP NetWeaverTM as its platform for applications.
The components based on SAP NetWeaverTM can be implemented both in
ABAP R© (SAP’s own programming language) or Java. The main component
of the SAP ERP 6.0 system – ERP Central Component (SAP ECC) – is the
successor of the R/3 R© system and consists of the following core modules:

• Financials:
Financial Accounting (FI), Controlling (CO), Strategic Enterprise Man-
agement (SEM), Enterprise Controlling (EC), Investment Management
(IM), Public Sector Management (PSM), Project System (PS), Real Es-
tate Management (RE), Treasury (TR)

• Human Capital Management (HCM), also known as Human Resources
(HR):
Personnel Management (PA), Personnel Time Management (PT), Pay-
roll (PY), Training and Event Management (PE), Personnel Develop-
ment (PD), Cost Planning (CP)

• Logistics:
Materials Management (MM), Production Planning and Control (PP),
Plant Maintenance (PM), Sales and Distribution (SD), Logistics Execu-
tion (LE), Environment, Health & Safety (EHS), Customer Service (CS),
Quality Management (QM), Logistics-General (LO), Product Lifecycle
Management (PLM), Warehouse Management (WM)

• Workflow (WF)
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Additionally, there are modules which are prefixed with IS (Industry Solu-
tion) indicating that they combine the basic modules with additional industry-
specific functionality. The following list gives an excerpt of the variety of
different industry modules:

• Aerospace and Defense (IS-AD),

• Automotive (IS-A),

• Oil and Gas (IS-OIL),

• Health care (IS-H),

• Media (IS-M)

• ...

Altogether, one can see from the variety of available modules and the long
history of SAP that it is a very successful system and the instances itself may
be very large. From the organizational point of view, a single instance of an
SAP ERP system can map one department of a company (e.g., supply chain
management) as well as worldwide corporations with a lot of departments and
subsidiaries. Considering such large systems, it is conceivable that especially
the administration of authorizations is highly extensive.

Concerning the different versions of SAP, I have already explored in my Mas-
ters Thesis [23] that the authorization concepts of the former SAP R/3 R© sys-
tem and the current releases seem to be identical. Therefore, we can simply
refer to “The SAP System” in this thesis which means the SAP R/3 R© system
or any release after up to now.

During my work, I had access to the SAP installation of the Max-Planck
Society which I used to acquire information about the authorization mecha-
nisms and the authorizations. The Max-Planck Society uses the SAP system
release SAP ECC 6.0 with SAP NetWeaver 7.0 (2004s).

This chapter provides the description of the SAP system and the relevant
authorization layer that is required for the development of the formalization in
Chapter 4. Several paragraphs throughout the whole chapter are adopted lit-
erally or in a rephrased form from my Masters Thesis [23]. Besides, Chapter 3
is organized as follows.

In Section 3.1, the reader gets introduced into the different components
related to authorization checks and the relationship between these elements in
an authorization check procedure will be explained.

Afterwards in Section 3.2, the authorization setup structure representing
the users and their authorizations is described and how the authorizations can
be assigned to users.

Section 3.3 presents (parts of) the purchase process as a typical example of
a business process. It includes some screenshots in order to depict and to ease
the understanding of the process implementation in the SAP system.
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Eventually, Section 3.4 introduces into the concept of business policies and
gives some examples related to the purchase process.

3.1 Authorization Checks

This section explains the main components used for the authorization checks
starting with a brief description of the term of a transaction in Section 3.1.1.
Transactions often appear in the context of database transactions, and this
basic understanding also applies roughly to a transaction in the SAP system.

Sections 3.1.2 and 3.1.3 describe how authorization objects and authoriza-
tions are used to protect data, functions and even database tables from unau-
thorized access, and also dissociate the two terms from each other.

Eventually, a complete authorization check is sketched in Section 3.1.4 which
describes how its execution makes use of the single components presented
before.

3.1.1 Transactions

Transactions are known from databases where a transaction corresponds to a
single logical operation on the data – no matter how many individual changes
are required. It must fulfill the so-called ACID criteria: Atomicity, consistency,
isolation, and durability.

This concept also applies to transactions in the SAP system. The program
(code) where the authorization checks are attached and implemented is called
an SAP transaction. Usually, the start of a transaction implies the check
of multiple individual authorizations. According to the ACID criteria for
database transactions, the check of all individual authorizations for a specific
user either succeeds or fails as a group (atomicity) and cannot be interfered
by authorization checks for other users running the same program (isolation).
In other words, if only one individual check fails for the specific user, then the
overall transaction fails, too. The exact procedure of authorization checks is
described in more detail in Section 3.1.4.

The execution of the transaction in SAP corresponds to the execution of a
function in the SAP system. Then, the function starts the associated program.
Every program that needs to be protected has its unique identification code
which is called transaction code. In SAP, the term transaction is typically
used to refer the called program itself. Short statements like “the transaction
xy” denote the program where xy is the transaction code for that program.

The concrete number of individual authorization checks often differs between
multiple runs of a transaction. This is caused by those checks implemented
using a traditional if-else statement and which depend on the data that has
been entered.
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Furthermore, we need to distinguish between the authorization check itself
and the checked data: If the implementation of a number of authorization
checks for a concrete transaction doesn’t change and the number of checks is
also the same for two runs, then the checks themselves are identical (the same
access right is checked) in each run of the transaction, but the data is not nec-
essarily equal. For example, a check in a transaction could be the verification
of the user’s department where the checked data is different because not all
employees in a company belong to the same department. In that case, the
check for the access right itself – namely the right to access the department –
for each run is equal.

3.1.2 Authorization Objects

Authorization objects are used to protect functions or data in the SAP sys-
tem. Every authorization check occurring when a transaction starts or during
the execution of a transaction checks the associated authorization object to
be present with the required values. The authorization object can be seen
as a container for the authorization values. It is a logical entity that groups
between one and ten value fields requiring authority checking within the sys-
tem. The fields can be eventually filled with different authorization values.
This structure is illustrated by Figure 3.1. Already the (old) release 4.6 of
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Figure 3.1: Authorization object structure.

SAP includes around 900 pre-defined authorization objects that are classified
into ca. 40 object classes corresponding to their application area, for example
Finance or Human Resources. If still none of these objects is suitable, there
is the possibility to define additional authorization objects which are liable to
the structure described before.

3.1.3 Authorizations

The combination of the authorization object with concrete values having been
filled into the value fields constitutes the authorization, that is an instance of
the authorization object. In this way, many different instances can be created
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Authorization Field Possible Values

ACTVT (Activity) 01 - Create
02 - Change
03 - View

Table 3.1: Authorization values denoting the type of an activity.

using one authorization object by filling in different values. The structure is
depicted in Figure 3.2. The term “authorization” often leads to confusion be-
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Figure 3.2: Authorization (instance of an authorization object).

tween the everyday language terminology and the terminology used by SAP
people. In general, an authorization is the permission of a person to do some-
thing, or, translated to our scenario, the permission to execute a function in
a system. However, in the SAP system and usually in this thesis (but still
depending on the context), we refer to the authorization as the special notion
for the previously mentioned combination of the authorization object and its
field values.

The insertable values for a value field of an authorization object can be single
values or also value ranges. For example, there are a number of numerical
values available denoting the type of an activity. Table 3.1 shows some typical
activity codes.

In addition to the previously mentioned numerical values and value ranges,
one can use the wild-card characters question mark (?) and the asterisk (*).
As usual, the question mark represents a single character while the asterisk
stands for any combination of characters of any length. As soon as a value
contains wild-card characters, it is called a regular pattern. However, in this
thesis, I have considered only the asterisk as the wild-card symbol and so far
no composed values (in order to ease the complexity).

Authorizations are eventually used during the authorization check in the
SAP system in which the built-in authorization policy forbids all actions not
explicitly permitted by an authorization. Authorizations can only grant per-
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missions but not restrict or forbid them.

3.1.4 Authorization Check Procedure

Authorization checks occur whenever a user requests access to a particular
transaction. In such a case, the user’s credentials (his/her assigned autho-
rizations) are checked against the requested ones and if the authorizations
match (both the authorization object and its values must match), the user is
permitted to access the information which is protected by the authorization
object.

The actual authorization check consists of two parts: (i) it checks the pres-
ence of the required authorization in the authorization profile of the user’s
master record (for this purpose only the authorization object name is com-
pared), (ii) the comparison of the required value(s) with the value(s) present
in the value field(s) of the authorization. The check (i) is successful if the
requested authorization object is available in the user’s profile. The second
check (ii) succeeds if all value fields with the corresponding values of the object
match to the required fields and values (AND-combination). Matching means
in the context of this thesis that one of the following conditions holds:

• The present value in the value field is the asterisk wild-card character
(*) . This character matches any required value.

• The present value in the value field and the required value match exactly,
i.e., they are equal.

As mentioned earlier, regular pattern authorization values as well as intervals
are not considered in this thesis.

Further, a successful authorization check requires both the authorization
object existence check (i) and all single field/value checks (ii) to succeed. If
only one of the single checks fails, then the overall check of the authorization
fails.

There are two different cases when an authorization check is triggered during
the execution of a transaction:

• Check at the start of a transaction
There is a special authorization object, named S TCODE, that is always
checked at first for every transaction before the actual program associ-
ated with the transaction will be executed. This verification is set up
by the system and can’t be turned off. It is possible to associate one
further authorization object at this place and let the system check these
two objects before the actual program starts.

• Check during the progress of a program
This is the default case where all authorization checks are located in
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the program code. On the code level, an authorization check can be
forced using the AUTHORITY-CHECK statement. Whenever the sys-
tem reads this keyword during the execution of the program code, it will
check the associated authorization object with its fields1. It is possible
to check one object repeatedly in a program or to group several different
authorization objects to protect special data or a specific part of the
program.

In earlier times, the authorization objects always had to be identified man-
ually in the program code. Today this is a bit easier because SAP provides
database tables2 listing all these checks. Of course, if a customer doesn’t fol-
low this convention and decides not to insert the checks into these tables, it is
necessary to locate the checks directly in the program code as before.

3.2 The Authorization Setup

The authorization setup is the layer on which authorizations are assigned to
users. However, authorizations assigned to users become only effective for a
user and can be used in an authorization check if the authorizations are also
present in the authorization profile of the user’s master record.

Authorizations can be assigned to users using the following different ways:
The administrator creates so-called roles or authorization profiles or uses a
combination of both ways. As mentioned, the effective authorizations are
always and only stored in authorization profiles. The assignment of any au-
thorization to a user on the base of a role therefore requires the creation of
the corresponding authorization profile. All parts are shown in an overview
picture in Figure 3.3.

The following sub-sections describe the definition of authorization profiles
and roles and also explain the differences between these two terms.

3.2.1 Authorization Profiles

An authorization profile is a group of authorizations. If an authorization
profile has been assigned to a user then he/she is authorized to access all
transactions/functions/data granted by the authorizations in the profile.

SAP distinguishes between simple (or single-level) profiles and composite
profiles.

1It is possible to disable the check of an object but this is not important to the general
functionality and therefore discarded here.

2The table USOBX holds the default values for authorizations checks occuring in transactions.
The customer table USOBX C is initially (during the overall system setup) filled with the
contents of the table USOBX and can be adjusted further to fit the customer’s personal
needs.
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Figure 3.3: Complete picture of SAP authorizations.
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Figure 3.4: Structure of a simple (single-level) authorization profile.

• Simple (single-level) profiles have authorizations on one level. Nested
levels are not possible. The following Figure 3.4 shows the structure of
a simple profile. The assignment of a simple profile to a user results in
the assignment of all authorizations to the user which are contained in
the profile.

• Composite profiles can contain single profiles or other composite profiles.
The notion is to reduce the maintenance effort with a better structure
in the authorizations part. Therefore, a composite profile groups dif-
ferent simple and/or other composite profiles together. The following
Figure 3.5 depicts the structure of a composite profile.

From the technical side there is no difference between the assignment
of a simple profile and a composite profile to a user. The assignment
of a composite profile just results in assignments of all authorizations
which are contained at any level (union). Authorizations can only grant
access to transactions/functions/data but they can’t forbid the access.
Therefore, conflicts resulting from the union cannot occur because the
union of access grants implies again access grants and never the denial to
access something. If, for example one profile contains only the permission
to read some data and another profile contains the permission to write
then the result is the permission to read and write the data.

The existence of the composite profiles remains from earlier releases of
SAP R/3 R© without the support for roles. SAP strongly recommends to
only use the concept of roles.[32, p. 88] The main reason concerns the
ability to structure. Roles offer more structure features than profiles and
are the newer concept.

3.2.2 Roles

The so called Role Based Access Control (RBAC – also called role-based secu-
rity) is an essential concept in SAP systems. Role-based security is a form of
user-level security where the application doesn’t focus on the individual user’s
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Figure 3.5: Structure of a composite authorization profile.

identity; but rather on a logical role they occupy.

The concept of roles is important in SAP systems because roles offer great
possibilities to compose structures. It is possible to create single roles as well
as composite roles and even inheritance between roles is supported. A tool
called “SAP Profile Generator” is used to create single and composite roles.
The name Profile Generator comes from the fact that an authorization profile
will be generated for each role and also after every change of the role. The
generation is required because authorizations are only effective for a user if
he/she holds them in his/her master record. If a user holds authorizations
then he/she in fact holds one or more authorization profiles which group the
authorizations.

If a role inherits properties from another role then the parent role is called
template role. For example, a template role can inherit the contained autho-
rizations to the child roles. Just like inheritance in programming languages,
changes to the template role will be automatically applied to the derived roles.
Template roles are often used to define roles having the same functionality (i.e.,
allowing to execute the same transactions), but the specific different organi-
zational level authorizations such as company code, purchasing organization,
etc. are then defined in the child roles.
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Figure 3.6: Structure of a single role.

Single Roles

The structure of a single role is similar to the authorization profile, i.e., it also
contains authorization values. Figure 3.6 depicts the structure of a single role.

Whenever a single role is created using the Profile Generator the appropriate
authorization profile should be generated, too. A user effectively holds only
the authorizations which are present in the (generated) authorization profile
and which in turn has been assigned to the user. Therefore, the assignment
of a role to a user without the existence of the generated authorization profile
is useless. This is due to the fact that authorization checks always and only
compare the required authorizations with the authorizations present in the
authorization profile of the user’s master record. Therefore, an authorization
check will fail if the required authorization is only present in the role which
has been assigned to the user and not in the user’s authorization profile.

The difference to the (direct) authorization profile is that changes to the
authorizations of a user which are grouped in auto-generated authorization
profiles must take place through the role definition. It isn’t possible to change
values directly in (auto-)generated profiles as it is in direct authorization pro-
files.

Composite Roles

Composite roles are used for structuring and to reduce the maintenance effort.
They can bundle an arbitrary number of single roles. The structure of a
composite role is shown in Figure 3.7. In contrast to a composite profile,
composite roles can make use of the feature of inheritance. Therefore, the
structure capabilities are better for roles than for direct profiles.

The typical usage of a composite role is that it reflects the position of a user
with its tasks and responsibilities in a company whereas a single role holds all
authorization information needed to perform one concrete task.
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Figure 3.7: Structure of a composite role.

3.3 Business Processes

A business process is a sequence of interrelated steps which solve a particular
issue. It can be part of another process and/or can also contain other processes.

Business processes are categorized into three different types:

1. Management processes govern the operation of a company. Typical man-
agement processes include “Corporate Governance” and “Strategic Man-
agement”.

2. Operational processes are processes that constitute the core business and
create the primary value stream. Typical operational processes are Pur-
chasing, Manufacturing, Marketing, and Sales.

3. Supporting processes support the core processes. Examples include Ac-
counting, Recruitment or IT-support.

Management processes are indirectly modeled in SAP systems because they
typically partly initiate or consist of other non-management processes. On
the other hand, the operational and supporting processes are mapped in SAP
systems by sequences of different transactions.

In general, all business processes that are mapped by a number of SAP
transactions use the same authorization check mechanism. The analysis of
all business processes which are mapped in an SAP system instance would
go beyond the scope of this thesis. Therefore, I follow [23] and consider the
purchase process as typical constituent of most SAP systems. The following
sections introduce (the steps of) the purchase process used in this thesis and
describe the process steps and the mandatory fields as well as its associated
authorization objects.

The authorization check procedure is basically the concatenation of all au-
thorization checks which occur in the execution of the transaction. The access
is only granted if all single authorization checks have been passed successfully.
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Figure 3.8: The purchase process.

A more comprehensive explanation including an example about the underlying
authorizations and authorization check procedure is available in [23].

3.3.1 The Purchase Process

The purchase process consists of several steps which are depicted in Figure 3.8.
In order to keep the case study in this thesis straightforward and comprehensi-
ble, we deal only with the creation of a requisition, the release and the eventual
order (marked by a box in the figure). The creation of the requisition as well
as the creation of the order is mapped by exactly one transaction in the SAP
instance of the Max Planck Society. The release transaction is mapped by two
transactions, one to view the requisition and the second to apply the release.

The following sections describe the essential data which must be entered
to successfully create the entities. This is accompanied by screenshots of the
system to give a rough idea of the appearance of the purchase transaction
screens in the SAP system.

Create a Requisition

A purchase requisition document is created by a department and the purchas-
ing group, respectively to request the purchase of goods or services. Such a
document has some mandatory fields – the fields which must be filled in order
to successfully finish the transaction. Therefore, the values of most of the
required fields are subject to authorization checks.

The list of mandatory fields contains the document type (related to the
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authorization object M BANF BSA) – the type of the requisition object. Typical
values for this field are NB which stands for regular or “normal business”, RSU
which stands for re-supply, or SH for special handling3.

Another mandatory field is the item number which is located in the item
area (see Figure 3.9). It prohibits the creation of empty requisitions.

Figure 3.9: Screen to create a requisition.

Each item which is going to be purchased is destined for a concrete plant
(related to the authorization object M BANF WRK). Therefore, the plant is a
mandatory field, too. The value depends on the structure of the company
(and consequently of the customizing settings) and is typically prefilled. An
empty value suggests a non-complete customizing.

Furthermore, each item must be assigned to a concrete purchasing group
(related to the authorization object M BANF EKG). The term purchasing group
is somewhat misleading because in the Max-Planck Society a purchasing group
is often composed of just one person.

Each item requires the input of either a material number or a short descrip-
tion of the item. The material number is used in order to load the material
related data from the material master record which is stored in the database.

3The available values in a specific SAP system instance depend on the customizing settings.
Customizing is the adjustment of a default SAP system to match the business needs of
a company.

34



3.3 Business Processes

Further mandatory fields like the material description, material group and the
unit of measure are then prefilled automatically. The second option is to use
just the material description. Then the fields like material group and unit of
measure have to be filled manually.

Other required fields are, of course, the quantity of the items going to be be
purchased, the delivery date and a price valuation.

The account assignment category is also mandatory. It determines which
account assignment details are further required for an item (for example, the
specification of a cost center or an account number).

The screenshot depicted in Figure 3.9 shows most of the previous mentioned
fields of the screen on the basis of the requisition for a Porsche sports car.

Release a Requisition

Release procedures for requisitions are used in the SAP system to approve
requisitions which exceed a certain budget limit before they can be converted
to an order.

The SAP system uses so-called release strategies to achieve such approvals.
They have to be defined in the customizing of the purchasing before the exe-
cution of any purchase activity.

In order to provide a wide variety of possibilities the release strategies make
use of the so-called class system which is a general component of the SAP
system and not limited for use within release strategies. This class system is
used to describe and classify any objects, for example, materials or requisitions,
through characteristics in order to determine whether a certain strategy will
be applied or not.

A release typically consists of several single release steps which have to be
specified in the release strategy. Each step is defined by its release code. The
release codes are again grouped in the release group. The so-called release
indicators indicate the approval state of a requisition and define the possible
actions after a certain release step.

The release strategy (entity) – denoted by its release strategy name – com-
bines a characteristics class, the release codes, release group, and the release
indicators. A more detailed explanation of the release strategy and its con-
stituents including some examples can be found in [23].

The screenshot depicted in Figure 3.10 shows the release screen for a requi-
sition. It continues the previous example of the Porsche sports car and shows
the active release strategy VF, which stands for a management release. It con-
sists of two single release steps: (i) the group leader (release code W1) and (ii) a
person of the management, for example the director (owning the release code
W2). The release of the group leader has already been passed but the director
release is still open and needs to be completed to fully release the requistion.

The fields that are subject to authorization checks for the release step are
the ones mentioned in Section 3.3.1, create a requisition, as well as the release
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Figure 3.10: Screen to release a requisition.
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group and code (together in the authorization object M EINK FRG).

Create an Order

The order is the request to the supplier or another plant of the company to
deliver the requisitioned (and released) material or services under the terms
and conditions agreed before.

In practice there are often negotiations with possible suppliers about the
exact prices, conditions and perhaps possible discounts after the release of a
requisition. If the price or the condition changes, it is typically a minimal
change. A big change results in the re-appliance of the release strategy, i.e.,
either the changed item or the overall requisition has to be released again,
depending on the release settings.

Assume that the release has succeeded and the conditions have not changed.
A released requisition can be transformed to an order (which is connected
to the requisition) where, in contrast to the requisition, the order requires
additionally at least accounting settings (for booking on a specific cost center,
project, etc.), and a vendor.

Most of the other required fields correspond to the ones available in the req-
uisition: The document type (related to the authorization object M BEST BSA),
plant (related to the authorization object M BEST WRK), and purchasing group
(related to the authorization object M BEST EKG). In addition, there is the field
purchasing organization (related to the authorization object M BEST EKO) that
is subject to authorization checks.

Figure 3.11 depicts the order step for the Porsche sports car which has been
previously requested and then released. After the order creation, the next step
would be to print out the order and send it to the supplier.

The previously presented way to create orders is the default method. How-
ever, companies often need additional ways to create orders because the run
through all steps of the complete purchase process often takes a lot of time.
In such cases, the process is altered to allow alternative ways to create orders.
For example, an extension could allow direct orders which do not require a
released requisition but have restrictions to a certain type of material and/or
a limit on the total amount of money.

3.4 Business Policies

Business policies are constraints on the business. According to the Business
Rules Group [16] a business policy or business rule is a statement that defines
or constrains some aspect of the business. It is intended to assert business
structure or to control or influence the behavior of the business. Much of
the industry’s understanding of business policies has been historically shaped
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Figure 3.11: Screen to create an order.
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by the Business Rules Group, which grouped business rules in one of four
categories:

• Definitions of business terms
The most basic element of a business rule is the language used to ex-
press it. The very definition of a term is itself a business rule which
describes how people think and talk about things. Thus, defining a term
is establishing a category of business rule.

• Facts relating terms to each other
The nature or operating structure of an organization can be described
in terms of the facts which relate terms to each other. To say that a
customer can place an order is a business rule. Facts can be documented
as natural language sentences or as relationships, attributes, and gener-
alization structures in a graphical model.

• Constraints
Every enterprise constrains behavior in a non-formal way, e.g., by saying
that a complete process cannot be executed by just one person, is closely
related to constraints on what data may or may not be updated. To
prevent a record from being made is, in many cases, to prevent an action
from taking place.

• Derivations
Business rules (including laws of nature) define how knowledge in one
form may be transformed into other knowledge, possibly in a different
form.

The semantic essence of a business policy expresses a logical definition of
some facet of the organization’s way of doing business. An important feature
of business policies is that they are usually specified by business people – the
people who have responsibility for the business activities to which the rules
apply.

The business policies considered in this thesis are related to definitions,
facts, and constraints. A lot of the business policy concepts are general and
applicable to many processes. However, in the context of this thesis they only
impose restrictions in the area of the previously presented purchase process.

Today, one best-practice approach is the Segregation of Duties or Separation
of Duties (SoD). It is basically the concept of having more than one person
required to complete a task. The use of SoD leads to individual statements
specifying conditions and/or limitations. Each statement is a business policy.
In more detail, SoD means that there is no single individual having the control
over two or more phases of a process, transaction or operation, respectively,
so that a deliberate fraud is more difficult to occur because it requires col-
lusion of two or more individuals or parties. There is no industry standard
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for the separation of duties, but the Information Systems Audit and Control
Association (ISACA) has provided a segregation of duties control matrix [18],
which is a general guideline suggesting which positions should be separated
and which ones require compensating controls when combined.

A further approach – which is connected to SoD – is the four-eyes princi-
ple. It should be applied to critical activities or processes which should be
performed by different persons to ensure the correctness of the transactions.
As in the SoD concept, the application of the four eyes principle results in
conditions and limitations – the business policy statements. In this thesis, we
use a simplified form of this principle stating that the steps of a process cannot
be execute by a single user. In other words, at least two different users are
required to execute the standard purchase process.

As mentioned above, the business policies generally impact the execution of
a business process. However, only the processes which are mapped in the SAP
system as a sequence of transactions can be regarded. Therefore, a business
policy which has been specified by business people in a business terminology
has to be implemented in the SAP system by permissions and restrictions to
a set of transactions.
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Authorization Layer

This chapter describes the main parts of the development of a formal model
representing the authorization setup layer, the authorization check layer, and
the business process layer from an SAP system by first-order formulas. It
starts by taking some abstractions into consideration in Section 4.1 which
affect the way of construction and the structure of the resulting formulas.
The construction itself is presented in detail in Section 4.2, and is based on
the work described in my Masters Thesis [23], therefore, several paragraphs
throughout the whole chapter are adopted literally or in a rephrased form from
my Masters Thesis. To the end of the formalization of the SAP authorization
layer, the purchase process together with some typical business policies (see
Sections 3.3.1 and 3.4) is reviewed under the aspects of the present formulas
and the underlying structure of the resulting set of clauses.

4.1 Abstractions

The formal model presented in this thesis is based on a snapshot of an SAP
system, i.e., the extracted authorization information (c.f. Chapter 3 for infor-
mation about SAP authorizations). Correspondingly, the formal model repre-
sents the system at the given time the snapshot was taken and any change of
the authorizations requires an adjustment of the formulas.

However, the formalization presented in this thesis makes some abstractions.
The first one refers to time. It would be possible to model the time when an
authorization check happens during the execution of a transaction in first-
order logic but this would lead to an immense increase of the run-time of
theorem provers because of the obvious state explosion and is, at least for our
purpose of proving termination and correctness of the authorizations and the
related business policies, not (yet) necessary.

Another assumption for the formalization are unique data. Dynamics in the
data or the authorizations are not considered. A typical example of dynamics
is a change of user authorizations while the user is performing a transaction.

The next abstraction is related to our example purchase process. We use
only one item per requisition/order which means that a new requisition/order
object is created for each item to be purchased.

Eventually, we have not modeled pattern matching of strings with wild-card
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symbols which is used during the authorization checks and the release strategy
appliance checks. We have modeled only the asterisk wild-card symbol * (but
no composed values containing this symbol) matching every required value.

A more detailed description of the abstractions can be found in [23].

4.2 Construction

The formalization of the authorization setup layer considered in this thesis
includes the authorization roles and the generation of authorization profiles,
and is described in Section 4.2.1. Afterwards, the formalizations of the au-
thorization check and the purchase process are presented in Sections 4.2.2,
and 4.2.3, respectively. The formulas are given in implication form, and if not
explicitly stated, they are universally quantified.

4.2.1 Authorization Setup

Roles

A role contains either different authorizations (single role), or in turn further
roles with authorizations (composite role), but it isn’t possible to mix single
roles and authorizations in one composite role level.

A single role is modeled by the unary atom SingleRole. The function
authObj() with arity 3 therein maps the authorization value to the autho-
rization field of the authorization object. The authorization object together
with the value in turn represents the authorization which is mapped to the
single role by the binary function singleRoleEntry().

SingleRole(singleRoleEntry(<single role name>,
authObj(<auth object name>, <auth field>, <value>)))

Consider the following instance as an example:

SingleRole(singleRoleEntry( ZLAMOTTE BANF INFO,
authObj( S TCODE, TCD, ME51N)))

It’s part of the single role ZLAMOTTE BANF INFO granting the permission to
create requisitions and contains an authorization object S TCODE with the field
TCD and the value ME51N.

A composite role is modeled using the unary atom CompositeRole. The
function compositeRoleEntry() therein associates the specified single role with
the composite role.

CompositeRole(compositeRoleEntry(<composite role name>,
<single role name>))
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Consider as an example the following two instances where the single roles
ZLAMOTTE ORDER INFO BASE and ZLAMOTTE ORDER INFO INFO are both con-
tained in the (composite) role ZLAMOTTE ORDER INFO.

CompositeRole(compositeRoleEntry( ZLAMOTTE ORDER INFO,
ZLAMOTTE ORDER INFO BASE))

CompositeRole(compositeRoleEntry( ZLAMOTTE ORDER INFO,
ZLAMOTTE ORDER INFO INFO))

Profile Generation and Authorization Profiles

During an authorization check the required value of an authorization is com-
pared with the value in the user’s authorization profile. There are auto-
generated and direct authorization profiles. Both types of profiles represent
authorizations that a user holds.

The general authorization profile of a user which provides his/her effective
authorizations is modeled using the unary atom UserProfile. The function
userProfileEntry() maps the different authorizations to the user:

UserProfile(userProfileEntry(<user>,
authObj(<auth object name>, <auth field>, <value>)))

A concrete instance of this atom is similar to a single role instance; it also
contains the authorization (the authorization object with its value). The dif-
ference to the single role instance is that it is directly mapped to the user
by the function userProfileEntry(). Of course, a complete user authorization
profile typically consists of many single instances of this atom. The following
is an example for one instance, where the user LAMOTTE owns an authorization
object M BANF WRK with the field WERKS and value INFO:

UserProfile(userProfileEntry( LAMOTTE,
authObj( M BANF WRK, WERKS, INFO)))

The value INFO in this example enables all actions of the user LAMOTTE con-
cerning purchase requisitions to the plant INFO.

The previous mentioned atom UserProfile() models the effective authoriza-
tions of a user; any authorization check looks for the required authorization
in these authorization profile instances. However, authorizations cannot be
assigned directly because they are contained in structures like roles (or also
direct profiles1). Therefore, the assignment of authorizations is accomplished
by the assignment of the single or composite role to a user. This is mod-
eled by the following predicate Holds denoting the fact that a user holds the
authorizations of a single or composite role.

Holds(<user>, <single role name/composite role name>)

1Using roles rather than direct profiles is best practice, hence, we concentrate on the roles
here. See [23] for more details on direct profiles.
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The effective authorization instances (represented by instances of the atom
UserProfile()) are then generated automatically by a transition which first
checks the type of the item assigned to the user via the predicate Holds,
extracts the authorization part and eventually creates the user profile instance
(representing the effective authorization) for the user.

4.2.2 Authorization Checks

The authorization check result – access or decline – is represented in our first-
order model by the binary atom Access(). If the atom is valid, the access to
the checked authorization object is granted, otherwise it is not.

Access(<user>, authObj(<auth object name>, <auth field>, <value>))

The function authObj() with arity 3 maps the authorization value to the au-
thorization field of the authorization object. The resulting authorization is
then associated with the user.

To ease specification of authorizations on a transaction base, the predicate
Access has been overloaded to model the access to an overall transaction, too.
Valid instances of the following form have the meaning that all individual
authorization checks of the entire transaction have been successful.

Access(<user>, <transaction code>)

The authorization check itself compares the value of the authorization present
in the (generated) user authorization profile with the required authorization.
The result of the check is indicated by validity of the predicate Access which
has been introduced before. The formalization presented in this thesis pro-
vides two basic ways to pass such an authorization check. The first way is
that the user has the exact required authorization in its authorization profile.
The authorization object name, the field and the value must match. This is
achieved by the following formula:

∀ xu, xaon, xaof, xav .
UserProfile(userProfileEntry(xu, authObj(xaon, xaof, xav)))

→ Access(xu, authObj(xaon, xaof, xav))

The second way is that the authorization value of an authorization in the
user’s authorization profile is the wild-card symbol *. In this case, if the au-
thorization objects match then the access is always granted, no matter what
the required value is. The authorization in the user authorization profile must
contain the constant STAR as a value which is depicted by the following tran-
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sition.2

∀ xu, xaon, xaof, xav .
UserProfile(userProfileEntry(xu, authObj(xaon, xaof, STAR)))

→ Access(xu, authObj(xaon, xaof, xav))

4.2.3 Purchase Process

The following sections describe the formalization of the purchase process as a
business process example with its authorization checks.

Create a Requisition

The following transition shows the overloaded predicate symbol Access (intro-
duced in Section 4.2.2) which models the single authorization checks that are
needed for the execution of the transaction ME51N (create a requisition). The
first check represents the check of the transaction code to create a requisition.
The authorizations M BANF WRK, M BANF BSA and M BANF EKG have a constant
in the first field (the authorization object field name like ACTVT or WERKS) and
a variable value in their second field (that contains the authorization value).
The atom Access(xu, ME51N) only becomes valid if the user xu has the exact
constants in his authorization profile and some value for every variable value.
This means that the user is allowed to execute the transaction in at least
one instance, for example for one plant, one document type and one purchase
group. The concrete value of the variables will and has to be evaluated and
checked at run-time when a requisition is going to be created and the exact
values are known.

∀ xu, xwrk, xbsa, xekg .
Access(xu, authObj( S TCODE, TCD, ME51N)) ∧
Access(xu, authObj( M BANF WRK, ACTVT, 01)) ∧
Access(xu, authObj( M BANF WRK, WERKS, xwrk)) ∧
Access(xu, authObj( M BANF BSA, ACTVT, 01)) ∧
Access(xu, authObj( M BANF BSA, BSART, xbsa)) ∧
Access(xu, authObj( M BANF EKG, ACTVT, 01)) ∧
Access(xu, authObj( M BANF EKG, EKGRP, xekg))

→ Access(xu, ME51N)

Using the grouped authorizations (denoted by the transaction code), we
model the business process steps which typically consist of several transactions.
The purchase request for an arbitrary asset is modeled by the atom Requisition

2An additional monadic atom ¬Authorization(xav) still has to be added to the formula in
order to satisfy the conditions of the new class BDI, defined in Section 5.2.
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with arity 8. The structure is described as follows:

Requisition(<document type>, <position>, <material>, <plant>,
<purchasing group>, <purchasing organization>,
<material group>, <price>)

Similar to the request there is the state RequisitionCreated which indicates
that the requisition object has been created by a user in the SAP system. The
difference to the Request is that the user who has created the requisition is
now also connected to it. This leads to an instance of the following atom with
arity 9:

RequisitionCreated(<user>, <document type>, <position>, <material>,
<plant>,<purchasing group>, <purchasing organization>,
<material group>, <price>)

Using the previous two structures, we are now able to formally express the
business step which represents the creation of a requisition:

∀ xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt .
Requisition(xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xp) ∧
Access(xu, ME51N) ∧
Access(xu, authObj( M BANF WRK, WERKS, xwrk)) ∧
Access(xu, authObj( M BANF BSA, BSART, xbsa)) ∧
Access(xu, authObj( M BANF EKG, EKGRP, xekg)) ∧
Access(xu, ME53N) ∧
Access(xu, ME52N)

→ RequisitionCreated(xu, bsa, xpos, xmat, xwrk, xekg, xekorg,
xmatkl, xgswrt)

The process starts with the existence of a purchase request modeled by the
atom Requisition. In order to create a purchase requisition object in the SAP
system, a user needs access to the corresponding transaction ME51N. The (over-
loaded) atom Access(xu, ME51N) stands for the group of single authorization
checks in this transaction. As mentioned, the variables xwrk (plant), xbsa
(document type), and xekg (purchasing group) must be checked again in the
subsequent lines because only at this point the value of the variables is known
(namely the value from the requisition that is going to be created). Typically,
a user authorized to create a requisition is also authorized to view it or to
change it in case of a mistake. This is modeled by the lines below checking
the access to the transactions ME53N (View) and ME52N (Change). If all con-
ditions are satisfied, then the state RequisitionCreated is implied. The result
represents the state in the SAP system where the requisition object has been
created.
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Release a Requisition

The release of requisitions requires different settings in the Customizing of
purchases. At first, these settings have to be formalized in order to apply a
release strategy to a requisition.

The first step is the definition of the release strategy. It is modeled by the
atom ReleaseStrategy with arity 3.

ReleaseStrategy(<release strategy name>, <release group>,
class(<characteristics class name>,

property(<property name>, <value>)))

The nested structure is required in order to obtain a formalization which is
close to the structure of the real SAP system wherein the release strategy
combines a characteristics class (containing single characteristics, each given
by a property and its value(s)), the release group and code and the release
strategy name. The binary function property() maps the value to its property
which is in turn mapped to the class name by the binary function class(). At
the end, the complete characteristic is assigned to the release strategy.

Consider the release strategy VF as an example. This strategy stands for
a strategy called “director release strategy”. The strategy VF in our example
applies when the following conditions are satisfied:

i) the plant entered in the requisition is equal to the value INFO,

ii) the specified purchasing group is equal to I26 and

iii) the total money amount of the item which is subject to the release strat-
egy application check is greater than 10.000 EUR.

In the following formalization of this strategy, the different properties matching
the fields of a requisition (FRG CEBAN WERKS=plant, FRG CEBAN EKGRP=pur-
chasing group, and FRG CEBAN GSWRT=total amount of money) are grouped
by the characteristics class (FRG EBAN). Further details on the release strategy
setup can be found in [23].

ReleaseStrategy( VF, 01, class( FRG EBAN,
property( FRG CEBAN WERKS, INFO)))

ReleaseStrategy( VF, 01, class( FRG EBAN,
property( FRG CEBAN EKGRP, I26)))

ReleaseStrategy( VF, 01, class( FRG EBAN,
property( FRG CEBAN GSWRT, GREATER 10000 EUR)))

Of course, we need to execute one or more single release steps depending
on the applied strategy. Each of the steps again requires a release based on

47



4 Formalization of the SAP Authorization Layer

a release group and the release code. This requirement is modeled with the
atom ReleaseRequirement with arity 3.

ReleaseRequirement(<release strategy name>, <release group>,
<release code>)

The following two formulas again refer to the release strategy VF – the
director release. This release strategy consists of two steps, the cost center
release in the beginning (denoted by the constant W1) and the director release
at the end (denoted by the constant W2). The constants W1 and W2 represent
the respective release code in the SAP system. The release strategy and the
release codes are grouped in the release group denoted by the constant/number
01. In order to perform the first release step, the releasing person needs the
right release group and release code in his authorization profile.

ReleaseRequirement( VF, 01, W1)

ReleaseRequirement( VF, 01, W2)

Using the previously defined atoms it is now possible to model a release
step. The atom RequisitionReleasedStep with arity 11 in the following formula
denotes a requisition item that has been released with a certain release group
and code. In the following transition, the requisition released step of the
release strategy xfrgstrat is valid if the requisition has been created by a user
xu1, the release strategy xfrgstrat applies, the release requirement has been
defined and the authorization checks succeed for a user xu2.

∀ xu1, xu2, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt,
xfrgstrat, xfrggr, xfrgco, xcl .

RequisitionCreated(xu1, xbsa, xpos, xmat, xwrk, xekg, xekorg,
xmatkl, xgswrt) ∧

ReleaseStrategy(xfrgstrat, xfrggr, class(xcl,
property( FRG CEBAN EKGRP,xekg))) ∧

ReleaseStrategy(xfrgstrat, xfrggr, class(xcl,
property( FRG CEBAN WERKS,xwrk))) ∧

ReleaseStrategy(xfrgstrat, xfrggr, class(xcl,
property( FRG CEBAN GSWRT,xgswrt))) ∧

ReleaseRequirement(xfrgstrat, xfrggr, xfrgco) ∧

Access(xu2, authObj( M EINK FRG, FRGGR, xfrggr)) ∧
Access(xu2, authObj( M EINK FRG, FRGCO, xfrgco)) ∧

Access(xu2, ME54N) ∧
Access(xu2, authObj( M BANF WRK, WERKS, xwrk)) ∧
Access(xu2, authObj( M BANF BSA, BSART, xbsa)) ∧
Access(xu2, authObj( M BANF EKG, EKGRP, xekg))

→ RequisitionReleasedStep(xu2, xfrggr, xfrgstrat, xfrgco, xbsa, xpos, xmat,
xwrk, xekg, xekorg, xmatkl, xgswrt)

48



4.2 Construction

As mentioned, a release of a requisition typically consists of one ore more
release steps. In the SAP test system of the Max-Planck Society there are two
release strategies KF and VF. The former strategy represents the cost center
release and consists of one step (with the code W1). The latter strategy denotes
the already mentioned director release which consists of two steps (codes W1

and W2). Both strategies belong to the release group 01. The steps required
for each execution variant of the release strategy are modeled by the following
transition. The resulting state RequisitionReleased is valid, if all required
release steps have been passed.

∀ xu1, xu2, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt,
xfrgstrat, xfrggr, xfrgco, xcl .

RequisitionReleasedStep(xu2, 01, KF, W1, xbsa, xpos, xmat,
xwrk, xekg, xekorg, xmatkl, xgswrt) ∨

(RequisitionReleasedStep(xu1, 01, VF, W1, xbsa, xpos, xmat,
xwrk, xekg, xekorg, xmatkl, xgswrt) ∧

RequisitionReleasedStep(xu2, 01, VF, W2, xbsa, xpos, xmat,
xwrk, xekg, xekorg, xmatkl, xgswrt))

→ RequisitionReleased(xu2, xbsa, xpos, xmat, xwrk, xekg,
xekorg, xmatkl, xgswrt)

If none of the available release strategies applies to a requisition, then it is
immediately released and ready to order. A release strategy doesn’t apply if
at least one of the properties defined in the strategy doesn’t match. So far, the
theory only contains assertions that say that a certain property matches. In
this case, however, it is required to verify whether a property does not match.
For that reason, the theory must be extended with formulas for each possible
value that defines when a release strategy does not apply. The following
transition shows the transition for the plant property and its value INFO.
It means, that if the value INFO matches the plant property, then, of course,
other (possible) values like SOFS and MPG do not match. Similar formulas are
required for each element of the Cartesian product of property and possible
value.

∀ xfrgstrat, xfrggr .
ReleaseStrategy(xfrgstrat, xfrggr, class( FRG EBAN,

property( FRG CEBAN WERKS, INFO)))
→ ¬ReleaseStrategy(xfrgstrat, xfrggr, class( FRG EBAN,

property( FRG CEBAN WERKS, SOFS))) ∧
¬ReleaseStrategy(xfrgstrat, xfrggr, class( FRG EBAN,

property( FRG CEBAN WERKS, MPG)))

The ability to decide when a property does not match leads to the following
transition. It models, that no release strategy (in our example neither KF nor
VF) applies. Therefore, the requisition is automatically released and ready for
an order.
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∀ xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt,
xfrgstrat, xfrggr, xfrgco, xcl .

RequisitionCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg,
xmatkl, xgswrt) ∧

(¬ReleaseStrategy( KF, xfrggr, class( FRG EBAN,
property( FRG CEBAN EKGRP, xekg))) ∨

¬ReleaseStrategy( KF, xfrggr, class( FRG EBAN,
property( FRG CEBAN WERKS, xwrk))) ∨

¬ReleaseStrategy( KF, xfrggr, class( FRG EBAN,
property( FRG CEBAN GSWRT, xgswrt)))) ∧

(¬ReleaseStrategy( VF, xfrggr, class( FRG EBAN,
property( FRG CEBAN EKGRP, xekg))) ∨

¬ReleaseStrategy( VF, xfrggr, class( FRG EBAN,
property( FRG CEBAN WERKS, xwrk))) ∨

¬ReleaseStrategy( VF, xfrggr, class( FRG EBAN,
property( FRG CEBAN GSWRT, xgswrt))))

→ RequisitionReleased(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg,
xmatkl, xgswrt)

Create an Order

A successful released requisition is the precondition to create an order object
which is connected to the requisition in the SAP system. The following transi-
tion models this business step. At first, the existence of the released requisition
is checked. It has been released by the user xu1. Then the access to the trans-
action ME21N is checked because it is required to create order objects (ME22N,
ME23N to edit and view orders, respectively). The last checks ensure that the
user is authorized to create orders for the plant, purchase document type, pur-
chasing group and purchasing organization, respectively, which is specified by
the released requisition. All checks must succeed to enter the state OrderCre-
ated. Note, that the user who has released the requisition and the user who
creates the order object can be the same person in this transition.
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∀ xu1, xu2, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt .
RequisitionReleased(xu1, xbsa, xpos, xmat, xwrk, xekg, xekorg,

xmatkl, xgswrt) ∧
Access(xu2, ME21N) ∧
Access(xu2, ME22N) ∧
Access(xu2, ME23N) ∧
Access(xu2, authObj( M BEST WRK, WERKS, xwrk)) ∧
Access(xu2, authObj( M BANF BSA, BSART, xbsa)) ∧
Access(xu2, authObj( M BEST BSA, BSART, xbsa)) ∧
Access(xu2, authObj( M BEST EKG, EKGRP, xekg)) ∧
Access(xu2, authObj( M BEST EKO, EKORG, xekorg))

→ OrderCreated(xu2, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt)

4.2.4 Business Policies

The business policies are expressed by business people in a business terminol-
ogy. They impact the way of performing the business processes. For example,
they prohibit the possibility for a user to perform all process steps alone. The
connection between the business process (steps) and the SAP system is quite
simple – there is a mapping which maps a number of transactions to each
process step.

Our formalization already contains the mapping to the individual transac-
tions, so it is easy to also model business policies.

The general but for this thesis simplified business policy that has been intro-
duced in Section 3.4 prohibits the execution of the complete process consisting
of the steps “create a requisition”, “release a requisition” and “create the or-
der” for this requisition by one single user for one concrete plant, material
group, purchasing group and organization. The following formula represents
this policy: There is no requisition such that one user xu can reach all states
RequisitionCreated, RequisitionReleased and OrderCreated . Of course, the as-
sumption for such a policy are unique data in the SAP system.

¬∃ xu, xbsa, xwrk, xekg, xekorg, xmatkl, xgswrt .
∀ xpos, xmat .

Requisition(xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt)
→ RequisitionCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg,

xmatkl, xgswrt) ∧
RequisitionReleased(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg,

xmatkl, xgswrt) ∧
OrderCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg,

xmatkl, xgswrt)

Another policy is the requirement that a corresponding requisition has to
be created before any order. This is stated by the following formula which
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expresses the fact that if we have an order created, there must exist a corre-
sponding requisition.

∀ xu1, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt .
∃ xu2 .

OrderCreated(xu, xbsa, xpos, xmat, xwrk, xekg,xekorg,
xmatkl, xgswrt)

→ RequisitionCreated(xu2, xbsa, xpos, xmat, xwrk, xekg, xekorg,
xmatkl, xgswrt)

4.2.5 Purchase Process + Business Policies Reviewed

In order to automatically prove properties by means of an automated theorem
prover for clause sets resulting from authorization layer formalizations of SAP
systems, it is a good idea to show decidability for the given inputs first. This is
done by proving the input clause sets to be terminating which is only feasible
if their structure is determined and necessary (structural) properties can be
established. Having this idea in mind, I have created a clause dependency
graph for analysis of the clauses’ structure.

Let N be the set of clauses representing a formalized SAP authorization
layer instance. The graph is a directed graph with V = R (all predicate
symbols) and edges E = {(P,Q) |C = Γ, P (~x) → ∆, Q(~y}) for all clauses
C ∈ N with corresponding predicate symbols P,Q. This graph is depicted in
figure 4.1 for such a clause set.

The vertices of the graph having only outgoing edges represent the (usually
ground) facts of the authorization setup (i.e., the set of roles, authorizations,
and the assignment to users), and the requirement(s) to enter the process(es)
(in our example the vertices Requisition, StandardPurchase, and DirectPur-
chase3 for the purchase process).

Further inspection of the graph shows that it contains a cycle with the
vertices RequisitionCreated → ReleaseStrategy → RequisitionReleasedStep →
RequisitionReleased → OrderCreated. The vertex RequisitionCreated is the
entry point to the cycle, and OrderCreated the last vertex before we go back
to the entry point. Cycles become a problem when we can execute a cycle
more than once and always derive new (and larger) clauses that have never
been derived before in previous loops. If this happens here, theorem provers
won’t terminate being applied to SAP authorization instances occupying this
structure.

Therefore, I have explored the clause(s) causing the edge OrderCreated →

3This is a special variant of the purchase process where no release step is necessary but is
underlying restrictions regarding the amount of money and the type of material. See [23]
for details.
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Figure 4.1: Dependency graph.
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RequisitionCreated and thus closing the cycle. The culprit is

OrderCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg,xmatkl, xgswrt) →
RequisitionCreated(f(xgswrt, xmatkl, xekorg, xekg, xwrk, xmat, xpos, xbsa),

xbsa, xpos, xmat, xwrk, xekg, xekorg,xmatkl, xgswrt)

expressing the business policy that an order cannot be created without a pre-
vious requisition (c.f. Section 4.2.4). The requisition has to be created by an
arbitrary user, and the item to order depends on that user. This is reflected
by the function f(xgswrt, xmatkl, xekorg, xekg, xwrk, xmat, xpos, xbsa) in
the atom RequisitionCreated(~x). Unfortunately, the overall term depth of the
succedent in the clause above is larger than the depth of the antecedent (we
have one more function symbol, please see the definition of a depth increasing
clause in Section 5.2). During the saturation process, we will derive a clause
that is larger than the parent clause (because of the function symbol f) and
enter the loop again.

Further inspection shows that we have other clauses in the cycle where the
term depth of the succedent also increases compared to the antecedent part.
One such candidate is the clause

RequisitionCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt),
ReleaseGroup(xfrggr),ReleaseClass(xcl)
→ ReleaseStrategy( KF, xfrggr, class(xcl,property( FRG CEBAN WERKS,xwrk))),
ReleaseStrategy( VF, xfrggr, class(xcl,property( FRG CEBAN WERKS,xwrk))),
RequisitionReleased(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg,xmatkl, xgswrt)

representing the fact that the release strategy KF or VF is applied to a created
requisition, or the requisition is immediately released if no release strategy is
applicable. Variants of this clause with same structure exist for all possible
combinations of release class properties. The clause shown here employs the
FRG CEBAN WERKS property matching the entered plant in the requisition. One
can easily see that the maximum term depth in both ReleaseStrategy atoms
is larger than the maximum term depth in the antecedent part. The reason
here is the structure of the release strategy which owns a release class and
properties that are mapped to the strategy via functions.

The following Chapter lifts the mentioned structure and its inherent prob-
lems to a more general theoretical level and describes, how termination can
be achieved even though there are cycles and depth increasing clauses.
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Showing decidability for restricted subclasses of first-order logic is one of the
current research topics. The application of automated theorem proving in
first-order logic for verifying and proving properties in the SAP authorization
system considered in this thesis is a real-world application. For a practical use,
general decidability of input problems given to a theorem prover, identified by
a defined structure is of bigger importance than decidability only for specific
(SAP) instances. Therefore, this thesis presents a class with such a defined
structure for the clauses representing the SAP authorization layer and proves it
to be terminating. The typical and used way in this thesis to prove termination
is to show that both the clause size (i.e., the number of literals in a clause)
and the term depth are bounded during the saturation of the input clauses.

The following clause set is a good and general example for non-terminating
resolution:

(1) → P (a, f(a))
(2) P (x, y) → Q(f(g(y)), y)
(3) Q(x, y) → R(f(x), x)
(4) R(f(x), x) → P (f(x), x)

A quick inspection reveals the recursive definition of the predicate P through
the clauses (2)-(4). The interested reader may notice two places of depth in-
crease: (a) the variable y in clause (2) in the first argument of Q(f(g(y)), y),
and (b) the variable x in clause (3) in the first argument of R(f(x), x). A
clause is generally depth increasing, if there is a variable occurring in an atom
on the succedent of a clause and this occurrence is at a deeper position than
the deepest occurrence of the same variable in the antecendent of the (same)
clause. As a consequence of the depth increase, the application of (Hyper-)res-
olution between the clauses (1) and (2) yields a depth increased clause

(1′) → Q(f(g(f(a))), f(a)).

Further resolution on (1′) and clause (3) produces the clause
(2′) → R(f(f(g(f(a)))), f(g(f(a)))).

The resolvent (2′) in turn resolved with clause (4) then yields
(3′) → P (f(f(g(f(a)))), f(g(f(a)))),

which restarts the cycle with an increased second argument f(g(f(a))) of
the atom P (. . .) in clause (3′), compared to the atom P (a, f(a)) and its second
argument f(a) in clause (1).

In order to change this example to be terminating (without regard of the
semantics here because we’re just interested in termination), there are sev-
eral possibilities: One solution is to generally prevent depth increases for all
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clauses, and the other one – used by the presented new class Bounded Depth
Increasing (BDI) in this thesis – is to restrict the form of recursive defini-
tions for predicates. The idea is to “watch” certain argument terms of an
atom which are assumed to never increase during any derivation and argu-
ment positions holding terms with increased variable depth only depend on
such watched arguments. In this way, a recursion is only possible with the
same term/argument than in the first loop and thus not generating larger
resolvents.

The following clause set is one possible modification of the previous example,
but matching the BDI conditions (Section 5.2), and therefore terminating:

(1) → P (a, f(a))
(2) P (x, y) → Q(f(g(y)), y)
(3) Q(x, y) → R(f(y), y)
(4) R(f(x), x) → P (x, x)

There are still two depth increasing clauses (2) and (3) but in a non-critical
form (different than before). This is because the second argument position is
watched for all the predicates being part of the cycle (P → Q → R → P ).
During recursion, only the arguments at these watched positions are considered
and thus termination is guaranteed.

This chapter is organized as follows: It starts by constituting some ad-
ditional notions that are needed to define the properties of the class BDI.
Section 5.2 contains the actual definition of the BDI class, including some ex-
amples to gain a better understanding of the conditions. The full termination
proof is given in Section 5.3 and uses Hyper-resolution as the solely inference
rule, and Factoring (Factorization) as the reduction rule. Afterwards, the ter-
mination result is generalized to Ordered Resolution in Section 5.4 because
Hyper-resolution enumerates all ground facts from a given clause set which is
not feasible for practical applications.

5.1 Prerequisites

A lot of clauses (especially all the ground facts) from the input of an SAP
authorization formalization already belong to the class PVD (Positive Variable
Dominated) [12].

Definition 5.1 (PVD)
A clause Γ→ ∆ is PVD (Positive Variable Dominated) [12] if

(i) vars(∆) ⊆ vars(Γ) (∆ is ground for Γ = ∅),

(ii) depth(x,∆) ≤ depth(x,Γ) for all x ∈ vars(∆).

The class PVD has already been proven to be decidable by Hyper-resolution
in [13]. It is the starting point for the new class definition of BDI. In contrast
to the clause class PVD where the maximal depth of any derived clause by
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Hyper-resolution does not exceed the maximal depth of its parent clauses, the
class BDI permits to have such a growth of the term depth for a derived clause.
Clearly, this relaxation requires additional restrictions in order to guarantee
that Hyper-resolution still remains a decision procedure for BDI.

Definition 5.2 (Depth Increasing)
We call a clause C = Γ→ P (t1, . . . , tn),∆ depth increasing if there is a variable
x ∈ vars(C) and depth(x, ti) > depth(x,Γ) for some ti where 1 ≤ i ≤ n. The
variable x is called a depth increasing variable in C, P (t1, . . . , tn) a depth
increasing atom in C, P a depth increasing predicate in C, and i a depth
increasing argument position of P .

A clause C = Γ→ P (t1, . . . , tn),∆ is called uniquely depth increasing if C is
depth increasing, and there is exactly one depth increasing argument position i
of P (t1, . . . , tn) such that for all depth increasing variables x ∈ vars(C) and x /∈
vars(ti) it holds depth(x, {P (t1, . . . , ti−1, ti, ti+1, . . . , tn),∆}) ≤ depth(x,Γ).
Given a clause set N , a depth increasing clause C ∈ N is called a uniquely
depth increasing clause in N for the predicate P at argument position i if
there is no different depth increasing clause for the same predicate P in N
with depth increasing argument position j 6= i.

The later definitions of BDI speak in addition to the so far established term
of reachability of predicates (Definition 2.32) about a general reachability from
a depth increasing clause: A predicate symbol P occurring in a clause of a
clause set N is called reachable from a depth increasing clause if there is a
clause (Γ → Q(~t),∆) ∈ N , with depth increasing predicate Q, and P is
reachable from Q.

Consider the following set N as a motivating example for the below defini-
tion 5.3 of watched arguments:

(1) → P (f(a), b, c)
(2) P (x, y, z) → Q(f(x), y, z)
(3) Q(x, y, z) → P (x, y, z)

(Hyper-)resolution applied on N computes infinitely many clauses of the
form Q(f i(a), b, c). The reason is, in particular, the second clause, where the
depth of the occurrence of x in the succedent (term f(x)) is strictly larger than
its depth in the antecedent (term x). In order to exclude such a situation, the
non-increasing arguments of Q(f(x), y, z) are “watched”, which are y, z (the
second and third argument). Due to the existing cycle between the second
and third clause, the second and third argument in the atoms with predicate
symbol P are also watched. In the case of a depth increase comparing the
maximal term depth of the atoms on the right hand side and the maximal
term depth occurring in the atoms on the left hand side (as it is the case for
the second clause), we require for the second clause that only variables from
the watched arguments occur inside the depth growing terms. This means for
the example, that if only the variables y or z are arguments of the function f
in the second clause, the infinite nesting does not occur.
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Definition 5.3 (Watched arguments)
Let warg be a function from predicate symbols to sequences of direct argument
positions such that if warg(P ) = [i1, . . . , in] then 1 ≤ ij ≤ m, 0 ≤ n ≤ m, and
ij < ik for j < k where m is the arity of P . In case warg(P ) = [i1, . . . , in] then
any ij is called a watched argument of P . The function warg is extended to
atoms by:

warg(P (t1, . . . , tm)) = [P (t1, . . . , tm)|i1 , . . . , P (t1, . . . , tm)|in ] .

Example 5.4
Let P (f(x, y), x, y, z) be an atom. Then, arity(P ) = m = 4.

• If no arguments for P are watched, then warg(P ) = [ ].

• If we assume 2 arguments of P to be watched, for example, the second
and fourth argument, then warg(P ) = [i1, i2] with i1 = 2 and i2 = 4.
The watched arguments are represented as an ordered list where the
arguments are read from the left to the right. Any other order is not
permitted. This requirement is ensured by the condition ij < ik for
j < k implying that the first watched argument must occur before the
second watched argument in the atom.

Continuing the example, the extension of the warg function to atoms yields
for warg(P (f(x, y), x, y, z)) = [x, z].

Especially for the termination proof, it is necessary to define the notion of
expressing the fact which clause has first derived a certain (ground) literal,
i.e., from which clause a literal is originally coming from.

Definition 5.5 (Origination)
Let N be a set of clauses. Origination is defined inductively by:

(i) For all input clauses C ∈ N each of their literals L ∈ C originates from
C.

(ii) For all hyper-resolution derived clauses → ∆σ,∆1, . . . ,∆n from parent
clauses C = Q1(s1,1, . . . , s1,m1), . . . , Qn(sn,1, . . . , sn,mn) → ∆, Di =→
Qi(ui,1, . . . , ui,mi),∆i, the literals Lσ ∈ ∆σ originate from the clause C,
and each L′σ ∈ ∆i originates from the clause Di.

5.2 Definition of BDI & Examples

The definition of the class BDI makes use of two sub-definitions BDI-1 and
BDI-2 which take two different structural depth increases into account. The
full definition of BDI uses – along with PVD – the two sub-definitions and a
further condition restricting the interaction of two depth increasing clauses.
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Definition 5.6 (BDI-1)
Let N be a set of clauses and warg a watched argument function. A clause
C = Γ → P1(t1,1, . . . , t1,n1), . . . , Pm(tm,1, . . . , tm,nm),∆ from N with 1 ≤ i ≤
m satisfies BDI-1 if C is depth increasing, and

(i) vars({P1(t1,1, . . . , t1,n1), . . . , Pm(tm,1, . . . , tm,nm),∆}) ⊆ vars(Γ), and
depth(x,∆) ≤ depth(x,Γ) for all x ∈ vars(∆)

(ii) for all C ′ = Pi(s1, . . . , sn),Γ′ → ∆′ ∈ N where Pi(s1, . . . , sn)σ =
Pi(ti,1, . . . , ti,ni)σ for some unifier σ, the atoms Pi(s1, . . . , sn) and
Pi(ti,1, . . . , ti,ni) are similar, and for all depth increasing variables x, po-
sitions p, variables y, argument positions j where ti,j |p = x, sj |p = y
with y ∈ (vars(Pi(s1, . . . , sn)) ∩ vars(∆′)) it holds depth(y,∆′) = 0

(iii) for all Pi(ti,1, . . . , ti,ni) holds warg(Pi(ti,1, . . . , ti,ni)) = [ ]

(iv) for all atoms Qk(~rk), Rl(~vl) ∈ Γ where Qk is reachable from a depth
increasing clause in N and Rl is not reachable from a depth increasing
clause holds

vars(Pi(ti,1, . . . , ti,ni)) ⊆
⋃
k

vars(warg(Qk(~rk))) ∪
⋃
l

vars(Rl(~vl))

(v) for all atoms Q(~r) ∈ Γ holds

(warg(Q(~r)) = [ ] or for all R(~v) ∈ ∆ it holds warg(Q(~r)) = warg(R(~v)))

BDI-1-(ii) ensures that any derived atom from a clause satisfying BDI-1 with
increased depth (compared to its parent clauses) cannot further contribute to
the growth in depth in the next hyper-resolution step where the atom with the
increased depth is considered as a parent clause. The R atoms in the clause
set presented in Section 1.2 are an example.

BDI-1-(iv) prevents to have two consecutive depth increases in an argument
when two consecutive hyper-resolution inference steps with depth increasing
clauses take place.

BDI-1-(v) prevents position swapping of previously increased arguments in
the non-depth increasing arguments of a clause satisfying BDI-1. The idea is
to require for any atom in the succedent with a non-empty watched argument
list that the watched argument list for all atoms in the antecedent is either
identical or empty.

Definition 5.7 (BDI-2)
Let N be a set of clauses and warg a watched argument function. A clause
C = Γ → P (t1, . . . , tj , . . . , tn),∆ from N satisfies BDI-2 if C is a uniquely
depth increasing clause in N for the predicate P at argument position j, and

(i) vars({P (t1, . . . , tj , . . . , tn),∆}) ⊆ vars(Γ)
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(ii) for all i 6= j holds tj /∈ warg(P (t1, . . . , tn)) and ti ∈ warg(P (t1, . . . , tn))

(iii) for all atoms Q(s1, . . . , sn) ∈ Γ where Q is reachable from P and
vars(Q(s1, . . . , sn)) ∩ vars(P (t1, . . . , tn)) 6= ∅:
(1) arity(Q) = arity(P )

(2) warg(Q(s1, . . . , sn)) = warg(P (t1, . . . , tn))

(3) vars(sj) ∩ vars(P (t1, . . . , tn)) = ∅

(iv) for all clauses C ′ ∈ N with C ′ = Γ′ → ∆′ which have an atom whose
predicate is reachable from P , it holds for all atoms Q(~r) ∈ Γ′ that

(warg(Q(~r)) = [ ] or for all R(~v) ∈ ∆′ it holds warg(Q(~r)) = warg(R(~v)))

(v) for all atoms S(v1, . . . , vm) ∈ ∆ and Qk(~rk), Rl(~vl) ∈ Γ where Qk is
reachable from a depth increasing clause and Rl is not reachable from a
depth increasing clause holds

vars(S(v1, . . . , vm)) ⊆
⋃
k

vars(warg(Qk(~rk))) ∪
⋃
l

vars(Rl(~vl))

Please note that condition BDI-2-(iii) implies that the depth increasing atom
has at least two arguments. BDI-2-(iii) takes care of the depth inside the depth
increasing atom of a clause satisfying BDI-2. In a clause set N with recursive
predicate definitions, this condition restricts the way of increasing the depth
in order to prohibit an unbounded growth of depth. BDI-2-(iv) prevents the
“transfer” of a term with increased depth in a literal to another literal inside
a different clause.

BDI-2-(iv) and BDI-2-(v) guarantee that depth increasing cycles cannot be
used several times with the same depth increasing term, analogous to the
corresponding conditions in BDI-1-(iv) and BDI-1-(v).

Consider the following set of clauses as a contradicting example for BDI-2:
(1) P (x, y), Q(z, y) → P (f(z), y)
(2) P (x, y) → Q(x, y)
(3) → P (a, b)

In this example, the clause (1) does not satisfy BDI-1, nor BDI-2, nor PVD.
It does not satisfy PVD because it is depth increasing, nor does it satisfy
BDI-1 because the occurrence of the atom P (f(z), y) is not similar to P (x, y)
occurring in clause (2) which is required by BDI-1-(ii). And eventually, it also
does not satisfy the conditions of BDI-2, because there is the atom Q(z, y), Q
is reachable from P but BDI-2-(iii)-(3) is violated by the variable z in Q(z, y).
The clauses (2) and (3) both satisfy PVD.

Definition 5.8 (BDI)
Let N be a set of clauses and warg a watched argument function. The set N
belongs to BDI (Bounded Depth Increasing) if for all C ∈ N :
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(i) C satisfies PVD, or

(ii) C satisfies BDI-1, or

(iii) C satisfies BDI-2,

and, additionally, for two depth increasing clauses Γ → P (t1, . . . , tn),∆ and
Γ′ → Q(t′1, . . . , t

′
n′),∆′ with depth increasing predicates P and Q satisfying

BDI-2,

(iv) the predicate Q is not reachable from P and vice versa.

In the context of a clause set N satisfying BDI, condition BDI-2-(iv) can
be relaxed to apply only to clauses satisfying PVD. Please note that there are
clauses which satisfy the conditions of both BDI-1 and BDI-2.

Consider the following set of clauses as an example to demonstrate and
discuss the different syntactical conditions of the class BDI:

(1) → P (f(a), h(a), a)
(2) P (x, y, z) → Q(x, y, f(g(x))), S(x, y)
(3) Q(x, y, f(z)) → R(f(g(x)), x, h(y))
(4) R(f(g(x)), y, h(z)) → P (x, y, z)
(5) P (a, b, c) →
(6) P (x, y, z) → T (y, z)
(7) T (x, y) → R(x, y, g(z))

A common requirement for all clauses is that the set of variables of the
succedent of each clause is a subset of the set of variables of the antecedent
of the same clause. Clause (7) violates this condition and is therefore not in
BDI. For the rest only the clauses (1) to (6) are considered. The ground
clauses (1) and (5) trivially satisfy PVD, as well as clause (4). The clause
(2) is depth increasing and satisfies BDI-2: The variables occurring in atoms
different than Q(x, y, f(g(x))) do not increase the term depth. Further, the
predicate P of the atom P (x, y, z) is reachable from Q through the clauses
(2)-(3)-(4). P has the same arity than Q, the lists of watched arguments (i.e.,
all arguments except the depth increasing argument) can be defined identical,
and the variable z does not occur inside the third argument of Q(x, y, f(g(x)))
(BDI-2-(iii)). Clause (3) satisfies BDI-1 because the occurrence of the atom
R(f(g(x)), x, h(y)) in clause (3) is similar to the atom R(f(g(x)), y, h(z)) in
clause (4) (BDI-1-(ii)). Furthermore, the variable x whose depth has been
increased in clause (3) occurs with depth 0 in the atom P (x, y, z) in the succe-
dent of clause (4). In addition, the atom in the succedent of clause (3) satisfies
vars(R(f(g(x)), x, h(y))) ⊆ vars(warg(Q(x, y, f(z)))) (BDI-1-(iv)).

5.3 Termination of Hyper-Resolution on BDI
The Hyper-resolution calculus is used in order to decide BDI. The aim is to
show that any derivation from a given finite BDI clause set N terminates. It
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is well known that this is the case if the depth of terms in clauses as well as
the number of different variables in clauses can be finitely bound. For the new
class BDI, Hyper-resolution will only generate ground clauses, implying that
for termination it is sufficient to provide an overall depth bound.

Lemma 5.9
Any clause derived by a hyper-resolution inference from an initial clause set
N satisfying BDI is positive ground.

Proof. The proof follows from the variable condition vars(∆) ⊆ vars(Γ) that
holds for all clauses satisfying BDI. We prove by induction over the length of
the derivation k with k ∈ N. Consider the first hyper-resolution step (k = 1)

C = P1, . . . , Pn → ∆C

D1 = → Q1,∆D1

...

Dn = → Qn,∆Dn

with C,Di ∈ N . Because of vars(Qi ∪∆Di) ⊆ vars(ΓDi) and ΓDi = ∅, all Di

are ground. Let R =→ ∆Cσ,∆D1 , . . . ,∆Dn be the hyper-resolution resolvent
with Piσ = Qi for all i. Because all Di are ground, it follows that σ is a
ground substitution. Additionally, because vars(∆) ⊆ vars(Γ) it follows that
∆Cσ is ground. Hence, R is ground, too.

Assume that only positive ground clauses have been produced for k steps.
Then this holds also for the (k + 1)-th step. Consider the hyper-resolution
inference with C,Di as above. Di is positive ground, either by Definition 5.8,
or because only positive ground clauses have been produced in k steps. The
clause C ∈ N because C is not ground. Again, R =→ ∆Cσ,∆D1 , . . . ,∆Dn

with Piσ = Qi for all i. As in the base case, σ is a ground substitution and,
with vars(∆) ⊆ vars(Γ), it follows that R is ground, too.

Thus, all clauses C from N including the clauses that have been derived
by hyper-resolution inferences are ground. By construction, positive ground
clauses trivially satisfy condition (i) of the class PVD (Definition 5.1). ♦

Because Factoring is applied only to positive clauses, and positive clauses de-
rived by hyper-resolution inferences are always ground as stated in Lemma 5.9,
the application of the Factoring rule corresponds to Condensation which
amounts to the elimination of duplicate literals. So for BDI actually no Fac-
toring rule is needed for completeness.

In order to derive clauses with an increased depth compared to the maximum
depth of the initial clause set, a depth increasing clause is needed as stated by
the following Lemma 5.10.
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Lemma 5.10
Let N be a set of clauses all satisfying the conditions of PVD and

N ′ = N ∪ {C = Γ→ P (t1, . . . , tn),∆}

be a set of clauses satisfying BDI where C is a depth increasing clause
with some argument tj and a variable x ∈ vars(tj) such that depth(x, tj) >
depth(x,Γ) for 1 ≤ j ≤ n. Further, let dN , dN ′ be the respective initial maxi-
mal depth values for the sets N,N ′.

Hyper-resolution applied to N ′ can compute a clause E with depth(E) > dN ′

only by using the depth increasing clause C.

Proof. Hyper-resolution applied to N only produces smaller clauses with re-
spect to the maximum depth dN [13]. Consequently, as N ′ distinguishes from
N only in the additional clause C ′, the only possible resolution candidate to
derive a clause with a term depth larger than dN ′ is C ′. Consider a hyper-
resolution inference between the clause C ′ and ground partner clauses Di ∈ N ′
for all atoms Qi ∈ Γ. Then, the maximal depth of the atom P (t1, . . . , tn)σ in
the resolvent E can be approximated as

depth(xσ, tjσ) = depth(x, tj)︸ ︷︷ ︸
≤dN′

+ depth(xσ)︸ ︷︷ ︸
≤dN′

> dN ′ .

♦

In the following, termination of the class BDI is proven by showing that
the inference rules Hyper-resolution together with Factoring provide a decision
procedure for the class. The proof is carried out by induction over the length
of the derivation. Figure 5.1 shows the proof levels used in the induction step
in order to assist you understanding the different case distinctions.

Theorem 5.11 (Termination of BDI)
Let N be a finite set of clauses (instance) of the class BDI. Then Hyper-
resolution together with Factoring (Factorization) provides a decision proce-
dure for the class BDI and the depth bound is d = 2 ·max{depth(∆C) | C ∈
N}.

Proof. All clauses C ∈ N satisfy BDI and, therefore, it follows from Lemma 5.9
that Hyper-resolution produces only ground clauses.

We prove by induction over the length of the derivation k with k ∈ N and
show for all clauses E ∈ N∗ (N ⊆ N∗, N∗ additionally contains all the derived
clauses) that the following invariant holds:

(i) depth(E) ≤ d

(ii) for all atoms A(~t) ∈ E with depth(A(~t)) > d
2 holds:
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Figure 5.1: Proof levels ([k+ 1], [k] and [k− 1]) regarding current, and parent
clauses used in the induction step of Theorem 5.11.

(iia) warg(A(~t)) 6= [ ], A is reachable from a depth increasing clause
satisfying BDI-2, and for all arguments tp ∈ warg(A(~t)) holds that
depth(tp) ≤ d

2 , or

(iib) warg(A(~t)) = [ ] and A(~t) originates (and A is therefore also reach-
able) from a depth increasing clause satisfying BDI-1.

Induction start

We distinguish the cases Hyper-resolution and Factoring to compute infer-
ences.

Case: Hyper-resolution
For Hyper-resolution inferences, we have to consider the 3 different possible
clause types BDI-2, BDI-1, and PVD occurring in N as a (parent) clause C.

Clause C satisfies BDI-2 Let’s assume the derivation of inferences starts
with a depth increasing non-ground clause C satisfying the conditions of BDI-
2 (the other cases BDI-1 and PVD are considered later), such that we have
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the following situation for the first hyper-resolution step (k = 1)

C =

ΓC︷ ︸︸ ︷
Q1(s1,1, . . . , s1,m1), . . . , Qn(sn,1, . . . , sn,mn) → P (t1, . . . , tm),∆C

D1 = → Q1(u1,1, . . . , u1,m1),∆D1

...

Dn = → Qn(un,1, . . . , un,mn),∆Dn

with the clauses C,Di ∈ N , 1 ≤ i ≤ n, all Di are ground, and j is the depth
increasing argument position of P where depth(x, tj) > depth(x,ΓC) for some
variables x ∈ vars(tj). Let

E =→ P (t1σ, . . . , tmσ),∆Cσ,∆D1 , . . . ,∆Dn

be the hyper-resolution resolvent of C,Di with

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi).

In the following, we prove the properties (i) and (ii) separately for the atoms
in ∆Di (1), ∆Cσ (2) and P (t1, . . . , tm)σ (3) of the resolvent E.

(1) For the atoms in ∆Di holds depth(∆Di) ≤ d
2 ≤ d by definition for all i and

therefore they immediately satisfy both (i) and (ii).

(2) The next part are the atoms in ∆C , where we have for all variables x ∈
vars(∆C)

depth(xσ,∆Cσ) = depth(x,∆C) + depth(xσ).

Because the atoms in ∆C satisfy PVD and are therefore not depth in-
creasing, we have

depth(x,∆C) ≤ depth(x,ΓC)

for all x ∈ vars(∆C). Consequently, we can approximate depth(x,∆C)
with depth(x,ΓC) and get

depth(xσ,∆Cσ) ≤ depth(x,ΓC) + depth(xσ)

= depth(xσ,ΓCσ)

and ΓC =
⋃
iQi(si,1, . . . , si,mi). With

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

follows that depth(Qi(si,1, . . . , si,mi)σ) ≤ d
2 for all i and, therefore,

depth(xσ,∆Cσ) ≤ d

2
.

Thus, it holds depth(∆Cσ) ≤ d
2 which proves the invariant conditions (i)

and (ii) for the atoms in ∆Cσ.
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5 The Clause Class BDI

(3) The remaining element is the atom P (t1, . . . , tm) with its depth increasing
argument position j for which we first prove (i), followed by (ii).
The argument tj ∈ P (t1, . . . , tm) is not ground by definition (otherwise, C
would not be depth increasing). But it holds that depth(P (t1, . . . , tm)) ≤ d

2
because C ∈ N , and likewise, for 1 ≤ i ≤ n, we have

max{depth(Qi(ui,1, . . . , ui,mi))} = max{depth(ui,pi) | 1 ≤ pi ≤ mi} ≤
d

2

where all ui,pi are ground. With

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

we can approximate the depth of tjσ as follows:

depth(tjσ) = depth(x, tj)︸ ︷︷ ︸
≤ d

2

+ max{depth(ui,pi)}︸ ︷︷ ︸
≤ d

2

≤ d.

Consequently, depth(P (t1, . . . , tm)σ) ≤ d which satisfies (i).

It remains to show (ii) where it is sufficient to prove (iia) because C sat-
isfies BDI-2. We prove (iia) by contradiction and assume depth(tiσ) > d

2
for some argument tiσ ∈ warg(P (t1, . . . , tm)σ).
Then arity(P ) > 1 and there exists a ti 6= tj , otherwise we would have
warg(P (t1, . . . , tm)σ) = [ ] according to Definition 5.7 (ii). By the defini-
tion of a depth increasing clause, it holds that depth(x, ti) ≤ depth(x,ΓC)
for all i 6= j. Thus, it follows with depth(Qi(ui,1, . . . , ui,mi)) ≤ d

2 and

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

analogously to the part ∆Cσ that depth(tiσ) ≤ d
2 for all i 6= j. This

contradicts our assumption and therefore proves (iia).

Clause C satisfies BDI-1 If we start with a depth increasing clause C satis-
fying BDI-1, we have the following situation:

C =

ΓC︷ ︸︸ ︷
Q1(s1,1, . . . , s1,m1), . . . , Qn(sn,1, . . . , sn,mn) →

P1(t1,1, . . . , t1,k1), . . . , Pl(tl,1, . . . , tl,kl),∆C

Di = → Qi(ui,1, . . . , ui,mi),∆Di

for all 1 ≤ i ≤ n. All Di are ground and therefore satisfy PVD. Let

E =→ P1(t1,1, . . . , t1,k1)σ, . . . , Pl(tl,1, . . . , tl,kl)σ,∆Cσ,∆D1 , . . . ,∆Dn

be the resolvent of C,Di with Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi). We
again prove the conditions (i) and (ii) separately for the atoms in ∆Di (1),
∆Cσ (2), and the remaining atoms (3) in the part of the resolvent E.
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5.3 Termination of Hyper-Resolution on BDI

(1) We start with the atoms in ∆Di which satisfy the invariant conditions by
definition analogously as in the previous case BDI-2.

(2) The next part are the atoms in ∆Cσ where we have

depth(x,A) ≤ depth(x,ΓC)

for all non-depth increasing atoms A ∈ ∆C . Therefore, it follows together
with

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

analogously as for ∆Cσ in the previous case BDI-2 that depth(Aσ) ≤ d
2

for all Aσ ∈ ∆Cσ which satisfies the invariant conditions (i) and (ii) for
the atoms in ∆Cσ.

(3) The remaining elements are the atoms Po(to,1, . . . , to,ko) with 1 ≤ o ≤ l
where it exists one argument to,pj in each atom where

x ∈ (vars(to,pj ) ∩ vars(ΓC))

and depth(x, to,pj ) > depth(x,ΓC). We first prove (i), followed by (ii).

Because we are in the first step (induction start), it holds

depth(Qi(ui,1, . . . , ui,mi)) ≤
d

2

for all i. Using Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi) we can calculate
for all variables x ∈ vars(Po(to,1, . . . , to,ko)) in the respective atom (1 ≤
o ≤ l):

depth(xσ, Po(to,1, . . . , to,ko)σ) ≤ depth(x, Po(to,1, . . . , to,ko))︸ ︷︷ ︸
d
2

+

max{depth(Qi(ui,1, . . . , ui,mi))}︸ ︷︷ ︸
≤ d

2

≤ d.

This proves (i) for Po(to,1, . . . , to,ko).

For (ii) it is sufficient to prove the case (iib) because C satisfies BDI-
1. Fortunately, property (iib) is immediately satisfied because of Defini-
tion 5.6 (iii), stating that warg(Po(to,1, . . . , to,ko)) = [ ]. Moreover, if

d

2
< depth(Po(to,1, . . . , to,ko)σ) ≤ d,

Po(to,1, . . . , to,ko)σ obviously originates from C which is a depth increasing
clause satisfying BDI-1 and therefore satisfies (iib).
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Clause C satisfies PVD If the clause C is not depth increasing then it satis-
fies PVD. The partner clauses Di are all positive ground and therefore satisfy
PVD, too. Consequently, depth(C) ≤ d

2 , and depth(Di) ≤ d
2 for all 1 ≤ i ≤ n.

Fermüller et al. [12] have already shown that depth(E) ≤ d
2 < d for the resol-

vent E in that case which satisfies both invariant conditions (i) and (ii).

Case: Factoring
Because Factoring is applied only to positive clauses, and positive clauses de-
rived by hyper-resolution inferences are always ground as stated in Lemma 5.9,
the application of Factoring corresponds to Condensation which amounts to
the elimination of duplicate literals and thus producing strictly smaller clauses
because the resolvent is a strict subset of its parent clause.

Induction step

Assume that the invariant holds for all derivations of length k. We are now
going to execute the (k + 1)-th step of a derivation. We again distinguish the
cases Hyper-resolution and Factoring to compute inferences.

Case: Hyper-resolution
We compute a resolvent clause E via Hyper-resolution from clauses C ∈ N
and Di ∈ Nk (the latter from level [k]) and show that the invariant conditions
(i) and (ii) still hold for E.

All clauses Di are ground by definition (Di ∈ N and then vars(∆) ⊆
vars(Γ)) or because they have been derived by hyper-resolution inference steps
(Lemma 5.9). The clause C ∈ N satisfies the conditions of BDI by definition
and therefore, we distinguish the following three cases of C (in level [k], see
Figure 5.1):

Clause C satisfies PVD Let

C = Q1(s1,1, . . . , s1,m1), . . . , Qn(sn,1, . . . , sn,mn)→∆C

Di = →Qi(ui,1, . . . , ui,mi),∆Di

for all 1 ≤ i ≤ n where Di are all ground and therefore satisfy PVD. Further,
let

E =→ ∆Cσ,∆D1 , . . . ,∆Dn

be the resolvent of C,Di with Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi).
We first show (i) for E. Analogously to the base case (all Di are ground

and C and Di all satisfy PVD), it holds that depth(E) ≤ d [12] which proves
(i) for E.

Next, we show (ii) separately for the atoms in the parts ∆Di (1) and ∆Cσ (2)
of the resolvent E.
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5.3 Termination of Hyper-Resolution on BDI

(1) Consider an atom A(r1, . . . , rq) ∈ ∆Di such that

depth(A(r1, . . . , rq)) >
d

2
.

Because ∆Di ∈ Di and Di is a clause from level [k], the induction hypoth-
esis holds for Di. Additionally, because of

A(r1, . . . , rq) ∈ Di = A(r1, . . . , rq) ∈ E,

we distinguish the two cases of (ii) for A(r1, . . . , rq) ∈ Di:

• In the first case (iia), we have warg(A(r1, . . . , rq)) 6= [ ], A is reach-
able from a depth increasing clause satisfying BDI-2, and for all
arguments rp ∈ warg(A(r1, . . . , rq)) holds depth(rp) ≤ d

2 . Because
of the construction of the watched arguments function and because
A(r1, . . . , rq) is ground, (iia) also holds for A(r1, . . . , rq) ∈ E.

• The other case is (iib) where we have warg(A(r1, . . . , rq)) = [ ] and
A(r1, . . . , rq) originates from a depth increasing clause satisfying BDI-
1. Because of the construction of origination and becauseA(r1, . . . , rq)
is ground, A(r1, . . . , rq) ∈ E still originates from that depth increas-
ing clause satisfying BDI-1 and it holds warg(A(r1, . . . , rq)) = [ ].

This proves (ii) for the atoms in the part ∆Di ∈ E.

(2) Consider a derived atom P (t1, . . . , tr)σ ∈ ∆Cσ where

depth(P (t1, . . . , tr)σ) >
d

2
,

and for which we have to prove that condition (ii), i.e., (iia) or (iib) hold(s).
To obtain such an atom, we need a partner clause Di (from level [k]) with
an atom Qi(ui,1, . . . , ui,mi),

vars(Qi(si,1, . . . , si,mi)) ∩ vars(P (t1, . . . , tr)) 6= ∅,

and depth(Qi(ui,1, . . . , ui,mi)) > d
2 because C satisfies PVD and Di is

ground. But for Di holds the induction hypothesis, and therefore we
have:

([k].iia) warg(Qi(ui,1, . . . , ui,mi)) 6= [ ], Qi is reachable from a depth in-
creasing clause satisfying BDI-2, and for all arguments ui,pi ∈
warg(Qi(ui,1, . . . , ui,mi)) holds depth(ui,pi) ≤ d

2 , or

([k].iib) warg(Qi(ui,1, . . . , ui,mi)) = [ ] and Qi(ui,1, . . . , ui,mi) originates
from a depth increasing clause satisfying BDI-1.
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5 The Clause Class BDI

In case ([k].iia), Qi is reachable from a depth increasing clause satisfying
BDI-2 and so is also P because P is reachable from Qi by clause C.
Because of warg(Qi(ui,1, . . . , ui,mi)) 6= [ ], it holds also

warg(Qi(si,1, . . . , si,mi)) 6= [ ].

But then, it follows from Definition 5.7 (iv) that

warg(P (t1, . . . , tr)) = warg(Qi(si,1, . . . , si,mi))

and with Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi), we obtain

warg(P (t1, . . . , tr)σ) = warg(Qi(ui,1, . . . , ui,mi)).

Consequently, it follows from the induction hypothesis that also

depth(tpσ) ≤ d

2
for all arguments tpσ ∈ warg(P (t1, . . . , tr)σ).

This satisfies the invariant condition (iia) and therefore completes the case
([k].iia).

We continue with the case ([k].iib) and prove it by contradiction: It cannot
be for an atom P (t1, . . . , tr)σ ∈ ∆Cσ that depth(P (t1, . . . , tr)σ) > d

2 and
P (t1, . . . , tr)σ originates from a depth increasing clause satisfying BDI-1.
Thus, we assume for the atom Qi(ui,1, . . . , ui,mi) that

warg(Qi(ui,1, . . . , ui,mi)) = [ ]

and Qi(ui,1, . . . , ui,mi) originates from a depth increasing clause satisfying
BDI-1. Let

C ′ = ΓC′ → Qi(qi,1, . . . , qi,mi),∆C′

be this clause (from level [k]) with

Qi(qi,1, . . . , qi,mi)σ
′ = Qi(ui,1, . . . , ui,mi).

Then it follows from Definition 5.6 (ii) that the atoms Qi(qi,1, . . . , qi,mi)
and Qi(si,1, . . . , si,mi) are similar, and for all

y ∈ vars(Qi(si,1, . . . , si,mi)) ∩ vars(P (t1, . . . , tr))

where si,pi |p = y, qi,pi |p = x′, and depth(x′, qi,pi) > depth(x′,ΓC′) holds
depth(y, P (t1, . . . , tr)) = 0. We have depth(C ′) ≤ d

2 by definition, and
depth(Di) ≤ d according to the induction hypothesis.

We continue by showing that depth(x′σ′) ≤ d
2 and prove it also by contra-

diction. Let’s assume that depth(x′σ′) > d
2 . This implies that there is an
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5.3 Termination of Hyper-Resolution on BDI

atom Al(sl,1, . . . , sl,ml
) ∈ ΓC′ such that x′ ∈ vars(Al(sl,1, . . . , sl,ml

)), and
depth(Al(sl,1, . . . , sl,ml

)σ′) > d
2 . Consequently, there is a clause

C ′′ = ΓC′′ → Al(ql,1, . . . , ql,ml
),∆C′′

(from level [k − 1]) such that the atom Al(ul,1, . . . , ul,ml
) originates from

C ′′ and
Al(ql,1, . . . , ql,ml

)σ′′ = Al(ul,1, . . . , ul,ml
).

Additionally, we have Al(ul,1, . . . , ul,ml
) = Al(sl,1, . . . , sl,ml

)σ′.

But then the two conditions of (ii) again hold for Al(ul,1, . . . , ul,ml
) ∈ C ′′σ′′

by induction hypothesis:

([k − 1].iia) warg(Al(ul,1, . . . , ul,ml
)) 6= [ ] and Al is reachable from a

depth increasing clause satisfying BDI-2, and for all argu-
ments ul,pl ∈ warg(Al(ul,1, . . . , ul,ml

)) holds depth(ul,pl) ≤
d
2 ,

or

([k − 1].iib) warg(Al(ul,1, . . . , ul,ml
)) = [ ] and Al(ul,1, . . . , ul,ml

) originates
from a depth increasing clause satisfying BDI-1.

In the first case ([k−1].iia), Al is reachable from a depth increasing clause.
Because C ′ satisfies BDI-1, it must hold according to Definition 5.7 (iv)
that

vars(Qi(qi,1, . . . , qi,mi)) ⊆
⋃
v

vars(warg(Av(sv,1, . . . , sv,mv))) ∪⋃
w

vars(Aw(sw,1, . . . , sw,mw)))

where Av(sv,1, . . . , sv,mv) ∈ ΓC′ are the atoms that are reachable from
a depth increasing clause, and Aw(sw,1, . . . , sw,mw) ∈ ΓC′ are the atoms
that are not reachable from a depth increasing clause at all. From the
induction hypothesis follows that

depth(ul,pll) ≤
d

2
for all arguments ul,pl ∈ warg(Al(ul,1, . . . , ul,ml

))).

Additionally, it holds also depth(Aw(sw,1, . . . , sw,mw)σ′′) ≤ d
2 according to

Lemma 5.10 because Aw is not reachable from a depth increasing clause
at all. Consequently, depth(x′σ′) ≤ d

2 which contradicts our assumption.

In the second case ([k−1].iib), Al(ul,1, . . . , ul,ml
) is reachable from a depth

increasing clause satisfying BDI-1 (it actually originates from it), and it
holds that

warg(Al(sl,1, . . . , sl,ml
)σ′) = [ ].

Consequently, we get from Definition 5.6 (iv) that it must hold

vars(Qi(qi,1, . . . , qi,mi)) ∩ vars(Al(sl,1, . . . , sl,ml
) = ∅.
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But this contradicts

x′ ∈ vars(Al(sl,1, . . . , sl,ml
) and x′ ∈ Qi(qi,1, . . . , qi,mi).

Hence, it must hold depth(x′σ′) ≤ d
2 .

Now, we proceed again with our case ([k].iib). The variables

y ∈ vars(Qi(si,1, . . . , si,mi)) ∩ vars(P (t1, . . . , tr))

are the only possible candidates to obtain depth(P (t1, . . . , tr)σ) > d
2 (re-

member that depth(x,∆C) ≤ depth(x,ΓC) for all x ∈ vars(∆C)). However,
from the previous intermediate result depth(x′σ′) ≤ d

2 follows that

depth(yσ) ≤ d

2
.

This finishes the case ([k].iib) because of the fact that no atom P (t1, . . . , tr)σ
∈ ∆Cσ exists such that depth(P (t1, . . . , tr)σ) > d

2 and P (t1, . . . , tr)σ orig-
inates from a depth increasing clause satisfying BDI-1 which contradicts
our assumption.
This completes the proof of (ii) for the atoms in the part ∆Cσ.

Clause C satisfies BDI-1 Let

C =

ΓC︷ ︸︸ ︷
Q1(s1,1, . . . , s1,m1), . . . , Qn(sn,1, . . . , sn,mn) →

P1(t1,1, . . . , t1,k1), . . . , Pl(tl,1, . . . , tl,kl),∆C

Di = → Qi(ui,1, . . . , ui,mi),∆Di

for all 1 ≤ i ≤ n where C is a depth increasing clause and for all Po(to,1, . . . , to,ko)
with 1 ≤ o ≤ l exists exactly one argument to,pj where

x ∈ (vars(to,pj )) ∩ vars(ΓC))

and
depth(x, to,pj ) > depth(x,ΓC).

All partner clauses Di are positive ground and satisfy PVD. Let

E =→ P1(t1,1, . . . , t1,k1)σ, . . . , Pl(tl,1, . . . , tl,kl)σ,∆Cσ,∆D1 , . . . ,∆Dn

be the resolvent of C,Di with Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi). We
prove the invariant property (i) and (ii) separately for the atoms in ∆Di (1),
∆Cσ (2), and Po(to,1, . . . , to,ko)σ (3) of the resolvent E.

(1) We start with the atoms in ∆Di which are ground and therefore satisfy
the invariant condition (i) and (ii) by induction hypothesis analogously as
in the case where C satisfies PVD.
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5.3 Termination of Hyper-Resolution on BDI

(2) The next part are the atoms in ∆Cσ, for which we first prove (i). For all
variables x ∈ vars(∆C) holds:

depth(xσ,∆Cσ) = depth(x,∆C) + depth(xσ).

Because ∆C is not depth increasing, it holds for all variables x ∈ (vars(∆C)
∩ vars(ΓC)) that

depth(x,∆C) ≤ depth(x,ΓC).

Consequently, we can replace depth(x,∆C) with depth(x,ΓC) and get

depth(xσ,∆Cσ) ≤ depth(x,ΓC) + depth(xσ)

= depth(xσ,ΓCσ)

and ΓC =
⋃
iQi(si,1, . . . , si,mi). With

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

follows that depth(Qi(si,1, . . . , si,mi)σ) ≤ d for all i and, therefore,

depth(xσ,∆Cσ) ≤ d.

Thus, it holds depth(∆Cσ) ≤ d which proves (i) for the atoms in ∆Cσ.

It remains to prove (ii) for the atoms in ∆Cσ. We consider a derived atom
A(t1, . . . , tr)σ ∈ ∆Cσ where

depth(A(t1, . . . , tr)σ) >
d

2
.

and show that the invariant condition (iia) or (iib) holds for A(t1, . . . , tr)σ.
To obtain such an atom, we need a partner clause

Di =→ Qi(ui,1, . . . , ui,mi),∆Di

(from level [k]) with depth(Qi(ui,1, . . . , ui,mi)) >
d
2 and

vars(Qi(si,1, . . . , si,mi)) ∩ vars(A(t1, . . . , tr)) 6= ∅,

because depth(C) ≤ d
2 , and ∆C is not depth increasing. But for Di holds

the induction hypothesis, from which it follows that

([k].iia) warg(Qi(ui,1, . . . , ui,mi)) 6= [ ], Qi is reachable from a depth in-
creasing clause satisfying BDI-2, and for all arguments ui,pi ∈
warg(Qi(ui,1, . . . , ui,mi)) holds depth(ui,pi) ≤ d

2 , or

([k].iib) warg(Qi(ui,1, . . . , ui,mi)) = [ ] and Qi(ui,1, . . . , ui,mi) originates
from a depth increasing clause satisfying BDI-1.
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In case ([k].iia), Qi is reachable from a depth increasing clause satisfying
BDI-2 and so is also A because A is reachable from Qi with the clause C.
Because of warg(Qi(ui,1, . . . , ui,mi)) 6= [ ], it holds also

warg(Qi(si,1, . . . , si,mi)) 6= [ ].

But then, it follows from Definition 5.6 (v) that

warg(A(t1, . . . , tr)) = warg(Qi(si,1, . . . , si,mi))

and with Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi) we obtain

warg(A(t1, . . . , tr)σ) = warg(Qi(ui,1, . . . , ui,mi)).

Consequently, it follows from the induction hypothesis that also

depth(tpσ) ≤ d

2
for all arguments tpσ ∈ warg(A(t1, . . . , tr)σ).

This satisfies the invariant condition (iia) and therefore completes the case
([k].iia).

We continue with the case ([k].iib) and prove it by contradiction: It cannot
be for an atom A(t1, . . . , tr)σ ∈ ∆Cσ that depth(A(t1, . . . , tr)σ) > d

2 and
A(t1, . . . , tr)σ originates from a depth increasing clause satisfying BDI-1.
Thus, we assume for the atom Qi(ui,1, . . . , ui,mi) that

warg(Qi(ui,1, . . . , ui,mi)) = [ ]

and Qi(ui,1, . . . , ui,mi) originates from a depth increasing clause satisfying
BDI-1. Let

C ′ = ΓC′ → Qi(qi,1, . . . , qi,mi),∆C′

be this clause (from level [k]) with

Qi(qi,1, . . . , qi,mi)σ
′ = Qi(ui,1, . . . , ui,mi).

Then it follows from Definition 5.6 (ii) that the atoms Qi(qi,1, . . . , qi,mi)
and Qi(si,1, . . . , si,mi) are similar, and for all

y ∈ vars(Qi(si,1, . . . , si,mi)) ∩ vars(A(t1, . . . , tr))

where si,pi |p = y, qi,pi |p = x′, and depth(x′, qi,pi) > depth(x′,ΓC′) holds
depth(y,A(t1, . . . , tr)) = 0. With depth(C ′) ≤ d

2 , depth(Di) ≤ d, and

depth(x′σ′) ≤ d
2 which follows analogously as in the case for PVD, we

obtain that

depth(yσ) ≤ d

2
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because

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi) = Qi(qi,1, . . . , qi,mi)σ
′

where the variables y ∈ vars(Qi(si,1, . . . , si,mi)) ∩ vars(A(t1, . . . , tr)) were
the only possible candidates to obtain depth(A(t1, . . . , tr)σ) > d

2 at all
(remember that depth(x,∆C) ≤ depth(x,ΓC) because ∆C is not depth
increasing). These candidates have now been proven not to be depth
increasing, and the case ([k].iib) is finished because there is no atom
A(t1, . . . , tr)σ ∈ ∆Cσ such that depth(A(t1, . . . , tr)σ) > d

2 andA(t1, . . . , tr)σ
originates from a depth increasing clause satisfying BDI-1 which contra-
dicts our assumption.
This completes the proof of (ii) for the part ∆Cσ.

(3) The remaining elements are the atoms Po(to,1, . . . , to,ko) with 1 ≤ o ≤ l
where it exists exactly one argument to,pj in each atom where

x ∈ (vars(to,pj )) ∩ vars(ΓC))

and
depth(x, to,pj ) > depth(x,ΓC).

We first prove the invariant condition (i) by contradiction: Assume for any
atom Po(to,1, . . . , to,ko) that we have derived Po(to,1, . . . , to,ko)σ having an
argument to,poσ with depth(to,poσ) > d. Because of depth(C) ≤ d

2 and

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi),

there must be a partner clause Di =→ Qi(ui,1, . . . , ui,mi),∆Di (from level
[k]) for which it holds depth(Qi(ui,1, . . . , ui,mi)) >

d
2 . But then, it follows

from the induction hypothesis, that

([k].iia) warg(Qi(ui,1, . . . , ui,mi)) 6= [ ], Qi is reachable from a depth in-
creasing clause satisfying BDI-2, and for all arguments ui,pi ∈
warg(Qi(ui,1, . . . , ui,mi)) holds depth(ui,pi) ≤ d

2 , or

([k].iib) warg(Qi(ui,1, . . . , ui,mi)) = [ ] and Qi(ui,1, . . . , ui,mi) originates
from a depth increasing clause satisfying BDI-1.

In case ([k].iia), Qi is reachable from a depth increasing clause satisfy-
ing BDI-2 and so is also Po because Po is reachable from Qi with the
clause C. From the induction hypothesis follows that depth(ui,pi) ≤ d

2
for all ui,pi ∈ warg(Qi(ui,1, . . . , ui,mi)). Additionally, it holds according to
Definition 5.6 (iv) that

vars(Po(to,1, . . . , to,ko)) ⊆
⋃
v

vars(warg(Qv(sv,1, . . . , sv,mv))) ∪⋃
w

vars(Qw(sw,1, . . . , sw,mw))
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where Qv(sv,1, . . . , sv,mv) are the atoms in ΓC that are reachable from a
depth increasing clause, and Qw(sw,1, . . . , sw,mw) are the atoms in ΓC that
are not reachable from a depth increasing clause at all. Therefore, we have

depth(Qw(uw,1, . . . , uw,mw)) ≤ d

2

according to Lemma 5.10 and because of the induction hypothesis, it holds

depth(warg(Qv(uv,1, . . . , uv,mv))) ≤ d

2
.

Hence, we can calculate for all x ∈ vars(Po(to,1, . . . , to,ko)):

depth(xσ, Po(to,1, . . . , to,ko)σ) = depth(x, Po(to,1, . . . , to,ko)︸ ︷︷ ︸
≤ d

2

+

max{depth(warg(Qv(uv,1, . . . , uv,mv))), depth(Qw(uw,1, . . . , uw,mw))}︸ ︷︷ ︸
≤ d

2

≤ d.

In case ([k].iib), we have warg(Qi(ui,1, . . . , ui,mi)) = [ ] and the atom
Qi(ui,1, . . . , ui,mi) originates from a depth increasing clause satisfying BDI-
1. Because C satisfies BDI-1, it holds according to Definition 5.6 (iv) that

vars(Po(to,1, . . . , to,ko)) ⊆
⋃
v

vars(warg(Qv(sv,1, . . . , sv,mv))) ∪⋃
w

vars(Qw(sw,1, . . . , sw,mw))

where Qv(sv,1, . . . , sv,mv) are the atoms that are reachable from a depth in-
creasing clause, and Qw(sw,1, . . . , sw,mw) are the atoms that are not reach-
able from a depth increasing clause at all. However, Qi(ui,1, . . . , ui,mi) is
reachable from a depth increasing clause satisfying BDI-1 (it actually orig-
inates from it), and therefore warg(Qi(ui,1, . . . , ui,mi)) = [ ]. Consequently,
we get

vars(Po(to,1, . . . , to,ko)) ∩ vars(Qi(si,1, . . . , si,mi)) = ∅.

But this is contradicting because we have assumed to derive an atom
Po(to,1, . . . , to,ko)σ ∈ E having an argument to,poσ with depth(to,poσ) > d,
which means on the other hand that we need an atom Qi(ui,1, . . . , ui,mi)
with depth(Qi(ui,1, . . . , ui,mi)) >

d
2 , and

vars(Po(to,1, . . . , to,ko)) ∩ vars(Qi(si,1, . . . , si,mi)) 6= ∅.

This finishes the case ([k].iib) and therefore proves the invariant condition
(i) for the atom Po(to,1, . . . , to,ko)σ.
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Showing the invariant condition (ii) is easy because C satisfies BDI-1, and
it holds according to Definition 5.6 (iii) that

warg(Po(to,1, . . . , to,ko) = [ ].

Additionally, the atom Po(to,1, . . . , to,ko)σ obviously originates from a depth
incrasing clause C satisfying BDI-1 which proves (ii).

Clause C satisfies BDI-2 Let

C =

ΓC︷ ︸︸ ︷
Q1(s1,1, . . . , s1,m1), . . . , Qn(sn,1, . . . , sn,mn)→P (t1, . . . , tm),∆C

Di = →Qi(ui,1, . . . , ui,mi),∆Di

where C is a depth increasing clause and depth(x, tj) > depth(x,ΓC) for some
variables x ∈ vars(tj). All partner clauses Di are positive ground and satisfy
PVD. Let

E =→ P (t1σ, . . . , tmσ),∆Cσ,∆D1 , . . . ,∆Dn

be the resolvent of C,Di with Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi).

We prove the invariant properties (i) and (ii) separately for the atoms in
∆Di (1), ∆Cσ (2), and P (t1, . . . , tm)σ (3) of the resolvent E.

(1) We start with the atoms in ∆Di , which are ground and therefore satisfy
the invariant conditions (i) and (ii) by induction hypothesis analogously
as in the case where the clause C satisfies PVD.

(2) The next part are the atoms in ∆Cσ, for which we first prove the invariant
condition (i). For all variables x ∈ vars(∆C) holds:

depth(xσ,∆Cσ) = depth(x,∆C) + depth(xσ).

Because the atoms in ∆C are not depth increasing, we have

depth(x,∆C) ≤ depth(x,ΓC)

for all x ∈ vars(∆C). Consequently, we can approximate depth(x,∆C)
with depth(x,ΓC) and get

depth(xσ,∆Cσ) ≤ depth(x,ΓC) + depth(xσ)

= depth(xσ,ΓCσ)

and ΓC =
⋃
iQi(si,1, . . . , si,mi). With

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)
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follows that depth(Qi(si,1, . . . , si,mi)σ) ≤ d for all i and, therefore,

depth(xσ,∆Cσ) ≤ d.

Thus, it holds depth(∆Cσ) ≤ d which proves the invariant condition (i)
for the atoms in ∆Cσ.

Next, we have to prove the invariant condition (ii) for the atoms in ∆Cσ
for which we consider a derived atom A(t1, . . . , tr)σ ∈ ∆Cσ where

depth(A(t1, . . . , tr)σ) >
d

2
.

We prove the invariant condition (ii) by contradiction and show that such
an atom cannot exist. To obtain such an atom, we need a partner clause

Di =→ Qi(ui,1, . . . , ui,mi),∆Di

with
Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

where depth(Qi(ui,1, . . . , ui,mi)) >
d
2 , and

vars(Qi(si,1, . . . , si,mi)) ∩ vars(A(t1, . . . , tr)) 6= ∅,

because depth(C) ≤ d
2 , and depth(x,∆C) ≤ depth(x,ΓC) as the atoms from

∆C are not depth increasing. But for Di holds the induction hypothesis,
from which it follows that

([k].iia) warg(Qi(ui,1, . . . , ui,mi)) 6= [ ], Qi is reachable from a depth in-
creasing clause satisfying BDI-2, and for all arguments ui,pi ∈
warg(Qi(ui,1, . . . , ui,mi)) holds depth(ui,pi) ≤ d

2 , or

([k].iib) warg(Qi(ui,1, . . . , ui,mi)) = [ ] and Qi(ui,1, . . . , ui,mi) originates
from a depth increasing clause satisfying BDI-1.

In case ([k].iia), the atom Qi is reachable from a depth increasing clause
satisfying BDI-2 and so is also A because A is reachable from Qi by the
clause C. Now consider a variable

x ∈ (vars(Qi(si,1, . . . , si,mi)) ∩ vars(A(t1, . . . , tr))).

According to Definition 5.7 (v), having that Qi is reachable from a depth
increasing clause, it must hold that x ∈ vars(warg(Qi(si,1, . . . , si,mi))).
But then, it follows with

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

from depth(ui,pi) ≤ d
2 for all ui,pi ∈ warg(Qi(ui,1, . . . , ui,mi)) that also

depth(si,piσ) ≤ d

2
for all si,piσ ∈ warg(Qi(si,1, . . . , si,mi)σ).
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5.3 Termination of Hyper-Resolution on BDI

Because A(t1, . . . , tr) is not depth increasing, we obtain that
depth(A(t1, . . . , tr)σ) ≤ d

2 which contradicts our assumption and finishes
the case ([k].iia).

The other case is ([k].iib) where we have warg(Qi(ui,1, . . . , ui,mi)) = [ ]
and the atom Qi(ui,1, . . . , ui,mi) originates from a depth increasing clause
satisfying BDI-1. Let

C ′ = ΓC′ → Qi(qi,1, . . . , qi,mi)∆C′

be this clause with Qi(qi,1, . . . , qi,mi)σ
′ = Qi(ui,1, . . . , ui,mi). Then it fol-

lows from Definition 5.6 (ii) that Qi(qi,1, . . . , qi,mi) and Qi(si,1, . . . , si,mi)
are similar, and for all

y ∈ vars(Qi(si,1, . . . , si,mi)) ∩ vars(A(t1, . . . , tr))

where si,pi |p = y, qi,pi |p = x′, and depth(x′, qi,pi) > depth(x′,ΓC′) holds
depth(y,A(t1, . . . , tr)) = 0. With depth(C ′) ≤ d

2 , depth(Di) ≤ d, and

depth(x′σ′) ≤ d
2 which follows analogously as in the case for PVD, we

obtain that

depth(yσ) ≤ d

2
because

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi) = Qi(qi,1, . . . , qi,mi)σ
′

where the variables y ∈ vars(Qi(si,1, . . . , si,mi)) ∩ vars(A(t1, . . . , tr)) were
the only possible candidates to obtain depth(A(t1, . . . , tr)σ) > d

2 (remem-
ber that depth(x,∆C) ≤ depth(x,ΓC) because ∆C is not depth increasing).
These candidates have now been proven not to be depth increasing, and
the case ([k].iib) is finished because there is no atom A(t1, . . . , tr)σ ∈ ∆Cσ
such that depth(A(t1, . . . , tr)σ) > d

2 and A(t1, . . . , tr)σ originates from a
depth incrasing clause satisfying BDI-1 which contradicts our assumption.
This completes the proof of the invariant condition (ii) for the atoms in
∆Cσ.

(3) The remaining part is the atom P (t1, . . . , tm) with its depth increasing
argument position j.
We first prove the invariant condition (i) by contradiction for P (t1, . . . , tm).
Because the argument position j is the only argument position increas-
ing the depth with depth(x, tj) > depth(x,ΓC) for one or more variables
x ∈ vars(tj), we assume that

depth(tjσ) > d

in P (t1σ, . . . , tmσ) ∈ E. Because C ∈ N , we have depth(P (t1, . . . , tm)) ≤
d
2 by definition. Hence, we need a partner clause

Di =→ Qi(ui,1, . . . , ui,mi),∆Di
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(from level [k]) such that depth(Qi(ui,1, . . . , ui,mi)) >
d
2 and

vars(Qi(si,1, . . . , si,mi)) ∩ vars(tj) 6= ∅.

But for Di holds the induction hypothesis, from which it follows that

([k].iia) warg(Qi(ui,1, . . . , ui,mi)) 6= [ ], Qi is reachable from a depth in-
creasing clause satisfying BDI-2, and for all arguments ui,pi ∈
warg(Qi(ui,1, . . . , ui,mi)) holds depth(ui,pi) ≤ d

2 , or

([k].iib) warg(Qi(ui,1, . . . , ui,mi)) = [ ] and Qi(ui,1, . . . , ui,mi) originates
from a depth increasing clause satisfying BDI-1.

In case ([k].iia), the atom Qi is reachable from a depth increasing clause
C ′ satisfying BDI-2. Let

C ′ = ΓC′ → P ′(q1, . . . , qm′),∆C′

be this clause and C ′ 6= C. Thus, C is another depth increasing clause
satisfying BDI-2 and P is reachable from Qi with the clause C. But then,
P is reachable from P ′ which violates Definition 5.8.
Hence, it must hold C ′ = C, and it follows from Definition 5.7 (iii) (1),
that P and Qi are of the same arity, i.e., m = mi.
If arity(Qi) = arity(P ) = 1 then the requirement of Definition 5.7 (iii) (3),
namely

vars(sj) ∩ vars(P (t1, . . . , tm)) = ∅,

contradicts our assumption of having

vars(Qi(sj))︸ ︷︷ ︸
=vars(sj)

∩ vars(tj)︸ ︷︷ ︸
=vars(P (tj))

6= ∅.

Otherwise, we have arity(Qi) = arity(P ) > 1. Definition 5.7 (ii) states
that tp ∈ warg(P (t1, . . . , tm)) for all argument positions p 6= j, and
tj /∈ warg(P (t1, . . . , tm)). Consequently, it follows together with Defini-
tion 5.7 (iii) (2) that si,p = tp for all argument positions p 6= j. According
to ([k].iia), it holds depth(ui,p) ≤ d

2 for all p 6= j, and with

Qi(ui,1, . . . , ui,mi) = Qi(si,1, . . . , si,mi)σ

follows that also depth(si,pσ) ≤ d
2 . Further, it holds because of condition

Definition 5.7 (iii) (3) that

vars(sj) ∩ vars(P (t1, . . . , tm)) = ∅,

and for this reason, we obtain for all

x ∈ vars(tj) ∩ vars(Qi(si,1, . . . , si,mi))
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that
x ∈

⋃
p6=j

vars(si,p)

Consequently, we can calculate

depth(tjσ) = depth(tj)︸ ︷︷ ︸
≤ d

2

+ depth(xσ)︸ ︷︷ ︸
≤ d

2

≤ d.

This contradicts our assumption that depth(tjσ) > d and completes the
first case ([k].iia).

The other case is ([k].iib), where we have warg(Qi(ui,1, . . . , ui,mi)) = [ ]
and the atom Qi(ui,1, . . . , ui,mi) originates from a depth increasing clause
satisfying BDI-1. Let

C ′ = ΓC′ → Qi(qi,1, . . . , qi,mi)∆C′

be this clause with Qi(qi,1, . . . , qi,mi)σ
′ = Qi(ui,1, . . . , ui,mi). Then it fol-

lows from Definition 5.6 (ii) that Qi(qi,1, . . . , qi,mi) and Qi(si,1, . . . , si,mi)
are similar, and for all

y ∈ vars(Qi(si,1, . . . , si,mi)) ∩ vars(P (t1, . . . , tm))

where si,pi |p = y, qi,pi |p = x′, and depth(x′, qi,pi) > depth(x′,ΓC′) holds
depth(y, P (t1, . . . , tm)) = 0. But this contradicts the construction of BDI-
2 where depth(x, tj) > depth(x,ΓC) and then depth(x) = depth(y) > 0.
This completes the case ([k].iib) and proves the invariant condition (i).

Next, we continue by showing the invariant condition (ii) for the atom
P (t1, . . . , tm)σ, and assume that depth(P (t1, . . . , tm)σ) > d

2 . Because
C satisfies BDI-2, we only have to verify condition (iia) for the atom
P (t1, . . . , tm)σ. We prove (iia) by contradiction and assume that we have
an argument tpσ with p 6= j and therefore tpσ ∈ warg(P (t1, . . . , tm)σ) but
depth(tpσ) > d

2 .
The clause C satisfies BDI-2, and for this reason, we have

depth(x, tp) ≤ depth(x,ΓC)

for all argument positions p 6= j and variables x ∈ vars(tp) ∩ vars(ΓC).
Thus, we need an atom Qi(si,1, . . . , si,mi) ∈ ΓC having an argument si,pi
such that depth(si,piσ) > d

2 and vars(si,pi) ∩ vars(tp) 6= ∅. Let

Di = → Qi(ui,1, . . . , ui,mi),∆Di

be the corresponding clause (from level [k]) with

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

for which the induction hypothesis holds:
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([k].iia) warg(Qi(ui,1, . . . , ui,mi)) 6= [ ], Qi is reachable from a depth in-
creasing clause satisfying BDI-2, and for all arguments ui,pi ∈
warg(Qi(ui,1, . . . , ui,mi)) holds depth(ui,pi) ≤ d

2 , or

([k].iib) warg(Qi(ui,1, . . . , ui,mi)) = [ ] and Qi(ui,1, . . . , ui,mi) originates
from a depth increasing clause satisfying BDI-1.

In case ([k].iia), it follows analogously as in the case ([k].iia) of the proof of
the invariant condition (i) that depth(ui,p) ≤ d

2 for all argument positions
p 6= j. With

Qi(si,1, . . . , si,mi)σ = Qi(ui,1, . . . , ui,mi)

follows that depth(si,pσ) ≤ d
2 and because of Definition 5.7 (iii) (2), we can

eventually conclude that also depth(tpσ) ≤ d
2 for all argument positions

p 6= j in P (t1, . . . , tm)σ) which satisfies the invariant condition (iia).

In the other case ([k].iib), we have warg(Qi(ui,1, . . . , ui,mi)) = [ ] and
Qi(ui,1, . . . , ui,mi) originates from a depth increasing clause satisfying BDI-
1. We prove this case by contradiction. Let

C ′ = ΓC′ → Qi(qi,1, . . . , qi,mi)∆C′

be the previously mentioned clause satisfying BDI-1 with

Qi(qi,1, . . . , qi,mi)σ
′ = Qi(ui,1, . . . , ui,mi).

From Definition 5.6 (ii) follows thatQi(qi,1, . . . , qi,mi) andQi(si,1, . . . , si,mi)
are similar, and for all

y ∈ vars(Qi(si,1, . . . , si,mi)) ∩ vars(P (t1, . . . , tm))

where si,pi |p = y, qi,pi |p = x′, and depth(x′, qi,pi) > depth(x′,ΓC′) holds
depth(y, P (t1, . . . , tm)) = 0. With depth(C ′) ≤ d

2 , depth(Di) ≤ d, and

depth(x′σ) ≤ d
2 which follows analogously as in the case for PVD, we obtain

depth(yσ) ≤ d
2 . But then depth(tpσ) ≤ d

2 must holds which contradicts

our assumption of depth(tpσ) > d
2 .

This finishes the case ([k].iib) and also completes the proof of the invariant
condition (iia) for the atom P (t1, . . . , tm)σ.

Case: Factoring
The application of the Factoring rule on a (positive) clause C is handled anal-
ogously to the base case and can be reduced to the application of the Con-
densation rule, and thus producing a resolvent which is a strict subset of its
parent clause C. ♦
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In order to emphasize the thin line between decidability and undecidability
on our new class definition, we present two examples each violating only one
of the conditions of BDI, and show, that it is possible to encode the PCP [30]
using the relaxed conditions. Consider an alphabet Σ = {0, 1}. We construct a
clause set such that an instance of the PCP problem has a solution if and only
if the clause set is unsatisfiable. We encode strings over ’0’, ’1’ by using terms
built from the constant a and the monadic function symbols f0, f1. For exam-
ple, the word 011 would be represented as f1(f1(f0(a))). The corresponding
string s for a term is denoted as fs(x). For a PCP instance ((u1, v1), (u2, v2),
. . . , (um, vm)), the overall clause set representing the PCP encoding is:

→ P (fui(a), fvi(a)) 1 ≤ i ≤ m (1.1)

P (x, y) → P (fui(x), fvi(y)) 1 ≤ i ≤ m (1.2)

P (x, x) → (1.3)

The clauses of the form (1.1) represent the start state for m words and
clause (1.2) the recursion to construct larger words. Eventually, clause (1.3)
neglects the existence of a common word.

Consider the below clause set of Example 5.12. The clauses (2.1) and (2.4)
both satisfy condition PVD while the clauses (2.2) and (2.3) both satisfy the
conditions of BDI-2. In contrast to the standard formalization of the PCP
problem, the extension of words (original clause (1.2)) is now spread over two
clauses ((2.2) and (2.3)). However, these clauses in combination do not satisfy
BDI-(iv), because the predicate P is reachable from Qi (and vice versa).

Example 5.12

→ P (fui(a), fvi(a)) 1 ≤ i ≤ m (2.1)

P (x, y) → Qi(fui(x), y) 1 ≤ i ≤ m (2.2)

Qi(x, y) → P (x, fvi(y)) 1 ≤ i ≤ m (2.3)

P (x, x) → (2.4)

So dropping the reachability condition of BDI leads to an undecidable clause
class.

Consider the below clause set of Example 5.13. Here, we have used the same
idea as in Example 5.12, namely, to distribute the extension of words over
several clauses (3.2)-(3.5). The clauses (3.1) and (3.6) satisfy PVD while the
remaining clauses are candidates to satisfy BDI-1. Starting from the clauses
(3.2), the atoms with Qi, Ri-predicates occuring in (3.3)-(3.5) are all similar,
respectively. However, the variable condition of BDI-1-(iv) is violated in (3.3)
and (3.4). Consider one of the clauses resulting from formula (3.3) as an
example: The atom Qi(fui(x), y) is reachable from a depth increasing clause
(a clause resulting from (3.2)), vars(warg(Qi(fui(x), y))) = ∅ and there are no
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other atoms that are not reachable from a depth increasing clause on the left
hand side. Consequently, the right hand side of the clause had to be ground
to satisfy condition BDI-1-(iv).

Example 5.13

→ P (fui(a), fvi(a)) 1 ≤ i ≤ m (3.1)

P (x, y) → Qi(fui(x), y), Ri(x, fvi(y)) 1 ≤ i ≤ m (3.2)

Qi(fui(x), y) → Ri(x, fvi(y)) 1 ≤ i ≤ m (3.3)

Ri(x, fvi(y)) → Qi(fui(x), y) 1 ≤ i ≤ m (3.4)

Qi(fui(x), y), Ri(x, fvi(y)) → P (fui(x), fvi(y)) 1 ≤ i ≤ m (3.5)

P (x, x) → (3.6)

So dropping condition BDI-1-(iv) leads to an undecidable clause class.

In general, any violation of the conditions of BDI-1 or BDI-2 results in a
clause class where Hyper-resolution is no longer a decision procedure. The
above two clause sets show that at least two of the conditions are mandatory
in order to obtain a decidable clause class.

5.4 From Hyper to Ordered Resolution

Hyper-resolution enumerates all positive ground facts from a given clause set.
For many practical applications this is not feasible. For example, in the context
of our authorization analysis, thousands of authorization definitions for a large
number of users need to me modeled. They imply a huge number of derivable
ground facts representing the exact authorization instantiations for all these
users. Therefore, we want to employ a specific selection strategy on atoms in
order to avoid the naive enumeration of all derivable positive ground clauses.
Consider the following abstract, but real world, set of clauses as an example
to sketch the idea. Assume 10.000 ground atoms → A(ai, bj) relating autho-
rizations ai to possible values bj . Assume 10.000 ground atoms of the form →
Holds(ui, aj) that assign authorizations aj to users ui. Then already a clause
of the form Holds(x, y), A(y, z) → Access(x, z) results already in a potential
quadratic (10k*10k) number of concrete access rights. However, in some busi-
ness process, these rights are only needed in a very specific way, e.g., a clause of
the form P (x, y, z), Access(x1, x), Access(x1, y), Access(x1, z) → Q(x1, y, z)
requires three specific rights in order to deriveQ(x1, y, z). If the atom P (x, y, z)
can be selected at first in this clause, then the overhead of generating all ac-
cess rights for all users in order to reason about Q(x1, y, z) can be prevented.
Therefore, we want to turn ordered resolution with selection into a decision
procedure for BDI.
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5.4 From Hyper to Ordered Resolution

In general, Ordered Resolution is not a decision procedure for BDI. How-
ever, as it is shown below, the BDI class justifies two additional reduction
rules that then make Ordered Resolution terminating.

Theorem 5.14
Let N be an unsatisfiable clause set of the class BDI and

dN = 2 ·max{depth(∆) | (Γ→ ∆) ∈ N}.

Consider a hyper-resolution proof of the empty clause with ordering �. Then
there is a (non-ground) ordered resolution proof of the empty clause with
respect to � and an arbitrary selection strategy such that depth(C) ≤ dN for
all clauses C derived in this ordered resolution proof.

Proof. By Theorem 5.11 there is a hyper-resolution proof of the empty clause
where any generated clause does not exceed the depth bound dN . Having
a hyper-resolution proof for N with depth bound dN , we can construct an
inconsistent subset S of N∗ and ground it by taking the substitutions used
in the hyper-resolution proof such that all ground clauses still have depth
bound dN . By refutational completeness of the ordered resolution calculus
with selection, it is still possible to derive the empty clause from S. Because
all inferences are ground in the refutation of S, any derived ground clause
respects the depth bound dN . Using the standard lifting lemma, a non-ground
refutation of the original set N is constructed where it still holds depth(C) ≤
dN for all clauses C derived by the ordered resolution calculus with an arbitrary
selection strategy. ♦

We exploit Theorem 5.14 by the following two parameterized reduction rules
that eventually enable a finite saturation of a BDI clause set via ordered
resolution with selection.

Definition 5.15 (Variable Condensation(k))
The reduction

C
Cσ1,2, . . . , Cσl−1,l

where vars(C) = {x1, . . . , xl}, l > k and σi,j = {xi 7→ xj} for all i, j with
1 ≤ i < l, i < j ≤ l, is called Variable Condensation.

Definition 5.16 (Depth Cutoff(k))
The reduction

C

where depth(C) > k is called Depth Cutoff.

Theorem 5.17
Let N be a finite set of clauses satisfying BDI and Σ′ be the signature symbols
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5 The Clause Class BDI

occurring in N . Then the ordered resolution calculus with an arbitrary selec-
tion strategy together with Depth Cutoff (dN ) and Variable Condensation(eN )
where dN = 2 ·max{depth(∆C) | C ∈ N} and eN = |{t | t ∈ T (Σ′), depth(t) ≤
dN}| is complete and terminating.

Proof. It follows from Theorem 5.14 that the standard ordered resolution cal-
culus with an arbitrary selection strategy is able to derive the empty clause
and none of the derived clauses in the ordered resolution proof exceeds the
depth of dN . Thus, if we have a clause D with depth(D) > dN , we apply
Depth Cutoff (dN ) on D and discard it as it will not be required to refute N
in case of a contradiction.

Additionally, with respect to the finitely many signature symbols in N and
the depth limit dN only eN many different ground terms need to be considered
in any proof. Therefore, we can apply Variable Condensation(eN ) on any
(derived) clause D such that the total number of different variables in any
derived clause is bounded as well. ♦

The ordered resolution calculus including the two additional reduction rules
Variable Condensation and Depth Cutoff provides a decision procedure for
BDI. Recall that termination is achieved for resolution if the length (number
of literals in a clause) and depth (maximal depth of a literal in a clause)
of newly generated clauses are finitely bound [20]. This is ensured by our
additional rules. Any derived clause is bounded by the depth limit (otherwise
Depth Cutoff is applied). Further, it is also not possible to generate clauses
with infinite different literals because only finitely many different ground terms
can be constructed taking the depth limit into account. For the non-ground
case together with the depth bound, one can only increase the number of
variables but then the rule Variable Condensation applies.
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6 Implementation

I have implemented the verification of the BDI class criteria (the BDI prop-
erties presented in Chapter 5) into the theorem prover Spass version 3.8 (not
officially released yet, latest release is 3.7, [37]). The implementation makes it
possible to automatically decide for a given problem, whether it satisfies the
requirements of BDI or not. If the conditions of BDI are satisfied, then the
prover is guaranteed to terminate.

This section contains the details related to the implementation where the
following algorithms explain all essential functions. Additionally, the algo-
rithms use helper functions not containing further logic which are therefore
not presented in detail. References to essential functions are written in type-
writer font, e.g., wargEqual(), and calls of helper functions are written italics,
e.g., getLiteral().

I have created a new module bdi where most of the implementation’s source
code is located. In addition, it was necessary to extend some existing mod-
ules, for example, to store additional information about clauses, to print the
predicates (graph nodes) of a graph, or to compare nodes in a graph.

The input to the main loop of the prover is – after some preprocessing – a
list of clauses representing the input problem. I have attached the analysis of
the clauses at the position right after where the input has been parsed and the
corresponding list of (input) clauses has been created, but before the actual
main loop is started.

At first, the predicate dependency graph is created by adding edges for all
predicate symbols occurring in the input clauses as described in Section 4.2.5.
Afterwards, an algorithm presented by Tarjan [34], which uses depth-first
search in order to identify, and number strongly connected components (the
cycles) is applied to the graph. Eventually, the conditions for BDI (see Sec-
tion 5.8) are checked with the aid of the predicate dependency graph.

The graph data structure contains the total number of nodes, a list of graph
nodes (and some minor auxiliary attributes that not need to be further de-
scribed). The graph node structure in turn consists mainly of an incremented
node number, a list of neighbors, and a pointer to store arbitrary additional
information. During the construction of the graph, I use several lists for re-
membering clauses to avoid duplicated loops over all clauses when checking
the sub-conditions of BDI. Please note that the implementation always works
with pointers, so the clauses are stored only once, and every list stores just
pointers to selected clauses. The following structure shows the additional in-
formation that is attached to every graph node.
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typedef struct BDINODEINFO HELP
{

/∗ L i s t o f p o i n t e r s to c l a u s e s t h a t can be used
f o r r e s o l u t i o n (= c l a u s e s wi th l i t e r a l s on the
l e f t hand s i d e where the l i t e r a l symbol matches
the node symbol . ∗/

LIST cand idates ;

/∗ L i s t o f p o i n t e r s to c l a u s e s having p o s i t i v e
l i t e r a l s which share the same p r e d i c a t e symbol . ∗/

LIST clausesPosSameSymbol ;

/∗ L i s t o f p o i n t e r s to a l l c l a u s e s where the
p r e d i c a t e symbol occurs . ∗/

LIST c lause sOccur ing ;

/∗ L i s t o f argument p o s i t i o n s to watch . ∗/
LIST warg ;

/∗ Switch to avoid warg l i s t o v e r w r i t i n g . ∗/
BOOL wargEmpty ;

} BDINODEINFO STRUCT;

As mentioned above, the conditions of BDI are checked using the depen-
dency graph after its construction and identification of the strongly connected
components. This task is presented in algorithm 1. In order to store fur-
ther information about a clause, I have extended the module clause by the
following additional attributes:

• depthIncLiterals: A list of depth increasing literals where it exists a vari-
able x in the clause Γ → ∆ such that depth(x,∆) > depth(x,Γ). If the
list is empty, the clause is not depth increasing.

• satPVDa, satPVDb, satPVD: Flags to store the result of the condition
check of the single, and combined conditions of PVD, respectively (see
Definition 5.1, and algorithm 1, line 6, and algorithm 2).

• satBDI1: Flag to store the result of the BDI-1 condition check (see Def-
inition 5.6, and algorithm 1, line 19).

• satBDI2: Flag to store the result of the BDI-2 condition check (see Def-
inition 5.7, and algorithm 1, line 11).

After the initialization, a loop over all input clauses is started in line 4 in
order to check the conditions of PVD and to determine whether a clause is
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depth increasing or not. Please note that the access of class attributes or
properties is handled in following algorithms using the dot operator, see line 5
for the first occurrence. The condition check for PVD is mainly done by the
function bdi satPVD(), called in line 6, which marks the depth increasing
variables with varDepthIncMark, stamps the depth increasing argument posi-
tions of the related literal, and remembers the depth increasing literals of the
clause in the list depthIncLiterals of that clause. The result of the check is then
stored in the attribute satPVD of the clause. Of course, if a clause violates
the single condition satPVDa (PVD-(i), Definition 5.1), it can never satisfy a
BDI condition (line 7) because PVD-(i) must hold both for BDI-1 and BDI-2.
Otherwise, if only PVD-(ii) is violated, the clause is depth increasing and has
to be stored in line 9 to be considered for checking the conditions of BDI-1,
and BDI-2 in the subsequent loops.

The loop to check the BDI-2 conditions starts in line 11, where the function
bdi satBDI2() is actually doing the job: It checks the single BDI-2 conditions
and initializes also the watched argument lists that are needed for the following
BDI-1 condition check. Additionally, it remembers all clauses satisfying BDI-2
in order to be able to check BDI-(iv) at the end (line 23).

The subsequent loop (line 16) considers again all depth increasing clauses to
check the BDI-1 conditions (function bdi satBDI1(), line 19), but only if the
corresponding clause does not already satisfy BDI-2 (line 17). The result of
the BDI-1 condition check is also stored in the clause, like the previous results
PVD, and BDI-2.

Eventually, a loop over all depth increasing clauses is started in line 20, in
order to check whether the clause satisfies BDI-1 or BDI-2. If a clause satisfies
BDI-2, all other clauses satisfying BDI-2 have to be checked in a separate loop
in line 23 for reachability, because in order to satisfy BDI-(iv), two depth
increasing clauses both satisfying BDI-2 may not reachable from each other.
This requirement is implemented by taking the first literal from the respective
depth increasing literal lists (lines 24-25)1, and check reachability of these two
literals by means of the graph, if the literals are not equal. The equality is
excluded and can be excluded because it represents the case that the clauses
Clause and Clause2 are equal and we want to check reachability only for two
different clauses Clause and Clause2.

1Please note that there exists only one element in the depth increasing literal list for a
clause satisfying BDI-2.
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Algorithm 1: bdi checkConditions(InputClauses, Graph)

input: A list of all input clauses, and the predicate graph resulting from
the input clauses.

effect: Checks the BDI conditions for each input clause and prints
information if one violates a condition.

/* Init */

1 int varDepthIncMark = getMark();
2 LIST depthIncClauses = ∅; /* Stores all depth increasing

clauses */

3 LIST BDI2 = ∅; /* Stores all clauses satisfying BDI-2 */

4 foreach clause Clause from InputClauses do
5 Clause.depthIncLiterals = ∅;
6 Clause.satPVD = bdi satPVD(Clause, varDepthIncMark, Graph);

/* See Algorithm 2 */

7 if (Clause.satPVDa == FALSE) then
/* Print: Clause violates BDI conditions. */

8 else if (Clause.satPVDb == FALSE) then
/* Clause is depth increasing */

9 depthIncClauses = depthIncClauses ∪ {Clause};

10 foreach clause Clause from depthIncClauses do
11 Clause.satBDI2 = bdi satBDI2(Clause, InputClauses,

depthIncClauses, varDepthIncMark, Graph); /* See Algorithm 3

*/

12 if (Clause.satPVDa == FALSE
13 and Clause.satBDI2 == TRUE
14 and length(Clause.depthIncClauses) == 2) then

/* Remember clause to check BDI-(iv) */

15 BDI2 = BDI2 ∪ {Clause};

16 foreach clause Clause from depthIncClauses do
17 if (Clause.satBDI2 == TRUE) then

/* Current clause OK, continue with next clause */

18 else
19 Clause.satBDI1 = bdi satBDI1(Clause, depthIncClauses,

varDepthIncMark, Graph); /* See Algorithm 4 */
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20 foreach clause Clause from depthIncClauses do
21 if (Clause.bdi satBDI1 == TRUE) then

/* Current clause OK, continue with next clause */

22 else if (Clause.bdi satBDI2 == TRUE) then
/* Check all (other) clauses satisfying BDI-2 if they

are reachable from each other */

23 foreach clause Clause2 from BDI2 do
/* Get first literals from corresponding depth

increasing literals lists */

24 LITERAL Literal1 = first(Clause.depthIncClauses);
25 LITERAL Literal2 = first(Clause2.depthIncClauses);

/* Check predicates */

26 if (predSymbol(Literal1) 6= predSymbol(Literal2) and
bdi isReachable(Literal1, Literal2, Graph)) then

/* Print: Violation of BDI-(iv). */

27 else
/* Print: Clause violates BDI conditions. */

Algorithm 2 shows the implementation of the single condition checks that
need to hold for PVD (see Definition 5.1) for a clause. After the initial-
ization in the lines 1-2, all variable positions from the variables occurring
in Γ and ∆ are collected in the lines 3-4, and 5-6, respectively. The func-
tion varPos(<list>) simply extracts all variables and their positions from the
given list of literals.

The next step is to verify all collected variable positions. The loop over all
positions starts in line 7, and the condition PVD-(i) is verified at first, in line
9: Every variable varDelta (at some position in ∆) must satisfy varDelta ∈
vars(Γ). If this requirement is violated, the loop can be immediately left
and the result returned (which is FALSE because the given clause does
not satisfy the conditions of PVD). Otherwise, every variable occurring at
some position in Γ is examined. If the same variable symbol is considered
(varDelta = varGamma, line 14), and the depth of that variable in ∆ (with
respect to its position) is larger than the depth of the same variable occurring
in Γ in the given clause, a depth increasing variable and literal has been found.
Then, in line 16-17, the depth increasing literal is stored in the clause and the
literal, as well as the corresponding argument, and the depth increasing vari-
able are marked. Further, in line 19, condition PVD-(ii) is set to false if not
yet done and the loop continues to examine the remaining variable positions
(as we want to mark all depth increasing variables).

The section starting in line 20 eventually checks whether the given clause
(now with the depth increasing variable positions marked) can be considered as
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a candidate to satisfy BDI-2. This is not the case if it has more than one depth
increasing literal for which the graph node information is adjusted by flushing
the watched argument list and setting the flag wargEmpty = TRUE to prevent
later overriding of the watched argument list. The idea and implementation
of the watched argument list is explained in detail in algorithm 6. The node
information is attached to each predicate symbol and is accessible via the
predicate symbol of the literal.

Algorithm 2: bdi satPVD(Clause, depthIncMark, Graph)

input : A clause, a depth increasing mark, and the predicate graph.
effect : Checks the PVD conditions on the given clause.
output: Returns true if the clause satisfies PVD, false otherwise.

/* Init */

1 Clause.satPVDa = Clause.satPVDb = TRUE;
2 LIST VarPosGamma = VarPosDelta = ∅;
/* Collect variable positions in Γ */

3 foreach VarPos from varPos(Γ) of Clause do
4 VarPosGamma = VarPosGamma ∪ {VarPos};

/* Collect variable positions in ∆ */

5 foreach VarPos from varPos(∆) of Clause do
6 VarPosDelta = VarPosDelta ∪ {VarPos};

7 foreach VarPosFromDelta ∈ VarPosDelta do /* Check variables at

the positions */

8 SYMBOL varDelta = getVarAtPos(VarPosFromDelta);
9 if (varDelta /∈ vars(Γ)) then

10 Clause.satPVDa = FALSE;
/* Print: Clause violates PVD-(i). */

11 break;

12 foreach VarPosFromGamma ∈ VarPosGamma do
13 SYMBOL varGamma = getVarAtPos(VarPosFromGamma);
14 if (varDelta == varGamma and

depth(VarPosFromDelta,∆) > depth(VarPosFromGamma,Γ))
then

15 Clause.depthIncLiterals = Clause.depthIncLiterals
∪ {getLiteral(VarPosFromDelta)};

16 Stamp depth increasing argument of literal and literal itself;
17 Mark depth increasing variable (position) with

depthIncMark;
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18 if (Clause.satPVDb == TRUE) then
19 Clause.satPVDb = FALSE;

/* Print: Clause violates PVD-(ii). */

/* Continue with other depth increasing vars */

20 if (length(Clause.depthIncLiterals) > 1) then
/* Clause can never satisfy BDI-2, possibly BDI-1;

adjust graph node info for all literals from

depthIncLiterals */

21 foreach Literal from depthIncLiterals do
22 GRAPHNODE Node = getNode(Literal);
23 Node.nodeInfo.warg = ∅;
24 Node.nodeInfo.wargEmpty = TRUE;

25 return (Clause.satPVDa and Clause.satPVDb);

The algorithm 3 shows the implementation of the single condition checks for
BDI-2 as well as the initialization of the watched argument list for the predi-
cates. After the initialization in the lines 1-3, the attribute PVDa (condition
PVD-(i)) is checked for the given clause in lines 5-6 because it is a requirement
for BDI-2, too. The PVDa attribute has been previously set in algorithm 2
which is executed prior to the current algorithm. Afterwards, the number of
depth increasing literals in the depth increasing literal list of the given clause
is verified to be exactly one in the lines 7-8. If these preconditions are satisfied,
the actual examination of the positive literals of the clause starts in line 9. In
lines 12-13 it is checked for every stamped (depth increasing) literal whether
the depth increasing argument position(s) of the given literal are the same for
all positive literal occurrences with the same predicate symbol in the other
input clauses. Please note that the corresponding clauses sharing the same
predicate symbol have been stored during the graph construction in the list
clausesPosSameSymbol to avoid repeated loops over all input clauses.

The next part is the check of the number of depth increasing arguments as
well as to determine the watched argument positions for the depth increasing
literal and the reachable literals in the same cycle. For this purpose, a loop
over all arguments of the depth increasing literal is necessary (starting in
line 16) where the number of marked arguments is verified at first in line 20.
Further, the depth increasing literal and argument position is stored for later
use in the lines 22-23. If the argument is not marked and therefore not depth
increasing, its position is stored in the watched argument list that is kept in
the additional information of the literals graph node (line 25).

The call of the function bdi setWargReachable() in line 26 passes the
watched argument list to all literals occurring in the same cycle than the
current depth increasing literal. Please note that the watched argument list
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gets only passed to those literals having the wargEmpty flag not set, otherwise
the watched argument list of the corresponding literal remains unchanged. A
detailed explanation of the watched arguments and their implementation is
given in the context of Algorithm 6.

The next part is the exploration of the negative literals of the given clause in
the loop starting in line 27). For all atoms that are reachable from the depth
increasing literal with common variables (line 29), the conditions of BDI-2-(iii)
have to be checked: The arity of the negative literal and the depth increasing
literal must be equal (BDI-2-(iii)-(1), lines 30-31), the respective watched ar-
guments must be equal (BDI-2-(iii)-(2), lines 32-33), and the depth increasing
argument and the negative literal are not allowed to have common variables
(BDI-2-(iii)-(3), lines 34-35). Afterwards, the variables are collected for the
later check of condition BDI-2-(v), either only from the arguments at watched
argument positions if the literal is reachable from a depth increasing clause
(lines 36-37), or by taking all variables from the literal otherwise (lines 38-39).

In order to check BDI-2-(iv), it’s necessary to scan all clauses in the same
cycle or component than the given clause for a literal that is reachable from
the current depth increasing literal. For the matching clauses, we require for
any literal in the succedent with a non-empty watched argument list that the
watched argument list for all atoms in the antecedent is either identical or
empty (checked by wargEmptyOrEqual() in line 42). The function stops and
returns FALSE if this requirement is violated.

Finally, another loop over all positive literals of the given clause is performed
to check the condition BDI-2-(v) in the lines 44-46. This separate loop is
needed because its contents can’t be moved to the first loop over the succedent
of the clause (in line 9) due to dependencies. The reason is the necessary
collection of the corresponding variables that only takes place in the loop over
the negative literals of the given clause (starting in line 27) and which in
turn needs to be executed after a loop over the positive literals (also because
of dependencies). If a literal different from the depth increasing literal is
encountered and the variables of the non-depth-increasing literal are not in
the list of allowed variables (line 45), then the condition BDI-2-(v) is violated.

If none of the previous checks has failed, the given clause satisfies BDI-2
and the function sat BDI2() returns TRUE in line 47.
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Algorithm 3: bdi satBDI2(Clause, depthIncClauses, depthIncMark,
Graph)

input : A clause, the list of depth increasing clauses, a depth increasing
mark, and the predicate graph.

effect : Checks the BDI-2 conditions on the given clause.
output: Returns true if the clause satisfies BDI-2, false otherwise.

/* Init */

1 LITERAL depthIncLiteral = NULL;
2 int depthIncArgPos = 0;
3 LIST allowedVars = ∅;
4 GRAPHNODE Node;

5 if (Clause.satPVDa == FALSE) then
6 return FALSE;

7 if (length(Clause.depthIncLiterals) > 1) then
8 return FALSE ; /* Print: More than 1 depth increasing

literal */

9 foreach Literal ∈ ∆ of Clause do
10 if (Literal is stamped) then
11 Node = getNode(Literal);
12 if (bdi isUniquelyDepthInc(Literal,

Node.nodeInfo.clausesPosSameSymbol) == FALSE) then
/* See Algorithm 5 */

13 return FALSE; /* Not uniquely depth increasing */

/* Init search for depth increasing literal and

argument */

14 countDephIncArgs = 0;
15 argPos = 0;
16 foreach Argument ∈ Literal do
17 argPos++;
18 if (Argument is marked) then
19 countDephIncArgs++;
20 if (countDephIncArgs > 1) then

/* Print: > 1 depth increasing argument */

21 return FALSE;

22 depthIncLiteral = Literal; /* Remember literal and

argument position */

23 depthIncArgPos = argPos;

24 else
25 Node.nodeInfo.warg = Node.nodeInfo.warg ∪ {argPos};
26 bdi setWargReachable(Literal,Graph); /* See Algorithm 6

*/
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27 foreach Literal ∈ Γ of Clause do
28 Node = getNode(Literal);
29 if (bdi isReachable(Literal, depthIncLiteral,Graph) and

vars(Literal) ∩ vars(depthIncLiteral) 6= ∅) then
/* BDI-2-(iii)-(1), see Algorithm 7 */

30 if arity(Literal) 6= arity(depthIncLiteral) then
31 return FALSE /* Print: arities not equal */

32 else if (wargEqual(Node.nodeInfo.warg,
getNode(depthIncLiteral).nodeInfo.warg) == FALSE) then
/* BDI-2-(iii)-(2) */

33 return FALSE ; /* Print: warg lists not equal */

34 else if (vars(Literal) ∩
vars(getArgument(depthIncLiteral, depthIncArgPos)) 6= ∅) then
/* BDI-2-(iii)-(3) */

/* Print: Violation of BDI-2-(iii)-(3) */

35 return FALSE;

/* Collect vars for BDI-2-(v) */

36 if (bdi isReachableFromDIC(Literal, depthIncClauses,Graph)) then
/* Reachable from DIC, only vars from warg list; see

Algorithm 8 */

37 allowedVars = allowedVars ∪ vars(Node.nodeInfo.warg);

38 else /* Not reachable from DIC, take all vars */

39 allowedVars = allowedVars ∪ vars(Literal);

40 foreach clause Clause2 in same cycle than Clause do /* BDI-2-(iv)

*/

41 foreach Literal ∈ ∆ of Clause2 do
42 if (bdi isReachable(Literal, depthIncLiteral,Graph)) and

wargEmptyOrEqual(Clause2,Graph) == FALSE then /* See

Algorithm 9 */

43 return FALSE ; /* Print: BDI-2-(iv) violated. */

44 foreach Literal ∈ ∆ of Clause do /* BDI-2-(v) */

45 if (Literal 6= depthIncLiteral and vars(Literal) ∩ allowedVars == ∅)
then

46 return FALSE ; /* Print: BDI-2-(v) violated. */

47 return TRUE;
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The algorithm 4 shows the implementation of the single condition checks
for BDI-1. After the initialization, the attribute PVDa (condition PVD-(i)) is
checked for the given clause in the lines 3-4 analogously as in algorithm 3 for
bdi satBDI2().

A loop over the antecedent of the given clause is started in line 5 where the
variables for the later check BDI-1-(iv) are collected at first in the lines 7-10,
analogously as in algorithm 3, line 36-39, for bdi satBDI2(). Also, for any
atom in the succedent of the given clause with a non-empty watched argument
list it is checked that the watched argument list for all atoms in the antecedent
is either identical or empty by calling the function wargEmptyOrEqual() in
line 11.

Next, a loop over the positive literals of the given clause is started in line 13
in order to check the stamped (depth increasing) literals. Another loop to
explore the partner clauses from the candidate clauses list of the current lit-
eral is started in line 16. If the literal with the same predicate symbol from
the (partner) clause under inspection is unifiable with the current depth in-
creasing literal (line 18), similarity is checked and the depth increasing vari-
able positions from the partner literal are collected by means of the function
bdi termSimilarVarCollect() in line 20. If the literals are similar, each col-
lected variable position varPos from a variable occurring in the partner clause
is verified to have zero depth in line 22 which corresponds to the requirement
BDI-1-(ii). Otherwise, if the unifying partner literal is not similar, the condi-
tion BDI-1-(ii) is also violated (line 24). Finally, the variables from the depth
increasing literal are verified to be also member in the list of the collected
variables (allowedVars) in line 25. If this requirement is not satisfied, there
is a violation of condition BDI-1-(iv) and the function sat BDI1() returns
FALSE.

If none of the previous checks has failed, the given clause satisfies BDI-1
and the function sat BDI1() returns TRUE in line 27.

Algorithm 4: bdi satBDI1(Clause, depthIncClauses, depthIncMark,
Graph)

input : A clause, the list of depth increasing clauses, a depth increasing
mark, and the predicate graph.

effect : Checks the BDI-1 conditions on the given clause.
output: Returns true if the clause satisfies BDI-1, false otherwise.

/* Init */

1 LIST allowedVars = ∅;
2 GRAPHNODE Node;

3 if (Clause.satPVDa == FALSE) then
4 return FALSE;
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5 foreach Literal ∈ Γ of Clause do
6 Node = getNode(Literal);

/* Collect vars for BDI-1-(iv) */

7 if (bdi isReachableFromDIC(Literal, depthIncClauses,Graph)) then
/* Reachable from DIC, take only variables from warg

list, see Algorithm 8 */

8 allowedVars = allowedVars ∪ vars(Node.nodeInfo.warg);

9 else /* Not reachable from DIC, take all variables */

10 allowedVars = allowedVars ∪ vars(Literal);
11 if (wargEmptyOrEqual(Clause,Graph) == FALSE) then /* See

Algorithm 9 */

/* Print: Violation of BDI-1-(v). */

12 return FALSE;

13 foreach Literal ∈ ∆ of Clause do
14 Node = getNode(Literal);
15 if (Literal is stamped) then
16 foreach partner clause Clause2 ∈ Node.nodeInfo.candidates do

/* Examine resolution partners */

17 foreach literal with same predicate symbol
Literal2 ∈ Clause2 do

18 if (isUnifiable(Literal, Literal2)) then
19 LIST varPosCheck = ∅;

/* Check similarity and collect depth

increasing variables in partner literal

*/

20 if (bdi termSimilarVarCollect(Literal, Literal2,
varDepthIncMark, varPosCheck)) then /* See

algorithm 10 */

21 foreach varPos ∈ varPosCheck do /* Verify

variable positions */

22 if (depth(varPos,Clause2) > 0) then
/* Print: Violation of BDI-1-(ii)

*/

23 return FALSE;

24 else
/* Print: Violation of BDI-1-(ii),

literal in partner clause is not

similar */

/* Check vars (collected previously) */

25 if (vars(Literal) ∩ allowedVars == ∅) then
/* Print: Violation of BDI-1-(iv). */

26 return FALSE;

27 return TRUE;
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Algorithm 5 checks for the property of uniquely depth increasing literals by
taking a depth increasing literal as a reference, and comparing the arguments
of the literals with the same predicate symbol (line 3) occurring in the given
list of clauses one by one (line 6).

Algorithm 5: bdi isUniquelyDepthInc(Literal, Clauses)

input : A literal, and a list of clauses to check for the property of
uniquely depth increasing literals.

effect : Checks the literals occurring in the given clauses to have equal
depth increasing argument positions than the given literal.

output: True or false depending if the literal occurs uniquely depth
increasing in the list or not.

1 foreach Clause from Clauses do
2 foreach Literal2 from Clause do
3 if (equalSymbols(Literal2, Literal) == FALSE) then

/* Symbols not equal -> continue with next literal */

4 continue;

5 else
6 foreach Argument1 from Literal, Argument2 from Literal2

do
7 if ((Argument1 is stamped) and (Argument2 is not

stamped)) then
8 return FALSE;

9 return TRUE;

Algorithm 6 shows how the watched argument position lists are determined
for reachable predicate symbols in the same cycle.

The initialization in the lines 1-2 extracts the node data from the given literal
and prepares a list for storing nodes that need to be reprocessed. Afterwards,
a loop over all graph nodes (representing the predicates) is performed to find
all predicates connected within the same cycle than the given literal (using
the cycle/component number for comparison, line 5). Additionally, only the
predicates are of interest whose watched argument list has not been forced to
stay empty (also checked in line 5). For satisfying candidates, the watched
argument list is copied from the given node to the currently explored node
in line 6. The next step is to verify the arity of the two nodes’ predicate
symbols in line 7. If the arities are different, then the current node needs to
be remembered in the reprocess list for further examination (line 8) because
the watched arguments positions cannot be adapted one-to-one from Node to
the current node Node2.

Consider the following two atoms P (x1, x2, f(x3)), Q(x1, g(a), x2, f(x3)) oc-
curring in one clause for a better understanding of the argument lists and
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6 Implementation

assume that the argument positions 1 = x1, 2 = x2 for P are watched. As
mentioned above, the watched argument list of P (positions 1, 2) is initially
copied to the watched argument lists of all other reachable predicates in the
same cycle (in this example on the predicate Q). However, one easily can see
that the (watched) argument positions 1, 2 of P are identical to the arguments
1, 3 of Q. Hence, the initially copied watched argument positions 1, 2 for Q are
wrong and need to be fixed. The correction is done by identifying the same
arguments and their corresponding positions between two atoms in the same
clause even if there are other arguments in between. The only requirement is
that the arguments stay sorted. It is not permitted to swap positions, e.g.,
to have the argument position of x2 before the argument position of x1 in
Q. In our example, the argument in between in Q(x1, g(a), x2, f(x3)) is g(a)
that causes an update of the initially watched argument positions for Q, i.e.,
positions 1, 3 instead of 1, 2.

The examination of the arguments, detection of the correct positions for
predicates with a different arity and the subsequent update of the wrong po-
sitions is done in the loop over the remembered nodes from the reprocess list
starting in line 9. For every remembered node that has already a (possibly
wrong) watched argument list, all appropriate clauses (loop starting in line 10)
and literals (lines 13-22) are searched to use as source (from where the watched
argument positions are read from) and target (where the watched arguments
have to be updated). For any found pair of source and target literal (line 23),
the mapping process between the arguments of source and target literal is per-
formed (starting in line 25). As illustrated in the previous example for P and
Q, the arguments from the source literal at the given watched argument po-
sition of Node are read and the corresponding (same) arguments are searched
in the target literal. The new watched argument positions in the target literal
are preliminary temporary and stored in the list wargTargTmp (line 28). Af-
terwards, after a verification of the correct length (line 29) by comparing the
temporary list with the current (possibly still wrong) watched argument list
of the given node, the temporary list is assigned as the new watched argument
list to the given node (line 30), and the loop continues with the next predicate
to review (line 31). Otherwise, if the length of the new watched argument list
differs from the length of the existing list, the old watched argument list is
kept for the predicate.
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Algorithm 6: bdi setWargReachable(Literal, Graph)

input : A literal, and the predicate graph of the input clauses.
effect : Searches all connected nodes (predicates) in the same component

and copies the watched argument list to the connected node
unless the connected node has been forced to stay empty for
some reason (flag wargEmpty).

output: Nothing.

/* Init */

1 GRAPHNODE Node = getNode(Literal);
2 LIST ReprocessList = ∅;
3 LIST GraphNodes = getGraphNodes(Graph);

4 foreach Node2 from GraphNodes do /* Search all connected

predicates in the same component */

5 if ((Node2.compNumber == Node.compNumber) and
(Node2.wargEmpty == FALSE)) then /* Same

component/reachable, and watched argument position list

is not forced to stay empty -> copy watched argument

position list to reachable node */

6 Node2.nodeInfo.warg = Node.nodeInfo.warg;
7 if (arity(Node2.symbol) 6= arity(Node.symbol)) then /* Arity

different -> remember node to update warg list after

further examination */

8 ReprocessList = ReprocessList ∪ {Node2};
9 foreach Node2 from ReprocessList do

10 foreach Clause from Node2.clausesOccurring do /* Search for a

clause having a literal with the current symbol */

11 LITERAL LiteralSrc = NULL;
12 LITERAL LiteralTarg = NULL;
13 foreach Literal2 ∈ Clause do /* Examine literals */

14 GRAPHNODE Node3 = getNode(Literal2);
15 if ((LiteralSrc 6= NULL) and (LiteralTarg 6= NULL)) then

/* Literals found, stop search */

16 break;
17 if (Node3.nodeInfo.warg == ∅) then /* warg list must

be non-empty, continue search */

18 continue;
19 if (arity(Node3.symbol)) == arity(Node.symbol)) then
20 LiteralSrc = Literal2;
21 else
22 LiteralTarg = Literal2;
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23 if ((LiteralSrc 6= NULL) and (LiteralTarg 6= NULL)) then
24 LIST wargTargTmp = ∅;
25 foreach ArgPos ∈ Node.nodeInfo.warg do /* Read

arguments from the source literal and try to find

the same arguments in the target literal; for any

matches, store the argument position in the target

literal */

26 Argument = Fetch the argument from the source literal
at position ArgPos;

27 targetArgPos = Find the same argument than Argument
in the target literal, and read its position;

28 wargTargTmp = wargTargTmp ∪ {targetArgPos};
29 if (length(wargTargTmp) == length(Node.nodeInfo.warg))

then /* Verify list lengths, assign new warg list

only if equal */

30 Node.nodeInfo.warg = wargTargTmp;
31 break ; /* Continue with next predicate */

Algorithm 7 shows the check of reachability for two literals: This is very
straightforward, as all reachable literals (the predicate symbols in the same
cycle) have the same component number.

Algorithm 7: bdi isReachable(Literal1, Literal2, Graph)

input : Two literals, and the predicate graph of the input clauses.
effect : Checks whether the first literal is reachable from the second by

comparing their node component numbers.
output: True or false.

1 GRAPHNODE Node1 = getNode(Node1);
2 GRAPHNODE Node2 = getNode(Node2);
3 return (Node1.compNumber == Node2.compNumber);

Algorithm 8 represents the implementation to check general reachability of
the given literal from a depth increasing clause. This is simply achieved by
executing the sub-function bdi isReachable() (representing the reachability
check for two literals) in line 3 on every depth increasing literal from each
depth increasing clause.
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Algorithm 8: bdi isReachableFromDIC(Literal, Clauses, Graph)

input : A literal, a list of depth increasing clauses, and the predicate
graph of the input clauses.

effect : Checks if the given literal is reachable from a depth increasing
clause.

output: True or false.

1 foreach Clause from Clauses do
2 foreach Literal2 from Clause.depthIncLiterals do /* Check

reachability between Lit and literals from depth

increasing literals list */

3 if (bdi isReachable(Literal, Literal2,Graph)) then /* see

Algorithm 7 */

4 return TRUE;

5 return FALSE;

Algorithm 9 checks the requirement for a clause that a non-empty watched
argument list of a literal in ∆ of the given clause requires all the watched
argument lists of the literals from Γ of that clause either to be empty or equal to
the non-empty list of the literal in ∆. This is implemented by looping over the
positive literals of the given clause in line 1. If a non-empty watched argument
list is encountered (line 3), the watched arguments of all negative literals in
that clause are compared (lines 4-7) by means of the function wargEqual()

(see Algorithm 11).

Algorithm 9: bdi wargEmptyOrEqual(Clause, Graph)

input : A clause to examine, and the predicate graph of the input clauses.
effect : Checks the warg list for all literals from ∆. For non-empty lists,

all atoms from Γ have either equal warg lists or the warg list is
empty.

output: True or false.

1 foreach Literal ∈ ∆ of Clause do
2 GRAPHNODE Node = getNode(Literal);
3 if (Node.nodeInfo.warg 6= ∅) then
4 foreach Literal2 ∈ Γ of Clause do
5 GRAPHNODE Node2 = getNode(Literal2);
6 if ((Node2.nodeCompInfo.warg 6= ∅) and

(wargEqual(Literal, Literal2) == FALSE)) then /* see

Algorithm 11 */

7 return FALSE;

8 return TRUE;
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Algorithm 10 is a recursive function used to check the similarity of two
given terms by traversing the tree representations of the terms. Additionally,
the function collects the variables from the compared term (Term2) that are
subject to further checks (which have to be carried out separately, see Algo-
rithm 4, line 21). For storing the variables, a pointer to a list object (varcheck)
is passed to the function such that the list is still available after leaving the
function. The function traverses the tree representation of the terms one by
one and subsequently examines the single components. The beginning in line 1
checks for equal terms which are trivially similar. Contrary, if two terms have
different (top) symbols (checked in line 3), they can never be similar and the
algorithms immediately stops by returning FALSE. Otherwise, the arguments
of the two given terms are explored using a loop. In case of having a variable
as the first (argument) term and a constant as the second (argument) term
(line 7), the terms are similar but there are no variables to collect. Otherwise,
if there is a variable or constant as the first term, and a variable as the sec-
ond term (line 9), the first term is checked to be depth increasing (it is then
marked with the depth increasing mark depthIncMark). If the depth increas-
ing condition is satisfied, the second term (which is a variable) is then stored
in the list varcheck in line 11. For the case of neither having variables nor
constants, the present terms must be functional for which we go into recursion
with the arguments in line 13 (and such traversing the tree). Eventually, in
line 16, the function bdi termSimilarVarCollect() returns TRUE if both
argument lists of a function have been processed one by one and no argument
is left, and FALSE otherwise.

The following examples depict the working principle of the previously de-
scribed algorithm. Consider the terms f(g(x)) and f(g(a)) where x is a vari-
able, and a a constant. For this input, the function symbols f and g are
recursively examined to be equal one by one, and then on the most deeply
argument level, the case in line 7 is entered with the terms Argument1 = x
and Argument2 = a, respectively.

Another example are the terms f(g(x)), f(g(y)). Let’s assume that the
variable x in the first term has been marked to be depth increasing. Then,
after two recursion steps for examining the function symbols f and g, the case
in line 9 is entered for the variables and the variable y is then collected because
x at the same tree position than y has been marked to be depth increasing.
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Algorithm 10: bdi termSimilarVarCollect(Term1, Term2,
depthIncMark, varcheck)

input : Two literals/terms to check for similarity, the depth increasing
stamp and a pointer to a list for storing variables.

effect : Check two literals/terms for similarity and collect the variables
that need to have depth=0 (this check has to be carried out
separately for the collected variables after leaving this function).

output: True or false.

1 if (Term1 == Term2) then /* Equal terms are similar */

2 return TRUE;

3 else if (equalSymbols(Term1,Term2) == FALSE) then /* Compare

symbols */

4 return FALSE;

5 else
6 foreach

Argument1 ∈ getArgsList(Term1),Argument2 ∈ getArgsList(Term2)
do

7 if (isVariable(Argument1) and isConstant(Argument2)) then
8 continue ; /* Similar, but no variables to collect

*/
9 if ((isVariable(Argument1) or isConstant(Argument1)) and

isVariable(Argument2)) then
10 if (Argument1 is marked with depthIncMark) then
11 varcheck = varcheck ∪ {Argument2};
12 continue ; /* no further subterm -> go to next

argument */

13 else if (bdi termSimilarVarCollect(Argument1,Argument2,
depthIncMark, varcheck) == FALSE) then

14 return FALSE ; /* not similar -> different

symbols */

15 if (argument lists both have been processed one by one, and no
argument is left) then

16 return TRUE;
17 else
18 return FALSE;
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Algorithm 11 shows the implementation of the comparison between the
watched argument lists of two literals. After the initialization in the lines 1-2,
the length of the two literals’ watched argument lists is compared at first in
line 3. In order to be equal, also the number of watched arguments must be
equal. In line 5 starts a loop for the pairwise comparison of the argument po-
sitions. At first, in line 6, it is verified whether the stored watched argument
position is in fact an admissible argument position available for the present
literal. Second, in line 8, the actual arguments referenced by their positions
are read and compared to each other.

Algorithm 11: bdi wargEqual(Literal1, Literal2)

input : Two literals.
effect : Verifies whether the arguments from the given literals that are

specified by their corresponding watched argument lists, are
similar (pairwise position checking).

output: True or false.

1 GRAPHNODE Node1 = getNode(Literal1);
2 GRAPHNODE Node2 = getNode(Literal2);
3 if (length(Node1.nodeInfo.warg) 6= length(Node2.nodeInfo.warg)) then
4 return FALSE;

5 foreach
ArgPos1 ∈ Node1.nodeInfo.warg,ArgPos2 ∈ Node2.nodeInfo.warg do
/* Check watched arguments */

/* 1. Check argument positions */

6 if ((ArgPos1 > length(getArgsList(Literal1))) or
(ArgPos2 > length(getArgsList(Literal2)))) then

7 return FALSE;

/* 2. Check arguments */

8 if (getArg(Literal1,ArgPos1) 6= getArg(Literal2,ArgPos2)) then
9 return FALSE;

10 return TRUE;
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7 Solving SAP Authorization
Problems with BDI

The process of solving SAP authorization problems in first-order logic is gen-
erally the following: First, the problem needs to be decidable. This is easy if
the problem (usually identified by its clausal structure) belongs to a known
decidable class, i.e., all clauses satisfy the properties of the class. However, if
there are (some) clauses violating these properties, it is maybe still possible to
establish satisfiability by transforming and rewriting the violating candidates
such that they become conform with the decidable class requirements after-
wards. The last step in the solving process is eventually the application of the
(problem) solving strategy which exists for all decidable classes.

Applying this process to the SAP authorization problems, the first step is
the identification of the problem structure with respect to decidability. For-
tunately, the SAP authorization problems have served as a base to develop
the BDI class properties (Chapter 5), and thus, almost all clauses of these
problems already satisfy the BDI requirements. The BDI properties check
on a problem (instance) is carried out automatically with the theorem prover
Spass including the extension described in Chapter 6. As a result of the check,
the program outputs affected clauses violating the BDI criteria and additional
information about the violated property for the respective clause.

The following clause represents the situation that the authorization value
STAR matches every other required authorization value, denoted by the variable
xav.

∀ xu, xaon, xaof, xav .
UserProfile(userProfileEntry(xu, authObj(xaon, xaof, STAR)))

→ Access(xu, authObj(xaon, xaof, xav))

It violates the variable subset property of PVD, BDI-1 (i), BDI-2 (i) and thus
BDI. The fulfillment of the BDI requirements is achieved in this example by
adding an additional monadic atom ¬Authorization(xav) to the formula and
a definition of the admissible constants for the predicate Authorization that
can be substituted for the variable xav which doesn’t change the meaning of
the original formula.

Finally, if the (potentially modified) problem (instance) satisfies the BDI
requirements, the solving strategy is applied to the problem. In the context
of my SAP authorization experiments, I have used Hyper-Resolution with
Factoring as the decision procedure to deal with the SAP example problems.
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7 Solving SAP Authorization Problems with BDI

However, Ordered Resolution together with the two additional reduction rules
making Ordered Resolution terminating (Section 5.4) should be used for larger
real-world SAP authorization system instances because it is a more efficient
and general decision procedure.

In practice, I have utilized the theorem prover Spass with Hyper-Resolution
and Factoring on a server equipped with an Intel Xeon Quad Core X5460 CPU
running at 3.16GHz, and 16 GB RAM.

I examined several SAP problem variants, all representing the formaliza-
tion of the purchase process and typical real-world authorization setups for
this process. The input problems differ in the number of users with (a) 500
users and (b) 5.000 users and the users also have different combinations of au-
thorization values assigned using single and composite roles. Further, I have
checked the business policies SoD and the four-eyes principle (Section 3.4) on
the purchase process and the authorization setup.

The input file (a) with 500 users could be saturated in less than 1 second
while the larger number of users in the input file (b) with 5.000 users (but
with similar authorizations) increased the runtime to 1m34.795s.

The runtime results for the policy checks are similar: A violation of the
four-eyes principle for an input file with 500 users could be detected in 1.033s
and a similar policy check with 5.000 users results in a runtime of 1m44.318s.
Also, it doesn’t matter how many violations exist: A deliberate manipulation
of the input problem to obtain more than one violation of a business policy
yields a runtime of 1m44.472s which is almost identical to the run with only
one violation. This is actually an obvious result because in all cases where
the input problem is contradictory, Spass outputs a proof and shows the
corresponding parts leading only to the first contradiction – no matter how
many other contradictions exist. In order to detect all contradictions, it is
necessary to fix the contradictory setup and to reapply Spass to find further
business policy violations. In such cases, one could imagine to implement a
reuse of an already saturated subset of the input problem for gain a speedup.
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8 Application to the TPTP Library

The automated theorem prover Spass including the extension described in
Chapter 6 has been applied to the problems of the TPTP Library, Version
6.1.0 [33] in order to detect potential new decidable problems and to find
known undecidable problems “close” to the BDI class that may have only a
few clauses responsible for the overall non-termination of the problem.

The current version 6.1.0 of the TPTP Library contains 21.172 problems.
Our analysis of the problems ran on the Max Planck Institute’s own server
cluster. It consists of 128 Dell PowerEdge M610 Blade Servers, each with
2x Intel Xeon Quad Core E5620 running at 2.40 GHz, and 48 GB RAM. An
internal script provided by the Information Services & Technology department
(IST) of the Max Planck Institute is available which takes care of scheduling
and submitting jobs to the cluster.

I have written a separate bash shell script for preprocessing that is called by
the job scheduling script in place of directly calling Spass on every problem
from the library. The preprocessing is used to rule out problems containing
equality (because BDI does not deal with equality), as well as problems ex-
ceeding a size of more than 3 MB (the total size is calculated from the problem
file itself and potentially included axiom files). If the problem satisfies the pre-
vious requirements, the extended version of Spass is called by the shell script
with the originally provided arguments. These arguments are in our case:

• -Loops=0
Stop after one main loop because we are only interested in analysis of
the problem and we do not want to saturate it.

• -timelimit=3600
A time limit of 3600 seconds per problem that is added in addition to
-Loops=0 to prevent excessive input parsing. Sometimes, reading the
problem file and building its clausal form by means of the integrated
tool Flotter inside Spass took a very long time.

• -CNFRenaming=0
This option causes the formulas not to be equivalently rewritten during
proof search which is sometimes a benefit. Rewriting is not necessary
because we do only problem analysis which doesn’t need a saturation of
the input.

• -PGiven
Print the input formula as output.
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During every run, the modified program Spass outputs violations of the
BDI conditions for any affected clause.

Afterwards, the job scheduling script calls a program “analyzer” which
parses the Spass output using regular expressions and writes the result(s)
into a MySQL database. In our case, we are interested in the total number
of clauses for a problem, to count all clauses violating any of the BDI con-
ditions and additionally to count the clauses violating only BDI-1 or BDI-2
conditions. Of course, the problem name, its rating (specifying the difficulty
with respect to ATP) and some other not important values at this place are
also written into the database1.

Having this data available in a database table provides an easy way for
querying. For example, I have identified a total number of 21 undecidable
problems “close” to the BDI class, with a rating > 0, having at least 5 clauses,
and where only 1-4 clauses from the set of all clauses violate the BDI-1/BDI-
2 conditions (trivial violations due to the variable condition of PVD have
been ignored). The following Table 8 lists this query result. These problems
may be altered without much effort into equivalent but decidable problems by
replacing or rewriting the BDI violating clauses.

Another interesting question is to determine the native core for the class,
i.e., how many problems from the TPTP Library directly satisfy the BDI
requirements as they are provided – without modification or preprocessing:
The result is a total number of 418 clauses.

In total there are 1.402 problems having up to 5 clauses violating the BDI
requirements from which 1.221 problems contradict only the PVD conditions
(PVD is included in BDI). Consequently, 181 problems contradicting BDI-
1/-2 properties remain. Further requiring a non-empty rating for the 181
problems reduces the number to 42.

The last query selects all problems where up to 50% of the clauses of the
respective problem may violate the BDI requirements: It yields a total number
of 2.950 problems.

1The analyzer script is a general tool also used by other people and therefore collects a
whole bunch of data from the Spass output. It has been extended to collect the data
specific to the BDI class
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Problem Rating Number of
Clauses

Violating
BDI

Violating
only BDI-1/-2

SYN311-1 0.17 6 2 2

MSC013+1 0.56 11 1 1

MSC014+1 0.4 9 1 1

SET830-2 0.22 10 3 2

NUM284-1.014 0.33 6 2 1

NUM017-1 0.5 24 3 1

SWB011+2 0.25 10 2 1

SWB019+2 0.25 12 2 1

SWB022+2 0.18 30 2 1

SWB025+2 0.09 29 3 2

SWB012+2 0.18 31 3 3

SWV245-2 0.11 8 3 1

SWV293-2 0.11 9 3 3

SWV305-2 0.11 11 1 1

SWV286-2 0.11 8 2 2

SWV290-2 0.11 10 3 3

SWV246-2 0.11 8 3 1

SWV289-2 0.11 9 2 2

SWV300-2 0.11 14 3 3

SWV287-2 0.11 9 2 2

SWV247-2 0.22 10 3 1

Table 8.1: Problems “close” to the BDI class
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9 Conclusion

I have presented the formalization of the authorization structure of the SAP
system in first-order logic. The authorization analysis experiments revealed
a specific structure of clauses that includes recursive definitions of predicates
and a depth increasing term structure. Knowing in advance, if a first-order
problem is decidable or not is essential for the practical application of first-
order theorem proving tools. Because the so far studied decidable classes (for
example, [6, 35, 12, 17, 19, 1]) do not allow the growth of the term depth for
newly generated clauses by the respective resolution or superposition calculus,
they were not suitable for the SAP authorization instances. This fact was the
motivation to construct a new first-order decidable clause class, named BDI
(Bounded Depth Increase). For the new clause class BDI defined in this thesis,
the term structure of clauses belonging to the class is not restricted at all and
predicates may have an arbitrary number of arguments. An overall bounded
term depth is guaranteed by restricting the form of recursive definitions for
predicates that occur in the clause set. For the BDI class any considered
resolvent has a depth of at most 2n where n is the maximal depth of a clause
in the initial set (Theorem 5.11). By requiring that all variables occurring in
a positive literal of a clause also occur in a negative one of that clause, (pos-
itive) Hyper-resolution generates only ground clauses (Lemma 5.9), implying
together the depth bound termination and therefore decidability of the BDI
class (together with Factoring as a reduction rule). Thus, as Hyper-resolution
terminates on BDI, it enjoys the finite model property. In addition to the
termination using Hyper-resolution, we showed that even any ordered resolu-
tion calculus with selection cutting off clauses with terms exceeding some a
priori bound and variable condensing clauses exceeding a certain limit of dif-
ferent variables, decides the class. The ordered resolution calculus extended
in this way can in fact efficiently decide properties for large BDI clause sets
generated out of SAP authorization structures.

I have implemented the established criteria of the new class BDI into the
theorem prover Spass [37] (Chapter 6). This extension of Spass makes it
possible to automatically decide for a given problem, whether it satisfies the
requirements of BDI or not. If the conditions of BDI are satisfied, then the
prover is guaranteed to terminate. Otherwise, for a given problem, Spass
outputs the clauses violating the BDI requirements as well as additional in-
formation about the violated property for the respective clause.

I have run several experiments with problems representing the formalization
of the purchase process (Section 4.2.3) together with a typical SAP authoriza-
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tion setup (Section 4.2.1) with different number of users. The input problems
have been checked to conform to the BDI properties using the extended ver-
sion of Spass. As a result of the checks, some clauses in the corresponding in-
put file violated BDI properties, but after some little modifications all clauses
eventually satisfied the BDI requirements. The example instances then have
been solved using Spass only with Hyper-Resolution and Factoring. This
demonstrates that even this (limited) decision procedure was able to solve the
example instances but also points out that a more sophisticated decision pro-
cedure like Ordered Resolution with the proposed extension (Section 5.4) is
needed if the problems become larger.

Additionally, the extended version of Spass has been applied to the prob-
lems of the TPTP Library [33] in order to detect potential new decidable
problems and to find problems “close” to the BDI class having only a few
clauses which are responsible for the overall non-termination of the problem.
The result yields a total number of 21 undecidable problems with a rating > 0
having at least 5 clauses where only 1-4 clauses are allowed to violate the BDI-
1/BDI-2 conditions (trivial violations due to the variable condition of PVD
have been ignored). These candidates may be changed without much effort
into equivalent but satisfiable problems by rewriting the BDI violating clauses
and their dependencies. However, the exploration of the ways for rewriting or
altering of these clauses is beyond the scope of this thesis and future work.

A very natural direction of research is the extension of the BDI class or
the derivation of new deciable classes from it. An obvious modification would
be to turn the variable conditions from succedent to antecedent and adopt
the resolution strategy accordingly. Then, it is certainly possible to extend
condition BDI-2 (Definition 5.7) to several depth growing argument positions.
Furthermore, it might be possible to relax the requirement of equal watched
argument lists (Definition 5.6 (v) and 5.7 (iv)) and replace it by a subset-like
condition (because lists are ordered compared to pure sets). But this is not
fully elaborated and future work.

Another area of future work might be the connection to the SAP system
towards a fully automated system. The formulas representing the authoriza-
tions of such a system at a given point in time could be automatically extracted
and transformed into an input problem for the theorem prover. Merged with
the (manual) formalization of the processes and business policies (which don’t
need to be altered frequently after the initial setup) the extracted SAP autho-
rization instance could be automatically verified to be contradiction-free.
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[8] Börger, E., Grädel, E., Gurevich, Y.: The classical decision problem.
Perspectives in mathematical logic, Springer (1996)

[9] Church, A.: A note on the entscheidungsproblem. pp. 40–41 (1936)

[10] Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput.
Sci. 17, 279–301 (1982)

115

http://dx.doi.org/10.1007/3-540-52885-7_105
http://dx.doi.org/10.1007/3-540-52885-7_105


Bibliography

[11] Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics,
vol. 173. Springer (2012)

[12] Fermüller, C.G., Leitsch, A., Hustadt, U., Tamet, T.: Resolution de-
cision procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of
Automated Reasoning, vol. II, chap. 25, pp. 1791–1849. Elsevier (2001)

[13] Fermüller, C.G., Leitsch, A., Tammet, T., Zamov, N.K.: Resolution
Methods for the Decision Problem, Lecture Notes in Computer Science,
vol. 679. Springer (1993)

[14] Georgieva, L., Hustadt, U., Schmidt, R.A.: Hyperresolution for guarded
formulae. J. Symbolic Computat 36, 2003 (2000)

[15] Georgieva, L., Hustadt, U., Schmidt, R.: A new clausal class
decidable by hyperresolution. In: Voronkov, A. (ed.) Automated
DeductionCADE-18, Lecture Notes in Computer Science, vol. 2392, pp.
260–274. Springer Berlin Heidelberg (2002), http://dx.doi.org/10.

1007/3-540-45620-1_21

[16] Hay, D., Healy, K.A.: Defining Business Rules – What Are They
Really? Final Report Revision 1.3, the Business Rules Group,
formerly the GUIDE Business Rules Project (2000), http://www.

businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf, [On-
line, accessed 2007-12-05: http://www.businessrulesgroup.org/

first_paper/BRG-whatisBR_3ed.pdf]

[17] Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-
order fragments and description logics. Journal of Relational Methods in
Computer Science 1, 251–276 (2004)

[18] ISACA: Management, Planning and Organization of IS, chap. 2,
pp. 88–91. Information Systems Audit and Control Association
(2005), [Online, accessed 2007-12-05: http://www.isaca.org/Content/
ContentGroups/Certification3/CRM_Segregation_of_Duties.pdf]

[19] Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with
equality constraints modulo equational theories. In: Automated Reason-
ing, Third International Joint Conference, IJCAR 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 4130, pp. 557–571. Springer (2006)

[20] Joyner, Jr., W.H.: Resolution strategies as decision procedures. J. ACM
23(3), 398–417 (Jul 1976), http://doi.acm.org/10.1145/321958.

321960

[21] Kamin, S., L’evy, J.J.: Two generalizations of the recursive path ordering.
(1980), unpublished note

116

http://dx.doi.org/10.1007/3-540-45620-1_21
http://dx.doi.org/10.1007/3-540-45620-1_21
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
http://www.isaca.org/Content/ContentGroups/Certification3/CRM_Segregation_of_Duties.pdf
http://www.isaca.org/Content/ContentGroups/Certification3/CRM_Segregation_of_Duties.pdf
http://doi.acm.org/10.1145/321958.321960
http://doi.acm.org/10.1145/321958.321960


Bibliography

[22] Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras.
In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp.
263–267. Pergamon Press, New York (1970)

[23] Lamotte, M.: Analysis of Authorizations in SAP R/3. Master’s thesis,
Fachhochschule Trier (January 2008)

[24] Lamotte-Schubert, M., Weidenbach, C.: BDI: A new decidable first-order
clause class. In: LPAR (short papers). pp. 62–74 (2013)

[25] Lamotte-Schubert, M., Weidenbach, C.: BDI: a new decidable clause
class. Journal of Logic and Computation (December 2014)

[26] Lamotte-Schubert, M., Weidenbach, C.: BDI: A New Decidable First-
order Clause Class. In: Mcmillan, K., Middeldorp, A., Sutcliffe, G.,
Voronkov, A. (eds.) LPAR-19. EPiC Series, vol. 26, pp. 62–74. EasyChair
(2014)

[27] Lutz, C., Sattler, U., Tobies, S.: A suggestion for an n-ary description
logic. In: Description Logics (1999)

[28] Nivelle, H.D.: Resolution decides the guarded fragment. (1998), iLLC
report CT-98-01, University of Amsterdam, The Netherlands

[29] Nonnengart, A., Weidenbach, C.: Computing small clause normal forms.
In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reason-
ing, vol. I, chap. 6, pp. 335–367. Elsevier (2001)

[30] Post, E.L.: A variant of a recursively unsolvable problem. J. Symbolic
Logic 12(2), 255–56 (1946)

[31] Robinson, J.A.: A machine-oriented logic based on the resolution princi-
ple. Journal of the ACM 12(1), 23–41 (1965)

[32] SAP AG: SAP Library: Users and Roles (BC-CCM-USR) (2001),
http://help.sap.com/printdocu/core/Print46c/en/data/pdf/

BCCCMUSR/BCCCMUSR.pdf

[33] Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure:
The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4),
337–362 (2009)

[34] Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal
on Computing (1972)

[35] Weidenbach, C.: Towards an automatic analysis of security protocols in
first-order logic. In: Ganzinger, H. (ed.) 16th International Conference on
Automated Deduction, CADE-16. LNAI, vol. 1632, pp. 314–328. Springer
(1999)

117

http://help.sap.com/printdocu/core/Print46c/en/data/pdf/BCCCMUSR/BCCCMUSR.pdf
http://help.sap.com/printdocu/core/Print46c/en/data/pdf/BCCCMUSR/BCCCMUSR.pdf


Bibliography

[36] Weidenbach, C.: Combining superposition, sorts and splitting. In: Robin-
son, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2,
chap. 27, pp. 1965–2012. Elsevier (2001)

[37] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda,
M., Wischnewski, P.: Spass version 3.5. In: Schmidt, R.A.
(ed.) CADE. Lecture Notes in Computer Science, vol. 5663, pp.
140–145. Springer (2009), http://dblp.uni-trier.de/db/conf/cade/
cade2009.html#WeidenbachDFKSW09

[38] Wikipedia: Automated theorem proving – Wikipedia, the free encyclo-
pedia (2014), http://en.wikipedia.org/wiki/Automated_theorem_

proving, [Online, accessed 2014-12-30: http://en.wikipedia.org/

wiki/Automated_theorem_proving]

118

http://dblp.uni-trier.de/db/conf/cade/cade2009.html#WeidenbachDFKSW09
http://dblp.uni-trier.de/db/conf/cade/cade2009.html#WeidenbachDFKSW09
http://en.wikipedia.org/wiki/Automated_theorem_proving
http://en.wikipedia.org/wiki/Automated_theorem_proving
http://en.wikipedia.org/wiki/Automated_theorem_proving
http://en.wikipedia.org/wiki/Automated_theorem_proving

	Introduction
	Motivation
	Contribution
	Related Work

	Foundations
	Mathematical Foundations
	First-Order Logic
	Syntax
	Semantics

	First-Order Reasoning
	Inferences
	Reductions
	Soundness and Completeness

	Graphs

	The SAP (Authorization) System
	Authorization Checks
	Transactions
	Authorization Objects
	Authorizations
	Authorization Check Procedure

	The Authorization Setup
	Authorization Profiles
	Roles

	Business Processes
	The Purchase Process

	Business Policies

	Formalization of the SAP Authorization Layer
	Abstractions
	Construction
	Authorization Setup
	Authorization Checks
	Purchase Process
	Business Policies
	Purchase Process + Business Policies Reviewed


	The Clause Class BDI
	Prerequisites
	Definition of BDI & Examples
	Termination of Hyper-Resolution on BDI
	From Hyper to Ordered Resolution

	Implementation
	Solving SAP Authorization Problems with BDI
	Application to the TPTP Library
	Conclusion
	Bibliography


