
Verification of Program Computations

Dissertation

Thesis for obtaining the title of Doctor of Engineering
of the Faculties of Natural Sciences and Technology

of Saarland University vorgelegt von

Christine Rizkallah

Saarbrücken
2015

Dean: Prof. Dr. Markus Bläser

Colloquium: 18 September 2015

Examination Board:

Supervisor: Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn

Reviewers: Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn
Prof. Dr. Tobias Nipkow

Chair: Prof. Dr. Raimund Seidel

Research Assistant: Dr. Vinay Settty

iii

Abstract

Formal verification of complex algorithms is challenging. Verifying their imple-
mentations in reasonable time is infeasible using current verification tools and
usually involves intricate mathematical theorems. Certifying algorithms compute
in addition to each output a witness certifying that the output is correct. A che-
cker for such a witness is usually much simpler than the original algorithm – yet
it is all the user has to trust. The verification of checkers is feasible with current
tools and leads to computations that can be completely trusted. We describe
a framework to seamlessly verify certifying computations. We demonstrate the
effectiveness of our approach by presenting the verification of typical examples
of the industrial-level and widespread algorithmic library LEDA. We present
and compare two alternative methods for verifying the C implementation of the
checkers.

Moreover, we present work that was done during an internship at NICTA,
Australia’s Information and Communications Technology Research Centre of
Excellence. This work contributes to building a feasible framework for verifying
efficient file systems code. As opposed to the algorithmic problems we address
in this thesis, file systems code is mostly straightforward and hence a good
candidate for automation.

iv

Zusammenfassung

Die formale Verifikation der Implementierung komplexer Algorithmen ist schwie-
rig. Sie übersteigt die Möglichkeiten der heutigen Verifikationswerkzeuge und
erfordert für gewöhnlich komplexe mathematische Theoreme. Zertifizierende
Algorithmen berechnen zu jeder Ausgabe ein Zerfitikat, das die Korrektheit
der Antwort bestätigt. Ein Checker für ein solches Zertifikat ist normalerweise
ein viel einfacheres Programm und doch muss ein Nutzer nur dem Checker
vertrauen. Die Verifizierung von Checkern ist mit den heutigen Werkzeugen
möglich und führt zu Berechnungen, denen völlig vertraut werden kann. Wir
beschreiben eine Rahmenstruktur zur Verifikation zertifizierender Berechnungen
und demonstrieren die Effektivität unseres Ansatzes an Hand typischer Beispiele
aus der hochqualitätiven und oft eingesetzten LEDA Algorithmenbibliothek.
We präsentieren und bewerten zwei alternative Methoden zur Verifikation von
Checkerimplementierungen in C.

Desweiteren beschreiben wir Ergebnisse, die während eines Praktikums am
NICTA, dem Australischen Forschungszentrum für Informations- und Kommuni-
kationstechnik, erzielt wurden. Diese Arbeit trägt zum Aufbau einer praktisch
einsetzbaren Rahmenstruktur zur Verifizierung von Code für effiziente Datei-
systeme bei. Im Gegensatz zu den algorithmischen Problemen, die wir in dieser
Arbeiten behandeln, ist der Code für Dateisysteme weitgehend unkompliziert
und daher ein guter Kandidat zur Automatisierung.
Diese Arbeit ist in englischer Sprache verfasst.

v

Acknowledgments

I am indebted to my supervisor Kurt Mehlhorn for teaching me not only about
science but about life in general. I would like to thank Kurt for our regular
meetings that ensured I am on track, for his ideas contributing to this work,
and for our interesting discussions. I thank him for having an open mind and
giving me the freedom to diverge in my research topic from his main interest
in Algorithms. Watching Kurt work is an invaluable lesson. It is inspiring to
see how one could be a calm manager in a hectic academic setup and yet lead
a very successful group. I am also grateful to Kurt for his feedback on several
drafts of this thesis.

In addition to Kurt, the main topic of this thesis is done in collaboration with
Eyad Alkassar, Sascha Böhme, and Lars Noschinski. I thank Eyad for initiating
the project and Sascha for his collaboration and for answering all my initial
Isabelle questions. Furthermore, I thank Lars for creating a useful Isabelle library
for graphs, which I use in this thesis, and for verifying the Kuratowski checker
using our framework further demonstrating the usability of the framework. I also
thank Tobias Nipkow for his interest in the topic and for his advice regarding
conferences and journals. I am delighted that Tobias accepted to act as a reviewer
for my thesis.

I am grateful to Gerwin Klein for inviting me for a six month internship
at NICTA and to Gernot Heiser for funding my stay. Special thanks to Toby
Murray for his thorough supervision during my stay. I thank the trustworthy
file systems group at NICTA for the enjoyable interaction on such a big project.
It was a pleasure working with all of them. I additionally thank Thomas Sewell
for helping me define a sensible state relation (described in Section 3.2.2).

I thank all those who in one way or another inspired me to pursue the subject
of this thesis or initiated my interest in the field, some of whom are Chad E.
Brown and Gert Smolka; they are my master thesis supervisors and the ones who
taught me about logic, and Haythem O. Ismail who lectured several inspiring
theoretical lectures during my undergraduate studies.

I am obliged to all the staff members of the Max Planck Institute for Infor-
matics and the NICTA staff for maintaining a cosy homely atmosphere.

I am indebted to David Greenaway, Gerwin Klein, Toby Murray, Yutaka
Nagashima, Adrian Neumann, and Lars Noschinski for their comments and
feedback on parts of this thesis. Special thanks to David for his many comments
that improved the readability of this thesis.

Thanks to my parents, grandparents, sister, Fateme, Young-Jun, and Veronika
for their care and support and for constantly boosting my morale.

vi

vii

Contents

1. Introduction 1
1.1. Contributions . 1
1.2. Certifying Algorithms . 2
1.3. Tools . 4

1.3.1. Isabelle/HOL . 4
1.3.2. VCC . 5
1.3.3. Simpl . 6
1.3.4. Autocorres . 6

2. Verification of Certifying Computations 9
2.1. Outline of Methodology . 9
2.2. Case Studies and Witness Properties 14

2.2.1. Connected Components 14
2.2.2. Shortest Path . 17
2.2.3. Shortest Path with Arbitrary Edge Costs 21
2.2.4. Maximum Cardinality Matching 25

2.3. Verification of Checker Implementations 27
2.3.1. Verification of C code using VCC 29
2.3.2. Verification of Imperative Simpl code 43
2.3.3. Verification of C code within Isabelle/HOL 46

2.4. Related Work . 49

3. Verification of a C File System 53
3.1. CDSL . 55

3.1.1. Abstract Syntax . 55
3.1.2. Update Semantics . 56

3.2. Correspondence between C and CDSL 58
3.2.1. A Hoare Logic and Weakest Precondition Rules 59
3.2.2. State Relation and Return Value Relation 61
3.2.3. Correspondence Proof Rules 62
3.2.4. Related Work . 64

4. Conclusion 67

viii

Bibliography 69

Appendices

A. Isabelle Theories for Chapter 2 77
A.1. Witness Properties . 77

A.1.1. Connected Components 77
A.1.2. Shortest Path . 79
A.1.3. Shortest Path with Arbitrary Edge Costs 86
A.1.4. Maximum Cardinality Matching 92

A.2. Verification of Imperative Simpl code 100
A.2.1. Connected Components 100
A.2.2. Shortest Path . 105

A.3. Verification of C code within Isabelle/HOL 115
A.3.1. Connected Components 115

1

1
Introduction

One of the most prominent and costly problems in software engineering is
correctness of software. This thesis describes two separate contributions. Our
main work is concerned with software for difficult algorithmic problems in the
domain of graphs. The algorithms for such problems are complex; formal
verification of the resulting programs in reasonable time is not tractable, which
explains why few graph algorithms have been verified. We give a framework
for obtaining formal instance correctness, i.e., formal proofs that outputs for
particular inputs are correct. We do so by combining the concept of certifying
algorithms with methods for code verification and theorem proving. The other
work was done during an internship and contributes to building a feasible
framework for verifying efficient file systems code.

1.1. Contributions

Formal verification of complex algorithms is challenging. Verifying their imple-
mentations requires both intricate reasoning about their high-level algorithms,
and low-level reasoning about their implementations beyond the capabilities of
current verification tools. Certifying algorithms compute in addition to each out-
put a witness certifying that the output is correct. A checker for such a witness is
usually much simpler than the original algorithm – yet it is all the user has to trust.
The verification of checkers is feasible with current tools and leads to computa-
tions that can be completely trusted. We take the certifying-algorithms approach
a step further by developing a methodology for verifying the total correctness of
such checkers. This gives us a framework to seamlessly verify certifying computa-

2 Introduction

tions. We give two approaches for verification and investigate their trade-offs. In
the first approach [Alkassar et al., 2014], we make use of the mature off-the-shelf
C program verifier VCC [Cohen et al., 2009] coupled with the interactive theo-
rem prover Isabelle/HOL [Nipkow et al., 2002]. We use VCC for establishing the
correctness of the checker and Isabelle/HOL for proving high-level mathematical
properties of the algorithm. We demonstrate the effectiveness of our approach
by presenting the verification of typical examples of the industrial-level and
widespread algorithmic library LEDA [Mehlhorn and Näher, 1999]. We consider
examples from the field of graph theory, namely, the checker for connectedness of
graphs, a shortest path checker, and a checker for maximum cardinality match-
ings in graphs. This approach has the advantage that it could be carried out with
reasonable effort in 2011. In the second approach [Noschinski et al., 2014], we
replace VCC with verified Isabelle/HOL tools for C code that emerged meanwhile.
While these tools are less mature, they provide other advantages, notably higher
soundness guarantees. Relying on a single tool provides higher soundness guaran-
tees because we have less trusted tools in our verification chain and we no longer
need to trust the translation from one tool to the other. We evaluate the feasi-
bility of performing the entire verification within Isabelle. For this purpose, we
consider checkers written in the imperative languages C and Simpl. We re-verify
the checkers for connectedness of graphs written in both C and Simpl. Moreover,
we re-verify the shortest path checker written in Simpl [Rizkallah, 2014]. For
checkers written in C, we translate from C to Isabelle using the AutoCorres
tool set and then reason in Isabelle. For checkers written in Simpl, Isabelle is
the only tool needed. This approach was also successfully used to verify the
LEDA checker for non-planarity of graphs [Noschinski et al., 2014]. We conclude
that the new approach provides higher trust guarantees and it is particularly
promising for checkers that require domain-specific reasoning.

We also present work done during a six month internship at the Trustworthy
Systems group at NICTA. This work contributes to building a feasible framework
for verifying efficient file systems code. As opposed to the algorithmic problems
we mainly address in this thesis, file systems code is mostly straightforward yet
long and tedious. It deals with a lot of error handling cases. Filesystems are,
therefore, a good candidate for code generation and proof automation.

In the remainder of this chapter, we introduce the concept of certifying
algorithms and provide an overview of the tools used in this thesis, namely
Isabelle/HOL, VCC, Simpl and AutoCorres.

1.2. Certifying Algorithms

A certifying algorithm [Blum and Kannan, 1989, Sullivan and Masson, 1990,
Arkoudas and Rinard, 2005, McConnell et al., 2011, Alkassar et al., 2011b] pro-
duces with each output a certificate or witness that the particular output is

1.2. Certifying Algorithms 3

Program for
I/O behavior

(ϕ, ψ)
x y

Certifying
program for
I/O behavior

(ϕ, ψ)

Checker C
x

x y
w

accept y

reject

Figure 1.1. The top figure shows the input-output behavior (ϕ, ψ) of a
conventional program. The user feeds an input x satisfying ϕ(x) to the
program, and the program returns an output y satisfying ψ(x, y). A certifying
algorithm for input-output behavior (ϕ, ψ) computes y and a witness w. The
checker C accepts the triple (x, y, w) if and only if w is a valid witness for
the postcondition ψ(x, y), i.e., it proves ψ(x, y).

correct. The accompanying checker for a certifying algorithm with input x,
output y, and witness w takes as input the triple (x, y, w) and accepts the triple
if w proves that y is a correct output for input x. Otherwise, the checker rejects
the output or witness as buggy1.

Figure 1.1 contrasts a standard algorithm with a certifying algorithm for
input-output behavior (ϕ, ψ). An algorithm for input-output behavior (ϕ, ψ)
receives an input x satisfying a precondition ϕ(x) and is supposed to deliver an
output y satisfying the postcondition ψ(x, y). We call such a y a correct output.
If the input does not satisfy the precondition, the result of the computation is
unspecified. A user of a standard algorithm has, in general, no means of knowing
that y is a correct output and has not been compromised by a bug. In contrast,
if the accompanying checker of a certifying algorithm accepts, the user may
proceed with the complete confidence that output y has not been compromised
by a bug. If the checker rejects, either y is incorrect or w is not a proof of the
correctness of y.

We illustrate the concept of certifying algorithms with an example. The
greatest common divisor of two nonnegative integers a and b, not both zero,
is the largest integer g that divides a and b. We write g = gcd(a, b). The
extended Euclidean algorithm is a certifying algorithm for greatest common
divisor. In addition to the output g = gcd(a, b), it also computes integers s and
t such that g = s · a + t · b as a witness.2 The checker checks that g divides
a and b and that g = s · a + t · b. Why does this prove that g is the greatest

1Throughout the thesis, we say the checker accepts if the checker returns True; otherwise,
we say it rejects.

2It can be easily shown that such integers s and t always exist.

4 Introduction

common divisor of a and b? Consider any integer d that divides a and b. Then
g = s · a+ t · b = (s · (a/d) + t · (b/d)) · d, and hence, d divides g.

Another example is deciding whether a graph is bipartite. A graph is bipartite
if the vertices can be colored by colors red and blue such that the endpoints
of every edge have distinct colors. The output of a non-certifying algorithm
is either YES or NO. A certifying algorithm may output a two-coloring in the
YES-case and an odd-length cycle contained in the graph in the NO-case. An
odd-length cycle can clearly not be two-colored and hence any graph containing
an odd-length cycle cannot be two-colored. The checker proceeds as follows. In
the YES-case, it iterates over all edges of the graph and checks that the endpoints
have distinct colors. In the NO-case, it checks that all edges of the cycle are
present in the graph and that the cycle has odd length.

Certifying algorithms are a key design principle of the algorithmic library
LEDA [Mehlhorn and Näher, 1999]: Checkers are an integral part of the library
and may (optionally) be invoked after every execution of a LEDA algorithm.
The adoption of this principle greatly improved the reliability of the library.
However, how can one be sure that the checker programs are correct? Kurt
Mehlhorn used to answer: “Checkers are simple programs with little algorithmic
complexity. Hence, one may assume that their implementations are correct.” We
give a better answer in this thesis.

We take the certifying-algorithms approach a step further by developing a
methodology to verify the total correctness of the checkers. We demonstrate
it on several checkers from the domain of graphs. We compare two alternative
methods for verifying the C implementation of the checkers.

1.3. Tools

We introduce the main tool used in this thesis, the interactive theorem prover
Isabelle/HOL. It is used for proving all the high level mathematical properties
of the checkers. We then describe other tools, VCC, an automatic code verifier
which is used for verifying the C implementation of the checkers; Simpl, a
generic imperative language embedded in Isabelle which is used to implement
the checkers (in addition to C); and AutoCorres, which is used to simplify the
verification of the C checkers within Isabelle/HOL.

1.3.1. Isabelle/HOL

Isabelle/HOL [Nipkow et al., 2002] is an interactive theorem prover for classical
higher-order logic based on Church’s simply-typed lambda calculus.3 Internally,
the system is built on top of an inference kernel which provides only a small num-
ber of rules to construct theorems; complex deductions (especially by automatic

3In this work, we use Isabelle 2014.

1.3. Tools 5

proof methods) ultimately rely on these rules only. This approach (called the LCF
approach, due to Edinburgh LCF, which pioneered the idea [Gordon et al., 1979])
guarantees correctness as long as the inference kernel is correct. Isabelle/HOL
comes with a rich set of already formalized theories, among which are natural
numbers and integers as well as sets, finite sets and as a recent addition directed
graphs [Noschinski, 2014]. The graph library that we use in our formalization
supports general infinite directed graphs with potential labeled and parallel arcs.

Isabelle/HOL supports new types, which can be introduced by defining them
as records (isomorphic to tuples with named update and selector functions),
among other means. New constants can be introduced, for example, via definitions
relative to already existing constants. There is a distinction between the meta
logic and the object logic. In the meta logic, the symbol

∧
stand for universal

quantification and =⇒ stands for implication. The notation JP1; . . . ;P K =⇒ Q
is short hand for for P1 =⇒ . . . =⇒ Pn =⇒ Q. Through out the thesis we use
the Isabelle notation xs@ys for the concatenation of two lists xs and ys, and
x#xs stands for a list with head x and tail xs.

Proofs in Isabelle/HOL can be written in a style named Isabelle/Isar, which
is close to that of mathematical textbooks. In this style, the user structures the
proof and the system fills in the gaps by its automatic proof methods. Moreover,
one can use locales which provide a method for defining local scopes in which
constants are defined and assumptions are made.

In Isabelle, theorems can be proven in the context of a locale. A locale
declaration consists of constant declarations and assumptions. Theorems proven
in the context of a locale can use the constants and implicitly depend on the
assumptions of this locale. A locale can be instantiated to concrete entities if
the user is able to show that those entities fulfill the locale assumptions. The
notation + in a locale stands for locale inheritance.

1.3.2. VCC

VCC [Cohen et al., 2009] is an assertional, automatic, deductive code verifier for
full C code. Specifications in the form of function contracts, data invariants, and
loop invariants as well as further annotations to maintain inductively defined
information or to guide VCC otherwise, are added directly into the C source
code as comments. During builds with a C compiler, these annotations are
ignored. From the annotated program, VCC generates verification conditions
for partial or total correctness, which it then tries to discharge using the auto-
matic theorem prover Z3 [de Moura and Bjørner, 2008] or through the Boogie
verifier [Barnett et al., 2006].

Verification in VCC makes heavy use of ghost data and code for reasoning
about the program but omitted from the concrete implementation. In particular,
VCC provides ghost objects, ghost fields of structured data types, local ghost
variables, ghost function parameters, and ghost code. When writing C files,

6 Introduction

the user introduces ghost code by enclosing it with _(and). Ghost data and
ghost code can use both C data types and additional mathematical data types,
e.g., mathematical integers (\integer) and natural numbers (\natural), records
(similar to C structures), and maps (with a syntax similar to C arrays). VCC
ensures that information does not flow from a ghost state to a non-ghost state and
that all ghost code terminates; these checks guarantee that program execution,
when projected to the non-ghost code, is not affected by the ghost code.

1.3.3. Simpl

A program can be written in a theorem prover either as a deep embedding in
terms of syntax (e.g, defined by using a datatype) or it can be written as a shallow
embedding in terms of functions in the logic of the theorem prover (e.g, higher-
order logic) [Myreen, 2012]. Shallow embeddings are easier to reason about,
however using deep embeddings allow reasoning about the program structure
inductively [Myreen, 2012]. Using a deep embedding is inevitable if one wants to
verify programs written in a particular syntax e.g, an imperative language or in
the C programming language. See [Wildmoser and Nipkow, 2004] for a further
discussion about deep embeddings versus shallow embeddings in Isabelle.

Simpl [Schirmer, 2006] is a generic imperative language designed to allow a
deep embedding of real programming languages such as C into Isabelle/HOL
for the purpose of program verification. The C-to-Isabelle parser [Norrish, 2012]
converts a large subset of C99-code into low-level Simpl code. Simpl provides
the usual imperative language constructs such as functions, variable assignments,
sequential composition, conditional statements, while loops, and exceptions.
There is no return statement for abrupt termination; it is emulated by exceptions.
Simpl has no expression language of its own; rather, every Isabelle expression
is also a Simpl expression, i.e., expressions are shallowly embedded in Simpl.
Programs may be annotated by invariants. Specifications for Simpl programs
are given as Hoare triples, where pre- and post-condition are arbitrary Isabelle
expressions. A verification condition generator (VCG) converts Hoare triples to
a set of higher-order formulas.

1.3.4. Autocorres

The C-to-Isabelle parser makes no effort to abstract from details of the C-
language. AutoCorres [Greenaway et al., 2012] builds upon this parser and, in
a fully verified way, provides a simpler representation of the original program.
Apart from simplifying the control flow, it transforms the deeply embedded Simpl
code into a shallowly embedded monadic representation where local variables
are modeled as bound Isabelle variables. There are multiple monads from which
AutoCorres chooses depending on the C features used; the most common one is
the nondeterministic state monad:

1.3. Tools 7

(′s,α) nondet-monad = ′s ⇒ (α × ′s) set × bool

In this monad, program statements are a function from a heap to a tuple
consisting of a failure flag and the nondeterministic state, represented as a set
of pairs of return value and heap. The monadic bind operation implements
sequential composition. Again, specifications are given as Hoare triples and a
VCG converts these to higher-order formulas [Cock et al., 2008].

8 Introduction

9

2
Verification of Certifying

Computations

This chapter is based on the following publications [Alkassar et al., 2011a,
Alkassar et al., 2014, Noschinski et al., 2014, Rizkallah, 2014]. In Section 2.1,
I describe the verification framework developed in collaboration with Eyad Alkas-
sar, Sascha Böhme, and Kurt Mehlhorn. In Sections 2.2, 2.3.2, and 2.3.3, I explain
my contribution that consists of formalizations and proofs in Isabelle/HOL. In
Section 2.3.1, I summarize work done by Eyad Alkassar and Sascha Böhme on
verifying the C implementation of checkers using VCC and on exporting proof
obligations from VCC to Isabelle/HOL. Appendix A presents the Isabelle/HOL
theories that are relevant to this chapter. The theory files are also available
online [Rizkallah, 2015].

2.1. Outline of Methodology

We consider algorithms that take an input from a set X and produce an output
in a set Y as well as a witness in a set W . The input x ∈ X satisfies a
precondition ϕ(x), and the input together with the output y ∈ Y satisfies,
assuming that the algorithm is bug free, a postcondition ψ(x, y). A witness
predicate for a specification with precondition ϕ and postcondition ψ is a
predicate W ⊆ X × Y ×W , where W is a set of witnesses with the following
witness property :

ϕ(x) ∧W(x, y, w) −→ ψ(x, y). (2.1)

10 Verification of Certifying Computations

In contrast to algorithms that work on abstract sets X, Y , and W , the im-
plementing programs operate on concrete representations of abstract objects.
We use X, Y , and W for the set of representations of objects in X, Y , and
W , respectively, and assume the mappings iX : X → X, iY : Y → Y , and
iW : W → W .

We illustrate these definitions through the example from the previous chapter.
In the case of greatest common divisors, X = W = Z × Z and Y = Z. For
input (a, b), output g and witness (s, t), the precondition ϕ((a, b)) states that
the inputs a and b are nonnegative integers and that at least one of them is
not zero. The postcondition ψ((a, b), g) states that g = gcd(a, b). The witness
predicate W((a, b), g, (s, t)) states that g = sa+ tb and that g divides a and b.
A typical representation of integers in implementations is via bitstrings. Hence,
X and W are each the set of pairs of bit strings, and Y is the set of bitstrings.
The mappings iX , iY , and iW map (pairs of) bit strings to the corresponding
(pairs of) integers.

The checker program C receives a triple (x, y, w) and assuming that C is
correctly implemented, it decides whether (x, y, w) fulfills the witness property.
More precisely, let x = iX(x), y = iY (y), and w = iW (w). If ¬ϕ(x), C may do
anything (run forever or halt with an arbitrary output). If ϕ(x), C must halt
and either accept or reject. The checker C is required to accept if W(x, y, w)
holds and is required to reject otherwise. In order to achieve formal instance
correctness, our approach is to prove the following two proof obligations: Checker
Correctness and Witness Property which together imply our final correctness
property.

Checker Correctness: The witness predicate is indeed checked by C, assuming
that the precondition1 holds, i.e., on input (x, y, w) and with x = iX(x),
y = iY (y), and w = iW (w):

1. If ϕ(x), C halts.

2. If ϕ(x) and W(x, y, w), C accepts (x, y, w), and if ϕ(x) and
¬W(x, y, w), C rejects the triple.

Witness Property: ϕ(x) ∧W(x, y, w) −→ ψ(x, y).

In our running example, the witness property is

a+ b > 0 ∧ g|a ∧ g|b ∧ g = a · s+ b · t −→ g = gcd(a, b).

Here a, b, g, s and t are assumed to be nonnegative integers.
Once we have proven these two properties, we can then prove our final

correctness theorem, as follows:
1We stress that the checker has the same precondition as the algorithm.

2.1. Outline of Methodology 11

Theorem 2.1. Assume that a checker C satisfies the checker correctness property
and a witness predicate W satisfies the witness property. Let (x, y, w) ∈ X ×
Y ×W and let x = iX(x), y = iY (y), and w = iW (w).
If C accepts a triple (x, y, w), ϕ(x) −→ ψ(x, y). If C rejects a triple (x, y, w),
ϕ(x) −→ ¬W(x, y, w).

Proof. If C accepts (x, y, w), we have ϕ(x) −→ W(x, y, w) by the correctness
proof of C. Then by (2.1) we have a formal proof for ϕ(x) −→ ψ(x, y). Conversely,
if C rejects the triple, the correctness proof of C establishes ϕ(x) −→ ¬W(x, y, w).

The reader may wonder why we do not formally prove the existence of a
witness:

∀x y. ϕ(x) ∧ ψ(x, y) −→ ∃w. W(x, y, w).

The existence of a witness is part of the correctness argument of the solution
algorithm (e.g., the shortest-path algorithm, the maximum-matching algorithm).
As previously mentioned, we do not verify the solution algorithms. Rather,
the execution of the solution algorithm establishes the existence of a witness
whenever it is called for a specific input x. It returns y and w, which we then
hand to the checker C. In this way, we obtain formal instance correctness without
having to verify the solution algorithm. Of course, this leaves the possibility that
the solution algorithm is incorrect and does not always provide a y and w such
that the checker accepts (x, y, w).

For a user concerned about the correctness of the algorithm’s output, the
checker is what matters most. The user can trust the checker because it has
been formally verified. Moreover, if it accepts a triple (x, y, w), the user can be
sure that y is a correct output, provided that x satisfies the precondition of the
algorithm. This is because the witness property has been formally verified. If
the checker rejects a triple, the user knows that either x does not satisfy the
precondition or (x, y, w) does not satisfy the witness predicate. The method by
which y and w were produced is of no concern to the user.

The witness property is formulated with respect to a certain input-output
behavior (ϕ, ψ) and not with respect to a particular algorithm that realizes the
input-output behavior. Therefore, a checker can be used in connection with
any certifying algorithm for input-output behavior (ϕ, ψ) that produces the
appropriate witnesses.

We discuss next how to fulfill the two stated proof obligations, the checker
correctness and the witness property, in a comprehensive and efficient framework.
Comprehensive means that the final proof formally combines (as much as possible
at the syntactic level) the correctness arguments for all levels (implementation,
abstraction, and mathematical theory). Efficient means we are able to carry
out our proofs in a reasonable amount of time. For example, applying a general
theorem prover with no extra tool assistance to verify imperative code, while

12 Verification of Certifying Computations

being comprehensive, would involve a lot of language-specific overhead and lead
to less automation. Similarly, a specialized code verifier, while efficient, is often
not powerful enough to cover nontrivial mathematical properties. The goals of
comprehensiveness and efficiency often conflict because different tools usually
come with different languages, axiomatization sets, etc.

LEDA Checkers We are interested in verifying checkers from the widely used
algorithmic library LEDA. LEDA is written in C++ [Mehlhorn and Näher, 1999].
Our aim is to verify code which is as close as possible to the original implemen-
tation. By this, we demonstrate the feasibility of verifying already established
libraries written in imperative languages such as C. We give two alternative ap-
proaches for verifying C checkers. Formally verifying the C++ implementations
remains an open problem.

Overview We first present several case studies from LEDA in the domain
of graph theory, namely, connected components, single source shortest paths
with non-negative edge costs, single-source shortest paths with arbitrary edge-
costs, and maximum cardinality matchings in graphs. We formally prove that
the witness properties of those examples is correct in Isabelle/HOL. Then we
propose two alternative approaches for verifying checker correctness; the VCC
approach and the AutoCorres approach. We initially proposed the VCC approach
that suggests using Isabelle as a backend to VCC. It uses second-order logic
as a common interface language between VCC and Isabelle. Meanwhile, an
Isabelle tool called AutoCorres emerged, that simplifies reasoning about C within
Isabelle. We therefore later on proposed the AutoCorres approach, because
AutoCorres made it feasible to use Isabelle/HOL for the entire verification. We
demonstrate the AutoCorres approach on the connected components example.
The AutoCorres approach was also successfully used by Lars Noschinski to verify
a more involved checker for graph non-planarity [Noschinski et al., 2014].

The VCC approach We verify the code with VCC [Cohen et al., 2009], an
automatic code verifier for full C. Our choice of VCC was motivated by the
maturity of the tool and the provision of an assertion language that is rich
enough for our requirements. In the Verisoft XT project [Verisoft XT, 2010],
VCC was successfully used to verify tens of thousands of lines of C code. The
assertion language offers ghost code and ghost types such as maps and unbounded
integers. This gives enough expressiveness to quantify over graphs, labelings,
etc., and simplifies the translation to other proof systems. For verifying the
mathematical part, we use Isabelle/HOL because of the large amount of already
formalized mathematics, its descriptive proof format, and its various automatic
proof methods and tools.

Checker Verification: The starting point is the checker code written in C.

2.1. Outline of Methodology 13

Using VCC, we annotate the functions and data structures such that the
witness predicate W can be established as the postcondition of the checker
function. We define the witness predicate and the pre- and postcondition
as well as the mappings iX , iY , and iW as pure mathematical objects using
VCC ghost types and ghost functions. Note that as a precondition to all
our programs we assume that the concrete input values x are valid (i.e.,
they are not NULL pointers and do not point outside array bounds nor
to memory protected addresses nor outside the address space). This is
ensured by using the VCC invariant \wrapped or other invariants that
ensure that the objects are owned by the current thread.

Export to Isabelle/HOL: Establishing the witness property involves, in gen-
eral, mathematical reasoning beyond what is conveniently done in VCC.
We therefore translate the precondition, witness predicate, postcondition,
and the abstract representations of the input, output, and witness from
VCC to Isabelle/HOL. Since we formulated them as pure mathematical
objects in VCC, this translation is purely syntactical and does not involve
any VCC specifics. While in our work this translation was carried out
manually, this step could easily be automated.

Witness Property: We prove the witness property using Isabelle/HOL. It is
convenient to formulate this theorem on yet a higher level of abstraction
and provide linking proofs to connect the exported VCC predicates with
their abstracted counterparts.

We stress that using this approach the overall correctness theorem, i.e., the
witness property, can be formulated in VCC; this is important for usability. The
user of a verified checker only has to look at its VCC specification; the fact that
we outsource the proof of the witness property to Isabelle/HOL is of no concern
to the user. Once proven in Isabelle/HOL, we may then formulate the witness
property as an axiom in VCC. This is sound since we restrict the language for
describing the witness property to second-order logic, which guarantees that we
can express it equivalently in Isabelle’s higher-order logic (see Section 2.3.1).
More precisely, since the VCC formulation of the witness property is valid if
and only if its translation to Isabelle is valid, and since Isabelle is consistent,
and hence, only valid statements can be proven, it is sound to add the witness
property as an axiom to VCC.

The AutoCorres Approach AutoCorres makes it feasible to reason about
the C code implementation of the checker directly within Isabelle/HOL. In this
approach, both the witness property and the checker correctness proof obligations
are discharged using Isabelle/HOL. Hence, the overall correctness theorem is
established in Isabelle/HOL. This approach requires trusting a smaller code
base which leads to more trustworthy results. More precisely, in addition to the

14 Verification of Certifying Computations

Isabelle kernel, in this approach we only trust the C-to-Isabelle parser, which
is quite small. In the VCC approach, we also relied on the correctness of the
translation between VCC and Isabelle, the VCC engine which consists of a
large code base, and an automatic theorem prover, called Z3, that is used by
VCC. Furthermore, using only one system saves us from having to duplicate
formalization effort in two systems and having to export theorems from one
system to another.

We demonstrate our methodology on a number of LEDA checkers from the
domain of graph theory. In the next section, we describe the checkers as case
studies and explain the proofs of their witness properties.

2.2. Case Studies and Witness Properties

We present a number of checkers and explain how they fit into our framework.
Moreover, we present the Isabelle/HOL formalization of the witness predicates
of the checkers and explain the proofs of their witness properties.

2.2.1. Connected Components

Our first case study considers the connected components problem. Given
an undirected graph G = (V,E), we consider an algorithm that decides
whether G is connected, i.e., whether there is a path between any pair of ver-
tices [Mehlhorn and Näher, 1999, Section 7.4]. In the negative case, i.e., when
the graph is not connected, there is a simple witness. It consists of a cut S, i.e., a
nonempty subset S of the vertices with S 6= V such that every edge of the graph
has either both or no endpoint in S. In other words, no edge crosses the cut.
In the positive case, i.e., when the given graph is connected, the algorithm can
produce a spanning tree of G as a witness. A spanning tree of G is a subgraph of
G, which is a tree and contains all vertices of G. On a high level, we instantiate
our general approach as follows:

input x = an undirected graph G = (V,E)
output y = either True or False, indicating whether G is con-

nected
witness w = a cut or a spanning tree

ϕ(x) = V and E are finite sets and G is wellformed i.e., a
pair of vertices in V × V is associated with every
e ∈ E

W(x, y, w) = y is True and w is a spanning tree of G, or y is
False and w is a cut

ψ(x, y) = if y is True, G is connected, and if y is False, G is
not connected.

2.2. Case Studies and Witness Properties 15

0 1

2 3

4

0

1
2

34

5

6 7

8 9

(a) A connected graph G

0 1

2 3

4

0

1
2

6

(b) A spanning tree of G

vertex 0 1 2 3 4

parent-edge ⊥ 0 1 2 6
num 0 1 1 1 2

(c) Spanning tree representation

Figure 2.1. An example of a connected graph G and a spanning tree of G
witnessing its connectivity. The vertices belong to the set {0, . . . , n− 1} and
the edges are pairs of vertices indexed by an identifier ranging from 0 to m−1,
where n and m are the number of vertices and edges in G. The spanning tree
in (b) can be represented by a root vertex r = 0 and functions parent-edge
and num as shown in the table in (c). Graphs may have self-loops and parallel
edges.

We restrict ourselves to the positive case y = True. We describe a checker for
the spanning tree witness and the verification of this checker. Figure 2.1 shows
a graph G and its spanning tree. We represent spanning trees by functions
parent-edge and num and by a root vertex r, and we view the edges of the tree
oriented towards r: for v 6= r, parent-edge(v) is the first edge on the path from
v to r, parent-edge(r) = ⊥, and num(v) is the length of the path from v to r for
all v. The function num is needed in order to show that parent-edge encodes a
forest.

Proving the Witness Property

We prove in Isabelle that a spanning tree witnesses the connectivity of a graph.
The proof is done in two steps. The first step is a high-level proof in which we
abstract from concrete representations of graphs and spanning trees.

Our formalization builds on the Isabelle graph library developed by Lars
Noschinski [Noschinski, 2014]. Graphs in this library are directed. A fin-digraph
is a wellformed directed graph with a finite set of vertices and a finite set of
edges; the library reserves the word digraph for graphs without parallel edges
and self-loops. In Isabelle we represent undirected graphs as bidirected graphs2,
i.e., directed graphs containing for every edge (u, v) also the reversed edge (v, u).
The function mk -symmetric maps a fin-digraph to a bidirected fin-digraph by
appropriately extending the set of edges with missing reversed edges. A vertex v

2We do so in order to directly use the Isabelle graph library.

16 Verification of Certifying Computations

locale connected -components-locale = fin-digraph +
fixes num :: α ⇒ nat
fixes parent-edge :: α ⇒ β option
fixes r :: α
assumes r -assms: r ∈ verts G ∧ parent-edge r = None ∧ num r = 0
assumes parent-num-assms:∧

v. v ∈ verts G ∧ v 6= r =⇒
∃e ∈ arcs G.

parent-edge v = Some e ∧
head G e = v ∧
num v = num (tail G e) + 1

Listing 2.1. The fin-digraph locale assumes the directed graph G is well-
formed and finite. The locale connected -components-locale inherits from
fin-digraph, meaning it includes all constants and assumptions in fin-digraph,
and additionally includes the assumptions r -assms and parent-num-assms .

is reachable from a vertex u in a (bi)directed graph G if there exists a directed
walk from u to v in G, i.e., a sequence (u1, v1), (u2, v2), . . . , (uk, vk) of edges with
u1 = u, vk = v, and vi = ui+1 for 1 ≤ i < k. An alternative and equivalent
formalization of reachability between vertices u and v in G is via sequences of
vertices v1, v2, . . . , vk, where v1 = u, vk = v and (vi, vi+1) is an edge of G for
1 ≤ i < k. We say a vertex v is reachable through a path from a vertex u in G if
v is reachable from u through a path in G. An undirected graph is connected if
for any two vertices of the graph, one is reachable through a path from the other.

Our high-level proof rests on the Isabelle locale connected -components-locale
(Listing 2.1) that describes the assumptions of our theorem. We fix G to be a fin-
digraph where α is an abstraction of the type of vertices and β is an abstraction
of the type of edges. Furthermore, we fix a representation of spanning trees
with functions parent-edge and num and vertex r as the root. Based on these
assumptions we prove that G is connected. We first show that every vertex v in
the graph is reachable from the root r by induction on num v, i.e., the length of
the walk from r to v in the spanning tree. The base case follows directly from
our assumptions. For the inductive step, we can assume a walk from r to the
parent of a vertex v. Using the assumptions, this walk can be extended to a
walk from r to v since there is an edge between v and its parent. Now, since G
is bidirected, we can establish that there is a walk between any two vertices of
G by combining the walks that connect them with the root r. If there is a walk
between two vertices, there is also a path between them. Therefore, all vertices
in G are reachable through a path from one another, and hence, G is connected.

2.2. Case Studies and Witness Properties 17

2.2.2. Shortest Path

In graph theory, a shortest path is a path between two vertices in a graph such
that the sum of the costs of its constituent edges is minimized. The single-source
shortest path problem is the problem of finding shortest-paths from a source
vertex in the graph to all vertices in the graph. The single-source shortest-paths
problem (with nonnegative edge costs) for directed graphs can be solved for
instance by Dijkstra’s algorithm [Mehlhorn and Näher, 1999, Sections 6.6 and
7.5]. Instead of verifying the algorithm directly, we request that it returns, not
only the computed shortest distances from s to every vertex of the graph, but
also the corresponding shortest path tree as witness.

We instantiate our general framework as follows:

input x = a directed graph G = (V,E), a function c : E → N
for edge costs, a vertex s

output y = a mapping dist : V → (N ∪∞)
witness w = a tree rooted at s

ϕ(x) = s ∈ V
W(x, y, w) = G is wellformed and w is a shortest-path tree, i.e.,

for each v reachable from s, the tree path from s
to v has length dist(v)

ψ(x, y) = for each v ∈ V , dist(v) is the cost of a shortest
path from s to v (or ∞, if there is no path from s
to v).

Figure 2.2 shows a directed graph and a shortest-path tree rooted at s. We
encode a shortest-path tree by functions parent-edge, dist , and enum3. For
each v reachable from s, dist(v) is the shortest-path distance from s to v and
enum(v) is the depth of v in the shortest-path tree. For vertices v that are not
reachable from s, dist(v) = enum(v) = ∞. For reachable vertices v different
from s, the edge parent-edge(v) is the last edge on a shortest path from s to
v. This witness is somewhat verbose. As we will see in the explanation of the
proof of correctness of the witness property, we could do without the parent-edge
function. If all edge costs are positive, no witness is required beyond the dist
function. If one also allows cost zero for edges as we do, the depth function
enum is indispensable [McConnell et al., 2011, Section 2.4].

Let µ(c, s, v) be the shortest path distance from the source vertex s to a
vertex v ∈ V using the cost function c, i.e., µ(c, s, v) = inf {c(p); p is a walk
from s to v} where inf is the infimum of a set and c(p) is the cost of path p. For
unreachable vertices v, µ(c, s, v) =∞. For reachable vertices v, if there exists a

3Unlike the function num : V → N in the previous section, enum : V → N ∪ {∞} and this
is the reason we call it differently.

18 Verification of Certifying Computations

s t

u v

w

0/1

1/1
2/1

3/0
4/0

5/2

(a) A directed graph G

s t

u v

w

0

1 3

(b) A shortest-path tree of G

vertex s t u v w

parent-edge ⊥ 0 1 3 ⊥
enum 0 1 1 2 ∞

dist 0 1 1 1 ∞

(c) Tree representation

Figure 2.2. A directed graph G = (V,E) with the edges labeled i/k,
where i is a unique edge index and where k is the cost of that edge, and a
shortest-path tree of G rooted at start vertex s ∈ V . The tree is encoded
by parent-edge, enum and dist according to the table in (c). Observe that
vertex w is not reachable from s and that the cycle t→ v → t has cost zero.

walk from s to v that includes a negative cycle (a cycle of negative total cost)
then µ(c, s, v) = −∞4. For all other reachable vertices v, µ(c, s, v) ∈ R.

The precondition ϕ(x) and witness predicate W(x, y, w) can be summarized
by the conjunction of the following properties:

fin-digraph: The directed graph G is wellformed with finite sets V and E.

We partition V into three sets

V∞ = {v. v ∈ V ∧ dist(v) =∞},
V−∞ = {v. v ∈ V ∧ dist(v) = −∞}, and
Vf = {v. v ∈ V ∧ dist(v) ∈ R}.

s-in-G: s is a vertex in G.

source-val: dist(s) = 0.

general-source-val: dist(s) ≤ 0.

From the previous two properties, we know s ∈ Vf ∪ V−∞.

trian: For all (u, v) ∈ E, dist(u) + c(u, v) ≥ dist(v).

4Note that in this section negative cycles do not occur since we only consider graphs with
nonnegative edge costs. In the next section however, they become relevant because we consider
graphs with arbitrary edge costs.

2.2. Case Studies and Witness Properties 19

In particular, if (u, v) ∈ E and u ∈ Vf then v ∈ Vf ∪ V−∞. Thus, there are no
edges in E from vertices in Vf ∪ V−∞ to vertices in V∞ and hence no vertex
in V∞ is reachable from s. An induction argument, see next section, yields
dist(v) ≤ µ(c, s, v) for all v ∈ V .

just: For all v ∈ Vf , if v 6= s, then there exists (u, v) ∈ E such that dist(v) =
dist(u) + c(u, v) ∧ enum(v) = enum(u) + 1.

Using the just property and the two properties that follow one can prove that
dist(v) ≥ µ(c, s, v) for all v ∈ Vf .

non-neg-cost: For all edges e in G, c(e) ≥ 0 where c is the cost function.

Hence, V−∞ = ∅ and µ(c, s, v) 6= −∞ for all v ∈ V .

no-path: For all v ∈ V , dist(v) =∞ if and only if there is no path to v.

Therefore, dist(v) = ∞ if and only if µ(c, s, v) = ∞ for all v ∈ V . From all of
the above one can conclude that dist(v) = µ(c, s, v) for all v ∈ V . We give an
overview of the Isabelle formal proof in the next section.

Proving the Witness Property

We present here the outline of the Isabelle/HOL proof of the witness prop-
erty. The shortest-path-non-neg-cost locale contains exactly the properties
summarizing the precondition and the witness property that we stated ear-
lier in the section. The theorem correct-shortest-path states that under the
shortest-path-non-neg-cost locale assumptions, for any vertex v in G, dist(v) is
equal to the correct shortest path distance µ(c, s, v) from s to v using the cost
function c.

Listing 2.2 shows our Isabelle locales. We separate the assumptions into three
locales to avoid the use of unneeded assumptions when proving intermediate
lemmas. This makes the intermediate lemmas more general, and hence, usable
in other contexts. For example, we reuse some of the lemmas in this section for
the verification of a checker for the more general shortest-path problem with
arbitrary edge costs in explained in Section 2.2.3. The locale basic-sp subsumes
the locale fin-digraph mentioned in Section 2.2.1. Moreover, it assumes it is
given the function dist : V → (R ∪ {∞,−∞}), an edge cost function c : E → R,
and a start vertex s.

We split the proof of the witness property into two parts. First, we prove
a lemma dist-le-µ using the locale basic-sp. The lemma states that dist(v) ≤
µ(c, s, v) for every vertex v ∈ V . Then, we prove the lemma dist-ge-µ using
the locale basic-just-sp. The lemma states that dist(v) ≥ µ(c, s, v) for every
vertex v ∈ V under some extra assumptions (Listing 2.3). Later, we show that
these extra assumptions hold in the locale shortest-path-non-neg-cost . Hence,
we obtain a theorem stating that dist(v) = µ(c, s, v) for every v ∈ V using the
locale shortest-path-non-neg-cost .

20 Verification of Certifying Computations

locale basic-sp = fin-digraph +
fixes dist :: α ⇒ ereal
fixes c :: β ⇒ real
fixes s :: α
assumes general -source-val : dist s ≤ 0
assumes trian:

∧
e. e ∈ arcs G =⇒ dist (head G e) ≤ dist (tail G e) + c e

locale basic-just-sp = basic-sp +
fixes enum :: α ⇒ enat
assumes just :∧

v. v ∈ verts G =⇒ v 6= s =⇒ enum v 6= ∞ =⇒
∃ e ∈ arcs G.

v = head G e ∧
dist v = dist (tail G e) + c e ∧
enum v = enum (tail G e) + enat 1

locale shortest-path-non-neg-cost = basic-just-sp +
assumes s-in-G : s ∈ verts G
assumes source-val : dist s = 0
assumes no-path:

∧
v. v ∈ verts G =⇒ (dist v = ∞ ←→ enum v = ∞)

assumes non-neg-cost :
∧
e. e ∈ arcs G =⇒ 0 ≤ c e

Listing 2.2. The basic-sp locale inherits from fin-digraph and additionally
includes the triangle inequality assumption trian. The locale basic-just-sp
inherits from basic-sp and additionally includes the justification assumption
just .

lemma (in basic-just-sp) dist-ge-µ:
fixes v :: α
assumes v ∈ verts G
assumes enum v 6= ∞
assumes dist v 6= −∞
assumes µ c s s = ereal 0
assumes dist s = 0
assumes

∧
u. u ∈ verts G =⇒ u 6= s =⇒ enum u 6= enat 0

shows dist v ≥ µ c s v

Listing 2.3. The central lemma of the shortest-paths proof in Isabelle

2.2. Case Studies and Witness Properties 21

s t

u v

w m

0/1

1/1

2/1

3/0 4/-1

5/2
6/1

(a) A directed graph G

s t

u v

wm

0

1 3

6

(b) A reachability tree of G

vertex s t u v m w

parent-edge ⊥ 0 1 3 6 ⊥
num 0 1 1 2 3 −
dist 0 −∞ 1 −∞ −∞ ∞
C = {(t → v → t)}
(c) Tree representation

Figure 2.3. A directed graph G = (V,E) with the edges labeled i/k, where
i is a unique edge index and k is the cost of that edge is presented in (a).
In (b) we give a reachability tree of G that is rooted at start vertex s ∈ V .
The function dist is the shortest path function and the tree is encoded by
parent-edge and num according to the table in (c). Observe that vertex w is
not reachable from s and that the cycle t→ v → t is a negative cycle.

2.2.3. Shortest Path with Arbitrary Edge Costs

The single-source shortest-paths problem (with arbitrary edge costs) for directed
graphs is explained in detail in the LEDA book [Mehlhorn and Näher, 1999,
Sections 6.6 and 7.5]. There they describe a pen-and-paper axiomatic charac-
terization of the shortest path function. We give a characterization in terms of
three functions

dist : V → R ∪ {∞,−∞},
num : V → N, and
parent-edge : V → E ∪ {⊥}.

We assume that G and the functions satisfy the following witness properties. If
all properties are satisfied, dist(v) = µ(c, s, v) for all v ∈ V . We again start by
stating the properties using standard mathematical notation and then give the
Isabelle formalization in the following section. Figure 2.3 provides an example.

22 Verification of Certifying Computations

We re-use the properties fin-digraph, general -source-val , trian, and just
introduced in Section 2.2.2. The following properties make sure that num and
parent-edge encode a tree rooted at s and containing all vertices in Vf ∪ V−∞.
In particular, every vertex in Vf ∪ V−∞ is reachable from s.

s-assms: s ∈ V and num(s) = 0.

pna: v ∈ Vf ∪V−∞ and v 6= s implies parent-edge(v) 6= ⊥, num(v) = num(u)+1,
and u ∈ Vf ∪ V−∞ where parent-edge(v) = (u, v).

In this case study, we define enum : V → N ∪ {∞} such that enum(v) =∞ if
dist(v) ∈ {∞,−∞} and enum(v) = num(v) otherwise. Along with fin-digraph,
general -source-val , trian, and just , the next properties ensure the correctness of
the dist function.

source-val: If Vf 6= ∅, then dist(s) = 0 5.

Thus, if Vf = ∅ then s ∈ V−∞ and hence dist(s) = −∞.

C-se: Let C be the set of negative cycles in G.

We define pwalk to be a function from vertices to paths. It is the path obtained
by concatenating the edges defined by the parent-edge function from v to s for
vertices in Vf ∪ V−∞ different from s, otherwise it is the empty path.

int-neg-cyc: For each vertex v ∈ V−∞, pwalk(v) intersects a cycle in C.

Hence, each vertex v ∈ V−∞ is connected to s with a walk that contains a
negative cycle.

We first introduce the formalization and explain the proof that from the
witness introduced above one can conclude that dist is the shortest path function,
then we discuss why such a witness always exists since in this case it is not
entirely straightforward.

Proving the Witness Property

This formalization builds on the Isabelle directed graphs li-
brary [Noschinski, 2014]. The theory file for this formalization is in the
Isabelle archive of formal proofs [Rizkallah, 2013]. We formalize the axioms
as assumptions in the shortest-paths-neg-cyc locale (as shown in Listing 2.4)
and prove that under those locale assumptions dist is indeed the single-source
shortest path function for directed graphs with arbitrary edge costs. As in the
previous example, we separate the assumptions into several intermediate locales.
This separation allows us to prove more general intermediate lemmas, with
less assumptions, that could be used later on in other contexts. The Isabelle

5Note that this property is different to the source-val property in the previous section.

2.2. Case Studies and Witness Properties 23

locale shortest-paths-init =
fixes G :: (α, β) pre-digraph (structure)
fixes s :: α
fixes c :: β ⇒ real
fixes num :: α ⇒ nat
fixes parent-edge :: α ⇒ β option
fixes dist :: α ⇒ ereal
assumes graphG : fin-digraph G

locale shortest-paths-reachable =
shortest-paths-init +
assumes s-assms:
s ∈ verts G
num s = 0

assumes pna:∧
v. [[v ∈ verts G; v 6= s; v /∈ V∞]] =⇒

(∃ e ∈ arcs G. parent-edge v = Some e ∧
head G e = v ∧ tail G e /∈ V∞ ∧
num v = num (tail G e) + 1)

locale shortest-paths-basic =
shortest-paths-reachable +
basic-just-sp G dist c s enum +
assumes source-val : (∃ v ∈ verts G. enum v 6= ∞) =⇒ dist s = 0

locale shortest-paths-neg-cyc =
shortest-paths-basic +
fixes C :: (α × (β awalk)) set
assumes C -se: C ⊆ {(u, p). dist u 6= ∞ ∧ awalk u p u ∧ awalk -cost c p < 0}
assumes int-neg-cyc:

∧
v. v ∈ V−∞ =⇒ (fst ‘ C) ∩ pwalk -verts v 6= {}

Listing 2.4. The shortest-paths-init locale inherits from fin-digraph and
additionally defines more constants. The shortest-paths-reachable locale in-
herits from shortest-paths-init and additionally includes the assumptions
s-assms and pna. The shortest-paths-basic locale inherits from both
shortest-paths-reachable and basic-just-sp (see Listing 2.2). It addition-
ally includes the source-val assumption. The final locale including all the
witness assumptions is called shortest-paths-neg-cyc, in addition to the as-
sumptions in shortest-paths-basic it includes the C -se and the int-neg-cyc
assumptions.

24 Verification of Certifying Computations

shortest-paths-neg-cyc locale contains exactly the properties described above.
The final theorem states that under the assumptions in shortest-paths-neg-cyc,
for any vertex v in G, dist(v) is equal to the correct shortest path distance
µ(c, s, v) from s to v using the cost function c. The high level proof is split into
three parts, for any vertex v ∈ V :

1. if v ∈ V∞ then dist(v) = µ(c, s, v) =∞,

2. if v ∈ Vf then dist(v) = µ(c, s, v) ∈ R, and

3. if v ∈ V−∞ then dist(v) = µ(c, s, v) = −∞.

The first part follows directly from the lemma dist-le-µ proven in context of the
locale basic-sp. The lemma states that for all vertices v ∈ V , dist(v) ≤ µ(c, s, v).
We start by proving that for any walk p from s to v, dist(v) is less than or
equal to the cost of p using cost function c. The proof follows by induction
on the length of p using the trian and general -source-val assumptions. Hence
dist(v) ≤ µ(c, s, v) for all v by definition of µ(c, s, v).

The second part is proven using the lemma dist-Vf -µ in the context of the
locale shortest-paths-basic. The lemma states that for all vertices v ∈ V such
that dist(v) ∈ R, dist(v) = µ(c, s, v). Using the lemma dist-le-µ we already know
that for all vertices v ∈ V , dist(v) ≤ µ(c, s, v). It suffices to prove the lemma
dist-ge-µ in the context of the locale basic-just-sp stating that for all vertices
v ∈ V , dist(v) ≥ µ(c, s, v) under the following extra assumptions: num(v) 6=∞,
dist(v) 6= −∞, µ(c, s, s) = 0, dist(s) = 0, and for all vertices v other than s,
num(v) 6= 0 (see Listing 2.3). The first two assumptions follow directly from
the fact that we consider vertices v for which dist(v) ∈ R . The latter three
assumptions are easily discharged in context of the locale shortest-paths-basic.
For the vertex s if dist(s) ∈ R then dist(v) = µ(c, s, v) = 0 using the source-val
assumption and the trivial empty path from s to s. Moreover, the assumption
stating that for all vertices v other than s, num(v) 6= 0 follows directly from pna.

Now we explain the proof of dist-ge-µ. The proof follows by induction on
num(v) for any vertex v. The base case is trivial. For the inductive case, using
assumptions we know v 6= s. By the induction hypothesis and the lemma
dist-le-µ we know dist(u) = µ(c, s, u). Using just we obtain a witnessing edge
(u, v) such that dist(v) = dist(u) + c(u, v) = µ(c, s, u) + c(u, v). We obtain a
path of cost µ(c, s, u) + c(u, v) from s to v by appending the edge (u, v) to the
shortest path from s to u that has cost µ(c, s, u). Because such a path exists we
know µ(c, s, v) ≤ µ(c, s, u) + c(u, v) = dist(v). By this we conclude our proof.

The third part is proven using the lemma Vn-µ-ninf in the context of the
locale shortest-paths-neg-cyc. The lemma states that if a vertex v ∈ V−∞ then
µ(c, s, v) = −∞. Using the int-neg-cyc and C -se assumptions we prove that
there is a walk with a negative cycle from s to v. There is a theorem in the
Isabelle graph library stating that if there is walk with a negative cycle between

2.2. Case Studies and Witness Properties 25

two vertices then the shortest path between them has cost −∞. By this we
conclude our proof and the proof that for all vertices dist is the shortest path
function.

Existence of Witness

In this case study the existence of a witness that satisfies the witness property is
not entirely obvious. Therefore, we shortly discuss why the witness exists for
a correct shortest path function dist on a finite wellformed graph. For more
information see [Mehlhorn and Näher, 1999].

Since the source vertex s is reachable from itself using the empty path,
s ∈ Vf ∪ V−∞. It is in V−∞ if there is a negative cycle passing through s
and in this case Vf is empty. Hence the assumptions s-assms, source-val and
general -source-val are true for a correct shortest path function dist .

Moreover, one can always construct a reachability tree from s to all reachable
vertices v. The tree spans over all vertices in Vf ∪ V−∞. We construct the
reachability tree as follows. If Vf = ∅, we take any directed tree rooted at s and
spanning over vertices in V−∞ . If Vf 6= ∅, we start with a shortest path tree for
vertices in Vf . Let V ′−∞ ⊆ V−∞ be the set of vertices lying on negative cycles
and having an incoming edge from a vertex in Vf . For each vertex in V ′−∞ we
select one such edge and add the vertex and the edge to the reachability tree. In
a third step, we expand the reachability tree to include all vertices in V−∞. As
long as there is an edge (u, v) with u ∈ V−∞, u already part of the tree, and v
not part of the tree, we add v and the edge (u, v) to the tree.

For each vertex v in Vf ∪ V−∞ \ {s} let parent-edge(v) be the tree edge into
v in the reachability tree and let num(v) be the depth of v in the reachability
tree.

The trian assumption holds because we assume dist is the correct shortest
path function, just holds because the reachability tree is a shortest path tree on
Vf and hence we can take parent-edge(v) as the witnessing edge in just . Finally,
taking C to be the set of negative cycles in G, int-neg-cyc holds by construction.

2.2.4. Maximum Cardinality Matching

Our last case study is about maximum cardinality matching in general graphs.
Assume you run a service at a climbing gymnasium that matches rock climbing
partners. You have climbers and each climber can be matched with a list of
other climbers of the same climbing proficiency level. This situation is readily
modeled as a graph. There is a vertex for each climber and an edge for each
possible match. The goal of the service is to arrange a maximum number of
matches so that as many climbers as possible can climb. This is a maximum
cardinality matching problem.

A matching in a graph G is a subset M of the edges of G such that no two

26 Verification of Certifying Computations

1

0 1 0 1

0

2 2 1 0

2 0

Figure 2.4. The vertex labels certify that the indicated matching is of
maximum cardinality: All edges of the graph have either both endpoints
labeled as 2 or at least one endpoint labeled as 1. Any matching can hence
use at most one edge with both endpoints labeled 2 and at most four edges
that have an endpoint labeled 1. Therefore, no matching has more than five
edges. The matching shown consists of five edges (in bold).

share an endpoint. A matching has maximum cardinality if its cardinality is
at least as large as that of any other matching. Figure 2.4 shows a graph, a
maximum cardinality matching, and a witness of this fact. An odd-set cover L
of a graph G is a labeling of the vertices of G with integers such that every edge
of G is either incident to a vertex labeled 1 or connects two vertices labeled with
the same number i and i ≥ 2.

Theorem 2.2. [Edmonds, 1965]. Let M be a matching in a graph G, and let L
be an odd-set cover of G. For any i ≥ 0, let ni be the number of vertices labeled
i. If

|M | = n1 +
∑
i≥2

bni/2c, (2.2)

then M is a maximum cardinality matching.

Proof. Let N be any matching in G. For i ≥ 2, let Ni be the edges in N that
connect two vertices labeled i, and let N1 be the remaining edges in N . Then, by
the definition of odd-set cover, every edge in N1 is incident to a vertex labeled 1.
Since edges in a matching do not share endpoints, we have

|N1| ≤ n1 and |Ni| ≤ bni/2c for i ≥ 2.

Thus, |N | ≤ n1 +
∑

i≥2bni/2c = |M |.

For every maximum cardinality matching M there is an odd-set cover L
satisfying equality (2.2) [Mehlhorn and Näher, 1999, Section 7.7].; the proof
of this is nontrivial and of no importance for the purpose of this work. The
cover uses nonnegative vertex labels in the range 0 to |V | − 1 and all ni’s with
i ≥ 2 are odd. The certifying algorithm for maximum cardinality matching in
LEDA returns a matching M and an odd-set cover L such that (2.2) holds. We
instantiate our general approach as follows:

2.3. Verification of Checker Implementations 27

input x = an undirected graph G
output y = a set of edges M
witness w = a vertex labeling L

ϕ(x) = G and M are wellformed and have no self-loops
W(x, y, w) = M is a matching in G, L is an odd-set cover for G,

and Equation (2.2) holds
ψ(x, y) = M is a maximum cardinality matching in G.

Proving the Witness Property

We explain the Isabelle proof for the witness property, i.e., for Theorem 2.2. See
Listing 2.5 for an excerpt of our formal Isabelle proof development. An older
version of the Isabelle proof, that does not use the Isabelle graph library, can be
found in [Rizkallah, 2011]. The formal proof follows the scheme of the textbook
proof and is split into two main parts.

For i ≥ 2, let Mi be the edges in M that connect two vertices labeled i,
and let M1 be the remaining edges in M . Mi is a set of edges. If we represent
edges as sets, each with cardinality two, then Mi is a collection of sets. The
sets Mi, i ≥ 1, are disjoint. We use the definition of an odd-set cover to prove
M ⊆

⋃
i≥1Mi, and thus |M | ≤

∑
i≥1 |Mi| by disjointness of the sets Mi. Let Vi

be the vertices labeled i, and let ni = |Vi|. We formally prove: |M1| ≤ n1 and
|Mi| ≤ bni/2c.

In order to prove |M1| ≤ n1, we exhibit an injective function from M1 to
V1. We first prove, using the definition of an odd-set cover, that every edge
e ∈M1 has at least one endpoint in V1. This gives rise to a function endpointV1
that maps from M1 to V1. We then use that edges in a matching do not share
endpoints (i.e., edges in a matching are disjoint when interpreted as sets) to
conclude that endpointV1 is injective. This establishes |M1| ≤ |Vi|.

For i ≥ 2, the proof of the inequality |Mi| ≤ bni/2c is similar but more
involved. We define the set of vertices V ′i to be

⋃
i≥2Mi and use the definition

of an odd-set cover to prove V ′i ⊆ Vi. Since the edges in a matching are pairwise
disjoint, we obtain |V ′i | = 2 · |Mi|. Note also that |V ′i | must be even since |Mi|
is a natural number. Thus, we can prove that |Mi| ≤ b|V ′i | / 2c, and hence,
|Mi| ≤ b|V ′i | / 2c ≤ b|Vi| / 2c = bni/2c.

2.3. Verification of Checker Implementations

We present two different methods for verifying the C implementations of the check-
ers. Section 2.3.1 explains work done by Eyad Alkassar and Sascha Böhme on
verifying the checker correctness in VCC and linking the VCC and Isabelle/HOL
formalizations. Back in 2011 when we started this work it was not tractable to
verify C code within Isabelle/HOL using publicly available tools. We therefore
decided to verify the checkers by using Isabelle/HOL as a backend to VCC.

28 Verification of Certifying Computations

type_synonym label = nat

definition disjoint_arcs :: (α, β) pre_graph ⇒ β ⇒ β ⇒ bool where
disjoint_arcs G e1 e2 = (

tail G e1 6= tail G e2 ∧ tail G e1 6= head G e2 ∧
head G e1 6= tail G e2 ∧ head G e1 6= head G e2)

definition matching :: (α, β) pre_graph ⇒ β set ⇒ bool where
matching G M = (

M ⊆ arcs G ∧
(∀e1 ∈ M . ∀e2 ∈ M . e1 6= e2 −→ disjoint_arcs G e1 e2))

definition OSC :: (α, β) pre_graph ⇒ (α ⇒ label) ⇒ bool where
OSC G L = (
∀e ∈ arcs G.

L (tail G e) = 1 ∨ L (head G e) = 1 ∨
L (tail G e) = L (head G e) ∧ L (tail G e) ≥ 2)

definition weight :: label set ⇒ (label ⇒ nat) ⇒ nat where
weight LV f = f 1 +

∑
i ∈ LV . (f i) div 2

definition N :: α set ⇒ (α ⇒ label) ⇒ label ⇒ nat where
N V L i = card {v ∈ V . L v = i}

locale matching-locale = digraph +
fixes maxM :: β set
fixes L :: α ⇒ label
assumes matching : matching G maxM
assumes OSC : OSC G L
assumes weight : card maxM = weight {i ∈ L ‘ verts G. i > 1} (N (verts G) L)

Listing 2.5. Definitions and locale for the matching proof in Isabelle.

2.3. Verification of Checker Implementations 29

Our choice of VCC was encouraged by Alkassar’s experience with VCC, the
demonstration of VCC as a successful verification tool in the Verisoft XT project,
and by Böhme’s prior experience with using Isabelle as a backend to VCC in the
Boogie verification condition generator. Here though our framework allows us to
transfer cleaner chunks of mathematics to the Isabelle/HOL theorem prover and
not overwhelm it with C code intricacies.

Meanwhile, several tools became available that enabled us to carry out the
complete verification within Isabelle/HOL. Namely, the C-to-Isabelle parser
developed for the seL4 project became open source and the AutoCorres tool that
simplifies reasoning about code outputted by the parser emerged. In Section 2.3.3
we demonstrate that it is feasible to verify checkers entirely within Isabelle/HOL
using those tools. Here we show this on the connected components example. This
latter approach also proved to be successful in verifying the a graph non-planarity
checker [Noschinski et al., 2014].

2.3.1. Verification of C code using VCC

This section explains work done by Eyad Alkassar and Sascha Böhme on veri-
fying the checker correctness in VCC and linking the VCC and Isabelle/HOL
formalizations. It is included in this thesis to give context to my contribution.

Export from VCC to Isabelle/HOL.

For the types and propositions that we pass from VCC to Isabelle/HOL, we
restrict ourselves to a subset of VCC’s specification language. Simple types:
are natural numbers, integers, algebraic datatypes over simple types, and ghost
records whose fields are simple types. Rich types are simple types, ghost records
whose fields are rich types, and maps from simple types to rich types. Propositions
can be formed by usual logical connectives, quantifiers over variables of rich types,
arithmetic expressions, equalities, and user-defined pure, stateless functions whose
argument and result types are rich and whose definitions or contracts are again
propositions, possibly using pattern matching over algebraic datatypes. Any
type or function of this subset can be expressed equivalently in Isabelle/HOL,
essentially by syntactic rewriting. More precisely, VCC algebraic datatypes can
be translated into Isabelle datatypes, VCC ghost records can be translated into
Isabelle records, and pure VCC ghost functions can be translated into Isabelle
function definitions. The former two translations are sound and complete because
the semantics of datatypes and records is the same in both systems; the latter
is sound and complete because VCC’s underlying logic is subsumed by the
higher-order logic of Isabelle/HOL. The translation maps VCC specification
types (\bool, \natural, \integer, and map types) to equivalent Isabelle types
(bool , nat , int , and function types) and maps VCC expressions comprising
logical connectives, quantifiers, arithmetic operations, equality, and specification

30 Verification of Certifying Computations

typedef unsigned Nat;
typedef Nat Vertex;
typedef Nat Edge_Id;
typedef struct { Nat s; Nat t; } Edge;
typedef struct { Nat m; Nat n; Edge∗ es; } Graph;

Listing 2.6. A representation of graphs in C. The field m gives the number
of edges (and hence the length of the array es), and n gives the number of
vertices in the graph.

functions to corresponding Isabelle terms.

Connected Components Checker

Implementation We begin by fixing a representation of graphs in the program-
ming language C, as shown in Listing 2.6. Vertices are numbered consecutively
from 0 to n− 1. Edges are pairs where the first vertex is labeled s (for source),
and the second vertex is labeled t (for target). Edges are stored in an array es,
which is indexed by edge identifiers ranging from 0 to m− 1. We require that
the two vertices of each edge belong to the graph, i.e., that they are from the
range {0, . . . , n− 1}, and call graphs with this property wellformed. We use the
same data structure for directed and undirected graphs. For directed graphs, an
edge e with e.s = u and e.t = v is directed from u to v. For undirected graphs, it
represents the unordered pair {u,v}.

We represent spanning trees as explained previously in Section 2.2.1. Instead
of functions, we use two arrays, parent_edge and num, in addition to a root
vertex r. The parent_edge array maps r to a negative value, i.e., to a value that
does not identify any edge.

The connected-graph checker is a function that accepts if the two functions
check_r and check_parent_num (as shown in Listing 2.7) accept. The first
function checks that r is indeed the root of the spanning tree. The second
function checks for every vertex v different from r that the edge parent_edge[v] is
incident to v and that the other endpoint of the edge has a number one smaller
than num[v].

Checker Correctness To prove the two checker functions correct, we need to
provide abstract representations for graphs and paths. We decided to keep them
close to the concrete representation for two reasons. First, it makes detecting
differences, and hence potential bugs, easier for the programmer. Second, it
also makes reasoning for VCC simpler. The declaration of abstract graphs is
given in Listing 2.8 together with the ghost predicate \wellformed for describing
when an abstract graph is wellformed. This ghost predicate plays the role of
the precondition ϕ in this case study. Our abstract version of the num array

2.3. Verification of Checker Implementations 31

int check_r(Graph∗ G, Vertex r, int∗ parent_edge, Nat∗ num)
{

return r < G−>n && num[r] == 0 && parent_edge[r] < 0;
}

int check_parent_num(Graph∗ G, Vertex r, int∗ parent_edge, Nat∗ num)
{

Vertex v, a, b; Edge_Id e;

for (v = 0; v < G−>n; v++)
{

if (v == r) continue;

if (parent_edge[v] < 0 || ((Edge_Id)parent_edge[v]) >= G−>m) return FALSE;

e = (Edge_Id)parent_edge[v];
a = G−>es[e].s;
b = G−>es[e].t;

if (v == a && num[v] == num[b] + 1) continue;
if (v == b && num[v] == num[a] + 1) continue;
return FALSE;

}
return TRUE;

}

Listing 2.7. The connected-components checker.

_(typedef \natural \Vertex)
_(typedef \natural \Edge_Id)
_(record \Edge {

\Vertex src;
\Vertex trg;

})
_(record \Graph {

\natural num_verts;
\natural num_edges;
\Edge edge[\Edge_Id];

})

_(def \bool \wellformed(\Graph G)
{

return
∀ \Edge_Id i; i < G.num_edges −→

G.edge[i].src < G.num_verts ∧
G.edge[i].trg < G.num_verts;

})

Listing 2.8. Abstract graphs and a predicate to describe wellformed graphs.

32 Verification of Certifying Computations

is a mapping from vertices to natural numbers. The abstract version of the
parent_edge array is a mapping from vertices to the set N ∪ {⊥}; we use ⊥ to
model an undefined value. To represent this set, we define an algebraic datatype
Option:

_(datatype \Option
{

case \none();
case \some(\Edge_Id e);

})

with operations \is_some(o) for the test o 6= ⊥ and \the(o) for extracting
an edge identifier. The abstraction functions that map concrete data to pure
mathematical data are straightforward to define. For example,

_(def \Graph \abs_graph(Graph∗ G)
{

return (\Graph) {
.num_verts = G−>n,
.num_edges = G−>m,
.edge =

\lambda \Edge_Id i;
(i < G−>m) ?

(\Edge) { .src = G−>es[i].s, .trg = G−>es[i].t } :
(\Edge) { .src = 0, .trg = 0 }};

})

abstracts a concrete graph G into an abstract graph of type \Graph.
Similarly abstraction functions \abs_parent_edge and \abs_num are de-
fined to abstract tparent_edge and num respectively; we will refer to
\abs_parent_edge(G, parent_edge) as P.

Using the abstract types, we define the witness predicate as a conjunction of
two properties, one for each of the checker functions in Listing 2.7.

check_r: Vertex r is the root of the spanning tree:

r < G.num_verts ∧ ¬\is_some(parent_edge[r]) ∧ num[r] = 0

check_parent_num: Every vertex of the graph is connected to some other
vertex closer to r:

∀ \Vertex v; v < G.num_verts ∧ v 6= r −→
\is_some(parent_edge[v]) ∧ \the(parent_edge[v]) < G.num_edges ∧
(G.edge[\the(parent_edge[v])].trg == v ∧

num[v] == num[G.edge[\the(parent_edge[v])].src] + 1 ∨
G.edge[\the(parent_edge[v])].src == v ∧

num[v] == num[G.edge[\the(parent_edge[v])].trg] + 1)

Thanks to the low level of abstraction in the above predicates, the two checker
functions are easily verified by VCC. For the verification of check_parent_num,

2.3. Verification of Checker Implementations 33

we need to annotate the loop with the check_parent_num property in which
G.num_verts is replaced by the loop variable as a loop invariant. Moreover,
for every return FALSE, we need to assert, or restate, on the abstract level the
properties that are violated to guide VCC. Otherwise, it would fail to show
completeness of the checker. For instance,

if (parent_edge[v] < 0 || ((Edge_Id)parent_edge[v]) >= G−>m)
{

_(assert ¬\is_some(P[v]) ∨ \the(P[v]) ≥ \abs_graph(G).num_edges)
return FALSE;

}

is one of the two occurrences of such extra assertions in check_parent_num.
We express the postcondition of the checker, i.e., that any pair of vertices of

the graph G is connected by a path as follows:
∀ \Vertex u, v; u < G.num_verts ∧ v < G.num_verts −→
∃ \Path p; \natural n; \is_path(G, p, n, u, v)

Here, the type \Path is a sequence of vertices, represented as a mapping from
natural numbers to vertices, and the predicate \is_path(G, p, n, u, v) holds if
the path p of length n starts at u, ends at v, and only contains pairwise distinct
vertices that are connected by edges of the graph:

p[0] == u ∧
p[n] == v ∧
(∀ \natural i; i ≤ n −→ p[i] < G.num_verts) ∧
(∀ \natural i; i < n −→ \is_edge(G, p[i], p[i+1])) ∧
(∀ \natural i, j; i ≤ n ∧ j ≤ n ∧ i 6= j −→ p[i] 6= p[j])

The predicate \is_edge(G, u, v), for any two vertices u and v of G, is true if and
only if u and v are the endpoints of an edge of G:
∃ \Edge_Id i; i < G.num_edges ∧

(G.edge[i].src = u ∧ G.edge[i].trg = v ∨
G.edge[i].src = v ∧ G.edge[i].trg = u)

The final part of the formal proof—linking the high-level proofs with the
properties exported from VCC to Isabelle—is fairly straightforward. Proving
that the precondition and the witness predicate (cf. Section 2.3.1) match the
assumptions specified in the locale connected -components-locale involves no
reasoning beyond syntactical rewriting. To instantiate these assumptions, we
provide lifting functions that abstract from the concrete representations of
graphs and spanning trees stemming from our VCC specification to the high-level
representation used by the Isabelle graph library. Thus, if the checker accepts,
the lifted high-level graph is connected. Establishing the checker postcondition
(the connectivity of unlifted graphs) requires showing that any high-level path
witnessing reachability between two vertices corresponds to an unlifted path. This
is straightforward because our representation of paths in the VCC formalization
is close to the path representation of the Isabelle graph library.

34 Verification of Certifying Computations

Shortest Path Checker

Implementation We adopt the data structures of the previous case study
(Section 2.3.1) with the exception that the num array stores elements of type int
instead of Nat. This is because vertices may now also be unreachable from the
source vertex, and we encode this by requiring that num takes a negative value
for such vertices. We represent distances from the source vertex to any other
vertex by an array dist with elements of type int. Any negative value encodes
∞. Finally, the edge weights are modeled by an array cost that gives for every
edge a value of type ushort (an abbreviation for unsigned short).

Based on these types, we implement the shortest-path checker as a function
that accepts when all of the four functions given in Listing 2.9 accept. That is, we
check that the source vertex s is indeed the starting point (in check_start_val),
that the dist and num arrays are consistent with respect to unreachable vertices,
i.e., either both are finite or both are infinite (in check_no_path), that the
triangle inequality property (Section 2.2.2) is fulfilled (in check_trian), and that
the parent edge of every vertex v defines its distance value (in check_just).

There is a subtle point in the checker code. We want to establish the triangle
inequality (dist(u) + cost(u, v) ≥ dist(v) for all edges (u, v)) and the distance
justification (dist(u) + cost(u, v) = dist(v) if (u, v) is the parent edge of v)
over the extended natural numbers N ∪ {∞}. However, C knows only finite
precision arithmetic. We solve the case of infinite distances by appropriate case
distinctions. We solve the case of potential overflow in finite precision arithmetic
as follows: Distances are of type int, i.e., from the set {−231, . . . , 231 − 1} on a
32-bit platform, and edge costs are of type ushort, i.e., between 0 and 216 − 1,
and hence contained in the set of nonnegative values of type int. In arithmetic
expressions, we cast all nonnegative values to unsigned with range 0 . . . 232 − 1.
This guarantees that bounded integer arithmetic is exact and allows VCC to
conclude equalities and inequalities between natural numbers.

Note that there is an alternative approach where parent_edge is not part of
the witness. In that case check_just has to be rewritten. When considering a
node v, it has to iterate over all edges into v to find the edge that defines dist[v].
An efficient implementation of this iteration requires providing each vertex with
the list of edges into it.

Checker Correctness We now define our abstract specification for the shortest-
path checker. We use the same data structures as in the previous case study
(Section 2.3.1) with the exception that the num mapping now takes vertices to
extended naturals (N ∪ {∞}), represented by the type Enat. Extended naturals
provide an explicit value for infinity:

_(datatype \Enat
{

case \enat_inf();
case \enat_val(\natural n);

2.3. Verification of Checker Implementations 35

bool check_start_val(Vertex s, int∗ dist)
{

return dist[s] == 0;
}

bool check_no_path(Graph∗ G, int∗ dist, int∗ num)
{

Vertex v;

for (v = 0; v < G−>n; v++)
{

if (INF(dist[v]) != INF(num[v])) return FALSE;
}
return TRUE;

}

int check_trian(Graph∗ G, ushort∗ cost, int∗ dist)
{

Edge_Id e; Vertex source, target;

for (e = 0; e < G−>m; e++)
{

source = G−>es[e].s;
target = G−>es[e].t;

if (INF(dist[source])) continue;
if (INF(dist[target])) return FALSE;
if (VAL(dist[target]) > VAL(dist[source]) + cost[e]) return FALSE;

}
return TRUE;

}

bool check_just(Graph∗ G, Vertex s, ushort∗ cost, int∗ dist, int∗ parent_edge, int∗ num)
{

Vertex v, source; Edge_Id e;

for (v = 0; v < G−>n; v++)
{

if (v == s || INF(num[v])) continue;
if (parent_edge[v] < 0 || ((Edge_Id)parent_edge[v]) >= G−>m) return FALSE;

e = (Edge_Id)parent_edge[v];
source = G−>es[e].s;

if (G−>es[e].t != v) return FALSE;
if (INF(dist[source]) || VAL(dist[v]) != VAL(dist[source]) + cost[e]) return FALSE;
if (INF(num[source]) || VAL(num[v]) != VAL(num[source]) + 1) return FALSE;

}
return TRUE;

}

Listing 2.9. Functions composing the shortest-path checker. The predicate
INF(x) abbreviates x < 0, and VAL(x) stands for the type cast (Nat)x; Nat
is the C type unsigned as defined in Listing 2.6.

36 Verification of Certifying Computations

})

We define functions \is_enat_inf to check whether an extended natural is infinity
and \enat_val_of to convert an extended natural distinct from infinity into the
corresponding natural number. For better readability, we will write a =e ∞ for
\is_enat_inf(a). Moreover, we provide the predicates \enat_eq (abbreviated
by =e) and \enat_le (≤e) to decide equality and less-or-equal of two extended
naturals as well as a function \enat_add (+e) for the sum of an extended natural
and a natural number:

_(def \bool \enat_eq(\Enat e1, \Enat e2)
{

return
(e1 =e ∞ ∧ e2 =e ∞) ∨
(e1 6=e ∞ ∧ e2 6=e ∞ ∧ \enat_val_of(e1) = \enat_val_of(e2));

})

_(def \bool \enat_le(\Enat e1, \Enat e2)
{

return e2 =e ∞ ∨ (e1 6=e ∞ ∧ e2 6=e ∞ ∧ \enat_val_of(e1) ≤ \enat_val_of(e2));
})

_(def \Enat \enat_add(\Enat e, \natural n)
{

return (e =e ∞) ? \enat_inf() : \enat_val(\enat_val_of(e) + n);
})

The type of extended natural numbers is also used for the abstract representation
of the dist array. Again, as in the previous case study, concrete types and abstract
types are sufficiently similar such that abstraction functions relating one to the
other are straightforward to define. We omit them here.

The preconditions of this case study are that G is a wellformed graph and
that the source vertex s is a vertex of G, i.e., that s < G.num_verts holds. We
formalize the witness predicate as a conjunction of four properties, one for each
of the four checker functions in Listing 2.9.

check_start_val: Vertex s is indeed the starting point:

dist[s] =e \enat_val(0)

check_no_path: The num mapping and the dist mapping are consistent with
respect to unreachable vertices, i.e., both are either finite or infinite:
∀ \Vertex v; v < G.num_verts −→ (dist[v] =e ∞ <−−> num[v] =e ∞)

check_trian: The triangle inequality holds for all edges of the graph:

∀ \Edge_Id i; i < G.num_edges −→
dist[G.edge[i].trg] ≤e dist[G.edge[i].src] +e cost[i]

2.3. Verification of Checker Implementations 37

check_just: The parent edges encode a tree rooted at s and define the distance
values of reachable vertices:

∀ \Vertex v;
v < G.num_verts ∧ v 6= s ∧ num[v] 6=e ∞ −→
\is_some(parent_edge[v]) ∧ \the(parent_edge[v]) < G.num_edges ∧
v = G.edge[\the(parent_edge[v])].trg ∧
dist[v] =e dist[G.edge[\the(parent_edge[v])].src] +e cost[\the(parent_edge[v])] ∧
num[v] =e num[G.edge[\the(parent_edge[v])].src] +e 1

We have verified that each of these four properties holds if and only if the
corresponding checker function accepts. The three functions check_no_path,
check_trian, and check_just need additional annotations before VCC can verify
their correctness. The loops in these functions have to be annotated with loop
invariants that are, just as in the previous case study (Section 2.3.1), only simple
variants of the postconditions above. Also, as for the connected-components
checker, we need to explicitly state properties that are violated before every
return FALSE statement. Such properties are reformulations of concrete proper-
ties on the abstract level. In addition, both check_trian and check_just require
the graph under consideration to be wellformed, and check_just, furthermore,
requires that num and dist are consistent (the postcondition of check_no_path).
We add these requirements as preconditions to the checker functions.

In order to be able to express the postcondition of the shortest-path checker,
we define sequences of edges as a recursive datatype:

_(datatype \Path
{

case none();
case path(\Edge_Id i, \Path p);

})

Only particular instances of this datatype are paths in the given graph G. To
qualify valid paths, we proceed in two steps. We first define a predicate that
expresses the conditions under which a sequence of edges constitutes a walk in
graph G from vertex u to vertex v (Listing 2.10). Second, we define a predicate to
describe when the set of vertices of an edge sequence is distinct (Listing 2.11). A
path from vertex u to vertex v in G is a walk p from u to v with distinct vertices.
We define this as a predicate \is_path(G, p, u, v).

With a recursive function \path_cost that computes for a given path its
length using the cost mapping, we can finally state the postcondition of the
shortest path checker:

(∀ \Vertex v; v < G.num_verts −→
¬\is_enat_inf(dist[v]) <−−> (∃ \Path p; \is_path(G, p, s, v))) ∧

(∀ \Vertex v; v < G.num_verts ∧ ¬\is_enat_inf(dist[v]) −→
(∀ \Path p; \is_path(G, p, s, v) −→ \enat_val_of(dist[v]) ≤ \path_cost(cost, p)) ∧
(∃ \Path p; \is_path(G, p, s, v) ∧ \enat_val_of(dist[v]) = \path_cost(cost, p)))

38 Verification of Certifying Computations

_(def \bool \is_walk(\Graph G, \Path p, \Vertex u, \Vertex v)
{

switch (p)
{

case none(): return u = v;
case path(i, q):

return i < G.num_edges ∧ u = G.edge[i].src ∧ \is_walk(G, q, G.edge[i].trg, v);
}

})

Listing 2.10. A walk from vertex u to vertex v is a finite sequence of
connected edges of graph G where the source vertex of the first edge is u and
the target vertex of the last edge is v.

_(def \bool \occurs(\Graph G, \Vertex u, \Vertex v, \Path p)
_(decreases \size(p))

{
switch (p)
{
case none(): return u = v;
case path(i, q): return u = G.edge[i].src ∨ \occurs(G, u, G.edge[i].trg, q);

}
})

_(def \bool \distinct_verts(\Graph G, \Path p)
{

switch (p)
{
case none(): return \true;
case path(i, q): return ¬\occurs(G, G.edge[i].src, G.edge[i].trg, q) ∧ \distinct_verts(G, q);

}
})

Listing 2.11. Predicate \distinct_verts(G, p) holds if the set of vertices
connected by path p is distinct. Predicate \occurs(G, u, v, p) is true if and
only if u is either equal to v or equal to any vertex touched by path p.

2.3. Verification of Checker Implementations 39

We formally prove this property, under the assumption of the precondition and
the witness predicate.

Linking this Isabelle proof with the specification exported from VCC is a
matter of translating from one representation to another. We intentionally chose
to define paths and their costs in VCC similar to the way they are defined in the
Isabelle graph library to ease our translation proofs. Since there are several more
concepts to relate than in the previous checker (Section 2.2.1), our proofs for the
shortest-path checker are more tedious. Nevertheless, no complex reasoning is
required. We establish that the assumptions of the shortest-path-non-neg-cost
locale are implied by the checker precondition and witness predicate, and we prove
that our final theorem proved in that locale implies the checker postcondition.

Maximum Cardinality Matching Checker

Implementation We build the checker using the graph data structure as in
the previous case studies (Listing 2.6). We assume that graphs are wellformed
and have neither self-loops nor duplicate edges. We treat the edges of a graph
as undirected edges. Matchings are also represented by graphs. We require an
additional witness in the form of an array f that maps edge identifiers of the
matching to edge identifiers of the input graph. For instance, if a graph consists
of three edges (identified as 0, 1 and 2) and the computed matching consists
of the third edge (i.e., 2), then f would be an array with a single element 2
indicating how the only edge of the matching corresponds to the edges of the
input graph. Finally, the vertex labeling is represented by an array osc, which
is indexed by vertices and stores elements of type Nat. The checker function
requires an auxiliary array check that can store as many elements of type Nat as
there are vertices in the input graph, but at least two. We expect that this array
is allocated elsewhere and given as input to the checker.

In addition to the checker function, there are four helper functions (List-
ing 2.12). The checker accepts if the first three of them accept and if the fourth
function returns a value that is equal to the number of edges of the matching
M. In short, the helper functions perform the following tasks. The function
check_subset checks whether M is a subgraph of G with respect to the mapping
f. The function check_matching checks that M is indeed a matching (contains
no two edges that are incident). The function check_osc checks whether the
vertex labeling is an odd-set cover and that vertex labels are in the range
{0, . . . ,G−>n− 1}. Finally, the function weight computes the sum on the right-
hand side of Equation (2.2). This computation is optimized by first searching for
the greatest vertex label, which can be considerably smaller than the maximal
G−>n− 1, and then summing up partial sums only until this greatest label. The
main checker function passes the auxiliary array check to check_matching as the
degree_in_M argument and to weight as the count argument.

40 Verification of Certifying Computations

bool check_subset(Graph∗ G, Graph∗ M, Nat∗ f)
{

Edge_Id e;
for (e = 0; e < M−>m; e++)
{

if (f[e] >= G−>m) return FALSE;
if (M−>es[e].s == G−>es[f[e]].s && M−>es[e].t == G−>es[f[e]].t) continue;
if (M−>es[e].s == G−>es[f[e]].t && M−>es[e].t == G−>es[f[e]].s) continue;
return FALSE;

}
return TRUE;

}

bool check_matching(Graph∗ M, Nat∗ degree_in_M)
{

Vertex v; Edge_Id e;
for (v = 0; v < M−>n; v++) degree_in_M[v] = 0;
for (e = 0; e < M−>m; e++)
{

if (degree_in_M[M−>es[e].s] == 1 || degree_in_M[M−>es[e].t] == 1) return FALSE;
degree_in_M[M−>es[e].s] = 1;
degree_in_M[M−>es[e].t] = 1;

}
return TRUE;

}

bool check_osc(Graph∗ G, Nat∗ osc)
{

Edge_Id e; Vertex v, w;
for (v = 0; v < G−>n; v++) if (osc[v] >= G−>n) return FALSE;
for (e = 0; e < G−>m; e++)
{

v = G−>es[e].s;
w = G−>es[e].t;
if (osc[v] == 1 || osc[w] == 1 || (osc[v] == osc[w] && osc[v] ≥ 2)) continue;
return FALSE;

}
return TRUE;

}

Nat weight(Graph∗ G, Nat∗ osc, Nat∗ count)
{

Vertex v; Nat c, s, max = 1, r = (G−>n > 2) ? G−>n : 2;
for (c = 0; c < r; c++) count[c] = 0;
for (v = 0; v < G−>n; v++)
{

count[osc[v]] = count[osc[v]] + 1;
if (osc[v] > max) max = osc[v];

}
s = count[1];
for (c = 2; c < max + 1; c++) s += count[c] / 2;
return s;

}

Listing 2.12. Maximum cardinality matching checker’s helper functions.

2.3. Verification of Checker Implementations 41

Checker Correctness We build on the abstract graph data structure of List-
ing 2.8. We require that graphs are wellformed and contain no self-loops:
∀ \Edge_Id i; i < G.num_edges −→ G.edge[i].src 6= G.edge[i].trg

nor duplicate edges:
∀ \Edge_Id i1, i2; i1 < G.num_edges ∧ i2 < G.num_edges ∧ i1 6= i2 −→

G.edge[i1].src 6= G.edge[i2].src ∨ G.edge[i1].trg 6= G.edge[i2].trg

An abstract vertex labeling L is a mapping from vertices to natural numbers.
The mapping f from edge identifiers to edge identifiers has a straightforward
representation as an abstract mapping. We omit here, as in the previous case
studies, the description of abstraction functions from concrete to abstract values.

The witness predicate is a conjunction of four predicates, each related to one
of the helper functions in Listing 2.12.

check_subset: M must be a subgraph of G w.r.t. the edge mapping f, i.e., every
edge of M must also be an edge of G modulo symmetry of edges:
∀ \Edge_Id i; i < M.num_edges −→

f[i] < G.num_edges ∧
(M.edge[i].src = G.edge[f[i]].src ∧ M.edge[i].trg = G.edge[f[i]].trg ∨
M.edge[i].src = G.edge[f[i]].trg ∧ M.edge[i].trg = G.edge[f[i]].src)

check_matching: M must be a matching, i.e., no two edges of M have a vertex
in common:
∀ \Edge_Id i1, i2;

i1 < M.num_edges ∧ i2 < M.num_edges ∧ i1 6= i2 −→
M.edge[i1].src 6= M.edge[i2].src ∧ M.edge[i1].src 6= M.edge[i2].trg ∧
M.edge[i1].trg 6= M.edge[i2].src ∧ M.edge[i1].trg 6= M.edge[i2].trg

check_osc: L must be an odd-set cover of G, i.e., for every edge of G, one of
the edge’s vertices is labeled 1 or both vertices are labeled by the same
number greater than or equal to 2:
∀ \Edge_Id i; i < G.num_edges −→

L[G.edge[i].src] = 1 ∨
L[G.edge[i].trg] = 1 ∨
L[G.edge[i].src] = L[G.edge[i].trg] ∧ L[G.edge[i].src] ≥ 2

weight: Equation (2.2) must hold. We define it stepwise. The number of vertices
labeled with c is defined recursively:

_(def \natural \label_count(\Label L, \natural c, \natural i)
{

return (i = 0) ? 0 : ((L[i − 1] = c) ? 1 : 0) + \label_count(L, c, i − 1);
})

We have nc = \label_count(L, c, G.num_verts) for a vertex label c. The
sum of these numbers for labels greater than 1 is again defined recursively:

42 Verification of Certifying Computations

_(def \natural \rec_weight(\Label L, \natural n, \natural i)
{

return (i < 2) ? 0 : \label_count(L, i, n) / 2 + \rec_weight(L, n, i − 1);
})

We have
∑

i≥2bni/2c = \rec_weight(L, G.num_verts, m) where m is the
greatest label assigned to any vertex by L. The complete sum is then:

_(def \natural \full_weight(\Label L, \natural n, \natural i)
{

return \label_count(L, 1, n) + \rec_weight(L, n, i);
})

That is, we have n1 +
∑

i≥2bni/2c = \full_weight(L, G.num_verts, m) with
the same m as before. Finally, the predicate capturing Equation (2.2) is as
follows:

M.num_edges = \full_weight(L, G.num_verts, m) ∧
∀ \Vertex v; v < G.num_verts −→ L[v] ≤ m

Verifying the correctness of the checker (Section 2.3.1) is done in the same
way as the earlier case studies for the first three predicates above. We only have
to provide the right loop invariants, and simple variations of the predicates to
be proved are sufficient. In check_matching, we need additional loop invariants.
Along with the first loop, we accumulate the knowledge about the initialization
of the degree_in_M array by specifying that the first positions of the array have
already been set to 0:
∀ Nat u; u < v −→ degree_in_M[u] = 0

Moreover, on the second loop, we need three additional loop invariants. One
invariant states that values stored in degree_in_M are in range:
∀ Nat v; v < M−>n −→ degree_in_M[v] ≤ 1

Another invariant states that vertices, for which degree_in_M is still 0, cannot
be part of any already checked edge:
∀ Nat v; v < M−>n ∧ degree_in_M[v] = 0 −→
∀ Nat e1; e1 < e −→ M−>es[e1].s 6= v ∧ M−>es[e1].t 6= v

Finally, vertices for which degree_in_M has already been set to 1 are mapped
by a ghost mapping E to their adjacent edge in the matching M:
∀ Vertex v; v < M−>n ∧ degree_in_M[v] = 1 −→

E[v] < e ∧ (M−>es[E[v]].s = v ∨ M−>es[E[v]].t = v)

This invariant is required to prove completeness. We maintain this invariant by
updating the ghost mapping E in the loop body accordingly.

Proving the weight function correct is the most intricate part of the checker
verification. There are two properties that need to be shown: functional cor-
rectness and the absence of overflows. Functional correctness requires that the

2.3. Verification of Checker Implementations 43

function computes the ni and the overall sum of Equation (2.2) correctly, as
specified by the weight predicate above. Absence of overflows requires that the
additions in both the second and third loop do not overflow. Surprisingly, the
absence of overflows is much harder to establish than functional correctness.

We concentrate first on functional correctness. The second loop updates the
count array in a way that maintains the following property:
∀ Nat j; j < r −→ count[j] = \label_count(L, j, v)

From this property follows this loop invariant on the third loop:
s = \full_weight(L, G−>n, c − 1))

Together with a further loop invariant for the second loop to guarantee that
max is the greatest label seen so far, we can conclude that the weight function is
functionally correct.

The addition in the second loop can never overflow because in each loop
iteration, the loop variable is an upper limit on the value count[i] for each label i.
Concerning the addition in the third loop, we observe that in each loop iteration,
the value of s is bounded by the number of vertices in G. To establish this
property, we build up a ghost map sum in the second loop in such a way that in
every iteration of that loop, this map fulfills the following invariant:

sum[1] = count[1] ∧
(∀ Nat j; 1 < j ∧ j < r −→ sum[j] = sum[j − 1] + count[j]) ∧
(∀ Nat j; 1 < j ∧ j < r −→ sum[j] ≤ v)

Maintaining this invariant requires updating the sum map during each iteration
of the second loop. We do so in a nested ghost loop in which we propagate the
increment that happened on the count array to every possibly affected element
sum[j].

The postcondition of the checker expresses that the cardinality of any match-
ing of G cannot be smaller than the cardinality of M:
∀ \Graph M2; \Edge_Map I2; \is_subset(G, M2, I2) ∧ \is_matching(M2) −→

M2.num_edges ≤ M.num_edges

Instantiating this Isabelle proof for the data structures and properties ex-
ported from VCC is fairly straightforward since both formalizations have been cho-
sen intentionally close to each other. We prove by induction that N {0 ..< n} L l
equals \label_count(L, l, n) for every label l. Moreover, we prove by induction
that weight {2 .. k} f equals \full_weight(L, n, k) if f l and \label_count(L, l, n)
coincide. After showing that |M | equals M.num_edges, we can establish the
witness property for the matching checker.

2.3.2. Verification of Imperative Simpl code

In the previous section, we described how to verify the implementation of C
checkers using the automatic code verifier VCC. We verified the witness properties

44 Verification of Certifying Computations

of the checkers in Isabelle/HOL and verified the implementation of the checkers
in VCC. Using two system requires the added effort of duplicate formalization in
both systems. In addition, it requires trusting a larger code base.

We investigate the feasibility of carrying out the entire verification of the
checkers within Isabelle/HOL. We implement the checkers both in Simpl and in C.
Simpl [Schirmer, 2006] is a generic imperative programming language embedded
into Isabelle/HOL that was designed as an intermediate language for program
verification. The Simpl checkers are verified directly within Isabelle.

In this section we describe the verification of a Simpl implementation of the
connected components checker and the shortest path checker (with nonnegative
edge costs) within Isabelle/HOL. This allows us to estimate how much of the
verification effort is needed for the verification of the actual algorithm and how
much is needed for dealing with C intricacies.

Connected Components Checker

Implementation and Checker Correctness We begin by fixing the types we
use for the Simpl implementation (see Listing 2.13). The type IGraph represents
a graph G by the number of vertices ivertex -cnt G, number of edges iedge-cnt G,
and a function iedge-cnt G mapping from edge IDs to edges. Vertices of G
range over the set {0, . . . , (ivertex -cnt G) − 1}. Edges IDs range over the set
{0, . . . , (iedge-cnt G)− 1}, and edges are pairs of vertices and are obtained using
the function iedge-cnt G. A graph is wellformed if both endpoints are smaller
than ivertex -cnt G.

Each of the conditions in Listing 2.1 is checked by a procedure. For exam-
ple, the procedure parent-num-assms in Listing 2.13 checks parent-num-assms
in the obvious way. The loop invariant parent-num-assms-inv states that
parent-num-assms holds up to vertex i.

The keyword VAR MEASURE in the implementation (see Listing 2.13)
introduces the measure function used for the termination proof and guides the
automated tools in Isabelle to prove termination automatically. The command
ANNO binds the logical variables that are to be used in the invariant.

Total correctness of each function is formulated as a Hoare triple; see Lemma
parent-num-assms-spec in Fig. 2.13. Invoking the VCG and using the annotations
(loop invariant and measure function) is sufficient for the correctness proof.

2.3. Verification of Checker Implementations 45

type_synonym IVertex = nat
type_synonym Edge-Id = nat
type_synonym IEdge = IVertex × IVertex
type_synonym IPEdge = IVertex ⇒ Edge-Id option
type_synonym INum = IVertex ⇒ nat
type_synonym IGraph = nat × nat × (Edge-Id ⇒ IEdge)

definition parent-num-assms-inv :: IGraph⇒IVertex⇒IPEdge⇒INum⇒nat⇒bool
where parent-num-assms-inv G r p n k ≡ ∀ i < k. i 6= r → (case p i of None ⇒ False

| Some x ⇒ x < iedge-cnt G ∧ snd (iedges G x) = i ∧ n i = n (fst (iedges G x)) + 1)

procedures parent-num-assms
(G :: IGraph, r :: IVertex, parent-edge :: IPEdge, num :: INum | R :: bool)

where vertex :: IVertex, edge-id :: Edge-Id
in ANNO (G, r, p, n). {| G = G ∧ r = r ∧ parent-edge = p ∧ num = n |}

R := True ; vertex := 0 ;
TRY
WHILE vertex < ivertex -cnt G
INV {| R = parent-num-assms-inv G r parent-edge num vertex
∧ G = G ∧ r = r ∧ parent-edge = p ∧ num = n
∧ vertex ≤ ivertex -cnt G|}

VAR MEASURE (ivertex -cnt G − vertex)
DO
IF (vertex 6= r) THEN
IF parent-edge vertex = None THEN
R := False ;
THROW

FI ;
edge-id := the (parent-edge vertex) ;
IF edge-id ≥ iedge-cnt G ∨ snd (iedges G edge-id) 6= vertex ∨
num vertex 6= num (fst (iedges G edge-id)) + 1 THEN
R := False ;
THROW

FI
FI ;
vertex := vertex + 1

OD
CATCH SKIP END
{|G = G ∧ r = r ∧ parent-edge = p ∧ num = n
∧ R=parent-num-assms-inv G r parent-edge num (ivertex -cnt G)|}

lemma (in parent-num-assms-impl) parent-num-assms-spec:
∀G r p n. Γ`t{|G = G ∧ r = r ∧ parent-edge = p ∧ num = n|}
R := PROC parent-num-assms(G, r, parent-edge, num)
{| R = parent-num-assms-inv G r p n (ivertex -cnt G)|}

Listing 2.13. Excerpts from the Simpl implementation and verification of
connectedness. The Lemma parent-num-assms-spec, formulated as a Hoare
triple, states that the procedure parent-num-assms terminates (indicated by
`t) and computes parent-num-assms-inv . Observe the distinction between
logical and program variables; x versus x for a variable with name x.

46 Verification of Certifying Computations

Shortest Path Checker

Implementation We use the same type for graphs used for the connected
components checker. Similarly, for each of the properties assumed in the locale,
we implement a procedure checking this property and returning True if and
only if the property holds. For example, the annotated procedure is-wellformed
in Listing 2.14 checks wether a graph is wellformed. The procedure loops over
edge IDs in the graph and checks whether the endpoints of the corresponding
edges are within the range of vertices in the graph. We add a loop invariant
is-wellformed -inv to help with the verification. It states that the result R of the
procedure is True if and only if up to step i in the loop all edges with edge IDs
less than i have their endpoints in the graph.

Checker Correctness We prove the checker implementation terminates. The
termination arguments are all trivial (loops counting upwards to some con-
stant). The function abs-Graph takes a concrete graph and converts it
to an abstract graph. The lemma is-wellformed -spec (see Listing 2.14)
states that the procedure is-wellformed accepts if and only if the invariant
is-wellformed -inv(G, (iedge-cnt G)) evaluates to true. We then show that the
invariant holds if and only if the abstract graph abs-Graph(G) is wellformed
(which is one of the assumptions in the shortest-path-non-neg-cost locale). For
all other procedures we show that their results are equivalent to some locale
assumption (applied to the abstracted graph). Eventually we show that the
checker procedure is equivalent to the locale. By this we conclude our proof.

2.3.3. Verification of C code within Isabelle/HOL

In this section, we describe the verification of a C implementation of the con-
nected components checker within Isabelle/HOL. To translate from C to Is-
abelle we use the C-to-Isabelle parser that was developed as part of the seL4
project [Klein et al., 2010] and was used to verify a full operating system kernel.
We do not work on the output of the parser directly, but use the AutoCorres
tool [Greenaway et al., 2012] that simplifies reasoning about C in Isabelle/HOL.
This approach (the AutoCorres approach) avoids double formalizations in two
systems and reduces the trusted code base: instead of trusting VCC, one now
has to trust the C-to-Isabelle parser, a significantly simpler program. Since we
are the first external users of AutoCorres, it was not clear at the beginning of
our work whether the AutoCorres approach would be competitive. In the case
studies we carried out, we found it to be competitive, if not superior.

Connected Components Checker

Implementation and Checker Correctness The C representation of graphs
is similar to that in Simpl. In particular, numbers are now of bounded precision.

2.3. Verification of Checker Implementations 47

theorem (in shortest-path-non-neg-cost) correct-shortest-path:
assumes v ∈ verts G shows dist v = µ c s v

type_synonym IVertex = nat
type_synonym Edge-Id = nat
type_synonym IEdge = IVertex × IVertex
type_synonym IGraph = nat × nat × (Edge-Id ⇒ IEdge)

definition is-wellformed -inv :: IGraph ⇒ nat ⇒ bool where
is-wellformed -inv G i ≡
∀ k < i. ivertex -cnt G > fst (iedges G k) ∧ ivertex -cnt G > snd (iedges G k)

procedures is-wellformed (G :: IGraph | R :: bool)
where i :: nat , e :: IEdge
in ANNO G. {| G = G |}

R := True ;
i := 0 ;
TRY
WHILE i < iedge-cnt G
INV {| R = is-wellformed -inv G i ∧ i ≤ iedge-cnt G ∧ G = G |}
VAR MEASURE (iedge-cnt G − i)
DO
e := iedges G i ;
IF ivertex -cnt G ≤ fst e ∨ ivertex -cnt G ≤ snd e THEN
R := False ;
THROW

FI ;
i := i + 1
OD

CATCH SKIP END
{| G = G ∧ R = is-wellformed -inv G (iedge-cnt G) |}

lemma (in is-wellformed -inv -step) is-wellformed -spec:
∀G. Γ `t {|G = G|} R:=PROC is-wellformed(G) {|R = is-wellformed -inv G (iedge-cnt G)|}

Listing 2.14. Excerpts from witness property, implementation, and verifica-
tion of shortest paths in Isabelle/HOL.

This means we need to prove absence of overflow during verification. The number
of vertices and edges are now unsigned ints. We represent spanning trees as
explained above, but use arrays instead of functions. The function parent-edge
is represented as an array of (signed) int, and num as an array of unsigned int.
We require as a precondition that the input graph is wellformed.

The check -connected checker is a function that accepts exactly when the two
functions check -r and check -parent-num accept. The first function checks that
r is indeed the root of the spanning tree. The second function checks for every
vertex v different from r that the edge parent-edge[v] is incident to v and that
the other endpoint of the edge has a number one smaller than num[v].

48 Verification of Certifying Computations

The first step in the C verification is calling the C-to-Isabelle parser and
invoking AutoCorres. As in Simpl, for each function in the code we prove a
corresponding specification lemma, formulated as a Hoare triple and reasoned
about using a VCG. The termination proof of the checkers is as trivial as in
the Simpl case. For proving functional correctness, we introduce some helper
functions that assist in relating the implementation types to Isabelle types. For
example, the abstraction predicate array list, arrlist , takes as input the state of
the heap h, a list l and a pointer p and checks whether p points in h to an array
containing the values of l. We also introduce a set of lemmas to ease dealing
with bounded numbers.

We prove that the checker function checks the conditions in Listing 2.1. This
proof happens under the assumption that the pointers to the graph, to its edges,
to num and to parent-edge can be abstracted to Isabelle datatypes (using the
arrlist predicate).

Experiences and Lessons Learned The successful verification of this checker
encourages us that the AutoCorres approach is feasible. The effort for the
verification of the C-version of the connectedness checker was similar to the effort
required by the VCC approach. VCC knows more about C and this made it easier
to reason about the C-program. This advantage of VCC would become more
significant in programs that use low-level features of C more intensively, e.g., bit
operations on words. On the other hand, one is forced to formalize a small number
of graph-theoretic concepts such as path in two logical systems, complicating
the VCC-approach. Formalizing a small number of graph-theoretic concepts
sufficed because verifying that the C-checker correctly checks the assumptions
from Figure 2.1 needs no graph-theoretic knowledge and hence there is a clear
separation of labor between VCC and Isabelle/HOL. The disadvantage of double
formalization becomes clearer in programs that need complex mathematical
reasoning in the checker correctness proof and hence would require formalizing
more advanced concepts in VCC. The checker for non-planarity is an example to
this effect [Noschinski et al., 2014]. There the correctness proof of the program
requires graph-theoretic reasoning. If we had tried to verify this example using
the VCC-approach, we would have had to formalize a non-trivial theory twice.

The connectedness checker verified using the VCC ap-
proach [Alkassar et al., 2014] has an unintended weakness. Not every
representable connected graph has a spanning tree that could be represented as
input to the checker. This is because the vertices of the graph were represented
as unsigned int and the array num had type unsigned short; this holds true
for the program actually verified, not for the program listed in the paper. Thus
graphs having no spanning tree of depth bounded by the size of unsigned short
had no representable witness. VCC had no difficulties in automatically verifying
that the addition in the C equivalent of num (fst (iedges G edge-id)) + 1 (see
Fig. 2.13) does not overflow, because types smaller than int are lifted to int for

2.4. Related Work 49

arithmetic operations in C. In the AutoCorres verification, we had to manually
prove that s+ 1 ≤ u, where s and u are the maximum values of unsigned short
and int, respectively. This led us to notice and modify the type of num in the
checker to unsigned int. Now the addition could potentially overflow and we
need to show that it does not. This is proven by strengthening the loop invariant
to infer that num-value cannot exceed the number of vertices and hence does
not overflow in a correct witness. In order to prove that the checker accepts if
and only if the assumptions in Listing 2.1 hold one needs the stronger witness
property mentioned above. Even though in this case manually discharging
guards was useful, it demonstrates that VCC saves effort when it comes to
automatically discharging guards.

2.4. Related Work

Certifying Algorithms The notion of a certifying algorithm is ancient. In
the 9th century, Al-Khawarizmi already described how to (partially) check the
correctness of a multiplication in his book on algebra. The extended Euclidean
algorithm for greatest common divisors is also certifying; it dates back to the
17th century. Yet, formal verification of checkers is recent.

Verifying Checkers In 1997, Bright et al. [Bright et al., 1997] verified
a checker for a sorting algorithm that has been formalized in the
Boyer-Moore theorem prover [Boyer and Moore, 1990]. De Nivelle and
Piskac formally verified the checker for priority queues implemented in
LEDA [de Nivelle and Piskac, 2005]. Bulwahn et al. [Bulwahn et al., 2008] de-
scribe a verified SAT checker, i.e., a checker for certificates of unsatisfiabil-
ity produced by a SAT solver. They develop the checker and prove its cor-
rectness within Isabelle/HOL. Similar proof checkers have been formalized
in the Coq [Bertot and Castéran, 2004] proof assistant [Darbari et al., 2010,
Armand et al., 2010]. CeTA [Thiemann and Sternagel, 2009], a tool for certi-
fied termination analysis, is also based on formally verified checkers. In contrast
to our approach, all mentioned checkers are entirely developed and verified
within the language of a theorem prover. The DeCert project aims to design
an architecture where either decision procedures are proven correct within Coq
or produce witnesses allowing external checkers to verify the validity of their
results. [Besson et al., 2010] provides an example.

More on VCC In the Verisoft XT project [Verisoft XT, 2010] VCC was success-
fully used to verify tens of thousands of non-trivial C code. So far, the majority
of its verification targets have been restricted to system-level code from the do-
main of microkernels and hypervisors [Baumann et al., 2009, Klein et al., 2010,
Shi et al., 2012]. Our work extends the range of VCC applications to graph

50 Verification of Certifying Computations

algorithms and, in general, to any code that requires nontrivial mathematical
reasoning to establish full functional correctness.

Theorem Provers as Backends Previous work that proposes, as we do, the use
of interactive theorem provers as backends to code verification systems comprises,
for instance, the link between Boogie and Isabelle/HOL [Böhme et al., 2010]
and the link between Why and Coq [Filliâtre and Marché, 2007]. Both systems
have a C verifier frontend. Such approaches for connecting code verifiers and
proof assistants usually give proof assistants the same information that is made
available to the first-order engine, overwhelming the users of the proof assistants
with a mass of detail. Instead, we allow only clean chunks of mathematics to
move between the verifier and the proof assistant. This hides details of the
underlying programming languages from the proof assistant, thus requiring the
user to discharge only interesting proof obligations.

Verification within Theorem Provers Verifying imperative code within in-
teractive theorem provers such as Coq, HOL [Gordon and Melham, 1993], or
Isabelle/HOL is also an active field of research. It requires a formaliza-
tion of the imperative language and its semantics within the theorem prover.
Norrish presented a formal semantics of C formalized in the HOL theorem
prover [Norrish, 1998]. Parallel to this work, a subset of C, called C0, was formal-
ized in Isabelle/HOL [Leinenbach et al., 2005]. Schirmer developed a verification
environment for sequential imperative programs within Isabelle and embedded
C0 into this environment [Schirmer, 2006]; his verification environment is written
in Simpl. Schirmer’s work has been applied, for instance, to verify a compiler
for C0 [Petrova, 2007]. Moreover, the Verisoft project [Alkassar et al., 2009]
reasoned about Simpl code within Isabelle.

The seL4 microkernel that is written in low-level C was verified within
Isabelle/HOL using the C-to-Isabelle parser [Klein et al., 2010]. The underlying
approach is refinement starting from an abstract specification via an intermediate
implementation in Haskell to the final C code. Coq [Bertot and Castéran, 2004]
was used both for programming the CompCert compiler and for proving its
correctness [Leroy, 2009]. CFML is a verification tool embedded in Coq that
targets imperative Caml programs [Charguéraud, 2011]. It was used to verify
several imperative data structures.

An Endless Fascination with Shortest Path Shortest-path (with non-
negative edge costs) algorithms, especially imperative implementations
thereof, are popular as case studies for demonstrating code verifica-
tion [Charguéraud, 2011, Nordhoff and Lammich, 2012, Böhme et al., 2008].
Existing verification efforts target full functional correctness as opposed to
instance correctness. Verifying instance correctness is orthogonal to verifying the

2.4. Related Work 51

implementation of a particular shortest path algorithm. In particular, our work
is directly applicable to any implementation of shortest-path that is instrumented
to provide the necessary witness expected by our checker.

The Other Checkers To our knowledge, there has been no other attempt to
verify algorithms or checkers for connected components or maximum cardinality
matchings. We are also the first to attempt any verification work on the shortest
path problem with arbitrary edge costs.

Code Generation Since checkers are fairly simple programs that are not perfor-
mance critical, code generation is a viable alternative to our explored approaches.
However, generating C programs from theorem provers is still beyond the state of
the art. The next chapter describes recent related work, that is still in progress,
where code generation is used to ease the Isabelle verification of a C file system.

52 Verification of Certifying Computations

53

3
Verification of a C File System

This chapter discusses an ongoing project at the Trustworthy Systems group at
NICTA aiming to develop a framework for verifying file systems, in particular, it
explains my contribution to the project. This project is in collaboration with
Sidney Amani, Zillin Chen, Liam O’Connor, Gernot Heiser, Gabriele Keller,
Gerwin Klein, Toby Murray and Yutaka Nagashima. I start by introducing the
overall project and then explain my contribution.

The Trustworthy Systems group at NICTA aims to formally verify systems
software. In the L4.verified project the group formally verified the seL4 micro-
kernel [Klein et al., 2010]. An ongoing project aims to automatically synthesize
device drivers from formal specifications [Ryzhyk et al., 2009].

File systems account for a large portion of the code base of a kernel. For
example the Linux kernel source tree presently contains 49 different file systems.
The file system code is a significant source of kernel bugs despite its conceptual
simplicity. This is due to the frequent error handling. Most bugs in file systems
are semantic faults, and hence static analysis, while useful [Ball et al., 2010,
Bessey et al., 2010], is not sufficient for eliminating most bugs [Lu et al., 2014].
To ensure the reliability of file systems, formal verification of their full functional
correctness is necessary [Keller et al., 2013].

Verification of file systems, however, is rather challenging due to their diversity
and their large code bases. Their code though is conceptually straightforward
making them good candidates for automation. The work proposes a framework for
verifying full functional correctness of file systems in reasonable time through co-
generation of code and proofs. One writes the file system in a non-Turing complete
executable domain specific functional language, currently called CDSL. The type
system of CDSL guarantees that all errors are handled. The CDSL compiler

54 Verification of a C File System

Isabelle/HOL
High-level Correctness Specification

Isabelle/HOL
Value Semantics

CDSL
Executable Specification

Isabelle/HOL
Update Semantics

Isabelle/HOL
SIMPL Semantics

C Subset
Generated File System Code

Isabelle/HOL
Generated Refinement Proof

Isabelle/HOL
Manual Refinement Proof

Figure 3.1. Structure of a CDSL correctness proof. Reprinted
from [O’Connor-Davis et al., 2014]

generates an efficient C implementation and an executable Isabelle specification.
The idea is to develop tools that generate the proof of correspondence between
the C code and the generated executable specification automatically. This way
instead of manually proving that a C program corresponds to its high level
Isabelle specification, one only needs to manually prove that the executable and
the high level Isabelle specification of the C code correspond, which significantly
reduces the verification effort. See Figure 3.1 for more details.

CDSL is deeply embedded1 into Isabelle/HOL and has two semantics that
are formalized and proven equivalent in Isabelle/HOL. The first is the value
semantics that provides a functional view of the language and does not talk
about what is stored in the memory and pointer locations. Hence it is convenient
to relate it to the high level specification. The second is the update semantics
that provides a more imperative view and talks about the store and pointer
locations and is therefore easier to relate to the C implementation. The language
is still being extended to properly account for loops and arrays.

My contribution to the project is relating CDSL and C. I define a Hoare
logic for the update semantics of CDSL and prove weakest precondition lemmas
for CDSL statements. Moreover, I define a correspondence relation between
CDSL and C statements and write lemmas relating CDSL statements with
corresponding C statements. In order to relate return values in C and CDSL and
states of C memory and CDSL stores, I define a correspondence between CDSL

1For a discussion of shallow and deep embeddings see Section 1.3.3.

3.1. CDSL 55

values and C values. The state relation and return relation are different for every
program depending on the structs used in the program. They therefore need to
be automatically generated. The correspondence lemmas between statements
need to be customized to those relations to allow for simplification. I manually
proved that some small examples of CDSL and C code are equivalent. Those
manual proofs need to eventually be automatically generated. This is work in
progress.

3.1. CDSL

CDSL is a functional programming language with a linear type system. When
an object has a linear type, this simply means that it is used exactly once. The
functional semantics of the language eases verification and the linear type system
allows many program properties to be ensured statically. Using linear types
for all dynamic data structures maintains memory safety in the presence of
destructive updates without using garbage collection [Wadler, 1990].

The value semantics provides a functional view, passing arguments by value.
The update semantics is a more imperative view, with a mutable store, pointers,
and destructive updates. Here we explain the update semantics because it is
the relevant semantics for relating CDSL code to the C code generated from it.
A formal description of both semantics and a formal proof of their equivalence
are given in [O’Connor-Davis et al., 2014]. It is also proven statically that every
CDSL program terminates.

3.1.1. Abstract Syntax

CDSL values have one of two types: boxed or unboxed. Values of unboxed type
are passed by copy and values of boxed type are either linear or shareable.

A CDSL program either returns a list of Success values of type Succeeds
or an error code and a list of Failure values of type Fails. The type CanFail
indicates that a return value is either of type Succeeds or Fails .

The CDSL language is defined by a datatype statement with the following
constructors:

Return vs : returns a list of expressions vs.

Fail e vs : fails and returns an error code e and a list of expressions vs.

Seq s t : Sequential composition of a statement s and a statement continuation
t.

If c s t : Conditional statement, if c then s else t.

56 Verification of a C File System

AApp f es : Application of an abstract function, defined outside of CDSL, called
f on arguments es.

Case e n s t : Case statement with more than two arguments

Esac e n s : Case statement with only two arguments

LetBang vs s t : similar to Seq statements. In addition to the statement s and
the statement continuation t, it also takes a list of linear objects vs and
allows programmers to read the content of those objects more than once
without altering them. Without LetBang statements one would have to
replace a linear object with a new linear object every time it is read.

Take r f : A record is modeled as a list of (field name × value option) paris.
Take r f returns the value of the field f of a linear record r and replaces
the value by None. The field cannot have value None before the operation.

Put r f e : Sticks e into field f of linear record r, The field must have value
None before the operation.

Promote s : Generalizes the return type of statement s from Succeeds or Fails
to CanFail .

For i args accs reads a : Loops restricted to iterators over data structures.

The typing relation stmt-type γ s τ states that statement s is well-typed2 and
has type τ under the type environment γ. The environment matching relation
uval -typed -pointers-env σ Γ γ input ireads matches a value environment Γ and
a type environment γ. For more information about the type system and the
environment matching relation, see [O’Connor-Davis et al., 2014].

3.1.2. Update Semantics

The update semantics resembles that of an imperative language: Values may
also be pointers that are names of locations in the mutable store σ.

The big-step evaluation relation Γ ` (σ, c) ⇓! (σ′, r) states that under the
value environment Γ, program c using store σ evaluates to value r and updates
the store to σ′. The store maps each location to either Some value or the free
space None. Variables are represented by De Bruijn indices [de Bruijn, 1972]
rather than names. 3 The value environment Γ is a list of values (of the variables).
It represents a map from variables to values where the first value is the value of
the variable with De Bruijn index zero and so on.

2 i.e., respects the type system of CDSL
3A De Bruijn index is a natural number representing the occurrence of a variable in a term.

It denotes the number of intermediate binders between the occurrence of a variable and its
corresponding binder.

3.1. CDSL 57

We use the notation [e]σΓ to mean the value resulting from evaluating an
expression e under the value environment Γ and the CDSL store σ. We overload
the notation [vs]σΓ to refer to the list of values resulting from evaluating the list
of expressions vs. The following is a selection of the rules defining the update
semantics of CDSL:

Return
Γ ` (σ,Return vs) ⇓! (σ, Success [vs]σΓ)

If
Γ ` (σ, if [b]σΓ = true then s else t) ⇓! (σ′, r)

Γ ` (σ, If b s t) ⇓! (σ′, r)

The C in the Seq and LetBang rules is a continuation of the form OnlySuccess t,
OnlyError h, or HandleError t h. We present the rules for the evaluation relation
on continuations Γ ` (σ′′, r, C) ⇓! (σ′, r′) later on in the section.

Seq
Γ ` (σ, s) ⇓! (σ′′, r) Γ ` (σ′′, r, C) ⇓! (σ′, r′)

Γ ` (σ, Seq s C) ⇓! (σ′, r′)

LetBang
Γ ` (σ, s) ⇓! (σ′′, r) Γ ` (σ′′, r, C) ⇓! (σ′, r′)

Γ ` (σ, LetBang vs s C) ⇓! (σ′, r′)

Take
[lv]σΓ = Ptr l σ l = Some (RecVal r) (f, Some rv) ∈ set r

Γ ` (σ,Take lv f) ⇓! (σ(l := Some (RecVal r′)), Success [Ptr l, rv])
where r′ is the record resulting from replacing the value of f in r by None.

Put
[lv]σΓ = Ptr l σ l = Some (RecVal r) (f,None) ∈ set r

Γ ` (σ,Put lv f e) ⇓! (σ(l := Some (RecVal r′)), Success [Ptr l])
where r′ is the record resulting from replacing the value of f in r by [e]σΓ.

AApp
afun-sem-upd fn (σ, [es]σΓ)(σ′, rs)

Γ ` (σ,AApp fn es) ⇓! (σ′, rs)
where afun-sem-upd fn (σ, [es]σΓ)(σ′, rs) defines the behavior of the abstract
function fn.

The following are the evaluation rules for continuations:

Cont-Success
vs@Γ ` (σ, s) ⇓! (σ′, r′)

Γ ` (σ, Success vs ,OnlySuccess s) ⇓! (σ′, r′)

Cont-Failure
LVal(W32 v)#vs@Γ ` (σ, t) ⇓! (σ′, r′)

Γ ` (σ,Failure v vs ,OnlyError t) ⇓! (σ′, r′)

58 Verification of a C File System

where LVal(W32 v) is the literal value corresponding to error value v.

Cont-HandleError-Success
vs@Γ ` (σ, s) ⇓! (σ′, r′)

Γ ` (σ, Success vs ,HandleError s t) ⇓! (σ′, r′)

Cont-HandleError-Failure
LVal(W32 v)#vs@Γ ` (σ, t) ⇓! (σ′, r′)

Γ ` (σ,Failure v vs ,HandleError s t) ⇓! (σ′, r′)

Most of the rules are straightforward, except for the rules Take and Put. These
two rules operate on pointers and destructively update the records they point to
in the store. The mutable store here is quite abstract compared to the heap of
bytes on an actual machine or even the typed heap of [Greenaway et al., 2012].
We bridge the remaining gap by an automatically generated refinement proof,
which is discussed in the next section.

3.2. Correspondence between C and CDSL

This section explains my contribution to the project. This work was initiated and
supervised by Toby Murray. It builds towards automating the proof that CDSL
programs corresponds to the C code generated from them. More precisely, the
CDSL compiler produces C code from CDSL programs. We aim to automatically
generate proofs of correctness for this generated C code.

The correctness statement between C and CDSL code is a refinement theo-
rem between the CDSL program’s update semantics and the semantics of the
generated C code; i.e., we are generating a new proof for each program. We chose
using the update semantics for this proof, because it is closer to the semantics
of C. Since the update semantics and the value semantics are proven equiva-
lent [O’Connor-Davis et al., 2014], we can add another abstraction step on top of
this C correctness statement. This gives us a CDSL program in value semantics
that is connected by formal proof to its C implementation and using translation
validation [Pnueli et al., 1998], eventually to the final binary [Sewell et al., 2013].

We are making use of AutoCorres that abstracts the C code into monadic
C code (for more details see Section 1.3.4). The target of our refinement
proof is no longer low-level C semantics, but rather the monadic C abstraction;
which simplifies automation. In particular, we define a correspondence relation
corres between CDSL statements and monadic C statements. To ease the proof
automation process later on, we define a Hoare logic for the update semantics of
CDSL and give weakest precondition lemmas that create a VCG for CDSL. The
semantics of CDSL loops at the time of writing are in flux and so we consider
for now only the loop free subset of CDSL.

3.2. Correspondence between C and CDSL 59

The C code generation is straightforward and does not do any global opti-
mizations or transformations. The code generation for each individual construct
corresponds to precisely one corres proof rule in Isabelle that connects the CDSL
update semantics for that construct with its monadic C representation. The
refinement proof for the entire program then simply composes these rules ap-
propriately. We already have some manual refinement proofs on small examples
that show that the corres proof rules compose. The composition of the rules can
be automated leading to an automatic proof generation of the correctness of the
generated C. This is ongoing work.

The corres proof rules depend on preconditions about the expected state
of the program, for instance, preconditions about the type and validity of
pointers in the heap. We propagate the conditions similarly to the proof calculus
of [Cock et al., 2008]. Since our corres proof rules are specialized to CDSL and
to the operation of the compiler, we can predict the form of these preconditions
and design proof rules to combine them. This is the basis for automating these
proofs of refinement.

3.2.1. A Hoare Logic and Weakest Precondition Rules

Every type correct CDSL program terminates. Therefore we only need a Hoare
logic for partial correctness. A Hoare formula is of the form {|P |} c {|R,E|} and
denotes that program c starting in a state satisfying P ensures R in the case of
success and E in the case of failure. The following is the notion of validity of a
Hoare formula:
definition

cdsl -valid :: uval environment ⇒(store ⇒ bool) ⇒ statement ⇒
(uval list ⇒ store ⇒ bool) ⇒ (uval list ⇒ store ⇒ bool) ⇒ bool
(_ ` {|_|} _ {|_,_|})

where
Γ ` {|P |} c {|R,E|} ≡ ∀r σ σ′ γ τ . P σ −→ stmt-type γ c τ −→ Γ ` (σ,c) ⇓! (σ′,r) −→
(case r of Success vs ⇒ R vs σ′ | Failure e vs ⇒ E ((val -of -error e)#vs) σ′)

Let c be a program that is well-typed and let σ be a start state that satisfies
the precondition P . When c executes, it results in a return value r and a state
σ′. If r is a successful return value Success vs, then vs and σ′ satisfy the post
condition R. Otherwise, if r is a failure return value Failure e vs, then e, vs,
and σ′ satisfy the post condition E. Note that the post conditions R and E take
a list of values vs and a state σ′ but the precondition only takes a state.

The Hoare logic rules are syntax directed and most of them are weakest
precondition rules. This eases the automatic application of the rules for the
purpose of proof automation. We prove the rules in Isabelle/HOL. The following
are the Hoare logic rules:

Return
Γ ` {|λσ.R [vs]σΓ σ|}Return vs{|R,E|}

60 Verification of a C File System

Fail
Γ ` {|λσ.E ((val -err -val σ Γ ([e]σΓ))#[vs]σΓ) σ|}Fail e vs{|R,E|}

If
Γ ` {|Ps|}s{|R,E|} Γ ` {|Pt |}t{|R,E|}

Γ ` {|λσ.if [b]σΓ = true then Ps σ else Pt σ|} If b s t {|R,E|}

We introduce three weakest precondition lemmas for Seq statements depending
on the type of the return value of the first statement in the Seq. Note that in
the first premise we extend the context Γ by some list r such that R′ r holds as
a precondition of t. The r can be later instantiated to the list of return values of
statement s.

Seq1
Γ ` {|P |}s{|R′, E ′|} ∀r.(r@Γ) ` {|R′ r|} t {|R,E|}

Γ ` {|P |}Seq s (OnlySuccess t){|R,E|}

Seq2
Γ ` {|P |}s{|R′, E ′|} ∀r.(r@Γ) ` {|E ′ r|} h {|R,E|}

Γ ` {|P |}Seq s (OnlyError h){|R,E|}

Seq3
Γ ` {|P |}s{|R′, E ′|}

∀r.(r@Γ) ` {|R′ r|} t {|R,E|} ∀r.(r@Γ) ` {|E ′ r|} h {|R,E|}
Γ ` {|P |}Seq s (HandleError t h){|R,E|}

The difference between Seq and LetBang statements is related to the type system
and not to how they evaluate. Therefore, weakest precondition lemmas for
LetBang statements are very similar to those of Seq statements.

LetBang1
Γ ` {|P |}s{|R′, E ′|} ∀r.(r@Γ) ` {|R′ r|} t {|R,E|}

Γ ` {|P |}LetBang vs s (OnlySuccess t){|R,E|}

LetBang2
Γ ` {|P |}s{|R′, E ′|} ∀r.(r@Γ) ` {|E ′ r|} h {|R,E|}

Γ ` {|P |}LetBang vs s (OnlyError h){|R,E|}

LetBang3
Γ ` {|P |}s{|R′, E ′|}

∀r.(r@Γ) ` {|R′ r|} t {|R,E|} ∀r.(r@Γ) ` {|E ′ r|} h {|R,E|}
Γ ` {|P |}LetBang vs s (HandleError t h){|R,E|}

Take Γ ` {|λσ.∀l r rv.[lv]σΓ = Ptr l −→ σ l = Some(RecVal r) −→
(f, Some rv) ∈ set r −→ R [Ptr l, rv](σ(l := Some (RecVal r′)))|}
Take lv f{|R,E|}

where r′ is the record resulting from replacing the value of f in r by None.

3.2. Correspondence between C and CDSL 61

Put Γ ` {|λσ.∀l r.[lv]σΓ = Ptr l −→ σ l = Some(RecVal r) −→
(f,None) ∈ set r −→ R [Ptr l](σ(l := Some (RecVal r′)))|}
Put lv f e{|R,E|}

where r′ is the record resulting from replacing the value of f in r by [e]σΓ.

Case

∀l.(Ptr l)#Γ ` {|Ps l|}s{|R,E|}
∀t l.t 6= t′ −→ (VariantVal t l)#Γ ` {|Ps ′ t l|}s′{|R,E|}

Γ ` {|λσ.∀t l.[vv]σΓ = VariantVal t l −→
(if t′ = t then Ps l σ else Ps ′ t l σ)|}Case vv t′ s s′{|R,E|}

Esac
∀l.(Ptr l)#Γ ` {|Ps l|}s{|R,E|}

Γ ` {|λσ.∀t l.[vv]σΓ = VariantVal t l −→
(t′ = t ∧ Ps l σ)|}Esac vv t′ s{|R,E|}

AApp
Γ ` {|λσ.∀σ′rs .afun-sem-upd fn (σ, [es]σΓ)(σ′, rs) −→

(case rs of Success vs ⇒ R vs σ′ |
Failure e vs ⇒ E ((val -of -error e)#vs) σ′)|}

AApp fn es{|R,E|}
where afun-sem-upd fn (σ, [es]σΓ)(σ′, rs) defines the behavior of the abstract
function fn.

3.2.2. State Relation and Return Value Relation

We introduce the value relation val -rel relating CDSL values and monadic values.
The relation val -rel is used to define the state relation srel that relates the CDSL
store to the monadic heaps. The return value relation rrel that relates return
values is also defined using val -rel . The definition of corres, that appears in
the next section, depends on the relations srel and rrel . Moreover, some of the
corres lemmas, such as the corres lemma for conditional statements, also uses
the definition of val -rel .

The relation val -rel is defined differently on values of different monadic types.
For basic types such as words of different lengths val -rel is defined statically.
The relation val -rel is defined on words as follows:

definition val -rel -word -def :
val -rel (x :: α word) uv ≡

(if size x = 64 then (case uv of LVal (W64 y) ⇒ ucast x = y | _ ⇒ False)
else if size x = 32 then (case uv of LVal (W32 y) ⇒ ucast x = y | _ ⇒ False)
else if size x = 16 then (case uv of LVal (W16 y) ⇒ ucast x = y | _ ⇒ False)
else if size x = 8 then (case uv of LVal (W8 y) ⇒ ucast x = y |

LVal (Bl y) ⇒ (x 6=0) = y | _ ⇒ False)
else False)

62 Verification of a C File System

where LVal (W64 y) is the literal value of a CDSL word y of size 64, and similarly
for words of other lengths. A CDSL boolean Bl y is represented in the monadic
C semantics as a word of size 8.

A monadic struct and a CDSL record are related if there are values in the
fields of the record that are related, using val -rel , to the values in the fields of
the struct. CDSL arrays also correspond to monadic structs and relating them
is work in progress.

Let σ be a CDSL store and h be a monadic heap. The heap relation
heap-rel σ h holds if for every pointer p that points to a non-empty value u in σ
the heap h is also valid at pointer p and points to a value v that is related to u
using the value relation val -rel . We define the state relation srel as the set of
pairs of CDSL stores σ and monadic heaps h that are related using the relation
heap-rel , i.e., srel = {(σ, h). heap-rel σ h}.

A CDSL function either succeeds and returns a list of values or it fails and
returns a list of values and an error code. A corresponding monadic function
returns a struct that has a field indicating whether or not the function succeeded
and additionally contains for every value in the list of CDSL returns a corre-
sponding field containing a related value. The return value relation rrel relates
a CDSL return list to a corresponding monadic return struct in the obvious way.

3.2.3. Correspondence Proof Rules

In this section, we present the corres proof rules that relate CDSL statements to
C statements. The rules are proven in Isabelle/HOL. The C code is generated
by the CDSL compiler and simplified by AutoCorres to monadic code; or more
precisely, to a non-deterministic state monad without exceptions (for more details
see Section 1.3.4).

The corres relation takes as input a CDSL program c, a monadic C program
m, a state relation srel defining the relation between the CDSL store and the C
heap, a return value relation rrel that states which values in the list returned
by CDSL are related to which values in the struct returned by C. It also takes
the CDSL value environment Γ, a precondition P on the CDSL state, and a
precondition P ′ on the C state. The following is the formal definition of the
corres relation:
definition

corres :: (store × ′s) set ⇒ (uval return-value ⇒ α ⇒ bool) ⇒
(store ⇒ bool) ⇒ (′s ⇒ bool) ⇒
statement ⇒ (′s,α) nondet-monad ⇒ uval environment ⇒ bool

where
corres srel rrel P P ′ c m Γ ≡

(∀σ s. (σ,s) ∈ srel ∧ P σ ∧ P ′ s ∧
(∃γ input ireads. (∃ τ . stmt-type γ c τ) ∧
uval -typed -pointers-env σ Γ γ input ireads) −→
¬ snd (m s) ∧ (∀s′ a. (a,s′) ∈ fst (m s) −→

(∃σ′ r. Γ `(σ,c) ⇓! (σ′,r) ∧ (σ′,s′) ∈ srel ∧ rrel r a)))

3.2. Correspondence between C and CDSL 63

A CDSL program c corresponds to a monadic C program m if and only if for
every two related start states σ and s that satisfy the respective preconditions,
if the program c is well-typed under a valid typing environment then (1) the
monadic program m terminates without an exception, (2) the resulting states
after execution of c and m are related, and (3) the return values of c and m are
also related. We present a selection of the corres proof rules.

The following is the corres rule for Return statements.

Return
corres srel rrel (λσ.rrel (Success [vs]σΓ) x) > (Return vs) (return x) Γ

The rule is straightforward and just states that a CDSL return statement and a
monadic return statement correspond if the return values are related using the
return value relation rrel . The symbol > is the Isabelle shorthand for λx.True.
In this rule > refers to the precondition of the monadic program.

Next we present the corres rule for conditional statements.

If

∀Γ.corres srel rrel (Q Γ) Q′ a a′ Γ
∀Γ.corres srel rrel (R Γ) R′ b b′ Γ

∀Γσs.(σ, s) ∈ srel → S Γ σ −→ S ′ s −→ val -rel (c′ s) [c]σΓ
corres srel rrel

(S Γ and (λσ.[c]σΓ = true −→ Q Γ σ) and (λσ.[c]σΓ = false −→ R Γ σ))
(S ′ and (λs.(c′s 6= 0) −→ Q′ s) and (λs.(c′s = 0) −→ R′ s))

(If c a b) (condition (λs.c′s 6= 0) a′ b′) Γ

Abstracting from details the corres rule for conditional statements reads
as follows: The CDSL statement If c a b and the monadic statement
condition (λs.c′ s 6= 0) a′ b′ are related if the values of the conditions c and c′
are related, a and a′ are related, and b and b′ are related. The preconditions of
the resulting corres statement are the preconditions of c and c′ being related
and in addition, depending on whether or not c and c′ are true the preconditions
of one of the inner statements being related. Note that the true and false in the
rule are of type boolean literal values.

The following is the corres rule is for sequencing statements
Seq c (OnlySuccess t).

64 Verification of a C File System

Seq

corres srel (λr rv.(r = Success vs) ∧ rrel ′ rv vs) Q Q′ c c′ Γ
∀rv vs .rrel ′ rv vs −→ corres srel rrel(R vs rv)(R′ rv) t (t′ rv) (vs@Γ)
∀rv.Γ ` {|P |}c{|λvsσ.(rrel ′ rv vs) −→ R vs rv σ, λvs σ.True|}

{|P ′|} c′ {|R′|}
corres srel rrel (P and Q) (P ′ and Q′)

(Seq c (OnlySuccess t)) (do rv ← c′; (t′ rv) od) Γ

The rule roughly states that the CDSL statement Seq c (OnlySuccess t)) and
the monadic statement do rv ← c′; (t′ rv) od are related if c and c′ are
related, they return the related values Success vs and rv respectively, and
they have postconditions R and R′ respectively, in addition, under the returns
and postconditions of c and c′ the statements t and t′ are also related. Note
that even though different Hoare calculi are used for CDSL statements (see
Section 3.2.1) and monadic statements (see [Greenaway et al., 2012]), here we
use the same Hoare notation.

The following is the corres rule for Take statements. It is less common as Take is
a less common language constructor, however, as for all the other corres rules, it
is just derived from the update semantics rule for the corresponding statement.

Take
corres srel rrel (λσ.[lv]σΓ = Ptr p′ ∧ (∀r rv.σ p′ = Some (RecVal r)
−→ (f, Some rv) ∈ set r −→ (∀s.(σ, s) ∈ srel −→ is-valid s p′∧

(σ(p′ 7→ RecVal r′), s) ∈ srel ∧ rrel(Success [Ptr p′, rv])(f ′s))))
> (Take lv f) (do y ← guard (λs.is-valid s p′); gets f ′ od) Γ

where r′ is the record resulting from replacing the value of f in r by None.

3.2.4. Related Work

File System Verification The verification of file systems has received
some attention, as they are a well known source of system errors. Pre-
vious manual attempts [Arkoudas et al., 2004, Damchoom and Butler, 2009,
Hesselink and Lali, 2012, Schierl et al., 2009] to provide verified file systems
have, however, only proven the equivalence between two or more high-level
specifications. None of these efforts relate the specification to an implementation
of a realistic file system. These attempts also suffered from the overwhelming
size and complexity of file system implementations. In order to prove complex
properties about the file system, this previous research had to introduce serious
limitations resulting in oversimplified filesystems that demonstrate the verifica-
tion principle, but would not be usable in practice. There is also parallel ongoing
work on the verification of a file system implementation [Schellhorn et al., 2014].

3.2. Correspondence between C and CDSL 65

CDSL The High-Assurance Systems Programming (HASP)[(HASP), 2010]
project shares our goals of improving the reliability of systems software. It
is also similar in spirit, in that they seek to make these improvements by em-
ploying formal methods as well as programming language research. HASP’s
systems programming language, Habit, is similar to CDSL: a domain specific
functional language. Providing a full formalization of Habit’s semantics to fa-
cilitate formal reasoning and verification is one of the priorities of the project.
[McCreight et al., 2010] show the correctness of a garbage collector in this project;
however, to our knowledge, there exist no full formal language semantics yet.
Habit is more general than CDSL. For example, it offers support for bit level and
memory based data description, which we moved to a separate domain-specific
language, DDSL.

The language PacLang [Ennals et al., 2004] is a domain-specific language
that uses linear types to guide optimization of packet processing applications on
network processors. The use of linear types in other areas of systems programming
suggests that CDSL may find uses outside of file systems. Indeed, while PacLang
is an imperative language, most PacLang programs could be translated to CDSL
with little difficulty. The use of linear types in PacLang is purely designed for
optimization, not for verification, and thus its type system is much less expressive
than CDSL.

To the best of our knowledge, [Hofmann, 2000] is the only work which at-
tempts to prove the equivalence of the functional and imperative interpretation
of a language with a linear type system. The paper introduces a first order func-
tional language with linear types, not unlike CDSL, and formalizes its semantics
by denotation to set theory. It presents a translation of this language into C, and
provides an informal proof of equivalence between the set theoretic interpretation
and the C program. It is, however, not a rigorous mechanized formalization, and
the approach would be unsuitable for machine-checked verification.

Correspondence Our work on creating a Hoare logic and proving correspon-
dence lemmas between CDSL and monadic code is similar to the initial phase
applied by AutoCorres that similarly automatically proves a correspondence
between C and monadic code [Winwood et al., 2009, Greenaway et al., 2012].
Schirmer also created a Hoare logic and a VCG for Simpl [Schirmer, 2006].

66 Verification of a C File System

67

4
Conclusion

The LEDA project [Mehlhorn and Näher, 1999] has shown that the concept of
certifying computations eases the construction of libraries of reliable implementa-
tions of complex combinatorial and geometric algorithms. Reliability is increased
because the output of every computation is checked for correctness by a checker
program. Checker programs are relatively simple and hence easier to implement
correctly than the corresponding solution algorithms. Certifying algorithms are
available for a large number of algorithmic problems [McConnell et al., 2011].

We described a framework for the verification of certifying computations
and applied it to three nontrivial combinatorial problems: connectivity of
graphs, shortest paths in graphs, and maximum cardinality matchings in
graphs [Alkassar et al., 2011a, Alkassar et al., 2014]. Our work greatly increases
the trustworthiness of certifying algorithms.

Specifically, for each instance of the considered three problems, we can now
give a formal proof of the correctness of the result. Thus, the user has neither to
trust the implementation of the original algorithm nor the checker, nor does the
user have to understand why the witness property holds. We stress that we did
not prove the correctness of the original programs but rather verified the results
of their computations.

Our methodology can be applied to any other problem for which a certi-
fying algorithm is known; see [McConnell et al., 2011] for a survey. We also
prove the witness property of a checker for shortest paths with arbitrary edge
costs [Rizkallah, 2013].

Our methodology is not restricted to verifying certifying computations. The
integration of VCC and Isabelle/HOL should be useful whenever verification of
a program requires nontrivial mathematical reasoning.

68 Conclusion

We then explored an alternative to the VCC approach which provides higher
trust guarantees; namely, carrying out the complete verification within Is-
abelle/HOL [Noschinski et al., 2014]. We did so for three reasons: (1) The VCC
approach, with its use of two different tools requires the formalization of certain
concepts in two theories, a duplication of effort. (2) Furthermore, it requires trust
in VCC, a fairly complex program. We have no reason not to trust the program.
However, as a matter of principle, the trusted code base should be kept as small
and simple as possible. (3) The recent tool AutoCorres [Greenaway et al., 2012]
promised to greatly simplify reasoning about C in Isabelle. We reworked the ver-
ification of the Simpl checkers for connectivity of graphs [Noschinski et al., 2014]
and shortest paths [Rizkallah, 2014] within Isabelle. We also reworked the
verification of the C checker for connectivity within Isabelle using the Au-
toCorres toolset [Greenaway et al., 2012, Greenaway et al., 2014]. The new
AutoCorres approach was also used to verify the checker for graph non-
planarity [Noschinski et al., 2014]; the non-planarity checker is amongst the
most complex checkers in LEDA. Our experience with AutoCorres is positive.
The AutoCorres approach yields a viable alternative to the VCC approach. It is
particularly useful when the verification requires domain-specific reasoning (e.g.,
graph theory, as it was the case for the non-planarity checker). We concluded
that the verification effort using this approach is comparable if not less than that
of the previous approach.

The implementation of each of the advanced algorithms in LEDA took
several man-months (recollection of Kurt Mehlhorn). In comparison, with
either approach, it took less time to verify the checker. Note that the non-
planarity checker is amongst the most complex checkers in LEDA. The verifi-
cation time goes down with increased experience and development of the tools
(cf. [Greenaway et al., 2014, Noschinski et al., 2014]). Our work demonstrates
that the development of libraries of certifying programs with formally verified
checkers is feasible at reasonable cost.

We explore the idea of verified code generation in Chapter 3. We describe
a framework that makes the complete automatic generation of the code of a
realistic C file system and the automated verification of the correctness of its
modules feasible. The framework is based on the idea of co-generation of code
and proofs from a domain specific language called CDSL. We define a Hoare
logic for CDSL and prove correspondence lemmas between CDSL and C.

69

Bibliography

[Alkassar et al., 2011a] Alkassar, E., Böhme, S., Mehlhorn, K., and Rizkallah, C.
(2011a). Verification of certifying computations. In CAV, pages 67–82.

[Alkassar et al., 2014] Alkassar, E., Böhme, S., Mehlhorn, K., and Rizkallah, C. (2014).
A framework for the verification of certifying computations. Journal of Automated
Reasoning, 52(3):241–273.

[Alkassar et al., 2011b] Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C., and
Schweitzer, P. (2011b). An introduction to certifying algorithms. it - Information
Technology, 53(6):287–293.

[Alkassar et al., 2009] Alkassar, E., Hillebrand, M. A., Leinenbach, D. C., Schirmer,
N. W., Starostin, A., and Tsyban, A. (2009). Balancing the load: Leveraging
semantics stack for systems verification. Journal of Automated Reasoning: Special
Issue on Operating Systems Verification, 42, Numbers 2-4:389–454.

[Arkoudas and Rinard, 2005] Arkoudas, K. and Rinard, M. C. (2005). Deductive
runtime certification. Electronic Notes in Theoretical Computer Science, 113:45–63.

[Arkoudas et al., 2004] Arkoudas, K., Zee, K., Kuncak, V., and Rinard, M. (2004).
Verifying a file system implementation. In Davies, J., Schulte, W., and Barnett, M.,
editors, Formal Methods and Software Engineering, volume 3308 of Lecture Notes
in Computer Science, pages 373–390. Springer Berlin Heidelberg.

[Armand et al., 2010] Armand, M., Grégoire, B., Spiwack, A., and Théry, L. (2010).
Extending Coq with imperative features and its application to SAT verification. In
Kaufmann, M. and Paulson, L., editors, ITP, volume 6172 of LNCS, pages 83–98.
Springer.

[Ball et al., 2010] Ball, T., Bounimova, E., Kumar, R., and Levin, V. (2010). Slam2:
Static driver verification with under 4% false alarms. In FMCAD, pages 35–42.

[Barnett et al., 2006] Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and Leino,
K. R. M. (2006). Boogie: A modular reusable verifier for object-oriented programs.
In FMCO, volume 4111 of LNCS, pages 364–387.

[Baumann et al., 2009] Baumann, C., Beckert, B., Blasum, H., and Bormer, T. (2009).
Formal verification of a microkernel used in dependable software systems. In Buth,
B., Rabe, G., and Seyfarth, T., editors, Computer Safety, Reliability, and Security,
volume 5775 of LNCS, pages 187–200. Springer.

70 Bibliography

[Bertot and Castéran, 2004] Bertot, Y. and Castéran, P. (2004). Interactive Theorem
Proving and Program Development—Coq’Art: The Calculus of Inductive Construc-
tions. Springer.

[Bessey et al., 2010] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S.,
Gros, C.-H., Kamsky, A., McPeak, S., and Engler, D. R. (2010). A few billion lines
of code later: using static analysis to find bugs in the real world. In Commun. ACM,
pages 66–75.

[Besson et al., 2010] Besson, F., Jensen, T. P., Pichardie, D., and Turpin, T. (2010).
Certified result checking for polyhedral analysis of bytecode programs. In TGC,
pages 253–267.

[Blum and Kannan, 1989] Blum, M. and Kannan, S. (1989). Designing programs that
check their work. In STOC, pages 86–97.

[Böhme et al., 2008] Böhme, S., Leino, K. R. M., and Wolff, B. (2008). HOL-Boogie—
An interactive prover for the Boogie program-verifier. In Mohamed, O. A., Muñoz,
C., and Tahar, S., editors, TPHOLs, volume 5170 of LNCS, pages 150–166.

[Böhme et al., 2010] Böhme, S., Moskal, M., Schulte, W., and Wolff, B. (2010). HOL-
Boogie—an interactive prover-backend for the Verifying C Compiler. JAR, 44(1–
2):111–144.

[Boyer and Moore, 1990] Boyer, R. S. and Moore, J. S. (1990). A theorem prover for a
computational logic. In Conference on Automated Deduction, volume 449 of LNCS,
pages 1–15.

[Bright et al., 1997] Bright, J. D., Sullivan, G. F., and Masson, G. M. (1997). A
formally verified sorting certifier. IEEE Transactions on Computers, 46(12):1304–
1312.

[Bulwahn et al., 2008] Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., and
Matthews, J. (2008). Imperative functional programming with Isabelle/HOL. In
Mohamed, O. A., Muñoz, C., and Tahar, S., editors, TPHOLs, volume 5170 of
LNCS, pages 134–149.

[Charguéraud, 2011] Charguéraud, A. (2011). Characteristic formulae for the verifica-
tion of imperative programs. In ICFP, pages 418–430.

[Cock et al., 2008] Cock, D., Klein, G., and Sewell, T. (2008). Secure microkernels,
state monads and scalable refinement. In TPHOLs, volume 5170 of LNCS, pages
167–182.

[Cohen et al., 2009] Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal,
M., Santen, T., Schulte, W., and Tobies, S. (2009). VCC: A practical system for
verifying concurrent C. In Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M.,
editors, TPHOLs, volume 5674 of LNCS, pages 23–42. Springer.

Bibliography 71

[Damchoom and Butler, 2009] Damchoom, K. and Butler, M. J. (2009). Applying
event and machine decomposition to a flash-based filestore in event-b. In Oliveira, M.
V. M. and Woodcock, J., editors, Formal Methods: Foundations and Applications,
12th Brazilian Symposium on Formal Methods, SBMF 2009, Gramado, Brazil,
August 19-21, 2009, Revised Selected Papers, volume 5902 of Lecture Notes in
Computer Science, pages 134–152. Springer.

[Darbari et al., 2010] Darbari, A., Fischer, B., and Marques-Silva, J. (2010). Industrial-
strength certified SAT solving through verified SAT proof checking. In Cavalcanti,
A., Deharbe, D., Gaudel, M.-C., and Woodcock, J., editors, Theoretical Aspects of
Computing, volume 6255 of LNCS, pages 260–274. Springer.

[de Bruijn, 1972] de Bruijn, N. G. (1972). Lambda calculus notation with
nameless dummies, a tool for automatic formula manipulation, with
applications to the Church-Rosser theorem. Indagationes Mathemati-
cae (Koninglijke Nederlandse Akademie van Wetenschappen), 34(5):381–392.
http://www.win.tue.nl/automath/archive/pdf/aut029.pdfElectronic Edition.

[de Moura and Bjørner, 2008] de Moura, L. M. and Bjørner, N. (2008). Z3: An efficient
SMT solver. In Ramakrishnan, C. R. and Rehof, J., editors, TACAS, volume 4963
of LNCS, pages 337–340. Springer.

[de Nivelle and Piskac, 2005] de Nivelle, H. and Piskac, R. (2005). Verification of an
off-line checker for priority queues. In Software Engineering and Formal Methods,
pages 210–219. IEEE Computer Society.

[Edmonds, 1965] Edmonds, J. (1965). Maximum matching and a polyhedron with
0,1-vertices. Journal of Research of the National Bureau of Standards, 69B:125–130.

[Ennals et al., 2004] Ennals, R., Sharp, R., and Mycroft, A. (2004). Linear types for
packet processing. In Schmidt, D., editor, 13th ESOP, volume 2986 of LNCS, pages
204–218. Springer.

[Filliâtre and Marché, 2007] Filliâtre, J.-C. and Marché, C. (2007). The Why/Kraka-
toa/Caduceus platform for deductive program verification. In Computer Aided
Verification, volume 4590 of LNCS, pages 173–177.

[Gordon et al., 1979] Gordon, M., Milner, R., and Wadsworth, C. P. (1979). Edinburgh
LCF: A Mechanised Logic of Computation, volume 78 of LNCS.

[Gordon and Melham, 1993] Gordon, M. J. C. and Melham, T. F., editors (1993).
Introduction to HOL: A Theorem-Proving Environment for Higher-Order Logic.
Cambridge University Press.

[Greenaway et al., 2012] Greenaway, D., Andronick, J., and Klein, G. (2012). Bridging
the gap: Automatic verified abstraction of C. In Interactive Theorem Proving,
volume 7406 of LNCS, pages 99–115.

[Greenaway et al., 2014] Greenaway, D., Lim, J., Andronick, J., and Klein, G. (2014).
Don’t sweat the small stuff: formal verification of C code without the pain. In

72 Bibliography

ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 45.

[(HASP), 2010] (HASP), T. H. A. S. P. P. (2010). The Habit programming language:
The revised preliminary report.

[Hesselink and Lali, 2012] Hesselink, W. and Lali, M. (2012). Formalizing a hierarchical
file system. Formal Aspects of Computing, 24(1):27–44.

[Hofmann, 2000] Hofmann, M. (2000). A type system for bounded space and functional
in-place update–extended abstract. In Smolka, G., editor, ESOP, volume 1782 of
LNCS, pages 165–179. Springer.

[Keller et al., 2013] Keller, G., Murray, T., Amani, S., O’Connor-Davis, L., Chen, Z.,
Ryzhyk, L., Klein, G., and Heiser, G. (2013). File systems deserve verification too!
In Workshop on Programming Languages and Operating Systems (PLOS), pages
1–7, Farmington, Pennsylvania, USA.

[Klein et al., 2010] Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D.,
Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T.,
Tuch, H., and Winwood, S. (2010). sel4: formal verification of an operating-system
kernel. CACM, 53(6):107–115.

[Leinenbach et al., 2005] Leinenbach, D., Paul, W. J., and Petrova, E. (2005). Towards
the formal verification of a C0 compiler: Code generation and implementation
correctnes. In SEFM, pages 2–12. IEEE Computer Society.

[Leroy, 2009] Leroy, X. (2009). Formal verification of a realistic compiler. CACM,
52(7):107–115.

[Lu et al., 2014] Lu, L., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., and Lu, S.
(2014). A study of linux file system evolution. TOS, 10(1):3.

[McConnell et al., 2011] McConnell, R. M., Mehlhorn, K., Näher, S., and Schweitzer,
P. (2011). Certifying algorithms. Computer Science Review, 5(2):119–161.

[McCreight et al., 2010] McCreight, A., Chevalier, T., and Tolmach, A. (2010). A
certified framework for compiling and executing garbage-collected languages. In 15th
ICFP, pages 273–284. ACM.

[Mehlhorn and Näher, 1999] Mehlhorn, K. and Näher, S. (1999). The LEDA Platform
for Combinatorial and Geometric Computing. Cambridge University Press.

[Myreen, 2012] Myreen, M. O. (2012). Functional programs: Conversions between
deep and shallow embeddings. In Beringer, L. and Felty, A. P., editors, ITP, volume
7406 of Lecture Notes in Computer Science, pages 412–417. Springer.

[Nipkow et al., 2002] Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.

Bibliography 73

[Nordhoff and Lammich, 2012] Nordhoff, B. and Lammich, P. (2012). Dijkstra’s short-
est path algorithm. Archive of Formal Proofs. http://afp.sourceforge.net/entries/
Dijkstra_Shortest_Path.shtml, Formal proof development.

[Norrish, 1998] Norrish, M. (1998). C formalised in HOL. PhD thesis, Computer
Laboratory, University of Cambridge.

[Norrish, 2012] Norrish, M. (2012). C-to-Isabelle parser, version 0.7.2.

[Noschinski, 2014] Noschinski, L. (2014). A graph library for isabelle. Mathematics in
Computer Science, pages 1–17.

[Noschinski et al., 2014] Noschinski, L., Rizkallah, C., and Mehlhorn, K. (2014). Veri-
fication of certifying computations through AutoCorres and Simpl. In NASA Formal
Methods, pages 46–61.

[O’Connor-Davis et al., 2014] O’Connor-Davis, L., Keller, G., Amani, S., Murray,
T., Klein, G., Chen, Z., and Rizkallah, C. (2014). CDSL version 1: Simplifying
verification with linear types. Technical report, NICTA, Sydney, Australia.

[Petrova, 2007] Petrova, E. (2007). Verification of the C0 Compiler Implementation
on the Source Code Level. PhD thesis, Saarland University, Saarbrücken.

[Pnueli et al., 1998] Pnueli, A., Siegel, M., and Singerman, E. (1998). Translation vali-
dation. In Proceedings of the 4th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, TACAS ’98, pages 151–166, London, UK,
UK. Springer-Verlag.

[Rizkallah, 2011] Rizkallah, C. (2011). Maximum cardinality matching. Archive of For-
mal Proofs. http://afp.sourceforge.net/entries/Max-Card-Matching.shtml, Formal
proof development.

[Rizkallah, 2013] Rizkallah, C. (2013). An axiomatic characterization of the single-
source shortest path problem. Archive of Formal Proofs. http://afp.sf.net/entries/
ShortestPath.shtml, Formal proof development.

[Rizkallah, 2014] Rizkallah, C. (2014). A Simpl shortest path checker verification. In
Proceedings of Isabelle Workshop 2014.

[Rizkallah, 2015] Rizkallah, C. (2015). Verification of certifying computations. http:
//dx.doi.org/10.5281/zenodo.16805.

[Ryzhyk et al., 2009] Ryzhyk, L., Chubb, P., Kuz, I., Sueur, E. L., and Heiser, G.
(2009). Automatic device driver synthesis with termite. In SOSP, pages 73–86.

[Schellhorn et al., 2014] Schellhorn, G., Ernst, G., Pfähler, J., Haneberg, D., and Reif,
W. (2014). Development of a verified flash file system. In Ameur, Y. A. and Schewe,
K., editors, Abstract State Machines, Alloy, B, TLA, VDM, and Z - 4th International
Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceedings, volume 8477
of Lecture Notes in Computer Science, pages 9–24. Springer.

http://afp.sourceforge.net/entries/Dijkstra_Shortest_Path.shtml
http://afp.sourceforge.net/entries/Dijkstra_Shortest_Path.shtml
http://afp.sourceforge.net/entries/Max-Card-Matching.shtml
http://afp.sf.net/entries/ShortestPath.shtml
http://afp.sf.net/entries/ShortestPath.shtml
http://dx.doi.org/10.5281/zenodo.16805
http://dx.doi.org/10.5281/zenodo.16805

74 Bibliography

[Schierl et al., 2009] Schierl, A., Schellhorn, G., Haneberg, D., and Reif, W. (2009).
Abstract specification of the ubifs file system for flash memory. In Proceedings of the
2Nd World Congress on Formal Methods, FM ’09, pages 190–206, Berlin, Heidelberg.
Springer-Verlag.

[Schirmer, 2006] Schirmer, N. (2006). Verification of Sequential Imperative Programs
in Isabelle/HOL. PhD thesis, Technische Universität München.

[Sewell et al., 2013] Sewell, T. A. L., Myreen, M. O., and Klein, G. (2013). Translation
validation for a verified OS kernel. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 471–482.

[Shi et al., 2012] Shi, J., He, J., Zhu, H., Fang, H., Huang, Y., and Zhang, X. (2012).
ORIENTAIS: Formal verified OSEK/VDX real-time operating system. In Engineering
of Complex Computer Systems, pages 293–301. IEEE Computer Society.

[Sullivan and Masson, 1990] Sullivan, G. F. and Masson, G. M. (1990). Using certi-
fication trails to achieve software fault tolerance. In FTCS, pages 423–431. IEEE
Computer Society.

[Thiemann and Sternagel, 2009] Thiemann, R. and Sternagel, C. (2009). Certification
of termination proofs using CeTA. In Berghofer, S., Nipkow, T., Urban, C., and
Wenzel, M., editors, Theorem Proving in Higher Order Logics, volume 5674 of LNCS,
pages 452–468.

[Verisoft XT, 2010] Verisoft XT (2010). Verisoft XT. http://www.verisoftxt.de.

[Wadler, 1990] Wadler, P. (1990). Linear types can change the world! In Programming
Concepts and Methods. North.

[Wildmoser and Nipkow, 2004] Wildmoser, M. and Nipkow, T. (2004). Certifying
machine code safety: Shallow versus deep embedding. In Slind, K., Bunker, A., and
Gopalakrishnan, G., editors, Theorem Proving in Higher Order Logics (TPHOLs
2004), volume 3223 of Lecture Notes in Computer Science, pages 305–320. Springer.

[Winwood et al., 2009] Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock, D.,
and Norrish, M. (2009). Mind the gap: A verification framework for low-level C. In
Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M., editors, TPHOLs, volume
5674 of LNCS, pages 500–515. Springer.

http://www.verisoftxt.de

75

Appendices

77

A
Isabelle Theories for Chapter 2

A.1. Witness Properties

A.1.1. Connected Components

theory Connected-Components
imports ../Graph-Theory/Graph-Theory
begin

locale connected-components-locale =
fin-digraph +
fixes num :: ′a ⇒ nat
fixes parent-edge :: ′a ⇒ ′b option
fixes r :: ′a
assumes r-assms: r ∈ verts G ∧ parent-edge r = None ∧ num r = 0
assumes parent-num-assms:∧

v. v ∈ verts G ∧ v 6= r =⇒
∃ e ∈ arcs G.
parent-edge v = Some e ∧
head G e = v ∧
num v = num (tail G e) + 1

sublocale connected-components-locale ⊆ fin-digraph G
by auto

context connected-components-locale
begin

78 Isabelle Theories for Chapter 2

lemma ccl-wellformed: wf-digraph G
by unfold-locales

lemma num-r-is-min:
assumes v ∈ verts G
assumes v 6= r
shows num v > 0
using parent-num-assms assms
by fastforce

lemma path-from-root:
fixes v :: ′a
assumes v ∈ verts G
shows r →∗ v
using assms

proof (induct num v arbitrary: v)
case 0
hence v = r using num-r-is-min by fastforce
with 〈v ∈ verts G〉 show ?case by auto

next
case (Suc n ′)
hence v 6= r using r-assms by auto
then obtain e where ee:
e ∈ arcs G
head G e = v ∧ num v = num (tail G e) + 1
using Suc parent-num-assms by blast

with 〈v ∈ verts G〉 Suc(1,2) tail-in-verts
have r →∗ (tail G e) tail G e → v
by (auto intro: in-arcs-imp-in-arcs-ends)

then show ?case by (rule reachable-adj-trans)
qed

The underlying undirected, simple graph is connected

lemma connectedG: connected G
proof (unfold connected-def, intro strongly-connectedI)

show verts (with-proj (mk-symmetric G)) 6= {}
by (metis equals0D r-assms reachable-in-vertsE reachable-mk-symmetricI

reachable-refl)
next
let ?SG = mk-symmetric G
interpret S: pair-fin-digraph ?SG ..
fix u v assume uv-sG: u ∈ verts ?SG v ∈ verts ?SG
from uv-sG have u ∈ verts G v ∈ verts G by auto
then have u →∗?SG r r →∗?SG v
by (auto intro: reachable-mk-symmetricI path-from-root symmetric-reachable

A.1. Witness Properties 79

symmetric-mk-symmetric simp del: pverts-mk-symmetric)
then show u →∗?SG v
by (rule S.reachable-trans)

qed

theorem connected-by-path:
fixes u v :: ′a
assumes u ∈ pverts (mk-symmetric G)
assumes v ∈ pverts (mk-symmetric G)
shows u →∗mk-symmetric G v

using connectedG wellformed-mk-symmetric assms
unfolding connected-def strongly-connected-def by fastforce
end

corollary (in connected-components-locale) connected-graph:
assumes u ∈ verts G and v ∈ verts G
shows ∃ p. vpath p (mk-symmetric G) ∧ hd p = u ∧ last p = v

proof −
interpret S: pair-fin-digraph mk-symmetric G ..
show ?thesis unfolding S.reachable-vpath-conv[symmetric]
using assms by (auto intro: connected-by-path)

qed

end

A.1.2. Shortest Path
theory Shortest-Path-Theory
imports
Complex
../Graph-Theory/Graph-Theory

begin

locale basic-sp =
fin-digraph +
fixes dist :: ′a ⇒ ereal
fixes c :: ′b ⇒ real
fixes s :: ′a
assumes general-source-val: dist s ≤ 0
assumes trian:∧

e. e ∈ arcs G =⇒
dist (head G e) ≤ dist (tail G e) + c e

locale basic-just-sp =
basic-sp +

80 Isabelle Theories for Chapter 2

fixes enum :: ′a ⇒ enat
assumes just:∧

v. [[v ∈ verts G; v 6= s; enum v 6= ∞]] =⇒
∃ e ∈ arcs G. v = head G e ∧
dist v = dist (tail G e) + c e ∧
enum v = enum (tail G e) + (enat 1)

locale shortest-path-non-neg-cost =
basic-just-sp +
assumes s-in-G: s ∈ verts G
assumes source-val: dist s = 0
assumes no-path:

∧
v. v ∈ verts G =⇒ dist v = ∞ ←→ enum v = ∞

assumes non-neg-cost:
∧
e. e ∈ arcs G =⇒ 0 ≤ c e

locale basic-just-sp-pred =
basic-sp +
fixes enum :: ′a ⇒ enat
fixes pred :: ′a ⇒ ′b option
assumes just:∧

v. [[v ∈ verts G; v 6= s; enum v 6= ∞]] =⇒
∃ e ∈ arcs G.
e = the (pred v) ∧
v = head G e ∧
dist v = dist (tail G e) + c e ∧
enum v = enum (tail G e) + (enat 1)

sublocale basic-just-sp-pred ⊆ basic-just-sp
using basic-just-sp-pred-axioms
unfolding basic-just-sp-pred-def

basic-just-sp-pred-axioms-def
by unfold-locales (blast)

locale shortest-path-non-neg-cost-pred =
basic-just-sp-pred +
assumes s-in-G: s ∈ verts G
assumes source-val: dist s = 0
assumes no-path:

∧
v. v ∈ verts G =⇒ dist v = ∞ ←→ enum v = ∞

assumes non-neg-cost:
∧
e. e ∈ arcs G =⇒ 0 ≤ c e

sublocale shortest-path-non-neg-cost-pred ⊆ shortest-path-non-neg-cost
using shortest-path-non-neg-cost-pred-axioms
by unfold-locales

(auto simp: shortest-path-non-neg-cost-pred-def
shortest-path-non-neg-cost-pred-axioms-def)

lemma tail-value-helper:

A.1. Witness Properties 81

assumes hd p = last p
assumes distinct p
assumes p 6= []
shows p = [hd p]

by (metis assms distinct.simps(2) append-butlast-last-id hd-append
append-self-conv2 distinct-butlast hd-in-set not-distinct-conv-prefix)

lemma (in basic-sp) dist-le-cost:
fixes v :: ′a
fixes p :: ′b list
assumes awalk s p v
shows dist v ≤ awalk-cost c p
using assms
proof (induct length p arbitrary: p v)
case 0
hence s = v by auto
thus ?case using 0(1) general-source-val
by (metis awalk-cost-Nil length-0-conv zero-ereal-def)

next
case (Suc n)
then obtain p ′ e where p ′e: p = p ′ @ [e]
by (cases p rule: rev-cases) auto

then obtain u where ewu: awalk s p ′ u ∧ awalk u [e] v
using awalk-append-iff Suc(3) by simp

then have du: dist u ≤ ereal (awalk-cost c p ′)
using Suc p ′e by simp

from ewu have ust: u = tail G e and vta: v = head G e
by auto

then have dist v ≤ dist u + c e
using ewu du ust trian[where e=e] by force

with du have dist v ≤ ereal (awalk-cost c p ′) + c e
by (metis add-right-mono order-trans)

thus dist v ≤ awalk-cost c p
using awalk-cost-append p ′e by simp

qed

lemma (in fin-digraph) witness-path:
assumes µ c s v = ereal r
shows ∃ p. apath s p v ∧ µ c s v = awalk-cost c p

proof −
have sv: s →∗ v
using shortest-path-inf[of s v c] assms by fastforce

{
fix p assume awalk s p v
then have no-neg-cyc:
¬ (∃w q. awalk w q w ∧ w ∈ set (awalk-verts s p) ∧ awalk-cost c q < 0)

82 Isabelle Theories for Chapter 2

using neg-cycle-imp-inf-µ assms by force
}
thus ?thesis using no-neg-cyc-reach-imp-path[OF sv] by presburger

qed

lemma (in basic-sp) dist-le-µ:
fixes v :: ′a
assumes v ∈ verts G
shows dist v ≤ µ c s v

proof (rule ccontr)
assume nt: ¬ ?thesis
show False
proof (cases µ c s v)
show

∧
r. µ c s v = ereal r =⇒ False

proof −
fix r assume r-asm: µ c s v = ereal r
hence sv: s →∗ v
using shortest-path-inf[where u=s and v=v and f=c] by auto

obtain p where
awalk s p v
µ c s v = awalk-cost c p
using witness-path[OF r-asm] unfolding apath-def by force

thus False using nt dist-le-cost by simp
qed

next
show µ c s v = ∞ =⇒ False using nt by simp

next
show µ c s v = − ∞ =⇒ False
proof −
assume asm: µ c s v = − ∞
let ?C = (λx. ereal (awalk-cost c x)) ‘ {p. awalk s p v}
have ∃ x∈ ?C. x < dist v
using Inf-ereal-iff [where y =dist vand X=?C and z= −∞]
nt asm unfolding µ-def INF-def by simp

then obtain p where
awalk s p v
awalk-cost c p < dist v
by force

thus False using dist-le-cost by force
qed

qed
qed

lemma (in basic-just-sp) dist-ge-µ:
fixes v :: ′a
assumes v ∈ verts G

A.1. Witness Properties 83

assumes enum v 6= ∞
assumes dist v 6= −∞
assumes µ c s s = ereal 0
assumes dist s = 0
assumes

∧
u. u∈verts G =⇒ u6=s =⇒ enum u 6= enat 0

shows dist v ≥ µ c s v
proof −
obtain n where enat n = enum v using assms(2) by force
thus ?thesis using assms
proof(induct n arbitrary: v)
case 0 thus ?case by (cases v=s, auto)
next
case (Suc n)
thus ?case
proof (cases v=s)
case False
obtain e where e-assms:
e ∈ arcs G
v = head G e
dist v = dist (tail G e) + ereal (c e)
enum v = enum (tail G e) + enat 1
using just[OF Suc(3) False Suc(4)] by blast

then have nsinf:enum (tail G e) 6= ∞
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))

then have ns:enat n = enum (tail G e)
using e-assms(4) Suc(2) by force

have ds: dist (tail G e) = µ c s (tail G e)
using Suc(1)[OF ns tail-in-verts[OF e-assms(1)] nsinf]
Suc(5−8) e-assms(3) dist-le-µ[OF tail-in-verts[OF e-assms(1)]]
by simp

have dmuc:dist v = µ c s (tail G e) + ereal (c e)
using e-assms(3) ds by auto

thus ?thesis
proof (cases dist v = ∞)
case False
have arc-to-ends G e = (tail G e, v)
unfolding arc-to-ends-def
by (simp add: e-assms(2))

obtain r where µr: µ c s (tail G e) = ereal r
using e-assms(3) Suc(5) ds False
by (cases µ c s (tail G e), auto)

obtain p where
awalk s p (tail G e) and
µs: µ c s (tail G e) = ereal (awalk-cost c p)
using witness-path[OF µr] unfolding apath-def
by blast

84 Isabelle Theories for Chapter 2

then have pe: awalk s (p @ [e]) v
using e-assms(1,2) by (auto simp: awalk-simps awlast-of-awalk)

hence muc:µ c s v ≤ µ c s (tail G e) + ereal (c e)
using µs min-cost-le-walk-cost[OF pe] by simp
thus dist v ≥ µ c s v using dmuc by simp

qed simp
qed (simp add: Suc(6,7))

qed
qed

lemma (in shortest-path-non-neg-cost) tail-value-check:
fixes u :: ′a
assumes s ∈ verts G
shows µ c s s = ereal 0

proof −
have ∗: awalk s [] s using assms unfolding awalk-def by simp
hence µ c s s ≤ ereal 0 using min-cost-le-walk-cost[OF ∗] by simp
moreover
have (

∧
p. awalk s p s =⇒ ereal(awalk-cost c p) ≥ ereal 0)

using non-neg-cost pos-cost-pos-awalk-cost by auto
hence µ c s s ≥ ereal 0
unfolding µ-def by (blast intro: INF-greatest)

ultimately
show ?thesis by simp

qed

lemma (in shortest-path-non-neg-cost) enum-not0:
fixes v :: ′a
assumes v ∈ verts G
assumes v 6= s

shows enum v 6= enat 0
proof (cases enum v 6= ∞)
case True
then obtain ku where enum v = ku + enat 1
using assms just by blast

thus ?thesis by (induct ku) auto
qed fast

lemma (in shortest-path-non-neg-cost) dist-ne-ninf:
fixes v :: ′a
assumes v ∈ verts G
shows dist v 6= −∞

proof (cases enum v = ∞)
case False
obtain n where enat n = enum v

A.1. Witness Properties 85

using False by force
thus ?thesis using assms False
proof(induct n arbitrary: v)
case 0 thus ?case
using enum-not0 source-val by (cases v=s, auto)

next
case (Suc n)
thus ?case
proof (cases v=s)
case True
thus ?thesis using source-val by simp

next
case False
obtain e where e-assms:
e ∈ arcs G
dist v = dist (tail G e) + ereal (c e)
enum v = enum (tail G e) + enat 1
using just[OF Suc(3) False Suc(4)] by blast

then have nsinf:enum (tail G e) 6= ∞
by (metis Suc(2) enat.simps(3) enat-1 plus-enat-simps(2))

then have ns:enat n = enum (tail G e)
using e-assms(3) Suc(2) by force

have dist (tail G e) 6= − ∞
by (rule Suc(1) [OF ns tail-in-verts[OF e-assms(1)] nsinf])

thus ?thesis using e-assms(2) by simp
qed

qed
next
case True
thus ?thesis using no-path[OF assms] by simp

qed

theorem (in shortest-path-non-neg-cost) correct-shortest-path:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
using no-path[OF assms(1)] dist-le-µ[OF assms(1)]
dist-ge-µ[OF assms(1) - dist-ne-ninf[OF assms(1)]
tail-value-check[OF s-in-G] source-val enum-not0]
by fastforce

corollary (in shortest-path-non-neg-cost-pred) correct-shortest-path-pred:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v
using correct-shortest-path assms by simp

86 Isabelle Theories for Chapter 2

end

A.1.3. Shortest Path with Arbitrary Edge Costs
theory Shortest-Path-Arbitrary-Edge-Costs

imports
../Graph-Theory/Graph-Theory
Shortest-Path-Theory

begin

locale shortest-paths-init =
fixes G :: (′a, ′b) pre-digraph (structure)
fixes s :: ′a
fixes c :: ′b ⇒ real
fixes num :: ′a ⇒ nat
fixes parent-edge :: ′a ⇒ ′b option
fixes dist :: ′a ⇒ ereal
assumes graphG: fin-digraph G

abbreviation (in shortest-paths-init) Vf :: ′a set where
Vf ≡ {v. v ∈ verts G ∧ (∃ r. dist v = ereal r)}

abbreviation (in shortest-paths-init) Vp :: ′a set where
Vp ≡ {v. v ∈ verts G ∧ dist v = ∞}

abbreviation (in shortest-paths-init) Vn :: ′a set where
Vn ≡ {v. v ∈ verts G ∧ dist v = −∞}

locale shortest-paths-reachable =
shortest-paths-init +
assumes s-assms:
s ∈ verts G

num s = 0
assumes pna:∧

v. [[v ∈ verts G; v 6= s; v /∈ Vp]] =⇒
(∃ e ∈ arcs G. parent-edge v = Some e ∧
head G e = v ∧ tail G e /∈ Vp ∧
num v = num (tail G e) + 1)

sublocale shortest-paths-reachable ⊆ fin-digraph G

A.1. Witness Properties 87

using graphG by auto

definition (in shortest-paths-reachable) enum :: ′a ⇒ enat where
enum v = (if (dist v = ∞ ∨ dist v = − ∞) then ∞ else num v)

locale shortest-paths-basic =
shortest-paths-reachable +
basic-just-sp G dist c s enum +
assumes source-val: (∃ v ∈ verts G. enum v 6= ∞) =⇒ dist s = 0

function (in shortest-paths-reachable) pwalk :: ′a ⇒ ′b list
where
pwalk v =

(if (v = s ∨ dist v = ∞ ∨ v /∈ verts G)
then []
else pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]

)
by auto
termination (in shortest-paths-reachable)
using pna
by (relation measure num, auto, fastforce)

lemma (in shortest-paths-reachable) pwalk-simps:
v = s ∨ dist v = ∞ ∨ v /∈ verts G =⇒ pwalk v = []
v 6= s =⇒ dist v 6= ∞ =⇒ v ∈ verts G =⇒
pwalk v = pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]

by auto

definition (in shortest-paths-reachable) pwalk-verts :: ′a ⇒ ′a set where
pwalk-verts v = {u. u ∈ set (awalk-verts s (pwalk v))}

locale shortest-paths-neg-cyc =
shortest-paths-basic +
fixes C :: (′a ×(′b awalk)) set
assumes C-se:
C ⊆ {(u, p). dist u 6= ∞ ∧ awalk u p u ∧ awalk-cost c p < 0}

assumes int-neg-cyc:∧
v. v ∈ Vn =⇒
(fst ‘ C) ∩ pwalk-verts v 6= {}

locale shortest-paths-basic-pred =
shortest-paths-reachable +
fixes pred :: ′a ⇒ ′b option
assumes bj: basic-just-sp-pred G dist c s enum pred

88 Isabelle Theories for Chapter 2

assumes source-val: (∃ v ∈ verts G. enum v 6= ∞) =⇒ dist s = 0

sublocale shortest-paths-basic-pred ⊆ shortest-paths-basic
using shortest-paths-basic-pred-axioms
unfolding shortest-paths-basic-pred-def shortest-paths-basic-pred-axioms-def
shortest-paths-basic-def shortest-paths-basic-axioms-def
basic-just-sp-pred-def basic-just-sp-pred-axioms-def
basic-just-sp-def basic-just-sp-axioms-def
by blast

lemma (in shortest-paths-reachable) num-s-is-min:
assumes v ∈ verts G
assumes v 6= s
assumes v /∈ Vp
shows num v > 0
using pna[OF assms] by fastforce

theorem (in shortest-paths-reachable) path-from-root-Vr-ex:
fixes v :: ′a
assumes v ∈ verts G
assumes v 6= s
assumes v /∈ Vp
shows ∃ e. s →∗ tail G e ∧

e ∈ arcs G ∧ head G e = v ∧ dist (tail G e) 6= ∞ ∧
parent-edge v = Some e ∧ num v = num (tail G e) + 1

using assms
proof(induct num v − 1 arbitrary : v)
case 0
obtain e where ee:
e ∈ arcs G
head G e = v
(tail G e) /∈ Vp
parent-edge v = Some e
num v = num (tail G e) + 1
using pna[OF 0(2−4)] by fast

have tail G e = s
using num-s-is-min[OF tail-in-verts [OF ee(1)] - ee(3)]
ee(5) 0(1) by auto

then show ?case using ee by auto
next
case (Suc n ′)
obtain e where ee:
e ∈ arcs G

A.1. Witness Properties 89

head G e = v
(tail G e) /∈ Vp
parent-edge v = Some e
num v = num (tail G e) + 1
using pna[OF Suc(3−5)] by fast

then have ss: tail G e 6= s
using num-s-is-min tail-in-verts ee
Suc(2) s-assms(2) by force

have nst: n ′ = num (tail G e) − 1
using ee(5) Suc(2) by presburger

obtain e ′ where
reach: s →∗ tail G e ′ and
e ′: e ′ ∈ arcs G ∧ head G e ′ = tail G e ∧ (tail G e ′) /∈ Vp
using Suc(1)[OF nst tail-in-verts[OF ee(1)] ss ee(3)] by blast

from reach also have tail G e ′→ tail G e using e ′

by (metis in-arcs-imp-in-arcs-ends)
finally show ?case using e ′ ee by auto

qed

corollary (in shortest-paths-reachable) path-from-root-Vr:
fixes v :: ′a
assumes v ∈ verts G
assumes v /∈ Vp
shows s →∗ v

proof(cases v = s)
case True thus ?thesis using assms by simp
next
case False
obtain e where s →∗ tail G e and e ∈ arcs G and head G e = v

using path-from-root-Vr-ex[OF assms(1) False assms(2)] by blast
then have s →∗ tail G e and tail G e → v
by (auto intro: in-arcs-imp-in-arcs-ends)

then show ?thesis by (rule reachable-adj-trans)
qed

corollary (in shortest-paths-reachable) not-Vp-µ-less-inf:
fixes v :: ′a
assumes v ∈ verts G
assumes v /∈ Vp
shows µ c s v 6= ∞
using assms path-from-root-Vr µ-reach-conv by force

lemma (in shortest-paths-basic) enum-not0:
assumes v ∈ verts G

90 Isabelle Theories for Chapter 2

assumes v 6= s
shows enum v 6= enat 0
using pna[OF assms(1,2)] assms unfolding enum-def by auto

lemma (in shortest-paths-basic) dist-Vf-µ:
fixes v :: ′a
assumes vG: v ∈ verts G
assumes ∃ r. dist v = ereal r
shows dist v = µ c s v

proof −
have ds: dist s = 0
using assms source-val unfolding enum-def by force

have ews:awalk s [] s
using s-assms(1) unfolding awalk-def by simp

have mu: µ c s s = ereal 0
using min-cost-le-walk-cost[OF ews, where c=c]
awalk-cost-Nil ds dist-le-µ[OF s-assms(1)] zero-ereal-def
by simp

thus ?thesis
using ds assms dist-le-µ[OF vG]
dist-ge-µ[OF vG - - mu ds enum-not0]
unfolding enum-def by fastforce

qed

lemma (in shortest-paths-reachable) pwalk-awalk:
fixes v :: ′a
assumes v ∈ verts G
assumes dist v 6= ∞
shows awalk s (pwalk v) v

proof (cases v=s)
case True
thus ?thesis
using assms pwalk.simps[where v=v]
awalk-Nil-iff by presburger

next
case False
from assms show ?thesis
proof (induct rule: pwalk.induct)
fix v
let ?e = the (parent-edge v)
let ?u = tail G ?e
assume ewu: ¬ (v = s ∨ dist v = ∞ ∨ v /∈ verts G) =⇒

?u ∈ verts G =⇒ dist ?u 6= ∞ =⇒
awalk s (pwalk ?u) ?u

assume vG: v ∈ verts G

A.1. Witness Properties 91

assume dv: dist v 6= ∞
thus awalk s (pwalk v) v
proof (cases v = s ∨ dist v = ∞ ∨ v /∈ verts G)
case True
thus ?thesis
using pwalk.simps vG dv
awalk-Nil-iff by fastforce

next
case False
obtain e where ee:
e ∈arcs G
parent-edge v = Some e
head G e = v
(tail G e) /∈ Vp
using pna False by blast

hence awalk s (pwalk ?u) ?u
using ewu[OF False] tail-in-verts by simp

hence awalk s (pwalk (tail G e) @ [e]) v
using ee(1−3) vG
by (auto simp: awalk-simps simp del: pwalk.simps)

thus ?thesis
by (simp only: pwalk.simps[where v=v, unfolded ee(2), simplified False if-False

option.sel])
qed

qed
qed

lemma (in shortest-paths-neg-cyc) Vn-µ-ninf:
fixes v :: ′a
assumes v ∈ Vn
shows µ c s v = − ∞

proof −
have awalk s (pwalk v) v
using pwalk-awalk assms by force

moreover
obtain w where ww: w ∈ fst ‘ C ∩ pwalk-verts v
using int-neg-cyc[OF assms] by blast

then obtain q where
awalk w q w and
awalk-cost c q < 0
using C-se by auto

moreover
have w ∈ set (awalk-verts s (pwalk v))
using ww unfolding pwalk-verts-def by fast

ultimately
show ?thesis using neg-cycle-imp-inf-µ by force

92 Isabelle Theories for Chapter 2

qed

theorem (in shortest-paths-neg-cyc) correct-shortest-path:
fixes v :: ′a
assumes v ∈ verts G
shows dist v = µ c s v

proof(cases dist v)
show

∧
r. dist v = ereal r =⇒ dist v = µ c s v

using dist-Vf-µ[OF assms] by simp
next
show dist v = ∞ =⇒ dist v = µ c s v
using dist-le-µ[OF assms] by simp

next
show dist v = −∞ =⇒ dist v = µ c s v
using Vn-µ-ninf assms by simp

qed

end

A.1.4. Maximum Cardinality Matching
theory Matching
imports
Main
Parity
../Graph-Theory/Graph-Theory

begin

type-synonym label = nat

definition disjoint-arcs :: (′a, ′b) pre-digraph => ′b ⇒ ′b ⇒ bool where
disjoint-arcs G e1 e2 = (

tail G e1 6= tail G e2 ∧ tail G e1 6= head G e2 ∧
head G e1 6= tail G e2 ∧ head G e1 6= head G e2)

definition matching :: (′a, ′b) pre-digraph ⇒ ′b set ⇒ bool where
matching G M = (M ⊆ arcs G ∧ (∀ e1 ∈ M. ∀ e2 ∈ M. e1 6= e2 −→ disjoint-arcs G

e1 e2))

definition OSC :: (′a, ′b) pre-digraph ⇒ (′a ⇒ label) ⇒ bool where
OSC G L = (
∀ e ∈ arcs G.
L (tail G e) = 1 ∨ L (head G e) = 1 ∨
L (tail G e) = L (head G e) ∧ L (tail G e) ≥ 2)

A.1. Witness Properties 93

definition weight:: label set ⇒ (label ⇒ nat) ⇒ nat where
weight LV f ≡ f 1 + (

∑
i∈LV. (f i) div 2)

definition N :: ′a set ⇒ (′a ⇒ label) ⇒ label ⇒ nat where
N V L i ≡ card {v ∈ V. L v = i}

locale matching-locale = digraph +
fixes maxM :: ′b set
fixes L :: ′a ⇒ label
assumes matching: matching G maxM
assumes OSC: OSC G L
assumes weight: card maxM = weight {i ∈ L ‘ verts G. i > 1} (N (verts G) L)

sublocale matching-locale ⊆ digraph ..

context matching-locale begin

definition degree :: ′a ⇒ nat where
degree v ≡ card {e ∈ arcs G. tail G e = v ∨ head G e = v}

definition edge-as-set :: ′b ⇒ ′a set where
edge-as-set e ≡ {tail G e, head G e}

definition matched :: ′b set ⇒ ′a ⇒ bool where
matched M v ≡ v ∈

⋃
(edge-as-set ‘ M)

definition free :: ′b set ⇒ ′a ⇒ bool where
free M v ≡ ¬ matched M v

definition matching-i :: nat ⇒ ′b set ⇒ ′b set where
matching-i i M ≡ {e ∈ M. i=1 ∧ (L (tail G e) = i ∨ L (head G e) = i)
∨ i>1 ∧ L (tail G e) = i ∧ L (head G e) = i}

definition V-i:: nat ⇒ ′b set ⇒ ′a set where
V-i i M ≡

⋃
(edge-as-set ‘ matching-i i M)

definition endpoint-inV :: ′a set ⇒ ′b ⇒ ′a where
endpoint-inV V e ≡ if tail G e ∈ V then tail G e else head G e

definition relevant-endpoint :: ′b ⇒ ′a where
relevant-endpoint e ≡ if L (tail G e) = 1 then tail G e else head G e

lemma definition-of-range:
endpoint-inV V1 ‘ matching-i 1 M =

94 Isabelle Theories for Chapter 2

{ v. ∃ e ∈ matching-i 1 M. endpoint-inV V1 e = v } by auto

lemma matching-i-arcs-as-sets:
edge-as-set ‘ matching-i i M =
{ e1. ∃ e ∈ matching-i i M. edge-as-set e = e1} by auto

lemma matching-disjointness:
assumes matching G M
assumes e1 ∈ M
assumes e2 ∈ M
assumes e1 6= e2
shows edge-as-set e1 ∩ edge-as-set e2 = {}
using assms
by (auto simp add: edge-as-set-def disjoint-arcs-def matching-def)

lemma expand-set-containment:
assumes matching G M
assumes e ∈ M
shows e ∈ arcs G
using assms
by (auto simp add:matching-def)

theorem injectivity:
assumes is-m: matching G M
assumes e1-in-M1: e1 ∈ matching-i 1 M

and e2-in-M1: e2 ∈ matching-i 1 M
assumes diff: (e1 6= e2)
shows endpoint-inV {v ∈ V. L v = 1} e1 6= endpoint-inV {v ∈ V. L v = 1} e2

proof −
from e1-in-M1 have e1 ∈ M by (auto simp add: matching-i-def)
moreover
from e2-in-M1 have e2 ∈ M by (auto simp add: matching-i-def)
ultimately
have disjoint-edge-sets: edge-as-set e1 ∩ edge-as-set e2 = {}
using diff is-m matching-disjointness by fast

then show ?thesis by (auto simp add: edge-as-set-def endpoint-inV-def)
qed

lemma card-M1-le-NVL1:
assumes matching G M
shows card (matching-i 1 M) ≤ N (verts G) L 1

proof −
let ?f = endpoint-inV {v ∈ verts G. L v = 1}
let ?A = matching-i 1 M
let ?B = {v ∈ verts G. L v = 1}
have inj-on ?f ?A using assms injectivity

A.1. Witness Properties 95

unfolding inj-on-def by blast
moreover have ?f ‘ ?A ⊆ ?B
proof −
{
fix e assume e ∈ matching-i 1 M
hence e ∈ arcs G
using assms by (auto simp add: matching-def matching-i-def)

with 〈e ∈ matching-i 1 M〉

have endpoint-inV {v ∈ verts G. L v = 1} e ∈ {v ∈ verts G. L v = 1}
using assms

by (auto simp add: endpoint-inV-def matching-i-def intro: tail-in-verts
head-in-verts)

}
then show ?thesis using assms definition-of-range by blast

qed
moreover have finite ?B by simp
ultimately show ?thesis unfolding N-def by (rule card-inj-on-le)

qed

lemma edge-as-set-inj-on-Mi:
assumes matching G M
shows inj-on edge-as-set (matching-i i M)
using assms
unfolding inj-on-def edge-as-set-def matching-def
disjoint-arcs-def matching-i-def

by blast

lemma card-edge-as-set-Mi-twice-card-partitions:
assumes matching G M ∧ i > 1
shows 2 ∗ card (edge-as-set‘matching-i i M)
= card (V-i i M) (is 2 ∗ card ?C = card ?Vi)

proof −
from assms have 1: finite (

⋃
?C)

by (auto simp add: matching-def
matching-i-def edge-as-set-def finite-subset)

show ?thesis unfolding V-i-def
proof (rule card-partition)
show finite ?C using 1 by (rule finite-UnionD)

next
show finite (

⋃
?C) using 1 .

next
fix c assume c ∈ ?C then show card c = 2
proof (rule imageE)
fix x
assume 2: c = edge-as-set x and 3: x ∈ matching-i i M
with assms have x ∈ arcs G

96 Isabelle Theories for Chapter 2

unfolding matching-i-def matching-def by blast
then have tail G x 6= head G x using assms 3 by (metis no-loops)
with 2 show ?thesis by (auto simp add: edge-as-set-def)

qed
next
fix x1 x2
assume 4: x1 ∈ ?C and 5: x2 ∈ ?C and 6: x1 6= x2
{
fix e1 e2
assume 7: x1 = edge-as-set e1 e1 ∈ matching-i i M
x2 = edge-as-set e2 e2 ∈ matching-i i M

from assms have matching G M by simp
moreover
from 7 assms have e1 ∈ M and e2 ∈ M
by (simp-all add: matching-i-def)

moreover from 6 7 have e1 6= e2 by blast
ultimately have x1 ∩ x2 = {} unfolding 7
by (rule matching-disjointness)

}
with 4 5 show x1 ∩ x2 = {} by clarsimp

qed
qed

lemma card-Mi-twice-card-Vi:
assumes matching G M ∧ i > 1
shows 2 ∗ card (matching-i i M) = card (V-i i M)

proof −
show ?thesis
by (metis assms card-edge-as-set-Mi-twice-card-partitions
edge-as-set-inj-on-Mi card-image)

qed

lemma card-Mi-le-floor-div-2-Vi:
assumes matching G M ∧ i > 1
shows card (matching-i i M) ≤ (card (V-i i M)) div 2
using card-Mi-twice-card-Vi[OF assms]
by arith

lemma card-Vi-le-NVLi:
assumes i>1 ∧ matching G M
shows card (V-i i M) ≤ N (verts G) L i
unfolding N-def

proof (rule card-mono)
show finite {v ∈ verts G. L v = i} using assms
by (simp add: matching-def)

next

A.1. Witness Properties 97

let ?A = edge-as-set ‘ matching-i i M
let ?C = {v ∈ verts G. L v = i}
show V-i i M ⊆ ?C using assms unfolding V-i-def
proof (intro Union-least)
fix X assume X ∈ ?A
with assms have ∃ x ∈ matching-i i M. edge-as-set x = X
by (simp add: matching-i-arcs-as-sets)

with assms show X ⊆ ?C
unfolding matching-def
matching-i-def edge-as-set-def by (blast intro: tail-in-verts head-in-verts)

qed
qed

lemma card-Mi-le-floor-div-2-NVLi:
assumes matching G M ∧ i > 1
shows card (matching-i i M) ≤ (N (verts G) L i) div 2

proof −
from assms have card (V-i i M) ≤ (N (verts G) L i)
by (simp add: card-Vi-le-NVLi)

then have card (V-i i M) div 2 ≤ (N (verts G) L i) div 2
by simp

moreover from assms have
card (matching-i i M) ≤ card (V-i i M) div 2
by (intro card-Mi-le-floor-div-2-Vi)

ultimately show ?thesis by auto
qed

lemma card-M-le-sum-card-Mi:
assumes matching G M and OSC G L
shows card M ≤ (

∑
i ∈ L‘verts G. card (matching-i i M))

(is card - ≤ ?CardMi)
proof −
let ?UnMi =

⋃
x ∈ L‘verts G. matching-i x M

from assms have 1: finite ?UnMi
by (auto simp add: matching-def matching-i-def finite-subset)

{
fix e assume e-inM: e ∈ M
let ?v = relevant-endpoint e
have 1: e ∈ matching-i (L ?v) M using assms e-inM
proof cases
assume L (tail G e) = 1
thus ?thesis using assms e-inM
by (simp add: relevant-endpoint-def matching-i-def)

next
assume a: L (tail G e) 6= 1
have L (tail G e) = 1 ∨ L (head G e) = 1

98 Isabelle Theories for Chapter 2

∨ (L (tail G e) = L (head G e) ∧ L (tail G e) >1)
using assms e-inM unfolding OSC-def
by (auto intro: expand-set-containment)

thus ?thesis using assms e-inM a
by (auto simp add: relevant-endpoint-def matching-i-def)

qed
have 2: ?v ∈ verts G using assms e-inM

by (auto simp add: matching-def relevant-endpoint-def intro: tail-in-verts
head-in-verts)

then have ∃ v ∈ verts G. e ∈ matching-i (L v) M using assms 1 2
by (intro bexI)

}
with assms have M ⊆ ?UnMi by (auto)
with assms and 1 have card M ≤ card ?UnMi by (intro card-mono)
moreover from assms have card ?UnMi = ?CardMi
proof (intro card-UN-disjoint)
show finite (L‘verts G) by simp

next
show ∀ i∈L‘verts G. finite (matching-i i M) using assms
using finite-arcs
unfolding matching-def matching-i-def
by (blast intro: finite-subset finite-arcs)

next
show ∀ i ∈ L‘verts G. ∀ j ∈ L‘verts G. i 6= j −→
matching-i i M ∩ matching-i j M = {} using assms
by (auto simp add: matching-i-def)

qed
ultimately show ?thesis by simp

qed

theorem card-M-le-weight-NVLi:
assumes matching G M and OSC G L
shows card M ≤ weight {i ∈ L ‘ verts G. i > 1} (N (verts G) L) (is - ≤ ?W)

proof −
let ?M01 =

∑
i| i ∈ L ‘ verts G ∧ (i=1 ∨ i=0). card (matching-i i M)

let ?Mgr1 =
∑

i| i ∈ L ‘ verts G ∧ 1 < i. card (matching-i i M)
let ?Mi =

∑
i∈L ‘ verts G. card (matching-i i M)

have card M ≤ ?Mi using assms by (rule card-M-le-sum-card-Mi)
moreover
have ?Mi ≤ ?W
proof −
let ?A = {i ∈ L ‘ verts G. i = 1 ∨ i = 0}
let ?B = {i ∈ L ‘ verts G. 1 < i}
let ?g = λ i. card (matching-i i M)
let ?set01 = { i. i : L ‘ verts G & (i = 1 | i = 0)}
have a: L ‘ verts G = ?A ∪ ?B using assms by auto

A.1. Witness Properties 99

have b: setsum ?g (?A ∪ ?B) = setsum ?g ?A + setsum ?g ?B
by (auto intro: setsum.union-disjoint)

have 1: ?Mi = ?M01+ ?Mgr1 using assms a b by simp
moreover
have 0: card (matching-i 0 M) = 0 using assms
by (simp add: matching-i-def)
have 2: ?M01 ≤ N (verts G) L 1
proof cases
assume a: 1 ∈ L ‘ verts G
have ?M01 = card (matching-i 1 M)
proof cases
assume b: 0 ∈ L ‘ verts G
with a assms have ?set01 = {0, 1} by blast
thus ?thesis using assms 0 by simp

next
assume b: 0 /∈ L ‘ verts G
with a have ?set01 = {1} by (auto simp del:One-nat-def)
thus ?thesis by simp

qed
thus ?thesis using assms a
by (simp del: One-nat-def, intro card-M1-le-NVL1)

next
assume a: 1 /∈ L ‘ verts G
show ?thesis
proof cases
assume b: 0 ∈ L ‘ verts G
with a assms have ?set01 = {0} by (auto simp del:One-nat-def)
thus ?thesis using assms 0 by auto

next
assume b: 0 /∈ L ‘ verts G
with a have ?set01 = {} by (auto simp del:One-nat-def)
then have ?M01 = (

∑
i∈{}. card (matching-i i M)) by auto

thus ?thesis by simp
qed

qed
moreover
have 3: ?Mgr1 ≤ (

∑
i|i∈L ‘ verts G ∧ 1 < i. N (verts G) L i div 2)

using assms
by (intro setsum-mono card-Mi-le-floor-div-2-NVLi, simp)

ultimately
show ?thesis using 1 2 3 assms by (simp add: weight-def)

qed
ultimately show ?thesis by simp

qed

theorem maximum-cardinality-matching:

100 Isabelle Theories for Chapter 2

matching G M ′ −→ card M ′ ≤ card maxM
using card-M-le-weight-NVLi OSC matching weight
by simp

end

end

A.2. Verification of Imperative Simpl code

A.2.1. Connected Components

Implementation

theory Check-Connected-Impl
imports
Vcg
../Witness-Property/Connected-Components

begin

type-synonym IVertex = nat
type-synonym IEdge-Id = nat
type-synonym IEdge = IVertex × IVertex
type-synonym IPEdge = IVertex ⇒ IEdge-Id option
type-synonym INum = IVertex ⇒ nat
type-synonym IGraph = nat × nat × (IEdge-Id ⇒ IEdge)

abbreviation ivertex-cnt :: IGraph ⇒ nat
where ivertex-cnt G ≡ fst G

abbreviation iedge-cnt :: IGraph ⇒ nat
where iedge-cnt G ≡ fst (snd G)

abbreviation iedges :: IGraph ⇒ IEdge-Id ⇒ IEdge
where iedges G ≡ snd (snd G)

definition is-wellformed-inv :: IGraph ⇒ nat ⇒ bool where
is-wellformed-inv G i ≡ ∀ k < i. ivertex-cnt G > fst (iedges G k)

∧ ivertex-cnt G > snd (iedges G k)
ML 〈〈 Toplevel.theory 〉〉
procedures is-wellformed (G :: IGraph | R :: bool)
where
i :: nat
e :: IEdge

in

A.2. Verification of Imperative Simpl code 101

ANNO G.{| ´G = G |}
´R :== True ;;
´i :== 0 ;;
TRY
WHILE ´i < iedge-cnt ´G
INV {| ´R = is-wellformed-inv ´G ´i ∧

´i ≤ iedge-cnt ´G ∧ ´G = G |}
VAR MEASURE (iedge-cnt ´G − ´i)
DO
´e :== iedges ´G ´i ;;
IF ivertex-cnt ´G ≤ fst ´e ∨ ivertex-cnt ´G ≤ snd ´e THEN
´R :== False ;;
THROW

FI ;;
´i :== ´i + 1
OD

CATCH SKIP END
{| ´G = G ∧
´R = is-wellformed-inv ´G (iedge-cnt ´G) |}

definition parent-num-assms-inv :: IGraph ⇒ IVertex ⇒ IPEdge ⇒ INum ⇒ nat ⇒
bool where
parent-num-assms-inv G r p n k ≡ ∀ i < k. i 6= r −→ (case p i of

None ⇒ False
| Some x ⇒ x < iedge-cnt G ∧ snd (iedges G x) = i ∧ n i = n (fst (iedges G x)) +

1)

procedures parent-num-assms (G :: IGraph, r :: IVertex, parent-edge :: IPEdge,
num :: INum | R :: bool)

where
vertex :: IVertex
edge-id :: IEdge-Id

in
ANNO (G,r,p,n).
{| ´G = G ∧ ´r = r ∧ ´parent-edge = p ∧ ´num = n |}
´R :== True ;;
´vertex :== 0 ;;
TRY
WHILE ´vertex < ivertex-cnt ´G
INV {| ´R = parent-num-assms-inv ´G ´r ´parent-edge ´num ´vertex
∧ ´G = G ∧ ´r = r ∧ ´parent-edge = p ∧ ´num = n
∧ ´vertex ≤ ivertex-cnt ´G|}

VAR MEASURE (ivertex-cnt ´G − ´vertex)
DO
IF (´vertex 6= ´r) THEN
IF ´parent-edge ´vertex = None THEN

102 Isabelle Theories for Chapter 2

´R :== False ;;
THROW

FI ;;
´edge-id :== the (´parent-edge ´vertex) ;;
IF ´edge-id ≥ iedge-cnt ´G
∨ snd (iedges ´G ´edge-id) 6= ´vertex
∨ ´num ´vertex 6= ´num (fst (iedges ´G ´edge-id)) + 1 THEN

´R :== False ;;
THROW

FI
FI ;;
´vertex :== ´vertex + 1

OD
CATCH SKIP END
{| ´G = G ∧ ´r = r ∧ ´parent-edge = p ∧ ´num = n
∧ ´R = parent-num-assms-inv ´G ´r ´parent-edge ´num (ivertex-cnt ´G)|}

procedures check-connected (G :: IGraph, r :: IVertex, parent-edge :: IPEdge,
num :: INum | R :: bool)

where
R1 :: bool
R2 :: bool
R3 :: bool

in
´R1 :== CALL is-wellformed(´G) ;;
´R2 :== ´r < ivertex-cnt ´G ∧ ´num ´r = 0 ∧ ´parent-edge ´r = None ;;
´R3 :== CALL parent-num-assms(´G, ´r, ´parent-edge, ´num) ;;
´R :== ´R1 ∧ ´R2 ∧ ´R3

end

Verification

theory Check-Connected-Verification
imports Vcg Check-Connected-Impl
begin

definition no-loops :: (′a, ′b) pre-digraph ⇒ bool where
no-loops G ≡ ∀ e ∈ arcs G. tail G e 6= head G e

definition abs-IGraph :: IGraph ⇒ (nat, nat) pre-digraph where
abs-IGraph G ≡ (| verts = {0..<ivertex-cnt G}, arcs = {0..<iedge-cnt G},
tail = fst o iedges G, head = snd o iedges G |)

lemma verts-absI[simp]: verts (abs-IGraph G) = {0..<ivertex-cnt G}
and arcs-absI[simp]: arcs (abs-IGraph G) = {0..<iedge-cnt G}

A.2. Verification of Imperative Simpl code 103

and tail-absI[simp]: tail (abs-IGraph G) e = fst (iedges G e)
and head-absI[simp]: head (abs-IGraph G) e = snd (iedges G e)
by (auto simp: abs-IGraph-def)

lemma is-wellformed-inv-step:
is-wellformed-inv G (Suc i) ←→ is-wellformed-inv G i
∧ fst (iedges G i) < ivertex-cnt G ∧ snd (iedges G i) < ivertex-cnt G

by (auto simp add: is-wellformed-inv-def less-Suc-eq)

lemma (in is-wellformed-impl) is-wellformed-spec:
∀G. Γ `t {|´G = G|} ´R :== PROC is-wellformed(´G) {|´R = is-wellformed-inv G

(iedge-cnt G)|}
apply vcg
apply (auto simp: is-wellformed-inv-step)
apply (auto simp: is-wellformed-inv-def)
done

lemma parent-num-assms-inv-step:
parent-num-assms-inv G r p n (Suc i) ←→ parent-num-assms-inv G r p n i
∧ (i 6= r −→ (case p i of
None ⇒ False
| Some x ⇒ x < iedge-cnt G ∧ snd (iedges G x) = i ∧ n i = n (fst (iedges G x)) +

1))
by (auto simp: parent-num-assms-inv-def less-Suc-eq)

lemma (in parent-num-assms-impl) parent-num-assms-spec:
∀G r p n. Γ `t {| ´G = G ∧ ´r = r ∧ ´parent-edge = p ∧ ´num = n|}
´R :== PROC parent-num-assms(´G, ´r, ´parent-edge, ´num)
{| ´R = parent-num-assms-inv G r p n (ivertex-cnt G)|}

apply vcg
apply (simp-all add: parent-num-assms-inv-step)
apply (auto simp: parent-num-assms-inv-def)
done

lemma connected-components-locale-eq-invariants:∧
G r p n.
connected-components-locale (abs-IGraph G) n p r =

(is-wellformed-inv G (iedge-cnt G) ∧
r < ivertex-cnt G ∧ n r = 0 ∧ p r = None ∧
parent-num-assms-inv G r p n (ivertex-cnt G))

proof −
fix G r p n
let ?aG = abs-IGraph G
have is-wellformed-inv G (iedge-cnt G) = fin-digraph ?aG
unfolding is-wellformed-inv-def fin-digraph-def fin-digraph-axioms-def
wf-digraph-def

104 Isabelle Theories for Chapter 2

by auto
moreover
have (∀ v ∈ verts ?aG. v 6= r −→

(∃ e ∈ arcs ?aG. p v = Some e ∧
head ?aG e = v ∧
n v = n (tail ?aG e) + 1))
= parent-num-assms-inv G r p n (ivertex-cnt G)

proof −
{ fix i assume (case p i of None ⇒ False
| Some x ⇒ x < iedge-cnt G ∧ snd (iedges G x) = i ∧ n i = n (fst (iedges G x))

+ 1)
then have ∃ x∈{0..<iedge-cnt G}. p i = Some x ∧ snd (iedges G x) = i ∧ n i =

n (fst (iedges G x)) + 1
by (case-tac p i) auto }

then show ?thesis
by (auto simp: parent-num-assms-inv-def)

qed
ultimately
show ?thesis G r p n
unfolding connected-components-locale-def
connected-components-locale-axioms-def by auto

qed

theorem (in check-connected-impl) check-connected-eq-locale:
∀G r p n. Γ `t {| ´G = G ∧ ´r = r ∧ ´parent-edge = p ∧ ´num = n |}
´R :== PROC check-connected (´G, ´r, ´parent-edge, ´num)
{| ´R = connected-components-locale (abs-IGraph G) n p r|}

by vcg (auto simp: connected-components-locale-eq-invariants)

lemma connected-components-locale-imp-correct:
assumes connected-components-locale (abs-IGraph G)n p r
assumes u ∈ pverts (mk-symmetric (abs-IGraph G))
assumes v ∈ pverts (mk-symmetric (abs-IGraph G))
shows ∃ p. pre-digraph.apath (mk-symmetric (abs-IGraph G)) u p v

proof −
interpret S: pair-wf-digraph mk-symmetric (abs-IGraph G)
by (intro wf-digraph.wellformed-mk-symmetric

connected-components-locale.ccl-wellformed[OF assms(1)])
show ?thesis
using connected-components-locale.connected-by-path[OF assms]
by (simp only: S.reachable-apath)

qed

theorem (in check-connected-impl) check-connected-spec:∧
G r p n. Γ `t {| ´G = G ∧ ´r = r ∧ ´parent-edge = p ∧ ´num = n |}
´R :== PROC check-connected(´G, ´r, ´parent-edge, ´num)

A.2. Verification of Imperative Simpl code 105

{| ´R −→
(∀ u ∈ pverts (mk-symmetric (abs-IGraph G)).
∀ v ∈ pverts (mk-symmetric (abs-IGraph G)).
∃ p. pre-digraph.apath (mk-symmetric (abs-IGraph G)) u p v)|}

using connected-components-locale-eq-invariants
connected-components-locale-imp-correct

by vcg metis

end

A.2.2. Shortest Path

Implementation

theory Check-Shortest-Path-Impl
imports
Vcg
../Witness-Property/Shortest-Path-Theory
∼∼/src/HOL/Statespace/StateSpaceLocale
begin

type-synonym IVertex = nat
type-synonym IEdge-Id = nat
type-synonym IEdge = IVertex × IVertex
type-synonym ICost = IEdge-Id ⇒ nat
type-synonym IDist = IVertex ⇒ ereal
type-synonym IPEdge = IVertex ⇒ IEdge-Id option
type-synonym INum = IVertex ⇒ enat
type-synonym IGraph = nat × nat × (IEdge-Id ⇒ IEdge)

abbreviation ivertex-cnt :: IGraph ⇒ nat
where ivertex-cnt G ≡ fst G

abbreviation iedge-cnt :: IGraph ⇒ nat
where iedge-cnt G ≡ fst (snd G)

abbreviation iarcs :: IGraph ⇒ IEdge-Id ⇒ IEdge
where iarcs G ≡ snd (snd G)

definition is-wellformed-inv :: IGraph ⇒ nat ⇒ bool where
is-wellformed-inv G i ≡ ∀ k < i. ivertex-cnt G > fst (iarcs G k)

∧ ivertex-cnt G > snd (iarcs G k)

procedures is-wellformed (G :: IGraph | R :: bool)
where
i :: nat

106 Isabelle Theories for Chapter 2

e :: IEdge
in
ANNO G.
{| ´G = G |}
´R :== True ;;
´i :== 0 ;;
TRY
WHILE ´i < iedge-cnt ´G
INV {| ´R = is-wellformed-inv ´G ´i ∧ ´i ≤ iedge-cnt ´G ∧ ´G = G |}
VAR MEASURE (iedge-cnt ´G − ´i)
DO
´e :== iarcs ´G ´i ;;
IF ivertex-cnt ´G ≤ fst ´e ∨ ivertex-cnt ´G ≤ snd ´e THEN
´R :== False ;;
THROW

FI ;;
´i :== ´i + 1
OD

CATCH SKIP END
{| ´G = G ∧ ´R = is-wellformed-inv ´G (iedge-cnt ´G) |}

definition trian-inv :: IGraph ⇒ IDist ⇒ ICost ⇒ nat ⇒ bool where
trian-inv G d c m ≡
∀ i < m. d (snd (iarcs G i)) ≤ d (fst (iarcs G i)) + ereal (c i)

procedures trian (G :: IGraph, dist :: IDist, c :: ICost | R :: bool)
where
edge-id :: IEdge-Id

in
ANNO (G,dist,c).
{| ´G = G ∧ ´dist = dist ∧ ´c = c |}
´R :== True ;;
´edge-id :== 0 ;;
TRY
WHILE ´edge-id < iedge-cnt ´G
INV {| ´R = trian-inv ´G ´dist ´c ´edge-id
∧ ´G = G ∧ ´dist = dist ∧ ´c = c
∧ ´edge-id ≤ iedge-cnt ´G|}

VAR MEASURE (iedge-cnt ´G − ´edge-id)
DO
IF ´dist (snd (iarcs ´G ´edge-id)) >

´dist (fst (iarcs ´G ´edge-id)) +
ereal (´c ´edge-id) THEN

´R :== False ;;
THROW

A.2. Verification of Imperative Simpl code 107

FI ;;
´edge-id :== ´edge-id + 1

OD
CATCH SKIP END
{| ´G = G ∧ ´dist = dist ∧ ´c = c
∧ ´R = trian-inv ´G ´dist ´c (iedge-cnt ´G) |}

definition just-inv ::
IGraph ⇒ IDist ⇒ ICost ⇒ IVertex ⇒ INum ⇒ IPEdge ⇒ nat ⇒ bool where
just-inv G d c s n p k ≡
∀ v < k. v 6= s ∧ n v 6= ∞ −→

(∃ e. e = the (p v) ∧ e < iedge-cnt G ∧
v = snd (iarcs G e) ∧
d v = d (fst (iarcs G e)) + ereal (c e) ∧
n v = n (fst (iarcs G e)) + (enat 1))

procedures just (G :: IGraph, dist :: IDist, c :: ICost,
s :: IVertex, enum :: INum, pred :: IPEdge | R :: bool)

where
v :: IVertex
edge-id :: IEdge-Id

in
ANNO (G,dist, c, s ,enum, pred).
{| ´G = G ∧ ´dist = dist ∧ ´c = c ∧ ´s = s ∧ ´enum = enum ∧ ´pred = pred|}
´R :== True ;;
´v :== 0 ;;
TRY
WHILE ´v < ivertex-cnt ´G
INV {| ´R = just-inv ´G ´dist ´c ´s ´enum ´pred ´v
∧ ´G = G ∧ ´c = c ∧ ´s = s ∧ ´dist = dist
∧ ´enum = enum ∧ ´pred = pred
∧ ´v ≤ ivertex-cnt ´G|}

VAR MEASURE (ivertex-cnt ´G − ´v)
DO
´edge-id :== the (´pred ´v) ;;
IF (´v 6= ´s) ∧ ´enum ´v 6= ∞ ∧

(´edge-id ≥ iedge-cnt ´G
∨ snd (iarcs ´G ´edge-id) 6= ´v
∨ ´dist ´v 6=
´dist (fst (iarcs ´G ´edge-id)) + ereal (´c ´edge-id)
∨ ´enum ´v 6= ´enum (fst (iarcs ´G ´edge-id)) + (enat 1)) THEN

´R :== False ;;
THROW

FI;;
´v :== ´v + 1

108 Isabelle Theories for Chapter 2

OD
CATCH SKIP END
{| ´G = G ∧ ´dist = dist ∧ ´c = c ∧ ´s = s ∧ ´enum = enum ∧ ´pred = pred
∧ ´R = just-inv ´G ´dist ´c ´s ´enum ´pred (ivertex-cnt ´G) |}

definition no-path-inv :: IGraph ⇒ IDist ⇒ INum ⇒ nat ⇒ bool where
no-path-inv G d n k ≡ ∀ v < k. (d v = ∞ ←→ n v = ∞)

procedures no-path (G :: IGraph, dist :: IDist, enum :: INum | R :: bool)
where
v :: IVertex

in
ANNO (G,dist,enum).
{| ´G = G ∧ ´dist = dist ∧ ´enum = enum |}
´R :== True ;;
´v :== 0 ;;
TRY
WHILE ´v < ivertex-cnt ´G
INV {| ´R = no-path-inv ´G ´dist ´enum ´v
∧ ´G = G ∧ ´dist = dist ∧ ´enum = enum
∧ ´v ≤ ivertex-cnt ´G|}

VAR MEASURE (ivertex-cnt ´G − ´v)
DO
IF ¬(´dist ´v = ∞ ←→ ´enum ´v = ∞) THEN
´R :== False ;;
THROW

FI ;;
´v :== ´v + 1

OD
CATCH SKIP END
{| ´G = G ∧ ´dist = dist ∧ ´enum = enum
∧ ´R = no-path-inv ´G ´dist ´enum (ivertex-cnt ´G) |}

definition non-neg-cost-inv :: IGraph ⇒ ICost ⇒ nat ⇒ bool where
non-neg-cost-inv G c m ≡ ∀ e < m. c e ≥ 0

procedures non-neg-cost (G :: IGraph, c :: ICost | R :: bool)
where
edge-id :: IEdge-Id

in
ANNO (G,c).
{| ´G = G ∧ ´c = c |}
´R :== True ;;
´edge-id :== 0 ;;

A.2. Verification of Imperative Simpl code 109

TRY
WHILE ´edge-id < iedge-cnt ´G
INV {| ´R = non-neg-cost-inv ´G ´c ´edge-id
∧ ´G = G ∧ ´c = c
∧ ´edge-id ≤ iedge-cnt ´G|}

VAR MEASURE (iedge-cnt ´G − ´edge-id)
DO
IF ´c ´edge-id < 0 THEN
´R :== False ;;
THROW

FI ;;
´edge-id :== ´edge-id + 1

OD
CATCH SKIP END
{| ´G = G ∧ ´c = c
∧ ´R = non-neg-cost-inv ´G ´c (iedge-cnt ´G) |}

procedures check-basic-just-sp (G :: IGraph, dist :: IDist, c :: ICost,
s :: IVertex, enum :: INum, pred :: IPEdge | R :: bool)

where
R1 :: bool
R2 :: bool
R3 :: bool
R4 :: bool

in
´R1 :== CALL is-wellformed (´G) ;;
´R2 :== ´dist ´s ≤ 0 ;;
´R3 :== CALL trian (´G, ´dist, ´c) ;;
´R4 :== CALL just (´G, ´dist, ´c, ´s, ´enum, ´pred) ;;
´R :== ´R1 ∧ ´R2 ∧ ´R3 ∧ ´R4

procedures check-sp (G :: IGraph, dist :: IDist, c :: ICost,
s :: IVertex, enum :: INum, pred :: IPEdge | R :: bool)

where
R1 :: bool
R2 :: bool
R3 :: bool
R4 :: bool

in
´R1 :== CALL check-basic-just-sp (´G, ´dist, ´c, ´s, ´enum, ´pred) ;;
´R2 :== ´s < ivertex-cnt ´G ∧ ´dist ´s = 0 ;;
´R3 :== CALL no-path (´G, ´dist, ´enum) ;;
´R4 :== CALL non-neg-cost (´G, ´c) ;;
´R :== ´R1 ∧ ´R2 ∧ ´R3 ∧ ´R4

110 Isabelle Theories for Chapter 2

end

Verification

theory Check-Shortest-Path-Verification
imports
Vcg
../Simpl-Verification/Check-Shortest-Path-Impl

begin

definition no-loops :: (′a, ′b) pre-digraph ⇒ bool where
no-loops G ≡ ∀ e ∈ arcs G. tail G e 6= head G e

definition abs-IGraph :: IGraph ⇒ (nat, nat) pre-digraph where
abs-IGraph G ≡ (| verts = {0..<ivertex-cnt G}, arcs = {0..<iedge-cnt G},
tail = fst o iarcs G, head = snd o iarcs G |)

lemma verts-absI[simp]: verts (abs-IGraph G) = {0..<ivertex-cnt G}
and arcs-absI[simp]: arcs (abs-IGraph G) = {0..<iedge-cnt G}
and tail-absI[simp]: tail (abs-IGraph G) e = fst (iarcs G e)
and head-absI[simp]: head (abs-IGraph G) e = snd (iarcs G e)
by (auto simp: abs-IGraph-def)

lemma is-wellformed-inv-step:
is-wellformed-inv G (Suc i) ←→ is-wellformed-inv G i
∧ fst (iarcs G i) < ivertex-cnt G ∧ snd (iarcs G i) < ivertex-cnt G

by (auto simp add: is-wellformed-inv-def less-Suc-eq)

lemma (in is-wellformed-impl) is-wellformed-spec:
∀G. Γ `t {|´G = G|} ´R :== PROC is-wellformed(´G) {|´R = is-wellformed-inv G

(iedge-cnt G)|}
apply vcg
apply (auto simp: is-wellformed-inv-step)
apply (auto simp: is-wellformed-inv-def)

done

lemma trian-inv-step:
trian-inv G d c (Suc i) ←→ trian-inv G d c i
∧ d (snd (iarcs G i)) ≤ d (fst (iarcs G i)) + c i

by (auto simp: trian-inv-def less-Suc-eq)

lemma (in trian-impl) trian-spec:
∀G d c. Γ `t {| ´G = G ∧ ´dist = d ∧ ´c = c|}

A.2. Verification of Imperative Simpl code 111

´R :== PROC trian(´G, ´dist, ´c)
{| ´R = trian-inv G d c (iedge-cnt G)|}

apply vcg
apply (auto simp add: trian-inv-step)
apply (auto simp: trian-inv-def)

done

lemma just-inv-step:
just-inv G d c s n p (Suc v) ←→ just-inv G d c s n p v
∧ (v 6= s ∧ n v 6= ∞ −→

(∃ e. e = the (p v) ∧ e < iedge-cnt G ∧
v = snd (iarcs G e) ∧
d v = d (fst (iarcs G e)) + ereal (c e) ∧
n v = n (fst (iarcs G e)) + (enat 1)))

by (auto simp: just-inv-def less-Suc-eq)

lemma just-inv-le:
assumes j ≤ i just-inv G d c s n p i
shows just-inv G d c s n p j
using assms by (induct rule: dec-induct) (auto simp: just-inv-step)

lemma not-just-verts:
fixes G R c d n p s v
assumes v < ivertex-cnt G
assumes v 6= s ∧ n v 6= ∞ ∧

(iedge-cnt G ≤ the (p v) ∨
snd (iarcs G (the (p v))) 6= v ∨
d v 6=
d (fst (iarcs G (the (p v)))) + ereal (c (the (p v))) ∨

n v 6= n (fst (iarcs G (the (p v)))) + enat 1)
shows ¬ just-inv G d c s n p (ivertex-cnt G)

proof (rule notI)
assume jv: just-inv G d c s n p (ivertex-cnt G)
have just-inv G d c s n p (Suc v)
using just-inv-le[OF - jv] assms(1) by simp

then have (v 6= s ∧ n v 6= ∞ −→
(∃ e. e = the (p v) ∧ e < iedge-cnt G ∧
v = snd (iarcs G e) ∧
d v = d (fst (iarcs G e)) + ereal (c e) ∧
n v = n (fst (iarcs G e)) + (enat 1)))
by (auto simp: just-inv-step)

with assms show False by force
qed

lemma (in just-impl) just-spec:
∀G d c s n p.

112 Isabelle Theories for Chapter 2

Γ `t {|´G = G ∧ ´dist = d ∧
´c = c ∧ ´s = s ∧ ´enum = n ∧ ´pred = p|}
´R :== PROC just(´G, ´dist, ´c, ´s, ´enum, ´pred)
{| ´R = just-inv G d c s n p (ivertex-cnt G)|}

apply vcg
apply (auto simp: not-just-verts just-inv-step)
apply (simp add: just-inv-def)

done

lemma no-path-inv-step:
no-path-inv G d n (Suc v) ←→ no-path-inv G d n v
∧ (d v = ∞ ←→ n v = ∞)

by (auto simp add: no-path-inv-def less-Suc-eq)

lemma (in no-path-impl) no-path-spec:
∀G d n. Γ `t {| ´G = G ∧ ´dist = d ∧ ´enum = n|}
´R :== PROC no-path(´G, ´dist, ´enum)
{| ´R = no-path-inv G d n (ivertex-cnt G)|}

apply vcg
apply (simp-all add: no-path-inv-step)
apply (auto simp: no-path-inv-def)

done

lemma non-neg-cost-inv-step:
non-neg-cost-inv G c (Suc i) ←→ non-neg-cost-inv G c i
∧ c i ≥ 0

by (auto simp add: non-neg-cost-inv-def less-Suc-eq)

lemma (in non-neg-cost-impl) non-neg-cost-spec:
∀G c. Γ `t {| ´G = G ∧ ´c = c|}
´R :== PROC non-neg-cost(´G, ´c)
{| ´R = non-neg-cost-inv G c (iedge-cnt G)|}

apply vcg
apply (simp-all add: non-neg-cost-inv-step)
apply (auto simp: non-neg-cost-inv-def)

done

lemma basic-just-sp-eq-invariants:∧
G dist c s enum pred.
basic-just-sp-pred (abs-IGraph G) dist c s enum pred ←→

(is-wellformed-inv G (iedge-cnt G) ∧
dist s ≤ 0 ∧
trian-inv G dist c (iedge-cnt G) ∧
just-inv G dist c s enum pred (ivertex-cnt G))

proof −
fix G d c s n p

A.2. Verification of Imperative Simpl code 113

let ?aG = abs-IGraph G
have fin-digraph (abs-IGraph G) ←→ is-wellformed-inv G (iedge-cnt G)
unfolding is-wellformed-inv-def fin-digraph-def fin-digraph-axioms-def
wf-digraph-def no-loops-def
by auto

moreover
have trian-inv G d c (iedge-cnt G) =

(∀ e. e ∈ arcs (abs-IGraph G) −→
(d (head ?aG e) ≤ d (tail ?aG e) + ereal (c e)))
by (simp add: trian-inv-def)

moreover
have just-inv G d c s n p (ivertex-cnt G) =

(∀ v. v ∈ verts ?aG −→
v 6= s −→ n v 6= ∞ −→
(∃ e∈arcs ?aG. e = the (p v) ∧
v = head ?aG e ∧
d v = d (tail ?aG e) + ereal (c e) ∧
n v = n (tail ?aG e) + enat 1))
unfolding just-inv-def by fastforce

ultimately
show ?thesis G d c s n p
unfolding
basic-just-sp-pred-def
basic-just-sp-pred-axioms-def
basic-sp-def basic-sp-axioms-def
by presburger

qed

lemma (in check-basic-just-sp-impl) check-basic-just-sp-imp-locale:
∀ G d c s n p . Γ `t {| ´G = G ∧ ´dist = d ∧ ´c = c ∧ ´s = s ∧ ´enum = n ∧ ´pred

= p |}
´R :== PROC check-basic-just-sp (´G, ´dist, ´c, ´s, ´enum, ´pred)
{| ´R = basic-just-sp-pred (abs-IGraph G) d c s n p|}
by vcg (simp add: basic-just-sp-eq-invariants)

lemma shortest-path-non-neg-cost-eq-invariants:∧
G d c s n p .
shortest-path-non-neg-cost-pred (abs-IGraph G) d c s n p ←→

(is-wellformed-inv G (iedge-cnt G) ∧
d s ≤ 0 ∧
trian-inv G d c (iedge-cnt G) ∧
just-inv G d c s n p (ivertex-cnt G) ∧
s < ivertex-cnt G ∧ d s = 0 ∧
no-path-inv G d n (ivertex-cnt G) ∧
non-neg-cost-inv G c (iedge-cnt G))

114 Isabelle Theories for Chapter 2

proof −
fix G d c s n p
let ?aG = abs-IGraph G
have no-path-inv G d n (ivertex-cnt G) ←→

(∀ v. v ∈ verts ?aG −→ (d v = ∞) = (n v = ∞))
by (simp add: no-path-inv-def)

moreover
have non-neg-cost-inv G c (iedge-cnt G) ←→

(∀ e. e ∈ arcs ?aG −→ 0 ≤ c e)
by (simp add: non-neg-cost-inv-def)

ultimately
show ?thesis G d c s n p
unfolding shortest-path-non-neg-cost-pred-def
shortest-path-non-neg-cost-pred-axioms-def
using basic-just-sp-eq-invariants by simp

qed

theorem (in check-sp-impl) check-sp-eq-locale:
∀ G d c s n p . Γ `t {| ´G = G ∧ ´dist = d ∧ ´c = c ∧ ´s = s ∧ ´enum = n ∧ ´pred

= p |}
´R :== PROC check-sp(´G, ´dist, ´c, ´s, ´enum, ´pred)
{| ´R = shortest-path-non-neg-cost-pred (abs-IGraph G) d c s n p|}
by vcg (auto simp add: shortest-path-non-neg-cost-eq-invariants)

lemma shortest-path-non-neg-cost-imp-correct:∧
G d c s n p .
shortest-path-non-neg-cost-pred (abs-IGraph G) d c s n p −→
(∀ v ∈ verts (abs-IGraph G).
d v = wf-digraph.µ (abs-IGraph G) c s v)

using shortest-path-non-neg-cost-pred.correct-shortest-path-pred by fast

theorem (in check-sp-impl) check-sp-spec:
∀ G d c s n p . Γ `t {| ´G = G ∧ ´dist = d ∧ ´c = c ∧ ´s = s ∧ ´enum = n ∧ ´pred

= p |}
´R :== PROC check-sp(´G, ´dist, ´c, ´s, ´enum, ´pred)
{| ´R −→ (∀ v ∈ verts (abs-IGraph G). d v = wf-digraph.µ (abs-IGraph G) c s v)|}

using shortest-path-non-neg-cost-eq-invariants
shortest-path-non-neg-cost-imp-correct

by vcg blast

end

A.3. Verification of C code within Isabelle/HOL 115

A.3. Verification of C code within Isabelle/HOL

A.3.1. Connected Components

theory Check-Connected
imports
../Library/Autocorres-Misc
../Witness-Property/Connected-Components

begin

install-C-file check-connected.c

autocorres check-connected.c

context check-connected begin

lemma validNFE-getsE[wp]:
{|λs. P (f s) s|} getsE f {|P|}, {|E|}!
by (auto simp: getsE-def) wp

lemma validNFE-guardE[wp]:
{|λs. f s ∧ P () s|} guardE f {|P|}, {|Q|}!
by (auto simp: guardE-def, wp, linarith)

lemma eq-of-nat-conv:
assumes unat w1 = n
shows w2 = of-nat n ←→ w2 = w1
using assms by auto

lemma less-unat-plus1:
assumes a < unat (b + 1)
shows a < unat b ∨ a = unat b
apply (subgoal-tac b + 1 6= 0)
using assms unat-minus-one add-diff-cancel
by fastforce+

lemma unat-minus-plus1-less:
fixes a b
assumes a < b
shows unat (b − (a + 1)) < unat (b − a)

116 Isabelle Theories for Chapter 2

by (metis (no-types) ab-semigroup-add-class.add-ac(1) right-minus-eq measure-unat
add-diff-cancel2 assms is-num-normalize(1) zadd-diff-inverse linorder-neq-iff)

lemma unat-image-upto:
fixes n :: 32 word
shows unat ‘ {0..<n} = {unat 0..<unat n} (is ?A = ?B)

proof
show ?B ⊆ ?A
proof
fix i assume a: i ∈ ?B
then obtain i ′:: 32 word where ii: i= unat i ′

by (metis ex-nat-less-eq le-unat-uoi not-leE order-less-asym unat-0)
then have i ′ ∈ {0..<n}
by (metis (hide-lams, mono-tags) atLeast0LessThan a unat-0

word-zero-le lessThan-iff not-leE not-less-iff-gr-or-eq
order-antisym word-le-nat-alt Un-iff ivl-disj-un(8))

thus i ∈ ?A using ii by fast
qed

next
show ?A ⊆ ?B
proof
fix i assume a: i ∈ ?A
then obtain i ′:: 32 word where ii: i= unat i ′ by blast
then have i ′ ∈ {0..<n} using a by force
thus i ∈ ?B
by (metis Un-iff atLeast0LessThan ii ivl-disj-un(8)

lessThan-iff unat-0 unat-mono word-zero-le)
qed

qed

type-synonym IVertex = 32 word
type-synonym IEdge-Id = 32 word
type-synonym IEdge = IVertex × IVertex
type-synonym IPEdge = IVertex ⇒ 32 word
type-synonym INum = IVertex ⇒ 32 word
type-synonym IGraph = 32 word × 32 word × (IEdge-Id ⇒ IEdge)

abbreviation
ivertex-cnt :: IGraph ⇒ 32 word

where
ivertex-cnt G ≡ fst G

abbreviation
iedge-cnt :: IGraph ⇒ 32 word

where

A.3. Verification of C code within Isabelle/HOL 117

iedge-cnt G ≡ fst (snd G)

abbreviation
iedges :: IGraph ⇒ IEdge-Id ⇒ IEdge

where
iedges G ≡ snd (snd G)

fun
bool::32 word ⇒ bool

where
bool b = (if b=0 then False else True)

fun
mk-list ′ :: nat ⇒ (32 word ⇒ ′b) ⇒ ′b list

where
mk-list ′ n f = map f (map of-nat [0..<n])

fun
mk-list ′-temp :: nat ⇒ (32 word ⇒ ′b) ⇒ nat ⇒ ′b list

where
mk-list ′-temp 0 - - = [] |
mk-list ′-temp (Suc x) f i = (f (of-nat i)) # mk-list ′-temp x f (Suc i)

fun
mk-iedge-list :: IGraph ⇒ IEdge list

where
mk-iedge-list G = mk-list ′ (unat (iedge-cnt G)) (iedges G)

fun
mk-inum-list :: IGraph ⇒ INum ⇒ 32 word list

where
mk-inum-list G num = mk-list ′ (unat (ivertex-cnt G)) num

fun
mk-ipedge-list :: IGraph ⇒ IPEdge ⇒ 32 word list

where
mk-ipedge-list G pedge = mk-list ′ (unat (ivertex-cnt G)) pedge

fun
to-edge :: IEdge ⇒ Edge-C

where
to-edge (u,v) = Edge-C u v

118 Isabelle Theories for Chapter 2

lemma s-C-pte[simp]:
s-C (to-edge e) = fst e
by (cases e) auto

lemma t-C-pte[simp]:
t-C (to-edge e) = snd e
by (cases e) auto

definition is-graph where
is-graph h iG p ≡
is-valid-Graph-C h p ∧
ivertex-cnt iG = n-C (heap-Graph-C h p) ∧
iedge-cnt iG = m-C (heap-Graph-C h p) ∧
arrlist (heap-Edge-C h) (is-valid-Edge-C h)

(map to-edge (mk-iedge-list iG)) (es-C (heap-Graph-C h p))

definition
is-numm h iG iN p ≡ arrlist (heap-w32 h) (is-valid-w32 h) (mk-inum-list iG iN) p

definition
is-pedge h iG iP (p:: 32 signed word ptr) ≡ arrlist (λp. heap-w32 h (ptr-coerce p))

(λp. is-valid-w32 h (ptr-coerce p)) (mk-ipedge-list iG iP) p

lemma sint-ucast:
sint (ucast (x ::word32) :: sword32) = sint x
by (clarsimp simp: sint-uint uint-up-ucast is-up)

definition
is-root :: IGraph ⇒ IVertex ⇒ IPEdge ⇒ INum ⇒ bool

where
is-root iG r iP iN ≡ r < (ivertex-cnt iG) ∧ (iN r = 0) ∧ (sint (iP r) < 0)

definition
parent-num-assms-inv :: IGraph ⇒ IVertex ⇒ IPEdge ⇒ INum ⇒ nat ⇒ bool

where
parent-num-assms-inv G r p n k ≡
∀ i < k. (of-nat i) 6= r −→

0 ≤ sint (p (of-nat i)) ∧
((p (of-nat i)) < iedge-cnt G ∧
snd (iedges G (p (of-nat i))) = (of-nat i) ∧
n (of-nat i) = n (fst (iedges G (p (of-nat i)))) + 1) ∧
n (of-nat i) < ivertex-cnt G

function (in connected-components-locale)
pwalk :: ′a ⇒ ′a list

where

A.3. Verification of C code within Isabelle/HOL 119

pwalk v =
(if (v = r ∨ v /∈ verts G)
then [v]
else
pwalk (tail G (the (parent-edge v))) ⊕ [tail G (the (parent-edge v)), v])

by simp+
termination (in connected-components-locale)
using parent-num-assms
by (relation measure num, auto, fastforce)

lemma (in connected-components-locale) pwalk-simps:
v = r ∨ v /∈ verts G =⇒ pwalk v = [v]
v 6= r =⇒ v ∈ verts G =⇒ pwalk v =
pwalk (tail G (the (parent-edge v))) @ [v]

by (simp, metis drop-0 pwalk.simps
drop-Suc-Cons vwalk-join-def drop-Suc)

lemma (in connected-components-locale) pwalk-ne: pwalk v 6= []
by (metis drop-0 drop-Suc drop-Suc-Cons not-Cons-self

pwalk.simps snoc-eq-iff-butlast vwalk-join-def)

lemma (in connected-components-locale) vwalk-length-pwalk:
assumes v ∈ verts G
assumes v 6= r
shows vwalk-length (pwalk v) =

vwalk-length (pwalk (tail G (the (parent-edge v)))) + 1
by (smt append-Cons assms length-append length-tl list.size(3,4) pwalk-ne

pwalk.simps tl-append2 vwalk-join-Cons vwalk-join-def vwalk-length-simp)

lemma (in connected-components-locale) pwalk-split:
assumes x ∈ set (pwalk v)
shows ∃ p. pwalk v = pwalk x @ p

using assms
proof (induct vwalk-length (pwalk v) arbitrary: v)
case (Suc n)
have vnr: v 6= r
using Suc(2) by fastforce

show ?case
proof (cases v ∈ verts G)
case True
thus ?thesis
proof (cases x = v)
case False
let ?u = tail G (the (parent-edge v))
have xpu: x ∈ set (pwalk ?u)
using Suc(3) pwalk-simps(2)[OF vnr True] False by fastforce

120 Isabelle Theories for Chapter 2

hence ∃ p. pwalk (tail G (the (parent-edge v))) = pwalk x @ p
using vwalk-length-pwalk[OF True vnr] Suc(2)
by (metis Suc(1)[OF - xpu] Suc-eq-plus1

Suc-eq-plus1-left diff-add-inverse)
thus ?thesis using pwalk-simps(2)[OF vnr True] by fastforce

qed fast
qed (metis Suc.prems append-Nil2 empty-iff empty-set pwalk-simps(1) set-ConsD)

qed (metis pwalk-simps(1) add-is-0 vwalk-length-pwalk
append-Nil2 empty-iff empty-set one-neq-zero set-ConsD)

lemma (in connected-components-locale) path-from-root-num:
fixes v :: ′a
assumes v ∈ verts G
shows vpath (pwalk v) G ∧

hd (pwalk v) = r ∧
last (pwalk v) = v ∧
num v = vwalk-length (pwalk v)

using assms
proof (induct vwalk-length (pwalk v) arbitrary: v rule: less-induct)
case less
thus ?case
proof (cases v=r)
case True
thus ?thesis using r-assms unfolding vpath-def by force

next
case False
then obtain e where ee:
e ∈ arcs G
e = the (parent-edge v)
head G e = v ∧ num v = num (tail G e) + 1
using less.prems parent-num-assms by force

let ?te = tail G e
let ?p ′ = pwalk ?te
let ?q = [?te, v]
obtain p where
pp: p = ?p ′ ⊕ ?q
by presburger

hence pv: p = pwalk v
using less.prems False ee(2) by force

have ew: vwalk ?q G unfolding vwalk-def
using ee(3) in-arcs-imp-in-arcs-ends[OF ee(1)]

less.prems tail-in-verts[OF ee(1)]
by auto

have wlp: vwalk-length ?p ′ < vwalk-length (pwalk v)
using vwalk-length-pwalk[OF less.prems False] ee(2)
by presburger

A.3. Verification of C code within Isabelle/HOL 121

hence pp ′:
vwalk ?p ′ G
distinct ?p ′

hd ?p ′ = r
last ?p ′ = ?te
num ?te = vwalk-length ?p ′

using less.hyps[where v=?te,
OF - tail-in-verts[OF ee(1)]]

unfolding vpath-def by linarith+
have jp: joinable ?p ′ ?q
unfolding joinable-def
by (simp only: pp ′(4) pp ′(1)[unfolded vwalk-def], simp)

have vwalk-length [tail G e, v] = 1 by force
hence np: num v = vwalk-length p
using pp vwalk-join-vwalk-length[OF jp] ee pp ′(5)
by (simp only: pp vwalk-join-vwalk-length[OF jp] ee pp ′(5))

have wp: vwalk p G
by (metis pp ew pp ′(1) jp vwalk-joinI-vwalk)

{
fix x assume xp: x ∈ set ?p ′

have vwalk-length (pwalk x) ≤ vwalk-length ?p ′

using pwalk-split[OF xp] by (smt length-append vwalk-length-simp)
then have wlx: vwalk-length (pwalk x) < vwalk-length (pwalk v)
using wlp by linarith

hence num x = vwalk-length (pwalk x)
using pp ′(1) less.hyps[OF wlx] xp vwalk-verts-in-verts by blast

with wlx have num x < vwalk-length (pwalk v) by presburger
}

then have v /∈ set ?p ′ using wlp np pv by (metis less-not-refl)
hence dp: distinct p
by (metis butlast-snoc distinct.simps(2) distinct1-rotate pp pp ′(2)
list.simps(2) rotate1.simps(2) rotate1-hd-tl vwalk-join-def)

hence vpath p G ∧ hd p = r ∧ last p = v ∧
num v = vwalk-length p

using dp wp np pp ′ pp
by (metis hd-append2 last-snoc list.sel(3) pwalk-ne vpathI vwalk-join-def)

thus ?thesis using pv by fast
qed

qed

definition
no-loops :: (′a, ′b) pre-digraph ⇒ bool

where
no-loops G ≡ ∀ e ∈ arcs G. tail G e 6= head G e

122 Isabelle Theories for Chapter 2

definition
abs-IGraph :: IGraph ⇒ (32 word, 32 word) pre-digraph

where
abs-IGraph G ≡ (| verts = {0..<ivertex-cnt G}, arcs = {0..<iedge-cnt G},
tail = fst o iedges G, head = snd o iedges G |)

lemma verts-absI[simp]: verts (abs-IGraph G) = {0..<ivertex-cnt G}
and edges-absI[simp]: arcs (abs-IGraph G) = {0..<iedge-cnt G}
and start-absI[simp]: tail (abs-IGraph G) e = fst (iedges G e)
and target-absI[simp]: head (abs-IGraph G) e = snd (iedges G e)
by (auto simp: abs-IGraph-def)

definition
abs-pedge :: (32 word ⇒ 32 word) ⇒ 32 word ⇒ 32 word option

where
abs-pedge p ≡ (λv. if sint (p v) < 0 then None else Some (p v))

lemma None-abs-pedgeI[simp]:
((abs-pedge p) v = None) = (sint (p v) < 0)
using abs-pedge-def by auto

lemma Some-abs-pedgeI[simp]:
(∃ e. (abs-pedge p) v = Some e) = (sint (p v) ≥ 0)
using None-not-eq None-abs-pedgeI
by (metis abs-pedge-def linorder-not-le option.simps(3))

lemma wellformed-iGraph:
assumes wf-digraph (abs-IGraph G)
shows

∧
e. e < iedge-cnt G =⇒

fst (iedges G e) < ivertex-cnt G ∧
snd (iedges G e) < ivertex-cnt G

using assms unfolding wf-digraph-def by simp

lemma path-length:
assumes vpath p (abs-IGraph iG)
shows vwalk-length p < unat (ivertex-cnt iG)

proof −
have pne: p 6= [] and dp: distinct p using assms by fast+
have unat (ivertex-cnt iG) = card (unat ‘ {0..<(fst iG)})
using unat-image-upto by simp

then have unat (ivertex-cnt iG) = card ((verts (abs-IGraph iG)))
by (simp add: inj-on-def card-image)

hence length p ≤ unat (ivertex-cnt iG)

A.3. Verification of C code within Isabelle/HOL 123

by (metis finite-code card-mono vwalk-def
distinct-card[OF dp] vpath-def assms)

hence length p − 1 < unat (ivertex-cnt iG)
by (metis pne Nat.diff-le-self le-neq-implies-less

less-imp-diff-less minus-eq one-neq-zero length-0-conv)
thus vwalk-length p < unat (fst iG)
using assms
unfolding vpath-def vwalk-def by simp

qed

lemma ptr-coerce-ptr-add-uint[simp]:
ptr-coerce (p +p uint x) = p +p (uint x)
by auto

lemma check-r ′-spc:
is-graph s iG p =⇒
is-numm s iG iN p ′ =⇒
is-pedge s iG iP p ′′ =⇒
check-r ′ p r p ′′ p ′ s =
Some (if is-root iG r iP iN then 1 else 0)
unfolding check-r ′-def unfolding is-graph-def is-numm-def is-pedge-def
apply (simp add: ocondition-def oguard-def ogets-def oreturn-def obind-def)
apply (simp add: is-root-def uint-nat word-less-def sint-ucast)
apply (safe, simp-all add: arrlist-nth)
apply (fastforce simp: dest:arrlist-nth-value[where i=int (unat r)])
apply (fastforce dest:arrlist-nth-valid[where i=int (unat r)])
apply (fastforce dest:arrlist-nth-value[where i=int (unat r)])
apply (fastforce dest:arrlist-nth-valid[where i=int (unat r)])
done

lemma pedge-num-heap:
[[arrlist (λp. heap-w32 h (ptr-coerce p)) (λp. is-valid-w32 h (ptr-coerce p))
(map (iL ◦ of-nat) [0..<unat n]) l; i < n]] =⇒
iL i = heap-w32 h (l +p int (unat i))

apply (subgoal-tac
heap-w32 h (l +p int (unat i)) = map (iL ◦ of-nat) [0..<unat n] ! unat i)
apply (subgoal-tac map (iL ◦ of-nat) [0..<unat n] ! unat i = iL i)
apply fastforce
apply (metis (hide-lams, mono-tags) unat-mono word-unat.Rep-inverse
minus-nat.diff-0 nth-map-upt o-apply plus-nat.add-0)

apply (simp add: arrlist-nth-value unat-mono)
done

lemma pedge-num-heap-ptr-coerce:
[[arrlist (λp. heap-w32 h (ptr-coerce p)) (λp. is-valid-w32 h (ptr-coerce p))

124 Isabelle Theories for Chapter 2

(map (iL ◦ of-nat) [0..<unat n]) l; i < n; 0 ≤ i]] =⇒
iL i = heap-w32 h (ptr-coerce (l +p int (unat i)))

apply (subgoal-tac
heap-w32 h (ptr-coerce (l +p int (unat i))) = map (iL ◦ of-nat) [0..<unat n] ! unat i)
apply (subgoal-tac map (iL ◦ of-nat) [0..<unat n] ! unat i = iL i)
apply fastforce
apply (metis (hide-lams, mono-tags) unat-mono word-unat.Rep-inverse
minus-nat.diff-0 nth-map-upt o-apply plus-nat.add-0)

apply (drule arrlist-nth-value[where i=int (unat i)], (simp add:unat-mono)+)
done

lemma edge-heap:
[[arrlist h v (map (to-edge ◦ (iedges iG ◦ of-nat)) [0..<unat m]) ep;
e < m]] =⇒ to-edge ((iedges iG) e) = h (ep +p (int (unat e)))
apply (subgoal-tac h (ep +p (int (unat e))) =
(map (to-edge ◦ (iedges iG ◦ of-nat)) [0..<unat m]) ! unat e)
apply (subgoal-tac to-edge ((iedges iG) e) =
(map (to-edge ◦ (iedges iG ◦ of-nat)) [0..<unat m]) ! unat e)
apply presburger
apply (metis (hide-lams, mono-tags) length-map length-upt o-apply

map-upt-eq-vals-D minus-nat.diff-0 unat-mono word-unat.Rep-inverse)
apply (fastforce simp: unat-mono arrlist-nth-value)
done

lemma head-heap:
[[arrlist h v (map (to-edge ◦ (iedges iG ◦ of-nat)) [0..<unat m]) ep; e < m]] =⇒
snd ((iedges iG) e) = t-C (h (ep +p (uint e)))
using edge-heap to-edge.simps t-C-pte by (metis uint-nat)

lemma tail-heap:
[[arrlist h v (map (to-edge ◦ (iedges iG ◦ of-nat)) [0..<unat m]) ep; e < m]] =⇒
fst ((iedges iG) e) = s-C (h (ep +p (uint e)))
using edge-heap to-edge.simps s-C-pte uint-nat by metis

lemma check-parent-num-spc ′:
{| P and

(λs. wf-digraph (abs-IGraph iG) ∧
is-graph s iG g ∧
is-numm s iG iN n ∧
is-pedge s iG iP p ∧
r < ivertex-cnt iG)|}

check-parent-num ′ g r p n
{| (λ- s. P s) And

(λrr s. rr 6= 0 ←→ parent-num-assms-inv iG r iP iN (unat (ivertex-cnt iG))) |}!

A.3. Verification of C code within Isabelle/HOL 125

apply (clarsimp simp: check-parent-num ′-def)
apply (subst whileLoopE-add-inv[where

M=λ(vv, s). unat (ivertex-cnt iG − vv) and
I=λvv s. P s ∧ parent-num-assms-inv iG r iP iN (unat vv) ∧
vv ≤ ivertex-cnt iG ∧
wf-digraph (abs-IGraph iG) ∧
is-graph s iG g ∧ is-numm s iG iN n ∧
is-pedge s iG iP p ∧
r < ivertex-cnt iG])

apply (simp add: skipE-def)
apply wp
unfolding is-graph-def is-numm-def is-pedge-def parent-num-assms-inv-def
apply (subst if-bool-eq-conj)+
apply (simp split: split-if-asm, safe, simp-all add: arrlist-nth)

apply (rule-tac i= (uint vv) in arrlist-nth-valid, simp+)
apply (metis uint-nat word-less-def)
apply (rule-tac x=unat vv in exI)
apply (subgoal-tac n-C (heap-Graph-C s g) ≤ iN vv)
apply (metis (hide-lams) word-less-nat-alt
word-not-le word-unat.Rep-inverse)
apply (subst pedge-num-heap[where l=n and iL=iN])
apply simp
apply simp
apply (metis uint-nat)
apply (rule-tac i= (uint vv) in arrlist-nth-valid)
apply simp+

apply (metis uint-nat word-less-def)
apply (rule-tac x=unat vv in exI)
apply (rule conjI, metis unat-mono, simp)
apply (metis sint-ucast not-le uint-nat
pedge-num-heap-ptr-coerce word-zero-le)
apply (rule-tac x=unat vv in exI)
apply (rule conjI, metis unat-mono, simp)

apply (metis not-le uint-nat pedge-num-heap-ptr-coerce word-zero-le)
apply (rule-tac x=unat vv in exI)
apply (rule conjI, metis unat-mono, simp)
apply (subgoal-tac snd (snd (snd iG) (iP vv)) =
t-C (heap-Edge-C s (es-C (heap-Graph-C s g) +p uint (iP vv))))
apply (metis uint-nat pedge-num-heap-ptr-coerce word-zero-le)
apply (subst head-heap[where iG=iG], simp)

apply (metis not-le uint-nat pedge-num-heap-ptr-coerce word-zero-le)
apply simp
apply (rule-tac x=unat vv in exI)
apply (rule conjI, metis unat-mono, simp,clarsimp)
apply (subgoal-tac iN vv 6= iN (fst (snd (snd iG) (iP vv))) + 1)
apply fast

126 Isabelle Theories for Chapter 2

apply (subst pedge-num-heap[where l=n and iL=iN])
apply simp+

apply (subst pedge-num-heap[where l=n and iL=iN])
apply simp
apply (drule wellformed-iGraph[where G=iG])
apply simp+

apply (subst tail-heap[where iG=iG], simp+)
apply (subst pedge-num-heap-ptr-coerce[where l=p and iL=iP])
apply simp+

apply (metis uint-nat)
apply (drule less-unat-plus1, safe, blast)
apply (subst pedge-num-heap-ptr-coerce[where l=p and iL=iP])
apply simp+

apply (metis sint-ucast not-less uint-nat)
apply (drule less-unat-plus1, safe, blast)
apply (subst pedge-num-heap-ptr-coerce[where l=p and iL=iP])
apply simp+

apply (metis not-less uint-nat)
apply (drule less-unat-plus1, safe, blast)
apply (subst pedge-num-heap-ptr-coerce[where l=p and iL=iP])
apply simp+

apply (subst head-heap[where iG=iG], (simp add: uint-nat)+)
apply (drule less-unat-plus1, safe, blast)
apply (subst pedge-num-heap[where l=n and iL=iN], simp+)
apply (subst pedge-num-heap[where l=n and iL=iN], simp)
apply (drule-tac e=iP vv in wellformed-iGraph[where G=iG])
apply (metis not-le pedge-num-heap-ptr-coerce word-zero-le)
apply simp
apply (subst tail-heap[where iG=iG], simp+)
apply (metis not-le pedge-num-heap-ptr-coerce word-zero-le)
apply (subst pedge-num-heap-ptr-coerce[where l=p and iL=iP])
apply simp+

apply (metis uint-nat)
apply (drule less-unat-plus1, safe, blast)
apply (subst pedge-num-heap[where l=n and iL=iN])
apply (simp add: uint-nat)+

apply (metis le-def word-le-nat-alt word-not-le
less-unat-plus1 eq-of-nat-conv)
apply (metis unat-minus-plus1-less)
apply (rule arrlist-nth, blast, blast)
apply (simp add: uint-nat unat-mono)
apply (rule arrlist-nth, blast, blast)
apply (simp add: uint-nat)
apply (drule-tac i=vv in pedge-num-heap-ptr-coerce[where l=p and

iL=iP])
apply simp+

A.3. Verification of C code within Isabelle/HOL 127

apply (drule-tac e=iP vv in wellformed-iGraph[where G=iG])
apply simp+
apply (drule-tac e=iP vv in tail-heap[where iG=iG])
apply (simp add: uint-nat unat-mono)+

apply (rule arrlist-nth, (simp add: uint-nat unat-mono)+)+
apply (metis less-unat-plus1 word-unat.Rep-inverse)
apply (metis eq-of-nat-conv less-unat-plus1)
apply (metis (hide-lams, no-types) eq-of-nat-conv less-unat-plus1)
apply (metis (no-types) less-unat-plus1 word-unat.Rep-inverse)
apply (metis (no-types) less-unat-plus1 word-unat.Rep-inverse)
apply (metis inc-le)
apply (metis unat-minus-plus1-less)
apply metis
apply wp
apply fast
done

lemma num-less-n:
fixes v
assumes is-root G r p n
assumes parent-num-assms-inv G r p n (unat (ivertex-cnt G))
assumes v < ivertex-cnt G
shows n v < ivertex-cnt G

proof −
have ivertex-cnt G > 0
using assms by (metis word-neq-0-conv word-not-simps(1))

thus ?thesis
using assms unfolding parent-num-assms-inv-def is-root-def
by (cases v=r, presburger , metis unat-mono word-unat.Rep-inverse)

qed

lemma parent-num-assms-inv-num-ne-0:
fixes v
assumes wf-digraph (abs-IGraph G)
assumes is-root G r p n
assumes parent-num-assms-inv G r p n (unat (ivertex-cnt G))
assumes v 6= r
assumes v < (ivertex-cnt G)
shows n v 6= 0

proof−
have p v ∈ arcs (abs-IGraph G)
using assms(3−5) unat-mono
unfolding parent-num-assms-inv-def
by fastforce

hence fst (iedges G (p v)) ∈ verts (abs-IGraph G)
using assms(1) wf-digraph-def by fastforce

hence n (fst (snd (snd G) (p v))) < ivertex-cnt G

128 Isabelle Theories for Chapter 2

using num-less-n[OF assms(2,3)] by fastforce
moreover
have n v = n (fst (snd (snd G) (p v))) + 1
using assms unat-mono
unfolding parent-num-assms-inv-def
by force

ultimately
show ?thesis using assms
by (metis less-is-non-zero-p1)

qed

lemma connected-components-locale-num-eq-invariants ′:∧
G r p n.
(connected-components-locale (abs-IGraph G) (unat ◦ n) (abs-pedge p) r
∧ (∀ v ∈ verts (abs-IGraph G). v 6= r −→ (unat ◦ n) v < unat (ivertex-cnt G))) =

(wf-digraph (abs-IGraph G) ∧
is-root G r p n ∧
parent-num-assms-inv G r p n (unat (ivertex-cnt G)))

proof −
fix G fix r::32 word fix p n::32 word ⇒ 32 word
let ?aG = abs-IGraph G
let ?ap = abs-pedge p
let ?an = unat ◦ n
let ?wf = wf-digraph ?aG
let ?is-root = r ∈ verts ?aG ∧ ?ap r = None ∧ ?an r = 0
let ?pnai = (∀ v. v ∈ verts ?aG ∧ v 6= r −→

(∃ e∈arcs ?aG. ?ap v = Some e ∧
head ?aG e = v ∧
?an v = ?an (tail ?aG e) + 1)) ∧

(∀ v. v ∈verts ?aG ∧ v 6= r −→
?an v < unat (ivertex-cnt G))

have isr-eq: ?is-root = is-root G r p n
unfolding is-root-def
using None-abs-pedgeI unat-eq-0 by auto

moreover
have (?wf ∧ ?is-root ∧ ?pnai)

= (?wf ∧ is-root G r p n ∧
parent-num-assms-inv G r p n (unat (ivertex-cnt G)))

proof −
{
assume wf: ?wf
assume isr: ?is-root
assume ∗:

∧
v. v ∈ verts ?aG ∧ v 6= r =⇒

(∃ e ∈ arcs ?aG. ?ap v = Some e ∧
head ?aG e = v ∧
?an v = ?an (tail ?aG e) + 1) ∧ (?an v < unat (ivertex-cnt G))

A.3. Verification of C code within Isabelle/HOL 129

{
fix i
let ?i = of-nat i
assume i < unat (ivertex-cnt G) ∧ ?i 6= r
then have ii: ?i ∈ verts (abs-IGraph G) ∧ ?i 6= r
by (simp add: word-of-nat-less)

then obtain e where e-assms:
e ∈ arcs ?aG
?ap ?i = Some e
head ?aG e = ?i
?an ?i = ?an (tail ?aG e) + 1
?an ?i < unat (ivertex-cnt G) using ∗[OF ii] by auto

have pi-e: p ?i = e
using e-assms(2) abs-pedge-def Some-abs-pedgeI
by (cases ?ap ?i) force+

with e-assms pi-e Some-abs-pedgeI have
p ?i < iedge-cnt G ∧
0 ≤ sint (p ?i) ∧
snd (iedges G (p ?i)) = ?i ∧
n ?i = n (fst (iedges G (p ?i))) + 1 ∧
n ?i < ivertex-cnt G ∧
n ?i 6= 0
by (auto,

metis Some-abs-pedgeI,
metis (hide-lams, mono-tags) Suc-eq-plus1 unat-1

word-arith-nat-add word-unat.Rep-inverse,
metis word-less-nat-alt)

} then have is-root G r p n ∧
parent-num-assms-inv G r p n (unat (ivertex-cnt G))

unfolding parent-num-assms-inv-def using isr isr-eq by blast
}
hence ?wf ∧ ?is-root ∧ ?pnai

=⇒ is-root G r p n ∧
parent-num-assms-inv G r p n (unat (ivertex-cnt G)) by presburger

moreover
{
assume wf: ?wf
assume isr: is-root G r p n
assume pna: parent-num-assms-inv G r p n (unat (ivertex-cnt G))
{
fix v
assume vG: v ∈ verts ?aG
assume vnr: v 6= r
have uvG: unat v < unat (ivertex-cnt G)
using vG by (simp add: word-less-nat-alt)

have nv-ne0: n v 6= 0 using pna isr wf unfolding parent-num-assms-inv-def

130 Isabelle Theories for Chapter 2

by (metis parent-num-assms-inv-num-ne-0 pna uvG vnr word-less-nat-alt)
then have ∗:
p v < iedge-cnt G ∧
0 ≤ sint (p v) ∧
snd (iedges G (p v)) = v ∧
n v = n (fst (iedges G (p v))) + 1 ∧
n v < ivertex-cnt G
using vnr pna
unfolding parent-num-assms-inv-def
by (metis uvG word-unat.Rep-inverse)

then have 1:
∃ e. e ∈ arcs ?aG ∧ ?ap v = Some e ∧

head ?aG e = v ∧
?an v = ?an (tail ?aG e) + 1

using abs-pedge-def linorder-not-less unatSuc2 nv-ne0 by auto
have 2: ?an v < unat (ivertex-cnt G)
using ∗ by (metis o-apply word-less-nat-alt)
from 1 2 have
(∃ e. e ∈ arcs ?aG ∧ ?ap v = Some e ∧

head ?aG e = v ∧
?an v = ?an (tail ?aG e) + 1) ∧

?an v < unat (ivertex-cnt G) by blast
} then have ?is-root ∧ ?pnai using isr isr-eq by fast
}
hence ?wf ∧ is-root G r p n ∧

parent-num-assms-inv G r p n (unat (ivertex-cnt G)) =⇒
?is-root ∧ ?pnai by presburger

ultimately
show ?thesis by blast

qed
ultimately
show ?thesis G r p n
unfolding connected-components-locale-def
connected-components-locale-axioms-def
fin-digraph-def fin-digraph-axioms-def
by auto

qed

lemma cc-num-less-n:
assumes connected-components-locale (abs-IGraph G) (unat ◦ n) (abs-pedge p) r
assumes v ∈ verts (abs-IGraph G)
shows (unat ◦ n) v < unat (ivertex-cnt G)

using connected-components-locale.path-from-root-num[OF assms] path-length
by presburger

lemma connected-components-locale-eq-invariants ′:

A.3. Verification of C code within Isabelle/HOL 131

∧
G r p n.
(connected-components-locale (abs-IGraph G) (unat ◦ n) (abs-pedge p) r) =

(wf-digraph (abs-IGraph G) ∧
is-root G r p n ∧
parent-num-assms-inv G r p n (unat (ivertex-cnt G)))
using connected-components-locale-num-eq-invariants ′ cc-num-less-n by blast

lemma check-connected-spc:
{| P and

(λs. wf-digraph (abs-IGraph iG) ∧
is-graph s iG g ∧
is-numm s iG iN n ∧
is-pedge s iG iP p)|}

check-connected ′ g r p n
{| (λ- s. P s) And

(λrr s. rr 6= 0 ←→
connected-components-locale (abs-IGraph iG) (unat ◦ iN) (abs-pedge iP) r) |}!

apply (clarsimp simp: check-connected ′-def
connected-components-locale-eq-invariants ′)
apply wp
apply (rule-tac P1= P and

(λs. wf-digraph (abs-IGraph iG) ∧
is-graph s iG g ∧
is-numm s iG iN n ∧
is-pedge s iG iP p ∧
r < ivertex-cnt iG ∧
is-root iG r iP iN)

in validNF-post-imp[OF - check-parent-num-spc ′])
unfolding fin-digraph-def fin-digraph-axioms-def
apply force
apply wp
apply (auto simp: check-r ′-spc is-root-def)[]

done

end
end

132 Isabelle Theories for Chapter 2

Curriculum Vitae: Christine Rizkallah

Personal Details
Birth date 27.01.1987

Address (work) Campus E1 4, 66123 Saarbrücken, Germany

E-Mail crizkall@mpi-inf.mpg.de

Webpage http://www.mpi-inf.mpg.de/users/crizkall

Education
Since 07.2010 PhD Student at Max Planck Institute for Infor-

matics (MPII), Saarbrücken, Germany

Research: Certifying Algorithms, Theorem Proving

Advisor: Prof. Kurt Mehlhorn

Group: Algorithms and Complexity

10.2007 - 12.2009 MSc in Computer Science at Saarland Univer-
sity, Saarbrücken, Germany

Final Grade: 1.6 (B+)

Advisors: Dr. Chad E. Brown, Prof. Gert Smolka

Thesis: Proof Representations for Higher Order Logic

10.2003 - 10.2007 Bachelor (B.S.) in Computer Science and Engi-
neering at German University in Cairo, Egypt

Final Grade: 1.39 (A−)

Thesis: Hierarchial Task Network Planning for Real
Time Applications

10.2001 - 07.2003 International General Certificate of Secondary
Education (IGCSE), Dar El Tarbeya, Cairo,
Egypt

Final Grade: 108% (A+)

Scholarships
2007 - 2009 IMPRS-CS Fellowship for Master studies in Computer

Science. Max-Planck Institute for Informatics, Saar-
brücken, Germany

mailto:crizkall@mpi-inf.mpg.de
http://www.mpi-inf.mpg.de/users/crizkall
http://www.ps.uni-saarland.de/~christine/thesis.pdf

2007 Full coverage of tuition fees for the 8th semester at the
German University in Cairo due to ranking first in class
(out of 66 students) in the 7th semester.

2003 - 2007 Category A (reduced) tuition fees at the German Uni-
versity in Cairo due to high performance in IGCSE.

2011-2012 Received travel fund for attendance from the following:

- FLOC 2014, Vienna

- MOD 2013, Marktoberdorf

- OPLSS 2012, Oregon, Portland

- NASSLLI 2012, Austin, Texas

- Algorithmic Frontiers Workshop 2012, Lausanne

- Microsoft Research PhD Summer School 2011,
Cambridge

- CodeF 2011, Google, Munich

Publications Authors ordered alphabetically, else clarified in paper.

Click on bold paper names to get redirected to papers.

C. E. Brown and C. Rizkallah. Glivenko and Kuroda
for Simple Type Theory. In Journal of Symbolic
Logic (JSL). Submitted 2011. To appear 2014.

C. Rizkallah. A Simpl Shortest Path Checker Ver-
ification. In Isabelle Workshop at ITP. To appear
2014.

L. Noschinski, C. Rizkallah, and K. Mehlhorn. Verifica-
tion of Certifying Computations through Auto-
Corres and Simpl. In NASA Formal Methods (NFM)
2014, volume 8430 of LNCS, pages 46-61.

E. Alkassar, S. Böhme, K. Mehlhorn, and C. Rizkallah.
A Framework for the Verification of Certifying
Computations. In Journal of Automated Reasoning
(JAR) 2014, volume 52(3), pages 241-273. Prelimi-
nary version appeared under the name Verification
of Certifying Computations. In Computer Aided
Verfication (CAV) 2011, volume 6806 of LNCS, pages
418-423.

http://www.mpi-inf.mpg.de/~crizkall/Publications/BrownRizkallah2011.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/BrownRizkallah2011.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/SimplSPVerification.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/SimplSPVerification.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/AutoCorresVerification.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/AutoCorresVerification.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/AutoCorresVerification.pdf
http://arxiv.org/abs/1301.7462
http://arxiv.org/abs/1301.7462
http://www.mpi-inf.mpg.de/~crizkall/Publications/VerificationCertComps.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/VerificationCertComps.pdf

C. E. Brown and C. Rizkallah. From Classical Ex-
tenional Higher-Order Tableau to Intuitionistic
Intensional Natural Deduction. Proof Exchange
for Theorem Proving (PxTP) at CADE, pages 27-42.
2013.

C. Rizkallah. An Axiomatic Characterization of
the Single-Source Shortest Path Problem. In:
Gerwin Klein, Tobias Nipkow, and Lawrence Paulson,
editors, The Archive of Formal Proofs. May 2013.

C. Rizkallah. Maximum Cardinality Matching. In:
Gerwin Klein, Tobias Nipkow, and Lawrence Paulson,
editors, The Archive of Formal Proofs. July 2011.

E. Alkassar, S. Böhme, K. Mehlhorn, C. Rizkallah,
and P. Schweizer. An Introduction to Certifying
Algorithms. it - Information Technology 2011, volume
53, pages 287-293.

Work Experience
11.2013 - 4.2014 Trustworthy Systems, NICTA, Sydney, Aus-

tralia

Intern, Verification of file systems (team member).

Since 07.2010 Algorithms and Complexity, Max-Planck Insti-
tut für Informatik, Saarbrücken, Germany

Doctoral student

11.2009 - 12.2009 Information and Technology Management, Saar-
land University, Saarbrücken, Germany

Full time, Development of Java bootstrapping alg.

4.2007 - 8.2007 Artificial Intelligence, Xaitment GmbH (a spin-
off of DFKI), Saarbrücken, Germany

Intern, Development of C++ planner (B.S. thesis).

8.2006 -10.2006 Software Development, Owita GmbH, Lemgo,
Germany

Intern, Development of J2ME application for test-
ing and installing Bluetooth based Sensor-Adaptor-
Modules.

7.2006 - 8.2006 Software Development, Cotton Refinement Co.,
Cairo, Egypt

http://www.mpi-inf.mpg.de/~crizkall/Publications/BrownRizkallahPxTP2013.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/BrownRizkallahPxTP2013.pdf
http://www.mpi-inf.mpg.de/~crizkall/Publications/BrownRizkallahPxTP2013.pdf
http://afp.sourceforge.net/entries/ShortestPath.shtml
http://afp.sourceforge.net/entries/ShortestPath.shtml
http://afp.sourceforge.net/entries/Max-Card-Matching.shtml
http://people.mpi-inf.mpg.de/~crizkall/Publications/IntroCertAlg.pdf
http://people.mpi-inf.mpg.de/~crizkall/Publications/IntroCertAlg.pdf

Intern, Designing their inventory system (team mem-
ber).

7.2005 - 8.2005 IT Department, PetroJet, Cairo, Egypt

Intern, Development of a database system for new ap-
plicants (team member).

Teaching
Winter 2012/2013 Seminar on Social Choice Theory, Saarland University,

lecturer (together with Rob van Stee).

Summer 2011 Graph Theory, Saarland University, teaching assistant.

Winter 2005/2006 Data Structures and Algorithms, German University in
Cairo, junior teaching assistant.

Summer 2005 Introduction to Java, German University in Cairo, ju-
nior teaching assistant.

Other Academic Activities
Since 8.2010 Member of the IMPRS PhD application committee

Since 8.2010 PhD Representative of the Algorithms group

Since 9.2010 PhD Representative of MPI für Informatik

2013 Reviewer for the Computational Geometry journal
(CGTA)

2011 Co-organizer of Max Planck Advanced Course on the
Foundations of Computer Science (ADFOCS 2011)

2011 Co-organizer of the PhDnet Interdisciplinary Event 2011

2010 Reviewer for Information Processing Letters (IPL)

Talks, Poster Presentations, and Attended Conferences
Talks Isabelle workshop 2014, NFM 2014, MOD 2013 (student

session), POPL 2013 (student session), OPLSS 2012
(student session), EPFL 2011, MPI 2009, MPI 2010,
MPI 2011, MPI 2013

Posters Algorithmic Frontiers 2012, Microsoft Research summer
school 2011, MPI 2011, MPI 2012

Attended CAV 2014, ITP 2014, NFM 2014, MOD 2013, PLMW
2013, POPL 2013, OPLSS 2012, NASSLI 2012, Algo-
rithmic Frontiers 2012, VTSA 2012, Personality based

http://www.mpi-inf.mpg.de/conferences/adfocs11/index.html
http://www.mpi-inf.mpg.de/conferences/adfocs11/index.html
http://www.mpi-inf.mpg.de/conferences/sis11/index.html

communication workshop 2012, PhDnet meeting 2012,
CodeF 2011, CAV 2011, Microsoft Research summer
school 2011, ADFOCS 2011, PhDnet scientific event
2011, ADFOCS 2010, PhDnet meeting 2010, Team man-
agement and conflict resolution workshop 2010.

Language Skills

Arabic(mother tongue), English(fluent), German(intermediate), Span-
ish(intermediate).

Saarbrücken, September 22, 2015

	Introduction
	Contributions
	Certifying Algorithms
	Tools
	Isabelle/HOL
	VCC
	Simpl
	Autocorres

	Verification of Certifying Computations
	Outline of Methodology
	Case Studies and Witness Properties
	Connected Components
	Shortest Path
	Shortest Path with Arbitrary Edge Costs
	Maximum Cardinality Matching

	Verification of Checker Implementations
	Verification of C code using VCC
	Verification of Imperative Simpl code
	Verification of C code within Isabelle/HOL

	Related Work

	Verification of a C File System
	CDSL
	Abstract Syntax
	Update Semantics

	Correspondence between C and CDSL
	A Hoare Logic and Weakest Precondition Rules
	State Relation and Return Value Relation
	Correspondence Proof Rules
	Related Work

	Conclusion
	Bibliography
	Isabelle Theories for Chapter 2
	Witness Properties
	Connected Components
	Shortest Path
	Shortest Path with Arbitrary Edge Costs
	Maximum Cardinality Matching

	Verification of Imperative Simpl code
	Connected Components
	Shortest Path

	Verification of C code within Isabelle/HOL
	Connected Components

