
Coordinating Selfish Players in
Scheduling Games

Fidaa Abed

Saarbrücken, Germany

Dissertation
zur Erlangung des Grades des

Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

April 2015

Dekan - Dean:

Prof. Dr. Markus Bläser
Saarland University
Saarbrücken, Germany

Kolloquiums - Defense

Datum - Date
August 18, 2015, in Saarbrücken

Vorsitzender - Head of Colloquium:
Prof. Dr. Raimund Seidel

Prüfer - Examiners:

Prof. Dr. Kurt Mehlhorn

Prof. Dr. Nicole Megow

Dr. Chien-Chung Huang

Protokoll - Reporter:

Dr. Xiaohui Bei

ii

To my parents

iii

Abstract

We investigate coordination mechanisms that schedule n jobs on m
unrelated machines. The objective is to minimize the makespan. It
was raised as an open question whether it is possible to design a coor-
dination mechanism that has constant price of anarchy using preemp-
tion. We give a negative answer. Next we introduce multi-job players
that control a set of jobs, with the aim of minimizing the sum of the
completion times of theirs jobs. In this setting, previous mechanisms
designed for players with single jobs are inadequate, e.g., having large
price of anarchy, or not guaranteeing pure Nash equilibria. To meet
this challenge, we design three mechanisms that induce pure Nash
equilibria while guaranteeing relatively small price of anarchy.

Then we consider multi-job players where each player’s objective is to
minimize the weighted sum of completion time of her jobs, while the
social cost is the sum of players’ costs. We first prove that if machines
order jobs according to Smith-rule, then the coordination ratio is at
most 4, moreover this is best possible among non-preemptive policies.
Then we design a preemptive policy, externality that has coordination
ratio 2.618, and complement this result by proving that this ratio is
best possible even if we allow for randomization or full information.
An interesting consequence of our results is that an ε−local optima
of R| |

∑
wiCi for the jump neighborhood can be found in polynomial

time and is within a factor of 2.618 of the optimal solution.

iv

Kurzfassung

Wir betrachten Koordinationsmechanismen um n Jobs auf m Maschi-
nen mit individuellen Bearbeitungszeiten zu verteilen. Ziel dabei ist es
den Makespan zu minimieren. Es war eine offene Frage, ob es möglich
ist einen preämptiven Koordinationsmechanismus zu entwickeln, der
einen konstanten Price of Anarchy hat. Wir beantworten diese Frage
im negativen Sinne. Als nächstes führen wir Multi-Job-Spieler ein, die
eine Menge von Jobs kontrollieren können, mit dem Ziel die Summe
der Fertigstellungszeiten ihrer Jobs zu minimieren. In diesem Szenario
sind bekannte Mechanismen, die für Ein-Job-Spieler entworfen worden
sind, nicht gut genug, und haben beispielsweise einen hohen Price of
Anarchy oder können kein reines Nash Gleichgewicht garantieren. Wir
entwickeln drei Mechanismen die jeweils ein reines Nash Gleichgewicht
besitzen, und einen relativ kleinen Price of Anarchy haben.

Zusätzlich betrachten wir Multi-Job-Spieler, mit dem Ziel jeweils die
gewichtete Summe der Fertigstellungszeiten ihrer Jobs zu minimieren,
während die Gesamtkosten die Summe der Kosten der Spieler sind.
Wir zeigen zuerst, dass das Koordinationsverhältnis höchstens 4 ist,
wenn die Maschinen die Jobs nach der Smith-Regel sortieren, was bei
nicht-preämptiven Verfahren optimal ist. Danach entwickeln wir ein
preämptives Verfahren, Externality, welches ein Koordinationsverhält-
nis von 2.618 hat, und ergänzen dieses Ergebniss indem wir beweisen,
dass dieses Verhältnis optimal ist, auch für den Fall, dass wir Ran-
domisierung oder volle Information erlauben. Eine interessante Folge
unserer Ergebnisse ist, dass ein ε-lokales Optimum von R| |

∑
wiCi

für die Jump-Neighborhood in Polynomialzeit gefunden werden kann,
und innerhalb eines Faktors von 2.618 von der optimalen Lösung ist.

v

Acknowledgements

All thanks to my God who gives me everything good in this life.

I thank my parents and my wife for their support.

I also thank my son and my daughter who give me the motivation in
my way.

I would like to thank my supervisor Kurt Mehlhorn for providing me
the opportunity to work in his group and for allowing me to pursue
my own line of research. His guidance was of immense help.

I also thank my hardworking advisor Chien-Chung Huang. He was a
perfect advisor for me. I am really pround to be his first student.

I should not forget to thank my friends Mahmoud Fouz, Mohammed
Shaheen, and Eyad Alkassar. Their help was a main reason for me to
join the master’s and PhD program at MPI-INF.

vi

Contents

1 Introduction 1

1.1 Coordination Mechanisms . 2

1.2 Machine Policies . 3

1.3 Related Literature . 3

1.4 Contribution and Organization 4

2 Makespan Minimization in Single-Job Games 7

2.1 Introduction . 7

2.2 Assumptions and Technique . 9

2.3 Lower Bounds . 13

2.3.1 Deterministic Mechanisms: Non-Anonymous Case 14

2.3.2 Deterministic Mechanisms: Anonymous Case 15

2.3.3 Deterministic Mechanisms: When Machines Do Not Use

Job or Machine IDs . 19

2.3.4 Randomized Mechanisms 20

2.4 Upper Bound on Price of Anarchy When Inefficiency Is Bounded . 20

3 Makespan Minimization in Multi-Job Games 23

3.1 Introduction . 23

3.2 Contribution . 24

3.3 Related Work . 26

3.4 Preliminary . 27

3.5 A1-COORD . 29

3.6 A2-COORD . 34

3.7 A3-COORD . 37

3.8 Counter-examples and Lower Bounds for Known Mechanisms . . . 43

3.8.1 PNE Existence for ShortestFirst, AJM-2, and BALANCE 43

3.8.2 PNE Existence for Makespan, BCOORD, and CCOORD . 43

vii

3.8.3 PoA for ACOORD, BCOORD, and CCOORD 43

4 Weighted Sum of Completion Times Minimization in Multi-Job
Games 47

4.1 Introduction . 47

4.2 Contribution . 48

4.3 Preliminaries . 49

4.4 Non-preemptive mechanisms . 51

4.5 Preemptive mechanisms . 54

4.6 Potential function . 57

4.7 Convergence time and approximation algorithm 58

4.8 Lower bounds . 60

4.8.1 Prompt mechanisms . 61

4.8.2 ps under WE . 62

4.8.3 ps under NE . 62

4.8.4 Anonymous mechanisms 63

4.9 Final remarks . 65

viii

Chapter 1

Introduction

Machine scheduling originates in the optimization of manufacturing systems and

their formal mathematical treatment dates back to at least the pioneering work of

Smith (52). In general, scheduling problems can be described as follows. Consider

a set I of n jobs that have to be processed on a set M of m parallel machines.

If processed on machine j, job i requires a certain processing time pij to be

completed. Job i also may have a weight wi and, in addition, it may have other

characteristics such as release dates, time windows, delays when switching a task

from one machine to another, or precedence constraints. The goal is to find an

assignment of jobs to machines, and an ordering within each machine so that

a certain objective functions is minimized. Denoting, for any such assignment

and ordering, the completion time Ci of job i the time at which job i completes,

we may write the two most widely studied objectives as Cmax = maxi∈ICi (the

makespan) and
∑

i∈IwiCi (the sum of weighted completion times). In terms of

the machine environment the most basic model is that of identical machines,

where the processing times of jobs are the same on all machines. In the related

machines environment each machine has a speed, and the processing time of a job

on a machine is inversely proportional to the speed of that machine. Finally in

unrelated machine scheduling the processing times are arbitrary, thus capturing

all the above models as special cases. The unrelated machines environment with

the makespan objective (denoted by R| | Cmax), and sum of weighted completion

times objective (denoted by R| |
∑
wiCi) are the focus of this thesis.

Since the early work of Smith, a lot of work has been put in designing cen-

tralized algorithms providing reasonably close to optimal solutions with limited

computational effort for these NP-hard problems (10; 22; 26; 32; 33; 34; 37; 46;

1

47; 48; 49; 50; 51). The underlying assumption is that all information is gath-

ered by a single entity which can enforce a particular schedule. However, as

distributed environments emerge, understanding scheduling problems where jobs

are managed by different selfish agents (players), who are interested in their own

completion time, becomes a central question.

1.1 Coordination Mechanisms

In recent times there has been quite some effort to understand these scheduling

games in the special case in which agents control a single job in the system, which

we call single-job games. In this context, there is a vast amount of work study-

ing existence, uniqueness, the price of anarchy (36), and other characteristics

of equilibrium when, given some processing rules, each agent seeks to minimize

her own completion time. In the scheduling game each job is a fully informed

player wanting to minimize its individual completion time, and its set of strate-

gies correspond to the set of machines. Job i’s completion time on a machine

depends on the strategies chosen by other players, and on the policy (or process-

ing rule) of the chosen machine. A coordination mechanism is then a set of local

policies, one per machine, specifying how the jobs assigned to that machine are

scheduled. In a local policy the schedule on a machine depends on the full vector

(pi1, pi2, . . . , pim) and weights wi of jobs assigned to that machine. In contrast,

in a strongly local policy the schedule on machine j must be a function only of

the processing times pij and weights wi of the jobs assigned to j. In evaluating

the efficiency of these policies, one needs a benchmark to compare this social cost

against. The definition of the price of anarchy of the induced game considers a

social optimum with respect to the costs specified by the chosen machine policies.

However, to measure the quality of a coordination mechanism we consider the

worst case ratio of the social cost at an equilibrium to the optimal social cost that

could be achieved by the centralized optimization approach. We refer to this as

the coordination ratio or the price of anarchy of a mechanism.

The following two conditions on coordination mechanisms are (implicitly) as-

sumed by all previous works (and the current one).

1. Physical Feasibility. Suppose that a set of jobs I′ ⊆ I are assigned to

machine j. At any point of time t, if a subset of jobs I′′ ⊆ I′ are finished

by machine j, then
∑

i∈I′′ pij ≤ t.

2

2. Locality of Scheduling Decision. A machine decides its schedule based

only on the information of the incoming jobs, while, where the other jobs

go to, and how the other machines schedule them is irrelevant.

The first condition is self-evident; the second condition is motivated by the

fact that in a fluid environment, such as the Internet, a machine may not be able

to coordinate with other machines in a timely manner.

1.2 Machine Policies

We say a policy is prompt if it does not introduce deliberate idle time. In other

words, if jobs i1, . . . , ik are assigned to machine j, then by time
∑k

`=1 pi`,j all

jobs have been completed and released. Besides distinguishing between local and

strongly local policies we distinguish between non-preemptive, preemptive, and

randomized policies. In non-preemptive policies jobs are processed in some fixed

deterministic order that may depend arbitrarily on the set of jobs assigned to

the machine (processing time, weight, and ID), and once a job is completed it

is released. On the other hand, preemptive policies may suspend a job before

it completes in order to execute another job and the suspended job is resumed

later. Interestingly, such policies can be considered as non-preemptive policies,

but where jobs may be held back after completion (17; 18). Finally, randomized

policies have the additional power that they can schedule jobs at random accord-

ing to some distribution depending on the assigned jobs’ characteristics. Another

usual distinction is between policies that are anonymous and non-anonymous. In

the former jobs with the same characteristics (except for IDs) must be treated

equally and thus assigned the same completion time. In the latter, jobs may be

distinguished using their IDs.

For instance consider the widely used policy known as Smith-rule (sr), which

sorts jobs in nondecreasing order of their processing time to weight ratios. For-

mally sr processes jobs in nondecreasing order of ρij = pij/wi, and breaks ties

using the job’s IDs. This policy is strongly local, non-preemptive, and non-

anonymous.

1.3 Related Literature

The notion of price of anarchy, first introduced by Koutsoupias and Papadim-

itriou (36), plays a central role in the field of algorithmic game theory. A spate

3

of papers have analyzed the PoA in various games. We refer the readers to (41)

for an (incomplete) summary of them.

The study of coordination mechanisms for single-job scheduling games, taking

the makespan as social cost, was initiated by Christodoulou et al. (14). However

the implied bounds on the price of anarchy are constant only for simple environ-

ments such as when machines are identical. Indeed, Azar et al. (6), and Fleischer

and Svitkina (27) show that, even for a restricted uniform machines environ-

ment “almost” no non-preemptive deterministic machine policies satisfying the

so-called “independence of irrelevant alternatives” property can achieve a con-

stant price of anarchy. The existence of a randomized machine policy with such a

desirable property is unknown. It is worth mentioning that there is a vast amount

of related work considering the makespan social cost (11; 12; 21; 23; 35; 38).

The situation changes quite dramatically for the sum of weighted completion

times objective. In this case Correa and Queyranne show that, for restricted

related machines, smith rule induces a game with price of anarchy at most 4

(20), improving results implied by Farzad et al. (24) and Caragiannis et al (12)

obtained in different contexts. Cole et al, extend this result to unrelated machines,

and also design an improved preemptive policy, proportional sharing, achieving

an approximation bound of 2.618 and an even better randomized policy (17; 18).

Further recent works include extensions and improvements by Bhattacharya et

al (8), Cohen et al (16) and by Rahn and Schäfer (43), Hoeksma and Uetz (31).

Finally, performance guarantee results for the
∑
wiCi objective using natural

local search heuristics are scarse, despite the vast amount of computational work

(13; 42). We are only aware of the results of Brueggemann et al. (9) who proved

that for identical machines local optima for the jump neighborhood are within a

factor of 3/2 of the optimal schedule.

1.4 Contribution and Organization

The thesis is organized as follows. Each chapter consists of one model together

with its detailed notation and obtained results.

Chapter 2: This chapter deals with the model where each player controls one

job (single-job game). The player’s goal is to minimize the completion time of her

job while the global objective is to minimize the makespan. It is known that if the

mechanism is non-preemptive, the price of anarchy is Ω(logm). Both Azar, Jain,

4

and Mirrokni (SODA 2008) and Caragiannis (SODA 2009) raised the question

whether it is possible to design a coordination mechanism that has constant price

of anarchy using preemption. We give a negative answer.

All deterministic coordination mechanisms, if they are symmetric and

satisfy the property of independence of irrelevant alternatives, even

with preemption, have the price of anarchy Ω(logm
log logm

). Moreover,

all randomized coordination mechanisms, if they are symmetric and

unbiased, even with preemption, have similarly the price of anarchy

Ω(logm
log logm

).

Our lower bound complements the result of Caragiannis, whose bcoord

mechanism guarantees O(logm
log logm

) price of anarchy. Our lower bound construction

is surprisingly simple. En route we prove a Ramsey-type graph theorem, which

can be of independent interest.

On the positive side, we observe that our lower bound construction critically

uses the fact that the inefficiency of a job on a machine can be unbounded. If,

on the other hand, the inefficiency is not unbounded, we demonstrate that it is

possible to break the Ω(logm
log logm

) barrier on the price of anarchy by using known

coordination mechanisms.

Indication of source: The content of Chapter 2 has been previously published

in ESA 2012 (2).

Chapter 3: This chapter introduces the model where each player controls a set

of jobs (multi-job game). The player’s goal is to minimize the sum of completion

times of her jobs while the global objective is to minimize the makespan. In this

setting, previous mechanisms designed for players with single jobs are inadequate,

e.g., having large price of anarchy, or not guaranteeing pure Nash equilibria. To

meet this challenge, we design three mechanisms that are adapted/generalized

from Caragiannis’ ACOORD. All our mechanisms induce pure Nash equilibria

while guaranteeing relatively small price of anarchy.

Indication of source: The content of Chapter 3 has been previously published

in TCS journal 2015 (3).

Chapter 4: This chapter deals with the model where each player controls a set

of jobs(multi-job game). The player’s goal is to minimize the weighted sum of

5

completion times of her jobs while the global objective is to minimize the weighted

sum of completion times of all jobs. We work with a weaker equilibrium concept

that includes that of Nash.

We first prove that if machines order jobs according to their processing time

to weight ratio, a.k.a. Smith-rule, then the coordination ratio is at most 4,

moreover this is best possible among non-preemptive policies. Then we establish

our main result. We design a preemptive policy, externality, that extends Smith-

rule by adding extra delays on the jobs accounting for the negative externality

they impose on other players. For this policy we prove that the coordination

ratio is 1 + φ ≈ 2.618, and complement this result by proving that this ratio

is best possible even if we allow for randomization or full information. Finally,

we establish that this externality policy induces a potential game and that an

ε-equilibrium can be found in polynomial time. An interesting consequence of

our results is that an ε−local optima of R| |
∑
wiCi for the jump (a.k.a. move)

neighborhood can be found in polynomial time and are within a factor of 2.618

of the optimal solution.

Indication of source: The content of Chapter 4 has been previously published

in ESA 2014 (1).

6

Chapter 2

Makespan Minimization in
Single-Job Games

2.1 Introduction

The input is a set I of jobs and a set M of machines. Each job i ∈ I has a process-

ing time pij on a machine j ∈M. Each job is controlled by a selfish player, who

aims to minimize the completion time of her job while disregarding the welfare

of other players. Each machine, based on the information of the incoming jobs

and a certain scheduling policy, decides the finishing time of each incoming job.

The scheduling policy of the machines is referred to as the coordination mech-

anism (14) in algorithmic game theory literature. The objective is to minimize

the latest finishing time of any job. Such an objective is conventionally called the

makespan.

The above scenario is very similar to the unrelated machine scheduling problem

(R||Cmax) that has been extensively studied in the literature, e.g.,(37). However,

unlike the traditional setting where a central authority decides which job is to be

assigned to which machine, here we assume that each job is controlled by a selfish

player. Our setting captures certain real world situations, such as the Internet,

where there is no central authority and users are self-interested.

We assume that in the coordination mechanism, a machine is allowed to use

only the information of the incoming jobs, when deciding how to schedule them,

while the information of the other jobs and how the other machines schedule them

are irrelevant. Using the terminology of (6), such coordination mechanisms are

local policies.1

1A more stringent assumption proposed by Azar et al. (6) is that of the strongly local

7

This assumption is a natural one: the machines may not be able to commu-

nicate among themselves efficiently to make a scheduling decision, especially in a

very fluid environment such as the Internet.

Recall that coordination mechanisms can be non-preemptive or preemptive.

In the former, the jobs on a machine are processed sequentially, and each job,

once started, has to be processed in an uninterrupted manner; in the latter, a

machine can interrupt an ongoing job and resume it later, or it can intentionally

introduce delays, during which the machine just lies idling.

In this chapter, our focus will be on the pure Nash equilibrium (PNE), where

no player can unilaterally change her strategy, i.e., the machine, to reduce the

completion time of her job. It can be expected that given the selfishness of the

players, the makespan in a PNE can be sub-optimal. The worst ratio of the

makespan in a PNE against that in an optimal schedule is called the price of

anarchy (PoA) (36).

Coordination mechanisms PoA PNE Anonymous Characteristics
ShortestFirst (35) Θ(m) Yes No Strongly local, non-preemptive
LongestFirst (35) Unbounded No No Strongly local, non-preemptive
Makespan (35) Unbounded Yes Yes Strongly local, preemptive
RANDOM (35) Θ(m) No Yes Strongly local, non-preemptive

EQUI (15) Θ(m) Yes Yes Strongly local, preemptive
AJM-1 (6) Θ(logm) No No Local, non-preemptive

AJM-2 (6) O(log2m) Yes No Local, preemptive
ACOORD (11) O(logm) Yes No Local, preemptive

BCOORD (11) Θ(logm
log logm

) ? Yes Local, preemptive

CCOORD (11) O(log2m) Yes Yes Local, preemptive

Table 2.1: Summary of various coordination mechanisms.

It is desirable to have coordination mechanisms that have small PoA. Table 3.1

gives a summary of the various mechanisms that have been proposed so far in

the literature. The “PNE” column shows whether the existance of a pure Nash

equilibrium is guaranteed or not. For non-preemptive coordination mechanisms,

Azar, Jain, and Mirrokni (6) designed a mechanism that achieves O(logm) PoA.

This turns out to be optimal, since later Fleischer and Svitkina (27) showed that

all non-preemptive coordination mechanisms have Ω(logm) PoA.

policies. In this case, a machine makes the scheduling decision only by the processing times of
the incoming jobs on it, while the processing times of these jobs on other machines are irrelevant.
Azar et al. (6) have shown that strongly local policies have much higher lower bound in terms
of the price of anarchy. In this chapter, we consider only local policies.

8

Since non-preemptive mechanisms have the Ω(logm) PoA barrier, an obvi-

ous question to ask is whether preemption can beat this lower bound. Cara-

giannis (11) showed that using preemption, her bcoord mechanism achieves

O(logm
log logm

) PoA. Both Azar et al. and Caragiannis raised the question whether

it is possible to achieve constant PoA by preemption. We answer in the nega-

tive. (See the next section for the formal definitions of “symmetric”, “IIA”, and

“unbiased.”)

Theorem 2.1.1. All deterministic coordination mechanisms, if they are symmet-
ric and satisfy independence of irrelevant alternatives (IIA) property, even with
preemption, have the price of anarchy Ω(logm

log logm
). Moreover, all randomized coor-

dination mechanisms, if they are symmetric and unbiased, even with preemption,
have similarly the price of anarchy Ω(logm

log logm
). These lower bounds hold even for

the special case of restricted assignment (B||Cmax), where each job can go to at
most 2 machines on which it has the processing time of 1.

Therefore, the bcoord mechanism of Caragiannis (11) is essentially the best

possible. We prove this theorem in Section 2.

In our proof, we use the fact that a job can be assigned to only a subset of all

machines, i.e., the restricted assignment model (B||Cmax). Let the inefficiency

of a job i on a machine j be defined as
pij

minj′∈M pij′
. The restricted assignment

instances imply that the inefficiency of jobs on some machines is unbounded.

This raises the issue whether it is possible to circumvent the Ω(logm
log logm

) lower

bound by assuming that inefficiency is bounded. We give a positive answer in

Section 3. We show that the inefficiency-based mechanism (6) achieves O(I) price

of anarchy, where I is the largest possible inefficiency.

2.2 Assumptions and Technique

In proving our lower bounds, it is critical to first state our assumptions and

definitions precisely. Recall that each job i ∈ I is associated with a load charac-

teristic pi = 〈pi1, pi2, · · · , pi|M|〉. If a job i cannot be processed at a machine j,

let pij =∞. Each job may or may not have an ID. When each job has a unique

ID, we say these jobs are non-anonymous. When jobs do not have (unique) IDs,

we say they are anonymous.

Our lower bound construction shares similar ideas to those of Azar et al. (6)

and Fleischer and Svitkina (27). For each machine, we give a set of jobs that are

indistinguishable so as to confuse it.

9

Definition 2.2.1. Let j ∈M be a machine. Then two jobs i, i′ are indistinguish-
able to j if the following holds.

1. pij = pi′j = 1,

2. there exists two different machines ji 6= ji′, j 6∈ {ji, ji′} and piji = pi′ji′ = 1,

3. pij∗ =∞ for j∗ ∈M\{j, ji} and pi′j∗ =∞ for j∗ ∈M\{j, ji′}.

A set of jobs are indistinguishable to machine j if every two of them are
indistinguishable to j.

Definition 2.2.2. Let C be a deterministic coordination mechanism. C is said to
be symmetric if the following holds.

Let j, j′ ∈ M be two different machines. Let I1 be a set of indistinguishable
jobs to j and I2 a set of indistinguishable jobs to j′. Suppose that there exists a
one-to-one correspondence γ : I1 → I2 satisfying the following condition:

For every job i ∈ I1, there exists a job γ(i) ∈ I2 so that pij = pγ(i)j′ =
1. Furthermore, there exists a permutation σi : M\{j} → M\{j′} so
that pij′′ = pγ(i)σi(j′′) for all j′′ ∈M\{j}.

Then the set of the finishing times t11 ≤ t12 ≤ · · · ≤ t1|I1| for I1 on machine j
and the set of the finishing times t21 ≤ t22 ≤ · · · ≤ t2|I2| for I2 on machine j′ are
the same. i.e., t1l′ = t2l′ for 1 ≤ l′ ≤ |I1|.

Intuitively speaking, a coordination mechanism is symmetric, if two machines,

when they are presented with two sets of jobs that look essentially the same, then

the finishing times for these two sets of jobs are the same on both machines. All

coordination mechanisms in Table 3.1 are symmetric.

As a clarification, the above assumption states nothing regarding the order of

the jobs to be finished on the machines. It is only about the set of their finishing

times.

Definition 2.2.3. Let C be a deterministic coordination mechanism. C is said to
satisfy the independence of irrelevant alternative (IIA) property if the following
holds.

Let j ∈M be a machine and i, i′ be two different jobs. Let {i, i′} ⊆ I′ ⊂ I. If
j is presented with the job set I′ and it lets job i to be finished before i′, then it
also will let i to be finished before i′ when it is presented with a job set I′ ∪ {k}
for some job k ∈ I\I′.

10

Informally speaking, the IIA property states that if job i is “preferred” over i′

by machine j, then this “preference” should not change because of the availability

of some other jobs k 6∈ {i, i′}. The IIA property appears as an axiom in voting

theory, bargaining theory, and logic (54).

The next lemma states that if a mechanism satisfies the IIA property, then

each machine must have some sort of “preference list” over a set of indistinguish-

able jobs.

Lemma 2.2.4. Let I∗(j) be a set of indistinguishable jobs to machine j. A
deterministic coordination mechanism satisfies the IIA property iff, each machine
j ∈M has a strict linear order Lj over jobs in I∗(j), so that when j is presented
with a subset I′ ∈ I∗(j) of these indistinguishable jobs, a job i ∈ I′ has smaller
completion than i′ only when i precedes i′ in the order Lj.

Proof. The (←) direction is obvious. For the (→) direction, we create the strict
linear order Lj for machine j as follows.

For every two indistinguishable jobs i and i′ in I∗(j), if a machine j, given
any subset I′ ⊆ I∗(j) and I′ ⊇ {i, i′}, lets i to have smaller completion time than
i′. Let i precedes i′ in L̃i. Due to the IIA property, the precedence order in L̃j
must be transitive. So L̃j is a linear order with possibly ties. Let Lj be derived
from L̃j by breaking ties in L̃j arbitrarily.

To see that Lj satisfies the property stated in the lemma, note that if job i
has smaller completion time than i′ when machine j is faced with I′ ⊆ I∗(j) and
I′ ⊇ {i, i′}, then i precedes i′ in L̃j, hence also in Lj.

Remark 2.2.5. We note that it is possible for a mechanism to satisfy the IIA
property without “explicitly” having a strict linear order Lj over indistinguishable
jobs: a machine can let all the indistinguishable jobs finish at the same time.
This is indeed what several known deterministic mechanisms would have done,
including makespan (35), bcoord (11), and ccoord (11). In this case, the
order Lj as stated in Lemma 2.2.4 can be just an arbitrary order over these
indistinguishable jobs.

An IIA-satisfying deterministic mechanism could ask a machine to let all

incoming indistinguishable jobs finish at the same time. But another possibility

is that a machine j lets the incoming indistinguishable jobs finish at different

times, when j does have an explicit linear order Lj over these indistinguishable

jobs. An obvious candidate for Lj is an order over the job IDs when all jobs

are non-anonymous. But even when jobs are anonymous, a machine still can

use machine IDs of those machines on which these indistinguishable jobs can be

11

processed to decide the order. To illustrate our point, assume that there are three

machines, j1, j2, and j3, and two jobs, i1 and i2. i1 has the load characteristic

〈1, 1,∞〉 while i2 has the load characteristic 〈1,∞, 1〉. Even though these two

jobs are indistinguishable to machine j1, j1 can deterministically choose to let i1
finish first, if it prefers machine j2 over j3. By the above discussion, we make our

assumption.

Definition 2.2.6. Let C be a deterministic coordination mechanism satisfying
the IIA property. Then the linear order Lj of each machine for a set of indistin-
guishable jobs as stated in Lemma 2.2.4 can take one of the following two forms.

• Non-anonymous Case: it is the preference list of machine j over the
job IDs, or

• Anonymous Case: the preference list of machine j over the machine IDs.
In particular, given two indistinguishable jobs i and i′, i precedes i′ in Lj if
machine j prefers the machine ji to ji′, where ji is the only other machine
on which piji = 1 and ji′ the only other machine on which pi′ji′ = 1.

Remark 2.2.7. Our assumptions stated in Definition 2.2.6 about the linear or-
ders of the machines over the indistinguishable jobs are the same used as those
by Azar et al. (6) and Fleischer and Svitkina (27) in their lower bound construc-
tion for non-preemptive coordination mechanisms. Suppose that machines do not
have such preferences over the job IDs or the machine IDs, then a IIA-satisfying
deterministic mechanism can only let all indistinguishable jobs finish at the same
time (thus the linear order Lj of a machine j is an arbitrary order). We show
that the same lower bound holds easily for this case in Section 2.3.

Sections 2.1 and 2.2 deal with the non-anonymous and anonymous cases re-

spectively. The main technical challenge in our constructions is that the linear

order Lj on the machines j ∈M can differ from machine to machine. We need cer-

tain strategies to arrange the given set of jobs and machines so that in a PNE, the

makespan is relatively high. Our lower bound construction for anonymous case

is the most interesting part of this work. As a by-product, we derive a Ramsey-

type graph theorem that has a similar flavor to the one obtained by Fleischer

and Svitkina (27) when they proved their lower bound for non-preemptive mech-

anisms. In addition, our proof does not use Erdős-type probabilistic method; it

is constructive and yields a polynomial time algorithm.

We now discuss our assumptions about randomized coordination mechanisms.

It seems that there is not much work done concerning randomized mechanisms.

12

The only one that we are aware of is the random mechanism of Immorlica et

al. (35), which proceeds by ordering the incoming jobs of a machine uniformly at

random and processing them non-preemptively. Cole et al. (17) used a random-

ized mechanism for the minimizing the weighted sum objective.

When randomized mechanisms are used, a PNE is an assignment in which

no player can unilaterally change her machine to decrease the expected finishing

time of her job.

Definition 2.2.8. Let C be a randomized coordination mechanism.

1. C is unbiased if a machine j ∈ M, when presented with a set of indistin-
guishable jobs, lets each of them have the same expected finishing time.

2. C is symmetric if two machines j, j′ ∈M, when they are presented with the
same number of indistinguishable jobs, let these two sets of indistinguishable
jobs have the same set of expected finishing times.

2.3 Lower Bounds

All of our three lower bound constructions are based on a specific tree structure,

which we will call the equilibrium tree. In such a tree, the root has k children,

each of its k children has k− 1 children, and each of these k(k− 1) grandchildren

has k − 2 children and so on. Generally, a vertex whose distance to the root is

l has k − l children. See Figure 4.1 as an illustration for the case of k = 3. For

convenience, we will use a bit unconventional terminology by referring to the root

as the vertex in the k-th level, while its children are vertices in the (k−1)-st level

and so on. Thus, a vertex in the l-th level has l children. We assume k to be

some arbitrary large number.

Figure 2.1: The equilibrium tree with k=3

In all our constructions, a vertex in the equilibrium tree corresponds to a

machine, while an edge (j, j′) in the tree corresponds to a job i. Such a job has

13

processing time pij = pij′ = 1, while pij′′ =∞ for j′′ 6∈ {j, j′}. Suppose that j is

in level t while j′ is in level t− 1, we say j is the parent machine (vertex) and j′

is the child machine (vertex) of job i = (j, j′).

In our constructions, we will arrange the jobs and the machines corresponding

to the equilibrium tree in such a way that in an optimal solution, all jobs will be

assigned to their child machines, while in a PNE, all jobs are assigned to their

parent machines. Clearly, in the optimal solution, the makespan is 1, while in the

PNE, because there are k jobs on the root machines, the last job to be finished on

it will have completion time at least k. Observe that the number of the vertices

in the equilibrium tree is

m̃ = 1 +
k∑
l=0

l∏
s=0

(k − s) = 1 + k!(
k∑
s=0

1

s!
) < 3(

k

e
)k
√

2πk < k2k.

The function f(x) = lnx
ln lnx

is strictly increasing when x ≥ ee. As we assume k

to be large, both m̃ and k2k are larger than ee. So f(m̃) < f(k2k), implying

ln m̃

ln ln m̃
<

2k ln k

ln 2 + ln k + ln ln k
<

2k ln k

ln k
< 2k.

Thus, if the number of the machines initially given is m and m = θ(m̃), by

the above inequality, we can conclude that the PoA in the constructed instance

is at least k = Ω(logm
log logm

).

2.3.1 Deterministic Mechanisms: Non-Anonymous Case

In this section, we assume that jobs are non-anonymous and a machine, when

faced with a set of indistinguishable jobs, uses its preferences over the job IDs to

decide the order of these indistinguishable jobs.

Let m = m̃, i.e., all m machines given will be part of the equilibrium tree. We

assign the machines arbitrarily to the equilibrium tree and we will create m− 1

jobs corresponding to their edges. Without loss of generality, let the job IDs to

be from 1 to m − 1. Recall that each machine may have a different preference

order over these IDs. In the following, let X denote the set of job IDs that have

been used in the algorithm.

We now apply the procedure in Figure 2.2 to construct the instance.

Observe that by the algorithm, a machine prefers all the jobs that can be

assigned to its vertices corresponding to its children in the equilibrium tree over

14

Let X = ∅.
For level l from k − 1 down to 0

For each machine j in level l
Let j′ be the machine corresponding to j’s parent vertex.
Choose t to be the lowest ranking ID on j’s preference list that are not

included in X.
Create a job i with ID t and let pij = pij′ = 1 and pij′′ = ∞ for

j′′ ∈M\{j, j′}.
X := X ∪ {t}.

End
End

Figure 2.2: An algorithm to construct the equilibrium tree in the non-anonymous
case.

the job that can be assigned to its parent in the equilibrium tree. This property

will be used in the proof.

Theorem 2.3.1. In the constructed instance, the PoA is Ω(logm
log logm

).

Proof. Clearly in the optimal assignment, each job should be assigned to the child
machine. We now argue that if each job is assigned to its parent machine, we
have a PNE. If this is the case, then the PoA is at least k = Ω(logm

log logm
) and we

have the proof.
So suppose not. Then there exists some job i between machine j at level l and

machine j′ at level l − 1 and i has incentive to deviate from j to j′. Before the
deviation, j has l incoming jobs that are indistinguishable; after the deviation,
j′ has similarly l incoming jobs that are indistinguishable. By Definition 2.2.2,
the set of complete times for these l incoming jobs in both cases are identical
t1 ≤ t2 ≤ · · · ≤ tl. By our construction, job i would have the completion time tl
after its deviation since its ID ranks lower than the IDs of all other l − 1 jobs of
machine j′. Before the deviation, job i has completion time tl′ for some 1 ≤ l′ ≤ l.
Since tl′ ≤ tl, we get a contradiction.

2.3.2 Deterministic Mechanisms: Anonymous Case

In this section, we assume that jobs are anonymous and a machine, when faced

with a set of indistinguishable jobs, uses its preferences over the machine IDs to

decide the order of these indistinguishable jobs.

Assume that m machines are given, each with its own preference list over each

other. (For convenience, the preference list over machine IDs can be interpreted as

a preference order over other machines). We will choose a subset of machines (m̃

15

of them) and assign them to the equilibrium tree. Our goal is to make sure that

each machine, if assigned to be a vertex in the equilibrium tree, ranks the machine

corresponding to the parent vertex lower than all machines corresponding to its

child vertices. We will discuss later how large m has to be (relative to m̃) so that

such a construction is always possible. In the following, when the context is clear,

we use the terms vertex and machine interchangeably.

Let ns be the number of vertices in the s-th level in the equilibrium tree of

totally k levels. Then

nk = 1, and nl−1 = lnl, ∀1 ≤ l ≤ k.

We will define another sequence n′s for 0 ≤ s ≤ k. Roughly speaking, this

sequence denotes the numbers of vertices we will need in each level s in our

construction.

We now describe our algorithm. It proceeds in k − 1 iterations. In the be-

ginning of each iteration l, we maintain n′l equilibrium trees of l levels and n′l+1

equilibrium trees of (l − 1) levels. Let the roots of the former set be A and the

roots of the latter set be B. We discard all vertices of the latter set of equilibrium

trees, except for their roots, i.e., B. Let the vertices in B be v1, v2, · · · vn′l+1
and

we process them in this order. For v1, choose the l + 1 highest ranking vertices

on v1’s preference list among all vertices in A. Make v1 the parent of these roots.

(So we have an equilibrium tree of (l + 1) levels rooted at v1.) Remove these

roots from A and we process v2, v3, and so on, in the same manner. At the end,

all vertices in B are roots of equilibrium trees of l+ 1 levels, while the remaining

vertices in A are the roots of the equilibrium trees of l levels. Note that if we

make sure that

n′l − (l + 1)n′l+1 = n′l+2,

then in beginning of the next iteration, iteration l+1, we have the same condition

as the the current iteration: n′l+1 equilibriums trees of (l + 1) levels and n′l+2

equilibrium trees of l levels.

We now formally define the sequence {n′s}ks=0.

n′k = nk.

n′k−1 = kn′k.

n′k−s = (k − s+ 1)n′k−s+1 + n′k−s+2, ∀2 ≤ s ≤ k.

We choose m to be n′0 + n′1. The full algorithm is presented in Figure 2.3.

16

Out of the m given vertices, choose n′1 arbitrary vertices and denote them as
B and the rest as A.
For each vertex v in B

Choose the highest ranking vertex v′ ∈ A.
Make v the parent of v′.
A = A\{v′}.

End // The prepartion is done.
For level l from 1 up to k − 1

Let the roots of the equilibrium trees of (l− 1) levels be B; throw away all
other vertices in these trees.

Let the roots of the equilibrium trees of l levels be A.
For each vertex v in B

Choose (l+1) highest ranking vertices v1, v2, · · · , vl+1 among all vertices
in A on v’s preference list.

Make v the parents of v1, v2, · · · , vl+1.
A = A\{vi}l+1

i=1.
End

End

Figure 2.3: An algorithm to construct the equilibrium tree in the anonymous
case.

Lemma 2.3.2. The final outcome of the above algorithm is an equilibrium tree
of k levels; moreover, in such a tree, every non-leaf/non-root vertex ranks all of
its child vertices higher than its parent vertex.

Proof. We prove by establishing the following claim.

Claim 1. In the beginning of iteration l, 1 ≤ l ≤ k − 1, there are n′l equilibrium
trees of l levels and n′l+1 equilibrium trees of l − 1 levels. Moreover, each root of
the former ranks its child vertices higher than any of the roots of the latter.

Proof. We prove by induction. The base case l = 1 holds trivially based on what
the first for loop of the algorithm and the fact that n′0 − n′1 = n′2. By induction
hypothesis, in the beginning of the (l− 1)-st iteration, there are n′l−1 equilibrium
trees of l−1 levels, and n′l equilibrium trees of l−2 levels. At the end of (l−1)-st
iteration, the latter set is thrown away except their roots. ln′l of the former will
be merged with these roots into n′l equilibrium trees of l levels. So there are only
n′l−1 − ln′l = n′l+1 equilibrium trees of (l − 1) levels left. This completes the first
part of the induction step. The second part of the induction step follows trivially
from the way we choose to merge the equilibrium trees.

By the first part of the above claim, in the beginning of the last iteration, we
have n′k−1 equilibrium trees of k−1 levels and n′k equilibrium trees of k−2 levels.
By the algorithm, at the end of the last iteration, we have n′k = 1 equilibrium
tree of k levels and n′k−1 − kn′k = 0 equilibrium trees of k − 1 levels. So we

17

are left with exactly an equilibrium tree of k levels. For the second part of the
lemma, choose any vertex v at level l. Observe that such a vertex must be a
root in the beginning of iteration l and its parent u must be one of the roots of
those equilibrium trees of l− 1 levels. By the second part of the above claim, we
conclude that v prefers its child vertices to u. The lemma follows.

We now bound m by establishing the following lemma.

Lemma 2.3.3. n′l < nl + n′l+1, for each 0 ≤ l ≤ k − 1.

Proof. We prove by induction. Let the base case be k − 1. Then n′k−1 = kn′k =
knk = nk−1 < nk−1 + n′k. For the induction step,

n′l = (l+ 1)n′l+1 +n′l+2 < (l+ 1)(nl+1 +n′l+2) +n′l+2 = nl + (l+ 2)n′l+2 ≤ nl +n′l+1,

where the first inequality follows from induction hypothesis. So the lemma fol-
lows.

Lemma 2.3.4. m̃ ≤ m ≤ 2m̃.

Proof. The first inequality holds because by Lemma 2.3.3, after throwing away
some vertices from the given m vertices, the algorithm ends up with an equilib-
rium tree of k levels, whose number of vertices is exactly m̃.

For the second inequality, by the definition n′k and the previous lemma, we
know that

n′k ≤ nk

n′l ≤ nl + n′l+1 for all 0 ≤ l ≤ k − 1

Summing up the above inequalities, we have n′0 ≤
∑k

l=0 nl = m̃. The lemma
holds because

m = n′0 + n′1 < 2n′0 ≤ 2m̃.

Theorem 2.3.5. In the constructed instance, the PoA is Ω(logm
log logm

).

18

Proof. Clearly in the optimal assignment, each job should be assigned to the child
machine. We now argue that if each job is assigned to its parent machine, we have
a PNE. If this is the case, then the PoA is at least k = Ω(log m̃

log log m̃
) = Ω(logm

log logm
),

where the second equality follows from Lemma 2.3.4, and we would have the
proof.

So suppose not. Then there exists some job i between machine j at level l and
machine j′ at level l − 1 and i has incentive to deviate from j to j′. Before the
deviation, j has l incoming jobs that are indistinguishable; after the deviation,
j′ has similarly l incoming jobs that are indistinguishable. By Definition 2.2.2,
the set of complete times for these l incoming jobs in both cases are identical
t1 ≤ t2 ≤ · · · ≤ tl. By Lemma 2.3.3, machine j′ prefers all child vertices over
j, therefore, it also prefers all its other incoming jobs over i. This implies that
job i would have the completion time tl after its deviation. Before the deviation,
job i has completion time tl′ for some 1 ≤ l′ ≤ l. Since tl′ ≤ tl, we arrive at a
contradiction.

The following corollary follows from Lemmas 2.3.3 and 2.3.4.

Corollary 2.3.6. Let T be a tree of the following property: the root has k children,
and the vertex whose distance to the root is l has k − l children itself.

Let G = (V,E) be a graph, where each vertex in V has a strictly-ordered
preference over other vertices. Suppose that |V | ≥ 2|T |. Then we can always find
a subset of vertices V ′ ⊂ V , |V ′| = |T |, and assign these vertices to T so that a
vertex u ∈ V ′ prefers the vertices in V ′ corresponding to its children in T to the
vertex in V ′ corresponding to its parent in T .

2.3.3 Deterministic Mechanisms: When Machines Do Not
Use Job or Machine IDs

Suppose that machines do not use job or machine IDs to break ties when it is

faced with a set of indistinguishable jobs, then the only possibility for scheduling

these jobs is to let them finish at the same time. In this case, we can use the

same construction to get the lower bound very easily.

Let m = m̃ and assign all machines to the equilibrium tree of k levels arbitrar-

ily. For each edge (j, j′) in the tree, create a job with pij = pij′ = 1 and pij′′ =∞
for j′′ 6∈ {j, j′}. To see that all jobs assigned to their parent machines result in a

PNE, observe that if a job deviate to its child machine, the number of the jobs

on that machine would be the same as the number of jobs on its parent machine

before its deviation, therefore the deviating job would have the same finishing

19

time on both machines, due to Definition 2.2.2. We can thus conclude that the

PoA in this case is also Ω(logm
log logm

).

2.3.4 Randomized Mechanisms

Consider the same instance used in the preceding section. We argue that if all jobs

are assigned to their parent machines, the outcome would be a PNE. Observe that

if a job i deviates to its child machine in level l−1, then this child machine is faced

with a set of l indistinguishable jobs. On the other hand, before the deviation

of i, its parent machine is also faced with a set of l indistinguishable jobs. Since

we assume that machines are unbiased and symmetric, by Definition 2.2.8, the

expected completion time of job i would be identical in both cases. We can thus

conclude that the PoA in this case is also Ω(logm
log logm

).

2.4 Upper Bound on Price of Anarchy When

Inefficiency Is Bounded

In this section, we demonstrate that the Ω(logm
log logm

) lower bound on PoA can be

circumvented if the inefficiency of the jobs on the machines is bounded by I.

We analyze the upper bound of PoA of the inefficiency-based mechanism

proposed by Azar et al. (6). Let pi = minj∈M pij, the minimum processing time of

a job on all machines. In this mechanism, each machine j ∈M non-preemptively

processes the incoming jobs based on nondecreasing order of their inefficiency on

it: that is, given two jobs i and i′, if
pij
pi
<

pi′j
pi′

, then job i should be processed

before j (ties are broken by job IDs). This rather intuitive mechanism turns out

to be optimal for non-preemptive mechanism. As shown by Azar et al. (6), its

PoA is O(logm), matching the lower bound of non-preemptive mechanism.

Theorem 2.4.1. The inefficiency-based mechanism has PoA at most I+2 log I+
2.

Proof. Given a PNE, let j1 be the most loaded machine, whose load is x, and j2

be the least loaded machine, whose load is y. Furthermore, let i∗ be the last job
finished on machine j1.

Observe that

x− y ≤ pi∗j2 ≤ Ipi∗ ≤ IOPT.

20

The first inequality holds because if not, then job i∗ has incentive to migrate
to machine j2, a contradiction to the assumption that we are given a PNE; the
second inequality holds because of the assumption that inefficiency is bounded
by I; the third inequality holds because the makespan of the optimal assignment
can not be less than the minimum weight of job i∗. Now

x ≤ IOPT + y.

In the following, we prove that y ≤ (2 log I + 2)OPT. Thus dividing the
above inequality by OPT proves the theorem.

Claim 2. y ≤ (2 log I + 2)OPT.

Proof. The proof of the claim uses some ideas from (6).
Divide the interval [0, y] into k = b y

2OPT
c contiguous levels, each of which has

length of 2OPT. The last part of the interval [0, y] whose length is y− kOPT <
2OPT does not belong to any level. If k = 0, then y < 2OPT and the proof
follows easily. So in the following, we assume that k ≥ 1.

Let Mkj be all jobs (and parts of jobs) that are processed on machine j that
are processed after time 2kOPT. Let Mk = ∪j∈MMjk. Let Rkj be the sum of the
minimum weight of jobs in Mkj. Precisely,

Rkj =
∑
i∈Mkj

pi ∗
amount of time after 2kOPT machine j processes job i

pij

(Observe that in fact there is at most one job i in Mkj whose contribution to
Rkj is less than its minimum processing time pi.)

Let Rk =
∑

j∈MRkj. Observe that

R0

m
≤ OPT, (2.1)

since R0 is the sum of the minimum processing times of all jobs.
Now let Ak be the “average inefficiency” of all jobs that are processed in the

interval [2(k − 1)OPT, 2kOPT], that is,

Ak =
2mOPT

Rk−1 −Rk

,

where the numerator is the total amount of work done by all the machines in
the interval [2(k−1)OPT, 2kOPT] and the denominator is sum of the minimum
weight of all jobs that are (partially) processed during this interval. By the

21

definition of Rk and the assumption that all jobs have inefficiency of at most I,
we have

Ak ≤ I, (2.2)

Next we use a lemma proved by Azar et al. (6).

Lemma 2.4.2. (6, Lemma 4.2) Rk ≤ (1/2)Rk−1 for all k ≥ 1.

By this lemma, we have

Ak =
2mOPT

Rk−1 −Rk

>
2mOPT

Rk−1

≥ 2mOPT

R0(1/2)k−1
= 2kOPT

m

R0

. (2.3)

Combining Inequalities (2.1),(2.2), and (2.3), we have

2kOPT ≤ R0

m
Ak ≤

R0

m
I ≤ IOPT,

implying that k ≤ log I. We can thus conclude that y < (2k + 2)OPT ≤
(2 log I + 2)OPT, and the proof is complete.

22

Chapter 3

Makespan Minimization in
Multi-Job Games

3.1 Introduction

All previous works assume that a player controls a single job. A natural and

more realistic extension is to assume a player can control multiple jobs and we

refer to such players as multi-job players. A question that arises in our model

is: what would be the local objective of a multi-job player? This is a non-issue

when a player controls a single job. However, when she has multiple jobs, several

objectives are possible. For instance, it could be her makespan (the latest finishing

time of her jobs), or it could be the sum of completion times of her jobs.

In this chapter, we assume that each player aims to minimize the sum of the

completion times of her jobs. This assumption is motivated by the observation

that a player would care about the collective welfare of her jobs. If moving a job

from one machine to another machine decreases the finishing time of that job,

the controlling player would have incentive to do so—even if the latest finishing

time of her jobs is not really decreased.

To evaluate the overall system performance, there can be two natural candi-

dates: makespan (the latest finishing time of a job), or the weighted completion

times of the jobs (jobs are given weights and the cost is computed as the weighted

sum of their completion times.) In the next chapter of this thesis, we use the

weighted completion times of the jobs to measure the system performance. In

this chapter, we instead consider the makespan.

In general, in terms of PoA, it is harder to design mechanisms when the global

objective is the makespan than when it is the weighted sum of completion times

23

Mechanisms PoA PNE
C = 1 C > 1 C = 1 C > 1

ShortestFirst (35) Θ(m) Ω(m) Yes No?
LongestFirst (35) Unbounded Unbounded No No

Makespan (35) Unbounded Unbounded Yes No?
RANDOM (35) Θ(m) Ω(m) No No

EQUI (15) Θ(m) Ω(m) Yes Yes
AJM-1 (6) Θ(logm) Ω(logm) No No

AJM-2 (6) Θ(log2m) Ω(log2m) Yes No?
BALANCE (16) Θ(logm) Ω(logm) Yes No?

ACOORD (11) O(p ·m1/p) Ω(C(1−ε)(p+1)m/p2)? Yes Yes

BCOORD (11) O(p ·m1/p/ log p) Ω(C(1−ε)(p+1)m/p2)? No No?

CCOORD (11) O(p2 ·m1/p) Ω(C(1−ε)(p+1)m/p2) when p = 1? Yes No?

Table 3.1: Summary of the properties of known mechanisms in our model. m = |J|
is the number of machines, and C is the largest number of jobs controlled by a
player. The results marked by ? are proved in this chapter. For the last three
mechanisms, p ≥ 1, and ε is some small constant where ε > 0. If p = Θ(logm) and
C = 1, then the PoAs for ACOORD, BCOORD, and CCOORD are Θ(logm),
Θ(logm

log logm
), and O(log2m) respectively.

of all jobs. In the original model where each player controls a single job, with

weighted sum global objective, Cole et al. (17) show several mechanisms achieving

constant PoA; on the other hand, when the global objective is the makespan, it

is known (2; 6; 27) that constant PoA is impossible. As multi-job model is a

generalization of the single-job model, we also cannot hope to achieve constant

PoA.

We observe that previous mechanisms designed for players with single jobs

are inadequate in multi-job model. In some cases (ACOORD/ BCOORD/ CCO-

ORD), the PoA becomes significantly worse; in some cases, they no longer guar-

antee PNEs (ShortestFirst/AJM-2/CCOORD/BALANCE). See Table 3.1 for a

summary of the properties of the known mechanisms in multi-job model. Our

challenge here is to design coordination mechanisms that simultaneously guaran-

tee the existence of PNEs and still maintain small PoA.

3.2 Contribution

We propose three mechanisms, A1-COORD, A2-COORD, and A3-COORD, which

are presented in Sections 4-6. These mechanisms make use of preemption and

24

Mechanisms PoA PNE Note

A1-COORD O(Cq+1m
1
q+1) for any q > 0 Yes Local

A2-COORD O(C
2q
q+1m

1
q+1) for any 0 < q ≤ 1, 1/q ∈ Z Yes Local

A3-COORD O(min{W
√
m,minγ∈Z≥1

{m
γ+1
2γ +W γ}}), Yes Strongly local

O(logm+ logW) when C = 1

Table 3.2: Summary of our mechanisms. m = |J| is the number of machines,
and C is the largest number of jobs controlled by a player. In A3-COORD,
W =

maxi∈I minj∈J pij
mini∈I minj∈J pij

. In A1-COORD and A2-COORD, PNEs can be computed in

polynomial time.

assume that players and jobs are not anonymous, namely, each player and each

job has a unique ID. When a job is assigned to a machine, the machine can make

schedule decisions based on this job’s ID and the ID of its owner.

Our mechanisms are adapted/generalized from Caragiannis’ ACOORD (hence

the naming). See Table 3.2 for a summary of their properties. All of them induce

PNEs. Under A1-COORD and A2-COORD, such PNEs can be computed in

polynomial time; furthermore, each player can compute her own optimal strategy

in polynomial time.

In terms of PoA, our three mechanisms perform differently depending on the

situation. Let m = |J| be the number of machines and C be the largest number

of jobs controlled by a player. A1-COORD achieves the PoA of O(Cq+1m
1
q+1), for

any chosen q > 0. A1-COORD is better suited for the situation when C is some

bounded constant (in this case we can get a PoA of O(mε)). When C is relatively

large, A2-COORD is a better mechanism, with the PoA of O(C
2q
q+1m

1
q+1), for any

chosen q, 0 < q ≤ 1 so that 1/q is an integer. For example, if m is bounded by a

constant and C is very large, then we can get a PoA of O(Cε).

Our third mechanism, A3-COORD, has the PoA independent of C and, in

some cases, is superior to the previous two. Let W =
maxi∈I minj∈J pij
mini∈I minj∈J pij

, i.e., the

largest ratio of sizes of two jobs when they are both assigned to the most efficient

machines. Then A3-COORD guarantees the PoA of O(min{W
√
m,

minγ∈Z≥1
{m

γ+1
2γ +W γ}}). Unlike the previous two mechanisms that are local, A3-

COORD is strongly local, thus more “frugal” in terms of the information it needs.

Additionally, when C = 1, (i.e., the single-job model), A3-COORD achieves the

PoA of O(logm + logW). Previously, Cohen, Dürr, and Thang (15) raised the

question whether it is possible to design a strongly local mechanism that achieves

25

the PoA of O(polylog(m)). Here we give a partial positive answer—as long as

W = O(mpolylog(m)).

How our mechanisms guarantee PNEs is similar to the original ACOORD1,

using a simple idea: the finishing times of the jobs of the k-th player is dependent

only on the strategies of the first k − 1 players and the k-th player himself. This

idea also ensures the game converges to PNEs in polynomial steps. The main

technical challenge of this work is in the analysis of PoA. To prove that our

mechanisms have the claimed PoAs, we introduce several non-trivial extensions

of Caragiannis’ ideas in the analysis of his ACOORD.

3.3 Related Work

Our three mechanisms are adapted from ACOORD mechanism (11). This mech-

anism uses a global ordering of the jobs according to their distinct IDs. The

finishing time of a job is the total load of the jobs preceding it and itself, mod-

ified by a certain inefficiency parameter. The game induced by this mechanism

is a potential game which guarantees the existence of a PNE. Moreover, the con-

vergence to a PNE is fast. Our three mechanisms are generalized from ACOORD

by fine tuning the inefficiency parameter.

The notion of multi-job players is similar to the notion of “oligopolistic play-

ers”. Though so far not directly considered in the machine scheduling context,

the notion of “oligopolistic players” has in fact been studied in different settings.

For instance, in a version of selfish routing (44), an atomic player controls a split-

table flow. Such a player can be regarded as an oligopolistic player. See (7; 19)

and the references therein for an overview of such games. Another example of

an oligopolistic player is a coalition of players. In (4; 25), a partition equilib-

rium, where the agents are partitioned into coalitions, and only deviations by

the prescribed coalitions are considered, is proved to exist in resource selection

games. In (28; 30), the authors assume that once a set of players form a coali-

tion, they care only about their collective welfare while disregarding their own

outcomes (thus there is no backstabbing or double-crossing). A coalition, under

such assumptions, is equivalent to an oligopolistic player.

Table 3.1 summarizes the performance of various known mechanisms in multi-

job setting. As mentioned before, the difficulty is to guarantee both the existence

1We note that when c = 1, A1-COORD and A2-COORD reduce to ACOORD.

26

of PNEs and a small PoA. Only ACOORD and EQUI guarantee PNEs in multi-

job model. To ensure that ACOORD has a PNE, we just need to index jobs in

such a way that all jobs belonging to the same player have consecutive indices.

EQUI was originally designed to guarantee a strong Nash equilibrium, when

players control single jobs. Interestingly, in multi-job model, it can be shown

that it still induces a potential game (thus guaranteeing PNEs). We leave it as

an open question regarding its real PoA when C > 1.

3.4 Preliminary

We first introduce some necessary notations to facilitate our discussion. Through-

out the chapter, we use N to denote an assignment and O the optimal assign-

ment. Nj(resp. Oj) is the set of jobs assigned to machine j in N(resp. O).

L(Nj) =
∑

i∈Nj pij is the total load of jobs assigned to j in assignment N . For

each job i, let pi,min be its smallest size, pi,min = minj∈J pij, and φij its inefficiency

on machine j, defined as
pij
pi,min

. Note that only local mechanisms can make use

of the inefficiencies of the jobs in scheduling, while strongly local mechanisms

cannot. We assume that the set P of players are indexed consecutively, from 1,

2, · · · , up to |P|. Given job i ∈ I, π(i) denotes the player controlling it.

Proposition 3.4.1. (11) For an assignment N and any p ≥ 1,

maxj∈J L(Nj) ≤ (
∑

j∈J L(Nj)
p)

1
p ≤ m

1
p maxj∈J L(Nj).

Proposition 3.4.2. Let ai, bi ≥ 0, p ≥ 1, and let f(x) be a convex function.

• Minkowski’s inequality: (
∑s

i=1(ai + bi)
p)1/p ≤ (

∑s
i=1 a

p
i)

1/p + (
∑s

i=1 b
p
i)

1/p.

• Jensen’s inequality:
∑s

i=1 f(ai) ≥ sf(
∑s
i=1 ai
s

).

The next proposition is an easy consequence of Minkowski’s inequality.

Proposition 3.4.3. Let p ≥ 1 be some integer. Then a1/p + b1/p ≥ (a+ b)1/p.

Proof. By re-writing a1/p as ((a1/p)p)1/p and b1/p as ((b1/p)p)1/p, we can apply
Minkowski’s inequality

((a1/p)p)1/p + ((b1/p)p)1/p ≥ ((a1/p + b1/p)p)1/p

= [a+ b+

p−1∑
t=1

(
p
t

)
(a1/p)t(b1/p)p−t]1/p ≥ (a+ b)1/p.

27

Proposition 3.4.4. (11) Suppose that p ≥ 1, A ≥ 0, and Bi ≥ 0 for i = 1, · · · ,
s. Then

∑s
i=1((A+Bi)

p − Ap) ≤ (A+
∑s

i=1Bi)
p − Ap.

The following proposition is slightly modified from Caragiannis (11). Specifi-

cally, we replace the constrain on the exponent p ≥ 1 with p ≥ 0 so as to design

a larger set of mechanisms. The proof is entirely the same as in (11).

Proposition 3.4.5. (11) For any z0 ≥ 0, α ≥ 0, and p ≥ 0, the following holds.

(p+ 1)αzp0 ≤ (z0 + α)p+1 − zp+1
0 ≤ (p+ 1)α(z0 + α)p.

Proof. If α = 0, the lemma holds trivially. If α > 0, the lemma holds by observing
that the function zp+1 is convex for any p ≥ 0. Therefore, the slope of the line
crossing (z0, z

p+1
0) and (z0 +α, (z0 +α)p+1) is between its derivatives at points z0

and z0 + α.

Proposition 3.4.6. Let A ≥ 0, Bi ≥ 0 for 1 ≤ i ≤ s, and p ≥ 0. Then

(A+
s∑
i=1

Bi)
1+p − A1+p ≤ (1 + p)sp

s∑
i=1

Bi(A+Bi)
p.

Proof. Observe that the function g(x) = x(A + x)p is convex when x ≥ 0, since
g′′(x) = p(A+ x)p−2(2A+ xp+ x) ≥ 0. Therefore,

s∑
i=1

Bi(A+Bi)
p =

s∑
i=1

g(Bi) ≥ sg(

∑s
i=1Bi

s
) =

s∑
i=1

Bi(A+

∑s
t=1 Bt

s
)p,

where the inequality follows from the convexity of g(x) and Jensen’s inequality.
Using the above inequality, we have

28

(1 + p)sp
s∑
i=1

Bi(A+Bi)
p

≥ (1 + p)sp
s∑
i=1

Bi(A+

∑s
t=1Bt

s
)p

= (1 + p)
s∑
i=1

Bi(As+
s∑
t=1

Bt)
p

≥ (1 + p)
s∑
i=1

Bi(A+
s∑
t=1

Bt)
p

= (1 + p)(
s∑
i=1

Bi)(A+
s∑
i=1

Bi)
p

≥ (A+
s∑
i=1

Bi)
1+p − A1+p,

where the last inequality follows from Proposition 3.4.5 by setting
∑s

i=1Bi = α,
and z0 = A. The proof follows.

3.5 A1-COORD

In this and the next section, let Nk
j denote the set of jobs assigned to j belonging

to the first k players, for any k ∈ P. Observe that N
|P|
j = Nj and N0

j = ∅.
Finally, let L(Nk

j) =
∑

i:π(i)≤k,i∈Nj pij, the total load of jobs belonging to the first

k players on machine j in N .

A1-COORD: Let N be the assignment. Suppose that job i ∈ Nj.

Then the completion of job i is set as P (i, Nj) = C(φij)
1
q (L(N

π(i)−1
j)+

pij), for some q > 0.

As in the original ACOORD, the term (φij)
1
q is used to encourage a player to

assign her job to a more efficient machine. The term L(N
π(i)−1
j) is the total load

of jobs belonging to the first π(i)−1 players on machine j. So a job’s completion

time is unaffected by jobs belonging to players with indices larger than π(i). This

property will be used when we argue that A1-COORD has a PNE.

29

The important idea behind our mechanism is that the jobs belonging to the

same player, even if they are assigned to the same machine j, would have their

completion times independent of each other. This follows from the simple ob-

servation that the sum L(N
π(i)−1
j) + pij does not include other jobs belonging

to the player π(i). This property is a key part in our analysis of PoA; also it

allows each player to compute her own optimal strategy in polynomial time (see

Theorem 3.5.4). Finally, the multiplicative factor C is introduced to make sure

that A1-COORD produces feasible schedules.

Lemma 3.5.1. The schedule decided by A1-COORD is feasible.

Proof. Recall that to prove a schedule is feasible, we need to show that at time
f , if a set I′ ⊆ Nj of jobs are finished, then

∑
i∈I′ pij ≤ f . It is easy to see that

we only need to consider those times f where some job i ∈ Nj are finished.
Now suppose that in assignment N player k puts jobs i1, i2, · · · , ix≤C on

machine j, where the jobs are indexed by their non-decreasing completion times.
We argue that the completion time P (iy, Nj) of job iy, y ≤ x, is at least as large
as the total load of jobs finishing no later than iy. In the case that multiple jobs
among i1, i2, · · · , ix≤C finish at the same time as iy, w.l.o.g., we can assume that
iy has the largest index. Consider two possibilities.

1. Suppose that none of the jobs belonging to players in P\{1, 2, · · · , k} fin-
ishes earlier than iy. Since jobs i1,· · · , iy−1 finish no later than iy, (φitj)

1/q(L(Nk−1
j)+

pitj) ≤ (φiyj)
1/q(L(Nk−1

j) + piyj), for 1 ≤ t ≤ y − 1. As a result,

P (iy, Nj) = C(φiyj)
1/q(L(Nk−1

j) + piyj) ≥
y∑
t=1

(φitj)
1/q(L(Nk−1

j) + pitj) ≥ L(Nk−1
j) +

y∑
t=1

pitj,

which is no less than the total load of jobs finishing as early as iy.

2. Suppose that some players in P\{1, 2, · · · , k} have jobs on machine j that
finish earlier than iy. Let player k+s be such player with the largest index.
Suppose further that player k + s has jobs i∗1, i∗2, · · · , i∗z finish as early as
iy on machine j. W.L.O.G., assume that i∗1 is the job with the largest size
among the jobs i∗1, i∗2, · · · , i∗z. Then

P (iy, Nj) ≥ P (i∗1, Nj) = C(φi∗1j)
1/q(L(Nk+s−1

j) + pi∗1j) ≥

(φi∗1j)
1/q(L(Nk+s−1

j) +
z∑
t=1

pi∗t j) ≥ L(Nk+s−1
j) +

z∑
t=1

pi∗t j,

30

which is no less than the total load of jobs finishing as early as iy. The
proof follows.

Lemma 3.5.2. Suppose that N is a PNE under A1-COORD. Then

maxj∈J,i∈Nj P (i, Nj) ≤ C[(
∑

j∈J L(Nj)
q+1)

1
q+1 + maxj∈J L(Oj)].

Proof. Let i∗ be the job with the largest completion time in assignment N . Sup-
pose that it is assigned to j1 in assignment N and has an inefficiency 1 on machine
j2 (j2 could be the same as j1). Either j2 6= j1, then the player π(i∗) controlling
i∗ has no incentive to move i∗ to j2; or j2 = j1. In both cases, we have

P (i∗, Nj1) ≤ C(L(N
π(i∗)−1
j2

) + pi∗j2) ≤

C(L(Nj2) + pi∗j2) ≤ C(
∑
j∈J

L(Nj)
q+1)

1
q+1 + C max

j∈J
L(Oj),

where the last inequality follows from Proposition 3.4.1 and the fact that in the
optimal, one machine would have load at least pi∗j2 . The proof follows.

Lemma 3.5.3. Suppose that N is a PNE under A1-COORD. Then

(
∑
j∈J

L(Nj)
q+1)

1
q+1 ≤ 4(q + 1)Cqm

1
q+1 max

j∈J
L(Oj).

Proof. Suppose that job i is assigned to machine j1 in assignment N and machine
j2 in the optimal assignment O. As N is a PNE, C(φij1)

1/q(L(N
π(i)−1
j1) + pij1) ≤

C(φij2)
1/q(L(N

π(i)−1
j2) + pij2). Canceling C, raising both sides to the power of q,

and multiplying them by pi,min, we have

pij1(L(N
π(i)−1
j1

) + pij1)
q ≤ pij2(L(N

π(i)−1
j2

) + pij2)
q (3.1)

Define xij = 1(0) if job i is (not) assigned to machine j in assignment N ;
similarly define yij = 1(0) if job i is (not) assigned to machine j in the optimal
O. Then the above inequality can be re-written as

∑
j∈J

xijpij(L(N
π(i)−1
j) + xijpij)

q ≤
∑
j∈J

yijpij(L(N
π(i)−1
j) + yijpij)

q

≤
∑
j∈J

yijpij(L(Nj) + yijpij)
q.

31

Summing the above inequality over all jobs i ∈ I, we have

(q + 1)
∑
i∈I

∑
j∈J

xijpij(L(N
π(i)−1
j) + xijpij)

q

≤
∑
i∈I

∑
j∈J

(q + 1)yijpij(L(Nj) + yijpij)
q

≤
∑
i∈I

∑
j∈J

[L(Nj) + 2yijpij)
q+1 − (L(Nj) + yijpij]

q+1

≤
∑
j∈J

∑
i∈I

[L(Nj) + 2yijpij)
q+1 − (L(Nj)]

q+1

≤
∑
j∈J

[L(Nj) + 2
∑
i∈I

yijpij)
q+1 − (L(Nj)]

q+1

≤ [(
∑
j∈J

L(Nj)
q+1)

1
q+1 + 2(

∑
j∈J

L(Oj)
q+1)

1
q+1]q+1 −

∑
j∈J

L(Nj)
q+1, (3.2)

where the second inequality follows from Proposition 3.4.5 by setting α = yijpij
and z0 = L(Nj) + yijpij, and p = q; the fourth inequality from Proposition 3.4.4
by setting A = L(Nj), Bi = 2yijpij and p = 1 + q; and the fifth inequality from
Minkowski’s inequality.

We next bound
∑

j∈J L(Nj)
q+1 by writing it as a telescopic sum:

∑
j∈J

L(Nj)
q+1 =

∑
j∈J

|P|∑
k=1

L(Nk
j)q+1 − L(Nk−1

j)q+1

=
∑
j∈J

|P|∑
k=1

[L(Nk−1
j) +

∑
i:π(i)=k,i∈Nj

pij]
q+1 − L(Nk−1

j)q+1

≤
∑
j∈J

|P|∑
k=1

∑
i:π(i)=k,i∈Nj

(1 + q)|{i|π(i) = k, i ∈ Nj}|qpij(L(Nk−1
j) + pij)

q

≤
∑
j∈J

|P|∑
k=1

∑
i:π(i)=k,i∈Nj

(1 + q)Cqpij(L(Nk−1
j) + pij)

q

= (1 + q)Cq
∑
i∈I

∑
j∈J

xijpij(L(N
π(i)−1
j) + xijpij)

q (3.3)

≤ Cq{[(
∑
j∈J

L(Nj)
q+1)

1
q+1 + 2(

∑
j∈J

L(Oj)
q+1)

1
q+1]q+1 −

∑
j∈J

L(Nj)
q+1}(3.4)

where the first inequality follows from Proposition 3.4.6 by setting A = L(Nk−1
j),

Bi = pij and p = q; the second inequality from the fact that a player has at most

32

C jobs on machine j in assignment N ; the third equality from a double counting
argument; and the last inequality from (3.2).

Rearranging terms in Inequality (3.4), we have

(
∑
j∈J

L(Nj)
q+1)

1
q+1 ≤

2(
∑

j∈J L(Oj)
q+1)

1
q+1

(1
Cq

+ 1)
1
q+1 − 1

=
2(
∑

j∈J L(Oj)
q+1)

1
q+1

((1
Cq

+ 1)Cq)
1

Cq(q+1) − 1

≤ 2m
1
q+1 maxj∈J L(Oj)

((1
Cq

+ 1)Cq)
1

Cq(q+1) − 1
,

where the second inequality follows from Proposition 3.4.1.
Observe that as C ≥ 1, Cq ≥ 1. Then by calculus,

√
e < 2 ≤ (1

Cq
+ 1)C

q ≤ e.

Thus, the term (
∑

j∈J L(Nj)
q+1)

1
q+1 can be further upper-bounded as follows,

(
∑
j∈J

L(Nj)
q+1)

1
q+1 ≤ 2m

1
q+1 maxj∈J L(Oj)

((1
Cq

+ 1)Cq)
1

Cq(q+1) − 1
<

2m
1
q+1 maxj∈J L(Oj)

e
1

2Cq(q+1) − 1

≤ 4(q + 1)Cqm
1
q+1 max

j∈J
L(Oj),

where the last inequality holds because of the well-known inequality that ez−1 ≥
z. Hence the proof.

Theorem 3.5.4. A1-COORD guarantees a PNE. Such a PNE can be computed in
polynomial time and each player can compute her optimal strategy in polynomial

time. Moreover, for any fixed q > 0, it guarantees that PoA of O(Cq+1m
1
q+1).

Proof. For the first part, we can construct a PNE as follows. Let all players 1,
2, · · · , |P|, in this order, choose their optimal strategies one at a time. For any
player k, his strategy under A1-COORD is only dependent on the strategies of
previous players. No matter how the later players choose their strategies, player
k has no reason to deviate. Therefore, the outcome is a PNE.

To see that each player can compute her optimal strategy in polynomial time
and the aforementioned PNE can be constructed in polynomial time, observe
that under A1-COORD, each of her jobs has completion time independent of her
other jobs. Therefore, she can simply assign each of her jobs to the machine that
causes the least finishing time of that job. The outcome of such assignment is
clearly her optimal strategy and can be computed in polynomial time.

The last part of the theorem follows from Lemmas 3.5.2 and 3.5.3.

33

3.6 A2-COORD

In this section we modify A1-COORD so as to achieve better PoA when C is

relatively large compared to m.

A2-COORD: Let N be the assignment. Suppose that job i ∈ Nj.

Then the completion of job i is set as P (i, Nj) = (φij)
1
q (L(N

π(i)−1
j) +

Cpij), for some 0 < q ≤ 1 and 1/q is an integer.

Lemma 3.6.1. The schedule decided by A2-COORD is feasible.

Proof. Suppose that in assignment N player k puts jobs i1, i2, · · · , ix≤C on
machine j, where the jobs are indexed by their non-decreasing completion times.
We need to argue that the completion time P (iy, Nj) of job iy, y ≤ x, is at least
as large as the total load of jobs finishing no later than iy. In the case that
multiple jobs among i1, i2, · · · , ix≤C finish at the same time as iy, W.L.O.G., we
can assume that iy has the largest index. Consider two possibilities.

1. Suppose that none of the jobs belonging to player P\{1, 2, · · · , k} finishes
as early as iy. Let iz be the heaviest job among i1, i2, · · · , iy. Then as
P (iy, Nj) ≥ P (iz, Nj),

P (iy, Nj) = (φiyj)
1/q(L(Nk−1

j) + Cpiyj) ≥

(φizj)
1/q(L(Nk−1

j) + Cpizj) ≥ L(Nk−1
j) +

y∑
t=1

pitj.

Observe that the last term in the inequality is at least as large as the total
load of the jobs finishing no later than iy.

2. Suppose that some players in P\{1, 2, · · · , k} have jobs on machine j that
are finished as early as iy. Let player k + s be such player with the largest
index. Suppose further that player k + s has jobs i∗1, i∗2, · · · , i∗z finish as
early as iy on machine j. W.L.O.G., assume that i∗1 is the job with the
largest size among the jobs i∗1, i∗2, · · · , i∗z. Then

P (iy, Nj) ≥ P (i∗1, Nj) = (φi∗1j)
1/q(L(Nk+s−1

j) + Cpi∗1j) ≥

L(Nk+s−1
j) +

z∑
t=1

pi∗t j,

which is no less than the total load of jobs finishing as early as iy. The
proof follows.

34

Lemma 3.6.2. Suppose that N is a PNE under A2-COORD. Then

maxj∈J,i∈Nj P (i, Nj) ≤ (
∑

j∈J L(Nj)
q+1)

1
q+1 + C maxj∈J L(Oj)

Proof. Let i∗ be the job with the largest completion time. Suppose that it is
assigned to j1 in assignment N and has inefficiency 1 on machine j2 (j2 could
be the same as j1). Either j2 6= j1, then the player π(i∗) controlling i∗ has no
incentive to move i∗ to j2; or j2 = j1. In both cases, we have

P (i∗, Nj1) ≤ L(N
π(i∗)−1
j2

) + Cpi∗j2 ≤ L(Nj2) + Cpi∗j2 ≤

(
∑
j∈J

L(Nj)
q+1)

1
q+1 + C max

j∈J
L(Oj),

where the last inequality follows from Proposition 3.4.1 and the fact that in the
optimal, one machine would have load at least pi∗j2 . The proof follows.

Lemma 3.6.3. Suppose that N is a PNE under A2-COORD. Then

(
∑
j∈J

L(Nj)
q+1)

1
q+1 ≤ [(3q + 2)C2q]

1
q+1m

1
q+1

(1− q/2)
1
q+1

max
j∈J

L(Oj).

Proof. Suppose that job i is assigned to machine j1 in assignment N and machine
j2 in the optimal assignment O. As N is a PNE, (φij1)

1/q(L(N
π(i)−1
j1

) + Cpij1) ≤
(φij2)

1/q(L(N
π(i)−1
j2

)+Cpij2). Raising both sides by the power of q, and multiplying
them by pi,min, we have

pij1(L(N
π(i)−1
j1

) + Cpij1)
q ≤ pij2(L(N

π(i)−1
j2

) + Cpij2)
q

Using the above inequality, we derive

pij1(L(N
π(i)−1
j1

) + pij1)
q ≤ pij1(L(N

π(i)−1
j1

) + Cpij1)
q ≤

pij2(L(N
π(i)−1
j2

) + Cpij2)
q ≤ pij2(L(Nj2) + Cpij2)

q.

Define xij = 1(0) if job i is (not) assigned to machine j in assignment N ;
similarly define yij = 1(0) if job i is (not) assigned to machine j in the optimal
O. Then the above inequality, if summed over all jobs, can be expressed as

35

∑
i∈I

∑
j∈J

xijpij(L(N
π(i)−1
j) + xijpij)

q

≤
∑
i∈I

∑
j∈J

yijpij(L(Nj) + Cyijpij)
q

≤
∑
i∈I

∑
j∈J

yijpijL(Nj)
q + yijpij(yijpijC)q

=
∑
j∈J

L(Nj)
q
∑
i:i∈Oj

pij +
∑
j∈J

Cq
∑
i:i∈Oj

p1+q
ij

≤
∑
j∈J

L(Nj)
qL(Oj) +

∑
j∈J

CqL(Oj)
1+q

≤
∑
j∈J

(1/q − 1)L(Oj)
1+q + 2CqL(Oj)

1+q + 1
2Cq

L(Nj)
1+q

1/q + 1
+
∑
j∈J

CqL(Oj)
1+q

=
∑
j∈J

L(Nj)
1+q

2Cq(1 + 1/q)
+ L(Oj)

1+q[Cq(1 +
2

1 + 1/q
) +

1− q
1 + q

], (3.5)

where the second inequality follows from Proposition 3.4.3 by setting p = 1/q,

a = L(N
π(i)−1
j) and b = Cyijpij; the third inequality from Proposition 3.4.4 by

setting A = 0, Bi = pij and p = 1 + q (so that
∑

i:i∈Oj p
1+q
ij ≤ (

∑
i:i∈Oj pij)

1+q =

L(Oj)
1+q); and the fourth one from the arithmetic-geometric mean inequality (of

1/q + 1 terms).
We now bound the term

∑
j∈J L(Nj)

q+1.

∑
j∈J

L(Nj)
q+1 ≤ (1 + q)Cq

∑
i∈I

∑
j∈J

xijpij(L(N
π(i)−1
j) + xijpij)

q

≤ (1 + q)Cq{
∑

j∈J L(Nj)
1+q

2Cq(1/q + 1)
+ L(Oj)

1+q[Cq(1 +
2

1 + 1/q
) +

1− q
1 + q

]}

= q/2
∑
j∈J

L(Nj)
1+q + (C2q((1 + q) + 2q) + Cq(1− q))

∑
j∈J

L(Oj)
1+q

≤ q/2
∑
j∈J

L(Nj)
1+q + C2q(3q + 2)

∑
j∈J

L(Oj)
1+q,

where the first inequality follows from the same derivation as in (3.3); the second
from (3.5); the third from the fact that Cq(1− q) ≤ C2q.

Rearranging terms in the above inequality, and raising both sides to the power
of 1/(1 + q),

36

(1− q/2)
1

1+q (
∑
j∈J

L(Nj)
1+q)

1
q+1 ≤ (C2q(3q + 2))

1
1+q (

∑
j∈J

L(Oj)
1+q)

1
1+q ≤

(C2q(3q + 2))
1

1+qm
1

1+q max
j∈J

L(Oj),

where the second inequality follows from Proposition 3.4.1. The proof follows.

Theorem 3.6.4. A2-COORD guarantees a PNE. Such a PNE can be computed in
polynomial time and each player can compute her optimal strategy in polynomial
time. Moreover, for any fixed q, 0 < q ≤ 1 so that 1/q is an integer, it guarantees

the PoA of O(C
2q
q+1m

1
q+1).

Proof. The existence of the PNE, and the poly-time computability of such PNEs
and of a player’s optimal strategy follow the same arguments as in the proof of
Theorem 3.5.4. The last part of the theorem is due to Lemmas 3.6.2 and 3.6.3.

3.7 A3-COORD

In this section, we assume that jobs are indexed in such a way that each player

controls jobs with consecutive indices. Precisely, let ck be the number of jobs

controlled by player k. Then her jobs are indexed as 1 +
∑k−1

t=1 ct, 2 +
∑k−1

t=1 ct,

· · · , ck +
∑k−1

t=1 ct. Unlike the previous two sections, here N i
j denotes the set of

jobs with index at most i that are assigned to machine j in N . Accordingly,

L(N i
j) is their total load: L(N i

j) =
∑

i′:i′≤i,i′∈Nj pi′j. Let W =
maxi∈I minj∈J pij
mini∈I minj∈J pij

. We

assume that all job sizes are rescaled so that mini∈I minj∈J pij = 1. Then pij ≥ 1

for all i, j.

We now introduce A3-COORD.

A3-COORD: Let N be the assignment. Suppose that job i ∈ Nj.

Then the completion of job i is set as P (i, Nj) = (pij)
1
q (L(N i−1

j)+pij).

When C > 1, we set q = 1. When C = 1, we set q = θ(logmW).

Unlike A1-COORD and A2-COORD, here C is absent in the completion time

P (i, Nj). Also notice that we replace the inefficiency φij with the size pij, hence

A3-COORD is strongly local.

Lemma 3.7.1. The schedule decided by A3-COORD is feasible.

37

Proof. Let i1, i2, · · · , ix be the set of jobs assigned to j in N , assuming that their
finishing times are non-decreasing. We argue that when job iy≤x finishes, the
total load of jobs iy′ , y

′ ≤ y, is no larger than P (iy, Nj). W.L.O.G., if multiple
jobs finish at the same time with iy, then iy is the one with the largest index.

Suppose that all jobs iy′ , y
′ < y, have indices smaller than iy, then P (iy, Nj) =

(piyj)
1/q(L(N

iy−1
j) + piyj) ≥ L(N

iy
j), which is at least as large as the total load

of jobs iy′ , for all y′ ≤ y. On the other hand, suppose that a job iy′ , y
′ < y, has

index larger than iy. W.L.O.G., let iy′ be such job with the largest index. Then

P (iy, Nj) ≥ P (iy′ , Nj) ≥ L(N
iy′
j) >

∑y
t=1 pitj and the proof follows.

Lemma 3.7.2. Suppose that N is a PNE under A3-COORD. Suppose that q = 1
(thus C > 1). Then given any γ ∈ Z+,

max
j∈J,i∈Nj

P (i, Nj) ≤ min

 W (
√∑

j∈J L(Nj)2 + maxj∈J L(Oj)),

γ
γ+1

(
√∑

j∈J L(Nj)2)
γ+1
γ + (W + W γ

γ+1
) maxj∈J L(Oj).

 .

Suppose that q = Θ(logmW) (thus C = 1). Then

max
j∈J,i∈Nj

P (i, Nj) ≤ W 1/q[(
∑
j∈J

L(Nj)
q+1)

1
q+1 + max

j∈J
L(Oj)].

Proof. Let i∗ be the job with the largest completion time in assignment N . Sup-
pose that it is controlled by player π(i∗), is assigned to j1 in assignment N , and
has the least size on machine j2 (j2 could be the same as j1). Below we only
prove the case of q = 1.

Let Ix denote the union of job i∗ and the set of jobs controlled by player π(i∗)
that are assigned to j2 in N . First assume that j2 6= j1. As player π(i∗) has no
incentive to move i∗ to j2,

P (i∗, Nj1) +
∑

i′∈Ix\{i∗}

P (i′, Nj2) ≤ pi∗j2(L(N i∗−1
j2

) + pi∗j2)

+
∑

i′∈Ix,i′<i∗
P (i′, Nj2) +

∑
i′∈Ix,i′>i∗

[P (i′, Nj2) + pi′j2pi∗j2].

Notice that the RHS of the inequality is the sum of the costs of the jobs in
set Ix if i∗ moved to j2. Observe that the above inequality holds as well when
j2 = j1. Canceling the term

∑
i′∈Ix\{i∗} P (i′, Nj2) from both sides of the inequality,

we obtain

38

P (i∗, Nj1) ≤ pi∗j2(L(N i∗−1
j2

) +
∑

i′∈Ix,i′≥i∗
pi′j2)

≤ pi∗j2(L(Nj2) + pi∗j2) ≤ WL(Nj2) +W 2. (3.6)

We can further bound the expression WL(Nj2) + W 2 in two different ways.
First, note that

WL(Nj2)+W 2 ≤ W (

√∑
j∈J

L(Nj)2+W) ≤ W (

√∑
j∈J

L(Nj)2+max
j∈J

L(Oj)), (3.7)

where the first inequality follows from Proposition 3.4.1 and the second by the
fact that one machine would have load at least W in the optimal. A second way
to bound WL(Nj2) +W 2 is as follows.

WL(Nj2) +W 2 ≤ W γ+1 +
∑γ

t=1(L(Nj2)
1
γ)γ+1

γ + 1
+W 2

=
γ

γ + 1
L(Nj2)

γ+1
γ + (W +

W γ

γ + 1
)W

≤ γ

γ + 1
(

√∑
j∈J

L(Nj)2)
γ+1
γ + (W +

W γ

γ + 1
) max
j∈J

L(Oj),(3.8)

where the first inequality follows from the arithmetic-geometric mean inequality
(of γ+ 1 terms), and the second inequality from the same reason as in (3.7). The
inequalities (3.6), (3.7), and (3.8) together give the first part of lemma.

When q = Θ(logmW), either j2 6= j1, then the player π(i∗) controlling i∗ has
no incentive to move i∗ to j2; or j2 = j1. In both cases,

P (i∗, Nj1) ≤ (pi∗j2)
1/q(L(N i∗−1

j2
) + pi∗j2) ≤ W 1/q(L(Nj2) +W) ≤

W 1/q[(
∑
j∈J

L(Nj)
q+1)

1
q+1 + max

j∈J
L(Oj)],

where the last inequality follows from the same reason as in (3.7). The last part
of the lemma follows.

In the next two lemmas, we show how to bound the term (
∑

j∈J L(Nj)
q+1)

1
q+1 ,

when q = 1 and when q = Θ(logmW), separately.

39

Lemma 3.7.3. Suppose that N is a PNE under A3-COORD and q = 1 (thus
C > 1). Then √∑

j∈J

L(Nj)2 ≤
√
m√

3/2− 1
max
j∈J

L(Oj).

Proof. Let xij = 1(0) if job i is (not) assigned to machine j in assignment N .
Caragiannis (11, Theorem 7) showed the following inequality.∑

j

L(Nj)
2

2
≤
∑
i∈I

∑
j∈J

xijpij(L(N i−1
j) + xijpij). (3.9)

The RHS of the inequality is exactly the sum of costs of all players in P in
assignment N . Therefore,∑

i∈I

∑
j∈J

xijpij(L(N i−1
j) + xijpij) =

∑
k∈P

∑
i:π(i)=k,j:i∈Nj

P (i, Nj). (3.10)

Consider player k ∈ P. She has no incentive to re-assign her jobs to the
machines where they belong to in the optimal. Therefore,

∑
i:π(i)=k,j:i∈Nj

P (i, Nj) ≤

∑
j∈J

[
∑

i:π(i)=k,i∈Oj

pijL(Nj) +
(
∑

i:π(i)=k,i∈Oj pij)
2 +

∑
i:π(i)=k,i∈Oj w

2
ij

2
] ≤

∑
j∈J

[
∑

i:π(i)=k,i∈Oj

pijL(Nj) + (
∑

i:π(i)=k,i∈Oj

pij)
2],

where the first inequality is derived by assuming (pessimistically) that all jobs
of player k in Oj have indices larger than the jobs of all other players in Nj.
Summing the above inequality over all players,

40

∑
k∈P

∑
i:π(i)=k,j:i∈Nj

P (i, Nj) ≤
∑
j∈J

[L(Oj)L(Nj) +
∑
k∈P

(
∑

i:π(i)=k,i∈Oj

pij)
2]

≤
∑
j∈J

L(Oj)L(Nj) + L(Oj)
2

≤
∑
j∈J

(L(Nj) + L(Oj))
2 −

∑
j∈J

L(Nj)
2

≤ (

√∑
j∈J

L(Nj)2 +

√∑
j∈J

L(Oj)2)2 −
∑
j∈J

L(Nj)
2(3.11)

where the second inequality follows from Proposition 3.4.4 (by setting A = 0
and p = 1), and the last inequality from Minkowski inequality. By (3.9), (3.10),
(3.11), and re-arranging terms, we have

(
√

3/2− 1)

√∑
j∈J

L(Nj)2 ≤
√∑

j∈J

L(Oj)2 ≤
√
mmax

j∈J
L(Oj),

where the last inequality follows from Proposition 3.4.1. The proof follows.

Lemma 3.7.4. Suppose that N is a PNE under A3-COORD and q = Θ(logmW)
(thus C = 1). Then

(
∑
j∈J

L(Nj)
q+1)

1
q+1 ≤ e(q + 1)m

1
q+1 max

j∈J
L(Oj).

Proof. Let xij = 1(0) if job i is (not) assigned to machine j in assignment N ;
similarly let yij = 1(0) if job i is (not) assigned to machine j in the optimal O.
We make the following claim.

∑
i∈I

∑
j∈J

xijpij(L(N i−1
j) + xijpij)

q ≤
∑
i∈I

∑
j∈J

yijpij(L(Nj) + yijpij)
q. (3.12)

By our index scheme and the fact that C = 1, job i is controlled by player i.
Suppose job i is in j1 in N and in j2 in O. As player i has no incentive to move
her job from j1 to j2,

(pij1)
1/q(L(N i−1

j1
) + pij1) ≤ (pij2)

1/q(L(N i−1
j2

) + pij2) ≤ (pij2)
1/q(L(Nj2) + pij2).

41

Raising the above inequality to the power of q and summing it over all players,
we have ∑

j∈J

∑
i∈Nj

pij(L(N i−1
j) + pij)

q ≤
∑
j∈J

∑
i∈Oj

pij(L(Nj) + pij)
q,

and Inequality (3.12) follows.
The rest of the analysis is completely the same as Caragiannis (11, Theorem

7). He showed the following two inequalities:

(e− 1)(q + 1)
∑
i∈I

∑
j∈J

yijpij(L(Nj) + yijpij)
q ≤

((
∑
j∈J

L(Nj)
q+1)

1
q+1 + e(

∑
j∈J

L(Oj)
q+1)

1
q+1)q+1 −

∑
j∈J

L(Nj)
q+1 (3.13)

(e− 1)(
∑
j∈J

L(Nj))
q+1 ≤ (e− 1)(q + 1)

∑
i∈I

∑
j∈J

xijpij(L(N i−1
j) + xijpij)

q (3.14)

Combining (3.12), (3.13), and (3.14), we have

(
∑
j∈J

L(Nj)
q+1)

1
q+1 ≤ e

e
1
q+1 − 1

(
∑
j∈J

L(Oj)
q+1)

1
q+1 ≤ e(q + 1)m

1
q+1 max

j∈J
L(Oj),

where the second inequality is due to the inequality ez − 1 ≥ z and Proposi-
tion 3.4.1. The proof follows.

Theorem 3.7.5. A3-COORD guarantees a PNE. Moreover, by setting q = 1,

it guarantees the PoA of O(min{W
√
m,minγ∈Z≥1

{m
γ+1
2γ + W γ}}). In case that

C = 1, by setting q = θ(logmW), it guarantees the PoA of O(logm+ logW).

Proof. The existence of PNE follows the same argument as in the proof of The-
orem 3.5.4. The second part of the theorem follows from Lemmas 3.7.2, 3.7.3,
and 3.7.4.

Unfortunately, under A3-COORD, it is NP-hard to decide the optimal strat-

egy for a player. So we cannot use the same procedure as in the previous two

mechanisms to build a PNE in polynomial time. The NP-hardness follows from

the observation that when q = 1, a player controls all the jobs, and only two iden-

tical machines are given, finding an optimal strategy is equivalent to minimizing

the weighted sum of completion times of jobs. (The latter problem is NP-hard

by a reduction from the partition problem (29).)

42

3.8 Counter-examples and Lower Bounds for Known

Mechanisms

3.8.1 PNE Existence for ShortestFirst, AJM-2, and BAL-
ANCE

Theorem 3.8.1. ShortestFirst, AJM-2, and BALANCE do not induce PNE even
for two identical machines.

Proof. Consider the instance of two identical machines and two players. Player
1 controls a job of size 1 and a job of size 3. Player 2 controls a job of size 2
and a job of size 4. It is easy to verify that this instance has no PNE when
using ShortestFirst. The theorem holds for AJM-2 as well because it is exactly
equivalent to ShortestFirst in the case of two identical machines. The same
example can be used as an evidence that BALANCE does not induce PNE.

3.8.2 PNE Existence for Makespan, BCOORD, and CCO-
ORD

Theorem 3.8.2. Makespan, BCOORD when p=1, and CCOORD when p=1, do
not induce PNE even for two identical machines.

Proof. Consider the instance of two identical machines and two players. Player
1 controls a job of size 1. Player 2 controls a job of size 2, a job of size 1, and a
job of size 1/10. It is easy to verify that this instance has no PNE when using
the Makespan policy. Notice that when p=1, both BCOORD and CCOORD are
equivalent to Makespan in identical machines.

3.8.3 PoA for ACOORD, BCOORD, and CCOORD

In the following, if we do not specify the size pij of job i on machine j, we

implicitly assume it is infinity. We first present a simple construction where each

player controls just two jobs.

Theorem 3.8.3. For all values of p ≥ 1, when C = 2, ACOORD and BCOORD
have PoA of at least Ω(m). The same bound holds for CCOORD when p=1.

Proof. Consider an instance of m machines and n = m− 1 players. Player k, for
1 ≤ k ≤ n, controls two jobs, i0k and i1k, both of which can be processed only on
machine 0 and machine k. Job i0k has size 1 on machine 0, and size 2 on machine
k. Job i1k has size δ on machine 0, and size δ · np on machine k, for some small
δ > 0 where δ << 1/np.

43

We first focus on ACOORD. Let the total order of all jobs be as follows
i01, i

1
1, i

0
2, i

1
2, · · · , i0n, i1n. Let N be the following assignment. Each player k assigns

job i0k to machine 0 and job i1k to machine k. To see that N is a PNE, consider
player k, whose current cost is k + δ · np. She has three other possible strategies:

1. Assign both of her jobs to machine 0. Then her cost is k + k + δ.

2. Assign both of her jobs to machine k. Then her cost is 2 ·21/p+(2+δ ·np) ·n.

3. Assign i0k to machine k and i1k to machine 0. Then her cost is k−1+δ+2·21/p.

All these three strategies incur higher costs, so player k has no reason to
deviate. Thus, N is a PNE with makespan of m− 1, while OPT is 2.

Next we consider BCOORD (and notice that CCOORD is the same as BCO-
ORD when p=1). We claim that the same assignment N is also a PNE. Consider
player k, whose current cost is n+ δ · np. She has three other possible strategies:

1. Assign both of her jobs to machine 0. Then her cost is 2n+ 2δ.

2. Assign both of her jobs to machine k. Then her cost is (2 + δ · np) · 21/p +
(2 + δ · np) · n.

3. Assign i0k to machine k and i1k to machine 0. Then her cost is n−1+δ+2·21/p.

All these three strategies incur higher costs, so player k has no reason to
deviate. Thus, N is a PNE with makespan of m− 1, while OPT is 2.

We next expand on the same idea to show that the PoA of

ACOORD/BCOORD/CCOORD can be much higher when C is large.

Theorem 3.8.4. For all values of p ≥ 1, ACOORD and BCOORD have PoA
of at least Ω(C(1−ε)(p+1)m/p2), for some small ε > 0. The same bound holds for
CCOORD when p=1.

Proof. Consider an instance of m = (n + 1) · (p2 + τ + 1) machines, where τ is
some positive integer (the larger the τ , the smaller the ε in the lower bound). Let
muv represent a machine for some u, v, where 0 ≤ u ≤ (p2 + τ), 0 ≤ v ≤ n. Let
kst denote a player for some s, t, where 0 ≤ s ≤ (p2 + τ), 1 ≤ t ≤ n. We next
specify the jobs controlled by each player and their sizes on the machines. Below
we assume δ to be some small constant and δ << 1/(nC)6p2 .

1. For player k0t, 1 ≤ t ≤ n, she controls two jobs i00t, i
1
0t. Job i00t has size 1

on machine m00, and size 2 on machine m0t; job i10t has size δ on machine
m00, and size δ · np on machine m0t.

44

2. For player kst, with s > 0, 1 ≤ t ≤ n, she controls C+1 jobs, i0st, i
1
st, · · · , iCst.

Job i0st has size 1 on machine mst, and size C
∑s
a=1 (p/(p+1))a on machine ms0;

job ibst, for 1 ≤ b ≤ C, has size δ on machine m(s−1)0, and size δ(nC)2p2 on
machine mst.

We first focus on ACOORD. Let the total order for all the jobs be as follows:
i001, i

1
01, i

0
02, i

1
02, · · · , i00n, i10n, i011, i

1
11, · · · , iC11, i

0
12, i

1
12, · · · , iC12, · · · , i01n, i11n, · · · , iC1n,

i021, i
1
21, · · · , iC21, i

0
22, i

1
22, · · · , iC22, · · · , i02n, i12n, · · · , iC2n, i031, i

1
31, · · · , iC31, i

0
32, i

1
32, · · · ,

iC32, · · · , i03n, i13n, · · · , iC3n, · · · , i0(p2+τ)1, i
1
(p2+τ)1, · · · , iC(p2+τ)1, i

0
(p2+τ)2, i

1
(p2+τ)2, · · · ,

iC(p2+τ)2, · · · , i0(p2+τ)n, i
1
(p2+τ)n, · · · , iC(p2+τ)n.

Let N be the following assignment. Each player kst assigns job i0st to machine
ms0 and the remaining job(s) to mst. To see that N is a PNE, consider player
k0t, 1 ≤ t ≤ n. We can use the same argument as in the previous theorem to
show that she has no reason to deviate. Next consider player kst, with s > 0,
1 ≤ t ≤ n, whose current cost is t ·C((p+1)/p)

∑s
a=1 (p/(p+1))a + d, where d is the sum

of the cost the jobs i1st, i
2
st, · · · , iCst, thus d << 1. She has three other possible

strategies:

1. Assign job i0st to machine ms0 and at least one of the remaining jobs to
machine m(s−1)0. Then her cost is at least t · C((p+1)/p)

∑s
a=1 (p/(p+1))a + n ·

C
∑s−1
a=1 (p/(p+1))a .

2. Assign job i0st and at least one of the remaining jobs to machine mst . Then
her cost is at least 1 + (1 + δ(nC)2p2) · (nC)2p.

3. Assign job i0st to machine mst and the remaining jobs to machine m(s−1)0.

Then her cost is at least 1+n·C1+
∑s−1
a=1 (p/(p+1))a = 1+n·C((p+1)/p)

∑s
a=1 (p/(p+1))a .

All these three strategies incur higher costs, so she has no reason to de-

viate. Thus, N is a PNE with makespan of n · C((p+1)/p)
∑(p2+τ)
a=1 (p/(p+1))a =

Ω(C(1−ε)(p+1)m/p2), for some small ε > 0, while OPT is 2.
Next we consider BCOORD (and notice that CCOORD is the same as BCO-

ORD when p=1). We claim that the same assignment N is also a PNE. Consider
player k0t, 1 ≤ t ≤ n. We can use the same argument as in the previous theorem
to show that she has no reason to deviate. Next consider player kst, with s > 0,
1 ≤ t ≤ n, whose current cost is n · C((p+1)/p)

∑s
a=1 (p/(p+1))a + d, where d is the

sum of the cost the jobs i1st, i
2
st, · · · , iCst, thus d << 1. She has three other possible

strategies:

1. Assign job i0st to machine ms0 and at least one of the remaining jobs to
machine m(s−1)0. Then her cost is at least n · C((p+1)/p)

∑s
a=1 (p/(p+1))a + n ·

C
∑s−1
a=1 (p/(p+1))a .

45

2. Assign job i0st and at least one of the remaining jobs to machine mst . Then
her cost is at least 1 + ε(nC)2p2 + (1 + δ(nC)2p2) · (nC)2p.

3. Assign job i0st to machine mst and the remaining jobs to machine m(s−1)0.

Then her cost is at least 1+n·C1+
∑s−1
a=1 (p/(p+1))a = 1+n·C((p+1)/p)+

∑s
a=1 (p/(p+1))a .

All these three strategies incur higher costs, so she has no reason to de-

viate. Thus, N is a PNE with makespan of n · C((p+1)/p)
∑(p2+τ)
a=1 (p/(p+1))a =

Ω(C(1−ε)(p+1)m/p2), for small ε > 0, while OPT is 2.

46

Chapter 4

Weighted Sum of Completion
Times Minimization in Multi-Job
Games

4.1 Introduction

In this chapter we study multi-job games, in which there is a set of agents A

who control arbitrary sets of jobs. Specifically the set of jobs controlled by player

α ∈ A is denoted by I(α) ⊂ I and its cost given a particular schedule is the

sum of weighted completion times of its own jobs
∑

i∈I(α) wiCi. As in single-job

games, we concentrate on designing coordination mechanisms leading to small

coordination ratios, when the social cost is the sum of weighted completion times

of all jobs (or equivalently of all agents).

Equilibrium concepts. For the single-job scheduling game the underlying

concept of equilibrium is, quite naturally, that of Nash (NE)(39). However, once

we allow players to control many jobs and endow them with the weighted com-

pletion time cost, already computing a best response to a given situation may

be NP-complete. Therefore, it is rather unlikely that such an equilibrium will be

attained. To overcome this difficulty we consider a weaker equilibrium concept,

which we call weak equilibrium (WE), namely, a schedule of all jobs is a WE if no

player α ∈ A can find a job i ∈ I(α) such that moving i to a different machine

will strictly decrease her cost
∑

i∈I(α) wiCi. We extend the WE concept to mixed

(randomized) strategies by allowing player α to keep the distribution of all but

one job i ∈ I(α) and move job i to any machine. Observe that in the single-job

game NE and WE coincide. Throughout, we provide bounds on the coordination

47

ratio of policies for the weak equilibrium, and since NE are also WE our bounds

hold for NE as well.

As the reader may have noticed, there is a close connection between WE and

local optima of the jump (also called move) neighborhood (e.g. (53)). In a locally

optimal solution of R| |
∑
wiCi for the jump neighborhood, no single job i ∈ I

may be moved to a different machine while decreasing the overall cost. Such

solution is exactly a WE when a single player in the scheduling game controls all

jobs and the machines use sr.

To illustrate the concept of weak equilibrium and the difference between the

single-job and the multi-job games consider the following example on 4 machines,

m1, . . . ,m4, with the sr policy. There are 4 unit-weight jobs called a, b, c, d such

that pam1 = 1 + ε, pbm1 = 1, pbm2 = 1.5, pcm2 = 2, pcm3 = 3, pdm3 = 2, pdm4 = 2,

and all other pij = +∞. In this situation an equilibrium for the single-job game

is that jobs a and b go to m1, job c goes to m2, and job d goes to m3, leading

to a total cost of 7 + ε. Consider now the multi-job game in which one player

controls a, b and another player controls c, d. A NE is obtained when a goes to

m1, b goes to m2, c goes to m3, and d goes to m4, and this has total cost 7.5 + ε.

A WE is obtained from instance when a goes to m1, b goes to m2, c goes to m2,

and d goes to m3, having a total cost of 8 + ε.

4.2 Contribution

We start by considering deterministic policies and prove that the coordination

ratio of sr under WE is exactly 4. This generalizes the result for single-job games

(18) and therefore it is the best possible coordination ratio that can be achieved

non-preemptively. We prove the upper bound of 4 for sr with mixed WE. This is

relevant since a pure strategy NE may not exist in this setting (20). Moreover, it

is unclear whether the smoothness framework of Roughgarden (45) can be applied

here: On the one hand our results hold for the more general framework of WE,

while on the other hand having players that control multiple jobs makes it more

difficult to prove the (λ, µ)-smoothness.

Before designing improved policies we observe that no anonymous policy may

obtain a coordination ratio better than 4, and basically no policy, be it preemp-

tive or randomized, local or strongly local, can achieve a coordination ratio better

than 2.618. The latter is in sharp contrast with the case in which players control

just one job where better ratios can be achieved with randomized policies (18).

48

Quite surprisingly we are able to design an “optimal” policy, which we call ex-

ternality (ex), that guarantees a coordination ratio of 2.618 for WE. Under this

ex policy, jobs are processed according to Smith rule but are held back (and not

released) for some additional time after completion. This additional time basi-

cally equals the negative externality that this particular job imposes over other

players. Additionally, we prove that ex defines a potential game, so that pure

WE exists, and that the convergence time is polynomial. It is worth mentioning

that in the single-job game ex coincides with the proportional-sharing (ps) policy

(18), which in turn extends the EQUI policy of the unit-weight case (23). On the

other side, when a single player controls all jobs, ex coincides with sr.

Interestingly, our result for ex in case just one player controls all jobs implies a

tight approximation guarantee of 2.618 for local optima under the jump neighbor-

hood for R| |
∑
wiCi. This tight guarantee also holds for the swap neighborhood,

in which one is additionally allowed to swap jobs between machines so long as

the objective function value decreases (53). In addition, our fast convergence

result for ex implies another new result, namely, that local search with the jump

neighborhood, when only maximum gain steps are taken, converges in polyno-

mial time. These facts appear to be quite surprising since, despite the very large

amount of work on local search heuristics for scheduling problems (13; 42), per-

formance guarantees, or polynomial time convergence results are are only known

for identical machines (9).

Methodologically our work is based on the inner product framework of (18),

but more is needed to deal with the multi-job environment. Our main contribu-

tion is however conceptual: One the one hand we demonstrate that the natural

economic idea of externalities leads to approximately optimal, and in a way best

possible, outcomes even in decentralized systems with only partial information

(in a full information and centralized setting one can easily design policies leading

to optimal outcomes). One the other hand we provide the first direct application

of purely game-theoretic ideas to the analysis of natural and well studied local

search heuristics that lead to the currently best known results.

4.3 Preliminaries

Recall that for a player α ∈ A, the set of job she controls is denoted by I(α) ⊂ I.

Moreover, α(i) denotes the player controlling job i, so that I(α(i)) is the set of

jobs controlled by who is controlling i.

49

A pure strategy profile is a matrix x ∈ {0, 1}M×I in which xij = 1 if job i is

assigned to machine j. By denoting xα the columns of x corresponding to jobs

controlled by player α we say that xα is a pure strategy for this player. A mixed

strategy for player α is a probability distribution over all xα ∈ {0, 1}M×I(α). A

set of mixed strategies for all players α ∈ A leads to a (mixed) strategy profile

x ∈ [0, 1]M×I where xij is the probability of job i assigned to machine j. Note

that the distributions of the different columns of x may not be independent. We

denote by x−k the matrix obtained by deleting the k−th column of x. Observe

that x−k results from the joint probability distribution of all jobs i′ 6= k according

to x. More precisely x−k ∈ [0, 1]M×I\{k} can be equivalently seen as the mixed

strategy profile obtained when players different from α(k) continue using the same

strategy, while player α(k) forgets job k and if she was playing the pure strategy

xα(k) ∈ {0, 1}M×I(α) with probability q, she plays the pure strategy for her jobs

different from k, x
α(k)
−k ∈ {0, 1}M×I(α)\{k} with probability q (these probabilities

add up if she was playing with positive probability two strategies that were equal

except for job k). We define x−K analogously for a set of jobs K ⊆ I.

Given a mechanism m ∈ {sr, ex} and a strategy profile x, E[Cm
i (x)] is the

expected completion time of job i. The conditional expected completion time of

job i on machine j when job k is assigned to machine j is denoted E[Cm
i (x−k, k →

j)]. The expected cost of the strategy profile x is E[Cm(x)] =
∑

i∈IwiE[Cm
i (x)]

and the expected cost of a player α under x is E[Cm
α (x)] =

∑
i∈I(α) wiE[Cm

i (x)].

For convenience we also define E[Cm
α (x−k, k → j)] =

∑
i∈I(α) wiE[Cm

i (x−k, k →
j)]. Note that E[Cm(x)] =

∑
α∈A E[Cm

α (x)].

A Nash equilibrium (NE) is therefore a strategy profile x such that for all

player α ∈ A and all strategy profiles yα for player α we have that:

E[Cm
α (x)] ≤ E[Cm

α (yα,x−I(α))].

Similarly, a weak equilibrium (WE) is a strategy profile x such that for all player

α ∈ A, all jobs k ∈ I(α), and all machines i ∈M, we have that:

E[Cm
α (x)] ≤ E[Cm

α (x−k, k → j)].

The optimal assignement is the assignment in which the jobs are processed

non-preemptively on the machines so that the cost is minimized. Throughout the

chapter, x∗ denotes the optimal assignment (thus x∗ is a pure strategy), and we

define X∗j as the set of jobs assigned to machine j under the optimal assignment.

Given the assignment of jobs to machines, it is well-known that Smith Rule

minimizes the total cost of jobs. Therefore Csr(x∗) is the optimal cost.

50

4.4 Non-preemptive mechanisms

We now study non-preemptive mechanisms (jobs have IDs, needed to break ties

between identically looking jobs) and prove that sr has a coordination ratio of 4

for mixed WE. We work with mixed strategies since sr does not guarantee that

existence of pure WE. As mentioned earlier, our result is best possible among

non-preemptive mechanisms (18).

Recall that under sr, each machine j schedules non-preemptively its assigned

jobs i in nondecreasing order of ρij = pij/wi, and ties are broken using the IDs.

To simplify the presentation, we say that ρkj < ρij if k comes earlier than i in the

sr order of machine j. Thus, given a strategy profile x we have E[Csr
i (x−i, i →

j)] = pij +
∑

k:ρkj<ρij
xkjpkj so that,

E [Csr(x)] =
∑
i∈I

wi
∑
j∈M

xijE[Csr
i (x−i, i→ j)] (4.1)

=
∑
j∈M

∑
i∈I

xijwi(pij +
∑

k:ρkj<ρij

xkjpkj).

Extending the inner product space technique of Cole et al. (18), we let ϕ : x→
L2([0,∞])M, which maps every strategy profile x to a vector of functions (one for

each machine) as follows. If f = ϕ(x), then for each j ∈M, the j-th component of

f is the function fj(y) :=
∑

i∈I,ρij≥y xijwi. Letting 〈fj, gj〉 =
∫∞

0
fj(y)gj(y)dy be

the standard inner product on L2 we get that 〈f ,g〉 =
∑

j∈M〈fj, gj〉. Additionally,

we let ηj(x) =
∑

i∈Iwixijpij and η(x) =
∑

j∈M ηj(x).

The next lemma and expressions (4.2) and (4.3) follow easily from the deriva-

tions of Cole et al. (18). The only difference is that here we need to prove the

results for mixed strategies.

Lemma 4.4.1. For a strategy profile x and the optimal assignment x∗, let f =
ϕ(x) and f∗ = ϕ(x∗). Then 〈fj, f ∗j 〉 =

∑
i∈X∗j

∑
k∈Iwiwkxkj min{ρij, ρkj}.

Similarly to Lemma 4.4.1, and using equation (4.1), we may evaluate

||ϕ(x)||2 ≤ 2E [Csr(x)] . (4.2)

Additionally, when x is a pure strategy we have:

Csr(x) =
1

2
||ϕ(x)||2 +

1

2
η(x). (4.3)

51

Lemma 4.4.1. By definition 〈fj, f ∗j 〉 =
∫∞

0

∑
i:ρij≥y xijwi

∑
k:ρkj≥y x∗kjwk dy, which

equals∑
i,k∈J

xijwix
∗
kjwk

∫ ∞
0

1ρij≥y1ρkj≥ydy =
∑
i,k∈J

xijwix
∗
kjwk min{ρij, ρkj}

=
∑
i∈X∗j

∑
k∈J

wiwkxkj min{ρij, ρkj}.

Similarly to Lemma 4.4.1, and using equation (4.1), we may evaluate

||ϕ(x)||2 =
∑
j∈M

∫ ∞
0

f 2
j (y)dy =

∑
j∈M

∑
i,k∈J

wixijwkxkj min{ρij, ρkj}

=
∑
j∈M

∑
i∈J

xijwi(2
∑

k:ρkj<ρij

xkjwkρkj + wiρijxij)

= 2E [Csr(x)]−
∑
j∈M

∑
i∈J

wixij(2− xij)wiρij

= 2E [Csr(x)]− (2η(x)−
∑
j∈M

∑
i∈J

wix
2
ijpij)

≤ 2E [Csr(x)] .

Proving (4.2). Additionally, the previous derivation when x is a pure strategy
leads to

Csr(x) =
1

2
||ϕ(x)||2 +

1

2
η(x).

In what follows, let x denote a mixed weak equilibrium and x∗ the optimal

assignment. Let f = ϕ(x) and f ∗ = ϕ(x∗).

Lemma 4.4.2. Consider X∗j (α) = X∗j ∩ I(α), the jobs of player α assigned to
machine j in the optimal solution. Then for each i ∈ X∗j (α) we have:

wiE [Csr
i (x)] ≤ wi(pij +

∑
k:ρkj<ρij

xkjpkj) + pij
∑

k∈I(α)\{i},ρkj>ρij

wkxkj.

Proof. Define x to be the strategy profile where player α(i) changes the probabil-
ity distribution of her job i to the optimal assignment while the joint-probability
distribution of the rest of the jobs i′ 6= i remain unchanged. That is, xij = 1 and
xij′ = 0 if j′ 6= j and xi′j′ = xi′j′ if i′ 6= i. As x is a WE, E[Csr

α (x)] ≤ E[Csr
α (x)],

52

thus the cost of player α, which equals wiE[Csr
i (x)] +

∑
k∈I(α)\{i}wkE[Csr

k (x)], is
upper bounded by

wi(pij +
∑

k:ρkj<ρij

xkjpkj) +
∑

k∈I(α)\{i}

wkE[Csr
k (x)] + wkxkjpkj,

where the first term is the expected cost of job i and the second is the largest possi-
ble increase in the expected cost on the other jobs controlled by α, say if i is moved
to the machine where k is. The proof follows by canceling

∑
k∈I(α)\{i}wkE[Csr

k (x)].

Lemma 4.4.3. For a machine j ∈M,
∑

i∈X∗j
wiE[Csr

i (x)]− ηj(x∗) ≤ 〈fj, f ∗j 〉.

Proof. For a job i ∈ X∗j (α) we can apply Lemma 4.4.2 to get

wiE[Csr
i (x)]− wipij ≤ wi

∑
k:ρkj<ρij

xkjpkj + pij
∑

k∈I(α)\{i},ρkj>ρij

wkxkj

≤ wi
∑

k:ρkj<ρij

xkjwkjρkj + wiρij
∑

k:ρkj>ρij

wkxkj

≤
∑
k∈I

wiwkxkj min{ρijρkj}.

Since X∗j =
∑

α∈AX
∗
j (α) and ηj(x

∗) =
∑

i∈X∗j
wipij, and using Lemma 4.4.1∑

i∈X∗j

wiE[Csr
i (x)]− ηj(x∗) ≤

∑
i∈X∗j

∑
k∈I

wiwkxkj min{ρijρkj} = 〈fj, f ∗j 〉.

Theorem 4.4.4. E[Csr(x)] ≤ 4Csr(x∗).

Proof. Using Lemma 4.4.3, we have that E[Csr(x)] can be bounded as∑
i∈I

wiE[Csr
i (x)] ≤

∑
j∈M

∑
i∈X∗j

wiE[Csr
i (x)] ≤ 〈f , f ∗〉+ η(x∗).

From Cauchy-Schwartz inequality, equation (4.3) and inequality (4.2) we get that
the latter is at most:

||f ∗||2 +
1

4
||f ||2 + η(x∗) = 2Csr(x∗) +

1

4
||f ||2 ≤ 2Csr(x∗) +

1

2
E [Csr(x)] .

Therefore E[Csr(x)] ≤ 2Csr(x∗) + 1
2
E [Csr(x)], and the result follows.

53

4.5 Preemptive mechanisms

Finding policies that beat the coordination ratio of 4 for WE is impossible if we

restrict to non-preemptive ones. This holds even for the single-job game (18),

where WE and NE coincide. Therefore we need to consider preemptive or ran-

domized policies. In Section 4.8 we first observe that even with preemption, if

we restrict to anonymous policies, beating the ratio of 4 is not possible. Further-

more, we prove that the absolute limit for basically any policy, be it preemptive

or randomized, using even global information, and even if different machines use

different policies, is 1 + φ ≈ 2.618, where φ is the golden ratio. The precise set

of policies for which this lower bound holds are those such that when machine

j ∈M is assigned a single job, i ∈ I, then Ci = pij.

As the performance of sr coincides in the single-job and multi-job games one

may wonder whether natural preemptive policies, that work well in the single-job

game, also do in the multi-job game. Unfortunately this is not the case as we

show in Section 4.8. Indeed we prove that the champion preemptive policy for

the single-job game, Proportional-sharing (18; 23), has a coordination ratio of at

least 5.848 for WE and at least 2.848 for NE. It is thus rather surprising that we

can actually achieve this ratio with a fairly natural policy, externality (ex). A

key ingredient of this policy is that it heavily relies on the ownership of the jobs,

a feature that policies for the single-job game certainly do not share.

The results in this section are presented for pure strategy profiles. This is pri-

marily done for simplicity and also because, as we will show later, our preemptive

policy induces a potential game and therefore pure WE are guaranteed to exist.

Thus, given a pure strategy profile x, we may refer to x as an assignment, and

we may let Xj denote the set of jobs assigned to machine j under x, i.e., i ∈ Xj

if xij = 1. Let also Xj(α) = Xj ∩ I(α) be the set of jobs controlled by player α

on this machine j under x.

Recall that in the proportional sharing policy (ps) (18), the machine process-

ing power is split among the assigned jobs proportionally to their weight. Given

an assignment x, if job i is assigned to machine j, it can be observed that:

Cps
i (x) = pij +

∑
k∈Xj ,ρkj<ρij

pkj + pij
∑

k∈Xj\{i},ρkj>ρij

wk
wi
.

Proposition 4.5.1 ((18)). Given an assignment x, Cps(x) = ||ϕ(x)||2.

In our externality policy, ex, given an assignment x, the machine processes

the jobs according to sr but once a job is completed, it is delayed for an amount

54

of time accounting for the negative externality it is imposing on other players.

Thus in ex the cost for the owner of job j due to this job will be

wiC
ex
i (x) = wipij + wi

∑
k∈Xj ,ρkj<ρij

pkj + pij
∑

k∈Xj\I(α(i)),ρkj>ρij

wk.

The completion time of i is then defined by the previous equation. Observe that

in the single-job game, ex reduces to ps, while if all jobs are controlled by a single

player ex reduces to sr. Also, ex induces feasible schedules since no completion

time can be smaller than that given by Smith-rule. Policy ex can be seen as a

preemptive policy in which jobs are processed as in sr, except for an infinitesimal

piece that is processed at the time defined by previous equation. Moreover ex

is strongly local and nonanonymous. A consequence of the definitions of sr, ps,

and ex is that for a fixed assignment x their costs satisfy:

Cex(x) = Csr(x) +
∑
j∈M

∑
i∈Xj

pij
∑

k∈Xj\I(α(i)),ρkj>ρij

wk (4.4)

= Cps(x)−
∑
j∈M

∑
i∈Xj

pij
∑

k∈Xj(α(i)),ρkj>ρij

wk.

In the following, let x∗ be an optimal assignment and x a WE. We also let

ϕ(x) = f and ϕ(x∗) = f ∗ be as in the previous section.

Lemma 4.5.2. Consider a job i ∈ X∗j and assume i is on j′ under x. Then

wiC
ex
i (x) ≤ wi(pij +

∑
k∈Xj,
ρkj<ρij

pkj) + pij
∑
k∈Xj,
ρkj>ρij

wk − pij′
∑

k∈Xj′ (α(i)),
ρki′>ρij′

wk.

Proof. The case j′ = j is immediate. For j′ 6= j, consider the cost of jobs
belonging player α(i) on machines j or j′ under x, which is,

wiC
ex
i (x) +

∑
k∈((Xj(α)∪Xj′ (α))\{i}

wkC
ex
k (x). (4.5)

Suppose that she moves i from machine j′ to j, then the total cost of the same
set of jobs is ∑

k∈((Xj(α)∪Xj′ (α))\{i}

wkC
ex
k (x)− pij′

∑
k∈Xj′ (α(i)),ρkj′>ρij′

wk +

wi(pij +
∑
k∈Xj,
ρkj<ρij

pkj) + pij
∑

k∈Xj\I(α(i)),
ρkj>ρij

wk + pij
∑

k∈Xj(α(i)),
ρkj>ρij

wk. (4.6)

55

Here the second term is the saving of the cost for those jobs k ∈ α(i) on machine
j′ that have larger ratios ρkj′ than ρij′ ; the third and fourth terms are the cost
of job i on machine j; and the fifth term is the increase of the cost of those jobs
k ∈ α(i) on machine j that have larger ratios ρkj than ρij. As x is a WE, the
term (4.5) is upper bounded by (4.6).

Lemma 4.5.3. Cex(x) ≤ η(x∗) + 〈f, f∗〉 −
∑
j∈M

∑
i∈Xj

pij
∑

k∈Xj(α(i)),ρkj>ρij

wk.

Proof. By Lemma 4.5.2 and summing over all jobs in I, we have that the total
cost under ex,

∑
i∈IwiC

ex
i (x) is upper bounded by

η(x∗) +
∑
j∈M

(
∑
i∈X∗j

wi
∑
k∈Xj,
ρkj<ρij

pkj+
∑
i∈X∗j

pij
∑
k∈Xj,
ρkj>ρij

wk −
∑
i∈Xj

pij
∑

k∈Xj(α(i)),
ρkj>ρij

wk). (4.7)

By Lemma 4.4.1 and the fact that x is pure, we have

〈fj, f ∗j 〉 =
∑
i∈X∗j

∑
k∈Xj

wiwk min{ρij, ρkj} =
∑
i∈X∗j

(wi
∑
k∈Xj,
ρkj≤ρij

pkj + pij
∑
k∈Xj,
ρkj>ρij

wk).

Summing over j ∈M and subtracting the latter from (4.7)

Cex(x)− 〈f , f ∗〉 ≤ η(x∗)−
∑
j∈M

∑
i∈Xj

pij
∑

k∈Xj(α(i)),ρkj>ρij

wk.

Theorem 4.5.4. Let φ be the golden ratio. Then Cex(x) ≤ (1 + φ)Csr(x∗).

Proof. Lemma 4.5.3 and Cauchy-Schwartz inequality imply that for β > 1/4

Cex(x) ≤ η(x∗) + β||f ∗||2 +
1

4β
||f ||2 −

∑
j∈M

∑
i∈Xj

pij
∑

k∈Xj(α(i)),ρkj>ρij

wk

≤ η(x∗) + β||f ∗||2 +
1

4β
||f ||2 − 1

4β

∑
j∈M

∑
i∈Xj

pij
∑

k∈Xj(α(i)),ρkj>ρij

wk

≤ η(x∗) + 2βCsr(x∗)− βη(x∗) +
1

4β
Cex(x)

≤ (β + 1)Csr(x∗) +
1

4β
Cex(x),

where the third inequality follows from equation (4.3), from Proposition 4.5.1 and

from equation (4.4). By letting β = 1+
√

5
4

the result follows .

56

As mentioned earlier, it turns out that ex is best possible. The proof of this

fact is deferred to 4.8.

Theorem 4.5.5. The coordination ratio for weak equilibrium of any prompt
mechanism is at least 1 + φ.

4.6 Potential function

In this section, we show that ex is a potential game and therefore, it guarantees

the existence of pure WE.

Theorem 4.6.1. ex induces exact potential games, with the potential

Φ(x) =
1

2
Cex(x) +

1

2
Γ(x),

where

Γ(x) =
∑
α∈A

∑
j∈M

∑
i∈Xj(α)

pij
∑

k∈Xj(α),ρkj≥ρij

wk.

Proof. Suppose that player α moves her job i from machine j to j′. Let x and x′

be the old and new assignments respectively. Observe the change in the cost of
player α, namely, Cex

α (x′)− Cex
α (x) is:

wi

 ∑
k∈Xj′∪{i},ρkj′≤ρij′

pkj′ +
∑

k∈Xj′\J(α),ρkj′>ρij′

pij′
wk
wi

+ pij′
∑

k∈Xj′ (α),
ρkj′>ρij′

wk

−wi

 ∑
k∈Xj ρkj≤ρij

pkj +
∑

k∈Xj\J(α),ρkj>ρij

pij
wk
wi

− pij ∑
k∈Xj(α),ρkj>ρij

wk

= wi
∑

k∈Xj′∪{i}

wk min{ρij′ , ρkj′} − wi
∑
k∈Xj

wi min{ρij, ρkj}. (4.8)

Interestingly, the latter quantity does not depend on α.
Next consider the difference the potential function value of x and x′, starting

57

from the cost change:

Cex(x′)− Cex(x) = wi(
∑

k∈Xj′∪{i},
ρkj′≤ρij′

pkj′ +
∑

k∈Xj′ \J(α),
ρkj′>ρij′

pij′
wk
wi

)

+pij′
∑
k∈Xj′ ,
ρkj′>ρij′

wk +
∑

k∈Xj′ \J(α),
ρkj′<ρij′

wkpkj′
wi
wk

−wi(
∑
k∈Xj
ρkj≤ρij

pkj +
∑

k∈Xj\J(α),
ρkj>ρij

pij
wk
wi

)

−pij
∑
k∈Xj,
ρkj>ρij

wk −
∑

k∈Xj\J(α),
ρkj<ρij

wkpkj
wi
wk
. (4.9)

Finally, the difference in the function Γ can be expressed as

Γ(x′)− Γ(x) = wi
∑

k∈Xj′ (α)∪{i},ρkj′≤ρij′

pkj′ + pij′
∑

k∈Xj′ (α),ρkj′>ρij′

wk

−wi
∑

k∈Xj(α),ρkj≤ρij

pkj + pij
∑

k∈Xj(α),ρkj>ρij

wk. (4.10)

Combining (4.9) and (4.10) yields

Φ(x′)− Φ(x) = wi
∑

k∈Xj′∪{i}

wk min{ρij′ , ρkj′} − wi
∑
k∈Xj

wk min{ρij, ρkj},

which equals the difference of player α’s cost as expressed in (4.8).

4.7 Convergence time and approximation algo-

rithm

In this section we show that under ex, starting from any initial assignment, if we

let players take the maximum-gain responses, then in polynomially many steps,

the outcome is an assignment whose cost under ex is at most 1 + φ + ε times

the optimal cost. This of course implies a polynomial time algorithm of the same

ratio.

58

Definition 4.7.1. Given an assignment x and suppose that job i ∈ Xj′, let

∆ex
i (x) = wiC

ex
i (x)− τ,

where

τ = max
j′∈M

wi(pij +
∑
k∈Xj,
ρkj<ρij

pkj) + pij
∑

k∈Xj\J(α(i)),
ρkj>ρij

wk − pij′
∑

k∈Xj′ (α(j)),
ρkj′>ρij′

wk.

It can be observed that the definition ∆ex
i (x) is the maximum possible decrease

in the cost of player α(i) when she considers moving of her job i. Clearly ∆ex
i (x) ≥

0. Let ∆ex(x) =
∑

i∈J ∆ex
i (x) and we say x is an ε-WE if ∆ex(x) < εCex(x).

Theorem 4.7.2. Let x(0) be any initial assignment and let x̂ be the global min-
imizer of Φ(·), where Φ is the potential function of ex. Then for any ε > 0,

maximum-gain best response dynamics generates an ε-WE x in at most O(n
ε

log Φ(x(0))
Φ(x̂)

)

steps. This ε-equilibrium satisfies Cex(x) ≤ (1 + φ+O(ε))Csr(x∗).

Proof. First suppose that x is an ε-weak-equilibrium. For each job i ∈ X∗j ,
suppose that i ∈ Xj′ , and define

π(i) = wi(pij +
∑
k∈Xj,
ρkj<ρij

pkj) + pij
∑

k∈Xj\J(α(i)),
ρkj>ρij

wk − pij′
∑

k∈Xj′ (α(i)),
ρkj′>ρij′

wk.

Observe that the definition of π(i) is simply the RHS of the inequality in Lemma 4.5.2.
As shown in Lemma 4.5.3 and Theorem 4.5.41,∑

i∈J

π(i) ≤ 1

4β
Cex(x) + (1 + β)Csr(x∗).

By the definition of ∆ex(x) and the fact that x is an ε-weak equilibrium,

εCex(x) > ∆ex(x) ≥ Cex(x)−
∑
i∈J

π(i) ≥ (1− 1

4β
)Cex(x)− (1 + β)Csr(x∗).

Rearranging terms, we obtain that

Cex(x) ≤ 1 + β

1− 1
4β
− ε

Csr(x∗) ≤ (1 + φ+O(ε))Csr(x∗),

1Observe that the sum
∑
i∈J π(i) is just the expression in (4.7) and the rest of the derivation

on
∑
i∈J π(i) in the proof of Lemma 4.5.3 and Theorem 4.5.4 does not depends on the fact that

x is a WE.

59

where β is set to be 1+
√

5
4

. This proves the second part of the theorem.
Next we argue that an ε-WE can be reached in the stated number of steps. For

this suppose that x(t) is the assignment after t steps of the dynamics. Suppose
further that x(t) is not an ε-WE, so that ∆ex(x(t)) > εCex(x(t)). Consider the
job i such that moving job i decreases the cost of a player the most; for this job
we have ∆ex

i (x(t)) > (ε/n)Cex(x(t)). Now by the facts that Cex(x(t)) ≥ Φ(xt)
and Φ(x(t+ 1)) = Φ(x(t))−∆ex

i (x(t)), we derive

Φ(x(t+ 1)) ≤ (1− ε

n
)Φ(x(t)).

Thus if no ε-WE is found in the first T steps,

Φ(x̂) ≤ Φ(x(T)) ≤ (1− ε

n
)TΦ(x(0)).

This yields the required bound on the number of steps.

Theorem 4.7.3. Φ(x(0))
φ(x̂)

≤ npmax
pmin

, where x(0) is any initial assignment and x̂ is
the global minimizer of the potential function, pmax = maxj∈M,i∈J pij and pmin =
minj∈M,i∈J pij

Proof. The potential function can be upper-bounded as follows. All jobs belong
to different players and all are assigned to the same machine, and all have the
processing times of pmax on it. Thus Φ(x(0)) ≤ Cex(x(0)) ≤ (

∑
i∈Jwi)(npmax).

On the other hand, the potential function can be lower-bounded as follows:
each job is assigned to a different machine and all have the same processing times
pmin on them. Thus Φ(x̂) ≥ Γ(x̂) ≥ (

∑
i∈Jwi)(pmin). The proof follows.

4.8 Lower bounds

In this section we prove the lower bounds claimed in the chapter. We start by

showing that for WE, the coordination ratio of any prompt mechanisms (ran-

domized or deterministic) is at least 1 + φ ≈ 2.618, where φ is the golden ratio.

The construction is an adaptation of a result by Caragiannis et al (12). Then, by

twisting the same instance we get a lower bound of 5.828 instance for ps. Addi-

tionally we show that the coordination ratio of ps is higher than 2.618 even under

NE, indeed it is at least 2
√

2 ≈ 2.824. Finally, we show that the coordination

ratio of any anonymous prompt mechanism is at least 4 for WE.

60

4.8.1 Prompt mechanisms

Let φ be the golden ratio, i.e., the positive solution of φ2−φ−1 = 0, and consider

the following instance of the restricted related machines model. We have a path

of n nodes with n− 1 edges. Node mi, 0 ≤ i ≤ n− 2 represents a machine with

speed φ2i. Node mn−1 represents a machine with speed φ2(n−2). On the other

hand, edge ji, 0 ≤ i ≤ n−2, is a job that can only go to machine mi and machine

mi+1. The processing time and the weight of job ji equals φi. In this instance

there is only one player that controls all the jobs.

Suppose that each job ji is assigned to machine mi for 0 ≤ i ≤ n − 2. The

cost for job ji under this assignment equals wjipji/φ
2i = 1, so that such an

assignment has total cost of n− 1. We claim that this is actually a WE. To see

this assume the player flips a single job ji from machine mi to machine mi+1, for

some 0 ≤ i ≤ n− 2. Consider first flipping a job ji, for 0 ≤ i ≤ n− 3, to machine

mi+1. Since the mechanism is prompt, before the flip jobs where finishing by their

processing times and thus the aggregate cost of jobs ji and ji+1 was 2. After the

change, any feasible policy has only two possible choices:

1. Finish job ji before job ji+1, i.e., Cji ≤ Cji+1
. Since the mechanisms is

feasible in this case we have that pji ≤ Cji and pji +pji+1
≤ Cji+1

. Therefore

the aggregate cost of these jobs satisfies:

wjiCji + wji+1
Cji+1

≥ φ2i + (φi + φi+1)φi+1

φ2i+2
= φ2 = 2.

2. Finish job ji+1 before job ji, i.e., Cji+1
≤ Cji . Since the mechanisms is fea-

sible in this case we have that pji+1
≤ Cji+1

and pji + pji+1
≤ Cji . Therefore

the aggregate cost of these jobs satisfies:

wjiCji + wji+1
Cji+1

≥ φi(φi + φi+1) + φ2i+2

φ2i+2
= 2.

In none of the cases, the total cost of jobs ji and ji+1 decreases after the change,

and thus, even if randomization is allowed the situation was a WE. It is also clear

that the player also has no incentive to move job jn−2 from machine mn−2 to

mn−1. Therefore, we have a WE.

To conclude, observe that the cost of the optimal assignment, which assigns

job ji to machine mi+1, for all 0 ≤ i ≤ n− 2, is

n−3∑
i=0

(
φ2i

φ2i+2

)
+
φ2n−4

φ2n−4
=
n− 2

φ2
+ 1.

61

Therefore, the coordination ratio is at least n−1
n−2

φ2
+1
→ φ2 = 1 + φ.

4.8.2 ps under WE

To obtain a bound on proportional sharing we take the same instance as before

but let change the value of φ to be 1 +
√

2.

Arguing in a similar way as before, assigning ji to machine mi for 0 ≤ i ≤ n−2

is a WE, with total cost n− 1. If not, the player can flip her job ji from machine

mi to machine mi+1, for some 0 ≤ i ≤ n − 2. If we consider ji, for some

0 ≤ i ≤ n − 3, to machine mi+1. The cost of jobs ji and ji+1 changes from 2 to
((1+

√
2)i+(1+

√
2)i+1)2

(1+
√

2)2i+2 = 2. Also the player also has no incentive to move job jn−2

from machine mn−2 to mn−1. We conclude by noting that the cost of the optimal

assignment, which assigns job ji to machine mi+1 is

n−3∑
i=0

(
(1 +

√
2)2i

(1 +
√

2)2i+2

)
+

(1 +
√

2)2n−4

(1 +
√

2)2n−4
=

n− 2

(1 +
√

2)2
+ 1.

Therefore, the coordination ratio is at least n−1
n−2

(1+
√
2)2

+1
→ (1 +

√
2)2 = 3 + 2

√
2.

4.8.3 ps under NE

Consider the following instance of the restricted related machines model. We

have a binary tree of d levels. Let the root be in level 0 and the leaves be in level

d − 1. Every nodes in level l, 0 ≤ l ≤ d − 2 represents a machine with speed Sl

where S = 2+
√

2
2

. The nodes in levels d−1 represent machines with speed L ·Sd−2

where L = 3
√

2−2
2

. Every edge in the graph represents a job of size and weight 1

that can only go to the two machines on its endpoints. We call these jobs the big

jobs. On every machine we also have
√

2/ε jobs that can only go to this machine

each of size and weight ε. We call these jobs the small jobs. Finally, for each

machine there is a player controlling all small jobs in that machine and the single

big job going to its parent node. The player in the root only controls small jobs.

Suppose that each big job is assigned to the machine in the parent node. Such

as assignment has cost of

d−2∑
i=0

(
2i

(2 +
√

2)2

Si

)
+ 2d−1 2

L · Sd−2

=

(
2

S

)d−1

(3 + 2
√

2)

(
(2 +

√
2)2 +

2

1 + 2
√

2

)
− 2(3 + 2

√
2)2.

62

We claim that this is a NE. Indeed, if a player on a machine in level 1 ≤ i ≤
d − 2 flips her big job from the parent machine. The cost of her jobs goes from
2+
√

2
Si−1 +

√
2(2+

√
2)

Si
to (1+

√
2)(3+

√
2)

Si
. So the total cost of this player is not improved

after the change. Now consider the case where the player is on a machine in level

d − 1. Before the change, the total cost of the player was 2+
√

2
Sd−2 + 2

L·Sd−2 , while

after the change the cost becomes (1+
√

2)(1+
√

2)
L·Sd−2 . Again the total cost of the player

is not improved after the change. Therefore, we have a NE.

Finally, observe that the cost of the optimal assignment, which assigns each

big job to the machine in the child node, is

1 +
d−2∑
i=1

(
2i

1 +
√

2(1 +
√

2
2

)

Si

)
+ 2d−1 1 +

√
2(1 +

√
2

2
)

L · Sd−2
+O(ε)

=

(
2

S

)d−1

(3 + 2
√

2)

(
2 +
√

2 +
2 +
√

2

1 + 2
√

2

)
− 11− 8

√
2 +O(ε).

Letting ε → 0, the additive O(ε) term can be ignored. A straightforward calcu-

lation amounts to conclude that as d → ∞, the coordination ratio approaches

2
√

2 ≈ 2.828.

4.8.4 Anonymous mechanisms

Consider the following instance of the restricted related machines model. We have

a binary tree of d levels, with an additional layer of 2d−1 nodes, each connected

with one edge to a leaf of the binary tree. So we have d+1 levels and 2d−1+2d−1

nodes. For the original binary tree let the root be in level 0 and the leaves be

in level d − 1. Every nodes in level l, 0 ≤ l ≤ d − 2 represents a machine with

speed 2l. The nodes in levels d− 1 and d represent machines with speed 3
2
· 2d−2.

As usual, every edge in the graph represents an unweighted job of size 1 that

can only go to the two machines on its endpoints. In this situation we have 2d−1

players. Every player controls a set of jobs that lies on a path between a non-leaf

node and a leaf node of the graph. This is done as follows: the first player owns

all jobs is a path from the root to a leaf; then remove these jobs (edges) and

consider a path in the remainder from a node as close as possible to the root

to a leaf and assign them to a player; the procedure continues until no jobs are

left. Figure 4.1 depicts the instance when d = 4. The numbers inside the nodes

represent the speed of the machines and the letters on the edges represent the

player controlling the job.

63

1

2

2

4

4

4

4

6

6

6

6

6

6

6

6 6

6

6

6

6

6

6

6

a

a

a

a

b

b

b
b

d

c
c

c

d

e

f

g

h

e

f

g

d

h

Figure 4.1: The lower bound instance with d = 4.

We claim that if each job is assigned to the machine in the level with a smaller

index, i.e., closer to the root, we have a WE, whose total cost is:

d−2∑
i=0

(
2 · 2 · 2i

2i

)
+

2d−1

3
2
2d−2

= 4(d− 1) +
4

3
.

If this is not a WE a player can flip one job from a machine in level i to a machine

in level i+1, for some 0 ≤ i ≤ d−1. Consider the case where 0 ≤ i ≤ d−3. Before

the change, the aggregate cost of jobs in levels i and i+ 1 was 2
2i

+ 2
2i+1 . After the

change the cost is 2·3
2i+1 . So the total cost of the player does not decrease. Now

consider the case where the player can flip the job from level d− 2 to level d− 1.

Before the change, the cost of jobs in level d− 2 and level d− 1 is 2
2d−2 + 1

(3/2)2d−2 .

After the change the cost is 4
(3/2)2d−2 . So again the total cost of the player is not

improved after the change . Finally, it is easily verified that the player has no

incentive to move the job from machine in level d− 1 to d. Therefore, we have a

WE.

We conclude, observing that the cost of the optimal assignment, which assigns

each job to the machine in the level with a larger index, i.e., farther from the

root, is
d−2∑
i=1

(
2i

2i

)
+ 2

2d−1

3
2
2d−2

= d− 2 +
8

3
.

64

Therefore, the coordination ratio is at least
4(d−1)+ 4

3

d−2+ 8
3

which approaches 4 for large

d.

4.9 Final remarks

We have proved that sr is the best possible non-preemptive policy, and to beat its

coordination ratio we have used ex, a policy that, as opposed to sr, importantly

relies on who owns which job. We conjecture that if we restrict to policies that

ignore the ownership of the jobs the ratio of 4 cannot be improved. This is

indeed the case for non-preemptive policies, and also for fully preemptive policies

as shown in Section 4.8. Also, for natural policies with this property such as ps

or the RAND policy (18) the technique in this chapter only lead to larger bounds.

Our lower bound on general prompt seems to be the natural limit. Non

prompt policies that are allowed to use global information can certainly beat this

as they can simply introduce very large delays for jobs that are not assigned to

it in an optimal schedule. By doing this, such policies can easily achieve low

coordination ratio (say optimal if they have unlimited computational power or

3/2 if they use the best known approximation algorithms. It would be interesting

to explore what happens with this non prompt policies when they can only use

local information.

Another interesting question refers to the quality of the actual NE of this

game. Of course our upper bounds applies to that equilibrium concept, but is

may be possible that the coordination ratio of ex for the NE is below 2.618. We

know however that this cannot be better than 2.5 as we show in the chapter.

Finally, we note that by mimicking the analysis in (18) we obtain a similar

2 + ε approximation algorithm for R| |
∑
wiCi, independent of which jobs belong

to which players. It is possible that by carefully choosing the game structure this

can be beaten.

65

Bibliography

[1] F. Abed, J. Correa, and C.-C. Huang. Optimal coordination mechanisms

for multi-job scheduling games. In 22nd Annual European Symposium on

Algorithms (ESA), 2014. 6

[2] F. Abed, C.-C. Huang. Preemptive coordination mechanisms for unrelated

machines. In 20th Annual European Symposium on Algorithms (ESA), 2012.

5, 24

[3] F. Abed, C.-C. Huang. Coordinating oligopolistic players in unrelated ma-

chine scheduling. Theor. Comput. Sci. 570: 40-54 (2015) 5

[4] E. Anshelevich, B. Caskurlu, and A. Hate. Partition equilibrium always

exists in resource selection games. In SAGT, pages 42–53, 2010. 26

[5] B. Awerbuch, Y. Azar, Y. Richter, and D. Tsur. Tradeoffs in worst-case

equilibria. Theor. Comput. Sci., 361(2-3):200–209, 2006.

[6] Y. Azar, K. Jain, and V.S. Mirrokni. (Almost) Optimal coordination mech-

anisms for unrelated machine scheduling. In SODA 2008. 4, 7, 8, 9, 12, 20,

21, 22, 24

[7] U. Bhaskar, L. Fleischer, D. Hoy, and C.-C. Huang. Equilibria of atomic

flow games are not unique. In SODA, pages 748–757, 2009. 26

[8] S. Bhattacharyay, S. Imz, J. Kulkarnix, K. Munagala. Coordination mecha-

nisms from (almost) all scheduling policies. In ITCS 2014. 4

[9] T. Brueggemann, J.L. Hurink, W. Kern. Quality of move-optimal schedules

for minimizing total weighted completion time. Oper. Res. Lett., 34(5):583-

590, 2006. 4, 49

66

[10] J. Bruno, E.G. Coffman, and R. Sethi. Scheduling independent tasks to

reduce mean finishing time. Commun. ACM, 17:382–387, 1974. 1

[11] I. Caragiannis. Efficient coordination mechanisms for unrelated machine

scheduling. In SODA 2009. 4, 8, 9, 11, 24, 26, 27, 28, 40, 42

[12] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and

L. Moscardelli. Tight bounds for selfish and greedy load balancing. Al-

gorithmica, 61(3):606–637, 2011. 4, 60

[13] B. Chen, C.N. Potts, G.J. Woeginger. A review of machine scheduling: Com-

plexity, algorithms and approximability. In Handbook of Combinatorial Op-

timization (volume 3), Kluwer Academic Publishers. 1998. 4, 49

[14] G. Christodoulou, E. Koutsoupias, A. Nanavati. Coordination mecha-

nisms. Theor. Comput. Sci., 410(36):3327–3336, 2009. Preliminary version

in ICALP 2004. 4, 7

[15] J. Cohen, C. Dürr, and N.K. Thang. Non-clairvoyant scheduling games.

Theory Comput. Syst., 49(1):3–23, 2011. 8, 24, 25

[16] J. Cohen, C. Dürr, N.K. Thang. Smooth inequalities and equilibrium ineffi-

ciency in scheduling games. In WINE 2012. 4, 24

[17] R. Cole, J.R. Correa, V. Gkatzelis, V.S. Mirrokni, N. Olver Inner product

spaces for MinSum coordination mechanisms. In STOC 2011. 3, 4, 13, 24

[18] R. Cole, J.R. Correa, V. Gkatzelis, V. Mirrokni, N. Olver. Decentralized util-

itarian mechanisms for scheduling games. Game. Econ. Behav., to appear.

3, 4, 48, 49, 51, 54, 65

[19] R. Cominetti, J. Correa, and N. Stier-Moses. The impact of oligopolistic

competition in networks. Operations Research, 57(6):1421–1437, 2009. 26

[20] J. Correa, M. Queyranne. Efficiency of equilibria in restricted uniform ma-

chine scheduling with total weighted completion time as social cost. Naval

Res. Logist., 59:384–395, 2012. 4, 48

[21] A. Czumaj, B. Vöcking. Tight bounds for worst-case equilibria. ACM T.

Algo., 3, 2007. 4

67

[22] E. Davis, J.M. Jaffe. Algorithms for scheduling tasks on unrelated processors.

J. ACM, 28(4):721–736, 1981. 1

[23] C. Dürr, N.K. Thang. Non-clairvoyant scheduling games. In SAGT 2009. 4,

49, 54

[24] B. Farzad, N. Olver, A. Vetta. A priority-based model of routing. Chic. J.

Theor. Comput., 2008. 4

[25] M. Feldman and M. Tennenholtz. Partition equilibrium. In SAGT, pages

48–59, 2009. 26

[26] G. Finn, E. Horowitz. A linear time approximation algorithm for multipro-

cessor scheduling. BIT, 19:312–320, 1979. 1

[27] L. Fleischer, Z. Svitkina. Preference-constrained oriented matching. In

ANALCO 2010. 4, 8, 9, 12, 24

[28] D. Fotakis, S. Kontogiannis, and P. Spirakis. Atomic congestion games

among coalitions. ACM Transactions on Algorithms, 4(4), 2008. The con-

ference version appeared in ICALP 2006. 26

[29] M. Garey and D. Johnson. Computers and Intractablility. Freeman, 1979.

42

[30] A. Hayrapetyan, É. Tardos, and T. Wexler. The effect of collusion in con-

gestion games. In STOC, pages 89–98, New York, NY, USA, 2006. ACM

Press. 26

[31] R. Hoeksma, M. Uetz. The Price of Anarchy for Minsum related machine

scheduling. In WAOA 2011. 4

[32] H. Hoogeveen, P. Schuurman, G.J. Woeginger. Non-approximability results

for scheduling problems with minsum criteria. In IPCO 1998. 1

[33] W.A. Horn. Minimizing average flow time with parallel machines. Oper. Res.,

21(3):846–847, 1973. 1

[34] O.H. Ibarra, C.E. Kim. Heuristic algorithms for scheduling independent tasks

on nonidentical processors. J. ACM, 24(2):280–289, 1977. 1

68

[35] N. Immorlica, L. Li, V.S. Mirrokni, and A.S. Schulz. Coordination mecha-

nisms for selfish scheduling. Theor. Comput. Sci., 410(17):1589–1598, 2009.

4, 8, 11, 13, 24

[36] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In STACS 1999.

2, 3, 8

[37] J. Lenstra, D. Shmoys, and É. Tardos. Approximation algorithms for

scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990.

1, 7

[38] P. Lu, C. Yu. Worst-case Nash equilibria in restricted routing. In WINE,

231–238, 2008. 4

[39] J. Nash. Equilibrium points in N-person games. PNAS, 36, 48-49, 1950. 47

[40] J. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–

295, 1951.

[41] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game

Theory. Cambridge University Press, 2007. 4

[42] C.N. Potts, V. Strusevich. Fifty years of scheduling: a survey of milestones.

J Oper. Res. Society, 60(1):41-68, 2009. 4, 49

[43] M. Rahn, G. Schäfer. Bounding the inefficiency of altruism through social

contribution games. Manuscript 2013. 4

[44] T. Roughgarden. Selfish Routing and the Price of Anarchy. The MIT Press,

2005. 26

[45] T. Roughgarden. Intrinsic robustness of the price of anarchy. In STOC 2009.

48

[46] S. Sahni, Y. Cho. Bounds for list schedules on uniform processors. SIAM J.

Comput., 9:91–103, 1980. 1

[47] A.S. Schulz, M. Skutella. Scheduling unrelated machines by randomized

rounding. SIAM J. Discrete Math., 15(4):450–469, 2002. 2

[48] P. Schuurman, T. Vredeveld. Performance guarantees of local search for mul-

tiprocessor scheduling. In IPCO 2001. 2

69

[49] J. Sethuraman, M.S. Squillante. Optimal scheduling of multiclass parallel

machines. In SODA 1999. 2

[50] M. Skutella. Convex quadratic and semidefinite programming relaxations in

scheduling. J. ACM, 48(2):206–242, 2001. 2

[51] M. Skutella, G.J. Woeginger. A ptas for minimizing the total weighted com-

pletion time on identical parallel machines. Math. Oper. Res., 25(1):63–75,

2000. 2

[52] W. Smith. Various optimizers for single stage production. Naval Res. Logist.

Quart., 3(1-2):59–66, 1956. 1

[53] T. Vredeveld, C. Hurkens. Experimental comparison of approximation algo-

rithms for scheduling unrelated parallel machines. INFORMS J. Comput.,

14:175–189, 2002. 48, 49

[54] Wikipedia. http://en.wikipedia.org/wiki/Independence of irrelevant alter-

natives. 11

70

	1 Introduction
	1.1 Coordination Mechanisms
	1.2 Machine Policies
	1.3 Related Literature
	1.4 Contribution and Organization

	2 Makespan Minimization in Single-Job Games
	2.1 Introduction
	2.2 Assumptions and Technique
	2.3 Lower Bounds
	2.3.1 Deterministic Mechanisms: Non-Anonymous Case
	2.3.2 Deterministic Mechanisms: Anonymous Case
	2.3.3 Deterministic Mechanisms: When Machines Do Not Use Job or Machine IDs
	2.3.4 Randomized Mechanisms

	2.4 Upper Bound on Price of Anarchy When Inefficiency Is Bounded

	3 Makespan Minimization in Multi-Job Games
	3.1 Introduction
	3.2 Contribution
	3.3 Related Work
	3.4 Preliminary
	3.5 A1-COORD
	3.6 A2-COORD
	3.7 A3-COORD
	3.8 Counter-examples and Lower Bounds for Known Mechanisms
	3.8.1 PNE Existence for ShortestFirst, AJM-2, and BALANCE
	3.8.2 PNE Existence for Makespan, BCOORD, and CCOORD
	3.8.3 PoA for ACOORD, BCOORD, and CCOORD

	4 Weighted Sum of Completion Times Minimization in Multi-Job Games
	4.1 Introduction
	4.2 Contribution
	4.3 Preliminaries
	4.4 Non-preemptive mechanisms
	4.5 Preemptive mechanisms
	4.6 Potential function
	4.7 Convergence time and approximation algorithm
	4.8 Lower bounds
	4.8.1 Prompt mechanisms
	4.8.2 ps under WE
	4.8.3 ps under NE
	4.8.4 Anonymous mechanisms

	4.9 Final remarks

