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Abstract

In this thesis, we study the parameterized complexity of counting problems, as introduced
by Flum and Grohe [FG04]. This area mainly involves questions of the following kind: On
inputs x with a parameter k, can we solve a given counting problem in time f(k)|x|O(1) for a
function f that depends only on k? In the positive case, we call the problem fixed-parameter
tractable (fpt). Otherwise, we try to prove its #W[1]-hardness, which is the parameterized
analogue of #P-hardness.

We introduce a general technique that bridges parameterized counting complexity and the
so-called Holant framework, which was already used successfully in the study of classical
counting problems. We then apply this technique to the problem of counting perfect
matchings (or equivalently, the permanent) subject to structural parameters of the input
graph G: On the algorithmic side, we introduce a new tractable structural parameter,
namely, the minimal size of an excluded single-crossing minor of G. We complement this
by showing that counting perfect matchings is #W[1]-hard when parameterized by the size
of an arbitrary excluded minor.

Then we turn our attention to counting general subgraphsH other than perfect matchings
in a host graph G. Instead of imposing structural parameters on G, we parameterize by the
size of H, giving rise to the problems #Sub(H) for fixed graph classes H: For inputs H and
G with H ∈ H, we wish to count H-copies in G. Here, H could be the class of matchings,
cycles, paths, or any other recursively enumerable class. We give a full dichotomy for
these problems: Either #Sub(H) has a polynomial-time algorithm or it is #W[1]-complete.
Assuming that FPT 6= #W[1], we can thus precisely identify the graph classes H for which
the subgraph counting problem #Sub(H) admits polynomial-time algorithms.
Furthermore, we obtain an unexpected application of our extensions to the Holant

framework: We show that, given two unweighted graphs, it is C=P-complete to decide
whether they have the same number of perfect matchings.

Finally, we prove conditional lower bounds for counting problems under the counting
exponential-time hypothesis #ETH. This hypothesis, introduced by Dell et al. [DHM+14],
asserts that the satisfying assignments to n-variable formulas in 3-CNF cannot be counted
in time 2o(n). Building upon this, we introduce a general technique that allows to derive
tight lower bounds for other counting problems, such as counting perfect matchings, the
Tutte polynomial, and the matching polynomial.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der parametrisierten Komplexität von Zählprob-
lemen, einem von Flum und Grohe [FG04] gegründeten Gebiet, in welchem Fragen der
folgenden Art betrachtet werden: Können gegebene Probleme auf Eingaben x mit Pa-
rameter k in Zeit f(k)|x|O(1) gelöst werden, wobei f eine Funktion ist, die nur von k

abhängt? Im positiven Falle bezeichnen wir das Problem als parametrisierbar (FPT).
Andernfalls versuchen wir typischerweise, dessen #W[1]-Härte zu beweisen − diese lässt
sich vereinfachend als ein parametrisiertes Äquivalent der #P-Härte auffassen.
Wir führen zunächst eine allgemeine Technik ein, welche die parametrisierte Zählkom-

plexität mit dem sogenannten Holant-Rahmenwerk verbindet. Anschließend setzen wir
diese zum Zählen perfekter Paarungen (oder äquivalent, zur Auswertung der Permanente)
unter strukturellen Parametern des Eingabegraphens G ein: Wir zeigen, dass das Zählen
perfekter Paarungen parametrisierbar ist durch die minimale Größe eines ausgeschlosse-
nen Minors von G, der höchstens eine Kreuzung besitzt. Dieses algorithmische Resultat
komplementieren wir durch die #W[1]-Härte des Zählens perfekter Paarungen, wenn die
minimale Größe eines beliebigen ausgeschlossenen Minors als Parameter betrachtet wird.
Anschließend widmen wir uns dem Zählen beliebiger Subgraphen H in Graphen G.

Anstelle von strukturellen Parametern betrachten wir die Größe von H als Parameter
und erhalten hierdurch die Probleme #Sub(H) für feste Graphklassen H: Auf Eingaben
H und G mit H ∈ H gilt es, die H-Kopien in G zu zählen. Hierbei kann H die Klasse
der Paarungen, Zyklen, Pfade, oder eine beliebige andere Klasse von Graphen darstellen.
Wir zeigen eine vollständige Dichotomie für diese Probleme: Das Problem #Sub(H) ist
entweder in P oder #W[1]-hart. Unter der gängigen Annahme FPT 6= #W[1] erhalten wir
somit eine vollständige Klassifikation der Polynomialzeit-lösbaren Probleme #Sub(H).

Weiterhin erhalten wir eine unerwartete Anwendung unserer Erweiterungen des Holant-
Rahmenwerks: Wir zeigen die C=P-Vollständigkeit der Frage, ob die Anzahlen perfekter
Paarungen in zwei gegebenen ungewichteten Graphen übereinstimmen.

Schlussendlich zeigen wir bedingte untere Schranken für Zählprobleme unter der Zählver-
sion der Exponentialzeithypothese #ETH, eingeführt durch Dell et al. [DHM+14]. Diese
postuliert, dass die erfüllenden Belegungen in 3-KNF-Formeln mit n Variablen nicht in
Zeit 2o(n) gezählt werden können. Darauf aufbauend führen wir eine allgemeine Technik
ein, die es ermöglicht, scharfe untere Schranken für andere Zählprobleme zu erhalten: Dies
umfasst das Zählen perfekter Paarungen, das Tutte-Polynom und das Paarungs-Polynom.
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Introduction to this Thesis

The study of counting problems has become a classical subfield of computational complexity
theory since Valiant’s seminal paper [Val79b] that introduced the complexity class #P
and proved that counting perfect matchings is complete for this class. For instance, it is
now known by Toda’s celebrated result [Tod91] that the problems in the polynomial-time
hierarchy PH can be solved in polynomial time with an oracle to #P, and this establishes
counting solutions as something much harder than deciding their existence. The fact that
counting problems are typically hard has also allowed to map the complexity of counting
solutions to constraint satisfaction problems exhaustively [Bul13, CC12], a situation yet to
be brought about for their decision versions.

From day zero, the development of counting complexity theory was steadily accompanied
by the concrete problem of counting perfect matchings, which is also a focus of the present
thesis. In algebra, the quantity of perfect matchings (in a bipartite graph G) is known as
the permanent (of the biadjacency matrix of G), and it is central to the field of algebraic
complexity theory [Agr06]. Furthermore, a celebrated randomized approximation scheme
for the number of perfect matchings in bipartite graphs has been obtained [JSV04], and the
new field of holographic algorithms [Val08] continues to push the limits of polynomial-time
solvability, ultimately by reductions to counting perfect matchings.
In fact, counting problems have already been studied in the area of statistical physics,

long before the advent of computational complexity theory, under the notion of so-called
partition functions [TF61, Kas61, Kas67]. In this area, the problem of counting perfect
matchings is known as the partition function of the dimer model, and the first algorithms for
counting perfect matchings stem from this area. This includes, most notably, a polynomial-
time algorithm for planar graphs [Kas67]. As noted in [DHM+14], physicists at that time
were puzzled about their inability to “exactly solve” the dimer model and other partition
functions (on not necessarily planar graphs), and the reasons for this became clear only
with Valiant’s result on the #P-completeness of counting perfect matchings.

Being active research targets, counting problems have been refined along various di-
mensions in the past, including approximate counting [DL92, JS93, AR02, JSV04, GJ08,
GJ14b, GJ14a, CDG+15], counting modulo a fixed number [Her90, Val06, GHLX11, GLV13,
GGR14, GGR15], counting on restricted graph classes [DL92, Vad01, XZZ07], and combi-
nations thereof.

In this thesis, we consider the parameterized complexity of counting problems, following
in the wake of Flum and Grohe’s seminal paper [FG04], which introduced one of the most
recent refinements to counting complexity. Parameterized complexity theory is a relatively
young field within complexity theory [DF95, DF99], and it is concerned with questions of
the following kind: On inputs x with a parameter k ∈ N, can we solve a given problem in
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time f(k)nO(1) for a computable function f that depends only on k, but not on n = |x|?
Problems that can be solved in such running times are called fixed-parameter tractable.
The field of parameterized complexity theory was initiated with a focus on decision

problems, and it was later extended to counting problems in [FG04, McC06]. For instance,
we can count k-vertex covers in time 2knO(1) [FG06], and we can compute the number of
perfect matchings in graphs of genus g in time 4gnO(1) [GL98]. This makes these problems
fixed-parameter tractable with respect to their parameters, which are the solution size k,
and the genus g, respectively. But what about, say, counting matchings with k edges in a
general graph? Or what about counting matchings with precisely k unmatched vertices in
a planar graph? We will answer these and various other questions in this thesis and try to
explain why they are particularly interesting.
As mentioned before, a clear focus of this thesis lies on variations on the theme of

counting perfect matchings. We will also often consider the following weighted number
of perfect matchings, for edge-weighted graphs G that are given together with a weight
function w : E(G)→ Q:

PerfMatch(G) =
∑

M is a perfect
matching of G

∏
e∈M

w(e).

While we have already remarked above that the computation of PerfMatch is an important
and well-studied problem on its own, there are further reasons for focusing on this problem:
As we will observe in multiple occasions in this thesis, counting (perfect) matchings has
the qualities of a “bottleneck problem”: Once hardness for this problem can be established
in a given model of interest, other results follow by comparatively easy reductions.

Guided tour of this thesis

In Chapter 1, we provide the necessary preliminaries for later chapters by introducing the
notational conventions and concepts from complexity theory, graph theory, combinatorics
and algebra that are required later on.

The author has invested quite some work in an attempt to embed the ideas presented in
this thesis into a general framework. To this end, we use the Holant framework, a model for
counting problems that has recently been introduced [Val08, CL07], and which has proven
immensely useful to the study of classical counting problems. In Chapter 2, we present
our interpretation of this framework and introduce extensions towards parameterized
complexity, some of which were obtained in joint work with Mingji Xia. Additionally, we
present a direct and uniform reduction from a large class of counting problems to PerfMatch,
including the problem #SAT in particular. This gives a flexible #P-completeness proof for
PerfMatch, which is useful for other applications as well.

The main body of this thesis is then divided into Parts I-III, which contain more actual
technical results. Each such part begins with an extended introduction into the material it
covers, including notes and references that state possible involved collaborators.
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Part I - Counting perfect matchings in H-minor-free graphs

In the first part, we study the problem of counting perfect matchings in graphs excluding a
fixed minor. After observing that essentially every known polynomial-time solvable graph
class for counting perfect matchings excludes a fixed minor, our initial goal was to obtain
a polynomial-time algorithm for every class excluding a fixed minor H.
To cut short, we could not solve this general problem. However, in Chapter 3, we

present a polynomial-time algorithm for computing PerfMatch on every graph class that
excludes a fixed single-crossing minor, a minor that can be drawn in the plane with at
most one crossing. Graphs excluding such minors can be obtained by gluing planar graphs
and bounded-treewidth graphs along triangles, and their structural complexity pales in
comparison to that of general H-minor-free graphs. But even this simpler structure was
not fully exploited in the literature yet, and our algorithm generalizes almost all known
algorithms [Kas67, Lit74, Vaz89, STW14], with one exception [GL98]. The ideas used in
our algorithm also embed nicely into the Holant framework.

On the complexity side, we prove in joint work with Mingji Xia that one of the building
blocks of general H-minor free graphs, namely apices, make counting perfect matchings
intractable. More precisely, we show in Chapter 4 that it is #W[1]-hard to count the
perfect matchings in a graph that can be made planar after removal of k apex vertices.
This is the first major application of our parameterized Holant framework. We obtain as
a simple consequence that counting perfect matchings in a graph G is #W[1]-hard when
parameterized by the Hadwiger number of G, the size of the largest clique minor in G.
From this, we can conclude that algorithms for PerfMatch on H-minor-free graphs cannot
be fixed-parameter tractable in the size of H.

In the same chapter, we also extend the hardness proof for k-apex graphs by showing that
it is already #W[1]-hard to count matchings with exactly k unmatched vertices in planar
graphs. This solves a conjecture by the author from 2010. Finally, we also complement the
result by an fpt-algorithm for graphs whose apices can see only a bounded number of faces,
and we will explain why this is interesting in the context of H-minor-free graphs.

Part II - Counting small subgraphs

In the second part of the thesis, which is joint work with Dániel Marx, we consider the
following problem #Sub(H) for arbitrary fixed graph classes H: Given a host graph G and
a pattern graph H ∈ H as input, we want to count subgraphs of G that are isomorphic
to H. This problem is considered to be parameterized by |V (H)|, so we are intuitively
interested in counting occurrences of a small pattern in a large host graph.

The family of problems #Sub(H) includes counting paths, cycles and matchings of size k,
and literally more problems than can be described with words.1 The problems of counting
paths and cycles were proven #W[1]-complete in the seminal paper on parameterized
counting complexity [FG04], which also posed the complexity of counting k-matchings
as an open problem. This was later settled by the author, showing that this problem is

1We therefore restrict ourselves to recursively enumerable classes H.
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indeed #W[1]-complete [Cur13], and following up on joint work with Markus Bläser for a
weighted version of the problem [BC12]. This original proof appears in the appendix of this
thesis. In Chapter 5, we instead present a novel #W[1]-completeness proof for counting
k-matchings that is significantly simpler and embeds nicely into the parameterized Holant
framework. Apart from this, we also obtain an almost-tight running time lower bound
of nΩ(k/ log k) for counting k-matchings under the exponential-time hypothesis #ETH. By
simple reductions, we then obtain #W[1]-hardness proofs and the same lower bounds for
counting paths and cycles as well.

Building upon this, we then give a full dichotomy for the problem #Sub(H) inChapter 6:
If the maximum matching number of H is bounded, then it is known that #Sub(H) even
admits a polynomial-time algorithm. On the other hand, if this number is unbounded,
then we show that the problem is #W[1]-complete. Hence, assuming FPT 6= #W[1], we
can precisely say when #Sub(H) has a polynomial-time algorithm. The main part of
the hardness proof is a reduction from counting k-matchings to #Sub(H) that is enabled
by a machinery of gadgets whose existence was proven by Dániel Marx in an involved
graph-theoretical analysis. The author of this thesis explicitly denies any contribution to
this latter part, which appears in the appendix.

Part III - Quantitative lower bounds

In the final part of this thesis, we study conditional lower bounds for counting problems
under the exponential time hypothesis #ETH introduced in [DHM+14]. This is the counting
analogue of its decision version ETH, introduced in [IPZ01, IP01]. It turns out, in this
setting as well, that lower bounds for counting perfect matchings give a formidable base
camp for further expeditions.
The #P-hardness proof for PerfMatch from Chapter 2 will also provide us with a tight

lower bound under #ETH, however only on graphs with edge-weights −1 and 1, and we
will observe that the classical reductions to unweighted graphs are incompatible with tight
lower bounds. Still, we would like to remove the weight −1, e.g., because it is not clear
how to simulate this weight in reductions from PerfMatch to other problems. We solve
this with two orthogonal approaches, each of which has its own specific benefits.
In Chapter 7, we show, given an edge-weighted graph with weights −1 and 1, how to

construct two unweighted graphs G1 and G2 such that PerfMatch(G) is the mere difference
of PerfMatch(G1) and PerfMatch(G2). The size of these graphs depends linearly on the
size of G. And while our technique was conceived for quantitative lower bounds, it can be
used as well to investigate the structural complexity of the problem PerfMatch: Using it,
we show that deciding whether PerfMatch agrees on two unweighted graphs is complete for
the complexity class C=P. To the best of our knowledge, this is the first C=P-completeness
result for a counting problem that is not #P-complete under parsimonious reductions.
Our second approach to remove the weight −1 is less specific to the actual problem

PerfMatch we started with: In Chapter 8, we present a collection of ideas that we dub
the block interpolation framework. In short, this framework applies to #P-hardness proofs
that are based around univariate interpolation, a technique we can observe to be largely
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incompatible with tight lower bounds. We identify a certain pattern in such proofs and
show that their centerpiece, the interpolation step, can be uniformly replaced by a “block
interpolation” step, a certain variation of multivariate interpolation we introduce in this
thesis. Using this framework, we can exemplarily prove tight lower bounds (that were not
known before) for PerfMatch on unweighted graphs, as well as for the evaluation of the
matching polynomial, the independent set polynomial, and the Tutte polynomial.

Appendices

In Appendix A, we include the first #W[1]-hardness proof for counting k-matchings,
with minor editorial changes from the version that appeared in [BC12, Cur13]. At least
from the present point of view, this proof has been entirely superseded by the material we
present in Chapter 5. However, the techniques used in these two proofs differ substantially,
and the old proof might therefore not be entirely obsolete.
The remaining appendices contain deferred proofs from the main part. In particular,

Appendix B proves the existence of certain gadgets that we require in order to prove
the #W[1]-hardness result for uncolored subgraph counting in Chapter 6. The content of
Appendix B was authored by Dániel Marx, and it appears isolated from the main text to
help clarifying that it was not written by the author of the present thesis.
Finally, in some instances, we resort to computer-aided verifications of certain claims.

To make these accessible to the reader, we wrote a simple verification script in MATLAB,
listed in Appendix C, whose output proves such claims when given the relevant data as
input.
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1. Preliminaries

Throughout this thesis, we will use some notational conventions that we make explicit in
Section 1.1. We then proceed, in Section 1.2, to give brief introductions into the subfields
of computational complexity theory that appear in this thesis. Furthermore, we introduce
graph polynomials in Section 1.3 and certain useful algebraic techniques in Section 1.4,
before concluding with a trimmed introduction into graph minor theory in Section 1.5.

1.1. Notational conventions

1.1.1. Sets, numbers, and polynomials

For n ∈ N, we write [n] = {1, . . . , n}. Given a set A, we write #A = |A| for the cardinality
of A and call A a k-set if k = |A|. Given sets A and B, we define the following notions.

• We write both BA and A→ B for the set of all functions from A to B. In the case
B = {0, 1}, we call an element a ∈ {0, 1}A a binary assignment to A.

– For f : A→ B, we write supp(f) = f−1(B \ {0}) for the support of f .
– When clear from the context, we will sometimes identify {0, 1}A with the power

set 2A = {S | S ⊆ A}. In particular, for a ∈ {0, 1}A and x ∈ A, we may write
x ∈ a if a(x) = 1.

– For d ∈ N, we sometimes identify the set of assignments {0, 1}[d] with the set of
d-bitstrings {0, 1}d in the canonical way.

– For strings x ∈ {0, 1}∗, we write hw(x) for the number of 1-entries in x, and we
extend this notion canonically to binary assignments x ∈ {0, 1}A.

• We define certain subsets of A×B. This notation is used only when A and B are
clear from the context.

– For b ∈ B, we write (?, b) = {(a, b) | a ∈ A} for the column at b.
– For a ∈ A, we write (a, ?) = {(a, b) | b ∈ B} for the row at a.

• We write A ' B if there exists a bijection between A and B.

For k ∈ N, let us say that (i, j) ∈ [k]2 and (i′, j′) ∈ [k]2 are vertically adjacent if |i− i′| = 1
and j = j′. Likewise, we call these pairs horizontally adjacent if |j − j′| = 1 and i = i′.
We will also frequently use the Iverson bracket notation: Given a statement P , let

[P ] =

1 if P holds,
0 otherwise.
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Given an indeterminate x and k ∈ N, we write (x)k for the falling factorial

(x)k = x · (x− 1) · . . . · (x− k + 1).

Note that (x)k is a polynomial of degree k. Generally, we denote the degree of a polynomial
p ∈ Q[x] by deg(p).
If x = (x1, . . . , xt) is a list of indeterminates, for t ∈ N, then we write Nx for the set of

all monomials over x. Note that each monomial is a finite product of indeterminates. A
multivariate polynomial p ∈ Q[x] is a polynomial

p =
∑
θ∈Nx

a(θ) · θ

with a(θ) ∈ Q for all θ ∈ Nx, where a has finite support. The polynomial p contains a
given monomial θ ∈ Nx if a(θ) 6= 0 holds.
If x is an indeterminate from x, then we write degx(p) for the degree of x in p. This is

the maximum number k ∈ N such that p contains a monomial θ with factor xk. Generally,
for a subset y of x, we denote the total degree of y in p as the maximum degree of any
monomial Ny that is contained as a factor of a monomial in p.
Furthermore, if p ∈ Q[x, y] is a bivariate polynomial and ξ ∈ Q is some arbitrary fixed

value, we write p(·, ξ) for the result of the substitution y ← ξ in p, and we observe that
p(·, ξ) ∈ Q[x]. Likewise, we write p(ξ, ·) for the result of substituting x← ξ.

1.1.2. Graphs

Every chapter will rely on graphs in some way. Unless otherwise stated, graphs are
undirected and feature no self-loops. We denote the vertices of a graph G by V (G) and its
edges by E(G), and we abbreviate undirected edges {u, v} by uv.
A graph G is simple if G features at most one edge uv ∈ E(G) between vertices

u, v ∈ V (G). Otherwise, G is a multigraph. While multigraphs will be used in several
occasions in this thesis, all hardness results we prove will hold even when restricted to
simple graphs. This is not always trivial to ensure, but it will be prove to be relevant.
When a graph named G is present in the context of an argument, its order |V (G)| will

often be denoted by n. Likewise, whenever a graph named H is present in the context, we
often write k = |V (H)|.
Given a graph G = (V,E) and a vertex v ∈ V , let I(v) denote the set of edges incident

with v, and note that |I(v)| = deg(v), where deg(v) denotes the degree of v. We call v ∈ V
isolated if deg(v) = 0, and we write ∆(G) for the maximum degree of G.

Given a vertex set A ⊆ V , we write G−A for the graph obtained from G by deleting all
vertices in A and their incident edges, and we write G[A] = G− (V \A) for the subgraph
induced by A. Given an edge set B ⊆ E, we write G[B] for the subgraph induced by B,
which is obtained from G by deleting all edges in E \ B and all isolated vertices in the
resulting graph, unless we explicitly state that isolated vertices are kept.
We consider the following substructures of graphs G = (V,E) on n vertices.
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• A k-clique in G is a k-set K ⊆ V with uv ∈ E for all u, v ∈ K with u 6= v. An
independent k-set in G is a k-set I ⊆ V with uv /∈ E for all u, v ∈ I.

• A k-vertex cover is a k-set C ⊆ V such that C ∩ e 6= ∅ for all e ∈ E.

• A k-matching is a k-set M ⊆ E of vertex-disjoint edges. We write usat(G,M) for the
set of vertices v ∈ V that are not contained in any edge of M , and for ` ∈ N, we say
that M is an `-defect matching if |usat(M)| = ` holds. We sometimes merely write
usat(M) when G is clear from the context. It is trivially observed that `+ 2k = n

holds for any `-defect k-matching of G.

• A subgraph of G is a graph that can be obtained from G by deletion of edges and/or
vertices. We write H ⊆ G if H is a subgraph of G. An induced subgraph of G is a
graph that can be obtained from G by deletion of vertices together with all of their
incident edges.

• For a graph H, any subgraph F of G that is isomorphic to H is called a H-copy in G.
Likewise, we call any induced subgraph F of G that is isomorphic to H an induced
H-copy in G.

A graph G may be edge-weighted, then it is given together with a weight function w :
E(G)→ Q, or vertex-weighted, then the weight function is of type w : V (G)→ Q.

We will also consider vertex-colored graphs and edge-colored graphs. In the following, let
k ∈ N and let G be an unweighted graph.

• We say that a pair (G, c) with c : V (G) → [k] is a [k]-vertex-colored graph.1 For
i ∈ [k], we write Vi(G) for the set of i-colored vertices in G, and for i, j ∈ [k], we
write Ei,j(G) for the set of edges between vertices of colors i and j. We call a set
S ⊆ V (G) (vertex-)colorful if |S ∩ Vi(G)| = 1 holds for all i ∈ [k]. Note that S then
is a k-set.

• The pair (G, c) is a [k]-edge-colored graph if G is given together with a function
c : E(G) → [k]. We call a set S ⊆ E(G) (edge-)colorful if S contains exactly one
edge of color i, for all i ∈ [k].

Finally, a plane graph is a pair (G, π), where π is a planar drawing of G. A graph G is
planar if G admits a planar drawing. Given a plane graph (G, π) and a simple cycle C
in G, we say that C bounds a face in (G, π) if one of the two regions bounded by C in π
contains no vertices or edges.

1.2. Computational complexity theory

We provide some basic notions from counting complexity theory, as introduced in [Val79a],
from parameterized counting complexity [FG04], and from the emerging area of exponential-
time complexity [IP01, IPZ01], especially for counting problems [DHM+14]. In particular,

1Note that c is not required to be a proper k-coloring, that is, we allow c(u) = c(v) for uv ∈ E.
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in Section 1.2.1, we define the “classical” counting complexity classes

FP, #P, ⊕P, ModtP for t ∈ N,

then proceed in Section 1.2.2 with the parameterized classes

FPT, W[1], ⊕W[1], #W[1], #W[2], XP, ModtW[1] for t ∈ N,

and conclude in Section 1.2.3 with the exponential-time hypotheses

ETH and #ETH.

In the course of these sections, we also encounter the following reduction notions:

≤p ≤pars
p ≤Tp ≤lin

p ≤serf
≤fpt ≤pars

fpt ≤Tfpt ≤lin
fpt

1.2.1. Classical counting complexity

Computational complexity theory mostly focuses on decision problems, such as the well-
known NP-complete problem SAT, which asks to decide whether a given CNF-formula
ϕ is satisfiable. In applications, it might however also be required to find a solution, to
output all solutions, or to determine the number of solutions. This last task gives rise to
the notion of counting problems, for which we show three examples:

#SAT: Given as input a CNF-formula ϕ on variables X, determine the number of
assignments a ∈ {0, 1}X that satisfy ϕ.

#HamCycle: Given a directed graph G as input, count the Hamiltonian cycles in G, i.e.,
simple cycles in G that visit every vertex exactly once.

perm0,1: Given an undirected, unweighted bipartite graph G as input, count the perfect
matchings in G.2

In the following definition, we “formalize” the notion of counting problems and define
a complexity class #P, which can be considered as the analogue of NP for the field of
counting complexity. It can be easily observed that the three exemplary problems are all
contained in #P.

Definition 1.1 ([Val79a]). A counting problem is a function A : {0, 1}∗ → Q. For the
purposes of this thesis, let the class FP denote all counting problems that can be solved in
polynomial time, i.e., in time |x|O(1) on inputs x ∈ {0, 1}∗.
The class #P contains all counting problems A : {0, 1}∗ → N that admit a non-

deterministic Turing machine MA such that the following holds: For all x ∈ {0, 1}∗, the

2The problem perm0,1 is central to this thesis and will be revisited later in the preliminaries.
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length of each computation path of MA is bounded by |x|O(1), and the number of accepting
paths of MA on x is equal to A(x).

Every language L ∈ NP can be trivially decided with an oracle for #P: If L is contained
in NP, then there is a polynomially time-bounded non-deterministic Turing machine M
that has an accepting path on input x ∈ {0, 1}∗ iff x ∈ L. If we can count the accepting
paths of M on x, we can trivially decide whether one exists. In other words, we have
NP ⊆ P#P. Even more so, by Toda’s theorem [Tod91], the entire polynomial-time hierarchy
PH is contained in P#P. Since PH is believed to be infinite and contains NP at its first
level, we obtain convincing evidence that the hardest problems in #P are much harder
than NP-complete problems, such as SAT.

Completeness and hardness for #P

To identify the hardest problems in #P, we proceed as usual in complexity and say that a
counting problem B is #P-hard if every problem A ∈ #P admits a reduction to B. However,
for reasons that will become clear soon, different types of reductions (and consequently,
different types of hardness) are distinguished for counting problems:

Firstly, there are parsimonious reductions that reduce instances x of A to instances x′ of
B such that A(x) = B(x′) holds. This strict notion of reduction can be relaxed by allowing
normalization factors, which gives rise to weakly parsimonious reductions. By providing
the reduction with full oracle access to B, the requirement on a reduction can be relaxed
even further, and we obtain Turing reductions.

Definition 1.2. Let A and B be counting problems.

• Let f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ → Q. If A(x) = g(x) · B(f(x)) holds for all
x ∈ {0, 1}∗, then we call (f, g) a weakly parsimonious reduction from A to B. If f
and g can be computed in polynomial time, then we call (f, g) a weakly parsimonious
polynomial-time reduction and write A ≤p B.

• If (f, g) is a weakly parsimonious reduction, and additionally g(x) = 1 holds for all
x ∈ {0, 1}∗, then we call f parsimonious. If f can be computed in polynomial time,
then we call f a parsimonious polynomial-time reduction and write A ≤pars

p B.

• If T is a deterministic algorithm that solves A with an oracle for B, then we call
T a Turing reduction from A to B. If T runs in polynomial time, then we call T a
polynomial-time Turing reduction and write A ≤Tp B.

The problem B is #P-hard under parsimonious polynomial-time reductions if A ≤pars
p B

holds for all A ∈ #P. Hardness under the notions ≤p and ≤Tp is defined likewise.
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If A and B are counting problems, then we obviously have

A ≤pars
p B ⇒ A ≤p B ⇒ A ≤Tp B. (1.1)

Furthermore, it is obvious that all three reduction notions are transitive and that FP is
closed under all three reductions. We discuss in the following why different reduction
types are reasonable in the study of counting problems. To this end, let us introduce the
following definitions: By the decision version of a problem A ∈ #P with associated Turing
machine MA, we denote the problem LA of deciding, on input x ∈ {0, 1}∗, whether MA
has an accepting path on x. Likewise, A is the counting version of LA.
It can be observed that the classical NP-hardness reduction for SAT and the reduction

from SAT to HamCycle are both parsimonious, so their counting versions #SAT and
#HamCycle are #P-hard under parsimonious reductions. In fact, it is conjectured that
every NP-complete decision problem has a #P-complete counting version, and some progress
has been made towards a proof of this statement [FHT95, Liv09], but the general conjecture
remains unresolved [Wil13].
However, there are counting problems in #P that admit easy decision versions, and

for such problems, we probably cannot show #P-hardness under weakly parsimonious
reductions. For instance, if perm0,1 were #P-hard under ≤p, then we could use classical
polynomial-time algorithms for finding maximum matchings, such as [Edm87], to solve
the decision problem SAT and hence prove P = NP. However, polynomial-time algorithms
for perm0,1 are still very unlikely, since a seminal result of Valiant [Val79a] asserts that
perm0,1 is #P-complete under Turing reductions. It was later shown [DL92] that this
holds even if we may assume the input graph to have maximum degree 3.

Theorem 1.3 ([Val79a, DL92]). The problem perm0,1 is #P-complete under ≤Tp , even
when restricted to (bipartite) input graphs with maximum degree 3.

Non-parsimonious reductions, such as those used to prove Theorem 1.3, are the intellectual
justification for studying counting complexity, as hardness results for counting problems
would otherwise amount to nothing more than the copious task of checking whether
NP-completeness reductions are parsimonious.
It was also shown in [Val79a] that a weighted version of perm0,1, namely perm−1,0,1, is

in fact #P-hard under weakly parsimonious reductions. We will present an alternative
proof of this fact in Section 2.2.3, and in Chapter 7, we will reduce this weighted version to
the difference of two instances to counting perfect matchings (in not necessarily bipartite
graphs). This gives us an alternative proof for the #P-completeness of counting perfect
matchings, which additionally allows us to derive further consequences.
We note that counting problems can also be defined over ranges other than Q, such

as R or C, provided that we can efficiently perform arithmetic on the relevant elements
from these sets. The range of counting problems in #P however must be fixed to N by
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definition. Hence, for problems with range Q, we will usually only speak of #P-hardness
rather than completeness, since some #P-hard problems fail to be contained in #P for the
purely syntactical reason that their outputs might be non-integer.

Counting modulo a fixed number

An interesting family of ranges for counting problems arises from the residual class rings
Zt = Z/tZ for t ∈ N. For fixed t ∈ N, the problem of testing whether the output of an
integer-valued counting problem is divisible by t gives rise to the modular counting class
ModtP, defined in [CH90, Her90].

Definition 1.4 ([CH90, Her90]). For t ∈ N, the class ModtP contains all languages
L ⊆ {0, 1}∗ for which the following holds: There is a counting problem A ∈ #P such that,
for all x ∈ {0, 1}∗, we have A(x) 6≡t 0 iff x ∈ L. We write ⊕P for Mod2P.

Hardness and completeness for ModtP are defined via the usual polynomial-time re-
ductions for decision problems. If a counting problem A : {0, 1}∗ → N is #P-complete
under parsimonious reductions, then for all t ∈ N, it is obviously ModtP-complete to decide
whether A(x) 6≡t 0. If A is not #P-complete under parsimonious reductions, but possibly
under weakly parsimonious reductions, then counting modulo a fixed number might admit
a polynomial-time algorithm.
For instance, we will observe the following in Section 1.3.2: Given a bipartite graph G,

the problem of counting its perfect matchings modulo 2 admits a simple algorithm with
running time O(n3) by reduction to the determinant, and it was shown in [Val79a] that,
for k ∈ N, perfect matchings can even be counted modulo 2k in time O(n4k−3). This is
however contrasted by the following hardness result for moduli that feature odd divisors,
which is also implied by our alternative proof of Theorem 1.3.

Theorem 1.5 ([Val79a]). Let s, t ∈ N be fixed such that s is an odd divisor of t. Given
a bipartite unweighted graph as input, it is ModsP-hard to compute the number of perfect
matchings in G modulo t.

We close this subsection by a remark on the position of the classes ModtP in the general
landscape of complexity classes: By the Valiant-Vazirani theorem [VV86], it is known
that SAT remains NP-complete (under randomized RP-reductions) even when we may
assume that the input formula has at most one satisfying assignment. Here, a randomized
reduction from L to L′ is a polynomial-time randomized algorithm that, given an instance
x for L, outputs an instance x′ for L′ such that:

• If x /∈ L, then x′ /∈ L′.

• If x ∈ L, then with probability at least 1
2 , the output x′ satisfies x′ ∈ L′.

Since 1 is not divisible by t > 1, this implies that NP is contained in ModtP under
randomized reductions, for all t > 1. In fact, Toda’s theorem, which was already mentioned
before, even proves that the polynomial-time hierarchy PH is contained in ⊕P under (a
different notion of) randomized reductions.
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1.2.2. Parameterized counting complexity

Parameterized counting complexity was introduced in [FG04, McC06] to bridge classical
counting complexity and the relatively young field of parameterized complexity theory. In
this field, the objects in study are parameterized counting problems, which are pairs A/π
consisting of a counting problem A : {0, 1}∗ → Q and a parameterization π : {0, 1}∗ → N.
Here, a parameterization is a polynomial-time computable function that assigns a parameter
π(x) to each instance x. Parameterized decision problems can be defined likewise, by
replacing Q with {0, 1}.

The idea underlying parameterized algorithms and complexity is to find sensible param-
eter functions π(x), which may be independent of the input size |x|, and which allow for a
more fine-grained complexity analysis than could be achieved by considering |x| alone. As
first examples, consider the following parameterized counting problems:

#Clique/k: Given as input a pair (G, k) consisting of a graph G and k ∈ N, count the
k-cliques in G. The parameterization π in this problem is defined by (G, k) 7→ k.

#HittingSet/k: Given as input (n, k,A) with n, k ∈ N and a set system A ⊆ 2[n], count
the hitting k-sets of A. These are k-subsets S ⊆ [n] that satisfy S ∩A 6= ∅ for
all A ∈ A. The parameterization is defined by (n, k,A) 7→ k.

#HittingSet/k + d: Count hitting sets as above, but with the parameterization π : (n, k,A) 7→
k + d, where d = maxA∈A |A|.

perm0,1/apex: Given an unweighted bipartite graphG as input, count the perfect matchings
of G, parameterized by apex(G), which is the minimum size of a set S ⊆ V (G)
such that G−S is planar. We assume apex(G) to be given as part of the input;
otherwise apex would not be a valid parameterization (unless P = NP), since it
is NP-complete [LY80].

perm0,1/∆: Count perfect matchings as above, but with a parameterization that maps
G 7→ ∆(G), where ∆(G) is the maximum degree of G.

For simplicity, we will always assume that π(x) is given together with the input instance
x. Furthermore, if the context allows it, we sometimes omit the explicit mention of the
parameterization π and write A rather than A/π.
Note that the first three problems can all be solved by brute force over all possible

solutions, which requires nO(k) time when n = |x| and k = π(x). The problem perm0,1/apex
also admits such an algorithm, as we will see in Chapter 4. In other words, when restricted to
instances x with π(x) = O(1), each of these problems admits a polynomial-time algorithm.
This does however not apply to perm0,1/∆, since Theorem 1.3 asserts #P-completeness of
perm0,1 even when restricted to graphs of maximum degree 3. The problems that can be
solved in running times similar to nO(k) give rise to the class XP:3

3Usually, the class XP and other classes to be defined later are classes of decision problems. For the
purposes of this thesis, we however define these as classes of counting problems.
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Definition 1.6. The class XP contains all parameterized (counting) problems A/π for
which the following holds: There exists a computable function f : N→ N such that, for all
x ∈ {0, 1}∗, the problem A(x) can be solved in deterministic time |x|f(π(x)).

The central question in parameterized complexity is whether running times of the XP-
type can be lowered to f(π(x))nO(1) for computable functions f , in which case one speaks
of fixed-parameter tractability. In other words, can we allow some (possibly extremely slow)
growth of π(x) and still obtain a polynomial-time algorithm? This is obviously not true
for problems like perm0,1/∆, since they are not even contained in XP unless FP = #P.

Definition 1.7. A parameterized problem A/π is fixed-parameter tractable (fpt) if there
exists a computable function f : N→ N such that, for all x ∈ {0, 1}∗, the problem A(x) can
be solved in deterministic time f(π(x))|x|O(1). The class FPT contains all fixed-parameter
tractable (counting) problems.

Many classical problems become tractable under suitable parameterizations; this is
prominently witnessed by the problem VertexCover of deciding whether a graph G admits
a k-vertex-cover: This problem is NP-complete in the unparameterized setting4, but it
was shown in [DF95] that the parameterization by the solution size k renders the problem
feasible, that is, VertexCover/k is fixed-parameter tractable. Note that this problem is
subsumed by HittingSet/k + d on instances with d = 2, and it was actually even shown in
[FG04] that the counting version #HittingSet/k + d is fixed-parameter tractable, where d
may be larger than 2.

Hardness of parameterized counting problems

However, for other problems, such as #Clique or #HittingSet/k, it seems that no fpt-
algorithm can be found, and this actually even applies to the decision versions Clique and
HittingSet/k. Note that the parameterization of a problem indeed matters for its complexity:
The problem HittingSet/k seems hard, but an algorithm is known for HittingSet/k + d.

While parsimonious reductions would allow us to obtain hardness results for counting
problems with hard decision versions, we will require more permissive notions, as in Sec-
tion 1.2.1, to prove hardness for problems with easy decision versions, such as perm0,1/apex.
To this end, we use the following definitions, adapted from Definition 1.2 and [FG04].

Definition 1.8. Let A/π and B/π′ be parameterized counting problems.

• Let (f, g) be a weakly parsimonious reduction from A to B. We say that (f, g) is
a weakly parsimonious fpt-reduction, and we write A/π ≤fpt B/π′, if the following
holds for all x ∈ {0, 1}∗:

4In fact, it is one of the 21 original problems to be shown NP-complete [Kar72].
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1. The running times of f and g on x are each bounded by r(π(x))|x|O(1) for some
computable function r.

2. We have π′(f(x)) ≤ s(π(x)) for some computable function s.

• If (f, g) is a weakly parsimonious fpt-reduction and g(x) = 1 holds for all x ∈ {0, 1}∗,
then we call f a parsimonious fpt-reduction and write A/π ≤pars

fpt B/π′.

• Let T be a Turing reduction from A to B. We call T a Turing fpt-reduction, and
write A/π ≤Tfpt B/π′, if the following holds for all x ∈ {0, 1}∗:

1. The running time of T on x is bounded by r(π(x))|x|O(1) for some computable
function r.

2. Every oracle query y issued by T on x satisfies π′(y) ≤ s(π(x)) for some
computable function s.

It is easily verified that FPT is closed under any of the three reduction notions from
Definition 1.8, see [FG04]. Furthermore, it is clear that a similar inclusion as in (1.1) holds,
namely

A/π ≤pars
fpt B/π′ ⇒ A/π ≤fpt B/π′ ⇒ A/π ≤Tfpt B/π′.

Using parameterized reductions, we can define complexity classes #W[1] and #W[2]
that will capture all of the parameterized counting problems arising in this thesis. For the
following definition, we chose to characterize these classes as the closures of the problems
#Clique and #HittingSet under parsimonious fpt-reductions. This might be somewhat
unsatisfying to a complexity theorist, but it is entirely sufficient for all results shown later.
It should be noted that machine-based characterizations of these classes around the notion
of W[1]-programs are also known [FG06], but these are not relevant for our purposes.

Definition 1.9. We define the following complexity classes:

• Let #W[1] be the set of all problems A/π with A/π ≤pars
fpt #Clique/k.

• Let #W[2] be the set of all problems A/π with A/π ≤pars
fpt #HittingSet/k.

Hardness and completeness for #W[1] and #W[2] are defined as in Section 1.2.1, using the
notions of fpt-reductions introduced in Definition 1.8.

Note that counting problems in FPT with integer-valued output are trivially contained
in #W[1] and #W[2]. On the other hand, it is a standard assumption of parameterized
complexity theory that FPT 6= #W[1] holds. Since the problem #Clique/k is #W[1]-
complete by definition, this boils down to assuming that #Clique/k is not fixed-parameter
tractable.
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It is also known that #Clique/k is contained in #W[2], which implies #W[1] ⊆ #W[2].
However, #HittingSet/k is assumed not to be contained in #W[1], so this inclusion is
believed to be strict.

Examples for parameterized reductions

To obtain further #W[1]-hardness results, the problem #Clique/k can be reduced to other
parameterized counting problems, such as its colorful variant #ColClique/k, which we
define in the following. Please recall the notion of vertex-colored graphs from Section 1.1.2.

Problem 1.10 (#ColClique/k). Given as input a [k]-vertex-colored graph G, for k ∈ N,
count the colorful subsets K ⊆ V (G) that are cliques in G. Here, the parameter is k.

Lemma 1.11. We have #Clique/k ≤pars
fpt #ColClique/k.

Proof. Let G be an uncolored graph, with V (G) = [n], whose k-cliques we wish to count,
for a given input k ∈ N. To this end, we create a [k]-vertex-colored graph G′ on vertices
V (G′) = [n] × [k], where vertices in (?, i) for i ∈ [k] are assigned the color i. For all
u, v ∈ [n] and i, j ∈ [k] with u < v and i < j and uv ∈ E(G), add an edge between the
vertices (u, i) and (v, j) in G′. We claim that the set K of colorful k-cliques in G′ stands in
bijection with the set of k-tuples

S = {(u1, . . . , uk) ∈ [n]k | ∀1 ≤ i < j ≤ k : ui < uj ∧ uiuj ∈ E(G)}.

These in turn clearly correspond to the k-cliques of the uncolored graph G: Every uncolored
k-clique of G appears as a sorted tuple in S. This implies that the mapping G 7→ G′ is a
parsimonious fpt-reduction from #Clique/k to #ColClique/k.
To see that S ' K holds, we define a bijection C : S → K. For S ∈ S with S =

(u1, . . . , uk), let C(S) := {(ui, i) | i ∈ [k]}, and observe that C(S) ∈ K: It is clear that
C(S) is colorful, and for all 1 ≤ i < j ≤ k, the edge between (ui, i) and (uj , j) is present in
G′ since uiuj ∈ E(G) and i < j. Since C(S) 6= C(S′) holds for ordered k-tuples S 6= S′, it
follows that C is injective.
To see surjectivity of C, let K ∈ K. Then K = {(ui, i) | i ∈ [k]} with u1, . . . , uk ∈ [n],

and the construction of G′ implies that ui < uj and uiuj ∈ E(G) hold for i < j. Hence,
we can write K = C(S) for S = (u1, . . . , uk) with S ∈ S.

It is easily verified that #ColClique is contained in #W[1], hence it follows that the
problem is #W[1]-complete. Note also that the reduction from Lemma 1.11 does not exploit
the full power of parsimonious fpt-reductions: Firstly, the parameter was not increased at
all, and secondly, the reduction can be computed in polynomial time.

We will use #ColClique as a reduction source for other parameterized counting problems,
such as counting grid tilings, whose decision version was introduced in [Mar12]. This
problem is particularly useful for proving #W[1]-hardness of problems on planar structures,
as seen in [MP14, Mar12]. Please recall the notions of horizontal/vertical adjacency from
Section 1.1.
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Problem 1.12 (#GridTiling). Given n, k ∈ N and a function T : [k]2 → 2[n]2 , we wish to
count the consistent grid tilings of T , that is, assignments a : [k]2 → [n]2 which satisfy the
following properties:

(H) For horizontally adjacent indices κ, κ′ ∈ [k]2, the first components of a(κ) and
a(κ′) agree.

(V) For vertically adjacent indices κ, κ′ ∈ [k]2, the second components of a(κ) and
a(κ′) agree.

(C) For all κ ∈ [k]2, we have a(κ) ∈ T (κ).

In the following, we show that #GridTiling is #W[1]-hard under parsimonious fpt-
reductions. We also show that, for each instance T , we may assume T to be balanced in a
certain way, and this will prove useful later.

Lemma 1.13. We have #ColClique/k ≤pars
fpt #GridTiling/k, even when each instance

(n, k, T ) to the second problem is given with some T ∈ N such that the following balance
property holds: For all κ ∈ [k]2 and v ∈ [n], we have |T (κ) ∩ (?, v)| = T .

Proof. We assume k > 1 without limitation of generality. Let G be a [k]-vertex-colored
graph on vertices [n]. We replace each edge uv ∈ E(G) by the directed edges uv and vu,
then we add all self-loops to G to obtain a digraph G′. The colorful k-cliques in G stand in
bijection with the colorful K-copies in G′, where K is the complete digraph on k vertices,
including self-loops.
For i, j ∈ [k], write Ei,j = Ei,j(G′) for the set of directed edges in G′ from i-colored to

j-colored vertices. Note that Ei,j ⊆ [n]2; we use this to define an instance T to #GridTiling
by declaring T (i, j) = Ei,j for all i, j ∈ [k].
We claim that the consistent grid tilings of T bijectively correspond to the colorful

K-copies in G′. To see this, note that due to property (C), every consistent assignment
a : [k]2 → [n]2 encodes an edge-subset Sa ⊆ E(G′) that picks, for each i, j ∈ [k], exactly
one element from Ei,j . This implies |Sa| = k2. Hence, if the edges in Sa are incident with
exactly k distinct vertices, then Sa corresponds to a colorful K-copy in G′. By properties
(H) and (V) of a consistent grid tiling, the edge set Sa contains exactly k distinct endpoints
and k distinct starting points. But since Ei,i for i ∈ [k] contains only self-loops, the sets of
endpoints and starting points of edges in Sa are identical, which implies that Sa is indeed
a K-copy in G′.
In the remainder of the proof, we ensure the balance property. To this end, define

Tκ,v := |T (κ) ∩ (?, v)| for κ ∈ [k]2 and v ∈ [n],
T := max

κ∈[k]2, v∈[n]
Tκ,v,
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and let n′ := n + k2T . We modify T to an instance T ′ : [k]2 → 2[n′]2 that fulfills the
statement of the lemma. To this end, consider [n′] to be partitioned into [n] and k2

consecutive “dummy” blocks Bκ for κ ∈ [k]2, where |Bκ| = T . For κ ∈ [k]2 and v ∈ [n],
add T − Tκ,v arbitrary distinct “dummy” elements from the set {(f, v) | f ∈ Bκ} to T (κ)
in order to obtain T ′(κ).
This ensures the balance property, and we observe that T ′ has the same consistent

grid tilings as T : Every consistent grid tiling of T is also a consistent grid tiling of T ′.
Furthermore, dummy elements cannot be part of any consistent grid tiling of T ′: This
is because for all κ and κ′, the dummy elements in T ′(κ) and T ′(κ′) have disjoint first
coordinates, which are also distinct from [n]. Thus, in particular, any assignment using
dummy elements cannot satisfy (H).

Parameterized modular counting

Finally, we define modular parameterized counting classes ModtW[1] for t ∈ N, which are
analogous to the modular counting classes ModtP from Section 1.2.1. Such classes have
also been studied in [BDH15].

Definition 1.14. For fixed t ∈ N, let ModtClique/k denote the problem of deciding on
input (G, k) whether the number of k-cliques in G is not divisible by t.
Let ModtW[1] denote the set of problems that can be reduced to ModtClique/k under

parsimonious fpt-reductions.5 We write ⊕W[1] for Mod2W[1].

Analogously to the inclusion of NP in ModtP via the Valiant-Vazirani theorem mentioned
in Section 1.2.1, it was shown in [BDH15] that the parameterized decision problem Clique/k
admits a randomized fpt-reduction to ⊕Clique/k. Such reductions are defined like the
randomized reductions from the previous section, with the exception that they may run in
time f(k)nO(1), but must map instances with parameter k to instances with parameter
g(k), for computable functions f and g. We can hence conclude that W[1], the closure of
Clique/k under fpt-reductions, is contained in ⊕W[1] under randomized fpt-reductions.

1.2.3. Exponential-time complexity

A modern branch of complexity theory, launched in [IPZ01, IP01], focuses on conditional
quantitative lower bounds for computational problems under assumptions that are stronger
than P 6= NP, FP 6= #P or FPT 6= #W[1].6 The most popular and widely-believed
assumption in exponential-time complexity is the exponential-time hypothesis ETH, which
postulates the following:

ETH: The decision problem 3-SAT on formulas with n variables cannot be solved in
time 2o(n).

5Note that these reductions also yield a reduction notion for decision problems.
6For a more extensive introduction into this field, please consider [LMS11].
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This hypothesis also supports a counting version [DHM+14], namely #ETH, which
asserts the same statement for 3-#SAT and is a priori weaker than ETH.

#ETH: The counting problem 3-#SAT on formulas with n variables cannot be solved
in time 2o(n).

If we assume ETH, then its lower bound for 3-SAT can be transferred to other problems,
such as the problem HamCycle of deciding the existence of a Hamiltonian cycle in a graph
G: The classical reductions from 3-SAT to HamCycle, as in [GJ79, Pap94], map 3-CNF
formulas ϕ on n variables and m clauses to graphs Gham(ϕ) on O(n + m) vertices and
edges, where each variable and each clause is represented by some gadget of size O(1).
Since we may always assume m = O(n3), because duplicated clauses in ϕ are irrelevant,
the number of vertices in Gham(ϕ) is also bounded by O(n3). Hence, an algorithm with
running time 2o(n1/3) for HamCycle on n-vertex graphs would imply a 2o(n) time algorithm
for 3-SAT and hence refute ETH.
However, this lower bound seems far from tight, since even an algorithm for HamCycle

with running time 2o(n) on n-vertex graphs is not known, and would in fact be considered
a striking and unlikely result. To improve the lower bound in the setting described above,
we would need to map formulas ϕ with n vertices and n3 clauses to graphs Gham(ϕ) on
O(n) vertices, and it is unclear how to achieve this. If we may however assume that ϕ
has only O(n) clauses along with its n variables, then the reduction sketched above would
yield an asymptotically tight lower bound.

Subexponential reductions

To enable this assumption of sparsity on ϕ, we use the relaxed reduction notion of
subexponential Turing reduction families [IPZ01]. To define these, it is useful to consider
the involved problems as parameterized problems, such as SAT/n and HamCycle/n, where
n refers to the number of variables (or vertices) of the instances.

Definition 1.15 ([IPZ01]). A subexponential Turing reduction family between parameter-
ized problems A/π and B/π′ is an algorithm T with oracle access to B whose inputs are
pairs (x, ε), where x is an instance for A and ε with 0 < ε ≤ 1 is a running time parameter.
Furthermore, there are computable functions f, g : Q→ N such that the following holds on
input (x, ε):

1. T computes A(x) in time f(ε) · 2ε·π(x)|x|O(1), and

2. whenever T invokes the oracle for B on a query y, then π′(y) ≤ g(ε) · π(x).

We write A/π ≤serf B/π′ if such a reduction exists, where “serf” abbreviates subexponential
reduction family.
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In a subexponential Turing reduction family, the exponential part of the running time
can be chosen as 2ε·π(x) for arbitrarily small ε, and intuitively, also for arbitrarily slowly
decreasing ε = o(1). This way, we can ensure a running time of 2o(π(x)), which however
comes at the cost of incurring a multiplicative factor of g(ε) in the parameter. Such
reductions can be observed to preserve lower bounds as expected:

Lemma 1.16 ([IPZ01]). If A/π ≤serf B/π′ and B can be solved in time 2o(π′(x))|x|O(1),
then A can be solved in time 2o(π(x))|x|O(1).

Under this notion of reduction, it can be shown that instances to satisfiability problems
may be assumed to have only O(n) clauses, provided that we consider the problems d-SAT
and d-#SAT for fixed clause-width d ∈ N, rather than their versions SAT and #SAT on
unbounded clause-width. For the decision version, this was shown in [IPZ01], and for the
counting version in [DHM+14].

Theorem 1.17. For every fixed d ≥ 3, the problem d-SAT/n admits a subexponential
Turing reduction family to d-SAT/m. The same applies from d-#SAT/n to d-#SAT/m.
Here, n and m denote the numbers of variables and clauses of a formula, respectively.

Corollary 1.18. If 3-SAT/m could be solved in time 2o(m)nO(1), then Lemma 1.16 and
Theorem 1.17 imply that 3-SAT/n could be solved in time 2o(n), which would refute ETH.
Likewise, an algorithm for the counting problem 3-#SAT/m with running time 2o(m)nO(1)

would refute #ETH.

By reductions, this implies tight lower bounds under ETH for many problems, including
the problem HamCycle/n that we already considered at the beginning of this subsection:
Given a 3-CNF formula ϕ on t variables and m clauses, note first that we can always
assume t = O(m). Since the graph Gham(ϕ) described in the beginning of this subsection
has O(t + m) = O(m) vertices, an algorithm for HamCycle with running time 2o(n) on
n-vertex graphs would imply a 2o(m) time algorithm for 3-SAT/m and hence refute ETH.
Note that the classical reduction from 3-SAT/m to HamCycle/n via the graph Gham(ϕ)

is in fact a subexponential Turing reduction family as well: Since this reduction runs
in polynomial time, it trivially satisfies property (1) of Definition 1.15 on all inputs ε.
Furthermore, since its images have cm vertices for some fixed c ∈ N that is independent
of the input, it also satisfies (2) with g(ε) = c. Such constant bounds on the parameter
blowup allow for transfers of lower bounds, and they can be used to define a “light” version
of subexponential Turing reduction families. This simplified and more restrictive notion
will suffice for almost all applications in this thesis, with the exception of Chapter 8.

Definition 1.19. For c ∈ Q, a reduction T from A/π to B/π′ incurs blowup c if the
following holds: On every instance x to A, all reduction images y invoked by T satisfy
π′(y) ≤ cy.

We say that a reduction incurs linear blowup if it incurs blowup c = O(1), and we write
≤lin
p for polynomial-time reductions that incur linear blowup, and ≤lin

fpt for fpt-reductions
that incur linear blowup.
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Lower bounds for #W[1]-hard problems

The assumptions ETH and #ETH in exponential-time complexity are also known to imply
statements in “classical” parameterized complexity. For instance, the following theorem
shows that ETH implies FPT 6= W[1], and even more so, it establishes an asymptotically
tight lower bound on the time needed to solve Clique/k. Recall that Clique/k can be solved
in time nk+O(1) by brute-force.

Theorem 1.20 ([CCF+05, CHKX06]). Assuming ETH, the problem Clique/k admits no
f(k)no(k) time algorithm for any computable function f . The same holds for #Clique/k
under #ETH.

Using ≤lin
fpt , the parameterized version of linear-blowup reductions, we can transfer such

lower bounds to other problems.

Example 1.21. The reduction from #Clique to #ColClique in Lemma 1.11 actually did not
increase the parameter at all, so we obtain that #ColClique admits no f(k)no(k) algorithm
under #ETH.

1.3. Graph polynomials

In this section, we consider graph polynomials, which are functions p that map graphs G to
some element p(G) ∈ O from a polynomial ring O.7 They are similar to the generating
functions used in enumerative combinatorics, and as such, they provide an elegant bridge
between combinatorics, graph theory and algebra. Graph polynomials are usually defined
such that isomorphic graphs G and G′ are required to satisfy p(G) = p(G′), but we will
ignore this restriction for more flexibility. Furthermore, as a notational convention, we
write p(G; ξ) = (p(G))(ξ) for the evaluation of p(G) at ξ, and we write G for the class of
all graphs.

A prominent graph polynomial is the chromatic polynomial χ : G → Z[x], which counts,
for all graphs G and integers k ∈ N, the proper vertex-colorings of G with k colors at its
evaluation point χ(G; k). Here, a coloring c : V (G) → [k] is called proper iff c(u) 6= c(v)
holds for all uv ∈ E(G). It can be verified that χ(G) is indeed a polynomial for all graphs
G, and it should be mentioned that its existence in the mathematical literature is due to
an attempt by Birkhoff [Bir12] to prove the Four Color Theorem: Using algebraic methods,
he tried to show that χ(G; 4) 6= 0 holds for all planar graphs G.
The present thesis applies graph polynomials in a more profane way: Firstly, we use

them as notational items in arguments that would otherwise require opaque coefficient-wise
formulations. Secondly, we require them in hardness proofs to enable the method of
polynomial interpolation, which will be introduced in Section 1.4. More general and more
respectful introductions to graph polynomials can be found in [Big94, Mak06].
For any graph polynomial p, we define a coefficient problem Coeff(p), an evaluation

problem Eval(p), and an evaluation problem EvalS(p) at points with entries from a set S.
7In particular, graph polynomials are not actually polynomials, but rather functions from graphs to
polynomials.

36



1.3. Graph polynomials

Definition 1.22. For any graph polynomial p, define the following problems:

Coeff(p) : We wish to compute all coefficients of p(G) when given as input a graph G.

Eval(p) : We obtain as input a graph G and ξ ∈ Q, and we wish to evaluate p(G; ξ).

EvalS(p) : This is in fact a family of problems, each defined for a fixed choice of S ⊆ Q.
On input G and a tuple ξ whose entries are all from S, evaluate p(G; ξ). If p is
univariate and S = {a}, this simply asks to compute p(G; a) for fixed a ∈ Q,
and we write Evala(p) in this case.

In the following, we introduce the matching polynomials µ and M , the independent set
polynomial I, the perfect matching polynomial PerfMatch, the permanent perm, and the
Tutte polynomial T together with its random-cluster formulation Z.

1.3.1. Matching polynomials and MatchSum

LetM[G] denote the set of matchings in G, and recall from Section 1.1 that the unmatched
vertices of M ∈ M[G] are denoted by usat(G,M), or simply usat(M). With these
definitions, we formulate the edge-generating matching polynomial M and the defect-
generating matching polynomial µ, using slightly modified definitions from [Far79].

Definition 1.23. Let G denote the set of undirected finite simple graphs, let x be an
indeterminate, and let the matching polynomials M and µ of type G → Z[x] be defined as

M(G) :=
∑

M∈M[G]
x|M |, (1.2)

µ(G) :=
∑

M∈M[G]
x|usat(M)|. (1.3)

The sums used to define M(G) and µ(G) both range over the matchings of G, but they
assign weights to the matchings that can be considered dual. We observe that

µ(G;x) =
∑

M∈M[G]
xn−2|M | = xn ·M(G;x−2), (1.4)

and depending on the application, we will choose the polynomial that suits us better.

The complexity of the polynomials µ and M

The complexity of evaluating µ and M has already been investigated in the literature.
For instance, it was shown as part of [CLX10, Theorem 6.1] that the problem Evalξ(µ)
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of evaluating µ(G; ξ) is #P-complete for all fixed ξ ∈ C \ {0}, even on planar graphs of
maximum degree 3. Note that only G is the input in this problem, whereas ξ is fixed.

Theorem 1.24 ([CLX10]). For all fixed ξ ∈ Q \ {0}: The problem Evalξ(µ) of evaluating
µ(G; ξ) is #P-complete, even on planar bipartite graphs G of maximum degree 3.

Note that the evaluation µ(G; 0) counts the perfect matchings of G. We will later see
that this admits a polynomial-time algorithm on planar graphs, whereas it is #P-hard
on general graphs. In Section 4.2, we additionally show #W[1]-hardness of computing
the coefficient of xk in µ(G) for planar graphs when parameterized by k. In other words,
we show that Coeff(µ) is #W[1]-hard on planar graphs. Note that the coefficient of xk

in µ(G) counts the k-defect matchings in G. This is complemented in Section 5.2.2 by a
#W[1]-completeness proof of computing the coefficient of xk in the dual polynomial M(G)
on general graphs G, which amounts to counting k-matchings in general graphs.

A multivariate generalization of µ

The polynomials M and µ can also be generalized to multivariate versions, and this will
be useful in several occasions throughout the thesis. For µ, this generalization yields a
multivariate graph polynomial that is called MatchSum in [Val08].

Definition 1.25. Let V denote the set of all vertices of graphs, and let XV = {xv}v∈V
be a family of indeterminates. (We may assume for simplicity that V = N.) Then
MatchSum : G → Z[XV ] is defined by

MatchSum(G) =
∑

M∈M[G]

∏
v∈usat(G,M)

xv.

We only consider finite graphs G, so MatchSum(G) is indeed a polynomial.

For every graph G, the multivariate polynomial MatchSum(G) specializes to its univariate
version µ(G) when the substitution xv ← x is carried out for all v ∈ V (G). In most
applications, we will use MatchSum on vertex-weighted graphs G with weight functions
w : V (G) → Q. Then the evaluation of MatchSum on G is the result of substituting
xv ← w(v) for all v ∈ V (G), and hence, some rational number itself. In other words, if
G is a vertex-weighted graph, then we simply write MatchSum(G), which is simpler than
writing MatchSum(G′; ξ) for an unweighted version G′ of G and a tuple ξ that encodes
the vertex-weights of G. We will revisit such multivariate generalizations in Chapter 8.

The independent set polynomial

The edge-generating matching polynomial stands in direct correspondence with the so-
called independent set polynomial I : G → Z[x], also known as the hard-core gas model8

8More specifically, as the “partition function of the lattice gas with hard-core self-repulsion and hard-core
pair interaction” [SS05].
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in statistical physics [SS05]: If I[G] denotes the independent sets of G, then this graph
polynomial is defined by

I(G) :=
∑

S∈I[G]
x|S|. (1.5)

Let L(G) denote the line graph of G, that is, the graph L(G) = (E(G), F ) where ef ∈ F
for e, f ∈ E(G) holds iff e ∩ f 6= ∅. Then the k-matchings of G stand in bijection with the
independent k-sets in L(G), which implies by comparing (1.2) and (1.5) that

M(G) = I(L(G)). (1.6)

1.3.2. PerfMatch and the permanent

Let PM[G] ⊆ M[G] denote the set of perfect matchings in G, that is, the 0-defect
matchings of G. We consider two graph polynomials that are related to counting perfect
matchings, and which play a central role in this thesis.

Definition 1.26. Let E denote the set of all edges of all graphs and let XE = {xe}e∈E be
a family of indeterminates. (We may assume for simplicity that E = N2.) Then we define
PerfMatch : G → Z[XE ] as

PerfMatch(G) =
∑

M∈PM[G]

∏
e∈M

xe. (1.7)

If G is a bipartite graph, we may also speak of the permanent perm(G), defined by

perm(G) = PerfMatch(G).

The function perm is usually defined on the bi-adjacency matrix A of G: This matrix is
defined as follows: If G has a (fixed) bipartition into {`1, . . . , `n} and {r1, . . . , rn}, then

Ai,j =

xe if `irj ∈ E(G),
0 otherwise.

We also write perm(A) if A is the bi-adjacency matrix of G.

As for MatchSum, we consider PerfMatch(G) on edge-weighted graphs G with weight
functions w : E(G) → Q by substituting xe ← w(e) for all e ∈ E(G). For unweighted
graphs G, where every edge has weight 1, the quantity PerfMatch(G) plainly counts the
perfect matchings of G. Note that algorithms for evaluating PerfMatch are stronger than
those for perm, and hardness results for perm are stronger than those for PerfMatch.

The polynomial PerfMatch will be of central importance for the concept of matchgates,
which we introduce in Chapter 2. Furthermore, the material in Parts I and III is largely
concerned with the computational problem of evaluating PerfMatch.
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Remark. We could define PerfMatch and perm such that these polynomials receive only
complete graphs as arguments, and we could then reduce the case of general graphs G to
this by assigning weight 0 to the non-edges of G. This way however, we lose the capacity
to speak naturally of properties of the argument graph G such as its planarity.

Permanent versus determinant

If G is an edge-weighted bipartite graph with bi-adjacency matrix A ∈ Qn×n, then it can
be checked easily that

perm(A) =
∑
σ∈Sn

∏
i∈[n]

Ai,σ(i), (1.8)

where Sn denotes the set of permutations on [n]. Note that, apart from the missing factor
sgn(σ), this parallels the Leibniz expansion of the determinant

det(A) =
∑
σ∈Sn

sgn(σ)
∏
i∈[n]

Ai,σ(i). (1.9)

In fact, a central task of algebraic complexity theory is to find “useful” differences between
perm and det, which could ultimately be used to prove VP 6= VNP, an algebraic variant of
P 6= NP, see [Agr06].
By Gaussian elimination, det(A) can be computed in time O(n3), and this can be

improved to O(nω), where ω ≤ 2.38 denotes the exponent of matrix multiplication, as
noted in [BH74]. However, a similar result is not expected for perm(A), as we recall from
Theorem 1.3 that the evaluation of perm is #P-complete, even on unweighted graphs.

Algorithmic results for PerfMatch

Despite the #P-hardness result for the permanent, there are nontrivial algorithms for
evaluating PerfMatch that improve upon the naive running time of O(n! · n) suggested by
(1.8) or the running time O(2|E(G)| · n) suggested by (1.7). For instance, Ryser’s formula
[Rys63] establishes that

perm(A) = (−1)n
∑
S⊆[n]

(−1)|S|
n∏
i=1

∑
j∈S

Ai,j ,

so we can evaluate perm(A) in time O(2n ·n2) on an n×n matrix A. Note that this implies
an O(2n/2 · n2) time algorithm for computing PerfMatch(G) when G is a bipartite graph
on n vertices. This was generalized in [Bjö12] to an algorithm with the same running time
that does not require G to be bipartite.
Furthermore, if we are willing to admit some relaxations of the problem, we can even

obtain polynomial-time algorithms. For instance, the celebrated approximation algorithm
from [JSV04] relaxes the evaluation of permanents to randomized approximate evaluation:
On matrices A with non-negative entries, an approximation with multiplicative factor
(1 + ε) to perm(A) can be found with high probability, and in time poly(n, 1/ε). Unless
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RP = NP, this cannot be extended to matrices with negative edge-weights, but it is open
whether an approximation scheme is possible for general graphs, and thus for PerfMatch,
on input graphs that feature only non-negative edge weights.

Even concerning exact evaluation, there are surprisingly large classes on which PerfMatch
admits polynomial-time algorithms. This includes the planar graphs, as was shown by
researchers in the area of statistical physics during the 1960s with an algorithm that
predates Valiant’s #P-hardness result for the permanent.

Theorem 1.27 ([Kas61, TF61, Kas67]). For planar edge-weighted graphs G, the value
PerfMatch(G) can be computed in time O(n1.5).

Proof sketch. Given the graph G as input, it is possible to compute a Pfaffian orientation
of G in linear time. This is an edge subset S ⊆ E(G) such that the following holds: After
flipping the sign of w(e) for each edge e ∈ S, the resulting graph G′, with adjacency matrix
A′, satisfies (PerfMatch(G))2 = det(A′). Since A′ is the adjacency matrix of a planar
graph, an algorithm in [LRT79], noted also in [Val08], allows to compute det(A′) in time
O(n1.5) rather than O(nω).

It was shown in [GL98, Tes00] that Theorem 1.27 can be extended to an fpt-algorithm
for PerfMatch when parameterized by the genus of the input graph. Here, the genus γ(G)
of a graph G is the minimum genus of a surface that G can be drawn on, see [Die12]. For
instance, planar graphs have genus 0, and graphs that can be embedded on a torus have
genus 1. This extended algorithm also relies on Pfaffian orientations, and it proceeds by
expressing PerfMatch(G) as a linear combination of 4γ(G) determinants.

Theorem 1.28 ([GL98, Tes00]). On graphs G with n vertices and genus γ, the value
PerfMatch(G) can be computed in time O(4γnω).

In Part I, we will present some additional algorithmic results for PerfMatch, some of
which extend Theorem 1.28.

Simulating weights

By a simple argument, we can observe that the evaluation of PerfMatch on graphs with
positive integer edge-weights can be reduced to the unweighted case. As a notational
convention, given a set X, let us abbreviate

PerfMatchX := EvalX(PerfMatch),

and recall that this denotes the problem of evaluating PerfMatch(G) on edge-weighted
graphs G with weight functions w : E(G)→ X.

Given an edge-weighted graph G containing an edge e ∈ E(G) of weight t ∈ N, we write
Gt·e for the graph obtained from G by replacing e by t parallel copies of e, each of weight
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1. Then it can be verified easily that

PerfMatch(G) = PerfMatch(Gt·e). (1.10)

For t ≥ 2, the graph Gt·e is however not simple, which may interfere with our goal to prove
hardness results for simple graphs. To circumvent this, let us observe that any edge uv of
weight 1 in G may be subdivided twice, as shown below.

If G′ denotes the graph obtained from G by this operation, then we observe that G′ is
bipartite if G is. More importantly, we also have

PerfMatch(G) = PerfMatch(G′). (1.11)

To see this, note that every perfect matching M ∈ PM[G′] corresponds bijectively to a
perfect matching N ∈ PM[G], because either

e∗ ∈M , and then M corresponds to some N ∈ PM[G] with uv /∈ N , or

e∗ /∈M , which implies that both black edges intersecting e∗ are present in M , so M
corresponds to some N ∈ PM[G] with uv ∈ N .

In fact, this simple gadget was a first example of a matchgate, a concept we will introduce
formally in Section 2.2, and which will be of major importance to this thesis. By combining
(1.10) and (1.11), we conclude the following lemma:

Lemma 1.29 (folklore). Let G be an edge-weighted graph on n vertices and m edges, with
weight function w : E(G) → N, and let T = maxe∈E(G)w(e). Then we can compute an
unweighted simple graph G′ on O(n+ Tm) vertices and edges such that

PerfMatch(G) = PerfMatch(G′).

Furthermore, if G is bipartite, then so is G′.

We will observe later that negative edge-weights can be simulated as well, and this will
be revisited in full depth in Chapter 7. Fractional edge-weights can be simulated as well,
as we show in the following remark.

Remark 1.30. Consider a graph G with edge-weights w : E(G)→ Q and let q denote the
lowest common denominator of the weights appearing in G. Then we can obtain a graph
G′ with weights w′ : E(G)→ Z by defining, for each e ∈ E(G),

w′(e) = q · w(e).
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It is then clear that

PerfMatch(G) =
∑

M∈PM[G]

∏
e∈M

w(e)

=
∑

M∈PM[G′]

∏
e∈M

w′(e)
q

= q−|V (G)|/2 · PerfMatch(G′).

Finally, we can also ensure that the only negative edge-weight appearing in G is −1: If
e = uv is an edge with negative weight w(e) ∈ Z, we can subdivide e twice to obtain
subdivision vertices s1 and s2 as on the facing page. Then assign weight |w(e)| to the edge
us1, assign weight −1 to the edge s2v, and weight 1 to the edge s1s2.

Evaluation modulo powers of two

It should also be noted that for all integer-valued matrices A, the quantities perm(A) and
det(A) are equivalent modulo 2, as can be seen trivially from (1.8) and (1.9). This yields
a polynomial-time algorithm for computing the parity of perm(A), and in fact, we can
also compute the parity of PerfMatch(G) for general graphs G in polynomial time by a
simple argument. For bipartite graphs, the following generalization of the above-mentioned
observation was shown [Val79b]:

Theorem 1.31 ([Val79b]). Given an integer-valued matrix A ∈ Zn×n and k ∈ N, the
quantity perm(A) mod 2k can be evaluated in time O(n4k−3).

1.3.3. The Tutte polynomial

As a last example of a graph polynomial, we consider the Tutte polynomial. Since this
polynomial will only be used in Chapter 8, we limit its treatment to a bare minimum.
Along with the Tutte polynomial, we define the random-cluster model, which can be seen
to be equivalent to the Tutte polynomial after a substitution of variables, similar to the
equivalence of the matching polynomials M and µ we have already observed in (1.4).

Definition 1.32. Let G = (V,E) be an undirected graph and let x, y be indeterminates.
For A ⊆ E, let k(A) denote the number of connected components of the graph (V,A),
including isolated vertices. Then the Tutte polynomial T (G;x, y) is defined as

T (G;x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |. (1.12)

For indeterminates q and w, the random-cluster model is defined as

Z(G; q, w) =
∑
A⊆E

qk(A)w|A|. (1.13)
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It follows elementarily that

T (G;x, y) = (x− 1)−k(E)(y − 1)−|V | · Z(G; (x− 1)(y − 1), y − 1). (1.14)

The Tutte polynomial encodes a variety of interesting graph parameters, such as the
number of spanning trees at T (G; 1, 1) if G is connected, the number of acyclic orientations
at T (G; 2, 0), or the entire chromatic polynomial at y = 0. For our purposes, it will be
easier to work with Z, and in fact with its following variant, used also in [DHM+14]:

Z ′(G; q, w) =
∑
A⊆E

qk(A)−k(E)w|A|, (1.15)

which, unlike Z, is not zero at Z ′(G; 0, ·). We have

Z(G; q, w) = qk(E) · Z ′(G; q, w). (1.16)

1.4. Algebraic techniques

We apply several algebraic techniques in our proofs, including, most notably, the inclusion-
exclusion principle and the method of polynomial interpolation.

1.4.1. Inclusion-exclusion principle

The inclusion-exclusion principle is an elementary tool from enumerative combinatorics
with surprisingly powerful algorithmic applications, surveyed by [Hus11]. Given a universe
Ω and several “bad” subsets of Ω, it allows us to count those elements of Ω that avoid all
bad subsets, provided that we know the sizes of intersections of bad subsets.

Lemma 1.33 (Inclusion-Exclusion Principle). Let Ω be a set and let A1, . . . , At ⊆ Ω. For
∅ ⊂ S ⊆ [t], let AS :=

⋂
i∈S Ai and define A∅ := Ω. Then we have∣∣∣∣∣∣Ω \

⋃
i∈[t]

Ai

∣∣∣∣∣∣ =
∑
S⊆[t]

(−1)|S| |AS | . (1.17)

In applications of Lemma 1.33, the left-hand side of (1.17) will correspond to a quantity
we wish to determine, while the numbers |AS | for S ⊆ [t] will be computed by algorithms
or oracle calls. As an example, consider the following lemma that allows to reduce counting
of vertex-colorful or edge-colorful H-copies to counting of uncolored H-copies.

Lemma 1.34. Let (G, c) be a [k]-vertex-colored graph, for k ∈ N, and let H be an uncolored
k-vertex graph. Then we can count the colorful H-copies in (G, c) by invoking 2k oracle
calls to counting uncolored H-copies in uncolored graphs G′ ⊆ G. The same holds when
considering a [k]-edge-colored graph G instead.
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Proof. Let Ω denote the set of all (not necessarily colorful) H-copies in G. For i ∈ [k],
let Ai denote the set of H-copies in G that have no vertices of color i when colored by c.
For the edge-colorful variant, consider edges instead of vertices here. Then Ω \

⋃
i∈[t]Ai is

precisely the set of colorful H-copies in (G, c).
For S ⊆ [k], let AS =

⋂
i∈S Ai and observe that |AS | is equal to the number of H-copies

in the graph GS obtained from G by deleting all vertices with colors in S. For the edge-
colorful variant, consider edges instead of vertices here. We can hence determine |AS | by
an oracle call, and using calls for all S ⊆ [k], we can invoke Lemma 1.33 to determine
|Ω \

⋃
i∈[t]Ai|, the number of colorful H-copies in (G, c).

1.4.2. Polynomial interpolation

It is an elementary fact that any univariate polynomial p is uniquely determined by its
evaluations at sufficiently many distinct points. More precisely, if p has degree n and we
can evaluate p(ξ) at n+ 1 distinct values ξ, then we can recover the coefficients of p.

Lemma 1.35. For n ∈ N and an indeterminate x, let p =
∑n
i=0 aix

i and let

Ξ = {ξ0, . . . , ξn} ⊆ Q

be a set of size n + 1. Then we can compute the coefficients a0, . . . , an of p with O(n3)
arithmetic operations when given as input the set

{(ξ, p(ξ)) | ξ ∈ Ξ}.

Proof. The n+ 1 known pairs induce the linear system of equations
ξ0

0 . . . ξn0
... . . . ...
ξ0
n . . . ξnn



a0
...
an

 =


p(ξ0)
...

p(ξn)

 . (1.18)

This system features a Vandermonde matrix on n + 1 pairwise distinct values, and by
elementary linear algebra, such matrices can be verified to have full rank. Hence, we can
solve (1.18) with O(n3) arithmetic operations for the coefficients of p.

Let us consider as a first example of Lemma 1.35 how PerfMatch−1,0,1, the problem of
evaluating PerfMatch on graphs with edge-weights −1 and 1, can be reduced to the problem
PerfMatch on graphs with positive integer weights by means of univariate interpolation.
This is a well-known idea in counting complexity.

Lemma 1.36. For any n-vertex graph G with edge-weights −1 and 1, we can compute
PerfMatch(G) with n

2 + 1 oracle calls to PerfMatch(G′) on graphs G′ derived from G by
replacing all occurrences of the edge-weight −1 in G by an edge-weight from {0, . . . n2 }.

Proof. Replace the edge-weight −1 in G by an indeterminate x to obtain a graph Gx, and
observe that

p := PerfMatch(Gx) ∈ Z[x]
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is a polynomial of maximum degree n
2 . We can evaluate p(ξ) at x ∈ {0, . . . n2 } by means of

oracle calls to PerfMatch(G′) for graphs G′ with edge-weights from {0, . . . n2 }. Hence, we
can interpolate p via Lemma 1.35 and recover p(−1) = PerfMatch(G).

Using edge-weight simulations as described in Lemma 1.29, we can furthermore reduce
this to the unweighted case.

Lemma 1.37. For any graph G on n vertices and m edges, with edge-weights −1 and 1,
we can compute PerfMatch(G) with n

2 + 1 oracle calls to PerfMatch(G′) on unweighted
graphs G′ with O(nm) vertices and edges.

Polynomial interpolation can be generalized to multivariate polynomials, but then some
care has to be taken when choosing the evaluation points. In this thesis, we will always
assume that the evaluation points constitute a grid. That is, if p is defined on indeterminates
x1, . . . , xn and has maximum degree di in xi, for i ∈ [n], then we assume that we are given
sets Ξ1, . . . ,Ξn with |Ξi| = di + 1 for i ∈ [n], along with evaluations of p on all grid points
in Ξ1 × . . .× Ξn. More intricate evaluation sets could also be chosen, but this will not be
relevant for our purposes.

Theorem 1.38 (Grid Interpolation). Let p ∈ Z[x1, . . . , xn] be a multivariate polynomial,
and for i ∈ [n], let the degree of xi in p be bounded by di ∈ N. Let

Ξ = Ξ1 × . . .× Ξn ⊆ Qn

with |Ξi| = di + 1 for all i ∈ [n]. Then we can compute the coefficients of p with O(|Ξ|3)
arithmetic operations when given as input the set

{(ξ, p(ξ)) | ξ ∈ Ξ}.

Proof. For s, t, s′, t′ ∈ N and matrices A ∈ Qs×t and B ∈ Qs′×t′ , we write A ⊗ B for the
Kronecker product of A and B, which is the matrix A ⊗ B ∈ Qs·s′×t·t′ whose rows are
indexed by [s]× [s′], whose columns are indexed by [t]× [t′], and which satisfies

(A⊗B)(i,i′),(j,j′) = Ai,j ·Bi′,j′ for (i, i′) ∈ [s]× [s′] and (j, j′) ∈ [t]× [t′].

For ` ∈ [n], let Ξ` = {a`,1, . . . , a`,d`+1} and let A(`) denote the (d` + 1) × (d` + 1)
Vandermonde matrix with A

(`)
i,j = (a`,i)j for all i, j ∈ [d` + 1]. As noted before, such a

matrix has full rank. Let
A := A(1) ⊗ . . .⊗A(n).

Since each A(`) for ` ∈ [n] has full rank, so does A, by an elementary property of the
Kronecker product [Lau04, Corollary 13.11].
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Let c denote the vector that lists the coefficients of p in lexicographic order,9 and let v
denote the vector that lists the evaluations p(ξ) for ξ ∈ Ξ in lexicographic order. Then it
can be verified that

Ac = v.

Since A has full rank, this system of linear equations can be solved with O(|Ξ|3) arithmetic
operations for c, and we obtain the coefficients of p.

1.5. Structural graph theory

In the final section of the preliminaries, we briefly survey some concepts and results from
structural graph theory that will be required in Parts I and II.

1.5.1. Minors

A graph H is a minor of G = (V,E), written as H � G, if H can be obtained from G by
repeated edge-contractions as well as deletions of edges or vertices. Here, the contraction
of an edge uv ∈ E is the operation that identifies its endpoints u and v to a new vertex w
and replaces every edge uz ∈ E or vz ∈ E for z ∈ V by a new edge wz. Contractions may
yield non-simple graphs (with parallel edges), and in Chapter 2, we will in fact explicitly
consider the resulting graphs to be non-simple.
An equivalent definition of a minor is obtained by requiring H to have a minor model

in G. This is an assignment of pairwise disjoint branch sets Bv ⊆ V (G) to the vertices
v ∈ V (H) such that the induced graphs G[Bv] are connected, and for every edge uv ∈ E(H),
the graph G contains an edge between Bu and Bv.
It was shown by Robertson and Seymour [RS95] that, on input H and G, it can be

tested in time f(H)n3 whether H � G holds, where f is a computable function. The
running time was later improved to f(H)n2 with a simplified proof [KKR12]. We obtain:

Theorem 1.39 ([RS95, KKR12]). Given graphs H and G as input, deciding whether
H � G holds is fixed-parameter tractable in the parameter |H|.

For a set of graphs A, denote the class of graphs that exclude every minor in A by

Excl[A] = {G | ∀H ∈ A : H 6� G}.

In this notation, Kuratowski’s classical theorem [Kur30] states that Excl[K3,3,K5] coincides
with the class of planar graphs.

A graph class H is minor-closed if, whenever G ∈ H and H � G hold, then H ∈ H
holds as well. The planar graphs are closed under minors, as it can be seen that all three
operations allowed for obtaining a minor in fact preserve planarity. Other minor-closed
graph classes can also be succinctly expressed by forbidden minors, and in fact, the Graph

9This vector includes the coefficients of all monomials with degree at most di in xi, even if some of these
coefficients may be zero.
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Minor Theorem [RS04], a deep result in structural graph theory, asserts that every minor-
closed graph class can be characterized by a finite set of forbidden minors. Together with
Theorem 1.39, this yields a strong corollary for the recognition of graphs from minor-closed
graph classes.

Theorem 1.40 (Graph Minor Theorem [RS04]). Let H be a minor-closed graph class.
Then there exists a finite set A such that H = Excl[A].

Corollary 1.41. Let H be a minor-closed graph class. Given a graph G, we can decide
in time O(n2) whether G ∈ H holds, where the factor in the O-notation hides a constant
depending only on H.

Theorem 1.40 relies upon the Graph Structure Theorem [RS03], whose statement we
sketch in Section 1.5.3 for its algorithmic implications. Roughly speaking, this structure
theorem allows to constructively describe the structure of graphs in Excl[H] for any single
fixed graph H. In order to state this result, and for various other purposes throughout
this thesis, we need to define the concept of tree decompsitions, which is the task of the
following subsection. For a more extensive introduction into the field of graph minor theory,
please consider the textbook [Die12].

1.5.2. Tree decompositions

Tree decompositions of graphs and the related notion of treewidth are powerful tools
for graph algorithms, as well as in structural graph theory, and they will be used often
throughout this thesis. The notion of treewidth was first described in [Hal76], then
reinvented in [RS84]. Roughly speaking, a tree decomposition of a graph G shows how to
decompose G hierarchically along separators.

Definition 1.42. A tree decomposition of a graph G is a pair T = (T,B), where T is a
rooted tree and B = {Bt}t∈V (T ) is a family of subsets from V (G), so-called bags, such that
the following holds:

1. Every vertex of G is contained in some bag, that is,
⋃
t∈V (T )Bi = V (G).

2. Every edge uv ∈ E(G) is contained in a bag, that is, u, v ∈ Bt for some t ∈ V (T ).

3. For every vertex v ∈ V (G), the set {t ∈ V (T ) | v ∈ Bt} is connected in T .

To avoid confusion, we call the vertices of T nodes. The width of T is defined as
maxt∈V (T ) |Bt| − 1. The treewidth of G, denoted by tw(G), is the minimum width over all
tree decompositions of G.

While it is NP-complete to compute the treewidth of a graph [ACP87], there are fixed-
parameter tractable algorithms for finding a tree decomposition of width k when given as
input a graph G of treewidth at most k, see [Bod96].
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Graphs of small treewidth may be considered “very tractable”, in the sense that ex-
ceedingly many NP-hard and #P-hard problems become fixed-parameter tractable when
parameterized by tw(G). This includes computing the treewidth itself, as seen before,
but also counting independent sets, counting matchings of arbitrary sizes, evaluating the
Tutte polynomial [Nob98], and various other problems. All these algorithmic results can
be shown by a general dynamic programming approach on the tree decomposition of G.

Monadic second-order logic on bounded-treewidth graphs

In fact, the dynamic programming approach mentioned in the last paragraph is so general
that it can be phrased as an algorithmic meta-theorem for counting models of monadic
second-order logic (MSOL) formulas. This logic extends first-order logic by allowing
variables X that range over sets of vertices or edges rather than merely individual vertices
or edges. The semantics of this logic is defined as expected, and we illustrate it by the
following example.

Example 1.43. We consider MSOL formulas over the vocabulary of graphs, which consists
of a universe symbol Ω, unary relation symbols V,E and the binary relation symbol I.10

In structures over this vocabulary, Ω is interpreted as the set of vertices and edges of a
graph, while V and E express whether x ∈ Ω is a vertex or an edge, and I(x, y) is true if
(the vertex) x is incident with (the edge) y. We define

ϕPerfMatch(X) := (∀x ∈ X : x ∈ E) ∧ φvtxdis(X) ∧ φcover(X),
ϕMatch(X) := (∀x ∈ X : x ∈ E) ∧ φvtxdis(X),

using auxiliary formulas

φvtxdis(X) := ∀x, y ∈ X : x 6= y → ¬∃z ∈ V : I(z, x) ∧ I(z, y),
φcover(X) := ∀x ∈ V : ∃y ∈ X : I(x, y).

Given a simple graph G, encoded as a structure A = (Ω, V, E, I) over the vocabulary of
graphs, and a subset X ⊆ Ω, we have A |= ϕPerfMatch(X) iff X is a perfect matching of G,
and A |= ϕMatch(X) iff X is a matching of G. Here, we write A |= ϕ if A is a model of ϕ.

It is by now a classical result that the models to MSOL formulas ϕ over the vocabulary
of graphs can be found [ALS91, CM93] or counted [CMR01] in time f(|ϕ|, k) · n on graphs
with treewidth k, for a computable function f . This generalizes also to a weighted counting
version [Mak04] that we state in the following. To simplify notation, let us tacitly identify
G with its encoding structure (Ω, V, E, I).

Theorem 1.44 ([CMR01, Mak04]). Let ϕ(X) be a formula in MSOL over the vocabulary
of graphs, with a free set variable X. Given as input ϕ and a graph G of treewidth k, we
10There are several vocabularies of graphs. A more restrictive version allows the universe only to contain

vertices, and the edges are given by a binary relation E. This more restrictive vocabulary will not be
considered in this thesis.
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can determine in time f(|ϕ|, k) · n the number of sets X ⊆ V (G) ∪ E(G) such that G is a
model of ϕ(X). Here, f is a computable function.

In fact, we may assume that G is given with a weight function w : V (G) ∪ E(G)→ Q,
and then we can evaluate, in the same time, the quantity

pϕ(G) =
∑

X⊆V (G)∪E(G)
G|=ϕ(X)

∏
x∈X

w(x).

Example 1.43 and Theorem 1.44 together imply the following corollary for the tractability
of PerfMatch on graphs of bounded treewidth:

Corollary 1.45. The problem PerfMatch/tw of evaluating PerfMatch(G) on parameter
tw(G) admits an algorithm with running time f(tw(G))n, where f is a computable function.

Structural implications of tree decompositions

Given a tree decomposition T = (T,B) and a node t ∈ V (T ), let us we write T↓t for the
subtree rooted at t. For sets X ⊆ V (T ), we write B(X) =

⋃
t∈X Bt. We also slightly abuse

this notation: If S is a subtree of T , we abbreviate B(S) = B(V (S)). As we observe in the
following, taken from [FG06, Lemma 11.3], the intersections of bags in a tree decomposition
allow to separate G.

Lemma 1.46. Let G be a graph with tree decomposition T = (T,B), where B = {Bt}t∈V (T ).
Let s, t ∈ V (T ) be such that s is the parent of t, and write X = Bs ∩Bt. Then every path
from a vertex in B(T↓t) to a vertex in B(T \ T↓t) contains a vertex from X.

This lemma illustrates a key property of tree decompositions: Let t ∈ V (T ) be fixed
and consider the subtree T↓t rooted at t. In the same way any node in T↓t can only
“communicate” with nodes outside of T↓t by passing through t, so can the vertices of G
contained in B(T↓t) only communicate with other vertices by passing through some vertices
in Bt. Using this lemma, it is easily shown that, if G contains a clique K, then no tree
decomposition can split this clique, see [FG06, Exercise 11.4]

Lemma 1.47. Let G be a graph with tree decomposition T = (T,B), where B = {Bt}t∈V (T ).
If K is a clique in G, then there exists some node t ∈ V (T ) such that K ⊆ V (Bt).

We also observe that the treewidth is monotone under the minor relation:

Lemma 1.48. If G � G′, then tw(G) ≤ tw(G′).

The treewidth of a graph can also be related to its excluded minors: By the Excluded
Grid Theorem [RS86], every graph with sufficiently large treewidth contains the k × k
square grid as a minor. Here, the k × k square grid is the graph on vertices [k]2 where
two vertices are connected by an edge iff they are horizontally or vertically adjacent, as
specified in Section 1.1. Since every planar graph H is the minor of some square grid,
as can be seen from a rectilinear drawing of H where vertices of H are represented by
sufficiently large squares, this theorem implies that the graphs in Excl[H] for fixed planar
graphs H have constant treewidth c = c(H).
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Theorem 1.49 (Excluded Grid Theorem [RS86]). For every k ≥ 1, there is a computable
integer b(k) such that every graph of treewidth at least b(k) contains the k × k square grid
as a minor.

In the original proof [RS86], the function b is exponential, but a recent proof shows that
b(k) ≤ kO(1) can also be achieved [CC14]. For our applications, we only require the growth
rate of b to be bounded by some computable function of k.

1.5.3. Structure of H-minor free graphs

In this section, we state the Graph Structure Theorem [RS03], a result in graph minor
theory that will be required in Part I and was already mentioned in the beginning of this
section. Let us define the Hadwiger number hadw(G) of a graph G as

hadw(G) = max{k ∈ N | Kk � G}.

The Graph Structure Theorem shows how to decompose graphs in Excl[H], for arbitrary
fixed H, into simpler constituents that almost admit drawings on surfaces of genus c = c(H),
apart from certain defects, namely so-called vortices and apices. In other words, it describes
the structure of graphs that satisfy hadw(G) ≤ k for some fixed k ∈ N. The constituents
guaranteed by this decomposition are described in the following definition.

Definition 1.50. Let k, p, w, γ ∈ N and let G be a graph. We say that G has genus γ
apart from p vortices of width w if G contains p subgraphs G1, . . . , Gp (so-called vortices)
such that the following holds: The graph G0 obtained from G after deleting E(Gi) for all
i ∈ [p] admits a drawing π on a surface of genus γ such that:

1. There are faces F1, . . . Fp of π such that Gi for i ∈ [p] can be drawn within Fi without
crossing Fi. The drawing of Gi itself may however feature crossings.

2. For each i ∈ [p], write F = Fi and let f1, . . . , f` with ` = |F | denote the vertices of F
in clockwise order around F . Then the graph Gi has a tree decomposition T = (T,B)
of width w such that V (T ) = [`] and T is a path. Furthermore, for all s ∈ [`], we
have fs ∈ Bs.

For k ∈ N, we say that G is k-almost embeddable if there is a k-set A ⊆ V (G) of apices
such that G−A has genus k apart from k vortices of width k.

By the Graph Structure Theorem, any graph G ∈ Excl[H] admits a tree decomposition
into parts that are k-almost embeddable, for k = f(H). To state this precisely, we have to
add the notions of adhesion and torsos to tree decompositions. The adhesion is simply
the maximum intersection of adjacent bags Bs and Bt. The torso Gs is obtained from the
subgraph G[Bs] induced by a bag Bs by completing the intersections with adjacent bags
to cliques.

Definition 1.51. Let G be a graph and let T = (T,B) with B = {Bt}t∈V (T ) be a tree
decomposition of G. Then the adhesion of T is defined as maxst∈E(T ) |Bs ∩Bt|.
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For s ∈ V (T ), the torso of s is the graph Gs obtained from the induced subgraph G[Bs]
by adding all edges between vertices in Bs ∩Bt, for all neighbors t of s.

With Definitions 1.50 and 1.51, we can finally state the Graph Structure Theorem [RS03].
Its algorithmic variant was shown in [DHT05] and later simplified in [KW11].

Theorem 1.52 (Graph Structure Theorem [RS03]). For every graph H, there is a com-
putable constant k = k(H) such that the following holds: Every graph G ∈ Excl[H] admits
a tree decomposition T = (T,B) in which every torso Gs for s ∈ V (T ) is k-almost embed-
dable. Furthermore, such a decomposition can be found in time f(H)nO(1) for a computable
function f .

Note that the width of the tree decomposition T guaranteed by Theorem 1.52 may be
unbounded. It can however be verified from the requirements on torsos that the adhesion
of T is bounded by a function of k. Together with Lemma 1.46, this implies that G has
small separators which decompose G into k-almost embeddable graphs, and this is useful
for various algorithmic purposes.

Remark 1.53. In view of the constituents guaranteed by Theorem 1.52, it does not come as
a surprise that hadw(G) is a lower bound for several graph parameters we have already
encountered, such as the apex number apex(G), the genus γ(G), and the treewidth tw(G).
That is, there exists a (polynomial) function f such that

hadw(G) ≤ f(min{apex(G), tw(G), γ(G)}).

Recall that apex(G), already encountered in Section 1.2.2, is the minimum size of a set
S ⊆ V (G) such that G− S is planar.
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In this chapter, we present the concept of Holant problems, which were defined implicitly
by Valiant in his seminal paper on holographic algorithms [Val08], and were made explicit
by Cai et al. [CL07] in their extensive study of Holant problems and the associated notions
of holographic algorithms and matchgates.1 See also [CLX09b, KC10, CHL10, CLX11].
For the scope of the present thesis, we limit our treatment of these concepts to a bare
minimum, just enough to obtain a language that allows to express the technical content of
subsequent parts cleanly.
Holant problems provide a powerful framework for counting problems, and they sub-

sume the problems of counting graph homomorphisms [DGP07] and counting constraint
satisfaction problems [Bul13]. The instances to Holant problems are signature graphs Ω,
which are multigraphs with a function fv at each vertex v ∈ V (Ω), such that fv outputs a
rational number for each assignment x ∈ {0, 1}I(v) to the edges incident with v. Given Ω
as input, the task of a Holant problem is then to evaluate Holant(Ω), a weighted sum over
the assignments x ∈ {0, 1}E(Ω), where an assignment x is weighted by the product of the
evaluations fv(x) for v ∈ V (Ω).

In Section 2.1, we formalize this definition, show exemplarily how the counting problems
PerfMatch, MatchSum and #SAT can be reformulated as Holant problems, and describe
some useful operations on signature graphs. In Section 2.2, we introduce the notion of
matchgates, which play a central role throughout the thesis, and we proceed to show that
they enable a uniform reduction from every Holant problem to PerfMatch. This yields a
flexible way for proving intractability of PerfMatch in various restricted cases. Finally, in
Section 2.3, we introduce combined signatures, our main conceptual contribution to the
theory of Holant problems, which adds a bridge towards parameterized counting complexity.
This last section is joint work with Mingji Xia.

2.1. Basic definitions

In the following, we give a concise introduction to what we call the Holant framework, a
toolbox that borrows from [Val08, CL07, CLX08] and resembles the framework of tensor
networks studied in physics [Lan12]. Recall that, given a graph G and v ∈ V (G), we denote
the edges incident with v by I(v).

Definition 2.1. A signature graph is an edge-weighted graph Ω, which may explicitly
feature parallel edges, and which has a vertex function fv : {0, 1}I(v) → Q associated with
each vertex v ∈ V (Ω).

1The term Holant, which was coined by Valiant, is not a geographic tribute, but should rather be seen as
a contraction of the words “holographic” and “permanent”.
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The Holant of Ω is a particular sum over its edge assignments x ∈ {0, 1}E(Ω). Given an
assignment x ∈ {0, 1}E(Ω), we say that an edge e ∈ E(Ω) is active in x if x(e) = 1 holds,
otherwise e is inactive in x. As mentioned in the preliminaries, we tacitly identify x with
the set of active edges in x. Given a subset S ⊆ E(Ω), we write x|S for the restriction of x
to S, which is the unique assignment in {0, 1}S that agrees with x on S.

Definition 2.2 (adapted from [Val08]). Let Ω be a signature graph with edge weights
w : E(Ω)→ Q and a vertex function fv : {0, 1}I(v) → Q for each v ∈ V (Ω). Furthermore,
let x ∈ {0, 1}E(Ω) be an assignment to the edges of Ω. Then we define

valΩ(x) :=
∏

v∈V (Ω)
fv(x|I(v)), (2.1)

wΩ(x) :=
∏
e∈x

w(e), (2.2)

and we say that x satisfies Ω if valΩ(x) 6= 0 holds. Furthermore, we define

Holant(Ω) :=
∑

x∈{0,1}E(Ω)

wΩ(x) · valΩ(x). (2.3)

For x ∈ {0, 1}E(Ω) and v ∈ V (Ω), it is sufficient to know x|I(v) in order to evaluate fv on
x. This is of particular interest for signature graphs of bounded maximum degree: In such
graphs, each vertex function fv depends only on O(1) edge values.
We will sometimes consider unweighted signature graphs; for such graphs, we can omit

the factor wΩ(x) = 1 appearing in the definition of Holant(Ω). In fact, we will later observe
that every weighted signature graph can be easily transformed to an unweighted version
while preserving Holants and modifying Ω only slightly. Some arguments are however
simpler when carried out on edge-weighted signature graphs.

A particularly useful type of vertex functions is that of Boolean functions, whose ranges
are restricted to {0, 1} rather than Q. If all signatures appearing in a signature graph Ω′

are Boolean, then Holant(Ω′) simply sums over those assignments x ∈ {0, 1}E(Ω′) that pass
all constraints imposed by the vertex functions, and each x is weighted by wΩ′(x). That is,

Holant(Ω′) =
∑

x∈{0,1}E(Ω′)

∀v: fv(x)=1

wΩ′(x). (2.4)

We use such a Boolean function to reformulate PerfMatch as a Holant problem.

Example 2.3. Recall that hw(x) denotes the Hamming weight of x. Given an edge-
weighted graph G, let fv : {0, 1}I(v) → {0, 1} for v ∈ V (G) be the vertex function

fv(x) =

1 if hw(x) = 1,
0 otherwise,

(2.5)
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and let Ω denote the signature graph obtained from G by associating fv with v, for all
v ∈ V (G). Note that, while the definition of the vertex functions fv and fv′ for distinct
vertices v, v′ ∈ V (Ω) in (2.5) agrees, their domains {0, 1}I(v) and {0, 1}I(v′) may differ.

Since all vertex functions in Ω are Boolean, we see with (2.4) that Holant(Ω) ranges over
those assignments x ∈ {0, 1}E(Ω) in which each vertex is incident with exactly one active
edge. Each such x is weighted by wΩ(x) =

∏
e∈xw(e). This is precisely the expression of

PerfMatch(G), as defined in (1.7).

2.1.1. Signatures

To allow for attaching the same vertex function to different vertices, as seen in Example 2.3,
we use signatures, which are functions over the abstract domain {0, 1}[d] for d ∈ N.

Given a signature graph Ω and a vertex v ∈ V (Ω) of degree d ∈ N, assume that I(v)
is ordered by a bijection σv : [d]→ I(v). In the following, such bijections will always be
specified by the context, and they will typically be one of the following:

• If E(Ω) is ordered in some canonical way, then we may define σv for v ∈ V (Ω) as the
restriction of this ordering to I(v).

• If Ω is given as a plane graph, then we may define σv for v ∈ V (Ω) by choosing σv(1)
arbitrarily and then defining σv as the clockwise order of I(v) around v, starting
with σv(1).

When such an ordering σv of I(v) is fixed, then we can equivalently consider fv : {0, 1}I(v) →
Q as a function of the type {0, 1}[d] → Q. We formalize this in the following definition:

Definition 2.4. For d ∈ N, a signature of arity d is a function s : {0, 1}[d] → Q. Let Ω be
a signature graph, let v ∈ V (Ω) be a vertex of degree d ∈ N, and let σv : [d]→ I(v) be a
bijective function.
Given an assignment x ∈ {0, 1}I(v), we write σvx ∈ {0, 1}[d] for the assignment that

maps each i ∈ [d] to x(σv(i)), and we define a function σvfv : {0, 1}[d] → Q that satisfies

∀x ∈ {0, 1}I(v) : (σvfv)(σvx) = fv(x).

Then we say that σvfv is the signature attached to v under σv. Note that, if σv is bijective,
then σvfv is indeed a function, and it is defined on the entire set {0, 1}[d].

It should be noted that will rarely treat signatures as formally as in Definition 2.4. The
following simple signatures will however occur often throughout this thesis.
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2. The Holant framework

Example 2.5. We consider the following (families of) signatures of arity k ∈ N. On inputs
x ∈ {0, 1}[k] with x = (x1, . . . , xk), they are defined as

EQ : x 7→ [x1 = . . . = xk]
HW=1 : x 7→ [hw(x) = 1]
HW≤1 : x 7→ [hw(x) ≤ 1]
ODD : x 7→ x1 ⊕ . . .⊕ xk

EVEN : x 7→ 1⊕ x1 ⊕ . . .⊕ xk.

Occasionally, we use subscripts to make the arity of a signature explicit, e.g., for k ∈ N, we
may write EQk for the signature of arity k in the family EQ.

To define the signature attached at v in Definition 2.4, we assumed an ordering σv
of I(v). For symmetric vertex functions, this is not necessary; such functions fv satisfy
fv(x) = fv(x′) for all assignments x, x′ ∈ {0, 1}I(v) that can be obtained from another by
permutations. If fv is symmetric, then its output depends only on the Hamming weight of
its input, and in particular, the signatures σvfv under all orderings σv are equal, so we
usually omit the orderings σv in such cases. Note that all signatures from Example 2.5 are
symmetric; we will however also consider non-symmetric signatures later.

2.1.2. More examples for Holant problems

To illustrate the expressive power of the Holant framework, we revisit some problems from
Chapter 1 and show that they can be reformulated as the problem of evaluating Holant(Ω)
for a given signature graph. These examples will be used throughout the thesis.

MatchSum as a Holant problem

As a first example, we consider the evaluation of the polynomial MatchSum on vertex-
weighted graphs.

Example 2.6. Let G be a graph with vertex weights w : V (G)→ Q. Then we can express
MatchSum(G) as a Holant problem by using the following symmetric signature VTXw for
w ∈ Q.

VTXw : x 7→


w if hw(x) = 0,
1 if hw(x) = 1,
0 otherwise.

To this end, we construct a signature graph Ω from G by attaching, at each v ∈ V (G),
the signature VTXw(v). Note that no ordering of I(v) needs to be specified, since VTXw(v) is
symmetric. In every satisfying assignment x ∈ {0, 1}E(Ω), each vertex v ∈ V (Ω) is incident
with at most one active edge, so x is a (not necessarily perfect) matching, and valΩ(x) is
the product of the following factors:
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2.1. Basic definitions

• If v is incident with exactly one active edge, then v contributes 1 to valΩ(x).

• If v is incident with no active edges, so v ∈ usat(G, x), then v contributes w(v).

Hence, it holds that valΩ(x) =
∏
v∈usat(G,x)w(v). Summing over all matchings, we obtain

Holant(Ω) = MatchSum(G) by identifying terms.

#SAT as a Holant problem

Holant problems also capture problems outside the realm of graph theory. This includes
the problem #SAT, as we show in the following example.

Example 2.7. For n,m, d ∈ N, let ϕ be a d-CNF formula with the variables x1, . . . , xn
and the clauses c1, . . . , cm. We construct a signature graph Ω with

#SAT(ϕ) = Holant(Ω) (2.6)

such that Ω has n + m vertices, dm edges, and ∆(Ω) is bounded by the maximum of
d and maxi∈[n] r(i), where r(i) denotes the number of occurrences of xi as a positive or
negative literal in ϕ. This signature graph Ω is merely the variable-clause graph of ϕ, with
appropriate signatures:

• For each i ∈ [n], we create a variable vertex vi in Ω, with signature EQr(i).

• For each j ∈ [m], we consider the clause cj as a Boolean function of arity d over the
variables xi1 , . . . , xid it depends upon. We create a clause vertex wj in Ω, and for
κ ∈ [d], we add the edge wjxiκ as the κ-th edge in the ordering of I(wj). Then we
attach the signature cj to wj .

By the EQ signatures at variable vertices, every satisfying assignment x ∈ {0, 1}E(Ω)

corresponds to a unique binary assignment x′ : {x1, . . . , xn} → {0, 1} to the variables of
ϕ. Furthermore, for all j ∈ [m], the signature cj at the clause vertex wj ensures that x′

satisfies clause cj , so altogether x′ satisfies ϕ. Likewise, every satisfying assignment to ϕ
induces such a satisfying assignment x ∈ {0, 1}E(Ω), thus proving (2.6).

Removing edge weights from signature graphs

We proceed to show how edge-weighted Holant problems can be reduced to unweighted
ones while keeping the structure of the involved graphs intact up to subdivisions.

Lemma 2.8. Let Ω be a signature graph and let Ω′ be defined by subdividing each edge
e ∈ E(Ω) once, assigning weight 1 to the obtained subdivision edges, and equipping the
obtained subdivision vertex with the symmetric signature EDGEw(e) of arity 2, where

EDGEw : x 7→


w if x = 11,
0 if x ∈ {01, 10},
1 if x = 00.
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Then Ω′ features only the edge-weight 1, and we have Holant(Ω) = Holant(Ω′).

Proof. The satisfying assignments x ∈ {0, 1}E(Ω) stand in bijection with those of Ω′: Every
such x can be transformed to a satisfying assignment x′ ∈ {0, 1}E(Ω′) by assigning, for each
e ∈ E(Ω), the value x(e) to both edges e1, e2 obtained in Ω′ from subdividing e.

Likewise, every such x′ ∈ {0, 1}E(Ω′) can be “contracted” to a unique satisfying assignment
x ∈ {0, 1}E(Ω), since x′(e1) = x′(e2) holds for every edge pair e1,e2 replacing an original
edge e ∈ E(Ω). We observe that wΩ(x) · valΩ(x) = wΩ′(x′) · valΩ′(x′) holds, which shows
the claim.

2.1.3. Gates and matchgates

Given a signature graph Ω, we can replace any vertex set S ⊆ V (Ω) by a single vertex vS
with an appropriate signature, while preserving the Holant of Ω. In other words, we may
cut out an induced subgraph from Ω and contract it to a single vertex that simulates the
entire subgraph.

For the following definition, we use the notion of dangling edges, which are “edges” that
feature only one endpoint. In other words, there is precisely one vertex incident with such
a dangling edge.2 This notion is borrowed from [CLX08], and the gates we define in the
following are parallel to the so-called F-gates introduced in that paper.

Definition 2.9. A gate is a signature graph Γ, possibly containing a set D ⊆ E(Γ) of
dangling edges, all of which have edge-weight 1.
For disjoint sets A and B, and for assignments x ∈ {0, 1}A and y ∈ {0, 1}B, we write

xy ∈ {0, 1}A∪B for the assignment that agrees with x on A, and with y on B. We also say
that the assignment xy extends x.
Then the signature of Γ is the function Sig(Γ) : {0, 1}D → Q that maps x to

Sig(Γ, x) =
∑

xy∈{0,1}E(Γ):
y∈{0,1}E(Γ)\D

wΓ(xy) · valΓ(xy). (2.7)

We also say that Γ realizes Sig(Γ).

That is, given an assignment x ∈ {0, 1}D to the dangling edges of Γ, the value Sig(Γ, x)
is a restriction of Holant(Γ) that sums only over assignments y ∈ {0, 1}E(Γ) with y|D = x.

Contracting and inserting gates

In the following, we formalize the operation of contracting a gate, mentioned already before,
and its dual operation of inserting a gate into a signature graph.

2If the reader feels uncomfortable with this notion, a “virtual” and irrelevant vertex v0 outside of G may
be considered, and dangling edges can be made incident with v0.
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2.1. Basic definitions

Figure 2.1.: For S ⊆ V (Ω), the gate ΩS and the graph Ω↓S from Definition 2.10 are shown.
Edges in the cut E(S, S) are gray and appear as dangling edges in ΩS . Note
that Ω↓S features parallel edges. When viewing this from left to right, ΩS is
contracted in Ω. From right to left, ΩS is inserted at the vertex v↓S .

Definition 2.10. Let Ω be a signature graph. For S ⊆ V (Ω), let E(S, S) denote the set
of edges uv ∈ E(Ω) with u ∈ S and v ∈ V (Ω) \ S, that is, edges crossing the cut S in Ω.

• We write ΩS for the induced gate obtained from the induced subgraph Ω[S] by adding
the edges in E(S, S) as dangling edges that only have an endpoint in S.

• The contraction Ω↓S is defined by replacing ΩS in Ω with a single vertex v↓S that
is incident to E(S, S) and features the vertex function Sig(ΩS). For every edge
e ∈ E(S, S), replace its endpoint in S by v↓S . See Figure 2.1 for an example.

• Conversely, given a set D ⊆ E(Ω) of dangling edges and a gate Γ containing the same
dangling edges, we can insert Γ at D by placing a copy of Γ into Ω and identifying
each dangling edge e ∈ D across Γ and Ω. That is, if e is a dangling edge with
endpoint u in Ω, and a dangling edge with endpoint v in Γ, then we consider e as
an edge uv in the resulting graph. If v ∈ V (Ω) is a vertex with I(v) = D, then we
can also insert Γ at v by deleting v first, keeping I(v) as dangling edges, and then
inserting Γ at I(v).

Note that contractions of gates are similar to the contractions used in graph minor
theory. A simple calculation shows that contracting a gate preserves Holants.

Lemma 2.11. Let Ω be a signature graph and let S ⊆ V (Ω) be such that all edges in
E(S, S) have unit weight. Then we have Holant(Ω) = Holant(Ω↓S).

Proof. Note that E(Ω) is partitioned into the subsets

M = E(S, S), X = E(Ω[S]), Y = E(Ω− S).

Every vertex v ∈ S is only incident with edges from M ∪X, while every vertex v /∈ S is
only incident with edges from M ∪ Y . Writing S = V (Ω) \ S and v∗ = v↓S , we recall that
V (Ω↓S) = {v∗} ∪ S and E(Ω↓S) = M ∪ Y .
Let w : E(Ω)→ Q denote the weight function of Ω and let fv for v ∈ V (Ω) denote the

vertex function at v. For sets A ⊆ E(G), let us write w(A) =
∏
e∈Aw(e). Since w(e) = 1

for e ∈M by assumption, we may add edges from M to a set A without changing w(A).
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Then we obtain

Holant(Ω) =
∑

x∈{0,1}E(Ω)

w(x) ·
(∏
v∈S

fv(x|M∪X)
)∏

v∈S

fv(x|M∪Y )


=

∑
z∈{0,1}M

 ∑
x∈{0,1}X

w(zx) ·
∏
v∈S

fv(zx)

 ∑
y∈{0,1}Y

w(zy) ·
∏
v∈S

fv(zy)


=

∑
z∈{0,1}M

fv∗(z) ·
∑

y∈{0,1}Y
w(zy) ·

∏
v∈S

fv(zy)

=
∑

zy∈{0,1}M∪Y

∏
v∈V (Ω↓S)

w(zy) · fv(zy)

= Holant(Ω↓S).

In the third equation, we used (2.7) from Definition 2.9.

Realizing vertex functions by gates

We will often insert gates at vertices to simulate complicated signatures by simpler signatures.
For instance, we can realize EQk for any even arity k ∈ N by a gate whose vertices feature
only the signature EQ4. This will be useful in Section 2.2.

Example 2.12. For all even k ≥ 4, there exists a gate ΓEQ with Sig(ΓEQ) = EQk. This gate
consists of vertices v1, . . . , vk/2−1, each equipped with EQ4, internal edges e1, . . . , ek/2−2 with
ei = vivi+1 for all i, and k additional dangling edges.

To see Sig(ΓEQ) = EQk, let x be any satisfying assignment to ΓEQ. By EQ4 at v1, the
edges incident with v1 (including e1) all feature the same value in x, say t ∈ {0, 1}. Since
e2 is incident with v2, and by EQ4 at v2, all edges incident with v2 have value t in x. By
induction, the same applies to all edges of ΓEQ, and to its dangling edges in particular.

Next we show that, given signatures ODD3 and ODD2, we can simulate EVEN3.

Example 2.13. We can realize EVEN3 as a gate Γ featuring signatures ODD3 and ODD2:

Note that indeed Sig(Γ) = EVEN3: If dangling edge 1 is active, then e is not active, and
exactly one of 2 and 3 must be active. If edge 1 is not active, then e is active, and either both
of 2 and 3 are active, or none are. This gives the satisfying assignments 101, 110, 011, 000,
which are precisely the bitstrings of length 3 with even Hamming weight.
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Using this, we can realize the signatures ODDk and EVENk for any arity k ≥ 3 from ODD3
and ODD2, noted in a similar way in [Val08, Theorem 3.3]. This will be required in the next
section, and ultimately in Chapter 7.

Example 2.14. For all k ≥ 3, there exists a gate ΓEVEN with Sig(ΓEVEN) = EVENk. It
consists of vertices v1, . . . , vk−2 equipped with EVEN3, edges e1, . . . , ek−3 connecting these
vertices, and dangling edges [k].

Let x be a satisfying assignment to ΓEVEN. By EVEN3 at v1, we have x(e1) = x(1)⊕ x(2),
where ⊕ denotes addition in Z/2Z. Likewise, we have x(e2) = x(e1)⊕ x(3), so we obtain
inductively that

x(ek−3) =
k−2⊕
t=1

x(t). (2.8)

Then EVEN3 at vk−2 implies that

x(ek−3)⊕ x(k − 1)⊕ x(k) =
(2.8)

(
k−2⊕
t=1

x(t)
)
⊕ x(k − 1)⊕ x(k)

=
k⊕
t=1

x(t) = 0.

Likewise, we can construct ODDk for all k ≥ 3 by following the construction above, but
replacing the signature EVEN3 at vk−2 by ODD3.

2.2. Matchgates

Valiant’s paper on holographic algorithms and Holants [Val08] focused on reductions from
Holant problems to evaluations of PerfMatch(G) on graphs G obtained from Ω. This is
interesting for at least two reasons: Firstly, if we can compute PerfMatch(G) efficiently,
e.g., by invoking the FKT method on planar G, then we can also compute Holant(Ω)
efficiently. Secondly, if we can show that the evaluation of Holant(Ω) is hard, then we
obtain the same for PerfMatch(G), and structural properties of Ω might carry over to G.
Of course, the evaluation of Holant(Ω) could be reduced to other counting problems,

such as counting cliques, vertex covers, or the evaluation of the Tutte polynomial. However,
PerfMatch is a particularly good target, since it is a Holant problem itself, as shown in
Example 2.3, and because nontrivial algorithms are known for PerfMatch. In later chapters,
we will also reduce to other targets, namely to counting (not necessarily perfect) matchings
and to counting colorful matchings in edge-colored graphs.
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2.2.1. Basic definitions and first examples

The reduction to PerfMatch mentioned above proceeds via matchgates, i.e., gates that only
feature the perfect matching signature HW=1 from Example 2.5.

Definition 2.15 (adapted from [Val08]). A matchgate Γ (of arity k ∈ N) is a gate with
dangling edges D whose vertices use only the signature HW=1. We consider D = [k]. Note
that Γ may be edge-weighted, but dangling edges must receive weight 1 by Definition 2.9.
Also observe that, being a gate, Γ realizes a signature Sig(Γ) : {0, 1}[k] → Q.

Consider the following matchgates from [Val08, Proposition 6.1] as first examples.

Example 2.16. For a, b ∈ Q, we define the following matchgates Γ and Γ′ of arity 2 that
realize the signatures Sig(Γ) and Sig(Γ′) of type {0, 1}[2] → Q.

Sig(Γ, x) =


a if x = 11,
b if x = 00,
0 otherwise.

Sig(Γ′, x) =


b if x = 01,
a if x = 10,
0 otherwise.

The signatures can be computed easily by hand. For instance, we have Sig(Γ, 11) = a

since there is only one assignment y ∈ {0, 1}E(Γ) that extends x = 11: In this assignment,
the edge of weight a and the dangling edges 1 and 2 are active. The other values can be
verified likewise.

Since matchgates are simply gates, we can use them to simulate signatures, as seen in
Section 2.1.3. The benefit of matchgates as opposed to general gates lies in the fact that
they enable a simple reduction to PerfMatch.

Fact 2.17 (Realizing signature graphs using matchgates). Let Ω be a signature graph. If
there is a matchgate Γv with Sig(Γv) = fv for every vertex v ∈ V (Ω), then we can insert
Γv as a gate at v, as specified in Definition 2.10, and we obtain a signature graph that uses
only edge-weights and the signature HW=1.

In other words, we obtain a graph G = G(Ω) on
∑
v |V (Γv)| vertices and

∑
v |E(Γv)|

edges that realizes Ω, that is,

Holant(Ω) = PerfMatch(G(Ω)).

The signature of a matchgate Γ of arity d ∈ N can be computed by counting perfect
matchings in induced subgraphs of Γ: For an assignment x : {0, 1}[d] → Q, if a vertex
v ∈ V (Γ) is matched by an active dangling edge in x, then it cannot be matched by a
non-dangling edge of Γ, so we could as well delete v when computing Sig(Γ, x).
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2.2. Matchgates

Figure 2.2.: The equality matchgate Γ= that realizes EQ4. Edges of weight −1, 1
2 and 1 are

shown gray, dashed and black, respectively. A similar matchgate is shown in
[BD07], but it realizes only a weighted version of the signature EQ4.

Fact 2.18. Let Γ be a matchgate of arity d ∈ N. Given x ∈ {0, 1}[d], let S(x) ⊆ V (Γ) denote
the vertices of Γ that are incident with active dangling edges in x. Write Γ′ for the graph
obtained from Γ by deleting all dangling edges. Then Sig(Γ, x) = PerfMatch(Γ′ − S(x)).

Since only graphs with an even number of vertices admit perfect matchings, Fact 2.18
implies the following parity condition on signatures of matchgates.

Fact 2.19 (Parity Condition). If a signature f : {0, 1}[d] → Q can be realized by a
matchgate, then at least one of the following holds:

• For all x ∈ {0, 1}[d] with odd hw(x), we have f(x) = 0. Then we call f even.

• For all x ∈ {0, 1}[d] with even hw(x), we have f(x) = 0. Then we call f odd.

As seen for gates in Examples 2.12 and 2.14, we can use matchgates for simple signatures
to construct matchgates for more complex signatures. In the following, we use this
observation to realize the signature EQk for even k ∈ N from the matchgate Γ= for EQ4
shown in Figure 2.2. We discovered Γ= using a computer algebra system; this process is
described in more detail in Appendix C. Note that EQk for odd k ∈ N does not satisfy the
parity condition and can hence not be realized by matchgates.

Lemma 2.20. For all even k ∈ N, there is a matchgate realizing EQk, which features only
−1, 1, 1

2 as edge-weights. This matchgate has O(k) vertices and edges.

Proof. For k = 2, we use Example 2.16 with a = b = 1. For k = 4, it is verified in
Appendix C.1 that the matchgate Γ= in Figure 2.2 realizes EQ4. For k > 4, we use the gate
from Example 2.12 and realize each occurrence of EQ4 by Γ=.

We first focus on planar matchgates, which are relevant in Part I. In Section 2.2.3, we
then prove that every signature satisfying the parity condition can be realized by (not
necessarily planar) matchgates. This will yield a new #P-completeness proof of PerfMatch.
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2. The Holant framework

Figure 2.3.: The matchgates from Propositions 6.1 and 6.2 in [Val08], used in Lemma 2.23.

2.2.2. Planar matchgates

In the paper that introduced Holant problems [Val08], Valiant focused on planar matchgates;
this allowed him to invoke the FKT method for planar PerfMatch, seen in Theorem 1.27,
to find unexpected polynomial-time algorithms for counting problems.

Definition 2.21. A matchgate Γ is planar if it admits a planar drawing with all of its
dangling edges on the outer face. Furthermore, a clockwise traversal of the outer face
starting at dangling edge 1 must encounter the dangling edges 1, . . . , d in this order. We
call a signature f planar if it can be realized by a planar matchgate.

Note that Valiant uses the notion of matchgates to refer to planar matchgates, whereas
we do not impose this restriction upon general matchgates. If a signature graph Ω is
planar and contains only planar signatures, then we can find a planar graph G(Ω) realizing
Ω. This observation clearly generalizes to signature graphs of bounded genus. For the
following lemma, please recall the notion σvfv from Definition 2.4.

Lemma 2.22. Let Ω be a signature graph that admits a drawing π on a surface S of genus
γ ∈ N. For each v ∈ V (Ω), let σv denote the clockwise order of I(v) around v, as specified
by π, and assume that there exists a planar matchgate Γv realizing σvfv. Then the graph
G(Ω) that realizes Ω as in Fact 2.17 admits a drawing on the same surface S.

Proof. We extend π and the drawings of the matchgates {Γv | v ∈ V (Ω)} to a drawing
of G(Ω). At v ∈ V (Ω), the embedding of Ω can be locally extended by inserting Γv at
v: If v is incident with the edges e1, . . . , et, as ordered by the embedding π of Ω, then
the insertion of Γv attaches ei to the i-th dangling edge of Γv. Since Γv admits a planar
drawing in which the dangling edges 1, . . . , t appear on the outer face in that order, these
extensions are compatible with the drawing of Ω.

It was shown in [Val08] that every signature of arity ≤ 3 that satisfies the parity condition
is planar. We will later see that there exist non-planar signatures of arity 4.

Lemma 2.23 ([Val08]). If f : {0, 1}[d] → Q with d ≤ 3 is even or odd, then f is planar.
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2.2. Matchgates

Proof sketch. Figure 2.3, taken from [Val08], shows several matchgates, each drawn as a
plane graph. If f is even or odd and has arity 1 or 3, then it can be verified that at least
one planar matchgate Γ satisfies Sig(Γ) = f after appropriate substitution of edge-weights.
As an example, for x, y, z, t ∈ Q with t 6= 0, the signature

f(x) =



z if x = 001,
y if x = 010,
x if x = 100,
t if x = 111.

(2.9)

is realized by the upper left matchgate. If t = 0, then the matchgate to the right of it
applies. If f has arity 2, then a matchgate from Example 2.16 applies.

Using this lemma, we can also construct planar matchgates for certain signatures of
arbitrarily large arity, as the following lemma shows for ODD and EVEN, noted also in [Val08].
This will be relevant for Sections 2.3 and 4.3.

Lemma 2.24. For all k ∈ N, the signatures ODDk and EVENk are planar. Furthermore,
both signatures can be realized by planar matchgates that feature no edge-weights.

Proof. Using Example 2.12, we can realize ODDk and EVENk as planar gates containing only
the signatures ODD3 and ODD2, both of which are planar by Lemma 2.23.
Observe that the signature ODD3 is realized by the matchgate shown on the top left of

Figure 2.3 after substitution of 1 for all edge-weights. The signature ODD2 is realized with
the matchgate from Example 2.16 without edge-weights.

To conclude this section, we mention a known non-planar signature, namely the Boolean
signature CROSS of arity 4, which is defined by

CROSS : (x1, x2, x3, x4) 7→

1 if x1 = x3 ∧ x2 = x4,

0 otherwise.

This signature is not planar, although it admits a matchgate that can be drawn in the
plane with all dangling edges on the outer face, e.g., by using two copies of the matchgate
Γ from Example 2.16 that realizes EQ2. However, in a planar drawing of this resulting
matchgate, the dangling edges are not in the correct order. In fact, there are two good
reasons for CROSS not to be planar according to our definition:

1. It is known that a signature f is planar if and only if f satisfies the so-called matchgate
identities [CG14]. For signatures f with the support of CROSS, these can be stated
succinctly as

f(0000) · f(1111) = −f(0101) · f(1010). (2.10)

This is clearly not satisfied by CROSS, so the signature is not planar.
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2. The Holant framework

2. The signature CROSS can be used to transform non-planar signature graphs Ω to
planar versions Ω′ with Holant(Ω) = Holant(Ω′). Given a drawing of Ω with crossings,
we place a new vertex at each crossing, incident with the four edges involved in
the crossing in clockwise order. Attach CROSS to this vertex to obtain Ω′. If CROSS
were planar, this would allow for a polynomial-time reduction from PerfMatch to
planar PerfMatch, but since this latter problem can be solved by the FKT method
(Theorem 1.27) in polynomial time, we would have established FP = #P.

2.2.3. Matchgates for all possible signatures

We turn our attention back to matchgates that are not necessarily planar. The parity
condition from Fact 2.19 tells us that every signature of a matchgate must be even or odd.
It is natural to ask whether, conversely, every even or odd signature admits a matchgate.
The positive answer to this question we give in this subsection does not only shed light
upon the expressivity of general matchgates versus planar matchgates, but it also allows
us later to reduce all Holant problems uniformly to PerfMatch.

Lemma 2.25. Let f : {0, 1}[d] → Q be a signature of arity d ∈ N that is even or odd.
Then there is a matchgate Γ that realizes f . Furthermore,

• Γ has O(|supp(f)| · d) vertices and edges, and satisfies ∆(Γ) ≤ |supp(f)|+O(1),

• the edge-weights of Γ are contained in im(f) ∪ {−1, 1/2, 1}, where im(f) denotes the
image of f , and

• given as input {(x, f(x)) | x ∈ supp(f)}, we can construct Γ in time O(|supp(f)| · d).

Note that |V (Γ)| depends polynomially upon d and |supp(f)|, but since |supp(f)| may
be as large as 2d−1, we may obtain matchgates on Ω(2dd) vertices. We also observe that Γ
features the additional weights −1 and 1

2 , and we will later see why they are necessary.
The construction of Γ resembles the construction of a formula in disjunctive normal form

from a given Boolean function. For each element x ∈ supp(f), we create an assignment
gate Lx that tests whether the dangling edges of Γ are assigned x. This will ensure that
Sig(Γ, x) = f(x) for all x ∈ supp(f). Furthermore, we ensure that Sig(Γ, x) 6= 0 holds only
if exactly one of these tests succeeds, that is, if x ∈ supp(f).

Proof of Lemma 2.25. For this proof, we assume that d−hw(x) is odd for every x ∈ supp(f),
which implies that exactly one of d and f is even, while the other one is odd. If d− hw(x)
is even, the proof proceeds similarly.

We first define the following gate Γ′ on dangling edges [d], shown exemplarily in Figure 2.4.
The matchgate Γ is then obtained by realizing all signatures appearing in Γ′ by matchgates:
This is trivial for HW=1, and concerning EQ, we will ensure that all vertices featuring EQ
have even degree, so we can realize these signatures with Lemma 2.20.

1. Create vertices O = {o1, . . . , od} with signature HW=1, and for i ∈ [d], add the dangling
edge i and make it incident to oi.
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2.2. Matchgates

Figure 2.4.: The gate Γ′ constructed in the proof of Lemma 2.25. In this example, Γ′
realizes the signature f that maps {00011, 11101, 11000} to 1 and all other
inputs to 0.

2. Create a vertex a with signature HW=1.

3. Let supp(f) = {x1, . . . , xr} for some r ∈ N. For each κ ∈ [r], let

Sκ = O \ {oi | i ∈ xκ}.

Note that |Sκ| is odd by assumption. We perform the following steps.

a) Create a vertex vκ with signature EQ|Sκ|+1 and make it adjacent to all vertices
in Sκ. Note that |Sκ|+ 1 is even, so EQ|Sκ|+1 can be realized by a matchgate by
Lemma 2.25.

b) Draw an edge of weight f(xκ) from vκ to a.

We prove that Γ′ realizes f . Let y ∈ {0, 1}E(Γ′) be a satisfying assignment. By HW=1 at the
vertex a and EQ at vκ for κ ∈ [r], there is exactly one κ ∈ [r] such that all edges of I(vκ)
are active under y, while all edges in I(vκ′) for κ′ 6= κ are inactive. In particular, we then
have

valΓ′(y) · wΓ′(y) = f(xκ). (2.11)

Let x = y|[d] be the restriction of y to the dangling edges of Γ′. We observe that, if the
edges in I(vκ) are active under y, for κ ∈ [r], then x = xκ: Since y is satisfying, by HW=1

at O, every oi ∈ O for i ∈ [d] is incident with exactly one active edge, and this edge must
be dangling if x(i) = 1, or contained in I(vk) if x(i) = 0.
Hence, for every x ∈ {0, 1}[d], there is a satisfying assignment y of Γ′ that extends x if

and only if x = xκ for some κ ∈ [s]. Furthermore, in this case, y is unique and satisfies
(2.11). We conclude that Sig(Γ′, x) = f(x).

Remark 2.26. For a general signature of arity d, the construction above yields a matchgate
on up to Ω(2dd) vertices. In some applications, this exponential size is prohibitive, but
smaller matchgates might still exist.
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2. The Holant framework

Finally, using Lemma 2.25, we can obtain a simple uniform method for reducing arbitrary
Holant problems to PerfMatch. To this end, we simply “double” signatures that are not
even, in the sense specified below.

Definition 2.27. For d ∈ N, let f : {0, 1}[d] → Q be a signature. Then we define
fdouble : {0, 1}[2d] → Q as the following signature:

fdouble(x) =

f(x1 . . . xd) if x = x1x1x2x2 . . . xdxd for x1, . . . , xd ∈ {0, 1},
0 otherwise.

It is obvious that fdouble is an even signature, for every choice of f .

Theorem 2.28. Every signature graph Ω with vertex functions {fv}v∈V (Ω) can be realized
by a graph G (whose vertices all feature the signature HW=1) on

O

 ∑
v∈V (Ω)

|supp(fv)| · deg(v)


vertices and edges. Furthermore, the maximum degree ∆(G) of G is bounded by the
maximum of a universal constant, and |supp(fv)|, and deg(v) for all v ∈ V (Ω). The
edge-weights of G are

{1,−1, 1/2} ∪
⋃

v∈V (Ω)
im(fv),

and given Ω as input, we can construct G in time O(|V (G)|+ |E(G)|).

Proof. We first construct a derived signature graph Ω′ with Holant(Ω) = Holant(Ω′) that
features only even vertex functions:

1. Subdivide each edge e ∈ E(Ω) into a subdivision vertex se and two subdivision edges.
Replace each subdivision edge by two parallel edges to obtain edges e(i) for i ∈ [4].
Then place EQ4 at se. If e has weight w(e) in E(Ω), then assign this weight to an
arbitrary edge among e(i), say e(1).

2. For every non-subdivision vertex v ∈ V (Ω′), order IΩ′(v) such that the two edges
replacing an edge e ∈ E(Ω) from IΩ(v) appear consecutively, and at the place specified
by the order of e in IΩ(v). Then replace f = fv with fdouble.

All signatures in Ω′ are even and can thus be realized by matchgates via Lemma 2.25. It
remains to prove Holant(Ω) = Holant(Ω′).

For all satisfying assignments x′ ∈ {0, 1}E(Ω′) and all e ∈ E(Ω), the four values assigned
to e(i) for i ∈ [4] under x′ agree by EQ at the subdivision vertex se, and we can hence
“contract” x′ to a uniquely corresponding assignment x ∈ {0, 1}E(Ω). By the definition of
fdouble at non-subdivision vertices, and by our choice of edge-weights in Ω′, we have that
valΩ′(x′) · wΩ′(x′) = valΩ(x) · wΩ(x). This proves the claim.

Since we observed in Example 2.7 that #SAT is a Holant problem, we can reduce it to
the evaluation of PerfMatch and hence obtain #P-hardness of the latter problem.
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Lemma 2.29. Let ϕ be a d-CNF formula with n variables and m clauses such that every
variable occurs in at most r clauses, for n,m, d, r ∈ N. Then we can construct a graph
G on O(rn+ 2ddm) vertices and edges, with maximum degree max{r, 2d − 1,O(1)}, and
edge-weights {−1, 1

2 , 1} such that

#SAT(ϕ) = PerfMatch(G).

Proof. As in Example 2.7, we construct a signature graph Ω on n + m vertices and dm
edges with #SAT(ϕ) = Holant(Ω). Each of the m clause signatures has degree ≤ d and
support 2d − 1. Each variable vertex has degree ≤ r, the sum of degrees of the variable
signatures in Ω is dm, and each signature has support 2. Using Theorem 2.28, we obtain a
graph G′ that realizes Ω and satisfies the claimed size and degree bounds.

By reduction from 3-#SAT, we obtain #P-hardness for PerfMatch−1, 12 ,1, and a lower
bound under #ETH. For the lower bound, note that Lemma 2.29 maps formulas in 3-CNF
with n variables and m clauses to graphs with O(n+m) vertices and edges.

Corollary 2.30. The problem PerfMatch−1, 12 ,1 is #P-complete under parsimonious reduc-
tions, as introduced in Definition 1.2. Furthermore, it admits no 2o(m) time algorithm on
graphs with m edges, unless #ETH fails.

Using removal of the weight 1
2 , we can reduce PerfMatch−1, 12 ,1 to PerfMatch−1,1. To this

end, we use Remark 1.30 to transform the graph G obtained from Lemma 2.29 to a graph
G′ with edge-weights −1 and 1 such that

#SAT(ϕ) = PerfMatch(G) = 2−
|V (G)|

2 · PerfMatch(G′). (2.12)

Corollary 2.31. The problem PerfMatch−1,1 is #P-complete under weakly parsimonious
polynomial-time reductions. Furthermore, it admits no 2o(m) time algorithm on graphs with
m edges, unless #ETH fails.

Together with univariate interpolation as in Lemma 1.37, this implies the following.

Corollary 2.32. The problem PerfMatch0,1 on unweighted graphs is #P-complete under
polynomial-time Turing reductions that use O(n) oracle calls and incur quadratic blowup.

In Chapter 7, we will discuss a novel and more efficient way of getting from Corollary 2.31
to Corollary 2.32, which has further implications to structural complexity theory.

Why the equality matchgate needs weights

We conclude Section 2.2 with an observation about the edge-weights 1/2 and −1 added by
Theorem 2.28, which ultimately stem from the matchgate Γ= for EQ4 from Figure 2.2. When
reducing Holant(Ω) for a signature graph Ω with Boolean signatures to PerfMatch(G), they
introduce weights into G that are not present in Ω, and this might seem like a nuisance.
However, both weights are required under standard assumptions in complexity theory. To
see this, consider the reduction from #SAT to PerfMatch from Lemma 2.29.

69



2. The Holant framework

• Unless P = ⊕P, the edge-weight 1/2 or the simulation of the weight 1/2 by a factor 1
2t

as in Remark 1.30 is necessary: Since (2.12) can be rewritten as

2
|V (G)|

2 ·#SAT(ϕ) = PerfMatch(G), (2.13)

an algorithm for⊕PerfMatch does not imply an algorithm for⊕SAT. This makes sense
since ⊕PerfMatch can be reduced to the determinant, as mentioned in Section 1.3,
while ⊕SAT is ⊕P-complete. In fact, even a matchgate for EQ4 where the edge-weight
1/2 is replaced with 1/3 would imply P = ⊕P as well.

• The weight −1 is needed unless P = NP: If only the weight 1/2 were present, then
(2.13) would imply a weakly parsimonious reduction from #SAT to PerfMatch on
unweighted graphs, and SAT ∈ P would follow as in Section 1.2.

2.3. Combined signatures

In the final section of this chapter, we introduce the notion of combined signatures, an
extremely simple idea with surprisingly useful applications to parameterized counting
complexity that will we used in all parts of this thesis. A “combined” signature is nothing
but a signature that can be expressed as a point-wise linear combination of other signatures.

Definition 2.33. Let f = c1 · f1 + . . . + ct · ft be a signature, where c1, . . . , ct ∈ Q are
coefficients and f1, . . . , ft are signatures, and the linear combination is to be understood
point-wise. Then we say that f is t-combined from the constituents f1, . . . , ft.

Combined signatures will be useful in the following setting: Assume we would like to
realize a signature f in a signature graph Ω via matchgates or other gates, but (must) fail
to do so, e.g., because f does not satisfy the parity condition. Instead, we can express f
as a combined signature whose constituents do admit matchgates, and then use a simple
observation to compute Holant(Ω) as a linear combination of Holants where all involved
signatures admit matchgates.

Lemma 2.34. Let Ω be a signature graph and let w ∈ V (Ω) be an arbitrary fixed vertex
with signature fw. Let g1, . . . , gt be signatures and c1, . . . , ct ∈ Q be coefficients such that

fw =
t∑
i=1

ci · gi.

For i ∈ [t], let Ωi be the signature graph obtained from Ω by replacing fw with gi. Then

Holant(Ω) =
t∑
i=1

ci ·Holant(Ωi).
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Proof. By elementary manipulations, we have

Holant(Ω) =
∑

x∈{0,1}E(Ω)

fw(x) ·
∏

v∈V (Ω)\{w}
fv(x)

=
∑

x∈{0,1}E(Ω)

(
t∑
i=1

ci · gi(x)
)
·

∏
v∈V (Ω)\{w}

fv(x)

=
t∑
i=1

∑
x∈{0,1}E(Ω)

ci · gi(x) ·
∏

v∈V (Ω)\{w}
fv(x)

=
t∑
i=1

ci ·Holant(Ωi).

This proves the claim.

In Lemma 2.34, we considered only signature graphs featuring one combined signature;
this can of course be extended to the case of several combined signatures.

Lemma 2.35 (Combined Signature Lemma). Let Ω be a signature graph, let k, t ∈ N and
let w1, . . . , wk be distinct vertices of Ω such that the following holds: For all κ ∈ [k], the
signature fκ at wκ admits coefficients cκ,1, . . . , cκ,t ∈ Q and signatures gκ,1, . . . , gκ,t such
that

fκ =
t∑
i=1

cκ,i · gκ,i.

Given a tuple θ ∈ [t]k, let Ωθ be defined by replacing, for each κ ∈ [k], the vertex function
fκ at wκ with gκ,θ(κ). Then

Holant(Ω) =
∑
θ∈[t]k

(
k∏

κ=1
cκ,θ(κ)

)
·Holant(Ωθ). (2.14)

Proof. Apply Lemma 2.34 inductively for w1, . . . , wk. Each step reduces the number of
combined signatures by one, and elementary algebraic manipulations imply (2.14).

When using Lemma 2.35 for positive results, then the right-hand side of (2.14) is “easy”,
in the sense that the values Holant(Ωθ) for all θ can be obtained, e.g., by reduction to
planar PerfMatch and the FKT method. In the same way, Lemma 2.35 also allows us to
prove hardness results under Turing reductions: In this case, the left-hand side is “hard”
and could be computed from oracle access to the values Holant(Ωθ) for all θ.

Remark 2.36. For later use, we remark that Lemma 2.35 generalizes to restricted versions
of Holants that sum only over assignments from a specified set: Let Ω be a signature graph,
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let X ⊆ {0, 1}E(Ω), and define

HolantX(Ω) =
∑
a∈X

wΩ(a) · valΩ(a).

Then Lemma 2.34, and hence Lemma 2.35, still hold if we replace every occurrence of
Holant(Ω) by HolantX(Ω). We will use this later in the context of edge-colorful Holants.

2.3.1. Combined signatures with planar constituents

As mentioned before, we are particularly lucky if the constituents of a combined signature
do not only admit matchgates, but these are even planar: If a signature graph Ω is planar
and contains only k non-planar signatures, which are combined from t (explicitly known)
planar signatures, then we can reduce Holant(Ω) to tk instances of planar PerfMatch. This
generalizes naturally to graphs of bounded genus.

Lemma 2.37. Let Ω be a signature graph of genus γ with planar vertex functions, except
for k functions that are combined from t planar signatures, for some k, t ∈ N. Let the
coefficients and constituents of these combined signatures be given as part of the input.
Then Holant(Ω) can be computed in time tk4γnO(1).

Proof. Using Lemma 2.35, reduce Holant(Ω) to a linear combination of Holant(Ωθ) for
θ ∈ [t]k. Each Ωθ has genus γ and features only planar signatures, so it can be realized
by a graph Gθ of the same genus by Lemma 2.22. We determine PerfMatch(Gθ) in time
4γnO(1) via Theorem 1.28, obtaining the claimed total runtime.

In the following, we give an example for a signature with planar constituents, which will
be used later to reduce a certain parameterized version of MatchSum on planar graphs to
planar PerfMatch. Recall that MatchSum is #P-hard on planar graphs by Theorem 1.24.

Lemma 2.38. For t ∈ N and c ∈ Qt, define the t-ary signature PRODc by

PRODc : x 7→
∏
i∈x

ci.

This signature is 2-combined from planar constituents. In particular, by choosing c as the
all-ones vector 1 of length t, we observe that the t-ary signature

OMITt := PROD1

is 2-combined from planar constituents. Note that OMIT yields 1 on all inputs.

Proof. Recall that ODDt and EVENt are planar by Lemma 2.24. It is clear that

OMITt = EVENt + ODDt.

To obtain PRODc, we construct the following gate Γ: Create a vertex v that is equipped
with OMITt and connected to vertices w1, . . . , wt, where wi for i ∈ [t] is equipped with
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EDGEc(i), as defined in Lemma 2.8, and is incident with dangling edge i. It is easily seen
that Sig(Γ) = PRODc. To obtain two planar matchgates from Γ, substitute OMITt once by
EVENt and once by ODDt and realize the resulting gates via Lemma 2.24.

The signature OMIT on its own is rather useless as it cannot discriminate between
inputs. However, we observe in the following that OMIT can prove useful when it comes to
“absorbing” incoming active edges.

2.3.2. From MatchSum to PerfMatch

To provide a first algorithmic application of combined signatures, we show how to compute
MatchSum(G) for planar vertex-weighted graphs G that contain k distinguished faces such
that every vertex of G with non-zero weight is contained in at least one of these faces. In
other words, we count matchings in which only vertices in the distinguished faces may be
unmatched. For later use, we first prove an auxiliary lemma where faces are replaced by
arbitrary subsets.

Lemma 2.39. Let G be a vertex-weighted graph and let V1, . . . , Vk ⊆ V (G) be such that
for every v ∈ V (G) with w(v) 6= 0, there is exactly one i ∈ [k] with v ∈ Vi. Define a
signature graph Φ = Φ(G) as follows:

1. For each i ∈ [k], add a sink vertex si to G and connect it to the vertices v1, . . . , vt of
Vi, in this order.

2. Attach PRODc to si, where c = (w(v1), . . . , w(vt)).

3. Remove all vertex weights and place HW=1 at all non-sink vertices.

Then we have MatchSum(G) = Holant(Φ).

Proof. For every matchingM ∈M[G], let w(M) =
∏
v∈usat(M)w(v). If w(M) 6= 0, then we

have usat(M) ⊆ V1∪ . . .∪Vk. Thus, we can uniquely extendM to an assignment x = x(M)
with x ∈ {0, 1}E(Φ) and valΦ(x) = w(M): For every unmatched vertex v ∈ usat(M) with
v ∈ Vi for some i ∈ [k], include the edge from v to the sink vertex si. Then HW=1 at all
non-sink vertices yields value 1, while the signatures PROD at sink vertices together yield
the value w(M).

Likewise, when restricted to non-sink vertices, every satisfying assignment x ∈ {0, 1}E(Φ)

induces a unique matching M = M(x) with w(M) 6= 0.

For use in Chapter 7, we note the following:

Remark 2.40. Let Φ = Φ(G) be as in Lemma 2.39. With Lemma 2.35, we obtain

Holant(Φ) =
∑
θ∈[2]k

Holant(Φθ), (2.15)

where Φθ is obtained from Φ by realizing copies of PROD by its constituents. Recall the
constituents ODD and EVEN of OMIT, used by PROD in Lemma 2.38, and let us say that
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θ ∈ [2]k is odd if Φθ features an odd number of ODD signatures. Likewise, we call θ even if
Φθ features an even number of ODD signatures.

If |V (G)| is even and θ is odd, then we can observe that Holant(Φθ) = 0: The proof
of Lemma 2.39 shows that Holant(Φθ) ranges over the matchings M ∈ M[G] with an
odd number of defects. But since |V (G)| is even, no such matchings exist. A symmetric
argument applies in the case of odd |V (G)|.
Hence, if |V (G)| is even, we may safely restrict the right-hand side of (2.15) to even

θ ∈ [2]k. If |V (G)| is odd, then we may restrict the sum to odd θ ∈ [2]k.

We conclude this subsection with an fpt-algorithm for evaluating MatchSum on planar
graphs, parameterized by the number of faces that contain vertices of non-zero weight.
This will be useful in Section 4.3.

Theorem 2.41. Let G be a vertex-weighted graph that is given together with a drawing on
a surface of genus γ, and assume that there are faces F1, . . . , Fk that contain all vertices
with non-zero weight. Then we can compute MatchSum(G) in time O(2k · 4γ · n1.5).

Proof. Let Bi denote the boundary of face Fi in the drawing of G. We first create a
partition B = {B′1, . . . , B′k} of

⋃
i∈[k]Bi such that B′i ⊆ Bi for i ∈ [k] and B′i ∩B′j = ∅ for

i 6= j. This can be achieved trivially by assigning each vertex that occurs in several sets Bi
to exactly one Bi in an arbitrary fashion.
From Lemma 2.39, we obtain a signature graph Φ = Φ(G) with sink vertices s1, . . . , sk

corresponding to the sets B1, . . . Bk, which satisfies

MatchSum(G) = Holant(Φ).

We extend the drawing of G to one of Φ by drawing each sink vertex si for i ∈ [k] into the
face Fi. Note that this is possible since si is only adjacent with Bi. Since Φ has genus γ
and features only k occurrences of PROD, which is 2-combined from planar constituents, we
can compute Holant(Φ) in time 2k · 4γ · nO(1) by Corollary 2.37.

Concluding notes

Holant problems, signature graphs [Val08, CL07] and planar matchgates [CG14] are well-
studied objects, see also [CLX09b, KC10, CHL10, CLX11]. Outside of computer science,
they were studied in the literature on quantum physics and linear algebra under the name
of tensor networks [Lan12]. For instance, the problem #SAT is reformulated as a tensor
network in [BMT14] in a way that parallels our Example 2.7. An algorithm for PerfMatch
with running time O(4γn3) on graphs of genus γ, similar to Theorem 1.28, was also shown
in that framework [Bra08].
Our notion of gates parallels that of F-gates [CLX08], from which we also borrow the

notion of dangling edges. In the lingo of tensor networks, dangling edges are dangling
wires, and contractions are a very prominent operation.

Section 2.3 is based on joint work with Mingji Xia from 2013. To the best of the author’s
knowledge, the equality matchgate from Figure 2.2 and the content of Sections 2.2.3 and
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2.3 are novel, with the exception of the following, pointed out by Tyson Williams:

• A trick similar to “doubling signatures” as in Definition 2.27 was already considered
for a different application [GW13] under the name of “domain pairing”.

• Linear combinations of signatures were already considered for other purposes in
[GLV13], and in particular, Lemma 6.2 in that paper parallels our Lemma 2.35.
However, connections to parameterized complexity are not studied in that paper.

Signature graphs are called signature grids in the literature on Holant problems. We
decided to depart from this term, because we will later occasionally work with signature
graphs that are actual grids, and we see some potential for confusion here.3

After submission of this thesis, the concepts introduced in this chapter gave rise to
further applications (apart from those shown in the later parts of the thesis):

• Combined signatures have been used to obtain a simplified presentation of the O(4γn3)
time algorithm for PerfMatch on graphs of genus γ, as well as a ⊕W[1]-hardness
proof for the permanent modulo 2k. Both results will appear in [CX].

• In unpublished joint work with Dániel Marx, the results of Section 2.2.3 were used to
prove lower bounds for PerfMatch under various parameters, assuming #ETH and
#SETH.

3Since Holant problems were initially only studied on planar signature graphs, it made more sense to
speak of signature grids at that time.
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Counting perfect matchings in
H-minor-free graphs
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Introduction to Part I

In this part, we study the problem of counting perfect matchings in a graphG, parameterized
by structural parameters of G, namely the Hadwiger number and variants thereof. Recall
from Section 1.5.3 that the Hadwiger number hadw(G) of a graph G denotes the size of a
maximum clique minor in G.

The relevance of counting perfect matchings and of evaluating the permanent was already
discussed in earlier chapters, and we have reproven a #P-hardness result for PerfMatch in
Section 2.2.3. Despite this hardness result, which actually holds even on bipartite graphs
of maximum degree 3 by Theorem 1.3, there are nontrivial “tractable” graph classes C
such that PerfMatch(G) can be evaluated in polynomial time on graphs G ∈ C. Let us
briefly recapitulate the positive results known in the literature, some of which were already
mentioned in Section 1.3.2. To provide some historical context, we list the results with
their publication dates.

1961/67: It was shown in the area of statistical physics that PerfMatch can be evaluated
in time O(n1.5) for planar graphs, see Theorem 1.27. This algorithm was later
dubbed the FKT method, for their inventors Fisher, Kasteleyn and Temperley
[Kas61, TF61, Kas67]. The algorithm first applied only to certain grids, and
was only later extended to arbitrary planar graphs.

1974/89: The FKT method was generalized to graphs excluding the minor K3,3. These
do not necessarily have to exclude K5 as well, as is the case for planar graphs.
The first algorithm for K3,3-free graphs was shown by Little [Lit74], and it was
later parallelized to an NC-algorithm by Vazirani [Vaz89].

1998: Another generalization of the FKT method was shown [GL98], which is or-
thogonal to the K3,3-free case: The problem PerfMatch admits an O(4γn3)
algorithm on graphs of genus γ. We address the notion of orthogonality later.

folklore: Classical dynamic programming on the tree decompositions gives an 2O(k)n

time algorithm on graphs of treewidth k, as seen in Corollary 1.45.

2014: Very recently, and independently of this work, a parallel polynomial-time
algorithm for computing PerfMatch on graphs excluding the minor K5 was
obtained in [STW14]. This generalizes the FKT method and is orthogonal to
the bounded-genus and the K3,3-free cases.

2006: After submitting this thesis, an algorithm by Makowsky et al. [MRAG06] came
to the author’s attention. This algorithm evaluates the matching polynomial
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µ(ξ) at arbitrary ξ ∈ Q in time nO(k) on graphs of clique-width k. The
clique-width is a graph parameter that generalizes treewidth, and in particular,
complete graphs have clique-width 2. On unweighted graphs G, this algorithm
can be used to compute µ(G; 0) = PerfMatch(G). It does however not apply for
general edge-weighted graphs (and could be used to prove FP = #P otherwise).

Note that algorithms for evaluating PerfMatch on restricted graph classes have a history
that dates back over 50 years and predates the field of computational complexity. We
observe that, apart from the algorithm for graphs of bounded clique-width, all of the
positive results produced in this time are related by a common theme that was seemingly
not remarked before:

Almost every known tractable graph class for PerfMatch excludes some fixed minor.

Indeed, the planar graphs exclude both K3,3 and K5. The K3,3-free graphs and the
K5-free graphs exclude a minor by definition. The graphs of treewidth k exclude the minor
Kk+2 by Lemmas 1.47 and 1.48, and by the same argument, they actually even exclude
the k × k square grid. Finally, the graphs of genus at most k exclude a sufficiently large
clique, and actually even a fixed 1-apex graph H, that is, a graph that can be drawn in
the plane after removal of a single vertex [Epp00].

Addressing the “almost” in the above statement, note that the class of complete graphs
excludes no fixed minor (every graph is the subgraph of some complete graph), but the
number of perfect matchings in complete graphs admits a closed formula. Since complete
graphs have cliquewidth 2, this is however subsumed by the algorithm on graphs of bounded
clique-width from [MRAG06]. Furthermore, we recall that the general problem PerfMatch
on weighted graphs from such classes does not necessarily admit a polynomial-time algorithm.
We will therefore treat the classes of bounded clique-width as an exception.

In the following, we will focus on graph classes that exclude a fixed minor. For such
classes, all known algorithms for evaluating PerfMatch can be seen to crucially exploit
building blocks from the Graph Structure Theorem introduced in Section 1.5:

• For graphs of bounded treewidth or genus, this is clear.

• Concerning the graphs excluding K3,3 or K5,5, it was shown in [Wag37] that such
graphs admit tree decompositions whose torsos are either planar or have bounded
size, and this can be interpreted as a precursor to the Graph Structure Theorem.
Algorithmically, this decomposition was used in the K3,3-free case to extend Pfaf-
fian orientations of the torsos to an orientation of the entire graph, and hence
reduce PerfMatch to the determinant as in the FKT method. Recall the proof of
Theorem 1.27 for the notion of Pfaffian orientations.

• Interestingly, the K5-free case can not be solved via Pfaffian orientations, since K3,3 is
K5-free, but does not admit a Pfaffian orientation [MRST97]. To obtain an algorithm,
the authors of [STW14] introduce a different trick, which we independently discovered
and present in Chapter 3. Our approach also yields a more general result.
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Having identified the importance of graph minors for the evaluation of PerfMatch, it is
very natural to ask whether we can make the jump from evaluating PerfMatch for classes
excluding specific fixed minors, such as K3,3 or K5, to classes excluding arbitrary fixed
minors. This is precisely what we attempt to do in this part, and we formulate the following
research question:

Problem 2.1. For every fixed graphH, is there a polynomial-time algorithm for PerfMatch
on graphs from Excl[H]? Slightly stronger, is PerfMatch/hadw contained in XP?

Conversely, can we prove lower bounds on the running times of such algorithms, or can
we find graphs H such that PerfMatch is #P-complete on C[H]?

In this part, we will present partial answers to these questions, but let us first make
two remarks: Firstly, we consider perfect matchings rather than matchings that are not
necessarily perfect. By Theorem 1.24, counting matchings is already #P-complete on
planar graphs, and this rules out an algorithm on general H-minor free graphs.
Secondly, we could also consider classes excluding a fixed topological minor H, which

is a weaker requirement than excluding H as a minor. However, this is not useful: If
∆(H) ≤ 3, then any graph G contains H as a minor iff G contains H as a topological minor.
Otherwise, if ∆(H) ≥ 4, then all graphs of maximum degree 3 exclude H as a topological
minor, and we recall that PerfMatch is #P-complete on such graphs by Theorem 1.3.
Hence, every positive result we could obtain on classes excluding topological minors H,
namely if ∆(H) ≤ 3, is already covered by results on classes excluding minors.

Single-crossing minors

In Chapter 3, we give a partial answer to the algorithmic question posed in Problem 2.1.
Let us call a graph H single-crossing if H can be drawn in the plane with at most one
crossing. We show that, for every fixed single-crossing graph H, the problem PerfMatch
can be solved in polynomial time on graphs from Excl[H].

Theorem 3.1. For any fixed single-crossing graph H, we can compute PerfMatch(G) in
time O(n4) on graphs G ∈ Excl[H].

It should be stressed that the excluded minor H rather than G is required to be single-
crossing: An algorithm for PerfMatch(G) on single-crossing graphs G would be rather
underwhelming as it could be derived easily by reduction to the planar case.

Theorem 3.1 unifies and generalizes the algorithms for bounded-treewidth graphs, K3,3-
free graphs and K5-free graphs: The graphs K3,3 and K5 are single-crossing by the drawings
below, and as mentioned before, the graphs of treewidth k exclude the k × k grid, which
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is even a planar graph. In fact, our algorithm uses an algorithm for bounded-treewidth
graphs as a subroutine.

Graphs excluding a fixed single-crossing minor H have already been studied in other
contexts, and our proof of Theorem 3.1 relies on some of these results: By a theorem
of Robertson and Seymour [RS93], the graphs in Excl[H] for single-crossing H can be
decomposed into planar graphs and graphs of bounded treewidth, and it was shown by
Demaine et al. [DHN+04] how to compute such decompositions. The same authors also
described approximation algorithms for the treewidth and other invariants of such graphs
[DHT02, DHN+04, DHT05], and Chambers and Eppstein [CE13] developed an O(n logn)
algorithm for computing maximum flows on such graphs.
We also observe that Theorem 3.1 is orthogonal to the bounded-genus case from Theo-

rem 1.28: The graph consisting of n disjoint copies of K5 can be seen to have unbounded
genus, but it excludes K3,3 as a minor. Thus, Theorem 3.1 applies for this graph, while the
algorithm for bounded-genus graphs does not. Conversely, the class of torus-embeddable
graphs contains all single-crossing graphs, as we can always embed one of the crossing
edges on the “handle”. Thus, the algorithm for bounded-genus graphs applies here, while
Theorem 3.1 does not.

Our algorithm for PerfMatch on graphs that exclude a fixed single-crossing minor
proceeds by reduction to PerfMatch on graphs that are planar or have bounded treewidth,
treating these problems as black boxes. In particular, the theory of Pfaffian orientations
will not be exploited within our algorithm, as opposed to the approaches undertaken
in [Lit74, Vaz89] for K3,3-free and in [GL98, Tes00] for bounded-genus graphs. If an
alternative algorithm for planar PerfMatch were found that circumvents the theory of
Pfaffian orientations, then the same would follow for our algorithm. This allows for a
simple algorithm that fits nicely into the framework introduced in Section 2.

Lower bounds

In view of the Graph Structure Theorem for not necessarily single-crossing graphs H, it
is natural to ask whether our approach for PerfMatch can be extended to such graphs as
well. To repeat the algorithmic question in Problem 2.1, is there, for every fixed H, a
polynomial-time algorithm for PerfMatch on graphs from Excl[H]?
We could not find an answer to this general question yet, due to our failure to handle

the vortices arising in the Graph Structure Theorem. In Chapter 4, we will however see
that, if such polynomial-time algorithms exist (and can be uniformly constructed) for every
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fixed H, then their exponent must depend on H, thus providing a lower bound in the sense
of Problem 2.1. In other words, we prove that PerfMatch/hadw is #W[1]-hard.
To show this, we actually prove the stronger statement that PerfMatch/apex is #W[1]-

hard. Recall that apex(G), first introduced in Section 1.2.2, denotes the minimum size of
a set A ⊆ V (G) such that G−A is planar. Apices are one of the several building blocks
allowed by the Graph Structure Theorem, and we have mentioned in Remark 1.53 that
hadw(G) can be bounded by a function of apex(G) for all graphs G. Hence, a hardness
result for PerfMatch under the apex number also implies one under the Hadwiger number.

Theorem 4.1. The problem PerfMatch0,1/apex is #W[1]-hard.

Corollary 4.1. The problem PerfMatch0,1/hadw is #W[1]-hard.

Note that this #W[1]-hardness result contrasts Theorem 3.1, where an f(H)n4 algorithm
was obtained for each fixed single-crossing graph H. We will revisit this soon and define
an appropriate parameter that allows us to express that PerfMatch is fixed-parameter
tractable when parameterized by excluded single-crossing minors.
However, let us first note that we strengthen Theorem 4.1 in Section 4.2 by proving

that counting k-defect matchings in planar graphs is #W[1]-hard. Recall that the k-defect
matchings in a graph G are those matchings that leave exactly k vertices unmatched. It is
easily observed that these matchings can be counted in time nk+O(1) on planar graphs by
summing over the quantities PerfMatch(G− S) for all k-subsets S of V (G), where each
term can be computed by the FKT method (see Theorem 1.27). The following result
complements this naive algorithm:

Theorem 4.10. Given a planar graph G and a number k ∈ N as inputs, the problem
#PlanarDualMatch of counting the k-defect matchings in G is #W[1]-hard.

Note that the parameterized complexity of counting k-defect matchings is not interesting
on general graphs: Already for k = 0, this amounts to the #P-complete problem of counting
perfect matchings on general graphs. On a different note, in planar graphs and in graphs of
constant maximum degree, the dual problem of counting k-matchings, with k edges rather
than defects, is fixed-parameter tractable by a general meta-theorem for counting models
of first-order logic formulas on graphs of bounded local treewidth [FG01, Fri04].

Generalized Hadwiger numbers

After the short digression into implications of Theorem 4.1, we return to our main problem
of evaluating PerfMatch in graphs excluding fixed minors. Note that, in Corollary 4.2, we no
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longer considered the evaluation of PerfMatch on classes Excl[H] for fixed H, but we rather
went one step further and asked about the parameterized complexity of PerfMatch/hadw.
This can be put into a more general framework: Rather than considering PerfMatch only
on classes Excl[H] for fixed H, we can also consider its parameterized complexity under
generalized versions of the Hadwiger number.

Definition. Given an infinite graph class D and a graph G, let

hadwD(G) = min{|V (H)| | H : H ∈ D ∧ H 6� G}.

Given another graph class D′, let us write D � D′ if, for all H ∈ D, there is some H ′ ∈ D′

with H � H ′.

The relation � on graph classes defined above is clearly transitive and reflexive, and it
induces the following ordering on the parameters hadwD:

Lemma. If D,D′ are recursively enumerable graph classes with D � D′, then there is a
computable function f : N→ N such that

hadwD′(G) ≤ f(hadwD(G)).

Proof. Let hadwD(G) = k, so there exists some H ∈ D on k vertices with H 6� G. Since
D � D′, there is some graph H ′ ∈ D′ satisfying H � H ′, which implies that H ′ 6� G. The
graph H ′ can be found by enumerating all H ′ ∈ D′ and testing whether H � H ′ holds by
brute force, and hence, we have |V (H ′)| ≤ f(k) for a computable function f . This implies
the bound hadwD′(G) ≤ |V (H ′)| ≤ f(k).

That is, if two graph classes D and D′ satisfy D � D′, then tractability results for
hadwD′ are stronger than results for hadwD. A maximal element among these classes is
K, the set of complete graphs: Since D � K holds for all classes D, tractability results for
hadwK are the strongest results that could hypothetically be obtained, but they are ruled
out for PerfMatch by Corollary 4.2 unless FPT = #W[1].
We can thus only hope for tractability results under the parameter hadwD for classes
D with K 6� D. One such parameter could be hadwCR1, where CR1 denotes the class of
single-crossing graphs, and indeed, we can state Theorem 3.1 in a slightly stronger form.

Theorem 3.2. The problem PerfMatch/hadwCR1 is fpt.

We would like to know where #W[1]-hardness sets in between the parameters hadwCR1
and hadwK, and hence ask whether there is a class D with K 6� D such that the problem
PerfMatch/hadwD is #W[1]-complete. It will turn out that our proof of Theorem 4.1 fails
to provide such a class D: More precisely, if D denotes the class of output graphs produced
by the reduction, then we will explicitly note that K � D holds.
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In an attempt to extend the algorithm from Theorem 3.2, we complement Theorem 4.1
by an algorithm on certain restricted k-apex graphs: If G is a graph with k apices that see
at most s faces of the underlying planar graph, then we can determine PerfMatch(G) in
time f(k, s) · nO(1). In fact, the same holds when the underlying graph has bounded genus.

Theorem 4.21. Given as input a graph G, a set A ⊆ V (G), and a drawing of G−A on a
surface of genus γ such that A is adjacent to at most s faces, we can compute PerfMatch(G)
in time f(|A|, γ, s) · n3 for a computable function f .

This setting is motivated by a decomposition theorem for graphs G excluding a fixed
1-apex minor H: As shown in [DHK09], such graphs G admit decompositions similar to
those described by the Graph Structure Theorem, with the additional restriction that
apices of torsos can connect only to the underlying faces that contain vortices, under a
slightly generalized notion of vortices. Since each torso features only f(H) vortices, the
apices of G can hence see only f(H) faces, for some computable function f . With a leap
of faith, and assuming that we can eventually “solve vortices” in fixed-parameter time, we
can hence interpret Theorem 4.21 as suggesting an fpt-algorithm for PerfMatch/hadwA1,
where A1 is the class of 1-apex graphs.4

Notes

The proof of Theorem 4.1 from Section 4.1 is joint work with Mingji Xia, partly carried
out when the author was visiting him at ISCAS Beijing in 2013. This work is to appear in
[CX]. All other results were obtained independently.

The author conjectured Theorem 4.10 already in 2010, and a connection to graph minors
was suggested to the author in the same year by Dániel Marx and Holger Dell at the
Dagstuhl Seminar 10481 “Computational Counting”.

The algorithm for PerfMatch on graphs excluding a K5-minor from [STW14] uses ideas
that are similar to our approach in Theorem 3.2. Our work was obtained independently, as
stated in the conclusion section of that paper, and we have published our result shortly
after as an arXiv preprint [Cur14]. Note that our results generalize those in [STW14].

The immense use of the problem #GridTiling for reductions to planar-ish problems was
only clear to the author after visiting Dániel Marx in 2013 at MTA SZTAKI, Budapest.

4While this is not explained in the present thesis, as long as vortices are not present, clique-sums of
bounded adhesion can be performed efficiently for the problem PerfMatch.

85





3. Excluding a single-crossing minor

In this chapter, we prove Theorem 3.1 by presenting, for every fixed single-crossing graph
H, a polynomial-time algorithm for PerfMatch(G) on graphs G ∈ Excl[H].

Theorem 3.1 (restated from page 81). For any fixed single-crossing graph H, we can
compute PerfMatch(G) in time O(n4) on graphs G ∈ Excl[H].

In fact, we prove the stronger statement of Theorem 3.2, which states that the problem
PerfMatch/hadwCR1 is fpt. Our algorithm essentially proceeds by standard dynamic
programming, augmented with a trick that allows to store the results of the subproblems
needed to solve G within G itself as “remnant” vertices. A similar trick was used for
computing maximum flows in graphs exlcuding a fixed single-crossing minor [CE13].

Theorem 3.2 (restated from page 84). The problem PerfMatch/hadwCR1 is fpt.

A crucial ingredient in the algorithm is a variant of Theorem 1.52 that describes the
structure of graphs G ∈ Excl[H] when H is single-crossing. This variant, shown in [RS91],
asserts that all such graphs G can be decomposed into planar torsos and torsos of bounded
treewidth, using tree decompositions of adhesion at most 3. Please recall Definition 1.51
for these notions. Furthermore, it was shown in [DHN+04] that such decompositions can
be found in time f(H)n4 for a computable function f . For our purposes, we need to refine
these decompositions slightly by imposing a certain triangle condition upon planar torsos,
in a way that is similar to [CE13].

Theorem 3.3. There is a computable function f such that, on input a single-crossing
graph H and a graph G ∈ Excl[H], we can compute a tree decomposition T = (T,B) of G
with B = (Bt)t∈V (T ) in time f(H)n4 that satisfies the following properties: The adhesion
of T is bounded by 3, and for each node t ∈ V (T ), the torso Gt satisfies

• tw(Gt) ≤ f(H), or

• Gt is given as a plane graph with the following triangle condition: If s is a neighbor
of t in T and |Bs ∩Bt| = 3 holds, then Bs ∩Bt bounds a face in Gt.

Proof. By [DHN+04, Theorem 2], we can find a tree decomposition T of G in time f(H) ·n4

that satisfies the conditions, except that planar torsos do not need to obey the triangle
condition. We split such torsos (given as plane graphs) along triangles to fix T .

Let t ∈ V (T ) be a node with planar torso Gt and let s be a neighbor of t, withK = Bs∩Bt
of size 3 that does not bound a face in the plane graph Gt. Then the interior of K in
the drawing of Gt contains an induced subgraph F of Gt such that F −K is non-empty.
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Figure 3.1.: (left) A tree decomposition T of G. At t ∈ V (T ), the torso Gt is shown. Edges
that are not present in G itself are dashed. Subsets Bs ∩Bt for st ∈ E(T ) are
colored. (right) The splitting operation used for Theorem 3.3.

See the right part of Figure 3.1 for an example, where F is drawn red. Create a node
t′ in T , declare Bt′ = V (F ) and add the edge tt′ to T . For every neighbor r of t with
Bt ∩ Br ⊆ V (F ), replace the edge tr in T by t′r. Then delete V (F ) \K from Bt. It is
easily checked that the resulting tree decomposition is still a tree decomposition of G.
Repeat this process as long as there is a planar torso Gt that violates the triangle

condition. Each step decreases the total number of triangles that violate the triangle
condition (over all torsos Gt) by 1. Since planar graphs have O(n) triangles by Euler’s
formula, this process stops in time O(|V (T )| · n).

We can view [DHN+04, Theorem 2], which yields our initial unrefined tree decomposition,
as a successor to Wagner’s theorem [Wag37], which gives a similar result for the K5-free
graphs, and which in turn may be considered a follow-up result on Kuratowski’s theorem
[Kur30]. It should also be noted that, for specific single-crossing minors such as K3,3 or
K5, the initial decomposition T required in the proof of Theorem 3.3 can be found in time
O(n) instead of O(n4), as shown in [Asa85] for K3,3 and [RL08] for K5.

We use Theorem 3.3 as follows: Given a graph G with hadwCR1(G) = k, for k ∈ N, start
enumerating the single-crossing graphs H by non-decreasing number of vertices. For each
graph H, test whether H � G holds via Theorem 1.39. Once the first test fails, stop and
observe that |V (H)| = k holds. Then invoke Theorem 3.3 on H and G to obtain the tree
decomposition T of G in time g(k) · n4 for some computable function g.
Let us consider G as an edge-weighted signature graph Ω that features the signature

HW=1 at each vertex. Of course, the tree decomposition T of G also applies to Ω. As in
Example 2.3, we obtain PerfMatch(G) = Holant(Ω), and we will work with this signature
graph Ω from now on. In particular, our algorithm will rely upon the following two
elementary operations on signature graphs.

Fact 3.4. Given a vertex v ∈ V (Ω) with signature HW=1 and a subset A ⊆ I(v), let Ωv�A

be defined from Ω as shown below: First, add vertices s and t with signatures HW=1 to Ω,
and edges vs and st, shown blue. Secondly, replace each edge vw in A, for w ∈ V (Ω), by
the edge tw. Then Holant(Ω) = Holant(Ωv�A).
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Proof. Consider the gate induced by {v, s, t} in Ω′ = Ωv�A. Its signature is HW=1, similar
to Example 2.16. We have Ω′↓{v,s,t}= Ω, so Proposition 2.11 implies the claim.

The operation described in Fact 3.4 can be used to “collapse” two vertices to one.

Fact 3.5. Let u, v ∈ V (Ω) feature arbitrary signatures, but no incident parallel edges, and
assume that all neighbors of u and all neighbors of v feature the signature HW=1.

Then we can replace u, v by a new vertex w, adjacent to X = N(u) ∪ N(v), without
incident parallel edges, and we can compute a signature for w in time 2O(|X|) to obtain a
signature graph Ω�u,v with Holant(Ω) = Holant(Ω�u,v).

Proof. Proceed as in the following picture, where X is black and u, v are red.

That is, for each x ∈ X, let J(x) := {xu, xv} ∩ E(Ω), and successively replace Ω by
Ωx�J(x). This adds vertices to Ω, shown blue, and does not change Holant(Ω) by Fact 3.4.
Consider the gate Γ induced by u, v and the added vertices. Since no parallel edges

are present, we can compute Sig(Γ) by brute force in time 2O(|X|). Define Ω�u,v = Ω↓Γ,
declare w as the vertex that replaces Γ in Ω↓Γ, and observe that Lemma 2.11 about gate
contractions implies Holant(Ω) = Holant(Ω�u,v).

In order to compute Holant(Ω), we present an algorithm that modifies Ω and T iteratively
in a bottom-up manner. At each step, we delete a leaf t from T by contracting its associated
bag in Ω to a so-called remnant vertex: This is simply a vertex of degree at most 3 that
may feature a signature other than HW=1 that can be realized by a matchgate. At any
given time in the execution, we denote the set of such remnant vertices by R ⊆ V (Ω), and
we note that R = ∅ holds prior to execution. Furthermore, we maintain the following four
invariants during execution of the algorithm:

1. All modifications made on Ω preserve Holant(Ω).

2. After each step, T is a tree decomposition of Ω − R satisfying the conditions of
Theorem 3.3. In particular, |Bs ∩Bt| ≤ 3 holds for all st ∈ E(T ).

3. The neighborhood of each r ∈ R is contained in Bs ∩ Bt for some st ∈ E(T ). No
parallel edges are incident with r. This implies deg(r) ≤ 3 by Invariant 2.

4. All vertices in Ω−R feature the signature HW=1, while vertices r ∈ R may feature
arbitrary signatures that can be realized by matchgates.
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3. Excluding a single-crossing minor

All invariants hold trivially before execution of the algorithm. We then repeat the
following steps as long as |V (T )| ≥ 1 holds.

1. Pick a leaf t ∈ V (T ) and let s denote its parent. In the following steps, we will
process t in a way that will ultimately lead to its deletion. Let S = Bt \Bs, and if t
is the only node left in T , let S = Bt.

2. Let E(S, S) = {uv ∈ E(Ω) | u ∈ S, v /∈ S}. By Lemma 1.46, we actually have
that E(S, S) = {uv ∈ E(Ω) | u ∈ S, v ∈ Bs ∩ Bt}. We wish to contract S to a
remnant vertex, but to ensure Invariant 3, we first need to preprocess Ω and S to
avoid introducing parallel edges.

a) For each x ∈ Bs ∩Bt, write D(x) = I(x) ∩ E(S, S) and replace Ω by Ωx�D(x)
from Fact 3.4. See the picture above. This adds a set N of at most 6 vertices to
Ω and satisfies Invariant 1 by Fact 3.4. Furthermore, |E(S, S)| ≤ 3 holds.

b) Put N into Bt to obtain a tree decomposition of the resulting graph Ω. Recall
that we write Ωt for the torso of node t. We verify Invariant 2 by the following
observations:

• If tw(Ωt −R) ≤ c before Step 2.a, then tw(Ωt −R) ≤ c+ 6 now.

• If Ωt −R was a plane graph obeying the triangle condition before Step 2.a,
then the drawing can be extended as below. Note that, if |Bs ∩ Bt| = 3,
then the triangle condition yields that all edges incident with Bs ∩Bt are
contained in a single region bounded by Bs ∩Bt.

3. After Step 2, the set S = Bt \ Bs induces a gate Γ with at most 3 dangling edges
E(S, S) in Ω, all of which lead to Bs ∩ Bt. We want to contract Γ to a remnant
vertex, but this requires us to compute Sig(Γ). Here, we will use that Ωt − R is
either planar or has bounded treewidth by Invariant 2, but we still need to handle
the remnant vertices present in Γ. To this end, we realize remnant vertices by planar
matchgates via Lemma 2.23 after a preprocessing step.

a) If Ωt contains a clique with two attaching remnant vertices u, v ∈ R, replace
Ω by the graph Ω�u,v from Fact 3.5. This requires time O(1) and satisfies
Invariant 1. Repeat this until, for every clique K in Ωt, at most one remnant
vertex in Ωt attaches to K. Now observe the following:
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i. We have tw(Ωt − R) = max{tw(Ωt), 4}: By Invariant 2, every remnant
vertex r ∈ R attaches to some clique K in Ωt −R. By Lemma 1.47, the
tree decomposition of Ωt −R has a node b whose bag contains K. Add a
child b′ to b, with bag K ∪ {r}, to obtain a tree decomposition of Ωt.

ii. If Ωt − R is planar, then so is Ωt: By Invariant 2, every remnant vertex
r ∈ R has neighborhood Kr = Bt∩Bb for some neighbor b of t. By Step 3.a,
no other remnant vertex has neighborhood Kr. By the triangle condition,
Kr bounds a face of Ωt −R, so we can draw the single remnant vertex r
with neighborhood Kr in this face.

b) Replace each remnant vertex v ∈ V (Γ) ∩ R by a planar matchgate from
Lemma 2.23 that realizes the signature of v. This is possible by Invariant 4:
Since v has the signature of a matchgate, this signature obeys the parity condi-
tion, and can hence be realized by Lemma 2.23. Note that Γ now is a matchgate
itself, and similar to Steps 3.a.i and 3.a.ii, it is either planar or has bounded
treewidth. Hence, we can compute Sig(Γ) with at most 23 calls to PerfMatch
in planar graphs or bounded-treewidth graphs via Fact 2.18 and the algorithms
from Theorem 1.27 for planar graphs and Corollary 1.45 for bounded-treewidth
graphs.

c) Contract Γ to a remnant vertex wt with signature Sig(Γ). This preserves
Holant(Ω) by Lemma 2.11. Place wt into R and Bs, then delete the node t from
T . We check the four invariants:

Inv. 1 All modifications were explicitly noted to preserve Holant(Ω).

Inv. 2,4 The vertex wt is obtained from contracting Γ, which eventually was
a matchgate. We added wt to Bs and R, and we only deleted other
vertices, but never modified their signatures.

Inv. 3 All dangling edges of Γ lead to Bs ∩Bt.

Repeat these steps until the root of T is reached, when Ω is contracted to an isolated
remnant vertex. By Invariant 1, its signature of arity 0 is equal to PerfMatch(G).

The running time for each step is bounded by O(n1.5) arithmetic operations in the planar
case (Theorem 1.27), or by f(k) · n in the bounded-treewidth case (Corollary 1.45). The
number of executed steps is equal to the number of nodes in T , which can easily be ensured
to be O(n). Hence, the overall running time spent, including that for Theorem 3.3, is
g(H) · n4 for some computable function g. This proves Theorem 3.2.

Remark 3.6. The signatures of contracted gates (and consequently, the edge-weights
appearing in the matchgates realizing them) may feature numbers with at most O(n) bits.
Performing arithmetic operations on such numbers however does not change the overall
running time.
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4. Apices and planar k-defect matchings

In this chapter, we consider PerfMatch on graphs with small apex number. In Section 4.1,
we prove Theorem 4.1, which asserts that PerfMatch/apex is #W[1]-hard, from which we
derive #W[1]-hardness for PerfMatch/hadw as Corollary 4.2. In Section 4.2, we extend this
to show that the problem #PlanarDualMatch of counting k-defect matchings is #W[1]-hard,
as claimed in Theorem 4.10. These results are complemented by an fpt-algorithm for
graphs containing certain restricted apices in Theorem 4.21, see Section 4.3.

4.1. Perfect matchings on k-apex graphs

In this section, we prove Theorem 4.1 and thus present the first major application of our
framework of combined signatures.

Theorem 4.1 (restated from page 83). The problem PerfMatch0,1/apex is #W[1]-hard.

By Remark 1.53, and as discussed before, this yields the following corollary.

Corollary 4.2 (restated from page 83). The problem PerfMatch0,1/hadw is #W[1]-hard.

Our reduction is from the problem #GridTiling of counting planar grid tilings, which
was introduced as Problem 1.12 on page 32. In this problem, we are given a function
T : [k]2 → 2[n]2 , and we wish to count the consistent grid tilings a : [k]2 → [n]2 of T , as
specified in Problem 1.12. By Lemma 1.13, this problem is #W[1]-hard, even when T is
balanced, in the sense that we are given some T ∈ N such that, for any choice of κ ∈ [k]2

and v ∈ [n], the set T (κ) features exactly T pairs of the form (?, v).
From a very high level, our reduction from #GridTiling could be compared to, say, the

reduction in [Mar12] for planar multiway cut: In Section 4.1.1, we first express the number
of consistent grid tilings as Holant(G) for a k× k grid G with appropriate signatures. This
is possible since the consistency of grid tilings can be checked locally at each cell. Then we
realize the signatures of G in Section 4.1.2. At this point however, we need to invoke the
framework of combined signatures, described in Section 2.3, and this is where we depart
from the usual reductions from #GridTiling. In particular, we need to invoke 2k2 oracle
calls to the target problem PerfMatch/apex, and thus need to exploit the full power of
Turing fpt-reductions, whereas one oracle call sufficed in [Mar12].

4.1.1. Global construction

Let n, k, T ∈ N and let T : [k]2 → 2[n]2 be an instance to #GridTiling as above. First, we
show how to reformulate T as the Holant of a signature graph G = G(T ). This graph G
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4. Apices and planar k-defect matchings

Figure 4.1.: The signature graph G(T ). Border vertices cκ for κ ∈ {N,W,S,E} × [k] are
shown gray, along with their incident edges. Cell vertices cκ for κ ∈ [k]2 are
shown black. Horizontally or vertically adjacent edges are connected by an
edge bundle of n parallel edges.

consists of a k × k square grid of cells, and 4k additional border vertices adjacent to the
borders of the grid. Note that G is planar. We denote its vertices by cκ for κ ∈ Ξ, where

Ξ := [k]2 ∪ {N,W,S,E} × [k].

Vertices κ, κ′ ∈ [k]2 are called horizontally or vertically adjacent as specified in Section 1.1.
Additionally, any index (N, i) for i ∈ [k] is declared to be vertically adjacent to (1, i), and
(S, i) is vertically adjacent to (k, i). Likewise, (W, i) is horizontally adjacent to (i, 1),
and (E, i) is horizontally adjacent to (i, k), see Figure 4.1. We refer to the neighbors of
any index/vertex using cardinal directions in the obvious way, e.g., we may speak of the
northern neighbor of a vertex. Between any pair of vertices cκ and cκ′ with adjacent indices
κ and κ′, we place a set Eκ,κ′ of n parallel edges, which we call an edge bundle.
We proceed to define the signatures of G. In the assignments a ∈ {0, 1}E(G) we are

interested in, each edge bundle features exactly one active edge, which is used to encode
a number from [n]. At border vertices, we place the signature HW=1 to ensure this. The
signatures of cells cκ, for κ ∈ [k]2, will be defined so that each cell propagates the number
xW ∈ [n] encoded by its western incident edge bundle to the east, and its northern number
xN ∈ [n] to the south while checking along the way whether (xW , xN ) ∈ T (κ) holds.
In this section, we adhere to the following notational conventions:

• We often identify the string 0i−110n−i ∈ {0, 1}n with the number i, for all i ∈ [n],
when it is clear from the context which of these two objects we refer to.

• The 4n incident edges of each vertex cκ, for κ ∈ [k]2, are ordered such that all
northern edges appear first, in a block of length n, followed by the n eastern, the n
southern, and finally the n western edges.
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4.1. Perfect matchings on k-apex graphs

• We also implicitly consider all strings x ∈ {0, 1}4n to be decomposed into x =
xNxExSxW with xN , xE , xS , xW ∈ {0, 1}n,

Using these conventions, we define the predicates

ϕone(x) ≡ hw(xN ) = 1 ∧ hw(xW ) = 1,
ϕprop(x) ≡ xN = xS ∧ xW = xE .

If a vertex function f satisfies ϕprop(x) for each x ∈ supp(f), then we call f propagating.
By placing at each cell vertex cκ, with κ ∈ [k]2, a specific propagating signature fκ, which
we define in the following, we can complete the grid G to a signature graph whose satisfying
assignments correspond bijectively to the valid grid tilings of T .

Definition 4.3. For κ ∈ [k]2, let fκ be any function fκ : {0, 1}4n → {0, 1} such that, for
all x ∈ {0, 1}4n satisfying the predicate ϕone(x), we have

fκ(x) =

1 if ϕprop(x) ∧ (xW , xN ) ∈ T (κ),
0 otherwise.

Note that no requirement is imposed upon fκ(x) on those x ∈ {0, 1}4n that fail to satisfy
the predicate ϕone(x).

We attach a signature fκ to the cell cκ, for all κ ∈ [k]2. Recall that border vertices are
assigned HW=1. In the following, we show that G = G(T ) indeed encodes T properly.

Lemma 4.4. The consistent grid tilings of T correspond bijectively to the satisfying
assignments in x ∈ {0, 1}E(G), and each satisfying assignment x has valG(x) = 1.

Proof. Every consistent grid tiling a : [k]2 → [n]2 can be transformed into an assignment
x(a) ∈ {0, 1}E(G) as follows: For each κ ∈ [k]2, with a(κ) = (i, j), declare the i-th edge in
the western edge bundle of cκ and the j-th edge in the northern edge bundle of cκ to be
active. At vertices c(k,?), copy the assignment from northern edges to southern edges, and
at c(?,k), copy the assignment from western edges to eastern edges. Declare all other edges
to be inactive. It follows from the definition of fκ at all κ ∈ [k]2 that valG(x(a)) = 1.

For the converse direction, we show that every satisfying assignment x ∈ {0, 1}E(G) can
be written as x = x(a) for some consistent grid tiling a, where x(a) is defined as in the
previous paragraph. Note that this also implies valG(x) = 1. By the signature HW=1, every
border vertex is incident with exactly one active edge in x. Hence, the restriction of x to
I(c1,1) satisfies ϕone; call this restricted assignment y. Since f1,1(y) = 1, and since f1,1 is
propagating, we also have ϕprop(y). Furthermore, we have (yW , yN ) ∈ T (1, 1) by definition
of f1,1. By induction along rows and columns, we obtain, for every κ ∈ [k]2, that the
partial assignment y at I(cκ) satisfies ϕprop(y) and (yW , yN ) ∈ T (κ). Hence x = x(a) holds
for a unique consistent grid tiling a.

In the next subsection, we realize each signature fκ in G as a linear combination of two
matchgate signatures, where one matchgate is planar, and the other has maximum apex
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4. Apices and planar k-defect matchings

number 2. Note that the remaining signatures HW=1 occurring in G are planar. Since G
itself is planar and features only k2 signatures fκ, the graphs realizing G will feature at
most 2k2 apices, and we will use this to obtain the desired parameterized reduction.

4.1.2. Realizing cell signatures

Using arguments as in Section 2.2.2, it can be unconditionally shown that there are non-
planar signatures fκ. From the viewpoint of complexity theory, if all signatures fκ in G
were planar and we knew explicit planar matchgates, then we could count consistent grid
tilings by reduction to planar PerfMatch, and thus show FP = #P by the FKT method.1

Rather than trying to use planar matchgates, we show that each signature fκ can be
realized as a specific combination of the signatures of one planar and one 2-apex matchgate.
Note that at least one non-planar constituent is necessary in such a combination, as we
could otherwise solve #GridTiling by reduction to 2k2 instances of planar PerfMatch via
Lemma 2.35, solve each planar instance by the FKT method, and thus show FPT = #W[1].
In the remainder of this section, we construct the constituents for fκ. We consider

κ ∈ [k]2 to be fixed, we write A = T (κ) and we recall that A ⊆ [n]2. For clarity of
presentation, we abbreviate certain bitstrings of length 4:

:= 0000,
:= 0101,
:= 1010,
:= 1111.

The constituents for fκ will be the signatures of two gates Φ and Φ′(A) that we construct
in the following. These gates in turn use as building blocks the signatures PASS and ACT,
which we will show to be realized by “essentially planar” matchgates.

PASS(x) =


−1 if x = ,

1 if x ∈ { , , },
0 otherwise.

ACT(x) =


PASS(y) if x = y00 for y ∈ {0, 1}4,
1 if x ∈ { 11, 11},
0 otherwise.

Note that the signature PASS agrees with the signature CROSS from Section 2.2.2 on all
inputs, with the exception of , where

PASS( ) = −1 = −CROSS( ).

1Note that Lemma 1.11 and 1.13 imply #P-hardness of #GridTiling since the initial reduction source
#Clique is easily seen to be #P-complete and the reductions are polynomial-time reductions.
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4.1. Perfect matchings on k-apex graphs

Figure 4.2.: The matchgates ΓPASS and ΓACT realizing PASS and ACT. All black vertices are
assigned HW=1. In the drawing of ΓACT, all red vertices are assigned PASS. The
matchgate ΓPASS was inspired by [CG14, Figure 6].

This allows PASS to satisfy the matchgate identities on on page 65, which are violated by
CROSS, and hence PASS admits a planar matchgate ΓPASS, shown in Figure 4.2 and verified
in Lemma 4.5
The signature ACT has arity 6, and we consider its last two inputs as “switches”, which

will later connect to apices. It is crucial to observe that

ACT(x00) = PASS(x) ∀x ∈ {0, 1}4.

Intuitively, if the two switch inputs are off, then ACT behave exactly like PASS on its
non-switch inputs. If both switches are on, then some differences occur, namely, the
restriction to non-switch inputs must be in state or for ACT to yield a nonzero value.
Furthermore, if only one of the two switches is on, then ACT yields value zero.

Lemma 4.5. It holds that Sig(ΓPASS) = PASS and Sig(ΓACT) = ACT.

Proof. Deferred to Section 4.1.3.

Recall that we wanted to define matchgates Φ and Φ′(A) using the signatures PASS and
ACT. To obtain Φ, we arrange PASS in a square grid as in Figure 4.3 on the following page
and realize each occurrence by ΓPASS. A similar construction yields Φ′(A), with the addition
of apex vertices a1 and a2, and the signature ACT replacing PASS at all indices κ ∈ A, which
is realized by ΓACT. Note that Φ′(A) is not necessarily planar, but it is obviously planar
after removal of a1 and a2. We give more formal definitions in the following.

Definition 4.6. Let Φ denote the gate consisting of an n × n square grid of vertices
featuring PASS, with 4n dangling edges, as shown in Figure 4.3.
Given A ⊆ [n]2, let the gate Φ′(A) be defined as an n× n square grid of vertices vτ for

τ ∈ [n]2. The signature at vτ is defined as ACT if τ ∈ A, and as PASS if τ /∈ A. Add two
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4. Apices and planar k-defect matchings

Figure 4.3.: The gates Φ and Φ′(A). White vertices are assigned PASS, black vertices are
assigned ACT. Gray vertices in Φ′(A) are apex vertices. Edges from apices are
drawn dashed to avoid visual cluttering. By the balance property of T , every
column has the same number T of signatures ACT.

apex vertices a1 and a2 with signature HW=1. For all τ ∈ A, add the edges a1vτ and a2vτ
and declare these to be the last two edges in the edge ordering of I(vτ ).
By realizing PASS and ACT by the matchgates ΓPASS and ΓACT, respectively, we can view

Φ and Φ′(A) as matchgates as well.

By the balance property of our instance to #GridTiling, as ensured in Lemma 1.13, there
is some T ∈ N such that we have |A ∩ (?, v)| = T for all v ∈ [n]. That is, in Figure 4.3, we
may assume that every column features the same number of vertices with signature ACT.
In the following, we use this to compute the signatures of Φ and Φ′(A), and we show how
to combine them to realize the cell signature fκ.

Lemma 4.7. Recall the definition of the predicates ϕone and ϕprop on page 95. Let
x ∈ {0, 1}4n be an assignment that satisfies the predicate ϕone. Then

Sig(Φ, x) =

0 if ¬ϕprop(x),
−1 if ϕprop(x).

(4.1)

Sig(Φ′(A), x) =


0 if ¬ϕprop(x)−T if (xW , xN ) /∈ A
−T + 2 if (xW , xN ) ∈ A

if ϕprop(x).
(4.2)

For x ∈ {0, 1}4n satisfying ϕone, and for κ ∈ [k]2, let us write A = T (κ). Then we have

fκ(x) = 1
2Sig(Φ′(A), x)− T

2 Sig(Φ, x). (4.3)

In Section 4.1.3, we prove Lemma 4.7 by inspecting the possible satisfying assignments
to Φ and Φ′. Before doing this, let us first show how Lemma 4.7 implies Theorem 4.1:

Proof of Theorem 4.1. By Lemma 4.4, we know that Holant(G) counts the consistent grid
tilings of T . Using the linear combination (4.3) and Lemma 4.5, the Combined Signature
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4.1. Perfect matchings on k-apex graphs

Lemma (Lemma 2.35) yields

Holant(G) = 1
2k2

∑
ω:[k]2→[2]

(−T )d(ω) · PerfMatch(Hω), (4.4)

where, for ω : [k]2 → [2], we define d(ω) ∈ N and the graph Hω in the following way:

• d(ω) is the number of 2-entries in ω, and

• Hω is obtained as follows:

– For κ ∈ [k]2 with ω(κ) = 1, insert the matchgate Φ′(T (κ)) at the cell vertex cκ.
– For κ ∈ [k]2 with ω(κ) = 2, insert the matchgate Φ at the cell vertex cκ.

Since G is planar, and since Φ and Φ′(T (κ)) for κ ∈ [k]2 both have at most 2 apices, it
follows that the graphs Hω have maximum apex number 2k2.
Note that, by construction of the matchgates ΓPASS and ΓACT, every graph Hω features

only edge-weights from the set {−1, 1/2, 1}. Furthermore, non-unit edge-weights in Hω

appear only at edges uv ∈ E(Hω) where neither of u, v are apices. We can hence use
Lemma 1.37 and Remark 1.30 to remove the edge-weights −1 and 1/2, while maintaining
the apex number, and thus obtain #W[1]-completeness of PerfMatch0,1/apex.

Remark 4.8. For later use, we remark the following: By construction, the apices in the
reduction image Hω form an independent set, for any ω : [k]2 → [2], and each non-apex
vertex in Hω is incident with at most one apex. This last condition holds because the
matchgate ΓACT has no vertex with two incident dangling edges.
Before proving Lemmas 4.5 and 4.7, we show that our proof of Theorem 4.1 fails to

yield #W[1]-hardness for PerfMatch/hadwD for a graph class D with K 6� D. Recall that
hadwD was introduced in the definition on page 84. Let D denote the class of reduction
images constructed by Theorem 4.1, i.e., the graphs H = Hω for ω : [k]2 → 2 over all
possible instances T to the problem #GridTiling. Then we observe that D contains all
complete graphs as minors.

Fact 4.9. For every t ∈ N, there is a graph H ∈ D such that Kt � H.

Proof sketch. Consider a rectilinear drawing of the complete graph Kt on the integer lattice
such that every crossing of edges involves only two edges. To realize such a drawing, we
might need to draw vertices as squares rather than points, and it can be verified that the
complete drawing of Kt can be fitted into a square of side-length ` = tO(1).

Let T denote an instance to #GridTiling with `× ` cells, universe size n, and T (κ) = [n]2

for all κ ∈ [`]2. Consider the signature graph G = G(T ) defined in Section 4.1.1 and the
reduction image H = Hω∗ with ω∗ = (1, . . . , 1) obtained from G, where every signature fκ
is replaced by the 2-apex matchgate Φ′([n]2).
Then we have Kt � H: Starting from the drawing of Kt on the integer lattice, we can

embed each line segment of the drawing between adjacent lattice points in the planar part
of Φ′([n]2). Since each cell has two apices, we can embed the crossing lines using paths
over the apex vertices.
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4. Apices and planar k-defect matchings

4.1.3. Deferred proofs

It remains to prove Lemmas 4.5 and 4.7, which is the goal of the following subsection.

Lemma 4.5: Realizing ACT and PASS

We compute mechanically in Appendix C.2 that

Sig(ΓPASS) = PASS.

Concerning ΓACT, we decompose ΓACT into a matchgate Ψ, and an additional part, as shown
in Figure 4.4 on the next page. In Appendix C.2, we compute mechanically that

Sig(Ψ, xy) =

ACT(xy) if hw(x) even,
arbitrary otherwise.

(4.5)

Intuitively, the ring of PASS signatures around Ψ in ΓACT acts as an “even filter” that
ensures the following, for all x ∈ {0, 1}4 and y ∈ {0, 1}2:

• If hw(x) is not even, then Sig(ΓACT, xy) = 0, regardless of the value of Ψ on xy.

• If hw(x) is even, then Sig(ΓACT, xy) = Sig(Ψ, xy). Observe that, by (4.5), this also
implies Sig(ΓACT, xy) = ACT(xy).

Since ACT(xy) 6= 0 implies x ∈ { , , , }, which in turn implies that hw(x) is even, we
obtain that indeed

Sig(ΓACT) = ACT.

To determine Sig(ΓACT, xy) for x ∈ {0, 1}4 and y ∈ {0, 1}2, we consider the satisfying
assignments w ∈ {0, 1}E(ΓACT) that extend xy. The dummy edge of weight 1/2 is present in
any assignment w and contributes a factor 1/2 to val(w).2 At each red vertex, the signature
PASS ensures that opposing edges have the same assignment under w. This fixes the value
of all black edges and ensures that val(w) contains the factor Sig(Ψ, xy), contributed from
the green vertex with signature Sig(Ψ).
It remains to assign values to the red edges: Due to the signature PASS at red vertices,

this is possible with at most two satisfying assignments w1, w2 ∈ {0, 1}E(ΓACT):

w1 : All red edges are active. Then every red vertex in state yields a factor PASS( ) = −1,
while all other red vertices are in one of the states or and yield value 1. The
number of red vertices in state is hw(x), so the value of ΓACT on w1 is

val(w1) = 1
2 · (−1)hw(x) · Sig(Ψ, xy).

2In the following, let us write val(w) instead of valΓACT to avoid the double index.
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4.1. Perfect matchings on k-apex graphs

Figure 4.4.: The matchgate Ψ and the construction of ΓACT from Ψ. All black vertices are
assigned HW=1, all red vertices are assigned PASS, and the green vertex in the
middle of the drawing is assigned Sig(Ψ).

w2 : No red edges are active. Then every red vertex is in one of the states or and
hence yields value 1. Thus, the value of ΓACT on w2 is

val(w2) = 1
2 · Sig(Ψ, xy).

It follows that for all x ∈ {0, 1}4 and y ∈ {0, 1}, we have

Sig(ΓACT, xy) = val(w1) + val(w2)

= 1
2 ·
(
(−1)hw(x) · Sig(Ψ, xy) + Sig(Ψ, xy)

)
=

Sig(Ψ, xy) if hw(x) even,
0 otherwise.

= ACT(xy)

This proves Lemma 4.5.

Lemma 4.7: The signature of Φ

Let x ∈ {0, 1}4n be an assignment to the dangling edges of Φ that satisfies the predicate
ϕone(x), and let xy ∈ {0, 1}E(Φ) be a satisfying assignment to the gate Φ that extends x.
We show that, whenever x satisfies the predicate ϕprop, then y is unique and has value
−1, so Sig(Φ, x) = valΦ(xy) = −1. Furthermore, we show that, if x does not satisfy the
predicate ϕprop, then no such y exists, and hence Sig(Φ, x) = 0.
Recall from on page 95 that we decompose x into xN , xE , xS , xW . Write W ∈ [n] and

N ∈ [n] for the unique non-zero index in xW ∈ {0, 1}n and xN ∈ {0, 1}n, respectively.
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4. Apices and planar k-defect matchings

Figure 4.5.: The unique assignment y to E(Φ) that extends x.

These numbers are well-defined because x satisfies ϕone(x) by assumption. Then all western
and eastern edges of vertices in row (W, ?) are active in xy: The western edge of vW,1 is
active by definition, and since xy satisfies Φ and PASS at vW,1, the vertex vW,1 must be
in state or , so its eastern edge is also active. The same follows inductively for all
vertices in the row (W, ?). By the same argument, rotated about 90 degrees, all northern
and southern edges of vertices in row (?,N) are active in xy, see Figure 4.5.

By a similar argument, no other edges are active, and we conclude that y is uniquely
determined by x. Furthermore, if E and S denote the active indices in xE and xS , then
we observe that W = E and N = S, since otherwise xy could not satisfy vW,n and vn,N .
Hence, xy satisfies Φ only if ϕprop(x) holds. We obtain

Sig(Φ, x) = 0 if ¬ϕprop(x).

If ϕprop(x) holds, then vW,N is in state under xy, while the n− 1 other vertices in row
(W, ?) are in state , the n − 1 other vertices in column (?,N) are in state , and the
remaining n2 − 2n+ 1 vertices are in state . In conclusion, ϕprop(x) implies

Sig(Φ, x) = val(Φ, xy)
= PASS( ) · PASS( )n−1 · PASS( )n−1 · PASS( )n2−2n+1

= −1.

This proves (4.1).

Lemma 4.7: The signature of Φ′(A)

Let Φ′ = Φ′(A) for some fixed A ⊆ [n]2, let D ⊆ E(Φ′) denote the dangling edges of
Φ′ and let F = I(a1) ∪ I(a2) denote the set of edges incident with either a1 or a2 in
Φ′. Let x ∈ {0, 1}4n be an assignment to D that satisfies the predicate ϕone(x), and let
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4.1. Perfect matchings on k-apex graphs

xyz ∈ {0, 1}E(Φ′) be a satisfying assignment to the edges of Φ′ that extends x, with

y ∈ {0, 1}E(Φ′)\(F∪D),

z ∈ {0, 1}F .

We consider the restriction of xyz to xy, that is, to edges not incident with any apex. By
definition of PASS and ACT, we have, for every vertex v ∈ V (Φ′), that

(xy)|I(v) ∈ { , , , }. (4.6)

Recall from the convention on page 95 that we decompose x into xN , xE , xS , xW . Write
W ∈ [n] and N ∈ [n] for the unique non-zero index in xW ∈ {0, 1}n and xN ∈ {0, 1}n.
Since (xy)|I(v) ∈ supp(PASS) holds by (4.6) and the definition of PASS, the same argument
as in the previous subsection for Φ shows that the western and eastern edges of all vertices
in row (W, ?) are active under xy, as well as the northern and southern edges of all vertices
in the column (?,N). Likewise, as seen in the previous subsection, it shows that no other
edges in E(Φ′) \ F are active, that y is unique if ϕprop(x) holds, and that y does not exist
otherwise. This last statement implies that

Sig(Φ′, x) = 0 if ¬ϕprop(x).

In the following, let x ∈ {0, 1}D be an assignment to the dangling edges of Φ′ that
satisfies ϕprop(x), and let xy ∈ {0, 1}E(Φ′)\F be its unique extension, as seen for Φ. We
consider the possible assignments z ∈ {0, 1}F to the apex edges such that xyz satisfies Φ′.
Here, while the choice of y was unique, the choice of z is not unique.

By virtue of HW=1 at the apex vertices a1 and a2, there are unique indices κ, κ′ ∈ A such
that the edges a1vκ and a2vκ′ are active in xy. By definition of ACT, we actually have
κ = κ′, since all elements in supp(ACT) end on 00 or 11. We write κ∗ = κ = κ′ for the
unique “apex-matched” index and c∗ = cκ∗ for the unique “apex-matched” vertex. By
definition of ACT, we have

(xyz)|I(c∗) ∈ { 11, 11}.

It follows that the second component of κ∗ must be equal to N , since only vertices in
(?,N) have state or under xy. There are T vertices with signature ACT in row (?,N),
by the balance property of our instance T to #GridTiling, and we can choose any of these
vertices to be apex-matched. We distinguish two main cases.

(W,N) /∈ A : The apex-matched vertex must be in state 11 under xyz. It cannot be in
state 11, since only vW,N can have state among its first four edges, but vW,N has
PASS assigned, since (W,N) /∈ A. This gives T assignments z such that xyz satisfies
Φ′. Each assignment xyz satisfies valΦ′(xyz) = −1, because there is (i) one vertex
in state 00, which contributes a factor of −1 to valΦ′(xyz), and (ii) some number
of vertices in other states, which however all contribute a unit factor to valΦ′(xyz).
This implies that Sig(Φ′, x) = −T if both (W,N) /∈ A and ϕprop(x) hold.
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(W,N) ∈ A : The apex-matched vertex may be in state 11 or 11. We distinguish these
two subcases:

11: We proceed as in the case of (W,N) /∈ A, but we have only T − 1 choices left
for the apex-matched vertex, since vW,N must have state among its first four
edges and can thus not be in state 11. This gives T − 1 assignments z with
Sig(Φ′, xyz) = −1 for each z.

11 : Since only vW,N can have state among its first four edges, the apex-matched
vertex must be vW,N . This gives one assignment z, and Sig(Φ′, xyz) = 1, because
all vertices yield a unit factor.

In total, we obtain

Sig(Φ′, xyz) = (T − 1) · (−1) + 1 = −T + 2

if both (W,N) ∈ A and ϕprop(x) hold.

This proves (4.2), and thus Lemma 4.7, and consequently Theorem 4.1.

4.2. Planar k-defect matchings

In this section, we prove Theorem 4.10: We show that, given a planar graph G and k ∈ N,
it is #W[1]-hard to count the k-defect matchings of G. This amounts to computing the
coefficient of xk in the matching-defect polynomial µ(G).

Theorem 4.10 (restated from page 83). Given a planar graph G and a number k ∈ N
as inputs, the problem #PlanarDualMatch of counting the k-defect matchings in G is
#W[1]-hard.

In other words, we show that PerfMatch/apex does not become easier when we ignore
the apex adjacency structure and instead make each apex adjacent to all vertices of the
base graph: Given a graph G containing an independent set A of k apices that connect
to all vertices of G − A, each k-defect matching of G − A corresponds to precisely k!
perfect matchings of G. Our #W[1]-hardness result for #PlanarDualMatch thus implies
#W[1]-hardness of PerfMatch/apex on graphs G whose apex vertices are adjacent to all
vertices of the base graph.

In the proof, we introduce an intermediate problem #RestrDualMatch:

Problem 4.11 (#RestrDualMatch). Given as input a triple (G,S, k) where G is a planar
graph, S ⊆ V (G) and k ∈ N, count those k-defect matchings M of G whose defects all
avoid S, i.e., those k-defect matchings M with S ∩ usat(M) = ∅.

As in the previous paragraph, the problem #RestrDualMatch may be considered equiva-
lent to PerfMatch/apex on graphs G whose apices A are all adjacent to a specific subset
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4.2. Planar k-defect matchings

S ⊆ V (H) of the base graph H = G−A, and to no other vertices. Our overall reduction
then proceeds along the chain

PerfMatch0,1/apex ≤lin
fpt #RestrDualMatch ≤lin

fpt #PlanarDualMatch. (4.7)

More precisely, in the first reduction, we reduce from the problem PerfMatch0,1/apex when
restricted to instances satisfying Remark 4.8.

4.2.1. Hardness of restricted k-defect matchings

In the following, let DMk[G] denote the set of k-defect matchings in G. The first reduction
in (4.7) follows from an application of the inclusion-exclusion principle.

Lemma 4.12. The problem #RestrDualMatch is #W[1]-hard.

Proof. We reduce from the problem PerfMatch0,1/apex and wish to count perfect matchings
in an unweighted graph G with apex set A = {a1, . . . , ak} and planar base graph H = G−A.
By Remark 4.8 on page 99, we can assume that

1. A is given as part of the input, along with G, and

2. A is an independent set, and

3. V (H) admits a partition into V1∪ . . .∪Vk ∪W such that all vertices v ∈ Vi for i ∈ [k]
are adjacent to the apex ai and to no other apices, while no vertex v ∈W is adjacent
to any apex.

By (3), each vertex v ∈ V (H) can be colored by its unique adjacent apex, or by a neutral
color if v ∈W . We then call a k-defect matchingM ∈ DMk[H] colorful if |usat(M)∩Vi| = 1
holds for all i ∈ [k], and we write C for the set of all suchM . Note that usat(H,M)∩W = ∅
for M ∈ C, since none of its k defects are left over for W .
We claim that PM[G] ' C: If M ∈ PM[G], then N = M − A satisfies N ∈ C.

Conversely, every N ∈ C can be extended to a unique M ∈ PM[G] by matching the unique
i-colored defect to its unique adjacent apex ai.

Given oracle access to #RestrDualMatch, we can determine #C by the inclusion-exclusion
principle from Lemma 1.33: For i ∈ [k], let Ai denote the set of M ∈ DMk[H] whose
defects avoid color i, i.e., that satisfy usat(H,M) ∩ Vi = ∅. Then

C = DMk[H] \
⋃
i∈[k]
Ai.

For S ⊆ [k], write AS =
⋂
i∈S Ai and note that we can compute #AS by an oracle call

to #RestrDualMatch on the instance (H,
⋃
i∈S Vi, k). We can hence compute

#C = #PM[G]

via inclusion-exclusion (Lemma 1.33) and 2k oracle calls to #RestrDualMatch.
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4.2.2. From restricted to unrestricted matchings

For the second reduction in (4.7), we wish to solve instances (G,S, k) to #RestrDualMatch
when given only an oracle for counting k-defect matchings in planar graphs, without the
ability of specifying the set S. Let G, S and k be fixed in the following. Our reduction
involves some algebraic manipulations on polynomials, such as a truncated version of
polynomial division:

Lemma 4.13. Let X be an indeterminate, and let p, q ∈ Z[X] be polynomials

p =
m∑
i=0

biX
i, q =

n∑
i=0

aiX
i,

with a0 6= 0. For all t ∈ N, we can compute b0, . . . , bt with O(t2) arithmetic operations
when given as input a0, . . . , at and the first t+ 1 coefficients of the product pq.

Proof. Let c0, . . . , cn+m enumerate the coefficients of the product pq. By elementary
algebra, we have ci =

∑i
κ=0 aκbi−κ, which implies the linear system

a0
... . . .
at . . . a0



b0
...
bt

 =


c0
...
ct

 . (4.8)

As this system is triangular with a0 6= 0 on its main diagonal, it has full rank and can be
solved uniquely for b0, . . . , bt with O(t2) arithmetic operations.

Our proof also relies upon a gadget which will allow to distinguish S from V (G) \ S.

Definition 4.14. For ` ∈ N, an `-rake R` is a matching M of size `, together with an
additional vertex w adjacent to one vertex of each edge in M :

Let GS,` be the graph obtained from attaching R` to each v ∈ S. This means adding
a local copy of R` to v and identifying the copy of w with v. Please note that vertices
v ∈ V (G) \ S receive no attachments in GS,`.

It is obvious that GS,` is planar if G is. Recall the defect-generating matching polynomial
µ from Section 1.3.1. We first show that, for fixed ` ∈ N, the polynomial µ(GS,`) can be
written as a weighted sum over matchings M ∈ M[G], where each M is weighted by an
expression that depends on the number |usat(M)∩ S|. Ultimately, we want to tweak these
weights in such a way that only matchings with |usat(M) ∩ S| = 0 are counted.

Lemma 4.15. Define polynomials r, f` ∈ Z[X] and s ∈ Z[X, `] by

r(X) = 1 +X2,

s(X, `) = `+ 1 +X2,

f`(X) = (1 +X2)|S|(`−1).
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Figure 4.6.: Possible types of extensions of the rake at v. The left case corresponds to
v /∈ usat(M), and the two right cases correspond to v ∈ usat(M).

Then it holds that

µ(GS,`, X) = f` ·
∑

M∈M[G]
X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|. (4.9)

Proof. Every matching M ∈ M[G] induces a certain set CM ⊆ M[GS,`] of matchings in
GS,`, where each matching N ∈ CM consists of M together with an extension by rake edges.
The family {CM}M∈M[G] is easily seen to partitionM[GS,`], and we obtain

µ(GS,`, X) =
∑

M∈M[G]

∑
N∈CM

X |usat(N)|

︸ ︷︷ ︸
=:e(M)

. (4.10)

Every matching N ∈ CM consists of M and rake edges, which are added independently
at each vertex v ∈ S. Hence, the expression e(M) in (4.9) can be computed from the
product of the individual extensions at each v ∈ S.

To compute the factor obtained by extensions at v ∈ S, we have to distinguish whether
v is unmatched in M or not. The possible extensions at v are also shown in Figure 4.6.

v /∈ usat(M) : We can extend M at v by any subset of the ` rake edges not adjacent to v,
as shown in Figure 4.6.a. In total, these 2` extensions contribute the factor

(1 +X2)` = (1 +X2)`−1r.

v ∈ usat(M) : We have two choices for extending, shown in the right part of Figure 4.6:

• We can extend as in the case v /∈ usat(M), and then we obtain the factor
X(1 +X2)`. Here, the additional factor X corresponds to the unmatched vertex
v. This situation is shown in Figure 4.6.b.

• We can match v to one of its ` incident rake edges, say to e = vz for a rake
vertex z, as in Figure 4.6.c. Then we can choose a matching among the `− 1
rake edges not incident with z. This gives a factor of `X(1 +X2)`−1. Note that
v is matched, but the vertex adjacent to z is not, yielding a factor of X.

In total, if v ∈ usat(M), we obtain a factor of

X(1 +X2)` + `X(1 +X2)`−1 = X(1 +X2)`−1s
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In each matching N ∈ CM , every unmatched vertex in S̄ = V (G) \ S contributes a factor
X. By multiplying the contributions of all v ∈ V (G), we have thus shown that

e(M) = f`(X) ·X |S̄∩usat(M)| · r|S\usat(M)| · (Xs)|S∩usat(M)|

= f`(X) ·X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|

and together with (4.10), this proves the claim.

Observe that, due to the factor f`, the expression µ(GS,`) is not a polynomial in the
indeterminates X and `. We define a new expression p, which is a polynomial p ∈ Z[X, `],
by removing this factor.

p(X, `) :=
∑

M∈M[G]
X |usat(M)| · r|S\usat(M)| · s|S∩usat(M)|. (4.11)

Depending upon the concrete application, we will consider p ∈ Z[X, `] as a polynomial in
the indeterminates ` and X, or as a polynomial p ∈ (Z[`])[X] in the indeterminate X with
coefficients from Z[`]. In this last case, we write

p =
n∑
i=0

aiX
i

with coefficients ai ∈ Z[`] for i ∈ N that are in turn polynomials. Then we define

[p]k :=
k∑
i=0

aiX
i (4.12)

as the restriction of p to its first k+ 1 coefficients. For later use, let us observe the following
simple fact about [p]k, considered as a polynomial [p]k ∈ Z[X, `].

Fact 4.16. For i, j ∈ N, every monomial `iXj appearing in [p]k satisfies i ≤ j ≤ k.

Proof. Recall r and s from Lemma 4.15. The indeterminate ` appears in s with degree 1,
but it does not appear in r. In the right-hand side of (4.11), every term containing a factor
st, for t ∈ N, also contains the factor Xt, because |S∩usat(M)| ≤ |usat(M)| trivially holds.
Hence, whenever `iXj is a monomial in p, then i ≤ j. Since the maximum degree of X in
[p]k is k by definition, the claim follows.

In the next lemma, we show that knowing the coefficients of [p]k allows to solve the
instance (G,S, k) to #RestrDualMatch from the beginning of this subsection. After that,
we will show how to compute [p]k with an oracle for #PlanarDualMatch.

Lemma 4.17. Let N denote the set of (not necessarily k-defect) matchings in G with
usat(M) ∩ S = ∅. For all k ∈ N, we can compute the number of k-defect matchings in N
in polynomial time when given the coefficients of [p]k.
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Proof. For ease of presentation, assume first we knew all coefficients of p rather than only
those of [p]k. We will later show how to solve the problem when given only [p]k.
Starting from p, we perform the substitution

`← −(1 +X2) (4.13)

to obtain a new polynomial q ∈ Z[X] from p. By definition of s (see Lemma 4.15), we have

s(X,−(1 +X2)) = 0, (4.14)

so every matching M /∈ N has zero weight in q. To see this, note that by (4.11), the weight
of each matching M ∈ M[G] in p contains a factor s|S∩usat(M)|. But due to (4.14), the
corresponding term in q is non-zero only if |S ∩ usat(M)| = 0. We obtain

q =
∑
M∈N

X |usat(M)| · (1 +X2)|S\usat(M)|.

Since every M ∈ N satisfies |S \ usat(M)| = |S|, this simplifies to

q = (1 +X2)|S| ·
∑
M∈N

X |usat(M)|

︸ ︷︷ ︸
=:q′

(4.15)

and we can use standard polynomial division by (1 +X2)|S| to obtain

q′ = q/(1 +X2)|S|. (4.16)

By (4.15), for all k ∈ N, the coefficient of Xk in q′ counts precisely the k-defect matchings
in N . This finishes the discussion of the idealized setting when all coefficients of p are
known. Recall the three steps involved: The substitution in (4.13), the polynomial division
in (4.16), and the extraction of the coefficient Xk from q′.
The full claim, when only [p]k rather than p is given, can be shown similarly, but some

additional care has to be taken. First, we perform the substitution (4.13) on [p]k rather
than p. This results in a polynomial b ∈ Z[X], for which we claim the following:

Claim 4.18. We have [b]k = [q]k.

Proof. Let Θ≤i for i ∈ N denote the set of monomials in p with degree ≤ i in X. The sub-
stitution (4.13) maps every monomial θ in the indeterminates X and ` to some polynomial
gθ ∈ Z[X]. Writing a(θ) ∈ Z for the coefficient of θ in p, we obtain q, b ∈ Z[X] with

q =
∑

θ∈Θ≤n

a(θ) · gθ, (4.17)

b =
∑

θ∈Θ≤k

a(θ) · gθ. (4.18)
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We can conclude that

[q]k =
(4.17)

 ∑
θ∈Θ≤n

a(θ) · gθ


k

=

 ∑
θ∈Θ≤k

a(θ) · gθ


k

=
(4.18)

[b]k , (4.19)

where the second identity holds since, whenever θ has degree i in X, for i ∈ N, then gθ
contains a factor Xi. Hence, for θ ∈ Θ≤n \Θ≤k, no terms of the polynomial gθ appear in[∑

θ∈Θ≤n a(θ) · gθ
]
k
.

Recall the polynomial q′ from (4.16); it remains to apply polynomial division as in (4.16)
to recover [q′]k from [b]k. To this end, we observe that the constant coefficient in (1+X2)|S|

is 1, and that all coefficients of (1 +X2)|S| can be computed by a closed formula. We can
thus divide [b]k = [q]k by [(1 +X2)|S|]k via truncated polynomial division (Lemma 4.13) to
obtain [q′]k, whose k-th coefficient counts the k-defect matchings in N , as in the idealized
setting discussed before.

Using a combination of truncated polynomial division (Lemma 4.13) and interpolation,
we compute the coefficients of [p]k with oracle access for #PlanarDualMatch. This completes
the reduction from #RestrDualMatch to #PlanarDualMatch.

Lemma 4.19. We can compute [p]k by a Turing fpt-reduction to #PlanarDualMatch.

Proof. For ξ with 0 ≤ ξ ≤ k, let fξ ∈ Z[X] be the evaluation of the expression f` defined
in Lemma 4.15 at ` = ξ. Define p(k)

ξ ∈ Z[X] by

p
(k)
ξ := [µ(GS,ξ)/fξ]k . (4.20)

Claim 4.20. We have p(k)
ξ = [p(·, ξ)]k = [p]k(·, ξ).

Proof. The first identity holds by the definition of p in (4.11), and by the definition of p(k)
ξ .

The second identity holds because, for all t ∈ N, the coefficient of Xt in p is a polynomial
in ` and does not depend on X. Hence we may arbitrarily interchange (i) the operation of
substituting ` by expressions not depending on X (and by numbers ξ ∈ N in particular),
and (ii) the operation of truncating to the first k coefficients.

Recall that at ∈ Z[`] for t ∈ N denotes the coefficient of Xt in p, which has degree at
most k (in the indeterminate `) by Fact 4.16. Hence, for fixed t ∈ N, if we knew the values

at(0), . . . , at(k),

we could recover the coefficients of at ∈ Z[`] via univariate polynomial interpolation
(Lemma 1.35). But for 0 ≤ ξ, t ≤ k, we can obtain the value at(ξ) as the coefficient of Xt

in p(k)
ξ . This follows from Claim 4.20. It remains to compute the polynomials

p
(k)
0 , . . . , p

(k)
k
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with an oracle for #PlanarDualMatch: First, we observe that the constant coefficient in
fξ is 1 for all 0 ≤ ξ ≤ k, so we can apply the definition of p(k)

ξ from (4.20) and truncated
polynomial division (Lemma 4.13) to compute p(k)

ξ from [µ(GS,ξ)]k and fξ.
It remains only to compute [µ(GS,ξ)]k and fξ. Note that the coefficients of fξ admit a

closed expression by definition, and that [µ(GS,ξ)]k can be computed by querying the oracle
for #PlanarDualMatch to obtain the number of matchings in GS,ξ with 0, . . . , k defects.

We recapitulate the proof in the following.

Proof of Theorem 4.10. By Theorem 4.1, the problem PerfMatch0,1/apex is #W[1]-hard,
even on instances restricted as in Remark 4.8, and we have established the reduction chain

PerfMatch0,1/apex ≤lin
fpt #RestrDualMatch ≤lin

fpt #PlanarDualMatch :

The first reduction was shown in Lemma 4.12. By Lemma 4.19, we can use oracle calls
to #PlanarDualMatch with maximum parameter k to compute a polynomial [p]k, and by
Lemma 4.17, the coefficients of [p]k allow to recover the solution to #RestrDualMatch in
polynomial time. These two steps establish the second reduction in the above chain.

4.3. Apices with few adjacent faces

Our next result complements the #W[1]-hardness of PerfMatch/apex shown in Theorem 4.1
and is motivated by a refined structural decomposition of graphs G ∈ Excl[H] for 1-apex
graphs H. The decompositions guaranteed by [DHK09] for such graphs are similar to those
for general H-minor-free graphs from the Graph Structure Theorem, with the exception
of “quasi-vortices”, which are vortices that only require a bound on the treewidth rather
than on their pathwidth. (That is, the tree decompositions are not restricted to be paths.)
However, any apex in the decomposition can only connect to the vertices of a quasi-vortex,
so every apex attaches to at most c = c(H) faces of the base graph.
We prove Theorem 4.21 and present an fpt-algorithm for a restricted version of the

problem PerfMatch/apex in which every apex can see only a bounded number of faces.

Theorem 4.21 (restated from page 85). Given as input a graph G, a set A ⊆ V (G), and
a drawing of G−A on a surface of genus γ such that A is adjacent to at most s faces, we
can compute PerfMatch(G) in time f(|A|, γ, s) · n3 for a computable function f .

Remark 4.22. We may assume that every edge av ∈ E(G) with a ∈ A and v ∈ V (G) \A
has weight 1: Otherwise, replace av by a path ar1r2v with fresh vertices r1, r2, together
with edges ar1 and r1r2 of unit weight, and an edge r2v of weight w(e), as in Remark 1.30.
This clearly preserves the apex number, the value of PerfMatch, and ensures that every
apex is only incident with unweighted edges.

To proceed, we require a variant of multivariate polynomial interpolation (Lemma 1.38)
that applies to a setting where we do not require the values of all coefficients, but rather
only those in a “slice” of total degree k, for fixed k ∈ N. Here, the polynomial p to be
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4. Apices and planar k-defect matchings

interpolated features a distinguished indeterminate X, and we wish to extract the coefficient
ak of Xk, which is in turn a polynomial. Under certain restrictions, this can be achieved
with f(k) · n evaluations, where n denotes the degree of X in p.

Lemma 4.23 (Sliced grid interpolation). Let p ∈ Z[X,λ] be a multivariate polynomial in
the indeterminates X and λ = (λ1, . . . , λt). Consider p ∈ (Z[λ])[X] and assume that

• p has degree n in X, and that

• for all s ∈ N, the coefficient as ∈ Z[λ] of Xs in p has total degree at most s.

Let k ∈ N be a given parameter, and let

Ξ = Ξ0 × . . .× Ξt ⊆ Qt+1

with |Ξ0| = n+ 1 and |Ξi| = k + 1 for all i > 0. Then we can compute the coefficients of
the polynomial ak ∈ Z[λ] with O(|Ξ|3) arithmetic operations when given as input the set

{(ξ, p(ξ)) | ξ ∈ Ξ}.

Proof. We consider the grid Ξ′ defined by removing the first component from Ξ:

Ξ′ = Ξ1 × . . .× Ξt.

Let us observe that p(·, ξ′) ∈ Z[X] holds for ξ′ ∈ Ξ′. Write Ξ0 = {c0, . . . , cn} and observe
that, for each fixed ξ′ ∈ Ξ′, our input contains all evaluations

p(c0, ξ
′), . . . , p(cn, ξ′),

so we can use univariate interpolation (see Lemma 1.35) to determine the coefficient of Xk

in p(·, ξ′). This coefficient is equal to ak(ξ′) by definition.
By performing this process for all ξ′ ∈ Ξ′, we can evaluate ak(ξ′) on all ξ′ ∈ Ξ′, and

hence interpolate the polynomial ak ∈ Z[λ] via grid interpolation (Lemma 1.38).

For our algorithm, we first consider the special case that A is an independent set; the full
algorithm is then obtained by reduction to this case. The ideas used in the following lemma
bear some similarity to those used in an algorithm for counting subgraphs of bounded
vertex-cover number, which we will present in Section 6.1.

Lemma 4.24. Let G be an edge-weighted graph, given as input together with

• an independent set A ⊆ V (G) of size k,

• an embedding π of H = G − A on a surface of genus γ, and faces C1, . . . , Cs in π

that contain all neighbors of A.

Then we can compute PerfMatch(G) in time kO(2k) · 2O(γ+s) · nω+1.
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4.3. Apices with few adjacent faces

Proof. Let DMk[H] denote the set of all k-defect matchings of H. By Remark 4.22, we
can assume that all edges incident with A have unit weight. Let

C = {M ∈ DMk[H] | usat(M) ⊆ NG(A)}.

Given any matchingM ∈ C, let t(M) denote the type of N , which is defined as the following
multiset with precisely k elements from 2A:

t(M) = {NG(v) ∩A | v ∈ usat(M)}.

For the set of all such types, we write

T = {t(M) |M ∈ C}

and observe that |T | ≤ (2k)k = 2k2 . For t ∈ T , define a graph Ft as follows: Create an
independent set [k], corresponding to A. Then, for each N ∈ t, create a vertex vN that
is adjacent to all of N ⊆ [k]. We note that every perfect matching M ∈ PM[G] can be
decomposed uniquely as

M = B(M)∪̇I(M)

with a k-defect matching B(M) ∈ C and a perfect matching I(M) ∈ PM[Ft(B(M))] with

B(M) = M −A,
I(M) = M [A ∪ usat(B(M))].

For t ∈ T , let

Ct = {M ∈ C | t(M) = t},
Pt :=

∑
N∈Ct

∏
e∈N

w(e).

It is clear that {Ct}t∈T partitions C, and this implies

PerfMatch(G) =
∑
t∈T

Pt · PerfMatch(Ft). (4.21)

To see this, note that each perfect matching of type t can be obtained by extending some
matching M ∈ Ct (all of which have k defects) by a perfect matching from usat(M) to A,
which is precisely a perfect matching of Ft. Note that we require here that edges between
usat(M) and A have unit weight, otherwise the graphs Ft would have to be edge-weighted
as well and might no longer depend on t only, but would also have to incorporate the
edge-weights of G.

Since |E(Ft)| ≤ k2, we can compute PerfMatch(Ft) in time 2O(k2) by brute force for
all t ∈ T . Hence, we can use (4.21) to determine PerfMatch(G) in time |T | · 2O(k2) if we
know Pt for all t ∈ T . In the remainder of this proof, we show how to compute Pt by
using multivariate polynomial interpolation and the algorithm for MatchSum presented in
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4. Apices and planar k-defect matchings

Theorem 2.41. To this end, define indeterminates corresponding to subsets of the apices:

λ = {λS | S ⊆ A}.

LetX denote an additional distinguished indeterminate, and define the following polynomial
p ∈ Z[X,λ]. In this definition, we abbreviate w(M) :=

∏
e∈M w(e).

p(X,λ) :=
∑
M∈C

w(M) ·X |usat(M)| ·
∏

v∈usat(M)
λNG(v)∩A. (4.22)

For each type t ∈ T , say t = {N1, . . . , Nk}, we observe that the coefficient of

Xk · λN1 · . . . · λNk

in p is equal to Pt. Hence, we can extract Pt for all t ∈ T from the coefficients of the
monomials in p that have degree exactly k in X. Let us denote these monomials by N,
and observe that each monomial ν ∈ N has total degree k in λ by definition of p in (4.22).
If we can evaluate p on the elements (r, ξ) from the grid

Ξ = [n+ 1]× [k + 1]2|A| ,

then we can compute the coefficients of all ν ∈ N in p, and thus Pt for all t ∈ T , by
sliced grid interpolation via Lemma 4.23. Note that |Ξ| ∈ O(n · k2k). We compute these
evaluations p(r, ξ) as

p(r, ξ) = MatchSum(H ′(r, ξ)),

where the vertex-weighted graph H ′(r, ξ) is obtained from H via the weight function

w(v) :=

0 if v /∈ NG(A),
r · ξNG(v)∩A otherwise.

Since all vertices with non-zero weight in H ′(r, ξ) are contained in the faces C1, . . . , Cs,
we can compute MatchSum(H ′) in time O(4γ · 2s · nω) with Theorem 4.21. We obtain the
values Pt for all t ∈ T , so we obtain PerfMatch(G) via (4.21) in the required time.

It remains to lift Lemma 4.24 to the case that A is not an independent set. This
follows easily from the fact that, whenever E(G) = E∪̇E′, then every perfect matching
M ∈ PM[G] must match every vertex v ∈ V (G) into exactly one of the sets E or E′.

Proof of Theorem 4.21. Let A = M[G[A]] denote the set of (not necessarily perfect)
matchings of the induced subgraph G[A], and note that |A| ≤ 2k2 . For M ∈ A, let

aM = PerfMatch(GM ),

where GM is defined by keeping from A only usat(M), and then deleting all edges between
the remaining vertices. We can compute aM by Lemma 4.24 since the remaining part of A
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in GM is an independent set. It is also easily verified that

PerfMatch(G) =
∑
M∈A

aM ·
∏
e∈M

w(e),

so we can compute PerfMatch as a linear combination of 2k2 values, each of which can be
computed by Lemma 4.24.

It should be mentioned that this last step could also be shown using combined signatures,
but we decided to give a self-contained proof.
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Counting small subgraphs
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Introduction to Part II

Recall that, in Part I, we were given a graph G together with a structural parameter,
namely, its Hadwiger number, and we wished to count occurrences of a large and fixed
type of subgraph in G, namely perfect matchings. In the present part, we consider an
orthogonal setting: We wish to count subgraph patterns H from an arbitrary fixed class
H, and rather than parameterizing by structural properties of G, we consider the size of
the pattern graph H as parameter. Note that all reasonable parameters of H are bounded
by a function of |V (H)|, and by restricting H to be chosen from H, we can additionally
impose fixed restrictions on the structure of H, such as a constant bound on its treewidth.
For simplicity, let us always assume in the following that H is recursively enumerable. This
gives rise to the following problems.

Problem 4.1 (#Sub(H) for fixed graph class H). Given graphs H and G as input, with
H ∈ H, compute the number of H-copies in G, parameterized by |V (H)|. We write
#Sub(H → G) for this number.

For instance, the problem #Sub(K) with the class K of complete graphs is simply the
problem #Clique used in our definition of #W[1], and it is #W[1]-complete by definition.
Deciding the existence of a k-clique is however W[1]-complete as well, and therefore the
#W[1]-hardness of #Clique does not come as a big surprise. More interestingly, it was
shown in [FG04] that the problems #Sub(Hpaths) and #Sub(Hcycles) of counting paths
and cycles are #W[1]-complete as well. Since the decision versions of these problems
are fixed-parameter tractable, e.g., by application of the color coding technique [AYZ95],
the counting problems cannot be #W[1]-complete under parsimonious reductions unless
FPT = W[1], and this makes these results particularly interesting.
Starting from these initial hardness results for paths and cycles, we wondered which

restrictions on the graph class H make the problem #Sub(H) easy. This is also explicitly
asked in [CTW08]. Note, for instance, that a constant bound on the treewidth of H is not
sufficient to make #Sub(H) tractable, since even counting paths (which are trees) of size k
is #W[1]-complete. The decision problem however does become fixed-parameter tractable
under such a fixed treewidth bound [AYZ95], and we hence obtain another example for
the commonplace remark that counting is harder than deciding.
Indeed, counting is so hard that the few known graph classes H with fixed-parameter

tractable #Sub(H) are heavily constrained. For instance, we can count the copies of the
k-star Sk in a graph G in linear time: The star Sk is an independent k-set together with
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one additional “center” vertex adjacent to this set. To count copies of Sk in G, simply
guess a center v ∈ V (G), and then observe that there are

(degG(v)
k

)
possibilities to extend v

to a copy of Sk in G. The stars Sk are not only trees, but they even admit a vertex-cover
of size 1, and as it turns out, the vertex-cover number is central to the tractability of
#Sub(H). In particular, the simple algorithm that allowed us to count stars can also be
generalized to pattern graphs with bounded vertex-covers, noted also in [WW13, KLL13].
We also give a simple self-contained algorithm for this case in Section 6.1.

Theorem 6.1. Let H be a k-vertex graph with a vertex-cover of size τ , and let G be a
graph on n vertices, for n ∈ N. Then we can determine the number of H-copies in G in
time k2O(τ)

nτ+O(1). Note that, if τ = O(1), then this running time is polynomial.

If a constant bound on the vertex-cover number of H makes #Sub(H) tractable, then it
is natural to ask whether the problem is conversely #W[1]-hard if such a bound is not given
for H. For a minimal example of such a problem, it was conjectured in [FG04] that the
problem #Match is #W[1]-complete, where #Match = #Sub(Hmatch) denotes the problem
of counting k-matchings. This conjecture was solved by the author [Cur13], following up
on joint work with Markus Bläser for a weighted variant of the problem [BC12]. We will
give a novel proof of this result in Section 5.2, and we include the old proof in Appendix A
for completeness. The problem of counting k-matchings will later be revisited in full depth.
In view of the hardness of #Match, and following the intuition that #Sub(H) should

admit a fixed-parameter reduction to #Sub(H′) if the graphs in H appear as subgraphs in
H′, it is natural to conjecture that #Sub(H′) is #W[1]-complete whenever H′ contains all
matchings as subgraphs. Note that this is equivalent to requiring the vertex-cover number
of H′ to be unbounded. The main outcome of this part is a proof of this conjecture.

Theorem 6.11. Let H be a recursively enumerable graph class. If FPT 6= #W[1], then
the following are equivalent:

• #Sub(H) is polynomial-time solvable.

• #Sub(H) is fixed-parameter tractable when parameterized by |V (H)|.

• H has bounded vertex-cover number.

This dichotomy theorem exhaustively classifies the complexity of #Sub(H), and it shows
in particular that there exist no classes H such that #Sub(H) is fixed-parameter tractable,
but not polynomial-time solvable. Thus, assuming FPT 6= #W[1], we can precisely say
when #Sub(H) admits a polynomial-time algorithm. Similar results of this type are known
in the literature:
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Homomorphisms: If the treewidth of the cores of H is bounded, then we can decide in
polynomial time whether H ∈ H admits a homomorphism into G. Otherwise, the
problem is #W[1]-complete [Gro07]. For the problem of counting homomorphisms,
a bound on the treewidth of H itself is required for polynomial-time solvability,
otherwise the problem is #W[1]-hard [DJ04].

Induced subgraphs: If H is finite, then we can trivially find and count induced copies of
H ∈ H in a graph G in polynomial time. On the other hand, if H is infinite, then
it was shown that the problems of counting induced H-copies and deciding their
existence are #W[1]-complete and W[1]-complete, respectively [CTW08].

Colorful subgraphs: A classification of tractable database queries from [GSS01] can be
rephrased in terms of finding a vertex-colorful graph H ∈ H in a vertex-colored graph
G. Again, a bound on the treewidth of H yields a polynomial-time algorithm, while
the problem becomes #W[1]-complete if H has unbounded treewidth.

For all problems above, the assumption FPT 6= #W[1] allows to identify precisely the
polynomial-time solvable cases. It might seem too strong to assume a statement in
parameterized complexity in order to identify polynomial-time solvability, but it is known
that weaker assumptions, such as P 6= NP or FP 6= #P, do not always suffice for such
dichotomies: As shown in [CTW08], if FP 6= #P holds, then there exist graph classes H
such that counting induced subgraphs from H is #P-intermediate. That is, the problem is
in #P, but not in FP, and it is not #P-complete.

Let us return to counting subgraphs, and in particular, to Theorem 6.11. To prove this
theorem, we distinguish three types of graph classes. Firstly, if H has bounded vertex-cover
number, then we can apply the algorithm from Theorem 6.1.

If H has unbounded treewidth, then we prove in Section 5.1 that a vertex-colorful variant
of subgraph counting is #W[1]-hard, in a way that is similar to [GSS01, DJ04, Gro07,
Mee14]. By inclusion-exclusion, we then obtain #W[1]-hardness for the uncolored case
#Sub(H) as well. Building upon this reduction, we will also obtain #W[1]-hardness for
counting k-matchings in Section 5.2, and we will explain this more in a few pages.
If H has bounded treewidth, but unbounded vertex-cover number, then we reduce

counting k-matchings to #Sub(H) in Section 6.2. This is the most involved part of the
reduction, and it heavily depends on certain k-matching gadgets whose existence needs to
be proven in an involved graph-theoretical argument.

Vertex-colorful subgraphs

To prove #W[1]-completeness for #Sub(H) if H has unbounded treewidth, we consider the
problem #PartitionedSub(H), a vertex-colored version of #Sub(H). In this variant, we are
given vertex-colored graphs H and G on the same color set, where H has precisely one
vertex of each color, and where the uncolored graph underlying H is contained in H. Our
task is then to count subgraphs F of G such that H admits an isomorphism to F which
maps each vertex in H to a vertex in F of the same color. The parameter is again |V (H)|.
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This problem can be solved in polynomial time by dynamic programming if the treewidth
of H is bounded by O(1), shown in [AR02]. On the other hand, we can show by relatively
standard techniques that #PartitionedSub(H) is #W[1]-hard whenever H has unbounded
treewidth: First, we show #W[1]-hardness of #PartitionedSub on the class of square grids.
Then we prove that the complexity of this problem is minor-monotone, i.e., we show that
#PartitionedSub(H) can be reduced to #PartitionedSub(H′) if, for every graphH ∈ H, there
is some graph H ′ ∈ H′ such that H � H ′. By the Excluded Grid Theorem, every graph
class H of unbounded treewidth includes all square grids as minors, and we consequently
obtain #W[1]-hardness of #PartitionedSub(H). This is by now a well-trodden line of
reasoning, see [GSS01, DJ04, Gro07, Mee14]. Finally, we observe that #PartitionedSub(H)
can be reduced to #Sub(H) by the inclusion-exclusion principle, and we obtain:

Theorem 5.6. The problems #PartitionedSub(H) and #Sub(H) are #W[1]-complete when-
ever H is recursively enumerable and has unbounded treewidth.

Edge-colorful matchings

As noted before, the result for #PartitionedSub(H) does not come as a surprise in view
of the previously cited results in the literature. However, if we color edges instead of
vertices, we obtain a somewhat different situation. For instance, the algorithm for bounded-
treewidth patterns from [AR02] fails when considering edge-colored graphs instead of their
vertex-colored counterparts.

In fact, we can even show that the problem of counting edge-colorful matchings is
#W[1]-complete: Here, we are given a [k]-edge-colored graph G, for k ∈ N, and we wish to
count the matchings in G that have precisely one edge from each color. This stands in
contrast with the vertex-colorful variant of counting matchings, which is fixed-parameter
tractable, since matchings are forests. The edge-colorful version can be reduced to the
uncolored variant by the inclusion-exclusion principle, as seen in Lemma 1.33.

Our proof of this result, shown in Section 5.2, proceeds by reduction from #PartitionedSub
on the class of 3-regular graphs, for which an almost-tight lower bound of f(k) · no(k/ log k)

under #ETH is known [Mar10]. Our reduction preserves this lower bound, and additionally,
we can also prove #W[1]-hardness when G may be assumed to be bipartite, which is later
required for the reduction to #Sub(H) in Section 6.2. In fact, the main reason for us to
revisit the problem #Match was because the original proof did not support a restriction to
bipartite graphs. We obtain the following results.

Theorem 5.22. The problem #EdgeColMatch and its uncolored variant #Match are
#W[1]-complete and admit no algorithm with running time f(k) · no(k/ log k) unless #ETH
fails. Here, we may even assume G to be bipartite.
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Using the notion of combined signatures from Section 2.3, the proof of Theorem 5.22
is quite transparent. In particular, it allows to circumvent all of the machinery used in
the original #W[1]-hardness proof for #Match by the author [Cur13], which is included in
Appendix A for the sake of completeness.

Using fpt-reductions from #Match that incur linear blowup, we also provide new #W[1]-
hardness proofs for the problems of counting (directed or undirected) paths and cycles.
These are somewhat simpler than the original proofs in [FG04], and they allow to transfer
the lower bound of f(k)no(k/ log k) for #Match to the four target problems, where no such
bounds were known before.

Theorem 5.29. The problems #DirCycle, #UndirCycle, #UndirPath, #DirPath of counting
directed/undirected paths/cycles of length k are all #W[1]-hard and admit no algorithms
with running time f(k)no(k/ log k) unless #ETH fails.

We could also aim at a dichotomy for edge-colorful subgraph counting, but we decided
to focus on edge-colorful matchings, as these allow us to prove hardness for uncolored
k-matchings, which is ultimately required for the uncolored case of subgraph counting.

From matchings to bounded-treewidth graphs

Let us return to the problem #Sub(H) introduced before. We know by Theorem 5.6 that
#Sub(H) is #W[1]-hard when H has unbounded treewidth, and we know by Theorem 6.1
that it is polynomial-time solvable whenH has bounded vertex-cover number. In Section 6.2,
we handle the remaining classes H, i.e., we show #W[1]-hardness of #Sub(H) if H has
bounded treewidth and unbounded vertex-cover number. To this end, we reduce from
the problem #BipMatch of counting bipartite k-matchings, which we have shown to be
#W[1]-hard in Theorem 5.22.

We can show with a Ramsey argument that, if H has bounded treewidth and unbounded
vertex-cover number, then H contains induced matchings of all sizes, i.e., for all k ∈ N,
there is some graph H ∈ H which contains an induced k-matching. In Section 6.2, we use
this to reduce #BipMatch to #Sub(H): Given a graph H ∈ H that contains an induced
k-matching M , let us consider the following attempt at counting copies of M in a graph G
when given an oracle for counting H-copies in arbitrary graphs.

1. Partition V (H) = V (M) ∪ C, where C is the “remainder” of H after deleting M .

2. Construct a graph G′ by adding a vertex-disjoint copy of H[C] to G on a vertex set
C ′ that is connected to all vertices of G.

3. By a simple inclusion-exclusion argument, we can use the oracle to count the H-copies
F in G′ that use all vertices and edges of the H[C]-copy in G′. These are precisely
those copies F where F [C ′] is isomorphic to H[C].
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One might be tempted to believe now that the remainder of F , i.e., the induced subgraph
F [G] contained in the copy of G in G′, is in fact isomorphic to M . If this were true, then
we could indeed count k-matchings by reduction to #Sub(H), since each matching M in G
would correspond to a fixed number α ∈ N of H-copies F in G′ with F [C ′] ' H[C].

However, this argument fails: Given H and C as above, we generally cannot rule out the
existence of a set D ⊆ V (H) such that H[D] ' H[C], but H −D is not a k-matching. In
other words, even if we count H-copies F in G′ with F [C ′] ' H[C], then it is not guaranteed
that the subgraph F [G] is a k-matching, and we cannot hope to count k-matchings of G.
Instead, we count occurrences of some unknown set of graphs on 2k vertices in G, and we
can only guarantee that this set includes the k-matchings.
To overcome this, we introduce a general machinery of k-matching gadgets; these are

pairs (H,C) where H is a graph and C ⊆ V (H) is such that the problem mentioned
above does not occur. That is, whenever we partition V (H) into sets D and B such that
H[D] ' H[C] and B satisfies certain technical conditions, then B is in fact a k-matching.
We then show, given oracle access to counting H-copies, how to count H-copies F in G′

such that the induced subgraph F [G] satisfies the technical conditions, and this allows
us to count k-matchings as in the idealized setting described above. This step requires a
combination of interpolation and the inclusion-exclusion principle.

It remains to prove the existence of k-matching gadgets in classes H of bounded treewidth
and unbounded vertex-cover number. This is done by a detailed graph-theoretic study by
Dániel Marx, which is included in Appendix B, and for which the author of this thesis
does not claim any contribution.

Notes

This part is based on joint work with Dániel Marx, partly carried out when the author
was visiting him at MTA SZTAKI Budapest in 2013. This content has also appeared in
[CM14], except for Section 5.2, which differs substantially from the published version.
In Section 6.2, an involved graph-theoretic proof is necessary for the reduction from

#BipMatch to #Sub(H) on classes H with unbounded vertex-cover number and bounded
treewidth. This part was contributed by Dániel Marx, and it is contained in Appendix B.
Recently, problems of counting induced subgraphs that satisfy certain fixed properties

have been been studied in [JM15b, Mee14, JM15a]. These papers identify some classes of
properties that make the problem #W[1]-hard. As an example, it was shown in [JM14]
that counting k-vertex induced subgraphs with an odd number of edges is #W[1]-hard.
The findings obtained in this line of research are orthogonal to ours, apart from a result in
[Mee14] that can be considered as an independent #W[1]-hardness proof for Theorem 5.6.
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5. Colored subgraphs

We consider the colored subgraph counting problems mentioned in the introduction to
Part II. In Section 5.1, we consider the subgraph counting problems #PartitionedSub(H)
for fixed classes H. Based on our findings in this section, we will then study the problem
of counting edge-colorful matchings in Section 5.2 and use this to derive #W[1]-hardness
for counting uncolored k-cycles and k-paths.

5.1. Vertex-colorful subgraphs

In this subsection, we study vertex-colorful counting problems. Rather than considering
arbitrary color sets, we restrict ourselves to the color set [k] for k ∈ N. For simplicity, we
identify vertices of colorful graphs with their colors.1

For the problem of counting vertex-colorful subgraphs, we can define two distinct versions,
which we will soon observe to be equivalent. In the following, let H be an arbitrary fixed
class of uncolored graphs.

Problem 5.1 (#ColorfulSub(H)). Let H ∈ H be a graph on k vertices and let G be a
[k]-vertex-colored graph. We wish to count colorful H-copies in G. These are H-copies in
G that have exactly one vertex of each color i ∈ [k].

For any graph class H, we can use Lemma 1.34 on page 44 to show

#ColorfulSub(H) ≤lin
fpt #Sub(H). (5.1)

In the following, we define a more restricted version of vertex-colorful subgraph counting.
This version will be used in the remainder of this chapter.

Problem 5.2 (#PartitionedSub(H)). Let H and G be [k]-vertex-colored graphs such that
H is colorful and the uncolored graph underlying H is contained in H. We wish to count
color-preserving H-copies F in G. These are subgraphs F of G that admit an isomorphism
f : V (H) → V (F ) such that, for all v ∈ V (H), the vertex v has the same color as f(v).
We denote their number by #PartitionedSub(H → G).

1This allows us to contract linguistic accidents such as “the edge between the vertex of color i and the
vertex of color j” to a mere “the edge ij”.
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5. Colored subgraphs

When counting color-preserving copies of a vertex-colored graph H in G, it is clear that
only those edges of G are relevant whose endpoints are colored such that H also has an
edge between these colors. This gives rise to the following observation.

Remark 5.3. Let H and G be [k]-vertex-colored and let F be a subgraph of G that is
color-preserving isomorphic to H. If uv ∈ E(F ) is an edge with endpoints of colors i and
j, for some i, j ∈ [k], then the edge ij is present in H. We may therefore assume that
Ei,j(G) = ∅ if ij /∈ E(H). If this is not the case, we may delete edges in Ei,j(G) with
ij /∈ E(H) to ensure this.

If G is preprocessed as in Remark 5.3, and if Hu is the uncolored graph underlying H,
then the colorful Hu-copies in G correspond to the color-preserving H-copies in G.

Lemma 5.4. Let H and G be [k]-vertex-colored graphs, and let Hu denote the uncolored
graph underlying H. Let G′ be obtained from G by deleting all edges in Ei,j(G) with
ij /∈ E(H). Then it holds that

#PartitionedSub(H → G) = #ColorfulSub(Hu → G′).

Proof. It is clear that every color-preserving H-copy F in G is also a colorful Hu-copy in
G′ when considering F as an uncolored graph.
On the other hand, if F is a colorful Hu-copy in G′, then |Ei,j(F )| ≤ 1 holds for all

i, j ∈ [k]. By construction of G′, there are at most |E(H)| pairs {i, j} ⊆ [k] such that
Ei,j(G) 6= ∅, namely those with ij ∈ E(H). Therefore, |E(F )| = |E(H)| is possible only if
|Ei,j(F )| = 1 for all ij ∈ E(H). But then F is in fact a color-preserving H-copy in G.

Then the reduction (5.1) and Lemma 5.4 together imply the following lemma.

Lemma 5.5. We have #PartitionedSub(H) ≤lin
fpt #ColorfulSub(H) ≤lin

fpt #Sub(H).

5.1.1. Dichotomy along treewidth

In this subsection, we show that #PartitionedSub(H) is #W[1]-hard whenever H has
unbounded treewidth. As already stated in the introduction, the proof uses well-known
techniques, and it proceeds along the following two steps:

1. In Lemma 5.7, we prove that #PartitionedSub(Hgrid) is #W[1]-complete, where Hgrid
denotes the class of square grids.

2. In Lemma 5.8, we show that the problem #PartitionedSub is minor-monotone. That
is, whenever H � H′ holds for classes H and H′, we obtain

#PartitionedSub(H) ≤pars
fpt #PartitionedSub(H′).

Recall from Definition I that we write H � H′ if, for every H ∈ H, there exists some
H ′ ∈ H′ with H � H ′.
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Then the Excluded Grid Theorem (Theorem 1.49 in our numbering) implies Theorem 5.6
from Lemmas 5.7 and 5.8, since it asserts that every graph class H of unbounded treewidth
satisfies Hgrid � H. By Lemma 5.5, the same hardness result follows for the uncolored
version #Sub(H) via inclusion-exclusion.

Theorem 5.6 (restated from page 122). The problems #PartitionedSub(H) and #Sub(H)
are #W[1]-complete whenever H is recursively enumerable and has unbounded treewidth.

To prove this theorem, we need to prove Lemmas 5.7 and 5.8.

Lemma 5.7. The problem #PartitionedSub(Hgrid) is #W[1]-complete under ≤pars
fpt , where

Hgrid denotes the class of square grids.

Proof. We reduce from the problem #GridTiling, whose #W[1]-completeness under parsimo-
nious reductions was shown in Lemma 1.13 on page 32. Given an instance T : [k]2 → 2[n]2

to this problem, for some numbers k, n ∈ N, let H denote the k × k square grid on vertex
set [k]2. We construct a [k]2-colored graph G = G(T ) such that

#GridTiling(T ) = #PartitionedSub(H → G).

To this end, we proceed along the following steps. Please recall the notions of horizontally
and vertically adjacent indices among [k]2, as introduced in Section 1.1.

• For each κ ∈ [k]2, and each (r, s) ∈ T (κ), create a vertex (κ, r, s) of color κ

• For all horizontally adjacent indices κ, κ′ ∈ [k]2, and for all numbers r, s, s′ ∈ [n],
add an edge between (κ, r, s) and (κ′, r, s′) if both vertices exist in G. Call this edge
horizontal.

• For all vertically adjacent indices κ, κ′ ∈ [k]2, and for all numbers r, r′, s ∈ [n], add an
edge between (κ, r, s) and (κ′, r′, s) if both vertices exist in G. Call this edge vertical.

In the following, we verify that the consistent grid tilings of T stand in bijection with the
color-preserving H-copies in G. Given such a color-preserving H-copy F , let vκ denote the
unique vertex of color κ in F . We claim that the following assignment aF : [k]2 → [n]2 is a
consistent grid tiling of T :

aF : κ 7→ (r, s) if vκ = (κ, r, s).

Note that aF is a well-defined function. We verify in the following that aF satisfies the
three conditions specified in the definition of #GridTiling, see Problem 1.12 on page 32.
The first condition is easily seen:

(C) The vertex (κ, r, s) is present in G only if (r, s) ∈ T (κ).

Furthermore, an edge between vertices of colors κ and κ′ is present in G only if these
indices are either vertically or horizontally adjacent. Using this, we can verify the remaining
two conditions.
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(H) If κ, κ′ are horizontally adjacent, then an edge between vertices (κ, r, s) and
(κ′, r′, s′) is present in G (and thus in F ) only if r = r′.

(V) If κ, κ′ are vertically adjacent, then an edge between vertices (κ, r, s) and
(κ′, r′, s′) is present in G (and thus in F ) only if s = s′.

Conversely, every consistent grid tiling a can be transformed to a color-preserving H-copy
Fa in G by reversing this mapping, i.e., by including vertex (κ, a(κ)) for all κ ∈ [k]2.

It remains to prove that the complexity of the problem #PartitionedSub(H) is indeed
monotone under the relation � on graph classes. For later use, we note that under certain
circumstances, a linear-blowup reduction can be achieved as well.

Lemma 5.8. Let H and H′ be recursively enumerable graph classes with H � H′. Then

#PartitionedSub(H) ≤pars
fpt #PartitionedSub(H′). (5.2)

If additionally, for every graph H ∈ H on k vertices, there is a graph H ′ ∈ H′ with H � H ′

on O(k) vertices, then

#PartitionedSub(H) ≤lin
fpt #PartitionedSub(H′). (5.3)

Proof. Let V (H) = [k] and let G be [k]-vertex-colored. Let H ′ ∈ H′ with H � H ′ and let
V (H ′) = [k′] for some k′ ∈ N. Given H, we can find H ′ in time f(H), for a computable
function f , by enumerating the graphs H ′ ∈ H′ by non-decreasing number of vertices, and
testing for each H ′ via brute force whether H � H ′ holds. Note that k′ = O(k) if the
additional condition of the lemma holds.

In the following, we construct a [k′]-colored graph G′ from the graphs G, H and H ′, and
we claim that

#PartitionedSub(H → G) = #PartitionedSub(H ′ → G′). (5.4)

This clearly implies (5.2). Note that this reduction increases the parameter from k to k′,
so it also implies (5.3) if the additional condition of the lemma holds.

SinceH � H ′ holds, the set V (H ′) = [k′] admits a partition into branch setsB0, B1, . . . , Bk
such that the following holds: For all i ∈ [k] \ {0}, the graph H ′[Bi] is connected, and
deleting B0 and contracting each Bi for i ∈ [k] to a single vertex (which we denote by i)
yields some supergraph of H on the vertex set [k]. Recall that Vi(G) denotes the set of
vertices in G with color i. Then we define G′ as follows, shown also in Figure 5.1.

1. For all i ∈ [k] \ {0} and v ∈ Vi(G): Replace v by a copy of H ′[Bi], which we denote
by Lv. Note that the vertices of H ′[Bi] are some subset of [k′].

2. For all ij ∈ E(H) and all uv ∈ Ei,j(G): Insert all edges between Lu and Lv.

3. For all ij /∈ E(H), all u ∈ Vi(G) and v ∈ Vj(G): Insert all edges between Lu and Lv.

4. Add a copy of H ′[B0] to G′. Connect it to all other vertices of G′.
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5.1. Vertex-colorful subgraphs

Figure 5.1.: The graphs H � H ′ are shown on the left. From the [4]-vertex-colored graph
G, we construct the graph G′. To avoid clutter, the edges added in Step 3 of
constructing G′ are not shown, i.e., additionally to shown edges, G′ has all
possible edges not contained in the gray area.

In the following, we prove (5.4): Every color-preserving H-copy F in G can be extended to
a unique color-preserving H ′-copy F ′ in G′ by following the very same graph transformation
described in the steps above.
Conversely, every such H ′-copy F ′ in G′ corresponds to exactly one H-copy F in G:

Since F ′ is color-isomorphic to H ′, we have that for every i ∈ [k] \ {0}, the Bi-colored
vertices of F ′ induce a graph F ′i ' H[Bi]. Since H ′[Bi] is connected for all i ∈ [k]\{0}, but
the subgraphs Lu and Lv of G′ are vertex-disjoint for different u, v ∈ Vi(G), there is some
unique vertex v(i) ∈ Vi(G) with F ′i = Lv(i). Applying this to all i ∈ [k] \ {0} yields vertices
v(1), . . . , v(k) ∈ V (G) such that v(i) ∈ Vi(G) and, by construction of G′, an edge between
v(i) and v(j) is present in G if ij ∈ E(H). In other words, the vertices v(1), . . . , v(k) are a
color-preserving H-copy in G.

5.1.2. Cubic pattern graphs

In Section 5.2, we show #W[1]-hardness of #Match by reduction from #PartitionedSub on
3-regular patterns H. To this end, we establish in this subsection that #PartitionedSub(C4)
is #W[1]-hard, where C4 denotes the class of all 3-regular graphs. We will also derive a
lower bound under #ETH for this problem by using a result in [Mar10].

To begin, we first show that any graph H on k vertices and ` edges is always contained
as a minor in some 3-regular graph H ′ on O(k + `) vertices and edges.

Lemma 5.9. If H is a graph on k vertices and ` edges, then there exists a 3-regular graph
H ′ on O(k + `) vertices and edges with H � H ′.
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Proof. If H contains isolated vertices, add a dummy vertex that is adjacent to all isolated
vertices so as to increase the minimum degree of H to 1. Then, for every vertex v ∈ V (H)
with 1 ≤ deg(v) < 3, attach one of the following gadgets to v in order to increase deg(v)
to 3, and note that this introduces no new vertices of degree other than 3.

For every v ∈ V (H) with deg(v) > 3, replace v by a vertex cycle of length deg(v) and
attach the i-th edge in I(v) to the i-th cycle vertex, for all i ∈ [deg(v)]. The concrete
ordering of I(v) is irrelevant here.
The graph H ′ constructed this way is clearly 3-regular and has O(k + `) edges. Fur-

thermore, it contains H as minor: To see this, delete the vertices introduced by gadgets,
contract all vertex cycles to single vertices, and then delete the dummy vertex and its
incident edges, if present. This procedure yields H from H ′.

Note that Lemma 5.9 implies H � C4 for every graph class H, and it follows by
Lemma 5.8 that

#PartitionedSub(H) ≤pars
fpt #PartitionedSub(C4). (5.5)

In Lemma 1.11 on page 31, we have shown #W[1]-completeness of the problem #ColClique,
which can be rephrased as #PartitionedSub(K) for the class K of complete graphs. In
fact, we have also shown #W[1]-completeness of the problem #PartitionedSub(Hgrid) in
Lemma 5.7. Together with the reduction (5.5), we obtain the desired hardness result.

Lemma 5.10. The problem #PartitionedSub(C4) is #W[1]-hard.

By Example 1.21, the problem #ColClique cannot be solved in time f(k)no(k) for any
computable function f , unless #ETH fails. Here, n denotes the size of G and k denotes
the size of the cliques to be counted. We would like to transfer this lower bound to
#PartitionedSub(C4), and then ultimately to #Match. However, if H is a k-clique, then
the graph H ′ constructed in Lemma 5.9 has O(k2) vertices, so we cannot use the reduction
shown in Lemma 5.8 to obtain the same tight lower bound for #PartitionedSub(C4).
To overcome this, we use a source problem different from #ColClique to prove tighter

lower bounds for #PartitionedSub(C4), namely #PartitionedSub on the class of graphs with
maximum degree D, where D ∈ N is a fixed universal constant. A lower bound for this
problem was shown in [Mar10].

Theorem 5.11 ([Mar10]). Assuming #ETH, there is a universal constant D ∈ N such
that the following holds: Let CD denote the class of graphs with maximum degree D. Then
#PartitionedSub(CD) cannot be solved in time f(k)no(k/ log k), where k = |V (H)| and f is
any computable function.2

2In [Mar10], the lower bound is shown for the decision version of #PartitionedSub(CD), and assuming the
decision version ETH of the exponential-time hypothesis. The techniques used in that paper however
transfer easily to the counting version.
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For any graph H ∈ CD on k vertices, the construction in Lemma 5.9 yields a graph H ′

on O(Dk) vertices and edges, where D is a fixed constant. Hence, Lemma 5.8 yields

#PartitionedSub(CD) ≤lin
fpt #PartitionedSub(C4). (5.6)

Then the reduction (5.6) and Theorem 5.11 readily imply the following lower bound.

Lemma 5.12. Assuming #ETH, the problem #PartitionedSub(C4) admits no f(k)no(k/ log k)

time algorithm, where k = |V (H)| and f is any computable function.

5.2. Edge-colorful subgraphs

In this subsection, we consider edge-colorful subgraph problems, and we focus on the
problem #EdgeColMatch of counting edge-colorful k-matchings.

Problem 5.13 (#EdgeColMatch). Given a [k]-edge-colored graph G, for k ∈ N, determine
the number of edge-colorful matchings in G. The parameter is k.

For our proofs, we first require an edge-colored version of signature graphs and appropri-
ately modified definitions of Holants, gates and signatures.

5.2.1. Edge-colorful Holant problems

In the following definition, we adapt Definition 2.2 on page 54 and Definition 2.9 on
page 58 to the edge-colored setting. In this section, all appearing signature graphs will be
unweighted. In fact, we take great care not to introduce edge-weights in our proofs, as they
are often quite hard to eliminate in the setting of counting small subgraphs, and were a
major obstacle in the step from [BC12] to [Cur13].

Definition 5.14. Let Ω be an edge-colored signature graph with color classes E1, . . . , E` ⊆
E(Ω) for ` ∈ N. An assignment x ∈ {0, 1}E(Ω) is colorful if |x ∩Ei| = 1 holds for all i ∈ [`].
We define Holantcol(Ω) as the restriction of Holant(Ω) to colorful assignments:

Holantcol(Ω) :=
∑

x∈{0,1}E(Ω)

x colorful

valΩ(x).

An edge-colored gate is an edge-colored graph Γ with a set D of dangling edges. We call all
colors appearing in E(Γ) \D internal. We then define Sigcol(Γ) : {0, 1}D → Q by

Sigcol(Γ, x) :=
∑

xy∈{0,1}E(Γ):
y∈{0,1}E(Γ)\D

xy colorful

valΓ(xy).

We call Γ an edge-colored matchgate if it uses only the signature HW≤1. Please note that
this signature is not HW=1, which is used for (uncolored) matchgates.
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By definition, we have Sigcol(Γ, x) = 0 if some color occurs twice among the active edges
of x. Let us also observe that the edge-colorful Holants of edge-colored graphs with HW≤1

at each vertex are equivalent to the problem #EdgeColMatch.

Fact 5.15. Given an edge-colored graph G, let Ω denote the edge-colored signature graph
obtained from G by placing the signature HW≤1 at each vertex v ∈ V (G). Then the edge-
colorful satisfying assignments to Ω are precisely the edge-colorful matchings of G.

Given an edge-colored signature graph Ω and a vertex set S ⊆ V (Ω), we can contract S
to a single vertex w↓S with signature Sigcol(ΩS) as in Definition 2.10. It can be verified
that this operation preserves the value of Holantcol(Ω), similar to Lemma 2.11, as long as
the internal colors of ΩS appear nowhere else in Ω.

Lemma 5.16. Let Ω be an edge-colored signature graph and let S ⊆ V (Ω) be such that no
internal color in ΩS appears in Ω− S. Define Ω↓S by contracting S to a single vertex w↓S
with signature Sigcol(ΩS). Then we have Holantcol(Ω) = Holantcol(Ω↓S).

Proof. Adapt the calculations from Lemma 2.11.

As in Section 2.1.3, we can reverse the contraction process to realize signatures in
edge-colored signature graphs Ω by edge-colored matchgates Γ, provided that the internal
colors in Γ are disjoint from the colors in Ω.

Remark 5.17. We note that combined signatures in edge-colored signature graphs Ω can
be used to write Holantcol(Ω) as the linear combination of Holantcol(Ωθ) for derived edge-
colored signature graphs Ωθ, parallel to the Combined Signature Lemma on page 71. To
this goal, note that this lemma also holds in the edge-colored setting: Simply invoke
Remark 2.36 with the set X of edge-colorful assignments to Ω.

5.2.2. Hardness of counting k-matchings

We prove hardness of #EdgeColMatch by reduction from #PartitionedSub(C4): Given
vertex-colored graphs G and H on colors [k], where H is colorful and 3-regular, we wish to
determine #PartitionedSub(H → G). In Lemmas 5.10 and 5.12, we have already observed
#W[1]-completeness of this problem, as well as a f(k)no(k/ log k) lower bound under #ETH.

We consider G and H to be fixed in the following. For simplicity, we assume V (H) = [k],
we write E(H) = {e1, . . . , e`} with ` = |E(H)|, and we write V (G) = {v1, . . . , vn} with
n = |V (G)|. By Remark 5.3, we may consider G to be colored with [k] such that Ei,j(G) = ∅
if ij /∈ E(H).

In the first step of the reduction, we observe that #PartitionedSub can be expressed as a
colorful Holant problem on the edge-colored signature graph Ω = ΩH→G that is constructed
from H and G as follows: For each vertex i ∈ V (H), create a vertex wi in Ω. For every
edge e between vertices u, v (of colors i, j) in G, add an edge h between wi and wj to Ω,
and “remember” the endpoints of the original edge e by a function π that maps h 7→ e.
We formalize this in the following definition.
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Figure 5.2.: A vertex-colored graph G is shown on the left, and the signature graph
ΩH→G derived from G is shown on the right. For the edge uv ∈ E(G), the
corresponding edge h in ΩH→G is shown with its annotation π(h) = uv.

Definition 5.18. Let H and G be fixed as above. We define an [`]-edge-colored signature
graph Ω = ΩH→G on vertices w1, . . . , wk, together with a function π : E(Ω)→ E(G), and
for each i ∈ [k], a type function θi : {0, 1}I(wi) → N.

1. For t ∈ [`], let et = ij with i, j ∈ [k] be the t-th edge in E(H). For each edge
e ∈ Ei,j(G), add an edge h = wiwj of color t and declare π(h) = e. Note that this
step will usually produce parallel edges in Ω.

2. For assignments x ∈ {0, 1}E(Ω), extend the definition of π to

π(x) := {π(e) | e ∈ x}. (5.7)

and observe that π(x) ⊆ E(G). For i ∈ [k] and x ∈ {0, 1}I(wi), let θi(x) denote the
number of distinct i-colored vertices in G that are incident with the edge set π(x).

3. Attach the following Boolean vertex function fi : {0, 1}I(wi) → {0, 1} to wi, with

fi : x 7→

1 θi(x) = 1,
0 else.

Note that Ω = ΩH→G has |E(G)| edges and a set of |Ei,j(G)| parallel edges between
wi and wj , which we call an edge bundle. The graph Ω is essentially obtained from G by
contracting each set Vi for i ∈ [k] to a single vertex wi. For every i ∈ [k], this vertex wi
is incident with 3 edge bundles, since H is 3-regular and we preprocessed G according to
Remark 5.3. Furthermore, we observe the following fact:

Fact 5.19. For each colorful assignment x ∈ {0, 1}E(Ω), we have θi(x) ∈ [3] for all i ∈ [k].
Furthermore, the satisfying colorful assignments x ∈ {0, 1}E(Ω) stand in bijection with the
color-preserving H-copies Fx in G.

Proof. For each colorful x ∈ {0, 1}E(Ω), the edge set π(x) from (5.7) induces an edge-
induced subgraph Fx = G[π(x)]. Since x is colorful, this subgraph Fx contains, for all
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ij ∈ E(H), precisely one edge in Ei,j(G). Since each vertex in Ω has three incident
edge-bundles, this graph Fx contains at most 3 distinct vertices of color i, for all i ∈ [k],
which implies θi(x) ∈ [3] and proves the first claim.

For the second claim, observe that Fx is a color-preserving H-copy in G iff θi(x) = 1
holds for all i ∈ [k]. But this in turn is true if and only if fi(x) = 1 at all i ∈ [k]. Conversely,
every color-preserving H-copy F in G can be written as F = Fx for a unique satisfying
edge-colorful assignment x.

In the following, we reduce Holantcol(Ω) to 3k instances of #EdgeColMatch. More
precisely, we show that every signature fi appearing in Ω can be expressed as a linear
combination from three constituents (fi,κ)κ∈[3], where fi,κ is the signature of an edge-colored
matchgate Γi,κ on 3 internal colors. Then we apply the Combined Signature Lemma for
edge-colorful signature graphs.
For i ∈ [k] and κ ∈ [3], the matchgate Γi,κ is obtained as the disjoint union of t+ κ− 1

edge-colorful triangles, to which the dangling edges I(wi) attach. Here, t ≥ n is an arbitrary
number.3 The dangling edges are distributed among the first n triangles, while the remaining
triangles function as “dummies” that will enable the desired linear combination. Note that,
for fixed i ∈ [k], the matchgates Γi,κ for κ ∈ [3] differ only in their numbers of dummy
triangles.

Lemma 5.20. Let t ≥ n be arbitrary. For i ∈ [k] and κ ∈ [3], let Γi,κ denote the following
edge-colored matchgate on internal colors [3], with dangling edges I(wi):

• For all u ∈ [t+ κ− 1], define the following subgraph of Γi,κ, which we call the u-th
triangle: Create vertices au,s for s ∈ [3] with signature HW≤1. For all s ∈ [3], add an
s-colored edge between au,s and au,s+1, writing 3 + 1 instead of 1 in the indices.

• Denote the three edge bundles in I(wi) by Bi,1, Bi,2 and Bi,3. For s ∈ [3] and any
edge h ∈ Bi,s from the s-th bundle: If vu for u ∈ [n] is the (unique) i-colored endpoint
of π(h) in G, connect h as dangling edge to the triangle vertex au,s.

Let fi,κ = Sigcol(Γi,κ). Then there are fixed polynomials α1, α2, α3 ∈ Z[t] (independent of
the instance graphs G and H) such that

fi = 1
12(t− 2)2(t− 1)

3∑
κ=1

ακ(t) · fi,κ. (5.8)

The proof of this lemma is by mere calculation and is postponed to the end of this
subsection. Using this lemma, the framework of combined signatures and edge-colorful
Holant problems allows to derive the desired reduction.

Lemma 5.21. We have #PartitionedSub(C4) ≤lin
fpt #EdgeColMatch.

3To prove #W[1]-hardness of k-matchings, it suffices to choose t = n. We will later see other applications
where we have to choose t more carefully.
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Proof. Given graphs H and G as described at the beginning of this subsection, let Ω =
Ω(H → G) denote the signature graph from Definition 5.18. By Fact 5.19, we have

#PartitionedSub(H → G) = Holantcol(Ω).

Let t = |V (G)| + 3, write q(t) = 12k(t − 2)2k(t − 1)k and observe that q(t) 6= 0. Let
α1, α2, α3 ∈ Z[t] be the polynomials from Lemma 5.20. By the Combined Signature Lemma
and Remark 5.17 for its edge-colorful variant, we obtain

Holantcol(Ω) = 1
q(t) ·

∑
θ∈[3]k

(
k∏
i=1

αθ(i)(t)
)

Holantcol(Ωθ), (5.9)

where Ωθ for θ ∈ [3]k is obtained by replacing fi ← fi,θ(i) for all i ∈ [k]. By Lemma 5.20,
we can realize fi,κ by the edge-colored matchgate Γi,κ, for all i ∈ [k] and κ ∈ [3].

Given θ ∈ [3]k, we construct an edge-colored signature graph Φθ from Ωθ by inserting,
for each i ∈ [k], a copy of Γi,θ(i) on fresh internal colors at the vertex wi in Ωθ. This yields

Holantcol(Ωθ) = Holantcol(Φθ),

and by Fact 5.15, we can compute Holant(Φθ) with an oracle call to #EdgeColMatch. Hence,
we can compute #PartitionedSub(H → G) by (5.9) and 3k oracle calls to #EdgeColMatch.

Every graph Φθ for θ ∈ [3]k contains the edges of Ω, which have |E(H)| = 3k/2 distinct
colors, and k matchgates, each on 3 internal colors. Therefore Ω features `+ 3k = 4.5k
distinct edge-colors, which implies that our reduction indeed incurs linear blowup.

This implies our main theorem for this subsection. Note that the restriction to bipartite
graphs is missing in the following statement; we prove it as Theorem 5.24 in the following
subsection by reduction from the not necessarily bipartite case.

Theorem 5.22 (restated from page 122). The problem #EdgeColMatch and its uncolored
variant #Match are #W[1]-complete and admit no algorithm with running time f(k) ·
no(k/ log k) unless #ETH fails.

Proof. Recall the hardness results for #PartitionedSub(C4) from Lemmas 5.10 and 5.12.
Together with Lemma 5.21, these imply the statement for #EdgeColMatch. By inclusion-
exclusion via Lemma 1.34, we obtain the statement for the uncolored variant #Match.

To complete the proof, it remains to perform the calculations needed for Lemma 5.20.

Proof of Lemma 5.20. Recall the types θi for i ∈ [k] from Definition 5.18, and the falling
factorial notation (n)k from Section 1.1. For fixed κ ∈ [3], write t′ = t+ κ− 1. We first
prove that, for x ∈ {0, 1}I(wi), we have

Sigcol(Γi,κ, x) =


(t′ − 1)3 θi(x) = 1
(t′ − 2)3 + (t′ − 2)2 θi(x) = 2
(t′ − 3)3 + 3(t′ − 3)2 + 3(t′ − 3) + 1 θi(x) = 3

(5.10)
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Figure 5.3.: The possible extensions of a colorful assignment to the dangling edges

By Fact 5.19, we have θi(x) ∈ [3] for all edge-colorful assignments to I(wi), so the case
distinction in (5.10) is indeed sufficient to describe Sigcol(Γi,κ) entirely.
For u ∈ [t′], call the u-th triangle in Γi,κ hit by x if an active edge of x is incident with

it; otherwise call it intact. By definition of Γi,κ, the u-th triangle is hit if and only if π(x)
contains an edge with endpoint vu.
To prove (5.10), we consider the edge-colorful satisfying assignments xy ∈ {0, 1}E(Γi,κ)

that extend x, depending on the type θi(x): The active edges in each such assignment are
an edge-colorful matching, and this matching may include some edges from triangles that
are hit by x, while the remaining edges are from intact triangles. See Figure 5.3 for an
overview of hit and intact triangles in each state of θi(x).

θi(x) = 1 : There are t′ − 1 intact triangles, and no edges left in the unique triangle hit
by x, as shown in Figure 5.3. We can find (t′ − 1)3 edge-colorful matchings in the
disjoint union of the t′ − 1 intact triangles.

θi(x) = 2 : There are t′ − 2 intact triangles. One of the two hit triangles has one edge left,
the other has none left, as shown in Figure 5.3. Each matching may contain

• 3 edges from the intact triangles, yielding (t′ − 2)3 matchings, or

• 2 such edges, and the one edge from the hit triangles, yielding (t′−2)2 matchings.

θi(x) = 3 : There are t′ − 3 intact triangles. Three triangles are hit, and each has one edge
left, as shown in Figure 5.3. Each matching may contain

• 3 edges from the intact triangles, yielding (t′ − 3)3 matchings, or

• 2 such edges, and 1 edge from the hit triangles, yielding 3(t′ − 3)2 matchings, or

• 1 such edge, and 2 edges from the hit triangles, yielding 3(t′ − 3) matchings, or

• 0 such edges, and 3 edges from the hit triangls, yielding 1 matching.
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5.2. Edge-colorful subgraphs

Summing over the disjoint numbers of extending matchings, depending on θi(x), we obtain
(5.10). Now let A ∈ (Z[t])3×3 be the well-defined matrix obtained by declaring, for r, κ ∈ [3],

A(r, κ) = (Sigcol(Γi,κ, x) on inputs x with θi(x) = r).

That is, the signatures of Γi,1,Γi,2,Γi,3 (reduced to distinct entries) appear in A as columns
of 3 entries each. It can be verified by hand that

A =

 t3 − 6t2 + 11t− 6 t3 − 3t2 + 2t t3 − t
t3 − 8t2 + 21t− 18 t3 − 5t2 + 8t− 4 t3 − 2t2 + t

t3 − 9t2 + 29t− 32 t3 − 6t2 + 14t− 11 t3 − 3t2 + 5t− 2

 .
We can then furthermore verify that

det(A) = 12 · (t− 2)2 · (t− 1).

By solving A · (β1, β2, β3)T = (1, 0, 0)T for indeterminates β1, β2, β3 via Cramer’s rule, we
obtain solutions

βi = αi
det(A) for i ∈ [3],

with polynomials α1, α2, α3 ∈ Z[t] satisfying (5.8). This completes the proof.

The proof of Theorem 5.22 is complete. To conclude this subsection, we observe that
our reduction is quite indifferent to its target #EdgeColMatch: The computations in
Lemma 5.20 could also be carried out for edge-colored gates other than matchgates, so a
similar reduction could yield #W[1]-hardness of other edge-colorful Holant problems (and
by Lemma 1.34, of their uncolored versions as well). We leave open a general hardness
result for edge-colorful Holant problems, possibly even a dichotomy result.

Modular counting of k-matchings

The proof of Theorem 5.22 can also be adapted to prove hardness for modular counting
of k-matchings, as we will observe in the following theorem. Recall the definitions of the
classes ⊕W[1] and ModtW[1] for t ∈ N from Section 1.2.2, and recall that W[1] is contained
in ⊕W[1] under randomized fpt-reductions.

Theorem 5.23. The following problem is ⊕W[1]-hard: Given k ∈ N and a graph (on 3k
edge colors) count its (edge-colorful) 3k-matchings modulo 22k+1.

Proof. By Lemma 5.10, we know that #PartitionedSub(C4) is #W[1]-hard under parsimo-
nious reductions, so the ⊕W[1]-hardness of its parity problem follows. In the following,
let H and G be as in the proof of Theorem 5.22: The graph H has k vertices, and G is
vertex-colored with [k]. We determine the parity of #PartitionedSub(H → G) by oracle
calls to #EdgeColMatch modulo m := 23k+1 on graphs with 4.5k edge colors; this implies
the statement.
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5. Colored subgraphs

In the remainder of the proof, we perform all arithmetic operations over Zm. Recall that
(5.9) in the proof of Lemma 5.20 states that

q(t) ·#PartitionedSub(H → G) = r,

with the quantities

q(t) = 12k(t− 2)2k(t− 1)k,

r =
∑
θ∈[3]k

(
k∏
i=1

αθ(i)(t)
)

Holantcol(Ωθ).

We can clearly compute rmodm using 3k oracle queries to #EdgeColMatch modm and
arithmetic in Zm. To proceed, we ensure that q(t) is divisible by 23k, but not by 23k+1.

Recall that the number of triangles t ∈ N in the definition of Γi,κ can be chosen arbitrarily
in Lemma 5.20, provided that t ≥ |V (G)|. We choose t minimal such that t is odd and
t− 1 is not divisible by 4, which can clearly be achieved with t ≤ |V (G)|+ 4. Then (t− 1)k

is divisible by 2k, but not by 2k+1, so there exists an odd number s ∈ N with

q(t) = 4k 3k(t− 2)2k︸ ︷︷ ︸
odd

(t− 1)k = 23ks.

But then the value r we computed modulo m, namely

r = 23ks ·#PartitionedSub(H → G).

is divisble bym = 23k+1 if and only if #PartitionedSub(H → G) is even. Hence, we can solve
the ⊕W[1]-complete problem ⊕PartitionedSub(C4) by 3k oracle calls to #EdgeColMatch
modulo m and modular arithmetic in Zm.
The result for uncolored matchings follows by reduction from #EdgeColMatch via

Lemma 1.34: The inclusion-exclusion formula is clearly also true in Zm.

Theorem 5.23 can also be shown for other moduli. For instance, counting edge-colorful or
uncolored matchings modulo primes p > 3 is complete for ModpW[1] by the same argument:
One only needs to observe that, after suitable choice of t, the factor q(t) is not divisible
by p and hence has an inverse in Zp. Note that ⊕Match admits a simple polynomial-time
algorithm. We leave the case p = 3 open: Counting k-matchings modulo 3 might turn out
to be Mod3W[1]-complete by using a different construction of matchgates Γi,κ.

5.2.3. Bipartite k-matchings

In the following, we extend Theorem 5.23 to the bipartite case, as this will be required in
Chapter 6. The proof again involves a simple application of combined matchgates.

Theorem 5.24 (listed as Theorem 5.22 on page 122). The problem #EdgeColMatch and
its uncolored variant #Match are #W[1]-complete and admit no algorithm with running
time f(k) · no(k/ log k) unless #ETH fails. Here, we may even assume G to be bipartite.
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5.2. Edge-colorful subgraphs

Figure 5.4.: Edges of color i are shown on the left, and their corresponding edges in the
graph Ωbip are shown on the right.

Let G be a (not necessarily bipartite) simple edge-colored graph with colors [k], whose
edge-colorful matchings we wish to count. We transform G to an edge-colored bipartite
signature graph Ωbip = Ωbip(G) such that Holantcol(Ωbip) counts the edge-colorful matchings
in G. The graph Ωbip is constructed in a way that resembles Definition 5.18.

Lemma 5.25. Given an edge-colored graph G on colors [k], let Ωbip = Ωbip(G) denote the
signature graph on colors [k]× [2] obtained as follows from G: Assign HW≤1 to all vertices,
then perform the following steps for each i ∈ [k].

1. Add a vertex wi to Ωbip.

2. For each edge e ∈ E(G) of color i, with e = uv, delete e and insert an edge uwi
of color (i, 1), and an edge wiv of color (i, 2). Annotate the two added edges with
π(uwi) = π(wiv) = e. See also Figure 5.4.

3. Note that every colorful assignment x ∈ {0, 1}I(wi) has precisely two active edges, call
them e1(x) and e2(x). Assign to wi the signature fi which maps x ∈ {0, 1}I(wi) to

fi(x) =

1 π(e1(x)) = π(e2(x)),
0 else.

Then Ωbip admits a bipartition with {wi | i ∈ [k]} on one side and the original vertices
from G on the other side. Furthermore, it holds that

Holantcol(Ωbip) = #EdgeColMatch(G).

Proof. It is clear that Ωbip is bipartite, since every edge of G appears in Ωbip as a subdivided
edge with a subdivision vertex wi for some i ∈ [k].
The edge-colorful satisfying assignments x ∈ {0, 1}E(Ωbip) stand in bijection with the

edge-colorful matchings of G: In any such x, the vertex wi for i ∈ [k] is incident with
two active edges ei and e′i that have the same annotation hi = π(ei) = π(e′i), for some
hi ∈ E(G). We can hence contract ei and e′i to one edge hi. The resulting edge set is an edge-
colorful matching in G due to the signature HW≤1 at non-subdivision vertices. Likewise,
every edge-colorful matching in G can be extended to a unique satisfying assignment
x ∈ {0, 1}E(Ωbip).

As in Section 5.2.2, we now realize the signatures in Ωbip = Ωbip(G) as combined
signatures whose constituents admit edge-colored matchgates, and which result in bipartite
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5. Colored subgraphs

signature graphs when inserted into Ωbip. Let m = |E(G)| and consider the edges in G to
be ordered in some arbitrary fixed way.

Lemma 5.26. For i ∈ [k], let Γi,1 denote the matchgate on dangling edges I(wi) that
consists of 2m vertices and is defined as follows:

1. Create independent sets a1, . . . , am and b1, . . . , bm, which we call “external” vertices.

2. For all j ∈ [m] and all edges e, e′ ∈ E(Ωbip) of colors (i, 1) and (i, 2) with π(e) = π(e′):
If π(e) is the j-th edge in the ordering of E(G), for j ∈ N, then attach e as dangling
edge to aj and e′ as dangling edge to bj.

Let Γi,2 be defined likewise, with the following addition: For all j ∈ [m], add an extra vertex
cj, an edge ajcj of color (i, 3) and an edge cjbj of color (i, 4). Then it holds that

fi = (m2 − 3m+ 3) · Sigcol(Γi,1)− Sigcol(Γi,2). (5.11)

Proof. Concerning Γi,1, we observe that, for all edge-colorful x ∈ {0, 1}I(wi), we have

Sigcol(Γi,1, x) = 1.

This is because x trivially is the only satisfying assignment that extends x, since there
are no edges other than I(wi) in Γi,1. Concerning Γi,2, let x ∈ {0, 1}I(wi) be a colorful
assignment with active edges e1, e2. We show

Sigcol(Γi,2, x) =

m2 − 3m+ 2 π(e1) = π(e2),
m2 − 3m+ 3 else,

(5.12)

which implies (5.11). We prove the two cases in (5.12) separately:

” = ” : There are m− 1 paths in Γi,2 not hit by x, each on the same two colors. This gives
(m− 1)2 = m2 − 3m+ 2 matchings.

” 6= ” : There are m− 2 paths not hit by a. Each matching may contain

• 2 edges from the intact paths, yielding (m− 2)2 matchings, or

• 1 such edge, yielding 2(m− 2) matchings, or

• 0 such edges, yielding 1 matching.

By summing over the disjoint possible choices, we obtain (5.12).

This allows to conclude the hardness result for #BipMatch.

Proof of Theorem 5.24. Recall that Ωbip is bipartite, with the subdivision vertices {wi}i∈[k]
on one side, say the left side. For i ∈ [k], we can insert Γi,κ for κ ∈ [2] at the vertex wi
in Ωbip. Only the external vertices of the matchgate Γi,κ connect to vertices outside of
Γi,κ, and by construction of Γi,κ, we may put its external vertices on the left side and its
remaining vertices on the right side of the bipartition.
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Hence, invoking the Combined Signature Lemma as in the proof of Theorem 5.21, we
can write Holantcol(Ωbip) as a linear combination of 2k numbers of edge-colorful matchings
in bipartite graphs. This proves Theorem 5.24.

Remark 5.27. Since no divisions were performed in the linear combination (5.11), we may
also assume in Theorem 5.23 that the input graph is bipartite.

5.2.4. Paths and cycles

With a simple linear-blowup reduction, we can transfer the lower bound of Theorem 5.24
for #BipMatch to counting directed k-cycles.

Theorem 5.28. The problem #DirCycle of counting directed k-cycles in a directed graph
G is #W[1]-hard and admits no f(k)no(k/ log k) time algorithm, unless #ETH fails.

Proof. We count k-matchings in a graph G with bipartition V (G) = L∪̇R by counting
directed 2k-cycles in the directed graph G′ obtained from G by directing each edge from L

to R and adding each directed edge from R to L. No vertices were added in the construction
of G′, and this implies the lower bound under #ETH.
Since every directed 2k-cycle C of G′ alternates between L and R, it contains k edges

from L to R. Since C is simple, it visits no vertex twice, and hence the edges from L to
R induce a k-matching of G. Conversely, every k-matching M of G can be extended to
a 2k-cycle in G′ by firstly orienting the edges of M from L to R and then adding edges
from R to L. The added edges fix a permutation of M up to cyclic equivalence, hence each
matching M corresponds to (k − 1)! cycles of length 2k in G′.
Thus, if Mk denotes the number of k-matchings in G and C2k denotes the number of

2k-cycles in G′, then C2k = (k − 1)! ·Mk, which proves the claim.

We show how to use this to prove hardness for counting undirected cycles and paths.

Theorem 5.29 (restated from page 123). The four problems #DirCycle, #UndirCycle,
#UndirPath, #DirPath of counting directed/undirected paths/cycles of length k are all
#W[1]-hard and admit no algorithms with running time f(k)no(k/ log k) unless #ETH fails.

Proof. We reduce each problem to its right neighbor in the order they appear in the
statement. The last two reductions are shown in [FG04] and can be observed to preserve
the parameter. We thus only show the reduction from #DirCycle to #UndirCycle.4

Let D be a directed graph whose number of directed k-cycles we wish to determine.
We transform D to an undirected graph G on edge-colors {0, 1, . . . , k} that we will later
remove by an application of the inclusion-exclusion principle.

1. Replace each vertex v ∈ V (D) by vertices vin and vout , and replace each edge
uv ∈ E(D) by the undirected edge uoutvin in G. Consider these edges to be colored
with 0. See Figure 5.5 for an example.

4Such a reduction was also shown in [FG04], but it incurs a polynomial parameter blowup.
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Figure 5.5.: The transformation from D to G in the proof of Theorem 5.29. Solid edges
are assigned color 0, while dashed edges have colors 1, . . . , k.

2. For each vertex v ∈ V (D), add k parallel edges, called internal edges at v, between
vertices vin and vout . Assign color i ∈ [k] to i-th parallel edge. We will later show
how to obtain simple graphs that feature no parallel edges.

Let C denote the set of directed k-cycles in D, and let B denote the set of undirected
2k-cycles in G that choose at least one edge of each color [k].
Claim 5.30. It holds that |B| = k! · |C|.

Proof. For each cycle C ∈ C, we define a subset BC ⊆ B, where B ∈ BC if and only if B
contains all edges uoutvin for uv ∈ E(C) and, at each vertex w ∈ V (C), some internal edge
woutwin . It is clear that BC ∩ BC′ = ∅ if C 6= C ′.
For all C ∈ C, we have |BC | = k! since there are k! ways of choosing internal edges for

each v ∈ V (C): Exactly k internal edges are present in B, and each i ∈ [k] is the color of
exactly one internal edge. Therefore, we have |B| ≥ k! · |C|.
We now show B ⊆

⋃
C∈C BC , which implies |B| ≤ k! · |C| and proves the claim. Since

each color i ∈ [k] is present in B ∈ B, the cycle B passes through s ≥ k internal edges. But
since internal edges at distinct vertices are vertex-disjoint and no simple cycle of length
> 2 can visit two internal edges of the same vertex, at least s additional 0-colored edges
are required for B to be a cycle. Since B has length 2k, this is possible only when s = k.
Let v1, . . . , vk ∈ V (D) be the vertices whose internal edges B visits, then B contains both
vin
i and vout

i for all i ∈ [k]. Thus, if we orient edges from out-vertices to in-vertices and
contract each internal edge, then we obtain a directed k-cycle of D, i.e., some element of C,
and it holds that B ∈ BC .

This allows to compute |C| from |B|. To determine |B|, we count the 2k-cycles in certain
uncolored subgraphs of G by using the inclusion-exclusion principle: For each S ⊆ [k], let
DS denote the subgraph of D that contains only edges of color S. Every 2k-cycle C in
D is contained in B if and only if C is contained in D[k], but in none of DS for S ( [k].
Together with oracle calls for counting undirected uncolored 2k-cycles, this allows to apply
inclusion-exclusion (Lemma 1.33). In each oracle call, the parameter is 2k.

In the above reduction, the oracle for uncolored 2k-cycles is called on graphs with parallel
edges, but we can easily reduce these to graphs without parallel edges: Let F ′ denote the
graph obtained from F by subdividing each edge. Then F ′ contains no parallel edges, and
for t > 2, the 2t-cycles of F ′ stand in bijection with the t-cycles of G.
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In this chapter, we consider the uncolored subgraph counting problem #Sub(H) for fixed
classes H. In Section 6.1, we present a simple algorithm for solving #Sub(H → G) in
polynomial time if H has a vertex-cover of constant size. This gives the polynomial-time
solvable cases in the dichotomy of Theorem 6.11. Note that we have already seen #W[1]-
hardness for classes H of unbounded treewidth in Section 5.1. For classes H of bounded
treewidth and unbounded vertex-cover number, we prove #W[1]-hardness in Section 6.2,
and thus finish the proof of Theorem 6.11.

6.1. Bounded vertex-cover number

We first present a simple algorithm for determining #Sub(H → G) in time polynomial in
|V (H)| and |V (G)| when H admits a vertex-cover of size O(1). As already stated in the
introduction, more efficient algorithms are known in the literature, and we include the
following theorem only for its simple proof, and for sake of completeness.

In fact, we give an algorithm for the more general problem of counting embeddings from
H to G. These are injective functions f : V (H) → V (G) such that uv ∈ E(H) implies
f(u)f(v) ∈ E(G), and we write #Emb(H → G) for the number of such embeddings. It is
clear that

#Sub(H → G) = #Emb(H → G)
#Emb(H → H) , (6.1)

because every H-copy F in G can be uniformly extended to an embedding of H in G by
applying an automorphism of H to F .

The algorithm we present in the following is based on a similar idea as an algorithm for
PerfMatch that we have considered in Section 4.3: After having guessed an image S for
the vertex-cover of H in G, we classify the vertices of G into types according to the subset
of S adjacent to them. Then we show how to exploit that any vertex of G can only have
one of at most 2|S| types.

Theorem 6.1 (restated from page 120). Let H be a k-vertex graph with a vertex-cover of
size τ , and let G be a graph on n vertices, for n ∈ N. Then we can determine the number
of H-copies in G in time k2O(τ)

nτ+O(1). Note that, if τ = O(1), then this running time is
polynomial.

Proof. Let C = {c1, . . . , cτ} be a vertex-cover of H. For every X ⊆ C, let RHX be the set
of vertices in V (H) \ C with NH(v) = X. Note that

∑
X⊆C |RHX | = k − τ .

For each tuple s ∈ V (G)τ , with s = (s1, . . . , sτ ), let

As = {f ∈ Emb(H → G) | ∀i ∈ [τ ] : f(ci) = si}.
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That is, the set As contains all subgraph embeddings that map C as prescribed by s. Note
that, if a vertex v ∈ V (G) appears more than once in s, then clearly As = ∅. Since the sets
As clearly partition #Emb(H → G), it suffices to compute #As for each of the nτ tuples
s ∈ V (G)τ , because we have

#Emb(H → G) =
∑

s∈V (G)τ
#As. (6.2)

We show how to compute #As in time k2O(τ)
nO(1) for arbitrary fixed s, which implies

the claimed total runtime. Since V (H) \ C is an independent set, we can safely delete all
edges in G that are not incident with any vertex in s. The resulting graph G′ has the
vertex cover S = {s1, . . . , sτ}. For every Y ⊆ S, let

RGY = {v ∈ V (G′) \ S | NG′(v) = Y }.

Construct a bipartite directed graph I on 2τ + 2τ vertices, with a left vertex `Y for each
Y ⊆ S and a right vertex rX for each X ⊆ C. Identify S with C by declaring ci ' si for
i ∈ [τ ]. For X,Y with X ⊆ Y , add the directed edge (`Y , rX) to I. Intuitively, this edge
signifies that any vertex of RGY may be the image of a vertex in RHX in an embedding.

We consider I as a flow network: For Y ⊆ S, consider |RGY | as the supply of `Y , and for
X ⊆ C, consider |RHX | as the demand of rX . Let F denote the set of all feasible integral
flows F : E(I)→ N in I that exactly satisfy the demands. As the total demand is k−τ ≤ k
and I has t = 2O(τ) edges, we have |F| ≤ k2O(τ) and can thus enumerate F by brute force.

Let F ∈ F be such a flow. If F has value m on the edge (`Y , rX), then this corresponds
to mapping m vertices of RHX to RGY , and the number of such mappings is given by the
falling factorial expression (|RGY |)m. For Y ⊆ S, let dY (F ) denote the total outgoing flow
at `Y . Then it can be verified that

#As =
∑
F∈F

∏
Y⊆S

(|RGY |)dY (F ).

Hence #As can be computed in time k2O(τ)
nO(1) for fixed tuples s ∈ V (G)τ , so it follows

by (6.2) that #Emb(H → G) can be computed in the claimed time bound. The statement
for #Sub(H → G) then follows by (6.1).

6.2. Hardness for unbounded vertex-cover number

In this section, we prove #W[1]-hardness of #Sub(H) for classes of unbounded vertex-cover
number. To this end, we use a machinery of so-called k-matching gadgets, which are graphs
H ∈ H together with a partition of V (H) into an induced matchingM and some remainder
C. These gadgets satisfy certain technical properties which will be used in Lemma 6.5, the
main technical part of this section. It states that, if H is a class of graphs that contains
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k-matching gadgets for all k ∈ N, then

#BipMatch ≤Tfpt #Sub(H).

In the remainder of this section, we define k-matching gadgets formally and then prove
Lemma 6.5. The existence of k-matching gadgets in graph classes H is shown in Appendix B
by Dániel Marx.

Definition 6.2. Let H be a graph and let C ⊆ V (H). Then we denote by ∂H(C) the
set of vertices in C that have a neighbor in V (H) \ C. If f is an isomorphism from H[C]
to H[C ′] for some C,C ′ ⊆ V (H) such that f(∂H(C)) = ∂H(C ′), then we say that f is
boundary preserving.

The following definition formulates the properties of gadgets we need in Lemma 6.5.

Definition 6.3. Let H be a graph, let M be an induced k-matching in H, and let
C := V (H) \ V (M). We say that (H,M) is a k-matching gadget if the following holds:
Whenever an isomorphism f from H[C] to H[C ′] for some C ′ ⊆ V (H) satisfies the
conditions

(C1) H \ C ′ has no isolated vertex,

(C2) H \ C ′ is bipartite, and

(C3) f is boundary preserving,

then H \ C ′ is a k-matching, i.e., H \ C ′ is isomorphic to the graph on 2k vertices that
contains k vertex-disjoint edges.

Recall that, by Theorem 6.1, the problem #Sub(H) admits a polynomial-time algorithm
if H has bounded vertex-cover number. If H has unbounded treewidth, then #Sub(H)
is #W[1]-complete by Theorem 5.6, since even #PartitionedSub(H) is #W[1]-complete.
Using a rather extensive graph-theoretical analysis, it was shown by Dániel Marx that
every graph class H that is not covered by Theorem 5.6 or Theorem 6.1 admits k-matching
gadgets. We include this proof, which also appeared in [CM14], in Appendix B.

Theorem 6.4 (Appendix B). Let H be a graph class of unbounded vertex-cover number
and bounded treewidth. Then, for all k ∈ N, there exists a graph H ∈ H and a subset
M ⊆ V (H) such that (H,M) is a k-matching gadget.

The hardness result for #Sub(H) when H has unbounded vertex-cover number and
bounded treewidth follows by reducing #BipMatch to #Sub(H) for classes H that contain
k-matching gadgets of all sizes. This reduction is shown in the following lemma.

Lemma 6.5. Let G be a graph and let (H,M) be a k-matching gadget. Then we can
compute the number of k-matchings in G from 2O(|V (H)|2) oracle queries of the form
#Sub(H → G′), where G′ is a graph constructed from G.
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Figure 6.1.: A k-matching gadget (H,C). The graph G(`) constructed from (H,C) and G.

Proof. For ` ∈ N, let G(`) be defined as the following supergraph of G, shown also in
Figure 6.1. For vertex sets X, we abbreviate F [X ∩ V (F )] to F [X].

• Starting from the empty graph, place a copy of G into G(`) and add ` isolated vertices,
shown red in Figure 6.1. Let VG denote the set of vertices that contains the isolated
vertices and the vertices of the G-copy, and let EG denote the edges present in G(`).

• Add a copy of H[C] on a vertex set VC disjoint from VG and an edge-set EC disjoint
from EG. Denote the copy of ∂H(C) by V∂ ⊆ VC , shown orange.

• Add all edges between V∂ and VG, call this edge set I, shown green.

Using the principle of inclusion and exclusion, we will count the H-copies in G(`) that
contain all of VC and EC , and where every vertex of V∂ has an edge to VG. If such a
copy F of H in G(`) additionally satisfies that F [VG] contains no isolated vertices, then
the properties of k-matching gadgets from Definition 6.3 imply that F [VG] actually is a
k-matching. Therefore, the number of such copies can be put into relationship with the
number of k-matchings in G.
To calculate the number of H-copies F such that F [VG] has no isolated vertices, we

count the number of H-copies for different values of ` (which correspond to different
numbers of introduced isolated vertices) and use an interpolation argument to determine
the contribution of those copies where F [VG] has no isolated vertices.
We first aim at determining the size of

T (`) = {F ∈ Sub(H → G(`)) | F [VC ] ' H[C] ∧ ∀v ∈ V∂ : degI∩F (v) > 0},

that is, the set of H-copies that fully use EC , and where every vertex of V∂ has a neighbor
outside VC in the copy, by an edge from I. Note that F [VG] however still may feature
isolated vertices.

The size of T (`) will be computed via inclusion-exclusion in the following claim. Building
upon this, we will later use interpolation to count those F ∈ T (`) where F [VG] additionally
contains no isolated vertices. (Note that ` is irrelevant if this additional property holds.)
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6.2. Hardness for unbounded vertex-cover number

Claim 6.6. We can compute #T (`) with 2O(|V (H)|2) oracle calls to #Sub(H → G′), where
G′ is a subgraph of G(`) in each call.

Proof. For e ∈ EC , v ∈ VC and w ∈ V∂ , let us define

Ae ≡ {F ∈ Sub(H → G(`)) | e /∈ E(F )},
Bv ≡ {F ∈ Sub(H → G(`)) | v /∈ V (F )},
Dw ≡ {F ∈ Sub(H → G(`)) | degI∩F (w) = 0}.

Then we observe that

T (`) = Sub(H → G(`)) \
⋃

e∈EC , v∈VC
w∈V∂

Ae ∪ Bv ∪ Dw.

For A ⊆ EC , B ⊆ VC and D ⊆ V∂ , define a graph G(`)
A,B,D from G(`): Delete all edges in A,

all vertices in B, and for all w ∈ D, delete all edges in I(w) ∩ F . It is clear that then

Sub(H → G
(`)
A,B,D) '

⋂
e∈A, v∈B
w∈D

Ae ∩ Bv ∩ Dw,

where the empty intersection is the set #Sub(H → G(`)) by convention.
The number #Sub(H → G

(`)
A,B,D) can be computed by an oracle call to #Sub with

the pattern graph H, and hence we can compute #T (`) by using the inclusion-exclusion
principle (Lemma 1.33).

Consider the graphs that can be written as H − C ′, where C ′ ⊆ V (H) is such that
H[C] ' H[C ′] via an isomorphism f satisfying (C2) and (C3) of Definition 6.3. Let R
denote the set of such graphs, modulo isomorphism. Note that every R ∈ R is a graph
on 2k vertices. Slightly abusing notation, we will henceforth write A ∈ R if there is some
A′ ∈ R with A ' A′.
Claim 6.7. If F ∈ T (`), then F [VG] ∈ R.

Proof. Let F ∈ T (`) and let f be an isomorphism from F to H that maps F [VC ] ' H[C]
to H[C ′] for some C ′ ⊆ V (H). We claim that f satisfies (C2) and (C3), which implies
F [VG] ∈ R.
Condition (C2) holds since F [VG] is contained in (a copy of) the bipartite graph G.

Concerning condition (C3), because F ∈ T (`) holds, each vertex in V∂ is adjacent to at
least one vertex in F [VG], and thus ∂F (VC) ⊇ V∂ . By construction of G(`), only vertices
in V∂ can be adjacent to F [VG], thus ∂F (VC) ⊆ V∂ and ∂F (VC) = V∂ . The isomorphism f

must therefore map V∂ to ∂H(C ′).

For R ∈ R, let ι(R) denote the set of isolated vertices of R. If R ∈ R satisfies ι(R) = ∅,
then R ' M , where M is the induced matching of H: This holds because then the
isomorphism that establishes R ∈ R satisfies (C1)-(C3) of Definition 6.3. However, since we
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6. Uncolored subgraphs

cannot generally assume that ι(R) = ∅ holds, it may occur that R 6'M . In the remainder
of this proof, we will therefore “interpolate out” isolated vertices. To this end, we show
that #T (`) may be interpreted as a weighted sum over R, where the weight of each R ∈ R
depends on its number of isolated vertices. In fact, we will see that #T (`) can be considered
as a polynomial in ` that we can use for univariate interpolation.
For R ∈ R, let αR ∈ N be defined as follows: Given the vertex-disjoint union of H[C]

and R, let αR denote the number of edge-subsets that can be added between δH(C) and
V (R) such that the resulting graph is isomorphic to H. Note that we can compute αR ∈ N
by brute force in time 2O(|V (H)|2), and observe also that

αM > 0, (6.3)

since H admits a partition into H[C] and M by assumption.
Claim 6.8. With the abbreviation pure(R) := R− ι(R), we have

#T (`) =
∑
R∈R

#Sub(pure(R)→ G) · αR ·
(
n+ `− 2k + |ι(R)|

|ι(R)|

)
. (6.4)

Proof. By Claim 6.7, every F ∈ T (`) satisfies F [VG] ∈ R. This induces a partition of T (`)
according to the isomorphism type of F [VG] for F ∈ T (`): For R ∈ R, let AR denote the
set of F ∈ T (`) with F [VG] ' R. Since the sets {AR}R∈R partition T (`), we have

#T (`) =
∑
R∈R

#AR. (6.5)

We show (6.4) by calculating #AR for R ∈ R and observing that #AR is equal to the
summand of R in (6.4). To this end, observe that every F ∈ AR can be written as a union
of a uniquely determined graph F ′ ∈ #Sub(pure(R)→ G) and the following extensions:

E1: The induced graph G(`)[VC ] ' H[C], which must be contained in F , since F ∈ T (`),

E2: A set of |ι(R)| isolated vertices in VG, which may be chosen from vertices of the G-copy
as well as from the ` added isolated vertices, and

E3: A set of edges from I.

For fixed F ′ ∈ #Sub(pure(R) → G), we determine the number of such extensions. In
E1, there is only one choice. In E2, we extend by adding isolated vertices in VG. As
V∂ connects to all of VG, these |ι(R)| isolated vertices can be chosen arbitrarily among
the n + ` − |V (pure(R))| vertices of VG not already contained in F ′[VG]. Since pure(R)
has exactly 2k − |ι(R)| vertices, the number of such extensions is given by the binomial
coefficient (

n+ `− 2k + |ι(R)|
|ι(R)|

)
.

So far, this procedure has fixed F [VG], and we reach step E3, where we extend the
vertex-disjoint parts F [VG] ' R and F [VC ] ' H[C] to a graph F by including edges
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6.2. Hardness for unbounded vertex-cover number

between V∂ and VG. The number of possible extensions in this step is αR by definition.
Thus, each F ′ ∈ #Sub(pure(R)→ G) can be extended to some F ∈ AR by

αR ·
(
n+ `− 2k + |ι(R)|

|ι(R)|

)

possible extensions, and each F is the extension of a unique F ′, which shows (6.4).

By (6.4), the value #T (`) can be interpreted as a polynomial p ∈ Z[x] of maximum
degree 2k in the indeterminate x := n+ `− 2k. Note that n and k are fixed by the input,
whereas ` can be varied. Considering the binomial coefficient(

n+ `− 2k + |ι(R)|
|ι(R)|

)
=
(
x+ |ι(R)|
|ι(R)|

)

as a polynomial in x, we can observe that R ∈ R with differing |ι(R)| yield polynomials of
different degrees. In particular, this binomial coefficient (as a polynomial in x) has degree 0
(and is then equal to 1) if and only if |ι(R)| = 0, i.e., when R contains no isolated vertices.

We observe that p can be interpolated by evaluating

#T (0), . . . ,#T(2k),

where each evaluation can be performed with 2O(|V (H)|2) oracle calls by Claim 6.6. This
yields the representation of p in the standard monomial basis {xi | i ∈ N}. We then
represent p as a linear combination of the basis elements B := {

(x+i
i

)
| i ∈ N}. For every

i ∈ N, there is precisely one polynomial in B of degree i, and thus B is linearly independent.
Thus, the coefficients of p over the basis B are uniquely determined and we can extract the
constant coefficient

c0 = αM ·#Sub(M → G).

Recall that αM > 0 by (6.3). We have shown how to compute k-matchings in G.

Remark 6.9. The final interpolation step could equivalently be achieved by solving a linear
system of equations whose system matrix consists of the binomial coefficients in (6.4). In
fact, this system appears implicitly in the argument above.

Lemma 6.5 readily implies the following reduction.

Lemma 6.10. If H is a recursively enumerable graph class that contains a k-matching
gadget for every k ∈ N, then #BipMatch ≤Tfpt #Sub(H).

Proof. We reduce #BipMatch ≤fpt #Sub(H): Given a bipartite graph G and k ∈ N, we
wish to compute the number of k-matchings in G.

For graphs H and subsets M ⊆ V (H), we can test whether (H,M) is a k-matching
gadget by checking all isomorphisms relevant to Definition 6.3 by brute force. The runtime
required for this step depends only on |V (H)|. To determine the number of k-matchings in
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6. Uncolored subgraphs

G, enumerate the graphs H ∈ H and subsets M ⊆ H until we find a k-matching gadget
(H,M), which is guaranteed to exist by assumption. Then invoke Lemma 6.5 with (H,M).

Let g(k) = |V (H)|, where H is the k-matching gadget found by the enumeration
procedure above. Then the function g is computable, which implies together with Lemma 6.5
that the reduction to #Sub(H) is indeed a parameterized Turing reduction.

This also concludes the proof of Theorem 6.11.

Theorem 6.11 (restated from page 120). Let H be a recursively enumerable graph class.
If FPT 6= #W[1], then the following are equivalent:

• #Sub(H) is polynomial-time solvable.

• #Sub(H) is fixed-parameter tractable when parameterized by |V (H)|.

• H has bounded vertex-cover number.

Proof. For convenience, we recall the proof:

• If H has bounded vertex-cover number, then we can apply Theorem 6.1 to solve
#Sub(H) in polynomial time.

• If H has unbounded treewidth, then we use Theorem 5.6 to obtain #W[1]-hardness
of #Sub(H).

• If H has bounded treewidth and unbounded vertex-cover number, we use Theorem 6.4
and Lemma 6.10 to obtain #BipMatch ≤Tfpt #Sub(H). By Theorem 5.24, the problem
#BipMatch is #W[1]-complete, so we obtain the same for #Sub(H).

This proves the theorem.
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Quantitative lower bounds for
counting
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Introduction to Part III

In the final part of this thesis, we focus on conditional lower bounds for counting problems
under the exponential-time hypothesis #ETH from Section 1.2.3. Furthermore, we also
undertake a short promenade in the structural complexity of the problem PerfMatch.
We have already shown conditional lower bounds in Section 5.2.2: Unless #ETH fails,

we cannot count k-matchings, k-cycles or k-paths of an n-vertex graph in time no(k/ log k).
In this part, we focus on lower bounds for parameters that explicitly depend on the input
size, such as the number of vertices or edges.

Counting unweighted perfect matchings revisited

In Section 2.2.3, we have seen a #P-hardness proof for counting perfect matchings in
unweighted graphs by reduction from #3-SAT. This proof proceeds along the following
lines, which are common to the standard proofs in the literature [Val79b, Pap94]. Recall
that PerfMatchX asks to evaluate PerfMatch on graphs with edge-weights from X.

#3-SAT ≤p PerfMatch−1,0,1 ≤Tp PerfMatch0,1.

More specifically, given a 3-CNF formula ϕ on n variables andm clauses, we first constructed,
in Lemma 2.29 and Corollary 2.31, a graph G = G(ϕ) on edge-weights −1 and 1, and a
number T ∈ N such that

#SAT(ϕ) = 2−T · PerfMatch(G). (6.6)

This graph G has O(n + m) vertices and edges. In Corollary 2.32, the computation of
PerfMatch(G) was then reduced to counting perfect matchings in unweighted graphs. Note
that hardness for unweighted graphs is required for subsequent reductions from counting
perfect matchings to other problems, as we could otherwise only reduce to versions of
these problems that are weighted as well. For implementing this weight removal step for
PerfMatch, the literature offers us two choices, of which we chose the first:

Weight removal by interpolation: As in Lemma 1.37, we can use univariate interpolation
and O(n) oracle calls to the problem PerfMatch0,1 on unweighted graphs. With
Lemma 1.37, each oracle query has O(nm) vertices and edges, but these quantities
can be reduced to O(m logn) by simple matchgates. This way, a 2Ω(m/ logn) lower
bound under #ETH was obtained for computing PerfMatch0,1 on graphs with m

edges and n vertices [DHM+14]. We will revisit weight removal by interpolation later
in this introduction.
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Weight removal by modular arithmetic: We can replace the edge-weight −1 by r − 1,
with r := 2m + 1, to obtain a new graph G′. Since r − 1 is positive on all relevant
instances G, this weight can be simulated by a matchgate as in Lemma 1.29, and it
can be seen as above that a matchgate on O(m) vertices and edges suffices, yielding a
total number of O(nm) vertices and O(m2) edges. Then we compute PerfMatch(G′)
modulo r, which gives the correct value of PerfMatch(G), since PerfMatch(G) < r.
This is the original route that was taken in [Val79b].

Note that none of these approaches yield tight lower bounds for PerfMatch0,1, a problem
that can be solved trivially in time 2O(m) on graphs with m edges. In fact, the problem
can also be solved in time 2O(n) on graphs with n vertices, as noted in Section 1.3.2.
In Chapter 7, we present a third and novel way of performing the weight removal step,

which substantially differs from both approaches mentioned before:

Weight removal by difference: Compute two unweighted graphs G1 and G2 from G such
that PerfMatch(G) is the difference of PerfMatch(G1) and PerfMatch(G2).

By the following lemma, shown in Section 7.1, we can indeed construct such unweighted
graphs G1 and G2 in polynomial time, and we can also show that a linear blowup on the
number of vertices and edges suffices to obtain G1 and G2 from G. This gives us a new
weight removal step for proving #P-completeness of PerfMatch0,1.

Lemma 7.1. Let G be a graph on n vertices and m edges with edge-weights {−1, 1}. Then
we can construct two unweighted graphs G1 and G2 with O(n+m) vertices and edges such
that

PerfMatch(G) = PerfMatch(G1)− PerfMatch(G2).

Furthermore, this construction can be carried out in time O(n+m).

Since the edge-weighted graph G obtained from ϕ in (6.6) has only O(n+m) vertices and
edges, and its edge-weights are only −1 and 1, this implies a lower bound for PerfMatch0,1

under #ETH.

Theorem 7.4. Unless #ETH fails, the problem PerfMatch0,1 admits no algorithm with
running time 2o(m) on simple graphs with m edges.

Deciding whether PerfMatch agrees on two graphs

Apart from tight quantitative lower bounds, Lemma 7.1 also allows us to derive implications
for the structural complexity of PerfMatch: We show that deciding whether two graphs
agree in their numbers of perfect matchings is complete for the complexity class C=P.
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To define C=P, let us first define the following decision problem A= associated with
each counting problem A ∈ #P: The inputs to A= are pairs (x, y), and we are asked to
determine whether A(x) = A(y) holds. The class C=P is then defined as

C=P := {A= | A ∈ #P}.

For instance, it is clear that

SAT= := {(ϕ,ϕ′) | #SAT(ϕ) = #SAT(ϕ′)}

is C=P-complete under the classical notion of polynomial-time many-one reductions. In
fact, C=P-hardness holds for every problem A= whose counting version #A is #P-hard
under parsimonious reductions.
The relationship between C=P and other complexity classes has been studied in the

literature of structural complexity theory, and several results are surveyed in [HO02]. For
instance, we have coNP ⊆ C=P, and using the Isolation Lemma [VV86], we see that NP is
contained in C=P under randomized reductions. Let us also observe that NP#P ⊆ NPC=P:
Whenever we issue an oracle call to #P, we may guess the output number, and then check
whether we guessed correctly by using the C=P oracle.

To the best of the author’s knowledge, the literature on complexity theory does not
contain any natural C=P-complete problem A= whose counting version A is not #P-complete
under parsimonious reductions. Here, we stressed natural, because we can easily construct
artifical C=P-complete problems A= whose counting version #A admits no parsimonious
reduction from #SAT. To see this, consider the counting problem #SAT′ that asks to
compute the number of satisfying assignments to a CNF-formula ϕ, incremented by 1.
If #SAT′ had a parsimonious reduction from #SAT, then every CNF-formula would be
satisfiable. On the other hand, the reduction from #SAT= to #SAT′= is trivial.
Given this background, the following completeness result for PerfMatch0,1

= , which we
prove in Section 7.3, might be of interest in the context of structural complexity theory.
As mentioned in Section 1.2.1, the problem PerfMatch0,1 of counting unweighted perfect
matchings cannot be #P-complete under parsimonious reductions, unless P = NP.

Theorem 7.5. The problem PerfMatch0,1
= is C=P-complete under polynomial-time many-

one reductions. Recall that this problem asks whether two unweighted graphs G1 and G2
have the same number of perfect matchings.

The complexity of a similar problem was posed as an open question in [Che10]: Given
two directed acyclic graphs, decide whether their numbers of topological orderings agree.
It is known that counting topological orderings is #P-complete under ≤Tp , as shown in
[BW91], but the decision version is trivial for acyclic graphs. Our result for PerfMatch0,1

=
might be useful to prove C=P-completeness for this problem.
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The limits of interpolation

In the following, we reconsider the technique of polynomial interpolation for lower bounds
under #ETH. As a running example, let us recall how we reduce PerfMatch−1,0,1 to
PerfMatch0,1 by means of interpolation in Lemmas 1.36 and 1.37. Let G be a given graph
on n vertices and m edges with edge-weights {−1, 1}.

Interpolation: In Lemma 1.36, we define a polynomial p of degree n
2 such that p(−1) =

PerfMatch(G). Using univariate interpolation on p(0), . . . , p(n2 ), we recover all co-
efficients of p(G) and can thus evaluate p(−1). The evaluation p(i) for i ∈ [n2 ] is
obtained as PerfMatch(G′) for some graph with the edge-weights {1, i}.

Removing weights: We reduce the evaluation of PerfMatch(G′) for graphs with edge-
weights {1, i} to PerfMatch(G′′) for unweighted graphs G′′ with O(n+ im) vertices
and edges. Here, we use the edge-weight simulation for PerfMatch described in
Lemma 1.29: Each edge of weight i is replaced by a matchgate on 2i vertices,
obtained by subdividing i parallel edges twice.

By Corollary 2.31, the problem PerfMatch−1,0,1 admits no 2o(m) time algorithm on simple
graphs with m edges. The above reduction from PerfMatch−1,0,1 to PerfMatch0,1 also
yields a lower bound for the target problem, which can however only rule out a 2o(

√
n) time

algorithm: One of the unweighted graphs simulates Ω(m) edges of weight n
2 , and thus has

Ω(nm) = Ω(n2) vertices and edges.
Using slightly more complicated matchgates, as in [DHM+14], an edge-weight i ∈ N can

be simulated by a matchgate with O(log i) rather than O(i) vertices, implying a 2Ω(m/ logn)

lower bound for PerfMatch0,1. This bound is however still not tight, and in particular, we
have “lost tightness” in the reduction from PerfMatch−1,0,1 to PerfMatch0,1.

In fact, we observe that a combination of interpolation and weight removal as above can
never yield tight lower bounds for PerfMatch0,1: When carried out on n-vertex graphs G,
we need to simulate n

2 +1 distinct edge-weights, because the polynomial p to be interpolated
has degree n

2 . This in turn requires n
2 + 1 distinct matchgates to be placed at vertices of G,

since isomorphic matchgates clearly have the same signature. Then, since there are only
finitely many simple graphs on O(1) vertices, the size of such gadgets must necessarily
grow as some unbounded function α(n), and hence we can only obtain lower bounds of the
form 2Ω(m/α(n)) for α ∈ ω(1) under #ETH.
Additionally, the above type of reduction runs in polynomial time, which is required in

the setting of #P-hardness, but not essential in exponential-time complexity: We are free
to use a subexponential reduction family, as defined in Section 1.2.3. Intuitively speaking,
the reduction we described above was too efficient on the running time.

The limitations we observed in the preceding paragraphs are immanent to every known
lower bound under #ETH, such as 2Ω(m/ logc n) time bounds for the Tutte polynomial and
the permanent [DHM+14], and 2Ω(n/ logc n) bounds for the independent set polynomial
[Hof10]. All of these results proceed essentially along the lines described above, and they
construct “economical” gadgets for weight simulations that yield only poly-logarithmic (yet
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super-constant) blowup. By arguments as for PerfMatch, these reductions cannot yield
tight lower bounds under #ETH.

The block interpolation framework

We circumvent these barriers in Chapter 8 by introducing the block interpolation framework,
a general method that allows us to apply the full power of subexponential reductions to
counting problems. To this end, we show how to apply multivariate polynomial interpolation
in a useful way:1 In the setting we establish in our framework, we will not be given an
unknown univariate polynomial p of degree n, which we have to interpolate from n + 1
oracle calls, but rather a multivariate polynomial p with total degree n and maximum
degree c = O(1) in each indeterminate. We can interpolate this polynomial from 2o(n)

evaluations p(ξ) at tuples ξ whose individual entries are contained in a fixed set of size
c+ 1. This will enable us to compute p(ξ) by attaching copies of only c+ 1 distinct gadgets
to G. The catch here is that different edges may obtain different gadgets, which was not
feasible in the univariate setting.

Our technique is phrased as a general framework that allows us to convert a large body
of #P-hardness proofs into tight lower bounds under #ETH. The growth of the gadgets
used to simulate weights in the original proofs is irrelevant in our framework, as only a
constant number of gadgets will be used. In particular, we do not need to worry about
economical gadget constructions, and can thus obtain proofs that are significantly simpler
than the previously known proofs. And more importantly, our results are tight.
To showcase our framework, we prove that #ETH implies 2Ω(m) lower bounds for the

following problems on unweighted simple graphs G with m edges. All of these problems
admit trivial algorithms with running time 2O(m) on such graphs.

Theorem 8.12. Unless #ETH fails, the problem perm0,1 does not admit an algorithm
with running time 2o(m) on simple graphs with m edges. Recall that perm is the restriction
of PerfMatch to bipartite graphs.

It was shown in [DHM+14] that, unless #ETH fails, the problem perm−1,0,1 admits no
algorithm with running time 2o(m). It was also shown that such an algorithm for perm0,1

would falsify rETH, the randomized version of ETH. Under #ETH, only a lower bound of
2Ω(m/ logn) was obtained.

Note that Theorem 8.12 also improves upon Theorem 7.4, which proved a tight lower
bound only for PerfMatch0,1, that is, for graphs that are not necessarily bipartite. However,
the block interpolation technique cannot be applied to show C=P-completeness.

1In the context of the Tutte polynomial, Sokal [Sok05] coined the term of a “multivariate ideology” for
arguments that benefit strongly from a multivariate point of view. The block interpolation framework
definitely is a profiteer of this ideology.
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Theorem 8.15. Unless #ETH fails, the problem of evaluating the matching polynomial
µ(G; ξ) for any fixed ξ ∈ Q does not admit an algorithm with running time 2o(m) on simple
graphs G with m edges, even when the maximum degree ∆(G) may be assumed to be a
constant. The same applies to the independent set polynomial I(G; ξ) at fixed ξ ∈ Q \ {0}.

Note that by Definition 1.22 on page 37, the problems above are formally denoted by
Evalξ(µ) and Evalξ(I) for fixed ξ ∈ Q. We have seen in Theorem 1.24 that the evaluation
of µ(G; ξ) is #P-complete at all ξ ∈ Q, but to the best of our knowledge, no lower bounds
under #ETH are known in the literature. In [Hof10], a lower bound of 2Ω(n/ log3 n) for the
independent set polynomial was shown at general ξ ∈ Q \ {0}, and 2Ω(n) was obtained at
ξ = 1, but neither of these bounds yield hardness results for sparse graphs.

Theorem 8.21. Unless #ETH fails, the Tutte polynomial T (x, y) for fixed (x, y) ∈ Q2

cannot be evaluated in time 2o(m) on simple graphs with m edges, provided that

• y /∈ {0, 1},

• (x, y) /∈ {(1, 1), (−1,−1), (0,−1), (−1, 0)}, and

• (x− 1)(y − 1) 6= 1.

In [DHM+14], only lower bounds of the type 2Ω(n/ logc n) were shown on sparse (simple)
graphs, and quite involved gadget constructions were required for these bounds. We can
circumvent these constructions almost entirely, and instead use only elementary gadgets.
If (x, y) ∈ Q2 violates either of the last two conditions of the corollary, then T (x, y) is

known to admit a polynomial-time algorithm. If (x, y) satisfies both conditions, then it is
#P-hard, shown in [JVW90]. The #P-hard points with y ∈ {0, 1} are however not covered
by the lower bounds of Theorem 8.21. At the line y = 0, a lower bound of 2Ω(n) can be
achieved on n-vertex graphs that are not necessarily sparse, but the line y = 1 is left open,
as in [DHM+14].

Notes

All content of this part was obtained independently. After submission of this thesis, the
content of Chapter 8 was published in [Cur15].
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7.1. Weight reduction by difference

In this section, we prove Lemma 7.1, and thus show how to reduce PerfMatch on graphs
with edge-weights {−1, 1} to the difference of PerfMatch on two unweighted graphs.

Lemma 7.1 (restated from page 154). Let G be a graph on n vertices and m edges with
edge-weights {−1, 1}. Then we can construct two unweighted graphs G1 and G2 with
O(n+m) vertices and edges such that

PerfMatch(G) = PerfMatch(G1)− PerfMatch(G2).

Furthermore, this construction can be carried out in time O(n+m).

Our proof proceeds by establishing the reduction chain

PerfMatch−1,0,1 ≤p MatchSum−1,0,1 ≤Tp PerfMatch0,1.

Recall the definitions of the graph polynomials PerfMatch and MatchSum from Section 1.3,
and the convention that a superscript X ⊆ Q on each of these problems denotes the
restriction of the problem to graphs with weights from the set X.

Note that the computational problem PerfMatch0,1 is more general than perm0,1, as the
input graphs to PerfMatch0,1 are not required to be bipartite. The approach we describe
in the following fails to yield hardness for bipartite graphs. If we are only interested in
tight lower bounds under #ETH, we can instead use the approach from Chapter 8.

Proof of Lemma 7.1. Let G be a graph with edge-weights from {−1, 1}. We assume that
|V (G)| is even, as otherwise PerfMatch(G) = 0. To prove Lemma 7.1, we first write

PerfMatch(G) = Holant(Ω), (7.1)

where Ω is the signature graph constructed by assigning HW=1 to all vertices ofG, subdividing
all edges of weight −1, removing all edge-weights, and assigning the signature EDGE−1 to
the newly introduced subdivision vertices. We have already seen this way of removing
weights from signature graphs in Lemma 2.8. For convenience, we recall that

EDGE−1 : x 7→


−1 if x = 11,
0 if x ∈ {01, 10},
1 if x = 00.
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7. Unweighted perfect matchings

Figure 7.1.: The gate Γ is shown at the top, where a number c ∈ Z at a vertex indicates that
the signature VTXc is assigned to it. The satisfying assignments of Γ are shown
below; note that these are (not necessarily perfect) matchings. Symmetric
cases in which only the right dangling edge is active are not shown.

Then we realize each occurrence of the signature EDGE−1 by the gate Γ from Figure 7.1,
which features no edge-weights, and only the signature VTXw for w ∈ {−1, 0, 1}. Recall
that this is the signature used in Example 2.6 on page 56 to express MatchSum as a Holant
problem. For convenience, we recall that

VTXw : x 7→


w if hw(x) = 0,
1 if hw(x) = 1,
0 otherwise.

Claim 7.2. We have Sig(Γ) = EDGE−1, where Γ is the gate from Figure 7.1.

Proof. Given an assignment x ∈ {0, 1}2 to the dangling edges of Γ, we list the satisfying
assignments xy ∈ {0, 1}E(Γ) that extend x in the bottom part of Figure 7.1. Note that all
such assignments are (not necesssarily perfect) matchings.

x = 11: Only the empty matching can be chosen. It has weight −1, thus Sig(Γ, 11) = −1.

x = 10: Two matchings can be chosen, which have opposite weights, thus Sig(Γ, 10) = 0.
By symmetry, the same is true for Sig(Γ, 01).

x = 00: Three matchings can be chosen, of which two have weight 1 and one has weight
−1, thus Sig(Γ, 00) = 1.

This proves the claim.
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7.1. Weight reduction by difference

By realizing every occurrence of EDGE−1 in Ω with Γ, we obtain a signature graph Ω′

whose signatures are all of the type VTXw for w ∈ {−1, 0, 1}, and which satisfies

Holant(Ω) = Holant(Ω′). (7.2)

Note here that HW=1 is equivalent to VTX0. As in Example 2.6, we consider

Holant(Ω′) = MatchSum(G′), (7.3)

where G′ is a vertex-weighted graph that is obtained from Ω′ as follows: Keep all vertices
and edges of Ω′ intact, and if v ∈ V (Ω′) features the signature VTXw, for w ∈ {−1, 0, 1},
then assign the vertex weight w to v in G′.
Note that |V (G′)| is even, since evenly many additional vertices were added to G to

construct G′. Let Vx for x ∈ {−1, 1} denote the set of vertices of weight x in G′, and note
that V−1 ∩ V1 = ∅ holds trivially. From G′, we construct the signature graph Φ = Φ(G′)
from Lemma 2.39 on page 73: Add a vertex w1 with signature PROD1 to G′ that is adjacent
to V1, and a vertex w−1 with PROD−1 adjacent to V−1. Here, 1 denotes the all-ones vector
of appropriate length.1 Note that

PROD1 : x 7→ 1
PROD−1 : x 7→ (−1)hw(x).

All other vertices are assigned HW=1 by the construction of Φ in Lemma 2.39. Then
Lemma 2.39 implies that

MatchSum(G′) = Holant(Φ). (7.4)

Observe that, for signatures EVEN and ODD of appropriate arities, we have

PROD1 = EVEN + ODD,

PROD−1 = EVEN− ODD.

Using the Combined Signature Lemma (Lemma 2.35), we hence obtain four signature
graphs Φab for a, b ∈ {0, 1} such that

Holant(Φ) =
∑

a,b∈{0,1}
(−1)b ·Holant(Φab),

where Φab is obtained from Φ by replacing

• PROD1 with EVEN if a = 0, or with ODD if a = 1, and

• PROD−1 with EVEN if b = 0, or with ODD if b = 1.

1Lemma 2.39 also adds a vertex w0 adjacent to vertices of zero weight, with a signature PROD0, where 0 is
the all-zeros vector. Since no satisfying assignment has an active edge incident with w0, we can simply
delete w0 and its incident edges.
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7. Unweighted perfect matchings

By Remark 2.40, only Φ00 and Φ11 can have satisfying assignments, so we obtain

Holant(Φ) = Holant(Φ00)−Holant(Φ11).

We realize Φ00 and Φ11 by the matchgates from Lemma 2.24, which are unweighted. This
yields two unweighted graphs G00 and G11 such that

Holant(Φ) = PerfMatch(G00)− PerfMatch(G11), (7.5)

which concludes the proof of Lemma 7.1 by following (7.1)-(7.5)

7.2. Tight lower bounds under #ETH

From Lemma 7.1, we obtain #P-completeness of PerfMatch0,1 and a tight lower bound
under #ETH for sparse graphs. To this end, we first reduce #SAT to PerfMatch−1,0,1 by
means of Corollary 2.31, and then use Lemma 7.1 to remove the edge-weight −1.

Lemma 7.3. Let ϕ be a 3-CNF formula with n variables and m clauses. Then we can
compute a number T ∈ N and construct two unweighted graphs G1 and G2 on O(n+m)
vertices and edges, all in time O(n+m), such that

#SAT(ϕ) = 2−T · (PerfMatch(G1)− PerfMatch(G2)) . (7.6)

Proof. Given ϕ, use Corollary 2.31 to construct a graph G on O(n+m) vertices and edges
with edge-weights from {−1, 1}, together with a number T ∈ N, such that

#SAT(ϕ) = 2−T · PerfMatch(G).

Use Lemma 7.1 to obtain the unweighted graphs G1, G2.

In particular, Lemma 7.3 gives a polynomial-time Turing reduction from 3-#SAT to the
problem PerfMatch0,1, which yields an alternative proof of Corollary 2.32.
By the exponential-time hypothesis #ETH, there is no 2o(n) algorithm for counting

satisfying assignments to 3-CNF formulas ϕ with n variables and m = O(n) clauses. Then
Lemma 7.3 implies the following theorem.

Theorem 7.4 (restated from page 154). Unless #ETH fails, the problem PerfMatch0,1

admits no algorithm with running time 2o(m) on simple graphs with m edges.

7.3. Completeness for C=P

We can also use Lemma 7.1 to show C=P-completeness of the problem PerfMatch0,1
= , and

hence prove Theorem 7.5: Given as input two unweighted graphs G1 and G2 on n vertices
and O(n) edges, this problem asks to decide whether their numbers of perfect matchings
agree. We will also show that this problem does not admit a 2o(n) algorithm under ETH,
the decision version of #ETH.
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7.3. Completeness for C=P

In the following, let us say that two formulas ϕ1 and ϕ2 are equipollent if their numbers
of satisfying assignments agree.2 Likewise, call unweighted graphs G1 and G2 equipollent
if their numbers of perfect matchings agree.

Theorem 7.5 (restated from page 155). The problem PerfMatch0,1
= is C=P-complete.

Recall that this problem asks whether two unweighted graphs G1 and G2 are equipollent.

Proof. The problem PerfMatch0,1
= is clearly contained in C=P. For the hardness part, we

reduce from the problem #SAT= defined on page 155, so we are given 3-CNF formulas ϕ
and ϕ′ on n variables, and we wish to determine whether they are equipollent. To this end,
we construct unweighted graphs G and G′ that are equipollent if and only if ϕ and ϕ′ are.

Assume that ϕ and ϕ′ are defined on the same set of variables x1, . . . , xn and feature the
same number m of clauses. This can be achieved by renaming variables, and by adding
dummy variables and clauses.3 Let C1, . . . , Cm and C ′1, . . . , C ′m denote the clauses in ϕ
and ϕ′, respectively.
We introduce a selector variable x∗ and define a formula ψ on the variable set X =
{x∗, x1, . . . , xn}, which has clauses D1, . . . , Dm and D′1, . . . , D′m, where

Di := (x∗ ∨ Ci) for i ∈ [m],
D′i := (¬x∗ ∨ C ′i) for i ∈ [m].

If a(x∗) = 0 holds in an assignment a ∈ {0, 1}X , then all clauses D′1, . . . , D′m are satisfied
by ¬x∗, but in order for a to satisfy ψ, the clauses D1, . . . , Dm have to be satisfied by
x1, . . . , xn. In other words,

• if a satisfies ψ and a(x∗) = 0, then the restriction of a to x1, . . . , xn satisfies ϕ, and

• if a satisfies ψ and a(x∗) = 1, then the restriction of a to x1, . . . , xn satisfies ϕ′.

Hence, we can define the quantity

S :=
∑

a∈{0,1}X
(−1)a(x∗) · [ψ satisfied by a],

and we observe that
S = #SAT(ϕ)−#SAT(ϕ′). (7.7)

It is clear that S = 0 holds if and only if ϕ and ϕ′ are equipollent.
As in Example 2.7 on page 57, we express S = Holant(Ω) for a signature graph Ω = Ω(ψ),

with one modification: At the vertex v∗ corresponding to the variable x∗, we do not use

2The author found the adjective “equipollent” by checking a list of adjectives that are equivalent to
“equivalent”, and choosing the least commonly used.

3If, say, ϕ has less variables than ϕ′, then we can add dummy variables to ϕ′, together with clauses that
ensure that every dummy variable has the same assignment as x1. We can also duplicate clauses.
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7. Unweighted perfect matchings

the signature EQ, but rather a modified signature EQ− : {0, 1}I(v∗) → {−1, 1}

EQ− : y 7→


−1 if y = 1 . . . 1,
1 if y = 0 . . . 0,
0 otherwise.

By Lemma 2.25 on page 66, this signature admits a matchgate with edge-weights {−1, 1/2, 1}
and O(n) vertices and edges. We realize Ω via Theorem 2.28, simulate the edge-weight
1/2 via Remark 1.30, and obtain an edge-weighted graph H with weights {−1, 1} and a
number T ∈ N such that

S = Holant(Ω) = 2−T · PerfMatch(H). (7.8)

Using Lemma 7.1, we then obtain unweighted graphs G and G′ such that

PerfMatch(H) = PerfMatch(G)− PerfMatch(G′). (7.9)

Finally, combining (7.7)-(7.9), we see that G and G′ are equipollent iff ϕ and ϕ′ are. This
concludes the hardness proof.

It is even easier to show lower bounds for PerfMatch0,1
= under ETH than to prove its

C=P-completeness: Firstly, we may reduce from an arbitrary problem that admits a lower
bound, such as SAT rather than SAT=. Secondly, we may use the more permissive notion
of Turing reductions.

Theorem 7.6. Assuming ETH, the problem PerfMatch0,1
= admits no 2o(m) time algorithm

on simple graphs with m edges.

Proof. Assuming ETH, we cannot decide in time 2o(m) whether a given 3-CNF formula ϕ
on m clauses is satisfiable. With Lemma 7.3, we can construct unweighted graphs G1 and
G2 on O(m) vertices and edges that are equipollent iff ϕ is unsatisfiable.
Hence, invoking an algorithm with running time 2o(m) for PerfMatch0,1

= on G1 and G2,
and flipping its answer, implies a 2o(m) algorithm for determining whether ϕ is satisfiable,
thus contradicting ETH.
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8. The block-interpolation framework

In this chapter, we show how to obtain tight lower bounds under #ETH by means of
multivariate polynomial interpolation. Please recall the notion of a graph polynomial
p, in particular Definition 1.22 on page 37, where the problems Coeff(p), Eval(p) and
EvalS(p) were defined. Furthermore, recall the reduction notion ≤serf from Definition 1.15
on page 34.
We consider all three problems above to be parameterized by the number of edges

m = |E(G)| of the input graph G. Then, for a general class of univariate graph polynomials
p, we show that, for fixed ξ ∈ Q,

Coeff(p) ≤serf Evalξ(p). (8.1)

This is useful due to the following reasons:

1. Many counting problems can be expressed as evaluation problems Evalξ(p) for ade-
quate graph polynomials p and points ξ. For instance, the Tutte polynomial from
Section 1.3.3 provides an abundance of such examples.

2. Many classical #P-hardness proofs for Evalξ(p) first establish #P-hardness for
Coeff(p), and then reduce this to the evaluation problem by some form of inter-
polation. In many cases, the classical #P-hardness proof for Coeff(p) already yields
a tight lower bound under #ETH, and in such cases, our technique allows to transfer
this lower bound to Evalξ(p).

8.1. Setting up the framework

In Section 8.1.1, we first describe the “format” required from a univariate graph polynomial
p for our framework to apply. Then we show in Section 8.1.2 how to reduce

Coeff(p) ≤serf EvalS(p), (8.2)

where p is a certain “multivariate version” of p, and the size of S ⊆ Q depends only on the
running time parameter ε in the sub-exponential reduction family, but not on the size of
the input graph. In Section 8.1.3, we then show how to reduce

EvalS(p) ≤lin
p Evalξ(p) (8.3)

by means of gadget families, provided that these families exist. The reductions (8.2) and
(8.3) together will imply (8.1).
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8. The block-interpolation framework

8.1.1. Admissible graph polynomials

Our framework applies to all graph polynomials that admit a canonical multivariate
generalization. More specifically, we call a graph polynomial p subset-admissible if it can
be described by a pair (χ, ω) consisting of a sieving function χ which “sieves out” the
structures counted by p, and a weight selector ω which assigns a specific kind of weight to
each of these structures.

Definition 8.1. Let G denote the set of all unweighted simple graphs, and let F = V ∪ E
denote the set of all vertices and edges of graphs in G. Let χ and ω be functions

χ : G × 2F → Q,
ω : G × 2F → 2F .

We call χ a sieve function, we call ω a weight selector, and we say that (χ, ω) induce the
graph polynomial p : G → Q[x] defined by

pχ,ω(G;x) =
∑

A⊆V (G)∪E(G)
χ(G,A) · x|ω(G,A)|. (8.4)

We call p subset-admissible if it is induced by some pair (χ, ω) as above.

The sieve function χ obtains its name from its ability to assign zero value to unwanted
subsets, and ω is dubbed a weight selector because it selects vertices and edges, each of
which then contributes a multiplicative weight of x. Note that, if p is subset-admissble, then
the functions χ, ω that induce p suffice to specify p completely. Please also note that the
expression (8.4) is similar to that seen in the context of MSOL-definable graph polynomials
in Theorem 1.44. In particular, any univariate graph polynomial that is defined by an
MSOL-formula as in Theorem 1.44 is also subset-admissible.

Example 8.2 (Matching polynomials). The polynomial µ is induced by

χ : (G,A) 7→ [A ∈M[G]],
ω : (G,A) 7→ usat(G,A).

This holds because

pχ,ω(G) =
∑

A⊆V (G)∪E(G)
χ(G,A) · x|ω(G,A)| =

∑
A∈M[G]

x|usat(G,A)| = µ(G).

The edge-generating matching polynomial M can be obtained with ω(G,A) = A.

For our next example, we would like to show that the Tutte polynomial from Section 1.3.3
is subset-admissible, but this fails for syntactic reasons: According to Definition 8.1, only
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univariate polynomials can be admissible. To apply our framework to the Tutte polynomial,
we use its random-cluster formulation Z from Section 1.3.3 and consider restrictions
Zq := Z(q, ·) for fixed q ∈ Q. For q = 0, we consider Z ′(0, ·) rather than Z(0, ·). These are
typical steps used in #P-hardness results, see also [DHM+14].

Example 8.3 (Tutte polynomial). Given a graph G = (V,E) and A ⊆ E, let k(G,A)
denote the number of connected components of (V,A), including isolated vertices. For
fixed q ∈ Q\{0}, the polynomial Zq := Z(q, ·) is induced by

χ : (G,A) 7→ qk(G,A),

ω : (G,A) 7→ A.

Likewise, we can show that Z0 := Z ′(q, ·) is subset-admissible. We stress again that Zq for
q ∈ Q are univariate polynomials, where q ∈ Q is considered fixed.

Every subset-admissible graph polynomial pχ,ω admits a canonical multivariate gener-
alization pχ,ω, which we define in the following, and which will later enable our use of
multivariate interpolation.

Definition 8.4. Let x = {xa | a ∈ F} be a set of indeterminates, where F denotes the
set of all vertices and edges of graphs. Given functions χ and ω as in Definition 8.1, we
define the multivariate generalization pχ,ω of pχ,ω as

pχ,ω(G; x) =
∑

A⊆V (G)∪E(G)
χ(G,A) ·

∏
a∈ω(G,A)

xa. (8.5)

Please note that only finitely many indeterminates from x are present in pχ,ω(G) for
any (finite) graph G.

Compare (8.5) to the univariate version defined in (8.4): It is clear that pχ,ω coincides
with pχ,ω when substituting xa ← x for all a ∈ F . Note also that p is multilinear by
definition. Such multivariate generalizations are known, e.g., for the Tutte polynomial
[Sok05], and we have also seen a general expression like (8.5) in the context of MSOL-
definable polynomials in Theorem 1.44.
As seen for PerfMatch and MatchSum in Section 1.3, rather than evaluating pχ,ω(G; ξ)

for unweighted graphs G and tuples ξ, we consider pχ,ω(G′) for graphs G′ with weights
on edges and vertices. In fact, in all our applications, we can restrict ourselves to either
vertex-weighted graphs or to edge-weighted graphs.

Example 8.5. The polynomial MatchSum is the multivariate generalization of the match-
ing polynomial µ, with sieve function and weight selector defined as in Example 8.2.
The multivariate generalizations of Z(q, ·) and Z ′(q, ·) yield the so-called multivariate

Tutte polynomial
Z(q, ·) =

∑
A⊆E(G)

qk(G,A) ∏
e∈A

xe
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and its variant Z′(q, ·). The polynomial Z(q, ·) has already been considered in [Sok05].
Finally, consider the polynomial p induced by χ(G,A) = [A ∈ PM[G]] and ω(G,A) = A.

This polynomial has at most one monomial, which has degree |V (G)|
2 , and whose coefficient

counts the perfect matchings in G. The multivariate generalization of p is the polynomial
p = PerfMatch.

If p is a univariate subset-admissible polynomial and p is its multivariate generalization,
then the following simple relation holds between the coefficients of p and p:

Fact 8.6. For any monomial θ, let c(θ) denote the coefficient of θ in p. For k ∈ N, let Wk

denote the set of monomials in p with total degree k. Then, for all k ∈ N, the coefficient
of xk in p is equal to

∑
θ∈Wk

c(θ).

Proof. When substituting xa ← x for all a ∈ F , we obtain p from p, and the monomials
transformed to xk are precisely the members of Wk. This proves the claim.

8.1.2. Using multivariate interpolation

Let p = pχ,ω be subset-admissible. For ease of presentation, we assume for now that
ω : G × 2F → 2E , that is, ω maps only into edge-subsets rather than subsets of edges and
vertices. The general case is shown identically and merely requires more notation.

We reduce Coeff(p) ≤serf Eval(p) by means of interpolation, where p = pχ,ω denotes the
multivariate generalization of p. Recall that, in the univariate case, to obtain p(G) for an
m-edge graph G, we require evaluations p(G; ξ) at m+ 1 distinct points ξ ∈ Q. For the
multivariate generalization p(G), we can use grid interpolation as shown in Lemma 1.38:
Since p(G) is multilinear, this requires the evaluations of p(G; ξ) on a grid with two distinct
values per coordinate, say Ξ = [2]m. By Fact 8.6, the coefficients of p can be obtained from
those of p, so we could in principle interpolate p to recover p.
While this detour seems extremely wasteful due to its 2m (rather than m+ 1) incurred

evaluations, it yields the following reward: For each variable xe in p, grid interpolation
only requires us to substitute two distinct values/weights into xe, whereas univariate
interpolation on p requires m+ 1 distinct substitutions to its only variable x. This small
number of involved weights will be very useful, since each such weight is later simulated
by a certain gadget at e, as we have seen, e.g., in Lemma 1.29 for PerfMatch. If only
two weights are to be simulated, then we require only two fixed gadgets, whose sizes are
trivially bounded by O(1).

However, to interpolate p, we still need the prohibitively large number of 2m evaluations.
To overcome this, we trade off the number of evaluations with the numbers of distinct
values that need to be simulated at each edge, and thus, with the size of the gadgets
ultimately required.

Lemma 8.7. Let p be subset-admissible, with multivariate generalization p, and let W =
(w0, w1, . . .) be an infinite recursively enumerable sequence of distinct numbers in Q.

Consider Coeff(p) and EvalW (p) to be parameterized by the number of edges of the
input graph G. Then Coeff(p) ≤serf EvalW (p) holds by a sub-exponential reduction family
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p ∈ Q[x] p ∈ Q[x] q ∈ Q[y]
number of indeterminates 1 m t = dm/de

max. degree of each indeterminate m 1 d

max. number of monomials m+ 1 2m (d+ 1)t

Table 8.1.: The polynomials p, p and q appearing in the proof of Theorem 8.7.

that, on input (G, ε), only asks queries of the form p(G′) on graphs G′ obtained from G

by introducing edge-weights from Wd = {w0, . . . , wd}, where d = d(ε) is computable and
depends only on ε.

When invoking Lemma 8.7, the list W contains the weights that can be simulated by
gadgets. Note that any such list W can be used if W is infinite and recursively enumerable.
Furthermore, note that p is evaluated only on edge-weighted versions of G itself; properties
such as the number of edges or bipartiteness are hence trivially preserved.

Proof of Lemma 8.7. Let d ∈ N be a parameter, to be chosen later depending on ε, and
let G = (V,E) be an m-edge graph for which we want to determine the coefficients of
p = p(G). Let the indeterminates of p be denoted by

x = {xe | e ∈ E}

and note that both p and p have maximum degree m by definition.
Partition E into t := dm/de sets E1, . . . , Et of size at most d each (which we call blocks),

using an arbitrary equitable assignment of edges to blocks. Define new indeterminates

y := {y1, . . . , yt}

and a new multivariate polynomial q ∈ Q[y] by substituting xe ← yi for all i ∈ [t] and
e ∈ Ei in p. We are working with three polynomials, namely p, p and q, summarized in
Table 8.1 for convenience. While the total degree of q is bounded by m, the degree of each
indeterminate yi in q is bounded by d, since each block contains at most d edges. Hence,
the number of monomials in q is at most (d + 1)t = 2d′m, with d′ = O(log(d)/d). Note
that d′ → 0 as d→∞.
We will obtain the coefficients of q via interpolation, but first, let us observe that the

coefficients of q allow to determine those of the univariate polynomial p. Write cp(k)
for the coefficient of xk in p, and write cq(θ) for the coefficient of the monomial θ in q.
Analogously to Fact 8.6, we have cp(k) =

∑
θ∈Ck cq(θ), where Ck for k ∈ N is the set of all

monomials with total degree k in q. This allows us to compute the coefficients of p from
those of q.
It remains to obtain the coefficients of q. For this, recall the definition of Wd from the

statement. We evaluate q on the grid Ξ = (Wd)t using the oracle for Eval(p): For each
ξ ∈ Ξ, substitute yi ← ξi for all i ∈ [t] to obtain an edge-weighted graph Gξ that contains
only weights from Wd, and for which we can thus compute p(Gξ) by an oracle call.
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Using |Ξ| = (d+ 1)t = 2d′m oracle calls and grid interpolation via Lemma 1.38, we obtain
all coefficients of q with O(23d′m) arithmetic operations.1 Since d′ → 0 as d→∞, we can
pick d large enough such that 3d′ ≤ ε, and thus achieve running time O(2εm). No vertices
or edges are added to G, so the parameter is not increased.

8.1.3. Weight simulation

With Lemma 8.7, we obtain a sub-exponential reduction family from Coeff(p) on instances
(G, ε) to Eval(p) on versions obtained from G by introducing f(ε) distinct edge-weights.
For the full reduction, this latter problem must be reduced to Evalξ(p) for fixed ξ ∈ Q.
This may not work for all ξ ∈ Q: For instance, Eval0(I) for the independent-set polynomial
I at 0 is trivial. We must hence impose conditions on ξ to enable this reduction.

Definition 8.8. Let p be subset-admissible, let ξ ∈ Q and

• let W = (w0, w1, . . .) be a sequence of pairwise distinct values in Q,

• let H = (H0, H1, . . .) be a sequence of edge-gadgets, which are triples (H,u, v)
consisting of an unweighted graph H and attachment vertices u, v ∈ V (H), and

• let F : G ×Q→ Q \ {0} be a polynomial-time computable function, which we call a
factor function.

If G is edge-weighted with weights from W , let T (G) be the unweighted graph obtained
by replacing, for i ∈ N, each edge uv ∈ E(G) of weight wi with a fresh copy of Hi by
identifying u, v across G and Hi. We say that (H, F ) allows to reduce EvalW (p) to Evalξ(p)
if the following holds: Whenever G is a graph with edge-weights from W , then

p(T (G); ξ) = F (G, ξ) · p(G). (8.6)

The same definition applies to vertex-weighted graphs; here we use vertex-gadgets, which
are pairs (H, v) with an attachment vertex v ∈ V (H). Vertex-gadgets are inserted at a
vertex v ∈ V (G) by identifying v in H and G.

At the end of this subsection, we discuss some possible extensions of this definition.
As a first example for the notions introduced in Definition 8.8, we consider (well-known)
edge-gadgets for PerfMatch.

Example 8.9. Let p denote the polynomial from Example 8.5 with p = PerfMatch. Let
H = (H1, H2, . . .) be such that Hk for k ∈ N is the graph obtained by placing k parallel
edges between u and v and then subdividing each edge twice, as in Lemma 1.29 on page 42.

1By definition of p and q, each arithmetic operation involves numbers of size at most 2m · (maxWd)m.
This amounts to m · g(d) bits for a computable function g.
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8.1. Setting up the framework

Let N = (1, 2, 3, . . .) and let F denote the function that maps all inputs to 1. We have seen
in Lemma 1.29 that (H, F ) allows to reduce EvalN(p) to Eval1(p).

By combining Lemma 8.7 and Definition 8.8, we obtain the wanted reduction from
Coeff(p) to Evalξ(p) at fixed points ξ ∈ Q. This will be the foundation for all lower bounds
to be derived in the next section.

Theorem 8.10 (Block interpolation theorem). Let p be subset-admissible and let ξ ∈ Q
be fixed. Assuming #ETH, the problem Evalξ(p) admits no 2o(m) time algorithm on simple
graphs with m edges, provided that the following two conditions hold:

Coefficient hardness: Assuming #ETH, the problem Coeff(p) admits no 2o(m) time algo-
rithm on simple graphs with m edges.

Weight simulation: There is a recursively enumerable sequence W = (w0, w1, . . .) of
pairwise distinct weights, a sequence of gadgets H = (H0, H1, . . .) and a factor
function F such that (H, F ) allows to reduce EvalW (p) to Evalξ(p).

Proof. We show that Coeff(p) ≤serf Evalξ(p), where we consider both problems to be
parameterized by the number of edges of the input graph. Given ε > 0 and a graph
G with m edges, apply Lemma 8.7 to reduce Coeff(p) to 2εm instances of EvalS(p) on
S = {w0, . . . , ws}, where s = s(ε) is computable and depends only upon ε.
Let G′ be an instance for EvalS(p) obtained in this step, i.e., an edge-weighted graph

with weights from S. By Lemma 8.7, we have |E(G′)| = m. Since (H, F ) allows to reduce
EvalW (p) to Evalξ(p), we can reduce the evaluation of p on G′ to an instance of Evalξ(p)
on the graph T (G′) from Definition 8.8. Let

b = max
i∈{0,...,s}

|E(Hi)|

be the maximum number of edges used by edge-gadgets in T (G′), and observe that, for a
fixed family H, the number b depends only on s, which in turn depends only on ε. Then

|E(T (G′))| ≤ bm,

with computable b = b(ε). This fulfills the requirements of a sub-exponential Turing
reduction family.

Let us remark some corollaries of the reduction shown above.
Remark 8.11. If the source instance G for Coeff(p) has maximum degree ∆, then the
reduction images T (G′) obtained above feature maximum degree ∆ · f(ε) for a computable
function f . By suitable choice of H, we can also ensure other properties on T (G):

• If G is bipartite and all edge-gadgets (H,u, v) ∈ H can be 2-colored such that u and
v receive different colors, then T (G′) is bipartite as well.
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8. The block-interpolation framework

• If G is planar and all edge-gadgets (H,u, v) ∈ H admit planar drawings with u and
v on their outer faces, then T (G′) is planar as well.

To conclude this subsection, we list several possible generalizations of Definition 8.8 and
Theorem 8.10 that we did not include in our formulation, since they did not prove useful.
For future research, it might however be a good idea to keep these extensions in mind.

1. We may extend Definition 8.8 to incorporate weight simulations that proceed non-
locally, that is, by something less obvious than inserting local gadgets at edges.

2. In Lemma 8.7, we do not need to evaluate p on a grid W t for a fixed coordinate set
W . Instead, we could as well interpolate on a grid W1× . . .×Wt, provided that each
Wi is large enough and that the weights do not depend on the size of G.

3. We may also allow 2o(m) time for the computation of the factor F (Gw, ξ). Rather
than allowing only a multiplicative factor, we could also allow an arbitrary function
to be computed from p(T (G); ξ) and the input.

8.2. Applications

In the following subsections, we apply block interpolation (Theorem 8.10) to obtain tight
lower bounds of the type 2Ω(m) for a variety of counting problems, including the unweighted
permanent, the matching polynomials and the Tutte polynomial.

8.2.1. Unweighted permanent

We prove Theorem 8.12, which claims a lower bound of 2Ω(m) for Eval0,1(perm) = perm0,1

on graphs with m edges under #ETH.

Theorem 8.12 (restated from page 157). Unless #ETH fails, the problem perm0,1 does
not admit an algorithm with running time 2o(m) on simple graphs with m edges.

Proof. We invoke Theorem 8.10 to show

Eval−1,0,1(perm) ≤serf Eval0,1(perm).

Let G be a graph on m edges, with edge-weights from {−1, 1}, and let E−1(G) denote the
set of edges with weight −1 in G. As in Lemma 1.36 on page 45, where we removed the
edge-weight −1 by univariate interpolation, we define a polynomial p(G) with

p(G;−1) = perm(G).

To this end, let p = pχ,ω be the polynomial induced by

χ(G,A) = [A ∈ PM[G]],
ω(G,A) = A ∩ E−1(G).
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Since knowledge of the coefficients of p(G) allows to evaluate p(G;−1), we obtain from
[DHM+14, Theorem 1.3] that Coeff(p) admits no 2o(m) time algorithm under #ETH. Hence
the requirement of coefficient hardness from Theorem 8.10 is fulfilled.2

To check the requirement of weight simulation in Theorem 8.10, recall the pair (H, F ) from
Example 8.9 that allows to reduce EvalN(perm) to Eval1(p). This pair in particular allows
to reduce EvalN(p) to Eval1(p). By Remark 8.11, the reduction images T (G) constructed
by Theorem 8.10 are bipartite as well.

Using a reduction to decrease the maximum degree to 3, together with reductions via line
graphs, we can collect a series of corollaries for other counting problems. In the following,
we say that G is a line graph if G is the line graph of some graph, as defined on page 39.

Corollary 8.13. Assuming #ETH, the following cannot be solved in time 2o(n):

1. The problem Eval0,1(perm) on graphs G with n vertices and ∆(G) ≤ 3.

2. Counting maximum-cardinality independent sets (or equivalently, minimum-cardinality
vertex covers), even in line graphs G with n vertices and ∆(G) ≤ 4.

3. Counting minimum-weight satisfying assignments to monotone 2-CNF formulas on
n variables, even if every variable appears in at most four clauses.

Proof. For the first statement, we use a reduction from the permanent on general graphs
G to graphs G′ with ∆(G) ≤ 3, shown in [DL92]. If G has n vertices and m edges, then
the graph G′ constructed by this reduction has O(n+m) vertices and edges and maximum
degree 3. In fact, we could also prove this statement by repeated application of Fact 3.4
on page 88 to “split” vertices of degree greater than 3.
For the second statement, if a graph H has m edges, then its line graph L(H) has m

vertices and maximum degree 2(∆(H)− 1). The set PM[G] corresponds bijectively to the
independent sets of size |V (G)|

2 in L(G). These are the maximum-cardinality independent
sets in L(G).3 The maximum-cardinality independent sets of any graph stand in bijection
with its minimum vertex covers via complementation. We thus obtain the second statement
by reduction from Eval0,1(perm) on graphs of maximum degree 3.

For the third statement, observe that the minimum vertex covers of a graph H = (V,E)
correspond bijectively to the minimum-weight satisfying assignments of the following
monotone 2-CNF formula ϕ: Create a variable xv for each vertex v ∈ V , and a clause
(xu ∨ xv) for each edge uv ∈ E. This is noted also in [Vad01].

8.2.2. Matching and independent set polynomials

We prove Theorem 8.15, a tight lower bound for Evalξ(µ) at fixed ξ ∈ Q, by invoking
Theorem 8.10. The perfect matchings of G are counted by the coefficient of x0 in µ(G),

2Rather than using [DHM+14] for this step, we could as well fine-tune our reduction in Corollary 2.31 to
yield bipartite graphs, and then obtain a polynomial-time weakly parsimonious reduction from 3-#SAT
to Eval−1,0,1(perm) that incurs only linear blowup.

3That is, unless G has no perfect matching. However, we may assume that all graphs considered have
perfect matchings, as they would otherwise not be required in a reduction.
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so Coeff(µ) and Eval0(µ) have the same lower bound as Eval0,1(perm). This settles the
requirement of coefficient hardness in Theorem 8.10. In the following, we show that µ also
admits weight simulation.

Lemma 8.14. Let H = (Hi)i∈N be the following family of vertex-gadgets that is constructed
as follows: The graph Hi contains one attachment vertex v, adjacent to an independent set
of i vertices.

Consider ξ ∈ Q \ {0} to be fixed. Let W = (wt)t∈N with wt = 1 + t
ξ2 for t ∈ N. Given

a graph G with vertex-weights from W , let at for t ∈ N denote the number of vertices of
weight wt in G. We define

F (G, ξ) =
∏
t∈N

ξt·at .

Then (H, F ) allows to reduce EvalW (MatchSum) to Evalξ(µ).

Proof. Recall the graph transformation T (G) from Definition 8.8: At every vertex of weight
wt, for t ∈ N, we attach the gadget Ht. To show that (H, F ) indeed satisfies Definition 8.8,
we need to show that

µ(T (G), ξ) = F (G, ξ) ·MatchSum(G). (8.7)

To see this, observe that every matching M in G can be extended locally at vertices
v ∈ V (G) by edges of vertex-gadgets to obtain a matching in T (G).4 Let v ∈ V (G) be a
vertex of weight wt for t ∈ N. If v /∈ usat(G,M), then M cannot be extended at the vertex
v, and v incurs the factor ξt in µ(T (G)). If v ∈ usat(G,M), then we can choose not to
extend v, or we may choose to extend by one of the t edges of Ht, so we obtain a factor of
ξt + tξt−2 = ξt(1 + t

ξ2 ). This establishes (8.7), and hence the lemma.

From this, we can conclude the lower bound for Evalξ(µ) via block interpolation.

Theorem 8.15 (restated from page 158). Unless #ETH fails, the problem of evaluating
the matching polynomial µ(G; ξ) for any fixed ξ ∈ Q does not admit an algorithm with
running time 2o(m) on simple graphs G with m edges, even when the maximum degree ∆(G)
may be assumed to be a constant.

Proof. By Corollary 8.13, the problem Coeff(µ) admits no 2o(m) algorithm unless #ETH
fails, even on graphs with maximum degree 3. This settles the requirement of coefficient
hardness in Theorem 8.10, even on graphs of maximum degree 3.

In Lemma 8.14, we have seen that µ admits weight simulations. By Remark 8.11 and the
reduction from Coeff(µ) on graphs of maximum degree 3, the queries issued by Theorem 8.10
have maximum degree O(1), which implies the degree bound in Theorem 8.15.

4Note that this is similar to the rakes from Section 4.2.
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Remark 8.16. We can easily verify that the block interpolation framework also allows us
to prove the same lower bound for µ(G; ξ) even when ξ ∈ C is a complex number with
ξ =
√
c for c ∈ Q. Note that we may assume that G has an even number of vertices; in

this case, we can compute µ(G; ξ) over the rational numbers: Every matching in G has an
even number of unmatched vertices, and thus only even powers of ξ appear in µ(G; ξ).

As in Corollary 8.13, we can easily obtain corollaries for the independent set polynomial
I, defined in Section 1.3, and for monotone 2-SAT, improving upon [Hof10, DHM+14].

Corollary 8.17. Assuming #ETH, the following cannot be solved in time 2o(n):

1. Evaluating the independent-set polynomial I(G; ξ) on line graphs with n vertices and
maximum degree O(1), for any ξ ∈ Q \ {0}. This holds especially at ξ = 1, which
amounts to counting independent sets (or equivalently, vertex covers).

2. Counting satisfying assignments to monotone 2-CNF formulas on n variables, even
if every variable appears in at most O(1) clauses.

Proof. We prove the first statement: If G has m edges and ∆(G) = O(1), then L(G)
has m vertices and ∆(L(G)) = O(1). Recall that M(G) = I(L(G)), where M is the
edge-generating matching polynomial, and that

µ(G; ξ) = ξ|V (G)| ·M(G; ξ−2) = ξ|V (G)| · I(L(G); ξ−2),

where the first identity is (1.4) on page 37. Hence, for fixed ξ 6= 0, an algorithm for Evalξ(I)
on line graphs implies one for Evalξ′(µ) on general graphs with ξ′ =

√
ξ−1, but this is ruled

out by Theorem 8.15 and Remark 8.16.
For the second statement, recall that independent sets and vertex covers stand in bijection.

We then reduce from counting vertex covers as in Corollary 8.13.

8.2.3. Tutte polynomial

To prove a lower bound for the evaluation of the Tutte polynomial T , we use univariate
restrictions of the random-cluster model Z. As discussed in Example 8.3, we write
Zq := Z(q, ·) for fixed q ∈ Q \ {0} and Z0 := Z ′(0, ·), where Z and Z ′ are defined as in
Section 8.2.3. Then we use block interpolation to prove lower bounds for Evalw(Zq) at
fixed w ∈ Q. As in the previous examples, we require a lower bound for Coeff(Zq), which
was shown in Propositions 4.1 and 4.3 of [DHM+14].

Lemma 8.18 ([DHM+14]). Assuming #ETH, the problem Coeff(Zq) for q ∈ Q \ {1}
cannot be solved in time 2o(m) on graphs with m edges.

In fact, we could also use block interpolation to simplify the proof of Lemma 8.18 from
[DHM+14] by performing an interpolation step that needed to be circumvented by the
authors with some tricks. However, since Lemma 8.18 was explicitly shown in [DHM+14],
we omit the self-contained proof that would still require some arguments which are very
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specific to the Tutte polynomial. Note that the case q = 1 is left uncovered by this lemma;
we consequently cannot prove lower bounds at q = 1.

In [DHM+14], the problem Coeff(Zq) is then reduced to the unweighted evaluation
problem via Theta graphs and wumps, families of edge-gadgets that incur only O(logc n)
blowup. This economical (but still not constant) factor however requires a somewhat
involved analysis. Using block interpolation, we can instead use mere paths as gadgets, and
hence perform stretching, a classical weight simulation technique for the Tutte polynomial
[JVW90, GJ08]. Please recall the definition of the multivariate Tutte polynomial Zq from
Example 8.5.

Lemma 8.19. For k ∈ N, let Pk denote the path on k edges with distinguished start/end
vertices u, v ∈ V (Pk), and let P = (P1, P2, . . .). Let w, q ∈ Q be fixed with w 6= 0 and
q /∈ {1,−w,−2w}. Then there is an infinite sequence of pairwise distinct weights W and a
factor function F such that (P, F ) allows to reduce EvalW (Zq) to Evalw(Zq).

Proof. We have to distinguish whether q = 0 or q 6= 0 holds, and we obtain different
weights and factor functions in the different cases.

If q = 0, we define W = (wk)k∈N with the pairwise distinct weights wk = w
k for k ∈ N.

Given a graph G with edge-weights from W , let ak(G) for k ∈ N denote the number of
edges in G with weight wk, and define

F (G) =
∏
k∈N

(kwk−1)αk(G).

Then it is known that (P, F ) allows to reduce EvalW (Z0) to Evalw(Z0), as shown in
[DHM+14, Corollary 6.7] and [GJ08].

If q 6= 0, then the family of paths realizes different weights and requires a different factor
function. Define W = (wk)k∈N with

wk = q

(1 + q
w )k − 1

and observe that these weights are pairwise distinct provided that 1+ q
w /∈ {−1, 0, 1}, which

holds by q 6= 0 and the prerequisites of the proposition. Given a graph G with edge-weights
from W , let ak(G) for k ∈ N denote the number of edges in G with weight wk and define

F (G) = q−|E(G)| ∏
k∈N

((q + w)k − wk)ak(G).

Then it is shown in [DHM+14, Lemma 6.2] and [Sok05, Propositions 2.2 and 2.3] that
(P, F ) allows to reduce Zq on W to Zq(w).

By combining Lemma 8.18 for the requirement of coefficient hardness and Lemma 8.19
for weight simulations, we can invoke Theorem 8.10 and obtain:

Lemma 8.20. Let w 6= 0 and q /∈ {1,−w,−2w}. Assuming #ETH, the problem Evalw(Zq)
admits no 2o(m) algorithm on graphs with m edges.
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Using the substitution (1.14) on page 44 that maps Z(·, ·) to the classical parameterization
T (·, ·) of the Tutte polynomial, and using (1.16) if q = 0, we obtain Theorem 8.21.

Theorem 8.21 (restated from page 158). Unless #ETH fails, the Tutte polynomial T (x, y)
for fixed (x, y) ∈ Q2 cannot be evaluated in time 2o(m) on simple graphs with m edges,
provided that

• y /∈ {0, 1}, and

• (x, y) /∈ {(1, 1), (−1,−1), (0,−1), (−1, 0)}, and

• (x− 1)(y − 1) 6= 1.

The points on the lines given by y ∈ {0, 1} are not covered by Theorem 8.21, and they
actually do not fit into the block interpolation framework: The restriction T (·, 0) specializes
to the chromatic polynomial, for which it is unclear how to even define a weighted version.
The known #P-hardness proof [Lin86], used in [DHM+14], yields a lower bound of 2Ω(n)

on graphs with n vertices, but Ω(n2) edges. For T (·, 1), we cannot even prove a lower
bound for the coefficient problem.
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Open problems

In each part of this thesis, we leave various problems open for future research. Some of
these are listed in the following, sorted by perceived importance within each part:

Part I

1. We have found ways to evaluate PerfMatch in XP-time on almost all individual
substructures arising from the Graph Structure Theorem:

• For bounded-genus graphs, we can proceed in time 4γnO(1) via Theorem 1.28.
• For bounded-genus graphs with a bounded number of apices, we can apply
brute-force in time 4γnk+O(1), and by Theorem 4.1, we cannot hope for an
fpt-algorithm in the number of apices.
• It can be verified that clique-sums of bounded-genus graphs with apices can
also be evaluated in XP-time. We have not included this in the thesis.

However, we failed to handle vortices. Even an algorithm for computing PerfMatch
for a planar graph with one single vortex would greatly contribute towards an
XP-algorithm for PerfMatch/hadw.

2. As we observed in Theorem 4.21, the #W[1]-hardness result for k-apex graphs does
no longer hold if each apex can see only a bounded number of faces. This is the
situation in torsos of graphs excluding a fixed graph from A1, the class of 1-apex
graphs. If we could solve the generalized vortices arising from [DHK09] in fpt-time,
then an fpt-algorithm for PerfMatch/hadwA1 seems in reach.

Part II

1. Find tight lower bounds under #ETH or #SETH for the subgraph counting problems
studied in Part II, in particular for the problem of counting k-matchings. That is,
find or rule out an f(k)no(k) algorithm for counting k-matchings under #ETH. A
lower bound would carry over to various other counting problems. Note that the
current lower bounds, which use the lower bound for #PartitionedSub from [Mar10],
can only rule out f(k)no(k/ log k) algorithms. However, that paper gives a lower bound
for the decision version PartitionedSub, and it might be easier to obtain lower bounds
for the counting version #PartitionedSub.

2. Extend the machinery of combined colorful signatures used in Section 5.2.2 to
yield #W[1]-hardness for (edge-colorful) Holant problems other than counting (edge-
colorful) k-matchings.
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3. Prove a dichotomy theorem for the edge-colorful version of the subgraph counting
problem #Sub(H) on graph classes H. Note that the complexity of the vertex-colorful
version is completely determined by the maximum treewidth of H, but an equally
simple characterization does not seem to apply to the edge-colorful variant. For
instance, we have observed that counting edge-colorful matchings is #W[1]-complete,
but we can also give an fpt-algorithm for counting edge-colorful copies of a matching
that has one additional vertex adjacent to every edge.

Part III

1. The block interpolation framework can be used to derive further lower bounds under
#ETH. To avoid a long list of semi-interesting individual results, it would be nice
to derive a meta-theorem from it, similar to the known sweeping #P-dichotomy
theorems for Holant or #CSP problems. Can we uniformly prove lower bounds under
#ETH for the problems that lie on the “hard” side of such a dichotomy?

2. Show that an algorithm with running time (4− ε)γ · nO(1) for evaluating PerfMatch
on graphs of genus γ would refute the strong exponential time hypothesis #SETH,
or find a faster algorithm. Note that an algorithm with running time 4γ · nO(1) exists
by Theorem 1.28. Of course, a lower bound of cnnO(1) for PerfMatch on n-vertex
graphs would also be highly interesting.

3. Give tight lower bounds for the remaining points of the Tutte polynomial that were
not covered by our results.
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A. Original hardness proof for k-matchings

In this part of the appendix, we present the first #W[1]-hardness proof for #Match, as it
appeared in [BC12, Cur13]. This proof is superseded by the results of Section 5.2.
The original proof consists of two parts, both of which are based around the notions of

partial cycle covers and partial path-cycle covers. In the first part, taken from [BC12], an
argument seen in [FG04] is adapted to yield a reduction from #Clique to counting partial
cycle covers. In the second and more involved part, taken from [Cur13], some algebraic
machinery is developed in order to reduce from counting partial cycle covers to counting
matchings.

Definition A.1. Let G = (V,E) be a digraph and k ∈ N. A k-partial path-cycle cover C
in G is a k-set C ⊆ E that consists of a vertex-disjoint union of paths and cycles.1

The number of cycles in C is denoted by σ(C), that of paths by ρ(C), and that of
vertices in G not hit by C by ι(C).2

We call C a k-partial cycle cover if ρ(C) = 0, that is, if C features no paths. The set
of k-partial path-cycle covers with t paths in G is denoted by PCk,t[G], that of k-partial
path-cycle covers as PCk[G] and that of k-partial cycle covers by Ck[G].

We denote the parameterized problem of counting k-partial path-cycle covers in an input
graph G by #PCC, and that of counting k-partial cycle covers by #CC. It was shown in
[BC12] that #CC is #W[1]-complete, and that a weighted generalization of #PCC is as
well. From this, a simple graph transformation allowed to conclude #W[1]-hardness of
counting weighted k-matchings. More precisely, for edge-weighted graphs with weights
w : E(G)→ Z, it was shown that it is #W[1]-hard to compute the quantity∑

M∈Mk[G]

∏
e∈M

w(e).

We will not include the reduction to this weighted problem into this thesis as it has been
superseded by [Cur13]. Instead, we only prove #W[1]-hardness of #CC and reduce this to
#Match. To show hardness of #CC, we introduce a combinatorial structure that could be
described as a “union of closed walks without distinguished start vertices”. For notational
simplicity, we call such a structure a UCW:

Definition A.2. Let G = (V,E) be a digraph. Let (v1, . . . , vk) ∈ V k such that (vi, vi+1) ∈
E for all i < k and (vk, v1) ∈ E. Write [v1, . . . , vk] for the set of all cyclic shifts of
(v1, . . . , vk) and call W = [v1, . . . , vk] a CW of length `(W ) := k.

A UCW is a multiset U = {W1, . . . ,Wt} of CWs, and its length is `(U) :=
∑t
i=1 `(Wi).

1If k is not relevant in the context, we simply call C a partial path-cycle cover.
2Note that ι(C) = |V (G)| − |C| − ρ(C).
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To each UCW, we associate a particular polynomial, its type, which is defined analogously
to the types assigned to homomorphisms in [FG04]:

Definition A.3. Let W be a CW in G and let v ∈ V (G). We write fW (v) for the number
of appearances of v in W . For U = {W1, . . . ,Wt} a UCW, we set fU (v) :=

∑t
i=1 fWi(v).

Then the type θU of U is defined as the polynomial θU ∈ Z[x] with

θU (x) :=
∏
v∈V

(x)fU (v).

Let Θk denote the set of all types of degree k. We write Uk[G, θ] for the set of UCWs of
length k and type θ in G.3

Note that Θk stands in canonical bijection with the number partitions of k, that is, the
ways to express k as an unordered sum of positive numbers: Factorizing type polynomials
into their linear factors allows to recover such partitions. It clearly holds that |Θk| ≤ kk.
In analogy to the problem of counting typed directed cycles, which was proven to be

#W[1]-hard in [FG04], we define the problem of counting typed UCWs in digraphs:

Problem A.4 (#typUCW). Given as input a digraph G = (V,E), a type θ and a number
k ∈ N, determine the number #Uk[G, θ]. The parameter is k.

In Section A.1, we prove

#Clique ≤Tfpt #typUCW ≤Tfpt #CC, (A.1)

and in Section A.2, we then proceed to prove the more involved reduction

#CC ≤Tfpt #Match,

which finishes the #W[1]-hardness proof for #Match.

A.1. Hardness of partial cycle covers

For ease of presentation, we will present the two reductions from (A.1) in reverse order, that
is, we first show how to reduce #typUCW to #CC, and then show how to reduce #Clique
to #typUCW. This allows to use the graph construction presented in Definition A.5 in
both reductions.

A.1.1. From typed UCWs to partial cycle covers

Let G = (V,E) be a digraph and let θ be a type of an UCW of total length k. We wish to
count the UCWs of type θ in G, given oracle access to #CC. Our reduction is based on
a graph transformation from [FG04], which was used to reduce the problem of counting
typed cyclic walks to that of counting directed cycles.

3Note that types already specify the lengths of UCWs; we use the (redundant) subscript k to make their
length explicit.
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Definition A.5. [FG04, Proof of Lemma 23] Given a digraph G = (V,E) and `,m ∈ N,
we define the graph G`,m as follows:

1. Replace each v ∈ V by the “ladder at v”, which consists of vertices

Lv := {(v, i, j) | i ∈ [`], j ∈ [m]}

and edges
{((v, i, j), (v, i+ 1, j′)) | i ∈ [`], j, j′ ∈ [m]}.

2. Replace each edge e = (u, v) in E by the “external edges at e”

Pe := {((u, l, j), (v, 1, j′)) | j, j′ ∈ [m]}.

By construction, every cycle in G`,m must pass through ` − 1 ladder edges and one
external edge in an alternating way. Thus, the length of every cycle (and hence the length
of every partial cycle cover) in G`,m is a multiple of `.
Given k ∈ N, we can partition the partial cycle covers C ∈ Ck`[G`,m] into classes by

associating with every C a particular UCW, its so-called projection π(C).

Definition A.6. Let C ∈ C[G`,m] consist of cycles C1, . . . , Cσ(C). For each Ci with
i ∈ [σ(C)] we define a particular CW π(Ci) by contracting, for each v ∈ V , the ladder at v
to the single vertex v. Then we define the projection of C as

π(C) := {π(C1), . . . , π(Cσ(C))}

and observe that π(C) ∈ Uk[G].

We also observe that the number of partial cycle covers with a certain projection U

depends only on the type of U :

Proposition A.7. For any `,m ∈ N, any type θ and U ∈ Uk[G, θ], the number

b(U) := {C ∈ Ck`[G`,m] | π(C) = U}

satisfies
b(U) = θ(m)`.

Proof. Recall Definition A.3 for the quantity fU (v) for v ∈ V . Every element C ∈ b(U)
contains, for each v ∈ V , exactly fU (v) vertex-disjoint paths passing through the ladder at
v. At each ladder, these paths can be chosen in ((m)fU (v))` ways, and paths can be chosen
independently at different ladders. Once all ladder paths are fixed, the choice of external
edges is also fixed. In total, this proves that

b(U) =
∏
v∈V

((m)fU (v))` = θ(m)`.
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This can be used to prove the wanted reduction:

Lemma A.8. We have #typUCW ≤Tfpt #CC. That is, given a graph G and a type θ ∈ Θk

as input, we can count the UCWs of type θ in G using an oracle for #CC.

Proof. The proof follows the steps shown in [FG04, Lemma 23]. Recall that Θk denotes the
set of types with degree k; we list the elements of Θ as θ1, . . . , θt with t = |Θ|. Since t ≤ kk

and every polynomial θ ∈ Θ satisfies deg(θ) ≤ k, there exists some number m ≤ g(k),
where g is computable and depends only on k, such that

θ(m) 6= θ′(m) ∀θ, θ′ ∈ Θk with θ 6= θ′. (A.2)

We compute such an m and use oracle calls to #CC to compute

α` := #Ck`[G`,m]

for 1 ≤ ` ≤ |Θ|. We write βθ for the number |Uk[G, θ]| of UCWs of type θ in G, and by
Proposition A.7, we can write

α` =
∑
θ∈Θk

βθ · θ(m)`.

We compute α1, . . . , αt with oracle calls to #CC and obtain the equation system
θ1(m)1 . . . θt(m)1

...
...

θ1(m)t . . . θt(m)t



βθ1
...
βθt

 =


α1
...
αt

 . (A.3)

The system matrix of (A.3) is a Vandermonde matrix on the values θ1(m), . . . , θt(m), which
are pairwise distinct by (A.2). By elementary linear algebra, this matrix therefore has
full rank, and its entries can be computed by simple evaluations, so (A.3) can be solved
uniquely for any value of βθ.

A.1.2. From cliques to typed UCWs

Let G = (V,E) be a graph and let k ∈ N be fixed throughout this section. We describe
how to compute the number of k-cliques in G with an oracle for #typUCW, adapting the
reduction in [FG04, Lemma 25] in large parts and reusing some of its notation where
appropriate.

First, let G′ be the graph obtained from G by replacing each edge by a pair of antiparallel
edges, followed by adding a self-loop to each vertex. The number of k-cliques in G is equal
to the number of induced subgraphs in G′ which are isomorphic to the complete digraph
K = Kk := ([k], [k]2).
Let H = Hk := {H1, H2, . . . ,K} be the set of graphs on k vertices, where isomorphic

graphs are identified to one single representative, and the complete digraph K is defined
as above. For H ∈ H, let

xH = {U ⊆ V | G[U ] ' H}.
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Our goal is to determine xK , the number of k-cliques in G. To this goal, let

γ` := #U [G′, (x)k` ] for ` ∈ N

denote the number of UCWs of the “special” (or rather “useful”) type (x)k` in G′. This
value can be computed with an oracle call to #typUCW, provided that ` ≤ f(k). Writing

βH,` := #U [H, (x)k` ] for H ∈ H and ` ∈ N,

we observe that there is a linear combination

γ` =
∑
H∈H

xH · βH,`. (A.4)

By computing the values {βH,` | H ∈ H, ` ∈ N} via brute-force and querying the oracle for
#typUCW to obtain the values {γ` | ` ∈ N}, we can generate the linear combination (A.4)
in indeterminates {xH | H ∈ H} for γ1, . . . , γL, where L ≤ f(k) will be determined later.
This yields the system

βH1,1 . . . βK,1
... . . . ...

βH1,L . . . βK,L



xH1
...
xK

 =


γ1
...
γL

 . (A.5)

A solution to (A.5) can be found in time polynomial in |H|, L, n. While the system (A.5)
does not necessarily feature full rank, we can show as in [FG04, Lemma 25] that there
exists some L ∈ N such that the last column, which corresponds to the indeterminate xK ,
is not contained in the span of all other columns. This implies by elementary linear algebra
that all solutions to (A.5) agree on their values for xK and that the value of xK can thus
be recovered from (A.5).
To prove the existence of L, we first need a technical lemma, which asserts that, with

` ∈ N tending to infinity, deleting even a single edge from K makes the number of UCWs
of the useful type (x)`k negligible in comparison to those of K. A similar statement was
shown in [FG04] for cycles instead of UCWs, but using a different proof approach:

Lemma A.9. For all graphs H ∈ H \ {K}, it holds that

lim
`→∞

βH,`
βK,`

= 0. (A.6)

Proof. Let ` ∈ N. Recall Definition A.5 and consider G1,` with G = K, which is isomorphic
to the complete graph Kk`. Every k`-partial cycle cover in G1,` uses all vertices of the
graph (in particular, it uses all ` vertices at each ladder), so its projection according
to Definition A.6 is some U ∈ U [K, (x)k` ]. Furthermore, by Proposition A.7, every U ∈
U [K, (x)k` ] is the projection of exactly (`!)k many k`-partial cycle covers in K1,`.
Consider H 6= K, so there exists some edge e ∈ E(K) \ E(H). Then let s denote the

number of cycle covers in G1,` and let t denote the number of cycle covers in G1,` that do
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not use any of the external edges at e. Since every U ∈ U [K, (x)k` ] has exactly (`!)k cycle
covers in K1,` projecting to it, we have

βH,`
βK,`

≤ t

s
. (A.7)

Let O` denote the `× ` all-ones matrix. Then it is easily seen that

t = perm(B ⊗O`)

where ⊗ denotes the Kronecker product and B is defined to be Ok, but with one entry, say
B1,1, set to 0. We number rows and columns of B ⊗ O` from 1 to k`. Any permutation
σ ∈ Sk` that contributes to perm(B ⊗O`) maps every element from [`] to an element from
[k`] \ [`], which gives ((k − 1)`)` choices for these elements, as opposed to (k`)` choices for
an arbitrary permutation. Thus,

t

s
= ((k − 1)`)`

(k`)`
,

which can be upper-bounded by

`−1∏
i=0

k − 1− i/`

k − i/`
=

`−1∏
i=0

(
1− 1

k − i/`

)
≤
(

1− 1
k

)`
.

Since k is fixed, this value converges to 0 for `→∞.

Having proved Lemma A.9 for UCWs, the following lemma is shown similarly to [FG04,
Lemma 25].

Lemma A.10. For each k ∈ N, there exists a computable L ∈ N such that

(βK,1, . . . , βK,L)T /∈ span{(βH,1, . . . , βH,L)T | H ∈ Hk \ {Kk}}.

In conclusion, we obtain that the equation system (A.5), constructed for the value of L
obtained from Lemma A.10, admits a unique solution for the indeterminate xK .

Lemma A.11. We have #Clique ≤Tfpt #typUCW.

Finally, by combining Lemmas A.8 and A.11, we obtain hardness of counting k-partial
cycle covers.

Theorem A.12. The problem #CC is #W[1]-complete.

This theorem will serve as the reduction source for #W[1]-completeness of #Match in
the following section.
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A.2. From cycle covers to matchings

In the second (and technically more involved) part of the proof, we show how to reduce
from counting partial cycle covers to counting matchings. This part will be based upon
techniques from commutative algebra, for which we require the following definitions.

Preliminaries from commutative algebra

It will be very convenient to introduce specific notations for polynomials and slices of
polynomials determined by a subset of their indeterminates.

Definition A.13. Let x = (x1, . . . , xs) be a tuple of indeterminates and recall from
Chapter 1 that Nx is the set of monomials over x. Given a multivariate polynomial
p ∈ Z[x] and ν ∈ Nx, write c(ν) ∈ Z for the coefficient of the monomial ν in p. This
induces a linear combination

p =
∑
ν

c(ν) · ν,

where only finitely many c(ν) are non-zero.
Let x = y∪̇z be a partition of the indeterminates of p. We can then consider p ∈ (Z[z])[y],

that is, we may consider p as a polynomial over indeterminates y with coefficients from
Z[z]. For ν ∈ Ny, we then define the slice [ν]p as the uniquely determined polynomial
Hν ∈ Z[z] in the expansion

p =
∑
θ∈Ny

Hθ · θ.

Crucial parts of our proof rely on algebraic independence, a notion from commutative
algebra that generalizes linear independence. A general introduction to this topic is given
in [Har77].

Definition A.14. Let P = (p1, . . . , pt) be a tuple of polynomials in some ring and let
y = (ṗ1, . . . , ṗt) be a tuple of indeterminates, where each indeterminate corresponds to one
polynomial in P .
An annihilator for P is a polynomial A ∈ Z[y] which annihilates P , i.e., which satisfies

A(p1, . . . , pt) ≡ 0. If the only annihilator for P is the zero polynomial, we call P algebraically
independent.

Remark A.15. In the previous definition, we wrote y = (ṗ1, . . . , ṗt) to highlight the
correspondence between formal indeterminates and polynomials from the set P . In this
chapter, expressions of the form ṗ will always denote indeterminates.

Restricting the annihilator A to linear functions without mixed-variable terms yields an
alternative definition of linear independence. Algebraic independence generalizes this by
allowing “polynomial” combinations instead of only linear combinations.

We require only two ingredients from the theory of algebraic independence: The classical
Jacobian criterion allows us to reduce algebraic independence to linear independence, and
we will use this to test algebraic independence of a certain set of polynomials. A proof of
Theorem A.16 can be found in [ER93].
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Theorem A.16. Let P = {p1, . . . , pt} ⊆ Z[x]. Then P is algebraically independent iff
rank(JP ) = t, where JP denotes the Jacobian matrix

(JP )i,j = ∂pi
∂xj

.

Furthermore, Lemma A.17 allows us to argue about annihilators of “almost-independent”
sets. In the setting of this lemma, we have a set of “untainted” polynomials Q, a set of
“tainted” polynomials P and a polynomial s that can be obtained as a linear combination
of P . The set P ∪ Q is independent, whereas {s} ∪ P ∪ Q obviously is not and thus
admits nontrivial annihilators A, on indeterminates ṡ,p,q. However, if we pick a monomial
ν ∈ Nq, consider the slice [ν]A and substitute ṡ by the linear combination of p that defined
s, then we obtain the zero polynomial.

Lemma A.17. Let P = {p1, . . . , pr} and Q = {q1, . . . , qt} be sets of polynomials such that
P ∪Q is algebraically independent, and let s = p1 + . . .+ pr.4

Define indeterminates ṡ, p = (ṗ1, . . . , ṗr) and q = (q̇1, . . . , q̇t), and define a ring
O := Z[ṡ,p,q]. Let A ∈ O be an arbitrary annihilator for {s} ∪ P ∪ Q. Let ν ∈ Nq

be arbitrary, and consider the slice [ν]A, with [ν]A ∈ Z[ṡ,p]. Then applying the substitution

ṡ := ṗ1 + . . .+ ṗr

to [ν]A yields a polynomial Aν ∈ Z[ṗ] with Aν ≡ 0.

Proof. Since A annihilates {s} ∪ P ∪Q, we have

A(s, p1, . . . , pr, q1, . . . , qt) ≡ 0.

Considering A ∈ (Z[ṡ,p])[q], this equation can be rewritten as∑
ν∈Nq

([ν]A)(s, p1, . . . , pr) · ν(q1, . . . , qt) ≡ 0. (A.8)

Recall that Aν denotes [ν]A after substitution of ṡ and observe that

([ν]A)(s, p1, . . . , pr) = Aν(p1, . . . , pr)

since ṡ := ṗ1 + . . .+ ṗr and s = p1 + . . .+ pr. If Aν 6≡ 0 for some ν, then (A.8) displays
a nontrivial annihilator for P ∪ Q after substitution of ṡ, contradicting the algebraic
independence of P ∪Q.

Outline of the reduction

We prove #W[1]-hardness of #Match by a reduction from #CC. Given a partial path-cycle
cover C, recall that ρ(C) denotes the number of paths in C and recall that C is a t-partial

4In the definition of s, an arbitrary linear combination could be chosen instead of a mere sum. For ease of
presentation, we chose to describe only the case of a sum.
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cycle cover if ρ(C) = 0. Recall that the set of t-partial path-cycle covers in G with ρ

paths is denoted by PCt,ρ[G], whereas PCt[G] :=
⋃
ρ PCt,ρ[G] and PC[G] :=

⋃
t PCt[G]. For

t, ρ ∈ N, we write mt,ρ := |PCt,ρ[G]|, provided that G is clear from the context.
The reduction proceeds as follows: We are given as input a directed graph G and k ∈ N,

and we wish to count the number of k-partial cycle covers in G. We are also given an
oracle for #Match that can be queried about the numbers of K-matchings in arbitrary
graphs, provided that K ≤ g(k), where g is computable. In our case, the issued queries will
even satisfy K ≤ 3k, and in fact, it will even turn out that our reduction can be carried
out in polynomial time.
The proof begins in Section A.2.1 by introducing a particular graph transformation:

First, we construct an undirected graph G′ from G, together with a bijection S : PCk[G]→
Mk[G′]. Next, we apply gadgets to G′ so as to obtain a graph H for which we can show
that the quantity |MK [H]| with K = 3k can be expressed as a particular weighted sum
over the matchings M ∈Mk[G′]. The weight of M in this sum depends on the number of
paths in its associated path-cycle cover S−1(M).
We proceed to show in Sections A.2.1 and A.2.2 that the weights in this sum allow

to distinguish matchings M ∈Mk[G′] according to the number of paths in S−1(M) and
finally use this in Section A.2.2.2 to recover the number of k-partial path-cycle covers with
zero paths in G by oracle calls to #Match on H.

A.2.1. The graph construction

We will first present the “global” construction of the graph, which will feature a certain
gadget (in fact, a matchgate) whose precise manifestation is not relevant at first. In the
second part of this subsection, we will then proceed to describe the specific gadget used.

A.2.1.1. Global construction

We want to count k-partial cycle covers in a directed graph G with an oracle for #Match.
Let n = |V (G)|. First, we define a graph S(G) as in [BC11]:

Definition A.18. Given a directed graph G = (V,E), replace each vertex w ∈ V by
vertices win and wout, and replace each (u, v) ∈ E by the undirected edge {uout , vin}. We
call the resulting graph the bipartite split graph S(G).

Let G′ = S(G). The graph G′ is indeed bipartite, with bipartition into in- and out-
vertices. Considering S as a function mapping from E(G) to E(G′), it induces a bijection
between PCt[G] andMt[G′] for all t ∈ N, as can be easily seen and is shown in [BC11].
Consider the left and middle part of Fig. A.1 on the next page for an example. We also
observe the following:

Remark A.19. Let C ∈ PCt,ρ[G]. Since C has ρ paths, there are ρ vertices incident with
only an incoming edge in C, another ρ vertices incident with only an outgoing edge, and
t − ρ vertices incident with both an incoming and an outgoing edge. The remaining
ι(C) = n− t− ρ vertices are not incident with any edge in C.
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Figure A.1.: (left) A partial path-cycle cover C. (middle) The matching M ′ = S(C).
(right) For w ∈ V , the gray area between {wout , win} symbolizes Vw. Can-
celled edges indicate edges in Vw that cannot be included into M ′ since
{wout , win} is in-blocked, out-blocked or blocked, as seen in the first, second
and fourth pair, respectively.

This translates to M = S(C) as follows: Consider pairs {wout , win} ⊆ V (G′), for
w ∈ V (G). There are ρ such pairs with win /∈ usat(M) and wout ∈ usat(M), which we call
in-blocked. There are another ρ pairs with wout /∈ usat(M) and win ∈ usat(M), which we
call out-blocked. There are t−ρ pairs with both wout , win /∈ usat(M), which we call blocked.
The remaining n− t− ρ pairs have wout , win ∈ usat(M), and we call these pairs free.

Roughly speaking, this implies the following: If we can distinguish matchings in G′

according to how many pairs {wout , win} occur in the above states, then we can hope to
distinguish path-cycle covers C, which correspond bijectively to M , by their numbers of
paths.

In the remaining section, we present a particular construction that achieves exactly this,
as will be proven in Section A.2.2. This construction uses a gadget, i.e., an undirected
graph V with two special vertices uout and uin that can be inserted locally into G′ to yield
a graph H = H(G).5

Definition A.20. Given a graph G, define a graph H = H(G) as follows: First, let
G′ = S(G). Then, for each w ∈ V (G), add a fresh copy Vw of V to G′, identify the vertex
wout ∈ V (G′) with uout ∈ V (Vw) and identify win ∈ V (G′) with uin ∈ V (Vw). Note that,
by construction, G′ appears as a subgraph in H.

Let s ∈ V (G′) with s ∈ {wout , win} for w ∈ V (G). If M ∈ M[H] and s is matched in
M , then s ∈ e for some e ∈M . Then either e ∈ E(Vw), in which case we call s internally
matched, or e ∈ E(G′) and we call s externally matched. If s is externally matched, then all
edges in M that stem from E(Vw) must be contained in E(Vw − s). Thus, when extending
matchings N ∈M[G′] to M ∈M[H] by including edges from Vw, we have to distinguish
the state of the pair {wout , win} in N .6 This is illustrated in the right part of Figure A.1.
We account for this by associating four matching polynomials with the gadget V, one

for each of its states:
5After suitable extensions to the theory of matchgates, we could also view this gadget V as a matchgate.
6In other words, we are considering a matchgate at this point.
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Definition A.21. Let V be a fixed graph containing vertices uout , uin . Then we define

F := M(V),
V := M(V − {uout}),
U := M(V − {uin}),
B := M(V − {uout , uin}).

For t, ρ ∈ N with ρ ≤ t and n− t− ρ ≥ 0, we define a polynomial Mixt,ρ ∈ Z[X] by

Mixt,ρ := Bt−ρ · Uρ · V ρ · Fn−t−ρ.

The polynomials Mixt,ρ are crucial in Section A.2.2 because the matching polynomial
M(H) can be written as a weighted sum over C ∈ PC[G] such that each C on t edges and
ρ paths is weighted by Xt ·Mixt,ρ. This is stated in the following lemma, which can be
proven with standard arguments. Recall that we use the notation mt,ρ(G) = |PCt,ρ[G]|.

Lemma A.22. Let G be a graph and let H = H(G) as in Definition A.20. Then

M(H) =
∑

0≤ρ≤t≤n
mt,ρ(G) ·Xt ·Mixt,ρ.

We close this subsection with a remark about the coefficients of B,U, V, F :
Remark A.23. Since there is exactly one empty matching, we have [X0]D = 1 for all
D ∈ {B,U, V, F}. Furthermore, it can be verified that

[X1]F = [X1](U + V −B)

provided {u, v} /∈ E(V). This will be the case for the gadget introduced in the following.

A.2.1.2. The Venn gadget

We are ready to provide an explicit construction for the gadget V: The Venn gadget V(x)
is an undirected graph with special vertices uout and uin , as shown in Fig. A.2. Its precise
manifestation depends upon a tuple of 11 parameters

x = (a∅, au, av, auv, b∅, bu, bv, buv, cu, cv, cuv) ∈ N11. (A.9)

These parameters, which will be considered as indeterminates later, are named so as to
reflect a particular set system that is represented by the gadget.

Definition A.24. Given a tuple w ∈ N11, as specified in (A.9), the Venn gadget V(w) is
constructed as follows from the empty graph:

1. Create
∑

w fresh and unnamed vertices. Abusing notation, group these vertices into
sets a∅, . . . , cuv in the obvious way.

2. Create vertex uout , adjacent to all of (au ∪ auv) ∪ (bu ∪ buv) ∪ (cu ∪ cuv).
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aØ au avauv

bØ
bvbu buv

cu cvcuv

uout uin

a

b

Figure A.2.: The Venn gadget V features named vertices uout , uin, a and b. The other
vertices are partitioned into the disjoint sets a∅, . . . , cuv. In this figure, an
edge leading from a special vertex w into a set S symbolizes that w is adjacent
to all vertices in S.

3. Create vertex uin , adjacent to all of (av ∪ auv) ∪ (bv ∪ buv) ∪ (cv ∪ cuv).

4. Create vertex a, adjacent to all of a∅ ∪ au ∪ av ∪ auv.

5. Create vertex b, adjacent to all of b∅ ∪ bu ∪ bv ∪ buv.

Remark A.25. The construction of V(w) for different w ∈ N11 yields different graphs. Thus,
using the gadget V(w) to construct the graph H in Definition A.20 in fact yields a graph
H = H(w).

When considering w as indeterminates, the matching polynomials B,U, V, F associated
with V , which were introduced in Definition A.21, are easily seen to be elements in Z[X,w].
Equivalently, we can define I := Z[w] and say that B,U, V, F ∈ I[X], where X denotes a
formal generating variable.

We now consider the coefficients of the polynomials B,U, V, F ∈ I[X] from Remark A.25.
Note that these coefficients are elements of I = Z[x], and thus in turn polynomials. We
show that the set of coefficients is “almost” algebraically independent, in the sense that it
allows to invoke Lemma A.17.
First observe that deg(B) = 2, that deg(U) = deg(V ) = 3 and that deg(F ) = 4, as

these are the maximum cardinalities of matchings counted by B,U, V, F , respectively. For
D ∈ {B,U, V, F}, abbreviate the i-th coefficient of D by Di and note that B0 = V0 =
U0 = F0 = 1 by Remark A.23. We will ignore these four coefficients from now on, for
reasons that will become clear in Section A.2.2. Let Y be the set of all other coefficients of
B,U, V, F . For convenience, we list these 12 coefficients as

Y := {B1, B2, U1, U2, U3, V 1, V 2, V 3, F1, F 2, F 3, F 4}.

Additionally, let
B := {B1, U1, V1, F1}

208



A.2. From cycle covers to matchings

and note that F1 = U1 + V1 − B1 by Remark A.23, so B is linearly dependent. We will
consider F1 as a linear combination of the “tainted” set P := B \{F1}, and we will consider
the set Q := Y \ B as “untainted”. After computing the elements in P ∪Q explicitly, we
verify their algebraic independence in Section A.2.3 and obtain the following lemma:

Lemma A.26. The set P ∪Q is algebraically independent.

We can now apply Lemma A.17 to obtain the following corollary. It states restrictions
on certain slices that every annihilator for Y must satisfy, and which will be used in
Section A.2.2.1.

Corollary A.27 (of Lemma A.17). Let P,Q be defined as above, and recall that P ∪Q is
algebraically independent and that F1 = U1 + V1 −B1.

Define indeterminates Ḟ1, p = (Ḃ1, U̇1, V̇1) and q, where q represents Q, and let
y = (Ḟ1,p,q). Let O = Z[y] and let A ∈ O annihilate Y = {F1} ∪ P ∪Q. For any b > 0,
let θ∗ = (Ḃ2)b and consider [θ∗]A ∈ Z[Ḟ1,p]. Then applying the substitution

Ḟ1 := U̇1 + V̇1 − Ḃ1

to [θ∗]A yields a polynomial Aθ∗ ∈ Z[p] with Aθ∗ ≡ 0.

A.2.2. Analysis of the graph construction

Recall that we wish to determine mk,0, where mt,ρ denotes the number of t-partial path-
cycle covers with ρ paths in G. We fix k and K := 3k. We also fix the indeterminates y
and the “outer” ring O = Z[y] as in Corollary A.27, as well as the twelve indeterminates
w and the “inner” ring I = Z[w] as in Remark A.25.

The indeterminates in y correspond to the coefficients Y ⊆ I[X] from Section A.2.1.2.
We extend this view by considering the polynomials B,U, V, F and Mix(t,ρ) ∈ Z[X] from
Definition A.21 formally as elements from O[X] and write MixOt,ρ to make this explicit:

Definition A.28. For D ∈ {B,U, V, F}, let

DO =
deg(D)∑
i=1

ḊiX
i ∈ O[X].

Define MixOt,ρ ∈ O[X] exactly as MixOt,ρ in Definition A.21, but replace any D by DO.
Let MixO ∈ O(K+1)×(K+1) be the matrix whose entry at (t, ρ) is equal to [XK−t]MixOt,ρ

for 0 ≤ ρ ≤ t ≤ K, and 0 else. Slightly abusing notation, we also write MixO for the set of
entries appearing in the matrix MixO.

We similarly define a matching polynomial MO(H) ∈ O[X] by formally replacing
coefficients of Venn gadgets with indeterminates from y. Extending Lemma A.22, we
obtain:
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Lemma A.29. Let H = H(G) according to Definition A.20. For matrices A,B of the
same dimensions, let

A�B :=
∑
ij

AijBij .

Then it holds that

[XK ]MO(H) =


[XK ]MixO0,0 . . . [X0]MixOK,0

. . . ...
[X0]MixOK,K


︸ ︷︷ ︸

=MixO

�


m0,0 . . . mK,0

. . . ...
mK,K

 .

This yields a formal “linear combination” of the quantities mt,ρ with coefficients from O.
For t = k and 0 ≤ ρ ≤ k, the interesting quantities mk,ρ appear in it as

[XK ]MO(H) = . . .+mk,0[X2k]MixOk,0 + . . .+mk,k[X2k]MixOk,k + . . . (A.10)

In Section A.2.2.1, we substitute the polynomials Y ⊆ I from Section A.2.1.2 into
the indeterminates y, yielding a matrix MixI ∈ I(K+1)×(K+1). We show that, after this
substitution, the polynomial

p∗ := [X2k]MixIk,0

associated with mk,0 in (A.10) is special, in the sense that it cannot be written as a linear
combination (with rational coefficients) of the other polynomials in MixI.
In Section A.2.2.2, we show that a linear system of equations in the unknowns mt,ρ

can be set up from (A.10) by evaluating the entries of MixI on distinct points ξ ∈ N11.
These evaluations are performed using oracle calls on the graphs H(ξ) obtained by the
gadgets from Section A.2.1. The resulting system will feature O(k11) linear equations,
whose integer coefficients can be computed in time nO(1). Furthermore, the fact that p∗ is
special will imply that the system can be solved unambiguously for mk,0.

A.2.2.1. The polynomial p∗ is special

We consider expansions of the polynomials p ∈ MixO into monomials over y and use
this to show that, after substitution of the coefficients Y from Section A.2.1.2 into the
formal indeterminates y, the polynomial p∗ = [X2k]MixIk,0 associated with mk,0 satisfies
the following:

Theorem A.30. Let MixI denote the matrix obtained from MixO by substituting Y into y
in every entry. Then the polynomial p∗ = [X2k]MixIk,0 is not contained in the span of the
other entries in MixI. Formally, if∑

0≤ρ≤t≤K
αt,ρ · [XK−t]MixIt,ρ ≡ 0, (A.11)

with αt,ρ ∈ Q for all 0 ≤ ρ ≤ t ≤ K, then αk,0 = 0.
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This theorem will be proven at the end of this subsection. We first consider the
polynomials in MixO and require some notation for the set of monomials (from Ny)
appearing in such polynomials. Recall that O = Z[y] and note that [θ]p ∈ Z for p ∈ O and
θ ∈ Ny.

Definition A.31. For p ∈ O, we denote the set of monomials with non-zero coefficients
in p as

M[p] = {θ ∈ Ny | [θ]p 6= 0}.

For a set of polynomials P ⊆ O, we extend this to M[P ] =
⋃
p∈P M[p]. If θ ∈M[P ], we

say that θ appears in P .

Our proof of Theorem A.30 proceeds as follows: We first identify a special monomial
θ∗ ∈ Ny and show that, among all entries of MixO, the monomial θ∗ appears only in the
special polynomial p∗. We use this to show that, if p∗ were contained in the span of the
other polynomials in MixI, then this would imply an annihilator for Y which violates a
condition imposed by Corollary A.27.
To begin with, we define several quantities associated with monomials in Ny. Some of

the upcoming definitions may seem awkwardly specific. However, we think that phrasing
all definitions in their full generality is detrimental to the legibility of this part.

Definition A.32. Let θ ∈ Ny, and for “convenience”, observe that θ is of the form

θ = (Ḃb1
1 Ḃ

b2
2 )(U̇u1

1 U̇u2
2 U̇u3

3 )(V̇ v1
1 V̇ v2

2 V̇ v3
3 )(Ḟ f1

1 Ḟ f2
2 Ḟ f3

3 Ḟ f4
4 ).

We define a total degree

td(θ) :=
4∑
i=1

i(bi + ui + vi + fi).

Let Θ := M[MixO]. For ` ∈ N, collect the monomials of total degree ` in Θ as

Θ` := Θ ∩ {θ | td(θ) = `}.

For θ ∈ Ny, define a tuple

occ(θ) := (
∑
i

bi,
∑
i

ui,
∑
i

vi,
∑
i

fi)

and write occB(θ) for its first entry.

Example A.33. Let
θ = Ḃ1

1Ḃ
2
2U̇

4
2 V̇

5
2 Ḟ

6
1 .

Then
td(θ) = 1 · (1 + 6) + 2 · (2 + 4 + 5) = 29

and occ(θ) = (3, 4, 5, 6). Furthermore, we have occB(θ) = 3.

This notation is used for the statement of the following lemma, which follows from a
straightforward application of the multinomial theorem.
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Lemma A.34. Let 0 ≤ t ≤ K. For a, b1, . . . , b` ∈ N with s :=
∑
i bi ≤ a, let(

a

b1, . . . , b`

)
= a!
b1! . . . b`!(a− s)!

.

With θ ∈ Ny written as a product as in Definition A.32, we have

[XK−t]MixOt,ρ =
∑

θ∈ΘK−t

(
t− ρ
b1, b2

)(
ρ

u1, u2, u3

)(
ρ

v1, v2, v3

)(
n− t− ρ
f1, f2, f3, f4

)
︸ ︷︷ ︸

=:λt,ρ(θ)

θ.

Corollary A.35. A monomial θ ∈ Θ appears in [XK−t]MixOt,ρ iff its total degree satisfies
td(θ) = K − t and additionally λt,ρ(θ) 6= 0, with λt,ρ as defined in Lemma A.34. The
second condition is true iff

occ(θ) ≤ (t− ρ, ρ, ρ, n− t− ρ),

where ≤ is considered component-wise.

Our “special” monomial will be defined as θ∗ := Ḃk
2 and we will show in the following

lemma that it appears only in the previously defined special polynomial [X2k]MixOk,0.

Lemma A.36. If θ ∈ Θ contains θ∗ = Ḃk
2 as a factor, then θ = θ∗. Furthermore, if θ∗

appears in p ∈ MixO, then p = p∗. In fact, we have [θ∗]p∗ = 1.

Proof. If θ ∈ Θ contains Ḃk
2 , then td(θ) ≥ 2k by definition of the total degree td. Since

θ ∈ Θ, it must appear in [XK−t]MixOt,ρ for some 0 ≤ ρ ≤ t ≤ K. Then K − t ≥ td(θ) by
Corollary A.35. Recall that we fixed K = 3k, which implies that t ≤ k. Since θ contains
Ḃk

2 , we have occB(θ) ≥ k. But by Corollary A.35, we also have occB(θ) ≤ t− ρ.
The last two inequalities and t ≤ k imply ρ = 0 and occB(θ) = k. Thus θ appears only

in p∗. But then td(θ) = 2k, and thus θ = θ∗.
Finally, we can use Lemma A.34 to obtain that

[θ∗]p∗ = λk,0(θ∗) = 1,

proving all claims made.

This allows us to finish the subsection with the promised proof of Theorem A.30.

Proof of Theorem A.30. Assume there were coefficients αt,ρ satisfying (A.11) with αk,0 6= 0.
With λt,ρ(θ) from Lemma A.34, write

[XK−t]MixOt,ρ =
∑
θ∈Θ

λt,ρ(θ) · θ
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and rearrange (A.11) to obtain an annihilator A ∈ O for Y with

A :=

∑
θ∈Θ

θ · αk,0 · λk,0(θ)

+
∑
θ∈Θ

θ ·
∑

0≤ρ≤t≤K
(t,ρ)6=(k,0)

αt,ρ · λt,ρ(θ), (A.12)

that is, A(B1, . . . , F4) ≡ 0. By Lemma A.36, the monomial θ∗ = Ḃk
2 appears only within

the parentheses, and with λk,0(θ∗) = 1. Regrouping (A.12) yields

A = αk,0 · θ∗ +
∑
θ 6=θ∗

µ(θ) · θ,

for new coefficients µ : Θ→ Q. Also by Lemma A.36, the only monomial in A that contains
θ∗ is θ∗ itself. Therefore, A is a nontrivial annihilator for the set Y from Section A.2.1.2,
with the property that [θ∗]A = αk,0 is non-zero. Corollary A.27 then leads to a contradiction:
Since [θ∗]A 6= 0 is constant, it is unaffected by the substitution Ḟ1 := U̇1 + V̇1 − Ḃ1, thus
contradicting Aθ∗ ≡ 0 from Corollary A.27.

A.2.2.2. Deriving linear equations

In this subsection, we complete the reduction. For this, we substitute the coefficients Y
from Section A.2.1.2 into MixO. By constructing the gadget V(w) for different values w,
we can evaluate the resulting polynomials MixIt,ρ to yield integer values.

Definition A.37. For ξ ∈ N11, let Mix(ξ) ∈ Z(K+1)×(K+1) be the matrix obtained from
MixI by evaluating each of its entries at ξ. Recall that the elements of MixI are polynomials
in I = Z[w], so they can indeed be evaluated at ξ.

For a list of D vectors Ξ = (ξ1, . . . , ξD) with ξi ∈ N11 for i ∈ [D], let Mix(Ξ) ∈ ZD×(K+1)2

be the matrix whose i-th row contains the entries of Mix(ξi) as a row vector. We consider
the columns of Mix(Ξ) to be indexed by pairs (t, ρ).

Remark A.38. If |Ξ| ≤ nO(1) and all entries of Ξ have bit-length nO(1), then Mix(Ξ) can
be computed in time nO(1): By Definition A.21, each element in the matrix MixOt,ρ is
the product of n polynomials, each of degree ≤ 4. Any such element can therefore be
computed in polynomial time, the coefficients Y can be substituted into it, and the resulting
polynomials can be evaluated at any ξi, all in time nO(1).

In the following, we fix Ξ = (ξ1, . . . , ξD) with D = (K + 1)11 to the lexicographic
enumeration of the grid {0, . . . ,K}11. Given a matrix B ∈ Z`×b2 whose columns are
indexed by pairs (i, j), and another matrix C ∈ Zb×b, we define the vector B � C, an
element of Z`, via

(B � C)t =
∑
ij

Bt,(i,j)Cij , ∀t ∈ [`].

In other words, the vector B �C can be considered as the matrix-vector product of B and
C ′, where C ′ is the result obtained from flattening C to a vector of length b2.
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With this notation, and using Lemma A.29, it can be checked that

Mix(Ξ)�


m0,0 . . . mK,0

. . . ...
mK,K

 =


[XK ]M(H(ξ1))

...
[XK ]M(H(ξD))

 , (A.13)

with H(ξ) for ξ ∈ N11 as defined in Remark A.25. Recall that the right-hand side of (A.13)
counts the K-matchings in H(ξ); since K = 3k, it can thus be evaluated with D oracle
queries to #Match.
We consider (A.13) as a linear system of equations in the unknowns mt,ρ, which we

wish to solve for mk,0. By Remark A.38, its system matrix Mix(Ξ) can be evaluated in
polynomial time, which implies that a solution to (A.13) can also be found in time nO(1).
The final and crucial step now consists of showing that all solutions to (A.13) agree on their
values for mk,0. While Mix(Ξ) does not have full rank, we can build upon Theorem A.30 to
show that column (k, 0) of Mix(Ξ) is not contained in the linear span of its other columns.
First, we require a generalization of the fact that every univariate polynomial p of

maximum degree d that vanishes at d+ 1 points is in fact the zero polynomial. This follows
from Lemma 1.38 about grid interpolation.

Lemma A.39. Let p ∈ Z[x1, . . . , xs] be a polynomial with deg(p) ≤ d. If p(ξ) = 0 holds
for all ξ ∈ {0, . . . , d}s, then p ≡ 0.

From this, we obtain the last missing step.

Lemma A.40. Let A(t,ρ) denote the column (t, ρ) of the matrix Mix(Ξ). If
∑
t,ρ αt,ρA

(t,ρ) =
0 for coefficients αt,ρ ∈ Q, then αk,0 = 0.

Proof. Observe that deg(p) ≤ K holds for every polynomial p ∈ MixI: All monomials θ
appearing in p ∈ MixO satisfy td(θ) ≤ K, and it can be verified that substituting Y into y
yields polynomials of degree ≤ K. Also recall that I = Z[x] with |x| = 11.

Assume there were coefficients αt,ρ with αk,0 6= 0 and
∑
t,ρ αt,ρA

(t,ρ) = 0. Then q =∑
t,ρ αt,ρ · [XK−t]MixIt,ρ vanishes on the grid {0, . . . ,K}11, so q ≡ 0 by Lemma A.39. This

however contradicts Theorem A.30 because αk,0 6= 0.

Hence, in conclusion, we can set up the system (A.13) with oracle calls to counting
3K-matchings in general graphs, and we can solve it for the value of mk,0, that is, the
number of k-partial cycle covers in the original graph G.

A.2.3. Omitted calculations

In this section, we provide the omitted calculations from Section A.2.1.2. To simplify the
analysis, we will not consider the polynomials B,U, V, F , but rather related polynomials
B,U ′, V ′, F ′, from which the first four polynomials can be obtained via linear combinations.
We will furthermore show that such linear combinations preserve algebraic independence.

Let U ′ be defined as U , with the restriction that only matchings saturating uout are
counted in the sum that defines U . Likewise define V ′ as the restriction of V to matchings

214



A.2. From cycle covers to matchings

saturating uin and F ′ as the restriction of F to matchings saturating both uout and uin.
Then we clearly have

U = B + U ′

V = B + V ′

F = B + U ′ + V ′ + F ′.

For D ∈ {B,U ′, V ′, F ′}, abbreviate Di := [Xi]B. We require a simple corollary from
Theorem A.16:

Corollary A.41. Let P = {p1, . . . , pr} be a set of algebraically independent polynomials.
For arbitrary i ∈ [r] and λ1, . . . , λr ∈ Z with λi 6= 0, replace pi by

∑r
j=1 λjpj to obtain a

new set P ′. Then P ′ is algebraically independent.

Proof. The claim follows from linearity of the differentiation operator together with the
invariance of the rank under elementary row operations.

In the following, we will establish the algebraic independence of the polynomials

H := {B1, B2, U
′
1, U

′
2, U

′
3, V

′
1, V

′
2, V

′
3, F

′
2, F

′
3, F

′
4},

(note that F ′1 is missing in this set), and will then use Corollary A.41, which implies
Lemma A.26. Recall that we are given indeterminates

w = (a∅, au, av, auv, b∅, bu, bv, buv, cu, cv, cuv).

We first abbreviate certain polynomial combinations of these indeterminates. This is only
to facilitate reading; no new indeterminates are introduced in this process.

• Let a∗u := au + auv, let b∗u := bu + buv and let c∗u := cu + cuv.
Let a∗v := av + auv, let b∗v := bv + buv and let c∗v := cv + cuv.

• Let u := a∗u + b∗u + c∗u and let v := a∗v + b∗v + c∗v.

• Let a := a∅ + au + av + auv, let b := b∅ + bu + bv + buv, and let c := cu + cv + cuv.

• Let aboth := a∗ua
∗
v − auv, let bboth := b∗ub

∗
v − buv and let cboth := c∗uc

∗
v − cuv.

Extending the abuse of notation from Definition A.24 that identified the indeterminate au
with a set au, we speak of, e.g., the set a∗u = au + auv as the set a∗u = au ∪ auv.

The blocked Venn gadget

If we cannot include uin or uout , we can only match vertices a and b. Thus

B1 = a+ b,

B2 = ab.
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The partly blocked Venn gadget

In the matching polynomial U ′, we consider all matchings of V that include an edge
{uout , w} with w ∈ V (V), but leave uin unsaturated. These matchings can be grouped
according to whether w is contained in a, b or c. The same holds for V ′, but with the roles
of uout and uin reversed. We will show in the following that

U ′1 = u,

U ′2 = c∗uB1 + (a∗u + b∗u)(B1 − 1),
U ′3 = c∗uB2 + a∗u(a− 1)b+ b∗u(b− 1)a,

V ′1 = v,

V ′2 = c∗vB1 + (a∗v + b∗v)(B1 − 1),
V ′3 = c∗vB2 + a∗v(a− 1)b+ b∗v(b− 1)a.

An intuitive explanation for the expressions U ′1, U ′2, U ′3 follows. The argument for V ′1 , V ′2 , V ′3
is of course symmetric.

1. In U ′1, we can only choose an edge incident with uout , which gives u choices.

2. In U ′2, we distribute two edges e1, e2, of which e1 is incident with uout .

a) Choose e1 into c∗u. The remaining graph is just a blocked gadget, so there are
B1 ways to choose a 1-matching in it.

b) Choose e1 into a∗u ∪ b∗u. Now match either the special vertex a or b. Among the
total B1 possible partners, one is already matched by e1. This gives (B1 − 1)
choices.

3. In U ′3, we distribute three edges e1, e2, e3, of which e1 is incident with u.

a) Choose e1 into c∗u. The remaining graph is just a blocked gadget, so there are
B2 ways to choose a 2-matching in it.

b) Choose e1 into a∗u. Distribute e2 and e3 among a and b. Since e1 reaches into a,
there are (a− 1)b choices.

c) Choose e1 into b∗u. Distribute e2 and e3 among a and b. Since e1 reaches into b,
there are (b− 1)a choices.

The free Venn gadget

In the matching polynomial F ′, we consider all matchings of V that include edges {uin , wu}
and {uout , wv} with wu, wv ∈ V. These matchings can be grouped according to whether
wu and wv are each contained in the sets a, b or c.

We write the respective numbers in tabular form: The i-th row corresponds to the vertex
uout being matched into the i-th entry of (a∗u, b∗u, c∗u), and likewise for columns and the
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vertex uin .

F ′1 = 0

F ′2 =
aboth + a∗ub

∗
v + a∗uc

∗
v

+ b∗ua
∗
v + bboth + b∗uc

∗
v

+ c∗ua
∗
v + c∗ub

∗
v + cboth

F ′3 =
aboth(a+ b− 2) + a∗ub

∗
v(a+ b− 2) + a∗uc

∗
v(a+ b− 1)

+ b∗ua
∗
v(a+ b− 2) + bboth(a+ b− 2) + b∗uc

∗
v(a+ b− 1)

+ c∗ua
∗
v(a+ b− 1) + c∗ub

∗
v(a+ b− 1) + cboth(a+ b)

F ′4 =
aboth(a− 2)b + a∗ub

∗
v(a− 1)(b− 1) + c∗va

∗
u(a− 1)b

+ b∗ua
∗
v(a− 1)(b− 1) + bbotha(b− 2) + c∗vb

∗
ua(b− 1)

+ c∗ua
∗
v(a− 1)b + c∗ub

∗
va(b− 1) + cbothab

The formulas can be verified by a simple case distinction, which is similar to the one given
for the partly blocked Venn gadget in the previous subsection. We have now computed all
polynomials in H.
Using a computer algebra system, such as MATLAB, we can verify that the Jacobian

matrix JH indeed has full rank.

Notes

The author wishes to thank

• Mingji Xia for sharing ideas that were crucial for constructing the Venn gadget,

• Markus Bläser for mentioning algebraic independence in the right moment, and

• an anonymous reviewer, whose comments helped improving the presentation of this
material.
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The following material appeared in [CM14] and was solely authored by Dániel Marx,
without any contribution by the author of the present thesis. This material is included
only for the sake of completeness.

In the following, we prove Theorem 6.4 on page 145. Please recall the definition of a
k-matching gadget.

Definition B.1. Let H be a graph, M be an induced k-matching in H, and let C :=
V (H) \ V (M). We say that (H,M) is a k-matching gadget if whenever an isomorphism f

from H[C] to H[C ′] for some C ′ ⊆ V (H) satisfies the conditions

(C1) H \ C ′ has no isolated vertex,

(C2) H \ C ′ is bipartite, and

(C3) f is boundary preserving,

then it is also true that H \ C ′ is a k-matching, i.e., H \ C ′ is isomorphic to the graph on
2k vertices that contains k vertex-disjoint edges.

It will be convenient to know that if a k-matching gadget exists, then a k0-matching
gadget also exists for every k0 < k. This is not obvious from the definition and requires a
nontrivial proof (which also serves as an illustration of Definition B.1 and how it is used,
e.g., in the proof of Claim B.6 in the next section).

Lemma B.2. If (H,M) is a k-matching gadget and M0 ⊆ M is a k0-matching, then
(H,M0) is a k0-matching gadget.

Proof. Let C = V (H) \ V (M) and C0 = V (H) \ V (M0); we have C ⊆ C0. Let f0 be an
isomorphism from H[C0] to H[C ′0] satisfying (C1)–(C3) of Definition B.1 (see Figure B.1).
We have to show that H \ C ′0 is a matching (and then clearly it is a k0-matching, since
H \C ′0 has the same size as H \C0). Let f be the restriction of f0 to C and let C ′ = f(C);
then f is an isomorphism from H[C] to H[C ′].
We claim that f satisfies (C1)–(C3) of Definition B.1 with respect to (H,M).

(C1) Suppose that there is an isolated vertex v ∈ H \ C ′. As H[C ′0 \ C ′] is isomorphic to
H[C0 \ C], which induces a matching, we have v 6∈ C ′0. By (C1) on f0, we have that
there is no isolated vertex in H \ C ′0, a contradiction.
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Figure B.1.: Proof of Lemma B.2.

(C2) The graph H \ C ′0 is bipartite by (C2) on f0. The graph H[C ′0 \ C ′] is isomorphic to
H[C0 \ C], which induces a matching, hence bipartite. There are no edges between
C0 \ C and V (H) \ C0 (as there are no edges between M0 and M \M0). Thus the
fact that f0 is boundary preserving implies that there is no edge between C ′0 \C ′ and
V (H) \ C ′0. It follows that H \ C ′ is bipartite.

(C3) Consider first a vertex v ∈ C \ ∂H(C). As every neighbor of v is in C, every neighbor
of f(v) is in C ′, that is, f(v) ∈ C ′ \ ∂H(C ′). Consider now a vertex in v ∈ ∂H(C).
If v has a neighbor u ∈ C0 \ C, then f(u) ∈ C ′0 \ C ′ is a neighbor of f(v) outside
C ′, implying v ∈ ∂H(C ′). Finally, if v has a neighbor u 6∈ C0, then v ∈ ∂H(C0) and
hence (as f0 is boundary-preserving by property (C3)) we have f(v) ∈ ∂H(C ′0). Since
f(v) is in C ′, we also have f(u) ∈ ∂H(C ′).

As (H,M) is a k-matching gadget and f satisfies (C1)–(C3) of Definition B.1, it follows
that H \ C ′ is a matching. As H[C ′0 \ C ′] is isomorphic to the matching H[C0 \ C], this is
only possible if H \ C ′0 is also a matching.

The following lemma shows as an example a simple condition that guarantees the
correctness of a k-matching gadget.

Lemma B.3. Let M be an induced k-matching in a graph H such that every vertex
of C := V (H) \ V (M) is adjacent to at most one vertex of V (M). Then (M,H) is a
k-matching gadget.

Proof. Suppose that f is an isomorphism from H[C] to H[C ′] for some C ′ ⊆ V (H)
satisfying (C1)–(C3) of Definition B.1, but H \ C ′ is not a matching. As H[C] and H[C ′]
are isomorphic, the number of edges in H[C] and H[C ′] are the same. Every vertex v ∈ C
has at most one edge to V (H)\C and if v has such an edge (that is, v ∈ ∂H(C)), then (C3)
implies that f(v) ∈ ∂H(C ′) has at least one edge to V (H) \ C ′. Therefore, the number of
edges between C ′ and V (H) \C ′ is at least the number of edges between C and V (H) \C.
It follows that the number of edges in H \C ′ is at most the number of edges in H \C, that
is, at most k. Therefore, the 2k-vertex graph H \ C ′ has at most k edges and (C1) implies
that it does not have isolated vertices.1 This is only possible if H \C ′ is a k-matching.

1This the point where we crucially use (C1) of Definition B.1.
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The condition in Lemma B.3 can be also formulated as requiring the following two
properties:

(P1) no two edges of M have a common neighbor in C and

(P2) the two endpoints of an edge of M have no common neighbor in C.

As we shall see, condition (P1) is usually easy to achieve in the graphs we care about (by
making M somewhat smaller), but we will have more difficulty in ensuring condition (P2).

B.1. Bounded-degree graphs

The goal of this section is to prove Theorem 6.4, the existence of k-matching gadgets,
for the special case of graph classes H with bounded maximum degree and unbounded
vertex-cover number, or equivalently, containing graphs with arbitrarily large matchings.
The results in Sections B.2 and B.3 for other graph classes are based on this result for
bounded-degree graphs. The basic idea is that in bounded-degree graphs we are close to the
situation described by Lemma B.3: clearly, the two endpoints of an edge in the matching
can have only a bounded number of common neighbors; in this sense property (P2) “almost
holds.” We choose a candidate (H,M) for the k-matching gadget and see how it can fail.
If for every C ′ satisfying (C1)–(C3), the graph H \ C ′ still has many components of size 2
(so it is “almost a matching”), then we can extract a correct k′-matching gadget for some
relatively large k′ < k. Suppose therefore that (H,C) “spectacularly fails”: H \ C ′ has
only few components of size 2. As H \ C ′ has no isolated vertices, this is only possible if
H \ C ′ has many more edges than the k-matching M . Then we argue that now the total
degree on the boundary of C ′ is much smaller than on the boundary of C, and we can use
this to find an induced matching in H \ C ′ where the endpoints of the edges have strictly
fewer common neighbors than in M . As the graph has bounded degree, repeating this
argument a constant number of times eventually leads to a matching where the endpoints
of the edges have no common neighbors, hence Lemma B.3 can be invoked.

In a bounded-degree graph, any sufficiently large set of edges contains a large matching
and in fact a large induced matching: we can greedily select edges and we need to throw
away only a bounded number of edges after each selection. Moreover, in order to move
closer to the situation described in Lemma B.3, we may also satisfy the requirement that
the selected edges have no common neighbors (but it is possible that the two endpoints of
an edge have common neighbors).

Lemma B.4. Let F be a set of edges in a graph G with maximum degree D.

1. There is an induced matching M ′ ⊆ F of size at least |F |/(2D2).

2. There is an induced matching M ′′ ⊆ F of size at least |F |/(2D3) such that every
vertex of V (G) \ V (M ′′) is adjacent to at most one edge of M ′′.

Proof. (1) Let uv be an edge of F . As the graph has maximum degree at most D, there
are less than 2D2 edges having an endpoint in the closed neighborhood of {u, v}. We
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perform the following greedy procedure: we select an arbitrary edge uv of F into M ′ and
then remove every edge from F that has an endpoint in the closed neighborhood of {u, v}.
In each step, we reduce the size of F by at most 2D2. Therefore, the procedure runs for at
least |F |/(2D2) steps, producing an induced matching of the required size.

(2) Observe that there are less than 2D3 edges of F at distance at most 2 from uv. Then
a greedy algorithm can produce a set of edges of size at least |F |/(2D3) such that the
edges are at pairwise distance at least 3, that is, M ′ is an induced matching and every
vertex outside M is adjacent to at most one edge of M .

For bounded-degree graphs, Lemma B.4 implies that there is not much difference between
having a large set of edges, a large matching, a large induced matching, or a large induced
matching satisfying the requirement that every vertex outside the matching is adjacent to
at most one edge of the matching.

Lemma B.5. There is a function fd(k0, D) such that the following holds. If H is a graph
with maximum degree at most D and contains a matching of size at least fd(k0, D), then
there is a k0-matching gadget (H,M0).

Proof. We prove the following statement by induction on c:

There is a function f ′d(c, k0, D) such that the following holds. If H is a graph
with maximum degree at most D and having a set F of at least f ′d(c, k0, D)
edges such that u and v have at most c common neighbors for every uv ∈ F ,
then there is a k0-matching gadget (H,M0).

If this statement is true for every c, then we can set fd(k0, D) = f ′d(D, k0, D): if the graph
has maximum degree of H is D, then it is clear that every edge of a matching has the
property that the endpoints have at most D common neighbors.

For c = 0, we can set f ′d(0, k0, D) = 2k0D
3. Then Lemma B.4(2) implies that F contains

an induced matching M0 of size k0 such that every vertex of V (H) \ V (M0) is adjacent to
at most one edge of M0. Furthermore, c = 0 implies that every vertex of V (H) \ V (M0)
can be adjacent to at most one endpoint of at most edge of M0. Therefore, Lemma B.3
implies that (H,M0) is a k0-matching gadget.

Suppose now that the statement is true for c− 1 with some value of f ′d(c− 1, k0, D); we
show that the statement is true for c with

f ′d(c, k0, D) = 2D3(5c · f ′d(c− 1, k0, D) + 100k0).

If F has at least this size, then Lemma B.4(2) implies that there is an induced matching
M ⊆ F of size at least 5c · f ′d(c− 1, k0, D) + 100k0 such that every vertex in V (H) \ V (M)
is adjacent to at most one edge of M .

If (H,M) is a matching gadget, then we are done by Lemma B.2 as |M | ≥ k0. Otherwise,
let C := V (H) \ V (M) and let f be an isomorphism from H[C] to H[C ′] satisfying (C1)–
(C3) of Definition B.1 such that H \ C ′ is not a matching. For any graph G, let us denote
by κ2(G) the number of components of G with exactly two vertices. Let us choose f such
that k′ := κ2(H \ C ′) is minimum possible.
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Figure B.2.: Proof of Claim B.6 in Lemma B.5.

Claim B.6. If k′ ≥ k0, then there is a k0-matching gadget (H,M0).

Proof. LetM0 be the induced matching obtained as the union of all the k′ = κ2(H\C ′) ≥ k0
components of H \ C ′ having two vertices each (see Figure B.2). We show that (H,M0) is
a k′-matching gadget; then the existence of a k0-matching gadget follows from Lemma B.2.
Let C0 := V (H) \ V (M0); we have C ′ ⊆ C0. Let us point out that there is no edge

between V (M0) and V (H) \ (C ′ ∪M0) = C0 \ C ′: the edges of M0 are components of
V (H) \ C ′. Suppose that f0 is an isomorphism from H[C0] to some H[C ′0] showing that
(H,M0) is not a k′-matching gadget: f0 satisfies properties (C1)–(C3), but H \C ′0 is not a
matching. Let f∗ = f0 ◦ f (that is, applying f0 after f) be the isomorphism from H[C]
to H[C∗] with C∗ = f0(f(C)) = f0(C ′) ⊆ C ′0. Let us verify that f∗ satisfies the three
conditions of Definition B.1 with respect to (H,M):

(C1) Consider a vertex v ∈ H \ C∗. If v 6∈ C ′0, then property (C1) of f0 implies that v is
not isolated in H \C ′0 and hence it is not isolated in H \C∗ either. Suppose therefore
that v ∈ C ′0 \ C∗, that is, there is a u ∈ C0 \ C ′ with f0(u) = v. As H \ C ′ has no
isolated vertex, there has to be a neighbor w of u in H \ C ′. If w ∈ C0 \ C ′, then
f0(w) is a neighbor of f0(u) = v in H \C∗. Suppose now that w 6∈ C0, which implies
that u is in ∂H(C0). Therefore, property (C3) of f0 implies that f0(u) has a neighbor
outside C ′0, hence f0(u) has a neighbor in H \ C∗.

(C2) By (C2) on f , the graph H[C0 \ C] is bipartite. Mapping f0 is an isomorphism
between H[C0] and H[C ′0] that maps C0 \C to C ′0 \C∗, thus H[C ′0 \C∗] is bipartite
as well. We have observed above that there is no edge between C0 \C ′ and M0, thus
(C3) on f0 implies that there is no edge between C ′0 \ C∗ and V (H) \ C ′0. Finally,
V (H) \ C ′0 is bipartite by (C2) on f0, thus we get that H \ C∗ is bipartite.

(C3) Let v be a vertex in C. By (C3) on f , we have that v ∈ ∂H(C) if and only if
f(v) ∈ ∂H(C ′). As there are no edges going from C0 \ C ′ to outside C0, we have
∂H(C ′) = ∂H(C0). Furthermore, by (C3) on f0, we have that u ∈ ∂H(C0) if and
only if f0(u) ∈ ∂H(C ′0). Putting together, we have that v ∈ ∂H(C) if and only if
f∗(v) = f0(f(v)) ∈ ∂H(C ′0).

We claim that κ2(H \ C∗) < κ2(H \ C ′), contradicting the minimal choice of f . We
have stated above that there is no edge between C0 \ C ′ and V (M0); as f0 is boundary
preserving, it also follow that there is no edge between C ′0 \ C∗ and V (H) \ C ′0. Therefore,
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the components of H \C∗ are exactly the components of H[C ′0 \C∗] and the components of
H \C ′0. Recall that H[C ′0\C∗] is isomorphic to H[C0\C ′], which has no 2-vertex component
by the definition ofM0. As H \C ′0 is not a matching, we have that H \C ′0 (and hence H \C∗)
has strictly less than |M0| 2-vertex components, that is, κ2(H \ C∗) < κ2(H \ C ′). y

In the following, we suppose that κ2(H \C ′) < k0. Let s = 10c · f ′d(c− 1, k0, D) + 200k0
be the number of vertices of H \ C and H \ C ′. Note that H \ C = M is an induced
matching having exactly s/2 edges. We can give a lower bound on the number of edges of
H \ C ′ by giving an upper bound on the number of additional edges required to make the
graph connected. By (C1) of f , every component has size at least two in H \ C ′.2 There
are less than k0 components with exactly two vertices, thus by adding at most k0 edges,
we can ensure that every component contains at least three vertices. Then there are at
most s/3 components with at least three vertices, hence we can connect them with s/3
additional edges. It follows that there are at least s− (s/3 + k0) = 2s/3− k0 ≥ 0.6s edges
in H \ C ′ (using s ≥ 200k0). As the number of edges in H[C] and H[C ′] are the same and
H \ C has 0.5s edges, it follows that the number of edges going out of C ′ is less than the
number of edges going out of C by at least 0.1s.

Let B := ∂H(C) and B′ := ∂H(C ′); by (C3) of Definition B.1, we have |B| = |B′|. Recall
that every vertex of B has either 1 or 2 edges to V (M). As each of the s/2 edges of M has
at most c common neighbors in B, there are at most c(s/2) vertices of B with two edges to
V (M), implying that there are at most |B|+ c(s/2) edges going out of C. Therefore, there
are at most |B|+ c(s/2)− 0.1s edges going out of C ′. Every vertex of B′ = ∂H(C ′) has at
least one edge going to V (M). Let us remove one such edge from each vertex of B′, then a
set T of at most c(s/2)− 0.1s edges remain.3 Let B′≥2 be the subset of B′ containing those
vertices that have at least two edges going to V (H) \ C ′. Then the total number of edges
going from B′≥2 to V (H) \ C ′ is at most 2|T | ≤ cs− 0.2s = (c− 0.2)s: each vertex of B′≥2
has at least one edge in T and, in addition to that, can have at most one edge not in T .
As the number of edges between B′≥2 and V (H) \ C ′ is at most (c − 0.2)s, at most

(c − 0.2s)s/c vertices of V (H) \ C ′ can have at least c neighbors in B′≥2. Let X be
the set of vertices in V (H) \ C ′ with at most c − 1 neighbors in B′≥2, we have that
|X| ≥ s− ((c− 0.2)s)/c = 0.2s/c. By (C1) of Definition B.1 on f , there are no isolated
vertices in H \ C ′. For each vertex in X, let us select an edge of H \ C ′ incident to it; this
way, we select a set F ∗ of least |X|/2 ≥ 0.1s/c ≥ f ′d(c− 1, k0, D) distinct edges. Consider
an edge uv in F ∗. Vertices u and v have no common neighbors in H \ C ′: this would
contradict (C2) of Definition B.1 stating that H \ C ′ is bipartite.4 Therefore, every such
common neighbor is in B′≥2. One of u and v is in X, which means that it has at most c− 1
neighbors in B′≥2, implying that u and v can have at most c− 1 common neighbors. As
|F ∗| ≥ f ′d(c− 1, k0, D), the induction assumption implies that there is a k0-gadget.

2This the point where we crucially use (C1) of Definition B.1.
3This the point where we crucially use (C3) of Definition B.1: we need that |B| = |B′|.
4This the point where we crucially use (C2) of Definition B.1.

224



B.2. Graphs with no large subdivided stars

B.2. Graphs with no large subdivided stars

A subdivided `-star consists of a center vertex v and ` paths of length 2 starting at v that
do not share any vertex other than v. We denote by ψ(v) the largest integer ` such that v
is the center of a subdivided `-star. We denote by ψ(G) the maximum of ψ(v) for every
v ∈ V (G). The goal of this section is to prove Theorem 6.4, the existence of k-matching
gadgets, for graphs where ψ(G) is bounded.
We develop a technology that allows us to “ignore” certain sets Q of vertices: if H \Q

has a k-matching gadget, then so does H. This works for sets Q where the vertices have
some characteristic property (e.g., based on degrees) that allows us to distinguish them
from the vertices not in Q (see below). We use this technique to reduce the problem to
bounded-degree graphs. If we have a large induced matching where every vertex has small
degree, then we define Q to be the vertices of “large degree.” Now H \ Q is clearly a
bounded-degree graph and hence Lemma B.5 can be invoked. Suppose therefore that we
have an induced matching where every vertex has large degree. Then we define Q to be
the vertices of “small degree.” Somewhat unexpectedly, H \Q is a bounded-degree graph
also in this case: this follows from the fact that if ψ(G) is bounded, then a vertex cannot
have many neighbors of large degree.

Proposition B.7. Every vertex v ∈ V (G) has at most ψ(v) neighbors with degree at least
2ψ(v) + 2.

Proof. Let ` = ψ(v) + 1 and suppose that vertex v is adjacent to vertices α1, . . . , α`, each
having degree at least 2`. Then for every 1 ≤ i ≤ `, as the degree of αi is at least 2`, we
can find a vertex βi that is adjacent to αi, but is not in the set {v, α1, . . . , α`, β1, . . . , βi−1}
(note that this set of at most 2` vertices contains less than 2` vertices different from αi).
This creates a subdivided `-star centered at v, a contradiction.

Therefore, we can reduce the problem to bounded-degree graphs also in the case of a
matching with large degree vertices. Finally, if we have a large induced matching with
“mixed” edges, that is, each having both a small-degree and a large-degree endpoint, then
we can reduce to one of the previous two cases by looking at the common neighbors of the
endpoints.

The following definition will be crucial for the clean treatment of the problem. We show
that if a set is “well identifiable” (for example, based on degrees etc.) then we can remove
it from the graph and it is sufficient to show that the remaining part of the graph has a
k-matching gadget. The definition formulates this condition as invariance under certain
isomorphisms.

Definition B.8. Let H be a graph and let X ⊆ C ⊆ V (H) be two subsets of vertices.
We say that X is a strong set with respect to C if whenever f is a boundary-preserving
isomorphism from H[C] to H[C ′] for some C ′ ⊆ V (H), then f(X) = X (in particular, this
implies X ⊆ C ′).

Observe that f(X) and X have the same size, thus to prove f(X) = X, it is sufficient
to prove f(X) ⊆ X, that is, v ∈ X implies f(v) ∈ X.
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As a simple example, suppose that every vertex in H has either degree at most d or
degree at least d+ 2k + 1 and M ⊆ H is a k-matching with every vertex having degree
at most d in H. Let C = V (H) \ V (M) and let X ⊆ C be the set of vertices with
degree at least d + 2k + 1. Then X is a strong set: every vertex x ∈ X has at least
d+ 2k + 1− |V (M)| = d+ 1 neighbors in C, hence f(v) has at least d+ 1 neighbors in C ′,
implying that f(v) ∈ X (as we assumed that degree larger than d implies that the degree
is at least d+ 2k + 1). In fact, it is sufficient to enforce the degree requirement only for
vertices v ∈ ∂H(C): it is sufficient if we require that the degree of every vertex in ∂H(C) is
either at most d or at least d+ 2k + 1, but the degrees of the vertices in C \ ∂H(C) can be
arbitrary. This is sufficient, as if v ∈ C \ ∂H(C), then every neighbor of v is in C and (C3)
of f implies that every neighbor of f(v) is in C ′, hence (as H[C] and H[C ′] are isomorphic)
vertices v and f(v) have exactly the same degree.

We show now that removing a strong set disjoint from M does not affect whether a
k-matching gadget is correct.

Lemma B.9. Let H be a graph containing an induced k-matching M , let C := V (H) \
V (M), and let X ⊆ C be a strong set with respect to C. If (H \X,M) is a k-matching
gadget, then so is (H,M).

Proof. Suppose that f is an isomorphism from H[C] to H[C ′] for some C ′ ⊆ V (H)
satisfying (C1)–(C3) of Definition B.1, but H \ C ′ is not a matching. Let H∗ = H \X
and let f∗ be the restriction of f to C \ X. As X is a strong set, we have f(X) = X

and hence f(C \X) = C ′ \X, that is, f∗ induces an an isomorphism from H∗[C \X] to
H∗[C ′ \ X]. Observe that H∗ \ (C ′ \ X) = H \ C ′ has no isolated vertex and bipartite
(as f satisfies properties (C1) and (C2)). Furthermore, f∗ is boundary preserving (as
∂H\X(C \X) = ∂H(C) and ∂H\X(C ′ \X) = ∂H(C ′)). Therefore, the fact that (H∗,M) is
a k-matching gadget implies that H∗ \ (C ′ \X) = H \ C ′ is a k-matching, what we had to
show.

Similarly to bounded-degree graphs (Lemma B.4), we can use a bound on ψ(H) to argue
that not too many edges can be in the neighborhood of an edge and therefore a large set of
edges implies a large induced matching. However, all we need now is that a large induced
matching implies that there is a large induced matching such that every vertex outside the
matching is adjacent to at most one edge of the matching.

Lemma B.10. Let M be an induced matching of size at least 2kL2 in a graph H with
ψ(G) ≤ L. Then there is an M ′ ⊆ M of size at least k such that every vertex of
V (G) \ V (M ′) is adjacent to at most one edge of M ′.

Proof. Let uv be an edge of M . As M is an induced matching, every other edge of M is at
distance at least 2 from uv. We claim that at most 2L2 edges of M are at distance exactly
2 from uv. Assume, without loss of generality, that there is a set M∗ ⊆M of at least L2

edges different from uv at distance exactly 2 from u. If a neighbor w of u is adjacent to L
distinct edges of M , then there is a subdivided L-star centered at w, a contradiction. Thus
every neighbor of u is adjacent to at most L distinct edges of M , which means that there
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are at least |M∗|/L = L neighbors of u, each adjacent to a distinct edge of M∗. Then u is
the center of an L-star, a contradiction. Thus we have shown that for every edge of M ,
there are at most 2L2 edges at distance exactly 2 from it. This means that we can greedily
select a subset M ′ ⊆ M of edges at pairwise distance is more than 2, that is, M ′ is an
induced matching and every vertex outside M ′ is adjacent to at most one edge of M ′.

Recall the example after Definition B.8: if there is a sufficiently large “gap” in the
degrees of the vertices of N(V (M)) for a matching M , then we can define a strong set
simply based on the degrees. The following lemma creates such a gap of arbitrary large
size by throwing away at most half of the edges of a matching.

Lemma B.11. Let F be an induced matching in a graph H with ψ(H) ≤ L. For every
x ≥ 2L + 2, y ≥ 1, there is an induced matching F ′ ⊆ F of size at least |F |/2 and an
x ≤ g ≤ x + 4(2L + 2)y such that N(V (F ′)) has no vertex whose degree in H is in the
range {g, . . . , g + y − 1}.

Proof. Let B := N(V (F )) and let Bi be the subset of B containing those vertices that
have degree exactly i in H and let xi be the number of edges between Bi and V (F ). Let
Xj =

∑x+(j+1)y−1
i=x+jy xi. Proposition B.7 implies that for every i ≥ x ≥ 2L+ 2, every vertex

in V (F ) has at most 2L + 2 neighbors in Bi, thus
∑4(2L+2)−1
j=0 Xj =

∑x+4(2L+2)y−1
i=x xi ≤

(2L+ 2) · 2|F |. Thus by an averaging argument, there is a 0 ≤ j∗ ≤ 4(2L+ 2) such that
Xj∗ ≤ |F |/2. Therefore, if we construct a matching F ′ ⊆ F by throwing away every edge
of F adjacent to Bi for some x+ j∗y ≤ i ≤ x+ (j∗ + 1)y − 1, then we get a matching F ′

of size at least |F |/2 such that no vertex in N(V (F ′)) ⊆ B (recall that F is an induced
matching) has degree in the range {x+ j∗y, . . . , x+ j∗y+ y− 1}. That is, the statement is
true with g = x+ j∗y.

Now we are ready to prove that main result for graphs not having large subdivided stars.
The proof uses Lemma B.9 to remove a set of vertices, making the graph bounded degree,
and then the bounded-degree result Lemma B.5 can be invoked.

Lemma B.12. There is a function fs(k0, L) such that if graph H with ψ(H) ≤ L has an
induced matching of size fs(k0, L), then there is a k0-matching gadget (H,M0).

Proof. We define the following constants (the function fd is from Lemma B.5):

kH = 2fd(k0, L)
D1 = 2L+ 2 + 8(2L+ 2)kH + 2kH
D2 = D1 + 8(2L+ 2)L
kL = 2fd(k0, D2)
kX = 2k0L

2 + 2D2
1kL + 2L2kH

fs(k0, L) = kH + kL + kX .

Let M be an induced matching of size fs(k0, L) in H. The edges of M are of three types:
either both endpoint have degree at most D1, or only one of them, or neither. We show that
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if M contains a large number of edges from any of the three types, then the k0-matching
gadget exists. In the case when there is a large matching with degrees bounded by D1,
then we identify a strong set containing the high-degree vertices, remove them by applying
Lemma B.9, and invoke Lemma B.5 on the remaining bounded-degree graph.

Claim B.13. If there is an induced matching F of kL edges in H such that the endpoints
of these edges have degree at most D1 in H, then there is a k0-matching gadget.

Proof. Let us apply Lemma B.11 on F with x = D1 + 1 and y = 2L. Then we get a
matching F ′ ⊆ F and a D1 + 1 ≤ g ≤ D1 + 1 + 8(2L+ 2)L = D2 + 1 such that there is no
vertex in N(V (F ′)) with degree in the range {g, . . . , g+2L−1}. Let Q be the set of vertices
with degree at least g (observe that g ≥ D1 + 1 implies that Q ∩ V (F ) = ∅). We claim
that Q is a strong set with respect to C := V (H) \ V (F ′). Let f be a boundary-preserving
isomorphism from H[C] to H[C ′]. Consider a vertex v ∈ Q. If v 6∈ ∂H(C), then every
neighbor of v is in C, hence f(v) has at least g neighbors in C ′, implying f(v) ∈ Q. Suppose
now that v ∈ ∂H(C). If v is adjacent to L + 1 distinct edges of F ′, then v is the center
of an (L+ 1)-star, a contradiction. Therefore, there are at most 2L edges between v and
V (F ′). As v ∈ N(V (F ′)), the way F ′ was defined by Lemma B.11 ensures that the degree
of v is at least g + 2L, thus it has at least g neighbors inside C. It follows that f(v) has
at least g neighbors inside C ′ and hence f(v) ∈ Q. We have shown that v ∈ Q implies
f(v) ∈ Q and hence Q is a strong set. The graph H \ Q has maximum degree at most
g − 1 ≤ D1 + 8(2L+ 2)L = D2 and has a matching F ′ of size |F ′| ≥ |F |/2 = fd(k0, D2).
Therefore, Lemma B.5 implies that there is a k0-matching gadget in H \ Q and then it
follows by Lemma B.9 that H has a k0-matching gadget as well. y

In the case when every vertex of the matching has high degree in H, then we identify a
strong set containing all the low-degree vertices. We argue that after removing this strong
set, the remaining graph has bounded degree: as we have a bound on ψ(H), Proposition B.7
implies that a vertex cannot have many high-degree neighbors. Therefore, we are again in
a situation when Lemma B.5 can be invoked.

Claim B.14. If there is an induced matching F of kH edges in H such that the endpoints
of these edges have degree at least D1, then there is a k0-matching gadget.

Proof. Let us apply Lemma B.11 on F with x = 2L + 2 and y = 2|F |. Then we get a
matching F ′ ⊆ F and a 2L+ 2 ≤ g ≤ 2L+ 2 + 8(2L+ 2)|F | such that there is no vertex in
N(V (F ′)) with degree in the range {g, . . . , g + 2|F | − 1}. Let Q be the set of vertices with
degree less than g+2|F | (observe that g+2|F | ≤ 2L+2+8(2L+2)|F |+2|F | = D1 implies
that Q ∩ V (F ) = ∅). We claim that Q is a strong set with respect to C := V (H) \ V (F ′).
Let f be a boundary-preserving isomorphism from H[C] to H[C ′]. Consider a vertex
v ∈ Q. If v 6∈ ∂H(C), then every neighbor of v is in C. As f is boundary preserving,
we have f(v) 6∈ ∂H(C ′), hence every neighbor of f(v) is in C ′. Furthermore, f is an
isomorphism between H[C] and H[C ′], hence f(v) has the same degree as v, that is, less
than g + 2|F |, implying f(v) ∈ Q. Suppose now that v ∈ ∂H(C). By the way F ′ was
defined by Lemma B.11, the degree of v is actually less than g, thus it has at most g
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neighbors inside C. It follows that f(v) has at most g neighbors inside C ′. Clearly, v can
have at most 2|F ′| ≤ 2|F | neighbors outside C ′, hence f(v) ∈ Q. We have shown that
v ∈ Q implies f(v) ∈ Q and hence Q is a strong set. The graph H \ Q has maximum
degree at most L: otherwise H has a vertex with more than L neighbors with degree at
least g + 2|F | ≥ 2L+ 2 adjacent to it, contradicting Proposition B.7. As F ′ is a matching
of size |F ′| ≥ |F |/2 = fd(k0, L), Lemma B.5 implies that there is a k0-matching gadget in
H \Q. It follows by Lemma B.9 that H has a k0-matching gadget as well. y

The remaining case is when we have a large induced matching where each edge has both
a high-degree and a low-degree endpoint. If we have many edges where the endpoints
have no common neighbors, then we can invoke Lemma B.3. Otherwise, if many of the
edges have low-degree common neighbors, then we can use this common neighbor and the
low-degree endpoint to create a matching where every vertex has low degree and apply
Claim B.13. Similarly, if many of the edges have high-degree common neighbors, then we
can create a matching with high-degree vertices and apply Claim B.14.

Claim B.15. If there is a matching F of kX edges in H such that the every edge in F has
an endpoint with degree at most D2 and a degree at least D1, then there is a k0-matching
gadget.

Proof. Let F0 ⊆ F contain those edges uv in F for which u and v have no common
neighbors. If |F0| ≥ 2k0L

2, then Lemma B.10 implies that there is an induced matching
F ′0 ⊆ F0 of size k0 such that every vertex of V (H) \ V (F ′0) is adjacent to at most one edge
of F ′0. In fact, as the endpoints of the edges in F ′0 have no common neighbors, every vertex
of V (H) \ V (F ′0) is adjacent to at most one vertex of V (F ′0). Then Lemma B.3 implies
that there is a k0-matching gadget.

Suppose therefore that F \ F0 has size at least kX − 2k0L
2 = 2D2

1kL + 2LkH . For every
edge e ∈ F , let us pick a common neighbor we of the endpoints of e and let us partition
F \ F0 into FL and FH depending on whether we has degree less than D1 or at least D1,
respectively. If |FL| ≥ 2D2

1kL, then, for every e ∈ FL, let F ∗L contain the edge between
we and the endpoint of e with degree at most D1. As every vertex of F ∗L has degree at
most D1 in H, Lemma B.4(1) implies that we can select a subset of F ∗L of size at least
|F ∗L|/(2D2

1) ≥ kL that forms an induced matching, and then Claim B.13 implies that there
is a k0-matching gadget.
Otherwise, we have that |FH | ≥ 2L2kL and, for every e ∈ FH , we let F ∗H contain the

edge between we and the endpoint of e with degree at least D1. As every endpoint of
every edge in F ∗H has degree at least D1 ≥ 2L+ 2, Proposition B.7 implies that the graph
induced by these vertices has maximum degree at most L. Thus by Lemma B.4(1), we
can select a subset of F ∗H that forms an induced matching of size at least |F ∗L|/(2L2) ≥ kH ,
and then Claim B.14 implies that there is a k0-matching gadget. y

Claims B.13–B.15 prove the lemma: if M has size at least fs(k0, L), then at least one
the three cases hold.
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B. Existence of k-matching gadgets

B.3. Bounded-treewidth graphs

In this section, we complete the proof of Theorem 6.4 by showing that if a bounded-
treewidth graph has large vertex-cover number, then it contains a k-matching gadget. The
proof presented below finds an induced matching such that ψ(v) is bounded for every
vertex v of the matching, that is, there are no large subdivided stars centered on them.
Then we define Q to be the set of vertices with large ψ-number (this require some care)
and use the technology developed in Section B.2 (Lemma B.9) to argue that it is sufficient
to find a k-matching gadget in H \Q. Clearly, ψ(H \Q) is bounded, hence Lemma B.12
can be invoked.

Lemma B.16. Let w and k be integers and let H be a graph of treewidth at most w
and vertex cover number greater than 3k(w + 1). Then there is an induced matching
M = {u1v1, . . . , ukvk} such that ψ(ui), ψ(vi) ≤ 2(w + 1) for every 1 ≤ i ≤ k.

Proof. Consider a rooted tree decomposition (T,B) of H having width w. For every
t ∈ V (T ), we denote by Ht the graph induced by the union of every bag Bt′ for every
descendant t′ of t (including t itself). For i = 0, 1, . . . , we iteratively construct an induced
matching Mi and a subset Xi of V (T ); initially, M0 = X0 = ∅. We define (see Figure B.3)

• Si :=
⋃
t∈Xi Bt,

• Vi :=
⋃
t∈Xi

⋃
t′ is a descendant of tBt,

• X̂i ⊆ Xi to be the maximal elements of Xi (i.e., those vertices of Xi that have no
proper ancestor in Xi), and

• Ŝi :=
⋃
t∈X̂i

Bt.

Note that if a vertex v of Vi has a neighbor outside Vi, then v ∈ Ŝi, that is, Ŝi separates
Vi \ Ŝi from V (H) \ Vi.
We maintain the following invariant properties:

1. H[Vi \ Si] has a vertex cover Ci of size at most (w + 1)(3|Mi| − |Xi| − |X̂i|).

2. Each edge in Mi is in a different component of H[Vi \ Si] (in particular, Si is disjoint
from V (Mi)).

3. ψ(u), ψ(v) ≤ 2(w + 1) for every edge uv ∈Mi.

For i = 0, all three conditions hold vacuously. If |Mi−1| ≥ k, then we stop the process:
a subset of k edges of Mi−1 is the required induced matching. Otherwise, given Mi−1
and Xi−1, we compute Mi and Xi the following way. Let us choose a node t∗ such that
Ht∗ \ (Bt∗ ∪ Vi−1) contains at least one edge and the distance of t∗ from the root r is
maximum possible. We claim that at least one such node exists; in particular, the root r is
such a node. Otherwise, if Hr \ (Br ∪ Vi−1) has no edge, then Br ∪ Si−1 ∪ Ci−1 is covers
of Hr = H (note that Ŝi−1 ⊆ Si covers every edge between Vi−1 and V (H) \ Vi−1, and
Ci−1 is covers every edge in H[Vi−1 \ Si−1]) and its size is at most w + 1 + (w + 1)|Xi−1|+
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B.3. Bounded-treewidth graphs

Figure B.3.: Case 1 in the proof of Lemma B.16 with p = 4 and j = 1. On the left, shaded
nodes show Vi−1, dark shaded nodes show Xi−1, dark circled nodes show X̂i−1.
We have |Xi| = |Xi−1|+ 1 and |X̂i| = |X̂i−1| − 2 < |X̂i−1|.

(w + 1)(3|Mi−1| − |Xi−1| − |X̂i−1|) ≤ 3k(w + 1) (using property 1 on the size of Ci−1 and
|Mi−1| < k), contradicting our assumption on the vertex cover number of H. Let t1, . . . ,
tp be the children of t∗ for which Htj \ (Bt∗ ∪ Vi−1) contains at least one edge. Note that
p ≥ 1: if there is an edge in Ht∗ \ (Bt∗ ∪ Vi−1), then it has to appear in Htj for some child
tj of t∗. We consider two cases.
Case 1: there is a tj that has more than one descendants in X̂i−1 (see Figure B.3). Let

X̂ ′i−1 be the descendants of tj in X̂i−1. Let us find a node t that is at maximum distance
from the root and has at least two descendants in X̂ ′i−1 (it is possible that t = tj). In other
words, for every pair of nodes in X̂ ′i−1, we find the least common ancestor of the two nodes
and we take t to be a node of maximum distance from the root among these common
ancestors. We let Mi = Mi−1 and Xi = Xi−1 ∪ {t}. Observe that tj is an ancestor of t
and therefore t∗ is a proper ancestor of t. Thus by the choice of t∗, there is no edge in
Ht \ (Bt ∪ Vi−1). Therefore, Ci := Ci−1 is a vertex cover of H[Vi \ Si]: edges with both
endpoint in Vi−1 are covered by Ci, edges with exactly one endpoint in Vi−1 have one
endpoint in Ŝi−1 ⊆ Si, and edges with both endpoints in Vi \ Vi−1 have one endpoint in
Bt ⊆ Si. Observe that the descendants of t in X̂ ′i−1 (there are at least two such nodes) are
no longer maximal nodes in X̂i after adding t and we have added only one new node to Xi,
hence |X̂i| ≤ |X̂i−1| − 1. Together with |Mi| = |Mi−1| and |Xi| = |Xi−1|+ 1, this implies
that 3|Mi| − |Xi| − |X̂i| ≥ 3|Mi−1| − |Xi−1| − |X̂i−1|. Therefore, Ci satisfies the size bound
of property 1. For property 2, observe first that Si ∩ Vi−1 ⊆ Si−1 (if a vertex appears in
Bt and Vi−1, then it has to appear in a bag of X̂i−1) and therefore the fact that Si−1 is
disjoint from V (Mi−1) implies that Si disjoint from V (Mi). Together with Si−1 ⊆ Si, it
follows that the edges in Mi are indeed in different components of H[Vi \ Si]. Property 3
follows from Mi = Mi−1.

Case 2: Every tj has at most one descendant in X̂i−1 (Figure B.4). For every 1 ≤ j ≤ p,
we let ujvj to be an edge of Htj \ (Bt∗ ∪ Vi−1). We let Mi = Mi−1 ∪

⋃p
j=1{ujvj} and

Xi = Xi−1 ∪ {t∗}. To prove property 1, we show that Ci := Ci−1 ∪
⋃p
j=1Btj is a vertex
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B. Existence of k-matching gadgets

Figure B.4.: Case 2 in the proof of Lemma B.16 with p = 3. On the left, shaded nodes
show Vi−1, dark shaded nodes show Xi−1, circled nodes show X̂i−1. We have
|Xi| = |Xi−1|+ 1 and |X̂i| = |X̂i−1| − 2 ≤ |X̂i−1|+ 1.

cover of H[Vi \ Si]. Consider an edge u′v′ of H[Vi \ Si] not covered by Ci. If both u′ and
v′ are in Vi−1 \ Si−1, then u′v′ is covered by Ci−1; if, say, u′ ∈ Vi−1 and v′ 6∈ Vi−1, then
u′ ∈ Ŝi−1 ⊆ Si−1. Therefore, we may assume that u′v′ is an edge of H \ Vi−1. Neither
u′ nor v′ can be in Bt∗ ⊆ Si. Thus u′v′ is an edge of Ht∗ \ (Bt∗ ∪ Vi−1). By the way we
defined t1, . . . , tp, this means that u′v′ is an edge of Htj \ (Bt∗ ∪ Vi−1) for some 1 ≤ j ≤ p.
As Btj ⊆ Ci, it is in fact an edge of Htj \ (Btj ∪ Vi−1) as well. However, this contradicts
the choice of t∗. Let us prove that the size bound of property 1 holds for Ci. As we add
only the single new node t∗ to Xi, we have |Xi| = |Xi−1|+ 1 and |X̂i| ≤ |X̂i−1|+ 1 (note
that the equality |X̂i| = |X̂i−1|+ 1 is possible, but only if t∗ has no descendant in Xi−1).
Together with |Mi| = |Mi−1|+ p, it follows that

|Ci| ≤ |Ci−1|+ p(w + 1)
≤ (w + 1)(3|Mi−1| − |Xi−1| − |X̂i−1|) + p(w + 1)
≤ (w + 1)(3(|Mi| − p)− (|Xi| − 1)− (|X̂i| − 1)) + p(w + 1)
= (w + 1)(3|Mi| − |Xi| − |X̂i| − 2p+ 2)
≤ (w + 1)(3|Mi| − |Xi| − |X̂i|),

where we used the property 1 on Ci−1 in the first inequality and p ≥ 1 in the last inequality.

To prove property 2, observe first that every ujvj is disjoint from Bt∗ by definition and
Bt∗ ∩ Vi−1 ⊆ Ŝi−1, thus Si is disjoint from V (Mi). Notice that Ŝi−1 ⊆ Si−1 ⊆ Si separates
Vi−1 from Vi \ Vi−1 and every edge of Mi \Mi−1 is in Vi \ Vi−1 Therefore, no edge of
Mi−1 can be in the same component of H \ Si as an edge Mi \Mi−1. Furthermore, the
edges of Mi \Mi−1 are separated by Bt∗ ⊆ Si. To prove property 3, suppose that, for
` = 2(w + 1) + 1, there is a subdivided `-star centered at uj (the argument is the same for
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vj); let ujα1β1, . . . , ujα`β` be the paths of length 2 starting at uj . Node tj can have at
most one descendant in X̂i−1. If there is such a descendant xj ∈ X̂i−1, then there is an
1 ≤ q ≤ ` such that αq, βq 6∈ Btj ∪Bxj ; if there is no such descendant, then let us choose
q such that αq, βq 6∈ Btj . It follows that αq and βq only appear in bags that are proper
descendants of tj , but they do not appear in any bag of Xi−1, i.e., αq, βq 6∈ Vi−1. It follows
that αqβq is an edge of Htj \ (Btj ∪ Vi−1), contradicting the selection of node t∗ and the
edge uv. Thus we have ψ(uj), ψ(vj) ≤ 2(w + 1), as required by property 3.

The following two technical lemmas will be used in the proof of Lemma B.19.

Lemma B.17. If H is a multiset of at least (1 + z · r)k subsets of a universe U , each
having size at most r, then there is a subcollection H′ ⊆ H of size k such that for every
x ∈ U , either there is at most one set in H′ containing x, or there are at least z sets in
H \H′ containing x.

Proof. We prove the statement by induction on k. Let us select an arbitrary set X ∈ H.
For every x ∈ X, let us arbitrarily select z sets of H\{X} that contain x (or all of them, if
there are less than z such sets); we define HX as these selected sets; we have |HX | ≤ z · r.
Let us apply the induction hypothesis on the multiset Hk−1 := H \ (HX ∪ {X}) and k − 1
(note that Hk−1 has size at least (1 + z · r)(k − 1)); let H′k−1 be the resulting subcollection
of k − 1 sets. We claim that H′ = H′k−1 ∪ {X} is the desired collection of k sets. Indeed,
for every vertex x ∈ X, if x appears in a set of H′, then it appears in at least z sets of
HX ⊆ H \ (H′k−1 ∪ {X})) and the statement is true for every x 6∈ X by the induction
hypothesis.

Lemma B.18. Let Z be a set of vertices in a graph H of treewidth at most w. If for
every v ∈ Z there is a subdivided star Sv centered at v covering every vertex of Z, then
|Z| ≤ w + 1.

Proof. Consider a rooted tree decomposition (T,B) of H. For every t ∈ V (T ), we denote
by Vt the union of every bag Bt′ for every descendant t′ of t (including t itself). For every
vertex v ∈ Z, consider the node tv closest to the root that contains v, and let us select
a v ∈ Z such that tv has maximum distance from the root. Then Bt′ ∩ Z ⊆ Btv ∩ Z for
every proper descendant t′ of tv, otherwise there would be a vertex u ∈ Z such that tu is a
proper descendant of tv. The subdivided star Sv covers Z by assumption, hence there is a
path of length at most two between v and each vertex of Z \ {v} such that v is the only
vertex shared by these paths. We claim that each such path has to contain a vertex of
Btv \ {v}: otherwise, the vertices of the path appear either only in bags that are proper
descendants of tv (contradicting the maximality of tv) or only in bags where v does not
appear (contradicting that a vertex of the path is a neighbor of v). Therefore, we have
|Z \ {v}| ≤ |Btv \ {v}| ≤ w and |Z| ≤ w + 1 follows.

We are now ready to prove the main result for bounded-treewidth graphs, which completes
the proof Theorem 6.4.
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Lemma B.19. There is a function f(k,w) such that if a graph H with treewidth at most
w has vertex cover number greater than f(k,w), then there is a k-matching gadget (H,M).

Proof. We define the following constants (the function fs is from Lemma B.12):

L = 2(w + 1)
r = 2L+ 2(L(w + 2) + 1)
L1 = 2L+ 2
L2 = 4r + 2 + L1

z = L2

k2 = fs(k, L2)
k1 = 2k2

k0 = (1 + z · r)k1

f(k,w) = 3k0(w + 1).

By Lemma B.16, if H has vertex cover number greater than f(k,w), then H has an induced
matching M0 of size k0 such that ψH(v) ≤ L for every v ∈ V (M).
For every v ∈ V (H) \ V (M0), let us fix a subdivided star Sv centered at v with

min{ψH(v), L2} leaves and having the minimum number of vertices in V (M0). For every
e ∈M0, we let v ∈ V (H) \ V (M0) be in Xe if ψH(v) ≥ L1 and Sv uses an endpoint of e.
Claim B.20. For every e ∈M0, |Xe| ≤ r.

Proof. Suppose first that v ∈ Xe and v is adjacent to e. As v has degree at least
ψH(v) ≥ L1 = 2L+ 2, Proposition B.7 implies that each endpoint of e can have at most L
such neighbors, hence there are at most 2L such vertices in Xe. Suppose therefore that
|Xe| has at least r − 2L = 2(L(w + 2) + 1) vertices not adjacent to e. For each such vertex
v ∈ Xe, the subdivided star Sv contains one or two paths vxy with y being one of the
two endpoints of e. Let us fix such an x and y for each vertex v ∈ Xe not adjacent to e;
for at least L(w + 2) + 1 vertices we have the same y. If there are L + 1 such vertices
v ∈ Xe with distinct x’s, then this shows that there is a subdivided L+ 1 star centered
at y, a contradiction. Therefore, there are w + 2 vertices v1, . . . , vw+2 in Xe sharing the
same x. If Svi does not use vertex vj for some j 6= i, then we can replace y by vj in the
subdivided star Svi , contradicting the minimality of Svi with respect to the number of
vertices of V (M0) used. Thus every Svi covers the set Z = {v1, . . . , vw+2}, contradicting
Lemma B.18. y

We construct a matching M1 ⊆M0 the following way. Let H be the multiset containing
Xe for every e ∈ M0; we have |H| = |M | = (1 + z · r)k1. Let us invoke Lemma B.17 to
obtain a subcollection H′ of size k1 such that for every x ∈ V (H) \ V (M0), either there is
at most one set in H′ containing x or at least z sets of H \H′ contain x. Let M1 ⊆M0 be
the subset of k1 edges corresponding to the subcollection H′.
Claim B.21. If v ∈ Xe for at least two different e ∈M1, then ψH\V (M1)(v) ≥ L2.
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Proof. By the way the subcollection H′ is constructed, we have that v is in Xe for at least
z = L2 edges e ∈ M \M1; let F ⊆ M \M1 be this set of edges. Let vx1y1, . . . , vx`y`
be the paths in the subdivided star Sv. Every edge of F is intersected by one or two of
these paths. Furthermore, as M0 is an induced matching, if vxiyi intersects an edge of
F ⊆ M \M1, then it cannot intersect V (M1). Therefore, at least |F | ≥ L2 such paths
are disjoint from V (M1). These paths form a subdivided L2-star centered at v, implying
ψH\V (M1)(v) ≥ L2. y

Let v ∈ V (H) \ V (M1) be in Vi if ψH(v) = i and v ∈ Xe for some e ∈ M1. As
|Xe| ≤ r for every e ∈Me (Claim B.20), we have

∑L2−2
i=L1

|Vi| ≤ rk1. Therefore, there is an
L1 ≤ i∗ ≤ L2 − 2 such that |Vi∗ |+ |Vi∗+1| ≤ 2rk1/(L2 − 2− L1) = k1/2. Let M2 contain
every e ∈ M1 with Xe ∩ (Vi∗ ∪ Vi∗+1) = ∅. Note that every v ∈ Vi∗ ∪ Vi∗+1 is in Xe for
at most one e ∈ M1: otherwise, Claim B.21 implies that ψH(v) ≥ ψH\V (M1)(v) ≥ L2,
contradicting the choice i∗ ≤ L2 − 2. Therefore, we have that the size of M2 is at least
k1 − (|Vi∗ | + |Vi∗+1|)| ≥ k1/2 = k2. Furthermore, if e ∈ M2, then Xe is disjoint from
Vi∗ ∪ Vi∗+1.
Let us define Q as the set containing every v ∈ V (H) with ψ(v) ≥ i∗ and let C =

V (H) \ V (M2).
Claim B.22. Set Q is a strong set of H with respect to C.

Proof. Let f be a boundary-preserving isomorphism from H[C] to H[C ′] for some C ′ ⊆
V (H). We show that ψH[C](v) ≥ i∗ for every v ∈ Q. Then, as f is an isomorphism between
H[C] and H[C ′], we have that ψH(f(v)) ≥ ψH[C′](f(v)) = ψH[C](v) ≥ i∗, implying
f(v) ∈ Q.
Consider a vertex v ∈ Q and the subdivided Sv star. Recall that, as we have ψH(v) ≥

i∗ ≥ L1, the subdivided star Sv contains an endpoint of e ∈M0 only if v ∈ Xe. Suppose
first that v ∈ Q is not in Xe for any e ∈M2; in particular, this is the case for any v with
ψH(v) ∈ {i∗, i∗ + 1}. Then the subdivided star Sv is disjoint from V (M2), that is, Sv is
fully contained in C. Then ψH[C](v) ≥ min{ψH(v), L2} ≥ i∗.
Suppose now that v ∈ Q is in Xe for exactly one edge e ∈ M2; this is only possible if

ψH(v) ≥ i∗ + 2. Then the subdivided star Sv intersects the endpoints of at most one edge
of M2, that is, at most two paths of Sv intersect V (M2). Therefore, a subdivided star
centered at v with min{ψH(v), L2} − 2 ≥ i∗ leaves appears in H[C].

Finally, suppose that v ∈ Q is in Xe for at least two edges ofM2 ⊆M1. Then Claim B.21
implies that ψH[C](v) ≥ ψH\V (M1)(v) ≥ L2 ≥ i∗. y

We have ψ(H \Q) < i∗ < L2 andM2 is a matching of size at least k2 in H \Q. Therefore,
Lemma B.12 implies that there is a k-matching gadget (H \Q,M). As Q is a strong set,
Lemma B.9 implies that (H,M) is also a k-matching gadget.
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C. Computing matchgate signatures

In several instances, we claim that specific matchgates realize certain signatures, and
subsequent arguments rely crucially upon the correctness of these claims.

How the matchgates were found

Each of these matchgates was found in the following way:

1. Assume we wish to find a matchgate on n vertices, for n ∈ N, that realizes a given
signature f : {0, 1}[d] → Q. If n is not known, we simply repeat the following for all
n ∈ N until the first matchgate is found.

2. Let x = (xij)i,j∈[n] be a family of indeterminates. Consider the complete graph
K = Kn, where each edge ij ∈ E(Kn) is weighted by xi,j . If we wish to ensure a
property such as planarity, we can choose a base graph other than Kn. For each
i ∈ [d], add a dangling edge to the i-th vertex in K.

3. Compute Sig(K) : {0, 1}[d] → Z[x] by brute force. Note that the signature entries
are multivariate polynomials over the indeterminates x.

4. Set up a system of polynomial equations by requiring, for each y ∈ {0, 1}[d], that

Sig(K, y) = f(y).

Solve the resulting system of 2d equations using a licensed copy of a computer algebra
system, such as MAPLE in our case. Note that the parity condition (Remark 2.19)
implies that the left-hand sides of 2d−1 equations are zero.

Similar approaches were already carried out in the literature on Holant problems [Val08,
CLX09a], but these did not result in the matchgates we presented.

How to verify the matchgates

We provide MATLAB code for computing, given a gate Γ, the signature of Γ. This code
uses only a basic fragment of MATLAB and is optimized for maximum transparency. As
a consequence, it is sinfully inefficient, but can still handle our inputs within reasonable
time. Note that this code only allows for verifying Γ rather than finding it.
Let Γ be a matchgate on vertex set [n] with m edges, d of which are dangling. Assume

that E(Γ) is ordered as e1, . . . , em such that D = {e1, . . . , ed} are the dangling edges. Let
0 be a virtual vertex that all dangling edges are incident to.
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• The input to computeSignature is (A,n,m, d), where A is an array of size m × 3.
For i ∈ [m], its i-th row encodes edge ei = uv as a triple (u, v, w(ei)). Note that
dangling edges are of the format (0, ?, 1). When called with the input (A,n,m, d)
derived from Γ, the function outputs Sig(Γ) on the console. To save some paper,
it only outputs those entries x with Sig(Γ, x) 6= 0. The function uses a subroutine
computePerfMatch that we describe in the following.

• The input to computePerfMatch is an array A as above, together with an external
assignment x ∈ {0, 1}D, given as a zero-one vector of length d. When called, the
function returns ∑

y∈{0,1}[m]\[d]

weight(xy) · degOne(xy),

where for z ∈ {0, 1}[m], we have

weight(z) =
∏
i∈z

w(ei),

degOne(z) = [∀1 ≤ i ≤ n : hw(z|I(i)) = 1].

This is clearly equal to Sig(Γ, x).

The code we wrote to implement these functions is listed in the following.

1 function computeSignature(A,n,m,d)
2 for i = 1:2^d
3
4 % compute binary representation of i-1 as vector of length d
5 x = zeros(1,d);
6 actString = dec2bin(i-1,d);
7 for t = 1:d
8 x(t) = (actString(t) == ’1’);
9 end

10
11 % compute and display Sig(A,x) if it is nonzero
12 signature_value = computePerfMatch(A,n,m,d,x);
13 if signature_value ~= 0
14 disp([’Sig(’ actString ’)␣=␣’ num2str(signature_value )]);
15 end
16 end
17 end

1 function PerfMatch = computePerfMatch(A,n,m,d,x)
2
3 % initialize
4 PerfMatch = 0;
5
6 for i = 1:2^(m-d)
7
8 % compute binary representation of i-1 as vector of length m-d
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9 y = zeros(1,m-d);
10 actString = dec2bin(i-1,m-d);
11 for t = 1:m-d
12 y(t) = (actString(t) == ’1’);
13 end
14
15 % concatenate x and y
16 z = [x y];
17
18 % compute weight (z)
19 weight = prod(A(z == 1 ,3));
20
21 % compute degOne , initialized to 1
22 degOne = 1;
23 for v = 1:n
24
25 % compute Hamming weight of edges incident with v
26 curHammWeight = 0;
27 for e = 1:m
28 actEdge = A(e,:);
29 if z(e) == 1 && (actEdge (1) == v || actEdge (2) == v)
30 curHammWeight = curHammWeight + 1;
31 end
32 end
33
34 % first vertex with wrong curHammWeight sets degOne to 0
35 if curHammWeight ~= 1
36 degOne = 0;
37 end
38 end
39
40 % add the computed term to PerfMatch
41 PerfMatch = PerfMatch + weight * degOne;
42 end
43 end
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C.1. Equality matchgate

Figure C.1.: The equality matchgate Γ= with numbered vertices

>> A = [
0 1 1;
0 2 1;
0 3 1;
0 4 1;
5 6 1;
4 6 1;
3 5 1;
4 5 1;
2 5 1;
1 5 1;
3 4 -1;
2 4 -1;
1 2 0.5;
1 3 0.5;
1 9 0.5;
1 8 0.5;
6 7 -1;
4 10 -1;
9 10 1;
7 8 1
];

n = 10;
m = 20;
d = 4;

>> computeSignature(A,n,m,d);
Sig (0000) = 1
Sig (1111) = 1
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C.2. Matchgate verifications for Section 4.1

C.2. Matchgate verifications for Section 4.1

The matchgate ΓPASS realizes PASS

Figure C.2.: The matchgate ΓPASS with numbered vertices

>> A = [
0 1 1;
0 2 1;
0 3 1;
0 4 1;
1 5 1;
2 6 1;
6 7 1;
7 8 1;
3 8 1;
4 9 1;
9 10 1;
5 10 1;
7 10 1;
5 6 -1;
8 9 -1;
];

n = 10;
m = 15;
d = 4;

>> computeSignature(A,n,m,d);
Sig (0000) = 1
Sig (0101) = 1
Sig (1010) = 1
Sig (1111) = -1

241



C. Computing matchgate signatures

The signature of the matchgate Ψ

Figure C.3.: The matchgate Ψ with numbered vertices

>> A = [
0 1 1;
0 2 1;
0 3 1;
0 4 1;
0 5 1;
0 8 1;
1 5 1;
2 6 1;
6 7 1;
7 8 1;
3 8 1;
4 9 1;
9 10 1;
5 10 1;
7 10 1;
5 6 -1;
8 9 -1; ];

n = 10; m = 17; d = 6;

% the bitstring xy (with x of length 4) is relevant if hw(x) is even

>> computeSignature(A,n,m,d);
Sig (000000) = 1 % relevant
Sig (001001) = 1
Sig (010100) = 1 % relevant
Sig (011101) = 1
Sig (100010) = 1
Sig (101000) = 1 % relevant
Sig (101011) = 1 % relevant
Sig (110110) = 1
Sig (111100) = -1 % relevant
Sig (111111) = 1 % relevant
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